Title
Motor Imagery in Clinical Disorders: Importance and Implications

Authors(s)
Moran, Aidan P.; Bramham, Jessica; Collet, Christian; et al.

Publication date
2015-02-18

Publication information
Frontiers in Psychiatry, 6 (23):

Publisher
Frontiers

Item record/more information
http://hdl.handle.net/10197/6361

Publisher's statement
This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission

Publisher's version (DOI)
10.3389/fpsyg.2015.00023
Motor imagery in clinical disorders: importance and implications

Aidan Moran1,*, Jessica Bramham1, Christian Collet2, Aymeric Guillot2,3 and Tadhg Eoghan MacIntyre4

1 School of Psychology, University College Dublin, Dublin, Ireland
2 Centre de Recherche et d’Innovation sur le Sport, Université Claude Bernard Lyon 1, Villeurbanne, France
3 Institut Universitaire de France, Paris, France
4 Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland

*Correspondence: aidan.moran@ucd.ie

Keywords: motor imagery, mental imagery, post-traumatic stress disorder, personality disorders, social anxiety disorder

One of our most remarkable mental capacities is the ability to use our imagination voluntarily to mimic or simulate sensations, actions, and other experiences. For example, we can “see” things in our mind’s eye, “hear” sounds in our mind’s ear, and imagine motor experiences like running away from, or perhaps “freezing” in the face of, danger. Since the early 1990s (1), researchers have investigated “mental imagery” or the multimodal cognitive simulation process by which we represent perceptual information in our minds in the absence of sensory input (2).

Although visual imagery has attracted most research attention to date (3), there has been an upsurge of interest in cognitive neuroscience and sport psychology in non-visual simulation processes such as “motor imagery” (MI) - or the mental rehearsal of actions without engaging in the physical movements involved (4). This trend is attributable mainly to the discovery of close parallels between the neurocognitive mechanisms underlying imagination and motor control. Specifically, inspired by Jeannerod’s (5–7) simulation theory of action representation, researchers have discovered that MI recruits similar neural pathways and mechanisms to those involved in actual movements. For example, Hétu et al. (8) showed that the neural network of MI includes several cortical regions known to underlie actual motor execution. Building on this apparent functional equivalence between imagined and executed actions, the present article explores the implications of research on MI for increased understanding of three clinical conditions – post-traumatic stress disorder (PTSD), personality disorder, and social anxiety disorder (SAD).

Before we begin, however, some background information on imagery processes in psychopathology is required.

Arising from Kosslyn’s proposition that mental imagery plays “a special role in representing emotionally charged material” (9), p. 405; see also Ref. (10), researchers have examined the role of imagery processes in the onset, maintenance, and treatment of various psychological disorders (11–13). A consistent finding is that negative, vivid, and distressing involuntary (“intrusive”) imagery is a “transdiagnostic” feature of depression (14), SAD (15), PTSD (16), and obsessive-compulsive disorder (OCD; 17). For example, Weßlau and Steil (14) reported that more than one in three depressed people suffer from involuntary negative mental imagery. Furthermore, people’s capacity to use imagery prospectively is significantly impaired in certain clinical disorders. Thus, Morina et al. (18) discovered that depressed patients were less capable of imagining positive future outcomes than were non-depressed controls. Imagery processes also help in the treatment of psychopathology. Indeed, Holmes et al. (19) evaluated the therapeutic value of “imagery rescripting” [where distressing images are modified to change their associated thoughts, feelings, and behavior; (20)] in the treatment of PTSD. Clearly, imagery research represents “a new and important arena” [Pearson et al. (13), p. 3] for clinical psychology.

