Glucose Uptake Activity and Cytotoxicity of Abietane Diterpenes and Triterpenes Isolated from Lamiaceae Plant Species

Ninon G.E.R. Etsassala¹, Kadidiatou O. Ndjoubi², Thilly J. Mbira³, Brendon Pearce³, Keenau Pearce³, Emmanuel. I Iwuoha⁴, Ahmed A. Hussein² and Mongi Benjeddou³*

¹Department of Horticultural Sciences, Cape Peninsula University of Technology, Symphony Rd. Bellville 7535, South Africa; ninonetsassala@yahoo.fr (N.G.E.R.E).
²Chemistry Department, Cape Peninsula University of Technology, Symphony Rd. Bellville 7535, South Africa; dickakadi@yahoo.fr (K.O.N); tilly.mbira@gmail.com (T.J.M).
³Precision Medicine Laboratory, Department of Biotechnology, 2nd Floor, Life Science Building, University of the Western Cape; mbenjeddou@uwc.ac.za (M.B); brendon.biff@gmail.com (B.P); keenau.pearce@gmail.com (K.P).
⁴Chemistry Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa eiwuoha@uwc.ac.za (E.I.I).

* Correspondence: mbenjeddou@uwc.ac.za
Abstract

The prevalence of diabetes mellitus (DM), considered one of the most common metabolic disorders, has dramatically increased and resulted in higher rate of morbidity and mortality around the world, in the past decade. It is well known that insulin resistance in target tissues and a deficiency in insulin secretion from pancreatic β-cells are the main characteristic of type 2 diabetes. The aim of this study was the bio-evaluation of compounds isolated from three selected plant species; namely, *Salvia africana-lutea*, *Leonotis ocymifolia* and *Plectranthus madagascariensis*, for their glucose uptake ability. Methanolic extracts were produced from the arterial part of each plant. Compounds were identified using different spectroscopic techniques. The glucose uptake ability of each compound was then evaluated in mammalian cells using 2-deoxyglucose-6-phosphate. The cytotoxicity of each compound was established via the MTT assay. Chromatographic purification of the three plant species yielded fifteen pure terpenoids. Compounds 1 (p = 0.0031), 8 (p = 0.0053), and 6 (p = 0.0086), showed a marked increase in glucose uptake, with p values of p=0.0031, p=0.0053 and p=0.0086, respectively. Additionally, 1, 4 and 6 exhibited cytotoxicity toward mammalian tissue with a decrease in cell viability of ~70%, ~68% and ~67%, respectively. The results suggested that several compounds demonstrated a marked increase in glucose uptake while two of the compounds exhibited signs of cytotoxicity. It may, therefore, be suggested that these compounds be considered as potential candidates for novel plant-derived alternative therapies in the treatment of type 2 diabetes.

Keywords: Diabetes mellitus; Lamiaceae; glucose uptake; toxicity; insulin resistance
1. Introduction

