World Journal of
Hepatology

World J Hepatol 2017 July 28; 9(21): 907-952
REVIEW
907 Chemotherapy for hepatocellular carcinoma: The present and the future
Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A

MINIREVIEWS
921 Is the 25-year hepatitis C marathon coming to an end to declare victory?
Ahmed KT, Almeshhrawi AA, Ibdah JA, Tahan V

ORIGINAL ARTICLE
930 Small for size syndrome difficult dilemma: Lessons from 10 years single centre experience in living donor liver transplantation
Shoreem H, Gad EH, Soliman H, Hegazy O, Saleh S, Zakaria H, Ayoub E, Kamei Y, Abouhellla K, Ibrahim T, Marawan I

Observational Study
945 Outcomes of pregnancy in patients with known Budd-Chiari syndrome
Khan F, Rawe I, Martin B, Knoc E, Johnston T, Ellist C, Letter W, Chen F, Olliff S, Mehrzad H, Zia Z, Tripathi D
World Journal of Hepatology
Volume 9 Number 21 July 28, 2017

ABOUT COVER
Editorial Board Member of World Journal of Hepatology, Hakan Alagozlu, MD, Professor, Department of Gastroenterology, Cumhuriyet University Hospital, 58040 Sivas, Turkey

AIM AND SCOPE
World Journal of Hepatology (WJH, online ISSN 1948-5182, DOI: 10.4254), is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJH covers topics concerning liver biology/pathology, cirrhosis and its complications, liver fibrosis, liver failure, portal hypertension, hepatitis B and C and inflammatory disorders, steatohepatitis and metabolic liver disease, hepatocellular carcinoma, biliary tract disease, autoimmune disease, cholestatic and biliary disease, transplantation, genetics, epidemiology, microbiology, molecular and cell biology, nutrition, geriatric and pediatric hepatology, diagnosis and screening, endoscopy, imaging, and advanced technology. Priority publication will be given to articles concerning diagnosis and treatment of hepatology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJH. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.

INDEXING/ABSTRACTING
World Journal of Hepatology is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, and Scopus.

FLYLEAF
1-IV Editorial Board

EDITORS FOR THIS ISSUE
Responsible Assistant Editor: Xiang Li
Responsible Electronic Editor: Huo-Liang Wu
Proofing Editor-in-Chief: Lian-Sheng Ma
Responsible Science Editor: Fang-Fang Ji
Proofing Editorial Office Director: Jie-Lai Wang

NAME OF JOURNAL
World Journal of Hepatology

ISSN
ISSN 1948-5182 (online)

LAUNCH DATE
October 31, 2009

FREQUENCY
36 Issues/Year (8th, 18th, and 28th of each month)

EDITORS-IN-CHIEF
Clara Balsamo, PhD, Professor, Department of Biomedicine, Institute of Molecular Biology and Pathology, Rome 00161, Italy
Wan-Long Chuang, MD, PhD, Doctor, Professor, Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1948-5182/editorialboard.htm

EDITORIAL OFFICE
Xiu-Xia Song, Director
World Journal of Hepatology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE
July 28, 2017

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/generinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Chemotherapy for hepatocellular carcinoma: The present and the future

Marco Le Grazie, Maria Rosa Biagini, Mirko Tarocchi, Simone Polvani, Andrea Galli

Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver. Its relationship to chronic liver diseases, in particular cirrhosis, develops on a background of viral hepatitis, excessive alcohol intake or metabolic steatohepatitis, leads to a high incidence and prevalence of this neoplasia worldwide. Despite the spread of HCC, its treatment is still a hard challenge, due to high rate of late diagnosis and to lack of therapeutic options for advanced disease. In fact radical surgery and liver transplantation, the most radical therapeutic approaches, are indicated only in case of early diagnosis. Even local therapies, such as transarterial chemoembolization, find limited indications, leading to an important problem regarding treatment of advanced disease. In this situation, until terminal HCC occurs, systemic therapy is the only possible approach, with sorafenib as the only standard treatment available. Anyway, the efficacy of this drug is limited and many efforts are necessary to understand who could benefit more with this treatment. Therefore, other molecules for a targeted therapy were evaluated, but only regorafenib showed promising results. Beside molecular target therapy, also cytotoxic drugs, in particular oxaliplatin- and gemcitabine-based regimens, and immune-checkpoint inhibitors were tested with interesting results. The future of the treatment of this neoplasia is linked to our ability to understand its mechanisms of resistance and to find novel therapeutic targets, with the objective to purpose individualized approaches to patients affected by advanced HCC.

Key words: Hepatocellular carcinoma; Systemic therapy; Chemotherapy; Molecular targeted therapy; Cytotoxic therapy; Immunotherapy; Perspectives

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
by an important mortality rate. By now, sorafenib is the only standard treatment, but other options were recently studied and will be soon available for clinicians and patients affected by HCC. The review can be divided in four sections: The first one regards molecular target therapy and are described sorafenib, its open issues, but also other drugs with similar targets that have been evaluated for treatment of HCC. The second and the third parts regard cytotoxic drugs and immunotherapy, respectively, which were evaluated in recent years as possible alternatives or adjuvant to Sorafenib. In the last part of the review, future perspectives are described, in particular for what concerns resistance mechanism of the neoplasia, delivery methods or biological enhancers for drugs already in use, new drugs that will be probably evaluated and molecular targets that could soon become eligible for target therapy hopefully leading to the development of personalized therapy.

Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J Hepatol 2017; 9(21): 907-920 Available from: URL: http://www.wjgnet.com/1948-5182/full/v9/i21/907.htm DOI: http://dx.doi.org/10.4254/wjh.v9.i21.907

INTRODUCTION

According to last EASL-EORTC guidelines, liver cancer is the sixth most common cancer, the third cause of cancer related death, and accounts for 7% of all cancers. Hepatocellular carcinoma (HCC) represents more than 90% of primary liver cancers and is a major global health problem. Its incidence reaches a peak at median age of 70 years, which results to be higher in Japanese population (70-79 years) and lower in Chinese and Black African populations. HCC appears to be more frequent in males than in females (2.4:1)

HCC development is often related to the presence of a chronic liver, which represents one of the most important risk factors for this neoplasia. In particular cirrhosis, which can occur as a consequence of chronic viral hepatitis, excessive alcohol intake, nonalcoholic fatty liver disease or genetic diseases (e.g., hemochromatosis), is a frequent setting for HCC onset as well as a cause of liver dysfunction.

Liver dysfunction, in addition to high heterogeneity regarding the mechanisms of carcinogenesis and to the frequent diagnosis of HCC at an advanced stage despite appropriate screening in particular regarding viral chronic hepatitis, lead to great difficulty in treating this neoplasia, as well as in developing new therapeutic alternatives.

Surgery and liver transplantation (OLT) in fact represent the only radical treatments of this disease, but, as mentioned, are not feasible in case of advanced disease or significant hepatic dysfunction[2]. In particular, according to EASL indications based on Barcelona-Clinic Liver Cancer (BCLC) classification related on prognostic variables, surgery is proposable in very early stage HCC (stage 0), while OLT is indicated for early stage disease (stage A). More advanced diseases are treated with, in order: Radiofrequency ablation (RFA), transarterial chemoembolization (TACE) or sorafenib, while terminal HCC (stage D) has best supportive care as unique therapeutic option[1]. RFA and TACE are treatment of choice in case of early stage disease (stage A) with associated diseases and in case of intermediate stage disease (stage B) respectively, while other non-surgical approaches as transarterial radiation, percutaneous ethanol injection and microwave ablation are still infrequently used in clinical practice because of partial or less encouraging results compared with TACE and RFA[3,4].

Of particular interest is the approach with TACE, which, in addition to its purely therapeutic indication, has shown utility for its ability to lead to the down-staging of the disease[4,5] and for its neo-adjuvant effect[6]. For this reason, the TACE has been subject to intense technical development, which has led to, in addition to the conventional method Lipiodol-TACE, new approaches such as drug-eluting beads TACE (DEB-TACE)[7], based on doxorubicin and on administration as microspheres, with encouraging results.

In case of TACE resistance or advanced stage HCC (stage C), compatibly with the residual liver function, systemic chemotherapy is indicated, but sorafenib is currently the only standard systemic treatment available[6,9]. In consideration of the frequent approach to advanced HCC, and given the lack of viable alternatives, many efforts in the field of research have been made to optimize the use of sorafenib, for example by using it together with TACE or with hepatic arterial infusion chemotherapy (HAIC), and to evaluate chemotherapy regimens and other small molecules already in use for other types of malignancies or under development. The aim of our review is to evaluate the available options and future possible strategies regarding systemic therapy for HCC.

MOLECULAR TARGETED THERAPY

As previously said, sorafenib is the only standard treatment available for advanced HCC. In the wake of the good results obtained with sorafenib, numerous other small molecules were evaluated for the treatment of this neoplasia.

