ВИЗНАЧЕННЯ ОПТИМАЛЬНОГО МАРШРУТУ В ІНФОРМАЦІЙНІЙ МЕРЕЖІ ЗАЛИЗНИЧНОГО ТРАНСПОРТУ З ВИКОРИСТАННЯМ НЕЙРОНЕЧІТКИХ МОДЕЛЕЙ

Мета. Сучасні алгоритми вибору найкоротшого маршруту, наприклад, алгоритми Беллмана–Форда й Дейкстри, які в даний час широко використовують у протоколах маршрутізації (RIP, OSPF), не завжди призводять до ефективного результату. Тому виникає необхідність дослідження можливості організації маршрутизації в мережі залізничного транспорту за допомогою методів штучного інтелекту. Метою на базі нейронечіткої мережі, що створена в системі MatLAB, підходу до визначення оптимального маршруту в ІТС залізничного транспорту є визначення конкретних регулюючих значень параметрів, що покращують роботу системи маршрутизації. В розглянутий фрагменті імітаційної моделі ІТС залізничного транспорту висновка про включення нейронечіткої мережі в систему управління залізничним транспортом доцільно.

Наукова новизна. За сценаріями RIP та OSPF на вивченій імітаційної моделі системи OPNET, зазначені нейронечіткі мережі залізничного транспорту були підібрани спеціально для того, щоб демонструвати можливості деяких нейронних мереж: багаточастотного персептрона, гібридної системи RBF для організації маршрутизації із шарового персептрона, інфраструктури на основі модифікації нейронечітких мереж, що належності їй інтенсивність трафіку.

Наукова новизна. За сценаріями RIP та OSPF на вивченій імітаційної моделі системи OPNET, зазначені нейронечіткі мережі залізничного транспорту були підібрани спеціально для того, щоб демонструвати можливості деяких нейронних мереж: багаточастотного персептрона, гібридної системи RBF для організації маршрутизації із шарового персептрона, інфраструктури на основі модифікації нейронечітких мереж, що належності їй інтенсивність трафіку.
Мета

У нашій роботі ми передбачаємо для мереж ITС залізничного транспорту розробити методику визначення оптимального маршруту на основі використання нечітких нейронних мереж. Для її моделювання сформувати вибірки на створеній в системі OPNET Modeler імітаційні моделі фрагмента мережі ITС залізничного транспорту.

Методика

Постановка задачі. Сьогодні мережу ITС залізничного транспорту, фрагмент якої представленний на рис. 1, будуєть на базі оптичної транспортної мережі. Концептуально для побудови єдиної мережі передачі даних Української залізниці обрани мережне обладнання OPNET, яке являє собою основу програмно-апаратної комплекс. На сучасному етапі в мережі ITС залізничного транспорту маршрутизатор виконує протокол OSPF (Open Shortest Path First), оскільки він є загальним стандартом, який відображає різні виробники мережного обладнання, і дозволяє уникати замкнітого петель у процесі розвитку мережі передачі даних на залізничному транспорти України.

Зазначимо на те, що час передачі пакета по каналу мережі майже менший, доцільно тільки зрозуміти час розглянути час обробки пакета на маршрутизаторах цікавий мережі України.

Оцінюючи, що час передачі пакета по каналу мережі ще менший, доцільно тільки зрозуміти час обробки пакета на маршрутизаторах, з якими зазначимо час розглянути час обробки пакета в мережі ITС. Ураховуючи, що пакети надходять на маршрутизатор за законом Пуассона і що розподіл часу їх обробки імітується з нормальним законом з відомим розподілом часу, мікророзподіл, має модель M/M/1. Тоді час обробки пакета на маршрутизаторі розраховуємо наступним чином:

$$t_i = t_{i}^{стро} + t_{i}^{обр}$$ (1)

де t_i – час обробки пакета на i-ому маршрутизаторі, мкс; $t_i^{стро}$ – час очікування пакета в черзі на i-ому маршрутизаторі, мкс; $t_i^{обр}$ – час обробки пакета i-им маршрутизатором, мкс.

У свою чергу час обробки пакета i-им маршрутизатором можна розрахувати за відомою формулою:

$$t_i^{обр} = \frac{t_{пак}^\text{макс}}{V}.$$. (2)
де L – довжина пакета, байт; V – швидкість просування даних маршрутизатором, Мбіт/с (зокрема, для технології Fast Ethernet 100 Мбіт/с). Кількість пакетів, які обробляє i-ий маршрутизатор, складає:

$$p_i = \lambda_i \cdot t_i^\text{обр},$$

де λ_i – інтенсивність надходження пакетів до i-го маршрутизатора, пакет/с.

Тоді розрахунков часу очікування пакета в черзі на i-ому маршрутизаторі розрахуємо за наступною формулою:

$$t_i^\text{оч} = \frac{p_i \cdot t_i^\text{обр}}{1 - p_i}.$$ (4)

Необхідно визначити оптимальний маршрут проходження пакета в мережі ІТС залізничного транспорту за умови:

$$\sum_{i=1}^{K} t_j \rightarrow \min,$$ (5)

де K – кількість проміжних маршрутизаторів, що складають шлях проходження пакета.

Рис. 1. Структура фрагмента мережі ІТС залізничного транспорту, яку розглядають:

- маршрутизатор; - комутатор; - робоча станція; - сервер

Створення імітаційної моделі. У моделювальній системі OPNET Modeler створена імітаційна модель фрагмента мережі ІТС залізничного транспорту, структура якої представлена на рис. 2, відповідно до структури мережі ІТС (див. рис. 1). На імітаційній моделі мережі, за технологією Fast Ethernet, кожна вузлова станція складається з маршрутизатора, комутатора і двох робочих станцій.

