Diagnostic accuracy of transient elastography (FibroScan) in detection of esophageal varices in patients with cirrhosis: A meta-analysis

Ke Pu, Jing-Hong Shi, Xu Wang, Qian Tang, Xin-Jie Wang, Kai-Lin Tang, Zhong-Qi Long, Xing-Sheng Hu

AIM
To investigate the diagnostic accuracy of FibroScan (FS) in detecting esophageal varices (EV) in cirrhotic patients.

METHODS
Through a systemic literature search of multiple databases, we reviewed 15 studies using endoscopy as a reference standard, with the data necessary to calculate pooled sensitivity (SEN) and specificity (SPE), positive and negative LR, diagnostic odds ratio (DOR) and area under receiver operating characteristics (AUROC). The quality of the studies was rated by the Quality Assessment of Diagnostic Accuracy studies-2 tool. Clinical utility of FS for EV was evaluated by a Fagan plot. Heterogeneity was explored using meta-regression and subgroup analysis. All statistical analyses were conducted via Stata12.0, MetaDisc1.4 and RevMan5.
RESULTS
In 15 studies (n = 2697), FS detected the presence of EV with the summary sensitivities of 84% (95%CI: 81.0%-86.0%), specificities of 62% (95%CI: 58.0%-66.0%), a positive LR of 2.3 (95%CI: 1.81-2.94), a negative LR of 0.26 (95%CI: 0.19-0.35), a DOR of 9.33 (95%CI: 5.84-14.92) and an AUROC of 0.8262. FS diagnosed the presence of large EV with the pooled SEN of 0.78 (95%CI: 75.0%-81.0%), SPE of 0.76 (95%CI: 73.0%-78.0%), a positive and negative LR of 3.03 (95%CI: 2.38-3.86) and 0.30 (95%CI: 0.23-0.39) respectively, a summary diagnostic OR of 10.69 (95%CI: 6.81-16.78), and an AUROC of 0.8321. A meta-regression and subgroup analysis indicated different etiology could serve as a potential source of heterogeneity in the diagnosis of the presence of EV group. A Deek’s funnel plot suggested a low probability for publication bias.

CONCLUSION
Using FS to measure liver stiffness cannot provide high accuracy for the size of EV due to the various cutoff and different etiologies. These limitations preclude widespread use in clinical practice at this time; therefore, the results should be interpreted cautiously given its SEN and SPE.

Key words: Transient elastography; FibroScan; Liver cirrhosis; Meta-analysis; Esophageal varices

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Esophageal varices (EV) is the main relevant portosystemic collaterals in cirrhotic patients. Hemorrhage from EV remains the leading cause of death in patients with cirrhosis, with an in-hospital mortality of 14.2%-14.5%[2,3]. Endoscopic screening for EV is recommended for the diagnosis, prevention, and management in patients with cirrhosis via surveillance with frequency related to the degree and treatment of varices[1]. Nevertheless, a generalized program of periodical and repeated esophagogastroduodenoscopy (EGD) examination can result in unnecessary economic burden, and subject the patient to an uncomfortable feeling without general anesthesia or profound sedation. All of these reasons lead to decline in patient compliance with treatment and follow-ups. Meanwhile, the endoscopy-related complications reported by a related article is close to 0.1% of incidence[4]. Moreover, approximately 50% of cirrhotic patients may not develop EV in the 10-year period after the initial cirrhosis diagnosis[5], and prophylactic medication with beta-blockers or invasive preventive treatments such as endoscopic sclerosis or band ligation[10] should have been initiated after diagnosis. Actually, according to the point prevalence of medium and significant varices the highest risk of hemorrhage is only 15% to 25%, and the majority of patients with cirrhosis who undergo screening EGD either do not have varices or have small EV that do not require prophylactic therapy[6]. To avoid unnecessary endoscopy in low-risk patients, more noninvasive tests have been carried out as substitution to replace endoscopy for EV screening.

Transient elastography (TE) with FibroScan (FS; Echosens, Paris, France), which measures liver stiffness (LS) depending on the calculation of liver frequency elastic wave inside the liver[11], has been recognized as a rapid, non-invasive technique for evaluating the severity of liver disease, and has been found to be useful in the diagnosis of the underlying stage of fibrosis in recent studies[8-11]. Therefore, FS has the potential to be used for the non-invasive evaluation of EV[12]. Although there are few studies that have focused on the correlation between LS and the presence of EV or the severity of EV, the cutoffs and validities vary in the different factors, including different studies, techniques of measuring LS, fibrosis stages and etiologies of hepatic cirrhosis[13]. Hence, the aim of this meta-analysis of the basis for clinical application and research was to assess whether there is sufficient evidence to recommend FS as a noninvasive screening method as compared with EGD as the reference standard for predicting the presence of EV and high-risk EV in patients with cirrhosis.