Sorafenib

The action of sorafenib is expressed on various molecular targets involved in the mechanism of tumor growth and angiogenesis, leading to their inhibition: Serine-threonine kinases Raf-1 and B-Raf involved in RAF/MEK/ERK pathway, RET, FLT-3, the receptor tyrosine kinase activity of vascular endothelial growth factor receptors (VEGFRs) 1, 2 and 3 and platelet-
derived growth factor receptor β (PDGFR-β)(10-13). The efficacy of this drug in treating Child-Pugh A stage C HCC was demonstrated in two phase III, randomized, placebo-controlled clinical trials: the SHARP trial(39) and the Asia-Pacific study (ORIENTAL)(9). The SHARP trial compared Sorafenib treatment (400 mg twice a day) to placebo among 602 patients, showing a significant difference in overall survival (10.7 mo vs 7.9 mo, \(P < 0.001\)), time to radiologic progression (5.5 mo vs 2.8 mo, \(P < 0.001\)) and disease control rate (43% vs 32%, \(P = 0.002\)), even if no significant difference was observed in time to symptomatic progression (4.1 mo vs 4.9 mo, \(P = 0.77\)). The observed side effects were diarrhea, weight loss, hand-foot syndrome and hypophosphatemia.

The ORIENTAL trial had a design similar to the SHARP study but was performed on 226 patients from the Asia-Pacific region: The overall survival was significantly increased in the Sorafenib-treated group (6.5 mo vs 4.2 mo, \(P = 0.014\)), even if the overall survival was lower compared to the SHARP study; more encouraging results were observed evaluating the time to progression, which was significantly higher in the Sorafenib group (2.8 mo vs 1.4 mo, \(P = 0.0005\)).

The eligibility criteria for treatment with sorafenib are still relatively restrictive and few data are available regarding its use in the presence of impaired liver function (Child-Pugh B/C) or in elderly patients. Regarding liver function, available data come from retrospective studies(14-18), that evaluated treatment with sorafenib in patients with liver function Child-Pugh B, showing shorter overall survival in these patients, compared with patients with Child-Pugh A. In addition, two studies(15-18) showed an increased incidence of severe adverse events in Child-Pugh B patients, that led to dose reduction or discontinuation of treatment. Thus, in the latest available guidelines there is no clear contraindication about sorafenib administration in patients with Child-Pugh B, but caution is advised due to the increased risk of side effects(19). Sorafenib treatment in elderly (age > 70 years) was evaluated only in a retrospective study(20), which reported a progression-free survival and overall survival similar to younger patients, associated to a higher incidence of some adverse events (neutropenia, malaise and mucositis); anyway, no clear indication about treatment of older patients was given in last guidelines. Beside the evaluation of therapeutic usefulness of sorafenib in single therapy, numerous studies have evaluated its use as adjuvant or neoadjuvant treatment. As previously said, potential down-staging effect was suggested, leading to a possible use of this drug as neo-adjuvant therapy or as bridge-to-transplantation therapy(21), in particular some studies suggest a possible role of sorafenib in preventing tumor relapse after liver transplantation(22,23), even if available studies were performed on small samples not providing statistically significant results. Unfortunately, the same optimism placed in the use of this drug for a neoadjuvant therapy does not seem to be confirmed regarding its use with adjuvant intent. In 2015, the STORM trial, a randomized, double blind, placebo controlled trial, evaluated sorafenib efficacy as adjuvant after resection or local ablation, but no difference in median recurrence free survival was observed (33.3 mo vs 33.7 mo, \(P = 0.26\))(24). A more in-depth discussion should be done about the combination of sorafenib and TACE: Initial encouraging results came from retrospective studies(25,26) that evaluated sorafenib in case of TACE refractory or eligibility (reduced efficacy of TACE itself, vascular devastation, involvement of complex extrahepatic blood supply routes, vascular invasion, distant metastases)(27). Despite this, initial randomized trial to evaluate this combination did not confirm the efficacy of TACE + sorafenib. In particular, the SPACE trial(28) showed no difference between TACE + sorafenib vs TACE + placebo regarding time-to-tumor progression (169 d vs 166 d, \(P = 0.072\)) and overall survival (554 d vs 562 d, \(P = 0.295\)); a more recent phase III randomized trial from Kudo et al(29) with a similar design confirmed those results (time to tumor progression 5.4 mo vs 3.7 mo, \(P = 0.252\); overall survival 29.7 mo vs NE, \(P = 0.072\)). Recent observational studies(30,31) showed more encouraging results in terms of progression free survival and overall survival respectively, and a systematic review/meta-analysis(22) reported a significant different among TACE + sorafenib vs TACE in terms of response rate (OR = 3.59, 95%CI: 1.74-7.39, \(I^2 = 21\%\), \(P = 0.0005\)), disease control rate (OR = 4.72, 95%CI: 1.75-12.72, \(I^2 = 56\%\), \(P = 0.002\)), 1-year overall survival (OR = 3.10, 95%CI: 2.22-4.33, \(I^2 = 41\%\), \(P = 0.00001\)), but further randomized trials are still ongoing with the aim to evaluate the effectiveness of this combination therapy (NCT01004978, NCT01324076, NCT01217034).

To develop novel systemic therapies for HCC, sorafenib was also evaluated as second-line therapy after fluoropyrimidine plus platinum-based chemotherapy(33). The resulting disease control rate of 58.3%, with overall survival and progression-free survival of 7.1 and 2.3 mo, respectively, without increased incidence of adverse events, suggests a modest efficacy of sorafenib as second-line treatment after other systemic therapies. In consideration of new systemic therapeutic options, great importance has acquired the search for markers of resistance to sorafenib, with the intention to offer a personalized therapy for advanced HCC. An example is represented by c-Jun N-terminal kinase activity, related with the CD133 expression level and inversely correlated with the therapeutic response to the drug(8,34). Thus, many efforts should be done to identify other markers of poor response to sorafenib, with the aim to give each patient a personalized therapeutic approach, based on the resistance profile of each single HCC and to choose among other drugs that will be hopefully soon available beside Sorafenib.
Brivanib

Brivanib is a small molecule acting as dual tyrosine kinase inhibitor (TKI) of VEGFR and PDGFR. The drug, administrated orally (800 mg once daily), was initially evaluated as first line treatment in comparison with sorafenib in the BRISK-FL trial, then as second line treatment in comparison with placebo in patients who complained intolerance or lack of response to sorafenib in BRISK-PS trial. BRISK-FL trial\(^{37}\) showed no difference regarding overall survival between brivanib and sorafenib (9.5 mo vs 9.9 mo, HR = 1.06, 95%CI: 0.93-1.22, \(P = 0.311\)). Even as second-line therapy, in comparison with BSC, Brivanib failed: BRISK-PS\(^{38}\) trial showed no significant difference regarding overall survival between the two approaches (9.4 mo vs 8.2 mo, \(P = 0.3307\)). Finally, brivanib, like sorafenib, was tested in a randomized, double-blind, placebo-controlled trial\(^{37}\) as adjuvant therapy after TACE in comparison with placebo, but even in this case it failed in improving overall survival of HCC patients (19.1 mo vs 26.1 mo, \(P = 0.5280\)). Thus, at this time evidences do not allow to consider brivanib an effective alternative to Sorafenib, but further studies may show better results, if we consider positive data about time to tumor progression (4.2 mo vs 2.7 mo; HR 0.56, 95%CI: 0.42-0.76, \(P < 0.001\)) from BRISK-PS and lack of cross tolerance with Sorafenib.

Sunitinib

Sunitinib is another small molecule acting as multikinase inhibitor which targets VEGFR, PDGFR and c-kit. Only one phase II trial (SUN1170 trial)\(^{39}\) studied the efficacy of the drug as first-line treatment for HCC, but was discontinued due to adverse events. Anyway sunitinib appeared to be inferior to sorafenib regarding overall survival (7.9 mo vs 10.2 mo, \(P = 0.0014\)). Based on current evidence, sunitinib is not to be considered as a viable therapeutic alternative to sorafenib.

Linifanib

Linifanib is a dual tyrosine-kinase inhibitor targeting VEGFR and PDGFR. LIGHT phase III trial\(^{40}\) compared the drug to sorafenib as first-line treatment, but overall survival between the two groups was similar (95%CI: 8.3-11.0, HR = 1.046, 95%CI: 0.896-1.221) and linifanib group showed higher rate of adverse events (e.g., hypertension and hepatic encephalopathy).

Erlotinib

Erlotinib is a tyrosine kinase inhibitor targeting EGFR, which was evaluated in combination with sorafenib vs sorafenib alone in SEARCH phase III trial\(^{41}\). This combination did not lead to an increased overall survival (9.5 mo vs 8.5 mo, \(P = 0.408\) and was related to potent toxicity.

