Optimization of Fuel Cost in Electric Power Systems using Harmony Search Algorithm

Ayşe Erdoğan Yıldırım

1Department of Computer Engineering, Faculty of Engineering, Firat University, 23119, Elazığ, TURKEY

Başvuru/Received: 21/10/2020 Kabul / Accepted: 27/03/2021 Çevrimiçi Basım / Published Online: 23/05/2021
Son Versiyon/Final Version: 18/06/2021

Abstract
Fuel Cost Optimization emerges as an important issue in electrical load distribution systems. In this study, the performance of Harmony Search Algorithm, which has a significant place in the literature, has been observed for sample problems in the field of fuel cost optimization. It is aimed to distribute the load provided by 3-unit, 13-unit and 40-unit power plants with minimum cost. Economic load dispatch problem emerges as a multi-objective optimization problem. For this reason, equal weighted scalarization method has been used. Transmission line losses are taken into account in the solution of unit-3 and unit-13 test systems. For this purpose, Kron's transmission line loss formula are used. In the solution of the unit-40 test system, transmission line loss is ignored. The results obtained are presented in comparison with various mathematical, evolutionary and heuristic/meta-heuristic algorithms used in the literature to solve the same problems. The results show that the Harmony Search Algorithm is a successful algorithm for fuel cost optimization in electric load dispatch systems.

Key Words
"Multi-objective optimization, Harmony search algorithm, Fuel cost optimization, Electric power systems, Power distribution systems, Economic load dispatch”

*Sorumlu Yazar: aerdoganyildirim@gmail.com
1. Introduction

Reducing energy production cost is an important issue that can provide great savings in all areas. With the increase of the population and the industrial establishments using energy resources, the energy need is increasing day by day. To provide this need for energy, power plants are expanding, and energy systems are becoming more complex. The use of biofuels such as coal, lignite, and fuel oil in thermal power plants, which account for a significant portion of electricity generation, raises fuel costs and, as a result, production costs. In thermal power plants, as in all fields, lowering energy production costs is critical. In order to save energy, dynamic load management systems in thermal power plants use load estimates obtained from feedback systems. Thus, it aims to develop optimum generator outputs. For these power plants, the fuel cost is calculated by the 2nd order equations that depend on the output power. Optimization algorithms are used in these systems to keep the output power and total cost to a minimum. Because the economic load dispatch problems are discrete optimization problems including nonlinear equations, these problems are difficult to solve with mathematical methods. For this reason, meta-heuristic optimization algorithms that provide fast, easy to apply and effective solutions are preferred instead of classical optimization methods (Chowdhury and Rahman, 1990; Song et al., 1999; Kök and Yalçınöz, 2005; Öztürk et al., 2011; Mohamed, 2017).

Harmony Search Algorithm has an important place among meta-heuristic algorithms as it can exchange candidate solutions between convergent and divergent regions. In this way, the chances of reaching the global optimum without getting stuck at the local optimum are higher than most current optimization methods. Harmony Search Algorithm is reputable among meta-heuristic optimization algorithms with clarity and simplicity in application, having few design parameters, work fast thanks to random operators and its success in achieving optimum. Due to its success in solving many complex problems such as university schedule, congestion management, job shop scheduling, clustering, structural design, renewable energy, water distribution and data mining, it has been preferred for economic load distribution optimization, which is the focus of this article (Abualigah et al., 2020).

In recent years, the heuristic methods that offer fast, practical and effective solutions as an alternative to mathematical methods are mostly used in studies to provide fuel cost optimization in electric power systems. Ross and Kim (1980) proposed the dynamic programming successive approximations (DPSA) algorithm for dynamic economic load distribution with their work. By applying DPSA to two different systems, they have achieved economic load dispatch in the systems with partially more units. Irving and Sterling (1983) created a fast and low memory requirement system with an algorithm developed using the dual revised Simplex method in order to optimize large-scale and dynamic power systems. Yang et al. (1996) have developed an algorithm based on evolutionary programming for electric power dispatch systems with non-linear function. They applied their method to two sample problems and compared the results with dynamic programming, simulated annealing, and genetic algorithms. They also observed the performance of the proposed method for Taipower system. Song et al. (1999) investigated the effectiveness of the Artificial Ant Colony Algorithm for a real system containing up to 40 units of data. Yalçınöz et al. (2002) solved the economic load distribution problem by using Tabu Search Algorithm in test system with 6 generators. Sinha et al. (2003) et al. tested the performance of evolutionary algorithms in the field of economic load distribution. Firstly, they proposed improvement in the basic method based on scaled cost. Secondly, it measured the performance of evolutionary algorithms for problems with non-convex cost curves where gradient-based methods cannot be used. Ah King and Rughooputh (2003) used the Elitist Multi-Objective Evolutionary Algorithm for both environmental friendly and economical load distribution in their studies. Brini et al. (2009) examined the problem of fuel cost optimization for system consisting of thermal energy and wind power plants and tested the IEEE network (30 nodes, 8 machines and 41 lines) using Strength Pareto Evolutionary Algorithm. Tosun et al. (2009) studied on the fuel cost optimization using the method of Simulated Annealing. Duman et al. (2010) presented their solutions, which they obtained using three heuristic algorithms as Genetic Algorithm, Simulated Annealing and Tabu Search Algorithm in comparison for 6 thermal power plants in Turkey. Öztürk et al. (2011) realized the application of economic load distribution for the system with 3 thermal power plants using Genetic Algorithm. Adaryani and Karami (2013) solved and tested multi-objective optimal power flow problem with the IEEE 9-bus system, IEEE 30-bus system and IEEE 57-bus system using Artificial Bee Colony Algorithm. Xiong et al. (2013) applied a multi-strategy ensemble biogeography-based optimization (MsEBBO) algorithm to the load distribution systems including 13, 15, 38 and 40 generators. Sahoo et al. (2015) comparatively analyzed the optimum load distribution applications solved using evolutionary algorithms. Aliyari et al. (2017) proposed a new approach that combines Particle Swarm Optimization with Genetic Algorithm. They evaluated the results by applying their work on 13-unit and 40-unit test systems by without considering the transmission line loss. In their study, Tefek et al. (2018) applied meta-heuristic methods such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Teaching Learning Based Optimization (TLBO) and Gravitational Search Algorithm (GSA) to 3-unit and 13-unit generation systems with valve point load. They evaluated the performance of these algorithms in the economic load dispatch problem. Li et al. (2019) have proposed a multi-population Differential Evolution Algorithm for the economic load distribution problem and solved the problem in different ways by taking and without considering the transmission line loss for 13-unit, 40-unit, 80-unit and 140-unit test systems. Fu et al. (2020) used an Improved Bird Swarm Algorithm (IBSA) for the economic load distribution problem. They applied the algorithm for 6-unit and 15-unit test systems by considering transmission line loss.

