NEURO-SYMBOLIC PROCEDURAL PLANNING
WITH COMMONSENSE PROMPTING

Yujie Lu¹, Weixi Feng¹, Wanrong Zhu¹, Wenda Xu¹, Xin Eric Wang²
Miguel Eckstein¹, William Yang Wang¹
¹University of California, Santa Barbara, CA, USA
{yujielu, weixifeng, wanrongzhu, wenda xu}@ucsb.edu
{migueleckstein, wangwilliamyang}@ucsb.edu
²University of California, Santa Cruz, CA, USA
xwang366@ucsc.edu

ABSTRACT

Procedural planning aims to implement complex high-level goals by decomposition into sequential simpler low-level steps. Although procedural planning is a basic skill set for humans in daily life, it remains a challenge for large language models (LLMs) that lack a deep understanding of the cause-effect relations in procedures. Previous methods require manual exemplars to acquire procedural knowledge from LLMs in the zero-shot setting. However, such elicited pre-trained knowledge in LLMs induces spurious correlations between goals and steps, impairing the model’s generalization to unseen tasks. In contrast, this paper proposes a neuro-symbolic procedural PLANner (PLAN) that elicits procedural knowledge from the LLMs with commonsense-infused prompting. To mitigate spurious goal-step correlations, we use symbolic program executors on the latent procedural representations to formalize prompts from commonsense knowledge bases as a causal intervention toward the Structural Causal Model of procedural planning. Both automatic and human evaluations on WikiHow and RobotHow show the superiority of PLAN on procedural planning without further training or manual exemplars.

1 INTRODUCTION

How to make a cup of coffee? As humans, we can easily specify a procedure to solve this task, using our innate ability of commonsense reasoning. However, can we endow machines with the same ability to construct a sequential plan? As depicted in Figure 1, procedural planning (Pearson, 1996; Zhang et al., 2020b; Huang et al.) aims to decompose a high-level goal (Task: Watch TV) into a sequence of temporally extended steps (Procedural Plan: Step at all five time-steps).

We study procedural planning as the conditional text generation problem since it resembles real-world scenarios. Previous approaches (Huang et al.; Ahn et al., 2022) require a small number of carefully written or held-out exemplars to acquire procedural knowledge. However, these manual exemplars evolved from task data are impossible to cover the ever-changing task setups and the flexible dependency relations among goals and steps. In fact, the biased data may cause the model to learn spurious correlations and hinder the model from generalizing well in zero-shot scenarios. Studies in cognitive science show that humans rely on chunking mechanisms (Gobet et al., 2001; Miller, 1956) (group primitive stimuli into conceptual groups) to solve novel and complex problems. Inspired by this, we hypothesize that generalizable procedural planning ability can be achieved by learning cause-effect relations among complex goals and simpler steps using external knowledge.

To reveal the cause-effect relations in procedural planning, we devise a Structural Causal Model (SCM) (Peters et al., 2017), a directed acyclic graph commonly used to describe the causal relationships within a system (Pearl, 2009). As depicted in Figure 2, the pre-trained knowledge (D) (e.g., TV and living room is highly correlated) in LLMs confounds (D influences T, S_{i-1} and S_i, resulting in spurious correlations) the system to make biased decisions toward an unreasonable step (e.g., Find Television). Thus, we adopt front-door adjustment (definition in Appendix A.3), which utilizes a mediator (P_i) that blocks all directed paths from the cause (T or S_{i-1}) to the effect (S_i). In this way,
We conducted experiments on RobotHow (Puig et al., 2018) and WikiHow (Koupaee & Wang, 2018). Step 1: As depicted in Figure 1, procedural planning requires generating the Plan (e.g., we transit graph structure knowledge into natural language that preserves procedural structure (e.g., And we can identify the causal effects among goals and steps by investigating the indirect effect (Equation 3), which is computed by multiplying the effect of T on P_i (Equation 1) with the effect of P_i on S_i (Equation 2). With the above front-door adjustment, we can mitigate the spurious correlations (e.g., between "television" and "living room") and thus make reasonable decisions on steps (e.g., Find book). Please refer to A.1 for causal preliminaries (including explanation for SCM, confounder, mediator, spurious correlations), and A.3 for the front-door adjustment definition.

Guided by the above causal analysis of procedural planning, we need to construct the mediator P_i and then intervene on task T and prompt P_i, which is required to compute the conditional probability in Equation 3. As depicted in Figure 3, we seek to automatically construct commonsense-infused prompts as the mediator P_i by concatenating the task, previous steps with commonsense knowledge extracted from external resources (e.g., ConceptNet (Speer et al., 2017)). First, we modify the goal input by sampling a task-relevant knowledge subgraph (Stage 1 in Section 3.1) to implement interventions on T. Then, we modify the prompt by adapting the edge weight to implement interventions on P_i (Edge-Wise Adoption of Stage 2 in Section 3.1). However, directly incorporating knowledge of graph structure into LLMs leads to the loss of the logical order in eliciting procedural knowledge from LLMs. Thus, we apply symbolic executors (Mao et al., 2019) that execute the sequential mapping program on latent knowledge representations (e.g., the subevent of). In this way, we transit graph structure knowledge into natural language that preserves procedural structure (e.g., the sequential order of two low-level steps) (Symbolic Structuring of Stage 2 in Section 3.1). The procedural prompt P_C (e.g., “please get the remote control”) is further translated into admissible one P_G (e.g., “grab remote control”) from available steps in a certain domain (RobotHow or WikiHow). Finally, we utilize the commonsense-infused prompt P_G to control the generation of procedural plans in LLMs in a zero-shot setting (Section 3.2).

We conducted experiments on RobotHow (Puig et al., 2018) and WikiHow (Koupaee & Wang, 2018) under original and counterfactual situations. Our major contributions can be summarized as:

- We develop the first causal framework for procedural planning by 1) defining a temporally extended Structural Causal Model and 2) resolving spurious correlation between high-level goals and low-level steps via front-door adjustment with a prompt-based mediator.
- We propose a neuro-symbolic approach to construct commonsense-infused prompts for LLMs to tackle the procedural planning task without manual exemplars or further training.
- Extensive evaluations show the superiority of PLAN in terms of reasoning about the cause-effect relations among goals and steps and achieving promising planning ability.

2 **External Knowledge Matters in Procedural Planning**

As depicted in Figure 1, procedural planning requires generating the Plan (e.g., Step 1: Walk to the living room.) conditioned on the Task (e.g., Watch TV). We first describe the problem definition and then show why external knowledge matters in procedural planning through the lens of causality. Finally, we show how we elicit procedural ability from the Large Language Models (LLMs).
Figure 2: **Structural Causal Model (SCM) for Procedural Planning.** (a) The full temporal causal graph. T denotes the task query, and S_i is the sub-goal step at timestep i. D is the unobservable confounding variable introduced by the LLMs. P_i denotes the mediating variables we construct to mitigate the spurious correlation. (b) The SCM at timestep i. Without causal intervention, the model produces a sub-goal step “find television” due to the spurious correlation between “television” and “living room” caused by the confounding variable D. With our causal intervention, the constructed mediating variable P_i (Section 3.1) can block the backdoor paths for $T \rightarrow S_i$ and $S_{i-1} \rightarrow S_i$ (opened by D) and generate the causal sub-goal “find book” precisely (Section 3.2).

2.1 Problem Definition

Given the high-level task T (e.g. watch television in the living room) sampled from a task domain M_T (e.g., RobotHow), a procedural planner aims to decompose it into lower-level temporally extended steps $S_T = \{S_1, ..., S_i | S_i \in S\}$. There exists certain admissible plans S, which is a fixed set constrained by the task domain M_T (e.g., the affordance of the interacted objects). The plan S_i at timestep i is generated as $\pi(S_i | T, S_{0:i-1})$.

2.2 A Causal Look at Procedure Planning with LLMs

We seek to empower the LLMs with the ability to reason cause-effect relations in procedural planning. Thus, we devise a causal framework by first defining a Structural Causal Model (SCM) of procedural planning in Figure 2. The SCM describes the temporal dynamics and procedural cause-effect relationship. Our causal assumption in SCM indicates that there is a backdoor path from task to step, which must be blocked with front-door adjustment. Therefore, we model the input prompt as a mediator which is created from external knowledge. More specifically, we define our Full Temporal Causal Graph as in Figure 2a which is an unrolled Structural Causal Model (SCM) for sequential decision-making. Our goal is to identify the causal relations between the attended task T and plan procedures $S_T = \{S_1, S_2, \ldots \}$ from LLMs. Initially, there are direct paths $T \rightarrow S_i$ and $S_k \rightarrow S_i, k < i$ because S_i relies on the LLM attended task entities and previous accomplished steps. D is an unobserved confounder from learned knowledge during pre-training. D builds a backdoor path between T and S_i and misguides the LLMs to attend to false entities to generate the next step (see Fig. 2b). Note that D is unobservable as we directly adopt the LLM without knowing the pre-training data. To mitigate the spurious correlation, we then introduce a mediator P_i for each S_i as shown in Figure 2a. To achieve our front-door adjustment, we inject external knowledge into LLMs with a neuro-symbolic approach by adopting three stages described in Section 3.1.

3 Our Approach

Although LLMs have strong general language intelligence, they still perform poorly in reasoning the cause-effect relations in procedural plans due to a lack of daily life experience. We propose to elicit the unbiased procedural planning knowledge from the LLMs using the created commonsense-infused Prompt P as $\pi(S_i | T, S_{0:i-1}, P)$. Figure 3 and Algorithm 1 depict how PLAN tackles the procedural planning in a five-stage manner. We illustrate the commonsense-infused prompt construction (the first three stages) in Section 3.1 and planning with LLMs (the last stage) in Section 3.2.
Figure 3: The Overview of Procedural Planning. Our five-stage pipeline includes: 1) semantically parsing the task T into entity set T_E to retrieve subgraph G_s from the external knowledge base G. 2) formalize procedural prompt P_G and then translate into the admissible one P_G. 3) aggregate task, previous steps and P_G as final commonsense-infused prompt P. (Section 3.1) 4) and 5) generating and translating time-extended procedural plan until triggering the termination condition. (Section 3.2)

3.1 Commonsense-infused Prompt Construction

Overview Inspired by the causal analysis in Section 2.2, we propose to construct commonsense-infused Prompt P that helps reveal the cause-effect relations among the goals and steps during procedural planning within 3 stages: 1) **Stage1** sample a subgraph G_s from the external knowledge base G by extracting task(T)-relevant nodes. 2) **Stage2** adapt the edge weight E_w in G_s and apply symbolic structuring to get the admissible knowledge prompt P_G. 3) **Stage3** acquire the temporal order by temporally aggregated the prompt P_t with previous steps S_{t-1}.

Stage1: Task-Relevant Knowledge Subgraph Sampling First, we investigate the causal effect $T \rightarrow P_t$ and $S_{t-1} \rightarrow P_t$ (Figure 2). S_t is a collider that blocks the association between D and P_t in the path $T \leftarrow D \rightarrow S_t \leftarrow P_t$. Let π_i denote $\pi_i(P_t)$ that represent the probability density function conditioned on P_{t-1}. Since there is no backdoor path for $T \rightarrow P_t$ and similarly for $S_{t-1} \rightarrow P_t$, we simply have the conditional probability after applying do-operators:

$$\pi_i(P_t = p | do(T)) = \pi_i(P_t = p | T), \quad \pi_i(P_t = p | do(S_{t-1})) = \pi_i(P_t = p | S_{t-1})$$

(1)

We achieve the do-operation in a prompting way by modifying the goal input so that the model attends to the task-relevant entities. To implement, we use NLTK to tokenize and pos.tag the task text T. Then we use the noun (e.g. television), noun phrases (e.g. remote control), and verb phrases (e.g. watch television) as the entity node. In this way, the task name T is SemanticallyParsed into the Entity Set T_E. Each entity $e \in T_E$ is used as a query for sampling the H-hop task-relevant subgraph $G_s \subseteq \mathcal{N} \times \mathcal{R} \times \mathcal{N}$ from the external knowledge base $G \subseteq \mathcal{N} \times \mathcal{R} \times \mathcal{N}$ (e.g., ConceptNet [Speer et al., 2017]), where \mathcal{N} and \mathcal{R} represent the number of concept nodes and commonsense relations respectively. When extracting G_s, we keep the triplets with relation type in household domain (e.g., AtLocation,UsedFor) and filter out ones in the linguistic domain (e.g., DerivedFrom) for the procedural planning task. \mathcal{N}_s is maintained in a set of top-k task-relevant nodes using the weight of each e_r, which is updated with edge-wise adaption in Stage2.

