The Design Method of Aggregate Gradation of GAC-20 Modified Asphalt Mixture Based on Road Performance

Zhaohui Sun¹, Simeng Wang² and Guangqiang Zhu¹
¹The Transportation Engineering School of Shenyang Jianzhu University, Shenyang, China
²Yueyang Maritime Bureau, Yueyang, China
Email: happyforevernicety@126.com

Abstract. The road performance prediction models are established through a large number of road performance test, the road performance of GAC-20 modified asphalt mixture is predicted in the design calculation process. The gradation test prediction models are established to identify the skeleton structure type of GAC-20 modified asphalt mixture. The GAC-20 modified asphalt mixture design method based on road performance is proposed on the basis, which makes the GAC-20 modified asphalt mixture achieve the optimal in the design process and reduce the unnecessary test amount.

1. Introduction
Asphalt mixture design is one of the important factors that affect the asphalt pavement performance, and good gradation is an important guarantee for high quality road performance. The design work of asphalt mixture is done well is the basis and premise to ensure that the asphalt pavement has good road performance. Aiming at the characteristics of climate, materials and transportation in the northeast region, the design method of GAC-20 modified asphalt mixture based on road performance is proposed by applying the fractal theory.

2. The raw material performance test
Liaohe petroleum asphalt grade A No.90, which is widely used in the northeast of China and the basic performance test results are shown in Table 1, the basic performance test results of SBS modified asphalt is shown in Table 2. [1]

Detection index	Unit	Test value	Specification requirements
Penetration (25°C, 100g, 5s)	0.1mm	86.3	80-100
Ductility (15°C)	cm	>100	≥50
Softening Point (R&B)	°C	45.9	≥45

The coarse and fine aggregate of GAC-20 modified asphalt mixture use limestone gravel produced by Liaoyang Xiaotun victory quarry. The basic performance test results are shown in table 3. [3] Grade A No. 90 road petroleum asphalt, SBS modified additives and limestone was tested in accordance with the requirements of the road usage.
Table 2. SBS Modified asphalt technical index
Detection index
Penetration (25°C, 5s, 100g)
Softening Point (R&B)
Ductility (5°C, 5cm/min)
Kinematic viscosity (135°C)
Elastic recovery (25°C)

Table 3. Technical index of limestone coarse aggregate
Material specification (mm)
Technical index
Crushing value (%)
Apparent relative density (T/m^3)
Water absorption rate (%)
Adhesion with asphalt (Grade)
Consistency (%)
Content of needle and sheet granular (%)
<0.075 Particle content (%)

3. Road performance test
The 25 groups of GAC-20 modified asphalt mixture were designed by orthogonal test method, and the rutting test, water stability test and low temperature performance test were carried out under the conditions of tire ground pressure 0.84 MPa. The results of the experiment are shown in table 4.

3.1 High temperature performance test
The technical requirements for the dynamic stability of asphalt mixture rutting test are different according to different climate zones and the type of asphalt and mixture in the current specification, Climate zoning in the Northeast of China is belonging to the 2-1 area (hot in summer and severe cold in winter) and 2-2 area (hot in summer and cold in winter), due to the wheel pressure 0.84 MPa was adopted in rutting test, dynamic stability should be reduced from relevant literature to meet greater than or equal to 2000 times / mm. Therefore, the high temperature stability of GAC-20 modified asphalt mixture with the grading number of 3, 8, 11, 13, 9, 17 and 24 can meet the requirements. [12]

3.2 Water stability test
The dynamic stability ratio of asphalt mixture was proposed to evaluate the water stability of it. The dynamic stability ratio is defined as the ratio of the dynamic stability of the specimen after freezing thawing cycles and the dynamic stability of non freezing and thawing cycles specimen.[5][16]
The GAC-20 modified asphalt mixture which aggregate gradation number is 2, 3, 4, 6, 8, 9, 12, 13, 15, 18, 20 and 24 meet the water stability requirements.

4. Low temperature performance test
Because of the low temperature in winter in the Northeast area, it is prone to arise sudden changes of temperature and large temperature difference between day and so on, the low temperature performance requirements of asphalt mixture is high. The low temperature performance needs to meet the technical requirements of the specification in the Northeast region. The low temperature bending test is done by the microcomputer controlled test system for asphalt mixture according to E20 JTG - 2011 "Standard Test Methods of bitumen and bituminous mixtures for highway Engineering." (T0715) .Test results are shown in table 4.

