Medicinally important aromatic plants with radioprotective activity

Ravindra M Samarth*,1,2, Meenakshi Samarth3 & Yoshihisa Matsumoto4
1Department of Research, Bhopal Memorial Hospital & Research Centre, Department of Health Research, Government of India, Raisen Bypass Road, Bhopal 462038, India
2ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, GMC Campus, Bhopal 462001, India
3Faculty of Science, RKDF University, Airport Bypass Road, Gandhi Nagar, Bhopal 462033, India
4Tokyo Institute of Technology, Institute of Innovative Research, Laboratory for Advanced Nuclear Energy, N1–30 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8550, Japan
* Author for correspondence: rmsamarth@gmail.com

Aromatic plants are often used as natural medicines because of their remedial and inherent pharmacological properties. Looking into natural resources, particularly products of plant origin, has become an exciting area of research in drug discovery and development. Aromatic plants are mainly exploited for essential oil extraction for applications in industries, for example, in cosmetics, flavoring and fragrance, spices, pesticides, repellents and herbal beverages. Although several medicinal plants have been studied to treat various conventional ailments only a handful studies are available on aromatic plants, especially for radioprotection. Many plant extracts have been reported to contain antioxidants that scavenge free radicals produced due to radiation exposure, thus imparting radioprotective efficacy. The present review focuses on a subset of medicinally important aromatic plants with radioprotective activity.

Lay abstract: Aromatic plants have been used as natural medicines since prehistoric times. They are currently mainly utilized for essential oil extraction and are widely used in cosmetics, flavoring and fragrance, spices, pesticides, repellent and herbal beverages. Several medicinal plants have shown promise for the treatment various diseases including cancer. However, only a handful studies are available on aromatic plants, especially in terms of radioprotection. The present review focuses on certain medicinally important aromatic plants with special reference to their radioprotective effects.

First draft submitted: 22 May 2017; Accepted for publication: 15 August 2017; Published online: 21 September 2017

Keywords: antioxidant activity • aromatic plants • essential oils • lymphocytes • mice • radiation protection • radical scavenging activity • rat

Plants with medicinal or aromatic properties that are used in pharmacy and/or perfumery are usually defined as medicinal and aromatic plants; however, medicinal, aromatic and cosmetic plants would be a better term as many medicinal and aromatic plants are also used in cosmetics[1]. Aromatic plants are those that contain aromatic compounds – basically essential oils that are volatile at room temperature. These essential oils are odorous, volatile, hydrophobic and highly concentrated compounds. They can be obtained from flowers, buds, seeds, leaves, twigs, bark, wood, fruits and roots[2]. Essential oils are complex mixtures of secondary metabolites comprised low-boiling-point phenylpropenes and terpenes[3]. These oils usually consist of a about tens-to-hundreds of low molecular weight terpenoids. Even unidentified trace constituents may be held responsible for altering the odour, flavour and the bioactivity of the oil to a considerable degree. Essential oils have characteristic flavor and fragrance properties, possess biological activities and are widely applied in aromatherapy and healthcare in addition to several industries such as cosmetics, flavoring and fragrance, spices, pesticides and repellents, as well as herbal beverages.

Antioxidant and antimicrobial activities of aromatic plants have been widely explored and found to have health applications in prevention and reducing risk of diseases such as inflammation, atherosclerosis, cardiovascular and cancer[4,5]. Various plant families, particularly Lamiaceae[6–19], Apiaceae[20–23] and Zinziberaceae[24–28]...
have been investigated in depth for their medicinal value due to their significant antioxidant properties. The antioxidant activities of aromatic plants is influenced by various factors such as growing conditions, methods of processing/extraction and importantly constituents of the antioxidants [29]; the methods involved in determination of antioxidant capacity as well as extraction therefore play a crucial role [30].

It is a well-known fact that radiation is a powerful cytotoxic agent. Reactive oxygen species such as superoxide anion, singlet oxygen, hydroxyl radical, nitric oxide, hydrogen peroxide and peroxy radicals are generated by ionizing radiation in biologic system through radiolysis of water and are accountable for cellular injury caused to DNA and proteins [31–33]. Free radicals generated through ionizing radiation attack DNA, producing single strand breaks and double strand breaks (DSBs) due to oxidative insult to sugar moiety and base components [33,34]. Unrepaired or misrepaired DSBs eventually lead to the chromosomal aberrations, ultimately paving the way to mutagenesis, carcinogenesis and hereditary diseases. Thus, DSBs are considered as the most vulnerable radiation-induced DNA damage. Homologous recombination and nonhomologous end joining are major pathways involved in repair of DSB in eukaryotic cells [35]. In the nonhomologous end joining pathway, DNA-dependent protein kinase (DNA-PK), which consists of DNA-PKcs (DNA-PK catalytic subunit) and Ku70/Ku80 (also known as Ku86) heterodimer, acts as the molecular sensor for DSBs. DSBs are finally sealed by DNA ligase IV, in association with XRCC4 and XLF (also known as Cernunnos). DNA-PK phosphorylates a number of proteins, including XRCC4 in response to radiation [36,37]. Although the role of phosphorylation of XRCC4 in DSB repair remains to be clarified, the phosphorylation status of XRCC4 will serve as marker of DNA-PK functionality in living cells.

Thus, the detrimental effects of radiation-induced alterations in biologic systems via reactive oxygen species generation play a crucial role in maintenance of metabolic homeostasis in the body. Therefore, any disparity in homeostasis results in oxidative stress [38], which can be trounced by additional provision of naturally occurring, plant based antioxidants [39–41]. It has been shown that the oxidation process could be halted by antioxidants by adopting various strategies such as scavenging, chelating or transferring hydrogen atoms [42–44]. It has been speculated that the radioprotectors must have radical-scavenging properties along with antioxidant function; however, all antioxidants do not provide radioprotection [45]. Radioprotectors minimize or reduce the radiation-induced damage to normal tissues and need to be present before or at the time of radiation exposure for its protective efficacy [46]. In recent years, investigations have demonstrated the importance and usefulness of aromatic plants for their radioprotective effects and ability to be employed for modification of oxidative insult due to radiation. Therefore, the present review focused on medicinally important aromatic plants with special reference to radioprotective activity (Table 1).

Radioprotection by medicinal aromatic plants

Ageratum conyzoides
The plant *Ageratum* belongs to the family Asteraceae, which consists of about 30 species. The name is derived from the Greek word ‘a geras’ and konyz, referring to long life and similarity with *Inula helenium*. It is an aromatic herb, erect, annual and growing up to 1 m in height, commonly found in Africa, Asia, America and Australia. Few species of *Ageratum* have been pharmacologically evaluated. The weed is best known for its healing activity and has been used for treating burn, wound, skin diseases and various infections among others, since ancient times [47]. *Ageratum conyzoides* contains various chemical constituents [48–55]. It is rich in polyoxygenated flavonoids. The triterpenes are friedelin, and the major sterols are sterols-β-sitosterol and stigmastanol. Lycopsamine and echinatine are two isomeric pyrrolizidine alkaloids isolated from *A. conyzoides*. The oil content varies from 0.11–0.58% for leaves and from 0.03–0.18% for the roots. The major components of the essential oil are 7-methoxy-2,2-dimethylchromene (precocene I), 6,7-dimethoxy derivative, ageratochromene (precocene II) and ageratochromene dimmer.

The radioprotective effects of *A. conyzoides* extract were studied in mice. An optimum dose of 75 mg/kg was found to be effective against radiation doses ranging from 6 to 11 Gy and resulted in reduction in gastrointestinal- and bone marrow-associated death in mice. *In vitro* studies showed *A. conyzoides* extract was also effective in scavenging DPPH radicals suggesting free radical scavenging mechanism of radioprotection [56].

Allium cepa

Allium cepa, belonging to the family Liliaceae that occurs worldwide, is a bulbous plant. India, China and the US are the leading producer [57,58]. Traditionally, it is used for the treatment of stomach ache, throat infection and hepatitis, and has properties such as antioxidant, antihyperglycemic, antihypertensive and anti-asthmatic [59–61]. Among the many phyto-active constituents documented, the essential oil of *A. cepa* contains compounds such as 3,1,8-cineole, L-linalool and camphordare and has been thoroughly investigated. Besides this, the onion bulb contains...
Table 1. Summary of aromatic plants investigated for their radioprotective activity and their chemical constituents.

Name of aromatic plant	Plant part used	Doses	Test system and parameters studied	Suggested possible mechanism	Chemical constituents	Ref.
Ageratum conyzoides	Whole plant extract	75 mg/kg	Radiation 10 Gy Mice/survival assay	Free radical scavenging	It is rich in polyoxygenated flavonoids. The triterpenes are friedelin, and the major sterols are sterols-β-sitosterol and stigmasteral 7-ocapsamine and echinatine, two isomeric pyrrolizidine are the alkaloids isolated from A. conyzoides. The oil content varies randomly from 0.11–0.58% for leaves and from 0.03–0.18% for the roots. The major components of the essential oil are 7-methoxy-2,2-dimethylchromene (precocene I), 6,7-dimethoxy derivative, ageratochromene (precocene II) and ageratochromene dimmer	[48–56]
Allium cepa	Bulb	5 ml/kg	X-ray 525 kV/s Rats/biochemical parameters	Anti-oxidative and free radical scavenging	The essential oil of Allium cepa contains compounds such as 3,1,8-cineole, L-linalool and camphorare. The onion bulb contains kaempferol, β-sitosterol, ferulic acid, myricic acid and prostaglandins. Flavonoids and tannins also present in A. cepa. Quercetin, quercetin 4-glucoside, taxifolin, taxifolin 7-glucoside and phenylalanine have been isolated from the bulb. The major sulfur compounds are dimethyl trisulfide, propenyl propyl disulfide, dipropyl disulfide, propenyl methyldisulfide and methyl propyl trisulfide di propyle trisulfide. Onion contains active compounds such as allyl propyl disulfide along with other active sulfur-containing compounds	[62–67]
Allium sativum	Bulb	5 ml/kg	X-ray 525 kV/s Rats/biochemical parameters	Anti-oxidative and free radical scavenging	It is rich in c-glutamylcysteine and other sulfur-containing compounds giving a characteristic flavor. However, additional constituents of garlic include a wide range of primary and secondary nonsulfur biomolecules, such are steroidal glycosides, essential oil, flavonoids, anthocyanins, lectins, prostaglandins, fructans, pectin, adenosine, vitamins B1, B2, B6, C and E, biotin, nicotinic acid, fatty acids, glycolipids, phospholipids and essential amino acids	[67,71–81]
Capsicum annuum	Pericaps	0.1–10 μg/ml	2 Gy Human lymphocytes/genotoxicity, superoxide radical scavenging	Superoxide radical scavenging activity	Capsicum contains many chemicals, including water, fixed (fatty) oils, steam-volatile oil, carotenoids, capsicinoids, resin, protein, fibre and mineral elements. Red bell peppers contain 280 ug/gm total carotenoids. Capsanthin accounts for 60% of the total carotenoids. They also contain 11% β-carotene and 20% capsorubin. Capsanthin is acylated with C12-18 saturated fatty acids	[89–91]

EPR: Electron paramagnetic resonance; GSH: Reduced glutathione; LPO: Lipid peroxidation; WBC: White blood cell.
Name of aromatic plant	Plant part used	Doses	Test system and parameters studied	Suggested possible mechanism	Chemical constituents	Ref.
Centella asiatica	Whole plant extract	100 mg/kg 8 Gy	Mice/survival, body weight, membrane damage	Antioxidant activity	Triterpenoids include asiaticoside, centelloside, madecassoside, thunkeunside, isothulcun acid, centellose, asiatic centelic and madecassoric acid and bramhmoside, bramhmoside, bromhamic acid, the structure of their genin, bromacic acid (2,6-hydroxy, 23-hydroxy-methyl unsolic acid) Asiaticoside and madecassoside. The fatty oil consists of glycerides of palmitic, stearic, lignoceric, olenic, linoleic and linolenic acids. An alkaid, hydroxyethyl has been isolated from the dried plants. Asiaticoside, madecassoside and centelloside have been isolated from the plant parts. Flavonoids, 3-glucosylkaemferin, 3-glucosylkaemferin and 7-glucosylkaemferin have been isolated from the leaves.	[93–99]
Citrus aurantium	Ripe fruit	250–1000 mg/kg 1.5 Gy	Mice/genotoxicity	Anti-oxidative and free radical scavenging	The main flavonoids occurred in cultivated citrus species are flavonone glycosides, hesperidin and naringin accounting 5% of dry weight of leaves and fruits and exhibit strong antioxidant activity	[102–104]
Coleus aromaticus	Leaves	5 μg/ml 0.5, 1, 2, 4 Gy	Chinese hamster fibroblast cells (V79)	Antioxidant activity	The report on the chemical constituents of the leaves of C. aromaticus indicated the presence of carvacrol, thymol, eugenol, chavicol, ethyl salicylate, chlorophillin, flavonoids (cirsimaritin) and β-sitosterol-β-D-glucoside	[105–107]
Coriandrum sativum	Seeds	300 mg/kg 42 days 4 Gy	Rats/biochemical parameters	Free radical scavenging	Phytochemical constituents of C. sativum seeds showed the presence of polyphenols (rutin, caffeic acid derivatives, ferulic acid, gallic acid and chlorogenic acid), flavonoids (quercetin and isorqueretin) and β-carotenois. Seeds of coriander essential oils, however, leaves contain caffeic acid and flavonoids apart from volatile oils	[110–113]
Crocus sativus	Fridge dried extract	40 mg/kg 2 Gy	Mice/chromosomal damage; tissue biochemistry	Antioxidant activity	The major components of saffron are cis- and trans-ocins, which are glucosyl esters of 8,8'-diasapocarotene-8,8'-dioic acid (crocin), one of the few families of carotenoids that are freely soluble in water. It also contains saframal, which is a monoterpenaldehyde, and picrocrocin, which is a glyosidic precursor of safranal. Saffron is known to contain about 150 volatile and aromatic compounds including terpenes, terpene alcohol and their esters	[114–121]

EPR: Electron paramagnetic resonance; GSH: Reduced glutathione; LPO: Lipid peroxidation; WBC: White blood cell.
Table 1. Summary of aromatic plants investigated for their radioprotective activity and their chemical constituents (cont.).