Everolimus

Everolimus acts inhibiting the mammalian target of rapamycin (mTOR). It was evaluated in comparison with placebo in EVOLVE-1 phase III trial\(^{42}\) in case of sorafenib failure or intolerance, but it did not increase overall survival (7.6 vs 7.3, HR = 1.05, 95%CI: 0.86-1.27, \(P = 0.68\)).

Ramucirumab

Ramucirumab is a recombinant IgG1 monoclonal antibody able to bind extracellular domain of VEGFR-2. REACH trial\(^{43}\) failed in showing its efficacy as second-line treatment in comparison with placebo, because overall survival was similar between the two groups (9.2 mo vs 7.6 mo; HR = 0.87, 95%CI: 0.72-1.05, \(P = 0.14\)); however the promising results obtained in patients with alpha-fetoprotein > 400 ng/mL, led to an ongoing trial to verify its usefulness of this drug in this specific population.

Regorafenib

Regorafenib is a multi-target inhibitor acting on VEGFR1-3, TIE2, c-kit, Ret, wild type or V600-mutated B-RAF, PDGFR and FGFR, administrated orally and derived from sorafenib. RESORCE\(^{44}\) trial is a phase III randomized, double-blind trial, that recently evaluated the drug as second-line treatment in comparison with placebo in patients who showed intolerance or failure to sorafenib. Regorafenib was related to positive results in terms of overall survival (10.6 mo vs 7.8 mo; HR = 0.63, 95%CI: 0.50-0.79, \(P < 0.0001\)). Adverse events reported are hypertension (15%), fatigue (9%), diarrhea (3%). It is possible to affirm, on the basis of this trial, that regorafenib appears to be the only alternative currently available regarding systemic therapy for the treatment of advanced HCC in case of progression on sorafenib treatment.

Other small molecules

Other small molecules are currently under evaluation for the treatment of HCC. Some of them act against targets already mentioned as factors involved in angiogenesis (e.g., VEGF), other drugs act on pathways that are already targets of other drugs (e.g., MEK, MET). It is important to emphasize that drugs that act on c-MET may have greater efficacy in cases of HCC with increased expression of the receptor\(^{45,46}\). Phase III studies are required to define the clinical utility of these drugs, in particular in comparison with sorafenib; for some of them phase III trial are under way. Table 1 shows a list of drugs under preliminary evaluation.

CYTOTOXIC CHEMOTHERAPY

Historically, traditional chemotherapy agents have not shown great efficacy in the treatment of HCC when used in advanced stage of disease, in particular in case of progression after locoregional therapy. This assessment comes from initial examination of single-arm, open-label studies evaluating the use of some chemotherapeutic, that did not lead in the past years to further evaluation.
of this class of drugs and limiting their use to palliative approaches.

Recently, however, new chemotherapeutic agents, such as oxaliplatin, have shown efficacy in the treatment of cancers of the digestive tract (stomach, colorectal, pancreas). Based on these positive results, some of these drugs have also been evaluated for the treatment of advanced HCC, with promising findings.

Monotherapy regimens

This kind of regimen is indicated in case of worse general conditions or worse tolerance to systemic therapy. Doxorubicin was one of the first chemotherapeutic drugs used for HCC and showed interesting results, but its role is actually related to already mentioned DEB-TACE. Doxorubicin was also evaluated in combination with sorafenib (see below for details).

The interest for doxorubicin is growing again due to the technological advance that allows a targeted release of the drug; this aspect will be discussed in another section of this review. Capecitabine is a drug released of the drug; this aspect will be discussed in another section of this review. Capecitabine is a drug used for HCC and showed interesting results, but its role is actually related to already mentioned DEB-TACE. Capecitabine was also evaluated in combination with sorafenib (see below for details).

Table 1 Targeted drugs under evaluation in advanced hepatocellular carcinoma

Drug	Molecular target	Study design	DCR	PFS	OS	TTP	Tolerability	Phase III study
Lenvatinib	VEGFR, FGFR, PDGFR, RET, KIT	Phase I/II (first line)	NR	NR	18.7 mo	12.8 mo	Favorable profile	Ongoing (E7080)
Cavozaatinib	VEGFR-2, MET, RET	Phase II (second line)	NR	4.2 mo	NR	NR	Favorable profile	Ongoing (NCT01908426 – CELESTIAL)
Tivantinib	c-MET	Phase II (vs placebo, second line)	NR	MET low NS 7.2 mo	MET high 3.8 mo; P = 0.01	NR	Severe neutropenia	Ongoing (NCT01755767)
Apatinib	VEGFR2	Phase II (first line)	NR	9.7 mo	NR	4.2 mo	Favorable profile	Ongoing (NCT02329860)
Refametinib	MEK	Phase II (first line)	NR	290 d	NR	122 d	Favorable profile	NR
Foretinib	MET, RON, AXL, TIE-2, VEGFR	Phase I/II (first line)	79%	NR	NR	4.2 mo	Favorable profile	NR
Tepotinib	c-MET	Phase II/II (vs sorafenib, first line)	NR	NR	NR	NR	Favorable profile	NR
Capmatinib	c-MET	Phase I (Ongoing)	NR	NR	NR	NR	Favorable profile	NR
Golvantinib	c-MET	Phase I/IIb (Ongoing)	NR	NR	NR	NR	Favorable profile	NR
Emibetuzumab	c-MET	Phase I (Ongoing)	NR	NR	NR	NR	Favorable profile	NR
LY2157299	TGF-β	Phase II (second line)	NR	36 wk	12 wk	Favorable profile	Ongoing	
Pazopanib	VEGFR1-3, PDGFRα, β, c-kit	Phase I	NR	NR	NR	NR	Favorable profile	NR
Asitinib	VEGFR1-3	Phase II (vs placebo, second line)	NR	3.6 mo	12.7 mo	3.7 mo	Acceptable profile	NR

1 Best clinical response was observed in case of RAS mutations; 2 Best clinical response was observed in case of AFP level decrease. DCR: Disease control rate; OS: Overall survival; TTP: Time-to-tumor progression; PFS: Progression free survival; NR: Not reported; NS: Not significant.
cells. Its effect was observed for the treatment of other GI tumors, so it was evaluated as second line treatment for HCC in comparison with placebo in a phase III trial (S-CUBE)\[61\]. This trial failed in proving the superiority of this drug over placebo, but a subanalysis\[62\] suggests that better results could be observed in a more specific population, characterized by TNM stage III, IVa or IVb, Child-Pugh liver function class A and low levels of tumor markers. In this subgroup, overall survival was significantly longer (426.0 d vs 375.5 d; HR = 0.69; 95%CI: 0.51-0.93, P = 0.0156), suggesting that more personalization in therapeutic approach should be aimed. Nonetheless this studies show how the best possible results for the systemic therapy are linked to good liver function and to a not too advanced disease.

Politherapy regimens

As previously said, newly developed chemotherapeutic agents, appear to be a valuable option for HCC. FOLFOX4 regimen (fluorouracil, leucovorin, oxaliplatin) was evaluated in comparison to doxorubicin alone for the treatment of advanced HCC ineligible for surgery or for local treatments in EACH trial (phase III trial)\[63\]. FOLFOX4 was related to better results in terms of progression free survival (2.93 mo vs 1.77 mo, P < 0.001), response rate (8.15% vs 2.67%, P = 0.002), disease control rate (52.17% vs 31.55%, P < 0.001); beside these positive findings and a good safety profile, no significant difference in terms of overall survival, the primary endpoint of the study, was observed (6.40 mo vs 4.97 mo, P = 0.07), leading to a formal negativity of the study. Still, an unplanned subsequent analysis performed at 7 mo after the end of the previous study has shown an improvement in terms of overall survival (6.47 mo vs 4.90 mo, P = 0.04) and significant results regarding overall survival (5.9 mo vs 4.3 mo, P = 0.0281), but progression free survival, response rate and disease rate control in the Chinese population\[64\], leading to FOLFOX4 approval by Chines Food and Drug Administration for treatment of advanced HCC ineligible for surgery or local treatment. GEMOX regimen (gemcitabine, oxaliplatin) was firstly evaluated in a large, multicenter, retrospective study (AGEO)\[65\] for treatment of advanced HCC with notable results: 22% response rate, 66% disease control rate, 4.5 mo progression free survival, 8.0 mo time-to-tumor progression and 11.0 mo of overall survival. Two interesting aspects should be considered: As first, overall survival was related to cirrhosis stage and response to the regimen were associated to overall survival; in particular response to GEMOX led to a better overall survival in comparison with lack of response (19.9 mo vs 8.5 mo). As second, this regimen was related to a downstaging effect on the neoplasia, considering that 8.5% of patients became eligible for curative-intent treatments. Attention should be given to possible serious side effects of this regimen (neurotoxicity, thrombocytopenia, neutropenia and diarrhea). Another retrospective study\[66\] subsequently evaluated GEMOX as second-line treatment after failure of targeted therapy, reporting an overall survival of 8.3 mo, a 6-mo overall survival rate of 59% and a progression free survival of 3.1 mo. Even this study showed an association between overall survival and performance status, alpha-fetoprotein and BCLC score at diagnosis. Further studies are therefore required, in particular phase 3 trials, to assess the role of this regimen in the treatment of HCC. Some other oxaliplatin-based regimens have begun to be studied in phase II trials for HCC treatment, showing interesting results, such as XELOX (oxaliplatin plus capecitabine), GP (gemcitabine plus cisplatin) and cisplatin plus capecitabine\[69\]. A meta-analysis study\[70\] tried to define the efficacy and safety of oxaliplatin-based regimens and to assess the best regimen for treatment of advanced HCC, but it as an important limitation having evaluated only small single arm studies, with the exception of the EACH trial; anyway, it suggests that better results could be obtained with GEMOX combination. Given the yet ambiguous and preliminary available data, further efforts are necessary, performing randomized trials on extended samples, to define the role of these regimens for treatment of HCC.

