Abstract

We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all the four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

1 Introduction

Symmetry and its breaking are essential notion in particle physics regardless of theoretical frameworks. The Standard Model (SM) is based on gauge symmetry $G_{SM} := SU(3)_C \times SU(2)_L \times U(1)_Y$ in four-dimensional (4D) spacetime with the spontaneous electroweak (EW) symmetry breaking G_{SM} to $SU(3)_C \times U(1)_{em}$ via the nonvanishing vacuum expectation value (VEV) of the SM Higgs boson. To construct a unified theory beyond the SM, here we use two notions; gauge-Higgs unification [1–5] and grand unification [6–18].

Gauge-Higgs unification is based on gauge symmetry in higher-dimensional spacetime. E.g., the $SU(3)_C \times SO(5)_W \times U(1)_X$ gauge-Higgs electroweak (EW) unified theories on five-dimensional (5D) Randall-Sundrum (RS) warped spacetime are discussed in Refs. [19–25]; the $SU(2)_L \times U(1)_Y$ EW gauge bosons and the SM Higgs boson are unified in 5D $SO(5)_W \times U(1)_X$ bulk gauge bosons, where the RS warped space is introduced in Ref. [26]. Grand unification is based on grand unified (GUT) gauge symmetry. The candidates for GUT gauge groups in 4D GUTs are well-known. (See e.g., Refs. [6,7].) Also, the candidates for GUT gauge groups in 5D GUTs are shown in Ref. [7].

Gauge-Higgs grand unification [27–34] is base on GUT gauge symmetry in higher-dimensional spacetime. The candidates for GUT gauge groups in 5D gauge-Higgs GUT are shown in Ref. [7]. One of the candidates is an $SO(11)$ group.

An $SO(11)$ gauge-Higgs grand unified theory (GHGUT) on 5D RS spacetime is proposed by Y. Hosotani and the author in Ref. [34]. In the $SO(11)$ GHGUT, the SM gauge bosons and the SM Higgs boson are unified in 5D $SO(11)$ bulk gauge boson. The SM Weyl fermions, quarks and leptons, are unified in an $SO(11)$ bulk fermion for each generation. Proton decay is forbidden by a fermion number conservation even if the KK scale is much smaller than $O(10^{15})$ GeV.

In this paper, we discuss gauge coupling unification for the 4D SM gauge coupling constants of the zero modes of bulk gauge fields in gauge-Higgs grand unification scenario, especially, $SO(11)$ GHGUTs, by using the renormalization group equations (RGEs) for the 4D gauge coupling constants under Kaluza-Klein (KK) expansion. We assume that the 4D description is valid until the fifth dimensional compactification scale $1/L$ in the 5D RS warped space. The compactification scale $1/L$ is regarded as the real gauge coupling unified scale M_{GUT} because the $SO(11)$ GUT gauge symmetry is broken to the G_{PS} gauge symmetry by the orbifold boundary conditions (BCs) on the Planck and TeV branes, where $G_{PS} := SU(4)_C \times SU(2)_L \times SU(2)_R$ is known as the Pati-Salam gauge group discussed in Ref. [35]. Under the above assumption, we

*Electronic address: yamatsu@het.phys.sci.osaka-u.ac.jp
show that in several $SO(11)$ GHGUTs, the SM gauge couplings are asymptotically free at least at one-loop level and the three SM gauge coupling constants are almost the same values below the GUT scale $M_{GUT} = 1/L$ as long as $M_{GUT} = 1/L$ is much larger than its Kaluza-Klein (KK) mass scale $m_{KK} = \pi k/(e^{kL} - 1) \simeq \pi ke^{-kL}$, where k is the anti-de Sitter (AdS) curvature in 5D RS warped space.

This paper is organized as follows. In Sec. 2 we discuss a RGE for a gauge coupling constant in 5D non-Abelian gauge theory. In Sec. 3 we discuss RGEs for the SM gauge coupling constants in the $SO(11)$ GHGUT 34 and slightly modified ones. We find that the three SM gauge coupling constants are asymptotically free and they are unified in Sec. 3.1. Their several corrections are studied in Sec. 3.2. Section 4 is devoted to a summary and discussion.

2 RGEs for 4D gauge couplings on 5D RS warped space

Let us first consider a non-Abelian gauge theory on 5D Randall-Sundrum (RS) warped spacetime.

We consider a model that contains bulk gauge and fermion fields. Its action is given by

$$ S = \int d^5x \sqrt{-\det G} \mathcal{L}_{5D} $$

$$ = \int d^5x \sqrt{-\det G} \left(-\frac{1}{4} \text{Tr} F_{MN} F^{MN} + \Psi^{(a)} D(\eta^{(a)}) \Psi^{(a)} + \mathcal{L}_{g.f.} + \mathcal{L}_{gh} \right), \quad (2.1) $$

where $\mathcal{L}_{g.f.}$ and \mathcal{L}_{gh} stands for gauge-fixing and ghost terms, respectively.

$$ D_M \Psi^{(a)}(x, y) = (\partial_M - ig A_M(x, y)) \Psi^{(a)}(x, y), \quad (2.2) $$

$$ A_M(x, y) = \frac{1}{\sqrt{2}} \sum_A A_M^A(x, y) T^A, \quad (2.3) $$

$$ F_{MN}(x, y) = \frac{i}{g} [D_M, D_N] = \partial_M A_N - \partial_N A_M - ig [A_M, A_N] = \frac{1}{\sqrt{2}} \sum_A F_{MN}^A(x, y) T^A, \quad (2.4) $$

where $M = 1, 2, \ldots, 5$, T^A are the generators of the Lie group G, its superscript A is the number of the generators of G, ξ is the gauge-fixing parameter, g is the gauge coupling constant.

By using appropriate gauge-fixing and ghost terms discussed in e.g., Ref. 36, we get the KK mode expansion of the gauge field

$$ A_\mu^A(x, z) = \sqrt{\frac{2}{\pi R}} \sum_{n=0}^{\infty} A_{\mu}^{A(n)}(x) f_n^A(z), \quad (2.5) $$

$$ A_z^A(x, z) = \sqrt{\frac{2}{\pi R}} \sum_{n=0}^{\infty} A_{\mu}^{A(n)}(x) h_n^A(z), \quad (2.6) $$

in a conformal coordinate $z := e^{k_y}$ for $|y| \leq L$, where k is the anti-de Sitter (AdS) curvature, L is the size of fifth dimension, $f_n^A(z)$ and $h_n^A(z)$ are described by using the Bessel functions. (See, e.g., Refs. 23,24.)

