Introduction

A cohort study is one of the ways to evaluate the relationship between lifestyle factors and the incidence or mortality from non-communicable diseases. Although huge amounts of money and long-term observation are needed to conduct a cohort study, such a design could minimize selection bias and maximize external validity. Large-scale prospective cohorts focused on healthy populations (e.g., the Japan Collaborative Cohort [JACC] Study\(^1\), or the Japan Public Health-Based Prospective Cohort [JPHC] Study\(^2\)) have been conducted since 1980s in Japan. There have also been large cohort studies worldwide, such as the National Institutes of Health–American Association of Retired Persons Diet and Health
Study in the United States, 2 the European Prospective Investigation into Cancer and Nutrition in Europe, 4 and the Korean Multi-center Cancer Cohort Study in Korea. 5 Indeed, many findings have been obtained from these studies.

The Three-Prefecture Cohort Study was a prospective population-based observational study launched in 1983, which targeted approximately 100,000 inhabitants in Miyagi Prefecture, Aichi Prefecture, and Osaka Prefecture in Japan and conducted a questionnaire survey to reveal the association of multiphasic lifestyle factors with cancer incidence or mortality. Here, we briefly described the study concept and the cohort population's profile.

Materials and methods

Study design and settings

This cohort, which has been under prospective observation since 1983, was studied to assess the long-term effects of air pollution on mortality from lung cancer and respiratory diseases. 6,7 The study areas were chosen because they contained a national air monitoring station and had well-managed cancer surveillance systems in 1983, including eight selected urban/rural areas in Miyagi Prefecture (Sendai City and Wakuya/Tajiri Town), Aichi Prefecture (Nagoya City and Inuyama City), and Osaka Prefecture (Osaka City and Nose/Kanani/Kumatori-Town). Since the 1970s, there has been a network of ambient air monitoring stations in Japan operated by the Ministry of Environment (formerly the National Environmental Agency) and local governments. In this study, we defined rural areas as cities/towns with general air pollution monitoring stations (control area) and urban areas as cities/towns with automobile exhaust gas measurement stations (pollution area). 5 Self-administered questionnaires in sealed envelopes were distributed by hand to targeted individuals in cooperation with the municipal government in each area and were collected after a set period of time. The study committee, consisting of health center directors, local officials, and residents' association representatives, was established to protect personal information of the participants and ensure the accuracy of the study. In this study, we merged individuals' data with their cancer incidence information based on personal name, gender, and date of birth. The proportion of death certificate only (DCO) deaths in each area was 9.1% 17.8% in Miyagi Prefecture, 8 28.1% 32.6% in Aichi Prefecture, 9 and 20.7% 23.4% in Osaka Prefecture. 10

The study subjects were residents aged ≥40 years who received a questionnaire, and they were enrolled between 1983 and 1985. The investigation was begun in Osaka Prefecture in 1983, in Miyagi Prefecture (Sendai City and Wakuya/Tajiri Town), Aichi Prefecture (Nagoya City and Inuyama City), and Osaka Prefecture (Osaka City and Nose/Kanani/Kumatori-Town).

Table 1

Participants of the Three-Prefecture Cohort study.

Miyagi Prefecture	Aichi Prefecture	Osaka Prefecture	Total				
Sendai-City (6 areas in Aoba and Miyagino wards)	Wakuya/Tajiri-Towns (Entire towns)	Nagoya-City (5 areas in Chigusa ward)	Inuyama-City (2 areas in the city)	Osaka-City (Higashinari ward)	Nose/Kanani/Kumatori-Town (Entire towns)		
All residents aged ≥40 years old	25,237	15,891	24,489	12,854	39,307	21,230	139,008
Delivered questionnaires	17,805	14,926	23,331	12,815	27,051	18,665	117,029
Responded questionnaires (%)	68.1	91.7	87.9	93.4	52.6	87.4	75.2

Study area	Age at baseline, years	Total										
Miyagi Prefecture (urban)	1318	1447	1508	1379	1243	937	740	453	220	141	11,468	21.2
Miyagi Prefecture (rural)	1071	1050	897	869	711	638	459	346	171	94	630	11.6
Osaka Prefecture (urban)	1264	1380	1404	1377	1246	1031	820	501	291	125	943	17.4
Osaka Prefecture (rural)	2020	1540	1389	1300	1009	758	717	391	220	110	630	11.6

