Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity

Victor Muñoz Robles1*, Jean-Didier Maréchal1, Amel Bahloul2a, Marie-Agnès Sari3, Jean-Pierre Mahy4, Béatrice Golinelli-Pimpaneau2b,2b

1 Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona, Spain, 2 Laboratoire d’Enzymologie et Biochimie structurales, CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, 3 Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, Université Paris Descartes, Paris, France, 4 Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Laboratoire de Chimie Biorganique et Bioinorganique, CNRS, Bât 420, Université Paris 11, Orsay, France

Abstract

We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-meso-β-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.

Citation: Muñoz Robles V, Maréchal J-D, Bahloul A, Sari M-A, Mahy J-P, et al. (2012) Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity. PLoS ONE 7(12): e51128. doi:10.1371/journal.pone.0051128

Editor: Claudine Mayer, Institut Pasteur, France

Received September 6, 2012; Accepted October 30, 2012; Published December 11, 2012

Copyright: © 2012 Muñoz Robles et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Financial support was provided to B.G.-P. and J.P.M. by the Centre National de la Recherche Scientifique (Programme Physique et Chimie du Vivant) and to J.-D.M. and V.M. by the Spanish “Ministerio de Ciencia e Innovación” through projects CTQ2009-06866-C02-01 and consolider-ingenio 2010 and by the Generalitat de Catalunya through project 2009SGR68. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: beatrice.golinelli@college-de-france.fr

a Current address: Département de Neuroscience, Institut Pasteur, Paris, France

b Current address: Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS, Paris, France

These authors contributed equally to this work.

Introduction

Hemoproteins contain iron-protoporphyrin IX or heme as the prosthetic group, whose divalent iron atom can reversibly bind molecules such as molecular oxygen, leading to a wide range of biological functions [1]. Chemical or biotechnological models of hemoproteins have thus long been developed in order to create selective catalysts for industrial and fine chemistry and to predict the oxidative metabolism of new drugs [2,3,4,5]. Examples include the de novo design of heme proteins, including that of membrane-soluble proteins [6,7]. Peroxidases appear to be the easiest hemoproteins to be mimicked. Indeed, their active site consists of the iron(III)-porphyrin moiety encapsulated in the apoprotein. On one side, the heme iron is bound to an axial histidine residue (proximal ligand) and on the other side to the porphyrin substrate to lead to an iron-oxo complex. The radical cation on the iron (IV)-oxo porphyrin ring can be delocalized onto proximal protein side chains [8]. The reducing cosubstrate does not bind to a well-defined site on the inside of the protein, as peroxidases restrict access of substrates to the heme-oxo complex, so that the electron transfer occurs to the meso edge of the heme [9]. Heterolytic cleavage of the O-O bond is assisted by general acid base catalysis through the concerted action of the distal histidine and arginine residues [10]. A major problem in homogeneous metalloporphyrin systems mimicking hemoproteins is that the catalyst is often destroyed by oxidation during the course of the reaction and it is difficult to combine reactivity and selectivity in these models. The use of a protein such as xylanase A [11] or an antibody mimicking the protein matrix of heme enzymes not only prevents aggregation and intermolecular self-oxidation of the catalyst, but can also influence the selectivity of the reaction [12]. As the antibody has the role of a host molecule that enhances the function of porphyrin, the porphyrin itself can be used as the hapten to induce the antibodies.

In order to generate antibodies with peroxidase activity, mice have been immunized against iron(III)-meso-β-carboxyphenylporphyrin (Fe(ToCPP)) (Figure 1) [13,14]. Two antibodies, 13G10 and 14H7, were found to bind the porphyrin hapten with nanomolar affinities and enhance its peroxidase activity.
activity. The 13G10-Fe(ToCPP) and 14H7-Fe(ToCPP) complexes catalyzed the oxidation of 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) 5 to 8 fold more effectively than the cofactor alone, with k_{cat} reaching 540 min$^{-1}$ and k_{cat}/K_m (ABTS) 6.2 10^3 M$^{-1}$ min$^{-1}$ at pH 4.6 for the 13G10 complex [15]. The antibodies protected the cofactor from oxidative degradation, allowing more than one thousand turnovers before destruction. In addition, it was shown that the 13G10-Fe(ToCPP) complex possessed a remarkably thermostable peroxidase activity and that antibodies protected the cofactor from oxidative degradation, alone, with k_{cat} reaching 540 min$^{-1}$.

Sulfonic acid) (ABTS) 5 to 8 fold more effectively than the cofactor alone, with k_{cat} reaching 540 min$^{-1}$.

Figure 1. General structures of the cofactors used in this work.

Materials and Methods

Purification and Characterization of Fabs 13G10 and 14H7

The antibodies were produced in ascitic fluid as described [13]. After ammonium sulfate precipitation, the IgGs (IgG1, λ) were loaded on a protein A column in 3 M NaCl, 1.5 M glycine pH 8.9 and eluted by 0.1 M citrate pH 5. The Fab 13G10 (resp. 14H7) was generated by papain digestion of the antibody at 37°C under standard conditions (30 mM Tris pH 7.4, 130 mM NaCl, 1.25 mM EDTA, 1.5 mM 2-mercaptoethanol) using a 3% papain to antibody ratio (w/w) and a 10 h (resp. 8 h) digestion time. Undigested IgG and Fab fragment were removed by DEAE anion exchange chromatography followed by gel filtration on a Sephacryl S100 HR column. The Fabs were further purified by ion exchange chromatography on a mono Q FPLC column by a NaCl gradient in 20 mM histidine proton buffer at pH 7.2 for Fab 14H7 or in 20 mM diethanolamine buffer at pH 8.8 for Fab 13G10.

Sequence Determination

N-terminal sequencing of the H chain of 13G10 showed that the first three amino acid residues of the Fab were missing. mRNA from 13G10 hybridoma cells (4 10^6 cells) were isolated using a mRNA purification kit from Dynal. cDNAs were prepared in 50 μl using the Omniscript reverse transcriptase kit from Qiagen and stored at −20°C until use. The heavy chain variable region fragment (about 420 bp) of each cDNA was amplified using a set of 12 forward primers MHV1 to MHV12 previously described [17] and reverse primer IgG1: 5′GGATCCCGGGCCAGTGGATTAGACAGATG complementary to the beginning of the constant region. The λ-light chain fragment (about 690 bp) of each cDNA was amplified using a mixture of 2 forward primers, NL1: 5′ATGGGCCCTGAGTTTCATCTTATAC and NL2: 5′ATGGCCCTGAGTTTCATCTTATGC, corresponding to mouse light chain leader sequence, and a mixture of 4 reverse primers, CL1 5′GCAGGGACAGACTTTCTTCCAC, CL2 5′GCACGAGAGCTTTCTTCCAC, CL3 5′GCAGGGAGCATACTTTCTTCCAC, and CL4 5′GCACGGGAGCATACTTTCTTCCAC, complementary to mouse CL terminal sequence.