Here we summarize some basic results for the RGEs for 4D gauge coupling constants. (See, e.g., 6.) We only consider the RGEs at the one-loop level, but we can find the RGEs at the two-loop level given in, e.g., Refs. 37,39. The RGE for the gauge coupling constant is given by

$$ \mu \frac{dg}{d\mu} = \beta(g), \quad (2.7) $$

where $\beta(g)$ is a β function for the gauge coupling constant. In general, a model contains real vector, Weyl fermion, and real scalar fields. The β function at one-loop level is given by

$$ \beta^{1\text{-loop}}(g) = -\frac{g^3}{16\pi^2} \left[\frac{11}{3} \sum_{\text{Vector}} T(R_V) - \frac{2}{3} \sum_{\text{Weyl}} T(R_F) - \frac{1}{6} \sum_{\text{Real}} T(R_S) \right], \quad (2.8) $$
where \(\text{Vector}, \text{Weyl}, \) and \(\text{Real} \) stand for real vector, Weyl fermion, and real scalar fields in terms of 4D theories, respectively. The vector bosons are gauge bosons, so they belong to the adjoint representation of the Lie group \(G: T(R_V) = C_2(G) \). \(C_2(G) \) is the quadratic Casimir invariant of the adjoint representation of \(G \), and \(T(R_i) \) is a Dynkin index of the irreducible representation \(R_i \) of \(G \). Note that when the Lie group \(G \) is spontaneously broken into its Lie subgroup \(G' \), it is convenient to use the irreducible representations of \(G' \). (For its branching rules, see Refs. [7,40].)

It is convenient to use the \(\beta \)-function coefficient \(b := (16\pi^2/g^3)_\text{loop}(g) \) instead of \(\beta^{-1}_\text{loop}(g) \):

\[
b = -\frac{11}{3} \sum_{\text{Vector}} T(R_V) + \frac{2}{3} \sum_{\text{Weyl}} T(R_F) + \frac{1}{6} \sum_{\text{Real}} T(R_S).
\] (2.9)

By using \(\alpha(\mu) := g^2(\mu)/4\pi \), we can rewrite the RGE in Eq. (2.7) as

\[
d \frac{d}{d \log(\mu)} \alpha^{-1}(\mu) = -\frac{b}{2\pi}.
\] (2.10)

When \(b \) is a constant, we can solve it as

\[
\alpha^{-1}(\mu) = \alpha^{-1}(\mu_0) - \frac{b}{2\pi} \log \left(\frac{\mu}{\mu_0} \right).
\] (2.11)

Let us consider the RGE for 4D gauge coupling constant in 5D gauge theories given in Eq. (2.10) by using the \(\beta \) function coefficient given in Eq. (2.9), where it depends on its matter content at an energy scale \(\mu \). We take into account the contribution to the \(\beta \) function coefficient from not only zero modes but also KK modes below their masses less than renormalization scale \(\mu \), where since the contribution to the gauge coupling constant of the zero mode from each KK mode is almost the same as that from the zero mode, we neglect their difference between them. Under the approximation, once we know mass spectra in models, we can calculate the RGE for the gauge coupling constant at one-loop level. In general, it is difficult to write down exact mass spectra because it depends on orbifold boundary conditions and parameters of bulk and brane terms. For the zeroth approximation, the mass of zero modes is \(m = 0 \) and \(k \)-th KK modes is \(m = km_{KK} \). By using the mass spectra, the RGE of the gauge coupling constant can be divided into two regions:

\[
d \frac{d}{d \log(\mu)} \alpha^{-1}(\mu) \simeq \left\{ \begin{array}{ll}
-\frac{1}{2\pi} b_0 & \text{for } \mu < m_{KK} \\
-\frac{1}{2\pi} (b_0 + k\Delta b^{KK}) & \text{for } km_{KK} \leq \mu < (k + 1)m_{KK}
\end{array} \right.,
\] (2.12)

where \(b_0 \) is a \(\beta \)-function coefficient given from its zero modes, which can be calculated by using Eq. (2.9); \(\Delta b^{KK} \) is an additional \(\beta \)-function coefficient generated by a set of KK modes of all bulk fields, which can be also calculated by using Eq. (2.9). The \(\beta \)-function coefficient \(\Delta b^{KK} \) is

\[
\Delta b^{KK} = -\frac{7}{2} C_2(G) + \frac{4}{3} \sum_{\text{Dirac}} T(R)
\] (2.13)

because a 5D bulk gauge field is decomposed into 4D gauge and scalar fields and a 5D bulk fermion field is decomposed into 4D Dirac fermion fields.

We solve the RGE in Eq. (2.12). The number of the set of KK modes for \(\mu > m_{KK} \) is approximately equal to the energy scale divided by the KK mass scale:

\[
k \simeq \frac{\mu}{m_{KK}}.
\] (2.14)

We integrate the RGE in Eq. (2.12) with respect to \(\mu \) from \(M_Z \) to \(\mu \) \((M_Z < \mu < m_{KK}) \):

\[
\alpha^{-1}(\mu) = \alpha^{-1}(M_Z) - \frac{b_0}{2\pi} \log \left(\frac{\mu}{M_Z} \right).
\] (2.15)
For $\mu > m_{KK}$, the gauge coupling constant is given by
\[
\alpha^{-1}(\mu) \simeq \alpha^{-1}(m_{KK}) - \frac{b^0}{2\pi} \log \left(\frac{\mu}{m_{KK}} \right) - \frac{\Delta b_{KK}}{2\pi} \left(\frac{\mu}{m_{KK}} - 1 \right). \tag{2.16}
\]

From Eq. (2.16), we find that for $\Delta b_{KK} > 0$, the gauge coupling constant diverges at a certain point
\[
\alpha(\mu) \to \infty, \tag{2.17}
\]
while for $\Delta b_{KK} < 0$ and $\mu \gg m_{KK}$, the gauge coupling constant reduces rapidly:
\[
\alpha(\mu) \simeq -\frac{2\pi}{\Delta b_{KK}} \frac{m_{KK}}{\mu}. \tag{2.18}
\]

\begin{table}[h]
\centering
\begin{tabular}{cccc}
\hline
Algebra & Group & Rank & $d(G)$ & $C_2(G)$ \\
\hline
A_n & $SU(n + 1)$ & $n \geq 1$ & $n(n + 1)$ & $n + 1$ \\
B_n & $SO(2n + 1)$ & $n \geq 3$ & $n(2n + 1)$ & $2n - 1$ \\
C_n & $USp(2n)$ & $n \geq 2$ & $n(2n + 1)$ & $n + 1$ \\
D_n & $SO(2n)$ & $n \geq 4$ & $n(2n - 1)$ & $2(n - 1)$ \\
E_6 & E_6 & 6 & 78 & 12 \\
E_7 & E_7 & 7 & 133 & 18 \\
E_8 & E_8 & 8 & 248 & 30 \\
F_4 & F_4 & 4 & 52 & 9 \\
G_2 & G_2 & 2 & 14 & 4 \\
\hline
\end{tabular}
\caption{Summary for the adjoint representation of any Lie group G, where $d(G)$ and $C_2(G)$ stand for the dimension and the quadratic Casimir invariant of the adjoint representation of G. See Refs. [6,7] in detail.}
\end{table}

From Eq. (2.13) and the above discussion, we also find that the gauge coupling constant of a non-Abelian gauge field based on a simple Lie group G is asymptotically free when its matter content satisfies
\[
\sum_{\text{Dirac}} T(R) < \frac{21}{8} C_2(G) \tag{2.19}
\]
because of $\Delta b_{KK} < 0$. We can check which matter content can satisfy the condition in Eq. (2.19) for any classical and exceptional Lie group by using the quadratic Casimir invariant in Table 1 and the (second order) Dynkin index of irreducible representations of each simple Lie group G listed in Ref. [7]. Especially, by using Tables in Appendix A in Ref. [7], it is easy to check the cases for up to rank-15 simple Lie groups and $D_{16} = SO(32)$. Also, by using rank-n discussion, we can check it for any rank classical Lie group.

