Microvirga Terrestris sp. nov., and Microvirga Arvi sp. nov., Two Novel Species Isolated From Soil in South Korea

Tuvshinzaya Damdintogtokh
Seoul Women's University

Yuna Park
Seoul Women's University

Soo hyun Maeng
Seoul Women's University

Hye Jin Oh
Seoul Women's University

Minji Bang
Seoul Women's University

Jaewoo Bai
Seoul Women's University

Myung Kyum Kim (biotech@swu.ac.kr)
Seoul Women's University

Research Article

Keywords: Methylobacteriaceae, Microvirga, Taxonomy

Posted Date: November 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1039224/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Two novel Gram-stain-negative, aerobic, rod shaped bacterial strains BT290T and BT689T were isolated from soil collected in South Korea. Colony morphologies of both strains were circular and convex while the colors of BT290T and BT689T were light-pink and white, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that BT290T and BT689T belong to a distinct lineage within the genus Microvirga (family Methylobacteriaceae, order Rhizobiales, class Alphaproteobacteria, phylum Proteobacteria, kingdom Bacteria). The 16S rRNA gene sequence similarity between two strains was 97.9 %. Both strains had the similar quinone system, with ubiquinone 10 (Q-10) as the major respiratory quinone. The major polar lipids of strains BT290T and BT689T were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylcholine (PC) and phosphatidylglycerol (PG). The major cellular fatty acids of strain BT290T were C\textsubscript{18:1} \textit{ω}7\textsubscript{c} (58.2 %) and C\textsubscript{16:0} (17.7 %), while those of strain BT689T were C\textsubscript{18:1} \textit{ω}7\textsubscript{c} (61.8 %) and C\textsubscript{16:0} (10.8 %).

On the bases of polyphasic analysis (phylogenetic, chemotaxonomic and biochemical), strains BT290T and BT689T can be suggested as novel bacterial species within the genus Microvirga and the proposed names are Microvirga terrestris and Microvirga arvi, respectively. The type strain of Microvirga terrestris is BT290T (= KCTC 72367T=NBRC 114844T) and the type strain of Microvirga arvi is BT689T (= KACC 22016T = NBRC 114858T), respectively.

Introduction

The genus Microvirga was first described by Kanso and Patel [1] and was afterwards emended by Zhang et al. [2] and Weon et al. [3] allocated to the family Methylobacteriaceae, order Rhizobiales and class Alphaproteobacteria. At the time of writing (Oct 2021), the genus comprises 26 published species and not validly published ones (https://lpsn.dsmz.de/genus/microvirga). Microvirga species have been retrieved from various polar environments in the last years, e.g. from Tibet hot spring sediments [4], roots of rapeseed plants [5], root nodule [6, 7], forest soil [8] and rhizospheric soil [9]. Cells of genus Microvirga are Gram-stain-negative and contain C\textsubscript{18:1} \textit{ω}7\textsubscript{c} and cyclo-C\textsubscript{19:0} \textit{ω}8\textsubscript{c} as major fatty acids. The average genome size and DNA G+C content are 3.53 - 9.63 Mb and 61.1 - 65.1%, respectively [8].

In this study, two strains BT290T and BT689T were newly isolated from soil samples collected in South Korea. A phylogenetic analysis was conducted based on the 16S rRNA gene sequences and phenotypic, genotypic, and chemotaxonomic characteristics were performed to determine the taxonomic position of strains BT290T and BT689T. The results suggested that strains BT290T and BT689T represent two novel species of the genus Microvirga, for which the name Microvirga terrestris sp. nov. and Microvirga arvi sp. nov. are proposed, respectively.

Materials And Methods
Isolation and culture conditions of bacteria

Two soil samples were obtained in South Korea to isolate new strains. The strain BT290T was isolated from Jeongseon province (37° 22' 45" N, 128° 39' 53" E) and strain BT689T was isolated from Uijeongbu city (37° 44' 55" N, 127° 2' 20" E). Colonies were isolated using Reasoner's 2A (R2A) agar medium (Difco) after incubation at 25°C for 10 days and single colonies purification were performed under the same condition. The strains were routinely sub-cultured on R2A agar at 25°C, maintained at 4°C and stock solutions were stored in 10 % (w/v) glycerol suspension at −80°C before use.

