Calprotectin in Viral Systemic Infections- COVID-19 Versus Hepatitis C Virus

Letitia Toma (letitia_toma@yahoo.com)
Institutul Clinic Fundeni https://orcid.org/0000-0001-7001-8845

Mihai Dodot
Clinical Institute Fundeni: Institutul Clinic Fundeni

Anca Zgura
Carol Davila University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Carol Davila

Nicolae Bacalbasa
Carol Davila University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Carol Davila

Andrei Silaghi
Carol Davila University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Carol Davila

Razvan Simu
Carol Davila University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Carol Davila

Teodora Isac
Carol Davila University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Carol Davila

Adriana Mercan Stanciu
Carol Davila University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Carol Davila

Research Article

Keywords: calprotectin, inflammation, systemic infection, COVID-19, HCV

DOI: https://doi.org/10.21203/rs.3.rs-497871/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose

This study aims to evaluate differences in serum and fecal calprotectin in patients with HCV chronic hepatitis and COVID-19 infection and compare them to a control group.

Methods

This observational study was performed between April 2020 and October 2020 in a single Internal Medicine center. We determined serum and fecal calprotectin, as well as levels of transaminases, C-reactive protein, ferritin, in 25 patients with COVID-19 infection, 30 patients with active HCV chronic infection and 38 patients with cured HCV infection.

Results

Serum levels of ALT, AST, C-reactive protein and ferritin were significantly higher in patients with COVID-19 infection (mean values of 127 IU/mL, 135 IU/mL, 123 mg/L and 1034 ng/mL respectively) than in patients with active HCV infection (mean values of 68 IU/mL, 51 IU/mL, 17 mg/L and 528 ng/mL respectively) or in patients with cured HCV infection (37 IU/mL, 29 IU/mL, 3.4 mg/L and 274 ng/mL respectively). Also, serum and fecal calprotectin had increased concentrations in patients with COVID-19 (7.3 µg/mL and 394 µg/mg) versus patients with active hepatitis (2.4 µg/mL and 217 µg/mg) and patients with cured hepatitis (1.2 µg/mL and 38 µg/mg). Values were significantly higher in patients with digestive symptoms related to COVID-19.

Conclusion

Serum and fecal calprotectin can be used as inflammatory markers in patients with active viral infections. In COVID-19, calprotectin concentrations can be correlated to the severity of disease, particularly in patients with digestive symptoms.

Introduction

Calprotectin, pertaining to the S-100 family, is a calcium and zinc-binding protein, forming about 60% of the cytosolic proteins of neutrophils [1]. It plays an important role in the pathogenesis of inflammation as ligand for toll-like receptor 4, mediator for the migration of polymorphonuclear leukocytes and up-regulator for neutrophils [2].

The majority of studies regarding calprotectin as inflammatory marker comes from inflammatory bowel diseases (IBDs), where high concentrations of serum and fecal calprotectin are associated with increased severity scores [3]. International guidelines for Crohn's disease and ulcerative colitis recommend using calprotectin determinations for the diagnosis and monitoring of IBDs [4,5]. The most important use of fecal calprotectin remains in the differential diagnosis of IBDs versus irritable bowel syndrome, thus
underlining its importance as an inflammatory marker [6]. Increased fecal calprotectin concentrations have also been described in patients with ankylosing spondylitis, without gastrointestinal symptoms, as a marker of subclinical intestinal inflammation [7]. Other studies have demonstrated the importance of calprotectin as biomarker of cystic fibrosis exacerbations [8], adult-onset Still's disease [9] or other arthropathies [10].

The exacerbated immune response associated with COVID-19 is the leading cause of morbidity and mortality in this infection. As such, monitoring patients by serial determinations of inflammatory markers is crucial in the management of these patients [11]. Hyperinflammation in COVID-19 appears to be the result of a dysregulated activation of the mononuclear phagocyte compartment [12] as well as down-regulation of angiotensin-converting enzyme 2 (ACE2) leading to the dysregulation of the rennin-angiotensin-aldosterone system, stimulation of the bradykinin axis and activation of the complement systems [13]. Serum calprotectin has been evaluated as a biomarker for the differentiation between mild and severe forms of COVID-19 infection [14]. In a recent review, levels of serum calprotectin correlated with other inflammatory markers, such as IL-6, C-reactive protein (CRP), neutrophil count and D-dimers [15].

