Outermost boundaries for star-connected components in percolation

Ghurumuruhan Ganesan *

NISER, Bhubaneshwar, India

Abstract

Tile \mathbb{R}^2 into disjoint unit squares $\{S_k\}_{k \geq 0}$ with the origin being the centre of S_0 and say that S_i and S_j are star-adjacent if they share a corner and plus-adjacent if they share an edge. Every square is either vacant or occupied. If the occupied plus-connected component $C^+(0)$ containing the origin is finite, it is known that the outermost boundary ∂^+_0 of $C^+(0)$ is a unique cycle surrounding the origin. For the finite occupied star-connected component $C(0)$ containing the origin, we prove in this paper that the outermost boundary ∂^+_0 of $C^+(0)$ is a unique connected graph consisting of a union of cycles $\bigcup_{1 \leq i \leq n} C_i$ with mutually disjoint interiors. Moreover, we have that each pair of cycles in ∂^+_0 share at most one vertex in common and we provide an inductive procedure to obtain a circuit containing all the edges of $\bigcup_{1 \leq i \leq n} C_i$. This has applications for contour analysis of star-connected components in percolation.

Key words: Star connected components, outermost boundary, union of cycles.

AMS 2000 Subject Classification: Primary: 60J10, 60K35; Secondary: 60C05, 62E10, 90B15, 91D30.

*E-Mail: gganesan82@gmail.com
1 Introduction

Tile \mathbb{R}^2 into disjoint unit squares $\{S_k\}_{k \geq 0}$ with origin being the centre of S_0. We say S_1 and S_2 are adjacent or star-adjacent if they share a corner between them. We say that squares S_1 and S_2 are plus-adjacent, if they share an edge between them. Here we follow the notation of Penrose (2003). Suppose every square is assigned one of the two states: occupied or vacant. In many applications like for example, percolation, it is of interest to determine the outermost boundary of the plus-connected or star-connected components containing the origin. We make formal definitions below. The case of plus-connected components is well studied (Bollobas and Riordan (2006), Penrose (2003)) and in this case, the outermost boundary is simply a cycle containing the origin. Our main result is that the outermost boundary for the star-connected component is a connected union of cycles with disjoint interiors.

Let $C(0)$ denote the star-connected occupied component containing the origin and throughout we assume that $C(0)$ is finite. Thus if S_0 is vacant then $C(0) = \emptyset$. Else $S_0 \in C(0)$ and if $S_1, S_2 \in C(0)$ there exists a sequence of distinct occupied squares $(Y_1, Y_2, ..., Y_t)$ all belonging to $C(0)$, such that Y_i is adjacent to Y_{i+1} for all i and $Y_1 = S_1$ and $Y_t = S_2$. Let G_C be the graph with vertex set being the set of all corners of the squares $\{S_k\}_{k \in C(0)}$ and edge set consisting of the edges of the squares $\{S_k\}_{k \in C(0)}$.

Two vertices u and v are said to be adjacent in G_C if they share an edge between them. We say that an edge e in G_C is adjacent to square S_k if it is one of the edges of S_k. We say that e is a boundary edge if it is adjacent to a vacant square and is also adjacent to an occupied square. A path P in G_C is a sequence of distinct vertices $(u_0, u_1, ..., u_t)$ such that u_i and u_{i+1} are adjacent for every i. A cycle C in G_C is a sequence of distinct vertices $(v_0, v_1, ..., v_m, v_0)$ starting and ending at the same point such that v_i is adjacent to v_{i+1} for all $0 \leq i \leq m - 1$ and v_m is adjacent to v_0. A circuit C' in G_C is a sequence of vertices $(w_0, w_1, ..., w_r, w_0)$ starting and ending at the same point such that w_i is adjacent to w_{i+1} for all $0 \leq i \leq r - 1$, w_r is adjacent to w_0 and no edge is repeated in C'. Thus vertices may be repeated in circuits and for more related definitions, we refer to Chapter 1, Bollobas (2001).

