A rare occurrence of supplementary maxillary lateral incisors and a detailed review on supernumerary teeth

Paul Chalakkal, Ramesh Krishnan¹, Neil De Souza, Godwin Clovis Da Costa²
Departments of Pedodontics and Preventive Dentistry and ²Prosthodontics, Goa Dental College and Hospital, Bambolim, Goa,
¹Department of Pedodontics and Preventive Dentistry, Vinayaka Missions Sankarachariyar Dental College, Salem, Tamil Nadu, India

INTRODUCTION

Supernumerary teeth/tooth (ST) which are well aligned in the arch and resemble the normal anatomy of adjacent teeth are called supplementary teeth. They have also been defined as ST that bear resemblance with the teeth they are associated with. According to the Darwin's theory of evolution, as human evolved, organs that were minimally used became vestigial, such as the appendix, tail bone and fourth molar. However, in rare cases, there are still occurrences of supplementary molars and premolars. Only six cases of supplemental central incisors have been reported in literature till date. Supplemental lateral incisors are rare, and bilateral cases are even rarer. To the best of our knowledge, only three cases have been reported in literature till date.

CASE REPORT

A 11-year-old boy visited the Department of Pedodontics and Preventive Dentistry with the complaint of anterior crowding. On intraoral examination, the teeth present in the upper arch were: 16, 15, 14, 53, 12, 11, 21, 22, 63, 24, 65, 26 and two supplemental incisors, bilaterally. Anterior crowding was evident and amalgam restorations were present on the first permanent molars. The following teeth were unerupted: 17, 27, 13, 23 and 25. The lower arch contained the following teeth: 36, 35, 34, 33, 32, 31, 41, 42, 43, 44, 45, 85 and 46. Dental caries (distoproximal) was present on 85; however, no treatment was carried out since it was nearing exfoliation (root resorption was completed). The 37, 47 and 45 were unerupted. The OPG confirmed the absence of any congenitally missing teeth, additional ST or malformations. There were no orofacial deformities, mental retardation or any other medical conditions.

DISCUSSION

Unerupted supplemental teeth have been associated with several pathological conditions such as widened follicular
space, dentigerous cyst formation, and disturbances in adjacent permanent teeth such as ectopic eruption, diastema formation, pulp necrosis, pulp canal obliteration, root resorption, ankylosis and rotations. Most supplemental teeth remain unerupted. However, in the present case, the supplemental lateral incisors were erupted and had only resulted in ectopic eruption and rotations among the adjacent incisors. They did not cause any symptoms in the individual, which supports the fact that 75% of supernumerary lateral incisors located on both maxillary bones in the same position do not cause any symptoms. If a supplemental tooth is present and erupted, it may be difficult to determine which tooth is supplemental and which are constituents of the normal dentition. However, in the present case, they were categorized as supplemental lateral incisors, since their coronal dimensions closely matched with those of the lateral incisors. Supernumerary canines and lateral incisors are rare with low frequency of occurrence (2.8%) in comparison with other ST. Multiple ST not associated with syndromes are found in rare conditions. The patient in the present case did not have any mental retardation, abnormal facial appearance or any skeletal abnormalities suggestive of any syndrome, suggesting an autosomal dominant pattern of inheritance. Similar cases have been documented by many authors. Nonsyndromic ST in the permanent dentition, as in the present case, are mostly found in the maxilla in the anterior region. However, there have been reports of cases involving all maxillary dental series. A predilection for such ST in the mandibular premolar series had also been reported. The patient had reported with the chief complaint of anterior crowding and was unaware of the extra teeth he had. The supplemental maxillary lateral incisors were discovered on intraoral examination and were confirmed on the orthopantomograph. However, fixed orthodontic treatment has been planned to be undertaken after the eruption of all premolars and permanent canines. Selective removal of lateral incisors (normal or supplementary) may be required. In such circumstances, when both teeth are healthy, it has been suggested to extract the tooth/teeth that is most displaced from the line of the arch, so as to relieve crowding.

