Diagnostics of Sediment Occurrence in Interblade Channel of Injector Impeller of Gas Compressing Station by Changes of Gas Flow and Torque

M S Stepanov¹, A V Bunyakin¹
¹Kuban State Technological University, Krasnodar Starokubanskaya 88/4, 350057, Russian Federation

E-mail: m.s.stepanov@mail.ru

Abstract. Today no gas purification method exists which can be considered absolutely efficient. Thus, when gas compilation in conducted a problem of sediment formation occurs in a flow passage of the gas compression station (GCS) injector. The paper considers the mathematical simulation of the force moment change at the injector impeller of GCS caused by sediment occurrence in the interblade channel of impellers. In addition, the authors study the change of force moment in relation to the thickness of a sediment layer. Also, the research concentrates on the change of circumferential force at the impeller due to the change of force moment.

1. Introduction
Today no gas purification method exists which can be considered absolutely efficient. Thus, when gas compilation in conducted a problem of sediment formation occurs in a flow passage of the gas compression station (GCS) injector. The most evident manifestation of the issue one observes at the injectors, operated by gas processing plants, and also at gas compilation after underground gas storage in those cases when gas pressure after extraction is lower than the pressure in the main pipeline; in this case it should be pressed to the pressure level in the main pipeline.

Figure 1. Deposits in the interblade channel of the injector rotor impeller.
2. Relevance literature review
Balancing the rotor of the GCS injector is one of the main problems for the station stable operation. Misalignment of the rotor rotation axis with the inertia gravity axis causes the occurrence of uncompensated centrifugal efforts and moments, which induce additional dynamic loads. In its turn, it causes increased wear and the reduction of the station service life [1-21].

3. Problem statement
The contamination of the injector flow passage is one of the causes of the rotor balancing fault. Paper purpose: mathematical simulation of the force moment change in the interblade channel of the impeller at the rotor step due to the presence of sediment on a blade.

4. Theory. Experimental studies
The mathematical model is made by the example of the injector NC-16/76-1.44.

| Table 1. Reference characteristics of the injector applied for calculation. |
|--------------------------------|-----|
| Indicator name | Value |
| Injector capacity, MW | 16 |
| Gas pressure at the input, atm. | 51 |
| Gas pressure at the output, atm.| 75 |
| Q_{ob} – gas volume flow, m3/sec | 5.6 |
| ω_{ob} – rotor rotation frequency, rpm | 5,200 |
| r_1 – impeller internal radius, m | 0.243 |
| r_2 – impeller external radius, m | 0.455 |
| ρ – gas density, kg/m3 | 0.7168 |
| γ – indicator of the isentropic (adiabatic) contraction process | 1.31 |
| β_1 – width of the input interblade channel, m | 0.0236 |
| β_2 – width of the output interblade channel, m | 0.0362 |
| k – number of interblade channels in the impeller | 26 |
| T_{nach} – gas temperature at the input to the impeller, K | 286 |
| T_{nach} – gas temperature at the input to the impeller, K | 354 |
| α_{1grad} – entrance angle of the blade profile, degree | 45 |
| α_{2grad} – outlet angle of the blade profile, degree | 70 |

The equation of force moment in the interblade channel is equal to:

$$ M = Q_k \left[\omega (r_2)^2 - (r_1)^2 - \frac{Q_{ob}}{\rho_2 S_2} \alpha_2 + \frac{Q_{ob}}{\rho_1 S_1} \alpha_1 \right] $$

where:

$\rho_1 = \rho_{gaza}$ 51 - gas density before the input to the impeller at the pressure 51 atm. (gas pressure at the impeller input);

$Q = Q_{ob} \cdot \rho_1$ – mass flow in the impeller, kg/kg

$Q_k = \frac{Q}{k}$ – mass flow in the interblade channel, kg/sec

$\omega = \frac{\omega_{ob}}{60} \cdot 2\pi$ – rotation frequency, rad/sec

$\Delta T = \frac{T_{nach} - T_{nach}}{2}$ – temperature difference in the impeller

$\rho_2 = \rho_1 \cdot \left(\frac{T_{nach} - \Delta T}{T_{nach}} \right)^{\frac{1}{\gamma - 1}}$ – gas density at the output at the impeller

$\alpha_1 = \frac{\alpha_{1grad}}{360} \cdot 2\pi$ – entrance angle of the blade profile, rad

$\alpha_2 = \frac{\alpha_{2grad}}{360} \cdot 2\pi$ – outlet angle of the blade profile, rad

$S_1 = \frac{2\pi \cdot r_1 \cdot \beta_1}{k}$ – section area at the input of the channel, m2
From the equation 1 it follows that the force moment in each interblade channel of the impeller is 560 N·m while the general force moment at the impeller is 14,560 N·m. Thus, the circumferential force at the rotor impeller is equal to:

\[F_{kom} = \frac{M}{R_{kol}} \]

where:

\[R_{kol} = \frac{r_1 + r_2}{2} \]

From the formula 2 one can obtain the circumferential force value at the impeller is equal to 1,603 N.