Name of aromatic plant	Plant part used	Doses	Test system and parameters studied	Suggested possible mechanism	Chemical constituents
Curcuma longa	Curcumin	5, 10 and 50 μg/ml	Human lymphocytes/genotoxicity	Antioxidant activity	The chemical study of different samples of turmeric has yielded essential oil (4.2–14%), fatty oil (4.4–12.7%) and moisture (10–12.0%). It has been demonstrated that the presence of three major constituents curcumin (diferuloylmethane), p-hydroxy-cinnamoyl/feruloyl/methane and p,p’-dihydroxy-cinnamoyl/methane. Oil has the components such as sesquiterpene, ketones and alcohols. [123–127]
Cymbopogon citratus	Whole plant extract	0.1% 2.5k Gy	Chicken meat	Antioxidant activity	The chemical composition of the essential oil of *C. citratus* consist of hydrocarbon terpenes, alcohols, ketones, esters and aldehydes. The essential oil mainly composed of citral, which is a mixture of two stereoisomeric monoterpenic aldehydes; the trans isomer geranial and cis isomer neral. It has been reported to contain flavonoids and phenolic compounds such as luteolin, quercetin, kampferol and apigenin glycosyl derivatives of the flavones apigenin and luteolin have been identified in infusions of the lemon grass leaves. [128–136]
Elettaria cardamomum	Ground dried fruit	2% 6 Gy	Albino rat/biochemical assay	Antioxidant activity	The volatile oil contains about 1.5% α-pinene, 0.2% β-pinene, 2.8% sabine, 1.5% myrcene, 0.2% α-phellandrene, 11.6% limonene, 36.3% 1,8-cineole, 0.7% γ-terpinene, 0.5% terpinolene, 3% linalool, 2.5% linalyl acetate, 0.9% terpinen 4-ol, 2.6% α-terpinol, 31.3% α-terpinyl acetate, 0.3% citronellol, 0.5% nerol, 0.5% geraniol, 0.2% methyl eugenol and 2.7% trans-nerolidol. The cardamom aroma is produced by a combination of 1,8-cineole and α-terpinyl acetate. [139–141]
Illicium verum	Whole plant extract	0.1% 2.5k Gy	Chicken meat	Antioxidant activity	Anisyl acetone and benzoic acid were identified as the main phenolic components present in aqueous fraction of *I. verum*. [136,142]
Lavandula angustifolia	Oil	20 μl; 40 μl UV, 10, 20 30 Gy	Cell free assay/EPR, DPPH, reducing power assay	Antioxidant activity and free radical scavenging	A total of 47 compounds representing 98.4–99.7% of the oils were identified. 1,5-Dimethyl-1-vinyl-4-hexenylnitrate was the main constituent of essential oil (43.73%), followed by 1,3,7-octatriene, 3,7-dimethyl- (25.10%), eucalyptol (7.32%) and camphor (3.79%). [43,143–145]

EPR: Electron paramagnetic resonance; GSH: Reduced glutathione; LPO: Lipid peroxidation; WBC: White blood cell.
Name of aromatic plant	Plant part used	Plant extract	Doses	Test system and parameters studied	Suggested possible mechanism	Chemical constituents	Ref.	
Mangifera indica	Stem bark		5–100 μg/ml	5 Gy	Lymphoblastoid cells/DNA damage, protection and repair processes	Antioxidant activity	The bark is reported to contain protocatechic acid, catechin, mangiferin, alanine, glycine, γ-aminobutyric acid, kinic acid, shikimic acid and the tetracyclic triterpenoids cycloart-24-en-3β,26-diol, 3-ketoammar-24 (E)-en-205,26-diol, C24 epimers of cycloart-25 en 3β,24, 27-triol and cycloartan-3β,24,27-triol	[147–149]
Mentha piperita	Oil	40 μl	8 Gy	Swiss albino mice, hematological and serum biochemistry	Antioxidant activity and free radical scavenging	Mentha extracts have antioxidant properties due to the presence of eugenol, caffeic acid, rosmarinic acid and α-tocopherol. Caffeic acid, rosmarinic acid, eriocitrin, luteolin-7-O-glucoside were identified as primary radical scavengers. It also contains phenolic acids, flavonoids and s-carvone	[15,151–158]	
leaf extract	1000 mg/kg	8 Gy	Swiss albino mice, survival assay, cytogenetic damage, testicular and intestinal damage	Antioxidant activity and free radical scavenging				
Murraya Koenigii	Leaf extract	100 mg/kg	4 Gy	Swiss albino mice/GSH, LPO	Antioxidant activity	Leaves are aromatic and contain proteins, carbohydrates, fiber, minerals, carotene, nicotinic acid and vitamin C. The leaves contain high amount of oxalic acid, leaves also contains crystalline glycosides, carbazole alkaloids, koenigin and reicin. Fresh leaves contain volatile oil rich in vitamin A and calcium. It also contains girinimb, iso-mahanimb, koenine, koenigne, koenidine and koenimbine. Mahanimbin, bicyclomahanimbin, phebalosin, coumarime as Murrayeone imperatixetc are isolated from leaves Triternoid alkaloids – cyclomahanimbine and tert aclymahanimbine are present in the leaves. Alkaloids-murrayastine, murrayaline, pypayafoline carbazole have been reported	[160–163,243]	
Myristica fragrans	Seed	10 mg/kg	6, 8, 10 Gy	Swiss albino mice/survival assay, tissue biochemistry	Free radical scavenging	The chemical constituents include myristicin, lignan and eugenol. The essential oil of nutmeg contains mainly sabinene (15–50%), α-pinene (10–22%) and β-pinene (7–18%), with myrcene (0.7–3%), 1,8-cineole (1.5–3.5%), myristicin (0.5–13.5%), limonene (2.7–4.1%), safrole (0.1–3.2%) and terpine-4-ol (0–11%)	[164–167]	
Nigella sativa	As gelatin capsule (450 mg)	250 mg/kg	8 Gy	Male albino rats/biochemical & hematological parameters	Oxidative stress	The most important active compounds of black seeds are thymoquinone, thymohydroquinone, dithymoquinone, p-cymene, carvacrol, 4-terpinol, t-anethol, sesquiterpen longifolene α-pinene and thymol among others. Seeds also contain alkaloids as isoquinoline and pyrazol ring bearing alkaloids. Additionally, N. sativa seeds contain α-hederin, a water soluble pentacyclic triterpene and saponin	[171–174]	

EPR: Electron paramagnetic resonance; GSH: Reduced glutathione; LPO: Lipid peroxidation; WBC: White blood cell.
Name of aromatic plant	Plant part used	Plant extract	Doses	Test system and parameters studied	Suggested possible mechanism	Chemical constituents	Ref.
Ocimum sanctum	Leaves	10 mg/kg	1–6 Gy	Mice/chromosomal damage	Free radical scavenging	Whole plant extract contains flavonoids, alkanoids, saponins, phenols, anthocynins, triterpenoids, tannins. Leaf extract contains flavonoids, alkanoids, saponins, tannins, phenols, anthocynins, terpenoids, sterols.	[177–181]
		4.5 Gy		Mice/glutathione and antioxidant enzymes	Antioxidant activity		
Origanum vulgare L.	Dried powder of the plant	12.5, 25, 50 & 100 μg/ml	111 (20 μG/ml)	Human lymphocytes/Micronuclei frequency	Free radical scavenging	Antioxidants present in oregano are rosmarinic acid, caffeic acid, flavonoids and derivatives of phenolic acids and α-tocopherol. Also rosmarinic acid methyl ester, oregano-A and oregano-B acts as antioxidants.	[12,18,185,186]
	Leaf extract	100, 200 mg/kg	3 Gy	Mice/bone marrow cells/GPT, ALP, LPO, GSH	Anti-oxidative and free radical scavenging		
Piper longum	Dried powdered fruits	400 mg/kg	6Gy	Mice/WBCs, bone marrow cells/GPT, ALP, LPO, GSH	Not known	Chemical studies have shown that the genus Piper has many components including unsaturated amides, flavonoids, lignans, aristolactams, long and short chain esters, terpenes, steroids, propenylphenols and alkaloids. The essential oils of ten Piperaceae species shown that the most frequently identified compounds were sesquiterpenes. However, the nonoxynogenated monoterpenes (E,E)-ocimene, α-pinene and β-pinene were prevalent as well. A biosynthetic approach showed that the most common sesquiterpenes identified, E-caryophyllene and germacrene D, have the E, E-farnesyl-PP as fundamental precursor and only two were originated from E, Z-farnesyl-PP reactions (α-copaene and d-cadinene).	[188–193]
Plumbago rosea	Root extract	75 mg/kg	10 Gy	Experimental mouse tumor; S-180, Ehrlich ascites carcinoma	Radiosensitization for tumor killing effect	It has been reported that roots of P. rosea contains several naphthoquinonoids and their derivatives and flavonoids. The chemical constituents include plumbagin, palmitic acid and myricyl palmitate from petrol extract, and plumbagic acid lactone, aminin and azaleatin from ethyl acetate extract of roots.	[196–200]
Rosmarinus officinalis L.	Leaves	1000 mg/kg	6 Gy	Mouse/liver and blood biochemistry	Free radical scavenging	It contains antioxidants such as carnosonic acid, carnosol, rosmarinic acid, rosmanol, isorosmanol and epirosmanol.	[204,205]
Salvia officinalis L.	Leaves	2 gm/150 ml water	6 Gy	Rat/brain biochemistry	Antioxidant activity	Antioxidants present are salvinoic acid (dimer of rosmarinic acid), carnosol, carnosic acid, rosmarinic acid, rosmanol, isorosmanol and epirosmanol.	[6,8,209–211]

EPR: Electron paramagnetic resonance; GSH: Reduced glutathione; LPO: Lipid peroxidation; WBC: White blood cell.
Table 1. Summary of aromatic plants investigated for their radioprotective activity and their chemical constituents (cont.).

Name of aromatic plant	Plant part used	Doses	Test system and parameters studied	Suggested possible mechanism	Chemical constituents	Ref.
Syzygium aromaticum	Oil	200 mg/kg	Albino rat/liver and serum biochemistry	Anti-oxidative and free radical scavenging	Clove oil is an essential oil from the dried flower buds, leaves and stems of the tree *S. aromaticum*. The main constituents of the essential oil are phenylpropanoids such as carvacol, thymol, eugenol and cinnamaldehyde.	[213,214]
Syzygium cumini	Leaf extract	0–100 μg/ml	Human lymphocytes/micronuclei induction	Free radical scavenging	The plant has been reported to pose acetyl oleanolic acid, triterpenoids, ellagic acid, isoquercitin, quercetin, kaempferol and myricetin in different concentrations.	[94,216,217]
Valeriana wallichii	Root extract	25, 50 or 100 μg/ml	Cultured human fibroblast cells/plasmid DNA	Free radical scavenging	Its rhizome and root contains volatile oil (valerianic oil) which is composed of alkaloids, borylisovalerianate, chatinine, formate, glucoside, isovalerenic acid, 1-camphene, 1-pinene, resins, terpineol and valerianine. From the rhizomes, some important compounds, such as citric acid, malic acid, malol, succinic acid and tartaric acid have been isolated.	[220–222]
Withania somnifera	Root extract	100 mg/kg	Albino rats/hepatic biochemistry	Antioxidant activity	The extract of *W. somnifera* is a complex mixture of a large number of phytochemicals including phenolic compounds and flavonoids. However, the pharmacological effect of the roots of *W. somnifera* is attributed to withanolides. Withanolides are a series of naturally occurring steroids containing a lactone with a side chain of nine carbons, generally attached to C-17	[224–227]
Zingiber officinale	As tablet (400 mg)	250 mg/kg	Male albino rats/biochemical and hematological study	Oxidative stress	Gingerol-related compounds such as gingerol, shogaols, gengedios, zingerone, dehydrozingerone, gingerinone and diarylheptanoids accord antioxidant capacity to ginger rhizome. Geranial, camphene, p-cineole, n-terpineol, zingiberene and pentadecanoic acid were major components of essential oil. However, eugenol and zingerone were major components in ethanol oleoresin and in methanol, CCl4 and isooctane oleoresin, respectively.	[21,25,27,67,174,232–235]

Notes:
- **Plant extract Radiation:**
- **Test system and parameters studied:**
- **Suggested possible mechanism:**
- **Chemical constituents:**
 - Clove oil is an essential oil from the dried flower buds, leaves and stems of the tree *S. aromaticum*. The main constituents of the essential oil are phenylpropanoids such as carvacol, thymol, eugenol and cinnamaldehyde.
 - The plant has been reported to pose acetyl oleanolic acid, triterpenoids, ellagic acid, isoquercitin, quercetin, kaempferol and myricetin in different concentrations.
 - Its rhizome and root contains volatile oil (valerianic oil) which is composed of alkaloids, borylisovalerianate, chatinine, formate, glucoside, isovalerenic acid, 1-camphene, 1-pinene, resins, terpineol and valerianine. From the rhizomes, some important compounds, such as citric acid, malic acid, malol, succinic acid and tartaric acid have been isolated.
 - The extract of *W. somnifera* is a complex mixture of a large number of phytochemicals including phenolic compounds and flavonoids. However, the pharmacological effect of the roots of *W. somnifera* is attributed to withanolides. Withanolides are a series of naturally occurring steroids containing a lactone with a side chain of nine carbons, generally attached to C-17.
 - Gingerol-related compounds such as gingerol, shogaols, gengedios, zingerone, dehydrozingerone, gingerinone and diarylheptanoids accord antioxidant capacity to ginger rhizome. Geranial, camphene, p-cineole, n-terpineol, zingiberene and pentadecanoic acid were major components of essential oil. However, eugenol and zingerone were major components in ethanol oleoresin and in methanol, CCl4 and isooctane oleoresin, respectively.