3 Gauge-Higgs grand unification

Let us consider the RGEs for gauge coupling constants in the $SO(11)$ GHGUT shown in Table 2 and its slightly modified ones by using the results in the previous section. For the energy scale between $M_Z < \mu < m_{KK}$, the RGEs for the SM gauge coupling constants at one-loop level are the same as the RGEs in the SM.

To analyze this difference between the three SM gauge coupling constants, we introduce the following values:
\[
\Delta_{ij}(\mu) := \alpha_i(\mu) - \alpha_j(\mu), \tag{3.1}
\]
\[
\Delta'_{ij}(\mu) := \alpha^{-1}_i(\mu) - \alpha^{-1}_j(\mu), \tag{3.2}
\]
where $i, j = 3C, 2L, 1Y$ for the SM gauge coupling constants, $\alpha_i(\mu) = g_i^2/4\pi(i = 3C, 2L, 1Y)$, $\alpha_{3C}(\mu)$ is the $SU(3)C$ gauge coupling constant, $\alpha_{2L}(\mu)$ is the $SU(2)L$ gauge coupling constant, and $\alpha_{1Y}(\mu)$ is the $U(1)Y$ gauge coupling constant, and we take the $SU(5)$ normalization for $U(1)Y$. $(i, j = 4C, 2L, 2R$ for the Pati-Salam gauge coupling constants). From Eqs. (3.1) and (3.2), we have the following relation:

$$\Delta_{ij}(\mu) = -\Delta'_{ij}(\mu)\alpha_i(\mu)\alpha_j(\mu).$$

(3.3)

To discuss accuracy of unification, we introduce $\Xi_{ij}(\mu)$ defined by

$$\Xi_{ij}(\mu) := \frac{\Delta_{ij}(\mu)}{\alpha_j(\mu)} = \frac{\alpha_i(\mu)}{\alpha_j(\mu)} - 1.$$

(3.4)

Table 2: The matter content in the $SO(11)$ GHGUT in Ref. [34]. The left-side table shows the matter content of $SO(11)$ bulk fields. Orbifold BC stands for the choice of signs for fermion fields. The right-side table shows the matter content on the Planck brane. (See Ref. [34] in detail.)

We check β function coefficients of the three SM gauge coupling constants by using the RGE in Eq. (2.9). The SM matter content or the zero mode matter content in the $SO(11)$ GHGUTs is given in Table 3. By using the formula in Eq. (2.9) and the (second order) Dynkin indices listed in Refs. [6,7,40], we obtain the following well-known SM β-function coefficients:

$$b_i = -\frac{11}{3}C_2(G_i) + \frac{2}{3}\sum_{\text{Quarks&Leptons}} T(R_i) + \frac{1}{3}\sum_{\text{Higgs}} T(R_i) = \begin{pmatrix} -7 \\ -19/6 \\ +41/10 \end{pmatrix},$$

(3.5)

where $i = 3C, 2L, 1Y$ stand for $SU(3)C, SU(2)L, U(1)Y$, respectively, and we took the $SU(5)$ normalization for $U(1)Y$.

The RGE evolution for the SM gauge coupling constants in the SM is shown in Fig. 1 where we used the following input parameters for the three SM gauge coupling constants at $\mu = M_Z = 91.1876 \pm 0.0021$ given in Ref. [41]

$$\alpha_{3C}(M_Z) = 0.1184 \pm 0.0007,$$

(3.6)

$$\alpha_{2L}(M_Z) = \frac{\alpha_{em}(M_Z)}{\sin^2\theta_W(M_Z)},$$

(3.7)

$$\alpha_{1Y}(M_Z) = \frac{5\alpha_{em}(M_Z)}{3\cos^2\theta_W(M_Z)}.$$
where the relations between the EW gauge coupling constants \(\alpha_{2L}(\mu) \) and \(\alpha_{1Y}(\mu) \) and the electromagnetic (EM) gauge coupling constant \(\alpha_{em}(\mu) \) and the Weinberg angle \(\theta_W(\mu) \) are given by

\[
\alpha_{em}(\mu) = \frac{3\alpha_{1Y}(\mu)\alpha_{2L}(\mu)}{3\alpha_{1Y}(\mu) + 5\alpha_{2L}(\mu)},
\]

(3.9)

\[
\sin^2 \theta_W(\mu) = \frac{3\alpha_{1Y}(\mu)}{3\alpha_{1Y}(\mu) + 5\alpha_{2L}(\mu)}.
\]

(3.10)

The experimental values of the EM gauge coupling constant and the Weinberg angle given in Ref. [41] are

\[
\alpha_{em}^{-1}(M_Z) = 127.916 \pm 0.015,
\]

(3.11)

\[
\sin^2 \theta_W(M_Z) = 0.23116 \pm 0.00013.
\]

(3.12)

As well-known, GUTs based on the \(SU(5) \) gauge group and also other higher rank gauge group without intermediate scales predict the SM gauge coupling unification at the GUT scale \(M_{GUT} \). The relations between the SM gauge coupling constants \(\alpha_i(\mu) \) are given by

\[
\alpha_{3C}(M_{GUT}) = \alpha_{2L}(M_{GUT}) = \alpha_{1Y}(M_{GUT}).
\]

(3.13)

They lead to

\[
\sin^2 \theta_W(M_{GUT}) = \frac{3}{8}.
\]

(3.14)

Obviously, \(\sin^2 \theta_W(M_{GUT}) \neq \sin^2 \theta_W(M_Z) \), so we have to take into account the effects for the RGEs for the SM gauge coupling constants between the EW scale and the GUT scale.

Figure 1: \(\mu - \alpha^{-1}(\mu), \mu - \Delta'_{ij}(\mu), \mu - \Xi_{ij}(\mu) \) (Log-Linear plots) in the SM: the left figure shows \(\mu - \alpha^{-1}(\mu) \) (Log-Linear plots), where the red line is \(\alpha_{3C} \), the green line is \(\alpha_{2L} \), and the blue line is \(\alpha_{1Y} \); the center figure shows \(\mu - \Delta'_{ij}(\mu) \) (Log-Linear plots), where the red line is \(\Delta'_{2L,C} = \alpha_{2L}^{-1} - \alpha_{3C}^{-1} \), and the blue line is \(\Delta'_{Y,2L} = \alpha_{1Y}^{-1} - \alpha_{2L}^{-1} \); the right figure shows \(\mu - \Xi_{ij}(\mu) \) (Log-Linear plots), where the red line is \(\Xi_{3C,2L} = \alpha_{3C}/\alpha_{2L} - 1 \), and the blue line is \(\Xi_{Y,2L} = \alpha_{1Y}/\alpha_{2L} - 1 \).

