Quantum advantage in microwave quantum radar

A central goal of any quantum technology consists in demonstrating an advantage in their performance compared to the best possible classical implementation. A quantum radar improves the detection of a target placed in a noisy environment by exploiting quantum correlations between two modes, probe and idler. The predicted quantum enhancement is not only less sensitive to loss than most quantum metrological applications, but it is also supposed to improve with additional noise. Here we demonstrate a superconducting circuit implementing a microwave quantum radar that can provide more than 20% better performance than any possible classical radar. The scheme involves joint measurement of entangled probe and idler microwave photon states after the probe has been reflected from the target and mixed with thermal noise. By storing the idler state in a resonator, we mitigate the detrimental impact of idler loss on the quantum advantage. Measuring the quantum advantage over a wide range of parameters, we find that the purity of the initial probe-idler entangled state is the main limiting factor and needs to be considered in any practical application.

While quantum entanglement can enhance the performance of several technologies such as computing, sensing and cryptography, its widespread use is hindered by its sensitivity to noise and losses. Even when entanglement has been destroyed\(^ {1,2} \), some tasks still exhibit a quantum advantage \(Q \), defined by a \(Q \)-time speedup, over any classical strategies. A prominent example is quantum radar\(^ {3} \), which enhances the detection of the presence of a target in noisy surroundings. To beat all classical strategies, Lloyd\(^ {3} \) proposed to use a probe initially entangled with an idler that can be recombined and measured with the reflected probe. Observing any quantum advantage requires exploiting the quantum correlations between the probe and the idler. It involves their joint measurement\(^ {4} \) or at least adapting the idler detection to the outcome of the probe measurement\(^ {5} \). In addition to successful demonstrations of such quantum illumination protocols at optical frequencies\(^ {6,7} \), the proposal of a microwave radar\(^ {8,9} \), closer to conventional radars, gathered a lot of interest. However, previous microwave implementations\(^ {10-16} \) have not demonstrated any quantum advantage as probe and idler were always measured independently\(^ {10-16} \). In this work, we implement a joint measurement using a superconducting circuit and demonstrate a quantum advantage \(Q > 1 \) for microwave radar. Storing the idler mitigates the detrimental impact of microwave loss on the quantum advantage, and the purity of the initial entangled state emerges as the next limit\(^ {20} \). Whereas the experiment is a proof-of-principle performed inside a dilution refrigerator, it shows some of the inherent difficulties in implementing quantum radars such as the limited range of parameters where a quantum advantage can be observed or the requirement for very low probe and idler temperatures.

We focus on the simplest radar protocol, where the goal is to detect whether a target is present with a minimum number \(M \) of attempts. Each attempt corresponds to using a single microwave mode in time-frequency space to probe the target, with the constraint that the probe contains a fixed number \(N_S \) of signal photons on average (Fig. 1a) and is detected in a noise background of \(N_N \) photons. We consider that all other parameters are known: target position, speed and reflectivity \(\kappa \).

Several metrics can quantify the performance of a radar. We choose the error exponent defined as \(\mathcal{E} = \lim_{M \to \infty} \frac{1}{M} \log P_{\text{error}}(M) \), which means that the error probability \(P_{\text{error}}(M) \) is logarithmically equivalent to \(e^{-\mathcal{E}M} \). For simplicity, we assume no previous knowledge on the target state: initially the target is present with a probability \(1/2 \).

Under the assumptions of the central limit theorem, the number of required attempts to reach a given error probability scales as \(1/\mathcal{E} \). The
Quantum advantage can thus be defined as $Q = E/E_{cl}$, where E_{cl} is the error exponent of the best classical strategy.

