Quantum Effects of Strain Influence on the Doping Energy in Semiconductors

Z. T. Wang¹, Shiyou Chen², X. M. Duan³, D. Y. Sun⁴ and X. G. Gong⁵

¹Department of Physics, East China Normal University, Shanghai 200062, China
²Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, China
³Department of Physics, Ningbo University, Ningbo 315211, China and
⁴Department of Physics, Fudan University, Shanghai 200433, China
(Dated: January 19, 2013)

Applying external strain is an efficient way to manipulate the site preference of dopants in semiconductors, however, the validity of the previous continuum elastic model for the strain influence on the doping formation energy is still under debate. In this paper, by combining quantum mechanical theoretical analysis and first-principles calculations, we show that if the occupation change of different orbitals caused by the strain is negligible, the continuum elastic model is valid, otherwise it will fail. Our theory is confirmed by first-principles calculation of Mn-doped GaAs system. Moreover, we show that under compressive strain the hole density, thus the Curie temperature T_C can increase in Mn-doped spintronic materials.

PACS numbers: 61.72.aj, 71.55.Eq, 71.15.Nc

Doping is an important technique to modify and tune material properties in semiconductors. Usually, efficient doping requires that the dopant stays at a specific site in the host crystal. For example, to improve the Curie temperature T_C for the spintronic application of Mn-doped GaAs, Mn atoms should substitute at the Ga site (Mn$_{Ga}$) to create holes, and the existence of Mn at the interstitial site (Mn$_{i}$) should be avoided because it acts as donors which will kill holes that mediate the ferromagnetism.

The site preference of a dopant is determined by its formation energies at different doping sites. Therefore, to increase Mn$_{Ga}$ and reduce Mn$_{i}$ concentration in GaAs, one should reduced the impurity formation energy of Mn$_{Ga}$ and increase the impurity formation energy of Mn$_{i}$. To achieve this, besides growing the sample at, e.g., Ga-poor condition, another approach could be applying strain (stress), because the change of dopant formation energy under strain is site dependent.

Many studies and progresses have been made to understand how dopant formation energy at different sites is affected by strain. Zhang et al. have shown that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Theoretical calculations by Chen et al. indicate that the formation energy of self-interstitial atoms depends on strain. More recently, it has been shown by Zhu et al. using first-principles calculation that, for an external hydrostatic or epitaxial strain, the change of the impurity formation energy is monotonic, and it decreases if the external hydrostatic strain is applied in the same direction as the volume change caused by doping. In all these studies, classical continuum elastic theory is used to explain experimental and theoretical observations. In this theory, it assumes that the dopant induces a stress on the host crystal. When an external strain ϵ is applied, the formation energy of the dopant, ΔE, as a function of strain can be written as

$$\Delta E(\epsilon) = \Delta E_0 + V_0 P_D \epsilon, \quad (1)$$

where ΔE_0 is the dopant formation energy without strain, V_0 is the equilibrium volume of the host, P_D is the pressure exerted on the host by the dopant. A similar relation between ΔE and external stress σ has also been proposed. Eq. (1) clearly indicates that if the strain ϵ has the opposite sign as P_D, the dopant formation energy will decrease linearly as a function of ϵ. The change will be large if $V_0 P_D$ is large.

This simple formula has been widely used in the past. However, the origin of this formula is not well understood, especially the validity of the linear relationship between the strain and the formation energy. Due to the importance of this formula for understanding the elastic theory, the site preference of dopants under strain, and the diffusion behavior between different sites, a detailed study and understanding are needed.

In this paper, we find through quantum mechanical analysis and first-principles calculation that the precondition for the continuum elastic model and thus the linear dependence of the doping formation energy on strain is that there is no discontinuity in the occupation of the electron state when strain is applied. If the occupation of the energy level is switched after applying the strain due to band crossing in a quantum mechanical description, simple elastic model described by Eq. (1) will break down. This analysis is supported by our direct calculation of the formation energy of Mn-doped GaAs at different doping sites. We find that the change of the formation energy of Mn$_{Ga}$ as a function of strain cannot fit to a linear equation because under compressive strain electrons from conduction band derived donor level transfer to the exposed unoccupied Mn d level. Moreover, we show that a compressive strain can enhance the concentration of free holes produced by Mn$_{Ga}$ and suppress the formation of Mn$_{i}$, thus increase the hole density and consequently the Curie temperature T_C.

