Flavonoids of Morus, Ficus, and Artocarpus (Moraceae): A review on their antioxidant activity and the influence of climate on their biosynthesis

Dina Hawari¹*, Mutakin Mutakin², Gofarana Wilar¹, Jutti Levita¹

¹Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia.
²Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia.

ARTICLE INFO
Received on: 19/06/2021
Accepted on: 11/08/2021
Available Online: 05/12/2021

Key words:
Moraceae, flavonoid, antioxidant, climate, biosynthesis.

ABSTRACT
Moraceae plants are widely distributed in various regions of the world in various climatic conditions. Morus, Ficus, and Artocarpus are the genera of the family Moraceae that have been widely studied for their health benefits such as anti-inflammatory, anticancer, antiplasmodial, antidiabetic, immunomodulator, anti spasmodic, and neurodegenerative diseases treatment. These activities are mostly related to the flavonoids that act as natural antioxidants. The flavonoids in plants vary and are influenced by environmental conditions. The objectives of this review were to provide the flavonoids of Morus, Ficus, and Artocarpus (family Moraceae) and their antioxidant activity and to study the influence of the climate on flavonoid biosynthesis. This review includes several studies published in the PubMed database obtained using the keywords (“Morus” OR “Ficus” OR “Artocarpus”) AND “flavonoids” NOT “opuntia” with “full-text” and “10 year” filter. Various classes of flavonoids found in these plants are mostly flavonols and flavones. These three genera of plants also exhibit a strong antioxidant activity through various mechanisms. The flavonoids in Morus, Ficus, and Artocarpus plants are influenced by climatic conditions including temperature and solar radiation by upregulating and downregulating the gene expression involved in flavonoid biosynthesis.

INTRODUCTION
The family Moraceae, often called the mulberry family or the fig family, grows in a wide range of climatic conditions. Thus, it is widely distributed in various types of regions (Tomczyk et al., 2019). The genera that have been widely studied for their health benefits are Morus, Ficus, and Artocarpus (Afzan et al., 2019). These plants are widely utilized traditionally in cosmetics, agriculture, food, and additives in the pharmaceutical industry (Ghavami et al., 2020). These benefits are due to the secondary metabolites contained in them (Afzan et al., 2019).

Recently, a group of compounds that have increased attention because of their bioactive properties, is flavonoids (Li et al., 2020a). Flavonoids are widely present in every part of the Moraceae plants (Zhu et al., 2019). Flavonoids in Morus, Ficus, and Artocarpus have shown antidiabetic (Junior et al., 2017), anti-inflammatory (Ribeiro et al., 2019), anticancer (Boonyaketgoson et al., 2020), antiplasmodial (Boonyaketgoson et al., 2020), immunomodulator (Septama et al., 2018), and anti spasmodic (Zoofishan et al., 2019) activity. Some studies also proved their ability to improve several diseases including neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease (Paudel et al., 2019; Suttisansanee et al., 2020) and osteoporosis (Yuan et al., 2017) and to help lower blood pressure (Alamgeer et al., 2017).

The hydroxyl group in flavonoids plays a role in providing antioxidant properties that can fight oxidative stress (Zhao et al., 2018). However, the flavonoids in plants vary and are influenced by environmental conditions such as climate, solar radiation, temperature, and precipitation rate (Dalmagro et al., 2018; Krishna et al., 2018). The total flavonoid is an important

*Corresponding Author
Dina Hawari, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia-45363. E-mail: dina17003@mail.unpad.ac.id

© 2021 Dina Hawari et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
parameter in determining the quality of a plant (Afzán et al., 2019).

Therefore, the objectives of this review were to provide the flavonoids of Morus, Ficus, and Artocarpus (family Moraceae) and their antioxidant activity and to study the influence of the climate on flavonoid biosynthesis. To the best of authors’ knowledge, this review is the first one that compiles all the pieces of information mentioned.

METHODS

This review included studies published in the PubMed database obtained using the keywords (“Morus” OR “Ficus” OR “Artocarpus”) AND “flavonoids” NOT “opuntia” with “full-text” and “10 year” publication date filtered from February 2021 to June 2021. The inclusion criteria were articles about Morus, Ficus, and Artocarpus genera which contain flavonoids and biosynthesis mechanism, contain the list of flavonoids present in the plant, contain the antioxidant activity of the plant, and contain the environmental influence on the flavonoid biosynthesis. The articles obtained from the initial search were 548 studies. Articles published before 2011, reviews, non-English studies, and unrelated studies such as studies on processed foods and studies that do not contain information about flavonoid content were excluded. The information obtained from articles was then supplemented with information about climate obtained through the network sites https://climatecharts.net/ (Zepner et al., 2020) and https://gml.noaa.gov/grad/solcalc/ (Global Monitoring Laboratory). The flowchart of literature searching is shown in Figure 1.

BIOSYNTHESIS PATHWAY OF FLAVONOIDS

Flavonoids are a substantial secondary metabolites group present in plants which can be classified according to their basic skeleton into certain groups such as flavonols, flavones, flavanols, isoflavonols, flavanones, anthocyanins, and proanthocyanidin (Li et al., 2020a). Other sources stated that flavanol, aurone, furan chromone, isoflavanone, biflavones, xanthones, chalcones, and dihydrochalcone are also included in the flavonoid classification (Wang et al., 2018). Generally, a schematic presentation of the biosynthesis pathway of flavonoids is shown in Figure 2.

Biosynthesis of flavonoids begins with phenylalanine which is catalyzed by phenylalanine ammonia lyase (PAL) to form cinnamic acid. The cinnamic acid is further oxidized and then catalyzed with the help of cinnamic acid 4-hydroxylase (C4H) and 4-coumaroyl CoA ligase (4CL) to form p-coumaric acid and 4-coumaroyl CoA. These stages are included in the phenylpropanoid pathway. Then, the resulting product will interact with three malonyl-CoA molecules from the shikimic pathway and produce naringenin. The stages from naringenin to various other types of flavonoids are the entry stages of the flavonoid biosynthesis pathway (Li et al., 2020a).

The formation of flavonols from dihydroflavonol is catalyzed by flavonol synthase (FLS), which converts dihydrokaempferol, dihydroquercetin, and dihidromyricetin into kaempferol, quercetin, and myricetin, respectively (Huang et al., 2020). In mulberry fruit, flavonoid biosynthesis is influenced by the level of maturity, where the ripe fruit has higher levels of flavonoids (Huang et al., 2020). The same thing also happened to fig fruit (Ficus carica) which showed that the anthocyanin levels in fruits that had changed color to red could contain 28 times more anthocyanins compared to fruits that were still yellow (Li et al., 2020c).
Compounds contained in each part of the plant are different. This happens because there are differences in proteins expressed in each plant organ. These proteins or enzymes affect the synthesis process in the flavonoid biosynthetic pathway. Organ-specific metabolic analysis in _M. alba_ showed that more flavonoids were accumulated in roots than leaves and twigs. Notably, the two root-specific proteins named flavonoid 3,5-hydroxylase and chalcone flavanone isomerase were accumulated in the flavonoid pathway (Zhu et al., 2019). The difference in the concentration of flavonoids in _Morus atropurpurea_ showed the highest flavonoid content in root bark, followed by stem bark, twigs, and old leaves (Wang et al., 2017)

FLAVONOID COMPOUNDS IN MORUS, FICUS, AND ARTOCARPUS

Moraceae plants, especially genus _Morus_, can be widely cultivated in tropical, subtropical, and temperate climates in Asia, Europe, and South and West America (Paudel et al., 2019). In China, _Morus alba_ and _Morus nigra_ have been used as traditional medicines since ancient times (Hao et al., 2018; Zhao et al., 2018) Guangxi and Chongqing are emerging sericulture areas in China where the production of mulberry leaves is huge. In order to identify high quality mulberry leaves that are suitable for healthy products to expand planting, 24 samples from three regions (Guangdong, Guangxi, Chongqing). They are also important in the economic sector, especially in sericulture (Zou et al., 2012). _Morus_ plants are known to be abundant with flavonoids. Hence, various studies of metabolic profiles to transcriptome analysis have been carried out on several _Morus_ species, both to understand the biosynthesis of flavonoids in _Morus_ and to determine the response of flavonoids as a defense against environmental conditions (Li et al., 2020a; Li et al., 2020b).

The biggest population of the family Moraceae is from _Ficus_ (Farag et al., 2014). This genus consists of around 800 species and is widely spread from Asia to the Mediterranean region (Alamgeer et al., 2017; Farag et al., 2014). _Ficus deltoidea_ is an indigenous plant in Indonesia, Thailand, and Malaysia and can be found easily in other Southeast Asian countries. The plant wildly grows near beaches, hilly forests, and peat soil (Afzan et al., 2019). It is complicated to find the distinction of the varieties based on the plant morphology, especially the leaves, because they tend to have a diverse leaf shape on both the same stem or a different stem of the same plant (Afzan et al., 2019; Shahinuzzaman et al., 2020). Therefore, the identification of secondary metabolite and chemical markers is needed to distinguish and choose the right plant to be used as a medicinal herb (Afzan et al., 2019). A previous study on _F. deltoidea_ Jack leaves from Kalimantan, Indonesia, harvested more than 6 months after being planted, revealed the highest flavonoids and total phenolic content (TPC) compared to the younger leaves, unripe fruits, and stems. This plant was seeded in a conditioned soil with pH = 6.12, N = 0.688%, using NPK Mutiara (16:16:16) as a basic fertilizer (Manurung et al., 2017). Another study on _F. carica_ collected in Lakhdaria, Algeria, also reported that the leaves of this plant contained a high flavonoid and TPC and antioxidant activity (Mahmoudi et al., 2016).

The genus _Artocarpus_ consists of a tropical plant that is mainly cultivated in Asia, especially in South and Southeast Asia (Boonyaketgoson et al., 2020). This genus is a rich source of prenylated flavonoid (PF) and more than 300 PFs have been isolated (Ye et al., 2019).

From Table 1, we could see that the _Morus_ species are mostly grown in a subtropical climate and humid climate. Despite their diverse growing place, every part of the _Morus_ plants shows a similar type of flavonoid. The leaves mostly consist of flavonol derivatives, when anthocyanins are mostly found in the fruits, and the root and stem barks contain various flavone derivatives, 2-arylbenzofuran flavonoid, and PFs. Many types of kuwanon (flavone derivatives), mulberrofuran (2-arylbenzofuran flavonoid), and morusin (prenylated flavone) exist in the root and stem bark of any species in the genus _Morus_ (Abdel Bar et al., 2019; Guo et al., 2019; Zheng et al., 2012). Surprisingly, morusin is also found in _Artocarpus heterophyllus_ and _Artocarpus xanthocarpus_ roots (Jin et al., 2015; Ye et al., 2019). This shows that morusin might be a typical compound of the family Moraceae.