Definitions
ST have been defined in various ways by authors:
• Definition 1: ST (or hyperdontia) are teeth that exceed

Figure 1: Anterior view of both arches

Figure 2: Maxillary arch

Figure 3: Orthopantomograph

Figure 4: Mandibular arch
the normal dental formula (or complement), regardless of their location and form (or morphology)[13,36,37,50]
• Definition 2: Hyperdontia or ST are terms referred to any excess number of teeth or odontogenic structures[14,48]
• Definition 3: ST may be defined as any teeth or tooth substance in excess of the usual configuration of 20 deciduous and 32 permanent teeth.[46]
• Definition 4: ST (or hyperdontia) are defined as the existence of an excessive number of teeth in relation to the normal dental formula[47]
• Definition 5: ST are defined as those that appear in addition to the normal series[9]
• Definition 6: ST are defined as “supplementary,” if they present a normal morphology, and as “supernumerary,” if they present morphologic and volumetric anomalies.[43]

Classifications

Based on position
The classification of ST may be done on the basis of their position.[5,48] ST with positional variations include mesiodens, paramolars, distomolars and parapremolars.[2,17,41,48,49] There are variations in the frequency of occurrence of various ST based on the studies conducted. However, mesiodens has been found to be the most common ST with a prevalence between 0.15% and 1.9%.[13,36,37,50] According to Türkkahraman et al., the frequency of ST in the descending order of occurrence had been suggested as maxillary midline supernumeraries (mesiodens), maxillary fourth molars, maxillary paramolars, mandibular premolars, maxillary lateral incisors, mandibular fourth molars and maxillary premolars.[51] Many authors have reported the mesiodens as being the most common ST, followed by supernumerary premolars and supernumerary fourth molars.[14,15,11,32,53] However, Yagie-García et al. found paramolars to be more frequently occurring than parapremolars.[9] According to a few authors, the order was mesiodens, distomolars or fourth supernumerary molars, paramolars and supernumerary premolars.[13,36,37,56] According to Fernández-Montenegro et al., the frequency of occurrence of ST were mesiodens (46.9%), supernumerary premolars (24.1%) and distomolars (18%).[15] Many authors have reported an increased presence of supernumerary premolars.[18,19,25,26,32,33,54] Parapremolars, that are known to constitute about 8%—9% of all ST,[55,56] may occur as single (76%–86%), double (12%–23%) or multiple (<1%) teeth.[34] However, a paramolar is a supernumerary molar, usually rudimentary, situated buccally or lingually/palatally to a molar, or may occur in the interproximal space buccal to the second and third molar.[37] Some authors had found supernumerary molars to be the most prevalent ST.[13,38,59] Supernumerary canines and supernumerary lateral incisors are rare with low frequency of occurrence (2.8%) among ST.[15]

Based on morphology
ST have been classified on the basis of morphology.[12,48] Primosch classified ST into two types: ST with normal shapes and sizes (eumorphic) were termed as “supplemental” or “incisiform,” whereas ST with abnormal shapes and smaller sizes (dysmorphic) were termed as “rudimentary.”[9,60] Dysmorphic/heteromorphic/rudimentary ST show distinct forms such as conical or pin, tuberculate, infundibular and molariform.[13,14,17,41,48,49,60,61] Fernández-Montenegro et al. found most supernumerary premolars to be eumorphic (81.8%).[15]

Etiology
ST result from any disturbance in the initiation and proliferation stages of odontogenesis.[62,63] There are several theories regarding the development of a ST – trauma, environmental factors, phyllogenetic theory (regression to the anthropoids whose dental formula had more teeth), atavism (reversion to a more primitive type of dentition), dichotomy of the tooth germ, hyperactivity of the dental lamina and autonomic recessive inheritance linked to the X chromosome have been suggested.[13,14,16,18,19,27,64,66]

Dichotomy
Dichotomy of the dental lamina (primary or successional) or tooth buds at the stage of histodifferentiation may occur during the 6th week of fetal life.[67,68] The tooth bud splits into two parts of equal or unequal sizes, resulting in ST.[11,13,14,18,30,60] This hypothesis is supported by animal experiments in which the split germs have been cultivated in vitro.[69,70] Gemination, which is assumed to be a similar incomplete process, also supports this theory.[60]

Hyperactive dental lamina
Hyperactive dental lamina continues to proliferate because of failure in programmed cell death, due to defects in signaling between epithelium and mesenchyme. The excessive proliferation of cells results in the formation of extra tooth buds.[13,14,18,19,60,72]

Genetics
The role of genetics has been considered in the formation of ST, since they have been found in twins, siblings and sequential generations of a family.[16,19,28,73,74] Several families have been documented in which at least two individuals presented with multiple ST, not associated with any syndrome.[19,26,54,75,78] However, the pattern of inheritance does not follow Mendelian principles.[17,19] A dominant autosomal trait characterized by low penetrance has also been suggested.[13,36,27,66]
Syndromes and anomalies

The involvement of any syndrome must be carefully examined in any case exhibiting multiple ST.