На імітаційній моделі мережі Fast Ethernet в ІТС Придніпровської залізниці створено два сценарії: за протоколом RIP та протоколом OSPF. Проведено дослідження (протягом п’яти хвилин) наступних характеристик: середнього навантаження сервера, що розташований у Києві; середнього часу обробки пакетів маршру-
Інформаційно-комунікаційні технології та математичне моделювання

інформатором у Дніпрі; середнього часу очікування пакетів у черзі (ділянка Дніпро–Синельникове); середньої кількості втрачених пакетів за наступних параметрів: довжина пакета складає 6 000 біт, інтенсивність трафіка – 10 пакет/с. Деякі характеристики, що отримані (з 2 хв 00 с до 3 хв. 00 с) на імітаційній моделі мережі, зображені на рис. 3.

Рис. 2. Імітаційна модель в OPNET Modeler:
– маршрутизатор; – комутатор; – робоча станція

Із рис. 3 видно, що найгірші результати надає імітаційна модель мережі за сценарієм RIP: навантаження сервера стрімко зростає (у середньому за хвилину приблизно в 3 рази); час обробки пакетів маршрутизатором займає значно більший час (у середньому за хвилину приблизно в 0,5 раза); час очікування пакетів у черзі завжди більший (у середньому за хвилину приблизно в 1,6 раза); втрати пакетів стрімко зростають (у середньому за хвилину приблизно в 3,5 раза); майже у два рази більший час конвергенції мережі. Як приклад показано середній час очікування пакетів у черзі (рис. 3, а), тим більша кількість втрачених пакетів (рис. 3, б).

Визначення часу перебування пакета в маршрутизаторах на основі використання нейронечіткої мережі (ННМ1). За вхідні параметри використовують наступні змінні: x_1 – довжина пакета (L_M, L_C, L); x_2 – інтенсивність трафіка ($M_A, M_B, M_C, M_D, \Lambda$); x_3 – кількість переходів (кількість проміжних маршрутизаторів, що складають маршрут проходження пакета) (K_1, K_2, K_3, K_4). За результатом характеристику у взято час перебування пакета в маршрутизаторах за маршрутом його передачі в мережі ІТС (T_1, T_2, T_3, T_4). Значення термінів, які використані для лінгвістичної оцінки вхідних і вихідних змінних, зведені до табл. 1.
Рис. 3. Результати експерименту на імітаційній моделі:
а – середній час очікування пакетів в черзі; б – середня кількість втрачених пакетів на маршрутизаторі

Таблиця 1
Лінгвістична оцінка вхідних і вихідних змінних для ННМ1

Вхідна змінна	Вихідна змінна	Час перебування пакета за маршрутом, мкс
Довжина пакета, байт	Інтенсивність трафіка, пакет/с	Кількість перебування
LM: 70 – 500	ΛΜ : 10 – 200	K1: 1 K2: 2
LC: 501 – 1 000	ΛMb : 201 – 400	K3: 3
L: 1 001 – 1 500	ΛC : 401 – 600	K4: 4
ΛCб : 601 – 800	Λ : 801 – 1 000	T1: 76 – 140
T2: 141 – 275	T3: 276 – 410	T4: 411 – 545

Кількість правил нечітких продукцій залежить від кількості вхідних змінних і кількості термів і становить 3·5·4·60 = 360 правил. Фрагмент бази правил наведено нижче:

якщо x₁ = LM1 і x₂ = ΛΜ і x₃ = K1, то у = T1;
якщо x₁ = LM1 і x₂ = ΛΜ і x₃ = K2, то у = T3;
якщо x₁ = LM1 і x₂ = ΛΜ і x₃ = K3, то у = T1;
якщо x₁ = LM1 і x₂ = ΛΜ і x₃ = K4, то у = T4;
якщо x₁ = LM1 і x₂ = ΛMb і x₃ = K1, то у = T1;
якщо x₁ = LM1 і x₂ = ΛMb і x₃ = K2, то у = T3;
якщо x₁ = LM1 і x₂ = ΛMb і x₃ = K3, то у = T1;
якщо x₁ = LM1 і x₂ = ΛMb і x₃ = K4, то у = T4;

Структура відповідної ННМ1 показана на рис. 4. Шар 1 містить нейрони, які представляють відповідальні вхідні змінні і виконують операції фазифікації (приведення до нечіткості) вхідних даних. Шар 2 містить нейрони, які зберігають правильні значення для правил, що складають базу знань, створену в результаті навчання моделі; ці нейрони можуть містити будь-які варіанти реалізації операції t-норми, яка є нечітким аналогом операції «І» (логічної операції «AND»). Ней-
рони шару 3 містять результати обчислень правил з урахуванням ваги кожного правила. Нейрони шару 4 містять кінцеві результати обчислень правил, які згруповані в нечіткі класи. Шар 5 містить лише один нейрон, який обчислює кінцевий вихід моделі, виконуючи операцію дефазифікації (приведення до чіткості) шляхом визначення центрів нечітких класів.

Формування вибірок для ННМ1. Сформовано наступні вибірки для ННМ1: навчальну із 60 прикладів (фрагмент якої подано в табл. 2), тестову із 24 прикладів і контрольну із 12 прикладів (табл. 3).