Metabolic profiling of mulberry leaves shows a variety of flavonols and flavones (Li et al., 2020a). Kaempferol 3-O-glucoside (astragalin), quercetin 3-O-glucoside (isouqueritrin), and kaempferol/queretin di-O-hexoside were found to be abundant in all _Morus_ leaves samples (Li et al., 2020a). This is consistent with the data collected in Table 1, where astragalin and isouqueritrin were detected in all samples of _M. alba_ leaves from various countries under different climatic conditions. This result is also in line with Kim et al. (2014) study where rutin, isouqueritrin, and astragalin were found to be the main flavonoid compounds in _M. alba_ leaves with concentrations of 3.10, 5.68, and 2.41 mg/g, respectively (Kim et al., 2014). Based on the flavonoid compound information collected in this review, the flavonoid compounds of _M. nigra_ leaves were identified by targeted screening so that only a few flavonoid compounds were detected. However, the flavonoids in _M. nigra_ leaves showed the same characteristics as _M. alba_ which was dominated by flavonols. Unlike flavonols which are abundant in O-glycosyl modification, flavones such as luteolin, apigenin, and chrysoeriol and their derivatives were also detected in _Morus_ leaves with O-hexosylated and O-pentosylated modifications (Li et al., 2020a).

Luteolin and apigenin and their glycosides were identified in almost all _Ficus_ plants. Luteolin was detected in two species of _Ficus_ from Egypt and one species each from Cameroon, China, and the Ivory Coast. Besides that, based on Table 1, other flavonoids also can be found in most _Ficus_ species.

Various PFs were identified in the roots of _A. heterophyllus_. PFs are chromone class derivatives that are structurally different and characterized by multiple prenyl units linked to the flavone core by C-3 and/or C-5. Various prenyl substitution patterns in the flavone skeleton give PF a high structural diversity (Ye et al., 2019). Many PFs were also identified in _Artocarpus nigrifolius_ twigs such as artocarin which can also be found in other _Artocarpus_ twigs and root barks and gemichalcone which also can be found in some _Morus laevigata_ twigs and _A. heterophyllus_ twigs (Di et al., 2013; Liu et al., 2018; Wang et al., 2015).

TOTAL FLAVONOID CONTENT (TFC) AND TPC

Various studies have estimated the flavonoid composition in some Moraceae plants. TFC and TPC have been determined from each part of Moraceae plants and summarized in Table 2. Most of the data originate from South Korea (Ju et al., 2018; Kim et al., 2014; 2020; Yu et al., 2021), Bangladesh (Khan et al., 2013; Sumi et al., 2016), China (Chen et al., 2020; Krishna et al., 2018), Brazil (Souza et al., 2018; Zeni et al., 2017), Malaysia (Abraham...
Table 1. Flavonoid compounds in *Morus*, *Ficus*, and *Artocarpus*.

Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
M. alba L.	Fruit	Seoul, South Korea	37.57	Dfa	UHPLC-QTOF-HRMS	Astragalin; quercetin; kaempferol; kaempferol 3-O-β-rutinoside; luteolin; rutin; taxifolin; quercetin 3-O-β-glucoside	Yu et al., 2021
						Cyanidin hexoside; cyanidin pentoside; cyanidin hexosyhexoside; delphinidin acetylhexoside; delphinidin rhamnosylhexoside; epigallocatechin; gallocaechitin; isorhamnetin glucuronide; isorhamnetin hexoside; isorhamnetin hexosyhexoside; kaempferol glucuronide; kaempferol hexosylhexoside; kaempferol rhamnosylhexoside; morin; naringin; pelargonidin hexoside; petunidin rhamnosylhexoside; quercetin; quercetin glucuronide; quercetin hexoside; quercetin hexosylhexoside; quercetin rhamnoside; rutin Catechin; cyanidin 3-(glucosyl)rhhamnoside; cyanidin 3,5-diglucoside; cyanidin 3-galactoside; cyanidin 3-glucoside dimer; cyanidin 3-laminariobioside; cyanidin 3-O-(diglucoside)glucosylrutinoside; cyanidin 3-rutinoside; cyanidin 3-rutinoside dimer; cyanidin 3-sophoroside; delphinidin 3,5-diglucoside; delphinidin 3-galactoside; delphinidin 3-rutinoside; delphinidin 3-rutinoside-5-glucoside; dihydroquercetin; dihydroquercetin-3-glucoside; dihydroquercetin-7-rutinoside; galloylcyadin-glycoside; kaempferol; kaempferol-3-glucoside; kaempferol-3-rutinoside; myricetin-pentoside; pelargonidin 3-glucoside; pelargonidin 3-rutinoside; peonidin 3-rutinoside; petunidin 3-arabinoside; procyanidin dimer A; quercetin; quercetin-methylpentoside-dihexoside; rutin Cyanidin 3-O-glucoside; cyanidin 3-O-rutinoside; quercetin 3-O-[6"-O-(6"-malonyl)glucosyl]-glucoside; kaempferol 3-O-glucosyl-glucoside-7-O-glucoside; quercetin 3-O-glucosyl-glucoside; kaempferol 3-O-rutinoside-7-O-glucoside; quercetin 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-rhamnosyl-glucoside; kaempferol 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-[6"-O-(6"-malonyl)glucosyl]-rhamnoside; quercetin 3-O-glucoside; quercetin 3-O-[6"-acetyl]glucoside; kaempferol 3-O-rutinoside; kaempferol 3-O-[6"-malonyl]glucosyl-rhamnoside; quercetin 3-O-rhamnoside; quercetin 3-O-[6"-malonyl]-glucoside; quercetin 3-O-[6"-malonyl]-glucoside; quercetin	Natic et al., 2015
M. alba L.	Fruit	Vojvodina, North Serbia	45.30	Cfa	UHPLC-DAD MS/MS	Catechin; cyanidin 3-glucosyl]rhamnoside; cyanidin 3,5-diglucoside; cyanidin 3-galactoside; cyanidin 3-glucoside dimer; cyanidin 3-laminariobioside; cyanidin 3-O-(diglucoside)glucosylrutinoside; cyanidin 3-rutinoside; cyanidin 3-rutinoside dimer; cyanidin 3-sophoroside; delphinidin 3,5-diglucoside; delphinidin 3-galactoside; delphinidin 3-rutinoside; delphinidin 3-rutinoside-5-glucoside; dihydroquercetin; dihydroquercetin-3-glucoside; dihydroquercetin-7-rutinoside; galloylcyadin-glycoside; kaempferol; kaempferol-3-glucoside; kaempferol-3-rutinoside; myricetin-pentoside; pelargonidin 3-glucoside; pelargonidin 3-rutinoside; peonidin 3-rutinoside; petunidin 3-arabinoside; procyanidin dimer A	Li et al., 2017
M. alba L.	Fruit	Guangzhou, China	23.13	Cfa	UHPLC-HR-ESI-TOF-MS/MS	Catechin; cyanidin 3-glucosyl]rhamnoside; cyanidin 3,5-diglucoside; cyanidin 3-galactoside; cyanidin 3-glucoside dimer; cyanidin 3-laminariobioside; cyanidin 3-O-(diglucoside)glucosylrutinoside; cyanidin 3-rutinoside; cyanidin 3-rutinoside dimer; cyanidin 3-sophoroside; delphinidin 3,5-diglucoside; delphinidin 3-galactoside; delphinidin 3-rutinoside; delphinidin 3-rutinoside-5-glucoside; dihydroquercetin; dihydroquercetin-3-glucoside; dihydroquercetin-7-rutinoside; galloylcyadin-glycoside; kaempferol; kaempferol-3-glucoside; kaempferol-3-rutinoside; myricetin-pentoside; pelargonidin 3-glucoside; pelargonidin 3-rutinoside; peonidin 3-rutinoside; petunidin 3-arabinoside; procyanidin dimer A; quercetin; quercetin-methylpentoside-dihexoside; rutin Cyanidin 3-O-glucoside; cyanidin 3-O-rutinoside; quercetin 3-O-[6"-O-(6"-malonyl)glucosyl]-glucoside; kaempferol 3-O-glucosyl-glucoside-7-O-glucoside; quercetin 3-O-glucosyl-glucoside; kaempferol 3-O-rutinoside-7-O-glucoside; quercetin 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-rhamnosyl-glucoside; kaempferol 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-[6"-O-(6"-malonyl)glucosyl]-rhamnoside; quercetin 3-O-glucoside; quercetin 3-O-[6"-acetyl]glucoside; kaempferol 3-O-rutinoside; kaempferol 3-O-[6"-malonyl]glucosyl-rhamnoside; quercetin 3-O-rhamnoside; quercetin 3-O-[6"-malonyl]-glucoside; quercetin 3-O-[6"-malonyl]-glucoside; quercetin	Tomczyk et al., 2019
M. alba L.	Fruit	Rzeszow, Poland	50.00	Cfb	UPLC-PDA-ESI-MS	Catechin; cyanidin 3-glucosyl]rhamnoside; cyanidin 3,5-diglucoside; cyanidin 3-galactoside; cyanidin 3-glucoside dimer; cyanidin 3-laminariobioside; cyanidin 3-O-(diglucoside)glucosylrutinoside; cyanidin 3-rutinoside; cyanidin 3-rutinoside dimer; cyanidin 3-sophoroside; delphinidin 3,5-diglucoside; delphinidin 3-galactoside; delphinidin 3-rutinoside; delphinidin 3-rutinoside-5-glucoside; dihydroquercetin; dihydroquercetin-3-glucoside; dihydroquercetin-7-rutinoside; galloylcyadin-glycoside; kaempferol; kaempferol-3-glucoside; kaempferol-3-rutinoside; myricetin-pentoside; pelargonidin 3-glucoside; pelargonidin 3-rutinoside; peonidin 3-rutinoside; petunidin 3-arabinoside; procyanidin dimer A; quercetin; quercetin-methylpentoside-dihexoside; rutin Cyanidin 3-O-glucoside; cyanidin 3-O-rutinoside; quercetin 3-O-[6"-O-(6"-malonyl)glucosyl]-glucoside; kaempferol 3-O-glucosyl-glucoside-7-O-glucoside; quercetin 3-O-glucosyl-glucoside; kaempferol 3-O-rutinoside-7-O-glucoside; quercetin 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-rhamnosyl-glucoside; kaempferol 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-[6"-O-(6"-malonyl)glucosyl]-rhamnoside; quercetin 3-O-glucoside; quercetin 3-O-[6"-acetyl]glucoside; kaempferol 3-O-rutinoside; kaempferol 3-O-[6"-malonyl]glucosyl-rhamnoside; quercetin 3-O-rhamnoside; quercetin 3-O-[6"-malonyl]-glucoside; quercetin 3-O-[6"-malonyl]-glucoside; quercetin	Tomczyk et al., 2019
Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
---------	--------	-------------------	----------	---------	-----------------------	--	-----------------
M. alba L.	Leaf	Chongqing, China	29.81	Cfa	LC-ESI-MS/MS	Apigenin; apigenin 7-O-glucoside; apigenin O-hexosyl-O-malonylhexoside; apigenin O-malonylhexoside; apigenin O-pentosyl-O-hexoside; chrysoeriol O-hexoside; astragalin; kaempferol di O-rhamnosyl-O-hexoside; kaempferol di O-hexoside; kaempferol O-hexosyl-O-hexosyl-O-malonylhexoside; kaempferol O-hexosyl-O-malonylhexoside; kaempferol O-malonylhexoside; kaempferol O-hexosyl-O-malonylhexoside; kaempferol O-hexosyl-O-hexoside; kaempferol O-hexosyl-O-malonylhexoside; kaempferol O-hexosyl-O-hexoside; luteolin; luteolin O-hexoside; luteolin O-malonylhexoside; luteolin O-pentosyl-O-hexoside; naringenin; quercetin di O-rhamnosyl-O-hexoside; quercetin di O-hexoside; quercetin O-hexoside; quercetin O-hexosyl-O-hexosyl-O-hexoside; quercetin O-hexosyl-O-malonylhexoside; quercetin O-malonylhexoside; quercetin O-hexosyl-O-hexoside; quercetin O-rhamnosyl-O-malonylhexoside; quercetin O-rhamnosyl-O-hexoside; quercetin O-rhamnosyl-O-hexoside	Li et al., 2020b
M. alba L.	Leaf	Beijing, China	39.96	Cfa	UPLC-QTOF-MS/MS	Rutin; isoquercitrin; astragalin	Cao et al., 2020
M. alba L.	Leaf	Daejeon, South Korea	36.35	Cfa	HPLC/ DAD	Rutin; isoquercitrin; astragalin	Kim et al., 2014
M. alba L.	Leaf	Jeollabuk-do, South Korea	35.89	Dfa	UPLC-PDA-QTOF/MS	Kaempferol 3-O-(6"-O-malonyl)glucoside; kaempferol 3-O-rhamnoside-7-O-glucoside; kaempferol 3-O-rutinoside; quercetin 3,7-di-O-glucoside; quercetin 3-O-(6-O-malonyl)glucoside; astragalin; isoquercitrin; moragrol A; moragrol B; moragrol C; moragrol D; morkotin A; morkotin B; quercetin 3-gentiobioside; rutin Kaempferol 3-O-(2"-O-malonyl)glucoside; kaempferol 3-O-(6"-O-malonyl)glucoside; kaempferol 3-O-rhamnoside-7-O-glucoside; kaempferol 3-O-rutinoside; quercetin 3,7-di-O-glucoside; quercetin 3-O-(6-O-malonyl)glucoside; astragalin; isoquercitrin; moragrol A; moragrol B; morkotin C; morkotin B; morkotin D; morkotin A; morkotin B; morkotin C; rutin	Kim et al., 2020
M. alba L.	Leaf	Jeonju, South Korea	35.82	Cfa	UPLC-DAD-QTOF/MS	Rudin; isoquercitrin; astragalin; moragrol A; moragrol B; moragrol C; moragrol D; morkotin A; morkotin B; morkotin C; rutin; Astragalin; kaempferol rutinoside hexoside; kaempferol-acetylhexoside; kaempferol-hexoside-hexoside; kaempferol-hexoside-rhamnoside; kaempferol-malonyl-dihexoside; kaempferol-malonyl-rutinoside; quercetin malonyl-dihexoside; quercetin-acetylhexoside; quercetin-dihexoside; quercetin-hexoside (isoquercitrin); quercetin-malonyl-hexoside; quercetin-malonyl-rutinoside; quercetin-rhamnose-hexose-rhamnose; rutin; quercetin-rutinoside isomer; quercetin-hexoside-hexoside	Ju et al., 2018
M. alba and *M. nigra*	Leaf	Alicante, Spain	38.09	BSk	UHPLC-ESI-MS	Astagalin; kaempferol rutinoside hexoside; kaempferol-acetylhexoside; kaempferol-hexoside-hexoside; kaempferol-hexoside-rhamnoside; kaempferol-malonyl-dihexoside; kaempferol-malonyl-rutinoside; quercetin malonyl-dihexoside; quercetin-acetylhexoside; quercetin-dihexoside; quercetin-hexoside (isoquercitrin); quercetin-malonyl-hexoside; quercetin-malonyl-rutinoside; quercetin-rhamnose-hexose-rhamnose; rutin; quercetin-rutinoside isomer; quercetin-hexoside-hexoside	Sanchez-Salcedo et al., 2016
Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
-----------	--------------	---------------------	----------	---------	----------------------------	--	-------------------------
M. alba L	Leaf	Rzeszow, Poland	50.00	Cfb	UPLC-PDA-ESI-MS	Quercetin 3-O-[(6″-O-malonyl)-glucosyl]-glucoside; kaempferol 3-O-rutinoside-7-O-glucoside; quercetin 3-O-glucosyl-glucoside; kaempferol 3-O-glucosyl-glucoside-7-O-glucoside; kaempferol 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-(6″-acetyl)-glucoside; kaempferol 3-O-rutinoside-7-O-rhamnoside; quercetin 3-O-(6″-malonyl)-glucosyl-7-O-rhamnoside; quercetin 3-O-(6″-malonyl)-glucoside; quercetin 3-O-(6″-acetyl)-glucoside	Tomczyk et al., 2019
M. alba L	Root bark	Yunnan, China	24.48	Cfa	HPLC-PDA	(R)-Cyclomorusin; (S)-cyclomorusin; 14-methoxy-dihydroxymorusin; cyclocarminol; cycromulberryin; astracone A; kuwanon F; morunigrol A; licoflavone C; sanggenone J; morusin; sanggenol; kuwanon C; kuwanon E; sanggenol P; sanggenol Q; cudraflavone C; 5′-(1″,1″-dimethylallyl)-5,7,2′,4′-tetrahydroxyflavone	Guo et al., 2018
M. alba L	Root bark	Shandong, China	35.89	Cfb	HR-ESI-MS and 1\H and 13\C-NMR	Dioxycudraflavone A; 5-hydroxethyl moracin M; sanggenon V; morusin; monsigin L; licoflavone C; moracin C; alfafuran; mulberrofuran G	Li et al., 2018
M. alba L	Root bark	Yunnan, China	22.01	Cfa	HPLC & 1\H and 13\C-NMR	Albasm A–D; mulberrofuran C; mulberrofurans E–G; mulberrofuran J-K; chalcomoracin; kuwanon J; kuwanon R; kuwanol A; morulin C; mulberrofuran B; mulberrofuran Y; moracin M; kuwanon C; albamin A	Huang et al., 2017
M. alba L	Root bark	Seoul, South Korea	37.57	Dfa	Chromatography, 1\H and 13\C-NMR	Mulberrofuran G; kuwanon G; albanol B	Paudel et al., 2019
M. alba L	Root bark	Sungnam, South Korea	37.44	Dfa	NMR, MS, CD, and IR	Sanggenon J; sanggenon U; sanggenon V; sanggenon W; eucharinone A; kuwanon E; kuwanon S	Jung et al., 2016
M. alba L	Root bark	Ulsan, South Korea	35.50	Cfa	HPLC	Morusalin A–D; albanon T; albanin B; maccorulin G; yunanensin A; 5′-4′,1″-dimethylallyl)-5,7,2′,4′-tetrahydroxyflavone; morusinol C; albanol B; mulberrofuran G; mulberrofuran H; mulberrofuran K; mulberrofuran L; (E)-4-isopenteny1-1,3,5,2′,4′-tetrahydroxystilbene; moracin S; 5′-geranyl-5-7,2′,4′-tetrahydroxy-flavone; morusinol; albanin A	Ha et al., 2018
M. alba L	Root bark	Sichuan, China	30.26	Cfb	HPLC-HRMS-SPE-NMR	Kuwanon C; kuwanon L-M; kuwanon T; mulberrofuran G; moracenin B (kuwanon G); moracenin A (kuwanon H); morusinol, morusin, cycromorusin; mulberrofuran B; sanggenofuran A; sanggenon G	Zhao et al., 2018
M. nigra L	Fruit	Chiang Mai, Thailand	18.79	A	HPLC	Cyanidin; cyanidin-3-O-rutinoside; cyanidin-3-O-glucoside	Suttisansnee et al., 2020