Diabetes mellitus (DM) is considered as one of the most common metabolic disorders with high rate of morbidity and mortality around the world [1]. It is well known that insulin is vital in glucose homeostasis as it stimulates the transport of blood glucose within the skeletal muscle [2]. However, insulin resistance in target tissues and deficiency of insulin secretion from pancreatic β-cells are the main characteristic of type 2 diabetes. In addition, characterization of DM also includes a decrease of peripheral glucose uptake into muscle, adipose or liver cells as well as an increase of endogenous glucose production, causing the increase of blood glucose concentration [3-5]. Therefore, agents with a capacity to stimulate glucose uptake in these tissues can be used to improve insulin resistance and consequently treat diabetes [6]. A huge number of synthetic antidiabetic agents such as acarbose, miglitol, sulfonylurea, metformin and thiozolidinedione are readily available in the market. However, their effectiveness is limited due to high cost and adverse side effects [7,8], with the exception of the widespread use of metformin due to its relatively low cost. Therefore, there is a great need of developing potent natural antidiabetic products of high safety margin. Furthermore, selected species from the Lamiaceae family have long been used to treat a plethora of ailments. These include Leonotis ocymifolia, traditionally used in Ethiopia for the treatment of diabetes [9], Plectranthus madagascariensis, used for scabies and small wounds as well as in the treatment of colds, asthma, cough, and chest complaints [10], also reported to be an effective inhibitor of alpha-glucosidase [11], and Salvia africana-lutea which is traditionally used for the treatment of different kinds of ailments and/or diseases, such as coughs, sexual debility, mental and nervous conditions, throat inflammation, chronic bronchitis, tuberculosis, influenza, stomach-ache, diarrhoea, and urticaria [12]. It has been reported to be a rich source of terpenoids with potent alpha glucosidase and alpha amylase inhibitory activities [8]. Numerous terpenoids isolated from Lamiaceae such as ursolic acid (8) have been reported to stimulate glucose uptake in adipocytes through the phosphatidylinositol (PI) 3-kinase (PI3K) pathway and enhancing glucose transporter 4 (GLUT4) translocation and expression [13]. In addition, Oleanolic acid (7) and its derivatives have also been reported to up-regulate the expression of GLUT4, which increases the glucose uptake activity in adipose and muscle cell lines [14,15]. Carnosic acid and carnosol also, activate Akt and AMPKα signaling and then enhances glucose uptake in skeletal muscle cell line L6 myotubes as well as stimulate glucose uptake in L6 myotubes [16-18].
The present study primarily examines the glucose uptake activity as well as the cytotoxicity of different phytochemical constituents isolated from three different plant species of Lamiaceae family; *S. africana-lutea*, *P. madagascariensis* and *L. ocyufolia*.

2. Materials and Methods

2.1 Chemical and reagents

Organic solvents such as methanol (HPLC grade), ethanol, ethyl acetate, and hexane, were supplied by Merck (Cape Town, South Africa). Thin layer chromatography (TLC) was performed on normal-phase (Merck) Silica gel 60 PF254 pre-coated aluminum plates. Column chromatography was conducted on silica gel 60 H (0.040–0.063 mm particle size, Merck, Cape Town, South Africa) and Sephadex LH-20 (Sigma-Aldrich, Cape Town, South Africa). NMR spectra were recorded on an Avance 400 MHz NMR spectrometer (Bruker, Rheinstetten, Germany) in deuterated chloroform and acetone, using the solvent signals as the internal reference. HRMS analysis was conducted on an Ultimate 3000 LC (Dionex, Sunnyvale, CA, USA) coupled to a Bruker QTOF with an electrospray ionization (ESI) interface working in the positive ion mode. Preparative HPLC was used for further isolation of pure compounds using HPLC methanol and distilled water.

Renocytes (HEK293 kidney cells) were obtained from the American Type Culture Collection (Manassas, VA, USA) and cultured in DMEM containing essential amino acids, sodium pyruvate and L-glutamine. Cell seeding was done on 24-well plates (50 000 cells/well) for the 2-deoxy-[3H]-D-glucose assay.

2.2 Plant material

Salvia africana-lutea and *Leonotis ocyufolia* aerial parts were collected in May, 2018, from Cape Flats Nature Reserve, University of the Western Cape, Cape Peninsula University of Technology Nature Reserve and *Plectranthus madagascariensis* was collected in February 2019 from Cape Peninsula University of Technology, Bellville campus. The identification of the plants was carried by Prof. Christopher Cupido (South African National Biodiversity Institute, Kirstenbosch), with herbarium number NBG1465544-0, NBG1465551-0 and NBG1465552-0 respectively.

