SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES

IREM EROĞLU AND ERDAL GUNER

ABSTRACT. In this paper, we generalize closure spaces by an preorder and we give some order separation axioms in Čech closure ordered spaces.

INTRODUCTION

Topological spaces can be generalized by many ways. Leopoldo Nachbin[6] developed a way to generalize topological spaces by an order. He defined topological ordered spaces, such that a triple (X, τ, \leq) where τ is a topology and \leq is a relation of partial order on X. He investigated some properties of topological ordered spaces.

In 1968 McCartan[9] studied T_i-ordered separation axioms $(i = 1, 2, 3, 4)$ in topological ordered spaces.

The other way to generalize topological spaces is closure operators. Eduard Čech[4] defined Čech closure spaces or dually pretopological spaces. A.S.Mashhour and M.H.Ghanim[1] investigated properties of Čech closure spaces.

The aim of this paper is to define Čech closure ordered spaces and investigate some ordered separation axioms in this spaces. For topological spaces we refer the reader to R. Engelking[8]. For closure spaces we refer to [3],[7].

1. PRELIMINARIES

Now, we will give some basic definitions about closure spaces and orders.

Definition 1. Let X be a set. An order (partial order) on X is a binary relation \leq on X such that, for all $x, y, z \in X$

i) $x \leq x$

ii) $x \leq y$ and $y \leq x$ imply $x = y$

iii) $x \leq y$ and $y \leq z$ imply $x \leq z$

These conditions are referred to, respectively as reflexivity, antisymmetry and transivity. A set X equipped with an order relation \leq is said to be an ordered set (or}
Definition 2. Let X and Y be ordered sets. A map φ from X to Y is said to be an order-embedding if and only if the following be satisfied $x \leq y$ in X iff $\varphi(x) \leq \varphi(y)$ in Y.

Definition 3. Let X designate a preordered set. A subset $A \subseteq X$ is said to be decreasing if $a \leq b$ and $b \in A$ imply $a \in A$. The smallest decreasing set containing A will be shown by $d(A)$. A subset $A \subseteq X$ is said to be increasing if $a \leq b$ and $a \in A$ imply $b \in A$ and the smallest increasing set containing A will be shown by $i(A)$ [4].

Definition 4. Let us consider a topological space (X, τ) equipped with a preorder \leq. The triple (X, τ, \leq) is called topological ordered space [5].

Definition 5. If X is a set and u is a single-valued relation on $P(X)$ ranging in $P(X)$, then we shall say that u is a closure operation for X provided that the following conditions are satisfied,

1. $u(\emptyset) = \emptyset$
2. $A \subseteq u(A)$ for each $A \subseteq X$
3. $u(A \cup B) = u(A) \cup u(B)$ for each $A \subseteq X$ and $B \subseteq X$

A structure (X, u) where X is a set and u is a closure operation for P, will be called a closure space [1], [2].

Definition 6. Let (X, u) be a closure space. There is associated the interior operation int_u usually denoted by int, such that for each $A \subseteq X$, $\text{int}_u A = X - u(X - A)$

Definition 7. Let X be a set, u and v are closure operators on $P(X)$. The closure operator u is said to be coarser than v, or v is said to be finer than u, if for each $A \subseteq X$, $v(A) \subseteq u(A)$.

Definition 8. A neighbourhood of a subset A of X is any subset U of X containing A in its interior. We will show the neighbourhood family of A by $\mathcal{N}(A)$.

Let $x \in U$, $U \subseteq X$. U is called a neighbourhood of x if and only if $x \in \text{int}_u U$. Neighbourhoods family of a point x will be shown by $\mathcal{N}(x)$.

Definition 9. A family $\{A_i : i \in I\}$ of subsets of a closure space (X, u) will be called closure-preserving if for each $J \subseteq I$, $\cup_{i \in J} u(A_i) = u(\cup_{i \in J} A_i)$.