Continued
Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
M. nigra L.	Fruit	Xinjiang, China	42.52	BSk	UPLC-TUV/Qda	Cyanidin-3-O-glucoside; cyanidin-3-O-rutinoside; delphinidin-3-O-glucoside; delphinidin 7-O-rutinoside; delphinidin 7-O-glucoside; cyanidin 3-O-glucosyl-rhamnoside; quercetin 3-O-glucoside; quercetin 7-O-glucoside; rutin	Chen et al., 2017
M. nigra L.	Fruit	Minas Gerais, Brazil	-20.39	Cfa	RP-UPLC-DAD-MS	Delphinidin 3-O-rutinoside; delphinidin 7-O-rutinoside; cyanidin 3-O-glucoside; delphinidin 3-O-glucoside; cyanidin 3-O-glucosyl-rhamnoside; quercetin 3-O-glucoside; quercetin 7-O-glucoside; rutin	de Padua Lucio et al., 2018
M. nigra L.	Fruit	North-west of Italy	45.12	Cfa	HPLC-DAD-ESI HRMS	Apigenin-di-hexoside; apigenin-hexoside; cyanidin-hexoside; cyanidin-pentosyl-hexoside; cyanidin-rhamnosyl-hexoside; cyanidin-sambubiosyl-glucoside; cyanidin-sambubiosyl-rhamnoside; delphinidin-dirhamnosyl-hexoside; delphinidin-pentoside; kaempferol-rhamnosyl-hexoside; kaempferol-di-hexoside; kaempferol-hexoside; kaempferol-malonyl-hexoside; kaempferol-rhamnoside; myricetin-hexoside; peonidin-hexoside; petunidin-pentoside; quercetin; quercetin hexoside; quercetin rhamnoside; quercetin-dirhamnosyl-hexoside; quercetin-malonyl-hexoside; quercetin-rhamnosyl-hexoside; rutin; kaempferol; procyanidin trimer 1	Zotzi et al., 2020
M. nigra L.	Leaf	Minas Gerais, Brazil	20.39	BSh	HPLC	6-Hydroxy-luteolin-7-O-rutinoside; quercetin-3-O-furanosyl-2-ramosil; rutin; quercetin 3-O-glucoside	de Padua Lucio et al., 2018
M. nigra L.	Leaf	Bahia, Brazil	-20.39	Cfa	RP-HPLC	Apigenin; apigenin-hexoside; cyanidin-hexoside; cyanidin-pentosyl-hexoside; cyanidin-rhamnosyl-hexoside; cyanidin-sambubiosyl-glucoside; cyanidin-sambubiosyl-rhamnoside; delphinidin-dirhamnosyl-hexoside; delphinidin-pentoside; kaempferol-rhamnosyl-hexoside; kaempferol-di-hexoside; kaempferol-hexoside; kaempferol-malonyl-hexoside; kaempferol-rhamnoside; myricetin-hexoside; peonidin-hexoside; petunidin-pentoside; quercetin; quercetin hexoside; quercetin rhamnoside; quercetin-dirhamnosyl-hexoside; quercetin-malonyl-hexoside; quercetin-rhamnosyl-hexoside; rutin; kaempferol; procyanidin trimer 1	Junior et al., 2017
M. nigra L.	Leaf	Santa Catarina, Brazil	-26.90	Cfa	RP-HPLC	Quercetin; rutin; catechin	Zeni et al., 2017
M. nigra L.	Root bark	Rome, Italy	42.01	Cfa	HPLC and 1H and 13C-NMR	Kuwanon E; kuwanons G-H; kuwanon L; cudraflavone A; morusin; chaleomoracin; norartocarpetin	Mascarello et al., 2018
M. nigra L.	Root bark	Asotthalom, Hungary	46.20	Cfa	RP-HPLC and 1H and 13C-NMR	Morusin; kuwanon E; kuwanon U; moracin O-P; albanols A-B	Zoofishan et al., 2019
M. nigra L.	Stem bark	Dakahlia, Egypt	31.17	BWh	MPLC, TLC, IR, UV, and 1H and 13C-NMR	2',3,4',5,5'-Pentahydroxy-cis-stilbene; norartocarpetin; kuwanon C; kuwanon G; morusin; cudraflavone; albufurane; mulberrofuran G; 2',3,4',5,5'-pentamethoxy-cis-stilbene; 2',3,4'-trimethoxy-5-hydroxy-trans-stilbene	Abdel Bar et al., 2019
M. nigra L.	Twigs	Xinjiang, China	37.17	BWk	HPLC-ESI-MS	Nigragenons A–E; sanggenon A; sanggenol F; sanggenol H; nigrasin K; nigrasin l; cyclomalberrin	Xu et al., 2018
Morus australis	Stem bark	Jiangxi, China	29.03	Cfa	UV, IR, MS, 1H and 13C-NMR, and CD data	Benzokuwanon E; hydroxymorusin; dicyclokuwanon EA; dicyclokuwanon EB	Zheng et al., 2012

