Hybrid delta modulator: stability analysis using sliding mode theory

Dhafer Almakhles, Chathura Wanigasekara, Akshya Swain, Khaled Almustafa & Umashankar Subramaniyan

To cite this article: Dhafer Almakhles, Chathura Wanigasekara, Akshya Swain, Khaled Almustafa & Umashankar Subramaniyan (2019) Hybrid delta modulator: stability analysis using sliding mode theory, Systems Science & Control Engineering, 7:1, 234-242, DOI: 10.1080/21642583.2019.1630861

To link to this article: https://doi.org/10.1080/21642583.2019.1630861

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 21 Jun 2019.

Submit your article to this journal

View Crossmark data
Hybrid delta modulator: stability analysis using sliding mode theory

Dhafer Almakhlesa, Chathura Wanigasekarab, Akshya Swainb, Khaled Almustafac and Umashankar Subramaniyana

aCommunications & Networks Engineering, Prince Sultan University, Riyadh, Saudi Arabia; bElectrical, Computer & Software Engineering, The University of Auckland, Auckland, New Zealand; cComputer Science, Prince Sultan University, Riyadh, Saudi Arabia

ABSTRACT
The present study proposes a new dynamic two-level quantizer, called as hybrid delta modulator ($\Delta H\!-\!M$), which combines the features of both delta-modulator and delta-sigma modulator. In the transient state, the $\Delta H\!-\!M$ exhibits the dynamical behaviour of delta modulator ($\Delta\!-\!M$) while in steady state, its behaviour is similar to delta-sigma modulator ($\Delta\Sigma\!-\!M$). This study investigates about various dynamics of the proposed $\Delta H\!-\!M$ in both continuous and discrete-time domains. The stability conditions of $\Delta H\!-\!M$ are derived using the theory of sliding and quasi-sliding mode. The theoretical results are validated through extensive simulations.

Key words: $\Delta\!-\!M$: delta modulator; $\Delta H\!-\!M$: hybrid delta modulator; $\Delta\Sigma\!-\!M$: delta sigma modulator; ADC: analogue to digital converter; CT: continuous-time; DAC: digital to analogue converter; DT: discrete-time; NCS: networked control system; QSM: quasi-sliding model; QSMD: quasi-sliding mode domain; SS: steady state; TP: transient process

1. Introduction

During the past few decades, quantizers and modulators have been playing a vital role in the field of mixing signals, communications, power electronics, control systems, etc. Two-level quantizers, also known as single-bit converters, such as delta-sigma modulators ($\Delta\Sigma\!-\!M$) are becoming more popular compared to other types of quantizers due to their simplicity of implementation and robustness (Gai, Xia, & Chen, 2006; Gomez-Estern, de Wit, & Rubio, 2011; de Wit, Gomez-Estern, & Rubio, 2009; Xia, 2007; Xia & Chen, 2007; Xia, Chen, Gai, & Zinobier, 2008; Xia & Zinobier, 2004, 2006) and have extensively been used in power converters (Al-Makhles, Patel, & Swain, 2013c, 2014; Chen, Chen, & Wu, 2010; Siraramirez, 2003). These systems are well known for their ability in reduction of the data rate, latency and large numbers of wires in networked control systems (NCS) where the bandwidth of communication channel is limited and hardware resources are constrained (Al-Makhles, Patel, & Swain, 2013a, 2013b; Al-Makhles et al., 2014; Almakhles, Swain, Nasiri, & Patel, 2017; Almakhles, Swain, & Patel, 2015; Gomez-Estern et al., 2011; Karimirreddy & Zhang, 2017; Kermani & Sakly, 2014; Li, Dong, Han, Hou, & Li, 2017; Li & Fujimoto, 2008; Li, Dong, Han, & Li, 2018; Mantz, 2015; Premeratane, Halgamuge, & Mareels, 2013; de Wit et al., 2009).

