Superconducting states of a J_1-J_2-K model for iron pnictides

Rong Yu1 and Andriy H. Nevidomskyy2

1Department of Physics, Renmin University of China, Beijing 100872, China
2Department of Physics and Astronomy, Rice University, Houston, TX 77005

We study the symmetry and strength of the superconducting pairing in a two-orbital $t - J_1 - J_2 - K$ model for iron pnictides using the slave boson mean-field theory. We show that the nearest-neighbor biquadratic interaction $-K(\vec{S}_i \cdot \vec{S}_j)^2$ influences the superconducting pairing phase diagram by promoting the $d_{x^2-y^2}$ B_{1g} and the $s_{x^2+y^2}$ A_{1g} channels. The resulting phase diagram consists of several competing pairing channels, including an isotropic s_{\pm} A_{1g} channel, an anisotropic $d_{x^2-y^2}$ B_{1g} channel, and two $s + id$ pairing channels. We have investigated the evolution of superconducting states with electron doping, and find that with the biquadratic interaction various pairing channels may dominate at different doping concentrations. We show that this is crucial in understanding the doping evolution of superconducting gap anisotropy observed in some angle resolved photoemission spectrum measurements.

I. INTRODUCTION

In iron pnictides, the superconductivity Δ emerges near an antiferromagnetically ordered state Ω_0 in the phase diagram. This implies a strong interplay between the superconductivity and magnetism in these materials. It has been observed that the parent compounds of iron pnictides have a $(\pi, 0)$ antiferromagnetic order, which could arise either within a weak-coupling approximation invoking a Fermi surface nesting Δ or from a strong-coupling approach whose starting point is a local moment J. Strong-coupling approaches whose starting point is a local moment J have been observed that the parent compounds of iron pnictides

Δ = $\Delta_0 \cos(k_x) \cos(k_y)$

suggested a different pairing symmetry to its optimally doped counterpart. Experimentally, the issue is not settled, with thermal conductivity measurements interpreted as evidence for the d-wave symmetry of the order parameter, consistent with predictions of the functional renormalization group. Whereas the ARPES measurements are indicative of an extended s-wave state with accidental nodes. A recent ARPES study of heavily hole-doped Ba$_{0.1}$K$_{0.9}$Fe$_2$As$_2$ found nodes in the small c hole pockets off-centered around the M point at the edge of the Brillouin zone. Also in the underdoped NaFeAs and in the undoped LiFeAs, anisotropic but nodeless superconducting gaps along the Fermi pockets have been identified. All these results question the validity of isotropic s_{\pm} pairing in the underdoped and/or overdoped regimes.

In this paper, we study the superconducting states of a strong-coupling two-orbital $t - J_1 - J_2 - K$ model with electron doping using a slave-boson mean-field theory. By comparing to the results of a $t - J_1 - J_2$ model, we show that a moderate biquadratic coupling K changes the superconducting pairing phase diagram dramatically. It lowers the energy of both the $d_{x^2-y^2}$ B_{1g} and $s_{x^2+y^2}$ A_{1g} pairing channels, and thus favors an $s + id$ pairing. We are particularly interested in the doping evolution of superconductivity. Our results indicate that the bi-
quadratic interaction is a key ingredient in tuning the relative stability of various superconducting states as a function of doping. This is in dramatic difference to the case of absent biquadratic interaction \((K = 0)\), where the \(s_\pm\) pairing is found to be robust in the entire range of studied dopings. By contrast, a moderate biquadratic interaction leads to a serious change of the pairing symmetry, pairing strength, and gap anisotropy with doping, favouring \(s + id\) and even pure \(d\)-wave pairing in the heavily electron- and hole-doped regimes. We show that this is important in understanding the different pairing states observed in recent experiments.

The remainder of the paper is organized as follows. In Section II we introduce the two-orbital \(t - J_1 - J_2 - K\) model and describe the slave-boson mean-field theory for superconductivity used in this work. In Section III we show how the biquadratic coupling \(K\) affects the superconducting phase diagram. In Section IV we discuss how the superconducting states evolve with doping. Further discussion in connection with existing theories and experiments is included in Section V. Section VI contains a few concluding remarks.

II. MODEL AND METHODS

We consider a two-orbital \(t - J_1 - J_2 - K\) model on a two-dimensional (2D) square lattice. It can be obtained from a two-orbital Hubbard model via a perturbative expansion in the strong coupling limit\(^{22}\). The reason behind studying the two-orbital (as opposed to the full five-orbital) model is the universally accepted fact that the major contribution to the Fermi surface comes from the iron \(t_{2g}\) orbitals \((d_{xz}, d_{yz}, d_{xy})\), whereas the \(e_g\) orbital weight is very small\(^{22,52}\). Additionally, the \(d_{xz}\) and \(d_{yz}\) orbitals carry most of the spectral weight\(^{52}\) and the \(d_{xy}\) orbital can thus be neglected in the first approximation. It is true that in order to obtain all the Fermi pockets observed in ARPES, one needs to consider all 5 Fe orbitals\(^{52}\), and one of us has studied superconductivity in such a 5-orbital \(t - J_1 - J_2\) model\(^{53,54}\). However, inclusion of the biquadratic \(K\) term would be highly non-trivial for such a model and for reasons of transparency of the analysis, we chose to focus on the two-orbital model first, with the hope that our central results should remain valid upon inclusion of other orbitals. The detailed comparison with the model will be made in Section V. The two-orbital \(t - J_1 - J_2 - K\) Hamiltonian reads as follows:

\[
H = - \sum_{i<j,\alpha,\beta,s} t_{ij} \hat{c}_{i\alpha s}^\dagger \hat{c}_{j\beta s} + \text{h.c.} - \mu \sum_{i,\alpha} n_{i\alpha} + \sum_{\langle ij\rangle,\alpha,\beta} J_1^{\alpha\beta} \left(\hat{S}_{i\alpha} \cdot \hat{S}_{j\beta} - \frac{1}{4} n_{i\alpha} n_{j\beta} \right) + \sum_{\langle\langle ij\rangle\rangle,\alpha,\beta} J_2^{\alpha\beta} \left(\hat{S}_{i\alpha} \cdot \hat{S}_{j\beta} - \frac{1}{4} n_{i\alpha} n_{j\beta} \right) - \sum_{\langle ij\rangle} K \left[\left(\sum_{\alpha} \hat{S}_{i\alpha} \right) \cdot \left(\sum_{\beta} \hat{S}_{j\beta} \right) \right]^2,
\]

where \(\hat{c}_{i\alpha s}^\dagger\) creates an electron at site \(i\), with orbital index \(\alpha\) and spin projection \(s\); \(\mu\) is the chemical potential and \(t_{ij}\) the hopping matrix. The orbital index \(\alpha = 1, 2\) correspond to the iron \(3d_{xz}\) and \(3d_{yz}\) orbitals, respectively. The nearest-neighbor (n.n., \(\langle ij\rangle\)) and next-nearest-neighbor (n.n.n., \(\langle\langle ij\rangle\rangle\)) exchange interactions are respectively denoted by \(J_1^{\alpha\beta}\) and \(J_2^{\alpha\beta}\). \(K\) is the coupling for the n.n. biquadratic interaction. The spin operator \(\hat{S}_{i\alpha} = \frac{1}{2} \sum_{s,s'} c_{i\alpha s}^\dagger \sigma_{ss'} c_{i\alpha s'}\) and the density operator \(n_{i\alpha} = \sum_{s} c_{i\alpha s}^\dagger c_{i\alpha s}\), with \(\sigma\) representing the Pauli matrices. For the hole-doped case, the constraint prohibiting the double-occupancy of the fermion is

\[
\sum_{s} c_{i\alpha s}^\dagger c_{i\alpha s} \leq 1. \tag{2}
\]

For the electron-doped case, we first apply a particle-hole transformation to the \(c\)-fermions, then enforce the above double-occupancy constraint. The constraint in Eq. 2 can be treated in the standard way by a slave-boson mean-field theory\(^{35}\). We introduce a slave boson operator \(b_{i\alpha}\) and a fermionic spinon operator \(f_{i\alpha s}\) in each site and for each orbital, and rewrite the electron operator as \(c_{i\alpha s} = b_{i\alpha}^\dagger f_{i\alpha s}\). The spin operator is rewritten to \(\hat{S}_{i\alpha} = \frac{1}{2} \sum_{s,s'} f_{i\alpha s}^\dagger \sigma_{ss'} f_{i\alpha s'}\). In the slave-boson representation, the constraint in Eq. 2 becomes:

\[
b_{i\alpha} b_{i\alpha} + \sum_{s} f_{i\alpha s}^\dagger f_{i\alpha s} = 1. \tag{3}
\]

In the slave-boson mean-field approach, we introduce a Lagrange multiplier \(\lambda\) to impose the constraint on averaged\(^{35}\), and perform a mean-field decomposition between the slave boson and the fermionic spinon operators. We further assume that the slave bosons are Bose condensed with \(\langle b_{i\alpha}^\dagger b_{i\alpha} \rangle = \langle b_{i\alpha} \rangle = \sqrt{x/2}\), where \(x = \sum_{s} \langle n_{i\alpha} \rangle - 2\), is the doping concentration (with \(x < 0\) for hole doping and \(x > 0\) for electron doping). Here we into account the fact that in the parent compound, the \(d_{xz}\) and \(d_{yz}\) orbitals are half-filled, with \(n_{xz} + n_{yz} = 2\).

