Age-specific mortality patterns in Central Mozambique during and after the end of the Civil War

Bruce H Noden1*, R John C Pearson2 and Aurelio Gomes3

Abstract

Background: In recent years, vigorous debate has developed concerning how conflicts contribute to the spread of infectious diseases, and in particular, the role of post-conflict situations in the epidemiology of HIV/AIDS. This study details the age-specific mortality patterns among the population in the central provincial capital of Beira, Mozambique, during and after the Mozambican civil war which ended in 1992.

Methods: Data was collected from the death register at Beira’s Central Hospital between 1985 and 2003 and descriptively analyzed.

Results: The data show two distinct periods: before and after the peace agreements in 1992. Before 1992 (during the civil war), the main impact of mortality was on children below 5 years of age, including still births, accounting for 58% of all deaths. After the war ended in 1992, the pattern shifted dramatically and rapidly to the 15-49 year old age group which accounted for 49% of all deaths by 2003.

Conclusions: As under-5 mortality rates were decreasing at the end of the conflict, rates for 24-49 year old adults began to dramatically increase due to AIDS. This study demonstrates that strategies can be implemented during conflicts to decrease mortality rates in one vulnerable population but post-conflict dynamics can bring together other factors which contribute to the rapid spread of other infectious diseases in other vulnerable populations.

Background

In recent years, vigorous debate has developed concerning how conflicts contribute to the spread of infectious diseases, and in particular, the role of post-conflict situations in the epidemiology of HIV/AIDS [1-3]. It has been widely assumed that the disarray accompanying conflicts contributes significantly to the spread of HIV in local population [4]. However, others have shown that the spread of HIV occurs primarily in the post-conflict period when the isolation of the population is removed and the freedom to travel improves [1,4,5]. Central Mozambique is a unique place in which to evaluate the relationship between conflict and mortality related to infectious diseases as an extended civil war ended in 1992. The aim of this retrospective study was to detail the age-specific mortality patterns among the population in the central provincial capital of Beira, Mozambique, during and after the Mozambican civil war.

Methods

Setting

Beira, Mozambique, the provincial capital of the central province of Sofala, is situated on the Indian Ocean. Since the 1950s, Beira has served as the major port city for the landlocked neighbouring countries of Zimbabwe, Zambia and Malawi. During the civil war which began in 1976, Beira was relatively isolated, except for the influx of truckers and military personnel from neighbouring countries of Zimbabwe, Zambia and Malawi assisting to keep the ‘Beira Corridor’ open to trade. When the peace accords were signed in 1992, Mozambique was one of the poorest countries in the world [6]. The city now has a population of 432,000 [7] and is now considered the third largest city in Mozambique.
The Central Hospital of Beira is one of only 3 central hospitals in Mozambique [8]. While serving as a primary (local) and secondary (provincial) medical centre for one of the largest urban populations in Mozambique, it also acts as a tertiary referral centre for Central Mozambique [9]. It is the main training centre [8] with an associated medical school (Catholic University of Mozambique Faculty of Health Sciences) since 2001. Therefore, it is a major catchment hospital for critical cases from which mortality studies are appropriate.

Data collection
Data for this study was collected from the death register at Beira’s Central Hospital. All deaths are required by law to be registered before burial. Therefore, the data from the Central Hospital ensures that most deaths occurring between 1985 and 2003 were recorded.

The population of Beira was not precisely known until the first census in 1997. At that time, general estimates were made for both the province of Sofala (of which Beira is the capital) and the city of Beira [10]. The percentage distribution of mortality was accordingly compiled using published age distribution categories [11].

This study was part of an outreach program of the Faculty of Health Sciences of the Catholic University of Mozambique. The medical students involved in the data collection were closely supervised by experienced nurses and the complete anonymity of the names in the register was ensured at all times. The overall supervision was done by an experienced physician.

For this study, data from the death registers was transferred to worksheets providing information of register number, sex, age, place of birth, place of residence, date of death and diagnosis. All data was then coded using ICD-10, three digits, entered into Excel worksheets and converted to an Access database, closely supervised by a physician. For the current study, only age was analyzed. Where the age at death was not known, the diagnosis was checked, and if indicative of the age category (e.g. born dead or premature), the death was recorded. If not, 'unknown' age was recorded. Analysis was performed using EPI Info version 3.2 and graphs created using Excel 2007.

