Botrylloides crystallinus n. sp., a new Botryllinae Adams & Adams, 1858 (Ascidiae) from Mediterranean Sea

Anne BAY-NOUAILH
Wilfried BAY-NOUAILH
Mer et littoral, 57 hameau de Cadol,
F-29140 Melgven (France)
mer.littoral@gmail.com

Fabio GASPARINI
Department of Biology University of Padua, Via U. Bassi 58/B,
I-35131 Padova (Italy)
fabio.gasparini@unipd.it (corresponding author)

Riccardo BRUNETTI
Natural History Museum of Venice, Santa Croce 1730,
I-30135 Venezia (Italy)
ric.brunetti@gmail.com

Submitted on 2 April 2019 | Accepted on 18 June 2019 | Published on 31 March 2020

ABSTRACT
Botrylloides crystallinus n. sp., collected on sublittoral hard substrata in North Mediterranean Sea is here described. The species presents a seasonal life cycle with a spring-summer regression of the zooids and their buds as known in the congeneric species Botryllinae Adams & Adams, 1858 (Ascidiae) from Mediterranean Sea, Zozosystema 42 (9): 131-138.

MOTS CLÉS
Styelidae,
Botryllinae,
aestivation,
Mediterranean Sea,
new species.

KEY WORDS
Styelidae,
Botryllinae,
aestivation,
Mediterranean Sea,
new species.

RÉSUMÉ
Botrylloides crystallinus n. sp., une nouvelle espèce de Botryllinae Adams & Adams, 1858 (Ascidiae) de la mer Méditerranée.

Botrylloides crystallinus n. sp., collectée sur les substrats dur sublittoraux au nord de la Méditerranée, est décrite. L’espèce présente un cycle de vie saisonnier avec une régression printemps-été des zoides et de leurs bourgeois comme cela est connu pour une autre espèce congénérique Botryllinae (Savigny, 1816), dont elle diffère cependant par de nombreux traits morphologiques inhabituels.
INTRODUCTION

The taxonomic description of botryllid ascidians is objectively difficult because of the deep morphological homogeneity among the putative species which requires a careful study of tiny characters that might be useful for their distinction.

For a long time these animals were described almost exclusively on the basis of the shape of systems and their coloration, and a high number of species were defined. Thanks to the publication of the Faune de France (Harant & Vernières 1933) and The Tunicata (Berrill 1950) all European botryllid species were reduced to only two species: Botryllus schlosseri (Pallas, 1766) and Botrylloides leachii (Savigny, 1816). But this drastic decrease may be the reason why the Mediterranean Sea, although extremely rich and diverse for many biotas, appears so poor in terms of species diversity for botryllid genera.

Only recently the taxonomy of Botryllinae Adams & Adams, 1858 excited new interest (Brunetti 2009, 2011; Brunetti & Mastrototaro 2012; Brunetti et al. 2017) and this is partly due to the development of molecular analysis (Bock et al. 2012).

MATERIAL AND METHODS

Colonies were collected by scuba diving on 9 May 2018 at Carro (France) (43°19’42”N, 5°2’42”E) where the species is present between 5 and 11 meters deep. Colonies of Botrylloides cristallinus n. sp. were also observed at the same period (Fig. 3G). Other colonies of Botryllus schlosseri (Pallas, 1766) and Botrylloides leachii (Savigny, 1816) were also observed at the same period (Brunetti & Mastrototaro 2012; Brunetti et al. 2017). The species had been previously observed in 2009, but not collected, in the area of Carry-le-Rouet where it was common up to 28 meters deep (Fig. 1A).

The colonies were fixed in the field just after sampling. Animals were anaesthetised combining the use of menthol and clove essential oil (CEO) whose active principle is Eugenol so far used in aquaculture (Chanséo et al. 2002). Samples were placed during the dive in re-sealable vials. Once back to the surface, they were pre-anaesthetised with menthol crystals, being protected from light and change in sea water temperature. After about 10-20 minutes the siphons of the zooids are usually opened and the anaesthesia with CEO was completed. However, as this substance is not soluble in water, three drops were vigorously shaken in a bottle with 100 ml of seawater to obtain an emulsion: this emulsion was then added to the vial, with the ratio of three drops for 100 ml. A complete anaesthesia, controlled by touching the oral siphon with a needle, was usually obtained in a few minutes. Subsequently, the formalin was added in the vial to obtain a 10% solution.

