MC-hands-1M: A glove-wearing hand dataset for pose estimation

Prodromos Boutis, Zisis Batzos, Konstantinos Konstantoudakis, Anastasios Dimou, Petros Daras
Centre for Research & Technology Hellas

Abstract. Nowadays, the need for large amounts of carefully and complexly annotated data for the training of computer vision modules continues to grow. Furthermore, although the research community presents state of the art solutions to many problems, there exist special cases, such as the pose estimation and tracking of a glove-wearing hand, where the general approaches tend to be unable to provide an accurate solution or fail completely. In this work, we are presenting a synthetic dataset\(^1\) for 3D pose estimation of glove-wearing hands, in order to depict the value of data synthesis in computer vision. The dataset is used to fine-tune a public hand joint detection model, achieving significant performance in both synthetic and real images of glove-wearing hands.

Keywords: synthetic dataset, 3D hand pose estimation, gloved hands

1 Introduction

Computer vision models, targeting more complex problems, are evolving at an incredible pace, resulting in an insatiable appetite for more datasets, whose size and annotations’ detail are becoming a limiting factor. Therefore, in literature, the utilization of synthetic visual data, from domain adaptation techniques \([12]\) to the deployment of GANs \([5]\), and from the Cut-Paste approach \([6]\) to video games’ scenes \([8]\), regularly combined with corresponding real data, has become an established technique over the last decade.

Specifically, hand pose estimation is a well-studied problem with a variety of depth- \([1]\) and color-based \([4]\) solutions, deploying different machine-learning methods \([11,10]\). However, many applications, in the context of hazardous work environments and sports, necessitate the use of gloves. Existing hand detection and tracking AI algorithms, trained on real \([3,13]\) and synthetic \([2,7]\) bare-hand datasets, exhibit significantly reduced performance or fail altogether in gloved hand scenarios, as they depend deeply on the canvas of the human skin’s colors. Hence, there is a clear need for a gloved-hand dataset with ground truth for the joints’ positions, allowing the training or re-training of AI algorithms capable of estimating poses and/or tracking hands wearing gloves of diverse size and color.

\(^1\) The dataset is public and can be found at \(https://www.zenodo.org/record/7194271/\)
As a result, the contributions of this work are: 1) a synthetic image dataset for 3D pose estimation of glove-wearing hands in outdoor environments and 2) insights on its deployment to retrain hand pose estimation and tracking modules.

2 Dataset Generation

Aiming to address the problem of 3D glove-wearing hand pose estimation, we created a Python-based, model-independent and extensible framework for the automated generation of realistic synthetic datasets, based on Blender. The adopted approach took into consideration every aspect affecting a scene’s representation: background, lighting, rendering cameras and views, model’s geometry, armature’s poses, movement constraints and texturing related properties. Its full design and methodology will be presented in a future full-length paper.

As a result, we produced \textit{MC-hands-1M}, a dataset of 1M color images of a right glove-wearing hand in outdoor environments, examples of which are depicted in Fig. 1. The employed variables were set as follows: 10 glove- and 15 cloth-like materials, 10 hand’s scales and 3 wrist’s (a priori) states, 20 combinations of outdoors background with realistic sun-like lighting and 10 views per each of the 4 different cameras.

3 Hand detection experiments and results

The hand joint detection network selected to prove the dataset’s usability is DetNet [14], which receives an RGB image as input and outputs root-relative and scale-normalized 3D, as well as 2D (image space) hand joint predictions. Its architecture comprises of a feature extractor, a 2D and a 3D detector.

Since the existing networks trained on bare-hand datasets regularly fail to recognize glove-wearing hands, in an attempt to highlight the impact of MC-hands-1M in the alleviation of this shortcoming, we conducted a series of experiments, using test sets from the Rendered Handpose Dataset (RHD) [15] of bare and from the created MC-hands-1M of glove-wearing hands. The trained networks were compared based on the AUC-PCK metric, in order to overview the performance on images of both cases.

