Analysis of Fire and Explosion Properties of LNG

ABSTRACT

Aim: The aim of this article is to analyse fire and explosion properties of LNG along with the identification of hazards that may arise during emergency incidents involving it. The article is based on an analysis of the available literature and a full-scale experimental study involving a 200-liter LNG tank leading to a jet fire.

Introduction: Safe use and proper transport of flammable and harmful substances, together with the analysis of the effects of threats, enable the reduction of the number of accidents and provide possible conditions for the evacuation of people and property in a hazard zone. The compilation and systematization of knowledge on the safe use of the environmentally friendly LNG fuel will allow for an increase in the scope of its use. It is consistent with the state’s sustainable development policy consisting in identifying threats or adjusting technical solutions that minimize losses in transport or industry.

Methodology: There are many legal acts in the world regarding safe storage and transport of LNG. One of the most important is Directive 2012/18/EC known as “Seveso III”. This document contains requirements for the prevention of major accidents involving hazardous substances – including LNG – and ways to reduce their negative effects on human health and the environment. Relevant requirements have also been specified in standards, tests, articles and other international acts, including in the European agreement on the international carriage of dangerous goods by road (the so-called ADR Agreement). The article compares flammable and explosive parameters of LNG. Possible scenarios occurring during the release and ignition of the LNG vapour cloud have been shown. The change of pressure of LNG vapour in the 200 l tank as a function of its heating time in the burning spill of a mixture of gasoline and diesel fuel is presented. In such a thermal exposure, a jet fire with a flame length of up to 5 meters was obtained.

Conclusions: The proper use of flammable gases should be a priority in ensuring fire and explosion safety in facilities, during transport, etc. Hence, recognizing the threats and comparing them, or matching technical solutions that minimize the effects of LNG failures will allow active inclusion of knowledge in this field in the process of protection against fire and explosion. In case of LNG storage, attention should be paid to the types of materials in the immediate vicinity of this liquefied gas in order to have sufficient mechanical properties at the lowest liquefied gas temperature.

Keywords: LNG, fire safety, process safety

Article type: review article

Received: 05.11.2021; Reviewed: 24.11.2021; Accepted: 24.11.2021;
Authors’ ORCID IDs: M. Półka – 0000-0002-2280-8137; R. Piec – 0000-0002-5234-5639; Dariusz Olcen – 0000-0003-1384-1215;
The authors contributed the equally to this article;
Please cite as: SFT Vol. 58 Issue 2, 2021, pp. 58–73, https://doi.org/10.12845/sft.58.2.2021.4;
This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).
wymagania zostały określone także w normach, badaniach, artykułach i innych aktach międzynarodowych, m.in. w umowie europejskiej dotyczącej międzynarodowego przewozu drogowego towarów niebezpiecznych (tzw. Umowa ADR). W artykule dokonano zestawienia parametrów palnych i wybuchowych LNG. Ukazano możliwe scenariusze zachodzące podczas uwolnienia i zapłonu chmury LNG. Przestawiono zmianę ciśnienia par LNG uwagi na rodzaje materiałów znajdujących się w bezpośrednim otoczeniu z tym gazem skroplonym, aby posiadały wystarczające właściwości mechaniczne w najniższej temperaturze skroplonego gazu.

Słowa kluczowe: LNG, bezpieczeństwo pożarowe, bezpieczeństwo procesowe

Typ artykułu: artykuł przeglądowy

Introduction

Constant human need to maintain an adequate standard of living generates a greater or lesser degree of demand for energy. Saving, optimal use and the search for renewable energy sources should be the subject of action in order to ensure continuity of energy supply. Certainly, the demand for energy and sources that can provide it, along with its safe use, must be consistent with the country’s sustainable development policy [1]. The analysis of the safe use of flammable gases in the context of sustainable development, consisting in learning about the risks or adjusting technical solutions that minimize losses in transport or industry, allows to increase the level of safety of all rescuers and the people in the vicinity of flammable gases. Currently, the concept of sustainable development is increasingly entering the mainstream discussion on socio-economic development, becoming a horizontal principle reflected in the development policies of many countries, including fire safety. According to the U.S. Energy Information Agency [2], energy consumption by 2040 will increase by 28% of the previous level. All over the world, intensive efforts are made to develop renewable energy sources and nuclear energy. The production of this type of energy is prospective, but it is forecast that most of the energy generated in the world will be dominated by the use of crude oil and natural gas [2]. Among the various methods of energy production, the use of LNG (liquefied natural gas) as an energy source is considered to be more environmentally friendly than coal-fired or nuclear energy [3]. Power plants for regasification of liquefied natural gas, e.g. integrated with liquid air energy storage (LAES), due to their flexibility, seem to be a favourable technological solution (they adjust the electricity demand profile to the increased operating profits from energy arbitrage) [4]. The construction of the LNG terminal in Poland in Świnoujście in 2016 made it possible to receive liquefied natural gas by sea from virtually any direction in the world, which contributed to the

Wstęp

Ciągła potrzeba człowieka dotycząca utrzymania odpowiedniego poziomu życia generuje w mniejszym lub większym stopniu popyt na energię. Oszczędzanie, optymalne wykorzystanie i poszukiwanie odnawialnych źródeł energii powinno być przedmiotem działań w celu zapewnienia ciągłości dostaw energii. Na pewno zapotrzebowanie na energię i źródła, które mogą ją zapewnić wraz z bezpiecznym jej stosowaniem, muszą być spójne z polityką zrównoważonego rozwoju państwa [1]. Analiza bezpiecznego stosowania gazów palnych w kontekście zrównoważonego rozwoju, polegająca na poznaniu zagrożeń czy dopasowaniu rozwiązań technicznych minimalizujących straty w transporcie lub przemysle, pozwala na zwiększenie poziomu bezpieczeństwa wszystkich ratowników i osób przebywających w otoczeniu gazów palnych. Obecnie koncepcja zrównoważonego rozwoju coraz częściej wchodzi do głównego nurtu dyskusji nad rozwojem społeczno-gospodarczym, stając się zasadą horyzontalną, odzwierciedlaną w polityce rozwoju wielu państw, w tym również bezpieczeństwie pożarowym. Jak podaje U.S. Energy Information Agency [2], zużycie energii do 2040 r. wzrośnie o 28% dotychczasowego poziomu. Na całym świecie podejmowane są intensywne działania na rzecz rozwoju źródeł energii odnawialnej i energetyki jądrowej. Wytwarzanie tego rodzaju energii jest perspektywiczne, niemniej prognozuje się, że większość wytwarzanej energii na świecie będzie jednak zdzornowana wykorzystaniem ropy naftowej i gazu ziemnego [2]. Wśród różnych metod wytwarzania energii, wykorzystanie LNG (ang. liquefied natural gas) jako źródła energii jest uważane za bardziej przyjazne dla środowiska niż opalanie węglem czy energia jądrowa [3]. Elektrownie do regasifikacji skroplonego gazu ziemnego np. zintegrowane z magazynowaniem energii ciepłej powietrza (ang. liquid air energy storage, LAES), ze względu na swą elastyczność wydadzą się być korzystnym rozwiązaniem technologicznym (dopuszczają profil zapotrzebowania na energię elektryczną do zwiększonych zysków operacyjnych.
The diversification of gas supply sources and strengthened Poland’s energy security. Distribution of the natural gas via a gas pipeline network is problematic due to the distance between the existing deposits and the potential recipients, as well as the significant costs and time of the investment. As a result, the LNG transport market is becoming more and more popular, as it enables the supply of natural gas to places where network connections are not available. The benefits of this solution mean that there are more and more supporters of the development of the infrastructure that allows for road and rail transport of natural gas processed into a liquid form. In land transport, liquefied natural gas is delivered by road and rail tankers. The possibilities offered by road transport include, above all, speed, availability and flexibility of the deliveries. Unfortunately, also during transport dangerous incidents can occur with LNG. An example of an incident involving LNG was recorded in 2011 in the province of Murcia in Spain – the driver lost control of the vehicle, drove off the road and got stuck in a ditch between the embankment and the roadside. Probably as a result of a fuel leak and the simultaneous presence of an effective energy stimulus, the tanker burst into flames, and then exploded [5].

