HIGLU:
A Program for the Calculation of the Total Higgs Production Cross Section at Hadron Colliders via Gluon Fusion including QCD Corrections

MICHAEL SPIRA

II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

A program for the calculation of the total Higgs production cross section via gluon fusion at hadron colliders including next-to-leading order QCD corrections is presented. It is suitable especially for Standard Model Higgs bosons and the neutral Higgs particles of the minimal supersymmetric extension. The program provides a model-independent calculation for scalar [CP–even] as well as pseudoscalar [CP–odd] Higgs bosons including the contributions of virtual top and bottom quarks inside the loop coupled to the Higgs particles. The relevant input parameters can be chosen from an input file. As a special case the minimal supersymmetric extension of the Standard Model can be investigated. The corresponding couplings are implemented including the leading higher order corrections.

1e–mail address: spira@desy.de
2Supported by Bundesministerium für Bildung und Forschung (BMBF), Bonn, Germany, under Contract 05 6 HH 93P (5) and by EU Program Human Capital and Mobility through Network Physics at High Energy Colliders under Contract CHRX–CT93–0357 (DG12 COMA).
1 Introduction

At the future hadron collider LHC the Higgs boson will be produced primarily via the gluon fusion mechanism for the entire relevant Higgs mass range within the Standard Model [SM] as well as the minimal supersymmetric extension [MSSM]. Recently the next–to–leading order QCD corrections to the production cross sections of scalar [CP–even] as well as pseudoscalar [CP–odd] Higgs bosons have been calculated. They are significant for the theoretical prediction of the cross sections leading to an increase by up to a factor of two compared to the lowest order results.

In this paper the program HIGLU for the calculation of the total Higgs production cross sections including these next–to–leading order QCD corrections will be presented. Various relevant input parameters can be chosen from an input file including a flag specifying the model. Possible options are the Standard Model, its minimal supersymmetric extension and a general Higgs model by initializing the Higgs Yukawa couplings to the heavy quarks appropriately. The program includes the contribution of the top and bottom quarks in the loop that generates the Higgs couplings to gluons. Within the Standard Model as well as in most of the parameter space of the MSSM these contributions provide an excellent approximation for all cases in practice. Moreover, the program allows to calculate the decay widths of Higgs bosons into gluons including next–to–leading order QCD corrections. The gluonic decay mode plays a significant rôle in the intermediate mass range at future $e^+e^−$ colliders.

The source code of the program is written in FORTRAN. It has been tested on a VAX–station using the operating system VMS, on different workstations running under UNIX and IBM computers with the operating systems CMS and TSO. The numerical integration is performed by using the VEGAS–package for integrals of dimension up to three. Parton distributions can be attached to the program in any desirable way by adjusting the corresponding subroutine as described in section 5. As the standard parametrization the program contains the GRV sets.

2 Results

2.1 $pp \to \Phi + X$

The hadron cross section of Higgs boson production via gluon fusion $gg \to \Phi$ ($\Phi = \mathcal{H}, A$) including next–to–leading order QCD corrections, can be cast into the form

$$\sigma(pp \to \Phi + X) = \sigma_{LO} + \Delta \sigma_{\text{virt}} + \Delta \sigma_{gg} + \Delta \sigma_{gq} + \Delta \sigma_{q\bar{q}} \quad (1)$$

with the lowest order cross sections

$$\sigma(pp \to \Phi + X) = \sigma_{0} \tau_{\Phi} \frac{d\mathcal{L}^{gg}}{d\tau_{\Phi}} \quad (2)$$

Comments or suggestions are welcome and should be sent to spira@desy.de.

4The scalar [CP–even] Higgs particles will generically be denoted by \mathcal{H}, the pseudoscalar [CP–odd] by A and all the neutral Higgs bosons by Φ.
The coefficients are
\[\sigma_0^H = \frac{G_F \alpha_s^2(\mu^2)}{288\sqrt{2\pi}} \left| \sum_Q g_Q^H A_Q^H(\tau_Q) \right|^2 \]
\[\sigma_0^A = \frac{G_F \alpha_s^2(\mu^2)}{128\sqrt{2\pi}} \left| \sum_Q g_Q^A A_Q^A(\tau_Q) \right|^2 \]

