Histological Evaluation of Bioresorbable Threads in Rats

Chang Gun Lee1, Jaeyun Jung2, Samnoh Hwang3, Chan Oh Park1, Soonjae Hwang1, Minjeong Jo1, Min Hi Sin4, Hyun Ho Kim5, Ki-Jong Rhee1

1Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
2Mielle Dermatology & Plastic Surgery Network Clinic, Busan, Korea
3Department of Pathology, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
4Department of Pathology, Wonju Severance Christian Hospital, Wonju, Korea
5NEO Dr. Inc., Wonju, Korea

Thread lifting has become popular as a minimally invasive technique for facial rejuvenation. Commercially available threads are composed of poly-L-lactic acid (PLLA), polycaprolactone (PCL), or polydioxanone (PDO). However, the histological changes that occur in response to implanted threads are unclear. The aim of this study was to evaluate histological changes that occur in response to implantation with three types of bioresorbable threads (PLLA, PCL, PDO) in rat skin. PLLA, PCL and PDO threads were implanted in the dorsal skin of Sprague Dawley rats and tissue samples were harvested 2, 4, 8 and 12 weeks post-implantation. To evaluate histologic changes induced by bioresorbable face-lifting threads, tissue samples were stained with hematoxylin & eosin, Masson’s trichrome stain and Herovici’s collagen stain. All three threads induced neocollagenesis of type 3 collagen in the rat skin. The amount of collagen induced by the threads was dependent on the thread surface area. The PDO cavern-type thread was most effective in inducing neocollagenesis due to its extensive surface area. Our results suggest that type 3 collagen induced by bioresorbable threads depends on the thread surface area to uphold the dermis and contributes to facial rejuvenation.

Key words: Collagen, Polydioxanone, Rat, Skin

INTRODUCTION

The increase in the proportion of the senior population in Korea has resulted in intense interest in anti-aging procedures. One prominent feature of aging is facial aging. Facial aging results from a combination of skeletal and non-skeletal soft-tissue changes that manifest as universally recognizable patterns. Key changes that occur during facial aging include progressive soft-tissue laxity and volume loss which manifests in the form of brow ptosis, deepening of nasolabial folds, jowl formation and orbital rim prominence [1]. Traditional facial rejuvenation techniques include invasive surgical procedures as well as non-invasive surgical procedures such as laser resurfacing, chemical peels, injection of neurotoxins and injection of dermal fillers [2]. Surgical procedures require meticulous,
and in many cases, extensive dissection of the superficial muscular aponeurotic system and involves a prolonged recovery period. To that end, the superficial musculo-aponeurotic system (SMAS) facelift is considered the gold standard for patients undergoing facial rejuvenation [3, 4]. However, less invasive nonsurgical techniques to treat ptotic skin have been proposed as alternative treatments [5].

Thread lifting has become popular as a minimally-invasive procedure for rejuvenation of facial skin and the underlying soft tissue. This technique was primarily developed to suspend the sustainable tissues, such as the malar fat pad, without open surgery [6]. Thread-lifting remodels the sagging skin on the face using surgical suture threads. The greatest advantage of a thread-lift is the absence of visible scars and a very short recovery period. Previously, thread-lifts were performed with permanent sutures but now they are mostly performed with dissolvable sutures that disappear within several months. The thread-lift procedure involves inserting a threaded needle under the skin after local anesthesia. The shape, thickness and materials of the threads differ, depending on the preference of the surgeon and the needs of the patient. Generally, 2 ∼ 30 threads are inserted per procedure. Once the threads are embedded into the skin, formation of new collagen fibers and elastic fibers ensues, resulting in increased collagen and elastin volume. In addition, cells produce more hyaluronic acid in response to the threads with concomitant increase in water retention. Collectively, this fibrosis process results in a visibly youthful skin.

The most commonly used threads are composed of bioresorbable materials such as poly-L-lactic acid (PLLA), polycaprolactone (PCL) or polydioxanone (PDO). Although several advantages and disadvantages are thought to exist for each type of thread, the cosmetic surgeon’s preference appears to be a major factor for deciding the type of thread used during a facial thread-lifting procedure. Although the scientific literature contains numerous reports on the biocompatibility and host responses to these compounds in both animals and humans, a systematic and comprehensive comparison of PLLA, PCL and PDO in terms of collagen and elastic fiber formation to each of these thread types is lacking. In the present study, we compared the tissue response in rats to PLLA, PCL and PDO threads using hematoxylin and eosin (H&E), Masson’s trichrome and Herovici’s stains. In addition, we further compared the tissue response to three different PDO threads of different thickness and shape using Masson’s trichrome stain.

