RESEARCH ARTICLE

Bursaphelenchus suri n. sp.: A second Bursaphelenchus syconial parasite of figs supports adaptive radiation among section Sycomorus figs

Natsumi Kanzaki1,2,3*, Meike S. Kruger2, Jaco M. Greeff2, Robin M. Giblin-Davis3

1 Kansai Research Centre, Forestry and Forest Products Research Institute, Momoyama, Fushimi, Kyoto, Japan, 2 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa, 3 Department of Entomology and Nematology, Fort Lauderdale Research and Education Centre, University of Florida/IFAS, Davie, FL, United States of America

* nkanzaki@affrc.go.jp

Abstract

The nematode genus Bursaphelenchus is a highly divergent group. This genus mainly consists of mycophagous entomophilic species, but some species have specialized as obligate or facultative plant parasites, facultative insect parasites, or exhibit feeding dimorphism (phenotypic plasticity) leading to mycophagous and predatory forms. In the present study, a new Bursaphelenchus species, B. suri n. sp. was isolated from fresh syconia (figs) of Ficus sur and is described and illustrated based on its typological characters and molecular phylogenetic status. The new species is characterized by its highly derived feeding structures found in obligate plant parasites, lip possessing a labial disc and a long and thick stylet with a long conus and extremely well-developed basal swellings. In addition, slender body of both sexes is characteristic of the species. The new species is phylogenetically and typologically closely related to B. sycophilus, i.e., these two species share the characteristic feeding structures and form a well-supported clade within the B. fungivorus group in the genus. Biologically, these two species are both isolated from fresh figs of the section Sycomorus. However, the new species differs from B. sycophilus by the length of the female post-uterine sac and the shape of the male spicule, i.e., the new species has a long post-uterine sac and spicule condylus without dorsal recurvature. Thus, the new species is the second obligate fig parasite of the genus, and the evolutionary relationship between the B. suri n. sp. and B. sycophilus clade and section Sycomorus figs is hypothesized as an example of adaptive radiation with more species to be discovered.

Introduction

The specific pollination system of figs (Ficus spp.) and fig wasps has been studied as a model system for co-evolution and diversification [1–4]. There, several other invertebrates, e.g., mites and nematodes are involved as phoretic associates and parasites of the wasps, plant (syconia...
tissue) parasites, microbe feeders and predators [5–9]. For example, the nematode genus *Para-
sitodiplogaster* Poinar has been examined as a case study of host-parasite virulence evolution
[5] and *Pristionchus* Kries was revealed as a radiation of nematodes that manifest extreme tro-
phic diversity through divergent developmental phenotypes in section *Sycomorus* figs [10].
After the early reports of fig/fig wasp-associations with nematodes [11, 12], more than ten gen-
era of nematodes have been reported to have specialized associations with the fig pollination
system [9–11, 13–19].

The nematode superfamily Aphelenchoidea is a divergent group in terms of feeding life
history traits and insect (invertebrate) associations. The superfamily is derived from soil-dwell-
ing fungal feeders, and currently contains fungal feeders, plant parasites, insect parasites, and
predators [20–22]. Within this superfamily, there are at least four obligate fig/fig wasp associ-
ated lineages, where the nematodes are carried by fig wasps, and feed on internal syconia tis-
sues of figs [17, 19]. In addition, all four lineages are phylogenetically separable from each other and are sisters to corresponding mycophagous lineages [17, 19], suggesting that these
four clades occurred independently from mycophagous lineages. Interestingly, the ingestive
(stomatal) structure of all four lineages are similar to each other in being specialized for plant-parasitism, i.e., a morphological and functional convergence has occurred [17, 19], and these
lineages could be an exciting system to study adaptive radiation and the origins of nematode
plant parasitism.

In previous studies, Kanzaki et al. [17] and Kruger et al. [23] reported that two species of
the genus *Bursaphelenchus* Fuchs are associated with figs, i.e., *B. sycophilus* from *F. variegata*
(Blume) in Japan [17] and an undescribed *Bursaphelenchus* sp. from *F. sur* Forssk. in South
Africa [23]. The purpose of this study was to describe and illustrate *Bursaphelenchus suri* n. sp.
to elucidate its close relationship with *B. sycophilus* from Japan, which it shares specialized
morphology and biology within *Sycomorus* figs.

Materials and methods

Ethics statement

Specific permissions were not required for the nematodes collected for the present study. The
fields (trees) used for nematode collection were on the grounds of the University of Pretoria
campus. Endangered or protected species were not involved with the present study.

Nematode collection

The procedures for collecting specimens were provided in the previous study [23]. In short,
various-phased syconia of *F. sur* were collected from trees planted on the grounds of the cam-
pus of the University of Pretoria, South Africa (GPS: 25°45′20″ S, 28°13′40″E, 1370 m a.s.l.) in
Nov. 2015, cut into small pieces in distilled water, and nematodes were hand-picked from the
water with a stainless-steel insect pin under a dissecting microscope.

Collected nematodes were morphologically studied for genus or family-level identification.
Some specimens were heat-killed at 55°C for one min. and fixed in TAF (2.0% triethanol-
mine, 7.0% formalin, 91% distilled water) for morphological vouchers, while the others were
fixed in DESS [24] for molecular profiles.

