Inhibition of Sirtuin 2 with Sulfobenzoic Acid Derivative AK1 is Non-Toxic and Potentially Neuroprotective in a Mouse Model of Frontotemporal Dementia

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Spires-Jones, Tara L., Leora M. Fox, Anete Rozkalne, Rose Pitstick, George A. Carlson, and Aleksey G. Kazantsev. 2012. Inhibition of sirtuin 2 with sulfobenzoic acid derivative AK1 is non-toxic and potentially neuroprotective in a mouse model of frontotemporal dementia. Frontiers in Pharmacology 3:42.

Published Version
doi:10.3389/fphar.2012.00042

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10304566

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Inhibition of sirtuin 2 with sulfobenzoic acid derivative AK1 is non-toxic and potentially neuroprotective in a mouse model of frontotemporal dementia

Tara L. Spires-Jones¹*, Leora M. Fox¹†, Anete Rozkalne¹, Rose Pitstick², George A. Carlson² and Aleksey G. Kazantsev¹

¹ Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
² McLaughlin Research Institute, Great Falls, MT, USA

*Correspondence: Tara L. Spires-Jones, Department of Neurology, Massachusetts General Hospital, 146 16th Street, Charlestown, MA 02129, USA. e-mail: tspires@partners.org

† Present address: Leora M. Fox, Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA

INTRODUCTION

Tauopathies are devastating conditions involving dramatic neuronal loss and resulting circuit dysfunction for which there are currently no effective treatments (Roberson, 2011). Investigation of the neuroprotective effects of sirtuin modulation may pave the way for future therapeutic studies in tauopathies and other neurodegenerative disorders which share similar mechanisms of degeneration (Spires and Hannan, 2007). Sirtuins are a family of unique NAD⁺-dependent enzymes, which regulate diverse cellular pathways, but are primarily involved in metabolic regulation (Guarente and Picard, 2005; Michan and Sinclair, 2007). Microtubule deacetylase sirtuin 2 (SIRT2) is a highly abundant protein in CNS, which accumulates in the aging brain (Maxwell et al., 2011). This is particularly interesting in tauopathies since tau is a microtubule binding protein and microtubule-dependent processes such as axonal transport are disrupted (Zhang et al., 2005).

In vitro evidence indicates that sirtuin modulation may be protective against amyloid toxicity in Alzheimer’s disease, particularly that activating SIRT1 can be protective (Chen et al., 2005; Qin et al., 2006). Small molecule inhibitors of SIRT2 have also been found to ameliorate neurodegeneration in model systems (Outeiro et al., 2008). For example, structurally diverse selective SIRT2 inhibitors AGK2 (IC₅₀ = 3.5 μM) and AK1 (IC₅₀ = 12.5 μM) prevent alpha-synuclein toxicity in cell-based, and Drosophila models of Parkinson’s (Outeiro et al., 2007). In Huntington’s disease, both inhibitors, AGK2 and AK1, were protective against mutant polyglutamine toxicity in Drosophila and C. elegans animal models and in primary striatal neurons (Luthi-Carter et al., 2010). In the latter model, the protective effects of SIRT2 inhibition were associated with reduced total cholesterol levels due to facilitated cytoplasmic retention of sterol regulatory element binding protein-2 (SREBP-2), a key transcriptional regulator of cholesterol biosynthesis genes in nuclei (Zhang et al., 2005; Luthi-Carter et al., 2010; Taylor et al., 2011). However, SIRT2 inhibition caused broad changes in transcriptional expression of metabolic genes. Cholesterol processing has also been implicated in both Alzheimer’s disease (largely linked to amyloid processing) and in other tauopathies. Loss of function of the NPC1 or NPC2 genes, which are involved in trafficking cholesterol from lysosomes, has been linked to Niemann–Pick disease type C disease which includes tau pathology (Klunemann et al., 2002; Yu et al., 2005). Further, in the THY-Tau22 mouse model of tauopathy, long-term voluntary exercise prevented memory impairment and reduced...
Animals used in this study were mixed gender rTg4510 mice expressing both human mutant P301L tau downstream of a tetracycline- operon-responsive element tau-P301L and an activator tetracycline-off transgene controlled by Ca²⁺-calmodulin kinase II promoter elements and littermate “wild-type” controls (without tau; SantaCruz et al., 2005). Animals were anesthetized with ketamine/xylazine anesthesia (100 mg/kg ketamine, 10 mg/kg xylazine, i.p.), the pump body inserted subcutaneously over the mid-scapular area, and the cannula was implanted into the right hippocampal formation through a burr hole at coordinates −2.0 posterior to Bregma and 1.5 mm to the right of the midline, 1.8 mm deep (Figure 1C). Five weeks after pump implantation, animals were sacrificed with carbon dioxide, and brains removed and fixed in 4% paraformaldehyde for 48 h followed by paraffin embedding. Each cannula was tested to ensure it was not blocked and the pumps examined to ensure the compound was not remaining in the pump. Due to pump failures, group sizes are not equal. Table 1 reflects numbers of animals in each group that were analyzed (pumps worked). All animal work conforms to institutional and NIH guidelines.

