Magnetic phase diagram of the ferromagnetic Kondo-lattice compound CeAgSb$_2$ up to 80 kbar

V. A. Sidorov, E. D. Bauer, N. A. Frederick, J. R. Jeffries, S. Nakatsuji, N. O. Moreno, J. D. Thompson, M. B. Maple, and Z. Fisk

1Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics and Institute For Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, California 92093, USA
3National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
4Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Received 10 February 2003; published 16 June 2003)

Electrical resistivity and ac-calorimetric measurements reveal a complex magnetic phase diagram for single crystals of the ferromagnetic Kondo-lattice compound CeAgSb$_2$ at high pressures up to 80 kbar. The ferromagnetic order at $T_C = 9.6$ K at ambient pressure is completely suppressed at a critical pressure $P_C = 35$ kbar. Another magnetic transition, possibly antiferromagnetic, found above 27 kbar, attains a maximum value $T_N \approx 6$ K at 44 kbar and then appears to be completely suppressed by $\sim 50$ kbar. Thermodynamic and transport measurements in the ferromagnetic state indicate an energy gap $\Delta \sim 30$ K in the spin-wave excitation spectrum at ambient pressure which decreases to $\Delta \sim 10$ K at $P = 30$ kbar. No superconductivity is observed at ambient pressure above $T \sim 0.1$ K, under applied pressure in the ferromagnetic state ($P = 28.5$ kbar), nor in the antiferromagnetic state ($P = 33 – 46$ kbar) above 0.3 K.

DOI: 10.1103/PhysRevB.67.224419 PACS number(s): 71.27.+a, 72.15.–v, 72.15.Qm, 91.60.Gf

I. INTRODUCTION

Magnetically ordered heavy-fermion compounds are particularly interesting because they have revealed unusual states of matter that emerge as their magnetic phase transition is tuned to $T = 0$ K, a quantum-critical point (QCP), by an external parameter such as chemical substitution or pressure. Among these ground states found near the QCP are pressure-induced superconductivity coexisting with antiferromagnetism [e.g., CeRhIn$_5$ (Ref. 1) and CePd$_2$Si$_2$ (Ref. 2)], the coexistence of ferromagnetism and superconductivity (e.g., UGe$_2$ (Refs. 3 and 4) and URhGe (Ref. 5)], and non-Fermi-liquid (NFL) behavior, in which logarithmic or weak power-law behavior $T$ dependencies of the physical properties at low temperatures do not follow those expected for a Fermi liquid.$^6$ $^7$

The magnetic behavior of heavy-fermion compounds is determined qualitatively by a delicate balance between competing Ruderman-Kittel-Kasuya-Yosida (RKKY) and Kondo interactions which give rise to either a magnetically ordered ground state, antiferromagnetic (AFM) or ferromagnetic (FM) due to the oscillatory nature of the RKKY interaction, or a nonmagnetic ground state. The energy scales of these two interactions are governed by the hybridization strength $|N(E_F)|$ between the localized $f$ states and conduction-electron states, i.e., $T_{RKKY} \propto J^2N(E_F)$ and $T_K \propto \exp(-1/[N(E_F)])$, where $J$ is the exchange coupling parameter and $N(E_F)$ is the density of states at the Fermi level $E_F$. For small values of $|N(E_F)|$, the RKKY interaction dominates and the system orders magnetically. As $|N(E_F)|$ increases, the magnetic ordering temperature $T_{mag}$ first increases, passes through a maximum when the Kondo and RKKY energies become comparable, then decreases rapidly as the Kondo interaction dominates.

This theoretical framework, proposed by Doniach some time ago,$^5$ has been applied to a number of Ce- and Yb-based heavy-fermion compounds with reasonable success.$^9$ At the quantum-critical point where the magnetic order is completely suppressed, i.e., $J = J_C$, non-Fermi-liquid behavior is often observed,$^6$ while for $J > J_C$, Fermi-liquid behavior is recovered.

CeAgSb$_2$ is a rare example of a ferromagnetically ordered heavy-fermion compound and presents an opportunity to investigate the physical behavior near a ferromagnetic quantum-critical point. The family of $R$AgSb$_2$ compounds ($R = \text{La–Tm}$) crystallizes in the tetragonal ZrCuSi$_2$-type crystal structure (space group $P4/nmm$) in which the $R$ sites are crystallographically equivalent.$^{10}$ Aside from CeAgSb$_2$, which has a Curie temperature $T_C = 9.6$ K,$^{11}$ all other members of this family order antiferromagnetically at temperatures $T_N = 2$ K and 11 K.$^{11,13}$ Neutron-diffraction experiments reveal that the Ce magnetic moments of CeAgSb$_2$ are aligned along the $c$ axis with a value $\mu = 0.33 \mu_B$/Ce,$^{13}$ in excellent agreement with the saturation moment $\mu_{sat} = 0.37 \mu_B$/Ce determined from magnetization measurements $(H||c)$.$^{12}$ This value of $\mu_{sat}$ is smaller than the value expected in a crystal-field doublet ground state. The magnetic properties are quite anisotropic, with a saturation moment of $\mu_{sat} = 1.1 \mu_B$/Ce for $H \perp c$.$^{12}$ These features are similar to those of the pressure-induced FM superconductor UGe$_2$.$^3$ CeAgSb$_2$ can be considered a moderately heavy-fermion compound: above $T_C$, the electronic specific-heat coefficient $\gamma = C/T \sim 250$ mJ/mol K$^2$, which decreases to $\gamma \sim 65$ mJ/mol K$^2$ as $T \rightarrow 0$ K. This electronic specific heat is consistent with thermopower and inelastic neutron-scattering measurements, suggesting a Kondo temperature $T_K \sim 60$ K.$^{14,15}$ The magnetic ordering temperature of CeAgSb$_2$ decreases with the application of high pressure, as was found in a magnetic-susceptibility study to 7 kbar (Ref. 15), and it is therefore a potential candidate for examining the behavior of superconductivity near a ferromagnetic...
quantum-critical point at higher pressures. In this paper, we report our investigation of electrical resistivity at high pressure up to 80 kbar and ac-calorimetry measurements up to 50 kbar on single crystals of CeAgSb$_2$.

