Angiofibroma is a benign yet clinically aggressive vasoformative tumour that constitutes 0.5% of all head–neck tumours. It is highly prevalent in India, Egypt, Pakistan, Brazil, Mexico and Argentina – hot spots of angiofibroma (Ahluwalia, 1998) – and in Turkey, Russia, Canada and the rest of Latin America. It is less prevalent in the USA, Middle East and Europe. Poland is an interesting country of Europe in context of angiofibroma. It is rare in Thailand, Australia and New Zealand.

The unique sex predilection, associated potentially significant morbidity and the controversies regarding aetiology, pathogenesis, angiofibroma in female, extranasopharyngeal angiofibroma, classification and staging, intracranial extensions, role of radiotherapy, recurrences and geographical miss, treatment modality and protocols, spontaneous regression and malignant or sarcomatous change pose open questions leading to a well-defined scope of a dedicated research.

The Angiofibroma Group, Southeast Asia, is a global research group dedicated to innovations in angiofibroma. It was founded in 1994 with an inspiration from an angiofibroma patient. A major boost to the group came in 2008. The headquarters and secretariat of the angiofibroma group is in Agra, India. The aim of the group is to provide a platform to conduct, present, publish and promote research, exclusively in the field of angiofibroma.

Keywords:
angiofibroma, research, angiofibroma group, Egypt representation in angiofibroma group, centre affiliation, angiofibroma board, angiofibroma committees.

The structure of the Angiofibroma Board consists of President, Secretary-General, Finance Secretary, Chairman and Secretaries of various international committees, Zonal Executives from Asia, Africa, Middle East, Europe, North America, South America, Oceania and Pacific.

The group is in the process of involving researchers and scientists of various specialities for collaboration and exchange of ideas and vision for angiofibroma to provoke a scientific interest in its possible aetiopathogenesis. Interested experts in histopathology, haematology, cellular pathology, anatomic pathology, immunology, immunotechnology, electron microscopy, cell transplants, cell therapy, genetics, biomedical engineering, molecular...
biology, molecular technology, biochemistry, molecular physics, experimental oncology, nanotechnology, pathology, radiodiagnosis, anaesthesia, radiation oncology, neurosurgery, intervention neuroradiology and other allied specialities can contact us for a meaningful collaboration. These innovative minds are the pillars of angiofibroma research and are always an asset to the group.

Until now, we have worked on tumour attenuation coefficient in angiofibroma, hot spots, recurrence predictors [3], tumour embolization and immunotherapy for angiofibroma [4]. Presently, the areas of interest in angiofibroma are genetics, immunohistochemistry, hormones and stem cell therapy.

Specific genetic imbalances have been identified in angiofibroma by comparative genomic hybridization, but still genetic determiners involved in its pathogenesis remain unknown. The underlying dysregulated molecular mechanisms are unclear, and understanding of these may lead to its prevention. Congenital angiofibroma forwards the recent research that it is a result of developmental defect affecting the embryonic vascular network surrounding the sphenoid bone [5].

Angiofibroma development seems to be influenced by vascular endothelial growth factor, transforming growth factor-b1 and IGF1, though the real production stimulus of these mediators has not been completely understood. Vascular endothelial growth factor is secreted by JNA and contributes to strong vascularization of angiofibroma [6]. The incidence of microparticle arteriovenous shunts in JNA is much higher. Prominent collagen type VI expression exerts an important growth stimulus in angiofibroma.

Clonal alteration in the b-catenin oncogene and stromal component is the key neoplastic component in angiofibroma [7]. The study of genetic changes in primary tumours is necessary through high throughput techniques with correlate gene grouping real-time expression analysis for the detection of possible recurrence risk predictors [8].

Biphasic nature of the origin of angiofibroma in vascular endothelial cells or fibroblasts is poorly understood. Immunohistochemistry may hold the future of research in angiofibroma [9]. Angiofibroma is labelled as angiogenic histogenetic tumour that leads to a scope of antiangiogenic therapy in the future treatment strategy. Specific angiogenesis blockers may represent a treatment protocol for unresectable and recurrent angiofibroma, as a retention and/or induction of receptor tyrosine kinase in ischaemic angiofibroma was observed. Somatostatin receptor is overexpressed in JNA cells. Somatostatin analogue, Tc-octreotide, is effectively bound to JNA cells. Somatostatin analogues might be used in the diagnosis and treatment of primary, recurrent and residual angiofibroma [10].

Hormonal disorders have been reported in angiofibroma patients. Androgen and oestrogen receptors have been identified in tumour tissue; however, a hormonal influence on JNA is controversial. Despite controversy, the hormonal stimulation may remain a possible therapeutic target for angiofibroma.

