Looking at Halophytic Adaptation to High Salinity Through Genomics Landscape

G.C. Nikalje¹,2, T.D. Nikam¹ and P. Suprasanna²,*

¹Department of Botany, Savitribai Phule Pune University, Pune 411 007, India; ²Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Abstract: Soil salinity is an important stress factor that limits plant growth and productivity. For a given plant species, it is critical to sense and respond to salt stimuli followed by activation of multitude of mechanisms for plants to survive. Halophytes, the wonders of saline soils, have demonstrated ability to withstand and reproduce in at least 200 mM NaCl concentration, which makes them an ideal system to study mechanism of salt adaptation for imparting salt tolerance in glycophytes. Halophytes and salt sensitive glycophytes adapt different defense strategies towards salinity stress. These responses in halophytes are modulated by a well orchestrated network of signaling pathways, including calcium signaling, reactive oxygen species and phytohormones. Moreover, constitutive expression of salt stress response related genes, which is only salt inducible in glycophytes, maintains salt tolerance traits in halophytes. The focus of this review is on the adaptive considerations of halophytes through the genomics approaches from the point of view of sensing and signaling components involved in mediating plant responses to salinity.

Keywords: Halophytes, Salinity, Redox homeostasis, Genomics, miRNAs, Hormonal regulation.

1. INTRODUCTION

Soil salinity imposes restrictions on growth and yield of crop plants. Salinity affects nearly 20% of agricultural lands [1]. Plant species are diverse in their ability to tolerate saline soils. While some plants can tolerate high salinity, other plants are sensitive to salinity. Halophytes constituting the native flora of the saline soil and comprising ~1% of total world’s flora [2] are endowed with ability to attain maximum growth and complete their life cycle in 200 mM or more NaCl concentration [3, 4]. Halophytes employ some specific set of traits/strategies over glycophytes which helps them to survive under adverse environmental conditions (Table 1). In general, Effects of salinity on plants include osmotic stress, ion toxicity, nutritional imbalance, oxidative stress, metabolic perturbance, membrane disorganization, genotoxicity, reduction of cell division and expansion [5]. Most of the glycophytes exclude salt ions or prevent uptake of salt ions. In contrast, halophytic plants follow three basic strategies, such as salt exclusion (plant selectively excludes toxic salt ions ex. Rhizophora sp.), salt accumulation (excess salt ions sequestered into vacuoles ex. Sesuvium portulacatum) and salt excretion (salt is taken up by the roots and excluded from leaves with the help of salt hairs, salt glands or salt bladders ex. Avicennia spp.) [6, 7]. Severe salt stress imposes osmotic stress so that plants unable to take up water and hence loose turgor. Under ionic stress, toxic salt ions are taken up by roots and transported towards aerial parts. These salt ions are accumulated in leaf cells, mostly in mature leaves which prevents ion toxicity to young and expanding leaves. The salt induced effects and plants responses are depicted in Fig. (1).

The maintenance of high K⁺/Na⁺ ratio in the cytoplasm and sequestration of Na⁺ and Cl⁻ in the vacuole is central to tolerance ability in halophytes. In this regard, it is important to consider the role of ion transporters such as vacuolar Na⁺/H⁺ exchangers (NHX) or potassium transporters. It is also vital, hence, to prevent potassium loss under saline conditions. Halophytes require some amount of sodium to attain maximum growth, because sodium is one of the cheap sources of osmolytes which help in maintaining osmoticum [8]. This is a low cost strategy of halophytes because it consumes very less energy (only 3.5 ATP) as compared to proline and glycine betaine which costs almost 41 and 50 ATP respectively [9]. At optimum salt concentration, halophytes rely on sodium for osmotic balance and allocate more energy and carbon resources towards normal functioning and growth of halophytes [10, 11]. Zhu [12] opined that halophytes and glycophytes possess almost similar set of strategies for salt tolerance but halophytes respond better to salinity in terms of ability to efficiently utilize energy and carbon resources up to certain level of stress [13]. The current progress on redox controls [14] indicates that, the plasma membrane is central to perception and transduction

*Address correspondence to this author at the Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Tel: 0091 22 25595423/3870; Fax: 0091 22 25505151; E-mail: pennaa888@yahoo.com
Table 1. Strategies employed by halophytes and glycophytes [87].

Strategy	Glycophyte	Halophyte	References
ROS homeostasis	After 72 hrs treatment, no reduction in ROS load in Arabidopsis	Reduced ROS load as early 4 hr of salt treatment in *Cakile maritima*	[81]
Antioxidant enzymes activity	Stress induced	Constitutive expression	[82]
Accumulation of reduced ascorbate and glutathione	Low accumulation in *Solanum lycopersicum*	High accumulation of *Lycopersicon pennellii*	[83]
Osmolytes accumulation	Low basal level and stress inducible in *Arabidopsis thaliana*	High basal level and high accumulation under stress in *T. salsuginea, L. crassifolium, C. maritima*	[22, 81, 84, 85]
Osmotic adjustment using Sodium ions	-----	*Tecticornia* contains 2M intracellular Na+ for osmotic adjustment	[86]
Post translational modifications	Not efficient	Highly efficient	[8]
Changes in gene sequence	Less complex	Complex with presence of extra transposons and intergenic sequences	[88]
Gene duplication	Stress induced expression of NHX8 homologs in *Arabidopsis*	Constitutive expression of NHX8 homologs in *Thellungiella* enhances stress tolerance	[88]
CBL10 orthologs single copy in *Arabidopsis*	Three copies of CBL10 orthologs in *T. parvula*	[56]	
Promoter Activities	Low expression of *SOS1* and *VATD* promoters in *Arabidopsis*	Fivefold and two fold high expression of *SOS1* and *VATD* promoters in *T. salsuginea*	[89]

