Chatrchyan, S., Barrass, T. A., Bostock, F. J. D., Brooke, J. J., Clement, E. J., Cussans, D. G., ... CMS Collaboration, T. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. *Physics Letters B*, *716*(1), 30-61. https://doi.org/10.1016/j.physletb.2012.08.021

Early version, also known as pre-print

Link to published version (if available):
10.1016/j.physletb.2012.08.021

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

The CMS Collaboration

Abstract

Results are presented from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb$^{-1}$ at 7 TeV and 5.3 fb$^{-1}$ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, WW, $\tau^+\tau^-$, and bb. An excess of events is observed above the expected background, a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of $125.3^{+0.4}_{-0.6}$ (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away.

In recognition of their many contributions to the achievement of this observation.

Submitted to Physics Letters B
1 Introduction

The standard model (SM) of elementary particles has provided a remarkably accurate description of results from many accelerator and non-accelerator based experiments. The SM comprises quarks and leptons as the building blocks of matter, and describes their interactions through the exchange of force carriers: the photon for electromagnetic interactions, the W and Z gauge bosons for weak interactions, and the gluons for strong interactions. The electromagnetic and weak interactions are unified in the electroweak theory. Although the predictions of the SM have been extensively confirmed, the question of how the W and Z gauge bosons acquire mass whilst the photon remains massless is still open.

Nearly fifty years ago it was proposed [1–6] that spontaneous symmetry breaking in gauge theories could be achieved through the introduction of a complex scalar doublet field. Applying this proposal to the electroweak theory [7–9] leads to the generation of the W and Z masses, and to the prediction of the existence of the SM Higgs boson (H). The scalar field also gives mass to the fundamental fermions through the Yukawa interaction. The mass m_H of the SM Higgs boson is not predicted by theory. However, general considerations [10–13] suggest $m_H < 152$ GeV at 95% confidence level (CL) [14]. Over the past twenty years, direct searches for the Higgs boson have been carried out at the LEP collider, leading to a lower bound of $m_H > 114.4$ GeV at 95% CL [15], and at the Tevatron proton-antiproton collider, excluding the mass range 162–166 GeV at 95% CL [16].

The discovery or exclusion of the SM Higgs boson is one of the primary scientific goals of the Large Hadron Collider (LHC). Previous direct searches at the LHC were based on data from proton-proton collisions corresponding to an integrated luminosity of $5 \, fb^{-1}$ collected at a centre-of-mass energy $\sqrt{s} = 7$ TeV. The CMS experiment excluded at 95% CL a range of masses from 127 to 600 GeV [17]. The ATLAS experiment excluded at 95% CL the ranges 114.4–116.6, 119.4–122.1 and 129.2–541 GeV [18]. Within the remaining allowed mass region, an excess of events near 125 GeV was reported by both experiments. In 2012 the proton-proton centre-of-mass energy was increased to 8 TeV and by the end of June an additional integrated luminosity of more than $5 \, fb^{-1}$ had been recorded by each of these experiments, thereby enhancing significantly the sensitivity of the search for the Higgs boson.

This paper reports the results of a search for the SM Higgs boson using samples collected by the CMS experiment, comprising data recorded at $\sqrt{s} = 7$ and 8 TeV. The search is performed in five decay modes, $H \rightarrow \gamma\gamma$, ZZ, WW, $\tau^+\tau^-$, and $b\bar{b}$, in the low-mass range from 110 up to 160 GeV. In this mass range the Higgs boson production cross section is predicted to range from 21 (27) to 12 (15) pb at $\sqrt{s} = 7 \, (8)$ TeV [19]. The natural width of the SM Higgs boson in this mass range is a few MeV and the width of any observed peak would be entirely dominated by instrumental mass resolution. In what follows, ℓ stands for electrons or muons, $H \rightarrow \tau^+\tau^-$ is denoted as $H \rightarrow \tau\tau$, $H \rightarrow b\bar{b}$ as $H \rightarrow bb$, etc. For the final states ZZ and WW in the low-mass region, one or more of the Z or W bosons is off mass shell.

With respect to the published analyses [20–24], most analyses have been re-optimized, incorporating improvements in reconstruction performance and event selection, and mitigating the more challenging conditions due to the higher LHC intensities in 2012. The new analyses presented herein, of 8 TeV samples, and of 7 TeV samples featuring modified event selection criteria, were performed in a "blind" way: the algorithms and selection procedures were formally approved and fixed before the results from data in the signal region were examined. In the previously published analyses similar but less formal procedures were followed.
The CMS experiment

The CMS experiment played a crucial role in the conceptual design of the CMS experiment as a benchmark to test the performance of the detector [25–27]. Since the SM Higgs boson mass is not predicted by theory and its production cross section and natural width vary widely over the allowed mass range, a search was envisaged over a large range of masses and in diverse decay modes: pairs of photons, Z bosons, W bosons, τ leptons, and b quarks. Planning in view of the analysis of all these channels ensured a detector capable of observing a Higgs boson over a broad mass range and able to detect most potential signals of new physics.

The central feature of the CMS apparatus [28] is a superconducting solenoid of 6 m internal diameter, which provides a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke. Extensive forward calorimeters complement the coverage provided by the barrel and endcap detectors.

Charged particles are tracked within the pseudorapidity range $|\eta| < 2.5$, where $\eta = -\ln|\tan(\theta/2)|$, and θ is the polar angle measured from the positive z axis (along the anticlockwise beam direction). The silicon pixel tracker comprises 66 million $100 \times 150 \mu$m2 pixels, arranged in three barrel layers and two endcap disks at each end. The silicon strip tracker, organized in ten barrel layers and twelve endcap disks at each end, comprises 9.3 million strips with pitch between 80 and 180 μm, with a total silicon surface area of 198 m2. The tracker has a track-finding efficiency larger than 99% for muons with transverse momentum, p_T, greater than 1 GeV, a transverse momentum resolution between 2 and 3% for charged tracks of $p_T \sim 100$ GeV in the central region ($|\eta| < 1.5$), and a very good b-jet-identification capability. Measurements of the impact parameters of charged tracks and secondary vertices are used to identify jets that are likely to contain the hadronisation and decay products of b quarks (“b jets”). A b-jet tagging efficiency of more than 50% is achieved with a rejection factor for light-quark jets of \sim200, as measured in $t\bar{t}$ events in data [29]. The dimuon mass resolution at the Υ mass, dominated by instrumental effects, is measured to be 0.6% in the barrel region [30], consistent with the design goal.

The ECAL is a fine-grained hermetic calorimeter consisting of 75 848 lead tungstate crystals, arranged in a quasi-projective geometry and distributed in a barrel region ($|\eta| < 1.48$) and two endcaps that extend up to $|\eta| = 3.0$. The front-face cross section of the crystals is 22×22 mm2 in the barrel region and 28.6×28.6 mm2 in the endcaps. Preshower detectors consisting of two planes of silicon sensors interleaved with a total of three radiation lengths of lead absorber are located in front of the endcaps. Electromagnetic showers are very narrow in lead tungstate (Molière radius of 21 mm), helping in particle identification and in the implementation of isolation criteria. In the central barrel region the energy resolution of electrons that do not radiate substantially in the tracker material indicates that the resolution of unconverted photons is...
consistent with design goals. For such photons the diphoton mass resolution is estimated to be 1.1 GeV at a mass of 125 GeV.

The HCAL barrel and endcaps are sampling calorimeters consisting of brass and scintillator plates, covering $|\eta| < 3.0$. Their thickness varies from 7 to 11 interaction lengths, depending on η; a scintillator “tail catcher” placed outside the coil of the solenoid, just in front of the innermost muon detector, extends the instrumented thickness to more than 10 interaction lengths everywhere. Iron forward calorimeters with quartz fibers, read out by photomultipliers, extend the calorimeter coverage up to $|\eta| = 5.0$.

Muons are measured in the range $|\eta| < 2.4$, with detection planes based on three technologies: drift tubes ($|\eta| < 1.2$), cathode strip chambers ($0.9 < |\eta| < 2.4$), and resistive plate chambers ($|\eta| < 1.6$). The first two technologies provide a precise position measurement and trigger whilst the third one provides precise timing information as well as a second and independent trigger. The muon system consists of four stations in the barrel and endcaps, designed to ensure robust triggering and detection of muons over a large angular range. In the barrel region each muon station consists of twelve drift-tube layers, except for the outermost station, which has eight layers. In the endcaps, each muon station consists of six detection planes. The precision of the r-ϕ measurement is 100 μm in the drift tubes and varies from 60 to 140 μm in the cathode strip chambers.

The CMS trigger and data acquisition systems ensure that potentially interesting events are recorded with high efficiency. The first level (L1) trigger, comprising the calorimeter, muon, and global trigger processors, uses coarse-granularity information to select the most interesting events in less than 4 μs. The detector data are pipelined to ensure negligible deadtime up to a L1 rate of 100 kHz. After L1 triggering, data are transferred from the readout electronics of all subdetectors, through the readout network, to the high-level-trigger processor farm, which operates offline-quality reconstruction algorithms to decrease the event rate to around 0.5 kHz, before data storage.

The CMS experiment employs a highly distributed computing infrastructure, with a primary Tier-0 centre at CERN, supplemented by seven Tier-1, more than 50 Tier-2, and many Tier-3 centres at national laboratories and universities throughout the world. The CMS software running on this high-performance computing system executes numerous tasks, including the reconstruction and analysis of the collected data, as well as the generation and detailed detector simulation of Monte Carlo (MC) event samples.

3 Event reconstruction

The CMS “particle-flow” event description algorithm [31, 32] is used to reconstruct and identify each single particle with an optimized combination of all subdetector information. In this process, the identification of the particle (photon, electron, muon, charged hadron, neutral hadron), plays an important role in the determination of the particle momentum. The reconstructed particles are henceforth referred to as objects.

Jets are reconstructed by clustering the particle-flow objects with the anti-k_T algorithm [33] using a distance parameter of 0.5. Additional selection criteria are applied to each event to remove spurious features originating from isolated noise patterns in certain HCAL regions, and from anomalous signals caused by particles depositing energy in the silicon avalanche photodiodes used in the ECAL barrel region. The average number of pp interactions per LHC bunch crossing is estimated to be about 9 and 19 in the 7 TeV (2011) and 8 TeV (2012) data sets,
respectively. Energy from overlapping pp interactions (“pileup”), and from the underlying event, is subtracted using the FASTJET technique [34–36], which is based on the calculation of the \(\eta \)-dependent transverse momentum density, evaluated on an event-by-event basis.

The jet momentum is determined as the vector sum of all particle momenta in the jet. Jet energy corrections are derived from simulation studies and from in situ measurements using the energy balance of dijet and \(Z/\gamma + \text{jet} \) events [37]. These corrections are between 5% and 10% of the true momentum over the whole \(\pT \) spectrum and detector acceptance. The jet momentum resolution achieved is \(\sigma(\pT)/\pT = 85%/\sqrt{\pT/\text{GeV}} \pm 4\% \) for central jets. A selection is applied to separate jets originating in the primary interaction from those due to energy deposits associated with pileup. The discrimination is based on the differences in the jet shapes, in the relative multiplicity of charged and neutral components, and in the fraction of transverse momentum carried by the hardest components. Within the tracker acceptance the jet tracks are also required to be consistent with originating at the primary vertex.

The missing transverse energy vector is taken as the negative vector sum of all particle transverse momenta, and its magnitude is referred to as \(E_{\text{miss}}^{\text{T}} \). The typical missing transverse energy resolution is around \(0.5\sqrt{\Sigma E_{\text{T}} \text{GeV}} \) [38], where \(\Sigma E_{\text{T}} \) is the scalar sum of all particle transverse momenta in GeV.

The energy deposited in the ECAL is clustered both with general clustering algorithms [39] and with algorithms that constrain the clusters in \(\eta \) and \(\phi \) to the shapes expected from electrons and photons with high \(\pT \) [40]. These specialised algorithms are used to cluster electromagnetic showers without any hypothesis regarding whether the particle originating from the interaction point was a photon or an electron; doing this for electrons from \(Z \rightarrow ee \) events provides a measurement of the photon trigger, reconstruction, and identification efficiencies, as well as of the photon energy scale and resolution. The width of the reconstructed \(Z \) resonance is used to quantify the performance of the ECAL, using decays to two electrons whose energies are measured using the ECAL alone, with only their directions being determined from the tracks. In the 7 TeV data set, the dielectron mass resolution at the \(Z \) boson mass is 1.56 GeV in the barrel and 2.57 GeV in the endcaps, while in the 8 TeV sample, reconstructed with preliminary calibration constants, the corresponding values are 1.61 and 3.75 GeV. For electrons, the reconstruction combines the clusters in the ECAL and the trajectory in the silicon tracker [41]. Trajectories in the tracker volume are reconstructed using a model of electron energy loss and fitted with a Gaussian sum filter [42]. The electron momentum is determined from the combination of ECAL and tracker measurements.

Muon candidates are reconstructed with two algorithms, one in which the tracks in the silicon detector are matched to segments in the muon chambers, and another in which a combined fit is performed to the signals found in both the silicon tracker and muon systems [39]. The efficiency to reconstruct a muon of \(\pT > 5 \) GeV is larger than 95%, while the probability to misidentify a hadron as a muon is below 0.1%. For \(\pT > 200 \) GeV the precision of the momentum measurement improves when the silicon tracker signals are complemented with the information from the muon chambers.

Selection based on isolation of lepton and photon objects is used extensively. The scalar sum of the transverse momenta of the particles reconstructed within a distance \(\Delta R \) of the object, sometimes normalised to the \(\pT \) of the object, is required to not exceed some value. The distance \(\Delta R \) is defined as \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \), where \(\Delta \eta \) and \(\Delta \phi \) are the pseudorapidity and azimuthal angle differences between the particle direction and the object direction. Typical values of \(\Delta R \) used are 0.3 or 0.4.
The measurement of the integrated luminosity in CMS is based on a pixel cluster counting method, which exploits the large number of silicon pixels, and hence their low occupancy in a pp collision [43]. The cross section normalisation is derived from van der Meer scans [44]. The uncertainties on the luminosity measurements are 2.2% and 4.4% for the 7 TeV and 8 TeV data sets, respectively.

4 Searches for the standard model Higgs boson

Initial phenomenological discussions of Higgs boson production and decay can be found in Refs. [45–52]. Four main mechanisms are predicted for Higgs boson production in pp collisions: the gluon-gluon fusion mechanism, which has the largest cross section, followed in turn by vector-boson fusion (VBF), associated WH and ZH production (VH), and production in association with top quarks (tH). The cross sections for the individual production mechanisms and the decay branching fractions, together with their uncertainties, have been computed following Refs. [53–97] and are compiled in Refs. [19, 98].

