Single electron tunneling with “slow” insulators

S. A. Fedorov,1,2 N. M. Chchelkatchev,3,1,4,5 O. G. Udalov3,6 and I. S. Beloborodov3

1Department of Theoretical Physics, Moscow Institute of Physics and Technology, Moscow 141700, Russia
2P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
3Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA
4Institute for High Pressure Physics, Russian Academy of Science, Troitsk 142190, Russia
5L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences,117940 Moscow, Russia
6Institute for Physics of Microstructures, Russian Academy of Science, Nizhny Novgorod, 603950, Russia

Dated: January 5, 2015

Usual paradigm in the theory of electron transport is related to the fact that the dielectric permittivity of the insulator is assumed to be constant, no time dispersion. We take into account the “slow” polarization dynamics of the dielectric layers in the tunnel barriers in the fluctuating electric fields induced by single-electron tunneling events and study transport in the single electron transistor (SET). Here “slow” dielectric implies slow compared to the characteristic time scales of the SET charging-discharging effects. We show that for strong enough polarizability, such that the induced charge on the island is comparable with the elementary charge, the transport properties of the SET substantially deviate from the known results of transport theory of SET. In particular, the coulomb blockade is more pronounced at finite temperature, the conductance peaks change their shape and the current-voltage characteristics show the memory-effect (hysteresis). However, in contrast to SETs with ferroelectric tunnel junctions, here the periodicity of the conductance in the gate voltage is not broken, instead the period strongly depends on the polarizability of the gate-dielectric. We uncover the fine structure of the hysteresis-effect where the “large” hysteresis loop may include a number of “smaller” loops. Also we predict the memory effect in the current-voltage characteristics I(V), with I(V) ≠ −I(−V).

PACS numbers: 77.80.-e,72.80.Tm,77.84.Lf

I. INTRODUCTION

The single electron transistor (SET) is one of the most studied nanosystem. This is the simplest device where strong electron correlations and quantum nature of electron can be directly observed. It consists of two electrodes known as the drain and the source, connected through tunnel junctions to one common electrode with a low self-capacitance, known as the island. The electrical potential of the island can be tuned by a third electrode, known as the gate, capacitively coupled to the island, see Fig. 1.

For decades there was a paradigm in the theory of electron transport at the nanoscale related to the fact that the dielectric permittivity of nanojunctions was assumed to be constant, without any time dispersion. However, this paradigm is not always true. A number of physical processes contribute to the polarization of dielectrics. Some of them are fast and some are slow compared to the time scales of electric field change in the nanojunctions. Recently, there was a progress in the development of new types of dielectric materials with strong and at the same time very slow response to the external electric field. The SET is a perfect device where this physics can be studied. This is related to the fact that the charging-discharging effects in the SET are controllable and have well-defined time scales.

The Coulomb blockade suppresses the electron transport except for values of the gate voltage where electrons sequentially tunnel one by one through SET from source to drain. The electric field in the tunnel junctions is changing in time while electrons tunnel through the island. The dielectric layers in the tunnel junctions are polarized at finite electric field. The usual assumption in the theory of SET is related to the fact that the polarization of any dielectric layer in the tunnel barrier follows the electric field in time: $P(t) = \alpha E(t)$, where the constant α is the dielectric permittivity of the dielectric layer. It follows from the last expression that the capacitance C of any tunnel junction in the SET is related to the geometric capacitance $C(0)$ as $C = \epsilon C(0)$, where $\epsilon = (1+4\pi\alpha)$. And this is the only place where the polarization appears in the theory of SET. However, these relations have limited applicability. In general, the polarization of the dielectric is nonlocal in time: $P(t) = \int_{-\infty}^{t} \chi(t-\tau)E(\tau)d\tau$, where $\chi(t)$ is the dynamical electric permittivity. Here we assume the linear response regime. The time dependence of function $\chi(t)$ implies that tuning of dielectric polarization $P(t)$ by an electric field can not be done arbitrary fast. This is happening, for example in dielectric materials with polarization being due to shift of heavy and inert ions.

The response of polarization $P(t)$ to the external field is characterised by the time-scale τ_p, the decay time of function $\chi(t)$. The second characteristic time-scale in the problem: the time of the electric field correlation, τ_c. For $\tau_p \ll \tau_c$ the polarization has the form $P(t) \approx \alpha E(t)$, where $\alpha = \int_{-\infty}^{\infty} \chi(\tau)d\tau$. In the opposite case, $\tau_c \ll \tau_p$, the polarization $P(t)$ does not follow the electric field.
$\mathcal{E}(t)$ instantaneously and it has the form

$$\mathbf{P}(t) \approx \alpha \langle \mathcal{E} \rangle,$$

where $\langle \mathcal{E} \rangle$ is the electric field averaged over the time scale τ_p. It follows from Eq. (1) that the simple relation for capacitance, $C = \varepsilon C^{(0)}$, is not valid at shorter times. Therefore the theory of single-electron tunneling in the SET should be modified and this is the main goal of our paper.

The characteristic time of charge relaxation in the SET is $\tau_p = R_\infty C_\infty$, where R_∞ is of the order of the bare tunnel resistance of the left and right tunnel junctions and C_∞ is the sum of all the capacities, see Fig. 1. The time scale τ_p is in the range of dozens of nano- to picoseconds depending on the system geometry and materials. The switching time of a dielectric material, τ_p, is in the range of seconds to femto-seconds depending on the material and the particular physical process behind the polarization phenomena.

Therefore the regime of “slow” insulator, $\tau_p \ll \tau_c$, is very important for SET-devices. However, there is a paradigm that the existing theories with $\tau_p \ll \tau_c$ satisfactory explain most experiments with SETs. What is the justification for new theory? The answer is simple: the effects discussed in this paper are especially pronounced in SETs when on average the polarization of a dielectric tunnel junction in the SET is strong enough meaning that the charge induced on the grain by the polarized dielectric is of the order of the electron charge. This condition can be reached for large enough dielectric permittivity ε only. How large we will discuss below.