MATERIALS AND METHODS
Study selection
Electronic databases, including PubMed, EMBASE, Web of Science and Cochrane Library, were used to perform systematic search for all relevant clinical articles on evaluation of LS for diagnosis of EV in cirrhotic patients

INTRODUCTION
Esophageal varices (EV) is the main relevant portosystemic collaterals and are present in approximately 50% of cirrhotic patients[4]. Hemorrhage from EV remains the leading cause of death in patients with cirrhosis, with an in-hospital mortality of 14.2%-14.5%[2,3]. Endoscopic screening for EV is recommended for the diagnosis, prevention, and management in patients with cirrhosis via surveillance with frequency related to the degree and treatment of varices[1]. Nevertheless, a generalized program of periodical and repeated esophagogastroduodenoscopy (EGD) examination can result in unnecessary economic burden, and subject the patient to an uncomfortable feeling without general anesthesia or profound sedation. All of these reasons lead to decline in patient compliance with treatment and follow-ups. Meanwhile, the endoscopy-related complications reported by a related article is close to 0.1% of incidence[4].

Pu K et al. FibroScan for the detection of EV

Pu K, Shi JH, Wang X, Tang Q, Wang XJ, Tang KL, Long ZQ, Hu XS. Diagnostic accuracy of transient elastography (FibroScan) in detection of esophageal varices in patients with cirrhosis: A meta-analysis. World J Gastroenterol 2017; 23(2): 345-356 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i2/345.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i2.345
from the time of database inception to January 1, 2016 by applying heading terms and key words of “TE”, “EV” and “liver cirrhosis”. The process of trials selection were assessed by two review authors (Wang XJ, Tang KL) independently and blindly. The references were screened by titles and abstracts firstly and then further selected by reading the full-text to exclude irrelevant reports according to the inclusion criteria.

Eligibility criteria
Study inclusion criteria were as follows: (1) performed in patients with liver cirrhosis diagnosed by liver biopsy, due to any etiology with or without evidence of portal hypertension or cirrhosis; (2) offered adequate description of LS using either TE (FS) or real-time tissue elastography; (3) assessment of EV based on upper endoscopy (GIE) as the reference standard; (4) provided sufficient data necessary to calculate the test performance, including sensitivity (SEN), specificity (SPE), false positive and false negative diagnostic results (either in the primary article or after contact with corresponding authors) based on available cutoff point of FS in the presence and large EV. Inclusion was not restricted by study size, language, or publication type.

Data extraction and quality assessment
The primary data from included studies was abstracted as follows: first author’s name and year of publication, number of patients, region, etiology of liver cirrhosis, cutoff point, and the values for true-positive (TP), true-negative (TN), false-positive (FP), false-negative (FN), SEN and SPE results of FS. All discrepancies were resolved by consensus.

The quality assessment of the studies included in this study was performed by two authors independently using the Quality Assessment of Diagnostic Accuracy studies (QUADAS-2)

Statistical analysis
According to the TP, FP, FN and TN values from the original papers, the meta-analyses were performed by the Meta-Disc software version 1.4 to evaluate the pooled statistics (95%CI) of SEN, SPE, positive and negative LR [i.e., PLR = SEN/(1 - SPE), NLR = (1 - SEN)/SPE], diagnostic odds ratio (DOR) and area under the summary receiver operating characteristic curves (AUSROC) with standard errors (SE) and Q indexes with SE for the test performance of LS for the presence of EV and large EV diagnosis. If there were not sufficient information, we recalculated these values on the basis of the sensitivities and specificities offered. However, summary statistics observed the diagnostic threshold effect analyzed by Spearman’s correlation coefficient and P value. If there was no significant threshold effect, the diagnostic accuracy was estimated by pooled statistics; on the contrary, the diagnostic accuracy was evaluated by only AUSROC and Q indexes, rather than sensitivities, specificities, PLR, NLR and DOR.

A PLR was the probability of a cirrhotic patient with EV testing positive by the gold standard (i.e., GIE) divided by the probability of a cirrhotic patient without EV testing positive; meanwhile, a NLR was the probability of testing negative for cirrhosis patients with EV divided by the probability of testing negative for cirrhotic patients without EV. The PLR > 5.0 and NLR < 0.2 implied higher diagnostic evidence. The DOR represented the odds of positive LS in cirrhotic patients with EV compared with the odds of cirrhotic patients without EV. AUSROC values of 0.5-0.7, 0.7-0.9 and 0.9-1.0 were used to suggest low, moderate and high diagnostic accuracy, respectively. A smaller Q index indicated a lower diagnostic accuracy.

