TLR7/TLR9- and B Cell Receptor-Signaling Crosstalk: Promotion of Potentially Dangerous B Cells

Amy N. Suthers1 and Stefanie Sarantopoulos1,2*

1 Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States, 2 Department of Immunology, Duke University Medical Center, Durham, NC, United States

Open Access

Edited by:
Sophie Paczesny, Indiana University School of Medicine, United States

Reviewed by:
Gaetan Jego, Université de Bourgogne, France
Ann M. Rothstein, University of Massachusetts Medical School, United States

*Correspondence:
Stefanie Sarantopoulos stefanie.sarantopoulos@duke.edu

Specialty section:
This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

Received: 21 April 2017
Accepted: 19 June 2017
Published: 13 July 2017

Citation:
Suthers AN and Sarantopoulos S (2017) TLR7/TLR9- and B Cell Receptor-Signaling Crosstalk: Promotion of Potentially Dangerous B Cells. Front. Immunol. 8:775. doi: 10.3389/fimmu.2017.00775

INTRODUCTION

Toll-like receptor (TLR) responses to nucleic acids (NAs) have been extensively studied in monocytes and macrophages (1). In B cells, TLRs, such as TLR7 and TLR9, have been shown to mediate cell responses to both immunogenic NAs and NA-containing immune complexes (ICs) (2–4). Under normal conditions, B cells can respond immediately to initial microbial insults through NA recognition. B cells can also mount recall responses to previously encountered infectious agents and perpetuate life-long serological memory (5). However, when excessive cellular or tissue damage occurs and B cell responses to endogenous cellular NA are not restrained, autoantibodies and autoimmunity...
are promoted (6). A body of evidence has elucidated cooperative TLR7 or TLR9 (TLR7/TLR9) and B cell receptor (BCR) activation in aberrantly activated B cells. Further understanding of potential molecular synergy between BCR and TLR7/TLR9 pathways in B cells will enable development of agents that can potentially prevent autoimmune states in patients.

TLR7 AND TLR9 ACTIVATION VERSUS ATTENUATION OF AUTOACTIVE B CELLS

A number of murine models have been employed to substantiate the roles of TLR9 and/or TLR7 in the production of DNA-associated and RNA-associated autoantibody production, respectively (Table 1). TLR7-deficient autoimmune-prone mice display reduced or absent RNA-associated antibodies, whereas Tlr9-deficient mice have lower amounts of anti-nucleosome and anti-chronatin antibodies (7–9). A pathogenic role for TLR7 was revealed via characterization of the Y chromosome-linked autoimmune accelerating (Yaa) mouse that has known TLR7 overexpression due to gene duplication (10, 11). When Yaa are combined with systemic lupus erythematosus (SLE) mice and the Tlr9 gene knocked out, mice have increased RNA-associated antibodies, exacerbated clinical symptoms, and accelerated mortality (12). Unexpectedly, in all autoimmune-prone mouse models, including MRL/lpr, B6/lpr, Balb/c-Pristane, B6 Nba2 Yaa, B6 Yaa, and Ali5 deficient in TLR9, RNA-associated antibodies are increased, suggesting a more complex role for TLR9 in SLE (8, 9, 12–17). In MRL/lpr, B6/lpr, Balb/c-Pristane, B6 Nba2 Yaa, B6 Yaa, and Ali5 deficient in TLR9, RNA-associated antibodies are increased, suggesting a more complex role for TLR9 in SLE (8, 9, 12–17). In fact, on an autoimmune-prone background, Tlr9 deficiency alone leads to overall increased immune activation, exacerbation of pathogenesis, and in some cases increased mortality (8, 9, 12–15). By contrast, Tlr7-deficiency in autoimmune-prone mice leads to a significant decrease in overall immune activation and disease severity (9, 14). Thus, TLR7 and TLR9 have opposing pathogenic and protective roles, respectively, in autoimmune disease.