In this study, Harmony Search Algorithm, which is a music based meta-heuristic method, is used to optimize the fuel cost utilized during load distribution of electric power plants. In Chapter 2, Harmony Search Algorithm is introduced in detail and the algorithm steps, operators (HMCR, PAR, RS) and flow diagram are given. In Chapter 3, the information is given about the fuel cost optimization problem in electric power systems and the problem and constraints to be used in this study are presented. In Chapter 4, the solution of
fuel cost optimization problem is implemented by Harmony Search Algorithm. The experimental results for Harmony Search Algorithm are given in Chapter 5. It is compared with the solutions of Lagrange and Artificial Bee Colony Algorithm. In the Conclusion part, the results obtained are interpreted.

2. Harmony Search Algorithm

Harmony Search Algorithm has been proposed by Geem et al. (2001). It is a meta-heuristic algorithm based population that models the effort of catching harmony among the sounds of musical instruments. The pitch of a musical instrument determines its harmony quality. Similarly, for an optimization problem, the fitness function determines the importance of decision variables. If the musician gets good harmony, she/he will record it in her/his memory. Likewise, if the algorithm achieves better fitness value, it stores this value in harmony memory. Using these similarities, Harmony Search Algorithm has been designed for optimization problems. Due to its random-based operators, Harmony Search Algorithm is an intuitive method that is fast to operate and easy to design (Geem et al., 2001; Geem, 2009; Mahdavi et al., 2007; Alia and Mandava, 2011).

![Fig 1. The flowchart of Harmony Search Algorithm](image)

In Fig. 1, the flow diagram of Harmony Search algorithm is given. As shown in the figure, the algorithm starts with the creation of the parameters and the harmony memory (HM) according to the problem parameters (Alia and Mandava, 2011). The HM is initially filled with random values that are compatible the parameter boundaries. At the same time, the objective function appropriate for the problem is determined. At this stage, if it is a constrained optimization problem, a method is chosen related to how the constraint function will be effected on the objective function. Then, a new harmony is generated in three ways. These ways are harmony memory consideration rate (HMCR), pitch adjustment rate (PAR) and random selection. If the obtained new harmony is better than anyone in HM, the new harmony is stored instead of the worst harmony in HM. Unless the termination conditions are met, the process of creating new harmony and if necessary, the process of updating the HM is repeated (Fesanghary, 2010; Ceylan and Ceylan, 2013).

2.1. Harmony Memory Consideration Rate (HMCR)

In the applications of Harmony Search Algorithm, the new harmony is determined using three different methods. The first of these is the method of HMCR. HMCR is the process of selecting from existing values in the HM for the new harmony. Accordingly, while the new harmony (x'_i) is randomly chosen from the HM ($x_1^HM, x_2^HM, x_3^HM, ..., x_i^HM$) with the HMCR probability, the new harmony (x'_i) is randomly selected from the solution space (X_i) with (1-HMCR) probability (Gao et al., 2015; Lee and Geem, 2004).
The construction of the selection process is shown in Equation 1.

2.2. Pitch Adjustment Rate (PAR)

Another method used to determine new harmony is Pitch Adjustment Rate (PAR). With the process of PAR, \(\pm r \cdot \text{rand}(0,1) \times \text{bw} \) is added to randomly selected harmonies from the existing HM in the probability of PAR. In the case of (1-PAR), HM is not changed.

\[
x'_i = \begin{cases}
\text{PAR probability} & x'_i \pm r \cdot \text{rand}(0,1) \times \text{bw} \\
(1 - \text{PAR}) \text{ probability} & x'_i
\end{cases}
\]
(2)

Pitch Adjusting is performed according to Equation 2. Here, \(\text{rand}(0,1) \) shows the randomly generated value between 0 and 1. \(\text{bw} \) also indicates the bandwidth value calculated in accordance with the algorithm (Lee and Geem, 2004).

2.3. Random Selection (RS)

If the condition of HMCR is not provided, the random selection process is applied (Gao et al., 2015; Lee and Geem, 2004). The new harmony vector is generated randomly as Equation 3:

\[
x'_{ij} = l_{ij} + (u_{ij} - l_{ij}) \times \text{rand}(0,1)
\]
(3)

Where \(l \) is the lower bound and \(u \) is the upper bound for the parameter of the given problem. And, \(\text{rand}(0,1) \) shows the randomly generated value between 0 and 1.

3. The Fuel Cost Optimization Problem in Power Systems

In power distribution systems, the power requested by the customers are different magnitude. Since, it is not possible to change the location of plant according to the unit fuel cost ($/MW), in order to minimize the line losses on the system, the system must be fed by evaluating the fuel cost of the power plant (Rahman et al., 2006).