Fig. (1). General overview of salt induced effects and plant response: Plants face osmotic and ionic stress under salt stress which enhances ROS production and subsequent oxidation of biomolecules, causing irreversible damage to plants. ROS also acts as stress indicator and its enhanced concentration activates downstream processes, like increased antioxidant activity, osmolytes which scavenges ROS and plants show normal growth. In ROS signaling, hormones and calcium play an important role. Some of the halophytes switch their carbon assimilation mode from C3 to C4 or CAM and vice versa. of environmental change through redox signals; apoplastic redox changes modulate interactions between receptor proteins containing oxidizable thiols in the membrane surface; presence of a steep redox gradient across the plasma membrane, and calcium release and aquaporin or peroxiporin function are triggered through the membrane channel activity [14].
Plant responses to environmental extremities are coordinated via various signaling and stress-response networks, and cross-talk among these pathways. More importantly, the perception of changes in the environment and induction of an adaptive response is critical to halophytes and salt tolerant glycophytes. Thus adaptive responses in halophytes are modulated by well coordinated signaling pathways, including calcium signaling, reactive oxygen species and phytohormones. Genome and transcriptome analyses in halophytes by using advanced genomics technologies like Next Generation Sequencing (NGS) have unraveled several pathways and networks associated with the salt stress responses of extremophiles [15, 16]. Understanding the mechanism of salt tolerance at molecular, physiological or whole plant level and screening of crops which can perform on saline soils is absolutely necessary to realize the promise of crop cultivation in saline soils [17]. This has necessitated studies on the naturally tolerant plants (halophytes) or salt tolerant crop plants [18, 19]. The focus of this review is on the adaptive considerations of halophytes through the genomics approaches from the point of view of sensing and signaling components involved in mediating plant responses to salinity (Fig. 2).

2. GENOMICS LANDSCAPE

Salinity tolerance is a quantitative trait and several genetic circuits are responsible for achieving salt tolerance. Significant progress has been made in the identification of genes and their products, which play an important role in the plant system for overcoming the unfavorable situations of abiotic stresses [20]. A number of studies for the identification and characterization of genes have also been done in halophytes in response to salinity [16]. Comparative genomics has been used to unravel biological significance of genomic regions in halophytes and glycophytes [21] and the information has added to our understanding of Na⁺ transport and mechanism of salt tolerance. It is now well established that most of the salt tolerance related genes express constitutively in halophytes and are stress inducible in glycophytes [22]. Comparative study of DNA sequences with orthologous regions from Arabidopsis and BAC sequences from *Thellungiella salsuginea* [23] revealed extensive sequence conservation and microcolinearity. The results also showed that *T. parvula* segments are distinguished from their *T. salsuginea* counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in *T. parvula*. In *T. halophila*, superoxide dismutase gene (SOD) is present in much higher levels under non stressed conditions and expressed more under salt stressed condition [22]. This gene encodes superoxide dismutase enzyme which is responsible for dismutation of O₂⁻ into H₂O₂. SODs are classified according to their metal cofactor namely, Fe-SOD, Cu/Zn SOD and Mn SOD. Fe-SOD is generally present in higher amount under non stressed condition [24].

![Fig. (2).](image-url) Mechanism of salinity tolerance in halophytes: The excess entry of toxic ions disturbs osmotic balance of plants by causing excess ROS production and oxidative damage. Increased concentration of ions in soil imposes water stress which leads to stomatal closure and low CO₂ availability to photosynthetic machinery which reduces ETC. This decreases NADP/NADPH ratio and generates ROS in Chloroplast, mitochondria, peroxisomes and apoplastic space. In defense, halophytes increase enzymatic (SOD, CAT, APX, GR, etc.) and non enzymatic (Ascorbate, Glutathione) antioxidants and osmolytes. Also, enhanced expression of salt responsive genes and transcription factors (TFs), is observed. The excessive toxic ions are sequestered in vacuoles. This is an energy dependent process and utilizes energy in the form of ATP which reduces the ATP/ADP ratio. Effective balance between oxidative stress, antioxidant generation and cellular energetics makes halophytes more salt tolerant.
The SOS complex in *T. salsuginea* is a general feature and the importance of *SOS1* in stress tolerance was validated using RNA interference to generate lines with reduced *SOS1* transcript and protein abundances [25]. An account of different gene expression of some of the genes which are stress inducible in glycophytes while constitutively expressed in halophytes in context of oxidative stress has been shown to be the prime mechanism. *SOS* and *NHX* genes are Na⁺/H⁺ antiporters which maintain low cytoplasmic ion content to minimize salt toxicity. Both the antiporters are membrane bound, *NHX* present in tonoplast to pump toxic ions into vacuole and *SOS* is located at plasma membrane to exclude ions into apoplast [26]. Three genes are involved in SOS pathway; *SOS3* (Calcium sensor), *SOS2* (serine/threonine kinase) and *SOS1* (Na⁺/H⁺ antiporter). Under stress condition, the increase in Ca²⁺ content results in the activation of CBL interacting protein kinases. These proteins play a key role in signal transduction to control sodium influx and efflux [27]. Qiu et al. [28] have shown increased activity of Na⁺/H⁺ antiporter under salt stress. The *SOS4* gene encodes a pyridoxal kinase which is involved in the biosynthesis of pyridoxal-5-phosphate. It is an active form of vitamin B6. This pyridoxal kinase is important for regulation of Na⁺ and K⁺ homeostasis in plants [29]. The *SOS5* is a putative cell surface adhesion protein which is essential for normal cell expansion. Under salt stress, it helps in the maintenance of cell wall integrity and architecture [30].

