Weak diameter coloring of graphs on surfaces

Zdeněk Dvořák * Sergey Norin †

Abstract

Consider a graph G drawn on a fixed surface, and assign to each vertex a list of colors of size at least two if G is triangle-free and at least three otherwise. We prove that we can give each vertex a color from its list so that each monochromatic connected subgraph has bounded weak diameter (i.e., diameter measured in the metric of the whole graph G, not just the subgraph). In case that G has bounded maximum degree, this implies that each connected monochromatic subgraph has bounded size. This solves a problem of Esperet and Joret for planar triangle-free graphs, and extends known results in the general case to the list setting, answering a question of Wood.

The colorings in this paper are not necessarily proper. The weak diameter of a subgraph H of a graph G is the maximum distance in G between vertices of $V(H)$; note that the distances are measured in the whole graph G, not in the subgraph H. For a non-negative integer ℓ, a weak diameter-ℓ coloring of a graph G is an assignment of colors to its vertices such that each monochromatic connected subgraph has weak diameter at most ℓ (in particular, a weak diameter-0 coloring is just a proper coloring). We say a class of graphs G has weak diameter chromatic number at most k if for some ℓ, every graph in G has a weak diameter-ℓ coloring using at most k colors.

Weak diameter coloring arises in the context of asymptotic dimension of graph classes: Denoting by G^r the graph obtained from G by joining by an edge each pair of distinct vertices at distance at most r, the class \mathcal{G} has asymptotic dimension at most d if for every $r \geq 1$, the class $\{G^r : G \in \mathcal{G}\}$ has weak diameter chromatic number at most $d + 1$. In a recent breakthrough, Bonamy et al. [1] proved that graphs of bounded treewidth have asymptotic dimension 1 and all proper minor-closed classes have asymptotic dimension at most 2. As a special case:

*Charles University, Prague, Czech Republic. E-mail: rrdver@iuuk.mff.cuni.cz
Supported by the ERC-CZ project LL2005 (Algorithms and complexity within and beyond bounded expansion) of the Ministry of Education of Czech Republic.

†McGill University, Montréal, Quebec, Canada. E-mail: sergey.norin@mcgill.ca
Supported by an NSERC Discovery grant.
Theorem 1 (Bonamy et al. [1]). *For any surface Σ, the class of graphs drawn on Σ has weak diameter chromatic number at most 3.*

In graphs with bounded maximum degree, the notion of weak diameter coloring coincides with the well-studied notion of *clustered coloring*. For a positive integer s, a *coloring with clustering s* is an assignment of colors to vertices such that each monochromatic component has size at most s (a coloring with clustering 1 is just a proper coloring). A class of graphs \mathcal{G} has *clustered chromatic number* at most k if for some s, every graph in \mathcal{G} has a coloring with clustering at most s using at most k colors. We refer the reader to an extensive survey by Wood [5] for further background on clustered coloring.

Observation 2. Let $k \geq 1$ be an integer and let \mathcal{G} be a class of graphs.

- If \mathcal{G} has clustered chromatic number at most k, then \mathcal{G} also has weak diameter chromatic number at most k.
- If \mathcal{G} has weak diameter chromatic number at most k and bounded maximum degree, then \mathcal{G} also has clustered chromatic number at most k.

Hence, by Theorem 1, the class of graphs of bounded maximum degree drawn on any fixed surface Σ has clustered chromatic number at most three. This was proved earlier by Esperet and Joret [3], who also asked the following question.

Question 3. Consider a surface Σ and a positive integer Δ. Is it true that the class of triangle-free graphs of maximum degree Δ than can be drawn on Σ has clustered chromatic number at most two?

It is also natural to consider the list versions of these notions. Given an assignment L of lists of colors to vertices of a graph G, a coloring of G is an L-coloring if the color of each vertex $v \in V(G)$ belongs to $L(v)$. We say that a class of graphs \mathcal{G} has *weak diameter choosability* at most k if for some ℓ, every graph in \mathcal{G} has a weak diameter-ℓ L-coloring from any assignment L of lists of size at least k; and *clustered choosability* at most k if for some s, every graph in \mathcal{G} has an L-coloring with clustering at most s from any assignment L of lists of size at least k.

For any surface Σ, the class of graphs drawn on Σ has clustered choosability at most four [2]. This bound cannot be improved (even for non-list coloring), as for every s, there exists a planar graph that has no coloring with clustering at most s using at most three colors. However, it has been asked by Wood whether this can be improved for graphs of bounded maximum degree (matching the result of Esperet and Joret [3] in the non-list setting).
Question 4 (Wood [5, Open Problem 18]). Consider a surface Σ and a positive integer Δ. Is it true that the class of graphs of maximum degree Δ than can be drawn on Σ has clustered choosability at most three?

We answer Questions 3 and 4 in positive, in the more general setting of weak diameter choosability.

Theorem 5. For every surface Σ,

(i) the class of graphs drawn on Σ has weak diameter choosability at most three, and

(ii) the class of triangle-free graphs drawn on Σ has weak diameter choosability at most two.

It is tempting to ask whether Theorem 5 could be strengthened by replacing weak diameter with diameter, where we measure the diameter of each monochromatic connected subgraph inside the subgraph (not in the ambient graph). However, such a strengthening of both (i) and (ii) is false even for the class of planar graphs and non-list coloring, as we show in Section 1.

We suspect the following substantial relaxation of the “triangle-free” assumption could be sufficient to make coloring by two colors possible.

Question 6. For a non-negative integer r, let G_r be the class of plane graphs with no separating triangles such that each vertex is at distance at most r from a face of length at least four. Does G_r have weak diameter chromatic number at most two?

The importance of the presence of non-triangular faces can be seen from the following standard example: Let G_n be the $n \times n$ grid with a diagonal added to each face (so that all faces except for the outer one are triangles). By the HEX lemma, any coloring of G_n by colors red and blue contains a red path from the left side to the right side of the grid, or a blue path from the top side to the bottom side of the grid. Hence, any coloring of G_n by two colors contains a monochromatic component of weak diameter at least $n - 1$.

Moreover, let us remark that Question 6 has positive answer in the case that the graph has exactly one non-triangular face, since plane graphs where all vertices are at a bounded distance from a fixed face have bounded treewidth and consequently asymptotic dimension one.