Heterogeneity was valued by Cochran’s Q statistic based on χ² test and I² statistic. I² values of 0%-40%, 40%-70% and 70%-100% were indicative of low, moderate and high variance, respectively

RESULTS

Study selection and characteristics
The 303 articles yielded by the study selection process are presented in a flow chart in Figure 1, of which 212 were excluded for irrelevance and duplication
following title and abstract screening. The remaining 91 potentially eligible reports were screened for further evaluation. Of those, after exclusion for irrelevant contents, no full-text and insufficient data, ultimately 15 papers [16-30] were included for the meta-analysis and included 12 English papers, 1 Korean [23] paper and 2 Chinese papers [20, 21].

The 15 studies, which were performed in Europe (8 papers), Asia (6 papers) and Africa (1 paper), included a total of 2697 cirrhotic patients informing diagnostic performance of LS measure by FS (TE) for the detection of EV and significant EV (Table 1).

All studies included cirrhotic participants who were recently diagnosed or referred to the endoscopic units for screening endoscopy. Almost all of the patients included were stable and did not have any active upper gastrointestinal bleeding. All patients underwent clinical and biochemical evaluation, and underwent ultrasonography to assess the liver diameter and determine the presence of ascites complication. The severity of cirrhosis was classified into class A, B, and C on the basis of Child Turcotte Pugh’s score.

The etiologies of liver cirrhosis included viral hepatitis (hepatitis B virus, hepatitis C virus, and mixture), alcoholic cirrhosis, and miscellaneous etiologies. Viral etiology was the leading cause of liver cirrhosis in the included studies. There were 5 studies performed only in patients with hepatitis B or C, 3 studies performed in cirrhotic patients with 2 etiologies and 7 studies conducted in patients with more than 3 etiologies.

The gold standard for the identification and grading of EV for all studies was GIE or EGD. Except for the 3 studies of respective design, the Chinese Medical Association 2003 classification [31] was used to classify the varices into small, moderate and large, and 2 papers classified F0-3 and Grade 0-4 with Beppu [32] and Thakeb classification while the others used the grading system to classify the varices into 4 Grades [33].

The quality of the eligible studies, as assessed according to the QUADAS-2 criteria, was independently appraised by reviewers, as reported in Figures 2 and 3. Five studies were identified as low-risk for risk of bias and applicability concerns. The remaining studies were estimated as suboptimal for unclear risk in the following domains: index test, reference standard, flow and timing; most of the studies were identified as having a potential bias risk for patient selection and reference standard.

Diagnostic accuracy of FS for detection of EV

The heterogeneity test indicated that Cochran- Q and \(I^2 \) of DOR were 40.34 and 70.3% \((P = 0.0001)\) (Supplementary Figure 1); there was significant heterogeneity in the included articles. Therefore, the random-effects model was selected to combine effect quantity. As a result, the pooled SEN of 13 studies was 0.84 (95%CI: 81.0%-86.0%, \(I^2 \) statistic 74.7%), whereas the pooled SPE was 0.62 (95%CI: 58.0%-66.0%, \(I^2 \) statistic 83.6%) (Figure 4). The positive and negative LR was 2.3 (95%CI: 1.81-2.94, \(I^2 \) statistic 82.0%) and 0.26 (95% CI: 0.19-0.35, \(I^2 \) statistic 71.6%) respectively. The summary diagnostic OR was 9.33 (95%CI: 5.84-14.92) (Supplementary Figure 1). The area under receiver operating characteristics (AUROC) was 0.8262 (SE 0.0357) (Figure 5). Significant heterogeneity was found in the meta-analysis for 13 studies assessing the LS for the prediction of the presence of EV.
Table 1. Descriptive characteristics of the eligible studies

Ref.	Location	Study Population	Sample Size	Mean age (years)	Location	Study Population	Sample Size	Mean age (years)	Children	% of Child (male, %)	% of Child (female, %)	% of Child (total, %)
Sporea et al., 2013	Romania	72.6 697 (67.20)	200	47.2	45.3	81.3	200	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Shamarra et al., 2013	India	72.7 100	100	47.2	45.3	81.3	100	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Seid et al., 2013	Korea	71.2 250	250	47.2	45.3	81.3	250	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Nguyen-Khac et al., 2013	France	70.3 150	150	47.2	45.3	81.3	150	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Liu et al., 2014	China	72.7 200	200	47.2	45.3	81.3	200	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Kamm et al., 2015	Germany	71.2 250	250	47.2	45.3	81.3	250	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Kim et al., 2015	South Korea	72.7 200	200	47.2	45.3	81.3	200	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Gasco et al., 2016	Spain	71.2 250	250	47.2	45.3	81.3	250	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Calvaruso et al., 2013	Italy	72.7 200	200	47.2	45.3	81.3	200	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Bucur et al., 2014	Romania	70.3 200	200	47.2	45.3	81.3	200	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Stefanescu et al., 2013	Romania	71.2 250	250	47.2	45.3	81.3	250	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)
Wang et al., 2012	Taiwan	72.7 200	200	47.2	45.3	81.3	200	43.2	9.8	54.6 (59.70)	54.6 (59.70)	54.6 (59.70)