Continued
Genus	Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
Morus	M. australis	Root	Shaanxi, China	34.34	Cfa	HPLC and ¹H and ¹³C-NMR	Cudraflavones B-C; morusin G; kuwanon C; kuwanon H; australone A; morusin; mu bertofurans F-G; moracenin B; morcin M; catharuran B	Guo et al., 2019
	M. laevigata	Twigs	Yunnan, China	24.28	Cfb	HPLC, IR, UV, NMR, and HR-ESI-MS	Laevigasin A–C; notabilisin A; notabilisin D; notabilisin E; 3',4',5,7-tetrahydroxy-3-methoxy-6-geranylflavone; gemichalcone A; sa gengol F; taxifolin; hultenin	Wang et al., 2015
Morus	M. mongolica	Fruit	Chongqing, China	29.83	Cfa	UPLC-TUV/Qda	Cyanidin-3-O-glucoside; cyanidin-3-O-rutinoside; pelargonidin-3-O-glucoside; rutin; isoquercetin; morin hydrate; quercetin; kaempferol	Chen et al., 2017
	M. atropurpurea (Roxb)	Fruit	Sichuan, China	30.26	Cfb	LC-ESI-MS/MS	Naringenin; dihydromyricetin; eriodictyol; dihydroquercetin; quercetin; cyanidin 3-O-glucoside; cyanidin 3-O-rutinoside; cyanidin; pelargonidin 3-O-glucoside	Huang et al., 2020
Ficus	Ficus auriculata	Root	Hainan, China	18.75	Cfa	HPLC, HR-ESI-MS, and ¹H and ¹³C-NMR	5,7,4'-Trihydroxy-3'-hydroxymethylisoflavone; ficusino flavone; methoxyisoflavone; alpinutosisoflavone	Qi et al., 2018
	F. carica	Fruit	Shandong, China	37.51	Cfa	HPLC-DAD-QTOF	Ficucaricones A–D and 12 other PF analog compounds	Liu et al., 2019
	F. carica	Fruit	Bragança, Portugal	41.81	Cfa	LC-DAD-ESI/MSn	Taxifolin-O-hexoside; quercetin-O-hexoside-O-acetyethylhexoside; apigenin-C-hexoside-C-pentoside; kaempferol-O-deoxyhexosyl-hexoside; quercetin-3-O-rutinoside; quercetin-O-acetylhexoside; apigenin-2"-O-rhamnosose-C-acetylhexoside	Palmeira et al., 2019
	F. cordata	Aerial part	Abha, Saudi Arabia	18.22	BSk	HPLC-ESI-MS	Acanthophorbins A-B; myricitrin; infectorin; quercetin-3,4′-dirhamnoside; 2′-O-methylartorin V	Al-Musayeib et al., 2017
	F. deltoidea	Leaf	Terengganu, Malaysia	5.33	Am	LC-MS	Isovitisin 2"-O-rhamnoside; rhoifolin; vitexin; flavone with three sugar moieties (hexose, rhamnose, and arabinose); orientin 2"-O-rhamnoside; isovitisin; vicenin-2; schaftoside; vicenin-3; 6-C-β-D-xlyopyranosyl-8-C-α-L arabinopyranosylapigenin; isoschaftoside; 6,8-di-C-α-L-arabinosylapigenin; 8-C-glucopyranosyl-6-C-xlyopyranosylapigenin; 6-C-L-arabinopyranosylapigenin; 6,8-di-C-α-L-arabinosylapigenin; 6,8-di-C-β-D-xlyopyranosylapigenin; 6-C-L-arabinopyranosylapigenin	Afza et al., 2019
	Ficus exasperata Vahl.	Leaf	Bingerville, Ivory Coast	5.35	A	UPLC-TUV/Qda and UPLC-ESI-QTOF-MS	Quercetin-3,7-di-hexoside; quercetin-3-(6-rhamnoside) glucoside; quercetin-3-glucoside; kaempferol-3-92-rhamnoside)hexoside; quercetin-3-(6-malonyl)hexoside; quercetin-3-hexoside-7-ketorhamnoside; kaempferol-3-hexoside; apigenin-7-(4′-methyl-3,4′-ketorhamnoside)hexoside; luteolin-6,8-di-C-hexoside; apigenin-6-C-pentoside-8-C-hexoside; apigenin-6-C-rhamnoside-8-C-hexoside; apigenin-6-C-pentoside-8-C-(3/4-ketorhamnoside)hexoside; apigenin-8-C-glucoside; luteolin-8-C-(3/4-ketorhamnoside)hexoside; apigenin-7-O-ketorhamnoside-8-C-hexoside; apigenin-8-C-(3/4-ketorhamnoside)hexoside	Mouho et al., 2018
Genus	Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
-------	---------	------------	--------------	----------	---------	-----------------------	---	-------------------------
Ficus	F. exasperata Vahl.	Leaf	Ile Ife, Nigeria	7.49	Aw	UV shift reagent, 1H and 13C-NMR	Apigenin C-8-glucoside; isoquercetin 6-O-β-D-glucoside; quercetin-3-O-β-rhamnoside	Taiwo and Igbeneghu, 2014
	F. hirta Vahl.	Fruit	Jiangxi, China	28.05	Cfa	HR-ESI-MS, 1H and 13C-NMR, and 2D NMR	Naringenin-7-O-β-D-glucoside; eriodictyol-7-O-β-D-glucoside; pinocembrin-7-O-β-D-glucoside	Wan et al., 2017
	F. hirta Vahl.	Fruit	Jiangxi, China	28.06	Cfa	HPLC-QTOF-MS	Naringenin-7-O-β-D-glucoside; pinocembrin-7-O-β-D-glucoside; luteolin; apigenin 5,7,4′-Trihydroxy-3-methoxy-3′-(3-methylbut-2-en-1-yl) flavone; carbapachrome; isoserodore; ficusflavone; isowighteone; 3′-(3-methylbut-2-en-1-yl)biochanin A; myrsininone A; ficusin A	Chen et al., 2020
	Ficus hispida	Twigs	Yunnan, China	22.01	Cfa	TLC, UV, IR, HR-ESI-MS, and 1H and 13C-NMR	5,7,4′-Trihydroxy-3-methoxy-3′-(3-methylbut-2-en-1-yl) flavone; carpa-chrome; isoserodore; ficusflavone; isowighteone; 3′-(3-methylbut-2-en-1-yl)biochanin A; myrsininone A; ficusin A	Shi et al., 2016
	Ficus lyrata	Leaf	Cairo, Egypt	30.04	BWh	UPLC-PDA-MS	(Epi)catechin digalloyl rhamnoside; (epi)afzelechin-(epi)galloycathein; (epi)afzelechin-(epi)catechin; (epi)afzelechin-(epi)epigallocatechins; benzyl rutinoside; lucenin-2; vicenin-2; rutin; orientin; 3-O-p-coumaroyl epigallocatechin; isoquercetin; luteolin; quercetin; apigenin; ficusflavone	Farag et al., 2014
	Ficus lyrata	Fruit	Cairo, Egypt	30.04	BWh	UPLC-PDA-MS	(Epi)catechin digalloyl rhamnoside; epicatechin; o-p-coumaroyl epigallocatechin; luteolin; apigenin; dihydroxy trimethoxyflavone; ficusflavone; dihydroxy dimethoxyflavone; parvisoflavone B	Farag et al., 2014
	Ficus pandurata	Aerial roots	Zhejiang, China	27.97	Cfa	HPLC/QTOF-MS/MS	Rutin; kaempferol-3-O-rutinoside; diosmetin-7-O-rutinoside; acacetin-7-O-rutinoside; quercetin-3-O-rutinoside-rhamnoside; quercetin 7-O-glucoside-rhamnoside-glucoside; acacetin 7-O-glucoside-rhamnoside-acetyl-gluoside	Zhang et al., 2014
	Ficus thonningii Blume.	Roots and stem bark	Bagangté, Cameroon	5.25	A	UV, FT-IR, and HR-ESI-MS NMR	Thonningiiiflavanonols A-B; shuterin; naringenin; β-hydroxyflavonanone; luteolin; aromadendrin; garbanzol; dihydroquercetin 5,7,3′-trihydroxyflavanone	Ango et al., 2016
	Ficus vasta Forsk.	Leaf	Giza, Egypt	30.01	BWh	PC, UV, 1H-NMR, MS, and HPLC-PDA/ESI-MS	Luteolin; quercetin, vitexin, quercetin 3-O-β-galactoside; rutin; catechin, naringenin, isoorceitrin, naringin, quercetin-3-galactoside, kaempferol-3-gluco side	Taviano et al., 2018
	Artocarpus altilis	Leaf	Ho Chi Minh, Vietnam	10.82	A	FT-ICR-MS	Artocarpaurone; cycloaltilisin 7; sophorflavanone A; 1-(2,4-dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone; 2-geranyl-2′,3,4,4′-tetrahydroxydihydrochalcone; 2′-geranyl-3′,4,7-trihydroxyflavanone; 3β-acetoxycyclart-25-ene-24-one; 3β-acetoxycyclart-25-methoxy-23-ene; 3β-acetoxy-urs-12-ene-11-one	Huong et al., 2012

