Estratificação para predizer a resposta ao tratamento antioxidante em terapia intensiva: um estudo translacional

INTRODUÇÃO

A sepse persiste como importante desafio para a área da saúde, com milhões de casos a cada ano, elevadas taxas de mortalidade e morbidade, e comprometimento da qualidade de vida daqueles que a ela sobrevivem. (1) Já se propuseram diversas estratégias para melhorar a mortalidade na sepse, sendo uma delas o uso de biomarcadores para predizer a resposta ao tratamento. (2) Com o uso de diferentes biomarcadores, desde citocinas até achados ecocardiográficos, é possível desenvolver uma abordagem que permita uma predição acurada da mortalidade em modelos de sepse em animais. (3-6) Neste contexto, foi proposto que uma avaliação individualizada da condição/risco de morte do animal de um ponto de vista imunoinflamatório, com base nos níveis de interleucina-6 para separar os animais que receberam antioxidantes, o efeito protetor só foi observado nos animais que tinham níveis elevados de interleucina-6. O efeito antioxidante de N-acetilcisteína mais desferroxamina foi similar nos dois grupos, porém observou-se diminuição significante dos níveis plasmáticos de interleucina-6 no grupo que apresentava elevado nível de interleucina-6. Em comparação com pacientes tratados com antioxidantes no subgrupo que tinha baixos níveis plasmáticos de interleucina-6, aqueles que tinham níveis elevados de interleucina-6 tiveram menor incidência de lesão renal aguda, porém não foram diferentes em termos de severidade da lesão renal aguda ou da mortalidade na unidade de terapia intensiva.

Conclusão: Direcionar a terapia antioxidante para um elevado fenótipo inflamatório selecionaria uma população responsiva.

Descritores: Interleucina-6; Antioxidantes; Sepse; Mediadores da inflamação; Modelos animais; Ratos

DOI: 10.5935/0103-507X.20200016
Estratificação para predizer a resposta ao tratamento antioxidante em terapia intensiva

(IL-6), permite imunomodulação focalizada e melhora da sobrevivência apenas no grupo-alvo.\(^{(7,8)}\) Esta mesma abordagem foi utilizada, de forma retrospectiva, para determinar a eficácia da terapia antifator de necrose tumoral (anti-TNF) apenas em um subgrupo de pacientes sépticos que apresentavam elevados níveis de IL-6.\(^{(9)}\)

O uso de antioxidantes na sepse ainda é assunto para debates.\(^{(10)}\) A despeito de sua eficácia geral nos modelos em animais,\(^{(11-14)}\) os resultados do uso de antioxidantes em seres humanos ainda são inconclusivos.\(^{(14-16)}\) Já foi demonstrada a vantagem do uso combinado de diferentes antioxidantes, N-aceticisteína (NAC) mais desferroxamina (DFX), em comparação com seu uso isoladamente, em diferentes modelos de doença crítica em animais.\(^{(11-13)}\) Quando se administraram NAC e DFX a seres humanos, ocorreu diminuição dos níveis de dano oxidativo e de parâmetros inflamatórios.\(^{(17)}\) porém seu uso não diminuiu a incidência de lesão renal aguda (LRA).\(^{(18)}\) Neste contexto, o uso de biomarcadores poderia levar à seleção de um subgrupo para utilização de NAC mais DFX.

Para verificar esta abordagem em um cenário de tratamento com alvo específico, formulamos a hipótese de que é possível estratificar tanto animais sépticos quanto pacientes críticos por meio da utilização dos níveis plasmáticos de IL-6, para identificar os potenciais respondedores à terapia antioxidante.

O objetivo deste estudo foi avaliar a efetividade da estratificação para identificar e escolher alvos para terapia antioxidante em um modelo de sepse letal em animais e pacientes que desenvolveram hipotensão prolongada.

MÉTODOS

Animais e delineamento do estudo

Utilizamos ratos Wistar adultos, com 2 meses de idade (250 – 300g). Os animais foram mantidos em grupos de cinco, com livre acesso a alimentos e água, e em ciclos de luz e sombra de 12 horas (luzes acasas às 7h) a uma temperatura de 22º C ± 1ºC. Todos os procedimentos experimentais foram conduzidos em conformidade com as diretrizes da National Institutes of Health, tendo sido obtida aprovação do comitê institucional de ética em pesquisa da Universidade do Extremo Sul Catarinense sob o protocolo número 018/2019-1.

