Cell culture-adaptive mutations in hepatitis C virus promote viral production by enhancing viral replication and release

Qi Wang, Yue Li, Shun-Ai Liu, Wen Xie, Jun Cheng

Abstract

AIM
To explore hepatitis C virus (HCV) adaptive mutations or combinations thereof responsible for enhanced viral production and investigate the underlying mechanisms.

METHODS
A series of plasmids with adaptive mutations were constructed. After the plasmids were transfected into Huh7.5 cells, we determined the infectious HCV particle titers by NS5A immunofluorescence assays, and detected HCV RNA replication by real-time PCR and protein expression by Western blot. Then we carried out immunoblotting of supernatants and cell
lysates with anti-NS3 to analyze the virus release level. In addition, co-localization of lipid droplets (LDs) with NS5A was measured using confocal laser scanning microscopy. The ratio between the p56 and p58 phosphoforms of NS5A was analyzed further.

RESULTS

The plasmids named JFH1−mE2, JFH1−mp7, JFH1−mNS4B, JFH1−mNS5A, JFH1−mE2/NS5A, JFH1−mp7/NS5A, JFH1−mNS4B/NS5A, JFH1−mE2/p7/NS5A, and mJFH1 were constructed successfully. This study generated infectious HCV particles with a robust titer of 1.61×10^6ocus-forming units (FFUs)/mL. All of the six adaptive mutations increased the HCV particle production at varying levels. The NS5A (C2274R, 12340T, and V2440L) and p7 (H781Y) were critical adaptive mutations. The effect of NS5A (C2274R, 12340T, and V2440L), p7 (H781Y), and NS4B (N1931S) on infectious HCV titers was investigated by measuring the HCV RNA replication, protein expression, and virion release. However, the six adaptive mutations were not required for the LD localization of NS5A proteins or the phosphorylation of NS5A.

CONCLUSION

In this study, we generated infectious HCV particles with a robust titer of 1.61×10^6 FFUs/mL, and found that the viral replication and release levels could be enhanced by some of the adaptive mutations.

Key words: Hepatitis C virus; JFH1; Adaptive mutation; RNA replication; Virion release; Lipid droplet localization

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this study, we explored hepatitis C virus (HCV) adaptive mutations or combinations thereof responsible for enhanced viral production and investigated the underlying mechanisms. We generated infectious HCV particles with a robust titer of 1.61×10^6 focus-forming units (FFUs)/mL, and confirmed that the adaptive mutations could enhance viral replication and release. The results were established at the levels of infectious particle titers, HCV RNA, protein expression, virus release, lipid droplet, and NS5A colocalization, and further the ratio between p56 and p58 phosphoforms of NS5A.

INTRODUCTION

Hepatitis C virus (HCV) is a member of the flaviviridae family. HCV infection is a major public health challenge, with an estimated number of 130 to 170 million individuals infected worldwide[1,2]. HCV causes acute and chronic hepatitis, and also leads to permanent liver damage and hepatocellular carcinoma in a significant number of patients, via oxidative stress, insulin resistance, fibrosis, liver cirrhosis, and HCV-induced steatosis[3]. Interferon-α-based therapy, in combination with ribavirin, has limited efficacy in approximately 50% of patients and is associated with severe side effects[4]. Direct-acting antivirals (DAAs) targeting NS3/4A, NS5A, and NS5B proteins can lead to higher sustained virological responses than interferon-based regimens, have shorter treatment duration, are orally administered, and have fewer side effects[5].

HCV is an enveloped RNA virus whose replication occurs in the cytoplasm. It consists of a single-stranded 9.6-kb RNA genome of positive polarity with a 5’ internal ribosome entry site (IRES). IRES-driven HCV RNA produces a polyprotein of approximately 3000 amino acids localized to the rough endoplasmic reticulum (ER), where it is cleaved into at least four structural proteins (C, E1, E2, and p7) and six nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) that play a key role in viral replication, assembly, and pathogenesis[6].

Elucidation of the viral structure and virus-host interaction is an important goal of anti-HCV drug discovery and vaccine development[7]. HCV replicon system has contributed to the study of HCV in the human hepatoma cell line Huh-7[8,9]. The infectious HCV JFH1 cell culture system represents a major advance in anti-HCV drug discovery research[10,11,12]. This model generates infectious viral particles in cell culture (HCVcc) and facilitates the study of HCV life cycle[7,11]. However, HCV JFH1 variant genome (genotype 2a) results in relatively low viral titers[7,12,13].

Several studies suggested that cell culture-adaptive mutations in HCV genomic RNA might potentially increase the production of infectious HCV particles[13,15–18]. Recently, an adaptive HCV JFH1 reporter isolate designated as JFH1-ΔV3-EGFP was identified[19], which produced higher titers (10^6 focus-forming units [FFUs]/mL) of HCV-EGFP reporter virus. Whole genome sequencing analysis showed that JFH1-ΔV3-EGFP included six mutations located in the E2, p7, NS4B, and NS5A regions as follows: D657G in E2; H781Y in p7; N1931S in NS4B; and C2274R, I2340T, and V2440L in NS5A. V2440L and H781Y improved the infectious HCV titers[20,21], while data pertaining to the other mutations are not available. In this study, we explored these mutations or combinations thereof responsible for enhanced viral production and investigated the underlying mechanisms.

