Biofilm
Ablacja z zębów i implantów

Rekonstrukcja
Złamania poddziąsłowe

Chirurgia
Ziarniniak olbrzymiokomórkowy
od wydawcy
Wiedza, zrozumienie i nauka od podstaw! 4

biofilm bakteryjny
Aktywność in vitro lasera Er:YAG na biofilmie w porównaniu z innymi metodami leczenia – ablacja z powierzchni implantów i zębów 6
Sigrun Eick, Ivan Meier, Florian Spoerle, Philip Bender, Akira Aoki, Yuichi Izumi, Giovanni E. Salvi, Anton Sculean

rekonstruacji
Wspomagana laserowo odbudowa zęba złamanego poddziąsłowo 18
Piotr Roszkiewicz

chirurgia
Usunięcie obwodowego ziarniniaka olbrzymiokomórkowego za pomocą lasera diodowego 26
Maziar Mir, Masoud Mojahedi, Jan Tunér, Masoud Shabani

study
Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses 32
Nejc Lukač, Matija Jezeršek

Informacje
0 wydawcy 48

Zdjęcie na okładce dzięki uprzejmości firmy BTL Polska Sp. z p.o.
Wiedza, zrozumienie i nauka od podstaw!

Nowoczesna stomatologia to już nie tylko ta oglądana podczas prezentacji na zagranicznych kongresach i sympozjach, choć ich wartości nie sposób przecenić. Zaawansowane urządzenia, technologie i metody znane są polskim lekarzom również z krajowych klinik i ośrodków. Także wiedza dostępna podczas konferencji naukowych, odbywających się w Polsce, w niczym nie ustępuje tej prezentowanej w odległych krajach. Tym bardziej, że do nas przyjeżdżają wielu wykładowców i ekspertów z zagranicy, a polscy praktycy dzielą się swoją wiedzą i doświadczeniem z kolegami za granicą – w wielu dziedzinach, także w stomatologii laserowej.

Grupa zwolenników laserów w stomatologii i lekarzy-praktyków rośnie z miesiąca na miesiąc, kolejni nie przekonani, bacznie obserwując innych, przekonują się sami. Najlepszą recomendacją pozostają opinie użytkowników – tych, którzy zaczynali „laserową przygodę” jako pierwsi, a dziś są ekspertami w tym zakresie. „Dla mnie lasery to przyszłość i trzeba nauczyć się nimi pracować” – twierdzi prof. Marzena Dominiak, prezydent Polskiego Towarzystwa Stomatologicznego. „Laser pomaga mi niemal we wszystkich procedurach klinicznych, od początku zachwycił mnie ideą pracy i możliwościami” – mówi dr n. med. Michał Nawrocki, właściciel Nawrocki Clinic w Gdańsku, implantolog, pionier stomatologii laserowej na Pomorzu. „Nie czekajcie ani chwili dłużej! Dziel się, aby podać ją jak najszybciej!” – dodaje Piotr Roszkiewicz, właściciel Klinik „Na Brzozowej” w podwarszawskich Laskach, przy której działa także Laser And Health Academy.

Wszyscy – zarówno, początkujący, jak i zaawansowani w swym doświadczeniu lekarze-dentyści, praktykujący w sferze stomatologii laserowej – potrzebne jest doświadczenie w postępowaniu i obchodzeniu się z nim – wówczas praca staje się szybsza i przystosowania są łatwiejsze i, co najważniejsze, przewidywalna. W przypadku leczenia przy pomocy laserów istotna jest wiedza i zrozumienie jego działania – dodaje dr Michał Nawrocki.

Niniejszym przekazujemy Państwu kolejną porcję wiedzę na temat laserów i ich zastosowania w stomatologii, zapraszając do lektury kolejnego wydania polskiej edycji kwartalnika laser.
Zaprasza na szkolenie z dr Michałem Nawrockim:

„Praktyczne zastosowanie lasera Fotona Lightwalker Er.YAG i Nd:YAG w procedurach klinicznych.”

Czego się dowiesz?

• Zasady działania i budowa laserów.
• Na czym polega zjawisko absorpcji promieni lasera o długości fali 1064 nm (laser Nd:YAG) oraz 2940 nm (laser Er:YAG).
• Na czym polega selektywna praca laserem podczas ablacji i waporyzacji tkanki.
• Jakie są mechanizmy zjawiska fotobiomodulacji laserowej.
• Jakie są korzyści wynikające z zastosowania laserów.
• Do jakich procedur leczniczych należy wybrać laser Nd:YAG, a kiedy lepiej zastosować Er:YAG?

Czego się nauczysz?

• Samodzielnej pracy laserem Nd:YAG i Er:YAG przy zabiegach na preparatach zwierzęcych.
• Jak jest różnica w pracy włóknem 300um (Nd:YAG), a końcówką H14 kontaktową i H02 bezkontaktową (Er:YAG).
• W jaki sposób zmieniając parametry pracy wpływamy na uzyskany efekt.

Co zobaczysz?

• Różnorodne zabiegi na żywo z udziałem pacjentów.
Aktywność in vitro lasera Er:YAG na biofilmie w porównaniu z innymi metodami leczenia – ablacja z powierzchni implantów i zębów

Sigrun Eick, Ivan Meier, Florian Spoerle, Philip Bender, Akira Aoki, Yuichi Izumi, Giovanni E. Salvi, Anton Sculean

Streszczenie: Biofilm bakteryjny odgrywa główną rolę w etiologii chorób przyzębia i tkanek wokół implantu. Celem pracy było ocena usunięcia biofilmu bakteryjnego oraz przyczepu komórek nabłonka (EC), fibroblastów dziąseł (GF) i komórek osteoblastopodobnych (OC) do powierzchni zęby i tytanu po zastosowaniu lasera Er:YAG w porównaniu z innymi metodami leczenia.

Słowa kluczowe: biofilm bakteryjny, laser Er:YAG, ablacja, implanty, zęby.

Cel badań

Biofilm bakteryjny odgrywa główną rolę w etiologii chorób przyzębia i tkanek wokół implantu. Celem niniejszej pracy była ocena usunięcia biofilmu bakteryjnego oraz przyczepu komórek nabłonka (EC), fibroblastów dziąseł (GF) i komórek osteoblastopodobnych (OC) do powierzchni zęby i tytanu po zastosowaniu lasera Er:YAG w porównaniu z innymi metodami leczenia.

Materiały i metody

Wielogatunkowy biofilm bakteryjny hodowano na wystandaryzowanych próbkach zęby i tytanu o powierzchni piaskowanej i wytrawiane kwasem (SLA) przez 3,5 doby. Następnie próbki zostały umieszczone w sztucznie stworzonych kieszeniach. Stosowane były następujące metody usuwania biofilmu:
1. Gracey (zębina) lub tytanowe kirety (CUR),
2. laser Er:YAG.

Ryc. 1: Niszczenie bakterii planktonowych, wybranych gatunków bakterii i mieszany 12 gatunków po 3 * 20 s lasera napromieniowanie z mocą 70 mJ.
3. terapia fotodynamiczna (PDT)
4. CUR z pomocniczym PDT (CUR/PDT).

Zbadano liczbę Jednostek Tworzących Kolonie (CFU) dla pozostałych biofilmów i przyczepów komórek EC, GF i OC. Analizę statystyczną przeprowadzono za pomocą ANOVA z post-hoc LSD.

Wyniki

Ablacja poddziążłowych biofilmów, a zwłaszcza odkażanie powierzchni implantów tytanowych laserem Er:YAG wydaje się być obiecującym podejściem i wymaga dalszych badań.

Bakterie planktonowe

Ponieważ w pierwszych doświadczeniach nie zauważono zależności mocy napromieniania, tylko najwyższa moc (70 mJ) i najdłuższy czas (3 razy 20 s) zostały wykorzystane w dalszych eksperymentach. Różnice w stosunku do nietraktowanej próbki kontrolnej nie przekraczały jednak 0,15 log10 CFU (Ryc. 1).

Usuwanie biofilmu z dysków zębiny

Wszystkie zabiegi redukowały statystycznie znacząco (każe p < 0,01) całkowitą liczbę bakterii. Laser Er:YAG zmniejszył liczbę bakterii o 2,44 log10 bez znaczących różnic w stosunku do CUR (redukcja 1,71 log10). Najniższe wartości pozostałych bakterii (redukcja o 4,01 log10) obserwowano dla CUR/PDT, z których każda była znacząco różna (p < 0,01) od wszystkich innych terapii, w tym Er:YAG (p = 0,005).

Analizowane pojedyncze gatunki były również statystycznie istotnie zmniejszone w porównaniu z nientraktowaną próbką kontrolną. Liczba P. gingivalis (p = 0,008), T. forsythia (p = 0,026) i F. nucleatum (p = 0,002) były statystycznie istotnie niższe po CUR/PDT niż po zastosowaniu samego PDT (Ryc. 2).

Tab. 1:	control	after 3*20 s of laser irradiation with a power of 70 mJ		
P. micra	5.14	0.04	5.16	0.02
A. actinom.	5.08	0.05	5.12	0.02
F. nucl.	5.02	0.01	4.99	0.06
P. interm.	5.05	0.04	5.00	0.06
P. gingivalis	5.11	0.01	5.09	0.02
T. forsythia	5.04	0.08	4.86	0.19
mixture	4.91	0.06	4.87	0.06

Ryc. 2a i b: Usuwanie biofilmu z dysków zębiny. Pozostałości biofilmu po wystawieniu na działanie kirety Gracey (CUR), terapii fotodynamicznej (PDT), CUR w połączeniu z promieniowaniem laserowym PDT (CUR/PDT) i Er:YAG. Przedstawiono całkowite zliczenia (cfu; A) i liczby dla wybranych gatunków (B) * p < 0,05; ** p < 0,01 w porównaniu z kontrolą (con), p < 0,05; p < 0,01 w porównaniu z CUR² p < 0,05;²² p < 0,01 w porównaniu z PDT § p < 0,05; §§ p < 0,01 w porównaniu z CUR/PDT.
Tab. 2a i b

	mean	SD	p with control	CUR	PDT	CUR/PDT
con	6.92	0.75				
CUR	5.21	0.64	0.001			
PDT	5.16	0.82	0.002			
CUR/PDT	2.92	1.90	< 0.001	< 0.001	< 0.001	< 0.001
Er:YAG	4.48	1.55	< 0.001	< 0.001	< 0.001	

ANOVA: p < 0.001

	mean	SD	p with control	CUR	PDT	CUR/PDT
con	4.77	0.81				
CUR	2.23	1.05	< 0.001			
PDT	2.91	1.41	< 0.001			
CUR/PDT	1.71	1.15	< 0.001			0.008
Er:YAG	2.18	1.1	< 0.001			

ANOVA: p < 0.001

	mean	SD	p with control	CUR	PDT	CUR/PDT
con	4.67	1.26				
CUR	1.72	1.90	< 0.001			
PDT	2.72	1.87	0.003			
CUR/PDT	1.25	1.56	< 0.001			0.038
Er:YAG	2.22	1.94	< 0.001			

ANOVA: p < 0.001

	mean	SD	p with control	CUR	PDT	CUR/PDT
con	4.50	0.48				
CUR	3.19	1.33	0.001			
PDT	3.58	1.37	0.026			
CUR/PDT	3.34	0.80	0.005			
Er:YAG	3.29	1.11	0.001			

ANOVA: p < 0.004

	mean	SD	p with control	CUR	PDT	CUR/PDT
con	6.32	0.50				
CUR	4.04	1.30	< 0.001			
PDT	4.80	0.65	0.011			
CUR/PDT	2.83	1.80	< 0.001			0.002
Er:YAG	3.94	1.34	< 0.001			0.049

ANOVA: p < 0.001
Adhezja komórek nabłonka dziąsła
i fibroblastów PDL
do dysków zębnymi po usunięciu biofilmu

Przyczep komórek nabłonka dziąsła spadł do blisko zera, jeśli biofilm nie był usunięty (różnica w stosunku do komórek kontrolnych p < 0,001). Po obróbce powierzchni liczba ta się zwiększyła, ale różnica w stosunku do nietraktowanej próbki eksponowanej na biofilm była jedynie statystycznie istotna w leczeniu wykonywanym przy użyciu CUR/PDT (p = 0,006). Z wyjątkiem CUR/PDT, poniżej w przypadku wszystkich innych terapii, znaczenie dla komórek konicznych pozostało (każde p < 0,05).

