Amorphous Precursors of Crystallization during Spinodal Decomposition

Leopoldo R. Gómez1,∗ and Daniel A. Vega1

1Department of Physics and Instituto de Fisica del Sur, IFISUR (UNS-CONICET), Apartado 1528, (8000) Bahía Blanca, Argentina.
2Instituut-Lorentz, Universiteit Leiden, P. O. Box 9506, 2300 RA Leiden, The Netherlands.

(Dated: December 21, 2010)

A general Landau’s free energy functional is used to study the dynamics of crystallization during liquid-solid Spinodal Decomposition (SD). The strong length scale selectivity imposed during the early stage of SD induces the appearance of small precursors for crystallization with icoshedral order. These precursors grow in densely packed clusters of tetrahedra through the addition of new particles. As the average size of the amorphous nuclei becomes large enough to reduce geometric frustration, crystalline particles with a body center cubic symmetry (bcc) heterogeneously nucleates on the growing clusters. The volume fraction of the crystalline phase is strongly dependant on the depth of quench. At deep quenchs, the SD mechanism produces amorphous structures arranged in dense polytetrahedral aggregates.

According to the classical theory of symmetry breaking phase transitions, the crystallization process may proceed via two distinct mechanisms, nucleation and growth (NG) or spinodal decomposition (SD) [1]. In the NG mechanism the initial disordered phase is metastable and the relaxation of the system is promoted by the overcoming of a free energy barrier. This process involves the formation of a critical nucleus of the crystalline phase by structural fluctuations. Differently from the NG process, SD does not require large fluctuations to initiate the phase transition and it is characterized by the exponential growth of density fluctuations of a dominating wavelength, entirely determined by the thermodynamic properties of the system. At early times this process leads to the formation of disordered isotropic states that eventually evolve towards the equilibrium phase through coarsening [2], [3].

Although this classical picture provides a qualitative description of the phenomenology involved in the phase transition process, during the last thirty years, experiments, theory and simulations have shown that the process of crystallization is far from being trivial. For example, in the NG regime, the kinetic pathway towards equilibrium may involve intermediate phases with a symmetry different than the corresponding to equilibrium [4]-[6]. According to the Ostwald’s step rule the nucleated phase is not necessarily the thermodynamically most stable, but the energetically closest to the disordered state [4]. A similar process was observed in the crystallization of globular proteins and colloids, where density inhomogenities in the fluid lower the free energy barrier for NG [6]-[9]. On the other hand, the relaxation in the spinodal region is still poorly understood. For example, it has been recently observed that thermal fluctuations play an important role in the dynamics of SD. In the neighborhood of the spinodal line it was found that the equilibrium phase can be pseudo-nucleated by density wave fluctuations [10]. A complex phase separation kinetics have been observed also in different systems, like colloids and polymers, where it has been found that a spinodal-like dynamics can precedes the crystallization process [10], [11].

In this work a continuous Landau’s free energy expansion and a relaxational dynamics are used to study the kinetics of crystallization of a bcc structure in the spinodal region. As compared with molecular dynamics simulations, the field phase approach employed here naturally incorporates the elasticity of the bcc crystals and provides an efficient approach over diffusive time scales, while the identification of the precursors of crystallization as well as amorphous and crystalline regions can be easily determined through the local amplitude of the continuum order parameter.

Symmetry-breaking phase transition in a wide variety of systems can be studied through an expansion of the free energy Φ in terms of an appropriated order parameter ψ. Here we employ the expansion [12]:

$$\Phi = \int \left\{ W(\psi) + D(\nabla \psi)^2 + b \left(\frac{\psi(r)\psi(r')}{|r-r'|} \right) dV' \right\} dV, \quad (1)$$

where $W(\psi) = -\tau \psi^2 + \nu \psi^3 + \lambda \psi^4$ Here the order parameter represents the deviation of the particle density from the uniform value characteristic of the liquid state (where $\psi = 0$). The parameter τ is proportional to $T_S - T$, being a measurement of the deep of quench, with T_S the spinodal temperature where the continuous phase transition begins. The constants ν and λ are related to the symmetry and saturation of ψ at equilibrium, and D is a free energy penalization to spatial variations of the order parameter [2], [3], [13].