MATERIALS AND METHODS

Cell culture

The human hepatoma cell line Huh7.5 was generously provided by Dr. Charles M. Rice[22] (Rockefeller Institute for...
Table 1 Sequence of primers used for adaptive mutation plasmid construction

Primer	Sequence (5’-3’)
m2310-F	GTTCCCTGCTCCAACGCGCAGGT
m2310-R	CCGGGCGCTAAGCTGTCCT
m2310-F	GTCGGTGCGGCTTGGAGGACAGGGAC
m2310-R	AATGAGGTCACCCTCACACA
m6132-R	ATCCTCGGGACGACGGTCCACAC
m6132-R	CTCTCGGGACGACGGTCCACAC
m6132-R	CTCTTAGGTCACGTCCTCAGCA
m6132-R	CTCTTAGGTCACGTCCTCAGCA
m6132-R	CTCTTAGGTCACGTCCTCAGCA
m7160-R	AGGAGGACGATACCACCCTGTGC
m7160-R	AGGAGGACGATACCACCCTGTGC

Table 2 Primer combinations used in adaptive mutation plasmid construction

Fragment	Template	Sense	Anti-sense
mE2-1	JFH1	1340-F	m2310-R
mE2-2	m2310-F	3500-R	
mp7-1	1340-F	m2681-R	
mp7-2	m2681-F	3500-R	
mNS4B-1	m2310-R	2549-F	
mNS4B-2	m2681-F	3500-R	
mNS5A-1	2549-F	m2716-R	
mNS5A-2	2549-F	m2716-R	
mNS5A-3	m2716-F	3500-R	
mNS5A-4	m2716-F	3500-R	
mNS4B/NS5A-1	m2310-F	5249-F	
mNS4B/NS5A-2	m2310-F	3500-R	
mE2/p7-1	m2310-F	5249-F	
mE2/p7-2	m2310-F	3500-R	

plasmids were kindly provided by Dr. C.H. Hagedorn and Shuang-Hu Liu[19]. The mutations located in HCV genomic RNA are shown in Figure 1. A series of primers for construction of adaptive variants of wild-type HCV JFH1 listed in Table 1 were designed using the pJFH1 sequence and mutations. The pJFH1 plasmid was used as a template for subsequent PCR with Phusion High-Fidelity PCR Master Mix with GC buffer (New England Biolabs) according to the manufacturer’s instructions. The preliminary PCR products (mE2-1, mE2-2, mp7-1, mp7-2, mNS4B-1, mNS4B-2, mNS5A-1, mNS5A-2, mNS5A-3, and mNS5A-4) were analyzed by 1% agarose gel electrophoresis, and used for overlap PCR following the combination showed in Tables 2 and 3 to obtain adaptive mutation fragments. The above fragments (mE2, mp7, mNS4B, mNS5A, mp7/NS5A, mp7/NS5A, and mp7/NS5A, mp7/NS5A, mp7/NS5A, mp7/NS5A, and mp7/p7/NS5A) were sub-cloned into pJFH1 using the appropriate unique restriction enzyme sites such as BsiI, KpnI, NsiI, Rsr II, or BsrGI, to produce JFH1-mE2, JFH1-mp7, JFH1-mNS4B, JFH1-mNS5A, JFH1-mE2/NS5A, JFH1-mp7/NS5A, JFH1-mNS4B/NS5A, JFH1-mE2/p7/NS5A, and also JFH1, which contained all the six mutations. All new clones were sequenced using an ABI 3700-XL (Shanghai Sangon Biotech).

Transfection with HCV RNA
To generate the full-length genomic RNA, pJFH-1 and all plasmids were linearized with Xba I. The linearized plasmid DNA was purified and then used as a template for T7 in vitro transcription (MEGAscript; Ambion). The RNA genomes were detected by formaldehyde agarose gel electrophoresis as described previously[23], and transfected into cells by electroporation[13].

Immunofluorescence assay
Cells seeded on glass coverslips were infected with HCV. After 48 h, the slips were washed with PBS. Then, the cells were fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton X-100, and blocked with 1% BSA and 1% normal goat serum. The NS5A in cells was detected with a monoclonal antibody and a secondary goat anti-mouse Alexa Fluor 594 antibody (Invitrogen) and visualized by fluorescence microscopy.