Рис. 4. Структура ННМ1

Довжина пакета, байт	Інтенсивність трафіка, пакет/с	Кількість переходів	Час перебування пакета в маршрутизаторах за маршрутами, мкс	Довжина пакета, байт	Інтенсивність трафіка, пакет/с	Кількість переходів	Час перебування пакета в маршрутизаторах за маршрутами, мкс
70	10	1	5,6	70	10	1	5,6
500	10	1	40	500	10	1	42
1 000	10	1	80	1 000	10	1	87
1 500	10	1	120	1 500	10	1	136
70	10	2	11,2	70	1 000	2	11
500	10	2	80	500	1 000	2	83
1 000	10	2	160	1 000	1 000	2	174
1 500	10	2	360	1 500	1 000	2	273
70	10	3	16,8	70	1 000	3	17
500	10	3	120	500	1 000	3	125
1 000	10	3	240	1 000	1 000	3	261
1 500	10	3	360	1 500	1 000	3	409
70	10	4	22,4	70	1 000	4	23
500	10	4	160	500	1 000	4	167
1 000	10	4	320	1 000	1 000	4	348
1 500	10	4	480	1 500	1 000	4	545

Таблиця 2

Фрагмент навчальної вибірки для ННМ1
Навчання й тестування ННМ1. Пакет Neural Networks Toolbox, що є частиною системи MatLAB, нараховує понад 160 різних функцій, які дають можливість створювати, навчати й досліджувати нейронні мережі. Крім того, ANFIS—редактор системи MatLAB підтримує майже повну автоматизацію процесу створення ННМ, що дозволяє побудувати ННМ конфігурації 3–12–60–60–1, використовуючи алгоритм Сугено. Для навчання ННМ1 задано 100 циклів

Довжина пакета, байт	Інтенсивність трафіка, пакет/с	Кількість перебування пакета в маршрутизаторах за маршрут, мкс	Довжина пакета, байт	Інтенсивність трафіка, пакет/с	Кількість перебування пакета в маршрутизаторах за маршрут, мкс
500	300	1	40	500	1
1000	300	1	82	1000	1
1500	500	1	124	1500	1
500	300	2	81	500	2
1000	300	2	163	1000	2
1500	300	3	373	1500	3
500	300	3	121	500	3
1000	300	4	268	1000	3
1500	300	4	373	1500	3
500	300	4	162	500	4
1000	300	4	328	1000	4
1500	300	4	498	1500	4
500	700	1	41		
1000	700	1	85		
1500	700	1	131		
500	700	2	82		
1000	700	2	169		
1500	700	2	393		
500	700	3	123		
1000	700	3	254		
1500	700	3	393		
500	700	4	165		
1000	700	4	339		
1500	700	4	524		
(Epochs), похибка навчання ННМ1 за гібридним методом складає 8,4873·10^{-10} с.

На імітаційній моделі мережі, побудованій в ОРНЕТ, за довжини пакета 550 байт, інтенсивності трафіку в 10 пакет/с та трьох переходах час перебування пакета в маршрутизаторах за маршрутом в мережі ІТС залізничного транспорту складає 0,000132 с. Для перевірки побудованої ННМ1 запустимо її з вхідними даними, що не входять до жодної з вибірок. Моделювання відображається в графічному вікні (рис. 5), де проілюстрований хід логічного висновку за кожним правилом, отримання результату чіткої множини й виконання процедури дефазифікації.

Рис. 5. Система нечіткого виведення ННМ1

Кожне правило бази знань представлено у вигляді послідовності горизонтально розташованих кривих. Результатом нечітка множина показана в нижньому прямокутнику останнього стовпчика графічного вікна. У цьому ж прямокутнику червона вертикальна лінія відповідає чіткому значенню логічного висновку, отриманого в результаті дефазифікації. За вхідних даних [550; 10; 3] ННМ1 виводить час перебування пакета в маршрутизаторах за шляхом його передачі, рівний 0,000132 с (рис. 6). Тобто ННМ1 правильно побудована та навчена.

Визначення маршруту на основі використання нейронечіткої мережі (ННМ2). Як вхідні параметри використовують наступні змінні: x_1 – час перебування пакета в маршрутизаторах за маршрутом передачі пакета (T_{min}, T_{avg}, T_{max}); x_2 – загальна затримка в черзі на маршрутизаторах за шляхом A (Z_{Amin}, Z_{Aavg}, Z_{Amax}); x_3 – загальна затримка в черзі на маршрутизаторах за шляхом B (Z_{Bmin}, Z_{Bavg}, Z_{Bmax}); y – оптимальний маршрут: 1 (шлях A), 2 (шлях B). Усі значення зведені до табл. 4.
Лінгвістична оцінка вхідних і вихідних змінних для ННМ2

Вхідні змінні	Загальна затримка в черзі на маршрутизаторах за шляхом \(A \), мкс	Загальна затримка в черзі на маршрутизаторах за шляхом \(B \), мкс	Вихідна зміна
Час перебування пакета в маршрутизаторах за маршрут, мкс	\(Z_4 \) \(min \) : 0 – 13; \(Z_4 \) \(ma \) : 14 – 27; \(Z_4 \) \(av \) : 28 – 41; \(Z_4 am \) : 42 – 55; \(Z_4 max \) : 56 – 70	\(Z_4 \) \(min \) : 0 – 13; \(Z_4 \) \(ma \) : 14 – 27; \(Z_4 \) \(av \) : 28 – 41; \(Z_4 am \) : 42 – 55; \(Z_4 max \) : 56 – 70	Маршрут
\(T_{min} \) : 5.6 – 185; \(T_{avg} \) : 186 – 365; \(T_{max} \) : 366 – 545			\(A \) : 1; \(B \) : 2

Кількість шляхів нечетких продукцій залежить від кількості вхідних змінних і кількості термів, ця величина становить \(3 \cdot 5 \cdot 5 = 75 \) правил. Фрагменти зами наведено нижче:
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(min \) \(1 \cdot x_3 = Z_4 \) \(min \), то \(y = B \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(min \) \(1 \cdot x_3 = Z_4 \) \(ma \), то \(y = B \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(min \) \(1 \cdot x_3 = Z_4 \) \(av \), то \(y = B \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(min \) \(1 \cdot x_3 = Z_4 \) \(ma \), то \(y = B \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(ma \) \(1 \cdot x_3 = Z_4 \) \(min \), то \(y = A \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(ma \) \(1 \cdot x_3 = Z_4 \) \(ma \), то \(y = B \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(ma \) \(1 \cdot x_3 = Z_4 \) \(av \), то \(y = B \);
якщо \(x_1 = T_{min} \) \(1 \cdot x_2 = Z_4 \) \(ma \) \(1 \cdot x_3 = Z_4 \) \(ma \), то \(y = B \).