Nundel et al. found that TLR9 directly constrains BCR–TLR7-dependent responses, suggesting a B-cell intrinsic protective role for TRL9 (18). By contrast, Tlr7-deficient B cells are not responsive to DNA-containing ICs and have increased death rates. Interestingly, BCR–TLR9-mediated post-proliferative cell death of B cells when TLR7 is absent can be blocked by the TNF family survival cytokine B cell-activating factor (BAFF). Nickerson et al. observed that TLR9 was associated with anti-dsDNA B cell sequestration and deletion, corroborating a protective role for TLR9 (19). The relative contributions of B cell-intrinsic TLR7 and TLR9 on autoimmunity were addressed by Jackson et al. This group generated mixed bone marrow (BM) chimeras by adoptively transferring BM from wild type, Wiskott–Aldrich syndrome (WAS) protein-deficient, Was-deficient–Tlr7-deficient, or Was-deficient-Tlr9-deficient mice with μMT BM (20:80) into lethally irradiated μMT recipient mice (20). In this chimeric WAS model, B cells were the predominant cells rendered WAS-deficient and hyperactive. Since immune dysregulation and autoimmunity was largely confined to the B cell compartment, results suggest that the TLR9 and TLR7 effects were B-cell intrinsic (20). Further studies in B cell-specific knockout models are needed to clarify any impact from the 20% myeloid cells also found in this TLR7/TLR9-deficient chimeric model (20). Together, data highlight a need to better understand the molecular mechanisms that underpin pathological or protective responses of TLR7/TLR9 responses in B cells.

TABLE 1 | TLR7/TLR9 responses have substantiated roles in both autoantibody production and autoimmunity, especially in B cell receptor (BCR)-activated B cells.

TLR7 and TLR9 functions in B cell autoimmunity	Reference
RNA-associated antigen recognition	(11)
RNA-associated autoantibody production	(9)
Pathogenic role in development of autoimmunity	(7, 14, 18, 20)

1. Increased IgG production
2. Increased immune (B and T) cell activation
3. Promoted survival of plasmablast/antibody forming cells
4. Increased systemic lupus erythematosus (SLE)-related mortality and pathogenesis

Functional synergy of BCR–TLR7/TLR9 pathways

BCR–TLR7/TLR9 autoimmune responses
Syk inhibition of B cells blocked the CpG response
Btk and Syk mediate TLR9 crosstalk
Btk is dispensable for TLR7 and 9 (ligands and immune complex) proliferation
Lyn negatively regulates:
1. Both anti-RNA and anti-dsDNA antibody production (both global deletion and B-cell specific)
2. IgG class-switching
3. B cell activation
4. Cytokine production (pro-inflammatory)
5. Autoimmune pathology

TLR7– AND TLR9–BCR RESPONSES ARE LIMITED BY AVAILABILITY AND TRAFFICKING OF NA LIGAND

TLR7 and TLR9 are located in endosomal compartments and as a consequence, are usually sequestered away from...
NA-associated ligands. Immunogenic NA is derived from microbes or from damaged or dying cells located in the extracellular matrix (21). In both the physiological and autoimmune settings, endogenous NAs are more likely to form complexes with proteins or antibodies. As depicted in Figure 1A, TLR7/TLR9 ligands like NA-bound proteins can be brought into the B cell via several potential mechanisms. Endocytosis of NA-bound protein and diffusion of a synthetic agent (e.g., imiquimod/R848 or CpG) are known examples. Alternatively, NA or NA-ICs can be recognized and internalized by BCRs or Fc receptors and then presented to endosomal TLR7 or TLR9 for subsequent activation (6, 21). Trafficking of TLR7 and TLR9 from the endoplasmic reticulum to endosomal compartments is tightly regulated by the chaperone protein, UNC93B1 (22).

The balance of TLR7:TLR9 determines downstream effector function in part because of outcompetition of TLR9 binding to UNC93B1 (23, 24).

