A STUDY OF HIGH-ORDER NON-GAUSSIANITY WITH APPLICATIONS TO MASSIVE CLUSTERS AND LARGE VOIDS

SIRICHAII CHONGCITNAN AND JOSEPH SILK
Oxford Astrophysics Denys, Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK; siri@astro.ox.ac.uk
Received 2010 July 6; accepted 2010 September 13; published 2010 November 1

ABSTRACT

The statistical meaning of the local non-Gaussianity parameters \(f_{\text{NL}} \) and \(g_{\text{NL}} \) is examined in detail. Their relations to the skewness and the kurtosis of the initial distribution are shown to obey simple fitting formulae, accurate on galaxy–cluster scales. We argue that the knowledge of \(f_{\text{NL}} \) and \(g_{\text{NL}} \) is insufficient for reconstructing a well-defined distribution of primordial fluctuations. Requiring the reconstructed probability density function (pdf) to be positive enforces a theoretical lower bound \(g_{\text{NL}} \gtrsim -1.2 \times 10^3 \), competitive with the observational bounds in the current literature. By weakening the statistical significance of \(g_{\text{NL}} \), it is possible to reconstruct a well-defined pdf by using a truncated Edgeworth series. We give some general guidelines on the use of such a series, noting in particular that (1) the Edgeworth series cannot represent models with nonzero \(f_{\text{NL}} \), unless \(g_{\text{NL}} \) is nonzero, and also (2) the series cannot represent models with \(g_{\text{NL}} < 0 \), unless some higher-order non-Gaussianities are known. Finally, we apply the Edgeworth series to calculate the effects of \(g_{\text{NL}} \) on the abundances of massive clusters and large voids. We show that the abundance of voids may generally be more sensitive to high-order non-Gaussianities than the cluster abundance.

Key words: cosmology: theory – large-scale structure of universe

Online-only material: color figures

1. INTRODUCTION

One of the great challenges for 21st century cosmology is to understand the statistical distribution of primordial seeds that eventually grew to become large-scale structures. If these primordial seeds, or density fluctuations, were laid down by a simple inflationary mechanism consisting of a single scalar field, the initial distribution is expected to be very close to Gaussian (see, e.g., Bartolo et al. 2004a or Chen 2010 for reviews). However, primordial non-Gaussianity can be large in more complex models such as multi-field inflation (Rigopoulos et al. 2006; Byrnes & Choi 2010), brane inflation (Chen 2005; Langlois et al. 2008), or in the curvaton model (Bartolo et al. 2004b; Sasaki et al. 2006).

Given a physical model that generates primordial density fluctuations, it has become common practice to calculate the “local” type of non-Gaussianity parameterized by constants \(f_{\text{NL}} \) and, less commonly, \(g_{\text{NL}} \), defined by the expansion of the nonlinear Newtonian potential

\[
\Phi = \phi + f_{\text{NL}} (\phi^2 + \langle \phi^2 \rangle) + g_{\text{NL}} \phi^3 + \cdots,
\]

where \(\phi \) is a Gaussian random field. Observational constraints on \(f_{\text{NL}} \) from the cosmic microwave background (CMB) anisotropies are currently consistent with \(f_{\text{NL}} = 32 \pm 42 \) (\(2\sigma \)) (Komatsu et al. 2010). Constraints on \(g_{\text{NL}} \) are much weaker, with \(|g_{\text{NL}}| \lesssim 6 \times 10^3 \) reported by Vielva & Sanz (2010). These limits should improve by at least an order of magnitude with results from the Planck satellite.

But what do these numbers actually tell us about the initial distribution of density fluctuations? After all, non-Gaussianity is a property of the initial probability density function (pdf) and thus it is important to understand exactly how \(f_{\text{NL}} \) and \(g_{\text{NL}} \) relate to the statistics of the primordial fluctuations. At leading order, \(f_{\text{NL}} \) and \(g_{\text{NL}} \) are proportional to the skewness and the excess kurtosis of the distribution of primordial density fluctuations (Desjacques et al. 2008). But as we shall see in this paper, the knowledge of \(f_{\text{NL}} \) and \(g_{\text{NL}} \) is insufficient for the reconstruction of the distribution of primordial fluctuations, as the corresponding pdf cannot be positive definite.

It has been said that characterizing non-Gaussianity is akin to characterizing a “non-dog.” While this is true in the sense that there are infinite possibilities of probability distributions that are not Gaussian, it is misleading because different types of non-Gaussianity can be systematically characterized, for instance, by the deviations in the moments or cumulants from the Gaussian values. This is, in fact, the idea behind the Edgeworth expansion, which expresses a weakly non-Gaussian distribution as the Gaussian distribution multiplied by a Taylor series consisting of cumulants (see Blinnikov & Moessner 1998 for a review).

There have been a number of works that use the Edgeworth series to study the distribution of density fluctuations (Bernardeau & Kofman 1995; Juszkiewicz et al. 1995; Amendola 2002; LoVerde et al. 2008). However, these works invariably truncate the Edgeworth expansion at just a few terms. In calculations of the abundance of massive clusters, the truncated series is often implicitly assumed to remain valid far out into the exponential tail of the distribution. In our opinion, it is very difficult to judge the validity of such calculations without establishing first the accuracy of the truncated Edgeworth series rigorously. In this paper, we shall address this issue and show, in particular, that the calculation of cluster abundance is sensitive to the truncation and can change by orders of magnitude if the series is prematurely truncated.

Many previous applications of the Edgeworth series also faced the problem that the resulting pdf is negative in some region. This is often attributed to the fact that there are an insufficient number of terms in the Edgeworth series. The conditions needed for the truncated Edgeworth expansions to be non-negative have been addressed in simple cases by a few works in the statistical literature (Draper & Tierney 1972;
2. THE PRIMORDIAL DENSITY FLUCTUATIONS

First, let us introduce the necessary parameters which will allow us to describe the initial distribution of primordial density fluctuations statistically.

Let ρ_c, ρ_b, ρ_r, and ρ_{Λ} be the time-dependent energy densities of cold dark matter, baryons, radiation, and dark energy, respectively. Let $\rho_m = \rho_\text{c} + \rho_b$. We define the density parameter for species i as

$$\Omega_i \equiv \frac{\rho_i(z = 0)}{\rho_{\text{crit}}}$$

where ρ_{crit} is the critical density defined by $\rho_{\text{crit}} \equiv 3H_0^2/8\pi G$. The Hubble constant, H_0, is parameterized by the usual formula $H_0 \equiv 100h \text{ km s}^{-1} \text{ Mpc}^{-1}$. Results from a range of astrophysical observations are consistent with $h \simeq 0.7$, $\Omega_\text{c} \simeq 0.23$, $\Omega_b \simeq 0.046$, and $\Omega_r \simeq 8.6 \times 10^{-5}$, with $\Omega_\Lambda = 1 - \Omega_m - \Omega_r$ (see, e.g., Komatsu et al. 2010; Lahav & Liddle 2010).

