Time-Like Constant Slope Surfaces and Space-Like Bertrand Curves in Minkowski 3-Space

ABSTRACT

Defining Lorentzian Sabban frame of the unit speed time-like curves on de Sitter 2-space S^2_1 and introducing space-like height function on the unit speed time-like curves on S^2_1, the invariants of the unit speed time-like curves on S^2_1 and geometric properties of de Sitter evolutes of the unit speed time-like curves on S^2_1 are studied. A relation between space-like Bertrand curves and helices is obtained. De Sitter Darboux images of space-like Bertrand curves are equal to de Sitter evolutes. The relations between time-like constant slope surfaces lying in the space-like cone and space-like Bertrand curves in Minkowski 3-space \mathbb{R}^3_1 are obtained.

Key words: Bertrand curve, de Sitter Darboux image, helix, Lorentzian Sabban frame, de Sitter evolute, time-like constant slope surface, de Sitter 2-space
1. Introduction

Huygens [1] discovered involutes (also known as evolvents) while trying to build a more accurate pendulum clock. The curve α is called evolute of $\tilde{\alpha}$ and the curve $\tilde{\alpha}$ is called involute of α if the tangent vectors are orthogonal at the corresponding points for all $s \in I \subset \mathbb{R}$. Thus the pair of $(\alpha, \tilde{\alpha})$ is called the evolute-involute pair [2].

Bertrand curves [3] are different generalization of circular helices and are particular examples of offset curves which are used in computer-aided design (CAD) and computer-aided manufacture (CAM) [4]. Izumiya and Takeuchi [5] showed that Bertrand curves can be constructed from the unit speed curves on the 2-sphere S^2. Also they defined spherical evolutes of the unit speed curves on S^2 and proved that these spherical evolutes are the locus of the centre of the curvatures of the unit speed curves on S^2. In addition, they showed that the spherical Darboux images of Bertrand curves are equal to the spherical evolutes of the unit speed curves on S^2 in Euclidean 3-space \mathbb{R}^3.

Babaarslan and Yayli [6] found Bertrand curves corresponding to the tangent, binormal, principal normal and Darboux images of a space curve in \mathbb{R}^3.

Izumiya et al. [7] defined the notion of hyperbolic evolutes and hyperbolic height function of space-like curves on the hyperbolic space \mathbb{H}^2. As a result, they showed that the hyperbolic evolutes are the locus of the center of geodesic curvatures in Minkowski 3-space \mathbb{R}^3.

As a generalization of the concept of helix, we can also think constant slope surfaces whose position vectors make a constant angle with the normals at each point on the surfaces. Munteanu [8] defined constant slope surfaces in \mathbb{R}^3 and showed that these surfaces can be constructed from unit speed curves on S^2 such as Bertrand curves.

Babaarslan and Yayli [9] investigated the relations among Bertrand curves, spherical images and constant slope surfaces in \mathbb{R}^3. Also, Babaarslan et al. [10, 11] found some different characterizations of constant slope surfaces and Bertrand curves with respect to the Darboux frame. In addition, Babaarslan and Yayli [12] showed that the constant slope surfaces can be reparametized by using quaternions and homothetic motions.
Fu and Yang [13] studied space-like constant slope surfaces in \mathbb{R}^3_1 and classified these surfaces in the same space. Thereafter Babaarslan and Yayli [14] gave the relations among split quaternions, homothetic motions and space-like constant slope surfaces in \mathbb{R}^3_1.

Fu and Wang [15] gave a complete classification of time-like constant slope surfaces in \mathbb{R}^3_1. They showed that $S \subset \mathbb{R}^3_1$ is a time-like constant slope surface lying in the space-like cone if and only if it can be parametrized by

$$x(u,v) = u \sin \theta \left(\cos \xi(u)f(v) + \sin \xi(u)f(v) \wedge f'(v) \right),$$

where θ is a constant satisfying $\theta \in (0, \pi/2]$, $\xi(u) = \cot \theta \ln u$ and f is a unit speed time-like curve on de Sitter 2-space S^2_1. Also, there are some different characterizations of time-like constant slope surfaces in [15] since the results of them are similar to that we found [16], we only investigate the above characterization.

Constant slope surfaces have nice shapes and they are interesting in terms of differential geometry in both Euclidean and Minkowski 3-space [8].

