First insights into genetic diversity and relationships of European taxa of *Solenopsora* (Catillariaceae, Ascomycota) with implications for their delimitation

ANNA GUTTOVÁ1*, JUDITA ZOZOMOVÁ-LIHOVÁ1, EINAR TIMDAL2, JAROMÍR KUČERA1, MAREK SLOVÁK1, KATARÍNA PIKNOVÁ1 and LUCA PAOLI3

1Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia
2Botanical Museum, University of Oslo, Sars' gate 1, N-1162 Oslo, Norway
3Department of Life Science, University of Siena, via Mattioli 4, IT-53100 Siena, Italy

Received 8 November 2013; revised 2 June 2014; accepted for publication 24 July 2014

The lichen genus *Solenopsora* occurs predominantly in temperate and subtropical regions of the world, and the centre of diversity and distribution is in the Mediterranean, Macaronesian, and Madrean floristic regions. Taxonomic treatment of several taxa has varied over time and the concepts lack clarity. Focusing on multilocus sequence data, morphology, anatomy, chemistry, and ecological preferences, the present study investigates European *Solenopsora* taxa to obtain the first insights into their genetic variation and relationships. Our results show discrepancy between the number of currently recognized taxa in Europe and the number of genetic entities identified. We recognize eight species in the genus in Europe: *Solenopsora candicans*, *Solenopsora cesatii* (including *Solenopsora carpatica*), *Solenopsora grisea*, *Solenopsora holophaea*, *Solenopsora liparina*, *Solenopsora marina*, *Solenopsora olivacea*, and *Solenopsora vulturiensis*. We gathered evidence to recognize *S. liparina*, an edaphic vicariant of *S. candicans* confined to ultramafic rocks, as a separate species. We disclosed a previously unknown sister relationship between *S. grisea* and *S. vulturiensis*. Taxonomic synopses, geographical distribution, and an identification key for the treated taxa are provided. Phylogenetic analyses revealed two major lineages among the European *Solenopsora* spp., differentiated by thallus organization, the presence/absence of rhizines on lower side of the thallus, secondary chemistry, and anatomy of upper cortex. The generic circumscription and phylogenetic position, however, appear problematic and additional studies with increased sampling including related genera are needed. © 2014 The Linnean Society of London, *Botanical Journal of the Linnean Society*, 2014, 176, 203–223.

ADDITIONAL KEYWORDS: fungal nonreducing PKS – lichens – nrDNA ITS region – replication licencing factor Mcm7 gene – species tree.

INTRODUCTION

The circumscription of species in lichen-forming fungi has largely been based on morphological and chemical characters. Lichens display few taxonomically useful characters and many of these are widely variable, and the homology of character states within and between systematic groups is difficult to assess (Printzen, 2010). Nevertheless, accurate species delimitation is crucial in biodiversity assessments and conservation biology. Molecular markers provide an invaluable tool for robust species delimitation (Lumbsch & Leavitt, 2011) but, despite advanced methods and employment of genetic data in lichen taxonomy, many lichen-forming families and genera still receive little attention, resulting in conflicting taxonomies or uncertain species circumscriptions.

One of the poorly known lichen genera with conflicting taxonomy is *Solenopsora* A.Massal. It comprises approximately 20 species (Gilbert, Purvis & James, 2009) and predominantly occurs in temperate and subtropical regions of the world, with the exception of South America and polar regions (Ryan & Timdal, 2002). The centre of diversity and distribution is in the Mediterranean, Madrean, and South-West Australian floristic regions (Takhtajan, 1986). Despite having a relatively small genus, its thallus morphology, anatomy, and chemistry are complex.
Thalli can be placodioid, squamulose, effigurate or crustose. The upper cortex consists of an epinecral layer of different thickness and various types of pseudocortex or eucortex. A lower cortex may be present or absent. Lecanorine apothecia with persistent thalline margins or immarginate (pseudobiatiorine) when adult are, depending on the taxon, regularly or rarely present. Taxa with clavate asci lacking an ocular chamber (Catillaria-type), one-septate, hyaline ascospores, and bacilliform, pleurogenous conidia are included in the genus (Ryan & Timdal, 2002). Further characters traditionally used for distinguishing the species are the colour of the thallus (white, pale grey, olive–grey, grey, brown, red–brown), pruina on upper surface (thick, thin, marginal, laminal), and lobe shape (flattened and/or convex). The species reproduce sexually and through vegetative propagules (blastidia, soredia). Secondary metabolites in Solenopora are produced through the polyketide pathway (β-oricinol para-depsides atranorin and brialmontin, β-oricinol depsidones pannarin, and lobaric acid) and mevalonic acid pathways (terpenoid zeorin and β-nopsora are produced through the polyketide pathway (blastidia, soredia). Secondary metabolites in Solenopora are placed in Catillariaeae, a poorly resolved lichen-forming lineage (e.g. rock fences, walls, gravestones) (Van den and serpentine substrates of natural and man-made breccia with low carbonate cement), volcanic (basalt), (Palaeozoic metamorphic rocks, sandstone-quartzite grow on calcareous (limestone, dolomite), siliceous rarelly colonize the bark of trees and shrubs. They several unknown terpenoids) (Ryan & Timdal, 2002). mevalonic acid pathways (terpenoid zeorin and β-nopsora are produced through the polyketide pathway (blastidia, soredia). Secondary metabolites in Solenopora are placed in Catillariaeae, a poorly resolved lichen-forming lineage (Hafellner, 1984; Printzen, 2010; Schmull & Vežda, Solenopora cesatii (A.Massal.) Zahlbr., Solenopora grisea (Bagl.) Kotlov, Solenopora liparina (Nyl.) Zahlbr., Solenopora olivacea (Dufour ex Fr.) Kilias, and Solenopora olivacea (Dufour ex Fr.) Kilias subsp. olbiensis (Nyl.) Clauzade & Cl.Roux, remains ambiguous. The present study addresses the taxon occurring in Europe, where Solenopora species diversity and abundance are particularly important in the Mediterranean and Atlantic regions.

Focusing on multilocus DNA sequence data, morphology, anatomy, chemistry, and ecological preferences, we aim to revise taxonomic positions and relationships between the Solenopora taxon described from Europe and the Canary Islands. We pay special attention to the taxonomically most problematic entities: S. carpatica, S. cesatii, S. grisea, S. liparina, and S. olivacea s.l. (see Supporting information, Table S1). In this regard, we address four specific questions: (1) is there any support for the recognition of S. carpatica as a separate species and do the collections of this taxon, known from the Western Carpathians, the Sudety Mts and the Alpi Bergamasche mountains, represent the same taxon; (2) is S. cesatii a complex of several infraspecific taxa confined to the Mediterranean; (3) is there any justification for classification of S. liparina at species level; and (4) do fertile (subsp. olivacea) and sterile (subsp. olbiensis) variants in S. olivacea represent a species pair?

MATERIAL AND METHODS

TAXON SAMPLING

The distribution ranges of the Solenopora taxa described from Europe and Canary Islands were assessed from herbarium specimens (BG, BP, BR, BRA, CBCFS, GZU, H-NYL, O, PRA, PRC, PRM, SAV, TO, VER, W) and relevant literature sources (see Supporting information, Doc. S1). Based on these data, during 2010–2013, we sampled material representing all but three taxa (see below) reported from Europe. Each taxon was sampled from multiple sites, including type localities when possible (see Fig. 1; see also Supporting information, Doc. S2).
Figure 1. A, B, C, geographical distribution of Solenopsora specimens sampled for molecular analyses (black symbols). Grey symbols indicate the specimens used only for morphological and chemical studies. A, dot, Solenopsora candicans; triangle, Solenopsora liparina; square, Solenopsora vulturiensis. B, dot, Solenopsora grisea; triangle, Solenopsora olivacea subsp. olbiensis; square, Solenopsora holophaea; diamond, Solenopsora sp. 1. C, dot, Solenopsora cesatii; square, Solenopsora olivacea subsp. olivacea; triangle, Solenopsora marina. For locality details, see Supporting information (Doc. S1).
Additional material from the USA was obtained and used for molecular analyses (herbarium MSC). Voucher specimens are deposited in SAV and O. The list of additional specimens examined only for morphology, anatomy, chemistry, and ecological requirements is indicated in the Supporting information (Doc. S3). We did not include S. caliacrae, described from Bulgaria, and S. paskovskiana, described from Ukraine, because they are known only from protologues (Cretzoiu, 1940) and the type material has not been found in relevant collections in Romania (BUC, BUCM, CL). We also did not find S. caliacrae in its type locality during our field research in 2013. We do not treat S. fumosula, described from Istria, because the species is known so far only from the type locality and we did not find it during field work. We only have the historical type material at our disposal (W). Based on the available information on the studied group, a member of Catillariaceae (Printzen, 2010), *Catillaria lenticularis* (Ach.) Th. Fr. (see Supporting information, Doc. S2), was chosen as the outgroup.