One of the likely events involving LNG, which can cause high losses, is the boiling liquid expanding vapour explosion (BLEVE). In 1940–2005, more than 1,000 people died as a result of more than 80 BLEVE incidents of flammable substances, more than 10,000 people were injured, and property losses amounted to billions of dollars [6]. Additionally, during the BLEVE explosion, toxic compounds such as chlorine and phosgene may be released, and the infrastructure surrounding the explosion site is destroyed. Hence, getting to know the chemical properties of LNG and the analysis of the possible threats is necessary to predict and limit the effects of its release.

Physicochemical properties of LNG

One of the key energy resources used in the household and industry is natural gas [7–9]. In the industry, this gas is used in two forms – in a liquefied form as LNG and in a compressed form as CNG (compressed natural gas). Natural gas consists of over 90% methane, which is the simplest hydrocarbon belonging to the alkanes. Methane is produced naturally under the conditions of anaerobic decomposition of organic matter, and such processes are favoured by wet lands, e.g. marshes (hence it is called “mud” gas) or it can be produced synthetically [10]. The world’s largest deposits of the natural gas are located primarily in Russia, the Middle East, the United States, Canada and Mexico. In Western European countries, the largest deposits are found in the Netherlands and under the bottom of the British and Norwegian sectors of the North Sea. Natural gas in room conditions (i.e. approx. 23°C and 1024 hPa) is a colourless and odourless gas with the specific heat of 1007 J/kg°C and the specific volume of approximately 1 m³/kg. Natural gas in its liquid form is known as LNG (liquefied natural gas) or LPG (liquefied petroleum gas). LNG is transported by road and rail tankers (autocistern and railway tanks). The advantages include speed, availability and flexibility, as well as the ability to deliver gas to locations where it is not available. The benefits of this solution mean that there are more and more supporters of the development of the infrastructure that allows for road and rail transport of natural gas processed into a liquid form. In land transport, liquefied natural gas is delivered by road and rail tankers. The possibilities offered by road transport include, above all, speed, availability and flexibility of the deliveries. Unfortunately, also during transport dangerous incidents can occur with LNG. An example of an incident involving LNG was recorded in 2011 in the province of Murcia in Spain – the driver lost control of the vehicle, drove off the road and got stuck in a ditch between the embankment and the roadside. Probably as a result of a fuel leak and the simultaneous presence of an effective energy stimulus, the tanker burst into flames, and then exploded [5].

One of the likely events involving LNG, which can cause high losses, is the boiling liquid expanding vapour explosion (BLEVE). In 1940–2005, more than 1,000 people died as a result of more than 80 BLEVE incidents of flammable substances, more than 10,000 people were injured, and property losses amounted to billions of dollars [6]. Additionally, during the BLEVE explosion, toxic compounds such as chlorine and phosgene may be released, and the infrastructure surrounding the explosion site is destroyed. Hence, getting to know the chemical properties of LNG and the analysis of the possible threats is necessary to predict and limit the effects of its release.

Właściwości fizykochemiczne LNG

Jednym z kluczowych surowców energii wykorzystywanym w gospodarstwie domowym i przemysle jest gaz ziemny [7–9]. W przemysle gaz ten stosuje się w dwóch postaciach – w postaci skroplonej jako LNG oraz w postaci sprężonej jako CNG (ang. compressed natural gas). Gaz ziemny składa się w ponad 90% z metanu czyli najprostszego węglowodoru należącego do alkanów. Metan powstaje naturalnie w warunkach beztlennego rozkładu materii organicznej, a takim procesom sprzyjają tereny podmokłe. Na świecie największe złoża gazu ziemnego znajdują się w Europie Zachodniej, w Chinach, Indonezji, Malezji, Zjednoczonych Emiratów Arabskich, Iraku, Iranie, Katarze, Pakistanie, Turcji, Wietnamie, Indiach, Kolumbii, Peru, Argentynie, Argentinie, Brazylii, Pakistanie, Afganistanie, Afghanistannie, Afganistanie, Afganista...
substance which, after cleaning and meeting the quality requirements, is liquefied at a temperature of approx. -162°C (the boiling point of LNG depends on its composition and amounts to from -166°C to -157°C) at normal atmospheric pressure [9–10]. This form of natural gas reduces its volume and facilitates transport and storage in vacuum-insulated tanks (i.e. tanks on LNG carriers, on LNG-powered ships, in permanent storage tanks and cryogenic tanks). Due to its very low temperature, LNG can cause both cracks in the materials that make up the walls of the tank and the ship’s structure, as well as cause frostbite in people who come into contact with it. Hence, LNG tanks or fittings must be made of special materials resistant to cryogenic liquids and resistant to low temperatures [11]. LNG leaks can cause water to freeze in the air, creating a white fog. Liquefied natural gas is non-corrosive. The absolute density of LNG in liquid form at a temperature of approx. -162°C, which is the boiling point of LNG, depends on its chemical composition, and amounts to from 430 kg/m³ to 470 kg/m³, and under extreme conditions it can even reach 520 kg/m³ [9–11]. Hence, LNG spilled on water, the density of which is about 1000 kg/m³, floats on its surface as a lighter one. LNG – like methane – does not dissolve in water. Liquefied natural gas has a volume approx. 600 times smaller than in the gaseous state, which means that after gasification, 100 m³ of LNG produces 60,000 m³ of natural gas [1, 9]. Hence, with such efficiency of natural gas, an undesirable event or exposure of fittings to low temperature in LNG leaks may be a factor initiating a fire or explosion, damage to infrastructure and the environment, cause damage to human health or even pose a threat to their lives. The event in the form of oxygen displacement from a given volume (e.g. room) and suffocation of people in it should also be considered. The liquid form of natural gas significantly facilitates its storage and transport, especially by sea. LNG is a liquefied mixture of gaseous hydrocarbons, mainly methane 87–99% mol, ethane 0.1–5.5% mol, propane 0–4% mol, butane 0–2.5% mol, nitrogen 0.02–1% mol and traces of sulphur (less than 4 ppmv) and CO₂ (50 ppmv) [12]. LNG is a fuel purified from moisture, carbon dioxide, nitrogen and heavier hydrocarbons, and at the same time a non-conductive liquid. Methane and nitrogen are the first components to be released from an LNG leak. The share of hydrocarbons in the mixture remaining after evaporation of these essential components leads to changes in the composition of LNG. In particular, they can be recorded for a batch of raw material originating from different places of its extraction. Non-adiabatic storage of LNG in tanks causes the liquid to evaporate in them, which also changes the composition of the fuel. Sensors based on the measurement of the dielectric constant of LNG enable accurate measurement of the filling level of the tank, especially in vehicles powered by this fuel, as they take into account the splashing of the liquid level caused by the shocks of the LNG vehicle. Yue Fu et al. [13] describes the use of these sensors for the precise filling of car tanks with liquefied natural gas.
Fire and explosion hazards of LNG

Accidents involving LPG take various forms and depend on the conditions of gas operation, storage, and the type of event. The combustion of methane gas, or when released from the liquid phase, is related to the type of emission source, the application of an effective ignition source within its emission, and the time it takes to form a fuel-air cloud. The density of gaseous methane at low temperature, close to its condensation (−160°C), is approx. 1.751 kg/m³, so its absolute density is higher than that of air [9]. Hence, when it is released, LNG initially has a temperature close to its condensation temperature and accumulates just above the ground or above the water surface and evaporates using energy from the environment. At this stage, after evaporation, LNG becomes a heavy gas, and its heating to approx. -123°C causes the LNG vapour to become gas with a density similar to air. Then, as the temperature rises to a value of about -110°C (-113°C for methane), it becomes lighter than air and mixes easily with it. The initial violent evaporation is continued until the evaporation rate reaches a constant value depending mainly on the thermal properties of the substrate into which LNG is released and the heat obtained from the emission environment – most often from the air. The substrate heats LNG, causing it to evaporate due to heat conduction from the surface, convection from the surrounding air and its humidity [14–17]. Water from air humidity is a latent energy store and supports the process of LNG evaporation. When LNG vapours are mixed with air, the latter is cooled and water from its moisture condenses as a result of the heat released from the phase change of water. If LNG leaks from pressure equipment or pipelines, it will be streamed into the atmosphere. This process is related to the intense physical mixing of LNG with air. At the initial stage of mixing, particles of liquid natural gas in the form of aerosols can be identified in the released cloud of the mixture, which will then gradually evaporate as a result of mixing with air. Ignition of the methane-air mixture formed as a result of LNG release occurs when an appropriate stimulus appears in the range of methane concentration in the air between the lower and upper explosion limits (LEL and UEL) [18]. The explosion limits of methane, like that of other flammable gases, are not constant and depend on pressure and temperature. The presence of inert components affects the ignition of a flammable natural gas mixture. As their concentration increases, the ignition conditions deteriorate and the GGW value drops significantly. Based on the research [16–22], it was found that the LEL of methane is 4.6 ± 0.3%, and the UEL of methane – 15.8 ± 0.4%, when methane is ignited in the air at a temperature of 20°C and 100 kPa (relates to ambient temperature and pressure), while in oxygen they are 5.1–61.0 vol.% [19–22]. When the released LNG cloud, spreading in the air just above ground level, finds an effective source of ignition on its way, it can cause an unconfined vapour cloud explosion (UVCE), i.e. an explosion of a vapour cloud in an unlimited space. The concentration of the natural gas in the cloud of released LNG varies – initially highest in the centre of the cloud and right on the ground, up to a very small one at the edge of the cloud. The maximum concentration of the natural