Dual engagement of BCR and activation of TLR7/TLR9 were first shown in seminal papers by Marshak-Rothstein's group (25, 26). These investigators employed transgenic (Tg) mice that express rheumatoid factor (RF) AM14 BCR. AM14 BCR specifically binds with low affinity to IgG2a that is bound to endogenous or synthetic, highly purified NA. These IgG-NA ICs are “dual specific” and bind to BCR and various forms of NA (chromatin, dsDNA, RNA, SnRNPs). A series of studies using this unique set of tools has now substantiated a requirement for BCR-IC internalization in TLR7/TLR9-mediated autoantibody production (25–27).
TLR7/TLR9 ACTIVATION OF B CELLS RELIES ON BCR ACTIVATION IN CERTAIN CONTEXTS

The role of the BCR is not simply to internalize and present NA antigen. After BCR activation, both total and endosomal TLR9 levels increase, suggesting that BCR directly regulates TLR9 (28, 29). Several signaling molecules downstream of BCR operate in concert with TLR pathways to modulate TLR responses (30, 31). In the healthy state, dual BCR and TLR7/TLR9 engagement confer synergistic responses, including cytokine production, antibody production, and class-switch recombination (32, 33). In autoimmune disease, synergistic BCR–TLR7/TLR9 activation by NA-IC results in increased B cell proliferation and autoantibody production (25–27). For full activation of autoreactive RF-B cells, combined signals from the BCR and either TLR7/TLR9 are required (30, 34). Dual engagement of BCR and TLR9 by chromatin-IC leads to distinct functional outcomes (29). BCR activation can operate with TLR7 to attenuate peripheral B cell tolerance (35). Conversely, BCR–TLR9 synergy either TLR7/TLR9 are required (30, 34). Dual engagement of BCR and TLR9 by chromatin-IC leads to distinct functional outcomes (29). BCR activation can operate with TLR7 to attenuate peripheral B cell tolerance (35). Conversely, BCR–TLR9 synergy rather than to the level of activation of individual B cells (39). Lyn, a src kinase molecule associated with the positive and negative regulation of the BCR pathway (43) has been shown to negatively regulate TLR7/TLR9 activation (44–46). Lyn-deficient or B cell-specific Lyn-deficient mouse models had increased NA-associated autoantibodies, cytokine production (including IL-6 and IL-10), and autoimmune pathology (44–46). The exact mechanism of this negative regulatory role in TLR signaling has not been defined in B cells, although it is well established that Lyn is required to phosphorylate and activate CD22, an important negative regulator of BCR signaling (43). While the mechanistic role for Btk remains somewhat contradictory, roles for Lyn and Syk are more defined.

BCR AND TLR7/TLR9 SIGNALING CASCADES: CROSSTALK AND POTENTIAL ABERRANT B CELL ACTIVATION

Figure 1B is a simplified depiction of the major molecular components TLR7/TLR9 and BCR signaling. As depicted on the left in Figure 1B, TLR7 and TLR9, unlike BCR, signal in a MyD88-dependent fashion. After ligand associates with TLR7 or TLR9 in the endosomal compartment, TLR monomers dimerize and recruit the adaptor protein MyD88 to the intracellular domains. MyD88 then binds the kinase interleukin-1 receptor-associated kinase (IRAK)-4, promoting its autoprophosphorylation. IRAK4 subsequently associates with and phosphorylates IRAK1 (47). The resultant multimeric MyD88–IRAK4–IRAK1 complex (often referred to as the “Myddosome”) is critical for downstream effector signaling. Phosphorylation of IRAKs is required for recruitment of the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) to the complex (48). TRAF6, together with two other ubiquitin-conjugating enzymes (not depicted), itself becomes ubiquitinated before translocation into the cytosol where it activates transforming growth factor-beta-activated kinase 1 (TAK1) (48). TAK1 activation results in the phosphorylation and subsequent activation of MAPKs and/or NFkB. NFkB activation leads to phosphorylation of downstream transcription factors, including interferon regulatory factors (IRFs)—IRF3, IRF5, or IRF7. As shown on the right in Figure 1B, BCR activation incites signaling through activation of proximal BCR molecules Syk, Lyn, and Btk. When soluble antigen ligates the BCR or when BCR is cross-linked by anti-IgM surrogate antigen, several src kinases including Lyn are rapidly activated. In turn, immuno-receptor tyrosine-based activation motifs (ITAM) within the cytoplasmic domains of the CD79a/CD79b heterodimer complex of the BCR are phosphorylated by Lyn (43). Dual phosphorylation of ITAM tyrosine residues allows the association and subsequent activation of Syk tyrosine kinase (51). Syk can then associate with and activate a number of other kinases, including Btk and adaptor proteins such as B cell linker protein (BLNK) and B cell adaptor for phosphoinositide 3-kinase (BCAP) (51). Another adaptor protein, B cell scaffold protein with ankyrin repeats 1 (BANK1) is primarily activated by B-lymphoid tyrosine kinase (Btk) (52). Adaptor proteins, BANK1 and BCAP, lack kinase activity but function as scaffold proteins in the formation of macromolecular complexes that enable efficient effector signal transduction. Subsequent downstream signals include PLCγ2 activation, calcium mobilization, MAPK, NFkB pathways, and BCAP–PI3K-mediated pathways (52–54).