They include the Yukawa couplings \(g^H \) normalized to the SM couplings, and the quark amplitudes
\[A_Q^H(\tau_Q) = \frac{3}{2} \tau_Q \left[1 + (1 - \tau_Q) f(\tau_Q) \right] \]
\[A_Q^A(\tau_Q) = \tau_Q f(\tau_Q) \]

The function \(f(\tau) \) is defined as
\[f(\tau) = \begin{cases} \arcsin^2 \frac{1}{\sqrt{\tau}} & \tau \geq 1 \\ \frac{1}{4} \left[\log \frac{1 + \sqrt{1 - \tau}}{1 - \sqrt{1 - \tau}} - i\pi \right]^2 & \tau < 1 \end{cases} \]

and the scaling variables are
\[\tau_Q = \frac{4m_Q^2}{m^2_\Phi} \quad \text{and} \quad \tau_\Phi = \frac{m^2_\Phi}{s} \]

The parameter \(m_Q \) denotes the heavy quark mass, \(m_\Phi \) the Higgs boson mass, \(s \) the total center of mass energy squared, \(G_F \) the Fermi constant and \(\alpha_s \) the QCD coupling constant. The term \(\Delta \sigma^\Phi_{\text{virt}} \) parametrizes the infrared regularized virtual two–loop corrections and the terms \(\Delta \sigma^\Phi_{ij} \) \((i, j = g, q, \bar{q})\) the individual collinear regularized real one–loop corrections corresponding to the subprocesses
\[gg \to \Phi g, \quad gq \to \Phi q, \quad q\bar{q} \to \Phi g \]

The expressions for \(\Delta \sigma^\Phi_{\text{virt}} \) and \(\Delta \sigma^\Phi_{ij} \) can be found in Refs.\[3, 4]\). The gluon luminosity is defined by
\[\frac{d\mathcal{L}^{gg}}{d\tau} = \int_\tau^1 \frac{dx}{x} g(x, Q^2) g(\tau/x, Q^2) \]

where \(g(x, Q^2) \) denotes the gluon density. The natural values to be chosen for the renormalization scale \(\mu \) of the strong coupling \(\alpha_s(\mu^2) \) and the factorization scale \(Q \) of the parton densities is given by the Higgs mass \(m^2_\Phi \).

The program HIGLU calculates the five terms in eq.\[1\] contributing to the total cross section separately as well as their sum for all kinds of neutral Higgs bosons \(\Phi \). The computation of differential cross sections can be found in Refs.\[7\] and is not implemented in the program.
3 \(\Phi \rightarrow gg \)

The decay widths of Higgs bosons \(\Phi \) into gluons up to next–to–leading order are given by

\[
\Gamma(\Phi \rightarrow gg(g), gq\bar{q}) = \Gamma_{LO}(\Phi \rightarrow gg) \left[1 + \frac{E_\Phi \alpha_s}{\pi} \right]
\]

\[
E_\Phi = E_{\Phi}^{\phi} + E_{\Phi}^{gg} + N_F E_{\Phi}^{ggg}
\]

with the leading–order expressions

\[
\Gamma_{LO}(H \rightarrow gg) = \frac{G_F^2 \alpha_s^2(\mu^2)}{36 \sqrt{2} \pi^3} \left| \sum_Q g_Q^H A_Q^H(\tau_Q) \right|^2
\]

\[
\Gamma_{LO}(A \rightarrow gg) = \frac{G_F^2 \alpha_s^2(\mu^2)}{16 \sqrt{2} \pi^3} \left| \sum_Q g_Q^A A_Q^A(\tau_Q) \right|^2
\]

The amplitudes \(A_Q^H(\tau_Q) \) are defined in eq.(4). The coefficient \(E_{\Phi}^{\phi} \) denotes the infrared regularized virtual two–loop corrections, \(E_{\Phi}^{gg} \) and \(E_{\Phi}^{ggg} \) the collinear regularized real one–loop corrections. The analytical formulae of these contributions can be found in Ref.[3]. The parameter \(N_F \) fixes the number of light external flavors produced in the decay \(\Phi \rightarrow gq\bar{q} \), which is defined to be equal to the number of flavors contributing to the QCD \(\beta \) function. This definition maps large logarithms into the running strong coupling \(\alpha_s(\mu^2) \). The natural renormalization scale \(\mu \) of the strong coupling \(\alpha_s(\mu^2) \) is given by the corresponding Higgs boson mass \(m_\Phi \).