2.3 Extraction and purification of chemical constituents

Compounds 1-9 were available in the lab from previous study and isolated from *S. africana lutea* [19].
Compounds 10-14 were isolated from P. madagascariensis as fellow: The aerial parts of P. madagascariensis were extracted with DCM-MeOH (3:1) and the total extract (13 g) was subjected to silica gel column chromatography using Hex/EtOAc gradient of increasing polarity to yield 16 main fractions. The main fractions III (9.08 mg) was subjected to isocratic column chromatography using Hex/EtOAc gradient (90:10) to yield 13 (13.5 mg). Main fraction VI (200 mg) was subjected to sephadex LH-20 using 95% methanol (MeOH) and 5 % deionized water (DIW), then isocratic silica gel column chromatography using Hex/EtOAc gradient (98:2) to yield 12. (61.9 mg). The main fraction VIII (97 mg) was applied to a sephadex LH-20 (5% aqueous MeOH) to produce 11 (25.7 mg). Main fraction XI (62.21 g) was subjected to sequential Sephadex LH-20 (5 % aqueous MeOH), then HPLC using gradient of acetonitrile/DW (60 % to 80 % in 30 minutes, then 100 % acetonitrile for 15 min) to produce 14 (R_t 39.5 min, 6 mg). Main fraction XIII and XIV (400 mg) were combined and chromatographed to Sephadex LH-20 using MeOH/DIW (95:5) to produce 10 (26.7 mg).

Compounds 15, 16 were isolated from Leonotis ocymifolia var. raineriana as fellows: the fresh plant materials of (1 kg) were blended and extracted with methanol (4.5 L), after filtration, and solvent evaporation, the extract (42.0 g) was loaded on silica gel column and eluted using gradient of Hex/EtOAc in order of increasing polarity. Fraction 12 yielded crystals which was identified as compound 17. Fraction 20 after fractionation using silica gel column Hex: EtOAc (80: 20 to 70:30), it yields compound 18.

2.4 Glucose Uptake assay

Method for measuring glucose uptake in mammalian cells based on the detection of 2-deoxyglucose-6-phosphate and was performed according to the manufacturer’s guidelines listed in the table 1.

Table 1: Constituents of glucose uptake assay

	1 Reaction (µl)	50 Reactions (µl)
Luciferase reagent	100	5000
NADP+	1	50
G6PDH	2.5	125
Reductase	0.5	25
Reductase substrate	0.0625	3

The reaction mixtures were incubated at room temperature for 1 hour. After 1 hour the cells were incubated with various concentrations of nanoparticles, the cells were washed with 100µl PBS. A volume of 50µl 1mM 2DG was added to each well and allowed to incubate for 10
minutes. A volume of 25µl stop buffer was added to each well and shaken briefly. Thereafter, 25µl of neutralization buffer was added to each well and the wells were shaken briefly and shake briefly. Finally, a volume of 100µl of mix made in step 2 was added and the plate shaken briefly. The plate was then incubated at room temperature for 30 minutes and read on a plate reader at 15 minute intervals for 2 hours.

2.5 Cytotoxicity Assay (MTT)
The cytotoxic effect of each compound on human embryonic kidney (HEK293) cells was assessed following the well-established MTT protocol. Cells were cultured in DMEM containing essential amino acids, sodium pyruvate and L-glutamine at 37°C in 96-well microtiter plates (10 000 cells/well). The plates were exposed to a dose of 250µg of each compound for 24 hours. Untreated cells served as control. After treatment, the medium was separated, and cells were incubated with 200µl of MTT in fresh medium at 37°C for 4h. The resultant formazan crystals from the mitochondrial reduction of MTT were solubilized in DMSO. The absorbance of each sample was determined using a microplate absorbance reader at 570 nm and percentage of cell viability was calculated using the following equation:

Cell viability (%) = (Absorbance of test/Absorbance of control) × 100.

3. Results

Fifteen terpenoids (Figure 1) including twelve diterpenes and three triterpenes were purified from three Lamiaceae species, S. africana-lutea, P. madagascariensis and L. ocymifolia, and tested for their ability to regulate the glucose intake in HEK293 kidney cells line.