Recently we have found a number of transport effects in the SET with slow ferroelectric in the capacitors, see Refs. [1] and [2]. In particular, we investigated the memory effect in this SET. Here we uncover new physical phenomena and report about the memory-effect (hysteresis) where conductance periodicity in the gate voltage is not broken. Instead, the period strongly depends on the polarizability of the gate-dielectric due to the linear dependence of the polarization on the external field in the dielectric. Also, we uncover the unusual fine structure of the hysteresis-effect, where “large” hysteresis loop may include a number of “smaller” loops. We predict that the memory effect exists in the current-voltage characteristics, meaning that $I(V) \neq -I(-V)$ for a given memory branch even at $V_g = 0$. The last two effects may exist in the ferroelectric SET, however non of them have been found before.

The paper is organized as follows. In Sec. II we discuss the general properties of SET with slow dielectric and the methods for investigation of transport properties. In Sec. III we investigate the SET with slow dielectric located in the gate electrode at zero bias voltage, $V_2 - V_1$. In Sec. IV we consider the case with slow dielectric in the left and right tunnel barriers of the SET and uncover the memory effect in the current-voltage characteristics, $I(V)$. Finally, in Sec. V we discuss the validity of our approach and the requirements for slow dielectric materials which are necessary to observe the effects predicted in this paper. In the same section we show that the Coulomb blockade in SET with slow dielectrics is less affected by temperature.

II. ELECTRON TRANSPORT THROUGH SET WITH SLOW TUNNEL BARRIERS

Here we consider the theory of SET with slow barriers. In the following it is convenient to distinguish between the geometrical junction capacitances $C_i^{(0)}$ and the low-frequency capacitances C_i that include the slow dielectric response. The difference between them, aside from the unimportant geometrical factor, is

$$\Delta C_i = C_i - C_i^{(0)} = \alpha_i S_i/d_i,$$

where α_i is the dielectric polarizability of the i-th junction ($i = 1, 2, g$), S_i — the junction surface area and d_i — the effective electrode-island distance.

We assume that the electrodes are biased with the voltages $V_1 = -V/2$, $V_2 = V/2$ and V_g. The grain potential $\phi(n)$ at a given number of excess electrons n can be found balancing the induced charges:

$$ne = \sum_i C_i^{(0)}(\phi(n) - V_i) + \sum_i \Delta C_i(\langle \phi \rangle - V_i),$$

$$\langle \phi \rangle = \sum_{n=-\infty}^{\infty} p_n \phi(n),$$

where p_n is the probability to find n excess charges on the grain. Two terms originate in Eq. (4) because we distinguish the electric field produced by the capacitance $C_i^{(0)}$ and the contribution due to polarized dielectric with slow response. So the terms proportional to the coefficient ΔC_i in Eq. (4) can be considered as charges induced on the grain by the polarized dielectric layers that are constant in tunneling events.

The probability distribution p_n in the steady state can be found using the detailed balance equation:

$$p_n \Gamma^{-n \rightarrow n+1} = p_{n+1} \Gamma^{n+1 \rightarrow n},$$

where the rate $\Gamma^{-n \rightarrow n+1}[V_i,n,\langle \phi \rangle]$ describes the change of grain charge from n to $n+1$ electrons. The electric
current has the form
\[I = e \sum_{n=-\infty}^{\infty} p_n \left[\Gamma_s^{n \rightarrow n+1} - \Gamma_s^{n \rightarrow n-1} \right]. \tag{6} \]

Here the lower index of \(\Gamma \) refers to the tunneling rate corresponding to the particular tunnel junction, \(s = 1 \) or \(2 \) and the rate \(\Gamma \) in Eq. (5) is equal to \(\Gamma_1 + \Gamma_2 \). Solving Eqs. (3)-(5) self-consistently we find the current-voltage characteristics of the SET using Eq. (6).

We use the “orthodox” theory to calculate the Coulomb-blockade peaks in the differential conductance of the SET. The calculation of \(\Gamma \)-rates requires the knowledge of the difference in the electrostatic energies when the number of excess charges on the grain differ by one elementary charge: \(\Delta U_n^\pm = U(n+1) - U(n) \). If the polarization in dielectric layers on electron jumps follow \(\phi \) adiabatically, \(P_i = \alpha_i(\phi - V_i)/d_i \), we have \(\Delta U_n^\pm = E_c(1 \pm 2n) \), where \(E_c = e^2/2C_\Sigma \) with all the capacitances \(C_\Sigma = \sum_i C_i \) being properly renormalized, \(C_i = C_i^{(0)}(1 + 4\pi \alpha_i) \). However, for slow dielectric layers the polarization \(P_i = \alpha_i(\phi - V_i)/d_i \) stays constant during the tunneling, and for the energy difference we find (see App. A)
\[\Delta U_n^\pm = E_c^{(0)}(1 \pm 2n) \mp 2 \sum_i P_i S_i/e, \tag{7} \]
where \(E_c^{(0)} = e^2/2C_\Sigma^{(0)} \), \(C_\Sigma^{(0)} = \sum_i C_i^{(0)} \) and \(P_i \) being properly renormalized.