EPR: Electron paramagnetic resonance; **GSH:** Reduced glutathione; **LPO:** Lipid peroxidation; **WBC:** White blood cell.
Kaempferol, β-sitosterol, ferulic acid, myritic acid and prostaglandins. Flavonoids and tannins are also present in *A. cepa*. Quercetin, quercetin 4-glucoside, taxifolin, taxifolin 7-glucoside and phenylalanine have been isolated from the bulb. The major sulfur compounds are dimethyl trisulfide, propenyl propyl disulfide, dipropyl disulfide, propenylmethyl disulfide and methyl propyl trisulfide dipropyle trisulfide. Onion contains active compounds such as allyl propyl disulfide along with other active sulfur-containing compounds [62–66]. Radiation protection and antioxidative effects of onion extract were studied in albino rats. Biochemical parameters were assessed such as alanine aminotransferase, superoxide dismutase and catalase in liver, kidney and heart. It was concluded that onion extract has significant radioprotective activity [67].

Allium sativum

Allium sativum L. belongs to the genus *Allium*. The family Alliaceae has around 780 species based on new internal transcribed spacer (ITR) region of nuclear ribosomal DNA classification [68,69]. It is widely dispersed over the warm-temperate and temperate zones of the northern hemisphere. Today, it is grown in a number of countries and the leading producers are India, China and Korea [70]. It is rich in c-glutamylcysteine and other sulfur-containing compounds giving a characteristic flavor. However, additional constituents of garlic include a wide range of primary and secondary non-sulfur biomolecules, such as steroidal glycosides, essential oil, flavonoids, anthocyanins, lectins, prostaglandins, fructan, pectin, adenosine, vitamins B1, B2, B6, C and E, biotin, nicotinic acid, fatty acids, glycolipids, phospholipids and essential amino acids [71–81].

Allium sativum extract has demonstrated radioprotective effects in mice and was found to be effective in significantly reducing the micronuclei frequencies induced by radiation [82]. A dose-dependent effect was evaluated on the frequencies of damaged cells and chromosomal aberrations, and it was recommended that administration of the extract for 30 days is vital for mitigating the clastogenic effects of genotoxicants [83]. Recent investigations showed that aged garlic is superior to fresh garlic as far as antiglycation and antioxidant activities are concerned [84].

Capsicum annuum

Capsicum annuum L. belongs to the genus *Capsicum* of family Solanaceae [85], and is native to southern North America and northern South America [86]. Its fruit characteristics have been widely used for taxonomy [87] and have range greatly in type, colour, shape, taste and biochemical constituents [88]. Capsicum contains many chemicals, including water, fixed (fatty) oils, steam-volatile oil, carotenoids, capsaicinoids, resin, protein, fibre and mineral elements. Red peppers contain 280 μg/gm total carotenoids. Capsanthin accounts for 60% of the total carotenoids. They also contain 11% β-carotene and 20% capsorubin. Capsanthin is acylated with C12–18 saturated fatty acids [89,90].

The phenolic glycosides of *C. annuum* L. were evaluated for their radioprotective effects, and oxidative damage induced by X-radiation was studied on human lymphocytes. Although these compounds showed less antiradical properties they had higher radioprotective ability, and no cytotoxicity was observed. Therefore, it was advocated that superoxide radical scavenging could be the favored method to screen compounds for their possible radioprotective ability [91].

Centella asiatica

Centella asiatica belongs to family Umbellifere (Apiaceae). It is a herb found all over India and also in tropical and subtropical countries [92]. It contains triterpenoids such as asiaticoside, centelloside, madecossoside, thankuniside, isothonkunic acid, centellose, asiatic, centelic and madecassic acids. The other constituents includes brahmoside, brahminoside and brahmic acid. The structure of genin and brahmic acid has been elucidated as 2,6-hydroxy, 23-hydroxy-methyl ursolic acid. The fatty oil consists of glycerides of palmitic, stearic, lignoceric, oleic, linoleic and linolenic acids. An alkaloid, hydrocotylin, has been isolated from the dried plants. Asiaticoside, madecossoside and centelloside have been isolated from the plant parts. Flavonoids, 3-glucosylquercetin, 3-glucosykaemferol and 7-glucosylkaemferol have been isolated from the leaves [93–97].

Centella asiatica extract at 100 mg/kg body weight was effective in mice against radiation (8 Gy)-induced loss in body weight, and in survival [98]. It was reported that *C. asiatica* offered protection against radiation to DNA as well as membranes. The proposed mechanism for this was by antioxidant function [99].
Citrus aurantium

*Citrus aurantium* belongs to the family Rutaceae. The essential oil of *C. aurantium* L. var. amara possess antianxiety and motor relaxant effects in rats and mice [100,101]. The main flavonoids occurring in cultivated citrus species are flavanone glycosides, hespiridin and naringin, accounting for 5% of dry weight of leaves and fruits. These exhibit strong antioxidant activity [102,103]. Citrus extract at different doses (250, 500 and 1000 mg/kg) have shown radioprotective effects against 1.5 Gy γ-irradiation in mouse bone marrow; however, 250 mg/kg dose was found to be the optimum dose, providing 2.2-fold protection. Radioprotective activity was assigned to the flavonoids contained in citrus extract [104].

Coleus aromaticus

*Coleus aromaticus* belongs to family Lamiaeae, is native to India and the Mediterranean and possesses various medicinal values. The report on the chemical constituents of the leaves of *C. aromaticus* indicated the presence of carvacrol, thymol, eugenol, chavicol, ethyl salicylate, chlorophyllin, flavonoids (cirsimaritin) and β-sitosterol-β-D-glucoside [105,106]. Radioprotective potential was evaluated *in vitro* and *in vivo* for *C. aromaticus* extract. In cell-free assay, the extract has been shown to have radical scavenging activity and in V79 cells frequencies of micronuclei were evaluated against 0.5, 1, 2 and 4 Gy doses of γ-radiation. Both the assays demonstrated that the extract had antioxidant, anticlastogenic and radioprotective properties [107].

Coriandrum sativum

*Coriandrum sativum* L. belongs to the family Umbelliferae (Apiaceae), commonly called as coriander. It is widely cultivated in the Middle East, Latin America, Africa and Asia [108]. Seeds as well as leaves have been used for flavoring food since ancient times [109]. Phytochemical constituents of *C. sativum* seeds showed the presence of polyphenols (rutin, caffeic acid derivatives, ferulic acid, galic acid and chlorogenic acid), flavonoids (quercetin and isoquercetin) and β-carotenooids. Seeds of coriander mainly contain essential oils; however, leaves contain caffeic acid and flavonoids apart from volatile oils [110,111].

The radio protective effect of coriander seeds against whole-body γ-irradiation was studied in rats. Treatment with coriander seed extract was effective in preventing radiation-induced biochemical changes in serum and significantly improved the antioxidant status in liver and kidney of rats. It is suggested that scavenging of free radicals was a possible mechanism of protection [112]. Ethanol extract of *C. sativum* was effective against Ultraviolet B (UVB)-induced skin photoaging *in vitro* and *in vivo*. Thinner epidermal layers and denser dermal collagen fibers was observed in treated mice, which also had lower MMP-1 levels and higher procollagen type I levels, thus suggesting the ability of *C. sativum* extract to prevent UVB-induced skin photoaging [113].

Crocus sativus

*Crocus sativus* L. belongs to family Iridaceae and is known for its dried red stigma, popularly called as saffron and cultivated in Iran, India and Greece. The major components of saffron are cis- and trans-crocins, which are glucosyl esters of 8,8'-diapocarotene-8,8'-dioic acid (crocetin), one of the few families of carotenoids that are freely soluble in water. It also contains safranal, which is a monoterpane aldehyde, and picrocrocin, which is a glycosidic precursor of safranal. Saffron is known to contain around 150 volatile and aromatic compounds including terpenes, terpene alcohol and their esters. Safranal is considered to be responsible for its fragrance [114-120].

Pretreatment with freeze-dried saffron extract resulted in significant protective effects against radiation-induced genotoxic damage in mouse bone marrow; it reduced the level of lipid peroxidation, and resulted in an increase in glutathione content and activity of glutathione S-transferase, glutathione peroxidase and catalase liver and brain tissues of mice. However, in histopathological study of intestinal cells and male germ cells, there was nominal impact of saffron extract on radiation-induced damage [121].

Curcuma longa

*Curcuma longa* L. belonging to family Zingiberaceae is a cultivated plant of the Asian tropical region. It is popularly called turmeric, and is used as a coloring and flavoring agent for food. It also has medicinal value, with aromatic, stimulant and carminative properties. Combination of slaked lime with turmeric acts as traditional cure against sprains and swellings due to injury [122]. The chemical study of different samples of turmeric has yielded essential oil (4.2–14%), fatty oil (4.4–12.7%) and moisture (10–12.0%). It has been demonstrated that there are three major
Radioprotection by medicinal aromatic plants

Review

constituents curcumin, p-hydroxycinnamoyl(feruloyl)methane and p,p’-dihydroxydicinnamoylmethane. Its oil has components such as sesquiterpene, ketones and alcohols [123–125].

It has been suggested that there exists protective effects of curcumin against genetic damage as well as against the side-effects induced by 131I administration in terms of micronuclei frequency in human lymphocytes [126]. Radioprotective effects of C. longa extract were studied in rats against γ-irradiation, pre- and post-treatment the extract was found to be effective in modulating the levels of inflammatory cytokines, trace elements and the protein levels of SOD-1 and PRDX-1. Thus, modulation of antioxidant enzymes was held responsible for conferring radioprotection by C. longa extract [127].

Cymbopogon citratus

Cymbopogon citratus (family Poaceae), commonly called lemon grass, is a widely used herb in tropical countries such as southeast Asia and Africa. The essential oil of the plant is used in aromatherapy and as a flavoring ingredient in herbal beverages. The chemical composition of the essential oil of C. citratus consists of compounds such as hydrocarbon terpenes, alcohols, ketones, esters and aldehydes. The essential oil is mainly composed of citral, which is a mixture of two stereoisomeric monoterpane aldehydes; the trans-isomer geranial and cis-isomer neral. It has been reported to contain flavonoids and phenolic compounds such as luteolin, quercetin, kampferol and apigenin. Glycosyl derivatives of the flavones apigenin and luteolin have been identified in infusions of the lemon grass leaves [128–135].

Aqueous extract of C. citratus showed antioxidant and radioprotective properties. The extract was effective in reducing lipid peroxidation in irradiated minced chicken meat, able to scavenge DPPH and superoxide radicals at low concentrations, and protect DNA damage induced by radiation in pBR322 plasmid [136].

Elettaria cardamomum

Elettaria cardamomum is commonly called cardamom and belongs to the family Zingiberaceae. It has light green pods and has aromatic dried fruits usually used in food preparation as well as for health benefits [137]. Cardamom oil has cosmetic values due to its cooling effects and is known to possess antioxidant activity [138]. The volatile oil contains about 1.5% α-pinene, 0.2% β-pinene, 2.8% sabine, 1.6% myrcene, 0.2% α-phellandrene, 11.6% limonene, 36.3% 1,8-cineole, 0.7% γ-terpinene, 0.5% terpinolene, 3% linalool, 2.5% linalyl acetate, 0.9% terpinen 4-ol, 2.6% α-terpineol, 31.3% α-terpinyl acetate, 0.3% citronellol, 0.5% nerol, 0.5% geranial, 0.2% methyl eugenol and 2.7% trans-nerolidol. The cardamom aroma is produced by 1,8-cineole and α-terpinyl acetate [139,140]. Cardamom has been evaluated for its radioprotective effects against γ-irradiation in rats, and found to afford protection against radiation-induced oxidative damage in liver and heart tissues [141].

Illicium verum

Illicium verum, commonly known as Star anise, belongs to the family Illiciaceae and is native to China and Vietnam. The essential oil has confectionary application as a flavoring agent and industrial application in the preparation of Tamiflu to act against influenza virus. Anisyl acetone and benzenecarboxylic acid were identified as the main phenolic components present in aqueous fraction of I. verum [142]. I. verum extract showed radioprotective effects in irradiated minced chicken meat by reducing lipid peroxidation. It has been demonstrated that the I. verum extract plays a significant role not only in enhancing the flavor of food along with antioxidants activity but also it find application as food supplement for preventing oxidative damage in the processed food [136].

