Preoperative endoscopic diagnosis of superficial non-ampullary duodenal epithelial tumors, including magnifying endoscopy

Abstract
Superficial non-ampullary duodenal epithelial tumor (SNADET) is defined as a sporadic tumor that is confined to the mucosa or submucosa that does not arise from Vater's papilla, and it includes adenoma and adenocarcinoma. Recent developments in endoscopic technology, such as high-resolution endoscopy and image-enhanced endoscopy, may increase the chances of detecting SNADET lesions. However, because SNADET is rare, little is known about its preoperative endoscopic diagnosis. The use of endoscopic resection for SNADET, which has no risk of metastasis, is increasing, but the incidence of complications, such as perforation, is significantly higher than in any other part of the digestive tract. A preoperative diagnosis is required to distinguish between lesions that should be followed up and those that require treatment. Retrospective studies have revealed certain endoscopic findings that suggest malignancy. In recent years, several new imaging modalities have been developed and explored for real-time diagnosis of these lesion types. Establishing an endoscopic diagnostic tool to differentiate between adenoma and adenocarcinoma in SNADET lesions is required to select the most appropriate treatment. This review describes the current state of knowledge about preoperative endoscopic diagnosis of SNADETs, such as duodenal adenoma and duodenal adenocarcinoma. Newer endoscopic techniques, including magnifying endoscopy, may help to guide these diagnostics, but their additional advantages remain unclear, and further studies are required to clarify these issues.

Key words: Endoscopy; Duodenoscopy; Duodenal neoplasms; Narrow band imaging; Pathology

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: Because superficial non-ampullary duodenal epithelial tumor is rare, a preoperative endoscopic diagnostic technique to differentiate between adenoma and adenocarcinoma has not yet been established. Recently, many new imaging modalities have been developed and explored for use in the real-time diagnosis of these types of lesions. Newer endoscopic techniques, including magnifying endoscopy, may help to guide these diagnostics, but their additional advantages remain unclear, and further studies are required to clarify these issues.

Tsuji S, Doyama H, Tsuji K, Tsuyama S, Tominaga K, Yoshida N, Takemura K, Yamada S, Niwa H, Katayanagi K, Kurumaya H, Okada T. Preoperative endoscopic diagnosis of superficial non-ampullary duodenal epithelial tumors, including magnifying endoscopy. World J Gastroenterol 2015; 21(41): 11832-11841 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i41/11832.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i41.11832

INTRODUCTION

Epithelial tumors of the duodenum are relatively rare[1], with primary duodenal carcinomas comprising only approximately 0.5% of malignant gastrointestinal tumors[2]. Duodenal adenomas are uncommon lesions with a reported prevalence of less than 0.4% in patients undergoing esophago-gastro-duodenoscopy[3,4]. Surgical treatment of non-ampullary duodenal tumors can be invasive because of anatomical complexities. Recent developments in endoscopic technology, such as high-resolution endoscopy and image-enhanced endoscopy, may increase the chances of detecting superficial non-ampullary duodenal epithelial tumor (SNADET) lesions and allow their resection without surgery[5,6]. The prognosis of patients with advanced duodenal carcinomas is poor[7], and early detection and treatment are essential.

Endoscopic resection (ER) is a minimally invasive, local treatment that can be used in cases of SNADET with no risk of metastasis[8]. However, the incidence of complications, such as perforation, that are associated with the use of ER to treat SNADET is significantly higher than in any other part of the digestive tract[5,9,10] because of the thinness of the duodenal wall and its exposure to bile and pancreatic juice[9,11,12]. A preoperative diagnosis is required to distinguish between lesions that should be followed up and those that require treatment. Follow-up without ER for low-grade adenoma (LGA) is acceptable because its risk of progression to cancer is approximately 5%[9,13]. However, because SNADET is rare, much remains unknown about its preoperative endoscopic diagnosis.

SNADET is defined as a sporadic tumor that is confined to the mucosa or submucosa that does not arise from Vater’s papilla, and it includes adenoma and adenocarcinoma. This review focuses on the present status of the preoperative endoscopic diagnosis of SNADETs.