3. OSMOTIC ADJUSTMENT

Salinity stress often results in osmotic disturbance which affects cellular, physiological and molecular components. For osmotic adjustment, halophytes synthesize metabolites, such as proline, glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methyl-myoinositol, and polyamines [31]. Proline is a scavenger of singlet oxygen, hydrogen peroxide and hydroxyl radicals and protects PSI and PSII. In PSI, it maintains low NADPH to NADP⁺ ratio, stabilizes mitochondrial respiration and decreases toxic effects of singlet oxygen and hydroxyl ions and prevents programmed cell death during stress. The beneficial effects of proline have been observed in many halophytes like *Mesembryanthemum crystallinum*, *Sesuvium portulacastrum*, *Thellungiella salsuginea* and *Lepidium crassifolium* [7, 23, 32]. The Δ1-pyrroline-5-carboxylate synthetase (PS5CS) and Proline dehydrogenase (PDH) genes are involved in synthesis and degradation of proline. Glycine betaine is a compatible solute that helps plants in osmotic adjustment. During abiotic stress, it prevents dissociation of regulatory extrinsic proteins and there by stabilizes structure and function of PSI (an oxygen evolving complex). Halophytes are hyper accumulators of GB (>90 μmol dry weight) [3]. The *Betaine aldehyde dehydrogenase* (BADH) and *Choline Monoxygenase* (CMO) genes are responsible for synthesis of glycine betaine. The transcripts of *LeBDH1*, *LeBDH2* and *CMO* like were highly up regulated under salt stress in a halophyte *Leymus chinen sis* as compared to that of glycophyte *H. vulgare*. In *Savia fruticosa*, *S. portulacastrum* and many other halophytes it shows constitutive expression [7, 33]. In addition to proline and glycine betaine, it is reported that polyols like sorbitol, mannitol, myoinositol, ononitol and pinitol accumulate under environmental stress. These play significant roles in osmotic adjustment, scavenging of most toxic ROS (•OH) and also in signaling and protection of cellular structures by interaction with membranes, proteins and enzymes [34]. In *M. crystallinum*, pinitol showed two fold scavenging of stable free radical 1,1-diphenyl-2-picrylhydrazl than *Lactuca sativa* [35]. *Myoinositol-1-phosphate synthase* gene encodes the L-myoo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) enzyme. This enzyme catalyzes conversion of glucose -6-phosphate to inositol involving NAD⁺ and dephosphorylation. It facilitates uptake and long distance transport of sodium in *Mesembryanthemum* [36]. Myo-inositol is most abundant isomer of inositol which plays an important role in protection from oxidative stress and in signaling [37].

4. SIGNALING PATHWAYS

Signaling cascades that regulate different downstream pathways are crucial to plant stress tolerance. ROS plays a contrasting role in living organisms depending on the ability of organisms to tightly regulate their concentration in cell. Besides their damaging effects, ROS acts as signaling molecules which can sense, percept and transduce the stress signal to activate or trigger downstream gene expression and antioxidative machinery (Fig. 3). ROS signaling mechanism deals with Ca²⁺ and associated proteins (such as calcineurin, calmodulin, GTP binding proteins), phospholipid signaling, MAPKs activation and abscisic acid [38]. Under normal conditions, free calcium levels are extremely low in different organelles and cytoplasm [39] which upon stress sensing, rapidly rise by factor of 10 to 20 within seconds and this elevation is decoded by calcium sensor proteins like CalM, CMLs, CDPKs, CBL/CIPKs which result in stress specific physiological response [40]. Calcineurin B-Like-Interacting Protein Kinase (CIPK) is a kind of plant-specific regulatory protein which interacts with calcineurin B-like (CBL) to form complex and as a signal transducer CIPK interacts with downstream protein, such as *SOS1*, *AKT1* or *RBOHF* to phosphorylate them to regulate their functions [41]. A novel *HbcIPK2*-interacting ferredoxin (*HbCIPK2*) was identified in a halophyte *H. brevisubulatum* by cDNA-AFLP technique and recently it has been shown that *HbcIPK2* could mediate the activities of interacting partners as a signal transducer [42]. Li et al. [43] suggested that *HbcIPK2*-mediated K⁺ homeostasis may be different from the SOS pathway, and could be a new mechanism in conferring salt tolerance.