Liczba fibroblastów PDL również spadła po ekspozycji na biofilm (p < 0,001). Nie zaobserwowano wyraźnego wzrostu ich liczby po leczeniu i różnicy do pozostałych komórek kontrolnych (każde p < 0,001), (Ryc. 3).

Usuwanie biofilmu z dysków tytanowych. Wszystkie zabiegi zredukowały statystycznie znacząco (każde p < 0,01) całkowitą liczbę bakterii. Najniższe wartości pozostających bakterii (redukcja 4,45 log10) zaobserwowano po użyciu lasera Er:YAG, wynik statystycznie różni się znacząco (p < 0,01) do PDT i CUR (całkowita liczba). Co więcej, bakterie P. gingivalis i T. Forssythia były mniej liczne niż po samym PDT i CUR (Ryc. 4).

Tab. 3a i b

	mean	SD	p with			
	con cells		control	CUR	PDT	CUR/PDT
con	273	154				
CUR	5,60	9.84	< 0.001			
PDT	129	140	0.029			
CUR/PDT	102	113	0.011			
Er:YAG	191	190	0.006			

ANOVA: p < 0.004

	mean	SD	p with			
	con cells		control	CUR	PDT	CUR/PDT
con	107	42				
CUR	2,60	3.41	<0.001			
PDT	14.2	21.1	< 0.001			
CUR/PDT	7.98	10.0	< 0.001			
Er:YAG	15.4	10.2	< 0.001			

ANOVA: p < 0.001
Tab. 4a i b

	P. gingivalis	T. forsythia	P. micra
mean			
con	6.64	5.02	5.52
CUR	4.17	3.32	3.02
PDT	4.08	3.63	3.82
CUR/PDT	2.79	2.19	3.16
Er:YAG	2.19	1.68	2.57
ANOVA:	p < 0.001	p < 0.001	p < 0.007

	P. gingivalis	T. forsythia	P. micra
mean			
con	6.64	5.02	5.52
CUR	4.17	3.32	3.02
PDT	4.08	3.63	3.82
CUR/PDT	2.79	2.19	3.16
Er:YAG	2.19	1.68	2.57
ANOVA:	p < 0.001	p < 0.001	p < 0.007
Adhezja komórek nabłonka dziąsła, fibroblastów dziąseł i komórek podobnych do osteoblastów po usunięciu biofilmu z dysków tytanowych

Przywiązanie komórek nabłonka dziąsła spadło, jeśli biofilm nie został usunięty (różnica w stosunku do komórek kontrolnych p < 0,001). Po każdym z zastosowanych zabiegów, liczby wzrosły statystycznie istotnie (p < 0,01 z wyjątkiem CUR/PDT (p = 0,016)). Zaobserwowano znaczącą statystycznie różnicę w stosunku do adhezji komórek bez biofilmu (p = 0,016). Wyraźny wzrost liczby komórek dołączenych do powierzchni tytanowych w obecności biofilmu (p = 0,048). Różnica była również statystycznie istotna, gdy zastosowano PDT do usuwania biofilmu. Wydaje się, że na liczbę dołączonych osteoblastów nie miała wpływu ekspozycja tytanu na biofilm bakteryjny.

W jednym z badań, w którym drobnoustroje zostały rozprowadzone na agarze lub zostały włączone do agaru, tylko na znajdujące się na powierzchni mikroorganizmy były przywiązane.

Dyskusja

W niniejszym badaniu in vitro oceniono zastosowanie laseru Er:YAG w porównaniu z instrumentami ręcznymi i terapią fotodynamiczną w ablacji biofilmu przyzębia i implantu. Pierwsza seria eksperymentów koncentrowała się na działaniu laseru Er:YAG przeciwko bakteriom planktonowym. Do tej pory bakteriobójcze działanie laseru Er:YAG na bakteriach jamy ustnej było bardzo rzadko badane. Brak aktywności bakteriobójczej był obserwowany w niektórych innych badaniach laseru Er:YAG. Po usunięciu biofilmu przez tytanową kiretę (CUR) i terapią fotodynamiczną (PDT), osteoblasty były przywiązane do powierzchni tytanowej w porównaniu z grupą kontrolną lub z którąkolwiek inną grupą w terapii (Ryc. 5).

Tabela 1

mean F. nucleatum	SD	control	CUR	PDT	CUR/PDT	Er:YAG
6.01	0.73					
4.31	1.21	< 0.001				
3.07	2.30	< 0.001			< 0.001	0.040
1.59	1.76	< 0.001			< 0.001	
2.27	2.09	< 0.001			0.005	

ANOVA: p < 0.001

Adhezja komórek na płytkach agarowych, a także może na

Ryc. 5a-c: Adhezja komórek po usunięciu biofilmu z dysków tytanowych. Adhezja komórek nabłonka dziąsła (A), fibroblastów dziąseł (B) i komórek podobnych do osteoblastów (C) przed i po usunięciu biofilmu przez tytanową kiretę (CUR), terapią fotodynamiczną (PDT), kiretę tytanową w połączeniu z PDT (CUR/PDT) i Promieniowanie laseru Er: YAG (Er:YAG)

* p < 0.05; ** p < 0.01 w porównaniu z kontrolą bez bakterii (komórki koniczne) p < 0.01 w porównaniu z CUR

Ryc. 5: Adhezja komórek nabłonka dziąsła a) przed napromieniowaniem laserem, b) po napromieniowaniu laserem, c) usunięcie biofilmu z komórki nabłonka dziąsła po napromieniowaniu laserem Er:YAG.
ganizmy, a nie te zlokalizowane w głębszych warstwach oddziaływano laserem Er:YAG. To odkrycie sugeruje, że redukcja liczby bakterii w biofilmach jest raczej abla-cyjna niż bakteriobójcza.

W tym badaniu określono biofilmy o porównywalnym składzie zarówno na zębinie, jak i na tytanowych dyskach, co umożliwia bezpośrednie porównanie używanych metod. Dobrze zdefiniowane wielogatunkowe poddziąsłowe/periodontalne biofilmy na zębinie i dyskach tytanowych poddano działaniu lasera Er:YAG i porównano z innymi metodami leczenia, w tym z użyciem narzędzi ręcznych. Powodem utworzenia sztucznej kieszeni było odtworzenie sytuacji klinicznej, dzięki czemu umożliwiono prze- prowadzanie zabiegów w sposób tak bardzo zbliżony do klinicznego, jak tylko to było możliwe.21

Jedyną różnicą między nieleczonym biofilmem na zębi- nie i powierzchniach tytanowych była liczba P. micra, ga-tunek został znaleziony w większej liczbie na tytanie niż na zębinie (różnica 1,07 log10; p = 0,005). W przeciwieństwie do brakującej aktywności bakteriobójczej, ablacją biofilmów z obu próbek zęby i tytan wskazał, że Er:YAG była wyraźnie zauważona. Różnice w stosunku do nietraktowanych kontroli wynosiły 2,44 log10 dla zęby i 4,45 log10 odpowiednio dla powierzchni tytanowych. Na zębinie Er:YAG był również skuteczny, jak samo instrumentarium ręczne. Zmniejszenie liczby żywych organizmów w obrębie jednogatunkowych biofilmów (P. gingivalis, F. nucleatum, A. naeslundii i inne) na dyskach hydroksyapatytowych za pomocą tego typu lasera napromieniowującego 20 ± 80 mJ/puls przy 10 pps przez 10 s zostało wcześniej zgłoszone,26 ale przewaga nad innymi metodami nie została zaobserwowana. Jest to sprzeczne z innym badaniem, w którym wyodrębniono zęby narażone na ultradźwięki i la-ser Er:YAG. W tym badaniu przy zębach częściowo pokrytych kamieniem, całkowita liczba beztlenowych kontroli biologicznych wynosiła tylko 3,71 log10 w porównaniu do leczenia zastosowaniem ultradźwięków. W niniejszym badaniu nie uwzględniano ultradźwięków, ale w niedawnym badaniu z podobną metodologią wykazano przewagę ultradźwięków wobec ręcznego instrumentarium.21 Nie stwierdzono statystycznie istotnych różnic w porównaniu z Instrumentarium ręcznym na zębinie, Er:YAG był najbardziej skuteczny w zmniejszaniu liczby bakterii w biofilmach na tytanie. Różnica między tymi typami próbek testowych (żebna i tytan) wynosiła 2,02 log10 (p = 0,03). Lasery Er:YAG usuwały skutecznie wczesną płytkę nazębną niż łączone użycie kirety z two-

Tab. 5a i b

	mean	SD	p with	con cells	control	CUR	PDT	CUR/PDT	Er:YAG
Tab. 5a									
con cells	1607	305	< 0.001						
con	107	127	< 0.001						
CUR	649	320	< 0.001	p < 0.001					
PDT	614	312	0.001	p < 0.001					
CUR/PDT	449	250	0.016	p < 0.001					
Er:YAG	500	195	0.006	p < 0.001					
Tab. 5b									
con cells	374	204	0.048						
con	163	176	0.016						
CUR	211	150	0.016						
PDT	116	122	0.016						
CUR/PDT	284	148	0.024						
Er:YAG	405	353	0.007						

ANOVA: p < 0.049

	mean	SD	p with	con cells	control	CUR	PDT	CUR/PDT	Er:YAG
Tab. 5b									
con cells	583	496							
con	449	404							
CUR	981	1020							
PDT	649	561							
CUR/PDT	632	344							
Er:YAG	2106	772							

ANOVA: p < 0.001
rywa sztucznego z plukaniem chlorheksydyną i utrądz-więkiem z dysków tytanowych osadzonych w akrylowych szynach noszonych przez wolontariuszy.27

In vitro Er:YAG zmniejszył istotnie żywotność biofilmu Candida albicans za pomocą 100 mJ i czasu naświetlania 80 s.38 Wysoka ablacja biofilmu przez laser Er:YAG może być szczególnie ważna in vivo, kiedy do niszczenych przez śrubę łącznika nie można sięgnąć za po-mocą instrumentów ręcznych.

Wśród innych testowanych metod, połączenie CUR/PDT z redukcją ok. 4 log10 zawsze był skuteczniejszy niż sam CUR lub PDT, zarówno na żebnej, jak i tytanowej. W leczeniu początkowego zapalenia oko-loimplantologicznego wspomagająca terapia fotodynamiczna była również skuteczna, jak miejscowe dostarczanie antybioty-ków w redukcji miejsca z krawewaniem podczas sondowania.39 Adhezja komórek gospodarza korelowała odwrotnie z pozostałymi bakteriami na powierzchniach po różnych za-biegach. Najniższe liczby komórek nabłonkowych obserwowa-no, gdy biofilm był obecny, najwyższy bez żadnego wcześniejszego zanieczyszczenia bakteryjnego.

