Kinetic Control over Self-Assembly of Semiconductor Nanoplatelets

Rebecca Momper, Heng Zhang, Shuai Chen, Henry Halim, Ewald Johannes, Stoyan Yordanov, Daniele Braga, Balthasar Blülle, David Doblas, Tobias Kraus, Mischa Bonn, Hai I. Wang, and Andreas Riedinger*

ABSTRACT: Semiconductor nanoplatelets exhibit spectrally pure, directional fluorescence. To make polarized light emission accessible and the charge transport effective, nanoplatelets have to be collectively oriented in the solid state. We discovered that the collective nanoplatelets orientation in monolayers can be controlled kinetically by exploiting the solvent evaporation rate in self-assembly at liquid interfaces. Our method avoids insulating additives such as surfactants, making it ideally suited for optoelectronics. The monolayer films with controlled nanoplatelets orientation (edge-up or face-down) exhibit long-range ordering of transition dipole moments and macroscopically polarized light emission. Furthermore, we unveil that the substantial in-plane electronic coupling between nanoplatelets enables charge transport through a single nanoplatelets monolayer, with an efficiency that strongly depends on the orientation of the nanoplatelets. The ability to kinetically control the assembly of nanoplatelets into ordered monolayers with tunable optical and electronic properties paves the way for new applications in optoelectronic devices.

KEYWORDS: Semiconductor nanoplatelets, self-assembly, orientation control, angle-dependent photoluminescence spectroscopy, terahertz spectroscopy

Quasi-two-dimensional semiconductor nanoplatelets (NPLs) are atomically flat sheets of semiconductor materials.1–6 Across their thickness, NPLs are much smaller than the Bohr radius, while in their lateral dimensions they are much larger. Their limited thickness induces strong one-dimensional quantum confinement, leading to a highly anisotropic electronic structure.7,8 Since the thickness of NPLs can be controlled with atomic precision, they exhibit outstandingly narrow ensemble absorption and emission bands.4,8,9 Due to their anisotropic shape, they exhibit high absorption cross sections,10,11 enhanced energy-transfer rates,12 boosted optical gain,13 and show strong anisotropic light emission.14–16 These properties make NPLs ideal candidates for light-emitting devices,17 field-effect transistors,18 solar cells,12 and lasers.19 Here, the overall device efficiency critically depends on the electronic coupling between nanocrystals and thus on the orientation of the transition dipole moments between adjacent nanocrystals in a solid-state film. For isotropic nanocrystals (e.g., quantum dots), aligning the transition dipole moments is a challenging task, because their isotropic shape leads to a stochastic distribution of transition dipole moment orientations.7 However, in highly anisotropic NPLs, the transition dipole moments are aligned in the NPL plane.7,20 As a consequence, ordered NPL assemblies directly result in ordered transition dipole moment orientations, paving the way for improved optoelectronic and photonic device performances.21 Thus, controlling the orientation of NPLs in solid-state is of utmost importance.

Colloidal self-assembly is a powerful tool to control the orientation of building blocks in highly ordered, functional materials.22–26 In solution, CdSe NPLs can be assembled into ordered superstructures such as long stacks by the addition of polar solvents,14,27 ligand exchange,28 or induced depletion attraction forces.29,30 These approaches make use of additives to tune the thermodynamics, that is, the interaction potentials between NPLs, inducing, for example, preferential interactions between the large, planar faces of NPLs. The formation of films has been investigated as well.7,15 The collective orientation of anisotropic nanorods in films can be controlled31 by controlling the thermodynamics during the self-assembly at liquid–air interfaces.32 The Tisdale group has used this method to prepare highly ordered NPL monolayers by self-

Received: December 23, 2019
Revised: March 6, 2020
Published: March 12, 2020
assembly to emerge. These observations indicate that the use of such additives prevents efficient charge transport through the NPL layer. Thus, methods that avoid such insulating additives are highly desirable.