Improved understanding of distinct molecular mediators of BCR–TLR crosstalk in normal versus aberrant B-cell signaling is emerging. As shown in Figure 1B, BCR-proximal kinases Lyn and Syk have been specifically implicated in molecular BCR–TLR7/
TLR9 crosstalk. Lyn has been shown to negatively regulate TLR activation in vivo (44–46). While not yet studied directly in B cells, the molecular mechanism may be similar to that found in dendritic cells, where Lyn directly associates with IRF5 and in doing so, inhibits the ability of TRAF6 to associate with and activate the transcription factor (55). Syk is a positive regulator of TLR signaling (40, 41). Syk activation has been associated with TRAF6 expression in B cells from patients with SLE (38). The association between Syk and TRAF6 suggests an important point of crosstalk in the context of autoimmune disease, suggesting a potential mechanism for how Syk blockade attenuates the TLR9 responses (40).

B cell adaptor proteins, BCAP and BANK1, are also potential components of BCR-endosomal TLR signaling crosstalk (Figure 1B). BCAP negatively regulates inflammatory responses mediated by TLRs 4, 7, and 9 by linking TLR–PI3K pathways (56–58). This has been shown to occur through a hidden TIR domain in the full-length BCAP protein, which allows its direct association with TLR adaptor proteins (58, 59). Recently, Halabi et al. published that BCAP binds directly with TLR adaptor proteins to facilitate PLCγ2- and PI3K-mediated depletion of the cell membrane phospholipid component of macrophages (59). Without these phospholipid substrates, the TLR adaptor proteins could not associate with the cell membrane. This potentially results in inhibition of subsequent signal transduction (59). Similar mechanisms downstream of endosomal TLR7/TLR9 may be utilized by B cells, but this requires further investigation. B cell adaptor proteins may also positively regulate TLR7/TLR9. BANK1 in B cells has been shown to be involved in B cell responses (40). BANK1-deficient mice crosses with B6Sle1.Y aa mice (the TLR7/TLR9- and BCR-Signaling Crosstalk model has been shown to be TLR-dependent (69). Importantly, DOCK8 was not required for initial BCR signaling. This suggests a pivotal role for the integration of DOCK8 and TLR–BCR signaling cascades in BCR activation by low affinity antigen, although studies examining simultaneous BCR and TLR9 activation are required to address this. Thus, in the physiological context NA-ICs when low affinity BCR is activated before NA is presented to TLR9, DOCK8, Syk, and Lyn may all play even more significant roles in integration of BCR–TLR9 signaling.