Stage2: Edge-Wise Adaption and Symbolic Structuring Second, we need to find the causal effect for $P_t \rightarrow S_t$. Since the path $P_t \leftarrow T \leftarrow D \rightarrow S_t$ contains a backdoor from P_t to S_t, we cannot rely on the conditional probability. Instead, we intervene on P_t using do-operator to cut off $D \rightarrow T$:

$$\pi_i(S_t | do(P_t = p)) = \sum_{t,s} \pi_i(S_t | p, T = t, S_{t-1} = s) \pi_i(T = t, S_{t-1} = s)$$

$$= \sum_{t,s} \pi_i(S_t | p, T = t, S_{t-1} = s) \pi_i(S_{t-1} = s | T = t) \pi_i(T = t)$$

(2)

The retrieved entity-centered graph has multiple edges representing various relationships with other actions/entities. Therefore, the summation over intervened T can be achieved by incorporating these edges into the prompt. For instance, “living room” can be “walked to” and “used for reading”...
while “book” can locate in “living room” and “bedroom”. Similarly, we extrapolate over the edges for \(i - 1\) hops to aggregate the intervened \(S_i\), i.e. \(P^\prime(S_i \rightarrow 1 \rightarrow T = t)\). Directly ranking the retrieved nodes \(N_e\) with the annotated weight \((E^\prime_w)\) in the external knowledge base will result in a spurious correlation. Because such retrieved local subgraphs tend to capture the task-invariant concept nodes as the causal factors. To mitigate this, we propose to adapt the weight of each triplet (Edge-wise Adaption). The adapted weight is the addition of the original edge weight and the cosine similarity between the tail node embedding \(n_{E_{tail}}\) of the edge \(R_e\) and the task embedding \(v_{task} = E_w \leftarrow E_w + \text{cosine}(n_{E_{tail}}, v_{task})\). The embeddings are projected from the node text and task name using the sentence-transformer (Reimers & Gurevych, 2019). The nodes \(N_e\) are finally ranked by the weight \(E^\prime_w\). To better track the utilized external knowledge during inference, we construct the task-dependent commonsense prompt with a Symbolic Executor (Symbolic Structuring) guided by the relation type of each triplet in \(G_s\) with the adapted edge weight beyond threshold \(\theta_e\). Specifically, the Symbolic Executor acquires the neural information of each natural language node and executes the sequential mapping program by sampling the operation \(OP\) from the Symbolic Rule Set \(R\) according to the edge relation type. The Symbolic Rule Set \(R\) is obtained by mapping the description of the relations (e.g., \(AtLocation\) represent ‘A is a typical location for B, or A is the inherent location of B. Some instances of this would be considered meronyms in WordNet.) in the external knowledge graph (e.g., ConceptNet) to symbolic operations (e.g., \(OP_{AtLocation}\)). For instance, the \(AtLocation\) edge samples the operation \(OP_{AtLocation}\) from \(R\), which takes the commonsense relation of the triplet from \(G_s\) as the parameters to query the procedural concept output given the natural language meaning of the linked nodes (e.g., go to the location of \(Start_Node_Of(r_e)\) in this case). Similarly, \(OP_{UsedFor}\) may refer to “go to find \(End_Node_Of(r_e)\) and use it for \(Start_Node_Of(r_e)\)”. And operators \(OP_{HasSubevent}\) and \(OP_{HasPrerequisite}\) will recursively navigate the subgraph \(G_s\). After navigating the subgraph, we linearize the transformed triplets as the Procedural Prompt \(P^\prime_G\), which is then translated to Admissible Knowledge Prompt \(P_G\) by the Translation Language Model \(LM_t\).

Stage3: Temporally-Extended Aggregation To acquire temporal order in the procedure, we obtain the Prompt \(P\) at timestep \(i\) with the aggregation of task \(T\), history steps \(S_{i-1}\) and current external knowledge \(P_G\). The underlying causal mechanism is a combination of Eq. 1 and Eq. 2:

\[
\pi_i(S_i|do(T), do(S_{i-1})) = \sum_p \pi_i(S_i|do(P_i = p))\pi_i(p|do(T), do(S_{i-1}))
\]

\[
= \sum_p \pi_i(p|T) \sum_{t,s} \pi_i(S_i|p, T = t, S_{i-1} = s)\pi_i(T = t, S_{i-1} = s)
\]

The adjustment and marginalization in Eq. 3 is achieved in the input space by forming the Procedural Prompt \(P_G\) that allows the LLM to attend on the causal entities instead of the highly correlated ones for the next step generation. The LLM can reason over the most relevant edges to link the concepts with the task entities as a context. The prompts from knowledge bases are independent of the pre-training data distribution so that \(P_i\) is independent of \(D\) and satisfies the front-door criterion. Please refer to Appendix A.3 and Figure 4 for the simplification of our structural causal model.

3.2 Procedural Planning with LLMs

Stage4: Semantic Generation The external knowledge is further concatenated with the goal input \((T)\) as the initial prompt. Given the prompt, the language model generation \(LM_G \in \{P_{AR}, P_{AE}\}\) (e.g., GPT3, BART) generates the next sentence, and the most confident prediction is then appended to previous prompts. The Termination Condition is either reaching the max step \(t\) or the matching score is below threshold \(\theta\). The joint probabilities of auto-regressive \((P_{AR})\) and auto-encoder \((P_{AE})\) model is factorized as:

\[
\pi_{AR}(x) = \prod_{i=1}^{n} p(s_i|\hat{P}_G, s_{1:n-1}, T), \quad \pi_{AE}(x) = \prod_{i=1}^{n} p(s_i|\hat{P}_G, \{s_{1:n-1}, [MASK]\}, T)
\]

where \(\hat{P}_G\) represent the commonsense knowledge and \(T\) represent the task name.

Stage5: Admissible Step Translation To ensure that the generated procedural plans are grounded to the environment, we should avoid producing the steps that are inadmissible (e.g. \(Toast\) the table). In
Algorithm 1 Neuro-Symbolic Procedural Planning using Commonsense-Infused Prompting

Require:
- Task Sample T.
- Admissible Step Set S.
- External Knowledge Graph G.
- Language Model for Generation LM_G and Translation LM_T.
- Symbolic Rule Set R.

Ensure:
1. [Stage 1] Semantically parse T into entity set T_E.
2. Maintain top-k task-relevant nodes N_e in T_E.
3. Retrieve subgraph $G_e \subseteq N_e \times R \times N_e$ from $G \subseteq N \times R \times N$ for each $e \in T_E$.
4. [Stage 2] Edge-wise adaption as $E_w \leftarrow E_w + \text{cosine}(n_{E_{init}}, v_{task})$ and re-rank N_e in T_E.
5. Map the description text of the relations R_e in G_e as Symbolic Rule Set R.
6. Construct procedural prompt P_G by verbalizing the re-weighted G_e using R.
7. Translate P_G in Admissible Knowledge Prompt $P_G = LM_T(P_G)$.
8. Temporally-extended zero-shot inference for Procedural Plan $S_T = \{S_1, ..., S_i\}$.
9. [Stage 3] Aggregate Prompt $P_i \leftarrow [T; S_{0:i}; \hat{P}_G]$.
10. [Stage 4] and [Stage 5] $S_i = LM_T(LM_G(P_i))$.
11. Update Procedural Plan $S_T \leftarrow S_i$.
12. end for

3.3 Counterfactual Procedural Data Construction

To investigate the counterfactual reasoning ability, we design three families of intervention methods:
1) Initial Configuration: intervene in the initial configuration, such as the location for implementing the task. 2) Intermediate Step, randomly select one step from the ground truth program as an additional constraint of implementing the task and append it to the task name for generating the procedural plan. 3) Final Goal, intervene the task goal as the composite of another randomly sampled task. Table 5 in the Appendix summarizes the category and description. The counterfactual dataset construction details and post-intervention examples are provided in Appendix B.2.

4 Experiments

4.1 Procedural Planning Setup

Datasets We conduct zero-shot experiments on two datasets with procedural information, WikiHow[1] (collected following Koupae & Wang [2018]) and RobotHow [Puig et al., 2018] without training. WikiHow is a large-scale text summarization dataset that is constructed from a human-written knowledge base, involving procedural tasks that spans various topics. We utilize “how to” title as the task names and the summarized headlines as the steps. RobotHow is a large knowledge base of common household tasks collected in the VirtualHome [Puig et al., 2018] simulator. The dataset contains the programs with high-level tasks and low-level steps. M_T is composed of 292 and 2000 distinct tasks from RobotHow and WikiHow respectively. Human evaluations use randomly sampled 50 task examples for each dataset. Automatic evaluations use 150 and 1000 task examples randomly sampled from RobotHow and WikiHow respectively. Please refer to Appendix B.1 and Appendix B.2 for dataset details.

[1]https://www.wikihow.com
We compare our approach with three vanilla generative pre-trained language models (BART, GPT2, and GPT3) and two powerful generation baselines (Zero-shot Planner (Huang et al.) noted as “LLMaP” and Chain of Thought (Wei et al., 2022) noted as “Chain”). More method and configuration details of the models can be found in Appendix B.3 and Appendix B.4.

Metrics We ask human annotators on the Amazon Mechanical Turk platform to rate model performance on two aspects: 1) **Coverage**: depicts which set of steps can better complete the target task (captures semantic completeness). 2) **Order**: depicts which sequence covers more steps that are necessary to complete the target task (captures sequential order correctness). In addition, we use Sentence-BLEU (S-BLEU) (Papineni et al., 2002), BERTScore (Zhang* et al., 2020), ROUGE-1 (Lin, 2004) and Word Mover’s Distance (WMD) (Kusner et al., 2015) as automatic evaluation metrics. These metrics are used to compute the semantic scores between the annotated programs and the predictions. Details of the crowdsourcing human evaluation can be found in Appendix C.1.

4.2 Human Evaluation Results with Coverage and Order Metric

Each example is rated by 3 crowdsourcing annotators. For the **Win-Lose Comparison**, we ask the human rater to choose between ours and the baseline LLMaP (Huang et al.). Averaged results reported in Table 1 show that our PLAN is more frequently rated as better for both coverage and order metrics, outperforming baselines over the winning ratio by 21% in coverage and 26% in order, across two datasets. We report the average results of **Human Ratings** with 5-point Likert scale in Table 2. The consistent performance boost of PLAN indicates the superiority of injecting external commonsense knowledge into the procedural planning task. The performance drop of LLMaP and Chain in the counterfactual setting indicates the vulnerability of fixed holdout knowledge and the pre-defined manual exemplars in causal procedural planning. Please refer to Appendix C.1 for the crowdsourcing human evaluation interface details. Table 3 shows two examples for Qualitative Comparison. More examples can be found in Appendix D.

4.3 Automatically Measuring the Procedural Planning

Main Results Table 3 summarizes the automatic evaluation results. PLAN achieves the best results regardless of the architecture of the language model architecture, either autoregressive or autoencoder based. The performance gain of “LLMaP” over “Chain” may probably be due to direct exposure to the holdout task from the dataset. While the “Chain” baseline still outperforms the vanilla baseline that only takes the high-level task name as the prompt. Note that the annotated program is not the

Table 1: Percentages of procedural planning results of PLAN that are better than, tied with, or worse than Planner (Huang et al.), in coverage and order metrics under the original and counterfactual setting.