The particular set of sensitive decay modes of the SM Higgs boson depends strongly on \(m_{H} \). The results presented in this paper are based on five most sensitive decay modes in the low-mass region: \(H \rightarrow \gamma\gamma; H \rightarrow ZZ \) followed by ZZ decays to 4\(\ell \); \(H \rightarrow WW \) followed by decays to 2\(\ell 2\nu \); \(H \rightarrow \tau\tau \) followed by at least one leptonic \(\tau \) decay; and \(H \rightarrow bb \) followed by b-quark fragmentation into jets. This list is presented in Table 1 and comprises the full set of decay modes and subchannels, or categories, for which both the 7 and 8 TeV data sets have been analysed. Other lower sensitivity subchannels (tH, \(H \rightarrow bb \); W/ZH, \(H \rightarrow \tau\tau \); W/ZH, \(H \rightarrow WW \rightarrow 2\ell 2\nu \); \(H \rightarrow ZZ \rightarrow 2\ell 2q \)) have also been studied, so far only in the 7 TeV data, and are not included here. Adding these analyses in the combination results in an improvement of 0.1 \(\sigma \) in the overall expected local significance at \(m_{H} = 125 \text{ GeV} \).

Table 1: Summary of the subchannels, or categories, used in the analysis of each decay mode.

Decay mode	Production tagging	No. of subchannels	\(m_{H} \) range (GeV)	Int. Lum. (fb\(^{-1}\))
\(\gamma\gamma \)	untagged dijet (VBF)	4 1 or 2	110–150	5.1 5.3
\(ZZ \)	untagged	3	110–600	5.1 5.3
\(WW \)	untagged dijet (VBF)	4 1 or 2	110–600	4.9 5.1
\(\tau\tau \)	untagged dijet (VBF)	16 4	110–145	4.9 5.1
\(bb \)	lepton, \(E_{T}^{miss} \) (VH)	10 4	110–135	5.0 5.1

For a given value of \(m_{H} \), the search sensitivity depends on the production cross section, the decay branching fraction into the chosen final state, the signal selection efficiency, the mass resolution, and the level of background from identical or similar final-state topologies.

Samples of MC events used to represent signal and background are fully simulated using GEANT4 [99]. The simulations include pileup interactions matching the distribution of the number of such interactions observed in data. The description of the Higgs boson signal is obtained from MC simulation using, for most of the decay modes and production processes, the next-to-leading-order (NLO) matrix-element generator POWHEG [100,101], interfaced with PYTHIA 6.4 [102]. For the dominant gluon-gluon fusion process, the transverse momentum
spectrum of the Higgs boson in the 7 TeV MC samples is reweighted to the next-to-next-to-leading-logarithmic (NNLL) + NLO distribution computed with HqT [67, 68, 103] and FEHiPRO [104, 105], except in the H → ZZ analysis, where the effect is marginal. The agreement of the p_T spectrum in the simulation at 8 TeV with the NNLL + NLO distribution makes reweighting unnecessary. The improved agreement is due to a modification in the POWHEG setup recommended in Ref. [98]. The simulation of associated-production signal samples uses PYTHIA, and all signal samples for H → bb are made using POWHEG interfaced to HERWIG++ [106]. Samples used for background studies are generated with PYTHIA, POWHEG, and MADGRAPH [107]. The uncertainty in the signal cross section related to the choice of parton distribution functions is determined with the PDF4LHC prescription [92–96].

The overall statistical methodology [108] used in this paper was developed by the CMS and ATLAS Collaborations in the context of the LHC Higgs Combination Group. A more concise summary of CMS usage in the search for a Higgs boson is given in Ref. [17]. The modified frequentist criterion CL_s [109, 110] is used for the calculation of exclusion limits. Systematic uncertainties are incorporated as nuisance parameters and are treated according to the frequentist paradigm. The combination of searches requires simultaneous analysis of the data selected by all individual analyses, accounting for all statistical and systematic uncertainties and their correlations. The probability for a background fluctuation to be at least as large as the observed maximum excess is termed the local p-value, and that for an excess anywhere in a specified mass range the global p-value. This probability can be evaluated by generating sets of simulated data incorporating all correlations between analyses optimized for different Higgs boson masses. The global p-value (for the specified region) is greater than the local p-value, and this fact is often referred to as the look-elsewhere effect (LEE) [111]. Both the local and global p-values can be expressed as a corresponding number of standard deviations using the one-sided Gaussian tail convention. The magnitude of a possible Higgs boson signal is characterised by the production cross section times the relevant branching fractions, relative to the SM expectation, denoted $\sigma/\sigma_{\text{SM}}$ and referred to as the signal strength. The results presented in this paper are obtained using asymptotic formulae [112], including a few updates recently introduced in the ROOSTATS package [113].

Figure 1 shows the expected local p-values in the mass range 110–145 GeV for the five decay modes reported here. The expected significance of a SM Higgs boson signal at $m_H = 125$ GeV when the five decay modes are combined is 5.6 σ. The highest sensitivity in this mass range is achieved in the ZZ, $\gamma\gamma$, and WW channels. Because of the excellent mass resolution (1–2 GeV) achieved in the $\gamma\gamma$ and ZZ channels, they play a special role in the low-mass region, where the natural width of the SM Higgs boson is predicted to be a few MeV. The expected signature in these channels is therefore a narrow resonance above background, with a width consistent with the detector resolution.

5 Decay modes with high mass resolution

5.1 H → $\gamma\gamma$

In the H → $\gamma\gamma$ analysis a search is made for a narrow peak in the diphoton invariant mass distribution in the range 110–150 GeV, on a large irreducible background from QCD production of two photons. There is also a reducible background where one or more of the reconstructed photons originate from misidentification of jet fragments. Early detailed studies indicated this to be one of the most promising channels in the search for a SM Higgs boson in the low-mass range [114].
To enhance the sensitivity of the analysis, candidate diphoton events are separated into mutually exclusive categories of different expected signal-to-background ratios, based on the properties of the reconstructed photons and on the presence of two jets satisfying criteria aimed at selecting events in which a Higgs boson is produced through the VBF process. The analysis uses multivariate techniques for the selection and classification of the events. As an independent cross-check, an analysis is also performed that is almost identical to the one described in Ref. [20], using simpler criteria based on the properties of the reconstructed photons to select and classify events. The multivariate analysis achieves 15% higher sensitivity than the cross-check analysis.

The reconstructed primary vertex that most probably corresponds to the interaction vertex of the diphoton candidate is identified using the kinematic properties of the tracks associated with that vertex and their correlation with the diphoton kinematics. In addition, if either of the photons converts and the tracks from the conversion are reconstructed and identified, the direction of the converted photon contributes to the identification of the hard-scattering vertex. More details can be found in Ref. [20].

The event selection requires two photon candidates satisfying \(p_T \) requirements and “loose” photon identification criteria. These photons must be reconstructed within the fiducial region, \(|\eta| < 2.5 \), excluding the barrel-endcap transition region, \(1.44 < |\eta| < 1.57 \). A \(p_T \) threshold of \(m_{\gamma\gamma}/3 \) \((m_{\gamma\gamma}/4)\) is applied to the photon leading (subleading) in \(p_T \), where \(m_{\gamma\gamma} \) is the diphoton invariant mass. Scaling the \(p_T \) thresholds in this way avoids distortion of the shape of the \(m_{\gamma\gamma} \) distribution. In the case of events passing the dijet selection, the requirement on the leading photon is increased to \(m_{\gamma\gamma}/2 \), further reducing background with negligible loss of signal.

Jet selection criteria are applied to the two jets of largest \(p_T \) in the event within \(|\eta| < 4.7 \). The
jet selection requirements are optimized using simulated VBF signal and diphoton background events. The p_T thresholds for the two jets are 30 and 20 GeV, and their η separation is required to be greater than 3.5. The dijet invariant mass is required to be greater than 350 and 250 GeV for the 7 and 8 TeV data sets, respectively. The lower dijet invariant mass requirement for the 8 TeV data set reflects the fact that for the analysis of that data set, the dijet event category is divided into two to increase the search sensitivity. This division creates a second “tight” dijet-tagged category in which the dijet invariant mass must be greater than 500 GeV and both jets must have $p_T > 30$ GeV. Two additional selection criteria, relating the dijet to the diphoton system, are applied: the difference between the average pseudorapidity of the two jets and the pseudorapidity of the diphoton system is required to be less than 2.5, and the difference in azimuthal angle between the diphoton system and the dijet system is required to be greater than 2.6 radians.

A multivariate regression is used to extract the photon energy and a photon-by-photon estimate of the uncertainty in that measurement. The calibration of the photon energy scale uses the Z boson mass as a reference; ECAL showers coming from electrons in $Z \rightarrow ee$ events are clustered and reconstructed in exactly the same way as photon showers. The photon selection efficiency, energy resolution, and associated systematic uncertainties are estimated from data, using $Z \rightarrow ee$ events to derive data/simulation correction factors. The jet reconstruction efficiency, the efficiency to correctly locate the vertex position, and the trigger efficiency, together with the corresponding systematic uncertainties, are also evaluated from data.

For the multivariate analysis, a boosted decision tree (BDT) \cite{ref115, ref116} is trained to give a high output value (score) for signal-like events and for events with good diphoton invariant mass resolution, based on the following observables: (i) the photon quality determined from electromagnetic shower shape and isolation variables; (ii) the expected mass resolution; (iii) the per-event estimate of the probability of locating the diphoton vertex within 10 mm of its true location along the beam direction; and (iv) kinematic characteristics of the photons and the diphoton system. The kinematic variables are constructed so as to contain no information about the invariant mass of the diphoton system. The diphoton events not satisfying the dijet selection are classified into five categories based on the output of the BDT, with category boundaries optimized for sensitivity to a SM Higgs boson. Events in the category with smallest expected signal-to-background ratio are rejected, leaving four categories of events. Dijet-tagged events with BDT scores smaller than the threshold for the fourth category are also rejected. Simulation studies indicate that the background in the selected event categories is dominated by the irreducible background from QCD production of two photons and that fewer than 30% of the diphoton events used in the analysis contain one or more misidentified photons (predominantly from γ+jet production).

Table 2 shows the expected number of signal events in each event category for a SM Higgs boson (of $m_H = 125$ GeV), and the background at $m_{\gamma\gamma} = 125$ GeV, estimated from the fit described below. The estimated mass resolution is also shown, measured both by σ_{eff}, half the minimum width containing 68% of the signal events, and by the full width at half maximum (FWHM). A large variation in the expected signal-to-background ratio between the categories can be seen, although as a consequence of the optimization of the category boundaries the expected signal significances in each category are rather similar. The differences in the relative signal-to-background ratio between the categories are almost independent of m_{H}. The background is estimated from data, without the use of MC simulation, by fitting the diphoton invariant mass distribution in each of the categories in a range ($100 < m_{\gamma\gamma} < 180$ GeV) extending slightly above and below that in which the search is performed. The choices of the
Table 2: Expected numbers of SM Higgs boson events ($m_H = 125$ GeV) and estimated background (at $m_{γγ} = 125$ GeV) for all event categories of the 7 and 8 TeV data sets. There are two dijet-tagged categories for the 8 TeV data as described in the text, and for both data sets the remaining untagged events are separated into four categories labelled here BDT 0–3, BDT 0 having the largest expected signal-to-background ratio. The composition of the SM Higgs boson signal in terms of the production processes, and its mass resolution, are also given.

Event categories	SM Higgs boson expected signal ($m_H = 125$ GeV)	Background $m_{γγ} = 125$ GeV						
	Events	ggH	VBF	VH	ttH	$σ_{eff}$ (GeV)	FWHM/2.35 (GeV)	(events/GeV)
7 TeV, 5.1 fb$^{-1}$								
BDT 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4
BDT 1	16.3	88%	6%	6%	–	1.26	1.08	37.5 ± 1.3
BDT 2	21.5	92%	4%	4%	–	1.59	1.32	74.8 ± 1.9
BDT 3	32.8	92%	4%	4%	–	2.47	2.07	193.6 ± 3.0
Dijet tag	2.9	27%	72%	1%	–	1.73	1.37	1.7 ± 0.2
8 TeV, 5.3 fb$^{-1}$								
BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
BDT 2	30.2	92%	4%	4%	–	1.94	1.55	115.2 ± 2.3
BDT 3	40.0	92%	4%	4%	–	2.86	2.35	256.5 ± 3.4
Dijet tight	2.6	23%	77%	–	–	2.06	1.57	1.3 ± 0.2
Dijet loose	3.0	53%	45%	2%	–	1.95	1.48	3.7 ± 0.4

function used to model the background and of the fit range are made based on a study of the possible bias on the measured signal strength. Polynomial functions are used. The degree is chosen by requiring that the potential bias be at least a factor of 5 smaller than the statistical accuracy of the fit prediction. The required polynomial degree ranges from 3 to 5.

A further independent analysis (referred to as the sideband background model) is performed using a different approach to the background modelling. Its sensitivity is very similar to that of the standard analysis. It employs a fit to the output of an additional BDT that takes as input the diphoton invariant mass and the diphoton BDT output, and uses a background model derived from the sidebands of the invariant-mass distribution. A fit to the diphoton invariant-mass distribution is used to obtain the background normalisation. This fit is of a power law and excludes a window of width $±2\% \times m_H$ around the mass hypothesis. The methodology allows a systematic uncertainty to be assigned to the fit shape.

The expected 95% CL upper limit on the signal strength $σ/σ_{SM}$, in the background-only hypothesis, for the combined 7 and 8 TeV data, is less than 1.0 in the range $110 < m_H < 140$ GeV, with a value of 0.76 at $m_H = 125$ GeV. The observed limit indicates the presence of a significant excess at $m_H = 125$ GeV in both the 7 and 8 TeV data. The features of the observed limit are confirmed by the independent sideband-background-model and cross-check analyses.

The local p-value is shown as a function of m_H in Fig. for the 7 and 8 TeV data, and for their combination. The expected significance of the local p-value for a SM Higgs boson of mass 125 GeV is 2.8 $σ$. The minimum local p-value corresponding to the upward fluctuation of the observed limit at 125 GeV corresponds to 4.1 $σ$. The significances of the corresponding minimum local p-values seen with the sideband-background-model and the cross-check analysis are 4.6 $σ$ at $m_H = 125$ GeV and 3.7 $σ$ at $m_H = 124$ GeV, respectively. The best-fit signal strength for a SM Higgs boson mass hypothesis of 125 GeV is $σ/σ_{SM} = 1.6 ± 0.4$.