Pomimo faktu, że bakterie zostały unieczynnione przez światło UV, które jest używane do zatrzymania rozmnażania, czynnik wirulencji mógł wciąż być obecny, np. proteazy P. gingivalis mogą pogarszać przyczepność komórek nabłonkowych i tym samym wywoływać odwrażanie i apoptozę komórek nabłonkowych (Chen, Casiano i in., 2001). Podczas gdy jakokolwiek składnik bakteryjny wyraźnie hamował przyłączenie fibroblastów PDL do zębiny, po obróbce powierzchni tytanowych laserem Er:YAG, bez różnic w przyłączeniu komórek nabłonkowych (Chen, Casiano i in., 2001). Podczas gdy jakokolwiek składnik bakteryjny wyraźnie hamował przyłączenie fibroblastów PDL do zębiny, po obróbce powierzchni tytanowych laserem Er:YAG, bez różnic w przyłączeniu komórek nabłonkowych (Chen, Casiano i in., 2001). Podczas gdy jakokolwiek składnik bakteryjny wyraźnie hamował przyłączenie fibroblastów PDL do zębiny, po obróbce powierzchni tytanowych laserem Er:YAG, bez różnic w przyłączeniu komórk

Ważnym odkryciem niniejszego badania była wy-wodka adhezja komórek podobnych do osteoblastów na tytanowych powierzchniach poddanych obróbce Er:YAG, które były wyższe niż obserwowane na nieskazitelnych powierzchniach tytanowych SLA przy użyciu lasera Er:YAG.

LasernEr:YAG ma największą absorpcję w wodzie i bardzo wysoką absorpcję w hydroksypatycie,54 dlatego można się spodziewać, że absorpcja tego laseru na tytanie jest dużo niższa i więcej energii może zostać wchłonięte przez biofilm, który zawiera wysoki procent wody. Zjawisko to może z kolei prowadzić do ablacji biofilmu. Temperatura w zamkniętym otoczeniu implantu tytanowego wzrasta po 60 s napromieniowaniu Er:YAG 100 mJ 20 Hz wg 10,5° C za pomocą powietrza/wody,39 Poniżej 0,5 mm wzrost temperatury żebiny przy napromieniowaniu wynosi 3,86°C z 12,7 mJ/cm² 20 Hz przez 30 s przy chłodzeniu wodą.39

Mikroszorstkie powierzchnie SLA w tytanie nie ulegają uszkodzeniu do 140 mJ na impuls.57 Po napromienio-waniu Er:YAG 100 mJ 10 Hz przez 1 min na powierzchniach SLA, chropowatość powierzchni zmniejszyła się przy zwiększeniu związkowości i w konsekwencji, przylegające do nich komórki podobne do osteoblastów wykazywały wyższą ogniwościowość.38 Na zębien laser Er:YAG zwiększał związkowość, ale także porowatość powierzchni.53 Wskaźnik badań porównuje mikrobiologicznie i klinicznie wyniki po skalowaniu korzeni za pomocą lasera Er:YAG, u pacjentów z przewlekłym zapaleniem ozębienia, nowoczesny dało wyraźne korzyści w porównaniu do innych metod oceny, takie jak ręczne instrumenty w usuwaniu bakteryjnych metod oczyszczania.39,40 Wskazane jest zastosowanie laserów Er:YAG na powierzchniach tytanowych implantów w celu zwiększenia adhezji komórek nabłonkowych do powierzchni implantu.

Tylko w jednym badaniu zaobserwowano większe zmniejszenie liczby P. gingivalis po 12 miesiącach po użyciu laseru Er:YAG.42 Nieoperacyjne leczenie zmian w okoloszczepowych w implantach o powierzchni maszyno-wej za pomocą lasera Er:YAG wykazało mniejsze zmiany kliniczne i mikrobiologiczne,43 podczas gdy w badaniu pilotowym laser Er:YAG wykazał zmniejszenie krawęcia powierzchni przy zastosowaniu powierzchniowe do wzmocnienia, co wynikało z zwiększenia adhezji powierzchniowej do powierzchni implantu i zwiększenia adhezji komórek nabłonkowych do powierzchni implantu.44 Z drugiej strony, gdy laser Er:YAG był używany podczas operacji, nie zaobserwowano wyższych w porównaniu z wynikami uzyskanymi po zastosowaniu plastikowych kieret.45

Wnioski

Obecne dane wskazują, że:
1. Na powierzchni żebiny laser Er:YAG jest równie skuteczny, jak ręczne instrumenty w usuwaniu bakteryjnych biofilmów.
2. Kombinacja CUR i PDT wydaje się być odpowiednią metodą do dodatkowego odkądzania powierzchni żebiny.
3. Zastosowanie lasera Er:YAG na powierzchniach tytanowych dało wyraźne korzyści w porównaniu do innych metod oczyszczania.

Autorzy:
Sigrun Eick, Ivan Meier, Florian Spoerle, Philip Bender, Giovanni E. Salvi, Anton Sculean – Szkoła Stomatologii, Katedra Periodontologii, Uniwersytet w Bernie, Bern, Szwajcaria
Akira Aoki, Yuichi Izumi – School of Medical and Dental Science, Tokyo Medical and Dental University, Tokio, Japonia
Kontakt:
E-mail: sigrun.eick@zmk.unibe.ch
Piśmiennictwo:

1. Goldman L, Hornby P, Meyer R, Goldman B (1964) Impact of the Laser on Dental Caries. Nature 203:417. View Article Google Scholar.
2. Green J, Weiss A, Stern A (2011) Lasers and radiofrequency devices in dentistry. Dent Clin North Am 55: 585–597, ix-x. pmid:21726692. View Article PubMed/NCBI Google Scholar.
3. Passanezi E, Damante CA, de Rezende ML, Greghi SL (2015) Lasers in periodontal therapy. Periodontol 2000 67: 268-291. pmid:25494605 View Article PubMed/NCBI Google Scholar.
4. Aoki A, Mizutani K, Schwarz F, Sculean A, Ykuma RA, Taka-saki AA, et al. (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontol 2000 68: 217-269. pmid:25867988. View Article PubMed/NCBI Google Scholar.
5. Meire MA, Coene Y, Nelis HJ, De Moor RJ (2012). In vitro inactivation of endodontic pathogens with Nd:YAG and Er:YAG lasers. Lasers Med Sci 27: 696-701. pmid:21691826. View Article PubMed/NCBI Google Scholar.
6. Akiyama F, Aoki A, Mura-Uchiyama M, Sasaki KM, Ichino-se S, Umeda M, et al. (2011). In vitro studies of the ablation mechanism of periodontopathic bacteria and decontamination effect on periodontally diseased root surfaces by erbium:yttrium-aluminum-garnet laser. Lasers Med Sci 26: 193-204. pmid:20309597. View Article PubMed/NCBI Google Scholar.
7. Apatzidou DA, Kinane DF (2010) Nonsurgical mechanical treatment strategies for periodontal disease. Dent Clin North Am 54: 1-12. pmid:20103469. View Article PubMed/NCBI Google Scholar.
8. Renvert S, Roos-Jansaker AM, Claffey N (2008) Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 35: 305-315. View Article Google Scholar.
9. Muthukuru M, Zainvi A, Esplugues EO, Flemmig TF (2012) Non-surgical therapy for the management of peri-implantitis: a systematic review. Clin Oral Implants Res 23 Suppl 6: 77-83. View Article Google Scholar.
10. Tomasi C, Schander K, Dahlen G, Wennstrom JL (2006) Short-term clinical and microbiologic effects of pocket debridement with an Er:YAG laser during periodontal maintenance. J Periodontol 77: 111-118. pmid:16579711. View Article PubMed/NCBI Google Scholar.
11. Yilmaz S, Kut B, Gursoy H, Eren-Kuru B, Kadir T (2012) Er:YAG laser versus systemic metronidazole as an adjunct to nonsurgical periodontal therapy: a clinical and microbiological study. Photomed Laser Surg 30: 325-330. pmid:22509738. View Article PubMed/NCBI Google Scholar.
12. Zhao Y, Yin Y, Tao L, Nie P, Tang Y, Zhu M (2014) Er:YAG laser versus scaling and root planing as alternative or adjuvant for chronic periodontitis treatment: a systematic review. J Clin Periodontol 41: 1069-1079. pmid:25164559. View Article PubMed/NCBI Google Scholar.
13. Van M, Liu M, Wang M, Yin F, Xia H (2015) The effects of Er:YAG on the treatment of peri-implantitis: a meta-analysis of randomized controlled trials. Lasers Med Sci 30: 1843-1853. pmid:25428598 View Article PubMed/NCBI Google Scholar.
14. Henderson B, Nair SP, Ward JM, Wilson M (2003) Molecular pathogenicity of the oral opportunistic pathogen Actino-bacillus actinomycetemcomitans. Annu Rev Microbiol 57: 29-55. pmid:14527274 View Article PubMed/NCBI Google Scholar.
15. Holt SC, Ebersole JL (2005) Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the „red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 38: 72-122. pmid:15853938. View Article PubMed/NCBI Google Scholar.
16. Hultin M, Gustafsson A, Hallstrom H, Johansson LA, Ekelund A, Kline B (2002) Microbiological findings and host response in patients with peri-implantitis. Clin Oral Implants Res 13: 349-356. pmid:12175371. View Article PubMed/NCBI Google Scholar.
17. Shibli JA, Mello L, Ferrari DS, Figueiredo LC, Faveri M, Feres M (2008) Composition of supra- and subgingival biofilm of subjects with healthy and diseased implants. Clin Oral Implants Res 19: 975-982. pmid:18828812 View Article PubMed/NCBI Google Scholar.
18. Furst MM, Salvi GE, Lang NP, Persson GR (2007) Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res 18: 501-508. pmid:17501978. View Article PubMed/NCBI Google Scholar.
19. Quirynen M, Vogels R, Peeters W, van Steenberghe D, Naert I, Haftajee A (2006) Dynamics of initial subgingival colonization of „pristine” peri-implant pockets. Clin Oral Implants Res 17: 25-37. pmid:16441782 View Article PubMed/NCBI Google Scholar.
20. Eick S, Ramseier CA, Rothenberger K, Bragger U, Buser D, Salvi GE (2016) Microbiota at teeth and implants in partially edentulous patients. A 10-year retrospective study. Clin Oral Implants Res 27: 218-225. pmid:25827437. View Article PubMed/NCBI Google Scholar.
21. Hagi TT, Klemensberger S, Berenr R, Nietzsche S, Cosgreaa R, Flury S, et al. (2015) A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts. PLoS One 10: e0131056. pmid:26121365. View Article PubMed/NCBI Google Scholar.
22. Yamamoto A, Tanabe T (2013) Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser micro-explosions. Int J Periodontics Restorative Dent 33: 21-30. pmid:23342343. View Article PubMed/NCBI Google Scholar.
23. Eick S, Straube A, Guentsch A, Pfister W, Jentsch H (2011) Comparison of real-time polymerase chain reaction and DNA-strip technology in microbiological evaluation of periodontitis treatment. Diagn Microbiol Infect Dis 69: 12-20. pmid:21146709. View Article PubMed/NCBI Google Scholar.
24. Eick S, Struger T, Miron RJ, Sculean A (2014) In vitro-activity of oily calcium hydroxide suspension on microorganisms as well as on human alveolar osteoblasts and periodontal liga-
A healthy mouth and body go hand in hand.

Teach your patients how good oral care contributes to overall health and well-being.

