A note on covers of fibred hyperbolic manifolds

Jérôme Los, Luisa Paoluzzi, and António Salgueiro

February 19, 2016

Abstract

For each surface S of genus $g > 2$ we construct pairs of conjugate pseudo-Anosov maps, φ_1 and φ_2, and two non-equivalent covers $p_i : \tilde{S} \rightarrow S$, $i = 1, 2$, so that the lift of φ_1 to \tilde{S} with respect to p_1 coincides with that of φ_2 with respect to p_2.

The mapping tori of the φ_i and their lift provide examples of pairs of hyperbolic 3-manifolds so that the first is covered by the second in two different ways.

AMS classification: Primary 57M10; Secondary 57M50; 57M60; 37E30.

Keywords: Regular covers, mapping tori, (pseudo-)Anosov diffeomorphisms.

1 Introduction

Given a finite group G acting freely on a closed orientable surface \tilde{S} of genus larger than 2 one considers the space X of the orbits for the G-action on \tilde{S}. The projection $\tilde{S} \rightarrow X$ is a regular cover and X is again a surface, of genus $g \geq 2$, whose topology is totally determined by the order of G. Assume now that G contains two normal subgroups, H_1 and H_2, non isomorphic but with the same indices in G. In this situation one can construct the following commutative diagram of regular coverings:

\[
\begin{array}{ccc}
\tilde{S} & \xleftarrow{\pi_1} & S_1 = \tilde{S}/H_1 \\
\downarrow & & \downarrow \\
X & \cong & S_2 = \tilde{S}/H_2 \end{array}
\]

$X = \tilde{S}/G$

\[\text{*Partially supported by ANR project 12-BS01-0003-01}\]

\[\text{†Partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.}\]
We are interested in the following:

Question. Is there a pseudo-Anosov diffeomorphism \(\varphi \) of \(X \) which lifts to pseudo-Anosov diffeomorphisms \(\varphi_1, \varphi_2 \) and \(\tilde{\varphi} \) of \(S_1, S_2 \) and \(\tilde{S} \) respectively such that there is a diffeomorphism \(g : S_1 \to S_2 \) conjugating \(\varphi_1 \) to \(\varphi_2 \), i.e. \(\varphi_2 = g \circ \varphi_1 \circ g^{-1} \)?

The aim of the present note is to provide explicit constructions of surface coverings and pseudo-Anosov diffeomorphisms satisfying the above properties. This will be carried out in the next sections. More explicitly, we prove:

Theorem 1. For each closed oriented surface \(S \) of genus greater than 2, there exists an infinite family of pairs \((\varphi_1, \varphi_2) : S \to S\) of conjugate pseudo-Anosov maps and two non-equivalent coverings \(p_i : \tilde{S} \to S \) such that a lift of \(\varphi_1 \) with respect to \(p_1 \) and a lift of \(\varphi_2 \) with respect to \(p_2 \) are the same map \(\tilde{\varphi} : \tilde{S} \to \tilde{S} \).

Here, the expression *infinitely many pairs of diffeomorphisms* means that there is an infinite family of pairs so that if \(\varphi_i \) and \(\varphi'_j \) belong to different pairs then no power of \(\varphi_i \) is a power of \(\varphi'_j \), for \(i, j = 1, 2 \), up to conjugacy.

A positive answer to our initial question implies the existence of hyperbolic 3-manifolds with interesting properties. By considering the mapping tori of the four diffeomorphisms \(\varphi, \varphi_1, \varphi_2, \) and \(\tilde{\varphi} \), one gets four hyperbolic 3-manifolds \(N, M_1, M_2, \) and \(\tilde{M} \) respectively. The covers of the surfaces \(\tilde{S}, \tilde{S}_1, \tilde{S}_2 \) and \(X \) induce covers of these manifolds:

\[
\begin{array}{c}
\tilde{M} \\
\downarrow \\
M_1 \quad M_2 \\
\uparrow \\
N
\end{array}
\]

Since \(\varphi_1 \) and \(\varphi_2 \) are conjugate, we see that \(M_1 \) and \(M_2 \) are homeomorphic (and hence isometric by Mostow’s rigidity theorem [Mo]). It follows that \(\tilde{M} \) is a regular cover of a manifold \(M \cong M_1 \cong M_2 \) in two different ways.

