ON A GENERALIZATION OF DEHN’S ALGORITHM

OLIVER GOODMAN AND MICHAEL SHAPIRO

Abstract. Viewing Dehn’s algorithm as a rewriting system, we generalise to allow an alphabet containing letters which do not necessarily represent group elements. This extends the class of groups for which the algorithm solves the word problem to include nilpotent groups, many relatively hyperbolic groups including geometrically finite groups and fundamental groups of certain geometrically decomposable manifolds. The class has several nice closure properties. We also show that if a group has an infinite subgroup and one of exponential growth, and they commute, then it does not admit such an algorithm. We dub these Cannon’s algorithms.

1. Introduction

1.1. Dehn’s algorithm. Early last century Dehn [9] introduced three problems. We know them now as the word problem, the conjugacy problem and the isomorphism problem. Given a finitely generated group \(G \) and generating set \(\mathcal{G} \), we have solved the word problem if we can give a procedure which determines, for each word \(w \in G^* \) whether or not \(w \) represents the identity. We have solved the conjugacy problem if we can give a procedure which determines, for each pair of words \(u, v \in G^* \), whether they represent elements which are conjugate in \(G \). For the isomorphism problem, Dehn invites us to develop procedures for determining if two given groups are isomorphic.

Using hyperbolic geometry Dehn proceeded to solve the word and conjugacy problems for the fundamental groups of closed hyperbolic surfaces. Let us take a moment to describe his solution of the word problem. For specificity, let us take the two-holed surface group

\[
\langle x_1, y_1, x_2, y_2 \mid [x_1, y_1][x_2, y_2] \rangle.
\]

The Cayley graph of this group sits in \(\mathbb{H}^2 \) as the 1-skeleton of the tessellation of \(\mathbb{H}^2 \) by regular hyperbolic octagons, and the relator \(R = [x_1, y_1][x_2, y_2] \) labels the boundary of each octagon. A word \(w \) now lies along the boundaries of these octagons and is a closed curve if and only if it represents the identity. Dehn then shows that any reduced closed curve travels around the far side of some “outermost” octagon and in doing so contains at least 5 of its 8 edges. That is, each reduced word representing the identity contains more than half of a relator. (Here we are allowing cyclic permutations of \(R \) and \(R^{-1} \).)

This solves the word problem, for we can decompose the relator as \(uv^{-1} \) where \(u \) appears in \(w = xuy \) and \(u \) is longer than \(v \). This allows us to replace \(w \) with the shorter word \(w' = xvy \). If the word \(w \) represents the identity and \(w' \) is not

Date: February 3, 2008.

Michael Shapiro wishes to thank David Thorley-Lawson for support from Public Health Service grant (RO1 AI062989).
empty, we can again shorten w' in similar manner. This process either ends with a non-empty word which we cannot shorten, in which case w did not represent the identity, or with the empty word in which case w did represent the identity.

Accordingly, we say the the group G has a Dehn’s algorithm if it has a finite presentation

$$ \langle G \mid D \rangle $$

such that every word $w \in G^*$ representing the identity contains more than half of some relator in D. Equivalently, we could write D as a finite set of relations $u_i = v_i$ so that for each i, $\ell(u_i) > \ell(v_i)$ and every word $w \in G^*$ representing the identity contains some u_i.

It is a theorem [17] [5] [1] that a group has such a Dehn’s algorithm if and only if it is one of those groups which are variously called Gromov hyperbolic, hyperbolic, negatively curved or word hyperbolic.

1.2. A new definition. Cannon [6] suggested we take the following viewpoint. We have a class of machines designed to carry out Dehn’s algorithm. Such a machine would be equipped with a finite set of length reducing replacement rules $u_i \to v_i$. It would have a window of finite width through which it would examine a given word. This window would start at the beginning of the word. As the window moved along, the machine would scan the word looking for occurrences of u_i’s. If it fails to find any u_i and is not already at the end of the word, it moves forward. If it finds a u_i it replaces it with the corresponding v_i. (The blank spaces magically evaporate.) The window then moves backwards one letter less than the length of the longest u_i or to the beginning of the word if that is closer. It accepts a word if and only if it succeeds in reducing that word to the empty word.

The key difference here is that our working alphabet is no longer restricted to the group generators. We shall see that there are several different classes of machines here with some rather divergent properties. We do not know if these competing definitions for the title of “Dehn machine” yield different classes of groups. Our most restrictive version solves the word problem in a much larger class of groups than the word hyperbolic groups.

We describe these classes of machines in terms of rewritings that they carry out. In each of these, we are supplied with an alphabet \mathbb{A} and a finite set of pairs $(u_i, v_i) \in \mathbb{A}^* \times \mathbb{A}^*$ where for each i, $\ell(u_i) > \ell(v_i)$. We call these rewriting rules and write $u_i \to v_i$. We call u_i and v_i the left-hand side and the right-hand side respectively. For technical reasons we also have to allow the machines to have anchored rules: these are rules which only apply when the left-hand side is an initial segment of the current word. We write *u for the left-hand side of an anchored rule and consider u and *u to be distinct.

Let S be a finite set of rewriting rules such that each left-hand side appears at most once. We say that $w \in \mathbb{A}^*$ is reduced with respect to S if it contains none of the left-hand sides in S. The following algorithm, which we call the incremental

1 Morally, Dehn’s algorithm represents a linear time solution to the word problem, but this actually depends on the machine implementation. If it is implemented on a classical one-tape Turing machine, the running time is $O(n^2)$ due to the need to exorcize (or traverse) the blanks left by each replacement. If it is implemented on a random access machine, it is $O(n \log n)$ due to the size of the words needed to indicate addresses. If it is implemented out on a multi-tape machine it is $O(n)$ since here blanks “evaporate” between the tapes [10]. Recently, [13] has shown that there is a real-time multi-tape implementation.
rewriting algorithm given by \((A, S)\), replaces any \(w \in A^*\) by a reduced word in finitely many steps. If \(w\) contains a left-hand side, find one which ends closest to the start of \(w\); if several end at the same letter, choose the longest; if possible, choose an anchored one in preference to a non-anchored one of the same length. Replace it by the corresponding right-hand side. Repeat until \(w\) is reduced.

Here is a slightly different definition: the non-incremental rewriting algorithm given by \((A, S)\), replaces any \(w \in A^*\) by a reduced word in finitely many steps. Here \(S\) may also include end-anchored rules, with left-hand side \(u^-\), and rules anchored at both ends. If \(w\) contains a left-hand side, find one which starts closest to the start of \(w\); if several start at the same letter, choose the longest; prefer anchored rules when there is a choice. Replace it by the corresponding right-hand side. Repeat until \(w\) is reduced.

Each of these algorithms gives a reduction map \(R = R_S : A^* \rightarrow A^*\) where \(R(w)\) is the reduced word which the algorithm produces starting with \(w\). The incremental rewriting algorithm gets its name from the following property: if \(R\) is the reduction map of an incremental rewriting algorithm, then \(R(uv) = R(R(u)v)\).

We may wish to apply an incremental rewriting algorithm only to words in \(A_0^*\) where \(A_0 \subseteq A\). We then refer to \(A_0\) as the input alphabet and \(A\) as the working alphabet. The algorithm can then be given as a triple \((A_0, A, S)\). We say that \(\{w \in A_0^* \mid R(w)\text{ is empty}\}\) is the language of this triple. The same can be done for non-incremental rewriting algorithms.

Clearly Dehn’s Algorithm can be implemented as an incremental rewriting algorithm, with \(A_0 = A = G\) and \(S\) obtained from the \(u_i\). We generalize this as follows. (See Section 3 for the example which originally motivated this definition.)

Definition 1.1. A group \(G\), with semi-group generators \(G\), has a Cannon’s algorithm if there exists an alphabet \(A \supseteq G\) and set of rewriting rules \(S\) over \(A\), such that the incremental rewriting algorithm reduces \(g \in G^*\) to the empty word, if and only if \(g\) represents the identity in \(G\).

We have chosen incremental rewriting algorithms because of their nice group theoretic properties. Using incremental rewriting algorithms in the previous definition ensures that the Cannon’s algorithm remembers group elements. That is, if \(G\) has a Cannon’s algorithm with input alphabet \(G\) and reduction map \(R\), and there are \(x\) and \(y\) in \(G^*\) so that \(R(x) = R(y)\), then \(x\) and \(y\) denote the same element of \(G\). This property does not hold in general if one uses non-incremental rewriting algorithms.

On the other hand, non-incremental rewriting algorithms have nice language theoretic properties in that they support composition. In the following, we will conceal some technical details in the word “mimics”. One can imagine the non-incremental rewriting algorithm as being carried out by a machine with a finite number of internal states \(s_i\) and a list of rewriting rules \(S_i\) for each state \(s_i\). There is a non-incremental rewriting algorithm which mimics the action of this multi-state machine. Consequently, given two non-incremental rewriting algorithms over the same alphabet \(A\) with reduction maps \(Q\) and \(R\), there is a non-incremental rewriting algorithm which mimics a non-incremental rewriting algorithm whose

\[\text{Since this work first appeared in preprint form, Mark Kambites and Friedrich Otto}\ [16]\ \text{have shown that the incremental rewriting algorithm languages are contained in the set of Church-Rosser languages and that a language is a non-incremental rewriting algorithm language if and only if it is a Church-Rosser language.}\]
reduction map is \(R \circ Q \). We will refer to a Cannon’s algorithm carried out using a non-incremental rewriting algorithm as a non-incremental Cannon’s algorithm.

1.3. **Results.** Before describing our results, we note that many of these were independently rediscovered by Mark Kambites and Friedrich Otto [15]. We show here that groups with Cannon’s algorithms have the following closure properties:

1. If \(G \) has a Cannon’s algorithm over one finite generating set then it has a Cannon’s algorithm over any finite generating set.
2. If \(G \) has a Cannon’s algorithm and \(G \) is a finite index subgroup of \(H \) then \(H \) has a Cannon’s algorithm.
3. If \(G \) and \(H \) have Cannon’s algorithms, then \(G \ast H \) has a Cannon’s algorithm.
4. If \(G \) has a Cannon’s algorithm and \(H \) is a finitely generated subgroup of \(G \) then \(H \) has a Cannon’s algorithm.

This last closure property significantly increases the class of groups with Cannon’s algorithms. Every word hyperbolic group has a Cannon’s algorithm, and as Bridson and Miller have pointed out to us, the finitely generated subgroups of word hyperbolic groups include groups which are not finitely presented and groups with unsolvable conjugacy problem [2].

We also show that groups with Cannon’s algorithms include

1. finitely generated nilpotent groups,
2. many relatively hyperbolic groups including geometrically finite hyperbolic groups, and fundamental groups of graph manifolds all of whose pieces are hyperbolic.

We prove the first of these by means of expanding endomorphisms. The example of expanding endomorphism is the endomorphism of the integers \(n \mapsto 10n \). The fact that this map makes everything larger and that its image is finite index combine to give us decimal notation. Our Cannon’s algorithms for nilpotent groups consist of this sort of decimalization together with cancellation. We are then able to combine these methods with the usual word hyperbolic Cannon’s algorithms to produce the second class of results.

We are also able to prove that many groups do not have Cannon’s algorithms. We have the following criterion: suppose \(G \) has two subsets, \(S_1 \) and \(S_2 \) and that both of these are infinite and the growth of \(S_2 \) is exponential. Suppose also that these two sets commute. Then \(G \) does not have a Cannon’s algorithm. This allows us to rule out many classes of groups including Baumslag-Solitar groups, braid groups, Thompson’s group, solvegeometry groups and the fundamental groups of most Seifert fibered spaces. In particular, we are able to say exactly which graph manifolds have fundamental groups which have Cannon’s algorithms.

We have discussed Cannon’s algorithms which are carried out by incremental rewriting algorithms and non-incremental rewriting algorithms. They can also be carried out non-deterministically. Given a finite set of length reducing rewriting rules, these solve the word problem nondeterministically if for each word \(w \), \(w \) represents the identity if and only if it can be rewritten to the empty word by some application of these rules. All of these competing versions are closely related to the family of growing context sensitive languages. A growing context-sensitive grammar is one in which all the productions are strictly length increasing. It is a theorem that a language \(L \) is a growing context-sensitive language if and only if there is a symbol \(s \) and a set of length reducing rewriting rules such that a word \(w \) is in \(L \) if
and only if it can be rewritten to s by some application of these rules. While the family of languages with non-deterministic Cannon’s algorithms and the family of growing context-sensitive languages may not be exactly the same, our criterion for showing that a group does not have a Cannon’s algorithm also seems likely to show that its word problem is not growing context-sensitive. Now all automatic groups (and their finitely generated subgroups) have context-sensitive word problems [22]. Thus extending this result to the non-deterministic case would show that the class of groups with growing context-sensitive word problem is a proper subclass of those with context-sensitive word problem.

1.4. Thanks. We wish to thank Gilbert Baumslag, Jason Behrstock, Brian Bowditch, Martin Bridson, Bill Floyd, Swarup Gadde, Bob Gilman, Susan Hermiller, Craig Hodgson, Chuck Miller, Walter Neumann and Kim Ruane for helpful conversations. We also wish to give special thanks to Jim Cannon for suggesting the key idea of this work to us during a conference at the ANU in 1996, and for working with us during the evolution of this paper.

2. Basic Properties

Let us start by justifying the term incremental rewriting algorithm.

Lemma 2.1. Let $R : \mathbb{A}^* \to \mathbb{A}^*$ denote reduction by a fixed incremental rewriting algorithm. Then for all $u, v \in \mathbb{A}^*$, $R(uv) = R(R(u)v)$.

Proof. If a substitution can be made in u, the same substitution will be made in uv. Therefore, in exactly the number of steps the algorithm takes to change u into $R(u)$, it changes uv into $R(u)v$. This shows that $R(u)v$ is an intermediate result of running the algorithm on uv. It follows that both must reduce to the same eventual result i.e., $R(uv) = R(R(u)v)$. □

Proposition 2.2. Let R denote reduction with respect to a Cannon’s algorithm (G, \mathbb{A}, S) for G. Let x, y be words in G^* such that $R(x) = R(y)$. Then x and y represent the same element of G.