II. EXPERIMENTAL DETAILS

High-quality single crystals of CeAgSb$_2$ were grown in an Sb flux as described in Ref. 12. A starting composition of Ce$_{0.045}$Ag$_{0.091}$Sb$_{0.864}$ was used and the elements were placed in an alumina crucible and sealed in a quartz ampoule. The materials were heated to 1200 °C and kept at that temperature for 12 hr, then slowly cooled to 670 °C at 4 °C hr$^{-1}$, at which point, excess Sb flux was removed in a centrifuge. Any remaining Sb flux was removed with dilute HCl. Typically, which point, excess Sb flux was removed in a centrifuge. Platinum wires comprised of a pyrophyllite gasket and two steatite disks which served as the pressure-transmitting medium. A CeAgSb$_2$ sample was cut and polished to approximate dimensions of 220×250×30 μm. The sample was placed between the two steatite disks in contact with a thin piece of Pb. Platinum wires (0.002-in diameter) were used for electrical contact out of the pyrophyllite gasket. The 10% and 90% values of the Pb transition in the Bridgman cell above 35 kbar were used as a rough measure of the pressure gradient caused by the solid pressure-transmitting medium. A CeAgSb$_2$ sample was cut and polished to approximate dimensions of 220×250×30 μm. The sample was placed between the two steatite disks in contact with a thin piece of Pb. Platinum wires (0.002-in diameter) were used for electrical contact out of the pyrophyllite gasket. The 10% and 90% values of the Pb transition in the Bridgman cell above 35 kbar were used as a rough measure of the pressure gradient caused by the solid pressure-transmitting medium.

Ambient-pressure magnetic measurements were performed in magnetic fields up to 5.5 T from 1.8 to 300 K using a Quantum Design superconducting quantum interference device magnetometer. Specific-heat measurements were carried out in a Quantum Design Physical Properties Measurement System from 0.3 K to 300 K. Three high-pressure cells were used for the electrical resistivity experiments at low temperatures: a clamped piston cylinder, a Bridgman anvil, and a toroidal anvil cell. The latter is a profiled anvil system supplied with a boron-epoxy gasket and Teflon capsule, containing pressure-transmitting liquid, a sample, and a pressure sensor. The pressure in all three cells was determined from the variation of the superconducting transition of lead using the pressure scale of Eiling and Schilling and Bireckoven and Wittig. The Bridgman pressure cell was comprised of a pyrophyllite gasket (internal diameter of 2.0 mm) and two steatite disks which served as the pressure-transmitting medium. A CeAgSb$_2$ sample was cut and polished to approximate dimensions of 220×250×30 μm. The sample was placed between the two steatite disks in contact with a thin piece of Pb. Platinum wires (0.002-in diameter) were used for electrical contact out of the pyrophyllite gasket. The 10% and 90% values of the Pb transition in the Bridgman cell above 35 kbar were used as a rough measure of the pressure gradient caused by the solid pressure-transmitting medium. A CeAgSb$_2$ sample was cut and polished to approximate dimensions of 220×250×30 μm. The sample was placed between the two steatite disks in contact with a thin piece of Pb. Platinum wires (0.002-in diameter) were used for electrical contact out of the pyrophyllite gasket. The 10% and 90% values of the Pb transition in the Bridgman cell above 35 kbar were used as a rough measure of the pressure gradient caused by the solid pressure-transmitting medium.

Another sample grown independently at UCSD (labeled UCSD) was used for resistivity measurements in the piston-cylinder and Bridgman cells. In general, both samples prepared at UCSD and LANL exhibited similar behavior, and differences between the two samples are discussed below.

ac-calorimetric measurements were performed on a single crystal of CeAgSb$_2$ with dimensions of 1×1×0.2 mm mounted in the toroidal pressure cell using fluorinert as the pressure-transmitting medium. A small resistive heater was glued to one side of the sample and the temperature oscillations on the opposite side were probed by a Chromel-Constantan thermocouple and measured by a lock-in amplifier at a frequency twice that of the heater current. Further details of the ac-calorimetric method can be found in Refs. 20–22. The frequency dependence of the thermocouple output voltage was inversely proportional to frequency in the range 1.5–20 Hz (at higher frequencies, temperature oscillations became too small to be measured precisely). An operating frequency of 3 Hz was chosen as a compromise between a higher signal level and sufficiently low heat losses to the surrounding environment. The frequency dependencies measured with the sample in the empty pressure cell and in the cell filled with fluorinert show that the amplitude of the thermocouple output voltage drops by ~50% at all frequencies due to heat losses to surrounding liquid. This effect produces a fictitious increase of the sample heat capacity, which should be, under the condition of small heat losses, simply inversely proportional to the amplitude $T_{ac}$ of temperature oscillations.