Diagnostic accuracy of FFS for detection of large EV

According to the heterogeneity test indicating that Cochran-Q and I² of DOR were 10.69 and 70.4% (p = 0.0001) (Supplementary Figure 2), there was significant heterogeneity in the included articles. Hence, the random-effects model was selected to combine effect quantity. As a result, the pooled SEN of 13 studies was 0.78 (95%CI: 0.75-0.81), whereas the pooled SPE was 0.76 (95%CI: 0.73-0.78). For the positive LR, the pooled positive LR was 8.26 (95%CI: 8.02-8.51) and for the negative LR, the pooled negative LR was 0.12 (95%CI: 0.09-0.15).
was 3.03 (95%CI: 2.38 to 3.86, I^2 statistic 83.3%) and 0.30 (95%CI: 0.23-0.39, I^2 statistic 65.8%) respectively. The summary diagnostic OR was 10.69 (95%CI: 6.81-16.78) (Supplementary Figure 2). The AUROC was 0.8321 (SE 0.0229) (Figure 7). Significant heterogeneity was found in the meta-analysis for EV classification in the presence of EV; < 30 kPa vs > 30 kPa in large EV) were applied to investigate heterogeneity by using meta-regression modeling.

In meta-regression analysis, sources of significant heterogeneity suggested statistically that the accuracy for detecting the presence of EV was affected mainly by etiology ($P = 0.04$) (Supplementary Table 1), and were not significantly affected by the rest of the covariates. The heterogeneity of FS accuracy for detecting large EV was not influenced significantly by other covariates (Supplementary Table 2).

Meta-regression

According to the characteristics of included studies, covariates including etiology (one factor vs two factors vs multiple factors), publication year (2006-2011 year vs 2012-2016 year), location (European vs Asia vs Africa) and LS threshold (< 20 kPa vs > 20 kPa in the presence of EV; < 30 kPa vs >30 kPa in large EV) were attempted to further investigate the heterogeneity by using meta-regression modeling.

In accordance with the above results, the etiology of studies could be explained as a source of the heterogeneity for the presence of EV classification in meta-regression, and none of the covariates could be statistically elucidated for heterogeneity of the large EV group. Hence, four subgroup analyses (etiology, publication year, location and LS threshold) were attempted to further investigate the heterogeneity (Tables 2 and 3).

Subgroup analysis

In cirrhotic patients with 25% pre-test probability, depending on the clinical hypothesis of pretest, FS diagnosis of significant EV had 51% probability for correct diagnosis by a positive LSM; nevertheless, there still was 7% probability of large EV in patients with liver cirrhosis to be diagnosed with a result of negative measurement (Supplementary Figure 4A). When 75% of correct diagnostic probability of large EV was followed by a positive measurement under the suspicion of 50% pre-test probability, a negative LSM lowered from 50% to 22%; thus, it also implied that there was 22% probability of EV in cirrhotic patients with a negative test (Supplementary Figure 4B). When there was a high pre-test index of hypothesis (pre-test probability = 75%), the probability of a correct diagnosis following a positive measurement was 90% for significant EV; however, the misdiagnosis rate would raise to 45% of patients under a negative measurement (Supplementary Figure 4C).
trend. Studies in Asian countries manifested a better diagnostic performance and a lower heterogeneity, as compared to European countries [Asian vs European, 11.06 (7.10-17.23) vs 7.14 (3.06-16.66), and (50.7 vs 74.0)]. Also, articles published from 2012 to 2016 year suggested the preferable performance of FS for the prediction of EV, contrasting with the year from 2012 to 2016 [10.84 (5.94-19.77) vs 7.46 (3.43-16.24)]. According to subgroup analysis, the heterogeneity for the presence of large EV classification is shown in Table 3. In etiology subgroup studies, multiple factors appeared to be superior to one and double factors [12.46 (6.99-22.18) vs 9.05 (5.50-14.90), and 12.46 (6.99-22.18) vs 7.21 (2.07-25.16)], and the heterogeneity was influenced slightly compared to solitary factor. Articles from European and Asian countries showed no different diagnostic performance, [European vs Asian, 10.55 (5.04-22.07) vs 10.03 (7.01-14.35)], but lower heterogeneity was found in Asian countries. Studies published from 2012 to 2016 year suggested the prior performance of FS for the prediction of large EV, contrasting with the year from 2012 to 2016 [11.92 (7.10-20.01) vs 8.22 (3.94-17.15)]. Also, the accuracy of FS for the detection of large EV in the less than 30 kPa classification, which had moderate heterogeneity, was demonstrated superior to the more than 30 kPa classification [12.39

![SROC curve]

Figure 5 Summary receiver operating characteristic curve of FibroScan for the diagnosis of esophageal varices.

