Evidence of moist niches in the Bolivian Andes during the mid-Holocene arid period
Marie-Pierre Ledru, Vincent Jomelli, Laurent Bremond, Teresa Ortuño, Pablo Cruz, Ilham Bentaleb, Florence Sylvestre, Adèle Kuentz, Stephan Beck, Céline Martin, Christine Paillès and Sandrine Subitani
The Holocene published online 21 August 2013
DOI: 10.1177/0959683613496288

The online version of this article can be found at:
http://hol.sagepub.com/content/early/2013/08/21/0959683613496288

Published by:
SAGE
http://www.sagepublications.com

Additional services and information for The Holocene can be found at:
Email Alerts: http://hol.sagepub.com/cgi/alerts
Subscriptions: http://hol.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> OnlineFirst Version of Record - Aug 21, 2013
What is This?
Evidence of moist niches in the Bolivian Andes during the mid-Holocene arid period

Marie-Pierre Ledru,1 Vincent Jomelli,2 Laurent Bremond,3 Teresa Ortúñ,4 Pablo Cruz,5 Ilhem Bentaeb,1 Florence Sylvestre,6 Adèle Kuentz,1 Stephan Beck,7 Céline Martin,1 Christine Paillès6 and Sandrine Subitani3

Abstract
To examine the climate of the mid-Holocene and early human settings in the Andes when the Altiplano was recording the most arid phase of the Holocene, we analyzed plant-related proxies (pollen, phytoliths, diatoms, stable isotopes) from a sediment core sampled at high elevation in the Eastern Cordillera of Bolivia. Our study was carried out in the wetland of Tiquimani (16°12′06.8″S; 68°3′51.5″W; 3760 m), on a well-known pathway between Amazonia and Altiplano. The 7000-year old record shows a two-step mid-Holocene with a dry climate between 6800 and 5800, followed by a wetter period that lasted until 3200 cal. yr BP. In the Central Andes of Bolivia, a widespread aridity was observed on the Altiplano during the mid-Holocene. However, here, we show that moisture was maintained locally by convective activity from the Amazon lowlands. During the arid interval between 5000 and 4000 yr BP, these niches of moisture produced specific grasslands that may have enabled the survival of an archaic culture of hunter–gatherers on the Puna. This development occurred 2000 years before expansion of quinoa cultivation on the Puna.

Keywords
Andes, Bolivia, climate change, mid-Holocene, niche, Puna

Received 21 September 2012; revised manuscript accepted 10 June 2013

Introduction
Environmental changes have always affected populations and their activities in all types of societies (Haug et al., 2003). During the early Holocene, hunter–gatherers in the central Andes were mobile; they designed new artifacts and hunted wild camelids, rodents, and cervidae. During the mid-Holocene, between 7 and 4 kyr BP, independent data from dated human skeletons, rock shelter stratigraphy, and chronology of open-air sites have been interpreted to show that the region became depopulated or altogether abandoned (Nuñez et al., 2002). Sedentarism and the development of agriculture that are attested throughout the central Andes after 4 kyr BP (Silverman and Isbell, 2008). The mid-Holocene environmental crisis that occurred in the Andean highlands is attributed to a period of extensive aridity (Baker et al., 2001; Thompson et al., 1995), which put a strain on resources in the region. However, little is known about how hunter–gatherer populations managed to survive: did they migrate to another region or invent strategies to adapt to their new environment? The hypothesized exodus from the Puna region during the peak of aridity has been questioned by both archeologists (Yacobaccio, 2006) and plant geneticists (Harlan, 1971; Hawkes, 1999). First, because the descendants of these hunter–gatherer populations emerged as the most powerful of the archaic states in high-elevation basins, including the Wari, Tiwanaku, and Inca cultures with their respective sociopolitical complexity based on the intensive cultivation of maize (Pearsall, 1989; Silverman and Isbell, 2008). And second, because phytogeographical analyses of the cultivated plants provide evidence for the high central Andes as one of the main centers of the origin of agriculture in the Americas (Harlan, 1971), thus refuting the regional extinction of these plants. During the Holocene, the altitudinal band formed by the Puna, that is, the Andean grassland located between 3500 and 5200 m a.s.l., was essential for the supply of resources and enhanced interzonal relationships between cultural groups (Pearsall, 1989; Perry et al., 2006). Between the early and mid-Holocene, significant changes in the behavior of the hunter–gatherers of the Puna are evidenced by a sudden increase in the consumption of camelids that coincided with the drastic decrease in wetlands (Silverman and Isbell, 2008; Yacobaccio, 2006). During this period, the Andean wetlands were crucial for the elaboration of new strategies of alimentation for the groups of hunter–gatherers that were living in these environments. In relation to this topic, we conducted a multiproxy palaeoecology study by the mean of sediment archive. A sediment...
The Holocene 0(0)

Core covering the last 7 kyr was collected in a wetland of the Puna of the Eastern Cordillera Real in Bolivia. Our interpretations of palaeoenvironmental conditions are based on proxy crossed analysis.

Study site

The Tiquimani wetland (16°12′06,8″ S, 68°3′51,5″ W) is located at an elevation of 3760 m a.s.l. in the Eastern Cordillera Real in Bolivia. This wetland is located in the Puna above a hamlet of five houses whose inhabitants raise pigs and grow quinoa, at the head of an inter-Andean valley today considered to be one of the most accessible trails between Amazonia and Lake Titicaca (Figure 1).

The Puna is composed of shrub steppe Poaceae and halophytic vegetation, along with wetlands that are favorable for the growth of high-quality fodder, and salt marshes. Among the main taxa are Bromeliaceae, Puya, Cactaceae, Caryophyllaceae (*Cerastium*, *Pycnothyllium*), Asteraceae tubuliflorae, Brassicaceae, Cyperaceae, *Geranium*, Poaceae, *Isoetes*, Juncaceae, Lamioaceae, Fabaceae, *Buddleja*, *Nototrichie*, *Plantago*, *Ranunculus*, Apiaceae *Azorella*, Valerianaceae, and Violaceae. The upper Andean forest line is located at 3600 m and is characterized by the following taxa Asteraceae tubuliflorae, *Gynoxis*, *Polylepis*, *Podocarpus*, *Ilex*, *Weinmannia*, *Ribes*, and Solanaceae (Ortuño et al., 2011).

Today 50% of the annual precipitation of the area of Tiquimani occurs during the austral summer. The climate at Tiquimani is tropical with a wet and a dry season. The wet season, from December to March, is associated with the onset of the South American monsoon and the position of the South Atlantic Convergence Zone (SACZ). During the dry season, from May to August, the occurrence of sparse winter rainfall is associated with the frequency and intensity of cold fronts (Seluchi and Marengo, 2000). The wetland of Tiquimani (3760 m) is located in a pathway corridor that connects Amazon basin to the Altiplano and Lake Titicaca (4200 m a.s.l.), which is close to the Zongo Valley. Studies on climate variability of the Zongo Valley were performed along a transect from the Amazonian lowlands to the Bolivian Altiplano using, in particular, the data of eight rainfall gauges located along the Zongo valley between 1195 and 4750 m a.s.l. (Ronchail and Gallaire, 2006). Results show several altitudinal boundaries in precipitation rates. The maximum of mean annual precipitation (MAP) is observed at 1000 m a.s.l. with 2800 mm. A first decrease, to 2000 mm/yr, is found between 1000 and 1500 m a.s.l and another one up to 1000 mm/yr is measured more than 3000 m a.s.l. On the Altiplano, more than 3900 m a.s.l., MAP drops to 600 mm in the eastern Altiplano and 300 mm in the western Altiplano. El Niño years (cooler sea surface temperature on the Pacific Ocean) result in a 10–20% reduction of MAP in the Zongo valley due to a strong westerly flow above.
the Altiplano associated with a weakening and northward displacement of the Bolivian High and prevent the advection aloft of moist air from the Amazon (Garreaud and Aceituno, 2001; Vuille et al., 2000). La Niña events affect the lowland moisture rates and consequently also induce dryness on the eastern cordillera. The modern climatic trend was measured near La Paz and attested an increase of temperatures of 0.03°C/yr and a decrease in relative humidity of 0.6%/yr with the main consequence of retreat of the Zongo glacier of 12 m/yr (Ronchail and Gallaire, 2006).

