Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody

Angela M. Phillips1,2*,†, Daniel P. Maurer3,4*, Caelan Brooks5, Thomas Dupic1, Aaron G. Schmidt3,4, Michael M. Desai1,5,6,7†

1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, 2Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, 3Ragon Institute of MGH, MIT, and Harvard, Cambridge MA 02139, 4Department of Microbiology, Harvard Medical School, Boston, MA 02115, 5Department of Physics, Harvard University, Cambridge, MA 02138, 6NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge MA 02138, 7Quantitative Biology Initiative, Harvard University, Cambridge MA 02138.

*These authors contributed equally to this work.
†angela.phillips@ucsf.edu, mdesai@oeb.harvard.edu

Abstract

Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest1. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth2. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains3,4. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations – distributed across the variable light and heavy chains – that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the VH-VL interface is essential for binding a divergent H1. Collectively, this work is the first to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies5, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.

Introduction

The diversity of influenza poses an ongoing public health challenge, as vaccination and natural infection typically elicit immune responses that are highly strain-specific, and hence quickly lose efficacy as the virus evolves6-9. This limited efficacy has garnered substantial interest in vaccination strategies that elicit broadly neutralizing antibodies (bnAbs) that neutralize diverse strains of influenza10-12. Over the past two decades, there has been considerable effort to isolate and characterize anti-influenza bnAbs3,10-12. These bnAbs target various conserved epitopes on the hemagglutinin (HA) influenza surface glycoprotein, including the receptor binding site (RBS)3, the stem or stalk domain11-13, the lateral patch14, and the
membrane-proximal anchor site15. BnAbs also vary in germline gene usage and breadth, with some binding several strains within an HA subtype and others binding nearly all characterized influenza strains1.

Despite the immense body of work on influenza bnAbs, we still do not fully understand the evolutionary processes through which they mature16,17. Our strategies to elicit them therefore remain limited. It is clear, however, that distinct, but clonally related sequences can target the same HA epitope and confer functionally similar breadth4. This redundancy suggests that there are many possible evolutionary pathways to influenza bnAbs. Still, the relatively low frequencies at which they are observed in human repertoires following vaccination suggest that there are factors constraining their maturation that we do not yet fully appreciate18-22.

High-throughput mutagenesis approaches are widely used as a tool to understand key properties shaping the evolution of numerous proteins23-26. This work has revealed that new mutations can differentially impact distinct protein functions, and often interact non-additively (\textit{i.e., epistically}), potentially constraining the order in which they can occur27-29. For antibodies, high-throughput mutagenesis studies have largely been limited to examining the effects of single mutations, either through saturating mutagenesis (\textit{e.g.,} deep mutational scanning) of relatively small regions18,30,31 or through random mutagenesis (\textit{e.g.,} error-prone PCR)32-34. These methods examine the local mutational landscape of a particular antibody, or in other words, how single mutations can change affinity or breadth. The advantage of these methods is that the sequences analyzed are relatively unbiased, particularly for saturating mutagenesis, and thus one can surmise why particular mutations occurred naturally. For example, this approach identified many single amino acid substitutions in the anti-influenza bnAb C05 that improve affinity to different subsets of strains but typically reduce breadth18.

A key limitation of saturating mutagenesis approaches is that they cannot probe how epistatic interactions between mutations might constrain antibody evolutionary trajectories, which typically involve multiple mutations35. Because antibodies acquire numerous mutations and experience fluctuating selection pressures on short timescales35,36 they are necessarily distinct from other proteins for which epistasis has been studied. Moreover, they bind antigens through disordered loops, in contrast to the structured active sites of most enzymes, and they are relatively tolerant to mutations37-41. Further, the evolutionary dynamics of affinity maturation are defined by discrete rounds of mutation and selection, compared to the more continuous processes most proteins are subject to, and thus mutations that occur concurrently are selected based on their collective rather than individual effects35,42. For these reasons, the evolutionary constraints on antibodies may be unique.

The few studies that have examined epistasis in antibodies indicate that it is a key determinant of affinity4,5,43,44. For example, multiple studies have identified mutations that interact synergistically to bind an antigen4,5,43. Still, most of this work has focused on interactions between a small subset of mutations4. Addressing the prevalence and general importance of epistasis in shaping antibody evolution will require more comprehensive combinatorial mutagenesis strategies that sample combinations of mutations present in each somatic antibody sequence5. These combinatorial strategies, however, do not capture epistasis with other mutations that could have occurred in alternative evolutionary pathways, which will require integrating combinatorial mutagenesis with the saturating mutagenesis methods described above.
In previous work, we systematically mapped the relationship between antibody sequence and affinity (the sequence-affinity landscape) across mutational landscapes relevant for the somatic evolution of two stem-targeting bnAbs of varying breadth, CR6261 and CR9114. We found that affinity was determined by non-additive interactions between mutations, and that such epistasis could both constrain and potentiate the acquisition of breadth. Notably, the nature of this epistasis varied considerably between the two bnAbs. For CR6261, epistatic interactions were similar for binding distinct group 1 strains, thus evolutionary pathways could simultaneously improve in affinity to divergent antigens. For CR9114, increasingly divergent antigens required additional epistatically interacting mutations such that evolutionary pathways were constrained to improve in affinity to one antigen at a time. The distinct topologies of these sequence-affinity landscapes result from differences between the various antigens and the mutations that are required for binding.

Although anti-stem bnAbs are among the broadest influenza bnAbs characterized, they are a small and biased subset of the influenza antibody response. Despite the presence of anti-stem antibodies in human sera and the ability to drive viral escape mutants in vitro, the stem is minimally mutated amongst circulating viral strains and does not appear to be evolving in response to these antibodies, possibly due to the high concentration of antibody required for protection and likely immune pressure. In contrast, due to the small size of the RBS pocket, RBS-directed bnAbs frequently make contacts with immunodominant epitopes surrounding the pocket that have substantial antigenic variation. Although RBS-directed bnAbs have a relatively narrower reactivity profile compared to anti-stem bnAbs, they are potently neutralizing, do not require effector functions for potent in vivo protection as do anti-stem bnAbs, and have evolved broad recognition despite the accumulation of antibody escape mutations in the periphery of the RBS. Further, RBS-directed bnAbs can mature from diverse germline V_H and V_L genes, suggesting there are likely numerous evolutionary pathways to target this epitope. Thus, to understand more generally how epistasis constrains bnAb evolution, here we consider RBS-directed bnAbs, as they target an entirely different epitope under distinct immune selection pressures.

Specifically, we examine the influence of epistasis on the evolution of a well-characterized RBS-directed bnAb, CH65, which binds and neutralizes diverse H1 strains. CH65 was isolated from a donor seven days post-vaccination. The unmutated common ancestor (UCA) and an early intermediate (I-2) have moderate affinity for a subset of H1 strains that circulated early in the donor’s lifetime. The affinity-matured CH65 has 18 mutations throughout the light (V_L) and heavy (V_H) variable regions, which improve affinity to strains that circulated early in the donor’s life and confer affinity to antigenically drifted strains. Thus, CH65 evolved to acquire affinity to emerging strains without compromising affinity for previously circulating strains.

The structural changes upon affinity maturation of CH65 and clonally related antibodies have been extensively characterized. This work showed that CH65 primarily matures by preconfiguring the HCDR3 loop into its binding conformation, thereby minimizing the conformational entropic cost of binding. Importantly, none of the 18 somatic mutations are in the HCDR3; rather, key mutations in HCDR1, HCDR2, and LCDR1 result in contacts that stabilize the HCDR3 loop in its binding compatible-conformation. This structural characterization, in addition to molecular dynamics simulations, identified specific mutations that are critical for breadth, including some that interact synergistically to stabilize the HCDR3 loop. In theory, such epistasis could constrain bnAb evolution by requiring multiple mutations to confer a selective advantage, or alternatively, it could compensate for the deleterious effects of other mutations and favor selection of bnAbs.
Given that many mutations in CH65 are important for imparting affinity to HA, including those at distant sites\(^4\), we hypothesized that there are many sets of epistatic mutations in CH65 not previously identified, particularly because long-range epistatic interactions are difficult to predict from structural analyses alone. In contrast to the anti-stem bnAbs described above\(^{12,56}\), CH65 engages HA through both light and heavy chain contacts and requires mutations in both chains to bind divergent antigens\(^4,54\). Thus, it is likely that mutations interact epistatically both within and between the heavy and light chains. Despite the potential importance of these interactions in shaping the evolution of CH65, and the numerous other antibodies that engage antigens using both chains\(^{11,55,57,58}\), characterizations of inter-chain epistasis have so far been limited to small sets of a few mutations\(^4,54\). Although these smaller datasets have revealed some important inter-chain epistatic interactions, they measure a subset of interactions selected based on structural data, and thus we still do not know the magnitude or prevalence of this epistasis and hence how important it is in shaping antibody evolution.

Here, to elucidate the role of epistasis (both inter- and intra-chain) in shaping the evolution of an RBS antibody, we systematically characterize the CH65 sequence-affinity landscape. Specifically, we generate a combinatorially complete antibody library containing all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the mature somatic sequence (\(N = 2^{16} = 65,536\)) and measure affinity to three antigenically distinct H1 strains to assess how epistasis can shape evolutionary pathways leading to varying levels of breadth. We find that strong high-order epistasis constrains maturation pathways to bind antigenically distinct antigens. Although fewer epistatic mutations are needed to bind an antigen similar to that bound by the UCA, these sets of mutations overlap with those required to bind a more divergent antigen. Collectively, these landscapes provide mechanistic insight into how affinity maturation responds to an evolving epitope and how exposure history can influence future immune responses. In combination with our previous work on anti-stem bnAbs\(^5\), this work shows how epistasis can differentially impact the evolutionary trajectories of bnAbs of varying breadth, epitope, and variable chain gene-usage.

Results

To comprehensively examine how epistasis may have shaped the evolution of CH65, we generated a combinatorially complete antibody library comprising all possible evolutionary intermediates from the UCA to CH65. This library contains all possible combinations of mutations present in both the variable heavy and light chains of CH65, less two mutations (Q1E and S75A) distant from the paratope that do not significantly impact binding affinity (Figure 1A, Figure 1–figure supplement 1) or physically interact with other residues. Removing these mutations results in a final library size of \(2^{16}\), which is within the throughput limit of our methods.

To profile the breadth of the corresponding antibody library, we first transform this combinatorial plasmid library into yeast for antibody surface display in a single-chain variable fragment (scFv) format\(^{59}\). We then use Tite-Seq\(^{30}\), a high-throughput method that couples flow cytometry with sequencing, to measure equilibrium binding affinities to three H1 strains bound by CH65. We chose these strains to sample varying levels of antigenic change\(^{36,60}\): they include a strain that circulated early in the donor’s lifetime (A/Massachusetts/1/1990, “MA90”) and a strain that circulated 16 years later (A/Solomon Islands/3/2006, “SI06”)\(^4\). Additionally, because affinity maturation has been shown to confer binding to antigens that escape less mutated members of the same lineage\(^{61}\), we drove viral escape of MA90 in vitro using the UCA and found that CH65 could bind to the resulting strain (A/Massachusetts/1/1990 G189E, “MA90-
G189E") that escapes the UCA (Figure 1A). We use the MA90-G189E antigen to profile incremental antigenic change from MA90 (one direct escape mutation), whereas SI06 represents more substantial antigenic change during natural evolution, including loss of K133a and the mutation E156G in the RBS.

For each of these three antigens, we used Tite-Seq to measure equilibrium binding affinities for all variants in biological duplicates (Figure 1 – figure supplement 2). We log-transform the binding affinities and report -logK_D, which is proportional to the free energy change of binding (and is thus expected to combine additively)62,63. For each antigen, the Tite-Seq -logK_D correlate well between replicates ($r \sim 0.99$ for all antigens) and accurately reflect isogenic measurements made by flow cytometry ($r = 0.98$; Figure 1–figure supplement 3B) as well as recombinant IgG affinity measurements made by biolayer interferometry ($r = 0.89$; Figure 1–figure supplement 3C).

Figure 1. CH65 sequence-affinity landscape. (A) Alignment of UCA, I-2, and CH65 VH (top) and VL (bottom) sequences. Mutations of interest are shown in purple and are numbered; gray mutations do not impact affinity and were excluded from the library. (B) -logK_D for ~216 variants to each of the three antigens. Each point is colored by the number of somatic mutations in the corresponding variant. The UCA, I-2, and CH65 are annotated as stars; N = 64,142 after filtering poor K_D measurements from the Tite-Seq data (see Methods). Two-dimensional representations of the data are shown below the three-dimensional plot. (C) Distribution of -logK_D for each antigen. Left: variant -logK_D grouped by the number of somatic mutations; Right: -logK_D histograms for variants that bind each antigen, with total number of binding variants (N) indicated on plot. Figure 1 – figure supplement 1. CH65 mutation reversion. Figure 1 – figure supplement 2. Tite-Seq workflow and sorting scheme. Figure 1 – figure supplement 3. Tite-Seq K_D quality control and isogenic measurements. Figure 1 – figure supplement 4. CH65 library expression. Figure 1–source data 1. Tite-Seq K_D and expression measurements. Figure 1–source data 2. Isogenic K_D and expression measurements.
Broadly, we find that increasingly divergent antigens require additional mutations to confer antigen binding. Consistent with previous work4,54, the UCA has weak affinity for MA90 but does not bind MA90-G189E or SI06; I-2 has improved affinity to MA90, weak affinity to MA90-G189E, and does not bind SI06; and CH65 has near maximal affinity amongst library variants for all three antigens (Figure 1B). While the entire library binds MA90, ~87% of variants bind MA90-G189E, and ~42% of variants bind SI06 (Figure 1C). For all antigens, affinity is higher for more mutated variants, except for a subset of highly-mutated variants that do not bind SI06 (Figure 1B, bottom right). There are ~2,000 variants that bind MA90 with reduced affinity relative to the UCA; none of these variants have detectable affinity for SI06, and only ~0.4% have detectable affinity for MA90-G189E (Figure 1B). Further, all variants that bind SI06 also bind MA90-G189E (Figure 1B), as variants can bind MA90-G189E with fewer mutations than SI06 (Figure 1C). This “hierarchical” or “nested” pattern, where mutations that enable binding to more antigenically divergent strains are dependent on mutations that enable binding to less divergent strains, is reminiscent of what we observed previously for the anti-stem bnAb CR91145, despite the comparatively subtle differences between the antigens examined here (83 - 96% epitope identity versus 52 - 61% for the CR9114 antigens)12,55.

