Bi-maximal neutrino mixing and small U_{e3} from Abelian flavor symmetry

Kiwoon Choia, Eung Jin Chunb, Kyuwan Hwanga and Wan Young Songa

aDepartment of Physics,
Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea
bSchool of Physics,
Seoul National University,
Seoul 151-147, Korea

Abstract

Atmospheric neutrino data strongly suggests a near-maximal $\nu_\mu-\nu_\tau$ mixing and also solar neutrino data can be nicely explained by another near-maximal $\nu_e-\nu_\mu$ or $\nu_e-\nu_\tau$ mixing. We examine the possibility that this bi-maximal mixing of atmospheric and solar neutrinos arises naturally, while keeping U_{e3} and $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}$ small enough, as a consequence of Abelian flavor symmetry. Two simple scenarios of Abelian flavor symmetry within supersymmetric framework are considered to obtain the desired form of the neutrino mass matrix and the charged lepton mass matrix parameterized by the Cabibbo angle $\lambda \approx 0.2$. Future experiments at a neutrino factory measuring the size of U_{e3} and the sign of Δm^2_{32} could discriminate those scenarios as they predict distinctive values of U_{e3} in connection with $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}$ and also with the order of the neutrino mass eigenvalues.
I. INTRODUCTION

Atmospheric and solar neutrino experiments have suggested for a long time that neutrinos oscillate into different flavors. In particular, the Super-Kamiokande data strongly indicate that the observed deficit of atmospheric muon neutrinos is due to the near-maximal $\nu_\mu \to \nu_\tau$ oscillation [1]. Solar neutrino data from the recent SNO experiment combined with those of Homestake, SAGE, GALLEX and Super-Kamiokande [2] provide also strong observational basis for $\nu_e \to \nu_\mu$ or ν_τ oscillation [3]. Thus, the “standard” framework to accommodate the atmospheric and solar neutrino anomalies is to introduce small but nonzero masses of the three known neutrino species.

Low energy effective Lagrangian relevant to the neutrino masses and mixing can be written as

$$\Delta L = \overline{\nu}_L M^e e_R + g W^{-\mu} \overline{\nu}_L \gamma_\mu \nu_L + \frac{1}{2} (\nu_L)^c M^\nu \nu_L + \text{h.c.},$$ \hspace{1cm} (1)

where the charged lepton mass matrix M^e and the neutrino mass matrix M^ν are not diagonal in general in the weak interaction eigenbasis. Diagonalizing M^e and M^ν as

$$(U^e)^\dagger M^e V^e = D^e = \text{diag} (m_e, m_\mu, m_\tau),$$

$$(U^\nu)^T M^\nu U^\nu = D^\nu = \text{diag} (m_1, m_2, m_3),$$ \hspace{1cm} (2)

one finds the effective Lagrangian written in terms of the mass eigenstate fermion fields:

$$\Delta L = \overline{\nu}_L D^\nu e_R + g W^{-\mu} \overline{\nu}_L \gamma_\mu U^{\text{MNS}} \nu_L + \frac{1}{2} (\nu_L)^c D^\nu \nu_L + \text{h.c.},$$ \hspace{1cm} (3)

where the MNS lepton mixing matrix [3] is given by

$$U^{\text{MNS}} = (U^e)^\dagger U^\nu.$$ \hspace{1cm} (4)

The MNS mixing matrix can be parametrized as

$$U^{\text{MNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$= \begin{pmatrix} c_{13} c_{12} & s_{13} c_{12} c_{23} e^{i \delta} & s_{13} c_{13} e^{-i \delta} \\ -s_{12} c_{23} - s_{23} s_{13} c_{12} e^{i \delta} & c_{23} c_{12} - s_{23} s_{13} s_{12} e^{i \delta} & s_{23} c_{13} \\ s_{23} s_{12} - s_{13} c_{12} c_{23} e^{i \delta} & -s_{23} c_{12} - s_{13} s_{12} c_{23} & c_{23} c_{13} \end{pmatrix}$$ \hspace{1cm} (5)

where $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$. Within this parameterization, the mass-square differences for atmospheric and solar neutrino oscillation can be chosen to be

$$\Delta m^2_{\text{atm}} = |\Delta m^2_{32}| = |m_3^2 - m_2^2|,$$

$$\Delta m^2_{\text{sol}} = |\Delta m^2_{21}| = |m_2^2 - m_1^2|.$$

Then the corresponding mixing angles are given by

$$\theta_{\text{atm}} = \theta_{23}, \quad \theta_{\text{sol}} = \theta_{12}, \quad \theta_{\text{rea}} = \theta_{13},$$ \hspace{1cm} (6)

where θ_{rea} describes the neutrino oscillation $\nu_\mu \to \nu_e$ in reactor experiments such as the CHOOZ experiment.
The atmospheric neutrino data strongly suggests near-maximal $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation with
$$\Delta m^{2}_{32} \sim 3 \times 10^{-3} \text{eV}^{2}, \quad \sin^{2} 2\theta_{23} \sim 1. \quad (7)$$

As for the solar neutrino anomaly, the following four solutions are possible:

- **SMA**: $\Delta m^{2}_{21} \sim 5.0 \times 10^{-6} \text{eV}^{2}, \quad \sin^{2} 2\theta_{12} \sim 2.4 \times 10^{-3}$,
- **LMA**: $\Delta m^{2}_{21} \sim 3.2 \times 10^{-5} \text{eV}^{2}, \quad \sin^{2} 2\theta_{12} \sim 0.75$,
- **LOW**: $\Delta m^{2}_{21} \sim 1.0 \times 10^{-7} \text{eV}^{2}, \quad \sin^{2} 2\theta_{12} \sim 0.96$,
- **VAC**: $\Delta m^{2}_{21} \sim 8.6 \times 10^{-10} \text{eV}^{2}, \quad \sin^{2} 2\theta_{12} \sim 0.96. \quad (8)$

These values represent the *best fit* points for each region and the LMA region extends to larger $\Delta m^{2}_{21} \sim 2 \times 10^{-4}$ [3]. Recent reports by Super-Kamiokande [6] and SNO [3] favor the solutions with large θ_{12}. On the other hand, the third mixing angle θ_{13} is constrained by the CHOOZ reactor experiment [6] as

$$U^{\text{MNS}}_{e3} = \sin \theta_{13} \lesssim 0.2. \quad (9)$$

The above neutrino oscillation parameters indicate that the neutrino mass matrix has a nontrivial flavor structure as the quark and charged lepton mass matrices do have. (It has been noted that the near-maximal atmospheric neutrino oscillation and the LMA solar neutrino oscillation can be achieved from an anarchical neutrino mass matrix if one accepts certain degree of accidental cancellation [3].) One of the most popular scheme to explain the hierarchical quark masses and mixing angles is the Frogatt-Nielsen mechanism with a spontaneously broken Abelian flavor symmetry [9, 10, 11, 12, 13]. In this scheme, flavor symmetry is assumed to be broken by two scalar fields with the flavor charges $X_{1}, X_{1}^{'}, X_{2}$ as a consequence of Abelian flavor symmetry. Our basic assumption is that the flavor symmetry is broken by order parameters which have the Cabibbo angle size λ. Since the simplest scheme with single anomalous $U(1)$ flavor symmetry and single symmetry breaking parameter can not produce the desired form of M^{e} and M^{ν}, we need to extend the scheme. In this regard, we consider two simple extensions, Scenario A and B, which are assumed to be realized in supersymmetric models. Flavor symmetry of Scenario A is a non-anomalous $U(1)_{X}$, so is broken by two scalar fields with opposite $U(1)_{X}$ charges $x = \pm 1$. In Scenario B, flavor symmetry is extended to $U(1)_{X} \times U(1)_{X'}$ where $U(1)_{X}$ is anomalous while $U(1)_{X'}$ is non-anomalous. It is then assumed to be broken by two scalar fields with the flavor charges $(x, x') = (-1, -1)$ and $(0, 1)$ for which the symmetry breaking parameters naturally have the Cabibbo angle size.
Depending upon the way that it is generated, M^ν can be determined either by the weak scale selection rule involving only the flavor charges of the weak scale fields, or by a more involved selection rule. For instance, in see-saw models with heavy singlet neutrinos N_i [12], the selection rule for M^ν involves the flavor charges of N_i as well as those of the weak scale fields. Sometimes this feature enables us to build more variety of models, although in most cases it is possible to find the flavor charges of N_i for which M^ν is determined simply by the weak scale selection rule.