It is worth to note that $\Delta\Sigma\!-\!M$ can be implemented both in continuous and discrete time domains. The choice between continuous-time (CT) $\Delta\Sigma\!-\!M$ and discrete-time (DT) $\Delta\Sigma\!-\!M$ depends on the specific application (i.e. ADC CT $\Delta\Sigma\!-\!M$, DAC DT $\Delta\Sigma\!-\!M$). For example, in applications such as NCSs, power converters etc., $\Delta\Sigma\!-\!M$ can either be implemented in CT or DT domain depending on the convenience of the designer (Almakhles, Swain, & Nasiri, 2017).

The $\Delta\Sigma\!-\!M$ (also referred to as differential modulator) mainly consists of a transmitter (encoder or modulator) followed by a receiver (decoder or demodulator) where the dynamics of the input variables can be found directly. Note that the input signal is equivalent to the signals (single-bit) between encoder and decoder. However, it requires an integrator at the demodulation side to reconstruct the input signals (Haykin, 2000). The $\Delta\Sigma\!-\!M$ is also considered as dynamic quantizer and inherently contains relay components (i.e. two-level quantizers) which introduce nonlinearity and more complexity to these modulators/systems (Almakhles et al., 2017; Azuma & Sugie, 2008; de Wit et al., 2009).

$\Delta\!-\!M$ has the ability to directly reveal the dynamic of the input variables, where the single-bit signals between the encoder and decoder are ideally equivalent to the rate of change of the input signals. $\Delta\Sigma\!-\!M$ contains
all the useful information of the input signal in the low-frequency range and suppresses noise at the high-frequency range. This feature is known as noise shaping. The present study combines these features of the Δ-M and $\Delta \Sigma$-M. In the transient state, the ΔH-M exhibits the dynamical behaviour of Δ-M while in steady state, its behaviour is similar to $\Delta \Sigma$-M. Thus the stability region is increased and the noise effect is significantly reduced.

The $\Delta \Sigma$-M can roughly be classified into two categories; namely fixed step-size and adaptive step-size. When the step size of $\Delta \Sigma$-M is adaptive, it is called as ΔH-M (Haykin, 2000). It has been shown that the stability of $\Delta \Sigma$-M is critically dependent on quantizer gain (Almakhles et al., 2017; Xia & Chen, 2007; Xia & Zinober, 2006). The objective of this study is to investigate if the stability performance can be improved by making the step-size of the quantizer to be adaptive. Recently, in Almakhles et al. (2017), the authors have investigated the performance of data-driven Δ-M and $\Delta \Sigma$-M. The present study investigates some inherent dynamical properties of data-driven hybrid ΔH-M in CT and DT domains and establishes that the stability region of this modulator is larger compared to that of $\Delta \Sigma$-M. The main contributions of this study are: (i) Derivation of stability conditions and periodicity for both data-driven fixed and hybrid ΔH-M using QSM analysis; (ii) Accurate estimation of hitting-step is derived for both data-driven fixed and hybrid ΔH-M; (iii) The quantizer gain for fixed $\Delta \Sigma$-M which guarantees the stability, is derived using dynamics and bounds of the input signals.

The rest of the paper is organized as follows. Sections 2 and 3 discuss CT ΔH-M and DT ΔH-M, respectively. The effectiveness of the proposed ΔH-M is demonstrated using simulations in Section 4 with conclusions in Section 5.

2. Continuous-time hybrid delta modulator (ΔH-M)

The schematic of a continuous-time ΔH-M is shown in Figure 1. From this figure, the following relations can be established:

\[
\dot{s}(t) = x(t) - \tilde{x}(t),
\]

\[
s(t) = \min \left\{ \int_{-\infty}^{t} \dot{s}(\lambda) \, d\lambda, \, \phi \delta_{t} \right\},
\]

\[
\dot{\tilde{x}}(t) = (E^X_{\Delta H} \cdot D^X_{\Delta H}) \ast x(t)
\]

\[
= \tilde{x}(t) + \phi \delta_{t},
\]

