A geometrically and physically nonlinear model of a membrane cylindrical shell, which has been built and tested, describes the behavior of a airbag made of fabric material. Based on the geometrically accurate relations of "strain-displacement", it has been shown that the equilibrium equations of the shell, written in terms of Biot stresses, together with boundary conditions acquire a natural physical meaning and are the consequences of the principle of virtual work. The physical properties of the shell were described by Fung's hyper-elastic biological material because its behavior is similar to that of textiles. For comparison, simpler hyper-elastic non-compressible Varga and Neo-Hookean materials, the zero-, first-, and second-order materials were also considered. The shell was loaded with internal pressure and convergence of edges. The approximate solution was constructed by an spectral method; the exponential convergence and high accuracy of the equilibrium equations inherent in this method have been demonstrated. Since the error does not exceed 1 % when keeping ten terms in the approximations of displacement functions, the solution can be considered almost accurate. Similar calculations were performed using a finite element method implemented in ANSYS WB in order to verify the results. Differences in determining the displacements have been shown to not exceed 0.2 %, stresses – 4 %. The study result has established that the use of Fung, Varga, Neo-Hookean materials, as well as a zero-order material, lead to similar values of displacements of shells from the materials of the first and second orders significantly differ. This finding makes it possible, instead of the Fung material whose setting requires a significant amount of experimental data, to use simpler ones – a zero-order material and the Varga material.

Keywords: axisymmetric cylindrical shell, geometric nonlinearity, physical nonlinearity, spectral method.

References

1. Esgar, J. B., Morgan, W. C. (1960). Analytical Study of Soft Landings on Gas-filled Bags. NASA TR R-75. U.S. Government Printing Office, 30. Available at: https://books.google.com.ua/books/about/Analytical_Study_of_Soft_Landings_on_Gas.html?id=k28A2znrGCQc&redir_esc=y
2. Alizadeh, M., Sedaghat, A., Kargar, E. (2014). Shape and Orifice Optimization of Airbag Systems for UAV Parachute Landing. International Journal of Aeronautical and Space Sciences, 15 (3), 335–343. doi: https://doi.org/10.5139/ijass.2014.15.3.335
3. Zhou, X., Zhou, S. M., Li, D. K. (2019). Optimal Design of Airbag Landing System without Rebound. IOP Conference Series: Materials Science and Engineering, 531, 012001. doi: https://doi.org/10.1088/1757-899x/531/1/012001
4. Pipkin, A. C. (1968). Integration of an equation in membrane theory. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 19 (5), 818–819. doi: https://doi.org/10.1007/bf01501012
5. Pamela, D. C., Gonzalves, P. B., Lopes, S. R. X. (2006). Finite deformations of cylindrical membrane under internal pressure. International Journal of Mechanical Sciences, 48 (6), 683–696. doi: https://doi.org/10.1016/j.ijmecsci.2005.12.007
6. Wang, H., Hong, H., Hao, G., Deng, H., Rui, Q., Li, J. (2014). Characteristic verification and parameter optimization of airbags cushion system for airborne vehicle. Chinese Journal of Mechanical Engineering, 27 (1), 50–57. doi: https://doi.org/10.1007/s11511-014-0960-z
7. Zhou, M., Di, C., Yang, Y. (2017). Simulation of Cushion Characteristic of Airbags Based on Corpuscular Particle Method. Proceedings of the 7th 2012 International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2017). doi: https://doi.org/10.1007/978-1-4842-2859-7_34
8. Li, Y., Xiao, S., Yang, B., Zhu, T., Yang, G., Xiao, S. (2018). Study on the influence factors of impact ejection performance for flexible airbag. Advances in Mechanical Engineering, 10 (10). 10.1177/168761801880733
9. Haddow, J. B., Favre, L. Ogden, R. W. (2000). Application of variational principles to the axial extension of a circular cylindrical non-linearly elastic membrane. Journal of Engineering Mathematics, 37, 65–84. doi: https://doi.org/10.1023/A:1004706622104
10. Chen, Y., Lloyd, D. W., Harlock, S. C. (1995). Mechanical Characteristics of Coated Fabrics. Journal of the Textile Institute, 86 (4), 690–700. doi: https://doi.org/10.1080/045063995098659045
11. Yang, B., Yu, Z., Zhang, Q., Shang, Y., Yan, Y. (2020). The nonlinear orthotropic material model describing biaxial tensile behavior of PVC coated fabrics. Composite Structures, 236, 111850. doi: https://doi.org/10.1016/j.compositesscience.2019.111850
12. Farbodmanesh, S., Chen, J., Tao, Z., Mead, J., Zhang, H. (2019). Base fabrics and their interaction in coated fabrics. Smart Textile Coatings and Laminates, 47–95. doi: https://doi.org/10.1016/j.stcl.2019.05.003
13. Hegyi, D., Halász, M., Molnár, K., Szébenyi, G., Sipos, A. A. (2017). An elastic phenomenological material law for textile composites and it’s fitting to experimental data. Journal of Reinforced Plastics and Composites, 36 (18), 1343–1354. doi: https://doi.org/10.1177/0731684417705396
14. Wang, C., Cao, X., Shen, H. (2021). Experimental and Numerical Investigation of PAN6 Fabrics Coated/Uncoated PVC by Biaxial Tensile Tests. Fibers and Polymers, 22 (8), 2194–2205. doi: https://doi.org/10.1007/s12221-021-0122-y
15. Fung, Y.-C. (1993). Biomechanics. Mechanical Properties of Living Tissues. Springer, 568. doi: https://doi.org/10.1007/978-1-4757-2257-4
16. Myntuk, V. B. (2018). Biot Strain and Stress in Thin-Plate Theory for Large Deformations. Journal of Applied and Industrial Mathematics, 12 (3), 501–509. doi: https://doi.org/10.1134/s1990478918030109
17. Khalilov, S. A., Myntuk, V. B. (2018). Postbuckling Analysis of Flexible Elastomeric Plate. Journal of Applied and Industrial Mathematics, 12 (1), 28–39. doi: https://doi.org/10.1134/s1990478918010040
18. Myntuk, V. B. (2020). Postbuckling of a Uniformly Compressed Simply Supported Plate with Free In-Plane Translating Edges. Journal of Applied and Industrial Mathematics, 14 (1), 176–185. doi: https://doi.org/10.1134/s1990478920010160
19. Khrachchenko, S. G., Myntuk, V. (2020). Nonlinear Postbuckling Behavior of a Simply Supported, Uniformly Compressed Rectangular Plate. Advances in Intelligent Systems and Computing, 35–44. doi: https://doi.org/10.1007/978-3-030-37618-5_4
20. Reddy, J. N. (2013). An Introduction to Continuum Mechanics. Cambridge: Cambridge University Press, 450. doi: https://doi.org/10.1017/chd9781139178952
21. Day, A. S. (1986). Stress strain equations for non-linear behaviour of coated woven fabrics. IASS Symposium Proceedings: Shells, Membranes and Space Frames, 17–24.
22. Kawabata, S., Niwa, M., Kawai, H. (1973). 3–The Finite-Deformation Theory of Plain-Weave Fabrics Part I: the Biaxial-Deformation Theory. The Journal of The Textile Institute, 64 (1), 21–46. doi: https://doi.org/10.1080/00405007008630416
23. Buett-Gautier, K., Boisse, P. (2001). Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Experimental Mechanics, 41 (3), 260–269. doi: https://doi.org/10.1007/s11340-003-2301-6
Solving the problem of continuum mechanics has revealed the defining generalizations using the function argument method. The aim of this study was to devise new approaches to solving problems of continuum mechanics using defining generalizations in the Cartesian coordinate system.

Additional functions, or the argument of the coordinates functions of the deformation site, are introduced into consideration. The carriers of the proposed function arguments should be basic dependences that satisfy the boundary or edge conditions, as well as functions that simplify solving the problem in a general form.

However, there are unresolved issues related to how not the solutions themselves should be determined but the conditions for their existence. Such generalized approaches make it possible to predict the result for new applied problems, expand the possibilities of solving them in order to meet a variety of boundary and edge conditions.

The proposed approach makes it possible to define a series of function arguments, each of which can be a condition of uniqueness for a specific applied problem. Such generalizations concern determining not the specific functions but the conditions of their existence. From these positions, the flat problem was solved in the most detailed way, was tested, and compared with the studies reported by other authors.

Based on the result obtained, a mathematical model of the flat applied problem of the theory of elasticity with complex boundary conditions was built. Expressions that are presented in coordinateless form are convenient for analysis while providing a computationally convenient context. The influence of the beam shape factor on the distribution of stresses in transition zones with different intensity of their attenuation has been shown.

By bringing the solution to a particular result, the classical solutions have been obtained, which confirms its reliability. The mathematical substantiation of Saint-Venant’s principle has been constructed in relation to the bending of a beam under variable asymmetric loading.