4 Input Parameters

In addition to the source code of the program HIGLU an input file defined as unit 98 is needed, from which the program reads the input parameters. The name of this input file can be defined in the first OPEN statement of HIGLU. It should be noted that the input numbers must not start before the equality signs in each corresponding line. The input file contains the following parameters:

process: integer
- choose the process to be calculated:
 - 0: gluon fusion \(gg \rightarrow \Phi \)
 - 1: gluonic decay \(\Phi \rightarrow gg \)

collider: integer
- choose the hadron collider mode for the gluon fusion process:
 - 0: \(pp \)
 - 1: \(p\bar{p} \)
- This flag is only relevant for the gluon fusion process.
energy: double precision

center of mass energy [in TeV] of the hadron collider for the gluon fusion process

model: integer

choose the model, in which the process should be calculated:

0: SM
1: MSSM including the dominant two–loop corrections to the Higgs masses and couplings
2: MSSM including only the leading one–loop corrections, which increase as the fourth power of the top mass.
3: any model

All stop mixing parameters of the MSSM are set equal to zero.

tanbeta: double precision

the MSSM parameter $\tan \beta$, which is irrelevant if the flag model equals zero or three.

g$_{b,t}$: double precision

the Yukawa couplings of the corresponding Higgs boson to the top and bottom quarks normalized to the SM couplings. These couplings are only relevant, if the flag for the model is chosen to be three. If the calculation is performed within the MSSM, these parameters are irrelevant, because the Yukawa couplings are calculated from $\tan \beta$ and the chosen Higgs mass m_{Higgs}. In the SM [flag model = 0] these couplings are automatically set equal to unity.

$m_{b,t}$: double precision

pole masses of the bottom and top quarks [in GeV]. Useful values for these masses are given in the sample of the input file in the appendix: $m_t = 176$ GeV, $m_b = 5$ GeV.

type: integer

choose the neutral Higgs boson type:

1: heavy scalar H
2: pseudoscalar A
3: light scalar h

In the SM this flag is set equal to unity automatically. If the model is chosen to be the MSSM, all three types of Higgs bosons can be chosen. If the flag for the model is set equal to three, only the values 1 and 2 are possible, because the nature of the Higgs boson will be characterized by its mass and its Yukawa couplings $g_{b,t}$ to the heavy quarks.

m_{Higgs}: double precision

the mass [in GeV] of the chosen Higgs boson type.

loop: integer

choose one–loop or two–loop formula for the strong coupling α_s in the \overline{MS} scheme:
1: one–loop
2: two–loop

choice: integer
choose the input value of the strong coupling α_s:
1: α_s is defined by the value for $\alpha_s(M_Z)$
2: α_s is fixed by the QCD scale $\Lambda_{(N_F)}^{MS}$

alphaS: double precision
strong coupling α_s at scale of the Z boson mass M_Z. This parameter is relevant for the flag choice = 1.

N_F: integer
the number of flavors, for which the QCD scale $\Lambda_{(N_F)}^{MS}$ is given. This parameter can be chosen to be 3, 4, 5 or 6. The QCD scales for different numbers of flavors are computed by using the quark masses m_b, t from the input file and $m_c = 1.5$ GeV via the matching conditions of the \overline{MS} scheme at the thresholds.

lambda: double precision
QCD scale $\Lambda_{(N_F)}^{MS}$ in GeV.
The parameters N_F and lambda are relevant for the flag choice = 2.

n_ext: integer
number of light external flavors to be included in the gluonic decay width of the Higgs boson. If n_{ext} is set equal to 4, the bottom contribution $\Phi \rightarrow b\bar{b}g$ is subtracted, and if n_{ext} equals three, the part $\Phi \rightarrow c\bar{c}g$ is removed. This parameter can be chosen to be 3, 4 or 5. The running strong coupling $\alpha_s(\mu^2)$ uses the same number of flavors.

mu1,2: double precision
parameters defining the renormalization scale μ [in GeV] of the strong coupling constant α_s in the following way:

$$\mu = \mu_1 m_{Higgs} + \mu_2$$

The variable μ_1 is a dimensionless coefficient of the Higgs mass m_{Higgs}, and μ_2 denotes a fixed scale [in GeV].