Morphological observation

The TAF-fixed materials were processed to glycerin and mounted according to the modified
Seinhorst method [25] and the Maeseneer and d’Herde method [26], respectively. The
mounted materials were observed under a light microscope (Eclipse 80i, Nikon).
Morphological drawings and morphometric analyses were conducted using a drawing tube attached to the microscope. Photomicrographs were taken using a digital camera system (MC170 HD, Leica). All drawings and micrographs were edited to construct figures using Photoshop 2020 (Adobe).

Molecular profiles and phylogeny
The molecular sequences of ca 1.7 kb of the small subunit (SSU) and ca 0.7 kb of the D2-D3 expansion segments of the large subunit (D2-D3 LSU) ribosomal RNA genes and ca 0.6 kb of mitochondrial cytochrome oxidase subunit I (mtDNA) were determined and deposited to the GenBank database in the previous study [23]. Briefly, DESS-fixed nematodes were rehydrated, observed under the microscope for typological identification, and individually transferred to nematode digestion buffer [27, 28]. The nematodes were digested at 55˚C for 30 min. and used for PCR template to determine the sequences according to the methodologies of Ye et al. [29] and Kanzaki and Futai [30].

For the phylogenetic analysis, compared sequences were selected according to the results of a BLAST homology search and previous studies [31, 32], i.e., because the BLAST search suggested that the new species of nematode was closest to *B. sycophilus* Kanzaki, Tanaka, Giblin-Davis & Davies, and belonged to the *fungivorus* group of the genus, those nematode species belonging to the *fungivorus* group and several other *Bursaphelenchus*, *Parasitaphelenchus* Fuchs, *Ruehmapelenchus* Goodey and *Sheraphelenchus* Nickle species belonging to other parasitaphelenchid clades were used for the Bayesian phylogenetic analyses based on SSU and D2-D3 LSU.

The compared sequences were aligned separately using MAFFT (available online at http://mafft.cbrc.jp/alignment/server/) [33, 34], and the base substitution model was determined using MEGA7 [35] under the Akaike information criterion (AIC) for model selection. Bayesian analysis was performed separately to confirm the tree topology of each gene using MrBayes 3.2 [36, 37]; four chains were run for 4×10^6 generations. Markov chains were sampled at intervals of 100 generations [38]. Two independent runs were performed, and, after confirming the convergence of runs and discarding the first 2×10^6 generations as burn-in, the remaining topologies were used to generate a 50% majority-rule consensus tree.

Nomenclatural acts
The electronic edition of this article conforms to the requirements of the amended International Code of Zoological Nomenclature, and hence the new names contained herein are available under that Code from the electronic edition of this article. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix "http://zoobank.org/". The LSID for this publication is: urn:lsid:zoobank.org:pub:011FAF51-3B7C-4D4C-9228-CF0DC12B164D. The electronic edition of this work was published in a journal with an ISSN, and has been archived and is available from the following digital repositories: PubMed Central and LOCKSS.

Results
Phylogenetic status
Bursaphelenchus suri n. sp. belongs to subgroup 1 of the *fungivorus* group sensu Kanzaki et al. [31], and is phylogenetically closest to *B. sycophilus*, the other fig-associated species of the genus (Figs 1 and 2). These two species formed a maximally supported clade within the group.
A new syconial parasite nematode, *Bursaphelenchus suri* n. sp. from South Africa

Taxonomic description

Bursaphelenchus suri Kanzaki, Kruger, Greeff & Giblin-Davis n. sp. urn:lsid:zoobank.org:act:7A4B50E1-451A-4A73-9034-0106BD144756 (Figs 3–5).

Description. According to the journal’s requirement, a short description of the comparative diagnostic characters is given here. The typical morphologies for the genus and species group appear in the short description are provided in the previous species descriptions [16, 31, 32]. A detailed typological description is given in S1 Text.
Adult. Relatively large and slender species of the genus. Body shape and cuticle structures are typical to the genus, with four-lined lateral field, but the structure is vague, and internal lines are difficult to observe. Lip with six equal-sized sectors, roundish rectangular to triangular in lateral view. A labial disc present at the anterior end, and its edge appears as two short projections in lateral view. Stylet with narrow lumen separated into a long conus and a shaft with clear, very well-developed and somewhat tear-drop-shaped basal swellings. Procorpus with clear procorpal tube, about two stylet lengths long, metacorpus (= median bulb) well-developed, and pharyngo-intestinal junction structures are typical to the genus. Dorsal

Fig 2. Bayesian tree inferred from D2-D3 LSU under GTR+G+I model. For model selection, AIC = 24371.263; lnL = -12088.342. Analytical parameters are: freqA = 0.21, freqC = 0.19, freqG = 0.32, freqT = 0.28; R(a) = 0.17, R(b) = 1.68, R(c) = 0.53, R(d) = 0.34, R(e) = 3.05, R(f) = 1.00; Pinva = 0.32; Shape = 0.88. Posterior probability values exceeding 50% are given on appropriate clades. The type locality of each species marked with an asterisk suggests that the material was isolated from wooden packing material imported from that country.

https://doi.org/10.1371/journal.pone.0265339.g002
pharyngeal gland ca 7–10 metacorpal lengths long. Nerve ring at about one stylet length (about 1.5 metacorpal lengths) posterior to metacorpus. Hemizonid about 1.5 stylet length (about 2 metacorpal lengths) posterior to metacorpus. Secretory-excretory pore at immediately posterior or almost same level of hemizonid.
Male. Body and gonadal structure are typical to the genus. Anterior end of testis outstretched (8 out of 9 type specimens) or reflexed (1 out of 9). Spermatocytes arranged in multiple (3–5) rows. Spicules typical for the *fungivorus* group of the genus. Gubernaculum absent. Tail smoothly tapering in anterior 2/3, and distal 1/3 narrowing abruptly. Bursal flap conspicuous, an oval shape with a triangular projection at the posterior end. Three pairs of genital papillae present, but ventral precloacal papilla (P1) which is present in most other parasitaphe-lenchid nematodes not observed in light microscope, possibly vestigial.

