Hutchcroft, Tom; Nachmias, Asaf
Uniform spanning forests of planar graphs. (English) Zbl 1422.60022
Forum Math. Sigma 7, Paper No. e29, 55 p. (2019).

Summary: We prove that the free uniform spanning forest of any bounded degree proper plane graph is connected almost surely, answering a question of Benjamini, Lyons, Peres and Schramm [I. Benjamini et al., Ann. Probab. 29, No. 1, 1–65 (2001; Zbl 1016.60009)]. We provide a quantitative form of this result, calculating the critical exponents governing the geometry of the uniform spanning forests of transient proper plane graphs with bounded degrees and codegrees. We find that the same exponents hold universally over this entire class of graphs provided that measurements are made using the hyperbolic geometry of their circle packings rather than their usual combinatorial geometry.

MSC:
60D05 Geometric probability and stochastic geometry
05C10 Planar graphs; geometric and topological aspects of graph theory

Keywords:
free uniform spanning forest; critical exponents

Software:
CirclePack

Full Text: DOI arXiv

References:
[1] Aharonov, D., The sharp constant in the ring lemma, Complex Var. Theory Appl., 33, 1-4, 27-31, (1997) · Zbl 0903.30006
[2] Aldous, D. and Lyons, R., ‘Processes on unimodular random networks’, Electron. J. Probab.12(54) (2007), 1454-1508. · Zbl 1131.60003
[3] Anderson, J. W., Hyperbolic Geometry, xii+276, (2005), Springer London, Ltd.: Springer London, Ltd., London
[4] Angel, O., Barlow, M. T., Gurel-Gurevich, O. and Nachmias, A., ‘Boundaries of planar graphs, via circle packings’, Ann. Probab.44(3) (2016), 1956-1984. · Zbl 1339.05061
[5] Angel, O., Hutchcroft, T., Nachmias, A. and Ray, G., ‘Unimodular hyperbolic triangulations: circle packing and random walk’, Invent. Math.206(1) (2016), 229-268. · Zbl 1360.52012
[6] Angel, O., Hutchcroft, T., Nachmias, A. and Ray, G., ‘Hyperbolic and parabolic unimodular random maps’, Geom. Funct. Anal.28(4) (2018), 879-942. · Zbl 1459.60018
[7] Angel, O. and Ray, G., ‘The half plane UIPT is recurrent’, Probab. Theory Related Fields170(3-4) (2018), 657-683. · Zbl 1482.05316
[8] Barlow, M. T., ‘Loop erased walks and uniform spanning trees’, inDiscrete Geometric Analysis, (Math. Soc. Japan, Tokyo, 2016), 1-32. · Zbl 1343.05139
[9] Barlow, M. T. and Masson, R., ‘Spectral dimension and random walks on the two dimensional uniform spanning tree’, Commun. Math. Phys.305(1) (2011), 23-57. · Zbl 1223.05285
[10] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O., ‘Uniform spanning forests’, Ann. Probab.29(1) (2001), 1-65. · Zbl 1016.60009
[11] Benjamini, I. and Schramm, O., ‘Harmonic functions on planar and almost planar graphs and manifolds, via circle packings’, Invent. Math.126(3) (1996), 565-587. · Zbl 0868.31008
[12] Benjamini, I. and Schramm, O., ‘Recurrence of distributional limits of finite planar graphs’, Electron. J. Probab.6(23) (2001), 1-13. · Zbl 1010.82021
[13] Bhamraitaju, S., Hanson, J. and Jiráí, A. A., ‘Inequalities for critical exponents in \textit{d}-dimensional sandpiles’, Electron. J. Probab.22(85) (2017), 51.
[14] Brightwell, G. R. and Scheinerman, E. R., ‘Representations of planar graphs’, SIAM J. Discrete Math.6(2) (1993), 214-229. · Zbl 0785.05002
[15] Burton, R. and Pemantle, R., ‘Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances’, Ann. Probab.21(3) (1993), 1329-1371. · Zbl 0785.05007
[16] Chelkak, D., Robust discrete complex analysis: A toolbox, Ann. Probab., 44, 1, 628-683, (2016) - Zbl 1347.60050

[17] Garban, C., Quantum gravity and the KPZ formula [after Duplantier-Sheffield], Astérisque, 352, 315-354, (2013) - Zbl 1295.83034

[18] Gurel-Gurevich, O. and Nachmias, A., ‘Recurrence of planar graph limits’, Ann. of Math. (2)177(2) (2013), 761-781. - Zbl 1262.05031

[19] Gurel-Gurevich, O., Nachmias, A. and Souto, J., ‘Recurrence of multiply-ended planar triangulations’, Electron. Commun. Probab.22(5) (2017), 6. - Zbl 1360.52013

[20] Häggström, O., Random-cluster measures and uniform spanning trees, Stochastic Process. Appl., 59, 2, 267-275, (1995) - Zbl 0840.60089

[21] Hansen, L. J., On the Rodin and Sullivan ring lemma, Complex Var. Theory Appl., 10, 1, 23-30, (1988) - Zbl 0617.30001

[22] He, Z.-X., Rigidity of infinite disk patterns, Ann. of Math. (2), 149, 1-33, (1999) - Zbl 0921.05012

[23] He, Z.-X. and Schramm, O., ‘Fixed points, Koebe uniformization and circle packings’, Ann. of Math. (2)137(2) (1993), 369-406. - Zbl 0777.30002

