The Mu2e Experiment

Cole Kampa
Northwestern University
for the Mu2e Collaboration

New Perspectives 2021
August 19, 2021
Conceptual Overview of Mu2e

- Muon converts to electron in the field of a nucleus
- Does not conserve muon number or electron number -- Charged Lepton Flavor Violation (CLFV)
- (Very) rare process
- An observation of the Mu2e signal process is unambiguous evidence of physics Beyond the Standard Model.
- Discovery experiment capable of improving current limit by factor 10,000
 - Pulsed proton beam
 - High intensity muon beam
 - Accurate momentum measurement

Probability of...	
rolling a 7 with two dice	1.67E-01
rolling a 12 with two dice	2.78E-02
getting 10 heads in a row flipping a coin	9.77E-04
drawing a royal flush (no wild cards)	1.54E-06
getting struck by lightning in one year in the US	2.00E-06
winning Pick-5	5.41E-08
winning MEGA-millions lottery (5 numbers+megaball)	3.86E-09
your house getting hit by a meteorite this year	6.24E-13
drawing two royal flushes in a row (fresh decks)	2.37E-12
your house getting hit by a meteorite today	6.24E-13
getting 53 heads in a row flipping a coin	1.11E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next six months	1.14E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next three months	2.85E-17

Mu2e goal

Current limit
The Mu2e Experiment at Fermilab

- An international collaboration of 237 members from 38 institutions
- Strong early-career presence
 - Young Mu2e group advocates for early-career members (≥30% of collaboration in Young Mu2e)

- US DOE flagship experiment at Fermilab
- Part of the cutting-edge muon campus
Charged Lepton Flavor Violation (CLFV)

- Flavor conservation is interesting
 - Quark mixing ✓
 - Uncharged leptons (neutrino oscillation) ✓
 - Charged leptons ?

- Do charged leptons conserve flavor?
- Many models beyond the Standard Model speculate CLFV within reach of current generation of experiments

"Who ordered that?" - I. I. Rabi
CLFV Landscape: Muons

- Parameterize with EFT terms added to the Lagrangian
 - Loop term
 - Contact term
- Λ mass scale -- Mu2e will probe $\Lambda \sim 10^4$ TeV
- κ tunes relative contribution from each term

\[
\mathcal{L}_{\text{CLFV}} = \frac{m_\mu}{(1+\kappa)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F_{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_\mu e_L \left(\sum_{q=u,d} \bar{q}_L \gamma^\mu q_L \right)
\]

[de Gouvêa and Vogel; arXiv:1303.4097]

[Bernstein and Cooper; arXiv:1307.5787]
CLFV Landscape: Muons

- Parameterize with dimension six EFT terms added to the SM Lagrangian ($\propto 1 / \Lambda^2$)
 - Loop term: e.g. SUSY, heavy ν's ...
 - Contact term: e.g. leptoquarks, heavy Z ...
- Mu2e sensitive to both types of terms
- Λ mass scale -- Mu2e will probe $\Lambda \sim 10^4$ TeV

[Bernstein and Cooper; arXiv:1307.5787]

[see e.g. de Gouvêa and Vogel; arXiv:1303.4097]
Characterizing the Mu2e Signal

- Initial state is a muon in the Coulomb field of an Al nucleus
- The muon interacts coherently with the nucleus
- Final state is a mono-energetic electron with $p \approx m_\mu$
- Measure ratio of signal events to muon capture on the nucleus:

$$R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_\mu + A(Z-1,N)}$$

- Current limit (SINDRUM-II on Au): $R_{\mu e} < 7 \times 10^{-13}$ (90% CL)

(1) Conversion

(2) Muon Capture (61%)
Experimental Design

- Two superconducting solenoids create and manipulate the muon beam, while the third is designed to stop muons and direct electrons to detectors.
- Detectors measure the momentum and energy of outgoing electrons.
Transport Solenoid Critical Lift (August 2021)

https://twitter.com/Mu2eExperiment/status/1423045896305053703
Backgrounds Overview