Zagrożenia pożarowo-wybuchowe LNG

Awarie z udziałem LPG mają różną postać i zależą od warunków eksploatacji gazu, przechowywania, rodzaju zdarzenia. Spalanie metanu w postaci gazowej lub podczas uwalniania go z fazy ciekłej związane jest z rodzajem źródła emisji, przyłożeniem w obrębie jego emisji efektywnego źródła zapłonu i czasem utworzenia obłoku paliwo-powietrza. Gęstość gazowego metanu w niskiej temperaturze, bliskiej skropleniu (-160°C), wynosi ok. 1,751 kg/m³, a więc jego gęstość bezwzględna jest większa od gęstości powietrza [9]. Stąd też podczas jego uwalniania LNG początkowo ma temperaturę zbliżoną do temperatury skroplenia i gromadzi się tuż nad powierzchnią gruntu lub nad powierzchnią wody i odparowuje, wykorzystując energię z otoczenia. Na tym etapie LNG po odparowaniu staje się ciężkim gazem, a jego ogrzanie do temp. ok. -123°C powoduje, że para LNG stanie się gazem o gęstości zbliżonej do powietrza. Następnie wraz ze wzrostem temperatury do wartości ok. -110°C (-113°C dla metanu) staje się leższy od powietrza i łatwo się z nim miesza. Początkowo występujące gwałtowne odparowanie jest kontynuowane aż do momentu, gdy szybkość parowania osiągnęła wartość zależną głównie od właściwości cieplnych podłoża, na które LNG jest uwalniany oraz ciepła uzyskanego z otoczenia emisji – najczęściej z powietrza. Podłoże ogrzewa LNG, powodując jego odparowanie w skutek przewodzenia ciepła z powierzchni, konwekcję z otaczającego powietrza i jego wilgotności [14–17]. Woda z wilgoci powietrza stanowi magazyn energii utajonej i wspomaga proces odparowania LNG. Podczas mieszania par LNG z powietrzem, to ostatnie jest schładzane i woda od wilgociulgii ulega skraplaniu jako wynik uwalnianego ciepła z przemiany fazowej wody. Jeśli nastąpi wyciek LNG z urządzeń ciśnieniowych lub rurociągów, będzie się on uwalniał strumieniowo do atmosfery. Proces ten związany jest z intensywnym, fizycznym mieszaniem się LNG z powietrzem. W początkowej fazie mieszania, w uwolnionej chmurze mieszany można zidentyfikować cząsteczki ciekłego gazu ziemnego w postaci aerozolu, które następnie – w wyniku procesu mieszania z powietrzem – stopniowo będą odparowywać. Zapłon mieszany metanowo-powietrznym utworzonym w wyniku uwolnienia LNG następuje w przypadku, kiedy pojawi się odpowiedni bodziec w zakresie stężenia metanu w powietrzu między dolną i górną granicą wybuchowości (DGW i GGW) [18]. Granice wybuchowości metanu, tak jak i innych gazów palnych, nie są stałe i zależą od ciśnienia oraz temperatury. Na zapłon mieszany palnej gazu ziemnego ma wpływ obecność składników obojętnych. Wraz ze wzrostem ich stężenia pogarszają się warunki zapłonu i czasem utworzenie obłoku paliwo-powietrza. To w obliczaniu dla wybuchowego (UVCE) – unconfined vapor cloud explosion – czynnikiem istotnym jest skupienie się gałąź w powietrzu. Przykładowo w przypadku gazów zimnych LNG jest różne – początkowo największy w środowisku chmury i tuż
Gas in the cloud depends mainly on the total volume of air mixed with the gas and the mixing speed. This, in turn, depends on the Pasquill stability class and the degree of turbulence during the mixing process. The size of the formed natural gas cloud depends primarily on the mass of the released LNG, its dispersion time and weather conditions. At the beginning of the LNG dispersion, the greater part of the cloud volume will contain a gas concentration higher than the UEL. However, on the periphery of the cloud, flammable areas of the mixture may form, i.e. the gas concentration will be between the LEL and the UEL. On this basis, it can be concluded that already in the initial stage of an LPG leak, the created gas-air mixture will pose a risk of explosion. At the moment of evaporation of the entire amount of LNG, the gas concentration in the cloud will gradually decrease, even below the LEL value, so the mixture will not pose a risk of explosion [20]. The maximum explosion pressure occurs at a stoichiometric concentration of methane of ~ 9.5% [22]. In the released cloud of LNG in open space, the natural gas burns relatively slowly, creating relatively small overpressures of less than 5·103 Pa [22]. Higher values of overpressure resulting from the explosion of the LNG cloud appear in areas where turbulence of the resulting flame may occur, i.e. in areas with a high degree of densification of building and process structures or in spaces limited by obstacles. The value of the maximum pressure and UEL of a methane explosion also increases at an increased initial pressure [18]. The maximum explosion pressure decreases with the increase of the initial temperature of the combustible mixture, because at an elevated temperature the reaction rate of methane combustion is higher, but the total mass of the combustible gas in the combustible mixture with air is lower than at lower temperatures providing the initial pressure. The temperature of a methane explosion in an open space can be as high as 1,875°C, reaching even 2,650°C in a confined space. The ignition temperature of LPG is -188°C, auto-ignition ~537°C, and the minimum ignition energy is about 0.25 mJ [21–22]. Computational fluid dynamics (CFD) allows modelling the process of mixing LNG vapours and air, taking into account the thermodynamic properties of each component depending on the temperature and fluid dynamics. The CFD technique allows to take into account the characteristics of the terrain where the gas was released, i.e. the topography, the degree of its compaction with obstacles, as well as the infrastructure of the gas leakage environment and other factors affecting the gas-air mixing process. The dispersion of LNG vapours into the environment has been extensively studied both numerically and experimentally [23–28]. The research was performed in order to analyse hazardous events involving LNG and to obtain a comprehensive database for numerical research. A wide range of experiments were conducted for different leak rates, spill sizes and terrain characteristics. However, most of them were carried out in desert areas with high air temperature and low humidity (temperature > 30°C and relative humidity < 30%). Air humidity (RH) influences the dispersion of LNG vapours and should be included in the research, as LNG shipping and receiving terminals are usually located in coastal areas, where the ambient air is usually very humid (RH > 50%) [12]. The probability of fog formation on the grumet, a as to be considered the most hazardous of all, is considerably lower than in the case of LNG. Maksymalne stężenie gazu ziemnego w chmurze zależy głównie od całkowitej objętości powietrza zmieszaniego z gazem oraz szybkości mieszania. Ta z kolei zależna jest od klasy stabilności Pasquilla oraz stopnia turbulencji podczas procesu mieszania. Rozmiar utworzonej chmury gazu ziemnego zależy przede wszystkim od masy uwolnionego LNG, czasu jego dyspersji oraz warunków atmosferycznych. Na początku dyspersji LNG, większa część objętości chmury będzie zawierała stężenie gazu wyższe niż DGW. Jednakże na obrzeżach chmury mogą utworzyć się obszary mieszania w zakresie palności tzn. stężenie gazu będzie pomiędzy DGW a GGW. Na tej podstawie można stwierdzić, że już w początkowej fazie wycieku LPG powstała mieszana gazowo-powietrznia będzie stwarzać zagrożenie wybuchem. W momencie odparowania całej ilości LNG stężenie gazu w chmurze stopniowo będzie ulegało obniżaniu, nawet poniżej wartości DGW; a więc mieszana nie będzie stwarzała zagrożenia wybuchem [20]. Maksymalne ciśnienie wybuchu występuje przy stężeniu stechiometrycznym metanu wynoszącym ~9,5% [22]. W uwolnionej chmurze LNG w przestrzeni otwartej, gaz ziemny spala się stosunkowo wolno, tworząc względnie małe nadciśnienia o wartości mniejszej niż 5·103 Pa [22]. Większe wartości nadciśnienia będące wynikiem wybuchu chmury LNG pojawiają się w obszarach, w których może dojść do turbulencji powstałego płomienia, tj. w rejonach o dużym stopniu zagęszczenia konstrukcji budowlanych, procesowych lub w przestrzeniach ograniczonych przeszkodami. Wartość maksymalnego ciśnienia i GGW wybuchu metanu wzrasta również przy podwyższonym ciśnieniu początkowym [18]. Maksymalne ciśnienie wybuchu zmniejsza się wraz ze wzrostem temperatury początkowej mieszaniny palnej, gdyż w podwyższonej temperaturze szybkość reakcji spalania metanu jest większa, ale całkowita masa palnego gazu w mieszaninie palnej z powietrzem jest mniejsza niż w niższych temperaturach zapewniających ciśnienie początkowe. Temperatura wybuchu metanu na wolnej przestrzeni może wynosić ~1875°C, dochodząc w przestrzeni zamkniętej nawet do 2650°C. Temperatura zapłonu LNG wynosi ~188°C, samozapłonu ~537°C, a minimalna energia zapłonu to ok. 0,25 mJ [21–22]. Obliczeniowa dynamika płynów (ang. computational fluid dynamics, CFD) umożliwia modelowanie procesu mieszania par LNG i powietrza z uwzględnieniem termodinamicznych właściwości każdego składnika w zależności od temperatury i dynamiki płynów. Technika CFD pozwala na uwzględnianie charakterystyki terenu, na którym dość do uwolnienia gazu tzn. zarówno układowanie terenu, stopień jego zagęszczenia przeszkodami, jak też infrastrukturę otoczenia wycieku gazu i inne czynniki wpływające na proces mieszania się gazu z powietrzem. Dyspersja par LNG do otoczenia została szeroko zbadana zarówno numerycznie, jak i eksperymentalnie [23–28]. Badania zostały wykonane w celu analizy zdarzeń niebezpiecznych z udziałem LNG i uzyskania kompleksowej bazy danych do badań numerycznych. Eksperymenty byt prowadzone w szerokim zakresie dla różnych szybkości wycieków, rozmiarów rozlewisk i charakterystyki terenu. Jednak większość z nich została przeprowadzona na terenach pustynnych, o dużej temperaturze powietrza i małej wilgotności (temperatura > 30°C i wilgotność względna < 30%). Wilgotność powietrza (RH) wpływa na dyspersję par LNG i powinna być uwzględniana w badaniach, gdyż...
following an accidental release of LNG in these areas is significantly high. A cloud of fog that mixes with LNG vapours is commonly confused with a trace of an LNG cloud of vapours. The experimental studies by Cormier et al. [17] show different sizes of the visible gas cloud captured by a VHS and infrared camera. The actual size of the LNG vapour cloud as recorded by the infrared camera was much larger than that of the fog cloud, meaning a larger area of LNG flammable gas. Fog is an aerosol consisting of airborne droplets of water or ice crystals when water vapour condenses or solidifies due to low temperature. Often, in the simulations, the fog is treated only as liquid water droplets, and the ice formation process is not taken into account as dominant in the dispersion of LNG vapour in large and open spaces and usually above its freezing point. In case of low air humidity (e.g. RH < 30%), the LNG vapour cloud moves beyond the visible fog, which was confirmed by the experimental results. However, in scenarios with high air humidity (e.g. RH > 50%), the fog may overtake and dominate the LNG vapour cloud. The formation of fog in the area of LNG release may reduce the effect of vapour dispersion of this gas and slow down the process of its dispersion to the environment. As shown in the research [29], the turbulence models selected for simulation and the introduced boundary conditions have the greatest impact on modelling the dispersion of this gas.