Keywords: generalized approximations, function argument, Cartesian coordinates, Laplace equations, Cauchy-Riemann relations.

References

1. Chygryns’ky, V. V. (2004). Analysis of the state of stress of a medium under conditions of inhomogeneous plastic flow. Metalurgiya, 43 (2), 87–93.

2. Chigirinsky, V., Naumenko, O. (2019). Studying the stressed state of elastic medium using the argument functions of a complex variable. Eastern-European Journal of Enterprise Technologies, 5 (7 (101)), 27–35. doi: https://doi.org/10.15587/1729-4061.2019.177514

3. Chygirinsky, V., Naumenko, O. (2020). Invariant differential generalizations in problems of the elasticity theory as applied to polar coordinates. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 56–73. doi: https://doi.org/10.15587/1729-4061.2020.213476

4. Timoshenko, S. P., Goodf, Dzh. (1979). Teoriya uprugosti. Moscow: «Nauka», 560.

5. Pozharskii, D. A. (2017). Contact problem for an orthotropic half-space. Mechanics of Solids, 52 (3), 315–322. doi: https://doi.org/10.1137/1015089

6. Georgievskii, D. V., Tyustangelov, G. S. (2017). Exponential estimates of perturbations of rigid-plastic spreading-sink of an annulus. Mechanics of Solids, 52 (4), 465–472. doi: https://doi.org/10.3103/a0025654417040148

7. Lopez-Crespo, P., Camas, D., Antunes, F. V., Yates, J. R. (2018). A Spaces, 130, 76–87. doi: https://doi.org/10.1155/2014/323178

8. 59–75. doi: https://doi.org/10.1016/j.tafmec.2017.09.004

9. Pathak, H. (2017). Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (FGMs) using coupled FE-XEFG approach. Theoretical and Applied Fracture Mechanics, 92, 252–265. doi: https://doi.org/10.1016/j.tafmec.2017.09.004

10. Sinopoulous, I. H., Theotokoglou, E. E. (2009). Additional Separated-Variable Solutions of the Biharmonic Equation in Polar Coordinates. Journal of Applied Mechanics, 77 (2). doi: https://doi.org/10.1115/1.3191757

11. Qian, H., Li, H., Song, G., Guo, W. (2013). A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate. Mathematical Problems in Engineering, 2013, 1–8. doi: https://doi.org/10.1155/2013/248671

12. El-Naaman, S. A., Nieben, K. L., Nierobson, C. F. (2019). An investigation of back stress formulations under cyclic loading. Mechanics of Materials, 130, 76–87. doi: https://doi.org/10.1007/j mechmat.2019.01.005

13. Pathuk, H. (2017). Three-dimensional quasi-static fatigue crack growth problems. Theoretical and Applied Fracture Mechanics, 92, 59–75. doi: https://doi.org/10.1016/j.tafmec.2017.05.010

14. Sinekop, N. S., Lobanova, L. S., Parhomenko, L. A. (2015). Metod R-funk-
tiy v dinamicheskih zadacha teoriu uprugosti. Kharkiv: HCUPT, 95.

15. Chigirinsky, V., Putnoki, A. (2017). Development of a dynamic model of transients in mechanical systems using argument-functions. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 11–22. doi: https://doi.org/10.15587/1729-4061.2017.101282

16. Hussein, N. S. (2014). Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals. Mathematical Problems in Engineering, 2014, 1–11. doi: https://doi.org/10.1155/2014/323178

17. Papurygi-Beskou, S., Tsipououlos, S. (2014). Lamé’s strain potential method for plane gradient elasticity problems. Archive of Applied Mechanics, 85 (9-10), 1399–1419. doi: https://doi.org/10.1007/s00419-014-0966-5

18. Zhemochkin, B. N. (1947). Teoriya uprugosti. Moscow: «Nauka», 269.

19. Xiao-lian Fu, Wen-feng, T. (1995). Reciprocal theorem method for solving the problems of bending of thick rectangular plates. Applied Mathematics and Mechanics, 16 (4), 201–403. doi: https://doi.org/10.1016/b02545293

20. Kovalev, S. B. (2020). Exact Solution of the Problem on Elastic Bending of the Segment of a Narrow Multilayer Beam by an Arbitrary Normal Load. Mechanics of Composite Materials, 56 (1), 55–74. doi: https://doi.org/10.1134/s106345462009008

21. Barretta, R., Barretta, A. (2010). Shear stresses in elastic beams: an intrinsic approach. European Journal of Mechanics A-Solids, 29 (3), 400–409. doi: https://doi.org/10.1016/j.ejomech.2009.10.008
CONSTRUCTION OF MATHEMATICAL MODELS OF THE STRESSED-STRAIN STATE OF A MATERIAL WITH A POROUS WATER-SATURATED BASE UNDER DYNAMIC LOAD (p. 25–35)

Allayarbek Aidosov
Institute of Information and Computational Technologies, Almaty, Republic of Kazakhstan

Galym Aidosov
Kazakhstan Munay Gas Aimak, Almaty, Republic of Kazakhstan

Saltanat Narbayeva
Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan

Materials of beams, plates, slabs, strips have been commonly applied in various fields of industry and agriculture as flat elements in the structures for machinery and construction. They are associated with the design of numerous engineering structures and facilities, such as the foundations of various buildings, airfield and road surfaces, floodgates, including underground structures.

This paper reports a study into the interaction of the material (beams, plates, slabs, strips) with the deformable base as a three-dimensional body and in the exact statement of a three-dimensional problem of mathematical physics under dynamic loads.

The tasks of studying the interaction of a material (beams, plates, slabs, strips) with a deformable base have been set. A material lying on a porous water-saturated viscoelastic base is considered as a viscoelastic layer of the same geometry. It is assumed that the lower surface of the layer is flat while the upper surface, in a general case, is not flat and is given by some equation.

Classical approximate theories of the interaction of a layer with a deformable base, based on the Kirchhoff hypothesis, have been considered. Using the well-known hypothesis by Timoshenko and others, the general three-dimensional problem is reduced to a two-dimensional one and dangerous processes under certain conditions, pass into the median plane of the layer.

It is not possible to find a closed analytical solution for most problems while experimental studies often turn out to be time-consuming and dangerous processes.

