Four new species of *Trichoderma* in the *Harzianum* clade from northern China

Xin Gu1,*, Rui Wang1,*, Quan Sun1, Bing Wu2, Jing-Zu Sun2

1 School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China 2 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China

Corresponding author: Jing-Zu Sun (sunjz@im.ac.cn)

Academic editor: T. Lumbsch | Received 24 February 2020 | Accepted 8 September 2020 | Published 8 October 2020

Citation: Gu X, Wang R, Sun Q, Wu B, Sun J-Z (2020) Four new species of *Trichoderma* in the *Harzianum* clade from northern China. MycoKeys 73: 109–132. https://doi.org/10.3897/mycokeys.73.51424

Abstract

The *Harzianum* clade of *Trichoderma* comprises many species, which are associated with a wide variety of substrates. In this study, four new species of *Trichoderma*, namely *T. lentinulae*, *T. vermifimicola*, *T. xixiacum*, and *T. zelobreve*, were encountered from a fruiting body and compost of *Lentinula*, soil, and vermicompost. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the gene encoding the second largest nuclear RNA polymerase subunit (RPB2), the translation elongation factor 1-α encoding gene (TEF1-α). The analysis combining sequences of the three gene regions distinguished four new species in the *Harzianum* clade of *Trichoderma*. Among them, *T. lentinulae* and *T. xixiacum* clustered with *T. lixii*, from which these new species differ in having shorter phialides and smaller conidia. Additionally, *T. lentinulae* differs from *T. xixiacum* in forming phialides with inequilateral to a strongly-curved apex, cultural characteristics, and slow growth on PDA. *Trichoderma vermifimicola* is closely related to *T. simmonsii*, but it differs from the latter by producing phialides in verticillate whorls and smaller conidia. *Trichoderma zelobreve* is the sister species of *T. breve* but is distinguished from *T. breve* by producing shorter and narrower phialides, smaller conidia, and by forming concentric zones on agar plates. This study updates our knowledge of species diversity of *Trichoderma*.

Keywords

compost, fungicolous, Hypocreaceae, mycoparasite

* Authors contributed equally to this work

Copyright Xin Gu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The genus *Trichoderma* Pers., introduced by Persoon (1794), is cosmopolitan, including saprotrophs and mycoparasites in a diversity of ecosystems, such as agricultural fields, prairies, forests, salt marshes, and fungal fruiting body (Gazis and Chaverri 2010; Chaverri et al. 2015; Qiao et al. 2018). Species of this genus have been widely used in the biocontrol of plant pathogens (Chaverri et al. 2015; Degenkolb et al. 2015; Bunbury-Blanchette and Walke 2019) and production of enzymes and bioactive compounds (Sun et al. 2016). Nevertheless, some of them are associated with green mold diseases in the commercial production of mushrooms (Innocenti et al. 2019; Sun et al. 2019a). Morphologically, the asexual-morphs are similar in producing branched tree-like conidiophores with cylindrical to nearly subglobose phialides and ellipsoidal to globose conidia, but their variation is insufficient to differentiate the *Trichoderma* species (Chaverri et al. 2015; Qin and Zhuang 2017; Qiao et al. 2018). Multilocus molecular phylogeny, based on combined sequence data of the internal transcribed spacer (ITS) regions, RNA polymerase II subunit (RPB2), and the translation elongation factor 1-α gene (TEF1-α), enables rapid and accurate identification of the *Trichoderma* species (Druzhinina et al. 2005; Atanasova et al. 2013; Chaverri et al. 2015). Currently, the combination of multi-gene phylogenetic analysis and phenotypic characteristics is extensively applied in species delimitation of *Trichoderma* (du Plessis et al. 2018; Qiao et al. 2018; Innocenti et al. 2019).

Trichoderma harzianum Rifai is one of the most well-known *Trichoderma* species, due to its antifungal properties and effective bio-control ability, used to suppress soil-borne plant pathogens (Chaverri et al. 2015; Degenkolb et al. 2015; Bunbury-Blanchette and Walker 2019). As a cosmopolitan and ubiquitous fungus, it has been isolated from diverse substrates, such as soil, plant tissue, and mushrooms (Chaverri et al. 2015; Jaklitsch and Voglmayr 2015; Innocenti et al. 2019; Sun et al. 2019b). Since Chaverri et al. (2015) provided a systematic revision of species in the *Harzianum* clade, numerous new species have been described (Jaklitsch and Voglmayr 2015; Qin and Zhuang 2016a; Sun et al. 2016; Chen and Zhuang 2017b; Qiao et al. 2018). Currently, more than 60 species are placed in the *Harzianum* clade (Jaklitsch and Voglmayr 2015; Qin and Zhuang 2016a, b, 2017; Chen and Zhuang 2017b; Qiao et al. 2018; Phookamsak et al. 2019).

It is estimated that 136 new species of *Trichoderma* have been recognised since 2015 (www.indexfungorum.org 2020), with 84 among these reported from China (Sun et al. 2012; Qin and Zhuang 2016a, b, 2017; Chen and Zhuang 2017a, b; Qiao et al. 2018), which evidenced that China has a high species diversity of *Trichoderma* (Zhu and Zhuang 2015; Jiang et al. 2016). In our survey of *Trichoderma*, eighteen isolates were obtained from soil, mushroom substrates, and vermicompost from northern China. Four new species belonging to the *Harzianum* clade were identified based on morphological features and DNA sequence data at three loci: the genes encoding RNA polymerase II subunit (RBP2) and translation elongation factor 1-α gene (TEF1-α), and the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene.
Materials and methods

Sampling sites and strains isolation

Since *Trichoderma* is easily isolated from soil, mushroom substrates, and earthworm substrates, the soil, mushroom substrates, and earthworm were therefore collected from Yinchuan, Ningxia Hui Autonomous Region, and Chaoyang district, Beijing, China. All the samples were stored at 4 °C before fungal isolation. *Trichoderma* strains were isolated by gradient dilution and the spread plate method or directly from the mushroom substrates. Three dilutions (10⁻¹, 10⁻², and 10⁻³) were prepared with 1 g soil and sterile water, and 100 µl of each dilution was spread on a 9 cm diameter Petri dish of PDA agar with 100 mg/L chloramphenicol added. The plates were then incubated at 25 °C. Each of the individual colonies was transferred to a new PDA dish after 1–3 days and incubated at 25 °C. Dried cultures from the single spore or specimens of new species were deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS) and the ex-type strains were preserved in the China General Microbiological Culture Collection Center (CGMCC).

Morphological analysis

For morphological studies, we used three different media: cornmeal dextrose agar (CMD, Difco, BD Science, USA), PDA (Difco, BD Science, USA), and synthetic low nutrient agar (SNA, Difco, BD Science, USA) (Chaverri et al. 2015). Each strain was first cultured on an SNA plate for 3 days and a small agar piece of 0.5 cm diameter with mycelium was then transferred, respectively, to new CMD, PDA, and SNA plates. Strains were incubated in 9 cm diam with three replicates. Petri dishes at 25 °C with a 12 h natural light and 12 h darkness interval. Colony diameter at 25 °C was measured three days after inoculation, and the time when mycelium entirely covered the surface of the agar plate was also recorded. Micromorphological characters were examined from the cultures of one-week-old colonies on SNA (Chaverri et al. 2015). A Nikon Ellipse 80i light microscope, equipped with differential interference contrast (DIC) optics, was used to capture digital images.