5. Road performance prediction model
Asphalt mixture high temperature stability, water stability and low temperature stability are important road performance of asphalt pavement, if we can establish the correlation model between the fractal dimension of asphalt mixture and the evaluation index of high temperature stability, water stability and low temperature stability and the road performance of asphalt mixture can be predicted through the gradation fractal dimension to reduce the amount of test work. The prediction models of the high temperature performance, water stability and low temperature performance are established by applying

Gradation	D	Dc	Df	D_S^0	DSR	Failure strain/με
GAC-20-1	2.4914	2.5189	2.5685	1182	-	1512
GAC-20-2	2.5552	2.5046	2.5104	1432	0.95	2973
GAC-20-3	2.5665	2.4692	2.4484	3103	0.93	1584
GAC-20-4	2.4400	2.4559	2.3865	1892	1.19	2250
GAC-20-5	2.3661	2.4102	2.3077	593	-	1877
GAC-20-6	2.4171	2.4080	2.5217	1869	0.87	1728
GAC-20-7	2.3405	2.3767	2.4636	712	-	3010
GAC-20-8	2.5739	2.5044	2.4017	2192	0.92	1800
GAC-20-9	2.5367	2.4487	2.5468	2042	0.93	2818
GAC-20-10	2.5369	2.6229	2.3127	4733	-	-
GAC-20-11	2.5026	2.3988	2.4749	2413	0.83	3254
GAC-20-12	2.5012	2.5892	2.4168	1645	0.95	2484
GAC-20-13	2.4535	2.5041	2.3420	3124	0.88	2628
GAC-20-14	2.3544	2.3287	2.5518	1079	0.80	1985
GAC-20-15	2.5993	2.5381	2.4859	1207	1.08	1476
GAC-20-16	2.3388	2.3048	2.4281	602	0.75	2883
GAC-20-17	2.5394	2.4417	2.3571	4827	0.63	-
GAC-20-18	2.5572	2.6102	2.5669	1261	0.93	2358
GAC-20-19	2.5185	2.5892	2.5050	-	-	1418
GAC-20-20	2.4669	2.4130	2.4931	1690	0.9	2052
GAC-20-21	2.4860	2.5171	2.3734	-	-	3765
GAC-20-22	2.4282	2.4895	2.5870	805	-	3371
GAC-20-23	2.3507	2.2856	2.5251	905	0.82	1350
GAC-20-24	2.5835	2.5044	2.4632	3745	0.95	2812
GAC-20-25	2.5783	2.5623	2.3973	595	-	1877

Note: "-" indicate the test data is not listed in the table, it needs further verification.
MATLAB software and analyzing the correlation between the fractal dimension and the evaluation indexes such as dynamic stability, dynamic stability ratio and low temperature bending failure strain, the road performance prediction models of asphalt mixture are recommended through multiple model comparison. [12][9][16] They are shown in table 5.

Table 5. Prediction model of GAC-20 modified asphalt mixture road performance

Road performance name	Prediction model	Regression coefficient R^2
High temperature	DS=3206.5+16056.8D-2605.5Dc-14025.4Df	0.9370
Low temperature	$\varepsilon_b=-524.3-2779.6D+2999.9Dc+1210.9Df$	0.9446
Water stability	DSR=-1.2919+0.3012D+0.3414Dc+0.2462Df	0.9417

The fractal parameter ranges for GAC-20 modified asphalt mixture meeting the road performance requirements

The rutting test results of meeting the above high temperature stability requirements in the Northeast of China and the corresponding fractal dimension are summarized in Table 6.

Table 6. GAC-20 grading fractal dimension and dynamic stability data

Grading	Grading fractal dimension D	Coarse aggregate fractal dimension D_c	Fine aggregate fractal dimension D_f	Dynamic stability DS (times/mm)
GAC-20-3	2.5665	2.4692	2.4484	3103
GAC-20-8	2.5739	2.5044	2.4017	2192
GAC-20-9	2.5367	2.4487	2.5468	2042
GAC-20-10	2.5369	2.6229	2.3127	4733
GAC-20-11	2.5026	2.3988	2.4749	2413
GAC-20-13	2.4535	2.5041	2.3420	3124
GAC-20-17	2.5394	2.4417	2.3571	4827
GAC-20-24	2.5835	2.5044	2.4632	3745

As can be seen from table 6, the fractal dimension range of meeting the requirement of dynamic stability is $D=[2.4535,2.5835], D_c=[2.3988,2.6229], D_f=[2.3127, 2.5468]$.