The density fluctuation field, δ, is defined as

$$\delta(x, t) \equiv \frac{\rho_m(x, t) - \langle \rho_m(t) \rangle}{\langle \rho_m(t) \rangle}$$

where $\langle \rho_m \rangle$ is the mean matter energy density. In Fourier space, the density fluctuation field can be decomposed as

$$\delta(x, t) = \int \frac{dk}{(2\pi)^3} \delta(k, t)e^{i\mathbf{k} \cdot \mathbf{x}}.$$

As we shall be dealing mainly with observables measured at the present time, t_0, we simply write $\delta(k)$ to mean $\delta(k, t_0)$.

The gravitational Newtonian potential Φ is related to the density fluctuation by the cosmological Poisson equation. For a Fourier mode \mathbf{k}, this reads

$$\delta(k) = \frac{2}{3\Omega_m} \left(\frac{k}{H_0} \right)^2 \Phi(k).$$

Statistical information on $\delta(x)$ can be deduced from that of $\delta(k)$. The finite resolution of any observation, however, means that we can only empirically obtain information on the smoothed moments of the primordial distribution. More precisely, given a length scale R, the smoothed density field, δ_R, observed today is given by

$$\delta_R(k) = W(kR)T(k)\delta(k),$$

where $k = |\mathbf{k}|$. We choose W to be the spherical top-hat function of radius R. In Fourier space, we have

$$W(kR) = \frac{3}{k^3} \left[\frac{\sin(kR) - \cos(kR)}{(kR)^3} \right].$$

It is also useful to define the mass of matter enclosed by the top-hat window as

$$M \equiv \frac{4}{3}\pi R^3 \rho_m \approx 1.16 \times 10^{12} \left(\frac{R}{h^{-1} \text{ Mpc}} \right)^3 h^{-1} M_\odot.$$

We follow the approach outlined in Weinberg (2008) and use the transfer function T of Dicke:

$$T(x) = \ln[1 + (0.124x)^2] \left(\frac{0.124x}{\Omega_b / \Omega_m} \right)^{1/2} \left[1 + (1.257x)^2 + (0.4452x)^4 + (0.2197x)^6 \right]^{-1/2}.$$

In addition, we also incorporate the baryonic correction of Eisenstein & Hu (1998), whereby the transfer function is evaluated at

$$x_{\text{EH}} = \frac{k\Omega_b}{H_0\Omega_m} \left[\alpha + \frac{1 - \alpha}{1 + (0.43ks)^4} \right]^{-1},$$

with

$$\alpha = 1 - 0.328 \ln(431\Omega_m h^2 + 0.38 \ln(22.3\Omega_m h^2)) \left(\frac{\Omega_b}{\Omega_m} \right)^2,$$

and

$$s = 44.5 \ln(9.83 / \Omega_m h^2) \text{ Mpc}.$$

The matter power spectrum, $P(k)$, can be defined via the two-point correlation function in Fourier space as

$$\langle \delta(k_1), \delta(k_2) \rangle = (2\pi)^3 \delta_D(k_1 + k_2)P(k),$$

where δ_D is the three-dimensional Dirac delta function. In linear perturbation theory, it is usually assumed that inflation laid down an initial spectrum of the form k^n, where n is the scalar spectral index (assumed to be 0.96 in this work). Physical processes which evolve $P(k)$ through the various cosmological epochs can simply be condensed into the equation

$$P(k) \propto P_\phi(k)T^2(k),$$

where $P_\phi(k) \propto k^{n_s - 4}$. It is also common to define the dimensionless power spectrum $\mathcal{P}(k)$ as

$$\mathcal{P}(k) \equiv \frac{k^3}{2\pi^2} P_\phi(k) \propto \left(\frac{k}{H_0} \right)^{n_s - 1}.$$

Consequently, the variance of density fluctuations smoothed on scale R can be written as

$$\sigma_R^2 = \int_0^\infty \frac{dk}{k} A^2(k)\mathcal{P}(k),$$

where

$$A(k) = \frac{2}{3\Omega_m} \left(\frac{k}{H_0} \right)^2 T(x_{\text{EH}})W(kR).$$

In our numerical work, we shall normalize $\mathcal{P}(k)$ so that

$$\sigma_8 \equiv \sigma(R = 8 h^{-1} \text{ Mpc}) = 0.8.$$
3. STATISTICAL INFORMATION IN f_{NL} AND g_{NL}

The most widely studied type of non-Gaussianity is the “local” type parameterized, at lowest orders, by f_{NL} and g_{NL}, which are the coefficients in the Taylor expansion of the non-linear Newtonian potential, Φ, in terms of the linear, Gaussian field, ϕ:

$$\Phi(\mathbf{x}) = \phi(\mathbf{x}) + f_{NL}(\phi^2(\mathbf{x}) - \langle \phi^2 \rangle) + g_{NL}\phi^3(\mathbf{x}) + \cdots. \quad (17)$$

This form of non-Gaussianity arises in simple models of single- and multi-field inflation (Bartolo et al. 2004a; Rigopoulos et al. 2006; Byrnes & Choi 2010) as well as in some curvaton models (Bartolo et al. 2004b; Sasaki et al. 2006). In this work, we shall assume non-Gaussianity only of this form. In general, it is possible that non-Gaussianity may be non-local. Mechanisms such as Dirac-Born-Infeld (DBI) inflation (Alishahiha et al. 2004) or inflation with a non-standard Lagrangian (Arkani-Hamed et al. 2004; Chen et al. 2007) are known to generate primarily non-local non-Gaussianity. We comment on these possibilities later, but leave a full investigation for future work.

We adopt the “large-scale structure” convention in which Φ is extrapolated to $z = 0$. We also take f_{NL} and g_{NL} to be constant, although it is conceivable that they may be scale dependent (see Sefusatti et al. 2009; Cayon et al. 2010) for constraints on the “running” of f_{NL}. In this section, we investigate how this form of non-Gaussianity is related to the reduced cumulants, S_n, defined by

$$S_n(R) \equiv \frac{\langle \delta^2 \rangle}{\sigma^2}, \quad (18)$$

where $\langle \delta^2 \rangle$ is the nth cumulant. For a distribution with zero mean, the relationships between the first few cumulants and moments are

$$\langle \delta^0 \rangle = 0, \quad \langle \delta^2 \rangle = \sigma^2, \quad \langle \delta^4 \rangle = 3\langle \delta^2 \rangle, \quad \langle \delta^6 \rangle = \langle \delta^4 \rangle - 3\sigma^4. \quad (19)$$

Throughout this work we shall often make references to the skewness and kurtosis, which are defined, respectively, as $\langle \delta^3 \rangle / \sigma^3$ and $\langle \delta^4 \rangle / \sigma^4$. The excess kurtosis is defined as $\langle \delta^4 \rangle / \sigma^4 - 3$, with 3 being the kurtosis of the Gaussian distribution.

