Proton magnetic resonance spectroscopy (1H MRS) is a well-established technique for quantifying the brain regional biochemistry in vivo. In most studies, however, the 1H MRS is acquired during rest with little to no constraint on behavior. Measured metabolite levels, therefore, reflect steady-state concentrations whose associations with behavior and cognition are unclear. With the recent advances in MR technology—higher-field MR systems, robust acquisition techniques and sophisticated quantification methods—1H MRS is now experiencing a resurgence. It is sensitive to task-related and pathology-relevant regional dynamic changes in neurotransmitters, including the most ubiquitous among them, glutamate. Moreover, high temporal resolution approaches allow tracking glutamate modulations at a time scale of under a minute during perceptual, motor, and cognitive tasks. The observed task-related changes in brain glutamate are consistent with new metabolic steady states reflecting the neural output driven by shifts in the local excitatory and inhibitory balance on local circuits. Unlike blood oxygen level differences-base functional MRI, this form of in vivo MRS, also known as functional MRS (1H fMRS), yields a more direct measure of behaviorally relevant neural activity and is considerably less sensitive to vascular changes. 1H fMRS enables noninvasive investigations of task-related glutamate changes that are relevant to normal and impaired cognitive performance, and psychiatric disorders. By targeting brain glutamate, this approach taps into putative neural correlates of synaptic plasticity. This review provides a concise survey of recent technological advancements that lay the foundation for the successful use of 1H fMRS in cognitive neuroscience and neuropsychiatry, including a review of seminal 1H fMRS studies, and the discussion of biological significance of task-related changes in glutamate modulation. We conclude with a discussion of the promises, limitations, and outstanding challenges of this new tool in the armamentarium of cognitive neuroscience and psychiatry research.

Keywords: MRI, 1H MRS, glutamate, cognition, plasticity, schizophrenia, aging
INTRODUCTION

Understanding of human behavior and cognition as products of their neural substrates depends on elucidation of the neural foundations of information processing. With the brain neurons comprising only about 10% of the gray matter bulk (1), allocating the lion share of brain energy supply to neurotransmission (2) suggests that deciphering the relationships between neurotransmitter dynamics and cognitive operations is key to success of that enterprise. Most (up to 80%) of cortical and hippocampal neurons are excitatory with glutamate as their dominant neurotransmitter, while the remaining 20% are inhibitory and have γ-aminobutyric acid (GABA) as their principal neurotransmitter (3). Therefore, understanding the dynamics of these neurotransmitter’s release during cognitive operations is particularly important for elucidating the mechanisms of normal and abnormal behavior. Notably, cortical glutamatergic and GABAergic neurons do not act as separate excitatory and inhibitory entities but are highly integrated into neural ensembles within local and long-range circuits, in which the “balanced” excitatory and inhibitory (E/I) synaptic drive serves as the functional basis of coherent networks (4–7).

In the cortex, sensory input, motor output as well as perceptual, and cognitive activity evoke temporally correlated excitation and inhibition at the synapses, thus shifting the dynamic equilibrium of E/I toward a (wide) range of excitation–inhibition patterns, as illustrated in Figure 1. These temporal fluctuations in E/I equilibrium eventually give rise to plasticity and synaptic reorganization by driving long-term potentiation and long-term depression, which are viewed as the neurophysiological bases of memory [see Tatti et al. (7) for a recent review]. Because of strong evidence implicating the glutamatergic and GABAergic neurotransmission in psychiatric disorders (8–10), and cognitive aging (11), it is plausible that a dysfunction in the ability to modulate E/I equilibrium of local circuits would affect function within broader networks in which complex cognition is implemented. Impairment of glutamatergic and GABAergic plasticity may underpin the development of symptomatology.

![Figure 1](image.png)

FIGURE 1 | Conceptual framework comparing the “balanced” excitatory and inhibitory (E/I) synaptic drive at stimulus-free and stimulus-dependent conditions in cortex with glutamatergic pyramidal neurons in blue and GABAergic interneurons in red (A). The difference between conditions is conceptualized as a shift toward greater excitability at stimulus onset compared to a no-stimulus condition that is represented as sliding bars with excitatory in blue and inhibition in red (B). This shift leads to a new metabolic steady state reflected in the increased glutamate as illustrated in the individual signal in blue extracted from the ¹H MRS spectrum shown in black (C). The “+” and “−” symbols signify the excitatory and inhibitory synaptic activity, respectively.
that characterizes psychiatric disorders (7) and age-related cognitive dysfunction (12).

Whereas in animal models, a wide range of invasive methods of gauging glutamatergic and GABAergic activity is available, in humans, the opportunities are very limited. To date, the most popular approach to studying brain correlates and neural mechanisms of cognition in vivo harnesses blood oxygen level differences (BOLD) effect in an imaging paradigm known as functional MRI (fMRI). Although fMRI has good temporal and spatial properties, the BOLD signal is, however, an indirect measure of the neuronal response to stimuli. In addition, the BOLD signal cannot differentiate between inhibitory or excitatory neural activity. Moreover, the BOLD signal is influenced by major determinants of vascular tone such as dopamine (5) that depends on age (13) and are altered in psychiatric conditions (14). Given the role played by glutamate and GABA to shifting the E/I balance in cortical information processing, it is critically important to develop more specific means of in vivo evaluation of glutamatergic and GABAergic systems in intact, behaving humans. Such noninvasive approach to assessing regional brain concentration of these important neurotransmitters is indeed available. In the neuroimaging literature, magnetic resonance spectroscopy (MRS) is typically described as the only noninvasive technique that can reliably quantify in vivo concentration levels of key metabolites, including glutamate and \(\gamma \)-aminobutyric acid (GABA) (15).