HISTOPATHOLOGICAL DIAGNOSES REFERRED TO THE REVISED VIENNA CLASSIFICATION AND CLINICAL MANAGEMENT

Recently, a new set of categories for classifying gastrointestinal neoplasias (i.e., the Vienna classification) has been proposed (Table 1) to bridge the East-West gap[14]. Adenomas of the gastrointestinal tract can be categorized as LGA (category 3) and high-grade dysplasia (HGD; category 4.1), according to the diagnostic classification of dysplasia established in the revised Vienna classification. Several previous studies[13,15,16] have classified histopathological diagnoses of SNADETs based on the revised Vienna classification. For the purposes of these studies, LGA was included in the revised Vienna Category 3 (C3), and HGD and superficial adenocarcinoma were included in the revised Vienna Category 4 (C4), such that all C3 lesions were non-malignant, and all C4 lesions were classified as cancer. In this review, only LGA lesions are considered to be sporadic non-ampullary adenomas because LGA lesions show a low risk of progression to adenocarcinoma[9,13], and non-ampullary duodenal cancers are also considered to be C4 lesions.

The choice of treatment depends on the overall size of a lesion; the depth of its invasion as assessed endoscopically, radiologically, or ultrasonographically; and general factors, such as a patient’s age and comorbid conditions. For gastric, esophageal, and non-polyoid colorectal carcinomas that are well differentiated or moderately differentiated and show only minimal submucosal invasion (sm1) without lymphatic involvement, local resection is sufficient. Likewise, for polyoid colorectal carcinomas with deeper submucosal invasion in the stalk/base but without lymphatic or blood vessel invasion, complete local resection is considered adequate treatment[14,17].

DEFINITION OF SPORADIC NON-AMPULLARY ADENOMA

Duodenal adenomas that do not involve the major duodenal papilla are characterized as benign epithelial tumors of the small bowel. They may occur sporadically or in the context of genetic syndromes, such as familial adenomatous polyposis or Peutz-Jeghers syndrome. A sporadic non-ampullary adenoma is regarded as a precancerous lesion. Previous reports have suggested that there are two carcinogenesis pathways of duodenal cancer: the adenoma-carcinoma sequence and the development of de novo cancer[18-20]. Sporadic non-ampullary adenoma should be differentiated...
from polyps that occur in genetic syndromes or at the papilla. Polyps are associated with an increased risk of malignancy, and they require different diagnostic and therapeutic strategies than those for sporadic non-ampullary adenomas. Sporadic non-ampullary adenomas account for up to 7% of duodenal polyps that are biopsied using upper endoscopy, which is a prevalence of 1-3 cases per 1000. The mean age at diagnosis is usually in the seventh decade, and the incidence is approximately equal among men and women. The majority of patients are asymptomatic at the time of diagnosis.

DEFINITION OF EARLY NON-AMPULLARY DUODENAL CANCER

Owing to the low prevalence of SNADET, there is no established definition for early non-ampullary duodenal cancer regarding its depth of invasion and risk of lymph node metastasis. Previous studies have followed the rules that are used for early colorectal or gastric cancer and for tumor invasion into the lamina propria, muscularis mucosa (T1a) or submucosa (T1b), regardless of lymph node metastasis. There is little information regarding the pathological risk factors for lymph node metastasis of T1a and T1b in non-ampullary duodenal cancer. Nagatani et al. found no incidence of lymph node metastasis among 40 pT1a cancers, while Fujisawa et al. reported no metastasis among 166 pT1a cancers. The incidence of lymph node metastasis among pT1b cancers was reported to be 5.3%-5.4%.

DIFFERENTIAL DIAGNOSIS BETWEEN SNADET C3 AND C4 LESIONS

Characterization using conventional white light imaging

C3 lesions are usually solitary and sessile; and although they can be located in any part of the duodenum, they are found distally in the majority of patients. Both C3 and C4 lesions arise most frequently in the second portion of the duodenum, especially in the periampullary area.

In a Japanese multicenter study, the mean tumor diameter of C4 lesions was significantly larger than that of C3 lesions. C4 lesions were solitary or showed a predominantly red color significantly more frequently than C3 lesions. There were no significant differences between final histological grade and other endoscopic findings, such as tumor location and macroscopic type (Table 2). Okada et al. showed that a lesion diameter of ≥ 20 mm was significantly predictive of progression to adenocarcinoma. A tumor diameter > 5 mm also seemed indicative for C4 lesion tumors, and this might suggest a recent increase in the number of small C4 lesions of 6-10 mm in diameter. In addition, out of 139 SNADETs, this case series found 46 mucosal carcinomas (33%) and one submucosal carcinoma that had a tumor diameter of 6-10 mm. Lesions with a depression component also tended to have a higher cancerous component. Endoscopic features of C4 lesions included a red color in the tumor and a nodular, rough surface.