With these simplifications, we obtain the following ef-
effective Hamiltonian for the spinons:

\[H_{\text{eff}} = -\sum_{i<\alpha, \beta, s} \tilde{t}^{\alpha\beta}_{ij} f_{i\alpha s}^\dagger f_{j\beta s} + \text{h.c.} \]

\[-\mu \sum_{i, \alpha} \left[\sum_{s} f_{i\alpha s}^\dagger f_{i\alpha s} - \frac{1 - x}{2} \right] \]

\[+ \sum_{\langle ij \rangle, \alpha, \beta} J^{\alpha\beta}_{1} \left(\vec{S}_{\alpha i} \cdot \vec{S}_{\beta j} - \frac{1}{4} n_{i\alpha} n_{j\beta} \right) \]

\[+ \sum_{\langle ij \rangle} J^{\alpha\beta}_{2} \left(\vec{S}_{\alpha i} \cdot \vec{S}_{\beta j} - \frac{1}{4} n_{i\alpha} n_{j\beta} \right) \]

\[- \sum_{\langle ij \rangle} K \left[\left(\sum_{\alpha} \vec{S}_{\alpha i} \right) \cdot \left(\sum_{\beta} \vec{S}_{\beta j} \right) \right]^2, \]

where \(\tilde{t}^{\alpha\beta}_{ij} = \tilde{t}^{\alpha\beta}_{ji} \) and \(\tilde{\mu} = \mu - \lambda \). In Eq. 4, the constraint is taken implicitly by renormalizing the hopping matrix with the hole doping concentration. In the following, we work with this effective Hamiltonian, and consider the superconductivity via a BCS mean-field theory. We define the spin singlet \(\langle S_{\alpha i\beta j} \rangle \) and triplet \(\langle T^{m}_{\alpha i\beta j} \rangle \), for iron pnictides, experiments suggest that the dominant superconducting pairing is in the spin singlet channel. Hence we project the exchange interactions onto the spin singlet sector. We thus obtain

\[S_{\alpha i\beta j} = f_{i\alpha j\beta} - i f_{i\beta j\alpha} \]

\[T^{0}_{\alpha i\beta j} = f_{i\alpha j\beta} + i f_{i\beta j\alpha} \]

\[T^{1}_{\alpha i\beta j} = f_{i\alpha j\beta} + f_{i\beta j\alpha} \]

We then rewrite the exchange interactions in Eq. 4 in terms of \(S_{\alpha i\beta j} \) and \(T^{m}_{\alpha i\beta j} \). For iron pnictides, experiments suggest that the dominant superconducting pairing is in the spin singlet channel. Hence we project the exchange interactions onto the spin singlet sector. We thus obtain

\[\left[\left(\sum_{\alpha} \vec{S}_{\alpha i} \right) \cdot \left(\sum_{\beta} \vec{S}_{\beta j} \right) \right]^2 = \frac{9}{32} \sum_{\alpha, \beta} S^{\dagger}_{\alpha i\beta j} S_{\alpha i\beta j} \]

\[+ \frac{9}{64} \sum_{\alpha, \beta, \alpha', \beta'} S^{\dagger}_{\alpha i\beta j} S^{\dagger}_{\alpha' i\beta' j} S_{\alpha i\beta j} S_{\alpha' i\beta' j}. \]

In the BCS mean-field theory, the superconductivity corresponds to the Bose condensation of the singlet \(S_{\alpha i\beta j} \), with the pairing function \(\Delta_{\alpha i\beta} = \langle S_{\alpha i\beta j} \rangle = \langle S^{\dagger}_{\alpha i\beta j} \rangle \), where \(i = j \). We make a further simplification by considering only intra-orbital pairing, namely, \(\Delta_{\alpha i\beta} = \Delta_{\alpha i} \delta_{\alpha i} \). Including the inter-orbital pairing only changes the results quantitatively. After some algebra, we find the mean-field Hamiltonian in the momentum space:

\[H_{\text{mf}} = \sum_{k} \psi_{k}^\dagger \left(\begin{pmatrix} \xi_{k} - \tilde{\mu} & 1 \\ V_{k} & -i \xi_{k} \end{pmatrix} \right) \psi_{k} + \text{NHC}, \]

where \(N \) is the total number of iron sites in the system, and we denote \(\psi_{k} = (f_{k1\uparrow}, f_{k2\uparrow}, f_{k1\downarrow}^\dagger, f_{k2\downarrow}^\dagger) \),

\[\xi_{k}^{\alpha\beta} = -\sum_{\frac{1}{2}} \tilde{t}^{\alpha\beta}_{k} \cos(k \cdot \hat{e}). \]

and

\[V^{\alpha\beta}_{k} = V_{k\alpha} \delta_{\alpha\beta} \]

\[V_{k\alpha} = -\left(J_{1} + \frac{9}{16} K \right) \sum_{i} \Delta_{\alpha i} \cos(k \cdot \hat{e}) \]

\[- J_{2} \sum_{i} \Delta_{\alpha i} \cos(k \cdot \hat{e}) \]

\[\frac{9}{16} K \sum_{i} \left| \sum_{\alpha} \Delta_{\alpha i} \right|^{2} \Delta_{\alpha i} \cos(k \cdot \hat{e}). \]

The constant term depends on the pairing functions \(\Delta_{\alpha i} \) as follows:

\[H_{C} = \left(\frac{J_{1}}{2} + \frac{9}{32} K \right) \sum_{\alpha, \beta, \gamma, \delta} \left| \Delta_{\alpha i} \right|^{2} + \frac{J_{2}}{2} \sum_{\alpha, \beta, \gamma, \delta} \left| \Delta_{\alpha i} \right|^{2} \]

\[\frac{27}{64} K \sum_{\alpha, \beta, \gamma, \delta} \left| \Delta_{\alpha i} \right|^{2} + \frac{1}{N} \sum_{k} \epsilon^{\alpha\beta}_{k} - \tilde{\mu} x. \]