Virus titration
The titer of infectious HCV was determined by immunofluorescence assay[7]. Virus titers from supernatants and cell lysates as well were determined using FFUs. Cell lysates were prepared as described previously[24]. Briefly, cell pellets harvested after trypsinization were washed with PBS, re-suspended in completed culture medium, and lysed in four freeze/thaw cycles at -80 °C and 37 °C. The cell lysates were centrifuged at 4000 rpm for 5 min prior to inoculation into naïve Huh7.5 cells. Virus titration analysis was conducted by serially diluting the cell supernatants or cell lysates 10-fold in DMEM. The supernatants were used to infect 1 × 10^6
Confocal laser scanning microscopy

Cells transfected with HCV RNA with adaptive mutations were seeded onto 24-well plates with cover slips. The cells were treated as previously described [13]. After 48 h, the cells were washed with PBS, fixed with 4% paraformaldehyde, and then permeabilized with 0.2% Triton X-100. Fixed cells were blocked with 1% bovine serum albumin and 1% normal goat serum in PBS. HCV NS5A was analyzed in cells using a NS5A monoclonal antibody and a secondary goat anti-mouse IgG conjugated with Alexa 488 (Invitrogen, dilution of 1:1000). LipidTOX Deep Red (Invitrogen) was used to detect neutral lipids present in lipid droplets (LDs). The slides were counterstained using DAPI (Invitrogen), and examined using a Zeiss LSM 510 Meta confocal laser scanning microscope.

RESULTS

Effect of individual mutations or combinations of adaptive mutations on the production of infectious HCV

A previous study demonstrated that JFH-ΔV3-EGFP variant produces a higher titer of reporter virus[19]. The
Adaptive mutations promote HCV production

To further determine any synergistic effect of the six adaptive mutations on HCV production, we focused on the recombinant viruses with adaptive mutations in different combinations. As shown in Figure 2, JFH1-mE2/NS5A, JFH1-mp7/NS5A, JFH1-mNS4B/NS5A, and JFH1-mE2/p7/NS5A remarkably enhanced the production of infectious HCV, and the mJFH1 produced infectious HCV particles with a robust titer of 1.61×10^6 FFUs/mL 9 d post-transfection.

These results suggest that all the six adaptive mutations increase the HCV particle production. NS5A (C2274R, I2340T, and V2440L) and p7 (H781Y) are the critical adaptive mutations.

HCV RNA replication and protein expression are up-regulated by adaptive mutations

HCV RNA genome replication and structural or non-structural protein expression are early steps in the HCV life cycle. To further confirm our speculation that the robust HCV titers and enhanced virion release were both related to up-regulated RNA replication and protein expression, we determined the relative HCV RNA, NS5A immunofluorescence, and NS3 protein levels in the RNA-transfected Huh7.5 cells on day 3 (P1) and day 9 (P3).

As shown in Figure 3, the expression of NS5A (Figure 3A) and NS3 (Figure 3B) in mutants was up-regulated at different levels during serial passages. The trend was extraordinary obvious in NS5A or p7 mutants. Anti-NS3 Western blot analysis, which was the most widely used for quantitative experiment, yielded consistent results.

As shown in Figure 3C, the RNA levels of all the mutants were increased compared with JFH1, and mJFH1 was increased 18.7-fold. Interestingly, the results indicated that JFH1-mNS4B expression increased 6.1-fold, and the combination of mutants showed a 7.4-16.8-fold increase.

Taken together, we confirmed that the effect of NS5A (C2274R, I2340T, and V2440L), p7 (H781Y), and NS4B (N1931S) on infectious HCV titers was robust, and started with HCV RNA replication and protein expression, followed by virion release.

Adapted variants enhance the efficiency of virus release

Virion release is the last step of the HCV life cycle. To further explore the mechanism underlying the enhanced virus production, the role of adaptive mutations was examined. Ten HCV RNAs (JFH1, JFH1-mE2, JFH1-mp7, JFH1-mNS4B, JFH1-mNS5A, JFH1-mE2/NS5A, JFH1-mp7/NS5A, JFH1-mNS4B/NS5A, mJFH1, and JFH1-mE2/p7/NS5A) were electroporated into Huh7.5 cells. After 3 d, we collected the supernatants and cell lysates, and measured the HCV titers using NS5A immunofluorescence assays. Furthermore, to confirm the infectivity of virions, we carried out immunoblotting of supernatants and cell lysates with anti-NS3, which was extraordinarily consistent with the infectious HCV titers (Figure 4A). As shown in Figure 4B, we also calculated the proportion of extracellular (supernatant)
Wang Q et al. Adaptive mutations promote HCV production

A

JFH1	mJFH1
JFH1-mE2	JFH1-mE2/NS5A
JFH1-mp7	JFH1-mp7/NS5A
JFH1-mNS4B	JFH1-mNS4B/NS5A
JFH1-mNS5A	JFH1-mNS5A/NS5A

B

Mock, JFH1, mJFH1, JFH1-mE2, JFH1-mp7, JFH1-mNS4B, JFH1-mE2/NS5A, JFH1-mp7/NS5A, JFH1-mE2/p7/NS5A, JFH1-mNS4B/NS5A, JFH1-mNS5A/NS5A, JFH1-mNS4B/p7/NS5A