Whitish villus, milk-white mucosa, and white opaque substance

Inatsuchi et al. reported that 84% of SNADETs had a whitish villus, which may be helpful in recognizing these lesions under conventional endoscopy. Yoshimura et al. showed that 92% of SNADETs had a milk-white mucosa on conventional endoscopy, which is a common endoscopic finding for C3 and C4 lesions. A white opaque substance (WOS) was reported first by Yao et al. as a substance in the superficial area of a gastric neoplasia that is visualized in magnifying endoscopy with narrow-band imaging (M-NBI). WOS represents intramucosal accumulation of lipid droplets using oil red O staining. Tanaka et al. suggested

Table 1 The revised Vienna classification and clinical management

Category	Diagnosis	Clinical management
1	Negative for neoplasia	Optional follow-up
2	Indefinite for neoplasia	Follow-up
3	Mucosal low-grade neoplasia	Endoscopic resection or follow-up
4	Low-grade adenoma	Endoscopic or surgical local resection
5	Mucosal high-grade neoplasia	Surgical resection

Table 2 Relationship between endoscopic findings and final histological grade

Diameter (mean, mm)	Category 3 (n = 121)	Category 4 (n = 275)	P value
Location (portion)	First 23 19% 46 17% NS	Second 92 76% 205 74%	
Third or fourth 6 5% 24 9%			
Color	Red 36 30% 124 45% < 0.01		
Color or macroscopic type	0- I 29 24% 58 21% NS	0- II a 71 59% 170 62%	
Color or macroscopic type	0- II c 21 17% 47 17%		

Color or macroscopic type is adopted from the predominant color when tumor showed multiple colors or macroscopic types. Data from Goda et al. NS: Not significant.

Tsuji S et al. Endoscopic diagnosis of superficial duodenal tumors

WJG | www.wjgnet.com

Issue 41

Volume 21

November 7, 2015

11834
that whitish villi were a result of lipids in epithelial cells at the villi tips. Whitish villus, milk-white mucosa, and WOS are thought to have the same appearance.

It has been reported that the distribution pattern of milk-white mucosa is classified as either entire or marginal, and the frequency of the marginal type of milk-white mucosa (Figure 1) is significantly higher in C4 lesions compared to C3 lesions\(^{[15]}\). Whitish villus, milk-white mucosa, and WOS are characteristic of SNADETs, and their individual characteristics may also be useful in differentiating between C3 and C4 lesions.

Characterization using magnifying endoscopy with NBI

NBI is an innovative optical image-enhancing technology that uses narrow blue and green wavelengths to increase the conspicuity of vessels\(^{[38]}\). M-NBI enables clear visualization of superficial microanatomy and can be used to differentiate between cancerous and non-cancerous lesions of the digestive tract more accurately than conventional endoscopy\(^{[39-44]}\). However, there have been only a few reports characterizing SNADETs using M-NBI.

Yoshimura \textit{et al}\(^{[15]}\) showed that the frequency of a microvascular pattern network type was significantly higher in C4 lesions. Recently, Kikuchi \textit{et al}\(^{[16]}\) have proposed a diagnostic algorithm of M-NBI for SNADET, as shown in Figure 2. They defined vessels that were dilated, tortuous, or had irregular diameter, size, or shape as having an “unclassified pattern”; all C4 lesions had this pattern\(^{[16]}\). In previous studies, the frequency of an ill-defined mucosal pattern (Figure 3) and mixed-type lesions with multiple surface patterns (Figure 4) were distinctive findings in C4 lesions\(^{[15,16]}\).

Vessel plus surface classification system for magnifying endoscopy with narrow-band imaging

Between December 2008 and January 2015, we retrospectively used ER to investigate both the endoscopic findings and the resected specimens of 64 SNADETs at our hospital. We used the established vessel plus surface (VS) classification system and M-NBI to diagnose early gastric cancer\(^{[41]}\), which is the most commonly used system in clinical practice\(^{[42]}\).

We determined whether there was a demarcation line (DL) between a lesion and the background mucosa. Microvascular (MV) patterns and microsurface (MS) patterns were categorized as regular, irregular, or absent. Lesions presenting with an irregular MV pattern with a DL and/or an irregular MS pattern with a DL were diagnosed as cancerous (C4)\(^{[42]}\).

