Effect of disorder on superconductivity in the boson-fermion model

T. Domański\(^{(a,b)}\) and K.I. Wysokiński\(^{(b)}\)

\(^{(a)}\)Centre de Recherches sur les Très Basses Tempéatures CNRS, 38-042 Grenoble Cedex 9, France
\(^{(b)}\)Institute of Physics, Maria Curie Skłodowska University, 20-031 Lublin, Poland

(Received November 4, 2018)

We study how a randomness of either boson or fermion site energies affects the superconducting phase of the boson fermion model. We find that, contrary to what is expected for \(s\)-wave superconductors, the non-magnetic disorder is detrimental to the \(s\)-wave superconductivity. However, depending on which subsystem the disorder is located, we can observe different channels being affected. Weak disorder of the fermion subsystem is responsible mainly for renormalization of the single particle density of states while disorder in the boson subsystem directly leads to fluctuation of the strength of the effective pairing between fermions.

PACS numbers: 74.20.-z, 74.20.Mn, 74.25.Bt, 71.10.-w

I. INTRODUCTION

The boson fermion (BF) model is an example of a microscopic theory of nonconventional superconductivity. It describes a mixture of itinerant electrons or holes (fermions) which interact via charge exchange with a system of immobile local pairs (hard-core bosons). Due to this interactions, bosons acquire finite mass and under proper circumstances might undergo Bose condensation transition while fermions simultaneously start to form a broken symmetry superconducting phase.

For the first time this model has been introduced \textit{ad hoc} almost two decades ago \[1\] to describe the electron system coupled to the lattice vibrations in a crossover regime, between the adiabatic and antiadiabatic limits. Later it has been formally derived from the Hamiltonian of wide band electrons hybridized to the strongly coupled narrow band electron system \[2\]. Very recently \[3\] the same effective BF model has been derived purely from the two dimensional Hubbard model in the strong interaction limit using the contractor renormalization method of Morningstar and Weinstein \[4\].

Some authors have proposed it as a possible scenario for description of high temperature superconductivity (HTSC). The unconventional way of inducing the superconducting phase in the BF model has been independently investigated in a number of papers \[2 \[1\]]\[1\]. Moreover, this model reveals also several unusual properties of the normal phase (for \(T > T_c\)) with an appearance of the pseudogap being the most transparent amongst them \[4 \[2\]]\[2\]. Apart of eventual relevance of this model to HTSC there are attempts to apply the same type of picture for a description of the magnetically trapped atoms of alkali metals \[5\].

The important question which we want to address in this paper is: what is an influence of disorder on superconductivity of the BF model? The conventional \(s\)-wave symmetry BCS-type superconductors are known to be rather weakly affected by paramagnetic impurities \[10\] - the fact which is known as "Anderson theorem". Non-magnetic impurities have remarkable detrimental effect on superconductors with the anisotropic order parameters. Magnetic impurities lead to pair-breaking effects which result in a strong reduction of \(T_c\) even in \(s\)-wave superconductors. Studying the effect of impurities on the superconductors has always been an established tool for investigation of the internal structure of the Cooper pairs.

Due to the nonconventional pairing mechanism (i.e. exchange of the hard-core bosons between fermion pairs) it is of a fundamental importance to see how the nonmagnetic impurities (disorder) affect the isotropic superconducting phase of the BF model. Previously, such a study has been carried out by Robaszkiewicz and Pawłowski \[7\] who considered disorder only in the boson subsystem. Using a method of configurational averaging for the free energy, authors have shown a strong detrimental effect of disorder on superconductivity. Apart of a reduction of the transition temperature \(T_c\) they have also reported a remarkable change of a relative ratio \(\Delta(T = 0)/k_BT_c\). In this paper we analyze the effect of disorder present in both: fermion and boson subsystems using a different method of the coherent potential approximation.