3.1. f_{NL}

At leading order, f_{NL} is related to the skewness via the relation derived in Desjacques et al. (2008):

$$\sigma^4 S_3(R) = f_{NL} \int_0^\infty \frac{dk_1}{k_1} A(k_1) P(k_1) \int_0^\infty \frac{dk_2}{k_2} A(k_2) P(k_2) \int d\mu A(k_3) \left[1 + 2 \frac{P_\phi(k_3)}{P_\phi(k_2)} \right], \quad (20)$$

where $k_i^2 = k_1^2 + k_2^2 + 2\mu k_1 k_2$. Figure 1 (upper curve) shows the cumulant S_3 as a function of σ_R in the mass range $10^{13} - 10^{16} h^{-1} Mpc$. On these scales, the weak scale dependence on S_3 can be accurately fitted by a simple formula

$$S_3 \simeq \frac{3.14 \times 10^{-3} \times f_{NL}}{\sigma_R^{0.835}}, \quad (21)$$

with sub-percent accuracy. This fitting formula offers an easy way to calculate the observational signatures of f_{NL} without resorting to the integrals in Equation (20).

Figure 1. Solid lines show the reduced cumulants S_3 and S_4 for $f_{NL} = 1$ and $g_{NL} = 1$ as a function $\sigma(M)$, with mass M ranging between 10^{13} and $10^{16} h^{-1} Mpc$. Higher values of f_{NL} and g_{NL} scale multiplicatively. The overlapping dashed lines show the fitting formulae given by Equations (21) and (24).

(A color version of this figure is available in the online journal.)

3.2. g_{NL}

If $f_{NL} = 0$, we can similarly derive the leading-order relation between g_{NL} and the excess kurtosis (see the Appendix):

$$\langle \delta^4 \rangle = \frac{3}{4\pi} g_{NL} \left(\prod_{i=1}^3 \int_0^\infty \frac{dk_i}{k_i} A(k_i) P_\phi(k_i) \right) \int d\mu A(k_3) \left[1 + \frac{P_\phi(k_3)}{P_\phi(k_2)} + \frac{P_\phi(k_4)}{P_\phi(k_2)} + \frac{P_\phi(k_3)}{P_\phi(k_2)} \right], \quad (22)$$

where

$$k_i^2 = k_1^2 + k_2^2 + 2k_1k_2 + 2k_1k_2 + 2k_1k_3\mu + 2k_2k_3\mu + 2k_1k_3\sqrt{1 - \mu_1^2 \cos \phi + \mu_1 \mu_2}. \quad (23)$$

The result of this integration is shown as the lower curve in Figure 1. As before, we found a fitting formula

$$S_4 \simeq \frac{1.14 \times 10^{-5} \times g_{NL}}{\sigma_R^{1.27}}, \quad (24)$$

accurate to a few percent on the same mass scale.

In summary, we can easily emulate the effects of f_{NL} and g_{NL} using the fitting formulae (21) and (24) without having to compute the multi-dimensional integrals (20) and (22). Of course, these formulae depend on the choice of the primordial power spectrum as well as on the window and transfer functions. The fitting formulae are not expected to be very sensitive to the changes in any one of these ingredients.

4. NON-GAUSSIANITY BASED ON f_{NL} AND g_{NL} ONLY

Much effort has been put into using the parameters f_{NL} and g_{NL} to specify the deviation of the primordial distribution from Gaussianity. As shown in the previous section, these parameters correspond, at leading order, to deviations from Gaussianity in the third and fourth moments of the distribution. It is important
to examine if one can consistently parameterize a non-Gaussian distribution in this way without having to worry about deviations in the higher-order moments. We shall demonstrate that this cannot be the case.

The objective here is to reconstruct the pdf of density fluctuations, given a sequence of moments \(\{\langle g^n \rangle, n = 0, 1, 2, \ldots\} \). This is the classic moment problem which has been studied in great detail, beginning with the pioneering work of Stieltjes in 1894 and Hamburger in 1920 (see Kjeldsen 1993 for a historical review). In general, there is no guarantee that the resulting pdf will be non-negative or, indeed, that a solution exists at all. A useful theorem regarding the existence of a solution to the Hamburger moment problem, i.e., when the pdf is defined on \((-\infty, \infty)\), is the following.

Theorem. Existence of solution to the Hamburger moment problem. The sequence \(\{\alpha_n, n = 0, 1, 2, \ldots\} \) corresponds to moments of a non-negative pdf if and only if the determinants

\[
D_n = \begin{vmatrix}
\alpha_0 & \alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_{n+1} \\
\alpha_2 & \alpha_3 & \alpha_4 & \cdots & \alpha_{n+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_n & \alpha_{n+1} & \alpha_{n+2} & \cdots & \alpha_{2n}
\end{vmatrix}, \quad n = 0, 1, 2, \ldots
\]

are all non-negative.

See Shohat & Tamarkin (1963) or Akheiser (1965) for the proof.

Let us consider the standardized distribution of \(x = \delta_R/\sigma_R \), so that \(\alpha_0 = 1, \alpha_1 = 0, \) and \(\alpha_2 = 1 \). Let us also suppose (as is implicit in some previous works) that non-Gaussianity weakly manifests in the skewness and kurtosis only (therefore \(\alpha_3 \) is close to 0 and \(\alpha_4 \) is close to 3). Higher moments are taken to be identical to those of the normal distribution

\[
\alpha_n = \begin{cases}
(n-1)!! = 1 \cdot 3 \cdot 5 \cdots (n-1), & n \text{ even} \\
0, & n \text{ odd}
\end{cases} \quad (n \geq 5).
\]

The expressions for \(D_n \) up to \(n = 6 \) are given below. For convenience, we write \(s = \alpha_3 \) (skewness) and \(k = \alpha_4 - 3 \) (excess kurtosis).

\[
\begin{align*}
D_3 &= k - s^2 + 2, \\
D_4 &= -k^3 - 8k^2 - 6k - 3ks^2 - 24s^2 + s^4 + 12, \\
D_5 &= k^5 + 15k^4 - 60k^3 + 360k^2 - 45ks^2 + 45k^2s^2 - 1890s^2 + 105s^4 + 288, \\
D_6 &= 945k^5 + 11025k^4 - 80100k^3 - 324000k^2 - 43200k \\
&\quad - 132300ks^2 + 31500ks^2 - 518400s^2 + 99,225s^4 \\
&\quad + 34,560.
\end{align*}
\]

Note that for the Gaussian distribution \((s = k = 0) \), these \(D_n \)'s are all positive as expected.