Definition 10. The product $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$ of a family $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ of closure spaces is the closure space $(\prod_{\alpha \in I} X_\alpha, u)$ where $\prod_{\alpha \in I} X_\alpha$ denotes the Cartesian product of the sets X_α, $\alpha \in I$ and u is the closure operator generated by the projections $\pi_\alpha : \prod_{\alpha \in I} X_\alpha \rightarrow X_\alpha$, defined by $u(A) = \prod_{\alpha \in I} u_\alpha \pi_\alpha(A)$ for each $A \subseteq \prod_{\alpha \in I} X_\alpha$.

partially ordered set). A relation \leq on a set X which is reflexive and transitive but not necessarily antisymmetric is called a quasi-order or preorder [2].
2. T_1-ORDERED CLOSURE ORDERED SPACES

In this section, defining T_1–ordered closure ordered space we will investigate some properties.

Definition 11. Let (X, u) be a Čech closure space and \leq be a preorder on X. Then the triple (X, u, \leq) will be called closure ordered space.

Definition 12. Let (X, u, \leq) be a closure ordered space,

i) (X, u, \leq) is upper T_1–ordered iff for each pair of elements $a \nleq b$ in X, there exists a decreasing neighbourhood U of b such that $a \notin U$.

ii) (X, u, \leq) is lower T_1–ordered iff for each pair of elements $a \nleq b$ in X, there exists an increasing neighbourhood U of a such that $b \notin U$.

If both of the conditions are satisfied, then (X, u, \leq) will be called T_1–ordered closure ordered space.

Example 1. Let $X = \{a, b, c\}$, $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ be a preorder on X and $u: P(X) \to P(X)$ is defined such that,

\[
\begin{align*}
 u(\{a\}) &= \{a, b\}, \\
 u(\{b\}) &= \{b\}, \\
 u(\{c\}) &= \{c\}, \\
 u(\{a, b\}) &= \{a, b\}, \\
 u(\{a, c\}) &= X, \\
 u(\{b, c\}) &= \{b, c\}, \\
 u(X) &= X, \\
 u(\emptyset) &= \emptyset.
\end{align*}
\]

Then (X, u, \leq) is a T_1–ordered closure ordered space.

Theorem 1. Let (X, u, \leq) be a closure ordered space, then the following conditions are equivalent.

i) (X, u, \leq) is lower-upper T_1–ordered space

ii) For each $a \nleq b$ in X there exists $U (V)$ a neighbourhood of a such that $x \nleq b$ for all $x \in U (x \in V)$

iii) For each $x \in X$, $[\lhd, x]$ [$[\rhd, x]$] is closed.

Proof. i) \Rightarrow ii) Let (X, u, \leq) is lower T_1–ordered space and $a \nleq b$ in X, then there exists $U \in \mathcal{N}(a)$, U is decreasing and $b \notin U$. So, $x \nleq b$ for all $x \in U$.

ii) \Rightarrow iii) Let $x \in X$ and suppose that $[\lhd, x]$ is not closed, so $u([\lhd, x]) \neq [\lhd, x]$. There exists $z \in u([\lhd, x])$ and $z \notin [\lhd, x]$, so $z \nleq x$. From ii), there exists $U \in \mathcal{N}(z)$ and for each $y \in U$, $y \nleq x$. But this contradicts with $z \in u([\lhd, x])$. Consequently, $[\lhd, x]$ is closed.

iii) \Rightarrow i) Let $a, b \in X$ and $a \nleq b$. From iii), $[\lhd, b]$ is closed and $X - [\lhd, b]$ is open, so $X - [\lhd, b] \in \mathcal{N}(a)$. We find an increasing neighbourhood of a and $b \notin X - [\lhd, b]$. (X, u, \leq) is lower T_1–ordered space.

It can be similarly shown for upper T_1–ordered spaces.

Proposition 1. Let (X, u, \leq) be a T_1–ordered closure ordered space. Then every closure operator weaker than u with the same preorder is T_1–ordered closure ordered space.
Proof. Let \(v \) be a closure operator which is weaker than \(u \) and \((X, u, \leq)\) be a \(T_1 \)-ordered closure ordered space. Then we can write for each \(x \in X \), \(v([x, \rightarrow]) \subseteq u([x, \rightarrow]) = [x, \rightarrow] \) and \(v([\leftarrow, x]) \subseteq u([\leftarrow, x]) = [\leftarrow, x] \). Hence, \((X, v, \leq)\) is a \(T_1 \)-ordered space. \(\square\)

Proposition 2. Every subspace of a \(T_1 \)-ordered closure ordered space is a \(T_1 \)-ordered.