The rest of the paper is organized as follows. In Section 1 we show that weak diameter cannot be replaced by diameter in Theorem 5. In Section 2 we give the proof of Theorem 5, deferring the parts specific to the triangle-free case and to the non-triangle-free case to sections Section 3 and 4.
1 Counterexamples for diameter coloring

In this section, for every positive integer \(\ell \) we construct

- a planar triangle-free graph \(G_\ell \) such that any coloring of \(G_\ell \) by two colors contains a monochromatic component of diameter at least \(\ell \), and

- a planar graph \(G'_\ell \) such that any coloring of \(G'_\ell \) by three colors contains a monochromatic component of diameter at least \(\ell \).

This shows that it is necessary to consider the weak diameter in both cases of Theorem 5.

1.1 The triangle-free case

For a positive integer \(k \), consider the following graphs \(H_{0,k}, H_{1,k}, \ldots, \) each with two distinct interface vertices \(u \) and \(v \): The graph \(H_{0,k} \) consists just of the vertices \(u \) and \(v \). For \(i \geq 1 \), the graph \(H_{i,k} \) consists of a path \(P = v_1 \ldots v_k \) such that for \(j = 1, \ldots, k \), \(v_j \) is adjacent to \(u \) if \(j \) is odd and to \(v \) if \(j \) is even, and \(k \) copies of \(H_{i−1,k} \) such that the \(j \)-th one has interface vertices \(v_j \) and \(v \) if \(j \) is odd and \(v_j \) and \(u \) if \(j \) is even; see Figure 1. Note that \(H_{i,k} \) is planar, triangle-free, and can be drawn so that its interface vertices are incident with the outer face. For a coloring \(\varphi \) and a vertex \(x \), let \(r_\varphi(x) \) denote the maximum distance between \(x \) and another vertex in the same monochromatic component of \(\varphi \).

Lemma 7. For all integers \(i \geq 0 \) and \(k \geq 1 \), if a coloring \(\varphi \) assigns colors 1 and 2 to vertices of the graph \(H_{i,k} \) and both interface vertices \(u \) and \(v \) receive color 1, then
• \(\varphi \) contains a component of color 2 of diameter at least \(k-1 \), or
• \(u \) and \(v \) are in the same monochromatic component of \(\varphi \), or
• \(r_\varphi(u) + r_\varphi(v) \geq i \).

Proof. We prove the claim by induction on \(i \). The case \(i = 0 \) is trivial, and thus we can assume \(i \geq 1 \). Let \(P = v_1 v_2 \ldots v_k \) be the path in \(H_{i,k} \) from the definition. Suppose that \(\varphi \) does not contain a component of color 2 of diameter at least \(k-1 \); then the whole path \(P \) cannot be colored by color 2, and thus \(\varphi(v_j) = 1 \) for some \(j \in \{1, \ldots, k\} \). By symmetry, we can assume that \(j \) is odd. Consider the copy of \(H_{i-1,k} \) with interface vertices \(v \) and \(v_j \), and let \(\varphi' \) be the restriction of \(\varphi \) to this copy. Then \(\varphi' \) also cannot contain a component of color 2 of diameter at least \(k-1 \).

Moreover, suppose that \(u \) and \(v \) are in different monochromatic components of \(\varphi \); since \(uv \) is an edge and \(\varphi(u) = \varphi(v_j) = 1 \), this implies that \(v \) and \(v_j \) are not in the same monochromatic component of \(\varphi' \).

By the induction hypothesis, it follows that \(r_{\varphi'}(v_j) + r_{\varphi'}(v) \geq i-1 \). Since \(u \) and \(v \) are in different monochromatic components, a monochromatic path from \(u \) cannot pass through \(v \), and thus \(r_{\varphi}(u) \geq r_{\varphi'}(v_j) + 1 \). Similarly, \(r_{\varphi}(v) \geq r_{\varphi'}(v) \). Therefore, \(r_{\varphi}(u) + r_{\varphi}(v) \geq (r_{\varphi'}(v_j) + 1) + r_{\varphi'}(v) \geq i \). \(\square \)

Let \(W_\ell \) be the \((\ell + 1) \times (\ell + 1)\) grid with diagonals added to the 4-faces. Let \(G_\ell \) be the graph obtained from \(W_\ell \) by replacing each diagonal \(uv \) by a copy of \(H_{\ell+1,2\ell} \) with interface vertices \(u \) and \(v \), see the right part of Figure 1. Consider any 2-coloring of \(G_\ell \). By the HEX lemma, the corresponding 2-coloring of \(W_\ell \) contains a monochromatic path \(Q \) (say in color 1) joining the opposite sides of the grid. If both ends of \(Q \) belong to the same monochromatic component of \(\varphi \) on \(G_\ell \), then this component has diameter greater than \(\ell \). Otherwise, there exists an edge \(uv \in E(Q) \) such that \(u \) and \(v \) belong to different monochromatic components of \(\varphi \), and thus also to different monochromatic components of \(\varphi \) restricted to the copy of \(H_{\ell+1,2\ell} \) with interface vertices \(u \) and \(v \). By Lemma 7 this implies that either one of the monochromatic components of \(u \) and \(v \) has diameter at least \(\ell \), or \(\varphi \) contains a component of color 2 of diameter at least \(\ell \).

1.2 The non-triangle-free case

For the case of general planar graphs colored by three colors, we use a similar construction. The graph \(H'_{i,k} \) whose recursive construction is depicted in Figure 2 has the following property: Suppose that the interface vertices \(u \) and \(v \) receive colors 1 and 2, respectively. Then

• the \(k \)-vertex path is colored by 3 (resulting in a monochromatic component of diameter at least \(k-1 \), or
• a vertex \(x \) of the path has color 1, there exists a copy of \(H'_{i-1,k} \) with interface vertices \(x \) and \(v \) of colors 1 and 2, and the monochromatic component of \(x \) additionally contains the edge \(xu \), or

• a symmetric situation with a vertex \(x \) of the path receiving color 2.

As in the previous case, this implies that any coloring of \(H'_{\ell+1,2\ell} \) by three colors where the interface vertices receive a different color contains a monochromatic component of diameter at least \(\ell \). The graph \(G'_{\ell} \) is then obtained by concatenating \(\ell \) copies of this graph, as depicted on the right side of Figure 2.

2 The proof of Theorem 5

In this section we present the common parts of the proofs of Theorem 5 (i) and (ii). We use \(c \) to denote the number of colors in each list and \(t \) the lower bound on the girth of the considered graph, where \(c = 3 \) and \(t = 3 \) for the proof of Theorem 5 (i), while \(c = 2 \) and \(t = 4 \) for Theorem 5 (ii). Observe that \(t = \frac{2c}{c-1} \) in both cases.