Modelo de ligação e perfuração cecal

Os ratos machos Wistar foram submetidos a um procedimento de ligadura e punção do ceco (CLP - cecal ligation puncture) conforme descrição prévia,\(^{(19)}\) com ligeiras modificações.\(^{(20)}\) Em resumo, sob condições de assepsia, procedeu-se à laparotomia de 3cm na linha média para exposição do ceco. O ceco foi ligado firmemente com sutura de seda 3.0 em sua base, abaixo da válvula ileocecal, e perfurado uma vez com uma agulha de calibre 14. O ceco foi, então, delicadamente espremido, para extravasar uma pequena quantidade de fezes a partir do local da perfuração. Os animais foram ressuscitados com utilização de solução fisiológica regular (30mL/kg) por via subcutânea imediatamente após, e 12 horas após o procedimento de CLP. Para minimizar a variabilidade entre os diferentes experimentos, o procedimento sempre foi realizado pelo mesmo pesquisador. Todos os animais foram devolvidos às suas gaiolas com acesso livre a alimentos e água.

Protocolos experimentais

Os animais foram estudados em dois diferentes protocolos. No primeiro protocolo (n = 90), foi induzida a sepse, e, 3 horas após, foi colhido sangue da veia caudal para determinar os níveis de IL-6, tendo sido iniciado o tratamento. No segundo protocolo (n = 90), foi induzida a sepse; 3 horas mais tarde, foi colhido o sangue, e o tratamento foi iniciado 12 horas após a CLP. Em ambos os momentos, os animais foram randomizados para receber antibióticos, que consistiram em ceftriaxona na dose de 30mg/kg, a cada 12 horas, e clindamicina 25mg/kg, a cada 8 horas, a partir de 3 horas ou 12 horas após a CLP, formando o grupo antibióticos (Grupo ATB) ou o grupo antibióticos mais NAC 20mg/kg a cada 6 horas e mais DFX 20mg/kg, uma vez ao dia (Grupo ATX) por 3 dias consecutivos. Para predizer a resposta aos antioxidantes (ATX), os animais foram divididos em (1) grupo com níveis elevados de IL-6 (IL-6 ≥ 2000pg/mL) e (2) grupo com níveis baixos de IL-6 (IL-6 < 2000pg/mL). Estes valores de IL-6 no plasma se basearam em estudos prévios\(^{(21)}\) e foram confirmados por estudos piloto em nosso modelo. Nestes experimentos, a taxa de mortalidade dos animais foi registrada em um período de 5 dias.

Em ambos os protocolos, procedeu-se à coleta de sangue da veia caudal 24 horas após a CLP, para determinar os níveis de citocina plasmática e os parâmetros de dano oxidativo.

Mensurações

Como indicador de dano oxidativo, utilizou-se a formação de espécies reativas de ácido tiobarbitúrico (TBARS) durante reação de aquecimento ácido, conforme previamente descrito.\(^{(22)}\) Em resumo, as amostras foram misturadas com 1mL de ácido tricloroacético 10% e ácido TBARS 0,67% e, então, aquecidas em banho-maria por 15 minutos. A determinação de espécies reativas de
ácido TBARS foi realizada por absorbância a 535nm com utilização de 1,1,3,3-tetrametoxipropano como padrão externo. Para minimizar a ocorrência de peroxidação durante o procedimento de ensaio, acrescentou-se hidroxitolueno butilado à mistura reagente de ácido tiobarbitúrico (TBA). Os resultados são expressos como equivalentes a malondialdeído por miligrama de proteína.

O dano oxidativo às proteínas foi avaliado pela determinação de grupos carbonil com base na reação com dinitrofenilhidrazina, como previamente descrito. As proteínas foram precipitadas pela adição de ácido tricloroacético 20% e redissolvidas em dinitrofenilhidrazina, e absorbância lida a 370nm.

A IL-6 foi determinada por ELISA com utilização de kits comercialmente disponíveis (R&D System) e expressa em pg/mL.

