Gallai-Ramsey numbers for graphs with five vertices and eight edges

Xueli Su, Yan Liu

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P.R. China

Abstract

A Gallai k-coloring is a k-edge coloring of a complete graph in which there are no rainbow triangles. For given graphs G_1, G_2, G_3 and nonnegative integers r, s, t with that $k = r + s + t$, the k-colored Gallai-Ramsey number $gr_k(K_3 : r \cdot G_1, s \cdot G_2, t \cdot G_3)$ is the minimum integer n such that every Gallai k-colored K_n contains a monochromatic copy of G_1 colored by one of the first r colors or a monochromatic copy of G_2 colored by one of the middle s colors or a monochromatic copy of G_3 colored by one of the last t colors. In this paper, we determine the value of Gallai-Ramsey number in the case that $G_1 = B_3^+, G_2 = S_3^+$ and $G_3 = K_3$. Then the Gallai-Ramsey number $gr_k(K_3 : B_3^+)$ is obtained. Thus the Gallai-Ramsey numbers for graphs with five vertices and eight edges are solved completely. Furthermore, the the Gallai-Ramsey numbers $gr_k(K_3 : r \cdot B_3^+, (k-r) \cdot S_3^+), gr_k(K_3 : r \cdot B_3^+, (k-r) \cdot K_3)$ and $gr_k(K_3 : s \cdot S_3^+, (k-s) \cdot K_3)$ are obtained, respectively.

Key words: Gallai coloring, rainbow triangle, monochromatic graph, Gallai-Ramsey number.

*This work is supported by the Scientific research fund of the Science and Technology Program of Guangzhou, China(No.202002030183), by the Natural Science Foundation of Qinghai, China (No.2020-ZJ-924). Correspondence should be addressed to Yan Liu(e-mail:liuyan@scnu.edu.cn)
1 Introduction

All graphs considered in this paper are finite, simple and undirected. For a graph G, we use $|G|$ to denote the number of vertices of G, say the order of G. The complete graph of order n is denoted by K_n. For a subset $S \subseteq V(G)$, let $G[S]$ be the subgraph of G induced by S. For two disjoint subsets A and B of $V(G)$, $E_G(A, B) = \{ab \in E(G) \mid a \in A, b \in B\}$. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The union of G_1 and G_2, denoted by $G_1 + G_2$, is the graph with the vertex set $V_1 \cup V_2$ and the edge set $E_1 \cup E_2$. The join of G_1 and G_2, denoted by $G_1 \vee G_2$, is the graph obtained from $G_1 + G_2$ by adding all edges joining each vertex of G_1 and each vertex of G_2. For any positive integer k, we write $[k]$ for the set $\{1, 2, \cdots, k\}$. An edge coloring of a graph is called monochromatic if all edges are colored by the same color. An edge-colored graph is called rainbow if no two edges are colored by the same color.

Given graphs H_1 and H_2, the classical Ramsey number $R(H_1, H_2)$ is the smallest integer n such that for any 2-edge coloring of K_n with red and blue, there exists a red copy of H_1 or a blue copy of H_2. Given graphs H_1, H_2, \cdots, H_k, the multicolor Ramsey number $R(H_1, H_2, \cdots, H_k)$ is the smallest positive integer n such that for every k-edge colored K_n with the color set $[k]$, there exists some $i \in [k]$ such that K_n contains a monochromatic copy of H_i colored by i. The multicolor Ramsey number is an obvious generalization of the classical Ramsey number. When $H = H_1 = \cdots = H_k$, we simply denote $R(H_1, \cdots, H_k)$ by $R_k(H)$. In this paper, we study Ramsey number in Gallai-coloring. A Gallai-coloring is an edge coloring of a complete graph without rainbow triangle. Gallai-coloring naturally arises in several areas including: information theory [5]; the study of partially ordered sets, as in Gallai’s original paper [5] (his result was restated in [7] in the terminology of graphs); and the study of perfect graphs [2]. A Gallai k-coloring is a Gallai-coloring that uses k colors. Given a positive integer k and graphs H_1, H_2, \cdots, H_k, the Gallai-Ramsey number $gr_k(K_3 : H_1, H_2, \cdots, H_k)$ is the smallest integer n such that every Gallai k-colored K_n contains a monochromatic copy of H_i in color i for some $i \in [k]$. Clearly, $gr_k(K_3 : H_1, H_2, \cdots, H_k) \leq R(H_1, H_2, \cdots, H_k)$ for any k and $gr_2(K_3 : H_1, H_2) = R(H_1, H_2)$. When $H = H_1 = \cdots = H_k$, we simply denote $gr_k(K_3 : H_1, H_2, \cdots, H_k)$ by $gr_k(K_3 : H)$. When $H = H_1 = \cdots = H_s(0 \leq s \leq k)$ and $G = H_{s+1} = \cdots = H_k$, we use the following
shorthand notation

\[gr_k(K_3 : s \cdot H, (k - s) \cdot G) = gr_k(K_3 : H, \ldots, H, G, \ldots, G). \]

For nonnegative integers \(r, s, t \), when \(G_1 = H_1 = \cdots = H_r, G_2 = H_{r+1} = \cdots = H_{r+s}, \) and \(G_3 = H_{r+s+1} = \cdots = H_{r+s+t} \) with that \(k = r + s + t \), we use the following shorthand notation

\[gr_k(K_3 : r \cdot G_1, s \cdot G_2, t \cdot G_3) = gr_k(K_3 : G_1, \ldots, G_1, G_2, \ldots, G_2, G_3, \ldots, G_3). \]