The work done by the leads and the gate to transfer an electron to/from the grain remains the same as in the “orthodox” theory except for the fact that only the geometrical capacitances \(C_i^{(0)} \) should be taken into account. This implies that for temperature \(T \rightarrow 0 \) the effective ground state free energy is defined as
\[F_0 = E_c^{(0)} \min_n(n - Q'/e)^2, \tag{8} \]

where the effective gate-induced charge \(Q' \) is
\[Q' = -C_g^{(0)}V_g + \sum_i \Delta C_i (\langle \phi \rangle - V_i). \tag{9} \]

Below we use the notation \(Q = -C_g V_g \) for the traditional gate-induced charge. We show that although the effects of slow polarization are far from being a simple renormalization of capacitances \(C_i^{(0)} \rightarrow C_i \), the conductance periodicity in \(Q \) holds and maintains its period \(|e| \) for any values of the parameters \(\Delta C_i \).

The detailed balance equation (5) can be solved analytically for the set of voltages \(V_g \) near the “degeneracy points”, where the ground state energy of the SET changes from \(n \) to \(n \pm 1 \) excess charges. The last condition requires the effective charge \(Q' \) to be close to \(e(n+1/2) \). In this case the only two probabilities \(p_n \) are finite while the other probabilities are exponentially suppressed by the factor \(e^{-E_i^{(0)}/T} \). In order to illustrate the origin of the memory effect, we will focus on the degeneracy point between \(n = 0 \) and \(n = 1 \) at \(V_{1,2} = 0 \). Using Eqs. (3)-(4) we find for the average potential \(\langle \phi \rangle \)
\[n_F[(1 - 2Q'/e)E_c^{(0)}] = e\langle \phi \rangle /2E_c^{(0)} + Q'/e, \tag{10} \]
where \(n_F \) is the Fermi-function. Equation (10) has one or three solutions for a given gate voltage \(Q \). The latter case is shown in Fig. 2. The presence of three distinct solutions for the average potential \(\langle \phi \rangle \) at a given parameter \(Q \) indicates the memory effect instability. Using the graphical solution of Eq. (10) we estimate the criteria for the memory effect instability, \(\sum_i \Delta C_i / C_i^{(0)} \gtrsim 2T/E_c^{(0)} \).

This criterion corresponds to the critical value of \(\Delta C_\Sigma \) when the memory effect just appears, see Eq. (12) below for the exact expression.
III. SET WITH SLOW INSULATOR IN THE GATE CAPACITOR

A. Numerical study of electron transport through SET

Here we study electron transport through SET numerically. We consider the SET with slow dielectric layer in the gate capacitor. This set-up is the most favourable for experiment since in this case there is no electron tunneling through the gate electrode and it can be arbitrary thick to allow a wide choice of dielectric materials. Moreover, as we will show in the following Sec. [IV] at $V = 0$ by considering the gate capacitor we still preserve all the qualitative effects introduced by slow dielectrics in a general case.

Thus, for a time, we assume that the only non-zero ΔC is ΔC_g.

For $\Delta C_g = 0$ the conductance is a periodic function of the effective gate voltage Q, see the gray curve in Fig. 3. The conductance peaks are well fitted by the orthodox theory where near the peak maximum the conductance is

$$G^{(0)}(\delta Q^{(0)}) \approx \frac{e\delta Q^{(0)}/C^{(0)}_g T}{2(R_1 + R_2)\sinh(e\delta Q^{(0)}/C^{(0)}_g T)}.$$ \hspace{1cm} (11)

Here $\delta Q^{(0)}/e = \min_k[-C^{(0)}_g V_g /e - (2k + 1)/2] \ll 1$.

At finite but small ΔC_g, when the induced charge on the island due to polarization is smaller than the elementary charge, the conductance peaks change their shape, but preserve their amplitude and position (see Fig. 3).

The opposite case, with dielectric polarization being strong enough to induce the charge on the island of the order of the elementary charge or larger, is more interesting. In this case the conductance peaks show the hysteresis and their shape depends on the direction of Q-evolution, see Fig. 4. The hysteresis appears for $\Delta C_g \geq C^{(0)}_g 2T/E^{(0)}_C$ (see Eq. 25). Despite the memory effect the conductance remains periodic in the renormalized gate voltage $Q = -(C^{(0)}_g + \Delta C_g)V_g$ with the same period $|e|$ for any ΔC_g. This behavior is in striking contrast to the SET with ferroelectric in the gate where due to the nonlinearity of polarization–electric field dependence the periodicity of conductance is broken, see Ref. 2.

Now we discuss the structure of the memory effect. Above the critical value of ΔC_g there are many branches—solutions of the self-consistency equation for the average grain potential, Eq. (4), for the given temperature, bias and gate voltage. The question is - how to choose the right branch? Figure 5 provides an answer to this question. According to the branching theory [23] the jumps occur at the “branching points” where the observable has an infinite derivative in parameter Q. On the other hand, the branch should correspond to the minimum of some effective energy functional. In our case (no bias) the role of the effective energy plays the free energy

$$F = -T \ln Z, \quad Z = \sum_n \exp \left(-\frac{E^{(0)}_n(n - Q/e)^2}{T} \right).$$ \hspace{1cm} (12)

For zero temperature it reduces to the free energy F_0 discussed above.

The plots of the free energy have a similar dependence on the parameter Q as the zero-bias conductance G. To illustrate this point we show in Fig. 6 the free energy for $\Delta C_g/C^{(0)}_g = 0.6, 1.3$. Figure 6 shows that the conduction branch between points Λ^+ and Λ^- is metastable: the free energy for this curve is larger than the free energy for branch below. However, during the adiabatically slow increase of parameter Q the system does not switch to the lowest branch at point A, instead it may go up...
FIG. 5. (Color online) Memory effect: Plots (a)-(d) and (f) show the conductance for $\Delta C_g/C^{(0)}_g = 1.3, 3.3, 5.3, 10, 20$ for stable and unstable branches of Eq.(4) for the average grain potential. Plot (e) shows the polarization for $\Delta C_g/C^{(0)}_g = 10$. Arrows indicate the position of hysteresis jumps for particular branch with increasing Q. All plots are shown at fixed temperature $T = 0.2E_c^{(0)}$.