Despite increased awareness of imagery processes in psychopathology, there is at least one significant gap in research in this field. Specifically, little is known about the role of MI in clinical disorders. Curiously, despite the multimodal nature of imagery (21), clinical researchers have tended to focus mainly on its visual component. Thus, Weßlau and Steil (14) proclaimed that in imagery, although “other sensory components such as smells, sounds, or haptic sensations… may be present… the visual aspect is the necessary and sufficient condition” (our italics, p. 274). This proposition may be challenged, however, by evidence that mildly to moderately depressed patients experience proportionately more somatic (39.6%) than visual (27.2%) imagery (17). More importantly, MI processes may help to elucidate the mechanisms underlying clinical conditions with distinctive motor components. For example, Chen et al. (22) discovered that depressed patients have difficulties in the mental rotation of hand stimuli. These imagery deficits reflect “an underlying slowing down of motor preparation, which may contribute to psychomotor retardation” (p. 341).

Let us now consider three specific disorders in which MI processes are potentially significant - PTSD, personality disorders, and SAD.

POST-TRAUMATIC STRESS DISORDER

Post-traumatic stress disorder typically involves a threat to an individual’s physical integrity [DSM-V; (23)]. This threat may prompt movement execution either
through resistance to attack (fight) or through intended escape (flight) (24). Accordingly, it seems plausible that re-experiencing a traumatic event in the form of “flashbacks” will involve MI. Corroborating this hypothesis, research shows that flashbacks are associated with increases in various types of motor behavior (25). More recently, neuroimaging paradigms in which individuals with PTSD imagine their traumatic experience or simulate flashbacks have shown increased cerebral blood flow to the motor cortex including the precentral gyrus and supplementary motor area (26, 27). These findings shed light on the neurocognitive mechanisms underlying PTSD disorders because they confirm the involvement of motor cortex in the simulated re-experiencing of traumatic events.

Another link between PTSD and MI processes has emerged from recent studies of the “freeze” response or tonic immobility. Briefly, tonic immobility is an involuntary, reflexive state, characterized by apparent physical paralysis, muscular rigidity, and inability to vocalize (28, 29). For animals, it may be a last line of defense because it reduces the likelihood that predators will continue to attack them (30). The freeze response is more complex in humans, however, as it may be triggered by symbolic events such as the perception that a situation is inescapable (31). Interestingly, although “freezing” was first noted as a characteristic of sexual assault (32) - with up to 37-52% of such assault survivors reporting tonic immobility - it has also been identified among victims of other traumas including physical assault and natural disasters (33). Accordingly, tonic immobilization has been proposed as a core sign of trauma in PTSD (34). Unfortunately, peri-traumatic tonic immobility has been shown to predict a poor response to pharmacological treatment (35, 36) which suggests that psychological processes may be especially significant in this form of PTSD. Recently, Bovin et al. (37) discovered that guilt (i.e., negative evaluation of an action or inaction) mediated the association between tonic immobilization and PTSD symptom severity. These authors speculated that guilt may be a mechanism through which individuals develop PTSD following tonic immobilization. The argument here is that during the tonic immobilization experienced in the trauma situation, victims may feel guilty about their lack of action – which renders them especially vulnerable to developing PTSD. As tonic immobilization is a key risk factor for PTSD, interventions that are targeted to remediate the impact of the freeze response could provide a fruitful strategy for the reduction or prevention of PTSD symptoms (36). Therefore, we propose that rescripting based on MI (“remobilizing”) could prove valuable as an intervention technique for PTSD (38).

Recent studies show that tonic immobilization during childhood sexual abuse is associated with the onset of subsequent PTSD symptomatology in adulthood (39). The freeze response, or “learned helplessness,” is especially likely in cases of trauma experienced by infants or young children who are physically unable to escape (40). Further insights into MI processes in PTSD spring from research on the differences between patients’ memories of traumatic events and those of non-traumatic events. Thus, van der Kolk and Fisler (41) suggested that trauma is initially represented using somatosensory information - with traumatic experiences being remembered as bodily sensations. Consistent with this proposal, Malmo and Suzuki Laidlaw (42) found that people who had no memory of childhood sexual abuse prior to therapy were “more kinesthetic than visual” in their orientation to the world. Remarkably, during therapy, the “no memory of trauma” participants became aware of their traumatic memories, and were consistently able to report kinesthetic memory details such as their bodily position in relation to that of the perpetrator (42).