Table 3 shows a comparison of the M-NBI findings for the 64 lesions based on the VS classification. DLs were observed in all of the lesions (100%). There was no significant difference in MV patterns between the C3 and C4 groups. In the SNADETs, there was a tendency for irregular MV patterns to be observed in C3 and C4 lesions. More than 90% of all of the SNADETs in this study demonstrated WOS in the superficial parts of the lesions, obscuring the morphology of subepithelial microvessels in approximately 40% of all lesions. One explanation might be that WOS made it difficult to evaluate the overall distribution and arrangement of microvessels. An irregular MS pattern was present in 14 lesions (52%) in the C3 group and in 33 lesions (89%) in the C4 group, indicating a significant intergroup difference ($P = 0.0008$). An irregular MS pattern was a reliable marker for differentiating between benign and malignant gastric lesions\(^{[40]}\).

Typical cases in the C3 and C4 groups where M-NBI findings were useful for distinguishing between C3 and C4 are shown in Figure 5A-C (C3) and in Figure 6A-C (C4). False-positive cases characterized by malignant M-NBI diagnoses and benign pathological diagnoses are shown in Figure 7A-C. We found that an irregular MS pattern was significantly more frequent in the C4 group, while there was no significant difference in MV patterns between the C3 and C4 groups. These findings may be useful in distinguishing between carcinomas and benign lesions in SNADETs. However, the additional advantages of M-NBI remain unclear, and further studies, including ones on the relationship between histopathological type and MS findings, are needed.

Table 3 Comparison of magnifying endoscopy with narrow-band imaging findings according to vessel plus surface classification system and final histological grade in all 64 superficial non-ampullary duodenal epithelial tumors

Diagnosis from ER specimens	Category 3 ($n = 27$)	Category 4 ($n = 37$)	P value		
Demarcation line Microvascular pattern; V	27	37	100%	1	
Regular/Absent	10/8	37%/30%	5/17	14%/46%	0.56
Irregular	9	33%	15	41%	
Microsurface pattern; S					
Regular	13	48%	4	11%	0.0008
Irregular	14	52%	33	89%	

ER: Endoscopic resection.
required to clarify these issues.

Magnifying chromoendoscopy
Chromoendoscopy was introduced to improve the success of duodenal polyp detection and differentiation\(^4\)\(^5\)\(^6\). Chromoendoscopy in combination with magnifying endoscopy is useful in distinguishing neoplastic from non-neoplastic colorectal polyps\(^7\). It has been important to show that magnifying endoscopy combined with chromoendoscopy is useful to discriminate between neoplastic and non-neoplastic colonic polyps, based on the pit-pattern classification\(^8\)\(^9\)\(^10\)\(^11\)\(^12\). Endo et al\(^1\)\(^5\)\(^2\) diagnosed patients with sporadic non-ampullary adenoma or non-ampullary duodenal cancer based on magnified images that were stained with crystal violet through the use of the pit-pattern classification for colonic mucosa. Using magnification endoscopy, they categorized SNADETs into convoluted, leaf-like, reticular/sulciolar, and colon-like patterns\(^2\)\(^3\)\(^4\).

Preoperative diagnosis using biopsy
Okada et al\(^1\)\(^3\) analyzed 68 sporadic non-ampullary duodenal adenomas that were diagnosed using biopsy and reported that LGA lesions show a low risk of progression to adenocarcinoma, whereas HGD lesions show a high risk of progression to adenocarcinoma. In a preoperative diagnosis, accurately differentiating
cancer from adenoma is difficult based on biopsy findings alone. Forceps biopsy is recommended for all suspect lesions, although 15%-56% of cancers may be missed at biopsy due to sampling error compared with using surgically resected specimens. In a multicenter study, the sensitivity, specificity and accuracy of preoperative diagnosis using biopsy for final HGD and superficial adenocarcinoma histology were 58%, 93%, and 68%, respectively. In another study, T1a cancer was observed in 13.5% of patients in whom initial biopsies indicated simple adenomas. Owing to the thinness of the duodenal wall, the biopsy procedure itself may induce unintended fibrosis.
Diagnosed as carcinoma.

be considered in some cases that are endoscopically

of damage, and ER as a diagnostic therapy should

perform a biopsy while causing a minimal amount

subsequent ER

associated with a lesion, which may complicate

associated with a lesion, which may complicate

subsequent ER. Consequently, it is necessary to

perform a biopsy while causing a minimal amount

of damage, and ER as a diagnostic therapy should

be considered in some cases that are endoscopically

diagnosed as carcinoma.