To understand how specific mutations shape the sequence-affinity landscape, we computed the change in affinity resulting from each of the 16 mutations on all 2^{15} (32,768) genetic backgrounds at the other 15 sites. This analysis reveals that several mutations improve affinity to MA90 and MA90-G189E (e.g., Y35N, Y48C, D49Y, G31D, Y33H, H35N, N52H), and some of these distributions are multimodal, indicating that their effect on affinity depends on the presence of other mutations (Figure 2A). Consistent with this, some mutations improve affinity on the UCA or I-2 backgrounds (e.g., Y35N, Y33H, H35N) and others on the CH65 background (Y48C, D49Y). For SI06, N52H dramatically improves affinity and most variants lacking this mutation do not have detectable affinity. Thus, several mutations (e.g., Y35N) improve affinity to SI06 in the I-2, but not the UCA, background (Figure 2A). In general, the effects of

Figure 2. Mutational effects on affinity. (A) Change in -logK_D resulting from each mutation on all 32,768 genetic backgrounds. Impact of mutation on the UCA, I-2, and the CH65 genetic backgrounds are represented by white, gray, and black points, respectively. (B) Correlation of mean effect on -logK_D for MA90, SI06, and MA90-G189E resulting from each mutation. Regression line and 95% confidence intervals are shown in gray. Mutations are colored as in (A). (C) Frequency of each mutation amongst variants that bind a given antigen with $K_D \leq$ 1 nM. Error bars correspond to standard deviation across bootstrapped data (N = 10). (D) Mutations present at > 55% frequency (p-value < 0.05 from one-sided t-test) amongst binders for each antigen. Figure 2 – figure supplement 1. Change in -logK_D resulting from each mutation as a function of the number of other mutations present.
these mutations correlate between the different antigens, with mutations affecting affinity more substantially for MA90-G189E and SI06 compared to MA90 (Figure 2B).

To assess which mutations confer affinity to a particular antigen, we computed the frequency of each mutation amongst binding variants in the library. Consistent with the landscapes in Figure 1B, we observe that the mutations enriched amongst binders form a hierarchical pattern between the antigens (Figure 2C). For example, a few mutations are enriched (≥ 55% frequency) amongst variants with nanomolar affinity for MA90 (e.g., Y35N, D49Y, Y33H, N52H), a few additional mutations are enriched amongst MA90-G189E binders (e.g., S29R, G31D, H35N, R87K), and still additional mutations are enriched amongst SI06 binders (e.g., N26D, Y48C, V98I, M34I, R85G) (Figure 2D). Thus, except for Y35N, which is interestingly depleted amongst SI06 binders (Figure 2 - figure supplement 1), the mutations that enhance affinity to the three antigens form a hierarchical pattern.

We next characterized how epistasis between these mutations might impact affinity and result in this hierarchical pattern of breadth. To this end, we fit our measured \(-\log K_D\) to a standard biochemical model of epistasis\(^{29}\), which is a linear model defined as the sum of single mutational effects and epistatic terms up to a specified order (see Methods). Using a cross-validation approach, we find that the optimal order model for affinity to each of these antigens is fifth-order, and we report coefficients at each order from these best-fitting fifth-order models (Figure 3A). The magnitude and sign of these coefficients correspond to effects on \(-\log K_D\): for example, a second-order term of +1 means that two mutations occurring together improve \(-\log K_D\) by 1 unit, beyond the sum of their first-order effects. For all three antigens, we find widespread epistasis between mutations in the same chain and between mutations in different chains, with many epistatic terms exceeding first-order effects in magnitude (Figure 3). In contrast to our previous work on variable heavy-chain only antibody landscapes\(^5\), we find many strong epistatic interactions between mutations that are too distant to physically interact (Figure 3 - figure supplements 1-4).

Because there are substantial long-range epistatic interactions, our combinatorial approach identifies numerous interactions not previously known, in addition to confirming the few interactions characterized in earlier work (e.g., Y48C and D49Y have strong synergistic epistasis)\(^4,54\). Here we find strong epistasis between the I-2 mutations (G31D, M34I, N52H), neighboring mutations (Y33H, H35N), mutations known to stabilize light chain contacts (Y48C, D49Y)\(^4\), as well as an uncharacterized light chain mutation (Y35N). When we examine the structural context of this epistasis, we find that mutations with strong linear and epistatic effects often make contact with either HA or with the HCDR3 that engages the RBS (Figure 3B). This suggests that the effects of these mutations are either mediated through the contacts that they make with HA, or through affecting the HCDR3 loop conformation. These mutations interact epistatically for each of the three antigens, though the magnitude of epistasis is higher for SI06 (explaining ~36% of the variance in \(K_D\), relative to ~24% for MA90 and ~26% for MA90-G189E, see Figure 3 – figure supplement 5).

Importantly, these epistatic interactions are essential for the acquisition of affinity to both MA90-G189E and SI06. To investigate the molecular details of this epistasis, we compared the crystal structures of the unbound UCA, I-2, and CH65 as well as CH65 bound to SI06\(^3,4,64\). Additionally, we produced several variants as recombinant IgG to assay the binding kinetics by biolayer interferometry. To mimic the Tite-seq system, IgG was bound to biosensors and assayed for binding to full-length trimeric HA (Figure 4 – figure supplement 2-4). Here, we focus on binding kinetics of minimally mutated variants that confer affinity to each antigen but binding of twelve variants was assayed to all three antigens at varying temperatures (Figure 4—figure supplement 5).
Figure 3. Epistatic coefficients for biochemical model of epistasis. (A) First-order, pairwise, and higher-order mutational effects for each of the 16 mutations inferred from the optimal order model for each antigen. Higher-order effects are reported as a sum. Mutations present in I-2 are shown in bold. ‘R’ indicates that the mutation is required for binding (defined as being present in ≥ 90% of binding variants) and is thus excluded from the epistasis inference. (B) Structural context of linear and epistatic effects. For each mutation, the upper triangle shows the first-order effect, the lower triangle shows the sum of the pairwise and higher-order effects, and the contact surface area with HA and HCDR3 are shown in the fourth and fifth columns. Figure 3 – figure supplement 1. Pairwise effects versus distance. Figure 3 – figure supplement 2. Biochemical epistasis within heavy and light chains and between chains. Figure 3 – figure supplement 3. Epistatic coefficients for statistical epistasis model. Figure 3 – figure supplement 4. Comparison of coefficients in biochemical and statistical models. Figure 3 – figure supplement 5. Variance partitioning for statistical epistasis model. Figure 3 – source data 1. Coefficients for biochemical epistatic model.
The I-2 intermediate (which contains G31D, M34I, N52H) is amongst the least-mutated variants that bind MA90-G189E (Figure 1B). The N52H mutation, which substantially improves affinity to MA90-G189E (Figure 4A), would potentially clash with one of the binding-incompatible HCDR3 conformations observed in crystal structures of the UCA and I-2, thus this mutation potentially increases the occupancy of the binding-compatible HCDR3 conformation (Figure 4—figure supplement 1A). In the bound state, N52H forms π-stacks with Y33H and hydrogen bonds with G31D (Figure 4B, 4C, Figure 4—figure supplement 1B). Consequently, N52H and G31D, which together interact to provide high affinity for MA90-G189E (Figure 4A), form a network of interactions between HCDR1, HCDR2, and the 150-loop of HA to stabilize the binding interaction (Figure 4B, 4C). Thus, while N52H alone confers affinity to MA90-G189E, G31D and M34I (I-2) reduce the dissociation rate by ~3.5-5 fold to improve affinity (Figure 4C, Figure 4—figure supplement 5). Notably, these interactions are distant from the site of viral escape.

Figure 4. Structural basis of epistasis in CH65. (A) Epistasis between three mutations in I-2 (G31D, M34I, N52H) determines affinity to MA90-G189E. (B) Epistatic mutations that confer affinity to viral escape strains are distant from the sites of escape. Shown is CH65 bound to SI06 (PDB 5UGY®). Colored residues highlight the locations of the mutations shown in A and C. Spheres highlight the locations of the viral escape mutations (G189E, ΔK133a, and E156G). (C) Top: Mutations N52H and G31D establish a network of interactions between HCDR1, HCDR2, and HA. Bottom: Binding kinetics against MA90-G189E for select variants at 30 °C by biolayer interferometry using a bivalent analyte binding model. (D) Mutations in I-2 are insufficient for affinity to SI06 (top) but interact epistatically with Y35N and H35N to bind SI06 (bottom). (E) Left: Epistatic mutations Y35N and H35N are located at the VH-VL interface. Right: Somatic mutations remove interactions with the HCDR3. Shown is the unbound I-2 structure (PDB 4HK3®). Bottom: Binding kinetics against SI06 for select variants at 30 °C by biolayer interferometry using a bivalent analyte binding model. Figure 4—figure supplement 1. In CH65, the N52H mutation moves relative to the UCA and I-2 and clashes with unbound HCDR3 conformations observed in the UCA and I-2. Figure 4—figure supplement 2. Representative biolayer interferometry (BLI) traces and bivalent analyte fits against MA90. Figure 4—figure supplement 3. Representative BLI traces and bivalent analyte fits against MA90-G189E. Figure 4—figure supplement 4. Representative BLI traces and bivalent analyte fits against SI06. Figure 4—figure supplement 5. Summary of all association rates, dissociation rates, and dissociation constants measured by BLI against MA90, MA90-G189E, and SI06 at multiple temperatures. Figure 4—figure supplement 6. BLI traces and fits of the antibody variant containing the I-2 mutations with H35N and Y35N. Figure 4—figure supplement 7. X-ray data collection and refinement statistics for unbound Fabs. Figure 4—source data 1. Binding kinetics for selected antibody variants determined by biolayer interferometry.
(G189E, Figure 4B, 4C). Though these mutations are also important for affinity to the antigenically drifted SI06, they are insufficient to confer binding in the absence of other epistatic mutations (Figure 4D, top).

In examining the minimally mutated variants that can bind SI06, we find that Y35N in the light chain and H35N in the heavy chain interact synergistically with the I-2 mutations (G31D, M34I, N52H) to confer affinity to SI06 (Figure 4D, bottom). Thus, the hierarchical sets of mutations that confer broad reactivity to these antigens (Figure 2D) do so through epistasis. In particular, the germline residue Y35 in the light chain framework (FWR) 2 is part of a cluster of aromatic residues at the V_H-V_L interface and makes π-stacking, methionine-aromatic, and hydrogen bonding interactions between LFWR2 and LCDR3, HCDR3, and HFWR4 (Figure 4E). The somatic mutation Y35N effectively removes these interactions with the HCDR3. Although the loss of the aromatic moiety from tyrosine to asparagine likely has a destabilizing effect, we attribute the observed changes in affinity to the loss of hydrogen bonding between LFWR2 and HCDR3; this is in part because the lineage member CH67, which has similarly broad reactivity, acquires a Y35F mutation upon affinity maturation which is only a removal of a hydroxyl group.

Similarly, H35N removes a methionine-aromatic interaction, known to have a stabilizing effect in proteins, between the HFWR2 and HCDR3 (Figure 4E). Addition of Y35N and H35N into the UCA background did not confer affinity to SI06 (Figure 4D, 4E). However, the addition of H35N into the I-2 background produced weak but detectable affinity with an association rate that was improved upon addition of Y35N (Figure 4E, Figure 4—figure supplement 6). Notably, while Y35N confers affinity to SI06 for variants with few somatic mutations, the magnitude of this effect diminishes as the number of mutations increases. Indeed, Y35N is depleted amongst the highest affinity variants (Figure 2C, Figure 2—figure supplement 1) and in the context of a mutated background decreased the association rate and overall affinity (Figure 4E), suggesting that Y35N, which removes inter-chain contacts, is likely only beneficial during early rounds of affinity maturation.

Because previous studies on this lineage identified HCDR3 rigidification as a mechanism for binding to SI06, we determined x-ray crystal structures of unbound Fabs containing Y35N in the UCA background or Y35N and H35N in the I-2 background and compared them to previously determined structures (Figure 4—figure supplement 1C). These variants were insufficient to rigidify the HCDR3 as observed by the HCDR3 conformation and high B factors or the lack of density corresponding to the HCDR3 (Figure 4—figure supplement 1C). These data show that I-2 mutations conferred affinity towards MA90-G189E by stabilizing the HCDR1 and HCDR2 with HA and were required for the addition of Y35N and H35N, which remove contacts with HCDR3, to confer affinity against SI06 without complete HCDR3 rigidification, revealing a biophysical mechanism through which inter-chain epistasis can determine broad affinity in a hierarchical manner.

The extent of epistasis we observe suggests that the evolution of CH65 is contingent on mutations occurring in a particular order. Further, the hierarchical pattern of mutations that confer affinity to the different antigens indicates that the likelihood a mutation fixes depends on the selecting antigen. Because we measured affinities for a combinatorially complete library, we can infer the likelihood of all possible evolutionary trajectories from the UCA to CH65 (with and without the constraint of passing through the I-2 intermediate) in the context of various possible antigen selection scenarios (e.g., maturation to MA90 alone, or to SI06 alone, etc.). To this end, we implement a framework in which the probability of any mutational step is higher if -logK_D increases and lower if -logK_D decreases (see Materials and methods). We use -logK_D to each antigen to compute the likelihood of all possible mutational trajectories in the context of each of the antigens, as well as in the context of all possible sequential selection scenarios, where the selecting antigen can change. We focus on scenarios involving the two antigens that the donor
was likely exposed to (Figure 5) – MA90 early in their life and SI06 later in their life – but we also perform this analysis with the MA90-G189E data (Figure 5 – Figure supplement 1). Additionally, we consider selection resulting from a mixture of antigens, which we approximate by randomly selecting an antigen for each mutational step and average this pathway likelihood over 1000 random draws.