Methods

The sediment core TK 1-2 was collected in a small wetland in July 2005 with a piston corer. The 36-cm-deep core was sampled at 1-cm intervals (36 samples) at the laboratory of Ecology of the Universidad Mayor de San Andrés (UMSA), La Paz, and every sample divided between the different analyses: pollen, diatoms, phytoliths, and isotopes. Pollen and isolate contents were analyzed first, and samples for phytolith (16 samples) and diatom (10 samples) analyses were selected according to the results obtained with the two first proxies. The same sample was used for each proxy analyzed in core TK 1-2; therefore, the time interval represented by one sample is the same for all the proxies identified within the considered sample.

Chronology

The sediment chronology was based on five radiocarbon accelerator mass spectrometry (AMS) dates. All samples have been analyzed at the Laboratoire de Mesure du Carbone 14 (LMC14) – UMS 2572 (CEA/DSM – CNRS – IRD – IRSN – Ministère de la culture et de la communication) (Table 1). All the radiocarbon ages were calibrated to calendar years Before Present (cal. yr BP) using the calibration curve for the Southern Hemisphere SHCal04 (McCormac et al., 2004) and with the Southern Hemisphere postbomb curves from Hua and Barbetti (2004).

Pollen analysis

A total of 36 pollen samples of 0.5 g dry weight each were prepared using a standard treatment (Faegri and Iversen, 1989) and mounted in silicone oil on microscope slides. Pollen analyses were performed under 1000× magnification. Pollen grains and spores were identified using our reference pollen collection and pollen keys (Heusser, 1971; Hooghiemstra, 1984; Markgraf and D’Antoni, 1978). A minimum of 300 terrestrial pollen grains were analyzed in each sample. Fern spores and aquatic or water-level-related taxa were excluded from the pollen sum for percentage calculation (Appendix). The pollen record was plotted using psimpoll (Bennett, 1994) and divided into five pollen zones on the basis of constrained cluster analysis by sum of squares (CONISS) with pollen taxa ≥1% (Grimm, 1987). Pollen concentration was calculated using the method of Cour (1974).

Isotope analysis

We sampled modern plants and sediments for measurement of carbon stable-isotope and C/N ratios. Four Poaceae species, *Bromus brayacantha*, *Bromus catharticus* sampled in the Herbarium of La Paz, *Calamagrostis*, and *Festuca* sampled in the field near Tikimani coring site, and 36 bulk sediment samples were dried at 50°C for 48 h. Leaves and sediment subsamples (1 cm³) were ground using a mortar and pestle and sieved through a 60-µm mesh. For the plants, we used 0.1 mg for C and 1 mg for N analysis. For the carbon and nitrogen analysis, 2 mg and 8 mg bulk sediment powder is weighed, respectively. Plant and sediment powders are introduced in tin capsules prior to elemental and isotope analysis. Elemental C and N contents (%) and carbon isotope values of the plant and sediment were measured by dry combustion using a Euro Vector 3000 Elemental Analyzer coupled with a Micromass Optima Isotope Ratio Mass Spectrometer (ISEM laboratory, Montpellier, France). Results are expressed as a percentage of dry weight (total C and N) and as δ¹³C with respect to the Vienna Pee Dee Belemnite (V-PDB) standard using the conventional delta (δ) notation: δ (‰) = [(Rsample/Rstandard) – 1] × 1000, where Rsample and Rstandard are the ¹³C/¹²C ratios of the sample and standard, respectively. Analytical precision was better than 0.2‰.

Phytolith analysis

Phytoliths were extracted from 16 samples of the Tikimani core. Phytoliths were abundant and well preserved in all the samples. Sediment samples were prepared for phytolith analyses by treatment of 1–2 cm³ (±3 g) of sediments with HCl (33%) to remove carbonates, and then with H₂O₃ (30%) at 70°C to remove organic matter. Clays were deflocculated in a solution of sodium polyphosphate (NaPO₃, 0.1%) at pH 7 and removed by centrifugation until the supernatant was clear. Organic silica was separated from the mineral fraction using ZnBr₂ heavy liquid at density d=2.30. The residue was removed and rinsed from the filter and dried in glass vials. Slides were prepared using a small amount of dry residue mixed with immersion oil as a mounting medium to allow three-dimensional (3D) observation of the phytoliths during counting. Counting was done at magnification 630×. During
Results and interpretations

Sediment description and chronology

The peat stratigraphy is divided into the following six units with gray silt between 37 and 30 cm, black organic clay between 30 and 28 cm, brown gray clay between 23 and 28 cm, black organic clay between 23 and 18 cm, brown gray clay between 18 and 9 cm, and brown black organic clay between 9 and 0 cm. The age of the core dated back to ~7 cal. kyr BP when the wetland began to form after the glacial retreat in the early Holocene (Jomelli et al., 2011). The gray silt at the base of the core was considered to be a mixture of silt transported and deposited by the glacier after its retreat 7 kyr ago.

Pollen analyses

Differentiation on Poaceae pollen grains is susceptible to bring about relevant ecological issues (Bush, 2002). At Tiquimani, a pollen grain of the Poaceae family was separated because of visible specific morphological features (Figure 3). Exine ornamentation, grain diameter, pore thickness, pore width, and exine thickness were considered to separate the two main types of Poaceae (Table 2). Measurements were performed on the pollen grains to propose a classification in function of the description of the Poaceae in Beug (1961). Our results showed that our pollen is characteristic of a Bromus type, which includes the Bromus and Hordeum genera mentioned in Beug (1961). The undulated surface characteristic of the exine ornamentation is similar to B. cathartica described in Salgado-Labouriau and Rinaldi (1990) (Table 2), although the size of the grain is smaller in our fossil record. However, Schüler and Behling (2011) showed that for a same species within the same pollen record sizes of the Poaceae pollen grains differ between different time intervals, for instance, deglaciation versus interglacial, which makes the authors not consider the size as a determinant parameter for fossil material. The second Poaceae pollen type dominates all the pollen spectra (Figure 4) and shows grains with a bigger size and a thinner exine than the Bromus type well illustrated on Figure 3. Unfortunately, it was not possible to measure the grains as they were all folded. Our study is based on the fact that a specific pollen type could be distinguished because of both specific morphological patterns and high frequencies at a precise depth of the core.