During salt stress, two salt responsive pathways play important roles in ameliorating salt toxicity in halophytes, namely Salt Overly Sensitive (SOS) Pathway and Mitogen activated Protein Kinase Pathway (MAPK). SOS pathway consists of *SOS3*, *SOS2*, *SOS1* and *SOS4* genes which play a key role in mediating cellular signaling to maintain ion homeostasis under salt stress [44]. This pathway activates with Ca²⁺ spiking in cytoplasm due to accumulation of excessive Na⁺ ions in surrounding cells. *SOS3* perceives this calcium signal and binds with *SOS2*. This complex then activates *SOS1* which cause extrusion of Na⁺ from cytoplasm. The *SOS1* gene is a typical halophytic trait in *T. halophila* [24]. The *SOS1* gene has been shown to be involved in ion efflux to maintain low Na⁺ content in root cells [45]. Oh et al. [24] repressed expression of *SOS1* gene up to 50 % by using RNA interference technique, which resulted in salt toxicity and loss of halophytism in *T. halophila*. Yadav et al. [46]
demonstrated the role of \textit{SOS1} gene from \textit{S. brachiata} in salt tolerance. This gene while encoding a plasma membrane Na$^+$/H$^+$ antiporter also exhibited loading of Na$^+$ to xylem from root and leaf tissues in over expressing tobacco transgenic lines which also showed increased K$^+$ and Ca$^{2+}$ content in root tissue.

Mitogen activated protein kinase pathway is evolutionarily conserved among eukaryotes and is responsible for alteration in several cellular responses under stress conditions. Three MAPK kinases: MAPKKK, MAPKK and MAPK participate in this pathway. Under salt stress, plasma membrane is stimulated and activates MAPKKK cascade via phosphorylation. MAPKKK are serine threonine kinases which activate MAPKK by phosphorylating its two amino acids S/T-X or S/T motifs. MAPKKK again phosphorylates MAPK in threonine and tyrosine at conserved motif. MAPK kinases have ability to phosphorylate many substrates like other kinases and transcription factors (Fig. 3). \textit{SbMAPK} gene was isolated from a halophyte \textit{S. brachiata}, which showed high sequence similarity with MAPK genes from \textit{N. benthamiana} and \textit{L. esculantum}. Their role in dehydration, cold and salt tolerance has already been validated [47].

![Fig. (3). Schematic representation of common genetic pathways involved in salt tolerance mechanism of plants. The membrane bound sensors senses increasing salt concentration and activates the signaling molecules like Ca$^{2+}$, ABA, and ROS. These signaling molecules activate downstream salt responsive genes like CBLs, CIPKs, CDPKs, different transcription factors, membrane bound ATPases, synthesis of osmolytes, antioxidants, activation of SOS and MAPK pathways and finally sequestration of sodium either in to the vacuole or excluded out of the cell.](attachment:image.png)
parison of gene expression profiles of salt tolerance genes in the highly tolerant salt accumulating halophyte *S. dolichostachya* and the taxonomically related glycophytic *Spinacia oleracea*, found that *SOS1* was highly expressed constitutively, with no detectable *HKT1*; 1 expression, suggesting that the constitutive high level of shoot salt accumulation in *S. dolichostachya* is accomplished through enhancement of SOS1-mediated Na(+) xylem loading, in combination with complete suppression of *HKT1*; 1-mediated Na(+) retrieval from the xylem. Using a genome-wide comparison of *A. thaliana* with *T. parvula*, Dassanayake et al. [56] suggested that halophytic behavior had a possible basis of the tandem duplications of genes. In another halophyte, *P. coarctata*, transcriptome analysis based on NGS led to revelation that functionally for its adaptation under high salinity and submergence conditions, the species has genes involved in diverse cellular processes including amino acid biosynthesis, hormone biosynthesis, secondary metabolite biosynthesis, carbohydrate metabolism and cell wall structures [57]. In a dicot halophyte, *R. trigyna*, genes for ion transport and reactive oxygen species scavenging system were shown to be highly expressed under salinity [58]. Extensive sequencing and gene-annotation analysis of *S. europaea* L. shoots under NaCl Treatment provided insights that in this halophyte, genes involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular weight compounds play important role in halophilic mechanisms [59].

6. ROLE OF MicroRNA

MicroRNA plays a dual role in growth and development as well as plant stress tolerance. They regulate gene expression at both transcriptional as well as post-transcriptional levels [60]. In halophytic plant species, there have been few studies on miRNA expression based on Deep sRNA sequencing and high-throughput sRNA sequencing data in *A. marina* [61], *S. europaea* [62], *S. brachiata* [63], *S. maritima* [64], *H. caspica* [65], *O. coarctata* [66] and *T. halophila* [67]. These few halophytes and several glycophytes have elucidated the role of conserved miRNAs and novel miRNAs under salt stress and their regulatory roles in the modulation of several signaling and metabolic pathways. The role of miRNAs in salinity stress and their putative targets are given in Table 2 Feng et al. [62] performed high throughput sequencing to identify salt responsive miRNAs in *S. europaea*. They reported 43 conserved and 13 novel differentially expressed miRNA under salt stress. Out of all the differentially expressed miRNAs Seu-miR160 and Seu-miR5164 targeted two and one ARF genes, respectively and Seu-miR164 targeted NAC TFs. These miRNAs were down regulated under salt treatment and therefore releases miRNA mediated repression of ARF genes and triggers auxin signaling to activate downstream components of various salt tolerance related pathways [62].