Results
Between 1985 and 2003, there was a dramatic shift in the age-specific mortality patterns in populations in Beira, Mozambique (Figure 1). This shift was most obviously observed in the increase in the median age of mortality (Figure 2). As infant mortality rates were decreasing, there was a substantial increase in mortality among 25-49 year olds (Figure 3). In terms of actual population, total numbers of deaths in Beira increased 2.3× between 1985 (2450) and 2003 (5605). While Under-5 mortality remained relatively constant (n = 1429 (1985) to n = 1479 (2003), mortality among the 24-49 year olds went from 408 (1985) to 2197 (2003) (an increase of 5.4×). By 2003, mortality rates among the 15-49 year olds accounted for ~60% of all deaths (Figure 1).

In 1985, main causes of death among 15-49 year olds were tuberculosis (15%), anaemia (8%), and gunshots wounds (7%) (Figure 4). Patterns changed slightly in 1992 with tuberculosis (14%), anaemia (8%), malaria (8%), and gastroenteritis (not cholera) (6%). Only two deaths were ascribed to HIV/AIDS. By 2003, AIDS/Immunodeficiency accounted for 29% of deaths followed by tuberculosis (18%) and malaria (18%).

The infant mortality rate in Beira was 65.8 (per 1000) in 1997, but fell to 38.2 in 2001 and 38.0 in 2003. Also, the child mortality rate (1-4 year olds) fell from 13.0 (2001) to 9.4 (2003). While the mortality rates for 5-14 year olds remained stable (1.7/1000) between 2001 and 2003, there was a small rise in the mortality rates among 15-24 year olds from 3.6 to 5.0 and even larger increases for the 25-49 year old group (9.0 to 13.1), the 50-64 age group (11.2 to 23.6) and in those older than 65 (40.3 to 57.8).

Interestingly, while the Beira infant mortality rate (per 1000) fell from 65.8 in 1997 to 38.2 in 2001, the overall mortality rate for Sofala province dropped from 144 (1997) to 128 (2003). When Beira was excluded, the mortality rate for the rest of province of Sofala hardly changed from 167 (1997) to 164 (2003).

Discussion
The data suggest two major trends occurred in the Mozambique between 1985 and 2003. These trends demonstrate the issues impacting conflict and post-conflict situations [1,4,5]. First, during the civil war (before 1992), mortality was highest among children below 5 years of age (including still births), accounting for two thirds of all deaths. This reduction is confirmed by Cutts et al. [12] in an epidemiological study done in the communities of Beira during that period. The low mortality rate among 15-49 year olds during the same period is notable, particularly during a time of conflict. Because of the poor state of the health services in Central Mozambique due to the destruction of most rural health posts, the primary focus of humanitarian organizations (i.e. International Committee of the Red Cross (ICRC)) was to reduce maternal and child-related mortality [13]. The overall effect was a dramatic decrease in mortality in the under-5 children in Central Mozambique [13] and Southern Mozambique [14] which is also observable in this Beira Central Hospital data set.

The post-conflict trend occurred 5 years after the civil war ended (post-1992) when the mortality pattern
dramatically shifted to those older than 15 years old, with the greatest impact occurring among 25-49 year olds. During this period, the main cause of death was attributed to AIDS. Until the late 1996, the epidemiology of HIV infections in Central Mozambique was unknown. Routine testing for HIV among pregnant females was implemented in Maputo (the capital of Mozambique) in 1986. However, it did not begin in Beira until 1996 [15]. During these 10 years of non-monitoring, HIV expanded dramatically in Central Mozambique. By 1996, 17% of the pregnant women in Beira were already infected with HIV. This was also found in other major urban centers in Central Mozambique, Chimoio and Tete, with HIV prevalences of 19.2% and 22.5%, respectively among pregnant women. As of 2006, the HIV prevalence rate in Mozambique was 16.2% [15] with the highest HIV prevalence registered in the central province of Sofala with an official rate of 26.5%, with Beira registering 38% [15].