Dataset	Architecture	Model	Original-Coverage	Original-Order	Counterfactual-Coverage	Counterfactual-Order					
			Win(%)	Tie(%)	Lose(%)	Win(%)	Tie(%)	Lose(%)	Win(%)	Tie(%)	Lose(%)
RobotHow	BART	Lewis et al., 2020	46.67	31.33	22.00	50.00	22.67	22.33	42.00	22.67	35.33
	GPT2	Radford et al., 2019	42.67	22.00	35.33	44.00	18.67	37.33	56.67	11.33	32.00
	GPT3	Brown et al., 2021	50.60	23.33	23.33	53.33	23.33	23.33	54.67	16.67	28.67
WikiHow	BART	Lewis et al., 2020	56.67	12.67	30.67	49.33	11.33	39.33	46.67	16.67	36.67
	GPT2	Radford et al., 2019	48.00	16.00	36.00	49.33	11.33	39.33	46.67	16.67	36.67
	GPT3	Brown et al., 2021	71.17	10.74	14.09	72.67	8.67	18.67	44.60	22.67	33.33

Table 2: Averaged 5-point Likert scale human evaluations on “coverage” and “order” aspects.

Architecture	Model	RobotHow (Win)	WikiHow (Win)							
		Coverage Order	Coverage Order							
		Original Counterfactual	Original Counterfactual							
BART	Lewis et al., 2020	Chain (Wei et al., 2022)	2.99	2.80	2.71	2.76	2.88	3.42	3.34	2.97
		LLMaP (Huang et al.)	3.06	2.84	2.96	2.82	2.78	3.35	3.46	3.02
		PLAN (Ours)	3.16	3.10	3.07	2.98	3.05	3.47	3.62	3.18
GPT2	Radford et al., 2019	Chain (Wei et al., 2022)	2.43	2.28	3.12	2.88	2.97	3.44	3.60	3.01
		LLMaP (Huang et al.)	3.09	2.94	2.93	2.90	3.20	3.53	3.63	3.24
		PLAN (Ours)	3.12	2.99	3.43	2.88	3.67	3.69	3.81	3.31
GPT3	Brown et al., 2021	Chain (Wei et al., 2022)	3.26	3.18	3.45	3.58	3.29	3.46	3.70	3.71
		LLMaP (Huang et al.)	3.50	3.56	3.56	3.53	3.21	3.27	3.77	3.71
		PLAN (Ours)	3.72	3.70	3.67	3.56	3.72	3.82	3.85	3.75
Table 3: Showcases of procedural steps predicted by different models with GPT2 as the base LLM.

Model	RobotHow	WikiHow						
	S-BLEU	WMD	ROUGE-f1	S-BLEU	WMD	ROUGE-f1		
BART	0.069	0.923	0.870	0.442	0.083	0.937	0.836	0.379
+ Chain	0.079	0.913	0.862	0.448	0.095	0.939	0.782	0.377
+ LLMaP	0.094	0.940	0.870	0.467	0.131	0.950	0.816	0.371
w/o Adaption	0.104	0.929	0.886	0.492	0.132	0.952	0.824	0.398
w/o Symbolic	0.082	0.858	0.835	0.392	0.087	0.939	0.828	0.386
GPT2	0.056	0.891	0.846	0.356	0.051	0.925	0.826	0.345
+ Chain [Wei et al., 2022]	0.079	0.905	0.861	0.405	0.124	0.937	0.817	0.352
+ LLMaP [Huang et al.]	0.115	0.931	0.885	0.481	0.115	0.957	0.833	0.363
w/o Adaption	0.148	0.945	0.908	0.547	0.133	0.971	0.835	0.373
w/o Symbolic	0.143	0.942	0.895	0.538	0.121	0.967	0.829	0.357
GPT3	0.072	0.882	0.855	0.416	0.077	0.936	0.832	0.366
+ Chain [Wei et al., 2022]	0.089	0.905	0.860	0.471	0.094	0.943	0.839	0.393
+ LLMaP [Huang et al.]	0.123	0.931	0.894	0.539	0.116	0.946	0.842	0.401
w/o Adaption	0.155	0.939	0.902	0.561	0.155	0.961	0.849	0.433
w/o Symbolic	0.139	0.923	0.887	0.517	0.144	0.955	0.830	0.420

Table 4: Automatic evaluation results on the Original RobotHow and WikiHow. Metrics are computed between the annotated programs and the predictions.

only solution, thus these automatic metrics provide limited absolute performance information. Details for the correlation between automatic metrics and human evaluation can be found in Section 4.5.

Effects of Edge-wise Adaption and Symbolic Program Execution The variant “w/o Adaption” maintains the top-k task-specific nodes ranked by the annotated weight E_W in the external knowledge base G without adaption. The variant “w/o Symbolic” directly takes the extracted concept nodes from external knowledge base as prompt. The performance drop of these two variants in Table 4 with significance test in Appendix C.2 demonstrate the importance of adaption and symbolic modules.

Effects of the Large Language Model Architecture We use GPT2 and GPT3 as autoregressive architecture and BART [Lewis et al., 2020] as autoencoder architecture. The autoregressive architecture achieves better results than the autoencoder one. Since the pre-training objective of autoregressive-based GPT is to predict the next token given the previous input tokens. We assume the performance gain of GPT is due to a smaller gap between the objective of pre-training and procedural planning.

Level of Complexity We show report results that use the test set which is separated into several buckets according to the number of steps in the procedural planning task. The step number reflects the difficulty of the task. In Table 7 and Table 8 in Appendix C.2 we show that the averaged performance gain of PLAN over the baselines are consistent or more significant in more complicated procedural planning settings. This indicates the superiority of PLAN in solving long-horizon tasks.

4.4 RESULTS ON COUNTERFACTUAL TASK SAMPLES

We apply Initial Configuration, Intermediate Step, Final Goal interventions on RobotHow and Intermediate Step on WikiHow. Human evaluations under counterfactual setting are summarized in
Table 1 and Table 2. PLAN consistently outperforms baselines by a large margin and experiences a much smaller performance drop compared with the powerful baselines when switching to the counterfactual setting. We assume it’s due to the biased knowledge of the holdout examples and manual exemplars utilized in the baselines, which are vulnerable to counterfactual samples. Automatic evaluations on counterfactual RobotHow are summarized in Table 13 in Appendix C.2. Aligned with human evaluations, PLAN achieves the best performance. The overall poor performance in Final Goal category indicates the challenge for long-horizon and composite procedural planning. While the overall better performance in Intermediate Step category benefits from the intermediate guidance.

4.5 Correlation Between Automatic and Human Evaluation

We evaluate segment-level Pearson Correlation between human and automatic metrics. We observe that BERTScore has a moderate correlation to the human coverage score and WMD has a moderate correlation to the human order score, with 23.3% and 32.3% respectively. Similar to the prior findings (Xu et al., 2021), n-gram-based metrics (Sentence-BLEU and ROUGE) have a relatively weaker correlation to the human coverage score, with a Pearson correlation of 16.4% and 21.1%. Overall, our automatic and human evaluation scores are consistent with the main claim of this paper. However, human evaluation is still irreplaceable for procedural planning at the current stage.

5 Related Work

Procedural Planning Learning to generate procedural plans (Zhang et al., 2020a; Lyu et al., 2021; Zhang et al., 2020b; Chang et al., 2020; Wu et al., 2022; Huang et al.) is important for embodied agents (Tellex et al., 2011; Jansen, 2020; Ahn et al., 2022) and conversational assistants (Ilievski et al., 2018; Yang et al., 2022). Previous work views procedural script learning as a structured form of commonsense knowledge (Gupta et al., 2004; Regneri et al., 2010; Wanzare et al., 2016), while more recent work strengthens its association with the changing environments for executable action planning (Puig et al., 2018; Shridhar et al., 2020). Some works (Sun et al., 2020; Zhao et al., 2021) explore to utilize human written programs to precisely specify tasks. Our method tackles the problem with cause-effect by utilizing commonsense-infused prompts via a neuro-symbolic approach (Mao et al., 2019; Nye et al., 2021; Yi et al., 2018) for zero-shot procedural planning.

Causality for Language Generation The integration of causality and machine learning has been an intriguing topic for many problems (Pearl, 2009; Schölkopf, 2022). Previous studies focusing on causal inference for natural language understanding (Chen et al., 2020; Keith et al., 2020; Wood-Doughty et al., 2018) and generating counterfactual text representations (Feder et al., 2021). Weber et al. (2020) proposes an intervention method for script learning. However, these methods cannot be directly applied to procedural planning which requires a formal structure. Our method is based on mediation analysis (VanderWeele, 2015) and causal intervention (Pearl, 2009; Peters et al., 2017).

Prompt for Large Language Model There is an emerging interest in using prompts to extract knowledge from large language models (Chen et al., 2022; Le Sciao & Rush, 2021; Su et al., 2022; Ye et al., 2022; Zhou et al., 2022; Kojima et al., 2022). Cao et al. (2022) treats the prompt as a cause of the task-specific predictor and investigates biases in prompt-based probing evaluations. Chain of thought (Wei et al., 2022) discovers that LLM can perform better on reasoning tasks when the prompt is designed as a series of short sentences that mimic the reasoning process of humans.

6 Conclusion and Future Work

Procedural planning is a newly emerged research area of great importance to various applications, such as household robots and virtual assistants. We propose a neuro-symbolic procedural PLANner (PLAN) with commonsense-infused prompts elicited from the external knowledge base to solve the procedural planning problem in a zero-shot manner. Experiments show the effectiveness of our proposed PLAN on both automatic and human evaluation results. Extending neuro-symbolic procedural planning to handle the long-horizon composite tasks and provide effective automatic evaluation metrics are important directions for future work.
7 Ethical Statement

Given the limited diversified cultural background of the dataset we are using from RobotHow and WikiHow, we assume our results may be biased toward a single cultural background. For instance, given the task "make breakfast", it should take multi-culture into consideration to generate the procedural plans.

8 Reproducibility Statement

We provide more data samples and qualitative samples in supplemental materials. In addition, we provide our code implementation at https://anonymous.4open.science/r/PLANNER-7B24 to reproduce our experiments. The Preprocess folder provides the utils to construct the data. The Evaluation folder provides the code for automatic and human evaluation tools. The Planning folder contains the main code for our approach and reproduced planners for procedural planning. The Visualization folder provides the code we use to visualize in the environment.

Acknowledgments

The research was sponsored by the U.S. Army Research Office and was accomplished under Contract Number W911NF-19-D-0001 for the Institute for Collaborative Biotechnologies. This work was also supported by the National Science Foundation award #2048122. We thank the Robert N. Noyce Trust for their generous gift to the University of California via the Noyce initiative. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Boxi Cao, Hongyu Lin, Xianpei Han, Fangchao Liu, and Le Sun. Can prompt probe pretrained language models? understanding the invisible risks from a causal view. ACL, 2022.

Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei, and Juan Carlos Niebles. Procedure planning in instructional videos. In Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI, pp. 334–350, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-58620-1. doi: 10.1007/978-3-030-58621-8_20. URL https://doi.org/10.1007/978-3-030-58621-8_20.

Wenqing Chen, Jidong Tian, Liqiang Xiao, Hao He, and Yaohui Jin. Exploring logically dependent multi-task learning with causal inference. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2213–2225, 2020.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and Huajun Chen. Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization for relation extraction. In Proceedings of the ACM Web Conference 2022, pp. 2778–2788, 2022.
Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart. Causalm: Causal model explanation through counterfactual language models. *Computational Linguistics*, 47(2):333–386, 2021.

Fernand Gobet, Peter C.R. Lane, Steve Croker, Peter C-H. Cheng, Gary Jones, Iain Oliver, and Julian M. Pine. Chunking mechanisms in human learning. *Trends in Cognitive Sciences*, 5(6):236–243, 2001. ISSN 1364-6613. doi: https://doi.org/10.1016/S1364-6613(00)01662-4. URL https://www.sciencedirect.com/science/article/pii/S1364661300016624

Rakesh Gupta, Mykel J Kochenderfer, Deborah Mcguinness, and George Ferguson. Common sense data acquisition for indoor mobile robots. In *AAAI*, pp. 605–610, 2004.