MATERIALS AND METHODS

ANIMALS AND SURGERY

Animals used in this study were mixed gender rTg4510 mice expressing both human mutant P301L tau downstream of a tetracycline-operon-responsive element tau-P301L and an activator tetracycline-off transgene controlled by Ca²⁺-calmodulin kinase II promoter elements and littermate “wild-type” controls (which do not have a phenotype) expressing only the activator transgene (without tau; SantaCruz et al., 2005). Table 1 shows the numbers of animals used at each age. Each animal had an osmotic minipump (Alzet 2006, DURECT Corporation, Cupertino, CA, USA) implanted, which pumped drug or vehicle for 5 weeks before sacrifice. A further six wild-type animals were used for 1 week studies: three had a pump with 0.05% trypan blue in 5% DMSO implanted for 1 week to verify cannula implantation coordinates and the spread of pumped solution through the hippocampus (Figure 1E) and three more received AK1 treatment for 1 week followed by gene expression analysis using qPCR. Before implantation, pumps with cannulas were assembled, filled with 50 μM AK1 [3-(1-azepanyl)sulfonyl]-N-(3-nitrophenyl)benzamide from ChemBridge, diluted 1:200 in PBS from 10 mM stock in DMSO], or vehicle (1:200 DMSO:PBS) and incubated at 37°C for 60 h to prime the pumps. To assess safety, we used the maximum concentration of AK1 (50 μM) that kept the DMSO levels to a maximum of 5%, above which DMSO can become neurotoxic (Cavas et al., 2005). Animals were anesthetized with ketamine/xylazine anesthesia (100 mg/kg ketamine, 10 mg/kg xylazine, i.p.), the pump body inserted subcutaneously over the mid-scapular area, and the cannula was implanted into the right hippocampal formation through a burr hole at coordinates −2.0 posterior to Bregma and 1.5 mm to the right of the midline, 1.8 mm deep (Figure 1C). Five weeks after pump implantation, animals were sacrificed with carbon dioxide, and brains removed and fixed in 4% paraformaldehyde for 48 h followed by paraffin embedding. Each cannula was tested to ensure it was not blocked and the pumps examined to ensure the compound was not remaining in the pump. Due to pump failures, group sizes are not equal. Table 1 reflects numbers of animals in each group that were analyzed (pumps worked). All animal work conforms to institutional and NIH guidelines.

IMMUNOHISTOCHEMISTRY AND STEREOLGY

Paraffin embedded brain hemispheres were cut in sagittal orientation in 16 μm sections. Every 30th section throughout the hippocampal formation was deparaffinized and stained with anti PHF-1 tau primary antibody (1:200 in 1% milk, courtesy Dr Peter Davies), and anti mouse IgG secondary antibody conjugated to Cy3 (1:500, Jackson ImmunoResearch) and nuclei counterstained with DAPI (4′,6-diamidino-2-phenylindole). Sections were observed on an upright Olympus BX51 fluorescence microscope with a DP70 camera and a stereology image analysis system (CAST; Olympus, Denmark). Neuronal nuclei were identified based on morphology as described previously (Spires et al., 2006; Fox et al., 2011).

Neuron densities and PHF1 positive neuron densities in the CA1 pyramidal cell layer and DG granular layer were estimated using the optical fractionator method, volumes of these regions estimated using the Cavalieri method, and total neuron number in CA1 and DG calculated as previously described (Spires et al., 2006).

CELL CULTURE

Primary cortical neurons were prepared from mouse embryos at embryonic day 15 and cultured in neurobasal media supplemented with 2% B-27 and 1% penicillin/streptomycin. At 7 days in vitro,
neurons were treated for 24 h with 1 μM or 10 μM AK7, AGK2, or AK1 (from ChemBridge, San Diego, CA, USA). Neurons were then harvested and homogenized for RNA extraction as described below.