Another species of *Salicornia* also studied for identification of salt responsive miRNAs in *S. brachiata* [63]. They found out Sb-miR10 targeted NF-YA transcription factor which is a salt stress responsive and SbmiRNA7 targeted cytchrome P450-like TATA box binding protein which is involved in ROS signaling. This miRNA-Target relationship indicates effective stress perception and signaling playing an important role in salt adaptation mechanism of this halophyte [63]. In *A. marina* miRNAs and their putative targets were identified using high throughput sequencing but the library preparation was done from different plant parts and not under different salt treatments [61] and in *T. halophila* the miRNAs and their respective targets were identified using computational tools [67]. But these miRNAs were not validated under different salt treatments. In *H. caspica*, five miRNAs HemiR160a, HemiR167d-5p, HemiR393b-5p, HemiR529a, HemiR169b were found to be induced by salt stress and negatively regulated their respective targets such as ARF18, ARF8, TIR1 (transport inhibition factor1), SPL (Squamosa promoter binding protein like) and NF-YA (Nuclear factor Y subunit A), respectively. Many of the miRNAs were involved in stress induced pathways, such as auxin signal pathway, MAPK signaling pathway, plant hormone signal transduction, flavonoid biosynthesis, ubiquitin-mediated proteolyis, apoptosis, ABC transporter [65]. In *S. maritima* Gharat and Shaw [64] identified two miRNAs, sma-miR2 and sma-miR5 which showed salt specific expression. These miRNAs showed expression only in salt treatment which might be due to their metabolic regulatory role in saline environments. Their behavior may be mediated by altered expression of some genes, protein modification and production of secondary metabolites which is revealed by miRNA target prediction [64]. In *O. coarctata* [66] seven miRNAs namely oco-miR166e-3p, oco-miR169g, oco-miR169q, oco-miR393a, oco-miR396c, oco-miR202-3p and oco-miR014-3p showed negative correlation with their respective targets and possible salt responsive miRNAs of this species [66]. The miRNAs oco-miR393a, oco-miR396c, oco-miR014-3p targets oxidoreductase, culin family domain containing protein, F-box domain containing protein respectively and down regulated under salt stress. The oco-miR169g, oco-miR202-3p, oco-miR160b targets nuclear transcription factor Y subunit, histone-lysine N- methyltransferase, lysine-9 specific SUVH1 and auxin response factor and were down regulated [66]. These studies established the important role of miRNAs and will provide a new dimension for unraveling salt tolerance mechanism in halophytes.

7. HORMONAL REGULATION

Plant hormones such as abscisic acid, jasmonic acid, ethylene and salicylic acid play a significant role in abiotic stress tolerance mechanism of plants. In halophytes, there is paucity of information about the role of hormones in salt adaptation.

ABA plays an important role in stress perception and during osmotic phase of salt stress. It is accumulated in plant cells and controls stomatal closure and activates the transcription of salt responsive genes [68]. The Regulatory components of ABA-receptor/Pyrabactin resistant Protein/PYR-like (PYR/RCAR/PYL proteins) family proteins acts as ABA receptors; they recognize ABA and bind to group A P2C (type 2C protein phosphatase) molecules. These molecules then
Table 2. Role of miRNAs, their targets in stress response and signaling under salt stress in halophytes.

Halophyte	miRNA Description	Target Gene	Role	References
Avicennia marina	Am-miR159 and Am-miR319, Am-miR160 and Am-miR167, Am-miR164, Am-miR165 and Am-miR166, Am-miR169, Am-miR395, Am-miR398	MYBs, auxin response factor, NAC domain protein, HD-ZIPs transcription factor, Nuclear transcription factor Y, ATP sulfurylase 3, Copper/Zinc Superoxide Dismutase 1	Potassium starvation signaling, Sulphur metabolism, Abiotic stress and hormone signaling, Lipid biosynthesis and transport, Stress responsive, Auxin signaling	[61]
Halostachys caspica	Hca-miR2619b-5p, Hca-miR5077, Hca-miR167d-5p, Hca-miR393b-5p, Hca-miR902c-3p, Hca-miR159a, Hca-miR2867-3p, Hca-miR393b-5p, Hca-miR5077, Hca-miR167d-5p, Hca-miR393b-5p	PAK, ANT, Auxin Responsive factor F, TIR1, MAPK, Heat shock proteins 72, PP5, TIR1 and AFB2 receptor, TIR 1 and AFB 2 receptors	Calcium signaling, Hormonal signaling, MAPK signaling, MAPK signaling, MAPK signaling, Calcium signaling and redox regulation	[65]
Oryza coctata	Oca-miR1432-5p, Oco-miR164d, Oco-miR528-3p, Oco-miR159a, Oco-miR079-3p, Oco-miR087-5p	Calmodulin binding protein, Calmodulin (CAM), Serine/threonine kinase, Heat shock proteins, Cation transporter, Peroxidase (POX)	Calcium signaling, Calcium signaling, MAPK signaling, MAPK signaling, Ion homeostasis, Antioxidant	[66]
Saueda maritima	Sma-miR2, Sma-miR7	4- coumarate-CoA ligase, Auxin responsive factor	Environmental interaction, Auxin signaling	[64]
Salicornia brachiata	Sb-miRNA10, Sb-miRNA6 and Sb-miRNA7, Sb-miRNA9	NF-YA transcription factor, Cytochrome P450-like TATA box binding protein, serine/threonine protein phosphatase	Stress responsive, ROS signaling, ABA signal transduction	[63]
Salicornia europaea	Sea-miR1, Sea-miR8, Sea-miR2, Sea-miR160/ri5, Sea-miR164	NBS-LRR, Heat shock proteins, Kinases, Auxin responsive factor, NAC	Stress response, signaling, Stress response, signaling, Stress response, signaling, Auxin signaling	[62]
release SNF1 related protein kinase 2 by negative regulation to phosphorylate ABA- responsive element- binding transcription factors (ABRE- ABFs). The OPEN STOMATA (OST) gene in the presence of ABA gets activated and phosphorylates SLOW ANION CHANNEL- ASSOCIATED (SAC) anion channel which closes stomata by releasing stomata from guard cells (Reviewed by [69]). This OST gene also interacts with NADPH oxidase which catalyzes ROS production, such as superoxides and hydrogen peroxides. This ROS burst again activates OST gene by inactivating PP2C in a positive feedback loop. The ROS burst and ABA function is interlinked as ABA accumulation decreases with decrease in GSH level in guard cells [70]. Similarly, in a halophyte, *K. caspica*, differential transcriptomics showed up regulation of orthologs of *PYL*, *PP2C* and *SnRK2* genes under salt treatment indicating role of ABA signaling in salt tolerance mechanism of halophytes [42].