The accuracy and heterogeneity of FS applied at cutoff of more than 20 kPa revealed FS for diagnosis of the presence of EV was superior and inferior in contrast to less than 20 kPa [11.11 (7.05-17.49) vs 7.82 (3.36-18.24), and (45.4 vs 77.4)].

According to subgroup analysis, the heterogeneity for the presence of large EV classification is shown in Table 3. In etiology subgroup studies, multiple factors appeared to be superior to one and double factors [12.46 (6.99-22.18) vs 9.05 (5.50-14.90), and 12.46 (6.99-22.18) vs 7.21 (2.07-25.16)], and the heterogeneity was influenced slightly compared to solitary factor. Articles from European and Asian countries showed no different diagnostic performance, [European vs Asian, 10.55 (5.04-22.07) vs 10.03 (7.01-14.35)], but lower heterogeneity was found in Asian countries. Studies published from 2012 to 2016 year suggested the prior performance of FS for the prediction of large EV, contrasting with the year from 2012 to 2016 [11.92 (7.10-20.01) vs 8.22 (3.94-17.15)]. Also, the accuracy of FS for the detection of large EV in the less than 30 kPa classification, which had moderate heterogeneity, was demonstrated superior to the more than 30 kPa classification [12.39

![Forest plots and meta-analyses of studies showing the pooled sensitivity (A) and specificity (B) of FibroScan for diagnosing the presence of esophageal varices in cirrhotic patients.]

Figure 4 Forest plots and meta-analyses of studies showing the pooled sensitivity (A) and specificity (B) of FibroScan for diagnosing the presence of esophageal varices in cirrhotic patients.

![Pooled specificity = 0.84 (0.81-0.86)

\[\chi^2 = 47.38; \text{df = 12}; P = 0.0000 \]

Inconsistency (I^2): 74.7%

![Pooled specificity = 0.62 (0.58-0.66)

\[\chi^2 = 73.39; \text{df = 12}; P = 0.0000 \]

Inconsistency (I^2): 83.6%]
Therefore, although there were differences in diagnostic accuracy of FS for the presence of EV and significant EV based on the etiology, location, diagnostic threshold (cutoff value) and publication year, by combining the results of meta-regression analysis we found that the heterogeneity was not statistically different, excluding the solitary factor in the presence and absence of EV group.

SEN analysis

SEN analyses were performed using the leave-one-out approach to investigate the influence of every included study to the pooled result of the DOR of FS for the diagnosis of the presence of EV and significant EV respectively. As is shown in both Supplementary Figure 5A and B, the pooled DOR of the eligible studies after removing every article sequentially, which did not alter the results significantly, fluctuated between the range of CI of the pooled DOR. Meanwhile, the consequence of the figure reflected that the meta-analysis result was robust, and no study dominated the results or contributed to the heterogeneity primarily.

Publication bias

Deek’s funnel plot asymmetry test was used to explore the publication bias of meta-analysis of diagnostic accuracy. According to Deeks’ funnel plot (Supplementary Figure 6), there was no evidence of significant publication bias in FS for the detection of the
presence of EV ($P = 0.153$) and large EV ($P = 0.481$).

DISCUSSION

Patients with cirrhosis have high incidence of EV with high morbidity and mortality due to bleeding; active surveillance via upper gastrointestinal examination can represent an unnecessary burden for patients, therefore, the increasing number of noninvasive tests for EV has gained widely attention. Nevertheless, few meta-analyses have involved predicting the presence and absence of EV and large EV measured by the LS value obtained with FS. Therefore, this meta-analysis aimed to assess the diagnostic performance of LS value measured with FS as a TE test to detect the presence of EV and large EV in patients with liver cirrhosis.