Given a certain probe state, the largest achievable error exponent for any measurement apparatus is the so-called quantum Chernoff bound\(^{24-26}\). De Palma and Boregaard\(^{22}\) showed that the best classical strategy (that is, without quantum memory) is to use a coherent state as a probe, which gives an optimum $E_{cl} = \frac{\kappa N}{4\sqrt{N}}$. This limit is asymptotically reached by a homodyne measurement in the large noise ($N_\nu \gg 1$) limit\(^{25}\). Quantum strategies rely on initially entangling the probe with an idler\(^{1}\). The quantum Chernoff bound for quantum radar is $E_{max} = \frac{\kappa N_\nu}{N_\kappa}$ in the low signal $N_\nu \ll 1$, high noise $N_\kappa \gg 1$ regime\(^{24}\), which shows that the quantum advantage is at best $Q_{max} = 4$ for radars. Effectively, it can be reached using one mode of a two-mode squeezed vacuum state (TMSV) to illuminate the target\(^{24,25}\). However, there is no known detector that can reach this advantage $Q_{max} = 4$ without a global joint measurements of M modes of all attempts.\(^{27,28,30-32}\). Using simpler pairwise joint measurements instead\(^{24,27,28}\), it is nevertheless possible to reach $Q = 2$ with $E_{pair} = \frac{\kappa N_\kappa}{2N_\nu}$.

Here we implement pairwise joint measurements using a superconducting circuit\(^{29,31}\) that also generates the TMSV states\(^{29-31}\), and stores the idler mode while the signal probe travels. We then experimentally determine the error exponent of this quantum radar for various signal and noise photon numbers. To ensure a fair determination of the experimental quantum advantage Q, the absolute best classical error exponent E_{cl} must be determined. Previous microwave radar experiments managed to exceed the error exponent of one instance of classical radar\(^{30-32}\), but could not break the classical upper bound E_{cb}. A central challenge of the experiment thus consists of performing precise calibrations of the target and radar parameters κ, N_ν and N_κ.

Microwave quantum radar implementation

Our superconducting device contains two resonators: a signal resonator whose lifetime is set by its coupling to a transmission line and a much longer-lived idler resonator. The circuit is operated at 15 mK (Fig. 1b). The signal resonator, which emits and receives the probe signal, has a frequency $\omega_0/(2\pi) = 10.20$ GHz and is coupled to a transmission line at a rate $\gamma/(2\pi) = 25$ MHz. The idler resonator has a frequency $\omega_0/(2\pi) = 3.74617$ GHz and a decay rate of $\gamma/(2\pi) = 40$ kHz. The two resonators are coupled by a Josephson ring modulator (JRM, purple in Fig. 1b)\(^{36-38}\).

We start each of M detection attempts by first applying a pump tone at a frequency $\omega_p = \omega_0 + \omega_1$ for 28 ns. This tone generates a TMSV state between the idler and the signal modes. The latter quickly exits the target, with reflectivity ν_κ, in a thermal environment with mean photon number ν_κ. A receiver processes all reflected signals and decides whether the target is present or not. Quantum probes can be initially entangled with an idler\(^3\). The quantum Chernoff bound for quantum radar is E_{max}\(^{22}\). De Palma and Boregaard\(^{22}\) showed that the best classical strategy (that is, without quantum memory) is to use a coherent state (purple) generating and decoding entangled pairs between signal mode (orange) and idler mode (blue). A transmon qubit (grey) completes the joint measurement. The entangling pump and thermal noise background are injected through a directional coupler into the signal resonator port. A Pulse sequence of the quantum radar experiment. The phase difference ϕ and delay τ_d between pump pulses, as well as the gain G of the second pump pulse can all be tuned. The dashed box represents the measurement by the qubit of the effective photon number ν in the idler resonator for quantum radar but can be replaced by other photocounting schemes for calibration purposes (Supplementary Information Section 2).
with \(\langle N^{\text{yes/no}}\rangle\) and \(\sigma(N^{\text{yes/no}})\) the average effective photon number and its standard deviation when the target is present or absent. For each value of the signal \(N_S\) and noise \(N_N\) we numerically fine tune the values \(v_n\) to maximize the error exponent.

Tuning up the quantum radar

The exploitation of quantum correlations between signal and idler also requires finely tuning the pump pulse that recombines these modes. In contrast to the pump amplitude, the delay \(\tau_d\) and phase offset \(\phi_d\) between the pump pulses (Fig. 1c) can be chosen by operating the radar without added noise (\(N_N = 0\), and at the largest signal setting (\(N_S = 0.1\)). With the target present, we measure the average number of photons in the idler mode after the first squeezing operation \(N_{I,1\text{,yes}}\) and the second phase \(N_{I,2\text{,yes}}\) (Supplementary Information Section 2).