Estudo com pacientes

O estudo foi aprovado pelo Comitê de Ética do Hospital São José (CAAE - 0021.0.379.139-08). Para determinar adicionalmente o valor potencial dos níveis de IL-6 para predição da resposta a antioxidantes, foi realizada subanálise de estudo previamente publicado, que determinou a eficácia de NAC + DFX para diminuição da incidência de LRA em pacientes críticos que desenvolveram hipotensão. Em resumo, incluíram-se pacientes que tiveram início novo de 30 minutos consecutivos de hipotensão arterial, definida como pressão arterial média inferior a 60mmHg, que não tivesse melhorado após infusão de fluidos ou com demanda de medicação vasopressora (gotejamento de dopamina na dose de 10µg/kg/minuto ou gotejamento de norepinefrina, epinefrina, ou vasopressina em qualquer concentração). A primeira dose de NAC mais DFX, ou placebo, deveria ser administrada dentro de 12 horas do cumprimento dos critérios para inclusão. Foi administrada por via endovenosa dose inicial de 50mg/kg de NAC diluída em 250mL de solução glicosada 5% a uma taxa de infusão de 62,5mL/hora. Após a dose inicial, os pacientes receberam infusão contínua de NAC 100mg/kg/dia diluída em solução glicosada 5% por 2 dias consecutivos. A administração de DFX foi realizada na dose de 1.000mg dissolvidos em 250mL de solução glicosada 5% a uma taxa de infusão de 3,75mL/kg/hora. No momento da inclusão, foi colhido sangue para determinação dos níveis de IL-6 com utilização de kits de ELISA comercialmente disponíveis (R&D System). O nível mediano de IL-6 (949pg/mL) foi utilizado para estratificação dos pacientes como níveis de IL-6 altos ou baixos.

Análise estatística

Dano oxidativo e parâmetros inflamatórios foram expressos como média ± desvio padrão e comparados por análise de variância (ANOVA) de duas vias. Nas experimentações de sobrevivência, as curvas de sobrevivência dos diferentes grupos de tratamento foram comparadas com utilização do teste do log-rank. Em seres humanos, realizou-se comparação entre os grupos com utilização do teste do qui-quadrado. A significância estatística foi definida com nível de p < 0,05.

RESULTADOS

Conforme descrição prévia, a administração de NAC mais DFX aumentou a sobrevivência no modelo de CLP, quando realizada 3 horas após a indução da sepse (Figura 1A). Ao se separar com utilização dos níveis de IL-6 os animais que receberam ATX, observou-se que o efeito protetor só foi observado nos animais do grupo com níveis altos de IL-6 (Figura 1B). Foi demonstrado previamente que NAC + DFX diminui o dano oxidativo nesse modelo de sepse grave; assim, procedeu-se à determinação de se esse efeito protetor era restrito aos animais no grupo com altos níveis de IL-6. Como demonstram as figuras 1C e 1D, o efeito antioxidante de NAC + DFX foi similar nos dois grupos quando os antioxidantes foram administrados 3 horas após o procedimento de CLP. Além disto, foi determinado se o tratamento com antioxidantes apresentava efeitos diferentes nos níveis plasmáticos de IL-6. Conforme demonstra a figura 1E, observou-se diminuição significante nos níveis plasmáticos de IL-6 no grupo com alto nível de IL-6, mas não no grupo com baixo nível de IL-6.

