Simulation of the hydrodynamics in polymerizers based on the CFD model for the synthesis of rubbers and plastics using the method of the solution polymerization

I O Antonova¹, R R Dmitricheva¹, G V Manuyko¹, G A Aminova¹, V V Bronskaya², O S Kharitonova¹, A T Gimaltynov¹, T V Ignashina² and D S Balsamov⁴

¹Department of Technology of Engineering Materials, Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russia
²Department of Chemical Process Engineering, Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russia
³Department of Chemical Technology of Petroleum and Gas Processing, Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russia
⁴Department of Power Supply of Enterprises and Energy Resource Saving Technologies, Kazan State Power Engineering University, Krasnoselskaya St., 51, Kazan 420066, Russia

E-mail: olga.220499@mail.ru

Abstract. Mixing in a viscous medium, such as in polymerization processes, is worth noting. To control the polymerization process for improving the product quality, it is important to understand the mixing process. Also, it is essential to understand the flow behaviour in the stirred-tank reactor for the equipment design and from the point of view of the large-scale transition of the process. Local and general characteristics of mixing in the reactor are related to the design and selected speed of the agitator. 3D-modeling of the flow in the cylindrical reactor with the paddle stirrer was carried out using the potential of a supercomputer. Numerical results showed good consistency with experimental results and correlation developed by other researchers. To determine the best mode of introduction into the paddle space of the stirrer, two efficiency criteria were used: with respect to power and mixing time.

1. Introduction

Earlier research on mixing is based on the development of mathematical models of mixing [1-11]. The problems that occur in these models for periodic or continuous polymerization in the stirred-tank reactor are related to the fact that the increase in viscosity during the polymerization quickly changes the initial assumptions about the homogeneity, which regulate the main aspects of the mixing process. Another problem for the stirred-tank reactors is the difficulty of combining mathematically complex polymerization kinetics with mixing models. These problems can be partially overcome using the computational fluid dynamics (CFD). Computational fluid dynamics is a design tool for developing new processes and optimizing existing ones. The development of computational fluid dynamics has made it possible to visualize mixing processes without conducting the real-time experiments, which are not feasible in some cases. Recent developments in the computer technology have made the computational fluid dynamics an attractive tool for designing, optimizing and visualizing various processes.
es. Mixing models which are implemented using the computational fluid dynamics can be useful in the transition from laboratory installations to industrial production [12-22]. CFD provides the information about the turbulent zone and introducing reagents in areas with the intense turbulence can help improve the product yield.

Radial fluid flows are mainly created in the stirred-tank reactor with turbine agitators. When working with turbine agitators with a large number of revolutions, along with the radial flow, a tangential (circular) flow of the device contents and the formation of a funnel may occur. In this case, the infringement baffles are installed in the device.

2. Materials and Methods
In this paper, the velocity fields in the stirred-tank reactor were studied for a stationary process using ANSYS Fluent.

It is built the geometry of the device with a radius of 0.15 m and a height of 1 m, the agitator radius of 0.05 m, the mixing arm height of 0.022 m, the mixing arm length of 0.04 m, the mixing arm thickness of 0.004 m, the agitator shaft diameter of 0.02 m, the speed of rotation of the agitator varied within 1-20 rpm. Hexane was chosen as the working fluid so it has an absolute viscosity at 20°C of 0.3×10^{-3} (dyne·s/cm²) and a density of 655 kg/m³.

The stirred-tank reactor creates a three-dimensional flow, so the basis of the mathematical solution of the problem is a system of differential equations describing the movement in the reactor with the turbine agitator, which are based on the Navier-Stokes equations and the continuity equation of the three-dimensional problem statement. In this system of 4 equations, the 3 components of velocity and pressure are the independent required parameters.

The flow of liquid in the reactor due to the action of the agitator is represented by current lines. In the solution area, the velocity profiles, such as the average axial, tangential and radial velocities, were obtained.