Zhiting Hu and Li Erran Li. A causal lens for controllable text generation. *Advances in Neural Information Processing Systems*, 34, 2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot planners: Extracting actionable knowledge for embodied agents gpt-2 1.5b. URL https://huangwl18.github.io/language-planner

Vladimir Ilievski, Claudiu Cristian Musat, Andreaa Hossmann, and Michael Baeriswyl. Goal-oriented chatbot dialog management bootstrapping with transfer learning. In *IJCAI*, 2018.

Peter Jansen. Visually-grounded planning without vision: Language models infer detailed plans from high-level instructions. In *Findings of the Association for Computational Linguistics: EMNLP*, 2020, pp. 4412–4417, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.395. URL https://aclanthology.org/2020.findings-emnlp.395

Katherine Keith, David Jensen, and Brendan O’Connor. Text and causal inference: A review of using text to remove confounding from causal estimates. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 5332–5344, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners, 2022. URL https://arxiv.org/abs/220511916

Mahnaz Koupaee and William Yang Wang. Wikihow: A large scale text summarization dataset. *ArXiv*, abs/1810.09305, 2018.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 957–966, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/kusnerb15.html

Teven Le Scao and Alexander M Rush. How many data points is a prompt worth? In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2627–2636, 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 7871–7880, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/2020.acl-main.703

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/W04-1013

Qing Lyu, Li Zhang, and Chris Callison-Burch. Goal-oriented script construction. In *Proceedings of the 14th International Conference on Natural Language Generation*, pp. 184–200, 2021.
Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision. In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=rJgMlhRctm.

George A. Miller. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological review, 63 2:81–97, 1956.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and Brenden M Lake. Improving coherence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning. Advances in Neural Information Processing Systems, 34, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318. Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causality. Cambridge university press, 2009.

Douglas J. Pearson. Learning procedural planning knowledge in complex environments. In AAAI/IAAI, Vol. 2, 1996.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. The MIT Press, 2017.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. URL https://github.com/codelucas/newspaper.

Michaela Regneri, Alexander Koller, and Manfred Pinkal. Learning script knowledge with web experiments. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 979–988, 2010.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410.

Bernhard Schölkopf. Causality for machine learning. In Probabilistic and Causal Inference: The Works of Judea Pearl, pp. 765–804, 2022.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10737–10746, 2020.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 4444–4451. AAAI Press, 2017.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and Jie Zhou. On transferability of prompt tuning for natural language processing. In Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), 2022.
Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=BkxUvnEYDH

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Banerjee, Seth Teller, and Nicholas Roy. Understanding natural language commands for robotic navigation and mobile manipulation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25, pp. 1507–1514, 2011.

Tyler VanderWeele. Explanation in causal inference: methods for mediation and interaction. Oxford University Press, 2015.

Lilian DA Wanzare, Alessandra Zarcone, Stefan Thater, and Manfred Pinkal. A crowdsourced database of event sequence descriptions for the acquisition of high-quality script knowledge. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp. 3494–3501, 2016.

Noah Weber, Rachel Rudinger, and Benjamin Van Durme. Causal inference of script knowledge. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7583–7596, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. 1 2022. URL http://arxiv.org/abs/2201.11903

Zach Wood-Doughty, Ilya Shpitser, and Mark Dredze. Challenges of using text classifiers for causal inference. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Conference on Empirical Methods in Natural Language Processing, volume 2018, pp. 4586. NIH Public Access, 2018.

Te-Lin Wu, Alexander Spangher, Pegah Alipoormolabashi, Marjorie Freedman, Ralph M. Weischedel, and Nanyun Peng. Understanding multimodal procedural knowledge by sequencing multimodal instructional manuals. In ACL, 2022.

Wenda Xu, Michael Saxon, Misha Sra, and William Yang Wang. Self-supervised knowledge assimilation for expert-layman text style transfer. In AAAI, 2021.

Shiquan Yang, Rui Zhang, Sarah Monazam Erfani, and Jey Han Lau. An interpretable neuro-symbolic reasoning framework for task-oriented dialogue generation. 2022.

Hongbin Ye, Ningyu Zhang, Shumin Deng, Xiang Chen, Hui Chen, Feiyu Xiong, Xi Chen, and Huajun Chen. Ontology-enhanced prompt-tuning for few-shot learning. WWW, 2022.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B. Tenenbaum. Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. In NeurIPS, 2018.

Zhongqi Yue, Hanwang Zhang, Qianru Sun, and Xian-Sheng Hua. Interventional few-shot learning. Advances in neural information processing systems, 33:2734–2746, 2020.

Li Zhang, Qing Lyu, and Chris Callison-Burch. Intent detection with wikihow. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pp. 328–333, 2020a.

Li Zhang, Qing Lyu, and Chris Callison-Burch. Reasoning about goals, steps, and temporal ordering with wikihow. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4630–4639, 2020b.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=SKeHuCVFDr
Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D. Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models for question answering, 2022. URL https://arxiv.org/abs/2201.08860

Zhongheng Zhang, Cheng Zheng, Chanmin Kim, Sven Van Poucke, Su Lin, and Peng Lan. Causal mediation analysis in the context of clinical research. Annals of Translational Medicine, 4(21), 2016. ISSN 2305-5847. URL https://atm.amegroups.com/article/view/12362

Zelin Zhao, Karan Samel, Binghong Chen, and Le Song. Proto: Program-guided transformer for program-guided tasks, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-language models. In CVPR, 2022.
Appendix

Table of Contents

A SCM Theoretical Details
 A.1 Causal Preliminaries .. 16
 A.2 The Backdoor Adjustment .. 16
 A.3 The Front-door Adjustment .. 17

B Implementation Details
 B.1 Original Dataset Details .. 19
 B.2 Counterfactual Dataset and Experiment Details 20
 B.3 Method Details .. 20
 B.4 Hyperparameter Search and Configuration Decision 21
 B.5 Computation and Resources .. 21

C Evaluation Details
 C.1 Crowdsourcing Human Evaluation 21
 C.2 More Results .. 24

D Qualitative Examples
 D.1 Intermediate Output .. 29
 D.2 Predicted Procedural Plans .. 29

E Discussion
 E.1 Limitations ... 34
 E.2 Failure Analysis ... 34
 E.3 Ethical considerations ... 34
A SCM Theoretical Details

A.1 Causal Preliminaries

The Structural Causal Model (SCM) is a directed acyclic graph (DAG) to describe the causal relationships within a system [Pearl, 2009]. In this paper, we refer to the unrolled SCM along the time dimension as the full temporal causal graph, while the rolled-up version is also called the causal summary graph [Peters et al., 2017]. In an SCM, if the variable D is a cause of both T and S_i, then it is called a confounder. A confounder opens up a backdoor path and causes a spurious correlation between T and S_i. The backdoor path is defined as the remaining path between T and S_i when all the arrows pointing out of T are removed. Therefore, $T \leftarrow D \rightarrow S_i$ is a backdoor path. For our SCM with mediator P_i, shown in Figure 4c (same as Figure 2b) from the main paper, there is no backdoor path between T and $\{P_i, S_{i-1}\}$ because only $D \rightarrow T$ is left after removing outgoing arrows of T. On the other hand, there is a backdoor path between P_i and S_i, i.e. $P_i \leftarrow T \leftarrow D \rightarrow S_i$ so that P_i indirectly affects the observation of S_i through $\{T, S_{i-1}\}$ and D. The mediator is the variable added between treatment variable (the cause T and S_{i-1} in our case) and treatment variable (the effect S_i in our case), and thus blocks all directed path from the cause to effect (Zhang et al., 2016). The spurious correlations happens when two variables are statistically related but not causally related because of a third variable influences these two variables at the same time or the correlation is coincidental.

To identify the true causal effect between X and Y, we aim to estimate the conditional $\pi(Y|do(X))$ after intervention with the do-operator. The do-operator is to break the backdoor path by setting X to a fixed value independent of Z. Then the path $Z \rightarrow X$ can be removed to eliminate the backdoor paths. In practice, the backdoor adjustment and front-door adjustment are two fundamental methods to implement interventions and obtain the conditional $\pi(Y|do(X))$.

Clarity of the Definition As a language prompt, P_i inherits the content from P_{i-1} and thus can be detached from steps before S_{i-1} for simplicity.

Causal Intervention There are two types of operation to control the confounding bias: the backdoor adjustment and the front-door adjustment (Pearl, 2009). The backdoor adjustment is intractable in our case because it requires the prior distribution of the confounding variables. On the other hand, we can construct an input prompt as a mediator P_i for $T \rightarrow S_i$ and $S_{i-1} \rightarrow S_i$. Then the front-door adjustment applies a two-step do-operation to mitigate bias by investigating $P \rightarrow S_i$ (Pearl, 2009). Specifically, we construct the prompt mediator P_i using techniques illustrated in Section 2.2.

The pre-trained knowledge (D) in LLMs confounds language models to make biased decisions toward an unreasonable action. Since the confounder is unobservable, intervention techniques such as back-door (definition in Appendix A.2) adjustment (Hu & Li, 2021; Weber et al., 2020; Yue et al., 2020) are not applicable in our SCM. Instead, we build a mediator and implement it as a commonsense-infused prompt. Through the mediator, we can identify causal effects among goals and steps by investigating the indirect effect from the goals, which is essentially the front-door adjustment (definition in Appendix A.3) in causality (Pearl, 2009).

A.2 The Backdoor Adjustment

The backdoor adjustment is one way to realize the intervention $do(T = t)$ by considering the conditional probability over the existing data distribution with observed confounder D. Let π_i denote $\pi_i(\cdot|P_{i-1})$ that represent the probability density function conditioned on P_{i-1}. It calculates the average causal effects by considering all strata of the dataset:

$$\pi_i(S_i|do(T)) = \sum_d \pi_i(S_i|T, D = d)\pi_i(D = d)$$

However, for LLMs, the pretraining data is usually unobservable and has been transformed as knowledge incorporated into the hidden space. Therefore, we are not able to directly apply the backdoor adjustment.
The second step is to apply the front-door adjustment by introducing a mediator P_i to mitigate the spurious correlation at timestep i. Note that there are three variables we construct to mitigate the spurious correlation at timestep i. Combining Equation 7-9 and Equation 10, we have the front-door adjustment. The first step of our front-door adjustment is to apply P_i when the confounder is unobservable. As is explained in Section 2.2 from the main paper, the front-door adjustment is equivalent to two consecutive do-operations on task T and prompt P_i. We first investigate the generation of S_1 and then expand it to S_t.

Timestep $i = 1$ As is shown in Figure 4a, since there is no preceding steps, the first step generation involves D, T, and P_i. Similar to the proof in Section 2.2 from the main paper, we have:

$$\pi_i(S_1 | do(T)) = \sum_p \pi_i(S_1 | do(P_i = p))\pi_i(p | do(T))$$

$$= \sum_p \pi_i(p | T) \sum_t \pi_i(S_1 | p, T = t)\pi_i(T = t)$$

By adding intervention to T, we make the value of $do(T = t)$ independent of the confounder D at the beginning. The backdoor path through $D \rightarrow T$ is eliminated as a result.

Timestep $i > 1$ As is shown in Figure 4b, from the main paper, we model the mediator P_i as an effect of three variables, T, P_{i-1}, and S_{i-1}. The first step of our front-door adjustment is to apply the do-operator on the three variables and observe the change in P_i as explained in Section 2.2 from the main paper. Since there are no backdoor paths between P_i and these variables, we have the probability after intervention equal to the conditional probability without intervention:

$$\pi_i(P_i = p | do(T)) = \pi_i(P_i = p | T)$$

$$\pi_i(P_i = p | do(P_{i-1})) = \pi_i(P_i = p | P_{i-1})$$

$$\pi_i(P_i = p | do(S_{i-1})) = \pi_i(P_i = p | S_{i-1})$$

The second step is to apply do-operator on P_i and then identify the causal effect as:

$$\pi_i(S_i | do(P_i)) = \sum_{t, p', s} \left(\pi_i(S_i | P_i, T = t, P_{i-1} = p', S_{i-1} = s) \pi_i(T = t, P_{i-1} = p', S_{i-1} = s) \right)$$

Combining Equation 7-9 and Equation 10, we have the front-door adjustment. Note that there are three backdoor paths from each of the variables T, P_{i-1}, and S_{i-1}, as is shown in Figure 4b.
Figure 5: The **Causal Graph after do-operation**. (a) the causal graph transition of Structural Causal Model at timestamp $i = 1$. (b) the causal graph transition of Structural Causal Model at timestamp $i > 1$.