Para explorar melhor o potencial da estratificação em grupos, determinamos se o tratamento com ATX foi capaz de melhorar a sobrevivência quando administrado 12 horas após o procedimento de CLP. Como se observa na figura 2A, os efeitos protetores dos antioxidantes não foram significantes quando os fármacos foram administrados 12 horas após a CLP. Apesar disto, observou-se efeito protetor da combinação NAC mais DFX no grupo com alto nível de IL-6, mesmo quando a administração ocorreu 12 horas após a CLP (Figura 2B). Estes efeitos protetores não parecem estar relacionados a diferentes potenciais antioxidantes entre os grupos, já que, em ambos os grupos, os níveis plasmáticos de TBARS e proteínas carbônicos não diferiram quando analisados 24 horas após a CLP (Figuras 2C e 2D). Mais ainda, houve efeito significativamente diferente nos níveis plasmáticos de IL-6 (Figura 2E), conforme demonstrado no grupo após 3 horas.
Figura 1 - Efeitos da administração de antioxidantes 3 horas após indução da sepse em modelo em animais. (A) Taxa de mortalidade comparando o uso de antibióticos com antibióticos mais antioxidantes. (B) Taxa de mortalidade comparando o uso de antibióticos mais antioxidantes nos grupos de animais com alto e baixo nível plasmático de interleucina-6. Níveis plasmáticos de (C) espécies reativas de ácido tiobarbitúrico, (D) proteínas carbonil e (E) interleucina-6 nos grupos com antibióticos, baixos níveis de interleucina-6 e altos níveis de interleucina-6 com antibióticos mais antioxidantes. ATB - antibióticos; ATX - antibióticos mais antioxidantes; IL - interleucina; MDA - malondealdeído. # Diferente do basal, mesmo grupo; * diferente em relação ao grupo com baixa interleucina-6, mesmo grupo. Valor de p < 0,05.

Figura 2 - Efeitos da administração de antioxidantes 12 horas após indução da sepse em um modelo em animais. (A) Taxa de mortalidade comparando o uso de antibióticos com o uso de antibióticos mais antioxidantes; (B) Taxa de mortalidade comparando o uso de antibióticos mais antioxidantes em animais dos grupos com altos e baixos níveis plasmáticos de interleucina-6. Níveis plasmáticos de (C) espécies reativas de ácido tiobarbitúrico, (D) proteínas carbonil e (E) interleucina-6 nos grupos com antibióticos, baixos níveis plasmáticos de interleucina-6 e altos níveis de interleucina-6 com antibióticos mais antioxidantes. ATB - antibióticos; ATX - antibióticos mais antioxidantes; IL - interleucina; MDA - malondealdeído. # Diferente em relação ao basal, mesmo grupo; * diferente em relação ao grupo com baixa interleucina-6, mesmo momento. Valor de p < 0,05.
Foi demonstrado previamente que esta combinação de antioxidantes (NAC + DFX) não conseguiu diminuir a incidência de LRA em pacientes críticos com hipotensão prolongada. Assim, decidiu-se determinar se uma estratégia de estratificação com uso dos níveis de IL-6 poderia detectar pacientes que se beneficiariam desse tratamento. Os pacientes incluídos tinham média de idade de 51 ± 16 anos, distribuição equitativa entre mulheres e homens, e escore Charlson médio de comorbidades de 2,6 ± 2,3, tendo a maioria sido admitida por condições clínicas (80%). O escore Acute Physiology and Chronic Health Evaluation (APACHE II) médio foi de 20 ± 7, e ocorreu diagnóstico de sepse em 52% dos pacientes. Conforme mostra a tabela 1, os pacientes tratados com antioxidantes no subgrupo com elevados níveis de IL-6 tiveram menor incidência de LAR, porém não menor severidade da LRA ou mortalidade na UTI do que os pacientes no subgrupo com baixo IL-6 (Tabela 1).

Tabela 1 - Resultados em pacientes com baixos e altos níveis plasmáticos de interleucina-6 tratados com antioxidantes

Resultado	Grupo	Baixa IL-6	Alta IL-6	Valor de p
	n = 20	n = 20		
Incidência de LRA	16 (80)	10 (50)	0,047	
Severidade da LRA, estágios 2 e 3	9 (45)	6 (30)	0,32	
Óbito na UTI	14 (70)	9 (45)	0,11	

IL- interleucina; LRA – lesão renal aguda; UTI – unidade de terapia intensiva. Resultados expressos por n (%).

DISCUSSÃO

Aqui demonstramos que a administração precoce ou tardia de antioxidantes melhorou a sobrevivência em ratos com altos níveis plasmáticos de IL-6. Além disto, uma estratificação retrospectiva de pacientes por níveis plasmáticos de IL-6 sugere efeitos benéficos do uso de antioxidantes para pacientes com elevados níveis circulantes basais de IL-6 (Figura 3).