References

1. Rahmatulin, H. A., Dem’yakov, Yu. A. (2009). Prochnost’ pri intensivnykh kratkovremennykh nagruzkah. Moscow: Logos, 512.
2. Aydosov, A., Aydosov, G. A., Kalimoldaev, M. N., Toibayev, S. N. (2015). Matematicheskoie modelirovanie vzaimodeystviya balki (plastin, plit, polos) s deformiruemym osnovaniem pri dinamicheskih nagruzkah. Almaty, 208.
3. Aydosov, A. A., Aydosov, G. A., Toibayev, S. N. (2009). Osnovnye vyvody modelirovaniya rasprostraneniya vzyravnih voln v mnogosloynom neodnorodnom poluprostранstve. Novosti nauki Kazakhstana, Nauchno-tehnicheskiy sbornik, 2 (101), 56–60.
4. Aydosov, A. A., Aydosov, G. A., Toibayev, S. N. (2009). Modelirovanie vzaimodeystviya balki (plastin, plit, polos) peremennoy tosczhiny, lezhaschey na neodnorodnom osnovani. Vestnik KazNTU, 2 (61), 51–56.
5. Aydosov, G. A., Aydosov, A. A., Toibayev, S. N. (2009). Modelirovaniya vzaimodeystviya skal’yi (plastin, plit, polos) peremennoy tosczhiny, lezhaschey na neodnorodnom osnovani. Postanovka zadachi. Vestnik KazNTU im. K.I. Satpaeva, 4, 41–45.
6. Aydosov, A. A., Aydosov, G. A., Toibayev, S. N. (2009). Modelirovaniya vzaimodeystviya skal’yi (plastin, plit, polos) peremennoy tosczhiny, lezhaschey na neodnorodnom osnovani. Obschii uravnenii. Vestnik KazNTU im. Al-Farabi, 1 (60), 48–53. Available at: https://bm.kaznu.kz/index.php/kaznu/article/view/37/18.
7. Aydosov, A. A., Aydosov, G. A., Toibayev, S. N., Akimhanova, A. (2009). Napryazhenno-deformirovannoe sostoyanie truboprovoda s deformiruemym osnovaniem pri vozdeystii podvizhnoy napornoy nagruzki. Vestnik KazATK, 3 (58), 133–140.
8. Li, H., Dong, Z., Yuan, Y., Liu, B., Yuan, W., Yin, H. (2019). Experimental Investigation on the Deformability, Ultrasonic Wave Propagation, and Acoustic Emission of Rock Salt Under Triaxial Compression. Applied Sciences, 9 (4), 655. doi: https://doi.org/10.3390/app9040653.
9. Ishmamatov, M. R., Avezov, A. X., Ruziyev, T. R., Boltayev, Z. I., Kulmuratov, N. R. (2021). Propagation of Natural Waves on a Multilayer Viscoelastic Cylindrical Body Containing the Surface of a Weakened Mechanical Contact. Journal of Physics: Conference Series, 1921, 012127. doi: https://doi.org/10.1088/1742-6596/1921/1/012127.
10. Petrov, I. B., Sergeev, F. I., Muratov, M. V. (2021). Modelirovaniya rasprostraneniya uprugih voln pri razravodnom burenii na iskusstvennom ledovom ostrove. Materialy XIII Mezhdunarodnoy konferentsii po prikladnoy matematike i mehanike v aerokosmicheskiy otrazi (AMMAF2020). Alushta, 559–561. Available at: http://www.mnpj.ru/files/npj2020_web.pdf.
11. Kumar, R., Vohra, R., Goela, M. G. (2017). Variational principle and plane wave propagation in thermoelastic medium with double porosity under Lord-Shulman theory. Journal of Solid Mechanics, 9 (2), 423–433. Available at: http://jsm.iau-arak.ac.ir/article_531831_424e81a350f1107875455364b773ae.pdf.
12. Ebrahimi, F., Seyfi, A., Dabbagh, A. (2021). The effects of thermal loadings on wave propagation analysis of multi-scale hybrid composite beams. Waves in Random and Complex Media, 1–24. doi: https://doi.org/10.1080/17455030.2021.1956015.
13. Stubblefield, A. G., Spiegelman, M., Creyts, T. T. (2020). Solitary waves in power-law deformable conduits with laminar or turbulent fluid flow. Journal of Fluid Mechanics, 886. doi: https://doi.org/10.1017/jfm.2019.1073.
14. Ebrahimi, F., Dabbagh, A. (2019). Wave propagation analysis of smart nanoscale structures. CRC Press, 262. doi: https://doi.org/10.1201/9780429279225.
15. Liu, T., Li, X., Zheng, Y., Luo, Y., Guo, Y., Cheng, G., Zhang, Z. (2020). Study on S-wave propagation through parallel rock joints under in situ stress. Waves in Random and Complex Media, 1–24. doi: https://doi.org/10.1080/17455030.2020.1813350.
16. Ebrahimi, F., Dabbagh, A. (2018). Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems. Waves in Random and Complex Media, 31 (1), 25–45. doi: https://doi.org/10.1080/17455030.2018.1538398.
17. Kumar, R., Sharma, N., Lata, P., Ah-Dbahah, S. M. (2017). Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media. Applications and Applied Mathematics, 12 (1), 319–336. Available at: https://digitalcommons.pvamu.edu/cgi/viewcontent.cgi?article=1560&context=aam.
18. Li, J., Slesarenko, V., Galich, P. I., Rudykh, S. (2018). Oblique shear wave propagation in finitely deformed layered composites. Mechanics Research Communications, 87, 21–28. doi: https://doi.org/10.1016/j.mechrescom.2017.12.002.
19. Ebrahimiyan, H., Kohler, M., Masarri, A., Asimaki, D. (2018). Parametric estimation of dispersive viscoelastic layered media with application to structural health monitoring. Soil Dynamics and Earthquake Engineering, 105, 204–223. doi: https://doi.org/10.1016/j.soildyn.2017.10.017.
20. Cheshmehkani, S., Eskandari-Ghaishi, M. (2017). Passive control of 3D wave propagation with a functionally graded layer. International
Abstract and References. Applied mechanics

Journal of Mechanical Sciences, 123, 271–286. doi: https://doi.org/10.1016/j.jmechesci.2017.02.002

21. Koszaczka, E., Grelowska, G. (2017). Theoretical Model of Acoustic Wave Propagation in Shallow Water. Polish Maritime Research, 24 (2), 48–53. doi: https://doi.org/10.1515/pomr-2017-0049

22. Feng, X., Zhang, Q., Wang, E., Ali, M., Dong, Z., Zhang, G. (2020). 3D modeling of the influence of a spay fault on controlling the propagation of nonlinear stress waves induced by blast loading. Soil Dynamics and Earthquake Engineering, 138, 106335. doi: https://doi.org/10.1016/j.soildyn.2020.106335

23. Singh, A. K., Rajput, P., Chaki, M. S. (2020). Analytical study of Love wave propagation in functionally graded piezo-poroelastic media with electroded boundary and abruptly thickened imperfect interface. Waves in Random and Complex Media, 1–25. doi: https://doi.org/10.1080/17455030.2020.1773587

24. Li, J., Lesarenko, V., Rudylh, S. (2019). Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. European Journal of Mechanics - A/Solids, 73, 126–136. doi: https://doi.org/10.1016/j.euromechsol.2018.07.004

25. Ai, Z. Y., Wei, Z. K., Yang, J. J. (2021). Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model. Comput. and Geotechnics, 129, 103897. doi: https://doi.org/10.1016/j.compgeo.2020.103897

26. Stephan, C. C., Schmidt, H., Zülliche, C., Matthias, V. (2020). Oblique Gravity Wave Propagation During Sudden Stratobranches. Journal of Geophysical Research: Atmospheres, 125 (1). doi: https://doi.org/10.1029/2019JD031528

27. Kumari, N., Chattopadhyay, A., Kumar, S., Singh, A. K. (2017). Propagation of SH-waves in two anisotropic layers bonded to an isotropic half-space under gravity Wave in Random and Complex Media, 27 (2), 195–212. doi: https://doi.org/10.1080/17455030.2016.1212176

28. Yakovlev, I., Zambalov, S. (2019). Three-dimensional pore-scale numerical simulation of methane-air combustion in inert porous media under the conditions of upstream and downstream combustion wave propagation through the media. Combustion and Flame, 209, 74–98. doi: https://doi.org/10.1016/j.combustflame.2019.07.018

29. Lees, A. M., Sejjan, V., Wallage, A. L., Steel, C. C., Mader, T. L., Lees, J. C., Gaughan, J. B. (2019). The Impact of Heat Load on Cattle. Animals, 9 (6), 322. doi: https://doi.org/10.3390/ani9060322

30. Li, B., Zheng, Y., Shi, S., Liu, Y., Li, Y., Chen, X. (2019). Microcrack initiation mechanisms of 316LN austenitic stainless steel under in-phase thermomechanical fatigue loading. Materials Science and Engineering: A, 752, 1–14. doi: https://doi.org/10.1016/j.msea.2019.02.077

31. Schindauer, B. M., Mayer, H. (2019). Effect of small defects on the fatigue strength of martensitic stainless steels. International Journal of Fatigue, 127, 362–375. doi: https://doi.org/10.1016/j.ijfatigue.2019.06.021

32. Hourigan, S. K., Sabramanian, P., Hasan, N. A., Ta, A., Klein, E., Chettout, N. et al. (2018). Comparison of Infant Gut and Skin Microbiota, Resistance and Virulence Between Neonatal Intensive Care Unit (NICU) Environments. Frontiers in Microbiology, 9. doi: https://doi.org/10.3389/fmicb.2018.01361

DOI: 10.15587/1729-4061.2021.239751

IMPROVEMENT OF COVERED WAGONS OF THE "EAST-WEST" TYPE BY SECTIONING WITH A PARTITION (p. 36–43)

Oleksij Fomin
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2387-9946

Alyona Lovska
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-8604-1764

Andriy Klymash
Volodymyr Dahl East Ukrainian National University, Severodonetsk, Ukraine
ORCID: https://orcid.org/0000-0002-4035-1195

Mykhailo Keremet
Volodymyr Dahl East Ukrainian National University, Severodonetsk, Ukraine
ORCID: https://orcid.org/0000-0003-4058-8083

The dynamic loading and strength of the frame of the “East-West” type covered wagon were determined. To increase the efficiency of operation of covered wagons in international traffic, it is proposed to improve their frames. This improvement consists in using a sectional partition in the body in order to divide it into two separate sections. This allows the transportation of different goods in one wagon, and therefore decreasing empty mileage.

The longitudinal loading of the covered wagon frame was determined. The case of shunting impact was considered. The studies were carried out in a flat coordinate system. The loading mode of the frame of the covered wagon in the empty and loaded states was considered. The acceleration acting on the covered wagon frame in the loaded state was 0.37g, empty – 0.42g, which does not exceed the standard values. The wagon motion is rated “excellent”.

The main strength indicators of the covered wagon frame were determined. The calculation was made by the finite element method. It was found that the maximum equivalent stresses are concentrated in the area of interaction of the center sill with the bolster beam and amounted to 340 MPa, which is lower than the yield stress of the material. Maximum displacements occur in the middle of the frame beams and are about 12 mm. The natural vibration frequencies of the covered wagon frame were calculated.