The systemic inflammatory response is also responsible for a variety of manifestations in chronic hepatitis C (HCV) infection, including liver damage (chronic hepatitis, cirrhosis, hepatocellular carcinoma) and extra-hepatic manifestations [16]. It is currently considered that up to 66% of HCV infected patients experience extrahepatic manifestations, mainly autoimmune or lymphoproliferative disorders [17]. These include non-Hodgkin lymphoma [18], cryoglobulinemia [19], diabetes [20] or rare associated conditions such as sarcoidosis [21]. The use of calprotectin as biomarker has been studied in regard to the early diagnosis of hepatic encephalopathy, spontaneous bacterial peritonitis and hepatocellular carcinoma in HCV induced cirrhosis [22, 23]. In the studies aforementioned, fecal and ascites calprotectin determinations were performed; data regarding serum calprotectin as inflammatory marker in HCV chronic infection are scarce. One study has also found significant correlations between fecal concentrations of calprotectin and the severity of HCV induced liver disease [24].

Materials And Methods

The aim of our study is to compare values of serum and fecal calprotectin in patients with COVID-19 infection, active HCV chronic infection and cured HCV infection, in order to underline the importance of calprotectin as an inflammatory biomarker in acute and chronic viral infections. From April 2020 to October 2020 we performed an observational study enrolling consecutive patients diagnosed with COVID-19 infection without comorbidities, patients with ongoing HCV chronic infection and patients with cured HCV infection (at least one year after sustained virologic response after direct acting antiviral therapy).

The diagnosis of COVID-19 infection was made by SARS-CoV-2 RNA detection via reverse-transcription polymerase chain reaction (RT-PCT) from the upper respiratory tract (both nasal and pharyngeal swabs) using Cobas® SARS-CoV-2 Test (Roche Diagnostics, F. Hoffmann–La Roche, Ltd, Basil, SW). Active HCV
infection was diagnosed using positive antiHCV antibodies and values of HCV viremia quantitatively assessed by RT-PCR. Patients with cured HCV infection had undetectable HCV-RNA at three months after the end of DAA therapy (paritaprevir/ombitasvir/ritonavir and dasabuvir).

Exclusion criteria were:

- Hepatitis B virus or HIV co-infection
- Presence of liver cirrhosis
- History of or ongoing autoimmune diseases
- Suspicion of inflammatory bowel disease
- Past or present treatment with anti-inflammatories (steroidal or non-steroidal) or immune modulators
- The presence of solid or hematological malignancies (except history of non-melanoma skin cancer)

After applying the exclusion criteria, a total of 93 patients were evaluated: 25 patients with COVID-19 infection, 30 patients with active HCV chronic infection and 38 patients with cured HCV infection. We determined serum levels of transaminases, C-reactive protein, serum ferritin, serum and fecal calprotectin. We also performed clinical evaluation of the patients and noted data referring to digestive symptoms: diarrhea, nausea, abdominal pain.

Statistical evaluation was performed using SPSS 18.0 (SPSS Inc., Chicago, IL, USA). We used the expression of numerical values as mean +/- standard deviation. The ANOVA test was used to compare the values between the three groups of patients. A p value of less than 0.05 was considered statistically significant for differences between values.

Results

All COVID-19 patients had asymptomatic or mild disease. 20% required non-invasive oxygen therapy to maintain saturation levels over 95%, according to current guidelines. In ambient air, none of the patients had oxygen saturation less than 90%.

The mean age in the study group was 47± 23.15 years, with a predominance of the female sex in each study group. The results of the study are presented in Table 1.