ABBREVIATION

Institution

MNHN  Muséum national d’Histoire naturelle, Paris.

RESULTS

Family Styelidae Sluiter, 1895
Subfamily Botryllinae Adams & Adams, 1858
Genus Botrylloides Milne-Edwards, 1841

Botrylloides cristallinus n. sp.
(Figs 2-5)

urn:lsid:zoobank.org:act:4EC1BFD5-51F8-4BC1-BC1E-7B36B56E1E4F

TYPE LOCALITY. — France, Carro, North Tyrrhenian Sea.

TYPE MATERIAL. — Syntypes. France • 4 colonies (Bc1, Bc2, Bc3 and BcA); Carro, North Tyrrhenian Sea; 43°19’42”N, 5°2’42”E; 9.V.2018; depth 5-11 m; sea water temperature 16°C; MNHN-IT-2018-3, MNHN-IT-2018-4, MNHN-IT-2018-5, MNHN-IT-2018-6. [Part of the syntype named BcA (MNHN-IT-2018-6) was not anaesthetised and directly fixed in ethanol instead of formalin and sent to Prof. Carmela Gissi at the University of Bari who is working on the phylogeny of Botryllinae].

DISTRIBUTION. — Mediterranean French coasts (Fig. 1A), from the east of the Rhone delta up to the Italian coasts.

ETYMOLOGY. — Cristalline, name based on the transparent aspect of the colonies, from Latin crystallus.

DIAGNOSIS. — Globular colonies with a thick tunic. Zooids with spoon-shaped oral tentacles (Fig. 3G). Internal longitudinal branchial vessels extending anteriorly up to the pre-branchial ring and getting in touch with it (Fig. 3A, B, H, I); stomach with nine folds and with a triangular space between a tiny typhlosole and the last fold (Fig. 4D); pyloric caecum long about half of the stomach length; rotation of the intestine in the second curve of intestinal loop (Fig. 4A).

DESCRIPTION

Colonies

Globular, usually up to 3 cm in diameter, or massive with several rounded lobes and reaching 7-8 cm thick. Adhering to solid substrata by an attaching surface without marginal expanded ampullae. Zooids, arranged in leachii-type systems (Brunetti 2009), and perpendicularly ordered at the surface of the colony with their buds (Fig. 2C) that lie, immerged in the tunic, below the filtering zooid level (see below in “Zooids subsection”). Tunic always very thick, up to several times the height of the filtering zooids, and crossed by a network of very thin colonial blood vessels connecting zooids and buds. Tunic soft and sticky, making the extraction of zooids and buds difficult. Colonial vessels ending with very small spheroidal ampullae. Larger ampullae present only at colony surface. Tunic crystalline, transparent and white to diaphanous pale yellow; thin white lines highlighting the tunic from the base of oral siphon to the rim of dorsal lip and atrial aperture, drawing on the surface of the colony a thin branched pattern of lines running through the zooids up to the rim of the common cloacal opening (Fig. 2A). White longitudinal lines also present in branchial sac: two large ones emphasizing the endostyle and the dorsal lamina, and six thin ones highlighting the internal longitudinal vessels. White pigment present
in all these structures. In fixed animals, orange pigmentation present in cell islands close to the endostyle (see below), and around stomach and the first curve of intestinal loop (Fig. 2B).

**Zooids**

Up to 3-4 mm long. Body wall with a faintly visible network of very fine muscles, making circular bands only at siphon apertures. Size, distribution and number of the tentacles strongly variable in zooids of the same colony (Fig. 3B-E). In general, tentacles not very long; longest tentacles spoon-shaped when observed at high magnification, with the concavity toward the outside (Fig. 3G). Contrary to some other Botryllinae species (e.g. B. schlosseri, see Brunetti et al. 2017), vascular lacunae at tentacle bases without masses of haematic cells. Branchial sac with usually 12 rows of stigmata, the second one dorsally incomplete (Fig. 3A) and the last one (often difficult to see)

![Figure 1](image1.png)

**Fig. 1** — A, Map of the sampling sites; B, range of monthly Marseille seawater temperatures derived from the website https://seatemperature.net/current/france/marseille-provence-alpes-cote-d-azur-france-sea-temperature (website visited in March 2019, showing data collected from 2016 to 2018 from open sources, using the NOAA satellite, river and lake surfaces satellite map).