Corollary 2. There exists an infinite family of pairs of hyperbolic 3-manifolds \((\tilde{M}, M)\), such that there exist two non-equivalent regular covers \(p_1, p_2 : \tilde{M} \to M \) with non isomorphic covering groups. Moreover, for each \(k \in \mathbb{N} \), there is a 3-manifold \(M \), which belongs to at least \(k \) distinct such pairs \((\tilde{M}, M_\ell)\), \(1 \leq \ell \leq k \).

The existence of hyperbolic 3-manifolds with this type of behaviour was already remarked in [RS] but our examples show that one can moreover ask for the manifolds to fibre over the circle and for the two group actions to preserve a fixed fibration (see also Section 3 for other comments on the two types of examples).
2 Main construction

In this section we answer in the positive to a weaker version of our original question, where the diffeomorphisms involved are not required to be pseudo-Anosov.

2.1 Symmetric surfaces

For every pair of integers \(n, m \geq 1 \) we will construct a closed connected orientable surface of genus \(nm + 1 \) admitting a symmetry of type \(G = \mathbb{Z}/n \times \mathbb{Z}/m \).

Let \(n \) and \(m \) be fixed. Consider the torus \(T = \mathbb{R}^2/\mathbb{Z}^2 \) and the following \(G \)-action: the generator of \(\mathbb{Z}/n \) is \((x, y) \mapsto (x + 1/n, y) \) and that of \(\mathbb{Z}/m \) is \((x, y) \mapsto (x, y + 1/m) \), where all coordinates are thought mod 1.

The union of the sets of lines \(L_x = \{ (i/n, y) \in \mathbb{R}^2 \mid i \in \mathbb{Z}, y \in \mathbb{R} \} \) and \(L_y = \{ (x, j/m) \in \mathbb{R}^2 \mid j \in \mathbb{Z}, x \in \mathbb{R} \} \) maps to a \(G \)-equivariant family \(\mathcal{L} \) of simple closed curves of \(T \): \(n \) meridians and \(m \) longitudes, as in Figure 1.

Consider a standard embedding of \(T \) in the 3-sphere \(S^3 \subset \mathbb{C}^2 \) so that the \(G \) action on the torus is realised by the \((\mathbb{Z}/n \times \mathbb{Z}/m) \)-action on \(S^3 \) defined as \((z_1, z_2) \mapsto (e^{2i\pi/n}z_1, z_2) \) and \((z_1, z_2) \mapsto (z_1, e^{2i\pi/m}z_2) \). A small \(G \)-invariant regular neighbourhood of \(\mathcal{L} \) in \(S^3 \) is a handlebody \(\tilde{H} \) of genus \(nm + 1 \). Its boundary is the desired surface \(\tilde{S} \).

2.2 The normal subgroups \(H_1 \) and \(H_2 \)

Notation 1. Let \(n \in \mathbb{N} \).

- We denote by \(\Pi(n) \) the set of all prime numbers that divide \(n \).
- For any \(P \subset \Pi(n) \) we denote by \(n_P \in \mathbb{N} \) the divisor of \(n \) such that \(\Pi(n_P) = P \) and \(\Pi(n/n_P) = \Pi(n) \setminus P \).

Definition 1. Let \(A \) and \(B \) be two finite sets of prime numbers such that

- \(A \cap B = \emptyset \);
- \(A \cup B \neq \emptyset \).

Let \(n, m \in \mathbb{N}, n, m \geq 2 \). We say that \((n, m) \) is admissible with respect to \((A, B) \) if the following conditions are verified:

- \(A \cup B \subset \Pi(n) \cap \Pi(m) \);
- \(\frac{n_{A \cap B}}{m_{A \cap B}} \) is an integer strictly greater than 1.

In this case we let \(C = \Pi(n) \setminus (A \cup B) \) and \(D = \Pi(m) \setminus (A \cup B) \).

