Biomarkers, Clinical Variables, and the CHA$_2$DS$_2$-VASc Score to Detect Silent Brain Infarcts in Atrial Fibrillation Patients

Philipp Krisai, Ceylan Eken, Stefanie Aeschbacher, Michael Coslovsky, Vinzent Rolny, Desirée Carmine, Lorenzo Grazioli Gauthier, Jürg Beer, Laurent Roten, Oliver Baretella, Nicolas Rodondi, Leo H. Bonati, Christine S. Zuern, Christian Müller, David Conen, Michael Kühne, Stefan Osswald, for the Swiss-AF study investigators

Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
Electrophysiology and Ablation Unit and L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), University Hospital Bordeaux, Bordeaux-Pessac, France
Department of Cardiology, University Hospital Basel, Basel, Switzerland
Roche Diagnostics GmbH, Penzberg, Germany
Department of Internal Medicine, Regional Hospital Lugano, Ticino, Switzerland
Department of Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
Department of Neurology, University Hospital Basel, Basel, Switzerland
Population Health Research Institute, McMaster University, Hamilton, ON, Canada

Dear Sir:

Silent brain infarcts are associated with cognitive dysfunction similar to overt strokes in AF patients. Brain magnetic resonance imaging (bMRI) is needed to detect silent infarcts and initiate secondary prevention, but is unfeasible in all patients. We therefore investigated the associations of biomarkers, clinical variables and the CHA$_2$DS$_2$-VASc score with silent brain infarcts to non-invasively identify high-risk patients.

The Swiss Atrial Fibrillation (Swiss-AF) cohort is a prospective, multicenter study, that enrolled patients with previously documented AF and age ≥65 years (subset aged 45 to 65 years was included). The study complies with the Declaration of Helsinki, the study protocol was approved by the local ethics committees (approval number 2014-067) and informed written consent was obtained from each participant. Of 2,415 enrolled patients, we excluded 479 (19.8%) with a history of stroke or transient ischemic attack (TIA) to analyze only silent brain infarcts, 658 (27.2%) without standardized bMRI and 381 (15.8%) without complete biomarker assessment, leaving 1,140 patients. Cognitive function was assessed by the Montreal Cognitive Assessment (MoCA) (maximum score 30 points, higher scores indicating better cognition, one point was added if formal education ≤12 years). A 12-lead electrocardiogram (ECG) was performed at enrolment. Details on biomarker selection are provided in the Supplementary material. Large non-cortical infarcts were defined as hyperintense lesions on fluid attenuated inversion recovery (FLAIR) >20 mm in diameter on axial sections without cortical involvement. Cortical infarcts as hyperintense lesions of any size on FLAIR involving the cortex. Large non-cortical and any cortical infarct (LNCCIs) were combined into one category and chosen as the primary outcome as LNCCI were the only brain lesions independently associated with cognitive dysfunction.

Biomarkers and LNCCI volumes were log-transformed. To investigate associations of biomarkers with LNCCI presence and volume, we standardized (z-score) all biomarkers in crude, age/sex-adjusted and multivariable (adjusted for prespecified vari-
ables) models. To maximize the area under the curve (AUC) for diagnosing silent LNCCIs, a biomarker combination was selected by backward selection from a model containing all biomarkers and the CHA₂DS₂-VASc score as a continuous variable. Similar backward selection was repeated for clinical variables and a combination of clinical variables and biomarkers. Clinical variables included sex, age, body mass index, active smoking, arterial hypertension, prior heart failure, diabetes, vascular disease, and presence of AF on a 12-lead ECG. We then compared the AUCs of the biomarkers, the CHA₂DS₂-VASc score, the clinical variables, and the combination of biomarkers and clinical variables.