FUTURE STUDIES: TLR–BCR-MEDIATED AUTOIMMUNITY IN HUMANS

We now know there are a number of molecular links between BCR and TLR7/TLR9 signaling. Further studies are required to determine distinct pathologic signaling pathways so that agents can be used to block aberrant TLR/BCR signaling in patients. Future studies should address mechanisms that restrain potentially dangerous responses to antigen in autoimmune-provoking environments. To do this, more physiological research tools are required to further define mechanisms of TLR–BCR signaling, particularly for studies of human B cells. Many studies use anti-IgM surrogate antigen for the BCR–TLR activation component, which does not precisely recapitulate the more physiological setting of BCR–TLR activation by ICs that requires internalization. Additional technical challenges need to be addressed. Potentially pathogenic B cells are already in an activated state, hampering the ability to stimulate and delineate meaningful mechanistic studies ex vivo without inducing cell death. Gene knockdown is also challenging in primary disease-state B cells. Until these technical and logistical barriers are overcome, studies of synergistic BCR–TLR signal transduction in the physiological setting in human B cells remain challenging.

Understanding B-cell intrinsic BCR–TLR signaling and activation in the context of human disease will also require investigation of extrinsic factors involved in the promotion of autoreactive B cells. BAFF plays a pivotal role in B cell development and the maintenance of B cell homeostasis (64). Elevated BAFF levels have been implicated in breaking B cell tolerance in systemic autoimmune diseases including SLE and Sjögren’s syndrome (SS) (65). Elevated BAFF levels have been correlated with circulating autoantibodies, disease progression, and anti-dsDNA antibodies in SLE patients (66, 67) and with autoantibody levels in SS patients (68). One mechanism by which BAFF breaks this tolerance in a lupus-like disease model has been shown to be TLR-dependent (69). Data suggest a model whereby excess BAFF expands autoreactive B cells, and BAFF signals directly promote TLR activation and internalization of dsDNA or NA-IC autoreactive BCRs. BAFF also increases TLR7/TLR9 expression, and TLR7/TLR9 signaling promotes BAFF receptor expression, thus providing a positive feedback loop (69). Further study will elucidate how the extrinsic factor BAFF dysregulates intrinsic BCR–TLR B cell signals and promotes aberrant B cell activation and pathogenesis.
IMPLICATIONS FOR A DISEASE THAT DEVELOPS IN AN AUTOIMMUNE-PROVOKING ENVIRONMENT: ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION (HCT)

Current evidence as summarized above compels examination of aberrant B cells in patients with autoimmune pathology. This includes patients who develop chronic graft-versus-host disease (cGVHD) that develops after HCT. cGVHD is a B-cell mediated autoimmune disease-like state that is unacceptable debilitating and difficult to treat. Persistently altered B cell homeostasis in patients with cGVHD is potentially perpetuated by global B cell depletion strategies (70–72). In cGVHD, intrinsic abnormalities in the proximal BCR machinery of B cells are being defined. Thus, we and others are interested in developing ways to target only B cells from patients with cGVHD that are hyperactivated and primed for survival in vivo via BAFF- and BCR-associated pathways (73). Based on murine and human studies that demonstrated a role for BCR-activated B cells in the pathophysiology of cGVHD (74, 75), the novel application of signaling pathway inhibitors is being tested in clinical trials.

After HCT, B cells are recovering in an NA and alloantigen (76) rich environment that may promote pathological B cells. Circulating monocytes in cGVHD patients upregulate gene pathways involved in innate cellular damage responses (77). Some of these genes include TLR7, BAFF and Type 1 interferons. No definitive examination of TLR7/TLR9 in cGVHD has yet been performed, but studies suggest that there is a muted signaling response to TLR9 agonists by plasmablast-like cells that normally regulate immune responses via the production of cytokines including IL-10 (78). We conclude that studies of cGVHD addressing TLR9 and TLR7 signaling of BCR-activated B cells after HCT are warranted. Such studies will inevitably lead to further understanding of human B cell tolerance and will likely compel the expanded use of targeted therapeutic agents in patients.

AUTHOR CONTRIBUTIONS

SS and AS both researched the topic, wrote and edited the manuscript, and made the table and figure for this manuscript.

ACKNOWLEDGMENTS

The authors thank Dr. Jonathan Poe, PhD for editing the manuscript.

FUNDING

National Institutes of Health grant R01 HL 129061 (NHLBI) was awarded to SS.