II. THE MODEL AND APPROACH

A. Hamiltonian of the disordered BF model

We consider the following Hamiltonian of the disordered BF model

\[
H^{BF} = \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_i \left(\varepsilon_i - \mu \right) c_{i\sigma}^\dagger c_{i\sigma} + \sum_i \left(\Delta_B + E_i - 2\mu \right) b_i^\dagger b_i
\]
\[+ v \sum_i \left(b_i^\dagger c_i^\dagger c_i + b_i c^\dagger i^\dagger c_{i^\dagger} \right). \]

We use the standard notations for annihilation (creation) operators of fermion \(c_{i,\sigma} \) \((c_{i,\sigma}^\dagger)\) with spin \(\sigma \) and of the hard core boson \(b_i \) \((b_i^\dagger)\) at site \(i \). Fermions interact with bosons via the charge exchange interaction \(v \) which is assumed to be local. There are two ways in which disorder enters into the consideration. Either (a) fermions are affected by it and this is expressed by the random site energies \(\varepsilon_i \), or (b) hard core bosons via their random site energies \(E_i \).

To proceed, we apply first the mean field decoupling for the boson fermion interaction

\[b_i^\dagger c_i c_i^\dagger \simeq (b_i^\dagger)^* c_i c_i^\dagger + b_i^\dagger (c_i^\dagger c_i) \]

which is justified until \(v \) is small enough in comparison to the kinetic energy of fermions. After decoupling \([3]\) we have to deal with the effective Hamiltonian composed of the separate fermion and boson contributions

\[H \simeq H^F + H^B \]

\[H^F = \sum_{i,j,\sigma} \left[t_{ij} + \delta_{ij} (\varepsilon_i - \mu) \right] c_{i,\sigma}^\dagger c_{j,\sigma} + \sum_i \left(\rho_i^s c_i^\dagger c_i + \rho_i b_i^\dagger b_i \right) \]

\[H^B = \sum_i \left[(\Delta_B + E_i - 2\mu) b_i^\dagger b_i + x_i b_i^\dagger + x_i^\dagger b_i \right], \]

where \(x_i = v (c_i^\dagger c_i) \) and \(\rho_i = v (b_i) \). The site dependence of \(\rho_i \) and \(x_i \) indicates the disorder induced amplitude fluctuations of the order parameters.

B. Boson part

For a given configuration of disorder we can exactly find the eigenvectors and eigenvalues corresponding to the lattice site \(i \) using a suitable unitary transformation. Statistical expectation values of the number operator \(b_i^\dagger b_i \) and the parameter \(\rho_i \) are given by \([4]\)

\[\langle b_i^\dagger b_i \rangle = \frac{1}{2} \left[\frac{\Delta_B + E_i - 2\mu}{4\gamma_i} \right] \tanh \left(\frac{\gamma_i}{k_BT} \right), \]

\[\rho_i = \frac{\nu x_i}{2} \tanh \left(\frac{\gamma_i}{k_BT} \right) \]

where \(\gamma_i = \frac{1}{2} \sqrt{(\Delta_i + E_i - 2\mu)^2 + 4|\nu x_i|^2} \) and \(k_B \) is the Boltzmann constant. Note, that the site dependent fermion order parameter \(x_i \) enters the expression for the boson number operator \([3]\) and the parameter \(\rho_i \) \([4]\). Disorder of any subsystem is thus automatically transferred onto the other one.

C. Fermion part

Analysis of the fermion part \([3]\) is more cumbersome. To study it we use the Nambu representation \(\Psi^\dagger = (c_i^\dagger, c_i) \), \(\Psi = (\Psi^\dagger)^\dagger \) and define the matrix Green’s function \(G(i, j; \omega) = \langle \langle \Psi_i; \Psi_j^\dagger \rangle \rangle_\omega \). Equation of motion for this function reads

\[\sum_{l} \left[\begin{array}{cc} (\omega - \varepsilon_i + \mu)\delta_{il} - t_{il} & -\rho_i^s \delta_{il} \\ -\rho_i \delta_{il} & (\omega + \varepsilon_i - \mu)\delta_{il} + t_{il} \end{array} \right] \times G(l, j; \omega) = \delta_{ij}. \]

Using the matrix Green’s function \(G^0(i, j; \omega) \) of a clean system

\[[G^0(k; \omega)]^{-1} = \left(\begin{array}{cc} \omega - \varepsilon_k + \mu & -\rho^s \\ -\rho & \omega + \varepsilon_k - \mu \end{array} \right), \]

one can write down the following Dyson equation for the Green’s function \(G(i, j; \omega) \)

\[G(i, j; \omega) = G^0(i, j; \omega) + \sum_l G^0(i, l; \omega) V_l G(l, j; \omega). \]

This Green’s function depends on the specific disorder configuration. In order to pass through one usually averages it over the all possible configurations.