We note that, since \(\frac{n_{A \cap B}}{m_{A \cap B}} \) is an integer greater than one, then \(m_{A \cap B} = m \neq n_{A \cap B} = n_{A \cup B} \).

Remark 1. If \(\gcd(n, m) = d > 1 \) and at least one between \(\gcd(d, n/d) \) and \(\gcd(d, m/d) \) is not 1, then there is a choice of sets \(A, B \) such that \((n, m) \) is admissible with respect to \((A, B) \). Note that this choice may not be unique. In fact, for each \(k \in \mathbb{N}^* \) there is a pair \((n, m) \) such that one has at least \(k \) choices...
of sets \((A, B)\) for which \((n, m)\) is admissible. Let \(p_1, \ldots, p_k\) be \(k\) distinct prime numbers and consider \(n = p_1^2 \cdots p_k^2\) and \(m = p_1 \cdots p_k\) so that \(n = m^2\). For each \(1 \leq \ell \leq k\) let \(A_\ell = \{p_\ell\}\) and \(B_\ell = \emptyset\), then for each \(\ell\) the pair \((n, m)\) is admissible with respect to \((A_\ell, B_\ell)\).

We consider the \(G = \mathbb{Z}/n \times \mathbb{Z}/m\) actions on the torus, where \((n, m)\) is admissible with respect to some choice of \((A, B)\) as in Definition 1. Of course we have \(\mathbb{Z}/n \cong \mathbb{Z}/n_A \times \mathbb{Z}/n_B \times \mathbb{Z}/n_C\) and \(\mathbb{Z}/m \cong \mathbb{Z}/m_A \times \mathbb{Z}/m_B \times \mathbb{Z}/m_D\).

The two subgroups of \(G\) we shall consider are:

\[
H_1 = (\mathbb{Z}/n_A \times \mathbb{Z}/n_C) \times (\mathbb{Z}/m_B \times \mathbb{Z}/m_D)
\]

and

\[
H_2 = (\mathbb{Z}/(n_A/m_A) \times \mathbb{Z}/n_B \times \mathbb{Z}/n_C) \times (\mathbb{Z}/m_A \times (\mathbb{Z}/(m_B/n_B) \times \mathbb{Z}/m_D)
\]

which are obviously normal (since \(G\) is abelian) and of the same order:

\[
nm/(n_Bm_A) = n_Am_Bn_Cm_D \geq n_Am_B > 1,
\]

since \(A \cup B \neq \emptyset\). Clearly the two subgroups \(H_1\) and \(H_2\) depend on the choice of \((A, B)\).

\[\text{Figure 1: The set } \mathcal{L} \text{ of simple closed curves of } T, \text{ with 6 meridians and 4 longitudes, and the action of two subgroups } H_1 = \mathbb{Z}/3 \times \mathbb{Z}/4 \text{ and } H_2 = \mathbb{Z}/6 \times \mathbb{Z}/2 \text{ of } G = \mathbb{Z}/6 \times \mathbb{Z}/4. \text{ In this case, } A = \emptyset, B = \{2\}.\]

Lemma 3. The two subgroups \(H_1\) and \(H_2\) are not isomorphic but their quotients \(G/H_1\) and \(G/H_2\) are.

Proof: Since, according to Definition 1, \(n_A/m_A\) and \(m_B/n_B\) cannot be both equal to 1, there is a prime \(p \in A \cup B\) such that the Sylow \(p\)-subgroup of \(H_1\) is cyclic but not that of \(H_2\). Finally, we observe that \(G/H_1 \cong \mathbb{Z}/n_B \times \mathbb{Z}/m_A \cong \mathbb{Z}/m_A \times \mathbb{Z}/n_B \cong G/H_2\), that is, both quotients are cyclic of order \(n_Bm_A\), since \(A \cap B = \emptyset\). \(\square\)
2.3 Lifting diffeomorphisms on the different covers.

An easy Euler characteristic check shows that $X = S/G$ is a surface of genus 2 bounding a handlebody $H_X = \tilde{H}/G$. Similarly, one can verify that $H_i = \tilde{H}/H_i$ is a handlebody of genus $n_Bm_A + 1$.