Структура відповідної ННМ2 показана на рис. 6.

Формування вибірки для ННМ2. Сформовано такі вибірки: навчальну із 75 прикладів, тестову з 20 прикладів і контрольну з 10 прикладів (табл. 5).

Навчальна вибірка	Тестова вибірка	Контрольна вибірка						
Час перебування пакета в маршрутизаторах, мкс	Загальна затримка в черзі, мкс	Маршрут	Час перебування пакета в маршрутизаторах, мкс	Загальна затримка в черзі, мкс	Маршрут	Час перебування пакета в маршрутизаторах, мкс	Загальна затримка в черзі, мкс	Маршрут
--------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------
\(5.6 \)	\(14 \)	\(185 \)	0	14	\(A \)	5	10	\(A \)
\(5.6 \)	14	0	20	\(A \)	6	69	\(A \)	
\(5.6 \)	15	29	\(A \)	10	\(11 \)	\(69 \)	\(A \)	

Рис. 6. Структура ННМ2

Фрагменти вибірки для ННМ2

Навчальна вибірка	Тестова вибірка	Контрольна вибірка						
Час перебування пакета в маршрутизаторах, мкс	Загальна затримка в черзі, мкс	Маршрут	Час перебування пакета в маршрутизаторах, мкс	Загальна затримка в черзі, мкс	Маршрут	Час перебування пакета в маршрутизаторах, мкс	Загальна затримка в черзі, мкс	Маршрут
--------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------
\(5.6 \)	\(14 \)	\(185 \)	0	14	\(A \)	5	10	\(A \)
\(5.6 \)	14	0	20	\(A \)	6	69	\(A \)	
\(5.6 \)	15	29	\(A \)	10	\(11 \)	\(69 \)	\(A \)	
Результати

Дослідження середньої похибки навчання ННМ1. Пакет Fuzzy Logic Toolbox системи MatLAB включає 11 вбудованих функцій належності, які використовують такі основні функції: кусково-лінійну; Гаусівський розподіл; сигмоїдну криву; квадратичну і кубічні криві. Значення похибок навчання ННМ1 за різними функціями належності представлено в табл. 6. Із таблиці видно, що найменше значення похибки ННМ1 надає Гаусівська функція належності.

Таблиця 6

Функція належності	Навчальна вибірка	Тестова вибірка	Контрольна вибірка
трікутна	trimf	8,75	
трапецієподібна	trapmf	10,23	
колосподібна	gbellmf	9,16	
симетрична Гаусівська	gaussmf	8,40	
двостороння Гаусівська	gauss2mf	10,03	
добуток двох сигмоїдних функцій належності	pimf	13,86	
функція належності у вигляді криволінійної трапеції	psigmf	10,32	
різниця двох сигмоїдних функцій належності	dsigmf	10,63	

У редакторі ANFIS реалізовані наступні методи оптимізації навчання: backpropa (метод зворотного поширення помилки, заснований на ідеях методу найшвидшого спуску); hybrid (гібридний метод, який об’єднує метод зворотного поширення помилки з методом найменших квадратів). Під час використання методу зворотного поширення помилки похибка навчання ННМ1 складає $9,6501 \times 10^{-10}$ с, а гібридного ме-
Оцінка роботи ННМ1. Проведено моделювання ННМ1 за наступних параметрів: довжина пакета – 3 850 байт; інтенсивність трафіка – 10 пакет/с; кількість переходів – 3. Час проходження пакета маршрутом (із вузла Федорівка до вузла Дніпро), що отриманий у системі OPNET Modeler на імітаційній моделі мережі Fast Ethernet в ІТС Придніпровської залізниці за протоколом OSPF, складає 0,0010285 с (рис. 7), а на основі ННМ1 – 0,000924 с (рис. 8). Тобто використання ННМ1 дозволяє приблизно на 10 % швидше визначити маршрут у мережі ІТС Придніпровської залізниці (для розглянутої фрагменту) порівняно з протоколом OSPF на імітаційній моделі.
Наука новизна та практична значимість

Створені імітаційна модель мережі Fast Ethernet за сценарієм OSPF та нейронечіткі мережі (ННМ1, ННМ2) можуть бути покладені в основу інтегрованої системи маршрутизації в мережі ІТС Придніпровської залізниці, загальна структура якої показана на рис. 9 (Lпак – довжина пакета; А – інтенсивність трафіка; K – кількість проміжних маршрутизаторів, що складають шлях проходження пакета; Tпак – час перебування пакета в маршрутизаторах за шляхом його проходження в мережі; Z_A – загальна затримка в черзі на маршрутізаторах за шляхом A; Z_B – загальна затримка в черзі на маршрутізаторах за шляхом B).

Роботу інтегрованої системи маршрутизації продемонстровано для тих фрагментів мережі Fast Ethernet в ІТС Придніпровської залізниці, де можливий вибір маршруту за однакової кількості проміжних маршрутізаторів за різними шляхами (табл. 7: шлях A – праворуч).

Фрагмент «Нижньодніпровськ–Вузол – Дніпро». Пакет довжиною 500 байт, за інтенсивності трафіка 10 пакет/с й 2 перехідних передається з вузла V1 (Ігрень) до вузла V6 (Дніпро). Час перебування пакета в маршрутізаторах спрогнозований за допомогою ННМ1 і складає 80 мкс. Так, наприклад, залежно від значень отриманого часу, загальної затримки в черзі на маршрутізаторах за шляхом A (4 мкс) та загальної затримки в черзі на маршрутізаторах за шляхом A (29 мкс) та загальної затримки в черзі на маршрутізаторах за шляхом B (20 мкс) на основі ННМ2 обирають оптимальний маршрут: шлях A. На графі, який відображає фрагмент «Нижньодніпровськ–Вузол – Дніпро», червоним кольором відображено цей маршрут: V1→V2→V4→V6.