Lavandula angustifolia

Lavandula angustifolia belongs to the family Lamiaceae. The genus Lavandula comprises approximately 35 species that have significant application in aromatherapy. A total of 47 compounds representing 98.4–99.7% of the oils were identified. 1,5-dimethyl-1-vinyl-4-hexenylbutyrate was the main constituent of essential oil (43.73%), followed by 1,3,7-octatriene, 3,7-dimethyl- (25.10%), eucalyptol (7.32%) and camphor (3.79%) [43,143,144]. Lavandula angustifolia oil was assessed for its radioprotective activity against UV radiation and γ-irradiation. EPR spectroscopy and UV- and γ-irradiated oil samples have shown excellent DPPH radical scavenging activity. It was suggested that, after appropriate UV- or γ-irradiation treatment, lavender oil may have use as radioprotector and antioxidant for possible application in cosmetic and pharmaceutical industry [145].
Mangifera indica

Mangifera indica belongs to the family Anacardiaceae and is commonly called mango or aam in Hindi. It is medicinally important in Ayurveda. It has strong antioxidant, anti lipid peroxidation, immunomodulation, cardiotonic, hypotensive, wound healing, antidegenerative and antidiabetic activities that are pharmacologically and medicinally important [146]. It contains chemical contents such mangiferin, a polyphenolic antioxidant and a glucosyl xanthone. The bark is reported to contain protocatechic acid, catechin, mangiferin, alanine, glycine, γ-aminobutyric acid, kinic acid, shikimic acid and the tetracyclic triterpenoids cycloart-24-en-3β,26-diol, 3-ketodammar-24 (E)-en-205,26-diol, C-24 epimers of cycloart-25 en 3β,24, 27-triol and cycloarten-3β,24,27-triol [147,148]. The extract *M. indica* was evaluated for radioprotection in human lymphocytes and lymphoblastoid cells. Interestingly, it was noticed that that higher doses induced DNA damage in human lymphocytes and lymphoblastoid cells, without affecting the DNA repair ability. However, protection was observed against radiation induced DNA damage at lower doses of *M. indica* extract [149].

Mentha piperita

Mentha piperita, commonly called peppermint, belongs to the family Labiatae and is a perennial herb that grows up to height of 30–90 cm. It is an aromatic, stimulant and carminative and employed for treating nausea, flatulence and vomiting [150,244]. Mentha extracts have antioxidant properties due to the presence of eugenol, caffeic acid, rosmarinic acid and α-tocopherol. Caffeic acid, rosmarinic acid, eriocitrin, luteolin-7-O-glucoside were identified as primary radical scavengers. It also contains phenolic acids, flavonoids and s-carvone [15,151,152]. Mentha oil was found to afford radioprotection to hematological parameters and phosphatases level in mice [153,154]. Treatment of *M. piperita* extract prior exposure to γ radiation in mice has been shown to provide protection in bone marrow cells; it significantly reduced the number of aberrant cells and different chromosomal aberrations in irradiated mice [155]. Also, *M. piperita* extract pretreatment was efficient in providing protection against hematopoietic injury in bone marrow, intestine and testis in mice [156–158].

Murraya koenigii

Murraya koenigii L. belongs to the family Rutaceae and is commonly known as Meethi neem or curry-leaf in Hindi, and is a native of south Asia. It is found almost everywhere in the Indian subcontinent and has an aromatic nature, growing up to 6 m in height. It is especially cultivated for its aromatic leaves [159]. Leaves are aromatic and contain proteins, carbohydrates, fiber, minerals, carotene, nicotinic acid and vitamin C. The leaves contain high amount of oxalic acid and also contain crystalline glycosides, carbazole alkaloids, koenigin and resin. Fresh leaves contain yellow-colored volatile oil that is also rich in vitamin A and calcium. It also contains girinimbim, isomahanimbim, koenine, koenigin, koenidine and koenimbine. Mahanimbicine, bicyclomahanimbine, phebalosin, coumarine as murrayone imperatotic etc are isolated from leaves. Triterpenoid alkaloids-cyclomahanmbine and tetrahydromahanmbine are present in the leaves. Alkaloids-murrayastine, murrayaline, pypayafolinecarbazole have been reported in the leaves of *M. koenigii* [160–162,243]. The radioprotective effects of *M. koenigii* leaf extract was evaluated against 4 Gy γ-irradiation in liver of mice. The leaf extract itself was effective for significantly increasing reduced glutathione (GSH) content and antioxidant enzyme levels in liver as well as it reduced the radiation induced decrease in lipid peroxidation, thus indicating the antioxidant properties of extract possibly contributing for radioprotection [163].

Myristica fragrans

Myristica fragrans belonging to family Myristicaceae is commonly called nutmeg and known for its antifungal, hepatoprotective and antioxidant properties. The chemical constituents include myristicin, lignan and eugenol. The essential oil of nutmeg contains mainly sabinene (15–50%), α-pinene (10–22%) and β-pinene (7–18%), with myrcene (0.7–3%), 1,8-cineole (1.5–3.5%), myristicin (0.5–13.5%), limonene (2.7–4.1%), safrole (0.1–3.2%) and terpinen-4-ol (0–11%) [164–166]. Seed extract of *M. fragrans* was investigated for radioprotective effects in mice; it produced a dose reduction factor of 1.3. Pretreatment of *M. fragrans* seed extract was effective in increasing the GSH content in liver and reduction of testicular lipid peroxidation level in mice. It was demonstrated that *M. fragrans* seed extract offers a great degree of radioprotection in terms of radiation-induced biochemical alterations and enhanced survival rate, suggesting its possible utility as radioprotector [167].
Nigella sativa

Nigella sativa belongs to the family Ranunculaceae and is commonly called black seed. It is a widely used medicinal plant throughout the world [168]. The seeds of *N. sativa* and their oil have been widely used for centuries in the treatment of various ailments considered to be an important drug in the Indian traditional system of medicine such as Unani and Ayurveda [169,170]. The most important active compounds of black seeds are thymoquinone, thymohydroquinone, p-cymene, carvacrol, 4-terpineol, t-anethol, sesquiterpene longifolene, α-pinene and thymol among others. Seeds also contain alkaloids as isoquinoline and pyrazol ring bearing alkaloids. Additionally, *N. sativa* seeds contain α-hederin, a water soluble pentacyclic triterpene and saponin [171]. Radioprotection by *N. sativa* extract and oil was studied in mice and rats. The extract of *N. sativa* was evaluated in mice to assess protection against radiation-induced damage [172]. *Nigella sativa* extract treatment showed significant reduction in lipid peroxidation and intracellular reactive oxygen species in splenocytes and increased the survival rate of irradiated animals, suggesting a radioprotective potential of *N. sativa*. Oral administration of *N. sativa* oil before irradiation resulted in significant increase in blood malondialdehyde, nitrate and nitrite levels [173] and antioxidant enzymes [174].

Ocimum sanctum

Ocimum sanctum L. belongs to family Labiateae, commonly known as holy basil, tulsi or tulasi. It is an aromatic, small annual herb, growing up to 18 inches and thought to have originated in north-central India. It now grows native throughout the eastern world tropics [175,176]. Whole-plant extract contains flavonoids, alkaloids, saponins, phenols, anthocynins, triterpenoids and tannins. Leaf extract contains flavonoids, alkanoids, saponins, tannins, phenols, anthocynins, triterpenoids and saponins [177–179]. The radioprotective activity of extract of *O. sanctum* was evaluated in mice through chromosomal aberration analysis. The treatment of mice with extract of *O. sanctum* prior to irradiation resulted in faster recovery and reduced percentage of chromosomal aberrations in bone marrow cells. It was demonstrated that extract of *O. sanctum* offered in vivo protection against radiation-induced chromosomal damage and suggested that free radical scavenging could be the probable mechanism action [180–182].

Origanum vulgare L.

Origanum vulgare belongs to the family Labiatae, and is generally found as a wild pant in Europe and Iran. It is used for treating rheumatism, muscle and joint pain, sore and swellings as an external applicant. Oregano oil is employed to counter toothache [183,184]. Antioxidants present in Oregano are rosmarinic acid, caffeic acid, flavomoids and derivatives of phenolic acids and α-tocopherol. Also, rosmarinic acid methyl ester, oregano-A and oregano-B act as antioxidants [12,18]. Radioprotection by Oregano extract was studied in terms of internal irradiation – as well as external irradiation-induced genotoxicity in human lymphocytes and mouse bone marrow. The oregano extract treatment resulted in significant reduction of micronuclei frequencies in human lymphocytes and mouse bone marrow. Radical scavenging activity of oregano extract was studied by DPPH assay, which shown that it was effective in scavenging of DPPH-free radical in dose-dependent manner. Therefore, free radical scavenging appears to be a likely mechanism for radioprotection [185,186].

Piper longum

Piper longum belongs to family Piperaceae, and is commonly known as Pipali in India. It is traditionally used as a medicine in Asia and the Pacific Islands for treating diseases such as gonorrhea, menstrual pain, tuberculosis, arthritis and is also used for analgesic, diuretic and muscle relaxant purposes [187]. Chemical studies have shown that the genus *Piper* has many components including unsaturated amides, flavonoids, lignans, aristolactams, long and short chain esters, terpenes, steroids, propenylphenols and alkaloids. The essential oils of ten Piperaceae species have shown that the most frequently identified compounds were sesquiterpenes. However, the nonoxygenated monoterpenes (Z) p-octimene, a-pinene and b-pinene were prevalent as well. A biosynthetic approach showed that the most common sesquiterpenes identified, E-caryophyllene and germacrene D, have the E,E-farnesyl-PP as fundamental precursor and only two were originated from E,Z-farnesyl-PP reactions (a-copaene and d-cadinene) [188–192]. The radioprotective effects of fruit extract of *P. longum* were studied in mice. Extract treatment prevented the radiation-induced depletion of white blood cells in mice. Extract treatment was also effective in declining the radiation-induced increased levels of glutathione pyruvate transaminase, alkaline phosphatase and lipid peroxidation thus offering protection to mice against radiation induced damage [193].
Plumbago rosea
Plumbago rosea L. belongs to the family Plumbaginaceae, is popularly called rakta chitrak, and is found abundantly wildly growing in India. It is variously used to treat diseases such as inflammation, skin diseases, gastric troubles and abdominal pain [194,195]. It has active ingredients such as plumbagin, naphthaquinone, fatty alcohols, tannins and sitosterol glycosides. It has been reported that roots of *P. rosea* contain several naphthaquinonoids and their derivatives and flavonoids. The chemical constituents include plumbagin, palmitic acid and myrcyl palmitate from petrol extract, and plumbagic acid lactone, ayanin and azaleatin from ethyl acetate extract of roots [196–198]. The extract of *P. rosea* was evaluated for antitumor activity. It has been reported that the *P. rosea* extract possesses radiosensitizing effects and combined with radiation increases the tumor killing effect [199,200].

Rosmarinus officinalis L.
Rosmarinus officinalis L. belongs to family Labiateae. It is an aromatic and medicinal herb largely found along mediterranean sea coasts and Himalayan region of India [201]. *Rosmarinus* leaves were found to have significant antioxidant properties and is extensively used in food industry due to its non toxicity and safety [202,203]. It contains antioxidants such as carnosonic acid, carnosol, rosmarinic acid, rosmanol, isorosmanol and epirosmanol [204]. *R. officinalis* leaf extract was evaluated for its ability to protect the liver of mice against radiation-induced histopathological alterations. Extract treatment showed a significant decrease in lipid peroxidation and increase in GSH content in mice and there was significant decrease in binucleated hepatic cells as compared with untreated irradiated animals [205].

Salvia officinalis L.
Salvia officinalis belongs to the family Lamiaceae and is cultivated in several countries. It has remedial and household importance [206]. The fragrance and aroma might be due volatile and essential oil that consists of mixture of volatile compounds such as terpenes, triterpenoids, ursolic acid and oleanolic acid [207,208]. Antioxidants present are salvinoloc acid (dimer of rosmarinic acid), carnosol, carnosic acid, rosmarinic acid, rosmanol, isorosmanol and epirosmanol [6,8,209]. The aqueous extract of *S. officinalis* showed significant radioprotection against irradiation in rats. Extract treatment resulted in decreased lipid peroxidation, protein carbonyl and NO in brain tissues and increased SOD and CAT enzymes activities and GSH contents [210]. *S. officinalis* extracts hold antimicrobial, anticancer, antioxidant, anti-inflammatory and radioprotective properties probably due to presence of active polyphenolic compounds that contains aromatic rings with hydroxyl groups [211].

Syzygium aromaticum
Syzygium aromaticum (eastern hemisphere) or *Eugenia caryophyllata* and *Eugenia aromaticum* (western hemisphere) belongs to family Myrtaceae and is a popular source of clove oil; the essential oil extracted from dried flower buds, leaves and stem of the tree [212]. Clove oil is applied externally for relieving pain and promotes healing. It has wide application in pharmaceutical as well as the fragrance and flavoring industries. Clove oil is an essential oil from the dried flower buds, leaves and stems of the tree *S. aromaticum*. The main constituents of the essential oil are phenylpropanoids such as carvacol, thymol, eugenol and cinnamaldehyde [213]. The radioprotective effect of clove oil has been studied in rats on certain biochemical parameters against ionizing radiation. It has been demonstrated that the radioprotective effects of clove oil may be assigned to its capacity to reduce lipid peroxidation, strong reducing power and superoxide radical scavenging activity owing to presence of the polyphenol as well as trace element contents [214].