[24] He, Z.-X. and Schramm, O., ‘Hyperbolic and parabolic packings’, Discrete Comput. Geom.14(2) (1995), 123-149. - Zbl 0830.52010

[25] He, Z.-X. and Schramm, O., ‘The \(\{ C \rightarrow \{ \text{ } \} \} \text{-convergence of hexagonal disk packings to the Riemann map} \), Acta Math.180(2) (1998), 219-245. - Zbl 0913.30004

[26] Hutchcroft, T., Wired cycle-breaking dynamics for uniform spanning forests, Ann. Probab., 44, 6, 3879-3892, (2016) - Zbl 1364.05062

[27] Hutchcroft, T., Harmonic Dirichlet functions on planar graphs, Discrete Comput. Geom., 61, 3, 479-506 - Zbl 1412.31011

[28] Hutchcroft, T., Interlacements and the wired uniform spanning forest, Ann. Probab., 46, 2, 1170-1200, (2018) - Zbl 1391.60021

[29] Hutchcroft, T. and Peres, Y., ‘Boundaries of planar graphs: a unified approach’, Electron. J. Probab.22(100) (2017), 20. - Zbl 1378.60189

[30] Jonasson, J. and Schramm, O., ‘On the cover time of planar graphs’, Electron. Commun. Probab., 5 (2000), 85-90 (electronic). - Zbl 0949.60012

[31] Kenyon, R., The asymptotic determinant of the discrete Laplacian, Acta Math., 185, 2, 239-286, (2000) - Zbl 0982.05013

[32] Kirchhoff, G., Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird, Ann. Phys., 148, 12, 497-508, (1847)

[33] Koike, P., Kontaktprobleme der konformen Abbildung, (1936), Hirzel

[34] Lawler, G. F., Conformally Invariant Processes in the Plane, xii+242, (2005), American Mathematical Society: American Mathematical Society, Providence, RI

[35] Lawler, G. F., A self-avoiding random walk, Duke Math. J., 47, 3, 655-693, (1980) - Zbl 0445.60058

[36] Lawler, G. F., Schramm, O. and Werner, W., ‘Conformal invariance of planar loop-erased random walks and uniform spanning trees’, Ann. Probab.32(1) (2004), 939-995. - Zbl 1126.82011

[37] Lyons, R., Morris, B. J. and Schramm, O., ‘Ends in uniform spanning forests’, Electron. J. Probab.13(58) (2008), 1702-1725. - Zbl 1191.60166

[38] Lyons, R. and Peres, Y., Probability on Trees and Networks, (Cambridge University Press, New York, 2016). - Zbl 1376.05002

[39] Marden, A. and Rodin, B., ‘On Thurston’s formulation and proof of Andreev’s theorem’, Computational Methods and Function Theory (Valparaíso, 1989), (Springer, Berlin, 1990), 103-115

[40] Masson, R., The growth exponent for planar loop-erased random walk, Electron. J. Probab., 14, 36, 1012-1073, (2009) - Zbl 1191.60061

[41] Morris, B., The components of the wired spanning forest are recurrent, Probab. Theory Related Fields, 125, 2, 259-265, (2003) - Zbl 1030.60035

[42] Murugan, M., ‘Quasisymmetric uniformization and heat kernel estimates’, Preprint, 2018,arXiv:1803.11296.

[43] Pemantle, R., Choosing a spanning tree for the integer lattice uniformly, Ann. Probab., 19, 4, 1559-1574, (1991) - Zbl 0758.60010

[44] Peres, Y., ‘Probability on trees: an introductory climb’, inLectures on Probability Theory and Statistics (Saint-Flour, 1997), (Springer, Berlin, 1999), 193-280. - Zbl 0957.60001

[45] Rodin, B. and Sullivan, D., ‘The convergence of circle packings to the Riemann mapping’, J. Differential Geom.26(2) (1987), 349-360. - Zbl 0694.30006

[46] Rohde, S., Oded Schramm: from circle packing to SLE, Ann. Probab., 39, 1621-1667, (2011)

[47] Schramm, O., Rigidity of infinite (circle) packings, J. Amer. Math. Soc., 4, 1, 127-149, (1991) - Zbl 0726.52008

[48] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., 118, 221-288, (2000) - Zbl 0968.60093

[49] Shiraiishi, D., Growth exponent for loop-erased random walk in three dimensions, Ann. Probab., 46, 2, 687-774, (2018) - Zbl 1387.60067

[50] Siders, R., Layered circlepackings and the type problem, Proc. Amer. Math. Soc., 126, 10, 3071-3074, (1998) - Zbl 0910.52012

[51] Stephenson, K., ‘Circle pack, Java 2.0’, http://www.math.utk.edu/\texttt{\textasciitilde}kens/CirclePack.
[52] Stephenson, K., Introduction to Circle Packing: The Theory of Discrete Analytic Functions, (2005), Cambridge University Press: Cambridge University Press, Cambridge - Zbl 1074.52008

[53] Thurston, W., ‘Hyperbolic geometry and 3-manifolds’, in Low-dimensional Topology (Bangor, 1979), (Cambridge Univ. Press, Cambridge-New York, 1982), 9-25.

[54] Wilson, D. B., ‘Generating random spanning trees more quickly than the cover time’, in Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996) (ACM, New York, 1996), 296-303. - Zbl 0946.60070

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.