Comparision study on the mechanical properties between Steel Reinforce Concrete Beam and Prestressed Steel Reinforced Concrete Beam

Jie Xu1*,Yiquan Chen2

1School of Civil Engineering, Shandong Jianzhu University, Jinan, Shandong, 250101, China
2Shandong Provincial Construction Development Research Institute, Jinan, Shandong, 250014, China
*e-mail: xujie983@163.com,

Abstract: Eight prestressed steel reinforced concrete beam (PSRCB) and six steel reinforced concrete beam (SRCB) have been done with different compressive strength of concrete, rebar ratio, cover thickness, steel cover thickness and degree of prestressing. A compared study on the mechanical properties between PSRCB and SRCB were carried out, which included flexural capacity, deflection and maximum crack width. Experimental study indicates that PSRCB has better mechanical performance, higher flexural capacity, larger stiffness and better resistance to crack.

1. Introduction
Steel reinforce concrete beam (SRCB) has a better flexural strength contrast to reinforce concrete beam, but its serviceable performance is not improved obviously.

Prestressed steel reinforced concrete beam (PSRCB) make full use of prestressing technique to improve mechanical performance. The H-section steel inside can increase the flexural strength and the prestressing technique can improve it’s working performance. PSRCB has expansive application in structures.

An experimental comparision study between SRCB and PSRCB has been done through the test of Six SRCB and seven PSRCB specimens with different compressive strength of concrete, rebar ratio and cover thickness, steel cover thickness and degree of prestressing.

The development of flexural capacity, deflection and maximum crack width have been observed, which can provide experimental and theoretical foundation for practical application of PSRCB.

2. Experimental program
In order to study further mechanical properties of PSRCB by contrast with SRCB, specimens of SRCB are designed corresponding to PSRCB. The following aspects are taken into account, including different compressive strength of concrete, rebar ratio and cover thickness, steel cover thickness and degree of prestressing.

Fourteen specimens were designed, including six SRC beams and eight PSRC beams(As is shown in Table 1). All specimens were 4000mm long with H-section steel (HN200×100×5.5×8)inside, area of specimens were 200 mm×350 mm and stirrups were φ8@100. Tension reinforcement for SRCB4
and PSRCB4 were 2 Φ20, and the other were 2 Φ14. Low relaxation strand $\phi_{15.2}$ ($f_{ptk}=1860$ N/mm²) was used in the test and control stress for prestressing was 0.75 f_{ptk}.

Table 1. Detail of specimens

specimens	c_s (mm)	c_{as} (mm)	concrete	specimens	c_s (mm)	c_{as} (mm)	concrete
SRCB1	25	80	C40	PSRCB1	25	80	C40
SRCB2	25	100	C40	PSRCB2	25	100	C40
SRCB3	50	80	C40	PSRCB3	50	80	C40
SRCB4	25	80	C40	PSRCB4	25	80	C40
SRCB5	25	80	C50	PSRCB5	25	80	C50
SRCB6	25	80	C60	PSRCB6	25	80	C60
PSRCB6'	25	80	C40	PSRCB7	25	80	C40

Note: PSRCB2 was destroyed and abandoned during its construction process.

3. Contrast of flexural capacity between PSRCB and SRCB

The failure model of PSRC beams are all flexural failure model (Fig-1). As is shown in Fig-2, PSRCB can obtain better flexural capacity by contrast to SRCB.

4. Contrast of deflection between PSRCB and SRCB

As is shown in Fig-3, increase of tensile rebar area, compressive strength of concrete and effective stress of prestressing strand can all contribute to improving flexural rigidity of PSRC beam.

The development of deflection for PSRC beam can be classified into three phases: elastic phase, serviceable phase and failure phase.

The first phase: elastic phase. This phase is before M reaches M_{cr}. There is a reverse deflection before load is applied to PSRC beam, which can bring a beneficial effect to its working performance. PSRC beam has a longer elastic phase by contrast with SRC beam, because M_{cr} of the former is bigger than that of the latter.

The second phase: serviceable phase. This phase is from M_{cr} to yield of tension reinforcement and tensile flange of H-section steel. Concrete in tension zone lose its effect in cracking section after M_{cr}, which make the flexural rigidity decrease slightly. However, there is no obvious turning point in the M-f curve, which is because the concrete losing effect in cracking section contributes little to the flexural rigidity of PSRC beam. Therefore, in this phase, M-f curve approximately keeps a line, which indicates a better working performance.

The third phase: failure phase. This phase is from yield of tension reinforcement and tensile flange of H-section steel to ultimate failure of beam. Strains of tensile rebar and tensile flange of H-section increase drastically after their yield strengths, which make flexural rigidity decrease rapidly. Therefore, there is a turning point in the M-f curve, which indicates that deflection increases more quickly. The reason is that concrete near the outer compressive fiber is crushed and flexural rigidity decreases
further when M reaches M_u. But PSRC beam has a good ductile property because of its H-section steel inside.

