Epigenetic silencing of LPP/miR-28 in multiple myeloma
Zhenhai Li,1 Kwan Yeung Wong,1 Godfrey Chi-fung Chan,2 Chor Sang Chim1

ABSTRACT
Aims mir-28-5p is a tumour suppressor microRNA implicated in cancers. As a CpG island is absent in mir-28-5p but present in its host gene, LPP (LIM domain containing preferred translocation partner in lipoma), we hypothesized that mir-28-5p is epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma.
Methods Methylation-specific PCR, verified by quantitative bisulfite pyrosequencing, was employed to study methylation of LPP/miR-28 in healthy controls (n=10), human myeloma cell lines (HMCLs) (n=15), and primary myeloma marrow samples at diagnosis (n=49) and at relapse (n=18). Quantitative reverse transcription PCR was used to investigate expression of mir-28-5p, LPP and CCND1.
Results LPP/miR-28 was completely unmethylated in all healthy controls and 12 (80%) HMCLs, but partially methylated in three (20%) HMCLs. Methylation of LPP/mir-28 correlated with low expression of mir-285p (p=0.012) and LPP (p=0.037) in HMCLs. In RPMI-8226R cells, in which LPP/mir-28 was partially methylated, 5-AzadC treatment led to demethylation of LPP/miR-28 and re-expression of both mir-28-5p (p=0.0007) and LPP (p=0.0007), whereas continuous culture without 5-AzadC restored LPP/miR-28 methylation and reduced expression of both mir-28-5p (p=0.0013) and LPP (p=0.0025). Moreover, a known mir-28-5p target, CCND1, was expressed at higher levels in HMCLs with LPP/miR-28 methylation than those without, consistent with a tumour suppressor role of mir-28-5p in myeloma. However, in primary samples, LPP/mir-28 was methylated in two (4.1%) at diagnosis, whereas none at relapse.
Conclusions This is the first report of epigenetic regulation of the intronic miR-28-5p expression by promoter DNA methylation of its host gene, hence warrants further study in different cancers.

INTRODUCTION
Multiple myeloma is an incurable haematological malignancy characterized by uncontrolled clonal proliferation of transformed plasma cells in the bone marrow. Clinically, it evolves from a pre-malignant condition, monoclonal gammapathy of undetermined significance (MGUS), into symptomatic myeloma at a rate of 1% per year, whereby an expanding tumour load of myeloma plasma cells in the bone marrow results in end-organ damages, including lytic bone lesions, anaemia, hypercalcaemia and impaired renal function. Genetically, overexpression of cyclin D1, D2 and/or D3, with either hyperdiploid or non-hyperdiploid karyotypes, is the hallmark of myeloma. microRNAs (miRNAs) are endogenous RNAs of ~22 nt that repress expression of target protein-coding genes by binding to the corresponding seed region binding sites in the 3’-UTR, resulting in degradation or translational block of target miRNAs. Altered expression of miRNAs, particularly oncomiRs and tumour suppressor miRNAs, has been shown in human malignancies. Moreover, downregulation of multiple tumour suppressor miRNAs in myeloma has been shown to be mediated by methylation of promoter-associated CpG island.

DNA methylation refers to catalytic addition of a methyl (-CH3) group to the carbon 5 position of thecytosine ring in a CpG dinucleotide. Carcinogenesis is characterized by global DNA hypomethylation together with locus-specific hypermethylation at the promoter-associated CpG island of tumour suppressor genes. In cancer cells, methylation of the promoter-associated CpG island of a tumour suppressor protein-coding or non-coding gene is associated with heterochromatin configuration and therefore gene silencing. Previous studies have shown methylation of the promoter-associated CpG island leading to silencing of tumour suppressor protein-coding genes, and long non-coding RNAs.