Proof. If $R(x) = R(y)$ then $R(x)y^{-1} = R(y)y^{-1}$ from which it follows, by Lemma 2.1 that $R(xy^{-1})$ equals the empty word. But since R comes from a Cannon’s algorithm, this implies that x and y represent the same group element. □

This means that a Cannon’s algorithm always remembers what element of the group it was fed. In a sense this tells us that $R(x)$ is a kind of “canonical form” for $x \in G^*$.

As we shall see, Proposition 2.2 does not hold for non-incremental Cannon’s algorithms. The following proposition shows that the incremental rewriting algorithms form a subclass of the non-incremental ones.

Proposition 2.3. Given rewriting rules (\mathbb{A}, S) there is a set of rewriting rules (\mathbb{A}, S') such that the non-incremental rewriting algorithm of (\mathbb{A}, S') carries out exactly the same substitutions as the incremental rewriting algorithm of (\mathbb{A}, S).

3Examples of groups with context-sensitive word problem, but not growing context-sensitive word problem are given in [16]. In work in progress (joint with Derek Holt and Sarah Rees) we show that a language is growing context-sensitive if and only if it is the language of a non-deterministic Cannon’s algorithm. In addition, we show that the methods of Sections 6 and 7 extend to these non-deterministic Cannon’s algorithms. This has additional language-theoretic consequences.
Proof. Suppose we carry out the non-incremental rewriting algorithm given by \((\mathcal{A}, S)\). In what situation would it make a different substitution to that chosen by the incremental rewriting algorithm? Clearly only when we encounter nested left-hand sides in our word. In that case the non-incremental algorithm chooses the longer word because it starts first, whereas the incremental algorithm chooses the shorter because it ends first. But this means that the incremental rewriting algorithm will never actually invoke the rule with the longer left-hand side. Therefore we can discard from \(S\) any rules whose left-hand sides contain another left-hand side ending before the last letter. Call the set of rules we obtain \(S'\). Using these rules both algorithms make exactly the same substitutions. □

2.1. Rewriting algorithms and compression. The key result underlying the group theoretic properties of Cannon’s algorithms is that if a group has a Cannon’s algorithm with respect to one (finite) set of generators, it has one with respect to any other.

Let \(G\) and \(G'\) be sets of semi-group generators for \(G\), such that \((G, \mathcal{A}, S)\) is a Cannon’s algorithm for \(G\). Each element of \(G'\) can be expressed as a word in \(\mathcal{A}^*\). Let \(n\) be the length of the longest such word. Let \(\mathcal{A}^{*n}\) be the set of non-empty words of length at most \(n\) in \(\mathcal{A}^*\). We can use it as an alphabet, each of whose letters encodes up to \(n\) letters of \(\mathcal{A}\). Since \(G \subseteq \mathcal{A}\) we can regard \(G'\) as a subset of \(\mathcal{A}^{*n}\).

The writing out map from \((\mathcal{A}^{*n})^*\) to \(\mathcal{A}^*\) maps a word to the concatenation of its letters. Lemma 2.4 shows that given \((G, \mathcal{A}, S)\) we can construct an algorithm \((G', \mathcal{A}^{*n}, S')\) which, by “mimicking” \((G, \mathcal{A}, S)\), deletes its input precisely when \((G, \mathcal{A}, S)\) deletes the written out version of the same input. Unfortunately the algorithm we give is not quite an incremental rewriting algorithm: its rules are not strictly length decreasing. The main point of this section is to explain how we can overcome this problem and give an incremental rewriting algorithm which does what we want.

Lemma 2.4. Let \((\mathcal{A}_0, \mathcal{A}, S)\) be an incremental (or non-incremental) rewriting algorithm. Then for any integer \(n > 0\) there exists a non-strictly length decreasing (resp. non-incremental) rewriting algorithm \((\mathcal{A}_0^{*n}, \mathcal{A}^{*n}, S')\) with the following property. For each word \(w \in (\mathcal{A}_0^{*n})^*\), the reduction of \(w\) with respect to \((\mathcal{A}_0^{*n}, \mathcal{A}^{*n}, S')\) written out, equals the reduction with respect to \((\mathcal{A}_0, \mathcal{A}, S)\) of \(w\) written out.

Proof. Let \(W\) be the length of the longest left-hand side in \(S\).

For an incremental algorithm, the set of left-hand sides in \(S'\) is the set of all words of length less than or equal to \(W\) in \((\mathcal{A}^{*n})^*\), with and without leading ‘\(^\ast\)’s, which, when written out, contain a left-hand side of \(S\). For each such word, we write it out, apply one substitution from \((\mathcal{A}_0, \mathcal{A}, S)\), and write it back into \((\mathcal{A}^{*n})^*\) to obtain the corresponding right-hand side; an anchored rule can only be applied if the left-hand side starts with a ‘\(^\ast\)’.

That this can be done without making the right-hand side any longer in \((\mathcal{A}^{*n})^*\) than the left-hand side should be clear: one case when the right-hand side cannot be any shorter is when the left-hand side is one letter long, and the substitution we make on the written out word does not entirely delete it.

We have to check that, modulo writing out, the two algorithms carry out the same substitutions. Let \(w\), written out, contain a left-hand side \(u\) of \(S\). Some
subword of \(w \), adorned with a \(^* \) if it is an initial segment, contains \(u \), and is a left-hand side in \(S' \). The first \(S' \)-left-hand side can’t end to the left of the end of \(u \), since it would then contain no \(S \)-left-hand side at all. Therefore the first \(S' \)-left-hand side contains \(u \), and is anchored if \(u \) is an initial segment. The rule in \(S' \) for this left-hand side carries out the substitution in \(S \) for \(u \).

For a non-incremental algorithm, the set of left-hand sides in \(S' \) is the set of words \(U \in (A^*)^* \) of length less than or equal to \(W \), with optional leading and trailing \(^* \)'s, such that

1. \(U \) written out contains a left-hand side of \(S \), and
2. if the first \(S \)-left-hand side in \(U \) starts fewer than \(W \) \(A \)-letters from the end of \(U \), then \(U \) ends with a \(^* \).

Let \(w \) and \(u \) be as above. We can find an \(S' \)-left-hand side \(U \) in \(w \) which contains \(u \). Now \(u \) could have a subword \(u_0 \) which is also a left-hand side in \(S \). In principle, the first \(S' \)-left-hand side in \(w \) might contain \(u_0 \) but not \(u \), but this is ruled out by (2). Therefore the first \(S' \)-left-hand side in \(w \) contains \(u \), and the corresponding rule does the right substitution. \(\square \)

We want to adjust this basic construction so as to obtain rules which are strictly length decreasing. If each rule in \(S \) were to delete at least \(n \) letters, there would be no problem, but this will not generally be the case. When the input word has two or more letters we might write the result of a single substitution as a shorter word in \((A^*(2n-1))^*\). This doesn’t really solve the problem since we end up working in larger and larger alphabets. And what about a word of length 1 in \((A^n)^*\) which when written out and reduced, is non-empty? The algorithm we construct will not touch such a word unless it can delete it entirely. In fact, unless it can delete its input completely, it may stop short with some intermediate result of the original algorithm. This is fine since we only really care whether or not an input word is deleted completely.

We return first to the original algorithm \((A_0,A,S)\), and try to see to what extent it can be made to remove several letters at a time when it substitutes.

It is helpful to think of the algorithm as being carried out by a machine which views the word it is processing through a window of size \(W \), where \(W \) is the length of the longest left-hand side in \(S \). Since the incremental algorithm works by observing the earliest ending left hand side, one might imagine that the machine acts when a left hand side ends at the end of the window. Similarly, a non-incremental rewriting algorithm acts when a left-hand side starts at the start of the window. If there are no left-hand sides visible, the machine steps one letter to the right, or stops if it has reached the end of the word. If there is a left-hand side, it substitutes and steps \(W - 1 \) letters to the left.

Let \(w \) be a word containing a left-hand side and let \(u \) be the first such in \(w \). Let us look at a subword \(U \) of \(w \) extending \(A \geq W \) letters to the left of \(u \), and \(B \geq W \) letters to the right, and see what the machine does. The machine’s actions are entirely determined by the contents of this \(A, B \)-neighborhood of \(u \) until such time as it needs to examine letters either to the left or to the right of it. We say that the machine goes to the left or to the right accordingly. In the first case the machine must first make at least \(\left\lfloor \frac{A}{W-1} \right\rfloor + 1 \) substitutions. We call each substitution made in this way a subword reduction.
If there are fewer than \(A \) letters to the left of \(u \), \(U \) is an initial segment of \(w \); then the machine’s actions are determined by the contents of \(U \) until it (inevitably) goes to the right. If there are fewer than \(B \) letters to the right, the machine can either go to the left or terminate.

We make rules which carry out several substitutions at a time. The new left-hand sides are the reducible words with no more than \(A \) letters before the first left-hand side, and no more than \(B \) letters after it. The new right-hand sides are the result of running the machine on the left-hand sides until it goes to the left or the right. If the new left-hand side has fewer than \(A \) letters before its first \(S \)-left-hand side, we allow the machine to run until it goes to the right and make the resulting rule be anchored at the start. If there are fewer than \(B \) letters after the \(S \)-left-hand side, we allow the machine to run until it goes to the left or terminates; for a non-incremental rewriting algorithm we make the resulting rule be end-anchored. We call the rules we obtain left-going if the machine went to the left and right-going if it went to the right or terminated.

Finally, let us discard all right-going rules which have a left-hand side with fewer than \(B \) letters after the first \(S \)-left-hand side, and non-empty right-hand side. Let \(S' \) contain all the remaining rules. We claim that as long as \(A \geq B + W \) and \(B > W - 1 \) a machine using the rules \(S' \) still carries out the same substitutions but may stop short of fully reducing the input word (with respect to \(S \)).

Let \(w \) be a word containing an \(S \)-left-hand side and let \(u \) be the first such in \(w \). We have to show that if \(w \) contains an \(S' \)-left-hand side then the first such contains \(u \). An \(S' \)-left-hand side can’t end to the left of the end of \(u \) since in the incremental case it would contain no \(S \)-left-hand side, while in the non-incremental case it would have to be a non-end-anchored rule with fewer than \(B \) letters to the right of its first \(S \)-left-hand side. Therefore if any \(S' \)-left-hand side contains \(u \), the first one in \(w \) does.

If we can find no \(S' \)-left-hand side containing \(u \) then the \(A,B \)-neighborhood of \(u \) must be one of the deleted left-hand sides. In that case \(u \) ends within \(B \) letters of the end of \(w \). Since \(A \geq B + W \), any other rule which might apply, containing some other \(S \)-left-hand side \(u_1 \) to the right of \(u \), would also see \(u \), which is a contradiction. The fact that the rule for the \(A,B \)-neighborhood of \(u \) has been deleted means that in this case the original algorithm would have terminated with a non-empty result.

With \(w \) and \(u \) as above, we define the reduction point of an incremental rewriting algorithm to be the right-hand edge of \(u \), while for a non-incremental rewriting algorithm it is the left-hand edge of \(u \). Each rule is either,

- (1) left-going, deleting at least \(\lfloor \frac{A}{W-1} \rfloor + 1 \) letters,
- (2) right-going, deleting the whole left-hand side, or
- (3) right-going, shifting the reduction point at least \(B - (W - 1) \) letters to the right, or out of the word entirely.

Lemma 2.5. Let \((A_0, A, S)\) be an incremental (or non-incremental) rewriting algorithm. Then for any integer \(n > 0 \) there exists an incremental (resp. non-incremental) rewriting algorithm \((A_0^n, A^{*(2n-1)}, S')\) with the following property. For each word \(w \in (A_0^n)^* \), the reduction of \(w \), with respect to \((A_0^n, A^{*(2n-1)}, S')\), written out is an intermediate result of the reduction of \(w \) written out with respect to \((A_0, A, S)\). It is empty if and only if the latter is also.
Proof. Let us first give names to parts of our new working alphabet. Let \(B \) be all words in \(A^{(2n-1)} \) of length at most \(n \), and let \(C \) be all longer words. Our new input alphabet is a subset of \(B \), and an input word is a word in \(B^* \).

At any given time during the running of our new algorithm the current word will satisfy the following conditions. No \(C \)-letters end (in the written out word) to the right of the reduction point. Any \(C \)-letters present will end at least \((2n - 1)(W - 1)\) original letters apart, i.e. they will be relatively sparse.

We shall give rules that, modulo writing out, carry out subword reduction looking at least \(A = 2nW + W \) original letters to the left of the first left-hand side and \(B = 2nW \) letters to the right. The left-hand sides are words in \((B \cup C)^* \) such that

1. each is \(S \)-reducible when written out,
2. each has up to \(A + (2n - 2) \) original letters before the first original left-hand side and up to \(B + (n - 1) \) following it,
3. any \(C \)-letters present come before the reduction point and are sparse, as noted above,
4. if there are fewer than \(A \) original letters before the first original left-hand side, it starts with a \(^\wedge \), and
5. (non-incremental case only) if there are fewer than \(B \) original letters following the first original left-hand side, it ends with a \(^\wedge \).

Modulo writing out, these are the same left-hand sides as before except that we have to allow for the granularity of the \(B \) and \(C \) letters.

To obtain each corresponding right-hand side we apply subword reduction to the written out word for \(2n - 1 \) steps or until subword reduction is complete if this happens first: it follows that there will be no left-going rules. If \(2n - 1 \) substitutions were made (or the left-hand side was deleted entirely) we can write the result using at least one fewer \(C \)-letters, or fewer \(B \)-letters if no \(C \)-letters were present. Since the reduction point moves at most \((2n - 1)(W - 1) \) original letters to the left, it moves past at most one \(C \)-letter. Therefore we can write our right-hand side so as to preserve the above conditions on the placement and sparsity of \(C \)-letters.