Chemotherapy and sorafenib

The growing interest about chemotherapy for the treatment of HCC, has led to its comparison with the only available standard systemic treatment: Sorafenib. As previously said, there are no significant data about comparison between sorafenib and chemotherapeutic drugs, being the lack of phase III randomized trials a reason. As a matter of fact, this comparison was evaluated only retrospectively\[71\] with no significant difference in overall survival (23 wk vs 43.6 wk, P = 0.105) and progression free survival (11.1 wk vs 12.4 wk, P = 0.496). More efforts were done to assess a possible synergistic effect of sorafenib plus chemotherapeutic agents. After initial promising data from a phase II study\[72\], a phase III trial (CALGB80802)\[73\] was planned to assess the efficacy of doxorubicin plus sorafenib in comparison with sorafenib alone as first-line treatment, but it was interrupted after a planned interim analysis demonstrated a higher toxicity in combination group and because primary and secondary endpoints (overall survival and progression free survival, respectively) were not met. The main difference between this and the previous phase II trial is represented by the use of sorafenib in the control group instead of doxorubicin, suggesting that sorafenib could be the determinant in the therapeutic effect of this combination, with a marginal role of doxorubicin. The GONEXT study\[74\], a phase II study, evaluated the combination of GEMOX plus sorafenib vs sorafenib alone as first-line therapy, with moderately positive results: Response rate (16%), disease control rate (77%), median progression free survival (6.2 mo) e 4-mo progression free survival rate (61%), even if overall survival was similar to the
one reported for sorafenib monotherapy; tolerability resulted to be acceptable. The authors commented results pointing out that primary endpoint was met (4-mo progression free survival > 50%), while other results were encouraging. Another preliminary randomized study[75] evaluated this combination as first-line treatment (6 cycles) followed by maintenance treatment with sorafenib alone: objective response was 26.5%. The median time to progression was 10.3 mo (95%CI: 8.7-11.9 mo) and median overall survival was 15.7 mo (95%CI: 13.0-18.4 mo). Toxicity was manageable. Even this approach deserves further evaluations with phase II and III trials. Another phase-II trial[76] studied SECOX regimen (sorafenib, capcetabine and oxaliplatin) in Asian HCC patients; the primary endpoint was time-to-tumor progression (5.29 mo), while secondary ones were response rate (16%), progression free survival (5.26 mo), overall survival (11.73 mo) and tolerance (good tolerance). Results were thus considerate promising and deserving of further evaluations. It is therefore possible to state that oxaliplatin based regimens plus sorafenib showed results suggesting a synergistic action between these drugs and a possible fundamental role in the future of treatment of HCC.

HAIC

HAIC was introduced in Japan before the advent of sorafenib and Japanese clinical guidelines suggested HAIC plus sorafenib in case of HCC with Vp4 or Vp3 (HCC with invasion of the main trunk or the left and right main branches of the portal vein) even in absence of phase III trials supporting the efficacy of this approach. Available regimens are: IA-call (one-shot intra-arterial injection), LFP (repeated intraarterial injection of cisplatin with a reservoir catheter system) and SFU/IFN (5-flouorouracil continuous intra-arterial injection with a reservoir catheter system in combination with subcutaneous interferon administration). The best results from a single regimen came from IA-call, that was related to a response rate of 33.8% in a phase II trial[77]. As previously said, these regimens are often used in combination with sorafenib, but only combination based on IA-call was associated to interesting results in terms of overall survival in comparison with sorafenib alone (9.5 mo vs 7.0 mo; HR = 0.74)[78]. On the other side, no significant difference was observed using sorafenib+LFP (11.8 mo vs 11.8 mo; HR = 1.0)[79].

IMMUNOTHERAPY

Tumor immune escape and its mechanism brought to a growing interest from scientific community, resulting in development of tumor immunotherapy, that proved to be effective for the treatment of some malignant neoplasia (e.g., melanoma, NSC lung cancer, renal carcinoma). Two immunological pathways are involved in tumor immunotherapy: The first one is related to T cells inhibition caused by the interaction between cytotoxic T lymphocyte-associated-4 (CTLA-4), a transmembrane receptor on T cells, and its molecular ligand B7, that may lead to a protective effect for tumor cells and its inhibition is the target of some immunotherapeutic drugs[80]. The second immunological pathway targeted by immunotherapy is the one started by programmed death receptor 1 (PD-1) and its ligands (PD-L1 and PD-L2). PD-1 is produced by several immunity cells (T cells CD28+/CD4+, B cells, NK cells, etc.) but it’s often expressed by tumor cells with an immunosuppressive effect, caused by TCR receptor signal transduction inhibition by PD-1-PD-L1 that results in drop of proliferation and depletion of T-cells[81]. Tremelimumab is a humanized anti-CTLA-4 IgG2 antibody and it was evaluated for the treatment of HCC in patients with chronic HCV infection with encouraging results in terms of response rate (18%), disease control rate (76%) and time-to-tumor progression (6.48 mo); two interesting characteristics of this drug are its long half-life (22 d), which could lead to a more comfortable management for the patient, and its antiviral activity, represented by a drop in viral load[82]. An interesting important clinical aspect is the possible synergistic action of this drug with local treatments (TACE and RFA). This synergy might be explained by immune reaction against the tumor caused by local treatments, which improves the efficacy of immunotherapeutic drug. Only preliminary results[83] are available, but they appear to be promising: 40% of patients reached partial response, 5/7 patients affected by HCV infection showed a drop in viral load, histology evaluation showed immune cell infiltration in tumor and progression free-survival was 7.4 mo; in addition no worsening of safety profile was observed. Nivolumab is a fully humanized monoclonal IgG4 antibody against PD-1, recently studied in a phase I/II study[84] for treatment of patients affected by HCC with intolerance to, or inefficacy of, sorafenib. This study reported extremely positive results: 2/39 patients (5%) showed complete response and 8/39 (18%) showed partial response; 6-mo overall survival rate was 72%. On the other hand a moderate rate of adverse events was observed (71%), but only 17% of patients were affected by grade 3/4 adverse events (elevated AST, elevated ALT, elevated serum lipase). A phase III trial (NCT02576509) to compare nivolumab to sorafenib is ongoing. It is safe to say that tumor immunotherapy is a very promising option among systemic therapies, especially because its targets are completely different from targets of the currently available systemic therapies. Furthermore, its effectiveness may allow a better understanding of the biology of HCC. In the near future it will be interesting to evaluate immunotherapy in comparison with standard treatments, but also in combination with them in consideration of possible synergy as seen in case of Tremelimumab and TACE.
FUTURE PERSPECTIVES

HCC appears to be still a tough opponent, if it is not possible to treat it by surgery or by transplantation. It is therefore necessary to improve medical therapy for this neoplasia to give a chance to patients affected by its more advanced stages. It is important to focus which are directions we should follow regarding research in this field.

Understanding why some drugs had partial results or were able to show improvements only in some groups of patients is very important and could allow us to understand resistance mechanisms of this neoplasia and to develop strategies to overcome them. On the other side, many efforts should be made to find new therapeutic targets and develop new drugs. Certainly, the future of advanced HCC treatment will be represented by personalized therapy based on a deep evaluation of the patients, to find out the better targets of disease to be attacked.