Men	Japan census population 1985 (x1,000)	4494	4053	3898	3391	2349	1771	1486	997	546	247	23,232
%	19.3	17.4	16.8	14.6	10.1	7.6	6.4	4.3	2.4	1.1	100.0	
%	17.4	16.7	16.8	14.7	10.9	8.8	7.3	4.6	2.1	0.8	100.0	
Miyagi Prefecture (urban)	1317	1161	1194	1057	859	765	586	371	189	72	7391	15.9
Miyagi Prefecture (rural)	903	1020	1213	1082	784	607	490	333	116	53	660	14.2
Aichi Prefecture (urban)	1841	1821	1760	1358	1035	818	675	442	220	74	10,044	21.6
Aichi Prefecture (rural)	1095	998	963	823	561	476	377	250	108	49	5692	12.3
Osaka Prefecture (urban)	990	1161	1265	1183	927	764	718	440	193	67	7708	16.6
Osaka Prefecture (rural)	2116	1583	1400	1301	852	637	564	317	146	69	8985	19.4
Women	Japan census population 1985 (x1,000)	4554	4140	3971	3574	3011	2394	2046	1438	906	525	26,559
%	17.1	15.6	15.8	13.6	11.3	9.0	7.7	5.4	3.2	2.0	100.0	
%	15.7	15.4	14.4	12.2	9.6	7.9	5.0	2.7	1.4	0.0	100.0	
Miyagi Prefecture (urban)	1318	1447	1508	1379	1234	937	740	453	257	110	9383	17.3
Miyagi Prefecture (rural)	938	1161	1354	1268	1009	758	717	391	220	154	7970	14.7
Aichi Prefecture (urban)	1911	1944	1785	1621	1361	1020	843	578	264	141	11,468	21.2
Aichi Prefecture (rural)	1071	1050	897	869	711	638	459	346	171	94	6306	11.6
Osaka Prefecture (urban)	1264	1380	1404	1377	1246	1031	820	501	291	125	9439	17.4
Osaka Prefecture (rural)	2020	1540	1389	1300	1043	812	682	453	268	116	9623	17.8
Table 3
Selected baseline demographic and lifestyle characteristics of participants by gender.

	Men (n = 46,421)	Women (n = 54,189)
Mean age, years (standard deviation)	56.1 (11.2)	57.1 (11.6)
Regions, n (%)		
Miyagi urban	7391 (15.9)	9383 (17.3)
Miyagi rural	6601 (14.2)	7970 (14.7)
Aichi, urban	10,044 (21.6)	11,468 (21.2)
Aichi, rural	5692 (12.3)	6306 (11.6)
Osaka, urban	7708 (16.6)	9439 (17.4)
Osaka, rural	8985 (19.4)	9623 (17.8)
Health insurance type, n (%)		
National health insurance	20,877 (45.0)	25,263 (46.6)
Government/union-managed health insurance	19,267 (41.5)	20,864 (38.5)
Mutual aid associations health insurance	3897 (8.4)	4250 (7.8)
Missing	577 (1.2)	891 (1.6)
Missing	1803 (3.9)	2921 (5.4)
History of hypertension, n (%)		
Current	8289 (17.9)	10,138 (18.7)
Past	1799 (3.7)	2189 (4.0)
Never	19,820 (42.7)	23,811 (43.9)
Missing	16,603 (35.8)	18,051 (33.3)
History of diabetes, n (%)		
Current	2725 (5.9)	1803 (3.3)
Past	738 (1.6)	275 (0.5)
Never	20,895 (45.0)	25,586 (47.2)
Missing	22,063 (47.5)	26,525 (48.9)
Body mass index, n (%)		
<19.0 kg/m²	4310 (9.3)	6255 (11.5)
19.0–21.9 kg/m²	14,995 (32.3)	17,153 (31.7)
22.0–24.9 kg/m²	17,155 (37.0)	17,294 (31.9)
25.0–29.9 kg/m²	7528 (16.2)	9378 (17.3)
≥30.0 kg/m²	515 (1.1)	1130 (2.1)
Missing	1918 (4.1)	2979 (5.5)
Missing	7122 (15.3)	26,119 (47.2)
Type of job, n (%)		
Professional technical and civil workers	3835 (8.3)	2805 (5.2)
Managerial workers	959 (2.1)	98 (0.2)
Clerical workers	5145 (11.7)	5197 (9.6)
Sales workers	5495 (11.8)	3663 (6.8)
Agricultural, forestry and fisheries workers	2844 (6.1)	3127 (5.8)
Construction workers	92 (0.2)	9 (0.0)
Workers in transport and communications	1814 (3.9)	309 (0.6)
Craftsman, production	9337 (20.5)	4740 (8.7)
process worker, and laborers		
Workers in security	567 (1.2)	18 (0.0)
Service workers	1069 (2.3)	2750 (5.1)
Unemployed	1284 (2.8)	10,666 (19.7)
Missing	13,510 (29.1)	20,807 (38.4)

