Lab resource: Stem Cell Line

Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C.

Davide Rovina, Elisa Castiglioni, Francesco Niro, Andrea Farini, Marzia Belicchi, Elisabetta Di Fede, Cristina Gervasi, Stefania Paganini, Marina Di Segni, Yvan Torrente, Rosaria Santoro, Giulio Pompilio, Aoife Gowran

ABSTRACT

Becker Muscular dystrophy (BMD) is an X-linked syndrome characterized by progressive muscle weakness. BMD is generally less severe than Duchenne Muscular Dystrophy. BMD is caused by mutations in the dystrophin gene that normally give rise to the production of a truncated but partially functional dystrophin protein. We generated an induced pluripotent cell line from dermal fibroblasts of a BMD patient carrying a splice mutation in the dystrophin gene (c.1705-8 T>C). The iPSC cell-line displayed the characteristic pluripotent-like morphology, expressed pluripotency markers, differentiated into cells of the three germ layers and had a normal karyotype.

Resource Table:

Unique stem cell line identifier	CCMi004-A
Alternative name(s) of stem cell line	BMD3 c.13
Institution	Centro Cardiologico Monzino-IRCCS
Contact information of distributor	Aoife Gowran; aoife.gowran@ccfm.it
Type of cell line	iPSC
Origin	Human
Additional origin info	Age: 5 (at skin biopsy)
Clonality	Clonal
Cell Source	Dermal fibroblasts
Genetic Modification	YES
Type of Modification	Spontaneous mutation
Associated disease	Becker Muscular dystrophy
Gene/locus	DMD gene, Xp21.2-p21.1
Method of modification	No modification
Name of transgene or resistance	N/A
Inducible/constitutive system	N/A
Date archived/stock date	July 2019
Cell line repository/bank	The Telethon Biobank and the Eurobiobank

https://doi.org/10.1016/j.scr.2020.101819

Received 30 January 2020; Received in revised form 20 March 2020; Accepted 12 April 2020

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
D. Rovina, et al.

The patient's fibroblasts were electroporated with plasmids encoding L-
function. DMD (Muscular Dystrophy) and will help the screening
process in BMD, from asymptomatic patients to those restricted to a
wheelchair by age sixteen. Although the majority of patients survive to
late adulthood (50–60 years), many develop cardiomyopathy char-
acterized by a progressive decline in ejection fraction and heart failure.

After obtaining informed consent and institutional ethical approval
dermal fibroblasts were isolated from a 5-year-old child with BMD. To
from CCMi004-A showed the presence of the single nucleotide sub-
Fig. 1E). Sanger sequencing, performed on genomic DNA extracted
all the entities were admitted. The fibroblasts were electroporated with plasmids encoding

Materials and methods

Reprogramming of BMD patient's fibroblasts to iPSCs

The fibroblasts were isolated from the patient's skin biopsy by explant
culture. Fibroblasts were transfected with 1.25 µg of episomal vectors
culture. Fibroblasts were transfected with 1.25 µg of episomal vectors

Flow cytometry

iPSCs detached using ReLeSR™ (Stemcell Technologies), were re-
suspended in PBS/0.5 mM EDTA, fixed for 20 min on ice using BD

culture. Fibroblasts were transfected with 1.25 µg of episomal vectors

Karyotyping

Metaphase chromosomes were harvested from iPSC cultures at pas-
tivated in mFreSR™ (Stemcell Technologies) and stored at −180 °C for future experiments (Table 1).

Pluripotency marker immunocytochemistry

CCMi004-A were cultured in vitronectin-coated chamber slides for analysis of pluripotency proteins (SSEA4). iPSCs were fixed in 4% for-
maldehyde (10 min RT), treated with 0.1% Triton-X 100 in PBS for 5

In vitro trilineage differentiation potential assay

CCMi004-A cells were differentiated into cells of the ectodermal or

Karyotype analyses, performed on more than 30 metaphases, demonstrated that the iPSC line has a normal karyotype

In vitro trilineage differentiation assays showed that CCMi004-A is able to differentiate into cells of each germ layer (Ectoderm NESTIN/ PAX6, mesoderm cardiac troponin T type 2 CTNT2 and endoderm SOX17; Fig. 1D). Karyotype analyses, performed on more than 30 metaphases, demonstrated that the iPSC line has a normal karyotype

All antibody details are listed in Table 2.

Materials and methods

Reprogramming of BMD patient's fibroblasts to iPSCs

The fibroblasts were isolated from the patient's skin biopsy by explant

Flow cytometry

iPSCs detached using ReLeSR™ (Stemcell Technologies), were re-
suspended in PBS/0.5 mM EDTA, fixed for 20 min on ice using BD

Karyotyping

Metaphase chromosomes were prepared from iPSC cultures at pas-
tivated in mFreSR™ (Stemcell Technologies) and stored at −180 °C for future experiments (Table 1).