We discovered a mechanism by which the collective NPLs orientation at liquid–liquid interfaces can be controlled kinetically through the evaporation rate of solvents. This allows us to avoid nonvolatile, insulating additives. Both face-down and edge-up NPL assemblies were analyzed by angle-dependent photoluminescence (PL) and terahertz (THz) spectroscopy to study the orientation-dependent collective dipole orientation and the photocconductivity, respectively, of these films. We find that both the edge-up and the face-down assemblies preserve their orientation over an area of at least ~5 mm², with an in-plane isotropic dipole distribution for the face-down configuration and an out-of-plane anisotropic dipole distribution for the edge-up configuration, giving rise to macroscopic linearly polarized emission. Our THz spectroscopy experiments reveal that, whereas only excitons are present in isolated NPLs in dispersion, free carriers are observed in the self-assembled films, with limited photocconductivity in the face-down orientation, but remarkably higher photocconductivity in a single layer of NPLs in the edge-up configuration. We thus demonstrate here the ability to collectively orient highly anisotropic nanocrystals at interfaces by an intriguingly simple and effective method, with record long-range order of transition dipole moments and strongly orientation-dependent optical properties and charge mobilities. This previously unknown kinetic self-assembly mechanism of anisotropic nanocrystals opens up new avenues for the orientation of nanocrystals.

Results. Additive-Free Self-Assembly of NPLs. Gao et al. could control the NPL orientation thermodynamically by adding oleic acid to the diethylene glycol subphase. Oleic acid acts as a surfactant and alters the interaction potential between the large planar, myristate-passivated facets of the NPLs and the diethylene glycol interface in a concentration-dependent manner. A large amount of oleic acid increases the interaction potential between the NPL and the diethylene glycol interface leading to face-down assemblies. Without or with just a small amount of oleic acid, the inter-NPLs interaction potential is higher, allowing for the edge-up assembly to emerge. These observations indicate that the NPLs’ orientation in a dense monolayer film can be controlled by simply tuning the interaction potential between the NPLs and the liquid subphase.

If this holds, we should be able to obtain NPLs in the face-down configuration by increasing the interaction potential between the NPLs and the subphase at the other liquid–liquid interfaces. Varying the interaction potential does not necessarily require surfactants. The choice of the subphase solvent alone can already change the interaction potential significantly. To test this hypothesis, we used a modified design of the Teflon well of Gao et al. (Figure S1). We replaced diethylene glycol by acetonitrile as subphase and added 4 monolayers (ML) thick CdSe NPLs dispersed in hexane on top. We chose acetonitrile for several reasons. First, it is more volatile than diethylene glycol, making it easier to remove completely when the monolayers are deposited on substrates. Second, it has a significantly lower polarity index compared to diethylene glycol (0.460 compared to 0.713). This matching of polarities explains the increased solubility of the myristate ligand in acetonitrile compared to diethylene glycol. Therefore, the interaction potential between the flat, nonpolar, myristate-passivated NPL surfaces and the liquid interface should be significantly greater for acetonitrile than for diethylene glycol, as already demonstrate by Erdem et al. Thus, with acetonitrile as the subphase, we expect to observe the face-down configuration. Indeed, we observed that NPLs assembled face-down when we deposited a hexane NPL dispersion on the acetonitrile subphase and let the hexane evaporate at 20 °C (Figure 2). While this experiment supports our hypothesis that the NPL assembly configuration indeed depends on the interaction potential between the NPLs and the liquid interface, the purity of the NPL dispersion was limited, with an extremely critical (Figure 2). NPL samples containing octadecene (ODE, the solvent used in NPL syntheses, Figure S3) in the millimolar regime and of oleic acid in the micromolar regime (used to quench the synthesis; oleic acid could contribute to the ligand shell, see Figure S4) resulted in the edge-up configuration (Figure 2) and only painstakingly purified samples (see SI and Figures S3 and S4) that contained no measurable amount of ODE (or oleic acid) reliably deposited in the face-down configuration (Figures 2 and S5). All further experiments were performed using ODE-free samples.