The fractal dimension of 25 group gradations meeting asphalt mixture high temperature stability, low temperature performance and water stability were aggregated, the fractal dimension ranges which meet the road performance requirements of asphalt mixture are obtained, the fractal dimension ranges are shown in Table 7.

Table 7. The fractal dimension ranges for GAC-20 modified asphalt mixture meeting the road performance requirements

Technical requirement	D	D_c	D_f
High temperature performance	2.4535-2.5835	2.3988-2.6229	2.3127-2.5468
Low temperature performance	2.3388-2.5835	2.3048-2.5171	2.3734-2.5870
Water stability	2.4171-2.5993	2.4080-2.6102	2.3420-2.5669
Comprehensive performance	2.4535-2.5835	2.4080-2.5171	2.3734-2.5468

According to the requirements of various technical performances in the Northeast of China, Reference to the road performance requirements in the current specifications, draw on the experience of the previous research results of the research group, the technical performance requirements of GAC-20 modified asphalt mixtures are proposed in the Northeast of China, as is shown in Table 8.
Table 8. The technical requirements of GAC-20 modified asphalt mixture road performance in the Northeast of China

Performance name	The technical requirements
High temperature performance	DS ≥ 2000 times/mm
Low temperature performance	εB ≥ 2800με
Water stability	DSR ≥ 0.85

The inequality is listed according to the technical requirements of asphalt mixture in the northeast region of China.

\[
\begin{align*}
DS &= 3206.5 + 16056.8D - 2605.5D_c - 14025.4D_f \geq 2000 \\
\varepsilon_B &= -524.3 - 2779.6D + 2999.9D_c + 1210.9D_f \geq 2800 \\
DSR &= -1.2919 + 0.3012D + 0.3414D_c + 0.2462D_f \geq 0.85
\end{align*}
\]

Using MATLAB programming to get the solution of inequality, we cannot solve the range of fractal dimension.

In order to avoid the blindness of selecting the fractal dimension in the design process, the fractal dimension ranges which meet the requirements of various performance techniques are proposed in Table 7.

6. Design method of asphalt mixture based on road performance

6.1 Selection of fractal dimension

On the basis of the preliminary work of the research group, the fractal dimension of gradation meeting the requirements of the high temperature stability, low temperature performance and water stability in 25 group gradation is summarized; the fractal dimension range of meeting asphalt mixture road performance requirements is obtained. As is shown in table 7. Namely, the aggregate gradation fractal dimension D value range of 2.4535-2.5835, coarse aggregate fractal dimension D_c value range of 2.4080-2.5171 and fine aggregate fractal dimension D_f value range of 2.3734-2.5468 are recommended.

6.2 Aggregate pass rate derivation

The quality distribution of asphalt mixture has fractal characteristics; the quality distribution function of aggregate is shown in the formula (2).

\[
P(r) = \frac{r^{3-D} - r_{\text{min}}^{3-D}}{r_{\text{max}}^{3-D} - r_{\text{min}}^{3-D}}
\]

$P(r)$ is pass rate of sieve size r in the aggregate of maximum size r_{max} (%).

If the fractal dimension is known, the pass rate of seives can be calculated and analyzed by the formula (2).

When the fractal dimension of the aggregate particle size distribution is calculated by using the nominal maximum size NMPS of aggregate, the formula (2) can be adjusted to the formula (3).

\[
P(r) = \frac{r^{3-D} - r_{\text{min}}^{3-D}}{NMPS^{3-D} - r_{\text{min}}^{3-D}}P_0
\]

Formula: P_0 is the pass rate of the nominal maximum size NMPS, take 90%---100%.