At present the value of \(\alpha_i(M_Z) \) has roughly 4-digit accuracy according to Ref. [41]. Thus, it is meaningless to discuss more than 4-digit accuracy for \(\Xi_{ij}(\mu) \). We regard \(\forall |\Xi_{ij}(\mu)| < 10^{-4} \) as an almost SM gauge coupling unification scale \(M_{GCU} \). From Fig. 1 in the SM, for any scale \(\mu \), \(\forall |\Xi_{ij}(\mu)| \) cannot be less than \(10^{-4} \), and then in the SM without any correction or only negligible ones, three gauge coupling constants are not unified. If there are intermediate symmetry breaking scales between an original GUT scale and the EW scale, then in general they contribute non-negligible effect for gauge coupling unification; it is discussed in e.g., 4D \(SO(10) \) GUTs [42-46] because one of examples is \(G_{GUT} = SO(10) \supset G_{PS} \supset G_{SM} \). The rank of the original GUT gauge group \(G_{GUT} \) must be more than 4 because the rank of the SM gauge group \(G_{SM} \) is 4. The rank of the \(SO(11) \) gauge group is 5, so we will discuss its intermediate scale effect in the \(SO(11) \) GHGUTs.
3.1 Asymptotic freedom and gauge coupling unification

$SO(11)$ Irrep.	$d(G)$	$T(R)$	Type
(10000)	11	1	R
(00001)	32	4	PR
(01000)	55	9	R
(20000)	65	13	R

Table 4: Summary for representations of the Lie group $SO(11)$ satisfying a condition $T(R) < (21/8)C_2(SO(11) = 55) = 189/8$, where $SO(11)$ Irrep., $d(G)$, $T(R)$, and Type stand for the Dynkin label, the dimension, the Dynkin index, and the type of of the irreducible representations of $SO(11)$, respectively. R and PR represent real and pseudo-real representations of $SO(11)$. (See Ref. [7] in detail.)

We check the asymptotic freedom condition given in Eq. (2.19) in $SO(11)$ GHGUTs. To keep the success of the $SO(11)$ gauge-Higgs grand unification in Ref. [34], such as automatic chiral anomaly cancellation for the gauge symmetries on the Planck and TeV branes, we use the same orbifold boundary conditions (BC); the orbifold BC on the Planck brane $y = 0$ breaks $SO(11)$ to $SO(10)$; the orbifold BC on the TeV brane $y = L$ breaks $SO(11)$ to $SO(4) \times SO(7) \simeq SU(2) \times SU(2) \times SO(7)$. The two orbifold BCs break $SO(11)$ to the Pati-Salam gauge group G_{PS}. The orbifold boundary conditions for the $SO(11)$ vector representation 11 on the Planck and TeV branes are given by

$$P_{011} = \text{diag}(I_{10}, -I_1), \quad P_{111} = \text{diag}(I_4, -I_7).$$ \hspace{1cm} (3.15)

Also, by using the branching rules of the representations in Table 4 shown in Ref. [7], we find that the branching rules of pseudo-real representations of $SO(11)$ lead to complex representations of its subgroup, while the branching rules of real representations of $SO(11)$ lead to real representations of its subgroup. That is, we must use pseudo-real representations to realize a 4D chiral gauge theory. In Table 4 only the $SO(11)$ spinor representation 32 is a pseudo-real representation of $SO(11)$. (The $SO(11)$ 320 representation is the second lowest dimensional pseudo-real representation listed in Ref. [7].) Also, the zero modes of each $SO(11)$ spinor bulk fermion field are the five SM fermions plus one right-hand neutrino. Therefore, the matter content of $SO(11)$ GHGUTs must contain at least three $SO(11)$ spinor bulk fermion fields as the same as that in Ref. [34], so we subtract the contribution from the three $SO(11)$ spinor bulk fermion fields. The asymptotic freedom condition is

$$\sum_R T(R) < \frac{93}{8}. \hspace{1cm} (3.16)$$

We consider which matter contents can satisfy the asymptotic freedom condition in Eq. (3.16). To maintain the number of chiral matter fields, if we introduce an $SO(11)$ spinor bulk fermion field with a parity assignment, then we must also introduce another $SO(11)$ spinor bulk fermion field with a the opposite parity assignment. From Table 4, the $SO(11)$ 65 representation does not satisfy the condition. By using the condition in Eq. (3.16) and the Dynkin indices given in Table 2, we summarize the matter contents in Table 5 that satisfy the asymptotic freedom condition in Eq. (3.16).

In the $SO(11)$ GHGUT, a fermion number conservation lead to sufficient proton decay suppression [34]. When we impose the fermion number conservation, an $SO(11)$ 55 bulk fermion with an orbifold BCs must have another $SO(11)$ 55 bulk fermion with the opposite orbifold BCs; an $SO(11)$ 11 bulk fermion with a orbifold BCs must have another $SO(11)$ 11 bulk fermion with the opposite orbifold BCs. From Table 5, we cannot introduce any $SO(11)$ 55 bulk fermion to
The three SM gauge coupling constants \(\alpha \), \(\alpha'_L \), and \(\alpha'_Y \) are independent from the SM gauge group. From Eq. (2.16), we find that the difference between \(\alpha' \) and \(\alpha'' \) should be replaced by \(\Delta \alpha \). (3.17)

Table 5

Matter contents that satisfy three chiral generations of quarks and leptons and the asymptotic freedom condition in Eq. (3.16).

\(n_{32} \)	\(n_{11} \)	\(\Delta b^K \)
0	3	0
0	3	\(-\frac{31}{2} \)
0	5	\(-\frac{93+8n_{11}}{6} \)
1	3	\(-\frac{29+8n_{11}}{6} \)

Table 6: Matter contents that satisfy three chiral generations of quarks and leptons, the asymptotic freedom condition in Eq. (3.16), and the fermion number conservation are shown in Table 6.

\(n_{32} \)	\(n_{11} \)	\(\Delta b^K \)
3	0	\(-\frac{31}{2} \)
5	\(\leq 2 \)	\(-\frac{13}{6} \)
3	\(\leq 10 \)	\(-\frac{93+8n_{11}}{6} \)

Table 6: Matter contents that satisfy three chiral generations of quarks and leptons, the asymptotic freedom condition in Eq. (3.16), and the fermion number conservation.

Figure 2: \(\mu - \alpha^{-1}(\mu) \) (Log-Linear plots) in SO(11) GHGUTs with one KK mass scale \(m_{KK} = 10^{10} \text{ GeV} \); the left, center, and right figures show \((n_{32}, n_{11}) = (3, 0) \) \((\Delta b^K = -31/2) \), \((n_{32}, n_{11}) = (5, 2) \) \((\Delta b^K = -13/6) \), and \((n_{32}, n_{11}) = (5, 4) \) \((\Delta b^K = +1/2) \), respectively, where the real lines show the SO(11) GHGUTs; the dashed lines show the SM ones; the red lines stand for \(\alpha_{3C} \); the green lines stand for \(\alpha_{2L} \); the blue lines stand for \(\alpha_{1Y} \).