Simulate the change of the moment of force due to the presence of sediments in the interblade channel, assuming the sediment layer thickness is within the range 1-15 mm.

\[M_X(b) = \frac{2\pi \cdot r_2 \cdot b_2}{k} \]

\[F_{kon}(b) = \frac{2\pi \cdot r_2 \cdot b_2 \cdot r_3}{5} \]

Figure 2. The force moment change in the interblade channel of the injector impeller due to the sediment presence.

Figure 3. Change of the circumferential force at the impeller of the injector rotor due to the presence of sediments in the interblade channel.
Fig. 1, 2 show that the presence of sediment significantly influences the force moment and circumferential force which leads to the rotor disbalance causing the occurrence of forces and moments that result in the increase of vibrations both of the rotor and the whole machine. In addition, due to the change of the section of the interblade area caused by sediment, one can observe the change of gas rate in the channel.

5. Conclusions
1. The cause of unstable gas flows in the flow passage of GCS is its insufficient cleaning causing the occurrence of various sediments at the injector blades.
2. Sediment occurrence is caused by the disbalance of the injector rotor due to the occurrence of unstable force moment in the interblade channel.
3. The presence of sediments causes the change of torque at the impeller as well as the change of gas flow in the channel.

References
[1] Kunina P S, Pavlenko P P, Velichko E I 2010 Diagnostics of power equipment for oil and gas pipelines (Krasnodar: Publishing House-South) 552 p
[2] Stepanov M S, Kunina P S, Inozemtsev D A, Dubov V V 2018 The formation of deposits in the flow part of the supercharger after gas extraction from the underground gas storage Problems of collection, preparation and transport of oil and oil products 2(112) pp 61-66
[3] Shein A O 2009 Improving the technology of gas purification from impurities using liquid absorbers and a protective adsorbent layer: the dissertation ... candidate of technical sciences: 05.17.07 (Place of protection: Ufim. state oil techn. un) 210 p
[4] Golitsyna M G 1998 Change in pressure during blockage of a gas pipeline Gas industry 4 48
[5] Kesler X 2001 Drying of natural gas Gas industry 7 48-50
[6] Tolstov V A 2000 Improving the operational performance of gas absorption dehydration plants Chemical and Oil and Gas Engineering 11 pp 20-21
[7] Kunina P S, Velichko E I, Nizhnik A E, Muzykantova A V, Abessolo M 2016 Analysis of defects in the support elements of gas pumping units of compressor stations of gas mains Territory Neftegaz 4 pp 68-75
[8] Sverdlov A B 2014 Failures and malfunctions of the mechanical part of gas pumping units The journal "Natural and Technical Sciences", "Sputnik +" Publishing House (Moscow) 7(75) pp 63-64
[9] Gavrilin A N, Moises B B 2014 Diagnostics of technological systems: a training manual Part 2 Tomsk Polytechnic University (Tomsk: Publishing House of Tomsk Polytechnic University) 128 p
[10] Rusov V A 2012 Diagnostics of defects in rotating equipment by vibratin signals (Perm) 252 p
[11] Sirotin N N, Korovin Yu M 1979 Technical diagnostics of aircraft gas turbine engines (M.: Engineering) 272 p
[12] Keba I V 1980 Diagnostics of aircraft gas turbine engines (M.: Transport) 248 p
[13] The PS-90A engine Analysis of statistics and diagnostic signs of defects in a TVD roller bearing Technical Information 34676 OJSC Aviadvigatel
[14] Pawlak Wojciech I, Balicki Wlodzimierz 2002 The range of operational parameters of aircraft gas turbine engines in operation Spectrum of turbine jet engine operation parameters Pr. Inst. lot. 3-4 pp 73-77
[15] Diagnostics of steam turbines Diagnostyka w zuciu turbin parowych: Report [Forum energetikow (GRE 2002): Międzynarodowa konferencja naukowo-techniczna (Szczeryk) T 3 Ortowski Zenon (Instytut Energetyki) Zesz. Nauk. Elek. Politechn Opol 51 part 3 pp 567-574
[16] Guo Maolin, Wang Gang, Yinguong lixue xuebao 2002 Dynamic analysis of the characteristics of aircraft gas turbine engines Chin. J. Appl. Mech 1 96-98
[17] 1981 Lagerschaden - fruherkennung mit der Kurtoses-Metode Nojak, "Elektronik" 17 pp 55-58
[18] Kunina P S, Velichko E I, Stepanov M S, Muzykantova A V 2019 Problems of analysis of the technical condition of modern drives of compressor installations of gas pipelines *Construction of oil and gas wells on land and at sea* 3 pp 56-58

[19] Dotsenko G N 2000 Development of principles for cleaning parts of aircraft from carbon-like contaminants using the biotechnological method: author dis. ... cand. tech. sciences (M.) 37 p

[20] Nasteka V A 1996 New technologies for the purification of high sulfur natural gases and gas condensates (M: Nedra) p 36

[21] Solovev D B 2018 Experimental Data Based Current Transformer Mathematical Simulation in Micro-Cap Program *International Review of Electrical Engineering (IREE)* 13(2) pp. 149 -156. [Online]. Available: http://dx.doi.org/10.15866/iree.v13i2.13380