Fire and explosion hazards of LNG during its transport, storage or use mainly result from its flammability, high density of liquid natural gas at a boiling point of approx. -162°C at atmospheric pressure. LNG, when released as a combustible cryogenic liquid, forms a large-volume gas cloud and, when mixed with air, forms an explosive mixture. The main hazards related to the storage and transport of LNG include fires and explosions that may occur as a result of an LNG leak and spill in the presence of an effective ignition source. If not ignited, the LNG will evaporate, expand and eventually form a vapour cloud that disperses into the atmosphere. In case of LNG ignition, it is possible to create a flash fire, a cloud of vapours with air, jet fire, a fire on a spill, or an explosion of a mixture of vapours with air [30, 12]. The consequences of LNG fires and explosions depend mainly on the temperature of the flammable mixture and the initial composition of the gas, as well as on the diameter of the spill fire [31–32]. Additional flame turbulence in the cloud of a combustible mixture may result from the presence of LPG aerosol particles in the cloud or the presence of a space crowded with obstacles (e.g. process installations) and cause higher overpressure values during explosions. The size of the released LNG cloud will largely depend on the mass of the released LNG, the time of its release and diffusion, and weather conditions. In the open space in the formed LNG cloud, combustible gas burns slowly, thus generating low overpressure [31]. Table 1 presents the possible types of fire hazards caused by LNG.
Summary of the main types of fire hazards caused by LNG

Type / Rodzaj	Hazard type / Typ zagrożenia	Observation / Obserwacje	Possible worst case scenario / Możliwy najgorszy scenariusz	Hazardous effect / Efekt niebezpieczny
Fire / Pożar	Flash fire, FF / Pożar obłoku FF	Deflagration combustion of a combustible mixture without generating a destructive pressure wave / Deflagracyjne spalanie mieszaniny palnej bez wtórowienia niszczącej fali ciśnienia	LNG leak, formation of a cloud of vapours mixed with air and its ignition / Wyciecz LNG, powstanie obłoku par wymieszanej z powietrzem i jej zapłon	Thermal radiation flux and toxic products of thermal decomposition and combustion / Strumień promieniowania cieplnego oraz toksyczne produkty rozkładu termicznego i spalania
	Jet fire (JF) / Pożar strumieniowy (JF)	A jet-shaped flame formed at the outlet of gas flowing from a pressure vessel through a small opening / Płomień w kształcie strumienia powstający u wylotu gazu wypływającego ze zbiornika ciecznego przez mały otwór	Heating by a flame of the tank, weakening the strength of the tank or exceeding the allowable pressure in the tank / Ogrzewanie płomieniem zbiornika, osłabienie wytrzymałości zbiornika lub przekroczenie dopuszczalnego ciśnienia w zbiorniku	
	Cryogenic fluid spill fire / Pożar rozlewiska cieczy kriogenicznej	Combustion of a flammable mixture, i.e. LNG vapours mixed with air / Spalanie mieszany niny palnej tzn. par LNG wymieszanych z powietrzem	Ignition of the flammable mixture resulting from the evaporation of LNG vapours / Zapalenie mieszaniny palnej powstałej z odparowania par LNG	
Explosion / Wybuch	In a confined space (VCE) / W ograniczonej przestrzeni (VCE)	Heterogeneous, usually deflagration combustion of a flammable mixture in a confined space with the formation of a pressure wave or a shock wave / Heterogeniczne, zwykle deflagracyjne spalanie mieszaniny palnej w ograniczonej przestrzeni z powstawaniem fali ciśnienia lub fali uderzeniowej	Outflow of gas, liquefied gas or superheated liquid from the pressure vessel, possible flame turbulence and transition to detonation / Wyciecz gazu, gazu skroplonego lub przegrzanego, możliwość turbulencji płomienia i przejścia w detonację	Pressure wave, heat radiation, debris / Fala ciepła, promieniowanie cieplne, odlamki
	In the open space (UVCE) / W otwartej przestrzeni (UVCE)	Heterogeneous combustion of a flammable mixture with the formation of a pressure wave / Heterogeniczne spalanie mieszaniny palnej z powstawaniem fali ciśnienia	Dispersion and delayed ignition / Dyspersja oraz zapłon opóźniony	Pressure wave, heat radiation, debris / Fala ciepła, promieniowanie cieplne, odlamki
	Expanding steam from a boiling liquid (BLEVE) / Ekspandującej cieczy skroplonej (BLEVE)	Sudden rupture of the tank with the ejection of expanding vapours of the liquid at a liquid temperature higher than its boiling point at normal atmospheric pressure, resulting from a large multi-site damage to the tank / Nagłe rwanie zbiornika z wyrzutem rozprężających się par cieczy w temp. cieczy wyższej od jej temperatury wrzenia przy normalnym ciśnieniu atmosferycznym, powstały w wyniku dużego wielomiejscowego uszkodzenia zbiornika	External fire, e.g. spillages or JF, containing a liquefied gas tank within its reach, creating a fireball / Zewnętrzny pożar np. rozlewiska lub JF obejmujący swoim zasięgiem zbiornik z gazem skroplonym, utworzenia kuli ognia	Pressure wave, heat radiation, debris / Fala ciepła, promieniowanie cieplne, odlamki
	Physical explosion / Wybuch fizyczny	Failure to observe the parameters of the tank strength, error when filling the tank, exceeding the allowable pressure in the tank, exceeding the maximum temperature in the system with overpressure / Nieprzestrzeganie parametrów wytrzymałości zbiornika, błąd przy napelnianiu zbiornika, przekroczenie w zbiorniku dopuszczalnego ciśnienia, przekroczenie maksymalnej temperatury w układzie z nadciśnieniem	An external fire, e.g. a spill or a JF, covering the liquefied gas tank with its reach / Zewnętrzny pożar np. rozlewiska lub JF obejmujący swoim zasięgiem zbiornik z gazem skroplonym	Pressure wave, heat radiation, debris / Fala ciepła, promieniowanie cieplne, odlamki