The pairing functions \(\Delta_{\alpha i} \) can be determined by minimizing the free energy associated with the mean-field Hamiltonian in Eq. 10. In the two-orbital model, they can be combined as follows according to the way they transform under the \(D_{4h} \) group symmetry operations:

\[s_{x^{2} + y^{2}}^{A_{1g}} = (\Delta_{x^{2} + y^{2}} \Delta_{x^{2} + y^{2}}) \]

\[s_{x^{2} + y^{2}}^{B_{1u}} = (\Delta_{x^{2} + y^{2}} \Delta_{x^{2} + y^{2}}) \]

\[d_{x^{2} - y^{2}}^{B_{2g}} = (\Delta_{x^{2} - y^{2}} \Delta_{x^{2} - y^{2}}) \]

\[d_{x^{2} - y^{2}}^{B_{2g}} = (\Delta_{x^{2} - y^{2}} \Delta_{x^{2} - y^{2}}) \]

\[s_{2x^{2} + y^{2}}^{A_{1g}} = (\Delta_{x^{2} + y^{2}} \Delta_{x^{2} + y^{2}}) \]

\[s_{2x^{2} + y^{2}}^{B_{1u}} = (\Delta_{x^{2} + y^{2}} \Delta_{x^{2} + y^{2}}) \]

\[d_{x^{2} - y^{2}}^{B_{2g}} = (\Delta_{x^{2} - y^{2}} \Delta_{x^{2} - y^{2}}) \]

\[d_{x^{2} - y^{2}}^{B_{2g}} = (\Delta_{x^{2} - y^{2}} \Delta_{x^{2} - y^{2}}) \]

Each of the above eight pairing channels contains an amplitude and a phase.

III. MEAN-FIELD PHASE DIAGRAM

For the fermiology, we take the two-orbital tight-binding model in Ref. 57. As shown in Fig. 1 within a certain range of electron doping, the Fermi surface contains two hole pockets (\(\alpha_{1} \) and \(\alpha_{2} \)) and two electron pockets (\(\beta_{1} \) and \(\beta_{2} \)). But the bandstructure is highly asymmetric about half-filling (\(x = 0 \)), and for large hole
doping concentration $x \lesssim -0.25$, the Fermi surface contains only hole pockets. This allows us to study the effects of heavy hole doping.

Figure 2 compares the superconducting phase diagrams for the $t - J_1 - J_2$ (with $K = 0$) and $t - J_1 - J_2 - K$ models at doping concentrations $x = \pm 0.16$. The corresponding pairing amplitudes at $J_2/D = 0.05$ are shown in Fig. 2. Here we have scaled the exchange coupling by the renormalized bandwidth of spinons, D. In the $t - J_1 - J_2$ model [Fig. 2(a) and (c)], for both the hole and electron doping, the phase diagram contains four phases with different dominant pairing symmetries. As clearly shown in Fig. 2 when $J_2 \gg J_1$, the pairing symmetry is A_{1g}, and the leading pairing channel is $s_{x^2-y^2}$. The pairing function changes sign between the hole and electron pockets, and is thus denoted as s_{\pm}. With increasing J_1, the $d_{x^2-y^2}^{\pm}$ channel emerges and coexists with $s_{x^2-y^2}^{A_{1g}}$ (see Fig. 3). At zero temperature, the phase difference of these two pairing functions is fixed to be $\pi/2$, and this leads to a $s_{x^2-y^2}^{A_{1g}} + id_{x^2-y^2}^{B_{1g}}$ (denoted as $s_{\pm} + id$) which breaks the time reversal symmetry. Furthermore increasing J_1, the pairing amplitudes of the A_{1g} channels vanish, and there is a regime where the pairing symmetry is pure B_{1g}, with the dominant pairing to be $d_{x^2-y^2}$. The A_{1g} symmetry reappears at a higher J_1 value, but the dominant pairing channel becomes $s_{x^2+y^2}$. The phases between the A_{1g} and B_{1g} are again locked, resulting in an $s_{x^2+y^2}^{A_{1g}} + id_{x^2-y^2}^{B_{1g}}$ pairing (denoted as $s_{\pm} + id$). The phase boundaries are sensitive to the bandstructure. We see from Fig. 2 that the $d_{x^2-y^2}$ phase is narrower for the electron doping than for the hole doping. This phase is completely suppressed when the doping concentration changes from $x = 0.16$ to $x = 0.14$. (See Supplementary Figure 3 of Ref. 33) We discuss the doping effects in more detail in Section IV.