4.1. \(n = 3 \) and a Lower Bound on \(g_{NL} \)

The condition \(D_3 \geq 0 \) already sets the lower bound for the excess kurtosis

\[k \geq s^2 - 2 \geq -2. \] (27)

Geometrically, as \(k \) decreases, the distribution becomes increasingly flat until it becomes impossible for the pdf to remain non-negative and normalized on \((-\infty, \infty)\). We note that this bound can also be obtained by an application of the Cauchy–Schwarz inequality (see, e.g., Feller 1991) and previously appeared in an astrophysical context in Luo & Schramm (1993).

It is a little appreciated fact that the effect of \(g_{NL} \) is non-symmetric in the sense that \(g_{NL} \) can be arbitrarily large and positive but not large and negative. This stems simply from the bound (27) on the excess kurtosis. Based on this observation, we now derive a theoretical lower bound on \(g_{NL} \).

For a non-standardized distribution, the bound (27) reads

\[
\sigma^2 S_4 \geq -2. \quad (28)
\]

Using the fitting formula (24), we find

\[
g_{NL} \geq \frac{-1.75 \times 10^5}{\sigma_R^{0.73}}. \quad (29)
\]

Finally, because \(\sigma(M) \) decreases monotonically, we can insert the largest value of \(\sigma \) for which the fitting formula is valid. Conservatively taking this to be \(\sigma(M \approx 10^{13} h^{-1} \text{Mpc}) = 1.6 \), we find the lower bound

\[
g_{NL}^{\text{LSS}} \geq -1.2 \times 10^{5}, \quad (30)
\]

where the superscript LSS denotes the fact that this estimate applies to physical scales relevant to large-scale structures. A tighter bound may be achieved by considering \(\sigma \) smoothed over a lower mass scale. However, the fitting formula may not be sufficiently accurate there. One should also be cautious of extrapolating the constancy of \(g_{NL} \) across too many orders of magnitude. We note that our theoretical lower bound is slightly tighter than the observational constraints \(g_{NL}^{\text{LSS}} > -3.5 \times 10^{5} \) reported by Desjacques & Seljak (2010b) and \(g_{NL}^{\text{CMB}} > -5.6 \times 10^{5} \) given in Vielva & Sanz (2010).

4.2. \(n \geq 4 \)

For \(n \geq 4 \), the condition \(D_n \geq 0 \) always describes a closed region in the \((s, k)\) plane containing the origin and bounded by the curve \(D_n = 0 \). Figure 2 shows these regions for \(n = 5 \) (outermost ellipse) to \(n = 10 \) (innermost ellipse). To make a connection with later sections, we have labeled the axes as \((\sigma S_3, \sigma^2 S_4) \), where

\[
\sigma S_3 = s, \quad \sigma^2 S_4 = k, \quad (31)
\]

as can be easily shown using relations (18) and (19) (to avoid cluttering we sometimes write \(\sigma \) to mean \(\sigma_R \)). As \(n \) increases, the region corresponding to \(D_n \geq 0 \) becomes smaller. Interestingly, the regions for any two consecutive values of \(n \) are nested and co-tangential. One can continue inductively this way to find that as \(n \rightarrow \infty \), the ellipses converge to the origin, implying that there is no room for any deviation from Gaussianity. We conclude that deviations in the skewness and kurtosis alone cannot consistently parameterize a non-Gaussian pdf.

The upshot of all this is that \(f_{NL} \) and \(g_{NL} \) by themselves cannot completely describe a non-Gaussian pdf. Information on higher-order correlation must be available for the pdf to be well defined.

5. THE EDGEMOUTH EXPANSION

As described in the introduction, the Edgeworth expansion is a convenient way to express a weakly non-Gaussian pdf as a series comprising its cumulants. Suppose that we only have
estimates on f_{NL} and g_{NL}, and no higher-order non-Gaussianity. The result of the previous section shows that the resulting pdf cannot be non-negative.

Nevertheless, this result only holds if we use an infinite number of cumulants in the reconstruction of the pdf. This is equivalent to having an infinite number of terms in the Edgeworth expansion. In numerical implementations, however, one truncates the Edgeworth expansion after a finite number of terms. As we will see shortly, it now becomes possible to describe an entirely non-negative pdf with only f_{NL} and g_{NL}, circumventing the result of the previous section. The disadvantage of the truncation is, of course, that the cumulants of the reconstructed pdf may not correspond exactly to those of the actual pdf, and thus the statistical significance of f_{NL} and g_{NL} is somewhat weakened. For a very short series of just a few terms, the interpretations of f_{NL} as skewness and g_{NL} as excess kurtosis are especially dubious.

Given information on a finite number of cumulants, we shall demonstrate the sensitivity of the resulting pdf to the number of terms in the Edgeworth expansion. This sensitivity has been alluded to by several works in the literature (Juszkiewicz et al. 1995; LoVerde et al. 2008; Desjacques et al. 2008), though we believe that our analysis goes beyond those works. In particular, we shall argue that the truncated series cannot be used to deduce results for negative g_{NL}, unless some higher-order non-Gaussianities are known.

5.1. The Petrov Development

In this paper, we shall be using the form of the Edgeworth series given by Petrov (1975), who gave a method of calculating the Edgeworth series to arbitrarily high order. Given a non-Gaussian pdf with zero mean and variance σ_R^2, we can express its deviation from Gaussianity as a product of the normal distribution and a Taylor series in σ_R:

$$p(\delta_R) = N(\delta_R) \left[1 + \sum_{k=1}^{\infty} \frac{\sigma^k}{\sqrt{2\pi}} E_k \left(\frac{\delta_R}{\sigma_R} \right) \right],$$

where $N(\delta_R)$ is the normal distribution

$$N(\delta_R) = \frac{1}{\sigma_R \sqrt{2\pi}} \exp \left(-\frac{\delta_R^2}{2\sigma_R^2} \right),$$

and the coefficients E_k in the Taylor series are given by

$$E_k \left(\frac{\delta_R}{\sigma_R} \right) = \sum_{(k_s)} \left[\frac{1}{k_m!} \left(\frac{S_m+2}{m+2} \right) k_s \right].$$

We now explain the various components of the coefficient (34).

First, the sum is taken over all distinct sets of non-negative integers $\{k_m\}_{m=1}$ satisfying the Diophantine equation

$$k_1 + 2k_2 + \ldots + sk_s = s.$$

We also define

$$r \equiv k_1 + k_2 + \ldots + k_s.$$

Next, the function $H_n(x)$ is the Hermite polynomial of degree n. They can be obtained by the Rodrigues’ formula

$$H_n(x) = (-1)^n e^{-x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}).$$

For example, $H_0(x) = 1$ and $H_1(x) = x$. Higher-order polynomials can be easily obtained via the recurrence relation

$$H_{n+1}(x) = x H_n(x) - n H_{n-1}(x).$$

Note that if $p(\delta_R)$ is Gaussian, the cumulants of order ≥ 3 vanish identically, and so do the expansion coefficients (34), as one might expect.