Confocal laser endomicroscopy and autofluorescence imaging

In recent years, many new imaging modalities have been developed and explored for use in the real-time diagnosis of duodenal lesions. Confocal laser endomicroscopy (CLE) is a powerful technology that provides magnification × 1000 imaging using intravenous fluorescein as a contrast agent. Currently, there are two types of CLE: probe-based CLE (pCLE) and endoscopic-based CLE (eCLE). In a recent study, pCLE was used along with NBI (GIF H-180; Olympus) for duodenal adenoma diagnosis, and it was concluded that pCLE provided better sensitivity than NBI (92% vs 83%, \(P = 0.8 \)); duodenal adenoma diagnosis criteria for pCLE and NBI in this study were based on Barrett’s esophagus criteria. Pittayanon et al. reported that the diagnostic criteria for duodenal non-adenomatous and adenomatous lesions using pCLE were normal epithelium border with regular capillary pattern and dark/irregular/non-structural mucosa with normal or abnormal capillary networks, respectively. Autofluorescence imaging (AFI) is an endoscopic technique that uses autofluorescence that is emitted from an endogenous fluorophore following exposure to short-wavelength photoexcitation. AFI has not been used to evaluate duodenal and periampullary lesions. Many new imaging modalities seem to be useful, but because of insufficient data on this uncommon entity, a large multicenter study is required to support this concept.

ENDOSCOPIC DIAGNOSIS OF SNADET

EXTENT AND INVASION DEPTH

Determining SNADET margins using conventional endoscopy is easy, as it is similar to detecting epithelial tumors of the colon or rectum. However, it is difficult to differentiate T1a from T1b non-ampullary duodenal cancer using barium studies or endoscopy. Central dimpling or ulceration observed during endoscopy suggests invasive carcinoma. Several previous studies have classified morphological types of superficial SNADETs based on the classification criteria that are used for colorectal tumors. Macroscopic types based on endoscopic features include the protruded pedunculated (Ip), protruded sessile (Is), and semipedunculated (Isp) types and the superficial elevated (IIa), flat (II b), and superficial shallow or depressed (II c) types. Previous studies showed that 0-I or 0-IIa + II c macroscopic types with a red color were usually endoscopic features of submucosal carcinoma. Endoscopic ultrasonography (EUS) is accurate in diagnosing gastrointestinal abnormalities because of its ability to image intestinal wall architecture and its surrounding structures in detail. Tio et al. reported that EUS is accurate in diagnosing duodenal sessile villous adenomas, and it is, therefore, useful in planning treatment. EUS helps to evaluate larger lesions (greater than 2 cm

Figure 7 False-positive magnifying endoscopy with narrow-band imaging diagnosis. A: Endoscopic findings using conventional endoscopy with white light imaging. A whitish, slightly depressed lesion (5 mm in diameter) is observed in the second portion of the duodenum. In this case, magnifying endoscopy with narrow-band imaging diagnosis (M-NBI) examination was conducted before biopsy; B: Endoscopic findings using M-NBI. A clear demarcation line (DL) is visible because of differences in the vessel plus surface (VS) component between the tumor and surrounding mucosa. V: The individual vessels show a variety of morphologies, such as open- and closed-looped and coil-shaped, with no two microvessels sharing the same morphology. The microvessels are anastomosing with each other within the intervening parts but show no consistent regularity. Therefore, this lesion was assessed as an irregular microvascular (MV) pattern; S: This individual section of marginal crypt epithelium (MCE) shows a curved morphology but lacks continuity or a consistent directionality, and the intervening parts are also irregular with unequal sizes. Therefore, this lesion was assessed as an irregular microvascular (MV) pattern; C: The final histological diagnosis was cancer; C: The final histological diagnosis was cancer;
in size) to establish the relationship of a duodenal polyp to the pancreatobiliary tree and to determine endoscopic resectability when biopsy specimens have shown HGD. Preoperative EUS for six submucosal carcinomas enabled the prediction of submucosal invasion with 67% accuracy.