2.5
2.0
1.5
1.0
0.5
0.0

Relative protein level of NS3/β-actin
Hepatitis C virus (HCV) RNA was electroporated into Huh7.5 cells to produce the recombinants of adapted virus. The transfected cells were passaged every 3 d. Cells were fixed 48 h after passage and infected cells were identified by fluorescence immunostaining and microscopy. Nuclear DNA was stained with DAPI (blue); B: HCV RNA was electroporated into Huh7.5 cells to produce the recombinants of adapted virus in cell culture. The transfected cells were passaged every 3 d. Cells were lysed at 72 h after passage. The HCV NS3 protein levels were analyzed by Western blot. *P < 0.01; C: HCV RNA levels in cells 3 d after transfection. Intracellular HCV RNA levels were analyzed by quantitative RT-PCR. The mean ± SD for three independent experiments are presented (qPCR assays, n = 3). *P < 0.05; †P < 0.01; ‡P < 0.001.

Adaptive mutations are not essential for intracellular LD localization of the NSSA protein

LDs have been reported to play an important role in the HCV virion assembly process. To determine if the six adaptive mutations increased the assembly of HCV at this step, LDs and NS5A were stained in JFH1 and mJFH1 transfected cells and the co-localization of LDs with NS5A was measured. As shown in Figure 5, the LDs were totally covered with NS5A in all cases. However, no significant difference was observed between JFH1 and mJFH1 groups using Image J software and Pearson’s correlation coefficient analysis. These results indicated that the six adaptive mutations were not required for LD localization of the NSSA proteins.

Adapted mutations do not affect hyper-phosphorylation of NS5A

Previous studies showed that a ratio between the p56 and p58 phosphoforms of NSSA is required for optimal HCV RNA replication. JFH1-AM120 is a robust adaptive mutant selected by Liu et al, which displays significant switch of p56/p58. In this study, JFH1, JFH1-mE2, and mJFH1 RNA were transfected into Huh7.5 cells, and the total protein was used for Western blot analysis after 3 d (Figure 6). However, we observed no difference in p56 and p58 between the two groups. These results demonstrated that the phosphorylation level of NSSA was not affected by adaptive mutations.

DISCUSSION

Previous studies suggested that in vitro adaptive mutations enhance the production of infectious virus. A high mutation rate in HCV RNA genome is a challenge for successful HCV treatment and vaccine research, although a method to obtain a robust clonal culture of HCV has been unavailable. Liu et al. demonstrated that a JFH1-ΔV3-EGFP variant produced higher titer of reporter virus. The six adaptive mutations in this variant were located in the E2 (D657G), p7 (H781Y), NS4B (N1931S), and NS5A (C2274R, I2340T, and V2440L) and p7 (H781Y) showed the highest levels compared with the others. The other mutants showed increased titers with several orders of magnitude compared with JFH1. Synergistic enhancement of HCV titer was demonstrated obviously. The mutations responsible for enhanced viral production were not clear. The six mutations in this study were simultaneously located in JFH1-ΔV3-EGFP, which was a reporter EGFP gene chimera virus. The mJFH1 refers to JFH1-ΔV3-EGFP that yielded a robust titer up to 1.61 × 10^6 FFUs/mL in this study, suggesting that the six mutations are effective adaptive mutations.

HCV is a single, positive-strand RNA virus. We focused on key life cycle events in the virus such as replication, expression, assembly, and release. Infectious virion release is the last step and the final objective of the JFH1 system. In our study, we detected variant virus titers initially. Consistent with previous reports, the JFH1 only exhibited a decreased titer of 10^2 FFUs/mL. The other mutants showed increased titers with several orders of magnitude compared with JFH1. Synergistic enhancement of HCV titer was demonstrated obviously. Jiang et al. suggested that adaptive mutations enhance specific protein-protein interactions among viral proteins and promote the assembly of infectious HCV particles. We speculated that the six mutations involved...
refer to unknown life cycle phases and mechanism as well. Therefore, we analyzed the effect of viral mutations on the distribution of virions in the supernatant and the cell lysate, co-localization of LDs and NS5A, HCV RNA level, NS3 expression, and p56/p58. We found that the adaptive mutations were associated with diverse effects on the life cycle events. The virion release and RNA genome replication were specifically associated with NS5A and p7 mutations.

The transmembrane domains of chimeric E1 and/or E2 HCV glycoproteins were modified to allow transport to and assembly at the cell surface\cite{36}. E2 consisted of three critical domains: a receptor-binding domain (RBD; residues 384-661), the membrane proximal stem-like region of E2 (residues 675-699), and a hydrophobic heptad repeat linking the two domains\cite{37}. Within the RBD, the E2 bound the cellular receptor CD81, leading to receptor-mediated endocytosis of virions\cite{38,39}. Serial studies showed that the mutations in E2 play a role in the HCV life cycle via different mechanisms. Tao et al\cite{30} demonstrated that the E2 (I414T) mutation had no significant effect on HCV RNA replication and viral entry. However, it enhanced the production of infectious viral particles and decreased the receptor-mediated viral entry. E2 (G451R) altered the relationship between particle density and infectivity, disrupted the co-receptor dependence, and increased virion sensitivity to receptor mimics\cite{40}. The T563I mutation in the E2 protein increased virion viability at 37°C. Unfortunately, D657G in E2 improved the HCV titer via an unknown mechanism, without any effect on HCV RNA replication or virion release.