Measuring the mixing angle θ_{13} is one of the main targets of the proposed neutrino factory which can achieve the precision down to $\theta_{13} \sim 10^{-2}$ [13]. This would allow us to distinguish several different $\theta_{13} \simeq \lambda^n$ by future experiments. A nonzero $\theta_{13} \simeq \lambda^2$ or λ^3 would give a detectable $\nu_e \leftrightarrow \nu_\mu$ transition. On the other hand, $\theta_{13} \simeq \lambda^3$ may or may not be detectable, and $\theta_{13} \lesssim \lambda^4$ would give undetectably small $\nu_e \leftrightarrow \nu_\mu$ transition. In this sense, it is meaningful to explore the possibility that θ_{13} is as small as λ^3 or even less. CP violating effects could also be probed if the re-phasing invariant

$$ J_{CP} = \frac{1}{4} c_{13}^2 s_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta $$

is sizable and the LMA solution of the solar neutrino problem is realized [15]. Note that the CP violating phase is not controlled by Abelian flavor symmetry, so $\sin \delta$ is generically of order one in our scheme. Another important result expected in the future neutrino experiments is the determination of the sign of Δm^2_{32}. Once $\nu_e \rightarrow \nu_\mu$ oscillations are established, matter effects can be measured to discriminate the sign of Δm^2_{32} [14]. That is, one would be able to determine whether neutrino masses follow the normal ($\Delta m^2_{32} > 0$) or inverted ($\Delta m^2_{32} < 0$) mass hierarchy. As we will see, the information on θ_{13} and/or Δm^2_{32} together with the solar neutrino solution will provide meaningful constraints on models of Abelian flavor symmetry.

The organization of this paper is as follows. In the next section, we discuss some aspects of Abelian flavor symmetry and the associated selection rule which are relevant to our subsequent discussions. In section III, we discuss the textures of M^e and M^ν which would give small θ_{13} and $\Delta m^2_{32}/\Delta m^2_{23}$ while keeping the θ_{23} and θ_{12} near bi-maximal. We focus on three type of M^ν, Class (I) with $M^\nu_{33} \gg M^\nu_{11} \simeq M^\nu_{12} \simeq M^\nu_{22}$ so $m_1 \simeq m_2 \ll m_3$, pseudo-Dirac type Class (II) with $M^\nu_{33} \gg M^\nu_{11} \gg M^\nu_{12} \gg M^\nu_{22}$ so the normal mass hierarchy $m_1 \simeq m_2 \lesssim m_3$, pseudo-Dirac type Class (III) with $M^\nu_{12} \gg M^\nu_{11}, M^\nu_{22}, M^\nu_{33}$ so the inverted mass hierarchy $m_1 \simeq m_2 \gg m_3$. In section IV, we discuss examples of Abelian flavor symmetry for Scenarios A and B, leading to the mass textures discussed in section III under the assumption that M^ν is determined by the weak scale selection rule. We first list examples with largest possible θ_{13} for each of the three types of mass textures, i.e. Classes (I)-(III), and the three types of solar neutrino oscillations with large θ_{12}, i.e. LMA, LOW, VAC. We then explore the possibility to have a smaller θ_{13}. Under the condition that the lepton doublets L_i have integer-valued flavor charges $|l_i| < 10$ when the flavor charges of symmetry breaking fields are normalized to be ± 1, we find the possible range of θ_{13} for each type of mass textures and solar neutrino oscillations and the results are summarized in Table I. In section V, we discuss see-saw models containing singlet neutrinos N_i with integer-valued flavor charges $|n_i| < 10$ and also with $|l_i| < 10$ to find the possible range of θ_{13}. Some see-saw models are explicitly presented as examples producing M^ν which can not be obtained under the weak selection rule. The results on the range of θ_{13} in see-saw models are summarized also in Table I. Section VI is devoted to the conclusion.
II. FROGATT-NIELSEN MECHANISM FOR ABELIAN FLAVOR SYMMETRY

The simplest framework to implement the Frogatt-Nielsen mechanism with Abelian flavor symmetry is to introduce single anomalous $U(1)_X$ symmetry which is assumed to be broken by single symmetry breaking scalar field $\langle \phi \rangle / M_* \simeq \lambda$. This framework is best motivated from compactified heterotic string theory with anomalous $U(1)_X$. In such theory, the scalar potential includes the contribution from the string-loop induced Fayet-Iliopoulos D-term, so

$$V = \frac{g^2_X}{2} \left(\xi^2 - |\phi|^2 \right)^2,$$

where $\xi^2 = \text{Tr}(X) M_*^2/96\pi^2$ for the string scale M_* and all other $U(1)_X$-charged scalar fields are set to zero for simplicity. This framework is particularly attractive since the symmetry breaking parameter naturally has the Cabibbo angle size:

$$\frac{\langle \phi \rangle}{M_*} = \left(\frac{\text{Tr}(X)}{96\pi^2} \right)^{1/2} \simeq \lambda.$$

Then generic $U(1)_X$-invariant superpotential is given by

$$W = \sum_i \left(\frac{\phi}{M_*} \right)^{x_i} \mathcal{O}_i = \sum_i \lambda^{x_i} \mathcal{O}_i \quad (x_i \geq 0),$$

where the $U(1)_X$ charges of ϕ and \mathcal{O}_i are -1 and x_i, respectively. With this selection rule, we can control the size of Yukawa couplings by assigning $U(1)_X$ charge appropriately to the low energy fields. One important consequence of this selection rule is that the operator \mathcal{O}_i with negative $U(1)_X$ charge is forbidden due to the holomorphicity. This point is very useful and enables us to build non-trivial Yukawa matrix.