If subword reduction is complete before \(2n - 1 \) substitutions have been made, and the result is non-empty, it may be impossible to keep the number of \(C \) letters fixed and still write a length reducing rule. If this is the case, and there were fewer than \(B \) original letters after the original left-hand side, we discard the rule entirely. With \(B > 2n - 1 \) or more original letters after the left-hand side, only reductions which remove fewer than \(n \) letters can force us to introduce a new \(C \)-letter. For an incremental rewriting algorithm the new reduction point will be to the right of our subword. By writing the new \(C \)-letter at the end of the right-hand side we ensure that it ends at least \((2nW - (n - 1)) \) letters to the right of the previous reduction point. Since \((2nW - (n - 1)) > (2n - 1)(W - 1) \) the sparsity of \(C \)-letters is preserved. For a non-incremental rewriting algorithm the new reduction point could be up to \(W - 1 \) letters in from the end of our right-hand side. Thus our new \(C \)-letter might have to end up to \(W - 1 + n - 1 \) original letters from the end of the right-hand side. This still puts it at least \((2nW - 2(n - 1) - (W - 1)) > (2n - 1)(W - 1) \) letters to the right of the previous reduction point.

The rules we have given are strictly length decreasing. They preserve the conditions given on the placement of \(C \)-letters. Modulo writing out and working several steps at a time, the rules apply the same substitutions as the original algorithm. If a word is reducible when written out, either a rule will apply, or the word will be...
a few steps away from being reduced with a non-empty result. It follows that the new rules delete a word in \((A_0^*)^n\) if and only if the original rules deleted the same word written out.

\[\square\]

2.2. Composition of non-incremental rewriting algorithms. Let us introduce the notion of a finite state Dehn machine. As with rewriting algorithms these can be either incremental or non-incremental. (We describe the non-incremental version: to obtain the incremental version, read “ending at the current position” wherever the definition says “starting at the current position.”) Such a machine comes with a finite collection of states, \(Q = \{q_i\}\). One of these, \(q_0\) is the start state. For each state \(q \in Q\) there is a collection of length reducing replacement rules \(S_q = \{u_i \rightarrow v_i\}\). There is also a transition function which chooses a new state depending on the current state and the contents of the subword of length \(W\) starting at the current position, where \(W\) is an upper bound for the lengths of all the left-hand sides.

Such a machine starts in the start state at the beginning of the input word. In state \(q\), it looks at the next \(W\) letters for the longest left-hand side in \(S_q\) starting at the current position, and to determine its new state. It then either substitutes and steps \(W\) letters to the left, or steps one letter to the right. In either case it switches to the new state. It terminates when it reaches the end of the word with no further replacements possible.

Observe that when a Dehn machine with state terminates it does not necessarily leave behind a word which is free of left-hand sides. While Dehn machines with state are ostensibly more powerful than rewriting algorithms, we show that, by storing the state information in the current word, we can get a rewriting algorithm to “mimic” a Dehn machine. We then use Dehn machines with state to show that non-incremental rewriting algorithms have a nice composition property.

We can extend the concept of writing out to include any map \(A' \rightarrow A\) induced by a map \(A' \rightarrow A^*\). A machine stops short if it terminates at a point when all remaining substitutions would have applied to a final segment of bounded length. One machine mimics another if the result of the mimic written out is always a result of the original stopping short.

Proposition 2.6. Given a non-incremental (or incremental) finite state Dehn machine, there is a non-incremental rewriting algorithm (resp. incremental rewriting algorithm) which mimics it. The mimic terminates with an empty word if and only if the finite state Dehn machine terminates with an empty word in its start state.

Proof. We give first a non-strictly length decreasing rewriting algorithm. At the end we sketch how the trick used in the proof of Lemma 2.5 of introducing widely spaced “multi-letter” letters allows us to give strictly length-decreasing rules. The reason we prefer to give a non-strictly length decreasing algorithm here is that, while the details of making strictly length-decreasing rules are not hard, they would obscure the basically simple idea behind this proof.

Let \(A\) be the working alphabet of our Dehn machine. We make copies of \(A\) in different colors, one corresponding to each state of the machine, and one more in white. The input alphabet, and the copy of \(A\) corresponding to the start state, we color indigo. At any given time during the running of the mimic algorithm an initial segment (possibly empty) of the current word is white. The first colored letter
indicates a state of the Dehn machine and its current position, and the remaining letters are all indigo.

Let \(W \) be the length of the longest left-hand side of the Dehn machine. We specify the substitutions we wish the mimic to make rather than giving the precise rules. Look \(W \) letters to either side of the first colored letter. If a substitution is indicated (according to the state of the first colored letter) we make it, color up to \(W - 1 \) letters indigo, and one the color of the new state. If no substitution is indicated, the first colored letter is turned white and the next letter is colored with the new state. A special case arises for rules which delete their whole left-hand side and do not lead to the start state. Since there is no suitable letter to color with the new state the mimic instead writes a colored blank. We then have to add a few more rules which take a colored blank followed by a letter and write the same letter in that color.

It is not hard to see that the mimic and the Dehn machine make essentially the same substitutions. When the mimic terminates it is with a word that is white except for its final letter which indicates the termination state of the Dehn machine. If the Dehn machine terminates with an empty word, in a non-input state, the mimic leaves behind a single colored blank.

To make these rules length decreasing we instead look \(2W \) letters before and after the first colored letter in the incremental case (\(2W \) before and \(3W \) after if non-incremental). We run the Dehn machine as a subword reduction. If no substitutions are made, the first colored letter is shifted at least \(2W \) letters to the right and two white letters are replaced by one encoding them both. If subword reduction goes to the left, enough substitutions will be made to allow us to remove any “double” letters we find on the way (these ending at least \(2W \) original letters apart). If we can’t see \(2W \) (resp. \(3W \)) letters to the right we may have to discard the relevant rule and allow the mimic machine to terminate a little prematurely. This only happens in cases where the machine is unable to make any further substitutions between the current point and the end of the word.

Let \((A, S)\) and \((A, S')\) be non-incremental rewriting algorithms with reduction maps \(P\) and \(P'\) respectively. Ideally there would then be a non-incremental rewriting algorithm with reduction map \(P' \circ P\). Unfortunately this doesn’t appear quite to be the case. We have to allow the resulting algorithm to give its answer in some “compression alphabet” \(A^*n\), and we may have to allow it to stop short of reaching its answer. We don’t really mind the compression alphabet, but having a machine stop short is a problem: it gets in the way of doing any further composition.

Reluctantly, we must add a further “flavor” of non-incremental rewriting algorithm to our collection. An nearly strict non-incremental rewriting algorithm is one which may include some length preserving ending rules: these are end anchored rules such that the resulting algorithm has the property that one of these will apply only when the word is reduced with respect to all the strictly length decreasing rules, and afterwards the word will be fully reduced. We shall not consider here the question of how to determine, in general, whether a given set of rules has this property. What is hopefully clear is that if, in the proof of Lemma 2.5 we put back the deleted rules, we obtain a nearly strict non-incremental rewriting algorithm. Modulo writing out, the resulting algorithm achieves the reduction map of the original algorithm. Furthermore it makes no difference to the proof if the original algorithm is itself nearly strict.
Lemma 2.7. Let \((\mathcal{A}_0, A, S)\) be a nearly strict non-incremental rewriting algorithm. Then for any integer \(n > 0\) there exists a nearly strict non-incremental rewriting algorithm \((\mathcal{A}_0^n, A^*(2n-1), S')\) with the following property. For each word \(w \in (\mathcal{A}_0^n)^*\), the reduction of \(w\), with respect to \((\mathcal{A}_0^n, A^*(2n-1), S')\), written out is the reduction of \(w\) written out with respect to \((\mathcal{A}_0, A, S)\).

Similarly, when we construct a mimic for a non-incremental Dehn machine with state, we can avoid stopping prematurely by allowing ending rules for the resulting machine. We can also allow a Dehn machine with state to have ending rules. These are length preserving rules which put it into a terminal state, a state without rules which the machine cannot leave. Such a machine can also be mimicked by a nearly strict non-incremental rewriting algorithm, the proof being virtually unchanged.

We shall show that it is possible to compose nearly strict non-incremental rewriting algorithms. We can always recover a genuine non-incremental rewriting algorithm which might stop short, by discarding the length preserving rules.

Proposition 2.8. Let \((\mathcal{A}, S)\) and \((\mathcal{A}', S')\) be nearly strict non-incremental rewriting algorithms with reduction maps \(P\) and \(P'\) respectively. There is a nearly strict non-incremental rewriting algorithm \((\mathcal{A}, A', T)\) which mimics the process of first applying \((\mathcal{A}, S)\) and then applying \((\mathcal{A}', S')\). The reduction map of \((\mathcal{A}, A', T)\) written out is the composition \(P' \circ P\).

Proof. This process can be carried out by a finite state Dehn machine. In its initial state it applies the rules in \(S\). Once no more rules apply and it approaches the end of the word, it switches to a second state. In this state it simply compresses a little bit until it arrives at the start of the word again. Then it switches into a third state where it uses the rules in \(S'\) modified, as in Lemma 2.7, for compressed input.

What if \(S\) includes ending rules? Without loss of generality, \(S\)-left-hand sides are either \(W > 3\) letters long, or anchored at both ends. Ending rules of length \(W\) can be combined with compression. Rules anchored at both ends can be modified so as to complete the entire reduction \((P' \circ P)\) at a single step.

With \(S\) as above, our machine can recognize the end of a reduced word by finding any word of \(W - 1\) letters which is anchored at the end but not the start. (Shorter entire words being already dealt with.) It can then start backtracking and compressing.

When the modified \(S'\) has ending rules, these become ending rules for the finite state machine. Finally, we transform the resulting Dehn machine with state into a nearly strict non-incremental rewriting algorithm.

2.3. Group theoretic consequences. From Lemma 2.5 and the discussion at the start of this section we have the following result.

Theorem 2.9. Let \(G\) be a group with finite semi-group generating sets \(G\) and \(G'\). Then \(G\) has a Cannon’s algorithm with respect to \(G\) if and only if it has one with respect to \(G'\).

Theorem 2.10. Let \(G\) be a group and let \(H\) be a finitely generated subgroup of \(G\). If \(G\) has a Cannon’s algorithm, \(H\) has one too.

Proof. Choose a set of generators for \(G\) which includes generators for \(H\). With respect to these generators, a Cannon’s algorithm for \(G\) is also one for \(H\).
Theorem 2.11. Let \(G \) be a group and let \(H \) be a finite index subgroup of \(G \). If \(H \) has a Cannon’s algorithm, \(G \) also has one.

Proof. Fix a transversal \(T \) for \([H : G]\) from which we omit the representative of the identity coset. Fix a finite generating set \(G \) for \(G \) containing \(T \). Each word \(g_1g_2g_3 \) with \(g_i \in G \) is equal in \(G \) to a word of the form \([h][t] \), for some \(h \in H \) and \(t \in T \), where the brackets indicate that each letter may be omitted. If \(g_1g_2 \in G^* \) evaluates to an element of \(H \), it can be written as the 0 or 1-letter word \([h]\), again for some \(h \in H \). As \(g_1, g_2, g_3 \) vary in \(G \) we obtain finitely many elements \(h \in H \). Let \(\mathcal{H} \) be a finite generating set for \(H \) containing all non-identity elements obtained in this way and also, all of \(G \cap H \).

The above equalities give rules \(R \) of the form \(g_1g_2g_3 \mapsto ht \) etc. We omit any rules with \(g_1 \in H \). The incremental rewriting algorithm \((\mathcal{G}, G \cup H, R)\) turns a word in \(G^* \) into a word in \(H^* \) followed by at most two letters from \(\mathcal{G} \) by pushing a coset representative along the word. If an input word to this algorithm represents an element of \(H \), the reduced word will be in \(H^* \).

Let \((\mathcal{H}, A, S)\) be a Cannon’s algorithm for \(H \). We claim that \((\mathcal{G}, G \cup H \cup A, R \cup S)\) is a Cannon’s algorithm for \(G \). The \(R \) rules translate the word into a word in \(H \) followed by a couple of letters keeping track of the coset. Then the \(S \) rules chase along behind applying \(H \)’s Cannon’s algorithm to the word in \(H \). The effect is exactly as if we applied \((\mathcal{G}, G \cup H, R)\) first, followed by applying \((\mathcal{H}, A, S)\) to the \(H^* \) part of the result. If an input word represents the identity in \(G \), the first step produces a representation of the identity in \(H^* \) and the second deletes it. An input word which does not represent the identity will reduce, either to some word containing letters in \(G - H \), if it does not evaluate into \(H \), or otherwise to a non-empty word in \((\mathcal{H} \cup A)^* \).

The previous theorems hold both for both Cannon’s algorithms and non-incremental Cannon’s algorithms. The last of these suggests a way to construct a Cannon’s algorithm using the non-incremental rewriting algorithm which does not satisfy Proposition 2.12. Consider the case of \(H \) finite index in \(G \). It is not hard to parlay a Cannon’s algorithm for \(H \) into a non-incremental rewriting algorithm which solves the word problem in \(G \) but destroys information in the case where the word is not in the identity coset. Here is what it does: given a word \(w \), it first transforms this into a word of the form \(ht \) where \(h \) is a word in the generators for \(H \) (possibly the empty word) and \(t \) is an element of the transversal, and is empty if and only if it represents the identity coset. If \(t \) is empty, we now proceed to reduce \(h \) according to the Cannon’s algorithm for \(H \). On the other hand, if \(t \) is not empty, we can proceed to wantonly destroy the information in \(h \).

Proposition 2.12. There is a non-incremental rewriting algorithm which is not mimicked by any incremental rewriting algorithm.