Each cDNA mixture (3 μl) was amplified with the Polymerase Chain Reaction [18] using TFL polymerase (Promega) on a MJ Research mini cycler with the following program. A 10 min denaturation step at 94°C was followed by 30 cycles of 30 sec denaturation at 94°C, 45 sec hybridization at 59°C and 1 min 30 sec elongation at 72°C, a final step of 10 min at 72°C was performed to ensure completion of the amplification. Amplified products were purified on 0.8% low melting agarose (Sigma) and ligated into pGEM®Teasy vector (Promega). Electrocopentant E. coli TG1 cells {D(lac pro) supE thi hsdD5 F’ traD35 proAB LacIq LacZD15} were transformed with the ligation mixture by electroporation using a Cell porator electroporation system equipped with a Voltage Booster (Life technologies) according to manufacturer’s recommendations. Plasmid DNAs were extracted from transformed cells and submitted to dideoxy sequencing [19]. For each antibody, clones were originated from at least two independent Polymerase Chain Reactions.

Crystralization

Crystals of 13G10 were grown in 26.5% PEG 2000, 0.2 M MgCl₂, 0.1 M Tris pH 8.5, 10% glycerol. Crystals were flash cooled in a nitrogen stream at 100 K in the same solution containing 10% glycerol. Crystals of 14H7 were grown in 25% PEG 4000, 0.1 M ammonium acetate, 0.1 M sodium cacodylate pH 6.5. A single capillary-mounted crystal kept at 4°C was used for data collection. This explains the lack redundancy for the 14H7 data.

X-Ray data collection and structure determination. Diffraction data for Fab 13G10 and Fab 14H7 were recorded at the ID14-1 station of ESRF and the
LURE DW32 station, respectively. Data were processed with DENZO and SCALEPACK [20] (Table 1). The structures were solved by molecular replacement with the program AMoRe [21]; the models used were the Fv domain (PDB code 1mfa) and the CL-CH1 dimer (PDB code 1mfe) of the murine anticarbohydrate antibody Sc153-4, which belongs to the same IgG1, λ class [22]. The atomic model of 13G10 was refined alternating cycles of model reconstruction with O [23] and refinement with CNS [24], whereas the atomic model of 14H7 was refined alternating cycles of model reconstruction with COOT and refinement with PHENIX [25] using the twin option. The final refinement statistics are given in Table 1. Several residues at the N-terminus of the heavy chain and CDRH1 of four heavy chains that were disordered were not included in the model. Figures were drawn with PYMOL. ThrL51 in CDRL2, which lies in the disallowed region of the Ramachandran plot, belongs to a γ turn, as commonly observed in all antibody structures.

Molecular Modeling

Quantum mechanical calculations were carried out to model the structures of the tetra-, bi- and mono substituted porphyrins. These structures were fully optimized with the density functional B3LYP [26,27], as implemented in Gaussian09 [28]. The double-z basis set LANL2DZ [29] and its associated pseudo potential were used for the iron and the split valence 6–31 g** [30,31] for the other atoms (C, N, H and O). Calculations were carried out for the high spin ferric species with the iron coordinated by the four porphyrin nitrogen atoms. The structures of the 13G10 and 14H7 antibodies were processed with the UCSF Chimera package [32] prior to docking in order to remove the water, ions and glycerol molecules, calculate the protonation states of the amino acids and add hydrogen atoms. Protein-ligand dockings were undertaken for both antibody structures following a recently published protocol that accounts for the presence of the metal in the ligand [33]. Calculations were carried out using the program GOLD (version 4.5% and 4.7% of the data were set aside for the Rfree calculation during the entire refinement.

Table 1. Data collection and refinement statistics for Fab 13G10 and 14H7.

Data collection	Fab13G10	Fab14H7
Space group	C2	P21
Number of molecules in the asymmetric unit	1	8
unit cell	a = 55.8 Å, b = 62.7 Å, c = 113.5 Å	a = 56.2 Å, b = 228.2 Å, c = 146.6 Å
resolution	25–2.05 Å	20–2.55 Å
(outer resolution shell)	2.09–2.05 Å	2.64–2.55 Å
unique reflections	23580	111576
completeness*	93.7% (91.4%)	93.7% (87.8%)
mean I/sigma*	23.7 (4.6)	7.4 (2.1)
R cryst*	0.037 (0.19)	0.109 (0.51)
R free*	0.224	0.279
Deviations from ideal geometry (rms)		
bond length deviation (Å)	0.008	0.003
bond angle deviation (°)	1.52	0.75
B values		
Average B value of protein atoms (Å²)	49.0	46.5
Average B value of water molecules (Å²)	51.1	25.5
Average B value of glycerol (Å²)	76.3	–
B value of Mg²⁺ (Å²)	45.0	–
Ramachandran plot		
Most favored (%)	86.1	79.6
Additionally allowed (%)	11.4	17.5
Generously allowed (%)	1.1	1.4
Disallowed (%)	1.4	1.5

*Values for highest-resolution shell are given in parentheses.

doi:10.1371/journal.pone.0051128.t001
further QM/MM refinements of the complexes were carried out identified between the metal and the protein. Therefore, no carbons of all neighboring residues, no direct interaction was the metal. Based on the distances between the metal and the C hapten or antigen [38]. For mice (VH domain; affinity maturation then introduces into variable (VL) domain and by the assembly of the variable (V), variable (V) and junction (J) gene segments for the light chain contains, in addition to Ser/Ala mutations at positions 93 and 97, has the same sequence in both antibodies. Their CDRH3, which is identical amino acid residues out 98 in VH for 13G10 and 14H7, respectively (Figure 2). The nucleotide sequence indicates the poor diversity of the class. Compared with the germline Vl-class. The sequences of their segments have been uncovered [39], which explains instead of a Lys at position L39, which is located outside the catalytic pocket at the antibody combining site at the VL/VH interface. Together with the different conformations of CDRH3 (see below), the combining site of 14H7 is more open, with an accessible surface area of 19810 Å² compared with 18820 Å² for 13G10 (Figure 3A).

The hapten-binding pocket of 13G10 is a shallow cleft, roughly 12.7 Å by 7.2 Å wide and 8 Å deep, at the upper part of the VL/VH interface (Figure 3B and 3C). Electron density could be observed for a magnesium ion and two molecules of glycero in the combining site of Fab 13G10 (Figures 3B and 4A). The magnesium ion likely indicates the position of the Fe(ToCPP) iron in the hapten/antibody complex, thus confirming the location of the catalytic pocket at the antibody combining site at the VL/VH interface.