We analyse now how the regular coverings $S_i \to X$ are built. Consider the following composition of group morphisms

$$\pi_1(X) \to \pi_1(H_X) \to H_1(H_X) \cong \mathbb{Z}^2$$

where the first map is induced by the inclusion of X as the boundary of H_X. Note that $\pi_1(H_X)$ is a free group of rank 2 generated by the images μ and λ of a meridian and a longitude of the original torus T. Of course, these two curves can be pushed onto the boundary X of H_X. We can also assume that they have the same basepoint $x_0 \in X$. Let us denote by $[\mu]$ and $[\lambda]$ the classes of μ and λ respectively in $H_1(H_X)$. There are two natural morphisms from $H_1(H_X) \cong \mathbb{Z}^2$ to $\mathbb{Z}/n_Bm_A \cong \mathbb{Z}/m_A \times \mathbb{Z}/n_B$: the first one maps $[\mu]$ to a generator of \mathbb{Z}/m_A and $[\lambda]$ to a generator of \mathbb{Z}/n_B while the second one exchanges the roles of the two elements and maps $[\mu]$ to a generator of \mathbb{Z}/n_B and $[\lambda]$ to a generator of \mathbb{Z}/m_A.

The two coverings $S_i \to X$ are determined by the composition of these two group morphisms:

$$\pi_1(X) \to \pi_1(H_X) \to H_1(H_X) \cong \mathbb{Z}^2 \to \mathbb{Z}/n_Bm_A \cong \mathbb{Z}/m_A \times \mathbb{Z}/n_B$$

that is, the fundamental groups $\pi_1(S_i)$ correspond to the kernels of the two morphisms just constructed.

Lemma 4. The two coverings $S_i \to X$, $i = 1, 2$ are conjugate. More precisely there is a diffeomorphism τ of order 2 of X, inducing a well-defined element $\tau_\ast \in Aut(\pi_1(X, x_0))$ such that τ_\ast exchanges $\pi_1(S_1)$ and $\pi_1(S_2)$.

Proof: The diffeomorphism τ is the involution with two fixed points, x_0 and y_0 pictured in Figure 2. Note that τ fixes x_0 and y_0. The fact that τ defines an element of $Aut(\pi_1(X, x_0))$ (and not just $Out(\pi_1(X, x_0))$) follows from the fact that $\tau(x_0) = y_0$.

We are interested in diffeomorphisms f of X which commute with τ and fix both x_0 and y_0. We have the following easy fact.

Lemma 5. A diffeomorphism f of X commutes with τ and fixes both x_0 and y_0 if and only if it is the lift of a diffeomorphism of the torus fixing two points \bar{x}_0 and \bar{y}_0.

Proof: Observe that the orbifold quotient X/τ is a torus with two cone points of order 2. Clearly, any diffeomorphism f that commutes with τ and fixes x_0 and y_0 induces a map of X/τ which fixes the two cone points. Vice-versa, given a diffeomorphism of the torus which fixes two points \bar{x}_0 and \bar{y}_0 we can lift it to X once we chose an identification of the torus with X/τ such that \bar{x}_0 and \bar{y}_0 are mapped to the two cone points.

We are interested in diffeomorphisms of X which commute with τ and lift to the covers $S_i \to X$, $i = 1, 2$, and $\bar{S} \to X$.

Figure 2: The action of τ on X and the quotient X/τ.

Lemma 6. Let f be a diffeomorphism of X which commutes with τ and fixes x_0 and y_0. One can choose $k \in \mathbb{N}$ such that f^k lifts to diffeomorphisms of S_1, S_2, and \tilde{S} which fix pointwise the fibres of x_0.