Resistance mechanisms

Not so much data is available about resistance mechanisms of HCC and practical ways to overcome them. Preliminary studies have shown that, as previously said, c-Jun N-terminal kinase activity could be related to sorafenib resistance, but this information did not lead to clinical consequences yet. Resistance could be related to systemic therapy in general or to the single drug. In the first case, altered pathways are fundamental for tumorigenesis, metastatic process and maintenance of stem cell properties; in particular molecules involved in autophagy (osteopontin\(^{[85]}\)), apoptosis (Cofilin-1\(^{[86]}\) and AKR7A3\(^{[87]}\)) and stemness related mechanism of cancer stem stells (NRBP2\(^{[88]}\)) seem to play an important role, as showed in some preliminary in vitro studies.

Particular mechanisms resulted to be involved in resistance to specific drugs. For example, aberrant expression of non-coding RNA was related to oxaliplatin-resistant profile: 421 differentially expressed mRNAs, 228 up-regulated and 193 down-regulated (fold change \(> 2, P < 0.05\)) in oxaliplatin-resistant (MHCC97H-OXA), were individuated and appear to be related not only to resistance to oxaliplatin, but also to tumor size, differentiation and poor prognosis\(^{[89]}\). On the other hand, TUC338/VASIL1 pathway was related by Jin et al\(^{[90]}\) to sorafenib resistance: in vitro inhibition by non-coding RNA of TUC338 led to a sensitization to sorafenib and, in addition, to a decrease in proliferative and invasive ability. Of particular interest is the recent hypothesis of the role of tumoral microenvironment in chemotherapeutic resistance: Azzariti et al\(^{[91]}\) described in their study the resistance to sorafenib induced by hepatic stellate cells, that produce laminin-332, an extracellular matrix protein, that is able to bind α3β1 integrin, if expressed, leading to protection of FAK, a target of sorafenib, from degradation.

New combinations of drug with delivery systems or biological enhancers

Another important field of research is the one regarding the development of new forms of drugs already used to enhance the effect and selectivity for HCC; an example is represented by nanoparticle-mediated targeted drug delivery system\(^{[92]}\). Doxorubicin is an example of drug that could soon have a new role in HCC treatment, as demonstrated by preliminary studies on animal models with modified forms of the drug. Lactosaminated albumin conjugate of doxorubicin showed rapid and selective accumulation in the liver\(^{[93]}\), such as mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers\(^{[94]}\), that in addition exploit acidic pH of tumoral cells with a selective release of drug at pH 4.0. Even A54 peptide modified Doxorubicin glucolipid conjugate micelles\(^{[95]}\) showed high selectivity for hepatic cells, in particular for tumoral ones because of redox-sensitivity.

Moreover the modification of cisplatin by the addition of a pH-sensitive polymer and HCC-targeting peptide, to obtain a higher selectivity to HCC and in particular to its stem cells, that are not sensitive to cisplatin alone, showed promising results\(^{[96]}\). On the other hand, elaboration of sorafenib was targeted to add molecules which could acts as biological enhancers in a synergistic way. Two examples of molecules used with this intent are C2-ceramide\(^{[97]}\), a potent inducer of apoptosis in human neoplastic cells, and 2-Deoxyxyglucose\(^{[98]}\), an inhibitor of glycolysis that leads to depletion of ATP.

Other drugs under evaluation

Pre-existing and new drugs were studied for treatment of HCC. Antiangiogenic drugs could have a role, because of important angiogenic activity of this neoplasia; in fact VEGFR is already a target of some drugs previously discussed. Unfortunately, bevacizumab was tested in combination with sorafenib in a phase I/II trial with consequent observation of high toxicity and low efficacy of this combination, that led to the interruption of the study\(^{[99,100]}\). It’s necessary to mention drugs that have been studied in vitro and in vivo with promising results, awaiting for trials on humans. Some examples are ursolic acid derivatives\(^{[101]}\) and a BSG9 (piperazidine derivative of 23-hydroxy betulinic acid), that cause ROS-mediated apoptosis in HCC cells, EMMQ\(^{[102]}\) (an indolylquinoline derivative), that causes DNA damage by activating p53 and γ-H2AX, and GL63\(^{[104]}\) (a curcumine analogue), which was able to suppress the proliferation of HCC cells by inhibition of the JAK2/STAT3 signaling pathway. Even Valproic Acid\(^{[105]}\), a well-known antiepileptic drug, showed potential anti-HCC effect in vitro by promotion of epithelial mesenchymal transition of hepatocarcinoma cells via transcriptional and post-transcriptional up regulation of Snail.

Another new therapeutic approach regards arginine, which cannot be produced by HCC cells; thus, pegy-
lated arginine diminase (ADI-PEG 20) was tested as arginine-degrading enzyme, with favorable tolerability and encouraging disease control rate and median overall survival; a phase III trial to evaluate this drug is actually ongoing (NCT01287585). JX-594 is a recombinant vaccine virus able to cause virus replication-dependent oncolysis and tumor-specific immunity, after inserting human granulocyte-macrophage colony-stimulating factor (hGM-CSF) and β-galactosidase transgenes, with disruption of the viral thymidine kinase gene. This vaccine was tested in a low dose administration vs a high dose administration; this last one was related to a better median overall survival (6.7 mo vs 14.1 mo; HR = 0.39, P = 0.02), while response rate was 15% for both groups. PHOCUS phase III trial in combination with sorafenib is ongoing (NCT02562755).

New molecular targets
The advancement of knowledge of the biology of HCC is gradually allowing us to identify new potential molecular targets, which are an essential part of the development and the activity of this tumor. Rao et al recently provided an article in which frequently mutated genes/pathways are described and can be source of inspiration to individuate new future therapeutic targets.

NF-κB has a key role in immune response and resulted to be altered in precancerous cirrhosis tissues and in a subset of HCCs. Ramesh et al reported preliminary data about in vitro activity of ornithogalam against HCC. The importance of NF-κB in HCC biology and in relation to a potential clinical use, was suggested by Chen et al: In his study, pretreatment of sorafenib with RT suppressed the expressions of NF-κB and its downstream proteins induced by radiation through downregulation of phosphorylated extracellular signal-regulated kinase (pERK), with a synergistic effect that could lead to a new role for radiotherapy for the treatment of HCC. Another target that has been evaluated in oncology is telomerase, which appears to be constitutively activated in many tumors. In a recent review by Picariello et al, inhibition of telomerase activity were evaluated. An interesting new approach is the exploitation of telomerase activity using nucleoside analogues that could be metabolized by telomerase. Acycloguanosyl-thymidyltriphosphate, a thymidine analogue pro-drug of Acyclovir, was tested in vitro and in vivo against HCC, leading to reduced tumor growth, increased apoptosis and reduced proliferation of tumor cells in transgenic and orthotopic mouse models. Further studies are necessary to test this kind of drugs on humans.

Other promising molecular targets are prothymosin-alpha, a negative regulator of apoptosis, NEK2, a critical regulator of centrosome structure and function, and STARD13, a positive regulator of apoptosis.

CONCLUSION
To date, the treatment of HCC is still a major surgical and medical challenge. This is even more true with regard to cases of advanced disease, treatable only with systemic therapy, which by now has few arrows available in its quiver. Sorafenib is today the only standard systemic treatment, but it presents still unsolved issues; this explains the urgency of finding new alternatives to be proposed to the patient. Molecular therapy has a key role: Many drugs are under development and under evaluation; furthermore another drug from this class, Regorafenib, showed positive results and for sure will be considered by future guidelines for the treatment of HCC; on the other hand, the number of available drugs is likely to increase with the rise of biological weaknesses of this neoplasia. Yet, cytotoxic drugs, in particular modified forms, and immunotherapeutic drugs are making a promising competition to sorafenib, acting on different routes. The future availability of a great number of different options with different mechanisms of action definitely gives much hope regarding the treatment of advanced HCC, in particular in terms of personalized therapy.