As in the previous section, we use approximate mass spectra of zero modes and \(k \)-th KK modes whose masses are \(m = 0 \) and \(m = km_{KK} \), respectively. We also use the gauge coupling constant in Eq. (2.16) for the three SM gauge group, where \(\alpha^{-1}, \theta_{0} \), and \(\Delta b^{KK} \) should be replaced by \(\alpha^{-1}, \theta_{0} \), and \(\Delta b^{KK} \). \(\alpha^{-1} \) and \(\theta_{0} \) are dependent on the SM gauge group, while \(\Delta b^{KK} \) is independent from the SM gauge group. From Eq. (2.16), we find that the difference between the SO(11) GHGUTs and the SM is only its third term dependent on \(\Delta b^{KK} \) for \(\mu > m_{KK} \). Also, the difference between \(\alpha^{-1} \) and \(\alpha'' \) (\(i \neq j \)) in the SO(11) GHGUTs is the first and second terms in Eq. (2.16). Therefore, \(\Delta_{ij}(\mu) \) in the SO(11) GHGUTs are the same as those in the SM. \(\Delta_{ij}(\mu) \) in the SM are shown in the center figure in Fig. 2. By using the asymptotic form of the gauge coupling constant given in Eq. (2.18), for \(\mu \gg m_{KK} \), \(\Xi_{ij}(\mu) \) can be written as

\[
\Xi_{ij}(\mu) \simeq -\Delta_{ij}(\mu) \left(\frac{-2\pi}{\Delta b^{SO(11)}} \frac{m_{KK}}{\mu} \right).
\]

Let us check what we can learn from Figs. 2, 3, and 4. From Fig. 2, we can clearly see that the three SM gauge coupling constants \(\alpha_{i}(i = 3C, 2L, 1Y) \) are convergent into one and rapidly
3.2 Corrections for gauge coupling constants

We check whether the above analysis is valid even when we take into account several corrections. We divide our discussion into two cases, $m_{KK} < M_{PS} \simeq M_{GUT} = 1/L$ and $m_{KK} < M_{PS} < M_{GUT} = 1/L$, where M_{PS} is the symmetry breaking scale at which G_{PS} gauge symmetry is broken in G_{SM} gauge symmetry. This is because for $m_{KK} < M_{GUT} = 1/L \simeq M_{PS}$, we use only the RGEs for the G_{SM} gauge coupling constants, while for $m_{KK} < M_{PS} < M_{GUT} = 1/L$, we have to use the RGEs for the G_{SM} gauge coupling constants below M_{PS} and the RGEs for the
Figure 4: $\mu - \alpha^{-1}(\mu)$, $\mu - \Delta_{ij}(\mu)$, $\mu - \Xi_{ij}(\mu)$ (Log-Linear plots) in SO(11) GHGUT with the same matter content ($n_{32}, n_{11} = (3, 0)$ ($\Delta b_{KK} = -31/2$) and KK mass $m_{KK} = 10^6$ GeV: the left figures show $\mu - \alpha^{-1}(\mu)$ (Log-Linear plots), where the red line represents α_{3C}, the green line represents α_{2L}, and the blue line represents α_{1Y}; the center figures show $\mu - \Delta_{ij}(\mu)$ (Log-Linear plots), where the red line is $\Delta_{C,2L}^i = \alpha_{3C}^{-1} - \alpha_{2L}^{-1}$, and the blue line is $\Delta_{1Y,2L} = \alpha_{1Y}^{-1} - \alpha_{2L}^{-1}$; the right figures show $\mu - \Xi_{ij}(\mu)$ (Log-Linear plots), where the red line is $\Xi_{3C,2L} = \alpha_{3C}/\alpha_{2L} - 1$, and the blue line is $\Xi_{1Y,2L} = \alpha_{1Y}/\alpha_{2L} - 1$. The dashed lines show the SM, the real lines show SO(11) GHGUT.

G_{PS} gauge coupling constants above M_{PS}. In the latter analysis, we have to take into account the matching conditions between the G_{PS} gauge coupling constraints and the G_{SM} gauge coupling constraints at the Pati-Salam scale M_{PS}. (Note that for 4D non-SUSY SO(10) GUTs, this effect has been discussed in many articles, e.g., Refs. [12][18].)

3.2.1 $m_{KK} < M_{GUT} \simeq M_{PS} \simeq 1/L$

Here we check whether the above analysis is valid even when we take into account mass spectra of bulk fields. Since mass spectra in the SO(11) GHGUTs depend on orbifold BCs and parameters of bulk and brane terms, it is almost impossible to use them in exact expression. Instead of them, we use approximate forms for flat space limit. We use the mass spectra of kth KK modes ($k = 1, 2, \cdots$) of bulk fields by their orbifold BCs for flat space limit:

$$(N, D), \ (D, N) : \frac{2k - 1}{2}m_{KK},$$

$$(N, N), \ (D, D) : km_{KK},$$

where N and D stand for Neumann and Dirichlet BCs, respectively. (X, Y) $(X, Y = N, D)$ stands for the orbifold BCs on the Planck and TeV branes, respectively. (This approximation is good for large k because the RS warped space is asymptotically flat space for short distance.) Only each field with (N, N) contains a zero mode. For large k, a kth KK mass spectrum in RS warped space is approaching to that in flat space. For almost cases, the difference between warped and flat spaces leads to only tiny effect for RGEs because the contribution to the β-function coefficient from each mode is logarithmic. In the following discussion, we use the above approximate mass spectra.

By using the above approximation about mass spectra of the bulk fields, the RGE for the gauge coupling constant can be divided into three regions:

$$\frac{d}{d\log(\mu)} \alpha_i^{-1} \simeq \begin{cases}
-\frac{1}{4\pi} b_0^i & \text{for } \mu < \frac{m_{KK}}{2}, \\
-\frac{1}{4\pi} (b_0^i + \delta b_{KK}^i + (k - 1)\Delta b_{KK}) & \text{for } \left(k - \frac{1}{2}\right)m_{KK} \leq \mu < km_{KK}, \\
-\frac{1}{4\pi} (b_0^i + k\Delta b_{KK}) & \text{for } km_{KK} \leq \mu < \left(k + \frac{1}{2}\right)
\end{cases}$$

(3.20)

where b_0^i is a β-function coefficients given from its zero modes, i.e., bulk fields with the orbifold BC (N, N); δb_{KK}^i is an β-function coefficient by bulk fields with the orbifold BC (N, D) or
(D, N); Δb^{KK} is an additional β-function coefficient generated by a set of KK modes of all bulk fields, where b^0_i, δb^{KK}_i, and Δb^{KK} can be calculated by using Eq. (2.9).

We solve the RGE in Eq. (3.20). As in Sec. 2 the number of the set of KK modes for $\mu > m_{KK}$ is approximately equal to the energy scale divided by the KK mass scale $k \simeq \mu/m_{KK}$ in Eq. (3.14). Under the approximation, we can solve the RGE, exactly, but that seems to be hard to see the contribution from mass splitting effects. We only write down rough approximate form for $m_{KK} \geq \mu$,

$$\alpha_i^{-1}(\mu) \simeq \alpha_i^{-1}(m_{KK}) - \left(\frac{b^0_i}{2\pi} + \frac{\delta b^{KK}_i}{4\pi} \right) \log \left(\frac{\mu}{m_{KK}} \right) - \frac{\Delta b^{KK}}{2\pi} \left(\frac{\mu}{m_{KK}} - 1 \right),$$ (3.21)

where for $M_Z < \mu < m_{KK}$,

$$\alpha_i^{-1}(\mu) = \alpha_i^{-1}(M_Z) - \frac{1}{2\pi} b^0_i \log \left(\frac{\mu}{M_Z} \right).$$ (3.22)

(For the above expression, we ignored the contribution to $\alpha_i(\mu)$ from δb^{KK}_i between $m_{KK}/2$ and m_{KK}, and etc.) We find that the first and second terms in Eq. (3.21) are negligible compared with the third term for large μ.