This pathway likelihood inference reveals that mutational trajectories leading to CH65 are most favorable in sequential selection scenarios that begin with MA90 and end with SI06, consistent with the donor’s likely exposure history. This order is preferred irrespective of passing through the I-2 intermediate, and in fact the exact same selection scenario (four mutations selected with MA90 followed by 12 mutations selected with SI06) is the most likely scenario regardless of whether paths are constrained to pass through I-2 (Figure 5A). Further, the MA90-SI06 sequential scenarios are considerably more likely than either antigen alone, a mixture of antigens, or SI06-MA90 sequential scenarios.

Figure 5. Antigen selection scenarios and likely mutational pathways. (A) Selection scenario likelihood. Total probability of all mutational paths (left) or all paths that pass through I-2 (right) assuming specific antigen selection scenarios are shown. (B) -logK along most likely paths (left) or all paths that pass through I-2 (right) assuming specific antigen selection scenarios are shown. (C) Probability of each mutation occurring at a specific order under select antigen selection scenarios, with (right) and without (left) the constraint of passing through I-2. **Figure 5 – figure supplement 1.** Antigen selection scenarios and likely mutational pathways with MA90, SI06, and MA90-G189E. **Figure 5 – figure supplement 2.** Likelihood of passing through specific 3-mutation intermediates.
These drastic differences in scenario likelihood result from the effects of specific mutations on various genetic backgrounds. Mutations on the UCA background can improve affinity to MA90 but not to SI06, so MA90 is favored as the selecting antigen initially. After a few mutations, however, MA90 reaches maximal affinity and cannot improve further, at which point mutations begin to improve SI06 affinity. Thus, SI06 is favored later in mutational trajectories (Figure 5B). These constraints reflect the structure of the sequence-affinity landscape: selection with MA90 favors mutations that enable the acquisition of SI06 affinity and would be unlikely to occur under selection with SI06 alone. Similarly, when we consider all three antigens, we find that scenarios that begin with MA90 or MA90-G189E and end with SI06 are most likely, again reflecting the hierarchical nature of the sequence-affinity landscape (Figure 5–figure supplement 1).

We also leverage our combinatorial data to infer the probability of each mutation occurring at a given step along the evolutionary pathway from UCA to CH65 (Figure 5C). Even when we do not constrain pathways to pass through I-2, we find that the I-2 mutations and epistatic mutations that interact with the HCDR3 (e.g., Y33H, H35N and the previously uncharacterized Y35N) are most likely to occur early in mutational trajectories, especially in scenarios that begin with MA90 selection. Additionally, the highly synergistic HCDR3-stabilizing mutations Y48C and D49Y are most likely to occur late, and consecutively, with D49Y preceding the otherwise-deleterious Y48C. These general trends are robust to constraining paths to pass through the I-2 intermediate. Consistent with our structural analyses, we find that when pathways are constrained to pass through I-2, Y35N is the most probable subsequent mutation, and this likelihood rapidly decreases with additional mutations. However, when we consider all possible pathways in the optimal antigen selection scenario, I-2 is not the most likely 3-mutation intermediate, suggesting that the evolution of CH65 was not contingent on passing through I-2 (Figure 5–figure supplement 2). Still, the likelihood of passing through the I-2 intermediate is twice that expected by chance— it is a minimally mutated antibody with improved affinity to MA90 and MA90-G189E, and it contains the N52H mutation that is essential for SI06 affinity. Thus, while there are many accessible paths to CH65, the three mutations in I-2 result in rapid improvements in affinity and breadth and favor subsequent selection for epistatic mutations that ultimately provide the breadth of CH65.

Discussion

Collectively, we find that the breadth of an RBS influenza bnAb, CH65, is determined by high-order epistatic interactions that differ between divergent antigens. This epistasis is widespread within and between both the heavy and light chains. To our knowledge, this is the first comprehensive study of inter-chain epistasis and illustrates the extent to which mutations can differentially impact affinity depending on the presence of other mutations, even those too far apart to physically interact. This suggests that the maturation of antibodies that engage antigen with both chains may be distinct compared to those that do not. There are more opportunities for epistatic interactions across two chains compared to just one, and the degree of both intra- and inter-chain epistasis is likely contingent on the chain pairing. Given the importance of both light and heavy chain mutations across diverse bnAbs11,55,57,58, understanding the nature of this epistasis may be useful for designing therapeutic antibodies and eliciting broadly protective immune responses.

Further, our structural analysis shows that the epistasis that confers broad reactivity in this antibody is mediated through sets of mutations that both interact with HA and those that do not interact with HA. These epistatic mutations add or remove interactions between CDRs, FWRs, and chains that act by
different mechanisms of stabilizing the binding constraining interface (e.g., G31D and N52H) or removing constraints on the HCDR3 (e.g., Y35N and H35N). The Y35N mutation effectively removes interactions between the LWFR2 and the HCDR3 at the V_{H}-V_{L} interface and mediates affinity improvement to a more antigenically advanced influenza strain by increasing the association rate. An analogous observation was noted for the anti-HIV bnAb CH103 that co-evolved during a natural infection within in a single individual. Structural studies of CH103 identified mutations at the V_{H}-V_{L} interface (which is the region containing residue 35 in CH65) that were associated with reconfiguration of the HCDR3 to enable broad reactivity against a viral escape variant. Although additional work will be needed to address the generality of this finding, it appears that antibodies can evolve to bind viral escape variants by modulating the V_{H}-V_{L} interface and the HCDR3 configuration, in response to both chronic (HIV) and punctuated (influenza) exposures. While Y35N is advantageous early in affinity maturation, it becomes detrimental in highly mutated backgrounds that have undergone HCDR3 rigidification. Consequently, Y35N may function to initially increase flexibility, enabling acquisition of affinity to SI06 after acquiring mutations in the heavy chain, and subsequent maturation rigidified the HCDR3. This increased flexibility followed by rigidification is reminiscent of molecular dynamics studies of anti-HIV bnAbs that suggest initial increases in flexibility may provide a means to sample additional conformational space prior to rigidification.

In comparing CH65 mutations that improve affinity to diverse H1 antigens, we find that increasingly divergent antigens require additional epistatically interacting mutations, resulting in a hierarchical pattern of mutations that improve affinity to distinct antigens. The I-2 mutations (e.g., G31D, M34I, N52H) may compensate for the G189E mutation by stabilizing interactions with HA opposite this site, potentially allowing the antibody to shift to relieve the clash; a similar observation was made for another RBS-directed antibody. These same mutations help to stabilize binding in the antigenically distant SI06 but do not sufficiently compensate for the loss of potential contacts between the HCDR3 and the RBS (e.g., ΔK133a and E156G) within the antigen combining site; further mutations Y35N and H35N that likely influence HCDR3 conformations are needed. These structural observations and the data generated here suggest that mutations confer broad reactivity in the CH65 lineage in a hierarchical manner. Although the hierarchical landscape of CH65 is not as striking as that of CR9114, where larger sets of mutations are required to bind substantially more divergent antigens, it is intriguing that the landscape for a considerably narrower bnAb can also have this structure. This suggests that hierarchical sequence-affinity landscapes may be quite common, as they are not unique to CR9114, to anti-stem bnAbs, or to bnAbs that engage distinct HA subtypes.

If hierarchical sequence-affinity landscapes are common amongst bnAbs, they may contribute to the low frequencies of bnAbs in human repertoires. For bnAbs with such landscapes, epistatically interacting mutations are required to bind a given antigen, additional epistatic mutations (that interact favorably with those acquired previously) are required to bind a distinct antigen, and so on. Determining how this might constrain bnAb evolution will require assessing how rare these sets of synergistic mutations are. Importantly, the landscapes measured here and in our previous work focus exclusively on mutations present in the affinity-matured antibodies, which are biased by the selection pressures those bnAbs experienced. Thus, while these landscapes show that diverse bnAbs can mature by acquiring hierarchical sets of epistatic mutations that are favored in sequential exposure regimes, there may be alternative mutational pathways to breadth that are not hierarchical and are favored in other exposure regimes.

Still, the observation that antibodies can evolve breadth through hierarchical mutational landscapes lends support for vaccination with sequential doses of distinct antigens. These findings are consistent with a recent study that demonstrates memory B cell recruitment to secondary germinal centers upon
vaccination in humans, allowing for additional rounds of antibody maturation to antigenically drifted strains. Here we find that sequential exposures with antigenically drifted strains may help elicit within-subtype potent bnAbs like CH65, in addition to the cross-subtype bnAbs described in our previous work. Several theoretical and computational models of bnAb affinity maturation also favor sequential immunization strategies, as they allow antibodies to acquire the mutations necessary to bind one antigen before experiencing selection pressure to bind another, ultimately producing bnAbs that have ‘focused’ on conserved epitopes. Our work indicates that this focusing process may occur by favoring selection on hierarchical sets of epistatically interacting mutations. We note that while the hierarchical epistasis we observe favors the acquisition of breadth to a set of specific antigens, antagonistic epistasis between these mutations and new mutations could prevent the acquisition of breadth to other antigens. Further, both CH65 and CR9114 have higher affinity to the strain most like the inferred original immunogenic stimulus, and weaker affinity to more divergent strains. This is consistent with the concept of immunological imprinting or original antigenic sin, where antibodies boosted upon vaccination or infection typically have high affinity for the eliciting strain. Although we show that the CH65 antibody lineage can evolve breadth that compensates for viral escape mutations, the affinities are lower for more antigenically distant strains, suggesting that there is likely a trade-off between antibody breadth and affinity. Further work will be needed to assess whether RBS-targeting bnAbs like CH65, which target highly variable epitopes compared to stem-targeting bnAbs, can mature to bind substantially divergent strains (e.g., post-pandemic H1N1 strains that CH65 does not effectively neutralize), or whether historical contingency prevents them from doing so.

Finally, although epistasis can make evolution more difficult to predict, the general patterns of epistasis emerging from these combinatorial landscapes suggest that there are indeed broadly applicable insights. For example, these hierarchical synergistic interactions reveal how epistasis constrains the evolution of antibody affinity, breadth, and trade-offs between the two. Moving forward, additional combinatorial antibody libraries will advance our understanding of how pervasive these features are – for example, for antibodies that target distinct viruses. Ultimately, though, to understand why we observe these particular bnAbs and not others, we need to explore the unobserved regions of sequence space. We also need to assess the numerous other properties that likely impact selection on antibodies (e.g., stability, folding, polyreactivity). Thus, integrating approaches such as this combinatorial approach with methods for assessing local mutational landscapes (e.g., deep mutational scanning) and methods to measure other antibody properties in high-throughput will provide a more comprehensive view of the factors that constrain and potentiate antibody evolution.
Materials and Methods

Antibody library production

Antibody sequences and mutations of interest
The UCA860 amino acid sequence was codon-optimized for expression in yeast. Amino acid substitutions corresponding to those in CH65 were encoded by ≥ 2 nucleotide mutations, when possible. The V98I mutation, which lies outside the region captured by 2x250 bp reads, was encoded by a synonymous mutation at Arg53. The Q1E and S75A mutations in V_H were determined to minimally influence affinity (Figure 1–figure supplement 1) and were excluded from all subsequent experiments to reduce the library size.

Yeast display plasmid and strains
Single-chain variable format (scFv) antibody constructs were cloned via Gibson Assembly into the pCHA yeast display vector with a C-terminal myc epitope tag and Aga-2 fusion (Supplementary Files 1-2). These scFv constructs were displayed on the surface of the EBY100 yeast strain, as described below for the yeast library production. Unless otherwise noted, yeast were cultured by rotating at 30˚C and were pelleted by centrifuging at 14,000 x g (1 min) or 3,000 x g (10 min).

Combinatorial Golden Gate Assembly
To assemble the combinatorially complete library containing all \(2^{16} = 65,536 \) variants, the scFv sequence was sectioned into five fragments of roughly equal length such that each fragment contained ≤ 5 mutations. Primers were designed to create all possible (≤ 2^5) versions of each fragment by adding mutations, a Bsa-I cleavage site, and a 4-bp overhang unique to each fragment (Supplementary File 3). Fragments were amplified from the UCA860 sequence via PCR using Q5 Polymerase (NEB, Ipswich, MA, #M0491). The resulting fragments were purified using a 2X ratio of Aline beads (Aline Biosciences, Woburn, MA, #C-1003-5), overnight DpnI digestion at 37˚C (NEB #R0176), and a second 2X ratio bead cleanup. The backbone vector was prepared by replacing the scFv sequence in the pCHA yeast display vector with a ccdb counter-selection marker. Equimolar amounts of each fragment were then pooled, and assembled into the backbone vector at a 2:1 molar ratio via Golden Gate Assembly (NEB #R3733). The assembly mix was then transformed into electrocompetent DH10B E. coli in 5 x 25 uL cell aliquots (NEB #C3020). Each cell aliquot was recovered in 1 mL outgrowth media at 37˚C for 1 hr and then transferred into 100 mL of molten LB (1% tryptone, 0.5% yeast extract, 1% NaCl, 100 g/L ampicillin (VWR # V0393), 0.4% SeaPrep agarose (VWR, Radnor, PA #12001-922) in a 500 mL baffled flask. The bacteria-agar mixture was incubated at 4˚C for three hours to gel the agar and was then incubated at 37˚C for 16 hours. Each flask contained 1-2 million colonies (5-10 million colonies across five flasks; > 100 times the library diversity) and was blended by shaking at 200 rpm for 1 hour. The cells were then pelleted by spinning at 3,000 x g for 10 minutes, and plasmid DNA was extracted using the ZymoPURE II Plasmid Midiprep Kit (Zymo Research, Irvine, CA, #D4201).