REFERENCES
1. European Association for the Study of the Liver. European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001]
2. Belghiti J, Fuks D. Liver resection and transplantation in hepatocellular carcinoma. Liver Cancer 2012; 1: 71-82 [PMID: 24159575 DOI: 10.1159/00034240]
3. Bruij S, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/hep.24199]
4. Takayasu K, Arii S, Ikar I, Omata M, Oikta K, Ichida T, Matsuyama Y, Nakanuma Y, Kojio M, Makuuchi M, Yamaoka Y. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology 2006; 131: 461-469 [PMID: 16890600 DOI: 10.1053/j.gastro.2006.05.021]
5. Takayasu K, Arii S, Kudo M, Ichida T, Matsui O, Izumi N, Matsuyama Y, Sakamoto M, Nakashima O, Ku Y, Kukudo N, Makuuchi M. Superselective transcatheter chemoembolization for hepatocellular carcinoma. Validation of treatment algorithm proposed by Japanese guidelines. J Hepatol 2012; 56: 886-892 [PMID: 22173160 DOI: 10.1016/j.jhep.2011.10.021]
6. Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol 2007; 4: 424-432 [PMID: 17597707 DOI: 10.1038/ncponc0844]
7. Golferi R, Gimplampa E, Renzulli M, Cioni R, Bargellini I, Bartolozzi C, Breatta AD, Gandini G, Nani R, Gasparini D, Cucchi P, Bolondi L, Trevisani F. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer 2014; 111: 255-264 [PMID: 24937660 DOI: 10.1038/bjc.2014.199]
8. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zuzem S, Bolondi L, Gref T, Galle PR, Setz JF, Borbath I, Hauesser D, Giannaris T, Shan M, Moscovich M, Voliotis D, Bruix J. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390 [PMID: 18650514 DOI: 10.1056/
Clinical findings in pts with liver dysfunction. treatment with sorafenib in >3000 Sor-treated patients:

therapeutic decision in hepatocellular carcinoma and of its treatment with sorafenib non-interventional study. NCCN Clinical Practice Guidelines in Oncology: Hepatobiliary. Accessed version 2.2015. Available from: http://www.nccn.org/

National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Hepatobiliary cancers. Accessed version 2.2015. Available from: http://www.nccn.org/

Current options of chemotherapy for HCC

Le Grazie M et al. Current options of chemotherapy for HCC

NEJMoa0708857

Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Fung J, Ye Y, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Baroek K, Zu J, Voliotis D, Guan Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25-34 [PMID: 19095497 DOI: 10.1016/S1470-2045(08)70285-7]

Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shuijat J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane J, Lynch M, Auclair D, Taylor I, Godrich R, Voknezensky A, Riedl B, Post LE, Bollag G, Trail PA, BAY 43-9006 inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2007; 59: 561-574 [PMID: 17160391 DOI: 10.1007/s00280-006-0393-4]

Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 319-320 [PMID: 18582116 DOI: 10.1158/1535-7186.MCT-08-0013]

Estfan B, Byrne M, Kim R. Sorafenib in advanced hepatocellular carcinoma: hypertension as a potential surrogate marker for efficacy. Am J Clin Oncol 2013; 36: 319-324 [PMID: 22547010 DOI: 10.1097/COC.0b013e3182648039]

Chiu J, Tang YF, Yao TJ, Cui J, Chen Y, Wang C, Leung RC, Cheung DT, Tang YF, Yao TJ, Wong AH, Leung RC, Chan PS, Cheung BW. Sorafenib in advanced hepatocellular carcinoma patients with underlying Child-Pugh B liver cirrhosis: a retrospective analysis of efficacy, safety, and survival benefits. Cancer 2012; 118: 5293-5301 [PMID: 22517493 DOI: 10.1002/cncr.27543]

Lencioni R, Kudo M, Ye SL, Bronowicki JP, Chen XP, Dagher L, Furuse J, Geschwind JF, Ladrón de Guevara L, Papandreou C, Sanyal AJ, Takayama T, Yoon SK, Nakajima K, Cihon F, Helder S, Marrero JA. First interim analysis of the GIDEON (Global Investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafenib) non-interventional study. Int J Clin Pract 2012; 66: 675-683 [PMID: 22698419 DOI: 10.1111/ijc.12421-1242.2012.2490.x]

Lencioni R, Kudo M, Ye SL, Bronowicki JP, Chen XP, Dagher L, Furuse J, Geschwind JF, Ladrón de Guevara LL, Papandreou C, Takayama T, Yoon SK, Nakajima K, Lehr R, Heldner S, Sanyal AJ. GIDEON (Global Investigation of therapeutic DECisions in hepatocellular carcinoma and Of its treatment with sorafenib) second interim analysis. Int J Clin Pract 2014; 68: 609-617 [PMID: 24283303 DOI: 10.1111/ijc.12352]

Marrero JA, Lencioni R, Ye SL, Kudo M, Bronowicki JP, Chen X, Dagher L, Furuse J, Geschwind JF, Ladrón de Guevara L, Papandreou C, Sanyal AJ, Takayama T, Yoon SK, Nakajima K, Venook AP. Final analysis of GIDEON (Global Investigation of therapeutic decision in hepatocellular carcinoma [HCC] and of its treatment with sorafenib [sor]) in > 3800 Sor-treated patients (pts): Clinical findings in pts with liver dysfunction. J Clin Oncol 2013; 31 (15, suppl): 4126

Roh YN, David Kwon CH, Song S, Shin M, Man Kim J, Kim S, Jo JW, Lee SK. The prognosis and treatment outcomes of patients with recurrent hepatocellular carcinoma after liver transplantation. Clin Transplant 2014; 28: 141-148 [PMID: 24372624 DOI: 10.1111/ctn.12286]

Le Grazie M, Adnane J, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 319-324 [PMID: 18582116 DOI: 10.1158/1535-7186.MCT-08-0013]

Estfan B, Byrne M, Kim R. Sorafenib in advanced hepatocellular carcinoma: hypertension as a potential surrogate marker for efficacy. Am J Clin Oncol 2013; 36: 319-324 [PMID: 22547010 DOI: 10.1097/COC.0b013e3182648039]

Chiu J, Tang YF, Yao TJ, Cui J, Chen Y, Wang C, Leung RC, Chan P, Cheung DT, Tang YF, Yao TJ, Wong AH, Leung RC, Cheung BW. Sorafenib in advanced hepatocellular carcinoma patients with underlying Child-Pugh B liver cirrhosis: a retrospective analysis of efficacy, safety, and survival benefits. Cancer 2012; 118: 5293-5301 [PMID: 22517493 DOI: 10.1002/cncr.27543]

Kudo M, Okusaka T, Miyayama S, Tsuchiya K, Ueshima K, Hiraoka A, Tsubouchi H, Suh DJ, Furuse J, Okusaka T, Tanaka K, Matsui O, Wada M, Takayama T, Yoon JH, Hori T, Kumada H, Hayashi N, Kaneko S, Tsubouchi H. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 2015; 16: 1344-1354 [PMID: 26361960 DOI: 10.1016/S1470-2045(15)00198-9]

Ogasawara S, Chiba T, Oska Y, Kanogawa N, Motoyama T, Suzuki E, Tawada A, Kanai F, Yoshikawa M, Yokosuka O. Efficacy of sorafenib in intermediate-stage hepatocellular carcinoma patients refractory to transarterial chemoembolization. Oncology 2014; 87: 330-341 [PMID: 25227534 DOI: 10.1159/000365993]

Arizumi T, Ueshima K, Minami T, Kono M, Chishina H, Takita K, Mitai S, Inoue T, Yuda N, Hagiwara S, Minami Y, Sakurai T, Nishida N, Kudo M. Effectiveness of Sorafenib in Patients with Transcatheter Arterial Chemoembolization (TACE) Refractory and Intermediate-Stage Hepatocellular Carcinoma. Liver Cancer 2015; 4: 253-262 [PMID: 26734579 DOI: 10.1111/lac.12604]

Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y, Okusaka T, Miyayama S, Tsuchiya K, Uehara K, Hiraoka A, Ikeda M, Ogasawara S, Yamashita T, Minami T, Yamakado K. JSH Consensus-Based Clinical Practice Guidelines for the Management of Hepatocellular Carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer 2014; 3: 458-468 [PMID: 26280007 DOI: 10.1111/ljca.1234875]

Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A, Paik SW, Reig M, Kim DY, Chau GY, Luna A, de Arbel L, Lederer MA, Niw N, Nicholson K, Meinhardt G, Bruix J. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J Hepatol 2016; 64: 1090-1098 [PMID: 26809111 DOI: 10.1016/j.jhep.2016.01.012]

Kudo M, Imanaka K, Chida N, Nakachi K, Tak WY, Takayama T, Yoon JH, Hori T, Kumada H, Hayashi N, Kaneko S, Tsuouchi H, Sun JH, Furuse J, Okusaka T, Tanaka K, Matsui O, Wada M, Yamaguchi I, Ohya T, Meinhardt G, Okita K. Phase III study of sorafenib after transarterial chemoembolization in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer 2011; 47: 2117-2127 [PMID: 21664811 DOI: 10.1016/j.ejca.2011.05.007]

Aktas G, Kus T, Emin Kalender M, Kervancioglu S, Sevine A, Kal S, Cemic S. Sorafenib with TACE improves the survival of hepatocellular carcinoma patients with more than 10 cm tumor: a single-center retrospective study. J BUON 2017; 22: 150-156 [PMID: 28365948]
Varghese J, Kedarisetty C, Venkataraman J, Srinivasan V, Deepashree T, Uthappa M, Ilankumaran K, Govil S, Reddy M, Reha M. Combination of TACE and Sorafenib Improves Outcomes in BCLC Stages B/C of Hepatocellular Carcinoma: A Single Centre Experience. Ann Hepatol 2017; 16: 247-254 [PMID: 28233748 DOI: 10.5064/16656281.12315583]