Jasmonic acid (JA) is one of the oxidation products of linolenic acid [71]. JA is also involved in stress induced stomatal closure by stimulating Nitrous Oxide (NO) production [72]. It increases cytosolic pH of guard cells which favors ROS production and thus plays role in co-ordination with ABA and ROS signaling to regulate stress induced stomatal movement [73]. In model plant, *Arabidopsis*, ROS level and JA synthesis does not show direct relationship while in the halophytes, *C. maritima* and *T. salsuginea* increased levels of JA are seen. This change may be a result of efficient channeling of linolenic acid oxidation towards synthesis of JA. This may improve oxidative stress response in halophytes.

Ethylene is a gaseous hormone which plays an important role in leaf senescence, fruit ripening, biotic and abiotic stress tolerance. The ethylene responsive transcription factor 1 (ERF1) inhibits superoxide dismutase and peroxidase enzymes and increases ROS production, while ERF6 negatively regulates ROS accumulation and its signaling occurs through MAPK cascade [74]. In two halophytes *C. maritima* and *T. salsuginea* significant accumulation of ACC (precursor molecule of ethylene) was observed under salt stress. In halophytes, the direct link between ROS production and plant hormone is not yet established. But since these may act as signaling agents in stress condition, there must be direct link.

The Salicylic Acid (SA) is a phenolic hormone, involved in various physiological processes during growth, development and stress management [69]. Under stress regime, SA alters cellular redox state by stimulating ROS production and shifts redox towards oxidative stress. It also mediates ROS detoxification via antioxidant action and subsequent restoration of reductive phase [75]. Ca$$^{2+}$$ signaling indirectly mediates ROS mediated regulation of SA signaling. The induction of ICS 1 gene (codes for SA producing enzyme, isochorismate synthase) is associated with calcium dependent kinases and TFs like CBP60, SARD1 and WRKY/8/28/48 which are modulated by calmodulin [76-78]. The SA plays both roles as pro-oxidant as well as antioxidant role in concert with GSH in response to salinity in plants [76]. Accumulation of SA increases GSH redox activity, while its inhibition decreases GSH/GSSG ratio under stress condition [79]. Role of SA in salt tolerance mechanism of halophytes is not very well understood. In the halophyte, *Prosopis strombulifera*, salicylic acid accumulation is correlated with the damaging effect of sulfate anion and low pH on plant growth under salinity stress [80].

CONCLUSION

The inherent salt tolerance ability of halophytes makes them a model for understanding the mechanism of their adaptation to high salinity. The ability to sense and respond to salt stimuli followed by signaling and activation of multitude of stress-protective mechanisms, are critical to halophyte survival in saline environment. The stress defense includes ROS-scavenging machinery, osmolytes and other protective gear. High salinity stress also induces phytohormone synthesis, particularly ABA and regulation of specific gene expression and metabolite synthesis. Besides being generated under stress, ROS also take part in cellular signaling involving Ca$$^{2+}$$ and associated proteins (such as calcinurin, calmodulin, GTP binding proteins), phospholipid signaling and MAPKs activation and abscisic acid. Continued research efforts are required to completely understand these salt loving or preferring plant species. Molecular approaches including genomics and proteomics have provided clues to unravel the genome-wide gene expression, miRNAs and novel, essential proteins under salt stress in halophytes. There has been some success in the use of genes from halophytes to engineer salt tolerance in glycophytes especially crop plants, however, intensive efforts will have to be made to transfer useful genes and evaluate their utility under field conditions. Advances in genomics, whole genome sequencing and comparative genomics will pave the way for the integration of results on genome organization, gene and transcript structures, non coding regulatory RNAs, regulatory mechanisms, biochemical complexity, and hormone- or metabolite-based signaling networks. Such information resource should facilitate the understanding of the genetic and evolutionary processes that enabled halophytic adaptations in saline environment.

