Use of body linear measurements to estimate the reproductive performance of cattle in smallholder farms by a participative breeding system in South Sulawesi, Indonesia

Zulkharnaim¹, S Baco¹, A Ako¹, S Baba¹, L Rahim¹, I Syarif¹ and Hasman²

¹Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia.
²Post Graduate, Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245 South Sulawesi, Indonesia.

Email: zulkharnaim@unhas.ac.id

Abstract. Study aimed to identify the correlation of body sizes of Bali cattle with the pregnancy ability trait. Many studies gave attention to the body characters of beef cattle as the object being observed. Several types of research reported a strong correlation between some linear body sizes with some production traits. The pregnancy trait in beef cattle is very important, especially for smallholder farmers. A total of 100 cattle were measured body sizes, includes 50 pregnancy cattle and 50 non-pregnancy cattle. Three morphometric traits were measured on each animal. The parts measured were body length (BL), withers height (WH), heart girth (HG) and body condition scoring (BCS). The morphological traits were analysed using descriptive statistics using IBM SPSS Statistic 20 and Microsoft Excel. Relationship between HG and BCS on pregnant cow followed a regression equation Y= 0.0721X - 4.447 (R² = 68.3%) and on an-pregnant cow followed Y= 0.0953X - 7.3978 (R² = 68.3%). The relationship between heart girth and body condition scoring is very close and can be used to predict pregnancy ability in cows. The regression equation will greatly help smallholder farmers in the participatory breeding system.

1. Introduction
Beef cattle in Indonesia spread across 95% of smallholder farmers. It is an advantage in efforts to develop community-based beef cattle. The farmers have become the main actors in efforts to develop beef cattle, even in breeding activities. So that all beef cattle breeding activities are carried out in smallholder farmers. Activities involving farmers and other stakeholders called participatory breeding system. Morphological evaluation of different breeds of beef cattle is still considered important from a selection point of view. For proper use of morphological traits in beef cattle selection programs, the knowledge of their descriptive statistics and genetic parameters are necessary [1].

There are certain body characters of Bali cattle that distinguish it from other breeds. The study of these characters helps in further breeding and improvement programs of breeds. The characters are included the height and length of the animal, head shape and neck conformation, tail length and thickness at the base, ear length and width and rump length and horn [1]. Many studies gave attention to the body characters of beef cattle as the object being observed. Several types of research reported a strong correlation between some linear body sizes with some production traits [2]. The body condition
scoring (BCS) system has used for the assessment of body condition. The BCS is one of the most imperative factors correlating reproductive performance. The study aimed to identify the correlation of body sizes of Bali cattle with the pregnancy ability trait. The pregnancy trait in beef cattle is very important, especially for smallholder farmers. Results obtained in the present study would also be useful and helpful to farmers and animal scientists who are involved in cattle research.

2. Materials and methods

2.1. Materials
A total of 100 cattle were measured body sizes, includes 50 pregnancy cattle and 50 non-pregnancy cattle. The animals were more than 2.5 – 3 years old as determined by dentition. They were reared through the semi-intensive management system in Barru Region in South Sulawesi, Indonesia.

2.2. Collecting and Analysis Data of Morphological Traits
Three morphometric traits were measured on each animal. The parts measured were body length (BL), measured from the distance from the point of the shoulder joint to the point of the pin bone; withers height (WH), the distance from the highest point of withers to the ground; and heart girth (HG), measured as body circumference just behind the forelegs [3]. The BCS was measured with the British system (scale point of 1 to 5). The morphological traits were analysed using descriptive statistics using IBM SPSS Statistic 20 and Microsoft Excel.

