The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases

Dihe Cheng, Shuo Yang, Xue Zhao, Guixia Wang

Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China

Correspondence: Guixia Wang; Xue Zhao, Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China, Tel +86 15843081103; +86 18744014213, Email gwang168@jlu.edu.cn; xuezhaoy@jlu.edu.cn

Abstract: Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.

Keywords: glucagon-like peptide-1, diabetes mellitus, Alzheimer’s disease, Parkinson’s disease, cognition

Introduction

Type 2 diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia caused by relatively insufficient insulin secretion. It is estimated that about 415 million people had diabetes in 2015, and this number may continue to rise to 642 million by 2040.1 Diabetes-related neurodegenerative disease (ND) is of particular importance due to the cognitive impairment it causes in older patients with type 2 diabetes. The risk of incident mild cognitive impairment (up to 60%) and dementia (50–100%) is higher in patients with type 2 diabetes than in those without.2 Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes;3 however, there is still a lack of understanding about drug therapy. Therefore, an urgent goal is to develop effective neuroprotective drugs that act on the common mechanisms of diabetes-related NDs, thereby slowing the disease progression.

Glucagon-like peptide 1 (GLP-1) is a 30-amino-acid peptide hormone produced in intestinal epithelial endocrine L-cells by the processing of proglucagon.4 GLP-1 is widely used in the treatment of type 2 diabetes because it not only controls blood glucose but may also reduce body weight. Future uses of GLP-1 may also include the treatment of obesity, as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin.5 Natural GLP-1 degrades within 2–3 min in circulation, thus greatly limiting its effects. Various GLP-1 receptor agonists (GLP-1 RAs) have been developed to provide long-term effects. GLP-1 RA functions by activating the GLP-1 receptor (GLP-1R), and GLP-1R is widely located throughout the brain.6,7 The ability of GLP-1 and its agonists to cross the blood–brain barrier8–10 suggests its therapeutic potential for NDs. A large number of studies have demonstrated the neuroprotective ability of GLP-1 RA, resulting in the improvement of cognitive and non-cognitive dysfunction of the central nervous system (CNS).

The proposed mechanisms of diabetes-related NDs include cerebral insulin resistance (IR), vascular endothelial dysfunction, inflammation, blood–brain barrier injury, white matter disease of vascular origin, demyelination and axonal loss, and peroxidative membrane injury.11 Among these mechanisms, brain IR may play a primary role, and it is worth noting that neurologic complications may already occur with prediabetes IR.12 Oxidative stress,13 mitochondrial...
dysfunction, and endoplasmic reticulum (ER) stress are all involved in NDs induced by brain IR. In this review, we discuss the accumulating evidence concerning the effects of GLP-1 RA in diabetes-related NDs.

The GLP-1 RA and Its Relationship with Brain Insulin Resistance

Brain IR can be defined as the failure of brain cells to respond to insulin, and the lack of response may be due to the downregulation of insulin receptors, an inability of insulin receptors to bind insulin, or faulty activation of the insulin signaling cascade. Insulin receptors are distributed throughout the brain, but have the highest concentration in the olfactory bulb, cerebral cortex, hypothalamus, hippocampus, and cerebellum. Insulin binds to the insulin receptor, phosphorylates the insulin receptor substrate (IRS), activates the phosphoinositide-3 kinase (PI3K) and mitogen-activated kinase (MAPK) pathways, and modifies the activity of several downstream effectors. PI3K activates protein kinase B (Akt), which inactivates several important substrate proteins, such as glycogen synthase kinase 3β (GSK-3β), and forkhead box O, and activates mammalian target of rapamycin (mTOR). As a result, it modulates some cellular processes, such as cell survival, proliferation, apoptosis, protein synthesis, inflammation, ER stress, mitochondrial function, and autophagy in neurodegenerative disorders. Akt also promotes B-cell lymphoma 2 and B-cell lymphoma extra-large transcription by activating cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). Thereafter, it regulates learning, memory, and neuron survival. MAPK regulates various cellular activities including proliferation, differentiation, apoptosis or survival, inflammation, and innate immunity. Impairment of insulin signaling is common in diabetes-related NDs.