The starting point of our proof is a standard island argument. A non-empty set \(I \subseteq V(G) \) is a \(c \)-island if every vertex in \(I \) has less than \(c \) neighbors outside of \(I \). For real numbers \(a \) and \(b \), we say that a graph \(G \) is \((a,b)\)-sparse if \(|E(G)| \leq a|V(G)| + b \), and hereditarily \((a,b)\)-sparse if every induced subgraph of \(G \) is \((a,b)\)-sparse. In [2] we proved the following claim.

Lemma 8. For all positive integers \(c \) and \(b \), any real number \(\varepsilon > 0 \), and every surface \(\Sigma \), there exists a positive integer \(s \) such that the following claim holds: Every \((c-\varepsilon,b)\)-sparse graph \(G \) with \(V(G) \neq \emptyset \) drawn on \(\Sigma \) contains a \(c \)-island of size at most \(s \).

The presence of \(c \)-islands can be used to obtain clustered colorings.
Corollary 9. For all positive integers c and b, any real number $\varepsilon > 0$, and every surface Σ, the class of hereditarily $(c-\varepsilon, b)$-sparse graphs drawn on Σ has clustered choosability at most c.

Proof. Let s be the constant from Lemma 8. We show that every hereditarily $(c-\varepsilon, b)$-sparse graph G drawn on Σ has an L-coloring with clustering at most s for any assignment L of lists of size c. We prove the claim by induction on the number of vertices of G. The claim is trivial if G has no vertices. Otherwise, by Lemma 8, G contains a c-island I of size at most s. By the induction hypothesis, $G-I$ has an L-coloring with clustering at most s. We color I so that each vertex $v \in I$ chooses a color from $L(v)$ different from the colors of its neighbor outside of I. This ensures that any newly arising monochromatic components are contained in I, and thus they have size at most s.

To this end, let us introduce the notion of sparsifiers.

A multiassignment for a graph S is an assignment of multisets to vertices of S. For a multiassignment B to vertices of a graph S, we say that a coloring of S is B-opaque if for each color a, each connected subgraph of S of color a contains at most one vertex v such that $a \in B(v)$ and if there is such a vertex v, then a appears in $B(v)$ with multiplicity one. The motivation for this definition is as follows: If S is an induced subgraph of a colored graph G and $B(u)$ consists of colors that appear on the neighbors of u in $V(G) \setminus V(S)$, then B-opacity implies that no two monochromatic components of $G-V(S)$ are contained in the same monochromatic component of G.

A c-sparsifier is a pair (S, γ), where S is a connected graph and $\gamma : V(S) \to \mathbb{Z}_+^*$ assigns an integer $\gamma(v) \geq \deg v$ to each vertex $v \in V(S)$, with the following property: For any assignment L of lists of size c to vertices of S and a multiassignment B of lists to vertices of S such that $|B(v)| \leq \gamma(v) - \deg v$ for each $v \in V(S)$, there exists a B-opaque L-coloring of S. The size of the sparsifier is $|V(S)|$. An appearance of a c-sparsifier (S, γ) in a graph G drawn on a surface is an injective function $h : V(S) \to V(G)$ such that

- for $u, v \in V(S)$, we have $uv \in E(S)$ if and only if $h(u)h(v) \in E(G)$ (i.e., h shows S is an induced subgraph of G),
- for $u \in V(S)$, we have $\deg_G h(u) \leq \gamma(u)$, and
- for $u \in V(S)$, every face of G incident with $h(u)$ is bounded by a cycle of length $t = \frac{2c}{c-\varepsilon}$.
We write $G - h$ for the graph obtained from G by deleting all vertices in the image of h. Appearances h_1 and h_2 of c-sparsifiers (S_1, γ_1) and (S_2, γ_2) are independent if $h_1(u) \neq h_2(v)$ and $h_1(u)h_2(v) \notin E(G)$ for every $u \in V(S_1)$ and $v \in V(S_2)$.

The definition of a sparsifier and its appearance is motivated by the following properties.

Lemma 10. Let G be a graph drawn on a surface, let $c \geq 2$, $p \geq 1$ and $\ell \geq 0$ be integers, let L be an assignment of lists of size c to vertices of G, and let h_1, \ldots, h_m be pairwise-independent appearances of c-sparsifiers of size at most p in G. If $G - \{h_1, \ldots, h_m\}$ has a weak diameter-ℓ L-coloring φ, then G has a weak diameter-$(\ell + 2p)$ L-coloring.

Proof. For $i \in \{1, \ldots, m\}$, we extend φ to the image of h_i as follows. Let (S_i, γ_i) be the c-sparsifier with appearance h_i. For $u \in V(S_i)$, let $L_i(u) = L(h_i(u))$ and $B_i(u) = \{\varphi(v) : vh_i(u) \in E(G), v \in V(G - \{h_1, \ldots, h_m\})\}$. Since $\deg_G h_i(u) \leq \gamma_i(u)$, we have $|B_i(u)| \leq \gamma_i(u) - \deg_S u$. By the definition of a c-sparsifier, there exists a B_i-opaque L_i-coloring ψ_i of S_i, and for each $u \in V(S_i)$, we define $\varphi(h_i(u)) = \psi_i(u)$.

Since ψ_i is B_i-opaque for each i, each monochromatic component of G in the coloring φ is either contained in the image of h_i for some i, or it is obtained from a monochromatic component of $G - \{h_1, \ldots, h_m\}$ by adding disjoint non-adjacent connected subgraphs with at most p vertices. We conclude that each monochromatic component of G has weak diameter at most $\ell + 2p$. \hfill \Box

A system h_1, \ldots, h_m of pairwise-independent appearances of c-sparsifiers of size at most p in a graph G drawn on a surface is maximal if there does not exist an appearance of a c-sparsifier of size at most p in G independent of h_1, \ldots, h_m. A graph G is (c, p)-sparsifier-free if no c-sparsifier of size at most p has an appearance in G.

Lemma 11. Let G be a graph drawn on a surface, let $c \geq 2$ and $p \geq 1$ be integers, and let h_1, \ldots, h_m be pairwise-independent appearances of c-sparsifiers of size at most p in G. Let $t = \frac{2p}{c-1}$. If the system h_1, \ldots, h_m is maximal, $|V(G)| > t$ and G does not contain any separating cycle of length t, then every induced subgraph G' of $G - \{h_1, \ldots, h_m\}$ is (c, p)-sparsifier-free.