In addition, the important frequencies of the pollen grains attributed to the group Chenopodiaceae/Amaranthaceae also caught our attention, as this morphological group of taxa is considered as a low pollen producer and disperser. Indeed, a review of published material referring to Andean pollen grains of Chenopodiaceae/Amaranthaceae showed that in general, frequencies never reached more than 2% (Chepstow-Lusty and Winfield, 2000; Correa-Metrio et al., 2010; Hansen et al., 1994; Ortuño et al., 2011), and frequencies increase up to 10% when the pollen record comes from a saline lake (Chepstow-Lusty et al., 2005), which is not the case of our study, or when agricultural conditions are illustrated (Chepstow-Lusty and Winfield, 2000; Kuentz et al., 2012; Sublette Mosblech et al., 2012; Williams et al., 2011). Consequently, we inferred that the increase in Chenopodiaceae/Amaranthaceae pollen frequencies to more than 10% observed at Tiquimani was anthropogenic. In addition, modern descriptions of the pollen grain of quinoa pollen (Chenopodium quinoa Willd. (Chenopodiaceae)) by Graf (1992) and Kuentz et al. (2007) in IRD pollen reference collection (Figure 3) allowed the identification of quinoa type in our pollen record. The description of the following pollen zones is based on the results shown on Figure 4.

Zone T-1 (5 samples, 36–28 cm depth, 7–6.8 cal. kyr BP) is characterized by high frequencies of arboreal pollen (AP) (between 20% and 50%) primarily Podocarpus with two peaks at 23%, Alnus (1–2%), and Hedyosum (7–22%); fern spores Cyathea and Lycopodium are well represented at more than 150%, and one sample with Bromus type 13% was observed at 31 cm. This level represents the base of the core and is characterized by a gray silt poor in organic matter and in pollen content with pollen concentration less than 100 grains/g.

Zone T-2 (5 samples, 28–24 cm depth, 6.8–5.8 cal. kyr BP) is characterized by a decrease in AP frequencies (until 4–10%) and...
Figure 3. Pictures of the fossil pollen and phytolith identified in sample 18 of Core TK 1-2. (A) Bromus type, (B) dominant Poaceae, (C) Chenopodiaceae quinoa type, and (D) long, wavy trapezoid phytoliths produced by Pooidae grasses with (a) Trapeziform trilobate, (b) Trapeziform polylobate, and (c) wavy trapezoid phytolith (also called Trapezoid sinuate) mainly produced by Bromus grasses.

Table 2. Measurements of the different Poaceae pollen types. Numbers in bracket refer to the mean value obtained from the measurements.

Plant/pollen taxa	Pore (µm)	Grain diameter (µm)	Exine thickness (µm)
Bromus catharticus M. Vahl	Thickness = 3.5-4, Width = 10	35-41-41-37-41 (39)	1.5-2
Fossil sample 17 cm (8 grains)	Thickness = 5.5-6.5-4.5, Width = 15-15-18-15 (15.75)	45-45-45-51-60-60-45-35 (48.25)	1.5-1.5-1.5-2-1.5-1.5-2-2 (1.6)
Fossil sample 18 cm (10 grains)	Thickness = 4.5-5-3, Width = 10-10-10-8-10-9-10-10 (9.6)	35-40-31-35-32-30-40 (34.7)	1.1-2-1.5 (1.4)
Fossil sample 19 cm (4 grains)	Thickness = 5.5-6.5-5, Width = 15-15-18-15 (15.75)	45-45-60-45 (48.75)	1.1-1.5-2-1.5 (1.5)
Bromus brachyanthera Doll	Width = 2	50-52-53 (52)	Not measured
Hordeum–Bromus type (Beug, 1961)	Thickness = 2, Width = 2.7-4.0	27.9-47.8-41.1	2.0-2.7
Bromus mango E. Desv. (Heusser, 1971)	Width = 10, distinct annulus	46-53	Tectate-psilate
Bromus setifolius Presl. (Wingenroth and Heusser, 1983)	Thickness = 3.7	35.5	Not measured
Hordeum halophilum Gris. (Wingenroth and Heusser, 1983)	Width = 3.6	38.9	Not measured

the presence of an assemblage of Ericaceae (1–6%) and Piper (17–30%), and a decrease in fern spores with less 100%. The assemblage of Ericaceae–Piper does not exist today, and no Piper grows at such a high elevation today (Ricardo Callejas, 2011, personal communication). Pollen concentration increased to more than 1500 grains/g.

Zone T-3 (7 samples, 24–14 cm depth, 5.8–3.2 cal. kyr BP) is characterized by an increase in AP frequencies (10–30%) primarily
Alnus (1–2%), Hedyosmum (6–12%), and Podocarpus (2–11%); the increase of Bromus-type pollen (2–12%), Chenopodiaceae-quinoa (3–5%), Cyperaceae, fern spores, and the algae Zygnemataceae is well represented. The vegetation was more diverse attesting to increased moisture rates both at the edaphic and atmospheric levels. The agriculture of Bromus type and quinoa started in the basin during this interval with some irrigation as attested by the presence of Zygnemataceae. In this zone, pollen concentration fluctuated between 200 and 2500 grains/g.

Zone T-4 (5 samples, 14–9 cm depth, 3.2–1.8 cal. kyr BP) is characterized by a progressive decrease in AP frequencies (16–2%) and high frequencies of quinoa (5–10%). Pollen concentrations remained low, between 500 and 1500 grains/g.

Zone T-5 (11 samples, 9–0 cm depth, 1.8–0 cal. yr BP) is characterized by low frequencies of AP (3–11%), primarily Hedyosmum (1–5%). Frequencies of quinoa fluctuated between 18% and 5%. Azorella and Hydrocotyle both progressively increased in the second half with more than 10% attesting to an open and cold vegetation as the one that grows today at high elevation, also suggested by the decrease in fern spores and Cyperaceae. In this zone, pollen concentration increased more than 3000 grains/g reaching 12,000 grains/g.

Figure 4. Synthetic pollen diagram of the Tiquimani core TK 1-2. Arboreal pollen frequencies and 14 selected taxa are expressed as percentages of the total pollen sum (excluding ferns) along a depth scale.

Figure 5. Total organic carbon (% green solid line) and δ¹³C of Tiquimani sediment organic matter core without (dark blue) and with corrections (light blue) (see text). The orange area reflects the δ¹³C of modern vegetation at Tiquimani.
berena et al. (2009) may be partly explained by the altitudinal and the modern Andean ecosystem is C3 dominated (>80% of C3 species (Table 3). Our isotopic results and field observations suggest that while the C4 pathway enables a higher plant-use efficiency (WUE) and a more effective CO2 uptake, because they use a CO2 concentrating mechanism (Leegood, 1999) allowing them to grow in climates with low precipitation or slightly saline environments.

δ13C values of the Poaceae, B. brayacantha and B. catharticus, sampled in the Herbarium of La Paz and the two most abundant Poaceae, Calamagrostis and Festuca, sampled in the field near Tiquimani coring site, vary in the same range between −27.8‰ and −25.4‰, all of which follow a C3 photosynthetic pathway (Table 3). Our isotopic results and field observations suggest that the modern Andean ecosystem is C3 dominated (>80% of C3 species), also supported by Barberena et al. (2009) who reported values of δ13C of −28.5‰ and −27.5‰, respectively, for Bromus and Festuca species sampled on hillslopes at 2010 m a.s.l. near Bogota. The difference between our values and those of Barberena et al. (2009) may be partly explained by the altitudinal difference. Indeed, fractionation in C3 plants is lower at higher altitude (Bird and Pousai, 1997; Körner et al., 1988). The four specimens have also similar amount of carbon content (~42%). However, the nitrogen content is twice higher in Bromus type (~3%) compared with the two other species explaining their significantly lower C/N ratios (Table 3). Finally, though the number of modern plant isotopic analyses is limited, we assume that Tiquimani site is likely a C3-dominated ecosystem with typical values around −26.5‰.