Field	BC	Representations of $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$
A_μ	(N, N)	$(8, 1)_0, (1, 1)_0, (1, 3)_0$
	(N, D)	$(3, 2)_{-5/6}, (3, 2)_{+5/6}$
	(D, N)	$(3, 1)_{-1/3}, (3, 1)_{+1/3}$
	(D_{eff}, N)	$(3, 1)_{+3/3}, (3, 1)_{-2/3}, (1, 1)_{+1}, (1, 1)_{-1}, (1, 1)_0$
	(D, D)	$(1, 2)_{+1/2}, (2, 1)_{-1/2}$
	(D_{eff}, D)	$(3, 2)_{-1/6}, (3, 2)_{-1/6}$
A_y	(N, N)	$(1, 2)_{+1/2}, (2, 1)_{-1/2}$
	(N, D)	$(3, 1)_{-1/3}, (3, 1)_{+1/3}$
	(D, N)	$(3, 2)_{-5/6}, (3, 2)_{+5/6}, (3, 2)_{+1/6}, (3, 2)_{-1/6}$
	(D, D)	$(8, 1)_0, (1, 1)_0, (1, 3)_0, (3, 1)_{+2/3}, (3, 1)_{-2/3}, (1, 1)_{+1}, (1, 1)_{-1}, (1, 1)_0$

Table 7: The orbifold BCs of the components of the $SO(11)$ bulk gauge field $A_M = A_\mu \oplus A_y$

By using the above discussion, we calculate how much the mass splitting effect by the orbifold BCs contributes to the gauge coupling unification. First, we need to know the contribution for δb^{KK}_i from the $SO(11)$ bulk gauge fields and the $SO(11)$ bulk fermion fields, but as long as the fermion number is preserved and their brane Dirac mass terms change the component fields with a Neumann BC to those with an effective Dirichlet BC on the Planck brane, they lead to the same contribution to all three gauge coupling constants: $\delta b^{KK}_{1L} = \delta b^{KK}_{2L} = \delta b^{KK}_{3C}$. Therefore, we consider the contribution to $\delta b^{KK}_i (i = 3C, 2L, 1Y)$ from the $SO(11)$ bulk gauge field. From Table 7, we get

$$\delta b^{KK}_{3C} = \frac{-83}{6}, \quad \delta b^{KK}_{2L} = -10, \quad \delta b^{KK}_{1Y} = -\frac{437}{15}. \quad (3.23)$$

From Fig. 5, we find the followings. First, from the center figure $\mu - \Delta l_{ij}(\mu)$ in Fig. 5 we find that the δb^{KK}_i term in Eq. (3.21) is not negligible compared with the b^0_i term, and contributes to $\Delta l_{ij}(\mu)$. From the right figures $\mu - \Xi_{ij}(\mu)$ in Figs. 4 and 5, the convergence scale is changed, but this does not affect whether the SM gauge coupling constants converge or not. Therefore, we find that orbifold BCs or mass spectra affect the detail structure of gauge couplings described by $\Delta l_{ij}(\mu)$, but they do not affect the convergence of the SM gauge coupling constants described by $\Xi_{ij}(\mu)$.
We comment on the contribution to RGEs from the $SO(10)$ spinor brane scalar field on the Planck brane in Table 2. Its non-vanishing VEV is responsible for breaking $SO(10)$ to $SU(5)$. There are twenty-one would-be NG modes. Nine modes are eaten by G_{PS}/G_{SM} gauge bosons, while twelve modes are uneaten because $SO(10)/G_{PS}$ gauge bosons absorb their corresponding 5th-dim. components of the 5D gauge field. The twelve modes become massive via their quantum correction, whose masses are expected to $O(m_{KK})$ or less depending on dynamics. They correspond to a complex scalar field with $(3,2)_{-1/6}$ under G_{SM}. It is not any $SU(5)$ multiplet, and it affects the gauge coupling unification. The contribution to the β-function coefficients of G_{SM} is given by

$$b_i^{\text{NG}} = \frac{1}{3} \sum_{\text{would-be NG}} T(R_i) = \begin{pmatrix} +1/3 \\ +1/2 \\ +1/5 \end{pmatrix},$$

(3.24)

where this contribution vanishes effectively above the brane mass scale of ϕ_{16} because the $SO(10)$ full multiplet 16 contribute to the β-function coefficients of G_{SM}. From Fig. 6 we find that it contributes to a gauge coupling unification scale, but the values of b_i^{NG} are small.

3.2.2 $m_{KK} < M_{PS} < M_{GUT} \simeq 1/L$

Let us discuss the Pati-Salam scale M_{PS} effect. In this case, we have to use different RGEs for the SM and Pati-Salam gauge coupling constants above and below M_{PS}.

We check β function coefficients of the Pati-Salam gauge coupling constants of zero modes by using the RGE in Eq. (2.9). The matter content of zero mode is shown in Table 8. By using
the formula in Eq. (2.9) and the Dynkin indices listed in Refs. [6,7,10], we obtain

\[
b_i = -\frac{11}{3} C_2(G_i) + \frac{2}{3} \sum_{\text{Weyl Fermions}} T(R_i) + \frac{1}{3} \sum_{\text{Complex Scalar}} T(R_i) = \left(\begin{array}{c}
-32/3 \\
-19/6
\end{array} \right),
\]

where \(i = 4C, 2L, 2R \) stand for \(SU(4)_C, SU(2)_L, SU(2)_R \), respectively.

Table 8: The SM matter content in the Pati-Salam base.

![Table 8](image)

Table 9: The orbifold BCs of the components of the \(SO(11) \) bulk gauge field \(A_M = A_\mu \oplus A_y \) in the Pati-Salam base.

We consider the contribution to \(\delta b_{KK} \) from the mass spectra of the \(SO(11) \) bulk gauge field. As we discussed before, the would-be NG bosons do not affect the RGEs for the SM gauge coupling constants. We can calculate \(\delta b_{KK} (i = 4C, 2L, 2R) \) by using the orbifold BCs of the \(SO(11) \) bulk gauge field shown in Table 9.

\[
\delta b_{4C}^{KK} = -\frac{35}{3}, \quad \delta b_{2L}^{KK} = -21, \quad \delta b_{2R}^{KK} = -21.
\]

We have to use the RGEs for three SM gauge coupling constants below \(M_{PS} \), while we have to use the RGEs for three Pati-Salam gauge coupling constants. To connect them, we use the following matching condition at the Pati-Salam scale \(M_{PS} (M_{KK} < M_{PS} < M_{GUT}) \),

\[
\alpha_{3C}(M_{PS}) = \alpha_{4C}(M_{PS}),
\]

\[
\alpha_{2L}(M_{PS}) = \alpha_{2L}^{SM}(M_{PS}),
\]

\[
\alpha_{1Y}(M_{PS}) = \frac{3}{5} \alpha_{2R}^{SM}(M_{PS}) + \frac{2}{5} \alpha_{4C}^{SM}(M_{PS}),
\]

where they are determined by the normalization conditions of the generators of \(G_{PS} \) and \(G_{SM} \).

(See e.g., Ref. [44] in detail.)