Female. Structure and position of reproductive tract typical to the genus. A pair of three-celled structures usually found in the genus was not confirmed, possibly because of material condition, but this region was somewhat sclerotized. Vulva without any flap apparatus. Post-uterine sac long, 6.3–9.7 vulval body diam. long, extending for almost half or more (47–73%) of vulva to anus distance. Tail slender, 5.6–10.7 anal body diam. long, elongate conoid in shape, smoothly tapering to pointed terminus.

Morphometrics. Morphometric values are summarized in Table 1.
Type material. Holotype male (Collection accession number: 51322), eight paratype males (51323–51330), and ten paratype females (51331–51340) deposited in the National Collection of Nematodes (NCN) at the Nematology Unit, Biosystematics, ARC-Plant Health and Protection, Roodeplaat, Pretoria.

Type habitat and locality. The type material was obtained from a syconium of *Ficus sur* growing on the campus of the University of Pretoria, Pretoria, South Africa (GPS: 25˚45'20" S, 28˚13'40"E, 1370 m a.s.l.) in November 2015.

Diagnosis and relationship. In addition to generic characters, *Bursaphelenchus suri* n. sp. is characterized by its lip structure, possessing a labial disc; long stylet with long conus occupying more than half of the total stylet length and large basal swellings; four-lined inconspicuous lateral field, male spicule with slightly dorsally truncate and roundish-squared condyles, dorsal and ventral limbs and membrane-like part between the limbs; bursal flap with a conspicuous...
Based on its lip and stylet morphology and biology, i.e., association with a section Sycomorus fig, *B. suri* n. sp. is obviously close to *B. sycophilus*, i.e., forming a well-supported clade with the other fig-syconia-parasite. The phylogenetic status within the group corroborates their typological and biological similarities (Figs 1–5) \[17, 23\]. However, the new species can be distinguished from *B. sycophilus* by typological differences in adult morphology, namely the post-uterine sac length in females (6–10 times vulval body diameter, extending for almost half

Table 1. Morphometrics of type specimens of *Bursaphelenchus suri* n. sp. All measurements are in μm and in the form: mean ± standard deviation (range).

	Holotype	Male	Paratypes	Female	Paratypes
n	1	1	8	10	
L	1030	969 ± 95 (833–1096)	1211 ± 177 (950–1629)		
a	60.0	56.5 ± 4.6 (50.5–61.8)	59.2 ± 6.1 (51.1–69.1)		
b	11.9	11.6 ± 1.0 (10.1–12.9)	14.8 ± 2.4 (11.5–20.7)		
c	29.6	28.0 ± 1.8 (25.4–31.4)	13.3 ± 0.8 (11.8–14.7)		
c'	2.1	2.2 ± 0.2 (1.8–2.6)	7.5 ± 1.4 (5.6–10.7)		
T or V	72.4	69.4 ± 2.6 (67–73)	72.7 ± 1.7 (70–75)		
M	52.0	54.0 ± 2.7 (50.0–58.6)	53.5 ± 1.7 (51.4–56.8)		
Maximum body diam.	17.2	17.2 ± 1.8 (15.2–21.7)	20.5 ± 2.2 (17.9–25.0)		
Lip diam.	6.8	6.7 ± 0.2 (6.4–7.1)	6.9 ± 0.3 (6.4–7.1)		
Lip height	3.6	3.3 ± 0.4 (2.9–3.6)	3.5 ± 0.4 (2.9–4.3)		
Lip height/diam.	1.9	2.1 ± 0.2 (1.9–2.4)	2.0 ± 0.2 (1.7–2.3)		
Stylet conus	13.0	13.6 ± 0.8 (12.9–15.0)	13.6 ± 1.0 (11.4–15.0)		
Stylet length	25.0	25.2 ± 1.4 (22.9–27.1)	25.4 ± 1.5 (21.4–26.4)		
Metacorpus diam.	9.3	9.6 ± 0.5 (9.3–10.7)	10.5 ± 0.6 (10.0–11.8)		
Metacorpus length	15.7	16.2 ± 0.9 (15.0–17.9)	16.8 ± 0.8 (15.7–18.6)		
Metacorpus length/diam. ratio	1.7	1.7 ± 0.1 (1.5–1.9)	1.6 ± 0.1 (1.4–1.9)		
Nerve ring from anterior end	108	104 ± 3.4 (100–108)	102 ± 4.2 (94–109)		
Relative position of nerve ring *	1.4	1.3 ± 0.2 (1.0–1.5)	1.2 ± 0.2 (1.0–1.5)		
Hemizonid from anterior end	113	109 ± 4.4 (103–114)	112 ± 5.7 (100–119)		
Relative position of hemizonid*	1.7	1.6 ± 0.3 (1.1–2.0)	1.8 ± 0.3 (1.1–2.3)		
Secretory-excretory pore from anterior end	114	111 ± 4.6 (104–116)	113 ± 5.6 (101–120)		
Relative position of secretory-excretory pore*	1.8	1.7 ± 0.3 (1.2–2.1)	1.8 ± 0.3 (1.1–2.4)		
Testis or ovary length	746	673 ± 81 (557–779)	613 ± 69 (457–696)		
Length of reflected part of gonad	0	41 (n = 1)	0		
Cloacal or anal body diam.	16.7	16.1 ± 1.1 (14.6–18.2)	12.2 ± 0.7 (11.4–13.2)		
Tail length	35	35 ± 2.2 (32–39)	92 ± 18 (66–138)		
Spicule (chord)	14.6	14.9 ± 0.6 (14.1–15.7)	-		
Spicule (curved along dorsal limb)	17.6	17.2 ± 0.4 (16.7–17.7)	-		
Vulval body diam.	-	-	19.1 ± 1.6 (17.1–23.2)		
Vulva-anus distance	-	-	240 ± 44 (178–330)		
Post-uterine sac (PUS) length	-	-	142 ± 18 (124–187)		
PUS % to vulva-anus distance	-	-	60.0 ± 8.1 (47.2–73.4)		
PUS / vulval body diam.	-	-	± 1.0 (6.3–9.7)		