Morphology, physiology and biochemical analysis

The cell morphologies of strains BT290T and BT689T were examined using a transmission electron microscopy (JEOL, JEM1010) after grown on R2A agar for 3 days at 25°C, using negative staining method. The Gram-staining was performed using a commercialized kit, following the manufacturer's instruction (bioMérieux). Catalase activity was examined with 3 % (w/v) hydrogen peroxide and oxidase activity was examined by addition of 1 % (w/v) tetramethyl-p-phenylenediamine [10]. Bacterial growths of both strains were tested on Reasoner's 2A (R2A) agar, Luria-Bertani (LB) agar, Tryptic Soy Agar (TSA), Nutrient Agar (NA), and on MacConkey (MAC) agar, respectively. Cell viability was observed under various temperatures (10, 15, 25 and 30°C), different pH conditions (pH 5 to 9, pH 1 intervals), and different NaCl concentrations (1 % to 5 % [w/v %], 1 % intervals). API 20NE and API ZYM tests were performed according to the manufacturer's instruction (bioMérieux).

Phylogenetic analysis

The 16S rRNA genes of strains BT290T (1,417 bp) and BT689T (1,451 bp) were amplified by PCR using two universal bacterial primers 27F and 1492R [11] using the BT290T and BT689T genomic DNA as templates. Then, sequencing was performed using four universal primers including 337F, 518R, 785F, and 926R (Macrogen). To determine the taxonomic positions of strains BT290T and BT689T, similar 16S rRNA sequences were obtained from EzBioCloud [12] and compared with those of strains BT290T and BT689T using EzEditor2 server. Phylogenetic trees were constructed using the MEGAX program [13] with the neighbor-joining [14], maximum-likelihood [15] and maximum-parsimony algorithms [16]. The stability of the tree topologies was calculated based on 1,000 replications [17] and evolutionary distances were calculated using Kimura's two-parameter model [18].

Genome sequencing and analysis

Genomic DNA was extracted using a genomic DNA extraction kit according to the manufacturer's instruction (Solgent). Sequencing libraries were prepared using the Nextera DNA Flex Library Prep Kit (Illumina) and whole-genome sequencing was performed by iSeq 100 system (Illumina). The obtained genome sequences were assembled using a SPAdes 3.10.1 (Algorithmic Biology Lab, St. Petersburg
Academic University of the Russian Academy of Sciences). Whole-genome sequences of strains BT290^T and BT689^T were deposited in GenBank (www.ncbi.nlm.nih.gov/) database, respectively. The genome sequences of strains BT290^T and BT689^T were annotated by the National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline (PGAP) [19]. The average nucleotide identity (ANI) was calculated using the EzBioCloud (https://www.ezbiocloud.net) and digital DNA-DNA hybridization (dDDH) values were calculated using the Genome-to Genome Distance Calculator (GGDC) with the recommended formula 2 (Table 1) [20].

Chemotaxonomic characteristics

To analyze the cellular composition of polar lipid, fatty acid, and quinone of strains BT290^T and BT689^T, both strains were grown on R2A agar at 25°C for three days and then cells were freeze-dried. Polar lipids were extracted as described previously [21]. Total lipids, glycolipids, phosphatidylcholine, and amino groups were separated using two-dimensional thin-layer chromatography (TLC). The polar lipid spots were detected by spraying the proper detection reagents [22, 23]. The fatty acids were purified by saponification, methylation and extraction procedures and analyzed by Sherlock Microbial Identification System V6.01 (MIS, database TSBA6, MIDI Inc., Newark, DE, USA) [24]. The quinones of strains BT290^T and BT689^T were extracted using the Sep-Pak Vac cartridges (Waters) and analyzed by high-performance lipid chromatography (HPLC) based on the previous methods [25]. The fatty acid methyl esters (FAME) were identified using the Sherlock Microbial Identification System V6.01 (MIS, database TSBA6, MIDI Inc).

Results And Discussion

Morphology, physiology and biochemical analysis

Strains BT290^T and BT689^T were Gram-staining-negative bacteria and they showed rod-shaped morphology (Fig. 1). Colonies of strains BT290^T and BT689^T were circular, convex, smooth, light-pink and white colored after incubation for three days at 25°C. Cells of strains BT290^T and BT689^T could survive at 10 to 30°C (optimum 25°C) and pH 6.0 - 9.0 (optimum 8.0) on R2A medium. Distinct features of new strains and reference strains were presented in Table 1. The negative reaction of strains BT290^T and BT689^T by API analysis were given as supplementary tables (Table S1 and S2, respectively).
Table 1
Different characteristics of *Microvirga terrestris* and *Microvirga arvi* and closely related species of genus *Microvirga*.