Sediment core

The four sedimentary biogeochemical proxies, δ13C_SOM, carbon content, nitrogen content, and C/N ratios, varied, respectively, between −24.9‰ and −23.3‰, 6.5% and 1.2%, 0.6% and 0.1%, and 10% and 16% (Table 3 and Figure 5). At first glance, δ13C_SOM and C/N ratios at Tiquimani suggest a C3-dominated ecosystem characterized by relatively enriched 13C compared with modern C3 plant during the past 7 kyr as the mean sediment core δ13C_SOM is about 2‰ heavier than the modern plant (Figure 5). This difference can be explained either by environmental changes or fungi degradation. Indeed, 13C-enrichment occurs during decomposition, and as a result, deep soil organic matter may tend to have higher 13C values than the surface (e.g. Natelhoffer and Fry, 1988; Stout et al., 1981; Stout and Rafter, 1978). Wetland sedimentary organic matter (SdOM) may result from a complex combination of sources: autochthonous organisms (freshwater food chain) and/or allochthonous material (terrestrial riverine and atmospheric inputs). Hence, the isotopic composition of the SdOM may also reflect a mixture of these diverse sources. At Tiquimani, several hypothesis could be inferred to understand the origin of the SdOM and the causes of the δ13C_SOM variability:

1. The observed covariation between the carbon and nitrogen contents (R² = 0.9) suggests that C and N of organic matter underwent the same decomposition processes. δ13C_SOM values do not significantly covary with both C (R² = 0.3, n = 33 or R² = 0.2, n = 32) and N (R² = 0.1) elements, suggesting that the changes of the δ13C_SOM are not heavily affected by the degradation of the sedimentary organic matter stock.

2. Generally, freshwater algae organic matter is characterized by relatively low C/N ratios, while higher values suggest a substantial contribution of terrestrial sources (Sifeddine et al., 2004). Therefore, we assume that organic matter at Tiquimani sediment core is dominated by terrestrial carbon input throughout the past 7 kyr.

3. Stable δ13C_SOM ratios from the surface to ~8 cm (~1300 yr BP) and significant decrease in carbon and nitrogen contents suggest that the decomposition effect on the carbon isotopic fractionation between fresh and decomposed organic matter is low at this site.

4. An alternative interpretation for 13C-enrichment is a change in the balance of the C3 and C4 plant and in climate. Indeed δ13C of C3 plants decrease significantly with increase in precipitation with, for instance, −0.49‰/100 mm (Wang et al., 2003).

5. Modern plants grow under different conditions compared with their preindustrial counterparts that formed the sedimentary organic matter. This may explain the average difference between δ13C_Plan − δ13C_SOM (2.3‰). First, the δ13C value of atmospheric CO2 was 1.3‰ higher than it is today (Leuenberger et al., 1992; Marino et al., 1992). Thus, accounting for the first correction, the difference between δ13C_Plan and δ13C_SOM is 1‰. Second, amounts of atmospheric CO2 between 7 kyr BP and ~0.2 kyr (preindustrial) have increased from ~260 to 280 ppmv and exploded to ~380 ppmv in the late 20th century. These CO2 concentration levels may also have affected the 13C values of C3 plants (Feng and Epstein, 1995). Assuming this 13C depletion rate, the remaining 1‰ δ13C_Plan − δ13C_SOM difference is explained by a change of ~100 ppmv, which is about the pCO2 difference between the preindustrial and the early 21st century. The corrected δ13C curve is given in Figure 5.

Consequently, despite the small amplitude range of the δ13C_SOM values along the core (2.4‰ for the whole corrected curve or 1.7‰ if we do not account for the last 150 years

Table 3. Plant isotopic composition and nitrogen and carbon contents (n is the number of replicates of the same sample and δ13C is expressed in ‰).

Locality	Taxa	%C	SD	%N	SD	δ13C	SD	C/N
Herbarium of La Paz	Bromus brayacantha	42.7	0.3	3.1	0.1	−27.8	0.0	13.9
	Bromus catharticus	41.3	0.2	3.4	0.1	−25.6	1.2	29.5
Field near Tiquimani	Calamagrostis sp	42.0	1.4	6.5	2.0	−27.3	35.8	
	Festuca sp	42.6	1.2	6.5	2.0	−25.4	35.8	

SD: standard deviation.
influenced by the anthropogenic activities), we suggest that the δ¹³C_{SO4}\text{variations reflect responses of the C3-dominated ecosys-
tem to precipitation changes. After 5 kyr BP, the δ¹³C_{SO4} shift of
0.6‰ is equivalent to about 150 mm (using the Wang et al. (2003)
calibration since the relationship is not available for our study
area). Between 4 and 1.5 kyr, the higher δ¹³C_{SO4} is attributed to a
response of the Puna grassland to drier climatic conditions over
long intervals. Mean annual precipitation was likely about 200
mm less than today. Plants that thrive under these conditions, like
quinoa (see pollen and phytolith discussion), considered to have
good drought tolerance (Jensen et al., 2000), are characterized by
a relatively high WUE that would explain the high δ¹³C_{SO4}.

Phytolith analyses
At this altitude, in this region, C₃ grasses are dominant (Bremond
et al., 2012; Renvoize, 1998) and BEP grass taxa are most often
observed. Particular care was taken to differentiate grass silica
short cells (GSSCs) produced by BEP grasses. Moreover,
because ‘long, wavy trapezoids’ appear to be unique to the Pooi-
deae (Barboni and Bremond, 2009; Piperno and Pearsall, 1998),
they were differentiated during counting and split into three
classes (Figure 3a and b): Trapeziform trilobate, Trapeziform
polylobate (multilobed short cell; Piperno and Pearsall, 1998)
characterized by large lobes, and wavy trapeziform with small
lobes (Piperno and Pearsall, 1998), also called Trapeziform sinu-
ate (Figure 3c). This last one is particularly interesting because
Bromus grasses mainly produce this shape (Blinnikov, 2005; Lu
et al., 2006; Morris et al., 2009). The GSSC assemblages are
typical of high elevations; BEP phytoliths were dominant
throughout the core, although significant variations were
observed. Wavy trapeziform phytoliths always represented more
than 15% of the GSSCs but reached higher frequencies at the
base of the core, around 4.2 cal. kyr BP, and increased during the
last 1500 years (Figure 6). Variations in wavy trapeziform types
were interpreted as a change in dominant grass species around
the site. Similar pattern in variations in wavy trapeziform and the
Bromus-type pollen grain frequencies along the core suggested
an increase of this Poaceae genus favored by either human activ-
ity or climate around 4.2 cal. kyr BP. The background production
of wavy trapeziform phytoliths, represented by the minimum of
the curve around 15%, can be explained by the production of
other grasses due to the phenomena of multiplicity and redun-
dancy (Rovner, 1971). Nevertheless, it cannot be excluded that
grasses other than Bromus produced this type of phytolith, even
during phases with higher frequencies. This is clear for the last
1500 years when no Bromus-type pollen grains were identified,
and for the modern period when wavy trapeziform phytolith
reached 25% of the GSSCs, while Bromus grasses were not
observed among dominant grasses.

