Supplementary Material

Aggregation Behavior of Cetyldimethylethylammonium Bromide under the Influence of Bovine Serum Albumin in Aqueous/ Electrolyte Solutions at Various Temperatures and Compositions: Conductivity and Molecular Dynamics Study

Farid Ahmeda,b, Mohammad Robel Molla a,b, Mousumi Saha c, Imrul Shahriarc, Mohammad Saidur Rahman a,d, Mohammad A. Halim e, Malik Abdul Rub e,f, Md. Anamul Hoque a,* Abdullah M. Asiri e,f

aDepartment of Chemistry, Jahangirnagar University, Savar, Dhaka- 1342, Bangladesh
bBangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
cDivision of Quantum Chemistry, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
dDepartment of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
eChemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
fCenter of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia

*Correspondence address:
Professor Dr. Md. Anamul Hoque
Department of Chemistry
Jahangirnagar University
Savar, Dhaka-1342, Bangladesh
Tel: PABX: 880-2-7791045-51, extension: 1437
Fax: 880-2-7791052
Email: ahoque_ju@yahoo.com, ahoque_ju@juniv.edu
SM Table 1

Thermodynamic parameters of transfer for the micellization of BSA mediated CDMEAB solution (with/without salt of different ionic strength)a

System	Medium	I_{Salt}/mmol.kg-1	T/K	$\Delta G^0_{1,\text{m, tr}}$	$\Delta G^0_{2,\text{m, tr}}$	$\Delta G^0_{3,\text{m, tr}}$	$\Delta H^0_{1,\text{m, tr}}$	$\Delta H^0_{2,\text{m, tr}}$	$\Delta H^0_{3,\text{m, tr}}$	$\Delta C^0_{1,\text{m, tr}}$	$\Delta C^0_{2,\text{m, tr}}$	$\Delta C^0_{3,\text{m, tr}}$
				kJ mol-1	kJ K-1 mol-1	kJ K-1 mol-1	kJ K-1 mol-1					
BSA+CDMEAB	H\textsubscript{2}O	0.00	298.15	0.92	-2.11	0.55	25.02	-13.04	-8.59	-1.60	-0.16	-0.38
			303.15	3.48	3.46	2.20	17.48	-14.02	-10.13	-1.87	-0.13	-0.43
			308.15	2.10	1.02	2.69	5.70	-13.94	-12.53	-2.13	-0.08	-0.49
			313.15	3.54	2.40	2.07	-5.16	-14.49	-15.35	-2.40	-0.04	-0.53
			318.15	1.95	4.17	0.73	-16.05	-15.20	-18.20	-2.66	0.00	-0.58
			323.15	5.30	1.81	0.66	-31.65	-14.38	-20.82	-2.90	0.04	-0.63
BSA+CDMEAB	H\textsubscript{2}O+NaCl	1.50	298.15	3.06	5.43	4.94	-36.42	-85.60	-16.27	1.41	3.07	0.40
			303.15	1.20	2.98	1.65	-29.74	-72.31	-15.41	1.52	3.60	0.55
			308.15	1.55	0.92	2.69	-21.73	-51.49	-11.20	1.66	4.16	0.70
			313.15	3.20	1.00	2.11	-11.92	-27.09	-6.80	1.80	4.71	0.88
			318.15	2.00	0.84	1.72	-3.46	-2.98	-2.43	1.94	5.27	1.03
			323.15	1.05	1.07	1.74	6.69	23.30	2.78	2.07	5.81	1.19
BSA+CDMEAB	H\textsubscript{2}O+Na\textsubscript{2}SO\textsubscript{4}	1.50	298.15	5.35	5.13	4.70	-51.25	-4.92	-1.52	2.06	0.08	0.02
			303.15	5.80	6.28	3.19	-41.27	-4.34	-1.60	2.18	0.10	0.05
			308.15	4.42	4.63	2.77	-30.34	-3.44	-1.14	2.29	0.13	0.07
			313.15	4.49	6.23	4.01	-17.08	-3.28	-0.42	2.42	0.16	0.14
			318.15	4.85	6.30	4.02	-5.84	-2.51	0.06	2.54	0.19	0.15
			323.15	4.65	5.75	3.77	7.39	-1.07	0.88	2.66	0.21	0.18

aRelative standard uncertainties (u_r) limits are $u_r(\Delta G^0_{\text{m, tr}})$, $u_r(\Delta H^0_{\text{m, tr}})$, and $u_r(\Delta C^0_{\text{p, m, tr}})$ are 0.03, 0.04, and 0.04 respectively.
SM Fig. 1. Plot of $\ln (Xc^*_1)$ versus T for (BSA+CDMEAB) system containing 0.03 mmol.kg$^{-1}$ BSA in aqueous solution.
SM Fig. 2. Representative plots of contribution of enthalpy, $\Delta H_{1,m}^0$ (■) and entropy, $-T \Delta S_{1,m}^0$ (●) to $\Delta G_{1,m}^0$ for (CDMEAB+BSA) mixed system containing 0.03 mmol.kg$^{-1}$ BSA in (a) water, (b) aqueous solution of NaCl (ionic strength, $I = 1.50$ mmol.kg$^{-1}$) and (c) aqueous solution of Na$_2$SO$_4$ (ionic strength, $I = 1.50$ mmol.kg$^{-1}$)
SM Fig. 3. Plot of enthalpy-entropy compensation event for (BSA+CDMEAB) systems having 0.03 mmol.kg\(^{-1}\) BSA solution in an aqueous medium for \(c_1^*\)
SM Fig. 4. Interaction of sodium ion (in purple) with four negatively charged amino acid residues of BSA (obtained from a simulation snapshot at 20 ns)
SM Fig. 5. Simulation snapshots of BSA+CDMEAB in (A) H₂O and (B) H₂O+NaCl