D is the fractal dimension of aggregate particle size distribution, which is hereafter referred to as aggregate gradation fractal dimension.
Therefore, it can be inferred that the formula (4) can be established when \(r \) lies between PCS and NMPS, namely, When \(r \in (PCS, NMPS) \), formula (4) is established.

\[
P(r) = \frac{r^{3-D_c} - r_{min}^{3-D_c}}{NMPS^{3-D_c} - r_{min}^{3-D_c}}
\]

(4)

When \(r \in (0.075, PCS) \), formula (5) is established.

\[
P(r) = \frac{r^{3-D_f} - r_{min}^{3-D_f}}{PCS^{3-D_f} - r_{min}^{3-D_f}} \times P(PCS) = \frac{r^{3-D_f} - r_{min}^{3-D_f}}{PCS^{3-D_f} - r_{min}^{3-D_f}} \times \frac{PCS^{3-D_c} - r_{min}^{3-D_c}}{NMPS^{3-D_c} - r_{min}^{3-D_c}} \times P_0
\]

(5)

Formula, PCS is the size of boundary points of coarse and fine aggregates; NMPS is normal maximum particle sieve size. \(r_{min} \) is the smallest particle size; \(D_c \) is the coarse aggregate grading fractal dimension which particle size is in the range of NMPS to PCS, \(D_f \) is the fine aggregate grading fractal dimension which particle size is in the range of PCS and 0.075mm.

As \(r_{min} \) tends to 0, and the pass rate of \(r_{min} \) is approximately 0, to simplify the formula, the \(r_{min}^{3-D} \) of the formula (4) and (5) is given up to get the simplified formula, as is shown in formula (6) and (7).

When \(r \in (PCS, NMPS) \), formula (6) is established.

\[
P(r) = \left(\frac{r}{NMPS}\right)^{3-D_f} \cdot P_0
\]

(6)

When \(r \in (0.075, PCS) \), formula (7) is established.

\[
P(r) = \frac{r^{3-D_f} - r_{min}^{3-D_f}}{PCS^{3-D_f} - r_{min}^{3-D_f}} \times P(PCS) = \frac{r^{3-D_f} - r_{min}^{3-D_f}}{PCS^{3-D_f} - r_{min}^{3-D_f}} \times \frac{PCS^{3-D_c} - r_{min}^{3-D_c}}{NMPS^{3-D_c} - r_{min}^{3-D_c}} \times P_0
\]

(7)

For continuous grading, the particle distributing between 0.075mm and NMPS (nominal maximum size) is a fractal distribution, that is, only a fractal dimension \(D \) can describe the distribution of aggregate particles. For discontinuous gradation, the aggregate gradation is in the scale range of the critical point of the coarse and fine aggregate being taken as the dividing point. There are two fractal dimensions between the particle size of 0.075mm and NMPS (nominal maximum size). Namely, the multifractal distribution requires two fractal dimensions to accurately describe the distribution of particle. Formula (6) and (7) can be used as a formula of the fractal gradation theory for calculating the grading. For the ideal continuous gradation, \(D_c = D_f = D \), for the dense gradation, \(D_c = D_f \), and for discontinuous gradation, there is a great difference between \(D_c \) and \(D_f \).

6.3 Road performance prediction

The high temperature stability, low temperature stability and water stability of GAC-20 modified asphalt mixture were predicted by the performance prediction model established in Table 5. In the forecast model, the forecast value of each index is calculated by fractal dimension \(D_c \), \(D_f \) and \(D \). The fractal dimension is resolicited in the recommended range if the road performance evaluation index cannot meet requirements until the prediction results are satisfied with the performance requirements of the road.

6.4 Grading test

According to the previous research results, the correlation model between the fractal volume parameter and the fractal dimension is established to test gradation. The prediction and test are done when the fractal dimension of coarse and fine aggregate meeting the road performance requirements are substituted to these prediction models of coarse aggregate fractal void volume \(V_{co} \) and fractal
volume of fine aggregate in coarse aggregate V_f, the coarse aggregate can form an effective framework when coarse aggregate fractal void volume V_{co} is larger than the fractal volume of fine aggregate in coarse aggregate V_f, the fractal dimension is adjusted to form a skeleton if the skeleton is not formed.$^{[11]}$

The prediction model of fractal volume parameters is shown in table 9.

Table 9. The Prediction Model of Fractal Volume Parameter

Grading test index	Prediction model	Regression parameters R^2
Coarse aggregate fractal void volume V_{co}	$V_{co} = -1.5783 -0.4599D_{c} + 1.2698D_{f}$	0.9439
Fractal volume of fine aggregate in coarse aggregate V_f	$V_f = -1.0892 +0.6795D_{c} - 0.1456D_{f}$	0.9741
$V_{co} \geq V_f$	$1.1394D_{c} -1.4154D_{f} \leq 0.4891$	

6.5 Test and Inspection

The high temperature stability, low temperature performance, water stability and other performance of asphalt mixture are tested for grading meeting the above steps, the design of the grading is qualified if all the requirements are meet, otherwise, the reasons should be timely found and corrected, or the gradation is redesigned in accordance with the above method steps until the requirements are meet.