where $x(t) \in \mathbb{R}^n, \tilde{x}(t) \in \mathbb{R}^n, \phi \in \mathbb{R}_+ \text{ and } \tilde{x}(t) \in \mathbb{R}^n$ denote respectively the input of the encoder $E^X_{\Delta H}$, output of decoder $D^X_{\Delta H}$, two-level quantizer gain and estimated input. Furthermore, $\delta_{t} = \text{sgn}(s(t))$ and $\tilde{x}(t)$ is defined as

\[
\tilde{x}(t) = \phi \varphi(t),
\]

where $\varphi(t) = \delta_{t} - \tau (d\varphi(t)/dt) \in [-1, 1]$. Note that due to the limited integrator in (2), $s(t)$ varies in the range $[-\phi, \phi]$.

The estimated error $e(t)$ is defined as $e(t) = x(t) - \tilde{x}(t)$. The operating regions of ΔH-M (defined in (1)–(4)) can be divided into three regions depending on the values of $e(t)$ and ϕ. This is explained using binary sequence of the two-level quantizer as follows.

1. Steady state region, (Ω_{SS}: $|e(t)| \leq \phi$) where $\delta_{t} = \{-1, +1, \ldots, -1, +1\}$ \Rightarrow $\varphi(t) \approx 0$.
2. Transient process region-1, (Ω_{I}^{+}: $e(t) > \phi$) where $\delta_{t} = \{+1, +1, \ldots, +1, +1\}$ \Rightarrow $\varphi(t) \approx +1$.
3. Transient process region-2, (Ω_{I}^{-}: $e(t) < -\phi$) where $\delta_{t} = \{-1, -1, \ldots, -1, -1\}$ \Rightarrow $\varphi(t) \approx -1$.

![Figure 1](image_url)

Figure 1. Continuous-time ΔH-M (a) ΔH-M based encoder ($E^X_{\Delta H}$), (b) communication channel, (c) ΔH-M based decoder ($D^X_{\Delta H}$).
Remark 2.1: The behaviour of the Δ_{H-M} in the region Ω_{ss} is similar to that of $\Delta_{\Sigma-M}$ and in the regions Ω_{tp}^I and Ω_{tp}^H, it behaves like $\Delta-M$.

2.1. Stability analysis of continuous-time Δ_{H-M}

For the all three operating regions, the stability of CT Δ_{H-M} is proven in following proposition.

Proposition 2.1: For the system described in (1)–(4), following condition is valid for the sliding mode condition to be reachable within finite time:

$$|\delta(t)| \leq \Delta X_t < \phi, \quad \Delta X_t \in \mathbb{R}_+.$$ (5)

Proof: The proof is given considering three cases.

- **Case-1: Stability analysis of continuous-time Δ_{H-M} in the region Ω_{ss}.**

 Consider a Lyapunov function $V(t)$ as

 $$V(t) = \frac{1}{2} s(t)^2.$$ (6)

 Using (1) and (3), it follows that

 $$\dot{s}(t) = e(t) - \phi \delta_t.$$ (7)

 The derivative of (6) can be expressed as

 $$\dot{V}(t) = s(t)e(t) - \phi |s(t)|,$$ (8)

 using (7) and δ_t definition, $\delta_t = |s(t)|/s(t)$.

 It is evident that $\dot{V}(t) < 0$, since $|e(t)| \leq \phi$ in Ω_{ss}.

- **Case-2: Stability analysis of continuous-time Δ_{H-M} in the region Ω_{tp}^I.**

 If the increase of $x(t)$ is such that $\dot{x}(t) < 0$, then this will result in $x(t) > \dot{x}(t)$ at the beginning. As a result of this, the error $e(t) \rightarrow \phi$. However, any further increase of $x(t)$ ($e(t) > \phi$) will force the operating regions to shift (from Ω_{ss} to Ω_{tp}^I) which implies $e(t) > \phi, \forall e(t) \in \Omega_{tp}^I$.