DNA extraction, PCR and sequencing

Genomic DNA of each strain was extracted from fresh mycelium growing on PDA after 5 days of growth following the rapid “thermolysis” method described in Zhang et al. (2010). For the amplification of ITS, RPB2, and TEF1-α gene fragments, ITS4 and ITS5 for ITS (White et al. 1990), EF1-728F (Carbone and Kohn 1999) and TEF1LLErev (Jaklitsch et al. 2005) for TEF1, and RPB2-5F and RPB2-7R for rpb2 (Liu et al. 1999) were used. Each PCR reaction consisted of 12.5 µl T5
Super PCR Mix (containing Taq polymerase, dNTP, and Mg$^{2+}$, Beijing TsingKe Biotech Co. Ltd., Beijing), 1.0 µl of forward primer (10 µM), 1.0 µl of reverse primer (10 µM), 0.5 µl DMSO, 3 µl DNA template and 7 µl double sterilized water. PCR reactions were in Eppendorf Mastercycler, following the protocols described by Sun et al. (2016). PCR products were purified with the PCR product purification kit (TIANGEN Biotech, Beijing, China), and sequencing was carried out in both directions on an ABI 3730 XL DNA sequencer (Applied Biosystems, Foster City, California) with primers used during PCR amplification.

Phylogenetic analyses

Preliminary BLAST searches with ITS, RPB2, and TEF1-α gene sequences of the new isolates against NCBI, TrichOKey (Druzhinina and Kopchinski 2006), and TrichoBlast (Kopchinskiy et al. 2005) databases identified species closely related to our isolates. Based on this information, sequences of ITS, RBP2, and TEF1-α of 133 strains, representing 59 species were downloaded from GenBank, following recent publications (Qin and Zhuang 2017; Qiao et al. 2018; Innocenti et al. 2019). Among them, 139 strains are belonging to the *Harzianum* clade, and *Trichoderma ceramicum*, *T. parestonicum*, and *T. estonicum* were chosen to represent the outgroup.

Tree alignment files were generated by using MAFFT version 7.03 with the Q-INS-I strategy (Katoh and Standley 2013). Conserved blocks were selected from the initial alignments with Gblocks 0.91 b (Castresana 2000). The appropriate nucleotide substitution model for each gene was determined by using MrModeltest v2.4 (Nylander 2004). HKY + I + G was estimated as the best-fit model for RPB2, and GTR + I + G was estimated as the best-fit model for TEF1-α and ITS under the output strategy of AIC. The partition homogeneity test ($p = 0.01$) indicated that the individual partitions were not significantly incongruent (Cunningham 1997), thus the aligned sequences of ITS, RPB2, and TEF1-α were combined for analyses. The multi-locus phylogenetic analyses included 1065 characters for RPB2, 587 characters for TEF1-α, and 555 characters for ITS. All characters were weighted equally and gaps were treated as missing characters.

Maximum Likelihood (ML) analyses were performed by RAxML (Stamatakis 2006), using the GTR-GAMMA-I model. The maximum likelihood bootstrap proportions (MLBP) were using 1000 replicates. Bayesian Inference (BI) analyses were conducted with MrBayes v3.2.6 (Ronquist et al. 2012). Metropolis-coupled Markov Chain Monte Carlo (MCMC) searches were calculated for 10,000,000 generations, sampling every 100th generation with the best best-fit model for each gene. Two independent analyses with six chains each (one cold and five heated) were carried out until the average standard deviation of the split frequencies dropped below 0.01. The initial 25% of the generations of MCMC sampling were discarded as burn-in. The refinement of the phylogenetic tree was used for estimating Bayesian
inference posterior probability (PP) values. The Tree was viewed in FigTree v1.4 (Rambaut 2012), values of Maximum likelihood bootstrap proportions (MLBP) greater than 50% and Bayesian inference posterior probabilities (BIPP), greater than 95% at the nodes, are shown along branches. The final alignments and the trees obtained have been deposited in TreeBASE (TreeBASE accession number: 25400).

Results

Phylogeny

The preliminary BLAST searches with ITS, RPB2, and TEF1-α gene sequences of the new isolates suggest our isolates were highly similar to species from *Trichoderma* in the *Harzianum*-complex. Therefore, as the next step phylogenetic analyses were conducted by using a single gene of ITS, RPB2, TEF1-α, and multi-gene dataset of cascaded ITS, RPB2, and TEF1-α, respectively. The phylogenetic trees showed that our isolates were placed in the *Harzianum* clade (Fig. 1, Suppl. material 1: Fig. S1, Suppl. material 2: Fig. S2, Suppl. material 3: Fig. S3). In the phylogenetic tree conducted by a combined matrix of ITS, RPB2, and TEF1-α sequences, isolates of *T. lentinulae*, *T. xixiacum*, and *T. lixii* formed a well-supported clade (MLBP/BIBP = 73%/1.00). Within this clade, isolates of *T. lentinulae* and *T. xixiacum* formed a subclade with maximum support. Isolates of *T. vermifimicola* clustered together with *T. simmonsii* (BIBP = 1.00), both forming a subclade with maximum support (MLBP/BIBP = 100%/1.00, Fig. 1). *Trichoderma zelobreve* and *T. breve*, were distinguished by maximum support to respective clades while forming a highly supported clade (MLBP/BIBP = 100%/1.00, Fig. 1).

The ITS gene could not distinguish our isolates from other species within the *Harzianum* clade (Suppl. material 1: Fig. S1). In the phylogenetic tree resulted from the RPB2 gene, *Trichoderma lentinulae*, *T. xixiacum*, and *T. lixii* formed a highly supported clade (MLBP/BIBP = 100%/1.00), but within this clade, *T. lentinulae*, *T. xixiacum* were not distinguished (Suppl. material 2: Fig. S2). Isolates of *T. vermifimicola* formed a distinct clade (MLBP/BIBP = 100%/1.00) and grouped with *T. simmonsii*, *T. guizhouense*, and *T. rugulosum* but weakly supported (Suppl. material 3: Fig. S3). *Trichoderma zelobreve* and *T. breve* also formed a highly supported clade (MLBP/BIBP = 98%/1.00), but *T. zelobreve* and *T. breve*, were distinguished by maximum support to respective clades while forming a highly supported clade (MLBP/BIBP = 100%/1.00, Suppl. material 2: Fig. S2). In the phylogenetic tree resulted from the TEF1-α gene, *T. zelobreve* and *T. breve* also formed a highly supported clade (MLBP/BIBP = 98%/1.00), but were not distinct from each other (Suppl. material 3: Fig. S3). Isolates of *T. lentinulae*, *T. xixiacum*, *T. vermifimicola*, and *T. simmonsii* clustered together but this clade was not well-supported. Within this clade, isolates of *T. lentinulae* formed a well-supported subclade (MLBP/
Figure 1. Phylogenetic tree based on Maximum Likelihood analysis of a combined ITS, RPB2, and TEF1α sequence dataset. *Trichoderma estonicum*, *Trichoderma parastinicum*, *Trichoderma ceramicum* were chosen as the outgroup. Bootstrap Values higher than 70% from RAxML (BSML) (left) and Bayesian posterior probabilities greater than 0.95 (BYPP) (right) are given above the nodes. T indicates the type; ET indicates the ex-living type. Isolates obtained in this study are in red.
Four new *Trichoderma* spp. (MLBP/BIBP = 91%/1.00). *Trichoderma xixiacum* and *T. vermifimicola* formed a highly supported subclade (MLBP/BIBP = 100%/1.00). Within this group, isolates of *T. vermifimicola* clustered together with well-supported (MLBP/BIBP = 93%/1.00, Suppl. material 3: Fig. S3).