Prefecture in 1984, and in Aichi Prefecture in 1985. The number of questionnaire responders was 17,195/17,805 (96.6%) in Sendai City, 14,574/14,926 (97.6%) in Waktuya/Tajiri Town, 21,535/23,331 (92.3%) in Nagoya City, 12,003/12,815 (93.7%) in Inuyama City, 20,665/ 27,051 (76.4%) in Osaka City, and 18,656/21,101 (88.0%) in Nose/Kanai/Kumatori Town (Table 1). Of 104,537 responders, a total of 100,629 were included as subjects, after excluding those who answered a questionnaire in duplicate or did not provide their name/gender/date of birth because investigators could not follow up the outcome data in the Three-Prefecture Cohort study.

Follow-up

The follow-up period was defined as 15 years from the baseline survey in each study area, except for cancer incidence data in Miyagi Prefecture, for which follow-up was 9 years. The cohorts were followed from 1984 to 1999 in Miyagi Prefecture, from 1985 to 2000 in Aichi Prefecture, and from 1983 to 2000 in Osaka Prefecture. Vital status, date of death, and date of move-out from the study area were followed from 1984 to 1999 in Miyagi Prefecture, from 1985 to 2000 in Aichi Prefecture, and from 1984 to 2000 in Osaka Prefecture, and from 1983 to 2000 in Osaka Prefecture. The number of respondents was 104,537, and 100,629 were included as subjects, after excluding those who answered a questionnaire in duplicate or did not provide their name/gender/date of birth because investigators could not follow up the outcome data in the Three-Prefecture Cohort study.

Questionnaire

Baseline questionnaire items included the following: area of residence, gender, height, weight, health condition at that time, past medical history, type of insurance, health check-up/cancer screening history, frequency of food intake, smoking, alcohol drinking status, parent’s medical history, smoking status of co-habitants, house environment, occupation (such as the longest period of employment), and reproductive history (only for women). Medical history included: past history of diabetes mellitus, hypertension, stroke, and emphysema; and stomach cancer screening by x-ray examination, blood pressure measurement, and uterine cancer screening (only for women). Food intake frequency of items, such as rice, bread, meat, fish, eggs, milk, green/yellow vegetables, non-green/yellow vegetables, fruit, miso soup, and pickled vegetables, as well as drinking beverages, such as green tea, black tea, and coffee, was assessed categorically.

Statistical analysis

The definition of disease was determined based on the International Classification of Diseases 9th version (ICD-9) for data
collected from 1983 to 1994 and or the 10th version (ICD-10) for data collected from 1995 to 2000 in this study. We counted the number of incident cancers and deaths of all cancer and cancer of individual sites, and also the number of deaths according to cause of death. When mortality rates were calculated, person-years of follow-up for mortality were counted from the date of the baseline survey to the date of death, date of move-out from the study area, or the end of 15-year follow-up (whichever occurred first). For cancer incidence rates, date of diagnosis of first primary cancer was added to the above list. In addition, standardized incidence ratios (SIRs) and standardized mortality ratios (SMRs) of all-cause and all cancer were calculated using age-adjusted mortality/incidence rate, which was calculated using 5-year age-specific rates in each year according to the cancer registry and vital statistics in Japan.11,12 Statistical analyses were implemented using STATA version 13 MP (Stata Corp., College Station, TX, USA).

Ethics

The study was approved by the institutional review board of the National Cancer Center and the Ethics Committee of Osaka University School of Medicine. We received permission from the municipal governments to survey residents. The response to the questionnaire by participant was considered consent to participate in the survey. Tohoku University, Aichi Cancer Center, and Osaka Medical Center for Cancer and Cardiovascular Diseases were primarily responsible for analyzing information on baseline surveys, linking with cancer incidence and cause of death data, and altering the data set to unlinkable anonymized data. Although the National Cancer Center had originally managed the integrated datasets, Osaka University manages them at present. In the Three-Prefecture Cohort study, researchers only analyzed unlinkable anonymous data.