In order to illustrate, in the $m_{γγ}$ distribution, the significance given by the statistical methods,
it is necessary to take into account the large differences in the expected signal-to-background ratios of the event categories shown in Table 2. The events are weighted according to the category in which they fall. A weight proportional to $S/(S + B)$ is used, as suggested in Ref. [117], where S and B are the number of signal and background events, respectively, calculated from the simultaneous signal-plus-background fit to all categories and integrating over a $2\sigma_{\text{eff}}$ wide window, in each category, centred on 125 GeV. Figure 3 shows the data, the signal model, and the background model, all weighted. The weights are normalised such that the integral of the weighted signal model matches the number of signal events given by the best fit. The unweighted distribution, using the same binning but in a more restricted mass range, is shown as an inset. The excess at 125 GeV is evident in both the weighted and unweighted distributions.

Figure 2: The local p-value as a function of m_H in the $\gamma\gamma$ decay mode for the combined 7 and 8 TeV data sets. The additional lines show the values for the two data sets taken individually. The dashed line shows the expected local p-value for the combined data sets, should a SM Higgs boson exist with mass m_H.

5.2 $H \to ZZ$

In the $H \to ZZ \to 4\ell$ decay mode a search is made for a narrow four-lepton mass peak in the presence of a small continuum background. Early detailed studies outlined the promise of this mode over a wide range of Higgs boson masses [118]. Only the search in the range 110–160 GeV is reported here. Since there are differences in the reducible background rates and mass resolutions between the subchannels 4e, 4\mu, and 2e2\mu, they are analysed separately. The background sources include an irreducible four-lepton contribution from direct ZZ production via $q\bar{q}$ and gluon-gluon processes. Reducible contributions arise from $Z + b\bar{b}$ and $t\bar{t}$ production where the final states contain two isolated leptons and two b-quark jets producing secondary leptons. Additional background arises from $Z + jets$ and $WZ + jets$ events where jets are misidentified as leptons. Compared to the analysis reported in Ref. [21], the present analysis employs improved muon reconstruction, improved lepton identification and isolation, and a kinematic discriminant exploiting the decay kinematics expected for the signal events. An algorithm to recover final-state radiation (FSR) photons has also been deployed.

Electrons are required to have $p_T > 7$ GeV and $|\eta| < 2.5$. The corresponding requirements for muons are $p_T > 5$ GeV and $|\eta| < 2.4$. Electrons are selected using a multivariate identifier trained using a sample of W+jets events, and the working point is optimized using Z+jets events. Both muons and electrons are required to be isolated. The combined reconstruction
Figure 3: The diphoton invariant mass distribution with each event weighted by the $S/(S + B)$ value of its category. The lines represent the fitted background and signal, and the coloured bands represent the ± 1 and ± 2 standard deviation uncertainties on the background estimate. The inset shows the central part of the unweighted invariant mass distribution.
and selection efficiency is measured using electrons and muons in Z boson decays. Muon reconstruction and identification efficiency for muons with $p_T < 15$ GeV is measured using J/ψ decays.

The electron or muon pairs from Z boson decays are required to originate from the same primary vertex. This is ensured by requiring that the significance of the impact parameter with respect to the event vertex satisfy $|S_{IP}| < 4$ for each lepton, where $S_{IP} = I/\sigma_I$, I is the three-dimensional lepton impact parameter at the point of closest approach to the vertex, and σ_I its uncertainty.

Final-state radiation from the leptons is recovered and included in the computation of the lepton-pair invariant mass. The FSR recovery is tuned using simulated samples of ZZ → 4ℓ and tested on data samples of Z boson decays to electrons and muons. Photons reconstructed within $|\eta| < 2.4$ are considered as possibly due to FSR. The photons must satisfy the following requirements. They must be within $\Delta R < 0.07$ of a muon and have $p_T^\gamma > 2$ GeV (most photon showers within this distance of an electron having already been automatically clustered with the electron shower); or if their distance from a lepton is in the range $0.07 < \Delta R < 0.5$, they must satisfy $p_T^\gamma > 4$ GeV, and be isolated within $\Delta R = 0.3$. Such photon candidates are combined with the lepton if the resulting three-body invariant mass is less than 100 GeV and closer to the Z boson mass than the mass before the addition of the photon.

The event selection requires two pairs of same-flavour, oppositely charged leptons. The pair with invariant mass closest to the Z boson mass is required to have a mass in the range 40–120 GeV and the other pair is required to have a mass in the range 12–120 GeV. The ZZ background is evaluated from MC simulation studies. Two different approaches are employed to estimate the reducible and instrumental backgrounds from data. Both start by selecting events in a background control region, well separated from the signal region, by relaxing the isolation and identification criteria for two same-flavour reconstructed leptons. In the first approach, the additional pair of leptons is required to have the same charge (to avoid signal contamination) while in the second, two opposite-charge leptons failing the isolation and identification criteria are required. In addition, a control region with three passing and one failing lepton is used to estimate contributions from backgrounds with three prompt leptons and one misidentified lepton. The event rates measured in the background control region are extrapolated to the signal region using the measured probability for a reconstructed lepton to pass the isolation and identification requirements. This probability is measured in an independent sample. Within uncertainties, comparable background counts in the signal region are estimated by both methods.

The number of selected ZZ → 4ℓ candidate events in the mass range $110 < m_{4\ell} < 160$ GeV, in each of the three final states, is given in Table 3, where $m_{4\ell}$ is the four-lepton invariant mass. The number of predicted background events, in each of the three final states, and their uncertainties are also given, together with the number of signal events expected from a SM Higgs boson of $m_H = 125$ GeV. The $m_{4\ell}$ distribution is shown in Fig. 4. There is a clear peak at the Z boson mass where the decay $Z \to 4\ell$ is reconstructed. This feature of the data is well reproduced by the background estimation. The figure also shows an excess of events above the expected background around 125 GeV. The total background and the numbers of events observed in the three bins where an excess is seen are also shown in Table 3. The combined signal reconstruction and selection efficiency, with respect to the $m_H = 125$ GeV generated signal with $m_{\ell\ell} > 1$ GeV as the only cut, is 18% for the 4e channel, 40% for the 4µ channel, and 27% for the 2e2µ channel.

The kinematics of the H → ZZ → 4ℓ process, for a given invariant mass of the four-lepton
5.2 $H \rightarrow ZZ$

Figure 4: Distribution of the four-lepton invariant mass for the $ZZ \rightarrow 4\ell$ analysis. The points represent the data, the filled histograms represent the background, and the open histogram shows the signal expectation for a Higgs boson of mass $m_H = 125$ GeV, added to the background expectation. The inset shows the $m_{4\ell}$ distribution after selection of events with $K_D > 0.5$, as described in the text.

Table 3: The number of selected events, compared to the expected background yields and expected number of signal events ($m_H = 125$ GeV) for each final state in the $H \rightarrow ZZ$ analysis. The estimates of the $Z + X$ background are based on data. These results are given for the mass range from 110 to 160 GeV. The total background and the observed numbers of events are also shown for the three bins (“signal region”) of Fig. 4 where an excess is seen ($121.5 < m_{4\ell} < 130.5$ GeV).

Channel	Channel	$4e$	4μ	$2e2\mu$	4ℓ
ZZ background		2.7 ± 0.3	5.7 ± 0.6	7.2 ± 0.8	15.6 ± 1.4
$Z + X$		1.2$^{+1.1}_{-0.8}$	0.9$^{+0.7}_{-0.6}$	2.3$^{+1.8}_{-1.4}$	4.4$^{+2.2}_{-1.7}$
All backgrounds (110 $< m_{4\ell} < 160$ GeV)		4.0 ± 1.0	6.6 ± 0.9	9.7 ± 1.8	20 ± 3
Observed (110 $< m_{4\ell} < 160$ GeV)		6	6	9	21
Signal ($m_H = 125$ GeV)		1.36 ± 0.22	2.74 ± 0.32	3.44 ± 0.44	7.54 ± 0.78
All backgrounds (signal region)		0.7 ± 0.2	1.3 ± 0.1	1.9 ± 0.3	3.8 ± 0.5
Observed (signal region)		1	3	5	9
Decay modes with low mass resolution

6.1 H → WW

The decay mode H → WW was first proposed as a promising search channel for study at the LHC in Ref. [124]. It is highly sensitive to a SM Higgs boson in the mass range around the WW threshold of 160 GeV. With the development of tools for lepton identification and E_T^{miss} reconstruction optimized for LHC pileup conditions, it is possible to extend the sensitivity down to 120 GeV. This decay mode is analysed by selecting events in which both W bosons decay leptonically, resulting in a signature with two isolated, oppositely charged leptons (electrons or muons) and large E_T^{miss} due to the undetected neutrinos. A p_T threshold of 20 (10) GeV is applied to the lepton leading (subleading) in p_T. The analysis of the 7 TeV data is described in Ref. [22] and remains unchanged, while the 8 TeV analysis was modified to cope with more difficult conditions induced by the higher pileup of the 2012 data taking.

Events are classified according to the number of jets (0, 1, or 2) with $p_T > 30$ GeV and within $|\eta| < 4.7$ ($|\eta| < 5.0$ for the 7 TeV data set), and further separated into same-flavour (ee and $\mu\mu$).
Figure 5: The distribution of events selected in the 4ℓ subchannels for the kinematic discriminant, K_D, versus $m_{4\ell}$. Events in the three final states are marked by filled symbols (defined in the legend). The horizontal error bars indicate the estimated mass resolution. In the upper plot the colour-coded regions show the background expectation; in the lower plot the colour-coded regions show the event density expected from a SM Higgs boson ($m_H = 125$ GeV) (both in arbitrary units).
or different-flavour (e\(\mu\)) categories. Events with more than two jets are rejected. To improve the sensitivity of the analysis, the selection criteria are optimized separately for the different event categories since they are characterised by different dominating backgrounds. The zero-jet e\(\mu\) category has the best signal sensitivity. Its main backgrounds are irreducible nonresonant WW production and reducible W+jets processes, where a jet is misidentified as a lepton. The one-jet e\(\mu\) and zero-jet same-flavour categories only contribute to the signal sensitivity at the 10% level because of larger backgrounds, from top-quark decays and Drell–Yan production, respectively. Event selection in the two-jet category is optimized for the VBF production mechanism. This category has the highest expected signal-to-background ratio, but its contribution to the overall sensitivity is small owing to the lower cross section relative to inclusive production.

The projected \(E_T^{\text{miss}}\) variable [22] is used to reduce the Drell–Yan background arising from events where the \(E_T^{\text{miss}}\) vector is aligned with the lepton \(p_T\), as well as events with mismeasured \(E_T^{\text{miss}}\) associated with poorly reconstructed leptons and jets. The projected \(E_T^{\text{miss}}\) is defined as the transverse component of the \(E_T^{\text{miss}}\) vector with respect to the closest lepton direction, if it is closer than \(\pi/2\) in azimuthal angle, or the full \(E_T^{\text{miss}}\) otherwise. Since the projected \(E_T^{\text{miss}}\) resolution is deteriorated by pileup, the minimum of two different projected \(E_T^{\text{miss}}\) definitions is used: the first includes all particle candidates in the event, while the second uses only the charged particle candidates associated with the primary vertex. In the 8 TeV analysis, the minimum projected \(E_T^{\text{miss}}\) defined in this way is then required to be above a threshold that varies by category. For \(m_H > 140 \, \text{GeV}\), projected \(E_T^{\text{miss}}\) is required to be greater than 20 GeV in the e\(\mu\) channel, and greater than 45 GeV in the same-flavour channels. For \(m_H \leq 140 \, \text{GeV}\) in the same-flavour channels, where it is more difficult to separate the signal from the Drell–Yan background, a multivariate selection is used, combining kinematic and topological variables. In the two-jet category, a simple selection of \(E_T^{\text{miss}} > 45 \, \text{GeV}\) is applied. To further reduce the Drell–Yan background in the same-flavour final states, events with a dilepton mass within 15 GeV of the Z boson mass are rejected. The background from low-mass resonances is rejected by requiring a dilepton invariant mass greater than 12 GeV.

To suppress the top-quark background, a “top tagging” technique based on soft-muon and b-
jet tagging is applied. The first method is designed to veto events containing muons from b jets coming from decays of top quarks. The second method uses a b-jet tagging algorithm, which looks within jets for tracks with large impact parameters. The algorithm is applied also in the case of zero-jet events, which may contain low-\(p_T\) jets below the selection threshold. To reduce the background from WZ production, events with a third lepton passing the identification and isolation requirements are rejected.

Yields for the dominant backgrounds are estimated using control regions in the data. The \(W+\text{jets}\) contribution is derived from data using a “tight-loose” sample in which one lepton passes the standard criteria and the other does not, but instead satisfies a “loose” set of requirements. The efficiency \(\epsilon_{\text{loose}}\) for a jet that satisfies the loose selection to pass the tight selection is determined using data from an independent loose lepton-trigger sample dominated by jets. The background contamination is then estimated using the events of the “tight-loose” sample weighted by \(\epsilon_{\text{loose}}/(1 - \epsilon_{\text{loose}})\). The normalisation of the top-quark background is estimated by counting the number of top-tagged events and applying the corresponding top-tagging efficiency. The nonresonant WW contribution is normalised by using events with a dilepton mass larger than 100 GeV, where the Higgs boson signal contamination is negligible, extrapolated to the signal region using simulated samples. The same-flavour Drell–Yan background is normalised using the number of events observed with a dilepton mass within 7.5 GeV of the Z boson mass, after subtracting the non-Drell–Yan contribution. Other minor backgrounds from WZ, ZZ, and \(W\gamma\) are estimated from simulation.