MATERIALS AND METHODS

1. **Animal experiments**

Eight-week-old female Sprague Dawley (SD) rats were purchased from Raonbio (Yongin, Korea). The rats were maintained in a filter-top cage with a 12-h light/12-h dark cycle. Sterile food pellets (Teklad-certified irradiated global 18% protein rodent diet 2018S; Harlan Teklad, Madison, WI, USA) and autoclaved water were provided ad libitum. Rats were anesthetized, dorsal area shaved and implantation points marked prior to thread insertion (Figure 1). Four identical threads were inserted in parallel into the panniculus carnosus via needles. The needles were then immediately removed along with any exposed thread. 3 ∼ 5 rats were used per thread for each time point. Tissue samples from surrounding subcutaneous tissue, along with the thread, were harvested for histologic analysis at 2, 4, 8 and 12 weeks after implantation. Rats exhibited no gross signs of inflammation in the insertion area during the experimental period. All experiments...
were conducted in accordance with the guidelines of the Institutional Animal Health Care and Use Committee (IACUC) of Yonsei University at Wonju (YWCI-201702-001-02).

2. Thread types

Five different kinds of bioresorbable threads were evaluated. One type of PLLA monothread (APROMEDION, Cat No: NSC-PL6-2938, Korea), one type of PCL monothread (Ultra V, Cat No: MR-CB29306, Korea) and three types of PDO threads (NEO Dr. Inc., Korea). Suture thickness is defined by the United States Pharmacopeia (USP). The 29G PLLA monothread and 29G PCL monothread (6-0 USP, 0.07 mm in diameter, 50 mm in length) is contained within a 29G needle. Three types of PDO monothreads were evaluated: 29G PDO monothread (Cat No: ND2903860M, 6-0 USP, 0.07 mm in diameter, 50 mm in length) contained within a 29G needle, 19G PDO monothread (Cat No: ND1903801M, 1 USP, 0.4 mm in diameter, 25 mm in length) contained within a 19G needle and the cavern-type 29G PDO (Cat No: ND2905060CVS, 6-0 USP, 0.07 mm in diameter, 20 mm in diameter) contained within a 29G needle. The cavern-type needle contains 40 mm of monothread in a spiral-shaped structure with a final length of 20 mm.

3. Histologic analysis

Tissue specimens were fixed with 10% formalin and embedded in paraffin. Transverse sections (5 μm) along the thread axis were obtained. Tissues were deparaffinized with xylene, rehydrated with ethanol and stained with standard H&E stain for overall histologic evaluation. Masson’s trichrome stain was performed for detection of collagen. Masson’s trichrome stain was performed by the following procedure. After deparaffinization of slides, Bouin solution (Sigma) was applied for 30 minutes at 56°C. The slides were washed and treated with Weigert hematoxylin (Merck) for 10 minutes. Biebrich scarlet-acid fuchsin (Sigma) was applied for 10 minutes, then 3 minutes of treatment with phosphotungstic-phosphomolybdic acid solution (Sigma). Finally, collagen was stained with light green solution (Sigma) for 8 minutes. Verhoeff’s elastic fiber stain was performed for detection of elastic fibers. To discern collagen subtypes, tissues were stained.
with Herovici’s stain using Herovici’s collagen staining kit (American MasterTech). After tissue staining, slides were photographed by optical microscopy (Leica, Wetzlar, Germany) and rendered using Leica software.

RESULTS

1. H&E staining of tissues implanted with PLLA, PCL and PDO threads

To investigate the histologic changes after implantation of the PLLA, PCL and PDO monothreads, rats were inserted with the respective threads and the dorsal skin tissues harvested and stained with H&E 2, 4, 8 and 12 weeks after implantation (Figure 2). The threads are not compatible with the H&E staining and thus appear as empty circles encircled by a fibrous sheath. The PDO thread implantation sites showed a thin capsular structure surrounding the thread by 2 weeks which gradually thickened by 12 weeks. Prominent tissue reactions showed the aggregation of inflammatory cells and fibroblasts surrounding the suture thread. The overlying epidermis showed no prominent changes after implantation. No other significant pathological features were noted surrounding the PDO thread. Similar results were obtained for PLLA and PCL, suggesting that no gross differences were present after insertion of the three thread types.