Q1,2: double precision
parameters fixing the factorization scale Q [in GeV] for the gluon fusion process:

$$Q = Q_1 m_{Higgs} + Q_2$$

Q_1 denotes a dimensionless coefficient of the Higgs mass m_{Higgs}, whereas Q_2 defines a fixed scale [in GeV].

abserr: double precision
absolute error for the VEGAS integration.
points: integer
number of points for the VEGAS integration. 10000 points yield a sufficient precision, whereas the results using 1000 points with 5 iterations are already reliable at the percent level.

itmax: integer
maximal number of iterations for the VEGAS integration.

print: integer
flag for the print out style of the VEGAS iterations:
0: no print out
1: pretty print out
10: print out as a table

A sample of the input file is given in the appendix.

5 Structure Functions

For the implementation of structure functions the subroutine STRUC has to be changed appropriately. This part of the program reads as follows:

```
SUBROUTINE STRUC(X,Q,PDF)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION PDF(-6:6)
COMMON/FACSC/ISCHEME
C...X - BJORKEN X
C...Q - MOMENTUM SCALE (IN GeV)
C...PDF(-6:6) - MATRIX CONTAINING X*P(X,Q)
C... IPDF = -6 , -5 , -4 , -3 , -2 , -1 ,0 ,1,2,3,4,5,6
C... T_BAR,B_BAR,C_BAR,S_BAR,U_BAR,D_BAR,GL,D,U,S,C,B,T
C--- CHOOSE PROTON STRUCTURE FUNCTIONS AND THEIR FACTORIZATION SCHEME
C--- ISHEME: 0 1
C--- MSBAR DIS
ISCHEME=0
Q2=Q**2
ISET=2
CALL PDGRV(ISET,X,Q2,PDF)

RETURN
END
```
The line calling the subroutine PDGRV has to be changed, if another parametrization should be used. The flag ISCHEME has to be specified according to the factorization scheme, which has been used for the parametrization of the parton densities. Note that the array PDF has to be generated in accordance with the given convention.

6 Output

The output of the program HIGLU is written to a file unit 99, which contains the chosen input parameters as well as all results obtained by VEGAS integrations. The VEGAS iterations are written to the standard output, if the flag print is set equal to 1 or 10. The integrated results contain all individual contributions of the QCD corrections separately and their total sum. A sample of the output is presented in the appendix, which can be obtained with the input file shown before, if the flag model and the Higgs mass m_{Higgs} are specified appropriately. If the MSSM is chosen as the Higgs model, the pseudoscalar Higgs mass m_A corresponding to the scalar Higgs masses m_H is also typed out.

Acknowledgements. It is a pleasure to thank A. Djouadi, D. Graudenz and P.M. Zerwas for their fruitful collaboration in the analysis of the QCD corrections to the Higgs coupling to gluons, out of which this program has been built–up. Special thanks go to A. Djouadi and P.M. Zerwas for a critical reading of the manuscript and useful suggestions for the program.
7 Appendix

7.1 Input File

An example of the input file is given by

```
PROCESS: 0 = GG --> H  1 = H --> GG

PROCESS = 0

COLLIDER: 0 = P P  1 = P PBAR

COLLIDER = 0

TOTAL ENERGY: [TEV]

ENERGY = 14.D0

MODEL: 0 = SM  1 = MSSM (TWO-LOOP)  2 = MSSM (ONE-LOOP)  3 = ANY

MODEL = 0

TAN(BETA): (MSSM)

TANBETA = 1.5D0

COUPLINGS: G_B = BOTTOM  G_T = TOP

G_B = 1.D0
G_T = 1.D0

QUARK MASSES: [GEV]

M_B = 5.D0
M_T = 176.D0
```
HIGGS TYPE AND MASS [GEV]: 1 = HEAVY SCALAR 2 = PSEUDOSCALAR
============================= 3 = LIGHT SCALAR

TYPE = 1
M_HIGGS = 200.D0

SCALES: [GEV] MU = MU_1*M_HIGGS + MU_2: RENORMALIZATION SCALE
======
Q = Q_1*M_HIGGS + Q_2: FACTORIZATION SCALE

MU_1 = 1.D0
MU_2 = 0.D0
Q_1 = 1.D0
Q_2 = 0.D0

ORDER OF ALPHA_S: 1 = LO 2 = NLO

LOOP = 2

DEFINITION OF ALPHA_S: 1 = ALPHA_S (M_Z) 2 = BY LAMBDA (N_F)