A part of the effect of ODE may be attributable to its activity as depletion agent in the hexane NPL dispersion, which induces stacking and ultimately leads to discontinuous NPL films in the edge-up configuration (Figure 2). Probably more important, however, is its effect on the kinetics. Kinetic limitations are known to strongly affect particle assembly; they can limit the process and prevail over small differences in interparticle potential. Here, some time is required for the platelets to form stacks; if evaporation is rapid, the time is...
sufficient for the stacks to reach a length that stabilizes the edge-up configuration. The low vapor pressure of ODE implies that it accumulates to build up a significant concentration upon the hexane evaporation. Therefore, even a small amount will reduce the evaporation rate of the hexane NPL dispersion. Our experiments indicate that fast evaporation without ODE leads to face-down configurations, while slow evaporation with ODE yields edge-up assembly. If the orientation of NPLs in self-assembled thin films critically depends on the evaporation rate of the solvent, an entirely new and generalizable way to control the collective orientation of NPLs in thin films opens up. However, modifying the evaporation rate by controlling the purity of NPL dispersion precisely is cumbersome. Therefore, we investigate alternative routes that do not rely on impurities such as ODE. Below we show how the collective orientation of NPLs can be kinetically driven and controlled by the solvent vapor pressure in the atmosphere above the self-assembly setup, by choice of the solvent the NPLs are dispersed in, or the temperature at which the assembly is performed.

Kinetically Driven Self-Assembly of NPLs. A straightforward way to modify the solvent evaporation rates is to control its partial pressure above the solution. This ensures that only the evaporation rate is modified and entropic effects, changes in viscosity or chemical effects (e.g., from impurities), can be neglected. To exploit this for our self-assembly experiments, we constructed a setup allowing us to control the alkane vapor content in the atmosphere of a closed system containing our self-assembly well (Figure S2). With high alkane vapor content in the atmosphere, the evaporation rate of the alkane NPL dispersion is reduced. Under these conditions, the NPLs have more time to assemble and form stacks that are long enough to sustain the edge-up configuration. Indeed, self-assembly experiments with heptane NPL dispersions performed with a high content of heptane vapor in the atmosphere reliably yielded edge-up assemblies (Figure S6). The self-assemblies performed under pure airflow (high evaporation rate) resulted in the face-down configuration instead (Figure S6). This experiment proves unambiguously that the collective orientation of NPLs in self-assemblies can be controlled using solely the solvent evaporation rate. However, to generalize this concept, we investigated ways to systematically change the evaporation rate using a simpler setup.

To do this, we performed a series of NPL self-assembly experiments on acetonitrile interfaces at 20 °C under ambient conditions, where we systematically controlled the vapor pressure (and thus the evaporation rate) by changing the NPL solvent from hexane, to heptane, to octane, keeping all other parameters constant. We observed distinct differences in NPL orientations depending on the type of solvent we used (Figure 3a). For NPLs deposited from hexane, NPLs assemble in the face-down configuration, and when deposited from octane, NPLs assembled in the edge-up configuration. Deposition from heptane resulted in a mix of face-down and edge-up configuration. Since the vapor pressure (at 20 °C) decreases rapidly from hexane (162 hPa), heptane (47 hPa), and octane (14 hPa), the measured evaporation rate decreased accordingly (Figure S7), and the time for deposition and organization at the acetonitrile interface systematically increased (Table S2). Therefore, the collective NPL orientation can be controlled kinetically by adjusting the evaporation rate through the choice of solvent. To generalize this further, we varied the evaporation rate by changing the temperature at which the self-assembly is performed.

By decreasing the temperature, the evaporation rate of the NPL dispersion was reduced. Thus, the time which the system had to self-assemble was prolonged, and the edge-up configurations should be facilitated. To test this hypothesis, we repeated the experiments shown in Figure 3a at 5 °C. Indeed, we observed that reducing the temperature leads exclusively to the edge-up configuration for both octane and heptane (Figure 3b). For hexane, mixed assemblies with both edge-up and face-down configurations were formed. Since at 5 °C, the alkanes evaporate at a lower rate (Table S3), and the NPLs have more time to arrange, favoring edge-up configurations. Notably, the evaporation rate decreases quickly with temperature due to the exponential relationship between temperature and partial pressure, while the diffusivity only decreases linearly with temperature. These data furthermore strengthen our interpretations that the evaporation rate of the solvents, and thus the time the system has to equilibrate, ultimately determines the orientation of NPLs in the self-assemblies.