Preoperative superselective embolization in conjunction with endoscopic angiofibroma surgery has markedly changed the surgical outcome in the recent past. The newer adjuvants to endoscopic sinus surgery are gamma knife surgery, coblation-assisted endoscopic resection, endoscopic surgery using low-temperature plasma radiofrequency, harmonic scalpel-assisted endoscopic surgery, endoscopic laser-assisted excision and robotic radiotherapy – cyber knife.

The lesser known facts about JNA are that people using anabolic steroids for various reasons are more prone to develop angiofibroma. Angiofibroma in HIV-positive patients has much aggressive course. Haemophilic-deficient and factor VII-deficient angiofibroma patients are at high risk for torrential bleeding. There is a concept of tumour embolization besides arterial embolization, when the facility of later is unavailable. Authentic cases of angiofibroma in female individuals have been reported from many centres of the world, which are histopathologically and immunohistochemically proven. We have the biggest series of angiofibroma in female individuals in the world. Angiofibroma has been reported even in a pregnant female from France. Extranasopharyngeal angiofibroma occurs in still older patients and has been seen at various sites of the head and neck, such as nasal septum, turbinate, larynx, ethmoid, maxillary sinus and hypopharynx.

The representation in the Angiofibroma Group, Southeast Asia Board, and centre affiliation in Egypt are as follows. We are still in the process of adding experts and centres from various parts of Egypt to make it comprehensive and to give appropriate representation to the cross-section of Egypt.

Angiofibroma Group, Southeast Asia Board
Zonal Executive: Professor Nasser Kotby, Africa
Egypt Nominee: Professor M. Chafik Khalifa
Chief Coordinator: Professor M. Adel Khalifa, Egypt

AG-Sea International Committee Office Bearers
Liaison and Future Prospect Committee: Professor Hesham Negm (Secretary)
Nomenclature Committee: Professor M. Adel Khalifa (Secretary)
Classification Committee: Professor Reda Kamel (Secretary)
Surgical Committee: Professor Mohamed El Shazly (Secretary)

BioMedical Engineering Committee: Professor Badr Eldin Mostafa
Radiotherapy and Anaesthesia Committee: Professor Nabil Rabie
Recurrence Committee: Professor Mohamed Hassab
ENPA Committee: Professor Ali Tawfik

Angiofibroma Satellite Centres in Egypt
(a) ENT Department, Zagazig University Hospital
 Executive: Dr Ahmed Khashaba
(b) Banha, Al Qalyubiyya
 Executive: Dr Ahmed Abdel Hady
(c) ENT Department, Sohag University Hospital

Contact Us at
Angiofibroma Group — Southeast Asia, Agra, India
drhahuwlwalia@yahoo.com
angiofibromagroup@gmail.com

Photograph of Professor Desiderio Passali, Italy
International President of the Angiofibroma Group, Southeast Asia

Acknowledgements
Conflicts of interest
There are no conflicts of interest.

References
1 Ahluwalia H. Nasopharyngeal Angiofibroma — An Indian Perspective. Dr.R.A.F.Cooper National Award 1998. Golden Jubilee Conference of The Association of Otolaryngologists of India, New Delhi. 1998.
2 Ahluwalia H. Controversies in Angiofibroma:Panel Discussion. XIX IFOS World ENT Congress, 2009 Sao Paulo, Brazil.
3 Ahluwalia H. Current trends in angiobroma – international oration. 99th National Congress of Society of Italian Otolaryngologists; 2012; Bari, Italy
4 Ahluwalia H. Angiofibroma: concepts & controversies – invited guest lecture. 24th National Conference of Pakistan Society of Otolaryngology; 2012; Karachi, Pakistan
5 Manjalay G, Hoare TJ, Pearman K, Green NJ. A case of congenital angiofibroma. Int J Pediatr Otorhinolaryngol 1992; 24:275–278.

6 Brieger J, Wierzbicka M, Sokolov M, Roth Y, Szyfter W, Mann WJ. Vessel density, proliferation, and immunolocalization of vascular endothelial growth factor in juvenile nasopharyngeal angiofibromas. Arch Otolaryngol Head Neck Surg 2004; 130:727–731.

7 Abraham SC, Montgomery EA, Giardiello FM, Wu T-T. Frequent β-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol 2001; 158:1073–1078.

8 Nilvano AA, Jose SCA, Paula DMS, Vivane BO, Bruno BA. Nasopharyngeal angiofibroma: review of genetic and molecular aspects. Int Arch Otorhinolaryngol 2008; 12:442–449.

9 Ahluwalia H Research frontiers in angiofibroma. XX IFOS World ENT Congress; 2013; Seoul, Korea

10 Kukwa W, Andrysiak R, Kukwa A, Hubalewska-Dydejczyk A, Gronkiewicz Z, Wojtowicz P, et al. 99mTc-octreotide scintigraphy and somatostatin receptor subtype expression in juvenile nasopharyngeal angiofibromas. Head Neck 2011; 33:1739–1746.