Dimension formula for the space of relative symmetric polynomials of D_n with respect to any irreducible representation

S. Radha and P. Vanchinathan
VIT University, Chennai, India
radha.s@vit.ac.in vanchinathan.p@vit.ac.in
September 24, 2018

Keywords: Relative symmetric polynomials, Dihedral groups, Invariants
Classification: Primary 05E05 Secondary 15A69

Abstract
We provide an alternative formula along with the generating function for the dimension of the vector space of relative symmetric polynomials of D_n with respect to any irreducible character of D_n.

1 Introduction

Every complex representation of a finite group has a canonical decomposition into direct sum of isotypical components. Serre’s textbook [2, page 21] gives the formula for the projection map to all these components. We recall the formula here:

Given the isotypical decomposition $V = \bigoplus_{\chi \in \text{Irr}(G)} V_{\chi}$, the projection to the component V_{χ} is given by

$$p = \frac{\deg \chi}{|G|} \sum_{g \in G} \bar{\chi}(g) \rho(g) \quad (1.1)$$

When χ is the trivial 1-dimensional representation this projection is the Reynold’s operator.

In this paper we focus on the natural action of S_n (and its subgroups) on the complex polynomial algebra of n variables, by permuting the variables.

We denote by $H_d(x_1, x_2, \ldots, x_n)$ the complex vector space of all homogeneous polynomials of degree d in the n variables, x_1, x_2, \ldots, x_n, sometimes denoted simply by H_d.

The image of the Reynold’s operator will be the space of all symmetric polynomials of degree d.

M. Shahryari [3] has introduced the notion of relative symmetric polynomials for any subgroup $G \subset S_n$ with respect to any irreducible character χ of G.

The vector space of relative symmetric polynomials of G relative to χ, denoted by $H_d(G,\chi)$ is defined as the image of the projection operator defined in Equation (1.1) in this case:

$$T(G,\chi) = \frac{\chi(1)}{|G|} \sum_{g \in G} \chi(g)g$$ (1.2)

Finding the dimension of this vector space of relative symmetric polynomials for various subgroups of the symmetric group of S_n is a fundamental question.

In later papers Babaei, Zamani and Shahryari found the dimension of the space of relative invariants for S_n and its subgroup A_n [3] and for Young subgroup [4].

In a series of papers Babaei and Zamani have given corresponding formula for the cyclic group in [7], for the dicyclic group in [8] and for the dihedral group D_n [9].

In our work here we relook at the formula for dihedral groups. Babaei-Zamani formula is a summation involving cosine values which are in general irrational numbers. So they may be inconvenient to calculate dimensions which are non-negative integers. By using appropriate theorems from elementary number theory along with combinatorial counting arguments, we have provided an alternative dimensional formula as a summation of integer terms. Another advantage of our formula is that it allows us to write down the generating function. See theorems 4.1 and 4.2 for the precise statements.

A notable feature is that this formula gives this dimension as a summation over the divisors of n involving the Môbius and Euler φ-functions, even though this problem is not apparently connected with number theory.

Our paper is organized this way: after this introduction, in the second section a few number-theoretic preliminaries are assembled, in Section 3 the character table of the dihedral group is given following Serre [2]. In the fourth section we state and prove the formula. Finally Section 5 illustrates how easy it is to compute with these formulae.

2 Preliminaries

First we set up the notations:

- We use the standard notations $\phi(n)$ and $\mu(n)$ respectively for the Euler’s totient function and Môbius function.

- For n any positive integer and r a divisor of n we denote by $S_r(n)$ the set of integers between 1 and n having r as their gcd.

$$S_r(n) := \{k : 1 \leq k \leq n, \gcd(k,n) = r\}$$

We state below, without proofs, some well known facts from elementary number theory as lemmas. These results were known to Ramanujan [1] and von Sterneck [6].

Lemma 2.1 With the notation as above, we have $S_r(n) = \{rk : k \in S_1(n/r)\}$. I.e., $S_r(n) = rS_1(n/r)$. In particular, $|S_r(n)| = |S_1(n/r)|$.