PERSONALITY DISORDERS
The development of personality disorders, particularly borderline personality disorder, has been strongly associated with early trauma and neglect (43-45). Interestingly, certain kinds of imagery rescripting such as re-imaging adverse early childhood events from an adult perspective have been used to treat personality disorders (46). Imagery rescripting was first used by Arntz and Weertman (47) with the primary objective of revising the perceived meaning of events. For example, an image of a childhood memory might be rescripted constructively by imagining an adult entering the scene and intervening in a positive way (e.g., comforting the child concerned). Typically, the rescripting session with the therapist is recorded and the patient then listens to the recording and practices the exercise again at home, where possible using imagery. Later, patients themselves are required to rescript the adverse event. Although imagery rescripting in a promising therapeutic strategy, its efficacy is mediated by many psychological variables. For example, consider the role of “imagery perspective” or the virtual vantage point-of-view adopted by the person imagining [e.g., first-person versus third-person perspective; (48)]. To illustrate, one can “feel” oneself performing an action with one’s body (first-person perspective) or one can “see” oneself or someone else performing that action (third-person perspective). Imagery perspective is important in the treatment of trauma because McIsaac and Eich (49) found that traumatic images retrieved from a third-person perspective were experienced as less emotional than those retrieved from a first-person perspective. Unfortunately, few studies have explored the relative efficacy of different perspectives [which may involve different levels of embodiment (48)] in rescripting imagery interventions.

SOCIAL ANXIETY DISORDER
Social anxiety disorder is a highly prevalent and disabling condition that involves fear and avoidance of interpersonal interactions, particularly those that involve potential for social evaluation (50). This disorder is typically characterized by vivid visual imagery, particularly that generated from a third-person perspective (51). According to cognitive models of social anxiety [e.g., by Clark and Wells (52)], people with SAD habitually generate negative images from thoughts, feelings, and bodily sensations to create impressions of how they appear to others from a third-person (“observer”) perspective. Intriguingly, Spurr and Stopa discovered that imagery experienced from a third-person perspective is associated with increased negative self-evaluation by comparison with that occurring from a first-person perspective (53).

One strategy for treating social anxiety involves helping patients to restructure their imagery experiences (54). Thus, Wild et al. (55) developed an imagery-based...
Weertman (www.frontiersin.org) ing a skill while making associated physical that dynamic mental practice (i.e., imagin- ing problems such as psychomotor retarda-
cation, clinical researchers can benefit from refer to quite different simulation phenom-
ent imagery modalities and experiences. Secondly, in assess-
ments such as psychometric changes. This tech-
ique to help people to modify trauma-
matic memories. This technique is effective
as a brief treatment for social pho-
bia (56). Its use of imagery rescripting is similar
to that pioneered by Arntz and Weertman (47) and involves closing one’s
eyes, describing recurring images in social
situations, and then imagining that the
current self is present at the scene and
hence, intervening appropriately. This lat-
ter imagery clearly has a motor compo-
ent as it involves re-imagining actions or
movements. Accordingly, MI may be helpful
for the treatment of SAD because it can
orient patients away from the critical
self-focused perspective, thereby reduc-
ing “egocentric awareness” (57). By con-
trast, self-focused attention may impair
people’s capacity for perspective-taking,
thereby maintaining social anxiety (58).