The research will help to increase the efficiency of using covered wagons in international traffic. Also, the research results can be useful developments in the creation of innovative rolling stock structures.

Keywords: transport mechanics, covered wagon, frame, dynamic loading, stress state, East-West wagon.

References

1. Tyşyan, B. G., Tyşyan, A. B., Mokrousov, S. D. (2008). Sovremennoe vagonostroenie. Vol. 1. Zhelezodorozhniy podvizhnoy sostav. Kharkiv: Korporatsiya “Tekhnomostard”, 432.

2. Vantazhne vahonobuduvannia (2006). Zaliznychnyi transport

3. Reidemeister, O. H., Kalashnyk, V. O., Shykunov, O. A. (2016). Modernization as a way to improve the use of universal cars. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2, 148–156. doi: https://doi.org/10.15802/stp2016.67334

4. Shukla, C. P., Bharti, P. K. (2015). Study and Analysis of Doors of BCNHL Wagons. International Journal of Engineering Research And, 4 (04), 1195–1200. doi: https://doi.org/10.17577/ijer4.041031

5. Lee, W. G., Kim, J.-S., Sun, S.-J., Lim, J.-Y. (2016). The next generation material for lightweight railway car body structures: Magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (1), 25–42. doi: https://doi.org/10.1177/0954409716646140

6. Płacek, M., Woibel, A., Büchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. doi: https://doi.org/10.1088/1757-899X/161/1/012107

7. Lee, H.-A., Jung, S.-B., Wang, H.-H., Shin, D.-H., Lee, J. U., Kim, K. W., Park, G.-J. (2015). Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230 (4), 1283–1296. doi: https://doi.org/10.1177/0954409715593971

8. Boronenko, Y. P., Filippova, I. O. (2017). Selection of constructive solutions of car elements with small empty weight. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 3 (69), 121–129. doi: https://doi.org/10.15802/stp2017/104546

9. Rezvani, M. A., Mazraeh, A. (2017). Dynamics and stability analysis of a freight wagon subjective to the railway track and wheelset op-
etorical conditions. European Journal of Mechanics - A/Solids, 61, 22–34. doi: 10.1016/j.euromechsol.2016.08.011

10. Lovska, A., Fomin, O., Kučera, P., Pšitkět, V. (2020). Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts. Applied Sciences, 10 (21), 7441. doi: 10.3390/app10217441

11. Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6). doi: 10.14331/ap.2020.60.0478

12. Bogomaz, G. I., Melkov, D. D., Pilipchenko, O. P., Chernomashentseva, Yu. G. (1992). Nagruzhenost konteynerov-tistern, raspolozhen-nyh na zhelezodrorozhnom platformе, pri udarah v avtostepku. Dynamika ta kerenuvma nikkol mehanichnynkhyh system, 87–93.

13. Kelirykh, M., Fomin, O. V. (2014). Perspective directions of planning carrying systems of gondolas. Metallurgical and Mining Industry, 6, 57–60. Available at: https://www.metaljournal.com.ua/assets/MMI_2014_6-11-Fomin.pdf

14. Pšitkět, V., Kučera, P., Fomin, O., Lovska, A. (2020). Effective Mis-tuning Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. Journal of Marine Science and Engineering, 8 (5), 379. doi: 10.3390/jmse0805379

15. Alyamovskaia, A. A. (2019). COSMOSWorks. Osnovya rascheta kon-traktsialnyh na prichnikh v srede SolidWorks. Moscow: DMPK-Press, 785.

16. Kondratiev, A., Gaidachuk, V., Nabokina, T., Tsaritsynskyi, A. (2020). Mathematical modeling of an induction tunnel vibratory machine consisting of a viscoelastically fixed platform that can vibrate relative to the steady angular speed while there are the same loads in the form of a ball, which moves vertically, and a vibration exciter whose operation is based on the resonance single-mass vibratory machine whose operation is based on the Sommerfeld effect (p. 44–51).

17. Aleinyikov, I., Thamer, K. A., Zhuravskyi, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2) (102), 16–27. doi: 10.15587/1729-4061.2019.184394

18. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Pro- kopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geo-information system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9) (101), 35–45. doi: 10.15587/1729-4061.2019.1810197

19. Fomin, O., Lovska, A. (2020). Establishing patterns in determin- ing the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 6 (7) (108), 21–29. doi: 10.15587/1729-4061.2020.217162

20. Vatula, G. L., Lobat, O. V., Deryzemlia, S. V., Novikova, M. A., Orech, Y. F. (2019). Rationalization of cross-sections of the composite reinforced concrete span structure of bridges with a monolithic reinforced concrete roadway slab. IOP Conference Series: Materials Science and Engineering, 664, 012014. doi: 10.1088/1757-899x/664/1/012014

21. Vatula, G., Komagorova, S., Pavlichenkov, M. (2018). Optimization of the truss beam. Verification of the calculation results. MATEC Web of Conferences, 230, 02037. doi: 10.1051/matecconf/201823002037

22. Goolak, S., Guibarevych, O., Yermolenko, E., Slobodyanyuk, M., Gorobchenko, O. (2020). Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies, 2 (2) (104), 25–34. doi: 10.15587/1729-4061.2020.190539

23. Klinaev, S. (2018). Experimental study of the method of locomotive wheelset angle of attack control using acoustic emission. Eastern-European Journal of Enterprise Technologies, 2 (9) (92), 69–75. doi: 10.15587/1729-4061.2018.122131

24. Fomin, O., Lovska, A., Pšitkět, V., Kučera, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEDIA, 29, 124–129. doi: 10.21596/vp.2019.21138

25. Vatula, G., Lobat, A., Chernigov, V., Novikova, M. (2019). Simulation of Performance of CFST Elements Containing Differentiated Profile Tubes Filled with Reinforced Concrete. Materials Science Forum, 968, 281–287. doi: 10.1080/14335083.2019.1647115

26. Vaynberg, D. V., Vaynberg, E. D. (1970). Raschet plastin. Kyiv: Bu-divelnik, 437.

27. Fomin, O. V. (2015). Improvement of upper bundling of side wall of gondola cars of 12-9745 model. Metallurgical and Mining Industry, 1, 45–48. Available at: https://www.metaljournal.com.ua/assets/ Journal/english-edition/MMI_2015_1_9%20Fomin.pdf

28. Plakhiti, O., Nerubatskyi, V., Sushko, D., Hordienko, D., Khurazhves-kyi, H. (2020). Calculation of static and dynamic losses in power IGBT-transistors by polynomial approximation of basic energy characteristics. Naukowy Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 82–88. Available at: http://nvngu.in.ua/index.php/en/archive/on-the-issues/1841-2020/contents-2-2020/3253-calculation-of-static-and-dynamic-losses-in-power-igbt-transistors-by-polynomial-approximation-of-basic-energy-characteristics

29. Mykhak, A. S., Kondratiev, A. V. (2019). Criteria-Based Assessment of Performance Improvement for Aircraft Structural Parts with Thermal Spray Coatings. Journal of Superhard Materials, 41 (1), 53–59. doi: 10.1007/s10634-019-00100-88

30. DSTU 7598:2014. Freight wagons. General requirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv, 162.

31. GOST 35211–2014. Freight wagons. Requirements to structural strength and dynamic qualities (2016). Moscow, 54.

32. EN 12663-2:2010. Railway applications - structural requirements of railway vehicle bodies - Part 2: Freight wagons (2010). B., 54.

33. Normy dla rascheta i proektrionyvyh vagonov zheleznyh dorog MPS kolei 1520 mm (nesamohodnyh) (1996). Moscow: GosNIH-VNIZHIT, 319.

DOI: 10.15587/1729-4061.2021.241950

ETERMINING THE ENERGY EFFICIENCY OF A RESONANCE SINGLE-MASS VIBRATORY MACHINE WHOSE OPERATION IS BASED ON THE SOMMERFELD EFFECT (p. 44–51).

Volodymyr Yatsun
Central Ukrainian National Technical University, Kryvyvatskyi, Ukraine
ORCID: https://orcid.org/0000-0003-4973-3080

Gennadiy Filimonikhin
Central Ukrainian National Technical University, Kryvyvatskyi, Ukraine
ORCID: https://orcid.org/0000-0002-2819-0569

Irina Filimonikhin
Central Ukrainian National Technical University, Kryvyvatskyi, Ukraine
ORCID: https://orcid.org/0000-0002-1384-6027

Antonina Haleeva
Mykolayiv National Agrarian University, Mykolayiv, Ukraine
ORCID: https://orcid.org/0000-0002-9017-3133

This paper reports determining the energy efficiency of a vibratory machine consisting of a viscoelastically flat platform that can move vertically, and a vibration exciter whose operation is based on the Sommerfeld effect. The body of the vibration exciter rotates at a steady angular speed while there are the same loads in the form of a ball, a roller, or a pendulum inside it. The load, being moved relative to the body, is exposed to the forces of viscous resistance, which are internal within the system.