In 13G10, CDRH1 adopts the canonical structure H1-13-1 (Figure 4A) [37]. In 14H7, electron density is observed for CDRH1 only for four molecules in the asymmetric unit out of eight and it adopts a very different conformation from that in 13G10, which has not yet been listed (Figure 4B) [37]. This is a consequence of the four differences in amino acids in this CDR between the two antibodies. However, this difference in the Cβ backbone of CDRH1 does not contribute to create different topologies in the combining sites because only AsnH33, whose side
Figure 2. Amino acid sequences of the VL and VH domains of 13G10 and 14H7. Dots denote sequence identity to antibody 13G10. H denotes the heavy chain and L the light chain. Numbering of the antibody residues follows the Kabat nomenclature [40] and the definition of the hypervariable regions, indicated in bold, is from North et al. [37]. The sequence in italics has also been determined by Edman degradation of the aminoterminal part of the protein. The nucleotide sequences of 13G10 and 14H7 have been deposited in the Genbank database, except for the

	CDRL1		CDRL2		CDRL3		CDRH1		CDRH2		CDRH3			
L13G10	MAWISLILSLALSSGAISQAVTQEE	1	SALTTPGETVTLCRSSTGAVTT	9	10	20	27abc							
L14H7											
V\lambda											
L13G10	SNYANwQEkPDHlFTGlgGTNNRAPGVPARFSGSЛИГDKAALTITGAQ	30	40	50	60	70								
L14H7											
V\lambda											
L13G10	TEDEAIYFCA\textit{L}W\textit{S}N\textit{H}L\textit{V}FGG\textit{G}TK\textit{L}VT\textit{VG\textit{Q}PK\textit{S}PS\textit{V}T\textit{L}FPP\textit{S}\textit{SEE}\textit{E}L\textit{E}T	80	90	100	110	120								
L14H7											
V\lambda											
J\lambda	W.............	130	140	150	160	170								
L13G10	NKATLVCTITDFYPGVVTVDWKVDGTPTQGMETTQPSQSNN\textit{K}YM\textit{ASS}Y	180	190	200										
L14H7											
L13G10	LLTARARHSS\textit{Y}SCQVTHEGHTVEK\textit{S}LS\textit{RA}													
L14H7											
H13G10	MG\textit{W}SCIMFFLVATATGVHSLVQL\textit{Q}PGA\textit{EL}V\textit{K}GASVK\textit{M}CK\textit{A}SGY\textit{T}F\textit{T}\textit{S}Y		1	10	20	30								
H14H7											
J558.42	Q.............	40	50	52a	60	70	80							
H13G10	NH\textit{MHW}VK\textit{Q}TPGQGLE\textit{W}G\textit{VI}YPGNGD\textit{T}SYSQKF\textit{G}KA\textit{TL}T\textit{A}D\textit{K}SS\textit{S}T\textit{AY}M													
H14H7	.I................													
J558.42A...........N...............													
H13G10	QLSSL\textit{T}SED\textit{A}VYY\textit{CS}RGGA \textit{G}IM\textit{AYWGQGTSVT}SSAK\textit{T}TP\textit{F}SV\textit{Y}PLA		82abc	90	100abc101	110	120							
H14H7H.A....S.LL........L.A........													
J558.42A.D.............													
JH4	.D.............													

Figure 2. Amino acid sequences of the VL and VH domains of 13G10 and 14H7. Dots denote sequence identity to antibody 13G10. H denotes the heavy chain and L the light chain. Numbering of the antibody residues follows the Kabat nomenclature [40] and the definition of the hypervariable regions, indicated in bold, is from North et al. [37]. The sequence in italics has also been determined by Edman degradation of the aminoterminal part of the protein. The nucleotide sequences of 13G10 and 14H7 have been deposited in the Genbank database, except for the
constant heavy chains whose sequences have not been determined: Genbank accession numbers 13G10H, AY178830; 13G10L, AY178831 for the mRNA and AA020092, AA020093 for the corresponding protein sequence; 14H7H, AY178829; 14H7L, AY178828 for the mRNA and AA020092, AA020093 for the corresponding protein sequence. The previously published amino acid sequences [14] were not those of antibodies 13G10 and 14H7. The germline sequences are indicated below the sequence of the antibodies. doi:10.1371/journal.pone.0051128.g002

Table 2. Comparison of the aminoacids that contact small haptens in the structurally characterized \(\lambda\)-light chain antibodies.

PDB code	13G10/14H7*	Se155-4	CHA255	NC10	88C6/12	2D12.5	RS2-G19	10G6	N1G9
L32	CDRL1	Tyr	His	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr
L34		Asn	Asn	Ile	Asn	Asn	Asn	Asn	Asn
L91	CDRL3	Trp	Trp	Trp	Trp	Trp	Trp	Trp	Trp
L93		Ser	Asn	Ser	Ser	Ser	Ser	Ser	Ser
L94		Asn	Asn	Asn	Asn	Asn	Asn	Asn	Asn
L96		Leu	Trp	Trp	Trp	Trp	Trp	Trp	Phe
H33	CDRH1	Asn	Trp	Thr	Gly	Leu	Gly	Trp	Trp
H35		His	His	Ser	Gly	His	His	His	Gln
H47	FR2	Trp	Trp	Leu	Trp	Trp	Trp	Trp	Trp
H50	CDRH2	Val	Ala	Thr	Asp	Arg	Val	Thr	Ala
H52		Tyr	Leu	Trp	Asp	Trp	Tyr	Tyr	Asp
H52A		Pro	Pro	Ser	Pro	Pro	Pro	Pro	Pro
H53		Gly	Asn	Gly	Asn	Asn	Ser	Gly	Gly
H56		Asp	Ala	Phe	Lys	Val	Gly	Asn	Gly
H58		Ser	Phe	Phe	Tyr	Lys	Ala	Tyr	Arg
H95	CDRH3	Gly	Gly	His	Arg	Tyr	Arg	Gly	Tyr
H96		Gly	Arg	Thr	Ala	Gly	Ser	Arg	Asp
H97		Ala/Ser	His	Phe	Tyr	Ser	Leu	Ser	Tyr
H98		Ser	Cys	Tyr	Tyr	Leu	Tyr	Tyr	
H99		Tyr	Arg	Pro	Tyr	Tyr	Gly		
H100		Tyr	Tyr	Asn	Ser				
H100		Tyr							
H100		Gly							
H100		Ser							
H100		Gly	Phe	Tyr					
H100		Gly	Tyr	Tyr	Asn	Gly	Tyr	Ser	
H100		Ile	Tyr	Tyr	Pro	Tyr	Trp	Thr	Tyr
H100	Met/Leu	Gly	Phe	Phe	Phe	Met	Phe	Phe	Phe
H101		Ala	Asp	Val	Asp	Asp	Asp	Asp	Asp

Underlined letters are residues that form direct or water-mediated hydrogen-bonds or salt-bridge to the hapten. A bold letter indicates that the residue is in van der Waals contacts with the hapten.

*For 13G10 and 14H7, the hapten has been modeled by docking (see Table 3).

doi:10.1371/journal.pone.0051128.t002
residues at contact positions, as observed in other antibody structures (Table 2). In addition, the CDRH3 loops of 13G10 and 14H7 are very peculiar in that they contain a high number of glycine and alanine residues (H95-H100a) and only a few residues with a long side-chain that could interact with the hapten (Figure 2).