Thus, as an approximation, the $1/T_{ac}$ curves have been shifted by a constant $T_{ac}^*$ which was chosen to adjust the relative change of $1/T_{ac}$ vs $T$ from 5 to 18 K to be comparable to the ambient-pressure specific heat of CeAgSb$_2$ measured in a Quantum Design PPMS in this temperature range. After carrying out this procedure, the ratio of the peak value of $1/T_{ac}$ at $T_c=9.6$ K to its value at 10.6 K is close to 3, while this ratio for specific heat measured in the PPMS is about 4.5. It is therefore concluded that this procedure provides at least a semiquantitative evaluation of $C(P,T)$ from our measurements of $1/T_{ac}$ vs $T$ with an accuracy ~30%. The behavior of $1/T_{ac}$ vs $T$ at higher temperatures, between 20 K and 300 K, also reproduces the $C(T)$ curve with this accuracy.

III. RESULTS

A. Ambient-pressure measurements

The temperature-dependent magnetic susceptibility $\chi = M/H$ of CeAgSb$_2$ for both $H || c$ and $H \perp c$ is shown in Fig. 1(a). A sharp increase of $\chi(T)$ below 10 K indicates the onset of ferromagnetism. This is confirmed by magnetization ($M$) measurements at 2 K, as displayed in the inset of Fig. 1(a), in which $M$ quickly saturates to a value $M_{sat} = -0.4\mu_B/\text{Ce}$ for $H || c$. For $H \perp c$, $M(H)$ increases linearly up to $H = 3$ T, then saturates to a value $M_{sat} = -1.1\mu_B/\text{Ce}$; similar behavior has been observed previously. Above 100 K, the magnetic susceptibility follows a Curie-Weiss law with an effective moment $\mu_{eff} = 2.46\mu_B$ (2.48$\mu_B$) and a Curie-Weiss temperature $\theta_{CW} = -55$ K (5 K) for $H || c$ ($H \perp c$).
The specific heat $C$, plotted as $C/T$ versus $T$, of CeAgSb$_2$ is shown in Fig. 1(b), along with $C/T$ of LaAgSb$_2$, and the $4f$ contribution $C_{4f}/T=C(CeAgSb$_2$)$ of CeAgSb$_2$ occurring at $T_C=9.6$ K; the magnetic entropy $S_{mag}$ integrated over the $4f$ contribution $S_{mag}$ is $\approx R\ln2$, indicating a doubling of the ground state of Ce at $T = 5/2$ in the tetragonal crystalline electric field (CEF). (A tetragonal CEF will split the $J = 5/2$ multiplet into three doublets.) Recent thermal-expansion measurements and specific-heat measurements suggest the first and second CEF excited states to be at $\Delta_1 \approx 50$ K and $\Delta_2 \approx 140$ K above the ground state, in agreement with inelastic neutron-scattering measurements which reveal peaks at 5.1 meV and 12.4 meV. The specific-heat data presented here are consistent with this CEF energy-level scheme. Another specific-heat anomaly is present at $T = 1.0$ K (inset of Fig. 1(b)), but the tiny amount of entropy in this transition suggests that it is due to an impurity phase, excluding CeAg or CeSb$_2$, which have ordering temperatures of 5 K and 15 K, respectively. A feature associated with this possible impurity phase is also observed in the electrical resistivity in CeAgSb$_2$ (LANL 161), but not in the sample prepared at UCSD, and is discussed below. The electronic specific-heat coefficient extrapolated to $T = 0$ K is $\gamma \approx 65$ mJ/molemol K$^2$, in good agreement with results obtained from polycrystalline samples. In the ferromagnetic state, the $4f$ contribution to the specific heat of CeAgSb$_2$ was fit by the expression

$$C_{4f} = \gamma T + C_{gap},$$

where $C_{gap} = B(\Delta^2/\sqrt{T} + 3\Delta/\sqrt{T} + 5T^{3/2})e^{-\Delta/T}$

describes the contribution due to a FM spin-wave excitation spectrum with an energy gap $\Delta$ (with a constant $B$) and $\gamma T$ is the usual electronic term. Fits of the data to Eq. (1) between 0.4 K < $T$ < 8 K yield $\gamma = 100$ mJ/molemol K$^2$ and $\Delta = 18$ K as shown in Fig. 2. Similar exponential gaplike behavior is observed in the electrical resistivity discussed below and also in thermal-expansion measurements which imply a somewhat smaller energy gap $\Delta = 5.3$ K below 10 K.

### B. Electrical resistivity

The temperature dependence of the electrical resistivity $\rho(T)$ of CeAgSb$_2$ at ambient pressure (Fig. 3) is typical of a Kondo-lattice system. The resistivity exhibits a broad minimum around 200 K followed by a pronounced maximum at $T = 17.5$ K. Similar behavior has been observed in other heavy-fermion systems, such as CeAgCu$_4$, CeRu$_2$Ge$_2$, and CeCoIn$_5$. A sharp drop in $\rho(T)$ of CeAgSb$_2$ occurs at $T_C = 9.6$ K at the onset of ferromagnetic order. Well below the magnetic transition, the resistivity approaches a value $\rho_0 \approx 0.2 \mu\Omega cm$ at 1 K. The residual resistivity ratio (RRR) [RRR = $\rho(300$ K)/$\rho(1$ K)] for both samples is quite large, RRR(LANL 161) = 480 and RRR(UCSD) = 285, indicating the high quality of the single crystals. Upon application of pressures up to 80 kbar, the overall shape of the $\rho(T)$ curves does not change significantly; the maximum in the resistivity sharpens with pressure and shifts slightly, while the minimum flattens and moves to higher temperatures. Figure 4 shows the low-temperature behavior of the resistivity of CeAgSb$_2$ at various applied pressures. The kink in $\rho(T)$ at $T_C = 9.6$ K at $P = 0$, corresponding to the Curie temperature, is suppressed to $T_C \approx 2.4$ K at $P = 32.6$ kbar [Fig. 4(a)], although the magnetic transitions are somewhat broader. The critical pressure for the suppression of ferromagnetism in CeAgSb$_2$ is estimated to be $P_C \approx 35$ kbar. The