For carrying out the configurational averaging we use a method of the Coherent Potential Approximation (CPA). The main idea of CPA is to replace the random potential \(V_i \) by some uniform coherent potential \(\Sigma(\omega) \). Formally, the Green’s function which satisfies \([10]\) with \(V_i \) replaced by \(\Sigma(\omega) \) is then given (in the momentum coordinates) by

\[[G^{CPA}(k; \omega)]^{-1} = [G^0(k; \omega)]^{-1} - \Sigma(\omega). \]

Configuration at site \(i \) is defined by values of the random energies \(\varepsilon_i \), \(E_i \) - we shall symbolically denote it by \(\alpha \equiv \{\varepsilon_i, E_i\} \). Any of possible configurations \(\alpha \) can occur with some probability \(P(\varepsilon_i, E_i) \equiv e^{(\alpha)} \) and of course these probabilities are normalized \(\sum_\alpha e^{(\alpha)} = 1 \).

A particle propagating through the medium characterized by the coherent potential \(\Sigma(\omega) \) is thus, at site \(i \), scattered with probability \(e^{(\alpha)} \) by the potential \(V_i^{(\alpha)} - \Sigma(\omega) \). For a chosen configuration \(\alpha \) of the site \(i \) the conditionally averaged local Green’s function is given by
\[G^{(a)}(i, i; \omega)^{-1} = \left[G^{CPA}(i, i; \omega) \right]^{-1} - \left[V_i^{(a)} - \Sigma(\omega) \right]. \]

(12)

This Green’s function \(G^{(a)}(i, i; \omega) \) describes the system in which all sites, except one indicated by \(i \), are described by the coherent potential \(\Sigma(\omega) \). In CPA one requires that, the average of the local Green’s function is the same as the Green’s function of the averaged system. This CPA condition is identical with the following equation

\[\sum_{\alpha} \epsilon^{(a)} G^{(a)}(i, i; \omega) = G^{CPA}(i, i; \omega). \]

(13)

Equations (11, 13) have to be solved self-consistently to yield the coherent potential \(\Sigma(\omega) \). Physical quantities such as fermion concentration \(n_F \) given by \(\frac{1}{N} \sum_i \epsilon_i \langle c_i^\dagger c_i \rangle \) and the superconducting order parameter \(x \equiv \frac{1}{N} \sum_i x_i \) are to be calculated from

\[n_F = -\frac{2}{\pi N} \int_{-\infty}^{\infty} \frac{d\omega}{e^{\beta \omega} + 1} \text{Im} \left\{ G_{11}^{CPA}(i, i; \omega + i0^+) \right\} \]

(14)

\[x = -v \frac{1}{\pi N} \int_{-\infty}^{\infty} \frac{d\omega}{e^{\beta \omega} + 1} \text{Im} \left\{ G_{21}^{CPA}(i, i; \omega + i0^+) \right\} \]

(15)

where \(\beta = 1/k_B T \).

In the following section we discuss the changes of the superconducting transition temperature \(T_c \) caused by disorder.