Zhang X, Wang K, Wang M, Yang G, Ye X, Wu M, Cheng S. Transarterial chemoembolization (TACE) combined with sorafenib versus TACE for hepatocellular carcinoma with portal vein tumor thrombus: a systematic review and meta-analysis. Oncotarget 2017; 8: 29416-29427 [PMID: 26177886 DOI: 10.18632/oncotarget.15075]

Kim JW, Lee JO, Han SW, Oh DY, Im SA, Kim TY, Bang YJ. Clinical outcomes of sorafenib treatment in patients with metastatic hepatocellular carcinoma who had been previously treated with fluoropyrimidine plus platinum-based chemotherapy. Am J Clin Oncol 2011; 34: 125-129 [PMID: 20308869 DOI: 10.1097/COC.0b013e318d31ed42]

Vivarelli M, Montalti R, Risaliti A. Multimodal treatment of hepatocellular carcinoma on cirrhosis: an update. World J Gastroenterol 2013; 19: 7316-7326 [PMID: 24259963 DOI: 10.3748/wjg.v19.i42.7316]

Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, Hsa CH, Hu TH, Heo J, Xu J, Lu L, Chao Y, Boucher E, Han KH, Paik SW, Robles-Aviña J, Kudo M, Yan L, Sobohnslidus A, Komov D, Decaes T, Tak WY, Jeng LB, Liu D, Ezzedine R, Walters I, Cheng AL. Brivanib versus sorafenib as first-line therapy in patients with unresectable hepatocellular carcinoma: results from the randomized phase III BRISK-PS study. J Clin Oncol 2013; 31: 3517-3524 [PMID: 23980084 DOI: 10.1200/JCO.2012.45.8372]

Kudo M, Han G, Finn RS, Poon RT, Blanc JF, Yan L, Yang J, Lu L, Tak WY, Yu X, Lee JH, Lim SN, Wu C, Tanwande T, Shao G, Walters IB, Dela Cruz C, Poulart V, Wang JH. Brivanib as adjutant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: A randomized phase III trial. Hepatology 2014; 60: 1697-1707 [PMID: 24969167 DOI: 10.1002/hep.27290]

Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, Chung HC, Song X, Xu J, Poggi G, Omaita M, Pitman Lowenthal S, Lanzanelli X, Sun L, Lechugun MJ, Raymond E. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 2013; 31: 4067-4075 [PMID: 24081937 DOI: 10.1200/JCO.2012.45.8372]

Kudoh M, Han G, Finn RS, Poon RT, Blanc JF, Yan L, Yang J, Lu L, Tak WY, Yu X, Lee JH, Lim SN, Wu C, Tanwande T, Shao G, Walters IB, Dela Cruz C, Poulart V, Wang JH. Brivanib as adjutant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: A randomized phase III trial. Hepatology 2014; 60: 1697-1707 [PMID: 24969167 DOI: 10.1002/hep.27290]

Zhu AX, Qin M, Assenat E, Cattan S, Kang YK, Lim HY, Park JW, Kudo M, Qin S, Chung I, Pan H, Cheng Y, Kudo M, Tang G, Heo J, Chen CY, Park JO, Yen CJ, Poon RTP. A phase I/II study of foretinib, an oral c-Met inhibitor MSC2156119J as monotherapy versus sorafenib in Asian patients with unresectable hepatocellular carcinoma. J Clin Cancer Res 2014; 20: 5976-5985 [PMID: 25294897 DOI: 10.1158/1078-0432.CCR-13-3445]

Yau T, Sukipepaiprajaroen W, Chao Y, Yen CJ, Lausoontornsiri W, Chen PJ, Sanpaij J, Tencioni R, Camp AP, Cox DS, Kallender H, Ottesen LH, Poon RTP. Transarterial chemoembolization as monotherapy versus sorafenib in Asian patients with unresectable hepatocellular carcinoma. Clin Cancer Res 2014; 20: 5976-5985 [PMID: 25294897 DOI: 10.1158/1078-0432.CCR-13-3445]

Le Grazie M et al. Current options of chemotherapy for HCC
and oxaliplatin chemotherapy for advanced hepatocellular carcinoma after failure of anti-angiogenic therapies. *Invest New Drugs* 2014; 32: 1028-1035 [PMID: 24748335 DOI: 10.1007/s10637-014-0100-y]

59. Boige V, Raoul JL, Pignon JP, Bouché O, Blanc JF, Dahan L, Jouve JL, Dupouy N, Ducrœux M. Multicentre phase II trial of caboplatin plus oxaliplatin (XELOX) in patients with advanced hepatocellular carcinoma: FCDO 03-03 trial. *Br J Cancer* 2007; 97: 862-867 [PMID: 17876335 DOI: 10.1038/sj.bjc.6603596]

60. Chia WK, Ong S, Toh HC, Hee SW, Choi SP, Poon DYT, Tay MH, Tan CK, Koo WH, Foo FK. Phase II trial of gemcitabine in combination with cisplatin in inoperable or advanced hepatocellular carcinoma. *Ann Acad Med Singapore* 2008; 37: 554-558 [PMID: 18695766]

61. Lee JO, Lee KW, Oh DY, Kim JH, Im SA, Kim TY, Bang YJ. Combination chemotherapy with capecitabine and cisplatin for patients with metastatic hepatocellular carcinoma. *Ann Oncol* 2009; 20: 1402-1407 [PMID: 19502532 DOI: 10.1093/annonc/mdp010]

62. Petrelli F, Coinu A, Borgonovo K, Cabiddu M, Gliardi L, Monati V, Barnini S. Oxaliplatin-based chemotherapy: a new option in advanced hepatocellular carcinoma, a systematic review and pooled analysis. *Clin Oncol* (R Coll Radiol) 2014; 26: 488-496 [PMID: 24856442 DOI: 10.1016/j.clon.2014.04.031]

63. Lee S, Yoon SH, Park JY, Kim DY, Ahn SH, Han KH, Choi HJ. Sorafenib versus cytotoxic chemotherapy for patients with advanced hepatocellular carcinoma: a retrospective, single-institution study. *Invest New Drugs* 2012; 30: 1150-1157 [PMID: 21249514 DOI: 10.1007/s10637-011-9634-4]

64. Abou-Alfa GK, Johnson P, Knox JJ, Capannu M, Davidenko I, Lacava J, Leung T, Gansukh B, Salz LB. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. *JAMA* 2010; 304: 2154-2160 [PMID: 20187128 DOI: 10.1001/jama.2010.1672]

65. Assenat E, Boige V, Thézézas S, Pageaux GP, Peron JM, Becquain Y, Dahan L, Merle P, Blanc HF, Bouché O, Ramdani M, Mazzar T, Blicse JP, Yehou JK. Sorafenib alone versus sorafenib combined with gemcitabine and oxaliplatin (GEMOX) in first-line treatment of advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance). *J Clin Oncol* 2016; 34 (Suppl 4): abstract 192

66. Assenat E, Boige V, Thézézas S, Pageaux GP, Peron JM, Becquain Y, Dahan L, Merle P, Blanc HF, Bouché O, Ramdani M, Mazzar T, Blicse JP, Yehou JK. Sorafenib alone versus sorafenib combined with gemcitabine and oxaliplatin (GEMOX) in first-line treatment of advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance). *J Clin Oncol* 2016; 34 (Suppl 4): abstract 192

67. Qin S, Bai Y, Lim HY, Tongprasert S, Chao Y, Fan J, Yang TS, Wu M, Liu Y, Yue H, Xi S, Fang N, Ma N, Li K, Qiao L, Wang J. First-line gemcitabine and oxaliplatin (GEMOX) plus sorafenib, followed by sorafenib as maintenance therapy, for patients with advanced hepatocellular carcinoma: a preliminary study. *Int J Clin Oncol* 2015; 20: 952-959 [PMID: 25712158 DOI: 10.1007/s10147-015-0796-5]

68. Yau T, Cheung FY, Lee F, Choi SP, Wong H, Toh HC, Leung AK, Chan P, Yau TK, Wong J, Tang YE, Lau SMI, Cheung TT, Fan ST, Poon RTP. A multi-center phase II study of sorafenib, Capcitabine and oxaliplatin (SECOX) in patients with advanced hepatocellular carcinoma: Final results of Hong Kong-Singapore Hepatocellular Carcinoma Research Collaborative Group Study. *J Clin Oncol* 2013; 31 (Suppl 4): abstract 4117

69. Yoshikawa M, Ono N, Yodono H, Ichida T, Nakamura H. Phase II study of hepatic arterial infusion of a fine-powder formulation of cisplatin (INP) for advanced hepatocellular carcinoma. *Hepatol Res* 2008; 38: 474-483 [PMID: 18450093 DOI: 10.1111/j.1872-2304.2008.00338.x]