The fuel cost of each producing thermal power plant is calculated according to Eq. 4.

\[
F_i = c_i + b_i P_i + a_i P_i^2
\]
(4)

Total fuel cost for all thermal power plants is calculated by Eq. 5-7.

\[
F_T = F_1 + F_2 + \cdots + F_k = \sum_{i=1}^{k} F_i
\]
(5)

\[
F_T = \sum_{i=1}^{n} (c_i + b_i P_i + a_i P_i^2)
\]
(6)

\[
F_T = \sum_{i=1}^{n} F_i(P_i)
\]
(7)

For economic load distribution problem, load capacities should be limited. Moreover, in economic load distribution problems, fuel cost functions are usually expressed as a quadratic equation (Yalcinoz and Altun, 2001; Altun and Yalcinoz, 2008).

Eq. 11 gives the load balance in electrical power systems.

\[
\sum_{i=1}^{n} P_i - P_L = P_D
\]
(11)

Here, \(P_L \) indicates line loss. \(P_D \) shows load demand. In addition, Eq. 12 is used as constraint function.

\[
\sum_{i=1}^{n} P_i - P_L - P_D = 0
\]
(12)

3.1. 3-Unit Test System

In the first application, fuel cost was calculated for three different thermal power plants using different fuel types. The coefficients and limits used for this purpose are given in Table 1.
In the third application, fuel cost was calculated for forty different thermal power plants. The coefficients and limits used for the 40-unit test system are given in Table 3 (Aliyari et al., 2017).

Table 1. Fuel cost coefficients and limits for the 3 thermal units system

Generators	P_{min} (MW)	P_{max} (MW)	a_i ($/\text{(MW)}^2$)	b_i ($$/\text{MW})$	c_i ($)
P_{G1}	150	600	0.00142	7.2	510
P_{G2}	100	400	0.00194	7.85	310
P_{G3}	50	200	0.00482	7.97	78

For this application, line loss is taken into account for 3-unit test system. The line loss function is given in Eq. 13.

$$ P_L = 0.00003P^2 + 0.00009P^2 + 0.00012P^2 $$

In addition, load demand (P_D) is 850.

In this part, the data for the economic load distribution problem is as above. Here, it is aimed to minimize the fuel cost functions for three different thermal power plants by taking the constraint conditions into account (Öztürk et al., 2011).

3.2. 13-Unit Test System

In the second application, fuel cost was calculated for thirteen different thermal power plants. The coefficients and limits used for the 13-unit test system are given in Table 2 (Aliyari et al., 2017).

Table 2. Fuel cost coefficients and limits for the 13 thermal units system

Generators	P_{min} (MW)	P_{max} (MW)	a_i ($/\text{(MW)}^2$)	b_i ($$/\text{MW})$	c_i ($)
P_{G1}	0	680	0.00028	8.10	550
P_{G2}	0	360	0.00056	8.10	309
P_{G3}	0	360	0.00056	8.10	307
P_{G4}	60	180	0.00324	7.74	240
P_{G5}	60	180	0.00324	7.74	240
P_{G6}	60	180	0.00324	7.74	240
P_{G7}	60	180	0.00324	7.74	240
P_{G8}	60	180	0.00324	7.74	240
P_{G9}	60	180	0.00324	7.74	240
P_{G10}	40	120	0.00284	8.6	126
P_{G11}	40	120	0.00284	8.6	126
P_{G12}	55	120	0.00284	8.6	126
P_{G13}	55	120	0.00284	8.6	126

For this application, load demand (P_D) is 2520. In addition, line loss is taken into account for 13-unit test system. For this purpose, the B loss coefficients is used. The B_{ij} loss coefficient matrix, the B_{0j} loss coefficient vector and the B_{00} loss constant are given in Appendix-1 (Li et al, 2019). The formula of transmission line loss is expressed as in Eq. 14.

$$ P_{\text{loss}} = \sum_{i=1}^{N} \sum_{j=1}^{N} P_i B_{ij} P_j + \sum_{i=1}^{N} B_{0i} P_i + B_{00} $$

This formula is also known as Kron's transmission line loss account (Wood and Wollenberg, 2006).

3.3. 40-Unit Test System

In the third application, fuel cost was calculated for forty different thermal power plants. The coefficients and limits used for the 40-unit test system are given in Table 3 (Aliyari et al., 2017).

Table 3. Fuel cost coefficients and limits for the 40 thermal units system

Generator	P_{min} (MW)	P_{max} (MW)	a_i ($/\text{(MW)}^2$)	b_i ($$/\text{MW})$	c_i ($)
P_{G1}	36	114	0.0069	6.73	94.705
P_{G2}	36	114	0.0069	6.73	94.705
P_{G3}	60	120	0.02028	7.07	309.54
P_{G4}	80	190	0.00942	8.18	369.03
P_{G5}	47	97	0.0114	5.35	148.89
P_{G21}	254	550	0.00298	6.63	785.96
P_{G22}	254	550	0.00298	6.63	785.96
P_{G23}	254	550	0.00284	6.66	794.53
P_{G24}	254	550	0.00284	6.66	794.53
P_{G25}	254	550	0.00277	7.1	801.32
Table 3 (cont). Fuel cost coefficients and limits for the 40 thermal units system