Figure 3. General view of the combining sites of Fab 13G10 and Fab 14H7. A Comparison of the binding site cavities of 13G10 and 14H7. The VL frameworks of 13G10 (in blue) and 14H7 (in green) have been superimposed. The location of Mg$^{2+}$ in 13G10 is indicated as a blue ball. B General view of the active site of 13G10. CDRL1, CDRL2, CDRL3, CDRH1, CDRH2 and CDRH3 are shown as red, pink, orange, magenta, green and cyan ribbons, respectively. Mg$^{2+}$ and two glycerol molecules are indicated as blue ball and sticks, respectively. C Zoom of the combining site of 13G10. doi:10.1371/journal.pone.0051128.g003
Molecular Modeling of the α, α, α, β Hapten-antibody Complexes

Because we did not succeed to grow crystals of Fab 13G10 and Fab 14H7 in complex with the Fe(ToCPP) hapten, either by co-crystallization or soaking, Fe(ToCPP) was modeled in the recombinant site by molecular docking using the Gold 5.0 package [34] and a previously reported protocol [33] (Figures 5A, 5E, 6A and 6E; Table 3). The docking solutions display the adjacent α1 and α2 carboxyphenyl substituents deeply buried inside the binding site, while those in α3 and β configuration are exposed toward the solvent. The comparison of the accessible surface areas of Fe(ToCPP) alone and in complex with 13G10 and 14H7 indicates that 53.7% and 44.9%, respectively, of the porphyrin is buried in the antibody pocket.

In the most stable 13G10/Fe(ToCPP) predicted complex, the hydrophobic CDRH3 loop stacks against the most buried carboxyphenyl group of the porphyrin hapten (Figure 5A) and must therefore have been specifically selected by the immune system. Ligand recognition is achieved through H-bonds (Figure 5A), van der Waals contacts and stacking interaction (Table 3 and Figure 6A). In the calculated complex, the metal of the porphyrin is located close to the magnesium atom that has been characterized in the X-ray structure (Figure 3B and 4A, Table 3). In the 20 first solutions with low energy for the 14H7/Fe(ToCPP) complex, the porphyrin is always located in the solvent-exposed region of the binding site (Figure 5E and 6E). This leads to very variable orientations of the cofactor with weaker complementarity to the antibody than in 13G10. The best solution obtained for 14H7 is 10 kJ/mol less stable than that for 13G10 because of more extensive hydrophobic interactions in the case of 13G10 (Table 3). Indeed, while the hydrogen bonding energy is the same for the two complexes, the lipophilic energies is about

Figure 4. Comparison of the CDRs of Fab 13G10 and Fab 14H7. A Peculiar conformation of CDRH1 in the combining site of Fab 13G10. CDRH1 is shown as magenta sticks and a 2Fo-Fcalc map, contoured at 1σ and displayed around CDRH1, Mg²⁺ and the two glycerol molecules, as a grey mesh. B Comparison of the conformations of CDRH1 in 13G10 and 14H7. CDRH1 in 14H7 and 13G10 are shown as magenta sticks and black lines, respectively. The VH frameworks of the two antibodies were superimposed. A 2Fo-Fcalc map contoured at 1σ is displayed around CDRH1 of 14H7 and shown as a grey mesh. C Comparison of the combining sites of Fab 13G10 (CDRs colored as in Fig. 4A) and Fab 14H7 (black). doi:10.1371/journal.pone.0051128.g004
Rationalization of the Binding of Alternative Cofactors

To obtain better mimics of peroxidases, capable of binding one imidazole ligand, complexes of 13G10 and 14H7 with less hindered iron(III)-tetraarylporphyrins, bearing one or two carboxyphenyl substituents (monosubstituted Fe(MoCPP) and α,β or α,α-di-substituted Fe(DoCPP)], were designed (Figure 1) [16]. Although all 13G10/porphyrin complexes were shown to bind only one imidazole ligand, the affinity for imidazole of the α,α and α,β-Fe(DoCPP)] complexes was 2–3 fold lower than that of 13G10/Fe(ToCPP). Interestingly, the 13G10/dicarboxyphenyl porphyrin complexes presented higher activity for ABTS oxidation than the original Fe(ToCPP)/13G10 complex in the presence of 50 mM imidazole. The crystal structures provided in this work combined with molecular modeling offer the opportunity to rationalize such findings.

First, the mono and disubstituted porphyrins were docked into the combining sites of the two antibodies (Figure 5B–D, 6B–D, 7A and B, Table 3). Overall, the four porphyrins have relatively similar binding modes to 13G10, with a good complementarity of a major part of the macrocycle with the binding site (Figure 6A–D and 7A). A strong interaction between one of the porphyrin carboxylates and both AsnH33 and HisH35 of CDRH1 is always present and appears as the most important feature in the recognition of the cofactors by 13G10. This is sustained by the fact that the complexes with Fe(ToCPP) and Fe(MoCPP), despite differing by three carboxylates and making live and three H-bonds with 13G10, respectively, have similar binding energies (Table 3).

Thus, increasing the number of carboxylates in the cofactor does not mean an overall better binding because it also increases steric hindrance and results in more important bad contacts (Table 3). Slight differences are still observed in the way the ligands penetrate into the cavity, with α,α-Fe(DoCPP) displaying the highest buried surface, the lowest one being obtained for Fe(ToCPP).

Fe(MoCPP) binds to 14H7 in a very different way compared with Fe(ToCPP) (Figure 7B). For α,β-Fe(DoCPP), the binding mode to 14H7 is very similar to that of Fe(ToCPP), while for α,α-Fe(DoCPP), the porphyrin is noticeably displaced. However, overall, the binding modes of the three alternative cofactors are similar in energy, including for its individual terms (Table 3).

Docking imidazole in the various porphyrin/13G10 complexes indicates that two molecules of imidazole can bind the iron, one on each side of the cofactor. However, imidazole binds preferably on opposite faces of the porphyrin, depending on the cofactor (Figure 7C, D and E). For Fe(ToCPP), imidazole binds to the solvent-exposed face, whereas in the case of the dicarboxylates-containing porphyrins, it binds in the cavity formed between the cofactor and the protein. The overall binding energies are very similar and the main differences appear in the hydrogen bond and lipophilic terms (Table 4).

Structural Basis of Catalysis: Comparison to the Ferrochelatase and Porphyrin-dependent Peroxidase Antibody 7G12

The structure of 13G10 can be compared with that of the k-light chain metallochelatase and porphyrin-dependent peroxidase antibody 7G12 [49]. Thus, the peroxidase activity of 7G12 is similar to that of 13G10. The crystal structure of antibody 7G12 complexed with N-methylmesoporphyrin IX has shown that the antibody induces geometric strain in the porphyrin substrate to catalyze porphyrin metalation [50,51,52]. The carboxylate side-chain of AspH96 of 7G12, which is positioned 1.9 Å from the center of the porphyrin ring (Fig. 8A), is thought to act as a catalytic residue in the metal chelatase reaction by...
Table 3. Statistical analysis of the lowest energy structures obtained in the docking calculations of the different cofactors in the 13G10 and 14H7 antibody structures.