Intuitively one may suppose that if conductance “jumps” from one branch to another the final branch should have the lowest possible free energy for the parameter Q corresponding to the jump. Indeed, this is the case in Figs. 5(a)-(c). However, in Figs. 5(d) and (f) this rule is violated. The system could jump, for example, to the point marked by the red-ball in Fig. 5(d), instead of finishing at the point marked by the grey-ball which has a larger free energy. However, this energetically favourable transition is “forbidden”: while continuously changing the polarization in such a process the system would have to pass the energy barrier of approximately $E_c^{(0)}/4$ (free energy maximum). Thus the higher order jumps (over the average charge difference) are suppressed by the factor $\exp(-E_c^{(0)}/4T)$.

B. The fine structure of the memory effect

Doing numerical studies of memory effect we assumed that parameter Q increases (or decreases) monotonically from minus to plus infinity (or vice-versa). However, for large enough parameter ΔC_g, when polarization induces more than one electron on the grain, the hysteresis loop depends on the interval where the parameter Q changes. This is shown in Fig. 7 with two possible hysteresis loops: The red hysteresis loop corresponds to back and forth...
C. Analytical description of the conductance peaks and the memory effect

Here we present the analytical description of transport properties of SET. At $V = 0$ and within the two-state approximation the form of the conductance peaks $G(Q)$ can be found using Eq. (11) with the proper substitution $Q^{(0)} \rightarrow Q'$, where Q' is defined in Eq. (9). With this substitution we have for conductance $G(Q) = G^{(0)}(Q')$. For average potential, generalizing Eq. (10), we obtain

$$\langle \phi \rangle = \frac{e}{C_{\Sigma}^{(0)}} \left(\frac{1}{2} \tanh \left(\frac{E_{c}^{(0)} \delta Q'}{T} \right) - \frac{\delta Q'}{e} \right),$$

where $\delta Q'/e = \min_k(Q'/e - (k + 1/2))$. Combining Eqs. (15) with (9) we find,

$$\delta Q' \frac{C_{\Sigma}^{(0)}}{C_g^{(0)}} \frac{e}{2} \frac{C_g^{(0)}}{C_{\Sigma}^{(0)}} \tanh \left(\frac{E_{c}^{(0)} \delta Q'}{T} \right) = \delta Q,$$

where $\delta Q = Q - (k + 1/2)e$ is the deviation of parameter Q, k is the same as for $\delta Q'$. Using the small parameter $C_g^{(0)} / C_{\Sigma}^{(0)} \ll 1$, we expand Eq. (14) up to the second order

$$\langle \delta Q' \rangle_0 = \delta Q \frac{C_{\Sigma}^{(0)}}{C_g^{(0)}},$$

$$\langle \delta Q' \rangle_1 = \langle \delta Q' \rangle_0 + \frac{e}{2} \frac{C_g^{(0)}}{C_{\Sigma}^{(0)}} \tanh \left(\frac{E_{c}^{(0)} \langle \delta Q' \rangle_0}{T} \right).$$

The conductance now may be found by substituting $\delta Q^{(0)}$ with $\langle \delta Q' \rangle_{0,1}$ in Eq. (11)

$$G(\delta Q) = G^{(0)}(\delta Q').$$

The numerical calculations in Fig. (a) show that the first order approximation, Eq. (16), well describes the peak shape for small parameter $\Delta C_g^{(0)} / C_{\Sigma}^{(0)} \approx 0.1$, while the zero order approximation is not sufficient. We note that parameter $\Delta C_g^{(0)} / C_{\Sigma}^{(0)}$ and thus the renormalization of the conductance period over V_g can be arbitrary in this approximation.

1. Small polarization

Here we discuss the limit of small polarization, meaning that the induced charge on the island is small compared to the elementary charge e. Using the small parameter, $\Delta C_g^{(0)} / C_{\Sigma}^{(0)} \ll 1$, we expand Eq. (14) up to the second order

$$\langle \delta Q' \rangle_0 = \delta Q \frac{C_{\Sigma}^{(0)}}{C_g^{(0)}},$$

$$\langle \delta Q' \rangle_1 = \langle \delta Q' \rangle_0 + \frac{e}{2} \frac{C_g^{(0)}}{C_{\Sigma}^{(0)}} \tanh \left(\frac{E_{c}^{(0)} \langle \delta Q' \rangle_0}{T} \right).$$

The conductance now may be found by substituting $\delta Q^{(0)}$ with $\langle \delta Q' \rangle_{0,1}$ in Eq. (11)

$$G(\delta Q) = G^{(0)}(\delta Q').$$

The numerical calculations in Fig. (a) show that the first order approximation, Eq. (16), well describes the peak shape for small parameter $\Delta C_g^{(0)} / C_{\Sigma}^{(0)} \approx 0.1$, while the zero order approximation is not sufficient. We note that parameter $\Delta C_g^{(0)} / C_{\Sigma}^{(0)}$ and thus the renormalization of the conductance period over V_g can be arbitrary in this approximation.