It is well known that realistic quark and charged lepton mass matrices can be easily obtained within the framework of single anomalous $U(1)_X$ and single symmetry breaking parameter λ. However, this framework can not provide the textures of M^e and M^ν which will be discussed in the next section as producing bi-maximal θ_{23}, θ_{12} together with small θ_{13}, $\Delta m^2_{21}/\Delta m^2_{32}$. One simple modification of the model which would provide the desired forms of M^e and M^ν is to assume that $U(1)_X$ is non-anomalous, so is broken by two symmetry breaking scalar fields ϕ_1, ϕ_2 with opposite $U(1)_X$ charges ± 1. The D-term scalar potential is then given by

$$V = \frac{g^2_X}{2} \left(|\phi_1|^2 - |\phi_2|^2 \right)^2$$

which ensures

$$\frac{\langle \phi_1 \rangle}{M_*} = \frac{\langle \phi_2 \rangle}{M_*}.$$

However there is no good reason in this framework that $\langle \phi_1 \rangle / M_*$ has the Cabibbo angle size. A simple way to avoid this difficulty is to have one anomalous $U(1)_X$ and another non-anomalous $U(1)_{X'}$ which are broken by two scalar fields ϕ_1 and ϕ_2 having the flavor charges $(-1, -1)$ and $(0, 1)$. In this case, the D-term potential of ϕ_1 and ϕ_2 is given by

$$V = \frac{g^2_X}{2} \left(\xi^2 - |\phi_1|^2 \right)^2 + \frac{g^2_{X'}}{2} \left(|\phi_2|^2 - |\phi_1|^2 \right)^2,$$
which guarantees that
\[
\frac{\langle \phi_1 \rangle}{M_*} = \frac{\langle \phi_2 \rangle}{M_*} = \frac{\xi}{M_*} \simeq \lambda.
\] (12)

In this paper, we will explore the possibility of obtaining the desired textures of \(M^c\) and \(M^\nu\) within the following two scenarios of Abelian flavor symmetry:

- **Scenario A**: Single non-anomalous \(U(1)_X\) with two symmetry breaking parameters \(\langle \phi_1 \rangle/M_* = \langle \phi_2 \rangle/M_* \simeq \lambda\) with \(U(1)_X\) charges \(x = \pm 1\). The selection rule in this scenario is given by
 \[
 W = \sum_i \lambda^{|x_i|} O_i,
 \] (13)
 where \(x_i\) denotes the \(U(1)_X\) charge of \(O_i\).

- **Scenario B**: \(U(1)_X \times U(1)'_X\) with two symmetry breaking parameters \(\langle \phi_1 \rangle/M_* = \langle \phi_2 \rangle/M_* \simeq \lambda\) with flavor charges \((x, x') = (-1, -1)\) and \((0, 1)\). The resulting selection rule is given by
 \[
 W = \sum_i \left(\frac{\phi_2}{M_*} \right)^{x_i-x'_i} \left(\frac{\phi_1}{M_*} \right)^{x_i} O_i = \sum_i c_i O_i,
 \] (14)
 where
 \[
 c_i = \begin{cases}
0 & \text{if } x_i < 0 \text{ or } x_i < x'_i \\
\lambda^{2x_i-x'_i} & \text{otherwise},
\end{cases}
\] (15)
 for \((x_i, x'_i)\) denoting the \(U(1)_X \times U(1)'_X\) charge of \(O_i\).

The above selection rules are derived at energy scales just below the flavor symmetry breaking scale \(M_X\). If some heavy fields have masses depending upon the symmetry breaking order parameter, the low energy effective couplings of light fields induced by the exchange of such heavy fields may not obey the selection rule as determined by the flavor charges of light fields alone. This can happen for instance in singlet see-saw models containing heavy singlet neutrinos with flavor-dependent masses.

Usually, the smallness of neutrino masses are explained by assuming that neutrino masses are induced by the exchange of superheavy particles. At the weak scale, neutrino masses are described by \(d = 5\) operators in the effective superpotential:
\[
\Delta W_{\text{eff}} = \frac{M_D^\nu}{\langle H_2 \rangle^2} L_i H_2 L_j H_2
\] (16)
where \(L_i\) \((i = 1, 2, 3)\) and \(H_2\) denote the lepton and Higgs superfields, respectively. In singlet see-saw models, exchanged heavy particles are the singlet neutrinos \(N_i\) having the superpotential couplings
\[
\Delta W = \frac{M_D^D}{\langle H_2 \rangle} H_2 L_i N_j + M_D^M N_i N_j + \text{h.c.}
\] (17)
which lead to the well-known see-saw formula
\[
M^\nu = M^D (M^M)^{-1} (M^D)^T.
\] (18)
Although \(M^M\) and \(M^D\) obey the selection rule as determined by the flavor charges of the corresponding operators, the resulting \(M^\nu\) may not obey the selection rule as determined...
by the flavor charges of the effective operator $L_i H_2 L_j H_2$. In most cases, there exist some sets of the flavor charges of N_i for which M^ν can be determined simply by applying the selection rule to the weak scale effective operator $L_i H_2 L_j H_2$, which we call the weak scale selection rule (WSSR). However it is also possible that M^ν does not obey the WSSR, so can be determined only through the see-saw formula (18).

This complication does not occur in triplet see-saw models in which M^ν is generated by the exchange of superheavy $SU(2)_L$ triplet Higgs fields T_1, T_2 [16]. Such models include the superpotential couplings

$$\Delta W = h_{ij} T_1 L_i L_j + h_0 T_2 H_2 H_2 + M_T T_1 T_2,$$

which give

$$M_{ij}^\nu = h_0 h_{ij} \langle H_2 \rangle^2 / M_T. \quad (19)$$

In this case, M^ν can be determined always by the WSSR which is applied to the effective superpotential (16) at the weak scale.

Before closing this section, we note that physical Yukawa couplings can be affected by non-holomorphic flavor-mixing terms in the Kähler potential, e.g. $\Phi_i \Phi_j (\phi / M^*)^k_{ij}$ [13]. However it turns out that such Kähler mixing terms give negligible corrections in all models discussed in this paper.

III. TEXTURES FOR BI-MAXIMAL MIXING WITH SMALL $U_{\ell 3}$

There have been many discussions in the literatures about the possibility of bi-maximal θ_{23} and θ_{12} [17]. Most of them rely on the assumption that M^e is (approximately) diagonal so that U^e is an identity matrix. However, comparing Eq.(4) and Eq.(5) gives another interesting possibility. If U^e and U^ν are given by

$$U^e \simeq \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad U^\nu \simeq \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (20)$$

the resulting U^{MNS} naturally has a small θ_{13} together with bi-maximal $\theta_{23} \sim \theta_{12} \sim \pi/4$. In this section, we categorize what textures of M^e and M^ν can realize this idea while giving the correct (small) value of $\Delta m^2_{31}/\Delta m^2_{32}$. Recall that our goal is to realize these textures within the framework of Abelian flavor symmetry in which all mass matrix elements are expressed in powers of the Cabibbo angle $\lambda \simeq 0.2$. Any matrix element not shown explicitly should be understood to be small enough not to disturb the basic feature of the texture.

The charged lepton mass matrix that gives U^e of Eq. (20) is given by

$$M^e = m_\tau \begin{pmatrix} \lambda^n & 1 \\ 1 & 1 \end{pmatrix}, \quad (21)$$

where $n \geq 1$ and the first and second column should be smaller than the third one. Within the framework of Abelian flavor symmetry, there is no way to get U^e of Eq. (20) other than this form of M^e. However, for the neutrino mass matrix, there are several different ways to
get U^{ν} of Eq. (20). Amongst them, the following texture with pseudo-Dirac 2×2 block is of particular interest:

$$M^{\nu} = m_{\text{max}} \begin{pmatrix} \lambda^n & \lambda^l \\ \lambda^l & \lambda^m \end{pmatrix} \begin{pmatrix} \lambda^k \end{pmatrix}$$ (22)

where m_{max} denotes the largest mass eigenvalue, $l \geq 0$, $k \geq 0$ and $n, m > l$. For $k = 0$, this M^{ν} gives the normal mass hierarchy $m_3 \gtrsim m_2, m_1$, while $k > l = 0$ gives the inverted hierarchy $m_2 \simeq m_1 \gg m_3$. The mass eigenvalues of the above pseudo-Dirac M^{ν} give

$$\frac{\Delta m^2_{\text{sol}}}{\Delta m^2_{\text{atm}}} \sim \lambda^{q+l},$$ (23)

where $q \equiv \min(n, m)$. The size of this ratio can be read off from the oscillation data of Eqs. (7) and (8), implying