Proof. Suppose for a contradiction that h is an appearance of a c-sparsifier (S, γ) of size at most p in G'. By the last condition in the definition of an appearance, all faces incident with the h-images of vertices of S are bounded by t-cycles. Since G does not contain separating t-cycles, $|V(G)| > t$, and G' is an induced subgraph of G, these faces are also faces of G. In particular, all the vertices in the image of h have the same degree in G as in G'. Hence, h is also an appearance of (S, γ) in G independent from h_1, \ldots, h_m, contradicting the maximality of the system. \hfill \Box
Finally, we will need the following lemma, whose proof is specific to the cases \(c \in \{2, 3\} \) and is given in Sections \([3, 4]\)

Lemma 12. For \(c \in \{2, 3\} \), there exists a constant \(\varepsilon_c > 0 \) such that the following claim holds. Let \(G \) be a graph of minimum degree at least \(c \) and girth at least \(t = \frac{2c}{c-1} \) drawn on a surface of Euler genus \(g \) with no non-contractible cycles of length at most four. Suppose that \(G \) is \((c, 4)\)-sparsifier-free and does not contain separating cycles of length \(t \). Then \(G \) is \((c - \varepsilon_c, 10(g + 3))\)-sparse.

Let us now combine these claims.

Corollary 13. For \(c \in \{2, 3\} \) and every surface \(\Sigma \), the class \(\mathcal{G}_{c, \Sigma} \) of graphs of girth at least \(t = \frac{2c}{c-1} \) drawn on \(\Sigma \) with no non-contractible cycles of length at most four and no separating cycles of length \(t \) has weak diameter choosability at most \(c \).

Proof. Let \(\varepsilon_c > 0 \) be the constant from Lemma 12 and let \(g \) be the Euler genus of \(\Sigma \). By Corollary 9 there exists \(s \) such that every hereditarily \((c - \varepsilon_c, 10(g + 3))\)-sparse graph drawn on \(\Sigma \) has a coloring with clustering at most \(s \) from any assignment of lists of size \(c \).

Consider a graph \(G \in \mathcal{G}_{c, \Sigma} \) and an assignment \(L \) of lists of size \(c \) to vertices of \(G \). Let \(h_1, \ldots, h_m \) be a maximal system of pairwise-independent \(c \)-sparsifiers of size at most \(4 \) in \(G \). Let \(G_0 = G - \{h_1, \ldots, h_m\} \). We claim that \(G_0 \) is hereditarily \((c - \varepsilon_c, 10(g + 3))\)-sparse. Hence, we need to prove that every induced subgraph \(G' \) of \(G_0 \) is \((c - \varepsilon_c, 10(g + 3))\)-sparse. We prove the claim by induction on \(|V(G')| \). If \(|V(G')| \leq t \), then the claim is trivial since \(10(g + 3) \geq 10 \geq |E(G')| \). In particular, we can assume that \(|V(G)| > t \), and Lemma 11 implies \(G' \) is \((c, 4)\)-sparsifier-free. If a vertex \(v \in V(G') \) has degree at most \(c - 1 \), then \(|E(G')| \leq (c - 1) + |E(G' - v)| \leq (c - 1) + (c - \varepsilon_c) |V(G' - v)| + 10(g + 3) \leq (c - \varepsilon_c) |V(G')| + 10(g + 3) \) by the induction hypothesis. On the other hand, if \(G' \) has minimum degree at least \(c \), then \(G' \) is \((c - \varepsilon_c, 10(g + 3))\)-sparse by Lemma 12.

By Corollary 9, \(G_0 \) has an \(L \)-coloring \(\varphi \) with clustering at most \(s \). Then \(\varphi \) is also a weak diameter-\((s - 1)\) coloring. By Lemma 10, \(G \) has a weak diameter-\((s + 7)\) \(L \)-coloring.

Next, we need to take care of separating \(t \)-cycles. These are generally dealt with using standard precoloring arguments, but the cases where a vertex has \(c \) precolored neighbors turn out to be somewhat problematic and require us to handle the following special case separately. For a cycle \(K \) in a plane graph \(G \), let \(G_K \) denote the subgraph of \(G \) drawn in the closed disk bounded by \(K \). The 3-base is the plane drawing of \(K_4 \) and the 4-base is the plane drawing of \(K_{2,3} \). For \(t \in \{3, 4\} \), a finite plane graph \(G \) is a \(t \)-stack if it is either a cycle of length \(t \), or if there exists a \(t \)-base \(H \subseteq G \) such that the outer face of \(G \) is equal to the outer face of \(H \) and for each internal face of
Figure 3: A 3-stack and a 4-stack.

H bounded by a t-cycle K, the graph G_K is a t-stack. See Figure 3 for an example of a 3-stack and a 4-stack. Let C be the cycle bounding the outer face of a t-stack G, let ψ be a coloring of C and let φ be a coloring of G that extends ψ. We say that φ is ψ-opaque if no monochromatic component of φ on G contains vertices belonging to two distinct monochromatic components of ψ on C. The proof of the following lemma is specific to the cases $c \in \{2, 3\}$ and is given in Sections 3 and 4.

Lemma 14. For $c \in \{2, 3\}$, let $t = \frac{2c}{c-1}$. Let G be a t-stack and let L be an assignment of lists of size c to vertices of G. Then every L-coloring ψ of the cycle C bounding the outer face of G extends to a weak diameter-4 ψ-opaque L-coloring φ of G.

A cycle C in a graph G is c-solitary if every vertex $v \in V(G) \setminus V(C)$ has fewer than c neighbors in C. Given a coloring ψ of C, we say that a coloring φ of G properly extends ψ if the restriction of φ to C is equal to ψ and $\varphi(u) \neq \varphi(v)$ for every $uv \in E(G)$ such that $u \in V(C)$ and $v \notin V(C)$. For a graph G drawn on a surface of non-zero Euler genus and a contractible cycle K in G, let G_K denote the subgraph of G drawn in the unique closed disk in the surface bounded by K.

Lemma 15. For $c \in \{2, 3\}$ and every surface Σ, there exists a positive integer ℓ such that the following claim holds. Let G be a graph of girth at least $t = \frac{2c}{c-1}$ drawn on Σ without non-contractible cycles of length at most four and let L be an assignment of lists of size c to vertices of G. Suppose that either C is an empty graph, or Σ is the plane and C is a cycle of length t bounding the outer face of G, and let ψ be an L-coloring of C. If C is c-solitary, then ψ properly extends to a weak diameter-ℓ L-coloring of G.