![Figure 2](image2.png)

**Fig. 2** — *Botrylloides crystallinus* n. sp.: A, colony in the field; B, single zooid (fixed but not stained); C, first order bud in stage 8 with its budlet (arrowhead) in stage 3 (staging of Berrill, 1941). Scale bars: A, 0.5 cm; B, 2 cm; C, 100 μm.
with small stigmata. Branchial sac cylindrical (Fig. 2A), with about 18 stigmata in the first half row and about 14 in the 11th half row. Ventral “cell islands” (as defined by Manni et al. 2014) present on both sides of the endostyle, at the level of the rows of stigmata (Figs 2B; 3A). Each internal longitudinal vessel rising apically to form a lamina; its diameter just a little larger than the diameter of interstigmatic vessels. Internal longitudinal vessels developing anteriorly to the first stigmata row, reaching and touching, but not fusing with, the pre-pharyngeal ring (Fig. 3A, B). Therefore, each branchial sector of the first stigmata row is protruding centripetally in the body between the two delimiting vessels, and the row appears wavy, a feature visible both in living and fixed specimens (Fig. 3A, B). Dorsal and ventral sectors equal in width and wider than lateral sectors. Branchial formula at about half of pharynx length usually DL 5.4.4.5 E. Few, thin muscle fibres along the transversal branchial vessels. Atrial opening exposing 6-7 rows of branchial stigmata (Figs 2B; 3A), and with a dorsal languet more or less developed according to the position of the zooid in the system.

Stomach arranged almost completely posteriorly to branchial sac; axis of well-relaxed zooid inclined at an angle of about 135° compared to anterior-posterior axis of the zooid (Figs 2B; 3A). Almost cylindrical in shape with cardiac end slightly larger than pyloric end; with 9 slightly spiralized folds (Fig. 4D-F); a broad smooth triangular space present between the typhlosole and the last fold (Fig. 4D) (note that gastric folds, observed from the cardiac end, are numbered clockwise from the typhlosole). A pyloric caecum rising from posterior part of a tiny typhlosole; about half as long as stomach length (see Fig. 4D, F), slightly tilted back and with a slightly swollen tip. Intestinal loop moderately curved. Rectus running along the dorsal edge of the branchial sac; the two structures connected through two trabeculae, at level of the transversal vessel between stigmata rows 9 and 10 (Fig. 3F). A smooth edge anus opening at stigmata row 8: three rows of stigmata anteriorly to oesophageal opening, located at the level of stigmata last row (Fig. 3A, F). Anal opening not lobed, (Fig. 4A, B) but sometimes looking outward (Fig. 4C). Intestine with two
grooves along its ventral and dorsal sides, the first the most evident. Two grooves also present along the two sides of the oesophagus. Second curve of intestinal loop accompanied by a rotation of intestine, (Fig. 4A), as in Botrylloides israeliensis Brunetti, 2009: as a consequence, in gut loop terminal tract, dorsal side of intestine distanced from the dorsal edge of branchial sac; ventral side of intestine by contrast close to the branchial sac dorsal edge, and connected to it by two trabeculae, as described above. Buds connected through blood vessels to parental zooids, not leaning but outdistanced from them (Fig. 2C); this disposition probably takes place during the change of generation when the zooids regress and are substituted by first order buds.

**Gonads**
No gonads observed in zooids, but oocytes present posteriorly and closed to testis primordia in first order buds of same colonies.

**Ecology**
The species, locally common along the French Mediterranean coasts (Fig. 1A), lives in shaded areas fixed on vertical side of rocks and overhangs, from 5 to more than 30 meters deep. All samples were collected the 9 May 2018 (water temperature 16°C); many of them were in full activity with filtering zooids but others presented some zooids in regression (Fig. 5A). In spring when temperature rises to summer values (Fig. 1B), the number of regressing zooids increased, the regression moved from the base of the colony to its top (Fig. 5B, C) until all zooids are regressed (Fig. 5D). The regression concerns also the buds and the colony is reduced to a collection of tiny round bodies (Fig. 5E); during the following July (mean water temperature 21°C) almost all colonies (not collected) appear as gelatinous masses with only tiny whitish ampullae at their surface (Fig. 5F). Finally, during scuba diving of August 10 and 17, after a period of high temperature with values up to 28°C, no colonies were detected.