Figure 1 Age-specific mortality in the city of Beira, Mozambique, 1985-2003

![Age-specific mortality in the city of Beira, Mozambique, 1985-2003](image1)

Figure 2 Median age of mortality in the city of Beira, Mozambique, 1985-2003

![Median age of mortality in the city of Beira, Mozambique, 1985-2003](image2)
From this data, it is apparent that during the conflict stage, the government and humanitarian groups focused to ensure appropriate health care to the under-5 cohort in the early 1990s (a component more easily addressed during the conflict stage). During the same conflict period, unmonitored HIV spread rapidly among vulnerable populations in Central Mozambique. While truck drivers and military personnel from neighbouring countries with high HIV prevalence [16-19] may have brought the HIV to relatively isolated urban populations [1], local populations were primed for an HIV epidemic because of high prevalence of untreated STIs [20,21]. Additionally, after the peace accords in 1992, large numbers of refugees returned from neighbouring countries [16-18] with unknown HIV prevalence. We believe that the mixing of HIV-infected refugees into the these relatively isolated communities with high prevalence of untreated STIs [4,22] contributed to the explosion of HIV which culminated in increased AIDS mortality in Central Mozambique in mid-to-late 1990s. Finally, the influx of UN peacekeepers in 1993 with their perceived wealth and the creation of a large commercial sex industry in Beira, may have also contributed to the spread of HIV in the community [4]. The Mozambique national program for HIV prevention only began to respond in Central Mozambique in 1999 while it had been actively working in Maputo since 1986.

While possible limitations occurred, every effort was made to reduce their effects. One limitation is the possible bias introduced into the analysis by misreporting of the ages at death, particularly that of rounding of ages at death. While common for mortality-focused studies [23-25], this can underestimate the mortality of some age groups and overestimate for others. However,
because of the large sample size used and the completeness of the data set, we believe the trends were not altered significantly by this possible limitation.

Another limitation involves the completeness of the death registry from only one institution, even one as regionally significant as Beira Central Hospital. A law requires the registration of all deaths occurring in the Beira area at the mortuary of the Central Hospital in order to receive a certificate for a burial plot assigned by an area municipal office [9]. It is not possible, however, to control for those who die at home and are buried in ‘informal’ cemeteries. In their 1996-1997 study in Beira, Songane & Bergstrom [9] reported a high rate of underreporting of maternal deaths in the official registrar. Apart from the four public cemeteries (one which is already full), there are 10 ‘private’ cemeteries in which mortality information is not documented. The fact that there were 2.3 × more recorded deaths in 2003 compared with 1985 leads one to consider that misreporting could have affected some of the patterns observed in our study, particularly early during the conflict phase.

Another factor involves the contribution of reduced under-5 mortality on the increased proportion of mortality observed among 24-49 year olds between 1992 and 2003. From the data, we do not believe that this reduction had much of an effect. Over the period of study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is important to note that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].

It is notable that during the war period in the Beira Central Hospital records, 58% (1985) to 50% (1992) of the mortalities registered were children under 5 years old. While gender was not analyzed for this study, our data records that under-5 mortality numbers stayed relatively constant (while the proportion in the mortality population decreased) whereas the total mortality among 15-49 year olds increased 5.4×. Where the effect of a decrease under-5 mortality (observed locally [13] and nationally [26]) may be seen is in the slight increase of life expectancy rates in Mozambique from 42.7 (1985) to 47.6 (2003) [27].
other factors which contribute to the rapid spread of different infectious diseases in vulnerable populations, thus nullifying the previous gains.

Acknowledgements and Funding

Our grateful thanks to Rev. Dr. Francisco Ponsi and Rev. Dr. Elias Arroyo for their encouragement and assistance. Special thanks for the assistance to Mr. Joaquim Chitejo Gotine, Conservador, 1st Conservatoria do Registo Civil in the city of Beira as well as the first graduating class of medical students of the Catholic University of Mozambique. BHN would like to specifically thank his colleagues in both AIM International (Mozambique) as well as UCM for the many helpful discussions in putting these ideas together. Salary support for AG during part of this study was funded by CIPRA (National Institutes of Health, USA #1 R03 AO56525-01).

Author details

1Department of Biomedical Science, School of Health and Applied Science, Polytechnic of Namibia, Windhoek, Namibia. 2Department of Community Medicine, West Virginia University, West Virginia, USA (Emeritus Professor). 3World Learning, Washington, DC, USA.

Authors’ contributions

The three authors participated in designing the study. AG organized the data collection. RJCP carried out the data analysis. BHN drafted the first version of the paper. All authors extensively reviewed all drafts, made comprehensive changes, and approved the final draft.

Competing interests

The authors declare that they have no competing interests.