Yeast library production
One day prior to transformation, EBY100 cells were thawed by inoculating 5 mL YPD (1% Bacto yeast extract (VWR #90000-726), 2% Bacto peptone (VWR #90000-368), 2% dextrose (VWR #90000-904)) with 150 uL glycerol stock and rocking at 30˚C for 12-24 hr. The scFv plasmid library was then transformed into EBY100 cells by the lithium acetate method and transformants were recovered in 100 mL molten SDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich, St. Louis, MO, #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L
Bacto casamino acids (VWR #223050), 100 g/L ampicillin (VWR # V0339), 0.4% SeaPrep agarose (VWR #12001–922)) in 500 mL baffled flasks. The yeast-agar mixture was incubated at 4°C for 3 hours to allow the agar to set and was then incubated at 30°C for 48 hours to allow for yeast colony growth. Each flask contained ~700,000 colonies, totaling about 7 million colonies across ten flasks (>100 times the library diversity). After disrupting the agar by shaking at 200 rpm for 1 hr, the yeast library was inoculated into liquid SDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich, MO, #A4418), 2% dextrose (VWR #90000–904), 5 g/L Bacto casamino acids (VWR #223050), 100 g/L ampicillin (VWR # V0339), 5.4 g Na₂HPO₄ (Sigma-Aldrich, #S7907), 8.56 g NaH₂PO₄·H₂O (Sigma-Aldrich, #S9638))83 and grown for five generations to saturation before freezing at -80°C in 1 mL aliquots containing 5% glycerol.

Viral Escape

Cell lines and media

HEK293T cells were passaged in DMEM (Gibco, #11965126) supplemented with 10% fetal bovine serum (Peak Serum) and Penicillin-Streptomycin (Gibco, #15140163) subsequently referred to as “D10”. MDCK-SIAT1 cells (Sigma, #05071502) were passaged in D10 additionally supplemented with 1 mg/ml Geneticin (Gibco, #10131035). Prior to infection, Geneticin was not included in the MDCK-SIAT1 medium. Media used to propagate influenza, referred to as “flu media”, contains Opti-MEM (Gibco, #31985088) supplemented with 0.3% BSA (Roche, #03117332001), 0.01% FBS, and Penicillin-Streptomycin. Prior to propagation, 1 µg/ml of TPCK-trypsin (Sigma, #T1426) was freshly added to flu media.

Generation of recombinant MA90 virus

We used a standard eight plasmid reverse genetics system84 to generate a recombinant 6:2 virus bearing the PB2, PB1, PA, NP, M, and NS genomic segments from PR8 (A/Puerto Rico/8/1934; a kind gift from Jesse Bloom), MA90 HA (Genbank: L19027), and A/Siena/10/1989 NA (Genbank: CY036825). Because the sequencing of the MA90 HA was not complete, the C-terminus was extended with that of A/Siena/10/1989 (Genbank: CY036823). In a six-well plate treated with poly-L-lysine (Sigma, #P4707), 6 x 10⁵ HEK293T cells and 1 x 10⁵ MDCK-SIAT1 cells were added to wells six-well plates in D10. The next day, media was aspirated from the cells and fresh, pre-warmed D10 was added on top. For each transfection, 8 µL of Trans-IT LT1 (Mirus, #2300) was added to Opti-MEM (Gibco, #31985070) containing 0.5 µg of each plasmid and incubated at room temperature for 20 minutes. The mixture was then added dropwise to the cells. After ~5 hours, the media was aspirated from the cells and flu media freshly supplemented with 1 µg/ml TPCK-treated trypsin was added. After two days, dead cells were removed from the virus-containing media by centrifugation at 800 x g for 5 minutes. The supernatant was then supplemented with 1 µg/ml TPCK-treated trypsin and added to a confluent monolayer of MDCK-SIAT1 cells seeded one day before in a six well plate and washed once with PBS (seeded at 7 x 10⁵ cells per well). After ~4-5 hours, the supernatant was removed, and fresh flu media supplemented with 1 µg/ml TPCK-treated trypsin was added. One day later, successful rescue was judged by observing cytopathic effect. Multiple rescue transfections were pooled and added to 10 cm dishes containing a confluent monolayer of MDCK-SIAT1 cells seeded one day prior (at 3 x 10⁵ cells per dish) as detailed above. Two days later, successful propagation was judged by cytopathic effect, the supernatant was clarified by centrifugation, and aliquots were frozen at -80°C.
Escape variant generation

Prior to infection, MA90 virus was incubated with a low concentration of antibody (started at 0.01 µg/ml of the UCA), a higher concentration of antibody (one half-log greater than the lower concentration), or no antibody (as a control for cell line adaptation mutations) in 500 µL of flu media supplemented with 1 µg/ml TPCK-treated trypsin for 1 hour at 37 °C and 5% CO₂. MDCK-SIAT1 cells seeded the day before were washed with PBS and then virus-antibody mixtures were added to the monolayers and incubated for 1 hour at 37 °C and 5% CO₂, rocking the plate every ~15 minutes to ensure that the cells did not dry out. Afterwards, the viral inoculum was removed, and the cells were washed with PBS before adding fresh flu media supplemented with 1 µg/ml TPCK-treated trypsin. After 2 days, viral growth was judged by cytopathic effect. The well that grew with a higher concentration of antibody was selected for the next passage where the “low” antibody concentration was the same as the previous passage and the “high” concentration was a half-log higher. This process was repeated until viral growth was readily detectable at 100 µg/ml of the UCA. If necessary, a hemagglutination assay using turkey red blood cells (Lampire, #7249409) was run to determine whether virus was present. Briefly, two-fold dilutions of the virus in PBS were mixed with 0.5% turkey red blood cells and incubated at room temperature for at least 30-45 minutes before visualization of red blood cell pellets to determine whether virus had grown significantly. Once the virus still grew in 100 µg/ml of the antibody, the virus was passaged one additional time and 100 µg/ml of antibody was additionally added to the media added after infection. The RNA from the escaped virus was isolated using a QIAamp viral RNA mini kit (Qiagen, #52904), and the full-length HA was amplified using gene-specific primers and the OneStep RT-PCR kit (Qiagen, #210212). The resulting PCR product was sequenced by Sanger sequencing (Genewiz). The mutation G189E was identified from the sequencing results and produced as a recombinant protein for subsequent experiments (see below).

Antigen and IgG production

Choice of HA antigens

Antibodies CH65, CH66, and CH67 were isolated from plasmablasts from donor TIV01 after receiving the trivalent influenza vaccine in the 2007-2008 influenza season which contained the A/Solomon Islands/3/2006 (SI06) H1N1 strain. The donor TIV01 was born in ~1990 and subsequent work identified that the inferred UCA of this lineage bound to the strain A/Massachusetts/1/1990 (MA90) circulating near the donor's birth date and is suspected to be highly similar to the original immunogenic stimulus of this lineage. However, the UCA did not bind SI06 which escaped the UCA and I-2 of this lineage. To assess whether affinity maturation in this lineage is capable of accommodating for an escape mutation that abrogates binding to less mature variants, we drove viral escape from MA90 in vitro (see above) using the UCA and identified that matured variants of this lineage (e.g., CH65 and CH67) bound the escape variant (MA90-G189E) with high affinity. To understand how this antibody lineage evolved to compensate for viral escape mutations, we included MA90-G189E and SI06 in addition to MA90.

Recombinant protein cloning, expression, and purification

Variable heavy and light chains were synthesized as eBlocks (IDT). Full-length, codon-optimized HAs (A/Massachusetts/1/1990 - MA90, MA90-G189E, and A/Solomon Islands/03/2006 - SI06) and full-length human IgG1 heavy and light chains were cloned into a pVRC expression vector containing a C-terminal HRV 3C cleavage site, His tag, FoldOn trimerization domain, and AviTag for HAs and a HRV 3C cleavage site followed by a C-terminal His tag for antibody heavy chains. Recombinant proteins were produced in Expi293F cells (Gibco, #A14527) following the manufacturer’s directions. The trimeric HAs were purified from the supernatant using TALON metal affinity resin (Takara, #635653), washing with PBS, and eluting with PBS containing 200 mM imidazole (pH 7.4). After concentration, proteins were further purified over
an S200 column on an AKTA pure (Cytiva). For yeast surface display assays, the HAs were further biotinylated and flash-frozen in liquid nitrogen (see below). For kinetics measurements, the HAs were used within two weeks of production and never frozen.

HA biotinylation

Biotinylation of the HAs was performed using the BirA500 kit (Avidity) following the manufacturer’s instructions. To compensate for the reduced activity in PBS, twice the amount of BirA was added and the reaction was additionally supplied with twice the amount of biotin using the supplied BIO-200. The biotinylation reaction was allowed to proceed for 1.5 hours at 30˚C before 0.2 µm filtering and purification over an S200 column (Cytiva). The trimeric HAs were then concentrated and flash-frozen in liquid nitrogen for single-use aliquots. Biotinylated HAs were quality controlled by a gel shift assay. Approximately 2 ug of biotinylated HA was heated in non-reducing Laemmli buffer (Bio-Rad, #1610737) at 95˚C for 5 minutes. Once cooled to room temperature, excess streptavidin was added and allowed to incubate for at least 5 minutes. As a control, samples were run with PBS added rather than streptavidin. The mixture was then run on a Mini-PROTEAN TGX Stain-Free gel (Bio-Rad, #4568096) and imaged. All biotinylated HAs shifted in the presence of streptavidin, indicating successful biotinylation.

Tite-Seq assays

Tite-Seq assays were performed in biological duplicate (on different days) for each antigen, as previously described with some modifications described below.

Induction of antibody expression

On day 1, the yeast CH65 library and isogenic strains containing the pCHA-UCA860 or pCHA-CH65 plasmids were thawed by inoculating 5 mL SDCAA with 150 µL glycerol stock and rotating at 30˚C for 24 hr. On day 2, yeast cultures were back-diluted to OD600 = 0.2 in 5 mL SDCAA and rotated at 30˚C until they reached an OD600 = 0.4 - 0.6 (about four hours). Subsequently, 1.5 mL of these log-phase cultures were pelleted, resuspended in 4 mL SGDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich, MO, #A4418), 1.8% galactose (Sigma-Aldrich #G0625), 0.2% dextrose (VWR #90000–904), 5 g/L Bacto casamino acids (VWR #223050), 100 g/L ampicillin (VWR # V0339), 5.4 g Na2HPO4 (Sigma-Aldrich, #S7907), 8.56 g NaH2PO4·H2O (Sigma-Aldrich, #S9638))33, and rotated at room temperature for 20-22 hr.

Primary antigen labeling

On day 3, following induction of scFv expression, cultures were pelleted, washed twice with cold 0.1% PBSA (VWR #45001-130, GoldBio, St. Louis, MO, #A-420-50), and resuspended to an OD600 of 1. For each concentration of antigen (0.75-log increments spanning 1 µM - 1 pM), 700 µL of the CH65 yeast library (OD600 = 1) were incubated with biotinylated HA by rocking at 4˚C for 24 hr. Notably, the volume of each antigen concentration was adjusted such that the number of antigen molecules exceeded that of antibody molecules by at least ten-fold (assuming 50,000 scFv/cell)59.

Secondary fluorophore labeling

On day 4, yeast-HA complexes were pelleted at 4˚C and washed twice with 5% PBSA + 2 mM EDTA. Complexes were then incubated with Streptavidin-RPE (1:100, Thermo Fisher Scientific, Waltham, MA, #S866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4˚C for 45 min in
the dark. Following incubation, complexes were washed twice with 5% PBSA + 2 mM EDTA and stored on ice in the dark until sorting.

Sorting
Yeast-HA complexes were sorted on a BD FACS Aria IIIu equipped with an 85 micron fixed nozzle and 405 nm, 440 nm, 488 nm, 561 nm, and 635 nm lasers. Single-color controls were used to compensate for minimal overlap between the FITC and PE channels. For all sorts, single cells were gated by FSC vs SSC, and the resulting population was sorted either by expression (FITC) or HA binding (PE). For the expression sort, ~1.6 million (~20X library diversity) single cells were sorted into four gates of equal width spanning the FITC-A axis. For the HA binding sort, ~1.6 million scFv-expressing cells were sorted into four gates spanning the PE-A axis, with one gate capturing all PE-negative cells, and the remaining three each capturing 33% of the PE-positive cells (Figure 1–figure supplement 2). All cells were sorted into 5 mL polypropylene tubes containing 1 mL of 2X SDCAA supplemented with 1% BSA and were stored on ice until recovery.

Recovery and plasmid extraction
Following sorting, yeast were pelleted by spinning at 3,000xg for 10 min at 4˚C. Supernatant was carefully removed by pipette, and the resulting pellet was resuspended in 4 mL SDCAA and transferred to a glass culture tube. A small amount of this resuspension (targeting 200–500 cells, based on sorting counts) was plated on SDCAA-agar and YPD-agar to quantify recovery efficiency and plasmid loss. Cultures were then rocked at 30˚C until reaching OD600 = 0.8-2.

After reaching the target OD600, 1.5 mL yeast culture was pelleted and frozen at -80˚C for at least an hour. Plasmid was then extracted using the Zymo Yeast Plasmid Miniprep II kit (Zymo Research #D2004) following the manufacturer’s instructions, except for the following changes: 5 µL zymolyase was used per sample, zymolyase incubations were 2-3 hours, precipitate following neutralization was removed by centrifugation at 21,000xg for 10 minutes, columns were washed using 650 µL wash buffer and dried by spinning at 16,000xg for 3 minutes, and plasmid was eluted in 15 µL elution buffer.