 In the proceeding, the stability of the Δ_{H-M} in the region Ω_{tp}^I is studied using equivalent control-based sliding mode. Let us replace the fast discontinuous component δ_t in (7) by its equivalent slow components $\phi(t)$. The shifting of the operating regions from Ω_{ss} to Ω_{tp}^I implies that

 $$\psi(t) = 1 \Rightarrow \frac{d}{dt} \psi(t) = 0.$$ (9)

 Let us consider a Lyapunov function as

 $$V_{tp}(t) = \frac{1}{2} \delta(t)^2.$$ (10)

 Using (7) and $\delta_t \Rightarrow \psi(t)$ (i.e. equivalent control-based sliding mode) yields

 $$\dot{s}(t) = e(t) - \phi \psi(t).$$ (11)

 Furthermore, by using (1)–(4) and (9), the following equation can be derived:

 $$\dot{V}_{tp}(t) = \dot{s}(t)s(t) = (e(t) - \phi \psi(t))(\dot{x}(t) - \phi).$$ (12)

 Note that in the region $\Omega_{tp}^I, e(t) > \phi$ and therefore, $e(t) - \phi > 0$. Furthermore, since (5) is true, then $V_{tp}(t) < 0$. Furthermore, when (5) is true, the rate of monotonous increment of $\dot{x}(t)$ in (4) is higher compared to the rate of increment of $x(t)$. As a result of this, the conditions required for the existence of sliding mode is fulfilled; as $\dot{x}(t)$ will force the operating regions to shift back from Ω_{tp}^I to Ω_{ss} within finite time. This is defined as hitting time t_f which will be estimated in the next proposition.

- **Case-3: Stability analysis of continuous-time Δ_{H-M} in the region Ω_{tp}^H.**

 The proof of Case-3 is similar to the proof of Case-2. ■

2.2. Computation of the hitting time (t_f) for continuous-time Δ_{H-M}

In this section, we estimate the hitting time t_f, which equals to the time needed for the trajectory of the Δ_{H-M} to hit the sliding manifold.

Proposition 2.2: When (5) is true and $|x(0)| \gg 0$, the upper bound of the hitting time t_f of Δ_{H-M} is given by

$$t_f \leq \frac{|x(0)|}{\phi - \Delta X_t}.$$ (13)

Proof: In the following, the maximum value of the hitting time t_f is estimated which is defined as the time required for the trajectory of the Δ_{H-M} to be forced back into the steady state region Ω_{ss}, from either of the operating regions Ω_{tp}^I or Ω_{tp}^H.
This means that in the combined region $\Omega_{\text{tp}} = \Omega_{\text{tp}}^l \cup \Omega_{\text{tp}}^u$, the rate of change of $\tilde{x}(t)$ is higher compared to the rate of change of $x(t)$. This will force ΔH-M to change its operating region from Ω_{tp} to Ω_{tp}^H within finite time which is less than the maximum hitting time t_f in (16).

3. Discrete-time hybrid delta modulator (ΔH-M)

The schematic of the DT ΔH-M is shown in Figure 2. From this figure, the following relations are obvious:

$$s(k + 1) = x(k) + 2\phi \text{ sat}(s(k)) - \hat{x}(k),$$

and

$$\hat{x}(k) = \tilde{x}(k) + \phi \delta_k,$$

where $x(k) \in \mathbb{R}$ is the input of the DT ΔH-M, $\delta_k = \text{sgn}(s(k))$ and

$$2\phi \text{ sat}(s(k)) = \begin{cases} s(k), & |s(k)| \leq 2\phi, \\ 2\phi \delta_k, & |s(k)| > 2\phi. \end{cases}$$

Moreover, let

$$\tilde{x}(k) = \tilde{x}(k - 1) + \phi \psi(k),$$

where $\psi(k)$ is defined as the DT function related with the equivalent control-based sliding mode and is defined as

$$\psi(k) = \frac{1}{\kappa} \sum_{r=0}^{\kappa-1} \delta_{k-r},$$

where $\psi(k) \in \{-1, -(\kappa - 2)/\kappa, \ldots, 0, \ldots, (\kappa - 2)/\kappa, +1\}$ and $\kappa \in \mathbb{N}\setminus\{0\}$. For convenience and simplicity of computation only the case of $\kappa = 2$ is considered:

$$\psi(k) = \frac{1}{2} (\delta_k + \delta_{k-1}) \in \{-1, 0, +1\}. \quad (21)$$

The error is defined as $e(k) = x(k) - \tilde{x}(k)$, the main task of the function (21) is to maintain $e(k)$ in the neighbourhood of 0. The DT system (17)–(21) is in QSM if $|e(k)| < \varepsilon$.