The dynamics of SD can be studied through a Cahn-Hilliard equation [14]:

$$\frac{\partial \psi}{\partial t} = M \nabla^2 \left\{ \delta \Phi / \delta \psi \right\},$$

where M is a mobility coefficient [15].

Since the initial disordered state is characterized by small fluctuations ($\psi \sim 0$), the early dynamics is almost linear and the system’s state can be described as a
FIG. 1. Early autocorrelation function \(C(r) \) for a system quenched into the spinodal region with reduced temperatures \(\tau_r = (\tau - \tau_S)/\tau_S = 1 \times 10^{-5} \) (black line) and \(\tau_r = 1 \times 10^{-1} \) (blue line). The dashed red line indicates \(C(r) \sim 1/r \). The inset shows the early time real space fluctuations (left) and the formation of precursor by the non-linear enhancement of density fluctuations (right).

Random superposition of density waves of the form \[\psi(r, t) = \sum_k A_k e^{i k \cdot r + \lambda(k) t} \] Here \(A_k \) is the initial amplitude of the \(k \)-mode and the amplification factor \(\lambda(k) = -D k^4 + \tau k^2 - b \) selects the range of unstable modes (those modes for which \(\lambda(k) > 0 \)). In real space the system display a disordered pattern characterized by dominating length scale related with the most unstable modes [10].

For systems quenched near below the spinodal line, where \(\tau_S = 2 \sqrt{bD} \), the region of unstable modes becomes sharply peaked around a dominating wave vector amplitude \(k_0 \sim \sqrt{\tau/D} \). In this case the random superposition of modes leads to the emergence of a strongly correlated filamentary network of density wave fluctuations, with strong similarities to those found in quantum billiards and other physical phenomena involving random wave superposition [10]. Figure 1 shows the long range density correlations that emerge in the early state. In this case, the azimuthally averaged two point correlation function, \(C(r) = \langle \int d^3r' \psi(r') \psi(r+r') \rangle \), of a critically quenched system behaves like a Bessel function decaying as \(C(r) \sim 1/r \), in agreement with the theoretical predictions for the random superposition of waves [10]. For sub-critical systems (\(\tau > \tau_s \) the network of fluctuations loose correlation and \(C(r) \) decays faster. As shown below, the early correlations in \(\psi \) have a profound effect in the later evolution of the system.

As time proceeds, there is a continuous amplification of \(\psi \) until the anharmonic terms of the free energy functional cannot be neglected and nonlinear dynamics comes into play. While at deep quenches there is a lack of correlation in \(\psi \) and the classical picture of SD is recovered, at shallow quenches the early network of density wave fluctuations trigger the inhomogeneous appearance of precursors for crystallization (Figure 1). Note that the local symmetry of the precursors is dictated by non-linear dynamic effects and does not necessarily coincides with the symmetry of the phase of equilibrium.

In order to track the evolution of the system we identify structural features by means of Voronoi diagrams through the centers of the particles (bulk particles are defined as local maxima of \(\psi \)). Voronoi diagrams indi-

FIG. 2. (a) Precursor formed by four icosahedral particles (red) and their first neighbors (yellow). Red lines indicate bonds between icosahedral particles and blue lines between icosahedra and first neighbors. Inset: Voronoi diagram of an icosahedral particle (dodecahedron). (b) Precursor formed by a compact cluster of icosahedra arranged in the vertex of a tetrahedron. (c) Propagating amorphous nuclei (yellow) having compact clusters and small chains of icosahedral particles (red). (d) Regular tetrahedron (down right), where yellow spheres indicate the particles and green sphere indicates the tetrahedron center’s, and polytetrahedral aggregate (up), where black lines connect tetrahedra with common faces.
cate that the early precursors are constituted by compact clusters and chains of icosahedrally arranged particles (Figs. 2a y 2b). That is, the symmetry of the precursors is dictated by the non-linear dynamics rather than by equilibrium states.