---

**FIG. 1.** (a) Magnetic susceptibility $\chi$ versus temperature $T$ of CeAgSb$_2$ in a magnetic field $H = 0.1$ T for $H \parallel c$ (squares) and $H \perp c$ (circles). Inset: Magnetization $M$ versus $H$ at $T = 2$ K. (b) Specific heat divided by temperature $C/T$ versus $T$ of CeAgSb$_2$ (circles), LaAgSb$_2$ (dashed line), and the $4f$ contribution $C_{4f}/T = [C(CeAgSb$_2$)]/T$ (triangles). Inset: $C(T)/T$ of CeAgSb$_2$ showing the presence of another transition at $T \sim 1$ K, possibly due to an impurity phase.

**FIG. 2.** Fit of a spin-gap model to the $4f$ contribution to the specific heat $C_{4f}(T)$ as discussed in the text.

$$C_{4f} = \gamma T + C_{gap},$$

where $C_{gap} = B(\Delta^2/\sqrt{T} + 3\Delta/\sqrt{T} + 5T^{3/2})e^{-\Delta/T}$

**FIG. 4.** The low-temperature behavior of the resistivity of CeAgSb$_2$ at various applied pressures. The kink in $\rho(T)$ at $T_C = 9.6$ K at $P = 0$, corresponding to the Curie temperature, is suppressed to $T_C \approx 2.4$ K at $P = 32.6$ kbar [Fig. 4(a)], although the magnetic transitions are somewhat broader. The critical pressure for the suppression of ferromagnetism in CeAgSb$_2$ is estimated to be $P_C \approx 35$ kbar.
and the specific heat is assumed, the ferromagnetic transition is second-order-like for \( T_C \) with pressure is clearly visible as a jump in the temperature derivative of the resistivity \( dp/dT \) as shown in Fig. 5 (LANL 161). If a close relationship between \( dp/dT \) and the specific heat is assumed, the ferromagnetic transition is second-order-like for \( P < 27 \) kbar (Fig. 5) but sharpens considerably with increasing pressure for \( P = 27 - 33 \) kbar, indicating a first-order-like FM transition. A difference between the cooling and heating \( \rho(T) \) curves of \( \sim 30 - 100 \) mK below 2.2 K (at which point the thermal conductivity of the superfluid \(^4\)He is essentially infinite) is also observed; however, the present experimental conditions preclude any definite conclusions to be drawn from this possible hysteresis. It is significant, however, that very close to \( P_C \) \((P = 33.6 \) kbar in Fig. 5), \( dp/dT \) becomes broad suggesting that the transition is driven to be second order as \( P \rightarrow P_C \), which is predicted theoretically for a clean itinerant ferromagnet. A small change in slope of the \( \rho(T) \) curves occurs at \( T \sim 1 \) K in CeAgSb\(_2\) (LANL 161), corresponding to ordering of a possible impurity phase, and does not change significantly with pressure up to 44 kbar.

In the pressure range between 27 kbar and 33 kbar, a decrease in \( \rho(T) \) is found at \( T_{mag} \sim 4 \) K, indicating the presence of another phase transition in addition to the ferromagnetism, which also appears as a shoulder in \( dp/dT \) (Fig. 5). This second magnetic phase is conjectured to be antiferromagnetic since the lattice parameters of CeAgSb\(_2\) at \( P \sim 25 \) kbar (assuming a bulk modulus of \( \sim 1 \) Mbar) are close to those of PrAgSb\(_2\) which has a Néel temperature \( T_N \) = 6 K. The first-order-like behavior between 27 kbar and 33 kbar could also be caused by the transition from an antiferromagnetic to a ferromagnetic state. Below \( P_C \), the Néel state is manifest as a shoulder in \( dp/dT \); but for \( P \geq P_C \), the resistivity anomaly is more pronounced and \( dp/dT \) at \( T_N \) is a maximum near \( P_C \) (see inset of Fig. 5) before decreasing at higher pressures. From these data, the Néel temperature of CeAgSb\(_2\) is roughly constant for 27 kbar \(< P < P_C \), increases with increasing pressure to \( T_N \sim 6 \) K at \( P = 44.1 \) kbar (inset of Fig. 5), then is rapidly suppressed above 45 kbar. ac-calorimetry measurements above 27 kbar provide further evidence for a second phase transition as discussed in Sec. III C. Measurements of CeAgSb\(_2\) (UCSD) at ambient pressure did not reveal any signs of superconductivity down to \( T \sim 0.1 \) K where the resistivity became too small to detect within the capabilities of the experiment. In addition, no superconductivity was observed above 0.3 K in the ferromagnetic state \((P = 28.5 \) kbar) or in the antiferromagnetic state \((P = 33.2, 40, \) and 46 kbar) \( [\text{Fig. 4(b)}] \).