\(^1\)H MRS, with its ability to measure glutamate and GABA levels in vivo in localized cortical and subcortical areas, is well suited for testing hypotheses posited in the conceptual framework that emphasizes temporal dynamics of the E/I equilibrium (Figure 1). Unfortunately, the dynamic aspect of glutamate (and GABA) activity is lost in the majority of the extant \(^1\)H MRS studies that are limited to measuring static neurotransmitter levels under "pseudo-" rest condition. In a typical \(^1\)H MRS experiment, the data are acquired without any specific instructions or behavioral constraints aside from asking the participants to relax and keeping the head still during acquisition. Thus, the measured neurotransmitter levels are static and integrated over a time window spanning several minutes. This coarse temporal resolution and static task-free neurotransmitter assessment preclude the interpretation of findings with respect to neural correlates of synaptic plasticity. Although the \(^1\)H MRS literature is sparse, evidence shows surprising sensitivity in detecting dynamic changes in the magnitude and direction of task-related changes in glutamate and/or GABA steady-state levels in functionally relevant brain areas (Table 1). This ability to capture the temporal dynamics of glutamate and GABA in vivo, point at the emerging role of \(^1\)H fMRS as the "new" \(^1\)H MRS, with potentially exciting contributions to the understanding of neural mechanisms relevant to cognitive neuroscience and psychiatry research.

In this review, we focus on \(^1\)H MRS findings pertaining to changes in glutamate with task in the context of \(^1\)H fMRS [for a review on \(^1\)H fMRS of GABA, see Duncan et al. (16)]. First, we describe the technological advancements in \(^1\)H MRS that made characterization of the glutamate temporal dynamics with a temporal resolution under a min possible. Second, we survey the findings from seminal \(^1\)H IMRS studies demonstrating task-related changes in glutamate (Table 1). Third, we discuss the significance of observing changes in glutamate from the perspective of neurovascular and neurometabolic processes and evaluate the implication of the findings for understanding behaviorally relevant neural output driven by shifts in the E/I balance. Finally, we evaluate the pros and cons of the \(^1\)H fMRS application in studying normal and impaired cognitive functions and outline the challenges ahead.

TECHNICAL ADVANCEMENTS

The history of \(^1\)H fMRS application to neuroimaging is to a large extent similar to that of the BOLD-based fMRI. Early \(^1\)H fMR studies conducted in the 1990s on 1.5 and 2.0 T MR systems demonstrated decreases in glucose and (transient) increases in lactate localized to the visual cortex during visual stimulation, and the findings were interpreted as reflecting a transient increase in non-oxidative glycolysis (17–21). However, the recent emergence of high-field MR systems including 3, 4, and 7 T (and higher), have dramatically rejuvenated the MRS field. The major advancement was the increase in the signal-to-noise ratio (S/N), which scales with the \(B_0 \) field strength. The enhanced S/N at higher \(B_0 \) field strengths can improve the spatial resolution of the localized single-voxel \(^1\)H MRS to \(\sim 2–4 \text{ cm}^3 \) as well as significantly increase the temporal resolution of the \(^1\)H MRS acquisition to under a minute. In addition, the chemical-shift but not the scalar J-coupling of spin systems (e.g., CH\(_3\), CH\(_2\), etc.) scales with the \(B_0 \) field strength, which in turn significantly improves in the spectral resolution or delineation of the coupled spin systems between molecules such as glutamate and glutamine (22). These advancements improve the overall accuracy and precision of quantifying glutamate and other metabolites (23, 24), minimized the partial volume effects that impeded voxel placement precision in functionally relevant brain areas, and more importantly, enabled capturing real-time task-induced changes in the brain biochemistry within the time scale of epochs often used in task-based fMRI paradigms.

In addition to the advantages of conducting high \(B_0 \) field \(^1\)H MRS, recent improvements in the acquisition technology enabled acquisition of highly reliable \(^1\)H MRS data with minimal spectral artifacts (25). These new developments include the incorporation of B\(_0\)-insensitive adiabatic excitation and refocusing radio-frequency (RF) pulses (26) and customized phase- and amplitude-modulated RF pulses (27), which greatly improve the uniformity of the B\(_0\) field and edge profile of the defined MRS voxel. As a result, the ground was set for resurgent popularity of \(^1\)H MRS acquisition sequences such as the Localization by Adiabatic Selective Refocusing (LASER) (26), semi-LASER (28), and SPin Echo, full Intensity Acquired Localized (SPECIAL) (29). Adiabatic pulses are highly effective for outer volume suppression, which is a typical part of the acquisition sequence (30). Regarding the suppression of the water signal, the CHEMical Shift Selective (CHESS) RF pulses (31) has become common. However, optimized schemes using CHESS pulses such as the Variable Power and Optimized Relaxation delays (VAPOR) technique are robust and highly effective in suppressing the water signal and producing a cleaner spectral baseline (32).