Our observations, although not covering a full annual period, suggest that the species presents a seasonal cycle with a preference for the lower temperature of winter. During the summer, when water temperature is constantly above 20°C (Fig. 1B), probably there is a high mortality that would explain the ostensible absence of the species.

**Remarks**
Beside its phenotypic appearance, the species is characterised by the anterior terminal part of the internal longitudinal...
Fig. 5. — Botryllodes crystallinus n. sp.: steps in aestivation: **A-C**, early phases: zooid regression moves from the base of the colony to its top; **D**, colony top where all zooids and buds were in regression; the disposition in systems is still visible; **E**, advanced phase: regressed zooids are reduced to little bodies; **F**, final phase: colonies appear as gelatinous masses with only tiny whitish ampullae at their surface. Scale bars: 0.5 cm.
branchial vessels and the undulating surface of branchial wall at the level of the first row of stigmata. This characteristic was never reported until now in Botryllidae species, but a similar condition seems to be present in some species of the genus *Symplegma* Herdman, 1886 (Styelidae, Polyzoinae) although it was not quoted among its generic characters (Monniot & Monnier 1972). So in *S. reptans* (Oka, 1927) Kots (1985: 259, fig. 127) quotes “[...] internal longitudinal vessels extend the whole length of the branchial sac.” and in the figure 127 these vessels extend an unperforated space coming up to the prepharyngeal ring; and in Monniot (2018) the photos in fig. 10 regarding *S. brackenhielmi* (Michaelsen, 1904) clearly show the vessels going over the first stigmata row and ending in an unperforated space anterior to it, close to the prepharyngeal ring.

Also, the folding of the intestinal loop is an unusual character mentioned only in *Botrylloides israeliensis* Brunetti (2009), from which however *B. crystallinus* n. sp. differs in many other characters such as the shape of the stomach the number of stigmata rows, and the incompleteness of the second row.

Among the European species (Brunetti & Mastrotorato 2017) only *B. leachii*, *B. giganteus* (Pérès, 1949) and *B. degensii* Ritter & Forsyth, 1917 present some resemblance with the here described species, mainly in stomach shape with a smooth rhomboid area between the typhlosole and the last fold. Only *B. leachii* has the same number of stomach folds, but its stomach has a more campanulate shape and overall a clear swelling of the cardiac ends of folds and a pyloric caecum shorter than half of the stomach length. Moreover the *B. leachii* has smaller zooids. Finally, in *B. leachii* the tunic is strongly thinner than *B. crystallinus* n. sp. A comparison among the main morphological traits of these species are reported in Table 1.

The seasonal cycle of *B. crystallinus* n. sp., with a regression stage during summer, recalls the seasonal cycle described in *Botrylloides leachii* (Brunetti 1976) in the lagoon of Venice. Total or partial regression phase was reported for many colonial ascidians (Millar 1971); this is usually named aestivation or hibernation depending on whether it takes place during winter or summer, which may suggest that the cause of the phenomenon is the change in temperature. When the regression concerns only a particular organ of the zooid it may be interpreted as a renewal of organs damaged by an intense metabolic activity (Turo 1992). In botryllids an aestivation with a total regression, was first described by Bancroft (1903) on colonies of *Botrylloides gascoi* Della Valle, 1877 (presently junior synonym of *B. leachii*) which at the end of June (in Naples) completely degenerated zooids and buds living only the test vascular system. The same phenomenon was described for *B. leachii* (Brunetti 1976) in the lagoon of Venice where the difference from winter and summer temperature is stronger.

---

**Table 1.** Comparison among the main morphological traits of *Botrylloides Mille Edwards, 1841* species present in the Mediterranean Sea: *B. crystallinus* n. sp., *B. anceps* (Herdman, 1891), *B. giganteus* (Pérès, 1949), *B. israeliensis* Brunetti, 2009, *B. leachii* (Savigny, 1816), *B. violaceus* Oka, 1927. Special features: *B. crystallinus* n. sp.; aestivation, *B. anceps*: colony surface sandy, *B. israeliensis*: the haematic cells usually forming the branchial cell islands accumulate in the ventral portion of transversal vessels, intestine folded; *B. leachii*: hibernation; *B. violaceus*: viviparous, egg developing in the colonial tunic nourished by blood circulation, larva with up to 30 ampullae. Abbreviations and symbols: c., circa; Ds, dorsal; LI, lateral; L, large; M, medium size; S, small; Vn, ventral; * the term is used as proposed in the “Annotated glossary” by Kott (1985: 15); ** ninth fold rudimentary and sometimes absent.