The 7 TeV data are analysed by training a BDT for each Higgs boson mass hypothesis in the zero-jet and one-jet event categories, while a simple selection strategy is employed in the VBF category [22]. In the BDT analysis, the Higgs boson signal is separated from the background by using a binned maximum-likelihood fit to the classifier distribution. The 8 TeV analysis is based on a simple selection strategy optimized for each mass hypothesis, where additional kinematic and topological requirements are applied to improve the signal-to-background ratio. One of the most sensitive variables to discriminate between \(H \rightarrow WW\) decays and nonresonant WW production is the dilepton invariant mass \(m_{\ell\ell}\), which has a resolution of about 20%. This quantity is shown in Fig. 7 for the zero-jet \(e\mu\) category after the full selection for \(m_H = 125\) GeV, except for the selection on \(m_{\ell\ell}\) itself. Table 4 shows for the 8 TeV analysis the number of events selected in data, background estimates, and signal predictions for \(m_H = 125\) GeV in each analysis category after applying all the selection requirements. About 97% of the signal events selected in the zero-jet \(e\mu\) category are expected to be produced by the gluon-gluon fusion process, whereas 83% of the signal in the two-jet \(e\mu\) category is expected to be produced by the VBF process. The 95% CL expected and observed limits for the combination of the 7 and 8 TeV analyses are shown in Fig. 8. A broad excess is observed across the mass range. Given the modest mass resolution in this channel, this excess is consistent with a SM Higgs boson with a mass around 125 GeV. This is illustrated by the dotted curve in Fig. 8 showing the median expected limit under the hypothesis of the presence of a SM Higgs boson with mass 125 GeV. The expected significance for a SM Higgs of mass 125 GeV is 2.4 \(\sigma\) and the observed significance is 1.6 \(\sigma\).

6.2 \(H \rightarrow \tau\tau\)

The decay mode \(H \rightarrow \tau\tau\) is searched for in four exclusive subchannels, corresponding to different decays of the \(\tau\) pair: \(e\mu, \mu\mu, e\tau_h, \text{and } \mu\tau_h\), where electrons and muons arise from leptonic \(\tau\) decays, and \(\tau_h\) denotes hadronic \(\tau\) decays. The latter are reconstructed by selecting \(\tau\) decays consistent with the hypothesis of three charged pions, or one charged pion and up to two neutral pions [125]. The search is made in the mass range 110–145 GeV, and a signal should appear
Table 4: Observed number of events, background estimates and signal predictions for $m_H = 125 \text{ GeV}$ in each category of the WW analysis of the 8 TeV data set. All the selection requirements have been applied. The combined experimental and theoretical, systematic and statistical uncertainties are shown. The $Z\gamma$ process includes the dimuon, dielectron, and $\tau\tau \rightarrow \ell\ell$ final states.

Category:	0-jet $e\mu$	0-jet $\ell\ell$	1-jet $e\mu$	1-jet $\ell\ell$	2-jet $e\mu$	2-jet $\ell\ell$
WW	87.6 ± 9.5	60.4 ± 6.7	19.5 ± 3.7	9.7 ± 1.9	0.4 ± 0.1	0.3 ± 0.1
WZ + ZZ + Z\gamma	2.2 ± 0.2	37.7 ± 12.5	2.4 ± 0.3	8.7 ± 4.9	0.1 ± 0.0	3.1 ± 1.8
Top	9.3 ± 2.7	1.9 ± 0.5	22.3 ± 2.0	9.5 ± 1.1	3.4 ± 1.9	2.0 ± 1.2
W + jets	19.1 ± 7.2	10.8 ± 4.3	11.7 ± 4.6	3.9 ± 1.7	0.3 ± 0.3	0.0 ± 0.0
$W\gamma^{(*)}$	6.0 ± 2.3	4.6 ± 2.5	5.9 ± 3.2	1.3 ± 1.2	0.0 ± 0.0	0.0 ± 0.0
All backgrounds	124.2 ± 12.4	115.5 ± 15.0	61.7 ± 7.0	33.1 ± 5.7	4.1 ± 1.9	5.4 ± 2.2
Signal ($m_H = 125 \text{ GeV}$)	23.9 ± 5.2	14.9 ± 3.3	10.3 ± 3.0	4.4 ± 1.3	1.5 ± 0.2	0.8 ± 0.1
Data	158	123	54	43	6	7

Figure 7: Distribution of $m_{\ell\ell}$ for the zero-jet $e\mu$ category in the $H \rightarrow WW$ search at 8 TeV. The signal expected from a Higgs boson with a mass $m_H = 125 \text{ GeV}$ is shown added to the background.
Figure 8: The 95% CL limit on σ/σ_{SM} for a Higgs boson decaying, via a W boson pair, to two leptons and two neutrinos, for the combined 7 and 8 TeV data sets. The symbol σ/σ_{SM} denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The background-only expectations are represented by their median (dashed line) and by the 68% and 95% CL bands. The dotted curve shows the median expected limit for a SM Higgs boson with $m_{H} = 125$ GeV.
as a broad excess in the distribution of the \(\tau \)-pair invariant mass \(m_{\tau\tau} \).

The sensitivity of the search is improved by classifying the events according to jet multiplicity and the transverse momentum of the reconstructed \(\tau \). The multiplicity of jets with \(p_T > 30 \text{ GeV} \) reflects the production mechanism: events with zero or one jet are likely to come from the gluon-gluon fusion process, while events with two jets are candidates for VBF production. Events including b jets with \(p_T > 20 \text{ GeV} \) are removed from zero- and one-jet categories. The signal purities in the zero- and one-jet categories are increased, and the \(m_{\tau\tau} \) resolution is improved, by separating events into low- and high-\(p_T \) subchannels. The high-\(p_T \) subchannels are defined by \(p_T^{\tau_h} > 40 \text{ GeV} \) in channels with a hadronic \(\tau \) decay, and \(p_T^{\mu} > 35 \) (30) GeV in the \(e\mu \) (\(\mu\mu \)) channel. The mass \(m_{\tau\tau} \) is reconstructed with an algorithm [126] combining the visible \(\tau \) decay products and the missing transverse energy, achieving a resolution of about 20\% on \(m_{\tau\tau} \). Figure 9 shows as an example the reconstructed \(m_{\tau\tau} \) distribution in the \(\mu\tau_h \) VBF category for the combined 7 and 8 TeV data samples.

![Figure 9: Distribution of \(m_{\tau\tau} \) in the combined 7 and 8 TeV data sets for the \(\mu\tau_h \) VBF category of the \(H \rightarrow \tau\tau \) search. The signal expected from a SM Higgs boson (\(m_H = 125 \text{ GeV} \)) is added to the background simulation.](image)

Backgrounds in the \(e\mu \) and \(\mu\mu \) channels arise from \(t\bar{t} \) and Drell–Yan production, while W and Z production with a misidentified \(\tau_h \) candidate from an electron, muon, or jet dominates in the hadronic channels. Backgrounds from \(Z \rightarrow \tau\tau \) decays are modelled with \(Z \rightarrow \mu\mu \) events in data where each muon is replaced with particles from simulated decays of a \(\tau \) with the same momentum as the muon. Reducible backgrounds, comprising W+jets, QCD multijet production, and residual \(Z \rightarrow ee \) events, are estimated from the data. An improved signal-to-background ratio is achieved by including explicitly in the event selection for the VBF production mechanism the pseudorapidity separation between forward jets and the large invariant mass of the dijet system. Table 5 shows the numbers of expected and observed events in the most sensitive event categories (VBF) for the 7 and 8 TeV data sets. The expected signal yields for a SM Higgs boson with \(m_H = 125 \text{ GeV} \) are also shown.
Table 5: Numbers of expected and observed events in the most sensitive event categories (VBF) in the $H \to \tau\tau$ analysis for the 7 and 8 TeV data sets. The expected signal yields for a SM Higgs boson with $m_H = 125$ GeV are also shown. Combined statistical and systematic uncertainties on each estimate are reported.

Subchannel	$e\tau_h$	$\mu\tau_h$	$e\mu$	$\mu\mu$
$Z \to \tau\tau$	53 ± 5	100 ± 9	56 ± 12	5.3 ± 0.4
QCD	35 ± 7	41 ± 9	7.4 ± 1.4	–
$W+\text{jets}$	46 ± 10	72 ± 15	–	–
$Z+\text{jets}$	13 ± 2	2.5 ± 0.6	–	–
$t\bar{t}$	–	–	70 ± 8	6.7 ± 1.5
Dibosons	1.2 ± 0.9	2.9 ± 2.1	2.4 ± 0.9	
All backgrounds	156 ± 13	233 ± 20	99 ± 13	85 ± 9
Signal ($m_H = 125$ GeV)	4.3 ± 0.6	7.7 ± 1.1	3.5 ± 0.4	0.8 ± 0.1
Data	142	263	110	83

Figure 10: The 95% CL limit on the signal strength σ/σ_{SM} for a Higgs boson decaying to τ pairs, for the combined 7 and 8 TeV data sets. The symbol σ/σ_{SM} denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The background-only expectations are represented by their median (dashed line) and by the 68% and 95% CL bands.
To search for the presence of a Higgs boson signal in the selected events, a binned maximum-likelihood fit to $m_{\tau\tau}$ is performed jointly across the four final states, each with five event categories. Systematic uncertainties are represented by nuisance parameters in the fitting process. The expected and observed 95% CL limits on the signal strength for the combination of all categories are shown in Fig. 10. The expected and observed limits are 1.3 and 1.1 times the SM Higgs boson cross section at mass 125 GeV, respectively. The expected significance for a SM Higgs boson of mass 125 GeV is 1.4σ, and the observed value is zero σ.

6.3 $H \rightarrow bb$

For $m_H \leq 135\text{ GeV}$, the decay $H \rightarrow bb$ has the largest branching fraction of the five search modes, but the signal is overwhelmed by QCD production of bottom quarks. The analysis is therefore designed to search for the associated production of the Higgs boson in events where a dijet resonance is produced at high p_T in association with a W or Z boson; this largely suppresses the QCD background. Five independent search channels are explored corresponding to different decays of the vector boson: $Z(\ell\ell)H, Z(\nu\nu)H,$ and $W(\ell\nu)H$. Events are further separated into two categories based on the p_T of the vector boson, ranging from 50–100 GeV for the lowest bin in the $Z(\ell\ell)$ search, to greater than 170 GeV for the highest bin in the $W(\ell\nu)$ search. For the $Z(\nu\nu)$ search, two subchannels are defined as $120 < E_{\text{miss}} < 160\text{ GeV}$ and $E_{\text{miss}} > 160\text{ GeV}$. The two jets comprising the candidate Higgs boson decay are required to be identified as b jets, and the dijet system must satisfy a p_T threshold that is optimized within each channel.

Dominant backgrounds arise from production of vector bosons in association with jets, pair- or single-production of top quarks, and diboson production (WW, WZ, ZZ) with one of the bosons decaying hadronically. Significant background rejection is achieved in general by requiring large p_T for the dijet, while also requiring that there be minimal additional jet activity and that the vector boson and dijet be back-to-back in azimuth. The effect on the signal efficiency of this selection due to higher-order electroweak \cite{127} and QCD \cite{87} corrections are accounted for in the systematic uncertainties. Further signal discrimination is obtained from the dijet invariant mass, which is expected to peak near m_H. A multivariate regression algorithm to better estimate b-jet p_T is trained on jets in simulated signal events and achieves a final dijet mass resolution of 8–9% for $m_H = 125\text{ GeV}$. The performance of the regression algorithm is checked in data using W/Z+jets and t\bar{t} events.

A search for the signal is made in the distribution of scores of a BDT trained at discrete mass points. Input variables to the BDT algorithm exploit kinematic and topological information about the vector boson and dijet systems, and the colour-singlet nature of the Higgs boson \cite{128}. The distribution of scores in simulated background events is checked using control regions in the data designed to enrich individual background contributions. Figure 11 shows as an example the BDT scores for the high-p_T subchannel of the $Z(\nu\nu)$ search in the 8 TeV data set, after all selection criteria have been applied.

The rates for the dominant backgrounds arising from production of W/Z+jets and top-quark pairs are estimated in data, while contributions from single-top and diboson production are estimated from simulation studies. The signal is then searched for as an excess in the BDT score distribution using the predicted shapes for signal and background events, for Higgs boson masses in the range 110–135 GeV.

Combined results for expected and observed 95% CL limits obtained from the 7 and 8 TeV data sets are displayed in Fig. 12. The expected and observed limits are 1.6 and 2.1 times the SM Higgs boson cross section at mass 125 GeV. The expected local p-value for a SM Higgs of mass...
Figure 11: Distribution of BDT scores for the high-p_T subchannel of the $Z(\nu\nu)H(bb)$ search in the 8 TeV data set after all selection criteria have been applied. The signal expected from a Higgs boson ($m_H = 125$ GeV), including $W(\ell\nu)H$ events where the charged lepton is not reconstructed, is shown added to the background and also overlaid for comparison with the diboson background.
125 GeV corresponds to 1.9 σ, while the observed one corresponds to 0.7 σ.

Figure 12: The 95% CL limit on the signal strength σ/σ_{SM} for a Higgs boson decaying to two b quarks, for the combined 7 and 8 TeV data sets. The symbol σ/σ_{SM} denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The background-only expectations are represented by their median (dashed line) and by the 68% and 95% CL bands.

7 Combined results

The individual results for the channels analysed for the five decay modes, summarised in Table [1] are combined using the methods outlined in Section [4]. The combination takes into account the experimental statistical and systematic uncertainties as well as the theoretical uncertainties, which are dominated by the imperfect knowledge of the QCD scale and parton distribution functions. The CL$_S$ is shown in Fig. [13] as a function of the Higgs boson mass hypothesis. The observed values are shown by the solid points. The dashed line indicates the median of the expected results for the background-only hypothesis, with the green (dark) and yellow (light) bands indicating the ranges in which the CL$_S$ values are expected to lie in 68% and 95% of the experiments under the background-only hypothesis. The probabilities for an observation, in the absence of a signal, to lie above or below the 68% (95%) band are 16% (2.5%) each. The thick horizontal lines indicate CL$_S$ values of 0.05, 0.01, and 0.001. The mass regions where the observed CL$_S$ values are below these lines are excluded with the corresponding (1 − CL$_S$) confidence levels. Our previously published results exclude the SM Higgs boson from 127 up to 600 GeV [17]. In the search described here, the SM Higgs boson is excluded at 95% CL in the range $110 < m_H < 121.5$ GeV. In the range $121.5 < m_H < 128$ GeV a significant excess is seen and the SM Higgs boson cannot be excluded at 95% CL.
7.1 Significance of the observed excess

The consistency of the observed excess with the background-only hypothesis may be judged from Fig. 14, which shows a scan of the local \(p \)-value for the 7 and 8 TeV data sets and their combination. The 7 and 8 TeV data sets exhibit an excess of \(3.2 \) \(\sigma \) and \(3.8 \) \(\sigma \) significance, respectively, for a Higgs boson mass of approximately 125 GeV. In the overall combination the significance is \(5.0 \) \(\sigma \) for \(m_H = 125.5 \) GeV. Figure 15 gives the local \(p \)-value for the five decay modes individually and displays the expected overall \(p \)-value.