In the present paper, we define the notions of Lorentzian Sabban frame and de Sitter evolutes of the unit time-like curves on S^2_1 and study the invariants of the unit speed time-like curves on S^2_1 and geometric properties of de Sitter evolutes of the unit speed time-like curves on S^2_1. The relations among space-like Bertrand curves, helices, de Sitter Darboux images and time-like constant slope surfaces lying in the space-like cone in \mathbb{R}^3_1 are also given.

2. Basic notations, definitions and formulas

Let \mathbb{R}^3_1 denote the Minkowski 3-space, that is, the real vector space \mathbb{R}^3 endowed with the standard Lorentzian metric [17]

$$<x, y> = x_1y_1 + x_2y_2 - x_3y_3,$$

where $x, y \in \mathbb{R}^3_1$. An arbitrary vector $x \in \mathbb{R}^3_1$ is called space-like if $<x, x> > 0$ or $x = 0$, time-like if $<x, x> < 0$ and light-like (null) if $<x, x> = 0$ and $x \neq 0$. The norm (length) of a vector x is given by $||x|| = \sqrt{<x, x>}$.

3
We say that a regular curve $\alpha : I \subset \mathbb{R} \to \mathbb{R}^3$ is space-like, time-like or light-like if all of its velocity vector $\alpha'(t)$ is space-like, time-like or light-like, respectively. α is parametrized by the arc-length parameter if $\|\alpha'(s)\|=1$ for all $s \in I \subset \mathbb{R}$. In this case, we say that α is a unit speed curve.

We can define the notion of the Lorentzian cross-product as follows:

$$\wedge : \mathbb{R}_1^3 \times \mathbb{R}_1^3 \to \mathbb{R}_1^3$$

$$(x_1, x_2, x_3, y_1, y_2, y_3) \to \begin{vmatrix} i & j & -k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

As the cross-product in Euclidean 3-space, the Lorentzian cross-product has similar algebraic and geometric properties:

(i) $< x \wedge y, z > = \det(x, y, z)$;

(ii) $x \wedge y = -y \wedge x$;

(iii) $(x \wedge y) \wedge z = -< x, z > y + < y, z > x$;

(iv) $< x \wedge y, x > = 0$ and $< x \wedge y, y > = 0$;

(v) $< x \wedge y, x \wedge y > = - < x, x > < y, y > + (< x, y >)^2$ for all x, y, z in \mathbb{R}_1^3.

Given a unit speed curve α in \mathbb{R}_1^3, it is possible to define a Frenet frame $\{T(s), N(s), B(s)\}$ associated for each point s. Here T, N and B are the tangent, principal normal and binormal vector fields, respectively.

Let α be a unit speed space-like curve in \mathbb{R}_1^3. We assume that $T'(s)$ is time-like. Then we have $N(s) = \alpha''(s) / \kappa(s)$ and $B(s) = T(s) \wedge N(s)$. Thus the Frenet formulae is

$$\begin{bmatrix} T'(s) \\ N'(s) \\ B'(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ \kappa(s) & 0 & \tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix} \begin{bmatrix} T(s) \\ N(s) \\ B(s) \end{bmatrix},$$

where $\kappa(s) = -< T'(s), T'(s) >$ and $\tau(s) = -< N'(s), B(s) >$ are the curvature and torsion of the unit speed space-like curve, respectively.

The Darboux vector of this space-like curve α is given by $D(s) = \tau(s)T(s) - \kappa(s)B(s)$. Then de Sitter Darboux image of α is
\[
\mathbf{C} : I \rightarrow \mathbb{S}^2_1 \\
s \rightarrow C(s) = \frac{\mathbf{D}(s)}{\|\mathbf{D}(s)\|}
\]

For a general parameter \(t \) of a space-like space curve \(\alpha \), we can calculate the curvature and torsion as follows:

\[
\kappa(t) = \frac{\|\alpha'(t) \wedge \alpha''(t)\|}{\|\alpha'(t)\|^2}, \quad \tau(t) = \frac{\det(\alpha'(t), \alpha''(t), \alpha'''(t))}{\|\alpha'(t) \wedge \alpha''(t)\|^2}.
\] (2.1)

If a time-like or space-like curve \(\alpha \) in \(\mathbb{R}^3 \) is a helix, then \(\tau/\kappa \) is a constant function. Conversely, let \(\alpha \) be a time-like or a space-like curve with non-null principal normal vector. If \(\tau/\kappa \) is constant, then \(\alpha \) is a helix. Furthermore, a time-like or space-like curve \(\alpha \) is a Bertrand curve if and only if there are non-zero real constants \(A, B \) such that \(A\kappa(s) + B\tau(s) = 1 \) for any \(s \in I \subset \mathbb{R} \).