Table

Biomarkers	Crude OR (95% CI)	Age/sex adjusted OR (95% CI)	Multivariable OR (95% CI)
NT-proBNP	1.65 (1.37; 1.97)	1.51 (1.24; 1.84)	1.42 (1.16; 1.75)
GDF-15	1.51 (1.30; 1.77)	1.38 (1.16; 1.65)	1.38 (1.13; 1.69)
Osteopontin	1.52 (1.31; 1.76)	1.42 (1.20; 1.67)	1.36 (1.14; 1.62)
Hs-troponin T	1.51 (1.29; 1.76)	1.38 (1.16; 1.64)	1.34 (1.12; 1.61)
IGFBP-7	1.53 (1.31; 1.78)	1.39 (1.18; 1.66)	1.34 (1.12; 1.60)
ESM-1	1.37 (1.17; 1.61)	1.22 (1.02; 1.46)	1.26 (1.06; 1.49)
Cystatin C	1.42 (1.22; 1.65)	1.29 (1.09; 1.53)	1.26 (1.05; 1.50)
Interleukin-6	1.38 (1.17; 1.62)	1.27 (1.07; 1.51)	1.23 (1.02; 1.48)
Angiopoietin	1.4 (1.19; 1.65)	1.30 (1.09; 1.54)	1.22 (1.02; 1.46)
hFABP-3	1.34 (1.15; 1.56)	1.19 (1.02; 1.43)	1.16 (0.97; 1.40)
Creatinine	1.29 (1.11; 1.49)	1.18 (1.02; 1.38)	1.15 (0.97; 1.36)
Hs-CRP	1.12 (0.95; 1.31)	1.08 (0.91; 1.27)	1.05 (0.89; 1.25)

Figure 1

(A) Separate logistic regression models for the relations of biomarker and large non-cortical and any cortical infarct (LNCCI). (B) Area under the curve (AUC) to diagnose LNCCI for different models. OR, odd ratio; CI, confidence interval; NT-proBNP, N-terminal pro-B-type natriuretic peptide; GDF-15, growth differentiation factor-15; IGFBP-7, insulin-like growth factor-binding protein-7; ESM-1, endothelial cell-specific molecule-1; hFABP-3, heart fatty-acid-binding protein-3; hs-CRP, high-sensitivity C-reactive protein.
creasing MoCA scores from 26.3, 26.3; 25.3 to 24.8 points over 0.647; CHA² 1.08 to 1.66; (95% CI, 1.08 to 1.66; 1.33 (95% CI, 1.07 to 1.64; ment by adding the CHA² compared to the final model), without any significant improve type natriuretic peptide (NT-proBNP), osteopontin, and 2.96; (95% CI, 1.16 to 2.32; P=0.005 for AF on the ECG). Internal validation showed an AUC of 0.662 (IQR, 0.643 to 0.682).

The AUC for vascular disease and AF on the ECG alone was 0.633 (95% CI, 0.589 to 0.677; P=0.001 compared to the final model) and their respective ORs were 2.10 (95% CI, 1.50 to 2.96; P=0.0001) and 1.95 (95% CI, 1.40 to 2.72; P=0.0001). The biomarker combination of hs-troponinT, N-terminal pro-B-type natriuretic peptide (NT-proBNP), osteopontin, and hFABP-3 had an AUC of 0.662 (95% CI, 0.617 to 0.706; P=0.16 compared to the final model), without any significant improvement by adding the CHA²-VASc score with silent brain infarcts. Approximately one out of four AF patients in the highest risk quartile, based on the final model, had a silent brain infarct. Thus, our risk model identifies a high-risk population for bMRI screening. Once silent brain lesions are confirmed, these patients might benefit from initiation or adjustment of anticoagulation, reduction in AF-burden, and treatment of traditional stroke risk factors. Randomized trials are needed to establish the impact of those interventions on cognitive decline related to silent infarcts. Strengths of our study include the large sample size, a wide biomarker array and detailed patient characterization. Limitations are unclear generalizability to patients with transient AF forms, cardiac devices and a history of stroke/TIA.