The Gallai-Ramsey numbers \(gr_k(K_3 : H) \) for all the graphs \(H \) on five vertices and at most seven edges are obtained (see \([10, 17, 11, 16]\)). There are two graphs on five vertices and eight edges, one of which is a wheel graph \(W_4 \), and the other is a graph \(B_3^+ \) obtained from the book graph \(B_3 \) by adding an edge between two vertices with degree two. Song \([13]\) and Mao \([11]\) obtained the Gallai-Ramsey number \(gr_k(K_3 : W_4) \). In this paper, we determine the Gallai-Ramsey number \(gr_k(K_3 : B_3^+) \). In order to get \(gr_k(K_3 : B_3^+) \), we actually investigate the Gallai-Ramsey number \(gr_k(K_3 : r \cdot B_3^+, s \cdot S_3^+, t \cdot K_3) \), where \(S_3^+ \) denotes the graph obtained from the star \(S_3 = K_1 \vee K_3 \) by adding an edge between two pendant vertices, stated in Theorem \([11]\)

Theorem 1. For nonnegative integers \(r, s, t \), let \(k = r + s + t \). Then

\[
gr_k(K_3 : r \cdot B_3^+, s \cdot S_3^+, t \cdot K_3) = \begin{cases}
17^r \cdot 5^t + 1, & \text{if } r, t \text{ are even, (c_1)} \\
2 \cdot 17^r \cdot 5^{s-1} + 1, & \text{if } r \text{ is even, } t \text{ is odd, (c_2)} \\
8 \cdot 17^r \cdot 5^{s-1} + 1, & \text{if } r, t \text{ are odd, (c_3)} \\
4 \cdot 17^{r-1} \cdot 5^s + 1, & \text{if } r \text{ is odd, } t \text{ is even, (c_4)} \\
6 \cdot 17^r \cdot 5^{t-1} + 1, & \text{if } r \text{ is even and } s + t \text{ is even, (c_5)} \\
3 \cdot 17^r \cdot 5^{t-1} + 1, & \text{if } r \text{ is even and } s + t \text{ is odd, (c_6)} \\
48 \cdot 17^{r-1} \cdot 5^{s+t-3} + 1, & \text{if } r \text{ is odd and } t \geq 1 \text{ and } s + t \text{ is odd, (c_7)} \\
48 \cdot 17^{r-1} \cdot 5^{s-3} + 1, & \text{if } r, s \text{ are odd and } s \geq 3 \text{ and } t = 0, (c_8) \\
9 \cdot 17^{r-1} + 1, & \text{if } r \text{ is odd and } s = 1 \text{ and } t = 0, (c_9) \\
24 \cdot 17^{r-1} \cdot 5^{s+t-2} + 1, & \text{if } r \text{ is odd and } s + t \text{ is even, (c_{10})}
\end{cases}
\]
where $s = 0$ for Condition c_1 to Condition c_4 and $s \geq 1$ for Condition c_5 to Condition c_{10}.

When we set that $s = t = 0$, $r = s = 0$, $r = t = 0$, respectively, we can get the following Theorem 2 to Theorem 4 respectively.

Theorem 2. For any integer $r \geq 1$,

$$
gr_r(K_3 : B_3^+) = \begin{cases} 17^{r/2} + 1, & \text{if } r \text{ is even}, \\ 4 \cdot 17^{(r-1)/2} + 1, & \text{if } r \text{ is odd}. \end{cases}
$$

Theorem 3. [3, 6] For a positive integer t,

$$
gr_t(K_3 : K_3) = \begin{cases} 5^{t/2} + 1, & \text{if } t \text{ is even}, \\ 2 \cdot 5^{t-1} + 1, & \text{if } t \text{ is odd}. \end{cases}
$$

Theorem 4. [15] For a positive integer s,

$$
gr_s(K_3 : S_3^+) = \begin{cases} 6 \cdot 5^{s/2} + 1, & \text{if } s \text{ is even}, \\ 3 \cdot 5^{s-1} + 1, & \text{if } s \text{ is odd}. \end{cases}
$$

When we set $r = 0$, $s = 0$ and $t = 0$, respectively, we can get the Gallai-Ramsey numbers $gr_k(K_3 : s \cdot S_3^+, (k - s) \cdot K_3)$, $gr_k(K_3 : r \cdot B_3^+, (k - r) \cdot K_3)$ and $gr_k(K_3 : r \cdot B_3^+, (k - r) \cdot S_3^+)$, respectively, which are omitted.

To prove Theorem 1 the following theorem is useful.

Theorem 5. [5, 7, 1] (Gallai-partition) For any Gallai-coloring of a complete graph G, there exists a partition of $V(G)$ into at least two parts such that there are at most two colors on the edges between the parts and there is only one color on the edges between each pair of parts. The partition is called a Gallai-partition.

2 Proof of Theorem 1

First, recall some known classical Ramsey numbers which are useful.
Lemma 2.1. \[4, 8, 12\]

\[R_2(K_3) = 6, R_2(S_3^+) = 7, R_2(B_3^+) = 18, R(K_3, S_3^+) = 7, R(K_3, B_3^+) = 9, R(S_3^+, B_3^+) = 10.\]

A sharpness example of the Ramsey number \(R(H_1, H_2)\), denoted by \(C(H_1, H_2)\), is a 2-edge colored \(K_{R(H_1, H_2)−1}\) with red and blue such that there is neither red copy of \(H_1\) nor blue copy of \(H_2\). For example, \(C(K_3, K_3)\) is a 2-edge colored \(K_5\) with red and blue such that there is neither red nor blue copy of \(K_3\) and \(C(K_3, S_3^+)\) is a 2-edge colored \(K_6\) with red and blue such that there is neither red copy of \(K_3\) nor blue copy of \(S_3^+\).