From S. africana lutea, four new abietane diterpenes were isolated and identified as 19-acetoxy-12-methoxycarnosic acid (1), 3β-acetoxy-7α-methoxyrosmanol (2), 19-acetoxy-7α-methoxyrosmanol (3), 19-acetoxy-12-methoxy carnosol (4), and two known named clinopodiolides A (5), and B (6), in addition to three known triterpenes, oleanolic, and ursolic acids (7, 8) and β-amyrin (9) [19-25].

The phytochemical analysis of P. madagascariensis total extract resulted in the isolation of five known compounds namely carnosolon (10), 6β,7α-dihydroxyroyleanone (11), 7α-acetoxy-6β-hydroxyroyleanone (12), horminone (13), and coleon U quinone (14). The NMR data of the isolated abietane diterpenoids was compared to that of previously isolated constituents from the plant and other species of the genus Plectranthus [26-29].

From L. ocymofolia, two labdane diterpenes were isolated and identified as Leonurun (14) and 20-acetoxy-9α,13-dihydroxy-15(16)-epoxylabd-14-en-6β(19)-lactone (15) [30-31].
The results demonstrated that when cells are exposed to 2-deoxyglucose (2DG), there are transported across the membrane and rapidly phosphorylated in the same manner as glucose.
However, enzymes that further modify glucose-6-phosphate (G6P) cannot modify 2DG6P, and thus a membrane-impermeable analyte accumulates in the cell. After a brief period of incubation, the acidic Stop Buffer is added to lyse cells, terminate uptake and destroy any NADPH. A high-pH buffer solution (Neutralization Buffer) is then added to neutralize the acid. A Detection reagent is added to the sample wells. Glucose-6-Phosphate Dehydrogenase oxidizes the deoxyglucose to 6-phosphodeoxygluconate and simultaneously reduces NADP+ to NADPH. The reductase uses NADPH to convert the proluciferin to luciferin, which is then used by Ultra-Glo™ Recombinant Luciferase to produce a luminescent signal that is proportional to the concentration of 2DG6P.

The figure below indicates the relative glucose uptake for a given compound, compared to the control. The p-values in these graphs were calculated using independent two-tailed T-test where 0.05 is the threshold for significance.

![Relative Glucose Uptake](image)

Figure 2: Relative glucose uptake of compounds 1 – 16; where the p-value is indicative of the statistical significance versus the control, using an independent two-tailed T-test. *p < 0.05, **p < 0.01, ***p < 0.001. Compounds 1 (p = 0.0031), 8 (p = 0.0053), and 6 (p = 0.0086), showed a marked increase in glucose uptake,
Figure 3: Cell viability of tested compounds after 24hrs; where the p-value is indicative of the statistical significance versus the control, using an independent two-tailed T-test (n=3). *p < 0.05, **p < 0.01, ***p < 0.001. Compounds 1 (p = 0.0056), 4 (p = 0.0017) and 6 (p = 0.0060) showed the greatest impact on cell viability.

4. Discussion

With the global rise in the cost of medicines, many are turning to alternative forms of treatment. Herbal medicine is traditionally used in many cultures globally as a more cost-effective method of treatment. The data presented herein aids in confirming the usefulness of specific plant-derived compounds (phytochemicals) in the treatment of diabetes mellitus [32,33].