In meta-analysis of 15 studies on the diagnostic accuracy of FS-based LSM, the DOR for detecting the presence of EV and large EV was 9.33 and 10.69 respectively, which indicated higher diagnostic accuracy comparing patients without. The results of pooled estimates for SEN and SPE in the presence of EV and large EV groups were separately 84%, 78% and 62%, 76%, with missed diagnosis rate of 16% and 22%, and misdiagnosis rate of 38% and 24%. The pooled LR positive was 2.30 and 3.03, LR negative was 0.26 and 0.30 in two groups respectively, which indicated the likelihood of an accurate positive LSM diagnosis for EV and large EV with FS is 2-fold and 3-fold higher in cirrhotic patients in comparison to cirrhotic patients without EV. Combining the pre-test and post-test probability, we arrived at the following: if pre-test probability was equal to 50%, FS for predicting the absence and presence EV and significant EV could have 71% and 75% probability of correctly diagnosing, and 19% and 22% of patients might have EV and large EV if LSM was negative by FS. A meta-analysis about the FS for diagnosing the presence of EV is 0.153 and large EV 0.481.
Pu K et al. FibroScan for the detection of EV

of EV and large EV, the area under the SROC curve (AUROC) of EV and significant EV were 0.8262 and 0.8321, suggesting the better diagnostic performance of LSM with FS in estimating the cirrhotic patients with EV.

Significant heterogeneity (70.3% and 70.4%) was found in the meta-analysis for 13 studies assessing the FS accuracy for the prediction of the presence of EV and large EV. Meta-regression and subgroup analysis methods were applied and screened conveniently and reliably the relevant factors that are responsible for heterogeneity. Consequently, according to meta-regression, we detected 4 covariates including the etiology, publication year, LS cutoff values, and region. Comparing the FS for the diagnosis of the presence of EV and significant EV, etiology of cirrhosis in covariates was significantly associated with the heterogeneity in the former; and none of covariates accounted for statistical heterogeneity in the latter. To take the unexplained heterogeneity into account, through subgroup analysis we further observed the systematic differences in the performance characteristics of the test across different covariates; however, the difference was not the source of the heterogeneity, excluding the solitary factor in the presence of EV group.

The strength of our study was that we evaluated the diagnostic accuracy of LSM with FS for the detection of EV and large EV with different cirrhotic patients and etiological characteristics, to achieve more real assessment of the test performance. What’s more, we sought to identify systematic differences in the performance characteristics of the test across Asian and Western populations through subgroup analysis. Our results show that FS also had a high accuracy in diagnosing EV and significant EV in patients with cirrhosis.

There were several limitations of our analysis that should be taken into consideration. Firstly, we screened 2697 patients in 15 reports limited to English or Chinese language mostly, but the higher quality articles written in non-English and non-Chinese were not included in our study. In addition, it remains possible that diagnostic performance showing poor accuracy has not been published as results of negative outcome. Secondly, owing to different etiologies, there was not the ability to define a diagnostic threshold value, which could provide the greatest accuracy in predicting the size of EV; meanwhile, the difference in diagnostic threshold value, identified through natural observation or derived on the basis of disease prevalence, may have resulted in the heterogeneity observed with the results. Consequently, it is difficult to value the diagnostic threshold of LSM with FS on the basis of these limited studies.

Finally, although we regarded EGD or GIE as the standard reference for valuing EV, the significant variability that exists unavoidably in different inter-observers confined the validity of gold standard in comparison with FS[34]. Moreover, according to the methodological quality validated assessment, there were inadequate information in most of the included studies to determine whether the results of the FS were blinded to EGD results, or vice versa, and the time period between performance of EGD and FS was not explicit. Similarly, there were insufficient and non-uniform descriptions on the spectrum of cirrhotic patients who received FS test, possibly impacting the overall results for compensated and decompensated cirrhosis with all etiologies in our study. Hence, the unclear information might attribute to the studies at risk for bias and heterogeneity.

In summary, this meta-analysis demonstrates that FS could be considered as a better noninvasive test for EV and significant EV in different histological stages and etiologies of hepatic cirrhosis; meanwhile, it has potential as part of a prediction rule incorporating other clinical characteristics or varying LSM cutoffs and, if used in conjunction with EGD, may help us prevent unnecessary screening by EGD. Nevertheless, the results should be interpreted cautiously given its SEN, SPE and limited utility. The major role of FS, which was suboptimal to substitute EGD as the screening modality for detecting the presence of EV and large EV, should be further validated.

In the future, prospective, well-designed studies for use of noninvasive methods such as EV, which may be a benchmark for diagnostic performance due to its elegant technique, inexpensive cost and wide availability, are needed to improve accuracy.

COMMENTS

Background
Recently, many non-invasive techniques for evaluating the severity of esophageal varices (EV) in liver cirrhosis have been used widely as alternatives to avoid the unnecessary endoscopy for EV screening. Transient elastography (FibroScan [FS]), as a non-invasive method to assess the fibrosis stages of hepatic cirrhosis, is applied to evaluate the severity of EV seldomly; moreover, there is no available consensus regarding diagnostic performance of different liver stiffness (LS) values (cutoff value) in the detection of EV in cirrhotic patients.