For the sake of notation, let \(f(r, s, t) = gr_k(K_3 : r \cdot B_3^+, s \cdot S_3^+, t \cdot K_3) − 1\), claimed in Theorem \([1]\). It is easy to check the following inequalities:

\[
\frac{f(r, s, t - 1)}{f(r, s, t)} \leq \frac{1}{2}, \quad (1)
\]

\[
\frac{f(r, s - 1, t)}{f(r, s, t)} \leq \frac{1}{2}, \quad (2)
\]

\[
\frac{f(r - 1, s, t)}{f(r, s, t)} \leq \begin{cases}
\frac{1}{3}, & \text{if } s = 1 \text{ and } t = 0, \\
\frac{5}{16}, & \text{others,}
\end{cases} \quad (3)
\]

\[
\frac{f(r - 1, s + 1, t)}{f(r, s, t)} \leq \frac{3}{4}, \quad (4)
\]

\[
\frac{f(r - 1, s, t + 1)}{f(r, s, t)} \leq \frac{2}{3}, \quad (5)
\]

\[
\frac{f(r, s, t - 2)}{f(r, s, t)} \leq \frac{1}{5}, \quad (6)
\]

\[
\frac{f(r, s - 1, t - 1)}{f(r, s, t)} \leq \frac{1}{5}, \quad (7)
\]

\[
\frac{f(r, s - 2, t)}{f(r, s, t)} \leq \frac{1}{5}, \quad (8)
\]
\[
\frac{f(r-1,s,t-1)}{f(r,s,t)} \leq \frac{1}{8},
\]
(9)

\[
\frac{f(r-1,s-1,t)}{f(r,s,t)} \leq \frac{1}{8},
\]
(10)

\[
\frac{f(r-1,s+1,t-1)}{f(r,s,t)} \leq \frac{3}{8},
\]
(11)

\[
\frac{f(r-1,s-1,t+1)}{f(r,s,t)} \leq \frac{5}{16},
\]
(12)

\[
\frac{f(r-2,s+1,t+1)}{f(r,s,t)} \leq \frac{15}{34},
\]
(13)

\[
\frac{f(r-2,s+1,t)}{f(r,s,t)} \leq \frac{3}{17},
\]
(14)

\[
\frac{f(r-2,s,t+2)}{f(r,s,t)} \leq \frac{16}{51},
\]
(15)

\[
\frac{f(r-2,s,t+1)}{f(r,s,t)} \leq \frac{8}{51},
\]
(16)

\[
\frac{f(r-2,s,t)}{f(r,s,t)} = \frac{1}{17}.
\]
(17)

Now we prove Theorem 1.

Proof. We first prove that \(gr_k(K_3 : r \cdot B_3^+, s \cdot S_3^+, t \cdot K_3) \geq f(r,s,t) + 1\) by constructing a Gallai \(k\)-colored complete graph \(G_k\) with order \(f(r,s,t)\) which contains no monochromatic copy of \(B_3^+\) colored by one of the first \(r\) colors and no monochromatic copy of \(S_3^+\) colored by one of the middle \(s\) colors and no monochromatic copy of \(K_3\) colored by one of the remaining \(t\) colors. For this construction, we use the sharpness example of classical Ramsey results. Let \(Q_1 = C_{(K_3,K_3)}\), \(Q_2 = C_{(K_3,S_3^+)}\), \(Q_3 = C_{(K_3,B_3^+)}\), \(Q_4 = C_{(S_3^+,S_3^+)}\), \(Q_5 = C_{(S_3^+,B_3^+)}\) and \(Q_6 = C_{(B_3^+,B_3^+)}\). We construct our sharpness example \(G_k\) by taking blow-ups of these sharpness examples \(Q_j\) \((j \in [6])\). A blow-up of a 2-edge-colored graph \(Q_j\) with two new
colors on an \(i\)-edge-colored graph \(G_i\) is a new graph \(G_{i+2}\) obtained from \(Q_j\) by replacing each vertex of \(Q_j\) with \(G_i\) and replacing each edge \(e\) of \(Q_j\) with a monochromatic complete bipartite graph \((V(G_i), V(G_i))\) in the same color with \(e\). By induction on \(i\), suppose that we have constructed graphs \(G_i\), where \(G_i\) is \(i\)-edge-colored such that \(G_i\) contains no rainbow triangle and no appropriately colored monochromatic \(B_3^+\) or \(S_3^+\) or \(K_3\). If \(i = k\), then the construction is completed. Otherwise, we construct \(G_{i+2}\) by taking a blow-up of 2-edge-colored \(Q_j\) with two new colors on \(G_i\) by distinguishing the following cases.

Case a. If the two new colors are in the first \(r\) colors, then we construct \(G_{i+2}\) by making a blow-up of \(Q_6\) on \(G_i\).

Case b. If the two new colors are in the middle \(s\) colors, then we construct \(G_{i+2}\) by making a blow-up of \(Q_1\) on \(G_i\) where \(i \geq 1\).

Case c. If the two new colors are in the last \(t\) colors, then we construct \(G_{i+2}\) by making a blow-up of \(Q_1\) on \(G_i\).