- LMA : $q + l = 2 - 4$
- LOW : $q + l = 6 - 7$
- VAC : $q + 1 = 9 - 10$ (24)

Including the case of plain large mixing, textures of M^{ν} which would give U^{ν} of Eq. (20) together with the right value $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}$ can be categorized as follows:

- **Class (I)**: Plain large mixing with $n \geq 1$ which gives $m_1 \simeq m_2 \ll m_3$
 $$M^{\nu} \simeq m_3 \begin{pmatrix} \lambda^n & \lambda^l \\ \lambda^l & \lambda^m \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \quad \text{or} \quad M^{\nu} \simeq m_3 \begin{pmatrix} \lambda^n \\ \lambda^l \end{pmatrix} \begin{pmatrix} \lambda^m \\ 1 \end{pmatrix}$$ (25)

- **Class (II)**: Pseudo-Dirac type with $n, m > l \geq 0$ which gives the normal mass hierarchy $m_1 \simeq m_2 \lesssim m_3$
 $$M^{\nu} \simeq m_3 \begin{pmatrix} \lambda^n & \lambda^l \\ \lambda^l & \lambda^m \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$$ (26)

- **Class (III)**: Pseudo-Dirac type with the inverted mass hierarchy $m_1 \simeq m_2 \gg m_3$
 $$M^{\nu} \simeq m_2 \begin{pmatrix} \lambda^n & 1 \\ 1 & \lambda^m \end{pmatrix}$$ (27)

In all the cases, we will scan the possible charge assignments to find the allowed ranges of θ_{13} which may turn out to be within the reach of future neutrino experiments and can give a large CP violating quantity J_{CP}. Note that Class (I) and (II) give $\Delta m^2_{32} > 0$ and Class (III) gives $\Delta m^2_{32} < 0$.

IV. MODELS OBEYING THE WEAK SCALE SELECTION RULE

In this section, we discuss the models in which the selection rule can be applied to the weak scale effective superpotential:

$$W_{\text{eff}} = \frac{M_{ij}^c}{\langle H_1 \rangle} H_1 L_i E_j^c + \frac{M_{ij}^\nu}{\langle H_2 \rangle^2} L_i H_2 L_j H_2,$$
where L_i, E^c_i and H_1, H_2 denote the lepton doublets, anti-lepton singlets, and the two Higgs doublets, respectively. As was noted in section II, this weak scale selection rule may not be valid in some singlet see-saw models, which will be discussed in the next section. Here we consider only the models with integer-valued flavor charges when the flavor charges of the symmetry breaking fields are normalized to be ±1. We further limit ourselves to the cases that L_i have the flavor charges $|l_i| < 10$. On the other hand, E^c_i are allowed to have larger flavor charges, otherwise most of the LOW and VAC models presented in the below can not be obtained.

Scenario A: Let us first show that the neutrino mass matrix of Class (I) can not be obtained under the weak scale selection rule in Scenario A. To proceed, let l_i, e_i, h_1, h_2 denote the $U(1)_X$ charges of the superfields L_i, E^c_i, H_1, H_2. Then the charged lepton mass matrix (24) requires

$$|l_1 + e_3 + h_1| \neq |l_2 + e_3 + h_1| = |l_3 + e_3 + h_1|$$

while the neutrino mass matrix (25) requires

$$|l_1 + a| = |l_2 + a| \neq |l_3 + a|,$$

where a is a certain combination of $U(1)_X$ charges. These conditions inevitably lead to M^ν which can not give either a correct value of $\Delta m^2_{sol}/\Delta m^2_{atm}$ or a small θ_{13}. It appears also difficult to find a desirable class (I) model even in the framework of singlet see-saw models.

On the other hand, it is rather easy to get a pseudo-Dirac M^ν of Class (II) under the weak scale selection rule. Let us first list examples with largest possible θ_{13} for each of the LMA, LOW and VAC solutions. Considering the charge assignments,

LMA: $l_i = (1, -2, 0), \quad e_i = (5, 5, 1), \quad h_1 = h_2 = 0,$

LOW: $l_i = (4, -7, -1), \quad e_i = (-12, 12, 4), \quad h_1 = h_2 = 0,$

VAC: $l_i = (8, -5, 1), \quad e_i = (-16, 10, 2), \quad h_1 = h_2 = 0,$

we get the following mass textures,

LMA: $\frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & \lambda^4 & \lambda^2 \\ \lambda & \lambda^2 & 1 \end{pmatrix} \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^5 & \lambda \\ \lambda^2 & \lambda^2 & 1 \\ \lambda^4 & \lambda^4 & 1 \end{pmatrix}$

LOW: $\frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^6 & \lambda & \lambda \\ \lambda & \lambda^{12} & \lambda^6 \\ \lambda & \lambda^6 & 1 \end{pmatrix} \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^{13} & \lambda^5 \\ \lambda^{16} & \lambda^2 & 1 \\ \lambda^{10} & \lambda^8 & 1 \end{pmatrix}$

VAC: $\frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^{14} & \lambda & \lambda^7 \\ \lambda & \lambda^8 & \lambda^2 \\ \lambda^7 & \lambda^2 & 1 \end{pmatrix} \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^{15} & \lambda^7 \\ \lambda^{18} & \lambda^2 & 1 \\ \lambda^{12} & \lambda^8 & 1 \end{pmatrix}$

for which

$$\left(\theta_{13}, \frac{\Delta m^2_{sol}}{\Delta m^2_{atm}}\right) \simeq (\lambda, \lambda^3)_{\text{LMA}}, \quad (\lambda, \lambda^7)_{\text{LOW}}, \quad (\lambda^2, \lambda^3)_{\text{VAC}}.$$

For Class (III), the following charge assignments are possible

LMA: $l_i = (2, -3, 1), \quad e_i = (-9, 7, 1), \quad h_1 = h_2 = 0,$

LOW: $l_i = (5, -4, 2), \quad e_i = (-13, 9, 1), \quad h_1 = h_2 = 0,$

VAC: $l_i = (5, -5, -3), \quad e_i = (-11, 8, 4), \quad h_1 = h_2 = 0,$
to produce the mass textures

\[
\begin{align*}
\text{LMA:} & \quad \frac{M^\nu}{m_2} \approx \begin{pmatrix} \lambda^3 & 1 & \lambda^2 \\ \lambda^2 & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}, & \quad \frac{M^e}{m_\tau} \approx \begin{pmatrix} \lambda^5 & \lambda^7 & \lambda \\ \lambda^{10} & \lambda^2 & 1 \\ \lambda^6 & \lambda^6 & 1 \end{pmatrix} \\
\text{LOW:} & \quad \frac{M^\nu}{m_2} \approx \begin{pmatrix} \lambda^6 & 1 & \lambda^2 \\ 1 & \lambda^7 & \lambda \\ \lambda^6 & \lambda & \lambda^3 \end{pmatrix}, & \quad \frac{M^e}{m_\tau} \approx \begin{pmatrix} \lambda^5 & \lambda^{11} & \lambda^3 \\ \lambda^{14} & \lambda^2 & 1 \\ \lambda^8 & \lambda^8 & 1 \end{pmatrix} \\
\text{VAC:} & \quad \frac{M^\nu}{m_2} \approx \begin{pmatrix} \lambda^{10} & 1 & \lambda^2 \\ \lambda^2 & \lambda^{10} & \lambda^8 \\ \lambda^2 & \lambda^8 & \lambda^6 \end{pmatrix}, & \quad \frac{M^e}{m_\tau} \approx \begin{pmatrix} \lambda^5 & \lambda^{12} & \lambda^8 \\ \lambda^{15} & \lambda^2 & 1 \\ \lambda^{13} & \lambda^4 & 1 \end{pmatrix},
\end{align*}
\]

which give

\[\theta_{13}, \Delta m^2_{sol}/\Delta m^2_{atm} \approx (\lambda, \lambda^3)_{\text{LMA}}, (\lambda, \lambda^7)_{\text{LOW}}, (\lambda^2, \lambda^{10})_{\text{VAC}}.\]