2. Amplitude and form of the conductance peak in the hysteresis regime

Solution of Eq. (14) becomes ambiguous for large values of parameter ΔC_g, where conductance $G(Q)$ acquires...
hysteresis. In this case the form of conductance peaks becomes nonsymmetric and the conductance $G(Q)$ has a maximum at the branching (bifurcation) point corresponding to the jump of the polarization. The bifurcation points in Eq. (14) can be found as follows

\[
\frac{d}{dQ'} \left(\delta Q' \frac{C_S}{C_S^{(0)}} - \frac{\Delta C_g}{C_S^{(0)}} \tanh \left(\frac{E_c^{(0)} \delta Q'}{T} \right) \right) = 0, \quad (18)
\]

that reduces to

\[
\cosh^2 \left(\frac{E_c^{(0)} (\delta Q')_{\text{max}}}{T} / e \right) = \frac{E_c^{(0)} \Delta C_g}{2T} C_S^{(0)}. \quad (19)
\]

The two solutions of Eq. (19) correspond to the increasing and decreasing evolution of parameter Q (solutions with $\delta Q' < 0$ and $\delta Q' > 0$ respectively). These two solutions result in mirror-reflected shapes for the peaks, so we focus only on the decreasing parameter Q. For conductance maximum we find

\[
G_{\text{max}} = \frac{1}{2(R_1 + R_2)} \arccosh \left(\frac{E_c^{(0)} \Delta C_g}{2T} C_S^{(0)} \right). \quad (20)
\]

The predicted conductance maximum amplitude variation is shown in Fig. 8. One can see that the curve breaks at critical value of parameter ΔC_g indicating the start of the hysteresis regime.

We note that since within the scope of the two-state approximation and for ΔC_g above the critical value the Eq. (20) gives exact maximum, its applicability depends only on temperature. At finite ΔC_g the conductance maximum does not exactly correspond to a degeneracy point $\delta Q' = 0$, but still $\delta(Q'_{\text{max}}) \ll 1$ for $T \ll E_c^{(0)}$. For example, for temperature $T = 0.06 E_c^{(0)}$ and $\Delta C_g \rightarrow \infty$ we have $\delta(Q'_{\text{max}}) \approx 0.1 \ll 1$, meaning that our consideration is valid (see Fig. 8).

Now we find the form of conductance peaks. Expanding Eq. (14) up to the second order near $\delta(Q')_{\text{max}}$ we obtain

\[
A_0 + A_2 (\delta Q' - \delta(Q')_{\text{max}})^2 = \delta Q', \quad (21)
\]
Also we find that this approximation for conductance works well near its maximum value.

3. The peak form at the bifurcation point

To find the conductance peak at the critical value of parameter ΔC_g we expand the hyperbolic tangents in Eq. (14) up to the third order. As a result we obtain

$$\delta Q^\prime \left(1 - \frac{\Delta C_g}{C^{(0)}_g} \left(\frac{E^{(0)}_c}{2T} - 1\right) \right) + \frac{e \Delta C_g}{6C^{(0)}_g} \left(\frac{E^{(0)}_c}{T} - e\right)^3 = \delta Q.$$

The linear term equals zero at the critical point. For critical polarizability of the gate-insulator we find

$$\Delta C^{(c)}_g = C^{(0)}_g \left(\frac{E^{(0)}_c}{2T} - 1\right)^{-1}.$$ (25)

Also we find that

$$\delta Q^\prime = \frac{eT}{E^{(0)}_c} \left(\frac{6 \delta Q}{e} \left(\frac{E^{(0)}_c}{2T} - 1\right)\right)^3.$$ (26)

Using Eq. (17) we find that the peak maximum can be approximated with the function $1/(1 + x^{2/3})$ (here $x \propto \delta Q$), while the derivative diverges at the conductance maximum as $1/\sqrt{x}$. As follows from Fig. 3(c) and Eq. (26) this approximation for conductance works well near its maximum value only.

IV. SINGLE ELECTRON TUNNELING THROUGH SLOW DIELECTRIC LAYER

A. Conductance peaks with slow dielectrics in all capacitors

Here we consider the general case, with slow dielectric layers in all capacitors with polarizabilities ΔC_1, ΔC_2, ΔC_g. Using Eq. (9) we find

$$Q^\prime = Q + \Delta C_S \times \langle \phi \rangle(Q^\prime,V) - (\Delta C_2 - \Delta C_1)V/2.$$ (27)

where we introduce the parameter

$$\Delta C_S = \sum_{i=1,2,g} \Delta C_i.$$ (28)

Here we explicitly show that the functions Q^\prime and $\langle \phi \rangle$ depend on voltage V. In general, this dependence results in an additional contribution to the conductance proportional to $\partial Q^\prime/\partial V$:

$$G(Q,V) = \frac{\partial I^{(0)}(Q,V)}{\partial V} =$$

$$G^{(0)}(Q^\prime,V) + \frac{\partial I^{(0)}(Q^\prime,V)}{\partial Q^\prime} \frac{\partial Q^\prime}{\partial V},$$ (29)

where $I^{(0)}(Q,V)$ is the current in the orthodox theory, generally not limited by the two-state approximation. However, the current I is zero for zero bias voltage for any Q, therefore the last term can be omitted at $V = 0$. This explains why in two-state approximation we can calculate the conductance by replacing Q by Q^\prime in Eq. (11) of the orthodox theory.

For zero voltage, $V = 0$, Eq. (27) reduces to

$$Q^\prime = Q + \Delta C_S \times \langle \phi \rangle(Q^\prime).$$ (30)

Then

$$\delta Q^\prime \left(1 + \frac{\Delta C_S}{C^{(0)}_g} \right) - \frac{e \Delta C_g}{2 C^{(0)}_g} \tanh \left(\frac{E^{(0)}_c}{T} - e\right) = \delta Q.$$ (31)

As we can see, the only distinction of the Eq. 31 from Eq. 14 is the replacement of ΔC_g with ΔC_S. It follows that for $V = 0$ the SET with slow insulators in tunnel junctions behaves qualitatively similar to the only $\Delta C_g > 0$ that was considered previously. The only difference is related to the fact that the slow dielectric in the gate capacitor renormalizes the period of the Q-oscillations of conductance while slow dielectrics in all other capacitors of the SET do not.