Research frontiers
Despite few studies having investigated the diagnostic accuracy of FS for the detection of EV, no definite result of uniform standard is available to estimate the severity of EV according to the different cutoff values of LS. Thus, the importance of discussion about whether there is sufficient evidence to recommend FS as a noninvasive screening method has been emphasized.

Innovations and breakthroughs
In this study, the authors explored the value of FS for the diagnosis of EV in cirrhotic patients; meanwhile, it is also believed to be the first meta-analysis evaluating the diagnostic accuracy of FS for the detection of EV.

Applications
FS has relatively better performance for the detection of EV. Nevertheless, the results should be interpreted cautiously given its sensitivity, specificity and limited utility. In clinical practice, it has potential as part of a prediction rule incorporating other clinical characteristics or varying LS measurement cutoffs and, if used in conjunction with esophagogastroduodenoscopy (EGD), may help to prevent unnecessary screening EGD.
Peer-review
The study aimed to perform a meta-analysis regarding diagnostic accuracy of FS in detection of EV. This study is well performed and well written.

REFERENCES

1 Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 2007; 46: 922-938 [PMID: 1789356 DOI: 10.1002/hep.21907]

2 Chalasani N, Kahi C, Francois F, Pinto A, Marathe A, Bini EJ, Pandya P, Sitarasan S, Shen J. Improved patient survival after acute variceal bleeding: a multicenter, cohort study. Am J Gastroenterol 2003; 98: 653-659 [PMID: 12650802]

3 Carbonell N, Pauwels A, Serfaty L, Fourdan O, Lévy VG, Poupon R. Improved survival after variceal bleeding in patients with cirrhosis over the past two decades. Hepatology 2004; 40: 652-659 [PMID: 15349904 DOI: 10.1002/hep.20339]

4 Eisen GM, Baron TH, Dominitz JA, Faigel DO, Goldstein JL. 2006; 2007; 2008; 2009; 2010; 2011; 2012; 2013; 2014; (15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)

5 Stebbing J, Farouk L, Panos G, Anderson M, Jiao LR, Mandalia S, Bower M, Gazzard B, Nelson M. A meta-analysis of transient elastography for the detection of hepatic fibrosis. J Clin Gastroenterol Hepatol 2010; 5: 1214-1220 [PMID: 19715649]

6 Friedman-Rust M, Ong MF, Martens S, Sarrazin C, Bojunga J, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Raţiu I, Bota S, Şirli R, Jurchiş A. Are different cut-off values of liver stiffness assessed by transient elastography an indicator of the etiology of liver cirrhosis for predicting significant esophageal varices? Med Ultrason 2013; 15: 111-115 [PMID: 23702500]

7 Sharma P, Kimvace V, Tyagi P, Bansal N, Singla V, Kumar A, Arora A. Spleen stiffness in patients with cirrhosis in predicting esophageal varices. Am J Gastroenterol 2013; 108: 1101-1107 [PMID: 23629660 DOI: 10.1038/age.2013.119]

8 Saad Y, Said M, Idris MO, Rabea A, Zakaria S. Liver stiffness measurement by Fibroscan predicts the presence and size of esophageal varices in Egyptian patients with HCV related liver cirrhosis. J Clin Diagn Res 2013; 7: 2253-2257 [PMID: 24298490 DOI: 10.7860/JCDR/2013/602.3484]

9 Nguyen-Khac E, Saint-Leger P, Tramier B, Cooevoet H, Capron D, Dupas JL. Noninvasive diagnosis of large esophageal varices by Fibroscan: strong influence of the cirrhosis etiology. Alcohol Clin Exp Res 2010; 34: 1145-1153 [PMID: 20477777 DOI: 10.1111/1.1530-0277.2010.01911.x]

10 Li F, Yan T, Zhang J, Shao Q, Li B, Li ZB, Chen GF. [FibroScan can be used to diagnose the size of esophageal varices in patients with HBV-related cirrhosis]. Zhonghua Shiyan He Linchuang Bingdu 2010; 26: 470-473 [PMID: 23627033]

11 Li F, Yan T, Shao Q, Ji D, Li B, Li Z, Chen G. [Clinical study of FibroScan efficiency for diagnosing size of esophageal varices in liver cirrhosis patients]. Zhonghua Ganzang Bing Za Zhi 2012; 14: 600-603 [PMID: 25243961]

12 Kazemi F, Kettaneh A, N’kontchou G, Pinto E, Ganne-Carrie N, Trinchet JC, Beaugrand M. Liver stiffness measurement selects patients with cirrhosis at risk of bearing large oesophageal varices. J Hepatol 2006; 45: 230-235 [PMID: 16797100 DOI: 10.1016/j.jhep.2006.04.006]