III. DISORDER IN FERMION SUBSYSTEM

It is instructive to investigate the disorder separately for fermion and boson subsystems. Let us start with fermion disorder \(\varepsilon_i \). We set \(E_i = 0 \) for all lattice sites. For the random fermion energies we choose \(\varepsilon_i = \varepsilon_{\omega} \) with probability \(c \) and \(\varepsilon_i = 0 \) with probability \(1 - c \). It is a bimodal type disorder

\[P(\{\varepsilon_i\}) = c \delta(\varepsilon_i - \varepsilon_{\omega}) + (1 - c) \delta(\varepsilon_i - 0). \]

(16)

Here we shall be mainly interested in the superconducting transition temperature \(T_c \). In this limit [19], the diagonal disorder affects mainly a diagonal part of the matrix Green’s function \(G \). In fact, even for no disorder acting directly in bosonic subsystem the boson order parameter \(\rho \) in equation (9) does depend on the site index via fermion order parameter \(x_i \). However, we expect this induced disorder to be weak and neglect it. This allows us to show how disorder in fermionic subsystem only, affects \(T_c \).

The off-diagonal elements of the coherent potential vanish. Due to the general symmetry \(\Sigma_{22}(i\omega) = -\Sigma_{11}(-i\omega) \) [19] we can simplify the self-energy matrix to

\[\Sigma(i\omega) = \begin{pmatrix} \Sigma_{11}(i\omega) & 0 \\ 0 & -\Sigma_{11}(-i\omega) \end{pmatrix}. \]

(17)

\(\Sigma_{11}(\omega) \) can be found from the CPA equation [18] which, for a normal phase, takes a well known form [18]

\[\frac{1 - c}{[\Sigma_{11}(\omega)]^{-1} + F(\omega)} + \frac{c}{\Sigma_{11}(\omega) - \varepsilon_0} + F(\omega) = 0 \]

(18)

with \(F(\omega) = \frac{1}{N} \sum_k G_{11}^{CPA}(k, \omega) \). Equation (18) should be solved subject to a given dispersion relation \(\varepsilon_k \) and parameters \(c, \varepsilon_0 \).

Finally having calculated \(\Sigma_{11}(\omega) \), we can find \(n_F \) and \(x \) for \(n^B, \rho \). In particular, the critical temperature \(T_c = (k_B \beta c)^{-1} \) is given via

\[1 = v^2 \tan \left[\frac{\beta c (\Delta_B - 2\mu)}{2} \right] \sum_k \int_{-\infty}^{\infty} d\omega_1 \int_{-\infty}^{\infty} d\omega_2 \times A(k, \omega_1) A(k, \omega_2) \tan \left[\beta \omega_1/2 \right] + \tan \left[\beta \omega_2/2 \right] \]

(19)

where \(A(k, \omega) = (-1/\pi) \text{Im} \left\{ G_{11}^{CPA}(k, \omega + i0^+) \right\} \) denotes the spectral function of the normal phase.

We choose for our study a case of weak boson fermion interaction \(v = 0.1 \) (in units of the initial fermion bandwidth) and total concentration of charge carriers \(n_{tot} = 2n_B + n_F = 1 \). Figure [1] shows how \(T_c \) of a clean system depends on position of the boson level. There are three distinguishable regimes [18] of relative occupancy by bosons and fermions. Superconducting correlations are of course most visible when chemical potential is close to \(\Delta_B/2 \). We choose the value \(\Delta_B/2 = -0.3 \) to be close to optimal value of transition temperature and to have comparable amount of fermions and bosons. For computations we use the 2D square lattice dispersion - the van Hove singularity is safely distant from the Fermi energy for the above parameters.

![FIG. 1. Variation of \(T_c \) with respect to boson energy \(\Delta_B \) for a clean system with \(n_{tot} = 1 \). Bottom panel illustrates the concentrations of fermions \((n^F) \) and bosons \((n^B) \) at \(T = T_c \). Note the three distinct regimes of: predominantly local pairs \(2n^B \sim n_{tot} \), coexisting pairs and fermions \(n^F \sim 2n^B \), and predominantly fermions \(n^F \sim n_{tot} \) (so called BCS limit).](image-url)
In figure 2 we plot the transition temperature T_c, calculated from equation (19) against concentration c for several values of ε_0. With an increase of concentration c of scattering centers we notice a gradual reduction of the critical temperature. This tendency can be understood by looking at the behavior of the fermion density of states at the Fermi energy $g(\varepsilon_F)$. Disorder is responsible for renormalization of the low energy sector and these low energy states are involved in forming the superconducting type correlations. As shown in the bottom panel there is additional effect coming from the rearrangement of occupations n^F and n^B. With an increasing concentration c the fermion band is shifted toward higher energies and the system is then mainly occupied by bosons (so called, the local pair LP limit).