Diatom analyses
From the base up to 19–20 cm, the diatom flora was dominated by
benthic, aerophilous, and acidophilous taxa, mainly represented
by Eunotia spp, Pinnularia spp, and Luticola mutica (Figure 7).
These taxa are characteristic of high-elevation peat bog soils, and
indicate low but constant humidity. At 22–23 cm, an association
of two tychoplanktonic taxa, Aulacoseira perglabra and Frag-
ilaria capucina, were observed. Fragilaria capucina shows low

Figure 6. Synthetic phytolith diagram of the Tiquimani TK 1-2 core showing the results for the 16 samples analyzed. The heights of the most
common GSSC types are expressed as percentages of the total GSSC sum along a calibrated age scale. Pollen zones from Figure 2 are reported
in the diagram.
GSSC: grass silica short cell; WUE: water-use efficiency.
frequency (2%) when *Aulacoseira perglabra* dominates (38%) together with aerophilous and acidophilous benthics (10%) illustrating environmental variability with periodical water supply. *Aulacoseira perglabra* was mainly represented by its internal structure (e.g. sulcus), indicating that these taxa were poorly preserved, but, nevertheless, represented more than 38% of the assemblage. These taxa were present in the middle of the sequence until the 9–10 cm sample in which *Fragilaria capucina* reached its highest percentage (36%). In the same sample, the tychoplanktonics *Staurosira construens* v. *pumila* appeared and dominated the assemblage until the top of the sequence, reaching more than 60%. These tychoplanktonic taxa indicate moister conditions with increased variability of the level of water feeding the peat bog. Permanent moisture conditions start with sample of 9–10 cm when benthics decrease and tychoplanktonics increase.

Reconstruction of the environmental history of Tiquimani

The analyses revealed two types of plant assemblages, one linked to regional vegetation, the trees or AP, and the other to local plant distribution, the grasses and the algae. A synthetic diagram presents all the bioindicators and the isotopes along a timescale (Figure 8). Between 6.5 and 5.8 cal. kyr BP, the surface released from ice was colonized by bushes of Ericaceae with low AP and fern frequencies (Figure 4). The observation of the following regional increase in moisture rates was based on the high AP observed between 5.8 and 3 cal. kyr BP. The AP pollen content consisted mainly of three representative cloud forest taxa, *Podocarpus*, *Alnus*, and *Hedyosmum* (Figure 4). As the upper treeline of the Andean forest is located 200 m below the site and as it represents the highest elevation since the beginning of the Holocene (Di Pasquale et al., 2008; Moscol Oliveira and Hooghmistra, 2010), we may assume that these taxa did not grow locally and that the observed increase in AP frequencies was rather due to an increase in pollen transport by the clouds and deposition in the wetland by the raindrops of the convective activity as observed in our modern calibration (Ortuño et al., 2011). This observation is reinforced by the fact that Poaceae pollen grains are uniformly represented throughout the record, confirming the continuous presence of grassland on the Puna. In addition, the presence of *Bromus*-type pollen grains and of wavy trapezoid phytoliths preferentially produced by *Bromus* grasses (Piperno and Sues, 2005) was observed between 5.5 and -3.2 cal. kyr BP, reaching their highest frequencies at 4.2 cal. kyr BP (Figures 4 and 8). The *Bromus* type includes a nutrient-rich perennial native grass of Bolivia (Renvoize, 1998), still used as fodder at lower elevations today but not previously identified in any of the 20 wetland botanical surveys carried out in the Bolivian Puna (Ortuño, in preparation). This grass was accompanied by Zygnemataceae, an algal spore whose presence indicates phases of shallow and mesotrophic fresh water (Van Geel and Van der Hammen, 1978), abundant tychoplanktonic diatoms, indicating moist and highly variable hydrological conditions (particularly the genus *Aulacoseira*, which requires turbulence to survive in the water column (Figure 7) and lower δ13C ratios of terrestrial organic matter (C/N > 8), which also suggest moist conditions (Figure 8). This combination of several proxies is characteristic of permanent water levels between 5 and 4 kyr BP. Pollen grains of quinoa, a nutritive grain belonging to the Chenopodiaceae family, also called ‘pseudo cereal’, were first observed at -5 cal. kyr BP but continued to be observed at low frequencies until 2.7 cal. kyr BP when it became the dominant crop at Tiquimani (Figure 4). After 4 cal. kyr BP, low AP frequencies show a change in the convective activity at Tiquimani while the regional climate became moister (Figure 8) (Baker et al., 2001).

Discussion

Mid-Holocene in the Central Andes: Alternance of dry and wet phases

The content of the gray silt at the base of the core and dated at -7 cal. kyr BP is interpreted as the first deposit of the sediment that was mixed with the ice in the glacier. Therefore, the pollen content of this sediment could represent the layer of mixed material released after ice melting and not the original vegetation at 7 cal. kyr BP. The mid-Holocene time period, between 6.8 and 5 kyr BP, is characterized by major changes in the hydrological cycles in tropical South America. The drastic decrease of the lake levels on the Altiplano (Argollo and Mourgues, 2000), the depletion of the glaciers (Jomelli et al., 2011), the deposition of dust in the ice cores (Thompson et al., 1995), archeological gaps in central Brazil (Araujo et al., 2005) and northern Chile (Nuñez et al., 2002), and regression of the tropical forest in central Brazil (Salgado-Labouriau et al., 1998) were associated with a warmer and a drier climate. Changes in the mean position of the Intertropical Convergence Zone (ITCZ) related to the orbital forcing on a
millennial timescale and lower summer insolation (Berger and Loutre, 1991) prevented the installation of the rainy season on the continent (Haug et al., 2001). However, differences are observed among the different regions of tropical South America. For instance, the extreme aridity seems rather restricted to the central area in Brazil, the eastern part of the Amazon basin, and the Altiplano. In the Andes, six climate simulations of the mid-Holocene (Jomelli et al., 2011) showed a 0.5°C increase in temperature but also a 0.5 mm/day increase in winter precipitation. These changes were mainly driven by the northward shift of the ITCZ (Braconnot et al., 2007; Vuille and Keimig, 2004), which, in turn, led to a northward shift of the Westerlies and more frequent cold surges in summer and fall at altitude 20°S (Vuille and Keimig, 2004). This feature led to a significant decrease in atmospheric precipitation in the southern tropics documented by the 85-m drop in the level of Lake Titicaca (Baker et al., 2001) (Figure 8) between 7 and 5 kyr BP which, in turn, led to two major dust deposition events in the Cordillera between 5 and 4 cal. kyr BP (Thompson et al., 1995). However, differences in timing and expression of the mid-Holocene aridity are noted according to latitudes. The progressive behavioral modifications of Andean societies when the return to moist conditions observed in the above-cited studies generally after 6 kyr although differences in the expression of the moisture are observed. More to the south in northern Chile and Argentina, alternance of dry and wet periods were observed between 8 and 5.3 kyr BP (Nuñez et al., 2002; Yacobacci and Morales, 2005).