Proof. Let \((X, u, \leq)\) be a \(T_1 \)-ordered closure ordered space and \((A, u_A, \leq_A)\) be a subspace of \((X, u, \leq)\). We will use Theorem 1, so it will be shown that for each \(a \in A \), \([a, \rightarrow]_A = [a, \rightarrow] \cap A \) and \([\leftarrow, a]_A = [\leftarrow, a] \cap A \) are closed in \((A, u_A, \leq_A)\).

\[
 u_A([a, \rightarrow]_A) = u_A([a, \rightarrow] \cap A) = u([a, \rightarrow] \cap A) \cap A \subseteq u([a, \rightarrow]) \cap u(A) \cap A = u([a, \rightarrow]) \cap A = [a, \rightarrow] \cap A = [a, \rightarrow]_A,
\]

so \((A, u_A, \leq_A)\) is upper \(T_1 \)-ordered. Consequently, \((A, u_A, \leq_A)\) \(T_1 \)-ordered space. \(\square\)

Proposition 3. Let \((X, u, \leq)\) and \((Y, v, \leq')\) are closure ordered spaces and \(f: (X, u, \leq) \rightarrow (Y, v, \leq')\) is a continuous and order-embedding function. If \((Y, v, \leq')\) \(T_1 \)-ordered space, then \((X, u, \leq)\) is \(T_1 \)-ordered space.

Proof. Let \((Y, v, \leq')\) be a \(T_1 \)-ordered space and \(a, b \in X \), \(a \leq b \). Because of \(f \) is order embedding, \(f(a) \leq f(b) \). Hence \((Y, v, \leq')\) \(T_1 \)-ordered space, there exists increasing neighbourhood \(U \) of \(f(a) \) and decreasing neighbourhood \(V \) of \(f(b) \) such that \(f(b) \notin U \), \(f(a) \notin V \).

\[
 f^{-1}(U) \text{ is an increasing neighbourhood of } a \text{ and } f^{-1}(V) \text{ is a decreasing neigbourhood of } b, \text{ since } f \text{ is an order-embedding and continuous function}. \quad f(b) \notin f^{-1}(U) \text{ and } f(a) \notin f^{-1}(V). \quad \text{Consequently, we found an increasing neighbourhood } f^{-1}(U) \text{ of such that } b \notin f^{-1}(U) \text{ and decreasing neighbourhood } f^{-1}(V) \text{ of } b \text{ such that } a \notin f^{-1}(V), \text{ so } (X, u, \leq) \text{ is } T_1 \text{-ordered}. \quad \square
\]

Definition 13. Let \((X, u, \leq)\) be a closure ordered space. \(t^1 = \{ A \subseteq X : u(A^c) = A^c \text{ and } A \text{ is an increasing set} \} \), \(t^1 = \{ A \subseteq X : u(A^c) = A^c \text{ and } A \text{ is a decreasing set} \} \) are topological spaces on \(X \). They are called upper and lower topology associated with \((X, u, \leq)\).

Proposition 4. Let \((X, u, \leq)\) be a closure ordered space. Then the followings are true,

i) If \((X, t^1, \leq)\) is lower \(T_1 \)-ordered space, then \((X, u, \leq)\) is lower \(T_1 \)-ordered space.

ii) If \((X, t^1, \leq)\) is upper \(T_1 \)-ordered space, then \((X, u, \leq)\) is upper \(T_1 \)-ordered space.

iii) If \((X, t^1, \leq)\) is lower \(T_1 \)-ordered and \((X, t^1, \leq)\) is upper \(T_1 \)-ordered space, then \((X, u, \leq)\) is \(T_1 \)-ordered space.
Proof. i) Let \((X, t^1, \leq)\) be a lower \(T_1\) ordered space. We will show that for each \(x \in X\), \([x, x]\) is closed. If we show the closure operator of \((X, t^1, \leq)\) with \(cl\) is coarser than the operator \(u\). So, we can write \(u([x, x]) \subseteq cl([x, x]) = [x, x] \Rightarrow u([x, x]) = [x, x]\) \((X, u, \leq)\) is lower \(T_1\)-ordered space.

ii) Let \((X, t^1, \leq)\) is upper \(T_1\) ordered space. We will show that for each \(x \in X\), \([x, x]\) is closed. Because of \((X, t^1, \leq)\) is upper \(T_1\) ordered space, we can write \(u([x, x]) \subseteq cl([x, x]) = [x, x] \Rightarrow (X, u, \leq)\) is upper \(T_1\)-ordered.

iii) it can be obtained from i) and ii).