Plectranthus madagascariensis has been reported to be an effective inhibitor of alpha-glucosidase and a promising source of secondary metabolites with significant alpha glucosidase inhibitory activity. Three abietane diterpenoids such as 6β,7α-dihydroxyroyleanone (11), 7β-acetoxy-6β-hydroxyroyleanone (12), coleon U quinone (14) in addition to rosmarinic acid were isolated from methanol extract of P. madagascariensis and exhibited alpha-glucosidase inhibitory activity with IC\textsubscript{50} values of 274.9 ± 12.3, 108.2 ± 1.3, 142.7 ± 1.4 μmol/L and 33.0 ± 4.6 μmol/L respectively [10].
Etsassala et al. [19] have reported on the *in vitro* bio-evaluation of terpenes isolated from *Salvia africana lutea* against alpha-glucosidase and alpha amylase. The results showed strong inhibitory activities for 8, 10, and 7 with IC₅₀ values of 11.3 ± 1.0, 17.1 ± 1.0 and 22.9 ± 2.0 µg/mL respectively. Compound 7 demonstrated the strongest *in vitro* alpha-amylase inhibitory activity among the tested compounds with IC₅₀ of 12.5 ± 0.7 µg/mL followed by followed by compounds 8 and 10 with IC₅₀ values of 66.1 ± 2.0 µg/mL and 76.6 ± 2.1 µg/mL, respectively. [19]. Others studies also confirmed the bioactivity demonstrated by 7, and 8 [34]. Leonurun (15) and 20-acetoxy-9α,13-dihydroxy-15(16)-epoxylabd-14-en-6β/(19)-lactone (16) were not active against alpha glucosidase and amylase comparing with other compounds when tested up to 50 µg/mL.

Compounds 1, 8, and 6 (*Figure 2*), showed a marked increase in glucose uptake. The exact mechanism of this action is yet to be derived, but it is suspected that these compounds increase glucose sensitivity through stimulation of glucose metabolism. In addition, it may be concluded that these compounds could potentially aid in the treatment of diabetes mellitus. Compound 8 has been reported to stimulate glucose uptake in 3T3-L1 adipocytes through the PI3K pathway. Additionally, 8 has also been reported to lower blood glucose and improve insulin resistance and diabetes which corroborate with our findings [13,34,35]. 7 has been reported to up-regulate the expression of GLUT4, which increases the glucose uptake activity in adipose and muscle cell lines [14,36].

However, it is important to note that the raw compound may not be effectively taken up by the cells [37]. This could be influenced by a number of factors including the number of surviving cells after treatment, the solubility of the compound, binding affinity between the compound and the cell membrane, and the length of treatment incubation [37].

Furthermore, although a marginal increase in glucose uptake was seen in the remaining compounds, the statistical significance of those finding is lacking. It may be suggested that they are more effective in combination with other compounds, or that they simply have an even weaker cellular uptake efficiency. Nonetheless, further investigation will be required to define the capabilities of these compounds.

Interestingly, an overlap between glucose uptake and cytotoxicity exists for some of the compounds. Compound 1 and 6 both improved glucose uptake and showed signs of cytotoxicity (*Figure 3*). Compound 1 reduced cell viability by ~70 % (p = 0.0056), while 6 reduced cell viability by ~52 % (p = 0.0060). However, it is important to note the difference in
dosage between the assays. Cell viability assay were performed with a concentration of 250 µg/mL, while glucose uptake assays were performed with a maximum dose of 100 µg/ml. It is, therefore, confirmed that beyond a dosage of 100 µg/ml the compound becomes toxic to the cells. This is a crucial consideration when evaluating compounds as potential drug targets. Further investigation of the minimum usable dosage for improving glucose uptake is required, as well as the minimum dosage which causes toxicity in a larger collection of cell types.

5. Conclusion

This present work is the first scientific report on the investigation of the glucose uptake activity and cytotoxicity of abietane and labdane diterpenes and triterpenes isolated from selected plants species from Lamiaceae family, and the results suggested that 1, 8, and 6, showed a marked increase in glucose uptake while 1 and 6 exhibited signs of cytotoxicity. It may, therefore, be suggested that these compounds be considered as potential candidates for novel plant-derived alternative therapies in the treatment of type 2 diabetes.

Author contributions: Designing and manuscript drafting, B.P; N.G.E.R.E.; performing of phytochemical isolation K.O.N; T.J.M and N.G.E.R.E; Experimental design (Glucose Assay), experimental work, data analysis, draft writing, B.P; K.P; project supervision, and manuscript review, F.N, A.A.H, MB.