Recently, miR-28–5p, embedded in the sixth intron of LPP (LIM domain containing preferred translocation partner in lipoma), was found to be a tumour suppressor downregulated in large B-cell lymphomas, natural killer/T-cell lymphomas, hepatocellular carcinoma and colorectal cancer. For example, overexpression of miR-28–5p in colorectal cancer cells reduced cellular proliferation, migration and invasion in vitro and in vivo, which was accompanied by direct targeting of HOXB3 and inhibition of CCND1, which is important in transition from G1 to S phase in the cell cycle. Interestingly, CCND1 is frequently overexpressed in myeloma. Moreover, a promoter-associated CpG island is present at miR-28–5p host gene, LPP. Herein, as intronic miRNAs can be coregulated by promoter of the host gene, we hypothesized that miR-28–5p may be a tumour suppressor miRNA silenced by promoter methylation through its host gene, LPP in myeloma. Moreover, the expression of miR-28–5p might inversely correlate to that of its target gene CCND1. To verify this hypothesis, we studied the methylation of LPP/miR-28 in healthy normal controls, myeloma cell lines and primary myeloma marrow samples at diagnosis and at relapse. The expression...
of CCND1 was also examined and correlated to miR-28–5p in myeloma cell lines.

METHODS

Patient samples

Bone marrow samples were obtained from 49 patients with myeloma at diagnosis and 18 at relapse/progression. The diagnosis of myeloma was based on standard criteria of the International Myeloma Working Group. Complete staging work-up included bone marrow examination, skeletal survey, serum and urine protein electrophoresis, and serum immunoglobulin levels. Among the 49 newly diagnosed myeloma cases, there were 21 women and 28 men, with a median age of 63 (33–88) years. Plasma cell percentage ranges from 10% to 95%, with mean and median of 44.24% and 42.0%, respectively. Apart from four patients with insufficient clinical data of International Staging System, there were eight stage I, 21 stage II and 16 stage III cases. There were 15 IgA, 27 IgG, 2 IgD, 3 light chain and 2 extramedullary plasmacytoma, or unexplained hypercalcaemia. There were 15 IgA, 27 IgG, 2 IgD, 3 light chain and 2 non-secretary myeloma. According to the criteria of the European Group for Blood and Marrow Transplantation Myeloma Registry, ‘relapse’ from complete remission (CR) was defined as the reappearance of the same paraprotein detected by serum/urine protein electrophoresis, appearance of new bone lesion or unexplained hypercalcaemia. The study has been approved by the Institutional Review Board of Queen Mary Hospital (UW 05–269 T/932).

Cell culture

Human myeloma cell lines (HMCLs) LP-1 and RPMI-8226 were kindly provided by Professor Robert Orlowski (Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA). JJN-3, OCI-MYS and RPMI-8226R were kindly provided by Professor Wee Joo Chng (Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore). WL-2 was kindly provided by Professor Andrew Zannettino (Myeloma Research Programme, The University of Adelaide, Australia). KMS-11/BTZ and OPM-2/BTZ were obtained from Kyowa Hakko Kirin (Tokyo, Japan). NCI-H929 was purchased from American Type Culture Collection (Manassas, Virginia, USA). KMS-12-PE, MOLP-8, OPM-2 and U-266 were purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany). MMLAL and MMKKF (unpublished) were established from the myelomatous pleural effusion of patients with myeloma. Cell cultures were maintained in RPMI-1640 medium (IMDM for LP-1, DMEM + IMDM for MMLAL), supplemented with 10% or 20% fetal bovine serum, 50 U/mL of penicillin and 50 μg/mL streptomycin, in a humidified atmosphere of 5% CO₂ at 37°C. All cell culture reagents were purchased from Invitrogen (Carlsbad, California, USA).

Methylation-specific PCR (MSP)

Genomic DNA was isolated from peripheral buffy coat of 10 healthy donors, primary myeloma marrow samples at diagnosis or at relapse/progression, and 15 myeloma cell lines using QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). The extracted DNA was treated with bisulfite for conversion of all unmethylated cytosines into uracils using Epitext Bisulfite Kit (Qiagen), and served as templates for methylated-MSP (M-MSP) and unmethylated-MSP (U-MSP). MSP primer sequences and conditions are listed in table 1. Enzymatically methylated DNA (Chemicon, Temecula, California, USA) was used as positive control for M-MSP and negative control for U-MSP after bisulfite treatment.