Фрагмент «Горяйнове». Пакет довжиною 1 000 байт, за інтенсивності трафіка 10 пакет/с та 4 перехідних передається з вузла V1 (Кам’янське–Пас) до вузла V10 (Дніпро). Час перебування пакета в маршрутізаторах спрогнозовано за допомогою ННМ1, він складає 320 мкс. Залежності від значень отриманого часу, загальної затримки в черзі на маршрутізаторах за шляхом A (29 мкс) та загальної затримки в черзі на маршрутізаторах за шляхом B (20 мкс) на основі ННМ2 обирають оптимальний маршрут: шлях B. На графі, який відображає фрагмент «Горяйнове», червоним кольором відображено цей маршрут: V1→V2→V7→V8→V9→V10.
Таблиця 7

Розгляд фрагментів ІТС Придніпровської залізниці

	ННМ1	ННМ2	Структура фрагмента	Умовні позначення
Фрагмент «Нижньодніпровськ–Вузол – Дніпро»				
Вхідні параметри	500 байт	80 мкс		V1 – Ігрень; V2 – Іларіонове; V3 – Нижньодніпровськ–Вузол; V4 – Синельникове–2; V5 – Нижньодніпровськ; V6 – Дніпро
10 пакет/с	4 мкс	V1; V2; V3; V5; V6		
2	13 мкс			
Результат	80 мкс	1 (шлях А)		
Фрагмент «Горяйнове»				
Вхідні параметри	1000 байт	320 мкс		V1 – Кам'янське–Пас; V2 – Баглій; V3 – Верхньодніпровськ; V4 – Сухачівка; V5 – Діївка; V6 – Горяйнове; V7 – Верхівцеве; V8 – Вільногірськ; V9 – П'ятихатки; V10 – Дніпро
10 пакет/с	29 мкс	V1; V3; V5; V6; V8; V9; V10		
4	20 мкс			
Результат	320 мкс	2 (шлях В)		
Фрагмент «Кривий Ріг»				
Вхідні параметри	1500 байт	240 мкс		V1 – Вечірній Кут; V2 – Саксагань; V3 – П'ятихатки; V4 – Мудьона; V5 – Кривий Ріг; V6 – Дніпро
10 пакет/с	30 мкс	V1; V3; V4; V5; V6		
2	50 мкс			
Результат	240 мкс	1 (шлях А)		
Фрагмент «Кривий Ріг». Пакет довжиною 1 500 байт, за інтенсивності 10 пакет/с і 2 переходи передається з вузла V1 (Вечірній Кут) до вузла V6 (Дніпро). Час перебування пакета в маршрутизаторах спрогнозовано за допомогою ННМ1 він складає 240 мкс. Наприклад, залежно від значень отриманого часу, загальної затримки в черзі на маршрутизаторах за шляхом A (30 мкс) та загальної затримки в черзі на маршрутизаторах за шляхом B (50 мкс) на основі ННМ2 обирають оптимальний маршрут: шлях A. На графі, який зображує фрагмент «Нижньодніпровський – Бузол – Дніпро», червоним кольором відображають цей маршрут: $V1 \rightarrow V2 \rightarrow V3 \rightarrow V6$.

Висновки

1. Відповідно до структури мережі ІТС Придніпровської залізниці в системі ORNET Modeler створена відповідна імітаційна модель Fast Ethernet (за сценаріями RIP та OSPF), на якій визначено наступні характеристики: середнє навантаження сервера; середній час обробки пакетів маршрутизатором; середній час очікування пакетів у черзі; середня кількість втратених пакетів. Визначено, що найгірші результати були отримані за сценарієм RIP: навантаження сервера стрімко зростає (у середньому за хвилину приблизно в 1,6 раза); загальна затримка в черзі на маршрутизаторах за шляхом A тривати в середньому за хвилину приблизно в 0,5 раза); середня кількість втратених пакетів у черзі на маршрутизаторах за шляхом $V1 \rightarrow V2 \rightarrow V3 \rightarrow V6$; найменше значення середньої похибки $8,487 \times 10^{-10}$ с надає ННМ2 у разі використання симетричної Гаусівської функції належності за гібридним методом оптимізації.

2. Для визначення шляху проходження пакета в мережі ІТС Придніпровської залізниці (за умови однакової кількості маршрутизаторів, що складають шлях) створено ННМ2, на вхід якої подають наступні параметри: час перебування пакета в маршрутизаторах за шляхом A (15 мкс) тривати в середньому за хвилину приблизно в 1,6 раза); середня кількість втратених пакетів у черзі на маршрутизаторах за шляхом A тривати в середньому за хвилину приблизно в 0,5 раза); середня кількість втратених пакетів у черзі на маршрутизаторах за шляхом B тривати в середньому за хвилину приблизно в 0,5 раза); середня кількість втратених пакетів у черзі на маршрутизаторах за шляхом $V1 \rightarrow V2 \rightarrow V3 \rightarrow V6$; найменше значення середньої похибки $8,487 \times 10^{-10}$ с надає ННМ2 у разі використання симетричної Гаусівської функції належності за гібридним методом оптимізації.

СПИСОК ВИКОРИСТАНЬОХ ДЖЕРЕЛ

1. Асланов, А. М. Исследование интеллектуального подхода в маршрутизации компьютерных сетей / А. М. Асланов, М. С. Солодовников // Электротехнические и компьютерные системы. – 2014. – № 16 (92). – С. 93–100.
ІНФОРМАЦІЙНО-КОМУНІКАЦІЙНІ ТЕХНОЛОГІЇ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

2. Коваленко, Т. А. Разработка и исследование интегрированной системы маршрутизации в компьютерных сетях: автореф. дис. ... канд. техн. наук : 05.13.15 / Коваленко Татьяна Анатольевна; СГТУ. – Самара, 2012. – 16 с.