Any cycle C divides the plane \mathbb{R}^2 into two disjoint connected regions. As in Bollobas and Riordan (2006), we denote the bounded region to be the interior of C and the unbounded region to be the exterior of C. We have the following definition.
Definition 1. We say that edge e in G_C is an outermost boundary edge of the component $C(0)$ if the following holds true for every cycle C in G_C: either e is an edge in C or e belongs to the exterior of C.

We define the outermost boundary ∂_0 of $C(0)$ to be the set of all outermost boundary edges of G_C.

Thus outermost boundary edges cannot be contained in the interior of any cycle in G_C. Our main result is the following.

Theorem 1. Suppose $C(0)$ is finite. The outermost boundary ∂_0 of $C(0)$ is a unique set of cycles C_1, C_2, \ldots, C_n in G_C with the following properties:

(i) The graph $\bigcup_{1 \leq i \leq n} C_i$ is a connected subgraph of G_C.

(ii) If $i \neq j$, the cycles C_i and C_j have disjoint interiors and share at most one vertex.

(iii) Every square $S_k \in C(0)$ is contained in the interior of some cycle C_j.

(iv) If $e \in C_j$ for some j, then e is a boundary edge of $C(0)$ adjacent to an occupied square of $C(0)$ in the interior of C_j and also adjacent to a vacant square in the exterior.

Moreover, there exists a circuit C_{out} containing every edge of $\bigcup_{1 \leq i \leq n} C_i$.

The outermost boundary ∂_0 is therefore also an Eulerian graph with C_{out} denoting the corresponding Eulerian circuit (for definitions, we refer to Chapter 1, Bollobas (2001)). We remark that the above result also provides a more detailed justification of the statement made about the outermost boundary and the corresponding circuit in the proof of Lemma 3 of Ganesan (2013). Using the above result, we also obtain the outermost circuit that is used to construct the top-down crossing in oriented percolation in a rectangle in Ganesan (2015).

The proof of the above result also obtains the outermost boundary cycle in the case of plus-connected components. We recall that S_1 and S_2 are plus-adjacent if they share an edge between them. Analogous to the star-connected case, we define $C^+(0)$ to be the plus-connected component containing the origin and define the graph G^+_C consisting of edges and corners of squares in $C^+(0)$. We have the following.

Theorem 2. Suppose $C^+(0)$ is finite. The outermost boundary ∂_0^+ of $C^+(0)$ is unique cycle C_{out}^+ in G_C^+ with the following property:

(i) All squares of $C^+(0)$ are contained in the interior of C_{out}^+.

(ii) Every edge in C_{out}^+ is a boundary edge adjacent to an occupied square of $C^+(0)$ in the interior of C_{out}^+ and a vacant square in the exterior.
This is in contrast to star-connected components which may contain multiple cycles in the outermost boundary.

To prove Theorem 1, we use the following intuitive result about merging cycles. Analogous to G_C, let G be the graph with vertex set being the corners of the squares $\{S_k\}_k$ and edge set being the edges of the squares $\{S_k\}_k$.

Theorem 3. Let C_1 and C_2 be cycles in G that have more than one vertex in common. There exists a unique cycle C_3 consisting only of edges of C_1 and C_2 with the following properties:

(i) the interior of C_3 contains the interior of both C_1 and C_2,

(ii) if an edge e belongs to C_1 or C_2, then either e belongs to C_3 or is contained in its interior.

Moreover, if C_2 contains at least one edge in the exterior of C_1, then the cycle C_3 also contains an edge of C_2 that lies in the exterior of C_1.

The above result essentially says that if two cycles intersect at more than one point, there is an innermost cycle containing both of them in its interior. We provide an iterative construction for obtaining the cycle C_3, analogous to Kesten (1980) for crossings, in Section 3.

The paper is organized as follows: In Section 2, we prove Theorem 1 and in Section 3, we prove Theorem 2 and Theorem 3.

2 Proof of Theorem 1

Proof of Theorem 1. The first step is to obtain large cycles surrounding each occupied square in $C(0)$. We have the following Lemma.