Proof: The diffeomorphism f fixes x_0 and so induces an automorphism f_* of $\pi_1(X, x_0)$. Choose x_1, x_2 and \tilde{x} points of S_1, S_2, and \tilde{S} respectively which map to x_0. Since $\pi_1(X, x_0)$ is finitely generated, there is a finite number of subgroups of $\pi_1(X, x_0)$ with a given finite index. Since $\pi_1(S_1, x_1)$, $\pi_1(S_2, x_2)$, and $\pi_1(\tilde{S}, \tilde{x})$ have finite index in $\pi_1(X, x_0)$ then there is a power of f_* which leaves $\pi_1(S_1, x_1)$, $\pi_1(S_2, x_2)$, and $\pi_1(\tilde{S}, \tilde{x})$ invariant. As a consequence, the corresponding power of f lifts to S_1, S_2, and \tilde{S}. Since each lift acts by leaving the fibre of x_0 invariant, up to possibly passing to a different power, we can assume that the lifts fix pointwise the fibre of x_0. Note moreover that for this to happen it suffices that the fibre of x_0 in the covering $\tilde{S} \to X$ is pointwise fixed.

Remark 2. The argument of the above lemma shows that one can choose a power of f which lifts, as in the statement of the lemma, to any covering of X corresponding to a subgroup K such that $\pi_1(\tilde{S}, \tilde{x}) \subset K \subset \pi_1(X, x_0)$. Recall that each such K is normal in $\pi_1(X, x_0)$, since $G \cong \pi_1(X, x_0)/\pi_1(\tilde{S}, \tilde{x})$ is abelian.

Let f be a diffeomorphism of X commuting with τ and fixing x_0 and y_0, and let φ be a power of f satisfying the conclusions of Lemma 6. Denote by $\tilde{\varphi}$ the lift of φ to \tilde{S} and by φ_1 and φ_2 its projections to S_1 and S_2 respectively. Note that in principle the lift $\tilde{\varphi}$ of φ is not unique: two possible lifts differ by composition with a deck transformation. In this case, however, since we require that $\tilde{\varphi}$ fixes pointwise the fibre of x_0 while the group G of deck transformations acts freely on it, we can conclude that our choice of $\tilde{\varphi}$ is unique.

Proposition 7. The maps φ_1 and φ_2 are conjugate.
Proof: By construction, the involution τ of X lifts to a map g between S_1 and S_2 conjugating a lift of φ on S_1 to a lift of φ on S_2. Since two different lifts differ by composition with a deck transformation, reasoning as in the remark above we see that g conjugates φ_1 to φ_2 since both φ_1 and φ_2 are the only lifts of φ that fix every point in the fibre of x_0. \qed

3 Proofs of Theorem 1 and Corollary 2, and some remarks on commensurability

In this section we use the construction detailed in Section 2 to prove our main result. We will then discuss some consequences for 3-dimensional manifolds.

3.1 Proof of Theorem 1

By Proposition 7, it is sufficient to show that a pseudo-Anosov $f : X \to X$ which fixes x_0 and y_0, and commutes with τ, does exist. According to Lemma 5, any such f is the lift of a diffeomorphism \bar{f} of the torus that fixes two points \bar{x}_0 and \bar{y}_0. Let A be an Anosov diffeomorphism of the torus. Since A has infinitely many periodic orbits (see [Si] for instance), we can choose a power \bar{f} of A which fixes two points on the torus. Let f denote the lift of \bar{f} to X. We need to show that f is pseudo-Anosov, that is we need to exclude the possibilities that f is finite order or reducible. The following argument is standard (see [FLP] exposé 13). Clearly f cannot be periodic since its quotient \bar{f} has infinite order. Since, by assumption, \bar{f} is an Anosov map, it admits a pair of invariant foliations $(\mathcal{F}^+, \mathcal{F}^-)$. These lift to invariant foliations $(\tilde{\mathcal{F}}^+, \tilde{\mathcal{F}}^-)$ for f. Note also that x_0 and y_0, which are lifts of the two fixed points of \bar{f}, are singular points for the foliations $(\tilde{\mathcal{F}}^+, \tilde{\mathcal{F}}^-)$. If f were reducible then at least one leaf $\tilde{\gamma}$ of $\tilde{\mathcal{F}}^+$ or of $\tilde{\mathcal{F}}^-$ would be fixed by f and connect one singularity between x_0 or y_0 either to itself or to the other one. Such a leaf would project to a leaf of either \mathcal{F}^+ or \mathcal{F}^- satisfying the analogous property. This however cannot happen for an Anosov map.