GLP1-R is a class B G protein-coupled receptor, and its expression has been reported in the cerebral cortex, especially the occipital and frontal lobes, hypothalamus, and thalamus, whereas lower levels are found in the caudate putamen, globus pallidus, and hippocampus. GLP-1 and its RA cross the blood–brain barrier, with exendin-4 considered as one of the best based on the rate of brain influx, percentage of reaching the brain that accumulates in the brain parenchyma, and percentage of the systemic dose taken per gram of brain tissue. Small amounts of GLP-1 may also be produced by preproglucagon neurons, located in the nucleus tractus solitarii of the brainstem and projected to other brain regions, such as the nuclei of the hypothalamus, including the arcuate and paraventricular nuclei. In the case of diabetes or obesity-related IR, GLP-1 secretion in the brain and peripheries may be impaired, which may contribute to the pathogenic change in neurodegeneration and cognitive decline; however, exogenous GLP-1 may help treat these diseases. When GLP-1 binds to the receptor, adenosine cyclase is activated and intracellular cAMP increases, thereby activating protein kinase A (PKA) and PI3K. The downstream pathways are mainly the PI3K and MAPK pathways; hence, the GLP-1 signaling and insulin signaling pathways are similar and partially overlapping (Figure 1).

Consequently, exogenous drugs that act on GLP-1Rs increase insulin sensitivity, possibly because GLP-1R stimulation compensates for some of the impaired insulin signaling. Among these drugs, liraglutide has been reported to have neuroprotective effects by ameliorating damage to the insulin pathway. In vitro experiments proved that it reversed the phosphorylation status of IRS1, Akt, and GSK-3β and reduced beta-amyloid formation and tau hyperphosphorylation in the human neuroblastoma cell line, SH-SY5Y. In vivo experiments proved that liraglutide prevented the dysregulation of Akt and GSK-3β and Alzheimer-associated tau phosphorylation in the brains of diabetic mice. Besides, it prevents the loss of brain insulin receptors in an Alzheimer’s disease (AD) model. Exenatide also has a similar effect on impaired insulin signaling pathways.

The GLP-1 RA and Mitochondrial Dysfunction and/or Oxidative Stress

Mitochondria are the main energy production systems of most eukaryotic cells and are responsible for energy conversion, tricarboxylic acid cycle, oxidative phosphorylation, calcium storage, etc. Mitochondrial dysfunction has negative effects on the body and is believed to be an important factor in aging and disease. It has been found that insulin receptor knockout mice show reduced mitochondrial oxidative phosphorylation activity. Abnormal mitochondrial calcium transport was observed in the myocardium and visceral adipose tissue of obese mice. In the hippocampal tissue of type 2 diabetic mice, the expression of mitochondrial dynamin-related protein 1 (Drp1) increased, whereas inhibition of Drp1 restored neuronal function. In diabetic models, peroxisome proliferator-activated receptor c coactivator 1a (PGC-1a), an important factor in diabetic mitochondrial biosynthesis, is often found to be abnormally expressed, whereas PGC-1a is critical for synaptic growth.
and CNS function. Reduced levels of the mitochondrial autophagy-associated protein Parkin in the substantia nigra may contribute to the development of Parkinson’s disease (PD) in db/db mice and high-fat diet-induced diabetic mice. As discussed above, mitochondrial dysfunction (mitochondrial bioenergetics, calcium buffering) and mitochondrial quality control systems (mitochondrial dynamics, mitophagy, mitochondrial biogenesis) may be involved in the pathological mechanisms of diabetes-related NDs.

Oxidative stress refers to a state of imbalance between oxidation and antioxidant effects in the body, favoring oxidation, leading to inflammatory infiltration of neutrophils, increased protease secretion, and production of a large number of oxidative intermediates. Mitochondria are key sites for aerobic metabolism and reactive oxygen species (ROS) production in cells and are also one of the most important organelles related to oxidative stress. Some experts believe that cerebral IR is the result of ceramide accumulation in brain tissue, and ROS overproduction occurs due to metabolic abnormalities accompanying peripheral IR and impaired mitochondrial activity in the IR brain. Studies have shown that ROS can cause age-related synaptic loss and ultimately cognitive impairment, where ROS interactions with inflammation may play a role. Oxidative products, including lipid and protein oxidation, are promoters of brain inflammation. Nuclear transcription factor-κB (NF-κB) Inflammatory pathway signaling plays a key role in regulating the amount of ROS in the cell. Excessive ROS can inhibit IRS1 activation by activating inflammation-related protein kinase C, inhibitor kappa B kinase β (IKKβ), c-Jun N-terminal kinase (JNK), and p38 MAPK, thereby aggravating IR, creating a vicious cycle.