![Figure 2. Discrete-time ΔH-M (a) ΔH-M based encoder ($E^\chi_{\Delta H}$), (b) communication channel and (c) ΔH-M based decoder ($D^\chi_{\Delta H}$).](image)
3.1. Stability analysis of discrete-time Δ_{H-M}

The stability of DT Δ_{H-M} in all the operating regions is proven in the following proposition.

Proposition 3.1: For a system described by (17)–(21), if

$$|\Delta x(k)| \leq \Delta X_k < \phi, \quad (22)$$

then the system trajectory will converge, from any initial state $e(0)$, to quasi-sliding mode domain (QSMD) which is defined by $|e(k)| \leq \varepsilon$, where ε is bounded such that $\varepsilon \leq 2\phi$, $\forall k > k^*$. Once the system trajectory enters into the quasi-sliding mode domain, it will remain in QSMD for all the subsequent time.

Proof: Stability of the Δ_{H-M} (17)–(21) will be studied in the two regions: Ω_{ss} and $\Omega_{tp} = \Omega_{tp}^I \cup \Omega_{tp}^II$.

- **Case-1:** Stability analysis of discrete-time Δ_{H-M} in the region Ω_{ss}.

 Assume that the system start from the initial point, $e(0)$ where $|e(0)| \leq \phi$ (e.g. $|x(0) - \hat{x}(0)| < \phi$) which implies that $e(0) \in \Omega_{ss}$. For the discrete-time Δ_{H-M}, the dynamics described in (17)–(21), assume $s(0) = 0$. Let us consider two possible cases ($s(k) \geq 0$ and $s(k) < 0$) within Ω_{ss}.

 1. Consider the case when $s(k) \geq 0$, in (17) and $\psi(k) = 0$ in (20) and (21). Then (17) can be expressed as

 $$s(k + 1) = s(k) + e(k) - \phi.$$

 Since $|e(k)| \leq \phi$ in the region Ω_{ss}, then $s(k + 1) < s(k)$.

 2. Consider the case when $s(k) < 0$, in (17) and $\psi(k) = 0$ in (20) and (21). Then (17) can be expressed as

 $$s(k + 1) = s(k) + e(k) + \phi.$$

 Since $|e(k)| \leq \phi$ in the region Ω_{ss}, then $s(k + 1) > s(k)$.

 From the above two cases ($s(k) \geq 0$ and $s(k) < 0$), it can be concluded that $s(k)$ decreases monotonically when $s(k) \geq 0$ and it increases monotonically when $s(k) < 0$. This implies that $|s(k + 1)| < |s(k)|$.

- **Case-2:** Stability analysis of discrete-time Δ_{H-M} in the region Ω_{tp}^I.

In the following section, the stability condition for the scenario when the system trajectory is outside QSMD ($e(0) > \varepsilon$) is investigated. Note that, in this case, $e(0) > \varepsilon$, $x(0) > \hat{x}(0)$ and as a result of that $s(k) > 0$, $\forall 0 \leq k \leq k^*$.