Prevalence

Permanent dentition

ST had been first reported between 23 AD and 79 AD. The prevalence of ST in the general population had been reported by various authors to be between 0.09% and 0.29%.

0.5%–5.3%,[14] 0.5%–3.8%,[20,41,13,34,36,37,86,87] 1%–4%,[60] 0.5%–5.3%,[88] 0.3%–1.7%,[71] 0.1%–3.9%[9,14,45,89‑91] and 0.15%–3.800%.[13‑15] Their prevalence has been reported to be higher in Mongoloids and African-Americans.[14,45,89‑91]

A similar observation has been reported in the Asian and Native American populations.[71] Their prevalence in the Caucasian population had been found to be between 0.1% and 3.9%.[14,45,89‑92] Their prevalence in countries between the Caspian sea, and the Black sea were found to be between 0.1% and 3.8%.[14,89,92‑93] Their prevalence was found to be between 0.4% and 3.4% in Arabs and Asians,[14,89,92‑93] and 1.24% in South Indians.[15] ST were also found to have a prevalence between 2.7% and 3.4% in Sub-Saharan and Asian populations.[37,96] These variations in global prevalence, especially for the Asian population, might stem from diversities in ethnicity, methodological differences, age groups examined and sample size.[37,63,97]

Primary dentition

The prevalence of ST in the primary dentition had been found to vary according to authors. It had been found to be between 0.3%–1.7%,[71] 0.2%–0.8%,[16,88] 0.2%–1.9%,[60] 0.3%–0.8%[8] and 0.3%–0.6%[13,20,34,36,37,39,86,87] in a palatine position.

Gender variation

ST had been found to occur more in males,[14,50,89,93,95] However, male-to-female ratios of 2:1,[13‑15,18,26,34,36,40,44,61,82,83] 9:2[13,18] and 1.4:1[18] had been reported.

Site of occurrence

ST had been found to occur more, unilaterally than bilaterally.[89] They had been found to occur in the maxilla 8.2–10 times more frequently than in the mandible, commonly affecting the premaxillary region,[11,14,16,27,30,57] in a palatine position.[15,50,99‑102] About 90%–98% of ST are found in the premaxillary region,[35,37,60] followed by the mandibular premolar region (supernumerary premolars).[15,18,20,93,103,104] Supernumerary premolars are mostly located in the mandible, in a lingual position,[15] while paramolars and distomolars are mostly found in the maxilla.[105‑107]

Multiple supernumerary teeth

The prevalence of multiple ST had been found to be 0.06%.[19] Multiple ST had been reported in 8%–27%[60‑101] or 1.5%[14] of the individuals with at least one ST. The prevalence of one, two and three or more ST in the maxilla was found to be between 76%–86%, 12%–23% and 1% of the individuals with ST, respectively.[14,15,108] Three or more ST in the same individual were found in 2%–8% of cases with ST.[14,15] However, five or more ST in the same individual were found in <1% of individuals with ST.[14,18]

Complications

ST teeth can erupt normally, remain impacted, invert, reach heterotopic positions or show abnormal eruptive patterns.[18,49,99] There are various complications related to ST according to authors:[13‑14,26,31,42‑45,48,52,56,74,77,97,109‑127]

• Eruption disturbances: Delayed eruption or non eruption of permanent teeth (30%–60% of cases)
• Malpositions: Discrepancy in the Bolton’s arch perimeter resulting in severe crowding and malpositioning; displacement or rotation of adjacent teeth
• Root related: Absorption of roots and root malformations (dilacerations) secondary to the pressure exerted by ST
• Pathologic: Development of follicular cysts
• Endodontic: Caries and loss of vitality of adjacent teeth
• Periodontal: Gingivitis, periodontitis and abscess formation
• Functional: Occlusal interferences and masticatory difficulties
• Others: Neuralgic manifestations and dysodontiasis of permanent teeth.