CONCLUSION

From this review, a suggested algorithm for the management of SNADET is shown in Figure 8. Given the heterogeneity of the lesions and the patient population, it is difficult to set guidelines that would encompass all possible scenarios, so each case must be taken on an individual basis. Because the incidence of SNADET is extremely rare, endoscopic findings that suggest early non-ampullary duodenal cancer have not yet been established. As indications for endoscopy increase and as techniques evolve, the rate of duodenal adenoma and duodenal adenocarcinoma detection, especially of small lesions, will likely increase. Newer endoscopic techniques, including magnifying endoscopy, may help to guide these diagnostics, but their additional advantages remain unclear, and further studies are required to clarify these issues.

REFERENCES

1. Endo M, Abiko Y, Oana S, Kudara N, Chiba T, Suzuki K, Koizuka H, Uesugi N, Sugai T. Usefulness of endoscopic treatment for duodenal adenoma. Dig Endosc 2010; 22: 360-365 [PMID: 21175499 DOI: 10.1111/j.1443-1661.2010.01014.x]
2. Alwmark A, Andersson A, Lasson A. Primary carcinoma of the duodenum. Ann Surg 1980; 191: 13-18 [PMID: 7352773 DOI: 10.1097/00000658-198001000-00003]
3. Jepsen JM, Persson M, Jakobsen NO, Christiansen T, Skoubo-Kristensen E, Funch-Jensen P, Kruse A, Thommesen P. Prospective study of prevalence and endoscopic and histopathologic characteristics of duodenal polyps in patients submitted to upper endoscopy. Scand J Gastroenterol 1994; 29: 483-487 [PMID: 8079103 DOI: 10.3109/00365529409092458]
4. Schottenfeld D, Beebe-Dimmer JL, Vigneau FD. The epidemiology and pathogenesis of neoplasia in the small intestine. Ann Epidemiol 2009; 19: 58-69 [PMID: 19064190 DOI: 10.1016/j.amepi.2008.10.004]
5. Goda K, Kakushima N, Ono H, Takao T, Kanemoto H, Sasaki K. Method and timing of resection of superficial non-ampullary duodenal epithelial tumors. Dig Endosc 2014; 26 Suppl 2: 35-40 [PMID: 24750146 DOI: 10.1111/den.12259]
Nagatani T, Takahashi T, Ando Y, Kabeshima Y, Kawakubo H, Matsuura M, Sugihara H, Omori T. Borderline cases between malignancy and maldigenum of the duodenum diagnosed successfully by endoscopic submucosal dissection. Scand J Gastroenterol 2009; 44: 1377-1383 [PMID: 19821793 DOI: 10.1080/030036552093827551]

Nakanishi H, Doyama H, Takemura K, Matsuura N, Tsuji K, Takeda T, Yashiki Y, Asahina Y, Kato H. Endoscopic diagnosis of superficial duodenal tumors. J Gastroenterol 2008; 43: 79-88 [PMID: 18182736 DO: 10.1007/s00535-007-3099-z]

Nakajima A, Hoshino E, Igarashi M. Sporadic nonampullary duodenal adenomas. Gastrointest Endosc 2004; 59: 499-504 [PMID: 15029906 DOI: 10.1016/j.gie.2004.01.035]

Nakajima A, Hoshino E, Igarashi M. Sporadic nonampullary duodenal adenomas, Makino A, Wada M, Kabeshima Y, Takahashi T, Kawakubo H, Matsuura M, Sugihara H, Omori T. Successful endoscopic submucosal dissection for mucosal cancer of the duodenum. Dig Endosc 2010; 22: 49-52 [PMID: 20078665 DOI: 10.1111/j.1445-1661.2009.00917.x]

Okada K, Fujisaki J, Uemura M, Kubota M, Hirasawa T, Ishiyama A, Inamori M, Chino A, Yamamoto Y, Tsuchida T, Nakajima A, Hoshino E, Igarashi M. Sporadic nonampullary duodenal adenoma in the natural history of duodenal cancer: a study of follow-up surveillance. J Gastroenterol 2011; 46: 357-364 [PMID: 21139577 DOI: 10.1038/jag.2010.422]

Ogata E, Ohta H, Nishi M, Kato Y, Yanagisawa A. Indications of endoscopic treatment of early duodenal cancer based on cases reported in the literature (in Japanese). Endosc Digest 1993; 5: 969-976

Okanishi T, Nonaka S, Uedo N, Kaise M, Oyama T, Doyama H, Kokawa K, Shibayama K, Tsuchida T, Ishiyama A, Inamori M, Chino A, Yamamoto Y, Tsuchida T, Nakajima A, Hoshino E, Igarashi M, Sporadic nonampullary duodenal adenoma in the natural history of duodenal cancer: a study of follow-up surveillance. J Gastroenterol 2011; 46: 357-364 [PMID: 21139577 DOI: 10.1038/jag.2010.422]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]