Generator	P_{min} (MW)	P_{max} (MW)	a_i ($$/MW^2$$)	b_i ($$/MW$$)	c_i ($)	Generator	P_{min} (MW)	P_{max} (MW)	a_i ($$/MW^2$$)	b_i ($$/MW$$)	c_i ($)
G06	68	140	0.01142	8.05	222.33	G26	254	550	0.00277	7.1	801.32
G07	110	300	0.00357	8.03	287.71	G27	10	150	0.52124	3.33	1055.1
G08	135	300	0.00492	6.99	391.98	G28	10	150	0.52124	3.33	1055.1
G09	135	300	0.00573	6.6	455.76	G29	10	150	0.52124	3.33	1055.1
G10	130	300	0.00605	12.9	722.82	G30	47	97	0.01144	5.35	148.89
G11	94	375	0.00515	12.9	635.2	G31	60	190	0.0016	6.43	222.92
G12	94	375	0.00569	12.8	654.69	G32	60	190	0.0016	6.43	222.92
G13	125	500	0.00421	12.5	913.4	G33	60	190	0.0016	6.43	222.92
G14	125	500	0.00752	8.84	1760.4	G34	90	200	0.0001	8.95	107.87
G15	125	500	0.00708	9.15	1728.3	G35	90	200	0.0001	8.62	116.58
G16	125	500	0.00708	9.15	1728.3	G36	90	200	0.0001	8.62	116.58
G17	220	500	0.00313	7.97	647.81	G37	25	110	0.0161	5.88	307.45
G18	220	500	0.00313	7.95	649.69	G38	25	110	0.0161	5.88	307.45
G19	242	550	0.00313	7.97	647.83	G39	25	110	0.0161	5.88	307.45
G20	242	550	0.00313	7.97	647.81	G40	242	550	0.00313	7.97	647.83

For this application, load demand (P_D) is 10500. In addition, line loss is neglected for 40-unit test system.

4. The Implementation of Harmony Search Algorithm on Fuel Cost Optimization Problems

The objective function for fuel cost optimization with Harmony Search Algorithm was determined as the sum of the fuel cost functions calculated for thermal power plants (Eq. 15)

$$ F_T = F_1 + F_2 + \cdots + F_K = \sum_{i=1}^{n} F_i $$

In this study, static penalty approach was used to handle constraints. With this approach, a fixed penalty was imposed on the objective function when the constraint was violated. For this problems, the constraint function $g(x)$ has been given in Eq. 16.

$$ g(x) = P_D + P_L - [\sum_{i=1}^{n} P_i] $$

Accordingly, with the static penalty approach (Smith and Coit, 1997), the constraint function had been imposed on the objective function.

Table 4 shows the parameter settings of Harmony Search Algorithm for the fuel cost optimization problems in detail.

Table 4. Harmony search parameter settings for fuel cost optimization problems

Parameter	Value (Unit-3)	Value (Unit-13)	Value (Unit-40)
Number of variables	3	13	40
Number of constraints	1	1	1
Max Iteration	10000	10000	50000
HMS (Harmony Memory Size)	6	100	50
HMCRR (Harmony Memory Consideration Rate)	0.9	0.95	0.95
Min PAR	0.4	0.3	0.3
Max PAR	0.9	0.95	0.95
Min bandwidth	0.0001	0.0001	0.0001
Max bandwidth	1.0	1.0	1.0

After the parameters, objective function and penalty function were determined, the harmony memory (HM) was randomly generated in accordance with the range of variables. Then, fitness function and penalty function were calculated.

The harmony search approach had continued with the new harmony creation step. For this purpose, one of the memory consideration, pitch adjusting and random selection methods had been used. Which method to use was determined by creating two random values between 0 and 1 called x and y. Accordingly, the following algorithm was applied.
if \(x < \text{HMCR} \)
 Apply Memory Consideration
 If \(y < \text{PAR} \)
 Apply Pitch Adjusting
 end
else if \(x > \text{HMCR} \)
 Apply Random Selection
end

While applying the step of Memory Consideration, the value in an index randomly determined from the HM was taken into the new harmony. In the step of Pitch Adjusting, firstly, a random value was generated in the interval [0,1] called \(p \). Then, a constant value \((\text{bw}) \) was generated using the bandwidth, current iteration and max iteration values. If \(p < 0.5 \), the value of \(\text{rand}(1) \times \text{bw} \) was added to the old value in HM. Otherwise, the value of \(\text{rand}(1) \times \text{bw} \) was subtracted from the old value. It was checked whether the obtained value was within the parameter limits. If it was within the limits, the value was added to the new harmony.

\[
\begin{align*}
 & \text{If } p < 0.5 \\
 & \quad \text{old} = \text{old} + \text{rand}(1) \times \text{bw} \\
 & \text{else} \\
 & \quad \text{old} = \text{old} - \text{rand}(1) \times \text{bw}
\end{align*}
\]

While applying the step of Random Selection, a random value was chosen within the parameter boundaries and included in the new harmony.

According to the algorithm, after the new harmony and its fitness value were calculated, the best and worst fitness values were determined. The new harmony value was first compared with the best fitness value in HM. If the new harmony is better than the best value in HM, it is added to HM, while the worst value is subtracted from HM. Depending on the changes made, it has been updated best and worst values. If the new harmony is not better than the best value, but better than the worst value, it is still added to the HM. This time, only the worst value was modified. If the new harmony is worse than the worst value in HM, it is not taken into HM. The process of creating new harmony continued until the specified maximum number of iterations.

5. Experimental Results

Fuel cost optimization with Harmony Search Algorithm was encoded on an Intel Core-i5 2.5 GHz Turbo 3.1 GHz PC using MATLAB 2018b. The application of the economic load dispatch problems with the Harmony Search Algorithm shows the results obtained with 30 independent runs for each system.

5.1. 3-Unit Test System

Firstly, Harmony Search Algorithm has been tested on 3 thermal power plants having limited power capacity and having three different fuel types in order to minimize the fuel cost in electric power distribution systems. In Table 5, it is seen the change of fuel cost optimization results (the power of the thermal plants, power loss, best fitness value and computational time) with Harmony Search Algorithm in terms of the number of iteration.