Table 1. Demographic and biologic characteristic of the study groups.
Patients with COVID-19 (n=25 pts)	Patients with active HCV (n=30 pts)	Patients with cured HCV (n=38 pts)	P value
Mean age | 49.23 ± 25.16 | 53.15 ± 24.62 | 47.91 ± 22.05 | 0.4
Female gender | 14 (56%) | 20 (66.6%) | 22 (57.8%) | 0.3
ALT (N: 0-45 UI/mL) | 127 ± 26 | 68 ± 22 | 37 ± 12 | 0.01
AST (N: 0-35 IU/mL) | 135 ± 54 | 51 ± 28 | 29 ± 15 | 0.02
CRP (N: 0-3 mg/L) | 127.4 ± 59.3 | 17.2 ± 8.3 | 3.4 ± 1.8 | 0.01
Ferritin (N: 13-150 ng/mL) | 945 ± 118 | 371 ± 101 | 78 ± 27 | 0.01
(N: 30-400 ng/mL) | 1034 ± 231 | 528 ± 94 | 274 ± 112 | 0.01
Serum calprotectin (N: 0.1-1.6 µg/mL) | 7.3 ± 2.6 | 2.4 ± 1.1 | 1.2 ± 0.4 | 0.03
Fecal calprotectin (N: 10-60 µg/mg) | 394.2 ± 77.1 | 217.7 ± 92.7 | 38.5 ± 11.6 | 0.01

*ALT alanine aminotransferase; AST aspartate aminotransferase; CRP C-reactive protein

Significantly higher levels of ALT and AST were noted in patients with COVID-19 infection compared to patients with active or cured HCV infection. Furthermore, levels of CRP and ferritin were also increased in patients with COVID-19, as well as patients with active HCV infection, supporting the idea that there is systemic inflammation associated to these infections. Both serum and fecal calprotectin had higher concentrations in patients with COVID-19, compared to patients with active or cured HCV infection. As results in patients with cured HCV are within normal range, we can conclude that HCV cure signifies the abolishment of systemic inflammation in patients without comorbidities, and these may be considered as a normal population (a control group).

36% of COVID-19 infected patients presented gastrointestinal symptoms, as opposed to 43.33% patients with active HCV and 13.15% patients with cured HCV. None of the symptoms were suggestive for other
gastrointestinal disease, and samples for bloody stools were negative. The prevalence of symptoms is presented in Table 2.

Table 2: Prevalence of digestive symptoms in the study groups

	Patients with COVID-19 (N= 25 pts)	Patients with active HCV (N= 30 pts)	Patients with cured HCV (N= 38 pts)	p-value
Digestive symptoms	36% (9 pts)	43.33% (13 pts)	13.15% (5 pts)	0.4
Diarrhea	32% (8 pts)	6.66% (2 pts)	0% (0 pts)	0.01
Abdominal pain	24% (6 pts)	23.33% (7 pts)	7.89% (3 pts)	0.02
Nausea	28% (7 pts)	30% (9 pts)	7.89% (3 pts)	0.02

Patients with HCV infection had the highest prevalence of digestive symptoms; the most frequently encountered were diarrhea, abdominal pain and nausea. Diarrhea was significantly associated with COVID-19 infection, while abdominal pain and nausea were found in patients with COVID-19 as well as active HCV, with increased prevalence compared to the control group (cured HCV). Notably, the presence of digestive symptoms was associated with increased levels of serum and fecal calprotectin (p value 0.01 and 0.02 respectively, CI 95%).

Discussion

The COVID-19 pandemic is a continuous challenge of medical systems world-wide but it has also proven an opportunity for scientific research, particularly in the field of immunology, as understanding the systemic inflammatory response is critical for the diagnosis and proper management of this altogether systemic infection [25]. Apart from the intrinsic morbidity and mortality, COVID-19 has negatively impacted the prognosis of patients with chronic diseases, such as HCV chronic infection [26].