Source: Own elaboration based on [31].

Zródło: Opracowanie własne na podstawie [31].
Liquefied natural gas does not pose a threat in the form of environmental contamination. Upon contact with air, LNG evaporates and is thinned in the air. Therefore, it is much less harmful and dangerous fuel than crude oil or LPG. The average heat of combustion of LNG is about 39.26 MJ/m³, which in terms of mass amounts to 54 MJ kg⁻¹. This value is close to the value of heat of combustion of LPG (approx. 54 MJ kg⁻¹) or acetylene (50 MJ kg⁻¹) [33–34]. LNG as a fuel is characterized by a relatively high volume of energy density compared to typical fuels such as crude oil or LPG, and in addition, during combustion it emits relatively small amounts of nitrogen oxides compared to diesel or gasoline or fossil fuels [35]. The low temperature of LPG compared to the ambient temperature can cause frostbite when it comes into direct contact with the human skin. Materials exposed to low temperature must have sufficient mechanical properties at the lowest liquefied gas temperature. This threat has a limited range depending on the size of the spill. The cryogenic plant operates at the temperatures much lower than the ambient temperature, therefore all insufficiently insulated parts will be covered with frost. Water and other fluids, when they freeze, can block valves and piping, which should be properly designed, cleaned, and drained. LNG storage tanks are pressure tanks usually built of double walls, internal and external, between which there is a vacuum, ensuring good thermal insulation from the environment. The figure below shows follow-up scenarios, which takes into account the sequence of probable events after an LNG leak. Usually, during fires of LNG tanks, jet fires are most often observed, less often BLEVE or fires of cryogenic fluid spill. The publication of Lee [36] shows the influence of technological conditions of LNG regasification on the simulation results of LNG emissions depending on the size of the source of leakage into the environment and the probability of ignition on vessels. A quantitative risk assessment (QRA) of the floating unit regasification process was also performed using the frequencies and effects of an LNG explosion fire. A probabilistic safe distance for the selected lengths of flames in a jet fire was estimated, together with an analysis of the consequences of hazardous events and risk assessment. The analysis of stream fires showed that the risk of LNG leakage horizontally in relation to the vertical one was higher, while the risk of this gas explosion was similar in both directions.

Skroplony gaz ziemny nie stanowi zagrożenia w postaci skażenia środowiska. W przypadku kontaktu z powietrzem, LNG odparowuje i rozrzedza się w powietrzu. Zatem jest on znacznie mniej szkodliwym i niebezpiecznym paliwem niż ropa naftowa czy LPG. Ciepło spalania LNG wynosi średnio ok. 39,26 MJ m⁻³, co w przeliczeniu na masę wynosi 54 MJ kg⁻¹. Wartość ta zbliżona jest do wartości ciepła spalania gazu LPG (ok. 54 MJ kg⁻¹) czy acetylenu (50 MJ kg⁻¹) [33–34]. LNG jako paliwo charakteryzuje się stosunkowo dużą objętościową gęstością energii w porównaniu do typowych paliw jak ropa naftowa czy LPG, a oprócz tego podczas spalania wydziela stosunkowo małe ilości tlenuków azotu w proporcji do oleju napędowego lub benzyny czy paliw kopalnych [35]. Niska temperatura płynnego gazu ziemnego w porównaniu z temperaturą otoczenia może spowodować odmrożenie przy bezpośrednim kontaktie ze skórą człowieka. Materiały narażone na niską temperaturę muszą posiadać wystarczające właściwości mechaniczne w najniższej temperaturze skroplonego gazu. To zagrożenie ma ograniczony zasięg zależny od wielkości rozlewiska. Instalacja kryogeniczna działa w temperaturach znacznie niższych niż otoczenie, dlatego wszystkie niedostatecznie zaizolowane części zostaną pokryte szronem. Woda i inne płynne po zamrznieniu mogą blokować zawory i przewody rurowe, które powinny być prawidłowo zaprojektowane, czyszczone i osuszane. Zbiorniki magazynujące LNG to zbiorniki ciśnieniowe zbudowane najczęściej z podwójnych ścianek, wewnętrznych i zewnętrznych, pomiędzy którymi panuje próżnia, zapewniająca dobrą izolację termiczną od otoczenia. Na poniższej rycinie zostało przedstawione drzewo zdarzeń scenariuszy następczych, które uwzględnia kolejność prawdopodobnych zdarzeń po wycieku LNG. Zazwyczaj podczas pożarów zbiorników z LNG najczęściej można zaobserwować pożary strumieniowe, rzadziej BLEVE czy też pożary rozlewiska cieczy kryogenicznej. W publikacji Lee’a [36] ukazano wpływ warunków technologicznych prowadzenia regazifikacji LNG na wyniki symulacji emisji LNG w zależności od rozmiarów źródła wycieku do środowiska i prawdopodobieństwo zapłonu na jednostkach pływających. Wykonano również ilościową ocenę ryzyka (ang. quantitative risk assessment, QRA) procesu regazifikacji pływającej jednostki wykorzystując częstotliwości i skutki pożaru wybuchu LNG. Oszacowano probabilistyczną bezpieczną odległość dla wytypowanych długości płomieni w pożarze strumieniowym wraz z analizą konsekwencji zdarzeń niebezpiecznych i oceną ryzyka. Analiza pożarów strumieniowych wykazała, że ryzyko wycieku poziomego LNG w stosunku do pionowego było większe, podczas gdy ryzyko wybuchu tego gazu było zbliżone w obu kierunkach.
LNG storage and road transport

Under fire conditions, LNG tanks and installations may pose a risk of failure or explosion. In order to ensure adequate safety in industrial plants in the event of such a threat, the European Commission introduced Directive 2012/18/EC also known as Seveso III [37]. It contains requirements for the prevention of major accidents involving hazardous substances and ways to reduce their effects on human health and the environment. According to Seveso III, the main hazardous installations are divided into hazard levels – lower, applicable to installations with more than 50 tons of hazardous substance (e.g. LNG), and higher, for installations handling more than 200 tons. Lower – and upper-tier establishments – in line with the Seveso III directive – must prepare a safety report showing that all major hazards in the establishment have been identified and the necessary safety measures have been taken to prevent major malfunctions and accidents. Other obligations under the directive include establishing a safety management system on-site, an on-site emergency plan, and informing the public about the main hazards of a nearby site, as well as taking appropriate safety measures.