a Calculated with a formula: Distance from posterior end of metacorpus to each organ (nerve ring, hemizonid, or secretory-excretory pore) / metacorpal length.
or more (47–73%) of the vulva to anus distance in *B. suri* n. sp vs 3–5 times vulval body diameter, extending less than half (40–48%) of the vulva to anus distance in *B. sycophilus* and condy-
lus shape in male spicules (slightly dorsally truncate and roundish-squared in *B. suri* n. sp vs strongly dorsally arcuate in *B. sycophilus*).

Bursaphelenchus maxbassiensis (Massey) Baujard also shares a modification of lip structure and stylet with long conus and large basal swellings with the two fig-parasites [16, 17, 39, 40]. However, *B. suri* n. sp. is distinguished from *B. maxbassiensis* by its lip shape, roundish square in lateral view with a labial disc vs laterally expanded to form an umbrella-like shape, and the labial disc was not observed; position of secretory-excretory pore, posterior vs anterior to metacorpus; male spicule morphology, with slightly dorsally truncate and roundish-squared condylus and relatively clear dorsal and ventral limbs vs dorsally recurved and pointed condylus and without clear ventral limb; male bursal flap shape, with pointed vs rounded tip; female tail shape long vs short conoid [16, 39].

Discussion

Biological characters of the *B. fungivorus* group

The new species and its closest relative, *B. sycophilus* belong to subgroup 1 of the *fungivorus* group of the genus [31]. Although most *Bursaphelenchus* spp. are generally associated with wood-boring beetles, particularly bark beetles that inhabit the above ground parts of dead trees [20, 41–43], the *fungivorus* group contains several soil-inhabiting species (*B. hunti* (Steiner) Giblin & Kaya, *B. fungivorus* Franklin & Hooper, *B. gonzaelezi* Loof, *B. seani* Giblin & Kaya and *B. rockyi* Wang, Fang, Maria, Gu & Ge) [44–48], and their insect associations are rather variable compared with other intrageneric groups, e.g., soil-dwelling bees (*B. seani*) [47], a stag beetle (*B. tadamiensis* Kanzaki, Taki, Masuya & Okabe) [49], ambrosia beetles (*B. kiyoharai* Kanzaki, Maehara, Aikawa, Masuya & Giblin-Davis and *B. penai* Kanzaki, Giblin-Davis, Carrillo, Duncan & Gonzalez) [50, 51], and fig wasps (*B. sycophilus* and *B. suri* n. sp.) [17, 23]. In addition to the loss of the bursal flap in *B. kiyoharai* and *B. penai*, *B. kiyoharai*, *B. penai*, *B. sycophilus* and *B. suri* n. sp. have also lost (or possess vestigial) a P1 genital papilla in males [50, 51]. Considering the central phylogenetic placement within the genus [42, 43], the loss of a bursal flap and P1 papilla among typical *Bursaphelenchus* species (with a plesiomorphic P1 papilla and bursal flap) supports some genetic plasticity in the genus and the group.

Phylogenetically, the two fig-associates were sister to a clade containing *B. braaschae* Gu & Wang, *B. tadamiensis* and *B. willibaldi* Schönfeld, Braasch & Burgermeister (Fig 1). Within these three species, *B. tadamiensis* has been isolated from a stag beetle collected in Fukushima, Japan, i.e., the species inhabits the decaying wood of a broad-leaved tree [49], but the biological characters of the other two species are unknown because they were isolated from wood packing materials [52, 53]. Currently, we do not have a clear understanding of the evolutionary history of fig-associated *Bursaphelenchus*, e.g., how their niche and feeding preferences evolved. Although it seems likely that it involved an early introduction of a *fungivorus* group shared ancestor into a sycone of an ancestor fig of section *Sycomorus* by another insect vector with a host switch to fig wasps and a subsequent adaptive radiation involving the evolution from mycophagy to plant-parasitism. The genetic distances within the clade of fig-associates (*fungivorus* subgroup 1) and the nearest relatives of *fungivorus* subgroups 2 and 3 have relatively long branch lengths (Fig 1). This is somewhat reminiscent of another clade currently placed within a large *Bursaphelenchus* clade based upon molecular phylogenetic analysis. *Ruehmaphelenchus* appears to be associated and radiating chiefly with ambrosia beetles [54]. Thus, further survey work is justified for the 14 species of figs in the subsection *Sycomorus* and six species of the subsection *Neomorphe* in the subgenus and section of *Sycomorus* [55] (https://www.figweb.
are filled with liquid, while others are not [55]. In fact, these lineages are crawling. Sycomorus have rather stout bodies [61–63]. Considering their host/habitat fig species, the figs of section to the tendency in Diplogastridae, where swimmers have long and slender bodies, (swimming) in the cavity of figs filled with liquid during the interfloral phase [10, 62]. Similar the other non-