We can define de Sitter 2-space and hyperbolic space in \(\mathbb{R}^3_1 \), respectively as follows:

\[
\mathbb{S}^2_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3_1 : x_1^2 + x_2^2 - x_3^2 = 1\},
\]

\[
\mathbb{H}^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3_1 : x_1^2 + x_2^2 - x_3^2 = -1\}.
\]

Now we define a pseudo-orthonormal frame along a time-like curve on \(\mathbb{S}^2_1 \). Let \(f : I \rightarrow \mathbb{S}^2_1 \) be a unit speed time-like curve. We denote \(v \) as the arc-length parameter of \(f \). Let us denote \(t(v) = f'(v) \) and we call \(t(v) \) as the unit tangent vector of \(f \) at \(v \). We set a vector \(s(v) = f(v) \wedge t(v) \) and as a consequence \(s(v) \wedge t(v) = -f(v) \), where \(f \) denotes the position vector of the curve. By definition of the time-like curve \(f \), we have a Lorentzian Sabban frame \{\(f(v), t(v), s(v) \)\} along \(f \). Then we have the following pseudo-spherical Frenet-Serret formulae of \(f \):

\[
\begin{align*}
 f'(v) &= t(v), \\
 t'(v) &= f(v) + \mathbf{K}_g(v)s(v), \\
 s'(v) &= \mathbf{K}_g(v)t(v),
\end{align*}
\] (2.2)

where \(\mathbf{K}_g(v) \) is the geodesic curvature of the unit speed time-like curve \(f \) on \(\mathbb{S}^2_1 \) which is given by \(\mathbf{K}_g(v) = \det(f(v),t(v),t'(v)) \).

Also we define a curve on \(\mathbb{S}^2_1 \) as follows:
3. Space-like height function of unit speed time-like curves on \mathbb{S}^2_1

We introduce a function on a time-like curve $f : I \rightarrow \mathbb{S}^2_1$ [7]. Now we define a function $H^S : I \times \mathbb{S}^2_1 \rightarrow \mathbb{R}$ by $H^S(v,u) = \langle f(v), u \rangle$. We call H^S as the space-like height function of the time-like curve f and denoted by $(h^S_u)(v) = H^S(v,u)$.

Thus, we have the following proposition:

Proposition 3.1. Let $f : I \rightarrow \mathbb{S}^2_1$ be a unit speed time-like curve. For any $(v,u) \in I \times \mathbb{S}^2_1$:

(a) $(h^S_u)'(v) = 0$ if and only if $u \in \text{span}\{f(v), s(v)\}$,

(b) $(h^S_u)'(v) = (h^S_u)''(v) = 0$ if and only if $u = \pm \left(\kappa_g(v)f(v) - s(v)\right)/\sqrt{\kappa_g^2(v) + 1}$.

Proof. By using Eq. (2.2), we have

(i) $(h^S_u)'(v) = \langle f(v), u \rangle$,

(ii) $(h^S_u)''(v) = \langle f(v) + \kappa_g(v)s(v), u \rangle$.

The assertion (a) can be found from the formula (i). By using assertion (a), there exist $\lambda, \mu \in \mathbb{R}$ such that $u = \lambda f(v) + \mu s(v)$. From formula (ii), we obtain

$$0 = \langle f(v) + \kappa_g(v)s(v), \lambda f(v) + \mu s(v) \rangle$$

$$= \lambda \langle f(v), f(v) \rangle + \mu \kappa_g(v) < s(v), s(v) >$$

$$= \lambda + \mu \kappa_g(v).$$

Thus we get $u = -\frac{\mu}{\mu \kappa_g(v)}(\kappa_g(v)f(v) - s(v))$. Since $\langle u, u \rangle = 1$, we have

$$\mu = \mp \frac{1}{\sqrt{\kappa_g^2(v) + 1}}.$$
\[u = \pm \frac{1}{\sqrt{\kappa_g^2(v)} + 1} \left(\kappa_g(v)f(v) - s(v) \right). \]

Conversely, substituting \(u \) into (i) and (ii), respectively, we find \((h_u^v)'(v) = (h_u^v)'(v) = 0\). This completes the proof.