Proof. We suppose that \(G_0 \) and \(G_1 \) are groups with Cannon’s algorithms \((\mathcal{G}_0, A_0, S_0)\) and \((\mathcal{G}_1, A_1, S_1)\) respectively and that the alphabets for these are disjoint. Let

\[
T_0 = \{ au \rightarrow av \mid u \rightarrow v \in S_0, \ a \in A_1 \} \\
T_1 = \{ au \rightarrow av \mid u \rightarrow v \in S_1, \ a \in A_0 \}
\]

Theorem 2.13. If \(G \) and \(H \) both have Cannon’s algorithms, then so does their free product \(G \ast H \).

Proof. We suppose that \(G_0 \) and \(G_1 \) are groups with Cannon’s algorithms \((\mathcal{G}_0, A_0, S_0)\) and \((\mathcal{G}_1, A_1, S_1)\) respectively and that the alphabets for these are disjoint. Let

\[
T_0 = \{ au \rightarrow av \mid u \rightarrow v \in S_0, \ a \in A_1 \} \\
T_1 = \{ au \rightarrow av \mid u \rightarrow v \in S_1, \ a \in A_0 \}
\]
\[S = S_0 \cup T_0 \cup S_1 \cup T_1 \]
\[G = G_0 \cup G_1 \]
\[A = A_0 \cup A_1. \]

We claim that \((G, A, S)\) is a Cannon’s algorithm for \(G_0 * G_1\).

To see this, consider a word \(x_0 \ldots x_n\), consisting of alternating non-empty words from the alphabets \(G_0\) and \(G_1\). For simplicity, we will assume that we have numbered the two groups so that \(x_i \in G_{i(mod \ 2)}\). We claim that as long as no \(x_i\) evaluates to the identity, \(R(x_0 \ldots x_n) = R_0(x_0) \ldots R_n(x_n)\). (Here we are using \(R\) to denote reduction with respect to \(S\) and \(R_i\) to denote reduction with respect to \(S_i\)). Likewise, we will refer to \(S_i(mod \ 2)\) as \(S_i\) and \(T_i(mod \ 2)\) as \(T_i\).

This claim is true when \(n = 0\), for then only the rules of \(S_0\) apply. Suppose now that this claim holds for \(n = k\). We wish to establish it for the case \(n = k + 1\). By induction an intermediate result of the reduction of \(x_0 \ldots x_{k+1}\) is \(R_0(x_0) \ldots R_k(x_k)x_{k+1}\) and the portion before \(x_{k+1}\) is fully reduced. Further, the assumption that no \(x_i\) evaluates to the identity implies that \(R_k(x_k)\) is non-empty. Accordingly any further reductions are made either by a non-anchored rule of \(S_{k+1}\) applying entirely inside \(x_{k+1}\) or by a rule of \(T_{k+1}\) applying at the last letter of \(R_k(x_k)\) and the beginning of \(x_{k+1}\). Any rule of \(T_{k+1}\) changes only the letters of \(x_{k+1}\) and performs exactly as an anchored rule of \(S_{k+1}\) would have done had \(x_{k+1}\) been the beginning of a word. These combine to produce \(R_0(x_0) \ldots R_k(x_k)R_{k+1}(x_{k+1})\) as required.

In particular if no \(x_i\) represents the identity, then \(x_0 \ldots x_n\) does not represent the identity and does not reduce to the empty word.

Now consider the case in which some \(x_i\) represents the identity. We take \(x_i\) to be the earliest such. The process of reducing the word \(w = x_0 \ldots x_n\) produces \(R_0(x_0) \ldots R_{i-1}(x_{i-1})x_i \ldots x_n\) as an intermediate result. As before, \(S_i\) and \(T_i\) conspire to reduce \(x_i\) as \(S_i\) would have done had \(x_i\) stood alone. This produces \(R_0(x_0) \ldots R_{i-1}(x_{i-1})x_{i+1} \ldots x_n\). But this is an intermediate result of reducing \(w' = x_0 \ldots x_{i-1}x_{i+1} \ldots x_n\). Furthermore, \(w'\) represents the identity if and only if \(w\) represents the identity. But the free product length of \(w'\) is two less than the free product length of \(w\). Thus we may assume inductively that \(w'\) reduces to the empty word if and only if it represented the identity and we conclude the same about \(w\).

Since this induction reduces free product length by two, it remains to check two base cases. One is when the free product length of \(w\) is 0, and here there is nothing to check. The second is when the free product length is 1. This is just application of the Cannon’s algorithm in one of the factor groups.

We do not know how to prove this for non-incremental Cannon’s algorithms. This raises the following

Question 2.14. Are there groups with non-incremental Cannon’s algorithms which do not have Cannon’s algorithms?

3. Groups with Expanding Endomorphism

Let \(G\) be a finitely generated group with finite set of semi-group generators \(G\). Let \(\ell_G\) denote the word metric on \(G\) with respect to \(G\). We say that a homomorphism \(\varphi: G \rightarrow G\) is an *expanding endomorphism* if \(\varphi(G)\) is a finite index subgroup of \(G\).
Lemma 3.1. Let \(g \) be decreasing if \(3 < n \) and there exists a constant \(M > 1 \) such that \(\ell_\varphi(\varphi(g)) \geq M\ell_\varphi(g) \) for all \(g \in G \). Observe that by taking a suitable power of \(\varphi \) we may make \(M \) as large as we wish. By taking a finite set of coset representatives for \(\varphi(G) \backslash G \) we see that there is a constant \(K \) such that for all \(g \in G \), the distance from \(g \) to \(\varphi(G) \) is at most \(K \). We say that \(\varphi(G) \) is \(K \)-dense in \(G \).

Let \(A \) be the finite alphabet \(G \cup \{t, t^{-1}\} \), where \(t \) and \(t^{-1} \) are letters not in \(G \). We say that a word \(w \) in \(A \) is balanced (with respect to \(t \)) if \(w \) has the same number of \(t \)'s as \(t^{-1} \)'s, and further, every initial segment of \(w \) has at least as many \(t \)'s as \(t^{-1} \)'s. Each balanced word \(w \) in \(A \) represents an element of \(G \): we define the element represented by \(twt^{-1} \) to be \(\varphi \) applied to the element represented by \(w \).

The following rules (assuming \(\varphi \) is chosen so that both \(M \) and \(K \) are sufficiently large) give a Cannon's algorithm for \(G \). In the rules: \(g \) denotes a word in \(G^* \), and \(g' \) and \(g'' \) denote geodesic words in \(G^* \) such that \(g = \varphi(g')g'' \), and \(\ell(g'') \) equals the distance from \(g \) to \(\varphi(G) \).

1. Replace any non-geodesic word \(g \) of length \(\ell(g) \leq 2K \) by an equivalent geodesic word.
2. If \(g \) is geodesic, with \(\ell(g) = 2K \), replace \(g \) by \(tg't^{-1}g'' \), or replace \(t^{-1}g \) by \(g't^{-1}g'' \).
3. If \(g \) is geodesic, with \(\ell(g) \leq 2K \) and \(\ell(g'') = 0 \) (i.e. \(g \in \varphi(G) \)), replace \(t^{-1}g \) by \(g't^{-1} \).
4. Replace \(tt^{-1} \) by the empty word.

These rules clearly map balanced words to balanced words, and do not change the element of \(G \) represented. It is clear that Rules 1, 3 and 4 are strictly length decreasing. For Rule 2 to reduce length we need \(\ell(g') + \ell(g'') + 2 < \ell(g) \). We have \(\ell(g) = 2K \), \(\ell(g'') \leq K \), and \(\ell(g') \leq \frac{1}{2}\ell(g) \). It follows that Rule 2 will be length decreasing if \(3/M + 2/K < 1 \).

Lemma 3.1. Let \(G, A = G \cup \{t, t^{-1}\}, M \) and \(K \) be as above. Let \(w \) be the reduction of a word in \(G \) with respect to Rules 1-4. Then \(w \) has the form \(t^n g_1 t^{-1} \ldots t^{-1} g_i t^{-1} g_0 \), or just \(g_0 \) \((n = 0) \), such that:

1. each \(g_i \) is a geodesic word in \(G \) of length less than \(2K \);
2. each \(g_i \), for \(i < n \), is either in \(G - \varphi(G) \) or it is empty;
3. if \(n > 0 \), \(g_n \) is not empty.

Proof. We show first that all \(t \)'s appear at the start of \(w \). Initially this is vacuously true. The only rule whose application could make this untrue is 2 since it is the only rule which creates \(t \)'s. But Rule 2 is only applied at the start of the word, or when the immediately preceding letter is \(t \), for otherwise one of Rules 1-3 would apply at least one letter to the left.

Rule 1 ensures that each \(g_i \) is geodesic, while Rule 2 ensures that the length of each \(g_i \) is less than \(2K \). Rule 3 ensures that each \(g_i \), for \(i < n \), is either in \(G - \varphi(G) \) or it is empty. Rule 4 ensures that \(g_n \) is not the empty word if \(n > 0 \). \(\square \)

Theorem 3.2. Rules 1-4 reduce each word in \(G \) to the empty word if and only if that word represents the identity element of \(G \).

Proof. Let \(g = t^n g_1 t^{-1} \ldots t^{-1} g_i t^{-1} g_0 \) be the reduction of a word in \(G \) representing the identity in \(G \). Let \(i \) be the least integer such that \(g_i \) is non-trivial. Then if \(i < n \), 2 in Lemma 3.1 implies that \(g \) belongs to a non-1 coset of \(\varphi^{i+1}(G) \). Therefore \(g_i \) is trivial for \(i < n \).
Hence \(g_n \) represents the identity in \(G \). By 1, \(g_n \) is geodesic and therefore trivial. By 3, \(n = 0 \) and so \(g \) itself is trivial. The converse is clear. \(\square \)

The process we have just described is essentially that of writing the decimal expansion of a number. Indeed, if you apply this to the sum of 572 1’s, \(1 + \cdots \), using the endomorphism \(n \mapsto 10n \) you will get \(t^25t^{-1}7t^{-1}2 \). This is nothing but the decimal 572 with \(t \)'s performing the function of place notation. Unfortunately, our decimal expansions can be a bit perverse. In addition to the numerals for the numbers 0 through 9, we also have numerals for the numbers \(-1\) through \(-9\). Let us give these the numerals 1 through 9. If you count up to 1,000,000 and then count back down to 1, you will wind up writing 1 as \(\hat{t}^61t^{-1}9t^{-1}9t^{-1}9t^{-1}9t^{-1}9 \), i.e., as 1999999. Evidently, we can write an arbitrarily long word for the number 1.

We say that a Cannon’s algorithm is \textit{finite to one} if as \(x \) varies over all words representing a fixed element of \(G \), \(R(x) \) takes only finitely many values.

\textbf{Remark 3.3.} There are Cannon’s algorithms which are not finite to one off the identity.

For the purposes of Section 5 we would like to modify our Cannon’s algorithm to avoid this behavior.

Given a reduced word \(w = t^ng_nt^{-1}g_{n-1} \cdots g_1t^{-1}g_0 \), we call \(n \) the \textit{height} of \(w \). Choose a positive integer \(N \) such that \((M/3)^N > K\). We add the following additional rules to our system.

5) If \(w \) is a reduced word, as above, with height at most \(N \), such that \(\ell_G(w) < \frac{1}{2}\ell(g_0) \), replace \(w \) by an equivalent geodesic word in \(G^* \).

Since there are only finitely many reduced words of height at most \(N \), this introduces only finitely many rules.

\textbf{Lemma 3.4.} Let \(w \) be the reduction of a word in \(G^* \) with respect to rules 1-5. If the height of \(w \) is \(n \), and \(w \) does not represent the identity, then \(\ell_G(w) \geq (M/3)^n \).

\textit{Proof.} For height \(n = 0 \) the lemma is clear. For \(n > 0 \) we can write \(w = tw't^{-1}g_0 \), where \(w' \) is reduced, of height \(n-1 \), and not the identity, and \(g_0 \) is geodesic. For \(n \leq N \), Rule 5 ensures that \(\ell_G(w) \geq \frac{1}{2}\ell(g_0) \). It follows that \(3\ell_G(w) \geq \ell_G(w') + \ell(g_0) \geq \ell_G(tw't^{-1}) \geq M\ell_G(w') \). By induction the lemma holds for all \(n \leq N \).

For \(n > N \), writing \(w \) as before, \(\ell_G(w) \geq M\ell_G(w') - \ell(g_0) \). By induction, \(\ell_G(w') \geq (M/3)^{n-1} \). Also \(\ell(g_0) \leq 2K \) which, by our choice of \(N \), is less than \(2(M/3)^{n-1} \). Therefore \(\ell_G(w) \geq (M - 2)(M/3)^{n-1} \geq (M/3)^n \) since \(M > 3 \). \(\square \)

\textbf{Corollary 3.5.} If \(G \) admits an expanding endomorphism then \(G \) is virtually nilpotent.

\textit{Proof.} Each element \(g \in G \) can be represented by a word \(w \) whose length is bounded by \(k\ln(\ell_G(g)) + 1 \), for some \(k > 0 \). Since there are only polynomially many such words, \(G \) has polynomial growth and hence is virtually nilpotent. \(\square \)

It is apparently unknown whether all torsion free nilpotent groups have expanding endomorphisms. However, we will see in the next section that they all have Cannon’s algorithms.

\textbf{Theorem 3.6.} If \(G \) has an expanding endomorphism, then \(G \) has a finite to one Cannon’s algorithm.
Proof. As in Corollary 3.5, the length $\ell_G(g)$ of an element $g \in G$ gives a bound for the maximum length of any reduced normal form representing g. Therefore there are at most finitely many possible reduced normal forms for each element. □

Remark 3.7. The results of this section remain valid under the weaker hypothesis that G has a finite index subgroup H which admits an expanding endomorphism φ with respect to ℓ_G. The only change that needs to be made is to replace $\varphi(G)$ with $\varphi(H)$ throughout.

This has the following corollary which we will need in our work on geometrically finite groups.