QUANTITATIVE PCR

Three wild-type mice were treated with AK1 administration to the right hippocampus for 1 week. At the end of the week, mice were sacrificed, brains removed and the hemispheres frozen separately. Tissue was homogenized in RNase free lysis buffer containing 50 mM tris buffer, 175 mM NaCl, 5 mM EDTA, RNase inhibitors (Ambion AM2694), and proteinase inhibitor cocktail (Roche Complete Mini). RNA was isolated with the Stratagene Absolutely RNA Miniprep kit and cDNA generated using SuperScript reverse Transcriptase (Invitrogen). Quantitative PCR was run on an iCycler (Bio-Rad, Hercules, CA, USA) using GAPDH as a standard housekeeping gene and ABCA1 with the following primers: left, gcctaatgccttcctt; right, ctggaacagctctcactt.

STATISTICS

Statistical tests were run using JMP software (SAS Institute, Cary, NC, USA). Normality of data was assessed using a Shapiro–Wilk test. Non-normal data (including stereological measures) were analyzed with non-parametric tests (Kruskal–Wallis for multiple comparisons, post hoc Wilcoxon tests to compare groups). Normal data (ABCA1 expression) were analyzed with parametric statistics (t-tests for two groups, ANOVA for multiple groups). p < 0.05 is considered significant. Data are presented as mean ± standard deviation from the mean.

RESULTS

AK1 ADMINISTRATION TO THE BRAIN IS NOT NEUROTOXIC

Previous work has shown that SIRT2 inhibition with compounds AGK2, AK1, and AK7 affects transcription of genes involved in cholesterol pathways in striatal neuronal cultures (Luthi-Carter et al., 2010; Taylor et al., 2011). We verified this in primary cortical neuronal cultures (Figure 1A), where we observed an increase in mRNA levels of ATP-binding cassette transporter ABCA1 (a known transporter of cholesterol) with SIRT2 inhibition. AK1 showed the highest efficiency in this test in our cortical cultures, and it is known to be protective in vitro against toxicity of mutant huntingtin and alpha-synuclein (Outeiro et al., 2007; Luthi-Carter et al., 2010), thus we moved forward to test the safety and efficacy of AK1 in treating tauopathy model mice. To test the safety of administering the SIRT2 inhibitor AK1 (structure shown in Figure 1B) directly to the brain, we filled osmotic...
minipumps with a solution of 50 μM AK1 in PBS (with 0.5% DMSO) or vehicle and pumped the solution into the hippocampus for 5 weeks (Figure 1C). In three wild-type mice treated with AK1 for 1 week then sacrificed for molecular analysis of the brain, we confirmed that AK1 increased expression of ABCA1 in the treated versus untreated hemisphere (146.9% higher in treated versus untreated hemisphere, Figure 1D). This indicates that AK1 may act through modulating cholesterol homeostasis as previously reported (Zhang et al., 2005; Luthi-Carter et al., 2010; Taylor et al., 2011). Further, this is a pharmacodynamic marker reporting compound activity in the brain, indicating the AK1 successfully reached the brain tissue. Tests pumping 0.05% trypan blue for 1 week confirmed the delivery of the blue dye throughout the hippocampus (Figure 1E), further confirming the delivery of compound through the entire region of interest that we want to treat in models of tau-induced neurodegeneration.

After these preliminary studies pumping the drug into the brain for 1 week confirmed delivery of the drug to the brain and showed a pharmacodynamic response, we treated mice for 5 weeks, which is a therapeutic window long enough to observe neuronal death in mouse models of neurodegeneration. After pumping AK1 or vehicle for 5 weeks (from approximately 4 to 5.5 months of age), neuron numbers in the CA1 and DG regions of the hippocampus were estimated using stereology. In wild-type mice, we observed no neuronal loss after pumping AK1 compared to the vehicle control (Figure 2A). Comparing the treated versus untreated hemispheres in individual animals also revealed no loss in the treated side, indicating the placement of the cannula itself does not cause detectable neuronal loss (Figure 2C).

rTg4510 mice undergo neuronal loss in the hippocampus, thus we tested whether implantation of the cannula or the AK1 compound itself cause any neuronal loss in this model which is susceptible to neurodegeneration. As seen in the wild-type littermates, 5 weeks of vehicle or AK1 treatment from 4 to 5.5 months of age did not cause any neuronal loss in the CA1 or DG of rTg4510 mice (Figures 2B,D).