Lemma 2.2 The sum of all the primitive \(n \)th roots of unity is \(\mu(n) \).

\[
\text{(ie) } \sum_{\substack{k=1 \\gcd(k,n)=1}}^{n} \exp\left(\frac{2\pi ik}{n}\right) = \mu(n)
\]

In fact we need the following variation of Lemma 2:

Lemma 2.3

\[
\sum_{k=1 \atop \gcd(k,n)=1}^{n} \cos\left(\frac{2\pi k}{n}\right) = \mu(n)
\]

Lemma 2.4 For any two positive integers \(n \) and \(m \)

\[
\sum_{k=1}^{n} \exp\left(\frac{2\pi imk}{n}\right) = \mu\left(\frac{n}{\gcd(m,n)}\right) \frac{\phi(n)}{\phi(n/\gcd(m,n))}
\]

3 Characters of the Dihedral group \(D_n \)

We write the elements of \(D_n \), as \(D_n = \{1, \sigma, \sigma^2, \ldots, \sigma^{n-1}, \tau, \tau\sigma, \tau\sigma^2, \ldots, \tau\sigma^{n-1}\} \). The dihedral group \(D_n \) has only degree 1 and degree 2 irreducible representations.

3.1 One-dimensional representations:

- When \(n \) is odd there are two irreducible representations of degree 1 namely \(\chi_1 \) and \(\chi_2 \) and the character table for those representations is given below:

Character	\(\sigma^k \)	\(\tau\sigma^k \)
\(\chi_1 \)	1	1
\(\chi_2 \)	1	\(-1\)

- When \(n \) is even there are four irreducible representations of degree 1 namely \(\chi_1, \chi_2, \chi_3 \) and \(\chi_4 \) and the character table for those representations is given below:

Character	\(\sigma^k \)	\(\tau\sigma^k \)
\(\chi_1 \)	1	1
\(\chi_2 \)	1	\(-1\)
\(\chi_3 \)	\((-1)^k\)	\((-1)^k\)
\(\chi_4 \)	\((-1)^k\)	\((-1)^{k+1}\)

3.2 Two-dimensional representations

Let \(h \) be a positive integer with \(h < n/2 \). A representation \(\rho_h \) of \(D_n \) has the character given by \(\psi_h(\sigma^k) = 2 \cos\frac{2\pi hk}{n} \) and \(\psi_h(\tau\sigma^k) = 0 \).

In our paper we follow the convention that whenever \(n \) or \(r \) is not a positive integer the binomial coefficient \(\binom{n}{r} \) is interpreted as zero. Now we can state the main result of our paper:

3
4 Dimension formulæ and generating functions

Theorem 4.1 Let \(\psi_h \) be the irreducible character of degree 2 of the dihedral group \(D_n \) as above. Then the dimension of \(H_d(D_n, \psi) \), the vector space of relative symmetric polynomials is described in two cases:

Case (i) \(h \) is coprime to \(n \):

\[
\dim H_d(D_n, \psi_h) = \frac{2}{n} \sum_{r|n} \left(r + \frac{d}{n/r} - 1\right) \mu \left(\frac{n}{r}\right)
\]

The generating function in this case is given by

\[
\sum_{d=0}^{\infty} \dim H_d(D_n, \psi_h) t^d = \frac{2}{n} \sum_{r|n} \mu \left(\frac{n}{r}\right) \left(1 - t^{\frac{n}{r}}\right)^{-r}
\]

Case (ii) \(h \) is not coprime to \(n \):

\[
\dim H_d(D_n, \psi_h) = \frac{2}{n} \sum_{r|n} \left(r + \frac{d}{n/r} - 1\right) \mu \left(\frac{n}{r}\right) \frac{\phi \left(\frac{n}{r}\right)}{\phi \left(\frac{n}{r}/g\right)}
\]

where \(\mu(n) \) is the Möbius function and \(g = \gcd(h, \frac{n}{r}) \).

The generating function in this case is given by

\[
\sum_{d=0}^{\infty} \dim H_d(D_n, \psi_h) t^d = \frac{2}{n} \sum_{r|n} \mu \left(\frac{n}{r}\right) \frac{\phi \left(\frac{n}{r}\right)}{\phi \left(\frac{n}{r}/g\right)} \left(1 - t^{\frac{n}{r}}\right)^{-r}
\]

Proof:

It suffices to prove the formula for the dimension of \(H_d(D_n, \psi) \) for a general \(d \). The formula for the generating function is a straightforward consequence.