The base graphs (i.e., the first graphs in the induction) for this construction are constructed as follows.

For **Condition** \(c_1\), the base graph \(G_0\) is a single vertex.

For **Condition** \(c_2\), the base graph \(G_1\) is a \(K_2\) colored by one of the last \(t\) colors.

For **Condition** \(c_3\), the base graph \(G_2\) is a \(Q_3\) colored by two colors in which one is in the first \(r\) colors and the other is in the last \(t\) colors.

For **Condition** \(c_4\), the base graph \(G_1\) is a monochromatic \(K_4\) colored by one of the first \(r\) colors.

For **Condition** \(c_5\), the base graph \(G_2\) is a \(Q_4\) colored by two colors which are in the middle \(s\) colors if \(s, t\) are both even and the base graph \(G_2\) is a \(Q_2\) colored by two colors in which one is in the middle \(s\) colors and the other is in the last \(t\) colors if \(s, t\) are both odd.

For **Condition** \(c_6\), if \(s\) is odd and \(t\) is even, the base graph \(G_1\) is a monochromatic copy of \(K_3\) colored by one of the middle \(s\) colors. If \(s\) is even and \(t\) is odd, the base graph \(G_3\) is a blow-up of \(Q_1\) on a monochromatic \(K_3\), where \(K_3\) is colored by one of the middle \(s\) colors and \(Q_1\) is colored by two new colors one of which is in the middle \(s\) colors and the other is in the last \(t\) colors.

For **Condition** \(c_7\), if \(s\) is even and \(t\) is odd, the base graph \(G_4\) is a blow-up of \(Q_3\) on \(Q_4\),
where Q_4 is colored by two colors which are in the middle s colors and Q_3 is colored by two colors one of which is in the first r colors and the other is in the last t colors. If s is odd and t is even, then we first construct G_3. G_3 is a blow-up of Q_3 on a monochromatic K_3, where K_3 is colored by one of middle s colors and Q_3 is colored by two colors one of which is in the first r colors and the other is in the last t colors. The base graph G_4 is a blow-up of a monochromatic K_2 on G_3, where K_2 is colored by a new color in the last t colors.

For Condition c_8, the base graph G_4 is a blow-up of Q_3 on Q_4, where Q_4 is colored by two colors which are in the middle s colors and Q_3 is colored by two new colors one of which is in the first r colors and the other is in the middle s colors. If s and t are both odd, the base graph G_3 is a blow-up on a monochromatic K_3, where K_3 is colored by one of middle s colors and Q_3 is colored by two colors one of which is in the first r colors and the other is in the middle s colors.

Now we only check G_k constructed by the method as above under the two conditions c_1 and c_5, others can be checked similarly, omitted.

Condition c_1. r, t are even and $s = 0$. Then $k = r + t$. First the basic graph is $G_0 = K_1$. Next by Case a, we can construct G_r of order $17^\frac{r}{2}$. Finally, by Case c, we continue to construct $G_{r+2}, G_{r+4}, \ldots, G_{r+t}$. So we can get that $|G_k| = 17^\frac{r}{2} \cdot 5^\frac{t}{2} = f(r, s, t)$ and G_k is a Gallai k-colored complete graph which contains neither monochromatic copy of B_3^+ colored by one of the first r colors nor monochromatic copy of K_3 colored by one of the remaining t colors.

Condition c_5. If r is even and s, t are odd, then we first have the basic graph $G_2 = K_6$. Next by Case a, we can construct G_{r+2} of order $6 \cdot 17^\frac{r}{2}$. Then by Case b, we continue to construct G_{r+s+1} of order $6 \cdot 17^\frac{r}{2} \cdot 5^\frac{s-1}{2}$. Finally, by Case c, we continue to construct $G_{r+s+3}, G_{r+s+5}, \ldots, G_{r+s+t}$. So we can get that $|G_k| = 6 \cdot 17^\frac{r}{2} \cdot 5^\frac{s+t-2}{2} = f(r, s, t)$ and G_k is a Gallai k-colored complete graph which contains no appropriately colored monochromatic
B_3^+ or S_3^+ or K_3. Similarly, we can get that $|G_k| = f(r, s, t)$ if r is even and s, t are even. Therefore, $gr_k(K_3 : r \cdot B_3^+, s \cdot S_3^+, t \cdot K_3) \geq f(r, s, t) + 1$.

Now we prove that $gr_k(K_3 : r \cdot B_3^+, s \cdot S_3^+, t \cdot K_3) \leq f(r, s, t) + 1$ by induction on $3r + 2s + t$. The statement holds in the case that $3r + 2s + t \leq 2$ or $k \leq 2$ by Lemma [2.1]. So we can assume that $k \geq 3, 3r + 2s + t \geq 3$, and the statement holds for any r', s' and t' such that $3r' + 2s' + t' < 3r + 2s + t$. Let $n = f(r, s, t) + 1$ and G be a Gallai k-colored complete graph of order n. Then $n = f(r, s, t) + 1 \geq f(0, 0, 3) + 1 = 11$. Suppose, to the contrary, that G contains neither monochromatic copy of B_3^+ in any one of the first r colors nor monochromatic copy of S_3^+ in any one of the middle s colors nor monochromatic copy of K_3 in any one of the last t colors. By Theorem [5] there exists a Gallai-partition of $V(G)$. Choose a Gallai-partition with the smallest number of parts, say (V_1, V_2, \ldots, V_q) and let each part $H_i = G[V_i]$ for $i \in [q]$. Then $q \geq 2$.