Figure 1. Continued.
Taxonomy

Trichoderma lentinulae Jing Z. Sun & X.Z. Liu, sp. nov.
MycoBank No: 833233

Fig. 2

Etymology. Latin, *lentinulae*, refers to the host from which the fungus was isolated.

Type. CHINA. Haidian District, Beijing, 39°57’40”N, 116°19’40”E, ca. 27 m elev., from a fruiting body and mushroom spawn of *Lentinula edodes*, 19 Oct 2018, Jing Z. Sun (HMAS 248256, holotype), ex-type culture CGMCC 3.19847.

Description. On CMD after 72 h, colony radius 57–58 mm at 25 °C, covering the plate at 30 °C, 4–5 mm at 35 °C. Colony hyaline, weak, indistinctly radial. Aerial hyphae short, inconspicuous. No diffusing pigment noted, odor indistinct (Fig. 2B). Conidial production noted after 3 days, scant, effuse in aerial hyphae, becoming blue-green after 7 days. Chlamydospores not observed.

On PDA after 72 h, colony radius 45–46 mm at 25 °C, mycelium covering the plate at 30 °C, 11–12 mm at 35 °C. Colony white to yellowish-white, regularly circular, indistinctly zonate; mycelium dense and radial. No diffusing pigment, not distinct odor (Fig. 2A). Conidial production noted after 3 days, starting around the original inoculum, effuse in the aerial hyphae, first white, turning green after 3 d. Chlamydospores unobserved.

On SNA after 72 h, colony radius 51–52 mm at 25 °C, 52–53 mm at 30 °C, 4–5 mm at 35 °C. Colony hyaline, indistinctly zonate; mycelium loose, especially at the margin. Aerial hyphae loose. No diffusing pigment, not distinct odor (Fig. 2C). Conidial production noted after 2 days, starting around the inoculum, effuse in the aerial hyphae. Small pustules formed around the inoculum, first white, turning green after 3 d, with hairs protruding beyond the surface. Conidiophores pyramidal with opposing branches, less frequently solitary, closely-spaced branches, each branch, and the main axis terminating in 2–5 cruciately to nearly verticillately disposed phialides (Fig. 2F, H, I). Phialides ampulliform, typically strongly constricted below the tip, less frequently lageniform and then usually apex and inequilateral to strongly curved, hyaline, (3.5–)4.0–6.0(−6.5) × (2.0–)2.5–3.0(−3.5) μm (\(\bar{x} = 4.5 \times 3.0 \mu m, n = 30\)), length/width ratio (1.5–)2.0–3.0(−5.0) (\(\bar{x} = 2.0, n = 30\)), base 1.0–2.5 μm (\(\bar{x} = 1.5 \mu m\))(Fig. 2G, H, I). Conidia ovoid to globose, smooth, hyaline when young, becoming green to dark green with age, (2.0–)2.5–3.0(−3.5) × (1.5–)2.0–2.5(−3.0) μm (\(\bar{x} = 2.5 \times 2.2 \mu m, n = 50\)), length/width ratio (1.0–)1.1–1.4 (−1.5) (\(\bar{x} = 1.2, n = 50\)) (Fig. 2J). Chlamydospores common, apex or intercalary, ellipsoid or subglobose, (3.5–)5.0–6.5(−7.0) × (3.0–)4.0–5.0(−6.0) μm (\(\bar{x} = 5.5 \times 4.5 \mu m, n = 30\)), length/width ratio (1.0–)1.2–1.5 (−1.7) (\(\bar{x} = 1.2, n = 30\)) (Fig. 2K–M).

Additional specimen examined. CHINA. Haidian District, Beijing, 39°57’40”N, 116°19’40”E, ca. 27 m elev., From a fruiting body and mushroom spawn of *Lentinula edodes*, 19 Oct 2018, Jing Z. Sun, living culture CGMCC 3.19848; Xixia District, Yinchuan, Ningxia Hui Autonomous Region, 38°38’52”N, 106°9’33”E, ca. 1127 m elev., from rhizosphere soil of *Lycium chinensis*, 17 Oct 2018, Jing Z. Sun, living culture CGMCC 3.19699; ibid., living culture CGMCC 3.19670.
Four new *Trichoderma* spp.

Note. The species is characterized by tree-like conidiophores, phialides verticillate or in whorls of 3–4, spindle-like to fusiform phialides (4.0–6.0 × 2.5–3.0 µm) and ovoid to subglobose conidia. Differs from *T. lixii* by shorter and wider phialides and smaller conidia. Differs from *Trichoderma xixiacum* by compact, relatively smaller phialides, and the pustules not forming distinctly zonate of pustules on SNA.

Teleomorph. Undetermined.

Figure 2. *Trichoderma lentinulae* (CGMCC 3.19847). Cultures at 25 °C after 3 days (A on PDA B on CMD C on SNA) D conidiation pustules on CMD after 10 days E conidiation pustules on CMD after 10 d F conidiophores G–I Conidiophores and phialides J conidia K–M chlamydospores. Scale bars: 25 µm (F); 10 µm (G–M).
Trichoderma vermifimicola Jing Z. Sun & X.Z. Liu, sp. nov.
MycoBank No: 833234
Fig. 3

Etymology. Latin, vermifimicola, refers to the habitat of the type species.

Type. CHINA. Yongning, Yinchuan, the Ningxia Hui Autonomous Region, 40°0’41”N, 116°23’37”E, ca. 1678 m elev., from the substrates for earthworm cultivation, 18 Oct 2018, Jing Z. Sun (HMAS 248255, holotype), ex-type culture CGMCC 3.19694.

Description. On CMD after 72 h, colony radius 49–51 mm at 25 °C, 51–52 mm at 30 °C, 4–5 mm at 35 °C. Colony hyaline, irregularly circular, indistinctly zonate; mycelium loose. Aerial hyphae short, inconspicuous. No diffusing pigment, not distinct odor. Conidial production noted after 3 days, starting around the inoculum (Fig. 3B). Small pustules formed at the colony margin, first white, turning blue-green after 7 d, with hairs protruding beyond the surface. Chlamydospores unobserved.

On PDA after 72 h, colony radius 55–58 mm at 25 °C, 55–56 mm at 30 °C, 5–6 mm at 35 °C. Colony white-green to bright green, regularly circular, distinctly zonate; mycelium dense and radial. Aerial hyphae short, inconspicuous. No diffusing pigment, not distinct odor. Conidial production noted after 2 days, starting around the inoculum, effuse in the aerial hyphae, first white, turning green after 2 d (Fig. 3A). Chlamydospores unobserved.