For negative values of ε_0 the disorder shows stronger influence on T_c. On one hand we have again a direct effect of the renormalized density of states (see $g(\varepsilon_F)$ in the middle panel of figure 3). On the other hand, with an increase of c for any negative value of ε_0 the fermion band and the position of the chemical potential drift towards lower energies. As its consequence the number of fermions increases and the number of bosons decreases. Effectively we thus approach the BCS limit where transition temperature diminishes very fast if $\Delta_B/2$ goes above μ (check for example the curves for $\varepsilon_0 = -0.4$ and -0.5). The strong disorder in fermion subsystem makes the pairing mechanism almost ineffective at all.

In figure 3 we plot T_c versus (positive) ε_0 for several concentrations c. Again, T_c roughly follows variation of the density of states $g(\varepsilon_F)$ which is shown in the bottom panel. As discussed above for large values of concentration c and large positive ε_0 the system is mainly filled by bosons (the LP limit) so there is some finite T_c even when $\mu = \Delta_B/2$ is far below the fermion band, this is an artifact of the mean field approximation [2,8].

In summary we notice that change of the transition
temperature T_c caused by weak disorder in fermion subsystem is controlled mainly by modification of the low lying energy states. This is in accord with the Anderson theorem for spin singlet s-wave superconductors. However, additional influence comes from redistribution of particle spectrum and their relative occupancy and such effects are dominant for large values of impurity concentration c and for their large scattering strength $|\varepsilon_0|$. In this limit the boson - fermion exchange becomes ineffective.

IV. DISORDER IN BOSON SUBSYSTEM

Now we turn attention to a case when boson energies are random $E_i \neq 0$ and, for simplicity, assume no fermion disorder i.e. $\varepsilon_i = 0$ for all the lattice sites. The scattering potential (4) reduces then to

$$V_l = \begin{pmatrix} 0 & -f_l \langle c_l^\dagger c_l^\dagger \rangle \\ -f_l \langle c_l c_l^\dagger \rangle & 0 \end{pmatrix}, \quad (20)$$

with

$$f_l = v^2 \frac{\tanh [\beta \gamma]}{2 \gamma} \quad (21)$$

and

$$\gamma_l = \sqrt{\left(\frac{\Delta_B + E_l}{2} - \mu\right)^2 + \left|v \langle c_l c_l^\dagger \rangle\right|^2}. \quad (22)$$

It means that the fluctuating boson energy level E_l induces fluctuations of the pairing strengths f_l in the fermion subsystem. To some extent, this situation reminds the negative U Hubbard model [27] for which the random local attraction $U_l < 0$ leads to the following scattering matrix

$$V_l^{(Hub)} = \begin{pmatrix} U_l \langle n_l \rangle / 2 & U_l \langle c_l^\dagger c_{l'}^\dagger \rangle \\ U_l \langle c_l c_l^\dagger \rangle & U_l \langle n_l \rangle / 2 \end{pmatrix}. \quad (23)$$

We see that in our case the role of a random pairing potential U_l is played by $-f_l$ given in equation (21).

There are two extreme limits, as far as the effectiveness of the random boson energy $\Delta_B + E_l$ is concerned

- for small (on the scale of fermion-boson interaction v) fluctuations of E_l, effect of the disorder becomes negligible unless the chemical potential is pinned to the boson level $\mu = \Delta_B/2$, when the amplitude of the pairing potential is controlled by
 $$f_l \sim v^2 \tanh \left[\beta x_l\right]/2x_l$$
 and is usually uniform except at very low temperatures $\beta \to \infty$ when $f_l \sim v^2/x_l$

- for large fluctuations of E_l one obtains $f_l \sim v^2 \tanh \left[\frac{\beta}{2} (\Delta_B + E_l - 2\mu)\right]/(\Delta_B + E_l - 2\mu)$.