In conclusion, the combination of hs-troponinT, osteopontin, hFABP-3, vascular disease, and AF on the ECG had the highest discriminatory ability to diagnose clinically silent LNCCIs.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2021.02068.

References

1. Conen D, Rodondi N, Müller A, Beer JH, Ammann P, Moschovitis G, et al. Relationships of overt and silent brain lesions with cognitive function in patients with atrial fibrillation. *J Am Coll Cardiol* 2019;73:989-999.

2. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. *J Am Geriatr Soc* 2005;53:695-699.

3. Conway DS, Buggins P, Hughes E, Lip GY. Relationship of interleukin-6 and C-reactive protein to the prothrombotic state in chronic atrial fibrillation. *J Am Coll Cardiol* 2004;43:2075-2082.

4. Lip GY, Patel JV, Hughes E, Hart RG. High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis. *Stroke* 2007;38:1229-1237.

5. Sharma A, Hijazi Z, Andersson U, Al-Khatib SM, Lopes RD, Alexander JH, et al. Use of biomarkers to predict specific causes of death in patients with atrial fibrillation. *Circulation* 2018;138:1666-1676.
6. Hijazi Z, Lindbäck J, Alexander JH, Hanna M, Held C, Hylek EM, et al. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. *Eur Heart J* 2016;37:1582-1590.

7. Januzzi JL Jr, Packer M, Claggett B, Liu J, Shah AM, Zile MR, et al. IGFBP7 (insulin-like growth factor-binding protein-7) and neprilysin inhibition in patients with heart failure. *Circ Heart Fail* 2018;11:e005133.

8. Wunderlich MT, Hanhoff T, Goertler M, Spener F, Glatz JF, Wallesch CW, et al. Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. *J Neuro* 2005;252:718-724.

9. Beck H, Acker T, Wiessner C, Allegrini PR, Plate KH. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. *Am J Pathol* 2000;157:1473-1483.

10. Rocha SF, Schiller M, Jing D, Li H, Butz S, Vestweber D, et al. Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. *Circ Res* 2014;115:581-590.

11. Hohnloser SH, Hijazi Z, Thomas L, Alexander JH, Amerena J, Hanna M, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. *Eur Heart J* 2012;33:2821-2830.

12. Ellison JA, Velier JJ, Spera P, Jonak ZL, Wang X, Barone FC, et al. Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. *Stroke* 1998;29:1698-1706.

13. Van Gelder IC, Healey JS, Crijns HJGM, Wang J, Hohnloser SH, Gold MR, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. *Eur Heart J* 2017;38:1339-1344.

14. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet Neurol* 2016;15:913-924.

Correspondence: Stefan Osswald
Department of Cardiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
Tel: +41-612652525
Fax: +41-612654598
E-mail: sosswald@uhbs.ch
https://orcid.org/0000-0002-9002-6731

Co-correspondence: Michael Kühne
Department of Cardiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
Tel: +41-612654444
Fax: +41-612654598
E-mail: michael.kuehne@usb.ch
https://orcid.org/0000-0002-2837-3711

Received: June 9, 2021
Revised: September 8, 2021
Accepted: September 9, 2021

The Swiss-AF cohort study is supported by grants of the Swiss National Science Foundation (Grant numbers 33CS30_1148474, 33CS30_177520 and 32473B_176178) (Appendix 1), the Foundation for Cardiovascular Research Basel and the University of Basel. Roche Diagnostics supported the biomarker analysis by providing free of charge measurements of commercially available in-vitro diagnostic tests (IVDs) and also by reagent development for pre-commercial high-throughput Elecsys® research use only (RUD) immunoassays. David Conen holds a McMaster University Department of Medicine Mid-Career Research Award. His work was supported by the Hamilton Health Sciences RFA Strategic Initiative Program. Philipp Krisai is supported by the University of Basel, the Mach-Gaensslen foundation and the Bangerter-Rhyner foundation.