Lemma 4. For every $S_k \in C(0)$, there exists a unique cycle D_k satisfying the following properties:

(a) S_k is contained in the interior of D_k,

(b) every edge in the cycle D_k is a boundary edge adjacent to one occupied square of $C(0)$ in the interior and one vacant square in the exterior and

(c) if C is any cycle in G_C that contains S_k in the interior, then every edge in C either belongs to D_k or is contained in the interior.

We denote D_k to be the outermost boundary cycle containing the square S_k. We prove all statements at the end.

We claim that the set of distinct cycles in the set $\mathcal{D} \coloneqq \cup_{S_k \in C(0)} \{D_k\}$ is the desired outermost boundary ∂_0 and satisfies the conditions (i)-(iv)
mentioned in the statement of the theorem. By construction, we have that (iii) and (iv) are satisfied. To see that (ii) holds, we suppose that \(D_{k_1} \neq D_{k_2} \) and that \(D_{k_1} \) and \(D_{k_2} \) meet at more than one vertex. We know that \(D_{k_2} \) is not completely contained in \(D_{k_1} \). Thus \(D_{k_2} \) contains at least one edge in the exterior of \(D_{k_1} \). From Theorem 3, we obtain a cycle \(D'_{12} \) containing both \(D_{k_1} \) and \(D_{k_2} \) in the interior and containing an edge \(e \) present in \(D_{k_2} \) but not in \(D_{k_1} \) or its interior. The cycle \(D'_{12} \) satisfies condition (a) in Lemma above and thus contradicts the assumption that \(D_{k_1} \) satisfies (c). Thus \(D_{k_1} \) and \(D_{k_2} \) cannot meet at more than one vertex.

Also (i) holds, because of the following reason. First we note that by construction \(G_C \) is connected; let \(u_1 \) and \(u_2 \) be vertices in \(G_C \). Each \(u_i; i = 1, 2 \) is a corner of an occupied square \(S_i \in C(0) \) and by definition, \(S_1 \) and \(S_2 \) are star-connected via squares in \(C(0) \). Thus there exists a path in \(G_C \) from \(u_1 \) to \(u_2 \).

To see that \(\mathcal{D} \) is a connected subgraph of \(G_C \), we let \(v_1 \) and \(v_2 \) be vertices in \(\mathcal{D} \) that belong to cycles \(D_{r_1} \) and \(D_{r_2} \), respectively, for some \(r_1 \) and \(r_2 \). If \(r_1 = r_2 \), then \(v_1 \) and \(v_2 \) are connected by a path in \(D_{r_1} = (z_1 = v_1, z_2, ..., z_n, z_1) \). If \(r_1 \neq r_2 \), let \(\bar{P}_{12} = (w_1 = v_1, w_2, ..., w_{i-1}, w_i = v_2) \) be a path from \(v_1 \) to \(v_2 \) in \(G_C \). We iteratively construct a path \(P'_{12} \) from \(P_{12} \) using only edges of cycles in \(\mathcal{D} \). We first note that since (iii) holds, every edge in \(P_{12} \) either belongs to a cycle in \(\mathcal{D} \) or is contained in the interior of some cycle in \(\mathcal{D} \). Let \(i_1 \) be the first time \(P_{12} \) leaves \(D_{r_1} \); i.e., let \(i_1 = \min\{i \geq 1 : w_{i+1} \) belongs to exterior of \(D_{r_1} \}\).