4. Spherical invariants of unit speed time-like curves on \(S_1^2 \)

We study the geometric properties of de Sitter evolutes of the unit speed time-like curves on \(S_1^2 \) [7]. For any \(r \in \mathbb{R} \) and \(u_0 \in S_1^2 \), we denote \(PS^i(u_0, r) = \{ u \in S_1^2 : < u, u_0 > = r \} \). We call \(PS^i(u_0, r) \) as a pseudo-circle whose center is \(u_0 \) on \(S_1^2 \).

Then we have the following proposition:

Proposition 4.1. Let \(f : I \to S_1^2 \) be a unit speed time-like curve. Then \(\kappa_g'(v) = 0 \) if and only if \(u_0 = \pm \left(\kappa_g(v)f(v) - s(v) \right)/\sqrt{\kappa_g^2(v) + 1} \) are constant vectors. Under this condition, \(f \) is a part of a pseudo-circle whose center is \(u_0 \) on \(S_1^2 \).

Proof. Let we denote
\[P_\pm(v) = \pm u_0 = \pm \frac{1}{\sqrt{\kappa_g^2(v)} + 1} \left(\kappa_g(v)f(v) - s(v) \right). \]

Taking the derivative of this equation with respect to \(v \), we have
\[P'_\pm(v) = \pm \kappa'_g(v) \frac{f(v) + \kappa_g(v)s(v)}{\left(\kappa_g^2(v) + 1 \right)^{1/2}}. \]

Thus \(P'_\pm(v) = 0 \) if and only if \(\kappa'_g(v) = 0 \).

Under this condition, we put \(r = \pm \kappa_g(v)/\sqrt{\kappa_g^2(v) + 1} \) and \(u_0 = \pm \left(\kappa_g(v)f(v) - s(v) \right)/\sqrt{\kappa_g^2(v) + 1} \).

Then \(f(v) \) is a part of the pseudo-circle \(PS^i(u_0, r) \). This completes the proof.

Let \(f : I \to S_1^2 \) be a unit time-like curve. For any \(v_0 \in I \), we consider the pseudo-circle \(PS^i(u_0, r_0^v) \), where \(u_0 = d_f(v_0) \) and \(r_0 = \kappa_g(v_0)/\sqrt{\kappa_g^2(v_0) + 1} \).
Thus we have the following proposition:

Proposition 4.2. Under the above notations, f and $PS^1(u_0, r_0)$ have at least a 3-point contact at $f(v_0)$.

Proof. Proposition 3.1 (b) says that f and $PS^1(u_0, r_0)$ have at least a 3-point contact at $f(v_0)$. Thus, the proof is completed.

Remark 4.3. We call $PS^1(u_0, r_0)$ in proposition 4.2 as the pseudo-circle of geodesic curvature and its center u_0 is called as the center of geodesic curvature. As a result, the de Sitter evolute is the locus of the center of geodesic curvature.

5. **Time-like constant slope surfaces lying in the space-like cone and space-like Bertrand curves**

In this section, we give the relations among space-like Bertrand curves, helices, de Sitter Darboux images and time-like constant slope surfaces lying in the space-like cone in \mathbb{R}^3_1.

Now we can express the following lemma:

Lemma 5.1. Let $f : I \to \mathbb{S}^2_1$ be a unit speed time-like curve. Then

$$\tilde{y}(v) = a \int_a^v f(t) dt + a \tan \xi \int_a^v f(t) \wedge f'(t) dt$$

is a space-like Bertrand curve, where a and $\xi = \xi(u) = \cot \theta \ln u$ are constant numbers, and θ is a constant satisfying $\theta \in (0, \pi/2]$. Moreover, all space-like Bertrand curves can be constructed by using this method.
Proof. We now calculate the curvature and the torsion of $\tilde{\gamma}(v)$. Taking the derivatives of Eq. (5.1) three times with respect to v, we have
\begin{align*}
\tilde{\gamma}'(v) &= a\left(f(v) + \tan \xi s(v)\right), \\
\tilde{\gamma}''(v) &= a\left(1 + \tan \xi \kappa_\parallel(v)\right)t(v), \\
\tilde{\gamma}'''(v) &= a\left(\left(1 + \tan \xi \kappa_\parallel(v)\right)f(v) + \tan \xi \kappa'_\parallel(v)t(v) + \left(\kappa_\parallel(v) + \tan \xi \kappa^2_\parallel(v)\right)s(v)\right).
\end{align*}
Therefore, by using Eq. (2.1), we obtain $\kappa(v)$ and $\tau(v)$ as follows:
\begin{align*}
\kappa(v) &= \varepsilon \frac{\cos^2 \xi \left(1 + \tan \xi \kappa_\parallel(v)\right)}{a} \\
\tau(v) &= \frac{\cos^2 \xi \left(\kappa_\parallel(v) - \tan \xi \xi\right)}{a},
\end{align*}
where $\varepsilon = \pm 1$. It follows from these formulae that $a(\varepsilon \kappa(v) - \tan \xi \tau(v)) = 1$, thus $\tilde{\gamma}(v)$ is a Bertrand curve. Also, since $<\tilde{\gamma}'(v), \tilde{\gamma}''(v) >= a^2 / \cos^2 \xi > 0$, $\tilde{\gamma}(v)$ is a space-like Bertrand curve.

Conversely, let $\tilde{\gamma}(s)$ be a space-like Bertrand curve. Thus, there exist real constants A, B different from zero such that $A\kappa(s) + B\tau(s) = 1$. Here we put $A = a$ and $B = -a \tan \xi$. Assume that $a > 0$ and choose $\varepsilon = \pm 1$ with $\varepsilon \cos \xi / a > 0$.

Let us consider the Frenet frame $\{T(s), N(s), B(s)\}$ for the space-like Bertrand curve $\tilde{\gamma}(s)$. In this trihedron $T(s)$ and $B(s)$ are space-like vectors, $N(s)$ is a time-like vector. For these vectors, we have
\begin{align*}
T(s) \wedge N(s) = B(s) \quad \text{and} \quad B(s) \wedge N(s) = -T(s).
\end{align*}

Now we define a time-like curve on S^1_1 as
\begin{align*}
f(s) = \varepsilon \left(\cos \xi T(s) - \sin \xi B(s)\right).
\end{align*}
Thus we have
\begin{align*}
f'(s) &= \varepsilon \cos \xi \left(\kappa(s) - \tan \xi \tau(s)\right)N(s) = \frac{\varepsilon}{a} \cos \xi N(s). \\
\end{align*}

Let v be the arc-length parameter of f, then we have $dv / ds = \varepsilon \cos \xi / a$. Moreover, we get
\begin{align*}
av(s) \frac{dv}{ds} &= \cos \xi \left(\cos \xi T(s) - \sin \xi B(s)\right) \tag{5.3}
\end{align*}
and
\begin{align*}
a \tan \xi f(s) \wedge \frac{df}{dv} \frac{dv}{ds} &= \sin \xi \left(\cos \xi B(s) + \sin \xi T(s)\right). \tag{5.4}
\end{align*}
By using Eq. (5.3) and (5.4), we obtain
\[
a \int_0^y f(t)dt + a \tan \xi \int_0^y f(t) \wedge f'(t)dt = \int_{\xi_0}^s \cos \xi \left(\cos \xi T(t) - \sin \xi B(t) \right) dt \\
+ \int_{\xi_0}^s \sin \xi \left(\cos \xi B(t) + \sin \xi T(t) \right) dt \\
= \int_{\xi_0}^s T(t)dt = \gamma(s).
\]
This completes the proof.

As a consequence of this lemma, we can give a relation between space-like Bertrand curves and helices.

Corollary 5.2. The unit speed time-like curve \(f \) on \(S^2_1 \) is a part of a pseudo-circle if and only if the corresponding space-like Bertrand curve is a helix.