Figure 2a shows the cosine dependence of the ratio \(N_{I,2\text{,yes}}/N_{I,1\text{,yes}}\) as a function of the phase difference \(\Delta \phi = \phi_d - \phi_0\) between the two-mode-squeezing operations for a delay \(\tau_d = 86\) ns. The phase \(\phi_0 = -1.898\) corresponding to the maximal signal, depends on the electrical delay of the target and detuning of the pump. For the quantum radar experiment, we operate at \(\Delta \phi = 0\). The cosine dependence originates from an interference. In fact, our experiment implements a new kind of SU(1,1) interferometer\(^{34,40,41}\), where one of the arms that host the signal is tuned to a stationary mode. In this particular case, the asymmetric loss probability \(\kappa\) on one arm prohibits witnessing any remaining entanglement. We optimize \(\tau_d\) at \(\Delta \phi = 0\) by measuring how many extra photons are in the idler resonator after the second squeezing operation when the target changes from absent to present. This idler population increases \(N_{I,2\text{,yes}} - N_{I,2\text{,no}}\) is maximum for \(\tau_{d\text{opt}} = 86\) ns; see Fig. 2b that corresponds to the propagation delay of the signal to and back from the target.

The joint measurement can be further optimized by tuning the amplitude of the second pump, which can be recast as a gain \(G\) of the second two-mode squeezing operation. An expression for the optimal gain \(G\) is known for a given set of \(N_S, N_N\) and \(\kappa\) (ref. 5 and Supplementary Information Section 5), but we choose to empirically tune the gain \(G\) to compensate for the non-idealities of our setup. We set \(N_S\) and \(N_N\) to particular values and measure the error exponent \(\mathcal{E}\) for several values of \(G\). For the settings of Fig. 3, it reaches a maximum \(\mathcal{E} = 2.9(2) \times 10^{-5}\) for a gain of about \(\mathcal{G} = 1.015\), which is close to the prediction by ref. 5 of \(\mathcal{G} = 1.016\).

Quantum advantage and inherent limitations

To compute the quantum advantage \(Q = \mathcal{E}/\mathcal{E}_{\text{cl}}\), we now need to carefully calibrate the three parameters that set \(\mathcal{E}_{\text{cl}}\): the signal photon number \(N_S\), the injected noise photon number \(N_N\), and target reflectivity \(\kappa\). Each parameter is determined during the same experimental run, using a dedicated protocol.

The signal photon number is set by the first squeezing operation, in which the circuit acts as a phase-preserving amplifier of gain \(G_0\). For the settings of Fig. 3, it reaches a maximum \(\mathcal{E} = 3.53(4) \times 10^{-2}\) and \(N_N = 10.8(3)\). Each point is obtained using 15 series of 5 \times 10^5 tries. After each series, \(N_S\) and \(N_N\) are recalibrated. The green dashed line shows the quantum Chernoff bound providing the upper bound on the error exponent of any classical radar under the same conditions. The error bars and the coloured area represent the uncertainties (Supplementary Information Section 6). The inset shows the raw measurements for the highlighted point. For each possible outcome \(m\), the table shows the fraction of occurrences where \(m\) is found with the target being present or not, as well as the four values of \(v\) that are used in equation (1) to reach the highest error exponent. At this point, the quantum advantage is \(Q = 1.2(1)\).

\[N_S = 3.53(4) \times 10^{-2}, N_N = 10.8(3)\]
exponent that can be reached using coherent illumination $\varepsilon_{cl} = 2.1(1) \times 10^{-5}$. This quantum radar thus beats the best possible classical one by a factor $Q = 1.2(1)$, on par with what was achieved in optics. Note that taking into account the non-zero reflectivity when the target is absent would only lead to a slightly better quantum advantage as ε_{cl} would decrease by about 1%. The quantum advantage we observe is obtained for a small signal photon number N_s and a large noise photon number N_n. To determine the domain in the N_s, N_n parameter space where a quantum advantage can be observed, we reproduce this measurement for various values of N_s and N_n, and identify the maximal quantum advantage Q as a function of receiver gain G, with the results shown in Fig. 4a. As these measurements and their associated calibrations take at least a few hours per point, we explore only a subset of the parameter space. Besides, the error exponent $\varepsilon_Q = kN_s/N_n$ gets smaller and smaller as N_s increases or N_n decreases so that it requires a longer measurement time.