REFERENCES

1. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol (2014) 5:461. doi:10.3389/fimmu.2014.00461
2. Green NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol (2011) 23(2):106–12. doi:10.1016/j.smim.2011.01.016
3. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol (2006) 6(11):823–35. doi:10.1038/nri1957
4. Jimenez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors – from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev (2016) 15(1):1–8. doi:10.1016/j.autrev.2015.08.009
5. Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol (2015) 15(3):149–59. doi:10.1038/nri3802
6. Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immuno Rev (2005) 204(1):27–42. doi:10.1111/j.0105-2896.2005.00239.x
7. Berland R, Fernandez L, Kari E, Han JH, Lomakin I, Akira S, et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity (2006) 25(3):429–40. doi:10.1016/j.immuni.2006.07.014
8. Christenssen SR, Kashgarian M, Alexopoulou L, Flavell RA, Akira S, Shlomchik MJ. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med (2005) 202(2):321–31. doi:10.1084/jem.20050338
9. Christenssen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity (2006) 25(3):417–28. doi:10.1016/j.immuni.2006.07.013
10. Fairhurst A-M, Hwang S-H, Wang A, Tian X-H, Boudreaux C, Zhou XJ, et al. Yaa-autoimmune phenotypes are conferred by an overexpression of TLR7. Eur J Immunol (2008) 38(7):1971–8. doi:10.1002/eji.200838138
11. Piskun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science (2006) 312(5780):1669–72. doi:10.1126/science.1124978
12. Santiago-Raber M-L, Dunand-Sauthier I, Wu T, Li Q-Z, Uematsu S, Akira S, et al. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun (2010) 34(4):339–48. doi:10.1016/j.jaut.2009.11.001
13. Iartigue A, Courville P, Auquit I, Francois A, Arnoul C, Tron F, et al. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J Immunol (2006) 177(2):1349–54. doi:10.4049/jimmunol.177.2.1349
14. Nickerson KM, Christenssen SR, Shupe J, Kashgarian M, Kim D, Elkon K, et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J Immunol (2016) 194(4):1840–8. doi:10.4049/jimmunol.1602592
15. Bossaller L, Christ A, Pelka K, Nundel K, Chiang PI, Pang C, et al. TLR9 deficiency leads to accelerated renal disease and myeloid lineage abnormalities in pristane-induced murine lupus. J Immunol (2016) 197(4):1044–53. doi:10.4049/jimmunol.1501943
16. Yu P, Wellmann U, Kunder S, Quintanilla-Martinez L, Jennen L, Dear N, et al. Toll-like receptor 9 independent aggravation of glomerulonephritis in a novel model of SLE. Int Immunol (2006) 18(8):1211–9. doi:10.1093/intimm/dx067
17. Wu X, Peng SL. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum (2006) 54(1):336–42. doi:10.1002/art.21553
18. Nundel K, Green NM, Shaffer AL, Moody KL, Busto P, Eilat D, et al. Cell-intrinsic expression of TLR9 in autoactive B cells constrains BCR-TLR7-dependent responses. J Immunol (2015) 194(6):2504–12. doi:10.4049/jimmunol.1402425
19. Nickerson KM, Christenssen SR, Cullen JL, Meng W, Luning Prak ET, Shlomchik MJ. TLR9 promotes tolerance by restricting survival of anergic anti-DNA B cells, yet is also required for their activation. J Immunol (2013) 190(4):1447–56. doi:10.4049/jimmunol.1202115
20. Jackson SW, Scharping NE, Kolhatkar NS, Khim S, Schwartz MA, Li Q-Z, et al. Opposing impact of B-cell intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J Immunol (2014) 192(10):4525–32. doi:10.4049/jimmunol.1400998
21. Pelka K, Shibata T, Miyake K, Latz E. Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cellular biology. *Immunol Rev* (2016) 271(1):60–75. doi:10.1111/imm.12375

22. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. *Nature* (2008) 452(7184):234–8. doi:10.1038/nature06726

23. Fukui R, Saitoh S, Kanno A, Onji M, Shibata T, Ito A, et al. UNC93B1 restricts systemic lethal inflammation by orchestrating toll-like receptor 7 and 9 trafficking. *Immunity* (2011) 35(1):69–81. doi:10.1016/j.immuni.2011.05.010