Results

Of 100,629 participants aged 40–99 years old at baseline, 19 (0.02%) were excluded because their responses preceded the date of beginning of follow-up, which was unified in each area after various dates of individual response to the questionnaire. As a result, 46,421 men and 54,189 women were eligible for this study. Details of the distribution of cohort participants at baseline by sex, age, and region are noted in Table 2. The person-years of follow-up for cancer incidence were 464,664 and 567,271 for men and women, respectively, and the person-years for death were 527,940 and 648,601 for men and women, respectively.

Table 3 shows selected baseline characteristics of participants by sex. Mean age among men and women was 56.1 and 57.1 years, respectively, and the proportion of participants with a body mass index of 22.0–24.9 Kg/m² was 37.0% among men and 31.9% among women. The proportion of current drinkers of alcoholic beverages was 46.9% for men and 5.4% for women, and the proportion of current smokers was 51.6% for men and 9.6% for women. Regarding the longest period occupational classification, the proportion of participants engaged in clerical work was 11.7% among men and 9.6% among women, and the proportion of those unemployed was 2.8% among men and 19.7% among women.

Table 4 shows the follow-up results, Table 5 lists major types of incident cancers, and Table 6 lists major causes of death by gender. There were 20,240 total deaths (20.1%; 11,156 men and 9084 women), and 20,281 move-outs (20.2%; 9145 men and 11,136 women) (Table 4). The SIR of all cancers was 0.96 among men and 1.00 among women.

Table 4

Age at baseline, years	Total
Men	
Number at baseline	8082
Number of all cancers incidences	215
% (Number of all cancer incidences/Number at baseline)	2.7
Number of deaths	320
% (Number of all cause deaths/Number at baseline)	4.0
Number of all cancer deaths	135
% (Number of all cancer deaths/Number at baseline)	1.7
Number who left study area	2359
% (Number who left study area/Number at baseline)	29.2
Person-years (incidence)	87,759
Incidence rate (all cancer per 1000 person-years)	2.4
Person-years (mortality)	96,389
Mortality rate (all cancer per 1000 person-years)	3.3
Mortality rate (all cancer per 1000 person-years)	1.4
Women	
Number at baseline	8522
Number of all cancers incidences	229
% (Number of all cancer incidences/Number at baseline)	2.7
Number of deaths	320
% (Number of all cause deaths/Number at baseline)	4.0
Number of all cancer deaths	135
% (Number of all cancer deaths/Number at baseline)	1.7
Number who left study area	2359
% (Number who left study area/Number at baseline)	29.2
Person-years (incidence)	87,759
Incidence rate (all cancer per 1000 person-years)	2.4
Person-years (mortality)	96,389
Mortality rate (all cancer per 1000 person-years)	3.3
Mortality rate (all cancer per 1000 person-years)	1.4

J. Sado et al. / Journal of Epidemiology 27 (2017) 193–199
122 among women. The SMR of all causes was 0.91 among men and women, and the SMR of all cancers was 1.02 among men and 0.97 among women. Table 5. The leading cause of death was cancer among men (17.1%) and breast cancer among women (18.7%), followed by lung cancer among men (25.5%) and women (18.7%), and liver (14.4%) among men, and cancer of the stomach (18.7%), colon/rectum (13.2%), and lung (11.8%) among women.

Discussion

The Three-Prefecture Cohort Study, which had approximately 100,000 participants with consecutive follow-up for up to 15 years and a 90% response rate to the baseline questionnaire survey regarding participants’ lifestyles, was one of the largest representative prospective, population-based cohort studies in Japan. The study areas were selected because they contained national air monitoring stations and the community-based cancer registry was conducted actively; this large-scale observation enabled us to determine not only all-cause mortality but also cancer incidence among community residents. The association of air pollution and lung cancer mortality was reported previously. This report briefly describes the characteristics (e.g., smoking status, alcohol drinking status, and type of occupation) and endpoints among study participants by gender.

This study had several strengths. First, more than 100,000 participants responded to a baseline questionnaire survey, and the response rate was approximately 90%. This response rate was similar to those of the JACC Study, which was launched in the mid-1980s, and the JPHC Study, which was launched in the 1990s. Second, in contrast to other large-scale cohorts and endpoints measured in this study is generalizable to the whole population of Japan. Second, in contrast to other large-scale cohorts and endpoints measured in this study is generalizable to the whole population of Japan.

This study may help to evaluate the relationship between lifestyles and various diseases, irrespective of area. This study population was similar to the general population in cancer and mortality risks, with SIR and SMR close to 1.0. Considering the large sample size, the high questionnaire response rate, and adequate regional balance, we consider that the association between participants’ lifestyles and endpoints measured in this study is generalizable to the whole population of Japan. Second, in contrast to other large-scale cohorts in Japan, the collection of detailed information on participants’ occupation, such as the longest period of employment, is another strength of this study, and we will address the association between participants’ lifestyles and endpoints among study participants by gender.