Having established the phase diagram of the $t - J_1 - J_2$ model, we now discuss the effects of the biquadratic coupling K. By comparing the phase diagrams in Fig. 2, we see that when a moderate K is turned on, despite the pairing symmetries remaining the same as in the $t - J_1 - J_2$ model, the phase boundaries change a lot. To understand this, note that there are two terms in Eq. 9. The first term is bilinear in $s_{A_{1g}}$, which can be absorbed into the J_1 term. The second term gives nonlinear couplings between the gap functions. If the exchange couplings J_1, J_2, and K are small compared to the renormalized bandwidth of the spinons, D, then $\Delta_{A_{1g}}$ is small. As a result, the main effect of the biquadratic term is to renormalize the n.n. exchange coupling J_1 by promoting both the $d_{x^2-y^2}^{B_{1g}}$ and the $s_{x^2+y^2}^{A_{1g}}$ pairing channels, as illustrated in Fig. 3. This is the main reason for the change of the phase boundaries. The nonlinearity effect of the gap function appears at sufficiently strong exchange couplings, where several pairing channels become quasi-degenerate. Note that the degeneracy of the pairing channels at infinitely strong J_1 (or J_2) couplings are associated with gauge symmetries in the exchange interactions, which are still preserved in presence of the biquadratic coupling. Hence the nonlinearity effects associated with the finite K term will not lead to a strong change of the phase boundaries in the moderate coupling regime, however they may affect the values of pairing amplitudes in each channel.

Superconductivity opens up a gap in the BCS quasiparticle spectrum. In a single-band model, the momentum distribution of this gap directly reflects the superconducting pairing symmetry. In the two-orbital model, we must transform the pairing function $V_{\alpha\gamma}$ into the band basis: $\tilde{V}_{k\gamma} = \sum_{\alpha} |V_{\alpha\gamma}|V_{\alpha\alpha}$, where the matrix U diagonalizes $\xi_{k\delta}$. The k dependence of $\tilde{V}_{k\gamma}$ along the hole (α) and electron (β) pockets in the s_{\pm} and $d_{x^2-y^2}$ phases are shown in Fig. 4, respectively. In the s_{\pm} phase, the dominant pairing is $s_{x^2+y^2}^{A_{1g}}$. The pairing function is nodeless on both electron and hole pockets, but has different signs along these two pockets. We see from Fig. 4(a) that $\tilde{V}_{k\gamma}$ is isotropic along both the electron and hole pockets, and this leads to an isotropic gap. On the other hand, in the $d_{x^2-y^2}$ phase, where the dominant pairing is $d_{x^2-y^2}^{B_{1g}}$, the pairing function has nodes along the hole pockets at $\theta = \pm \pi/4$ (corresponds to $k_x = \pm k_y$). As a result, the gap is highly anisotropic along the hole pockets. Interestingly, in the two $s + id$ phases, we find that the gap can be still anisotropic, but is nodeless. In these phases, nodes appear in either the real or imaginary part of $\tilde{V}_{k\gamma}$ (see Fig. 5). But due to the different pairing symmetry, the nodes in $\text{Re}(\tilde{V}_{k\gamma})$ and $\text{Im}(\tilde{V}_{k\gamma})$ necessarily locate at different momenta. The quasiparticle gap is proportional to $\sqrt{|\text{Re}(\tilde{V}_{k\gamma})|^2 + |\text{Im}(\tilde{V}_{k\gamma})|^2}$, and is always nodeless.

FIG. 1. (Color online) (a): bandstructure of the two-orbital tight-binding model of Ref. 54. The dashed lines show the chemical potentials at several electron dopings: $x = -0.32$, $x = -0.16$, $x = 0.16$, from bottom to top. (b) and (c): Fermi surface in the 1-Fe Brilluion zone at $x = -0.16$ [in (b)] and $x = 0.16$ [in (c)]. In each case, the Fermi surface contains two electron pockets (β_1 and β_2) and two hole pockets (α_1 and α_2). θ is defined as the winding angle along each Fermi pocket.
IV. EVOLUTION OF SUPERCONDUCTING STATES WITH DOPING

In the previous section, we have discussed the superconducting phase diagram of the $t-J_1-J_2-K$ model at fixed hole or electron doping. We find that several phases with different pairing symmetries can be stabilized depending on the interactions. An important question with more experimental relevance is that of the pairing symmetry for realistic model parameters, and its doping dependence. In this section we investigate the evolution of superconducting states with doping. In the $t-J_1-J_2-K$ model, the doping concentration x renormalizes the electron bandwidth, $\tilde{t} = \frac{x^2}{t_0}$. To make a fair comparison at different doping concentrations, For BaFe$_2$As$_2$, the couplings are estimated to be $J_1 \approx J_2 \approx 20$ meV, and the bare bandwidth projected to the $d_{xz,yz}$ orbitals from DFT calculations is about 3 eV. From these values, we find $J_1/D = J_2/D \approx 0.08$ at optimal (electron/hole) doping $x = \pm 0.16$. To study the influence of the biquadratic interaction, we compare the results at three different values of K: $K/J_2 = 0$, $K/J_2 = 0.4$, and $K/J_2 = 0.8$. In each case, the dependence of the pairing amplitudes with doping for the dominant pairing channels is shown in Fig. 4. The overall pairing amplitudes are maximal at half-filling, which is understood because we only consider the superconducting pairing, but have ignored the magnetic order in the model. When $|x|$ is decreased toward half-filling, it is expected that the superconductivity is suppressed, and the ground state is eventually antiferromagnetic, as is found experimentally. Hence our results are more pertinent to the optimally and over-doped regimes ($|x| \gtrsim 0.1$).