Funding: The work reported herein was made possible through funding by the South African Medical Research Council through its Division of Research Capacity Development under funding received from the South African National Treasury. The content hereof is the sole responsibility of the authors and do not necessarily represent the official views of the SAMRC or the funders. In addition, partial funding from the National Research Foundation of South African and the University of the Western Cape was used for this study.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

[1] Tripathy, J.P. Burden and risk factors of diabetes and hyperglycemia in India: findings from the Global Burden of Disease Study 2016. Diabetes Metab Syndr Obes, 2018, 1, 381-387.
[2] DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 2009, 32(2), 157-163
[3] Wilcox, G. Insulin and insulin resistance, Clinical Biochemistry Reviews, 2005, 26(2), 19-39.
[4] Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 2018, 17:122.
[5] Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. *Experimental and Molecular Medicine*, 2016, 48(3), e219.

[6] Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. *Nat Med*. 2017, 23(7), 804-814

[7] Dal, S.; Sigrist, S. The Protective effect of antioxidants consumption on diabetes and vascular complications. *Diseases*, 2016, 4(3), 24.

[8] Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A.; Iwuoha, E.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia africana-lutea. *Antioxidants*, 8, 421.

[9] Alemu, A.; Tamiru, W.; Nedi, T.; Shibeshi, T. Analgesic and anti-inflammatory effects of 80% methanol extract of *Leonotis ocymifolia* (Burm.f.) Iwarsson Leaves in Rodent Models. *Hindawi Evidence-Based Complementary and Alternative Medicine*, 2018, 1-8.

[10] Kubinova, R.; Porzкова, R.; Navrátilova, A.; Farsa, O.; Hanakova, Z.; Bacinska, A.; Cizek, A.; Valentova, M. Antimicrobial and enzyme inhibitory activities of the constituents of *Plectranthus madagascariensis* (Pers.) Benth. *J Enzyme Inhib Med Chem*, 2014, 29(5), 749-752

[11] Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. Alpha glucosidase inhibitors isolated from medicinal plants. *Food Science and Human Wellness*, 2014, 3(4), 136-174.

[12] Manning J.; Goldblatt P. Plants of the greater Cape Floristic Region 1: The core cape flora. South African National Biodiversity Institute; Pretoria, South Africa: 2012.

[13] He, Y.; Li, W.; Li, Y.; Zhang, S.; Wang, W.; Sun, C. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes. *PLoS One*. 2014, 9(10), e110711.

[14] Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. The effects of plant-derived oleanolic acid on selected parameters of glucose homeostasis in a diet-induced pre-diabetic rat model. *Molecules*. 2018, 23(4), 794

[15] Teoh, S.L.; Das, S. Phytochemicals and their effective role in the treatment of diabetes mellitus: A short review. *Phytochemistry Reviews*, 2018, 17, 1111-1128

[16] Lipina, C.; Hundal, H.S. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. *Cell Signal*, 2014, 26, 2343-2349.

[17] Samarghandian, S.; Borji, A.; Farkhondeh, T. Evaluation of antidiabetic activity of carnosol (Phenolic diterpene in Rosemary) in streptozotocin-induced diabetic rats. *Cardiovasc. Hematol. Disord. Drug Targets*. 2017, 17, 11-17.

[18] Vlavcheski, F.; Baron, D.; Vlachogiannis, I.A.; MacPherson, R.E.K.; Tsiani, E. Carnosol increases skeletal muscle cell glucose uptake via AMPK-dependent GLUT4 glucose transporter translocation. *Int. J. Mol. Sci*. 2018, 19, 29.

[19] Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.; Marnewick, J.L.; Cupido, CC.; Hussein, A.A.; Iwuoha, E.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from *Salvia africana-lutea*. *Antioxidants*, 2019, 8(10), 421.

[20] Hussein, A.; Meyer, J.M.; Jimeno, M.L.; Rodriguez, B. Bioactive diterpenes from *Orthosiphon labiatus* and *Salvia africana-lutea*. Journal of Natural Products. 2007; 70: 293–295.