We first consider the case that $q = 2$. W.L.O.G, suppose that the color on the edges between two parts is red. First suppose that red is in the last t colors or in the middle s colors. Then H_1 and H_2 both have no red edges, otherwise, there exists a red K_3 or a red S_3^+, a contradiction. Hence by the induction hypothesis, $|H_i| \leq f(r, s, t - 1)$ if red is in the last t colors and $|H_i| \leq f(r, s - 1, t)$ red is in the middle s colors for each $i \in [2]$. By Inequalities (1) and (2), we have that

$$|G| = |H_1| + |H_2| \leq 2 \times \frac{1}{2} f(r, s, t) < n,$$

a contradiction. Next suppose that red is in the first r colors. If both H_1 and H_2 have a red edge, then G has a red B_3^+, a contradiction. First suppose that H_1 and H_2 both have no red edges. By the induction hypothesis and Inequality (3),

$$|G| = |H_1| + |H_2| \leq 2f(r - 1, s, t) \leq \frac{2}{3} f(r, s, t) < n,$$

a contradiction. Then suppose that H_1 has a red edge, but H_2 has no red edges. Clearly, H_1 contains no red S_3^+, otherwise, G contains a red B_3^+, a contradiction. We first consider the case that H_1 contains a red K_3. To avoid a red B_3^+, we have that $|H_2| = 1$. Then H_1 can be considered that red is moved in the middle s colors. By the induction hypothesis and Inequality (4), we get that

$$|G| = |H_1| + |H_2| \leq f(r - 1, s + 1, t) + 1 \leq \frac{3}{4} f(r, s, t) + 1 < n,$$
a contradiction. So we can assume that H_1 contains no red K_3. Thus H_1 can be considered that red is moved in the last t colors. By the induction hypothesis and Inequalities (5) and (3), we get that

$$|G| = |H_1| + |H_2| \leq f(r - 1, s, t + 1) + f(r - 1, s, t) \leq \left(\frac{2}{3} + \frac{1}{3}\right)f(r, s, t) < n,$$

a contradiction.

Now we can assume that $q \geq 3$ and the two colors appeared in the Gallai-partition (V_1, V_2, \ldots, V_q) are red and blue. If there exists one part (say V_1) such that all edges joining V_1 to the other parts are colored by the same color, then we can find a new Gallai-partition with two parts $(V_1, V_2 \cup \cdots \cup V_q)$, which contradicts with that q is smallest. It follows that $q \neq 3$ and the following fact holds.

Fact 1. For each part V_i, there exist both red and blue edges connecting V_i and the other parts.

Now we can assume that $q \geq 4$. First suppose that red or blue are in the middle s colors. Then we have the following facts.

Fact 2. If red is in the middle s colors, then G contains no red K_3 and the statement holds for blue symmetrically.

Otherwise, suppose that there is a red $K_3 = v_1v_2v_3$ in G. Let U be the union of parts V_j containing a vertex in $\{v_1, v_2, v_3\}$. Then U contains at most 3 parts of Gallai-partition in G. If there exists a red edge in $E_G(U, V(G) \setminus U)$, then G contains a red S_3^+, a contradiction. It follows that all edges in $E_G(U, V(G) \setminus U)$ are blue. Then $(U, V(G) \setminus U)$ is a new Gallai-partition which contradicts with that $q \geq 4$ and q is smallest.

By Fact 1 and Fact 2, we have the following Fact.

Fact 3. If red is in the middle s colors, then every H_i has no red edges and the statement holds for blue symmetrically.

Now we consider the following cases.

Case 1. Neither red nor blue is in the first r colors.
First we prove the following claim.

Claim 1. G contains neither red K_3 nor blue K_3.

Proof. If red and blue are both in the last t colors, the statement holds clearly. Next suppose that both red and blue are within the middle s colors. By Fact 2, the statement holds. Finally, suppose that red appears in the middle s colors, blue appears in the last t colors, W.L.O.G. Then G has no blue K_3. By Fact 2, we have that G contains no red K_3. Complete the proof of Claim 1.

Since $R_2(K_3) = 6$, we have $q \leq 5$ by Claim 1. By Fact 1 and Claim 1, each H_i contains neither red nor blue edges. By the induction hypothesis, for each H_i, we have that

$$|H_i| \leq \begin{cases} f(r, s, t - 2), & \text{if red and blue are both in the last } t \text{ colors,} \\ f(r, s - 2, t), & \text{if red and blue are both in the middle } s \text{ colors,} \\ f(r, s - 1, t - 1), & \text{if red is in the middle } s \text{ colors and blue in the last } t \text{ colors.} \end{cases}$$

By Inequalities (6)-(8), we have that

$$|G| = \sum_{i=1}^{q} |H_i| \leq 5 \times \frac{1}{5} f(r, s, t) < n,$$

a contradiction. The proof of Case 1 is completed.

Now we consider the case that red or blue are in the first r colors, we have the following fact and claim.

Fact 4. If red is in the first r colors and both H_i and H_j contain red edges, then the edges in $E_G(V_i, V_j)$ must be blue and the statement holds for blue symmetrically.

Otherwise, suppose that the edges in $E_G(V_i, V_j)$ are red. To avoid a red B_3^+, all edges in $E_G(V_i, V_j, V(G) \setminus \{V_i, V_j\})$ are blue. Then $(V_i \cup V_j, V(G) \setminus (V_i \cup V_j))$ is a new Gallai-partition which contradicts with that $q \geq 4$ and q is smallest.