Corollary 3.8. Let G be finitely generated and suppose that G has a finite index subgroup which has an expanding endomorphism. Let \mathcal{G} be a set of semi-group generators for G. Then for any $N > 0$ there exists a Cannon’s algorithm as above, with working alphabet $\mathcal{A} = \mathcal{G} \cup \{t, t^{-1}\}$, such that any normal form word w with $\ell_G(w) < N$ is a geodesic word in \mathcal{G}^*. In particular, this holds when G is finitely generated and virtually abelian.

Proof. Let H be a finite index subgroup with expanding endomorphism. (In the virtually abelian case, H is a finite index free abelian subgroup.) Raising to a sufficient power furnishes us with an expanding endomorphism of H, with expansion factor M such that $M/3 > N$. By Lemma 3.4 any normal form word w with $\ell_G(w) < N$ has height 0. □

We will call such a Cannon’s algorithm N-geodesic.

We will say that a rule $u \rightarrow v$ is a local geodesic rule if both u and v are words in the group generators and v is a geodesic. We will say that an N-geodesic Cannon’s algorithm $(\mathcal{G}, \mathcal{A}, S)$ is N-tight if $(\mathcal{G}, \mathcal{A}, S \cup R)$ is also an N-geodesic Cannon’s algorithm whenever R is a finite set of local geodesic rules and the left hand sides of S and R are disjoint.

We record here the following observation.

Proposition 3.9. The N-geodesic Cannon’s algorithms of Corollary 3.5 are N-tight.

Proof. In this case, the rules of S determine that any sufficiently long geodesic g is replaced with a word $tg^t^{-1}g''$ where g and g' are shorter geodesics. On the other hand, S replaces any non-geodesic shorter than this with a geodesic. In particular, no rule of R is ever applied. □

4. Nilpotent Groups

In this section we shall show that every finitely generated, torsion free nilpotent group embeds in a group which has an expanding endomorphism. It follows from Theorem 3.6 and Theorem 2.10 that every torsion free nilpotent group has a Cannon’s algorithm. Since every finitely generated nilpotent group is virtually torsion free, it follows by Theorem 2.11 that every finitely generated virtually nilpotent group has a Cannon’s algorithm.

We start with the group of $n \times n$ upper triangular matrices with 1’s on the diagonal. Those with integer entries we denote by $U_n(\mathbb{Z})$, those with real entries we denote by $U_n(\mathbb{R})$.

For each $\mu \in \mathbb{R}$ define $f_\mu : U_n(\mathbb{R}) \to U_n(\mathbb{R})$ as follows. If $x = (x_{ij}) \in U_n(\mathbb{R})$, set

$$(f_\mu(x))_{ij} = \mu^{j-i}x_{ij}.$$

It is not hard to see that f_μ is a homomorphism and that if $\mu \in \mathbb{Z}$ then $f_\mu : U_n(\mathbb{Z}) \to U_n(\mathbb{Z})$.

Let us fix a generating set G for $U_n(\mathbb{Z})$ and endow $U_n(\mathbb{R})$ with a left invariant metric.

Lemma 4.1. The action of $U_n(\mathbb{Z})$ on $U_n(\mathbb{R})$ is co-compact by isometries and fixed point free.

Proof. We wish to see that each $x = (x_{ij}) \in U_n(\mathbb{R})$, is a bounded distance away from some $z = (z_{ij}) \in U_n(\mathbb{Z})$. For $p = 1, \ldots, n - p$, let $m(x_1, \ldots, x_{n-p})$ be the upper triangular matrix with 1’s on the diagonal, x_1, \ldots, x_{n-p} located distance p above the diagonal, and 0’s everywhere else. Notice that multiplying $x = (x_{ij})$ by such an m_p leaves unchanged the entries of x below the pth off-diagonal and adds x_1, \ldots, x_{n-p} to the entries of x on the pth off-diagonal. Consequently, we can choose $m_1, m_2, \ldots, m_{n-1}$ each with entries between 0 and 1 so that $z = x m_1 m_2 \ldots m_{n-1} \in U_n(\mathbb{Z})$. Since the entries of each m_i are bounded in size, so is their product. Hence z is a bounded distance away from x as required. □

Consequently,

Lemma 4.2. There is $\lambda = \lambda_G$ so that the embedding of the Cayley graph $\Gamma_G(U_n(\mathbb{Z}))$ into $U_n(\mathbb{R})$ is a $(\lambda, 0)$ quasi-isometry.

Proof. It is a standard result that a co-compact discrete isometric action on a geodesic metric space induces a (λ, ϵ)-quasi-isometry. It is not hard to see that in the case of a fixed point free action, we may take $\epsilon = 0$. □

Lemma 4.3. For $\mu > 1$, the map f_μ is a μ-expanding endomorphism on $U_n(\mathbb{R})$. That is, for $x, y \in U_n(\mathbb{R})$, $d(f_\mu(x), f_\mu(y)) \geq \mu d(x, y)$.

Proof. It suffices to show that f_μ is everywhere infinitesimally μ-expanding. For $X \in U_n(\mathbb{R})$, a tangent vector at X is given by $\frac{d}{dt}(X + At)$ where $A = (a_{ij})$ with $a_{ij} = 0$ for all $j \leq i$. Without loss of generality we may assume $\|\frac{d}{dt}(I + At)\| = (\sum a_{ij}^2)^{1/2} =: n(A)$. Then by left invariance and linearity of matrix multiplication

$$\left\| \frac{d}{dt}(X + At) \right\| = n(X^{-1}A).$$

Clearly f_μ extends linearly to all upper-triangular matrices and we have

$$\left\| \frac{d}{dt}f_\mu(X + At) \right\| = \left\| \frac{d}{dt}(f_\mu(X) + f_\mu(A)t) \right\|
= n(f_\mu(X^{-1}A)) \geq \mu n(X^{-1}A).$$

□

Lemma 4.4. For $\mu \in \mathbb{Z}$, $f_\mu(U_n(\mathbb{Z}))$ is finite index in $U_n(\mathbb{Z})$.

Proof. The proof is the same as the proof that $U_n(\mathbb{Z})$ is co-compact in $U_n(\mathbb{R})$. □

Consequently,
Lemma 4.5. If $\mu > \lambda^2$, and $\mu \in \mathbb{Z}$ then f_μ is an expanding endomorphism of $U_n(\mathbb{Z})$. □

Hence, by Theorem 3.6

Lemma 4.6. $U_n(\mathbb{Z})$ has a finite to one Cannon’s algorithm. □

Now it is a theorem (see [20], Chapter 5) that

Theorem 4.7. If G is a finitely generated, torsion free nilpotent group then G embeds in $U_n(\mathbb{Z})$, for some $n > 0$. □

Hence, by Theorem 2.10 and Theorem 2.11

Theorem 4.8. If G is finitely generated and virtually nilpotent, then G has a Cannon’s algorithm. □

5. Relatively hyperbolic groups

In this section we prove a theorem concerning Cannon’s algorithms for (strongly) relatively hyperbolic groups. We first proved this in the context of geometrically finite hyperbolic groups and these are the parade examaple of relatively hyperbolic groups. The statement and proof here are close parallels of the geometrically finite case.

There are multiple equivalent definitions of what it means for a group to be (strongly) hyperbolic relative to a collection of subgroups $\{P_1, \ldots, P_k\}$. These are equivalent to Farb’s [12] definition of relative hyperbolicity together with his bounded coset penetration property. Usage of the term relatively hyperbolic varies slightly in that it is often possible to drop the requirement that the subgroups be finitely generated. In our usage these will all be finitely generated.

The key geometric result is the relation the geodesics and horoballs of the negatively curved space to the geodesics of subspace upon which the group acts cocompactly. This is Lemma 5.7 here, the Morse lemma, Proposition 8.28 of [11].

Theorem 5.1. Suppose that G is hyperbolic relative to $P = \{P_1, \ldots, P_k\}$. Suppose also that for each i, $1 \leq i \leq k$ and any N, P_i has a Cannon’s algorithm with is N-tight. Then G has a Cannon’s algorithm. This Cannon’s algorithm consists of local geodesic rules together with Cannon’s algorithms for the P_i.

Corollary 5.2. If G is a geometrically finite hyperbolic group, then G has a Cannon’s algorithm.

Corollary 5.3. If M is a graph manifold each of whose pieces is hyperbolic then $\pi_1(M)$ has a Cannon’s algorithm.

Corollary 5.4. Suppose that M is a finite volume negatively curved manifold with curvature bounded below and bounded away from zero. Then $\pi_1(M)$ has a Cannon’s algorithm.

Corollary 5.5. Suppose that A and B are groups with N-tight Cannon’s algorithms and that C is a finite group which includes as a subgroup of each of these. Then $A \ast_C B$ has a Cannon’s algorithm.

Corollaries 5.2 and 5.3 follow directly from Theorem 5.1 since the groups in question are hyperbolic relative to abelian (or virtually abelian) groups. Corollary 5.5 follows since the amalgam is hyperbolic relative to its factors. In the case
of Corollary 5.4 the groups are hyperbolic relative to nilpotent groups \[12\]. Nilpotent groups have Cannon's algorithms by Theorem 13 but there is no guarantee that these are \(N\)-tight for arbitrary \(N\). It is only in the perhaps larger group of upper triangular matrices where this is guaranteed. However, once we have proved Theorem 5.1 we will see how to proceed here.

We suppose that \(G\) is hyperbolic relative to a finite collection of subgroups \(\{P_1, \ldots, P_k\}\). The parabolic subgroups of \(G\) are the \(G\)-conjugates of \(\{P_1, \ldots, P_k\}\). We take \(P\) to be the set parabolic subgroups. The following are well known properties of relatively hyperbolic groups. See, for example, \[3\], \[19\] and \[11\].

Basic properties 5.6.

1. \(G\) acts discretely by isometries on a \(\delta\)-hyperbolic space \(H\).
2. This action induces an action on the boundary \(\partial H\).
3. There is a \(G\) equivariant family of horoballs \(\{B_P \mid P \in P\}\).
4. For each \(P \in P\) we take \(S_P\) to be \(\partial B_P\). \(P\) acts co-compactly on \(S_P\).
5. \(G\) acts co-compactly on \(X = H \setminus (\cup_{P \in P} B_P)\).
6. Each horoball \(B_P\) is quasiconvex. Consequently, there is a retraction \(r_P : X \to S_P\) which is inherited from the hyperbolic retraction of \(H\) onto \(S_P\). (We will also refer to this retraction as \(r_S\) where \(S\) is the boundary of \(P\).)
7. For points sufficiently distant from \(S_P\), the retraction \(r_P\) shrinks \(X\) distance by a super-linear factor. That is to say, there is a function \(s(\cdot)\) with the property that for any linear function \(y(x) = mx + b\), there is \(x_0\) such that for \(x > x_0\), \(s(x) > y(x)\) and there is \(d_0\) so that if \(d = \min(dx(p, S_P), dx(q, S_P)) > d_0\) then
 \[
 d_X(r_P(p), r_P(q)) < \frac{d_X(p, q)}{s(d)}.
 \]
8. There is \(\delta\) with the following property. Suppose that \(S_0\) and \(S_1\) are disjoint horospheres, i.e., the boundaries of disjoint horoballs in \(P\). Suppose that \(\gamma\) and \(\gamma'\) are \(H\) geodesics that start in \(S_0\) and end in \(S_1\) and that \(x\) and \(x'\) are the last points of \(\gamma\) and \(\gamma'\) in \(S_0\). Then \(d_X(x, x') \leq \delta\).
9. There is \(\delta\) so that if \(S_0\) and \(S_1\) are disjoint horospheres, then \(r_{S_0}(S_1)\) has \(d_X\) diameter bounded by \(\delta\).
10. Given \(\delta\) there is \(\epsilon\) with the following property. Suppose \(S\) is the boundary of horoball \(B\). If \(\gamma\) is an \(H\) geodesic that starts and ends on \(S\) then the only portion of \(\gamma\) lying in the \(\delta\) neighborhood of \(H \setminus B\) are an initial and terminal segment of \(\gamma\), each of length at most \(\epsilon\).

We need the following lemma which is Proposition 8.28 of \[11\].

Lemma 5.7. There is \(\delta\) depending only on \(\lambda\) and \(\epsilon\) with the following property. Suppose that \(w\) is a \((\lambda, \epsilon)\) quasigeodesic in \(X\) and \(\gamma\) is a \(H\) geodesic with the same endpoints. Suppose that \(\Sigma = \Sigma(\gamma)\) is the union of \(\gamma\) and the horospheres that it meets. Then \(w\) lies in a \(\delta\) neighborhood of \(\Sigma\).

Given an \(H\) geodesic, \(\gamma\), it meets a finite (possibly empty) collection of horoballs, \(B_1, \ldots, B_k\). Replace each portion \(\gamma \cap B_i\) with an \(X\) geodesic, \(\sigma_i\) to produce the \(X\) paths
\[
\sigma = \sigma_0 \sigma_1 \gamma_1 \cdots \sigma_n \gamma_n.
\]
We refer to a path formed in this way as a **rough geodesic**.
Lemma 5.8. There is a λ such that every rough geodesic is an $X \lambda$ quasigeodesic.

Proof. Suppose that γ is an H geodesic and $\sigma = \gamma_0 \sigma_1 \gamma_1 \ldots \sigma_n \gamma_n$ is a corresponding rough geodesic. Suppose that σ' is a corresponding X geodesic. By Lemma 5.7 this lies in a δ neighborhood of $\Sigma = \Sigma(\gamma)$. Let us decompose σ' as $\sigma' = \gamma_0' \sigma_1' \gamma_1' \ldots \sigma_n' \gamma_n'$ where σ_i' is the portion of σ' which lies within δ of the horosphere for σ_i, but not within δ of γ. Some of these may be empty. However, it follows that for each i, γ_i and γ_i' lie within 2δ of each other. Since each of these is geodesic, the difference in their lengths is bounded. Similarly, for each i, the endpoints of σ_i and σ_i' are close to each other, thus bounding the difference in their lengths. Accordingly, the difference in lengths along σ and σ' arise only from these breakpoints each of which contributes only a bounded difference. Since there is a minimum distance between horospheres, these breakpoints are bounded away from each other. The result follows. \hfill \square

We record here two general properties of δ-hyperbolic spaces. (Here we use the parameterized version of δ-hyperbolicity.)