On SNA after 72 h, colony radius 48–50 mm at 25 °C, 51–52 mm at 30 °C, 3–4 mm at 35 °C. Colony hyaline, regularly circular, distinctly zonate; mycelium loose, especially at the margin. Aerial hyphae short, inconspicuous. No diffusing pigment, not distinct odor. Conidial production noted after 2 days, starting around the inoculum, effuse in the aerial hyphae. Small pustules formed along with two concentric rings, first white, turning yellow-green after 3 d, with hairs protruding beyond the surface (Fig. 3C). Conidiophores pyramidal with opposing branches, the distance between branches relatively large, each branch terminating in a whorl of 2–3 phialides, phialides sometimes solitary on the main axis (Fig. 3F, H, K); whorls typically cruciate, but often nearly verticillate (Fig. 3K); rarely conidiophores nodose and phialides disposed in more or less botryose clusters (Fig. 3H). Phialides ampulliform to lageniform, often constricted below the tip to form a narrow neck, hyaline, (4.4–)5.0–10.5(–11.2) × (2.0–)2.5–3.0(–3.5) μm (\(\bar{x} = 6.6 \times 2.7 \mu m, n = 30\)), length/width ratio (1.5–)1.8–2.8(–5.3) (\(\bar{x} = 2.4, n = 30\)), base 1.6–2.5 μm (\(\bar{x} = 1.9 \mu m\)) (Fig. 3G, I, K). Conidia ovoid to subglobose, smooth, hyaline when young, becoming green to dark green with age, (2.0–)2.3–2.6(–3.0) × (1.5–)2.0–2.4(–2.8) μm (\(\bar{x} = 2.4 \times 2.2 \mu m, n = 50\)), length/width ratio (1.0–)1.1–1.4(–1.7) (\(\bar{x} = 1.2, n = 50\)) (Fig. 3J). Chlamydospores unobserved. No odor; no diffusing pigment observed.

Additional specimen examined. CHINA. Xixia District, Yinchuan, Ningxia Hui Autonomous Region, 38°38’52”N, 106°9’33”E, ca. 1127 m elev., from rhizosphere soil of Lycium chinois, 17 Oct 2018, Jing Z. Sun, living CGMCC 3.19697.

Teleomorph. Undetermined.
Note. Characterized by tree-like conidiophores, verticillate or in whorls of 3–4, ampulliform to lageniform phialides (5.0–10.5 × 2.5–3.0 µm), ovoid to subglobose conidia (2.4–2.6 × 2.0–2.5 µm). Differs from *Trichoderma simmonsii* by forming loose branches in whorls, relatively longer and thinner phialides, smaller conidia, and the fewer pustules on SNA.
Trichoderma xixiacum Jing Z. Sun & X.Z. Liu, sp. nov.
MycoBank No: 833235

Fig. 4

Etymology. Latin, *xixiacum*, refers to the type locality.

Type. China. Xixia District, Yinchuan, Ningxia Hui Autonomous Region, 38°38′52″N, 106°9′33″E, ca. 1127 m elev., from rhizosphere soil of *Lycium chinois*, 17 Oct 2018, Jing Z. Sun (HMAS 248253, holotype), ex-type culture CGMCC 3.19697.

Description. On CMD after 72 h, colony radius 55–56 mm at 25 °C, covering the plate at 30 °C, 9–11 mm at 35 °C. Colony hyaline, indistinctly zonate, mycelia loose. Aerial hyphae short, inconspicuous. No diffusing pigment, not distinct odor (Fig. 4B). Conidial production noted after 3 days, effuse in aerial hyphae, becoming blue-green after 4 days. Chlamydospores unobserved.

![Figure 4. Trichoderma xixiacum (CGMCC 3.19697). Cultures at 25 °C after 3 d (A on PDA B on CMD C on SNA) D conidiation pustules on CMD after 10 d E conidiation pustules on SNA after 10 d F, G, I conidiophores and phialides H conidia. Scale bars: 10 µm (F, G); 10 µm (H, I).](image-url)
On PDA after 72 h, colony radius 59–60 mm at 25 °C, covering the plate at 30 °C, 7–8 mm at 35 °C. Colony white to yellow-white, regularly circular, indistinctly zonate; mycelium dense and radial. Aerial hyphae conspicuous. No diffusing pigment, not distinct odor (Fig. 4A). Conidial production noted after 3 days, starting around the original inoculum, effuse in the aerial hyphae, first white, turning blue-green after 7 d. Chlamydospores unobserved.

On SNA after 72 h, colony radius 51–52 mm at 25 °C, 52–53 mm at 30 °C, 4–5 mm at 35 °C. Colony hyaline, indistinctly zonate; mycelium loose, especially at the margin. Aerial hyphae short. No diffusing pigment, not distinct odor (Fig. 4C). Conidial production noted after 2 days, starting around the inoculum, effuse in the aerial hyphae. Small pustules formed around the inoculum, first white, turning green after 3 d, with hairs protruding beyond the surface. Conidiophores pyramidal with opposing branches, less frequently solitary, closely-spaced branches, each branch, and the main axis terminating in 2–5 cruciately to nearly verticillately disposed phialides (Fig. 4F, G, I). Phialides ampulliform to lageniform, often constricted below the tip to form a narrow neck, hyaline, (3.2–)3.5–7.0(–9.3) × (2.3–)2.6–3.3(–3.6) µm (\(\bar{x} = 5.0 \times 3.0 \text{ µm}, n = 50\)), length/width ratio (1.2–)1.5–2.5(–4) (\(\bar{x} = 1.8, n = 50\)), base 1.6–2.2 µm (\(\bar{x} = 1.8 \text{ µm}, n = 50\)) (Fig. 4I). Conidia subglobose to globose, smooth, hyaline when young, becoming green to dark green with age, (2.0–)2.3–2.7(–3.0) × (1.6–)2.0–2.6(–3.0) µm (\(\bar{x} = 2.5 \times 2.2 \text{ µm}, n = 50\)), length/width ratio 1.0–1.3(–1.7) (\(\bar{x} = 1.1, n = 50\)) (Fig. 4H). Chlamydospores unobserved. No odor; no diffusing pigment observed.

Additional specimen examined. CHINA. Xixia District, Yinchuan, Ningxia Hui Autonomous Region, 38°38′52″N, 106°9′33″E, ca. 1127 m elev., from rhizosphere soil of *Lycium chinoin*, 17 Oct 2018, Jing Z. Sun, living CGMCC 3.19697.

Teleomorph. Undetermined.

Note. Characterized by tree-like conidiophores, verticillate or in whorls of 3–4, ampulliform to lageniform phialides (3.5–7.0 × 2.6–3.4 µm), subglobose to globose conidia (2.2–2.6 × 2.0–2.4 µm). Differs from *Trichoderma lentinulae* by compact, relatively smaller phialides, and the character of pustules on SNA. Differs from *Trichoderma lixii* by shorter and wider phialides and smaller conidia.

Trichoderma zelobreve Jing Z. Sun & X.Z. Liu, sp. nov.

MycoBank No: 833236

Fig. 5

Etymology. Greek *zelo*, meaning emulation + *breve*, referred to *Trichoderma breve*.

Type. CHINA. Chaoyang District, Beijing, 40°0′41″N, 116°23′37″E, ca. 35 m elev., 19 Oct 2018, isolated from soil, Jing Z. Sun (HMAS 248254, holotype), ex-type culture CGMCC 3.19695.

Description. On CMD after 72 h, colony radius covering the plate at 25 °C and 30 °C, 11–12 mm at 35 °C. Colony hyaline, indistinctly radial; Aerial inconspicuous. No diffusing pigment, not distinct odor (Fig. 5B). Conidial production noted after
5 days, starting around the original inoculum. Small pustules formed at the colony margin, first white, olivaceous after 6 d, with hairs protruding beyond the surface. Chlamydospores unobserved.