The low-temperature electrical resistivity of CeAgSb\(_2\) was fit by the Fermi-liquid expression

\[
\rho(T) = \rho_0 + AT^2, \tag{3}
\]
as shown in Fig. 6(a). In the ferromagnetic state, the temperature range of these fits is limited to 1 K < T < 2 K, but the upper T range increases to 3–4 K in the AFM state. Both \( \rho_0 \) and \( A \) exhibit a sharp maximum at \( P = 33.6 \) kbar [Figs. 7(a) and 7(b)], increasing by two and three orders of magnitude compared to the ambient-pressure values, respectively. The results are consistent with previous measurements on CeAgSb\(_2\). The maxima in \( \rho_0 \) and \( A \) appear to be ubiquitous for heavy-fermion materials in the vicinity of the QCP. Recent work by Miyake and Maebashi\(^{34} \) provides an explanation for the large increase in \( \rho_0 \) near the QCP based on valence fluctuations; however, it is unclear whether this theory applies to CeAgSb\(_2\). At ambient pressure, the ratio of \( A \) to the square of the electronic specific-heat coefficient \( \gamma^2 \) yields \( A/\gamma^2 = 1.7 \times 10^{-5} \) \( \mu \Omega \) cm(mol K/mol K\(^2 \))\(^2 \), using \( \gamma = 65 \) mJ/mol K\(^2 \) and \( A = 0.071 \) \( \mu \Omega \) cm, in agreement with the Kadowaki-Woods relation.\(^{35} \) Assuming the Kadowaki-Woods relation holds under applied pressure, as has been observed, for instance, in the ferromagnetic superconductor UGe\(_2\),\(^{4,36} \) the \( T = 0 \) K Sommerfeld coefficient monotonically increases to \( \gamma \sim 0.5 \) J/mol K\(^2 \) at \( P = 32.6 \) kbar before jumping to \( \gamma \sim 1.3 \) J/mol K\(^2 \) at \( P = 33.6 \) kbar where \( \Delta \) = 0.9 mK.

The electrical resistivity of CeAgSb\(_2\) in the ferromagnetic state can be fit over a much wider temperature range by the expression

\[
\rho(T) = \rho_0 + AT^2 + DT \Delta^{-1}(1 + 2T \Delta^{-1})e^{-\Delta/T},
\]

by including, besides the Fermi-liquid \( T^2 \) term, the contribution due to an energy gap in the magnon dispersion relation.\(^{37} \) In Eq. (4), \( D \) involves the electron-magnon and the spin-disorder scattering and \( \Delta \) is the magnitude of the gap. Fits to Eq. (4) are shown in Fig. 6 \[ \rho_0 \] has been fixed to the value obtained from Eq. (3) discussed above. The \( T^2 \) coefficient \( A \) increases by nearly an order of magnitude at \( P \sim 30 \) kbar, similar to the results obtained from the \( T^2 \) fits described above, whereas, the gap energy decreases from \( \Delta \sim 30 \) K at ambient pressure to \( \Delta \sim 10 \) K at \( P \sim 30 \) kbar [Fig. 7(c)]. Ambient-pressure specific-heat measurements yield a similar value of \( \Delta \) as discussed above. The fit results obtained from the \( \rho(T) \) measurements of CeAgSb\(_2\) (UCSD) are in quantitative agreement with those of CeAgSb\(_2\) (LANL 161), however, the sharp maxima of \( \rho_0 \) and \( A \) found in the LANL data (Fig. 7) are not observed. One possible reason for this discrepancy is that the critical pressure in CeAgSb\(_2\) (UCSD) is slightly higher than in CeAgSb\(_2\) (LANL 161) causing the sharp maxima in \( A \) and \( \rho_0 \) to fall in between the data at \( P = 33.2 \) kbar and 40 kbar. At the highest pressure of \( P = 77 \) kbar, a fit of the data to Eq. (3) was not successful; however, the data could be fit by the power-law expression \( \rho - \rho_0 = A’T^m \) over a limited temperature range 1.0 K < \( T \) < 2.3 K, yielding \( A’ = 34 \) \( \mu \Omega \) cm/K\(^2 \) and \( n = 0.8 \). Further measurements in this pressure range are in progress to determine if this non-Fermi-liquid behavior persists to lower temperatures.

C. \textit{ac} Calorimetry

Figure 8 displays the inverse of the temperature oscillations 1/\( T_{ac} \) vs \( T \) obtained at different pressures up to 36.5 kbar. The right vertical axis shows the scale for the approximate heat-capacity values after performing the calibration procedure described in Sec. II to the ambient-pressure \( C(T) \) data. The peak in the specific heat due to the ferromagnetic ordering at \( T_c \) shifts to lower temperatures with increasing pressure. The height and shape of the peak are similar at 1 bar and 6.8 and 16.6 kbar. The transition temperatures at 27 kbar (not shown) and 31.2 kbar are nearly the same and close
to 4 K, which corresponds well to the appearance of a shoulder at 4 K in the $dP/dT$ curves. The specific-heat jump at these two pressures is smaller than at 16.6 kbar and the transitions appear to be somewhat broader. At higher pressures, the peak height increases again at 34.2 kbar (not shown) and 36.5 kbar where the (AFM) magnetic transition shifts to higher temperatures, resembling the pressure dependence of the anomalies associated with antiferromagnetism in the $dP/dT$ curves. The shape of the heat-capacity peak is more symmetric at these two highest pressures and differs from that at low $P$ where ferromagnetic order sets in. We are unable to observe any sharpening of the magnetic transitions in these specific-heat measurements above 27 kbar due to a first-order AFM to FM transition, the proximity to the QCP, or the presence of two transitions in the coexistence region, primarily because the ac-calorimetric method is not well suited for studies of first-order transitions.\(^{21}\) the ac-calorimetry method only detects the reversible part and hence, the latent heat associated with the first-order transition will be less than the true value if some part of the system is irreversible. The magnetic entropy associated with both the ferromagnetic and possible antiferromagnetic transitions is approximately equal. This suggests that the second pressure-induced magnetic transition (AFM) is a bulk effect.