3. \(T_2\)-ORDERED CLOSURE ORDERED SPACES

In this section, we will give the definition of \(T_2\)-ordered closure ordered spaces and we will investigate some of its properties.

Definition 14. Let \((X, u, \leq)\) be a closure ordered space. \((X, u, \leq)\) is called \(T_2\)-ordered closure ordered space if and only if for each \(a, b \in X\) \(a \not\leq b\), there exist an increasing neighbourhood \(U\) of \(a\) and decreasing neighbourhood \(V\) of \(b\) such that \(U \cap V = \emptyset\).

If \((X, u, \leq)\) is \(T_2\)-ordered, then \((X, u, \leq)\) is \(T_1\)-ordered.

Theorem 2. Let \((X, u, \leq)\) closure ordered space. Then the followings are equivalent,

i) \((X, u, \leq)\) is \(T_2\)-ordered

ii) For each \(a, b \in X\) \(a \not\leq b\), there exist \(U \in \mathcal{N}(a), V \in \mathcal{N}(b)\) \(\ni x \in U\) and \(y \in V, then x \not\leq y\)

iii) The graph of the partial order of \(X\) is closed in product closure space \(X \times X\).

Proof. i) \(\Rightarrow \) ii) and ii) \(\Rightarrow \) iii) is clear, so we will only prove iii) \(\Rightarrow \) i)

Let \(a, b \in X\) and \(a \not\leq b\). The graph of the partial order is \(G_\leq = \{(x, y) : x \leq y\}\).

\(a \not\leq b \Rightarrow (a, b) \notin G_\leq \Rightarrow (a, b) \notin u(G_\leq) \Rightarrow U \in \mathcal{N}(a), V \in \mathcal{N}(b)\) such that \((U \times V) \cap G_\leq = \emptyset\). Let say \(U' = i(U)\) and \(V' = d(V)\), then \(U'\) and \(V'\) are increasing and decreasing neighbourhood of \(a\) and \(b\), respectively.

\(U' \cap V' = i(U) \cap d(V) = \emptyset\). To show that, suppose \(i(U) \cap d(V) \neq \emptyset\). Then, there exists \(a\) such that \(a \in i(U) \cap d(V) \Rightarrow a \in i(U)\) and \(a \in d(V) \Rightarrow x \in U : x \leq a\) and \(y \in U : a \leq y \Rightarrow \) Hence \(\leq\) is a transitive relation, \(x \leq y\). But this contradicts with \((U \times V) \cap G_\leq = \emptyset\), so \(i(U) \cap d(V) = \emptyset\).

Proposition 5. Every subspace of a \(T_2\)-ordered closure ordered space is a \(T_2\)-ordered space.

Proof. It can be obtained similar to Proposition 2.

Proposition 6. Let \((X, u, \leq)\) and \((Y, v, \leq')\) are closure ordered spaces and \(f : (X, u, \leq) \rightarrow (Y, v, \leq')\) is a continuous and order-embedding function. If \((Y, v, \leq')\) \(T_2\)-ordered space, then \((X, u, \leq)\) is \(T_2\)-ordered space.

Proof. It can be obtained similar to Proposition 3.
Proposition 7. Let \((X, u, \leq)\) closure ordered space. If \((X, t^1, \leq)\) or \((X, t^1, \leq)\) is \(T_2\)-space, then \((X, u, \leq)\) is \(T_2\)-ordered space.