With the introduction of Seveso III Directive, normative acts were created that define the methods of safe LNG storage. The PN-EN 1473:2021-10 [38] standard defines the guidelines for the design, construction and operation of onshore LNG installations storing over 200 tons of LNG on land for liquefaction, storage, evaporation, transmission and handling of LNG and natural gas (NG). The regulatory boundaries are the LNG entry/exit through

Magazynowanie i transport drogowy LNG

Zbiorniki LNG wraz z instalacjami w warunkach pożaru mogą stwarzać zagrożenie związane z awarią czy wybuchem. W celu zapewnienia odpowiedniego bezpieczeństwa w zakładach przemysłowych w przypadku wystąpienia takiego zagrożenia Komisja Europejska wprowadziła dyrektywę 2012/18/WE znaną również jako Seveso III [37]. Zawiera ona wymagania dotyczące zapobiegania poważnym awariom z udziałem substancji niebezpiecznych oraz sposoby zmniejszenia ich skutków mających wpływ na ludzkie zdrowie i środowisko. Według Seveso III główne niebezpieczne instalacje są podzielone na poziomy zagrożenia – niższy, dla instalacji z ilością substancji niebezpiecznej (np. LNG) ponad 50 ton i wyższy, dla instalacji obsługuujących więcej niż 200 ton. Zakłady zwiększone i dużego ryzyka – zgodne z dyrektywą Seveso III – muszą przygotować raport o bezpieczeństwie wykazujący, że wszystkie główne zagrożenia w zakładzie zostały zidentyfikowane i podjęto niezbędne środki bezpieczeństwa, aby zapobiec poważnym awariom i wypadkom. Inne zobowiązania wynikające z dyrektywy to ustalenie systemu zarządzania bezpieczeństwem w zakładzie, wewnętrznego planu awaryjnego oraz informowanie opinii publicznej o głównych zagrożeniach występujących w pobliskim zakładzie i przedsięwzięciu odpowiednich środków bezpieczeństwa.

Wraz z wprowadzeniem dyrektywy Seveso III powstały akty normatywne określające sposoby bezpiecznego magazynowania LNG. Norma PN-EN 1473:2021-10 [38] określa wytyczne dotyczące projektowania, budowy i obsługi lądowych instalacji LNG magazynujących ponad 200 ton LNG na lądzie, służących do
the ship’s manifold, including a combination of vapour return and tanker loading/unloading and vapour return, a combination of rail car loading/unloading and vapour return, as well as natural gas input and output boundary through pipeline systems. The application of these guidelines requires the assessment of acceptable levels of risk of loss of life and property both outside and within the boundaries of the facility. On the other hand, the PN-EN 13645: 2008 [39] standard issued risk assessment requirements and examples for installations with a small storage capacity (from 5 tons to 200 tons). These standards are optional and are intended to improve safety in LNG-consuming facilities, in particular at reloading and storage depots and gas supply stations for vehicles. The American National Fire Protection Association (NFPA) introduced the NFPA 59A, 2019 [40] standard for LNG storage and transshipment, containing guidelines for the location, design, construction, maintenance and operation of LNG production, storage and handling facilities.

The European ADR agreement of 2021, regulating the international road transport of dangerous goods [41], contains the rules of operation for loading LNG tanks. This document is divided into two annexes covering general provisions and provisions concerning equipment and transport operations. It includes, among others, the requirements for the design, construction, control and testing of LNG tanks. LNG vehicles must meet the requirements of the PN EN ISO 20421-2 [42] standard issued to specify operational requirements for large transport cryogenic tanks with vacuum insulation. These performance requirements include commissioning, charging, refrigerant collection, in-plant transportation, storage, maintenance, periodic inspection and emergency procedures. Additional requirements may apply for the transport of these tanks by public roads, rail, inland waterway, sea and air transport; they are specified in specific provisions. The European standard PN EN 13530-2 [43] presents specifications for the design, production, control and testing of large vacuum insulated tanks with a capacity of more than 1000 litres mounted on road vehicles, permanently or with the possibility of disassembly, with the exception of tanks for toxic liquids.

Experimental study of a 200 l LNG tank under fire conditions

As part of the DOB-BIO6/02/50/2014 project entitled “Development of methods for neutralizing the risk of explosion in selected technical gas tanks, including alternative power sources in a fire environment for the needs of rescuers participating in rescue and firefighting operations” financed by the National Centre For Research and Development, one experiment was performed with a 200-liter vacuum-insulated cryogenic tank containing LNG. The test was carried out at the Artillery and Armament Training skraplania, magazynowania, odpowarowywania, przesyłu i obsługi LNG i gazu ziemnego (NG). Wyznaczone granice obowiązywania przepisów to wejście/wyjście LNG przez kolektor statku, włączać połączenie powrotu oparów i załadunku/rozładunku cieczy oraz powrót oparów, a także połączenie załadunku/rozładunku wagonów kolejowych i powrót oparów, oraz granica wejścia i wyjścia gazu ziemnego przez systemy rurociągów. Zastosowanie tych wytycznych wymaga oszacowania akceptowalnych poziomów ryzyka utraty życia oraz mienia zarówno na zewnątrz, jak i wewnątrz granic zakładu. Natomiast w normie PN-EN 13645:2008 [39] wydano wymagania dotyczące oceny ryzyka i przykłady dla instalacji o małej pojemności magazynowej (od 5 ton do 200 ton). Standardy te są opcjonalne i mają na celu poprawę bezpieczeństwo w obiektach użytkujących LNG, w szczególności na terenie baz przeladowowo-magazynowych oraz stacji zasilania gazem pojazdów. Amerykańskie Narodowe Stowarzyszenie Ochrony Przeciwpowodziowej (ang. National Fire Protection Association, NFPA) wprowadziło standard NFPA 59A, 2019 [40] dotyczące magazynowania i przeładunku LNG, zawierający wytyczne z zakresu lokalizacji, projektowania, budowy, utrzymania i eksploatacji obiektów produkujących, przechowywających i obsługiujących LNG.

Umowa europejska ADR z 2021 r. regulująca międzynarodowy przewóz drogowy towarów niebezpiecznych [41] zawiera zasady eksploatacji przy załadunku cistern LNG. Dokument ten podzielono na dwa załączniki obejmujące przepisy ogólne i przepisy dotyczące sprzętu i operacji transportowych. Zawiera m.in. wymagania dotyczące projektowania, budowy i konserwacji oraz badania zbiorników LNG. Ciężarówki na LNG muszą spełniać wymagania normy PN EN ISO 20421-2 [42] wydanej w celu specyfikacji wymagań eksploatacyjnych dla dużych transportowych zbiorników kryogenicznych z izolacją próżniową. Te wymagania eksploatacyjne obejmują oddawanie do użytkowania, napełnianie, pobieranie czynnika, transport wewnątrz zakładu, magazynowanie, konserwację, kontrolę okresową i procedury awaryjne. Do celów transportu tych zbiorników na drogach publicznych, koleją, w żegladzie śródlądowej, transporcie morskim i powietrznym, mogą mieć zastosowanie dodatkowe wymagania; są one określone w przepisach szczegółowych. Norma europejska PN EN 13530-2 [43] przedstawia specyfikacje dotyczące projektowania, wytwarzania konstrukcji i badań dużych zbiorników izolowanych próżniowo o pojemności powyżej 1000 litrów montowanych na pojazdach drogowych, na stałe lub z możliwością demontażu z wyjątkiem zbiorników na płyny toksyczne.