70. Ikeeda M, Shimizu S, Sato T, Morimoto M, Inaba Y, Kojima Y, Higahira A, Kudo M, Nakamori S, Kaneko S, Sugimoto R, Tahara T, Ohmura T, Yasui K, Sato K, Ishii H, Furuse J, Okusaka T. Sorafenib plus intra-arterial cisplatin versus sorafenib alone in patients with advanced hepatocellular carcinoma: a randomized phase II trial. *J Clin Oncol* 2015; 33 (Suppl 4): abstr 4076
Kudo M, Ueshima K, Yokosuka O, S Obi, N Isumi, H Aikata, H Nagano, E Hatano, Y Sasaki, K Hino, T Kumada, K Yamamoto, Y Imay, S Swadou, C Ogawa, T Okusaka, Y Arai, F Kanai, K Akazawa, and SIJUS Study Group. Prospective randomized controlled phase III trial comparing the efficacy of sorafenib versus sorafenib in combination with low-dose cisplatin/fluorouracil hepatic infusion chemotherapy in patients with advanced hepatocellular carcinoma. J Hepatol 2016; 64 (suppl 2): abstr LB04

Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 2013; 13: 5 [PMID: 23390376 DOI: 10.4161/cvim.23390376]

Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20: 5064-5074 [PMID: 24714771 DOI: 10.1186/1078-0432.CCR-13-3271]

Sangro B, Gomez-Martín C, de la Mata M, Villarraga A, Garralda E, Barrera P, Riezu-Boj JL, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Pérez-Gracia JL, Melero I, Prieto J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59: 81-88 [PMID: 23466307 DOI: 10.1016/j.jhep.2013.02.022]

Duffy AG, Makarova-Rusher OV, Kerkar SP, Kleiner DF, Fioravanti S, Walker M, Carey S, Figg WD, Steinberg SM, Anderson V, Abi-jadoudh N, Levi E, Wood BJ, Goret TF. A pilot study of tremelimumab – a monoclonal antibody against CTLA-4 – in combination with either transcatheater arterial chemoembolization (TACE) or radiofrequency ablation (RFA) in patients with hepatocellular carcinoma (HCC). J Clin Oncol 2015; 33 (Suppl 15): abstract 4081

El-Khouciry AB, Melero I, Crocenzis TS, Welling III TH, Yau T, Yeow Y, Chopra A, Grosso JF, Lang L, Anderson J, dela Cruz C, Sangro B. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC); CA209-040.

Zang L, Ge C, Zhao F, Zhang Y, Wang X, Yao M, Li J. NRBP2 promotes hepatocellular carcinoma cell invasion through a unique PRF-A3 suppresses tumorigenicity and chemoresistance in hepatocellular carcinoma cells. Cancer Lett 2016; 383: 171-182 [PMID: 27702661 DOI: 10.1016/j.canlet.2016.09.033]

Liao PH, Hsu HH, Chen TS, Chen MC, Day CH, Tu CC, Lin YM, Tsai FJ, Kuo WW, Huang CY. Phosphorylation of c-Kit by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury. Oncogene 2017; 36: 1978-1986 [PMID: 27748761 DOI: 10.1038/onc.2016.337]

Chow RK, Sin ST, Liu M, Li Y, Chan TH, Song Y, Chen L, Kwong DL, Guan XY. AKR7A3 suppresses tumorigenicity of Hepatocellular carcinoma cells. J Hepatol 2016; 64: 1002-1011 [PMID: 27744455 DOI: 10.1016/j.jhep.2016.08.028]

Seol HS, Lee SE, Song JS, Lee HY, Park S, Kim I, Singh SR, Chang S, Jang SJ. Glutamate release inhibitor, Riluzole, inhibited proliferation of human hepatocellular carcinoma cells by inhibiting ATP production. Gene Exp 2017; 12: 129-140 [PMID: 27938509 DOI: 10.1016/j.aseantsci.6b00197]

Huang Q, Chen H, Ren Y, Wang Z, Zeng P, Li X, Wang J, Zhang X. Anti-hepatocellular carcinoma activity and mechanism of chemopreventive compounds: ursolic acid derivatives. Pharm Biol 2016; 54: 3189-3196 [PMID: 27564455 DOI: 10.1080/13880209.2016.1214742]

Zhao JA, Sang MX, Geng CZ, Wang SJ, Shan BE. A novel curcumin analogue is a potent chemotherapy candidate for human hepatocellular carcinoma. Oncol Lett 2016; 12: 4252-4262 [PMID: 27895800 DOI: 10.3892/ol.2016.5126]

Wu L, Feng H, Hu J, Tian X, Zhang C. Valproic acid (VPA) promotes the epithelial mesenchymal transition of hepatocarcinoma cells via transcriptional and post-transcriptional up regulation.
Le Grazie M et al. Current options of chemotherapy for HCC

of Snail. *Biomed Pharmacother* 2016; **84**: 1029-1035 [PMID: 27768928 DOI: 10.1016/j.biopha.2016.10.023]

106 Izzo F, Marra P, Beneduce G, Castello G, Vallone P, De Rosa V, Cremona F, Ensoor CM, Holtsborg FW, Bonalowski JS, Clark MA, Ng C, Curley SA. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. *J Clin Oncol* 2004; **22**: 1815-1822 [PMID: 15143074 DOI: 10.1200/JCO.2004.11.120]

107 Yang TS, Lu SN, Chao Y, Sheen IS, Lin CC, Wang TE, Chen SC, Wang JH, Liao LY, Thomson JA, Wang-Peng J, Chen PJ, Chen LT. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. *Br J Cancer* 2010; **103**: 954-960 [PMID: 20808369 DOI: 10.1038/sj.bjc.6605856]

108 Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, Cho M, Lim HY, Chung HC, Kim CW, Burke J, Lencioni R, Hickman T, Moon A, Lee YS, Kim MK, Daneshmand M, Dubois K, Longpre L, Ngo M, Rooney C, Bell JC, Rhee BG, Patt R, Hwang TH, Kern DH. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. *Nat Med* 2013; **19**: 329-336 [PMID: 23396206 DOI: 10.1038/nm.3089]

109 Rao CV, Asch AS, Yamada HY. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. *Carcinogenesis* 2017; **38**: 2-11 [PMID: 27838634 DOI: 10.1093/carcin/bgw118]

110 Ramesh V, Selvarasu K, Pandian J, Myilsamy S, Shanmugasundaram C, Ganasekaran K. NFκB activation demarcates a subset of hepatocellular carcinoma patients for targeted therapy. *Cell Oncol* (Dordr) 2016; **39**: 523-536 [PMID: 27562587 DOI: 10.1007/s13402-016-0294-4]

111 Chen JC, Chuang HY, Hsu FT, Chen YC, Chien YC, Hwang JJ. Sorafenib pretreatment enhances radiotherapy through targeting MEK/ERK/NF-κB pathway in human hepatocellular carcinoma-bearing mouse model. * Oncotarget* 2016; **7**: 85450-85463 [PMID: 27863427 DOI: 10.18632/oncotarget.13398]

112 Picariello L, Grappone C, Polvani S, Galli A. Telomerase activity: An attractive target for cancer therapy. *World J Pharmacol* 2014; **3**: 86-96 [DOI: 10.5497/wjp.v3.i4.86]

113 Tarocchi M, Polvani S, Peired AJ, Marroncini G, Calamante M, Ceni E, Rhodes D, Mello T, Pirracchi G, Quattrone A, Luchinat C, Galli A. Telomerase activated thymidine analogue pro-drug is a new molecule targeting hepatocellular carcinoma. *J Hepatol* 2014; **61**: 1064-1072 [PMID: 24862448 DOI: 10.1016/j.jhep.2014.05.027]

114 Lin YT, Liu YC, Chao CC. Inhibition of JNK and prothymosin-alpha sensitizes hepatocellular carcinoma cells to cisplatin. *Biochem Pharmacol* 2016; **122**: 80-89 [PMID: 27751820 DOI: 10.1016/j.bcp.2016.10.003]

115 Wu SM, Lin SL, Lee KY, Chuang HC, Feng PH, Cheng WL, Liao CI, Chi HC, Lin YH, Tsai CY, Chen WI, Yeh CT, Lin KH. Hepatoma cell functions modulated by NEK2 are associated with liver cancer progression. *Int J Cancer* 2017; **140**: 1581-1596 [PMID: 27925179 DOI: 10.1002/ijc.30559]

116 Zhang H, Wang F, Hu Y. STARD13 promotes hepatocellular carcinoma apoptosis by acting as a ceRNA for Fas. *Biotechnol Lett* 2017; **39**: 207-217 [PMID: 27844181 DOI: 10.1007/s10-529-016-2253-6]

P- Reviewer: Wang SK, Zhang Q S- Editor: Ji FF L- Editor: A E- Editor: Wu HL