Received: 20 January 2011 Accepted: 26 May 2011

Published: 26 May 2011

References

1. Mock NB, Duale S, Brown LF, Mathys E, O’Moneaigh HC, Abul-Husn NK, Elliott S: Conflict and HIV: A framework for risk assessment to prevent HIV in conflict-affected settings in Africa. Emerg Themes Epi 2004, 1:6.
2. Becker JU, Theodosis C, Kulkarni R: Poverty Reduction in Southern Africa: A Sub-regional Brief. INE (Instituto Nacional de Estatística).
3. Checchi F, Colombo S, Paik E: Health-care needs of people affected by conflict: future trends and changing frameworks. Lancet 2010, 375:341-345.
4. Becker JU, Drucker E: A paradoxical peace: HIV in post-conflict states. Med Conflict Surv 2008, 24:101-106.
5. Strand RT, Dias LF, Bergstrom S, Andersson S, Novoa A, Soares AC: Levels and trends of demographic indices in southern rural Mozambique: Evidence from demographic surveillance in Manhica district. BMC Pub Health 2006, 6:291.
6. UNECA: Poverty Reduction in Southern Africa A Sub-regional Brief.
7. INE (Instituto Nacional de Estatistica): Apresentacao de HIV em Sofala, CNCS (National Program to Control STI/HIV/AIDS). Beira, Mozambique; 2006.
8. Gunn JR, Crampin AC, Ngwira BMM, Mwafulirwa DT, Floyd S, Ponninghaus JM, Wamdford DK, Fine PEM: Trends in tuberculosis and the influence of HIV infection in northern Malawi, 1988-2001. AIDS 2004, 18:1459-1463.
9. Songane FF, Bergstrom S: Quality of registration of maternal deaths in Mozambique. Int J Gyn Obs 2003, 28(2):293-301.
10. Cutts FT, Dos Santos C, Novoa A, David P, Macassa G, Soares AC: Child and Maternal Mortality during a period of conflict in Beira City, Mozambique. Int J Epidemiol 1996, 25(2):349-356.
11. Smith J, Mushati P, Kufa V, Gregson S, Lopman B: Changing patterns of adult mortality as the HIV epidemic matures in Manicaland, eastern Zimbabwe. AIDS 2007, 21(Suppl 6):S81-S86.
12. Vuylsteke B, Bastos R, Barreto J, Crucitti T, Folgosa E, Mondlane J, Dusauchot T, Pot P, Laga M: High prevalence of sexually transmitted diseases in a rural area in Mozambique. Genitourn Med 1993, 69:427-430.
13. Coninx R, Dupuy C: Effects of the civil war in Central Mozambique and evaluation of the intervention of the International Committee of the Red Cross. J Trop Pediatr 1997, 43:318-323.
14. Nhaoclo A, Nhalungo DA, Sacoor CN, Aponte JJ, Thompson R, Alonso P: Child and maternal mortality during a period of conflict in Beira City, Mozambique. Int J Trop Pediatr 1997, 43:318-323.
15. WHO: Mortality Country Fact Sheet: Mozambique. 2004 [http://www.who.int/whosis/mort/profiles/mort_africa_moz_mozambique.pdf].
16. O’Hare Bam, Southhall DP: First do no harm: the impact of recent armed conflict on maternal and child health in Sub-Saharan Africa. J Royal Soc Med 2007, 100:564-570.
17. Multisectorial Technical Group: Report of the Update of the HIV Epidemiological Surveillance Data - 2004 Round, Republic of Mozambique, Ministry of Health, National Directorate of Health, National STD/HIV/AIDS Control Programme, Maputo. 2005.
18. Regan C, Nachega J, Anema A, Rachlis B, Mills EJ: HIV/AIDS in African militaries: an ecological analysis. Med Conflict Surv 2008, 24(2):88-100.
19. Hoekstra RR: Burden of disease in Maputo City, Mozambique: registered and autopsied deaths in 1994. Bull WHO 2001, 79:546-552.
20. Vuylsteke B, Bastos R, Barreto J, Crucitti T, Folgosa E, Mondlane J, Dusauchot T, Pot P, Laga M: High prevalence of sexually transmitted diseases in a rural area in Mozambique. Genitourn Med 1993, 69:427-430.
21. Coale AJ, Li SM: The effect of age misreporting in China on the calculation of mortality rates at very high ages. Demography 1991, 28(2):293-301.
22. World Bank: World Development Indicators. 2011 [http://data.worldbank.org/indicator/SP.DYN.LE00.IN/countries/MZ?page=1 &display=map].
23. Hare BAM, Southall DP: First do no harm: the impact of recent armed conflict on maternal and child health in Sub-Saharan Africa. J Royal Soc Med 2007, 100:564-570.
24. Trends in infant and child mortality as the HIV epidemic matures in Manicaland, eastern Zimbabwe. AIDS 2007, 21(Suppl 6):S81-S86.