Quantitative bisulfite pyrosequencing

Bisulfite-treated DNA was amplified with a pair of methylation-unbiased primers with a specific PCR product overlapping the MSP amplicon. Forward primer: 5′- TAT GGA GGA GGG GGA TTT A - 3′; reverse primer: 5′ - biotin - CTC TCT TAA ACC TCA ACT AC - 3′; condition: 2 mM MgCl₂/58°C/50X. The PCR product was purified and a stretch of seven consecutive CpG dinucleotides was pyrosequenced with sequencing primer: 5′- GGG GTT GGA GTT TTG - 3′.

Quantification of LPP, miR-28–5p and CCND1

Total RNA was isolated using mirVana miRNA Isolation Kit (Ambion, Austin, Texas, USA). For LPP and CCND1, reverse transcription was performed using Quantitect Reverse Transcription Kit (Qiagen), followed by quantitative reverse transcription PCR (qRT-PCR), with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as endogenous control. qRT-PCR primer sequences and conditions are listed in table 1. TaqMan assay of CCND1 (Hs00765553_m1) and GAPDH (Hs00265174_m1) was also employed. For miR-28–5p, reverse transcription was performed using TaqMan MicroRNA RT Kit (ABI), followed by qRT-PCR using TaqMan MicroRNA Assay Kit (ABI), with RNU48 as endogenous control. Expression levels of LPP, miR-28–5p and CCND1 were calculated by ΔCT method. Correlation between LPP/miR-28 methylation and miR-28–5p or LPP expression was analyzed by Student’s t-test.

Table 1

Primer set	Forward primer (5′–3′)	Reverse primer (5′–3′)	Product size (bp)	MgCl₂/Tm/cycles	Reference	
(1) Methylation-specific PCR (MSP)						
LPP/miR-28						
M-MSP	CGG GGT TTA ATT AGG GGG TTC AC	CCA AAA AAA TCC GAA CAA AAA ACG	119	1.5 mM/56°C/35X	—	
U-MSP	TGT TGG TTT AAT TAT GGG GTG TAT	CAA AAA AAT CCA AAC AAA AAA CA	119	2.0 mM/58°C/38X	—	
(2) Quantitative reverse transcription PCR						
LPP	G TG CAA GTG TTC CCT CAA GC	TTG CAT AAG CTC CTT GC	211	40		
GAPDH	ACC ACA GTC CAT GCC ATC ACT	TCC ACC ACC CTG TTG CTA TA	452	—		

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MSP, methylation-specific PCR; M-MSP, MSP for the methylated allele; TM, annealing temperature; U-MSP, MSP for the unmethylated allele.
5-Aza-2’-deoxycytidine (5-AzadC) treatment

The partially methylated myeloma cell line, RPMI-8226R, was cultured in 25 cm² flasks at a density of 1×10⁶ cells/mL. Cells were treated with fresh medium with 1 μmol/L 5-AzadC (Sigma-Aldrich, St Louis, Missouri, USA) in every 24 hours for 3 days and subsequently grew fresh medium without 5-AzadC for further 6 days. Cells were harvested for DNA and RNA extraction on days 3 and 9. Relative expression level of LPP and miR-28–5p in 5-AzadC treated group as compared to the corresponding untreated group were calculated by $2^{-\Delta\Delta CT}$ method. p Values were two-sided and p<0.05 was defined as significant difference.

RESULTS

Methylation of the putative LPP/miR-28 promoter in healthy controls and HMCLs

Methylation status of the putative LPP/miR-28 promoter was studied by MSP in healthy normal controls (n=10) and HMCLs (n=15). Complete bisulfite conversion and specificity of MSP were confirmed by direct sequencing of the M-MSP products from a positive control of methylated DNA, which showed the conversion of all unmethylated cytosines into uracils (turned into thymidines after PCR), whereas all methylated cytosines remained as cytosines (figure 1A). None of the healthy controls showed methylation of LPP/miR-28 (figure 1B). Conversely, in myeloma cell lines, LPP/miR-28 methylated cell lines (n=3) had significantly lower expression of both LPP (p=0.037; figure 2A,B; online supplementary figure 3A) and its intronic miR-28–5p (p=0.012; online supplementary figure 3B) than the unmethylated cell lines (n=12).