and the fig-associated clade of Bursaphelenchus nov & Sobolev, have slender bodies [60]. Interestingly, associated lineages, several aquatic lineages, e.g., the aquatic group of Schistonchus Cobb, Ficophagus Davies & Bartholomaeus and Martininema Davies & Bartholomaeus [19], but not in regular fungal feeders [20, 22]. The lip structure and stylet morphology are tightly related to their feeding habits, and the structures are hypothesized to be adapted to plant parasitism, where the nematodes penetrate host epidermal cells, which are physically harder than fungal hyphae. However, because the fig-associated species have not adapted to plant parasitism, where the nematodes penetrate host epidermal cells, which are physically harder than fungal hyphae. However, because the fig-associated species have not been cultured successfully, the usage of their lips and stylets have not been observed. Further efforts to collect close relatives of fig-associated Bursaphelenchus followed by detailed biological and genetic analyses will help elucidate the evolutionary history of these highly derived species.

Some morphological characteristics of the new species and B. sycophilus. In addition to its fig association, B. suri n. sp. shares several important characters with B. sycophilus. Particularly, the presence of a labial disc, long conus and extremely well-developed basal swellings of the stylet, and slender body are highly characteristic.

Within the superfamily Aphelenchoidea, the labial disc has been confirmed in several Ruehmpaphelenchus and Aphelenchoides Fischer species (fungal feeders) [56, 57], Anomycus xenurus Allen (hypothesized to be a predator) [58, 59], and some species of the fig-associated genera, Schistonchus Cobb, Ficophagus Davies & Bartholomaeus and Martininema Davies & Bartholomaeus [19], but not in regular fungal feeders [20, 22]. The lip structure and stylet morphology are tightly related to their feeding habits, and the structures are hypothesized to be adapted to plant parasitism, where the nematodes penetrate host epidermal cells, which are physically harder than fungal hyphae. However, because the fig-associated species have not been cultured successfully, the usage of their lips and stylets have not been observed. Further culturing attempts are necessary for these species and also for the confirmation of plant parasitism within Ruehmpaphelenchus spp., which has a typical fungal feeders’ stylet.

The slender body may be an adaptation for B. suri n. sp. and B. sycophilus to their habitat inside section Sycomorus figs. In the family Diplogastridae, which also contains several fig-associated lineages, several aquatic lineages, e.g., the aquatic group of Alloidiplagaster Paramonov & Sobolev, have slender bodies [60]. Interestingly, Teratodiplagaster Kanzaki, Giblin-Davis, Davies, Ye, Center & Thomas and the fig-associated clade of Pristionchus sharing Sycomorus figs with B. sycophilus and B. suri n. sp. also have long and slender bodies, while most of the other non-Sycomorus fig-associates e.g., Parasitodiplagaster and Caenorhabditis Osche have rather stout bodies [61–63]. Considering their host/habitat fig species, the figs of section Sycomorus are filled with liquid, while others are not [55]. In fact, these lineages are crawling (swimming) in the cavity of figs filled with liquid during the interfloral phase [10, 62]. Similar to the tendency in Diplogastridae, where swimmers have long and slender bodies, B. suri n. sp. and B. sycophilus are considered to inhabit the cavity of the figs filled by the liquid, feeding on the internal surface tissue of figs. Contrastingly, the Ficophagus sp. sharing the same fig with B.
suri n. sp. has a stouter body [23], and it is assumed to be a more sedentary species inhabiting the fig tissue. Thus, although both species are plant parasites and feed on fig tissue, their niches may be segregated within the fig.

Remarks on future studies. The section Sycomorus fig-associated Pristionchus spp. manifest feeding polymorphism to occupy a variety of niches according to the age of the figs [10]. Examination of the syconial ecology of section Sycomorus figs with different nematode faunal components could help elucidate how different species utilize and compete for different temporal and spatial resources. Such specialization could explain how the clade-specific radiations of certain nematode groups, such as Pristionchus, Teratodiplogaster, and Bursaphelenchus was triggered.

The tripartite relationship among fig, fig wasp, and nematodes is an intriguing system for the study of evolutionary biology. In addition, microbes and other invertebrates, e.g., mites, are involved in the system. However, most studies have been conducted as field surveys because of difficulties in the establishment of cultured materials for experimental research. To examine the system in more detail, laboratory strains will be a big advance. Of the animal interactants, nematodes are most predisposed to being cultured in the laboratory, e.g., Caenorhabditis inopinata can be cultured, and utilized as a satellite model system [9]. Further attempts at culturing fig-associated nematodes, including Bursaphelenchus species, should be undertaken to allow for more extensive studies.

Supporting information

S1 Text. Typological description of Bursaphelenchus suri n. sp. in traditional telegraphic style.

(DOCX)

Acknowledgments

The authors sincerely thank Dr. Kerrie A. Davies, University of Adelaide, for her mentorship of M.S.K. concerning nematode taxonomy, morphology, and scientific illustration and her friendship and collaboration on many nematode adventures with N.K. and R.G-D. The authors are grateful to the University of Pretoria for a Postgraduate Study Abroad Bursary and international student registration fee award that allowed M.S.K. to learn from her co-authors in person.