|                     | *B. crystallinus* n. sp. | *B. giganteus* | *B. israeliensis* | *B. leachii* | *B. violaceus* |
|---------------------|-------------------------|---------------|------------------|-------------|---------------|
| Zoid height         | c. 3 mm cylindrical     | c. 1.5 mm conical | c. 4 mm cylindrical | c. 3 mm conical | c. 1.5 mm cylindrical |
| Zoid shape          | *              | *            | *          | *          | *             |
| Tentacles number    | strong variability     | 2L + 6M - S  | up to 30 finger like | 4L + 4M finger like | 4L + 4M + 8S finger like |
| Tentacles shape     | finger like absent     | present       | finger like absent | finger like absent | finger like absent |
| Tentacles haematic  | strong variability     | 2L + 6M - S  | up to 30 finger like | 4L + 4M finger like | 4L + 4M + 8S finger like |
| Tentacles mass at   | finger like absent     | present       | finger like absent | finger like absent | finger like absent |
| the base of L ones  | *              | *            | *          | *          | *             |
| Atrial lip 2        | absent                 | present       | absent          | absent      | absent |
| pigmented spots     | *              | *            | *          | *          | *             |
| Stigmata number     | 12 incomplete          | 9 incomplete  | 17 complete    | 8 complete  | 9 incomplete  |
| rows second row     | *              | *            | *          | *          | *             |
| Branchial ventral   | present               | present       | absent         | absent      | present |
| cell islands        | Ds = Vn > Lt          | Ds = Vn > Lt  | Ds = Vn > Lt   | Ds = Vn > Lt |
| sectors width       | *              | *            | *          | *          | *             |
| Intestinal loop     | curved               | moderately curved | deeply curved   | moderately curved | moderately curved |
| shape               | *              | *            | *          | *          | *             |
| Stomach shape       | c. 1/2 club shaped    | c. 1/1 club shaped | c. 1/4 finger like | c. 1/4 finger like | c. 1/2 finger like |
| number of folds     | *              | *            | *          | *          | *             |
| cardiac swellings   | c. 1/2 club shaped    | c. 1/1 club shaped | c. 1/4 finger like | c. 1/4 finger like | c. 1/2 finger like |
| unfolded space      | *              | *            | *          | *          | *             |
| Caecum length       | 3                   | 1             | 1.3 mm        | 9           | 10-14 incomplete |
| as for stomach      | *              | *            | *          | *          | *             |
| shape               | *              | *            | *          | *          | *             |
| Anus opening nb of  | 3                   | 1             | 1.5 mm        | 9           | 10-14 incomplete |
| stigmata rows above | *              | *            | *          | *          | *             |
| the oesophagus       | *              | *            | *          | *          | *             |
| Ovary position as   | posterior            | anterior      | posterior     | not seen   | posterior |
| for testis          | *              | *            | *          | *          | *             |
| Egg number per side | not seen             | 1             | 1           | not seen   | 1 |
| Brood pouch         | not seen             | present       | present      | present    | present |

Zoosystema · 2020 · 42 (9)
(Brunetti & Canzonier 1973): when sea water temperature drops below 10°C the zooids and their buds undergo a general regression and the colonies, devoid of filtering zooids, appear as a carpet of vascular ampullae mainly crowded of macrophages. In spring, with temperature increase, some zooids originate by vascular budding (Burighel et al. 1976) giving rise to new systems. At present material do not allow to know if a similar process happens also in the here studied species, that is if the observed regression of zooids and their buds is followed by the development of new buds which rebuild the colony.

Acknowledgements
We express our gratitude to Professor A. Minelli of the University of Padua for his advice and suggestions. We also express our gratitude to Françoise Monniot and Karen Sanamyan, which revisions have improved the manuscript.