Origin of moisture

Between 5.8 and 3.2 cal. kyr BP, the observed high arboreal pollen frequencies were transported from trees of the below cloud forest belt and deposited in the wetland by the raindrops of the convective activity. Therefore, based on modern pollen rain studies, the tree pollen frequency could be considered as an indicator of the cloud condensation at this elevation. To explain the mid-Holocene increase in convective precipitation on the Tiquimani wetland, we infer that moisture from the Amazon basin was advected through the valleys to higher elevations where the warm saturated air condenses, producing rainfall on the eastern slope of the Andes (Killeen et al., 2007; Wielicki et al., 2002). The contrast between the warmer and drier climatic conditions observed in Amazonian forests (Mayle and Power, 2008) and the cold and still expanded glacier of the highlands, for instance, Telata (Jomelli et al., 2011), pushed the cloud base up from the lowlands. However, convective activity was not strong enough to allow upward expansion of the cloud forest (Mourguintart and Ledru, 2003). The increase of convective moisture between 5.8 and 3.2 cal. kyr BP did not reach the Altiplano at 4100 m a.s.l. where the climate remained arid until 3800 cal. yr BP. In addition to this convective moisture, intriguing at Tiquimani was the development of a par-tially inundated grassland between 5 and 4 cal. kyr BP attested by the diatoms, the isotopes, and the presence of fresh algae. At Tiquimani, we suggest that in this particular valley, between the return to moister conditions observed in the above-cited studies and the installation of the rainy season on the continent, the climate remained arid until 3800 cal. yr BP. However, differences in timing and expression of the mid-Holocene aridity are noted according to latitudes. The progressive re-installation of the ITCZ summer shifts were inferred to explain the observed north–south gradient of the return to wet conditions on the Altiplano and the filling of the lakes between 13°S and 19°S (Abbott et al., 2003). Recently published pollen records showed different expressions of the wet/dry phases during the early to mid-Holocene. At Chochos (7°38′S, 3285 m a.s.l.), a warm interval is observed between 9.5 and 7.3 kyr BP (Bush et al., 2005) and the return to moist conditions is attested after 6 kyr with no fluctuations until today. At Pacucha (13°3′S, 3095 m a.s.l.) a wet episode is attested from 8.5 until 5 kyr BP followed by drier conditions interrupted by wetter events until today (Hillyer et al., 2009), at Consuelo (13°5′S, 1360 m a.s.l.) dry conditions punctuated by wet phases occurred between 7.4 and 5 kyr BP (Urrego et al., 2010), while Khormer Kocha (17°16′S, 4153 m a.s.l.) characterized the Holocene dry event between 10.1 and 6.4 kyr BP with the maximum of aridity between 7.3 and 7 kyr BP and the return of moisture after 6.4 kyr BP until today (Williams et al., 2011). The increase of humidity observed at Tiquimani (16°S, 3900 m a.s.l.) between 5.8 and 3.2 kyr BP is in agreement with the return to moist conditions observed in the above-cited studies generally after 6 kyr although differences in the expression of the moisture are observed. Between 5.8 and 3.2 cal. kyr BP, the observed high arboreal pollen frequencies were transported from trees of the below cloud forest belt and deposited in the wetland by the raindrops of the convective activity. Therefore, based on modern pollen rain studies, the tree pollen frequency could be considered as an indicator of the cloud condensation at this elevation. To explain the mid-Holocene increase in convective precipitation on the Tiquimani wetland, we infer that moisture from the Amazon basin was advected through the valleys to higher elevations where the warm saturated air condenses, producing rainfall on the eastern slope of the Andes (Killeen et al., 2007; Wielicki et al., 2002). The contrast between the warmer and drier climatic conditions observed in Amazonian forests (Mayle and Power, 2008) and the cold and still expanded glacier of the highlands, for instance, Telata (Jomelli et al., 2011), pushed the cloud base up from the lowlands. However, convective activity was not strong enough to allow upward expansion of the cloud forest (Mourguintart and Ledru, 2003). The increase of convective moisture between 5.8 and 3.2 cal. kyr BP did not reach the Altiplano at 4100 m a.s.l. where the climate remained arid until 3800 cal. yr BP. In addition to this convective moisture, intriguing at Tiquimani was the development of a partially inundated grassland between 5 and 4 cal. kyr BP attested by the diatoms, the isotopes, and the presence of fresh algae. At Tiquimani, we suggest that in this particular valley, between the return to moister conditions observed in the above-cited studies and the installation of the rainy season on the continent, the climate remained arid until 3800 cal. yr BP. However, differences in timing and expression of the mid-Holocene aridity are noted according to latitudes. The progressive

Figure 8. Mid-Holocene climate changes at Lake Titicaca and in the wetland of Tiquimani. The time interval discussed here, between 5000 and 4000 yr BP, is indicated by the gray bar. The low level of Lake Titicaca (Tapia et al., 2003) is compared with the high arboreal pollen frequencies deposited by convective activity. Changes in stable isotopes pointing to a high plant water-use efficiency, high frequencies of selected pollen of Bromus type and of quinoa, high frequencies of wavy trapezoid phytoliths associated with a grass of the Bromus group, and high frequencies of tychoplanktonic diatoms characterizing turbulent water at Tiquimani. The timescale was calculated from five radiocarbon dates (Table 1).
crucial for the development of the social environment of hunter–gatherers that continued up to the time their descendants became sedentary and established some of the most complex urban centers in human history.

The late Holocene

At 3.2 cal. kyr BP, the ITCZ and the SACZ progressively shifted south to near-modern summer positions with the maximum of insolation centered on the rainy season (Baker et al., 2001).

On the wetland of Tiquimani, the grass was replaced by the quinoa with two maxima of development between 2.3 and 1.8 cal. kyr BP and between 1.3 and 0.8 cal. kyr BP. The development of chenopods after -2.2 cal. kyr BP is also illustrated in southern Peru and Bolivia (Bruno and Whitehead, 2003; Kuentz et al., 2012; Williams et al., 2011) and characterized a shift in agricultural productions. The quinoa tolerates dry climatic conditions with temperature range between 15° and 4°C (7°C), between 548 and 845 days of rainfall per year, 170 days of frost per year, and a high ultraviolet light exposure due to the high elevation (Del Castillo et al., 2008). Today, two regions are important for the culture of the quinoa, the surroundings of Lake Titicaca and the Uyuni and Lipez Salars, respectively, located in the north and south of Bolivia. The development of the quinoa is coincident with two dry phases at Lake Titicaca when low lake levels were observed between 2.5 and 2.2 cal. kyr BP and at 1.3 cal. kyr BP and were related to changes in the Andean societies (Abbott et al., 1997; Binford et al., 1997). At Tiquimani, the quinoa was progressively abandoned during the last thousand years probably in favor of livestock raising as we can see today.

Conclusion

The record of Tiquimani confirmed the existence of humid spots within the tropical Andes during the so-called arid phase of the mid-Holocene. Our results reveal that the high Andes present a great heterogeneity in climate (Marchant et al., 2001) and landscapes that needs to be observed at finer scales by climatologists, archeologists, and palaeoecologists before being able to understand the origin of many cultivated species that later colonized the Old World and the evolution of the Andean populations, from hunter–gathering to complex urban societies, which were fully adapted to their environment during the successive wet and dry phases of the Holocene climatic changes. The hypothesis of land abandonment is challenged in favor of changes in practices during the arid period. Our results also highlight the importance of cloud activity as an additional source of moisture transported from the Amazon basin when precipitation becomes scarce during, for instance, a decrease of the seasonal shifts of the ITCZ (González-Carranza et al., 2012; Ledru et al., 2013). The need to improve cloud modeling in the tropics was recently underlined (Wielicki et al., 2002). The need to improve cloud modeling in the tropics was recently underlined (Wielicki et al., 2002). The need to improve cloud modeling in the tropics was recently underlined (Wielicki et al., 2002). The need to improve cloud modeling in the tropics was recently underlined (Wielicki et al., 2002).