There are biological and clinical similarities between HCV and COVID-19. Most of the current information comes from extrapolation of the results obtained in studying the SARS-CoV and the MERS pandemic [27]. Important similarities are the induction of channelopathies as a pathologic mechanism, the involvement of T helper lymphocytes (in the carcinogenesis of HCV and in the cytokine dysregulation associated to the early stage of SARS-CoV infection) and the response to interferon therapy. From a clinical point of view, both viruses trigger inflammatory responses in multiple organs, leading to systemic disease by direct or indirect mechanisms. It is well known that HCV infection causes multiple extrahepatic manifestations [28] and HCV cure is associated with a favorable outcome of the liver disease and also on HCV-induced comorbidities, such as cryoglobulinemia and lymphoma [29].
Symptoms of HCV chronic infection are non-specific, regardless of the stage of liver disease, with a recent study pointing to 40-50% of patients with gastro-intestinal complaints [30]. A recent review, including a total of over 18,000 patients, found that COVID-19 frequently manifests with digestive symptoms (11.5% of patients and as many as 30% in some studies), the most common symptoms being diarrhea (11.5%), nausea and vomiting (6.3%) and abdominal pain (2.3%); cases of intestinal bleeding were also reported [31]. In our study, we found a higher prevalence of overall gastro-intestinal symptoms (36%) as well as diarrhea (32%), nausea (24%) and abdominal pain (28%). None of the patients in our study group presented intestinal bleeding. The higher prevalence of gastrointestinal symptoms can be explained by the selective addressability of patients; as our Clinic focuses primarily on gastroenterology and hepatology, patients with digestive symptoms are more likely to appeal to us. We did not include ageusia and anosmia as gastrointestinal symptoms of COVID-19 as these are more likely to be receptor and neuronal dysfunctions [32, 33].

Inflammation is a key factor in both HCV and COVID-19 infection. HCV infection promotes a chronic inflammatory process in the liver, involving IL-1β production and secretion by liver macrophages, increased production of TNF-α and activation of Toll-like receptors [16]. In addition, chronic HCV infection is associated with intestinal bacterial overgrowth, leading to endotoxemia, liver and systemic inflammation [34]. This is one possible explanatory mechanism for the increased concentration of serum and fecal calprotectin in patients with active infection, compared to those with cured infection, as described in our study. Furthermore, the exclusion of patients with advanced liver disease (compensated or decompensated cirrhosis) means that there is significant inflammation due to the infection per se and not due to the degree of liver fibrosis. Inflammation in HCV infection is maintained by a vicious circle, as HCV is an inductor of liver steatosis (which induces oxidative stress and the activation of stellate cells [35] and insulin resistance and diabetes mellitus (via TNF-α pathways [36]). This may contribute to the pro-inflammatory state that is the HCV chronic infection and may explain our findings of increases CRP and ferritin levels in patients without other causes of systemic inflammation. Studies have found that increased ferritin levels in chronic HCV hepatitis are associated with insulin resistance [37] and diabetes [38]. On the other hand, it has been shown that ferritin levels decrease at 24 weeks after HCV cure by direct acting antiviral therapy [39].

COVID-19 affects the digestive system directly, by infecting the gastro-intestinal cells via ACE2 receptors (100 fold more frequent in the small intestine and the colon than in the lungs) and indirectly, by triggering a systemic inflammatory response, a “cytokine storm”, leading to multiple organ dysfunction, including the digestive tract [40]. The presence of ACE2 receptors in the absorptive enterocytes and consecutive COVID-19 infection may explain the presence of diarrhea as a common symptom of infection [41]. In our study, 32% of COVID-19 patients presented diarrhea, and this was the most frequent gastrointestinal symptom. Furthermore, COVID-19 may reduce the absorption of tryptophan at an enteric level, inducing intestinal inflammation and colitis [40]. Intestinal dysbiosis, with decreased concentration of Lactobacillus and Bifidobacterium species may also explain the digestive symptoms associated with COVID-19 [42]. Inflammatory markers are essential in establishing the severity of COVID-19 infection as well as prognosis and management [43]. Elevate CRP levels are associated with increased disease
severity, but not increased mortality, as opposed to high levels of ferritin, which mark a poor prognosis. However, cutoff values differ significantly between studies (from 3mg/L to over 100mg/L for CRP). The role and importance of ferritin in COVID-19 infection is still under debate. It appears to be related to the development of secondary hemophagocytic lymphohistiocytosis leading to multiple organ dysfunction [44]. In our study, we found significantly higher levels of CRP and ferritin in COVID-19 patients, compared to HCV infected patients and to the control group. Despite this, none of the patients presented a poor outcome or intensive care requirements. The use of calprotectin as a marker for inflammatory bowel disease has known a setback since the beginning of the COVID-19 outbreak, as many studies have associated increased concentrations of fecal calprotectin to the presence and severity to the COVID-19 digestive symptoms [45]. The evolution of fecal calprotectin in COVID-19 infected patients with inflammatory bowel diseases needs to be further investigated. In our study, we have shown that both fecal and serum calprotectin have increased concentrations during COVID-19 infection, and these concentrations correlate with the severity of digestive symptoms.