AK1 DOES NOT AFFECT NEUROFIBRILLARY TANGLE FORMATION
In cellular models of Parkinson’s disease, SIRT2 inhibition with AK1 prevented alpha-synuclein mediated cell death and also interestingly promoted alpha-synuclein aggregate formation (Outeiro et al., 2007). Thus we tested whether AK1 treatment from 4 to 5.5 months of age changed the number of neurofibrillary tangles in the brains of treated rTg4510 mice. In previous studies, we have shown that PHF1 staining in rTg4510 mice corresponds exactly to Bielchowski positive neurofibrillary tangles at these ages (Spires et al., 2006), thus PHF1 immunostaining was used to characterize neurofibrillary pathology. Stereological counts of PHF1 positive neurons show no effect of AK1 treatment on tangle numbers either when compared to vehicle treatment or when compared to the contralateral hemisphere (Figure 3), indicating that SIRT2 inhibition in vivo does not affect neurofibrillary tangle formation or stability.

POTENTIAL NEUROPROTECTIVE EFFECTS OF AK1 TREATMENT
rTg4510 mice undergo neuronal loss in the hippocampus and neocortex that is associated with behavioral deficits (SantaCruz et al., 2005; Spires et al., 2006), and neuronal loss correlates with dementia in FTD and Alzheimer’s disease (DeKosky and Scheff, 1990; DeKosky et al., 1996). In control animals, there is no effect of age or treatment on the number of neurons in the DG granular cell layer (1.57 ± 0.3 × 10^5 neurons per hemisphere, p > 0.05 with treatment and age as independent variables, split by genotype). We observe a 42% loss of DG neurons between 5.5 and 7 months in vehicle treated rTg4510 mice from 1.6 ± 0.3 × 10^5 neurons/hemisphere to

![FIGURE 2 | AK1 delivery to the hippocampus is non-toxic. AK1 administration from 4 to 5.5 months of age does not cause neurodegeneration in wild-type (A) or rTg4510 hippocampus (B). Placement of the cannula in the treated hemisphere does not cause unilateral neuron loss in wild-type (C) or rTg4510 (D) hippocampus.](image-url)
$0.9 \times 10^5 \pm 0.1 \times 10^5$ neurons/hemisphere ($p = 0.009$, Wilcoxon test). This loss was partially prevented by AK1 treatment (Figure 4). rTg4510 mice treated with AK1 had significantly higher numbers of DG neurons than vehicle treated rTg4510 mice at 7 months ($p = 0.03$, Wilcoxon test), and they are not significantly different from control animals (control $p > 0.05$). These results indicate that AK1 treatment may be neuroprotective in tauopathy.

DISCUSSION

There is a pressing need to develop neuroprotective therapies for tauopathies including tau-associated FTD and Alzheimer’s disease, for which there are currently no effective treatments (Roberson, 2011). One promising therapeutic avenue is manipulation of sirtuins. In particular, SIRT2 inhibition has been shown to be neuroprotective in neuronal cell culture and invertebrate animal models of Parkinson’s and Huntington’s diseases (Outeiro
et al., 2007; Luthi-Carter et al., 2010). Due to the ongoing discussion and controversy on the therapeutic role of sirtuins in neurodegeneration, it was imperative to assess the properties of SIRT2 inhibition on the brain directly. While we cannot rule out off-target effects of the AK1 compound, it is the case that most marketed drugs interact with multiple targets yet mediate therapeutic effects. The purpose of this study was to assess preliminary toxicity and efficacy of a SIRT2 inhibitor belonging to a therapeutically promising structural scaffold of sulfobenzoic acid derivatives, prior to medicinal chemical optimization for drug-like properties, brain permeability, bioavailability, and bioactivity.

Tauopathies are characterized by the accumulation of aggregated tau pathology and neuronal loss. In this study, we tested whether inhibition of SIRT2 with AK1 delivery directly to the hippocampus could prevent neuronal loss in rTg4510 mice. We find that in both wild-type and rTg4510 brain, AK1 treatment was non-toxic to neurons (no neurons were lost with treatment from 4 to 5.5 months). Furthermore, between 5.5 and 7 months of age, neurons are lost in the DG of rTg4510 mice, and this is partially prevented by AK1 treatment. It is worth noting that the neuronal counts in this study show a phenotypic drift toward delayed neuronal loss in our rTg4510 colony with no neuronal loss in CA1 or DG between 4 and 5.5 months and no loss in CA1 between 5.5 and 7 months, whereas previous characterization of this model by our group found a steep decline in hippocampal neuron numbers in rTg4510 mice between 4 and 5.5 months of age (Spires et al., 2006). In Alzheimer’s disease, neurofibrillary tangles were classically viewed as toxic since they correlate with cognitive decline, but new evidence has emerged suggesting that soluble forms of tau may be more toxic than aggregates (Spires-Jones et al., 2009). As such, it is important when developing new pharmaceutical targets to assess their effects both on neuronal loss and on tau aggregates. Here, we observe neuroprotection in the hippocampus without affecting neurofibrillary tangle pathology, lending support to the hypothesis that soluble tau is neurotoxic.