In the nervous system, the regulatory effect of GLP-1 RA on mitochondrial function and oxidative stress is involved in the remission of diabetes-related NDs. In diabetes-related AD, GLP-1 promotes mitochondrial biogenesis and the antioxidant system by regulating the PGC-1α signaling pathway in vivo to directly reverse tau hyperphosphorylation. GLP-1(9-36) (amide) reduced elevated levels of mitochondrial-derived ROS in the hippocampus of AD model (APP/PS1) mice. Exendin-4 significantly increased amyloid β protein (Aβ)-induced reduction in mitochondrial function, integrity, respiratory control rate, and mitochondrial P/O ratio in all brain regions and decreased Aβ-induced increase in the mitochondrial complex enzyme-I, IV, and V activities in all brain regions. Exenatide also improved hippocampal mitochondrial morphology and dynamics and reduced oxidative stress in the hippocampus of AD model (5xFAD) mice.

Figure 1 Insulin and GLP-1-dependent intracellular signal transduction pathways are similar. Insulin binds to the insulin receptor and further activates the PI3K/Akt and MAPK pathways signaling. PI3K/Akt pathway modulates some cellular processes, such as cell survival, proliferation, apoptosis, protein synthesis, inflammation, ER stress, mitochondrial function, autophagy, synaptic strength in neurodegenerative disorders. MAPK pathway regulates various cellular activities including synaptic plasticity and neuroinflammation. When GLP-1 binds to the GLP-1 receptor, adenosine cyclase is activated and intracellular cAMP increases, thereby activating PKA and PI3K. The downstream pathways are mainly the PI3K and MAPK pathways; hence, the GLP-1 signaling and insulin signaling pathways are similar and partially overlapping.

Abbreviations: IRS, insulin receptor substrate; PI3K, phosphoinositide-3 kinase; Akt, protein kinase B; ER, endoplasmic reticulum; GSK-3β, glycogen synthase kinase 3β; FoxO, forkhead box O; mTOR, mammalian target of rapamycin; CREB, cAMP-response element binding protein; Bcl-2, B-cell lymphoma 2; Bcl-XL, B-cell lymphoma extra-large; BAD, (Bcl-2) antagonist of death; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; MAPK, mitogen activated kinase.
The mechanism by which GLP-1 RA regulates mitochondrial function and oxidative stress has not been well elucidated. GLP-1 signaling may improve mitochondrial biogenesis via PGC-1a/nuclear respiratory factor-1/mitochondrial transcription factor A signaling regulated by adiponectin/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and elevates the expression of NAD-dependent protein deacetylase sirtuin 1 (SIRT1), which increases the expression of Parkin, leading to mitophagy activation. Evidence strongly suggests that GLP-1 increases ER-mitochondria communication, resulting in higher mitochondrial activity. Upregulating SIRT3 expression and activation of the extracellular signal-regulated kinase-Yes-associated protein (ERK-Yap) signaling pathway, as well as the CREB/adiponectin axis may also be involved in the protection of mitochondria by GLP-1. The improvement of antioxidant stress through GLP-1 signaling seems to be related to the activation of the GLP-1 R/cAMP/PKA signaling pathway and nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling pathway.