Proof. Let \((X, t^1, \leq)\) be a \(T_2\)−space and \(a, b \in X\) such that \(a \not\leq b\), then \(a \neq b\). Hence \((X, t^1, \leq)\) is \(T_2\)-space, there exist disjoint open neighbourhoods \(U\) of \(a\) and \(V\) of \(b\). Hence \(U \in t^1\), \(U\) is an increasing neighbourhood of \(a\) and \(d(V)\) is a decreasing neighbourhood of \(b\) such that \(U \cap d(V) = \emptyset\). Otherwise, if \(U \cap d(V) \neq \emptyset \Rightarrow \exists x \in U \cap d(V) \Rightarrow x \in U\) and \(x \in d(V)\).

\[x \in d(V) \Rightarrow \exists v \in V\] such that \(x \leq v\). Hence \(U\) is increasing and \(x \leq v\), \(v \in U\), so \(v \in U \cap V\) and \(U \cap V = \emptyset\) which is a contradiction. Consequently, we found disjoint increasing neighbourhood \(U\) of \(a\) and decreasing neighbourhood \(d(V)\) of \(b\), so \((X, u, \leq)\) is \(T_2\)-ordered space.

\[\square\]

4. REGULAR−ORDERED CLOSURE ORDERED SPACES

In this section, we will give the definition of regular ordered topological space. Then, we will generalize McCartans \(\tau−compatibly\) subspace definition and we will investigate some properties.

Definition 15. Let \((X, u, \leq)\) be a closure ordered space.

i) \((X, u, \leq)\) is called lower regular ordered if for each decreasing set \(A \subseteq X\) and each element \(x \notin u(A)\) there exist disjoint neighbourhoods \(U\) of \(x\) and \(V\) of \(A\) such that \(U\) is increasing and \(V\) is decreasing.

ii) \((X, u, \leq)\) is called upper regular ordered if for each increasing set \(A \subseteq X\) and each \(x \notin u(A)\) there exist disjoint neighbourhoods \(U\) of \(x\) and \(V\) of \(A\) such that \(U\) is decreasing and \(V\) is increasing.

If both of the conditions are satisfied, then \((X, u, \leq)\) will be called regular ordered closure ordered space.

\((X, u, \leq)\) is \(T_3\)−ordered\(\Leftrightarrow\) \((X, u, \leq)\) regular ordered and \(T_1\)−ordered space.

Example 2. Let \(X = \{a, b, c\}\) and \(\leq = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}\) and \(u : P(X) \to P(X)\) is defined such that,

\[u(\{a\}) = \{a\}, u(\{b\}) = \{a, b\}, u(\{c\}) = \{c\}, u(\{b, c\}) = X, u(\{a, c\}) = \{a, c\}, u(\{a, b\}) = \{a, b\}, u(X) = X, u(\emptyset) = \emptyset.\] \((X, u, \leq)\) is a regular ordered closure ordered space.

Theorem 3. Let \((X, u, \leq)\) be a closure ordered space. Then the followings are equivalent,

i) \((X, u, \leq)\) is lower(upper) regular ordered closure space

ii) For each \(x \in X\) and \(U(V \in \mathcal{N}(x)) \in \mathcal{N}(x) \ni U \cap V\) is increasing (decreasing), there exists \(U'(V') \in \mathcal{N}(x)\) increasing (decreasing) neighbourhoods such that \(u(U') \subseteq U \ (u(V') \subseteq V)\).

Proof. i) \(\Rightarrow\) ii) Let \((X, u, \leq)\) be a lower regular ordered space and \(x \in X\) and \(U\) be an increasing neighbourhood of \(x\). \(U \in \mathcal{N}(x) \Rightarrow x \in U \Rightarrow x \notin U^c \Rightarrow x \notin u(U^c)\).
Suppose $x \in u(U^c)$, then $U \in \mathcal{N}(x)$ and $U \cap U^c = \emptyset$ which is a contradiction. So, $x \notin u(U^c)$. Hence (X,u,\leq) is lower regular ordered, there exist

an increasing neighbourhood V_1 of x and decreasing neighbourhood V_2 of U^c such that $V_1 \cap V_2 = \emptyset$. $V_2 \in \mathcal{N}(U^c) \Rightarrow U^c \subseteq int_u(V_2) = (u(V_2)^c) \Rightarrow u(V_2^c) \subseteq U$.

Hence $V_1 \cap V_2 = \emptyset$, $V_1 \subseteq V_2^c$ and $V_2^c \in \mathcal{N}(x)$ since $V_1 \in \mathcal{N}(x)$. Consequently, we found an increasing neighbourhood V_2^c of x such that $u(V_2^c) \subseteq U$.