Using iterations,

$$e(k) = \sum_{j=1}^{k} \Delta x(i) + e(0) - k\phi$$

$$\leq k(\Delta X_k - \phi) + e(0)$$

$$\leq e(k - 1), \quad \forall \Delta x(k) \leq \Delta X_k < \phi. \quad (23)$$

Furthermore (17) can also be expressed as

$$s(k + 1) = e(k) + \phi, \quad \forall s(k) \geq 2\phi.$$

Note that when $e(0) > \varepsilon$ and $s(k) > 2\phi$, $\forall 0 \leq k \leq k^*$, then $e(k) < e(k - 1)$, $s(k + 1) < s(k)$. In other words, this means that $s(k)$ decreases monotonically and QSM is reached within finite number of steps k^* such that $s(k) \leq \varepsilon$, $\forall k \geq k^*$.

- **Case-3:** Stability analysis of discrete-time Δ_{H-M} in the region Ω_{tp}^II.

Proof of Case-3 is similar to the proof of Case-2. \hfill \blacksquare

3.2. Computation of the hitting step k^* for discrete-time Δ_{H-M}

In this section, we estimate the hitting step k^*. The hitting step k^* is defined as the maximum number of steps required by the trajectory of the Δ_{H-M} to hit the sliding manifold.

Proposition 3.2: For the system described in (17)–(21), if (22) is true, then the number of steps required for the trajectory of discrete-time Δ_{H-M} to cross the switching manifold $s(k) = 0$ (from any initial value $s(0)$), equals to k^* where $k^* = |m|$, and

$$m \leq \frac{|e(0)|}{\phi - \Delta X_k}. \quad (24)$$

The floor operation is denoted by $|m|$.

Proof: In the succeeding section the hitting step k^*, where the system trajectory of the discrete-time Δ_{H-M} crosses the hyper-plane $e(k) = 0$, is estimated. Note that the results are derived under the assumption of $e(0) > \varepsilon$. The mth iteration of (23) gives

$$e(m) = e(0) + \sum_{k=0}^{m-1} \Delta x(k) - m\phi. \quad (25)$$

From Proposition 3.1, it is known that there exists a step where δ_k changes from $+1$ to -1. Consider the case of maximum m where $\Delta x(k) = \Delta X_k$. When $e(|m|) \leq 0$,
Figure 3. Continuous-time Δ_H input, output and state response.

Figure 4. Continuous-time Δ_H sliding manifold.
then \(m \leq e(0)/(\phi - \Delta X_k) \). Similar results can be derived for the case when \(e(0) < -\epsilon \). Hence from the both scenarios, \(|e(0)| > \epsilon\), it can be concluded that the system trajectory of the discrete-time \(\Delta_H-M \) requires \(k^* \) number of steps to cross the surface \(e(k) = 0 \) where

\[
m \leq \frac{|e(0)|}{\phi - \Delta X_k},
\]

and \(k^* = \lfloor m \rfloor \). This completes the proof of Proposition 3.2.

4. Simulation results

In this section, the dynamical properties of \(\Delta_H-M \) in both CT and DT domains are investigated. In the simulation, the input, output and trajectory of the modulators are computed and their behaviour in various operating regions are studied considering the signal

\[
y(t) = \begin{cases}
3r(t) - r(t - 5) - 2r(t - 10) & 0 \leq t \leq 15, \\
\sin(0.7t) + \sin(0.256t) + 5.89 \sin(0.385t + 2.5), & 15 < t \leq 30,
\end{cases}
\]

where \(r(t) \) is the ramp signal.

4.1. Simulation results of continuous-time \(\Delta_H \)

Consider the CT \(\Delta_H-M \), described in (1)–(4) with \(x(t) = y(t) \) (defined in (26)) as the input signal and \(s(0) = 0 \). The trajectories of this modulator are shown in Figures 3–5.