The GLP-1 RA and Endoplasmic Reticulum (ER) Stress

The ER is the basic organelle for the synthesis of a series of important biological molecules, such as proteins, lipids (such as triglycerides), and carbohydrates. ER stress refers to the activation of ER responses, such as the unfolded protein response (UPR) and apoptosis signaling pathway, through the accumulation of misfolded and unfolded proteins and the disorder of calcium balance after various stress agents are applied to cells. The early role of UPR is to reduce translation to lessen the need for new protein folding, degrade unfolded proteins to minimize damage, and increase the expression of chaperone proteins to assist protein folding. The UPR is thought to promote cell homeostasis. However, if this mechanism persists, it may lead to different metabolic diseases and NDs. UPR is mainly involved in the activation of three transmembrane proteins, inositol-requiring enzyme 1 (IRE-1), activating transcription factor 6 (ATF6), and protein kinase R (PKR)-like ER kinase (PERK). Normally, these three proteins are associated with luminal binding immunoglobulin protein (BiP), also known as 78-kDa glucose-regulating protein (GRP78), and are inactive. Under stress conditions, BiP is released and thus activates the IRE-1, ATF6, and PERK signaling cascades.

ER stress plays a role in the occurrence and development of diabetes and IR in peripheral tissues such as the pancreas, liver, adipose tissues, and skeletal muscle. Although some of the effects of ER stress are tissue-specific, there are some commonalities in the damage to insulin signaling. Under the action of unhealthy metabolic factors (obesity, diabetes), ER stress is initiated, and IRE-1 is activated, which in turn leads to the phosphorylation of IRS1 at the serine 307 residue by activating JNK, thereby impairing insulin signaling. A similar pattern was observed in the brain. Evidence indicates that ER stress was increased, thereby resulting in impaired insulin receptor signaling in the hippocampus and frontal cortex of obese rats, which is also caused by the activation of JNK. Therefore, diabetes and ER stress are vicious cycles in the brain, and IR is the key link. ER stress is also involved in the degenerative brain changes caused by diabetes. Elevated expression of ER stress markers, including GRP78, ATF-6, X-box binding protein-1, C/EBP homologous protein (CHOP), and phospho-Jun N-terminal kinase (p-JNK), was evident in the hippocampal CA1 of diabetic rats, which may ultimately affect synaptic plasticity.

ER stress has always been considered a result of NDs, but previous studies have shown that it is a more complex process by interfering with UPR to affect disease progression. GLP-1 RA has been shown to interfere with UPR to protect against NDs. Liraglutide treatment reduced neuroinflammation and ameliorated ER stress in the inferior olive of the aged Wolfram syndrome rat model. Moreover, it can prevent the disease before the appearance of metabolic symptoms. Liraglutide may engage Akt and signal transducer and activator of transcription 3 signaling to favor adaptive responses and shift cell fate from apoptosis to survival under chronic ER stress conditions in nerve cells. Our team used palmitic acid stimulation to induce neuronal IR, confirming that ER stress is involved in the functional damage of neurons induced by IR, and exendin significantly alleviates both ER stress and neuronal damage (data not shown).

However, it is not clear how GLP-1 RA regulates ER stress. Inhibiting the PI3K/Akt signaling pathway may eliminate the protective effect of GLP-1R by increasing ER stress, suggesting that this pathway may be involved in the effect of GLP-1 on ER stress. Besides, the PKA pathway may also be involved in GLP-1, attenuating the ER stress signaling pathway and protecting cells from apoptosis. Evidence suggests that PKA-dependent protection of GLP-1 is mediated through enhanced ATF4-CHOP-growth arrest and DNA damage inducible gene 34 (GADD34) signaling.
resulting in eukaryotic initiation factor 2 alpha dephosphorylation and translational recovery. However, some researchers believe that exendin-4 protects β-cells against free fatty acids and salubrinal-induced ER stress and apoptosis, not through ATF4-CHOP- GADD34 feedback signaling but through enhancing cellular defense mechanisms (eg, BiP, Bcl-2, and JunB). In addition, other studies have investigated the mechanism by which GLP-1 regulates ER stress. Exendin-4 enhances the binding of heat shock factor 1 to the promoter of heat shock protein (HSP) genes through SIRT1-mediated deacetylation, which then increased the expression of molecular chaperones HSP70 and HSP40 to alleviate lipid-induced hepatic ER stress. ER oxidoreductase mediates the inhibitory effects of exendin-4 on ER stress, ameliorating hyperhomocysteinemia-induced endothelial dysfunction. ER protein 46, a new member of the thioredoxin family, highly expressed in pancreatic β-cells, may mediate GLP-1 regulation of ER stress and thus increase the protection of pancreatic β cells. These studies suggest the complexity of GLP-1 RA in regulating ER stress.