SELECTED LOCI, POLYMERASE CHAIN REACTION (PCR) AMPLIFICATION AND SEQUENCING

Total genomic DNA was extracted from peripheral parts of thalline lobes (*Solenopsora* sp. div., up to 2 mm from lobe tips), and apothecia (*Catillaria lenticularis*), using a DNeasy® Plant Mini Kit (Qiagen) in accordance with the manufacturer’s instructions. The quality of the extracted DNA was checked on 1.5% TAE-agarose gels. The quantity and purity of the isolated genomic DNA was also determined spectrophotometrically (NanoDrop 2000; Thermo Scientific). An initial screening of multiple primer combinations amplifying diverse nuclear target regions was performed using three different species. As a result, three regions of different molecular nature were selected for the subsequent analyses: the commonly applied multicopy internal transcribed spacer (ITS) region of nuclear ribosomal DNA (ITS1-5.8S-ITS2), the ketosynthase (KS) domain of the polyketide synthase gene (PKS, nonreducing fungal type I; Schmitt *et al*., 2005), and a single-copy protein-coding nuclear gene *Mcm7*.

© 2014 The Linnean Society of London, *Botanical Journal of the Linnean Society*, 2014, 176, 203–223
Table 1. Markers and primers used in the present study

Locus	Primer	Sequence (5′ to 3′)	Reference
Internal transcribed spacer region of nuclear ribosomal DNA (ITS1-5.8S-ITS2)	ITS5	GGA AGT AAA AGT CGT AAC AAG G	White et al. (1990)
DNA replication licencing factor (Mcm7)	ITS4	TCC TCC GCT TAT TGA TAT GC	White et al. (1990)
Polyketide synthase type I (PKS) – ketosynthese (KS) domain	MCM7-709for	ACI MGI GTI TCV GAY GTH AAR CC	Schmitt et al. (2009)
	MCM7-1348rev	GAY TTD GCI ACI CCI GGR TCV CCC AT	Schmitt et al. (2009)
	MCM7-solF	CYG ARA TCT GCC AGY CCG TCA	Present study
	MCM7-solR	CCA TRA GGC ARA YGT TGA TG	Present study
	LC1-Im	GAC CCG MGG TTY TTY AAY ATG	Schmitt et al. (2005)
	LC2c-Im	GTG CCG GTG CCR TGC ATY TC	Schmitt et al. (2005)

(replication licencing factor) recently shown to be phylogenetically informative (Schmitt et al., 2009; Raja et al., 2011; Truong et al., 2013). The primers used are listed in Table 1. The published Mcm7 primers (Schmitt et al., 2009) performed poorly in some samples and Solenopsora-specific primers were therefore developed to increase PCR specificity and efficiency (Table 1). Standard PCR was performed in 25-µL reaction volumes (Mastercycler® ep gradient S; Eppendorf). For amplification of the ITS and KS regions, the PCR mix contained 0.625 U of DreamTaq polymerase (5 µL−1; Thermo Scientific, Fermentas), 2.5 µL of buffer (including MgCl₂ at 2 mM in the final volume), 0.2 mM each dNTPs, 0.2 µM each primer, and 1 µL template in a final reaction volume of 25 µL. The PCR cycle profile for KS amplification followed that described by Winka, Ahlberg & Eriksson, (1998) with modifications: 94 °C for 4 min, 30 cycles of 94 °C for 1 min, 55 °C for 1 min, 72 °C for 1 min, elongation at 72 °C for 5 min, and cooling to 4 °C. For ITS amplification, a touchdown cycle (Reese Næsborg, Ekman & Tibell, 2007) was used: 94 °C for 4 min, six cycles of 94 °C for 1 min, 62 °C (decreasing 1 °C per cycle) for 1 min, 72 °C for 1 min 45 s, 34 cycles of 94 °C for 30 s, 56 °C for 45 s, 72 °C for 1 min 45 s (increasing by 3 s per cycle), final elongation at 72 °C for 10 min, and cooling to 4 °C. For amplification of Mcm7, the PCR mix contained 0.625 U of either AmpliTaq Gold (5 U µL⁻¹; Thermo Scientific, Fermentas) or HOT FIREPol (5 U µL⁻¹; Thermo Scientific, Fermentas) polymerase with supplied buffers, 2 mM MgCl₂, 0.2 mM each dNTP, 0.2 µM each primer, and 1 µL of template in a final reaction volume of 25 µL. The Mcm7 PCR cycling conditions followed those described by Schmitt et al. (2009) with modifications: 95 °C for 15 min, 35 cycles of 95 °C for 45 s, 56 °C for 50 s, 72 °C for 1 min, final elongation at 72 °C for 5 min, and cooling to 4 °C. In cases where these PCR conditions failed to amplify the targeted loci efficiently, we used Qiagen Multiplex PCR kit (Qiagen). The PCR cycling parameters were the same as those described above; in KS and ITS cycle profiles, just an initial 15-min step at 94 °C was added to activate the polymerase. PCR products were purified using a Nucleo-Spin® Gel and PCR Clean-up kit (Macherey-Nagel) in accordance with the manufacturer’s instructions. Cycle-sequencing reactions were carried out using the original PCR primers at the BITCET Consortium at the Department of Molecular Biology, Comenius University, Bratislava. Products were electrophoresed on an ABI 3130xl Genetic Analyzer.

SEQUENCE ALIGNMENT

Sequence identity was confirmed using the BLAST search tool in GenBank (Wheeler et al., 2006). Electropherograms were carefully inspected in CHROMAS LITE, version 2.01 (Technelysium Pty Ltd) for double peaks indicating heterozygous positions (Mcm7) or sequence variation among the multiple copies of the KS and ITS regions. Intra-individual polymorphic sites were coded using International Union of Pure and Applied Chemistry (IUPAC) ambiguity codes. Sequences were aligned manually in BIOEDIT, version 7.1.3.0 (Hall, 1999). Manual alignments of the KS and ITS regions were improved in GENEIOUS, version 5.6.4 (Biomatters Ltd) using MAFFT, version 6.814b (Katoh et al., 2002) plugin. A highly ambiguous indel region observed at the 5′ end of ITS1 was excluded. All sequences generated were deposited in GenBank (for accession numbers, see Supporting information, Doc. S1).

PHYLOGENETIC ANALYSIS

Phylogenetic trees were inferred using Bayesian and maximum likelihood (ML) analyses. Best-fit models of nucleotide substitutions were selected in JMODEL-
TEST, version 0.1.1 (Guindon & Gascuel, 2003) using Akaike information criterion (Akaike, 1974) and implemented in the Bayesian and ML computations. For the KS domain that included a short intron region, intron and exon sequences were defined as different partitions, specifying also the first, second, and third codon positions of the exons and unlinking model parameters across the defined partitions of the data. For the Mcm7 data that encompassed a single exon region, we also defined and unlinked three character partitions based on the first, second, and third codon positions. In the ITS dataset, two partitions corresponding to the 5.8S gene and ITS1 + ITS2 were defined (Table 2). Bayesian analyses based on the Markov chain Monte Carlo algorithm (MCMC; Huelsenbeck & Ronquist, 2001) were run in MrBayes, version 3.2.1 at the Bioportal at the University of Oslo (http://www.bioportal.uio.no, Kumar et al., 2009). Two parallel runs with four chains of MCMC were conducted for five million generations, with a sampling frequency of every 100 generations. The settings corresponding to the best-fit evolutionary models were specified; otherwise, default priors were used. Convergence of all parameters was verified by inspecting the graphical output from the Bioportal website. The average standard deviation of split frequencies between the two simultaneous runs was checked to fall below 0.01, and the potential scale reduction factor to be close to 1.0 for each parameter. For each run, the first 5000 trees (500 000 generations) were discarded as the burn-in period, and the consensus tree was generated from the remaining trees from both runs, computing also the Bayesian posterior probabilities (BPP) for each node. ML analyses were computed in GARLI, version 2.0 (Zwickl, 2006) setting five million generations, and with multiple independent replicate runs. Searches were performed with random starting trees and by setting the program to stop after 20 000 generations if no improvement of the log-likelihood was detected (≤ 0.01), with a maximum of 50 000 generations. A check was made that the topologies of the resulting trees obtained from the replicate runs were the same. Branch support was assessed by 500 bootstrap replicates under the same settings as described above. Before combining the three datasets, topological congruence between the gene trees was examined using 500 replicates of ML bootstrapping under the same models described above, on each locus separately (Mason-Gamer & Kellogg, 1996). Because there was no conflict detected using a 70% reciprocal threshold (with only a slightly higher value, 74%, for a single clade in the KS gene tree), the alignments were concatenated. We conducted a Bayesian analysis (MrBayes, version 3.2.1) of a concatenated dataset of all three markers. In this case, each locus was defined as a separate partition with the rest of settings as specified above. In addition to the concatenation approach that, in some cases, may lead to poor estimation of the species tree (Kubatko & Degnan, 2007), we also employed a Bayesian coalescent-based approach to estimate a species tree using *BEAST implemented in BEAST, version 1.7.4 (Heled & Drummond, 2010). *BEAST infers the species tree directly from the sequence data and assumes that the incomplete lineage sorting/deep coalescence is the main source of inconsistency between gene trees and species trees. BEAUti, version 1.7.4, was used to generate the input file for BEAST, setting three data partitions (corresponding to the three loci), the best-fit evolutionary model for each dataset (determined in JMODELTEST, see above), assuming uncorrelated lognormal clock, a birth–death model for the species tree prior, and the remaining parameters set to

Table 2. Summary of the nucleotide alignments used in the present study

Locus	Number of sequences/unique sequences	Alignment length (bp)	Number/percentage of variable sites	Evolutionary model	Character partitions
ITS of nuclear ribosomal DNA*	101/40	539	195/36%	TIM3 + I + G	Two partitions (ITS1 + ITS2, 5.8S gene)
KS of PKS	102/31	681	222/33%	TIM2 + I + G	Four partitions (one intron, three codon partitions of two exons)
Mcm7	100/34	509	158/31%	TIM2 + I + G	Three codon partitions
Concatenation	94/67	1,729	559/32%	–	Three locus partitions

Number of sequences/unique sequences (both excluding outgroups), alignment length, number/percentage of variable positions, nucleotide substitution models selected based on Akaike information criterion in JMODELTEST, and partitions used in MrBayes analyses. ITS, internal transcribed spacer; KS, ketosynthase; PKS, polyketide synthase gene.