Case (i): For definiteness we fix the embedding of \(D_n \) in \(S_n \) with the generators of \(D_n \) as below: \(D_n = \langle \sigma, \tau \rangle \) where \(\sigma \) is the \(n \)-cycle given by \((1 2 3 \ldots n) \) and \(\tau(j) = n + 1 - j \) is the reversal permutation. In fact, \(D_n \) can be embedded in \(S_n \) uniquely up to conjugacy. Now in the case of a 2-dimensional irreducible character \(\chi \) of \(D_n \), \(\psi(\tau \sigma^k) = 0 \) for all \(k \). So the dimension formula reduces to the summation over the cyclic subgroup of all rotations in \(D_n \).

\[
\dim H_d(D_n, \psi) = \frac{\psi(1)}{|D_n|} \sum_{k=1}^{n} \psi(\sigma^k) \operatorname{Tr}(\sigma^k) = \frac{2}{2n} \sum_{k=1}^{n} 2 \cos \frac{2\pi k}{n} \operatorname{Tr}(\sigma^k) \quad (4.1)
\]

Note that \(\operatorname{Tr}(\sigma^k) \) is the trace of the \(k^{th} \) power of the \(n \)-cycle \(\sigma \) in the vector space of homogeneous polynomials in \(n \) variables, with \(\sigma \) permuting the variables cyclically. As this vector space has all monomials of degree \(d \) in \(n \) variables as basis its dimension is \(\binom{n+d-1}{n-1} \). Being a permutation action \(\operatorname{Tr}(\sigma^k) \) is the number of monomials of degree \(d \) in \(n \) variables fixed by \(\sigma^k \). So the calculation boils down to finding the number of invariant monomials of degree \(d \). To calculate \(\operatorname{Tr}(\sigma^k) \), let \(r = \gcd(n, k) \). Then \(\sigma^k \) decomposes into a product of \(r \) number of disjoint cycles of length \(\frac{n}{r} \). For a monomial to be invariant under
\(\sigma^k\), degree of all the variables within an \(\frac{n}{r}\)-cycle should be constant. Call these degrees \(d_1, d_2, \ldots, d_r\).

\[
d = \frac{n}{r}d_1 + \frac{n}{r}d_2 + \ldots + \frac{n}{r}d_r
\]

Therefore,

\[
d_1 + d_2 + \ldots + d_r = \frac{d}{n/r}
\]

A necessary condition is \(d\) must be a multiple of \(\frac{n}{r}\). Let us assume this holds.

So \(\text{Tr}(\sigma^k) = \) number of ordered partitions of \(\frac{d}{n/r}\) into \(r\) parts.

This is well known to be \(\left(r + \frac{d}{n/r} - 1 \right)\). Substituting this value of trace in to (4.1), we get

\[
\dim H_d(D_n, \psi) = \frac{1}{n} \sum_{k=1}^{n} \sum_{a \in S_1(n/r)} 2 \cos \left(\frac{2\pi k}{n} \right) \left(r + \frac{d}{n/r} - 1 \right)
\]

Note that for two terms of the summation on right hand side if \(1 \leq k_1, k_2 \leq n\) are such that \(\gcd(k_1, n) = \gcd(k_2, n)\), then the coefficient of \(\cos \frac{2\pi k_1}{n}\) equals that of \(\cos \frac{2\pi k_2}{n}\). As the gcd of any number with \(n\) is a divisor of \(n\), the dimension formula can be rewritten as a summation over the divisors of \(n\). We treat the above summation as a sum of binomial coefficients \(\binom{r + \frac{d}{n/r} - 1}{r - 1}\), one for each divisor \(r\) of \(n\) with some weights. These weights are sums of cosine values. So the dimensional formula takes the form

\[
\dim H_d(D_n, \psi) = \frac{2}{n} \sum_{r|n} \mu \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) \quad \text{by lemma} 2.1
\]

Using lemma 2.3 the above equation reduces to

\[
\dim H_d(D_n, \psi) = \frac{2}{n} \sum_{r|n} \mu \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) \quad \text{(4.4)}
\]

Proof of case (ii): Proceeding as in case (i), we have

\[
\dim H_d(D_n, \psi) = \frac{2}{n} \sum_{r|n} \sum_{a \in S_1(n/r)} \cos \left(\frac{2\pi ah}{n/r} \right) \left(r + \frac{d}{n/r} - 1 \right) \quad \text{(4.5)}
\]

The inner summation inside the square brackets in the above equation is actually the sum of the real parts of \(h^{th}\) powers of all primitive \(\left(\frac{n}{r} \right)^{th}\) roots of unity. Defining \(g = \gcd(h, n/r)\), we see that the above is same as the sum of all the
real parts of \(g \)th powers of all primitive \(\left(\frac{n}{r} \right) \)th roots of unity. Now we can apply Lemma 2.4 which makes equation (4.5) to become

\[
\dim H_d(D_n, \psi) = \frac{2}{n} \sum_{r|n} \left[\sum_{\alpha \in S_1(n/\sqrt{r})} \cos \frac{2\pi \alpha}{n/\sqrt{r}} \phi(n/r) \left(r + \frac{d}{n/\sqrt{r}} - 1 \right) \right]
\]