We start our analysis by expanding the total energy of the host as a function of strain in a Taylor series. According to the quantum theory, for a solid under small strain (ϵ), the energy up to the second order can be written as

$$E(\epsilon) = E_0 + \epsilon \langle \Psi | \frac{\partial H(\epsilon)}{\partial \epsilon} | \Psi \rangle + \frac{\epsilon^2}{2} \frac{\partial^2 \langle \Psi | H(\epsilon) | \Psi \rangle}{\partial \epsilon^2}, \quad (2)$$
where E_0 is the ground state energy of the host at $\epsilon = 0$, H and Ψ are the Hamiltonian and wavefunction of the system, respectively, and the derivatives are computed at $\epsilon = \frac{V - V_0}{V_0} = 0$, i.e., at $V = V_0$. Here, we assume volumetric strain. Similar expression for other type of strain such as epitaxial or uniaxial strain can also be derived in a similar way. The dopant formation energy is the energy difference between the doped system and the undoped system. The total energy of the doped system can also be expanded into a formula like Eq. (1) except that $\epsilon' = \frac{V - V_0}{V_0}$, the strain with respect to the equilibrium volume of the doped system. By expanding the series of the total energy of the doped system in terms of ϵ instead of ϵ' and subtracting that of the host total energy, we see that

$$\Delta E(\epsilon) = \Delta E_0 + V_0 P_D \epsilon + \alpha \epsilon^2,$$

(3)

where $\Delta E_0 = E_D - E_0$ is the dopant formation energy at equilibrium, and $P_D = -\frac{\partial E}{\partial V}|_{V=V_0}$ is the pressure exerted on the host by the dopant. The coefficient of the linear term $V_0 P_D$ is proportional to the volume difference $\delta V_D = V_D - V_0$. It originates from the size difference between the dopant and the host elements. Because δV_D is different for dopants at different sites, the slope of the change of $\Delta E(\epsilon)$ will be different for different dopants, thus this property can be used to tune site preference of a dopant. The coefficient α of the quadratic term depends on the elastic constant difference between the doped and undoped system, therefore, it is negligible if the doping concentration is small, i.e., Eq. (3) becomes Eq. (1) at the impurity doping limit and if the applied strain is small. This explains the origin of the continuum elastic model of Eq. (1).

However, in our derivation above, we assume that the change of the Hamiltonian and wavefunction is a continuous function of ϵ. This assumption is usually valid for semiconductors because the valence band and conduction band will not cross each other under strain before the metal-insulator transition. This situation also holds in most conventional semiconductors. As a typical semiconductor, it is known that the top of valence band of GaAs has mainly the bonding component of the VBM energy.

Another important property of the formation energy is the energy difference between the doped system and the undoped system. The total energy of the doped system is the energy difference between the doped and undoped systems. Similar expression for other type of strain such as epitaxial or uniaxial strain can also be derived in a similar way. The dopant formation energy is the energy difference between the doped system and the undoped system.

The formation energy for a dopant at site α with the charge state q is defined as

$$\Delta H(\alpha, q) = E(\alpha, q) - E(GaAs) + n_{Ga}[E(Ga) + \mu(Ga)]$$

$$-n_{Mn}[E(Mn) + \mu(Mn)] + q|\epsilon_{VBM}| + E_F,$$

(4)

where $E(\alpha, q)$ is the calculated total energy of the defect α in a supercell in the charge state q, $E(GaAs)$ is the energy of pure GaAs in the same supercell. n_{Ga} is the number of Ga and Mn atoms that are removed from the system during doping ($n_{Ga} = 0$ and $n_{Mn} = -1$ for the interstitial doping and $n_{Ga} = 1$ and $n_{Mn} = -1$ for the substitutional defect). $E(Ga)$ and $E(Mn)$ are the energy per atom of bulk Ga or Mn respectively, and $\mu(Ga)$ and $\mu(Mn)$ are chemical potential of Ga and Mn, referenced to the energy of bulk Ga and Mn, respectively. To improve p-type doping, Ga poor growth condition with $\epsilon < 0.125$ in good agreement with that predicated by Eq. (1). In the following, we will explain why the nonlinearity exist for the two donor defects Mn_{As} and Mn_{Ga} from the band structure of Mn-doped GaAs.

As a typical semiconductor, it is known that the top of valence band of GaAs has mainly the bonding component of the development of the spintronic devices, thus, the calculated results also has significant technical importance.

The first-principles calculations are carried out using Vienna ab initio simulation program (VASP) based on density functional theory with the projector augmented wave (PAW) pseudopotential and the generalized gradient approximation (PBE-GGA) to the exchange-correlation functional. The energy cut-off is set as 400 eV. The total energy and force on the atoms are converged within 10^{-4} eV and 10^{-2} eV/Å, respectively. A reciprocal space k-point mesh of $4\times4\times4$ for all the supercells is employed. A $(2\times2\times2)$ cubic supercell containing 64 host atoms is adopted for all the defect calculations. The optimized lattice constant is 5.75 Å for the zinc-blende structure of pure GaAs, which is in good agreement with previous studies.