Now we can generalize our results for positive $\Delta C_g > 0$ obtained earlier. In particular, the critical polarization, where memory effect in the conductance $G(Q)$ first appears, becomes the integral quantity, see Eq. (28), that includes properties of all the slow dielectric layers:

$$\Delta C^{(c)}_S = C^{(0)}_g \left(\frac{E^{(0)}_c}{2T} - 1\right)^{-1}.$$ (32)

The amplitude of conductance peaks can be found using the substitution, $\Delta C_g \to \Delta C_S$ in Eq. (20). The shape of the peaks can be obtained using the same substitution in the equations of Sec. III C 3 where still $\delta Q = -(\Delta g^{(0)} + \Delta C_g)V_g$.

B. Memory effect in current-voltage characteristics

Above we discussed the properties of SET with slow dielectric barriers, related to the variation of the gate
concentrate on the current-voltage characteristic

We consider the current-voltage characteristic of the SET materials available for experiments. Following Ref. 11 their ease of fabrication makes a wide range of barrier Coulomb blockade at room temperature (11, 14–16) and experiments over the last two decades. They can exhibit neglect the gate to simplify the situation, putting thus the capacitor in the left and the right capacitors, see Fig. 1. We SET in the case of electron tunneling through slow insulator.

The jumps in $I(V)$ at large enough ΔC_1 and this effect depends on the direction of the bias voltage evolution. The jumps in plots (b) correspond to the regions of hysteresis while the arrows show the evolution of voltage. Plot (c) shows $I(V)$ for $\Delta C_1/C_{E}^{(0)} = 3.5$. The $I(V)$-curve can have many hysteresis loops depending on the amount of electron charge induced on the grain by the dielectric polarization. Inserts in (b),(c) show the details of the hysteresis. Plot (d) shows $I(V)$ for $\Delta C_1/C_{E}^{(0)} = 1.25$. The jumps in plots (e)-(d) : i) finite ΔC_1 and zero ΔC_2 and ii) $\Delta C_1 = \Delta C_2$. In both cases the set of critical values of ΔC is the same and for large bias voltage the current-voltage characteristics may have many hysteresis loops depending on the amount of electron charge induced on the grain. In both cases the set of critical values of ΔC is the same and for large bias voltage the current-voltage characteristics may have many hysteresis loops depending on the amount of electron charge induced on the grain.
Figure 9 shows that the current-voltage characteristics of the SET strongly depend on the direction of bias voltage V. Moreover, for a given hysteresis branch

$$ I(V) \neq -I(-V) $$ \hspace{1cm} (33)

that happens in the absence of Q, notably different from the result for a regular SET.

C. Influence on coulomb ladder

By coulomb ladder in this section we mean a step-like behavior of $I(V)$ in the regime of coulomb blockade. The coulomb ladder is often used as an indication of coulomb blockade (Ref. 11, 13, 17–19). In the following we show how the slow polarization influences the shape of the ladder. Again we take $C_g = 0$ and, consider the conditions when the ladder is the most pronounced, i.e. $T = 0$ and strongly asymmetric barriers $R_1 \gg R_2$. At zero temperature tunneling may occur only in the direction of chemical potential drop, that is from the 1-st electrode to the 2-nd assuming $V > 0$. Due to the relatively high tunneling rate through the 2-nd electrode, the number of excess electrons on the island is almost always stays at the minimum energetically allowed number n_{min}. n_{min} can be determined as the lowest n for which $\Delta F_2^{n+1-n} < 0$ is true, since $\Delta F_1^{n-n+1} < 0$ holds for any $n < 0$. For a given n_{min} the current can be calculated as

$$ I = \frac{1}{eR_1} \Delta F_1^{n_{\text{min}} \rightarrow n_{\text{min}} + 1}, $$ \hspace{1cm} (34)

where ΔF_1 is the free energy change on tunneling through the 1-st electrode. For a conventional SET the above formula leads to a ladder-shaped $I(V)$ characteristic with the step width

$$ \Delta V_{\text{step}} = |e|/C_1^{(0)}, $$ \hspace{1cm} (35)

and the $I(V)$ slope between the jumps

$$ dI/dV = C_2^{(0)} V/C_1^{(0)} R_1 $$ \hspace{1cm} (37)

Introducing slow dielectric into the tunnel junctions result in some new effects (for the details of calculations see Appendix B). At $V > |e|/C_1^{(0)}$ slow polarization leads to the rescaling of the ladder that may be described by substituting the capacitances in Eqs. (35–37) with the new values $C_i = C_i^{(0)} + \Delta C_i$, exactly as when dealing with a conventional fast dielectric (see Fig. 10(b)). But contrary to the fast dielectric, the slow one shifts the ladder, making it asymmetric and, moreover, dependent on the direction of the evolution of V, as illustrated at the Fig. 10(c,d).

Interestingly, the shift of the $I(V)$ curve in experiments is a well-known effect. It is usually accounted for by assuming the presence of some additional spurious charge Q, induced on the grain (as in Ref. 11 and 18). However the shift that we predict is notably different at least in one aspect — it reverses its sign with the direction of the evolution of V.

We stress that the described rescaling and shift of $I(V)$ takes place only under specific conditions $V > |e|/C_1^{(0)}$ and $R_1 \gg R_2$. If R_2 are of the same order the introduction of slow dielectric may change the ladder steps in a more complex way. Such a situation is shown in Fig. 10(b) where the ladder period do not correspond to the one we would expect from the simple capacitance-renormalization consideration. If R_1/R_2 is even closer to unity, the slow dielectric barriers qualitatively change the current-voltage curve as was discussed in the previous section (see Fig. 9).