The presence of precursors with icosahedral symmetry in the early stage of SD is not surprising. One of the oldest scenarios for the formation of amorphous matter and glasses is geometrical frustration. According to this scenario, the amorphization of supercooled liquids is related with their tendency to form locally compact structures, like icosahedra, incompatible with translational symmetries [10]-[19]. The symmetry found in the precursors is also in agreement with the Alexander-McTague prediction which indicates that local icosahedral order is favored in the absence of a NG mechanism [20].

Once the precursors have been formed, they begin to grow with an approximately spherical shape at a constant rate by the addition of new particles (Fig. 2c). Given that the initial symmetry is incompatible with translational order, the aggregation process produces growing amorphous clusters without any appreciable symmetry. As the size of the precursors increases, the geometrical frustration is reduced and a number of particles begin to aggregate with a crystalline structure at the front of the propagating precursor (Fig. 3a) [21].

This process of surface crystalline nucleation shows similarities with Monte Carlo results for the heterogeneous nucleation on the surface of spherical colloidal seeds [22]. In agreement with the Monte Carlo simulations, here we also observe that the crystalline particles do not span the whole surface of the precursor because crystals cannot grow without generating amorphous regions. Then, the growing nuclei shows an amorphous core surrounded by a shell constituted by amorphous and crystalline phases (Fig. 3a). A similar phenomena has been also observed in the freezing gold nanoclusters where initially the system crystallize on the surface of the nuclei while the amorphous core with icosahedrally arranged particles remains stable for some time [23].

Figure 3b shows the average radial profile of the ratio between the fraction of crystalline particles on the propagating nuclei \(f_{cN} \) and the final fraction of crystalline particles throughout the system \(f_{cT} \). This figure shows that crystalline particles begin to nucleate at the surface of the amorphous precursors for radius of the order of \(r_c \sim (3 - 5)a \), with \(a \) the inter-particle average distance, also in good agreement with the results of Cacciuto et al. [22]. Then for \(r < r_c \) the high curvature of the precursors clearly frustrates the formation of crystal bonds. The subsequent growth and collision of the different propagating nuclei leads to the formation of a structure having crystalline and amorphous regions (Fig. 3c).

Once the SD process has been completed, the volume fraction of crystals in the system depends strongly on temperature. As the depth of quench increases, there is a larger number of unstable modes in the system and \(C(r) \) decays faster than \(1/r \) (Fig. 1). Consequently, as the temperature of quench drops, the number of amorphous precursors increases, incrementing in this way the fraction of amorphous material. Figure 3d shows the fraction of crystalline particles \(f_{cT} \) as a function of the reduced temperature \(\tau_r = (r - \tau_s)/\tau_s \). We found that \(f_{cT} \) follows a power law with \(\tau_r \) (\(f_{cT} \sim \tau_r^{-1/2} \)). This behavior is consistent with previous results indicating that the average distance between precursors \(\xi \) diverge as \(\xi \sim \tau_r^{-\eta} \) (\(\eta \sim 1/5, f_{cT} \sim \xi^4 \)) [10].

To identify the symmetry of the crystalline phase surrounding the amorphous precursor we applied the bond order parameter analysis introduced by Steinhardt et al. [17], where the local structure is characterized in terms of the symmetry of near neighbor bonds by using spherical harmonics. The distributions of the bond order pa-

![FIG. 3.](image_url)
rameters are very sensitive to the underlaying symmetry, allowing a clear identification of the structure. Figures 3f and 3g show the distributions of the rotational invariants q_6 and w_6, for the amorphous and crystalline regions. These distributions reveal that crystal particles arrange in a bcc lattice (peaks at $q_6 \approx 0.5$ and $w_6 \sim 10^{-3}$) while in the amorphous phase both distributions become broader and shifted towards the low bond order parameter region \cite{4, 17}.