From the \(\mu - \Delta Y_\mu (\mu) \) figures in Fig. 7 we find that the Pati-Salam scale w/o the orbifold BCs (mass splitting) affect the detail structure of gauge couplings described by \(\Delta Y_\mu (\mu) \). Thus, even when we take into account the Pati-Salam scale, the orbifold BCs, etc., they do not change our discussion about asymptotic freedom of the SM gauge coupling constants and gauge coupling unification. For \(m_{KK} = 10^6 \) GeV and \(\mu = 10^{11-12} \), \(\text{Err}[\Delta Y_\mu (10^{11-12}\text{GeV})] \simeq O(10 - 100) \) and the deviations \(\Delta Y_{3C,2L}(10^{11-12}\text{GeV}) \) and \(\Delta Y_{1Y,2L}(10^{11-12}\text{GeV}) \) are less than 50 from the center figure in Fig. 7 and then \(M_{GCU} \) starts around \(10^{11-12} \) GeV.
Figure 7: $\mu - \Delta \bar{\alpha}_i(\mu)$ (Log-Linear plots) in $SO(11)$ GHGUT with the same matter content $(n_{32}, n_{11}) = (3, 0)$ ($\Delta b^{KK} = -31/2$) and KK mass $m_{KK} = 10^6$ GeV, and Pati-Salam scales $M_{PS} = 10^6, 10^{10}, 10^{14}$ GeV: the top figures do not include the $SO(11)$ bulk gauge field mass splitting correction; the bottom figures include the $SO(11)$ bulk gauge field mass splitting correction. The red line is $\Delta'_{3C,2L} = \alpha^{-1}_{3C} - \alpha^{-1}_{2L}$, the blue line is $\Delta'_{1Y,2L} = \alpha^{-1}_{1Y} - \alpha^{-1}_{2L}$, the purple line is $\Delta'_{2R,2L} = \alpha^{-1}_{2R} - \alpha^{-1}_{2L}$, and the magenta line is $\Delta'_{4C,2L} = \alpha^{-1}_{4C} - \alpha^{-1}_{2L}$.

4 Summary and discussion

We discussed the RGEs for the 4D SM gauge coupling constants in the $SO(11)$ gauge-Higgs grand unification scenario on the 5D RS warped spacetime. We found that the 4D SM gauge coupling constants are asymptotically free in the $SO(11)$ GHGUTs with the matter contents shown in Tables [3 and 6], which satisfy $\Delta b^{KK} < 0$. We also discussed the SM gauge coupling unification. We showed that the three SM gauge coupling constants are effectively unified above the almost SM gauge coupling unification scale M_{GCU} discussed in Sec. [3.1]. We have not fixed the GUT or compactification scale $M_{GUT} = 1/L$, but as long as $M_{GUT} = 1/L$ is larger than M_{GCU}, there is no inconsistency within at least the current experimental accuracy of the SM gauge coupling constants. In Sec. [5.2] we showed that the correction from the mass spectra of the $SO(11)$ bulk gauge fields, the would-be NG boson, and the Pati-Salam scale does not affect the asymptotic freedom and gauge coupling unification of the SM gauge couplings, while they affect the detail structures of the RGE running. From the above, we find that the Weinberg angle at $\mu = M_{GUT}$, $\sin^2 \theta_W(M_{GUT}) = 3/8$, is consistent with that at $\mu = M_Z$, $\sin^2 \theta_W(M_Z) \simeq 0.23$.

In this paper, we mainly considered the $SO(11)$ GHGUTs, but our discussion can be applied for other GHGUTs. E.g., we have already found the asymptotic freedom condition for a gauge coupling constant in general GHGUTs based on any simple Lie group G in Eq. (2.19). It is very easy to list up the the matter contents that satisfy the asymptotic freedom condition by using Tables in Ref. [7].

We discussed the RGEs for the 4D SM gauge coupling constants in 5D RS warped spacetime by using the KK expansion. There is another approach about them by using AdS/CFT-like correspondence in Refs. [49,53].

Acknowledgments

The author would like to thank Yutaka Hosotani for many stimulus discussions and valuable comments, and also thank Hidenori Fukaya, Taichiro Kugo, Minoru Tanaka, and Satoshi Yam-
aguchi for useful comments. This work was supported in part by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research No. 23104009.

References

[1] Y. Hosotani, “Dynamical Mass Generation by Compact Extra Dimensions,” Phys.Lett. B126 (1983) 309.

[2] Y. Hosotani, “Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking,” Annals Phys. 190 (1989) 233.

[3] A. T. Davies and A. McLachlan, “Gauge Group Breaking By Wilson Loops,” Phys. Lett. B200 (1988) 305.

[4] A. T. Davies and A. McLachlan, “Congruency Class Effects in the Hosotani Model,” Nucl. Phys. B317 (1989) 237.

[5] H. Hatanaka, T. Inami, and C. S. Lim, “The Gauge Hierarchy Problem and Higher Dimensional Gauge Theories,” Mod. Phys. Lett. A13 (1998) 2601–2612, arXiv:hep-th/9805067.

[6] R. Slansky, “Group Theory for Unified Model Building,” Phys. Rept. 79 (1981) 1–128.

[7] N. Yamatsu, “Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building,” arXiv:1511.08771 [hep-ph].

[8] H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” Phys. Rev. Lett. 32 (1974) 438–441.

[9] K. Inoue, A. Kakuto, and Y. Nakano, “Unification of the Lepton-Quark World by the Gauge Group SU(6),” Prog.Theor.Phys. 58 (1977) 630.

[10] H. Fritzsch and P. Minkowski, “Unified Interactions of Leptons and Hadrons,” Ann. Phys. 93 (1975) 193–266.

[11] M. Ida, Y. Kayama, and T. Kitazoe, “Inclusion of Generations in SO(14),” Prog. Theor. Phys. 64 (1980) 1745.

[12] Y. Fujimoto, “SO(18) Unification,” Phys. Rev. D26 (1982) 3183.

[13] F. Gursey, P. Ramond, and P. Sikivie, “A Universal Gauge Theory Model Based on E_6,” Phys. Lett. B60 (1976) 177.

[14] N. Maekawa and T. Yamashita, “E_6 Unification, Doublet-Triplet Splitting and Anomalous $U(1)_A$ Symmetry,” Prog. Theor. Phys. 107 (2002) 1201–1233, arXiv:hep-ph/0202050.

[15] Y. Kawamura, “Gauge Symmetry Breaking from Extra Space S^1/Z_2, Prog. Theor. Phys. 103 (2000) 613–619, arXiv:hep-ph/9902423 [hep-ph].

[16] Y. Kawamura, “Triplet-Doublet Splitting, Proton Stability and Extra Dimension,” Prog. Theor. Phys. 105 (2001) 999–1006, arXiv:hep-ph/0012125.

[17] Y. Kawamura, “Split Multiplets, Coupling Unification and Extra Dimension,” Prog. Theor. Phys. 105 (2001) 691–696, arXiv:hep-ph/0012352.

[18] N. Yamatsu, “A Supersymmetric Grand Unified Model with Noncompact Horizontal Symmetry,” Prog. Theor. Exp. Phys. 2013 (2013) 123B01, arXiv:1304.5215 [hep-ph].
[19] K. Agashe, R. Contino, and A. Pomarol, “The Minimal composite Higgs model,” *Nucl. Phys. B719* (2005) 165–187, arXiv:hep-ph/0412089 [hep-ph].