*Excluding the ambiguous indel region at 5’ end of ITS1.
partitions used. In the ITS dataset, variation in the selected with JMODELTEST and notes on the data Table 2, including the best-fit models of evolution.

In the concatenated and coalescent-based approaches, S. holophaea was not included (Mcm7 sequences could not be retrieved here) and S. olivacea subsp. olbiensis was represented by a single sample only (ITS sequence could not be retrieved from the sample olbiensis 2 GR). All other taxa were represented by multiple accessions (see Supporting information, Doc. S1).

MORPHOLOGICAL, ANATOMICAL, CHEMICAL, AND ECOLOGICAL ANALYSES

For all studied taxa, we scored selected morphological, chemical and ecological traits (not only in the specimens listed in the Supporting information, Doc. S1, but also for those marked in Doc. S2). We focused on thallus morphology, mode of reproduction, ascospore size, hymenium and hypothecium heights, and the presence of secondary metabolites. For ecological preferences, we studied obligate and facultative substrate and microhabitat preferences related to light and humidity. The examined features and preferences are summarized in Figure 3 and in Table 3. Microscopical examinations (light microscopy) were performed on hand-cut sections mounted in water and 10% KOH. The measurements of thallus and apothecia given in the description of the species are based on the selected examined material. Cryotome sections were prepared to study the anatomy of the cortex in detail. Chemistry was studied by thin-layer chromatography (TLC), in solvent systems A, B and C (Culberson & Kristinsson, 1970; Culberson, 1972; Culberson & Johnson, 1982; Orange, James & White, 2001). Microextracts of herbarium specimens with TLC determined chemistry (pannarin, zeorin, atranorin) were used as standards. Terminology regarding morphology, and anatomy of the lichen thallus follows that of Ryan, Bungartz & Nash (2002) and Ryan et al. (2012).

RESULTS

SEQUENCE DATA CHARACTERISTICS

Details of nucleotide alignments are summarized in Table 2, including the best-fit models of evolution selected with JMODELTEST and notes on the data partitions used. In the ITS dataset, variation in the 5.8S gene was negligible, whereas ITS1 and ITS2 were highly variable, requiring the introduction of numerous (mainly 1- or 2-bp, or longer but overlapping) indels. Separate indel scoring, however, appeared ambiguous. In the KS alignment, one short intron region with four 1-4-bp indels was identified. Two indels supported two of the main clades of the resulting gene tree (clades B and IV of A; see below) and two were singletons, each present in a single sample. The scarcity of indels contrasts here with a high number of SNPs in the alignment and implies that their phylogenetic information is negligible in this case. Thus, in both datasets, the indel characters were treated as missing data. The Mcm7 alignment included only the exon sequences with no indel variation.

GENE TREES VERSUS CONCATENATED PHYLOGENY AND COALESCENT-BASED SPECIES TREES

Bayesian phylogenetic trees based on KS, Mcm7 and ITS (see Supporting information, Figs S1, S2, S3) yielded similar topologies, showing that two species, Solenopsora holophaea (present in KS and ITS trees) and S. marina (denoted as clade B), are divergent from the rest of the species (clade A) that form four major clades (I–IV): clade I, Solenopsora grisea and S. vulturiensis (BPPKS = 0.96, BPPMcm7 = 0.99, BPPITS = 1.00); clade II, S. olivacea, including subsp. olivacea and subsp. olbiensis (BPP = 1); clade III, S. cesatii (BPP = 1); and clade IV, S. candicans, S. liparina, and two potential new species that need further study, tentatively labelled here as Solenopsora sp. 1 and Solenopsora sp. 2 (BPP = 1). Accessions of S. carpatica (indicated in bold and with an asterisk in Fig. 2; see also Supporting information, Figs S1, S2, S3) appear in the clades of S. cesatii (samples from the Western Carpathians and the Alpi Bergamasche Mts) and of S. liparina (a sample from the Sudety Mts) in all three gene trees. Resolution of the gene trees, however, was insufficient in some parts. They did not resolve the relationship between S. grisea and S. vulturiensis (clade I). The ITS tree (see Supporting information, Fig. S3) suggested an alternative branching pattern for clade II (here sister to clade I), albeit with a weak support (BPP = 0.97, bootstrap support = 52%). Similarly, the sister relationship between S. olivacea subsp. olivacea and subsp. olbiensis was supported only in the KS tree (BP = 1; see Supporting information, Fig. S1), whereas it remained unresolved in the Mcm7 and ITS trees (see Supporting information, Figs S1, S3). ML trees (not shown) displayed topologies similar to the Bayesian ones. Bootstrap support obtained from the ML analyses is depicted on the respective Bayesian trees (see Supporting information, Figs S1, S2, S3). The same two main clades (A and B) and four clades (I–IV) in clade A and relationships among them were observed for each gene tree, with topological
Taxon	Thallus	Reproduction	Ascospores (μm)	Hymenium (μm)	Hypotecium (μm)	Secondary chemistry
candicans	Placodioid, white, pruinose, of single rosettes (diameter up to 4–5 cm), lobes flat, adpressed to substrate, isotomically branched	Sexual: apothecia frequent, thalline margine visible, ± persisting, disc brown, black-brown, diameter up to 1.5 mm, faintly pruinose or not	(10-)12–16 × 2.5–5	50–70	110–140	Pannarin, zeorin (both major)
ceatii	Placodioid, blue–grey, greyish, smooth, whitely pruinose, of single rosettes (diameter up to 2 cm) or when centres die away of concentric radiating circles or arcs (diameter up to 15 cm), lobes undulate, folded, crisped, with round, frequently entire margins of branches	Sexual: apothecia frequent, thalline margine visible, ± persisting, disc dark brown, blackish, diameter up to 1.2 mm, faintly pruinose or not	(7-)8–11 × 2.5–4	40–60	100–110	Pannarin, zeorin (both major), minor unidentified substances
grisea	Placodioid, of continuous, irregular patches (diameter up to 8–10 cm), marginal lobes to 1 mm wide; central parts green/grey–green, glaucous, margins of lobes whitely pruinose; central lobes raised when producing blastidia	Sexual: apothecia rare, diameter up to 1.5 mm, juvenile with crenulate thalline margine and flat disc, at maturity becoming convex, faintly pruinose or not, thalline margin retreating; vegetative: blastidia, soralia like structures	(10-)14–18 × 2.5–4	60–70	80–110	Complex: terpenoids, unidentified substances, atranorin (occasionally)
vulturiniensis	Squamulose-granular, central parts green/grey–green, glaucous, lobe margins whitely pruinose; central lobes raised when producing blastidia	Sexual: apothecia rare, diameter up to 0.6 mm, juvenile with crenulate thalline margine and flat disc, faintly pruinose or not; vegetative: blastidia, soralia like structures	9–11 × 4–5	50–60	80–110	Complex: terpenoids, unidentified substances, atranorin (occasionally)
holophaea	Squamulose, epipruneose, of shiny, red–brown, greenish–brown squamules (to 2.5 mm wide) with rounded, entire margin; central parts attached to the substrate, outer lobes loose, flexuose, recurved	Sexual: apothecia frequent, diameter up to 1.5 mm, sessile, often shortly stipitate, disc red–brown/blackish	12–18 × 4–5	50–60	130–140	Complex: terpenoids, unidentified substances
liparia	Placodioid, grey–green, mostly of single rosettes (diameter up to 2.5 cm), or forming clusters or arcs, lobes loosely attached to substrate, lobe ends round, whitish pruinose	Sexual: apothecia frequently present, diameter up to 1 mm, thallin margin visible, ± persisting, disc brown, bluish–whitish pruinose	13–16 × 3–4	60–70	80–90	Pannarin, zeorin (both major)
marina	Squamulose, ± distinctly rosetted, rosettes or irregular patches of up to 5–6 cm in diameter, squamules pale greenish to green, at margins lobate, white pruinose, central parts attached to the substrate, outer lobes loose, flexuose, ± folded	Sexual: apothecia frequently present, light to medium brown, sessile, at maturity frequently globose, diameter up to 1 mm	9–12–16 × 3–3.5	60–70	90–100	Complex: terpenoids, unidentified substances
o. subsp. olivacea	Crustose, forming continuous, irregular patches (diameter up to 10 cm), green/brown–green, marginal squamules effigurate	Sexual: apothecia frequent, diameter up to 0.5 mm, juvenile with hardly visible thalline margin and flat disc, at maturity becoming convex, light to dark brown; vegetative: pycnidia immersed in thallus, conidia colourless, simple, bacilliform, 3.5–4.5 × 0.3–0.9 mm	(10-)12–16 × 2.5–4	35–40	50–90	Pannarin, zeorin (both major)
o. subsp. olbiensis	Crustose, of continuous, irregular patches (diameter up to 10 cm), green/brown–green, marginal squamules effigurate	Vegetative: soralia light-green, excavate, rounded, or contiguous	NA	NA	NA	Pannarin, zeorin (both major)

NA, not available.
differences regarding more terminal subclades with lower BPP support.