CONCLUSION AND FUTURE DIRECTIONS

In this article, we have presented two main arguments concerning imagery processes in psychopathology. Firstly, we postu-
lated that research on MI processes offers intriguing insights into the neurocognitive mechanisms underly-
ing, and psychological
treatment of, certain clinical disorders (specifically, PTSD, personality disorders, and SAD). In addition, we proposed that clinical researchers have much to learn from an emerging theoretical theme in cognitive neuroscience – namely, the idea that the brain is a dynamic predictive system (59) which uses simulation as a mecha-
nism for integrating the psychological processes of imagination, perception, and action. Moreover, however, sev-
eral priorities may be identified for future research on MI in clinical disorders. Firstly, greater theoretical and linguistic precision is required in the delineation of different
imagery modalities and experiences. For example, some researchers [e.g., Arntz (46)] use the generic term “imagery”
to refer to quite different simulation phenomen-
a such as imagining bodily movements and
visualizing scenes. Secondly, in assis-
ting problems such as psychomotor retarda-
cation, clinical researchers can benefit from
the systematic use of objective measures of
MI (60) – especially recently developed psy-
chometric tests (61). Finally, on the basis
that dynamic mental practice (i.e., imagining
a skill while making associated physical
movements) can improve skilled perform-
ance through enhanced mental representa-
tion (62), it seems plausible that dynamic
imagery rescripting could enrich therapeu-
tic interventions for patients suffering from
certain disorders (e.g., PTSD).