2. Masson’s trichrome staining of tissues implanted with PLLA, PCL and PDO threads

Collagen formation induced by inserted threads provides a youthful appearance in patients and thus the ability of threads to enhance neocollagenesis is one key factor in evaluating the efficacy of thread procedures. To determine neocollagenesis induced by PLLA, PCL and PDO threads, tissues were examined by Masson’s trichrome staining at 2, 4, 8 and 12 weeks after implantation. The fibrous sheaths surrounding each thread type contained relatively similar amounts of collagen (Figure 3). Although a quantitative assessment of collagen levels is beyond the scope of this study, the collagen levels in the immediate vicinity of the threads appeared to be higher than collagen levels present in the overlying skin. Regardless, the amount of collagen induction in the three type of threads were similar during the 12-week period in rats.

Figure 3. Masson’s trichrome staining of tissues implanted with PLLA, PCL and PDO threads. Tissue samples of the dorsal subcutaneous tissue were harvested and stained with Masson’s trichrome stain. Histologic analysis was performed at 2, 4, 8 and 12 weeks after implantation with PLLA, PCL and PDO threads. 3–5 rats were used per thread for each time point. Threads are depicted as white, empty circular regions. Representative images are shown. Magnification, ×100.
3. Herovici’s staining of tissues implanted with PLLA, PCL and PDO threads

Masson’s trichrome staining of rat tissues shows increased collagen surrounding the threads. Collagen is categorized into many types with minor structural and functional differences as well as different distributions [7, 8]. Therefore, we next examined the type of collagen that was formed upon thread implantation using Herovici’s staining which discerns type 1 collagen (red/purple) and type 3 collagen (blue). We found that PLLA, PCL and PDO threads induced predominantly type 3 collagen in the rat’s dermal skin layer at all of the time points examined (Figure 4). Dermal elastic fibers are believed to have a primary role in providing elastic stretch and recoil to the skin, so we analyzed by Verhoeff’s staining whether the thread-lifting can induce elastic fiber formation. However, there were no signs of elastic fiber formation during the implantation period (data not shown). These results suggest that the three thread types induced comparable levels of predominantly type 3 collagen in rats.

4. Masson’s trichrome staining of tissues inserted with 29G PDO, 19G PDO and cavern-type PDO

Threads of different diameters are commercially available and the diameter is selected based on the specific application of target areas. We examined the ability of the cavern-type PDO thread on formation of neocollagenesis. The cavern-type PDO thread is a single monothread that has a spiral shape. This results in implantation of more thread material with a single injection. The rationale for using the cavern-type PDO thread is that fibrosis is elicited on contact with the biodegradable thread and thus inserting more thread material should increase more collagen. Indeed, rats injected with the cavern-type PDO thread showed numerous empty circles indicative of multiple thread insertions compared with single encapsulations induced by 29G PDO and 19G PDO (Figure 5).

DISCUSSION

Bioresorbable implantation materials have gained popularity and with demonstrated safety in the clinical
setting. The popular PDO suture is a colorless biodegradable artificial polymer which shows minimal long term side effects after implantation. PDO has been used for surgical suture and cosmetic surgery due to its biocompatibility, flexibility, and elasticity [9, 10]. Other commonly used suture materials are PLLA and PCL. However, there are several documented case reports on the deleterious side effects of PDO as well as PLLA after thread implantation. In one report, granulomatous inflammation with neutrophilic abscess in the dermis was reported after a PDO thread-lift procedure due to *Mycobacterium massiliense* infection [11]. In another case, erythematous nodules in the temple was reported after PLLA thread procedure due to *Staphylococcus aureus* infection [12]. Generally, the vast majority of thread-lifting procedures are safe and the aforementioned documented cases were likely due to rare complications occurring during the thread-lift procedure. In our current study, we observed no adverse infections in the rat skin by all three threads after implantation.

PDO is a colorless biodegradable artificial polymer which undergoes complete hydrolytic degradation in vivo depending on the implantation site and diameter of the suture. In our current study, a subset of rats was implanted with PDO for up to 8 months. The PDO thread was visible in tissue sections for up to 6 months but completely absorbed within 8 months (data not shown). The PLLA and PCL thread was visible in tissue sections even up to 8 months (data not shown). During the experimental time frame, all three thread types induced comparable levels of collagen. The extent of collagen formation appeared to be dependent on the surface area of the thread. Since the cavern-type PDO thread is spiral-shaped, more thread material is incorporated into the skin and thus more collagen is induced surrounding the thread implantation site. Although multiple insertions would theoretically confer similar effects, a single injection of would be preferable to the patient undergoing thread-lifting procedure.