Again using lemma 2.3

\[
\dim H_d(D_n, \psi) = \frac{2}{n} \sum_{r|n} \mu \left(\frac{n/r}{g} \right) \phi(n/r) \left(r + \frac{d}{n/r} - 1 \right)
\]

\[\text{Theorem 4.2 Case (i), } n \text{ is odd:}
\]

Let \(\chi_1 \) and \(\chi_2 \) be the two irreducible characters of degree 1 with \(\chi_1 \) being the trivial character and \(\psi_2 \) taking +1 on rotations and −1 on reflections. The dimensions of \(H_d(D_n, \chi_1) \) and \(H_d(D_n, \chi_2) \) are given by

\[
\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[\sum_{r|n} \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) + n \sum_{l=0}^{[d/2]} \left(\frac{n-1}{r} + l - 1 \right) \right]
\]

and

\[
\dim H_d(D_n, \chi_2) = \frac{1}{2n} \left[\sum_{r|n} \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) - n \sum_{l=0}^{[d/2]} \left(\frac{n-1}{r} + l - 1 \right) \right]
\]

The generating functions for the above two cases are given by

\[
\sum_{d=0}^{\infty} \dim H_d(D_n, \chi_1) t^d = \frac{1}{2n} \left[\sum_{r|n} \phi \left(\frac{n}{r} \right) \left(1 - t^{\frac{n}{r}} \right)^{-r} + \frac{n \left(1 - t^{2n} \right)^{-(n-1)/2}}{1-t} \right]
\]

\[
\sum_{d=0}^{\infty} \dim H_d(D_n, \chi_2) t^d = \frac{1}{2n} \left[\sum_{r|n} \phi \left(\frac{n}{r} \right) \left(1 - t^{\frac{n}{r}} \right)^{-r} - \frac{n \left(1 - t^{2n} \right)^{-(n-1)/2}}{1-t} \right]
\]

Case (ii) when \(n \) is even:

Let \(\chi_1, \chi_2, \chi_3 \) and \(\chi_4 \) be the four irreducible characters of degree 1. Let \(H_d(D_n, \psi_1), H_d(D_n, \psi_2), H_d(D_n, \psi_3) \) and \(H_d(D_n, \chi_4) \) be the space of Relative symmetric polynomials with respect to \(\psi_1, \psi_2, \psi_3 \) and \(\psi_4 \). Then the dimensions \(H_d(D_n, \chi_1), H_d(D_n, \chi_2), H_d(D_n, \chi_3) \) and \(H_d(D_n, \chi_4) \) are given by

\[
\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left\{ \sum_{r|n} \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) \right\}
\]

\[
+ \frac{n}{2} \left[\left(\frac{n}{2} + \frac{d}{2} - 1 \right) + \sum_{l=0}^{[d/2]} \left(\frac{n-2}{2} + l - 1 \right) (d-2l+1) \right]
\]
The generating functions for the above four cases are given by:

\[\sum_{d=0}^{\infty} \dim H_d(D_n, \chi_1) t^d = \frac{1}{2n} \left(\sum_{r|n} \phi \left(\frac{n}{r} \right) \right) \left(1 - t^{\frac{n}{2}} \right)^{-r} + \frac{n}{2} \left(1 - t^{\frac{n}{2}} \right)^{-\left(n+2 \right)/2} \left(2 + t^2 \right)(1 + t) \]

\[\sum_{d=0}^{\infty} \dim H_d(D_n, \chi_2) t^d = \frac{1}{2n} \left(\sum_{r|n} \phi \left(\frac{n}{r} \right) \right) \left(1 - t^{\frac{n}{2}} \right)^{-r} - \frac{n}{2} \left(1 - t^{\frac{n}{2}} \right)^{-\left(n+2 \right)/2} \left(2 + t^2 \right)(1 + t) \]

\[\sum_{d=0}^{\infty} \dim H_d(D_n, \chi_3) t^d \]

\[= \frac{1}{2n} \left(\sum_{r|n} \phi \left(\frac{n}{r} \right) \right) (-1)^r \left(1 - t^{\frac{n}{2}} \right)^{-r} - \frac{n}{2} \left(1 - t^{\frac{n}{2}} \right)^{-\left(n+2 \right)/2} \left(1 + t + t^2 \right) \]

\[\sum_{d=0}^{\infty} \dim H_d(D_n, \chi_4) t^d \]

\[= \frac{1}{2n} \left(\sum_{r|n} \phi \left(\frac{n}{r} \right) \right) (-1)^r \left(1 - t^{\frac{n}{2}} \right)^{-r} + \frac{n}{2} \left(1 - t^{\frac{n}{2}} \right)^{-\left(n+2 \right)/2} \left(1 + t + t^2 \right) \]