REFERENCES

1. Betts GH. The Distribution and Functions of Men-
tal Imagery. (Vol. 26), New York: Teachers’ College
Columbia University Contributions to Education (1909), p. 1–99.
2. Munzert J, Lorey I, Zentgraf I. Cognitive motor pro-
pcesses: the role of motor imagery in the study of
motor representations. Brain Res Rev (2009) 60:306–26. doi:10.1016/j.brainresrev.2008.12.024
3. Reisberg D. Mental images. In: Reisberg D, edi-
tor, The Oxford Handbook of Cognitive Psychology. Oxford: Oxford University Press (2013), p. 374–87.
4. Moran A, Guillot A, MacIntyre T, Collet C. Re-
imagining motor imagery: building bridges between
cognitive neuroscience and sport psychol-
yogy. Br J Psychol (2012) 103:224–47. doi:10.1111/
12044-8295.2012068.x
5. Jeannerod M. The representing brain: neural
correlates of motor intention and imagery, behav
Brain Sci (1994) 17:187–202. doi:10.1017/S0140525X00045026
6. Jeannerod M. Neuronal simulation of action: a unify-
ing mechanism for motor cognition. Neuroimage
(2001) 14:5103–9. doi:10.1016/j.neuroimage.2001.08.032
7. Jeannerod M. Motor Cognition. New York, NY:
Oxford University Press (2006).
8. Hetu S, Grégoire M, Saimpont A, Coll M-P, Eugène
Jeannerod M. Neural simulation of action: a unify-
ing mechanism for motor cognition. Neuroimage
(2001) 14:5103–9. doi:10.1016/j.neuroimage.2001.08.032
9. Kosslyn SM. Image and Brain: The Resolution of
the Imagery Debate. Cambridge, MA: MIT Press
(1994).
10. Lang PJ. A bio-informational theory of emotional
imagery. Psychophysiol (1979) 16:495–512. doi:10.
1111/j.1469-8869.1979.tb01511.x
11. Brewin CR, Gregory JD, Lipton M, Burgess N. Intrusive images in psychological disorders: char-
acteristics, neural mechanisms, and treatment
implications. Psychol Rev (2010) 117(1):210–32.
doi:10.1037/a0018113
12. Holmes EA, Mathews A. Mental imagery in emo-
tion and emotional disorders. Clinimaging emo-
doors. Clin Psychol Rev (2010) 30:349–62. doi:10.1016/j.cpr.2010.01.001
13. Pearson DG, Deeprose C, Wallace-Hadrill SMA,
Burnett Heyes S, Holmes EA. Assessing mental
imagery in clinical psychology: a review of imagery
measures and a guiding framework. Clin Psychol
Rev (2013) 33:1–23. doi:10.1016/j.cpr.2012.09.001
14. Weblau C, Stel R. Visual mental imagery in
psychopathology – implications for the mainte-
nance and treatment of depression. Clin Psychol
Rev (2014) 34(4):273–81. doi:10.1016/j.cpr.2014.
03.001
15. Hirsch CR, Clark DM, Mathews A. Imagery and interpretations in social phobia: support for
the combined cognitive biases hypothesis. Behav Ther (2006) 37(3):223–36. doi:10.1016/j.
beth.2006.02.001
16. Holmes EA, Grey N, Young KAD. Intrusive images
and “hotspots” of trauma memories in posttrau-
matic stress disorder. J Behav Ther Exp Psychi-
atty (2005) 36(1):3–17. doi:10.1016/j.jbtep.2004.
11.002
17. Klein JP, Moritz S. On the relevance of mental
imagery beyond stress-related psychiatric disor-
ders. Front Psychiatry (2014) 5:77. doi:10.3389/
ftp.s.2014.00077
18. Morina N, Deeprose C, Pusowski C, Schmid
M, Holmes EA. Prospective mental imagery in
patients with major depressive disorder or anxie-
 ty disorders. J Anxiety Dist (2011) 25:1032–7. doi:
10.1016/j.janxdis.2011.06.012
19. Holmes EA, Arntz A, Smucker MR. Imagery
rescripting in cognitive behaviour therapy: images, treatment techniques and outcomes. J Behav Ther Ex-
Exp Psychol (2007) 38(4):297–305. doi:10.1016/j.
jbtep.2007.10.007
20. Long ME, Quevillon R. Imagery rescripting in
the treatment of posttraumatic stress disorder. J Cogn Psychother (2009) 23(1):67–76. doi:10.1088/8891.
23.1.67
21. Moulton ST, Kosslyn SM. Imaging predictions:
mental imagery as mental emulation. Philos Trans
R Soc Lond B Biol Sci (2009) 364:273–80. doi:
10.1098/rstb.2008.0314
22. Chen J, Yang LQ, Zhang ZL, Ma WT, Wu XQ, Zhang
XR, et al. The association between the disruption of
motor imagery and the number of depres-
sive episodes of major depression. J Affect Dis-
ord (2013) 150(2):337–43. doi:10.1016/j.jad.2013.
04.015