Antibody Ligand	Buried surface area (Å²)	Score (kJ/mol)	ΔG (kJ/mol)	Shbond (kJ/mol)	Hydrogen bonding interactions (distances in Å)	Sroo (kJ/mol)	Hydrophobic contacts	Smetal (kJ/mol)	Clashe (distances in Å)	Sinternal (kJ/mol)	Iron distance (Å)
13G10 Fe(ToCPP)	119.3	41.49	49.13	3.38	1- COO / SerH58 OH (2.95)	276.65	TyrL32, AsnL34, TrpL91, AlaL93, AsnL94, LeuL96, ValH50, IleH51, TyrH52, AspH56, TyrH57, SerH58, GlyH95, GlyH96, AlaH97, GlyH100a, IleH100b, MetH100c	3.02	C80 - SerH58Hb (1.89)	462	1.62
αβ-Fe(DoCPP)	133.4	42.01	45.26	3.19	1- COO / AsnH33 ND (2.97)	248.9	TyrL32, TrpL91, TyrH52, AsnH33, HisH35, ValH50, IleH51, AspH56, TyrH57, SerH58, GlyH95, GlyH96, AlaH97, GlyH100a, IleH100b, MetH100c	0.87	C70 - GlyH100a (1.97)	2.38	0.83
αβ-Fe(DoCPP)	125.87	40.51	43.79	2.67	1- COO / AsnH33 ND (3.06)	251.09	TyrL32, AsnL34, TrpL91, TyrH52, AsnH33, HisH35, ValH50, IleH51, AspH56, TyrH57, SerH58, GlyH95, GlyH96, AlaH97, GlyH100a, IleH100b, MetH100c	0.92	C58(-) - SerH58Hb (2.15)	2.36	0.74
Fe(MoCPP)	126.91	42.1	43.84	2.64	COO / AsnH33 ND (3.04)	252.46	TyrL32, AsnL34, TrpL91, TyrH52, AsnH33, HisH35, ValH50, AspH56, TyrH57, SerH58, GlyH95, GlyH96, AlaH97, GlyH100a, IleH100b, MetH100c	0.29	–	1.46	1.75
14H7 Fe(ToCPP)	101.53	31.54	35.62	3.26	1- COO / TyrH52 OH (2.63)	164.57	TyrL32, TrpL91, AsnL34, TrpL92, AsnH33, HisH35, ValH50, AspH56, TyrH57, SerH58, GlyH95, GlyH96, AlaH97, GlyH100a, IleH100b, MetH100c	0.22	–	3.87	TyrH32 OH (4.5)
αβ-Fe(DoCPP)	116.34	29.84	32.08	1.98	1- COO / SerH97 OG (2.58)	170.96	TyrL32, TrpL91, TyrH32, TyrH52, AspH56, GlyH100a, IleH100b, MetH100c	0.12	–	2.12	TyrH32 (4.01)
αβ-Fe(DoCPP)	102.66	29.43	31.64	1.99	1- COO / TyrH32 OH (2.76)	166.85	TyrL32, TrpL91, AsnL94, TyrH32, TyrH52, AspH56, ThrH57, SerH58, GlyH100a, GlyH100b, IleH100b, MetH100c	0.19	C70 - SerH58 OH (2.1)	2.03	TyrH32 (4.13)
Fe(MoCPP)	109.55	30.63	32.17	1.88	COO / TyrH52 OH (2.6)	174.54	SerL30, TyrL32, TrpL91, TrpL93, TyrH52, SerH97, GlyH100a,	0.15	–	1.4	TyrL32 OH (2.30)

1The buried surface area was obtained by subtracting the molecular surfaces (calculated using the UCSF Chimera environment) of the nonbonded cofactor and of the antibody alone, from that of the complex and by dividing the result by 2.

2The ChemScore scoring is defined as: Score = −(ΔG + Sroo + Sinternal) where the total free energy change that occurs upon ligand binding, ΔG = 5.4800 - 3.3400 * Shbond - 6.0300 * Smetal - 0.1170 * Sroo - 2.5600 * Hrot. Sinternal is the energy term for the internal rotations of the cofactor, Smetal that for the metal interactions and Hrot that for the frozen rotatable bonds.

3For 13G10, distance between the iron atom in the modeled complex and Mg²⁺ in the crystal structure. For 14H7, distance to iron.

doi:10.1371/journal.pone.0051128.t003
deprotonating the substrate and chelating the metal [50]. For the peroxidase reaction, AspH96 is too near to the center of the porphyrin ring to act as a distal ligand but it is in an appropriate position to act as a proximal ligand for the iron atom of Fe(III)-mesoporphyrin IX. Hydrogen peroxide is expected to approach the non-observed side of the porphyrin ring, opposite to AspH96, which is surrounded only by hydrophobic residues such as TyrL49 and TyrL91. The active site of 7G12 does not reveal the presence of distal ligands susceptible to enhance the peroxidase activity of Fe(III)mesoporphyrin IX.

Directed and random mutagenesis were used to generate libraries of 7G12, and antibodies with increased peroxidase activity were selected by phage display using an activity-based strategy [53]. A mutant, in which TyrL49 was replaced by Trp, had a 10-fold increase in k_{cat}/K_m. In addition, two mutations bore mutations thought to affect the packing between the porphyrin ring and TyrL49 or TyrL91. Because TyrL49 and TrpL91 are involved in π-stacking interactions with the porphyrin ring in the 7G12/X-methylmesoporphyrin IX complex (Fig. 8A), it was proposed that the mutations could help to stabilize the radical cation on the porphyrin ring and yield to higher peroxidase activity [55].

In 13G10 and 7G12, a bulky residue preceding residue H101 (Met) is positioned at the bottom of the active site cavity, which leads to shallow binding sites (Fig. 8). This positions the porphyrin hapten at the surface of the combining site, contacting almost exclusively residues of the CDRs. The larger elbow angle in λ-light chain antibody 13G10 coupled with a longer CDRH3 (H95–H101) results in a shallower binding site in 13G10 compared with 14H7, although with a 50-fold reduction in affinity [14]. Finally, absorption spectroscopy studies have shown that, whereas the iron(III) of Fe(ToCPP) is able to bind two imidazole ligands, the Fe(ToCPP)-13G10 complex can fix only one, which inhibits its peroxidase activity [16].

All catalytic antibodies, whose crystal structure had been solved until now, belonged to the 95% mouse antibodies that possess a κ-light chain [76], except one [77]. Many of these catalytic antibodies share a deep combining site formed not only by residues of the CDRs but also by residues of the framework (Figure 8C). Because CDRH3 that is composed of several glycines and residues with small side chains is predicted to be flexible, the antibodies possess catalytic activity have been reported [54,55,56,57,58,59]. However, the crystal structures of these antibody catalysts have revealed that most antibodies generally act by simple transition state stabilization [58,60,61] and only a few utilize covalent chemistry [62,63,64,65]. The incorporation of cofactors has been proposed as a possible strategy to expand the catalytic scope of antibodies, in particular to lead to redox catalysis [56]. Actually, the combination of the intrinsic reactivity of a cofactor with the tailored binding specificity of an antibody has been underutilized. However, cofactor and antibody effectively complement each other: like in enzymatic catalysis, the antibody enhances the catalytic efficiency of the cofactor and ensures reaction specificity, stereoselectivity and substrate specificity. Several antibodies raised against a porphyrin hapten and possessing catalytic activity have been reported [12,48,49,66,67,68,69,70,71,72]. Moreover, catalytic antibody-cofactor complexes have been structurally characterized for a peroxidase-dependent oxygenation catalyst [75,74], and a pyridoxal-5'-phosphate-dependent antibody that catalyzes the transamination of D-amino acids [75].

