A Vector Supersymmetry Killing IR Divergences in Non-Commutative Gauge Theories

Talk presented by Daniel N. Blaschke

Institute for Theoretical Physics, Vienna University of Technology

Collaborators: F. Gieres, S. Hohenegger, O. Piguet, M. Schweda

April 24, 2007
[\hat{x}^\mu, \hat{x}^\nu] = i\theta^{\mu\nu}
VSUSY Killing
IR
Divergences in NCGFT

Talk presented by Daniel N. Blaschke

Introduction

Slavnov Term Idea
Symmetries & Consequences

Generalization

Conclusion and Outlook

Weyl-Moyal correspondence

\[[\hat{x}^\mu, \hat{x}^\nu] = i\theta^{\mu\nu} \]

- definition of the Weyl-Moyal \(*\)-product:

\[
A_\rho(x) \ast A_\sigma(x) = e^{\frac{i}{2} \theta^{\mu\nu} \partial_\mu \partial_\nu} A_\rho(x) A_\sigma(y) \bigg|_{x=y} \\
\neq A_\sigma(x) \ast A_\rho(x)
\]
Weyl-Moyal correspondence

- \([\hat{x}^\mu, \hat{x}^\nu] = i\theta^{\mu\nu}\)

- definition of the Weyl-Moyal \(*\)-product:

\[
A_\rho(x) \ast A_\sigma(x) = e^{\frac{i}{2} \theta^{\mu\nu} \partial^x_\mu \partial^y_\nu} A_\rho(x) A_\sigma(y) \bigg|_{x=y} \\
\neq A_\sigma(x) \ast A_\rho(x)
\]

- invariance under cyclic permutations of the integral

\[
\int d^4 x A_\mu(x) \ast A_\rho(x) \ast A_\sigma(x) = \int d^4 x A_\sigma(x) \ast A_\mu(x) \ast A_\rho(x) \\
\implies \int d^4 x A_\mu(x) \ast A_\rho(x) = \int d^4 x A_\mu(x) A_\rho(x)
\]
For a field theory this means:

- interaction vertices gain phases, whereas propagators remain unchanged
QFT on θ-deformed space-time

For a field theory this means:

- interaction vertices gain phases, whereas propagators remain unchanged
- some Feynman integrals ("non-planar diagrams") have phases, e.g.

$$
\int d^4k \frac{e^{ik\tilde{p}}}{k^2 + i\epsilon} \propto \frac{1}{\tilde{p}^2} \quad \text{with} \quad \tilde{p}^\mu = \theta^{\mu\nu} p_\nu
$$
For a field theory this means:

- interaction vertices gain phases, whereas propagators remain unchanged
- some Feynman integrals ("non-planar diagrams") have phases, e.g.

\[
\int d^4k \frac{e^{ik\tilde{p}}}{k^2 + i\epsilon} \propto \frac{1}{\tilde{p}^2} \quad \text{with} \quad \tilde{p}^\mu = \theta^{\mu\nu} p_\nu
\]

- phases act as UV-regulators,

\[\Rightarrow\] origin of the \textit{UV/IR mixing} problem
An action such as

\[S = -\frac{1}{4} \int d^4x F_{\mu\nu} \star F^{\mu\nu} + \ldots \]

with \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig [A_\mu, A_\nu] \)

leads to (gauge independent) IR singular vacuum polarization graphs.
An action such as

\[S = -\frac{1}{4} \int d^4 x F_{\mu\nu} \star F^{\mu\nu} + \ldots \]

with \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig [A_\mu \star A_\nu] \)

leads to (gauge independent) IR singular vacuum polarization graphs

\[\Pi_{\text{IR}}^{\mu\nu}(k) = \frac{2g^2}{\pi^2} \frac{\tilde{k}^\mu \tilde{k}^\nu}{(\tilde{k}^2)^2} \quad \text{with} \quad \tilde{k}^\mu = \theta^{\mu\nu} k_\nu \quad (1) \]

⇒ Graphs with this insertion are IR divergent!
Slavnov’s extension

Slavnov has proposed a modification of Yang-Mills theories, adding to the action a term

\[
\frac{1}{2} \int d^4 x \, \lambda \star \theta^{\mu \nu} F_{\mu \nu}
\]

⇒ makes gauge field propagator transversal with respect to \(\tilde{k}^\mu \)
Slavnov has proposed a modification of Yang-Mills theories, adding to the action a term

$$\frac{1}{2} \int d^4x \lambda \ast \theta^{\mu\nu} F_{\mu\nu}$$

⇒ makes gauge field propagator transversal with respect to \tilde{k}^μ

Figure: this graph has now become *IR finite*
Problem:
- One has additional Feynman rules, namely
Problem:
- One has additional Feynman rules, namely
- a λ-propagator, a mixed λA-propagator and a λAA-vertex
Problem:

- One has additional Feynman rules, namely
- a \(\lambda \)-propagator, a mixed \(\lambda A \)-propagator and a \(\lambda AA \)-vertex
- Slavnov trick does not work for certain diagrams, i.e.