The edge formed by the vertices \(w_{i_1} \) and \(w_{i_1+1} \) belongs to some cycle \(D_{s_1} = (x_1 = w_{i_1}, x_2, ..., x_r, x_1) \) or is contained in its interior. Since the cycles \(D_{r_1} \) and \(D_{s_1} \) have disjoint interiors, this necessarily means \(D_{s_1} \) and \(D_{r_1} \) meet at \(w_{i_1} \). Defining \(T_1 = (z_1 = v_1, z_2, ..., z_{j_1} = w_{i_1}) \), we note that \(T_1 \) is a path consisting only of edges in the cycle \(D_{r_1} \) and containing the vertex \(z_1 = v_1 \). Repeating the same procedure above, we obtain another path \(T_2 = (w_{i_1} = x_1, x_2, ..., x_{j_2} = w_{i_2}) \) contained in \(D_{s_1} \), where, as before, \(i_2 = \min\{i \geq i_1 + 1 : w_{i+1} \) belongs to exterior of \(D_{s_1} \}\) denotes the first time \(P_{12} \) leaves \(D_{s_1} \). We continue this procedure for a finite number of steps \(m \), until we reach \(v_2 \). By construction, the path \(T_i \) obtained at step \(i \), \(2 \leq i \leq m \) is connected to \(\bigcup_{1 \leq j \leq i-1} T_j \). The final union of paths \(\bigcup_{1 \leq i \leq m} T_i \) is therefore a connected graph containing only edges in \(\mathcal{D} \) and contains \(v_1 \) and \(v_2 \).

It remains to see that an edge \(e \) belongs to the outermost boundary if and only if it belongs to some cycle in \(\mathcal{D} \). If \(e \) is an edge in a cycle \(D_k \in \mathcal{D} \) we have that \(e \) is adjacent to an occupied square \(S_e \) contained in the interior
of D_k and a vacant square S_e' in the exterior. If there exists a cycle C in G_C that contains e in the interior, we then have that both S_e and S_e' are contained in the interior of C. Since S_e' is exterior to D_k, the cycle C contains at least one edge in the exterior of D_k. But if D_e denotes the outermost cycle containing S_e, then by the discussion in the first paragraph, we must have that $D_e = D_k$. And thus every edge of C either belongs to D_e or is contained in the interior of D_e which leads to a contradiction.

We also see that no other edge apart from edges of cycles in D can belong to the outermost boundary since if $e_1 \notin D$, then e_1 is necessarily contained in the interior of some cycle $D_r \in D$.

Finally, to obtain the circuit we compute the cycle graph H_{cyc} as follows: let $E_1, E_2, ..., E_n$ be the distinct outermost boundary cycles in D. Represent E_i by a vertex i in H_{cyc}. If E_i and E_j share a corner, we draw an edge between i and j. We have the following lemma.

Lemma 5. We have that the graph H_{cyc} described above is a tree.

We provide the proof of the above at the end.

We then obtain the circuit via induction on the number of vertices n of H_{cyc}. For $n = 1$, it is a single cycle. Suppose we obtain the circuit of all cycle graphs containing at most k vertices and let H_{cyc} be a cycle graph containing $k + 1$ vertices. To obtain the circuit for H_{cyc}, we pick a leaf q of H_{cyc} and apply induction assumption on the cycle graph $H'_{cyc} = H_{cyc} \setminus q$. To fix a procedure, we choose q such that the corresponding boundary cycle E_q contains a square S_j of least index j in its interior. We have that H'_{cyc} is connected and has k vertices and thus has a circuit $C_k = (c_1, c_2, ..., c_r, c_1)$ containing all edges of every cycle in H'_{cyc}. Let C_k meet the cycle $E_q = (d_1, d_2, ..., d_t, d_1)$ at $d_t = c_1$. We then form the new circuit $C_{k+1} = (d_1, d_2, ..., d_t = c_1, c_2, ..., c_r, c_1 = d_t, d_{t+1}, ..., d_i, d_1)$, which contains all edges of every cycle in H_{cyc}.

Proof of Lemma 5 We note that if there exists such a D_k, then it is unique by definition. Let \mathcal{E} be the set of all cycles in G_C satisfying condition (a); i.e., if C is a cycle containing S_k in its interior then $C \in \mathcal{E}$. The set \mathcal{E} is not empty since the cycle formed by the four edges of S_k belongs to \mathcal{E}. We merge cycles in \mathcal{E} two by two using Theorem 3 to obtain the desired cycle D_k. We first pick a cycle F_1 in \mathcal{E} using a fixed procedure; for example, using an analogous iterative procedure as described in Section 1 of Ganesan (2014) for choosing paths.
We again use the same procedure to pick a cycle F_2 in $E \setminus F_1$ and from Theorem 3 obtain a cycle F'_1 consisting of only edges of F_1 and F_2 and containing both F_1 and F_2 in its interior. The cycle F'_1 also satisfies (a) and thus belongs to E. Therefore, if E has t cycles, then $E_1 := (E \setminus \{F_1, F_2\}) \cup F'_1$ has at most $t - 1$ cycles; if F_1 contains an edge in the exterior of F_2 and the cycle F_2 also contains an edge in the exterior of F_1, then E_1 has $t - 2$ cycles. Else F'_1 is either F_1 or F_2 and the set E_1 therefore contains $t - 1$ cycles.