LIST OF ABBREVIATIONS

Abbreviation	Description
ABF	Ascaris suum antibacterial factor
ACC	1-aminoacyclohexanol-1-carboxylic acid
ADP	Adenosine diphosphate
AKT	RAC-alpha serine/threonine-protein kinase
ANT	Adenosine nucleoside transporter
AOX	Alternative oxidase
ATAF	Arabidopsis transcription activation factor
CaM	Calmodulin
CAM	Crassulacean Acid Metabolism
CBL	Cnninurin B like
CBP	Calmodulin binding protein
CDPK	Calcium dependant protein kinase
CIPK	CBL-interacting protein kinase
CML	Calmodulin-like proteins
CSD	Superoxide dismutase [Cu-Zn]
CUC	Cup shaped cotyledon
ERF	Ethylene responsive factor
H$$2$$O$_2$	Hydrogen peroxide
ICS	Isochorismate synthase
MAPK	Mitogen activated protein kinase
Myb	Myeloblastosis transcription factor
CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

GN is thankful to Bhabha Atomic Research Centre and Savitribai Phule Pune University collaborative Ph.D programme and Department of Atomic Energy for providing fellowship.

REFERENCES

[1] Food and Agriculture Organization, FAO. Land and plant nutrition management service 2008. Available online at: http://www.fao.org/ag/agl/agll/spush
[2] Rozema, J.; Flowers, T. Ecology. Crops for a salinized world. Science, 2008, 3(5907), 1478-1480.
[3] Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytologist, 2008, 179, 945-963.
[4] Flowers, T.J.; Troke, P.F.; Youssef, A.R. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant. Phy., 1977, 28, 89-121.
[5] Zhu, J.K. Plant salt stress: John wiley and sons, Ltd. A. K. Parida, Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytologist, 2004, 153(4), 1040-1052.
[6] Hoffnung, S.; Sillanpaa, M.; Li, Y.; Pardo, J.M.; Reddy, M.P.; Yamasaki, T.; Tsuchimoto, T.; Coca, M.A.; Paino, M.; Yano, Y.; Sanada, Y.; Ueda, H.; Kuribayashi, K.; Andoh, T.; Hayashi, F.; Watada, A.A.; Bressan, R.A.; Hasegawa, P.M. Stress signaling through Ca2+/calmodulin-dependant protein phosphatase calcinurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA, 1998, 95, 9681-9688.
[7] Qi, N.; Shen, M.; Guo, J.; Bao, H.; Ma, X.; Wang, B. Coordinate up-regulation of V-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant. Sci., 2007, 172, 1218-1225.
[8] Chen, J.; Li, D.; Zhang, Q.; Hwang, S.M.; Li, Y.; Quintero, D.J.; Zhu, J.K. The Arabidopsis salt overly sensitive 1 (SOS1) gene encodes a putative adenosine triphosphate binding protein required for salt tolerance. Plant. Cell, 2000, 12, 140-151.
[9] Suh, H.; Xiong, L.; Stevenson, B.; Lu, T.; Zhu, J.K. The Arabidopsis salt overly sensitive 5 (SOS5) locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 2003, 15, 19-32.
[10] Kumari, A.; Pas, D.; Parida, A.K.; Agarwal, P.K.; Proteomes, metabolomes, and ionomes perspectives of salinity tolerance in halophytes. Front. Plant. Sci., 2015, 6, 537.
[11] Van der Weij, A.; Ueda, H.; Kuribayashi, K.; Andoh, T.; Hayashi, F.; Tamai, N.; Wada, K. Novel light harvesting chlorophyll a/b binding protein from Thalassia testudinum. Plant. Sci., 1995, 102, 487-492.
[12] Vlachos, S.; Van der Weij, A.; Myo-inositol and beyond emerging networks under stress. Plant. Sci., 2011, 181, 387-400.
[13] Aragie, S.; Kawaguchi, A.; Kodera, A.; Sunagawa, H.; Kojima, H.; Nose, A.; Nakahara, T. Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by poyl accumulation. Plant Prod. Sci., 2009, 12, 37-46.
[14] Nelson, D.E.; Koukoumanos, M.; Bohnert, H.J.; Myo-inositol-dependent sodium uptake in ice plant. Plant. Physiol., 1999, 119(1), 165-172.
[15] Suresh, K.M.; Riley, A.M.; Rossi, A.M.; Tovey, S.C.; Skarlatos, G.D.; Taylor, C.W.; Barry, V.L. Activation of IP3 receptors by synthetic bisphosphate ligands. Chem. Comm., 2009, 14(10), 1513-1515.
Looking at Halophytic Adaptation to High Salinity Through Genomics Landscape

Current Genomics, 2017, Vol. 18, No. 6 551

shoots under NaCl treatment. Plos One, 2013, 8(6), e65877.
doi:10.1371/journal.pone.0065877

Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136, 669-687.

Khrivnesh, B.; Fuglethali, G.; Fedoroff, N.V. Identification and analysis of red salt marsh (Avicennia marina) microRNAs by high-throughput sequencing and their association with stress responses. Plos One, 2013, 8, e60774.

Feng, J.; Wang, J.; Fan, P.; Jia, W.; Nie, L.; Jiang, P.; Chen, X.; Lv, S.; Wan, L.; Chang, S.; Li, S.; Li, Y. High throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol., 2015, 15, 63.