2 Open-source 3D computer graphics software toolset, \url{https://www.blender.org/}
Regarding the experiments, a baseline network was initially trained on the CMU Panoptic Dataset (CMU) [9], the RHD and the GANerated Hands Dataset (GAN) [4]. In the second experiment, the above baseline was retrained using images solely from the MC-hands-1M dataset. Finally, the baseline network was retrained on a mixture of real (CMU) and synthetic (RHD, MC-hands-1M) images of bare (RHD, CMU) and glove-wearing hands (MC-hands-1M).

The results of Table 1 depict that a network trained on traditional datasets of bare hands achieves good performance on corresponding cases, while being unable to accurately detect the joints’ positions or even the existence of a hand wearing a glove. Conversely, the same network trained exclusively on synthetic glove-wearing hands’ images has a significantly reduced performance on bare hands’ ones. The training on a mixture of both bare and glove-wearing hand images, allows the network to achieve excellent performance for both cases. In order to examine its corresponding ability on real-life data, considering the lack of an annotated, real, non-bear hand dataset, a small collection of images exhibiting hands wearing gloves was collected.

Training Sets	AUC (RHD)	AUC (MC-hands-1M)
RHD, CMU, GANHD	0.93	0.19
MC-hands-1M	0.43	0.97
MC-hands-1M, RHD, CMU	**0.93**	**0.97**

Fig. 2: Examples of real images with hands wearing gloves and the corresponding outcome of the network before (left) and after (right) training on our dataset. The red lines represent the index finger.
From the visual inspection of the results, one can effortlessly observe that not only the network recognizes the hand’s existence, but it also presents a decent capability to predict correctly the orientation of the hand and the majority of the different joints’ positions, as portrayed in Fig. 2.

Funding: This research has been supported by the European Commission within the context of the project FASTER, funded under EU H2020 Grant Agreement 833507.

References

1. Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3d hand pose estimation from monocular rgb images. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 666–682 (2018)
2. Ge, L., Ren, Z., Li, Y., Xue, Z., Wang, Y., Cai, J., Yuan, J.: 3d hand shape and pose estimation from a single rgb image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10833–10842 (2019)
3. Moon, G., Yu, S.I., Wen, H., Shiratori, T., Lee, K.M.: Interhand2. 6m: A dataset and baseline for 3d interacting hand pose estimation from a single rgb image. In: European Conference on Computer Vision. pp. 548–564. Springer (2020)
4. Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., Sridhar, S., Casas, D., Theobalt, C.: Generated hands for real-time 3d hand tracking from monocular rgb. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)
5. Peng, X., Saenko, K.: Synthetic to real adaptation with generative correlation alignment networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1982–1991 (2018). https://doi.org/10.1109/WACV.2018.00219
6. Remez, T., Huang, J., Brown, M.: Learning to segment via cut-and-paste. In: Proceedings of the European Conference on Computer Vision (ECCV) (September 2018)
7. Rogez, G., Khademi, M., Supančič III, J., Montiel, J.M.M., Ramanan, D.: 3d hand pose detection in egocentric rgb-d images. In: European Conference on Computer Vision. pp. 356–371. Springer (2014)
8. Shafaei, A., Little, J.J., Schmidt, M.: Play and learn: Using video games to train computer vision models. CoRR abs/1608.01745 (2016). http://arxiv.org/abs/1608.01745
9. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multi-view bootstrapping. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 1145–1153 (2017)
10. Spurr, A., Song, J., Park, S., Hilliges, O.: Cross-modal deep variational hand pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)
11. Tekin, B., Bogo, F., Pollefeys, M.: H+o: Unified egocentric recognition of 3d hand-object poses and interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)
12. Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 1082–10828 (2018). https://doi.org/10.1109/CVPRW.2018.00143
13. Yuan, S., Ye, Q., Stenger, B., Jain, S., Kim, T.K.: Bighand2.2m benchmark: Hand pose dataset and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (July 2017)

14. Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C., Xu, F.: Monocular real-time hand shape and motion capture using multi-modal data. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)

15. Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single RGB images. CoRR abs/1705.01389 (2017), http://arxiv.org/abs/1705.01389