It was established that under the steady oscillatory modes of a vibratory machine’s movement, the loads are tightly pressed to each
other, thereby forming a combined load. Energy is productively spent on platform oscillations and unproductively dissipated due to the movement of the combined load relative to the body.

With an increase in the speed of the body rotation, the increasing internal forces of viscous resistance bring the speed of rotation of the combined load closer to the resonance speed, and the amplitude of platform oscillations increases. However, the combined load, in this case, increasingly lags behind the body, which increases unproductive energy loss and decreases the efficiency of the vibratory machine.

A purely resonant motion mode of the vibratory machine produces the maximum amplitude of platform oscillations, the dynamic factor, the total power of viscous resistance forces. In this case, the efficiency reaches its minimum value.

To obtain vigorous oscillations of the platform with a simultaneous increase in the efficiency of the vibratory machine, it is necessary to reduce the forces of viscous resistance in supports with a simultaneous increase in the internal forces of viscous resistance.

An algorithm for calculating the basic dynamic characteristics of the vibratory machine’s oscillatory motion has been built, based on solving the problem parametrically. The accepted parameter is the angular speed at which a combined load gets stuck. The effectiveness of the algorithm has been illustrated using a specific example.

Keywords: resonance vibratory machine, Sommerfeld effect, inertial vibration exciter, single-mass vibratory machine, energy efficiency.

References

1. Kryukov, B. I. (1967). Dinamika vibratsionnych mashin rezonannogo tipa. Kyiv: Naukova dumka, 210.
2. Sommerfeld, A. (1904). Beitrag zum dynamischen Anlaut der Festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure, 48 (18), 631–636.
3. Lanets, O. V., Shpak, Yu. V., Lozynskyi, V. I., Leonovych, P. Yu. (2013). Realizatsiya effekta Sommerfelda u vibratsionnoi maid-anchyzu k inertisnym pryvodom. Avtomatyatsiya vyrobnychykh protsesiv u mashynobuduvannia ta pryladobuduvannia, 47, 12–28. Available at: http://nbuv.gov.ua/UJRN/Avtomatyatsia_2013_47_4.
4. Kuzo, I. V., Lanets, O. V., Gurskyi, V. M. (2013). Synthesis of low-frequency resonance vibratory machines with an aeromotor drive. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 2, 60–67. Available at: http://nbuv.gov.ua/UJRN/Nvgun_2013_2_11.
5. Yaroshevich, N., Puts, V., Yaroshchuk, T., Herasymchuk, O. (2020). Slow oscillations in systems with inertial vibration excitors. Vihro-engineering PROCEEDIA, 32, 20–25. doi: https://doi.org/10.21595/vp.2020.21509
6. Artyunin, A. I. (1993). Issledovanie dvizheniya rotora s avtobalansir-rom. Izvestiya vysshikh uchebnih zavedenii. Mashinostroenie, 9, 8–14.
7. Ryzhik, B., Sperling, L., Duckstein, H. (2004). Non-synchronous Modes Near Critical Speeds in a Single-plane Auto-balancing Device. Technische Mechanik, 24 (1), 25–36. Available at: https://journals.ub.uni-magdeburg.de/index.php/techmech/article/view/911/888
8. Artyunin, A. I., Albunasev, G. G., Serebrennikov, K. V. (2005). Primenenie metoda raspdeleniya dvizheniy dlya issledovaniya dinamiki rotornoy sistemy s gibkim rotornom i mayatsykovim avtobalansirom. Izvestiya vysshikh uchebnih zavedenii. Mashinostroenie, 9, 8–14.
9. Lu, C.-J., Tien, M.-H. (2012). Pure-rotary periodic motions of a planar two-ball auto-balancer system. Mechanical Systems and Signal Processing, 32, 251–268. doi: https://doi.org/10.1016/j.ymssp.2012.06.001
10. Artyunin, A. I., Eliseyev, S. V. (2013). Effect of “Crawling” and Peculiarities of Motion of a Rotor with Pendular Self-Balancers. Applied Mechanics and Materials, 373-375, 35–42. doi: https://doi.org/10.4028/www.scientific.net/AMM.373-375.35
11. Filimonikhin, G., Yatsun, V. (2015). Method of excitation of dual frequency vibrations by passive auto-balancers. Eastern-European Journal of Enterprise Technologies, 4 (7 (76)), 9–14. doi: https://doi.org/10.15587/1729-4061.2015.47116
12. Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2017). Search for two-frequency motion modes of single-mass vibratory machine with vibration exciter in the form of passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 58–66. doi: https://doi.org/10.15587/1729-4061.2017.117083
13. Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2018). Search for the dual-frequency motion modes of a dualmass vibratory machine with a vibration exciter in the form of passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 1 (7 (91)), 47–54. doi: https://doi.org/10.15587/1729-4061.2018.121737
14. Yatsun, V., Filimonikhin, G., Halasev, A., Krivoshtolsky, L., Machok, V., Mezitis, M. et. al. (2020). Searching for the twofrequency motion modes of a threemass vibratory machine with a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 4 (7 (106)), 103–111. doi: https://doi.org/10.15587/1729-4061.2020.209269
15. Filimonikhin, G., Yatsun, V., Dumenko, K. (2016). Research into excitation of dual frequency vibrational-rotational vibrations of screen duct by ball-type auto-balancer. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 47–52. doi: https://doi.org/10.15587/1729-4061.2016.72052
16. Jung, D. (2018). Supercritical Coexistence Behavior of Coupled Oscillating Planar Eccentric Rotor/AutoBalancer System. Shock and Vibration, 18, 1–19. doi: https://doi.org/10.1155/2018/4083987
17. Strach, D. (2009). Classical Mechanics: An Introduction. Springer, 405. doi: https://doi.org/10.1007/978-3-540-73616-5
18. Naifykh, A. H. (1993). Introduction to Perturbation Techniques. John Wiley and Sons Ltd.
19. Kuzo, I. V., Lanets, O. V., Gurskyi, V. M. (2013). Substantiation of technological efficiency of two-frequency resonant vibration machines with pulse electromagnetic disturbance. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 3, 71–77. Available at: http://nvngu.in.ua/index.php/en/component/jdownloads/finish/45-03/736-2013-3-kuzo/0

DOI: 10.15587/1729-4061.2021.242398

HOMOGENIZATION OF A UNIDIRECTIONAL COMPOSITE REINFORCED WITH TWO TYPES OF TRANSTROPIC HOLLOW FIBERS (p. 52–58)

Anastasiia Stoliarova
Zaporizhzhia National University, Zaporizhzhia, Ukraine
ORCID: https://orcid.org/0000-0003-2783-2889

Andriy Pozhuyev
Zaporizhzhia National University, Zaporizhzhia, Ukraine
ORCID: https://orcid.org/0000-0002-4085-5139

Oksana Sptysia
Zaporizhzhia National University, Zaporizhzhia, Ukraine
ORCID: https://orcid.org/0000-0002-7150-7736

Alia Bohuslavska
Zaporizhzhia Polytechnic National University, Zaporizhzhia, Ukraine
ORCID: https://orcid.org/0000-0002-8594-4849

A method for determining effective elastic constants of a composite unidirectionally reinforced with two types of transtropic hollow fibers is developed. Determining these characteristics is an integral step in the design of composite structures. The approach is based on analytical formulas for determining the elastic characteristics of a two-component composite with a transtropic matrix and hollow fiber. Hexagonal fiber lay-up with periodic reinforcement structure is considered. Double homogenization is used. The composite is conventionally divided into hexagonal regions of two types. The first is a hollow fiber of one material and the surrounding matrix. Similarly, the second one – with a hollow fiber of another material. In the first homogenization, elastic constants of the transtropic material of each of the two regions are determined. In the repeated homogenization, the region of the first type is taken as a “conditional” fiber, the region of the second type is taken as a “conditional” matrix. Effective elastic constants for a composite reinforced with two types of isotropic hollow fibers are calculated. The proposed method gives a good convergence of the results with calculations by known formulas. The maximum relative calculation error for the longitudinal elastic characteristics compared to known formulas does not exceed 0.05 %.
The dependences of some effective elastic constants on the volume content of hollow fibers of various types are constructed. Using this approach, three-component composites can be modeled varying the materials of the matrix, hollow fibers and their volume content. This allows predicting the strength of such composites under certain deformations at the design stage.

Keywords: three-component unidirectional composite, transverse hollow fibers, effective elastic constants, homogenization.