At long times the relaxation of the system continues through a complex process involving structural changes (coarsening), where there is an invasion of the crystalline structure on the amorphous regions. However, at low temperatures the dynamics can be highly arrested and the structure freezes.

In conclusion, we have presented evidence of a new mechanism of crystallization during SD, induced by amorphous precursors. Local icosahedral clusters and amorphous precursors are kinetically favored by the early dynamics of SD. Crystalline particles aggregate on these precursors in a similar way as heterogeneous nucleation on spherical colloidal seeds. Our results are in qualitative agreement with recent NG work in colloidal systems \cite{26}. Although the relaxational mechanism studied here can be easily confused with conventional NG, it is hoped that the phenomenon of crystallization in the neighborhood of the spinodal can be experimentally observed in systems with a slow dynamics and a high length-scale selectivity like hard-sphere colloidal suspension or block copolymers.

We thank V. Vitelli for helpful discussions, and support by the Universidad Nacional del Sur (UNS), the National Research Council of Argentina (CONICET), the National Agency of Scientific and Technique Promotion (ANPCyT), and the FOM-Shell Industrial Partnership Programme.

FIG. 4. Pair correlation functions $g(r)$ calculated with the centres of all the particles (red) and with the centres of the icosahedra (black). Inset: distribution for the q_3 bond order parameter (left) and the pair correlation function calculated through the center of the regular tetrahedra (right).
[1] P. G. Debenedetti, *Metastable Liquids: Concepts and Principles* (Princeton University Press, Princeton, NJ, 1998).
[2] D. A. Vega, C. K. Harrison, D. E. Angelescu, M. L. Travers, D. A. Huse, P. M. Chaikin, and R. A. Register, Phys. Rev. E 71, 061803 (2005).
[3] L. R. Gómez, E. M. Vallés, and D. A. Vega, Phys. Rev. Lett. 97, 188302 (2006).
[4] U. Gasser, E. R. Weeks, A. Schofield, P. N. Pussey, and D. A. Weitz, Science 292, 258 (2001).
[5] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995).
[6] P. R. ten Wolde and D. Frenkel, Science 277, 1975 (1997).
[7] H. J. Schope, G. Bryant, and W. van Megen, Phys. Rev. Lett. 96, 175701 (2006).
[8] P. G. Vekilov, Cryst. Growth Des. 4, 671 (2004).
[9] J. F. Lutsko and G. Nicolis, Phys. Rev. Lett. 96, 046102 (2006).
[10] D. A. Vega and L. R. Gómez, Phys. Rev. E 79, 051607 (2009).
[11] S. Pickering and I. Snook, Physica A 240, 297 (1997).
[12] M. Seul and D. Andelman, Science 267, 476 (1995).
[13] W. Li, F. Qiu, Y. Yang and A. Shi, Macromolecules 43, 1644 (2010).
[14] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).
[15] See supplementary material for details on numerical methods and structural analysis.
[16] F. C. Frank, Proc. R. Soc. A 215, 43 (1952).
[17] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
[18] T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D. M. Herlach, Phys. Rev. Lett. 89, 075507 (2002).
[19] C. P. Royall, S. R. Williams, T. Ohtsuka, and H. Tanaka, Nature Mat. 7, 556 (2008).
[20] S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978).
[21] Here crystalline particles are identified by using an algorithm that finds ordered regions independently of the symmetry \[\text{[4], [5].} \]
[22] A. Cacciuto, S. Auer, and D. Frenkel, Nature 428, 404 (2004).
[23] H. S. Nam, N. M. Hwang, B. D. Yu, and J.K. Yoon, Phys. Rev. Lett. 89, 275502 (2002).
[24] U. Gasser, A. Schofield, and D. A. Weitz, J. Phys.: Condens. Matter 15, S375 (2003).
[25] A. V. Anikeenko and N. N. Medvedev, Phys. Rev. Lett. 98, 235504 (2007).
[26] T. Kawasaki and H. Tanaka, Proc. Natl. Aca. Sci. USA 107, 14036 (2010).