(a) SCM at timestep $i = 1$

$$
\pi_i(P_1|do(T)) = \pi_i(P_1|T)
$$

(b) The SCM at timestep $i > 1$

$$
\pi_i(S_1|do(P_1)) = \sum_t \pi_i(S_1|P_1, t)\pi_i(t)
$$

$$
\pi_i(P_i, S_{i-1}|do(T), do(S_{i-1})) = \pi_i(P_i|T, S_{i-1})
$$

$$
\pi_i(S_i|do(P_i)) = \sum_{t,p} \pi_i(S_i|P_i, t, p)\pi_i(t, p)
$$
in blue, red and purple). More importantly, the one through T, i.e. $P_i \leftarrow T \leftarrow D \rightarrow S_i$ (the blue path in Figure 4b) and the one through P_{t-1}, i.e. $P_i \leftarrow P_{t-1} \leftarrow T \leftarrow D \rightarrow S_i$ (the red path in Figure 4b) shares the same subpath. The intervention on the task T breaks the backdoor paths for both T and P_{t-1}. Therefore, we have our front-door adjustment as

$$
\pi_i(S_i|do(S_{i-1}), do(P_{t-1}), do(T)) = \sum_{p} \pi_i(S_i|do(P_i = p)) \pi_i(p|do(S_{i-1}), do(P_{t-1}), do(T))
$$

(11)

$$
\pi_i(S_i|do(P_i = p), do(S_{i-1}), do(T)) = \sum_{p} \pi_i(S_i|do(P_i = p)) \pi_i(p|do(S_{i-1}), do(T))
$$

(12)

$$
\pi_i(S_i|do(P_i = p), do(S_{i-1}), do(T)) = \sum_{p} \pi_i(p|S_{i-1}, T) \sum_{s, t} \pi_i(S_i|p, s, T = t) \pi_i(S_{i-1} = s, T = t)
$$

(13)

$$
\pi_i(S_i|do(S_{i-1}), do(T)) = \sum_{p} \pi_i(p|S_{i-1}, T) \sum_{s, t} \pi_i(S_i|p, s, T = t) \pi_i(S_{i-1} = s, T = t)
$$

(14)

We have Equation 13 because of the intervention on T and Rule 1 (Pearl 1995), Equation 14 because of Rule 2 (Pearl 1995). After simplification based on Equation 14, we get the SCM at timestep $i > 1$ in Figure 4c. This is an equivalent SCM after eliminating P_{t-1} in Figure 4b. The reason we could eliminate P_{t-1} is as follows. We follow a common method of constructing temporally-extended prompt, which is to append the prediction at previous timesteps to the prompt at current timestep. In this way, we simplify the causal graph in Figure 4b to the one in Figure 4c. In summary, we define and simplify the causal graph based on the temporal-extended property of our prompt construction (P_i inherit the content from P_{t-1}). We end up with Equation 14, which is shown as Equation 5 in Section 2.2 from the main paper.

B Implementation Details

B.1 Original Dataset Details

RobotHow This dataset is Attribution-NonCommercial-ShareAlike 4.0 International Creative Commons License. We evaluate the inference of 150 tasks by random selection from the dataset. Each program contains the task name, task description and steps. We use the task name and sequence of steps as our input and output references. Each step is a composition of [Action], [Object] and [Number]. For example, the sequence of steps of the task "Watch TV" are: 1. [Walk] [TELEVISION] (1) (2) [SwitchOn] [TELEVISION] (1) (3) [Walk] [SOFA] (1) (4) [Sit] [TELEVISION] (1).

WikiHow This dataset is under an Attribution-Noncommercial-Share Alike 3.0 Creative Commons License. And the text content is free to modify, republish and share. We evaluate the inference of 1000 tasks by random selection from the dataset. The admissible action space and interaction object space are more complex than the programs in RobotHow. And there is no fixed "[Action] [Object], (Number)" form of each step. For each article, it contains the title, the bold headlines and text. We utilize the title and headlines as our task name and steps respectively.

External Knowledge Base For the external knowledge base, we utilize ConceptNet to leverage commonsense reasoning ability to help ground language generation in goal-guided procedural text generation. ConceptNet (Speer et al. 2017) captures commonsense knowledge explicitly with triplets of (head node, relation, end node). It contains 799,273 nodes and 2,487,810 edges that represent both symmetric and asymmetric relations. Specifically, the core relations we utilized are Synonym, AtLocation, CanableOf, Causes, CausesDesire, HasPrerequisite, HasSubevent, and UsedFor. Since we are looking at the commonsense knowledge in house-holding tasks, so we filter out the relations /t/DistinctFrom, /t/DerivedFrom, /t/SymbolOf, /t/ EtymologicallyRelatedTo, /t/EtymologicallyDerivedFrom that are related to the linguistic.
Table 5: **Three Types of Counterfactual Procedural Planning.** Three types of methods, including initial configuration, intermediate step, and final goal are applied to intervene the original procedural data.

Category	Description	Example
Initial Configuration	Constrain the environment configuration, e.g. location	Watch TV in bedroom
Intermediate Step	Constrain the way to finish the task	Work (Find Computer)
Final Goal	Change the final effect of the task by composition	Watch youtube and Put away jackets

Table 6: **Comparison between Standard and Counterfactual Procedural Planning.** Three types of methods, including initial configuration, intermediate step, and final goal are applied to intervene the original procedural data.

Category	Original Program	Counterfactual Program
Initial Configuration	Task: Watch TV. Step 1: Find remote control. Step 2: Grab remote control. Step 3: Find television. Step 4: Switch on television. Step 5: Turn to television. Step 7: Switch off television. Step 8: Put back remote control.	Task: Watch TV in bedroom. Step 1: Walk to bedroom Step 2: Find remote control. Step 3: Grab remote control. Step 4: Find television. Step 5: Switch on television. Step 7: Watch television. Step 8: Switch off television. Step 9: Put back remote control.
Intermediate Step	Task: Work. Step 1: Walk to home office. Step 2: Walk to chair. Step 3: Find chair. Step 4: Sit on chair. Step 5: Find computer. Step 6: Switch on computer. Step 7: Turn to computer. Step 8: Look at computer.	Task: Work (Find Computer). Step 1: Walk to home office. Step 2: Walk to chair. Step 3: Find chair. Step 4: Sit on chair. Step 5: Find computer. Step 6: Switch on computer. Step 7: Turn to computer. Step 8: Look at computer.
Final Goal	Task: Turn light off. Step 1: Walk to bedroom. Step 2: Walk to light. Step 3: Switch off light. Task2: Clean. Step 1: Walk to home office Step 2: Walk to rag. Step 3: Find rag Step 4: Grab rag. Step 5: Walk to desk Step 6: Find computer. Step 7: Wipe computer Step 8: Wipe desk. Step 9: Put back rag.	Task: Turn light off and clean. Step 1: Walk to bedroom Step 2: Walk to light. Step 3: Switch off light. Task 2: Clean. Step 1: Walk to home office Step 2: Walk to rag. Step 3: Find rag Step 4: Grab rag. Step 5: Walk to desk Step 6: Find computer. Step 7: Grab rag Step 8: Walk to desk. Step 9: Find computer Step 10: Wipe computer. Step 11: Wipe desk Step 12: Put back rag.

B.2 **COUNTERFACTUAL DATASET AND EXPERIMENT DETAILS**

Table 6 show the examples that compare the original program and the counterfactual program of each intervention method are also provided. Specifically, for **Initial Configuration**, we randomly append the location to a given task name to constrain the location of completing the task. The steps are prepended with the initial step "walk to ¡Location,\". For **Intermediate Step**, we randomly sampled a step from the task-specific program and append it to the task name to constrain the way to implement a given task. For **Final Goal**, we randomly combine two tasks by combining both the task names and the programs to construct a set of long-horizon composite tasks.

We conduct counterfactual experiments by applying randomly selected intervention methods over RobotHow. And we only apply the Intermediate Step intervention method over WikiHow due to the loose configuration requirement and the long text of the WikiHow contents. Note that the performance gain of PLAN under the counterfactual setting mainly comes from the additional guidance of the task introduced from the Intermediate Step intervention method. However, the baselines mostly experience performance drops due to the limited annotated exemplars. PLAN consistently outperforms baselines by a large margin, indicating its superiority under the counterfactual setting.

B.3 **METHOD DETAILS**

The existing formalization of the procedural planning task can be mainly categorized as 1) sequential choice making ([Lyu et al., 2021], [Wu et al., 2022], [Zhang et al., 2020a,b]), which reasons about the next step from the options given, the task, and previous steps; 2) conditioned generation ([Huang et al., Ahn et al., 2022]), which generates the temporally extended plans to implement the task. We study the procedural planning task as the conditioned generation problem ([Huang et al., Ahn et al., 2022]) since it resembles real-world scenarios.

Baselines LLMaP propose a procedure to extract temporally extended plans from large pre-trained language models. Chain explores manually creating exemplars that mimic the reasoning process.
and uses them to prompt large language models for reasoning tasks. To compare with Chain on the procedural planning task, we manually generate exemplars that contain the chain of thought for 1% of the inference task programs. Note that for the BART language model, we use BART-large version. And we use the 1.5 billion parameter GPT-2 (aka gpt2-xl). For the translation model LMT, we use sentence-transformers (RoBERTa-large). All these models are released by HuggingFace. In addition, our experiments with GPT3 (davinci) use OpenAI API (May, 2022).

External Knowledge Graph Conceptnet5 define a set of 34 relations. Within the relations we consider in the procedural planning task, the averaged sampling time of subgraph sampling is 0.03576 milliseconds per task program.

B.4 Hyperparameter Search and Configuration Decision

We perform a hyperparameter search for all evaluated methods for the following hyperparameters.

- The confidence threshold θ, which terminate the generation when below it, is searched in $\{0, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8\}$.
- The steps horizon, which constrains the maximal number of procedural planning steps, is searched in $\{10, 20, 40\}$.
- The number of hops for retrieving the subgraph from the external knowledge base is searched in $\{1, 2, 3\}$.
- The ratio of maximal concepts to the length of the task name is searched in $\{1, 2, 3\}$.
- The cosine similarity threshold for keeping the task-specific concept is searched in $\{0.4, 0.6, 0.8\}$.
- The edge weight threshold θ_e is searched in $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8\}$.
- The top-k task-specific nodes value is searched in $\{1, 5, 10, 15, 20, 25, 50, 100\}$.

The configurations used in the experiments are: $\theta=0.7$, 20 step horizon, 3 hops, 3 ratio of concepts to task length, cosine similarity threshold 0.4, $\theta_e=0.6$ and $k=10$.

We empirically choose the hop number H as 3 considering both the input length limit of the LLMs and the fact that 3-hop contains reasonable relevant information in practice (Zhang et al., 2022).

B.5 Computation and Resources

We use one single NVIDIA A100 GPU Server for all the experiments. Since there is no training in our zero-shot settings, the computation is only used for the inference stage of the experiments.

C Evaluation Details

C.1 Crowdsourcing Human Evaluation

We conduct all the human evaluations (rating and win-lose comparison) on Amazon Mechanical Turk platform. Each example is rated by 3 annotators. We ask Amazon Mechanical Turk workers, for every assignment, to evaluate the quality of the provided low-level steps given the high-level task description. For the Win-Lose Comparison, they were asked to choose one from the two provided model generated results by 1:the first one is better, 2:equal and 3:the second one is better. For the Human Ratings, they were asked to score each sample with 5-point Likert scale. This process does not involve collecting any personal information. And we manually check no offensive content is produced by the models.