Sequencing library preparation
ScFv amplicon sequencing libraries were then prepared by a two-step PCR as previously described. The first PCR appended unique molecular identifiers (UMI), sample-specific inline indices, and a partial Illumina adapter to the scFv sequence, and was performed for 5 cycles to minimize PCR amplification bias. The second PCR appended the remainder of the Illumina adapter and sample-specific Illumina i5 and i7 indices, and was performed for 35 cycles to produce a sufficient amount of each amplicon library (primer sequences in Supplementary File 4). The first PCR used 5 µL plasmid DNA as template for a 20 µL reaction using Q5 polymerase according to the manufacturer’s instructions with the following cycling program: 1. 60 s at 98˚C, 2. 10 s at 98˚C, 3. 30 s at 67˚C, 4. 60 s at 72˚C, 5. GOTO 2, 4x, 6. 60 s at 72˚C. The product from PCR 1 was then brought up to 40 µL with MBG water, purified using Aline beads at a ratio of 1.2X, and eluted in 35 µL elution buffer. 33 µL of this elution was used as template for the second PCR, which was a 50 µL reaction using Kapa polymerase (Kapa Biosystems, Wilmington, MA, #K2502) per the manufacturer’s instructions and the following cycling program: 1. 30 s at 98˚C, 2. 20 s at 98˚C, 3. 30 s at 62˚C, 4. 30 s at 72˚C, 5. GOTO 2, 34x, 6. 300 s at 72˚C. The resulting amplicons were purified using Aline beads at a ratio of 0.85X and DNA concentration was determined using a fluorescent DNA-binding dye (Biotum, Fremont, CA, #31068) per the manufacturer’s instructions. Amplicons were then pooled amongst the four bins for each concentration, based on the number of cells sorted into each gate, and then equimolar amounts of the resulting pools were combined to make the final pooled library.
Prior to sequencing, the pool concentration was determined by Qubit and the size verified by Tapestation HS DNA 5000 and 1000. The pool was then sequenced on a NovaSeq SP (2x250 paired-end reads) with 10% PhiX spike-in; 2-4 curves were loaded onto a single flow cell to sequence each variant at least 100X coverage.

Sequencing data processing
Demultiplexed sequencing reads were parsed using a Snakemake pipeline as previously described (see github.com/amphilli/CH65-comlib for parameters). Briefly, UMI, inline indices, and genotypes were extracted from each read using Regex. Reads with incorrectly paired inline indices or unexpected mutations at the CH65 mutation sites were discarded. In all other regions of the read, all reads exceeding a 10% error rate were discarded. Following this filtering, reads were deduplicated by UMI to generate unique counts files for each sample.

Tite-Seq K_D inference
Mean-bin approach
To fit the dissociation constant (K_D) for each variant in the library, we followed the same method as previously described. Briefly, we use the sequencing counts and flow cytometry data to infer the mean log-fluorescence of each genotype s at each concentration c:

$$\bar{F}_{s,c} = \sum_b F_{b,c} p_{b,s|c} ,$$

Where $F_{b,c}$ is the mean log-fluorescence of bin b at concentration c, and $p_{b,s|c}$ is the proportion of cells with genotype s sorted into bin b at concentration c, and is given by:

$$p_{b,s|c} = \frac{R_{b,s,c}}{\sum_b R_{b,s,c}} c_{b,c}$$

Where $R_{b,s,c}$ is the number of reads with genotype s found in bin b at concentration c, and $c_{b,c}$ is the number of cells sorted into bin b at concentration c.

Uncertainty is then propagated in these mean bin estimate as:

$$\delta \bar{F}_{s,c} = \sqrt{\sum_b \left(\delta F_{b,c}^2 p_{b,s|c}^2 + F_{b,c}^2 \delta p_{b,s|c}^2 \right)}$$

Where $\delta F_{b,c}$ is the standard deviation of log-fluorescence for cells sorted into bin b at concentration c. This is approximated by $\sigma F_{b,c}$ and the error in $p_{b,s|c}$ results from sampling error, which is approximated as a Poisson process at sufficient sequencing coverage, yielding:

$$\delta p_{b,s|c} = \frac{p_{b,s|c}}{\sqrt{R_{b,s,c}}}$$
The dissociation constant, $K_{D,s}$, was inferred for each genotype by fitting the logarithm of the Hill function to the mean log-fluorescence:

$$\tilde{F}_{s,c} = \log_{10} \left(\frac{c}{c + K_{D,s}} A_s + B_s \right)$$

Where A_s is the increase in fluorescence at antigen saturation and B_s is the background fluorescence in the absence of antigen. The fit was performed using the Python package `scipy.optimize.curve_fit` function, using the following boundary conditions: $A_s (10^{-2} - 10^6)$, $B_s (1 - 10^5)$, $K_{D,s} (10^{-14} - 10^{-5})$.

Data quality and filtering

Following the $K_{D,s}$ inference, non-binding sequences with $K_{D,s} < 6$ or $A_s - B_s < 1$ were pinned to the titration boundary with $-\log K_{D,s} = 6$. Subsequently, $K_{D,s}$ values resulting from poor fits ($r^2 < 0.8$, $\sigma > 1$) were removed from the dataset, $K_{D,s}$ were averaged across biological replicates, and $K_{D,s}$ with large SEM (> 0.5-log units) were excluded from subsequent analyses. This filtering retained 65,530, 64,142, and 65,389 genotypes for the MA90, G189E, and SI06 Tite-Seq experiments, respectively (Figure 1–source data 1).

Expression data

Sequencing reads corresponding to the expression sort were handled identically to those from the HA binding sort, and the mean log-fluorescence was inferred as detailed above. Day-to-day variation in fluorophore labeling and detection were accounted for by normalizing mean log-fluorescence values by the average mean log-fluorescence of the corresponding replicate (Figure 1–source data 1).

Force-directed layouts

To reduce the dimensionality of the sequence-affinity landscape, we implemented a force-directed layout, as previously described\(^6\). In these graphs, each variant sequence is represented by a node, and variants related by a single mutation are connected by an edge. Edge weights between nodes s and t are weighted by the change in binding affinity resulting from the corresponding mutation:

$$w_{s,t} = \frac{1}{0.01 + |\log_{10} K_{D,s} - \log_{10} K_{D,t}|}$$

To construct the force-directed layout, we use $K_{D,s}$ to MA90 to compute the weights. If a mutation from sequence s to t does not impact $K_{D,s}$, those nodes will be close together, and vice versa. The layout coordinates for each variant were obtained using the Python package igraph function layout_drl, and each node is associated with the corresponding $K_{D,s}$ to SI06 and G189E, as well as the mean expression. An interactive form of this graph is available as an online data browser here: https://ch65-ma90-browser.netlify.app/.

Epistasis Analysis

Linear interaction models

We infer epistatic coefficients as previously described\(^6\). Briefly, we implement linear models to infer specific mutational effects and interactions that sum to the observed log-transformed binding affinities, -
\[\log(K_{D,s}) \text{, which are proportional to free energy changes and hence expected to be additive}^{62,63}. \] This additive model is given by:

\[y_s = \beta_0 + \sum_{i=1}^{L} \beta_i x_{i,s} + \epsilon \]

Where \(L \) is the number of mutations in CH65 (i.e. 16), \(\beta_0 \) is an intercept, \(\beta_i \) is the effect of mutation at site \(i \), \(x_{i,s} \) is the genotype of variant \(s \) at site \(i \), and \(\epsilon \) represents independently and identically distributed errors.

Our general epistatic model is thus given by:

\[y_s = \beta_0 + \sum_{i} \beta_i x_{i,s} + \sum_{i<j} \beta_{ij} x_{i,s} x_{j,s} + \sum_{i<j<k} \beta_{ijk} x_{i,s} x_{j,s} x_{k,s} + \ldots + \epsilon \]

Where \(\beta_i \) are second-order interaction coefficients between sites \(i \) and \(j \), \(\beta_{jk} \) are third-order interaction coefficients between sites \(i \), \(j \), and \(k \), and so on, up to a specified maximum order of interaction.

We infer these coefficients in both the biochemical and statistical bases\(^{5,89} \), which are equivalent frameworks related by a linear transformation. For ease of interpretation, we report coefficients inferred using the biochemical model in the Main text and figures, as these coefficients can be interpreted as mutational effects and interactions relative to the UCA860 sequence. We report coefficients inferred using the statistical model in the Figure supplements, and these mutational effects and coefficients can be interpreted as relative to the average of the dataset.

For both the biochemical and statistical models, we take a conservative approach to estimating higher-order epistasis. To this end, we truncate the model above some maximal order \(n \) and fit the resulting model, beginning with \(n = 1 \) and proceeding with higher \(n \) until the optimal performing model has been identified. We evaluate performance using a cross-validation approach. For each of ten folds, we use 90% of the data to train the model and evaluate the model using the prediction performance (\(R^2 \)) on the remaining 10%. We then average performance across the ten folds, select the order that maximizes the prediction performance, and retrain the entire dataset on a model truncated at this optimal order. This inference yields models with \(p \) coefficients, and we find that for each antigen \(p < N \) by an order of magnitude, where \(N \) is the number of data points, giving us confidence that we are not overfitting the data.

Practically, we perform this inference using the Python package statsmodels using ordinary least squares regression. This yields the coefficient values and associated standard errors and \(p \)-values (Figure 3–source data 1); coefficients with Bonferroni-corrected \(p \)-value < 0.05 are considered significant and are plotted in Figure 3 and Figure 3–figure supplement 2. For the SI06 data, we exclude N52H from the epistasis inference and perform the analysis on the remaining 15 mutations, as > 90% of sequences with any detectable binding affinity include mutation N52H and thus we do not have power to infer the effect of this mutation. In the statistical epistasis inference, the coefficients at different orders are statistically independent and so we partition the variance explained by the model for each interaction order (Figure 3–figure supplement 2).
Structural analysis of epistasis
To examine the structural context of the linear and pairwise coefficients from the biochemical epistasis model, we performed two analyses using the co-crystal structure of CH65 with full-length Influenza A/Solomon Islands/3/2006 HA (PDB 5UGY). First, we used ChimeraX to compute the buried surface area between each mutation in CH65 and HA, using the measure buriedarea function and the default probeRadius of 1.4 angstroms. This area is plotted as the ‘HA contact surface area’ in Figure 3. We perform the same computation between each mutation in CH65 and the HCDR3, and plot this as the ‘CDR3 contact surface area’ in Figure 3. Second, we used PyMol (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC) to compute the distance between alpha-carbons, and plot this as a function of the pairwise interaction terms in Figure 3–figure supplement 1.

Pathway Analysis

Selection models
To assess the likelihood of mutational pathways from UCA860 to CH65, we assume a moderate selection model in the weak-mutation strong-selection regime as previously described. Briefly, in this model, mutations fix independently of each other, and mutations are favored if they improve affinity, though both neutral and deleterious mutations are allowed. We use this model to compute the fixation probability of a mutation from sequence s to t. This fixation probability is then used to compute the transition probability of the corresponding mutational step:

$$ p_{\text{step}}(\sigma, N) = \frac{1 - e^{-\sigma}}{1 - e^{-N\sigma}} $$

We define the selection coefficient σ to be proportional to the difference in $-\log K_D$ for a particular antigen between sequences s and t:

$$ \sigma = \gamma \Delta_{s,t} = \gamma(- \log_{10} K_D^{ag} - (- \log_{10} K_D^{ag})) $$

Where N is the effective population size and γ corresponds to the strength of selection. For the moderate selection model applied here, we use $N = 1000$ and $\gamma = 1$. Additionally, to compute the total number of mutational paths that improve in affinity at each step, we use $N \to \infty$ and $\gamma \to \infty$ such that $p_{\text{step}} = 1$ if the mutation improves affinity and $p_{\text{step}} = 0$ otherwise. These fixation probabilities are then used to compute the transition probability for all sequences s,t over all antigens ag:

$$ p_{s,t}^{ag} = \begin{cases} p_{\text{step}}(\Delta_{s,t}^{ag}, \gamma, N), & \text{if } t \text{ has one more mutation than } s \\ 0, & \text{otherwise} \end{cases} $$

Antigen selection scenario likelihood and mutation probabilities
The transition probabilities described above were used to compute the total probability for a set of possible antigen selection scenarios, and for select antigen selection scenarios, the probability of each mutation occurring at a specific order (Figure 5). This was performed as previously described, where the probabilities $p_{s,t}^{ag}$ are stored as sparse transition matrices P^{ag} of dimension $2^N \times 2^N$ for each antigen, where entries are nonzero when sequence t has one more mutation than sequence s. To evaluate the total probability for a given antigen selection scenario, we compute the matrix product for all mutational steps i under a specific sequence of antigen selection contexts ag_1, \ldots, ag_L.

23
\[P_{\text{tot}} = \sum_{\text{paths}} \left(\prod_{\text{steps}} P_{\text{step}} \right) = \left[\prod_{i=1}^{L} p_{s, t}^{a} \right]_{s' \rightarrow s} \]

Where \([s, s']\) represents the matrix element in the row corresponding to genotype \(s\) and the column corresponding to genotype \(s'\). Notably, transition probabilities are not normalized at each step. Thus, many pathways will not reach the somatic CH65 sequence and the likelihood assesses the probability of reaching the CH65 somatic sequence.

Here, we consider three classes of antigen selection scenarios. The simplest is a single-antigen selection scenario, in which all steps \(i\) use the same antigen. Second, we consider selection scenarios where steps can use different antigens in a non-repetitive manner. Finally, we consider a scenario that approximates exposure to a mixture of antigens5673,92, in which an antigen is drawn at random for each mutational step \(i\). We then calculate \(P_{\text{tot}}\) for 1000 randomly drawn scenarios, report the average log probability, and illustrate mutational paths and orders for a scenario near the median probability from the 1000 draws. For all antigen selection scenarios, the error of \(P_{\text{tot}}\) is estimated by resampling the binding affinity from a normal distribution corresponding to its value and standard deviation. We perform this bootstrapping over ten iterations and report \(P_{\text{tot}}\) as the average.

To identify the most likely paths under a given selection scenario (as plotted in Figure 5B), we construct a directed graph, where each sequence \(s\) is a node, and edges connect nodes \(s\) and \(t\) that are separated by one mutation. The edge weights are calculated from the transition probability, \(w_{s \rightarrow t} = -\log(p_{s, t}^{a} + \epsilon)\). In this framework, we can use the \texttt{shortest_simple_paths} function in Python package \texttt{networkx}93 to compute the most likely paths.