Spread the word and share the campaign resources

www.worldoralhealthday.org
Niniejszy artykuł został opublikowany na łamach „Implantologia stomatologiczna” nr 2/18/2018.
Dr n. med. Kinga Grzech Leśniak

ZAPRASZA NA KURSY
PRAKTYCZNE Z LASERĄ
LIGHTWALKER™

Kursy z zastosowania lasera
Fotona LightWalker™ w procedurach:

- stomatologii zachowawczej Er:YAG i Nd:YAG
- periodontologicznych, metodą TPT™
- endodontycznych, metodą TET™
- chirurgicznych tkanek twardych i miękkich
- leczenia chrapania metodą NightLase™
- wybielania zębów metodą TouchWhite™

Dr Kinga Grzech Leśniak
PerioCare - Specjalistyczne Centrum Stomatologiczne
ul. Poznańska 8/1u, 30-012 Kraków
www.periocare.pl
rejestracja@periocare.pl
Mobile: +12 445-66-56
Wspomagana laserowo odbudowa zęba złamanego poddziąsłowo

Piotr Roszkiewicz

Streszczenie: W niniejszym artykule opisano przypadek leczenia i rekonstrukcji zęba, który przy wykorzystaniu nowoczesnych urządzeń laserowych udało się uratować, mimo iż wcześniej został jednoznacznie zakwalifikowany do ekstrakcji.

Słowa kluczowe: stomatologia laserowa, złamanie poddziąsłowe, laser Er:YAG, rekonstrukcja wspomagana laserowo.

37-letni pacjent, ogólnie zdrowy, zgłosił się do mojej kliniki w celu podjęcia próby zachowania zęba 25. Lekarz, pod którego opieką pacjent pozostaje, zakwalifikował ząb do ekstrakcji twierdząc, że nie jest możliwe zachowanie zęba i jego odbudowa.

Objawy kliniczne i radiologiczne
- znaczna utrata objętości i struktury zęba 25,
- brak guzka podniebiennego i przyśrodkowej ściany zęba 25.
Ryc. 3: Ustawienia parametrów lasera – gingiwektomia: Er:YAG laser (2940 nm), VLP (1000 μs), 120 mJ, 10Hz, (1,2 W), water 0, air 2, H14 contact handpiece, 1,3 mm cylindrical tip.

Ryc. 4: Ustawienie parametrów lasera – surface modification: Er:YAG laser (2940 nm), QSP, 120 mJ, 10Hz, (1,2 W), water 4, air 4, H14 contact handpiece, 1,3 mm cylindrical tip.

– próchnica poddziąsłowa,
– kompozytowe wypełnienia w zębach 25 i 26 z próchnicą wtórną,
– w kanale zęba 25 widoczny niejednorodny (niehomogenny) materiał wypełniający,
– nieznacznie poszerzona przestrzeń ozębowa w okolicy wierzchołka zęba 25.

Rozpoznanie

Badanie kliniczne ujawniło:
– poddziąsłową zmianę z próchnicą wtórną w zębie 25,
– przewlekłe zapalenie ozębne w okolicy okołowierzchołkowej,
– próchnicę wtórną w zębie 26.

Plan leczenia

– leczenie przerostu dziąsła wokół zęba 25,
– wstępna odbudowa zęba 25 w celu stworzenia odpowiednich warunków, by wykonać powtórne leczenie endodontyczne,
– skierowanie na leczenie endodontyczne,
– ostateczna odbudowa zęba: zachowawcza (jeśli okaże się możliwa) lub protetyczna.
Ryc. 5: Stan przed wykonaniem gingwoplastyki dziąsła.

Ryc. 6 i 7: Rekonstrukcja zęba przed powtórnym leczeniem endodontycznym.
Ryc. 8 i 9: Powtórne leczenie endodontyczne.
Ryc. 10: Ostateczna odbudowa kompozytowa.
Ryc. 11 i 12: Stan po 3,5 miesiąca.
Ryc. 13: Stan po 5 miesiącach.
Wizyta 1

W znieczuleniu miejscowym wykonano plastykę dziąsła wokół niekompletnej ściany podniebiennej i rekonstrukcję ścian przed odesłaniem na leczenie re-endo, końcówka lasera położona ok. 1 mm nad tkankę preparowaną. Przed uzupełnieniem ubytku wykonano powierzchniową modyfikację pozostałej zęby i szkliwa, by wzmocnić siłę wiązania. Powierzchnie okluzyjne odbudowano materiale tymczasowym.

Wizyta 2

Po powtórnym leczeniu endodontycznym, w osłonie koferdama, skalerem ultradźwiękowym usunięto materiał tymczasowy. Końcówka lasera był położona ok. 1 mm ponad preparowaną tkankę. Całą powierzchnię raz jeszcze zmodyfikowano (120 mJ, 2,2 W) dla wzmocnienia wiązania. Następnie wykonano odbudowę kompozytową samowytrawialnym systemem wiążącym.

Ryc. 14: Stan przed leczeniem.
Ryc. 15: Stan po preparacji.
Efekt leczenia

Ząb, początkowo zakwalifikowany przez innych lekarzy do ekstrakcji, pozostał w jamie ustnej w warunkach okluzyjnych dzięki terapii wspomaganej laserowo.

Autor:

Lek. dent. Piotr Roszkiewicz – absolwent Akademii Medycznej w Warszawie, dyplom lekarza dentysty uzyskał w 2007 r. W 2016 r. ukończył kurs laserowy w Aachen Dental Laser Center, uzyskując tytuł Master. Członek Polskiego Towarzystwa Stomatologii Laserowej i Polskiego Stowarzyszenia Stomatologii Mikroskopowej. Wykładowca Laser and Health Academy (LAHA) i kierownik Laser and Health Academy Poland Training Center. Właściciel „Kliniki na Brzozowej” w Laskach pod Warszawą.

Kontakt:
E-mail: klinikanabrzozowej@wp.pl

Ryc. 16: Odbudowa ostateczna.
Ryc. 17: Stan po 5 miesiącach.
11-13 kwietnia 2019, Kraków
KRAKDENT
27. Międzynarodowe Targi Stomatologiczne w Krakowie

ZAPRASZAMY NA NAJLEPSZE TARGI STOMATOLOGICZNE W POLSCE!

TYM RAZEM W KWIECIEŃ!
Usunięcie obwodowego ziarniniaka olbrzymiokomórkowego za pomocą lasera diodowego

Maziar Mir, Masoud Mojahedi, Jan Tunér, Masoud Shabani

Streszczenie: Zastosowanie urządzeń laserowych w chirurgii, także stomatologicznej, ma wiele zalet, jak: utrzymanie sterylnego pola zabiegowego, redukcja krwawienia, możliwość dobrej oceny głębokości cięcia, jego precyzja, często brak konieczności cięcia i zakładania opatrunków, znaczące zmniejszenie bólu, minimalnie inwazyjna procedura zmniejszająca stres pacjenta oraz szybsze gojenie. W literaturze opisano wiele przypadków usunięcia za pomocą lasera zmian egzofitycznych znajdujących się w jamie ustnej. W niniejszym artykule przedstawiono przypadek leczenia obwodowego ziarniniaka olbrzymiokomórkowego (PGCG) i licznych aftowych owrzodzeń u jednego pacjenta.

Słowa kluczowe: laser diodowy, chirurgia jamy ustnej, obwodowy ziarniniak olbrzymiokomórkowy (PGCG).

PGCG pochodzi z więzadła ozębnej lub peristomia. Schorzenie to częściej występuje w żuchwie niż w szczęce i częściej u kobiet niż u mężczyzn. Taką zmianą może być dotknięty każdy obszar jamy ustnej, ale może także wystąpić w innych siedziennych zębów. Rozmiar zmiany zwykle waha się od ok. 0,1 cm do 3 cm.

Etiologia zmian jest nieznana, ale rolę w ich powstawaniu mogą odgrywać następujące czynniki drażniące: źle dopasowana proteza, nieprawidłowe uzupełnienia protetyczne, kamień nazębny, przewlekłe infekcje bakteryjne, brak niektórych składników odżywczych w diecie. Zmiany mogą występować przy nadczynności przestrzeni zębowej oraz po leczeniu chirurgicznym przyzębia. Użycie markerów immunohistochemicznych S100 z wynikiem pozytywnym jest dowodem występowania komórek Langerhansa lub ich prekursorów, a obecność fibroblastów, komórek śród błonkowej i miofibroblastów wskazują na reaktywny charakter PGCG.

Przed podjęciem decyzji o usunięciu zmian z użyciem skalpela, elektrokoagulacji lub lasera należy rozważyć eliminowanie lokalnych czynników drażniących w leczeniu takich zmian. Współczynnik nawrotów mieści się w zakresie od 5 do 11%.

Nawracający wrzód aftowy (aphthous stomatitis) to często zmiana występująca w jamie ustnej, dotycząca 10% ludności. Zmiany ze względu na morfologię można sklasyfikować jako niewielkie (3-10 mm), duże (> 10 mm) i cierniowate. Dokładna przyczyna powstawania owrzodzeń aftowych nie jest znana, ale wśród możliwych czynników etiologicznych wymienić się stres, brak snu, brak cytrusów w diecie, urazy, niewydolność układu odpornościowego, niedobór witaminy B12, że- lazę lub kwasu foliowego. Zmiany te występują także często w towarzystwie następujących chorób: HIV, zespół Behcet’a, choroba Leśniowskiego-Crohna i innych chorób autoimmunologicznych. Obecnie do leczenia zmian w tkankach miękkich jamy ustnej, z dobrymi efektem, wykorzystywane są lasery diodowe.

Opis przypadku

45-letni pacjent z guzikiem obecnym ponad 10 miesięcy oraz z owrzodzeniem na języku został skierowany na leczenie. Guzek nie był bolesny, ale krwawił podczas jedzenia, a niekiedy nawet bez podrażnienia. Zmiany wrzodziejące były bolesne.

Wyniki kliniczne i radiologiczne

W wywiadzie nie stwierdzono ogólnoustrojowych problemów medycznych ani reakcji alergicznych, pacjent nie zakażał przewlekłych leków, narkotyków, nie przechodził też żadnych zabiegów chirurgicznych. W związku z tym nie było potrzeby kierowania pacjenta na dodatkowe kon- sultacje lekarskie.

Wnioski kliniczne i radiologiczne

Badanie jamy ustnej i szczękowo-twarzowej nie wyka- zało dysfunkcji stawu skroniowo-żuchwowego ani zabu-
rzeź mięśniowo-powięziowych. Stwierdzono niewłaściwą higienę jamy ustnej i starą protezę zębową pozbawioną stabilności i retenции. Rozpoznano zmiany egzofityczne w żuchwie. Zmiana była częściowo jędrna, zaczerwieniona i krwawiła podczas badania, podczas sondowania nie występował ból. Badanie radiograficzne wykazało zatrzymane korzenie w żuchwie, bez resorpcji kości. Po prawej stronie języka występowalo wiele bolesnych owrzodzeń. Pacjent nie stosował leków przeciwbólowych (Ryc. 1 i 2). Owrzodzenia i przekrwienia spowodowane były protezą. Zdecydowano o wykonaniu biopsji laserowej i usunięciu owrzodzeń oraz fotokoagulacji za pomocą lasera diodowego.

Etapy leczenia:

Po wypełnieniu formularza zgody pacjenta, obszar chirurgiczny znieczulono z użyciem lidokainy 2% z adrenalina 1:100 000 (1,8 ml), a następnie wprowadzono nić retrakcyjną w obrębie zmiany. Zabieg fotokoagulacji nie wymagał znieczulenia miejscowego.

Procedury przedoperacyjne:

- właściwe umieszczenie znaków informujących o pracy z laserem w gabinecie, zabezpieczenie sali operacyjnej,
- sprawdzenie bezpieczeństwa i przygotowanie okularów zabezpieczających oczy pacjenta, operatora i asysty,
- przegląd informacji o pacjencie (karta informacyjna, rentgenogram, formularz zgody itp.),
- właściwa kalibracja systemu laserowego: cięcie włókien.