24. Fukui R, Saitoh S, Matsumoto F, Kozuka-Hata H, Oyama M, Tabeta K, et al. UNC93B1 biases toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. *J Exp Med* (2009) 206(6):1339–50. doi:10.1084/jem.20082316

25. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, et al. RNA-nucleotide-sensing toll-like receptors to endolysosomes. *Immunol Rev* (2016) 269(1):60–75. doi:10.1111/imr.12375

26. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, et al. Functional outcome of B cell activation by chromatin immune complex DNA-containing antigens. *Immunol Rev* (2008) 220(1):282–94. doi:10.1111/j.0161-2830.2008.00319.x

27. Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B cell signalling subcellular location of toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. *Immunity* (2008) 28(6):799–809. doi:10.1016/j.immuni.2008.03.019

28. Busconli L, Bauer JW, Tumang JR, Laws A, Perkins-Mesires K, Tabor AS, et al. Functionality of B cell engagement and outcomes with dectin-1 and BCR engaging human B cells. *J Exp Med* (2015) 202(9):1171–7. doi:10.1084/jem.20050630

29. Pone EJ, Zhang J, Mai T, White CA, Li G, Sakakura JK, et al. BCR-signalling engages TLR7 and 9 trafficking. *J Immunol* (2009) 183(5):2974–83. doi:10.4049/jimmunol.0803190

30. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A. Integration of BCR and endosomal TLR signals synergize to increase AID expression and autoantibody production in Lyn-deficient mice. *J Immunol* (2014) 192(3):875–85. doi:10.4049/jimmunol.1300683

31. Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B cell signalling immunity.2015) 72(11):2223–36. doi:10.1007/s00018-014-1806-x

32. Pone EJ, Zhang J, Mai T, White CA, Li G, Sakakura JK, et al. BCR-signalling engages TLR7 and 9 trafficking. *J Immunol* (2015) 192(3):919–28. doi:10.4049/jimmunol.1301979

33. Nishizumi H, Tanouchi I, Yamashii Y, Kitamura D, Ilic D, Mori S, et al. Impaired proliferation of peripheral B cells and induction of autoimmunity in Lyn-deficient mice. *Immunity* (1995) 3(5):349–60. doi:10.1016/1074-7613(95)90126-4

34. De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. *Cytokine* (2015) 74(2):181–9. doi:10.1016/j.cyto.2015.03.025

35. Qian Y, Commene M, Ninomiya-Tsuji J, Matsumoto K, Kij II. IRAK-mediated translocation of TRAF6 and TAB 2 in the interleukin-1-induced activation of NFkappaB. *J Biol Chem* (2001) 276(45):41661–7. doi:10.1074/jbc.M102262200

36. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. *Nat Immunol* (2005) 6(11):1087–95. doi:10.1038/ni1255

37. Honda K, Taniguchi T. IRFs: master regulators of signalling by toll-like receptors and cytokine pattern-recognition receptors. *Nat Rev Immunol* (2006) 6(9):644–58. doi:10.1038/nri1900

38. Gehlen RL, Syk and pTyc: signaling through the B cell antigen receptor 7 engagement. *Biochim Biophys Acta* (2009) 1793(7):1115–27. doi:10.1016/j.bbapap.2009.03.004

39. Bernal-Quirós M, Wu Y-Y, Alarcón-Riquelme ME, Castillo-López C, BANK1 and BLK act through phospholipase C gamma 2 in B-cell signaling. *PLoS One* (2013) 8(3):e59842. doi:10.1371/journal.pone.0059842

40. Kurosaki T, Tsukada S. BLNK: connecting Syk and Btk to calcium signals. *Immunity* (2000) 12(1):1–5. doi:10.1016/S1074-7613(00)80153-3

41. Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T. BCAP: the tyrosine kinase of the BCR and endosomal TLR signaling pathway. *Immunity* (2000) 13(6):817–27. doi:10.1016/S1074-7613(00)00079-0