Characteristic	1	2	3
Isolation source	soil	soil	air
Size (µm long)	1.3 - 2.4	1.1 - 2.0	1.6 - 3.3
Size (µm wide)	0.5 - 1.4	0.6 - 0.7	1.2 - 1.5
Optimum growth temperature (°C)	10 - 30°C	10 - 30°C	10 - 35°C
Colony color	light pink	white	light pink
Oxidase	+	+	-
Catalase	+	+	-
Nitrate reduction			
Nitrate reduction to NO₂	-	w	-
Nitrate reduction to N₂	-	+	-
Enzyme activity			
alkaline phosphatase	-	+	+
esterase (C4)	-	-	+
esterase (C8)	-	-	+
leucine arylamidase	-	-	+
naphtol-AS-BI-phosphohydrolase	-	-	+
protease (gelatin hydrolysis)	-	-	w
trypsin	-	-	+
D-glucose	w	-	-
G+C content	62.3 mol%	62.4 mol%	61.5 mol%

Taxa: 1, strain BT290ᵀ (data was obtained in this study); 2, strain BT689ᵀ (data was obtained in this study); 3, *M. aerilata* 5420S-16ᵀ (data was taken Weon et al. 2010). All strains were negative for production of acid from glucose, production of indole, N-acetyl-β-glucosaminidase, arginine dihydrolase, α-chymotrypsin, cystine arylamidase, α-fucosidase, α-galactosidase, β-galactosidase (ONPG), β-galactosidase (PNPG), α-glucosidase (starch hydrolysis), β-glucosidase (esculin hydrolysis), β-glucosidase, β-glucuronidase, lipase (C14), α-mannosidase, urease, valine arylamidase and N-acetyl-D-glucosamine. All strains were positive for acid phosphatase.

+, positive; -, negative; w, weak positive
Phylogenetic analysis

Based on the 16S rRNA gene sequence similarities, strains BT290^T and BT689^T were affiliated with the family *Methylobacteriaceae* and they showed high sequence similarities with the genus *Microvirga*. The 16S rRNA gene sequence similarities of strains BT290^T and BT689^T with the most closely related species *M. aerilata* 5420S-16^T were 98.2 % and 98.5 %, respectively and with other *Microvirga* species were 98.1 %. These values were below the threshold for differentiating among bacterial species (98.7 %), supporting that those two strains are novel species [26]. The results of neighbor-joining tree (Fig. 2), maximum-likelihood tree (Fig. S1) and maximum-parsimony tree (Fig. S2) showed that strains BT290^T and BT689^T were clustered with *M. soli* R491^T and *M. occulans* ATCC BAA-817^T, respectively, at >70 % bootstrap support (Fig. 2). The phylogenetic analysis results clearly showed that strains BT290^T and BT689^T are two new species within the genus *Microvirga*.

Genome sequence analysis

The draft genome of strain BT290^T was 4.20 Mb (38.6×) long and consisted of 3,867 protein-coding genes, 50 RNA genes (5 rRNA genes, 45 tRNA genes), and 41 pseudogenes. The draft genome of strain BT689^T was 6.10 Mb (29.9×) long and consisted of 4,014 protein-coding genes, 51 RNA genes (4 rRNA genes, 44 tRNA genes), and 66 pseudogenes. The genome sequences of strains BT290^T and BT689^T were deposited in GenBank database (accession numbers: NZ_JADQDN000000000 for BT290^T and NZ_JAFEMD000000000 for BT689^T, respectively). The DNA G+C contents of strains BT290^T and BT689^T were 62.3 mol% and 62.4 mol%, respectively. These values were within the range of the G+C contents for the genus *Microvirga* those previously reported (61.1 - 65.1 mol %) [8], thus again supported that two strains belong to genus *Microvirga*. The digital DNA-DNA hybridization values between strains BT290^T and BT689^T and other related type strains of genus *Microvirga* were less than 26.7 % and 28.4 %, respectively (Table S3), which are below the cutoff (70 %) point [20]. Average nucleotide identity (ANI) values between strains BT290^T and BT689^T and other related type strains of genus *Microvirga* were less than 82.9 % and 83.9 %, respectively (Table S3). These values are below the ANI species threshold (95 - 96 % ANI value) as described by Ritcher and Rossello-Mora [27].