CHOICE = 1

ALPHA_S (M_Z):

ALPHA_S = 0.118D0

LAMBDA_NF: [GEV] (QCD SCALE)

N_F = 5
LAMBDA = 0.226D0

NUMBER OF EXTERNAL LIGHT FLAVORS: (FOR H --> GG)

N_EXT = 3

VEGAS: ABSERR = ABSOLUTE ERROR
====== POINTS = NUMBER OF CALLS
ITMAX = NUMBER OF ITERATIONS
7.2 Output

7.2.1 Gluon Fusion

VEGAS:
=====
ABSErr = 0.000000E+00
POInts = 10000
ITMax = 5
PRINT = 10

GLUON FUSION: GG --> HIGGS
=========================

P P COLLIDER
============
ENERGY = 14.0000 TEV

LAMBDA_5 = 0.226232 GEV NLO-ALPHA_S (M_Z) = 0.118000
REN-SCALE = 200.000 GEV FAC-SCALE = 200.000 GEV
T-MASS = 176.000 GEV B-MASS = 5.00000 GEV

HIGGS = H
==
M_H = 200.000 GEV
G^H_B = 1.00000 G^H_T = 1.00000
SIG_LO = 6.42484 +- 0.681792E-05 PB
SIG_VIRT = 3.45509 +- 0.366648E-05 PB
SIG_GG = 4.78077 +- 0.466710E-02 PB
SIG_GQ = -0.268282 +- 0.709725E-03 PB
SIG_QQ = 0.182952E-01 +- 0.173479E-04 PB
SIG_NLO = 14.4107 +- 0.472080E-02 PB
7.2.2 Gluonic Decay

VEGAS:
=====

ABSERR = 0.000000E+00
POINTS = 10000
ITERATIONS = 5

HIGGS --> GG
=========

NF_EXT = 3

LAMBDA_5 = 0.226232 GEV
REN-SCALE = 500.000 GEV

T-MASS = 176.000 GEV
B-MASS = 5.00000 GEV

MSSM (2-LOOP): TG(BETA) = 1.50

Z-MASS = 91.187 GEV
W-MASS = 80.330 GEV
NO MIXING
SUSY-SCALE = 1000.0 GEV

HIGGS = H

===

M_H = 500.000 GEV
M_A = 490.788 GEV
G^H_B = 1.47436
G^H_T = -0.691622
GAM_LO = 9.15160 MEV
E_VIRT = 15.2434
E_GGG = 7.68668 +- 0.812334E-04
E_GQQ = -0.972425 +- 0.307239E-04
E_TOT = 20.0128 +- 0.122860E-03
GAM_NLO = 13.9932 +- 0.297226E-04 MEV

References

[1] H. Georgi, S. Glashow, M. Machacek and D. Nanopoulos, Phys. Rev. Lett. 40 (1978) 692.

[2] Z. Kunszt and F. Zwirner, Nucl. Phys. B385 (1992) 3;
V. Barger, M. Berger, S. Stange and R. Phillips, Phys. Rev. D45 (1992) 4128;
H. Baer, M. Bisset, C. Kao and X. Tata, Phys. Rev. D46 (1992) 1067;
J. F. Gunion and L. Orr, Phys. Rev. D46 (1992) 2052;
J. F. Gunion, H. E. Haber and C. Kao, Phys. Rev. D46 (1992) 2907.

[3] A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B264 (1991) 440;
M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Report DESY 94–123 (February 1995), to appear in Nucl. Phys. B.

[4] S. Dawson, Nucl. Phys. B359 (1991) 283;
D. Graudenz, M. Spira and P. M. Zerwas, Phys. Rev. Lett. 70 (1993) 1372;
A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B311 (1993) 255;
M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Phys. Lett. B318 (1993) 347;
R. P. Kauffman and W. Schaffer, Phys. Rev. D49 (1994) 551.

[5] G. P. Lepage, J. Comp. Phys. 27 (1978) 192.

[6] M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127.

[7] R.K. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Nucl. Phys. B297 (1987) 221;
I. Hinchliffe and S. Novaes, Phys. Rev. D38 (1988) 3475;
R. P. Kauffman, Phys. Rev. D44 (1991) 1415 and D45 (1992) 1512;
C. Kao, Phys. Lett. B328 (1994) 420.