V. DISCUSSION

A. Requirements for dielectric materials

Here we discuss several possible dielectric materials which can be considered as slow insulators. At finite external electric field the localized electric charges are shifted and the dielectric material is polarized. There are several physical processes contributing to the polarization: 1) the shift and deformation of electron-cloud, 2) the shift of ions in the lattice, and 3) the molecular and/or macro dipole reorientiation. Electrons, ions, and dipoles can form a different polarization. The slowest polarization formation corresponds to the electrocalorical and migration (electron, ion or dipole) mechanisms with the characteristic dispersion frequency being in the range $10^{-4} - 10^{-1}$ Hz and $10^{-3} - 10^{3}$ Hz, respectively at temperature $T = 300K$. The electromechanical mechanism corresponds to frequencies $10^0 - 10^8$ Hz, while thermal mechanism correspond to $10^5 - 10^{10}$ Hz. The dielectrics where thermal mechanism is the largest are promising for applications in nanostructures and can be considered as “slow” dielectrics.

Dithiol self-assemble monolayers (SAMs) have a static dielectric permittivity $\varepsilon(\omega = 0) \sim 3$ and the characteristic relaxation frequency $\sim 10^4$ Hz. These materials are good candidates for slow dielectrics. Such dielectric layers have been used in double junction SETs. The hysteresis have not been observed in these experiments, but there was a considerable discrepancy between the the values of capacitances obtained from the fit of the experimental data with the orthodox model and the ad-initio calculations.

Another promising materials to observe the hysteresis are polar crystal dielectrics e.g., BaTiO$_3$ or KDP with static dielectric permittivity $\varepsilon(\omega = 0) \sim 10^3$ and the typical relaxation frequency $\omega_c \sim 10^6$ Hz.
Here we discuss the geometric capacitance $C_i^{(0)}$, $i = 1, 2, g$. We assumed that these capacitances have an electrostatic origin. However, in rigorous analysis they include the high frequency dielectric permittivity ϵ_∞ (usually between 1 and 10). Thus in our consideration the slow polarizability α_i is the difference between the low and the high frequency α_i. As an example, for BaTiO$_3$ the difference between the high and low frequency permittivities ϵ is $\sim 10^3$. This difference is large enough.

C. Critical polarization

The effects of slow polarization are governed by the ratio of "slow" and "fast" capacitances $\Delta C_{\Sigma}/C_{\Sigma}^{(0)}$. If a capacitor is fully filled with a dielectric with permittivity $\epsilon(\omega)$ than $\Delta C_{\Sigma}/C_{\Sigma}^{(0)} = (\epsilon(0) - \epsilon(\infty))/\epsilon(\infty)$. It follows from Sec. III and IV that at $\Delta C_{\Sigma}/C_{\Sigma}^{(0)} \sim 1$ the strong influence of slow polarization may be observed, thus requiring $\epsilon(0) \gtrsim 2 \epsilon(\infty)$.

The latter requirement become even less strict at lower temperatures. In particular, the critical value of $\epsilon(0)/\epsilon(\infty)$ to observe the breakdown of conductance peaks goes to 1 as $T \to 0$ (see Eq. (32)). For the conditions as at the Fig. 8(e) $\epsilon(0)/\epsilon(\infty) \approx 1, 10$. The latter requirement become even less strict at lower temperatures.

D. Temperature dependence of the coulomb-blockade effects

A well-known consequence from the orthodox theory of SET is that in order to experimentally observe the coulomb-blockade phenomena, the temperature of the system should be lower than $E_c = e^2/2C_{\Sigma}$. Here the total capacitance C_{Σ} includes dielectric susceptibility of the barrier media. In contrast, our numerical calculations show that if the dielectric response is sufficiently slow, only the ratio $E_c^{(0)}/T$ should be taken into account when considering the blurring of the coulomb effects due to finite temperature. This must result in more pronounced blockade for a system with slow dielectric at a given temperature and electrode geometry, as illustrated in Fig. 11.

VI. CONCLUSIONS

We showed that the dielectric materials at the nanoscale demonstrate new physical phenomena. As an example we studied the single-electron transistor. We found the memory effect in the conductance-gate voltage dependence and in the current-voltage characteristics of the SET. We uncovered the complex fine structure of the hysteresis-effect, where the “large” hysteresis loop may include a number of “smaller” loops. We also found, that in order to estimate the influence of temperature on the electronic transport one should compare T with $e^2/2C_{\Sigma}^{(0)}$ where in $C_{\Sigma}^{(0)}$ the slow part of the dielectric function is not included.
energy change is
\[
\Delta U_n^\pm = \int_n^{n+1} \sum_i (\phi - V_i) dq_i = \\
\int_n^{n+1} \sum_i (\phi - V_i) \left(C_i^{(0)} d\phi + S_i dP_i \right),
\] (A1)

where \(q_i \) are the charges of the capacitors and \(P_i \) are dielectric polarizations in barriers. For fast and slow dielectrics \(P_i \) behave differently during the process of electron jump. If dielectric response is fast \(P_i \) follows \(\phi \) that results in capacitance renormalization. For slow dielectric layers the polarization cannot change on the electron jump timescale and thus \(dP = 0 \) yielding

\[
\Delta U_n^\pm = \frac{1}{2} \sum_i C_i^{(0)} (\phi - V_i)^2 \left| \frac{\phi(n+1)}{\phi(n)} \right|^2,
\] (A2)

\(\phi(n) \) are calculated using the charge balance equation \[3\\]

\[
\phi(n) = \frac{1}{C^{(0)}} \left[e \left(n - \sum_i P_i S_i / e \right) + \sum_i C_i^{(0)} V_i \right].
\] (A3)

Here \(P_i \) are constant and do not depend on \(n \). By inserting Eq. (A3) into (A2) we obtain Eq. (7).