Treatment options

Since the majority of ST (80%–93%) cause clinical complications, early diagnosis and treatment planning are important in preventing complications related to ST and adjacent teeth.[89,118] Orthodontists, pediatric dentists, and general practitioners who usually visit children at lower ages can contribute to early diagnosis and planning more effective long-term interdisciplinary therapies.[128] There are two treatment options for delayed eruption of adjacent teeth due to the presence of ST. The first option being, removal of the ST if adequate space is available for the
adjacent tooth to erupt or removal of the ST followed by a surgical-orthodontic treatment to re-establish space for the unerupted tooth.[13] The timing of surgical removal of ST is contentious and two alternatives exist. First, to remove the ST as soon as it has been diagnosed and second, to leave the ST as such till the root development of adjacent teeth is complete, to prevent damage to their root apices. However, no evidence of root resorption, loss of vitality, or any disturbance to root development in adjacent permanent teeth had been reported by Hogstrom and Andersson.[11] The underlying permanent teeth usually erupt spontaneously following the removal of unerupted ST.[14]

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Tommasi AF. Diagnostico em Patologia Bucal. Sao Paulo: Artes Medicas; 1988. p. 85-97.
2. Yassin OM, Hamori E. Characteristics, clinical features and treatment of supernumerary teeth. J Clin Pediatr Dent 2009;33:247-50.
3. Mali S, Karjodkar FR, Sontakke S, Sansare K. Supernumerary teeth in non-syndromic patients. Imaging Sci Dent 2012;42:41-5.
4. Rock WP. A case of bilateral supplemental maxillary central incisors. Int J Paediatr Dent 1991;1:155-8.
5. Camilleri S. A case of bilateral supplemental maxillary central incisors. Int J Paediatr Dent 2003;13:57-61.
6. Staufn EC. Supernumerary upper central incisors. Dent Cosmos 1931;73:976-98.
7. Tromman CA, McNamara T. Four maxillary incisors: A case report. Spec Care Dentist 1994;14:112-5.
8. Steelman R, Wilson G, Nelson S. Maxillary incisor duplication. Oral Surg Oral Med Oral Pathol 1991;71:523.
9. Hans MK, Shetty S, Shelkar R, Sirohi S. Bilateral supplemental maxillary central incisors: A case report. J Oral Sci 2011;53:403-5.
10. Townsend BR. Two cases of duplication of deciduous lateral incisors followed by permanent lateral incisors. Br Dent J 1953;95:47-8.
11. Nagpal A, Hans MK, Shetty S, Kaur N, Kumar S. Non-syndromic bilateral supplemental maxillary incisors: A rare case. J Clin Diagn Res 2013;7:1812-3.
12. Yildirim G, Bayrak S. Early diagnosis of bilateral supplemental primary and permanent maxillary lateral incisors: A case report. Eur J Dent 2011;5:215-9.
13. Gay Escoda C, Mateos Micas M, España Tost A, Gargallo Albol J. Otras inclusiones dentarias. Mesiodens y otros dientes supernumerarios. Dientes temporales supernumerarios. Dientes temporales incluidos. In: Gay Escoda C, Aytes Berini L, editors. Tratado de Cirugía Bucal. 1ª ed., Tomo I. Madrid: Ergon; 2004. p. 497-534.
14. Rajab LD, Hamdan MA. Supernumerary teeth: Review of the literature and a survey of 152 cases. Int J Paediatr Dent 2002;12:244-54.
15. Fernández Montenegro P, Valmaseda Castellón E, Berini Aytes L, Gay Escoda C. Retrospective study of 145 supernumerary teeth. Med Oral Patol Oral Cir Bucal 2006;11:E339-44.
16. Yagüe-García J, Berini-Aytes L, Gay-Escoda C. Multiple supernumerary teeth not associated with complex syndromes: A retrospective study. Med Oral Patol Oral Cir Bucal 2009;14:E331-6.
17. Schneier MA, Sampson WJ. Supernumerary teeth: A review of the literature and four case reports. Aust Dent J 1997;42:160-5.
18. Yusof WZ. Non-syndrome multiple supernumerary teeth: Literature review. J Can Dent Assoc 1990;56:147-9.
19. Barra P, Duggal R, Parkash H. Non-syndrome multiple supernumerary teeth transmitted as an autosomal dominant trait. J Oral Pathol Med 2005;34:621-5.
20. Indira M, Dhull KS, RS, Kumar Ps P, Devi Bm G. Molariform mesiodens in primary dentition: A case report. J Clin Diagn Res 2014;8:ZD33-5.
21. Yadav RK, Rao J, Yadav L, Hasija M. Non-syndromic multiple supernumerary teeth in permanent dentition: A rare phenomenon. BMJ Case Rep 2013. doi: 10.1136/bcr-2013-009026.
22. Baccetti T. A controlled study of associated dental anomalies. Angle Orthod 1998;68:267-74.
23. Inchingolo F, Tatullo M, Abenavoli FM, Marrelli M, Inchingolo AD, Gentile M, et al. Non-syndrome multiple supernumerary teeth in a family unit with a normal karyotype: Case report. Int J Med Sci 2010;7:378-84.
24. Garvey MT, Barry HJ, Blake M. Supernumerary teeth – An overview of classification, diagnosis and management. J Can Dent Assoc 1999;65:612-6.
25. Gündüz K, Muğlali M. Non-syndrome multiple supernumerary teeth: A case report. J Contemp Dent Pract 2007;8:81-7.
26. Desai RS, Shah NP. Multiple supernumerary teeth in two brothers: A case report. J Oral Pathol Med 1998;27:411-3.
27. Trull Gimbernat JM, Banchilleria Balaguer E, Vall-Llosera Riera J, Gay Escoda C. Supernumerarios múltiples no sindrómicos: Descripción de un caso. Av Odontoestomatol 1994;10:89-93.
28. Nayak UA, Mathian VM, Veerakumar. Non-syndrome associated multiple supernumerary teeth: A report of two cases. J Indian Soc Pedod Prev Dent 2006;24 Suppl 1:S11-4.
29. Saraswathi FK, Toran SS, Kuma P. Supplemental rudimentary tuberculates with unusual morphology: A case report. Int J Dent Clin 2010;2:47-52.
30. Sasaki H, Funao J, Morinaga H, Nakano K, Ooshima T. Multiple supernumerary teeth in the maxillary canine and mandibular premolar regions: A case in the postpermanent dentition. Int J Paediatr Dent 2007;17:304-8.
31. Açikgöz A, Açikgöz G, Tunga U, Otan F. Characteristics and prevalence of non-syndrome multiple supernumerary teeth: A retrospective study. Dentomaxillofac Radiol 2006;35:185-90.
32. Orhan AI, Ozer L, Orhan K. Familial occurrence of nonsyndromal multiple supernumerary teeth. A rare condition. Angle Orthod 2006;76:891-7.
33. Kalra N, Chaudhary S, Sanghi S. Non-syndrome multiple supplemental supernumerary teeth. J Indian Soc Pedod Prev Dent 2005;23:436-8.
34. So LL. Unusual supernumerary teeth. Angle Orthod 1998;68:267-74.
35. Hattab FN, Yassin OM, Rawashdeh MA. Supernumerary teeth: Report of three cases and review of the literature. ASDC J Dent Child 1996;61:382-93.
36. Valmaseda-Castellón E, Berini-Aytes L, Gay-Escoda C. Supernumerary premolars. Report of 10 cases. Bull Group Int Rech Sci Stomatol Odonto 2007;17:304-8.
37. Trull Gimbernat JM, Banchilleria Balaguer E, Vall-Llosera Riera J, Gay Escoda C. Supernumerarios multiples no sindrómicos: Descripción de un caso. Av Odontoestomatol 1994;10:89-93.
38. Scheiner MA, Sampson WJ. Supernumerary teeth: A review of the literature and four case reports. Aust Dent J 1997;42:160-5.
38. Rodríguez-Armijo Sánchez L, Gallardo García P. Premolares múltiples supernumerarios no sínódromicos: Revisión de la literatura y presentación de un caso. Arch Odontostomatol 1996;12:266-70.