42. Kurosaki T, Satoh G, Ninomiya-Tsuji J, Akasaka A, Ishikawa K, Umehara M, et al. Lyn kinase suppresses the transcriptional activity of IRFs in the TLR-MYD88 pathway to restrain the development of autoimmunity. *Immunity* (2016) 45(2):319–32. doi:10.1016/j.immuni.2016.07.015

43. Matsutama T, Oyama M, Kozuka-Hata H, Ishikawa K, Inoue T, Muta T, et al. Identification of BCAP-L as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphopeptidomics. *Biochim Biophys Acta* (2010) 400(2):265–70. doi:10.1016/j.bbadrc.2010.08.055

44. Ni M, MacFarlane AW, Toft M, Lowell CA, Campbell KS, Hamerman JA. B-cell adaptor for PI3K (BCAP) negatively regulates toll-like receptor signaling through activation of PI3K. *Proc Natl Acad Sci U S A* (2012) 109(1):267–72. doi:10.1073/pnas.111957108

45. Troutman TD, Hu W, Fulenchek S, Yamazaki T, Kurosaki T, Bazan JE, et al. Role for B-cell adaptor for PI3K (BCAP) as a signaling adaptor linking toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. *Proc Natl Acad Sci U S A* (2012) 109(1):273–8. doi:10.1073/pnas.1118579109

46. Halabi S, Sekine E, Verstak B, Gay NJ, Moncreiffe MC. Structure of the toll/IL-1 receptor (TIR) signalosome. *J Biol Chem* (2017) 292(2):652–60. doi:10.1074/jbc.M116.761528

47. Wu YY, Kumar R, Iida R, Bagavant H, Alarcon-Riquelme ME. BANK1 regulates IgG production in a lupus model by controlling TLR7-dependent
STAT1 activation. *PloS One* (2016) 11(5):e0156302. doi:10.1371/journal.pone.0156302

61. Wu Y-Y, Kumar R, Haque MS, Castillejo-López C, Alarcón-Riquelme ME. BANK1 controls CpG-induced IL-6 secretion via a p38 and MNK1/2/eIF4E translation initiation pathway. *J Immunol* (2013) 191(12):6110–6. doi:10.4049/jimmunol.1301203

62. Szili D, Banko Z, Toth EA, Nagy G, Rojkovich B, Gati T, et al. TGFbeta-activated kinase 1 (TAK1) at the crossroad of B cell receptor and toll-like receptor 9 signaling pathways in human B cells. *PLoS One* (2014) 9(5):e96381. doi:10.1371/journal.pone.0096381

63. Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. *Nat Immunol* (2012) 13(6):612–20. doi:10.1038/ni.2305

64. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. *Nat Rev Immunol* (2002) 2(7):465–75. doi:10.1038/nri844

65. Nakayamada S, Tanaka Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. *Inflamm Regen* (2016) 36(1):6. doi:10.1186/s41232-016-0015-4

66. Chu VT, Enghard P, Schurer S, Steinhauser G, Rudolph B, Riemekasten G, et al. Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. *Arthritis Rheum* (2009) 60:2083–93. doi:10.1002/art.24682

67. Zollars E, Bienkowska J, Czerkowicz J, Allaire N, Ranger AM, Magder L, et al. BAFF (B cell activating factor) transcript level in peripheral blood of patients with SLE is associated with same-day disease activity as well as global activity over the next year. *Lupus Sci Med* (2015) 2:e000063. doi:10.1136/lupus-2014-000063

68. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, et al. The level of BlyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. *Ann Rheum Dis* (2003) 62(2):168–71. doi:10.1136/ard.62.2.168

69. Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ, et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. *J Exp Med* (2007) 204(8):1959–71. doi:10.1084/jem.20062567

70. de Mason A, Ouazziz JD, Le Buanc H, Robin M, O’Meara A, Parquet N, et al. CD24+CD27+ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. *Blood* (2015) 125(11):1830–9. doi:10.1182/blood-2014-09-599159

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Suthers and Sarantopoulos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.