Iteration number	\(P_1 \) (MW)	\(P_2 \) (MW)	\(P_3 \) (MW)	\((P_L) \) (MW)	Best Fitness \((F_T) \) $/h$	Computational Time (sec.)
1000	490.7358	260.6997	113.4505	14.8860	7.9178e+03	0.068
2000	520.6509	245.6365	98.4380	14.7255	7.9082e+03	0.090
3000	524.0522	238.1083	102.4403	14.6008	7.9073e+03	0.127
4000	553.5062	202.4371	108.3447	14.2880	7.9070e+03	0.152
5000	547.7023	220.5247	96.2611	14.4881	7.9048e+03	0.156
8000	550.8535	218.3180	95.3114	14.4829	7.9047e+03	0.210
10000	545.1810	221.9300	97.3760	14.4820	7.9047e+03	0.256

The success of Harmony Search Algorithm in the implementation of fuel cost optimization for electric power distribution system was compared with the Lagrange Multipliers and Artificial Bee Colony Algorithm.
Table 6. Comparative results for 3-unit test system

Algorithm & Method	P_1 (MW)	P_2 (MW)	P_3 (MW)	Best Fitness (F_T/h)	P_L (MW)	Constraint Function Value
Lagrange Multipliers	435.1	299.9	130.7	7952	15.82	0.1239
Artificial Bee Colony (ABC)	548.764	222.149	93.410	7904	14.38	0.1998
Harmony Search (HS)	545.181	221.930	97.376	7904	14.48	2.8317×10^-4

The comparative results for the method of Lagrange Multipliers, Artificial Bee Colony Algorithm and Harmony Search Algorithm for solving 3-unit test system are given in Table 6. For best fitness value, the amount of power consumed by 3 thermal power plants has been given by P_1, P_2, P_3. In addition, the results in terms of best fitness, transmission line loss and constraint function value are given in Table 6. Best fitness shows the best results achieved with 30 runs. P_L indicates the power loss occurring on the line during transmission. On the other hand, constraint function value shows the convergence value of the constraint function to zero for the best fitness.

As seen in Table 6, Artificial Bee Colony Algorithm and Harmony Search Algorithm provides advantage in terms of fitness value according to Lagrange Multipliers method (Öztürk et al., 2011). However, it is seen that the method of Lagrange Multipliers and the ABC algorithm inadequate according to the Harmony Search algorithm in terms of compliance with the constraint function (Öztürk et al., 2011). In addition, Harmony Search algorithm works quite fast due to random-based operators.

5.2. 13-Unit Test System
In the second application, the success of the Harmony Search Algorithm is evaluated on the 13-unit test system. Table 7 presents the best result of the Harmony Search Algorithm in 13-unit test system and the best P_i values obtained accordingly. Transmission line loss is also given in the table.

Table 7. Best result obtained by Harmony Search Algorithm for 13-unit test system

Generators	P_{min} (MW)	P_{max} (MW)	P_i (MW)
P_{G1}	0	680	649.09265
P_{G2}	0	360	326.27103
P_{G3}	0	360	179.50858
P_{G4}	60	180	145.70709
P_{G5}	60	180	169.58356
P_{G6}	60	180	172.98691
P_{G7}	60	180	177.78502
P_{G8}	60	180	173.23779
P_{G9}	60	180	177.04062
P_{G10}	40	120	54.40878
P_{G11}	40	120	110.09333
P_{G12}	55	120	115.38593
P_{G13}	55	120	94.39442

Load Demand (MW) | 2520
Transmission Loss (MW) | 25.32522
Total power output (MW) | 2545.32522
Total generation cost ($/h) | 24411.46705

In Table 8, the results of the economic load dispatch problem with Harmony Search approach for 13-unit test system has compared with the results of various heuristic/meta-heuristic and evolutionary methods in the literature. In Table 8, it is seen that Harmony Search Algorithm is superior to other methods in terms of both total generation cost and transmission line loss (P_{Loss}). In addition, in terms of computational time, it is appears that it is more successful than all of them except BBO and DE / BBO. This methods are seen to have lower performance than Harmony Search Algorithm.
Harmony Search A
artificial intelligence optimization methods that have been studied on the 40
In Table 1 been neglected for this application.
In the third 5.3
Total generation cost ($/h)

Generators	P_{min} (MW)	P_{max} (MW)	P_{i} (MW)	Generators	P_{min} (MW)	P_{max} (MW)	P_{i} (MW)
G_{1}	36	114	110.29158	G_{2}	36	114	97.99516
G_{2}	36	114	118.79055	G_{3}	60	120	116.89665
G_{3}	60	120	92.92470	G_{4}	80	190	254
G_{4}	80	190	92.92470	G_{5}	47	97	254
G_{5}	47	97	133.81623	G_{6}	68	140	254
G_{6}	68	140	292.40465	G_{7}	110	300	10
G_{7}	110	300	285.36292	G_{8}	135	300	10
G_{8}	135	300	283.30370	G_{9}	135	300	10
G_{9}	135	300	156.82297	G_{10}	130	300	47
G_{10}	130	300	156.12193	G_{11}	94	375	60
G_{11}	94	375	130.10710	G_{12}	94	375	60
G_{12}	94	375	219.85852	G_{13}	125	500	60
G_{13}	125	500	277.20875	G_{14}	125	500	90
G_{14}	125	500	292.31890	G_{15}	125	500	90
G_{15}	125	500	352.49031	G_{16}	125	500	90
G_{16}	125	500	484.61791	G_{17}	220	500	25
G_{17}	220	500	492.57398	G_{18}	220	500	25
G_{18}	220	500	510.41547	G_{19}	242	550	25
G_{19}	242	550	535.99183	G_{20}	242	550	25

Table 9. Best result obtained by Harmony Search Algorithm for 40-unit test system

Load Demand (MW) 10500
Total generation cost ($/h) 120057.573959

In Table 10, the results of the Harmony Search Algorithm for economic load dispatch problem are presented in comparison with many artificial intelligence optimization methods that have been studied on the 40-unit test system in the literature. The results show that the Harmony Search Algorithm is superior to other compared methods in terms of total generation cost. In terms of computational time, it
is seen that Harmony Search Algorithm is more successful than EP-SQP, PSO-SQP, HCASO, FAPSO, UHGA, AAA, FAPSO-NM, ARCGA, CE-SQP, HAAA, MABC, MPDE.