The largest contributors to the overall excess in the combination are the \(\gamma\gamma \) and ZZ decay modes. They both have very good mass resolution, allowing good localization of the invariant mass of a putative resonance responsible for the excess. Their combined significance reaches \(5.0 \) \(\sigma \) (Fig. 16). The WW decay mode has an exclusion sensitivity comparable to the \(\gamma\gamma \) and ZZ decay modes but does not have a good mass resolution. It has an excess with local significance \(1.6 \) \(\sigma \) for \(m_H \sim 125 \) GeV. When added to the \(\gamma\gamma \) and ZZ decay modes, the combined significance becomes \(5.1 \) \(\sigma \). Adding the bb and \(\tau\tau \) channels in the combination, the final significance becomes \(5.0 \) \(\sigma \). Table 6 summarises the expected and observed local \(p \)-values for a SM Higgs boson mass hypothesis of 125.5 GeV for the various combinations of channels.

Table 6: The expected and observed local \(p \)-values, expressed as the corresponding number of standard deviations of the observed excess from the background-only hypothesis, for \(m_H = 125.5 \) GeV, for various combinations of decay modes.

Decay mode/combination	Expected (\(\sigma \))	Observed (\(\sigma \))
\(\gamma\gamma \)	2.8	4.1
ZZ	3.6	3.1
\(\tau\tau + bb \)	2.4	0.4
\(\gamma\gamma + ZZ \)	4.7	5.0
\(\gamma\gamma + ZZ + WW \)	5.2	5.1
\(\gamma\gamma + ZZ + WW + \tau\tau + bb \)	5.8	5.0

The global \(p \)-value for the search range 115–130 (110–145) GeV is calculated using the method...
Figure 14: The observed local p-value for 7 TeV and 8 TeV data, and their combination as a function of the SM Higgs boson mass. The dashed line shows the expected local p-values for a SM Higgs boson with a mass m_H.

Figure 15: The observed local p-value for the five decay modes and the overall combination as a function of the SM Higgs boson mass. The dashed line shows the expected local p-values for a SM Higgs boson with a mass m_H.
7.2 Mass of the observed boson

The mass m_X of the observed boson is determined using the $\gamma\gamma$ and ZZ decay modes, with the former dominating the precision of the measurement. The calibration of the energy scale in the $\gamma\gamma$ decay mode is achieved with reference to the known Z boson mass, as described in Section 5.1. There are two main sources of systematic uncertainty: (i) imperfect simulation of the differences between electrons and photons and (ii) the need to extrapolate from m_Z to $m_H \approx 125\text{ GeV}$. The systematic uncertainties are evaluated by making comparisons between data and simulated samples of $Z \rightarrow e e$ and $H \rightarrow \gamma\gamma$ ($m_H = 90\text{ GeV}$). The two uncertainties, which together amount to 0.5%, are assumed to be fully correlated between all the $\gamma\gamma$ event categories in the 7 and 8 TeV data. For the ZZ $\rightarrow 4\ell$ decay mode the energy scale (for electrons) and momentum scale (for muons) are calibrated using the leptonic decays of the Z boson, with an assigned uncertainty of 0.4%.

Figure 17 shows the two-dimensional 68% CL regions for the signal strength σ/σ_{SM} versus m_X for the three channels (untagged $\gamma\gamma$, dijet-tagged $\gamma\gamma$, and ZZ $\rightarrow 4\ell$). The combined 68% CL contour shown in Fig. 17 assumes that the relative event yields among the three channels are those expected from the standard model, while the overall signal strength is a free parameter.

To extract the value of m_X in a model-independent way, the signal yields of the three channels...
are allowed to vary independently. Thus the expected event yields in these channels are scaled by independent factors, while the signal is assumed to be due to a particle with a unique mass m_X. The combined best-fit mass is $m_X = 125.3 \pm 0.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \text{ GeV}$.

7.3 Compatibility with the SM Higgs boson hypothesis

A first test of the compatibility of the observed boson with the SM Higgs boson is provided by examination of the best-fit value for the common signal strength $\frac{\sigma}{\sigma_{SM}}$, obtained in a combination of all search channels. Figure 18 shows a scan of the overall $\frac{\sigma}{\sigma_{SM}}$ obtained in the combination of all channels versus a hypothesised Higgs boson mass m_H. The band corresponds to the $\pm 1 \sigma$ uncertainty (statistical and systematic). The excesses seen in the 7 TeV and 8 TeV data, and in their combination, around 125 GeV are consistent with unity within the $\pm 1 \sigma$ uncertainties. The observed $\frac{\sigma}{\sigma_{SM}}$ value for an excess at 125.5 GeV in a combination of all data is 0.87 ± 0.23. The different decay channels and data sets have been examined for self-consistency. Figure 19 shows the measured values of $\frac{\sigma}{\sigma_{SM}}$ results obtained for the different decay modes. These results are consistent, within uncertainties, with the expectations for a SM Higgs boson.

![Figure 17: The 68% CL contours for the signal strength $\frac{\sigma}{\sigma_{SM}}$ versus the boson mass m_X for the untagged $\gamma\gamma$, $\gamma\gamma$ with VBF-like dijet, 4ℓ, and their combination. The symbol $\frac{\sigma}{\sigma_{SM}}$ denotes the production cross section times the relevant branching fractions, relative to the SM expectation. In this combination, the relative signal strengths for the three decay modes are constrained by the expectations for the SM Higgs boson.](image)

8 Conclusions

Results are presented from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb$^{-1}$ at 7 TeV and 5.3 fb$^{-1}$ at 8 TeV. The search
Figure 18: The observed best-fit signal strength $\sigma/\sigma_{\text{SM}}$ as a function of the SM Higgs boson mass in the range 110–145 GeV for the combined 7 and 8 TeV data sets. The symbol $\sigma/\sigma_{\text{SM}}$ denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The band corresponds to the ± 1 standard deviation uncertainty in $\sigma/\sigma_{\text{SM}}$.
Figure 19: Values of σ/σ_{SM} for the combination (solid vertical line) and for individual decay modes (points). The vertical band shows the overall σ/σ_{SM} value 0.87 ± 0.23. The symbol σ/σ_{SM} denotes the production cross section times the relevant branching fractions, relative to the SM expectation. The horizontal bars indicate the ± 1 standard deviation uncertainties on the σ/σ_{SM} values for individual modes; they include both statistical and systematic uncertainties.
is performed in five decay modes: $\gamma\gamma$, ZZ, W^+W^-, $\tau^+\tau^-$, and b\bar{b}. An excess of events is observed above the expected background, with a local significance of 5.0σ at a mass near 125 GeV, signalling the production of a new particle. The expected local significance for a standard model Higgs boson of that mass is 5.8σ. The global p-value in the search range of 115–130 (110–145) GeV corresponds to 4.6σ (4.5σ). The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ, and a fit to these signals gives a mass of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. The results presented here are consistent, within uncertainties, with expectations for a standard model Higgs boson. The collection of further data will enable a more rigorous test of this conclusion and an investigation of whether the properties of the new particle imply physics beyond the standard model.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the computing centres in the Worldwide LHC computing Grid for the provisioning and excellent performance of computing infrastructure essential to our analyses. We gratefully acknowledge the contributions of the technical staff at CERN and other CMS institutes. We also thank the administrative staff at CERN and the other CMS institutes and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COCIENTIAS (Colombia); MSES (Croatia); RPF (Cyprus); MEYS (Czech Republic); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); IPM (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, co-financed from European Union, Regional Development Fund.

References

[1] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, *Phys. Rev. Lett.* 13 (1964) 321, [doi:10.1103/PhysRevLett.13.321](http://dx.doi.org/10.1103/PhysRevLett.13.321).

[2] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, *Phys. Lett.* 12 (1964) 132, [doi:10.1016/0031-9163(64)91136-9](http://dx.doi.org/10.1016/0031-9163(64)91136-9).

[3] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, *Phys. Rev. Lett.* 13 (1964) 508, [doi:10.1103/PhysRevLett.13.508](http://dx.doi.org/10.1103/PhysRevLett.13.508).
[4] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett. 13 (1964) 585, doi:10.1103/PhysRevLett.13.585.

[5] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145 (1966) 1156, doi:10.1103/PhysRev.145.1156.

[6] T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge theories”, Phys. Rev. 155 (1967) 1554, doi:10.1103/PhysRev.155.1554.

[7] S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys. 22 (1961) 579, doi:10.1016/0029-5582(61)90469-2.

[8] S. Weinberg, “A Model of Leptons”, Phys. Rev. Lett. 19 (1967) 1264, doi:10.1103/PhysRevLett.19.1264.

[9] A. Salam, “Weak and electromagnetic interactions”, in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., p. 367. Almqvist & Wiskell, 1968. Proceedings of the eighth Nobel symposium.

[10] J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, “Uniqueness of spontaneously broken gauge theories”, Phys. Rev. Lett. 30 (1973) 1268, doi:10.1103/PhysRevLett.30.1268.

[11] J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, “Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix”, Phys. Rev. D 10 (1974) 1145, doi:10.1103/PhysRevD.10.1145 Also Erratum, doi:10.1103/PhysRevD.11.972.

[12] C. H. Llewellyn Smith, “High-Energy Behavior and Gauge Symmetry”, Phys. Lett. B 46 (1973) 233, doi:10.1016/0370-2693(73)90692-8.

[13] B. W. Lee, C. Quigg, and H. B. Thacker, “Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass”, Phys. Rev. D 16 (1977) 1519, doi:10.1103/PhysRevD.16.1519.

[14] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavour Groups, “Precision Electroweak Measurements and Constraints on the Standard Model”, CERN PH-EP-2010-095, (2010). At this time, the most up-to-date Higgs boson mass constraints come from http://lepewwg.web.cern.ch/LEPEWWG/plots/winter2012/.

[15] ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Working Group for Higgs Boson Searches, “Search for the standard model Higgs boson at LEP”, Phys. Lett. B 565 (2003) 61, doi:10.1016/S0370-2693(03)00614-2 arXiv:hep-ex/0306033.

[16] CDF and D0 Collaborations, “Combination of Tevatron Searches for the Standard Model Higgs Boson in the W^+W^- Decay Mode”, Phys. Rev. Lett. 104 (2010) 061802, doi:10.1103/PhysRevLett.104.061802. The most recent results can be found at arXiv:1207.1707 (submitted to Phys. Rev. Lett.), arXiv:1207.6436, (submitted to Phys. Rev. Lett.), and FERMILAB-PUB-12-406-E (submitted to Phys. Rev. Lett.).

[17] CMS Collaboration, “Combined results of searches for the standard model Higgs boson in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 710 (2012) 26, doi:10.1016/j.physletb.2012.02.064 arXiv:1202.1488.
[18] ATLAS Collaboration, “Combined search for the Standard Model Higgs boson in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector”, (2012). arXiv:1207.0319

Accepted for publication in Phys. Rev. D.

[19] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti et al., “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables” (CERN, Geneva, 2011).

[20] CMS Collaboration, “Search for the standard model Higgs boson decaying into two photons in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 710 (2012) 403, doi:10.1016/j.physletb.2012.03.003, arXiv:1202.1487.

[21] CMS Collaboration, “Search for the standard model Higgs boson in the decay channel $H \rightarrow ZZ \rightarrow 4\ell$ in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Rev. Lett. 108 (2012) 111804, doi:10.1103/PhysRevLett.108.111804, arXiv:1202.1997.

[22] CMS Collaboration, “Search for the standard model Higgs boson decaying to W^+W^- in the fully leptonic final state in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 710 (2012) 91, doi:10.1016/j.physletb.2012.02.076, arXiv:1202.1489.

[23] CMS Collaboration, “Search for neutral Higgs bosons decaying to tau pairs in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 713 (2012) 68, doi:10.1016/j.physletb.2012.05.028, arXiv:1202.4083.

[24] CMS Collaboration, “Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 710 (2012) 284, doi:10.1016/j.physletb.2012.02.085, arXiv:1202.4195.

[25] M. Della Negra et al., “Muon trigger and identification”, in Proceedings of the Large Hadron Collider Workshop, G. Jarlskog and D. Rein, eds., p. 467. Aachen, Germany, 1990. CERN 90-10-V-3/ECFA 90-133-V-3.

[26] CMS Collaboration, “Letter of intent by the CMS Collaboration for a general purpose detector at the LHC”, Technical Report CERN-LHCC-92-03, CERN-LHCC-I-1, CERN, (1992).

[27] N. Ellis and T. S. Virdee, “Experimental challenges in high luminosity collider physics”, Ann. Rev. Nucl. Part. Sci. 44 (1994) 609, doi:10.1146/annurev.ns.44.120194.003141.

[28] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[29] CMS Collaboration, “b-Jet Identification in the CMS Experiment”, CMS Physics Analysis Summary CMS-PAS-BTV-11-004, (2012).

[30] CMS Collaboration, “Upsilon production cross section in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Rev. D 83 (2011) 112004, doi:10.1103/PhysRevD.83.112004, arXiv:1012.5545.

[31] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).
[32] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, (2010).

[33] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063

[34] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077

[35] M. Cacciari, G. P. Salam, and G. Soyez, “The catchment area of jets”, JHEP 04 (2008) 005, doi:10.1088/1126-6708/2008/04/005

[36] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual (for version 3.0.2)”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[37] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) 11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[38] CMS Collaboration, “Missing transverse energy performance of the CMS detector”, JINST 6 (2011) 9001, doi:10.1088/1748-0221/6/09/P09001, arXiv:1106.5048.

[39] CMS Collaboration, “Commissioning of the particle-flow event reconstruction with leptons from J/ψ and W decays at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-003, (2010).

[40] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).

[41] S. Baffioni, C. Charlot, F. Ferri et al., “Electron reconstruction in CMS”, Eur. Phys. J. C 49 (2007) 1099, doi:10.1140/epjc/s10052-006-0175-5.

[42] W. Adam, R. Fruhwirth, A. Strandlie et al., “Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC”, J. Phys. G 31 (2005) N9, doi:10.1088/0954-3899/31/9/N01.

[43] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).

[44] S. van der Meer, “Calibration of the effective beam height in the ISR”, Technical Report CERN-ISR-PO-68-31, CERN, Geneva, (1968).

[45] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, “A phenomenological profile of the Higgs boson”, Nucl. Phys. B 106 (1976) 292, doi:10.1016/0550-3213(76)90382-5.

[46] H. M. Georgi, S. L. Glashow, M. E. Machacek et al., “Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions”, Phys. Rev. Lett. 40 (1978) 692, doi:10.1103/PhysRevLett.40.692.