This shows that any f which is the lift of an Anosov map is a pseudo-Anosov map. Any nonzero power φ of a pseudo-Anosov map f is again pseudo-Anosov, and, reasoning as above, so are its lifts φ_1, φ_2, and $\tilde{\varphi}$.

It remains to prove that infinitely many choices of φ_i’s do not share common powers. This follows readily from the fact that there exist infinitely many primitive Anosov maps on the torus. \qed

3.2 Hyperbolic fibred 3-manifolds

The aim of this part is to prove Corollary 2 and compare the examples constructed here to those given in [RS].

For each choice of conjugate pseudo-Anosov maps φ_1 and φ_2 and common lift $\tilde{\varphi}$ as in Theorem 1, we can consider the associated mapping tori M_1, M_2, and \tilde{M} respectively. The 3-manifolds thus obtained are hyperbolic according to Thurston’s hyperbolization theorem for manifolds that fibre over the circle (see [E]). By construction, the mapping tori M_1 of φ_1 and M_2 of φ_2 are homeomorphic, i.e. $M_1 = M_2 = \tilde{M}$ since φ_1 and φ_2 are conjugate. Moreover, by construction, the mapping torus \tilde{M} of $\tilde{\varphi}$ covers M in two non-equivalent ways.
According to Remarks 1 and 2, for each k one can find pseudo-Anosov maps $\tilde{\varphi}$ which cover at least k pairs of conjugate pseudo-Anosov maps in the fashion described in Theorem 1. This proves the last part of the corollary.

It remains to show that there are infinitely many pairs of hyperbolic manifolds (\tilde{M}, M) such that the first covers the second in two non-equivalent ways. Note that the fact that Theorem 1 provides infinitely many choices is not sufficient to conclude, since a hyperbolic manifold can admit infinitely many non-equivalent fibrations (see [Th]).

The existence of infinitely manifolds follows from the following observation. Up to isomorphism, there are infinitely many groups G to which our construction applies. Each of these groups acts by hyperbolic isometries on some closed \tilde{M}. Since the group of isometries of hyperbolic 3-manifold is finite, we can conclude that there are infinitely many pairs of manifolds (\tilde{M}, M) up to hyperbolic isometry and hence, because of Mostow’s rigidity theorem [Mo], up to homeomorphism.

Another way to reason is the following. Given φ_1, φ_2, and $\tilde{\varphi}$ as above we can consider the mapping tori $M_1^{(k)}$, $M_2^{(k)}$, and $\tilde{M}^{(k)}$ of φ_1, φ_2, and $\tilde{\varphi}$ respectively, for $k \geq 1$. All the manifolds thus obtained are commensurable, and volume considerations show that the manifolds $\tilde{M}^{(k)}$ are pairwise non-homeomorphic. Indeed, given a pseudo-Anosov f of X, for any choice of G and of φ_1, φ_2, and $\tilde{\varphi}$, all the mapping tori obtained are commensurable to the mapping torus of f. More precisely, all these manifolds are fibred commensurable according to the definition of [CSW], that is, they admit common fibred covers such that the covering maps preserve the fixed fibrations.

This latter observation shows that we can construct infinitely many distinct pairs (\tilde{M}, M) such that the first covers the second in two non-equivalent ways. Unfortunately, we do not know whether the manifolds we construct belong to infinitely many distinct commensurability classes as well. The result in [RS] shows that it is possible to find infinitely many pairs of manifolds (\tilde{M}, M) such that the first covers the second in two non-equivalent ways and the manifolds \tilde{M} are pairwise non-commensurable.

References

[CSW] D. Calegari, H. Sun, and S. Wang, On fibered commensurability, Pacific J. Math. 250, (2011), 287-317.

[FLP] A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66-67, 1979.

[Mo] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, 1973.

[O] J. P. Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235, 1996.

[RS] A. Reid and A. Salgueiro, Some remarks on group actions on hyperbolic 3-manifolds, preprint.

[Si] Y. G. Sinai, Markov partitions and C-diffeomorphisms, Funct. Anal. Appl. 2, (1968), 64-89.

[Th] W. P. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339, (1986), 99-130.

Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
jerome.los@univ-amu.fr