10
Proof. Let Σ_0 be the sphere. By Corollary 13 there exists ℓ' such that every graph from $G_{c,\Sigma} \cup G_{c,\Sigma_0}$ has a weak diameter-ℓ' coloring from any assignment of lists of size c. Let $\ell = 2\ell' + 22$.

We prove the claim by induction on the number of vertices of G. Suppose first that there exists a separating t-cycle K in G (necessarily contractible, since $t \leq 4$) such that K is c-solitary in G_K. Let G_1 be the graph obtained from G by deleting the vertices and edges drawn in the open disk bounded by K. By the induction hypothesis, ψ properly extends to a weak diameter-ℓ L-coloring φ_1 of G_1. Using the induction hypothesis again, the restriction of φ_1 to K properly extends to a weak diameter-ℓ L-coloring φ_2 of G_K (G_K is drawn in the plane rather than in Σ when Σ has positive genus, but this is not a problem, as we included the genus-0 case in the choice of ℓ'). Since φ_2 properly extends the restriction of φ_1, each monochromatic component of G in the L-coloring $\varphi_1 \cup \varphi_2$ is contained in G_1 or G_K, and thus has weak diameter at most ℓ.

Hence, we can assume there is no such separating t-cycle. Observe that this implies that for each separating t-cycle, the graph G_K is a t-stack. Let K_1, \ldots, K_m be separating t-cycles in G such that the open disks bounded by them are inclusionwise-maximal, and observe that these open disks are disjoint. Let G' be the graph obtained from G by deleting vertices and edges drawn in these disks. Then G' has no separating t-cycles, and thus $G' \in G_{c,\Sigma}$. By Corollary 13 $G' - V(C)$ has a weak diameter-ℓ' L-coloring φ'. For $i \in \{1, \ldots, m\}$, Lemma 14 implies the restriction ψ_i of $\varphi' \cup \psi$ to K_i extends to a weak diameter-4 ψ_i-opaque L-coloring φ_i of G'_K. Then $\varphi'' = \varphi' \cup \varphi_1 \cup \ldots \cup \varphi_m$ is a weak diameter-$(\ell' + 8)$ L-coloring of $G - V(C)$.

Let φ be the L-coloring that matches ψ on C, $\varphi(v) \in L(v)$ is chosen as an arbitrary color different from the colors of the neighbors of v in C for every vertex $v \in V(G) \setminus V(C)$ with at least one neighbor in C (this is possible, since C is c-solitary), and $\varphi(v) = \varphi''(v)$ for each vertex v at distance at least two from C. Every monochromatic component in φ not contained in C is obtained from a disjoint union of connected monochromatic subgraphs in φ'' by adding neighbors of vertices of C, and thus the distance between any two vertices of the resulting monochromatic component is at most $2(\ell' + 8) + 6 = \ell$.

To finish the proof, we need to deal with non-contractible cycles of length at most 4.

Proof of Theorem 5. For $c \in \{2, 3\}$, let $t = \frac{2c}{c-1}$. For a non-negative integer g, let ℓ_g' be the maximum of the constants ℓ from Lemma 15 over all surfaces of Euler genus at most g, and let us define $\ell_0 = \ell_0'$ and $\ell_g = \max(\ell_g', 2\ell_{g-1} + 4)$. We prove by induction on g that any graph G of girth at least t drawn on a surface of Euler genus at most g has a weak diameter-ℓ_g L-coloring from any assignment L of lists of size c.

11
If \(g = 0 \), then \(G \) does not contain any non-contractible cycles, and thus the claim follows from Lemma \([15]\) (with \(C \) being an empty graph, and considering the drawing of \(G \) in the plane instead of on the sphere). Hence, suppose that \(g > 0 \). If \(G \) does not contain any non-contractible cycle of length at most 4, then the claim again follows from Lemma \([15]\). Hence, suppose \(K \) is a non-contractible cycle of length at most 4 in \(G \). Then each component of the graph \(G - V(K) \) can be drawn on a surface of Euler genus at most \(g - 1 \), and by the induction hypothesis, \(G - V(K) \) has a weak diameter-\(\ell_{g-1} \)-\(L \)-coloring. We extend this \(L \)-coloring to \(G \) by choosing the colors of vertices of \(K \) from their lists arbitrarily; each monochromatic component of the resulting \(L \)-coloring has weak diameter at most \(2\ell_{g-1} + 4 \leq \ell_g \), as required.

\[
\Box
\]

3 The triangle-free case

Let us now provide the proofs of Lemmas \([12]\) and \([14]\) in the case \(c = 2 \). Let \(S_1 \) be a single vertex and \(\gamma_1 \) the function assigning to this vertex the value 3, and let \(S_2 \) be the 4-cycle and \(\gamma_2 \) the function assigning to all its vertices the value 4.

Lemma 16. Both \((S_1, \gamma_1)\) and \((S_2, \gamma_2)\) are 2-sparsifiers of size at most 4.

Proof. Consider \(i \in \{1, 2\} \), let \(L \) be an assignment of lists of size 2 to vertices of \(S_i \), and let \(B \) be a multiassignment of a list of size 3 in case \(i = 1 \) and of lists of size 2 in case \(i = 2 \). In the case \(i = 1 \), choose \(\varphi(v) \in L(v) \) to be different from the color that appears in \(B(v) \) twice (if any). Clearly, \(\varphi \) is \(B \)-opaque.

In the case \(i = 2 \), we choose the \(L \)-coloring of the 4-cycle \(S_2 \) as follows. Let \(R \) be the set of vertices \(v \in V(S_2) \) such that \(B(v) \) contains some color \(a \) with multiplicity two; for such a vertex, set \(L'(v) = L(v) \setminus \{a\} \). For any vertex \(v \in V(S_2) \setminus R \), set \(L'(v) = L(v) \). Orient the cycle \(S_2 \) arbitrarily, and let \(S' \) be the graph obtained from \(S_2 \) by, for each vertex \(v \in R \), deleting the edge that follows it in \(S_2 \) in this orientation. Note that \(|L'(v)| \geq \deg_{S'} v \) for each \(v \in V(S_2) \), and that either \(S' \) is a 4-cycle, or the first vertex \(u \) of each component of \(S' \) according to the orientation of the 4-cycle satisfies \(|L'(u)| > \deg_{S'} u \). Consequently, \(S' \) has a proper \(L' \)-coloring \(\varphi \). We claim that \(\varphi \) is \(B \)-opaque. Indeed, consider distinct vertices \(v_1, v_2 \in V(S_2) \) such that \(\varphi(v_1) = \varphi(v_2) = a \in B(v_1) \cap B(v_2) \). Clearly, \(v_1, v_2 \in V(S_2) \setminus R \), and thus the vertices following \(v_1 \) and \(v_2 \) in \(S_2 \) have colors different from \(a \). Hence, \(v_1 \) and \(v_2 \) are not in the same monochromatic component.