Collagen is the most abundant protein produced in humans and is fundamental in contiguous formation of the interstitium in the skin. In human skin, type 1 and type 3 collagens are found at a higher proportion compared to other types of collagen. During scar tissue formation during injury or other insults, alteration of the relative
portions of type 1 and type 3 collagen may occur [13]. Both the abundance and balance of type 1 and type 3 collagen have received considerable attention [14, 15]. Herovici developed a staining technique in 1963 to distinguish between type 1 and type 3 collagen [16]. The Herovici stain has been used to differentiate and quantify the amount of type 1 and type 3 collagen within mature burn scars, keloid scars and Dupuytren’s contractures [17-19]. Recently, Ko et al [20] found that thread implantation induced type 3 collagen in pigs. In our current experiment, all three thread types induced predominantly type 3 collagen in rats. However, none of the three bioresorbable threads induced elastic fiber formation as determined by Verhoeff’s staining (data not shown). In conclusion, our comparative studies showed that PLLA, PCL and PDO threads induced comparably levels of type 3 collagen in rat skin.

Acknowledgements: Following results of a study are on the “Leaders in Industry-university Cooperation+” (LINC+) project, supported by the Ministry of Education and National Research Foundation of Korea (2017-D-G043-010103) to K.-J.R. C.G.L. (Graduate Student); J.J. (Medical Doctor), S.H. (Medical Technologist), C.O.P. (Graduate Student); S.H. (Graduate Student), M.J. (Graduate Student), M.H.S. (Medical Technologist), H.H.K. (CEO) and K.-J.R. (Professor).

Conflict of interest: Hyun Ho Kim is the current CEO of NEO Dr. Inc. All other authors have no conflict of interest to declare.

REFERENCES

1. Abraham RF, DeFatta RJ, Williams EF. Thread-lift for facial rejuvenation: assessment of long-term results. Arch Facial Plast Surg. 2009;11:178-183.
2. Karimi K, Reivitis A. Lifting the lower face with an absorbable polydioxanone (PDO) thread. J Drugs Dermatol. 2017;16:952-954.
3. Baker D. Rhytidectomy with lateral SMASectomy. Facial Plast Surg. 2000;16:209-213.
4. Liu T, Owsley JQ. Long-term results of face lift surgery: patient photographs compared with patient satisfaction ratings. Plast Reconstr Surg. 2012;129:253-262.
5. Ogilvie MP, Few JW, Tomur SS, Teven CM, Semersky AJ, Bruno CR, et al. Rejuvenating the face: an analysis of 100 absorbable suture suspension patients. Aesthet Surg J. 2018;38:654-663.
6. Kurita M, Matsumoto D, Kato H, Araki J, Higashino T, Yoshimura K, et al. Tissue reactions to cog structure and pure gold in lifting threads: a histological study in rats. Aesthet Surg J. 2011;31:347-351.
7. Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B. 2016;4:6484-6496.
8. Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol. 2011;3. pii: a005124. doi: 10.1101/cshperspect.a005124.
9. Uff CR, Scott AD, Pockley G, Phillips RKS. Influence of soluble suture factors on in vitro macrophage function. Biomaterials. 1995;16:355-360.
10. Smith MJ, White KL, Smith DC, Bowlin GL. In vitro evaluations of innate and acquired immune responses to electrospin polydioxanone-elastin blends. Biomaterials. 2009;30:149-159.
11. Shin JH, Park JH, Lee JM, Ryu HJ. Mycobacterium massiliense infection after thread-lift insertion. Dermatol Surg. 2016;42:1219-1222.
12. Choi M, Cheon JS, Choi WY, Son KM. Late-onset methi-
17. Rawlins JM, Lam WL, Karoo RO, Naylor IL, Sharpe DT. Quantifying collagen type in mature burn scars: a novel approach using histology and digital image analysis. J Burn Care Res. 2006;27:60-65.

18. Syed F, Ahmadi E, Iqbal SA, Singh S, McGrath DA, Bayat A. Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and III compared with intralesional and extralesional sites: clinical implications for lesional site-directed therapy. Br J Dermatol. 2011;164:83-96.

19. Lam WL, Rawlins JM, Karoo RO, Naylor IL, Sharpe DT. Re-visit ing Luck’s classification: a histological analysis of Dupuytren’s disease. J Hand Surg Eur Vol. 2010;35:312-317.

20. Ko HJ, Choi JY, Moon HJ, Lee JW, Jung SI, Kim BJ, et al. Multi-polydioxanone (PDO) scaffold for forehead wrinkle correction: a pilot study. J Cosmet Laser Ther. 2016;18:405-408.