Antibodies 13G10 and 14H7, induced against Fe(ToCPP), were shown to display peroxidase activity in the presence of iron-porphyrin cofactors. Biochemical studies had already given insights into the interactions between the antibodies and the cofactor. First, UV-visible studies have shown that the binding of the porphyrin into the antibodies is not accompanied by a change of the high spin state of the iron (II) and that the porphyrin binds in a hydrophobic pocket [13]. Moreover, the antibodies possess similar affinities for the metallated or non-metallated cofactor ($K_o = 3–5$ nM) [14]. Altogether, these results indicated that no amino acid binding the iron atom had been induced in the antibody combining sites by the Fe(ToCPP) hapten. The determination of the apparent dissociation constants for the variously substituted porphyrins by competitive ELISA indicated that the antibodies do not bind tetraphenylporphyrin and allowed a model to be proposed, where two thirds of the porphyrin macrocycle could be inserted in the binding pocket, with two carboxylates in α,β positions being more specifically bound to the protein [14]. Tetraaryl porphyrins bearing only one meso-ortho-carboxyphenyl substituent could still bind 13G10 and 14H7, although with a 50-fold reduction in affinity [14]. Finally, absorption spectroscopy studies have shown that, whereas the iron(III) of Fe(ToCPP) is able to bind two imidazole ligands, the Fe(ToCPP)-13G10 complex can fix only one, which inhibits its peroxidase activity [16].

Among the few examples of crystal structures of murine Fabs with λ-type light-chain that have been solved, ten of them are those of Fabs complexed with small haptens [22,79,80,81,82,83,84,85] (Table 2) and several of them with a peptide or protein antigen [86,87,88,89,90,91,92,93]. These crystal structures have shown that the combining site of λ-light chain antibodies is formed by different amino acid residues than that of κ-light chain antibodies (Compare Table 2 with Table 2 of reference [61]). In particular, the X-ray structures of antibodies of different isotypes (\κ– and λ– type) that bind to the same hapten molecule have revealed drastically different binding modes of the ligand [83,84,94]. It was therefore anticipated that catalytic antibodies 13G10 and 14H7 will possess a combining site different from that of previously crystallographically characterized κ-light chain catalytic antibodies and it was interesting to understand how different they were.

The comparison of the cavity shapes of non-hydrolytic catalytic antibodies led to separate them into two categories, depending on the nature of the residue preceding H101 [61]. Antibodies possessing a small residue (ie. Gly, Ser) had a common deep combining site, whereas those with a bulky residue (Phe, Met) displayed shallow cavities with very different shapes. Antibodies 13G10 and 14H7 differ at this position, possessing Met and Leu, respectively, and their structures reveal that their combining site cavities is not very deep. In addition, their combining sites lie on the protein surface, compared with the other catalytic antibodies possessing a bulky residue preceding H101 (Figure 8C). Because CDRH3 that is composed of several glycines and residues with small side chains is predicted to be flexible, the combining sites of the antibodies 13G10 and 14H7 do not share a high similarity in shape although the two antibodies share a high sequence similarity. Indeed, the deeper cavity observed in the structure of 13G10 compared with 14H7 comes mainly from the different conformations of CDRH3.

The structures of 13G10 and 14H7 indicate that the amino acids prone to bind the ligand are the same as in the other λ-light...
Figure 6. Molecular surfaces of the models of the complexes of 13G10 and 14H7 with the different porphyrins. Residues involved in van der Waals and hydrophobic contacts are shown.

A 13G10/ααβ-Fe(ToCPP). B 13G10/Fe(MoCPP). C 13G10/αα-Fe(DoCPP). D 13G10/αβ-Fe(DoCPP). E 14H7/Fe(ToCPP). F 14H7/Fe(MoCPP). G 14H7/αα-Fe(DoCPP). H 14H7/αβ-Fe(DoCPP).

doi:10.1371/journal.pone.0051128.g006
contacts as imidazole binds in the cavity left between the cofactor and the protein. **E** Model of imidazole bound to 13G10/αβ-Fe(DoCPP). Imidazole is located on the buried side of the porphyrin but does not make any interaction with the protein, the β-carboxylate being oriented toward the solvent.

doi:10.1371/journal.pone.0051128.g007

Figure 7. Comparison of the binding of the different porphyrins to 13G10 and 14H7 and models of imidazole binding to the 13G10/porphyrin complexes. Serreoviews of the superposition of the different porphyrins in the combining sites of 13G10 (A) and 14H7 (B). Fe(ToCPP), αα-Fe(DoCPP), αβ-Fe(DoCPP) and Fe(MoCPP) are colored green, blue, yellow and red, respectively. For 13G10, the porphyrins of Fe(MoCPP), αα-Fe(DoCPP) and αβ-Fe(DoCPP) superimpose onto that of Fe(ToCPP)(without taking into account the carboxylate substituents) with rmsds of 0.5, 3.0 and 1.7 Å², respectively. For 14H7, the porphyrins of Fe(MoCPP), αα-Fe(DoCPP) and αβ-Fe(DoCPP) superimpose onto that of Fe(ToCPP) with rmsds of 9.1, 3.1 and 0.9 Å², respectively. **C** Model of imidazole bound to 13G10/Fe(ToCPP). The binding of the imidazole molecule is favored by an H-bonding interaction with the main chain of AlaL93. **D** Model of imidazole bound to 13G10/αα-Fe(DoCPP). Despite some clashes, imidazole binding is stabilized by H-bonds with AsnH33 and one of the buried carboxylates. Stabilization is also achieved by hydrophobic
in a hydrophobic pocket similar to that present in horseradish peroxidase [98]. This location of the binding site of hydroperoxide would explain the remarkable thermostability of the cofactor–antibody complex and the multiple turnovers of the reaction. In cytochrome c oxidase, the radical cation in the iron(IV)oxoporphyrin intermediate was delocalized onto the indole ring of TrpL91 [8]. Similarly, it was proposed that TyrL49 and TyrL91 that stack against the porphyrin ring of the hapten could fulfill a similar function in catalytic antibody 7G12 and enhance the peroxidase activity of the 7G12/Fe(III)mesoporphyrin complex [53]. In the models of 13G10 and 14H7 with the different porphyrins, TrpL91, TyrL32 and TyrH52, which are predicted to stack against the porphyrin ring (Fig. 6), could act in the same way.