As a small membrane polypeptide, the HCV p7 channel plays multiple roles in virus life cycle and

Figure 4 Effect of the adaptive mutations on the virion release. A: Hepatitis C virus (HCV) RNA was electroporated into Huh7.5 cells to produce the recombinants of adapted virus. At 72 h after transfection, the infectivity titers of the culture supernatants and cell lysates were measured. Viral titers are expressed as FFUs/mL. The data are presented as mean ± SD (n = 3); B: HCV RNA was electroporated into Huh7.5 cells to produce the recombinants of adapted virus. At 72 h after transfection, the infectivity titers of the culture media and cell lysates were measured. The extracellular and intracellular viral titers were measured. The relative ratios of infectious virions are shown. The results were from three independent experiments; C: The naive Huh7.5 cells were infected with the culture media and cell lysates. At 72 h after infection, cells were lysed with RIPA buffer, and analyzed by Western blot.
mediates several biological functions in HCV infection\cite{41}. The p7 consists of six equivalent hydrophobic pockets between the peripheral and pore-forming helices\cite{42}. Generally, p7 is not essential for HCV RNA replication, but required for virion assembly and release\cite{43}. The adaptive mutation N765D in p7 influenced early stages of the HCV life cycle, and increased the infectious HCV titer\cite{15}. Y781H enhances the level of HCV core in the supernatant three- to five-fold, and moderately increases virion assembly and release\cite{21}. In our study, we found similar results, and Y781H enhanced HCV RNA replication 3.1-fold, suggesting its role as a critical initiating agent and a novel mechanism during the HCV life cycle.

HCV NS4B plays an important role in RNA genome replication and virion assembly\cite{44}. NS4B triggers the formation of a viral replication complex\cite{45} similar to the "sponge-like inclusions" observed in the liver of HCV-infected chimpanzee\cite{46}. NS4B (K1846T) increased HCV RNA replication nearly 30-fold\cite{47}. N1931S is located between helices 1 and 2 of the NS4B C-terminus, and was first determined by Li et al\cite{48} during HCV RNA replication and virion assembly. Our data suggested that the N1931S increased HCV titer to 10^3 FFUs/mL, which was 10^3-fold compared with JFH1. It significantly enhanced HCV genome replication, and slightly improved virion release. N1931S is a novel mutation in the JFH1 system, and comprehensive studies investigating its role in HCV infection are needed.

HCV NS5A is a phosphoprotein existing in two different forms: a basic phosphorylated NS5A, p56, and a hyperphosphorylated NS5A, p58. It appears to play an important role in viral replication, since most of the adaptive mutations determined so far are located within the region of NS5A\cite{47}. The three domains in NS5A include: domain I (aa 28-213) coordinating a single zinc atom, and domains II (aa 250-342) and III (aa 356-447), which are less well characterized but are important in RNA replication and/or virion assembly\cite{28}. A previous report suggested that V2440L was located at the NS5A-B cleavage site and decreased the cleavage kinetics\cite{20}. Thus, the mutation C2274R is located in domain II, and the other mutations (I2340T and V2440L) occur in domain III. We analyzed the HCV RNA replication and protein expression. The results showed that the three mutations enhanced HCV RNA replication,
Huh7.5 cells were transfected with JFH1 or mJFH1 RNA. After three days of culture, cells were lysed for western blot using anti-NS5A and anti-β-actin antibodies. The quantity of p56 and p58 was determined using Image J software and the ratios of p56/p58 are shown. Data are presented as mean ± SD (n = 3). JFH1-AM120 was used as the positive control.

The life cycle of HCV is extremely complex, and several details remain unknown. Regulation of host gene expression\(^{[52,53]}\), altered association between viral proteins and/or host-cell proteins, and changes in virus per se\(^{[54]}\) represent obvious mechanisms. In our study, we confirmed that the adaptive mutations led to a robust infectious titer via enhanced viral replication and release. It is recommended that DAA regimens can be used for treatment of patients with hepatitis C rather than pegylated interferon/ribavirin\(^{[55]}\). Meanwhile, our study was limited by the reaction of DAAs to adaptive mutations. Further studies investigating the underlying mechanisms of viral morphogenesis are needed.

In conclusion, we generated infectious HCV particles with a robust titer of 1.61 × 10⁶ FFUs/mL in this study. All of the six adaptive mutations increased the HCV particle production at varying levels. The NS5A (C2274R, I2340T, and V2440L) and p7 (H781Y) were critical adaptive mutations. This study confirmed that the JFH1 is still a promising system to study the HCV life cycle. To use adaptive mutations is an effective means to establish a new system with higher infectious HCV virions titer. And the research on molecular mechanism of interaction between viral proteins and/or host-cell proteins should be carried out in depth.