References
1. Wang, G., Tu, W., Pinder, M.-J. (2017). Tailoring the moduli of composites using hollow reinforcement. Composite Structures, 160, 838–833. doi: https://doi.org/10.1016/j.compstruct.2016.10.000
2. Balaji, R., Sasikumar, M., Jeyanthi, S. (2016). Characterization of hollow glass fibre reinforced vinyl-ester composites. Indian Journal of Science and Technology, 9 (47), 1–5. doi: https://doi.org/10.17485/jist/2016/v9i48/107921
3. Nasr-Ishfani, M., Tehran, M.A., Latifi, M., Halvaei, M., Warnet, L. (2017). Concrete: microstructure, performance, and closely spaced short lengths. Fiber Reinforced Concrete. Reported by ACI Committee 544. ACI 544.1R
4. Bayat, M., Aghehadi, M.M. (2012). A micromechanics based analysis of hollow fiber composites using DQEM. Composites Part B: Engineering, 43 (8), 2921–2929. doi: https://doi.org/10.1016/j.compositesb.2012.06.021
5. Nasr-Ishfani, M., Latifi, M., Amani-Tehrani, M. (2013). Improvement of Impact Damage Resistance of Epoxy-Matrix Composites Using Ductile Hollow Fibers. Journal of Engineered Fibers and Fabrics, 8 (1). 153892501300800. doi: https://doi.org/10.1080/15389250.2013.8008198
6. Naemimard, M., Abuzade, R., Babahmadi, V., Neisiany, R.E., Brull, R., Putsche, F. (2021). Hollow fiber reinforced polymer composites. Fibre Reinforced Composites, 461–477. doi: https://doi.org/10.1002/9780-12-821090-1.00001-6
7. Aminmane, S., Asunuma, H. (2019). Micromechanics-based predictions of effective properties of a 1-3 piezocomposite reinforced with hollow piezoelectric fibers. Mechanics of Advanced Materials and Structures, 27 (22), 1873–1887. doi: https://doi.org/10.1080/15376494.2018.1529942
8. Grebeniuk, S. (2016). Effective elastic constants of the composite material reinforced by the unidirectional fibers of the two types. Visnyk of Zaporizhzhya National University. Physical and Mathematical Sciences, 1, 48–56. Available at: http://journalsoumu.zpu.ua/index.php/phys-math/article/view/1342/1295
9. Stolarova, A.V., Kovař, R.A., Hatsenko, A.V., Dioba, N.O. (2021). The determination of the elastic constants of the composite material with solid and hollow equivalently directed fibers. Bulletin of Zaporizhzhia National University. Physical and Mathematical Sciences, 1, 57–64. doi: https://doi.org/10.26661/2413-6549-2021-1-07
10. Nazarenko, L.V. (2008). Deformative properties of granular-fiber composites under matrix microdamaging. Pridklyadni problemy mekhaniki i matematyky, 6, 146–153. Available at: http://dspace.nbu.gov.ua/handle/12345789/7704
11. Homemnik, S., Grebeniuk, S., Klymenko, M., Stolarova, A. (2018). Determining the effective characteristics of a composite with hollow fiber at longitudinal elongation. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 6–12. doi: https://doi.org/10.15587/1729-4061.2018.143406
12. Grebeniuk, S., Klymenko, M., Stolarova, A., Titova, O. (2019). Longitudinal shear modulus of the composite material with hollow fibers. Mechanika 2019: Proceedings of the 24th International Scientific Conference. Kaunas, 45–48. Available at: https://www.researchgate.net/publication/354809040_Longitudinal_Shear_Modulus_of_the_Composite_Material_with_Hollow_Fibers
13. Karpinos, D. M. (Ed.) (1985). Kompozicionnye materialy. Kyiv: Naukova dumka, 588.
14. Tarnopol’skiy, Yu. M., Zhigun, I. G., Polyakov, V. A. (1987). Prostvrstvenno-armirovannye kompozicionnye materialy. Moscow: Mashinostroenie, 224.

DOI: 10.15587/1729-4061.2021.242986
DEVELOPMENT OF PREDICTION MODEL OF STEEL FIBER-REINFORCED CONCRETE COMPRESSIVE STRENGTH USING RANDOM FOREST ALGORITHM COMBINED WITH HYPERPARAMETER TUNING AND K-FOLD CROSS-VALIDATION (p. 29–65)

Nadia Moneem Al-Abdaly
Al-Furat Al-Awsat Technical University, Najaf, Iraq
ORCID: https://orcid.org/0000-0002-2338-8736
Salwa R. Al-Taai
Mustansiriyah University, Baghdad, Iraq
ORCID: https://orcid.org/0000-0003-0605-6729
Hamza Imran
Al-karkh University of Science, Baghdad, Iraq
ORCID: https://orcid.org/0000-0002-0680-8540
Majed Ibrahim
Al Albay University, Al-Mafraq, Jordan
ORCID: https://orcid.org/0000-0001-9841-9747

Because of the incorporation of discontinuous fibers, steel fiber-reinforced concrete (SFRC) outperforms regular concrete. However, due to its complexity and limited available data, the development of SFRC strength prediction techniques is still in its infancy when compared to that of standard concrete. In this paper, the compressive strength of steel fiber-reinforced concrete was predicted from different variables using the Random forest model. Case studies of 133 samples were used for this aim. To design and validate the models, we generated training and testing datasets. The proposed models were developed using ten important material parameters for steel fiber-reinforced concrete characterization. To minimize training and testing split bias, the approach used in this study was validated using the 10-fold Cross-Validation procedure. To determine the optimal hyperparameters for the Random Forest algorithm, the Grid Search Cross-Validation approach was utilized. The root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE) between measured and estimated values were used to validate and compare the models. The prediction performance with RMSE = 5.66, R2 = 0.88 and MAE = 3.80 for the Random forest model. Compared with the traditional linear regression model, the outcomes showed that the Random forest model is able to produce enhanced predictive results of the compressive strength of steel fiber-reinforced concrete. The findings show that hyperparameter tuning with grid search and cross-validation is an efficient way to find the optimal parameters for the RF method. Also, RF produces good results and gives an alternate way for anticipating the compressive strength of SFRC.

Keywords: machine learning, random forest, fiber-reinforced concrete, compressive strength.

References
1. Mehta, P. K., Monteiro, P. J. M. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill. Available at: https://www.accessengineeringlibrary.com/content/book/9780071797878
2. Report on Fiber Reinforced Concrete. Reported by ACI Committee 544. ACI 544.1R-96. Available at: http://indialibrary.com/Files/ACI%20report.pdf
3. Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86 (1-3), 3–9. doi: https://doi.org/10.1016/j.compstruct.2008.03.006
4. Romualdi, J. P., Batson, G. B. (1963). Mechanics of Crack Arrest in Concrete. Journal of the Engineering Mechanics Division, 89 (3), 147–168. doi: https://doi.org/10.1061/jmce3.0000381
5. Romualdi, J. P, Mandel, J. A. (1964). Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. Journal Proceedings, 61 (6), 657–672. doi: https://doi.org/10.14359/7801
6. Yaacov, Ş., Inan, G., Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21 (6), 1250–1253. doi: https://doi.org/10.1016/j.conbuildmat.2006.05.025

7. Nili, M., Azarzoon, A., Danesh, A., Deihimi, A. (2016). Experimental study and modeling of fiber volume effects on frost resistance of fiber reinforced concrete. International Journal of Civil Engineering, 16 (3), 263–272. doi: https://doi.org/10.1007/s00999-016-0122-2

8. Bentur, A., Mindess, S. (2006). Fibre reinforced cementitious composites. CRC Press, 624. doi: https://doi.org/10.1201/9781420026774

9. Nuruddin, M. F., Ullah Khan, S., Shafiq, N., Ayub, T. (2015). Strength Prediction Models for PFA Fiber-Reinforced High-Strength Concrete. Journal of Materials in Civil Engineering, 27 (12), 04015034. doi: https://doi.org/10.1061/(asce)mt.1943-5533.0001279

10. Aωolasi, T. E., Oke, O. L., Ainkukorlec, O. O., Sojbi, A. O., Aluko, O. G. (2019). Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete. Helijyon, 5 (1), e01115. doi: https://doi.org/10.1016/j.helijyon.2018.e01115

11. Abubakar, A. U., Tabra, M. S. (2019). Prediction of Compressive Strength in High Performance Concrete with Hooked-End Steel Fiber using K-Nearest Neighbor Algorithm. International Journal of Integrated Engineering, 11 (1). doi: https://doi.org/10.30880/ije.2019.11.01.016

12. Kartithiyan, S., Senthamaarakkann, K., Priyadarshini, J., Gupta, K., Shammugasundaram, M. (2019). Prediction of Mechanical Strength of Fiber Admixed Concrete Using Multiple Regression Analysis and Artificial Neural Network. Advances in Materials Science and Engineering, 2019, 1–7. doi: https://doi.org/10.1155/2019/4654070