The value of \(\theta_{13} \approx \lambda \) is perhaps the most interesting possibility since it is just below the current bound \(\lambda < 2 \). For the LMA and LOW, we could easily get \(\theta_{13} \approx \lambda \) under the WSSR for both classes of models. However, for the VAC solution \(\theta_{13} \) can be \textit{only} as large as \(\lambda^2 \) under the WSSR. As we will see in the next section, \(\theta_{13} \approx \lambda \) can be obtained for the VAC in the framework of singlet seesaw models for Class (II).

Since it may be possible to determine \(\theta_{13} \) with a precision of order \(10^{-2} \), it is worth to explore a smaller \(\theta_{13} \) including \(\theta_{13} \ll \lambda^3 \). In this regard, the LMA in Scenario A has a special property. Class (II) LMA models can have only \(\theta_{13} \approx \lambda \) or \(\lambda^2 \), while Class (III) LMA models can have only \(\theta_{13} \approx \lambda \). Actually the LMA model shown in Eq. (30) is the unique one which gives the LMA solution with inverted mass hierarchy. A class (II) LMA example with \(\theta_{13} \approx \lambda^2 \) is given by

\[l_i = (2, -2, 0), \quad e_i = (5, 5, 1), \quad h_1 = h_2 = 0,\]

which lead to

\[
\frac{M^\nu}{m_3} \approx \begin{pmatrix} \lambda^4 & 1 & \lambda^2 \\ 1 & \lambda^4 & \lambda^2 \\ \lambda^2 & \lambda^2 & 1 \end{pmatrix}, & \quad \frac{M^e}{m_\tau} \approx \begin{pmatrix} \lambda^6 & \lambda^6 & \lambda^2 \\ \lambda^2 & \lambda^2 & 1 \\ \lambda^4 & \lambda^4 & 1 \end{pmatrix}. \tag{33}
\]

Note that this form of mass matrix can give both the normal mass hierarchy \((m_1 \approx m_2 \lesssim m_3) \) or the inverted mass hierarchy \((m_1 \approx m_2 \gtrsim m_3) \) depending on the precise values of \(M_{12}^\nu \) and \(M_{33}^\nu \) both of which are of order unity.

The LOW and VAC solutions in scenario A can have smaller \(\theta_{13} \ll \lambda^3 \). Here are such examples:

\[
\begin{align*}
\text{LOW, (II)}: & \quad l_i = (3, -4, 0), \quad e_i = (-10, 8, 2), \quad h_1 = h_2 = 0, \\
\text{VAC, (II)}: & \quad l_i = (-6, 4, 0), \quad e_i = (13, -8, -2), \quad h_1 = h_2 = 0, \\
\text{LOW, (III)}: & \quad l_i = (4, -5, 1), \quad e_i = (-12, 10, 2), \quad h_1 = h_2 = 0, \\
\text{VAC, (III)}: & \quad l_i = (5, -5, -1), \quad e_i = (-12, 9, 3), \quad h_1 = h_2 = 0,
\end{align*}
\]

which produce the mass textures

\[
\begin{align*}
\text{LOW, (II)}: & \quad \frac{M^\nu}{m_3} \approx \begin{pmatrix} \lambda^6 & \lambda^1 & \lambda^3 \\ \lambda^1 & \lambda^8 & \lambda^4 \\ \lambda^3 & \lambda^4 & 1 \end{pmatrix}, & \quad \frac{M^e}{m_\tau} \propto \begin{pmatrix} \lambda^5 & \lambda^9 & \lambda^3 \\ \lambda^{12} & \lambda^2 & 1 \\ \lambda^8 & \lambda^6 & 1 \end{pmatrix},
\end{align*}
\]
correct square mass difference (24). We then have the following specific predictions

\[
\begin{align*}
\text{VAC, (II)}: & \quad \frac{M^\nu}{m_3} \simeq \begin{pmatrix}
\lambda^{12} & \lambda^2 & \lambda^6 \\
\lambda^2 & \lambda^8 & \lambda^4 \\
\lambda^6 & \lambda^4 & 1
\end{pmatrix}, & \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix}
\lambda^5 & \lambda^{12} & \lambda^6 \\
\lambda^{15} & \lambda^2 & 1 \\
\lambda^{11} & \lambda^6 & 1
\end{pmatrix}, \\
\text{LOW, (III)}: & \quad \frac{M^\nu}{m_3} \simeq \begin{pmatrix}
\lambda^7 & 1 & \lambda^4 \\
1 & \lambda^9 & \lambda^3 \\
\lambda^4 & \lambda^3 & \lambda
\end{pmatrix}, & \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix}
\lambda^5 & \lambda^{11} & \lambda^3 \\
\lambda^{14} & \lambda^2 & 1 \\
\lambda^8 & \lambda^8 & 1
\end{pmatrix}, \\
\text{VAC, (III)}: & \quad \frac{M^\nu}{m_3} \simeq \begin{pmatrix}
\lambda^{10} & 1 & \lambda^4 \\
1 & \lambda^{10} & \lambda^6 \\
\lambda^4 & \lambda^6 & \lambda^2
\end{pmatrix}, & \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix}
\lambda^5 & \lambda^{12} & \lambda^6 \\
\lambda^{15} & \lambda^2 & 1 \\
\lambda^{11} & \lambda^6 & 1
\end{pmatrix},
\end{align*}
\]

for which

\[
(\theta_{13}, \Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}) = (\lambda^3, \lambda^7)_{\text{LOW,II}}, (\lambda^4, \lambda^{10})_{\text{VAC,II}}, (\lambda^3, \lambda^7)_{\text{LOW,III}}, (\lambda^4, \lambda^{10})_{\text{VAC,III}}.
\]

The examples shown in this section are the models giving either the largest or the smallest value of \(\theta_{13}\) under the limitation \(|l_i| < 10\). The reason for the occurance of these bounds on \(\theta_{13}\) is that \(M^\nu_{13}, M^\nu_{23}\) and \(M^\nu_{11}, M^\nu_{22}\) are closely related by the \(U_X(1)\) charge of \(L_2, L_3\) fields. It is thus difficult to suppress (enhance) \(M^\nu_{13}, M^\nu_{23}\) arbitrarily to get smaller (larger) \(\theta_{13}\) while keeping the right size of \(M^\nu_{11}, M^\nu_{22}\) to obtain the right size of \(m^2_{\text{sol}}/m^2_{\text{atm}}\) for each of solar neutrino oscillations. This explains also that the VAC allows smaller \(\theta_{13}\) \((\lambda^2 \sim \lambda^4)\) than the LMA or LOW \((\lambda \sim \lambda^3)\). The allowed ranges of \(\theta_{13}\) are summarized in Table 1 for the Class (II) and (III) mass textures and the LMA, LOW, VAC solar neutrino oscillations.