The mechanisms of tau toxicity are unclear but there is some evidence implicating altered cholesterol processing in the neurodegenerative process (Klunemann et al., 2002; Yu et al., 2005; Belarbi et al., 2011), and SIRT2 inhibition is known to modulate cholesterol biosynthesis in cultured neurons (Taylor et al., 2011). Here we confirm in vivo that the expression of ABCA1, which is a major regulator of cholesterol homeostasis, is affected in the brain with SIRT2 inhibition by AK1.

While the complexity of osmotic minipump studies resulted in the methodological limitations of a small number of animals that completed the study successfully in each group, we were still able with these small numbers to observe a modest beneficial effect of AK1 treatment and confirm that there is no overt neuronal loss induced by this compound. This study provides three important new pieces of information to the field of treatment for neurodegenerative tauopathies: (1) SIRT2 inhibition in the brain is non-toxic in wild-type and FTD model mice, (2) SIRT2 inhibition with AK1 does not affect neurofibrillary pathology in this model, and (3) AK1 treatment protects hippocampal neurons to some extent from degeneration. Osmotic minipump administration of drugs directly to the brain circumvents the blood–brain-barrier and allowed us to test the safety and efficacy of SIRT2 inhibition in vivo. However, this technique is technically difficult and not ideal for human patients. Our results suggest that the development of a potent, brain permeable compound to inhibit SIRT2 would be a good therapeutic avenue for tauopathies including FTD and Alzheimer’s disease.

This study was funded by the Alzheimer’s Disease Drug Discovery Foundation and the Association for Frontotemporal Degeneration, Harvard Medical School Claffin Award, NIH grants AG08487, K99AG33670, and the Alzheimer’s Association Zenith Award. Renovations to McLaughlin Research Institute’s Animal Resource Center were funded by major grants and donations from the M. J. Murdock Charitable Trust, Montana’s Department of Commerce, the Browning-Kimball Foundation, the Oakland family, Setten Construction, and Ian & Nancy Davidson. We thank Prof Brad Hyman for his discussions on the project.

REFERENCES

Belarbi, K., Burnouf, S., Fernandez-Gomez, F. J., Laurent, L., Castel, S., Figeac, M., Sultan, A., Troquier, L., Leboucher, A., Cailleriez, R., Grosjean, M. E., Demeyer, D., Obriot, H., Brion, I., Barbot, B., Galas, M. C., Staels, B., Humez, S., Sergeant, N., Schraen-Maschke, S., Muhir-Failleux, A., Hamdane, M., Buee, L., and Blum, D. (2011). Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau pathology. Neurobiol. Dis. 45, 486–494.

Cavas, M., Beltran, D., and Navarro, J. F. (2005). Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Tissue Lett. 137, 221–232.

Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., Muckle, L., and Gan, L. (2005). SIRT1 prevents against microgliaindependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem. 280, 40364–40374.

DeKosky, S. T., and Scheff, W. H. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 475–464.

DeKosky, S. T., Scheff, S. W., and Stetyn, S. D. (1996). Structural correlates of cognition in dementia: quantification and synthesis of assay response. Neurodegeneration 5, 417–421.

Fox, L. M., Williams, C. M., Adamowicz, D. H., Pitstick, R., Carlson, G. A., Spire-Jones, T. L., and Hyman, B. T. (2011). Soluble tau species, not neurofibrillary aggregates, disrupt neuronal system integration in a tau transgenic model. J. Neuropathol. Exp. Neurol. 70, 588–595.

Guarente, L., and Picard, F. (2005). Calorie restriction – the SIR2 connection. Cell 120, 473–482.

Klunemann, H. H., Elleder, M., Kaminski, W. E., Snow, K., Pesyer, J. M., O’Brien, J. F., Munoz, D., Schmitz, G., Klein, H. E., and Pendlebury, W. W. (2002). Frontal lobe atrophy due to a mutation in the cholesterol binding protein HE1/NPC2. Ann. Neurol. 52, 743–749.