From this measurement it appears that the quantum advantage increases with N_n, as expected. Guha and Erkmen23 also predict that Q increases at low N_n until reaching its maximum values of $Q = 2$. In our experiment, we observe that Q diminishes when N_n becomes too small.

We find that this behaviour originates from the non-zero initial thermal populations N_{th}^{th} and N_{th}^{th} of the signal and idler modes, respectively50. A model (Supplementary Information Section 4) taking N_{th}^{th} and N_{th}^{th} into account and using an idealized version of our photocounting measurement is shown in Fig. 4a and qualitatively reproduces the experimental results in Fig. 4a. However, we note that the model systematically underestimates the measured quantum advantage. While the origin of this discrepancy remains an open question, the modelling of the measurement of the effective photon number ν could be a likely culprit. Note that for this figure, we set N_{th}^{th} to be 2×10^{-2}, which qualitatively reproduces our result better than the most pessimistic value of 5×10^{-4} used in Fig. 3 to demonstrate a quantum advantage. In Fig. 4b, we evaluate this model for different values of N_{th} and reveal how the window of signal photon number that show a quantum advantage $Q > 1$ shrinks, then disappears as N_{th} increases.

We thus find that this thermal population is a major limitation in our experiment, contrary to idler loss. In our case, the latter only lowers the error exponent by $1 - e^{-\varepsilon_f} \approx 2\%$. Conclusion

We have demonstrated an advantage of quantum radar versus classical radar in the microwave domain. The experiment reveals the crucial importance of the purity of the TMSV state used to illuminate the target. Beyond the loss of idler photons, this limitation imposes a stringent upper bound on the idler temperature. The experiment makes clear that using this quantum advantage in practical settings is a tremendous challenge. For instance, strategies that perform non-adaptive separate (where the observables are determined before the experiment) measurements of signal and idler at room temperature and use postprocessing to extract correlations between the two21–24 cannot show a quantum advantage $Q > 1$ (refs. 4, 5). Our work shows how superconducting circuits can provide quantum enhanced sensing in radar. Whereas this exact scenario of quantum radar has limited applications25–31, it paves the way to demonstrations of other protocols measuring the range32 or velocity of a target4. Besides, our joint measurement could be replaced by a measurement of the signal followed by a feedback to the idler, which gives hope for an open air version of the quantum enhanced radar with a room temperature target. Another route consists of realizing a memory for many idler modes, using superconducting cavities3 or spin ensembles46, to go beyond $Q = 2$ (refs. 5, 26). Using quantum correlations for enhanced sensing can also be applied to other research. For dark matter searching, it would be interesting to apply our demonstration to axion detection47. For quantum communications, the quantum radar can be recast as the signalling of a bit of information (target present or not) through a noisy communication channel beyond the classical Shannon limit48–50. Finally, the origin of a quantum advantage without residual entanglement is still a fascinating puzzle worth exploring further51–53.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41567-023-02113-4.

References

1. Knill, E. & Laflamme, R. Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998).
2. Datta, A., Shaji, A. & Caves, C. M. Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 205002 (2008).
3. Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
4. Bradshaw, M. et al. Overarching framework between Gaussian quantum discord and Gaussian quantum illumination. Phys. Rev. A 95, 022333 (2017).
5. Shi, H., Zhang, B. & Zhuang, Q. Fulfilling entanglement’s benefit via converting correlation to coherence. Preprint at https://doi.org/10.48550/arXiv.2207.06609 (2022).
6. Zhang, Z., Mouradian, S., Wong, F. N. C. & Shapiro, J. H. Entanglement-enhanced sensing in a lossy and noisy environment. Phys. Rev. Lett. 114, 110506 (2015).
7. Xu, F. et al. Experimental quantum target detection approaching the fundamental Helstrom limit. Phys. Rev. Lett. 127, 040504 (2021).
8. Barzanjeh, S. et al. Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015).
9. Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photonics 12, 724–733 (2018).
10. Bourassa, J. & Wilson, C. M. Progress toward an all-microwave quantum illumination radar. IEEE Aerosp. Electron. Syst. Mag. 35, 58–69 (2020).
11. Luong, D., Balaji, B., Sandbo Chang, C. W., Ananthapadmanabha Rao, V. M. & Wilson, C. Microwave quantum radar: an experimental validation. In 2018 International Carnahan Conference on Security Technology (ICCAST) 1–5 (IEEE, 2018).