\[
\Box
\]

Proof of Lemma \([12]\) in the case \(c = 2 \). Let \(\varepsilon_2 = 1/3000 \). We can assume \(|V(G)| > 5 \), as otherwise the claim holds trivially. Since \(G \) is triangle-free and has minimum degree at least two, every face of \(G \) has length at least four. Let \(\beta = \sum_{f \in F} (|f| - 4) \), where the sum is over all faces. By the
generalized Euler’s formula, we have $|E(G)| \leq |V(G)| + |F| + g - 2$, and since $2|E(G)| = \sum_{f \in F} |f| = 4|F| + \beta$, we conclude that

$$|E(G)| < 2|V(G)| - \frac{\beta}{2} + 2g.$$

Since G is simple, does not have separating or non-contractible 4-cycles, and $|V(G)| > 5$, every vertex of degree two is incident with a face of length at least five. Since G is $(2, 4)$-sparsifier-free, (S_1, γ_1) has no appearance in G, and thus each vertex of degree three is also incident with a face of length at least five. Hence, the number n_3 of vertices of degree at most three is at most 5β.

Let us give each vertex of degree at most three the charge 1, any vertex of degree $d \geq 4$ charge $d - 4$, and any face f the charge $|f| - 4$. By the generalized Euler’s formula, the sum of charges is at most

$$\left(\sum_{v \in V(G)} (\deg v - 4) \right) + 3n_3 + \sum_{f \in F} (|f| - 4) = 4(|E(G)| - |V(G)| - |F|) + 3n_3$$

$$\leq 4g - 8 + 3n_3 < 15\beta + 4g.$$

Each vertex v of degree $d \neq 4$ now sends $1/11$ to each adjacent vertex and each vertex opposite to v over a 4-face; this still leaves v with at least

$$\max(d - 4, 1) - 2d/11 \geq \max(9d/11 - 4, 1 - 2d/11) \geq 1/11$$

units of charge. Each face $|f|$ of length at least five sends $1/11$ to each incident vertex, still keeping $|f| - 4 - |f|/11 > 0$ units of charge. Afterwards, each vertex v of degree four which received charge sends $1/99$ to each adjacent vertex and each vertex opposite to v over a 4-face; note that v keeps at least $1/11 - 8/99 = 1/99$ units of charge. Since each face has non-negative final charge and the total amount of charge did not change, we conclude that the sum of the final charges of vertices is less than $15\beta + 4g$. Note that each vertex has non-negative final charge, and vertices of degree other than four have final charge at least $1/11$.

We claim that vertices of degree four have charge at least $1/99$. Consider for a contradiction a vertex v of degree four with smaller final charge. All incident faces must be 4-faces, only incident with vertices of degree four, and the faces incident those must also have length four. This is not possible, since (S_2, γ_2) does not have an appearance in G.

Since every vertex has final charge at least $1/99$, we have $|V(G)|/99 \leq 15\beta + 4g$, and thus $\beta \geq |V(G)|/1500 - g$. Consequently, $|E(G)| < 2|V(G)| - \beta/2 + 2g < (2 - 1/3000)|V(G)| + 3g$.

We finish this section by proving a strengthening Lemma 14 for $c = 2$. Introducing this strengthening requires the following additional definitions. Let C be the 4-cycle bounding the outer face of a 4-stack G, and let φ
be a coloring of \(G \). We say that a monochromatic component \(Q \) of \(\varphi \) is \(C \)-transversal if \(V(Q) \cap V(C) \neq \emptyset \) and \(V(Q) \setminus V(C) \neq \emptyset \). We say that \(\varphi \) is \(v \)-compliant for some \(v \in V(C) \) if either no monochromatic component of \(\varphi \) is \(C \)-transversal, or there exists a unique such component \(Q \) and the following conditions hold

(C1) \(\forall v \in V(Q) \),

(C2) \(\varphi(v) \neq \varphi(v') \), where \(v' \) is the unique non-neighbor of \(v \) on \(C \),

(C3) every vertex in \(V(Q) \setminus V(C) \) has a neighbor in \(V(Q) \setminus V(Q) \).

We say that a vertex \(v \in V(C) \) is \(G \)-active if every vertex in \(V(G) \setminus V(C) \) with two neighbors on \(C \) is adjacent to \(v \).

Lemma 17. Let \(G \) be a 4-stack with the outer face bounded by a 4-cycle \(C \), let \(L \) be an assignment of lists of size two to vertices of \(G \), let \(\psi \) be an \(L \)-coloring of \(C \), and let \(v \in V(C) \) be \(G \)-active. Then \(\psi \) extends to a weak diameter-4 \(\psi \)-opaque \(v \)-compliant \(L \)-coloring \(\varphi \) of \(G \).

Proof. We prove the lemma by induction on \(|V(G)| \). The basic case \(G = C \) is trivial. Hence, we can assume \(G \neq C \). Let \(v' \) be the unique vertex of \(C \) non-adjacent to \(v \), and let \(X = \{x_1, \ldots, x_{m+1}\} \) be the set of all common neighbors of \(v \) and \(v' \) in \(G \), numbered so that for every \(i \in \{1, \ldots, m\} \) the cycle \(C_i = x_i x_{i+1} v' \) does not contain any vertices of \(X \) in its interior. In particular, we have \(x_1, x_{m+1} \in V(C) \). Let \(G_i = G_{C_i} \), and note that \(x_i \) and \(x_{i+1} \) are \(G_i \)-active.

For \(i = 2, \ldots, m \), choose a color \(\psi(x_i) \in L(x_i) \setminus \{\psi(v')\} \). Let \(v_1 = x_2 \) and \(v_m = x_m \). For \(i = 2, \ldots, m-1 \), let \(v_i = x_i \) if \(\psi(x_{i+1}) = \psi(v) \) and \(v_i = x_{i+1} \) otherwise; note that \(\psi(v_i) \neq \psi(v) \) unless \(\psi(x_i) = \psi(v) = \psi(x_{i+1}) \). By the induction hypothesis, the restriction of \(\psi \) to \(V(G_i) \) extends to a weak diameter-4 \(\psi \)-opaque \(v_i \)-compliant \(L \)-coloring \(\varphi_i \) of \(G_i \) for every \(i \in \{1, \ldots, m\} \). Let \(\varphi \) be the \(L \)-coloring of \(G \) such that \(\varphi_i \) is the restriction of \(\varphi \) to \(G_i \) for every \(i \). We show that \(\varphi \) satisfies the lemma.