Chemotaxonomic characterization

Fatty acid profiles of strains BT290^T and BT689^T and three reference strains of genus *Microvirga* were presented in Table 2. The major fatty acids of strain BT290^T were C_{18:1} ω7c (58.2 %) and C_{16:0} (17.7 %). Interestingly, strain BT290^T has large amounts of C_{18:0} (5.7 %), cyclo-C_{19:0} ω8c (2.2 %), C_{14:0} (1.6 %) and C_{18:1} ω7c 11-methyl (1.2 %), whereas the most closely related species *M. aerilata* 5420S-16^T has small amounts of corresponding fatty acids. In addition, strain BT290^T did not contain C_{15:1} ω8c while most closely related species *M. aerilata* 5420S-16^T contained that fatty acid. The polar lipids of strain BT290^T consisted of phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylcholine (PC),
phosphatidylglycerol (PG), aminolipid (AL) and four unknown lipid (L) (Fig. S3). The major fatty acid profiles of strain BT689^T were C_{18:1} ω7c (61.8 %) and C_{16:0} (10.8 %). Strain BT689^T has large amounts of cyclo-C_{19:0} ω8c (8.2 %), C_{18:0} (6.6 %), C_{18:1} ω7c 11-methyl (2.3 %), C_{14:0} (1.3 %) and C_{18:0} 3OH (1.0 %), whereas the most closely related species <i>M. aerilata</i> 5420S-16^T has smaller amounts of corresponding fatty acids. Strain BT689^T contained C_{17:0}, cyclo-C_{17:0} and C_{18:1} ω9c, but most closely related species <i>M. aerilata</i> 5420S-16^T did not contain those fatty acids. The polar lipids of strain BT689^T consisted of phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL) and nine unknown lipid (L) (Fig. S4).
Table 2

Fatty acids	1	2	3
Saturated			
14:0	1.6	1.3	TR
16:0	17.7	10.8	9.8
17:0	ND	TR	ND
17:0 cyclo	TR	TR	ND
18:0	5.7	6.6	2.1
19:0 10-methyl	TR	TR	TR
Unsaturated			
15:1 ω8c	ND	ND	TR
18:1 ω7c	58.2	61.8	71.8
18:1 ω7c 11-methyl	1.2	2.3	ND
18:1 ω9c	ND	TR	ND
19:0 cyclo ω8c	2.2	8.2	ND
18:0 3OH	TR	1.0	ND
Summed Feature 2 (16:1 iso I / 14:0 3OH)	2.4	2.1	3.7
Summed Feature 3 (16:1 ω6c / 16:1 ω7c)	8.2	3.2	10.4

Taxa: 1, strain BT290^T (data was obtained in this study); 2, strain BT689^T (data was obtained in this study); 3, *M. aerilata* 5420S-16^T (data was taken Weon et al. 2010). All strains were grown on R2A agar at 28 °C. For unsaturated fatty acids, the location of the double bond was presented by counting the number from the methyl (ω) end of the carbon chain. ND, not detected; TR, trace amount (<1%).

The dominant respiratory quinone of strains BT290^T and BT689^T was ubiquinone 10 (Q-10).

Regarding the chemotaxonomic characteristics of BT290^T and BT689^T, both strains could be differentiated from other *Microvirga* species. Moreover, based on phenotypic, phylogenetic and biochemical features, it is concluded that strains BT290^T and BT689^T represent two novel species of the genus *Microvirga*, for which the name *Microvirga terrestris* and *Microvirga arvi*, respectively, are proposed.
Description of *Microvirga terrestris* sp. nov.

Microvirga terrestris (ter.res'tris. L. fem. adj. *terrestris* of the earth).