Continued
Genus	Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
Ficus	Artocarpus communis	Leaf	Manado, Indonesia	1.47	A	HPLC and 1H and 13C-NMR	Sophoraflavanone A; (S,E)-2-(3,4-dihydroxyphenyl)-8-(3,7-dimethylocta-2,6-dien-1-yl)-5,7-dihydroxychroman-4-one; (S)-5,7-dihydroxy-8-((E)-6-hydroxy-3,7-dimethylocta-2,7-dien-1-yl)-2(4-hydroxyphenyl)chroman-4-one; 1-(2,4-dihydroxyphenyl)-3-(8-hydroxy-2(3-hydroxy-4-methylpent-4-en-1-yl)-2-methyl-2H-chromen-5-yl)propan-1-one; (S)-5,7-dihydroxy-8-((2E,5E)-7-hydroxy-3,7-dimethylocta-2,7-dien-1-yl)-2(4-hydroxyphenyl)chroman-4-one; 2-geranyl-2′,3,4,4′-tetrahydroxydihydrochalcone; 1-(2,4-dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(4-hydroxy-4-methyl-2-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone	Inoue et al., 2018
Ficus	Artocarpus heterophyllus Lam.	Roots	Guangxi Zhuang, China	22.82	Cfa	UPLC-QTOF-MS/MS	6-(3-Methylbutyl-2-enyl)apigenin; albanin A; 14-hydroxyartonin E; artoindonesianins G-I; artoindonesianins P-R; artoindonesianins T; artelastoxanthone; artoisofuran; artocarmin; artocarpesin; norartocarpin; artocarpin; cudraflavone A; cycloartocarpin; artonins A-B; artonin E-H; artonin J-K; artonin S; artonin U; artocarpenone	Ye et al., 2019
Ficus	Artocarpus heterophyllus Lam.	Stem and leaf	Hainan, China	20.04	Cfa	HPLC	2-(4-Hydroxyphenyl)-8-(3-methyl-but-2-enyl)chroman-4-one; bracteflavone B; dinklagin C; 6-(3-methyl(E)-1-butenyl) chrysins; 5,7,3′,5′-tetramethoxy-6-C-prenylflavone	Liu et al., 2020
Ficus	Artocarpus heterophyllus Lam.	Twigs	Yunnan, China	22.01	Cfa	HPLC	Artocarpusins A–C; artocarstilbene A; artocarmitins A-B; 3′-7-hydroxymethyl-(2′-γ-methylallyl)-2′,4′,4-trihydroxychalcone; isobavachalcone; gemichalcones A-B; isogemichalcone B; 2′,4′,2,4-tetrahydroxy-3′-(3-methyl-2-butenyl)-chalcone; 6-(3-methylbut-2-enyl)apigenin; artocarpesin; norartocarpin; artocarpin; cudraflavone C; 5,7,4′-trihydroxyflavone; norartocarpesin	Di et al., 2013
Ficus	Artocarpus heterophyllus Lam.	Roots	Guangxi, China	22.82	Cfa	1H and 13C-NMR, UV, IR, CD, and HR-ESI-MS	Artotetraoids A-D; morin; artocarmin A; albanin A; euchrenon A; norartocarpesin; steppogenin	Yuan et al., 2017
Ficus	Artocarpus heterophyllus Lam.	Roots	Guangxi, China	22.82	Cfa	1H and 13C-NMR, UV, IR, CD, and HR-ESI-MS	Artotetraoids A-B; 2,3-dihydro-5,7-dihydroxy-2(2-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one; artocarpesin	Ren et al., 2015
Ficus	Artocarpus heterophyllus Lam.	Heartwood	Songkla, Thailand	7.01	Am	HPLC	Artocarpone; artocarpin; cycloartocarpin; cyanomaclurin	Septama et al., 2018

Continued
Species	Part	Location	Latitude	Climate	Identification method	Identified compounds	Reference
Artocarpus hypargyreus	Stem	Hainan, China	19.57	A	HPLC, HR-El-MS, and 1H and 13C-NMR	Hypargylavones A–C; hypargystilbene A; mulberrofuran N; rubraflavone C; cudraflavones A and C; cycloartocarpin A; brosimone I; norartocarpin	Yu et al., 2012
Artocarpus lakoocha	Twigs and bark	Chiang Mai, Thailand	18.93	A	HRLC-TOF-MS	Lakoochanone, (+)-aelechin-3-O-α-l-rhamnopyranoside; (+)-catechin; moracin C; sanggenofuran B; integrin; cyclocommunin, oxymesoveratol; (E)-2-methoxy-4,3,5'-trihydroxystilbene; engelentin; isomigechalcone B; morachalcone A	Boonyakhetgoson et al., 2020
Artocarpus nigrifolius	Twigs	Yunnan, China	21.46	Cfa	HR-ESI-MS	Cyclohexethylphenyll; artocarin A; artocarmins B-C; gemichalcones A–C; artocarpusin A; isogemichalcone B; eleocharin A; 5,4'-dihydroxy-3'-methoxy-(6,7)-2,2-dimethylpyranoflavone; carphchromenol; 2,4,2'-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone; carphchromenol; 6-prenyl-4,5,7-trihydroxy flavone; artocarpesin	Liu et al., 2018
Artocarpus rigida	Stem	Đồng Nai, Vietnam	11.94	A	1H and 13C-NMR, UV, IR, and HR-ESI-MS, HR-FAB-MS	Artoxanthocarpus A-B; hydraxylakoochin A; methoxylakoochin A; epoxylakoochin A; artoxanthol; artoxanthochromane; lakoochin A; alboctalol; (+)-catechin; steppogenin; norartocarpentin; isoetin-5'-methyl ether; morusin; cyclocommunol; albanin A; cudraflavone C; artotinin A; chlorophorin	Nguyen et al., 2017
A. xanthocarpus	Roots	Lanyu, Taiwan	22.04	Cfa	1H and 13C-NMR, UV, IR, CD, and HR-ESI-MS	_mgrmsystem: tandem mass spectrometry, MS: mass spectrometry, MSn: multistage mass spectrometry, PC: paper chromatography, PDA: photodiode array detector, QTOF: quadrupole time of flight, RP: reversed phase, SPE: solid-phase extraction, TLC: thin-layer chromatography, TOF: time of flight, UQV/Quad: tunable ultraviolet/mass single-quadrupole detection, UHPLC: ultra-high-performance liquid chromatography, UPLC: ultra-performance liquid chromatography, UV: ultraviolet.	

H and *13C*-NMR: hydrogen-1 and carbon-13 nuclear magnetic resonance, CD: circular dichroism, DAD: diode array detector, EI: electron ionization, ESI: electrospray ionization, FT: Fourier transform, HPLC: high-performance liquid chromatography, HR: high resolution, HRLC: high-resolution liquid chromatography, HRMS: high-resolution mass spectrometry, ICP: inductively coupled plasma, ICR: ion cyclotron resonance, IR: infrared, LC: liquid chromatography, MPLC: medium-pressure liquid chromatography, MS/MS: tandem mass spectrometry, MS: mass spectrometry, PC: paper chromatography, PDA: photodiode array detector, TOF: time of flight, TOF-MS: time of flight, UQV/Quad: tunable ultraviolet/mass single-quadrupole detection, UHPLC: ultra-high-performance liquid chromatography, UPLC: ultra-performance liquid chromatography, UV: ultraviolet.

A: tropical, Af: tropical rainforest climate, Am: tropical monsoon climate, Aw: tropical savanna climate with dry winter characteristic, BSh: hot semi-arid (steppe) climate, BSk: cold semi-arid (steppe) climate, BWh: hot desert arid climate, BWk: cold desert arid climate, Cfa: humid subtropical climate, Cfb: oceanic climate, Dfa: hot summer humid continental climate.
Table 2. Total flavonoid and phenolic content in several Moraceae plants.

Species	Part	Location	Latitude	Climate	Precipitation rate (mm)	Temperature (°C)	Day-time (hour)	TFC	TPC	Reference
Morus alba L.	Fruit	Seoul, South Korea	37.56	Dfa	8.7	-2.4	7.73	74.9 ± 8.6 mg CAE/g	177.9 ± 4.7 mg GAE/g	Yu et al., 2021
Morus alba L.	Fruit	Vojvodina, North Serbia	45.29	Cfa	45.3	21.9	15.7	—	326.29 ± 8.21 mg GAE/100 g FW	Natic et al., 2015
Morus alba L.	Fruit	Rajshahi, Bangladesh	24.37	A	117.1	30.2	13.3	4.198 ± 2.26 mg CAE/g DE	52.71 ± 3.17 mg GAE/g DE	Khan et al., 2013
Morus alba L.	Fruit	Jiangsu, China	32.18	Cfa	53.5	11.4	11.98	—	147.69 ± 0.02 mg GAE/g DW	Krishna et al., 2018
Morus alba L.	Fruit	Rzeszow, Poland	50.00	Cfb	110.4	19.9	16	—	1,041.1 ± 56.7 mg GAE/100 g DW	Tomczyk et al., 2019
Morus alba L.	Leaf	Jeollabuk-do, South Korea	35.89	Dfa	1,417.1/year	10.7/year	—	37.87 ± 0.59 mg QE/g FDW	38.49 ± 2.06 mg GAE/g FDW	M. Kim et al., 2020
Morus alba L.	Leaf	Daejeon, South Korea	36.35	Cfa	1,353.1/year	11.8/year	—	—	28.2 to 55.4 mg GAE/g extract	Kim et al., 2014
Morus alba L.	Leaf	Jeonju, South Korea	35.82	Cfa	1,366.6/year	11.3/year	—	748.5 to 1,297.9 mg/100 g DW	—	Ju et al., 2018
Morus alba L.	Leaf	Rajshahi, Bangladesh	24.37	A	117.1	30.2	13.3	6.667 ± 2.45 mg CAE/g DE	103.68 ± 17.471 mg GAE/g DE	Khan et al., 2013
Morus alba L.	Leaf	Rzeszow, Poland	50.00	Cfb	110.4	19.9	16	—	761.4 ± 56.2 mg GAE/100 g DW	Tomczyk et al., 2019
Morus alba L.	Root bark	Rajshahi, Bangladesh	24.37	A	117.1	30.2	13.3	12.59 ± 2.96 mg CAE/g DE	165.27 ± 3.28 mg GAE/g DE	Khan et al., 2013
Morus alba L.	Stem bark	Rajshahi, Bangladesh	24.37	A	117.1	30.2	13.3	102.4 ± 6.19 mg CAE/g DE	285.62 ± 2.54 mg GAE/g DE	Khan et al., 2013
M. bombycis var. Kenmochi	Leaf	Rzeszow, Poland	50.00	Cfb	110.4	19.9	16	—	665.5 ± 63.3 mg GAE/100 g DW	Tomczyk et al., 2019
M. bombycis var. Kenmochi	Fruit	Rzeszow, Poland	50.00	Cfb	110.4	19.9	16	—	1,114.8 ± 86.6 mg GAE/100 g DW	Tomczyk et al., 2019
Morus nigra L.	Fruit	Chiang Mai, Thailand	18.78	A	1,050/year	25.1/year	—	—	6.93 ± 0.58 mg GAE/g DW	Suttisansanee et al., 2020