To analyze effects of the disorder in boson subsystem we use a two pole distribution $P\{E_l\} = \frac{1}{2} \left[\delta(E_l - E_0) + \delta(E_l + E_0)\right]$. The boson energy is $\Delta_B \pm E_0$ with an equal probability 0.5. Figure 5 shows critical temperature T_c, calculated from equation (13), as a function of energy E_0 by which the boson energy is split. Strong dependence of T_c on disorder is a combined effect of the density of states, the fluctuating interactions and the changes in concentration of carriers.

![Figure 5](image_url)
FIG. 6. Normalized critical temperature T_c/E_0 and the normalized pairing potential $<f_l>/ <f_l(E_0)=0>$ versus energy E_0. $T_c^{(B,C,S)}$ shows the BCS-like relation between critical temperature and pairing potential. Left panel refers to $n_{tot}=1$, $\Delta_B=-0.6$ discussed above and the right panel corresponds to the symmetric case of the BF model $\Delta_B=0$, $n_{tot}=2$ (with the half filled boson and fermion subsystems).

To estimate what influence comes only from the renormalization of the effective pairing we plot in figure 6 the normalized transition temperature denoted by T_c and the normalized averaged $<f_l>/ <f_l(E_0)=0>$ for the parameters given above (left panel), and for a fully symmetric case of the BF model (right panel). The transition temperature $T_c^{(B,C,S)}$ is the BCS-type estimate of the effect of changes in the effective pairing due to disorder

$$T_c(E_0) \propto \exp \left(\frac{-1}{g(E_0) <f_l(E_0)>} \right). \quad (24)$$

A general trend observed in figure 6 is that the average effective interaction $<f_l(E_0)>$ decreases with increasing disorder, even though the bar fermion-boson interaction v remains constant. This decreasing pairing interaction is the only factor responsible for a behavior of T_c versus E_0 in the right panel. We notice absence of the BCS-like exponential scaling which is due to unconventional pairing in the BF model.

In the left panel, corresponding to the above studied case $\Delta_B=-0.6$, $n_{tot}=1$, we notice a larger discrepancy between the pairing amplitude and T_c. With an increase of E_0 the transition temperature is much strongly reduced than in the symmetric case. This effect has to be assigned to redistributions of particle occupancies. At large values of E_0 we have practically only hard core boson particles in the system, and they cannot induce superconductivity among fermions whose fraction becomes very small.

In the previous study [17] authors have used the same bimodal distribution of random boson energies. They have found a strong reduction of T_c near $E_0 \sim 2v$ which agrees well with our data shown in figure 6. Moreover, the authors have reported that disorder affects the ratio $\Delta_{sc}(T=0)/k_BT_c$ which changes from 4.2 (for a clean system) to the standard BCS result 3.52 at large E_0. Simple explanation of this effect can be offered. The boson energy (which is split by $2E_0$) is for sufficiently large E_0 partly in the LP limit (for $E_l=-E_0$) and partly in the BCS limit (if $E_l=+E_0$). The second one contributes with the standard BCS value if $|E_0|$ is large enough (see e.g. Fig. 9 in Ref. [2]).

V. CONCLUSION

The randomness of the site energies of both, fermions and bosons, has a strong effect on superconducting phase of the BF model. Weak disorder in the fermion subsystem affects the superconducting transition temperature mainly via rescaling the low energy states which are involved in the the formation of the Cooper pairs. Therefore T_c roughly follows the density of states at the Fermi energy. For sufficiently large disorder ε_0 there appears some critical concentration c at which T_c may eventually drop to zero.

Disorder in the boson subsystem has a much more fine influence on superconductivity. Randomness of boson energies is transformed directly into randomness of the pairing strength. Effectively physics of the disordered BF model becomes similar to that of the random negative U Hubbard model [20]. Even the relatively small fluctuations of the boson energies show up their strong detrimental effects on superconductivity.

