A family of \((p, n)\)-gonal Riemann surfaces with several \((p, n)\)-gonal groups

SEBASTIÁN REYES-CAROCCA

Abstract. Let \(p \geq 3\) be a prime number and let \(n \geq 0\) be an integer such that \(p - 1\) divides \(n\). In this short note, we construct a family of \((p, n)\)-gonal Riemann surfaces of maximal genus \(2np + (p - 1)^2\) with more than one \((p, n)\)-gonal group.

Mathematics Subject Classification. 30F10, 14H37, 30F35, 14H30.

Keywords. Compact Riemann surfaces, Group actions, Automorphisms.

1. Introduction and statement of the result. Let \(S\) be a compact Riemann surface of genus \(g \geq 2\) and let \(\text{Aut}(S)\) denote its automorphism group. If \(p \geq 2\) is a prime number and \(n \geq 0\) is an integer, then \(S\) is called \((p, n)\)-gonal if there exists a group of automorphisms

\[C_p \cong H \leq \text{Aut}(S) \]

such that the corresponding orbit space \(S/H\) has genus \(n\). The group \(H\) is called a \((p, n)\)-gonal group of \(S\).

Each compact Riemann surface with non-trivial automorphisms is \((p, n)\)-gonal for suitable values of \(p\) and \(n\). This simple fact shows that studying \((p, n)\)-gonal Riemann surfaces and their automorphisms is equivalent to studying the singular locus of the moduli space of compact Riemann surfaces.

\((p, n)\)-gonal Riemann surfaces and their automorphisms have been extensively considered over the last century as they generalize important and well-studied classes of Riemann surfaces, such as \((2, 0)\)-gonal or hyperelliptic, \((p, 0)\)-gonal or \(p\)-gonal, and \((2, n)\)-gonal or \(n\)-hyperelliptic Riemann surfaces, among others.

Partially supported by Fondecyt Grants 11180024, 1190991 and Redes Grant 2017-170071.
Let S be a p-gonal Riemann surface of genus $g \geq 2$. By the classical Castelnuovo-Severi inequality (see Accola’s book [1]), if
\[g > (p - 1)^2, \]
then the p-gonal group is unique in the automorphism group of S. A family of p-gonal Riemann surfaces of maximal genus $g = (p - 1)^2$ endowed with two p-gonal groups was constructed in [2], showing that the bound (1.1) is sharp. Furthermore, in the general case, following [3], if S has two p-gonal groups, then they are conjugate in the automorphism group of S. An upper bound for the number of such groups was obtained in [4].

For (p, n)-gonality with $n \geq 1$, the Castelnuovo-Severi inequality ensures that if S is a (p, n)-gonal Riemann surface of genus $g \geq 2$ and
\[g > 2pn + (p - 1)^2, \]
then the (p, n)-gonal group is unique in the automorphism group of S. In the general case, it was proved in [5] that if S is a (p, n)-gonal Riemann surface of genus g and $p > 2n + 1$, then all its (p, n)-gonal groups are conjugate in the automorphism group of S; an upper bound for the size of the corresponding conjugacy class was also determined in the same paper. Later, in [7], the uniqueness of the (p, n)-gonal group was proved to be true under the assumptions that the (p, n)-gonal group acts with fixed points and $p > 6n - 6$.

This short note is devoted to provide a family of (p, n)-gonal Riemann surfaces of maximal genus $g = 2pn + (p - 1)^2$ with two (p, n)-gonal groups. The existence of this family shows that the bound (1.2) is sharp for infinitely many pairs (p, n).

Theorem. Let $p \geq 3$ be a prime number and let $n \geq 0$ be an integer such that $p - 1$ divides n. Set
\[d = n/(p - 1) + 1. \]

Then there exists a complex d-dimensional family of (p, n)-gonal Riemann surfaces S of genus
\[g = 2np + (p - 1)^2 \]
with automorphism group of order $4p^2$ acting on S with signature
\[(0; 2, 2, 2, p, \ldots, d, p) \]
in such a way that each S has more than one (p, n)-gonal group.

Remark. It is worth mentioning here the following observations which will follow from the proof of the theorem.

1. The result remains true if $p = 2$ and n is odd.
2. If $n = 0$, our family agrees with the family constructed in [2].
2. Proof of the Theorem. Let Δ be a Fuchsian group of signature $(0; 2, 2, 2, p, \ldots, p)$ canonically presented as

$$\Delta = \langle \gamma_1, \ldots, \gamma_{d+3} : \gamma_1^2 = \gamma_2^2 = \gamma_3^2 = \gamma_4^p = \cdots = \gamma_{d+3}^p = \gamma_1 \cdots \gamma_{d+3} = 1 \rangle$$

and consider the group $G = D_p \times D_p$ (where D_p denotes the dihedral group of order $2p$) presented in terms of generators s_1, s_2, r_1, r_2 and relations

$$s_1^2 = s_2^2 = r_1^2 = r_2^p = (s_1 r_1)^2 = (s_2 r_2)^2 = [s_1, r_2] = [s_1, s_2] = [r_1, r_2] = [r_1, s_2] = 1.$$

Existence of the family. By virtue of the classical Riemann existence theorem, the existence of the desired family follows after verifying that the Riemann-Hurwitz formula holds and after providing a surface-kernel epimorphism θ from Δ onto G.