7. conclusion

Based on the previous work, the design method of GAC-20 modified asphalt mixture based on road performance in Northeast of China was put forward.

The fractal dimension for meeting the road performance requirements will be taken as a design parameter by applying the fractal theory and each sieve passing rate is deduced by the fractal dimension. The road performance of GAC-20 modified asphalt mixture can be predicted by using the performance prediction model established, the gradation skeleton structure are test by using the fractal volume parameters prediction model. Finally, the GAC-20 modified asphalt mixture which meets the predictive road performance requirements was tested to get excellent performance gradation.

8. Acknowledgement

This research was financially supported by the Natural Science Foundation of China (51178278).

9. References

[1] Occupation Standard of the People’s Republic of China., JTG E20-2011 “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering” [S]

[2] High way Science Research Institute, Ministry of Communications JTG F40 - 2004 “Technical Specifications for Construction of Highway Asphalt Pavements” [S]

[3] Occupation Standard of the People’s Republic of China, JTG E42 - 2005 “Test Methods of Aggregate for Highway Engineering”, [S]

[4] Nukunya,B., R. Roque, M.Tia,B. Birgisson. Evaluation of VMA and other Volumetric Properties as Criteria for the Design and Acceptance of Superpave Mixtures[J].Journal of the Association of Asphalt Paving Technologists, 2002, Vol.79, pp.38-69

[5] Zhao-Hui SUN, Tie-Bin WANG, Ze-Feng WU and Zhi-Song WANG, Research on the Evaluation Method of Water Stability for Large Size aggregate Particle Asphalt Mixture Applied Mechanics and Materials Vol. 692 (2014) pp 497-500 Submitted: 10. 09. 2014

[6] Z.H. Sun , Q. B. Yu, T.B. Wang, B.Y. Yu, G.Q. Zhu; J. Ma The Effect of Asphalt and Aggregate Gradation on the Low-temperature Performance of Asphalt Mixtures for Intermediate and Underlying Course Applied Mechanics and Materials, Vols. 505-506(-), pp 251-254, 2014

[7] Al-Swailmi S., Evaluation of Water Damage of Asphalt Concrete Mixtures Using the Environmental Conditioning System (ECS). Proceedings, 2012.

[8] Rahmani, Nazmul H.G. Fractal structure of asphaltene aggregates Journal of Colloid and Interface Science, v 285, n 2, p 599-608, May 15, 2005

7
[9] Sun, Z.H.; Cheng, H.Y.; Zhu, G.Q.; Ma, J. Low temperature performance prediction model of GAC-20 modified asphalt mixture International Conference on Materials Science and Engineering, 2017, 164 (1): 1-6

[10] Leonardi, G. Fractal dimension for the characterization of the porosity of asphalt concretes [J]. Archives of Civil Engineering, v 56, n 4, p 321-333, December 1, 2010

[11] Zhaohui SUN, Tiebin WANG, Zefeng WU Guangqiang ZHU The Gradation Test Prediction Model of GAC-20 Modified Asphalt Mixture, Functional Pavement Design, 2016, 198-200

[12] Zhao-Hui Sun, Shuo Zhang, Guang-Qiang Zhu The High Temperature Performance Prediction Model of GAC-20 Modified Asphalt Mixture, International Conference on Material Science & Engineering - 2016

[13] Villani, M.M. Application of fractal analysis for measuring the effects of rubber polishing on the friction of asphalt concrete mixtures [J] Wear, 2014, 320 (1): 179-188

[14] RK Chakraborti, KH Gardner, JF Atkinson, JEV Benschoten, Changes in fractal dimension during aggregation, Water Research, 2003, 37(4): 873-83

[15] Zhaohui SUN Tiebin WANG Zhanqiang HOU Guangqiang ZHU The water stability prediction model of GAC-20 modified asphalt mixture INTERNATIONAL A L CONFERENCE on APPLIED MECHANICS, 2015, 733-739