Table 5

Distribution of number of cancer incidence by site, gender, and age at baseline during 15-year follow-up.

ICD10	ICD9	Age at baseline, years	Total	%
C00-C37	all cancer	140–208.9	215	25
C15	150–150.9	Esophagus	14	20
C16	151–151.9	Stomach	52	94
C18	153–153.9	Colon	26	40
C19-20	154–154.9	Rectum	18	28
C22	155–155.9	Liver and intrahepatic bile ducts	24	58
C23	156	Gall bladder	0	2
C24	156.1–156.9	Other and unspecified parts of biliary tract	4	10
C25	157–157.9	Pancreas	10	19
C33-34	162–162.9	Lung	24	38
C61	174	Prostate	1	7
C63	184	Kidney	3	10
C65-67	189.2–189.4	Urethral tract	2	9
C82-85	202–202.9	Non-Hodgkin's lymphoma	3	5
C90	203–203.8	Multiple myeloma	1	0
C92	205–205.9	Myeloid leukemia	4	3

J. Sado et al. / Journal of Epidemiology 27 (2017) 193–199
ICD10	ICD9	Age at baseline, years	Total	%	%											
Men																
All causes																
A00-B99	1–139.8	Certain infectious and parasitic diseases	320	506	960											
C00-C97	140–208.9	all cancer	750	1050	1600											
C15	150–159.0	Esophagus	225	300	465											
C16	151–151.9	Stomach	200	275	475											
C18	153–153.9	Colon	150	225	375											
C19-20	154–154.9	Rectum	100	140	240											
C22	155–155.9	Liver and intrahepatic bile ducts	125	175	300											
C23	156	Gall bladder	125	175	300											
C24	156.1–156.9	Other and unspecified parts of biliary tract	3	6	12											
C25	157–157.9	Pancreas	150	225	375											
C33-34	162–162.9	Lung	250	350	500											
C61	185–185.9	Prostate	75	110	180											
C64	189–189.1	Kidney	3	5	8											
C65-67	189.2–189.4	Urothelial tract	0	1	1											
C82-85	200–200.9	Non-Hodgkin's	3	2	1											
C90	203–203.8	Multiple myeloma	1	3	4											
C92	205–205.9	Myeloid leukemia	3	6	9											
E00-E08	240–279.9	Endocrine, nutritional and metabolic diseases	0	6	9											
G00-G09	330–359.9	Diseases of the nervous system	1	5	9											
I00-I99	390–459.9	Diseases of the circulatory system	76	121	242											
I10-I19	410–414.9	Ischemic heart disease	16	33	62											
I48	427.3	Atrial fibrillation and flutter	0	0	0											
I50	428–428.9	Heart failure	23	32	48											
I60-69	430–438.9	Cerebrovascular disease	26	42	87											
I71	441–445.9	Aortic aneurism and dissection	2	2	4											
J00-J99	519–519.9	Diseases of the respiratory system	4	4	8											
J10-J18	519.0–519.7	Influenza	1	8	15											
J43	492	Hepatoma	0	0	0											
K00-K93	520–579.9	Diseases of the digestive system	21	39	63											
K74	575.1–575.6	Fibrosis and cirrhosis of liver	7	14	36											
N00-N99	580–629.9	Diseases of the genitourinary system	4	7	12											
N17-N19	584–586	Acute kidney failure and chronic kidney disease	3	7	11											
R00-R99	780–789.9	Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified	7	3	5											
S00-T88	800–999.9	External causes	42	56	60											
Others	8	14	21	21	23	41	40	35	30	35	15	18	26	17	22	10