The assignment layout templates for workers are shown in Figure 7 and Figure 6. Specifically, we evaluate randomly selected 50 task examples from each dataset (RobotHow and WikiHow) under all the settings (standard and counterfactual). We only collect the examples that the workers read the instructions carefully by checking whether they give 1 score for the empty program as a sanity check. The hourly wage paid to participants is estimated $9. And the total amount spent on participant

https://github.com/commonsense/conceptnet5/wiki/Relations
compensation is $1296. The details of the Human Intelligence Tasks process are described in the following sections.

C.1.1 WIN-LOSE COMPARISON

During the process of Human Intelligence Tasks, the workers are shown the following instructions:

Read the given task and the sequence of steps, determine which set of steps can better complete the target task. In other words, can the task be decomposed into these steps? Please consider the sequential order of the steps.

Then the program to be evaluated is provided as:

Question Task: Study

Sequence 1: Step 1: Walk to textbook Step 2: Read book Step 3: Walk to book

Sequence 2: Step 1: Walk to home office Step 2: Find desk

Finally, the workers are asked to score the program by following the instructions below: *Select an option: 1 - Sequence 1 is better; 2 - Tie; 3 - Sequence 2 is better*
The above example is to evaluate the order metric, for the coverage metric, the same process are conducted, except for the instructions are: Read the given task and the sequence of steps, and determine which sequence covers more steps that are necessary to complete the target task. Please ignore the sequential order of the steps.
C.1.2 HUMAN RATINGS

Similar as the Win-Lose Comparison Human Intelligence Tasks, the workers are shown the following instructions: For every question below, determine whether the task can be completed in any reasonable scenario using the provided steps (Please consider the sequential order of the steps.). You could directly give the lowest score (1) for the empty steps. In other words, can the task be decomposed into these steps? (Please consider the sequential order of the steps.)

Then the program to be evaluated is provided as:

Question Task: Write an email

Sequence of Steps:

1. Walk to home office
2. Walk to computer
3. Find computer
4. Turn to computer
5. Look at computer
6. Walk to computer
7. Find chair
8. Sit on chair
9. Find keyboard
10. Grab keyboard
11. Find mouse
12. Grab mouse
13. Type on keyboard

Finally, the workers are asked to score the program by following the instructions below: Use the slider below to indicate how much you agree with the following statement (1 = Strongly disagree, 5 = Strongly agree). If “sequence of steps” are blank, please directly choose 1 (lowest score). The task can be completed in any reasonable scenario using the provided steps.

The above example is to evaluate the order metric, for the coverage metric, the same process is conducted, except for the instructions are: For every question below, determine whether the task can be completed in any reasonable scenario using the provided steps (Please ignore the sequential order of the steps.). You could directly give the lowest score (1) for the empty steps. In other words, can the task be decomposed into these steps? (Please ignore the sequential order of the steps.)

C.2 MORE RESULTS

Significance Test We provide paired-t test ($p < 0.05$) statistics results for Table 2. On RobotHow, our PLAN significantly outperforms all baselines on Original-Order(BART) and Counterfactual-Coverage(GPT2). On WikiHow, our PLAN significantly outperforms all baselines on Original-Coverage(BART, GPT2), Counterfactual-Coverage(BART, GPT2), and Counterfactual-Order(BART). For the coverage metric under the counterfactual setting, the human-provided program is not significantly better than our PLAN.

We also conduct the paired-t test ($p < 0.05$) statistics results over the variant “w/o Adaption” and “w/o Symbolic”. Compared with the full model PLAN, the variants experienced a statistically significant
Table 7: Evaluation results on the Original RobotHow by separating test set into several Step Bucket.

Model	Step Bucket	S-BLEU	WMD	BERT-f1	ROUGE-f1	Coverage	Order	Step Avg.	Time Cost (ms)
BART + Chain	(0,10)	0.073	0.915	0.863	0.432	2.947	2.760	6.800	3.330
	(10,20)	0.049	0.909	0.857	0.442	2.921	2.825	13.714	3.820
BART + LLMaP	(0,10)	0.076	0.941	0.867	0.450	2.973	2.760	6.600	3.298
	(10,20)	0.028	0.931	0.853	0.393	3.095	2.889	13.714	3.866
BART + PLAN	(0,10)	0.099	0.955	0.894	0.532	3.187	3.013	6.600	3.272
	(10,20)	0.041	0.935	0.869	0.437	3.079	3.026	13.714	4.022
GPT2 + Chain	(0,10)	0.076	0.891	0.856	0.395	2.453	2.147	6.600	3.370
	(10,20)	0.057	0.877	0.845	0.359	2.365	2.467	13.714	3.804
GPT2 + LLMaP	(0,10)	0.112	0.942	0.894	0.486	3.147	2.987	6.600	3.212
	(10,20)	0.064	0.906	0.859	0.394	2.921	2.73	13.714	3.875
GPT3 + Chain	(0,10)	0.068	0.934	0.814	0.353	2.802	3.438	6.838	3.215
	(10,20)	0.112	0.931	0.884	0.499	3.562	3.469	13.688	3.988
GPT3 + LLMaP	(0,10)	0.132	0.951	0.911	0.544	3.811	3.486	6.838	3.144
	(10,20)	0.139	0.939	0.894	0.502	3.531	3.625	13.688	3.964
GPT3 + PLAN	(0,10)	0.167	0.940	0.901	0.554	3.173	2.813	6.600	3.344
	(10,20)	0.101	0.924	0.882	0.480	2.984	3.063	13.714	3.954

Table 8: Evaluation results on the Original WikiHow by separating test set into several Step Bucket.

Model	Step Bucket	S-BLEU	WMD	BERT-f1	ROUGE-f1	Coverage	Order	Step Avg.	Time Cost (ms)
BART + Chain	(0,10)	0.053	0.919	0.789	0.356	2.969	3.523	6.156	8.233
	(10,20)	0.032	0.921	0.784	0.294	2.644	3.311	14.467	7.349
BART + LLMaP	(0,10)	0.068	0.934	0.814	0.353	2.802	3.438	6.156	8.289
	(10,20)	0.032	0.924	0.794	0.293	2.600	3.178	14.467	7.487
BART + PLAN	(0,10)	0.108	0.939	0.834	0.431	3.083	3.594	6.156	8.341
	(10,20)	0.059	0.927	0.812	0.372	2.978	3.244	14.467	7.829
GPT3 + Chain	(0,10)	0.107	0.928	0.817	0.353	3.031	3.438	6.156	8.367
	(10,20)	0.077	0.933	0.812	0.328	2.733	3.422	14.467	7.585
GPT3 + LLMaP	(0,10)	0.111	0.946	0.831	0.36	3.292	3.625	6.156	8.218
	(10,20)	0.066	0.955	0.829	0.342	2.978	3.378	14.467	7.583
GPT3 + PLAN	(0,10)	0.136	0.961	0.856	0.416	3.645	4.0	6.677	8.213
	(10,20)	0.127	0.961	0.868	0.458	3.68	3.2	13.6	7.632
GPT3 + Chain	(0,10)	0.123	0.954	0.837	0.432	3.655	3.517	6.0	8.424
	(10,20)	0.121	0.949	0.856	0.465	3.421	3.684	15.526	7.775
GPT3 + LLMaP	(0,10)	0.146	0.956	0.865	0.514	3.652	3.739	6.565	7.953
	(10,20)	0.099	0.951	0.849	0.452	3.375	3.312	15.0	7.247
GPT3 + PLAN	(0,10)	0.203	0.969	0.881	0.506	3.31	3.643	5.81	8.101
	(10,20)	0.185	0.967	0.855	0.466	3.714	3.333	15.095	7.506

Results on GPT-3 In addition, we conduct experiments with GPT-3 (davinci version) using OpenAI API. We showcase the comparison in Table 9 and Table 10.
Model	Program
RobotHow	Task: Write an Email
Human	Step 1: Walk to home office. Step 2: Walk to computer. Step 3: Find computer. Step 4: Turn to computer. Step 5: Look at computer. Step 6: Walk to computer. Step 7: Find chair. Step 8: Sit on chair. Step 9: Find keyboard. Step 10: Grab keyboard. Step 11: Find mouse. Step 12: Grab mouse. Step 13: Type on keyboard
Chain	Empty plan prediction due to low confidence for the first step.
LLMaP	Step 1: Switch on computer.
PLAN	Step 1: point at mail. Step 2: put envelope on printer. Step 3: put notes on printer.
RobotHow	Task: Turn on light
Human	Step 1: Walk to home office. Step 2: Walk to floor lamp. Step 3: Switch on floor lamp
Chain	Step 1: Switch on light switch.
LLMaP	Step 1: Switch on light switch.
PLAN	Step 1: Switch on light. Step 2: Switch on lamp. Step 3: Turn to light switch. Step 4: Switch on light switch.
RobotHow	Task: Drink
Human	Step 1: Find water glass. Step 2: Grab water glass. Step 3: Drink water glass.
Chain	Step 1: Find coffee cup.
LLMaP	Step 1: Find cup. Step 2: Drink cup. Step 3: Pour cup into glass.
PLAN	Step 1: Grab glass. Step 2: Pour water into drinking glass. Step 3: Drink water.
RobotHow	Task: Play games
Human	Step 1: Walk to bedroom. Step 2: Walk to video game console. Step 3: Find video game console. Step 4: Walk to video game console. Step 5: Switch on video game console. Step 6: Find television. Step 7: Switch on television. Step 8: Find video game controller. Step 9: Grab video game controller. Step 10: Find chair. Step 11: Walk to chair. Step 12: Sit on chair
Chain	Empty plan prediction due to low confidence for the first step.
LLMaP	Step 1: Switch on console. Step 2: Put console on dvd player.
PLAN	Step 1: Find video game console. Step 2: Grab video game controller. Step 3: Put console on boardgame. Step 4: Look at video game console.
RobotHow	Task: Put groceries in Fridge
Human	Step 1: Walk to dining room. Step 2: Walk to food food. Step 3: Find food food. Step 4: Grab food food. Step 5: Find freezer. Step 6: Open freezer. Step 7: Drop food food
Chain	Step 1: Walk to fridge. Step 2: Find groceries. Step 3: Find fridge. Step 4: Open fridge. Step 5: Put groceries in fridge. Step 6: Close fridge.
LLMaP	Step 1: Open fridge. Step 2: Pull groceries. Step 3: Put groceries on blender. Step 4: Close fridge.
PLAN	Step 1: Walk to fridge. Step 2: Open fridge. Step 3: Put groceries in fridge. Step 4: Close fridge.
RobotHow	Task: Admire art
Human	Step 1: Walk to home office. Step 2: Walk to drawing. Step 3: Turn to drawing. Step 4: Look at drawing. Step 5: Find drawing. Step 6: Turn to drawing. Step 7: Look at drawing.
Chain	Step 1: Walk to drawing.
LLMaP	Step 1: Look at painting.
PLAN	Step 1: Look at centerpiece. Step 2: Put centerpiece on music stand. Step 3: Point at painting. Step 4: Look at drawing. Step 5: Touch centerpiece. Step 6: Look at painting. Step 7: Put centerpiece on love seat.
RobotHow	Task: Greet guests
Human	Step 1: Walk to dining room. Step 2: Walk to child. Step 3: Find child. Step 4: Greet child. Step 5: Find woman. Step 6: Greet woman. Step 7: Find chair. Step 8: Sit on chair
Chain	Empty plan prediction due to low confidence for the first step.
LLMaP	Step 1: Open door. Step 2: Close door.
PLAN	Step 1: Walk to dining room. Step 2: Walk to entrance hall. Step 3: Greet woman.