Badanie eksperymentalne zbiornika 200 l LNG w warunkach pożarowych

W ramach projektu DOB-BIO6/02/50/2014 pt. „Opracowanie metod neutralizacji zagrożenia wybuchu wytworych zbiorników z gazami technicznymi, w tym alternatywnymi źródłami zasilańia w środowisku pożarowym na potrzeby ratowników biorących udział w akcjach ratowniczo-gaśniczych” finansowanego przez Narodowe Centrum Badań i Rozwoju wykonano jeden eksperyment z udziałem 200 l zbiornika kryogenicznego izolowanego próżniowo zawierającego LNG. Badania przeprowadzono
Centre in Toruń. As a leader, the following institution participated in the research consortium – the Main School of Fire Service, then as members – the Warsaw University of Technology, Gdańsk University of Technology, Scientific and Research Centre for Fire Protection – National Research Institute, CORONA Sp. z o.o. The purpose of this research was to test the actual explosion of the selected LNG tank, including the determination of the impact range of the fragments of the exploding tank, determination of the fire zone and the maximum pressure in the tank.

The LNG tank was placed in a tank filled with a 2:1 mixture of gasoline and diesel oil with a volume of about 20 litres (see Figure 2). The initial vapour pressure in the LNG tank with vacuum insulation was 14.6 bar. After 3 minutes of heating the tank, methane was released through the safety valve. The released gas ignited and burned with a quiet flame directed upwards for a maximum length of 5 m. In the final phase of the experiment, after 11 minutes, the tank was shot twice (see Figure 3). The moments at which the tank was shot are marked on the diagram of pressure changes in the cylinder (see Figure 4). The analysis of the technical condition of the LNG tank showed the breaking of the plate securing the vacuum jacket of the apparatus after the experiment (see Figure 5).
The conducted experiment showed that the LNG tank selected for the tests did not explode under the conditions of the tested fire. The accumulated excess vapours in the tank vented through the safety valve (in this case it was a vacuum valve), formed a flammable mixture with air and ignited to form a jet fire. The gas stream fire gradually decreased with the time the fuel spill burned up and the gas burned. Hence, in the scenarios of the events involving an LNG tank, heated in a fire with a heat stream, the possibility of creating a jet flame directed upwards (not heating the tank) should be considered and during such an event an LNG tank with a capacity of 200 litres should be placed with observation for free gas burnout.

Summary

Fire and explosion hazards of LNG during its transport, storage or use result mainly from its flammability, high density of liquid LNG at its boiling point at atmospheric pressure.

Depending on the thermal exposure, heat losses to the environment under fire conditions, the type of emission, time to ignition and the type of effective ignition stimulus – a fire or explosion of a combustible mixture made of LNG is possible.

The rate of LNG leaks, the size of the spillages, air humidity, terrain characteristics (especially the congestion of obstacles) determine the dispersion of the LNG cloud and the possible effects of an explosion.

The combustion of the natural gas significantly depends on the time of applying an effective source of ignition and the time of formation of the fuel-air cloud.

In case of the ignition of LNG vapours, a flash fire of a cloud of vapours with air, jet fire, and fire of a spill or an explosion of a mixture of vapours with air or BLEVE is possible.

Przeprowadzony eksperyment pokazał, że wytypowanego do badań zbiornik LNG w warunkach testowanego pożaru nie uległ wybuchowi. Zgromadzony nadmiar par w zbiorniku wydostał się poprzez zawór bezpieczeństwa (w tym przypadku był to zawór próżniowy), utworzył mieszzaninę palną z powietrzem i zapalił się, tworząc jet fire. Pożar strumienia gazu stopniowo zmniejszał się wraz z czasem wypalania rozlewiska paliwa i spalania gazu. Stąd też należy rozpatrywać w scenariuszach zdarzeń z udziałem zbiornika LNG, ogrzewanego w warunkach pożaru strumieniem ciepła możliwość tworzenia płomienia strumieniowego skierowanego do góry (nie ogrzewającego zbiornika) i podczas takiego zdarzenia postawić zbiornik LNG o pojemności 200 litrów wraz z obserwacją do swobodnego wypalenia gazu.

Podsumowanie

Zagrożenia pożarowo-wybuchowe LNG podczas jego transportu, magazynowania czy też stosowania wynikają głównie z jego palności, dużej gęstości ciekłego LNG w jego temperaturze wrzenia przy ciśnieniu atmosferycznym. W zależności od ekspozycji cieplnej, strat ciepła po otoczeniu w warunkach pożarowych, rodzaju emisji, czasu do zapłonu i typu efektywnego bodźca zapłonu - możliwe jest pożar lub wybuch mieszaniny palnej utworzonej z LNG.

Szybkość wycieków LNG, rozmiar rozlewiska, wilgotność powietrza, charakterystyka terenu (szczególnie zatłoczona przeszkód), decydują o dyspersji chmury LNG i możliwych skutkach wybuchu.

Spalanie gazu ziemnego istotnie zależy od czasu przyłożenia efektywnego źródła zapłonu i czasu utworzenia obłoku paliwo -powietrze. W przypadku zapłonu par LNG możliwe jest pożar błyskawiczny, chmury par z powietrzem, pożar strumieniowy, pożar rozlewiska lub wybuch mieszaniny par z powietrzem czy BLEVE.
Literature analysis was carried out as part of the DOB-BIO9/15/02/2018 project “Innovative research and training station LNG Trainer” implemented for the defence and security of the state used to develop tactics of activities with the use of equipment used by the State Fire Brigade (PSP) during LNG events, financed by the National Centre for Research and Development. The experimental study was carried out as part of DOB-BIO6/02/50/2014 project “Development of methods for neutralizing the risk of explosion in selected technical gas tanks, including alternative power sources in a fire environment for the needs of rescuers participating in rescue and firefighting operations” implemented for the defence and security of the state financed by the National Centre for Research and Development.

Literature / Literatura

[1] Kumar S., Kwon H., Choi K., Lim W., Cho J., Tak K., Moon I., LNG: an ecofriendly cryogenic fuel for sustainable development, „Applied Energy” 2011, 88, 4264–4273, https://doi.org/10.1016/j.apenergy.2011.06.035.
[2] U.S. Energy Information Agency, International Energy Outlook 2017.
[3] Mazyan W., Ahmadi A., Ahmed H., Hoorfar M., "Flammability limits, Flow and flame characteristics of ammonia/nitric oxide mixtures" in the "Journal of Loss Prevention in Process Industries" 1995, 8(4), 332–352, https://doi.org/DOI:10.1016/j.jlp.2008.12.004.
[4] Abbasi T., Abbasi S.A., "The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management", „Journal of Hazardous Materials” 2007, 141(3), 489–519.
[5] Lisowski E., Czyżewski W., Transport and storage of LNG in container tanks, „Journal of KONES Powertrain and Transport” 2011, 18(3), 193–201.
[6] Czyżewski W., Łazarzuk K., "Simulation and experimental research of internal supports in mobile cryogenic tank", „Czasopismo Techniczne” 2010, 2- M, 8, 175–184.
[7] Grzywa E., Molenda J., "Technologia podstawowych syntez organicznych", WNT, Warszawa 2000.
[8] Bahadori A., "Cryogenic Insulation Systems for LNG Industries, Thermal Insulation Handbook for the Oil, Gas, and Petrochemical Industries", Gulf Professional Publishing, 2013.
[9] Mokhatab S., Mak J., Valappil J., Wood D., "Handbook of Liquefied Natural Gas", Gulf Professional Publishing 2013.
[10] Checkel M.D., Ting D.S.K., Bushe W.K., "Flammability limits and burning velocities of ammonia/nitric oxide mixtures", „Journal of Loss Prevention in Process Industries” 1995, 8(4), 215–220, https://doi.org/10.1016/0950-4230(95)00027-X.
[11] Chen J.R., Tsai H.Y., Chien J.H., Pan H.J., "Flow and flame visualization near the upper flammability limits of methane/air and propane/air mixtures at elevated pressures", „Journal of Loss Prevention in Process Industries” 2011,24950, 662–670, https://doi.org/10.1016/j.jlp.2011.05.012.
[20] Claessen G., Vliegen, J., Joosten G., Geersen T., Flammability characteristics of natural gases in air at elevated pressures and temperatures, Loss Prevention and Safety Promotion in the Process Industries: Proceedings of the 5th International Symposium, Cannes, France, September 15–19, 1986.