[47] S. L. Glashow, D. V. Nanopoulos, and A. Yildiz, “Associated Production of Higgs Bosons and Z Particles”, Phys. Rev. D 18 (1978) 1724, doi:10.1103/PhysRevD.18.1724.
[48] R. N. Cahn, S. D. Ellis, R. Kleiss et al., “Transverse Momentum Signatures for Heavy Higgs Bosons”, Phys. Rev. D 35 (1987) 1626, doi:10.1103/PhysRevD.35.1626

[49] D. L. Rainwater and D. Zeppenfeld, “Searching for $H \rightarrow \gamma\gamma$ in weak boson fusion at the LHC”, JHEP 12 (1997) 005, doi:10.1088/1126-6708/1997/12/005, arXiv:hep-ph/9712271

[50] J. F. Gunion, G. L. Kane, and J. Wudka, “Search techniques for charged and neutral intermediate mass Higgs bosons”, Nucl. Phys. B 299 (1988) 231, doi:10.1016/0550-3213(88)90284-2

[51] D. L. Rainwater, D. Zeppenfeld, and K. Hagiwara, “Searching for $H \rightarrow \tau\tau$ in weak boson fusion at the CERN LHC”, Phys. Rev. D 59 (1998) 014037, doi:10.1103/PhysRevD.59.014037, arXiv:hep-ph/9808468.

[52] D. L. Rainwater and D. Zeppenfeld, “Observing $H \rightarrow W(\ast)W(\ast) \rightarrow e^\pm \mu^\mp p_T$ in weak boson fusion with dual forward jet tagging at the CERN LHC”, Phys. Rev. D 60 (1999) 113004, doi:10.1103/PhysRevD.60.113004, arXiv:hep-ph/9906218 Also Erratum, doi:10.1103/PhysRevD.61.099901.

[53] A. Djouadi, M. Spira, and P. M. Zerwas, “Production of Higgs bosons in proton colliders: QCD corrections”, Phys. Lett. B 264 (1991) 440, doi:10.1016/0370-2693(91)90375-Z

[54] S. Dawson, “Radiative corrections to Higgs boson production”, Nucl. Phys. B 359 (1991) 283, doi:10.1016/0550-3213(91)90061-2

[55] M. Spira, A. Djouadi, D. Graudenz et al., “Higgs boson production at the LHC”, Nucl. Phys. B 453 (1995) 17, doi:10.1016/0550-3213(95)00379-7, arXiv:hep-ph/9504378

[56] R. V. Harlander and W. B. Kilgore, “Next-to-next-to-leading order Higgs production at hadron colliders”, Phys. Rev. Lett. 88 (2002) 201801, doi:10.1103/PhysRevLett.88.201801, arXiv:hep-ph/0201206.

[57] C. Anastasiou and K. Melnikov, “Higgs boson production at hadron colliders in NNLO QCD”, Nucl. Phys. B 646 (2002) 220, doi:10.1016/S0550-3213(02)00837-4, arXiv:hep-ph/0207004

[58] V. Ravindran, J. Smith, and W. L. van Neerven, “NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions”, Nucl. Phys. B 665 (2003) 325, doi:10.1016/S0550-3213(03)00457-7, arXiv:hep-ph/0302135

[59] S. Catani, D. de Florian, M. Grazzini et al., “Soft-gluon resummation for Higgs boson production at hadron colliders”, JHEP 07 (2003) 028, doi:10.1088/1126-6708/2003/07/028

[60] U. Aglietti, R. Bonciani, G. Degrassi et al., “Two-loop light fermion contribution to Higgs production and decays”, Phys. Lett. B 595 (2004) 432, doi:10.1016/j.physletb.2004.06.063, arXiv:hep-ph/0404071

[61] G. Degrassi and F. Maltoni, “Two-loop electroweak corrections to Higgs production at hadron colliders”, Phys. Lett. B 600 (2004) 255, doi:10.1016/j.physletb.2004.09.008, arXiv:hep-ph/0407249
[62] S. Actis, G. Passarino, C. Sturm et al., “NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders”, *Phys. Lett. B* **670** (2008) 12, doi:10.1016/j.physletb.2008.10.018, arXiv:0809.1301.

[63] C. Anastasiou, R. Boughezal, and F. Petriello, “Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion”, *JHEP* **04** (2009) 003, doi:10.1088/1126-6708/2009/04/003, arXiv:0811.3458.

[64] D. de Florian and M. Grazzini, “Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC”, *Phys. Lett. B* **674** (2009) 291, doi:10.1016/j.physletb.2009.03.033, arXiv:0901.2427.

[65] J. Baglio and A. Djouadi, “Higgs production at the lHC”, *JHEP* **03** (2011) 055, doi:10.1007/JHEP03(2011)055, arXiv:1012.0530.

[66] D. de Florian and M. Grazzini, “Higgs production at the LHC: updated cross sections at $\sqrt{s} = 8$ TeV”, (2012), arXiv:1206.4133.

[67] G. Bozzi, S. Catani, D. de Florian et al., “Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC”, *Nucl. Phys. B* **737** (2006) 73, doi:10.1016/j.nuclphysb.2005.12.022, arXiv:hep-ph/0508068.

[68] D. de Florian, G. Ferrera, M. Grazzini et al., “Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC”, *JHEP* **11** (2011) 064, doi:10.1007/JHEP11(2011)064.

[69] G. Passarino, C. Sturm, and S. Uccirati, “Higgs Pseudo-Observables, Second Riemann Sheet and All That”, *Nucl. Phys. B* **834** (2010) 77, doi:10.1016/j.nuclphysb.2010.03.013, arXiv:1001.3360.

[70] I. W. Stewart and F. J. Tackmann, “Theory Uncertainties for Higgs and Other Searches Using Jet Bins”, *Phys. Rev. D* **85** (2012) 034011, doi:10.1103/PhysRevD.85.034011, arXiv:1107.2117.

[71] A. Djouadi, J. Kalinowski, and M. Spira, “HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension”, *Comput. Phys. Commun.* **108** (1998) 56, doi:10.1016/S0010-4655(97)00123-9, arXiv:hep-ph/9704448.

[72] A. Djouadi, J. Kalinowski, M. Muhlleitner et al., “An update of the program HDECAY”, in *The Les Houches 2009 workshop on TeV colliders: The tools and Monte Carlo working group summary report*. 2010, arXiv:1003.1643.

[73] A. Bredenstein, A. Denner, S. Dittmaier et al., “Precise predictions for the Higgs-boson decay $H \to WW/ZZ \to 4$ leptons”, *Phys. Rev. D* **74** (2006) 013004, doi:10.1103/PhysRevD.74.013004, arXiv:hep-ph/0604011.

[74] A. Bredenstein, A. Denner, S. Dittmaier et al., “Radiative corrections to the semileptonic and hadronic Higgs-boson decays $H \to WW/ZZ \to 4$ fermions”, *JHEP* **02** (2007) 080, doi:10.1088/1126-6708/2007/02/080, arXiv:hep-ph/0611234.

[75] S. Actis, G. Passarino, C. Sturm et al., “NNLO Computational Techniques: the Cases $H \to \gamma\gamma$ and $H \to gg$”, *Nucl. Phys. B* **811** (2009) 182, doi:10.1016/j.nuclphysb.2008.11.024, arXiv:0809.3667.
[76] A. Denner, S. Heinemeyer, I. Puljak et al., “Standard Model Higgs-Boson Branching Ratios with Uncertainties”, Eur. Phys. J. C 71 (2011) 1753, doi:10.1140/epjc/s10052-011-1753-8, arXiv:1107.5909.

[77] M. Ciccolini, A. Denner, and S. Dittmaier, “Strong and Electroweak Corrections to the Production of a Higgs Boson+2 Jets via Weak Interactions at the Large Hadron Collider”, Phys. Rev. Lett. 99 (2007) 161803, doi:10.1103/PhysRevLett.99.161803, arXiv:0707.0381.

[78] M. Ciccolini, A. Denner, and S. Dittmaier, “Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC”, Phys. Rev. D 77 (2008) 013002, doi:10.1103/PhysRevD.77.013002, arXiv:0710.4749.

[79] T. Figy, C. Oleari, and D. Zeppenfeld, “Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion”, Phys. Rev. D 68 (2003) 073005, doi:10.1103/PhysRevD.68.073005, arXiv:hep-ph/0306109.

[80] K. Arnold, M. Bahr, G. Bozzi et al., “VBFNLO: A parton level Monte Carlo for processes with electroweak bosons”, Comput. Phys. Commun. 180 (2009) 1661, doi:10.1016/j.cpc.2009.03.006, arXiv:0811.4559.

[81] P. Bolzoni, F. Maltoni, S.-O. Moch et al., “Higgs production via vector-boson fusion at NNLO in QCD”, Phys. Rev. Lett. 105 (2010) 011801, doi:10.1103/PhysRevLett.105.011801, arXiv:0911.4559.

[82] T. Han and S. Willenbrock, “QCD correction to the $pp \to WH$ and ZH total cross-sections”, Phys. Lett. B 273 (1991) 167, doi:10.1006/jelt.1999.5728.

[83] O. Brein, A. Djouadi, and R. Harlander, “NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders”, Phys. Lett. B 579 (2004) 149, doi:10.1016/j.physletb.2003.10.112, arXiv:hep-ph/0307206.

[84] M. L. Ciccolini, S. Dittmaier, and M. Krämer, “Electroweak radiative corrections to associated WH and ZH production at hadron colliders”, Phys. Rev. D 68 (2003) 073003, doi:10.1103/PhysRevD.68.073003, arXiv:hep-ph/0306234.

[85] R. Hamberg, W. L. van Neerven, and T. Matsuura, “A complete calculation of the order a_s^2 correction to the Drell-Yan K factor”, Nucl. Phys. B 359 (1991) 343, doi:10.1016/0550-3213(91)90064-5.

[86] A. Denner, S. Dittmaier, S. Kallweit et al., “EW corrections to Higgs strahlung at the Tevatron and the LHC with HAWK”, (2011). arXiv:1112.5258.

[87] G. Ferrera, M. Grazzini, and F. Tramontano, “Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO”, Phys. Rev. Lett. 107 (2011) 152003, doi:10.1103/PhysRevLett.107.152003, arXiv:1107.1164.

[88] W. Beenakker, S. Dittmaier, M. Kramer et al., “Higgs radiation off top quarks at the Tevatron and the LHC”, Phys. Rev. Lett. 87 (2001) 201805, doi:10.1103/PhysRevLett.87.201805, arXiv:hep-ph/0107081.

[89] W. Beenakker, S. Dittmaier, M. Kramer et al., “NLO QCD corrections to $t\bar{t}H$ production in hadron collisions”, Nucl. Phys. B 653 (2003) 151, doi:10.1016/S0550-3213(03)00044-0, arXiv:hep-ph/0211352.
[90] S. Dawson, L. H. Orr, L. Reina et al., “Associated top quark Higgs boson production at the LHC”, *Phys. Rev. D* **67** (2003) 071503, doi:10.1103/PhysRevD.67.071503, arXiv:hep-ph/0211438

[91] S. Dawson, C. Jackson, L. H. Orr et al., “Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections”, *Phys. Rev. D* **68** (2003) 034022, doi:10.1103/PhysRevD.68.034022, arXiv:hep-ph/0305087.

[92] M. Botje, J. Butterworth, A. Cooper-Sarkar et al., “The PDF4LHC Working Group Interim Recommendations”, (2011). arXiv:1101.0538

[93] S. Alekhin, S. Alioli, R. D. Ball et al., “The PDF4LHC Working Group Interim Report”, (2011). arXiv:1101.0536

[94] H.-L. Lai, M. Guzzi, J. Huston et al., “New parton distributions for collider physics”, *Phys. Rev. D* **82** (2010) 074024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.

[95] A. D. Martin, W. J. Stirling, R. S. Thorne et al., “Parton distributions for the LHC”, *Eur. Phys. J. C* **63** (2009) 189, doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.

[96] NNPDF Collaboration, “Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology”, *Nucl. Phys. B* **849** (2011) 296, doi:10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300.

[97] C. Anastasiou, S. Buehler, F. Herzog et al., “Inclusive Higgs boson cross-section for the LHC at 8 TeV”, *JHEP* **04** (2012) 004, doi:10.1007/JHEP04(2012)004, arXiv:1202.3638.

[98] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti et al., “Handbook of LHC Higgs Cross Sections: 2. Differential Distributions”, (CERN, Geneva, 2012). arXiv:1201.3084.

[99] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[100] S. Alioli, P. Nason, C. Oleari et al., “NLO Higgs boson production via gluon fusion matched with shower in POWHEG”, *JHEP* **04** (2009) 002, doi:10.1088/1126-6708/2009/04/002.

[101] P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, *JHEP* **02** (2010) 037, doi:10.1007/JHEP02(2010)037.

[102] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026.

[103] G. Bozzi, S. Catani, D. de Florian et al., “The q_T spectrum of the Higgs boson at the LHC in QCD perturbation theory”, *Phys. Lett. B* **564** (2003) 65, doi:10.1016/S0370-2693(03)00656-7.

[104] C. Anastasiou, K. Melnikov, and F. Petriello, “Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order”, *Nucl. Phys. B* **724** (2005) 197, doi:10.1016/j.nuclphysb.2005.06.036.
[105] C. Anastasiou, S. Bucherer, and Z. Kunszt, “HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses”, JHEP 10 (2009) 068, doi:10.1088/1126-6708/2009/10/068.

[106] S. Gieseke, D. Grellscheid, K. Hamilton et al., “Herwig++ 2.0 Release Note”, (2006). arXiv:hep-ph/0609306.

[107] J. Alwall, P. Demin, S. de Visscher et al., “MadGraph/MadEvent v4: the new web generation”, JHEP 09 (2007) 028, doi:10.1088/1126-6708/2007/09/028, arXiv:0706.2334.

[108] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, (2011).

[109] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2.

[110] A. L. Read, “Presentation of search results: the CLs technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[111] E. Gross and O. Vitells, “Trial factors for the look elsewhere effect in high energy physics”, Eur. Phys. J. C 70 (2010) 525, doi:10.1140/epjc/s10052-010-1470-8, arXiv:1005.1891.

[112] G. Cowan, K. Cranmer, E. Gross et al., “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.

[113] L. Moneta, K. Belasco, K. Cranmer et al., “The RooStats Project”, in 13th Int. Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2010). 2010. arXiv:1009.1003 PoS ACAT:057.

[114] C. J. Seez, T. S. Virdee, L. Di Lella et al., “Photon decay modes of the intermediate mass Higgs”, in Proceedings of the Large Hadron Collider Workshop, G. Jarlskog and D. Rein, eds., p. 474. Aachen, Germany, 1990. CERN 90-10-V-2/ECFA 90-133-V-2.