12. Luong, D. et al. Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Trans. Aerosp. Electron. Syst. 56, 2041–2060 (2020).

13. Chang, C. W. S., Vadiraj, A. M., Bourassa, J., Balaji, B. & Wilson, C. M. Quantum-enhanced noise radar. Appl. Phys. Lett. 114, 112601 (2019).

14. Barzanjeh, S., Pirandola, S., Vitali, D. & Fink, J. M. Microwave quantum illumination using a digital receiver. Sci. Adv. 6, 0451 (2020).

15. Livreri, P. et al. Microwave quantum radar using a Josephson traveling wave parametric amplifier. In IEEE Radar Conference (RadarConf22) 1–5 (IEEE, 2022).

16. Hosseiny, S. M., Norouzi, M., Seyed-Yazdi, J. & Ghamat, M. H. Engineered Josephson parametric amplifier in quantum two-modes squeezed radar. Preprint at https://doi.org/10.48550/arXiv.2205.06344 (2022).

17. Shapiro, J. H. The quantum illumination story. IEEE Aerosp. Electron. Syst. Mag. 35, 8–20 (2020).

18. Jonsson, R., Di Candia, R., Ankel, M., Ström, A. & Johansson, G. A comparison between quantum and classical noise radar sources. In 2020 IEEE Radar Conference (RadarConf20) 1–6 (IEEE, 2020).

19. Sorelli, G., Treps, N., Grosshans, F. & Boust, F. Detecting a target with quantum entanglement. IEEE Aerosp. Electron. Syst. Mag. 37, 68–90 (2022).

20. Di Candia, R., Yi ğitler, H., Paraanou, G. S. & Jäntti, R. Two-way coherent quantum communication in the microwave regime. PRX Quantum 2, 020316 (2021).

21. Audenaert, K. M. R. et al. Discriminating states: the quantum Chernoff bound. Phys. Rev. Lett. 98, 160501 (2007).

22. De Palma, G. & Borregaard, J. Minimum error probability of quantum illumination. Phys. Rev. A 98, 012101 (2018).

23. Guha, S. & Erkmen, B. I. Gaussian-state quantum-illumination receivers for target detection. Phys. Rev. A 80, 052310 (2009).

24. Tan, S.-H. et al. Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008).

25. Nair, R. & Gu, M. Fundamental limits of quantum illumination. Optica 7, 771 (2020).

26. Zhuang, Q., Zhang, Z. & Shapiro, J. H. Entanglement-enhanced Neyman Pearson target detection using quantum illumination. J. Opt. Soc. Am. B 34, 1567–1572 (2017).

27. Calsamiglia, J., de Vicente, J. I., Muñoz-Tapia, R. & Bagan, E. Local discrimination of mixed states. Phys. Rev. Lett. 105, 080504 (2010).

28. Sanz, M., Las Heras, U., Garcia-Ripoll, J. J., Solano, E. & Di Candia, R. Quantum estimation methods for quantum illumination. Phys. Rev. Lett. 118, 070803 (2017).

29. Peronnin, T., Marković, D., Ficheux, Q. & Huard, B. Sequential dispersive measurement of a superconducting qubit. Phys. Rev. Lett. 124, 180502 (2020).

30. Dassonneville, R., Assouly, R., Peronnin, T., Rouchon, P. & Huard, B. Number-resolved photocounter for propagating microwave mode. Phys. Rev. Appl. 14, 044022 (2020).