To calculate the probability that a mutation at site \(m\) happened at a specific step \(j\), we normalize the transition matrix (i.e., all paths must reach the somatic CH65 sequence) for a given antigen selection context:

\[p_{s, t}^{ag} = \frac{p_{s, t}^{ag}}{\left(\sum_{t} p_{s, t}^{ag} \right)^{-1}} \]

For \(p_{s, t}^{ag} \neq 0\) and 0 otherwise. The total relative probability for that site mutating at a specific step under an antigen exposure scenario is given by:

\[p_{j, \alpha} = \left[\left(\prod_{i=1}^{j-1} p_{a}^{ag} \right) \cdot p_{\alpha}^{agj} \cdot \left(\prod_{i=j+1}^{L} p_{a}^{ag} \right) \right]_{s' \rightarrow s} \]

Finally, to determine the total probability of each variant (Figure 5–Figure supplement 2), which is given by the sum of the probabilities of all paths passing through that variant in a specific antigen selection scenario:
Where \(j \) is the number of somatic mutations in variant \(s \), the first term is the probability of reaching sequence \(s \) at mutational step \(j \), and the second term is the probability of reaching the CH65 sequence after passing through sequence \(s \). We perform an additional normalization, \(P'_s = P_s \times n_j \), so that variants with different numbers of mutations can be compared. \(P'_s \) is thus the probability of a specific variant in the selective model compared to a neutral model (e.g. sequences with \(\log(P'_s) > 0 \) are favored).

Isogenic \(K_D \) measurements

To validate \(K_D \) measurements made using Tite-Seq, we generated isogenic yeast strains encoding select variants in the CH65 scFv library and measured their affinity to HA using analytical flow cytometry. These variants were constructed by the same Golden Gate strategy used above for the library, but by pooling one version of each fragment rather than all versions of each fragment. The assembled plasmid was sequence-verified via Sanger, transformed into the EBY100 yeast strain, plated on SDCAA-agar, and incubated at 30°C for 48 h. Single colonies were then restruck onto SDCAA-agar and grown for an additional 48 h at 30°C for further selection. These restruck colonies were verified to contain the scFv plasmid by colony PCR. Verified colonies were then grown in 5 mL SDCAA with rotation at 30°C for 24h; strains were stored by freezing saturated cultures with 5% glycerol at -80°C.

To measure \(K_D \), yeast strains were thawed and scFv were induced, incubated with HA antigen, and labeled with fluorophores as described above for the Tite-Seq assay, except yeast cell and antigen volumes were scaled down by a factor of 10. Yeast cell FITC and R-PE fluorescence intensity were then assayed on a BD LSR Fortessa equipped with four lasers (440, 488, 561, and 633 nm), sampling at least 10,000 events per concentration. The equilibrium dissociation constant, \(K_D \), were then inferred for each variant \(s \) by fitting the logarithm of a Hill function to the mean log R-PE fluorescence for the scFv-expression (FITC-positive) single yeast cells:

\[
\text{mean log fluorescence} = \log_{10} \left(A_s \frac{c}{c + K_{D,s}} + B_s \right)
\]

Where \(c \) is the molarity of antigen, \(A_s \) is the increase in fluorescence due to saturation with antigen and \(B_s \) is the background fluorescence. All isogenic \(K_D \) measurements were made in 2-3 biological replicates (Figure 1–source data 2; Figure 1–figure supplement 3).

Fab structural characterization

Fab production and purification

Antigen binding fragments were cloned and produced in Expi293F cells as above, except the variable heavy chain was cloned into a pVRC expression vector containing the CH1 domain followed by a HRV 3C cleavate site and a 6X His tag. Fabs were purified by cobalt chromatography (Takara) and further purified over an S200 column on an AKTA pure (Cytiva). To the purified Fabs, 1.2 \(\mu \)L HRV 3C protease (Thermo Scientific, #88947) per 200 \(\mu \)g of Fab was added and incubated overnight at 4°C on a roller.
The next day, the cleaved Fab was passed over cobalt resin and purified again over an S200 column in 10 mM Tris HCl, 150 mM NaCl, pH 7.5. The resulting Fabs were concentrated to ~15 mg/mL prior to crystallization.

Fab crystallization

Fabs were crystallized by the hanging drop method. Crystals of unbound UCA Fab with the Y35N (LC) mutation and unbound I-2 Fab with H35N (HC) and Y35N (LC) mutations were grown over solutions of 0.1 M succinic acid (pH 7), 0.1 M bicine (pH 8.5), and 30% polyethylene glycol monomethyl ether 550 or 0.8 M lithium sulfate monohydrate, 0.1 M sodium acetate trihydrate (pH 4), and 4% polyethylene glycol 200 (Hampton Research, #HR2-084), respectively, in a 96-well plate (Greiner, #655101) with ViewDrop II plate seals (sptlabtech, #4150-05600). Crystals were apparent after ~5-7 days. Then, 1 µL of 12% (+/-)-2-Methyl-2,4-pentanediol (MPD) in the corresponding solution was added for cryoprotection. The crystals were then harvested and flash-cooled in liquid nitrogen.

Fab structure determination

X-ray diffraction data was collected at the Advanced Photon Source using beam line 24-ID-E. Diffraction data was processed using XDSGUI (https://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/XDSGUI). Both Fabs reported here were solved by molecular replacement using PHASER in the PHENIX-MR GUI by searching with the UCA Fab (PDB: 4HK0) with the HCDR3 deleted and separated into the VH, VL, CH, and CL domains. Refinement was performed in PHENIX by refining the coordinates and B factors before model building (i.e., the HCDR3) in COOT. Additional placement of waters and Translation Libration Screw (TLS) refinement followed. The UCA with Y35N Fab showed density for the HCDR3, which was built, but this loop exhibited large B factors (Figure 4—figure supplement 1). The I-2 with H35N and Y35N Fab showed no clear density for the HCDR3 or the LCDR2 so these were removed from the structure. The resulting structures were validated using MolProbity prior to deposition at the Protein Data Bank (8EK6 and 8EKH).

Antibody-antigen binding kinetics measurements

Kinetics measurements were acquired on an Octet RED96e (Sartorius). To mimic the interaction between yeast-displayed scFv and trimeric HA, IgG was loaded onto Anti-Human Fc Capture (AHC) biosensors (Sartorius, #18-5060). To reduce the avidity effect, IgGs were loaded to a density of ~0.1 nm using a solution of 10 nM of IgG. All binding measurements were obtained in “kinetics” buffer: PBS supplemented with 0.1% BSA and 0.01% Tween20. Binding measurements were acquired as follows with shaking at 1000 rpm – Baseline: 60s; Loading: 30s with threshold at 0.1 nm; Baseline: 60s; Association: 360s; Dissociation: 600s. Tips were regenerated a maximum of four times by alternating between 10 mM Glycine (pH 1.7) and kinetics buffer three times with 10s in each buffer. Kinetics measurements were obtained at four temperatures for each antibody: 20°C, 25°C, 30°C, and 35°C. Kinetics measurements for the UCA, I-2, and CH65 were also acquired at 40°C. Prior to each measurement, the plate was allowed to equilibrate to the set temperature for 20 minutes. Each full-length, trimeric HA (MA90, MA90-G189E, and SI06) was assayed at six concentrations: 500, 250, 125, 62.5, 31.25, and 15.625 nM. For each antibody against each HA, antibody assayed with buffer only was used as a reference for subtraction. Additionally, each run contained an irrelevant IgG (CR3022) at the highest HA concentration (500 nM) to detect any non-specific interaction, which was at background level. To account for the multivalency of the analyte (trimeric HA), the bivalent analyte model was used for global curve fitting in the Sartorius Data Analysis HT software version 12.0.2.59.
Acknowledgements

We thank Zach Niziolek for assistance with flow cytometry and members of the Desai lab for helpful discussions. We thank Jesse Bloom for providing the plasmids required to generate recombinant influenza viruses and Nicholas Heaton for sharing influenza virus-related protocols. A.M.P. acknowledges support from the Howard Hughes Medical Institute Hanna H. Gray Postdoctoral Fellowship, T.D. acknowledges support from the Human Frontier Science Program Postdoctoral Fellowship, A.G.S. acknowledges support for NIH grants R01AI146779 and P01AI89618-A1, M.M.D. acknowledges support from the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard University, supported by NSF grant no. DMS-1764269, and the Harvard FAS Quantitative Biology Initiative, grant DEB-1655960 from the NSF and grant GM104239 from the NIH. Computational work was performed on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University. We thank the beamline staff at NE-CAT for help with data collection; this work used NE-CAT beamlines (GM124165), a Pilatus detector (RR029205), an Eiger detector (OD021527) at the APS (DE-AC02-06CH11357).

Author Contributions

Conceptualization: A.M.P., D.P.M., A.G.S, and M.M.D. Methodology: A.M.P., D.P.M., C.B., and T.D. Experiments: A.M.P., D.P.M., and C.B. Validation: A.M.P., D.P.M., and C.B. Data analysis: A.M.P., D.P.M., C.B., and T.D. Supervision: A.M.P., A.G.S., and M.M.D. Funding acquisition: A.G.S. and M.M.D. Writing—original draft: A.M.P. and D.P.M. All the authors reviewed and edited the manuscript.

Competing Interests

A.M.P. and M.M.D. have or have recently consulted for Leyden Labs. The other authors declare no competing financial interests.

Materials and Correspondence

Correspondence and requests for materials should be addressed to M.M.D. (mdesai@oeb.harvard.edu).

Data Availability

Data and code used for this study are available at https://github.com/amphilli/CH65-comblib. Antibody affinity and expression data are also available in an interactive data browser at https://ch65-si06-browser.netlify.app/. FASTQ files from high-throughput sequencing will be deposited in the NCBI BioProject database upon publication. X-ray crystal structures of the Fabs reported here are available at the Protein Data Bank (8EK6 and 8EKH).
References

1 Corti, D., Cameroni, E., Guarino, B., Kallewaard, N. L., Zhu, Q. & Lanzavecchia, A. Tackling influenza with broadly neutralizing antibodies. *Curr. Opin. Virol.* **24**, 60-69 (2017).

2 Sangesland, M. & Lingwood, D. Antibody focusing to conserved sites of vulnerability: The immunological pathways for ‘universal’ Influenza vaccines. *Vaccines* **9**, 125 (2021).

3 Whittle, J. R. R., Zhang, R., Khurana, S., King Lisa, R., Manischewitz, J., Golding, H., Dormitzer Philip, R., Haynes Barton, F., Walter Emmanuel, B., Moody, M. A., Kepler Thomas, B., Liao, H.-X. & Harrison Stephen, C. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. *Proc. Natl. Acad. Sci. USA* **108**, 14216-14221 (2011).

4 Schmidt, A. G., Xu, H., Khan, A. R., O'Donnell, T., Khurana, S., King, L. R., Manischewitz, J., Golding, H., Suphaphiphat, P. & Carfi, A. Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. *Proc. Natl. Acad. Sci. USA* **110**, 264-269 (2013).

5 Phillips, A. M., Lawrence, K. R., Moulana, A., Dupic, T., Chang, J., Johnson, M. S., Cvijovic, I., Mora, T., Walczak, A. M. & Desai, M. M. Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. *Elife* **10**, e71393 (2021).

6 Kubo, M. & Miyaguchi, K. Breadth of antibody responses during influenza virus infection and vaccination. *Trends in Immunol.* **41**, 394-405 (2020).

7 Angeletti, D. & Yewdell, J. W. Is it possible to develop a “universal” influenza virus vaccine? Outflanking antibody immunodominance on the road to universal influenza vaccination. *Cold Spring Harb. Perspect. Biol.* **10**, a028852 (2018).

8 Neher, R. A. & Bedford, T. Nextflu: real-time tracking of seasonal influenza virus evolution in humans. *Bioinform.* **31**, 3546-3548 (2015).

9 Dugan, H. L., Guthmiller, J. J., Arevalo, P., Huang, M., Chen, Y.-Q., Neu, K. E., Henry, C., Zheng, N.-Y., Lan, L. Y.-L., Tepora, M. E., Stovicek, O., Bitar, D., Palm, A.-K. E., Stamper, C. T., Changrob, S., Utset, H. A., Coughlan, L., Krammer, F., Cobey, S. & Wilson, P. C. Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. *Sci. Transl. Med.* **12**, eabd3601 (2020).

10 Throsby, M., van den Brink, E., Jongeneelen, M., Poon, L. L., Alard, P., Cornelissen, L., Bakker, A., Cox, F., van Deventer, E., Gwan, Y., Cinatl, J., ter Meulen, J., Lasters, I., Carsotti, R., Peiris, M., de Kruif, J. & Goudsmit, J. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. *PLoS One* **3**, e3942 (2008).

11 Corti, D., Voss, J., Gamblin, S. J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S. G., Pinna, D., Minola, A., Vanzetta, F., Silacci, C., Fernandez-Rodriguez, B. M., Agatic, G., Bianchi, S., Giacchetto-Sasselli, I., Calder, L., Sallusto, F., Collins, P., Haire, L. F., Temperton, N., Langedijk, J. P., Skehel, J. J. & Lanzavecchia, A. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. *Science* **333**, 850-856 (2011).

12 Dreyfus, C., Laursen, N. S., Kwaks, T., Zuijdegeest, D., Khayat, R., Ekiert, D. C., Lee, J. H., Metlagel, Z., Bujny, M. V., Jongeneelen, M., van der Vlugt, R., Lamrani, M., Korse, H. J. W. M., Geelen, E., Sahin, Ö., Siewerts, M., Braenhoff, J. P. J., Vogels, R., Li, O. T. W., Poon, L. L. M.,
Peiris, M., Koudstaal, W., Ward, A. B., Wilson, I. A., Goudsmit, J. & Friesen, R. H. E. Highly conserved protective epitopes on Influenza B viruses. *Science* **337**, 1343-1348 (2012).

Ekiert, D. C., Bhabha, G., Elsliger, M. A., Friesen, R. H., Jongeneelen, M., Throsby, M., Goudsmit, J. & Wilson, I. A. Antibody recognition of a highly conserved influenza virus epitope. *Science* **324**, 246-251 (2009).

Raymond, D. D., Bajic, G., Ferdman, J., Suphaphiphat, P., Settembre, E. C., Moody, M. A., Schmidt, A. G. & Harrison, S. C. Conserved epitope on influenza virus hemagglutinin head defined by a vaccine-induced antibody. *Proc. Natl. Acad. Sci. USA* **115**, 168-173 (2018).