13. Qu, D., Cai, X., Chang, W. (2018). Evaluating the Effects of Steel Fibers on Mechanical Properties of Ultra-High Performance Concrete Using Artificial Neural Networks. Applied Sciences, 8 (7), 1120. doi: https://doi.org/10.3390/app8071120

14. Sadrossadat, E., Basarir, H., Karrech, A., Elchalakani, M. (2021). Multi-objective mixture design and optimisation of steel fiber reinforced UHPC using machine learning algorithms and metaheuristics. Engineering with Computers. doi: https://doi.org/10.1007/s00366-021-01403-w

15. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi: https://doi.org/10.1023/A:1010933404324

16. Açıkgenç, M., Ulaş, M., Alyamaç, K. E. (2014). Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete. Arabian Journal for Science and Engineering, 40 (2), 407–419. doi: https://doi.org/10.1007/s13369-014-1549-x

17. Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., Mitri, H. S. (2017). Feasibility of Random-Forest Approach for Prediction of Ground Settlements Induced by the Construction of a Shield-Driven Tunnel. International Journal of Geomechanics, 17 (6), 04016129. doi: https://doi.org/10.1061/(asce)gm.1943-5622.0000817

18. Rodriguez, J. D., Perez, A., Lozano, J. A. (2010). Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (3), 569–575. doi: https://doi.org/10.1109/tpami.2009.187

19. Asteris, P. G., Tsaris, A. K., Cavaleri, L., Repapis, C. C., Papalou, A., Di Trapani, F., Karypidis, D. F. (2016). Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks. Computational Intelligence and Neuroscience, 2016, 1–12. doi: https://doi.org/10.1155/2016/5104907

20. Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of statistical software, 28 (5), 1–26. doi: https://doi.org/10.18637/jss.v028.i05

21. Ahmed, S. N., Ali, S. J., Al-Zubaidi, Η. Α. Μ., Ali, A. H., Ajeel, M. A. (2020). Improvement of organic matter removal in water produced of oilfields using low cost Moringa peels as a new green environmental adsorbent. Global Nest, 22 (2), 268–274. doi: https://doi.org/10.30955/gnj.003698
АНАЛІТИКО-ЧИСЛОВИЙ РОЗВ’ЯЗОК ЗАДАЧІ ВІСЕСИМЕТРИЧНОГО НЕЛІНІЙНОГО
ДЕФОРМУВАННЯ ЦИЛІНДРИЧНОЇ БЕЗМОМЕНТОЇ ОБОЛОНКИ ВІД ДІЇ ТИСКУ ТА ЗБЛИЖЕННЯ
КРАЇВ (с. 6–13)

В. Б. Мінтух

Побудовано і апробовано геометрично і фізично нелінійну модель безмоментної циліндричної оболонки, яка описує поведінку повітряної амортизаційної подушки з тканинного матеріалу. На основі геометрично точних співвідношень деформації-переміщення показано, що рівняння рівноваги оболонки, записані в термінах напружень Біо, разом з граничними умовами мають природний фізичний сенс і є наслідками принципу віртуальної роботи. Фізичні властивості оболонки були описані гіперпружним біологічним матеріалом Фіна тому, що його поведінка схожа з поведінкою текстилю. Для порівняння також були розглянути більш прості гіперпружні нестискувані матеріали Варга, Нео-Гука, матеріали нульового, першого та другого порядків.

Аналітично-числовий розв’язок побудовано аналітично-числовим методом і показано притаманну цьому методу експоненціальну збіжність і високу точність виконання рівнянь рівноваги. Оскільки похибка не перевищує 1 % при утриманні десяти доданків в апроксимації функцій переміщення, то рішення можна вважати практично точним.

Ключові слова: вісесиметрична циліндрична оболонка, геометрична нелінійність, фізична нелінійність, аналітико-числовий метод.

DOI: 10.15587/1729-4061.2021.242372

РОЗВИТОК УЗАГАЛЬНЮЮЧОГО МЕТОДУ РОЗВ’ЯЗАННЯ ЗАДАЧ МЕХАНІКИ СУЦІЛЬНОГО
СЕРЕДОВИЩА СТОСОВНО ДО ДЕКАРТОВОЇ СИСТЕМИ КООРДИНАТ (с. 14–24)

В. В. Чигринський, О. Г. Науменко

При вирішенні задачі механіки суцільного середовища виявлено визначальні узагальнення за допомогою методу аргумент функції. Метою дослідження було розвиток нових підходів вирішення задач механіки суцільного середовища з використанням визначальних узагальнень у декартовій системі координат.

До розгляду вводять додаткові функції, або аргумент функції координат осередку деформації. Носіями пропонованих аргумент функцій повинні бути базові залежності, що задовольняють граничним або крайовим умовам, а також функції, що спрощують розв’язок задач в загальному вигляді.

Однак залишилися невирішенними проблеми, пов’язані з тим, яким чином повинні визначатися не самі рішення, а умови їх існування. Такі узагальнені підходи дозволяють прогнозувати результат для нових прикладних задач, розширюють можливості вирішення з метою задоволення різнорідних граничних і крайових умов.

Запропонований підхід дозволяє визначити цілій ряд аргумент функцій, кожна з яких може бути умовою єдності для конкретної прикладної задачі. Такі узагальнення стосуються визначення не конкретних функцій, а умов їх існування. З цих позицій докладно була вирішена плоска задача, протестована, порівняна з дослідженнями інших авторів.

На базі отриманого результату розроблена математична модель плоскої прикладної задачі теорії пружності зі складними граничними умовами. Вирази представлені в безкоординатній формі, зручні для аналізу, забезпечують зручність в обчислювальному контексті.

У результаті досліджень встановлено, що використання матеріалів Фіна, Варга, Нео-Гука та матеріалу нульового порядку призводить до схожих значень переміщень і напружень, від яких істотно відрізняються переміщення оболонок з матеріалів першого і другого порядків.

Ключові слова: узагальнені підходи, аргумент функції, декартові координати, рівняння Лапласа, співвідношення Коші-Рімана.

DOI: 10.15587/1729-4061.2021.241287

РОЗРОБКА МАТЕМАТИЧНИХ МОДЕЛІВ НАПРУЖЕНО-ДЕФОРМАЦІЙНОГО СТАНУ МАТЕРІАЛУ З
ПОРИСТОЮ ВОДОНАСИЧНОЮ ОСНОВОЮ ПРИ ДИНАМІЧНОМУ НАВАНТАЖЕННІ (с. 25–35)

Allayarbek Aydosov, Galym Aydosov, Saltanat Narbayeva

Матеріали (балок, пластин, плит, смуг) як плоскі елементи конструкцій і будівництва знайшли широке застосування в різних галузях промисловості та сільського господарства. Вони пов’язані з проектуванням численних інженерних конструкцій та споруд, таких як фундаменти різних будівель, аеродромні та дорогові покриття, шлюзи, в тому числі і підземні споруди.
Досліджуються взаємодії матеріалу (балок, пластин, плит, смуг) з основою, що деформується, як тривимірного тіла та в точній постановці тривимірної задачі математичної фізики при динамічних навантаженнях. Поставлені завдання вивчення взаємодії матеріалу (балок, пластин, плит, смуг) з основою, що деформується, Матеріал, що лежить на пористості водонасычений в'язкопружний основою, розглядаються, як яркі тривимірні шар тієї ж геометрії. Передбачається, що навантаження поверхні шару, верхній шар на основу, гуляється, а короткочасні, у загальному вигляді, не плоска та задійснюється близьким рівнянням. Розглядаються класичні наблюдені теорії взаємодії шару з основою, що деформується, засновані на гіпотезі Кірхгофа. Використовуючи відому гіпотезу Тимошенко та інших, загальну тривимірну задачу зводять до двовимірної, що зосереджується на середньому плоскості шару, що накладає обмеження на зовнішні зусилля. У цій задачі середня плоскість відсутня. Тому в якості шарів величини розглядаються зміщення та деформації точок плоскості, які при схожих умовах переходять в середню плоскість шару. Знайти які зміни дійсними рішення для більшого числа цієї проблеми не представляється можливим, а експериментальні дослідження часто виявляються трудомісткими та небезпечними процесами.

Ключові слова: розробка математичних моделей, взаємодія матеріалу з основою, динамічне навантаження, гранічна умова, загальне рішення.