[115] H.-J. Yang, B. P. Roe, and J. Zhu, “Studies of boosted decision trees for MiniBooNE particle identification”, Nucl. Instrum. Meth. A 555 (2005) 370, doi:10.1016/j.nima.2005.09.022.

[116] H. Vöss, A. Höcker, J. Stelzer et al., “TMVA: Toolkit for Multivariate Data Analysis with ROOT”, in XI Int. Workshop on Advanced Computing and Analysis Techniques in Physics Research. 2007. arXiv:physics/0703039 PoS ACAT:040.

[117] R. J. Barlow, “Event classification using weighting methods”, J. Comp. Phys. 72 (1987) 202, doi:10.1016/0021-9991(87)90078-7.

[118] M. Della Negra, D. Froidevaux, K. Jakobs et al., “Search for H → Z′Z′ → 4 leptons at the LHC”, in Proceedings of the Large Hadron Collider Workshop, G. Jarlskog and D. Rein, eds., p. 509. Aachen, Germany, 1990. CERN 90-10-V-2/ECFA 90-133-V-2.

[119] N. Cabibbo and A. Maksymowicz, “Angular Correlations in K_{e4} Decays and Determination of Low-Energy ππ Phase Shifts”, Phys. Rev. B 137 (1965) 438, doi:10.1103/PhysRev.137.B438 Also Erratum, doi:10.1103/PhysRev.168.1926.
[120] Y. Gao, A. V. Gritsan, Z. Guo et al., “Spin determination of single-produced resonances at hadron colliders”, Phys. Rev. D 81 (2010) 075022, doi:10.1103/PhysRevD.81.075022, arXiv:1001.3396

[121] A. De Rujula, J. Lykken, M. Pierini et al., “Higgs look-alikes at the LHC”, Phys. Rev. D 82 (2010) 013003, doi:10.1103/PhysRevD.82.013003, arXiv:1001.5300.

[122] CMS Collaboration, “Search for a Higgs boson in the decay channel $H \to ZZ(\ast) \to q\bar{q}l^+l^-$ in pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 04 (2012) 036, doi:10.1007/JHEP04(2012)036, arXiv:1202.1416.

[123] S. Y. Choi, D. J. Miller, M. M. Muhlleitner et al., “Identifying the Higgs spin and parity in decays to Z pairs”, Phys. Lett. B 553 (2003) 61, doi:10.1016/S0370-2693(02)03191-X, arXiv:hep-ph/0210077.

[124] M. Dittmar and H. K. Dreiner, “How to find a Higgs boson with a mass between 155 GeV and 180 GeV at the CERN LHC”, Phys. Rev. D 55 (1997) 167, doi:10.1103/PhysRevD.55.167, arXiv:hep-ph/9608317.

[125] CMS Collaboration, “Performance of τ-lepton reconstruction and identification in CMS”, JINST 7 (2011) P01001, doi:10.1088/1748-0221/7/01/P01001.

[126] CMS Collaboration, “Search for Neutral MSSM Higgs Bosons Decaying to Tau Pairs in pp Collisions at $\sqrt{s} = 7$ TeV”, Phys. Rev. Lett. 106 (2011) 231801, doi:10.1103/PhysRevLett.106.231801, arXiv:1104.1619.

[127] A. Denner, S. Dittmaier, S. Kallweit et al., “Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK”, JHEP 03 (2012) 075, doi:10.1007/JHEP03(2012)075, arXiv:1112.5142.

[128] J. Gallicchio and M. D. Schwartz, “Seeing in Color: Jet Superstructure”, Phys. Rev. Lett. 105 (2010) 022001, doi:10.1103/PhysRevLett.105.022001, arXiv:1001.5027.

[129] L. D. Landau, “On the angular momentum of a two-photon system”, Dokl. Akad. Nauk 60 (1948) 207.

[130] C. N. Yang, “Selection Rules for the Dematerialization of a Particle into Two Photons”, Phys. Rev. (1950) 242, doi:10.1103/PhysRev.77.242.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer, M. Hoch, N. Hörmann, J. Hrbacek, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, W. Majerotto, I. Mikulec, M. Pernicka, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schönbeck, J. Strauss, F. Szoncsó, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Chekhovsky, I. Emeliantchik, A. Litomin, V. Makarenko, V. Mossolov, N. Shumeiko, A. Solin, R. Stefanovitch, J. Suarez Gonzalez

Research Institute for Nuclear Problems, Minsk, Belarus
A. Fedorov, M. Korzhik, O. Missevitch, R. Zuyeuski

Universiteit Antwerpen, Antwerpen, Belgium
M. Bansal, S. Bansal, W. Beaumont, T. Cornelis, E.A. De Wolf, D. Druzhkin, X. Janssen, S. Luycx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, O. Devroede, R. Gonzalez Suarez, R. Goorens, A. Kalogeropoulos, M. Maes, A. Olbrechts, S. Tavernier, W. Van Doninck, L. Van Lancker, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, J.P. Dewulf, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, S. Rugovac, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, J. Wickens

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, R. Castello, L. Cerd, J. De Favereau De Jeneret, C. Delaere, P. Demin, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Dauibie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nobrega, V. Oguri, W.L. Prado Da Silva, A. Santoro, A. Sznajder
Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos, C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez, E.M. Gregores, R.L. Iope, C. Lagana, S.M. Lietti, F. Marinho, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
L. Dimitrov, V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov, M. Vutova

Institute of System Engineering and Robotics, Sofia, Bulgaria
C. Roumenin, D. Uzunova, R. Zahariev

University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuhaarov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, K.L. He, C.H. Jiang, W.G. Li, D. Liang, S. Liang, X. Meng, G. Sun, H.S. Sun, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, M. Yang, J. Zang, X. Zhang, Z. Zhang, Z. Zhang, W.R. Zhao, Z. Zhu

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, J. Cai, S. Guo, Y. Guo, W. Li, H.T. Liu, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, Y.L. Ye, L. Zhang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Aly, Y. Assran, A. Awad, S. Elgamal, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Mahrous, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, K. Kannike, M. Muntel, M. Murumaa, M. Raidal, L. Rebane, A. Strumia, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Anttila, J. Hakonen, A. Heikkinen, V. Karimaki, H.M. Katajisto, R. Kinnunen, M.J. Kortelainen, M. Kotamaki, T. Lampen, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka,
T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, T.P. Vanhala, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Anfreville, M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, F. Kircher, M.C. Lemaire, E. Locci, J. Malcles, I. Mandjavidze, A. Nayak, J.P. Pansart, J. Rander, J.M. Reymond, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
J. Badier, S. Baffioni, F. Beaudette, E. Becheva, L. Benhabib, L. Bianchini, M. Bluj13, C. Broutin, P. Busson, M. Cerutti, D. Chamont, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, Y. Geerebaert, R. Granier de Cassagnac, M. Haguenauer, P. Hennion, G. Milleret, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Pagani, T. Romanteau, D. Sabes, R. Salerno, A. Sartirana, Y. Siros, C. Thiebaux, C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram14, J. Andrea, A. Besson, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte14, F. Drouhin14, C. Ferro, J.-C. Fontaine14, D. Gelé, U. Goerlach, C. Goetzmann, L. Gross, D. Huss, P. Juillot, E. Kieffer, A.-C. Le Bihan, J. Pansanel, Y. Patois, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
D. Boutigny, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
G. Baulieu, S. Beauceron, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici5, C. Combaret, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, N. Giraud, M. Gouzevitch, R. Haroutunian, B. Ille, T. Kurca, M. Lethuiller, N. Lumb, H. Mathez, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, M. Vander Donckt, P. Verdier, S. Viret

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
V. Roinishvili, L. Rurua

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
N. Amaglobeli, I. Bagaturia, B. Chiladze, R. Kvadadze, D. Lomidze, R. Shanidze, Z. Tsamalaidze15

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
R. Adolph, G. Anagnostou, C. Autermann, S. Beranek, R. Brauer, W. Braunschweig, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, W. Karpinski, K. Klein, K. Lübelsmeyer, J. Merz, A. Ostapchuk, D. Pandoulas, A. Perieanu, F. Raubach, J. Sammet, S. Schael, D. Schmitz, A. Schultz von Dratzig, R. Siedling, D. Sprenger, H. Weber, B. Wittmer, M. Wlochal, V. Zhukov16
The CMS Collaboration

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, P. Biallass, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, G. Hilgers, K. Hoepfner, C. Hof, T. Klimkovich, D. Klingebiel, P. Kreuzer, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, B. Philipp, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, M. Sowa, J. Steggemann, D. Teyssey, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, I. Glushkov, P. Goettlicher, A. Grebenyuk, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, B. Lewendel, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, C. Muhl, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, J. Olzem, A. Parenti, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, C. Rosmann, M. Rosin, J. Salfeld-Nebgen, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, D. Volyanskyy, R. Walsh, C. Wissing, C. Youngman

University of Hamburg, Hamburg, Germany
V. Blobel, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, K. H. Hoffmann, H. Usemann, M. Imhof, C. Jung, S. Junghans, I. Katkov, U. Kerzel, D. Knoblauch, J.R. Komaragiri, M. Krämer, T. Kuhr, T. Liamsuwan, P. Lobelle Pardo, D. Martschei, A. Menchikov, X. Mol, D. Mörmann, S. Mueller, Th. Müller, D. Neuberger, M.B. Neuland, M. Niegert, C. Nörenberg, O. Oberst, A. Oehler, T. Ortega Gomez, J. Ott, C. Piasecki, A. Poschlod, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, S. Röcker, F. Roederer, A. Sabelke, C. Saout, A. Scheurer, D. Schieferdecker, P. Schieferdecker, F.-P. Schilling, M. Schmaltz, G. Schott, W. Schwerdtfeger, H.J. Simonis, A. Skiba, F.M. Stober, A. Theel, W.H. Thüemmler, D. Troendle, A. Trunov, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, M. Zeise, E.B. Ziebarth, M. Zvada

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Bauer, J. Berger, P. Blüm, C. Böser, V. Buege, Z.Y. Chen, S. Chowdhury, T. Chwalek, D. Daeuwel, W. De Boer, A. Descroix, A. Dierlamm, G. Dirkes, M. Fahrer, M. Feindt, U. Felzmann, M. Frey, A. Furgeri, I. Gebauer, A. Gessler, J. Gruschke, M. Guthoff, C. Hackstein, F. Hartmann, F. Hauler, T. Hauth, S. Heier, S.M. Heindl, M. Heinrich, A. Heiss, H. Held, K.H. Hoffmann, S. Honc, U. Husemann, M. Imhof, C. Jung, S. Junghans, I. Katkov, U. Kerzel, D. Knoblauch, J.R. Komaragiri, M. Krämer, T. Kuhr, T. Liamsuwan, P. Lobelle Pardo, D. Martschei, A. Menchikov, X. Mol, D. Mörmann, S. Mueller, Th. Müller, D. Neuberger, M.B. Neuland, M. Niegert, C. Nörenberg, O. Oberst, A. Oehler, T. Ortega Gomez, J. Ott, C. Piasecki, A. Poschlod, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, S. Röcker, F. Roederer, A. Sabelke, C. Saout, A. Scheurer, D. Schieferdecker, P. Schieferdecker, F.-P. Schilling, M. Schmaltz, G. Schott, W. Schwerdtfeger, H.J. Simonis, A. Skiba, F.M. Stober, A. Theel, W.H. Thüemmler, D. Troendle, A. Trunov, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, M. Zeise, E.B. Ziebarth, M. Zvada

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, M. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou
University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, P. Zalan

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, A. Fenyvesi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari, G. Zilizi

Panjab University, Chandigarh, India
S.B. Beri, V. Bhandari, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, S. Chatterji, B.C. Choudhary, P. Gupta, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R.K. Choudhury, D. Dutta, M. Ghodgaonkar, S. Kailas, S.K. Kataria, V. Kumar, P. Mehta, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Chondravankar, P.V. Deshpande, S.N. Ganguli, S. Ganguly, S. Gosh, M. Guha, G. Kole, M. Maity, K. Mazumdar, G.B. Mohanty, B. Parida, M.R. Patil, R. Raghavan, K. Sudhakar, N. Wickramage

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
F. Ardalan, H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, G. De Robertis, G. Donvito, L. Fiore, G. Iaselli, F. Loddo, L. Silvestris, G. Singh, V. Spinoso, R. Venditti, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, P. Capiluppi, A. Castro, F.R. Cavallo, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, B. Marangelli, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G. Sirotti, R. Travaglini.
INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Noto, R. Potenza, M.A. Saiz, A. Tricomi, C. Tuve.

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglini, V. Ciulli, C. Cevinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, C. Genta, S. Gonzi, M. Meschini, S. Paoletti, G. Parrini, R. Ranieri, G. Sguazzoni, A. Tropiano.

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo.

INFN Sezione di Genova, Genova, Italy
P. Fabbrin, S. Farinon, M. Greco, R. Musenich, S. Tosi.

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, L. Carbone, P. D’Angelo, F. De Guio, L. Di Matteo, P. Dini, F.M. Farina, S. Fiorendi, S. Gennai, A. Ghezzi, S. Malvezzi, R.A. Manzoni, A. Martelli, A. Massironi, D. Menasce, L. Moroni, N. Negri, M. Paganoni, D. Pedrini, A. Pullia, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis.

INFN Sezione di Napoli, Università di Napoli “Federico II”, Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, N. Cavallo, A. De Cosa, O. Dogangun, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci.

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, M. Bellato, M. Benettoni, M. Biasotto, B. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Gasparin, U. Gasparini, P. Giubilato, F. Gonella, A. Gozzelino, M. Gulmini, K. Kanishchev, S. Lacaprara, I. Lazzizzera, M. Loreti, M. Margoni, G. Maron, M. Mazzucato, A.T. Meneguzzo, F. Montecassiano, M. Passaseo, J. Pazzini, M. Pegoraro, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, S. Ventura, P. Zotto, G. Zumerle.

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
U. Berzano, M. Gabusi, S.P. Ratti, C. Riccardi, P. Torre, P. Vitullo.

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, L. Fanò, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, D. Passeri, P. Placidi, F. Romeo, A. Saha, A. Santocchia, L. Servoli, A. Spiezia, S. Taroni, M. Valdata.