A Bayesian phylogenetic tree inferred from the concatenated alignment showed a topology congruent with the PKS and Mcm7 gene trees in respect of the position of clade II (Fig. 2). In the coalescent-based species tree, the same four clades (all BPP = 1) and topology were obtained, except for the position of clade II that remained uncertain (Fig. 3). In the replicate runs, it was either resolved in the same position as in the concatenated tree but with low node support (BPP = 0.65) or as sister to the clade I as also seen in the ITS tree (with BPP = 0.69–1, depending on the run; Fig. 3).

Sister relationships of closely related taxon pairs S. grisea and S. vulturiensis (clade I) and S. olivacea subsp. olivacea and S. olivacea subsp. olbiensis (clade II) are confirmed in both the concatenated and species trees. The topology of the clade IV consisting of four species (S. candidans, S. liparina, Solenopsora sp. 1 and sp. 2) was congruent in the concatenated gene tree and the species tree, being identical to that in the ITS tree, and resolved the uncertainties in the KS and Mcm7 trees (see Supporting information, Figs S1, S2).
Catillaria lenticularis, used as the outgroup, was resolved in the species tree in the sister position to S. marina with a high support (BPP = 1), although this relationship had no support in the concatenated gene tree (Figs 2, 3).

MORPHOLOGY, CHEMISTRY, AND ECOLOGICAL PREFERENCES

The studied taxa share similar dorsiventral body plans with three different thallus growth forms. In
clade B, we observe foliose-squamulose thalli with sparse, pale rhizines on the lower side, whereas, in the core clade A, placodioid or crustose thalli without rhizines prevail (two accessions of foliose/ squamulose thallus occurs in clade IV – *S. vulturien-
sis* and *S*. sp. 2).

Pruina is present in the taxa of both main clades. It might cover the entire thalline surface (e.g. *S. candi-
cans*, *S. cesatii*, *S*. sp. 1) or it can be limited to the thalline margins (e.g. *S. marina*, *S. vulturien-
sis*, *S. liparina*, *S*. sp. 2). We noted differences in pruina cover in *S. grisea*. Thalli on rocks more exposed to light were whitish on their entire surfaces, whereas, on shaded rocks (in woodlands), the pruina was limited to lobe ends. This feature might have been a source of misidentifications of *S. grisea* in the past, especially when a small, marginal piece was available for closer examination.

The taxa in the B clade are characterized by a well developed upper cortex, either paraplectenchymatous or composed of anticlinally oriented, gelatinized hyphae, and sexual reproduction. Clade A comprises taxa with upper cortex of irregularly interwoven hyphae with a continuous epinecral layer, and both sexual and vegetative modes of reproduction (blastidia, soralia). Both reproduction modes occur in *S. grisea*, *S. vulturien-
sis*, and *S. olivacea* subsp. *olbiensis* (the type species forming apothecia and soralia; Nylander, 1876; *H*.NYL29314).

Clade B includes samples containing unknown terpenoids (products of the mevalonic acid pathway). In clade A, we found a combination of polyketide pathway products (pannarin, atranorin) and mevalonic acid pathway products (zeorin, unknown terpenoids).

The characters described above are summarized in Table 3 and depicted on the species tree (Fig. 3). It is apparent that characters such as squamulose thallus organization, pruina on the thalline surface, ascospore size, hymenium and hypothecium height, and complex secondary chemistry are homoplasic.

Each *Solenopsora* taxa has peculiar, unique micro-habitat preferences (e.g. light, humidity), thus occupying specific microniches in the same outcrop. They are mostly saxicolous, growing on calcareous sedimentary rocks, such as limestone, dolomite, and conglomerate, or on siliceous igneous rocks, such as basalt or ultramafic rocks. With respect to ecological requirements and distribution, we can divide them into two groups. The first group includes the species with narrow ecological amplitudes confined to the Mediterranean climate: *S. grisea*, *S. marina*, *S. olivo-
acea* subsp. *olivacea*, and *S. olivacea* subsp. *olbiensis*. The second group comprises the taxa with wider ecological amplitudes and distribution ranges: *S. candi-
cans*, *S. cesatii*, *S. vulturien-
sis*, and *S. holophaea*.

Two taxa (*S. liparina* and *S*. sp. 2) feature a particular position because they are confined to ultramafic rocks and appear as edaphic vicariants of *S. candi-
cans* that typically grows on calcareous rocks. These three taxa are part of clade IV (Fig. 3).

DISCUSSION

MULTILOCUS APPROACH

Fungi in general, unlike other pluricellular organisms, have a relatively limited set of taxonomically useful morphological traits, and the specific genetic control underlying most diagnostic characters is currently unknown (Leavitt *et al.*, 2011). Furthermore, as a result of the small size of the fungal chromosomes, there are no karyological data that are significant in the taxonomy of vascular plants (Crespo & Pérez-Ortega, 2009).

Molecular data provide an excellent basis for the critical evaluation of phenotypic characters, and help to trace previously overlooked differences (Lumbsch & Huhndorf, 2007). They are also extremely useful for assessing whether the investigated traits are reliable or show homoplaspy (Fontaine, Ahti & Piercey-Normore, 2010; Muggia *et al.*, 2011) and revealing cases of cryptic speciation (Schmitt *et al.*, 2005; Vondrak *et al.*, 2009). The present study is largely based on inferences from DNA sequences of three tested nuclear regions. Morphological and chemical data were also gathered and interpreted in the light of the presented genetic data. Both the gene tree and coalescent-based species tree approaches were employed to infer a robust phylogenetic inference of the studied taxa. The ITS region is the most popular genetic marker for mycological systematics at low taxonomic levels and has been used for barcoding (Nilsson *et al.*, 2012). This is mainly because of straightforward amplification, even with partly or severely degraded DNA, and the availability of universal primers. Phylogenetic inference based on ITS can, however, be biased and misled by the orthology/paralogy conflation (e.g. ITS heterogeneity reported from *Physcia aipolia* (Ehrh. ex Humb.) Führn. and *Physcia stellaris* (L.) Nyl.; Simon *et al.*, 2005), intra- and interlocus sequence homogenization, a higher level of homoplaspy, and alignment uncertainty mostly as a result of indel accumulation (Alvarez & Wendel, 2003). Alignments with low confidence have posed problems especially among representatives of higher taxonomic categories (Peršoh, Beck & Rambold, 2004), which we also encountered during the present study, when the highly ambiguous 5′ end of the ITS1 had to be excluded. The exclusive use of ITS has therefore been abandoned, and it has been suggested that more robust insights can be achieved by a
multilocus approach including also single- or low-copy nuclear genes (Álvarez & Wendel, 2003; Hofstetter et al., 2007; Truong et al., 2013). Multicopy nuclear PKS (KS) genes have been shown to be reliable markers (Schmitt et al., 2005). The KS region, although less variable than ITS, has proved useful in some phylogenetic studies (e.g. on species of Lecanora: Grube & Blaha, 2003; and the Cladonia gracilis group: Fontaine et al., 2010). Mem7 is a single-copy, protein-coding nuclear gene, recently recognized as a useful marker to infer higher and lower level taxonomic relationships (Raja et al., 2011; Truong et al., 2013). Although it may be more difficult to amplify by PCR, it can provide a better phylogenetic resolution than the other markers (e.g. ITS; Truong et al., 2013). Our results show that KS and Mem7-based trees provided largely congruent branching patterns with minor discrepancies in the topology and resolution in more terminal clades only, whereas the ITS-based tree suggested a certain discordance in a different placement of the clade II. Importantly, both the concatenated gene tree and the species tree provided more resolution, and also resolved the sister positions of two pairs of closely-related taxa (S. olivacea subsp. olivacea and subsp. olbiensis, clade II; S. grisea and S. vulturiensis, clade I), which were inconclusive in the individual gene trees. However, the position of clade II (S. olivacea) remained uncertain, and the source of this conflict needs to be finally resolved by additional sampling or markers (other nuclear low copy or mitochondrial regions).

Relationships among the treated taxa and their taxonomic delimitations
Phylogenetic analyses have recently confirmed either monophyly (e.g. Diplolobistes Norman: Fernández-Brime et al., 2013) or polyphyly of the studied lichen genera (e.g. Lecanora: Reese Næsborg et al., 2007; Hypocenomyce M. Choisy: Bendiksbry & Timdal, 2013). In the present study, the inferred phylogenetic trees reveal two divergent lineages (clades A and B) among European representatives of Solenopsora. The two lineages exhibited highly divergent sequences for all three markers and appeared as two well-supported clades. This division is also supported by several diagnostic features, such as thallus organization, rhizines on lower side of the thallus, secondary chemistry, and anatomy of upper cortex (Fig. 3). At this point, we consider that it would be premature to outline firm phylogenetic or taxonomic conclusions regarding the genus circumscription because our focus was on the European taxa only. Related genera and Solenopsora taxa from the other parts of the world need to be included to revise the generic concept of the studied group; for example, Solenopsora chihuahuana B.D. Ryan & Timdal, Solenopsora cladonioides B.D. Ryan & Timdal, Solenopsora crenata (Herre) Zahlbr., and Solenopsora cyathiformis (Szatala) Van den Boom from North America (Ryan & Timdal 2002, 2011) and Solenopsora elixiana Verdon & Rambold, Solenopsora sordida (C.W. Dodge) D.J. Galloway, and S. tasmanica Kantvilas from the Southern Hemisphere (Galloway, 2004; Kantvilas, 2004; Van Den Boom et al., 2011).