Acknowledgements

This research is part of the UR GREAT ICE program at IRD and ANR 2010 BLANC 608-01 ELPASO. All radiocarbon dates were measured at the Laboratoire de Mesure du Carbone 14 (LMC14) – UMS 2572 (CEA/DSM CNRS IRD IRSN). The authors thank the Bolivian authorities for facilitating our fieldwork in the Zongo Valley and Jaime Argollo for his help during fieldwork. The authors thank Vera Markgraf, Francisco Valdez, and Hugo Vaccobacco for their comments on an earlier draft of the manuscript.

Funding

Financial support was provided by IRD and the French INSU program ‘LEVE’.

References

Abbott MB, Binford MW, Brenner M et al. (1997) A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47: 169–180.
Abbott MB, Wolfe BB, Wolfe AP et al. (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 123–138.
Araujo AGM, Neves WA, Pilo LB et al. (2005) Holocene dryness and human occupation in Brazil during the ‘Archaic gap’. Quaternary Research 64: 298–307.
Argollo J and Mourguiaert P (2000) Late Quaternary climatic history of the Bolivian Altiplano. Quaternary International 72: 37–51.
Baker PA, Seltzer GO, Fritz SC et al. (2001) The history of South American tropical climate for the past 25,000 years from the sedimentary record of Lake Titicaca (Bolivia/Peru). Science 291: 640–643.
Barberena R, Gil AF, Neme GA et al. (2009) Stable isotope and archaeology in southern South America: Hunter-gatherers, pastoralism and agriculture: An introduction. International Journal of Osteoarchaeology 19: 204–214.
Barbouni D and Brenmond L (2009) Phytoliths of East African grasses: An assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology 158: 29–41.
Battarbee RW, Jones VJ, Flower RJ et al. (2001) Diatoms. In: Smol JP, Birks HJB and Last WM (eds) Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators, vol. 3. Dordrecht: Kluwer Academic Publishers, pp. 155–202.
Bennett KD (1994) ‘pismipoll’ version 2.23: A C program for analysing pollen data and plotting pollen diagrams (INQUA Commission for the study of the Holocene). INQUA Working Group on Data-Handling Methods, Newsletter, January, vol. 11; pp. 4–6.
Berger A and Loutre M-F (1991) Insolation values for the climate of the last 10 million of years. Quaternary Science Reviews 10: 297–317.
Beug HJ (1961) Leitfaden der Pollenbestimmung. Stuttgart: Gustav Fischer.
Binford MW, Kolata AL, Brenner M et al. (1997) Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47: 235–248.
Bird MI and Pousai P (1997) Variations of δ18C in the surface soil organic carbon pool. Global Biogeochemical Cycles 11(2): 313–322.
Blauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512–518.
Blinnikov MS (2005) Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology 135: 71–98.
Braconnot P, Otto-Bliesner B, Harrison S et al. (2007) Results of PMIP2 coupled simulations of the mid-Holocene and last glacial maximum – Part 1: Experiments and large-scale features. Climate of the Past 3: 261–277.
Bradley RS, Vuille M, Diaz HF et al. (2006) Threats to water supplies in the tropical Andes. Science 312: 1755–1756.
Brenmond L, Boom A and Favier C (2012) Neotropical C3-C4 grass distributions – Present, past and future. Global Change Biology 18: 2324–2334.
Bruno MC and Whitehead WT (2003) Chenopodium cultivation and Formative period agriculture at Chiripa, Bolivia. Latin American Antiquity 14: 339–355.
Bush MB (2002) On the interpretation of fossil poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 5–17.
Bush MB, Hansen BCS, Rodbell DT et al. (2005) A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science 20: 703–714.
Chen J, Carlson BE and Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295: 838–841.
Chepstow-Lusty A and Wintlefield M (2000) Inca agroforestry: Lessons from the past. AMBIO: A Journal of the Human Environment 29: 322–328.
Chepstow-Lusty A, Bush M, Frogley MR et al. (2005) Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quaternary Research 63: 90–98.
Correa-Metrio A, Cabrera KR and Bush MB (2010) Quantifying ecological change through discriminant analysis: A palaeoecological example from the Peruvian Amazon. Journal of Vegetation Science 21: 695–704.
Cour P (1974) Nouvelles techniques de detection des flux et des retombées polliniques. Pollen et Spores 16: 103–141.
Del Castillo C, Mahy G and Winkel T (2008) La quinoa en Bolivie: une culture ancestrale devenue culture de rente ‘bio-équitable’. Biotechnology, Agronomy, Society and Environment 12: 421–435.
Di Pasqua G, Marzano M, Impagliazzo S et al. (2008) The Holocene tree-line in the northern Andes (Ecuador). First evidence from soil charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 17–34.

Faegri K and Iversen J (1989) Textbook of Pollen Analysis. London: John Wiley & Sons.

Farquhar GD and Sharkey TD (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 33: 317–345.

Feng X and Epstein S (1995) Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta 59(12): 2599–2608.

Fernandez Henaine M, Zucol AF and Osterrieth M (2006) Phytolith assemblages and systematic associations in grassland species of the south-eastern Pampean plains, Argentina. Annales of Botany 98: 1155–1165.

Garreau RD and Aecetino P (2001) Interannual rainfall variability over the South American Altiplano. Journal of Climate 14: 2779–2789.

González-Carranza Z, Hooghiemstra H and Vélez MI (2012) Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. The Holocene 22: 1227–1241.

Graf K (1992) Pollen diagrams and the Anden: Eine Einführung zur Klimageschichte und Vegetationsentwicklung seit der letzten Eiszeit. Zurich: Universität Zurich.

Grinn E (1987) CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13–35.

Guillet B, Achoundong G, Happi JY et al. (2001) Agreement between floris- and soil organic carbon (C13-C12, C-14) indicators of forest invasion of savannas during the last century in Cameroon. Journal of Tropical Ecology 17: 809–832.

Hansen BCS, Seltzer GO and Wright HE Jr (1994) Late Quaternary vegetational change in the central Peruvian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 263–285.

Haran JC (1971) Agricultural origins: Centers and non centers. Science 174: 468–474.

Haug GH, Gintner D, Peterson LC et al. (2003) Climate and the collapse of Maya civilization. Science 299: 1731–1735.

Haug GH, Hughen KA, Sigman DM et al. (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293: 1304–1306.

Hawkes JG (1999) The evidence for the extent of N.I. Vavilov’s new world Andean centres of cultivated plant origins. Genetic Resources and Crop Evolution 46: 163–168.

Heusser CJ (1971) Soil charcoal: A potential record of fires and climate change in the Puna de Atacama, Chile. Science 172: 1293–1298.

Hua Q and Barbetti M (2004) Review of tropospheric bomb radiocarbon data for carbon cycle modelling and age calibration purposes. Radiocarbon 46: 1273–1298.

Jomelli V, Khodri M, Favier V et al. (2011) Irregular tropical glacier retreat due to increased rainfall and warming through the Holocene. Science 332: 195–198.

Kuentz A, Ledru M-P and Thouret JC (2012) Environmental changes in the northern Andes (Ecuador). First evidence from soil charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 17–34.

Kerr Y, Kohel M, Eizier V et al. (2011) Irregular tropical glacier retreat over the Holocene driven by progressive warming. Geology 39: 1155–1156.

Kerr RL, Valencia BG, Bush MB et al. (2009) A 24,700-yr paleolimnological record of Andean center of cultivated plant origins. International Journal of Climatology 29: 1731–1735.

Kuenzler M, Siegenthaler U and Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357(6385): 481–486.

Leuenberger M, Siegenthaler U and Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357(6385): 481–486.

Lu H-Y, Wu N-Q, Yang X-D et al. (2006) Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions. Quaternary Science Reviews 25: 945–959.