39. Gibson N. A late developing mandibular premolar supernumerary tooth. Aust Dent J 2001;46:51-2.

40. McNamara CM, Foley TF, Wright GZ, Sandy JR. The management of premolar supernumeraries in three orthodontic cases. J Clin Pediatr Dent 1997;22:15-8.

41. Dhull KS, Dhull RS, Panda S, Acharya S, Yadav S, Mohanty G, et al. Bilateral mandibular paramolars. Int J Clin Pediatr Dent 2014;7:40-2.

42. Capozzi L, Gombos F, Masi P, Modica R, Valletta G. Patologia speciale odontostomatologica. Firenze, Italy: USES Publisher, 1987.

43. Orlando S, Bernardini UD. Sulle anomalie dentali numeriche per eccesso. Riv Ital Stomatol 1966;21:1267-322.

44. Cassetta M, Russomanno MR. L’iperodontia nei settori latero-posteriori; indagine epidemiologica su 20398 pazienti. Riv Ital Stomatol 1994;63:565-73.

45. Meighani G, Pakdaman A. Diagnosis and management of supernumerary (mesiodens): A review of the literature. J Dent (Tehran) 2010;7:41-9.

46. Schulze C. Developmental abnormalities of teeth and jaws. In: Gorlin RJ, Goldman HM, editors. Thoma's Oral Pathology. St. Louis: CV Mosby; 1970. p. 112-22.