**IV. DISCUSSION**

The pressure-temperature ($P$-$T$) phase diagram of CeAgSb$_2$, obtained from analysis of resistivity and specific-heat data at high pressure is depicted in Fig. 9(a). Three main regions are indicated, corresponding to a high-temperature paramagnetic (PM) state, a ferromagnetic (FM) state, and a presumably antiferromagnetic (AFM) state. The ferromagnetism at $T_C=9.6$ K at ambient pressure is completely suppressed at an estimated critical pressure $P_C\approx35$ kbar. As shown by the solid curve in Fig. 9(a), the $P$ dependence of the Curie temperature follows a power law $T_C\propto|P-P_C|^\beta$ with $P_C=35(1)$ kbar and $\beta$ has the mean-field value 0.5(1). There is evidence for the coexistence of a ferromagnetic phase and another magnetic phase (AFM) between 28 and 33 kbar, suggesting a tricritical point at $P=27$ kbar. Once the ferromagnetism is suppressed, the Néel temperature increases from $T_N\approx4$ K at $P=35$ kbar to $\sim6$ K at 44.1 kbar, the highest pressure of the LANL 161 measurements. Experiments on CeAgSb$_2$ (UCSD) reveal a similar evolution of the Curie temperature with pressure and an initial increase of $T_N$ above 33 kbar [Fig. 9(a)]. The Néel temperature drops to a value $T_N\approx0.5$ K at $P=46(6)$ kbar in this sample, suggesting that the critical pressure for the complete suppression of this magnetic phase is $\sim50$ kbar. This estimate is consistent with a linear fit to $\Delta(P)$ [Fig. 7(c)] which shows that $\Delta \rightarrow 0$ K at $\sim47$ kbar. A recent investigation\(^{23}\) of the electrical resistivity of CeAgSb$_2$ under pressure of up to 42 kbar reveals a somewhat different phase diagram than the one presented here (Fig. 9). In this study, Nakashima and co-workers\(^{23}\) found a similar suppression of ferromagnetism, with $P_C=33$ kbar and $\beta=0.38$, but no evidence for the second phase transition between 27 kbar $\leq P < 50$ kbar perhaps due to quasihydrostatic conditions in their pressure cell. However, the decrease in $\rho$ at $\sim1$ K at $P=36$ kbar and 42 kbar (e.g., Fig. 3 of Ref. 23) may be related to this second high-pressure phase transition rather than the onset of superconductivity as the authors suggest.

In heavy-fermion/Kondo-lattice systems, a crossover occurs from a high-temperature local moment regime to a...
strongly interacting Fermi-liquid regime at low $T$ as the conduction electrons hybridize with the localized $f$ electrons, giving rise to a maximum in the resistivity at $T_{\text{max}}$. The temperature scale of this maximum in $\rho(T)$ is a rough measure of the Kondo temperature $T_{\text{max}} \times T_K$ and is also related to the renormalized energy scale of the low-$T$ Fermi-liquid properties which are manifest, for instance, in the $T^2$ behavior of the resistivity [$\rho(T) \sim T^2$], i.e., $T_{\text{max}} \propto A^{-1/2}$. For Ce-based heavy-fermion compounds, $T_{\text{max}}$ is expected to increase with pressure since the exchange coupling parameter increases with $P$ ($dJ/dP > 0$). If the material has a magnetic ground state, the magnetic ordering temperature is eventually suppressed with applied pressure due to the increased strength of the Kondo interaction over the RKKY interaction. The magnetic phase diagram of CeAgSb$_2$ is more complex than that of a typical Kondo-lattice compound. The appearance of a new magnetic phase under pressure and the coexistence of this magnetic phase with ferromagnetism over a narrow pressure range are in contrast to the behavior of heavy-fermion compounds such as CeIn$_3$ and CePd$_2$Si$_2$ in which the single magnetic ordering temperature is suppressed with $P$. The nominally ferromagnetic structure at $H=0$ and $P=0$ in CeAgSb$_2$, with a linear $H$ dependence of the magnetization below $H=3$ T followed by saturation at $M_s \approx 1.1 \mu_B$/Ce above 3 T, suggests a more complex magnetic structure that may be easily influenced by magnetic field and pressure. As the Kondo effect increases the exchange parameter $\beta$ with pressure, the Curie temperature is suppressed to $T=0$ K at which point strong fluctuations produce a sharp maximum in $\rho$ and $\rho_0$. These fluctuations associated with the FM critical point also influence the Néel temperature giving rise to a minimum in $T_N(P)$ close to $P_C \approx 35$ kbar. These results are in striking contrast to the behavior of another heavy fermion compound CeRu$_2$Ge$_2$ which exhibits the coexistence of antiferromagnetism ($T_N = 8.5$ K, at ambient pressure) and ferromagnetism ($T_C = 7.4$ K). In CeRu$_2$Ge$_2$, there is no divergence in $\rho$ or $\rho_0$ at the FM critical point; moreover, there is no anomaly in $T_N(P)$ at which the Curie temperature is suppressed to $T=0$ K. The increase in $\beta$ with additional $P$ in CeAgSb$_2$, reflected in the increase of $T_{\text{max}}$ above 40 kbar, apparently also causes the eventual suppression of the AFM state at $\sim 50$ kbar.