Note that the equality

$$2(g - 1) = 4p^2(-2 + 3(1 - \frac{1}{2}) + d(1 - \frac{1}{p}))$$

shows that the Riemann-Hurwitz formula is satisfied for a branched $4p^2$-fold covering map from a compact Riemann surface of genus $g = 2np + (p - 1)^2$ onto the projective line, ramified over three values marked with 2 and d values marked with p.

In addition, if d is odd we can choose the surface-kernel epimorphism θ as

$$\theta(\gamma_1) = s_1, \quad \theta(\gamma_2) = s_2, \quad \theta(\gamma_3) = s_1 s_2 r_1 r_2, \quad \text{and} \quad \theta(\gamma_i) = \begin{cases} (r_1 r_2)^{-1} & \text{if } i \text{ is even}, \\ r_1 r_2 & \text{if } i \text{ is odd}, \end{cases}$$

and if d is even, we can choose θ as

$$\theta(\gamma_1) = s_1, \quad \theta(\gamma_2) = s_2, \quad \theta(\gamma_3) = s_1 s_2 (r_1 r_2)^{-d/2}, \quad \text{and} \quad \theta(\gamma_i) = \begin{cases} r_1 & \text{if } i \text{ is even}, \\ r_2 & \text{if } i \text{ is odd}, \end{cases}$$

where $i \in \{4, \ldots, d + 3\}$.

The complex dimension of the family agrees with the complex dimension of the Teichmüller space associated to Δ; namely, its dimension is d (see, for example, [6]).

(p, n)-gonal groups. We denote the branched regular covering map given by the action of G on S by $\pi : S \to S/G$ and its branch values by $y_1, y_2, y_3, z_1, \ldots, z_d$, where each y_k is marked with 2 and each z_k is marked with p.

Assume that d is odd. Consider the cyclic subgroups of order p

$$H_1 = \langle r_1 r_2 \rangle \quad \text{and} \quad H_2 = \langle r_1^{-1} r_2 \rangle$$

of G. We denote by π_1 and π_2 the branched regular covering maps given by the action of H_1 and H_2 on S respectively. We observe that the fiber of π over each y_k does not contain any branch value of π_1 and π_2. In addition, for each k, the fiber of π over z_k has $4p$ elements; the isotropy group of $2p$ of them is isomorphic to H_1 and the remaining ones have isotropy group isomorphic to H_2. It follows that π_1 and π_2 ramify over $2pd$ values, each of them marked with p. Equivalently, the signature of the action of H_j on S is $(n_j; p; 2dp, p)$ where n_j is the genus of S/H_j. We now consider the Riemann-Hurwitz formula to see that

$$2(g - 1) = p[2n_j - 2 + 2pd(1 - \frac{1}{p})]$$
and, after straightforward computations, one obtains that $n_j = n$ for $j = 1, 2$.

Assume that d is even. Consider the cyclic subgroups of order p

$$H_1 = \langle r_1 \rangle \quad \text{and} \quad H_2 = \langle r_2 \rangle$$

of G and let π_1 and π_2 be as before. As in the previous case, the fiber of π over each y_k does not contain any branch value of π_1 and π_2. For each k, the fiber of π over y_k has $4p$ elements; the isotropy group of them is isomorphic to H_1 if k is odd and is isomorphic to H_2 if k is even. It follows that π_1 and π_2 ramify over $2pd$ values, each of them marked with p. Equivalently, the signature of the action of H_j on S is $(n_j; p, 2dp, p)$ where n_j is the genus of S/H_j. Similarly as previously done, the Riemann-Hurwitz formula ensures that $n_j = n$ for $j = 1, 2$.

In both cases, H_1 and H_2 are two (p, n)-gonal groups of S, as desired.

Remark. Note that if d is odd, then the (p, n)-gonal groups are conjugate, but if d even, then they are not.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Accola, R.D.M.: Topics in the Theory of Riemann Surfaces. Lecture Notes in Mathematics, vol. 1595. Springer, Berlin (1994)

[2] Costa, A.F., Izquierdo, M., Ying, D.: On cyclic p-gonal Riemann surfaces with several p-gonal morphisms. Geom. Dedicata **147**, 139–147 (2010)

[3] González-Diez, G.: On prime Galois covers of the Riemann sphere. Ann. Mat. Pura Appl. (4) **168**, 1–15 (1995)

[4] Gromadzki, G.: On the number of p-gonal coverings of Riemann surfaces. Rocky Mountain J. Math. **40**(4), 1221–1226 (2010)

[5] Gromadzki, G., Weaver, A., Wootton, A.: On gonality of Riemann surfaces. Geom. Dedicata **149**, 1–14 (2010)

[6] Macbeath, A.M., Singerman, D.: Spaces of subgroups and Teichmüller space. Proc. Lond. Math. Soc. (3) **31**(2), 211–256 (1975)

[7] Schweizer, A.: On the uniqueness of (p, h)-gonal automorphisms of Riemann surfaces. Arch. Math. (Basel) **98**(6), 591–598 (2012)
Sebastián Reyes-Carocca
Departamento de Matemática y Estadística
Universidad de La Frontera
Avenida Francisco Salazar
01145 Temuco
Chile
e-mail: sebastian.reyes@ufrontera.cl

Received: 12 June 2020

Revised: 29 September 2020

Accepted: 23 October 2020.