Maximizing the homogeneity of the \(B_0 \) magnetic field via shimming is critical for attaining optimal spectral resolution,
Study	Sample size	Acquisition protocol	Task	Results	Comments	
Visual stimuli—visual cortex						
Mangia et al. (41)	12 adults	– 7 T	– Radial red/black checkerboard covering the entire visual field (8 Hz)	– Increased glutamate (3%) during checkerboard vs rest	– The response of glutamate was delayed compared to Lac	
		– STEAM TE 6ms	– Two protocols: (1) 2 short 5.3 min block interspersed by rest epochs and (2) 1 long 10.6 min block interspersed by rest epochs		– The change in glutamate tended to decrease over time	
		– Midline visual cortex				
		– 2 cm × 2.2 cm × 2 cm				
Lin et al. (42)	10 adults	– 7 T	– Visual stimulation included contrast-defined wedges, moving toward or away from the fixation cross and randomized	– Increased glutamate (2 ± 1%) during single block vs rest	– Increased glutamate (3 ± 1%) during the two blocks vs rest	
		– STEAM TE 15 ms	– Midline visual cortex	2 cm × 2 cm × 2 cm	– Two protocols: (1) 1 13.2 min block interspersed by rest epochs and (2) two 9.9 min blocks interspersed by rest epochs	
Schaller et al. (43)	10 adults	– 7 T	– Reversed black–gray checkerboard (9 Hz)	– Increased glutamate (4 ± 1%) during stimulation vs rest	– Increased glutamate (4 ± 1%) during checkerboard vs rest	
		– SPECIAL TE 6 ms	– Midline visual cortex	2 cm × 2 cm × 2 cm	– 2 blocks interspersed by rest epochs	
Bednářík et al. (44)	12 adults	– 7 T	– Red–black checkerboard (7.5 Hz)	– Increased glutamate (~3%) during checkerboard vs rest	– Increased glutamate (~12%) during novel presentations compared to both rest and repeated presentations	
		– Semi-LASER TE 26 ms	– Midline visual cortex	2 cm × 2 cm × 2 cm	– 2 blocks interspersed by rest epochs	
Apšvalka et al. (45)	19 young adults	– 3 T	– Three different task blocks: novel stimuli and two repeated (6 unique vs 4 unique) stimulus presentations interspersed with rest blocks	– Increased glutamate (~12%) during novel presentations compared to both rest and repeated presentations	– Increased glutamate (~12%) during novel presentations compared to both rest and repeated presentations	
		– PRESS TE 105 ms	– Left lateral occipital cortex	2 cm × 2 cm × 2 cm	– Presentation of novel/repeated black-line drawings representing real-world objects for 700 ms	
Motor task—motor and somatosensory cortex						
Schaller et al. (35)	11 adults	– 7 T	– Cued finger-to-thumb tapping task with both hands at a frequency of 3 Hz	– Increased glutamate (2 ± 1%) during finger tapping vs rest	– Increased glutamate (2 ± 1%) during finger tapping vs rest	
		– SPECIAL TE 12 ms	– Left motor and somatosensory cortices	1.7 cm × 2 cm × 1.7 cm	– 2 blocks interspersed by rest epochs	
Thermoregulation—anterior cingulate cortex (ACC) and insular cortex						
Mullins et al. (47)	12 adults	– 4 T	– Frozen compress (0–4°C) or sham pain was applied to the base of the left foot	– Increased glutamate (9 ± 6%) during pain condition vs rest condition	– Increased glutamate (9 ± 6%) during pain condition vs rest condition	
		– STEAM TE 20 ms	– Bilateral ACC	2 cm × 2 cm × 2 cm	– 8:32 min task epoch preceded by a rest block and followed by two 8:32 min rest periods	
Gussew et al. (48)	6 adults	– 3 T	– Heat stimuli were applied to the inner skin area of the left forearm	– Increased glutamate (18 ± 8%) during heat vs rest	– Increased glutamate (18 ± 8%) during heat vs rest	
		– PRESS TE 30 ms	– Left anterior insular cortex	2.5 cm × 1 cm × 1 cm	– 2 blocks interspersed by rest epochs	
Study	Sample size	Acquisition protocol	Task	Results	Comments	
-------	-------------	----------------------	------	---------	----------	
Executive functions—dorsolateral prefrontal cortex (dlPFC)						
Woodcock et al. (40)	16 young adults	– 3 T – PRESS – TE = 23ms – left dlPFC – 1.5 × 2.0 × 1.5 cm³	– 2-back working memory task – 7 task blocks of 64 s each interspersed by 32 s rest epochs	– Increased glutamate (2.7%) during n-back vs fixation crosshair	– The control condition was a separate run fixating on a crosshair	
Lynn et al. (87)	16 young adults	– 3 T – PRESS – TE = 23ms – left dlPFC – 1.5 × 2.0 × 1.5 cm³	– Four “non-task-active” conditions: relaxed eyes closed, passive visual fixation crosshair, visual flashing checkerboard, and a finger tapping task – Each task 3:28 min in duration	– Increased glutamate (4.7 and 3.2%) during flashing checkerboard and motor finger tapping conditions, respectively compared to visual fixation crosshair condition – Visual fixation crosshair and visual flashing checkerboard conditions produced the least variability in glutamate with CV’s under 5%, which were both significantly lower compared to the eyes closed condition with a mean CV = 6.7%	– Conditions were chosen because the left dlPFC is not the dominant brain region engaged in these tasks	
Learning and memory—hippocampus						
Stanley et al. (36)	– 3 T – PRESS TE = 23 ms – Right anterior hippocampus – 1.7 cm × 3.0 cm × 1.2 cm	– Associative learning and memory task – Epochs of encoding (9 unique object–location pairs) and cued-retrieval (of those associated memoranda) and interspersed with rest epochs – 8 encoding-retrieval cycles were employed to allow learning to asymptote	– Increased glutamate (5.2 and 4.2%) during both encoding and retrieval, respectively – Applying a median split based on learning proficiency, fast learners showed increased during the early encoding trials, whereas slow learners showed increased glutamate in the later encoding trials	– Motor finger tapping task in response to a random visual stimulus was the control condition		
Cognitive control—ACC						
Taylor et al. (65)	7 adults	– 7 T – STEAM TE = 10 ms – dACC – 2 cm × 2 cm × 2 cm	– STROOP task with 4 conditions – One block flanked by rest epochs	– Increased glutamate (2.6 ± 1.0%) during STROOP vs rest	– Significance based on one-tailed t-test	
Taylor et al. (65)	16 controls; 16 major depressive disorder (MDD); 16 Schizo	– 7 T – STEAM TE = 10 ms – dACC – 2 cm × 2 cm × 2 cm	– STROOP task with four conditions – Two blocks interspersed with rest epochs	– Increased glutamate (3.2%) in controls during first STROOP vs rest – Decreased glutamate in MDD during second STROOP vs rest		
Visuospatial cognition—parietal and posterior cingulated cortices						
Lindner et al. (68)	19 adults	– 3 T – PRESS TE = 32 ms – Right or left border of parietal/occipital cortices – 1.5 cm × 1.5 cm × 1.5 cm	– Visuospatial attention task – Button press in response to the tilt orientation of the grating that appeared on the side of the screen cued by an arrow – 3 conditions (ipsi, contra, and control) randomized – 3 blocks interspersed with rest epochs	– No trial condition effect on glutamate		