Singh, D.; Jha, B. The isolation and identification of salt-responsive novel microRNAs from Salicornia brachiata, an extreme halophyte. Plant Biotechnol. Rep., 2014, 8, 325-336.

Gharaht, S.A.; Shaw, B.P. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove species. BMC Plant Biol., 2015, 15, 301.

Yang, R.; Zeng, Y.; Yi, X.; Zhao, L.; Zhang, Y. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica. Plant Biotech., 2015, 13, 395-408.

Mondal, T.K.; Ganje, S.A.; Deb Nath, A.B. Identification of novel microRNAs in extreme halophytic plants and analysis of a novel HbCIPK2-interacting ferredoxin from halophyte H. brevisalvum. PLoS One, 2015, 10(12), e0144132.

Singh, S.; Davies, W.J.A. Bacterial-based chemical signalling: the coordination of responses to stress in plants. Plant Cell Environ., 2002, 25, 195-210.

Srivastava, A.K.; Reddy, T.; Sharma, B.; Suprasanna, P. In: Pandey, (Ed), Mechanism of Plant hormone signalling under stress. Wiley-Blackwell (2015) (In press).

Okuma, E.; Jahan, M.S.; Munemasa, S.; Hossain, M.A.; Muroyama, D.; Islam, M.M.; Ogawa, K.; Watanabe, S.M.; Nakamura, Y.; Shimomori, Y.; Mori, I.C.; Murata, Y. Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J. Plant Physiol., 2011, 168, 2048-2055.

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 2007, 100(4), 681-697.

Saito, N.; Nakamura, Y.; Mori, I.C.; Murata, Y. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 2009, 4(2), 119-120.

Gonugunta, V.K.; Srivastava, N.; Raghavendra, A.S. Cytosolic Ca2+ and Cys desulphurase act as second messengers in regulating in Arabidopsis. Plant Sci., 2011, 180, 120-127.

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 2007, 100(4), 681-697.

Saito, N.; Nakamura, Y.; Mori, I.C.; Murata, Y. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 2009, 4(2), 119-120.

Gonugunta, V.K.; Srivastava, N.; Raghavendra, A.S. Cytosolic Ca2+ and Cys desulphurase act as second messengers in regulating in Arabidopsis. Plant Sci., 2011, 180, 120-127.

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 2007, 100(4), 681-697.

Saito, N.; Nakamura, Y.; Mori, I.C.; Murata, Y. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 2009, 4(2), 119-120.

Gonugunta, V.K.; Srivastava, N.; Raghavendra, A.S. Cytosolic Ca2+ and Cys desulphurase act as second messengers in regulating in Arabidopsis. Plant Sci., 2011, 180, 120-127.

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 2007, 100(4), 681-697.

Saito, N.; Nakamura, Y.; Mori, I.C.; Murata, Y. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 2009, 4(2), 119-120.

Gonugunta, V.K.; Srivastava, N.; Raghavendra, A.S. Cytosolic Ca2+ and Cys desulphurase act as second messengers in regulating in Arabidopsis. Plant Sci., 2011, 180, 120-127.

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 2007, 100(4), 681-697.

Saito, N.; Nakamura, Y.; Mori, I.C.; Murata, Y. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 2009, 4(2), 119-120.

Gonugunta, V.K.; Srivastava, N.; Raghavendra, A.S. Cytosolic Ca2+ and Cys desulphurase act as second messengers in regulating in Arabidopsis. Plant Sci., 2011, 180, 120-127.

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 2007, 100(4), 681-697.
70(3), 247-256.

[81] Ellouzi, H.; Ben Hamed, K.; Cela, J.; Munne-Bosch, S.; Abdelly, C. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol. Plant., 2011, 142, 128-143.

[82] Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot., 2014, 65(5), 1241-1257.

[83] Shalata, A.; Mittova, V.; Volokita, M.; Guy, M.; Tal, M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant., 2001, 112, 487-494.

[84] Murakeiizy, É.P.; Nagy, Z.; Duhazé, C.; Bouchereau, A.; Tuba, Z. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J. Plant Physiol., 2003, 160, 395-401.

[85] Ghars, M.A.; Richard, L.; Lefebvre-De, V.D.; Leprince, A.S.; Parre, E.; Bordenave, M.; Abdelly, C.; Savoure, A. Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hypertonic stress. Plant Cell Physiol., 2012, 53, 183-192.

[86] English, J.P.; Colmer, T.D. Tolerance of extreme salinity in two stem succulent halophytes (Tecticornia species). Func. Plant Bio., 2013, 40(9), 897-912.

[87] Himabindu, Y.; Chakradhar, T.; Reddy, M.C.; Kanygin, A.; Redding, K.E.; Chandrasekhar, T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ. Exp. Bot., 2016, 124, 39-63.

[88] An, R.; Chen, Q.J.; Chai, M.F.; Lu, P.L.; Su, Z.; Qin, Z.X.; Chen, J.; Wang, X.C. AtNHX8, a member of the monovalent cation: proline antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J., 2007, 49, 718-728.

[89] Nawaz, I.; Iqbal, M.; Hakvoort, H.W.J.; Bliek, M.; de Boer, B.; Schat, H. Expression levels and promoter activities of candidate salt tolerance genes in halophytic and glycophytic Brassicaceae. Environ. Exp. Bot., 2007, 99, 59-66.