Proposition 5.9. Given $\delta' > \delta$, there are (λ, ϵ) with the following property. Suppose γ is a piecewise geodesic. Suppose that each segment of γ has length at least $\delta' + 1$, and that at each bend, both segments depart a δ neighborhood of each other after travelling at most distance δ' from that bend. Then γ is a (λ, ϵ) quasigeodesic. \hfill \square

Proposition 5.10. Suppose that (λ_1, ϵ_1) and (λ_2, ϵ_2) are given. Then there is (λ_3, ϵ_3) with the following property. If σ is a (λ_1, ϵ_1) quasigeodesic and τ is formed from σ by replacing disjoint subpaths with (λ_2, ϵ_2) quasigeodesics, the τ is a (λ_3, ϵ_3) quasigeodesic. \hfill \square

Suppose G is hyperbolic relative to P_1, \ldots, P_k. We would like to find a generating set G in which P_1, \ldots, P_k are convex in the Cayley graph of G. Given an set of generators G' for G and $K > 0$, set

$$A_i(K) = \{ g \in P_i \mid d_X(1, g) \leq K \}$$

and

$$G = G(K) = G' \cup \left(\bigcup_{i=1}^{k} A_i(K) \right).$$

Lemma 5.11. Given K sufficiently large, G has the following properties:

1. There are constants A and B with the following properties: Suppose w is a G-geodesic. Let S_P be a horosphere with P conjugate to P_i. Suppose w begins and ends at X distance at most d from S_P. Then $w = xyz$, where $\ell(x) \leq Ad + B$, $\ell(z) \leq Ad + B$, and $y \in (A_i(K))^*$.
2. If w begins on S_P, x is empty. If w ends on S_P, z is empty. In particular, a G-geodesic evaluating into P_i, is written in letters all of which lie in P_i.
3. If we fix d then if w is sufficiently long, y is non-empty.

Proof. We claim that there is a bound r independent of K so that if e is a $G(K)$ edge which does not lie in P, then the X length of $r_P(e)$ is less than r. If e is an $A_i(K)$ edge which does not lie in P, then it lies within a bounded distance of some horosphere other than S_P. By property 9 of Proposition 5.6 $r_{S_P}(S_{P'})$ has
bounded diameter. There are only finitely many G' letters and their edges also have bounded retractions onto S_P. This gives the bound r.

Now consider the case of a geodesic w which begins and ends in P. We wish to show that all edges of w lie in P. If this fails, we replace w with a sub-segment whose only contact with P are its two endpoints, p and q. Notice that it must therefore have length at least 2 since it leaves and returns to S_P. Let d_1 be the maximum distance from S_P to P. Then the path $r_P(w)$ starts and ends within distance d_1 of w. Thus $\ell(w) \geq \frac{d_X(p,q) - 2d_1}{\lambda}$. Now consider an X-geodesic from p to q. This has length at most $d_X(p,q) + 2d_1$ and each point of it lies within distance d_1 of P. It follows that the $\mathcal{A}_i(K)$ distance between p and q is at most $\frac{d_X(p,q) + 2d_1}{\lambda} + 1$. Choosing K sufficiently large contradicts the assumption that w was geodesic.

Now consider the case in which p and q do not necessarily lie on S_P. Let p'' and q'' be their respective projections onto S_P and p' and q' be points of P near these. There are λ and ϵ depending on K so that the embedding of G into X is a (λ, ϵ) quasi-isometry. Consider tuv with t a geodesic from p to p', u a geodesic from p' to q' and v a geodesic from q' to q. Then

$$\ell(w) \leq \ell(tuv) \leq 2\lambda d + 2\epsilon + \frac{d_X(p', q') + 2d_1}{K - d_1} + 1.$$

Now if y does not appear in w, i.e., w contains no subword lying in P, then

$$\frac{d_X(p', q') - 2d_1}{\lambda} + 1 \leq \ell(w) \leq 2\lambda d + 2\epsilon + \frac{d_X(p', q') - 2d_1}{K + d_1} + 1.$$

The value of λ can only decrease as K increases, since λ measures how many $G(K)$ letters it takes to travel a certain distance in X, and for K sufficiently large, $K - d_1 > r$. Thus, for any sufficiently large K, there is a linear bound $\ell(w) < A'd + B'$ on those w for which y is empty.

We now suppose $w = xyz$ where y is the maximal portion of w lying in P and is non-empty. Let p''' and q''' be the endpoints of y. We claim that these must lie a bounded distance from p' and q'. To see this, notice that w is an X quasi-geodesic. It follows from Lemma [5.1] that w fellow travels the its X geodesic union the horosphere’s that these meet. It is not hard to see that if $d_X(p,q)$ is sufficiently large, this X geodesic meets S_P near p''' and q'''.

For $i \neq j$, P_i and P_j meet in a finite (perhaps trivial) subgroup. We will assume that K is chosen large enough so that any non-trivial elements common to one or more subgroups appear as generators. After choosing K, we will refer to $G(K)$ and $\mathcal{A}_i(K)$ as G and A_i.

We are now in a position to describe the Cannon’s algorithm of Theorem 5.1. This depends on constants D and E. For each i, let $(\mathcal{A}_i, A_i, S_i)$ be a D-tight Cannon’s algorithm for P_i. We will assume that any rules operating inside a common subgroup rewrite immediately to a single letter and thus, these rules agree between the different S_i. We take S_G to be a collection of local geodesic rules which contain a left-hand side for each G word which is not a geodesic. We assume that these agree with any rules which also appear in some S_i. We will assume $D \geq E$. We take $\mathcal{A} = G \cup (\cup_i A_i)$ and $S = S_G \cup (\cup_i S_i)$. We will show that with E sufficiently large, $D = (G, A, S)$ is a Cannon’s algorithm. This requires a series of lemmas.

We first check that the parabolic subgroup sub-Cannon’s algorithms are still effectively D-tight within D.
Lemma 5.12. Suppose that w is the result of D reducing a G input word and that u is a maximal P_i subword of w. Then u is a reduced word for a D-geodesic Cannon’s algorithm for P_i.

Proof. Consider the process by which u is produced. Since the P_i are disjoint, for $j \neq i$, no S_j rule can apply in the production of u. Consequently the formation of u is carried out by S_i rules and S_G rules. Notice that any non-P_i input letters which are consumed in the production of u must first be turned into P_i letters prior to their consumption by S_i. This is done by S_G rules shortening non-geodesics into geodesics which must be in P_i letters. Therefore, u could have been produced by applying the S_G rules and S_i rules to an input word in P_i^*. The result now follows from the assumption that Cannon’s algorithm for P_i is tight. □

It now follows that if w is the result of D-reducing a G^* input word, then w consists of reduced words from the parabolic subgroups alternating with E-local geodesics which do not contain any parabolic letters. These E-local geodesics may be empty, but by assuming that the parabolic subwords are maximal, we may assume that no two adjacent parabolic subwords lie in the same parabolic subgroup. Note that if two or more P_i meet in a non-trivial finite subgroup, any ambiguity where one parabolic subgroup ends and another begins can only consist of a single letter.

We will choose to decompose w in a slightly different manner. We choose a parameter $F < D$. We decompose w as

$$w = g_0p_1, \ldots, g_{m-1}p_mg_m$$

where the p_j are the maximal parabolic subwords which represent group elements of length greater than F. Since all other maximal parabolic subwords represent group elements of length less than or equal to D, each is an A_i-geodesic for some i. It follows that the g_j are E-local geodesics. Again, some of the g_j may be empty, but not if they lie between P_i words.

Lemma 5.13. For D, E sufficiently large, there is $(\lambda, \epsilon) = (\lambda_{D,E,F}, \epsilon_{D,E,F})$ such that each g_j is a (λ, ϵ)-quasi-geodesic in H. While increasing F weakens the quasi-geodesity, increasing D and E does not.

Proof. Let v be an E-local geodesic of length E. This is a Cayley graph geodesic, and hence an $X (\lambda, 0)$-quasi geodesic, with λ depending only on the embedding of Γ into X. By Proposition 5.7, u asynchronously fellow-travels its H geodesic γ together with any horospheres that γ enters. Now γ cannot stray far into any horosphere, for otherwise u would contain parabolic subwords of length greater than F. This bounds the ratio between the X length and the H length of γ. Notice that this bound is independent of E. Thus, by increasing E, we proportionally increase the X-length of u. That is to say, there is (λ', ϵ') is a Cayley graph geodesic containing no parabolic subword of length greater than F, then u is an H-(λ', ϵ')-quasigeodesic.

It is a standard result for δ-hyperbolic spaces that given (λ', ϵ'), for E sufficiently large, there is (λ, ϵ) so that every E-local (λ', ϵ')-quasigeodesic is a (λ, ϵ) quasi-geodesic. Thus, choosing E (and hence, D) sufficiently large makes each g_j an H (λ, ϵ) quasi-geodesic as required. □
Consider the decomposition of w into
\[w = g_0 p_1, \ldots, g_{m-1} p_m g_m \]
as above. Ultimately, we must show that w is empty if and only if the input word which created it represents the identity. We will examine several paths related to w, namely
\[\sigma = \sigma(w, F) = \gamma_0 \pi_1, \ldots, \gamma_{m-1} \pi_m \gamma_m \]
\[\pi = \pi(w, F) = g_0 \pi_1, \ldots, g_{m-1} \pi_m g_m \]
\[\nu = \nu(w, F) = g_0 \pi_1, \ldots, g_{m-1} \pi_m g_m \]
where
- Each γ_i is the H-geodesic for the corresponding g_i,
- Each π_i is the H-geodesic for the corresponding p_i,
- Each q_i is a Cayley graph geodesic for the corresponding p_i.

Lemma 5.14. Given D, E, F sufficiently large,
- There is (λ, ϵ) such that σ is an H-quasigeodesic. Increasing D and E does not worsen this quasigeodesity.
- There is (λ, ϵ) such that π is an H-quasigeodesic.
- There is (λ, ϵ) such that ν is a Cayley graph (λ, ϵ)-quasigeodesic.

Proof. We first consider σ. We choose F sufficiently large. Since each π_i is long, by property 10 of Proposition 5.6, it spends only a limited time in a neighborhood of the exterior of its horoball. On the other hand, each γ_i can only spend a bounded time in the neighborhood of the horoballs it starts and ends at, for otherwise, by Lemma 5.11, it would start or end in the corresponding parabolic letters, contradicting the maximality of p_{i-1} (at its beginning) or p_i (at its end). Thus, the only way, σ can fail to satisfy the assumptions of Proposition 5.9 is if one or more of the γ_i is short, i.e., of X length less than $\delta' + 1$. In this case, we modify σ to produce σ' by deleting each short γ_i and replacing π_i with π'_i starting at the beginning of γ_i. Clearly σ and σ' asynchronously fellow travel. By Proposition 5.9, σ' is an H quasigeodesic, and thus, so is σ.

It now follows by Lemma 5.10 that π is an H quasigeodesic.

Finally, it follows from Lemma 5.8 that ν is an X quasigeodesic and hence a Cayley graph quasigeodesic. \(\square\)

In the case where each $P_i = \langle A_i \rangle$ has the falsification by fellow traveler property, this gives Lemma 4.7 of [18]. It then follows that the language of geodesics in $G = \langle G \rangle$ is a regular language and that the growth of $G = \langle G \rangle$ is rational. This includes the limit groups of [21] since, as [8] has shown, these are hyperbolic relative to abelian subgroups.

Proof. (Theorem 5.1) We suppose that w is the result of D-reducing an input word in $v \in G^*$. We must show that w is empty if and only if v represents the identity. Since w remembers its group element, the “only if” part is clear.

Suppose now that v represents the identity. Then $\sigma(w)$ is an H-quasigeodesic. Since it represents the identity, this bounds its length. This, in turn bounds the length of w. Recall that increasing D and E does not worsen the quasi-geodesity of σ, and thus does not degrade the bound on the length of w. We may then assume that D and E are greater than this bound. Thus, w is a geodesic, in particular, a geodesic for the identity, and thus empty as required. \(\square\)
Proof. (Corollary 5.4) Let \(G = \pi_1(M) \) where \(M \) is a finite volume negatively curved manifold with curvature bounded below and bounded away from 0. By [12], \(G \) is hyperbolic relative to nilpotent subgroups \(P_1, \ldots, P_k \). Now each \(P_i \) has a Cannon's algorithm by Theorem 4.8. However, there is no guarantee that this is \(N \)-tight for \(P_i \). It is, however, \(N \)-tight for matrix group \(U_n(\mathbb{Z}) \). Given any finite generating set \(\mathcal{P} \) for \(P_i \), we may include these into a generating set for \(U_n(\mathbb{Z}) \). Now, if \(N \geq 1 \), any \(N \)-tight Cannon's algorithm for \(U_n(\mathbb{Z}) \) is 1-tight. It follows that for each \(p \in \mathcal{P} \), \(p \) is the unique reduced word for itself. In particular, this is a 1-tight Cannon's algorithm for \(P_i \).

Since Lemma 5.11 holds for any sufficiently large \(K \), we can assume that \(A_i \) contains any finite subset of \(P_i \) we select.

Now consider the paths of Lemma 5.14. The decompositions depend on a parameter, \(F \), and this parameter is stated in terms of Cayley graph length. However, it is only used to ensure that each \(\pi_j \) is long, i.e., that the \(H \) geodesic of this group element is long. By choice of \(K \) and hence, \(A_i \), we can force this to be the case for any parabolic group element whose reduced word is at least two letters long. The proof now proceeds as before. \(\square \)

6. Histories, Compression, Splitting and Splicing

This and the following section are devoted to showing that certain groups do not have Cannon’s algorithms. In this section we develop tools that apply to any deterministic length-reducing rewriting system. Thus we will be able to show that a particular group \(G \) has neither a Cannon’s algorithm, nor a non-incremental Cannon’s algorithm. We believe that these results also hold for non-deterministic Cannon’s algorithms. These latter are related to growing context sensitive languages. Extension of our methods to this case is work in progress.