Claim 2. Let red be in the first r colors and X is the union of p parts of the Gallai-partition such that $G[X]$ contains neither red B_3^+ nor blue edges. Then

1. $|X| \leq f(r - 1, s, t) + f(r - 1, s, t - 1)$ if blue is in the last t colors.
2. $|X| \leq f(r - 1, s - 1, t + 1) + f(r - 1, s - 1, t)$ if blue is in the middle s colors.
3. $|X| \leq f(r - 2, s, t + 1) + f(r - 2, s, t)$ if blue is in the first r colors.
Proof. Since $G[X]$ contains no blue edges, every pair of parts in $G[X]$ are joined by red edges. Since $G[X]$ has no red B^+_3, we have that $p \leq 4$. By Fact 4, there is at most one part in $G[X]$ containing red edges. Then we distinguish two cases.

Case I. Each part in $G[X]$ has no red edges.

If $p \leq 3$, then

$$|X| \leq \begin{cases}
3f(r - 1, s, t - 1), & \text{if blue is in the last } t \text{ colors}, \\
3f(r - 1, s - 1, t), & \text{if blue is in the middle } s \text{ colors}, \\
3f(r - 2, s, t), & \text{if blue is in the first } r \text{ colors}.
\end{cases}$$

By the definition of $f(r, s, t)$, we can check that $3f(r - 1, s, t - 1) \leq f(r - 1, s, t) + f(r - 1, s, t - 1)$, $3f(r - 1, s - 1, t) \leq f(r - 1, s - 1, t + 1) + f(r - 1, s - 1, t)$ and $3f(r - 2, s, t) \leq f(r - 2, s, t + 1) + f(r - 2, s, t)$. The statement of Claim 2 holds in this case. If $p = 4$, to avoid a red B^+_3, then we have that $|X| = 4$. Clearly, the statement still holds.

Case II. There is a unique part contains a red edge in $G[X]$, say H_1.

If H_1 contains a red K_3, then to avoid a red B^+_3, $|X \setminus V_1| \leq 1$. So

$$|X| \leq |H_1| + 1 \leq \begin{cases}
f(r - 1, s + 1, t - 1) + 1, & \text{if blue is in the last } t \text{ colors}, \\
f(r - 1, s, t) + 1, & \text{if blue is in the middle } s \text{ colors}, \\
f(r - 2, s + 1, t) + 1, & \text{if blue is in the first } r \text{ colors}.
\end{cases}$$

In this case, the statement of Claim 2 holds. If H_1 contains no red K_3, then

$$|H_1| \leq \begin{cases}
f(r - 1, s, t), & \text{if blue is in the last } t \text{ colors}, \\
f(r - 1, s - 1, t + 1), & \text{if blue is in the middle } s \text{ colors}, \\
f(r - 2, s, t + 1), & \text{if blue is in the first } r \text{ colors}.
\end{cases}$$

Since $G[X]$ has no red B^+_3, we have that $p \leq 3$. Furthermore, $|X| = |H_1| + 2$ if $p = 3$ and $|X| = |H_1|$ if $p = 1$. It is easy to check that the statement also holds. If $p = 2$, then the other part in $G[X]$, say H_2, contains no red edges. So

$$|X| = |H_1| + |H_2| \leq \begin{cases}
f(r - 1, s, t) + f(r - 1, s, t - 1), & \text{if blue is in the last } t \text{ colors}, \\
f(r - 1, s - 1, t + 1) + f(r - 1, s - 1, t), & \text{if blue is in the middle } s \text{ colors}, \\
f(r - 2, s, t + 1) + f(r - 2, s, t), & \text{if blue is in the first } r \text{ colors}.
\end{cases}$$
Complete the proof of Claim 2.

For the part V_1 of Gallai-partition, let $V_R (V_B)$ be the union of parts V_i such that the edges in $E_G(V_1, V_i)$ are red (blue) and $H_R = G[V_R]$, $H_B = G[V_B]$.

Case 2. Exactly one of red and blue is in the first r colors.

W.L.O.G., suppose that red appears in the first r colors. Then G has no red B_3^+. If blue appears in the last t colors, then there is no blue K_3 in G. If blue appears in the middle s colors, then by Fact 2 we get that there is also no blue K_3 in G. Since $R(B_3^+, K_3) = 9$, $q \leq 8$. By Fact 1, each H_i contains neither red S^+_3 nor blue edges. If each H_i contains no red edges, then by the induction hypothesis and Inequalities (9) and (10), we get that

$$|G| = \sum_{i=1}^{q} |H_i| \leq \begin{cases} 8f(r-1, s, t-1) \leq f(r, s, t) < n, \text{if blue is in the last } t \text{ colors,} \\ 8f(r-1, s-1, t) \leq f(r, s, t) < n, \text{if blue is in the middle } s \text{ colors.} \end{cases}$$

a contradiction. It follows that there is at least one part containing red edges. W.L.O.G., suppose that H_1 contains a red edge. So we consider the following two Subcases.

Subcase 2.1. H_1 has a red K_3.

To avoid a red B_3^+ or a blue K_3, we get that $|H_R| = 1$ and H_B contains no blue edges. By the induction hypothesis and Inequalities (1) and (2), (2) and (3), we get that

$$|G| = |H_1| + |H_R| + |H_B| \leq \begin{cases} f(r-1, s+1, t-1) + 1 + f(r, s, t-1) \leq \frac{7}{8}f(r, s, t) + 1 < n, \text{if blue is in the last } t \text{ colors,} \\ f(r-1, s, t) + 1 + f(r, s-1, t) \leq \frac{5}{6}f(r, s, t) + 1 < n, \text{if blue is in the middle } s \text{ colors.} \end{cases}$$

a contradiction.