Moreover, RPMI-8226R cells, which were partially methylated for LPP/miR-28, were treated with a demethylation agent, 5-AzadC, followed by pyrosequencing and qRT-PCR. Results showed that treatment with 5-AzadC led to demethylation and re-expression of LPP/miR-28 on day 3, as indicated by decrease of the mean methylation percentage of a stretch of seven consecutive CpG dinucleotides from 46.7% to 26.7% after 5-AzadC treatment (online supplementary figure 2), and concomitantly re-expression of both LPP and miR-28–5p by 6.8-fold and 6.0-fold, respectively, as compared with the untreated control (figure 2D). On the other hand, when 5-AzadC-treated cells were further cultured in fresh medium without 5-AzadC, LPP/miR-28 was remethylated with a mean methylation level of 41.9%, and LPP and miR-28–5p were repressed to 2-fold and 1.6-fold, respectively, compared with the untreated group (LPP:
Thus, these data suggested that the expression of LPP/miR-28 was negatively regulated by promoter DNA methylation.

Expression of LPP/miR-28 and CCND1 in myeloma cell lines
As the tumour suppressor function of miR-28–5p was demonstrated by downregulation of CCND1,22 which is commonly overexpressed in myeloma, the expression of CCND1 was also examined and correlated with methylation and expression of LPP/miR-28 in myeloma cell lines. By qRT-PCR, the expression of CCND1 was found higher in myeloma cell lines associated with methylated and low expression of miR-28–5p than thos associated with unmethylated and high expression of miR-28–5p, indicative of an inverse relationship between the expression of miR-28–5p and CCND1 in myeloma cell lines (figure 3; online supplementary figure 4).

Methylation of LPP/miR-28 in primary myeloma samples at diagnosis and at relapse
Methylation of LPP/miR-28 was studied in both primary myeloma samples at diagnosis (n=49) and at relapse (n=18) by MSP. Results showed that there were only two (4.1%) cases at diagnosis that had methylation of LPP/miR-28 and none at relapse (figure 4; online supplementary figure 5).

DISCUSSION
There were several observations in this study. First, our data demonstrated methylation-mediated silencing of LPP/miR-28 in myeloma cells, but not in healthy controls, and hence tumour-specific. By contrast, some genes have been shown to be hypermethylated in both tumour and normal controls, and hence tissue-specific but not tumour-specific methylation (eg, miR-517c,30 miR-37331 and miR-9–2,12). Moreover, the methylation-mediated silencing of LPP/miR-28 was reversible as evidenced by the restoration of LPP/miR-28 expression on 5-Aza-dC demethylating treatment, and conversely LPP/miR-28 repression with promoter remethylation on removal of 5-Aza-dC. Hence, these data were consistent with previous studies showing that tumour-suppressive miRNAs may be silenced by promoter DNA methylation in a tumour-specific and reversible manners.15 16 33 34
Second, the current study reported for the first time that expression of both LPP and its intronic miR-28–5p was regulated by DNA methylation of LPP, consistent with previous reports of regulation of intronic miRNAs by promoter DNA methylation of its protein-coding host gene. For example, intronic miR-126 was found epigenetically silenced by promoter DNA methylation of its host gene EGFL7 (EGF-like domain, multiple 7) in malignant pleural mesothelioma. While miR-28–5p has also been reported to be coexpressed with its host gene, LPP, in B-cell lymphomas and myeloproliferative neoplasms, our study revealed for the first time that coexpression of both miR-28–5p and LPP is under epigenetic regulation via promoter DNA methylation of LPP. Interestingly, the expression of miR-28 in myeloma as compared with normal plasma cells remains controversial. For instance, by miRNA profiling in CD138-sorted plasma cells of normal, MGUS and myeloma at diagnosis, Chi et al. demonstrated that the expression of miR-28 was upregulated in myeloma as compared with normal plasma cells. By contrast, based on a similar miRNA profiling by Pichirolli et al., miR-28 was not found to be differentially expressed between myeloma and normal plasma cells. Therefore, the role of LPP/miR-28 methylation and expression in disease progression of myeloma warrants further study in an expanded cohort with RNA extracted from CD138-sorted plasma cells.