The complexity of magnetic interactions in CeAgSb$_2$ is reflected in the pressure dependence of $T_{\text{max}}$ as shown in Fig. 9(b). $T_{\text{max}}$ initially decreases with increasing pressure and exhibits a local minimum at around 20 kbar before assuming the expected monotonic increase at pressures above 40 kbar. A similar initial decrease of $T_{\text{max}}$ with $P$ occurs in the Ce-based heavy-fermion compound CeRhIn$_5$. A sharp minimum of $T_{\text{max}}$ is found close to the FM QCP at $P_C = 35$ kbar. The maximum in the $T^2$ coefficient $A$ and the minimum of $T_{\text{max}}$ occur at the same pressure $P = 33.6$ kbar and their behavior is qualitatively consistent with the two quantities being related to the Kondo temperature $T_{\text{max}} \propto A^{-1/2} \times T_K$. The Néel temperature is also suppressed at $P = 33.6$ kbar and increases when $T_{\text{max}}$ increases again above 40 kbar. It is quite unusual to have such a low value of $T_{\text{max}} = 10$ K; in particular, the value of $T_{\text{max}}$ is very close to the magnetic ordering temperature over an extended pressure range. It is conceivable that the evolution of $T_{\text{max}}(P)$ is influenced by quantum-critical fluctuations in the vicinity of the quantum critical point. Another possible interpretation is that variation of $T_{\text{max}}$ with $P$ could be due to the influence of a low-lying crystalline electric field level above the ground state of comparable magnitude to $T_{\text{max}} \sim 10$ K while there is evidence of a CEF level at $\Delta_1 \sim 50$ K. The expected low-$T$ anomalies in the electrical resistivity and specific heat as this CEF level changes with pressure are not observed. Moreover, a second, broad maximum in $\rho$ at $\sim 75$ K at $P = 46$ kbar and $\sim 100$ K at $P = 77$ kbar [Fig. 3(b)] and the increase of the minimum in $\rho$ at $P = 35$ kbar and possible NFL behavior at higher pressures.

**V. CONCLUSIONS**

The magnetic phase diagram of the Kondo-lattice material CeAgSb$_2$ has been investigated at high pressures to 80 kbar and low temperatures by means of electrical resistivity and ac-calorimetry measurements. The ferromagnetism is suppressed at a critical pressure $P_C = 35$ kbar, while a new magnetic phase (possibly antiferromagnetic) appears above 27 kbar. The ordering temperature of this second phase reaches a maximum value $T_{\text{N}} \sim 6$ K at 44 kbar before being suppressed at an estimated critical pressure of $\sim 50$ kbar. Superconductivity is not observed in the pressure range $P = 28$ kbar down to $T = 0.3$ K. While there is some evidence of critical phenomena, namely, a divergence of the $T^2$ coefficient of the electrical resistivity $A$, no sign of non-Fermi-liquid behavior is found near the ferromagnetic quantum-critical point, possibly due to the presence of the antiferromagnetic phase. It is interesting that a nonsuperconducting but ordered phase emerges near the ferromagnetic QCP. If, indeed, this high-pressure magnetic phase in...
CeAgSb$_2$ is found to be antiferromagnetic, as we believe it is, it suggests that finite-$q$ excitations can exist near a FM QCP and perhaps play a role in mediating Cooper pairing even in nominally ferromagnetic systems.

ACKNOWLEDGMENTS

We would like to thank V. S. Zapf and P.-C. Ho for carrying out the measurements in the dilution refrigerator. Work at UCSD was supported by the National Science Foundation under Grant No. DMR-00-72125 and by the Department of Energy under Grant No. DE-FG03-86ER-45230. Work at LANL was performed under the auspices of the US DOE Office of Sciences. Work at NHMFL/FSU was supported by the National Science Foundation under Grant No. DMR-02-03214. One of us (V.A.S.) acknowledges the support of Russian Foundation for Basic Research (Grant No. 03-02-17119).

*On leave from Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Russia.

†Present address: Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

1 H. Hegger, C. Petrovic, E. G. Moshopoulos, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).

2 N. D. Mathur, F. M. Groche, S. R. Julian, I. R. Walker, D. M. Freyer, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature (London) 394, 39 (1998).

3 S. S. Saxena, P. Agawal, K. Ahilan, F. M. Groche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikhin, D. Braithwaite, and J. Flouquet, Nature (London) 406, 587 (2000).

4 E. D. Bauer, R. P. Dickey, V. S. Zapf, and M. B. Maple, J. Phys.: Condens. Matter 13, L759 (2001).

5 D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature (London) 413, 613 (2001).

6 See various papers, in Proceedings of the Institute for Theoretical Physics Conference on Non-Fermi Liquid Behavior in Metals, Santa Barbara, 1996, edited by P. Coleman, M. B. Maple, and A. J. Millis [J. Phys.: Condens. Matter 8 (1996)].

7 G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

8 S. Doniach, Physica B 91, 231 (1977).

9 J. D. Thompson and J. M. Lawrence, Handbook on the Physics and Chemistry of the Rare Earths, edited by K. A. Gschneidner Jr., L. Eyring, G. H. Lander, and G. R. Choppin (North-Holland, Amsterdam, 1994), Vol. 19, Chap. 133, p. 383.

