To the Editor: A 67-year-old female was referred for persisted swelling in right leg despite of anticoagulation during 2 months for deep vein thrombosis (DVT) of the right popliteal vein (PV). Initial duplex ultrasonography of local clinic at 2 months ago showed the acute DVT of right PV with thrombus and dilated vein [Figure 1a]. She simultaneously complained tingling sensation and claudication in the right leg for several months. She had been on anticoagulation with warfarin (3 mg/d) for 2 months. Moreover, she denied history of hypertension and diabetes mellitus. On physical examination, vital sign was stable, and there was mild swelling in the right leg. However, there was no sign of infection and rest pain in right leg. Portable Doppler showed monophasic arterial flows in the right ankle. Laboratory findings showed prothrombin time international normalized ratio of 2.27, D-dimer of 1.54 μg/ml, and C-reactive protein of 0.22 mg/L. We checked computed tomography angiography (CTA), and it showed right popliteal artery (PA) locally occluded and PV totally collapsed by 3 cm-sized and low-density cystic mass. In addition, DVT was not detected and greater saphenous vein was patent in CTA [Figure 1b and 1c]. Hence, we thought DVT of PV might be resolved. We decided to perform cyst excision and interposition of PA with saphenous vein. Hence, we switched warfarin into low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperatively. Under general anesthesia, the patient was positioned pronely for popliteal surgery. Low molecular weight heparin for 1-week preoperative...
in total occlusion, whereas cyst excision or cyst evacuation with a vein patch are preferred in artery stenosis.[1-3] It was reported that bypass with or without cyst excision provided the most durable option for both symptomatic relief and longer freedom from reintervention.[1-3] Percutaneous aspiration and endovascular treatment are not recommended due to high recurrence rates.[1-4] Hence, in our case, we performed cyst excision and interposition of PA with reversed SSV graft during anticoagulation for DVT in the same leg.

In a view of anticoagulation for DVT caused by ACD, anticoagulation for provoked DVT of PV was recommended into long-term anticoagulation with 3 months.[9] Hence, in our case, anticoagulation had been continued for 3 months despite resolution of DVT in CTA. In addition, the patient of our case was old female and had variable symptoms. So, we suggest to check the possibility of multifactorial causes unrelated with ACDs in old patients.

In conclusion, we suggest that the optimal management of symptomatic ACD causing DVT in old woman should include cyst excision and interposition of PA with saphenous vein graft accompanied by long-term anticoagulation for DVT.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient has given her consent for her images and other clinical information to be reported in the journal. The patient understand that her name and initial will not be published and due efforts will be made to conceal her identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Motaganahalli RL, Smeds MR, Harlander-Locke MP, Lawrence PF, Fujimura N, DeMartino RR, et al. A multi-institutional experience in adventitial cystic disease. J Vasc Surg 2017;65:157-61. doi: 10.1016/j.jvs.2016.08.079.
2. Desy NM, Spinner RJ. The etiology and management of cystic adventitial disease. J Vasc Surg 2014;60:235-45, 245.e1-11. doi: 10.1016/j.jvs.2014.04.014.
3. Ksepka M, Li A, Norman S. Cystic adventitial disease. Ultrasound Q 2015;31:224-6. doi: 10.1097/RUQ.0000000000000160.
4. Del Canto Peruyera P, Vázquez MJ, Velasco MB, Álvarez PC, Salgado AA, Álvarez JC, et al. Cystic adventitial disease of the popliteal artery: Two case reports and a review of the literature. Vascular 2015;23:204-10. doi: 10.1177/1708538114541652.
5. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounamaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016;149:315-52. doi: 10.1016/j.chest.2015.11.026.