The pairing amplitudes are strongly suppressed by heavy electron/hole doping. Given that the pairing amplitudes are proportional to the superconducting transition temperature T_c, this result is consistent with the very low superconducting $T_c \sim 3$ K for the heavily doped compound KFe$_2$As$_2$.

From Fig. 4 we see that the biquadratic interaction may strongly affect the pairing symmetry. For $K = 0$, the pairing symmetry is A_{1g} for almost the entire doping regime studied. At any doping concentration, the dominant pairing channel is s_\pm. This picture changes at a
FIG. 3. (Color online) Pairing amplitudes (P.A.) of the dominant pairing channels at \(J_2/D = 0.05 \) for \(x = -0.16 \) [in (a),(b)] and \(x = 0.16 \) [in (c),(d)] without \([K/D = 0, \text{ in (a),(c)}] \) and with \([K/D = 0.08, \text{ in (b),(d)}] \) the biquadratic interaction.

moderate biquadratic coupling \(K/J_2 = 0.4 \). Depending on doping, the pairing symmetry is either a pure \(A_{1g} \), or a pure \(B_{1g} \), or a \(A_{1g} + iB_{1g} \). Very interestingly, we find that the dominant pairing is:

(i) \(s_{x^2+y^2} + id \) for \(|x| \lesssim 0.1 \),
(ii) \(s_{\pm} \) near optimal doping \((0.1 \lesssim |x| \lesssim 0.2) \), and
(iii) \(d_{x^2-y^2}^{B_{1g}} \) in the overdoped regime \((|x| \gtrsim 0.2) \).

Such a doping evolution of the pairing symmetry and amplitudes also leads to the change of superconducting gap anisotropy with doping. From the discussion in Sec. [I] we see that the gap is anisotropic when the \(d_{x^2-y^2}^{B_{1g}} \) is dominant. Hence our results suggest a change of pairing from the isotropic \(s_{\pm} \) in the optimally doped regime to the anisotropic \(d_{x^2-y^2} \) in the overdoped regime.

V. DISCUSSIONS

As mentioned in Section [I] besides the degenerate \(d_{xz} \) and \(d_{yz} \) orbitals, the other three Fe 3d orbitals also contribute to the low-energy bandstructure. Therefore generally speaking, a five-orbital model is more appropriate when describing the electronic properties of these materials. For superconducting pairing, several calculations based on five-orbital models have been done.\(^4\,32,\,37,\,39,\,54\)

To see how accurate is the superconducting phase diagram we obtained in Sec. [I] for the two-orbital model, we compare our results with the strong-coupling phase diagram of a five-orbital \(t - J_1 - J_2 \) model in Ref. [37]. We see that the pairing phase diagrams of the two- and five-orbital models are quite similar. This suggests that the simplified two-orbital model already captures the correct pairing symmetry and the dominant pairing channel in each phase, as alluded to earlier in Section [I]. It is a natural result of the strong-coupling theory: the dominant pairing symmetry is determined by \(J_{1(2)}/D \) and \(K/D \), and the details of the Fermi surface structure are secondary. Nonetheless, the orbital character along the Fermi surface is important to the anisotropy of the superconducting gap, especially when the superconducting pairing has a strong orbital selectivity.\(^5\) In this case, the inclusion of other Fe 3d orbitals (such as the \(d_{xy} \) orbital) may be crucial and will be the subject of future work.

In Sec. [I] we have shown that the dominant pairing symmetries at different dopings are sensitive to the biquadratic coupling \(K \). Without the biquadratic coupling, the dominant pairing is \(s_{\pm} \) at any doping. With a moderate \(K \), the \(s_{\pm} \) pairing is dominant only near optimal doping. For overdoped and underdoped regimes, the dominant pairing channels are respectively \(d_{x^2-y^2} \)
and \((s_{x^2+y^2} + id_{x^2-y^2})\). The change of pairing symmetry
with doping is a consequence of the band renormalization.
With increasing \(|x|\), the renormalized bandwidth \(D\)
increases, and \(J_{1(2)}/D\) and \(K/D\) reduces. The variation
of \(J_{1(2)}/D\) and \(K/D\) accounts for both the change of the
pairing symmetry and the dominant pairing amplitude,
as we have already seen in Figs. 2 and 3. Note that our
theory on the doping evolution of superconducting pairing
is very different from the weak-coupling theories, in
which the doping evolution reflects the interplay between
the intra- and inter-pocket electron interactions.\(^{42,43}\)