Conclusion

Viral infections such as HCV and COVID-19 are associated with increased inflammatory markers, as a sign of the systemic immune response triggered by the infections. Serum and fecal calprotectin may be of further use in monitoring of inflammation during the course of viral infections, but further research is needed in order to establish cut-off prognostic values. Increased calprotectin levels in both these infections can be regarded not only as a sign of systemic inflammation, but also as a marker of associated intestinal dysbiosis thus underlining the importance of gut microbiota in homeostasis.

Declarations

Funding: The authors did not receive support from any organization for the submitted work.

Conflict of interests: The authors have no relevant financial or non-financial interests to disclose

Availability of data and material: data were obtained by electronic and written patient charts.

Authors’ contributions: All authors contributed equally to this research and its publication

Ethics approval: This study was performed in line with the principles of the Declaration of Helsinki. Approval was waived by the Ethics Committee of Fundeni Clinical Institute given that this research study was conducted retrospectively from data obtained for clinical purposes.

Consent to participate: Informed consent was obtained from all individual participants included in the study.

Consent for publication: The authors affirm that human research participants provided informed consent for publication.
References

1. Fagherol MK, Andersson KB, Naess-Andresen CF, Brandtzaeg P, Dale I. Calprotectin (the L1 leucocyte protein) In: Smith VL, Dedman JR, editors. Stimulus response coupling: the role of intracellular calcium-binding proteins.Boca Raton: CRC Press; 1990. pp. 187–210

2. Azramezani Kopi T, Shahrokh S, Mirzaei S, Asadzadeh Aghdaeih H, Amini Kadijani A. The role of serum calprotectin as a novel biomarker in inflammatory bowel diseases: a review study. Gastroenterology and hepatology from bed to bench, 2019;12(3), 183–189

3. e Penna FGC, Rosa RM, da Cunha PFS et al. Faecal calprotectin is the biomarker that best distinguishes remission from different degrees of endoscopic activity in Crohn's disease. BMC Gastroenterol2020;20, 35. https://doi.org/10.1186/s12876-020-1183-x

4. Lichtenstein GR, Loftus EV, Isaacs KL, Regueiro MD, Gerson LB, Sands BE. ACG Clinical Guideline: Management of Crohn's Disease in Adults, American Journal of Gastroenterology 2018; 113:4;481-517 doi: 10.1038/ajg.2018.27;

5. Rubin DT, Ananthakrishnan AN, Siegel CA, Sauer BG, Long MD. ACG Clinical Guideline: Ulcerative Colitis in Adults, The American Journal of Gastroenterology: 2019;114: 3;384-413 doi: 10.14309/ajg.0000000000000152;

6. Chang M, Chou J, Chen S et al. Fecal calprotectin as a novel biomarker for differentiating between inflammatory bowel disease and irritable bowel syndrome. Mol Med Rep 2014;10:522-526