ARTICLE HIGHLIGHTS

Research background

Hepatitis C virus (HCV) causes acute and chronic hepatitis, and leads to permanent liver damage and hepatocellular carcinoma. The infectious HCV JFH1 cell culture system represents a major advance in anti-HCV drug discovery research and facilitates the study of HCV life cycle. However, HCV JFH1 (genotype 2a) merely generates relatively low viral titers. JFH1-ΔV3-EGFP, which includes six mutations located in the E2, p7, NS4B, and NS5A regions, could produce higher titers of HCV-EGFP reporter virus. However, there were no data about which mutations or combinations thereof are responsible for enhanced viral production and the underlying mechanisms.

Research motivation

This JFH1 model generated infectious viral particles in cell culture and facilitated the study of the HCV life cycle, but the low infectious virion titer limits...
its application range. Some previous studies have confirmed that adaptive mutations could enhance the virion titer, but the mechanism has not yet been fully elucidated. In this study, we focused on the positive effect of six adaptive mutations located in the E2, p7, NS4B, and NS5A regions, and found that the mechanism was different among them during the procession. These results gave us some new insights into the infectious HCV cell culture system and adaptive mutations.

Research objectives
The main objective of this study was to establish an infectious HCV cell culture system with a robust titer, and to discuss the underlying mechanisms of the adaptive mutations found in previous studies. The results of this study have supplied the researchers with a useful tool. We hope it will be used for the study of viral structure, virus-host interaction, anti-HCV drug discovery, and vaccine development.

Research methods
We investigated JFH1-mE2, JFH1-mp7, JFH1-mNS4B, JFH1-mNS5A, JFH1-mE2/p7, JFH1-mp7/NS5A, JFH1-mNS4B/NS5A, JFH1-mE2/p7/NS5A, and mJFH1, carrying all the six mutations. We analyzed the infectious HCV titer, HCV RNA and NS3 protein levels, viral release capacity, assembly and hyper- phosphorylation of NS5A to determine the role of these mutations in the HCV life cycle. These methods were the routine ways adopted widely in virological and molecular biological research.

Research results
The main findings in this study were as follows: (1) we generated infectious HCV particles with a robust titer of 1.61×10^6 FFUs/mL; (2) the six adaptive mutations increased the HCV particle production at varying levels. The NS5A (C2274R, I2340T, and V2440L) and p7 (H781Y) are critical adaptive mutations. The effect of NS5A (C2274R, I2340T, and V2440L), p7 (H781Y), and NS4B (N1931S) on infectious HCV titers was investigated by measuring the HCV RNA replication, protein expression, and virion release; and (3) the six adaptive mutations were all not required for the lipid droplet localization of NS5A proteins or the phosphorylation of NS5A. To our knowledge, this is a new robust titer related to adaptive mutations from JFH1. The problems that remain to be solved in the future include: (1) how could the adaptive mutations be translated to clinical conditions? (2) are these mutation patterns observed in vivo? and (3) would these results be relevant to the resistance to direct-acting antivirals (DAAs)?

Research conclusions
First, this study generated infectious HCV particles with a robust titer of 1.61×10^6 FFUs/mL. Second, all of the six adaptive mutations increased the HCV particle production at varying levels. Third, the NS5A (C2274R, I2340T, and V2440L) and p7 (H781Y) were critical adaptive mutations, but they were not required for the LD localization of NS5A proteins or the phosphorylation of NS5A. Based on the new findings of this study, we proposed that more important adaptive mutations would be addressed in the future, and unknown mechanism of the HCV life cycle would be explained.

Research perspectives
This study re-confirmed that the JFH1 was still a promising system to study the HCV life cycle. To use adaptive mutations was an effective way to establish a new system with higher infectious HCV virion titer. In addition, we also re-confirmed that the molecular mechanism of interaction between viral proteins and/or host-cell proteins is more complex and important.

ACKNOWLEDGMENTS
We thank Dr. Wakita T for providing the plasmid containing the HCV JFH1 plasmid. We also thank Dr. Xu HT for providing Huh7.5 cells, and Dr. Hagedorn CH and Dr. Liu SH for providing JFH1-ΔV3-EGFP and JFH1-AM120 plasmids.