VI. CONCLUSIONS

In conclusion, we have studied the effect of the bi-
quadratic spin-spin interaction \(-K(\vec{S}_i \cdot \vec{S}_j)^2\)
on the superconducting states of the iron pnic
tides via a two-orbital \(t-J_1-J_2-K\) model within the slave-boson mean-field
theory. Unlike the \(t-J_1-J_2\) model, where the domi-
nant pairing channel at any doping concentration is al-
ways \(s_{\pm}\) for realistic \(J_1/J_2\) ratios, we find that a moder-
ate biquadratic interaction \(K\) favors both the \(d_{x^2-y^2}^{B1}\) and
\(s_{x^2+y^2}^{A1}\) pairing channels in the \(t-J_1-J_2-K\) model, result-
ing in a serious change of pairing symmetry with doping.
Though the dominant pairing is still the isotropic \(s_{\pm}\) (re-
ferred to as \(s_{x^2+y^2}\)) near the optimal doping, it changes to
\(d_{x^2-y^2}^{B1}\) in the overdoped regime and to \(s_{x^2+y^2}^{A1} + id_{x^2-y^2}^{B1}\)
in the underdoped regime, and in both cases the gap can
be anisotropic, as Figs. 4 and 5 illustrate.

Our results are in qualitative agreement with the
gap anisotropy observed in recent ARPES measure-
ments for several iron-based superconductors, including
\(\text{NaFeAs}, \text{LiFeAs}\)^{42,44} and the heavily hole-doped
\(\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2\)^{47,48}. Theoretically, the interplay be-
tween \(s\)-wave and \(d\)-wave pairing channels has been pre-
viously studied, however to stabilize the \(d\)-wave state, one
had to rely on varying the applied pressure,\(^{49}\) the puc
togen height\(^{50}\), the \(p-d\) orbital hybridization\(^{50}\), or the
strength of \(\text{Néel fluctuations}\)^{51}. In this study, we show
that the \(d\)-wave state is naturally stabilized in the over-
doped regime, without any additional fine-tuning and
for realistic values of the biquadratic interaction \(K\) in-
ferred\(^{52}\) from fitting the inelastic neutron spectra to the

FIG. 4. (Color online) Angle dependence of pairing function
in the band basis, \(V_{\alpha \beta}\), along the hole (\(\alpha 1\)) and electron (\(\beta 1\))
Fermi pockets at \(x = -0.16, K/D = 0.08\), and \(J_2/D = 0.05\).
(a): \(J_1/D = 0.008\), in the \(s_{\pm}\) phase; (b): \(J_1/D = 0.08\), in the
d\(_{x^2-y^2}\) phase.

FIG. 5. (Color online) Angle dependence of the real [in (a)]
and imaginary [in (b)] parts of \(V_{\alpha \beta}\), along the hole (\(\alpha 1\)) and
electron (\(\beta 1\)) Fermi pockets in the \(s_{\pm} + id\) phase where
\(x = -0.16, K/D = 0.08, J_1/D = 0.05, \) and \(J_2/D = 0.05\).
FIG. 6. (Color online) Doping evolution of the dominant pair pairing amplitudes (P.A.) for fixed $J_1 = J_2$ and various K/J_2 values. See text for the choice of J_1, J_2, and K values.

t$−J_1−J_2−K$ model.

One of the outstanding questions is the effect of electron nematicity on the pairing symmetry and resulting anisotropy of the superconducting order parameter. Recent theoretical work indicates that non-time-reversal symmetry breaking $s_+ + d_{x^2−y^2}$ pairing can be realized due to coupling to the nematic order parameter62,63. Study of this effect in the framework of the strong-coupling $t−J_1−J_2−K$ model will be the subject of future work, potentially relevant to superconductivity in the thin FeSe films65 and in the stoichiometric single-crystalline FeSe65.

ACKNOWLEDGMENTS

We thank Q. Si, S.-C. Wang for useful discussions. This work was supported by the National Science Foundation of China Grant number 11374361 (R.Y.), and the Welch Foundation grant C-1818 (A.N.)