Author Contributions

Conceptualization: Natsumi Kanzaki, Meike S. Kruger, Robin M. Giblin-Davis.
Data curation: Natsumi Kanzaki, Meike S. Kruger.
Formal analysis: Natsumi Kanzaki, Meike S. Kruger.
Funding acquisition: Natsumi Kanzaki, Jaco M. Greeff.
Investigation: Natsumi Kanzaki, Meike S. Kruger.
Methodology: Natsumi Kanzaki, Meike S. Kruger, Jaco M. Greeff, Robin M. Giblin-Davis.
Project administration: Natsumi Kanzaki, Jaco M. Greeff, Robin M. Giblin-Davis.
Resources: Natsumi Kanzaki, Meike S. Kruger, Jaco M. Greeff, Robin M. Giblin-Davis.
Supervision: Natsumi Kanzaki, Jaco M. Greeff, Robin M. Giblin-Davis.
Validation: Natsumi Kanzaki, Meike S. Kruger, Jaco M. Greeff, Robin M. Giblin-Davis.
Visualization: Natsumi Kanzaki, Meike S. Kruger.

Writing – original draft: Natsumi Kanzaki, Robin M. Giblin-Davis.

Writing – review & editing: Natsumi Kanzaki, Meike S. Kruger, Jaco M. Greeff, Robin M. Giblin-Davis.

References

1. Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA. Cryptic species of fig-pollinating wasps: Implications for the evolution of the fig–wasp mutualism, sex allocation, and precision of adaptation. Proc Nat Acad Sci USA. 2003; 100:5867–5872. https://doi.org/10.1073/pnas.0930903100 PMID: 12714682

2. Machado CA, Robbins N, Gilbert MTP, Herre EA. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Nat Acad Sci USA. 2005; 102:6558–6565. https://doi.org/10.1073/pnas.0501840102 PMID: 15851680

3. Herre EA, Jandér KC, Machado CA. Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Ann Rev Ecol Evol Syst. 2008; 39:439–458. https://doi.org/10.1146/annurev.ecolsys.37.091305.11023

4. Wang G, Zhang X, Herre EA, McKey D, Machado CA, et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat Comm. 2021; 12:718. https://doi.org/10.1038/s41467-021-20957-3 PMID: 33531484

5. Herre EA. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 1993; 259:1442–1445. https://doi.org/10.1126/science.259.5100.1442 PMID: 17801279

6. Herre EA. Factors affecting the evolution of virulence: nematode parasites of fig wasps as a case study. Parasitology 1995; 111:S179–S191. https://doi.org/10.1017/S0031182000075880

7. Krishnan A, Muralidharan S, Sharma L, Borges RM. A hitchhiker’s guide to a crowded syconium: how do fig nematodes find the right ride? Funct Ecol. 2010; 24:741–749. https://doi.org/10.1111/j.1365-2435.2010.01696.x

8. Jauharlina J, Lindquist EE, Quinnell RJ, Robertson HG, Compton SG. Fig wasps as vectors of mites and nematodes. Afr Entomol. 2012; 20:101–110. https://doi.org/10.4001/003.020.0113

9. Kanzaki N, Tsai IJ, Tanaka R, Hunt VL, Liu D, et al. Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat Comm. 2018; 9:3216. https://doi.org/10.1038/s41467-018-05712-5 PMID: 30097582

10. Susoy V, Herrmann M, Kanzaki N, Kruger M, Nguyen CN, Rödel sperger C, et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci Adv. 2016; 2:e1501031. https://doi.org/10.1126/sciadv.1501031 PMID: 26824073

11. Gasparriini G. Sulla maturazione e la qualità dei fichi dei contorni di Napoli. Atti della Accademia Pontaniana 1864; 9:99–118.

12. Martin GC, Owen AM, Way JI. Nematodes, figs and wasps. J Nematol. 1973; 5:77. PMID: 19319308

13. Cobb NA. Note on a new nema, Aphelenchus retusus, with a proposed division of Aphelenchus into three subgenera. J Parasitol. 1927; 14:57–58. https://doi.org/10.2307/3271404

14. Poinar GO. Parasitodiplogaster sycophilon gen. n., sp. n. (Diplogasteridae: Nematoda), a parasite of Elisabethella stuckenbergi Grandi (Agaonidae: Hymenoptera) in Rhodesia. Proc K Ned Akad Wet C. 1979; 82:375–381.

15. Vovlas N, Troccoli A, Noort SV, Van den Berg E. Schistonchus africanus n.sp. (Aphelenchida: Aphelenchoi dioidea) associated with Ficus thonningii (Moraceae) and its pollinator wasp Elisabethella stuckenber gi (Chalcidoidea: Agaonidae). J Nematol. 1998; 30:404–410. PMID: 19274232

16. Kanzaki N, Giblin-Davis RM, Center BJ. Redescription of four North American Bursaphelenchus species from Massay’s type material. Nematology 2009; 11:129–150. https://doi.org/10.1163/156854108X398480

17. Kanzaki N, Tanaka R, Giblin-Davis RM, Davies K. New plant-parasitic nematode from the mostly mycoparasitic genus Bursaphelenchus discovered inside figs in Japan. PLoS ONE 2014; 9:e99241. https://doi.org/10.1371/journal.pone.0099241 PMID: 24940595

18. Davies KA, Ye W, Giblin-Davis RM, Thomas WK. Ficotylus congestae gen. n., sp. n. (Anguinae), from Ficus congesta (Moraceae) sycones in Australia. Nematology 2009; 11:63–75. https://doi.org/10.1163/156854108X398426
19. Davies KA, Bartholomaeus F, Kanzaki N, Ye W, Giblin-Davis RM. A review of the taxonomy, phylogeny, distribution and co-evolution of Schistonchus (Nematoda: Aphelenchoidea) and proposal of Ficophagus n. gen. and Martininema n. gen. Nematology 2015; 17:761–829. https://doi.org/10.1163/15685411-00002907

20. Hunt DJ. Aphelenchina, Longidoridae and Trichodoridae: their systematics and bionomics. Wallingford, CABI Publishing; 1993.