Proof. Taking the derivative of Eq. (5.2) with respect to \(v \), we have
\[
\kappa'(v) = \frac{\sin 2 \xi \kappa'_g(v)}{2a} \quad \text{and} \quad \tau'(v) = \frac{\cos^2 \xi \kappa'_g(v)}{a}.
\]
From proposition 4.1, the unit speed time-like curve \(f \) on \(S^2_1 \) is a part of a pseudo-circle if and only if \(\kappa'_g(v) \equiv 0 \). This condition is equivalent to the condition that both \(\kappa(v) \) and \(\tau(v) \) are constants. The proof is completed.

Then we have the following proposition:

Proposition 5.3. Let \(f : I \to S^2_1 \) be a unit speed time-like curve and \(\gamma : I \to \mathbb{R}^3_1 \) be a space-like Bertrand curve corresponding to \(f \). Then the de Sitter Darboux image of \(\gamma \) is equal to the de Sitter evolute of \(f \).

Proof. From Eq. (5.2), we have
\[
\kappa(v) = \varepsilon \frac{\cos^2 \xi \left(1 + \tan \xi \kappa'_g(v) \right)}{a} \quad \text{and} \quad \tau(v) = \varepsilon \frac{\cos \xi \left(\kappa'_g(v) - \tan \xi \right)}{a}.
\]
For the space-like curve \(\gamma \), we obtain
\[
T(v) = a \left(f(v) + \tan \xi s(v) \right) \frac{dv}{ds} \quad \text{and} \quad N(v) = \varepsilon t(v).
\]
Then we get
\[B(v) = T(v) \wedge N(v) = e a \frac{dv}{ds} \left(s(v) - \tan \xi f(v) \right). \]

We can easily show that
\[D(v) = \tau(v)T(v) - \kappa(v)B(v) = \frac{dv}{ds} \left(\kappa_s(v) f(v) - s(v) \right). \]

Therefore we have \(C(v) = D(v)\|D(v)\| = d_f(v). \) This completes the proof.

We have the following theorem:

Theorem 5.4. Let \(f : I \rightarrow \mathbb{S}^2_1 \) be a unit speed time-like curve and \(\tilde{\gamma} : I \rightarrow \mathbb{R}^3_1 \) be a space-like Bertrand curve corresponding to \(f \). Then \(\tilde{\gamma}'(v) \) lies on the time-like constant slope surface \(x(u,v) \) lying in the space-like cone.

Proof. Taking the derivative of Eq. (5.1) with respect to \(v \), we obtain
\[\tilde{\gamma}'(v) = af(v) + a \tan \xi f(v) \wedge f'(v). \]

In this equation, we can take \(a \) as \(a = u \sin \theta \cos \xi \) and so \(a \tan \xi = u \sin \theta \sin \xi \), where \(u, \ \theta \) are constants. Thus by Eq. (1.1), \(\tilde{\gamma}'(v) \) is \(v \)-parameter curve of time-like constant slope surface \(x(u,v) \) lying in the space-like cone and \(\tilde{\gamma}'(v) \) lies on it. This completes the proof.

We now state the relation between time-like constant slope space-like surfaces lying in the space-like cone and space-like Bertrand curves.

Theorem 5.5. Let \(x : S \rightarrow \mathbb{R}^3_1 \) be a time-like constant slope surface immersed in \(\mathbb{R}^3_1 \) and \(x \) lies in the space-like cone. If \(x(v) \) is \(v \)-parameter curve of time-like constant slope surface \(x(u,v) \) lying in the space-like cone, then \(\int_0^1 x(v)dv \) is a space-like Bertrand curve.

Proof. From Eq. (1.1), we have
\[x(v) = u \sin \theta \cos \xi f(v) + u \sin \theta \sin \xi f(v) \wedge f'(v) \]
for \(u \) = constant, where \(\xi = \xi(u) = \cot \theta \ln u \). By integrating \(x(v) \), we have the equation as
\[\int_a^v x(v)dv = u \sin \theta \cos \xi \int_a^v f(v)dv + u \sin \theta \sin \xi \int_a^v f(v) \wedge f'(v)dv. \]

11
Since the coefficients of \(f(v) \) and \(f(v) \wedge f'(v) \) are constants, here we can take \(u \sin \theta \cos \xi \) as \(u \sin \theta \cos \xi = a \) and so \(u \sin \theta \sin \xi = a \tan \xi \). Thus we obtain
\[
\int_0^v x(v)dv = a \int_0^v f(v)dv + a \tan \xi \int_0^v f(v) \wedge f'(v)dv.
\]
From lemma 5.1, \(\int_0^v x(v)dv \) is a space-like Bertrand curve. This completes the proof.