On PDA after 72 h, colony radius 55–58 mm at 25 °C, covering the plate at 30 °C, 8–9 mm at 35 °C. Colony white to yellow-white; mycelium dense and radial. Aerial conspicuous. No diffusing pigment, not distinct odor (Fig. 5A). Conidial production noted after 3 days, starting around the inoculum, effuse in the aerial hyphae, first white, turning green after 4 d. Chlamydospores unobserved.

On SNA after 72 h, colony radius 62–63 mm at 25 °C, covering the plate at 30 °C, 7–8 mm at 35 °C. Colony hyaline, regularly circular; mycelium loose. Aerial conspicuous. No diffusing pigment, not distinct odor (Fig. 5A). Conidial production noted after 2 days, starting around the inoculum, effuse in the aerial hyphae. Small pustules

Figure 5. *Trichoderma zelobreve* (CGMCC 3.19695). Cultures at 25 °C after 3 days (A on PDA B on CMD C on SNA) D conidiation pustules on CMD after 10 days E conidiation pustules on SNA after 10 d F conidiophores G, I conidiophores and phialides H phialides with conidia J conidia. Scale bars: 25 µm (F); 10 µm (G–J).
formed along with two concentric rings, first white, turning yellow-green after 3 d, with hairs protruding beyond the surface. Conidiophores pyramidal with opposing branches, the distance between branches relatively large (Fig. 5F). Phialides, sometimes solitary, often paired or in whorls of 2–3 (Fig. 5F); whorls typically cruciate but often nearly verticillate; rarely conidiophores nodose and phialides disposed in more or less botryose clusters (Fig. 5G, H). Phialides ampulliform to lageniform, often constricted below the tip to form a narrow neck, hyaline (Fig. 5G, H, I), (3.5–)4.0–6.0(–7.0) × (2.2–)2.6–3.2(–3.5) µm (x̄ = 4.8× 2.9 µm, n = 30), length/width ratio (1.1–)1.4–2.1(–2.5) (x̄ = 1.5, n = 30), base 1.4–2.1 µm (x̄ = 1.7 µm). Conidia ovoid to subglobose, smooth, hyaline when young, becoming green to dark green with age, (2.0–)2.3–2.6(–2.9) × (1.5–)1.8–2.2(–2.5) µm (x̄ = 2.4 × 2.0 µm, n = 30), length/width ratio (0.8–)1.1–1.4(–1.7) (x̄ = 1.2, n = 30) (Fig. 5J). Chlamydospores unobserved.

Additional specimen examined. CHINA. Chaoyang District, Beijing, 40°0'41"N, 116°23'37"E, ca. 35 m elev., isolated from soil, 19 Oct 2018, Jing Z. Sun, living culture CGMCC 3.19696.

Teleomorph. Undetermined.

Note. Characterized by tree-like conidiophores, branches paired or in whorls of 3–4, ampulliform to lageniform (4.0–6.0 × 2.6–3.2 µm), ovoid to subglobose conidia (2.2–2.6 × 1.8–2.2 µm). Differs from Trichoderma breve by shorter phialides and smaller conidia, as well as the cultural characteristics and growth rates.

Discussion

A combination of phylogenetic, morphological, ecological, and biogeographical data has robustly resolved the taxonomy of Trichoderma (Jaklitsch and Voglmayr 2015; Qin and Zhuang 2016a; Sun et al. 2016; Chen and Zhuang 2017b; Qiao et al. 2018). In this study, phylogenetic analysis based on a single gene of ITS could not distinguish species of Trichoderma in the Harzianum clade from each other (Suppl. material 1: Fig. S1), which confirmed that the ITS region is not suitable for species delimitation of Trichoderma (Jaklitsch et al. 2012; Qin et al. 2018). Sequences of RPB2 and TEF1-α were powerful due to their suitable interspecific variations (Jaklitsch and Voglmayr 2015), and these have extensively been used in solving the taxonomy of Trichoderma (Jaklitsch and Voglmayr 2015; Qin and Zhuang 2016a; Chen and Zhuang 2017a, b; Qiao et al. 2018). Despite the phylogenetic analyses based on the single gene of RPB2 and TEF1-α generally revealed the phylogenetic relationship within the Harzianum clade (Suppl. material 1: Fig. S2, Suppl. material 3: Fig S3), but the relationships among T. lentinulae, T. xixiacum, T. vermicificola, T. zelobreve, and their closed taxa were not well distinct. Consideration of the universality and reliability of barcodes for species in the Trichoderma genus (Qiao et al. 2018), combined ITS, RPB2, and TEF1-α dataset was used for phylogenetic analysis in this study, revealing phylogenetic relationship among species in Harzianum clades, and suggesting that T. lentinulae, T. xixiacum, T. vermicificola, and T. zelobreve are distinguishable from each other and species within and outside of Harzianum clade as well.
Table 1. Species, strains and their corresponding GenBank accession numbers of sequences used for phylogenetic analyses.