Usunięcie zmian wykonano metodą kontaktową tip-to-tissue tak, że uszkodzenie zostało rozdzielone we właściwy sposób. Na początku zabiegu użyto lasera diodowego 980 nm, końcówki 400 μ, mocy wyjściowej 2 W, fali ciągłej (CW) i trybu stykowego dla czasu naświetlania 320 s.

Po usunięciu zmiany egzofitycznej, w celu przeprowadzenia procesu fotokoagulacji użyto końcówki 400 μ, mocy 0,6 W, fali ciągłej (CW), trybu bezdotykovego z czasem naświetlania owrzodzenia 30 s (18 J), opracowując obszar zabiegowy ruchem kolistym w odległości 6 mm od owrzodzenia, zbliżając się do zmiany (2-3 mm), pokrywając całą powierzchnię obszaru owrzodzenia.
Następnie wykonano test na ból, poprzez pocieranie zmiany palcem. W przypadku jednej z zmian konieczne było zwiększenie mocy wyjściowej do 0,7 W (21 J) w drugim kroku, a następnie do mocy wyjściowej 0,8 W (24 J) w trzecim kroku w celu osiągnięcia pełnej kontroli bólu.

Podczas zabiegu używano ssaka o dużej objętości w celu usuwania oparów i nieprzyjemnego zapachu. Praca laserem była delikatna, aby zapobiec niewłaściwym reakcjom i wynikającym z tego uszkodzeniom otaczającej tkanki. W celu zapobieżenia uszkodzeniom termicznym używano zwilżonej gazy.

Tkankę usunięto za pomocą pędzla nasąconego 3% roztworem nadlenu wodoru. Próbka została wysłana do badania laboratoryjnego (Ryc. 3).

Zalecenia pozabiegowe:

Pacjentowi zalecono, aby utrzymywał higienę w okolicy zabiegowej, unikając spożywania pokarmów i przyjmowania płynów, które mogłyby powodować ból lub podrażnienie wrażliwej tkanki oraz w razie potrzeby przyjmowanie środków przeciwbólowych. Parametry ustawień lasera zostały zarejestrowane w dokumentacji pacjenta.

 Wynik końcowy i dalsze działania:

Zaobserwowano doskonałą precyzję wycięcia lasrem zmiany bez krwawienia i zbędnych śladów. Pacjent nie odczuwał dyskomfortu i był zadowolony (Ryc. 4). Pierwsza wizyta po zabiegu miała miejsce następnego dnia. Efekt okazał się zgodny z oczekiwaniami, z dobrym postępem w gojeniu i bez obrzęku lub bólu spowodowanego zabiegiem chirurgicznym (Ryc. 5). Po tygodniu pacjent ponownie pojawił się na wizycie kontrolnej – nie stwierdzono jakichkolwiek problemów w procesie gojenia (Ryc. 6). Obserwacja pozabiegowa potwierdziła pomyślny wynik leczenia (Ryc. 7 i 8).

Dyskusja

W porównaniu z tradycyjnymi zabiegami chirurgicznymi usuwania owrzodzeń i aft (skalpel i zszywanie nićmi chirurgicznymi), praca laserem może być wykonana bardzo szybko, bez krwawienia, bólu (lub z minimalnym bólem), z małym obrzękiem (lub bez) oraz bez konieczności stosowania analgetyków.

Ze względu na rozmiar zmiany, w opisywanym przypadku procedura jest tradycyjnie klasyfikowana jako zaawansowana procedura laserowa. Całkowite usunięcie zmiany jest bardzo trudne i może wystąpić nawrót choroby z powodu zbyt małego obszaru operacyjnego. W chirurgii laserowej pobranie większej ilości tkanki miękkiej prowadzi do skutecznego usunięcia zmiany. W wyniku fotokoagulacji laserem afty wzdrowej, nastąpiło szybkie zmniejszenie bólu, dlatego pacjent nie musiał stosować leków przeciwbólowych. Laser diodowy 980 nm jest potężnym narzędziem do usuwania PGCG, jak również do łagodzenia owrzodzeń aftowych.

Niniejszy artykuł ukazał się w wersji oryginalnej na łamach Laser. International magazine of laser dentistry, nr 2/2018.
Autor:

Dr Masoud Shabani
Department of Community Dentistry
School of Dentistry
Ardabil University of Medical Sciences
Ardabil, Iran

Kontakt:
E-mail: m.shabani@arums.ac.ir

Piśmiennictwo:

1. Chaparro-Avendano AV, Berini-Aytes L, Gay-Escoda C. Peripheral giant cell granuloma. A report of five cases and review of the literature. Med Oral Patol Oral Cir Bucal.2005; 10(1):53-7.
2. Giansanti JS, Waldron CA. Peripheral giant cell granuloma: Review of 720 cases. J Oral Surg.1969; 27:787-91.
3. Archer WH. Oral and Maxillofacial Surgery. 5th ed. Philadelphia: WB Saunders, 1975.
4. Bodner L, Peist M, Gatot A, Fliss DM. Growth potential of peripheral giant cell granuloma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 83:548-551.
5. Gandara-Rey JM, Pacheco Martins Carneiro JL, Gandara-Vila P, et al. Peripheral giant-cell granuloma. Review of 13 cases. Med Oral 2002; 7:254-259.
6. Eronat N, Aktug, Günbay T, Ünal T: Peripheral giant cell granuloma: Three case reports. J Clin Pediatr Dent 2000; 24:245.
7. Kfir Y, Buchner A, Hartsen LS. Reactive lesions of the gingiva: A clinicopathological study of 741 cases. J Periodontol 1980; 51: 655-61.
8. Grand E, Burgener E, Samson J, Lombardi T. Post-traumatic development of a peripheral giant cell granuloma in a child. Dent Traumatol 2008; 24:124-126.
9. Nedir R, Lombardi T, Samson J: Recurrent peripheral giant cell granuloma associated with cervical resorption. J Periodontol 68:381, 1997.
10. Smith BR, Fowler CB. Primary hyperparathyroidism presenting as a „peripheral“ giant cell granuloma. J Oral Maxillofac Surg 1988;46: 65-9.
11. Gottsegen R. Peripheral giant cell granuloma following periodontal surgery. J Periodontol 1962; 33:190-4.
12. Wood NK, Goaz PW. Differential Diagnosis of Oral and Maxillofacial Lesions. 5th ed. St. Louis: Mosby; 1997. 141-2.
13. Dayan D, Buchner A, David D. Myofibroblasts in peripheral giant cell granuloma. Light and Electron microscopic study. Int Oral Maxillofac Surg 1989; 18:258-261.
14. Yadalam U, Bhavaya B, Kranti K. Peripheral Giant Cell Granuloma: A Case Report. Int J Dent Case Reports 2012; 2(3):30-34.
15. Eversole LR, Rotin S. Reactive lesions of the gingiva. J Oral Pathol 1972; 1; 30-8.
16. Jurge S, Kuffer R, Scully C, Porter SR (2006). Mucosal disease series. Number VI. Recurrent aphthous stomatitis. Oral Dis 12 (1): 1-21.
17. Wray D, Ferguson M, Hutcheon W, Dagg J (1978). Nutritional deficiencies in recurrent aphthae. J Oral Pathol 7 (6): 418-23.
18. Lehman JS, Rogers RS. Acute oral ulcers. Clin Dermatol. 2016 Jul-Aug; 34(4):470-4.
19. Van As G. The diode laser in treating ulcerative oral lesions. Dent Today. 2011 Dec; 30(12):112.
20. Mir M, Mojahedi S, Adalatkhah H, Tunir J, Shirani A, Babaalipour R, Shabani M. Evaluation of a Newly Developed Laser Pen as a Home Care Device for Pain Reduction of Recurrent Aphthous Stomatitis (Preliminary Study). International Journal of Clinical Medicine, 2015(6): 19-25. doi: 10.4236/ijcm.2015.61003.
PRZYJEDŹ Z ZESPOŁEM!

* Obowiązuje do końca stycznia 2019.
3 Kongres Polskiego Towarzystwa Stomatologii Laserowej

1 Międzynarodowy Kongres Innowacji w Asyście i Higienie

Sesja Laserowej Medycyny Estetycznej

Kraków
18-19.10.2019

-20% na hasło Dental Tribune dla pierwszych 30 osób*

www.ptsl.com.pl
Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses

Nejc Lukač, Matija Jezeršek

Abstract: When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble’s collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble’s collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble’s oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

Key words: endodontics, Er:YAG, laser-beam deflection probe, shock wave.

Introduction

Laser-induced cavitation bubbles have already been proposed for surface cleaning. The cleaning of surfaces is carried out by fluid flow generated when bubbles expand and collapse close to boundaries.

An example of the use of laser-induced cavitation bubbles is the laser activated irrigation (LAI) during the dental root canal therapy, using an erbium laser (2940 or 2780 nm). The treatment is based on the delivery of erbium laser pulses into the liquid-filled canal through a fiber tip. The erbium laser light is highly absorptive in water (approximately 1-3 μm penetration depth), which leads to explosive boiling that induces cavitation bubbles.

Photon-induced photoacoustic streaming (PIPS™) is the latest application of LAI, which uses the Er:YAG (2940 nm) laser equipped with a conical and stripped fiber tip. With the PIPS technique, the fiber tip is held in the coronal aspect of the access preparation, and very short bursts of very low laser energy are directed down into the canal to stream irrigants throughout the entire root canal system. This technique results in much deeper irrigation than traditional methods (syringe, ultrasonic needle), being capable of reaching lateral canals and other outlying structures also in the apical part of the root canal, with the major cleaning mechanism being attributed to the liquid vorticity resulting from the laser-activated oscillations of the cavitation bubbles.

Also of major concern in root canal irrigation is the effective removal of the biofilm and of the smear layer, which is produced during root canal instrumentation and consists of inorganic and organic material including bacteria and their byproducts. When LAI was first introduced it was believed that shock waves generated during the bubbles’ collapse would contribute to the efficacy of debridement and removal of the biofilm and organic tissue remains. However, as opposed to within infinite liquid reservoirs, shock waves are considerably diminished or are not present at all when bubbles are created in confined reservoirs such as dental root canals. This is because in confined liquid cavities, the resulting cavi-
tation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are not intense enough to generate shock waves. Current procedures thus still rely on the use of ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite solutions and are only partially effective in removing the smear layer and biofilm.18-22 Therefore, further optimization of laser-assisted irrigation and cleaning procedures is called for.

Recently, a synchronized delivery of laser pulses was studied in an infinite liquid reservoir, showing that a resonance effect can be achieved by applying a second laser pulse shortly after the collapse of the primary cavitation bubble to increase the mechanical energy of the secondary oscillation.23 However, these results have limited value for endodontic applications, as the oscillations of cavitation bubbles in the confined geometry of the root canal vary significantly from the infinite liquid reservoir scenario. In confined reservoirs, secondary oscillations are diminished or not present at all and the collapses happen 2-3 mm below the fiber tip. Therefore, subsequent laser pulses lead to the generation of new cavitation bubbles, physically separate from the primary bubble, and the resonance effect does not take place.