3. Results
As a result of numerical experiments in the stirred-tank reactor with a turbine agitator (figure 1–8), the existence of an axial flow that provides secondary circulation is revealed.

Creating a model (hydrodynamic module) for the synthesis of synthetic rubber (SR) and software implementation was carried out on the basis of the FLUENT 16 software package using the supercomputer complex of the Joint Supercomputer Center of the Russian Academy of Sciences.

Computational fluid dynamics algorithms for an incompressible fluid are based on solving the Navier-Stokes or Reynolds equations (elliptical type) to determine the pressure that connects the entire flow region at each moment of time.

![Figure 1. The network in the sector of the reactor.](image-url)
Figure 2. The field of total velocities in the stirred-tank reactor.

Figure 3. The profile of total velocities in the cross section of the mixing arms.
Figure 4. The radial velocity profile in the cross section of the mixing arms, laminary viscosity model.

Figure 5. The axial velocity profile in the cross section of the mixing arms, viscous laminar model.
Figure 6. The radial velocity profile in the cross section of the agitator arms, k-ε model.

Figure 7. The axial velocity profile in the cross section of the agitator arms, k-ε model.
Figure 8. The total velocity profile in the cross section of the agitator arms, laminar viscosity model.
The implementation of computations of all the main resource-intensive operations leads to the need to parallelize the task on the supercomputer. An increase in the number of computational units for solving the problem leads to "saturation" in which there is no increase in performance (Figure 9). This is due to an increase in the consumption of exchanging information between computing units. Moreover, the larger the size of the computational stack is, the more the number of units can be used for computation on it. The exchange between computing units is limited by the speed of transfer of information. These phenomena are associated with the limitation of the growth of a computer network by Amdahl's law, while the network topology, memory access problems and its optimization difficulties, possible problems in optimizing the MPI parallelization process are important.

Figure 9. The dependence of the computational error on the number of iterations.

In the calculations, such components of the CFD-model as the geometry of the reactor with the paddle stirrer, the computational grid, the boundary conditions and physical properties of materials, the k-ε turbulence model and the parameters of the numerical solution of the system of transport equations were specified.

The equations are written in the cylindrical coordinates. In this system of 4 equations, the independent required parameters are 3 components of velocity and pressure.

The numerical algorithm is based on the final volume method for the unstructured grid. The complexity of numerical algorithms based on the grid methods for the Navier-Stokes and Reynolds equations is the determination of the relationship between the pressure field and the velocity field, which is provided by the continuity equation implemented using the SIMPLE algorithm on aligned grids. The values of the velocity and pressure fields are stored in the same units that is the centers of the control volumes (aligned grids). From the point of view of software implementation, aligned grids are the most economical.

The calculations were performed on different grids using single precision. Calculations were carried out on a grid containing 1 million cells using 50 processors (200 cores) of a supercomputer.
In addition, the calculation and analysis of the technological characteristics of the agitator was carried out. The power criterion K_N was determined by

$$K_N = z_0 \frac{\pi^2}{6} \frac{h_0}{d_m} \left[1 - \left(\frac{r_m}{r_0}\right)^3\right] Re_c^{-1}$$

(1)

where: z_0 is the number of agitator arms, λ is the resistance coefficient of the central plates, h_0 is the height of projection of the arm on the meridional plane, m, r_m is the radius of the inner edge of the arm, m, $r_0 = 0.5d_m$, $Re_c = \frac{\rho d_m^2 n}{\mu}$ is the centrifugal Reynolds criterion, where ρ is the density of the medium, kg/m^3, n is the rotational speed of the agitator, rps, μ is the dynamic viscosity coefficient of the medium, $Pa\cdot s$, d_m is the diameter of the agitator, m.

The power consumed for mixing $N [W]$ was found as follows:

$$N = K_N \rho d_m^5 n^5$$

(2)

where: n is the speed of the agitator, rps or rpm, ρ is the density of the medium, kg/m^3, d_m is the diameter of the agitator, m.