By construction, every cycle in E is either a cycle in E_1 or is contained in the interior of a cycle in E_1. Therefore, if E_1 contains one cycle, it is the desired outermost boundary cycle D_k. Else we repeat the above procedure with E_1 and obtain another set E_2 containing at most $t - 2$ cycles and again with the property that every cycle in E is either a cycle in E_2 or is contained in the interior of a cycle in E_2. Continuing this process, we are finally left with a single cycle C_{fin}. By construction it satisfies (a) and (c). It only remains to see that (b) is true.

Suppose there exists an edge e of C_{fin} that is not a boundary edge. Since e is an edge of G_C, we then have that e is adjacent to two occupied squares S_1 and S_2, with one of the squares, say S_1, contained in the interior of C_{fin} and the other square S_2, contained in the exterior. The cycle C_2 containing the four edges of the square S_2 and the cycle C_{fin} have the edge e in common and thus more than one vertex in common. Since C_2 contains at least one edge in the exterior of C_{fin}, we use Theorem 3 to obtain a larger cycle C'_2 containing both C_{fin} and C_2 in the interior. The cycle C'_2 contains at least one edge not in C_{fin}. But since C_{fin} satisfies (c), this is a contradiction. Thus every edge e of C_{fin} is a boundary edge.

By the same argument above, we also see that the edge e cannot be adjacent to an occupied square in the exterior of C_{fin}. Thus e is adjacent to an occupied square in the interior and a vacant square in the exterior.

Proof of Lemma[3]: We already have that H_{cyc} is connected. It is enough to see that it is acyclic. Before we prove that, we make the following observation. Consider a path $P = (i_1, i_2, ..., i_m)$ in H_{cyc}. We see that any vertex in E_{i_1} and any vertex in E_{i_m} is connected by a path consisting only of edges of the cycles $\{E_{i_k}\}_{1 \leq k \leq m}$.

Suppose H_{cyc} contains a cycle $C = (r_1, r_2, ..., r_s, r_1)$. Let the boundary cycle $E_{r_1} = (u_1, u_2, ..., u_m, u_1)$ meet E_{r_2} at u_1 and E_{r_s} at u_j. We have that $j \neq 1$ since three boundary cycles cannot meet at a point. This is illustrated in Figure 1(b). The occupied square S_1 belongs to E_{r_2} and the occupied

7
Figure 1: (a) Merging cycle ABCDA with the segment AEC. (b) Only two cycles can meet at a single point.

square S_2 belongs to E_{r_s}. It is necessary that the squares S_3 and S_4 are vacant and thus cannot be on the boundary of any other cycle.

Let P_1 and P'_1 be the two segments of E_{r_1} starting at u_1 and ending at u_j. Since $u_1 \in E_{r_2}$ and $u_j \in E_{r_s}$, we have by the observation made in the first paragraph that there exists a path P_2 from u_1 to u_j, consisting only of edges in $\{E_{r_i}\}_{2 \leq i \leq s}$. This path necessarily lies in the exterior of E_{r_1} and is illustrated in Figure 1(a). Here ABCDA represents the cycle E_{r_1}, the path P_1 is the segment ADC and the path P'_1 is the segment ABC. The path P_2 is denoted by the exterior segment AEC.