Let \(w_0, \ldots, w_n \) be the sequence of words produced as a rewriting algorithm makes \(n \) substitutions on \(w_0 \). We call this sequence the history to time \(n \) of \(w_0 \). We can draw a diagram of the history as follows. Draw \(w_0 \) as a row of \(\ell(w_0) \) adjacent unit squares, labelled with the letters of \(w_0 \). For each \(i > 0 \) we draw \(w_i \) below \(w_{i-1} \) as follows. Draw a line segment under the first left-hand side appearing in \(w_{i-1} \). (We call this a substitution line.) Underneath it put a row of equal width, height 1 rectangles, labelled with the corresponding right-hand side, or if the right-hand side is empty, put a single black rectangle. Fill the remainder of the row with a copy of whatever appears in that part of \(w_{i-1} \).

The width of a letter of \(w_i \) is the width of its rectangle in the diagram. The width of a subword of \(w_i \), not to be confused with its length, is the sum of the widths of the letters making it up (i.e. disregarding any black rectangles).

In order to get a handle on how the number of letters in a word decreases as the algorithm runs, we consider how the widths of letters increase.

Lemma 6.1. Let \(W \) be the length of the longest left-hand side of the rewriting system. In a diagram, the letters of any right-hand side (under a substitution line) have width at least \(W/(W-1) \) times that of the narrowest letter in the corresponding left-hand side (above the substitution line).

Proof. If we were to first make all the letters of the left-hand side equal in width, deleting any black rectangles which appear, we would certainly not make the narrowest letter any narrower. Then at least one letter, of at most \(W \), is removed, giving a further expansion of at least the stated factor. \(\square \)
Next we define the *generation* of each letter in a diagram. The generation of each letter in the first row is 0. The generation of a letter in row $i > 0$ is the generation of the letter above it, if it is not in a right-hand side, or one more than the least generation of the letters above the substitution line, if it is in a right-hand side.

Lemma 6.2. If the generation of a letter is n then its width is at least $\left(\frac{W}{W-1} \right)^n$.

Proof. True for row 0. Suppose it is true for row $i - 1$. Since each letter in row i not in a right-hand side has the same generation and width as the corresponding letter in the row above, the assertion holds for these letters. By Lemma 6.1 any letter in a right-hand side is at least $\frac{W}{W-1}$ times the width of the narrowest letter in the corresponding left-hand side. But the generation of each right-hand side letter exceeds the generation of the narrowest left-hand side letter by at most one. Since the assertion is assumed to hold for the narrowest letter in the left-hand side., it holds for the letters of the right-hand side. □

Definition 6.3. See Figure 1. A splitting path of length n in a diagram for $w_0 \ldots w_t$ consists of n vertical line segments running between letters, from the top of the diagram to the bottom, such that successive segments either join end to end, or are linked by a substitution line. Segments may not cut substitution lines. For each segment substitution lines between the top and bottom of the segment, all lie to the same side of the segment.

Lemma 6.4. If w_t contains a letter of generation g, then the diagram contains a splitting path of length at most $2g + 2$ ending next to the letter. We may choose the path to end on either side of it.

Proof. Start at the bottom of the diagram with a vertical segment next to the letter of generation g. Extend upward until we come to a substitution line. Above that line will be a letter of generation $g - 1$. Start a new segment next to that letter and continue on up. After hitting at most g substitution lines we reach the top of
the diagram. (If we hit an endpoint of a substitution line we start a new segment only if the letter we are following is under the line.)

This is not yet a splitting path: our vertical segments could still have substitution lines on both sides. When this happens it can only be with substitutions to the left in the upper part of the segment and to the right in the lower. (A sequence of substitutions going right to left would have to cross the vertical segment because such substitutions always overlap.) We split each such segment at the appropriate point and we are done. □

Associated with each splitting path are its details: For each vertical segment we record whether any substitutions take place to the left or the right. (If neither, we can arbitrarily designate it as left.) For a left segment we record the first $W - 1$ letters to its right (which will be constant), or to the end of the word if nearer. For a right segment we record the $W - 1$ letters to the left, or to the start of the word if nearer. If a segment ends on a substitution line we record the left-hand side, the position at which the path splits it (in the range $0 - W$) and the position at which the next segment splits the right-hand side (in the range $0 - (W - 1)$).

We say that two splitting paths (in different diagrams) are equivalent if they have the same details. (Note: we do not require vertical segments to be the same height.)

For example, the details of the splitting path shown in Figure 1 might be given as: (left, “aaa”), (right, “aaa”, “aaab”, 3, 2), (left, “aaa”), (right, “aaab”, “aaab”, 2, 3), (left, “aa”).

Remark 6.5. There are no more than $(2(W + 1)^2 |A|^{2W + 1})^{n+1}$ equivalence classes of splitting path of length less than or equal to n.

Given a splitting path for w_0, \ldots, w_t, we define w_i^- and w_i^+ to be the subwords of w_i, to the left and the right respectively of the path. The next lemma can be interpreted as telling us that the detail of the splitting path is like a message that is passed between v_0^- and w_0^+: if v_0^- sends the same message as w_0^+, w_0^+ won’t notice the change.

Lemma 6.6. Let v_0, \ldots, v_r and w_0, \ldots, w_s contain equivalent splitting paths. Then the history of $v_0^- w_0^+$, up to a suitable time, contains an equivalent splitting path, and ends with the word $v_r^- w_s^+$.

Proof. Cut the histories of v_0 and w_0 along their respective splitting paths. Fit the left half of v_0‘s history with the right half of w_0‘s history. The lengths of vertical segments are most likely unequal: one side or the other is constant so we just make as many copies of the constant side as required to fit the two together.

We claim that in the resulting sequence of words, each word differs from the next by replacing a left-hand side with its corresponding right-hand side. This is clear when both words lie on the same segment or on successive segments joined end-to-end. In the remaining case, both path details record the same left-hand side, split at the same point, and identical splitting points in the corresponding right-hand side.

We still have to show that the left-hand sides at which changes occur are those that would be chosen by the algorithm. Consider words joined at a left segment. The left-hand side begins in v_i^- (and ends in it as well, unless it is one of the left-hand sides on the path). Therefore, from the start of the left-hand side, the next
\(W \) letters are the same whether \(v_i^- \) is completed by \(v_i^+ \) or \(w_j^+ \) (since these begin with the same \(W - 1 \) letters). The algorithm will therefore substitute at the same place in either word. Now consider words joined at a right segment. The left-hand side ends somewhere in \(w_j^+ \). Any left-hand side in \(v_i^- w_j^+ \), starting to the left of this one, would have to start within \(W - 1 \) letters of the end of \(v_i^- \), for otherwise it would be a left-hand side in \(v_i \) (wholly to the left of a right segment). But in view of this, the same left-hand side would appear in \(w_j^- \) (since \(w_j^- \) and \(v_i^- \) end with the same \(W - 1 \) letters).

It follows that we have constructed the history of \(v_0^- w_0^+ \). That it contains a copy of the same splitting path, and ends with \(v_r^- w_s^+ \), is clear.

We would like to be able to say that \(v_r^- \) is determined by \(v_0^- \) and the splitting path but unfortunately this is not quite true. Let \([v_r^-] \) denote the first word to the left of the last segment in the splitting path. What the proof of Lemma 6.6 shows is that \([v_r^-] \) is determined by \(v_0^- \) and the splitting path. If the last segment is a right segment, then \(v_r^- = [v_r^-] \), but if not the best we can say is that \(v_r^- \) is obtained from \([v_r^-] \) by substitutions entirely inside the latter. Similar statements hold for \(w_s^+ \).

6.1. Subwords and border letters. We extend the results of this section to subwords. If \(v_0, \ldots, v_t \) is a history of \(v_0 \), and \(w_0 \) is a subword of \(v_0 \), how shall we define the history of \(w_0 \)? We can do it by fixing a deletion convention for the rewriting system: for each left-hand side, decide which letters are deleted and which are changed to get the corresponding right-hand side. It is then determined, when a substitution takes place over the boundary of \(w_i \subset v_i \), which letters of the right-hand side belong to \(w_{i+1} \) and which do not. More generally we can consider \(v_0 \) to be split up into arbitrarily many subwords; a deletion convention will determine how each \(v_i \) is to be split up.

We want to define the diagram of \(v_0 \)'s history in such a way that each subword gets its own “sub-diagram”. In other words, we want the history of \(w_0 \subseteq v_0 \) to occupy a rectangular block underneath \(w_0 \). Therefore, when a substitution takes place over a subword boundary, we adjust the widths of the right-hand side letters on either side of the new boundary to keep it vertically aligned under the previous boundary. The problem that arises is that a deletion may occur on one side only of the subword boundary: in that case Lemma 6.1 fails. We make the following adjustments.

We designate the \(W - 1 \) letters to either side of a subword boundary as border letters (see Figure 2). When a right-hand side contains both border and non-border letters, we assign widths as follows. The number of border letters will be the same in the right-hand side as in the left-hand side, so we line them up under the border letters of the left-hand side and keep their widths the same; we expand the non-border letters to fill the remaining space evenly. Otherwise we assign widths as previously stated. Note that when a left-hand side contains a subword boundary, the right-hand side will consist only of border letters. Now Lemma 6.1 holds for all non-border letters.

We restrict the definition of the generation of a letter to non-border letters: the generation of a non-border letter in a right-hand side is one more than the least generation of the non-border letters of the corresponding left-hand side. With this adjustment, Lemma 6.2 goes through.
Splitting paths are defined as before except that we forbid any of the words included in the detail to cross a subword boundary. Lemma 6.4 gives us such a path since we follow the edges of non-border letters (letters for which the generation is defined). Clearly a splitting path for $w_0 \subseteq v_0$ is also one for v_0.

We show that the number of splitting paths required to split all subword histories, with a given starting length, is bounded by a polynomial function of that starting length. This bound is independent of the total number of substitutions in the history. It follows that if we have enough histories, two of them will have equivalent splitting paths.

Lemma 6.7. Let w_0 be a subword of v_0 of length $\ell(w_0) = N$, and let w_0, \ldots, w_t be such that $\ell(w_t) \geq 2W - 1$. Then w_t has a splitting path in one of at most $C_1 N C_2$ equivalence classes, where C_1, C_2 are positive constants depending only on $|A|$ and W. The splitting path can be chosen to end next to any non-border letter of w_t.

Proof. Since $\ell(w_t) \geq 2W - 1$ it contains at least one non-border letter. Choose one, and let g be its generation. By Lemma 6.2 its width is at least $\left(\frac{W}{W-1}\right)^g$. But since this cannot exceed $N = \ell(w_0)$, the width of w_0, we have $g \leq \log(\frac{W}{W-1}) N$.

By Lemma 6.4 we can find a splitting path, ending next to our chosen letter, of length at most $2g + 2$. By Remark 6.5 the number of classes of splitting path, of length $\leq 2g + 2$, does not exceed $(2(W + 1)^2|A|^{2W+1})^{2g+3}$. Since g is bounded by a logarithm of N, the result follows. □

We consider now a word divided into two subwords u_0, v_0. We keep v_0 fixed, vary u_0, and run the algorithm for some amount of time. Intuitively speaking, our algorithm carries information between the two subwords, giving in principle a number of possible values for v_t which is exponential in $\ell(v_0)$. We show that the number of distinct v_t that can actually arise is only polynomial in $\ell(v_0)$.

Lemma 6.8. Let v_0 be a fixed word of length $N \geq 1$ in A^*. For each word u_0 we choose a time t and let $u_t v_t$ be the result of applying t substitutions to $u_0 v_0$; v_t is
then a function of \(u_0 \). There exist positive constants \(C_0, C \), depending only on \(|A|\) and \(W \), such that \(v_t(u_0) \) takes at most \(C_0n^C \) distinct values as \(u_0 \) varies. The same bound applies if we instead define \(v_t u_t \) to be the result of applying \(t \) substitutions to \(v_0 u_0 \).

Proof. First consider all \(v_i \) such that \(\ell(v_i) \geq 2W - 1 \). Then by Lemma 6.7 each \(v_0, \ldots, v_i \) has a splitting path ending \(W - 1 \) letters from the start of \(v_i \), in one of at most \(C_1N^{C_2} \) classes.

Since \([v_i^+]\) is determined by \(v_0^+ \) and the class of the splitting path, and \(v_0^+ \) has at most \(N \) possible values (each being a subword at the end of \(v_0 \)), \([v_i^+]\) takes at most \(C_1N^{C_2+1} \) distinct values as \(u_0 \) varies. Since \(v_1^+ \) is one of the, at most \(\ell([v_i^+]) \leq N \), words obtained by making substitutions in \([v_i^+]\), \(v_1^+ \) itself can take at most \(C_1N^{C_2+2} \) values. On the other hand, since \(\ell(v_i^-) = W - 1 \), this can take at most \(|A|^{W-1} \) values. Multiplying these two gives the required bound on the number of values \(v_i \) can take when \(\ell(v_i) \geq 2W - 1 \).

The number of possible words of length less than \(2W - 1 \) is constant and, since we are assuming \(N \geq 1 \), we can absorb this into \(C_0 \).

The proof for \(v_t u_t \) is similar. \(\square \)

Remark 6.9. If the rewriting system were not required to delete a letter with every substitution, the number of values \(v_t(u_0) \) could take might well be exponential in \(\ell(v_0) \).

7. Groups which have no Cannon’s Algorithm

In this section we use the results of the previous section to exhibit groups which have no Cannon’s algorithm.