McCormac FG, Hogg AG, Blackwell PG et al. (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal. kyr BP. Radiocarbon 46: 1087–1092.

Marchant R, Behling H, Carlos BJ et al. (2001) Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews 20: 1289–1308.

Marino BD, McElroy MB, Salawitch RJ et al. (1992) Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357(6385): 461–466.

Markgraf V and D’Antoni HL (1978) Flora Flora of Argentina: Modern Spore and Pollen Types of Pteridophyta, Gymnospermae, and Angiosper- mae. Tucson, AZ: The University of Arizona Press.

Mayle FE and Power MJ (2008) Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1829–1838.

Morris LR, Baker FA, Morris C et al. (2009) Phytolith types and frequency distributions in native and introduced species of the saguaro steppe and pinyon-juniper woodlands of the Great Basin, USA. Review of Palaeobotany and Palynology 157: 339–357.

Mosol Oliveira M and Hooghiemstra H (2010) Three millennia upper forest line changes in northern Ecuador: Pollen records and altitudinal vegetation distributions. Review of Palaeobotany and Palynology 163: 113–126.

Mouthguar P and Ledru M-P (2003) Last glacial maximum in an Andean cloud forest (Eastern Cordillera, Bolivia). Geology 31: 195–198.

Müller FE and Power MJ (2008) Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Annual Review of Plant Physiology and Plant Molecular Biology 36: 1167–1190.

Munro PC, Behling H, Carlos BJ et al. (2001) Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews 20: 1289–1308.

Munro PC, Behling H, Carlos BJ et al. (2001) Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews 20: 1289–1308.

Natalhoffer KJ and Fry B (1988) Controls on natural Nitrogen-15 and Carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 52(6): 1633–1640.

Nuñez L, Grosjean M and Cartagena I (2002) Human occupations and climate change in the Puna de Atacama, Chile. Science 298: 821–824.

Ootegem T, Ledru M-P, Cheddadi R et al. (2011) Modern pollen rain, vegetation and climate in the Bolivian ecoregions. Review of Palaeobotany and Palynology 165: 61–74.

Pearsall DM (1989) Adaptation of prehistoric hunter-gatherers to the high Andes: The changing role of plant resources. In: Harris DR and Hillman GC (eds) Foraging and Farming: The Evolution of Plant Exploitations. London: Unwin Hyman, pp. 318–332.

Perry L, Sandweiss DH, Piperno DR et al. (2006) Early maize agriculture and interzonal interaction in southern Peru. Nature 440: 76–79.

Pipeño DR and Pearsall DM (1998) The silicon bodies of tropical American grassroots: Morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contributions to Botany 37: 1–40.

Pipeño DR and Sues H (2005) Dinosaurs dined on grass. Science 310: 1126–1128.

Renvoize SA (1998) Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. Journal of Archaeological Science 16: 489–511.

Round FE, Crawford RM and Mann DG (1990) The Diatoms: Biology & Morphology of the Genera. Cambridge: Cambridge University Press.

Schüler L and Behling H (2011) Characteristics of Poaceae pollen grains as a tool to assess palaeoecological grassland dynamics in South America. Vegetation History and Archaeobotany 20: 97–108.

Schüler L and Behling H (2011) Characteristics of Poaceae pollen grains as a tool to assess palaeoecological grassland dynamics in South America. Vegetation History and Archaeobotany 20: 97–108.

Seluchi ME and Marengo JA (2000) Tropical-midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and examples of intense events. International Journal of Climatology 20: 1167–1190.

Sifeddine A, Wirrmann D, Albuquerque AL et al. (2004) Bulk composition of sedimentary organic matter used in palaeoenvironmental reconstructions: Examples from the tropical belt of South America and Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 214: 41–53.
Silverman H and Isbell WH (2008) *Handbook of South American Archaeology*. New York: Springer.

Stout JD and Rafter TA (1978) The 13C/12C isotopic ratios of some New Zealand tussock grassland soils. In: Robinson BW (ed.) *Stable Isotopes in the Earth Sciences*. Wellington, New Zealand: DSIR Bull 220:75–83.

Stout JD, Goh KM and Rafter TA (1981) Chemistry and turnover of naturally occurring resistant organic compounds in soil. In: Paul EA and Ladd JN (eds) *Soil Biochemistry*, Vol 5. New York: Marcel Dekker, Inc, pp 1–73.

Sublette, Mosblech NA, Chepstow-Lusty A, Valencia BG et al. (2012) Anthropogenic control of Late-Holocene landscapes in the Cuzco region, Peru. *The Holocene* 22: 1361–1372.

Tapia PM, Fritz SC, Baker PA et al. (2003) A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). *Palaeogeography, Palaeoclimatology, Palaeoecology* 194: 139–164.

Thompson LG, Mosley-Thompson E, Davis ME et al. (1995) Late Glacial stage and Holocene tropical ice core records from Huascarán, Peru. *Science* 269: 46–50.

Urrego DH, Bush MB and Silman MR (2010) A long history of cloud and forest migration from Lake Consuelo, Peru. *Quaternary Research* 73: 364–373.

Vuille M and Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCDP-B3 data. *Journal of Climate* 17: 3334–3348.

Vuille M, Bradley RS and Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. *Journal of Geophysical Research* 105: 12447–12460.

Wang GA, Han JM and Liu TS (2003) The carbon isotopic composition of C₃ herbaceous plants in loess area of North China. *Science in China – Series D: Earth Sciences* 46(10): 1069–1076.

Wielicki BA, Wong T, Allan RP et al. (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. *Science* 295: 841–844.

Williams JJ, Gosling WD, Brooks SJ et al. (2011) Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000 years. *Palaeogeography, Palaeoclimatology, Palaeoecology* 1–2: 115–126.

Yacobaccio HD (2006) Intensificacion economica y complejidad social en cazadores-recolectores surandinos. *Boletin de Arqueologia PUCP* 10: 305–320.

Wingenroth M and Heusser CJ (1983) *Pollen of the High Andean Flora*. Quebrada Benjamin Matienzo, Mendoza, Argentina. IANIGLA, Mendoza, Argentina.

Yacobaccio HD and Morales M (2005) Mid-Holocene environment and human occupation of the Puna (Susques, Argentina). *Quaternary International* 132: 5–14.

Van Geel B and Van der Hammen T (1978) *Zygnemataceae in quaternary Colombian sediments. Review of Palaeobotany and Palynology* 25: 377–391.

Appendix

List of the pollen taxa identified in core TK 1-2

Arboreal pollen	Onagraceae	Ferns
Ambrosia		
Adesmia		
Alkomea		
Alnus		
Andra type		
Araliaceae		
Arceaceae		
Astronium		
Casearia		
Cecropia		
Celts type		
Cupressaceae		
Hedysanum		
Hypericum		
Ilex		
Juglan		
Melastomataceae		
Melliaceae/Sapotaceae		
Mimosaceae		
Moraceae/Urticaceae		
Myrica		
Myrsine		
Myrtaceae		
Podocarpus		
Pouteria		
Protium		
Rosaceae		
Ribes		
Sitrax		
Trema		
Vallesia		
Verbenaceae		
Weinmannia		
Non-arboreal pollen		
Acalypha		

Aquatics or water level–related taxa

Alismataceae	
Cyperaceae	
Algae	

Gentianaceae	
Iridaceae	
Zygnema	

| Gentianella | |
| Lilaceae | |

| Gentianella | |
| Lilaceae | |