It can be similarly shown for upper regular ordered space.

\[ii) \Rightarrow i) \text{ We will show } (X,u,\leq) \text{ is lower regular ordered space. Let } A \subseteq X \text{ be a decreasing set and } x \notin u(A). x \notin u(A) \Rightarrow \exists U \in \mathcal{N}(x): U \cap A = \emptyset. \text{ Hence } U \in \mathcal{N}(x), i(U) \text{ is an increasing neighbourhood of } x. \text{ From } ii) \text{ there exists an increasing neighbourhood } V \text{ of } x \text{ such that } u(V) \subseteq i(U). u(V) \subseteq i(U) \Rightarrow (i(U))^c \subseteq (u(V))^c = int_u(V^c) \text{ and } A \subseteq (i(U))^c, \text{ since } U \cap A = \emptyset \Rightarrow U \subseteq A^c \text{ and } A^c \text{ is increasing set, so } i(U) \subseteq i(A^c) = A^c \Rightarrow A \subseteq (i(U))^c \subseteq int_u(V^c). \text{ We found a decreasing neighbourhood } V^c \text{ of } A \text{ and an increasing neighbourhood } V \text{ of } x \text{ such that } V^c \cap V = \emptyset, \text{ so } (X,u,\leq) \text{ is lower regular ordered space. It can be similarly shown for upper regular ordered space.} \]

\[\square \]

Proposition 8. If (X,u,\leq) is a T_3-ordered closure ordered space, then (X,u,\leq) is a T_2-ordered closure ordered space.

\[\text{Proof.} \text{ Let } (X,u,\leq) \text{ is a } T_3 \text{-ordered closure ordered space and } a,b \in X, a \notin b \text{ holds. Because of } (X,u,\leq) \text{ is } T_1 \text{-ordered, } [\neg, b] \text{ is closed, so } u([\neg, b]) = [\neg, b] \text{ and } a \notin u([\neg, b]). \text{ There exist } U \in \mathcal{N}(a) \text{ increasing neighbourhood and } V \in \mathcal{N}([\neg, b]) \text{ decreasing neighbourhood such that } U \cap V = \emptyset. V \in \mathcal{N}([\neg, b]) \Rightarrow [\neg, b] \subseteq int_u(V) \Rightarrow V \in \mathcal{N}(b), \text{ so } (X,u,\leq) \text{ is } T_2 \text{-ordered space.} \]

\[\square \]

Proposition 9. Let (X,u,\leq) and (Y,v,\leq') be closure ordered spaces and $f : (X,u,\leq) \rightarrow (Y,v,\leq')$ is continuous, open, order-embedding and surjective function. If (X,u,\leq) is regular-ordered space, then (Y,v,\leq') is regular-ordered space.

\[\text{Proof.} \text{ Let } (X,u,\leq) \text{ be a regular-ordered space and } A \subseteq Y \text{ a decreasing set and } f(x) \notin v(A). \text{ By continuity of } f, f(u(f^{-1}(A))) \subseteq v(A) \Rightarrow u(f^{-1}(A)) \subseteq f^{-1}(v(A)) \Rightarrow x \notin u(f^{-1}(A)) \text{ and because of } (X,u,\leq) \text{ is a regular-ordered space, } \exists U \in \mathcal{N}(x) \ni U \text{ is increasing, } \forall V \in \mathcal{N}(f^{-1}(A)) \ni V \text{ is decreasing and } U \cap V = \emptyset. \text{ Hence, } f \text{ is open map } f(U) \text{ and } f(V) \text{ are neighbourhoods of } x \text{ and } A \text{ such that } f(U) \cap f(V) = \emptyset. \text{ So, } (X,u,\leq) \text{ is lower regular-ordered, it can be similarly shown for upper regularity. Consequently, } (Y,v,\leq') \text{ is regular-ordered space.} \]

\[\square \]

Remark 1. Every subspace of a regular ordered closure space may not be regular ordered closure space.

Example 3. Let $X = \{a, b, c, d\}$, $\leq = \{(a,a), (b,b), (c,c), (d,d), (a,b), (b,c), (a,c), (d,a)\}$ and $u : P(X) \rightarrow P(X)$, $u(\{a\}) = \{a\}, u(\{b\}) = \{a, b, c\}, u(\{c\}) = \{c\}, u(\{d\}) = \{d\}, u(\{a,b\}) = \{a, b, c\}$,
Every compatibly ordered subspace of a regular ordered closure ordered space is a regular ordered space.