Figure: this graph is *IR divergent*
To avoid unitarity problems we choose the non-commutativity tensor spacelike, i.e.

\[\theta^{ij} = \theta \epsilon^{ij}, \quad i, j = 1, 2 \]
To avoid unitarity problems we choose the non-commutativity tensor spacelike, i.e.

\[\theta^{ij} = \theta \epsilon^{ij}, \quad i, j = 1, 2 \]

Gauge fixing chosen axial in the plane of the non-commutative coordinates:

\[n^I = 0, \quad I = 0, 3 \]
Slavnov Term and BF Model

- To avoid unitarity problems we choose the non-commutativity tensor spacelike, i.e.

\[\theta^{ij} = \theta \epsilon^{ij} , \quad i, j = 1, 2 \]

- Gauge fixing chosen axial in the plane of the non-commutative coordinates:

\[n^I = 0 , \quad I = 0, 3 \]

- The Slavnov term, together with the gauge fixing terms, now have the form of a 2-dimensional topological BF model.
Slavnov Term and BF model

Action:

\[S_{\text{inv}} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} \star F^{\mu\nu} + \frac{\theta}{2} \lambda \star \epsilon^{ij} F_{ij} \right) \]

where

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig [A_\mu \star, A_\nu] \]
Slavnov Term and BF Model

Action:

\[S_{\text{inv}} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} \star F^{\mu\nu} + \frac{\theta}{2} \lambda \star \epsilon^{ij} F_{ij} \right) \]

where

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig \left[A_\mu \star, A_\nu \right] \]

and

\[S_{\text{gf}} = \int d^4x \left(B \star n^i A_i - \bar{c} \star n^i D_i c \right) \]

with

\[D_\mu c = \partial_\mu c - ig \left[A_\mu \star, c \right] \]
Symmetries of the Action

S is invariant under

BRS:
$$sA_\mu = D_\mu c, \quad s\bar{c} = B, \quad s\lambda = -ig [\lambda, c], \quad sB = 0, \quad sc = \frac{ig}{2} [c, c], \quad s^2 = 0.$$
Symmetries of the Action

S is invariant under

BRS:

$$sA_\mu = D_\mu c , \quad s\bar{c} = B ,$$
$$s\lambda = -ig [\lambda, c] , \quad sB = 0 ,$$
$$sc = \frac{ig}{2} [c, c] , \quad s^2 = 0 .$$

VSUSY:

$$\delta_i A_\mu = 0 , \quad \delta_i c = A_i ,$$
$$\delta_i \bar{c} = 0 , \quad \delta_i B = \partial_i \bar{c} ,$$
$$\delta_i \lambda = \frac{\epsilon_{ij}}{\theta} n^j \bar{c} , \quad \delta^2 = 0 .$$
Note: Only the interplay of appropriate choices for $\theta^{\mu\nu}$ and n^μ lead to the existence of the VSUSY.
Note: Only the interplay of appropriate choices for $\theta^{\mu \nu}$ and n^μ lead to the existence of the VSUSY.

In contrast to the pure topological theories, we have an additional vectorial symmetry:

$$\hat{d}_i A_J = -F_{iJ} , \quad \hat{d}_i \lambda = -\frac{\epsilon_{ij}}{\theta} D_K F^{Kj} ,$$

$$\hat{d}_i \Phi = 0 \quad \text{for all other fields} .$$
Symmetries of the Action

Note: Only the interplay of appropriate choices for $\theta^{\mu\nu}$ and n^μ lead to the existence of the VSUSY.

In contrast to the pure topological theories, we have an additional vectorial symmetry:

\[
\begin{align*}
\hat{d}_i A_J &= -F_{iJ}, \\
\hat{d}_i \lambda &= -\frac{\epsilon_{ij}}{\theta} D_K F^{Kj}, \\
\hat{d}_i \Phi &= 0 \quad \text{for all other fields}.
\end{align*}
\]

\Rightarrow The algebra involving s, δ_i, \hat{d}_i and the $(1,2)$-plane translation generator ∂_i closes on-shell.
Ward id. for Green functions

Legendre transformation

$$S_{\text{tot}}[\phi, \phi^*, \ldots] \rightarrow Z^c[j_\phi, \phi^*, \ldots]$$

yields functional generator of the connected Green functions.
Legendre transformation

\[S_{\text{tot}}[\phi, \phi^*, ...] \rightarrow Z^c[j_\phi, \phi^*, ...] \]

yields functional generator of the connected Green functions.