Cells are Gram-stain-negative, aerobic, rod-shaped, 0.5 - 1.4 µm in diameter and about 1.3 - 2.4 µm in length, non-spore forming and non-motile. Colonies are irregular, convex and light-pink-colored on Reasoner's 2A (R2A) agar plates after growth for three days at 25°C. Growth is observed at temperatures ranging from 10 to 30°C (optimum 25°C). The pH range for growth is 6.0 - 9.0 (optimum pH 8.0) on R2A agar. Normal cell growth occurs at 10 - 30°C (optimum 25°C) and pH 6.0 - 9.0 (optimum 8.0). Cells grow on R2A agar and MacConkey (MAC) agar (weakly) but not on Luria-Bertani agar (LB), Tryptic Soy Agar (TSA) and Nutrient Agar (NA). Cells are positive for oxidase and catalase activity. The major respiratory quinone of strain BT290^T is ubiquinone 10 (Q-10). The dominant cellular fatty acids are C_{16:0} and C_{18:1 ω7c}. The major polar lipids are phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylcholine (PC) and phosphatydilglycerol (PG). Positive for D-glucose (API 20NE). Positive for acid phosphatase (API ZYM). The whole-genome sequence of strain BT290^T has been deposited in GenBank under the accession number NZ_JADQDN000000000 (6.10 Mb). The genome-based G+C content is 62.3 mol %. The GenBank accession number for the 16S rRNA gene sequence of strain BT290^T is MT795754 (1,417 bp). The type strain BT290^T (= KCTC 72367^T =NBRC 114844^T) was isolated from a soil sample collected in Jeongseon province (37° 22′ 45″ N, 128° 39′ 53″ E), South Korea.

Description of *Microvirga arvi* sp. nov.

Microvirga alba (ar'vi. L. gen. n. *arvi* of a field).

Cells are Gram-stain-negative, aerobic, rod-shaped, 0.6 - 0.7 µm in diameter and about 1.1 - 2.0 µm in length, non-spore forming and non-motile. Colonies are irregular, convex and white colored on Reasoner's 2A (R2A) agar plates after growth for three days at 25°C. Growth is observed at temperatures ranging from 10 to 30°C (optimum 25°C). The pH range for growth is 6.0 - 9.0 (optimum pH 8.0) on R2A agar. Cells grow on R2A agar, Luria-Bertani agar (LB) (weakly) and MacConkey (MAC) (weakly) agar but not on Tryptic Soy Agar (TSA) and Nutrient Agar (NA). Cells are positive for oxidase and catalase activity. The major respiratory quinone of strain is ubiquinone 10 (Q-10). The dominant cellular fatty acids are C_{18:1 ω7c} and C_{16:0}. The major polar lipids are phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylcholine (PC) and phosphatydilglycerol (PG). Positive for nitrate reduction to NO₂ (weakly), nitrate reduction to N₂, D-glucose and l-malate (weakly) (API 20NE). Positive for alkaline phosphatase and acid phosphatase (API ZYM).

The whole genome sequence of strain BT689^T has been deposited in GenBank under the accession number NZ_JAFEMD000000000 (4.42 Mb). The genome-based G+C content is 62.4 mol%. The GenBank accession number for the 16S rRNA gene sequence of strain BT689^T is MT795749 (1,451 bp). The type
strain BT689T (\textit{= KACC 22016T = NBRC 114858T}) was isolated from a soil sample collected in Uijeongbu city (37° 44' 55" N, 127° 2' 20" E), South Korea.

Declarations

Acknowledgements:

This work was supported by a research grant from Seoul Women's University (2021) and by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202002203), and by R&D Program for Forest Science Technology (Project No. 2021375C10-2123-BD02) provided by Korea Forest Service (Korea Forestry Promotion Institute).

We are grateful to Dr. Aharon Oren (The Hebrew University of Jerusalem, Israel) for helping with the etymology.

Conflicts of interest:

The authors declare that there are no conflicts of interest.

Ethical Approval:

This article does not contain any studies with human participants or animals.

Author Contributions:

All authors contributed equally to this manuscript.

The 16S rRNA gene sequences of strains BT290T and BT689T were deposited in GenBank/EMBL/DDBJ under the accession numbers MT795754 and MT795749, respectively. The draft genome sequences of strains BT290T and BT689T are available under the following accession numbers NZ_JADQDN000000000 and NZ_JAFEMD000000000, respectively.

References

1. Kanso S, Patel BK. *Microvirga subterranea* gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. *Int J Syst Evol Microbiol* 2003;53:401-406.

2. Zhang J, Song F, Xin YH, Zhang J, Fang C. *Microvirga guangxiensis* sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus *Microvirga*. *Int J Syst Evol Microbiol* 2009;59:1997-2001.

3. Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ, Kim YS, Kim BY, Ka JO. Description of *Microvirga aerophila* sp. nov. and *Microvirga aerilata* sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as *Microvirga flocculans* comb. nov. and emended description of the genus *Microvirga*. *Int J Syst Evol Microbiol* 2010;60:2596-2600.
4. Liu ZT, Xian WD, Li MM, Liu L, Ming YZ, Jiao JY, Fang BZ, Xiao M, Li WJ. *Microvirga arsenatis* sp. nov., an arsenate reduction bacterium isolated from Tibet hot spring sediments. *Antonie Van Leeuwenhoek*. 2020;113:1147-1153.