Continued
Species	Part	Location	Latitude	Climate	Precipitation rate (mm)	Temperature (°C)	Day-time (hour)	TFC	TPC	Reference
Morus nigra L.	Leaf	Santa Catarina, Brazil	–26.90	Cfa	134.8	26.5	11.9	79.96 ± 0.44 QE µg/g	83.85 GAE mg/g	Zeni et al., 2017
Morus nigra L.	Leaf	Bahia, Brazil	–9.17	BSh	33.2	28.1	12.46	35.48 ± 6.86 mg CAE/g	58.05 ± 5.20 mg GAE/g	Souza et al., 2018

Genus Ficus

Species	Part	Location	Latitude	Climate	Precipitation rate (mm)	Temperature (°C)	Day-time (hour)	TFC	TPC	Reference
Ficus hirta Vahl.	Fruit	Jiangxi, China	28.05	Cfa	1,601.6/year Avg 18.9	—		144.22 ± 8.46 mg RE/g DW	85.25 ± 1.72 mg GAE/g DW	Chen et al., 2020
Ficus deltoidea	Leaf	Negeri Sembilan, Malaysia	2.59	Af	1,926.9/year	26.6	12.33	163.47 ± 0.01 mg QE/g of DW	43.32 ± 0.45 mg GA/g of DW	Abraham et al., 2018
Ficus carica	Fruit	Bragança, Portugal	41.80	Cfa	53.1/7/year	20.3 to 22.3	16	0.747 ± 0.005 mg/g extract	0.542 ± 0.001 mg/g	Palmeira et al., 2019
Ficus carica	Fruit	Faisalabad, Pakistan	31.45	BSh	120.1	33	14	538.20 ± 1.17% w/w	31.88 ± 1.48 g GAE/100 g DW	Alamgeer et al., 2017
Ficus carica	Fruit	Cosenza, Italy	39.29	Cfa	48.6	21.8	12.47	2.6 ± 0.1–3.0 mg QE/g DW	10.1 ± 0.2–14.8 mg ChAE/g DW	Loizzo et al., 2014
Ficus racemosa	Leaf	Khulna, Bangladesh	22.84	Aw	1,777/year	Avg 26.6	11 to 13	22.81 mg QE/g DE	20.2 mg GAE/g DE	Sumi et al., 2016
Ficus racemosa	Fruit	Khulna, Bangladesh	22.84	Aw	1,777/year	Avg 26.6	11 to 13	10.63 mg QE/g DE	26.2 mg GAE/g DE	Sumi et al., 2016

Genus Artocarpus

Species	Part	Location	Latitude	Climate	Precipitation rate (mm)	Temperature (°C)	Day-time (hour)	TFC	TPC	Reference
A. lakoocha Roxb.	Flower	Assam, India	26.20	Cfa	8.2	23.9	10.88	168.26 ± 1.50 µg QE/g	217.80 ± 1.25 µg GAE/g	Gupta et al., 2020
A. heterophyllus	Flower	Assam, India	26.20	Cfa	8.2	23.9	10.88	658.52 ± 5.60 µg QE/g	883.20 ± 5.90 µg GAE/g	Gupta et al., 2020
Artocarpus altulis	Fruit	Kuantan, Malaysia	3.76	Af	174.7	27	12.32	203.17 ± 7.65 to 781 ± 52.97 mg GAE/100 g DW	Jalal et al., 2015	

CAE: catechin equivalent, ChAE: chlorogenic acid equivalent, DE: dry extract, DW: dry weight, FDW: freeze-dried weight, FW: frozen weight, GAE: gallic acid equivalent, QE: quercetin equivalent, RE: rutin equivalent, TFC: total flavonoid content, TPC: total phenolic content, w/w: weight/weight.
Studies have shown that the polyphenol content of mulberry leaves is influenced by the variety and the growing location (Krishna et al., 2018). Morus leaf TPC values ranged from 665.5 ± 63.3 mg gallic acid equivalent (GAE)/100 g dried matter (DW) or almost equivalent to 6.65 mg GAE/g DW to 103.68 ± 17.471 mg GAE/g DW. The lowest TPC is from the Morus bombycis species from Poland and the highest one is from M. alba from Bangladesh. The highest TFC of Morus leaves was achieved by M. nigra from Bahia, Brazil, with a 35.48 ± 6.86 mg catechin equivalent (CAE)/g extract. Both Brazil and Bangladesh are considered as low-latitude countries that are located between the equator (0°) and 30°N/S (Khan et al., 2013; Zeni et al., 2017). The low-latitude area receives more sunlight than the higher-latitude area which can be the reason for these TFC and TPC values.

The highest TFC value in the genus Morus was achieved by the stem bark of M. alba from Bangladesh with a value of 102.469 ± 6.19 mg CAE/g DE (Khan et al., 2013). Bangladesh is a tropical country with the highest temperature which might be related to the light intensity in that place. Solar ultraviolet-B (UVB) radiation can induce oxidative stress in the plant cells because of the overproduced reactive oxygen species (ROS) (Guan et al., 2018). Thus, the formation of flavonoids and phenolic compounds is induced to neutralize these free radicals (Li et al., 2020b; Mouho et al., 2018).

It is found that Morus fruits contain higher TFC and TPC in regions with lower temperature conditions. Compared to the M. alba fruit from Bangladesh which was collected when the average temperature was 30.2°C (Khan et al., 2013), the fruit from South Korea when the temperature was −2.4°C has almost 18 times higher TFC (Yu et al., 2021). The expression of the PAL enzyme could be induced in the lower temperature condition, which led to the enhancement of the flavonoid content (Hao et al., 2018).

Ficus hirta fruits, from Jiangxi, China, show the highest TFC among fruits and leaves in the same genus. Among F. carica fruits from Pakistan, Italy, and Portugal, figs from Pakistan had the highest flavonoid and phenolic contents with values of 538.20% ± 1.17% w/w or 5.832 g quercetin equivalent/g dry matter and 31.88 ± 1.48 g GAE/100 g dry matter, respectively (Alamgeer et al., 2017). The hot semiarid (steppe) climate of Pakistan is more favorable for fig cultivation than the wet and warm temperate (Cf) climate (Datiles, 2015). Pakistan’s higher average temperature at the time of fruit collection than the temperatures of the two countries may also contribute to the higher TFC values as F. carica fruits require higher heat and temperature to reach ripeness and good quality (Isa et al., 2020).

The highest levels of anthocyanins are at the fruit’s perfect maturity level, so if they were not ripe, the content would likely be less than in the fruit that was harvested at that time (Gupta et al., 2020). The Artocarpus altilis fruit shows a very high total flavonoid and phenolic content compared to the other species in Moraceae. The TFC of A. altilis varied from 913.33 ± 24.44 to 6,213.33 ± 142.22 mg quercetin equivalent (QE)/g DW. This species is known as breadfruit and grows best in a hot and humid climate. The fruits of A. altilis are commonly used as food, medicine, and also animal feed (Jalal et al., 2015).

As these plants are rich in flavonoids, they are relevant to their various activities such as antioxidants and anti-inflammatory properties. However, it cannot be avoided that the composition of flavonoids in plants in various studies is not constant because of several factors such as origin, fertilization, harvesting season, plant age, the process of drying, and storage conditions. In addition, the identification of these compounds is also influenced by the method of analysis (Ribeiro et al., 2019).

ANTIOXIDANT ACTIVITY OF MORACEAE PLANTS

Oxidative stress generally causes an increase in intracellular ROS levels which can cause fatal effects to oxygen toxicity and cellular function (Kim et al., 2020). Under normal circumstances, ROS participate against pathogens, which is considered the most efficient microbial mechanism. In addition to its defense purpose during infection, excessive ROS production can increase the inflammatory process (Septama et al., 2018).

The mechanism of action of antioxidants is based on the test method. Therefore, the antioxidant activity assay is carried out by various methods. The antioxidant activity of plants is notably affected by the concentration of phenolic compounds contained in them. Generally, flowers or fruits that have a darker color produce a stronger antioxidant potential (Gupta et al., 2020).

Among the various methods to determine antioxidant activity, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay has been a preferred and widely used method to evaluate the free radical scavenging ability of various natural products (Krishna et al., 2018). This method is more rapid, simple, and inexpensive compared to other antioxidant activity assays, while the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) or Trolox equivalent antioxidant capacity assay is suitable for lipophilic and hydrophilic samples (Shahinuzzaman et al., 2020). A strong positive correlation between TPC and DPPH radical scavenging ability was shown in the study of Tomczyk et al. (2019) with a correlation coefficient above 0.9 (Tomczyk et al., 2019).

Flavonoids also show a capability to act against hydroxyl and superoxide radicals, the two most powerful radicals generated during metabolism, through hydroxyl radical scavenging activity (HRSA) and superoxide radical anion scavenging activity (SAS) assay (Zeni et al., 2017). A good correlation of TPC with SAS assay was demonstrated at over 0.933 (Natic et al., 2015). Both the ferric-reducing ability power (FRAP) and reducing power (RP) methods measure the reduction of Fe³⁺ to Fe²⁺ in the presence of antioxidants (Loizzo et al., 2014). Another antioxidant activity against ROS products such as malondialdehyde (MDA) can be measured by the lipid peroxidation assay. MDA is formed by the reaction of ROS with the side chain of phospholipids containing polyunsaturated fatty acid on the cell membrane (Li et al., 2020b).

Various antioxidant activity tests that have been carried out in the Moraceae plants showed strong antioxidant activities, and the values are provided in Table 3. The DPPH test, which was expressed as IC₅₀, showed very strong to moderate activity in Morus, Ficus, and Artocarpus. The lowest IC₅₀ of Morus was achieved by the stem bark of M. alba from Rajshahi, Bangladesh, with 36.5 µg/ml (Khan et al., 2013). This is in line with the total flavonoid and phenolic contents contained in the plant which are higher compared to other plants. Other methods also showed a good value of antioxidant ability. This shows that Moraceae plants are promising antioxidant agents with various mechanisms.
Table 3. Antioxidant activity of *Morus*, *Ficus*, and *Artocarpus* plants using various methods.