[21] Gieras M., Klemens R., Araba G., Wolanski P., Aneziris O., Papazoglou I.A., Konstantinidou M., Nivoliani Eberwein R., Rogge A., Behrendt F., Knaust C., Pio G., Salzano E., Biao S., Wong J., Wadnerkar D., Utikar R.P., Pareek V.K., Brown T., Cederwall R., Chan S., Ermak D., Koopman R., Rigas F., Sklavounos S., Koopman R.P., Baker J., Cederwall R.T., Goldwire H.C., Puttock J.S., Blackmore D.R., Colenbrander G.W., Feldbauer G., Heigl J., McQueen W., Whipp R., May W., Vanderstraeten B., Tuerlinckx D., Berghmans J., Vliegen S.

[22] Vanderstraeten B., Tuerlinckx D., Berghmans J., Vliegen S., Van't Oost E., Smit B., Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures, „Journal of Hazardous Materials” 1997, 56(3), 237–246, https://doi.org/10.1016/S0304-3894(97)00045-9.

[23] Feldbauer G., Heigl J., McQueen W., Whipp R., May W., Spills of LNG on water: Vaporization and downwind drift of combustible mixtures, ESSO Research and Engineering Company Report No. EE61D-72 (Performed for the American Petroleum Inst.), 1972.

[24] Puttock J.S., Blackmore D.R., Colenbrander G.W., Field experiments on dense gas dispersion, „Journal of Hazardous Materials” 1982, 6(1–2), 13–41, https://doi.org/10.1016/0304-3894(82)80033-2.

[25] Koopman R.P., Baker J., Cederwall R.T., Goldwire H.C., Hogan W.J., Kamppinen L.M., Kiefer R.D., McClure J.W., McRae T.G., Morgan D.L., „LLNL/NWC 1980 LNG spill tests, Burro Series Data Report, vol. 2, Lawrence Livermore Laboratory 1982.

[26] Rigaš F., Sklavounos S., Simulation of Coyote series trials—Part II: A computational approach to ignition and combustion of flammable vapor clouds, „Chemical Engineering Science” 2006, 61(5), 1444–1452, https://doi.org/10.1016/j.ces.2005.09.005.

[27] Brown T., Cederwall R., Chan S., Ermak D., Koopman R., Lamson K., McClure J., Morris L., „Falcon series data report: 1987 LNG vapor barrier verification field trials, Lawrence Livermore National Lab, CA (USA) 1990.

[28] Biao S., Wong J., Wadenkar D., Utkar R.P., Pareek V.K., Guo K., Multiphase simulation of LNG vapour dispersion with effect of fog formation, „Applied Thermal Engineering” 2020, 166, 114671, https://doi.org/10.1016/j.applthermaleng.2019.114671.

[29] Eberwein R., Rogge A., Behrendt F., Knaust C., Dispersion modeling of LNG-Vapor on land – A CFD-Model evaluation study, „Journal of Loss Prevention in the Process Industries” 2020, 65, 104116, https://doi.org/10.1016/j.jlp.2020.104116.

[30] Aneziris O., Papazoglou I.A., Konstantinidou M., Nivoliani tou Z., „Integrated risk assessment for LNG terminals, „Journal of Loss Prevention in the Process Industries” 2014, 28, 23–35, https://doi.org/10.1016/j.jlp.2013.07.014.

[31] Pio G., Salzano E., The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures, „Journal of Hazardous Materials” 2019, 362, 224–229, https://doi.org/10.1016/j.jhazmat.2018.09.018.

[32] Pio G., Carboni M., Iannaccone T., Cozzani, V., Salzano E., Numerical simulation of small-scale pool fires of LNG, „Journal of Loss Prevention in the Process Industries” 2019, 61, 82–88, https://doi.org/10.1016/j.jlp.2019.06.002.

[33] Bartknecht W., Explosionsschutz, Grundlagen und Anwendung, Springer Verlag, Berlin, Heidelberg, New York 1993.

[34] Bunev V., Bolshova T., Babkin V., The nature of the upper laminar flammability limit in methane-air mixtures at high pressures, „Doklady Physical Chemistry” 2013, 452, 52–54, https://doi.org/10.1134/S001250161307004X.

[35] Basshuysen R., Erdgas und erneuerbares Methan für den Fahrzeugantrieb, Springer Verlag, Wiesbaden 2015.

[36] Lee S., Quantitative risk assessment of fire & explosion for regasification process of an LNG-FSRU, „Ocean Engineering” 2020, 197(88), 106825, https://doi.org/10.1016/j.oceaneng.2019.106825.

[37] Dyrektywa Parlamentu Europejskiego i Rady 2021/18/UE z dnia 4 lipca 2021 r. w sprawie kontroli zagrożeń poważnymi awariami związanymi z substancjami niebezpiecznymi, zmieniająca, a następczo uchylająca dyrektywę Rady 96/82/WE [Dyrektywa Seveso III] (Dz. Urz. UE L 197 z 24.07.2012), 1–37.

[38] PN-EN 1473:2021-10 Instalacje i wyposażenie do skroplonego gazu ziemnego – Projektowanie instalacji na lądzie.

[39] PN-EN 13645:2008 Instalacje i urządzenia do skroplonego gazu ziemnego – Projektowanie instalacji lądowych ze zbiornikami magazynowymi o ładowności od 5 t do 200 t.

[40] NFPA 59A Standard for the Production, Storage, and Handling of Liquefied Natural Gas LNG.

[41] Umowa europejska dotycząca międzynarodowego przepustu drogowego towarów niebezpiecznych – ADR 2021, https://dziennikustaw.gov.pl/DU/2021/874.

[42] PN-EN ISO 20421-2:2017-05 Zbiorniki kryogeniczne – Duże zbiorniki magazynowe o ładowności od 5 t do 200 t, wyrób, kontrola i badania.

[43] PN-EN 13530-2:2003 Zbiorniki kryogeniczne – Duże zbiorniki transportowe z izolacją próżniową – Część 2: Wymagania eksploatacyjne.

[44] PN-EN 13530-2:2003 Zbiorniki kryogeniczne – Duże zbiorniki transportowe z izolacją próżniową – Część 2: Projektowa nie, wyrób, kontrola i badania.
ST. BRYG. DR HAB. MARZENA PÓŁKA, PROF. SGSP

– absolwentka Wydziału Chemii na Uniwersytecie Warszawskim. Długoletni funkcjonariusz PSP pełniący obecnie służbę na stanowisku profesora nadzwyczajnego. Obecnie kierownik Katedry Procesów Spalania na Wydziale Inżynierii Bezpieczeństwa i Ochrony Ludności Szkoły Głównej Służby Pożarniczej. Zajmuje się analizą procesów rozkładu termicznego i spalania materiałów, modyfikacją przeciwogniową materiałów, opisem zjawisk wybuchu par cieczy palnych, gazów oraz pyłów, rozpoznawaniem przyczyn powstawania pożarów i wybuchów.

MGR INŻ. DARIUSZ OLCEN

– absolwent studiów inżynierskich Szkoły Głównej Służby Pożarniczej (2007), absolwent studiów podyplomowych w zakresie Ratownictwa Chemicznego – Identyfikacja zagrożeń i likwidacja skażeń w SGSP oraz studiów podyplomowych w zakresie Ratownictwa Chemicznego na Uniwersytecie Mikołaja Kopernika w Toruniu (2018). Doradca ds. transportu drogowego towarów niebezpiecznych (DGSA). Autor i współautor obowiązujących programów szkoleń KG PSP z ratownictwa chemicznego i ekologicznego oraz CBRN.

BRIG. ROBERT PIEC, PH.D. ENG.

– absolwent Szkoły Głównej Służby Pożarniczej. Doktor nauk technicznych w dyscyplinie inżynieria środowiskowa nadany uchwałą Rady Naukowej Centralnego Instytutu Ochrony Pracy – Państwowego Instytutu Badawczego. Ukończył również studia podyplomowe – Zarządzanie w Stanach Zagrożeń w Szkole Głównej Służby Pożarniczej, studia podyplomowe – Bazy danych w Wyższej Szkole Informatyki Stosowanej i Zarządzania oraz studia podyplomowe z seminariami doktoranckimi – Analiza ryzyka w Akademii Finansów. Jest autorem lub współautorem wielu artykułów, rozdziałów monografii oraz referatów prezentowanych na konferencjach krajowych i zagranicznych. Obecnie pełni obowiązki Dyrektora Instytutu Bezpieczeństwa Wewnętrznego Szkoły Głównej Służby Pożarniczej.