Before load is applied to PSRC beam, there is a reverse deflection, which brings a beneficial effect to its working performance. After M reaches M_{cr}, the flexural rigidity decreases slightly and there is no obvious turning point in the M-f curve for both PSRC beam and SRC beam. PSRC beam has a higher flexural rigidity but the ultimate deflection is smaller by contrast with SRC beam. The flexural rigidity of PSRCB6 is higher than that of PSRCB6’, because the effective stress of prestressing strand for the former is higher than that for the latter. However, the ultimate deflection of PSRCB6 is smaller by contrast with PSRCB6’. In addition, after M reaches M_u, the flexural rigidity of the PSRC beam with high compressive concrete strength decreases more rapidly and there is a more obvious turning point in M-f curve.

5. Contrast of crack width between PSRCB and SRCB
Cracking moments M_{cr} of PSRCB is from 18.41 percent to 27.61 percent ultimate moment M_u, and average is 22.25 percent, which indicate a better resistance to crack. With the increase of bending moment, the crack further develop along the across section. However, the height and crack width of PSRCB decrease more obviously by contrast with that of SRCB under the same M/M_u. With the decrease of load, the crack width become smaller than that of SRCB and what is more important is that the distribution of crack width become more even, which indicate that PSRCB has a better crack closing performance. The ultimate heights of cracks develop lower than that of SRCB. The height and width of cracks in shear span develop more slowly than that of cracks in the bending span.

Residual bending deflection and residual crack width of PSRCB is evidently smaller than that of SRCB after the experiment. Actually, most crack widths cannot be observed by our eyes after the test, except those of the portion where the compressive concrete is crushed.

As is shown in Fig 4, the development of PSRCB w_{max} can also be classified into three phases: linear development, faster development and unstable development.

a) The first phase: linear development. From the cracking moment to the yield of tension reinforcement and low flange of H-section steel, it is evidently that the beginning of the phase is higher than that of SRCB which indicate a better resistance to crack. In this phase, w_{max} increase linearly with the bending moment, which indicate a better working performance.
b) The second phase: Faster development. Above eighty percent M_u, w_{max} develop faster than that of the first phrase.

The third phase: unstable development. w_{max} develop drastically with little increment of bending moment in this phrase.

Prestressing technique can improve the SRCB working performance under the same M/M_u. But the effective stress of prestressing strand should not be too low, where the value is about 0.40 f_{ptk}.

The conclusion can be reach from the above test results that the tensile strength and ratio of tensile rebar and the cover thickness of tensile rebar can influence obviously on the development of w_{max}.

Cracking moments M_{cr} of SRCB is from 12.25 percent to 18.91 percent ultimate moment M_u. The maximum crack widths w_{max} reach 0.2mm, when the moment is about seventy percent M_u. w_{max} reach 0.3mm while the moment is around eighty percent M_u. The ultimate heights of cracks develop to the up flange of H-section steel. The height and width of cracks in shear span develop more slowly than that of cracks in the bending span. Residual bending deflection and residual crack width of SRCB is obviously after the experiment.

6. Conclusions
1) Prestressing technique contributed to utilization of flexural strength of PSRC beam.
2) PSRC beam has better serviceable performances by contrast with SRC beam: better resistance to crack and smaller deflection.
3) The development of SRCB or PSRCB w_{max} can be classified into three phases: linear development, faster development and unstable development.
4) The development of deflection for SRCB or PSRCB can be classified into three phases: elastic phase, serviceable phase and failure phase.

Acknowledgements
This work was financially supported by the natural science foundation of Shandong Province(ZR2013EEQ013), indigenous innovation program of jinan(201202081),innovation and building energy-saving wall foundation of Shandong Province(2012QG008) and doctoral foundation of Shandong Jianzhu University(XNBS1207).

References
[1] Fu Chuanguo,Jiang Yongsheng,Liang Shuting(2004).Experimental study on bearing capacity and seismic behavior of large-span two-storied Vierendeel truss transfer structure. Journal of Building Structures.25(1):36-44
[2] Fu Rirong,Fu Chuanguo,Tong Qingming,Ding Dajun(1995). study on crack closing in partially prestressed concrete beams. Industrial Construction.25(12):9-14
[3] Xu Jie. Theoretical analysis and experimental study on the crack control theory of PSRC Beams. Shandong Architecture University (2005)
[4] Xu Jie. Experimental study and theoretical analysis on prestressed steel reinforced concrete structure. Southeast University (2010)