Species	Part	Location	Extraction solvent	Genus Morus	DPPH IC$_{50}$	ABTS IC$_{50}$	FRAP IC$_{50}$	HRSA IC$_{50}$	Lipid peroxidation	RP	Reference
M. alba L.	Fruit	Jiangsu, China	80% ethanol	*Morus*	1.79 mg/ml	—	1.016 mg/ml; 94.36%	—	—	—	Krishna et al., 2018
M. alba L.	Fruit	Seoul, South Korea	Ethyl acetate fraction	*Morus*	133.6 ± 4.7 µg/ml	216.6 ± 28.8 µg/ml	3.727 ± 0.055 mmol Fe$^{2+}$/g	—	—	—	Yu et al., 2021
M. alba L.	Fruit	Rajshahi, Bangladesh	Methanol	*Morus*	76 µg/ml	—	—	177.05 µg/ml	26.28 ± 0.75 µM	62.83 ± 3.57 %	Khan et al., 2013
M. alba L.	Fruit	Vojvodina, North Serbia	Methanol	*Morus*	86.79 ± 0.19%	—	—	—	—	—	Natic et al., 2015
M. alba L.	Fruit	Rzeszow, Poland	Deionized water (5% w/v)	*Morus*	78.9 ± 1.5%	—	5.43 ± 0.12 mmol TE/100 g	—	—	—	Tomczyk et al., 2019
M. alba L.	Leaf	Rajshahi, Bangladesh	Methanol	*Morus*	108.69 µg/ml	—	—	211.72 µg/ml	—	—	Khan et al., 2013
M. alba L.	Leaf	Jeollabuk-do, South Korea	Distilled water	*Morus*	7.09 ± 0.91 mg/ml	—	—	—	—	—	Kim et al., 2020
M. alba L.	Leaf	Daejeon, South Korea	Methanol	*Morus*	139 ± 15 µg/ml	—	—	—	—	—	Kim et al., 2014
M. alba L.	Leaf	Khorasan, Iran	80% ethanol	*Morus*	103.49 ± 0.75 µg/ml	—	—	—	—	—	Ghavami et al., 2020
M. alba L.	Leaf	Rzeszow, Poland	Deionized water (5% w/v)	*Morus*	63.5 ± 2.9%	—	3.02 ± 0.22 mmol TE/100 g	—	—	—	Tomczyk et al., 2019
M. alba L.	Root bark	Rajshahi, Bangladesh	Methanol	*Morus*	41 µg/ml	—	—	116 µg/ml	—	—	Khan et al., 2013
M. alba L.	Stem bark	Rajshahi, Bangladesh	Methanol	*Morus*	36.5 µg/ml	—	—	83.25 µg/ml	—	—	Khan et al., 2013

Morus bombycis Fruit | Rzeszow, Poland | Deionized water (5% w/v) | *Morus* | 77.9 ± 1.6% | — | 5.20 ± 0.06 mmol TE/100 g | — | — | — | Tomczyk et al., 2019 |

Morus bombycis Leaf | Rzeszow, Poland | Deionized water (5% w/v) | *Morus* | 54.6 ± 2.8% | — | 2.15 ± 0.08 mmol TE/100 g | — | — | — | Tomczyk et al., 2019 |

Morus nigra L. Fruit | Chiang Mai, Thailand | Ultrapure water | — | *Morus* | 0.40 ± 0.033 µmol TE/100 g DW | — | 21.33 ± 0.35 µmol TE/100 g DW | — | — | — | Suttisansane et al., 2020 |
Genus *Morus*

Species	Part	Location	Extraction solvent	DPPH	ABTS	FRAP	HRSA	Lipid peroxidation	RP	SAS	Reference
Morus nigra L.	Leaf	Santa Catarina, Brazil	Distilled water	83.85 ± 0.99%	—	—	—	—	—	—	Zeni et al., 2017
Morus nigra L.	Leaf	Bahia, Brazil	95% ethanol	IC₅₀ 69.10 ± 1.88 µg/ml	—	—	—	—	—	—	Souza et al., 2018

Genus *Ficus*

Species	Part	Location	Extraction solvent	Antioxidant assay	Reference
Ficus hirta Vahl.	Fruit	Jiangxi, China	Ethyl acetate	IC₅₀ 2.52 mg/ml	Chen et al., 2020
F. exasperata Vahl.	Leaf	Bingerville, Ivory Coast	Distilled water	IC₅₀ 222.5 ± 8 µg/ml	Mouho et al., 2018
F. deltoidea	Leaf	Negeri Sembilan, Malaysia	Double-distilled water, ethyl acetate fraction	IC₅₀ 182 µg/ml	Abraham et al., 2018
Ficus vasta Forssk.	Leaf	Giza, Egypt	80% methanol	IC₅₀ 67.2 ± 3.8 µg/ml	Taviano et al., 2018
F. carica	Fruit	Bragança, Portugal	80% ethanol	IC₅₀ 1.13 ± 0.05 mg/ml	Palmeira et al., 2019
F. carica	Fruit	Cosenza, Italy	70% ethanol	IC₅₀ 41.3 ± 1.7 µg/ml	Loizzo et al., 2014
F. racemosa	Fruit	Khulna, Bangladesh	Methanol	IC₅₀ 8.59 µg/ml	Sumi et al., 2016
F. racemosa	Leaf	Khulna, Bangladesh	Methanol	IC₅₀ 10.28 µg/ml	Sumi et al., 2016

Genus *Artocarpus*

Species	Part	Location	Extraction solvent	Antioxidant assay	Reference
Artocarpus altilis	Fruit	Kuantan, Malaysia	Methanol	IC₅₀ 55 ± 5.89 µg/ml	Jalal et al., 2015

DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid, FRAP: ferric-reducing antioxidant power, HRSA: hydroxyl radical scavenging activity, RP: reducing power, SAS: superoxide anion radical scavenging activity, w/v: weight/volume, IC₅₀: half maximal inhibitory concentration, TE: Trolox equivalent, DW: dried matter, ASE: ascorbic acid equivalent, SC₅₀: half maximal scavenging concentration, RC₅₀: half maximal reducing concentration.
PFs and Diels–Alder-type adduct flavonoids show remarkable ability to scavenge free radicals. This is also related to the abundance of free hydroxyl groups in these phenolic compounds which may contribute to the activity (Zhao et al., 2018). Rutin and quercetin which are present in the M. nigra leaves ethanolic extract have been reported to play a big role in the anti-inflammatory effect, feasibly by modulating bradykinin and serotonin pathways (Ribeiro et al., 2019). The anti-inflammatory effect was also shown by prenylated isoflavones which showed an inhibitory effect on nitric oxide (NO) production (Liu et al., 2019).

CLIMATE INFLUENCES ON FLAVONOIDS

In general, functional components in plants are influenced by differences in varieties and cultivation environments, including sunlight, amount of fertilizer, and temperature (Sugiyama et al., 2016). In observing the flavonoid content in plants, this is also influenced by season, temperature, and accumulation of rainfall. Observations made on M. nigra growing in Brazil by measuring quercetin levels regularly every season throughout the year showed that quercetin and flavonoids are routinely affected by climate (Dalmagro et al., 2018).

The continued depletion of the ozone layer in the last few years has led to increased damage to crops through ultraviolet (UV) radiation from the sun (Li et al., 2020b). The effects of UVB stress induction and dark treatment have been carried out to understand the genes that contribute to metabolic mechanisms in a plant under abiotic stress conditions. Transcriptomics of M. alba leaves which were treated with UVB and dark incubation showed an increase in flavonoid biosynthesis due to upregulation of gene expression involved in flavonoid biosynthesis pathways (Guan et al., 2018).

The effect of light deprivation was also observed on anthocyanin synthesis in F. carica cultivar Zibo, China. Lack of light greatly affects pigment synthesis in fruit. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed significant changes in phenylpropanoid biosynthesis and flavonoid biosynthesis pathways in fruits where significant repression occurs in the transcripts of chalcone synthase, chalcone isomerase, flavonoid 3’-hydroxylases, dihydroflavonol 4-reductase, and flavonoid 3-O-glucosyl transferase (Wang et al., 2019).

One of the most abundant secondary metabolites in plants and the largest subclass of flavonoids is flavones. Flavonoids, including flavones, have various functions that are useful for plants to adapt to complex and constantly changing environments. Flavone plays a role in protecting plants from solar UV radiation, giving color to flowers, interactions between species, and plant self-defense. Several studies have shown higher flavone content in the leaves of plants grown at higher altitudes. This indicates a correlation between flavones and plant tolerance to UV stress (Li et al., 2020b).

Based on climate, the flavonoid content is more abundant in plants that grow around the equator. Nevertheless, other factors such as cultivation, soil conditions, and the processing of samples could not be ignored (Kim et al., 2014). Interestingly, a report on the effect of the season on the flavonoid content had confirmed that both young and mature leaves collected in the dry season gave higher flavonoid production compared to that of the rainy season (Luengas-Caicedo et al., 2007).

CONCLUSION

Various species of Morus, Ficus, and Artocarpus show many variations of the flavonoid content. Each plant part has a characteristic in the flavonoid content; for example, the fruit contains a lot of anthocyanins, especially cyanidin glycosides; the leaves are rich in flavonols and their glycosides such as quercetin and kaempferol, while the roots and stems contain lots of flavones and their glycosides such as apigenin and luteolin. Several PFs and Diels–Alder adduct flavonoids were also found in this family, especially in the genus Morus. The largest flavonoid content in Morus plants is in the stems and roots, while the leaves of the Ficus genus are rich in flavonoids and TPC. More interestingly, climatic conditions, particularly the altitude and UV radiation, as well as the dry and rainy seasons, play a significant role in the flavonoid biosynthesis pathways. Furthermore, as these plants are plentiful in flavonoids, they have been proven to exhibit a strong antioxidant activity through various mechanisms. This review provides more insight into the potential of Moraceae plants as herbs to help improve various disease conditions induced by free radicals. Further research on the use of Moraceae plant extract as a functional food as well as in vivo and clinical trials is needed to ascertain the beneficial effects of these plant extracts on human health.

ACKNOWLEDGMENTS

The authors thank the Rector of Universitas Padjadjaran for funding the publication via the Unpad Academic-Leadership Grant of Prof. Dr. Jutti Levita in Batch 2021, managed by the Directorate of Research and Community Engagement of Universitas Padjadjaran.

AUTHORS’ CONTRIBUTIONS

Jutti Levita (JL) was principally responsible for the conception and design of the study. Dina Hawari (DH) searched and collected the articles. DH, Mutakin (M), and Gofarana Wilar (GW) participated in the processing, selecting, and analyzing of the data. DH, GW, and M contributed to the writing of the manuscript. JL checked, finalized, and revised the manuscript. All authors read and approved the final manuscript to be published.

FUNDING

There is no funding to report.

CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

Abdel Bar FM, Abbas GM, Gohar AA, Lahloub MFI. Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of Morus nigra L. Nat Prod Res, 2020; 34(24):3506–13.

Abraham NN, Abdul-Rahman PS, Aminudin N. The antioxidant activities, cytotoxic properties, and identification of water-soluble compounds of Ficus deltoidea leaves. PeerJ, 2018; 6(10):e5694.
Aftz A, Kasim N, Ismail NH, Azmi N, Ali AM, Mat N, Wollender JL. Differentiation of Ficus deltoidea varieties and chemical marker determination by UHPLC-TOF MS metabolomics for establishing quality control criteria of this popular Malaysian medicinal herb. Metabolomics, 2019; 15(3):35.

Alameegeer, Iman S, Asif H, Saleem M. Evaluation of antihypertensive potential of Ficus carica fruit. Pharm Biol, 2017; 55(1):1047–53.

Al-Musayeb N, Ebada S, Gad H, Youssef F, Ashour M. Chemotaxonomic diversity of three Ficus species: their discrimination using chemometric analysis and their role in combating oxidative stress. Pharmacogn Mag, 2017; 13(51):613.