13 Jung HS, Kim YS, Kwon OS, Ku YS, Kim YK, Choi DI, Kim JH. [Usefulness of liver stiffness measurement for predicting the presence of esophageal varices in patients with liver cirrhosis]. Korean J Hepatol 2008; 14: 342-350 [PMID: 18815457 DOI: 10.3335/kjhep.2008.14.3.342]

14 Hu Z, Li Y, Li C, Huang C, Ou Z, Guo J, Luo H, Tang X. Using Ultrasonic Transient Elastometry (FibroScan) to Predict Esophageal Varices in Patients with Viral Liver Cirrhosis. Ultrasound Med Biol 2011; 37: 1530-1537 [PMID: 24817781 DOI: 10.1016/j.ultrasmedbio.2011.02.005]

15 Castéra L, Le Bail B, Roulot-Thoraval F, Bernard PH, Foucher J, Merrouche W, Couzigou P, de Lédinghen V. Early detection in routine clinical practice of cirrhosis and oesophageal varices in chronic hepatitis C: comparison of transient elastography (FibroScan) with standard laboratory tests and non-invasive scores. J Hepatol 2009; 50: 59-68 [PMID: 19013661 DOI: 10.1016/j.jhep.2008.08.018]

16 Calvaruso V, Bronte F, Conte E, Simone F, Craxi A, Di Marco V. Modified spleen stiffness measurement by transient elastography is associated with presence of large oesophageal varices in patients with compensated hepatitis C virus cirrhosis. J Viral Hepat 2013; 20: 867-874 [PMID: 23044456 DOI: 10.1111/j.1365-3148.2013.02144.x]

17 Bintintan A, Chira RI, Bintintan VV, Nguyen GA, Manzant-Saplacan MR, Lupors-Platon M, Stefanescu H, Duma MM, Valean SD, Mircea PA. Value of hepatic elastography and Doppler indexes for predictions of esophageal varices in liver cirrhosis. Med Ultrason 2015; 17: 5-11 [PMID: 25745650]

18 Stefanescu H, Grigorescu M, Lupors M, Procopet B, Maniau A, Badea R. Spleen stiffness measurement using Fibroscan for the noninvasive assessment of esophageal varices in liver cirrhosis patients. J Gastroenterol Hepatol 2011; 26: 164-170 [PMID: 21175810 DOI: 10.1111/j.1440-1746.2010.06325.x]

19 Stefanescu H, Grigorescu M, Lupors M, Maniau A, Crisan D, Procopet B, Feier D, Badea R. A new and simple algorithm for the noninvasive assessment of esophageal varices in cirrhotic patients using serum fibrosis markers and transient elastography. J Gastrointestin Liver Dis 2011; 20: 57-64 [PMID: 21457999]

20 Wang JH, Chuah SK, Lu SW, Hung CH, Chen CH, Kee KM, Pu K et al. FibroScan for the detection of EV.
Pu K et al. FibroScan for the detection of EV

Chang KC, Tai WC, Hu TH. Transient elastography and simple blood markers in the diagnosis of esophageal varices for compensated patients with hepatitis B virus-related cirrhosis. *J Gastroenterol Hepatol* 2012; 27: 1213-1218 [PMID: 22432969 DOI: 10.1111/j.1440-1746.2012.07132.x]

31 Society of Digestive Endoscopy of Chinese Medical Association. Trial scheme of diagnosing and treating gastroesophageal varices under endoscopy(2003). Zhonghua Xiaohuan Neijing Zazhi 2004; 21: 149-151

32 Beppu K, Inokuchi K, Koyanagi N, Nakayama S, Sakata H, Kitano S, Kobayashi M. Prediction of variceal hemorrhage by esophageal endoscopy. *Gastrointest Endosc* 1981; 27: 213-218 [PMID: 6975734]

33 Sarangapani A, Shanmugam C, Kalyanasundaram M, Rangachari B, Thangavelu P, Subbarayan JK. Noninvasive prediction of large esophageal varices in chronic liver disease patients. *Saudi J Gastroenterol* 2010; 16: 38-42 [PMID: 20065573 DOI: 10.4103/1319-3767.58767]

34 Bendtsen F, Skovgaard LT, Sørensen TI, Matzen P. Agreement among multiple observers on endoscopic diagnosis of esophageal varices before bleeding. *Hepatology* 1990; 11: 341-347 [PMID: 2312048]

P- Reviewer: Lee HC, Lo GH S- Editor: Gong ZM
L- Editor: Filipodia E- Editor: Zhang FF