Women					
All causes					
A00-B99	1–139.8	Certain infectious and parasitic diseases	6	7	21
C00-C97	140–208.9	all cancer	180	250	430
C15	150–159.0	Esophagus	0	0	0
C16	151–151.9	Stomach	15	25	40
C18	153–153.9	Colon	150	225	375
C19-20	154–154.9	Rectum	5	10	15
C22	155–155.9	Liver and intrahepatic bile ducts	4	14	26
C23	156	Gall bladder	1	2	7
C24	156.1–156.9	Other and unspecified parts of biliary tract	3	6	9
C25	157–157.9	Pancreas	5	6	12
C33-34	162–162.9	Lung	11	12	17
C50	174–175.9	Breast	23	29	36
C53	180–180.9	Cervix uteri	5	4	5
C54	182–182.9	Corpus uteri	1	4	5
C55	184–184.9	Uterus, part unspecified	0	0	0
C56	185–185.9	Ovary	8	9	15
C64	189–189.1	Kidney	1	0	0
C65-67	189.2–189.4	Urothelial tract	0	2	1
C82-85	200–200.9	Non-Hodgkin's	1	2	4
C90	203–203.8	Multiple myeloma	0	1	3
C92	205–205.9	Myeloid leukemia	2	5	9
E00-E08	240–279.9	Endocrine, nutritional and metabolic diseases	2	4	5
G00-G09	330–359.9	Diseases of the nervous system	2	3	4
I00-I99	390–459.9	Diseases of the circulatory system	33	65	112
I20-I25	410–414.9	Ischemic heart disease	4	9	24
I48	427.3	Atrial fibrillation and flutter	0	0	0
Table 6 (continued)

ICD10 Code	ICD9 Code	Age at baseline, years	Total	%	%									
451 – 454.9	451-454	46–48 years	9	8	20	28	71	124	218	173	118	933		
455–459	455-459	49–51 years	12	33	50	81	130	218	335	337	251	150	1597	
460–464.9	460-464	52–54 years	1	1	0	1	5	8	12	8	2	0	38	
465–469	465-469	55–59 years	7	12	20	47	81	111	197	221	138	75	909	10.0
470–474.9	470-474	60–64 years	1	4	8	25	44	72	133	119	98	67	601	
475–479	475-479	65–69 years	4	0	0	1	2	1	1	4	3	2	14	
480–484.9	480-484	70–74 years	9	2	4	4	2	47	397	4.4				
485–489	485-489	75–79 years	5	5	10	18	27	22	22	10	2	0	111	
500–504.9	500-504	80–84 years	3	3	9	19	23	45	65	52	43	17	279	3.1
505–509	505-509	85–89 years	3	3	8	17	18	33	50	38	29	16	215	
510–514.9	510-514	90–94 years	2	3	2	11	11	33	51	109	119	141	482	5.3
515–519	515-519	95–99 years	1	0	0	0	2	16	28	87	112	130	375	
520–524.9	520-524	100 years or more	0	0	0	0	2	16	28	87	112	130	375	
530–534.9	530-534	Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified	2	3	2	11	11	33	51	109	119	141	482	5.3
535–539	535-539	Other causes	11	18	15	31	50	26	21	11	281	3.1		
540–544.9	540-544	Age-related physical disability	7	8	19	18	31	45	44	40	27	12	251	2.8

Acknowledgments

We sincerely thank the staff within each study area for their collection and processing of data. We also express our gratitude to all the participants of the study. This study was supported via a Grant-in-Aid for Scientific Research (25460752) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

None declared.

References

1. Tamakoshi A, Ozasa K, Fujino Y, et al. Cohort profile of the Japan collaborative cohort study at final follow-up. J Epidemiol. 2011;23:227–232.
2. Iwasaki M, Otani T, Yamamoto S, et al. Background characteristics of basic health examination participants: the JPHC Study Baseline Survey, J Epidemiol. 2003;13:216–225.
3. Schatzkin A, Subar AF, Thompson FE, et al. Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national Institutes of Health-American association of retired persons Diet and health study. Am J Epidemiol. 2001;154:1119–1125.
4. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–1124.
5. Yoo KY, Shin HR, Chang SH, et al. Korean multi-center Cancer cohort study including a biological materials bank (KMCC-I). Asian Pac J Cancer Prev. 2002;3:85–92.
6. Kadanov K, Shue B, Shatoh H, et al. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. J Epidemiol. 2011;21:132–143.
7. Marugame T, Sobue T, Satoh H, et al. Lung cancer death rates by smoking status: comparison of the three-prefecture cohort study in Japan to the Cancer prevention study II in the USA. Cancer Sci. 2005;96:120–126.
8. Miyagi Prefectural Government. The Death Certificate Only in Miyagi Prefecture. cited; 2014. Available from: http://www.pref.miyagi.jp/shokai/shokai/kensuiteki/kensuteki/kensuiteki.html [in Japanese].
9. Aichi Prefectural Government. The Death Certificate Only in Aichi Prefecture. cited; 2016. Available from: http://www.pref.aichi.jp/shokai/shokai/kensuiteki/kensuiteki.html [in Japanese].

Conflict of interest

None declared.