Este é um conceito racional, já que a ideia de uma população séptica homogênea não é realista. Além das diferenças nas definições de sepse, há uma vasta gama de combinações clínicas e biológicas que podem ser reunidas em diferentes fenótipos que podem ter diferentes resultados e responder ao tratamento de forma distinta. Recentemente, este conceito foi testado em uma grande base de dados, tendo sido identificado quatro fenótipos de sepse que se correlacionam com padrões de resposta do hospedeiro e resultados clínicos. Além disto, sugeriu-se que estes fenótipos podem ajudar a compreender a heterogeneidade dos efeitos do tratamento.
os óbitos não foram mediados pelo excesso de inflamação condicionada por citocinas.

CONCLUSÃO

Em conclusão, nossos dados indicam que o uso de alvos específicos, mesmo para um tratamento não específico como antioxidantes, pode ser benéfico quando as populações demonstram fenótipos inflamatórios similares.

AGRADECIMENTOS

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-001, Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) e Universidade do Extremo Sul Catarinense (UNESC).

REFERENCES

1. Perner A, Gordon AC, Angus DC, Lamontagne F, Machado F, Russell JA, et al. The intensive care medicine research agenda on septic shock. Intensive Care Med. 2017;43(9):1294-303.
2. Peters van Ton AM, Kox M, Abdo WF, Pickkers P. Precision immunotherapy in hypotensive patients. N-Acetylcysteine plus deferoxamine or placebo was administered within 12 hours of meeting the inclusion criteria in hypotensive patients.
3. Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol. 2006;177(3):1967-74.
4. Osuchowski MF, Welch K, Yang H, Siddiqui J, Remick DG. Chronic sepsis mortality characterized by an individualized inflammatory response. J Immunol. 2007;179(1):623-30.
5. Remick DG. Cytokine therapeutics for the treatment of sepsis: why has nothing worked? Curr Pharm Des. 2003;9(1):75-82.
6. Rudiger A, Dyson A, Felsmann K, Carré JE, Taylor V, Hughes S, et al. Early inflammatory phenotype would select a responsive population.

ABSTRACT

Objective: To examine the effectiveness of stratification to identify and target antioxidant therapy for animal models of lethal sepsis in and patients who develop sustained hypotension.

Methods: Rats were subjected to sepsis induced by cecal ligation and puncture. Animals were divided into two groups: those with high and low plasma levels of interleukin-6. Following stratification, N-acetylcysteine plus deferoxamine or saline was administered to animals starting 3 and 12 hours after surgery. N-Acetylcysteine plus deferoxamine or placebo was administered within 12 hours of meeting the inclusion criteria in hypotensive patients.

Results: N-Acetylcysteine plus deferoxamine increased survival in the cecal ligation and puncture model when administered 3 and 12 hours after sepsis induction. When dividing animals that received antioxidants using plasma interleukin-6 levels, the protective effect was observed only in those animals with high IL-6 levels. The antioxidant effect of N-acetylcysteine + deferoxamine was similar in the two groups, but a significant decrease in plasma interleukin-6 levels was observed in the high-interleukin-6-level group. Compared with patients treated with antioxidants in the low-interleukin-6 subgroup, those in the high-interleukin-6 subgroup had a lower incidence of acute kidney injury but were not different in terms of acute kidney injury severity or intensive care unit mortality.

Conclusion: Targeting antioxidant therapy to a high inflammatory phenotype would select a responsive population.
19. Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49(2):186-96.
20. Ritter C, Andrades M, Frota Júnior ML, Bonatto F, Pinho RA, Polydoro M, et al. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med. 2003;29(10):1782-9.
21. Remick DG, Bolgos GR, Siddiqui J, Shin J, Nemzek JA. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock. 2002;17(6):463-7.
22. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421-31.
23. Levine RL, Garland D, Oliver CN, Arnici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78.
24. Denstaedt SJ, Singer BH, Standiford TJ. Sepsis and nosocomial infection: patient characteristics, mechanisms, and modulation. Front Immunol. 2018;9:2446.
25. Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003-17.
26. Reinhart K, Menges T, Gardlund B, Harm Zwaveling J, Smithes M, Vincent JL, et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: The RAMSES study. Critical Care Med. 2001;29(4):765-9.