1. Intrinsic backgrounds -- scale with the number of stopped muons
 a. Muons
 i. Decay-in-Orbit (DIO)
 ⇒ Motivates detector design
 ii. Radiative Muon Capture (RMC)

2. Beam-related backgrounds (formation of muon beam) / prompt backgrounds
 a. Pions
 i. Radiative Pion Capture (RPC)
 ⇒ Motivates beam design (pulsed)
 b. Antiprotons

3. Cosmic ray muons -- scale with detector live-time
Electron Momentum Spectrum

- Run 1 = ~10% of full dataset
- Analysis cuts optimized for mean 5σ discovery
Sensitivity Estimate for Run 1 (10% Data)

Single Event Sensitivity (signal):

\[\text{SES} = 2.7 \times 10^{-16} \]

Median Discovery:

\[R_{\mu e} = 1.1 \times 10^{-15} \]

\[\geq 5 \text{ signal events for a discovery} \]

Upper Limit (90% CL):

\[R_{\mu e} < 5.9 \times 10^{-16} \]

Run 2 will improve discovery potential by x10
Great progress in construction efforts
Lots of areas to contribute
Now is a great time to join Mu2e!
Summary and Outlook

- Mu2e is a flagship discovery experiment under construction at Fermilab.
- Run 1 in 2025-2026 and will improve current limit by x1,000
- Run 2 after LBNF/PIP-II shutdown will improve current limit by x10,000

It is an exciting time for Mu2e. Join us to help answer:

“Who ordered that?”

@Mu2eExperiment @mu2eexperiment https://mu2ewiki.fnal.gov
Backups
What happens next?

- **Mu2e Signal?**
 - **YES**
 - Precision Measurement if necessary
 - **NO**
 - Higher Sensitivity search
 - Measure conversion rate as a function of Z
 - Accelerator Upgrade

![Graphical representation of the decision process](image)
Mu2e II

- Next-generation of Mu2e -- goal of another x10 improvement in discovery potential
- Active in Snowmass 2021
- Expression of Interest: arxiv:1802.02599
Additional Mu2e Measurement: $\mu^- \to e^+$

- Violates lepton flavor and lepton number
- Primary background is RMC
 - Experimental data on RMC is sparse
- Mu2e will make a world-leading measurement in tandem with $\mu^- \to e^-$
Stopping Target

- Annular Al foils
- Optimized to maximize stopped muons and minimize energy loss of outgoing electrons
Tracker

- Metallized mylar straws (>20,000)
- 5 mm diameter
- 15 micron thick walls
- Tungsten sense wire as anode
- ArCO2 gas through straw tubes
Tracker Resolution

momentum resolution at start of tracker (simulation)

Core width = 159 keV/c
Calorimeter

- 1348 CsI crystals (fabrication complete)
- SiPMs for readout
- Aids in Particle ID (momentum + energy measurements)
- Track seeding
Cosmic Ray Muons

- Cosmic ray muons interact in detector material to produce signal-like e^-.
- Active vetoing detector encapsulates Detector Solenoid and half of Transport Solenoid.
- Software veto.
- Without Cosmic Ray Veto, we would see approx. 1 signal-like event per day.
Magnetic Field (TS)

- Charge and momentum selection yields low energy negative muons
- Collimator in middle of TS can be rotated 180° to pass positive muons for calibrations

\[
D[m] = -\frac{Q}{e} \frac{\pi}{0.6B[T]} \frac{P_L^2 + 0.5P_T^2}{P_L[GeV/c]}
\]
Magnetic Field (DS)

- Gradient region to direct electrons from Stopping Target to detectors
- Flat field in Tracker region for momentum measurement (1 T)
Field Mapping System

- DS field measured on discrete cylindrical grid of points
- Model function is fit to data
- 10^{-4} accuracy requirement
Time Window From RPC

- RPC drives live window start time
- End of time window set based on when the next proton pulse arrives