INFN Sezione di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
F. Angelini, S. Arezzini, P. Azzurri, G. Bagliesi, A. Basti, R. Bellazzini, J. Bernardini, T. Boccali, F. Bosi, A. Brez, G. Broccolo, F. Calzolari, A. Carboni, R. Castaldi, C. Cerri, A. Ciampa, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, S. Giusti, A. Kraan, L. Latronico, F. Ligabue, S. Linari, T. Tomadzé, L. Martinii, M. Massa, M.M. Massai, E. Mazzone, A. Messineo, A. Moggi, P. Palla, F. Raffaelli, A. Rizzi, G. Sanguinetti, G. Segneri, A.T. Serban, P. Spagnolo, G. Spandre, P. Squillacioti, R. Tchinchin, G. Tonelli, A. Venturi, P.G. Verdini.

INFN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy
S. Baccaro, L. Barone, A. Bartoloni, F. Cavallari, I. Dafinei, D. Del Re, M. Diemoz.
C. Fanelli, M. Grassia,b,5, E. Longoa,b, P. Meridiania,5, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b, I.G. Talamoa

INFN Sezione di Torinoa, Università di Torinob, Università del Piemonte Orientale (Novara)c, Torino, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, C. Peronia,b, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy

F. Ambroglinia,b, S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. Kavkaa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea

T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

K. Butanov, S. Chang, J. Chung, S.W. Ham, D. Han, J. Kang, D.H. Kim, G.N. Kim, J.E. Kim, K.S. Kim, D.J. Kong, M.W. Lee, S. Lee, Y.D. Oh, H. Park, S.R. Ro, D. Son, D.C. Son, J.S. Suh, Y.C. Yang, H. Yusupov

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, Y. Jo, M. Kang, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, K.S. Sim

University of Seoul, Seoul, Korea

M. Choi, G. Hahn, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

M. Janulis, A. Juodagalvis, R. Naujikas

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosí, San Luis Potosí, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand

P. Allfrey, D. Krofcheck
University of Canterbury, Christchurch, New Zealand
A.J. Bell, N. Bernardino Rodrigues, A.P.H. Butler, P.H. Butler, R. Doesburg, D. Pfeiffer, S. Reucroft, H. Silverwood, J.C. Williams

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.H. Ansari, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, H. Czyrkowski, R. Dabrowski, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, W. Oklinski, K. Pozniak, W. Zabolotny, P. Zych

Soltan Institute for Nuclear Studies, Warsaw, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, L. Goscilo, M. Górski, M. Kazana, I.M. Kudla, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
G. Kasprowicz, R. Romaniuk

Laboratário de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
R. Alemany-Fernandez, N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P.Q. Ribeiro, J. Seixas, J. Silva, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, I. Belotelov, P. Bunin, Y. Ershov, M. Gavrilenko, A. Golunov, I. Golutvin, N. Gorbounov, I. Gorbunov, I. Gramenitski, V. Kalagin, A. Kamenev, V. Karjavin, V. Konoplyanikov, V. Korenkov, G. Kozlov, A. Kurenkov, A. Lanev, A. Makakin, A. Malakhov, I. Melnichenko, V.V. Mityshin, P. Moiszenz, D. Oleynik, A. Orlov, V. Palichik, V. Perelygin, A. Petrosyan, M. Savina, R. Semenov, S. Shmatov, S. Shulha, A. Skachkova, N. Skatchkov, V. Smetannikov, V. Smirnov, D. Smolin, E. Tikhonenko, S. Vasil'ev, A. Volodko, A. Zarubin, V. Zhiltsov

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

High Temperature Technology Center of Research & Development Institute of Power Engineering (HTTC RDPE), Moscow, Russia

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Anisimov, A. Dermenev, S. Gninenko, N. Golubev, D. Gorbunov, A. Karneyeu, M. Kirsanov, N. Krasnokov, V. Matveev, A. Pashenkov, G. Pivovarov, V.E. Postov, V. Rubakov, V. Shirinyants, A. Solovey, D. Tlisov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Efroeeva, V. Gavrilov, V. Kaftanov, I. Kiselevich, V. Kolosov, A. Konoplyanikov, M. Kossov, Y. Kozlov, A. Krokhin, D. Litvintsev, N. Lyakhovskaya, A. Oulianov, V. Popov, G. Safronov, S. Semenov, N. Stepanov, V. Stolin, E. Vlasov, V. Zaytsev, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, A. Demiyanov, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Ilyin, A. Kaminskij, V. Klyukhin, O. Kodolova, V. Korotkich, A. Kryukov, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, A. Proskuryakov, L. Sarycheva, V. Savrin, A. Snigirev, I. Vardanyan
P. Spighias, D. Spiga, B.G. Taylor, P. Tropea, J. Troska, A. Tsiropou, V. Veseloy, G.I. Veres, P. Vichoudis, J.R. Vlimant, P. Wertelaers, H.K. Wöhrli, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, D. Feichtinger, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, B. Meier, F. Meier, D. Renker, T. Rohe, T. Sakhelashvili, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, F. Behner, B. Betev, B. Blau, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, Z. Chen, D.R. Da Silva Di Calafiori, S. Dambach, G. Davatz, A. Deisher, G. Dissertori, M. Dittmar, L. Djambazov, M. Donegà, M. Dünser, C. Eggel, J. Eugster, G. Faber, K. Freudenberg, C. Grab, W. Hintz, D. Hits, H. Hofer, O. Holme, I. Horvath, P. Lecomte, W. Lustermann, C. Marchica, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nágeli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, T. Punz, F.J. Ronga, U. Rösler, M. Rossini, L. Sala, A.K. Sanchez, M.-C. Sawley, D. Schinzel, A. Starodumov, B. Stieger, H. Suter, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, P. Trüb, S. Udriot, C. Uorscheler, G. Viertel, H.P. von Gunten, R. Wallny, H.A. Weber, L. Wehrli, J. Weng, S. Zelepoukine

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, W.T. Chen, A. Go, C.M. Kuo, S.W. Li, W. Lin, M.H. Liu, Z.K. Liu, Y.J. Lu, D. Mehterovic, A.P. Singh, R. Volpe, J.H. Wu, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, Z. Gao, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, J.J. Liau, S.W. Lin, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tseng, K. Ueno, Y. Velizhanin, X. Wan, C.C. Wang, M. Wang, J.T. Wei, P. Yeh

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, E. Simili, N. Srimanobhas

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Zeyrek

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

Institute of Single Crystals of National Academy of Science, Kharkov, Ukraine
B. Grynyov
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, S. Lukyanenko, D. Soroka, P. Sorokin

Centre for Complex Cooperative Systems, University of the West of England, Bristol, United Kingdom
M.K.H. Ahmad, A. Branson, R. McClatchey, M. Odeh, J. Shamdasani, K. Soomro

University of Bristol, Bristol, United Kingdom
T. Barrass, F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, W. Lacco, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, E. Bateman, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, B. Camanzi, D.J.A. Cockerill, J.F. Connolly, J.A. Coughlan, L.G. Denton, P.S. Flower, M.J. French, R.J.S. Greenhalgh, R.N.J. Halsall, K. Harder, S. Harper, J.A. Hill, J. Jackson, B.W. Kennedy, A.L. Lintern, A.B. Lodge, E. Ola, M.R. Pearson, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, B.J. Smith, M. Sproston, R. Stephenson, I.R. Tomalin, M.J. Torbet, J.H. Williams, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, J. Ballin, D. Bauer, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, S. Fayer, W. Fergusson, J. Fulcher, D. Futyan, A. Gilbert, A. Gunaratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, J. Jones, G. Karapostoli, M. Kenzie, J. Leaver, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, D.G. Miller, R. Nandi, J. Nash, A. Nikitenko, M. Noy, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D. Rand, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, M. Stoye, A. Tapper, C. Timlin, S. Tourneur, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie, M. Wingham, O. Zorba

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, E. Carrera Jarrin, C. Fantasia, E. Hazen, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak, F. Varela Rodriguez, S. Wu

Brown University, Providence, USA
J. Alimena, S. Bhattacharyya, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, R. Hooper, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang, Z. Unalan

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, M. Case, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, G. Grim, J. Gunion, B. Holbrook, W. Ko, A. Kopecky, R. Lander, F.C. Lin, T. Miceli, P. Murray, M. Nikolic, D. Pellett,
V.D. Elvira, G. Eulisse, D. Evans, D. Fagan, I. Fisk, S. Foulkes, J. Freeman, I. Gaines, Y. Gao, P. Gartung, L. Giacchetti, E. Gottschalk, D. Green, Y. Guo, O. Gutsche, A. Hahn, J. Hanlon, R.M. Harris, J. Hirschauer, B. Holzman, B. Hooberman, J. Howell, C.h. Huang, D. Hufnagel, S. Jindariani, M. Johnson, C.D. Jones, U. Joshi, E. Juska, B. Kilminster, B. Klima, S. Kunori, S. Kwan, K. Larson, C. Leonidopoulos, J. Linacre, D. Lincoln, R. Lipton, J.A. Lopez Perez, S. Los, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, T. McCauley, K. Mishra, S. Moccia, R.K. Mommsen, S. Mrenna, Y. Musienko, S. Muzaffar, C. Newman-Holmes, V. O’Dell, I. Osborne, J. Pivarski, S. Popescu, R. Pordes, O. Prokofyev, V. Rasepovicus, A. Ronzhin, P. Rossman, S. Ryu, E. Sexton-Kennedy, S. Sharma, T.M. Shaw, R.P. Smith, A. Soha, W.J. Spalding, L. Spiegel, W. Tanenbaum, L. Taylor, R. Thompson, A. Tiradani, S. Tkaczyk, N.V. Tran, L. Tuura, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J. Yarba, F. Yumiceva, J.C. Yun, T. Zimmerman

University of Florida, Gainesville, USA
D. Acosta, P. Avery, V. Barashko, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, S. Dolinsky, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, L. Gorn, D. Holmes, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, A. Madorsky, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, B. Scurlock, N. Skhirtladze, M. Snowball, J. Stasko, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, M. Bertoldi, J. Bochenek, J. Chen, W.G.D. Dharmaratna, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, S. Tentindo, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, A. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, M.H. Chung, O. Evdokimov, E.J. Garcia-Solis, L. Gauthier, C.E. Gerber, D.J. Hofman, R. Hollis, A. Iordanova, S. Khalatyan, G.J. Kunde, F. Lacroix, M. Malek, C. O’Brien, C. Silkowski, C. Silvestre, A. Smoron, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, A.S. Ayan, B. Bilki, W. Clarida, P. Debinski, F. Duru, F.D. Ingram, E. McCliment, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, M.J. Miller, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, I. Schmidt, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringe, A. Bean, G. Benelli, D. Coppage, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, V. Radicci, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A. F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, R. Bard, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, T. Grassi, N.J. Hadley, R.G. Kellogg, M. Kim, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, K. Rossato, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, T. Toole, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar, A. Levin, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
D. Bailleux, S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, R. Egeland, G. Franzoni, A. Gude, J. Haupt, A. Inyakin, S.C. Kao, K. Klapproth, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, J. Reidy, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
G. Attebury, E. Avdeeva, K. Bloom, B. Bockelman, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, C. Lundstedt, H. Malbouisson, S. Malik, R. Snihur, G.R. Snow, D. Swanson

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Al-Ali, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, J. Moromisato, D. Nash, J. Swain, D. Trocino, E. Von Goeler, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, B. Gobbi, A. Kubik, N. Odell, R.A. Oiferzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, B. Baumbaugh, D. Berry, A. Brinkerhoff, K.M. Chan, A.H. Heering, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C.J. Rush, V. Sehgal, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal,
D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, T. Wildish, Z. Xie, S.C. Zenz, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, M. Bonnett Del Alamo, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, K. Arndt, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, A. Bujak, M. De Mattia, A. Everett, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, J. Lee, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, J. Miyamoto, N. Neumeister, C. Rott, A. Roy, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, S.J. Lee, W. Li, J.H. Liu, M. Matveev, B.P. Padley, R. Redjimi, J. Roberts, A. Tumanov, P. Yepes, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, H. Budd, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, G. Ginther, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, S. Korjenevski, D.C. Miner, D. Orbaker, W. Sakumoto, P. Slattery, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, G. Ragghianti, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
O. Bouhal, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon66, V. Khotilovich, R. Montalvo, C.N. Nguyen, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, A. Sill, I. Volobouev, R. Wigmans

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, D. Engh, C. Flores, W. Gabella, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
D. Andelin, M.W. Arenton, M. Balazs, S. Boutle, S. Conetti, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, D. Phillips II, J. Wood
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, M. Mattson, C. Milstêne, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, D. Belknap, J.N. Bellinger, L. Borrello, D. Bradley, D. Carlsmit, M. Cepeda, I. Crotty, S. Dasu, F. Feyzi, E. Friis, T. Gorski, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, J. Lackey, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, S. Lusin, M. Magrans de Abril, W. Maier, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, D. Reeder, I. Ross, A. Savin, W.H. Smith, J. Swanson, D. Wenman

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Now at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Moscow State University, Moscow, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Visva-Bharati, Santiniketan, India
23: Also at Sharif University of Technology, Tehran, Iran
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
26: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
27: Also at Università della Basilicata, Potenza, Italy
28: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
29: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
30: Also at Università degli studi di Siena, Siena, Italy
31: Also at University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania
32: Also at ENEA - Casaccia Research Center, S. Maria di Galeria, Italy
33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
34: Also at INFN Sezione di Padova; Università di Padova; Università di Trento (Trento), Padova, Italy
35: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
36: Also at University of California, Los Angeles, Los Angeles, USA
37: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
38: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
39: Also at University of Athens, Athens, Greece
40: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
41: Also at Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
42: Also at The University of Kansas, Lawrence, USA
43: Also at Paul Scherrer Institut, Villigen, Switzerland
44: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
45: Also at University of Wisconsin, Madison, USA
46: Also at Gaziosmanpasa University, Tokat, Turkey
47: Also at Adiyaman University, Adiyaman, Turkey
48: Also at Izmir Institute of Technology, Izmir, Turkey
49: Also at The University of Iowa, Iowa City, USA
50: Also at Mersin University, Mersin, Turkey
51: Also at Ozyegin University, Istanbul, Turkey
52: Also at Kafkas University, Kars, Turkey
53: Also at Suleyman Demirel University, Isparta, Turkey
54: Also at Ege University, Izmir, Turkey
55: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
56: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
57: Also at Utah Valley University, Orem, USA
58: Also at Institute for Nuclear Research, Moscow, Russia
59: Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
60: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
61: Also at Los Alamos National Laboratory, Los Alamos, USA
62: Also at Argonne National Laboratory, Argonne, USA
63: Also at Erzincan University, Erzincan, Turkey
64: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
65: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
66: Also at Kyungpook National University, Daegu, Korea