Guthmiller, J. J., Han, J., Utset, H. A., Li, L., Lan, L. Y.-L., Henry, C., Stamper, C. T., McMahon, M., O'Dell, G. & Fernández-Quintero, M. L. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. *Nature* **602**, 314-320 (2022).

Jiang, N., He, J., Weinstein, J. A., Penland, L., Sasaki, S., He, X.-S., Dekker, C. L., Zheng, N.-Y., Huang, M. & Sullivan, M. Lineage structure of the human antibody repertoire in response to influenza vaccination. *Sci. Transl. Med.* **5**, 171ra119 (2013).

Horns, F., Vollmers, C., Dekker, C. L. & Quake, S. R. Signatures of selection in the human antibody repertoire: Selective sweeps, competing subclones, and neutral drift. *Proc. Natl. Acad. Sci. USA* **116**, 1261-1266 (2019).

Wu, N. C., Grande, G., Turner, H. L., Ward, A. B., Xie, J., Lerner, R. A. & Wilson, I. A. In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. *Nat. Comm.* **8**, 1-12 (2017).

Bajic, G., van der Poel, C. E., Kuraoka, M., Schmidt, A. G., Carroll, M. C., Kelsoe, G. & Harrison, S. C. Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies. *Sci. Rep.* **9**, 1-9 (2019).

Horns, F., Dekker, C. L. & Quake, S. R. Memory B Cell Activation, Broad Anti-influenza Antibodies, and Bystander Activation Revealed by Single-Cell Transcriptomics. *Cell Rep.* **30**, 905-913 (2020).

Abbott, R. K., Lee, J. H., Menis, S., Skog, P., Rossi, M., Ota, T., Kulp, D. W., Bhullar, D., Kalyuzhnii, O. & Havenar-Daughton, C. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. *Immunity* **48**, 133-146. e136 (2018).

Andrews, S. F., Huang, Y., Kaur, K., Popova, L. I., Ho, I. Y., Pauli, N. T., Henry Dunand, C. J., Taylor, W. M., Lim, S., Huang, M., Qu, X., Lee, J. H., Salgado-Ferrer, M., Krammer, F., Palese, P., Wrammert, J., Ahmed, R. & Wilson, P. C. Immune history profoundly affects broadly protective B cell responses to influenza. *Sci. Transl. Med.* **7**, 316ra192 (2015).

Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. *Nature* **549**, 409-413 (2017).

Miton, C. & Tokuriki, N. How mutational epistasis impairs predictability in protein evolution and design. *Protein Sci.* **25**, 1260-1272 (2016).

Bank, C., Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. A systematic survey of an intragenic epistatic landscape. *Mol. Biol. Evol.* **32**, 229-238 (2015).
Phillips, A. M., Ponomarenko, A. I., Chen, K., Ashenberg, O., Miao, J., McHugh, S. M., Butty, V. L., Whittaker, C. A., Moore, C. L., Bloom, J. D., Lin, Y.-S. & Shoulders, M. D. Destabilized adaptive influenza variants critical for innate immune system escape are potentiated by host chaperones. *PLoS Biol.* **16**, e3000008 (2018).

Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. *Science* **312**, 111-114 (2006).

Gong, L. I., Suchard, M. A. & Bloom, J. D. Stability-mediated epistasis constrains the evolution of an influenza protein. *eLife* **2**, e00631 (2013).

Sailer, Z. R. & Harms, M. J. High-order epistasis shapes evolutionary trajectories. *PLoS Comput. Biol.* **13**, e1005541 (2017).

Adams, R. M., Mora, T., Walczak, A. M. & Kinney, J. B. Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves. *Elife* **5**, e23156 (2016).

Forsyth, C. M., Juan, V., Akamatsu, Y., DuBridge, R. B., Doan, M., Ivanov, A. V., Ma, Z., Polakoff, D., Razo, J. & Wilson, K. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. *MAbs* **5**, 523-532 (2013).

Li, D., Wang, L., Maziuik, B. F., Yao, X., Wolozin, B. & Cho, Y. K. Directed evolution of a picomolar-affinity, high-specificity antibody targeting phosphorylated tau. *J. Biol. Chem.* **293**, 12081-12094 (2018).

Amon, R., Rosenfeld, R., Perlmutter, S., Grant, O. C., Yehuda, S., Borenstein-Katz, A., Alcalay, R., Marshanski, T., Yu, H. & Diskin, R. Directed evolution of therapeutic antibodies targeting glycosylation in cancer. *Cancers* **12**, 2824 (2020).

Bowers, P. M., Boyle, W. J. & Damoiseaux, R. in *Antibody Engineering: Methods and Protocols* (eds Damien Nevoltris & Patrick Chames) 479-489 (Springer New York, 2018).

Victora, G. D. & Nussenzweig, M. C. Germinal centers. *Annu. Rev. Immunol.* **30**, 429-457 (2012).

Smith, D. J., Lapedes, A. S., de Jong, J. C., Bestebroer, T. M., Rimmelzwaan, G. F., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Mapping the antigenic and genetic evolution of Influenza virus. *Science* **305**, 371-376 (2004).

Braden, B. C., Goldman, E. R., Mariuzza, R. A. & Poljak, R. J. Anatomy of an antibody molecule: structure, kinetics, thermodynamics and mutational studies of the antilysozyme antibody D1.3. *Immunol. Rev.* **163**, 45-57 (1998).

Burks, E. A., Chen, G., Georgiou, G. & Iverson, B. L. In vitro scanning saturation mutagenesis of an antibody binding pocket. *Proc. Natl. Acad. Sci. USA* **94**, 412-417 (1997).

Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H. W., McKay, P., de Vos, A. M. & Lowman, H. B. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. *J. Mol. Biol.* **293**, 865-881 (1999).

Klein, C., Lammens, A., Schäfer, W., Georges, G., Schwaiger, M., Mössner, E., Hopfner, K. P., Umaña, P. & Niederfellner, G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. *MAbs* **5**, 22-33 (2013).
Corti, D. & Lanzavecchia, A. Broadly neutralizing antiviral antibodies. *Annu. Rev. Immunol.* **31**, 705-742 (2013).

Unniraman, S. & Schatz, D. G. Strand-biased spreading of mutations during somatic hypermutation. *Science* **317**, 1227-1230 (2007).

Pappas, L., Foglierini, M., Piccoli, L., Kallewaard, N. L., Turrini, F., Silacci, C., Fernandez-Rodriguez, B., Agatic, G., Giacchetto-Sasselli, I., Pellicciotta, G., Sallusto, F., Zhu, Q., Vicenzi, E., Corti, D. & Lanzavecchia, A. Rapid development of broadly neutralizing antibodies through redundant mutations. *Nature* **516**, 418-422 (2014).

Adams, R. M., Kinney, J. B., Walczak, A. M. & Mora, T. Epistasis in a fitness landscape defined by antibody-antigen binding free energy. *Cell Syst.* **8**, 86-93 (2019).

Yassine, H. M., McTamney, P. M., Boyington, J. C., Ruckwardt, T. J., Crank, M. C., Smatti, M. K., Ledgerwood, J. E. & Graham, B. S. Use of hemagglutinin stem probes demonstrate prevalence of broadly reactive Group 1 Influenza antibodies in human sera. *Sci. Rep.* **8**, 1335-1340 (2018).

Wu, N. C., Thompson, A. J., Lee, J. M., Su, W., Arlian, B. M., Xie, J., Lerner, R. A., Yen, H.-L., Bloom, J. D. & Wilson, I. A. Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses. *Science* **368**, 1325-1328 (2018).

Ellebedy, A. H. Immunizing the immune: Can we overcome Influenza's most formidable challenge? *Vaccines* **6** (2018).

Han, A., Czajkowski, L., Rosas, L. A., Cervantes-Medina, A., Xiao, Y., Ouozulis, M., Lombard, K., Hunsberger, S., Reed, S., Athota, R., Baus, H. A., Lwin, A., Sadoff, J., Taubenberger, J. K. & Memoli, M. J. Safety and efficacy of CR6261 in an influenza A H1N1 healthy human challenge model. *Clin. Infect. Dis.* **73**, e4260-e4268 (2021).

Adams, R. M., Kinney, J. B., Walczak, A. M. & Mora, T. Epistasis in a fitness landscape defined by antibody-antigen binding free energy. *Cell Syst.* **8**, 86-93 (2019).

Lee, P. S., Ohshima, N., Stanfield, R. L., Yu, W., Iba, Y., Okuno, Y., Kurosawa, Y. & Wilson, I. A. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. *Nat. Comm.* **35**, 3614 (2014).

Krause, J. C., Tsibane, T., Tunney, T. M., Huffman, C. J., Basler, C. F. & Crowe, J. E., Jr. A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. *J. Virol.* **85**, 10905-10908 (2011).

Guthmiller, J. J., Utset, H. A. & Wilson, P. C. B cell responses against Influenza viruses: Short-lived humoral immunity against a life-long threat. *Viruses* **13**, 965 (2021).

DiLillo, D. J., Tan, G. S., Palese, P. & Ravetch, J. V. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. *Nat. Med.* **20**, 143-151 (2014).

Xu, H., Schmidt, A. G., O’Donnell, T., Therkelsen, M. D., Kepler, T. B., Moody, M. A., Haynes, B. F., Liao, H. X., Harrison, S. C. & Shaw, D. E. Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. *Proteins* **83**, 771-780 (2015).
Schmidt, A. G., Do, K. T., McCarthy, K. R., Kepler, T. B., Liao, H.-X., Moody, M. A., Haynes, Barton F. & Harrison, Stephen C. Immunogenic stimulus for germline precursors of antibodies that engage the Influenza hemagglutinin receptor-binding site. Cell Rep. 13, 2842-2850 (2015).

Lingwood, D., McTamney, P. M., Yassine, H. M., Whittle, J. R., Guo, X., Boyington, J. C., Wei, C. J. & Nabel, G. J. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489, 566-570 (2012).

Xiao, H., Guo, T., Yang, M., Qi, J., Huang, C., Hong, Y., Gu, J., Pang, X., Liu, W. J., Peng, R., McCauley, J., Bi, Y., Li, S., Feng, J., Zhang, H., Zhang, X., Lu, X., Yan, J., Chen, L., Shi, Y., Chen, W. & Gao, G. F. Light chain modulates heavy chain conformation to change protection profile of monoclonal antibodies against influenza A viruses. Cell Discov. 5, 21 (2019).

Ekiert, D. C. & Wilson, I. A. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr. Opin. Virol. 2, 134-141 (2012).

Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotech. 15, 553-557 (1997).

Bedford, T., Suchard, M. A., Lemey, P., Dudas, G., Gregory, V., Hay, A. J., McCauley, J. W., Russell, C. A., Smith, D. J. & Rambaut, A. Integrating influenza antigenic dynamics with molecular evolution. Elife 3, e01914 (2014).

Muecksch, F., Weisblum, Y., Barnes, C. O., Schmidt, F., Schaefer-Babajew, D., Wang, Z., JC, C. L., Flyak, A. I., DeLaitis, A. T., Huey-Tubman, K. E., Hou, S., Schiffer, C. A., Gaebler, C., Da Silva, J., Poston, D., Finkin, S., Cho, A., Cipolla, M., Oliveira, T. Y., Millard, K. G., Ramos, V., Gazumyan, A., Rutkowski, M., Caskey, M., Nussenzweig, M. C., Bjorkman, P. J., Hatzioannou, T. & Bieniasz, P. D. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity 54, 1853-1868.e1857 (2021).

Wells, J. A. Additivity of mutational effects in proteins. Biochemistry 29, 8509-8517 (1990).

Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643-2651 (2014).

Lee, P. S., Arnell, A. J. & Wilson, I. A. Structure of the apo anti-influenza CH65 Fab. Acta Crystallogr. F: Struct. Biol. Commun. 71, 145-148 (2015).

Valley, C. C., Cembran, A., Perlmutter, J. D., Lewis, A. K., Labello, N. P., Gao, J. & Sachs, J. N. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 287, 34979-34991 (2012).

Wang, S., Mata-Fink, J., Kriegsman, B., Hanson, M., Irvine, D. J., Eisen, H. N., Burton, D. R., Wittrup, K. D., Kardar, M. & Chakraborty, A. K. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell 160, 785-797 (2015).

Liao, H.-X., Lynch, R., Zhou, T., Gao, F., Alam, S. M., Boyd, S. D., Fire, A. Z., Roskin, K. M., Schramm, C. A., Zhang, Z., Zhu, J., Shapiro, L., Becker, J., Benjamin, B., Blakesley, R., Bouffard, G., Brooks, S., Coleman, H., Dekhtyar, M., Gregory, M., Guan, X., Gupta, J., Han, J., Hargrove, A., Ho, S.-I., Johnson, T., Legaspi, R., Lovett, S., Maduro, Q., Masiello, C. et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469-476 (2013).
Fera, D., Schmidt, A. G., Haynes, B. F., Gao, F., Liao, H. X., Kepler, T. B. & Harrison, S. C. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. *Proc. Natl. Acad. Sci. USA* **111**, 10275-10280 (2014).

Ovchinnikov, V., Louveau, J. E., Barton, J. P., Karplus, M. & Chakraborty, A. K. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies. *Elife* **7**, e33038 (2018).

McCarthy, K. R., Raymond, D. D., Do, K. T., Schmidt, A. G. & Harrison, S. C. Affinity maturation in a human humoral response to influenza hemagglutinin. *Proc. Natl. Acad. Sci. USA* **116**, 26745-26751 (2019).

Turner, J. S., Zhou, J. Q., Han, J., Schmitz, A. J., Rizk, A. A., Alsoussi, W. B., Lei, T., Amor, M., McIntire, K. M., Meade, P., Strohmeier, S., Brent, R. I., Richey, S. T., Haile, A., Yang, Y. R., Klebert, M. K., Suessen, T., Teefey, S., Presti, R. M., Krammer, F., Kleinstein, S. H., Ward, A. B. & Ellebedy, A. H. Human germinal centres engage memory and naive B cells after influenza vaccination. *Nature* **586**, 127-132 (2020).

Sachdeva, V., Husain, K., Sheng, J., Wang, S. & Murugan, A. Tuning environmental timescales to evolve and maintain generalists. *Proc. Natl. Acad. Sci. USA* **117**, 12693-12699 (2020).