Syzygium cumini
Syzygium cumini belongs to the family Myrtaceae and is also called *Syzigium jambolanum* or *Eugenia cumini*. It is grown throughout Asia, Africa and America, and also naturalized to Florida and Hawaii [215]. The plant has been reported to possess acetyl oleanolic acid, triterpenoids, ellagic acid, isouqueritin, quercetin, kaempferol and myricetin in different concentrations [94]. The radioprotective effects were studied in cultured human lymphocytes; it was noted that treatment with *S. cumini* leaf extract prior to radiation exposure resulted in significant decrease in micronuclei induction [216]. Radioprotective effects of *S. cumini* seed and leaf extracts were also studied in mice and found that pretreatment protected mice against radiation-induced sickness and mortality. The histopathological investigations showed that *S. cumini* leaf extract treatment prior to radiation exposure increased villus height, number of crypts and reduced goblet and dead cells [217].
Valeriana wallichii

Valeriana wallichii, belonging to the family Valerianaceae and popularly known as Indian Valerian, occurs throughout the World. It mostly grows in mountain terrain of Himalaya and is used as an ingredient in various herbal medicines in Indian systems of medicine [218,219]. Its rhizome and root contains volatile oil (valerianic oil), which is composed of alkaloids, boryl isovalerianate, chatinine, formate, glucoside, isovalerenic acid, 1-camphene, 1-pinene, resins, terpineol and valeriane. From the rhizomes, some important compounds, such as citric acid, malic acid, maliol, succinic acid and tartaric acid have been isolated [220,221]. The root extract of *V. wallichii* was found to significantly protect against radiation-induced free radicals at 4 h after 5 Gy irradiation, reduced prolonged oxidative stress led increase in mitochondrial mass, enhanced reproductive viability of cultured cells and protected against radiation-induced DNA damage [222].

Withania somnifera

Withania somnifera, belonging to the family Solanaceae and popularly known as Indian ginseng or ashwagandha, is a perennial plant with medicinal importance in Ayurveda [223]. The extract of *W. somnifera* is a complex mixture of a number of phytochemicals including phenolic compounds and flavonoids. However, the pharmacological effect of the roots of *W. somnifera* is attributed to withanolides. Withanolides are a series of naturally occurring steroids containing a lactone with a side chain of nine carbons, generally attached to C-17 [224–226]. The protective effects of root extract of *W. somnifera* against radiation-induced oxidative stress and DNA damage in liver were investigated in rats. *Withania somnifera* treatment prior to radiation exposure showed significant decrease in hepatic enzymes, hepatic nitrate/nitrite ratio, MDA levels and DNA damage. Also, significant increase in heme oxygenase activity, superoxide dismutase, glutathione peroxidase activities and glutathione content suggests a possible role of *W. somnifera* as a radioprotective agent through antioxidant function and heme oxygenase induction [227].

Zingiber officinale

Zingiber officinale is commonly called ginger and belongs to the family Zingiberaceae. It is found in Asia and America. It is medicinal and aromatic and generally employed for culinary practices and remedial uses. The essential oil possesses antibacterial, antifungal and antiviral activities [228,229]. Antioxidant, anti-inflammatory and antinoceceptive properties have also been reported [230,231]. Gingerol-related compounds such as gingerol, shagaols, gengediols, zingerone, dehydrozingerone, gingerinone and diarylheptanoids accord antioxidant capacity to the ginger rhizome. Geranial, camphene, p-cineole, α-terpineole, zingiberene and petandeconoic acid were the major components of the essential oil. However, eugenol was major components in ethanol oleoresin, and in methanol, CCl4 and isooctane oleoresin the zingerone was major component [21,25,27,232–234]. Radioprotective effects of ginger extract were demonstrated in rats exposed to X-irradiation on the liver, kidney and heart. Results indicated that ginger extract had significant antiradiation activity [67]. Antioxidant status and antioxidant enzymes were studied in rats with pretreatment of ginger extract and whole-body irradiated with γ-radiation. Hematological parameters were found to have significant recovery with respect to radiation-induced damage [174]. Essential oil of ginger was also evaluated for its radioprotective effects in mice, yielding a dose reduction factor of 1.4. Ginger oil was found to be effective in restoring antioxidant status and reducing the cytogenetic damage in terms of chromosomal aberrations, micronuclei frequency and DNA damage in mice [235].

Possible mechanisms of radioprotection by aromatic plants

It is a well-known fact that radiation is a powerful cytotoxic agent. Reactive oxygen species such as superoxide anion, singlet oxygen, hydroxyl radical, nitric oxide, hydrogen peroxide and perseryl radicals are generated by ionizing radiation in biologic system through radiolysis of water and are accountable for the cellular injury caused to DNA and proteins [31–33]. The detrimental effects of radiation-induced alterations in biologic systems via reactive oxygen species generation play a crucial role as far as maintenance of metabolic homeostasis in the body and therefore, any disparity in homeostasis results in oxidative stress [38], which could be trounced by additional provision of naturally occurring, plant based antioxidants [39–41]. The extracts of aromatic plants contain several chemical constituents such as essential oils, plant phenolics such as phenolic acids, flavonoids, terpenes, tannins, stilbenes, lignans and vitamins. Among these, the essential oils contain constituents such as monoterpenes and diterpenes that possess antioxidant properties. The activity of cyclic monoterpen hydrocarbons with two double bonds has been found to be comparable to the activity of phenols; however, their antioxidant activities differ due to their composition and oxidation of the components. The correlation between antioxidant capacity and phenolics concentration was
pragmatic in several research studies on determining antioxidant capacities of plants [236]. Phenolic compounds are the secondary metabolites of plants and involved in defense against ultraviolet radiation or aggression by pathogens, parasites and predators [237]. The chemical structure of phenolic compounds also affects their antioxidant effects. Phenolics have usually one or more aromatic rings that act as an extended conjugated aromatic system to delocalize an unpaired electron and one or more hydroxyl groups which donate a hydrogen atom or an electron to a free radical. Therefore, these phytoconstituents have most suitable structure for free radical scavenging activities. The polyphenols also act as reducing agents, hydrogen-donating antioxidants, singlet oxygen quenchers and metal chelators thus imparting their inherent antioxidant activity. On the other hand, flavonoids interfere with the propagation reactions of the free radical and formation of the radicals by chelating the transition metal. The α-Tocopherol, one of the best known vitamins confer protection to intracellular membranes mainly by quenching singlet oxygen and reacting with lipid peroxy radicals which consequently leads to abrogation of lipid peroxidation levels [238]. Ascorbic acid (Vitamin C) was found to work synergistically with tocopherols and other phenolic antioxidants. Carotenoids, such as β-carotene, lutein and zeaxanthin, are present in certain aromatic plants such as mints, oregano, balm, basil, sage and rosemary which have demonstrated antioxidant activity both in in vitro and animal experimental studies. Thus, antioxidant function and radical scavenging mechanism are the most likely mechanism of radioprotection by aromatic plants as suggested by several workers (Table 1).

Merits, demerits & limitations

Due to their abundance, low cost and safety, aromatic plants hold significant promise and provide unique advantage for use as radioprotectors. These plants have varied antioxidant capacities which directly correlates with their chemical constituents thus have variable radioprotective properties [239]. It has been reported that carotenoids can protect against radiation but a high dose of single carotenoid entity induces lethal effects [240]. Therefore, quality control studies must be focused on proper elucidation of definite effects of the drug used with factors such as age, sex and species accounted for while performing preclinical assessment studies [241]. The use of plant-derived medication has limitations because only limited systematic studies are available for each plant product. Therefore, research must be directed toward acquiring knowledge about the safe use of plant-based drugs prior to their possible use [122]. However, studies on pharmacokinetics and pharmacodynamic properties including toxicity must be carried out [242]. Most of the studies reported are conducted on animal models or cell cultures and therefore, it is not easy to extend their validity in clinical settings – this poses a major hindrance [39]. It has been observed that crude extract is better than the isolated fractions; this may be due to the combined effects of so many different constituents that are responsible for its activity. The compound/extract must work in practice and not just be limited to laboratory. Plant material utilized as a specific compound or group of compounds should be well standardized, characterized and processed.

Future perspective

The enhanced adverse effects of synthetic drugs and antibiotics has paved way toward utilization of natural products of plant origin in recent years in developed as well as developing countries. The present review explored the protection against radiation at cellular damage of approximately thirty aromatic plant extracts or plant-derived compounds. Most of the aromatic plant extracts or plant products have shown significant radioprotection in different model systems such as in vivo, ex vivo and/or in vitro for assessment of radiation-induced damage. The radical scavenging and antioxidant properties such as reduction in radiation-induced lipid peroxidation are some of the notable characteristics of aromatic plant extracts studied in various models of radiation insult. In most of the studies, it has been shown that while protecting against the detrimental effects of radiation, it also had capacity to significant increase survival rates in small animals exposed to radiation. Results of such studies point at possible application during radiotherapy as well as the possibility of finding application in treatment for victims of nuclear plant accidents or leakage, or radiation terrorism. Use of aromatic plants and their products has gained momentum globally during recent times with wide applications in the herbal drug industry. Natural resources such as wastelands and forests could serve as reservoir for the same. However, with the increasing burden on natural resources, alternatively, introduction of crops through cropping systems could help out to great extent with a check on activity including chemical composition. Also, the scientific community must be encouraged to focus studies to screen more and more aromatic compounds of plant origin for their different bioactivities, including radioprotection, and to explore the molecular mechanisms involved for the same.
Executive summary

- The enhanced adverse effect of synthetic drugs and antibiotics has paved way toward the utilization of natural products of plant origin unambiguously in recent years.
- The present review explored the protection against cellular damage resulting from radiation of approximately thirty aromatic plant extracts or plant-derived compounds.
- Many aromatic plant extracts or plant products have shown significant radioprotection in different model systems such as in vivo, ex vivo and/or in vitro.
- It is a well-known fact that radiation is a powerful cytotoxic agent. Reactive oxygen species such as superoxide anion, singlet oxygen, hydroxyl radical, nitric oxide, hydrogen peroxide and peroxyl radicals generated by ionizing radiation in biologic system causes cellular injury due to lesions in DNA and proteins.
- The radical scavenging and antioxidant properties such as reduction in radiation-induced lipid peroxidation are some of the notable characteristics of aromatic plant extracts studied in various models of radiation damage.
- In most of the studies, it has been shown that while protecting against the detrimental effects of radiation, there is a capacity to significantly increase the survival rates of small animals exposed to radiation. Results of such studies point out possible applications during radiotherapy and could find application in treatment for victims of nuclear plant accidents or leakage, or radiation terrorism.
- Aromatic plants and their products have gained momentum globally during recent times, with wide applications in the herbal drug industry.
- Natural resources such as wastelands and forests could serve as reservoir for the same. With the increasing burden on natural resources, alternatively, introduction of crops through cropping systems could help out to a great extent with checks on activity including chemical composition.
- Plant material utilized as a specific compound or group of compounds should be well standardized, characterized and processed.
- Also, the scientific community must be encouraged to focus studies on screening more and more aromatic compounds of plant origin for their different bioactivities, including radioprotection, and to explore the molecular mechanisms involved in the same.

Author contributions
RM Samarth was the designer of this study, revised and participated in writing the article, and is corresponding author. M Samarth gathered data and participated in writing the article. Y Matsumoto revised the final article.

Acknowledgements
We made our sincere and careful efforts to include and cite most of available reports and studies pertaining to radioprotection by aromatic plants and plant products however, exclusions if any, are regretted.

Financial & competing interests disclosure
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Open access
This work is licensed under the Creative Commons Attribution 4.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References
1 Slikkerveer I.J. The challenge of non-experimental validation of MAC plants. In: Medicinal and Aromatic Plants: Agricultural, Commercial, Ecological, Legal, Pharmaceutical and Social Aspects. Bogers RJ, Craker LE, Lange D. (Eds). Springer, Dordrecht, the Netherlands (2006).
2 Brenes A, Roura E. Essential oils in poultry nutrition: main effects and modes of action. Animal Feed Sci. Tech. 158(1–2), 1–14 (2010).
3 Greathead H. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 62(2), 279–290 (2003).
4 Gutteridge JMC, Halliwell B. Antioxidants: molecules, medicines and myths. Biochem. Biophys. Res. Comm. 393, 561–564 (2010).
5 Ndhlala AR, Moyo M, Van Staden J. Natural antioxidants: fascinating or mythical biomolecules? Molecules 15, 6905–6930 (2010).
6 Cuvelier ME, Richard H, Berret C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73, 645–652 (1996).
Review Samarth, Samarth & Matsumoto

11 Jayasinghe C, Gotoh N, Aoki T, Wada S. Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 51, 4442–4449 (2003).

12 Matsuura H, Chiji H, Asakawa C, Amano M, Yoshihara T, Mizutani J. DPPH radical scavengers from dried leaves of oregano (Origanum vulgare). Biosci. Biotech. Biochem. 67, 2311–2316 (2003).

13 Dorman HJD, Kosar M, Kahlos K, Helm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51, 4563–4569 (2003).

14 Sahin F, Gulluce M, Daferera D et al. Biological activities of the essential oils of methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Chem. 15, 549–557 (2004).