Pluripotency marker immunocytochemistry

CCMi004-A were cultured in vitronectin-coated chamber slides for analysis of pluripotency proteins (SSEA4). iPSCs were fixed in 4% for-
maldehyde (10 min RT), treated with 0.1% Triton-X 100 in PBS for 5

In vitro trilineage differentiation potential assay

CCMi004-A cells were differentiated into cells of the ectodermal or

Karyotype analyses, performed on more than 30 metaphases, demonstrated that the iPSC line has a normal karyotype

In vitro trilineage differentiation assays showed that CCMi004-A is able to differentiate into cells of each germ layer (Ectoderm NESTIN/ PAX6, mesoderm cardiac troponin T type 2 CTNT2 and endoderm SOX17; Fig. 1D). Karyotype analyses, performed on more than 30 metaphases, demonstrated that the iPSC line has a normal karyotype

All antibody details are listed in Table 2.

Materials and methods

Reprogramming of BMD patient's fibroblasts to iPSCs

The fibroblasts were isolated from the patient's skin biopsy by explant

Flow cytometry

iPSCs detached using ReLeSR™ (Stemcell Technologies), were re-
suspended in PBS/0.5 mM EDTA, fixed for 20 min on ice using BD

Karyotyping

Metaphase chromosomes were prepared from iPSC cultures at pas-
tivated in mFreSR™ (Stemcell Technologies) and stored at −180 °C for future experiments (Table 1).

Pluripotency marker immunocytochemistry

CCMi004-A were cultured in vitronectin-coated chamber slides for analysis of pluripotency proteins (SSEA4). iPSCs were fixed in 4% for-
maldehyde (10 min RT), treated with 0.1% Triton-X 100 in PBS for 5

In vitro trilineage differentiation potential assay

CCMi004-A cells were differentiated into cells of the ectodermal or

Karyotype analyses, performed on more than 30 metaphases, demonstrated that the iPSC line has a normal karyotype

In vitro trilineage differentiation assays showed that CCMi004-A is able to differentiate into cells of each germ layer (Ectoderm NESTIN/ PAX6, mesoderm cardiac troponin T type 2 CTNT2 and endoderm SOX17; Fig. 1D). Karyotype analyses, performed on more than 30 metaphases, demonstrated that the iPSC line has a normal karyotype

All antibody details are listed in Table 2.
obtained at 100X magnification (Olympus BX microscope, U-CMAD3 Olympus camera). About 30 metaphases were analysed and karyotyped using an automated cytogenetic imaging system (MetaSystems Gmbh, Germany).

Dystrophin mutation analyses by Sanger sequencing

DNA was extracted from iPSCs using the QIAamp DNA Mini Kit (Qiagen) according to manufacturer's instructions. The DMD intron 14–15 was amplified with GoTaq Flexi DNA polymerase (Promega) using exon flanking primers (95 °C-56 °C-72 °C, 35 cycles). PCR products were then sent to Microsynth for direct Sanger sequencing. Electropherograms were aligned and analysed with ChromasPro software (Technelysium Pty Ltd). DNA extracted from iPSCs obtained from a healthy individual's dermal fibroblasts were used as controls.

STR analysis

STR analysis was performed by the ATCC cell-line authentication service. Seventeen STR loci plus the gender-determining locus,
Amelogenin, were amplified using the commercially available PowerPlex® 18D Kit from Promega. The cell-line sample was processed using the ABI Prism® 3500xl Genetic Analyzer. Data were analyzed using GeneMapper® ID-X v1.2 software (Applied Biosystems). Appropriate positive and negative controls were run and confirmed for each sample submitted.

Mycoplasma analyses

To verify the absence of Mycoplasma we used EZ-PCR Mycoplasma Detection Kit (Biological Industries) according to the manufacturer’s instructions. A positive control was included in the kit.

Declaration of Competing Interest

The authors declare that they are unaware of any conflict of interests associated with this work.

Acknowledgments

Fondazione IEO-CCM (Pompilio, Rovina), Italian Ministry of Health (Pompilio, Torrente), Fondazione Umberto Veronesi (Gowran), Fondazione Telethon (Pompilio, Torrente) and the European Research Area Network on Cardiovascular Diseases (Gowran).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.scr.2020.101819.

References

Constantin, B., 2014. Dystrophin complex functions as a scaffold for signalling proteins. Biochim. Biophys. Acta. 1838 (2), 635–642.

Flanigan, K.M., 2014. Duchenne and Becker muscular dystrophies. Neurol. Clin 32 (3), 671–688.

Muntoni, F., Torelli, S., Ferlini, A., 2003. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2 (12), 731–740.

Okita, K., Ichisaka, T., Yamanaka, S., 2007. Generation of germline-competent induced pluripotent stem cells. Nature 7151 (448), 313–317.

Lian, X., et al., 2013. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc. 8 (3), 162–175.