In a simple minded picture one can envision this situation as a random change between various regimes of superconductivity. Depending on a value of E_l the boson energy Δ_B+E_l can be either far below the Fermi energy (the LP limit), or far above the Fermi energy (the BCS limit). Each of such random configurations contributes with a different strength of superconducting correlations. On average, the superconducting transition temperature T_c strongly diminishes and practically disappears if the amplitude of the randomly fluctuating boson energies $|E_0|$ is large enough.

In summary, our calculations show that disorder strongly affects the s-wave superconducting phase of the BF model. This apparent contradiction with Anderson theorem can be understood because of a change of the effective pairing interaction induced by disorder, and this effect is contrary to the Anderson’s main assumption [20].

To compare our results with experimental data on high temperature superconductors one has to consider the d-wave superconducting order parameter. This type of a symmetry arises in a natural way according to the recent derivation of the BF model [4]. Effect of disorder on such anisotropic superconducting phase of the BF model is outside the scope of the present paper and will be discussed elsewhere.

ACKNOWLEDGMENTS

We would like to thank Julius Ranninger for helpful discussions. This work has been partly supported by the Polish State Committee for Scientific Research under project No. 2P03B 106 18. T.D. kindly acknowledges hospitality of the Joseph Fourier University and the Centre de Recherches sur les Très Basses Températures in Grenoble, where part of this study has been done.
[1] J. Ranninger and S. Robaszkiewicz, Physica B 135, 468 (1985).
[2] S. Robaszkiewicz, R. Micnas and J. Ranninger, Phys. Rev. B 36, 180 (1987).
[3] E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002).
[4] C.J. Morningstar and M. Weinstein, Phys. Rev. D 54, 4131 (1996).
[5] G.M. Eliashberg, Pis’ma Zh. Eksp. Teor. Fiz. 46, 94 (1987).
[6] R. Friedberg and T.D. Lee, Phys. Rev. B 40, 423 (1989); R. Friedberg, T.D. Lee and H.C. Ren, Phys. Lett. A 152, 417 (1991).
[7] L. Ioffe, A.I. Larkin, Y.N. Ovchinnikov and L. Yu, Int. Journ. Modern Phys. B 3, 2065 (1989).
[8] R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
[9] J. Ranninger and J.M. Robin, Physica C 253, 279 (1995).
[10] V.B. Geshkenbein, L.B. Ioffe and A.I. Larkin, Phys. Rev. B 55, 3173 (1997).
[11] R. Micnas, S. Robaszkiewicz and B. Tobijaszewska, Physica B 312-313, 49 (2002); R. Micnas and B. Tobijaszewska, Acta Phys. Pol. B 32, 3233 (2001).
[12] J. Ranninger, J.M. Robin, M. Eschrig, Phys. Rev. Lett. 74, 4027 (1995); J. Ranninger and J.M. Robin, Solid State Commun. 98, 559 (1996); J. Ranninger and J.M. Robin, Phys. Rev. B 53, R11961 (1996); H.C. Ren, Physica C 303, 115 (1998); P. Devillard and J. Ranninger, Phys. Rev. Lett. 84, 5200 (2000).
[13] J.M. Robin, A. Romano, J. Ranninger, Phys. Rev. Lett. 81, 2755 (1998); A. Romano and J. Ranninger, Phys. Rev. B 62, 4066 (2000).
[14] T. Domański and J. Ranninger, Phys. Rev. B 63, 134505 (2001).
[15] M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo and R. Walser, Phys. Rev. Lett. 87, 120406 (2001); E. Timmermanns et al, Phys. Lett. A 285, 228 (2001); Y. Ohashi and A. Griffin, cond-mat/0201262 (preprint).
[16] P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[17] S. Robaszkiewicz and G. Pawłowski, Molecular Physics Reports 34/1, 76 (2001).
[18] K.I. Wysokiński, J. Phys. C 11, 291 (1978).
[19] A.M. Martin, G. Litak, B.L. György, J.F. Annet and K.I. Wysokiński, Phys. Rev. B 60, 7523 (1999).
[20] G. Litak and B.L. György, Phys. Rev. B 62, 6629 (2000).