The GLP-1 RA and Central Nervous System (CNS) Inflammation

It is well known that CNS inflammation plays a major role in the pathophysiology of NDs. In type 2 diabetes-associated cognitive impairment animal models and high-glucose in vitro studies, neuroinflammatory markers, such as IL-1 β, TNF-α, IL-6, and MCP-1, and inflammatory responses, such as toll-like receptor 4, cyclooxygenase 1 (COX1), COX2, NF-κB, leukocyte common antigen, and inducible nitric oxide synthase were increased in the brain. Among participants with dementia and AD pathology, type 2 diabetes had a significantly positive relationship with JNK. In vitro, high glucose increased the expression of inflammasome recombinant NLR Family, pyrin domain containing protein 3 (NLRP3) markers in hippocampal cells. Besides, CNS inflammation is an immune response mediated by microglia and astrocytes. Evidence demonstrates that acute glucose fluctuation forms the stress that alters microglial activity (eg, inflammatory activation or self-degradation), which may be one of the mechanisms of cognitive deterioration in diabetic patients. Diabetic mice also show astrocyte changes in the hippocampus. Since astrocytes are important neuronal support cells, astrocyte changes may aggravate the dysfunction of neuronal function. Our team previously designed an IR model induced by palmitic acid in vitro and established a neuron-microglia-astrocyte co-culture system, confirming that IR induced microglial activation, and the secretion of cytokines were significantly increased. This study also confirmed that activated microglia can activate the NF-κB pathway in astrocytes, activate astrocytes, and reduce support for neurons (data not shown). However, the association between hyperglycemia and neuroinflammation is not clearly understood. Some researchers have suggested that oxidative stress-mediated mitochondrial dysfunction stimulates the upregulation of mitochondrial HSP60 and ultimately initiates diabetes-induced inflammatory pathways by activating pattern recognition receptors.

GLP-1 RA has been shown to exert anti-inflammatory effects in the CNS. Under inflammatory conditions in vitro, GLP-1 suppressed the secretion of TNF-α-associated cytokines and chemokines in BV-2 microglia. Liraglutide also decreased activated microglia and astrocyte load in the brain induced by chronic inflammation in mice. Besides, liraglutide treatment prevented the neuroinflammatory process, promoting the production of anti-inflammatory molecules such as IL10, TGFβ, and arginase 1. In a model of lipopolysaccharide (LPS)-induced inflammation, liraglutide inhibited the polarization of pro-inflammatory microglia and promoted the polarization of anti-inflammatory microglia, diminished inflammatory cytokine expression, and decreased NF-κB pathway activation. Similarly, exendin-4 also decreased the mRNA levels of IL-1β and TNF-α in LPS-stimulated microglia, and significantly attenuated the activation of the NF-κB signaling pathway. The anti-inflammatory effect of GLP-1 also occurs in diabetes-induced neuroinflammation. During exendin-4 treatment, IL-1b was transiently increased in normoglycemic mice and decreased in hyperglycemic mice. Liraglutide also protects astrocytes against advanced glycation end product (AGE)-induced TNF-α and IL-1β secretion.

There are several possible mechanisms by which GLP-1 RA regulates neuroinflammation. First, GLP-1 RA inhibited LPS-induced IL-1β mRNA expression, whereas adenylyl cyclase inhibitor preconditioning inhibited this effect, suggesting that cAMP mediated its anti-inflammatory effect. The cAMP/ PKA pathway is also involved in the protection of astrocytes from AGE-induced inflammatory response. Second, the anti-inflammatory effects of GLP-1 RA are partially mediated by its metabolite in a phosphorylated AMPK-dependent manner. Therapies that inhibit GLP-1 degradation may weaken the metabolite-mediated effects.
The GLP-1 RA and Neurogenesis