REFERENCES

1. Li YP, Ramirez S, Jensen SB, Purcell RH, Gottwein JM, Bukh J. Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system. Proc Natl Acad Sci USA 2012; 109: 19757-19762 [PMID: 23151512 DOI: 10.1073/pnas.1218260109]
2. Averhoff FM, Glass N, Holtzman D. Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin Infect Dis 2012; 55 Suppl 1: S10-S15 [PMID: 22715208 DOI: 10.1093/cid/cis361]
3. Jahan S, Ashfaq UA, Qasim M, Khaliq S, Saleem MJ, Afzal N. Hepatitis C virus to hepatocellular carcinoma. Infect Agent Cancer 2012; 7: 2 [PMID: 22289144 DOI: 10.1186/1750-9378-7-2]
4. Hoofnagle JH, di Bisceglie AM. The treatment of chronic viral hepatitis. N Engl J Med 1997; 336: 347-356 [PMID: 9011789 DOI: 10.1056/NEJM199701303360507]
5. World Health Organization. Guidelines for the Screening Care and Treatment of Persons with Chronic Hepatitis C Infection: Updated Version. Geneva: World Health Organization; 2016 [PMID: 27227200]
6. Moradpour D, Penn F. Hepatitis C virus proteins: from structure to function. Curr Top Microbiol Immunol 2013; 369: 113-142 [PMID: 23463199 DOI: 10.1007/978-3-642-27340-7_5]
7. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, Wieland SF, Uprichard SL, Wakita T, Chisari FV. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 2005; 102: 9294-9299 [PMID: 15939889 DOI: 10.1073/pnas.0503596102]
8. Lohmann V, Körner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999; 285: 110-113 [PMID: 10390360]
9. Blight KJ, Kolykhakov AA, Rice CM. Efficient initiation of HCV RNA replication in cell culture. Science 2000; 290: 1972-1974 [PMID: 1110665]
Development of a robust luciferase reporter 1b/2a hepatitis C virus (HCV) for characterization of early stage HCV life cycle inhibitors. *Antiviral Res* 2013; 98: 85-92 [PMID: 23376631 DOI: 10.1016/j.antiviral.2013.01.005] 18

Liu S, Nielsen CA, Xiao J, Lu S, Seth PP, Davis DR, Hagedorn CH. Measuring antiviral activity of benzimidazole molecules that alter IRES RNA structure with an infectious hepatitis C virus chimera expressing Renilla luciferase. *Antiviral Res* 2011; 89: 54-63 [PMID: 21075143 DOI: 10.1016/j.antiviral.2010.11.004]

Liu S, Chen R, Hagedorn CH. Direct visualization of hepatitis C virus-infected Huh7.5 cells with a high titre of infectious chimeric JFH1-EGFP reporter virus in three-dimensional Matrigel cell cultures. *J Gen Virol* 2014; 95: 423-433 [PMID: 24243732 DOI: 10.1099/vir.0.05772-0]

Kaul A, Woerz I, Meuleman P, Leroux-Roels G, Bartenschlager R. Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. *J Virol* 2007; 81: 13168-13179 [PMID: 17881454 DOI: 10.1128/JVI.01362-07]

Brohm C, Steinmann E, Friesland M, Lorenz IC, Patel A, Penin F, Bartenschläger R, Pietschmann T. Characterization of determinants important for hepatitis C virus p7 function in morphogenesis by using trans-complementation. *J Virol* 2009; 83: 11682-11693 [PMID: 19726506 DOI: 10.1128/JVI.00691-09]

Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. *J Virol* 2002; 76: 13001-13014 [PMID: 12438626]

Bryant S, Manning DL. Formaldehyde gel electrophoresis of total RNA. *Methods Mol Biol* 1998; 66: 69-72 [PMID: 9664456 DOI: 10.1385/089949-1-69]

Gastaminza P, Kapadia SB, Chisari FV. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. *J Virol* 2006; 80: 11074-11081 [PMID: 16956946 DOI: 10.1128/JVI.01150-06]

Papio N, Maxwell CI, Delker DA, Liu S, Heale BS, Hagedorn CH. RNA-sequence analysis of S capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. *Virologues* 2012; 4: 581-612 [PMID: 22590667 DOI: 10.3390/v4040581]

Miyazani Y, Atsuzawa K, Usada N, Watachi K, Hishiki T, Zayas M, Bartenschläger R, Wakita T, Hikijaka M, Shimotohno K. The lipid droplet is an important organelle for hepatitis C virus production. *Nat Cell Biol* 2007; 9: 1089-1097 [PMID: 17721513 DOI: 10.1038/ncl1631]

Tellinghuisen TL, Foss KL, Treadaway J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. *PLoS Pathog* 2008; 4: e1000352 [PMID: 18369478 DOI: 10.1371/journal.ppat.1000352]

Qiu D, Lemm JA, O’Boyle DR 2nd, Sun JH, Nakamura N, Mochizuki H, Wakita T, Kato T. Amino Acid Mutations in the NS4A Region of Hepatitis C Virus that Inhibit Viral Replication and Infectious Virus Production. *J Virol* 2017; 91: pii: e02124-16 [PMID: 27928005 DOI: 10.1128/JVI.02124-16]

Yan Y, He Y, Boson B, Wang X, Cosset FL, Zhong J. A Point Mutation in the N-Terminal Amphipathic Helix 0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding. *J Virol* 2017; 91: pii: e03299-16 [PMID: 28053108 DOI: 10.1128/JVI.02999-16]

Jiang J, Luo G. Cell culture-adaptive mutations promote viral protein-protein interactions and morphogenesis of infectious hepatitis C virus. *J Virol* 2012; 86: 8978-8997 [PMID: 22567498 DOI: 10.1128/JVI.00004-12]

Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. *J Biol Chem* 2003; 278: 41624-41630 [PMID: 12913001 DOI: 10.1074/jbc.M305289200]

Drummer HE, Boo I, Maerz AL, Pournouriou P A. Parvusing Gly346-Trp-Leu-Aly-Gly-Leu-Phe-Tyr motif in hepatitis C virus C3 protein glycoprotein E2 is a determinant of CD81 binding and viral entry. *J Virol* 2006; 80: 7844-7853 [PMID: 16873241 DOI: 10.1128/JVI.00029-06]

Pilié P, Uematsu Y, Campagnoli S, Galil G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grani D, Abignani S. Binding determinants of hepatitis C virus to CD81. *Science* 1998; 282: 938-941 [PMID: 9794763]

Cordran A, Roher C, Jaekc D, Bastien-Valle M, Baumert TF, Kiency MP, Pereira CA, Martin JP. Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. *J Gen Virol* 2006; 87: 2583-2593 [PMID: 16894197 DOI: 10.1099/0.817110-0]

Grove J, Nielsen S, Zhong J, Bassendine MF, Drummer HE, Balfe P, McKeating JA. Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. *J Virol* 2008; 82: 12020-12029 [PMID: 18829747 DOI: 10.1128/JVI.01569-08]

Du QS, Wang SQ, Chen D, Meng JZ, Huang RB. In depth analysis on the binding sites of adamantine derivatives in HCV (hepatitis C virus) p7 channel based on the NMR structure. *PLoS One* 2014; 9: e93613 [PMID: 24714586 DOI: 10.1371/journal.pone.0093613]

OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, Sun B, Chou JJ. Unusual architecture of the p7 channel from hepatitis C virus. *Nature* 2013; 498: 521-525 [PMID: 23739335 DOI: 10.1038/nature12283]

Lohmann V. Hepatitis C virus RNA replication. *Curr Top Microbiol Immunol* 2013; 369: 167-198 [PMID: 23463201 DOI: 10.1007/978-3-642-27340-7_7]

Jones DM, Patel AH, Targett-Adams P, McLaughlan J. The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. *J Virol* 2009; 83: 2163-2177 [PMID: 19073716 DOI: 10.1128/JVI.01885-08]

Gawlik K, Baugh J, Chatterji U, Lim PJ, Bobardt MD, Gallay PA. HCV core residues critical for infectivity are also involved in core-NNSA complex formation. *PLoS One* 2014; 9: e88866 [PMID: 25433158 DOI: 10.1371/journal.pone.0088866]

Pfeifer U, Thomssen R, Legler K, Böttcher U, Gerlich W, Weinmann E, Klinge O. Experimental non-A, non-B hepatitis: four types of cyttoplasmic alteration in hepatocytes of infected chimpanzees. *Virochim Arch B Cell Pathol Incl Mol Pathol* 1980; 33: 233-243 [PMID: 6110271]

Lohmann V, Hoffmann S, Herian U, Penin F, Bartenschläger R. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. *J Virol* 2003; 77: 3007-3019 [PMID: 12584326]
Li YP, Ramirez S, Gottwein JM, Scheel TK, Mikkelsen L, Purcell RH, Bukh J. Robust full-length hepatitis C virus genotype 2a and 2b infectious cultures using mutations identified by a systematic approach applicable to patient strains. Proc Natl Acad Sci U S A 2012; 109: E1101-E1110 [PMID: 22467829 DOI: 10.1073/pnas.1203829109]

Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, Pietschmann T. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 2007; 3: e103 [PMID: 17658949 DOI: 10.1371/journal.ppat.0030103]

Jones DM, McLauchlan J. Hepatitis C virus: assembly and release of virus particles. J Biol Chem 2010; 285: 22733-22739 [PMID: 20457608 DOI: 10.1074/jbc.R110.133017]

Quintavalle M, Sambuceti S, Di Pietro C, De Francesco R, Neddermann P. The alpha isoform of protein kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation. J Virol 2006; 80: 11305-11312 [PMID: 16943283 DOI: 10.1128/JVI.01465-06]

Ding Q, Huang B, Lu J, Liu YJ, Zhong J. Hepatitis C virus NS3/4A protease blocks IL-28 production. Eur J Immunol 2012; 42: 2374-2382 [PMID: 22685015 DOI: 10.1002/eji.201242388]

Li X, Jiang H, Qu L, Yao W, Cai H, Chen L, Peng T. Hepatocyte nuclear factor 4α and downstream secreted phospholipase A2 GXIIB regulate production of infectious hepatitis C virus. J Virol 2014; 88: 612-627 [PMID: 24173221 DOI: 10.1128/JVI.02068-13]

Alisi A, Arciello M, Petrini S, Conti B, Missale G, Balsano C. Focal adhesion kinase (FAK) mediates the induction of pro-oncogenic and fibrogenic phenotypes in hepatitis C virus (HCV)-infected cells. PLoS One 2012; 7: e44147 [PMID: 22937161 DOI: 10.1371/journal.pone.0044147]

Wang Q et al. Adaptive mutations promote HCV production