31. Dassonneville, R. et al. Dissipative stabilization of squeezing beyond 3 dB in a microwave mode. PRX Quantum 2, 020323 (2021).

32. Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011).

33. Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2012).

34. Flurin, E., Roch, N., Mallet, F., Devoret, M. H. & Huard, B. Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012).

35. Menzel, E. P. et al. Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012).

36. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

37. Bergeal, N. et al. Analog information processing at the quantum limit with a Josephson ring modulator. Nat. Phys. 6, 296–302 (2010).

38. Roch, N. et al. Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. Phys. Rev. Lett. 108, 147701 (2012).

39. Flurin, E., Roch, N., Pillot, J. D., Mallet, F. & Huard, B. Superconducting quantum node for entanglement and storage of microwaves. Phys. Rev. Lett. 114, 090503 (2015).

40. Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033 (1986).

41. Ou, Z. Y. & Li, X. Quantum SU(1,1) interferometers: basic principles and applications. APL Photonics 5, 080902 (2020).

42. Jonsson, R. & Ankel, M. Quantum radar – what is it good for? In 2021 IEEE Radar Conference (RadarConf21) 1–6 (IEEE, 2021).

43. Zhuang, Q. & Shapiro, J. H. Ultimate accuracy limit of quantum pulse-compression ranging. Phys. Rev. Lett. 128, 010501 (2022).

44. Reichert, M., Di Candia, R., Win, M. Z. & Sanz, M. Quantum-enhanced doppler lidar. npj Quantum Inf. 8, 147 (2022).

45. Chakravarty, S. et al. Seamless high-q microwave cavities for multimode circuit quantum electrodynamics. Phys. Rev. Lett. 127, 107701 (2021).

46. Julsgaard, B., Grezes, C., Bertet, P. & Mølmer, K. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. Phys. Rev. Lett. 110, 250503 (2013).

47. Brady, A. J. et al. Entangled sensor-networks for dark-matter searches. PRX Quantum 3, 030333 (2022).

48. Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002).

49. Hao, S. et al. Entanglement-assisted communication surpassing the ultimate classical capacity. Phys. Rev. Lett. 126, 250501 (2021).

50. Shi, H., Zhang, Z. & Zhuang, Q. Practical route to entanglement-assisted communication over noisy bosonic channels. Phys. Rev. Appl. 13, 034029 (2020).

51. Weedbrook, C., Pirandola, S., Thompson, J., Vedral, V. & Gu, M. How discord underlies the noise resilience of quantum illumination. N. J. Phys. 18, 043027 (2016).

52. Jo, Y. et al. Quantum illumination with asymmetrically squeezed two-mode light. Preprint at https://doi.org/10.48550/arXiv.2103.17006 (2021).

53. Yung, M. H., Meng, F., Zhang, X. M. & Zhao, M. J. One-shot detection limits of quantum illumination with discrete signals. npj Quantum Inf. 6, 75 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2023
Data availability
Data supporting the findings of this article are available at https://doi.org/10.5281/zenodo.7901142. Source data are provided with this paper.

Acknowledgements
This work is part of Quantum Flagship project QMICS that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 820505. We acknowledge the Intelligence Advanced Research Projects Activity and Lincoln Laboratories for providing a Josephson Travelling-Wave Parametric Amplifier. The devices were fabricated in the cleanrooms of ENS de Lyon, Collège de France, ENS Paris, CEA Saclay and Observatoire de Paris. We thank M. Sanz, M. Casariego, J. Govenius, J. Shapiro, P. Rouchon and D. Estève for fruitful discussions.

Author contributions
R.A. performed the experiment and analysed the data. R.D. provided additional support for the experiment and analysis. T.P. fabricated the superconducting circuit and R.A. fabricated the target. R.A., R.D., A.B. and B.H. designed the experiment. B.H. supervised the project. All authors wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41567-023-02113-4.

Correspondence and requests for materials
Correspondence and requests for materials should be addressed to B. Huard.

Peer review information
Nature Physics thanks Maxime Malnou and Quntao Zhuang for their contribution to the peer review of this work.

Reprints and permissions information
Reprints and permissions information is available at www.nature.com/reprints.