Imidazole was used as an iron ligand that might mimic the proximal histidine in the 13G10/porphyrin complexes. Molecular docking indicates that imidazole preferentially binds on opposite faces of the porphyrin ring in the 13G10/Fe(ToCPP) and 13G10/Fe(DoCPP) complexes (Figure 7C to E). Imidazole is predicted to bind to the solvent-exposed face of Fe(ToCPP), which might hinder binding of the hydroperoxide substrate to the sheltered face of the cofactor and lead to the inhibition of the peroxidase activity. In contrast, imidazole is predicted to bind in the cavity formed between 13G10 and αα- or αβ-Fe(DoCPP) (Figure 7D and E), which likely represents a higher affinity site and would explain that the affinity for imidazole of the αα- and αβ-Fe(DoCPP) complexes was 2–3 fold lower than that of 13G10/Fe(ToCPP). In this manner, imidazole would be located appropriately to act as the proximal histidine. In this case, hydroperoxide would bind on the solvent-exposed face of the porphyrin and TyrL32 could assist in the cleavage of the O-O bond by functioning as an acid catalyst. In the case of αβ-Fe(DoCPP), the β carboxylate of could also play this role. This would account for the 8–9-fold enhancement of the catalytic efficiency of the peroxidase reaction in the presence of 50 mM imidazole, when 13G10 is complexed with the di-substituted cofactors compared with Fe(ToCPP).

Table 4. Statistical analysis of the lowest energy structures for the docking of imidazole in the 13G10/Fe(ToCPP) and 13G10/Fe(DoCPP) models.

Antibody	Ligand	Score	ΔGbinding (kJ/mol)	S_hbond	Hydrogen bonding Interactions (distances in Å)	S_metal	S_hype	S_clash	Clashes (distances in Å)
13G10	Fe(ToCPP)	22.61	−23.08	0.98	AlaL93-O (2.64)	0.9	76.42	0.47	–
αα–Fe(DoCPP)	21.54		−22.87	0.63	COO" (2.65)	0.81	88.96	1.33	AsnH33 (2.45)
αβ–Fe(DoCPP)	19.88		−19.93	0		0.9	77.21	0.05	Fe (2.62)

Understanding the structure-function relationship of catalytic antibodies with a λ-light chain is important to shed light on the diversity of catalytic antibodies, which may help to broaden the scope of these catalysts. The anti-porphyrin antibodies 13G10 and 14H7, with a λ-light chain, were shown to possess shallow hapten binding pockets compared with the other structurally characterized catalytic antibodies. The structural complementarity of the Fe(ToCPP) cofactor to the hydrophobic binding pocket of antibodies 13G10 and 14H7 leads to a remarkable thermostability of the cofactor-antibody complexes and allows multiple turnovers of the peroxidase reaction. Molecular modeling indicates that the recognition of various porphyrins with different carboxyphenyl substituents is achieved mainly by stacking interactions but also by crucial hydrogen bonds with two or three carboxylate groups. Our models explain why one carboxyphenyl substituent is sufficient for a good affinity of the porphyrin cofactor for 13G10 and 14H7. CDRH1 and CDRH3 appear to play key roles for binding Fe(ToCPP) and no proximal ligand of the iron was induced in 13G10 and 14H7. The increase of the peroxidase activity of the cofactor, when bound to the antibodies, could be explained by a loss of entropy due to accessibility of H2O2 to only one of the two faces of the porphyrin ring, and possibly by the stacking of several aromatic groups onto the porphyrin ring that would stabilize the radical cation in the iron(IV)oxoporphyrin intermediate in the peroxidase reaction. Moreover, one of the buried carboxylic group of the porphyrin substituents may also participate as a general acid catalyst, with the implication that H2O2 would bind on the proximal histidine.

In the future, better catalysts could be obtained by directed mutagenesis of 13G10 and 14H7. Replacing AsnH33 by a histidine in 13G10 could lead to the binding of its imidazole group to the iron atom of Fe(ToCPP), which could enhance the peroxidase activity of the 13G10/porphyrin complex. Indeed, antibodies induced against microperoxidase 8 that were shown to possess an axial histidine coordinating the iron atom had a better peroxidase activity than 13G10 and 14H7 [99,100]. Mutating TyrL32 to histidine or arginine to generate a better acid catalyst or an amino acid that enhances the polarization of the O-O bond could also increase the catalytic activity of the 13G10/Fe(DoCPP)/imidazole complexes. Alternatively, antibodies with enhanced peroxidase activity could be obtained by phage display using an activity-based strategy for selecting oxidative catalysts, as described previously [53].
Figure 8. Comparison of Fab 13G10 with other catalytic antibodies. A Comparison of the combining sites of the two porphyrin-dependent peroxidase antibodies 13G10 and 7G12. The α-carbons of the framework of the heavy chain variable domain of 7G12 (in orange) have been superimposed on those of 13G10 (in yellow), which results in a large variation in the positions of the light chain variable domains (VL 7G12 in magenta and VL 13G10 in pink). The rms deviation of 0.964 Å reflects the different packing of the VH and VL domains in λ-light chain antibodies (13G10) and κ-light chain antibodies (7G12). The hapten of 13G10 is represented in blue and that of 7G12 in red. B Comparison of the cavity deepness of antibodies 13G10 (in blue) and 7G12 (in orange). A section of the molecular surface of the combining site of antibody 13G10 is colored in yellow for the heavy chain and pink for the light chain. C Comparison of the cavity shapes of the nonhydrolytic catalytic antibodies with a bulky residue at position preceding H101. 15A9 (yellow), PDB code 2BMK; 28B4 (red), PDB code 1KEL; 1E9 (green), PDB code 1C1E; 34D4 (cyan), PDB code 1Y18; 1D4 (magenta), PDB code 1JGU.
doi:10.1371/journal.pone.0051128.g008
Data deposition. The atomic coordinates and structure factors of Fab13G10 and Fab14H7 have been deposited at the Protein Data Bank (PDB codes 4amk and r4amksf, and 4at6 and r4at6sf, respectively).

Supporting Information

Figure S1 Detection of twinning and determination of the twin fraction in the 14H7 crystals. A. Estimation of the twin fraction \(\alpha \) by Britton plot analysis. The percentage of negative intensities after detwinning is plotted as a function of the assumed value of \(\alpha \). The estimated value of \(\alpha \) is extrapolated from the linear fit (green line). B. Estimation of the twin fraction \(\alpha \) using the H-plot. The cumulative fractional intensity difference of acentric twin-related intensities \(H = |I_k h 1 - I h 2|/(|I_k h 1 + I h 2|) \) is plotted against \(H \). The initial slope (green line) of the distribution is a measure of \(\alpha \).

Acknowledgments

We thank Diep Lê for the N-terminal sequencing, Benoît Gigant for reading the manuscript, and Rémy Ricouxf for initiating the collaboration between B. G.-P. and J.-D.M.

Author Contributions

Conceived and designed the experiments; JDM JPM BGP. Performed the experiments: VMR AB MAS BGP. Analyzed the data: VMR JDM JPM BGP. Wrote the paper; JDM MAS BGP.