Theorem 7.1. Let \(G \) be a group with some fixed generating set. Suppose that for each \(n \geq 0 \) there are sets \(S_1(n) \subset G \) and \(S_2(n) \subset G \) satisfying the following:

1. For \(i = 1, 2 \) each element of \(S_i(n) \) can be represented by a word of exactly length \(n \).
2. There are \(\alpha_0 > 0 \) and \(\alpha_1 > 1 \) so that for infinitely many \(n \)

\[|S_i(n)| \geq \alpha_0 \alpha_1^n, \]

3. Each element of \(S_1 \) commutes with each element of \(S_2 \).

Then \(G \) has no Cannon’s algorithm.

Proof. Suppose to the contrary that we have a deterministic Cannon’s algorithm for \(G \). Let \(A \) be the working alphabet and let \(W \) be the length of the longest left hand side. Choose \(n > 0 \) such that \(|S_i(n)| \geq \alpha_0 \alpha_1^n \), and

\[\frac{1}{2} \alpha_0 \alpha_1^n > C_1n^{C_2+2}|A|^{6W}C_0n^C, \]

where \(C, C_0, C_1 \) and \(C_2 \) are as in Lemmas 6.7 and 6.8. Let \(T_i \) be a set of words of length \(n \) representing \(S_i(n) \), for \(i = 1, 2 \).

We shall consider the effect of our supposed Cannon’s algorithm on words of the form \(u_0v_0^{-1}u_0^{-1}v_0^{-1} \), for \(u_0 \in T_1 \) and \(v_0 \in T_2 \). All such words must reduce to the empty word since \(S_1(n) \) and \(S_2(n) \) commute. Put \(x_0 = u_0^{-1} \) and \(y_0 = v_0^{-1} \), and let \(u_0v_0x_0y_0 \) denote the result of applying \(t \) substitutions to \(u_0v_0x_0y_0 \).

Define \(t \), as a function of \(u_0 \) and \(v_0 \), to be the least integer \(t \geq 0 \) such that

\[\max \{ \ell(v_i), \ell(x_t) \} < 3W. \]

I.e., we run the algorithm until the first time at which
both v_0 and x_0 have length less than $3W$. Then u_t, v_t, x_t and y_t are all well defined functions of u_0 and v_0. Since at most W letters are deleted in each step it follows that $2W \leq \max \{\ell(v_t), \ell(x_t)\} \leq 3W - 1$.

For each pair $(u_0, v_0) \in T_1 \times T_2$, one or both of the inequalities $\ell(v_t) \geq \ell(x_t)$, $\ell(x_t) \geq \ell(v_t)$ holds. Therefore one of these inequalities must hold for at least half of $T_1 \times T_2$. We shall suppose it is the first, and argue to obtain a contradiction; were it the second, a similar argument, interchanging the roles of v_t and x_t, would give a contradiction instead.

Step 1, fix a v_0: Since we are assuming that, for at least half the pairs (u_0, v_0), $\ell(v_t) \geq \ell(x_t)$, we can certainly find a $v_0 \in T_2$ such that for at least half of $u_0 \in T_1$, $\ell(v_t(u_0, v_0)) \geq \ell(x_t(u_0, v_0))$. We fix this v_0 and henceforth regard u_t, v_t, x_t, y_t as functions of u_0 alone. Let $U = \{u_0 \in T_1 \mid \ell(v_t) \geq \ell(x_t)\}$. By the choices we have made have made, $|U| \geq \frac{1}{2}|T_1| \geq \frac{1}{2}a_0\alpha_1^n$.

Step 2, split the v_t using boundedly many splitting classes: By the definitions of t and U, $\ell(v_t) \geq 2W$ for each $u_0 \in U$. By Lemma 6.7, we can choose a splitting path for each v_0, \ldots, v_t, using at most $C_1 n^{C_2}$ classes. If we take into account also the position in v_0 at which the path begins, and the position in v_t at which the path ends, we get at most $C_1 n^{C_2+2}$ classes.

Step 3, the map $u_0 \mapsto v_t x_t y_t$ is many-to-one: By the definition of t, $\ell(v_t), \ell(x_t) \leq 3W - 1$, so the number of possible values $v_t x_t$ can take, as u_0 ranges over U, is less than $|A|^{6W}$. By Lemma 6.8 the number of values y_t can take is at most $C_0 n^C$, for positive constants C_0 and C depending only on $|A|$ and W. On the other hand $|U| \geq \frac{1}{2}a_0\alpha_1^n$ so, by our choice of n, $|U| > C_1 n^{C_2+2}|A|^{6W} C_0 n^C$. It follows that there exists a set of at least $C_1 n^{C_2+2}$ u_0’s in U which all give the same $v_t x_t y_t$.

Step 4, construct a word that breaks the Cannon’s algorithm: From Step 3, we have more than $C_1 n^{C_2+2}$ u_0’s giving the same $v_t x_t y_t$. From Step 2, we have at most $C_1 n^{C_2+2}$ positioned splitting path classes for v_t. Therefore we can find $u_0, u_0' \in U$ such that (writing v_t' for $v_t(u_0')$ etc.), $v_t x_t y_t = v_t' x_t' y_t'$, and v_0, \ldots, v_t and v_0', \ldots, v_t' contain equivalent splitting paths, starting at the same position in $v_0 = v_0'$ and ending at the same position in $v_t = v_t'$. By Lemma 6.6 running the algorithm on $u_0 v_0' v_t' x_t' y_t'$ yields $u_0 v_t' v_t' x_t' y_t'$. Now $u_0 v_0 v_t' x_t' y_t' = u_0 v_0 x_t y_t$, which does not represent the identity in G but rather $u_0 u_0^{-1}$. On the other hand, $u_0 v_t' v_t' x_t' y_t' = u_t v_t x_t y_t$ which reduces to the empty word. Therefore this rewriting system does not implement a Cannon’s algorithm for G. \hfill \Box

In fact, it is not hard to strengthen this to the following.

Theorem 7.2. Let G be a group with some fixed generating set. Suppose that for each $n \geq 0$ there are sets $S_1(n) \subset G$ and $S_2(n) \subset G$ satisfying the following:

1. For $i = 1, 2$ each element of $S_i(n)$ can be represented by a word of exactly length n.
2. There are $\alpha_0 > 0$ and $\alpha_1 > 1$ and $\alpha_2 > 0$ so that for all n

\[
|S_1(n)| \geq \alpha_0 \alpha_1^n
\]

and

\[
|S_2(n)| \geq \alpha_2 n.
\]
(3) Each element of S_1 commutes with each element of S_2.

Then G has no Cannon’s algorithm.

Proof. The proof is very similar to that of Theorem 7.1 except that we have to start with v_0 longer than u_0. As before, suppose that we have a deterministic Cannon’s algorithm for G, with working alphabet A, and longest left-hand side of length W. Choose n_1 and n_2 such that

\[
\frac{1}{2}a_0a_1^{n_1} > C_1n_2^{C_2+2}|A|^6Wn_0C_02^C,
\]

and

\[
\frac{1}{2}a_2n_2 > C_1n_1^{C_2+2}|A|^6Wn_1C_02.
\]

Let T_i be a set of words of length n_i bijecting to $S_i(n_i)$, for $i = 1, 2$.

As before, let u_i, v_i, x_i, y_i denote the result of applying t substitutions to $u_0v_0u_0^{-1}v_0^{-1}$. Define t, as a function of u_0, v_0, such that $2W \leq \max\{\ell(v_i), \ell(x_i)\} \leq 3W - 1$.

If, for at least half of $(u_0, v_0) \in T_1 \times T_2$, $\ell(v_i) \geq \ell(x_i)$, we can argue as in Steps 1-4, using (1), to find u_0, v_0' which break the algorithm. In the other case, arguing similarly, using (2), we can find v_0, v_0' which break the algorithm. \qed

Theorem 7.3. Suppose G has exponential growth and the center of G contains an infinite cyclic group. Then G has no Cannon’s algorithm.

Proof. We take among our generators for G a letter z denoting a central element of infinite order and a letter r denoting the identity. We can then take $S_1(n) = B(n)$, for if u is a geodesic denoting an element of length $k \leq n$, we can denote this element by ur_{n-k}. Thus each element of $B(n)$ is represented by a word of length n. Likewise, we can take $S_2 = \{z^k \mid |k| \leq n\}$. We then apply Theorem 7.2. \qed

Corollary 7.4. $F_2 \times Z$ has no Cannon’s algorithm.

Corollary 7.5. If G is a braid group of 3 or more strands, G has no Cannon’s algorithm.

Corollary 7.6. If M is a graph manifold one of whose pieces is a non-closed Seifert fibered space, then $\pi_1(M)$ has no Cannon’s algorithm.

Corollary 7.7. If M is a closed 3-manifold modelled on either $\mathbb{H}^2 \times \mathbb{R}$ or $\text{PSL}_2(\mathbb{R})$, then $\pi_1(M)$ has no Cannon’s algorithm.

Corollary 7.8. Thompson’s group F has no Cannon’s algorithm.

Proof. Thompson’s group F has exponential growth [7] and contains a subgroup isomorphic to the direct product of two copies of itself. \qed

We will say that a subgroup A of G has exponential growth in G if $A \cap B(n)$ has exponential growth.

Theorem 7.9. Suppose G has an abelian subgroup which has exponential growth in G. Then G has no Cannon’s algorithm.

Proof. In this case we take $S_1(n) = S_2(n) = A \cap B(n)$ and apply Theorem 7.1. \qed

Corollary 7.10. If G is a Baumslag-Solitar group

\[
\langle a, t \mid ta^q t^{-1} = a^p \rangle
\]

with $p \neq \pm q$ then G has no Cannon’s algorithm.
Proof. It is not hard to see that $\ell(a^n) = O(\ln n)$ and consequently, $\langle a \rangle$ has exponential growth in G. □

Corollary 7.11. Suppose M is a closed 3-manifold modelled on solvegeometry. Then $\pi_1(M)$ has no Cannon’s algorithm.

Proof. In this case $\pi_1(M)$ contains a finite index subgroup of the form $A \times \mathbb{Z}$ where A is isomorphic to \mathbb{Z}^2 and the action of the generator of \mathbb{Z} has eigenvalues λ and λ^{-1} with the modulus of λ greater than 1. It follows that A has exponential growth in $\pi_1(M)$. □

Combining these with our results on virtually nilpotent and geometrically finite groups we have:

Theorem 7.12. Suppose M is a graph manifold. Then $\pi_1(M)$ has a Cannon’s algorithm if and only if none of the following hold:

1. M is closed $\mathbb{H}^2 \times \mathbb{R}$, $PSL_2(\mathbb{R})$ or solvegeometry manifold, or
2. M has a non-closed Seifert fibered piece.

References

[1] J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short, ‘Notes on word hyperbolic groups’, Group Theory From a Geometric Viewpoint, (eds E. Ghys, A. Haefliger and A. Verjovsky, World Scientific, 1991).

[2] G. Baumslag, C.F. Miller, and H. Short, ‘Unsolvable problems about small cancellation and word hyperbolic groups’, *Bulletin of the London Math. Soc.* 26 (1994), 97-101.

[3] B. Bowditch, ‘Relatively hyperbolic groups’, http://www.maths.soton.ac.uk/staff/Bowditch/papers/bbb-relhyp.pdf (1999).

[4] G. Buntrock and F. Otto, ‘Growing context-sensitive languages and Church-Rosser languages’, *Information and Computation*, 141 (1) (1998), pp.1-36.

[5] J. Cannon, ‘The theory of negatively curved spaces and groups in Ergodic Theory’, *Symbolic Dynamics and Hyperbolic Spaces*, (eds T. Bedford, M. Keane and C. Series, Oxford University Press, 1991) pp.315-369.

[6] J. Cannon, private communication.

[7] J.W. Cannon, W.J. Floyd, and W.R. Parry, ‘Introductory notes on Richard Thompson’s groups’, *Enseign. Math.* 42 (2) (1996), pp.215-256.

[8] F. Dahmani, ‘Combination of convergence groups’, *Geometry & Topology*, 7 (2003) 933 - 963.

[9] M. Dehn, *Papers on group theory and Topology*, (Springer, New York, 1987).

[10] B. Domanski and M. Anshel, ‘The Complexity of Dehn’s Algorithm for Word Problems in Groups’, *Journal of Algorithms* 6 (1985), pp.543-549.

[11] C. Drutu and M. Sapir, ‘Tree-graded spaces and asymptotic cones of groups’, http://www.citebase.org/abstract?id=oai:arXiv.org:math/0405030v3, (2007).

[12] B. Farb, ‘Relatively hyperbolic groups’, *GAFA*, 8 (1998) 810 - 840.

[13] D.F. Holt, ‘Word-hyperbolic groups have real-time word problem’, *International Journal of Algebra and Computation* 10 (2) (2000), pp.221-227.

[14] J. Hopcroft and J. Ullman, *Introduction to Automata Theory, Languages and Computation*, (Addison-Wesley, 1979).

[15] Mark Kambites, personal communications.

[16] Mark Kambites and Friedrich Otto, *Church-Rosser groups and growing context-sensitive groups*, available from http://www.maths.manchester.ac.uk/~kambites/

[17] I.G. Lysionok, ‘On some algorithmic properties of hyperbolic groups’, *Izv. Akad. Nauk Ser Math* 53 (4) (1989); English translation in Math. USSR Izv. 35 (1990), pp.145–163.

[18] W.D. Neumann and M. Shapiro, ‘Automatic structures, rational growth and geometrically finite hyperbolic groups’, *Inventiones Mathematicae* 120 (1995), pp.259-287.

[19] D. V. Osin, ‘Relatively hyperbolic groups : intrinsic geometry, algebraic properties, and algorithmic problems’, (American Mathematical Society, 2006).

[20] D. Segal, *Polycyclic groups*, (Cambridge University Press, 1983).
[21] Z. Sela, 'Diophantine Geometry Over Groups I: Makanin-Razborov Diagrams', *IHES Publ. Math.*, 93 (2001) 31 - 105.

[22] M. Shapiro, ‘A note on context-sensitive languages and word problems’, *International Journal of Algebra and Computation*, (4) 4 (1994), pp.493–497.

Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia

Department of Pathology, Tufts University, Boston, MA, USA