Note that every \(v \)-compliant coloring of \(G \) that extends \(\psi \) is necessarily \(\psi \)-opaque. Thus it suffices to show that every monochromatic component \(Q \) of \(\varphi \) has weak diameter at most four, and that if \(Q \) is \(C \)-transversal then \(Q \) satisfies the conditions (C1)-(C3) above.

Suppose first that \(V(Q) \cap V(C) = \emptyset \). If \(Q \) is a monochromatic component of \(G_i \) for some \(i \) then the weak diameter of \(Q \) is at most four by the choice of \(\varphi_i \). Thus we may assume that \(Q \) contains vertices in both \(V(G_i) \setminus V(G_{i-1}) \) and \(V(G_{i-1}) \setminus V(G_i) \) for some \(i \in \{2, \ldots, m\} \). Since \(V(Q) \cap V(C) = \emptyset \), it follows that \(x_i \in V(C) \) and for \(j \in \{i-1, i\} \) the restriction of \(Q \) to \(G_j \) is \(C_j \)-transversal. Since \(\varphi_{i-1} \) and \(\varphi_i \) are \(\psi \)-opaque, \(V(Q) \cap V(C_{i-1} \cup C_i) \) is \(\{x_i\} \) and \(V(Q) \subseteq V(G_{i-1} \cup G_i) \). By (C3), every vertex of \(Q \) is a neighbor of some
vertex in \(\{v, v', x_{i-1}, x_{i+1}\} \), and thus the weak diameter of \(Q \) is at most four as desired.

It remains to consider the case when \(Q \) is \(C \)-transversal. Consider any edge \(uw \in E(G) \) such that \(u \in V(C) \), \(w \notin V(C) \) and \(\varphi(u) = \varphi(w) \):

- If \(w = x_i \) for some \(i \in \{2, \ldots, m\} \), then since \(\psi(x_i) \neq \psi(v') \), we have \(u = v \) and \(\psi(v) \neq \psi(v') \).

- Otherwise, \(w \in V(G_i) \setminus V(C_i) \) for some \(i \in \{1, \ldots, m\} \). By (C1) for \(\varphi_i \), we have \(\psi(v_i) = \psi(u) \), and the choice of \(v_1 \) and \(v_m \) and the property (C2) of \(\varphi_i \) imply \(u \notin \{x_1, x_{m+1}\} \). Since \(\psi(v_i) \in L(v_i) \setminus \{\psi(v')\} \), it follows that \(u = v \) and \(\psi(v) \neq \psi(v') \).

In either case, we conclude that \(\varphi \) satisfies (C1) and (C2). It remains to check that (C3) holds, i.e. every vertex \(w \in V(Q) \setminus V(C) \) has a neighbor in \(V(C) \setminus V(Q) \). If \(w \in X \) then \(v' \) is such a neighbor. Hence, assume that \(w \in V(G_i) \setminus V(C_i) \) for some \(i \), and thus the restriction of \(Q \) to \(G_i \) is \(C_i \)-transversal. Recall that \(v \in V(Q) \); by (C1) for \(\varphi_i \), we have \(v_i \in V(Q) \), and thus \(\psi(v_i) = \psi(v) \). Moreover, (C2) for \(\varphi_i \) implies \(\psi(x_i) \neq \psi(x_{i+1}) \). It follows from the choice of \(v_i \) that \(i \in \{1, m\} \), and thus \(V(C_i) \setminus V(Q) \subseteq V(C_i) \setminus \{v_i\} \subseteq V(C) \). By (C3) for \(\varphi_i \), the vertex \(w \) has a neighbor in \(V(C_i) \setminus V(Q) \subseteq V(C) \setminus V(Q) \), as desired. \(\square \)

4 The non-triangle-free case

Next, let us consider the case \(c = 3 \). Let \(S_1 \) be a single vertex and \(\gamma_1 \) the function assigning to this vertex the value 5, and let \(S_2 \) be the 4-cycle with one chord and \(\gamma_2 \) the function assigning to all its vertices the value 6.

Lemma 18. Both \((S_1, \gamma_1)\) and \((S_2, \gamma_2)\) are 3-sparsifiers of size at most 4.

Proof. Consider \(i \in \{1, 2\} \), let \(L \) be an assignment of lists of size 3 to vertices of \(S_i \), and let \(B \) be a multiassignment of a list of size 5 in case \(i = 1 \) and of list of size \(6 - \deg_{S_2} v \) to each vertex \(v \in V(S_2) \) in case \(i = 2 \). In the case \(i = 1 \), choose \(\varphi(v) \in L(v) \) to be different from the (at most two) colors that appear in \(B(v) \) more than once. Clearly, \(\varphi \) is \(B \)-opaque.

In the case \(i = 2 \), we choose the \(L \)-coloring of \(S_2 \) as follows. Let \(R \) consist of the vertices \(u \in V(S_2) \) such that \(B(u) \) contains at most two distinct colors. For \(u \in R \), let \(\varphi(u) \in L(u) \) be chosen different from the colors in \(B(u) \). For \(v \in V(S_2) \setminus R \), let \(L'(v) \) consist of the colors in \(L(v) \) that appear in \(B(v) \) at most once. Note that if \(\deg_{S_2} v = 2 \), then \(|B(v)| \leq 4 \) and since \(B(v) \) contains at least three distinct colors, we have \(|L'(v)| \geq 2 \); and if \(\deg_{S_2} v = 3 \), then \(|B(v)| \leq 3 \) and \(L'(v) = L(v) \) has size three. In particular, \(|L'(v)| \geq \deg_{S_2} v \) for each \(v \in V(S_2) \setminus R \). Hence, we can choose \(\varphi \) on \(V(S_2) \setminus R \) to be a proper \(L' \)-coloring of \(S_2 - R \). Additionally, in case neither of the vertices
$x, y \in V(S_2)$ of degree two belongs to R and at least one vertex z of degree three belongs to R (so $S_2 - R$ is either a path or consists of two isolated vertices), we can choose φ so that $\varphi(x) \neq \varphi(y)$.