23. American Psychiatric Association. Diagnostic and
Statistical Manual of Mental Disorders: DSM-5. 5
ed. Arlington, VA: American Psychiatric Associa-
tion (2013).
24. Baldwin DV. Primitive mechanisms of trauma
response: an evolutionary perspective on trauma-
related disorders. Neurosci Biobehav Rev (2013)
37(6):1549–66. doi:10.1016/j.neubiorev.2013.06.
004
25. Hellawell SJ, Brewin CR. A comparison of flash-
backs and ordinary autobiographical memories of
trauma: cognitive resources and behav-
ioural observations. Behav Res Ther (2002)
40(10):1143–56. doi:10.1016/S0005-7967(01).
00080-8
26. Whalley MG, Knes MC, Huntley Z, Rugg MD, Davis
SW, Brewin CR. An fMRI investigation of
posttraumatic flashbacks. Brain Cogn (2013)
81(1):151–9. doi:10.1016/j.bandc.2012.10.002
27. Barkay G, Freedman N, Lester H, Louzoun Y, Sapo-
znikov D, Luckenbaugh D, et al. Brain activi-
tation and heart rate during script-driven tra-
matic imagery in PTSD: preliminary findings. Psy-
chiatry Res (2012) 204(2–3):155–60. doi:10.1016/j.
psychres.2012.08.007
28. Marx BP, Forsyth JP, Gallup GG, Lexington JM,
Fuei T, Tonic immobility as an evolved predator
defence: implications for sexual assault survivors. Clin Psychol Sci Practice (2008) 15(1):74–90. doi:
10.1111/j.1468-2850.2008.00112.x
29. Hagenaaars MA, Oitzl M, Roelofs K. Updating
freeze: aligning animal and human research. Neu-
rosci Biobehav Rev (2014) 47:165–76. doi:10.1016/j.
neubiorev.2014.07.021
30. Monassi CR, Leite-Panissi CR, Menescal-de-
Oliveira L. Ventrolateral periaqueductal gray
matter and the control of tonic immobility. Brain Res Bull (1999) 50(3):201–8. doi:10.1016/s0361-9230(99)00192-6
31. Bracha HS. Freeze, flight, fight, faint: adaptation-­
tissionist perspectives on the acute stress response spectrum. CNS Spectr (2004) 9(9):679–85.
32. Russell DEH. The Politics of Rape: The Victim’s Per-
spective. New York, NY: Stein and Day (1974).
33. Abrams MP, Carleton RN, Taylor S, Assmundson GJ. Human tonic immobility: measurement and correlates. Depress Anxiety (2009) 26(6):550–6. doi:
10.1002/da.20462
34. Rocha-­Rego V, Fisman A, Portugal LC, Garcia Pereira M, de Oliveira L, Mendelowicz MV, et al. Is tonic immobility the core sign among conven-
tional peritraumatic signs and symptoms listed for PTSD? J Affect Disord (2009) 115(1–2):269–73. doi:
10.1016/j.jad.2008.09.005
35. Fisman A, Mendelowicz MV, Marques-­Portella C, Volcban C, Coutinho ES, Souza WF, et al. Peritrau-
matic tonic immobility predicts a poor response to pharmacological treatment in victims of urban violence with PTSD. J Affect Disord (2008) 107(1–
3):193–7. doi:10.1016/j.jad.2007.07.015
36. Lima AA, Fisman A, Marques-­Portella C, Mend-
elowicz MV, Coutinho ES, Maia DC, et al. The impact of tonic immobility reaction on the prog-
nosis of posttraumatic stress disorder. J Psychiatr Res (2010) 44(4):224–8. doi:10.1016/j.jpsychires. 2009.08.005
37. Bovin MJ, Dodson TS, Smith BN, Gregor K, Marx BP, Pincel SL. Does guilt mediate the associ-
ation between tonic immobility and posttraumatic stress disorder symptoms in female trauma sur-
vivors? J Trauma Stress (2014) 27(6):721–4. doi: 10.1002/jts.21963
38. Oktedalen T, Hoffart A, Langkaaf TF. Trauma-
related shame and guilt as time-­varying predictors of posttraumatic stress disorder symptoms dur-
ing imagery exposure and imagery rescripting a randomized controlled trial. Psychother Res (2014) 24(1–5). doi:10.1080/10503307.2014.917217
39. Humphreys KL, Sauer CL, Martin EK, Marx BP. Tonic immobility in childhood sexual abuse sur-
vivors and its relationship to posttraumatic stress symptomatology. J Interpers Violence (2010) 25(2):358–73. doi:10.1080/0886266090334412
40. Lyons-­Ruth K, Dutra L, Schneider MR, Bianchi I. From infant attachment disorganization to adult dissociation: relational adaptations or trau-
matic experiences? Psychiart Clin North Am (2006) 29(1):63–86. doi:10.1016/j.psc.2005.10.011
41. van der Kolk BA, Fiser R. Dissociation and the fragmentary nature of traumatic memories: overview and exploratory study. J Trauma Stress (1995) 8(4):505–25. doi:10.1007/BF02102887