In this paper, we report on a new SWEEPS (shock wave enhanced emission photoacoustic streaming) technique of synchronized laser-pulse delivery intended to enhance shock waves emitted by collapsed bubbles in confined spaces such as root canals. As the collapse of the laser-induced cavitation bubble is initiated, a second pulse is delivered into the liquid, forming a second cavitation bubble. The growth of the second cavitation bubble accelerates the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Furthermore, shock waves are also emitted from the collapsing secondary cavitation bubbles that form naturally throughout the entire length of the canal during laser-induced irrigation. Unlike the main cavitation bubbles, the secondary bubbles are in close proximity to canal walls during their collapses, generating shear flows that are able to remove particles from the surface.3 Additionally, because of their proximity to the canal walls, the emitted shock waves are still propagating at super-sonic speeds as they reach the smear layer, potentially increasing the cleaning mechanism even further. The proposed SWEEPS technique shares similarities with extracorporeal shock wave lithotripsy (ESWL), where focused ultrasonic waves are used to break kidney stones into smaller pieces.24,25

Materials and methods

The cavitation bubbles and the corresponding pressure waves were generated with an Er:YAG laser (LightWalker ATS, Fotona d.o.o, $\lambda = 2.94$ μm) fitted with an articulated arm and a fiber tip handpiece (H14, Fotona d.o.o). Laser pulses were delivered into liquid-filled canals through fiber tips (flat Fotona VARIAN 600 fiber tip or conical Fotona PIPS 600 fiber) with 600 μm fiber diameter. Although both types of fiber tips were tried in most of the experiments, the presented data is mainly for the experiments obtained with the flat fiber tip. This is because under the SWEEPS conditions the cone of the conical fiber tip became very quickly damaged, making the collected data unreliable. We attribute this observation to the significant amplification of the pressure waves in the vicinity of the accelerated collapse of the first bubble under the SWEEPS conditions.

The induced photoacoustic phenomena in the confined liquid space were characterized with two experimental setups. One of the setups was a laser beam deflection probe (LBDP), which measured the amplitudes of pressure waves based on changes in the refractive index gradient at a single point with high temporal resolution.26 The other setup involved highspeed camera acquisition and shadow photography used to visualize cavitation bubbles and the emission of resulting shock waves. Bubble oscillation periods and volumes were determined from the captured sequences of images.

Measurement of pressure waves using laser beam deflection probe

The experimental setup for measuring the amplitudes of pressure waves is shown schematically in Fig. 1. A block of aluminum with $L = 25$ mm long open-ended canals of different diameters (2, 3, 6, and 8 mm) was submerged 3 mm deep in a basin of distilled water (100 × 100 × 70 mm). A flat fiber tip (VARIAN 600), positioned in the center of the cross section of the canal, 5 mm below the water surface, was used to deliver the excitation laser pulses.

A signal generator controlled by a personal computer was used to trigger the excitation laser. A 60-MHz InAs photodiode was used to detect and characterize the temporal profiles of the Er:YAG laser pulses.

The laser beam deflection probe consisted of a He-Ne laser beam ($\lambda = 633$ nm) focused to a measuring spot 1 mm below the lower edge of the canal (26 mm below the fiber tip) and centered on a quadrant photodiode (QPD). The refractive index gradient produced by the propagation of a pressure wave through the water caused the deflection of the probe laser beam and a change in the signal of the QPD. Because the probe laser beam was positioned directly below the source of the pressure wave, only the vertical deflection was measured by subtracting the sum of signals from the upper two quadrants from the sum of signals from the lower two quadrants of the photodiode.
Figure 2 shows a typical LBDP signal (black line) produced by the propagation of a pressure wave following a single laser pulse with energy $E_p = 20 \, \text{mJ}$ and pulse width $t_p = 50 \, \mu\text{s}$. The temporal profile of the laser pulse is represented by the red line on the same graph. Two particular regions of interest are distinguishable from the LBDP signal: the first is the result of the rapid expansion of the laser-induced oscillation bubble (see the dashed rectangle on the left side of Fig. 2), and the second is the result of the oscillation bubble’s collapse (see the dashed rectangle on the right side of Fig. 2). The first peak in the LBDP signal at expansion corresponds to the direct pressure wave, while the second peak (approximately 40 μs after the first one) is the reflection from the bottom of the water reservoir. The same pair of peaks can be seen during the collapse.

In order to find the optimal delay (T_p^\ast) where the collapse amplitude is maximal (A^\ast), a series of measurements was conducted by varying T_p in a range from 200 to 800 μs in 1 μs intervals and recording A and T_{osc} for different canal diameters (2, 3, 6, and 8 mm).

High-speed camera and shadow photography

Two additional experimental systems were used to record the generated shock waves during the synchronized delivery of laser pulses and to measure the dependence of the bubble’s oscillation period (T_{osc}) on the laser pulse energy, cavity diameter, and fiber tip position.

The shock waves were recorded with a shadow-graphic setup using 30 ps long frequency-doubled Nd:YAG ($\lambda = 532 \, \text{nm}$) illumination pulses (Ekspla, Lithuania, PL2250-SH-THI), imaged through a microscope by a charge-coupled device (CCD) camera (Basler AG, Germany, scA1400-17 fm, 1.4 Mpx). The experimental system is basically the same as described in ref. 15.

Figure 4 shows the experimental system for measuring the dependence of the cavitation bubble’s oscillation pe-
Study period (Tosc) on different parameters (laser pulse energy, cavity diameter, and fiber tip position). A block of acrylic glass with canals of varying diameters (1.5-6 mm) and lengths (10 mm and 20 mm closed-ended and 30 mm open-ended canals) was used to simulate various cavity dimensions. The block was submerged 3 mm deep in a basin of distilled water, and a conical fiber tip (PIPS 600 μm, Fotona) was positioned in the center of the cross section of the canal, 5 mm below the water surface, to deliver the Er:YAG laser pulses. A signal generator (SG; Tektronix, US, AFG 3102) was used to trigger the excitation laser and the camera.

Figure 5 shows a typical sequence of a cavitation bubble’s oscillation caused by a single 8 mJ laser pulse in a 20-mm long, close-ended canal with a diameter of 3 mm. The bubble oscillation period Tosc was measured as the time from the beginning of the growth of the cavitation bubble to its first collapse (marked by a yellow rectangle).

Results

The first part of the experimental results demonstrates the amplification of pressure waves in confined canals when a second laser pulse is delivered at a proper delay. Since the required optimal delay depends on the first bubble’s oscillation period (Tosc), we also measured the dependence of Tosc on laser energy, cavity diameter and length, and on the position of the fiber tip within the cavity. In the second part, the presence of shockwaves during the first bubble’s collapse phase is demonstrated for the optimally synchronized laser pulse pair.
Amplification of pressure waves

Figure 6 depicts the measured collapse amplitude (A) for various Tp, ranging from 450 to 740 μs in a canal with a diameter D = 2 mm. In the case of a single laser pulse, the average (baseline) amplitude (A1) was 116 mV. For Tp below approximately 550 μs, the collapse amplitude is significantly diminished in comparison with what it would be in the absence of a second pulse. For Tp in the optimal range from 560 to 630 μs, the pressure waves are amplified. And for Tp longer than 630 μs, the collapse amplitude returns to the baseline level of a single laser pulse, since at longer delays, the second pulse is delivered after the collapse of the first oscillation bubble has already occurred.

The average maximal collapse amplitude at the optimal delay of T*p = 583 μs was A* = 241 mV, which is by a factor of 2.08 higher than A1. The optimal delay T*p was determined as the midpoint of the class interval with the highest mean collapse amplitude.

The dependence of the collapse amplitude A on Tp was measured also for other canal diameters (see Fig. 7). As can be seen from the obtained results, both A* and T*p are strongly dependent on the canal dimensions. Generally, the T*p and pressure wave amplification factor (Af = A*/A1) decrease with the canal diameter. The optimal delay times and amplification factors for different canal diameters are collected in Table 1. The amplification of pressure waves (Af) is most pronounced in smaller diameter cavities, ranging from Af = 1.09 for the D = 8 mm cavity to Af = 2.2 and Af = 2.08 for the D = 3 and 2 mm cavities, respectively. It is worth noting that shock waves are emitted at shock speeds close to the collapsing bubble but become considerably slower as they travel approximately 26 mm deep into the canal, where the measurement of the pressure waves was made. Therefore, it is expected that the actual amplification of the pressure waves in the vicinity of the collapsing bubble is much larger than shown in Table 1. This was confirmed also by our observation that when a standard conical PIPS fiber tip was used, the fiber’s cone became very quickly damaged when the optimal pulse separation was used.

Figure 8 shows, for different diameter canals, the difference in the first bubble’s LBDP oscillation times (Tosc), both for cases when only a single laser pulse is emitted and for when the first pulse is followed by an optimally delayed second laser pulse. As can be seen, the optimally delayed second pulse (i.e., separated by T*p from the first pulse) accelerates the first bubble’s collapse, resulting in a reduced LBDP oscillation time Tosc. The reduction ranges from 1 μs in the D = 8 mm diameter canal to 30 μs in

Diameter (mm)	T*p (μs)	A\textsubscript{f}
2	580	2.08
3	525	2.20
6	370	1.16
8	310	1.09
the D = 2 mm diameter canal. The difference between the means of the first bubble LBDP oscillation times depending on whether a second laser pulse is present or not is significant at P < 0.001 for 2, 3, and 6 mm diameter canals and at P < 0.05 for the 8 mm diameter canal.

Figure 9 shows the dependence of the first bubble’s collapse amplitude A on the first laser pulse’s energy. The pulse energy was controlled with a series of apertures of different diameters to keep the temporal profile of the laser pulse constant. The circles represent single-pulse results, and the diamond represents the collapse amplitude A for a case when the first laser pulse was followed by an optimally delayed second laser pulse with the same laser pulse energy. As can be seen from Fig. 9, increasing the individual laser pulse energy does not result in a significant increase in the collapse amplitude. In fact, the collapse amplitude gets even smaller when the laser energy is increased from 10 to 50 mJ, which we attribute to the increase of the bubble’s volume relative to the dimension of the canal. It is only when a second, optimally delayed laser pulse is added to the first pulse that the collapse amplitude of the first bubble gets significantly amplified.

Dependence of the bubble oscillation period on experimental conditions

The optimal separation of a synchronized laser pulse pair (Tp) depends on the bubble oscillation period (Tosc) which further depends on specific experimental conditions. Figure 10 shows Tosc as a function of the depth of the fiber tip inside a L = 10-mm-long open-ended canal with a diameter of D = 4 mm. The fiber tip depth represents the distance from the upper edge of the canal to the exit end of the fiber tip. For depths ranging from 3 to 6.5 mm, we observed no significant influence on Tosc. The small variations in Tosc (ranging from 695 to 725 μs) can be attributed to slight differences in the radius alongside the canal and to the measurement error. The absolute depth of the fiber tip (distance from the water surface) in the measured range would only cause an increase in the hydrostatic pressure of approximately 0.35 mbar (representing the water hydrostatic pressure at the 6.5 mm depth), and therefore, any effect of the absolute depth on Tosc is expected to be insignificant.

Figure 11 shows Tosc as a function of the cavity diameter (ranging from D = 1.5 to 6 mm) for close-ended cavities of different lengths (L = 10 and 20 mm) and in the case of an open-ended 30-mm-long canal. Results show that there is a strong negative correlation between the diameter of the canal and Tosc. At small canal diameters (2 and 1.5 mm), the cavitation bubble expands beyond the upper edge of the canal, which results in a shorter Tosc.

Images of shockwaves generated during bubble collapse

Figure 12 shows Tosc as a function of laser pulse energy in 3 and 6 mm diameter closed-ended canals and in an infinite liquid. Results show that there is a strong positive correlation between the laser pulse energy and Tosc.