Theorem 4. Every compatibly subspace of a regular ordered closure ordered space is a regular ordered space.

Proof. Let \((X, u, \leq)\) be a regular ordered space and \((A, u_A, \leq_A)\) be a u-compatibly ordered subspace, \(x \in A\). Let for each \(B \subseteq A\) increasing (decreasing) set, there exists \(B' \subseteq X\) increasing (decreasing) set such that \(B = B' \cap A\). Then \((A, u_A, \leq_A)\) will be called u-compatible ordered subspace.

We will give a definition which is a generalization of S.D. Mc.Cartan’s definition of \(\tau\)-compatibly ordered subspace.

Definition 16. Let \((X, u, \leq)\) be a closure ordered space. \((A, u_A, \leq_A)\) is a subspace of \((X, u, \leq)\). If for each \(B \subseteq A\) increasing (decreasing) set, there exists \(B' \subseteq X\) increasing (decreasing) set such that \(B = B' \cap A\). Then \((A, u_A, \leq_A)\) will be called u-compatible ordered subspace.

Example 4. Let \(X = \{a, b, c\}\) and \(u: P(X) \to P(X)\),
\[
\begin{align*}
\{a\} &\mapsto \{a\}, \quad \{a, b\} \mapsto \{a, b\}, \quad \{c\} \mapsto \{c\}, \quad \{b, c\} \mapsto X, \\
\{a, c\} &\mapsto \{a, c\}, \quad \{a, b\} \mapsto \{a, b\}, \quad u(X) = X, \quad u(\emptyset) = \emptyset.
\end{align*}
\]
Then, \((X, u, \leq)\) is a normally ordered closure ordered space.

Theorem 5. Let \((X, u, \leq)\) be a closure ordered space. Then the followings are equivalent.

5. NORMALLY-ORDERED CLOSURE ORDERED SPACES

In this section we will give the definition of normally ordered closure ordered spaces and we will investigate some properties.

Definition 17. Let \((X, u, \leq)\) be a closure ordered space. \((X, u, \leq)\) is called normally ordered if \(\forall F_1, F_2\) disjoint closed subsets of \(X\), such that \(F_1\) is increasing, \(F_2\) is decreasing, there exist an increasing neighbourhood of \(F_1\), decreasing neighbourhood of \(F_2\) respectively \(U_1, U_2\) and \(U_1 \cap U_2 = \emptyset\).

\((X, u, \leq)\) \(\mathcal{T}_4\)-ordered \(\Leftrightarrow (X, u, \leq)\) is \(\mathcal{T}_1\)-ordered and normally ordered space.
i) \((X, u, \preceq)\) is normally ordered

ii) For each increasing(decreasing) closed set \(F\) and each increasing(decreasing) open set \(U\) such that \(F \subseteq U\), there exists an increasing(decreasing) neighbourhood of \(F\) such that \(u(V) \subseteq U\).

Proof. \(i) \Rightarrow ii)\) Let \((X, u, \preceq)\) be a normally ordered space and \(F \subseteq X\) increasing closed set and \(F \subseteq U\) such that \(U\) is an increasing open set, so \(F \cap U^c = \emptyset\). Since \((X, u, \preceq)\) is normally ordered, there exist an increasing neighbourhood of \(F\) and decreasing neighbourhood of \(U^c\), respectively \(V_1, V_2\) and \(V_1 \cap V_2 = \emptyset\).

We can write \(F \subseteq \text{int}_u(V_1)\) and \(U^c \subseteq \text{int}_u(V_2) \Rightarrow (\text{int}_u(V_2))^c \subseteq U \Rightarrow u(V_2^c) \subseteq U\). We find an increasing neighbourhood of \(F\) and \(u(V_2^c) \subseteq U\) holds.