If distinct vertices $v_1, v_2 \in V(S_2)$ both receive the same color $a \in B(v_1) \cap B(v_2)$, then $v_1, v_2 \notin R$ and $v_1v_2 \notin E(S_2)$, and thus v_1 and v_2 are the vertices of S_2 of degree two. Moreover, by the last condition in the choice of φ, since $\varphi(v_1) = \varphi(v_2)$, we have $R = \emptyset$, and thus no other vertex of S_2 has color a; hence, v_1 and v_2 do not belong to the same monochromatic component. It follows that φ is B-opaque.

Proof of Lemma 12 in the case $c = 3$. Let $\epsilon_3 = 1/1000$. We can assume $|V(G)| > 4$, as otherwise the claim holds trivially. Since G has minimum degree at least three, every face of G has length at least four. Let $\beta = \sum_{f \in F}(|f| - 3)$, where the sum is over all faces. By the generalized Euler’s formula, we have $|E(G)| \leq |V(G)| + |F| + g - 2$, and since $2|E(G)| = \sum_{f \in F} |f| = 3|F| + \beta$, we conclude that

$$|E(G)| < 3|V(G)| - \beta + 3g.$$

Since G is simple, does not have separating or non-contractible triangles, and $|V(G)| > 4$, every vertex of degree three is incident with a face of length at least four. Since G is $(3,4)$-sparsifier-free, (S_1, γ_1) has no appearance in G, and thus each vertex of degree at most five is also incident with a face of length at least four. Hence, the number n_5 of vertices of degree at most five is at most 4β.

Let us give each vertex of degree at most five the charge 1, any vertex of degree $d \geq 6$ charge $d - 6$, and any face f the charge $2|f| - 6$. By the generalized Euler’s formula, the sum of charges is at most $6g - 12 + 4n_3 < 16\beta + 6g$. Each vertex v of degree $d \neq 6$ now sends $1/8$ to each adjacent vertex; this still leaves v with at least $1/8$ units of charge. Each face of length at least four sends $1/8$ to each incident vertex, still keeping its charge nonnegative. After this, each vertex of degree six which received charge sends $1/56$ to each adjacent vertex. Since each face has non-negative final charge and the total amount of charge did not change, we conclude that the sum of the final charges of vertices is less than $16\beta + 6g$. Note that each vertex has non-negative final charge, and vertices of degree other than six have final charge at least $1/8$.

We claim that vertices of degree six have final charge at least $1/56$. Consider for a contradiction a vertex v of degree six with smaller final charge. All incident faces must be triangles, only incident with vertices of degree six, and the faces incident those must also be triangles. Moreover, since G does not contain separating or non-contractible triangles, the neighbors of v form an induced 6-cycle. This is not possible, since (S_2, γ_2) does not have an appearance in G.

16
Since every vertex has final charge at least $1/56$, we have $|V(G)|/56 \leq 16\beta + 6g$, and thus $\beta \geq |V(G)|/1000 - g$. Consequently, $|E(G)| < 3|V(G)| - \beta + 3g < (3 - 1/1000)|V(G)| + 4g$.

We now show that Lemma 14 holds for $c = 3$. Note that in this case, the condition that the resulting coloring is ψ-opaque is trivially satisfied, since ψ cannot have distinct components of the same color on the triangle C. We prove the following stronger statement. In a coloring φ of a 3-stack G with the outer face bounded by a triangle C, a vertex $v \in V(C)$ is a singleton if no adjacent vertex in $V(G) \setminus V(C)$ has the color $\varphi(v)$.

Lemma 19. Let G be a 3-stack with the outer face bounded by the triangle C, and let u be a vertex of C. Let L be an assignment of lists of size three to vertices of G, and let ψ be an L-coloring of C. Then ψ extends to a weak diameter-2 L-coloring of G in which vertices in $V(C) \setminus \{u\}$ are singletons and the monochromatic component containing u is contained in the neighborhood of each of the vertices in $V(C) \setminus \{u\}$; and moreover, if ψ only uses at most two distinct colors on C, then u is also a singleton.

Proof. We prove the claim by induction on the number of vertices of G. The claim is clear if $G = C$, and thus we can assume that there exists a vertex $v \in V(G)$ adjacent to all vertices of C. Let C_1, C_2, and C_3 be the three triangles in $G[V(C) \cup \{v\}]$ distinct from C, where $u \not\in V(C_3)$. Choose a color $\psi(v) \in L(v)$ distinct from the colors of the two vertices in $V(C) \setminus \{u\}$, and distinct from $\psi(u)$ if ψ only uses at most two distinct colors on C.

For $i \in \{1, 2, 3\}$, extend ψ to a weak diameter-2 L-coloring of G_{C_i} by the induction hypothesis, with the vertex v playing the role of u. This ensures that the vertices in $V(C) \setminus \{u\}$ are singletons in the resulting L-coloring of G, and if $\psi(v) \neq \psi(u)$ (which is always the case if ψ only uses at most two colors on C), then also u is a singleton. Consider the monochromatic component Q of the vertex v in the resulting coloring:

- If $\psi(v) \neq \psi(u)$, then by the induction hypothesis, for $1 \leq i < j \leq 3$, $Q \cap (V(G_{C_i}) \cup V(G_{C_j}))$ is contained in the neighborhood of a vertex of C, and thus Q has weak diameter at most two.

- If $\psi(v) = \psi(u)$, then u and v are singletons in the colorings of G_{C_1} and G_{C_2}, and thus $Q = (Q \cap V(G_{C_3})) \cup \{u\}$. By the induction hypothesis, we conclude that Q is contained in the neighborhood of each of the vertices in $V(C) \setminus \{u\}$.

\[\square\]

References

[1] M. Bonamy, N. Bousquet, L. Esperet, C. Groenland, C. Liu, F. Pirot, and A. Scott, *Asymptotic dimension of minor-closed families*.
lies and assouad-nagata dimension of surfaces, Journal of the European Mathematical Society, (2021).

[2] Z. Dvořák and S. Norin, Islands in minor-closed classes. i. bounded treewidth and separators, arXiv, 1710.02727 (2017).

[3] L. Esperet and G. Joret, Colouring planar graphs with three colours and no large monochromatic components, Combinatorics, Probability and Computing, 23 (2014), pp. 551–570.

[4] N. Robertson and P. D. Seymour, Graph Minors. III. Planar treewidth, Journal of Combinatorial Theory, Series B, 36 (1984), pp. 49–64.

[5] D. R. Wood, Defective and clustered graph colouring, The Electronic Journal of Combinatorics, 1000 (2018), pp. 23–13.