In the lineage A, clade I is resolved as the first-branching; it includes S. grisea and S. vulturiensis (Fig. 3). Although the individual gene trees did not resolve their relationships, the concatenated and species trees confirm here for the first time the sister position of these two taxa. Among the synapomorphies that these species share the presence of both sexual and vegetative (blastidia) reproduction modes and complex chemistry. The species differ in thallus morphology and size (see key to the treated Solenopsora taxa), substrate preferences (calcareous versus siliceous rocks), and distributional range [strictly Mediterranean climate (S. grisea) versus wider occurrence to temperate to boreal zones of the Northern and Southern Hemispheres (S. vulturiensis; see Supporting information, Doc. S3)].

Our results suggest that the crustose species S. olivacea (clade II) includes two infraspecific lineages, which we consider subspecies rather than varieties (McNeill et al., 2012: chapter 1, art. 4). They differ in reproduction mode, with the nominate subspecies olivacea reproducing sexually and subspecies olbiensis obligately reproducing vegetatively via soredia (apothecia are exceptionally recorded, cf. Nylander, 1876). The two subspecies also differ in ecological preferences: S. olivacea subsp. olivacea grows on rock faces in shaded and open habitats, whereas S. olivacea subsp. olbiensis is an obligatory chasmophyte; if it covers perpendicular rock faces, then these are situated in humid and shaded forests.

The S. cesatii clade (clade III) is well supported in all the analyses, although it also includes the samples so far assigned to the taxon S. carpatica from the Western Carpathians (Slovakia) and the Alpi Bergamasche (Italy) (see Supporting information, Figs S1, S2, S3). These results confirm Kotlov’s concept (Kotlov, 2004), that S. carpatica is a synonym of S. cesatii (see Supporting information, Table S1). The revealed variation patterns do not favour recognizing infraspecific taxa within S. cesatii.

Clade IV includes two well-delimited species: S. candidans and S. liparina (Figs 2, 3). Solenopsora liparina also includes a sample until now identified as S. carpatica from the Sudety Mts (Czech Republic). Our data do not support the systematic position of S. liparina as a variety of S. cesatii [S. cesatii var. olivacea (Bagl.) Kotlov; Kotlov, 2004] (see Supporting
information, Table S1). The phylogenetic analyses disclosed also two separate, so far unrecognized/ unidentified entities. *Solenopsis* sp. 1 was collected from perpendicular calcareous rock faces in Turkey. *Solenopsis* sp. 2 grows on silica-carbonate rocks in California, USA (Rajakaruna et al., 2012). We consider it premature at this stage to describe these two new species formally because more material would be desirable to sample and analyze, considering also the other, non-European taxa of the genus.

MORPHOLOGICAL, REPRODUCTIVE, AND CHEMICAL TRAITS

Lichen genera are often delimited on the basis of thallus growth form, which is a highly variable character (Printzen, 2010). Several characters, thalline form including, that are homoplasious at a certain level (e.g. family) can be differential or synapomorphic at lower levels such as genera or species (Crespo & Pérez-Ortega, 2009). The point is that these forms, having particular anatomical structure and function (Grube & Hawksworth, 2007), are optimal to the successful colonization of particular ecological niches. Foliose-squamulose thallus is present in lineage B, with two occurrences recorded also in lineage A (*Solenopsis* sp. 2 and *S. vulturiensis*). The squamules/folios of the taxa in lineage B are partly detached from the substrate, corticate on the upper surface (cortex well developed, either paraplectenchymatous or of anticlinally oriented, gelatinized hyphae) and with rhizines on lower surface. Variation in the morphology and anatomy of the lichen thallus has been shown to control water storage capacity and evaporative resistance (Pintado, Valladares & Sancho, 1997). Well developed upper cortex promotes thallus hydration for longer period (Fos et al., 1999) and limits CO2 exchange necessary for photosynthesis and respiration (Green, Snelgar & Brown, 1981). Development of rhizines was shown to be a mechanism for increasing water storage capacity in *Parmelina pastillifera* (Harm.) Hale (Tretiach & Brown, 1995). Grube & Hawksworth (2007) raised the hypothesis that the cortex imposes a physical necessity to let the thallus grow as a detached form. These traits, in case of *S. holophaea* and *S. grisea* (cluster IV), may help to keep the thallus hydrated longer and decrease too high irradiation because these species grow in open habitats. *Solenopsis marina*, however, is confined to shaded and humid sites. Non-rhizinate placodioid thallus of brittle areoles and lobes attached to the substrate dominate in lineage A clades I, III, and IV. Clade II includes taxa with crustose thallus (s.s., not forming lobes). The studied entities demonstrate that various types of thallus categories may occur in closely related taxa, as is the case of *S. grisea* (placodioid thallus) and *S. vulturiensis* (crustose-squamulose thallus).

Pruina is a concept widely used in lichenology. It includes many types of surface coverings (e.g. calcium oxalate, anthraquinones, dead mycobiont tissues) and its occurrence has been applied as an important species character in some genera (Timdal, 1984; Heiðmarsson, 1996; Wei & Wei, 2012). Different hypotheses about the ecological significance have been summarized by Wadsten & Moberg (1985) and Heiðmarsson (1996). Giordani, Modenesi & Tretiach (2003) provided experimental evidence that formation of calcium oxalate minerals in lichens is at least partially biologically controlled. Metabolic capability of forming calcium oxalate may be lost during thallus development (pruina limited to the younger parts of thallii), or retained (pruina covering entire thalline surface). Disappearance/dissolution of calcium oxalate as a result of its metastability in humid and warm habitats, creating different light conditions for the bionts, may allow the formation of soredia in mature thalline parts (Modenesi et al., 2001). *Solenopsis* taxa exhibit characteristic traits regarding surface coverings. The presence of pruina appears homoplasic in the studied group and suggests that we may be dealing with an ecologically plastic character, which should be interpreted with caution.

Both reproduction modes (sexual and vegetative) occur in the studied group, with two apparent complementary functions: long-distance dispersal of potentially novel genotypes via sexually derived ascospores and rapid spread of locally-adapted genotypes via asexual propagules (Seymour, Crittenden & Dyer, 2005). The taxa in lineage B are characterized by sexual reproduction. Lineage A comprises taxa with both sexual and vegetative modes of reproduction. We observe a primarily vegetative reproduction mode in *S. grisea* and *S. vulturiensis* (blastidia or soralia like structures) and in *S. oliveacea* subsp. *olbiensis* (soralia), with occasionally occurring apothecia. Ascospore morphology is frequently a key character to distinguish genera in lichens. Molecular evidence indicates that most types have evolved several times independently in Lecanoromycetes and constitute a highly homoplasious character (Printzen, 2010). Members of *Solenopsis* have one-septate, ellipsoid ascospores, with subtle variation in the ascospore apex shape: acute-acuminate, obtuse, pointed (Verdon & Rambold, 1998; Kantvilas, 2004). Spore size and shape did not segregate the studied taxa into certain groups (Table 3). Moreover, similar to the observations of Kantvilas (2004), the studied fertile specimens yielded few, mature, well-developed ascospores, therefore making a detailed assessment of spore shape difficult (Kantvilas, 2004). Further study is also needed to explore this element in
Solenopsora and to clarify whether spores have reproductive function.

The widespread occurrence of most secondary metabolites across the lichenized ascomycetes indicates that they convey little information on phylogenetic relationships, although some have proved useful when distinguishing species or even at higher levels (Printzen, 2010) or at least suggest general trends (Leavitt, Johnson & St. Clair, 2011). Secondary chemistry is one of the characters distinguishing the two main lineages identified in the present study. Lineage B features complex secondary chemistry of accessory type compounds (terpenoids, unknown substances), whereas the taxa in lineage A produce either chemosyndromes with pannarin and zeorin as major substances, or accessory type compounds (terpenoids, unknown substances) with occasional records of atranorin, as in S. grisea (Table 3). Moreover, other Solenopsora spp. not included in the present study produce peculiar major compounds [lobaric acid in S. elixiana (Verdon & Rambold, 1998; Van Den Boom et al., 2011); brialmontin in S. tasmanica (Kantvilas, 2004); and gangaleoidin in S. cyathiformis (Van den Boom & Ryan, 2004)]. Additionally, S. chihuahuana, S. cladonioïdes, and S. crenata produce pannarin and zeorin as major substances (Ryan & Timdal, 2002, 2011). The phylogenetic position of these taxa and the evolutionary significance of their secondary compounds need further exploration.