21. Hunt DJ. A checklist of the Aphelenchoidea (Nematoda: Tylenchina). J Nematode Morph Syst. 2008; 10(2007):99–135.

22. Kanzaki N, Giblin-Davis RM. Aphelenchoidea. In: Manzanilla-López RH, Marba’n-Mendoza N, editors. Practical plant nematology. Jalisco: Colegio de Post-graduados and Mundi-Prensa, Biblioteca Básica de Agricultura; 2012. 161–208.

23. Kruger MS, Kanakia N, Giblin-Davis RM, Greef JM. Molecular diversity and relationships of fig associated nematodes from South Africa. PLoS ONE 2021; 16: e0255451. https://doi.org/10.1371/journal.pone.0255451 PMID: 34375357

24. Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Appl Entomol Zool. 2012; 47:291–294. https://doi.org/10.1007/s13355-012-0115-9

25. Minagawa N, Mizukubo T. A simplified procedure of transferring nematodes to glycerol for permanent mounts. Jpn J Nematol. 1994; 24:75. https://doi.org/10.3725/jjn1993.24.2_75

26. Hooper DJ. Handling, fixing, staining and mounting nematodes. In: Southey JF. Editor, Laboratory methods for work with plant and soil nematodes. London: Her Majesty’s Stationery Office; 1986. pp. 59–80.

27. Kikuchi T, Aikawa T, Oeda Y, Karim N, Kanazaki N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification (LAMP). Phytopathology 2009; 99:1365–1369. https://doi.org/10.1094/PHYTO-99-12-1365 PMID: 19900002

28. Tanaka R, Kikuchi T, Aikawa T, Kanazaki N. Simple and quick methods for nematode DNA preparation. Appl Entomol Zool. 2012; 47:291–294. https://doi.org/10.1007/s13355-012-0115-9

29. Ye W, Giblin-Davis RM, Braasch H, Morris K, Thomas WK. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchoidea) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol Phylogenet Evol. 2007; 43:1185–1197. https://doi.org/10.1016/j.ympev.2007.02.006 PMID: 17433722

30. Kanazaki N, Futai K. A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within xylophilus group. Nematology 2002; 4:35–41. https://doi.org/10.1163/156854102760082186

31. Kanazaki N, Aikawa T, Maehara N, Thu PQ. Bursaphelenchus kesiyae n. sp. (Nematoda: Aphelenchoidea), isolated from dead wood of Pinus kesiya Royle ex Gordon (Pinaceae) from Vietnam with proposal of new subgroups in the B. fungivorus group. Nematology 2016; 18:133–146. https://doi.org/10.1163/15685411-00002949

32. Kanazaki N, Ekino T, Ide T, Masuya H, Degawa Y. Three new species of parasitaphelenchids, Parasitaphelenchus frontalis n. sp., P. costati n. sp., and Bursaphelenchus hisutae n. sp. (Nematoda: Aphelenchoidea), isolated from bark beetles from Japan. Nematology 2018; 20:957–1005. https://doi.org/10.1163/15685411-00003189

33. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30:3059–3066. https://doi.org/10.1093/nar/gkd436 PMID: 12136088

34. Kuraku S, Zmasek CM, Nishimura O, Katoh K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 2013; 41:W22–28. https://doi.org/10.1093/nar/gkt389 PMID: 23677614

35. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33:1870–1874. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

36. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754 PMID: 11524833

37. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61:539–542. https://doi.org/10.1093/sysbio/sys029 PMID: 22357727

38. Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol. 1999; 16:750–759. https://doi.org/10.1093/oxfordjournals.molbev.a026160
39. Massey CL. *Omnemea maxbassiensis* n. gen., n. sp. (Nematoda: Aplelenchoiidae) from galleries of the bark beetle *Lepersinus californicus* Sw. (Coleoptera: Scolytidae) in North Dakota. J Nematol. 1971; 3:289–291. PMID: 19322384

40. Massey CL. Biology and taxonomy of nematode parasites and associates of bark beetles in the United States. Agriculture Handbook No. 446. Washington DC: USDA, Forest Service; 1974.