Mechanism of Kinetically Driven Self-Assemblies. To gain deeper insights into the process, we performed small-angle X-ray scattering (SAXS) experiments on hanging droplets of an evaporating NPL dispersion while concurrently measuring particle concentration. Similar to what has been observed for sterically stabilized gold nanocrystals, we found a rapid onset of agglomerative stacking, visible by the evolution of an anisotropic X-ray scattering pattern (Figure S8) when the NPL concentration exceeded a critical concentration of 4.3 μmol/L. This concentration was reached in the liquid film of our self-assembly process when the height of the NPL-containing alkane layer was ~3 μm thick (~0.5 μL). Thus,
agglomerative stacking can occur before the alkane fully evaporates, but it depends on the evaporation rate whether there is enough time for the particles to arrange (Figure S9, Table S4). The time that the system has until complete evaporation beyond this critical filling height (volume), therefore, determines the orientation of the NPLs in the film (Figure 4a, Table S5).

Our analysis of the distances between adjacent NPLs in the self-assembled films gave us some hints about the origin of the kinetically driven self-assembly mechanism. The distance between the NPLs in the assemblies (Figure S10 a-b) was significantly shorter in the edge-up configuration (2.5 ± 0.45 nm) than in the face-down configuration (2.9 ± 0.71 nm). Hence, in the edge-up configuration, the inter-NPL distance was significantly shorter than the expected distance of 3.4 nm between adjacent myristate-passivated NPLs. Thus, the NPLs ligand shells experienced a significant amount of interpenetration. This requires the rearrangement and intercalation of a large number of myristate molecules on the NPL surfaces. Adopting this energetically favorable conformation requires a certain amount of time.44 Our experiments conclusively show that slow evaporation of the NPL dispersion gives the system enough time to adopt the thermodynamically favored edge-up configuration. In contrast, upon fast evaporation, the NPLs become kinetically trapped by the quickly moving alkane solvent front45 and deposit in the face-down configuration at the acetonitrile interface. Thus, we are able to trap the transition from the face-down to the edge-up configuration at different states (fully face-down, fully edge-up, and anything in between). This means that we are not limited to one trapped state, but we can actually tune which fraction is in the face-down and edge-up configuration (Figure 3). Notably, NPLs adapted a well-defined collective orientation even when kinetically trapped by fast evaporation, which is in contrast to the glassy states obtained in previous works under similar conditions with nanorods.31 Thus, our self-assembly method yields a well-defined monolayer under kinetic and thermodynamic control. Both the edge-up and the face-down configurations were maintained even if the NPL concentration or the NPL dispersion volume was varied (Table S6 and Figures S11−S13), that is, even if the maximum possible surface coverage of NPLs was much lower than the total acetonitrile surface area. This further validates our proposed mechanism (Figure 4b).

Angle-Dependent PL of NPL Self-Assemblies. To assess the long-range order of our assemblies, we studied net transition dipole moment orientations by angle-dependent PL spectroscopy (spot size ~5 mm², see SI Scheme S1). Figure 5a shows the s and p radial intensity of the face-down assembly at detection angles ranging from −80° to 80° with respect to the...
substrate normal, and their respective fit curves obtained by optical simulations (see S1). The fitting indicates that on the face-down sample, the dipole orientation θ is preferentially parallel to the substrate plane ($\theta = 0.16$).

This proves that the in-plane arrangement of the platelets observed under the TEM is maintained at least over the area of the entire spot size (~5 mm2), highlighting the uniformity of the self-assembly. Note that the fit model assumes an in-plane isotropic orientation of the dipoles. This is the case for face-down samples as evidenced by the TEM Fourier transform analysis (Figure S14). On the other hand, the shape of the p-polarized curve of the edge-up assemblies (Figure 5b) differs from the face-down characteristics (Figure 5a), reflecting a different arrangement of the dipoles with respect to the face-down configuration. We can derive a dipole orientation of $\theta = 0.56$, indicating that dipoles are preferentially oriented perpendicular to the substrate normal. The discrepancy between experimental data and simulations for the edge-up assemblies stems from the preferential orientation of NPLs along a specific in-plane direction (direction of stacking), in line with our TEM Fourier analysis (Figure S14). This should give rise to macroscopically observable linear light polarization.