TABLE 1 | Continued
especially in brain areas with extreme B₀ susceptibility (e.g., the hippocampus or orbital frontal cortex). Techniques such as the Fast Automatic Shim Technique using Echo-planar Signal readout for Mapping Along Projections (FASTESTMAP) (33) and its predecessor, FASTMAP (34), have brought significant improvement in the spectral quality, including increased S/N (35, 36). These acquisition sequences are readily available by most manufacturers on current MR systems and should be utilized for review see Duarte et al. (37).

Finally, reliable voxel placement across subjects and within subjects over time is an often-overlooked aspect of single-voxel ¹H MRS acquisition protocols (25). Unreliable voxel placement adds error variance to the outcome measurements by increasing the variability of the partial volume effect. Recently introduced automated approaches have demonstrated significant improvements in consistency of voxels placement, between subjects, even in anatomical brain areas, in which partial voluming is difficult to avoid, such as the dorsolateral prefrontal cortex (dlPFC) (38, 39). For example, Woodcock et al. (40) reported an improvement from 68% voxel overlap with manual placement to 98% overlap using an automated approach. In all, these major technological advancements provide the necessary tools to fully exploit the characterization of the task-related temporal dynamics of glutamate and GABA with ¹H fMRS, which is fueling the resurgence of in vivo ¹H fMRS as a powerful tool for cognitive neuroscience and psychiatry research.

EVIDENCE OF TASK-INDUCED GLUTAMATE MODULATION

Visual Stimuli—Visual Cortex

As in BOLD-based fMRI, the visual cortex is one of the most studied brain regions with ¹H fMRS (Table 1). Studies of response to flashing checkerboard stimuli compared to a non-visual stimulation (i.e., a blank screen) have shown a consistent stimulus-bound increases of ~2–4% in steady-state glutamate levels (41–44). The magnitude of the average task-related increase in glutamate may be less consistent as it depends on task duration and cognitive processing demands. Shorter stimulus blocks were associated with a 3% increase in glutamate, compared to 2% for longer ones (42). With a temporal resolution of ~1 min, a delay in the increased stimulus-dependent modulation of glutamate was consistently observed, whereas smaller and earlier elevations in lactate were noted (41, 43, 44). The mechanism of these two temporal effects is not fully understood. Finally, sensitivity of glutamate levels to stimulus characteristics was illustrated by a ¹H fMRS study that found an almost 12% increase within the left occipital cortex during passive viewing of novel pictures compared to a (pseudo-) rest control condition, but no change during repeated picture presentation (45).

Motor Task—Motor and Somatosensory Cortex

To date, only a single ¹H fMRS study, at 7 T, investigated neurochemical changes in the motor cortex during a motor task (35). As expected, a periodic cued finger-to-thumb tapping induced a significant (2%) glutamate increase in the motor/somatosensory cortices relative to a non-tapping “rest” condition (Table 1). In that study, the ¹H fMRS voxel was co-localized with BOLD fMRI activation. Thus, task-related changes in glutamate can be detected in other functionally relevant cortical areas besides the visual cortex and can be used in investigating interesting research questions pertaining to neural activity during implicit vs explicit motor learning or periodic vs randomly cued stimuli (46).

Thermoregulation and Pain Perception—Anterior Cingulate Cortex (ACC) and Insular Cortex

Motivated by the involvement of the ACC in thermal sensory responses, Mullins et al. (47) investigated glutamate response to a 10 min cold-pressor stimulation of the foot compared to the baseline rest without the cold exposure. They observed a substantial (9.3%) condition-related increase in glutamate within the ACC. With acute heat exposure, Gussew et al. (48) reported an even greater, 18%, glutamate increase in the anterior insular cortex. The manipulation involved acute 5 s cycles of heat exposure to the forearm compared to the no heat exposure condition. These findings lay the foundation of further investigation of the brain's thermoregulatory system and its relationship to temperature perception with greater temporal resolution, made possible by current improvements in ¹H MRS.