REFERENCES
Bancroft F. W. 1903. — Aestivation of Botrylloides gascoi Della Valle, in Mark Anniversary Volume, Article VIII: 147-166.
Berrill N. J. 1941. — The development of the bud in Botryllus, Biological Bulletin (Wood Hole) 80: 169-184. https://doi.org/10.2307/1537595
Berrill N. J. 1950. — The Tunicata with an account of the British species. Ray Society, London, 354 p.
Bock D. G., MacIsaac H. J. & Cristescu M. E. 2012. — Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proceeding of the Royal Society B. 279: 2377-2385. https://doi.org/10.1098/rspb.2011.2610
Brunetti R. 1976. — Biological cycle of Botrylloides leachi (Savigny) (Ascidiae) in the Venetian Lagoon. Vie Milieu XXVI (1) sér. A: 105-122.
Brunetti R. 2009. — Botryllid species (Tunicata, Ascidiae) from the Mediterranean coast of Israel, with some considerations on the systematics of Botryllinae. Zootaxa 2289: 18-32. https://doi.org/10.11646/zootaxa.2289.1.2
Brunetti R. 2011. — Fixation and description of a neotype for Polycelis remieri Lamark, 1815 (Tunicata, Ascidiae, Styelidae, Botryllinae). Bollettino del Museo di Storia Naturale di Venezia 62: 105-113.
Brunetti R. & Canzonier W. J. 1973. — Physico-chemical observations on the water of the southern basin of the Laguna Veneta from 1971 to 1973. Atti Istituto Veneto Scienze Lettere Arti 131: 503-523.
Brunetti R. & Mastrototaro F. 2012. — Botrylloides pizoni, a new species of Botryllinae (Ascidiae) from the Mediterranean Sea. Zootaxa 3258: 28-36. https://doi.org/10.11646/zootaxa.3258.1.2
Brunetti R. & Mastrototaro F. 2017. — Ascidiae of the European Waters. Calderini, Bologna. Fauna d’Italia Vol. LI, 447 p.
Brunetti R., Manni L., Mastrototaro F., Giss C. & Gasparini F. 2017. — Fixation, description and DNA barcode of a neotype for Botryllus schlosseri (Pallas, 1776) (Tunicata, Ascidiae). Zootaxa 4353 (1): 29-50. https://doi.org/10.11646/zootaxa.4353.1.2
Burighel P., Brunetti R. & Zanollo G. 1976. — Hibernation of the colonial ascidian Botrylloides leachi (Savigny): histological observations. Bollettino di Zoologia 43: 293-301. https://doi.org/10.1080/11250007609430146
Chianseau M., Bosc S., Galis E. & Oules G. 2002. — The utilization of the huile de clou de girofle comme anesthésique pour les smolts de saumon atlantique (Salmo salar L.) et comparison de ses effets avec ceux du 2-phenoxyethanol. Bulletin français de la pêche et de la pisciculture 365-366: 579-589. https://doi.org/10.1051/kmnc:2002054
Harant H. & Vernieres P. 1933. — Tuniciers: I. Ascidies. Lechvalier, Paris (Faune de France 27), 58 p.
Kott P. 1985. — The Australian Ascidia. Part I, Phlebobranchia and Stolidobranchia. Memoirs of the Queensland Museum 23: 1-440.
Manni L., Gasparini F., Hotta K., Ishizuka K. J., Ricci L., Tiziozzo S., Voskoboinik A. & Dauga D. 2014. — Ontology for the asexual development and anatomy of the colonial chor- date Botryllus schlosseri. PLoS One 9 (5), e96434. https://doi.org/10.1371/journal.pone.0096434
Millar R. H. 1971. — The biology of ascidians. Advances in Marine Biology 9-1:192. https://doi.org/10.1016/S0065-2881(08)60341-7
Monniot C. & Monniot F. 1972. — Clé mondiale des genres d’Ascidies. Archives de zoologie expérimentale et générale 113: 311-367.
Monniot F. 2018. — Ascidians collected during the Madibenthos expedition in Martinique: 2. Stolidobranchia, Styelidae. Zootaxa 4410 (2): 291-318. https://doi.org/10.11646/zootaxa.4410.2.3
Pallas P. S. 1766. — Elenchus zoophytorum. Franciscus Varetrapp, Hagae-comitum, 451 p. https://doi.org/10.5962/bhl.title.6595
Savigny J. C. 1816. — Mémoires sur les animaux sans vertèbres. Pt 2. Dufour, Paris, 232 p. https://doi.org/10.5962/bhl.title.9154
Turon X. 1992. — Periods of non-feeding in Polyphyscon laticezi (Ascidiae: Dendimede) a rejuvenative process? Marine Biology, 112: 647-655. https://doi.org/10.1007/BF00346183

Submitted on 2 April 2019; accepted on 18 June 2019; published on 31 March 2020.