7. Klingberg E, Carlsten H, Hilme E, Hedberg M, Forsblad-d’Elia H. Calprotectin in ankylosing spondylitis – frequently elevated in feces, but normal in serum,Scandinavian Journal of Gastroenterology,2012;47:4, 435-444, DOI: 10.3109/00365521.2011.648953

8. Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP, Sputum and serum calprotectin are useful biomarkers during CF exacerbation, Journal of Cystic Fibrosis, 2010;9:3, 193-198, https://doi.org/10.1016/j.jcf.2010.01.005

9. Guo Q, Zha X, Li C et al. Serum calprotectin–a promising diagnostic marker for adult-onset Still’s disease. Clinical rheumatology, 2016; 35(1), 73–79. https://doi.org/10.1007/s10067-015-3108-6

10. Jarlborg M, Courvoisier DS, Lamacchia C. et al. Serum calprotectin: a promising biomarker in rheumatoid arthritis and axial spondyloarthritis. Arthritis Res Ther2020;22, 105. https://doi.org/10.1186/s13075-020-02190-3

11. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/. Accessed 19 April 2021

12. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020;20, 355–362 https://doi.org/10.1038/s41577-020-0331-4

13. Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine, 2020; 133, Article 155151
14. Silvin A, Chapuis N, Dunsmore G, et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell, 2020;182(6), 1401–1418.e18. https://doi.org/10.1016/j.cell.2020.08.002

15. Mahler M, Meroni PL, Infantino M, Buhler KA, FritzlerMJ. Circulating Calprotectin as a Biomarker of COVID-19 Severity, Expert Review of Clinical Immunology 2021, DOI: 10.1080/1744666X.2021.1905526

16. Zampino R, Marrone A, Restivo L. et al. Chronic HCV infection and inflammation: Clinical impact on hepatic and extra-hepatic manifestations. World journal of hepatology, 2013; 5(10), 528–540. https://doi.org/10.4254/wjh.v5.i10.528

17. Cacoub P, Comarmond C, Domont F, Savey L, Desbois AC, Saadoun D. Extrahepatic manifestations of chronic hepatitis C virus infection. Therapeutic advances in infectious disease, 2016;3(1), 3–14. https://doi.org/10.1177/2049936115585942;

18. Iliescu L, Mercan-Stanciu A, Ioanitescu ES, Toma L. Hepatitis C-Associated B-cell Non-Hodgkin Lymphoma: A Pictorial Review. Ultrasound Q. 2018;34(3):156-166

19. Iliescu, E.L., Mercan-Stanciu, A. Toma, L. Safety and efficacy of direct-acting antivirals for chronic hepatitis C in patients with chronic kidney disease. BMC Nephrol 2020;21, 21

20. Iliescu L, Mercan-Stanciu A, Toma L, Ioanitescu ES. A severe case of hyperglycemia in a kidney transplant recipient undergoing interferon-free therapy for chronic hepatitis C. Acta Endocrinol (Buchar);2018;14(4):533-538

21. Iliescu L, Herlea V, Toma L, Orban C. Association between chronic HCV hepatitis, membranoproliferative glomerulopathy and cutaneous sarcoidosis. J Gastrointestin Liver Dis.2015;24(1):8

22. Elannagar YA, Zidan HE, Abdelbaky EM, Wadea FM. Association of Increased Fecal Calprotectin levels with Hepatic Encephalopathy and Spontaneous Peritonitis in Egyptian Cirrhotic Patients. Journal of Gastroenterology and Hepatology Research2020; 9(3): 3217-3222;

23. Hanafy AS, Mohamed MS, Alnagar AA. Ascitic Calprotectin as an early predictor of hepatocellular carcinoma in patients with cirrhotic ascites. J Cancer Res Clin Oncol.2020;146(12):3207-3214. doi: 10.1007/s00432-020-03363-y.