5.2. Validity of the Truncated Series

The Edgeworth expansion takes, as input, a sequence of cumulants $\{S_n\}$ which are combined with polynomials of various degrees up to order N. Therefore, when using the Edgeworth expansion, there are two factors which will determine its accuracy, namely, (1) the number of available cumulants, and (2) the order N. These two issues are separate in the sense that it is possible to expand the Edgeworth series to arbitrarily high order, given a limited number of cumulants. Both these issues must be analyzed to properly monitor the sources of error.

5.2.1. Linear Truncation

When the Edgeworth series (32) is truncated at linear order in σ_R, the resulting pdf is given by

$$p(x) = N(x) \left[1 + \frac{\sigma_R S_3}{6} (x^3 - 3x) \right],$$

where $x \equiv \delta_R/\sigma_R$ as before. Observe that if $S_1 > 0$, a sufficiently large negative x gives $p(x) < 0$ and, similarly, if $S_1 < 0$, a sufficiently large positive x gives $p(x) < 0$. For instance, if $|S_1| = 0.1$, $p(x)$ becomes negative as early as $|x| \approx 3$. This implies that a linear truncation of the Edgeworth series is highly suspect and is certainly not suitable for calculating, for instance, the mass function whereby high values of density fluctuations are involved.

5.2.2. Quadratic Truncation

The Edgeworth series truncated at quadratic order in σ_R yields

$$p(x) = N(x) \left[1 + \frac{\sigma_R S_3}{6} H_2(x) + \sigma_R^2 \left(\frac{S_4}{24} H_4(x) + \frac{S_3^2}{72} H_6(x) \right) \right].$$
We wish to determine the combination of \(S_3 \) and \(S_4 \) such that \(p(x) \) is non-negative. The numerical evaluation of \(p(x) \) over a grid of \(S_3 \) and \(S_4 \) is shown in Figure 3. In the figure, we mark points for which \(p(x) > 0 \) in the \((\sigma_R S_3, \sigma_R^2 S_4)\) plane, in the domain \(x \in [-20, 20] \). This reveals a closed region in which \(p(x) > 0 \). In fact, the bounding envelope can be found analytically by setting \(p(x) = p'(x) = 0 \), but the resulting equation has a very complicated parametric form which we shall not show here. For details of this technique, see Jondeau & Rockinger (2001).

A curious feature of Figure 3 is that the excess kurtosis, \(\sigma^2 S_4 \), is limited to a small, non-negative range. We can prove this as follows. Setting \(S_3 = 0 \), the quadratic series can be written as

\[
p(x) = \frac{1}{N(x)} + \frac{\sigma_R S_4}{24} (x^2 - 3)^2 - 6.
\]

This expression clearly achieves the minimum when \(x^2 - 3 = 0 \). Requiring the minimum to be non-negative establishes the upper bound \(\sigma^2 S_4 \leq 4 \). Next, if \(S_3 < 0 \), the quartic expression is unbounded from below and so the pdf will be negative for some large \(x \). Thus, we must have \(0 \leq \sigma^2 S_4 \leq 4 \).

The bound for \(S_3 \) is more difficult to establish and we shall not go into detail here. We simply note that since an analytic expression describing the shaded region in Figure 3 exists, the region in fact represents combinations of \(S_3 \) and \(S_4 \) (\(f_{NL} \) and \(g_{NL} \)) for which the pdf is non-negative on the entire real line and not just in \([-20, 20]\). If the Edgeworth series is truncated at a higher order, it becomes increasingly difficult to find such a region, as expected given the conclusion in Section 4.

5.2.3. Higher-order Truncations

Figure 4 shows the same set of axes as Figure 3 with the Edgeworth series now expanded up to terms of orders \(\sigma^7, \sigma^5, \sigma^{10}, \) and \(\sigma^{20} \) (top row to bottom row). In producing these figures, we have set the rest of the cumulants to zero. This is roughly equivalent to parameterizing the non-Gaussianity by \(f_{NL} \) and \(g_{NL} \) only. Note that if \(n \) is odd, the series up to \(n \) terms performs significantly worse than one with even \(n \). This is simply because odd (Hermite) polynomials are not positive definite, whereas even ones are, provided the coefficients are properly chosen. When scanning over a sufficiently large range of \(x \), an odd-ordered Edgeworth expansion will not produce any well-defined pdf whatsoever.

The sensitivity of the regions to the range of \(x \) considered is clearly seen in the difference between the column on the left (in which \(p(x) \) is only required to be non-negative for \(|x| < 5\)) and on the right (\(|x| < 20\)). As the range of \(x \) increases, the cluster of points shrinks as it becomes increasingly difficult to find a closed region with \(p(x) > 0 \).

Observe that for \(x \in [-20, 20] \), very few models with negative \(S_4 \) (i.e., \(g_{NL} < 0 \)) are produced. In fact, if the range of \(x \) is sufficiently large, no models with negative \(S_4 \) are produced at all. A simple explanation for this is as follows. If the highest nonzero cumulant of a non-Gaussian distribution is \(S_4 \), then, for large \(x \), the Edgeworth series expanded to \(n \) terms is of order \(S_4 x^n \). Hence, if \(S_4 < 0 \), a sufficiently large \(x \) will render the expansion negative regardless of the value of \(n \).

Therefore, it is necessary that higher-order non-Gaussianities are taken into account when modeling a non-Gaussian distribution with \(g_{NL} < 0 \). For instance, including nonzero cumulants \(S_6 \) and \(S_8 \) opens up the parameter space to those with \(S_4 < 0 \), as shown in Figure 5.

In summary, the Edgeworth series should be expanded up to even order in \(\sigma_R \) to produce a well-defined pdf. The highest cumulant in that case is restricted to non-negative values. The Edgeworth expansion therefore can describe models with \(g_{NL} < 0 \) if and only if cumulants of order at least 6 or higher are included. If \(g_{NL} = 0 \) and non-Gaussianity is parameterized by \(f_{NL} \) only, the Edgeworth expansion is odd-ordered and the resulting pdf is not well defined.

Although we have assumed that non-Gaussianity is characterized purely by the “local” \(f_{NL} \) and \(g_{NL} \) parameters, the results in this section (as summarized in Figures 3–5) have been established in terms of the cumulants, \(S_n \), and so they hold even if there are other types of non-Gaussianity present. The only difference in this case is that it will be more complicated to translate the cumulants into \(f_{NL} \)-type parameters. For instance, \(S_3 \) will now comprise a mixture of local and non-local contributions:

\[
S_3 = f_{NL}^\text{local} I_1 + f_{NL}^\text{non-local} I_2.
\]

where \(I_1 \) and \(I_2 \) are some integral expressions. See LoVerde et al. (2008) and Desjacques & Seljak (2010a) for the expressions for \(I_2 \) in the case where non-Gaussianity is of the so-called folded or equilateral-triangle type.