• Scenario B: For this scenario, we use the notation that \(\Phi_i(x, x')\) denotes the superfield \(\Phi\) with \(U(1) \times U(1)_X\) charge \((x, x')\). Let us first note that we need

\[
l_i^{\text{eff}} \neq l_i^{\text{eff}} = l_3^{\text{eff}}, \tag{35}
\]

where \(l_i^{\text{eff}} = 2l_i - l_i'\) to get the desired form of \(M^e\). Then, it is easy to see that Class (I) can not be realized as it requires \(l_i^{\text{eff}} = l_i^{\text{eff}} = l_3^{\text{eff}}\).

On the other hand, the condition (34) can be reconciled with the pseudo-Dirac structure of the Class (II) neutrino mass matrix by imposing holomorphic zeros. This leads us to get the following texture:

\[
\frac{M^\nu}{m_3} \simeq \begin{pmatrix}
\lambda^{2x} & \lambda^x & \lambda^x \\
\lambda^x & 0 & 0 \\
\lambda^x & 0 & 1
\end{pmatrix}, \tag{36}
\]

where \(x = l_i^{\text{eff}} - l_2^{\text{eff}} = l_1^{\text{eff}} - l_3^{\text{eff}}\). In this texture, \(M^\nu_{22}\) and \(M^\nu_{23}\) are forbidden due to the holomorphicity and the sizes of non-zero elements are entirely determined by the condition Eq. (34). This texture exhibits an interesting correlation of \(\theta_{13}\) with the mass-squared difference ratio as follows:

\[
\theta_{13} \sim \lambda^x, \quad \Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}} \sim \lambda^{3x}. \tag{37}
\]

Hence \(x = 1, 2\) or \(3\) is required for the LMA, LOW or VAC, respectively, in order to give correct square mass difference (24). We then have the following specific predictions

\[
(\theta_{13}, \Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}) \simeq (\lambda, \lambda^3)_{\text{LMA}}, (\lambda^2, \lambda^6)_{\text{LOW}}, (\lambda^3, \lambda^9)_{\text{VAC}}.
\]
Explicit charge assignments realizing the texture [30] are given by

\begin{align*}
\text{LMA} : & \quad L_1(0, -1), \ L_2(1, 2), \ L_3(0, 0), \ E_1(3, 0), \ E_2(2, 0), \ E_3(1, 0), \\
\text{LOW} : & \quad L_1(0, -2), \ L_2(1, 2), \ L_3(0, 0), \ E_1(2, -1), \ E_2(2, 0), \ E_3(1, 0), \\
\text{VAC} : & \quad L_1(0, -3), \ L_2(1, 2), \ L_3(0, 0), \ E_1(2, 0), \ E_2(2, 0), \ E_3(1, 0),
\end{align*}

producing

\begin{align*}
\text{LMA} : \quad & \frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & 0 & 0 \\ \lambda & 0 & 1 \end{pmatrix}, \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^3 & \lambda^1 \\ \lambda^4 & \lambda^2 & 1 \\ \lambda^4 & \lambda^2 & 1 \end{pmatrix}, \\
\text{LOW} : \quad & \frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^4 & \lambda^2 & \lambda^2 \\ \lambda^2 & 0 & 0 \\ \lambda^2 & 0 & 1 \end{pmatrix}, \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}, \\
\text{VAC} : \quad & \frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^6 & \lambda^3 & \lambda^3 \\ \lambda^3 & 0 & 0 \\ \lambda^3 & 0 & 1 \end{pmatrix}, \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^5 & \lambda^3 \\ \lambda^2 & \lambda^2 & 1 \\ \lambda^2 & \lambda^2 & 1 \end{pmatrix},
\end{align*}

where \(H_1\) and \(H_2\) are assumed to be neutral under \(U(1)_X \times U(1)_{X'}\).

Following the same argument as above, we find that Class (III) requires the following texture:

\[\frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^x & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \]

where \(x = t_1^{\text{eff}} - t_1^{\text{eff}} = t_1^{\text{eff}} - t_3^{\text{eff}}\). Here, all zero elements are again forbidden due to the holomorphicity. This texture gives \(\theta_{13}\) and the square mass difference ratio as

\[\theta_{13} \sim \lambda^x, \quad \Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}} \sim \lambda^x. \]

(41)

Here we should take \(x = q + l\) in Eq. (37) in order to produce the right value of \(\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}\). Then the largest possible values of \(\theta_{13}\) and \(\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}\) are predicted to be

\[(\theta_{13}, \Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}) \simeq (\lambda^2, \lambda^2)_{\text{LMA}}, \ (\lambda^6, \lambda^6)_{\text{LOW}}, \ (\lambda^3, \lambda^3)_{\text{VAC}}. \]

Eq. (37) and Eq. (41) shows that the LOW and VAC solutions have smaller \(\theta_{13}\) than the LMA solution, and also the inverted mass hierarchy gives smaller \(\theta_{13}\) than the normal hierarchy. In particular, the LOW and VAC models with inverted mass hierarchy predict so small \(\theta_{13}\) which can not give any observable \(\nu_e \leftrightarrow \nu_\mu\) transition in the future long-base line experiments and neutrino factory.

Explicit examples of Class (III) can be obtained by assuming the charge assignments:

\begin{align*}
\text{LMA} : & \quad L_1(0, -1), \ L_2(0, 1), \ L_3(-1, -1), \ E_1(3, 1), \ E_2(2, 0), \ E_3(1, 0), \\
\text{LOW} : & \quad L_1(1, -2), \ L_2(0, 2), \ L_3(-2, -2), \ E_1(4, 5), \ E_2(3, 0), \ E_3(2, 0), \\
\text{VAC} : & \quad L_1(1, -5), \ L_2(0, 2), \ L_3(-2, -2), \ E_1(-1, -2), \ E_2(3, 0), \ E_3(2, 0),
\end{align*}

(42)
which give

\[
\begin{align*}
\text{LMA} : & \quad \frac{M^\nu}{m_2} \simeq \begin{pmatrix} \lambda^2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
\text{LOW} : & \quad \frac{M^\nu}{m_2} \simeq \begin{pmatrix} \lambda^6 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
\text{VAC} : & \quad \frac{M^\nu}{m_2} \simeq \begin{pmatrix} \lambda^9 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\end{align*}
\]

and so

\[
(\theta_{13}, \Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}) \simeq (\lambda^2, \lambda^2)_{\text{LMA}}, \quad (\lambda^6, \lambda^6)_{\text{LOW}}, \quad (\lambda^9, \lambda^9)_{\text{VAC}}.
\]

It should be noted that all models discussed so far can be easily extended to the quark sector. For instance, one can assume the following charge assignment in Scenario A

\[
(q_{13}, q_{23}) = (3, 2), \quad (u_{13}, u_{23}) = (5, 2), \quad (d_{13}, d_{23}) = (1, 0)
\]

(44)
to obtain the quark mass matrices

\[
\begin{align*}
\frac{M^u}{m_t} & \simeq \begin{pmatrix} \lambda^8 & \lambda^5 & \lambda^3 \\ \lambda^7 & \lambda^4 & \lambda^2 \\ \lambda^5 & \lambda^2 & 1 \end{pmatrix}, \\
\frac{M^d}{m_b} & \simeq \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda^1 & 1 & 1 \end{pmatrix},
\end{align*}
\]