41. Ryss A, Vieira P, Mota MM, Kulinich O. A synopsis of the genus *Bursaphelenchus* Fuchs, 1937 (Aphelenchida: Parasitaphelenchidae) with keys to species. Nematology 2005; 7:393–458. https://doi.org/10.1163/15685410577435581

42. Ryss AY, Subbotin SA. Coevolution of wood-inhabiting nematodes of the genus *Bursaphelenchus* Fuchs, 1937 with their insect vectors and plant hosts. Zhurnal Obschei Biologii 2017; 78:32–61. PMID: 30024676

43. Kanzaki N, Giblin-Davis RM. Diversity and plant pathogenicity of *Bursaphelenchus* and related nematodes in relation to their vector biomics. Cur For Rep. 2018; 4:85–100. https://doi.org/10.1007/s40725-018-0074-7

44. Loof PAA. Free-living and plant parasitic nematodes from Venezuela. Nematologia 1964; 13:320–321. https://doi.org/10.1163/187529267X00229

45. Giblin R.M. & Kaya H.K. (1983).

46. Franklin MT, Hooper DJ. *Bursaphelenchus fungivorus* n. sp. (Nematoda: Aplelenchoiidae) from rotting gardenia buds infected with *Botrytis cinerea* Pers. ex Fr. Nematologica 1962; 8:136–142. https://doi.org/10.1163/1163/187529262X00350

47. Kanzaki N, Giblin-Davis RM, Gonzalez R, Duncan R, Carrillo D. Description of *Bursaphelenchus* n. sp. (Tylenchida: Aphelenchoidea) isolated from an ambrosia beetle, *Anomyctus xenurus* (Motshulsky), from South Florida. Nematology 2015; 17:639–653. https://doi.org/10.1163/15685411-00002797

48. Wang X, Fang Y, Maria M, Gu J, Ge J. Description of *Bursaphelenchus* n. sp. from peat moss from Russia. Nematology 2019; 21:253–265. https://doi.org/10.1163/15685411-00003211

49. Kanzaki N, Taki H, Masuya H, Okabe K. *Bursaphelenchus* n. sp. (Tylenchida: Aphelenchoidea) with remarks on the taxonomic framework of the Parasitaphelenchinae Rühm, 1956 and Aphelenchoidinae Fuchs, 1937 Nematology 2011; 13:787–804. https://doi.org/10.1163/15685410577435581

50. Kanzaki N, Giblin-Davis RM, Carrillo D, Duncan R, Gonzalez R. *Bursaphelenchus* n. sp. (Nematoda: Aphelenchoidea) from galleries of *Anomyctus xenurus* (Motshulsky), from North Dakota. J Nematol. 2017; 78:32–61. https://doi.org/10.1007/s40725-018-0074-7

51. Kanzaki N, Giblin-Davis RM, Carrillo D, Duncan R, Gonzalez R. *Bursaphelenchus* n. sp. (Nematoda: Aphelenchoidea) found in dunnage from Brandenburg and description of *Bursaphelenchus willibaldi* sp. n. Russ J Nematol. 2006; 14:119–126.

52. Schönfeld U, Braasch H, Burgermeister W. *Bursaphelenchus* spp. (Nematoda: Parasitaphelenchidae) in wood chips from sawmills in Brandenburg and description of *Bursaphelenchus willibaldi* sp. n. Russ J Nematol. 2006; 14:119–126.

53. Gu J, Wang J. Description of *Bursaphelenchus braaschae* sp. n. (Nematoda: Aplelenchoiidae) found in dunnage from Thailand. Russ J Nematol. 2010; 18:59–68.

54. Kanzaki N, Giblin-Davis RM, Gonzalez R, Duncan R, Carrillo D. Description of *Ruehmaphe lenchus* juliuae n. sp. (Tylenchida: Aphelenchoidea) isolated from an ambrosia beetle, *Xylsandrus crassisculus* (Motschulsky), from South Florida. Nematology 2015; 17:639–653. https://doi.org/10.1163/15685411-00002896

55. van Noort S, Rasplus J-Y. Figweb: figs and fig wasps of the world. 2021 [cited 23 May 2021]. Available from: https://www.figweb.org/Figs_and_fig_wasps/index.htm.

56. Kanzaki N. Description of *Ruehmaphe lenchus* fujienisi n. sp. (Tylenchomorpha: Aphelenchoidea) isolated from dead wood of *Quercus crispula* from Yamashiki, Japan. Nematology 2021; 23:in press. https://doi.org/10.1163/15685411-bja10072

57. Hooper DJ, Ibrahim SK. *Aphelenchoidea nechaleos* n. sp. and *A. paranechaleos* n. sp. (Nematoda: Aphelenchoidea) from rice plants. Fundam Appl Nematol. 1994; 17:153–160.

58. Allen MW. 1940. *Anomyctus xenurus*, a new genus and species of Tylenchoidea (Nematoda). Proc Helminthol Soc Wash. 1940; 7:96–98.

59. Hooper DJ, Cooke DA. Some observations on *Anomyctus xenurus*, Allen 1940 Nematologica 1967; 13:320–321. https://doi.org/10.1163/187529267X00229
60. Kanzaki N, Ragsdale EJ, Giblin-Davis RM. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genera of Diplogastridae (Nematoda). Zookeys 2014; 442:17–30. https://doi.org/10.3897/zookeys.442.7459 PMID: 25349487

61. Poinar Jr GO, Herre EA. Speciation and adaptive radiation in the fig wasp nematode Parasitodiplogaster (Diplogasteridae: Rhabditida) in Panama. Rev Nematol. 1991; 14:361–374.

62. Kanzaki N, Giblin-Davis RM, Davies K, Ye W, Center BJ, et al. Teratodiplogaster fignewmani gen. nov., sp. nov. (Nematoda: Diplogastridae) from the syconia of Ficus racemosa in Australia. Zool Sci. 2009; 26:569–578. https://doi.org/10.2108/zsj.26.569 PMID: 19719410

63. Zeng Y, Giblin-Davis RM, Ye W. Two new species of Schistonchus (Nematoda: Aphelenchoidea) associated with Ficus hispida in China. Nematology 2007; 9:169–187. https://doi.org/10.1163/156854107780739135