Subcase 2.2. H_1 has no red K_3.

To avoid a blue K_3, H_B contains no blue edges. By Claim 2 we have that

$$|H_B| \leq \begin{cases} f(r-1, s, t) + f(r-1, s, t-1), \text{if blue is in the last } t \text{ colors,} \\ f(r-1, s-1, t+1) + f(r-1, s-1, t), \text{if blue is in the middle } s \text{ colors.} \end{cases}$$
To avoid a red B_3^+, H_R contains no red edges if $|H_R| \geq 3$. It follows that the edges between each pair of parts in H_R are blue. Since G has no blue K_3, H_R contains at most two parts of Gallai-partition and each part in H_R contains no blue edges. By the induction hypothesis,

$$|H_R| \leq \begin{cases}
2f(r - 1, s, t - 1), & \text{if blue is in the last } t \text{ colors,} \\
2f(r - 1, s - 1, t), & \text{if blue is in the middle } s \text{ colors.}
\end{cases}$$

(18)

If $|H_R| \leq 2$, then the Inequality (18) still holds. By the induction hypothesis and Inequalities (9) and (10), (12) and (12), we get that

$$|G| = |H_1| + |H_B| + |H_R| \leq \begin{cases}
2f(r - 1, s, t + 1) + 3f(r - 1, s, t - 1) & \text{if blue is in the last } t \text{ colors,} \\
2f(r - 1, s - 1, t + 1) + 3f(r - 1, s - 1, t) & \text{if blue is in the middle } s \text{ colors.}
\end{cases}$$

a contradiction. The proof of Case 2 is completed.

Case 3. Both red and blue are in the first r colors.

In this case, the graph G contains neither red nor blue B_3^+. Since $R_2(B_3^+) = 18$, we have $q \leq 17$. First we prove the following claim.

Claim 3. Each part H_i of G contains neither red nor blue K_3.

Proof. To the contrary, suppose that there exist one part, say H_1, containing a red K_3 and a blue K_3. To avoid a red or blue B_3^+, we have that $|H_R| = |H_B| = 1$. So we get $q = 3$, which contradicts with that $q \geq 4$. It follows that each part of G at most contains a red or a blue K_3. W.L.O.G., suppose that there is a part H_1 containing a blue K_3 but no red K_3. To avoid a blue B_3^+, we get that $|H_B| = 1$. If H_1 contains no red edges, then to avoid a red B_3^+, H_R contains no red K_3. By induction hypothesis and Inequalities (5) and (14), we have that

$$|G| = |H_1| + |H_R| + |H_B| \leq f(r - 2, s + 1, t) + f(r - 1, s, t + 1) + 1 \leq \frac{43}{51} f(r, s, t) + 1 < n,$$

a contradiction. Now we assume that H_1 contains a red edge. To avoid a red B_3^+, H_R contains no red edges if $|H_R| \geq 3$. By induction hypothesis, $|H_R| \leq f(r - 1, s, t)$. If
If $|H_R| \leq 2$, then $|H_R| \leq f(r-1, s, t)$ clearly. By Inequalities (3) and (13), we have that

$$|G| = |H_1| + |H_R| + |H_B| \leq f(r - 2, s + 1, t + 1) + f(r - 1, s, t) + 1 \leq \frac{79}{102} f(r, s, t) + 1 < n,$$

a contradiction. Complete the proof of Claim 3.

Now we consider the following subcases.

Subcase 3.1. There exists a part H_1 containing both a red and a blue edge.

To avoid a blue or red B_3^+, H_R contains no red edges and H_B contains no blue edges if $|H_R|, |H_B| \geq 3$. By induction hypothesis, we have that $|H_R|, |H_B| \leq f(r - 1, s, t)$. If $|H_R|, |H_B| \leq 2$, then $|H_R|, |H_B| \leq f(r - 1, s, t)$ clearly. By Inequalities (3) and (13), we have that

$$|G| = |H_1| + |H_R| + |H_B| \leq f(r - 2, s, t + 2) + 2f(r - 1, s, t) \leq \frac{50}{51} f(r, s, t) < n,$$

a contradiction.

Now we can assume that each part contains no red edges or no blue edges in the following. We call a part free if it contains neither red nor blue edges. We call a part red (blue) if it contains only red (blue) edges. By induction hypothesis and Claim 3, we have that $|H_i| \leq f(r - 2, s, t)$ if H_i is a free part and $|H_i| \leq f(r - 2, s, t + 1)$ if H_i is a red or blue part.

Subcase 3.2. Each part H_i is a free part.

By Inequality (17), we have that

$$|G| = \sum_{i=1}^{q} |H_i| \leq 17f(r - 2, s, t) = f(r, s, t) < n,$$

a contradiction.

Subcase 3.3. There exists one part H_1 which is a red or blue part.

