Implicit Real Vector Automata

Bernard Boigelot, Julien Brusten, Jean-François Degbomont

Université de Liège
Goal: Representing symbolically polyhedra in \mathbb{R}^n, i.e., sets of the form
\[
\left\{ \vec{x} \in \mathbb{R}^n \mid B_i \left(\vec{a}_i.\vec{x} \left\{ \leq \right\} b_i \right) \right\},
\]
with $\forall i : \vec{a}_i \in \mathbb{Z}^n$, $b_i \in \mathbb{Z}$.

Wish list:

- Concise data structure.
- Efficient manipulation algorithms: \cap, \cup, \setminus, \times, ...
- Efficient decision procedures: \subseteq, $=$, empty?, ...
- Possible conversions to and from other representations.
Closed Convex Polyhedra

In the particular case of closed convex polyhedra

\[\bigwedge_i \vec{a}_i \cdot \vec{x} \leq b_i, \]

suitable representations can be:

- a set of bounding constraints,
- sets of vertices and extremal rays, or
- a combination of both.

![Diagram showing bounding constraints and vertices with extremal rays]
Representing Non-Convex Polyhedra

Classical solutions:

- Represent a polyhedron by a formula.
- Decompose a polyhedron into an explicit union of convex polyhedra.

Main drawback: Set comparison operations become difficult.

Better approach: Look for a canonical representation of polyhedra.
Real Vector Automata

Principles:

- Vectors in \mathbb{R}^n are encoded as infinite words over the alphabet \{0, 1, \ldots, r - 1, \star\}, where $r > 1$ is a base, and \star a separator symbol.

 Example ($r = 2$): $Enc\left(\frac{1}{3}\right) = 0^+ \star (01)^\omega$.

- A **Real Vector Automaton (RVA)** representing a set $S \subseteq \mathbb{R}^n$ is an infinite-word automaton accepting the encodings of the elements of S.

Key properties:

- All the sets definable in $\langle \mathbb{R}, \mathbb{Z}, <, + \rangle$ can be represented by weak deterministic RVA.

- These automata are easily manipulated algorithmically, and can be minimized into a canonical form.

- But the representation of linear constraints is not efficient enough . . .
Definition: Let D be a convex subset of \mathbb{R}^n. A set $S \subseteq D$ is conical in D if there exists $\vec{v} \in D$ such that

$$\forall \vec{x} \in D - \vec{v}, \lambda \in]0, 1]: \vec{x} \in S - \vec{v} \iff \lambda \vec{x} \in S - \vec{v}.$$

Property of weak deterministic RVA representing polyhedra: For each state q that belongs to a non-trivial strongly connected component, the language $0^* L(q)$ encodes a conical set.
Application to Polyhedra

Theorem: Let P be a polyhedron in \mathbb{R}^n. For every $\vec{x} \in \mathbb{R}^n$ and sufficiently small convex neighborhood D of \vec{x}, P is conical in D.

![Graphical representation of the polyhedron and its properties]

Application:

- The conical structure of arbitrarily small convex neighborhoods of points partitions \mathbb{R}^n into a finite equivalence relation \sim.
- The equivalence classes of \sim correspond to the characteristic elements of P (vertices, edges, faces, . . .).
- An incidence relation \prec between those elements can be defined.
The Representation of Polyhedra by RVA

Properties:

- Non-trivial strongly connected components correspond to characteristic elements.

- The acyclic structures between components represent the incidence relation.

Illustration:
Improving the Conciseness of RVA

Principles:

• A characteristic element of a polyhedron is characterised by:
 – an affine space \(\{\vec{v}_0 + \lambda_1 \vec{v}_1 + \ldots + \lambda_p \vec{v}_p \mid \forall i : \lambda_i \in \mathbb{R}\} \), with \(\vec{v}_0, \vec{v}_1, \ldots, \vec{v}_p \in \mathbb{Q}^n \).
 (Note: By a technical argument, one can assume w.l.o.g. \(\vec{v}_0 = \vec{0} \).)
 – its successors by the incidence relation, and
 – its polarity (in/out).

• Real Vector Automata can be represented implicitly by:
 – Replacing their non-trivial strongly connected components by canonical algebraic descriptions of vector spaces ("implicit states"),
 – Keeping an acyclic transition relation for representing the incidence relation, and
 – Encoding the polarity of elements by a Boolean acceptance condition.
Problem: In a RVA, the structure of transitions leaving a strongly connected component can be as large as the component itself.

Solution: At each component, perform a variable change operation: The coordinate system \((\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_m)\) becomes \((\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_p, \vec{z}_1, \vec{z}_2, \ldots, \vec{z}_{m-p})\), where

- The dimension of the corresponding characteristic element is \(p\),
- \(\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_p\) move inside that element, and
- \(\vec{z}_1, \vec{z}_2, \ldots, \vec{z}_{m-p}\) explore the directions along which one can leave the element.

Remark: The vectors \(\vec{z}_1, \vec{z}_2, \ldots, \vec{z}_{m-p}\) can be chosen canonically.
Encoding Directions

Problem: Encoding the directions in which one can leave an implicit state, in a canonical way.

Solution:

1. Apply a normalization function to the direction vectors.

 We use

 \[\text{norm}(\vec{v}) = \frac{1}{2d} \vec{v}, \]

 with \(\vec{v} = (v_1, v_2, \ldots, v_q) \) and \(d = \max_i |v_i| \).
2. Encode a normalized vector by:

• A prefix identifying the face of the hypercube to which it belongs.

 Example \((q = 3)\):

 \[
 \begin{align*}
 \{\frac{1}{2}\} \times [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] & \quad \rightarrow \quad +1 \\
 [-\frac{1}{2}, \frac{1}{2}] \times \{\frac{1}{2}\} \times [-\frac{1}{2}, \frac{1}{2}] & \quad \rightarrow \quad +2 \\
 [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] \times \{\frac{1}{2}\} & \quad \rightarrow \quad +3 \\
 \{\frac{1}{2}\} \times [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] & \quad \rightarrow \quad -1 \\
 [-\frac{1}{2}, \frac{1}{2}] \times \{-\frac{1}{2}\} \times [-\frac{1}{2}, \frac{1}{2}] & \quad \rightarrow \quad -2 \\
 [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] \times \{-\frac{1}{2}\} & \quad \rightarrow \quad -3
 \end{align*}
 \]

• A suffix encoding the vector inside this face (i.e., in a restricted domain of the form \([-\frac{1}{2}, \frac{1}{2}]^{q-1}\)).
Examples of Implicit Real Vector Automaton

\[x - 2z = 0 \]
\[y - 3z = 0 \]
Overview of Main Results

• The representation of a polyhedron can easily be minimized into a canonical form.

• Membership of a given vector can be decided by following a single path in a IRVA.

• An algorithm for computing the product of two IRVA is available.

• The following operations are currently being investigated:
 – Projection/determinization,
 – Import/export to and from other structures,
 – Visualization of sets,
 – Efficient ray tracing computations,
 – Efficient handling of large dimensions,
 – . . .