In Fig. 1 we plot the strain influence on the calculated formation energy of Mn doping in GaAs at four different sites: Mn_{Ga}, interstitial surrounded by four As atoms, Mn_{Ga}, interstitial surrounded by four Ga atoms, Mn substitution at the Ga site, Mn_{Ga}, and a defect complex $2Mn_{Ga} + Mn_{Ga}$. The formation energy for a dopant at site α with the charge state q is defined as

$$\Delta H(\alpha, q) = E(\alpha, q) - E(GaAs) + n_{Ga}[E(Ga) + \mu(Ga)]$$

$$-n_{Mn}[E(Mn) + \mu(Mn)] + q|\epsilon_{VBM}| + E_F,$$

(4)

where $E(\alpha, q)$ is the calculated total energy of the defect α in a supercell in the charge state q, $E(GaAs)$ is the energy of pure GaAs in the same supercell. n_{Ga} is the number of Ga and Mn atoms that are removed from the system during doping ($n_{Ga} = 0$ and $n_{Mn} = -1$ for the interstitial doping and $n_{Ga} = 1$ and $n_{Mn} = -1$ for the substitutional defect). $E(Ga)$ and $E(Mn)$ are the energy per atom of bulk Ga or Mn respectively, and $\mu(Ga)$ and $\mu(Mn)$ are chemical potential of Ga and Mn, referenced to the energy of bulk Ga and Mn, respectively. To improve p-type doping, Ga poor growth condition with $\epsilon < 0.125$ in good agreement with that predicated by Eq. (1). In the following, we will explain why the nonlinearity exist for the two donor defects Mn_{As} and Mn_{Ga} from the band structure of Mn-doped GaAs.
As a consequence of the strain, the energy level is only weakly influenced by the strain. Due to the upward shift of the donor level relative to the Mn-3d spin-down band, when \(\epsilon < -0.058 \) electrons start to transfer from the CBM derived donor level to the Mn-3d spin-down band, so the \(M_n \) configuration changed to \(d^{15}d^{12} \) as the compressive strain is applied to the \(M_n \)-doped system. The change of the atomic wavefunction character from \(s, p \) to \(d \) make the simple linear relation of Eq. (1) fail. Fig. 1 shows that under compressive strain, a linear line for \(\epsilon > 0 \) is replaced by another linear line for \(\epsilon < -0.058 \) with a transition region between \(-0.058 < \epsilon < 0.0\). The smaller slope associated with the high compressive strain is because Mn in \(d^{15}d^{12} \) configuration at high compressive strain is more localized, i.e., has a smaller size, than in the \(d^{15} + 2e \) configuration at zero or expansive strain. Similarly, the smaller slope for \(M_{n, Ga} \) than for \(M_{n, As} \) is because there are more electrons around the anion atom As, so the pressure exerted by Mn at an interstitial site next to As is larger than that at an interstitial site next to Ga. All these are consistent with our theory discussed above.

Our discussion above show that the reason that the formation energy of \(M_n \) does not follow the simple linear relation of Eq. (1) is because \(M_n \) has two electrons near the conduction band edge and the strain changes the electronic occupation of different bands. Therefore, if we form the \(M_{n, Ga} + 2M_{n, Ga} \) complex, so the two electrons from \(M_{n, Ga} \) passivate the holes of \(M_{n, Ga} \), then the strain in the range -0.115 to 0.125 will not change the electronic occupation of the bands, thus the dependence of its formation energy on the strain should be more linear. Indeed our calculations confirmed this expectation, as shown in Fig. 1. Therefore, our calculations demonstrated that in Mn-doped GaAs system, whether the doping formation energy changes linearly with the strain, i.e., the validity of the continuum elastic model, depends on whether the strain changes the electronic occupation or not. It should be mentioned that, although the current analysis are demonstrated for the formation energy, the analysis also apply to the energy differences and diffusion barriers between different doping sites.

The above discussed dependence of formation energy on strain can be used to tune doping properties for a specific applications. For example, the experimentally observed ferromagnetism of Mn-doped GaAs is mediated by the hole produced by the \(M_{n, Ga} \) acceptors.\(^{[6–8]} \) However, as the hole density increases and the Fermi energy shifts towards VBM, compensating \(M_n \) starts to form, which will lower hole density and thus the Curie temperature \(T_C \). Our calculated results in Fig. 1 suggest that the relative ratio between \(M_{n, Ga} \) and \(M_n \) will increase significantly when compressive strain is applied, therefore, the \(T_C \) should increase if compressive strain can be applied during the doping process.