Working Memory (WM)—dlPFC

The construct of WM refers to the ability to hold information in memory for a duration of a few seconds while manipulating this information “on-line” in order to carry out a complex task (49). In primates, the dlPFC has been proposed as the central neural substrate of WM (50). Neuroimaging studies using PET and fMRI have confirmed the importance of the dlPFC, but also have implicated additional brain regions, such as the inferior parietal lobule and cerebellum (51, 52). In a recent ¹H fMRS study with a single-voxel placement in left dlPFC, a significant 2.7% increase in glutamate was observed during a standard 2-back WM task compared to a continuous visual crosshair fixation in healthy young adults (Table 1) (40). The elevation in dlPFC glutamate observed with a temporal resolution of 32 s is consistent with the engagement of that region in WM processing that has been revealed by task-based BOLD fMRI studies. However, increased glutamate was more pronounced during the first-half compared to the second-half of the 64 s block. This suggests a temporal variation in the dlPFC engagement during WM task. This temporal effect has not been reported in fMRI studies using the N-back WM paradigm and warrants further investigation to determine whether the disengagement over time is related to WM proficiency. In all, the observed temporal dynamics of WM-related modulation of dlPFC glutamate provides a solid basis for new means of evaluating the effects of cognitive intervention, pharmacological therapies, or manipulation of the physiological (e.g., stress-provoking) conditions.

Learning and Memory—Hippocampus

Glutamate plays a key role in learning and memory via its activity in the frontal and hippocampal circuits. The hippocampus is particularly rich in glutamatergic neurons, and memory...
Dendritic spine density is highly plastic and is driven by activity of both cortical pyramidal neurons, which contribute a significant volume fraction of synapses on dendrites, and by glutamate released by glutamatergic terminals (56–58). In the hippocampus, this glutamatergic input is critical for memory consolidation and the integrity of the dendritic spine compartment (59). The role of glutamatergic dysfunction in the hippocampus as a potential mechanism for memory consolidation is supported by the observation of increased glutamate in the dorsal ACC during the Stroop task compared to rest was replicated in healthy adults. However, no significant change in glutamate was observed in individuals with schizophrenia, while participants with MDD demonstrated decreased glutamate in the dorsal ACC during the task compared to rest. The non-significant change in glutamate with task in the participants with schizophrenia appears consistent with decreased BOLD fMRI activation during Stroop in schizophrenia (67). Interestingly, the lower glutamate in the dorsal ACC during Stroop in MDD may reflect a shift in the E/I balance toward decreased excitability that is potentially driven by an increase in the inhibitory drive (see Figure 1 and below for further discussion).

Visuospatial Cognition—Parietal and Posterior Cingulate Cortices

Tasks involving the visuospatial attention and memory system were recently investigated using 1H fMRS at 3 T (Table 1). In healthy individuals, a non-significant modulation of glutamate was observed in the parietal–occipital cortex during a visuospatial attention task compared to the control condition (68). In another study, no significant task-related glutamate modulation was observed in the parietal–posterior cingulate cortex of healthy adults, patients with AD and individuals with amnestic mild cognitive impairment who performed a face-name associative memory task compared to the rest control condition (69). In both studies, details on the variability of the glutamate measurements were omitted and, therefore, it remains unclear whether the method afforded detection of a task-related change in glutamate of the order of 10% or less. It may be possible that the selected tasks were not at the level of difficulty that produced significant variations in glutamate level or that dynamics of glutamate are inherently weaker in the examined locations compared to the hippocampus and prefrontal cortex. Also, the lack of specific behavioral constraints during the rest condition might have increased variability in glutamate within brain areas that show BOLD fMRI activation under rest. Therefore, rest, under these circumstances, may represent a nonspecific, yet, not truly task-free condition and thus a suboptimal choice as a control comparison. These remain among multiple questions to be addressed in the further development of the method.

BIOLOGICAL SIGNIFICANCE OF CHARACTERIZING GLUTAMATE MODULATION

The observed dynamic changes in glutamate levels during perceptual, motor, and cognitive tasks may open a new window into...
neural bases of normal and abnormal cognition and behavior. To accomplish that goal, the apparent brain changes in this key neurotransmitter must be linked to cellular and molecular processes that occur in the brain.

Neural activity generated in response to physiological stimuli triggers changes in many complex neurovascular and neurometabolic processes, including increased cerebral blood flow, glycolysis (CMR\textsubscript{Glcl}), and oxidative metabolism (CMR\textsubscript{O2}), as well as synthesis of neurotransmitters (4, 5, 70–72)—all of which depend on significant increase in energy consumption. The temporal and spatial characteristics of these processes are not fully understood (4). Most notably, there is a mismatch (i.e., ~44 vs ~30%, respectively) between glucose utilization (non-oxidative metabolism) and oxygen consumption (CMR\textsubscript{O2}) in response to physiologically stimuli (73, 74). Fox et al. (75) were the first to report this mismatch, which sparked the interest and focus of early 1H fMRS studies from the 1990s, as noted above (17–19, 21). However, more recent high-field 1H fMRS studies provided compelling evidence that the mismatch of ΔCMR\textsubscript{Glcl} > ΔCMR\textsubscript{O2} is short-lived. It is necessary only for facilitating the transition to a new metabolic steady state following the onset of a physiological stimulus. It is this transitional change that is believed to be reflected by the dynamic changes of glutamate observed on 1H fMRS (35, 44, 71).