Biogeographical and ecological considerations

Lichens are broad-ranging organisms and are sensitive to air humidity. They can contribute to outline the bioclimatic features of an area (Nimis & Losi, 1984). They often have large geographical ranges, with many species showing high potential for long-distance dispersal, also across strong physical barriers (mountains, ocean, sea). One of the most striking distribution models found in lichens is the biogeographical Mediterranean pattern, in which several species are distributed across different regions with a Mediterranean climate on different continents (Crespo & Pérez-Ortega, 2009). Although the total distribution range of all Solenopsora spp. is still not sufficiently explored, and for some species only scarce records exist (e.g. S. chihuahuana, S. crenata, S. cladonioïdes), the present study indicates that the treated taxa are a good example of this kind of distribution. The taxa studied here are successful and widespread in the circum-Mediterranean and Atlantic Europe, whereas their occurrence is limited in continental parts of Europe. According to the data available until now, we can characterize four taxa as strictly Mediterranean, reaching the Canary Islands: S. grisea, S. marina, S. olivacea subsp. olivacea, and S. olivacea subsp. olbienis. Siliceous S. vulturiensis grows along the Atlantic coast of Portugal, Great Britain and reaches southwest Norway (Jørgensen & Nordin, 2009). We include here a recent outlying finding in western Iceland. Solenopsora candidans and S. cesatii were able to disperse to more continental habitats in Europe with oro-Mediterranean conditions. However, additional collecting is necessary in the Carpathians and Alps (where they frequently grow on places that are difficult to access) to complement the picture of the distribution of these species in Europe.

Solenopsora taxa are mostly saxicolous, growing on calcareous sedimentary rocks or siliceous igneous rocks. Several lichens collected from ultramafic (serpentinite) substrates in Europe have been described as being new to science, even though it is unclear whether these are truly ultramafic endemics or species that are rare and were collected only from those substrates (Favero-Longo, Isocrono & Piervittori, 2004). Our results show that S. liparina and S. sp. 2 growing on serpentinites form two genetically distinct and well-supported entities. This supports observations that the stressful edaphic conditions of ultramafic substrates can promote speciation and the evolution of ultramafic endemism (Rajakaruna et al., 2012).

Conclusions

In the present study, multilocus DNA sequence data revealed two major lineages that are differentiated by thallus organization, rhizines on lower side of the thallus, secondary chemistry, and anatomy of the upper cortex. Our results clarified the relationships between the taxa treated under Solenopsora occurring in Europe. We recognize eight species in Europe: S. candidans, S. cesatii, S. grisea, S. holophaea, S. liparina, S. marina, S. olivacea, and S. vulturiensis. We showed that there is no support for recognition of S. carpathica; the collections from the Western Carpathians, including the type, and from the Alpi Bergamasche represent the species S. cesatii. The name S. carpathica thus falls into synonymy of S. cesatii. Our results confirm the concept of Kotlov (2004) proposing that S. carpathica is a synonym of S. cesatii and, provide supporting molecular, morphological, chemical, and ecological arguments, which were missing so far. Solenopsora cesatii is not a complex of infraspecific taxa, as it was treated in the past (see Supporting information, Table S1). It represents a well-delimited, genetically homogeneous entity. The collection from the Sudety Mts was grouped with the specimens representing S. liparina. We gathered molecular, morphological, chemical, and ecological evidence to recognize S. liparina as a sepa-
Key to the Treated Solenopsora Taxa

1a. Thallus formed of ± distinctly rosetted squamules or thallus foliose, not placoidioid; upper cortex well developed with patchy or significant epinecral layer; apothecia regularly present; vegetative propagules absent; rhizines present; secondary chemistry complex – terpenoids, unknown substance .. 2

1b. Thallus placoidioid or crustose forming irregular patches; upper cortex thinner, of irregularly interwoven hyphae with continuous epinecral layer; apothecia or/and vegetative propagules present; rhizines absent 3

2a. Squamules pale greenish to grey, at margins lobate, white pruinose, central parts attached to substrate, outer lobes loose, flexuose, ± folded, upper cortex paraplectenchymatous; frequently fertile, apothecia light-medium brown, sessile, at maturity frequently globose; on calcareous substrates (rocks, fissures), in humid, shaded situations; resembling Squamarina lentigera ... S. marina

2b. Foliose thallus of epruinose, shiny, red–brown, greenish–brown squamules with rounded, entire margin; central parts attached to the substrate, outer lobes loose, flexuose, recurved, upper cortex of antically oriented, gelatinized hyphae; frequently fertile, apothecia dark red–brown/blackish, sessile, often shortly stipitate, disc flat; on basidiocarpic soil and rock fissures (siliceous breccia, basal), in open or slightly sheltered situations; resembling Psora globifera or Romjularia lurida (growing on calcareous substrates) S. holophaea

3a. Thallus placoidioid, forming continuous, irregular patches or single rosettes, or concentric radiating circles and arcs; apothecia or/and vegetative propagules present; on calcareous or ultrabasic rocks ... 4

3b. Thallus crustose or diminutive squamulose–granular–crustose, apothecia or/and vegetative propagules present; on calcareous or siliceous (siliceous breccia, basal) rocks .. 9

4a. On calcareous rocks .. 5

4b. On ultrabasic rocks (serpentines) ... 8

5a. Secondary chemistry complex with occasional records of atranorin .. 6

5b. Secondary chemistry – major substances pannarin and zeorin ... 7

6. Thallus forming continuous, irregular patches (diameter up to 8–10 cm), central parts green/grey–green, glaucous, margins of lobes whitely pruinose; central lobes raised when producing blastidia or breaking into soralia like structures; apothecia not frequent, juvenile with crenulate thalline margin and flat disc, at maturity becoming convex, thalline margin retreating; in open or slightly sheltered situations .. S. grisea

7a. Thallus of either single rosettes (diameter up to 2 cm) or when centres die away forming concentric radiating circles or arcs (diameter up to 15 cm); blue–grey, greyish, smooth, whitely pruinose, lobes undulate, folded, crisped, with round, margins; in fissures, in humid and sheltered situations also on perpendicular faces ... S. cesatii

7b. Thallus of rosettes (diameter up to 5 cm) white, pruinose; lobes flat, adpressed to substrate, isomictically branched; apothecial disc light brown to brown/dark-brown, frequently epruinose; on calcareous rocks, on vertical and horizontal faces, in open as well as sheltered situations ... S. candidans

8. Thallus of rosettes (diameter up to 2 cm), grey–green, lobe ends whitish pruinose; apothecial disc dark, bluish–whitish pruinose; often in fissures, in shaded situations also on perpendicular faces; resembling Lecanora muralis .. S. liparina

9a. On calcareous rocks .. 10

9b. On siliceous rocks ... 11

10a. Thallus green/brown–green, forming continuous, irregular patches (diameter up to 10 cm), marginal squamules effigurate; apothecia present (diameter up to 0.5 mm), juvenile with hardly visible thalline margin and flat disc, at maturity becoming convex, light to dark brown; on rock faces in sheltered and open situations ... S. olivacea subsp. olivacea

10b. Thallus green/brown–green, forming continuous, irregular patches; sorediate, soralia round, light green (turning yellowish in herbarium specimens); apothecia rarely found; in fissures and rock faces in humid, shade habitats (e.g. forests) ... S. olivacea subsp. olbiensis

11. Thallus diminutive, composed of single, crowded or scattered squamules, forming irregular patches; central lobes raised when producing blastidia or breaking into soralia like structures; apothecia rare, juvenile with crenulate thalline margin and flat disc, thalline margin retreating; marginal lobes to 0.5 mm wide, whitely pruinose; on rock, in fissures of rocks, in open or slightly sheltered situations; resembling Lepraria sp. S. vulturiensis

rate species, being an edaphic vicariant of *S. candicans*, confined to ultramafic rocks. We disclosed so far unknown sister relationship between *S. grisea* and *S. vulturiensis*. Moreover, we disclosed two new entities, *Solenopsora* sp. 1 collected from perpendicular calcareous rock faces in Turkey as a sister taxon to *S. candidans*, and *Solenopsora* sp. 2 collected on silica-carbonate rocks in California (Rajakaruna et al., 2012), being a closest relative to *S. liparina*. However, we consider it premature at this stage to

© 2014 The Linnean Society of London, *Botanical Journal of the Linnean Society*, 2014, 176, 203–223
describe these new species, before more material is made available for analysis.

ACKNOWLEDGEMENTS

We thank Ester Gaya, the associate editor, and the unknown reviewers for their constructive comments on earlier versions of the manuscript. AG would like to thank Ivan Pišút for excursions to the locus classicus of Solenopsora carpatica in the Western Carpathians and insights into the diversity of Carpathian and Mediterranean lichens, as well as Pat Wolseley for training in molecular techniques under SYS-RESOURCE (NHM, 2003). Special thanks go to Anna Lackovičová for performing TLC of part of the samples; to Imke Schmitt, Christian Printzen, Leif Tibel, and Jolanta Miadlikowska for discussions on methods; to Mauro Tretiach and Pier Luigi Nimis for discussion on nomenclature, historical collections, and typification; to Gintaras Kantvilas and Anamarija Partl for information on the occurrence of Solenopsora species in Tasmania and Croatia; and to Dušan Senko for elaboration of the maps. AG would like to thank Tommaso Pisani, Flavio Frignani, Edit Farkas, Lázsló Lőkös, Katalin Molnár, Zdeněk Palice, Drahoš Blanár, Monika Gorylová, Andras Krolopp, Josef P. Halda, and Magda Zmrhalová for company in the field during sampling. Lázsló Lőkös, Alan Fryday, Jiří Maliček, Jan Vondrák, Zuzana Fačkovcová, and Damien Ertz are acknowledged for their kind contribution to the study with their own supplementary collections, as are the curators of the herbaria: Ann Bogarts, František Bouda, Francesco di Carlo, Anton Igersheim, Ivona Kautmanová, Enrica Matteucci, Walter Obermayer, Rosanna Piervittori, and David Svoboda. This work was supported by the projects VEGA 2/0071/10, VEGA 2/0034/13, the bilateral mobility projects of Slovak Academy of Sciences and Czech Academy of Sciences (2012–2014) ‘Inventory of lichenized fungi of important biotopes in Slovakia and the Czech Republic’, and by the Slovak Academy of Sciences and Hungarian Academy of Sciences (2013–2015) ‘Lichens in the current Central Europe – from biodiversity to genes’.