We investigated this by collecting the PL signals of face-down and edge-up assemblies at a fixed detection angle (0° with respect to the normal) and varying the in-plane polarization angle of the detector (Figure 5c). For the face-down assembly, no periodical variation of the signal was observed, as expected for isotopically distributed dipoles. In striking contrast, a periodical oscillation of the PL signal was found for the edge-up sample. Clearly, the preferential NPL stack orientation is maintained over the spot size area of ~5 mm2, resulting in the anisotropic in-plane PL signal. Thus, edge-up NPL films could have interesting applications in optoelectronics, such as the emerging field of polarized light-emitting diodes. To integrate confined nanomaterials into optoelectronic devices requires efficient electronic coupling between the building blocks, so that charge carriers can be efficiently extracted from (or injected into) the nanomaterials. Given the anisotropy of NPLs and their assemblies, we investigate the orientation-dependent photoconductivity of face-down and edge-up assemblies.

Photoconductivity of NPL Self-Assemblies. In principle, the coupling strength in NPL solids depends strongly on the degree of wave function overlap between neighboring NPLs: the shorter the NPL-NPL distance, the higher the electronic coupling. The inter-NPL distance in the edge-up (2.5 ± 0.45 nm) was shorter than in the face-down configuration (2.9 ± 0.71 nm, Figures S10 and S14). Along with the edge-to-edge distance, other parameters including the total NPL-NPL interaction area (larger for edge-up than for face-down) and the dipole−dipole interactions between NPLs play also critical roles on the inter-NPL coupling strength and thus charge transport dynamics in NPL samples. To investigate and compare the coupling strength between samples, we measured PL of NPLs in dispersion and in assemblies (on borosilicate glass substrates, self-assembly performed with octane at 5°C, overnight temperature equilibration of equipment). The edge-up and face-down assemblies both displayed broader PL spectra than NPLs in dispersion (Figure S15), illustrating the enhanced coupling strength in NPL assemblies. The edge-up samples showed slightly broader and red-shifted emission compared to the face-down case (Figure S15 and Table S7). This redshift was larger than that expected from the different dielectric environments in dispersion and particle assemblies on borosilicate and thus indicates stronger coupling between NPLs for the edge-up configuration.

To further investigate the role of coupling strength for charge transport properties, we measured the photoconductivity on well-defined NPL assemblies (for AFM micrographs with height profile see Figure S16), employing time-resolved, contact-free optical pump-THz probe (OPTP) spectroscopy: A well-established tool for characterizing the nature (exciton or free carrier) and transport properties of photogenerated charge carriers in bulk or low dimensional, quantum-confined semiconductors (see methods section and SI). Here, we compare the THz photoconductivity in three different samples: dispersed (isolated) NPLs in hexane and NPLs in the face-down and edge-up assemblies (Figure 5d–f). The signals are normalized to the absorbed photodensity (i.e., photogenerated electron−hole pairs) and can, therefore, be compared quantitatively. For isolated NPLs dispersed in hexane, the THz response is purely excitonic (Figure Sd), as evident from the purely imaginary THz photoconductivity. This observation of stable exciton states at room temperature in our NPLs indicates an intrinsically strong Coulomb interaction between photogenerated electrons and holes, leading to a large exciton binding energy E_b beyond the thermal fluctuation (~26 meV), in line with previous spectroscopic results (with $E_b \sim 170$ meV). For NPL...
assemblies, the electronic coupling between NPLs allows for charge transport to occur: Charge carriers in the assemblies are sufficiently mobile to give rise to a decent THz conductivity (Figure 5 e,f). Here we propose two plausible scenarios accounting for the free charge carrier generation in the assemblies: (1) in a more “compact” configuration, the charge carriers are screened better, resulting in a reduction of the exciton binding energy\(^50\) and thus an increase in the fraction of free charges. Note that a decrease in exciton binding energy is not necessarily evident from the PL.\(^51\) (2) With enhancing inter-NPL coupling strength (donor/acceptor wave function overlap), the inter-NPL charge transfer should increase. As a result, the efficiency of free charge generation by exciton dissociation is expected to increase, and free charge carriers can become delocalized. The THz photoconductivities in NPL samples (Figure 5d−f) agree well with these considerations: We observe a clear transition from pure excitonic response for isolated NPLs in dispersion to free charge carrier response in the edge-up sample as a result of enhanced NPL coupling (with the face-down as the intermediate situation). To support our experimental observations, we have further measured the frequency-resolved THz conductivity for NPLs dispersed in hexane and assembled in face-down and edge-up configurations. The solid (dashed) lines represent the real (imaginary) part of the complex conductivity.