This transition between metabolic steady states is primarily driven by oxidative metabolism (71) consistent with recalibration of excitatory and inhibitory activity balance in local circuits, and establishing an E/I equilibrium that underpins a new functional state of the brain (Figure 1) (4, 6, 7). At the synaptic level, following the release of glutamate, excess of the neurotransmitter is taken up by surrounding astrocytes and is subsequently converted, predominantly to glutamine, with the help of glutamine synthetase. Glutamine is then released and taken up by the presynaptic neuron where it is converted into glutamate by mitochondrial glutaminase, to complete the glutamate–glutamine cycle (76). A near 1:1 relationship between neuronal glucose oxidation and the glutamate–glutamine cycling (70, 77, 78) implies that the metabolic and neurotransmitter pools of glutamate, as typically viewed in the 1H MRS literature (79, 80), are tightly coupled and hence, indistinguishable by 1H MRS (70). Moreover, in astrocytes, the oxidative pathway regulates the glutamate turnover (synthesis and degradation) and the high-energy phosphate, adenosine triphosphate, can be generated to supply the demand of increased synthesis without the need of glycolysis (81). This association between increased excitatory synaptic neurotransmission and increased synthesis of exogenous glutamate provides a cellular basis for meaningful interpretation of glutamate measures obtained from 1H fMRS.

Translating this relationship to the macro-circuit level implies that glutamate levels and changes therein that are observed in a single-voxel by 1H fMRS reflect the net cortical output driven by the excitation and inhibition balance on local circuits. The implication is that a net increase in synaptic excitability is reflected at the cortical (macro-circuit) level as a relative increase in glutamate, which is observed on the signal produced by 1H fMRS (Figure 1) (6, 7). Notably, an opposite shift in the E/I balance on local circuits increases the inhibitory drive and consequently, decreases the net excitability, which is reflected in a relatively lower glutamate level registered on 1H fMRS. The salient point of this interpretation is that 1H fMRS is not simply indicating an “ON” or “OFF” brain response to stimulus but can reflect a stimulus-induced change in glutamate that reflects new metabolic steady states driven by relative shifts in the E/I equilibrium (Figure 1). Because cellular glutamate changes are tightly linked to synaptic plasticity (82), the apparent glutamate alterations observed on a macro level are likely to reflect experience-related plasticity as well. The implications of using 1H fMRS as a proxy of cellular process that are unobservable in vivo are far reaching. Further development and refinement of the method bodes well for the fields, in which the role of glutamate in core phenomena of behavior, cognition, and psychopathology has been established through the use of animal models (83). Fulfillment of these promises, however, hinges on resolving several key issues in methodology and interpretation.

THE PROS AND CONS OF 1H fMRS

The key advantage of 1H fMRS over the staple of cognitive neuroscience, BOLD-based fMRI, is that task-related changes in glutamate can be traced directly to established metabolic processes, and are not mediated by neurovascular effects. This relative directness of the method bypasses neurovascular mediators that may be affected by significant alterations of the vascular system and impairment of its regulation. Moreover, 1H fMRS is a quantitative method that can measure not only the magnitude of change in glutamate but its basal “non-task-active” steady-state level, which is not the case for fMRI. This makes the method particularly suitable for studying the neural basis of cognitive declines in older adults and persons with age-related neurodegenerative disorders, in whom vascular risk factors are highly prevalent and cognitively relevant (56). This relative directness of 1H fMRS is a feature that may significantly advance the understanding of brain dynamics underlying normal and abnormal cognition. To fulfill this promise, several key issues need to be addressed. One unresolved concern is that as several groups have pointed out, there is evidence of a BOLD T\textsubscript{2}* effect on the spectral peaks including glutamate during task compared to the control condition. This T\textsubscript{2}* contribution narrows spectral linewidths by about 0.2–0.3 Hz in the visual cortex at 4 T, 0.5 Hz in the visual cortex at 7 T, and 0.25 Hz in the motor cortex at 7 T on task-related spectra (35, 41, 43, 44, 84, 85). This BOLD-linked confound, however, is yet to be reported at 3 T. In theory, the spectral fitting method such as LCModel (86) should account for changes in the spectral linewidth without influencing the accuracy of the metabolite quantification. Nonetheless, Mangia et al. (85) reported a non-significant reduction in glutamate levels with increasing spectral linewidth, which potentially suggests a bias on LCModel fitting. As a result, applying a linewidth broadening to spectra acquired during task to ensure linewidths are matched across all spectra has become a common practice as part of the post-processing for 7 T 1H fMRS studies (35, 41, 43, 44, 85).