Oka S, Tanaka S, Nagata S, Hiyaama T, Ito M, Kitadai Y, Yoshida M, Haruma K, Chayama K. Clinicopathologic features and endoscopic resection of early primary nonampullary duodenal carcinoma. J Clin Gastroenterol 2003; 37: 381-386 [PMID: 14564184 DOI: 10.1097/00004836-200311000-00006]
Tsujii S et al. Endoscopic diagnosis of superficial duodenal tumors

for diagnosing and delineating early gastric cancer. Endoscopy 2009; 41: 462-467 [PMID: 19418401 DOI: 10.1055/s-0029-1214594]

Ezoe Y, Muto M, Ueno N, Doyama H, Yao K, Oda I, Kaneko K, Kawahara Y, Yoko C, Sugura Y, Ishikawa H, Takeuchi Y, Kaneko Y, Saito Y. Magnifying narrow-band imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology 2011; 141: 2017-2025.e3 [PMID: 21856268 DOI: 10.1053/j.gastro.2011.08.007]

Miwa K, Doyama H, Ito R, Nakanishi H, Hirano K, Inagaki S, Tominaga K, Yoshihisa N, Takemura K, Yamada S, Kaneko K, Katayananagi K, Kurumaya H, Okada T, Yamagishi M. Can magnifying endoscopy with narrow band imaging be useful for low grade adenomas in preoperative biopsy specimens? Gastric Cancer 2012; 15: 170-178 [PMID: 22407064 DOI: 10.1007/s10120-011-0093-6]

Sano Y, Ikematsu H, Fu KI, Emura F, Katagiri A, Horimatsu T, Kaneko K, Soetniko R, Yoshida S. Meshed capillary vessels by use of narrow-band imaging for differential diagnosis of small colorectal polyps. Gastrointest Endosc 2009; 69: 278-283 [PMID: 18951131 DOI: 10.1016/j.gie.2008.04.066]

Picasso M, Filiberti R, Blanchi S, Conio M. The role of chromoendoscopy in the surveillance of the duodenum of patients with familial adenomatous polyposis. Dig Dis Sci 2007; 52: 1906-1909 [PMID: 17406831 DOI: 10.1007/s10620-006-9653-8]

Kiesslich R, Mergener K, Naumann C, Hahn M, Jung M, Koehler HH, Nafe B, Kanzler S, Galle PR. Value of chromoendoscopy and magnification endoscopy in the evaluation of duodenal abnormalities: a prospective, randomized comparison. Endoscopy 2003; 35: 559-563 [PMID: 12822089 DOI: 10.1055/s-2003-40240]

Tischendorf JJ, Wasmuth HE, Koch A, Hecker H, Trautwein C, Winograd R. Value of magnifying chromoendoscopy and narrow band imaging (NBI) in classifying col polyps: a prospective controlled study. Endoscopy 2007; 39: 1092-1096 [PMID: 17020061 DOI: 10.1055/s-2007-96781]

Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumors by magnifying endoscopy. Gastroendosc 1996; 44: 8-14 [PMID: 8836710 DOI: 10.1016/S0004-6636(96)00222-5]

Kato S, Fuji T, Koba I, Sano Y, Fu KI, Parra-Blanco A, Tajiri H, Yoshida S, Rembacken B. Assessment of colorectal lesions using magnifying endoscopy and mucosal dye spraying: can significant lesions be distinguished? Endoscopy 2001; 33: 306-310 [PMID: 11315890 DOI: 10.1055/s-2001-13700]

Elson GM, Kim CY, Fleischer DE, Kozarek RA, Carr-Locke DL, Li TC, Gostout CJ, Heller SJ, Montgomery EA, Al-Kawas FH, Lewis JH, Benjamin SB. High-resolution chro-moendoscopy for classifying colonic polyps: a multicenter study. Gastroendosc 2002; 55: 687-694 [PMID: 11979251 DOI: 10.1016/mge.2002.123619]

Konishi K, Kaneko K, Kurashahi Y, Yamamoto T, Kushima M, Kanda A, Taji H, Mitamura K. A comparison of magnifying and nonmagnifying colonoscopy for diagnosis of colonic polyps: A prospective study. Gastroendosc 2003; 57: 48-53 [PMID: 12518130 DOI: 10.1016/mge.2003.03.31]