Species	Voucher/ culture Nos.	Origin	Substrate	GenBank accession No.
Trichoderma afarasin	CBS 130755 ET	Cameroon	Soil	AY027784
	DIS 314F	Cameroon	Wood	FJ442529
	GJS 06.98	Cameroon	Soil	FJ442630
Trichoderma afroharzianum	CBS 124620 ET	Peru	*Moniliophthora roreric*	FJ442265
	CBS 466.94	Netherlands		KP009262
	GJS 04-193	Cameroon	Soil	FJ442233
Trichoderma aggressivum	CBS 100525	UK	Mushroom compost	AF057600
	DAOAM 222156 ET	Mushroom compost		AF456924
Trichoderma alba	CBS 100526	Ireland	Mushroom compost	FJ442607
Trichoderma africicum	CBS 120633 ET	UK, England	*Alnus glutinosa*	EU518651
	CPK 2494			EU518652
	HMAS 252890			KT343763
Trichoderma alpinum	HMAS 248821 ET	China, Sichuan	Soil	KY687906
	HMAS 248830			KY687912
	HMAS 248870			KY687953
Trichoderma amazonicum	CBS 126898 ET	Peru	*Hevea brasiliensis*	HM142358
	IB95			HM142359
	LA265			HM142360
Trichoderma aspergillum	GJS 05-101			FJ442677
	GJS 90-254			FJ442745
Trichoderma atrobrunneum	BMCC LU498	New Zealand		MH858272
	DAOM 167632			KJ871087
Trichoderma atrobrunneum	CBS 237.63 ET	New Zealand		KJ871083
	DAOM 222156 ET			KJ871083
Trichoderma bannaense	HMAS 248840 ET	China, Yunan	Soil	KY687923
	HMAS 248865			KY687948
Trichoderma breve	HMAS 248844 ET	China, Beijing	Soil	KY687927
	HMAS 248845			KY687928
Trichoderma brevicornum	HMAS 248871 ET	Soil		KY687954
	HMAS 248872	Soil		KY687955
Trichoderma brunneoviride	CBS 120928			EU518661
	CBS 121110 ET			EU518659
Trichoderma cameruneuse	CBS 137272 ET	Cameroon	Soil	AY027780
	GJS 99 231			AY027783
Trichoderma catoptron	DAOM 232830			KJ842166
	GJS 02 76 ET	Sri Lanka	Wood	AY737766
Trichoderma cinnamomeum	CBS 114576			FJ860543
	BMCC LU784	Nepal		KJ871244
Trichoderma corneum	CBS 132572 ET	Cameroon	Soil	AY027780
	S93			KJ665244
Trichoderma cinnamomeum	GJS 96-128	Spain		KJ665245
	GJS 97-233	Spain		KJ665442
Trichoderma compactum	GJS 97-237 ET	USA, Missouri	Decaying wood	AY737759
Trichoderma concentricum	CBS 121218			AY941822
	HMAS 248833 ET	China, Hubei	Soil	KJ665244
Trichoderma coroncum	HMAS 248858			KJ665245
Trichoderma endophyticum	GJS 97-82 ET	Thailand		KJ665252
	CBS 130729 ET	Ecuador	*Theobroma gleri*	FJ442243
	GJS 2014a			FJ67822
Trichoderma epimotoes	CBS 120534 ET	Austria		E518665
	CPK 1980			E518665
	CPK 2487 ET			E518665
Species	Voucher/ culture Nos.	Origin	Substrate	GenBank accession No.
-------------------------	-----------------------	----------------	------------	-----------------------
				ITS
Trichoderma estonicum	GJS 96-129			AY737767
				AF545514
				AF534604
Trichoderma guizhouense	DAOM 231435			EF191296
	HGUP0038			EJ191321
				JN191311
				JQ201400
				JN215484
	S628			KJ665273
				KJ665511
Trichoderma harzianum	CBS 226.95 ET	U.K.	Soil	AJ222720
	CBS 227.95			AF057605
	GJS 05 107			FJ442679
	IMI 399823			EF113587
Trichoderma hauknechtii	CBS 133493			KJ665276
				KJ665515
Trichoderma helicolixii	CBS 13499 ET	Spain		KJ665278
	CBS 135583			KJ665516
Trichoderma helicolixii	HMAS 248852 T	China, Hubei	Soil	KY687935
	HMAS 248853			KY687992
				KY688054
Trichoderma hirustum	HMAS 248834 T	China, Hubei	Soil	KY687916
	HMAS 248859			KY687942
				KY688099
Trichoderma huanense	HMAS 248841 T	China, Hunan	Soil	NR_14571
	HMAS 248867			KY687950
				KY688005
Trichoderma ingratus	HMAS 248822 T	China, Sichuan	Soil	KY687917
	HMAS 248827			KY687909
	HMAS 248873			KY687956
				KY688010
Trichoderma inhamatum	CBS 273.78 ET	Colombia	Soil	FJ442680
				FJ442725
				AF348099
Trichoderma italicum	CBS 132567			KJ665282
				KJ665525
	S15 ET			KJ665283
				KJ665526
Trichoderma lentiforme	CBS 100542 ET	French Guiana	Decorticated wood	AF469189
	DIS 253B			FJ442619
	DIS 94D			FJ442749
				FJ463379
Trichoderma lentiniulae	HMAS 248256 T	China	Lentinula	MN594469
	CGMCC 3.19848			MN605867
	CGMCC 3.19849			MN605887
	CGMCC 3.19699			MN605887
	CGMCC 3.19670			MN605888
Trichoderma liberatum	HMAS 248831 T	China, Hubei	Soil	KY687913
	HMAS 248832			KY687914
				KY687970
Trichoderma linzhiense	HMAS 248846 T	China, Tibet	Soil	KY687929
	HMAS 248874			KY687957
				KY688011
Trichoderma licii	CBS 110080 ET	Thailand	Decayed Ganoderma	AF443920
				KJ665290
				AF443938
Trichoderma neotropicale	LA11 ET	Thailand		HQ202467
	T51			FJ884180
				FJ967825
Trichoderma parestonicum	CBS 120636 ET			FJ860803
	Trichoderma parepimyces	CBS 122768		FJ860801
				FJ860563
				FJ860665
Trichoderma perviride	HMAS 273786	China, Hubei	Wood	KX026962
				KX026954
Trichoderma pinicola	KACC 4848 ET	Korea	root of Pinus densiflora	MH050354
				MH025993
				MH025981
	SFC20130926-S014			MH025991
	SFC20130926-S111			MH025992
Trichoderma pleurotus	CBS 124387 ET	Korea	Pleurotus substrate	HM142363
				HM142372
				HM142382
Trichoderma pleuroticoila	CPK 2117			EU279975
	CBS 124383 ET	Korea	Pleurotus substrate	HM142362
	GJS 95 ET			AF345948
				AF348102
Trichoderma polysporum	CBS 12438 ET	Korea	Pleurotus substrate	HM142371
				AF345948
				AF348102
Trichoderma polysporum	CBS 12438 ET	Korea	Pleurotus substrate	HM142371
				AF345948
				AF348102
Trichoderma polyporus	HMAS 248855 T	Hunan	Soil	KY687938
	HMAS 248861			KY687944
				KY688000
	S72			KJ665685
				KJ665685
Species	Voucher/ culture Nos.	Origin	Substrate	GenBank accession No.
-------------------------------	-----------------------	--------------	----------------------	-----------------------
Trichoderma priscilae	CBS 131487 ET	Spain		KJ665333, KJ665691
Trichoderma pseudodensum	HMAS 248828 T	Hubei	Soil	KY687910, KY687967, KY688023
Trichoderma pseudogelatinosum	HMAS 248829			KY687911, KY687968, KY688024
Trichoderma pseudogelatinosum	CNU309 ET	Japan	Shiitake mushroom	HM769754, HM920173, HM920202
Trichoderma purpureum	HMAS 273787 ET	China, Hubei		KYX026953, KYX026961, KYX026953
Trichoderma pyramidalae	CBS 135574 ET	Italy	Olea europaea	KJ665334, KJ665699
Trichoderma rifaii	CBS 130746	Ecuador	Theobroma gleri	FJ442663, FJ463324
Trichoderma rugulosum	HMAS 248829, KY687910	Hubei	Soil	KY687911, KY687967, KY688023
Trichoderma rufobrunneum	HMAS 248829	Hubei	Soil	KY687911, KY687967, KY688023
Trichoderma simplex	CBS 130431	USA, Maryland	Decaying wood bark	AF443917, AF442757, AF443935
Trichoderma simplex	HMAS 248842 T	China, Guangxi	Soil	KY687925, KY687981, KY688041
Trichoderma solum	HMAS 248847	Hubei	Soil	KY687930, KY687986, KY688049
Trichoderma stramineum	HMAS 248848 T	China, Hubei	Soil	KY687931, KY687987, KY688050
Trichoderma stramineum	HMAS 248849			KY687932, KY687988, KY688051
Trichoderma tawa	CBS 114248 ET	Sri Lanka	Decaying wood	AY737765, AY391945, AY373746
Trichoderma tawa	TAMA 0425			ABB56609, ABB56748, ABB56675
Trichoderma velutinum	DAOM 232841			KXJ842187, EU279972
Trichoderma tenue	HMAS 273785 ET	China, Hubei	Wood	KX026950, KX026952
Trichoderma tomentosum	DAOM 171918	Canada, Ontario	Ulmus wood	AY605715, AY605759
Trichoderma velutinum	DAOM 234236			EU280083, EU279971
Trichoderma zayuense	DAOM 230013 ET	Nepal	Soil	AY937415, AY937415
Trichoderma zylophiformida	HMAS 273865 T	China, Heilongjiang	Soil	KX026956, KX026957
Trichoderma zylophiformida	CGMCC 3.19850	China	Compost	MN594472, MN605870, MN605881
Trichoderma zylophiformida	HMAS 248255 T	China	Compost	MN594473, MN605871, MN605882
Trichoderma zylophiformida	CGMCC 3.19698	China	Soil	MN594477, MN605875, MN605886
Trichoderma zylophiformida	HMAS 248836	China, Tibet	Soil	KY687919, KY687974, KY688031
Trichoderma zylophiformida	HMAS 248836			KY687919, KY687975, KY688032
Trichoderma zylophiformida	HMAS 248254 T	China	Mushroom	MN594474, MN605872, MN605883
Trichoderma zylophiformida	CGMCC 3.19696	China	Soil	MN594475, MN605873, MN605884
Trichoderma zylophiformida	YMF 1.00268 ET	China, Yunnan	Soil	MH113932, MH158996, MH183181