Proof:

Case (i) (when \(n \) is odd):

By definition:

\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left(\sum_{k=1}^{n} \text{Tr}(\sigma^k)\psi_1(\sigma^k) + \sum_{k=1}^{n} \text{Tr}(\tau\sigma^k)\psi_1(\tau\sigma^k) \right) \]
(ie)
\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[\sum_{k=1}^{n} \text{Tr}(\sigma^k) + \sum_{k=1}^{n} \text{Tr}(\tau\sigma^k) \right] \]

When \(n \) is odd all the reflections of \(D_n \) falls into a single conjugacy class. Hence the above summation becomes
\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[n \text{Tr}(\tau) + \sum_{k=1}^{n} \text{Tr}(\sigma^k) \right] \]

Now calculation of \(\text{Tr}(\sigma^k) \) is the same as in Theorem 1. It remains to find \(\text{Tr}(\tau) \). Since \(n \) is odd, \(\tau \) is the product of \(\frac{n-1}{2} \) transpositions and has one fixed point. Now \(\text{Tr}(\tau) \) is the count of monomials fixed by \(\tau \). We denote the variables by \(x_1, x_2, \ldots, x_{(n-1)/2}, y_1, y_2, \ldots, y_{(n-1)/2}, z \). Without loss of generality, let us assume that \(\tau(z) = z \), \(\tau(x_i) = y_i \) and \(\tau(y_i) = x_i \) for \(1 \leq i \leq (n-1)/2 \). Now a monomial of degree \(d \) invariant under \(\tau \) has to be of the form
\[z^{d_0} x_1^{d_1} y_1^{d_1} x_2^{d_2} y_2^{d_2} \cdots \]

Number of tuples \((d_0, d_1, \ldots, d_{(n-1)/2}) \) such that
\[d_0 + 2(d_1 + d_2 + \ldots + d_{(n-1)/2}) = d \]
is the total number of ordered partitions of \((d-d_0)/2 \) into \((n-1)/2 \) parts with all \(d_0 \) satisfying \(d-d_0 \) is an even non negative integer. This is easily verified to be \(\sum_{l=0}^{[d/2]} \left(\binom{n}{d/2} \right) \). Hence the formula becomes
\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[\sum_{r|n} \left(r + \frac{d}{r} - 1 \right) - n \sum_{l=0}^{[d/2]} \left(\binom{n-1}{2l} - 1 \right) \right] \]

Using the same arguments as above, we have
\[\dim H_d(D_n, \chi_2) = \frac{1}{2n} \left[\sum_{r|n} \left(r + \frac{d}{r} - 1 \right) + n \sum_{l=0}^{[d/2]} \left(\binom{n-1}{2l} - 1 \right) \right] \]
case (ii): By definition
\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[\sum_{k=1}^{n} \text{Tr}(\sigma^k)\psi_1(\sigma^k) + \sum_{k=1}^{n} \text{Tr}(\tau\sigma^k)\psi_1(\tau\sigma^k) \right] \]

(ie)
\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[\sum_{k=1}^{n} \text{Tr}(\sigma^k) + \sum_{k=1}^{n} \text{Tr}(\tau\sigma^k) \right] \]

Now \(\text{Tr}(\sigma^k) \) is the same as in Theorem 1. It remains to find \(\text{Tr}(\tau\sigma^k) \). Since \(n \) is even, all the reflections \(\tau\sigma^k \) fall into two conjugacy classes according as \(k \) is even or odd. Hence the formula becomes
\[\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left[\sum_{k=1}^{n} \text{Tr}(\sigma^k) + \frac{n}{2} \text{Tr}(\tau) + \frac{n}{2} \text{Tr}(\tau) \right] \]

8
Using the same argument as we did in case (i) of this theorem, we can find the trace of the reflections in both the cases (when \(n \) is odd or even). Hence the formula becomes

\[
\dim H_d(D_n, \chi_1) = \frac{1}{2n} \left\{ \sum_{r|n} \left(r + \frac{d}{n/r} - 1 \right) \phi \left(\frac{n}{r} \right) \right. \\
+ \frac{n}{2} \sum_{l=0}^{d/2} \left[\left(\frac{n^2}{2} + l - 1 \right) (d - 2l + 1) + \left(\frac{n}{2} + l - 1 \right) \right] \left. \sum_{r|n} \phi \left(\frac{n}{r} \right) \right\}
\]