Discussions and Conclusion. We discovered a method allowing for kinetic control over the collective orientation of NPLs in self-assembled monolayers. This simple and effective strategy opens up new ways to control the collective orientation of anisotropic, nanoscale building blocks in solid-
state superstructures, making their anisotropic and orientation-dependent properties accessible. By adjusting the evaporation rate of NPL dispersion, either by choice of solvent, temperature, or solvent partial pressure, NPL films in the face-down or edge-up configuration can be obtained. These assemblies show long-range order of the individual NPL transition dipole moments over at least ∼5 nm², with the edge-up assemblies possessing linearly polarized light emission due to the hierarchical stacking in the self-assembled monolayers. Therefore, these NPL assemblies could be useful to create novel optoelectronic devices, such as polarized light-emitting diodes by bottom-up approaches. Since our method does not rely on nonvolatile additives that could influence charge carrier transport, it is ideally suited for optoelectronic applications. Employing THz spectroscopy, we demonstrate a clear orientation-dependent photodconductivity in self-assembled NPL solids. We unveil that such dependence originates from the different inter-NPL electronic coupling strength. We observed a transition from the excitonic response originating from the di ffempled NPL solids. We unveil that such dependence originates from the different inter-NPL electronic coupling strength. We observed a transition from the excitonic response.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.9b05270. Methods, syntheses, purification protocols, additional analyses, and supporting data (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Andreas Riedinger − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany; orcid.org/0000-0002-7732-0606; Email: riedinger@mpip-mainz.mpg.de

Authors

Rebecca Monper − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
Heng Zhang − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany; orcid.org/0000-0002-5175-7367
Shuai Chen − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
Henry Halim − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
Ewald Johannes − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
Stoyan Yordanov − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
Daniele Braga − Fluxim AG, 8400 Winterthur, Switzerland
Balibasar Blüe − Fluxim AG, 8400 Winterthur, Switzerland
David Doblas − INM − Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
Tobias Kraus − INM − Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany; Colloid and Interface Chemistry, Saarland University, 66123 Saarbrücken, Germany; orcid.org/0000-0003-2951-1704
Mischa Bonn − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany; orcid.org/0000-0001-6851-8453
Hai I. Wang − Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany; orcid.org/0000-0003-0940-3984

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.9b05270

Author Contributions

R.M. and A.R. conceived the project. Synthesis, self-assembly, optical characterization, evaporation rate determination and microscopies were performed by R.M., H.H., E.J., and S.Y.

SAXS experiments and data analysis were done by D.D. and T.K. Angle-dependent PL measurements and fitting of the data were performed by D.B. and B.B. THz measurements and data analysis were done by H.Z., S.C., M.B., and H.I.W. R.M., B.B., H.I.W, and A.R. wrote the manuscript. All authors contributed to the discussion of the results and to the revision of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors are grateful for the financial support of the Max Planck Center for Complex Fluid Dynamics. H.H. was supported by a fellowship from the Max Planck Graduate Center (MPGC), Mainz, Germany. We thank Ingo Lieberwirth and Gunnar Glasser for help with electron microscopy and Shuai Fu for his contributions to the THz measurements. We thank Hans-Jürgen Butt and Michael Kappl for discussions and for their help with the partial pressure control setup. We thank Katharina Landfester, Markus Mezger, Enrique Canovas, Maksim Grechko, and Kaloian Koynov for the fruitful discussions.

■ ABBREVIATIONS

NPLs, quasi-two-dimensional semiconductor nanoplatelets; THz, terahertz; ML, monolayer; ODE, octadecene; SAXS, small-angle X-ray scattering; PL, photoluminescence; TEM, transmission electron microscope; OPTP, optical pump-THz probe