(45)
where \(q_{ij} = q_i - q_j, u_{ij} = u_i - u_j, d_{ij} = d_i - d_j\) for \(q_i, u_i, d_i\) which are the \(U(1)_X\) charges of the quark superfields \(Q_i, U^c_i, D^c_i\). The same form of the quark mass matrices can be obtained in Scenario B also from the \(U(1)_X \times U(1)_{X'}\) charge assignment:

\[
\begin{align*}
Q_1(3, 3), & \quad Q_2(2, 2), & \quad Q_3(0, 0), \\
U^c_1(5, 5), & \quad U^c_2(2, 2), & \quad U^c_3(0, 0), \\
D^c_1(1, 1), & \quad D^c_2(0, 0), & \quad D^c_3(0, 0).
\end{align*}
\]

(46)

V. SEE-SAW MODELS

In singlet see-saw models, the light neutrino mass matrix is given by

\[
M'_{ij} = \sum_{k,l} (M^M)_{kl}^{-1} M^D_{ik} M^D_{jl},
\]

(47)
where \(M^D\) and \(M^M\) denote the Dirac and heavy-Majorana mass matrices, respectively. This formula can be understood as a summation of 9 singular matrices \(M^D_{ik} M^D_{jl}\) weighted by \((M^M)_{kl}^{-1}\). This feature offers more variety of ways to get non-trivial neutrino mixing together with hierarchical mass eigenvalues. For example, if one contribution among the 9 contributions in Eq.(47) dominates over the others, we can obtain some interesting models \([18]\). However, here we do not pursue this possibility, but look for the models without such special dominance.
Scenario A: Since the see-saw framework involves more degrees of freedom, i.e. the flavor charges of N_i, one might expect that it can reproduce all the models found under the weak scale selection rule. However, it is not true. For instance, the LMA model of Class (III) in Eq. (30) has no realization in see-saw framework. Furthermore, it turns out that $\theta_{13} \sim \lambda$ can not be realized in Class (III) LMA models in see-saw framework. On the other hand, the see-saw framework allows a wider range of θ_{13} than the weak scale selection rule [see Table I] since it provides generically a more variety of models. For instance, some VAC models of Class (II) with $\theta_{13} \simeq \lambda$ can be obtained in the see-saw framework, which was not possible under the weak scale selection rule. One of such models has the flavor charges

$$VAC: \quad l_i = (7, -6, -2), \quad e_i = (-14, 10, 4), \quad n_i = (-4, 4, 0) \quad (48)$$

for which the resulting M^ν and M^e are given by

$$VAC: \quad \frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^{10} & \lambda & \lambda \\ \lambda & \lambda^8 & \lambda^4 \\ \lambda & \lambda^4 & 1 \end{pmatrix}, \quad \frac{M^e}{m_\tau} \simeq \begin{pmatrix} \lambda^5 & \lambda^{15} & \lambda^9 \\ \lambda^{18} & \lambda^2 & 1 \\ \lambda^{14} & \lambda^6 & 1 \end{pmatrix}. \quad (49)$$

Note that one obtains completely different neutrino mass texture if one applies the weak scale selection rule to the above model.

We have explored the possible range of θ_{13} under the restriction $|l_i| < 10$ and $|n_i| < 10$. Even in see-saw framework, it appears to be difficult to find a desirable form of Class (I) model in Scenario A. However there is potentially interesting example of Class (I), yielding $\theta_{13} \simeq \lambda^2$:

$$l_i = (2, -2, 0), \quad e_i = (5, 5, 1), \quad n_i = (0, 0, 0) \quad (50)$$

which gives

$$\frac{M^\nu}{m_3} \simeq \begin{pmatrix} \lambda^4 & \lambda^4 & \lambda^2 \\ \lambda^4 & \lambda^4 & \lambda^2 \\ \lambda^2 & \lambda^2 & 1 \end{pmatrix}. \quad (51)$$

The resulting $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}} \simeq \lambda^8$ is close to either the LOW value $\lambda^6 - \lambda^7$ or the VAC value $\lambda^9 - \lambda^{10}$, so it may fit to the LOW or VAC if a somewhat large or small coefficient of order one is involved. For the LMA and LOW model of Class (II), we found that the range of θ_{13} is the same as the case of the weak scale selection rule. For the VAC of Class (II), $\theta_{13} \simeq \lambda$ is added as we have noted above. For Class (III) models, we find θ_{13} can be as small as λ^6 and λ^7 for the LMA and LOW cases, respectively. The maximal value of θ_{13} for the LMA model of Class (III) turns out to be of order λ^2, not of order λ, which is noted also in the above discussion. For the VAC model of Class (III), the range of θ_{13} is the same as the case of the weak scale selection rule. All of these results on θ_{13} are summarized in Table I.

Scenario B: Similarly to Scenario A, the neutrino mass of Class (I) can not be obtained even in the see-saw framework. For Classes (II) and (III), we need a pseudo-Dirac form of M^M to get a pseudo-Dirac M^ν. We find that all models found under the weak scale selection rule can be realized in the see-saw framework. For the purpose of illustration, we show only the see-saw realization of the LMA solution of Class (II) in Eq. (38). For this, we introduce the singlet neutrinos with the following $U(1)$ charges:

$$N_1(0, -1), \quad N_2(0, 1), \quad N_3(0, 0), \quad (52)$$
TABLE I: Possible ranges of θ_{13} for each of the Scenarios A and B, neutrino mass matrix of Classes (II) and (III), and the LMA, LOW and VAC solar neutrino oscillations. Note that Class (I) cannot be obtained within our framework. Class (II) and (III) are pseudo-Dirac type neutrino mass matrix with $\Delta m_{32}^2 > 0$ and $\Delta m_{32}^2 < 0$, respectively.

Solar ν-oscillation	A–II	A–III	B–II	B–III	
WSSR	LMA	$\lambda^2 - \lambda$	λ	λ	λ^2
	LOW	$\lambda^3 - \lambda$	$\lambda^3 - \lambda$	λ^2	λ^6
	VAC	$\lambda^4 - \lambda^2$	$\lambda^4 - \lambda^2$	λ^3	λ^9
SEE–SAW	LMA	$\lambda^2 - \lambda$	$\lambda^6 - \lambda^2$	λ	λ^2
	LOW	$\lambda^3 - \lambda$	$\lambda^7 - \lambda$	λ^2	λ^6
	VAC	$\lambda^4 - \lambda$	$\lambda^4 - \lambda^2$	λ^3	λ^9

giving

$$M^M \propto \begin{pmatrix} \lambda^2 & 1 & \lambda \\ 1 & 0 & 0 \\ \lambda & 0 & 1 \end{pmatrix}, \quad M^D \propto \begin{pmatrix} \lambda^2 & 1 & \lambda \\ \lambda & 0 & 0 \\ \lambda & 0 & 1 \end{pmatrix}. \quad (53)$$

The resulting M^ν is given by

$$\frac{M^\nu}{m_3} \approx \begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & 0 & 0 \\ \lambda & 0 & 1 \end{pmatrix}, \quad (54)$$

which has the same form as determined by the weak scale selection rule.

We remark that the selection rule (15) of Scenario B is very restrictive so that the see-saw framework does not provide more freedom than the case of the weak scale selection rule. Basically, the positivity of the exponents for the non-vanishing mass matrix elements forbids us to modify the structure of holomorphic zeros in the textures (37) and (41) even in the presence of singlet neutrinos. Therefore, no new model can be found by considering the see-saw mechanism.