Endo M, Matsumoto T, Sugai T. Diagnosis and treatment of duodenal tumors (in Japanese with an English abstract). Gastroenterol Endosc 2014; 56: 3763-377

Blackman E, Nash SV. Diagnosis of duodenal and ampullary epithelial neoplasms by endoscopic biopsy: a clinicopathologic and immunohistochemical study. Hum Pathol 1985; 16: 901-910 [PMID: 4029945 DOI: 10.1016/S0046-8177(85)80129-5]

Matsui K, Kitagawa M. Biopsy study of polyps in the duodenal bulb. Am J Gastroenterol 1993; 88: 253-257 [PMID: 8424430]

Lépléliez V, Chemaly M, Ponchon T, Napoleon B, Saurin JC. Endoscopic resection of sporadic duodenal adenomas: an efficient technique with a substantial risk of delayed bleeding. Endoscopy 2008; 40: 806-810 [PMID: 18828076 DOI: 10.1055/s-2008-1077619]

Dekker E, Boparai KS, Polev JW, Mathus-Vliegen EM, Offerhaus GJ, Kuipers EJ, Fockens P, Dees J. High resolution endoscopy and the additional value of chromoendoscopy in the evaluation of duodenal adenomatosis in patients with familial adenomatous polyposis. Endoscopy 2009; 41: 666-669 [PMID: 19670132 DOI: 10.1055/s-0029-1214980]

Shahid MW, Buchner A, Gomez V, Krishna M, Woodward TA, Raimondo M, Wallace MB. Diagnostic accuracy of probe-based confocal laser endomicroscopy and narrow band imaging in detection of dysplasia in duodenal polyps. J Clin Gastroenterol 2012; 46: 382-389 [PMID: 22499072 DOI: 10.1097/ MCG.0b013e3182477575]

Lopez-Ceron M, van den Broek FJ, Mathus-Vliegen EM, Boparai KS, van Eeden S, Fockens P, Dekker E. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis. Gastrointest Endosc 2013; 77: 542-550 [PMID: 23352497 DOI: 10.1016/j.gie.2012.11.033]

Polglase AL, McLaren WJ, Skinner SA, Kiesslich R, Neurath MF, Delaney PM. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower GI tract. Gastrointest Endosc 2005; 62: 686-695 [PMID: 16246680 DOI: 10.1016/j.gie.2005.05.021]

Meining A. Confocal endomicroscopy. Gastrointest Endosc Clin N Am 2009; 19: 629-635 [PMID: 19917468 DOI: 10.1016/j.gien.2009.07.005]

Pittayanon R, Imrnoop B, Rerknimitr R, kullavanijaya P. Advances in diagnostic endoscopy for duodenal, including ampullary, adenoma. Dig Endosc 2014; 26 Suppl 2: 10-15 [PMID: 24750142 DOI: 10.1111/den.12244]

Uedo N, Ishii H, Tatsuta M, Yamada T, Ogiyama H, Imanaka K, Sugimoto N, Higashino K, Ishihara R, Narahara H, Ishiguro S. A novel videoendoscopy system by using autofluorescence and reflectance imaging for diagnosis of esophagogastric cancers. Gastrointest Endosc 2005; 62: 521-528 [PMID: 16185965 DOI: 10.1016/j.gie.2005.06.031]

Ryan D, Schapiro R, Warshaw A. Villous tumours of the duodenum. Am Surg 1986; 103: 301 [DOI: 10.1097/00000658-19860300-00 015]

Kimmey MB, Martin RW, Haggitt RC, Wang KY, Franklin DW, Silverstein FE. Histologic correlates of gastrointestinal ultrasound images. Gastroenterology 1989; 96: 433-441 [PMID: 2642877]

Tio TL, Sie LH, Verbeek PC, De Wit LT, Tytgat GN. Endosonography in diagnosing and staging duodenal villous adenoma. Gut 1992; 33: 567-568 [PMID: 1582606 DOI: 10.1136/gut.33.4.567]

Adler DG, Qureshi W, Davila R, Gan SI, Lichtenstein D, Rajan E, Shen B, Zuckerman MJ, Fanelli RD, Van Guilder T, Baron TH. The role of endoscopy in ampullary and duodenal adenomas. Gastrointest Endosc 2006; 64: 849-854 [PMID: 17140885 DOI: 10.1016/j.gie.2006.08.044]