Image of shockwaves generated during bubble collapse

Figure 13 shows typical shadow-graphic images of shockwaves as observed during the collapse of a single cavitation bubble in an infinite liquid reservoir. Since the shockwave causes a strong disturbance of water’s refractive index, it can be visualized as a sharp circular edge on the shadow-graphic images (yellow arrows are pointing...
to some of them). It is interesting to observe that multiple shockwaves are generated as a consequence of a divided bubble’s collapse. This is especially evident when a flat fiber tip is used.

As opposed to a single bubble collapse in an infinite reservoir, no shock waves were observed during the collapse of a single cavitation bubble in spatially limited closed-ended canals, in agreement with previous reports. However, when a subsequent laser pulse is emitted during the initial bubble’s collapse, the growth of the subsequent bubble exerts pressure on the collapsing initial bubble. This accelerates the collapse of the initial bubble and causes the emission of shock waves even in spatially limited water reservoirs. Figure 14a shows shadow-graphic images of shockwaves being emitted during the collapse of an initial cavitation bubble in a narrow canal. The beginning of a subsequent bubble expansion can be noticed on all images, which indicates that the collapse of the initial bubble was accelerated by a properly delayed subsequent laser pulse.

Smaller secondary bubbles are also formed alongside the entire canal. The violent collapse of the initial bubble also initiates the collapses of the secondary bubbles. Figure 14b shows the emission of shock waves from the collapsing secondary bubbles.

Discussion

A major mechanism of action of currently used laser activated root canal irrigation techniques is believed to be the rapid fluid motion in the canal as a result of expansion and implosion of vapor bubbles, resulting in a more effective delivery of the irrigants throughout the complex root canal system. An additional mechanism which contributes to the efficacy of LAI is the improved removal of the smear layer, microorganisms, and biofilm as a result of the physical action of the turbulent irrigant. In addition, chemical action seems to play a role as well. For example, an increased reaction rate of NaOCl was found upon activation by a pulsed erbium laser. By being able to generate shock waves within narrow root canals, we hypothesize that both the physical and chemical actions of LAI can be further enhanced by using the SWEEPS technique.

Experimental results of the SWEEPS technique show that significant amplification of pressure waves can be achieved with optimal delay times of the second laser pulses (see Fig. 7 and Table 1). It is important to note that the amplitude of collapse is significantly higher if a double-pulse regime is used compared to a single-pulse with the same cumulative energy (see Fig. 9), because increased single-pulse energy leads to an increase in the volume of the cavitation bubble relative to the cavity di-
Be a part of something extraordinary.

4–8 September 2019 Moscone Convention Center

3 DAYS OF EXHIBITION
5–7 SEPTEMBER

- MORE THAN 1,300 STANDS
- 40,000 M² OF EXHIBITION SPACE

SCIENTIFIC PROGRAMME
2 HALF DAYS (4, 8 SEPT) & 3 FULL DAYS (5-7 SEPT)

- 200 WORLDWIDE SPEAKERS
- MORE THAN 30,000 PARTICIPANTS

Abstract submission deadline
1 April 2019

Early-bird registration deadline
30 April 2019

www.world-dental-congress.org
dimensions, which in turn leads to a weakened collapse. The main mechanism of this amplification is in our opinion the acceleration of the initial bubble collapse, which is significantly diminished in confined spaces (like root canals).

This hypothesis is confirmed by the results shown in Fig. 8, where oscillation time as measured by the LBDP in the case of a single pulse (T'osc) and in the case of two synchronized pulses (T''osc) separated by T p is shown. Slight differences between T'osc and T''osc could be explained by the increased speed of propagation of the pressure waves. However, the distance between the source of the pressure wave and the probe laser beam is approximately 25 mm, which means a travel time of roughly 17 μs at the speed of sound in water.29,30 Therefore, the increased speed of propagation cannot account for the 30 μs (see Fig. 8, 2-mm-diameter canal) difference between T'osc and T''osc. Furthermore, since shock waves traveling at supersonic speed quickly converge towards the speed of sound,31,32 we do not expect a significant effect on the average speed of propagation of the pressure wave over a relatively great distance (25 mm). Similarly, slight differences in Tosc could be the result of the collapse of the bubble happening closer to the probe laser beam, perhaps being

Fig. 8: First bubble’s oscillation time as measured by the LBDP in the case of a single pulse (T'osc) and in the case of two synchronized pulses (T''osc) separated by T p. Er:YAG laser pulses with pulse energy E p = 20 mJ and pulse width t p = 50 μs were delivered through a flat fiber tip in this experiment.

Fig. 9: Measured collapse amplitude as a function of single-pulse (with pulse width t p = 50 μs) laser energy (6 mm diameter canal, flat fiber tip).
pushed downward by the expanding second bubble. High-speed camera observations confirm that this effect is not large enough to contribute significantly to the difference between T_{osc} and T_{osc}*. However, the differences between T_{osc} and T_{osc}* are consistent with the collapse happening earlier due to the exerted pressure of the second expanding bubble on the collapsing bubble, accelerating the collapse.

The acceleration factor (Acc) was defined as an increase in the average speed of collapse after the initiation of the second pulse:

$$Acc = \frac{T_{osc} - T_{osc}^*}{T_{osc} - T_{osc}^*}$$

The strong covariance between Af and Acc for various canal diameters, which is shown in Fig. 15, supports the hypothesis that the amplification of the shock waves is a result of the acceleration of the collapse of the bubble. The results of Af and Acc for the 2-mm-diameter canal are consistent with measurements of the actual bubble oscillation period T_{osc} (see Fig. 11) and are likely caused by the cavitation bubble partially extending outside the boundaries of the canal during its growth, changing the observed dynamics.

It is important to note that the enhanced emission of shock waves does not appear to result in an increased apical irrigant extrusion. Recently, a study of the potential apical irrigant extrusion during the SWEEPS laser irriga-
Study was carried out, during which irrigation using two standard endodontic irrigation needles (notched open-end and side vented) was compared with the PIPS and SWEEPS laser irrigation procedures. Both the PIPS and SWEEPS irrigation procedures resulted in a significantly lower apical extrusion compared to the conventional irrigation with endodontic irrigation needles, in agreement with a previous report.

Finally, in our experiments, the single pulses or pairs of pulses were delivered at low repetition rates of up to 0.2 Hz. A potential dependence of the SWEEPS phenomena on the increased pulse pair repetition rate was not explored.

Conclusion

A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the effects of synchronized delivery of Er:YAG pulses in a confined volume of water. As opposed to in infinite liquid reservoirs, shock waves are typically not emitted by laser induced cavitation bubbles in confined liquid spaces. This limits the surface cleaning efficacy of the laser-induced cavitation bubbles. However, as our study shows, pressure waves caused by the collapse of a laser induced cavitation bubble can be significantly amplified (P < 0.001) also in a confined reservoir. This is achieved by delivering a subsequent laser pulse, separated from the initial pulse by a proper temporal delay. It is to be noted that similar amplification cannot be achieved by simply increasing the laser pulse energy. Larger single-pulse energies lead to larger cavitation bubbles relative to the cavity dimensions, which in turn results in a weakened collapse of the bubbles. On the other hand, applying a subsequent laser pulse during the initial bubble’s collapse leads to the growth of a second bubble, which exerts pressure on the collapsing initial bubble, accelerating its collapse and causing the emission of shock waves. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble’s oscillation period. The resulting amplification is most pronounced in smaller diameter canals (< 3 mm). Measurements with a high-speed camera show that the oscillation periods of cavitation bubbles depend strongly on laser pulse energy and canal diameter, as opposed to the canal length and fiber tip depth, which have only a minor influence on the bubbles’ oscillation period.

The observed shock wave-enhanced emission photoacoustic streaming (SWEEPS) phenomenon could be used to improve the efficacy of laser-assisted root canal treatment, especially with respect to the smear layer and biofilm removal. Because of the variability of root canal geometries, further methods of improvement may be needed in order to achieve a reliable synchronization between the bubble oscillation and the laser pulse pair timing. One potential improvement may be a special laser modality in which the temporal separation between the pairs of laser pulses is continuously swept back and forth in order to ensure that during each sweeping cycle the optimal separation between the pulse pair is achieved, as required for shock wave generation.

Acknowledgements: The authors wish to thank Fotona (www.fotona.com) and the Laser and Health Academy (www.laserandhealthacademy.com) for providing the laser systems.

Funding Information: The authors acknowledge financial support from the state budget of the Slovenian Research Agency (Programs No. P2-0392 and P2-0270).

Compliance with ethical standards: This article did not require ethical approval.
Conflict of interest: One of the authors is currently an employee of Fotona.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: This article does not contain any studies with human participants performed by any of the authors.

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Author:

Nejc Lukač – Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.

Contact:
E-mail: nejclukac@hotmail.com

References:

1. Ohl C-D, Arora M, Dijkink R, Jarve V, Lohse D (2006). Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89(7):074102. https://doi.org/10.1063/1.2337506.

2. Mir M, Gutknecht N, Poprawe R, Vanweersch L, Lemptert F (2009). Visualisation of the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses. Lasers Med Sci 24(3):365-374. https://doi.org/10.1007/s10103-008-0571-1.

3. Blanken J, De Moor RJ, Meire M, Verdaasdonk R (2009). Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study. Lasers Surg Med 41(7):514-519. https://doi.org/10.1002/lsm.20798.

4. George R, Walsh LJ (2008). Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: an in vitro dye study. J Endod 34(6):706-708. https://doi.org/10.1016/j.joen.2008.03.003.

5. Blanken JW, Verdaasdonk RM (2007). Cavitation as a working mechanism of the Er, Cr:YSGG laser in endodontics: a visualization study. J Oral Laser Appl 7(2):97-106.

6. De Moor RJ, Blanken J, Meire M, Verdaasdonk R (2009). Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med 41(7):520-523. https://doi.org/10.1002/lsm.20797.

7. Lukač N, Zadravec J, Gregorčič P, Lukač M, Jezeršek M (2016). Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation. J Biomed Opt 21(7):075007-075007. https://doi.org/10.1117/1. JBO.21.7.075007.

8. Peters OA, Bardsley S, Feng J, Pandher G, Divito E (2011). Disinfection of root canals with photon-initiated photoacoustical streaming. J Endod 37(7):1008–1012. https://doi.org/10.1016/j.joen.2011.03.016.

9. Lloyd A, Uhles JP, Clement DJ, Garcia-Godoy F (2014). Elimination of intracanal tissue and debris through a novel laseractivated system assessed using high-resolution micro-computed tomography: a pilot study. J Endod 40(4):584-587. https://doi.org/10.1016/j.joen.2013.10.040.

10. Koch JD, Jaramillo DE, Divito E, Peters OA (2016). Irrigant flow during photon-induced photoacoustic streaming...
Laser-assisted irrigation within root canals: cleaning efficacy and flow visualization. Int Endod J 42(12): 1077-1083. https://doi.org/10.1111/j.1365-2591.2009.01634.x.

15. Lukač N, Gregorčič P, Jezeršek M (2016). Optodynamic phenomena during laser-activated irrigation within root canals. Int J Thermophys 37(7):1-8. https://doi.org/10.1007/s10765-016-2071-z.

16. Matsumoto H, Yoshimine Y, Akamine A (2011). Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model. J Endod 37(6):839-843. https://doi.org/10.1016/j.iij.1365-2591.2009.01634.x.

17. Potocnik I (2008). Smear layer removal in endodontic treatment: materials and procedure. Zobozdrav Vestn 4-5:3.

18. De Meyer S, Meire MA, Coenye T, De Moor RJ (2017). Effect of laser-activated irrigation on biofilms in artificial root canals. Int Endod J 50(5):339-344. https://doi.org/10.1002/lsm.22143.