VI. CONCLUSION

In conclusion, we have examined the possibility that the near bi-maximal mixing of atmospheric and solar neutrinos naturally arises together with small $U_{e3} = \sin \theta_{13}$ and $\Delta m_{sol}^2/\Delta m_{atm}^2$ as a consequence of Abelian flavor symmetry. We have considered two simple scenarios where the mass textures are expressed in terms of the Cabibbo angle λ within supersymmetric framework. Scenario A has a single non-anomalous $U(1)$ broken by two scalar fields with opposite $U(1)$ charge and Scenario B involves one anomalous $U(1)_X$ and another non-anomalous $U(1)_{X'}$ which are broken by two scalar fields with the $U(1)_X \times U(1)_{X'}$ charges $(-1, -1)$ and $(0, 1)$. In the latter scenario, all symmetry breaking order parameters naturally have the Cabibbo angle size $\lambda \simeq 0.2$. Concentrating on the scheme where the large atmospheric neutrino mixing comes from the charged lepton mass matrix, we found that the neutrino mass textures of pseudo-Dirac type (with normal or inverted hierarchy) can nicely produce a large solar neutrino mixing angle while keeping θ_{13} appropriately small. Current bound on θ_{13} is of order λ, however it may be measured down to of order λ^3 in...
future neutrino experiments. Table I summarizes the possible ranges of θ_{13} predicted by the models under consideration. While the models of Scenario A produce relatively broad ranges of θ_{13}, those of Scenario B give more specific predictions which are strongly correlated with $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}$ and also with the sign of Δm^2_{32}. Generically, larger Δm^2_{sol} come with larger θ_{13} and the normal hierarchy ($\Delta m^2_{32} > 0$) has larger θ_{13} than the inverted hierarchy ($\Delta m^2_{32} < 0$). Table I shows that various models of neutrino mass textures could be discriminated by future solar and terrestrial neutrino experiments which would pin down the specific solution of the solar neutrino problem and give information about θ_{13} and the sign of Δm^2_{32}.

Acknowledgement: This work is supported by the BK21 program of Ministry of Education (KC, EJC, WYS), Korea Research Foundation Grant No. 2000-015-DP0080 (KC), KOSEF Grant No. 2000-1-11100-001-1 (KC), and Center for High Energy Physics of Kyungbook National University (KC).

[1] Y. Fukuda et al., Phys. Rev. Lett. 81 1562 (1998).
[2] B.T. Cleveland et al., Astrophys. J. 496, 505 (1998); W. Hampel, et al., Phys. Lett. B447, 127 (1999); J.N. Abdurashitov et al., Phys. Rev. C60, 055801 (1999); Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996); S. Fukuda et al., Phys. Rev. Lett. 86, 5651 (2001); Q.R. Ahmad et al., hep-ex/0106013.
[3] V. Barger et al., hep-ph/0106207; G.L. Fogli et al., hep-ph/0106247; J.N. Bahcall et al., hep-ph/0106258.
[4] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theo. Phys. 28 (1962) 247.
[5] M.C. Gonzalez-Garcia, M. Maltoni, C. Peña-Garay and J.W.F. Valle, Phys. Rev. D63, 033005 (2001)
[6] T. Takeuchi, talk at XXX Intl. Conf. on HEP, ICHEP 2000, Osaka, Japan, July 27 - August 2, 2000.
[7] CHOOZ Collaboration, Phys. Lett. B420, 397 (1998).
[8] L. Hall, H. Murayama and N. Weiner, Phys. Rev. Lett. 84, 2572 (2000)
[9] C.D. Frogatt and H.B. Nielsen, Nucl. Phys. B147, 277 (1979).
[10] M. Leurer, Y. Nir and N. Seiberg, Nucl. Phys. B398, 319 (1993); ibid, B420, 468 (1994); L. Ib’anez and G. G. Ross, Phys. Lett. B332, 100 (1993); P. Binetruy and P. Ramond, Phys. Lett. B350, 49 (1995); V. Jain and R. Shrock, Phys. Lett. B352, 83 (1995); E. Dudas, S. Pokorski and C. A. Savoy, Phys. Lett. B356, 45 (1995); P. Binetruy, S. Lavignac and P. Ramond, Nucl. Phys. B477, 353 (1996). Z. Berezhiani and Z. Tavartkiladze, Phys. Lett. B396, 150 (1997).
[11] N. Irges, S. Lavignac and P. Ramond, Phys. Rev. D58, 035003 (1998); P. Binetruy, E. Dudas, S. Lavignac and S. A. Savoy, Phys. Lett. B422, 171 (1998); J. Ellis, S. Lola and G. G. Ross, Nucl. Phys. B526, 115 (1998); C. D. Frogatt, M. Gibson and H. B. Nielsen, hep-ph/9811263; Y. Nir and Y. Shadmi, JHEP 9905, 023 (1999); J. Feng, Y. Nir and Y. Shadmi, Phys. Rev. D61, 113005 (2000); Q. Shafi and Z. Tavartkiladze, Phys. Lett. B482, 145 (2000); M. Tanimoto, Phys. Lett. B501, 231 (2001). M. Berger and K. Siyeon, hep-ph/0010243.
[12] E.J. Chun and A. Lukas, Phys. Lett. B387, 99 (1996).
[13] K. Choi, E.J. Chun and K. Hwang, Phys. Rev. D60, 031301 (1999); K. Choi, E. J. Chun, and H. Kim, Phys. Lett. B 394, 89 (1997);
[14] M. Gell-Mann, P. Ramond and R. Slansky in Sanibel Talk, CALT-68-709, Feb 1979, and in Supergravity (North Holland, Amsterdam 1979); T. Yanagida in Proc. of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan, 1979; R.N.Mohapatra and G.Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

[15] C. Albright et al., “Physics at a Neutrino Factory”, FERMILAB-FN-692, [hep-ex/0008064].

[16] E. Ma and Utpal Sarkar, Phys. Rev. Lett. 80, 5716 (1998); E. Ma, Phys. Rev. Lett. 81, 1171 (1998); K. Choi and A. Santamaria, Phys. Lett. B267, 504 (1991).

[17] V. Barger et al., Phys. Lett. B437, 107 (1998); H. Georgi and S. L. Glashow, hep-ph/9808293; A. J. Baltz et al., Phys. Rev. Lett. 81, 5730 (1998); S. Davidson and S. F. King, Phys. Lett. B445, 191 (1998); C. Giunti, Phys. Rev. D59, 077301 (1999); Y. Nomura and T. Yanagida, Phys. Rev. D59, 017303 (1999); R. N. Mohapatra and S. Nussinov, hep-ph/9808301; M. Tanimoto, hep-ph/9807517; H. Fritzsch and Z. Xing, Phys. Lett. B440, 313 (1998); S. K. Kang and C. S. Kim, Phys. Rev. D59, 091302 (1999); C. Jarlskog et al., Phys. Lett. B449, 240 (1999); R. Barieri et al., hep-ph/9901241; Q. Shafi and A. Tavartkiladze, Phys. Lett. B451, 129 (1999); A. H. Guth et al., JHEP 9908, 018 (1999); J. Ellis and S. Lola, Phys. Lett. B458, 310 (1999); M. Jezebel and Y. Sumino, Phys. Lett. B457, 139 (1999); J. A. Casas et al., Nucl. Phys. B556, 3 (1999);

[18] S. F. King, Phys. Lett. B439 (1998) 350; Nucl. Phys. B562 (1999) 57; Nucl. Phys. B576, 85 (2000);