■ REFERENCES

(1) Liu, Y.-H.; Wang, F.; Wang, Y.; Gibbons, P. C.; Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 2011, 133 (42), 17005–17013.
(2) Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; Weller, H. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329 (5991), 550–553.
(3) Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128 (17), 5632–5633.
(4) Ithurria, S.; Dubertret, B. Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level. J. Am. Chem. Soc. 2008, 130 (49), 16504–16505.
(5) Ott, F. D.; Riedinger, A.; Ochseneinb, D. R.; Knüsel, P. N.; Erwin, S. C.; Mazzotti, M.; Norris, D. J. Ripening of Semiconductor Nanoplatelets. Nano Lett. 2017, 17 (11), 6870–6877.
(6) Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743.
(7) Scott, R.; Heckmann, J.; Prudnikau, A. V.; Antanovich, A.; Mikhailov, A.; Owschimikow, N.; Artemyev, M.; Climente, J. I.; Woggon, U.; Grosse, N. B.; Achtern, A. W. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 2017, 12, 1155.
Nano Letters
pubs.acs.org/NanoLett

1700361

Nano Today 2013, 8 (2), 138−167.

1700362

Nano Today 2013, 8 (2), 137−138.

1700363

Nano Today 2013, 8 (2), 132−134.

1700364

Nano Today 2013, 8 (2), 128−130.

1700365

Nano Today 2013, 8 (2), 124−126.

1700366

Nano Today 2013, 8 (2), 119−122.

1700367

Nano Today 2013, 8 (2), 113−116.

1700368

Nano Today 2013, 8 (2), 109−112.

1700369

Nano Today 2013, 8 (2), 100−104.

1700370

Nano Today 2013, 8 (2), 94−98.

1700371

Nano Today 2013, 8 (2), 86−90.

1700372

Nano Today 2013, 8 (2), 81−84.

1700373

Nano Today 2013, 8 (2), 74−77.

1700374

Nano Today 2013, 8 (2), 68−71.

1700375

Nano Today 2013, 8 (2), 63−66.

1700376

Nano Today 2013, 8 (2), 58−61.

1700377

Nano Today 2013, 8 (2), 53−56.

1700378

Nano Today 2013, 8 (2), 49−52.

1700379

Nano Today 2013, 8 (2), 44−47.

1700380

Nano Today 2013, 8 (2), 39−42.

1700381

Nano Today 2013, 8 (2), 34−36.

1700382

Nano Today 2013, 8 (2), 29−32.

1700383

Nano Today 2013, 8 (2), 24−26.

1700384

Nano Today 2013, 8 (2), 19−21.

1700385

Nano Today 2013, 8 (2), 14−17.

1700386

Nano Today 2013, 8 (2), 9−12.

1700387

Nano Today 2013, 8 (2), 4−7.

1700388

Nano Today 2013, 8 (2), 1−4.

1700389

Nano Today 2013, 8 (2), 1−4.

1700390

Nano Today 2013, 8 (2), 1−4.

1700391

Nano Today 2013, 8 (2), 1−4.

1700392

Nano Today 2013, 8 (2), 1−4.

1700393

Nano Today 2013, 8 (2), 1−4.

1700394

Nano Today 2013, 8 (2), 1−4.

1700395

Nano Today 2013, 8 (2), 1−4.

1700396

Nano Today 2013, 8 (2), 1−4.

1700397

Nano Today 2013, 8 (2), 1−4.

1700398

Nano Today 2013, 8 (2), 1−4.

1700399

Nano Today 2013, 8 (2), 1−4.

1700400

Nano Today 2013, 8 (2), 1−4.

1700401

Nano Today 2013, 8 (2), 1−4.

1700402

Nano Today 2013, 8 (2), 1−4.

1700403

Nano Today 2013, 8 (2), 1−4.

1700404

Nano Today 2013, 8 (2), 1−4.

1700405

Nano Today 2013, 8 (2), 1−4.

1700406

Nano Today 2013, 8 (2), 1−4.

1700407

Nano Today 2013, 8 (2), 1−4.

1700408

Nano Today 2013, 8 (2), 1−4.

1700409

Nano Today 2013, 8 (2), 1−4.

1700410

Nano Today 2013, 8 (2), 1−4.

1700411

Nano Today 2013, 8 (2), 1−4.

1700412

Nano Today 2013, 8 (2), 1−4.

1700413

Nano Today 2013, 8 (2), 1−4.

1700414

Nano Today 2013, 8 (2), 1−4.

1700415

Nano Today 2013, 8 (2), 1−4.