[20] Y. Hosotani, K. Oda, T. Ohnuma, and Y. Sakamura, “Dynamical Electroweak Symmetry Breaking in $SO(5) \times U(1)$ Gauge-Higgs Unification with Top and Bottom Quarks,” *Phys. Rev. D78* (2008) 096002, arXiv:0806.0480 [hep-ph].

[21] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “Novel Universality and Higgs Decay $H \rightarrow \gamma \gamma$, gg in the $SO(5) \times U(1)$ Gauge-Higgs Unification,” *Phys. Lett. B722* (2013) 94–99, arXiv:1301.1744 [hep-ph].

[22] Y. Matsumoto and Y. Sakamura, “6D Gauge-Higgs Unification on T^2/Z_N with Custodial Symmetry,” *JHEP 08* (2014) 175, arXiv:1407.0133 [hep-ph].

[23] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “LHC Signals of the $SO(5) \times U(1)$ Gauge-Higgs Unification,” *Phys. Rev. D89* no. 9, (2014) 095019, arXiv:1404.2748 [hep-ph].

[24] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “Dark Matter in the $SO(5) \times U(1)$ Gauge-Higgs Unification,” *PTEP 2014* (2014) 113B01, arXiv:1407.3574 [hep-ph].

[25] S. Funatsu, H. Hatanaka, and Y. Hosotani, “$H \rightarrow Z \gamma$ in the Gauge-Higgs Unification,” *Phys. Rev. D92* (2015) 115003, arXiv:1510.06550 [hep-ph].

[26] L. Randall and R. Sundrum, “A Large Mass Hierarchy from a Small Extra Dimension,” *Phys. Rev. Lett. 83* (1999) 3370–3373, arXiv:hep-ph/9905221.

[27] G. Burdman and Y. Nomura, “Unification of Higgs and Gauge Fields in Five-Dimensions,” *Nucl. Phys. B656* (2003) 3–22, arXiv:hep-ph/0210257 [hep-ph].

[28] N. Haba, M. Harada, Y. Hosotani, and Y. Kawamura, “Dynamical Rearrangement of Gauge Symmetry on the Orbifold $S(1)/Z(2)$,” *Nucl. Phys. B657* (2003) 169–213, arXiv:hep-ph/0212035.

[29] N. Haba, Y. Hosotani, Y. Kawamura, and T. Yamashita, “Dynamical Symmetry Breaking in Gauge Higgs Unification on Orbifold,” *Phys. Rev. D70* (2004) 015010, arXiv:hep-ph/0401183 [hep-ph].

[30] C. Lim and N. Maru, “Towards a Realistic Grand Gauge-Higgs Unification,” *Phys.Lett. B653* (2007) 320–324, arXiv:0706.1397 [hep-ph].

[31] K. Kojima, K. Takenaga, and T. Yamashita, “Grand Gauge-Higgs Unification,” *Phys. Rev. D84* (2011) 051701, arXiv:1103.1234 [hep-ph].

[32] M. Frigerio, J. Serra, and A. Varagnolo, “Composite GUTs: Models and Expectations at the LHC,” *JHEP 06* (2011) 029, arXiv:1103.2997 [hep-ph].

[33] K. Yamamoto, “The Formulation of Gauge-Higgs Unification with Dynamical Boundary Conditions,” *Nucl. Phys. B883* (2014) 45–58, arXiv:1401.0466 [hep-th].

[34] Y. Hosotani and N. Yamatsu, “Gauge-Higgs Grand Unification,” *Prog. Theor. Exp. Phys. 2015* (2015) 111B01, arXiv:1504.03817 [hep-ph].

[35] J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” *Phys. Rev. D10* (1974) 275–289.
[36] Y. Hosotani, S. Noda, and N. Uekusa, “The Electroweak Gauge Couplings in $SO(5) \times U(1)$ Gauge-Higgs Unification,” Prog. Theor. Phys. 123 (2010) 757–790, arXiv:0912.1173 [hep-ph].

[37] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization,” Nucl. Phys. B222 (1983) 83.

[38] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings,” Nucl. Phys. B236 (1984) 221.

[39] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings,” Nucl. Phys. B249 (1985) 70.

[40] W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras. Marcel Dekker, Inc., New York, 1981.

[41] Particle Data Group Collaboration, K. A. Olive et al., “Review of Particle Physics (RPP),” Chin. Phys. C38 (2014) 090001.

[42] N. Deshpande, E. Keith, and P. B. Pal, “Implications of LEP Results for SO(10) Grand Unification,” Phys. Rev. D46 (1993) 2261–2264.

[43] N. Deshpande, E. Keith, and P. B. Pal, “Implications of LEP Results for SO(10) Grand Unification with Two Intermediate Stages,” Phys. Rev. D47 (1993) 2892–2896, arXiv:hep-ph/9211232 [hep-ph].

[44] R. N. Mohapatra, Unification and Supersymmetry - The Frontiers of Quarks-Lepton Physics. Springer, 2002.

[45] G. Altarelli and D. Meloni, “A Non Supersymmetric SO(10) Grand Unified Model for All the Physics Below M_{GUT},” JHEP 1308 (2013) 021, arXiv:1305.1001.

[46] D. Meloni, T. Ohlsson, and S. Riad, “Effects of Intermediate Scales on Renormalization Group Running of Fermion Observables in an SO(10) Model,” JHEP 12 (2014) 052, arXiv:1409.3730 [hep-ph].

[47] Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, and J. Zheng, “Dark Matter and Gauge Coupling Unification in Nonsupersymmetric SO(10) Grand Unified Models,” Phys. Rev. D91 no. 9, (2015) 095010, arXiv:1502.06929 [hep-ph].

[48] K. S. Babu and S. Khan, “Minimal Nonsupersymmetric $SO(10)$ Model: Gauge Coupling Unification, Proton Decay, and Fermion Masses,” Phys. Rev. D92 no. 7, (2015) 075018, arXiv:1507.06712 [hep-ph].

[49] L. Randall and M. D. Schwartz, “Unification and the Hierarchy from AdS_5,” Phys. Rev. Lett. 88 (2002) 081801, arXiv:hep-th/0108115 [hep-th].

[50] L. Randall and M. D. Schwartz, “Quantum Field Theory and Unification in AdS_5,” JHEP 0111 (2001) 003, arXiv:hep-th/0108114 [hep-th].

[51] W. D. Goldberger and I. Z. Rothstein, “High-Energy Field Theory in Truncated AdS Backgrounds,” Phys. Rev. Lett. 89 (2002) 131601, arXiv:hep-th/0204160 [hep-th].

[52] W. D. Goldberger and I. Z. Rothstein, “Effective Field Theory and Unification in AdS Backgrounds,” Phys. Rev. D68 (2003) 125011, arXiv:hep-th/0208060 [hep-th].

[53] W. D. Goldberger, Y. Nomura, and D. Tucker-Smith, “Warped Supersymmetric Grand Unification,” Phys. Rev. D67 (2003) 075021, arXiv:hep-ph/0209158 [hep-ph].