The magnitude of task-related change in glutamate levels vary considerably across the extant reports (Table 1), from as low as 2% up to 18%, and the reasons for such variability are
unclear. This wide range may reflect multiple methodological variations among studies including sample size, acquisition protocol, and the differential accuracy and precision between field strengths (e.g., 3 vs. 7 T). Also, the participants' characteristics and properties of the task may play a role in adding variability to the measured magnitude of the observed change. In most extant studies, the comparison condition was either a pseudo-rest state (i.e., passive state with no specific instructions), routine motor activity, or visual fixation on a stimulus without specific task-related instructions. The purpose of the control condition is to assess a steady state level of glutamate to be contrasted with those that are associated with task activity. For example, in the \(^1\)H fMRS study of the hippocampus by Stanley et al. (36), the control condition paradigm included a cued finger to thumb tapping task due to its strong attention and motor processing, without any learning or memory components. Likewise, the dIPFC \(^1\)H fMRS study by Woodcock et al. (40) incorporated a visual fixation crosshair condition as the baseline control condition, again, to minimize any potential dIPFC engagement during the control condition. Moreover, Lynn et al. (87) demonstrated differences in steady-state levels of glutamate as well as variability of glutamate in the left dIPFC across different conditions where the primary functional specialization of the dIPFC was not associated to these conditions (e.g., relaxed with eyes closed, visual fixation crosshair, visual flashing checkerboard, and motor finger tapping). The visual fixation crosshair condition demonstrated the lowest and less variable glutamate over the acquisition period compared to the relaxed eyes closed condition. The latter is consistent with studies reporting greater variability in glutamate during rest epochs compared to task (44, 88). Also, the steady-state glutamate level was significantly higher during the visual flashing checkerboard compared to the visual fixation crosshair condition. This is surprising considering that the left dIPFC is not the primary brain area for visual stimuli but is involved in multiple cognitive operations including deployment and maintenance of attention (89–92). We surmise that substantial variability in glutamate levels over time occurs during conditions in which behavior is poorly constrained (e.g., pseudo-resting state), and that better-defined and constrained non-cognitive control tasks such as visual fixation or finger tapping, are a better choice for baseline condition for frontal areas of interest. This hypothesis merits further empirical testing.

To make an \textit{in vivo} method truly useful in investigating task-related changes it is imperative to establish high reliability and temporal stability of task-related glutamate measures. No such evidence is currently available for \(^1\)H fMRS, and reliability studies are urgently needed. Because cognitive activity occurs in a wide range of time windows and calls for multiple interacting brain circuits, not every task may be equally suitable for investigation with \(^1\)H fMRS. Investigation of task properties and relevant brain locations that maximize the validity of \(^1\)H fMRS findings is necessary for optimization of the \(^1\)H fMRS application to investigating complex cognitive and psychiatric phenomena. Of critical importance is leveraging \(^1\)H fMRS animal studies that can use more sensitive methods that are available for human studies and are, therefore, critically important for validation of the method (93–96). It is important, however, to apply these methods not only with precision and degree of invasive control that are available in animal models but also with parameters that are equivalent to those that are suitable for humans. Such \textit{translational harmonization} of methods is critically important in the understanding of task-related glutamate changes observed in human subjects.

Finally, \(^1\)H fMRS is still a project in progress. The one aspect of the method that significantly improved over the years is the temporal resolution of acquiring the glutamate signal, which has been brought well under a minute (40). The advantage of high temporal resolution is the possibility of investigating temporal course of glutamate change within relatively short-lived stages of cognitive processing (96), and gauging the course of modulation within a task block (36, 40). However, it may take \(\sim\)1–2 min for glutamate to reach its maximum level following stimulus onset (35, 41, 43). This may reflect the time needed for the synaptic reorganization process, shifting the E/I balance in the local circuits, and establishing the new steady state of glutamate. On the other hand, a relatively rapid change in glutamate within the dIPFC during the WM task has been reported. Glutamate surge was greater during the first half of each 64 s block than the second one (40). Thus, examining the patterns of glutamate modulation as a function of various time scales is as important as refining temporal resolution of the method.

CONCLUSION

\(^1\)H fMRS is an exciting and promising technique that can offer important insights into the neurochemicals underpinnings of cognition and their temporal dimensions. In this review, we summarize preliminary but compelling evidence demonstrating the ability of \(^1\)H fMRS to detect changes in glutamate during various perceptual, motor, and cognitive tasks. Moreover, the method can detect changes in glutamate modulation that are induced by manipulations that affect cognitive performance. It is highly plausible that these 2–18% task-related changes in glutamate reflect transitions to new metabolic steady states driven by relative shifts in the E/I equilibrium through synaptic plasticity. Within this conceptual framework, \(^1\)H fMRS provides a sensitive tool for investigating the neural basis of cognitive operations that are directly relevant to specific deficits in psychiatric disorders or neurodegenerative diseases associated with advanced age.

AUTHOR CONTRIBUTIONS

Both authors contributed to the writing of the manuscript.

FUNDING

This work was supported by NIMH grant R01 MH111177 (PI: JS) and NIA grant R01 011230 (PI: NR) as well as by the Lycaki-Young Funds from the State of Michigan.
level evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab (2007) 27:1055–63. doi:10.1038/jcbfm.9600401

42. Lin Y, Stephenson MC, Xin L, Napolitano A, Morris PG. Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. J Cereb Blood Flow Metab (2012) 32:1484–95. doi:10.1038/jcbfm.2012.33

43. Schaller B, Mekle R, Xin L, Kunz N, Gruetter R. Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 tesla. J Neurosci (2013) 9:1076–83. doi:10.1002/jnr.23194

44. Bednarik P, Tkac I, Giove F, Dinuzzo M, Deelchand DK, Emir UE, et al. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J Cereb Blood Flow Metab (2015) 35:601–10. doi:10.1038/jcbfm.2014.233

45. Apšvalka D, Gagie A, Clemence M, Mullins PG. Event-related dynamics of glutamate and BOLD effects measured using functional magnetic resonance spectroscopy (fMRS) at 3T in a repetition suppression paradigm. Neuroimage (2015) 118:292–300. doi:10.1016/j.neuroimage.2015.06.015

46. Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci (2015) 9:309. doi:10.3389/fnhum.2015.00309

47. Mullins PG, Rowland LM, Jung RE, Sibbit WL. A novel technique to study the brain’s response to pain: proton magnetic resonance spectroscopy. Neuroimage (2005) 26:642–6. doi:10.1016/j.neuroimage.2005.02.001

48. Gussow A, Rzanzy N, Erdelt M, Scholle HC, Kaiser WA, Mentzel HJ, et al. Time-resolved functional 1H MR spectroscopic detection of glutamate concentration changes in the brain during acute heat pain stimulation. Neuroimage (2010) 49:1895–902. doi:10.1016/j.neuroimage.2009.09.007

49. Baddeley A. Working memory. Curr Biol (2010) 20:R136–40. doi:10.1016/j.cub.2009.12.014

50. Goldman-Rakic PS. Cellular basis of working memory. Neuron (1995) 14:477–85. doi:10.1016/0896-6273(95)90304-6

51. Nyberg L, Cabeza R. Brain imaging of memory. In: Tulving E, editor. Neuroimage (2009) 49:1895–902. doi:10.1016/j.neuroimage.2009.09.007

52. Barch DM, Braver TS, Akbudak E, Conturo T, Ollinger J, Snyder A. Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cereb Cortex (2001) 11:837–48. doi:10.1093/cercor/11.9.837

53. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation. Nature (1993) 361:243–9. doi:10.1038/361243a0

54. Day M, Langston R, Morris RGM. Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature (2003) 424:205–9. doi:10.1038/nature01769

55. Suzuki WA. Making new memories: the role of the hippocampus in new associative learning. Ann N Y Acad Sci (2007) 1097:1–11. doi:10.1196/annals.1379.007

56. Raz N, Rodriguez KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev (2006) 30:730–48. doi:10.1016/j.neubiorev.2006.07.001

57. Mueller SG, Weiner MW. Selective effect of age, Apo e4, and Alzheimer’s disease on hippocampal subfields. Hippocampus (2009) 19:538–64. doi:10.1002/hipo.20614

58. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci (2011) 12:585–601. doi:10.1038/nrn3085

59. Raz N, Daughters AM, Reader AR, Dahle CL, Land S. Volume of the hippocampal subfields in healthy adults: differential associations with age and a pro-inflammatory genetic variant. Brain Struct Funct (2015) 220:6263–74. doi:10.1007/s00429-014-0817-6

60. Kassem LA, Gamal El-Din MM, Yassin NA. Mechanisms of vincristine-induced neurotoxicity: possible reversal by erythromycin. Drug Discov Ther (2011) 5:136–43. doi:10.3582/dtt.2011.5.3.136

61. Matti P, Mann J, Ilavzahagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev (2015) 59:208–37. doi:10.1016/j.neubiorev.2015.09.020

62. MacLeod CM, MacDonald PA. Intermittential interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn Sci (2000) 4:383–91. doi:10.1016/S1364-6613(00)01530-8
84. Zhu XH, Chen W. Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional (1)H MRS study at 4 T. Magn Reson Med (2001) 46:841–7. doi:10.1002/mrm.1267
85. Mangia S, Tkác I, Gruetter R, Van De Moortele PF, Giove F, Maraviglia B, et al. Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T. Magn Reson Imaging (2006) 24:343–8. doi:10.1016/j.mri.2005.12.023
86. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med (1993) 30:672–9. doi:10.1002/mrm.1910300604
87. Lynn J, Woodcock EA, Anand C, Khatib D, Stanley JA. Differences in steady-state glutamate levels and variability between ‘non-task-active’ control conditions: evidence from 1H fMRS of the prefrontal cortex. Neuroimage (2018) 172:554–61. doi:10.1016/j.neuroimage.2018.01.069
88. Ip IB, Rerrington A, Hess AT, Parker AJ, Emir UE, Bridge H. Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain. Neuroimage (2017) 155:113–9. doi:10.1016/j.neuroimage.2017.04.030
89. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA (2005) 102:9673–8. doi:10.1073/pnas.0504136102
90. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA (2006) 103:13848–53. doi:10.1073/pnas.0601417103
91. Cole MW, Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage (2007) 37:343–60. doi:10.1016/j.neuroimage.2007.03.071
92. Banich MT. Executive function: the search for an integrated account. Curr Dir Psychol Sci (2009) 18:89–94. doi:10.1111/j.1467-8721.2009.01615.x
93. Xu S, Yang J, Li CQ, Zhu W, Shen J. Metabolic alterations in focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats measured by 1H MRS at 11.7 T. Neuroimage (2005) 28:401–9. doi:10.1016/j.neuroimage.2005.06.016
94. Ilitis I, Koski DM, Eberly LE, Nelson CD, Deelchand DK, Valette J, et al. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study. NMR Biomed (2009) 22:737–44. doi:10.1002/nbm.1385
95. Just N, Sonnay S. Investigating the role of glutamate and GABA in the modulation of transthalamic activity: a combined fMRI-fMRS study. Front Physiol (2017) 8:30. doi:10.3389/fphys.2017.00030
96. Sonnay S, Duarte JMN, Just N. Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism. Neuroscience (2017) 346:337–48. doi:10.1016/j.neuroscience.2017.01.034

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.