Having understood how to produce well-defined non-Gaussian pdfs using the Edgeworth expansion, we shall now look at two applications, namely, the non-Gaussian prediction for abundances of clusters and voids. In what follows, we shall focus on the case where \(f_{NL} = 0 \) and \(g_{NL} > 0 \).

6. ABUNDANCE OF MASSIVE CLUSTERS

Large-scale structures are sensitive to primordial non-Gaussianity on scales much smaller than the CMB (see Desjacques & Seljak 2010a for a recent review). On these scales, non-Gaussianity can manifest in the changes in the cluster number count and its redshift dependence (Lucchin & Mattarese 1988; Robinson & Baker 2000; LoVerde et al. 2008; Oguri 2009) as well as a scale-dependent halo bias (Dalal et al. 2008; Mattarese & Verde 2008; Wands & Slosar 2009). In this work, we use the Edgeworth approach, in its correct formalism, together with Press–Schechter theory to study the effect of nonzero \(g_{NL} \) on the number density of massive clusters. Redshift dependence and the effects on the correlation function will be examined in a later publication.
6.1. Press–Schechter Theory

Let $n(M)$ be the number density of collapsed objects of mass above M. Press–Schechter theory (Press & Schechter 1974) gives the differential number density of collapsed objects as

$$\frac{dn}{dM} = -2\rho_m \frac{d}{dM} \int_{\delta_c / \sigma(M)}^{\infty} p(x, M) dx,$$

where $p(x, M)$ is the pdf smoothed by a window function containing mass M and $\delta_c \approx 1.686$ is the threshold overdensity.
Figure 5. Including nonzero sixth and eighth cumulants (S_6 and S_8) opens up the region of validity of the truncated Edgeworth series to include models with $S_4 < 0$ (compare with Figure 4, third row, right column). Only points with $S_4 < 0$ are shown. For all these points, the eighth cumulant, S_8, is positive, as explained in the text.

for spherical collapse. For a non-Gaussian pdf, Grossi et al. (2009) suggest that a good fit to N-body simulations can be obtained by using the Press–Schechter mass function modified by the replacement

$$\delta_c \rightarrow 0.866 \delta_c .$$

(See Maggiore & Riotto 2009b for a possible theoretical origin.) We make this replacement in our calculations.

Figure 6 shows the changes in dn/dM for a range of non-Gaussian models with $g_{NL} = 500, 1000,$ and 5000 ($f_{NL} = 0$ in all cases). In these calculations, we keep the Edgeworth expansion up to 10 terms and check that $p(x) > 0$ at least in the range $x \in [-20, 20]$. Outside this range, the $p(x)$ is sufficiently small and the contribution to the cluster abundance on this mass scale is negligible (note that for the normal distribution, $N(20) \sim 10^{-18}$). The values of g_{NL} have been chosen to stay within the region of validity (see Figure 4). In our case, we require $0 \lesssim \sigma^2 S_4 \lesssim 0.6$, corresponding roughly to $0 \lesssim g_{NL} \lesssim O(10^5)$. In these calculations, we use the fitting formula (24), which, in all cases, reproduces the results using the full integration (22) almost perfectly in this mass range.

The general effect of $g_{NL} > 0$ is a boost in the number density of the most massive objects. For instance, abundance of objects of mass a few $\times 10^{15} M_\odot$ (corresponding to the most massive clusters) is increased by a factor of a few for $g_{NL} = 500$. One expects the reverse effect for $g_{NL} < 0$, but as we stated earlier, such calculations cannot be made with the Edgeworth series unless higher-order non-Gaussianities are taken into account.

6.2. The Danger of Truncation

Increasing the number of terms in the Edgeworth expansion does not change the pdf drastically. However, because the mass function is extremely sensitive to the exponential tail of the distribution, it is imperative that one keeps as many terms as practically possible in the Edgeworth expansion. Exactly how many terms are required will depend on a combination of factors such as the range of scales of interest or the redshift at which the calculations are made.

Figure 7 demonstrates the danger of a reckless truncation. The panel on the left shows the pdf for a distribution with $g_{NL} = 5000$ (with higher-order cumulants again equal 0). The various lines correspond to the number of terms in the Edgeworth expansion. For $\delta_R \sim O(1)$, the pdfs lie almost exactly on top of one another, diverging only at high δ_R. However, keeping just a few terms in the Edgeworth series is inadequate, as seen in the panel on the right. Here, the ratio of the non-Gaussian number density dn/dM and the Gaussian value can change by an order of magnitude as the number of terms increases from 3 to 10 on mass scales close to $10^{15} M_\odot$. Increasing from 10 to 20 terms does not change the cluster abundance on this mass range. Such a check must always be performed to avoid spurious answers.

7. ABUNDANCE OF VOIDS

Primordial non-Gaussianity also changes the abundance of underdense regions, i.e., cosmic voids. An estimate of void abundance can be computed by a simple extension of the Press–Schechter formalism (Kamionkowski et al. 2009; Biswas et al. 2010), although there are more sophisticated methods based on the void probability function (White 1979) or the
eigenvalues of the tidal tensor (Doroshkevich 1970; Lam et al. 2009). Presently, we shall use the Press–Schechter approach with the Edgeworth expansion to calculate the effect of g_{NL} on the void abundance.

A void can be defined as an isolated region in which $-1 \leq \delta \leq \delta_v$, where δ_v is some threshold underdensity. Simulations carried out by Shandarin et al. (2006), Park & Lee (2007), and Colberg et al. (2008) suggest $\delta_v \approx -0.8$. Linearly extrapolating this value to $z = 0$ using the fitting formula of Mo & White (1996) gives $\delta_v = -2.75$.

Let $\text{Prob}_{>\delta_v}(x)$ be the probability that $\delta > \delta_v$ at x. Since $\text{Prob}_{>\delta_v} = 1 - \text{Prob}_{\leq \delta_v}$, differentiating this expression with respect to R shows that the analog of Equation (43) for voids can simply be obtained by the replacement $\delta_c \rightarrow \delta_v$ and a change in the overall sign.

Figure 8 shows the differential number density dn/dR for models in which $g_{\text{NL}} = 500$, 1000, and 5000, plotted against the smoothing scale R. By increasing g_{NL}, the void abundance is enhanced and responds much more sensitively than the cluster abundance (compare Figures 6 and 8). For example, in the extreme case, where $g_{\text{NL}} = 5000$, at $R = 20 h^{-1}\text{Mpc}$ ($M \approx 10^{16} h^{-1} M_{\odot}$), the enhancement in dn/dM compared to the Gaussian prediction is roughly a factor of 100 for clusters, but as large as 10^6 for voids. This suggests that large voids may be a more sensitive probe of primordial non-Gaussianity than massive clusters, although a more careful calculation is needed to confirm this.

Another interesting observation is that $g_{\text{NL}} > 0$ enhances both cluster and void abundances. This is in contrast with the effect of $f_{\text{NL}} > 0$, which enhances the number density of clusters, but suppresses the number density of voids (Lam et al. 2009; Kamionkowski et al. 2009). Comparing the abundances of clusters and voids may offer a way to probe any asymmetry of the initial pdf.