Also, one of the most important characteristics is the ram effect (or supply) V_c, i.e. the volume of liquid flowing to the agitator per unit of time and, thus, V_c determines the circulation of the liquid in the reactor:

$$V_c = \frac{Q}{n d_m^3}$$

(3)

where Q is the volumetric flow rate, m^3/s.

4. Discussion

The copolymerization of isobutylene with isoprene proceeds according to the cationic mechanism. Cationic polymerizations are the least studied which is explained by the very high reaction rate that consists of a large number of stages. This reaction is highly exothermic and is carried out at temperatures which are close to the freezing point of the reaction mass (nearly -95$^\circ$C). Maintaining such a low temperature in the reaction zone is necessary to ensure the quality of the produced butyl rubber, i.e. its molecular weight, composition, viscosity. It is known that when the temperature in the reaction zone rises above minus 50$^\circ$C, the rubber of low molecular weight is obtained, which makes it unsuitable for further use. Therefore, to provide the required low temperature in the polymerization zone, the reactor is equipped with 6 heat exchange elements, which are tube bundles with 205 tubes. The reaction medium is cooled with boiling liquid ethylene, which circulates through the tubes of heat exchangers. Also, to intensify the heat transfer process inside the reactor, it is equipped with a high-speed turbine agitator, which has a rotational speed of about 230 rpm.

Optimal for the mixing process is to reduce the consumed power and increase the ram effect (Figure 10).
Figure 10. The dependence of the power N and ram effect V_c on the radius and speed of the agitator under $\lambda = 42$, $Q = 10^{-6}$ m3/s, $h = 0.3$.

5. Conclusion
Thus, it is obtained the results of numerical simulation of the stirred-tank reactor with the turbine agitator in order to analyze the behavior of the power criterion and other characteristics of the process.

6. Acknowledgments
The study was carried out within the framework of a scientific project of The Russian Foundation for Basic Research № 13-03-01308-a.

References
[1] Markina E A 2010 Sintez butylkauchuka s ispol'zovaniem modifitsirovannoy kataliticheskoy sistemy na osnove khloristogo alyuminiya: dissertatsiya na soiskaniye uchenoy stepeni kandidata khimicheskikh nauk [Synthesis of butyl rubber using a modified catalytic system based on the aluminium chloride: PhD] (Kazan: KGTU) [in Russian]
[2] Sangalov Yu A and Minskiy K S 2001 Polimery` i sopolimery` izobutilena: Fundamental`ny`e problemy` i prikladny`e aspekty` [Polymers and copolymers of isobutylene: Fundamental problems and applied aspects] (Ufa: Gilem) [in Russian]
[3] Fribe L, Nuyken O, Windisch H and Obrecht W 2002 Polymerization of 1,3-butadiene initiated by neodymium versatate/dizobutilaluminium hydride/ethylaluminium sesquichloride: kinetics and conclusions about the reaction mechanism Macromolecular Chem. and Phys. 203(8) 1055-64
[4] Balzamov D S, Balzamova E Yu, Ibatullin S R and Sabitov L S 2019 Efficiency increase of gas turbine work in the summer period IOP Conf. Ser.: Mater. Sci. Eng. 570 012008
[5] Balzamov D S, Balzamova E Yu, Bronskaya VV and Valitov N V 2020 Possibility of using associated petroleum gas as a fuel for a production boiler house IOP Conf. Ser.: Mater. Sci. Eng. 791 012006
[6] Dmitricheva R R, Antonova I O, Manuyko G V, Aminova G A, Bronskaya V V, Shaikhetdinova R S, Balzamov D S and Kharitonova O S 2020 Obtaining medium molecular characteristics of cation copolymerization of isobutylene and isoprene IOP Conf. Ser.: Mater. Sci. Eng. 862 062045
[7] Manuiko G V, Salakhov I I, Aminova G A, Akhmetov I G, Dyakonov G S, Bronskaya V V and Demidova E V 2010 Mathematical modeling of 1,3-butadiene polymerization over a neodymium-based catalyst in a batch reactor with account taken of the multisite nature of the catalyst and chain transfer to the polymer Theoretical Foundations of Chemical Eng. 44 139-49