In the same way

\[
\dim H_d(D_n, \chi_2) = \frac{1}{2n} \left\{ \sum_{r|n} \left(r + \frac{d}{n/r} - 1 \right) \phi \left(\frac{n}{r} \right) \\
- \frac{n}{2} \sum_{l=0}^{\lfloor d/2 \rfloor} \left[\left(\frac{n^2}{2} + l - 1 \right) (d - 2l + 1) + \left(\frac{n}{2} + l - 1 \right) \right] \left. \right\}
\]

Now again using the definition, we have

\[
\dim H_d(D_n, \chi_3) = \frac{1}{2n} \left\{ \sum_{r|n} \left(r + \frac{d}{n/r} - 1 \right) \phi \left(\frac{n}{r} \right) + \sum_{k=1}^{n} \text{Tr} (\sigma^k) \psi_3(\sigma^k) \right. \\
+ \sum_{k=1}^{n} \left(-1 \right)^k \left. \text{Tr} (\tau \sigma^k) \psi_3(\tau \sigma^k) \right\}
\]

(i.e.

\[
\dim H_d(D_n, \chi_3) = \frac{1}{2n} \left[\sum_{k=1}^{n} \left(-1 \right)^k \text{Tr} (\sigma^k) + \sum_{k=1}^{n} \left(-1 \right)^k \text{Tr} (\tau \sigma^k) \right]\]

Using the same result for \(\text{Tr} (\sigma^k) \) from Theorem 1, we have

\[
\dim H_d(D_n, \chi_3) = \frac{1}{2n} \left\{ \sum_{r|n} \left(\sum_{k \in S_r(n)} \left(-1 \right)^k \left(r + \frac{d}{n/r} - 1 \right) \right) + \sum_{k=1}^{n} \left(-1 \right)^k \text{Tr} (\tau \sigma^k) \right\}
\]

Since \(n \) is even, all \(k \)'s in the inner summation are even or odd according as \(r \) is even or odd and it sums up to \(\left(-1 \right)^r \phi \left(\frac{n}{r} \right) \). Hence the above equation becomes

\[
\dim H_d(D_n, \chi_3) = \frac{1}{2n} \left\{ \sum_{r|n} \left(-1 \right)^r \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) \right. \\
+ \left(-1 \right)^k \sum_{k=1}^{n} \sum_{r|n} \left(-1 \right)^k \text{Tr} (\tau \sigma^k) \left. \right\}
\]

It remains to find \(\text{Tr} (\tau \sigma^k) \). Using the same argument as we did in case (i), we can calculate it. Hence the above equation reduces to

\[
\dim H_d(D_n, \chi_3) = \frac{1}{2n} \left\{ \sum_{r|n} \left(-1 \right)^r \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{n/r} - 1 \right) \right. \\
+ \frac{n}{2} \left(\frac{n^2}{2} + \frac{d}{2} - 1 \right) \sum_{l=0}^{d/2} \left[\left(\frac{n^2}{2} + l - 1 \right) (d - 2l + 1) \right] \left. \right\}
\]
In the same way, we have

$$\dim H_\delta(D_n, \chi_4) = \frac{1}{2n} \left\{ \sum_{r|n} (-1)^r \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{r} - 1 \right) \right\} - \frac{n}{2} \left[\left(\frac{n}{2} + \frac{d}{l} - 1 \right) - \sum_{l=0}^{\lfloor d/2 \rfloor} \left(\frac{n-2}{2} + l - 1 \right)(d - 2l + 1) \right]$$

To find the generating functions for \(\dim H_\delta(D_n, \chi_1), \dim H_\delta(D_n, \chi_2), \dim H_\delta(D_n, \chi_3) \) and \(\dim H_\delta(D_n, \chi_4) \):

Let \(G_1(t) \) be the generating function for \(\sum_{r|n} \phi \left(\frac{n}{r} \right) \left(r + \frac{d}{r} - 1 \right) \) which is easily seen to be \(\sum_{r|n} (-1)^r \phi \left(\frac{n}{r} \right) (1 - t^r)^{-r} \). Let \(G_2(t) \) and \(G_3(t) \) be the generating functions corresponding to \((\frac{n}{2} + \frac{d}{l} - 1) \) and \(\sum_{l=0}^{\lfloor d/2 \rfloor} \left(\frac{n-2}{2} + l - 1 \right)(d - 2l + 1) \) respectively. Now \(G_2(t) \) is very easily verified to be \((1 - t^2)^{\frac{n}{2}}\). Now the generating functions for \(\dim(H_\delta, \chi_1) \), \(\dim(H_\delta, \chi_2) \), \(\dim(H_\delta, \chi_3) \) and \(\dim(H_\delta, \chi_4) \) are given by:

$$\sum_{d=0}^{\infty} \dim H_\delta(D_n, \chi_1)t^d = \frac{1}{2n} \left\{ G_1(t) + \frac{n}{2} [G_2(t) + G_3(t)] \right\}$$

$$\sum_{d=0}^{\infty} \dim H_\delta(D_n, \chi_2)t^d = \frac{1}{2n} \left\{ G_1(t) - \frac{n}{2} [G_2(t) + G_3(t)] \right\}$$

$$\sum_{d=0}^{\infty} \dim H_\delta(D_n, \chi_3)t^d = \frac{1}{2n} \left\{ G_1(t) + \frac{n}{2} [G_2(t) - G_3(t)] \right\}$$

$$\sum_{d=0}^{\infty} \dim H_\delta(D_n, \chi_4)t^d = \frac{1}{2n} \left\{ G_1(t) - \frac{n}{2} [G_2(t) - G_3(t)] \right\}$$

Now evaluation of \(G_3(t) \) given in the following lemma.

Lemma 4.3 For

$$\sum_{l=0}^{\lfloor d/2 \rfloor} \left(\frac{n-2}{2} + l - 1 \right)(d - 2l + 1)$$

the generating function is

$$G_3(t) = (1 - t^2)^{-\frac{n}{2}}(1 + 2t + t^2 + t^3)$$

Proof of Lemma:

First consider

$$\sum_{l=0}^{\lfloor d/2 \rfloor} \left(\frac{n-2}{2} + l - 1 \right)(d - 2l + 1)$$

Let

$$b_d = \sum_{l=0}^{\lfloor d/2 \rfloor} \left(\frac{m}{l} + l - 1 \right)(d - 2l + 1)$$

One easily verifies
Now again induction gives

\[
\sum_{l=0}^{d} \binom{m + l - 1}{l} = \binom{m + d}{d}
\]

Therefore,

\[
b_{2d+1} = b_{2d} + \binom{m + d}{d}
\]

Let

\[
\sum_{d=0}^{\infty} b_{2d} t^{2d} = G_5(t)
\]

Now

\[
\sum_{d=0}^{\infty} b_{2d+1} t^{2d+1} = t \sum_{d=0}^{\infty} \left[b_{2d} t^{2d} + \binom{m + d}{d} t^{2d} \right] = tG_5(t) + t(1 - t^2)^{-(m+1)}
\]

Hence

\[
G_4(t) = \sum_{d=0}^{\infty} b_{2d} t^{d} = \sum_{t, \text{even}} + \sum_{t, \text{odd}} = G_5(t) + tG_5(t) + t(1 - t^2)^{-(m+1)}
\]

To evaluate \(G_5(t)\)

\[
G_5(t) = \sum_{d=0}^{\infty} \sum_{l=0}^{d} \binom{m + l - 1}{l} (2d - 2l + 1) t^{2d}
\]

\[
= \sum_{d=0}^{\infty} \sum_{l=0}^{d} \binom{m + l - 1}{l} (2d + 1) t^{2d} - 2 \sum_{l=0}^{d} \binom{m + l - 1}{l} t^{2d}
\]

Now using induction one can show that

\[
\sum_{l=0}^{d} \binom{m + l - 1}{l} = m \sum_{l=0}^{d} \binom{m + l - 1}{l} - m \sum_{l=0}^{d} \binom{m + l - 1}{l}
\]

\[
\text{(iv)} \quad \sum_{l=0}^{d} \binom{m + l - 1}{l} = m \sum_{l=0}^{d} \frac{m + l (m + l - 1)!}{l!(m - 1)!} - m \sum_{l=0}^{d} \binom{m + l - 1}{l}
\]

\[
= m \sum_{l=0}^{d} \binom{m + l}{l} - m \sum_{l=0}^{d} \binom{m + l - 1}{l}
\]
After simplification, we have

\[\sum_{l=0}^{d} l \binom{m+l-1}{l} = m \binom{m+d}{d-1} \]

Hence,

\[G_5(t) = \sum_{d=0}^{\infty} \binom{m+d}{d} (2d+1)t^{2d} - 2 \sum_{d=0}^{\infty} m \binom{m+d}{d-1} t^{2d} \]

\[= \sum_{d=0}^{\infty} \binom{m+d}{d} 2dt^{2d} + \sum_{d=0}^{\infty} \binom{m+d}{d} t^{2d} - 2 \sum_{d=0}^{\infty} m \binom{m+d}{d-1} t^{2d} \]