8. CONCLUSIONS

The key results in this paper are as follows.

1. We clarified the statistical meaning of the local non-Gaussianity parameters f_{NL} and g_{NL}, which, at leading
order, are proportional to the skewness and excess kurtosis of a distribution. These relations are in the form of multidimensional integrals, with the case of g_{NL} treated in detail in the Appendix. The fitting formulae for these integrals are given in Equations (21) and (24). They are accurate on the mass scale $10^{13}-10^{16} \, M_{\odot}$.

2. We showed that the information in f_{NL} and g_{NL} is insufficient for a reconstruction of the initial pdf. Using a theorem from the classical Hamburger moment problem, we showed that there is no positive pdf which deviates from Gaussianity only in the second and third moments. Positivity of the pdf also requires that the kurtosis be bounded from below. This translates to a theoretical lower bound of $g_{NL} \gtrsim -1.2 \times 10^{5}$.

3. We studied the truncated Edgeworth series, emphasizing that in this representation, f_{NL} and g_{NL} may not accurately reflect the skewness and excess kurtosis of the reconstructed pdf, especially for shorter truncations. We surveyed the skewness–kurtosis plane for regions of validity (i.e., where the pdf is non-negative) for various truncations of the Edgeworth series. We proved that the Edgeworth expansion can represent a non-negative pdf if it is truncated at even order in σ, with the highest-order cumulant restricted to non-negative values. In terms of local non-Gaussianity, this means that the Edgeworth series cannot be used to represent models with nonzero f_{NL} without considering nonzero g_{NL} also. It also means that models with $g_{NL} < 0$ are not representable by a truncated Edgeworth series unless the non-Gaussian deviation in the sixth moment (or higher) is known.

4. Working with a 10th-order Edgeworth series, we calculated the effects of g_{NL} on the cluster number density, dn/dM, using the Press–Schechter formalism (see Figure 6). With $g_{NL} = 5000$, the differential abundance of the most massive clusters ($M = \text{few} \times 10^{15} \, M_{\odot}$) was found to be a few times greater than the Gaussian prediction. We cautioned that this result can change if the series is prematurely truncated.

5. Finally, we extended the Press–Schechter approach to compute the effects of g_{NL} on the abundance of large voids. The void number density is enhanced much more sensitively compared to clusters (Figure 8). This could be confirmed by a more sophisticated calculation (e.g., using correlation functions to calculate the void probability distribution). We shall address this issue in a future publication.

S.C. is supported by Lincoln College, Oxford. We are grateful to Sergei Blinnikov for sharing his Petrov–Edgeworth code, Lindsay King and Pedro Ferreira for reading the manuscript, and Bob Scherrer and the referee for many helpful suggestions.

APPENDIX

RELATION BETWEEN KURTOSIS AND g_{NL}

Consider a model of non-Gaussianity with vanishing f_{NL}. In Fourier space, the expansion (17) reads

$$\Phi(k) = \phi(k) + g_{NL} \int \frac{dp}{(2\pi)^3} \int \frac{dq}{(2\pi)^3} \phi(p) \phi(q) \phi(k - p - q).$$ \hfill (A1)

The connected four-point correlation function of δ is given by

$$\langle \delta(k_1) \delta(k_2) \delta(k_3) \delta(k_4) \rangle = (2\pi)^3 A_1 A_2 A_3 A_4 \delta_D \times (k_1 + k_2 + k_3 + k_4) \mathcal{T}_0(k_1, k_2, k_3, k_4),$$ \hfill (A2)

where the Dirac delta function enforces the condition that the four vectors k_i, $i = 1, \ldots, 4$ form a closed quadrilateral. The tri-spectrum \mathcal{T}_0 is the four-point correlation function of Φ, which, upon substituting the expansion (A1) and using the fact that

$$\langle \phi(k) \phi(k - p) \rangle = (2\pi)^3 \delta_D(p) P_\phi(k),$$ \hfill (A3)

becomes

$$\mathcal{T}_0(k_1, k_2, k_3, k_4) = 6 g_{NL} [\mathcal{P}_\phi(k_1) \mathcal{P}_\phi(k_2) \mathcal{P}_\phi(k_3) + (134) + (124) + (234)],$$ \hfill (A4)

where $k_4 = -k_1 - k_2 - k_3$. The brackets (ijk) are our shorthand for the cyclic permutations.

The smoothed fourth cumulant is then given by

$$\langle \delta^4 \rangle_{c} = \left(\prod_{i=1}^{4} \int \frac{dk_i}{(2\pi)^3} \right) \langle \delta(k_1) \delta(k_2) \delta(k_3) \delta(k_4) \rangle.$$ \hfill (A5)

To simplify this integral, we first note that the delta function immediately removes the dk_4 integral. Next, we introduce a series of spherical coordinates to convert the integrals to those over the magnitude $k_i = |k_i|$ and those over the angles between vectors.

Given a closed quadrilateral formed by k_1, k_2, k_3, k_4 in that order, let θ_{ij} be the angle between k_i and k_j in the sense defined by the scalar product $k_i \cdot k_j = k_i k_j \cos \theta_{ij}$. We define

$$\mu_1 \equiv \cos \theta_{12}, \quad \mu_2 \equiv \cos \theta_{23},$$ \hfill (A6)

and note that

$$k_4 = |k_1 + k_2 + k_3| = \sqrt{k_1^2 + k_2^2 + k_3^2 + 2 k_1 k_2 \mu_1 + 2 k_2 k_3 \mu_2 + 2 k_1 k_3 \cos \theta_{13}}.$$ \hfill (A7)

Returning to the fourth cumulant, note that the dk_1 and dk_2 integrals can be reduced as usual to

$$\int \frac{dk_1}{(2\pi)^3} \int \frac{dk_2}{(2\pi)^3} \rightarrow \int_0^\infty \frac{k_1^2 \, dk_1}{2 \pi^2} \int_0^\infty \frac{k_2^2 \, dk_2}{4 \pi^2} \int_1^1 d\mu_1.$$ \hfill (A8)

The dk_3 integral can be simplified by introducing a unit vector \hat{u} perpendicular to k_2. Let ϕ be the angle between \hat{u} and k_3. Thus,

$$\int \frac{dk_3}{(2\pi)^3} \rightarrow \int_0^\infty \frac{k_3^2 \, dk_3}{2 \pi^2} \int_0^{2\pi} d\mu_2 \int_0^{2\pi} d\phi.$$ \hfill (A9)

From Equation (A7), we see that k_4 depends on θ_{13}, which naturally depends on ϕ. It remains for us to find the relationship between θ_{13} and ϕ. Suppose for now that k_1 and k_2 are not parallel, then we can pick \hat{u} in the plane spanned by k_1 and k_2. The Gram–Schmidt orthogonalization gives

$$\hat{u} = \frac{k_2 k_1 - k_1 k_2}{k_1 k_2 \sqrt{1 - \mu_1^2}}.$$ \hfill (A10)

Taking the inner product with k_3 yields the desired relation

$$\cos \theta_{13} = \sqrt{1 - \mu_1^2} \cos \phi + \mu_1 \mu_2.$$ \hfill (A11)
We see that this relation also holds when k_1 and k_2 are parallel ($\mu = \pm 1$), in which case the integrand is independent of ϕ.