Table 10. Comparative results for 40-unit test system

Algorithm & Method	Best Fitness (F1) $/h$	Computational Time (sec.)
EP-SQP (Victoire and Jeyakumar, 2004)	122323.97	997.73
PSO-SQP (Victoire and Jeyakumar, 2004)	122094.67	733.97
HCASO (Cai et al., 2012)	121865.63	168.72
FAPSO (Niknam, 2010)	121712.4	87
ST-HDE (Wang et al., 2007)	121698.51	6.92
UHGA (Da-kuo et al., 2008)	121424.48	333.68
AAA (Kumar and Dhillon, 2018)	121421.2	69
DE/BBO (Bhattacharya and Chattopadhyay, 2010)	121420.89	1.23
RCGA (Amjady and Nasiri-Rad, 2009)	121418.72	-
FAPSO-NM (Niknam, 2010)	121418.3	40
ARCGA (Amjady and Nasiri-Rad, 2010)	121410.10	15.67
FA (Niknam, 2010)	121415.05	-
BA (Niknam, 2010)	121414.91	-
CE-SQP (Subathra et al., 2015)	121412.88	137.86
HAAA (Kumar and Dhillon, 2018)	121412.70	20
CBA (Adarsh et al., 2016)	121412.5468	1.55
MABC (Secui, 2015)	121412.5409	115.2
MCSA (Zhao et al., 2018)	121412.5355	3.9948
MPDE (Li et al., 2019)	121412.5355	18.0
Harmony Search (HS)	120057.573959	7.651581

6. Conclusions

Reducing production and distribution costs in electric power systems is of great importance for all areas of life. Currently, heuristic methods are frequently preferred as well as mathematical methods for economic load distribution (Song et al., 1999; Yalcin oz et al., 2002; Ah King and Rughpoth, 2003; Koc and Yalcin oz, 2005; Brini et al., 2009; Tosun et al., 2009; Duman et al., 2010; Ozturk et al., 2011; Adaryani and Karami, 2013; Xiong et al., 2013; Sahoo et al., 2015; Mohamed et al., 2017; Aliyari et al., 2017; Li et al., 2019; Fu et al., 2020). In this work, the solution of three fuel cost optimization problems, which was previously solved with different mathematical and heuristic methods, was realized by using Harmony Search Algorithm. Harmony Search Algorithm has been developed by modeling the idea of obtaining different melodies using the same notes in the memory (Geem et al., 2001; Geem, 2009, 2010). The algorithm tries to achieve the local optimum with the help of pitch adjusting operator, and the global optimum with the help of the harmony memory consideration and random selection operators (Ceylan and Ceylan, 2013). Harmony Search algorithm is an easy to apply, fast and efficient meta-heuristic method (Lee and Geem, 2004).

In this article, the fuel cost optimization of systems including 3-unit, 13-unit and 40-unit thermal plants with active power constraints was performed using the Harmony Search Algorithm. Equal weighted scalarization was preferred as a multi-objective optimization method, as the load distribution cost optimization means optimization of separate functions for different thermal power plants. In addition, the method of Static Penalty Function was used in order to effect the constraint function on the objective function. For the fuel cost optimization problem using Harmony Search Algorithm, the optimal value was identified the reached best result when the algorithm ran 30 times. The results obtained were compared with several mathematical, evolutionary and heuristic/meta-heuristic methods.

The experimental results indicate that the application performed with Harmony Search Algorithm is superior in compared to the other approaches. In the three applications performed using the Harmony Search Algorithm, it is seen that the proposed method reaches the best fitness value. In other words, it gives the best result compared to other algorithms in terms of total transmission cost. It is also

540
successful in minimizing transmission line loss, as seen in the 13-unit test system. In addition, the run-time performance is reasonable and it is better than many algorithms compared.

As a result, it has been shown that the Harmony Search Algorithm, which is an intuitive method, is suitable to be used in the field of fuel cost optimization in electric power systems. It is possible to develop and test the algorithm for more complex power plants in future studies.

Appendix-1

\[B_{ij} = 10^{-2} \]

\[
\begin{bmatrix}
0.0014 & 0.0012 & 0.0007 & -0.0001 & -0.0003 & -0.0001 & -0.0001 & -0.0001 & -0.0003 & -0.0005 & -0.0003 \\
0.0012 & 0.0015 & 0.0013 & 0.0000 & -0.0005 & -0.0002 & 0.0000 & 0.0001 & -0.0002 & -0.0004 & 0.0000 \\
0.0007 & 0.0013 & 0.0076 & -0.0001 & -0.0013 & -0.0009 & -0.0001 & 0.0000 & -0.0008 & -0.0012 & -0.0017 \\
-0.0001 & 0.0000 & -0.0001 & 0.0034 & -0.0007 & -0.0004 & 0.0011 & 0.0050 & 0.0029 & 0.0032 & -0.0011 \\
-0.0003 & -0.0005 & -0.0013 & -0.0007 & 0.0090 & 0.0014 & -0.0003 & -0.0012 & -0.0010 & -0.0013 & 0.0007 \\
-0.0001 & -0.0002 & -0.0009 & -0.0004 & 0.0014 & 0.0016 & 0.0000 & -0.0006 & -0.0005 & -0.0008 & 0.0011 \\
-0.0001 & 0.0000 & -0.0001 & 0.0011 & -0.0003 & 0.0000 & 0.0015 & 0.0017 & 0.0015 & 0.0009 & -0.0005 \\
-0.0001 & 0.0001 & 0.0000 & 0.0050 & -0.0012 & -0.0006 & 0.0017 & 0.0168 & 0.0082 & 0.0079 & -0.0023 \\
-0.0003 & -0.0002 & -0.0008 & 0.0029 & -0.0010 & -0.0005 & 0.0015 & 0.0082 & 0.0129 & 0.0116 & -0.0021 \\
-0.0005 & -0.0004 & -0.0012 & 0.0032 & -0.0013 & -0.0008 & 0.0009 & 0.0079 & 0.0116 & 0.0200 & -0.0027 \\
-0.0003 & -0.0004 & -0.0017 & -0.0011 & 0.0007 & 0.0011 & -0.0005 & -0.0023 & -0.0021 & -0.0027 & 0.0140 \\
-0.0002 & 0.0000 & 0.0000 & 0.0000 & -0.0002 & -0.0001 & 0.0007 & -0.0036 & -0.0025 & -0.0034 & 0.0001 \\
0.0004 & 0.0004 & -0.0026 & 0.0001 & -0.0002 & -0.0002 & 0.0000 & 0.0001 & 0.0007 & 0.0009 & 0.0004 \\
\end{bmatrix}
\]