Finally, bioinformatic analysis indicated CCND1 as a potential target of miR-28–5p based on complementarity of the 3' UTR nucleotide sequence of CCND1 with seed region sequence of miR-28–5p, which was indeed confirmed by previous luciferase assay. Therefore, it is possible that the frequent overexpression of CCND1 in myeloma might be mediated by DNA methylation and hence silencing of miR-28–5p. Therefore, we checked if CCND1 expression in HMCLs correlated with LPP/miR-28 methylation. Indeed, in myeloma cell lines, an inverse correlation of CCND1 expression with LPP/miR-28 methylation was shown, consistent with the notion that LPP methylation leads

Figure 3 Expression of CCND1 in myeloma cell lines. Quantitative reverse transcription PCR analysis showed the expression of CCND1 was found relatively higher (p=0.089) in myeloma cell lines associated with methylated and lower expression of miR-28–5p than those associated with unmethylated and higher expression of miR-28–5p. MU, partially methylated; UU, completely unmethylated.

Figure 4 Methylation of LPP/miR-28 in myeloma bone marrow samples at diagnosis (Dx) and at relapse/progression (R). MSP showed LPP/miR-28 was methylated in two myeloma cases at diagnosis and none at relapse. MSP, methylation-specific PCR; M-MSP, methylated-MSP; U-MSP, unmethylated-MSP.

MW: marker; NTC: no template control; PC: positive control with methylated DNA; N1, N2: normal control; D1-12: primary samples at diagnosis; R1-12: primary samples at relapse/progression