1700416

Nano Today 2013, 8 (2), 1−4.

1700417

Nano Today 2013, 8 (2), 1−4.

1700418

Nano Today 2013, 8 (2), 1−4.

1700419

Nano Today 2013, 8 (2), 1−4.

1700420

Nano Today 2013, 8 (2), 1−4.

1700421

Nano Today 2013, 8 (2), 1−4.

1700422

Nano Today 2013, 8 (2), 1−4.

1700423

Nano Today 2013, 8 (2), 1−4.

1700424

Nano Today 2013, 8 (2), 1−4.

1700425

Nano Today 2013, 8 (2), 1−4.

1700426

Nano Today 2013, 8 (2), 1−4.

1700427

Nano Today 2013, 8 (2), 1−4.

1700428

Nano Today 2013, 8 (2), 1−4.

1700429

Nano Today 2013, 8 (2), 1−4.

1700430

Nano Today 2013, 8 (2), 1−4.

1700431

Nano Today 2013, 8 (2), 1−4.

1700432

Nano Today 2013, 8 (2), 1−4.

1700433

Nano Today 2013, 8 (2), 1−4.

1700434

Nano Today 2013, 8 (2), 1−4.

1700435

Nano Today 2013, 8 (2), 1−4.

1700436

Nano Today 2013, 8 (2), 1−4.

1700437

Nano Today 2013, 8 (2), 1−4.

1700438

Nano Today 2013, 8 (2), 1−4.

1700439

Nano Today 2013, 8 (2), 1−4.

1700440

Nano Today 2013, 8 (2), 1−4.

1700441

Nano Today 2013, 8 (2), 1−4.

1700442

Nano Today 2013, 8 (2), 1−4.

1700443

Nano Today 2013, 8 (2), 1−4.

1700444

Nano Today 2013, 8 (2), 1−4.

1700445

Nano Today 2013, 8 (2), 1−4.

1700446

Nano Today 2013, 8 (2), 1−4.
(48) Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T. F.; Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 2011, 83 (2), 543–586.

(49) Scott, R.; Achtstein, A. W.; Prudnikau, A. V.; Antanovich, A.; Siebbeles, L. D. A.; Artemyev, M.; Woggon, U. Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates. Nano Lett. 2016, 16 (10), 6576–6583.

(50) Lin, Y.; Ling, X.; Yu, L.; Huang, S.; Hsu, A. L.; Lee, Y.-H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric Screening of Excitons and Trions in Single-Layer MoS2. Nano Lett. 2014, 14 (10), 5569–5576.

(51) Komsa, H.-P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS(S\(\text{\textsubscript{2}}\))\textsubscript{2} from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86 (24), 241201.

(52) Tries, A.; Osella, S.; Zhang, P.; Xu, F.; Kläui, M.; Mai, Y.; Beljonne, D.; Wang, H. I. Gigantic Binding Energy and Ultrafast Formation of Excitons in Graphene Nanoribbons. arXiv (Mesoscale and Nanoscale Physics), https://arxiv.org/abs/1911.04431 (accessed 2019-11-21).

(53) Kaindl, R. A.; Hägele, D.; Carnahan, M. A.; Chemla, D. S. Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79 (4), No. 045320.

(54) Chen, Z.; Wang, H. I.; Teyssandier, J.; Mali, K. S.; Dumslaff, T.; Ivanov, I.; Zhang, W.; Ruffieux, P.; Fasel, R.; Räder, H. J.; Turchinovich, D.; De Feyter, S.; Feng, X.; Kläui, M.; Narita, A.; Bonn, M.; Mullen, K. Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons. J. Am. Chem. Soc. 2017, 139 (10), 3635–3638.

(55) Hendry, E.; Schins, J. M.; Candeias, L. P.; Siebbeles, L. D. A.; Bonn, M. Efficiency of Exciton and Charge Carrier Photogeneration in a Semiconducting Polymer. Phys. Rev. Lett. 2004, 92 (19), 196601.

(56) Ivanov, I.; Hu, Y.; Osella, S.; Beser, U.; Wang, H. I.; Beljonne, D.; Narita, A.; Mülken, K.; Turchinovich, D.; Bonn, M. Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. J. Am. Chem. Soc. 2017, 139 (23), 7982–7988.