Michael Kühne received grants from the Swiss National Science Foundation and the Swiss Heart Foundation, and lecture/consulting fees from Daiichi-Sankyo, Boehringer Ingelheim, Bayer, Pfizer-BMS, AstaZeneca, Sanofi-Aventis, Novartis, MSD, Medtronic, Boston Scientific, St. Jude Medical, Biotronik, Sorin, Zoll and Biosense Webster. Christine S. Zuern received a research grant from Medtronic and lecture/consulting fees from VfFor Pharma and Novartis. Vincent Rolny is employed by Roche Diagnostics GmbH. Leo H. Bonati received grants from the Swiss National Science Foundation, the University of Basel, the Swiss Heart Foundation, and the "Stiftung zur Förderung der gastroenterologischen und allgemeinen klinischen Forschung sowie der medizinischen Bildauswertung." He has received an unrestricted research grant from AstraZeneca, and consultancy or advisory board fees or speaker’s honoraria from Agen, Bayer, Bristol-Myers Squibb, Claret Medical, and InnoveHeart, and travel grants from AstraZeneca and Bayer.
Appendix 1. Swiss-AF investigators

University Hospital Basel/Basel University: Stefanie Aeschbach-er, Steffen Blum, Leo Bonati, Peter Hämmerle, Philipp Krisai, Christine Meyer-Zürn, Pascal Meyre, Andreas U. Monsch, Christian Müller, Christiane Pudenz, Philipp Reddiess, Javier Ruperti Repilado, Aleksandra Schweizer, Anne Springer, Fabienne Steiner, Christian Sticklerling, Thomas Szucs, Gian Voellmin, Leon Zwimpfer; Local Principal Investigator (Michael Kühne); Principal Investigators (Stefan Osswald, David Conen)

University Hospital Bern: Faculty (Drahomir Aujesky, Urs Fischer, Juerg Fuhrer, Laurent Roten, Simon Jung, Heinrich Mattle); Research fellows (Luise Adam, Carole Elodie Aubert, Martin Feller, Claudio Schneider, Axel Loewe, Elisavet Moutzouri); Study nurses (Tanja Flückiger, Cindy Groen, Nathalie Schwab); Local Principal Investigator (Nicolas Rodondi)

Stadtspital Triemli Zurich: Christopher Beynon, Roger Dillier, Franz Eberli, Simone Fontana, Christine Franzini, Isabel Juchli, Claudia Liedtke, Jacqueline Nadler, Thayze Obst, Noreen Tynan, Xiaoye Schneider, Katrin Studerus, Dominik Weishaupt; Local Principal Investigator (Andreas Müller)

Kantonsspital Baden: Silke Kuest, Karin Scheuch, Denise Hischier, Nicole Bonetti, Corina Bello, Henriette Isberg, Alexandra Grau, Jonas Villinger, Mary-Monica Pauxa, Eva Laube, Philipp Baumgartner, Mark Filipovic, Marcel Frick, Stefanie Leuenberger; Local Principal Investigator (Jürg H. Beer)

Cardiocentro Lugano: Angelo Auricchio, Adriana Anesini, Cristina Camporini, Giulio Conte, Maria Luce Caputo, Francois Regoli, Tiziano Mocetti; Local Principal Investigator (Tiziano Mocetti)

Kantonsspital St. Gallen: Roman Brenner, David Altmann, Manuela Forrer, Michaela Gemperle; Local Principal Investigator (Peter Ammann)

Hôpital Cantonal Fribourg: Mathieu Firmann, Sandrine Foucras; Local Principal Investigator (Daniel Hayoz)

Luzerner Kantonsspital: Benjamin Berte, Andrea Kaeppe, Myriam Roth, Brigitta Mehmann, Markus Pfeiffer, Ian Russi, Kai Schmidt, Vanessa Weberndoerfer, Mabelle Young, Melanie Zbinden; Local Principal Investigator (Richard Kobza)