15 Kosar M, Dorman HJD. Baser KHC, Hiltunen R. Screening of free radical scavenging compounds in water extracts of Mentha samples using a postcolumn derivatization method. J. Agric. Food Chem. 52, 5004–5010 (2004).

16 Lee SJ, Umano K, Shibamoto T, Lee KG. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 91, 131–137 (2005).

17 Gulcin I, Elmastar M, Aboul-Esein HY. Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum L.) and their antioxidant properties. Phytother. Res. 21, 354–361 (2007).

18 Ding HY, Chou TH, Liang CH. Antioxidant and antimelanogenic properties of rosmarinic acid methyl ester from Origanum vulgare. Food Chem. 123, 254–262 (2010).

19 Samarth RM, Samarth M, Matsumoto Y. Utilization of cytogenetic biomarkers as tool for assessment of radiation injury and evaluation of radiomodulatory effects of various medicinal plants – a review. Drug Des. Devel. Ther. 9, 5355–5372 (2015).

20 Thippeswamy NB, Akhilender Naidu K. Antioxidant potency of cumin varieties – cumin, black cumin and bitter cumin – on antioxidant systems. Eur. Food Res. Technol. 220, 472–476 (2005).

21 Surveswaran S, Cai YZ, Corke H, Sun M. Systematic evaluation of natural phenolic antioxidants from 135 Indian medicinal plants. Food Chem. 102, 938–953 (2007).

22 Allahghadri T, Rasologi I, Owlia P et al. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci. 75(2), H54–H61 (2010).

23 Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 58, 10410–10418 (2010).

24 Masuda T, Maekawa T, Hidaka K, Bando H, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J. Agric. Food Chem. 49, 2539–2547 (2001).

25 Masuda Y, Kikuzaki H, Isamoto M, Nakatani N. Antioxidant properties of gengerol related compounds from ginger. Biofactors 21, 293–296 (2004).

26 Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174(1), 27–37 (2008).

27 El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 58, 8231–8237 (2010).

28 Eleazn CO, Eleanu KC. Physico-chemical properties and antioxidative potentials of 6 new varieties of ginger (Zingiber officinale). Am. J. Food Tech. 7, 214–221 (2012).

29 Yeul-Celiktas O, Gırgın G, Orhan H, Wichters HJ, Bedir E, Vardar-Sukan F. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts related with focus on location and harvesting times. Eur. Food Res. Tech. 224, 445–451 (2007).

30 Škrováňková S, Mišurcová L, Machů L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 67, 75–139 (2012).

31 Sies H. Biochemistry of oxidant stress. Annu. Rev. Chem. Int. Ed. 25, 1058–1071 (1986).

32 Jhun E, Jhun BH, Jones LR, Jung CY. Direct effects of ionizing radiation on integral membrane proteins. J. Biol. Chem. 266, 9403–9407 (1991).

33 Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 18, 1033–1077 (1995).

34 Von Sonntag C. The chemistry of free-radical-mediated DNA damage. Basic Life Sci. 58, 287–317 (1991).

35 Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin. Oncol. 26(5), 243–249 (2014).
Imamichi S, Sharma MK, Kamdar RP, Fukuchi M, Matsumoto Y. Ionizing radiation induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK. *Proc. Jpn Acad. Ser. B Phys. Biol. Sci.* 90(9), 365–372 (2014).

Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. *J. Radiat. Res.* 57(2), 115–120 (2016).

Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. *Methods Enzymol.* 186, 1–85 (1990).

Anora R, Gupta D, Chawla R *et al.* Radioprotection by plant products: present status and future prospects. *Phytother. Res.* 19(1), 1–22 (2005).

Pérez MB, Calderón NL, Croci CA. Radiation-induced enhancement of antioxidant activity in extracts of rosemary (*Rosmarinus officinalis* L.). *Food Chem.* 104, 585–592 (2007).

Paul P, Unnikrishnan MK, Nagappa AN. Phytochemicals as radioprotective agents–a review. *Indian J. Nat. Prod. Res.* 2(2), 137–150 (2011).

Matthäus B. Antioxidant activity of extracts obtained from residues of different oilseeds. *J. Agric. Food. Chem.* 50(12), 3444–3452 (2002).

Basch E, Foppa I, Liebowitz R *et al.* Lavender (*Lavandula angustifolia* Miller). *J. Herb. Pharmacother.* 4(2), 63–78 (2004).

Soković M, Glamolić J, Marin PD, Brkić D, van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. *Molecules* 15(11), 7532–7546 (2010).

Xavier S, Yamada K, Samuni AM *et al.* Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. *Biochim. Biophys. Acta* 1573, 109–120 (2002).

Citrin D, Coxrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. *Oncologist* 15(4), 360–371 (2010).

Burkill HM. *The Useful Plants of West Tropical Africa, Vol. 1,* Royal Botanic Gardens, Kew, UK (1985).

Vera R. Chemical composition of essential oil of *Ageratum conyzoides* L. (*Asteraceae*) from Reunion. *Flav. Fragr. J.* 8(5), 257–260 (1993).

Hui WH, Lee WK. Triterpenoid and steroid constituents of some *Lactuca* and *Ageratum* species of Hong Kong. *Phytochemistry* 10, 899–901 (1971).

Horng CJ, Lin SR, Chen AH. Phytochemical study on *Ageratum conyzoides*. *Formosan Sci.* 30, 101–105 (1976).

Dubey S, Gupta KC, Matsumoto T. Sterols of *Ageratum conyzoides* L. *Herba Hung* 28, 71–73 (1989).

Wiedenfeld H, Roder E. Pyrrolizidine alkaloids from *Ageratum conyzoides*. *Planta Med.* 57(6), 578–579 (1991).

Wândji J, Bissangou MF, Ouambe JM, Silou T, Abena AA, Keita A. The essential oil from *Ageratum conyzoides*. *Fitoterpapia* 67, 427–431 (1996).

Sur N, Poi R, Bhattacharyya A, Adityachoudhury NJ. Isolation of aurantiamide acetate from *Ageratum conyzoides*. *Ind. J. Chem. Sci.* 74, 249–251 (1997).

Yadava RN, Kumar S. A novel isoflavone from the stems of *Ageratum conyzoides*. *Fitoterpapia* 70, 475–477 (1999).

Jageni GC, Shirwaikar A, Rao SK, Bholegaonkar PM. Evaluation of the radioprotective effect of *Ageratum conyzoides* Linn. extract in mice exposed to different doses of gamma radiation. *J. Pharm. Pharmacol.* 55, 1151–1158 (2003).

Bouhoum M, Ziyat A, Tahri A, Tahir A, Leguyer A. Medicinal plants with potential antidiabetic activity – a review of ten years of herbal medicine research (1990–2000). *Int. J. Diabetes Metabol.* 14, 1–25 (2006).

Rajan M, Kumar KV, Ramanayam RT, Kumar NS. Antidiabetic activity of ethanolic extract on *Albizia odoratissima* (L.f.) benth in alloxan induced diabetic rats. *Int. J. Pharm. Sci.* 2, 786–791 (2010).

Hannan A, Humayun T, Hussain MB, Tahir A, Leguyer A. *In vitro* antibacterial activity of onion (*Allium cepa*) against clinical isolates of vibrio cholera. *J. Ayub. Med. Coll. Abbottabad* 22, 160–163 (2010).

Ogannomode O, Sallu LC, Ogunlade B, Akunna GG, Oyewopo AO. An evaluation of the hypoglycemic, antioxidant and hepatoprotective potential of onion (*Allium cepa*) on alloxan-induced diabetic rabbits. *Int. J. Pharmacol.* 8, 21–29 (2012).

Akash MS, Rehman K, Chen S. Spice plant *Allium cepa*: dietary supplement for treatment of Type 2 Diabetes mellitus. *Nutrition* 30(10), 1128–1137 (2014).

Yuan L, Ji TF, Wang AG, Su YL. Studies on chemical constituents of the seeds of *Allium cepa*. *Zhong Yao Cai* 31(2), 222–223 (2008).

Thakare VN, Kothavade PS, Dhote VV, Deshpande AD. Antifertility activity of ethanolic extract of *Allium cepa* Linn in rats. *Int. J. Pharm. Tech. Res.* 1, 75–78 (2009).

Shenoy C, Patil MB, Kumar R, Patil S. Preliminary photochemical investigation and wound healing activity of *Allium cepa* Linn (*liliaceae*). *Int. J. Pharm. Sci.* 2, 167–175 (2009).

Kheyrodin H. Isolation and identification of new eleven constituents from medicinal plant. *Int. J. Nutr. Metab.* 1, 14–19 (2009).

Mathur ML, Gaura J, Sharma R, Haldiya KR. Anti-diabetic properties of a spice plant *Nigella sativa*. *J. Endocrinol. Metab.* 1, 1–8 (2011).
67 Nwachukwu KC, Asaqa S, Nwose C, Okoh MP. Protection and anti-oxidative effects of garlic, onion and ginger extracts. X-ray exposed albino rats as model for biochemical studies. Afr. J. Biochem. Res. 8(9), 166–173 (2014).
68 Fritsch RM, Friesen N. Evolution, domestication and taxonomy. In: Allium Crop Science: Recent Advances. Rabinowitch D, Currah L (Eds). CAB International, Oxfordshire, UK, 5–30 (2002).
69 Friesen N, Fritsch RM, Blattner FR. Phylogeny and new intransigent classification of Allium L. (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Alloa 22, 372–395 (2006).
70 Stavělková H. Morphological characteristics of garlic (Allium sativum L.) genetic resources collection – information. Hort. Sci. (Prague) 35(3), 130–135 (2008).
71 Fenwick GR, Hanley AB. The genus Allium. Part 2. Crit. Rev. Food Sci. Nutr. 22(4), 273–577 (1985).
72 Kaku H, Goldstein IJ, Van Damme EJM, Peumans W. New mannospecific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) bulbs. Carbohydrate Res. 229, 347–353 (1992).
73 Agarwal KC. Therapeutic actions of garlic constituents. Med. Res. Rev. 16, 111–124 (1996).
74 Wang EJ, Li Y, Lin M, Chen L, Stein AP, Reuhl KR, Yang CS. Protective effects of garlic and related organosulfur compounds on acetaminophen-induced hepatotoxicity in mice. Toxicol. Appl. Pharmacol. 136, 146–154 (1996).
75 Harborne JB, Williams CA. Notes on flavonoid survey. In: A review of Allium. Section Allium. Mathew B (Ed.). Royal Botanic Garden, Kew, UK (1996).
76 Fossen T, Andersen OM. Malonated anthocyanins of garlic Allium sativum L. Food Chem. 58(3), 215–217 (1997).
77 Rubinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim. Biophysica Acta 1379, 233–244 (1998).
78 Matsura H, Ushiroguchi T, Ikura Y, Hayashi H, Fuwa T. A furanose lipid from garlic bulbs of Allium sativum L. Chem. Pharm. Bull. 36, 3659–3663 (1988).
79 Cho BHS, Xu S. Effects of allyl mercaptan and various allium-derived compounds on cholesterol synthesis and secretion in Hep-G2 cells. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 126(2), 195–201 (2000).
80 Banerjee SK, Mukherjee PK, Maulik SK. Garlic as an antioxidant: the good, the bad and the ugly. Mutat. Res. 435(3–4), 147–153 (1995).
81 Das T, Choudhury AR, Sharma A, Talukder G. Effects of crude garlic extract on mouse chromosomes in vivo. Food Chem. Toxicol. 34(1), 43–47 (1996).
82 Elosta A, Slevin M, Rahman K, Ahmed N. Aged garlic has more potent antiglycation and antioxidant properties compared with fresh garlic extract in vitro. Sci. Rep. 7, 39613 (2017).
83 Greenleaf WH. Pepper breeding. In: Breeding Vegetable Crops. Basset MJ (Ed.). The AVI Publishing Company, CT, USA (1986).
84 Grubben GJH, El-Tahir IM. Capsicum annuum L. In: PROTA 2: Vegetables/Légumes. Grubben GJH, Denton OA (Eds.). PROTA Foundation, Wageningen, the Netherlands (2004).
85 Harborne JB, Williams CA. Notes on flavonoid survey. In: A review of Allium. Section Allium. Mathew B (Ed.). Royal Botanic Garden, Kew, UK (1996).
86 Banerjee SK, Mukherjee PK, Maulik SK. Garlic as an antioxidant: the good, the bad and the ugly. Mutat. Res. 435(3–4), 147–153 (1995).
87 Dagnoko S, Yaro-Diarisso N, Sanogo PN. Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae. Am. J. Bot. 98(9), 1415–1436 (2011).
88 Bown D. Encyclopaedia of Herbs and Their Uses. Dorling Kindersley, London, UK (1995).
89 Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants: Council for Scientific and Industrial Research, New Delhi, India (1956).
90 Chopra RN, Chopra IC, Varma BS. Supplement to Glossary of Indian Medicinal Plants. Council for Scientific and Industrial Research, New Delhi, India (1992).
91 Materska M, Konopacka M, Rogoli´nski J,´Slosarek K. Antioxidant activity and protective effects against oxidative damage of human cells exposed to gamma-rays and radioprotection with garlic extract. Mutat. Res. 345(3–4), 147–153 (1995).
92 Bown D. Encyclopaedia of Herbs and Their Uses. Dorling Kindersley, London, UK (1995).
93 Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants: Council for Scientific and Industrial Research, New Delhi, India (1956).
94 Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants, Vol. 1. Central Drug Research Institute, Lucknow, India (1990).
95 Chopra RN, Chopra IC, Varma BS. Supplement to Glossary of Indian Medicinal Plants. Council for Scientific and Industrial Research, New Delhi, India (1992).
96 Schaneberg BT, Mikell JR, Bedir E, Khan IA. An improved HPLC method for quantitative determination of six triterpenes in Centella asiatica extracts and commercial products. Pharmazie 58(6), 381–384 (2003).
97 Aziz ZA, Davey MR, Power JB, Antony P, Smith RM, Lowe KC. Production of asiaticoside and madecassoside in _Centella asiatica_ *in vitro* and *in vivo*. *Biologia Plantarum* 51(1), 34–42 (2007).