3. Result and discussion
The genetic correlations between BCS and fertility suggest that BCS is moderate to the strong indicator of fertility [4]. BCS has a close relationship with cow pregnancy. The results showed that most of the pregnant cows had BCS in the range 5-6, while the non-pregnant cows were mostly in the range 4-5. In measuring wither height (WH), body length (BL) and heart girth (HG), it was found that BCS had a close relationship with heart girth. During fifth and sixth parity, WH peaked at an additional 2 to 3 cm [5]. Changing the size of the HG associated with pregnancy is often considered the cow. Relationship between HG and BCS on pregnant cow followed a regression equation $Y= 0.0721X - 4.447$ ($R^2 = 68.3\%$) (Figure 1). The analysis of variance showed that the regression equation could be used to predict fertility in cow ($p<0.01$). The relationship between WH and BL to BCS is very low. The genetic relationship of BCS with the health and fertility of cows was confirmed [6]. The heart girth not only has a strong relationship with the BCS, but also with body weight. The heart girth was the most reliable body measurement in the prediction of body weight for different types of animal [7].

![Figure 1. Relationship between HG and BCS on the pregnant cow.](attachment:image.png)
Whereas the relationship between HG and BCS on an-pregnant cow followed a regression $Y = 0.0935X - 7.3978$ ($R^2 = 68.3\%$) (figure 2). The relationship between HG and BCS in both pregnant and non-pregnant cows was very strong. The results of HG and BCS measurements and their relationship can be used to predict the potential for pregnancy in cows. The heart girth can be selected parameters to help farmers choose the cow potential reproductively. In situations where body weight cannot be measured, heart girth alone can be effectively used to accurately estimate the bodyweight [7]. In certain conditions, the measurement of height at withers is difficult especially with nervous and temperamental animals.

Figure 2. Relationship between HG and BCS on an-pregnant cow.

Cattle that are reared on smallholder farms have low productivity because the application of technology has not been widely used. The technology is needed to improve cattle rearing management and this will have an impact on increasing pregnancy. Prediction using regression equations will help farmers in selecting and preparing for pregnancy cows. Participatory breeding activities which are to make farmers of the people as one of the actors of activities. To facilitate the implementation of the breeding activity takes formulation that can be used as a guide in selecting the cows and to maintain performance.

4. Conclusion
The relationship between heart girth and body condition scoring is very close, which is shown in the regression equation $Y = 0.0721X - 4.447$ to predict pregnancy ability in cows. The regression equation will greatly help smallholder farmers in the participatory breeding system.

Acknowledgment
This research was supported by Research Grant “Prioritas Riset Nasional”, Ministry of Research and Technology, Indonesia.

References
[1] Mirza R H, Khan M A, Waheed A, Akhtar M, Raihan-Dilshad S M, Faraz A, Ishaq H M and Kuthu Z H 2020 Heritability estimates of somebody measurements in Nili Ravi buffaloes J. Anim. Plant Sci. 30 537–44
[2] Otoikhian C S O, Otoikhian A M, Akporhuaro O P andlsidahomen C 2008 Correlation of body weight and some body measurement parameters in Ouda sheep under an extensive management system Afr. J. Gen. Agric. 3 129–33
[3] Mclellan B 2018 *Environment and Resources* (Singapore: Springer) pp 37-68
[4] Berry D P, Buckley F, Dillon P, Evans R D, Rath M and Veerkamp R F 2003 Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models *J. Dairy Sci.* 86 3704–17
[5] Kertz A F, Reutzel L F, Barton B A and Ely R L 1997 Body weight, body condition score, and wither height of prepartum Holstein cows and birth weight and sex of calves by parity: a database and summary *J. Dairy Sci.* 80 525–29
[6] Alphonsus C, Akpa G N, Oni O O, Rekwot P I, Barje P P, Yashim S M, Alphonsus C, Akpal G N, Oni O O, R P I Barje P P and Yashim S M 2010 Relationship of linear conformation traits with body weight, body condition score and milk yield in Friesian × Bunaji cows relationship of linear conformation traits with body weight , body condition score and milk yield in Friesian x Bunaji cows *J. Appl. Anim. Res.* 38 97–100
[7] Katongole C B, Mpairwe D, Bareeba F B, Mukasa-Mugerwa E and Ebong C 2013 Predicting body weight from heart girth, height at withers and body condition score in *Bos indicus* cattle bulls of Uganda *Livestock Res. Rural Develop.* 25 3149