3. Колесніков, К. В. Аналіз результатів дослідження реалізації задачі маршрутизації на основі нейронних мереж та генетичних алгоритмів / К. В. Колесніков, А. Р. Карапетян, В. Ю. Баган // Вісн. Черкас. держ. технол. ун-ту. Серія: Технічні науки : зб. наук. пр. – Черкаси, 2016. – № 1. – С. 28–34.

4. Кутькин, A. В. Інтернет-ресурс для вирішення оптимізаційних задач маршрутизації : метод. указ. / A. В. Кутькин, A. В. Семин. – Москва : Изд-во Моск. гос. ун-та путей сообщения, 2007. – 15 с.

5. Никитченко, В. В. Утиліти моделювання систем Opnet Modeler / В. В. Никитченко. – Одесса : Одес. нац. акад. связи им. А. С. Попова, 2010. – 128 с.

6. Павленко, М. В. Аналіз можливостей використання штучного інтелекту в ТКС [Електронний ресурс] / М. В. Павленко // Проблеми телекомунікацій. – 2011. – № 2 (4). – Адреса : http://pt.journal.kh.ua/index/0-139 – Заголовок з екрана. – Адреса : 26.09.2019.

7. Пахомова, В. М. Реалізація інформаційно-телекомунікаційної системи залізничного транспорту з використанням штучного інтелекту : монографія / В. М. Пахомова. – Дніпро : Станл-Сервіс, 2018. – 220 с.

8. Реалізація задачі вибору оптимального авіамаршруту нейронною мережею Хопфілда / А. М. Бриндас, П. І. Рожак, Н. О. Семенишин, Р. Р. Курка // Наук. вісн. НЛТУ України : зб. наук. пр. – Львів, 2016. – Вип. 26.1. – С. 357–367.

9. Тарасин, В. С. Методика вибору оптимального авіамаршруту нейронною мережею Хопфілда / В. С. Тарасин. – Київ : Інститут проблем авіації і космонавтики УААН, 2011. – 112 с.

10. Штовба, С. Д. Проектирование нечетких систем средствами MatLAB / С. Д. Штовба. – Москва : Горячая линия – Телеком, 2007. – 288 с.

11. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities / J. J. Hopfield // Proceedings of National Academy of Sciences. – 1982. – Vol. 79. – Iss. 8. – P. 2554–2558. doi: 10.1073/pnas.79.8.2554

12. Iqbal, A. Performance Evaluation of Real Time Applications for RIP, OSPF and EIGRP for flapping links using OPNET Modeler [Electronic resource] / A. Iqbal, S. I. Ali Khan // International Journal of Computer Networks and Communications Security. – 2015. – Vol. 3, No. 1. – Available at: http://www.ijcncs.org/published/volume3/issue1/p4_3-1.pdf – Заголовок з екрана. – Адреса : 26.09.2019.

13. Kumar, M. V. Soft Computing: Fuzzy Logic Approach in Wireless Sensors Networks / M. V. Kumar, Dr. T. Lalitha // Circuits and Systems. – 2016. – Vol. 07. – Iss. 08. – P. 1242–1249. doi: https://doi.org/10.4236/cs.2016.78108

14. New algorithm for packet routing in mobile ad-hoc networks / N. S. Kojić, M. B. Zajeganović-Ivančić, I. S. Reljin, B. D. Reljin // Journal of Automatic Control. – 2010. – Vol. 20. – Iss. 1. – P. 9–16. doi: 10.2298/JAC1001009K

15. Pakhomova, V. M. Intelligent routing in the network of information and telecommunication system of railway transport / V. M. Pakhomova, T. I. Skaballanovich, V. S. Bondareva // Наука та прогрес транспорту. – 2019. – № 2 (80). – P. 77–90. doi: 10.15802/stp2019/166092

16. Pakhomova, V. M. Optimal route definition in the network based on the multilayer neural model / V. M. Pakhomova, I. D. Tsykal // Наука та прогрес транспорту. – 2018. – № 6 (58). – P. 126–142. doi: 10.15802/stp2018/154443

17. Sasikala, K. A neuro fuzzy based conditional shortest path routing protocol for wireless mesh network / K. Sasikala, V. Rajamani // International Journal of Enhanced Research in Management & Computer Applications. – 2013. – Vol. 2. – Iss. 5. – P. 1–10.

18. Schuler, W. H. A novel hybrid training method for hopfield neural networks applied to routing in communications networks / W. H. Schuler, C. J. A. Bastos-Filho, A. L. I. Oliveira // International Journal of Hybrid Intelligent Systems. – 2009. – Vol. 6. – Iss. 1. – P. 27–39. doi: 10.3233/his-2009-0074

19. Towards QoS-aware routing for DASH utilizing MPTCP over SDN / K. Herguner, R. S. Kalan, C. Cetinkaya, M. Sayit // IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN) (6–8 Nov. 2017). – Berlin, Germany, 2017. – P. 1–6. doi: 10.1109/nfv-sdn.2017.8169844

20. Zhukovys’kyy, I. Research of Token Ring network options in automation system of marshalling yard / I. Zhukovys’kyy, V. Pakhomova // Transport Problems. – 2018. – Vol. 13. – Iss. 2. – P. 149–158.
В. Н. ПАХОМОВА1, Е. С. МАНДЫБУРА2

1 Каф. «Електронні виконавчі машини», Дніпровський національний університет залізничного транспорту, Вінниця, Україна, 240010, тел. +38 (056) 373 15 89, ел. почта viknikpakh@gmail.com, ORCID 0000-0002-0022-099X

2 Каф. «Електронні виконавчі машини», Дніпровський національний університет залізничного транспорту, Вінниця, Україна, 240010, тел. +38 (056) 373 15 89, ел. почта mandybura1994@gmail.com, ORCID 0000-0002-7134-9416