Table 9: Showcases of procedural steps predicted by different models with GPT3 as the base LLM on RobotHow.
Model	Program	WikiHow Task: How to Become an Art Investor
Human	Step 1: Start with some experience or interest in art.	
	Step 2: Understand the difference between art collectors, art investors and art speculators.	
	Step 3: Figure out what you are willing to pay for art, before going to an auction house.	
	Step 4: Pay attention to what schools of art are selling well, and which are down.	
	Step 5: Focus art investments on fine art paintings, rather than decorative art.	
	Step 6: Reach out to trusted auction houses and dealers when you are looking to buy art.	
	Step 7: Buy your investment art when you feel confident of its worth, its price and its ability to grow in value.	
	Step 8: Study how art is properly stored.	
	Step 9: Have your art investments appraised occasionally.	
	Step 10: Consider renting out your art investments.	
	Step 11: Understand that selling an art investment can take time.	
Chain	Step 1: Buy your investment art when you feel confident of its worth, its price and its ability to grow in value.	
LLMaP	Step 1: Reach out to trusted auction houses and dealers when you are looking to buy art.	

Program	WikiHow Task: How to Be an Organized Artist
Human	Step 1: Make sure you know what is expected of you.
	Step 2: Stick to your topic.
	Step 3: Don’t try to be too funny unless the scenario calls for it.
	Step 4: Act naturally for the situation; talk, act and sit as your character would usually do in the circumstances.
	Step 5: Participate. Step 6: Don’t react to what others say as yourself, stay in character.
	Step 7: Don’t make anything violent or too crazy. Step 8: Relax and enjoy yourself.
	Step 9: Be your character. Step 10: Play games that allow you to practice improvisation.
Chain	Step 1: First, you will need to make sure you have all of the materials listed below.
	Step 2: Set a schedule. Step 3: Create a comfortable space.
	Step 4: Take notes in journal or sketchbook. Step 5: Keep neat and tidy. Step 6: Take a break.
LLMaP	Step 1: Make plans.
PLAN	Step 1: Start with some experience or interest in art. Step 2: Put together a schedule and chart.
	Step 3: Prepare to create your neopoprealist mural. Step 4: Organize your computer-based materials.
	Step 5: Have a clear plan.
	Step 6: Buy your investment art when you feel confident of its worth, its price and its ability to grow in value.
	Step 7: Work on being the best you.
WikiHow	Step 1: Play games that allow you to practice improvisation.
Human	Step 1: Keep related supplies in the same area.
	Step 2: Make an effort to clean a dedicated workspace after every session.
	Step 3: Place loose supplies in large, clearly visible containers.
	Step 4: Use clotheslines and clips to hang sketches, photos, and reference material.
	Step 5: Use every inch of the room for storage, especially vertical space.
	Step 6: Use chalkboard paint to make space for drafting ideas right on the walls.
	Step 7: Purchase a label maker to make your organization strategy semi-permanent.
	Step 8: Make a habit of throwing out old, excess, or useless stuff each month.
Chain	Step 1: Play games that allow you to practice improvisation.
LLMaP	Step 1: Don’t overdo it.
PLAN	Step 1: Try the spontaneous approach.
	Step 2: Express yourself creatively. Step 3: Play games that allow you to practice improvisation.
	Step 4: Do extracurricular activity.

| WikiHow Task: How to Train a Parrot to Say Something |
Human	Step 1: Decide what you want your parrot to say, but make it basic.
	Step 2: If you want, you can make it say simple but funny things.
	Step 3: You should go to a nice and quiet room.
	Step 4: To start teaching it, repeat what you want it to say many times.
	Step 5: If you DO get your parrot to say it correctly, then you’ve succeeded!
Chain	Step 1: Decide what you want your parrot to say, but make it basic.
LLMaP	Step 1: If you do get your parrot to say it correctly, then you’ve succeeded.
PLAN	Step 1: Decide what you want your parrot to say, but make it basic.
	Step 2: If you do get your parrot to say it correctly, then you’ve succeeded.

Table 10: Showcases of procedural steps predicted by different models with GPT3 as the base LLM on WikiHow.
Table 11: Averaged 5-point Likert scale human evaluations on Success Rate aspect with GPT3 language model architecture.

Model	RobotHow	WikiHow
	Original-Executability	Counterfactual-Executability
Chain (Wei et al., 2022)	3.16	3.60
LLMaP (Huang et al.)	3.60	3.88
PLAN (Ours)	3.84	3.90

Table 12: Automatic evaluation results for additional ablation on the Original RobotHow and WikiHow. Metrics are computed between the annotated programs and the predictions.

Model	RobotHow	WikiHow						
	S-BLEU	WMD	BERT-f1	ROUGE-f1	S-BLEU	WMD	BERT-f1	ROUGE-f1
GPT3 + PLAN (Ours)	0.155	0.939	0.902	0.561	0.155	0.961	0.849	0.433
w/o Adaption	0.139	0.923	0.887	0.517	0.144	0.955	0.830	0.420
w/o Symbolic	0.135	0.933	0.898	0.536	0.140	0.959	0.843	0.414
w/o First Translation Model	0.126	0.932	0.894	0.534	0.146	0.948	0.836	0.417

Motivation of Evaluation Metrics Since the nature of the procedural planning task can be open-domain in that the golden plans may not be unique. This leads to the challenge that common automatic metrics proposed in natural language task are not perfect to evaluate procedural planning. The same observations of such challenge to directly judge the system using automatic metrics are discussed in LLMaP (Huang et al.) as well. We assume that the human evaluation on Coverage and Order can reflect how well the procedural plans are close to human annotated program, because the human annotators are required to determine whether the task can be completed in any reasonable scenario using the procedural plans explicitly. Thus we provide both the automatic evaluation and human evaluation on two aspects Coverage and Order, with description in the Metrics paragraph in Section 4.1.

Evaluation on Success Rate Metric To make human evaluations more intuitive, we provide an additional Success Rate metric to show whether the procedural plans can successfully implement the task, which focus more on the success rate instead of the coverage or the order of the plans. We show the Success Rate evaluations on the baselines and our method in Table 11. The assignment layout template for workers is shown in Figure 8.

More Ablation To verify the contribution of the first translation language model LM_T that translates the knowledge prompt P_G into admissible one \hat{P}_G, we conduct an additional ablation experiment by simply removing the first LM_T and replacing P_G with \hat{P}_G to prompt the LLM for procedural planning. We provide results with comparisons to other ablations in Table 12.

Results on Counterfactual Task Samples We show automatic evaluation results on counterfactual RobotHow in Table 12.

Model	Initial Configuration	Intermediate Step	Final Goal									
	S-BLEU	WMD	BERT-f1	ROUGE-f1	S-BLEU	WMD	BERT-f1	ROUGE-f1	S-BLEU	WMD	BERT-f1	ROUGE-f1
Chain (Wei et al., 2022)	0.125	0.906	0.875	0.518	0.136	0.926	0.892	0.550	0.063	0.918	0.857	0.467
LLMaP (Huang et al.)	0.148	0.929	0.887	0.566	0.141	0.886	0.902	0.547	0.070	0.928	0.868	0.490
PLAN (Ours)	0.169	0.934	0.897	0.570	0.183	0.953	0.913	0.590	0.082	0.934	0.873	0.493

Table 13: Automatic evaluation results on the Counterfactual RobotHow with language model GPT2.
D Qualitative Examples

D.1 Intermediate Output

We provide running examples with intermediate output for each module in the following paragraph. First, we show the intermediate output of input task T, the subgraph G_s depicted in the tuple of the start node, relation type, tail node and edge weight, the knowledge prompt P_G and the translated one \hat{P}_G as below:

- **Input task T:** Take shower.
 - **Human-annotated Plan Reference:** Step 1: Walk to bathroom. Step 2: Walk to clothes dress. Step 3: Find clothes dress. Step 4: Put off clothes dress. Step 5: Find shower. Step 6: Enter shower. Step 7: Find soap. Step 8: Grab soap. Step 9: Scrub soap. Step 10: Put back soap. Step 11: Leave shower. Step 12: Find towel. Step 13: Grab towel. Step 14: Wipe towel. Step 15: Find clothes dress. Step 16: Put on clothes dress.

- **Task-relevant subgraph $G_s(N_{\text{head}}, R, N_{\text{tail}}, E_w)$:** (take a shower, HasLastSubevent, dry off, 6.0); (bathe, HasLastSubevent, dry off, 6.0); (take a shower, HasPrerequisite, take out your clothes, 4.47); (take a shower, HasSubevent, get clean, 4.47); (take a shower, HasPrerequisite, take your clothes off, 3.46); (go to a party, HasPrerequisite, take a shower, 2.82); (play lacrosse, HasLastSubevent, take a shower, 2.82); (get clean, HasPrerequisite, take a shower, 2.82); (take a shower, MotivatedByGoal, wash your hair, 2.82); (play sports, HasLastSubevent, take a shower, 2.82); (go to the hairdresser, HasPrerequisite, take a shower, 2.82); (take a shower, HasPrerequisite, turn on the water, 2.0); (have a bath, HasLastSubevent, dry off, 2.0); (become more clean, HasLastSubevent, dry off, 2.0); (become more clean, HasLastSubevent, dry off, 2.0); (take a shower, HasSubevent, wash your hair, 2.0); (take a shower, HasSubevent, use shampoo, 1.0); (take a shower, HasSubevent, wash behind your ears, 1.0); (take a shower, HasSubevent, wash your body, 1.0); (take a shower, HasPrerequisite, go to the bathroom, 1.0); (take a shower, HasPrerequisite, go to the bathroom and undress, 1.0); (take a shower, HasPrerequisite, step into the shower, 1.0); (take a shower, HasPrerequisite, soap up, 1.0); (take a shower, HasPrerequisite, bring some soap, 1.0); (take a shower, HasPrerequisite, bring some shampoo, 1.0); (take a shower, HasLastSubevent, towel yourself off, 1.0); (take a shower, HasPrerequisite, remember to take your towel, 1.0);

- **Knowledge prompt P_G:** Step: take out your clothes. Step: set clean clothes. Step: go to the bathroom. Step: go to the bathroom and undress. Step: take your clothes off. Step: turn on the water. Step: bring some soap. Step: bring some shampoo. Step: remember to take your towel. Step: get clean. Step: wash your hair. Step: use shampoo. Step: wash behind your ears. Step: wash your body. Step: turn off the water. Step: dry off. Step: become more clean. Step: put your clothes on.

- **Translated knowledge prompt \hat{P}_G:** Step: find clothes underwear. Step: wash shower. Step: walk to bathroom. Step: look at shower. Step: take off clothes underwear. Step: wash shower. Step: find soap. Step: grab soap. Step: scrub shower. Step: find shampoo. Step: grab shampoo. Step: find towel. Step: wipe shower. Step: wash hair. Step: wipe shampoo. Step: find towel. Step: wash body. Step: switch off washing machine. Step: scrub shower. Step: wipe shower. Step: put on clothes underwear.

- **Generated plan S_T:** Step 1: Find clothes underwear. Step 2: Walk to Bathroom. Step 3: Take off clothes shirt. Step 4: Scrub shower. Step 5: Pour shampoo into hair. Step 6: Wipe shampoo. Step 7: Wipe hair. Step 8: Wash body. Step 9: Find Towel. Step 10: Put on clothes underwear.

D.2 Predicted Procedural Plans

More qualitative examples of final predicted procedural plans that are randomly selected are provided. Table 14 show random samples on the original dataset. Table 15 show random samples on the counterfactual datasets with the Intermediate Step intervention method. And Table 16 shows random
samples on the counterfactual RobotHow with the Initial Configuration and Final Goal intervention methods.
Model	Program	Task: Play Games
Human		
	Step 1: Walk to bedroom.	Step 2: Walk to video game console.
	Step 3: Find video game console.	Step 4: Walk to video game console.
	Step 5: Switch on video game console.	Step 6: Find television.
	Step 7: Switch on television.	Step 8: Find video game controller.
	Step 9: Grab video game controller.	Step 10: Find chair.
	Step 11: Walk to chair.	Step 12: Sit on chair.

| Chain | | Step 1: Put chef knife on water glass. |
| | | Step 2: Find sink. |

LLMaP		Step 1: Walk to bedroom.
		Step 2: Walk to video game console.
		Step 3: Find video game console.