Now using

\[\sum_{d=0}^{\infty} \binom{m+d}{d} 2dt^{2d} = \frac{d}{dt} \left[(1-t^2)^{-(m+1)} \right] \]

and

\[\sum_{d=0}^{\infty} m \binom{m+d}{d} t^{2d} = 2mt^2(1-t^2)^{-(m+2)} \]

Simplifying

\[G_5(t) = (1-t^2)^{-(m+2)}(2t^2 + 1) \]

Finally

\[G_4(t) = (1-t^2)^{-(n+2)}(1 + 2t + 2t^2 + t^3) \]

Replacing \(m \) by \(\frac{n-2}{2} \) in \(G_4(t) \), we have

\[G_3(t) = (1-t^2)^{-(n+2)/2}(1 + 2t + 2t^2 + t^3) \]

5 Examples

5.1 The dihedral group \(D_{10} \)

Consider the group \(D_{10} \). It has 4 one-dimensional irreducible representations and 4 two-dimensional irreducible representations. Here we give the generating functions for all the eight irreducible representations.

Two-dimensional representations: As \(0 < h < \frac{n}{2} \), \(h \) can assume 1, 2, 3 and 4

- case (i) when \(h \) is coprime with \(n \) i.e., \(h = 1, 3 \).

 The generating function is

 \[\frac{1}{5} \left\{ \frac{1}{1-t^{10}} - \frac{1}{(1-t^5)^2} - \frac{1}{(1-t^2)^5} + \frac{1}{(1-t)^{10}} \right\} \]

- case (i) when \(h \) is not coprime with \(n \) i.e., \(h = 2, 4 \)

 The generating function is

 \[\frac{1}{5} \left\{ -\frac{1}{1-t^{10}} - \frac{1}{(1-t^5)^2} + \frac{1}{(1-t^2)^5} + \frac{1}{(1-t)^{10}} \right\} \]

One-dimensional representations:
The generating functions for \(\chi_1 \) and \(\chi_2 \) are given by
\[
\frac{1}{20} \left\{ \left[\frac{1}{(1 - t^{10})} + \frac{4}{(1 - t^5)^2} + \frac{1}{(1 - t^2)^5} + \frac{1}{(1 - t)^{10}} \right] \pm 10 \left[\frac{(2 + t^2)(1 + t)}{(1 - t^2)^6} \right] \right\}
\]
The generating functions for \(\chi_3 \) and \(\chi_4 \) are given by
\[
\frac{1}{20} \left\{ \left[-\frac{1}{(1 - t^{10})} + \frac{4}{(1 - t^5)^2} - \frac{1}{(1 - t^2)^5} + \frac{1}{(1 - t)^{10}} \right] \pm 10 \left[\frac{(1 + t + t^2)}{(1 - t^2)^6} \right] \right\}
\]

6 Existence of relative invariants

The above formulæ give that the dimension of the space of relative symmetric polynomials of degree 1 is 2 whatever be the character. In particular relative invariants for \(D_n \) exist in degree 1 always.

One can easily see that the dimension is positive for \(D_n \) for any degree \(d \) when \(n \) a prime number. It seems all the dimensions are always positive though we are unable to prove this.

References

[1] Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers In: Collected papers of Srinivasa Ramanujan, pp. 179199. AMS Chelsea Publ., Providence (2000). Trans. Cambridge Philos. Soc. 22(13), 259276 (1918)

[2] Serre, J.-P., Linear Representation of Finite Groups, Springer-Verlag (1977).

[3] Shahryari, M. Relative symmetric polynomials, Linear Algebra and its Applications 433 (2010) 1410–1421.

[4] Shahryari, M. and Zamani, Y. Symmetry classes of tensors associated with Young subgroups, Asian-Eur. J. Math. Vol. 4 (2011), no. 1, 179185.

[5] Babaei, E., Zamani, Y., and Shahryari, M. Symmetry classes of polynomials Communications in Algebra, Vol 44 (2016), p.1514–1530.

[6] Von Sterneck, R.D.:Sitz. be. Akad. Wiss. Wien Math. Nat. wiss. Kl. 111 (Abt. Ha),1567–1601 (1902)

[7] Zamani, Y. and Babaei, E. The dimensions of cyclic symmetry classes of polynomials, J. Algebra Appl. Vol. 13 (2014), no. 2, Article ID 1350085, 10 pages.

[8] Zamani, Y. and Babaei, E. Symmetry classes of polynomials associated with the dicyclic group, Asian-Eur. J. Math. 6 (2013), no. 3, Article ID 1350033, 10 pages.

[9] Zamani, Y. and Babaei, E. Symmetry classes of polynomials associated with the dihedral group, Bull. Iranian Math. Soc., Vol. 40(2014), No. 4 pp.863–874