47. Shafer WG, Hine MK, Levy BM. Textbook of Oral Pathology. 6th ed. London, UK: Elsevier Publication; 2009. p. 46.

48. Mitchell L. Supernumerary teeth. Dent Update 1989;16:65-6, 68-9.

49. Ramsaran AS, Barclay S, Scipio E, Ogunsalu C. Non-syndromal supernumerary teeth. Brit Dent Update 2008;35:510‑2, 514‑6, 519‑20.

50. Mason C, Rule DC. Midline supernumeraries: A family affair. Dent Update 1995;22:234-5.

51. Türk Kahraman H, Yilmaz HH, Cetin E. A non-syndrome case with bilateral supernumerary canines: Report of a rare case. Dentomaxillofac Radiol 2005;34:319-21.

52. Mason C, Rule DC, Hopper C. Multiple supernumeraries: The importance of clinical and radiographic follow-up. Dentomaxillofac Radiol 1996;25:109-13.

53. Salcido-García JF, Ledesma-Montes C, Hernández-Flores F, Pérez D, García-Ortíz M. Frequency of supernumerary teeth in Mexican population. Med Oral Patol Oral Cir Bucal 2004;9:417-9.

54. Wang XX, Zhang J, Wei FC. Autosomal dominant inherence of multiple supernumerary teeth in the permanent dentition. J Clin Pediatr Dent 2004;28:297-303.

55. Fajri SA, Panu PK, Galhotra V, Dogra G. Management of an inverted impacted mesiodens, associated with a partially erupted supplemental tooth-A case report. Indian J Dent 2011;2:40-3.

56. Mason C, Rule DC. Midline supernumeraries: A family affair. Dent Update 1995;22:234-5.

57. Merceri LG, O'Neill R. Multiple impacted and supernumerary teeth in sisters. Oral Surg Oral Med Oral Pathol 1980;50:293.

58. Umweni AA, Osunbor GE. Non-syndrome multiple supernumerary teeth in Nigerians. Odontostomatol Trop 2002;25:43-8.

59. Becker A, Bimstein E, Shetey A. Interdisciplinary treatment of multiple unerupted supernumerary teeth. Report of a case. J Oral Maxillofac Surg 1982;81:417-22.

60. Maria CM, Kumar BR. Familial occurrence of mesiodentes with unusual findings: Case reports. Quintessence Int 1998;29:49-51.

61. Atock CH. Multiple supernumerary teeth and possible implications. Aust Dent J 1987;32:48-9.

62. McNamara CM, O’Riordan BG, Blake M, Sandy JR. Cleidocranial dysplasia: Radiological appearances on dental panoramic radiography. Dentomaxillofac Radiol 1999;28:89-97.

63. Moore SR, Wilson DF, Kibble J. Sequential development of multiple unerupted supernumerary teeth in the mandibular premolar region-A radiographic case report. Int J Paediatr Dent 2002;12:143-5.

64. Mason C, Asam N, Holt RD, Rule DC. A retrospective study of unerupted maxillary incisors associated with supernumerary teeth. Br J Oral Maxillofac Surg 2008;46:62-5.

65. Breckon JJ, Jones SP. Late forming supernumeraries in the mandibular premolar region. Br J Oral Surg 1991;18:329-31.

66. Mitrani Morá MG, Badoñas Carmona MV, Briones Luján MT. Molarization and development of multiple supernumerary teeth in the premolar region. J Dent Child (Chic) 2004;71:171-4.

67. Sharma A. A rare non-syndrome case of concomitant multiple supernumerary teeth and partial anodontia. J Clin Pediatr Dent 2001;25:167-9.

68. Williams P. An unusual case of hyperdontia [corrected]. Br Dent J 1998;184:371-2.

69. Ehsan D, Tu HK, Camarata J. Mandibular supernumerary tooth causing neurosensory changes: A case report. J Oral Maxillofac Surg 2000;58:1450-1.

70. Singhvi V, Namibiar S, Shetty S. Orthodontic management of non-syndromic multiple supernumerary teeth. Contemp Clin Dent 2013;4:540-2.

71. Neville B, Damm D, Allen C, Bouquot J. Oral and Maxillofacial Pathology. Philadelphia: Saunders; 2002. p. 69-73.

72. Harris EF, Clark LL. An epidemiological study of hyperdontia in American blacks and whites. Angle Orthod 2008;78:860-5.

73. Anthonappa RP, Omer RS, King NM. Characteristics of 283