1 Y. Kamihara et al, J. Am. Chem. Soc. 130, 3296 (2008).
2 Z. A. Ren et al, Chin. Phys. Lett. 25, 2215 (2008).
3 C. de la Cruz et al., Nature 453, 899 (2008).
4 S. Graser et al, New J. Phys. 11, 025016 (2009).
5 Y. Ran et al, Phys. Rev. B 79, 014505 (2009).
6 J. Knolle et al, Phys. Rev. B 81, 140506(R) (2010).
7 Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008).
8 T. Yildirim, Phys. Rev. Lett. 101, 057010 (2008).
9 F. Ma, Z-Y Lu, and T. Xiang, Phys. Rev. B 78, 224517 (2008).
10 C. Fang et al, Phys. Rev. B 77, 224509 (2008).
11 C. Xu, M. Muller, and S. Sachdev, Phys. Rev. B 78, 020501(R) (2008).
12 Q. Si, E. Abrahams, J. Dai, and J.-X. Zhu, New J. Phys. 11, 045001 (2009).
13 J. Dai et al, Proc. Natl. Acad. Sci. 106, 4118 (2009).
14 G. S. Uhrig et al., Phys. Rev. B 79, 092416 (2009).
15 J. Zhao et al., Nat. Phys. 5, 555 (2009).
16 S. O. Diallo et al, Phys. Rev. B 81, 214407 (2010).
17 L. W. Harriger et al., Phys. Rev. B 84, 054544 (2011).
18 R. A. Ewings et al., Phys. Rev. B 83, 214519 (2011).
19 A. L. Wysocki, K. D. Belashchenko, and V. P. Antropov, Nat. Phys. 7, 485 (2011).
20 D. Stanek, O. P. Sushkov, and G. S. Uhrig, Phys. Rev. B 84, 064505 (2011).
21 R. Yu, Z. Wang, P. Goswami, A. H. Nevidomskyy, Q. Si, and E. Abrahams, Phys. Rev. B 86, 085148 (2012).
22 P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, World Scientific, Singapore, 1999, Chap. 5.
23 H. Ding et al, Europhys. Lett. 83, 47001 (2008).
24 T. Kondo et al, Phys. Rev. Lett. 101, 147003 (2008).
25 Z.-H. Liu et al, Phys. Rev. B 84, 064519 (2011).
26 Y.-M. Xu et al, Nat. Phys. 7, 198 (2011).
27 P. Rechar, T. Sato, K. Nakayama, T. Takahashi, and H. Ding, Rep. Prog. Phys. 74, 124512 (2011).
28 A. D. Christianson et al, Nature 456, 930-932 (2008).
29 C. L. Zhang et al, Sci. Rep. 1, 115 (2011).
30 M. D. Lumsden, et al, Phys. Rev. Lett. 102, 107005 (2009).
31 S. Chi et al Phys. Rev. Lett. 102, 107006 (2009).
32 K. Kuroki et al, Phys. Rev. Lett. 101, 087004 (2008).
33 I. I. Mazin et al, Phys. Rev. Lett. 101, 057003 (2008).
34 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, Phys. Rev. Lett. 102, 047005 (2009).
35 K. Seo et al, Phys. Rev. Lett. 101, 206404 (2008).
36 W.-Q. Chen, K.-Y. Yang, Y. Zhou, and F.-C. Zhang, Phys. Rev. Lett. 102, 047006 (2009).
37 P. Goswami et al, EuroPhys Lett. 91, 37006 (2010).
38 A. Nicholson et al., Phys. Rev. Lett. 106, 217002 (2011).
39 R. Yu, P. Goswami, Q. Si, P. Nikolic, and J.-X. Zhu, Nat. Commun. 4, 2783 (2013)
40 J. K. Dong et al., Phys. Rev. Lett. 104, 087005 (2010).
41 K. Hashimoto et al., Phys. Rev. B 82, 014526 (2010).
42 S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Phys. Rev. Lett. 107, 147002 (2011).
43 A. V. Chubukov, Ann. Rev. Cond. Matter Phys. 3, 57-92 (2012). See also arXiv:1110.0052
44 S. Maiti, M. M. Korshunov, and A. V. Chubukov, Phys. Rev. B 85, 014511 (2012).
45 R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Phys. Rev. Lett. 107, 117001 (2011).
46 J.-Ph. Reid et al, Phys. Rev. Lett. 109, 087001 (2012); J.-Ph. Reid et al, Supercond. Sci. Technol. 25, 084013 (2012).
47 K. Okazaki et al, Science 337, 1314 (2012).
48 N. Xu et al, Phys. Rev. B 88, 220508(R) (2013).
49 Q. Ge et al, Phys. Rev. X 3, 011020 (2013).
50 K. Umezawa et al, Phys. Rev. Lett. 108, 037002 (2012).
51 M. P. Allan et al, Science 336, 563 (2012).
52 S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New J. Phys. 11, 025016 (2009).
53 M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B 81, 014511 (2010).
54 R. Yu, J.-X. Zhu, and Q. Si, Phys. Rev. B 89, 024509 (2014).
55 G. Kotliar, Phys. Rev. B 37, 3664-3666 (1988).
56 Here we have assumed translational symmetry and used the fact that the two orbitals are degenerate.
57 S. Raghu, X.-L. Qi, C.-X. Liu, D. Scalapino, and S.-C. Zhang, Phys. Rev. B 77, 220503 (2008).
58 T. Das and A. V. Balatsky, New J. Phys. 15, 093045 (2013).
59 C. Platt, R. Thomale, C. Honerkamp, S.-C. Zhang, and W. Hanke, Phys. Rev. B 85, 180502(R) (2012).
60 M. Khodas and A. V. Chubukov, Phys. Rev. Lett. 108, 247003 (2012).
61 R. M. Fernandes and A. J. Millis, Phys. Rev. Lett. 110, 117004 (2013).
62 G. Livanas, A. Aperis, P. Kotetes, and G. Varelogiannis, arXiv:1208.2881v3 (unpublished).
63 R. M. Fernandes and A. J. Millis, Phys. Rev. Lett. 111, 127001 (2013).
64 C.-L. Song et al, Science 332, 1410 (2011).
65 A. E. Böhnert et al, Phys. Rev. B 87, 180505(R) (2013).