In conclusion, the strain influence on the doping formation energy at different sites in semiconductors is analyzed in terms of the quantum mechanics theory and demonstrated by performing first-principles calculation of Mn-doped GaAs.
system. We show that, the validity of the continuum elastic model, i.e., whether the formation energy is a linear function of the applied strain, depends on whether the occupation of the difference electronic bands is changed or not. If the occupation change caused by the strain is negligible, the formation energy is linearly dependent on the strain, while if the occupation change is significant, the linear relation, thus the continuum elastic model will fail. Our study clarifies the previous confusion about this linear relationship, and provides an easy way for predicting the strain influence on the doping site in semiconductors. The calculation also shows that the Fermi energy pinning level of Mn-doped GaAs can be shift to close to VBM through applying compressive strain to the system, which can increases the ferromagnetic Curie temperature.

This research is supported by the Natural Science Foundation of China and Shanghai, the Fundamental Research Funds for the Central Universities, Shuguang and Innovation Program of Shanghai Education Committee. The computation is performed in the Supercomputer Center of Shanghai and the Supercomputer Center of ECNU.

[1] e.g. E. F. Schubert, Doping in III-V Semiconductors, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Cambridge University Press, Cambridge, 2005).
[2] H. Ohno, Nature Materials 9, 952 (2010).
[3] T. Dietl, Nature Materials 9, 965 (2010).
[4] K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303(R) (2002).
[5] K. W. Edmonds et al., Phys. Rev. Lett. 92, 037201 (2004).
[6] T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006).
[7] K. Sato et al., Rev. Mod. Phys. 82, 1633 (2010).
[8] G. M. Dalpian et al., Solid State Commun. 138, 353 (2006).
[9] M. J. Aziz, P. C. Sabin and G. Q. Lu, Phys. Rev. B 44, 9812 (1991).
[10] Y. Zhao, M. J. Aziz, H.-J. Gossmann, S. Mitha, and D. Schiferl, Appl. Phys. Lett. 74, 31, (1999).
[11] D. J. Shu, F. Liu, and X. G. Gong, Phys. Rev. B 64, 245410 (2001).
[12] A. van de Walle, M. Asta, and P. W. Voorhees, Phys. Rev. B 67, 041308 (2003).
[13] L. Huang, F. Liu, and X. G. Gong, Phys. Rev. B 70, 155320 (2004).
[14] M. J. Aziz, Y. Zhao, H.-J. Gossmann, S. Mitha, S. P. Smith, and D. Schiferl, Phys. Rev. B 73, 054101 (2006).
[15] L. Huang, F. Liu, G. H. Lu, and X. G. Gong, Phys. Rev. Lett. 96, 016103 (2006).
[16] N. Moriya, L. C. Feldman, H. S. Luftman, C. A. King, J. Bevk and B. Free Phys. Rev. Lett. 71, 883 (1993).
[17] Z. Z. Zhang, B. Partoens, K. Chang and F. M. Peeters, Phys. Rev. B 77, 155201 (2008).
[18] Z. Z. Chen, N. Kioussis, N. Ghoniem, and D. Seif, Phys. Rev. B 81, 094102 (2010).
[19] J. Y. Zhu, F. Liu, G. B. Stringfellow, and S.-H. Wei, Phys. Rev. Lett. 105, 195503 (2010).
[20] P. H. Dederichs and K. Schroeder, Phys. Rev. B 17, 2524 (1978).
[21] P. Ganster, G. Trévia and A. Saúl, Phys. Rev. B 79, 115205 (2009).
[22] W. L. Chan, R. S. Averback, and Y. Ashkenazy, J. Appl. Phys. 104, 023502 (2008).
[23] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[24] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[25] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[26] S. H. Wei, X. G. Gong, G. M. Dalpian, and S.-H. Wei, Phys. Rev. B 71, 144409 (2005).
[27] X. Luo and R. M. Martin, Phys. Rev. B 72, 035212 (2005).
[28] P. Mahadevan and A. Zunger, Phys. Rev. B 68, 075202 (2003).
[29] V. I. Baykov, P. A. Korzhavyi, and B. Johansson, Phys. Rev. Lett. 101, 177204 (2008).
[30] Y. H. Li, X. G. Gong, and S.-H. Wei, Phys. Rev. B 73, 245206 (2006).