W.L.O.G., suppose that H_1 is a red part. If $|H_R| \geq 3$, then H_R has no red edges since G has no red B_3^+. Then by Claim 2 we have that $|H_R| \leq f(r - 2, s, t) + f(r - 2, s, t + 1)$. If $|H_R| \leq 2$, then $|H_R| \leq 2 \leq f(r - 2, s, t) + f(r - 2, s, t + 1)$ clearly. To avoid a blue B_3^+, H_B contains no blue K_3. Since H_B contains neither blue K_3 nor red B_3^+ and $R(K_3, B_3^+) = 9$,
we have that H_B contains at most 8 parts of Gallai-partition. First suppose that all parts in H_B are free parts. Then $|H_B| \leq 8f(r - 2, s, t)$. By Inequalities (16) and (17), we have that

$$|G| = |H_1| + |H_R| + |H_B| \leq 2f(r - 2, s, t + 1) + 9f(r - 2, s, t) \leq \frac{35}{51}f(r, s, t) < n,$$

a contradiction. Next suppose that there is one part, say H_2, such that $H_2(R \subseteq H_B)$ is a blue or red part. Let V_{2R} (V_{2B}) be the union of parts H_i such that the edges in $E_G(V_2, V_i)$ are red (blue) and $H_{2R} = G[V_{2R}]$, $H_{2B} = G[V_{2B}]$. If H_2 is a blue part, then to avoid a red or blue B^+_3, H_{2R} contains neither red nor blue K_3 and $H_{2B} = \emptyset$. By the induction hypothesis, $|H_B| = |H_2| + |H_{2R}| \leq f(r - 2, s, t + 1) + f(r - 2, s, t + 2)$. By Inequalities (16), (15) and (17), we have that

$$|G| = |H_1| + |H_R| + |H_B| \leq 3f(r - 2, s, t + 1) + f(r - 2, s, t) + f(r - 2, s, t + 2) \leq \frac{43}{51}f(r, s, t) < n,$$

a contradiction. If H_2 is a red part, then H_{2B} contains no blue edges since G contains no blue B^+_3. Then by Claim 1, $|H_{2B}| \leq f(r - 2, s, t + 1) + f(r - 2, s, t)$. To avoid a red B^+_3, H_{2R} contains no red edge if $|H_{2R}| \geq 3$. It follows that the edges between each pair of parts in H_{2R} are blue. Since G has no blue B^+_3, H_{2R} contains no blue K_3. It follows that there are at most two parts in H_{2R}. If H_{2R} contains only one part, then H_{2R} is a free part or a blue part. We can get that $|H_{2R}| \leq f(r - 2, s, t + 1)$. If H_{2R} contains two parts, then two parts both are free parts. We have that $|H_{2R}| \leq 2f(r - 2, s, t) \leq f(r - 2, s, t + 1)$. So

$$|H_B| = |H_2| + |H_{2R}| + |H_{2B}| \leq 3f(r - 2, s, t + 1) + f(r - 2, s, t).$$

By Inequalities (16) and (17), we have that

$$|G| = |H_1| + |H_R| + |H_B| \leq 5f(r - 2, s, t + 1) + 2f(r - 2, s, t) \leq \frac{46}{51}f(r, s, t) < n,$$

a contradiction. Complete the proof of Case 3 and then the proof of Theorem 1.

References

[1] K. Cameron and J. Edmonds. Lambda composition. *J. Graph Theory*, 26(1):9–16, 1997.
[2] K. Cameron, J. Edmonds, and L. Lovász. A note on perfect graphs. *Period. Math. Hungar.*, 17:173–175, 1986.

[3] F. R. K. Chung and R. L. Graham. Edge-colored complete graphs with precisely colored subgraphs. *Combinatorica*, 3:315–324, 1983.

[4] M. Clancy. Some small ramsey numbers. *J. Graph Theory*, pages 89–91, 1977.

[5] T. Gallai. Transitiv orientierbare Graphen. *Acta Math. Acad. Sci. Hungar*, 18:25–66, 1967.

[6] A. Gyárfás, G. Sárközy, A. Sebő, and S. Selkow. Ramsey-type results for Gallai-colorings. *J. Graph Theory*, 64:233–243, 2010.

[7] A. Gyárfás and G. Simonyi. Edge colorings of complete graphs without tricolored triangles. *J. Graph Theory*, 46(3):211–216, 2004.

[8] H. Harborth and I. Mengersen. All ramsey number for five vertices and seven or eight edges. *Discrete Math.*, pages 91–98, 1988.

[9] J. Körner and G. Simonyi. Graph pairs and their entropies: modularity problems. *Combinatorica*, 20:227–240, 2000.

[10] X.H. Li and L.G. Wang. Gallai-Ramsey numbers for a class of graphs with five vertices. *Graphs and Combinatorics*, 2020.

[11] Y.P. Mao, Z. Wang, C. Magnant, and I. Schiermeyer. Ramsey and Gallai-Ramsey number for wheels. 2019.

[12] S. P. Radziszowski. Small ramsey numbers. *Electron. J. Combin.*, 1994.

[13] Z.X. Song, B. Wei, F.F. Zhang, and Q.H. Zhao. A note on Gallai-Ramsey number of even wheels. *Discrete Mathematics*, 343(3):111725, 2020.

[14] X.L. Su and Y. Liu. Gallai-Ramsey numbers for monochromatic K_4^+ or K_3. *arXiv:2007.02059*.
[15] Z. Wang, Y. P. Mao, C. Magnant, and et.al. Ramsey and Gallai-Ramsey numbers for two classes of unicyclic graphs. \textit{arXiv: 1809. 10298}.

[16] Q.H. Zhao and B. Wei. Gallai-Ramsey numbers for graphs with chromatic number three. \textit{arXiv:2006.02603}.

[17] J.Y. Zou, Y.P. Mao, C. Magnant, Z. Wang, and C.F. Ye. Gallai-Ramsey numbers for books. \textit{Discrete Applied Mathematics}, 268:164 – 177, 2019.