According to the stability condition (5), the CT \(\Delta_H-M \), with quantizer gain \(\phi = 2 \), is stable for all \(|\dot{x}(t)| \leq X_{\Delta t}, \forall X_{\Delta t} = 2 \). It can be seen that when \(t \in [0, 5) \), \(\dot{x}(t) > 2 \). Therefore, the modulator becomes unstable (see Figure 3). Note that if this condition persists for a longer period, it will eventually lead to instability. For \(t \in [5, 10) \), the derivative of the input signal becomes equal to the quantizer gain, i.e. \(\dot{x}(t) = \phi \). Therefore, the system is marginally stable during this time (see Figures 4 and 5). In this region, both the input \(x(t) \) and the output \(\hat{x}(t) \) increase with the same rate which is evident from Figure 3. For \(t \in [10, 5) \), the operating region is switched to the stability region. Note that stability region consists of sliding mode and equivalent mode. The hitting time \(t_f \) is calculated from (13) and has been found to be 12.5 s. The trajectory in the phase plane, shown in Figure 4, further confirms the results presented in Figures 3 and 5.

4.2. Simulation results of discrete-time \(\Delta_H \)

Consider the DT equivalent of the signal in (26) (denoted as \(y(k) \)), \(\forall t \in [\Delta k, (k + 1)\Delta] \), where \(k \) and \(\Delta \) denote the sampling step and period, respectively. Let the input of the \(\Delta_H \) (17) be \(x(k) = y(k) \). The trajectories of \(\Delta_H \) system

![Figure 5. Continuous-time \(\Delta_H \).](image-url)
are shown in Figure 6 for $\phi = 0.4$, $h = 0.2$ and $s(0) = 0$. According to the stability condition (22), it can be seen that Δ_H with $\phi = 0.4$, is stable for all $|x(k)| \leq 0.4$. Thus, the system output $\hat{x}(k)$ diverges from the system input $x(k)$ when $\Delta x(k) = 0.6$, $\forall 0 \leq k < 25$ and it converges when $\Delta x(k) \leq 0.4$, $\forall 50 \leq k < 65$; since it satisfies stability conditions. According to (24), the number of steps which the trajectory takes to make transition from marginal mode (which starts at $k = 51$) to equivalent mode, is 15. This gives $k_f = 66$.

5. Conclusion

The stability conditions and accurate estimation of hitting-step for both data-driven Δ_H-M are derived analytically using QSM analysis. It is found that the stability and the upper bound of hitting-time, for Δ_H-M, are critically dependent on some properties of the input signals, quantizer gain, as well as the adaptive parameters in Δ_H-M. The simulation results confirm theoretical findings. Future research includes using Δ_H-M in applications such as in Power Electronics, in event-triggered NCS, load frequency control of multi-area interconnected power systems (Lu, Zhou, Zeng, & Zheng, 2019) and in the internet of things (IoT). Also, this adaptive algorithm can further be improved to tackle many challenges that we face in the aforementioned applications.

Acknowledgments

Authors would like to acknowledge the support given by Renewable Energy Lab at Prince Sultan University and Prince Sultan University for the administrative support.

Disclosure statement

The authors declare no conflict of interest.

Funding

This research is funded by the Renewable Energy Lab - Prince Sultan University.

References

Almakhles, D., Swain, A. K., & Nasiri, A. (2017, November). The dynamic behaviour of data-driven Δ-M and $\Delta \Sigma$-M in sliding mode control. International Journal of Control, 90, 2406–2414.

Almakhles, D., Swain, A. K., Nasiri, A., & Patel, N. (2017, May). An adaptive two-level quantizer for networked control systems. IEEE Transactions on Control Systems Technology, 25, 1084–1091.

Almakhles, D. J., Swain, A. K., & Patel, N. D. (2015, July). Stability and performance analysis of bit-stream-based feedback control systems. IEEE Transactions on Industrial Electronics, 62, 4319–4327.

Al-Makhles, D., Patel, N., & Swain, A. (2013a). Bit-stream control system: Stability and experimental application. International conference on applied electronics (AE) (pp. 1–6), Pilsen, Czech Republic.
Al-Makhles, D., Patel, N., & Swain, A. (2013b). Conventional and hybrid bit-stream in real-time system. Proceedings of the 11th workshop on intelligent solutions in embedded systems (wises) (pp. 1–6), Pilsen, Czech Republic.