Wang, S. Optimal sequential immunization can focus antibody responses against diversity loss and distraction. *PLoS Comput. Biol.* **13**, e1005336 (2017).

Molari, M., Eyer, K., Baudry, J., Cocco, S. & Monasson, R. Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturing germinal centers. *Elife* **9**, e55678 (2020).

Sprenger, K. G., Louveau, J. E., Murugan, P. M. & Chakraborty, A. K. Optimizing immunization protocols to elicit broadly neutralizing antibodies. *Proc. Natl. Acad. Sci. USA* **117**, 20077-20087 (2020).

Guthmiller, J. J. & Wilson, P. C. Harnessing immune history to combat influenza viruses. *Curr. Opin. Immunol.* **53**, 187-195 (2018).

De Visser, J., Elena, S. F., Fragata, I. & Matuszewski, S. The utility of fitness landscapes and big data for predicting evolution. *Heredity* **121**, 401-405 (2018).

Park, Y., Metzger, B. P. H. & Thornton, J. W. Epistatic drift causes gradual decay of predictability in protein evolution. *Science* **376**, 823-830 (2022).

Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A. & Smith, H. O. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* **6**, 343-345 (2009).

Van Deventer, J. A., Kelly, R. L., Rajan, S., Wittrup, K. D. & Sidhu, S. S. A switchable yeast display/secretion system. *Protein Eng. Des. Sel.* **28**, 317-325 (2015).

Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. *PLoS One* **3**, e3647 (2008).

Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. *Nat. Protoc.* **2**, 31-34 (2007).
Chao, G., Lau, W. L., Hackel, B. J., Sazinsky, S. L., Lippow, S. M. & Wittrup, K. D. Isolating and engineering human antibodies using yeast surface display. *Nat. Protoc.* **1**, 755-768 (2006).

Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. *Proc. Natl. Acad. Sci. USA* **97**, 6108-6113 (2000).

Moody, M. A., Zhang, R., Walter, E. B., Woods, C. W., Ginsburg, G. S., McClain, M. T., Denny, T. N., Chen, X., Munshaw, S., Marshall, D. J., Whitesides, J. F., Drinker, M. S., Amos, J. D., Gurley, T. C., Eudailey, J. A., Foulger, A., DeRosa, K. R., Parks, R., Meyerhoff, R. R., Yu, J.-S., Koizumi, D. M., Barefoot, B. E., Ramsburg, E. A., Khurana, S., Golding, H., Vandergrift, N. A., Alam, S. M., Tomaras, G. D., Kepler, T. B., Kelsoe, G. *et al.* H3N2 Influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. *PLoS One* **6**, e25797 (2011).

Nguyen Ba, A. N., Cvijović, I., Rojas Echenique, J. I., Lawrence, K. R., Rego-Costa, A., Liu, X., Levy, S. F. & Desai, M. M. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. *Nature* **575**, 494-499 (2019).

Moulana, A., Dupic, T., Phillips, A. M., Chang, J., Nieves, S., Roffer, A. A., Greaney, A. J., Starr, T. N., Bloom, J. D. & Desai, M. M. Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA. 1. *bioRxiv*, doi:10.1101/2022.06.17.496635 (2022).

Poelwijk, F. J., Socolich, M. & Ranganathan, R. Learning the pattern of epistasis linking genotype and phenotype in a protein. *Nat. Comm.* **10**, 4213 (2019).

Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H. & Ferrin, T. E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sci.* **30**, 70-82 (2021).

Kimura, M. On the probability of fixation of mutant genes in a population. *Genetics* **47**, 713-719 (1962).

Kuraoka, M., Schmidt, A. G., Nojima, T., Feng, F., Watanabe, A., Kitamura, D., Harrison, S. C., Kepler, T. B. & Kelsoe, G. Complex antigens drive permissive clonal selection in germinal centers. *Immunity* **44**, 542-552 (2016).

Hagberg, A., Swart, P. & S Chult, D. (Sponsor Org.: USDOE).

Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. PHENIX: building new software for automated crystallographic structure determination. *Acta Crystallogr. D* **58**, 1948-1954 (2002).

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658-674 (2007).

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486-501 (2010).
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr. D* **66**, 12-21 (2010).
Figure 1 – figure supplement 1. CH65 mutation reversion. Isogenic measurements of -logK_D for CH65 with (18-mut) and without (16-mut) Q1E and S75A to MA90 (p-value = 0.82, t-stat = 0.26) and SI06 (p-value = 1.0, t-stat = 0.0); 'ns' designates a p-value > 0.05.
Figure 1 – figure supplement 2. Tite-seq workflow. Combinatorially complete (N=2^{16} variants) antibody plasmid library is transformed into yeast and expression of antibodies is induced. Yeast antibody library is then labeled with HA (at varying concentrations) followed by fluorophores (FITC, which binds the Ab, and PE, which binds HA). Labeled yeast library is then gated to select single cells that express scFv. ScFv-positive cells are then sorted according to HA binding (PE fluorescence) into four bins. Bin 1 corresponds to all HA-negative cells, HA-positive cells are split evenly between the remaining three bins. Each bin is then sequenced to determine variant frequency in each bin. K_0 is then inferred by fitting the mean bin each variant is observed in to the antigen concentration.
Figure 1 – figure supplement 3. Tite-Seq K_0 quality control and isogenic measurements. (A) Correlation between biological duplicate Tite-Seq K_0 measurements before (top) and after (bottom) removing genotypes with log-K_0 differing by more than one-log between replicates. The latter set of measurements were used for all downstream analyses. N indicates the number of variants plotted, r indicates the correlation between replicates. (B) Correlation between Tite-Seq -logK_0 measurements and isogenic fluorescence-based -logK_0 measurements for a subset of mutants to one of the three antigens, as indicated in key. Error bars indicate the SEM between replicates and are generally smaller than the points. (C) Correlation between Tite-Seq -logK_0 measurements and BLI -logK_0 measurements for a subset of mutants to one of the three antigens, as indicated in key. Error bars indicate the SEM between replicates (for Tite-Seq) and the SE of the fit (for BLI) and are generally smaller than the points.
Figure 1 – figure supplement 4. CH65 library expression. (A) Sorting scheme for scFv expression. Library was sorted into four bins, each comprising 25% of the total population, along the log(fluorescence) axis corresponding to expression (FITC). (B) Correlation between Tite-Seq biological replicate measurements of expression for all variants in the CH65 library. (C) Correlation between mean Tite-Seq expression measurement and mean isogenic expression measurement for select variants. (D) Change in expression resulting from mutation, as a function of the number of other mutations present. (E) Change in expression resulting from each mutation. Each violin contains 32,768 points corresponding to the effect of that mutation on the 32,768 other genetic backgrounds. White, gray, and black points show the impact of the mutation on expression on the UCA, I-2, and CH65 genetic backgrounds, respectively. (F) Relationship between expression and binding affinity for all variants in the CH65 library. (G) Relationship between mean change in expression and mean change in binding affinity resulting from each of the 16 mutations in CH65. Mutations are colored as in (E).
Figure 2 – figure supplement 1. Change in $-\log K_D$ resulting from each mutation as a function of the number of other mutations present. Line represents mean, shading represents 95% confidence interval over all genetic backgrounds.
Figure 3 – figure supplement 1. **Pairwise effects versus distance.** (A) Pairwise coefficients plotted as a function of the distance between alpha-carbons (in Angstroms) of the corresponding residues. Select outliers are annotated. (B) Left: Mean pairwise coefficients between residues, binned according to the distance between alpha-carbons (in 4-Angstrom bins). Right: Same data as left, but coefficients were permuted to generate null expectation. Error bars correspond to standard deviation.
Figure 3 – figure supplement 2. Biochemical epistasis within heavy and light chains and between chains.
(A) Sum of absolute value of statistically significant (Bonferroni-corrected p-value < 0.05) pairwise and higher-order coefficients for MA90, MA90-G189E, and SI06. (B) Significant epistatic coefficients between mutations in the light chain (VL), heavy chain (VH) or between mutations spread across both chains (both). Percentage of insignificant coefficients is indicated below each swarm plot.
Figure 3 – figure supplement 3. Epistatic coefficients for statistical model of epistasis. First-order, pairwise, and higher-order mutational effects for each of the 16 mutations inferred from the optimal order model for each antigen. Higher-order effects are reported as a sum. Mutations present in I-2 are shown in bold. ‘R’ indicates that the mutation is required for binding (defined as being present in ≥ 90% of binding variants) and is thus excluded from the epistasis inference.
Figure 3 – figure supplement 4. Comparison of coefficients in biochemical and statistical models. Total number of statistically significant coefficients is plotted for each antigen and epistatic model (Bonferroni-corrected p-value < 0.05).
Figure 3 – figure supplement 5. Variance partitioning of statistical epistasis coefficients by order of interaction.
Figure 4 – figure supplement 1. (A) The mutation N52H in CH65 (PDB 4WUK (unbound) and 5UGY (bound)) clashes with E102 in the HCDR3 conformations observed in the unbound crystal structures of the UCA (PDB 4HK0) and I-2 (PDB 4HK3). (B) Residue 52H moves to π-stack with residue 33 in a T configuration in CH65 compared to hydrogen bonding between 52H and 33Y in unbound I-2. (C) Unbound Fab structures of several variants in the CH65 lineage. Cartoon volume is scaled by B factors. Previously reported structures show that the HCDR3 conformation in the UCA and I-2 is different than that in CH65, which matches the bound conformation (top). Although the UCA with the Y35N mutation confers affinity to MA90-G189E, the HCDR3 is not in the binding conformation and has exceedingly high B factors (bottom left). Similarly, although the I-2 with the mutations Y35N and H35N confer affinity to SI06, the HCDR3 lacked sufficient density and also had high B factors (bottom middle).
Figure 4 – figure supplement 2. Representative biolayer interferometry binding traces against MA90 for the indicated antibodies (left) and temperatures (top). Black is the processed data and red is the global curve fit using the bivalent analyte model.
Figure 4 – figure supplement 3. Representative biolayer interferometry binding traces against MA90-G189E for the indicated antibodies (left) and temperatures (top). Black is the processed data and red is the global curve fit using the bivalent analyte model. For the UCA, there was no detectable binding.
Figure 4 – figure supplement 4. Representative biolayer interferometry binding traces against SI06 for the indicated antibodies (left) and temperatures (top). Black is the processed data and red is the global curve fit using the bivalent analyte model. For the UCA and I-2, any signal was too weak for analysis.
Figure 4 – figure supplement 5. Summary of association rates (top), dissociation rates (middle), and dissociation constants (bottom) measurements made by biolayer interferometry for the indicated antigens (top). Error bars represent the standard error for kinetic parameters derived from global curve fitting with a bivalent analyte model using the analysis software supplied with the instrument (Sartorius Data Analysis HT 12.0.2.59). For some high affinity variants, the dissociation time was too short to accurately measure the dissociation rate against MA90 accurately, especially at lower temperatures (left) resulting in inaccurate dissociation rates with large errors. Antibodies that did not bind MA90-G189E (middle) or SI06 (right) were not included in the plots.
Figure 4 – figure supplement 6. Biolayer interferometry binding traces for the antibody variant containing the I-2 mutations (G31D, M34I, and N52H) in addition to H35N and Y35N for the indicated antigens (left) and temperatures (top). Weak but detectable binding is observed for SI06.
Data Collection	UCA Y35N Fab (unbound)	I-2 Y35N H35N Fab (unbound)
Resolution (Å)	50 - (2.07 - 1.95)	50 - (2.86 - 2.70)
Wavelength (Å)	0.97918	0.97918
Space Group	C121	C121
Unit cell dimensions (a, b, c) (Å)	124.547, 70.707, 86.934	127.724, 70.652, 75.759
Unit cell angles (α, β, γ) (°)	90, 126.957, 90	90, 119.354, 90
I/σ	17.23 (2.13)	7.39 (2.08)
R_{merge} (%)	5.2 (72.9)	23.3 (113.1)
CC_{1/2} (%)	99.9 (80.0)	97.8 (78.4)
Completeness (%)	98.3 (97.0)	96.4 (90.8)
Number of observed reflections	167769 (26758)	87005 (13683)
Number of unique reflections	43266 (6872)	15770 (2360)
Redundancy	3.88 (3.89)	5.5 (5.8)
Refinement		
Resolution (Å)	49.76 - 1.954 (2.024 - 1.954)	39.41 - 2.7 (2.797 - 2.7)
Reflections used in refinement	43263 (4194)	15780 (1400)
Reflections used for R_{free}	2000 (194)	1580 (136)
R_{work} (%)	18.53 (28.49)	24.45 (37.27)
R_{free} (%)	21.59 (33.5)	28.32 (48.39)
Ramachandran favored/allowed (%)	96.55 / 2.99	95.87 / 3.4
Ramachandran outliers (%)	0.46	0.73
Rmsd bond lengths (Å)	0.017	0.003
Rmsd bond angles (°)	1.74	0.59
Average B-factor	49.43	62.33
PDB ID	8EK6	8EKH

Figure 4 – figure supplement 7. X-ray data collection and refinement statistics for unbound Fabs.
Figure 5 – figure supplement 1. Antigen selection scenarios and likely mutational pathways with MA90, SI06, and MA90-G189E. (A) Selection scenario likelihood. Total probability of all mutational paths (left) or all paths that pass through I-2 (right) assuming specific antigen selection scenarios are shown. (B) -\log K_D for 25 most likely paths under designated antigen selection scenarios are shown with (right) and without (left) the constraint of passing through I-2. (C) Probability of each mutation occurring at a specific order under select antigen selection scenarios, with (right) and without (left) the constraint of passing through I-2.
Figure 5 – figure supplement 2. Likelihood of passing through specific 3-mutation intermediates. Histogram indicates number of 3-mutation variants with a given log-likelihood, under the unconstrained moderate selection model presented in Figure 5. The log-likelihood corresponding to I-2, the expectation for a 3-mutation genotype chosen at random (1/560), and the median across all 3-mutation genotypes are indicated as vertical lines on the plot.