Trichoderma lentinulae was phylogenetically close to *T. xixiacum* and *T. lixii* but represents a taxon (Fig. 1). Morphologically, it differed from *T. xixiacum* in producing less frequently lageniform phialides with inequilateral to a strongly-curved apex. The conidia of *T. lentinulae* are usually more slender (*x* = 2.0), than those of *T. xixiacum* (*x* = 1.8). In addition, the conidia of *T. lentinulae* (length/width ratio, *x* = 1.2) are slightly more slender than *T. xixiacum* (length/width ratio, *x* = 1.1). The two species also differ from each other in their cultural characteristics and growth rates (Figs 2A–C, 4 A–C). *Trichoderma lentinulae* differed from *T. lixii* in producing less fre-
Four new *Trichoderma* spp.

... subsequently lageniform phialide with inequilateral to a strongly-curved apex. Additionally, *T. lentinulae* forms 2–5 apex phialides on the main axis (Fig. 2F, I) in contrast to 2–4 apex phialides of *T. lixii* (Chaverri et al. 2015). *Trichoderma lentinulae* is also clearly distinguished from *T. lixii* (phialides, 6.5–3.5 µm; conidia, 3.0–2.7 µm) (Chaverri et al. 2015) in producing shorter phialides ($\bar{x} = 4.5 \times 3.0$ µm) and smaller conidia ($\bar{x} = 2.5 \times 2.2$ µm). *Trichoderma vermifimicola* was phylogenetically associated with *T. simmonsii* (Fig. 1). Morphologically, it is hard to distinguish *T. vermifimicola* from *T. simmonsii*, because both form similar tree-like conidiophores, ampulliform to lageniform phialides and ovoid to subglobose conidia, but phialide whorls of *T. vermifimicola* were often nearly verticillate rather than cruciate in *T. simmonsii* (Chaverri et al. 2015). Furthermore, *T. simmonsii* grew fast (PDA 25–55 mm, SNA 10–35 mm) at 35 °C than *T. vermifimicola*. Additionally, the length/width ratio phialide of *T. vermifimicola* is larger ($\bar{x} = 2.4$) than that of *T. simmonsii* ($\bar{x} = 1.9$) (Chaverri et al. 2015), and *T. vermifimicola* also produces smaller conidia ($\bar{x} = 2.4 \times 2.2$ µm) (Fig. 3) than *T. simmonsii* (3.0–2.7 µm) (Chaverri et al. 2015). *Trichoderma zelobreve* was closely related to *Trichoderma breve* in the multi-gene phylogenetic analysis (Fig. 1). Morphologically, both fungi have short phialides, however, *T. zelobreve* differs from *T. breve* by producing shorter and narrower phialides (4.0–6.0 × 2.6–3.2 µm) than that of *T. breve* (6.7–10.0 × 2.8–3.9 µm) (Chen and Zhuang 2017a). The conidia of *T. zelobreve* are smaller ($\bar{x} = 2.4 \times 2.0$ µm) than those of *T. breve* ($\bar{x} = 3.0 \times 2.8$ µm). Additionally, *T. zelobreve* does not form a zonate colony on CMD, PDA, and SNA, whereas the colony of *T. breve* presents concentric zones on CMD and PDA and finely concentric zones on SNA (Chen and Zhuang 2017a). In a previous study, the phylogenetic analysis indicated that *T. breve* was a sister taxon of *T. bannaense*, but morphologically more similar to *T. harzianum* (Chen and Zhuang 2017a). Herein, our phylogenetic analyses presented *T. breve* was associated with *T. zelobreve* (Fig. 1), resulted from the little genetic variation of sequences of ITS and TEF1-α between them. The phylogenetic analysis in Chaverri et al. (2015) presented that *T. simmonsii* was associated with *T. camerunense*. In this study, our phylogenetic analysis presented that *T. simmonsii* was phylogenetically closed to *T. vermifimicola*, and *T. camerunense* phylogenetic to *T. rifaii* (Fig 1, Suppl. material 3: Fig S3). In a previous study, these species were recognized as the cryptic species in under *T. harzianum* (Chaverri et al. 2015).

Currently, the *Harzianum* clade contains more than 60 species which were isolated from soil, plant tissues, and other fungi (Jaklitsch and Voglmayr 2015; Qin and Zhuang 2016a; Chen and Zhuang 2017b; Qiao et al. 2018; Sun et al. 2019a, b). Several studies have confirmed that species in this clade are important because of their mycoparasitism (Chaverri et al. 2015; Chen and Zhuang 2017a; Sun et al. 2019). When numerous biological control agents were explored deriving from species in the *Harzianum* clade (Chaverri et al. 2015, several taxa, such as *T. atrobrunneum*** T. pleuroti*, and *T. pleuroticola* were recognized as causing agents of “Green mold” disease of cultivated mushroom (Innocenti et al. 2019; Sun et al. 2019a, b). In this study, *T. lentinulae* was isolated from a fruiting body and the cultivated substrates of *L. edodes*, causing the decay of the host as well. How *T. lentinulae* affect the cultivation of *Lentinula edodes* is worthy of further studies. Since *T. lentinulae* was isolated from mushroom, *T. lentinulae* and *T. vermifimicola*...
were isolated from the mushroom spawn and substrates for earthworm cultivation, *T. xixiacum* and *T. zelobreve* were isolated from soil, confirming that species in the *Harzianum* clade have flexible nutrition modes (Chaverri and Samuels 2013; Zhang et al. 2018). The new species introduced here are not only potential candidates for biological agent exploration, but also improve our understanding of the diversity of *Trichoderma*, especially of the *Harzianum* clade in China.

Acknowledgements

This research was jointly supported by Key Research and Development Programs in Ningxia Hui Autonomous Region (2018BBF02004) and the Natural Science Foundation of China (no. 31600024).