Al-Makhles, D., Patel, N., & Swain, A. (2013c). A two-loop linear control utilizing \(\Delta \Sigma \) modulator. Proceedings of the 11th workshop on intelligent solutions in embedded systems (wises) (pp. 1–6), Pilsen, Czech Republic.

Al-Makhles, D., Patel, N., & Swain, A. (2014). Adaptive quantizer for networked control system. European control conference (ECC) (pp. 1404–1409), Strasbourg, France.

Azuma, S., & Sugie, T. (2008, October). Synthesis of optimal dynamic quantizers for discrete-valued input control. IEEE Transactions on Automatic Control, 53, 2064–2075.

Chen, Y. M., Chen, Y. C., & Wu, T. F. (2010, December). Feedforward delta modulation for power converters. IEEE Transactions on Industrial Electronics, 57, 4126–4136.

de Wit, C. C., Gomez-Estern, F., & Rubio, F. (2009, June). Delta-modulation coding redesign for feedback-controlled systems. IEEE Transactions on Industrial Electronics, 56, 2684–2696.

Gai, R., Xia, X., & Chen, G. (2006, December). Complex dynamics of systems under delta-modulated feedback. IEEE Transactions on Automatic Control, 51, 1888–1902.

Gomez-Estern, F., de Wit, C. C., & Rubio, F. R. (2011, January). Adaptive delta modulation in networked controlled systems with bounded disturbances. IEEE Transactions on Automatic Control, 56, 129–134.

Haykin, S. (2000). Communication systems. New York, USA: John Wiley and Sons.

Karimireddy, T., & Zhang, S. (2017, February). Incorporation of timing properties into adaptive error control method for timely and reliable communication in industrial automation networks. Systems Science & Control Engineering, 5, 350–360.

Kermani, M., & Sakly, A. (2014). Stability analysis for a class of switched nonlinear time-delay systems. Systems Science & Control Engineering, 2, 80–89.

Li, J., Dong, H., Han, F., Hou, N., & Li, X. (2017, January). Filter design, fault estimation and reliable control for networked time-varying systems: A survey. Systems Science & Control Engineering, 5, 331–341.

Li, X., Dong, H., Han, F., & Li, J. (2018, April). A survey on membership filtering for networked control systems under communication protocols. Systems Science & Control Engineering, 6, 293–303.

Li, T., & Fujimoto, Y. (2008, April). Control system with high-speed and real-time communication links. IEEE Transactions on Industrial Electronics, 55, 1548–1557.

Lu, K., Zhou, W., Zeng, G., & Zheng, Y. (2019, February). Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system. International Journal of Electrical Power & Energy Systems, 105, 249–271.

Mantz, R. J. (2015). Switch actuators in process control: Constraint problems and corrections. Systems Science & Control Engineering, 3, 360–366.

Premaratne, U., Halgamuge, S. K., & Mareels, I. M. Y. (2013, July). Event triggered adaptive differential modulation: A new method for traffic reduction in networked control systems. IEEE Transactions on Automatic Control, 58, 1696–1706.

Sira-Ramirez, H. (2003). Sliding mode-\(\Delta \)-modulation control of a ‘buck’ converter. Proceedings of 42nd IEEE conference on decision and control (pp. 2999–3004), Maui, HI, USA.

Xia, X. (2007, August). Periodic orbits arising from two-level quantized feedback control. Chaos, Solitons and Fractals, 33, 1339–1347.

Xia, X., & Chen, G. (2007, August). On delta-modulated control: A simple system with complex dynamics. Chaos, Solitons and Fractals, 33, 1339–1347.

Xia, X., & Zinober, A. S. I. (2008, February). Periodicity in delta-modulated feedback control. Journal of Control Theory and Applications, 6, 37–44.

Xia, X., & Zinober, A. S. I. (2004, August). Periodic orbits from \(\Delta \)-modulation of stable linear systems. IEEE Transactions on Automatic Control, 49, 1376–1380.

Xia, X., & Zinober, A. S. I. (2006, May). \(\Delta \)-modulated feedback in discretization of sliding mode control. Automatica, 42, 771–776.