24. El-Din M, Salem H, Mansour MA, El saady Khayyal A, Mohsen M, Mansour K. Relation between Fecal Calprotectin concentration and severity of Hepatitis C (HCV) related chronic liver disease. Int. J. Adv. Res. Biol.Sci. 2015;2(7): 115–125

25. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review, Journal of Infection and Public Health,2020;13:11; 1619-1629, https://doi.org/10.1016/j.jiph.2020.07.001

26. Blach S, Kondili LA, Aghemo A, et al. Impact of COVID-19 on global HCV elimination efforts. Journal of hepatology, 2021;74(1), 31–36. https://doi.org/10.1016/j.jhep.2020.07.042

27. Alothaid H, Aldughaim M, El Bakkouri K, AlMashhadi S, Al-Qahtani AA. Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19
progression: a review of potential targets for diagnosis and treatment. Channels (Austin, Tex.), 2020;14(1), 403–412. https://doi.org/10.1080/19336950.2020.1837439

28. Kaplan DE. Hepatitis C Virus. Ann Intern Med. 2020;1;173(5):ITC33-ITC48. doi: 10.7326/AITC202009010

29. Mohanty A, Salameh S, Butt AA. Impact of Direct Acting Antiviral Agent Therapy upon Extrahepatic Manifestations of Hepatitis C Virus Infection. Curr HIV/AIDS Rep. 2019;16(5):389-394. doi: 10.1007/s11904-019-00466-1.

30. Evon DM, Stewart PW, Amador J. et al. A comprehensive assessment of patient reported symptom burden, medical comorbidities, and functional well being in patients initiating direct acting antiviral therapy for chronic hepatitis C: Results from a large US multi-center observational study. PLoS one, 2018;13(8), e0196908. https://doi.org/10.1371/journal.pone.0196908

31. Silva F, Brito BB, Santos M. et al. COVID-19 gastrointestinal manifestations: a systematic review. Revista da Sociedade Brasileira de Medicina Tropical, 2020;53, e20200714. https://doi.org/10.1590/0037-8682-0714-2020

32. Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. The Laryngoscope, 2020;130(7), 1787. https://doi.org/10.1002/lary.28692;

33. Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol 2020;10(9):1103-1104. doi: 10.1002/alr.22593

34. Sandler NG, Koh C, Roque A, et al. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 2011;141:1220–1230, 1230.e1-e3

35. Leandro G, Mangia A, Hui J, et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology.2006;130:1636–1642

36. Knobler H, Schattner A. TNF-α, chronic hepatitis C and diabetes: a novel triad. QJM.2005;98:1–6.

37. Elsammak M, Refai W, Elsawaf A, Abdel-Fattah I, Abd Elatti E, Ghazal A. Elevated serum tumor necrosis factor alpha and ferritin may contribute to the insulin resistance found in HCV positive Egyptian patients, Current Medical Research and Opinion, 2005;21:4, 527-533, DOI: 10.1185/030079905X38141

38. Lecube A, Hernández C, Genescà J, et al. Diabetes is the main factor accounting for the high ferritin levels detected in chronic hepatitis C virus infection. Diabetes Care.2004;27(11):2669-75. doi: 10.2337/diacare.27.11.2669.

39. Chang ML, Hu JH, Yen CH. et al. Evolution of ferritin levels in hepatitis C patients treated with antivirals. Sci Rep2020;10, 19744. https://doi.org/10.1038/s41598-020-76871-z

40. Chunxiang M, Yingzi C, Hu Z. COVID-19 and the Digestive System, The American Journal of Gastroenterology: 2020;115(7): 1003-1006 doi: 10.14309/ajg.00000000000000691

41. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. bioRxiv. Published online January 31, 2020. (https://doi.org/10.1101/2020.01.30.927806)
42. Xu K, Cai H, Shen Y, et al. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020;49(1):0
43. Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Therapeutic advances in respiratory disease, 2020;14, 1753466620937175. https://doi.org/10.1177/1753466620937175
44. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395: 1033–1034
45. Jena A, Kumar-MP, Singh AK, Sharma V. Fecal calprotectin levels in COVID-19: Lessons from a systematic review on its use in inflammatory bowel disease during the pandemic. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 2021;53(3), 295–297. https://doi.org/10.1016/j.dld.2020.10.021