REFERENCES

Ajaj A, El-Assfouri A, Touhami OA, Benkirane R, Fennane M. 2007. Inventaire de la collection des lichens et champignons lichénicoles de l’H erbier national ‘RAB’ de l’Institut Scientifique (Rabat, Maroc). Documents de l’Institut Scientifique, Rabat 21: 1–70.
Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.
Álvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434.
Aptroot A, Schumm F, Gabriel R. 2009. Lichens new to the Azores collected on Terceira. Herzogia 22: 147–152.
Aragón G, Rico VJ, Belinchón R. 2006. Lichen diversity from Cazorla, Segura and Las Villas Biosphere Reserve (SE Spain). Nova Hedwigia 82: 31–50.
Baglietto F. 1862. Specie italiche del genere Ricasolia. Commentario Della Società Critttagamologica Italiana 1: 119–125.
Bauer N, Lőkös L, Papp B. 2008. Distribution and habitats of Cardaminopsis petraea in Hungary. Studia Botanica Hungarica 39: 113–138.
Bendiiksbj M, Timdal E. 2013. Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morphological/ecological convergence. Taxon 62: 940–956.
Berthelot S, Webb PB. 1839–1841. L’histoire naturelle des Îles Canaries. 3/2. Paris: Béthune.
Bilovitz OP, Knežević B, Stešević D, VitiKainen O, Dragicevic S, Mayrhofer H. 2008. New or otherwise interesting lichenized and lichenicolous fungi from Montenegro. Fritschi ana 62: 1–44.
Bilovitz OP, Mayrhofer H. 2011. Catalogue of the lichenized and lichenicolous fungi of Bosnia and Herzegovina. Phytos 51: 1–176.
Bonali F. 2010. Un carteggio inedito tra due naturalisti lombardi dell’800: Luigi d’Arco, mantovano e Vincenzo Cesati, milanese. Pianura – Scienze e Storia dell’ambiente Padano 25: 3–44.
Bouly De Lesdain M. 1914. Lichens du Mexique (états de Puebla et du Michoacan) recueillis par le frère Arsène Brouard. Mexico City: I. Escalante.
Bouly De Lesdain M. 1924. Lichens du Maroc recueillis par M. Mouret en 1912. Mémoires de la Société des Sciences Naturelles du Maroc 82: 290–298.
Breuss O, John V. 2004. New and interesting records of lichens from Turkey. Österreichische Zeitschrift für Pilzkunde 13: 281–294.
Carvalho P. 1998. Contribution to the lichen flora of Portugal. Lichens from Serra de S. Mamede Natural Park. Sau teria 9: 103–109.
Clauzade G, Roux C. 1985. Lichenoj de okcidenta Eu ˘ ropo. Likenoj de okcidenta Eu ˘ ropo. Herbaria 15: 392–398.
Clauzade G, Roux C. 1985. Lichen of Etruscan southern Italy. Ilustrita determinlibro. Royan: Société Botanique du Centre-Ouest.
Coppins B, Kondratyuk S, Khodosovtsev A, Wolseley P, Zelenko S. 2001. New for Crimea and Ukraine species of the lichens. Ukrainskii Botanicheskii Zhurnal 82: 716–721.
Cranfield RJ. 2004. Lichen census of Western Australia. Nuytsia 15: 193–220.
Crespo O, Pérez-Ortega S. 2009. Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardin Botánico de Madrid 66 S1: 71–81.
Cretzoiu P. 1940. Neue Flechten aus Rumänien. Mitteilungen des Siebenbürgisches Vereins für Naturwissenschaften in Hermannstadt 1940: 242–246.
Culberson CF. 1972. Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113–125.

© 2014 The Linnean Society of London, Botanical Society of the Linnean Society, 2014, 176, 203–223
Herrera M, Aragón G, Prieto M, Belinchón R. 2007. Diversidad lichenica de las islas Chafarinas, España. *Botanica Complutensia* 31: 5–11.

Hofstetter V, Miadikowska J, Kauff F, Lutzoni F. 2007. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). *Molecular Phylogenetics and Evolution* 44: 412–426.

Huelsenbeck JP, Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755.

John V. 1996. Preliminary catalogue of lichenized and lichenicolous fungi of Mediterranean Turkey. *Bocconea* 6: 173–216.

John V, Seaward MRD, Beatty JW. 2000. A neglected lichen collection from Turkey: Berkhamsed school expedition 1971. *Turkish Journal of Botany* 24: 239–248.

John V, Seaward MRD, SIPman MJH, ZeddA. 2004. Lichenes and lichenicolous fungi of Syria, including a first checklist. *Herzogia* 17: 157–177.

Jørgensen PM, Nordin A. 2009. Lichens in Scandinavia known mainly from Norwegian type-specimens. *Graphis Scripta* 21: 1–20.

Kantvilas G. 2004. A new species of Solenopsis from Tanzania. *Lichenologist* 36: 113–117.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30: 3059–3066.

Khodosovtsev AYE, Bogdan OV. 2005. An annotated catalogue of the lichen forming fungi of the Yalta Mountain – Forest Nature Reserve. *Chornomorski Botanicheski Zhurnal* 1: 117–132.

Knežević B, Mayrhofer H. 2009. Lichens and lichenicolous fungi of Montenegro. *Phyton* 24: 69–73.

Kotlov YV. 2004. Preliminary checklist of lichen family Catiillariaceae. *Novosti Sistematic Nizshih Rastenii* 37: 234–252.

Kubatko LS, Degnan JH. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. *Systematic Biology* 56: 17–24.

Kumar S, SkjaerveL, Orr RJ, Enger P, Ruden T, Mevik B-H, Burki F, Botnen A, Shalchian-Tabrizi K. 2009. AIL: a batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. *BMC Bioinformatics* 10: 357.

Lamy de la Chapelle E. 1878. Catalogue raisonné des lic¸ens du Mont-Dore et de la Haute-Vienne. *Bulletin de la Societé botanique de France* 25: 322–536.

Lazzarin G. 2000. I tipi nomenclaturali di A. B. Massalongo conservati nell’erbario lichenologico presso il Museo Civico di Storia Naturale di Verona. *Bollettino del Museo Civico di Storia Naturale di Verona* 24: 45–106.

Leandro Alonso F, Egea MJ. 1996. Contribución a los líquenes calcíclos y terríclos de algunas localidades costeras del sur de España. *Anales de Biología, Facultad de Biología, Universidad de Murcia* 21: 55–72.

Leavitt SD, Johnson L, St. Clair LL. 2011. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in Western North America. *American Journal of Botany* 98: 175–188.

Leavitt SD, Johnson LA, Goward T, St. Clair LL. 2011. Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. *Molecular Phylogenetics and Evolution* 60: 317–332.

Lisa J, Palice Z, Bayerová Š. 2008. Checklist and red list of lichens of the Czech Republic. *Preslia* 80: 151–182.

Litterski B, Mayrhofer H. 1998. Catalogue of lichenized and lichenicolous fungi of Cyprus. *Studia Geobotanica* 16: 57–70.

Lumbsch HT, Huhndorf SM. 2007. Whatever happened to the pyrenomycetes and loculoascomycetes? *Mycological Research* 111: 1064–1074.

Lumbsch T, Leavitt SD. 2011. Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. *Fungal Diversity* 50: 59–72.

Mason-Gamer RJ, Kellogg EA. 1996. Testing for phylogenetic conflict among molecular datasets in the tribe Triticeae (Gramineae). *Systematic Biology* 45: 524–545.

Massalongo A. 1853. Memorie lichenografiche con un’appendice alle ricerche sull’autonomia dei licheni crossoi, Verona.

Massalongo A. 1856. *Lichenes Italici exsiccati*, Vol. V. N. 138–172. Verona: Antonelli.

Mayrhofer H, Denchev MC, Stoykov YD, Nikolova OS. 2005. Catalogue of the lichenized and lichenicolous fungi Bulgaria. *Mycologica Balcanica* 2: 3–61.

McCarthy PM. 2013. Checklist of the lichens of Australia and its island territories, Version 29 June 2013. Canberra: Australian Biological Resources Study. Available at: http://www.anbg.gov.au/abrs/lichenlist/introduction.html

McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prudhomme van Reine WF, Smith GF, Wiersema JH, Turland NJ. 2012. I. Hierarchia, Turland NJ. 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). *Regnum Vegetabile 154*. Königstein: Koeltz Scientific Books.