10 O. Sologub, H. Noël, A. Leith-Jasper, P. Rogl, and O. I. Bodak, J. Solid State Chem. 115, 441 (1995).

11 O. Sologub, K. Hiebl, P. Rogl, H. Noël, and O. I. Bodak, J. Alloys Compd. 210, 153 (1994).

12 K. D. Myers, S. L. Bud’ko, I. R. Fisher, Z. Islam, H. Kleinke, A. H. Lacerda, and P. C. Canfield, J. Magn. Magn. Mater. 205, 27 (1999).

13 G. André, F. Bourée, M. Kolenda, B. Lesniewska, A. Oleś, and A. Szytula, Physica B 292, 176 (2000).

14 M. Houshiar, D. T. Adroja, and B. D. Rainford, J. Magn. Magn. Mater. 140-144, 1231 (1995).

15 M. J. Thornton, J. G. M. Armitage, G. J. Tomka, P. C. Riedl, R. H. Mitchell, M. Houshiar, D. T. Adroja, B. D. Rainford, and D. Fort, J. Phys.: Condens. Matter 10, 9485 (1998).

16 J. Wittig, Z. Phys. 195, 215 (1966).

17 L. G. Khvostantsev, V. A. Sidorov, and O. B. Tsiok, Properties of Planet and Planetary Bodies, edited by M. H. Manghnani and T. Yagi (American Geophysical Union, Washington, D.C., 1998), p. 89, Geophysical Monograph 101.

18 A. Eliing and J. S. Schilling, J. Phys. F: Met. Phys. 11, 623 (1981).

19 B. Bireckoven and J. Wittig, J. Phys. Earth 21, 841 (1988).

20 X. Chen, A. S. Perel, J. S. Brooks, R. P. Guertin, and D. G. Hinks, J. Appl. Phys. 73, 1886 (1993).

21 F. Bouquet, Y. Wang, H. Wilhelm, D. Jaccard, and A. Junod, Solid State Commun. 113, 367 (2000).

22 A. Demuer, C. Marcenat, J. Thomasson, R. Calemzuczuk, B. Salce, R. Lejay, D. Braithwaite, and J. Flouquet, J. Low Temp. Phys. 120, 245 (2000).

23 M. Nakashima, S. Kiriti, R. Asai, T. Kobayashi, T. Okubo, M. Yamada, A. Thamizhavel, Y. Inada, R. Settai, A. Galatanu, E. Yamamoto, T. Ebihara, and Y. Ōnuki, J. Phys.: Condens. Matter 15, L11 (2003).

24 D. T. Adroja, P. C. Riedl, J. G. M. Armitage, and D. Fort, cond-mat/0206505 (unpublished).

25 T. Takeuchi, A. Thamizhavel, M. Yamada, N. Nakamura, T. Yamamoto, Y. Inada, K. Sugiyama, A. Galatanu, E. Yamamoto, K. Kindo, T. Ebihara, and Y. Ōnuki, Phys. Rev. B 67, 064403 (2003).

26 D. T. Adroja et al. (unpublished).

27 Y. Muro, N. Takeda, and M. Ishikawa, J. Alloys Compd. 257, 23 (1997).

28 B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: The Magnetic Heavy Rare-Earths, edited by B. Coqblin (Academic, New York, 1977).

29 J. D. Thompson, H. A. Borges, Z. Fisk, S. Horn, R. D. Parks, and G. L. Wells, in Theoretical and Experimental Aspects of Valence Fluctuations, Proceedings of the Fifth International Conference on Valence Fluctuations, Bangalore, India, January 5–9, 1987, edited by L. C. Gupta and S. K. Malik (Plenum, New York, 1987), pp. 151–158.

30 J. D. Thompson, Y. Uwatoko, T. Graf, M. F. Hundley, D. Mandrus, C. Godart, L. C. Gupta, P. C. Canfield, A. Migliori, and H. A. Borges, Physica B 199&200, 589 (1994).

31 C. Petrovic, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, J. D. Thompson, and Z. Fisk, J. Phys.: Condens. Matter 13, L337 (2001).

32 M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).

33 D. Belitz and T. R. Kirkpatrick, Phys. Rev. Lett. 89, 247202 (2002).

34 K. Miyake and H. Maebashi, J. Phys. Soc. Jpn. 71, 1007 (2002).

35 K. Kadowaki and S. B. Woods, Solid State Commun. 58, 307 (1986).

36 R. Vollmer, C. Pfleiderer, H. v. Lohneysen, E. D. Bauer, and M. B. Maple, Physica B 312-313, 112 (2002).
37 N. H. Andersen, Crystalline Field and Structural Effects in f-Electron Systems, edited by J. E. Crow, R. P. Guertin and T. W. Mihalisin (Plenum, New York, 1980), p. 373.

38 H. Wilhelm, K. Alami-Yadri, B. Revaz, and D. Jaccard, Phys. Rev. B 59, 3651 (1999).

39 S. Süßow, M. C. Aronson, B. D. Rainford, and P. Haen, Phys. Rev. Lett. 82, 2963 (1999).

40 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

41 T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995), and references therein.

42 G. G. Lonzarich, in Electron, edited by M. Springford (Cambridge University, Cambridge, England, 1997).

43 A. J. Millis, Phys. Rev. B 48, 7183 (1993).

44 C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Phys. Rev. B 55, 8330 (1997).