⇒ WI for VSUSY at vanishing antifields transforms into

\[\mathcal{W}_i Z^c \bigg|_{\{A^*, \lambda^*, c^*\} \rightarrow 0} = 0 \]

\[\Rightarrow \int d^4x \left\{ j_B \frac{\delta Z^c}{\delta j\bar{c}} - j_c \frac{\delta Z^c}{\delta j_A} + \frac{\epsilon_{ij}}{\theta} n^j j_\lambda \frac{\delta Z^c}{\delta j\bar{c}} \right\} = 0 \]
Differentiating this with respect to j_c and j_A^μ yields for the gauge field propagator:

$$\Delta_{A_iA_\mu} = 0$$
Differentiating this with respect to j_c and j_A^μ yields for the gauge field propagator:

$$\Delta_{A_iA_{\mu}} = 0$$
Differentiating this with respect to j_c and j_A^μ yields for the gauge field propagator:

\[\Delta_{A_i A_\mu} = 0 \]

It is impossible to construct a closed loop including a $\lambda A A$-vertex without having such a combination somewhere.

\[\Rightarrow \text{All loop graphs involving the } \lambda A A\text{-vertex vanish!} \]
Absence of IR singularities

In particular, dangerous vacuum polarization insertions as in the following figure vanish:

\[\Pi_{\text{IR}}^{\mu\nu}(k) = \frac{2g^2}{\pi^2} \frac{\tilde{k}^\mu \tilde{k}^\nu}{(\tilde{k}^2)^2} \quad \text{with} \quad \tilde{k}^\mu = \theta^{\mu\nu} k_\nu \]
Absence of IR singularities

In particular, dangerous vacuum polarization insertions as in the following figure vanish:

\[
\Pi^{\rho\sigma}(k) = \frac{\tilde{k}^\rho \tilde{k}^\sigma}{\pi^2 \tilde{k}^2} \quad \text{with} \quad \tilde{k}^\mu = \theta^{\mu\nu} k_\nu
\]

\Rightarrow \text{model is free of the most dangerous infrared singularities!}
Can we show cancellation of IR singular Feynman graphs for a more general choice of $\theta^{\mu\nu}$ and n^{μ}?
Can we show cancellation of IR singular Feynman graphs for a more general choice of $\theta^{\mu\nu}$ and n^μ?

⇒ The answer is yes, but we need to impose stronger Slavnov constraints
More general choice of $\theta^{\mu\nu}$ and n^μ

- Can we show cancellation of IR singular Feynman graphs for a more general choice of $\theta^{\mu\nu}$ and n^μ?

 ⇒ The answer is yes, but we need to impose stronger Slavnov constraints

- initial Slavnov constraint was

 $\theta^{12} F_{12} + \theta^{13} F_{13} + \theta^{23} F_{23} = 0$

- Upon introducing stronger constraints we may write

 $$S_{\text{inv}} = \int d^4 x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \epsilon^{ijk} F_{ij \lambda} \lambda_k \right]$$

 with $i, j, k \in \{1, 2, 3\}$

- Looks like 3 dim. BF model coupled to Maxwell theory
The action has a second gauge symmetry

\[\delta g_2 \lambda_k = D_k \Lambda', \quad \delta g_2 A_\mu = 0 \]
Properties of this new action

The action has a second gauge symmetry

\[\delta g_2 \lambda_k = D_k \Lambda', \quad \delta g_2 A_\mu = 0 \]

Similar to the previous model, we have an additional bosonic vector symmetry:

\[\hat{d}_i A_0 = -F_{i0}, \quad \hat{d}_i \lambda_j = \epsilon_{ijk} D_0 F^{0k}, \]

\[\hat{d}_i A_i = 0. \]
Properties of this new action

The action has a second gauge symmetry

\[\delta g_2 \lambda_k = D_k \Lambda', \quad \delta g_2 A_\mu = 0 \]

Similar to the previous model, we have an additional bosonic
vector symmetry:

\[\hat{d}_i A_0 = -F_{i0}, \quad \hat{d}_i \lambda_j = \epsilon_{ijk} D_0 F^{0k}, \]
\[\hat{d}_i A_i = 0. \]