\[B_{0j} = \begin{bmatrix} -0.0001 & -0.0002 & 0.0028 & -0.0001 & 0.0001 & -0.0003 & -0.0002 & -0.0002 & 0.0006 & 0.0039 & -0.0017 & 0.0000 & -0.0032 \end{bmatrix} \]

\[B_{0,0} = 0.55 \]

References

Abualigah, L., Diabat, A. & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Appl. Sci., 10(11), 3827.

Adarsh, B. R., Raghunathan, T., Jayabarathi, T., & Yang, X.-S. (2016) Economic dispatch using chaotic bat algorithm. Energy, 96, 666–675.

Adaryani, M. R., & Karami, A. (2013). Artificial bee colony algorithm for solving multi-objective optimal power flow problem. International Journal of Electrical Power & Energy Systems, 53 (Dec 2013), 219-230.

Ah King, T.F.R., & Rughooputh, C.S.H. (2003). Elitist multiobjective evolutionary algorithm for environmental/economic dispatch. 2003 Congress on Evolutionary Computation (CEC’03), 8-12 Dec 2003, Canberra, Australia, 1108-1114.

Alia, O. M., & Mandava, R. (2011). The variants of the harmony search algorithm: An overview. Artificial Intelligence Review, 36(1), 49-68.

Aliyari, H., Effatnejad, R., Izadi, M., & Hosseinian, S.H. (2017). Economic dispatch with particle swarm optimization for large scale system with non-smooth cost functions combine with genetic algorithm. Journal of Applied Science and Engineering, 20(2), 141-148.

Altun, H., & Yalcinoz, T. (2008). Implementing soft computing techniques to solve economic dispatch problem in power systems. Expert Systems with Applications, 35, 1668–1678.

Amjad Y., & Nasiri-Rad, H. (2009). Economic dispatch using an efficient realcoded genetic algorithm. IET Gener., Transmiss. Distrib., 3(3), 266–278.

Amjad, N., & Nasiri-Rad, H. (2010). Solution of nonconvex and nonsmooth economic dispatch by a new Adaptive Real Coded Genetic Algorithm. Expert Syst. Appl., 37(7), 5239–5245.

Bhattacharya, A., & Chattopadhyay, P. K. (2010). Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans. Power Syst, 25(4), 1955–1964.
Bhattacharjee, K., Bhattacharya, A., & Dey, S. H. N. (2014). Oppositional Real Coded Chemical Reaction Optimization for different economic dispatch problems. Int. J. Elect. Power Energy Syst., 55, 378–391.

Brini, S., Abdallah, H.H., & Ouali, A. (2009). Economic dispatch for power system included wind and solar thermal energy. Leonardo Journal of Sciences, 14 (Jan-Jun 2009), 204-220.

Cai, J., Li, Q., Li, L., Peng, H., & Yang, Y. (2012). A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects. Energy, 8(1), 346–353.

Ceylan, H., & Ceylan, H. (2013). Şehirî karayolu ağlarının sezgisel harmoni araştırması optimizasyon yöntemi ile ayrır tasarımı (in Turkish). IMO Teknik Dergi, 2013, 6211-6231.

Chowdhury, B.H. & Rahman, S. (1990). A review of recent advances in economic dispatch. IEEE Transactions on Power Systems, 5(4), 1248-1259.

Dakuo, H., Fu-li, W., & Zhi-Zhong, M. (2008). Hybrid genetic algorithm for economic dispatch with valve-point effect. Electr. Power Syst. Res., 78(4), 626–633.

Duman, S., Döşoğlu, M. K., Öztürk, A., & Erdoğan, P. (2010). Türkiye’deki güç sisteminde tavlama benzetimi, genetik algoritma ve tabu araştırma algoritalarını kullanarak ekonominin dağıtım (in Turkish). Engineering Sciences, 5(1), 64-78.

Fesanghary, M. (2010). Harmony Search Algorithm. https://www.mathworks.com/matlabcentral/fileexchange/28850-harmony-search-algorithm, MATLAB Central File Exchange. Retrieved January 28, 2021.

Fu, C., Zhang, S., & Chao, K-H. (2020). Energy management of a power system for economic load dispatch using the artificial intelligent algorithm. Electronics, 9(1), 108 (1-19).

Gao, X. Z., Govindasamy, V., Xu, H., Wang, X., & Zenger, K. (2015). Harmony search method: Theory and applications. Computational Intelligence and Neuroscience, 2015, 1-10.

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search, SIMULATION: Transactions of The Society for Modeling and Simulation, 76(2), 60-68.

Geem Z. W. (2009). Music-inspired harmony search algorithm. Berlin, Germany: Springer.