Now we give an example of time-like constant slope surfaces and space-like Bertrand curves and draw the corresponding pictures via Mathematica.

Example 5.6. By using Eq. (1.1), we may choose the unit speed time-like curve as \(f(v) = (\cosh v, 0, \sinh v) \) on \(S^2_1 \). Then we have \(f(v) \wedge f'(v) = (0, -1, 0) \). Thus, the time-like constant slope surface lying in the space-like cone is
\[
x(u, v) = u \sin \theta \left(\cos(\cot \theta \ln u) \cosh v, -\sin(\cot \theta \ln u), \cos(\cot \theta \ln u) \sinh v \right).
\]
For \(\theta = \pi / 4 \), the picture of this surface is given in Fig. 1. Thus, for \(u = e \), the space-like Bertrand curve is
\[
\int_0^v x(v)dv = \frac{\sqrt{2}}{2} e \left(\cos(1) \sinh v, -\sin(1)v, \cos(1)(\cosh v - 1) \right).
\]
Since the time-like curve \(f(v) \) is a part of a pseudo-circle, from corollary 5.2, this space-like Bertrand curve is a helix. The picture of this curve is given in Fig. 2.
Fig. 1. Time-like constant slope surface lying in the space-like cone, \(f(v) = (\cosh v, 0, \sinh v) \),
\[\theta = \frac{\pi}{4} \]

Fig. 2. Space-like Bertrand curve, \(\theta = \frac{\pi}{4}, u = e \)
References

[1] Huygens C (1673) Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrations geometricae

[2] Millman RS, Parker GD (1977) Elements of differential geometry, Prentice-Hall, New Jersey

[3] Bertrand JM (1850) Mémoire sur la théorie des courbes à double courbure. J Math Pures Appl 15:332–350

[4] Nutbourne AW, Martin RR (1988) Differential geometry applied to curve and surface design. Vol. I. Foundations, Ellis Horwood, Chichester

[5] Izumiya S, Takeuchi N (2002) Generic properties of helices and Bertrand curves. J Geom 74: 97–109

[6] Babaarslan M, Yayli Y (2013) On helices and Bertrand curves in Euclidean 3-space. Math Comput Appl 18:1–11

[7] Izumiya S, Pei DH, Sano T, Torii E (2004) Evolutes of hyperbolic plane curves. Acta Math Sin (Engl Ser) 20:543–550

[8] Munteanu MI (2010) From golden spirals to constant slope surfaces. J Math Phys 51:1–9

[9] Babaarslan M, Yayli Y (2011) The characterizations of constant slope surfaces and Bertrand curves. Int J Phys Sci 6:1868–1875

[10] Babaarslan M, Tandogan YA, Yayli, Y (2012) A note on Bertrand curves and constant slope surfaces according to Darboux frame. J Adv Math Studies 5:87–96

[11] Babaarslan M, Tandogan YA, Yayli, Y (2012) On Bertrand curves and constant slope surfaces according to Darboux frame. 10th International Conference on Geometry and
Applications. Held in Varna, September 3-9, 2011. J Geom 103:347–366

[12] Babaarslan M, Yayli Y (2012) A new approach to constant slope surfaces with quaternions. ISRN Geom 2012, Article ID 126358, doi:10.5402/2012/126358

[13] Fu Y, Yang D (2012) On constant slope space-like surfaces in 3-dimensional Minkowski space. J Math Anal Appl 385:208–220

[14] Babaarslan M, Yayli Y (2013) Split quaternions and space-like constant slope surfaces in Minkowski 3-space. Int J Geom 2:23–33

[15] Fu Y, Wang X (2013) Classification of time-like constant slope surfaces in 3-dimensional Minkowski space. Results Math 63:1095–1108

[16] Babaarslan M, Yayli Y (2013) On space-like constant slope surfaces and Bertrand curves in Minkowski 3-space. An Ştiinţ Univ Al I Cuza Iaşi Mat (N.S.) (accepted for publication)

[17] Lopez R (2008) Differential geometry of curves and surfaces in Lorentz-Minkowski space. arXiv:0810.3351v1 [math.DG]