Thus it is necessary that either the cycle C_{12} formed by $P_1 \cup P_2$ contains P'_1 in the interior or the cycle C'_{12} formed by $P'_1 \cup P_2$ contains P_1 in the interior. Suppose the former holds and let S_a be any occupied square in the interior of E_{r_1}. We know that $E_{r_1} = D_a$ is the outermost boundary cycle containing S_a and satisfies conditions (a), (b) and (c) mentioned in Lemma 4. The cycle C_{12} also contains S_a in the interior and thus satisfies condition (a). Moreover, it contains at least one edge in the exterior of E_{r_1} contradicting the fact that E_{r_1} satisfies (c). Thus H_{cyc} is acyclic.

\[\blacksquare\]
3 Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2 Let \(D_0 \) be the outermost boundary cycle containing the square \(S_0 \) as in Lemma 4. It satisfies the conditions (i) and (ii) in the statement of the theorem and is unique and thus \(C_{\text{out}}^+ = D_0 \).

Proof of Theorem 3 If every edge of \(C_1 \) is either on \(C_2 \) or contained in the interior of \(C_2 \), then the desired cycle \(C_3 = C_2 \). If similarly, \(C_2 \) is completely contained in \(C_1 \), we set \(C_3 = C_1 \). So we suppose that \(C_1 \) contains at least one edge in the exterior of \(C_2 \) and \(C_2 \) also contains at least one edge in the exterior of \(C_1 \).

We start with cycle \(C_1 \) and in the first step, identify a path of \(C_2 \) contained in the exterior of \(C_1 \). Set \(C_{1,0} := C_1 = (u_0, u_1, \ldots, u_{t-1}, u_0) \) and \(C_2 = (v_0, v_1, \ldots, v_{m-1}, v_0) \). For later notation, we define \(u_k = u_k \mod t \) if \(k \leq 0 \) or \(k \geq t \) and \(v_k = v_k \mod m \) if \(k \leq 0 \) or \(k \geq m \).

Start from some vertex of \(C_{1,0} \), say \(u_0 \), and look for the first intersection point that contains an exterior edge of \(C_2 \); i.e., an edge of \(C_2 \) that lies in the exterior of \(C_1 \). Let \(j_1 = \min \{ j \geq 0 : u_j \in C_{1,0} \} \) and \(j_1 \) is an endvertex of an exterior edge of \(C_2 \) and let \(v_{i_1} = u_{j_1} \). We suppose that the edge of \(C_2 \) with endvertices \(v_{i_1} \) and \(v_{i_1+1} \) lies in the exterior of \(C_1 \). Let \(r_1 = \min \{ i \geq i_1 + 1 : v_i \in C_{1,0} \} \) be the next time the cycles meet and define \(P_1 = (v_{i_1}, v_{i_1+1}, \ldots, v_{r_1}) \).

We note that none of the vertices \(v_j, i_1 + 1 \leq j \leq r_1 - 1 \) belong to \(C_{1,0} \). If \(v_{i_1} = v_{r_1} \), then \(P_1 \) is a cycle containing the edges of \(C_2 \) and thus \(P_1 = C_2 \). Since \(C_1 \) and \(C_2 \) contain more than one vertex in common, this cannot happen. Thus \(P_1 \) is a path and all edges of \(P_1 \) are in the exterior of \(C_{1,0} \).

We then construct an outermost cycle from \(C_{1,0} \) and \(P_1 \) as follows. Split \(C_{1,0} \) into two segments based on intersection with \(P_1 \). Suppose \(P_1 \) meets \(C_{1,0} \) at \(u_{a_1} \) and \(u_{b_1} \). We let \(C_{1,0}^{'} = (u_{a_1}, u_{a_1+1}, \ldots, u_{b_1}) \) and \(C_{1,0}'' = (u_{a_1}, u_{a_1-1}, \ldots, u_{b_1}) \). If the interior of \(C_{1,0}^{'} \cup P_1 \) contains the interior of \(C_{1,0}'' \cup P_1 \) as in Figure 1(a), we set \(C_{1,1} = C_{1,0}^{'} \cup P_1 \) to be the cycle obtained in the first iteration by the concatenation of the paths \(C_{1,0}^{'} \) and \(P_1 \). Here \(C_{1,0}^{''} \) is the segment \(AEC \), the path \(C_{1,0}^{'} \) is the segment \(ABC \) and the path \(P_1 \) is denoted \(AEC \). Else necessarily we have that the interior of \(C_{1,0}^{''} \cup P_1 \) contains the interior of \(C_{1,0}^{'} \cup P_1 \) and we set \(C_{1,1} = C_{1,0}'' \cup P_1 \). Since \(P_1 \neq \emptyset \), we have that \(C_{1,1} \) contains at least one exterior edge.
We then perform the same procedure as above on the cycle $C_{1,1}$ and continue this process for a finite number of steps to obtain the final cycle $C_{1,n}$. For each $j, 1 \leq j \leq n$, we have that the cycle $C_{1,j}$ satisfies the following properties:

1) the cycle $C_{1,j}$ contains only edges from C_1 and C_2,
2) every edge of C_1 either belongs to $C_{1,j}$ or is contained in the interior of $C_{1,j}$,
3) the cycle $C_{1,j}$ contains at least one exterior edge of C_2 and
4) the interior of C_1 is contained in $C_{1,j}$.

In particular, the above properties hold true for the final cycle $C_{1,n}$. If there exists an edge e of C_2 in the exterior of $C_{1,n}$, then the edge e belongs to a path P_e of C_2 containing edges exterior to C_1. The path P_e must meet C_1 and thus there exists an edge of C_2 that lies in the exterior of C_1 and contains an endvertex of C_1. But then the above procedure would not have terminated and thus we also have:

5) every edge of C_2 either belongs to $C_{1,n}$ or is contained in the interior of $C_{1,n}$.

Thus property (ii) stated in the result holds true and we need to see that (i) holds. For that we first prove uniqueness of the cycle $C_{1,n}$ obtained above. Suppose there exists another cycle $D' \neq C_{1,n}$ satisfying properties (1), (2) and (5) above. If D' contains an edge e' (which must necessarily belong to C_1 or C_2) in the exterior of $C_{1,n}$, it contradicts the fact that $C_{1,n}$ satisfies (2) and (5).

If D' is completely contained in the interior of $C_{1,n}$ and is not equal to $C_{1,n}$, then there is at least one edge of $C_{1,n}$ (which belongs to C_1 or C_2) that lies in the exterior of D', contradicting the assumption that D' satisfies (2) and (5).

Thus any cycle satisfying properties (1), (2) and (5) is unique. We recall that C_1 also contains an edge in the exterior of C_2. Suppose now we start from $C_{2,0} := C_2$ and identify segments of C_1 lying in the exterior of C_2 and perform the same iterative procedure as above to obtain a final cycle $C_{2,m}$. This cycle must also satisfy (1), (2) and (5) and hence $C_{2,m} = C_{1,n}$. Moreover, $C_{2,m}$ satisfies:

3') the cycle $C_{2,m}$ contains at least one exterior edge of C_1 and
4') the interior of C_2 is contained in $C_{2,m}$.

Thus the cycle $C_{1,n}$ is unique and satisfies properties (i) and (ii) stated in the result. ■
Acknowledgement

I thank Professor Rahul Roy for crucial comments and NISER for my fellowship.

References

[1] B. Bollobas. (2001). *Modern Graph Theory*. Springer.

[2] B. Bollobas and O. Riordan. (2006). *Percolation*. Academic Press.

[3] G. Ganesan. (2013). Size of the giant component in a random geometric graph. *Ann. Inst. Henri Poincare*, 49, 1130–1140.

[4] G. Ganesan. (2014). First passage percolation with nonidentical passage times. *Arxiv Link*: http://arxiv.org/abs/1409.2602

[5] G. Ganesan. (2015). Infection spread in random geometric graphs. *Adv. Appl. Probab.*, 47, 164–181.

[6] H. Kesten. (1980). The critical probability of bond percolation on the square lattice equals $\frac{1}{2}$. *Commun. Math. Phys.*, 74, 41–59.

[7] M. Penrose. (2003). *Random Geometric Graphs*. Oxford.