\(ii) \Rightarrow i)\) We will show that \((X, u, \preceq)\) is normally ordered. Let \(F_1\) and \(F_2\) are disjoint closed sets such that \(F_1\) is increasing and \(F_2\) is decreasing. Hence, \(F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c\) and \(F_2^c\) is an increasing open set. From \(ii)\), there exists an increasing neighbourhood \(U\) of \(F_1\), such that \(u(U) \subseteq F_2^c \Rightarrow F_2 \subseteq (u(U))^c = \text{int}_u(U^c)\), so \(U^c\) is a decreasing neighbourhood of \(F_2\). We found an increasing neighbourhood \(U\) of \(F_1\) and decreasing neighbourhood \(U^c\) of \(F_2\) such that \(U \cap U^c = \emptyset\). Consequently, \((X, u, \preceq)\) is a normally ordered space. □

Proposition 10. Let \((X, u, \preceq)\) be a normally ordered space and \(Y \subseteq X\) be a closed subspace and \(Y = i(Y) = d(Y)\). Then, \((Y, u_Y, \preceq_Y)\) is a normally ordered subspace.

Proof. Let \(F_1, F_2\) disjoint closed sets in \(Y\) such that \(F_1\) is increasing, \(F_2\) is decreasing. Then \(F_1\) and \(F_2\) are disjoint closed sets in \(X\). Because of \((X, u, \preceq)\) is normally ordered, there exist an increasing neighbourhood of \(F_1\) and a decreasing neighbourhood of \(F_2\), respectively \(U_1, U_2\) and \(U_1 \cap U_2 = \emptyset\). Then, \(U_1 \cap Y\) is an increasing neighbourhood of \(F_1\) in \(Y\), \(U_2 \cap Y\) is a decreasing neighbourhood of \(F_2\) and \((U_1 \cap Y) \cap (U_2 \cap Y) = \emptyset\). Consequently, \((Y, u_Y, \preceq_Y)\) is a normally ordered subspace. □

Proposition 11. Let \((X, u, \preceq)\) and \((Y, v, \preceq')\) are closure ordered spaces and \(f : (X, u, \preceq) \to (Y, v, \preceq')\) is a closed, continuous and order-embedding function. If \((Y, v, \preceq')\) normally-ordered space, then \((X, u, \preceq)\) is normally-ordered space.

Proof. Let \(F_1\) and \(F_2\) be a disjoint closed subsets of \(X\) such that \(F_1\) is an increasing set and \(F_2\) is a decreasing set. Then, \(f(F_1)\) and \(f(F_2)\) are closed sets in \(Y\) such that \(f(F_1)\) is increasing and \(f(F_2)\) is decreasing. Because of \((Y, v, \preceq')\) normally-ordered space, there exist an increasing neighbourhood of \(f(F_1)\) and decreasing neighbourhood of \(f(F_2)\), respectively \(U_1, U_2\) such that \(U_1 \cap U_2 = \emptyset\), so \(f^{-1}(U_1) \in \mathcal{N}(F_1) \ni f^{-1}(U_1)\) is increasing, \(f^{-1}(U_2) \in \mathcal{N}(F_2) \ni f^{-1}(U_2)\) is decreasing and \(f^{-1}(U_1) \cap f^{-1}(U_2) = \emptyset\). Consequently, \((X, u, \preceq)\) is normally-ordered space. □

References

[1] A. S. Mashhour, M. H. Ghanim, On Closure Spaces, Indian J. pure appl. Math. 14 (6) (1983), 680-691
[2] B. A. Davey, H. A. Priestly, Introduction to lattices and order, Cambridge University Press (1999)
[3] D. Andrijević, M. Jelić, M. Mršević, On function space topologies in the setting of Čech closure spaces, Topology and its Applications 148 (2011), 1390-1395
[4] E. Čech, Topological spaces, Czechoslovak Acad. of Sciences, Prag, 1966
[5] H. A. Priestly, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507-530
[6] L. Nachbin, Topology and Order, Van Nostrand, Princeton, 1965
[7] M. Mršević, Proper and admissible topologies in closure spaces, Indian J. Pure Appl. Math 36 (2005), 613-627
[8] R. Engelking, General Topology, PWN, Warsaw, 1977
[9] S. D. McCartan, Separation axioms for topological ordered spaces, Proc. Camb. Phil. Soc. 64 (1968), 965-973

Current address: Irem Eroglu, Department of Mathematics, Faculty of Sciences, Ankara University Tandogan, Ankara, TURKEY

E-mail address: ieroglu@ankara.edu.tr

Current address: Erdal Guner, Department of Mathematics, Faculty of Science, Ankara University, Tandogan, Ankara, TURKEY

E-mail address: guner@science.ankara.edu.tr