5. Jimenez-Gomez A, Saati-Santamaria Z, Igual JM, Rivas R, Mateos PF, Garcia-Fraile P. Genome Insights into the Novel Species *Microvirga brassicacearum*, a Rapeseed Endophyte with Biotechnological Potential. *Microorganisms* 2019;7:0.

6. Wang F, Yang L, Deng J, Liu X, Lu Y, Chen W, Wu J. *Microvirga calopogonii* sp. nov., a novel alphaproteobacterium isolated from a root nodule of Calopogonium mucunoides in Southwest China. *Antonie Van Leeuwenhoek* 2019;112:1593-1602.

7. Msaddak A, Rejili M, Duran D, Mars M, Palacios JM, Ruiz-Argueso T, Rey L, Imperial J. *Microvirga tunisiensis* sp. nov., a root nodule symbiotic bacterium isolated from Lupinus micranthus and *L. luteus* grown in Northern Tunisia. *Syst Appl Microbiol* 2019;42:126015.

8. Zhang XJ, Zhang J, Yao Q, Feng GD, Zhu HH. *Microvirga flavescens* sp. nov., a novel bacterium isolated from forest soil and emended description of the genus *Microvirga*. *Int J Syst Evol Microbiol* 2019;69:667-671.

9. Li J, Gao R, Chen Y, Xue D, Han J, Wang J, Dai Q, Lin M, Ke X, Zhang W. Isolation and Identification of *Microvirga thermotolerans* HR1, a Novel Thermo-Tolerant Bacterium, and Comparative Genomics among *Microvirga* Species. *Microorganisms* 2020;8:0.

10. Cappuccino JG, Sherman N. Microbiology-A laboratory manual, 6th edn. Pearson Education, Inc. Benjamin Cummings, California; 2002.

11. Weisburg WG, Barns SM, Pellerier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. *J Bacteriol* 1991;173:697-703.

12. Yoon S, Ha S, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. *Int J Syst Evol Microbiol* 2017;67:1613-16.

13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol Biol Evol* 2018;35(6):1547-1549.

14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Bio Evol* 1987;4:406-425.

15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. *J Mol Evol* 1981;17:368-376.

16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. *Syst Zool* 1971;20:406-416.

17. Felsenstein J. Confidence limit on phylogenies: an approach using the bootstrap. *Evolution* 1985;39:783-791.

18. Kimura M. The Neutral Theory of Molecular Evolution. Cambridge: *Cambridge University Press*. 1983.
19. Tatusova T, DiCuccio M, Badretdin A et al. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res* 2016;44:6614-6624.

20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC bioinformatics* 2013;14:60.

21. Minnikin DE, O’Donnell AG, Goodfellow M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. *J Microbiol Methods* 1984;2:233–241.

22. Komagata K, Suzuki K. 4 Lipid and cell-wall analysis in bacterial systematics. *Method Microbiol* 1987;19:161-207.

23. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. *J Microbiol Meth* 1984;2:233-241.

24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Newark, DE: MIDI Inc. 1990.

25. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. *J Gen Appl Microbiol* 1996;42:457-469.

26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. *Int J Syst Evol Microbiol* 2018;68:461-466.

27. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. *Proc Natl Acad Sci USA*; 2009;106:19126-19131.

Figures
Figure 1

Transmission electron micrograph of strains BT290T (a) and BT689T (b) from cultures grown on R2A agar for three days at 25 °C. Bars are 500 nm.
Figure 2

Neighbor-joining phylogenetic tree reconstructed from a comparative analysis of 16S rRNA gene sequences showing the relationships of strains BT290T and BT689T with closely related validly published species. Bootstrap values (based on 1,000 replications) greater than 70 % based on neighbor-joining method is shown at the internodes. Circles indicate that the corresponding nodes were also recovered in the maximum-parsimony tree. Triangles indicate that the corresponding nodes were recovered in the maximum-likelihood tree. Phyllobacterium loti S658T was used as an outgroup. Bar, 0.01
substitutions per nucleotide position. The compact triangles represent species of the genus Methylobacterium, Saliniramus and Chelatococcus.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryData.docx