References

1. Smith LJ, Kahraman A, Thornton JM (2010) Heme proteins—diversity in structural characteristics, function, and folding. Proteins 78: 2349–2368.
2. Mansuy D, Battioni P (1994) Cytochrome P450 model systems. In: Deker M, editor. Metalloporphyrins in Catalytic Oxidations. New York: R.A. Sheldon. 137–152.
3. Mahy J-P, Desfosses B, de Lauzon S, Quilez R, Desfosses B, et al. (1998) Hemoenzymes: Different strategies for obtaining artificial heme proteins based on antibodies. Appl Biochem Biotechnol 75: 103–112.
4. Ricoux R, Sauriat-Dorizon H, Girgenti E, Blanchard D, Mahy J-P (2002) Hemoenzymes: towards new biocatalysts for selective oxidations. J Immunol Methods 269: 39–57.
5. Mahy J-P, Raffy Q, Allard M, Ricoux R (2009) Various strategies for obtaining artificial heme proteins: from “hemoenzymes” to “hemozymes”. Biochimie 91: 1321–1323.
6. Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE, et al. (1994) Artificial peroxidase-like hemoproteins based on antibodies elicited against a specifically designed ortho-carboxy substituted tetraarylporphyrin. Bioconjug Chem 19: 899–910.
7. Shinde S, Cordova JM, Woodrum BW, Ghirlanda G (2012) Modulation of the twin fraction in the 14H7 crystals. Acta Cryst D68: 205–212.
8. Shinde S, Cordova JM, Woodrum BW, Ghirlanda G (2012) Modulation of the twin fraction in the 14H7 crystals. Acta Cryst D68: 205–212.
9. Ortiz de Montellano PR (1992) Catalytic sites of hemoprotein peroxidases. Annu Rev Pharmacol Toxicol 32: 89–107.
10. North B, Lehmann A, Dunbrack RL, Jr. (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406: 228–256.
11. Peterson EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.

Additional references...

12. Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C (1991) Sequences of Immunoglobulin Genes. Baltimore, MD, ed. 5: U. S. Public Health Service, National Institutes of Health.
13. Chang S, Mohan C (2005) Identification of novel VH/J558 immunoglobulin germline genes at C53BL/6 Jgh b) allotype. Mol Immunol 42: 1293–1301.
14. Larsen NA, Heine A, de Prada P, Redwan el R, Yeates TO, et al. (2009) Structure determination of a cocaine hydrolytic antibody from a pseudomerohedrally twinned crystal. Acta Cryst D65: 2055–2059.
15. Golnelli-Pimpancau B (2005) Structure of a pseudomerohedrally twinned monoclinic crystal form of a pyridyl phosphate-dependent catalytic antibody. Acta Crystallogr D Biol Crystallogr 61: 472–476.
16. Hamdane D, Lechaive C, Marden MC, Golnelli-Pimpancau B (2009) Pseudomerohedral twinning in monoclinic crystals of wild-type human brain neoglutamin. Acta Crystallogr D Biol Crystallogr 65: 380–392.
17. Padilla JE, Yeates TO (2003) A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr D Biol Crystallogr 59: 1124–1130.
18. Sander VH, Harris TM, Guengerich FP (1985) Characterization of the enzymatic and nonenzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heme. Biochemistry 24: 3254–3263.
73. Hsieh-Wilson LC, Schultz PG, Stevens RC (1996) Insights into antibody catalysis.
72. Hosomi N, Kawamura-Konishi Y, Kawano R, Fujii I, Suzuki H (2005) Site-directed mutagenesis study of the antibody 2D7 which catalyzes a reaction for peroxidation of Pyrogallol by Antibody-Metalloporphyrin Complexes. Inorg Chem 44: 2791–2797.
71. Kohda K, Kakehi M, Ohtsuji Y, Tagaki M, Imanaka T (1997) Studies of high thermostability and peroxidase activity of recombinant antibody I. chain porphyrin Fe(III) complex. FEBS Lett 407: 280–284.
70. Harada A, Fukushima H, Shiotsuki K, Yamaguchi H, Oka F, et al. (1997) Structural and kinetic evidence for strain in biological catalysis. Biochemistry 36: 14404–14409.
69. Kawamura-Konishi Y, Hosomi N, Neya S, Sugano S, Funasaki N, et al. (1996) Thermostable peroxidase activity with a recombinant antibody L chain (ChA255) is specific for the metal ion of its antigen. X-ray structures for two Fab/hapten complexes with different metals in the chelate. Biochemistry 35: 10950–10959.
68. Feng Y, Liu Z, Gao G, Gao SJ, Liu XY, et al. (1995) Study of the abzyme with plasticity and the evolution of antibody affinity and specificity. J Mol Biol 330: 631–656.
67. Yin J, Beuscher AE, Andryski SE, Stevens RC, Schultz PG (2003) Structural plasticity and the evolution of antibody affinity and specificity. J Mol Biol 330: 631–656.
66. Savitsky AP, Nelen MI, Yatsmirsky AK, Demcheva MV, Ponomarev GV, et al. (2000) Structural evidence for a programmed general base in the active site of a catalytic antibody. Proc Natl Acad Sci U S A 97: 8902–8907.
65. Goswami RK, Huang ZZ, Forsyth JS, Felding-Habermann B, Sinha SC (2009) Structural and kinetic evidence for strain in biological catalysis. Biochemistry 37: 14404–14409.
64. Yin J, Mills JH, Schultz PG (2004) A catalysis-based selection for peroxidase antibodies with increased activity. J Am Chem Soc 126: 3006–3007.
63. Thayer MM, Olender EH, Arvai AS, Koike CK, Canestrelli IL, et al. (1999) Crystal structures of a quinone-metabolizing antibody. J Mol Biol 301: 1392–1402.
62. Wagner J, Lerner RA, Barbas III CF (1995) Efficient aldolase catalytic activity by a 65 kDa human Fab. J Mol Biol 249: 289–301.
61. Golinelli-Pimpaneau B (2000) Novel reactions catalysed by antibodies. Curr Op Struct Biol 10: 697–708.
60. Wagner J, Lerner RA, Barbis III CF (1995) Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270: 797–800.
59. Xu Y, Yamamoto N, Janda KD (2004) Catalytic antibodies: hapten design and application to single-step protein purification. Protein Sci 13: 5217–5224.
58. Yin J, Beuscher AE, Andryski SE, Stevens RC, Schultz PG (2005) Structural plasticity and the evolution of antibody affinity and specificity. J Mol Biol 330: 631–656.
57. Hiverl D (2000) Critical analysis of antibody catalysis. Annu Rev Biochem 69: 751–793.
56. Nogi T, Sangawa T, Tabata S, Nagae M, Tamura-Kawakami K, et al. (2008) Structural elucidation of the mechanistic basis of antibody catalysis. J Mol Biol 380: 679–684.
55. Monnet C, Bettsworth F, Stura EA, Le Du MH, Menez R, et al. (2002) Highly specific anti-estradiol antibodies: structural characterisation and binding dynamics. J Mol Biol 315: 699–712.
54. Thayer MM, Olender EH, Arvai AS, Koike CK, Canestrelli IL, et al. (1999) Crystal structures of a quinone-metabolizing antibody. J Mol Biol 301: 1392–1402.
53. Ricoux R, Girgenti E, Sauriat-Dorizon H, Blanchard D, Mahy JP (2002) Crystal structures of 13G10 and 14H7.