98 Sharma J, Sharma R. Radioprotection of Swiss albino mouse by _Centella asiatica_ extract. *Phytother. Res.* 16(8), 785–786 (2002).

99 Joy J, Nair CK. Protection of DNA and membranes from gamma-radiation induced damages by _Centella asiatica_. *J. Pharm. Pharmacol.* 61(7), 941–947 (2009).

100 do Vale TG, Furtado EC, Santos JG Jr, Viana GS. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from _Lippia alba_ (Mill.) n.e. Brown. *Phytotherapy Research* 9(8), 709–714 (2002).

101 de Almeida AA, Costa JP, de Carvalho RB, de Sousa DP, de Freitas RM. Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. *Brain Res.* 1148, 56–62 (2012).

102 Miyake Y, Yamamoto K, Tsujihara N, Osawa T. Protective effects of lemon flavonoids on oxidative stress in diabetic rats. *Lipids* 33, 689–695 (1997).

103 Bethrow MA. Flavonoid accumulation in tissue and cell culture. In: _Flavonoids In The Living System_. Maanthey J, Buslig BS (Eds). Plenum Press, NY, USA (1998).

104 Hosseinimehr SJ, Tayakoli H, Pourheidari G, Sobhani A, Shafiei A. Radioprotective effects of citrus extract against gamma-irradiation in mouse bone marrow cells. *J. Radiat. Res.* 44(3), 237–241 (2003).

105 Bos R, Hendriks H, van Os FH. The composition of the essential oil in the leaves of _Colesus aromaticus_ Bentham and their importance as a component of the species antipathothes Fa. Ned. Ed. V. Pharm. Werkbl. Sci. 5, 129–130 (1983).

106 Hussain A, Popli OP, Misra LN. Antioxidant, anticlastogenic and radioprotective effect of _Colesus aromaticus_ on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. *Mutagenesis* 21(4), 237–242 (2006).

107 Rao BSS, Shanbhoge R, Upadhya D et al. Antioxidant, anticlastogenic and radioprotective effect of _Colesus aromaticus_ on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. *Mutagenesis* 21(4), 237–242 (2006).

108 Gupta K, Thakral KK, Arora SK, Wagle DS. Studies on growth, structural carbohydrates and phytate in coriander (_Coriandrum sativum_) during seed development. *J. Sci. Food Agric.* 54, 43–46 (1986).

109 Koul A, Abraham SK. Intake of saffron reduces γ-radiation-induced genotoxicity and oxidative stress in mice. *Toxicol. Mech. Methods* 15, 1–24 (2017).

110 Melo EA, Bion FM, Filho JM, Guerra NB. _In vivo_ antioxidant effect of aqueous and etheric coriander (_Coriandrum sativum_ L.) extracts. *Eur. J. Lipid. Sci. Technol.* 105, 483–487 (2003).

111 Himeno H, Sano K. Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. *Agric. Biol. Chem.* 51, 2395–2400 (1987).

112 Rodel W, Petrzik M. Analysis of the volatile components of saffron. *J. High Resolut. Chromatogr.* 14, 771–774 (1991).

113 Himeno H, Sano K. Synthesis of crocetin glycosyl esters by high-performance liquid chromatography with photodiode-array detection. *J. Chromatogr. A* 664(1), 55–61 (1994).

114 Zargari A. _Radioprotection by medicinal aromatic plants Review_. Tehran University Press, Tehran, Iran (1990).

115 Shrivastava R, Ahmed H, Dixit RK, Dharamveer, Saraf SA. _Crocus sativus_ L.: a comprehensive review. *Pharmacogn. Rev.* 4(8), 200–208 (2010).

116 Pashley S, Sharbatloge U, Upadhye D et al. Antioxidant, anticlastogenic and radioprotective effect of _Colesus aromaticus_ on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. *Mutagenesis* 21(4), 237–242 (2006).

117 Hwang E, Lee DG, Park SH, Oh MS, Kim SY. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression. *J. Med. Food.* 17(9), 985–995 (2014).

118 Zarghami NS, Heinz DE. Monoterpene aldehydes and isophorone-related compounds of saffron. *Phytochemistry* 10(11), 2755–2761 (1971).

119 Himeno H, Sano K. Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. *Agric. Biol. Chem.* 51, 2395–2400 (1987).

120 Zargari A. _Radioprotection by medicinal aromatic plants Review_. Tehran University Press, Tehran, Iran (1990).

121 Koul A, Abraham SK. Intake of saffron reduces γ-radiation-induced genotoxicity and oxidative stress in mice. *Toxicol. Mech. Methods* 15, 1–24 (2017).

122 Ammon HP, Wahl MA. Pharmacology of _Crocus sativus_. *Pharmacogn. Rev.* 4(8), 200–208 (2010).

123 Pfander H, Rychener M. Separation of crocetin glycosyl esters by high-performance liquid chromatography. *J. Chromatogr.* 234, 443–447 (1982).

124 Himeno H, Sano K. Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. *Agric. Biol. Chem.* 51, 2395–2400 (1987).

125 Hwang E, Lee DG, Park SH, Oh MS, Kim SY. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression. *J. Med. Food.* 17(9), 985–995 (2014).

126 Shafighahi N, Hedayati M, Hosseinimehr SJ. Protective effects of curcumin against genotoxicity induced by 131-iodine in human cultured lymphocyte cells. *Phytother. Res.* 10, 106–110 (2014).
Review Samarth, Samarth & Matsumoto

127 Nada AS, Hawas AM, Amin N et al. Radioprotective effect of Curcuma longa extract on γ-irradiation-induced oxidative stress in rats. Can. J. Physiol. Pharmacol. 90(4), 415–423 (2012).

128 Kumar S, Dwivedi S, Kukreja AK, Sharma JR, Bagchi GD. Cymbopogon: The Aromatic Grass Monograph. Central Institute of Medicinal and Aromatic Plants, Lucknow, India (2000).

129 Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2(1), 3–8 (2011).

130 Abegaz B, Yohanne PG, Diete KR. Constituents of the essential oil of Ethiopian Cymbopogon citratus stapf. J. Nat. Prod. 146, 423–426 (1983).

131 Sare J, Scheffer JJ, Baerheim SA. Composition of the essential oil of Cymbopogon citratus (DC.) Stapf cultivated in Turkey. Sci. Pharm. 51, 58–65 (1983).

132 T rease GE. A Textbook of Pharmacognosy (9th Edition). W.B Saunders, London, UK (1996).

133 Ming L, Figueredo R, Machado S, Andrade R. Yield of essential oil of and citral content in different parts of lemon grass leaves (Cymbopogon citratus (DC.) Stapf.) Poaceae. In: Proceedings of the International Symposium on Medicinal and Aromatic Plants. Acta Hort. Craker LE, Nolan L, Shetty K (Eds). MA, USA (1996).

134 Rauber S, Gutertres SS, Schapoval EE. LC determination of citral in Cymbopogon citratus volatile oil. J. Pharm. Biomed. Anal. 37, 597–601 (2005).

135 Figuerinha A, Paranhos A, Perez-Alonso JJ, Santos-Buelga C, Batista MT. Cymbopogon citratus leaves: characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 110, 718–728 (2008).

136 Kanatt SR, Chawla SP, Sharma A. Antioxidant and radio-protective activities of lemon grass and star anise extracts. Food Bioci. 6, 24–30 (2014).

137 Jamal A, Javed K, Aslam M, Jafri MA. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J. Ethnomed. 103(2), 149–153 (2006).

138 Dhuley JN. Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom (Amomum subulatum) seeds in rats fed high fat diet. Ind. J. Exp. Biol. 37(3), 328–342 (1999).

139 Lawrence BM. Major tropical spices – cardamom (Elettaria cardamomum). In: Hagers Handbuch der pharmazeutischen Praxis. von Bruchhausen F (Ed.). Allured Publishers, IL, USA (1978).

140 Korikanthimath VS, Mulge R, Zachariah TJ. Variations in essential oil constituents in high yielding selections of cardamom. J. Adv. Pharm. Technol. Res. 2(1), 3–8 (2011).

141 Darwish MM, Abd El Azime AS. Role of cardamom (Elettaria cardamomum) related bacteria. Afr. J. Microbiol. Res. 4(4), 309–313 (2010).

142 Yang CH, Chang FR, Chang HW, Wang SM, Hsieh MC, Chuang LY. Investigation of the antioxidant activity of lavender essential oil isolated from Lavandula angostifolia Mill. J. Med. Plants Res. 6, 314–324 (2012).

143 Shellie R, Mondello L, Marriot P, Dugo G. Characterisation of lavender essential oils by using gas chromatography–mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J. Chromatogr. 970, 225–234 (2002).

144 Lu H, Li H, Li XL, Zhou AG. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis related bacteria. Afr. J. Microbiol. Res. 4(4), 309–313 (2010).

145 Karamalakova Y, Sharma J, Nikolova G. Studies on antioxidant properties before and after UV- and γ-irradiation of Bulgarian lavender essential oil isolated from Lavandula angustifolia Mill. Biotechnol. Biotechnol. Equip. 27(3), 3861–3865 (2013).

146 Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera indica (Mango). Pharmacogn. Res. 4(7), 42–48 (2010).

147 Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol. 71, 23–43 (2000).

148 Shetty K (Ed.). MA, USA (1996).

149 Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol. 71, 23–43 (2000).

150 Anonymous. The Wealth of India: Raw Materials VI. Publications and Information Directorate, C.S.I.R, New Delhi, India (1962).

151 Triantaphyllou K, Blekas G, Boskou D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr. 52, 313–317 (2001).

152 Elnastas M, Dermirsas I, Isildak O, Aboul-Enein H. Antioxidant activity of S-carvone isolated from spearmint (Mentha spicata L. Fam Lamiaceae). J. Liquid Chromatogr. Relat. Technol. 29, 1465–1475 (2006).

153 Samarth RM, Goyal PK, Kumar A. Modulation of serum phosphatases activity in Swiss albino mice against gamma irradiation by Mentha piperita (Linn.). Phytother. Res. 16, 586–589 (2002).
154 Samarth RM, Goyal PK, Kumar A. Protection of Swiss albino mice against whole-body gamma irradiation by *Mentha piperita* (Linn.). *Phytosei. Res.* 18, 546–550 (2004).

155 Samarth RM, Kumar A. *Mentha piperita* (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. *Indian J. Exp. Biol.* 41, 229–237 (2003).

156 Samarth RM, Saini MR, Mahawar J, Dhaka A, Kumar A. *Mentha piperita* (Linn.) leaf extract provides protection against radiation induced alterations in the intestinal mucosa of Swiss albino mice. *Indian J. Exp. Biol.* 40, 1245–1249 (2002).

157 Samarth RM. Protection against radiation induced hematopoietic damage in bone marrow of Swiss albino mice by *Mentha piperita* (Linn.). *J. Radiat. Res.* 48, 523–528 (2007).

158 Samarth RM, Samarth M. Protection against radiation induced testicular damage in Swiss albino mice by *Mentha piperita* (Linn.). *Basic Clin. Pharmacol. Toxicol.* 104, 329–334 (2009).

159 Saryavari GV, Gupta AK, Tandon N. Medicinal plants of India. *Indian Council of Medicinal Research.* Cambridge Printing Works, Cambridge, UK (1987).

160 Kureel SP, Kapil RS, Popli SP. Terpenoid alkaloids from *Murraya koenigii* Spreng.-II. The constitution of cyclohamaminibine, bicyclomahaminibine & mahaminibidine. *Tetrahedron Lett.* 44, 3857–3862 (1969).

161 Narasimhan NS, Paradkar MV, Chitguppi VP, Kelkar SL. Alkaloids of *Murraya koenigii*: structures of mahaminibine, koenimbine, -mahanine, koenine, koenigne, koenidine & + isomahaminibine. *Ind. J. Chem.* 13, 993–999 (1975).

162 Prajapati ND, Purohit SS, Sharma AK, Kumar T. *A Hand book of Medicinal Plants*, (1st Edition). Agrobios, Jodhpur, India (2003).

163 Kumaravelu P, Subramanyam S, Dakshinmurthy DP, Devraj NS. The antioxidant effect of eugenol on carbon tetrachloride induced erythrocyte damage in rats. *J. Nat. Biochem.* 7, 23–28 (1996).

164 Srivastava S, Gupta MM, Tripathi AK, Tripathi AK. Insecticidal activity of *Myristicin* from *Piper nigrum* (L.) on cellular antioxidants in Swiss albino mice. *J. Pharm. Res.* 2(3), 495–501 (2009).