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО МАРШРУТА В ИНФОРМАЦИОННОЙ СЕТИ ЖЕЛЕЗНОДОРЖНОГО ТРАНСПОРТА С ИСПОЛЬЗОВАНИЕМ НЕЙРОНЕЧЕТКИХ МОДЕЛЕЙ

Цель. Современные алгоритмы выбора кратчайшего маршрута, например, алгоритмы Беллмана–Форда и Дейкстры, которые в настоящее время широко используют в протоколах маршрутизации (RIP, OSPF), не всегда приводят к эффективному результату. Поэтому возникает необходимость исследования возможности организации маршрутизации в сети информационно-телекоммуникационной системы (ИТС) железнодорожного транспорта с помощью методов искусственного интеллекта. Методика. На основе созданной в моделирующей системе ОРЕНТ имитационной модели рассмотрен фрагмент сети ИТС железнодорожного транспорта и сформированы следующие выборки: обучающая; тестирующая; контрольная. Для моделирования в системе MatLAB нейронечёткой сети (гибридной системы) на вход подают следующие параметры: длина пакета (3 терм-множества); интенсивность трафика (5 терм-множества); количество промежуточных маршрутизаторов, составляющих маршрут (4 терм-множества). В качестве результатирующей характеристики принято время пребывания пакета в маршрутизаторах до маршрут его следования в сети ИТС (4 терм-множества). На основе полученного времени пребывания пакета в маршрутизаторах и задержек в очереди на маршрутизаторах, составляющих различные пути (в однаковом количестве маршрутизаторов) определен оптимальный маршрут. Результаты. Для рассмотренного фрагмента ИТС железнодорожного транспорта осуществлен прогноз времени пребывания пакета в маршрутизаторах по маршруту его следования на основе нейронечёткой сети, созданной в системе MatLAB. Проведено исследование средней погрешности обучения нейронечёткой сети при различных функциях принадлежности и различных методов оптимизации обучения. Обнаружено, что наименьшее значение средней погрешности обучения предоставляет нейронечёткая сеть конфигурации 3–12–60–60–1 при использовании симметричной Гауссовой функции принадлежности с гибридным методом оптимизации. Научная новизна. По сценариям БП и ОСPF на созданной в моделирующей системе ОРЕНТ имитационной модели получены следующие характеристики: средняя нагрузка сервера; среднее время обработки пакетов маршрутизатором; среднее время ожидания пакетов в очереди; среднее количество потерянных пакетов; время конвергенции сети. Определено, что наименьшие результаты дает имитационная модель сети по сценарию OSPF. Предложенная интегрированная система маршрутизации в сети ИТС железнодорожного транспорта, в основу которой положены созданная нейронечёткая модель, определяет оптимальный маршрут в сети быстрее по сравнению с существующими протоколами маршрутизации OSPF. Практическая значимость. Интегрированная система маршрутизации ИТС железнодорожного транспорта позволит в реальном времени определить оптимальный маршрут в сети с одинаковым количеством маршрутизаторов, составляющих путь прохождения пакета.

Ключевые слова: маршрутизация; протокол OSPF; имитационная модель; гибридная система; терм функция принадлежности; выборка; погрешность.

V. M. РАХОМОВА1, Y. S. МАНДЫБУРА2

1 Dep. «Electronic Computing Machines», Dnipro National University of Railway Transport named after Academician V. Lazaryan, Dnipro, Ukraine, tel. +38 (056) 373 15 89, e-mail viknikpakh@gmail.com, ORCID 0000-0002-0022-099X

2 Dep. «Electronic Computing Machines», Dnipro National University of Railway Transport named after Academician V. Lazaryan, Dnipro, Ukraine, tel. +38 (056) 373 15 89, e-mail mandybura1994@gmail.com, ORCID 0000-0002-7134-9416

© В. М. Рахомова, Є. С. Мандибура, 2019
OPTIMAL ROUTE DEFINITION IN THE RAILWAY INFORMATION NETWORK USING NEURAL-FUZZY MODELS

Purpose. Modern algorithms for choosing the shortest route, for example, the Bellman-Ford and Dijkstra algorithms, which are currently widely used in existing routing protocols (RIP, OSPF), do not always lead to an effective result. Therefore, there is a need to study the possibility of organizing routing in the railway network of information and telecommunication system (ITS) using the methods of artificial intelligence. **Methodology.** On the basis of the simulation model created in the OPNET modeling system a fragment of the ITS railway network was considered and the following samples were formed: training, testing, and control one. For modeling a neural-fuzzy network (hybrid system) in the MatLAB system the following parameters are input: packet length (three term sets), traffic intensity (five term sets), and the number of intermediate routers that make up the route (four term sets). As the resulting characteristics, the time spent by the packet in the routers along its route in the ITS network (four term sets) was taken. On the basis of a certain time of packet residence in the routers and queue delays on the routers making up different paths (with the same number of the routers) the optimal route was determined. **Findings.** For the railway ITS fragment under consideration, a forecast was made of the packet residence time in the routers along its route based on the neural-fuzzy network created in the MatLAB system. The authors conducted the study of the average error of the neural-fuzzy network’s training with various membership functions and according to the different methods of training optimization. It was found that the smallest value of the average learning error is provided by the neuro-fuzzy network configuration 3–12–60–60–1 when using the symmetric Gaussian membership function according to the hybrid optimization method. **Originality.** According to the RIP and OSPF scenarios, the following characteristics were obtained on the simulation model created in the OPNET simulation system: average server load, average packet processing time by the router, average waiting time for packets in the queue, average number of lost packets, and network convergence time. It was determined that the best results are achieved by the simulation network model according to the OSPF scenario. The proposed integrated routing system in the ITS network of railway transport, which is based on the neural-fuzzy networks created, determines the optimal route in the network faster than the existing OSPF routing protocol. **Practical value.** An integrated routing system in the ITS system of railway transport will make it possible to determine the optimal route in the network with the same number of the routers that make up the packet path in real time.