[8] Quirk R P, Kells R P, Yunlu K nad Cuif J P 2000 Butadiene polymerization using neodymium versatate-based catalysts: catalyst optimization and effects of water and excess versatic acid Polymer 41(15) 5903-8

[9] Aminova G A, Manuiko G V, Bronskaya V V, Ignashina T V, D’yakonov G S, Bashkirov D V and Demidova E V 2008 Influence of chain-transfer reactions on the molecular-weight-distribution function of diene rubber on a neodymium-containing catalyst system J. of Eng. Physics and Thermophysics 81 1247-51

[10] Manuiko G V, Aminova G A, Bronskaya V V., Ignashina T V, D’Yakonov G S and Bashkirov D 2008 Calculation of the molecular weight distribution of the polymer produced in a cascade of reactors with allowance for chain transfer to the polymer Theoretical Foundations of Chemical Engineering 42 336-9

[11] Aminova G A, Manuiko G V, Litvinenko G I, D’Yakonov G S, Zolotarev V L, Filipova A G, Ignashina T V, Davydova V V and Antonova O V 2002 Mechanism of butadiene polymerization on cobalt-containing catalyst Russian J. of Applied Chem. 75(7) 1146-50

[12] Manuiko G V, Bashkirov D V, Bronskaya V V, Ignashina T V, Kharitonova O S and Aminova G A 2020 Creating molecular weight distribution of butadiene rubber on neodymium-based catalytic system IOP Conf. Series: Mater. Sci. Eng. 734 012066

[13] Iovu H, Hubca G, Racoti D and Hurst J S 1999 Modelling of the butadiene and isoprene polymerization processes with a binary neodimium-based catalyst European Polymer J. 35(2) 335-44

[14] Pros A, Marquardt P, Reichert K-H, Nentwig W and Knauf T 1993 Modelling the polymerization of 1,3-butadiene in solution with a neodium catalyst Die Angewandte Macromolekulare Chemie 211(1) 89-101

[15] Quiteria V R-S, Sierra C A, Gómez-Fatou J M, Galan C and Fraga L M 1999 Tin-coupled styrene-butadiene rubbers (SBRs) – Relationship between coupling type and properties Macromolecular Materials and Eng. 246(1) 85-96

[16] Uraneck C A and Short J N 1970 Solution-polymerized rubbers with superior breakdown properties J. Applied Polymer Sci. 14(6) 1421-32

[17] Kharitonova O S, Bronskaya V V, Ignashina T V, Al-Muntaser A A and Khairullina L E 2001 Modeling of absorption process using neural networks IOP Conf. Series: Earth Environ. Sci. 315 032025

[18] McIntosh W C, Hamann E, Oertel R and Bartke M 2007 Estimation of Kinetic Parameters for the Polar-Modified Anionic Solution Copolymerization of 1,3-Butadiene and Styrene Macromolecular Symposia 259(1) 102-9

[19] Iovu M C, Buzdugan E, Teodorescu M, Britchi A G, Hubca G and Iovu H 1999 Copolymerization of styrene with butadiene using methyl tertbutyl ether as active center modifier Macromolecular Materials and Engineering 271(1) 18-23

[20] Worsfold D J and Bywater S 1964 Anionic polymerization of isoprene Canadian J. of Chemistry 42(12) 2884-92

[21] Chang C C, Halasa A F, MillerJr J W and Hsu W L 1994 Modelling studies of the controlled anionic copolymerization of butadiene and styrene Polymer Int. 33(2) 151-9

[22] Hsieh H L and Yeh H C 1985 Polymerization of Butadiene and Isoprene with Lanthanide Catalysts; Characterization and Properties of Homopolymers and Copolymers Rubber Chem. Technol. 58(1) 117-45 (https://doi.org/10.5254/1.3536054)