[21] Gao, J.B.; Yang, S.J.; Yan, Z.R.; Zhang, X.J.; Pu, D.B.; Wang, L.X.; Li, X.L.; Zhang, R.H.; Xiao, W.L. Isolation, characterization, and structure–activity relationship analysis of abietane diterpenoids from *Callicarpa bodinieri* as spleen tyrosine kinase inhibitors. *Journal of Natural Products*. 2018; 81:998–1006.

[22] Kang V.K.; BajpaiSun C. Tyrosinase and alpha-glucosidase inhibitory effects of an abietane type diterpenoid taxodone from *Metasequoia glyptostroboides*. National Academy Science Letters 2015; 38: 399–402.
[23] Batista, O.; Simoes, M.F.; Nascimento, J.; Ribeiro, S.; Duarte, A.; Rodriguez, B.; De La Torre, M.C. A rearranged abietane diterpenoid from *Plectranthus hereroensis*. *Phytochemistry*. 1996; 41: 571–573.

[24] Etsassala, N.G.E.R.; Adeloye, A.O.; El-Halawany, A.; Hussein, A.A.; Iwuoha, E.I. Investigation of in-vitro antioxidant and electrochemical activities of isolated compounds from *Salvia chamelaeagnea* P.J.Bergius extract. *Antioxidants*. 2019; 8:98.

[25] Bustos-Brito, C.; Joseph-Nathan P.; Burgueño-Tapia, E.; Martínez-Otero, D.; Nieto-Camacho, A.; Calzada F.; Yépez-Mulia, L.; Esquivel, B.; Quijano, L. Structure and absolute configuration of abietane diterpenoids from *Salvia clinopodioides*: Antioxidant, antiprotozoal, and antipropulsive activities. *Journal of Natural Products*. 2019; 82: 1207–1216.

[26] Rasikari, H. 2007. *Phytochemistry and arthropod bioactivity of Australian Lamiaceae*. PhD Thesis, Southern Cross University, Lismore.

[27] Naman, C.B. (2015). *Phytochemical Investigation of the Medicinal Plant Taxodium distichum and Library Screening of Thalictrum Alkaloids for New Antileishmanial Drug Leads*. PhD Thesis, Ohio State University, Ohio.

[28] Alder, A.C.; Ruedi, P.; Eugster, C.H. 1984. Drusenfarbstoffe aus Labiaten: Identifizierung von 17 Abietanoiden aus *Plectranthus sanguineus* BRITEN. *Helv. Chim. Acta*, 70: 975-983.

[29] Horvath, T.; Linden, A.; Yoshizaki, F.; Eugster, C.H.; Ruedi, P. 2004. Abietanes and a novel 20-norabietanoid from *Plectranthus cyaneus* (Lamiaceae). *Helvetica Chimica Acta*, 87(9): 2346-2353.

[30] McKenzie, J.M.; Green I.R.; Mugabo, P. Leonurun, a novel labdane diterpenoid from *Leonotis leonurus*. *South African Journal of Chemistry*. 2006;59:114-116

[31] Habtemariam, S.; Gray, A.I.; Waterman, P.G. Diterpenes from the leaves of *Leonotis ocymifolia* var. Raineriana. *Journal of Natural Products*. 1994;57:1570-1574. DOI: 10.1021/np50113a017

[32] Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Front Pharmacol*. 2013, 4: 177.

[33] Mahomoodally, M.F. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. *Evidence-Based Complementary and Alternative Medicine*, 2013, 1-14.

[34] GomesCastro, A.G, et al., 2015. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. *Biochimica et Biophysica Acta (BBA) - General Subjects*. 1850(1), 51-61.

[35] Birgani, G.A.; Ahangarpour, A.; Khorsandi, L.; Moghaddam, H.F. Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. *Brazilian Journal of Pharmaceutical Sciences*, 2018, 54(2).

[36] Md Sayem, A.S.; Arya, A.; Karimian, H.; Krishnasamy, N.; Hasamnis, A.A.; Hossain, C.F. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. *Molecules*, 2018, 23(2), 258.

[37] Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. *Int J Mol Sci*. 2017, 18(3): 656.