Irving, M.R. & Sterling, M.J.H., (1983). Economic dispatch of active power with constraint relaxation, IEE Proceedings C - Generation, Transmission and Distribution, 130(4), 172-177.

Köç, A., & Yalçınöz, T. (2005). Açık arımsal ekonominin yük dağılımı için yeni bir yaklaşımlar (in Turkish). I. Enerji Verimliliği ve Kalitesi Sempozyumu, 17-18 May 2005, Kocaeli, Turkey, 71-75.

Kumar, M., & Dhillon, J. S. (2018). Hybrid artificial algae algorithm for economic load dispatch. Appl. Soft Comput., 71, 89–109.

Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the harmony search algorithm. Computers and Structures, 82, 781-798.

Li, X., Zhang, H., & Lu, Z. (2019). A differential evolution algorithm based on multi-population for economic dispatch problems with valve-point effects. IEEE Access, 7 (2019), 95585-95609.

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188, 1567-1579.

Mohamed, A. A., Mohamed, Y. S., El-Gaafary, A. A. M., & Hemeida, A. M. (2017). Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 142 (Jan 2017), 190-206.

Niknam, T. (2010). A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl. Energy, 87(1), 327–339.

Öztürk, A., Çobanlı, S., Duman, S., Tosun, S., & Döşoğlu, K. (2011). Yapay arı kolonisi algoritmasi ile elektrik güç sistemi optimal yakıt maliyetinin belirlenmesi (in Turkish). 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey, 311-316.
Rahman, T.K.A., Suliman, S.I., & Musirin, I. (2006). Artificial immune-based optimization technique for solving economic dispatch in power system. In: Apolloni B., Marinaro M., Nicosia G., Tagliaferri R. (eds) Neural Nets. WIRN 2005, NAIS 2005. Lecture Notes in Computer Science, 3931, Berlin, Heidelberg: Springer.

Reddy, A. S. & Vaisakh, K. (2013). Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res., 96, 237–245.

Ross, D. W. & Kim, S. (1980). Dynamic economic dispatch of generation. IEEE Transactions on Power Apparatus and Systems, 99(6), 2060-2068.

Sahoo, S., Dash, K.M., Prusty, R.C., & Barisal, A.K. (2015). Comparative analysis of optimal load dispatch through evolutionary algorithms. Ain Shams Engineering Journal, 6(1), 107-120.

Secui, D. C. (2015). A new modified artificial bee colony algorithm for the economic dispatch problem. Energy Convers. Manage., 89(1), 43–62.

Secui, D. C. (2016). A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects. Energy, 113(15), 366–384.

Sinha, N., Chakrabarti, R., & Chattopadhyay, P.K., (2003). Evolutionary programming techniques for economic load dispatch, IEEE Transactions on Evolutionary Computation, 7(1), 83-94.

Smith, A. E., & Coit, D. W. (1997). Constraint-handling techniques - penalty functions. In Handbook of Evolutionary Computation - Chapter C5.2., Bristol, U.K.: Institute of Physics Publishing and Oxford University Press.

Song, Y. H., Chou, C. S. V., & Min, Y. (1999). Large-scale economic dispatch by artificial ant colony search algorithms. Electric Machines and Power Systems, 27(7), 679-690.

Subathra, M. S. P., Selvan, S. E., Victoire, T. A. A., Christinal, A. H., & Amato, U. (2015). A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem. IEEE Syst. J., 9(3), 1031–1044.

Tefek, M. F., Güçyetmez, M., & Uğuz, H. (2018). Solution of economic dispatch problem with the valve-point load effect by metaheuristic algorithms. Technological Applied Sciences, 13(3), 253-263.

Tosun, S., Öztürk, A., Erdöğmuş, P., Biçen, Y. & Hasırcı, U. (2009). Elektrik güç sistemlerinde optimal yakıt maliyetinin benzetim tavlama (BT) algoritması ile belirlenmesi (in Turkish). 5.Uluslararası İleri Teknolojiler Sempozyumu (IAT’09), 13-15 May 2009, Karabük, Turkey, 254-258.

Victoire T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO–SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res., 71(1), 51–59.

Vlachogiannis, J. G., & Lee, K. Y. (2010). Economic load dispatch—A comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO. IEEE Trans. Power Syst., 25(1), 591–592.

Wang, S. K., Chiou, J. P. & Liu, C. W. (2007). Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm. IET Gener., Transmiss. Distrib., 1(5), 793–803.

Wood, A. J., & Wollenberg, B. F. (2006). Power Generation Operation and Control. New York: John Wiley & Sons, Inc., Second ed.

Xiong, G., Shi, D., & Duan, X. (2013). Multi-strategy ensemble biogeography-based optimization for economic dispatch problems. Applied Energy, 111, 801-811.

Yalcinoz, T., & Altun, H. (2001). Power economic dispatch using a hybrid genetic algorithm. IEEE Power Engineering Letters, IEEE Power Eng. Review, 21(3), 59-60.

Yalçınöz, T., Yavuzer, T., & Altun, H. (2002). Tabu araştırması uygulanarak ekonomik yük dağıtım probleminin çözümü (in Turkish). Elektrik-Elektronik-Bilgisayar Mühendisliği Sempozyumu (ELECO’2002), 18-22 Dec 2002, Bursa, Turkey, 30-34.

Yang, H.-T., Yang, P.-C. & Huang, C.-L.(1996). Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions, IEEE Transactions on Power Systems, 11(1), 112-118.
Yang, X.-S. (2014) Nature-inspired optimization algorithms. Amsterdam, The Netherlands: Elsevier.

Zhao, J., Liu, S., Zhou, M., Guo, X., & Qi, L. (2018). Modified cuckoo search algorithm to solve economic power dispatch optimization problems. IEEE/CAA J. Autom. Sinica, 5(4), 794–806.