Collecting all these results, we arrive at the relation between the fourth cumulant and g_{NL}:

$$\langle \delta^4_R \rangle_c = \frac{3}{4\pi} g_{\text{NL}} \left(\prod_{i=1}^{3} \int_{0}^{\infty} \frac{d k_i}{k_i} A(k_i) P_{\phi}(k_i) \right) \int_{-1}^{1} d \mu_1 \int_{-1}^{1} d \mu_2 \times \int_{0}^{2\pi} d \phi A(k_4) \left[1 + P_{\phi}(k_4) P_{\phi}(k_1) + P_{\phi}(k_4) P_{\phi}(k_2) + P_{\phi}(k_4) P_{\phi}(k_3) \right].$$

Finally, the kurtosis is related to the fourth cumulant via Equation (19).

REFERENCES

Akheizer, N. I. 1965, The Classical Moment Problem and Related Questions in Analysis (New York: Hafner Publishing Company)

Alishahiha, M., Silverstein, E., & Tong, D. 2004, Phys. Rev. D, 70, 123505

Amendola, L. 2002, ApJ, 569, 595

Arkani-Hamed, N., Creminelli, P., Mukohyama, S., & Zaldarriaga, M. 2004, J. Cosmol. Astropart. Phys., JCAP04(2004)001

Balitskaya, E. O., & Zolotuhina, L. A. 1988, Biometrika, 75, 185

Bartolo, N., Komatsu, E., Matarrese, S., & Riotto, A. 2004, Phys. Rep., 402, 103

Bartolo, N., Matarrese, S., & Riotto, A. 2004b, Phys. Rev. D, 69, 043503

Bernardeau, F., & Hofman, L. 1995, ApJ, 443, 479

Biswas, R., Alizadeh, E., & Wandelt, B. D. 2010, Phys. Rev. D, 82, 023002

Blumikov, S., & Moessner, R. 1998, A&AS, 130, 193

Byrnes, C. T., & Choi, K. 2010, Adv. Astron., 2010, 724525

Cayon, L., Gordon, G., & Silk, J. 2010, arXiv:1006.1950

Chen, X. 2005, Phys. Rev. D, 72, 123518

Chen, X. 2010, Adv. Astron., 2010, 638979

Chen, X., Huang, M.-x., Kachru, S., & Shiu, G. 2007, J. Cosmol. Astropart. Phys., JCAP04(2007)002

Colberg, J. M., et al. 2008, MNRAS, 387, 933

Dalal, N., Dore, O., Huterer, D., & Shirokov, A. 2008, Phys. Rev. D, 77, 123514

D’Amico, G., Musso, M., Noreña, J., & Paranjape, A. 2010, arXiv:1005.1203

Desjacques, V., & Seljak, U. 2010a, arXiv:1006.4763

Desjacques, V., & Seljak, U. 2010b, Phys. Rev. D, 81, 023006

Desjacques, V., Seljak, U., & Iliev, I. 2008, MNRAS, 396, 85

Doroshkevich, A. G. 1970, Astrofizika, 6, 581

Draper, N. R., & Tierney, D. E. 1972, Biometrika, 59, 463

Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605

Feller, W. 1991, An Introduction to Probability and its Applications, Vol. 2 (2nd ed.; New York: Wiley)

Grossi, M., et al. 2009, MNRAS, 398, 321

Jondeau, E., & Rockinger, M. 2001, J. Econ. Dyn. Control, 25, 1457

Juszkiewicz, R., Weinberg, D. H., Amsterdamski, S., Grasso, D., & Bouchet, F. 1995, ApJ, 442, 39

Kamionkowski, M., Verde, L., & Jimenez, R. 2009, J. Cosmol. Astropart. Phys., JCAP01(2009)010

Kjeldsen, T. H. 1993, Historia Math., 20, 19

Komatsu, E., et al. 2010, arXiv:1004.1119

Kovac, J., & Liddle, A. R. 2010, arXiv:1002.3488

Lam, T. Y., Sheth, R. K., & Desjacques, V. 2009, MNRAS, 399, 1482

Langlois, D., Renaux-Petel, S., Steer, D. A., & Tanaka, T. 2008, Phys. Rev. Lett., 101, 061301

Lo Verde, M., Miller, A., Shandera, S., & Verde, L. 2008, J. Cosmol. Astropart. Phys., JCAP04(2008)014

Lucchin, F., & Matarrese, S. 1998, ApJ, 330, 535

Luo, X., & Schramm, D. N. 1993, ApJ, 408, 33

Maggiore, M., & Riotto, A. 2009, ApJ, 711, 907

Maggiore, M., & Riotto, A. 2009b, ApJ, 717, 526

Maggiore, M., & Riotto, A. 2010, ApJ, 717, 515

Matarrese, S., & Verde, L. 2004, ApJ, 677, L77

Mo, H. J., & White, S. D. M. 1996, MNRAS, 282, 347

Oguri, M. 2009, Phys. Rev. Lett., 102, 211301

Park, D., & Lee, J. 2007, Phys. Rev. Lett., 98, 081301

Petrov, V. 1975, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 82, Sums of Independent Random Variables (Berlin: Springer)

Press, W., & Schechter, P. 1974, ApJ, 187, 425

Rigopoulos, G. I., Shellard, E. P. S., & van Tent, B. J. W. 2006, Phys. Rev. D, 73, 083522

Robinson, J., & Baker, J. E. 2000, MNRAS, 311, 781

Sasaki, M., Valliviita, J., & Wands, D. 2006, Phys. Rev. D, 74, 103003

Sefusatti, E., Liguori, M., Yadav, A. P. S., Jackson, M. G., & Pajer, E. 2009, J. Cosmol. Astropart. Phys., JCAP04(2009)001

Shandarin, S., Feldman, H. A., Heitmann, K., & Habib, S. 2006, MNRAS, 367, 1629

Shefah, J., & Tamarin, J. 1963, The Problem of Moments (Mathematical Surveys and Monographs, Vol. 1; Providence, RI: American Mathematical Society)

Vierv, P., & Sand, J. L. 2010, MNRAS, 404, 895

Wands, D., & Slosar, A. 2009, Phys. Rev. D, 79, 123507

Weinberg, S. 2008, Cosmology (Oxford: Oxford Univ. Press)

White, S. D. M. 1979, MNRAS, 186, 145