Luthi-Carter, R., Taylor, D. M., Pallos, J., Lambert, E., Amore, A., Parker, A., Moffitt, H., Smith, D. L., Runne, H., Gokce, O., Kuhn, A., Xiang, Z., Maxwell, M. M., Reeves, S. A., Bates, G. P., Neri, C., Thompson, L. M., Marsh, J. L., and Kazantsev, A. G. (2010). SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 107, 7927–7932.

Maxwell, M. M., Tomkinson, E. M., Nobles, J., Wixman, J. W., Amore, A. M., Quinti, L., Chopra, V., Hersch, S. M., and Kazantsev, A. G. (2011). The Sirtuin 2 microtubule deactylase is an abundant neuronal protein that accumulates in the aging CNS. Hum. Mol. Genet. 20, 3986–3996.

Michan, S., and Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1–13.

Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathern, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, F. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T., and Kazantsev, A. G. (2007). Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317, 516–519.
Spires-Jones et al. Sirtuin inhibition neuroprotective in FTD

Outeiro, T. F., Marques, O., and Kazantsev, A. (2008). Therapeutic role of sirtuins in neurodegenerative disease. Biochim. Biophys. Acta 1782, 363–369.

Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W., Thiyagarajan, M., Macrogan, D., Rodgers, J. T., Puigserver, P., Sadoshima, J., Deng, H., Pedrini, S., Gandy, S., Sauve, A. A., and Pasinetti, G. M. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754.

Roberson, E. D. (2011). Contemporary approaches to Alzheimer’s disease and frontotemporal dementia. Methods Mol. Biol. 670, 1–9.

SantaCruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimarães, A., Deture, M., Ramsden, M., Mcgowan, E., Forster, C., Yue, M., Orne, J., Janus, C., Marisash, A., Kuskowski, M., Hyman, B., Hurtton, M., and Ashe, K. H. (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481.

Spires, T. L., and Hannan, A. J. (2007). Molecular mechanisms mediating pathological plasticity in Huntington’s disease and Alzheimer’s disease. J. Neurochem. 100, 874–882.

Spires, T. L., Orne, J. D., SantaCruz, K., Pitstick, R., Carlson, G. A., Ashe, K. H., and Hyman, B. T. (2006). Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am. J. Pathol. 168, 1598–1607.

Spires-Jones, T. L., De Calignon, A., Matsui, T., Zehr, C., Pitstick, R., Wu, H. Y., Osetek, J. D., Jones, P. B., Bacskai, B. J., Feany, M. B., Carlson, G. A., Ashe, K. H., Lewis, J., and Hyman, B. T. (2008). In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J. Neurosci. 28, 862–867.

Spires-Jones, T. L., Stoothoff, W. H., De Calignon, A., Jones, P. B., and Hyman, B. T. (2009). Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 32, 150–159.

Taylor, D. M., Balabradra, U., Xiang, Z., Woodman, B., Meade, S., Amore, A., Maxwell, M. M., Reeves, S., Bates, G. P., Luthi-Carter, R., Lowden, P. A., and Kazantsev, A. G. (2011). A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem. Biol. 6, 540–546.

Yu, W., Ko, M., Yanagisawa, K., and Michikawa, M. (2005). Neurodegeneration in heterozygous Niemann–Pick type C1 (NPC1) mouse: implication of heterozygous NPC1 mutations being a risk for tauopathy. J. Biol. Chem. 280, 27296–27302.

Zhang, B., Maiti, A., Shively, S., Lakhani, F., McDonald-Jones, G., Bruce, J., Lee, E. B., Xie, S. X., Joyce, S., Li, C., Toleikis, P. M., Lee, V. M., and Trojanowski, J. Q. (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. U.S.A. 102, 227–231.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 January 2012; paper pending published: 18 February 2012; accepted: 24 February 2012; published online: 12 March 2012.

Citation: Spires-Jones TL, Fox LM, Rozkalne A, Pitstick R, Carlson GA and Kazantsev AG (2012) Inhibition of sirtuin 2 with sulfobenzoic acid derivative AK1 is non-toxic and potentially neuroprotective in a mouse model of frontotemporal dementia. Front. Pharmacol. 3:42. doi: 10.3389/fphar.2012.00042

This article was submitted to Frontiers in Experimental Pharmacology and Drug Discovery, a specialty of Frontiers in Pharmacology. Copyright © 2012 Spires-Jones, Fox, Rozkalne, Pitstick, Carlson and Kazantsev. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.