42. Malmo C, Suzuki Ladlow TS. Symptoms of trauma and traumatic memory retrieval in adult survivors of childhood sexual abuse. J Trauma Dissociation (2010) 11(1):22–43. doi:10.1080/15299730903318467
43. Patrick M, Hobson RP, Castle P, Howard R, Maughan B. Personality disorder and the men-
tal representation of early social experience. Dev Psychopathol (1994) 6:375–88. doi:10.1017/ S0953474400004648
44. Bandelow B, Krause J, Wedekind D, Broocks A, Hajak G, Rüther E. Early traumatic life events, parental attitudes, family history, and birth risk factors in patients with borderline person-
ality disorder and healthy controls. Psychiatry Res (2005) 134(2):169–79. doi:10.1016/j.psychres. 2003.07.008
45. Johnson RG, Smaleis EM, Cohen P, Brown J, Bern-
stein DP. Associations between four types of child-
hood neglect and personality disorder symptoms during adolescence and early adulthood: find-
ings of a community-­based longitudinal study. J Pers Disord (2000) 14(2):171–87. doi:10.1521/ pedi.2000.14.2.171
46. Arntz A. Imaging rescripting for personality disor-
ders. Cogn Behav Ther Pract (2011) 18:466–81. doi:10.1016/j.jcbtp.2011.04.006
47. Arntz A, Weertman A. Treatment of child-
hood memories: theory and practice. J Affect Disord (2007) 95:153–66. doi:
10.1016/j.biopsych.2006.06.006
48. Miskovic V, Schmidt LA. Social fearfulness in the human brain. Neurosci Biobehav Rev (2012) 36(1):459–78. doi:10.1016/j.neubiorev. 2011.08.002
49. Hackmann A, Surawzy C, Clark DM. Seeing your-
self through others’ eyes: a study of sponta-
nenously occurring images in social phobia. Behav Cogn Psychothe (1998) 26:3–12. doi:10.1017/S0339-0428-75110956-7967(98)00173-9
50. Madan CR, Singhal A. Motor imagery and higher-
level cognition: four hurdles before research can sprint forward. Cogn Process (2012) 13:211–29. doi:
10.1007/s10339-012-0438-2
51. McIsaac HK, Eich E. Vantage point in traumatic memory. Psychol Sci (2004) 15(4):248–54. doi:
10.1111/j.0956-7976.2004.00660.x
52. Lee SW, Kwon JH. The efficacy of imagery rescript-
ing (IR) for social phobia: a randomized con-
trolled trial. J Behav Ther Exp Psychiatry (2013) 44(4):351–60. doi:10.1016/j.jbtep.2013.03.001
53. Kochevnikov M, Hegarty M. A dissociation between object manipulation spatial ability and spatial orientation ability. Mem Cognit (2001) 29(5):745–56. doi:10.3758/BF03200477
54. Rapee RM, Heimberg RG. A cognitive-­behavioral model of anxiety in social phobia. Behav Res Ther (1997) 35(8):741–56. doi:10.1016/S0005-7967(97)00022-3
55. Pezzullo G, Candido M, Dindo H, Barca L. Action simulation in the human brain: twelve questions. New Ideas Psychol (2013) 31:270–90. doi:10.1016/j. nipal.2013.02.001
56. Collett C, Guillett A, Lebon F, MacIntyre T, Moran A. Measuring motor imagery: combining psychome-
tric, qualitative, chromometric, and psychophys-
tiological techniques. Exerc Sport Sci Rev (2009) 37:95–92. doi:10.1016/j.eexs.2013.02.001
57. Madan CR, Singhal A. Introducing TAMI: an ob-
jective test of ability in movement imagery. J Mot Behav (2013) 45:153–66. doi:10.1080/00222895.2013.763764
58. Guillett A, Moschberger K, Collett C. Coupling movement with imagery as a new perspective for motor imagery practice. Behav Brain Funct (2013) 9:8. doi:
10.1186/1744-9081-9-8

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 08 December 2014; accepted: 04 February 2015; published online: 18 February 2015.

Citation: Moran A, Bramham J, Collett C, Guillett A and MacIntyre TE (2015) Motor imagery in clinical dis-
orders: importance and implications. Front. Psychiatry 6:23. doi: 10.3389/fpsyt.2015.00023

This article was submitted to Affective Disorders and Psy-
chomotor Research, a section of the journal Frontiers in Psychiatry. Copyright © 2015 Moran, Bramham, Collett, Guillett and MacIntyre. This is an open-­access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or repro-
duction is permitted which does not comply with these terms.