PLAN		Step 1: Walk to video game controller.
		Step 2: Find video game controller.
		Step 3: Switch on video game controller.
		Step 4: Find tv.
		Step 5: Switch on tv.

WikiHow	Task: How to Be an Organized Artist	
Human		
	Step 1: Keep related supplies in the same area.	
	Step 2: Make an effort to clean a dedicated workspace after every session.	
	Step 3: Place loose supplies in large, clearly visible containers.	
	Step 4: Use clotheslines and clips to hang sketches, photos, and reference material.	
	Step 5: Use every inch of the room for storage, especially vertical space.	
	Step 6: Use chalkboard paint to make space for drafting ideas right on the walls.	
	Step 7: Purchase a label maker to make your organization strategy semi-permanent.	
	Step 8: Make a habit of throwing out old, excess, or useless stuff each month.	

| Chain | | Step 1: Feel for a dense, kinky coat. |
| | | Step 2: Look for rounded ears with crimped inner hairs. |

LLMaP		Step 1: Make sure that all money has been covered on both end.
		Step 2: Check your bill and banking statements regularly to ensure that your bills are getting paid as they should be, you should check all statements that you receive.
		Step 3: Keep track of your expenses.

PLAN		Step 1: Prioritize your goals for the workshop.
		Step 2: Prepare to create your neopoprealist mural.
		Step 3: Organize your computer-based materials.
		Step 4: Have a clear plan.
		Step 5: Work on being the best you.
		Step 6: Paint patterns with brushes of suitable size for the particular portion of work you are painting.
		Step 7: Put together a schedule and chart.
		Step 8: Buy your investment art when you feel confident of its worth, its price and its ability to grow in value.
		Step 9: Make a clean brea.
		Step 10: First, you will need to make sure you have all of the materials listed below.

WikiHow	Task: How to Use Saddle Soap	
Human		
	Step 1: Read the manufacturer’s directions.	Step 2: Avoid lye heavy products.
	Step 3: Make your own saddle soap.	

Chain		Step 1: Give her a safe space.
		Step 2: Let him exercise.
		Step 3: Be kind to him.

LLMaP		Step 1: Dip a damp cloth in the saddle soap.
		Step 2: Dampen several cloths and work them into a lather with the saddle soap.
		Step 3: Dip a cloth into the mixture.
		Step 4: Rub the product on with a cloth.
		Step 5: Clean the grime off with the cloth.
		Step 6: Dampen a cloth with water.
		Step 7: Rub a damp microfiber cloth over the surface.
		Step 8: Use a damp cloth to wipe once again.
		Step 9: Dampen a towel with lukewarm water.
		Step 10: Wipe the area clean with a damp towel.
		Step 11: Soak a towel in warm water.

PLAN		Step 1: Brush your horse.
		Step 2: Clean the saddle.
		Step 3: Start by using the first cloth to rub down the leather, making sure you remove any built up grass and dirt.
		Step 4: Rub the leather down so you remove most of the oil and wax.
		Step 5: Wipe off excess oil.
		Step 6: Rinse the leather.
		Step 7: Clean any other leather tack items (martingale, breastplate, draw reins, cruppers, etc.)

Table 14: Showcases of procedural steps predicted by different models with GPT2 as the base LLM.
Model	Program
RobotHow	Intermediate Step Turking (Find computer.).
Human	Step 1: Walk to home office.
Step 2: Walk to desk.	
Step 3: Find chair.	
Step 4: Sit on chair.	
Step 5: Find computer.	
Step 6: Switch on computer	
Chain	Step 1: Switch on computer.
Step 2: Switch off computer.	
LLMaP	Step 1: find computer.
PLAN	Step 1: Walk to chair.
Step 2: Turn to computer.	
Step 3: Look at computer.	
Step 4: Switch off computer.	
Step 5: Switch on computer.	
WikiHow	Intermediate Step
Task: How to Become an Art Investor (Figure out what you are willing to pay for art, before going to an auction house.).	
Human	Step 1: Start with some experience or interest in art,.
Step 2: Understand the difference between art collectors, art investors and art speculators,.	
Step 3: Figure out what you are willing to pay for art, before going to an auction house,.	
Step 4: Pay attention to what schools of art are selling well, and which are down,.	
Step 5: Focus art investments on fine art paintings, rather than decorative art,.	
Step 6: Reach out to trusted auction houses and dealers when you are looking to buy art,.	
Step 7: Buy your investment art when you feel confident of its worth, its price and its ability to grow in value,.	
Step 8: Study how art is properly stored,.	
Step 9: Have your art investments appraised occasionally,.	
Step 10: Consider renting out your art investments,.	
Step 11: Understand that selling an art investment can take time.	
Chain	Step 1: See art being sold directly by artists by clicking on the "direct from the artist" link.
Step 2: Look at the price.	
Step 3: Look at the writer’s website.	
Step 4: Create a portfolio of your work.	
Step 5: Look at price again.	
LLMaP	Step 1: Create a sketch in the neopoprealist manner of the future mural on a small piece of paper 8”x10” using the black ink pen.
Step 2: Prepare to create your neopoprealist mural.	
Step 3: Prepare your paint.	
Step 4: Begin your project with a design.	
Step 5: Produce a scaled down version of your finished mural.	
Step 6: Prepare the wall to be painted.	
Step 7: Allow the background and base coats to dry.	
Step 8: Draw the lines, then fill the appeared section with different repetitive patterns (examine the images above).	
Step 9: Paint patterns with brushes of suitable size for the particular portion of work you are painting.	
Step 10: Clean up the lines and shapes as needed.	
Step 11: Seal the mural if needed.	
Step 12: Be inspired and it will help you succcee.	
Step 13: This is where you get to be the most creative.	
PLAN	Step 1: Figure out what you are willing to pay for art, before going to an auction house.
Step 2: Sell your art online.
Step 3: Go to the auction house.
Step 4: Buy it.
Step 5: Install the first floor..repeat steps 1–4 to add more floor.
Step 6: Enter in the second round values.
Step 7: Get the 3-carat diamond.
Step 8: Know the four cs of diamonds.
Step 9: Find a reputable diamond appraiser in your area. |

Table 15: Showcases of procedural steps predicted by different models with GPT2 as the base LLM under counterfactual setting (Intermediate Step).
Model	Program
RobotHow	Initial Configuration
Task: Play games in dining room.	
Human	Step 1: Walk to dining room.
Step 2: Walk to video game console.	
Step 3: Find video game console.	
Step 4: Walk to video game console.	
Step 5: Switch on video game console.	
Step 6: Find television.	
Step 7: Switch on television.	
Step 8: Find video game controller.	
Step 9: Grab video game controller.	
Step 10: Find chair.	
Step 11: Walk to chair.	
Step 12: Sit on chair	
Task: Play games in dining room.	
Step 1: Walk to video game controller.	
Step 2: Put video game controller on dining table.	
Step 3: Put board game on kitchen table.	
Step 4: Put board game on dining table.	
Chain	Step 1: Walk to dining room.
Step 2: Walk to sauce pan.	
Step 3: Pour bottle water into dish bowl.	
Step 4: Walk to water.	
Step 5: Walk to carrot.	
Step 6: Walk to food salt.	
LLMaP	Step 1: Walk to kitchen.
Step 2: Walk to food food.	
Step 3: Walk to dining room.	
PLAN	Step 1: Walk to dining room.
Step 2: find dining table.	
Step 3: walk to board game.	
Step 4: put video game controller on dining table.	
Step 5: put food snack on dining table.	
Step 6: put board game on dining table.	
Step 7: put board game on dining table.	
Step 8: put board game on kitchen table.	
Step 9: find video game console.	
Step 10: put glass on board game.	
Step 11: grab video game controller.	
Step 12: put glass on board game.	
RobotHow	Final Goal
Task: Turn light off and clean	
Human	Step 1: Walk to bedroom.
Step 2: Walk to light.	
Step 3: Switch off light.	
Step 1: Walk to home office.	
Step 2: Walk to rag.	
Step 3: Find rag.	
Step 4: Grab rag.	
Step 5: Walk to desk.	
Step 6: Find computer.	
Step 7: Wipe computer.	
Step 8: Wipe desk.	
Step 9: Put back rag.	
Chain	Step 1: Walk to kitchen.
Step 2: Walk to cooking pot.	
Step 3: Walk to water.	
Step 4: Walk to dishwasher.	
LLMaP	Step 1: Put light bulb on bowl.
Step 2: Switch off light bulb.	
Step 3: Switch on light.	
PLAN	Step 1: plug out lighting.
Step 2: put cleaning solution on desk.
Step 3: find dish soap.
Step 4: scrub light switch.
Step 5: wipe lighting. |

Table 16: Showcases of procedural steps predicted by different models with GPT2 as the base LLM under counterfactual setting (Initial Configuration, Final Goal).
E DISCUSSION

E.1 LIMITATIONS

Though pointing out a direction to prompt out actionable knowledge in large-scale pre-trained language models with external commonsense knowledge, the limitations of reasoning long-horizon procedural plan still exist. Existing datasets for procedural planning like WikiHow and RobotHow are all monolingual supporting only English goals and plans. In the future, it is important to expand these datasets or having novel datasets that support multiple languages used across the world. The inherent difference between these languages may also result in different planning strategies in granularity or abstraction levels, which is potentially challenging. In addition, the long-horizon and complex composite tasks still remain challenging for the existing procedural planners.

Above limitations are discussed mainly based on the challenges of procedural planning task. In addition, there are limitations of our implementation that are guided by our causal analysis. First, the coverage of the leveraged external resources is limited, which is common in a knowledge-enhanced system. This may result in the wrong understanding of the task and produce not reasonable procedural plans. For example, the knowledge of the word "Turking", which refers to "The act or process of performing small tasks using the Amazon Mechanical Turk service." according to Wiktionary, is not covered in the external resources (e.g., ConceptNet). Since our proposed system does not assume specific external resources. It is plausible in the future if we utilize more powerful external resources (e.g., Wiktionary). Second, the hop number and the threshold of the multi-hop retrieval in task-relevant subgraph sampling is currently a configured hyperparameter. This may result in not ideally constructed prompt. The future work could instead make these hyperparameters learnable on each task domain, and also explore the pros and cons between end-to-end commonsense-infused prompt versus neuro-symbolic constructed prompt.

E.2 FAILURE ANALYSIS

We discuss detailed failure modes and examples with analyses below. For example, the predicted procedural plan on task "Turking", which refers to "The act or process of performing small tasks using the Amazon Mechanical Turk service." according to Wiktionary. We compare the predicted procedural plan on this task among baselines and our method: (1) The ground truth plan is "Task: Turking. Step 1: Walk to home office. Step 2: Walk to desk. Step 3: Find chair. Step 4: Sit on chair. Step 5: Find computer. Step 6: Switch on computer." (2) The plan predicted by Chain baseline is empty. (3) The plan predicted by LLMaP baseline is "Task: Turking. Step 1: Put teddybear on oven." (4) Our prediction is "Task: Turking. Step 1: Eat food turkey. Step 2: Drink water. Step 3: Sleep." We can see that for the "out-of-knowledge" task, our method also lead failure planning. We assume this is mainly due to the limited knowledge in external resources, as discussed in the Appendix E.1, and this main failure mode can be avoided by introducing larger external resources (e.g., Wiktionary), similar as other knowledge-enriched methods.

E.3 ETHICAL CONSIDERATIONS

We hope to de-bias the procedural planning to avoid misleading either humans or robots with daily life instructions, which may result in unsafe situations. The cultural bias behind these datasets can be a critical issue for future work. As the ground truth planning steps usually reflect the culture shared by the English-speaking group, other cultures may have a completely different practical consideration that leads to different orders of these steps or even novel steps that are not proposed by the LLMs we utilized in this paper. In the future, we will consider cultural bias as a proxy variable so that we could adjust the implicit knowledge from LLM or commonsense from external sources according to the different needs of cultural backgrounds.