Meinunger L. 1987. Kleine lichenologische Mitteilungen I. *Hausschnectia* 3: 77–80.

Meinunger L. 1997. Kleine lichenologische Mitteilungen III. *Hausschnectia* 6: 35–40.

Ménard T, Roux C. 1991. Lichens et groupements lichéphiles – calcifuges de La Ciotat et d’Évenos (basse Provence). *Bulletin de la Societé Linnéenne de Provence* 42: 91–116.

Miadlikowska J, Kauff F, HögnaBba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafelline J, Hofstetter V, Gueidan C, Kukwa M, Lücking R, Björk C, sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward...
Ryan BD, Timdal E. 2011. Validation of two names in Solenoporsa (Catillariaceae). *Bibliotheca Lichenologica* 106: 289–290.

Sammy N. 1989. Checklist of Western Australian lichens. *Mycotaxon* 35: 417–428.

Sánchez-Biezma MJ, López de Silanes ME. 1999. *Porpidia nadovnikiana*, a species of ultrabasic rocks: second record for Europe. *Lichenologist* 31: 637–648.

Savić S, Tibell L. 2006. Checklist of the lichens of Serbia. *Mycoloogica Balcanica* 3: 187–215.

Schindler H. 1937. Die Verbreitung von Solenoporsa candicans Str. in Deutschland. Beiträge zur Geographie der Flechten I. *Berichte der Deutschen Botanischen Gesellschaft* 54: 566–573.

Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT. 2009. New primers for promoting single-copy genes in fungal phylogenetics and systematics. *Persoonia* 23: 35–40.

Schmitt I, Martin MP, Kautz S, Lumbsch HT. 2005. Diversity of non-reducing polyketide synthase genes in the Pertusariales (lichened Ascomycota): a phylogenetic perspective. *Phytochemistry* 66: 1241–1253.

Schmüll M, Miadlikowska J, Pelzer M, Stocker-Wörgötter E, Hofstetter V, Fraker E, Hodkinson BP, Reeb V, Kukwa M, Lumbsch HT, Kauff F, Lutzoni F. 2011. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus *Lecidea sensu* Zahlbruckner (Lecanoromycetes, Ascomycota). *Mycologia* 103: 983–1003.

Seaward MRD. 1996. Checklist of Tunisian lichens. *Bocconea* 6: 115–148.

Seymour FA, Crittenden PD, Dyer PS. 2005. Sex in the extremes: lichen-forming fungi. *Mycolologist* 19: 51–58.

Simon DM, Hummel CL, Sheely SL, Bhattacharya D. 2005. Heterogeneity of intron presence or absence in rDNA genes of the lichen species *Physcia aipolia* and *P. stellaris*. *Current Genetics* 47: 389–399.

Sipman H, Raus T. 1999. A lichenological comparison of the Paros and Santorini island groups (Aegean, Greece), with annotated checklist. *Willdenowia* 29: 239–297.

Sipman HJM, Raus T. 2002. An inventory of the lichen flora of Kalimnos and parts of Kos (Dodecanisos, Greece). *Willdenowia* 32: 351–392.

Spribille T, Schultz M, Breuss O, Bergmeier E. 2006. Notes on the lichens and lichenicolous fungi of western Crete (Greece). *Herzogia* 19: 125–148.

Steiner J. 1896. Beitrag zur Flechtenflora Südpersiens. *Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Classe. Abteilung I* 105/6: 436–446.

Szatala Ő. 1941. Új zuzmók III. *Borbasia* 3: 97–99.

Szatala Ő. 1959. Contributions à la connaissance des lichens de la Grèce II. Mont Olympe. *Annales Historico-Naturales Musei Nationalis Hungarici* 51: 121–144.

Takhtajan A. 1986. *Floristic regions of the world*. Oakland, CA: University of California Press.

Temina M, Wasser SP, Nevo E. 2004. New records of lichenized fungi from the Near East. *Mycologica Balcanica* 1: 139–151.

Timdal E. 1984. The delimitation of *Psora* (Lecideaceae) and related genera, with notes on some species. *Nordic Journal of Botany* 4: 525–540.

Trettiaich M, Brown DH. 1995. Morphological and physiological differences between epilithic and epiphytic populations of the lichen *Parmelia parstilifera*. *Annals of Botany* 75: 627–632.

Truong C, Divakar PK, Yahr R, Crespo A, Clerc P. 2013. Testing the use of ITS rNDA and protein-coding genes in the generic and species delimitation of the lichen genus *Usnea* (Parmeliaceae, Ascomycota). *Molecular Phylogenetics and Evolution* 68: 357–372.

Tufan Ö, Sümüblü H, Türk AO. 2006. The lichen flora of the Termessos National Park in Southwestern Turkey. *Mycotaxon* 94: 43–46.

Tufan-Çetin Ö, Sümüblü H. 2011. Lichens of the Köprüldi Canyon National Park of Turkey. *Mycotaxon* 115: 536.

Van den Boom PPG. 1999. Some lichens and lichenicolous fungi from Majorca (Spain). *Linzer Biologische Beiträge* 31: 785–800.

Van den Boom PPG. 2006. Contribution to the flora of Portugal: lichens and lichenicolous fungi 5. *Österreichische Zeitschrift für Pilzkunde* 15: 11–19.

Van den Boom PPG, Brand M, Ertz D, Kalb K, Magain N, Masson D, Schiefelbein U, Sipman HJM, Sérusiaux E. 2011. Discovering the lichen diversity of a remote tropical island: working list of species collected on Réunion (Mascarene archipelago, Indian Ocean). *Herzogia* 24: 325–349.

Van den Boom PPG, Ryan BD. 2004. *Lecania*. In: Nash TH III, Ryan BD, Diederich P, Gries C, Burgartz P, eds. *Lichen flora of the Greater Sonoran Desert region*, Volume II. Tempe, AR: Lichens Unlimited, Arizona State University, 143–171.

Verdon D, Rambold G. 1998. A new species in the genus Solenoporsa (Catillariaceae, Lecanorales). *Mycotaxon* 69: 399–408.

Vězda A. 1970. Four new species of lichenized fungi. *Časopis slezského zemského muzea, Serie A Prírodové vědy* 19: 25–26.

Vondrák J, Riha P, Arup U, Sochting U. 2009. The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. *Lichenologist* 41: 571–604.

Wadsten T, Moberg R. 1985. Calcium oxalate hydrates on the surface of lichens. *Lichenologist* 17: 239–245.

Wei X-L, Wei J-C. 2012. A study of the pruinose species of Hypogymnia (Parmeliaceae, Ascomycota) from China. *Lichenologist* 44: 783–793.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetverin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y, Kovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Suovorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E.
2006. Database resources of the national center for biotechnology information. *Nucleic Acids Research* **41**: D8–D20.

White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. *PCR protocols: a guide to methods and applications*. New York: Academic Press, 315–322.

Winka K, Ahlberg C, Eriksson OE. 1998. Are there lichenized Ostropales? *Lichenologist* **30**: 455–462.

Zahlbruckner A. 1907. Vorarbeiten zu einer Flechtenfora Dalmatiens. V. *Oesterreichische Botanische Zeitschrift* **57**: 389–400.

Zahlbruckner A. 1928. *Catalogus lichenum universalis. Band 5*. Leipzig: Gebrüder Borntraeger.

Zahlbruckner A. 1932. *Catalogus lichenum universalis. Band 8*. Leipzig: Gebrüder Borntraeger.

Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Bayesian majority-rule consensus tree with mean branch lengths based on the ketosynthase (KS) domain of PKS genes. The posterior probability values are indicated above the branches (before slash); thick branches indicate high support (>0.90). Italicized values (after slash) show bootstrap support >50% assessed by maximum likelihood analyses. I–IV denote the main clades referred to in the text. The codes of accessions follow Doc. S1. The codes marked in bold and accompanied by asterisk indicate the accessions classified as *Solenopsora carpatica*.

Figure S2. Bayesian majority-rule consensus tree with mean branch lengths based on the *Mcm7* gene. The posterior probability values are indicated above the branches (before slash); thick branches indicate high support (>0.90). Italicized values (after slash) show bootstrap support >50% assessed by maximum likelihood analyses. I–IV denote the main clades referred to in the text. The codes of accessions follow Doc. S1. The codes marked in bold and accompanied by asterisk indicate the accessions classified as *Solenopsora carpatica*.

Figure S3. Bayesian majority-rule consensus tree with mean branch lengths based on the ITS (ITS1-5.8S-ITS2) region of nuclear ribosomal DNA. The posterior probability values are indicated above the branches (before slash); thick branches indicate high support (>0.90). Italicized values (after slash) show bootstrap support >0.50 assessed by maximum likelihood analyses. I–IV denote the main clades referred to in the text. The codes of accessions follow Doc. S1. The codes marked in bold and accompanied by asterisk indicate the accessions classified as *Solenopsora carpatica*.

Table S1. Overview of different taxonomic concepts applied in genus *Solenopsora* over time.

Document S1. List of specimens sequenced in the present study. Species name, voucher information [geographical location, collector(s), collection number, herbarium acronym] and GenBank accession numbers for ITS, KS, and *Mcm7* regions are indicated, respectively. A dash (–) denotes missing information.

Document S2. List of additional specimens examined for morphology, anatomy, chemistry (*), and ecological requirements.

Document S3. Synopsis of the European *Solenopsora* taxa.