Ente Ospedaliero Cantonale Lugano: Luisa Vicari, Jane Frangi-Kultalahti, Tatiana Terrot; Local Principal Investigator (Gior-gio Moschovitis)

University Hospital Geneva: Georg Ehret, Hervé Gallet, Elise Guillermet, Francois Lazeyras, Karl-Olof Lovblad, Patrick Perret, Cheryl Teres; Local Principal Investigator (Dipen Shah)

University Hospital Lausanne: Nathalie Lauriers, Marie Méan, Sandrine Salzmann; Local Principal Investigator (Jürg Schläpfer)

Bürgerspital Solothurn: Nisha Arenja, Andrea Grêt, Sandra Vitelli; Local Principal Investigator (Jan Novak)

Ente Ospedaliero Cantonale Bellinzona: Jane Frangi, Augusto Gallino; Local Principal Investigator (Marcello Di Valentino)

St. Anna Spital Luzern: Renate Schoenenberger-Berzins

University of Zurich/University Hospital Zurich: Fabienne Witaszek, Matthias Schwenklenks, Christoph Stippich

Medical Image Analysis Center AG Basel: Ernst-Wilhelm RaDue, Tim Sinnecker, Jens Würfel

Clinical Trial Unit Basel: Pascal Benkert, Thomas Fabbro, Patrick Simon, Michael Coslovsky

Schiller AG Baar: Ramun Schmid
Supplementary material

Biomarker assessment

Biomarkers were selected based on biological plausibility, prior literature and availability. We included biomarkers of inflammation and oxidative stress, myocardial injury and strain, vascular damage, renal dysfunction, and cerebral damage.

C-reactive protein (CRP) and interleukin-6 were both positively associated with an inflammatory, prothrombotic state and CRP was additionally shown to directly relate to stroke risk. Growth differentiation factor-15 was associated with stroke-related death among with troponinT and N-terminal prohormone of brain natriuretic peptide (NT-proBNP). Moreover, NT-proBNP is released into the serum after acute ischaemic stroke, as are heart-fatty acid binding proteins (hFABPs). As a marker for left atrial dilatation, insulin-like growth factor-binding protein-7 (IGFBP-7) was shown to be positively associated with left atrial size. Renal markers were included, as renal insufficiency is known to influence the efficacy of anticoagulants in atrial fibrillation patients. As vascular markers, angiopoietin-2 was shown to be upregulated after cerebral artery occlusion in an experimental model and endothelial cell-specific molecule-1 (ESM-1) plays a crucial role in vascular permeability after ischemic stroke. Osteopontin acts as a direct marker of cerebral damage after ischemic stroke and was therefore also included in our analyses.

Detailed description for Figure 1B

Receiver operating curves are displayed, showing the accuracy of the models to diagnose large non-cortical and cortical infarcts. Final model (area under the curve [AUC], 0.679; 95% confidence interval [CI], 0.636 to 0.722) includes hs-troponin T, osteopontin, heart fatty-acid binding protein 3, vascular disease, and atrial fibrillation on the electrocardiogram (ECG). Biomarker model (AUC, 0.662; 95% CI, 0.617 to 0.706; \(P=0.16 \)) compared to the final model) includes hs-troponin T, NT-proBNP, heart fatty-acid binding protein 3, and osteopontin. The addition of the CHA2DS2-VASc score to the biomarker combination did not improve the AUC of 0.666 (95% CI, 0.622 to 0.710; \(P=0.29 \) compared to the final model). Clinical variables (AUC, 0.633; 95% CI, 0.589 to 0.677; \(P=0.001 \) compared to the final model) include vascular disease and atrial fibrillation on the ECG. The CHA2DS2-VASc score alone had an AUC of 0.602 (95% CI, 0.558 to 0.647; \(P=0.0002 \) compared to the final model).