Appendix B: The shape of the coulomb ladder

At zero temperature the tunneling rates for the electron to and from the island are

\[
\Gamma_{1,2}^{n-n+1} = \frac{1}{e^2 R_{1,2}} (-\Delta F_{2,1}^{n-n+1}) \Theta (-\Delta F_{2,1}^{n-n+1}),
\] (B1)

where \(n \) is the number of excess electrons on the island and tunneling happens through the 1-st or the 2-nd electrode. Free energy changes \(\Delta F_{1,2} \) on jumps are

\[
\Delta F_{1,2}^{n-n+1} = e \frac{C^{(0)}}{C^{(0)}} \left(\frac{e}{2} \pm (n e - Q') \pm C^{(0)} V \right)
\] (B2)

\[
\Delta F_{2,*}^{n-n+1} = e \frac{C^{(0)}}{C^{(0)}} \left(\frac{e}{2} \pm (n e - Q') \mp C^{(0)} V \right).
\] (B3)

Consider \(V > 0 \). It follows from (B1) that tunneling occurs if for some \(n \) simultaneously \(\Delta F_{2,1}^{n-n+1} \leq 0 \) and \(\Delta F_{2,*}^{n-n+1} \leq 0 \) (there is no backward tunneling at \(T = 0 \)). These conditions may be combined into

\[
Q'/e - 1/2 + C^{(0)} V / e \leq n \leq Q'/e - 1/2 - C^{(0)} V / e.
\] (B4)

Since the tunneling from the 1-st electrode to the island is much slower than from the island to the 2-nd electrode \((R_1 \gg R_2) \), the number of electrons on the island almost constantly stays at it’s lowest energetically allowed value \(n_{\text{min}} \). The current is then,

\[
I = -e \frac{\Gamma_{1,2}^{n-n+1} \Gamma_{1,2}^{n+1-n}}{\Gamma_{1,2}^{n-n+1} + \Gamma_{1,2}^{n+1-n}} \approx -e \Gamma_{1,2}^{n-n-1} n_{\text{min}}. \] (B5)
The rest is to calculate \(n_{\text{min}} \). Since we neglect \(C_q \) only the charge induced by the slow polarization gives rise to \(Q' \)

\[
Q' = \frac{\Delta C_\Sigma}{C_\Sigma} n_{\text{min}} e + \frac{\Delta C_1 C_2^{(0)} - \Delta C_2 C_1^{(0)}}{C_\Sigma} V. \tag{B6}
\]

\(n_{\text{min}} \) can be determined from the equation

\[
\left[-\frac{1}{2} - \frac{n_{\text{min}}}{1 + \Delta C_\Sigma / C_\Sigma^{(0)}} + \frac{C_1}{(1 + \Delta C_\Sigma / C_\Sigma^{(0)})} \frac{V}{e} \right] = 0, \tag{B7}
\]

where \([x]\) denote the lowest integer bigger than \(x \). It worth noting that the equation [B7] predicts multiple solutions for \(n_{\text{min}} \) at \(V \) close to the current jump points if \(\Delta C_\Sigma > 0 \) (see Fig. 10(d)).

The calculation of \(I \) yields

\[
I(V) = \frac{1}{R_1 C_\Sigma} \left(e \frac{C_\Sigma}{2 C_\Sigma^{(0)}} + n_{\text{min}} e + C_2 V \right). \tag{B8}
\]

The latter formula demonstrates the full renormalization of capacitances and a shift in the \(I(V) \) as is illustrated at the Fig. 10(a).

1. S. A. Fedorov, A. E. Korolkov, N. M. Chctelkatchev, O. G. Udalov, and I. S. Beloborodov, Phys. Rev. B 89, 155410 (2014).
2. S. A. Fedorov, A. E. Korolkov, N. M. Chctelkatchev, O. G. Udalov, and I. S. Beloborodov, Phys. Rev. B 90, 195111 (2014).
3. D. Averin and K. Likharev, Mesoscopic phenomena in solids 30, 173 (1991).
4. D. Averin, A. Korotkov, and K. Likharev, Phys. Rev. B 44, 6199 (1991).
5. M. Devoret and H. Grabert, Single Charge Tunneling, Vol. 264 (New York, Plenum, 1992).
6. C. Wasshuber, Computational single-electronics (Springer, 2001).
7. R. Arthur, von Hippel, ed.:” Dielectric Materials and Applications (MIT Press, 1954).
8. J. Thoen, T. Bose, and H. Nalwa, Handbook of Low and High Dielectric Constant Materials and Their Applications (Academic, San Diego, 1999).
9. Z.-G. Ye, Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications (Elsevier, 2008).
10. Y. M. Poplavko, L. P. Pereverseva, and I. P. Rayevsky, Physics of active dielectrics (Rostov: South Federal University Press, 2009).
11. M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B 52, 9071 (1995).
12. J.-l. Luo and C. Xia, Chin. J. Chem. Phys. 19, 515 (2006).
13. M. Vainberg and V. Trenogin, Theory of branching of solutions of non-linear equations (Groningen: Wolters-Noordhoff B. V, 1974).
14. C. Nijhuis, N. Oncel, J. Huskens, H. J. Zandvliet, B. J. Ravoo, B. Poelsema, and D. Reinholdt, Small 2, 1422 (2006).
15. S. Kano, Y. Azuma, M. Kanehara, T. Teranishi, and Y. Majima, Applied Physics Express 3, 105003 (2010).
16. Z. Klusek, M. Luczak, and W. Olejniczak, Applied Surface Science 151, 262 (1999).
17. K. Schouteden, N. Vandamme, E. Janssens, P. Lievens, and C. V. Haesendonck, Surface Science 602, 552 (2008).
18. N. Oncel, A.-S. Hallback, H. J. W. Zandvliet, E. A. Speets, B. J. Ravoo, D. N. Reinholdt, and B. Poelsema, The Journal of Chemical Physics 123, 044703 (2005).
19. B. Wang, X. Xiao, X. Huang, P. Sheng, and J. G. Hou, Applied Physics Letters 77 (2000).