References

Atanasova L, Druzhinina IS, Jaklitsch WM, Mukherjee P, Horwitz B, Singh U (2013) Two hundred *Trichoderma* species recognized on the basis of molecular phylogeny. *Trichoderma*: Biology and Applications CABI, Wallingford: 10–42. https://doi.org/10.1079/9781780642475.0010

Bunbury-Blanchette AL, Walker AK (2019) *Trichoderma* species show biocontrol potential in dual culture and greenhouse bioassays against *Fusarium* basal rot of onion. Biological Control 130: 127–135. https://doi.org/10.1016/j.biocontrol.2018.11.007

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the *Trichoderma harzianum* species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558–590. https://doi.org/10.3852/14-147

Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67: 2823–2837. https://doi.org/10.1111/evol.12169

Chen K, Zhuang WY (2016) *Trichoderma shennongjianum* and *Trichoderma tibetense*, two new soil-inhabiting species in the Strictipile clade. Mycoscience 57: 311–319. https://doi.org/10.1016/j.myc.2016.04.005

Chen K, Zhuang WY (2017a) Discovery from a large-scaled survey of *Trichoderma* in soil of China. Scientific Reports 7, 9090. https://doi.org/10.1038/s41598-017-07807-3

Chen K, Zhuang WY (2017b) Three new soil-inhabiting species of *Trichoderma* in the Stromaticum clade with test of their antagonism to pathogens. Current Microbiology 74: 1049–1060. https://doi.org/10.1007/s00284-017-1282-2
Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14: 733–740. https://doi.org/10.1093/oxfordjournals.molbev.a025813

Degenkolb T, Nielsen KF, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Dohren H, Vilcinskas A, Bruckner H (2015) Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum Complex. Chemistry & Biodiversity 12: 662–684. https://doi.org/10.1002/cbdv.201400300

Druzhinina IS, Kopchinskiy AG (2006) TrichOKEY v. 2 – A DNA Oligonucleotide BarCode Program for the Identification of Multiple Sequences of Hypocrea and Trichoderma. In: Meyer W, Pearce C (Eds) International Proceedings of the 8th International Mycological Congress. Cairns, Australia, Medimond, Bologna, Italy.

Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology 42: 813–828. https://doi.org/10.1016/j.fgb.2005.06.007

du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110: 559–583. https://doi.org/10.1080/00275514.2018.1463059

Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecology 3: 240–254. https://doi.org/10.1016/j.funeco.2009.12.001

Innocenti G, Montanari M, Righini H, Roberti R (2019) Trichoderma species associated with green mould disease of Pleurotus ostreatus and their sensitivity to prochloraz. Plant Pathology 68: 392–398. https://doi.org/10.1111/ppa.12953

Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocreales Trichoderma. Mycologia 97: 1365–1378. https://doi.org/10.1080/15572536.2006.11832743

Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in southern Europe and Macaronesia. Studies in Mycology 80: 1–87. https://doi.org/10.1016/j.simyco.2014.11.001

Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang CL, Lin FC (2016) Trichoderma biodiversity of agricultural fields in East China reveals a gradient distribution of species. PLoS ONE 11(8): e0160613. https://doi.org/10.1371/journal.pone.0160613

Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycological Research 109: 658–660. https://doi.org/10.1017/S0953756205233397

Liu YJJ, Whelen S, Benjamin DH (1999) Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. https://github.com/nylander/MrModeltest2
Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wannasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madhir H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nagal-Prata S, Singh SK, Vadhanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, LimYW, Chen Y, Tkáč Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tİbpromma S, Camporesi E, Bulgakov T, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu J (2019) Fungal diversity notes 929–1036: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 95: 1–273. https://doi.org/10.1007/s13225-019-00421-w

Qiao M, Du X, Zhang Z, Xu JP, Yu ZF (2018) Three new species of soil-inhabiting Trichoderma from southwest China. Mycokeys: 63–80. https://doi.org/10.3897/mycokeys.44.30295

Qin WT, Zhuang WY (2016a) Four new species of Trichoderma with hyaline ascospores from central China. Mycological Progress 15: 811–825. https://doi.org/10.1007/s11557-016-1211-y

Qin WT, Zhuang WY (2016b) Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions. Mycologia 108: 205–214. https://doi.org/10.3852/15-144

Qin WT, Zhuang WY (2017) Seven new species of Trichoderma (Hypocreales) in the Harzianum and Strictipile clades. Phytotaxa 305: 121–139. https://doi.org/10.11646/phytotaxa.305.3.1

Rambaut A (2012) FigTree v1.4. Molecular evolution, phylogenetics and epidemiology. Edinburgh: University of Edinburgh, Institute of Evolutionary Biology.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Sun JZ, Liu XZ, Jeewon R, Li YL, Lin CG, Tian Q, Zhao Q, Xiao XP, Hyde KD, Nithong S (2019a) Fifteen fungicolous Ascomycetes on edible and medicinal mushrooms in China and Thailand. Asian Journal of Mycology 2(1): 129–169. https://doi.org/10.5943/ajom/2/1/7

Sun JZ, Liu XZ, McKenzie EH, Jeewon R, Liu JK, Zhang XL, Zhao Q, Hyde KD (2019b) Fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Diversity 95(1): 337–430. https://doi.org/10.1007/s13225-019-00422-9
Four new *Trichoderma* spp.

Sun RY, Liu ZC, Fu KH, Fan LL, Chen J (2012) *Trichoderma* biodiversity in China. Journal of Applied Genetics 53: 343–354. https://doi.org/10.1007/s13353-012-0093-1

Sun JZ, Pei YF, Li EW, Li W, Hyde KD, Yin WB, Liu XZ (2016) A new species of *Trichoderma hypoxylon* harbours abundant secondary metabolites. Scientific Reports 6, 37369. https://doi.org/10.1038/srep37369

White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Zhang WW, Zhang XL, Li K, Wang CS, Cai L, Zhuang WY, Xiang M, Liu XZ (2018) Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi. Mycology 9: 176–188. https://doi.org/10.1080/21501203.2018.1478333

Zhang YJ, Zhang S, Liu XZ, Wen HA, Wang M (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in applied microbiology 51(1): 114–118. https://doi.org/10.1111/j.1472-765X.2010.02867.x

Zhu ZX, Zhuang WY (2015) *Trichoderma* (Hypocrea) species with green ascospores from China. Persoonia 34: 113–129. https://doi.org/10.3767/003158515X686732

Supplementary material I

Figure S1

Authors: Xin Gu, Rui Wang, Quan Sun, Bing Wu, Jing-Zu Sun

Data type: phylogenetic tree

Explanation note: Phylogenetic tree based on Maximum Likelihood analysis of ITS sequence dataset. *Trichoderma ceramicum*, *Trichoderma estonicum*, and *Trichoderma parastinicum* were chosen as the outgroup. Bootstrap Values higher than 70% from RAxML (BSML) (left) and Bayesian posterior probabilities greater than 0.95 (BYPP) (right) are given above the nodes. \(^T \) indicates the type; \(^{ET} \) indicates the ex-living type. Isolates obtained in this study are in red.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.73.51424.suppl1
Supplementary material 2

Figure S2
Authors: Xin Gu, Rui Wang, Quan Sun, Bing Wu, Jing-Zu Sun
Data type: phylogenetic tree
Explanation note: Phylogenetic tree based on Maximum Likelihood analysis of RPB2 sequence dataset. *Trichoderma ceramicum*, *Trichoderma estonicum*, and *Trichoderma parastinicum* were chosen as the outgroup. Bootstrap Values higher than 70% from RAxML (BSML) (left) and Bayesian posterior probabilities greater than 0.95 (BYPP) (right) are given above the nodes. \(T \) indicates the type; \(E \) indicates the ex-living type. Isolates obtained in this study are in red.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.73.51424.suppl2

Supplementary material 3

Figure S3
Authors: Xin Gu, Rui Wang, Quan Sun, Bing Wu, Jing-Zu Sun
Data type: phylogenetic tree
Explanation note: Phylogenetic tree based on Maximum Likelihood analysis of TEF1α sequence dataset. *Trichoderma ceramicum* was chosen as the outgroup. Bootstrap Values higher than 70% from RAxML (BSML) (left) and Bayesian posterior probabilities greater than 0.95 (BYPP) (right) are given above the nodes. \(T \) indicates the type; \(E \) indicates the ex-living type. Isolates obtained in this study are in red.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.73.51424.suppl3