Key words: routing; OSPF protocol; simulation model; hybrid system; term; membership function; sample; error

REFERENCES

21. Aslanov, A. M., & Solodovnik, M. S. (2014). Issledovanie intellektualnog podkhoda v marshrutizatsii kompyuterynkh setey. Elektrotekhnicheskie i kompyuternye sistemy, 16(92), 99-100. (in Russian)
22. Kovalenko, T. A. (2012). Razrabotka i issledovanie integrirovannoy sistemy marshrutizatsii v kompyuter-nykh setyakh. (Avtoreferat dysertatsii kandydaty nauchnykh delo). SGU, Samara. (in Russian)
23. Kolesnikov, K. V., Karapetian, A. R., & Bahan, V. Y. (2016). Analiz rezultativ doslidzhennia realizatsii zadach marshrutyzatsii na osnovi neironnykh merezh ta henetychnykh algoritiv. Visnyk Cherkaskogo derzhavnogo tehnichnogo universitetu. Seria: Tehnichni nauky, 1, 28-34. (in Ukrainian)
24. Kutyrkin, A. V., & Semin, A. V. (2007). Ispolzovanie neyronnoy seti Khopfilda dlia resheniya optimizatsionnykh zadach marshrutyzatsii: Metodicheskie ukazaniya. Moscow: Izdatelstvo Moskovskogo gosudarstvennogo universiteta putey soobshcheniya. (in Russian)
25. Nikitchenko, V. V. (2010). Utility modeliruyushchey sistemy Opnet Modeler. Odessa: Odesskaya natsionalnaya akademika svyazi im. A. S. Popova. (in Russian)
26. Pavlenko, M. A. (2011). Analys opportunities of artificial neural networks for solving single-path routing in telecommunication network. Problemy telekomunikatsii, 2(4). Retrieved from http://pt.journal.kh.ua/index/0-139 (in Russian)
27. Pakhomova, V. M. (2018). Doslidzhennia informatistino-telekomunikatsiinoi systemy zaliznychnoho transportu z vykorystanniam shtuchnoho intelektu: monohrafiia. Dnipro: Standart-Servis. (in Ukrainian)
28. Bryndas, A. M., Rozhak, P. I., Semenishin, N. O., & Kurka, R. R. (2016). Implementing of the Problem of Choosing the Optimal Flight Rout by a Hopfield Neural Network. The Scientific Bulletin of UNFU, 26.I, 357-363. (in Ukrainian)
29. Tarasyan, V. S. Paket Fuzzy Logic Toolbox for MatLAB: uchebnoe posobie. (2013) Yekaterinburg: Izdatelstvo: UrGUPS. (in Russian)

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2019/184385 © В. М. Пахомова, Є. С. Мандибура, 2019
30. Shtovba, S. D. (2007). *Proektirovanie nechetkikh sistem sredstvami MatLAB*. Moscow: Goryachaya liniya–Telekom. (in Russian)

31. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. *Proceedings of National Academy of Sciences*, 79(8), 2554-2558. doi: https://doi.org/10.1073/pnas.79.8.2554 (in English)

32. Iqbal, A., & Ali Khan, S. L. (2015). Performance Evaluation of Real Time Applications for RIP, OSPF and EIGRP for flapping links using OPNET Modeler. *International Journal of Computer Networks and Communications Security, 3*(1). Retrieved from: http://www.ijcncs.org/published/volume3/issue1/p4_3-1.pdf (in English)

33. Kumar, M. V., & Lalitha, Dr. T. (2016). Soft Computing: Fuzzy Logic Approach in Wireless Sensors Networks. *Circuits and Systems, 07*(08), 1242–1249. doi: https://doi.org/10.4236/cs.2016.78108 (in English)

34. Kojić, N. S., Zajeganović-Ivančić, M. B., Reljin, I. S., & Reljin B. D. (2010). New algorithm for packet routing in mobile ad-hoc networks. *Journal of Automatic Control, 2011*, 9-16. doi: https://doi.org/10.2298/jac1001009k (in English)

35. Pakhomova, V. M., Skaballanovich, T. I., & Bondareva, V. S. (2019). Intelligent routing in the network of information and telecommunication system of railway transport. *Science and Transport Progress, 2*(80), 77-90. doi: https://doi.org/10.15802/stp2019/166092 (in English)

36. Pakhomova, V. M. & Tsykalo, I. D. (2018). Optimal route definition in the network based on the multilayer neural model. *Science and Transport Progress, 6*(78), 126-142. doi: https://doi.org/10.15802/stp2018/154443 (in English)

37. Sasikala, K. & Rajamani, V. (2013). A neuro fuzzy based conditional shortest path routing protocol for wireless mesh network. *International Journal of Enhanced Research in Management & Computer Applications, 2*(5), 1-10. (in English)

38. Schuler, W. H., Bastos-Filho, C. J. A., & Oliveira, A. L. I. (2009). A novel hybrid training method for hopfield neural networks applied to routing in communications networks. *International Journal of Hybrid Intelligent Systems, 6*(1), 27-39. doi: https://doi.org/10.3233/his-2009-0074 (in English)

39. Herguner, K., Kalan, R. S., Cetinkaya, C., & Sayit, M. (2017). Towards QoS-aware routing for DASH utilizing MPTCP over SDN. *2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)*. doi: https://doi.org/10.1109/nfv-sdn.2017.8169844 (in English)

40. Zhukovyts’kyy, I. & Pakhomova, V. (2018). Research of Token Ring network options in automation system of marshalling yard. *Transport Problems, 13*(2), 145-154. (in English)

Надійшла до редколегії: 15.05.2019
Прийнята до друку: 12.09.2019