DOI: 10.15587/1729-4061.2021.2409751
UDСОКОНАЛЕННЯ КРИТИХ ВАГОНІВ ТИПУ “СХІД-ЗАХІД” ШЛЯХОМ СЕКЦІЮВАННЯ ПЕРЕГОРОДКОЮ (с. 36–43)

О. В. Фомін, А. О. Ловєка, А. О. Клімаш, М. А. Керемет

Проведено визначення енергоефективності віброзбудника та інших несучих конструкцій критого вагона типу “Схід-Захід”. Відсутність ефективності використання критих вагонів в міжнародному сполученні запропоновано удосконалення їхніх несучих конструкцій. Дана удосконалення полегшує використання силових інструментів перерізання в кузові з метою роділення його обему на дві окремі секції. Це дозволяє здійснювати перевезення різноманітних вантажів у одному вагоні, а отже і зменшення порожнього пробігу. Проведено визначення визначення відносної взаємодії несучих конструкцій критого вагона. При цьому враховано викриття його маневрового співвідношення. Дослідження проведено в пласкій системі координат. До уваги прийнято режим навантаження несучої конструкції критого вагона у порожньому та завантаженому станах. Прискорення, які діють на несучу конструкцію критого вагона при завантаженому стані, складає 0,37 г, а при порожньому − 0,42 г, що не перевищує нормативних значень. Хід вагона оцінюється як “відмінний”. Визначено основні показники міцності несучої конструкції критого вагона. Розрахунок реалізований за методом східних елементів. Встановлено, що максимальні еквівалентні напружения зосереджені в зоні взаємодії хребтової балки зі шворневою та складаються з 540 МПа, що нижче напружень плинності матеріалу. Максимальні переміщення виникають у середній частині балок рами та складаються близько 12 мм. Розраховано власні частоти коливань несучої конструкції критого вагона. Проведені дослідження сприяють підвищенню енергоефективності використання критих вагонів в міжнародному сполученні. Також результати проведених досліджень можуть бути корисними при створенні інноваційних конструкцій рухомого складу.

Ключові слова: транспортина механіка, критий вагон, несуча конструкція, динамічна навантаженість, напружений стан, вагон типу “Схід-Захід”.

DOI: 10.15587/1729-4061.2021.241950
ВИЗНАЧЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ РЕЗОНАНСНОЇ ОДНОМАСОВОЇ ВІБРОМАШИННИ, ЩО ПРАЦЮЄ НА ЕФЕКТІ ЗОМЕРФЕЛЬДА (с. 44–51)

В. В. Ячун, Г. Б. Філімонівіч, І. І. Філімонівіч, А. П. Галєєва

Визначено енергоефективність вібромашини, що складається із пружно-в’язко закріпленої платформи, що може рухатися вертикално і віброзбудника, що працює на ефекті Зомерфельда. Корпус віброзбудника обертається на нерухому кутовому швидкістю і всередині знаходяться однакові ванти, які притисунок у вигляді кулі, ролика або маятника. На ванти при русі відносно відрізняється сили в’язкого опору, що є внутрішнім у системі. Встановлено, що при завантаженому стані, складають 0,37 75 г, а при порожньому − 0,42 75 г, що не перевищує нормативних значень. Хід вагона оцінюється як “відмінний”. Навантаження відрізняється від навантаження порожнього вагона при завантаженому стані, складає 0,37 г, а при порожньому − 0,42 г, що не перевищує нормативних значень. Хід вагона оцінюється як “відмінний”. Визначено основні показники міцності несучої конструкції критого вагона. Розрахунок реалізований за методом східних елементів. Встановлено, що максимальні еквівалентні напружения зосереджені в зоні взаємодії звивистої балки зі шворневою та складаються з 540 МПа, що нижче напружень плинності матеріалу. Максимальні переміщення виникають у середній частині балок рами та складаються близько 12 мм. Розраховано власні частоти коливань несучої конструкції критого вагона. Проведені дослідження сприяють підвищенню енергоефективності використання критих вагонів в міжнародному сполученні. Також результати проведених досліджень можуть бути корисними при створенні інноваційних конструкцій рухомого складу.

Ключові слова: транспортина механіка, критий вагон, несуча конструкція, динамічна навантаженість, напружений стан, вагон типу “Схід-Захід”.

DOI: 10.15587/1729-4061.2021.241950
ВИЗНАЧЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ РЕЗОНАНСНОЇ ОДНОМАСОВОЇ ВІБРОМАШИННИ, ЩО ПРАЦЮЄ НА ЕФЕКТІ ЗОМЕРФЕЛЬДА (с. 44–51)
ГОМОГЕНІЗАЦІЯ ОДНОСПРЯМОВАНОГО КОМПОЗИТУ, АРМОВАНОГО ДВОМА ТИПАМИ ТРАНСТРОПНИХ ПОРОЖНІСТИХ ВОЛОКОН (с. 52–58)

А. В. Столярова, А. В. Пожуєв, О. Г. Спиця, А. М. Богуславська

Розроблено методику визначення ефективних пружних сталів композиту, односпрямовано армованого двома типами транстропних порожнистих волокон. Це важливо, тому що визначення цих характеристик є невід’ємним етапом при проєктуванні конструкцій з композиційних матеріалів. Підхід базується на використанні аналітичних формул для визначення пружних характеристик двокомпонентного композиту з транстропним матриці та порожністим волокном. Розглядається гексагональна укладка волокон при періодичній структурі армування. Використовуються подвійна гомогенізація. Композиційний матеріал умовно розбивають на гексагональні області двох видів. Перший – порожнисте волокно з одного матеріалу і оточуюча його матриця. Аналогічно, другий – з порожністим волокном з іншого матеріалу. При першій гомогенізації визначаються пружні стали одного виду. При повторній гомогенізації область першого виду приймається за «умовне» волокно, область другого виду – за «умовну» матрицю. Обчислюють ефективні пружні стали для композиту, армованого двома типами ізотропних порожнистих волокон. Запропонована методика дає хорошу збіжність результатів обчислень з розрахунками за відомими формулами. Максимальна відносна похибка обчислень в порівнянні з відомими формулами не перевищує 0,05 %. Побудовано залежності деяких ефективних пружних сталів одином типу від об’ємного вмісту порожнистих волокон різних типів. Використовуючи данный підхід, можна моделювати трикомпонентні композити, варіюючи матеріалами матриці, порожністю волокон та їх об’ємним вмістом. Завдяки цьому стає можливим прогнозування міцності таких композитів до певних деформацій на стадії проєктування.

Ключові слова: трикомпонентний односпрямований композит, транстропні порожнисті волокна, ефективні пружні сталі, гомогенізація.

DOI: 10.15587/1729-4061.2021.242398

РОЗРОБКА МОДЕЛІ ПРОГНОЗУВАННЯ МІЦНОСТІ НА СТИСК СТАЛЕФІБРОБЕТОНУ З ВИКОРИСТАННЯМ АЛГОРИТМУ ВИПАДКОВОГО ЛІСУ В ПОЄДНАННІ З НАЛАШТУВАННЯМ ГІНЕРПАРАМЕТРІВ І К-КРАТНОЮ ПЕРЕХРЕСНОЮ ПЕРЕВІРКОЮ (с. 59–65)

Nadia Moneem Al-Abdaly, Salwa R. Al-Taai, Hamza Imran, Majed Ibrahim

Завдяки введенню переривчастих волокон сталефібробетон (СФБ) перевершує звичайний бетон. Однак через складність і обмеженість наявних даних розробка методів прогностування міцності СФБ все ще знаходиться в зародковому стані в порівнянні зі станом досвіду з тривалісною плитою армованої бетону. У даній роботі з використанням моделі випадкового лісу виконано прогнозування міцності на стиск сталефібробетону. Для цієї мети були використані тематичні дослідження 133 зразків. Для розробки та перевірки моделей створили навчальні та тестові набори даних. Запропоновані моделі були розроблені з використанням десяти важливих параметрів матеріалу для характеристики сталефібробетону. Щоб звести до мінімуму систематичну помилку під час поділу навчальних та тестових даних, підхід, використаний в дослідженні, був перевершений з використанням процедури 10-кратної перехресної перевірки. Для визначення оптимальних гіперпараметрів для алгоритму випадкового лісу був використаний підхід перехресної перевірки з пошуком по сітці. Для перевірки і порівняння моделей використовувалася середньоквадратична помилка \(RMSE \), коефіцієнт детермінації \(R^2 \) і середня абсолютна помилка \(MAE \) виміряних і розрахункових значень. Ефективність прогнозування визначали за \(RMSE=5.66 \), \(R^2=0.88 \) і \(MAE=3.80 \) для моделі випадкового лісу. У порівнянні з традиційною моделлю лінійної регресії результати показали, що моделі випадкового лісу дозволяють отримати більш точні результати прогнозування міцності на стиск сталефібробетону. Результати показують, що налаштування гіперпараметрів з пошуком по сітці та перехресною перевіркою є ефективним способом пошуку оптимальних параметрів для методу ВЛ. Крім того, ВЛ дає хороші результати і надає альтернативний спосіб прогнозування міцності на стиск СФБ.

Ключові слова: машинне навчання, випадковий ліс, фібробетон, міцність на стиск.