Li Z, et al. J Clin Pathol 2018;71:253–258. doi:10.1136/jclinpath-2017-204501
REFERENCES
1. Maniser S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. *J Clin Oncol* 2017;14:100–13.
2. Kyle RA, Durie BG, Rajkumar SV, et al. Monoclonal gammapathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. *Leukemia* 2010;24:1121–7.
3. Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammapathy of undetermined significance. *N Engl J Med* 2002;346:564–9.
4. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. *J Clin Invest* 2012;122:4536–63.
5. Hideshima T, Bergsagel PL, Kuehl WM, et al. Molecular pathogenesis of multiple myeloma. *Proc Natl Acad Sci U S A* 2002;99:11215–20.
6. Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammapathy of undetermined significance. *N Engl J Med* 2002;346:564–9.
7. Croce CM. Causes and consequences of microRNA dysregulation in cancer. *Nat Rev Genet* 2009;10:704–14.
8. Wong KY, Huang X, Chim CS. DNA methylation of microRNA genes in multiple myeloma. *Carcinogenesis* 2012;33:1629–38.
9. Wong KY, Lu L, Chim CS. DNA methylation of tumor suppressor miRNA genes: a lesson from the miR-34 family. *Epigenetics* 2011;3:83–92.
10. Robertson KD. DNA methylation and human disease. *Nat Rev Genet* 2005;6:597–610.
11. Herman JG, Baylin SB. Gene silencing in cancer association with promoter hypermethylation. *N Engl J Med* 2000;342:92–5.
12. Deaton AM, Bird A. CpG islands and the regulation of transcription. *Genes Dev* 2011;25:1010–22.
13. Chim CS, Fung TK, Cheung WC, et al. SOCS1 and SHP1 hypomethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. *Blood* 2004;103:4630–5.
14. Chim CS, Pang R, Fung TK, et al. Epigenetic dysregulation of wt signaling pathway in multiple myeloma. *Leukemia* 2007;21:2527–36.
15. Wong KY, Yim RL, So CC, et al. Epigenetic inactivation of the miR34B/C in multiple myeloma. *Blood* 2011;118:5901–4.
16. Wong KY, Liang R, So CC, et al. Epigenetic silencing of miR203 in multiple myeloma. *Br J Haematol* 2011;154:569–78.
17. Wong KY, Li Z, Zhang X, et al. Epigenetic silencing of a long non-coding RNA Lnc20405s in multiple myeloma. *Mol Cancer* 2015;14:175.
18. Wong LQ, Wong KY, Li ZH, et al. Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia. *Oncotarget* 2016;7:946–10.
19. Lim EL, Trinh DL, Scott DW, et al. Comprehensive miRNA sequence analysis reveals survival differences in diffuse large B-cell lymphoma patients. *Genome Biol* 2015;16:18.
20. Ng SB, Van L, Huang G, et al. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. *Blood* 2011;118:4919–29.
21. Shi X, Teng F. Down-regulated miR-28-5p in hepatic carcinoma correlated with tumor proliferation and migration by targeting insulin-like growth factor-1 (IGF-1). *Mol Cell Biochem* 2010;408:283–93.
22. Almeida MJ, Nicoloso MS, Zeng L, et al. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. *Gastroenterology* 2012;142:886–96.
23. Athanasiou E, Kaloutsi V, Kotoula V, et al. Cyclin D1 overexpression in multiple myeloma. A morphologic, immunohistochemical, and in situ hybridization study of 71 paraffin-embedded bone marrow biopsy specimens. *Am J Clin Pathol* 2001;116:535–42.
24. Wang G, Wang Y, Shen C, et al. RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. *PLoS One* 2010;5:e13798.
25. Rodriguez A, Griffiths-Jones S, Ashurst JL, et al. Identification of mammalian microRNA host genes and transcription units. *Genome Res* 2004;14:1902–10.
26. International Myeloma Working Group. Criteria for the classification of monoclonal gammapathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. *Br J Haematol* 2003;121:749–57.
27. Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. *J Clin Oncol* 2005;23:3412–20.
28. Blame J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. myeloma Subcommittee of the EBMT. European Group for Blood and Marrow transplant. *Br J Haematol* 1998;102:1115–23.
29. Wong KY, Wan TS, So CC, et al. Establishment of a bortezomib-resistant Chinese human multiple myeloma cell line: MMLAL. *Cancer Cell Int* 2013;13:122.
30. Liu RF, Xu X, Huang J, et al. Down-regulation of miR-17a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. *Cancer Lett* 2013;329:164–73.
31. Lujambio A. CpG Island hypermethylation of tumor suppressor microRNAs in human Cancer. *Cell Cycle* 2007;6:1454–8.
32. Wong LQ, Kwong YL, Kho CS, et al. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia—implications on constitutive activation of NFκB pathway. *Mol Cancer* 2013;12:173.
33. Wong KY, So CC, Loong F, et al. Epigenetic inactivation of the miR-124-1 in multiple myeloma. *PloS One* 2013;8:e69027.
34. Chim CS, Wong KY, Qi Y, et al. Epigenetic inactivation of the miR-34a in hematological malignancies. *Carcinogenesis* 2010;31:745–50.
35. Andersen M, Trapani D, Ravji J, et al. Methylation-associated silencing of microRNA-126 and its Host Gene EGF17 in malignant pleural mesothelioma. *Anticancer Res* 2015;35:6223–9.
36. Schneider C, Setty M, Holmes AB, et al. MicroRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas. *Proc Natl Acad Sci U S A* 2014;111:8185–90.
37. Girardot M, Pecquet C, Broux S, et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. *Blood* 2010;116:437–45.
38. Chi J, Ballabio E, Chen XH, et al. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. *Biol Direct* 2011;6:23.
39. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. *Proc Natl Acad Sci U S A* 2008;105:12885–90.
40. Girardot M, Pecquet C, Chachoua I, et al. Persistent STAS activation in myeloid neoplasms recruits p53 into gene regulation. *Oncogene* 2015;34:1323–32.

Handling editor Mary Frances McMullin.

Contributors ZL carried out the experiments. KYW, ZL and CSC drafted the manuscript. KYW and CSC conceived of the study. All authors participated in the design of the study. All authors read and approved the final manuscript.

Funding This work was supported by Hong Kong Blood Cancer Foundation and NSFC (81470369) awarded to CSC.

Disclaimer The funders had no role in the design of the study and collection, analysis and interpretation of data, and in writing the manuscript.

Competing interests None declared.

Ethics approval Institutional Review Board of Queen Mary Hospital.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.