19. Cheng X, Tian T, Tian Y, Xiang D, Qiu J, Liu X, Yu Q (2017). Erbium:yttrium aluminium garnet laser-activated sodium hypochlorite irrigation: a promising procedure for minimally invasive endodontics. Photomed Laser Surg 27(2):273-280. https://doi.org/10.1007/s10765-016-0858-x.

20. Verstraeten J, Jacquet W, De Moor RJG, Meire MA (2017). Efficacy of root canal irregularities. Lasers Med Sci 32(9):1965-1970. https://doi.org/10.1007/s10103-016-1442-y.

21. DiVito E, Peters OA, Olivi G (2012). Effectiveness of the erbium:YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med Sci 27(2):273-280. https://doi.org/10.1007/s10103-010-0858-x.

22. Violich DR, Chandler NP (2010). The smear layer in endodontics – a review. Int Endod J 43(1):2-15. https://doi.org/10.1111/j.1365-2591.2009.01627.x.

23. Gregorcic P, Jamsek M, Lukač M, Jezesrek M (2014). Synchronized delivery of Er:YAG laser-pulse energy during oscillations of vapor bubbles. J Laser Health Acad 1:5.

24. de Icaza-Herrera M, Fernandez F, Loske AM (2015). Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory. Ultraso nics 58:53-59. https://doi.org/10.1016/j.ultras.2014.12.002.

25. Loske AM, Prieto FE, Fernandez F, van Cauwelaert J (2002). Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys Med Biol 47(22):3945-3957.

26. Gregorcic P, Petkovšek R, Možina J, Močnik G (2008). Measurements of cavitation bubble dynamics based on a backreflection probe. Appl Phys A 93(4):901-905. https://doi.org/10.1007/s00339-008-4751-4.

27. Gregorcic P, Lukac N, Mozina J, Jezesrek M (2016). In vitro study of the erbium:yttrium aluminium garnet laser cleaning of root canal by the use of shadow photography. J Biomed Opt 21(1):15008. https://doi.org/10.1117/1.JBO.21.1.015008.

28. Macedo RG, Wesselink PR, Zaccheo F, Fanali D, Van Der Sluis LW (2010). Reaction rate of NaOCl in contact with bovine dentine: effect of activation, exposure time, concentration and pH. Int Endod J 43(12):1108-1115. https://doi.org/10.1111/j.1365-2591.2010.01785.x.

29. Wilson WD (1959). Speed of sound in distilled water as a function of temperature and pressure. J Acoust Soc Am 31(8):1067-1072. https://doi.org/10.1121/1.1907828.

30. Lin CW, Trusler JP (2012). The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa. J Chem Phys 136(9):094511. https://doi.org/10.1063/1.3688054.

31. Chen X, Xu R-Q, Chen J-P, Shen Z-H, Jian L, Ni X-W (2004). Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water. Appl Opt 43(16):3251-3257. https://doi.org/10.1364/AO.43.003251.

32. Holzfuss J, Rüggeberg M, Billo A (1998). Shock wave emissions of a sonoluminescing bubble. Phys Rev Lett 81(24):5434-5437.

33. Jezesrek M, Pirnat L, Jereb T, Lukač M, Tenyi A, Fidler A (2017). Measurement of apical extrusion during laser activated irrigation within root canals using particle image velocimetry (PIV) [abstract]. In: Proceedings of International Conference on Laser Ablation (COLA), Marseille. pp. 293.

34. Snjarič D (2016). Apical irrigant extrusion during laser-activated irrigation compared to conventional endodontic irrigation regimens – preliminary study results. J Laser Health Acad 2016(1):1.

35. Lukac N, Tasic Muc B, Jezesrek M, Lukac M (2017). Photocautious endodontics using the novel SWEEPS Er:YAG laser modality. J Laser Health Acad 1:1-7.
- education everywhere and anytime
- live and interactive webinars
- more than 1,000 archived courses
- a focused discussion forum
- free membership
- no travel costs
- no time away from the practice
- interaction with colleagues and experts across the globe
- a growing database of scientific articles and case reports
- ADA CERP-recognized credit administration

www.DTStudyClub.com

Join the largest educational network in dentistry!
XIII MIĘDZYNARODOWY KONGRES OSIS
XIII INTERNATIONAL OSIS CONGRESS

JACHRANKA - 16-18 MAJA, 2019 - Hotel WINDSOR
WARSAW-JACHRANKA - MAY 16-18, 2019 - WINDSOR HOTEL

tematyka featuring

IMPLANTO-PERIO-PROTETYKA CHIRURGIA STOMATOLOGICZNA
IMPLANTS-PERIO-RESTORATIVE DENTISTRY
ORAL SURGERY

komitet naukowy co-chairs

Prof. Myron Nevins
Prof. Andrzej Wojtowicz

KOSZT UCZESTNICTWA

Grupa	Prez 15.02	od 16.02 – 15.04	od 16.04
LEKARZE	850 PLN	1000 PLN	1200 PLN
CZŁONKOWIE OSIS	750 PLN	850 PLN	950 PLN
STUDENCI	400 PLN	500 PLN	600 PLN

Formularz zgłoszeniowy i rejestracja / Registration: www.osis.org.pl

PROGRAM KONGRESU (w programie mogą nastąpić zmiany)

DZIEŃ PRZEDKONKRESOWY - WARSZTATY

CZWARTEK / THURSDAY 16 MAJA / MAY

Czas	Tytuł	Autorzy	Cena
10:00 – 17:00	Praktyczne zasady stosowania PRF w zabiegach regeneracji tkanek miękkich i twardych	JOSEPH CHOUKROUN	500 zł, dla uczestników Kongresu 300 zł
12:00 – 19:00	Synergiczne połączenie Laserów i Autogennyh Czynnikiów Wzrostu	ROBERT J. MILLER	500 zł, Max. 25 osób
	Synergy in Surgery: A Biologic Protocol Combining Lasers and Autologous Growth Factors		
16:00 – 20:00	Implanty ZYGOMATYCZNE Zewnątrz-zatonkowe - alternatywą dla Sinus Lift	PAWEŁ ALEKSANDROWICZ / JACEK OKSIŃSKI	200 zł
	Extra-sinus ZYGOMATIC Implants – alternative for Sinus Lift		
Dzień 1
PIĄTEK / FRIDAY - 17 MAJA / MAY

Time	Speaker(s)	Topic
08:45 – 09:15	ANDRZEJ WOJTOWICZ	Rozpoczęcie Kongresu / Congress Opening
09:15 – 10:15	MYRON NEVINS	Zapobieganie periimplantitis / Prevention of Periimplantitis;
10:15 – 11:00	STEFANO PARMA BENEFANTY	Odbudowa Kości Zanikłej w Przebiegu Periimplantitis / The Regeneration of Lost Bone after Peri-implantitis
11:00 – 11:30	Przerwa / Break	
11:30 – 12:15	DANIELE CARDAROPIOLI	Estetyka w Implantologii / Esthetic Implantology
12:15 – 13:00	DAVID KIM	Przyszczepy Tkanek Miękkich wokół Zębów i Implantów / Soft Tissue Grafting for Teeth and Implants;
13:00 – 14:00	Przerwa Obiadowa / Lunch Break	

SESJA: CZYNNIKI WZROSTU / GROWTH FACTORS

Time	Speaker(s)	Topic
14:00 – 14:45	JOSEPH CHOUKROUN	Najnowsze protokoły dla PRF do Sterowanej Regeneracji Kości i Tkanek oraz w Medycynie Estetycznej / PRF recent applications for GBR, GTR and Esthetic Medicine
14:45 – 15:30	DAVID KIM	Rekombinowane czynniki wzrostu – rh PDGF / Recombinant Growth Factors – rh PDGF
15:30 – 16:00	Przerwa / Break	

SESJA: WYZWANIE - DEFEKTY KOSTNE / SOLUTIONS FOR BONE DEFIENCIES

Time	Speaker(s)	Topic
16:00 – 16:45	MARCO RONDA	Pionowe Powiększenie Wyrostka Zębowołowego / Vertical Ridge Enhancement
16:45 – 17:10	PIOTR MAJEWSKI	Czym Kierować się Przy Wyborze Materiałów i Technik Regeneracyjnych / Prosthetically driven choice of materials and techniques for Bone Augmentation
17:10 – 17:30	PAWEŁ ALEKSANDROWICZ / JACEK OKSIŃSKI	Implanty ZYGOMATYCZNE Zewntrz-zatokowe - alternatywą dla Sinus Lift / Extra-sinus ZYGOMATIC Implants – alternative for Sinus Lift

SESJA: LASERY / LASERS cz. 1

Time	Speaker(s)	Topic
17:30 – 18:00	ROBERT J. MILLER	Lasery w Implantologii / Lasers in Oral Implantology

Dzień 2
SOBOTA / SATURDAY - 18 MAJA / MAY

SESJA: LASERY / LASERS cz. 2

Time	Speaker(s)	Topic
08:45 – 09:30	VANESSA RUIZ MAGAZ	Chirurgiczna Terapia Laserowa / Laser Surgical Treatment
09:30 – 10:00	KINGA GRZECH	Terapia Laserowa Nie-chirurgiczna / Laser Non-Surgical Treatment

SESJA: ESTETYKA W IMPLANTOLOGII / ESTHETICS IMPLANT TREATMENT

Time	Speaker(s)	Topic
10:00 – 10:45	LUIGI CANULLO	Biologiczne Uwarunkowania W Sterfie Protetycznej Implantu / The peri-implant prosthetic district biologic considerations
11:45 – 11:15	Przerwa / Break	
11:15 – 12:00	ALVISE CENZI	Estetyczna implantoprzeteka / Esthetic Implant Prosthodontics

SESJA: OKLUZJA / OCCLUSION

Time	Speaker(s)	Topic
12:00 – 12:20	PIOTR OKOŃSKI	Znaczenie Relacji Centralnej w Implantoprzetecy / Importance of Centric Relation in Implant Restorations

SESJA: UTRZYMANIE ESTETYKI WOKÓŁ IMPLANTÓW / BONE PRESERVATION AROUND IMPLANTS

Time	Speaker(s)	Topic
12:20 – 12:50	SERGIO SPINATO	Czynniki zmniejszające Zanik Kości Brzeźnej wokół Implantu / Combination of: Machined surface, Abutment height and Mucoal thickness to minimize Marginal Bone Loss
12:50 – 13:10	KORNEL KRAŚNY	Czynniki Zwiększające Przewidywalność Przyszczeb Allogennych Bloków Kostnych / Success Factors for Allogenic Bone Block Grafting
13:10 – 14:00	Przerwa Obiadowa / Lunch Break	
14:00 – 15:30	MASSIMO SIMION	Przewidywalność Regeneracji Kości wokół Implantów – 25 Lat obserwacji 25 Years Follow-up on Predictability of Bone Regeneration around Implants

**rejestracja / registration: www.osis.org.pl
kontakt / contact: ed@osis.org.pl**
NEW COLLECTION

EXPERIENCE OUR ENTIRE COLLECTION AT WWW.CROIXTURE.COM
LightWalker®

- Stomatologia zachowawcza
- Stomatologia dziecięca
- Zabiegi PERIO - TwinLight™
- Zabiegi ENDO - TwinLight™
- Chirurgia tkanek twardych i miękkich

- Leczenie nadwrażliwości zębów
- Wybielanie zębów - TouchWhite™
- Leczenie chrapania - NightLase™
- Medycyna estetyczna

www.laseroweleczeniezębów.com
Dystrybucja w Polsce: BTL Polska Sp. z o.o., ul. Leonidasa 49, 02-239 Warszawa, tel. 22 667 02 76, btinet@btinet.pl

LIDER NA RYNKU LASERÓW STOMATOLOGICZNYCH W POLSCE