Difference: This symmetry is broken when fixing the second
gauge symmetry!
The gauge fixed action, with space-like axial gauge

$$S_{gf} = \int d^4x \left[Bn^i A_i + d'n^i \lambda_i - \bar{c}n^i D_i c - \bar{\phi}n^i D_i \phi \right],$$

is invariant under the linear VSUSY

$$\delta_i c = A_i, \quad \delta_i \lambda_j = -\epsilon_{ijk} n^k \bar{c},$$
$$\delta_i B = \partial_i \bar{c},$$
$$\delta_i \Phi = 0, \quad \text{for all other fields.}$$
The gauge fixed action, with space-like axial gauge

\[S_{gf} = \int d^4x \left[Bn^i A_i + d'n^i \lambda_i - \bar{c}n^i D_i c - \bar{\phi}n^i D_i \phi \right], \]

is invariant under the linear VSUSY

\[
\begin{align*}
\delta_i c &= A_i, \\
\delta_i \lambda_j &= -\epsilon_{ijk} n^k \bar{c}, \\
\delta_i B &= \partial_i \bar{c}, \\
\delta_i \Phi &= 0,
\end{align*}
\]

for all other fields.

\((d' = d - ig [\bar{\phi}, c] \text{ is the rescaled multiplier field fixing the second gauge freedom.})\)
Ward identity describing the linear vector supersymmetry in terms of Z^c is given by

$$\mathcal{W}_i Z^c = \int d^4 x \left[j_B \partial_i \frac{\delta Z^c}{\delta j^\bar{c}} - j_c \frac{\delta Z^c}{\delta j^i_A} + \epsilon_{ijk} n^j j^k \frac{\delta Z^c}{\delta j^\bar{c}} \right] = 0.$$
Ward identity describing the linear vector supersymmetry in terms of Z^c is given by

$$\mathcal{W}_iZ^c = \int d^4x \left[j_B \partial_i \frac{\delta Z^c}{\delta j\bar{c}} - j_c \frac{\delta Z^c}{\delta j^i_A} + \epsilon_{ijk} n^j j^k \frac{\delta Z^c}{\delta j\bar{c}} \right] = 0.$$

- same arguments as before show absence of IR singular graphs
Ward identity describing the linear vector supersymmetry in terms of Z^c is given by:

\[\mathcal{W}_i Z^c = \int d^4 x \left[j_B \partial_i \frac{\delta Z^c}{\delta j^{\bar{c}}} - j_c \frac{\delta Z^c}{\delta j^i_A} + \epsilon_{ijk} n^j j^k \frac{\delta Z^c}{\delta j^{\bar{c}}} \right] = 0. \]

- same arguments as before show absence of IR singular graphs
- model exhibits numerous further symmetries
The vector supersymmetry

Ward identity describing the linear vector supersymmetry in terms of Z^c is given by

$$\mathcal{W}_i Z^c = \int d^4x \left[j_B \partial_i \frac{\delta Z^c}{\delta j} - \bar{c} \frac{\delta Z^c}{\delta j_A} + \epsilon_{ijn} \bar{c} \frac{\delta Z^c}{\delta j} \right] = 0.$$

- same arguments as before show absence of IR singular graphs
- model exhibits numerous further symmetries
- generalization to higher dimensional models is possible, i.e. if λ had n indices the VSUSY would become

$$\delta_i c = A_i \quad \delta_i \lambda_{j_1 \ldots j_n} = \epsilon_{ikj_1 \ldots j_n} n^k \bar{c} \quad \delta_i B = \partial_i \bar{c}$$
Slavnov-extended Yang Mills theory can be shown to be free of worst infrared singularities, if Slavnov term is of BF-type.
Slavnov-extended Yang Mills theory can be shown to be free of worst infrared singularities, if Slavnov term is of BF-type.

- SUSY, in the form of VSUSY, seems to play a decisive role in theories which are not Poincaré supersymmetric.
Slavnov-extended Yang Mills theory can be shown to be free of worst infrared singularities, if Slavnov term is of BF-type.

SUSY, in the form of VSUSY, seems to play a decisive role in theories which are not Poincaré supersymmetric.

What is the role of VSUSY with respect to UV/IR mixing in topological NCGFT in general?
Slavnov-extended Yang Mills theory can be shown to be free of worst infrared singularities, if Slavnov term is of BF-type.

SUSY, in the form of VSUSY, seems to play a decisive role in theories which are not Poincaré supersymmetric.

What is the role of VSUSY with respect to UV/IR mixing in topological NCGFT in general?

What are the consequences of the additional symmetries?
D. N. Blaschke, F. Gieres, O. Piguet and M. Schweda, *JHEP* **05** (2006) 059, [hep-th/0604154].

D. N. Blaschke and S. Hohenegger, *in preparation*

A. A. Slavnov, *Phys. Lett.* **B565** (2003) 246, [hep-th/0304141].

A. A. Slavnov, *Teor. Mat. Fiz.* **140N3** (2004) 388.

D. N. Blaschke, S. Hohenegger and M. Schweda, *JHEP* **11** (2005) 041, [hep-th/0510100].

Thank you for your attention!