Ange YP, Kapche DWFG, Fotso GW, Fozing CD, Yeoabo EMO, Mapitse R, Dermitas I, Ngadjui BT, Yeoabo SO. Thonningi flavonolavonol A and thonningi flavonolavonol B, two novel flavonoids, and other constituents of Ficus thonningii Blume (Moraceae). Z Naturforsch C J Biosci, 2016; 71(3–4):65–71.

Boonyaketenoson S, Du Y, Valenciano Murillo AL, Cassera MB, Kingston DGL, Trisuwam K. Flavonanes from the twigs and barks of Artocarpus lakooha lao having antiplasmodial and anti-TB activities. Chem Pharm Bull, 2020; 68(7):671–4.

Cao X, Yang L, Xue Q, Yao F, Sun J, Yang F, Liu Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci Rep, 2020; 10(1):4808.

Chen, C, Peng X, Chen, J, Wan C. Antioxidant, antifungal activities of ethnobotanical Ficus hirta Vahl. Analysis of main constituents by HPLC-MS. Biomedicines, 2020; 8(1):15.

Chen H, Yu W, Chen G, Meng S, Xiang Z, He N. Anticoagulative and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules, 2017; 23(1):4.

Dalmagro AP, Camargo A, da Silva Filho HH, Valcania MM, de Jesus PC, Zeni ALB. Seasonal variation in the antioxidant phytochemicals production from the Morus nigra leaves. Ind Crops Prod, 2018; 123(2018):323–30.

de Padua Lucio K, Rabelo ACS, Araujo CM, Brandao GC, de Souza GHB, da Silva RG, de Souza DMS, Talvani A, Bezerra FS, Cruz CAJ, Costa DC. Anti-inflammatory and antioxidant properties of black mulberry (Morus nigra L.) in a model of LPS-induced sepsis. Oxid Med Cell Longev, 2018; 2018:1–13.

Di X, Wang S, Wang B, Liu Y, Yuan H, Lou H, Wang X. New phenolic compounds from the twigs of Artocarpus heterophyllus. Drug Discov Ther, 2013; 7(1):24–8.

Farag MA, Abdel fattah MS, Badr SEA, Wessjohann LA. Profiling the chemical content of Ficus lyrata extracts via UPLC-PDA-qTOF-MS and chemometrics. Nat Prod Res, 2014; 28(19):1549–56.

Ghavami G, Muhammednejad S, Amanpour S, Sardari S. Bioactivity screening of mulberry leaf extracts and two related flavonoids of the Morus nigra leaves. Ind Crops Prod, 2018; 123(2018):323–30.

Guo S, Lou I, Zhang S, Yang C, Yue W, Zhao H, Ho CT, Du J, Zhang H, Bai N. Chemical characterization of the main bioactive polyphenols from the roots of Morus australis (mulberry). Food Funct, 2019; 10(10):6915–26.

Guo YQ, Tang GH, Lou LL, Li W, Zhang B, Liu B, Yin S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: isolation, modification, and structure-activity relationship study. Eur J Med Chem, 2018; 144:758–66.

Gupta AK, Rather MA, Kumar Jha A, Shashank A, Singhal S, Sharma M, Pathak U, Sharma D, Mastinu A. Artocarpus lakooha Roxb. and Artocarpus heterophyllus Lam. flowers: new sources of bioactive compounds. Plants, 2020; 9(10):1329.
Li H, Li D, Yang Z, Zeng Q, Luo Y, He N. Flavones produced by mulberry flavone synthase type I constitute a defense line against the ultraviolet-B stress. Plants, 2020b; 9(2):215.

Li J, An Y, Wang L. Transcriptomic analysis of Ficus carica peels with a focus on the key genes for anthocyanin biosynthesis. Int J Mol Sci, 2020c; 21(4):1245.

Li M, Wu X, Wang X, Shen T, Ren D. Two novel compounds from the root bark of Morus alba L. Nat Prod Res, 2018; 32(1):36–42.

Liu X, Kuang XD, He XR, Ren G, Wang Y, Xu LY, Feng LH, Wang B, Zhou ZW. Prenylflavonoids from the twigs of Artocarpus nigricfolium. Chem Pharm Bull, 2018; 66(4):434–8.

Liu YP, Guo JM, Yan G, Zhang MM, Zhang WH, Qiang L, Fu YH. Anti-inflammatory and anti-proliferative prenylated isoflavone derivatives from the fruits of Ficus carica. J Agric Food Chem, 2019; 67(17):4817–23.

Liu YP, Yu XM, Zhang W, Wang T, Jiang B, Tang HX, Su QT, Fu YH. Prenylated chromones and flavonoids from Artocarpus heterophyllus with their potential antiproliferative and anti-inflammatory activities. Bioorg Chem, 2020; 101:104030.

Loizzo MR, Bonesi M, Pugliese A, Menichini F, Tundis R. Chemical composition and bioactivity of dried fruits and honey of Ficus carica cultivars Dottato, San Francesco and Citrullara. J Sci Food Agric, 2019; 94(11):2179–86.

Luengas-Caicedo PE, Braga FC, Brando GC, de Oliveira AB. Seasonal and intraspecific variation of flavonoids and proanthocyanidins in Cecropia glaziovii Sneth. leaves from native and cultivated specimens. Z Naturforsch C J Biosci, 2007; 62c:701–9.

Mamoudi S, Benkhaled A, Benamirouche K, Baiti I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac J Trop Biomed, 2016; 6(3):239–45.

Manurung H, Kustiawan W, Irawan WKIJ, Marjenah. Total flavonoid content and antioxidant activity of tabat barito (Ficus deltoide Jack) on different plant organs and ages. J Med Plants Stud, 2017; 5(6):120–5.

Dutiles M. Ficus carica (common fig). Invasive species compendium [ONLINE]. 2015. Available via https://www.cabi.org/isc/datasheet/24078 (Accessed 19 July 2021).

Mascarello A, Orben Menegatti AC, Calcattera A, Martins PGA, Chiaradia-Delatorre LD, D’Acquarica I, Ferrari F, Pau V, Sanna A, De Logu A, Botta M, Bota B, Terenzi H, Mori M. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur J Med Chem, 2018; 144:277–88.

Mouho DG, Oliveira AP, Kodjo CG, Valienta P, Gil-Izquierdo A, Andrade PB, Ouatta ZA, Bekro YA, Ferreres F. Chemical findings and in vitro biological studies to uphold the use of Ficus esasperata Vahl leaf and stem bark. Food Chem Toxicol, 2018; 112:134–44.

Natic MM, Dubic DC, Papetti A, Fotiric Aksic MM, Ognjanov V, Ljubojevic M, Tesic ZL. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem, 2015; 171:128–36.

Nguyen MTT, Le TH, Nguyen HX, Dang PH, Do TNV, Abe M, Takagi R, Nguyen NT. Artocarmins G-M, prenylated 4-chromenones from the stems of Artocarpus rigidus and their tyrosinase inhibitory activities. J Nat Prod, 2017; 80(12):3172–8.

Palmeira L, Pereira C, Dias MI, Abreu RMV, Correa RCG, Pires TCS, Alves MJ, Barros L, Ferreira ICFR. Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus carica L.) variety. Food Res Int, 2019; 126(2019):108572.

Paudel P, Park SE, Seong SH, Jung HA, Choi JS. Novel Diels–Alder type adducts from Morus alba root bark targeting human monoamine oxidase and dopaminergic receptors for the management of neurodegenerative diseases. Int J Mol Sci, 2019; 20(24):6232.

Qi CC, Fu YH, Chen WH, Chen GY, Dai CY, Song XP, Han CR. A new isoflavone from the roots of Ficus auriculata. Nat Prod Res, 2018; 32(1):43–7.
Xu LJ, Yu MH, Huang CY, Niu LX, Wang YF, Wu CZ, Yang PM, Hu X. Isoprenylated flavonoids from Morus nigra and their PPAR γ agonistic activities. Fitoterapia, 2018; 127(2018):109–14.

Ye J, Ren G, Li W, Zhong G, Zhang M, Yuan J, Lu T. Characterization and identification of prenylated flavonoids from Artocarpus heterophyllus Lam. roots by quadrupole time-of-flight and linear trap quadrupole orbitrap mass spectrometry. Molecules, 2019; 24(24):4591.

Yu JS, Lim SH, Lee SR, Choi CI, Kim KH. Antioxidant and anti-inflammatory effects of white mulberry (Morus alba L.) fruits on lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules, 2021; 26(4):920.

Yu MH, Zhao T, Yan GR, YangHX, Wang HY, Hou AJ. New isoprenylated flavones and stilbene derivative from Artocarpus hypargyreus. Chem Biodivers, 2012; 9(2):394–402.

Yuan WJ, Yuan JB, Peng JB, Ding YQ, Zhu JX, Ren G. Flavonoids from the roots of Artocarpus heterophyllus. Fitoterapia, 2017; 117:133–7.

Zeni ALB, Moreira TD, Dalmagro AP, Camargo A, Bini LA, Simionatto EL, Scharf DR. Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. An Acad Bras Cienc, 2017; 89(4):2805–15.

Zepner L, Karrasch P, Wiemann F, Bernard L. ClimateCharts.net—an interactive climate analysis web platform. Int J Digit Earth, 2020; 14:338–56. [Online] Available via https://climatecharts.net/#home. (Accessed 24 May 2021).

Zhang X, Lv H, Li Z, Jiang K, Lee MR. HPLC/QTOF-MS/MS application to investigate phenolic constituents from Ficus pandurata H. aerial roots. Biomed Chromatogr, 2014; 29(6):860–8.

Zhao Y, Kongstad KT, Jäger AK, Nielsen J, Staerk D. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. J Chromatogr A, 2018; 1556:55–63.

Zheng ZF, Zhang QJ, Chen RY, Yu DQ. Four new flavonoids from Morus australis. J Asian Nat Prod Res, 2012; 14(3):263–9.

Zhu W, Zhong Z, Liu S, Yang B, Komatsu S, Ge Z, Tian J. Organ-specific analysis of Morus alba using a gel-free/label-free proteomic technique. Int J Mol Sci, 2019; 20(2):365.

Zoofishan Z, Kúsz N, Csorba A, Toth G, Hajagos-Toth J, Kothenecz A, Gaspar R, Hunyadi A. Antispasmodic activity of prenylated phenolic compounds from the root bark of Morus nigra. Molecules, 2019; 24(13):2497.

Zorzi M, Gai F, Medana C, Aigotti R, Peiretti PG. Identification of polyphenolic compounds in edible wild fruits grown in the north-west of Italy by means of HPLC-DAD-ESI HRMS. Plant Foods Hum Nutr, 2020; 75(3):420–6.

Zou Y, Liao S, Shen W, Liu F, Tang C, Chen CYO, Sun Y. Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in southern China. Int J Mol Sci, 2012; 13(12):16544–53.

How to cite this article: Hawari D, Mutakin M, Wilar G, Levita J. Flavonoids of Morus, Ficus, and Artocarpus (Moraceae): A review on their antioxidant activity and the influence of climate on their biosynthesis. J Appl Pharm Sci, 2021; 11(12):045–064.