165 Kumaravelu P, Subramanyam S, Dakshinmurthy DP, Devraj NS. The antioxidant effect of eugenol on carbon tetrachloride induced erythrocyte damage in rats. *J. Nutr. Biochem.* 22, 185–190 (2001).

166 Eklund PC, Langvik OK, Warna JP, Willfor SM, Sjoholm RE. Chemical studies on antioxidant mechanism and free radical scavenging properties of Lignans. *Org. Biomol. Chem.* 3, 3356–3347 (2005).

167 Sharma M, Kumar M. Radioprotection of Swiss albino mice by *Myristica fragrans* houtt. *J. Radiat. Res.* 48(2), 135–141 (2007).

168 Khare CP. *Encyclopedia of Indian Medicinal Plants.* Springer-Verlag Berlin Heidelberg, NY, USA (2004).

169 Goreja WG, Black Seed: *Natur's Miracle Remedy*. Amazing Herbs Press, NY, USA (2003).

170 Sharma PC, Yelne MB, Dennis TJ. *Database on Medicinal Plants Used in Ayurveda*. New Delhi, India (2005).

171 Ahmad A, Husain A, Mujeeb M et al. A review on therapeutic potential of *Nigella sativa*: a miracle herb. *Asian Pac. J. Trop. Biomed.* 3(5), 337–352 (2013).

172 Rastogi L, Ferro S, Pandey BN, Jagtap A, Mishra KP. Protection against radiation-induced oxidative damage by an ethanolic extract of *Nigella sativa L.* *Int. J. Radiat. Biol.* 86(9), 719–731 (2010).

173 Assayed ME. Radioprotective effects of black seed (*Nigella sativa*) oil against hemopoietic damage and immunosuppression in gamma-irradiated rats. *Egypt. J. Exp. Biol.* (Zool.) 11(2), 185–192 (2015).

174 Sharafeldin KM. The physiological impact of ginger, *Zingiber officinale* and black seed oil, *Nigella sativa* L. as medicinal plants in gamma irradiated rats. *Pharm. Biol.* 50, 7–13 (2012).

175 Cohen MM. *Tulsi-Ocimum sanctum*: a herb for all reasons. *J. Ayurveda Integ. Med.* 5(4), 251–259 (2014).

176 Bast F, Rani P, Meena D. Chloroplast DNA phylogeography of holy basil, *Ocimum tenuiflorum* (Linn) and its cultures. *J. Pharm. Res.* 7, 7–13 (2000).

177 Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from *Ocimum sanctum* Linn. *Phytomedicine* 7, 7–13 (2000).

178 Jaggi RK, Madaan R, Singh B. Anticonvulsant potential of holy basil, *Ocimum sanctum* Linn and its cultures. *Ind. J. Exp. Biol.* 41, 1329–1333 (2003).

179 Samarth RM, Goyal PK, Kumar A. Protection of Swiss albino mice against whole-body gamma irradiation by *Mentha piperita* (Linn.). *Physiobeta. Res.* 18, 546–550 (2004).

180 Samarth RM, Kumar A. *Mentha piperita* (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. *Indian J. Exp. Biol.* 41, 229–237 (2003).

181 Samarth RM, Saini MR, Mahawar J, Dhaka A, Kumar A. *Mentha piperita* (Linn.) leaf extract provides protection against radiation induced alterations in the intestinal mucosa of Swiss albino mice. *Indian J. Exp. Biol.* 40, 1245–1249 (2002).

182 Uma Devi P. Radioprotective, anticarcinogenic and antioxidant properties of the Indian holy basil, *Ocimum sanctum* (Tulasi). *Ind. J. Exp. Biol.* 39(3), 185–190 (2001).
Review Samarth, Samarth & Matsumoto

183 Skoula M, Gotsiou P, Naxakis G, Johnson BC. A chemosystematic investigation on the mono-and sesquiterpenoids in the genus Origanum (Labiatae). Phytochemistry 52, 649–657 (1999).
184 Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49, 4168–4170 (2001).
185 Arami S, Ahmadi A, Haeri SA. The radioprotective effects of Origanum vulgare extract against genotoxicity induced by (131)I in human blood lymphocyte. Cancer Biother. Radiopharm. 28(3), 201–206 (2013).
186 Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4), 353–356 (1998).
187 Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4), 353–356 (1998).
188 Ganasoundari A, Zare SM, Uma Devi P. Modification of bone marrow radiosensitivity by medicinal plant extracts. J. Agric. Food Chem. 54, 1451–1455 (2006).
189 Parmar VS, Jain SC, Bisht KS et al. Phytochemistry of the genus Piper. Phytochemistry 46, 597–673 (1997).
190 Parmar VS, Jain SC, Gupta S et al. Polyphenols and alkaloids from Piper species. Phytochemistry 49, 1069–1078 (1998).
191 Santos PRD, Moreira DL, Guimaraes EF, Kaplan MAC. Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry 58, 547–551 (2001).
192 Facundo VA, Silveira ASP, Morais SM. Constituents of Piper alata bacum Trel & Yuncker (Piperaceae). Biochem. Syst. Ecol. 33, 753–756 (2005).
193 Sunila ES, Kuttan G. Protective effect of Piper longum fruit ethanolic extract on radiation induced damages in mice: a preliminary study. Fitoterapia 76(7–8), 649–655 (2005).
194 Chadha VR. The Wealth of India. Vol. 8. Indian Council for Scientific and Industrial Research. New Delhi, India (1985).
195 Kritikar RK, Basu DB. Indian Medicinal Plants. Jaypryed, Delhi, India (1975).
196 Harley RM, Atkins S, Budantsev AL et al. Comparative biochemistry of the flavonoids IV: correlations between chemistry, pollen morphology and systematics in the family plumbaginaceae. Phytochemistry 6(10), 1415–1428 (1967).
197 Dinda B, Hajra AK, Das SK. Chemical constituents of Plumbago indica roots. Ind. J. Chem. 37B, 672–675 (1998).
198 Dinda B, Das SK, Hajra AK et al. Chemical constituents of Plumbago indica roots and reactions of plumbagin: part II. Ind. J. Chem. 38B, 577–582 (1999).
199 Ganasoundari A, Zare SM, Uma Devi P. Modification of bone marrow radiosensitivity by medicinal plant extracts. J. Agric. Food Chem. 54(6), 2064–2068 (2006).
200 Kobayashi K, Morita K, Matsumoto T. The Families and Genera of Vascular Plants, Lamiales. Vol. VII. Kluwer Academic Publishers, Amsterdam, the Netherlands (2000).
201 Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49, 4168–4170 (2001).
202 Parmar VS, Jain SC, Gupta S et al. Polyphenols and alkaloids from Piper species. Phytochemistry 49, 1069–1078 (1998).
203 Soyal NN, Abd El-Azime A Sh. Salvia officinalis L. (Sage) ameliorates radiation-induced oxidative brain damage in rats. Arab. J. Nucl. Sci. Appl. 46(4), 297–304 (2013).
204 El-Feky AM, Aboulthanwa WM. Phytochemical and biochemical studies of Sage (Salvia officinalis L.) UK J. Pharm. Bioci. 4(5), 56–62 (2016).
205 Schmid R. A resolution of the Eugenia syzygium controversy (Myrtaceae). Am. J. Bot. 59(4), 423–436 (1972).
206 Harley RM, Atkins S, Budantsev AL et al. Comparative biochemistry of the flavonoids IV: correlations between chemistry, pollen morphology and systematics in the family plumbaginaceae. Phytochemistry 6(10), 1415–1428 (1967).
207 Schmid R. A resolution of the Eugenia syzygium controversy (Myrtaceae). Am. J. Bot. 59(4), 423–436 (1972).
208 Babovic N, Djilas S, Jadranin M et al. Antioxidant amides from Polyphenols and alkaloids from Piperaceae. Phytochemistry 46, 597–673 (1997).
209 Kotb DF. Medicinal plants in Libya. Arab Encyclopedia House, Tripoli, Libya (1985).
210 Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49, 4168–4170 (2001).
211 Facundo VA, Silveira ASP, Morais SM. Constituents of Piper alata bacum Trel & Yuncker (Piperaceae). Biochem. Syst. Ecol. 33, 753–756 (2005).
212 Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49, 4168–4170 (2001).
213 Nadkarni KM. Indian Materia Medica. (3rd Edition). Popular Prakashan, Bombay, India (1976).
214 Kapoor LD. CRC Handbook of Ayurvedic Medicinal Plants. CRC Press, FL, USA (1990).
215 Koch C, Reichling J, Schneele J. Inhibitory effect of essential oils against herpes simplex virus type-2. J. Supercrit. Fluids 24, 57–76 (2002).
216 Jeena K, Liju VB, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
217 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006).
218 Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010).
219 Asensi-Fabado MA, Munne-Segura S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant. Sci. 15, 582–592 (2010).
220 Jeena K, Liju VB, Ramanath V, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
221 Katoch O, Kaushik S, Kumar MSY, Agrawala PK, Misra K. Radioprotective property of an aqueous extract from DUNAL, a main medicinal plant in ayurveda. Indian J. Exp. Biol. 48(3), 289–293 (2010).
222 Sah SP, Mathela CM, Chopra K. Elucidation of possible mechanism of analgesic action of Valeriana wallichii D C. (Patchouli alcohol) in experimental animal models. Ind. J. Exp. Biol. 50, 1371–1375 (2007).
223 Sangwan RS, Chaurasiya ND, Lal P. Studies on essential oils, Part 42: chemical, antifungal, antimicrobial and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Frag. J. 20, 1–6 (2005).
224 Koch C, Reichling J, Schneele J. Inhibitory effect of essential oils against herpes simplex virus type-2. Phytochemistry 71, 71–80 (2008).
225 Kotroch O, Kauhiski S, Kumar MSY, Agarwala PK, Mista K. Radioprotective property of an aqueous extract from Valeriana wallichii. J. Pharm. Bioallied Sci. 4(4), 327–332 (2012).
226 Sangwan RS, Chaurasiya ND, Lal P et al. Withanolide A Biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera DUNAL), a main medicinal plant in ayurveda. Chem. Pharm. Bull. 55, 1371–1375 (2007).
227 Chen ZL, Wang BD, Chen MQ. Steroidal bitter principles from T. acca plantagenia structures of taccalonolide A and B. Tetrahedron Lett. 28, 1673–1675 (1987).
228 Rahman A, Choudhary MI, Yousaif M et al. Five new withanolides from Withania coagulans. Heterocycles 48, 1801–1811 (1998).
229 Udayakumar R, Sampath K, Ayyappan V et al. Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan induced diabetic rats. Plant Med. Nutr. 65, 91–98 (2010).
230 Hosny Mansour H, Farouk Hafer H. Protective effect of Withania somnifera against radiation-induced hepatotoxicity in rats. Ecotoxicol. Environ. Saf. 80, 14–19 (2012).
231 Nada AS. Efficacy of clove oil in modulating radiation-induced some biochemical disorders in male rats. J. Rad. Res. Appl. Sci. 4(2), 629–647 (2011).
232 Chaieb K, Hajlaoui H, Zmantar T et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzygium aromaticum L. Myrtaceae): a short review. Phytother. Res. 21(6), 501–560 (2007).
233 Warrier P, Nambiar V, Ramankutty C. Indian Medical Plants, Vol. 5. Orient Longman Ltd, Hyderabad, India, (1996).
234 Sah SP, Mathela CM, Chopra K. Elucidation of possible mechanism of analgesic action of Valeriana wallichii D C. (Patchouli alcohol) in experimental animal models. Ind. J. Exp. Biol. 50, 1371–1375 (2010).
235 Warrier P, Nambiar V, Ramankutty C. Indian Medical Plants, Vol. 5. Orient Longman Ltd, Hyderabad, India, (1996).
236 Jeena K, Liju VB, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
237 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006).
238 Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010).
239 Asensi-Fabado MA, Munne-Segura S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant. Sci. 15, 582–592 (2010).
240 Jeena K, Liju VB, Ramanath V, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
241 Katoch O, Kaushik S, Kumar MSY, Agrawala PK, Misra K. Radioprotective property of an aqueous extract from DUNAL, a main medicinal plant in ayurveda. Indian J. Exp. Biol. 48(3), 289–293 (2010).
242 Sah SP, Mathela CM, Chopra K. Elucidation of possible mechanism of analgesic action of Valeriana wallichii D C. (Patchouli alcohol) in experimental animal models. Ind. J. Exp. Biol. 50, 1371–1375 (2010).
243 Warrier P, Nambiar V, Ramankutty C. Indian Medical Plants, Vol. 5. Orient Longman Ltd, Hyderabad, India, (1996).
244 Jeena K, Liju VB, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
245 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006).
246 Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010).
247 Asensi-Fabado MA, Munne-Segura S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant. Sci. 15, 582–592 (2010).
248 Jeena K, Liju VB, Ramanath V, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
249 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006).
250 Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010).
251 Asensi-Fabado MA, Munne-Segura S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant. Sci. 15, 582–592 (2010).
252 Jeena K, Liju VB, Ramanath V, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
253 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006).
242 Kelloff GJ, Boone CW, Steele VE, Crowell JA, Luber R, Sigman CC. Progress in cancer chemoprevention: perspectives on agent selection and short-term clinical intervention trials. Cancer Res. 54(7 Suppl.), S2015–S2024 (1994).

243 Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants, Volume 2. Central Drug Research Institute and National Institute of Science Communication, New Delhi, India (1980).

244 Samarth RM, Kumar A. Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.). J. Radiat. Res. 44, 101–109 (2003).