Neurogenesis is a complete process in which neural stem cells (NSCs) proliferate, undergo balanced and imbalanced division to become directed progenitor cells and gradually migrate to functional areas, undergo plasticity changes, and establish synaptic connections with other neurons to generate neural function. Adult neurogenesis is generated mainly in two parts of the brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. The integration of adult-born neurons into the circuitry of the adult hippocampus suggests an important role for adult hippocampal neurogenesis in learning and memory. A possible explanation is that pro-inflammatory factors in type 2 diabetes compromise endothelial caveolin-1, a major membrane intrinsic protein in the caveolae on the cell surface, leading to vascular dysfunction, affecting neurogenesis, and subsequently leading to AD. IKKβ/NF-κB-mediated impairment and γ-aminobutyric acid and glutamate transporter systems may also be involved in diabetes-induced damage of neurogenesis.

Enhancing the GLP-1R signaling pathway leads to the proliferation of neuronal cells and neuronal differentiation. In severely obese and insulin-resistant mice, liraglutide elicits beneficial effects on metabolic control and synaptic plasticity and improves hippocampal neurogenesis.

GLP-1 RA and Synaptic Plasticity

Synaptic plasticity refers to the adjustable strength of connections between nerve cells, known as synapses. It is widely recognized that diabetes affects hippocampal synaptic plasticity, and this disruption in synaptic plasticity is related to cognition. Reisi et al reported that both presynaptic and postsynaptic components are involved in diabetes-induced damage to synaptic plasticity. In animal models of diabetes with cognitive impairment, synaptic plasticity was impaired in the two experimental forms of long-term enhancement (LTP) and long-term depression (LTD). Moreover, the ultrastructure of hippocampal synapses is destroyed, thereby reducing the hippocampal dendritic spine density. Besides, synaptic plasticity-related proteins, including CREB, pCREB, brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton (Arc) proteins, are significantly reduced. Our previous data showed that central IR may significantly affect the expression of synaptic plasticity proteins, such as postsynaptic density protein-95 (PSD95), Arc, synapsin1, BDNF, resulting in the impaired synaptic plasticity of neurons and decreased learning and memory ability (data not shown). Sasaki-Hamada showed that disruption of synaptic plasticity occurs in the prediabetes stage, when glucose tolerance is impaired. Further, the onset age and duration of diabetes mellitus may have some influence on synaptic plasticity. However, short-term acute changes in glucose concentrations may not directly contribute to the synaptic plasticity associated with diabetes, unless extremely severe.

Glutamate receptors, including the amino-3-hydroxy-5-methyl-4-isoxazolepro-pionicacid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, mediate excitatory synaptic transmission in the CNS, and its expression in the postsynaptic membrane is associated with LTP and LTD and is involved in the regulation of learning and memory activities. Abnormal regulation of glutamatergic receptors appears to participate in diabetes-induced impairment of synaptic plasticity. In addition, insulin signaling is important for synaptic plasticity. IR β-subunit heterozygous mice and complete disruption of IRS2 in mice impaired the LTP of synaptic transmission in the hippocampus. Histone deacetylases (HDAC2), a member of the HDAC family, is correlated with insulin signaling components in postsynaptic glutamatergic neurons of the adult mouse hippocampus, and hyperactivity of the HDAC system (including HDAC2) may result in the suppression of the insulin signaling system and consequent disruption of synaptic plasticity in type 2 diabetes.
GLP-1 RA has a definite effect on improving synaptic plasticity. Exendin-4 inhibits the reduction of LTP in the brain of a mouse fed a high-fat diet and significantly increased the phosphorylation level of CREB and the expression level of BDNF. Furthermore, exendin-4 increased the membrane protein levels of the AMPA receptor GluR1 subunit and PSD-95. Liraglutide also rescued the deleterious effects of a high-fat diet on hippocampal LTP of neurotransmission and enhanced the number of hippocampal and cortical synapses in AD model mice.

The effect of GLP-1 RA on synaptic plasticity is partly due to the GLP-1R. In a GLP-1R knockout mouse model, LTP in the CA1 area of the hippocampus was severely impaired. In addition, GLP-1 RA upregulated neurotrophic tyrosine kinase receptor type 2 and mTOR genes in the hippocampus of high-fat-fed mice, which are involved in regulating synaptic plasticity and LTP. By modulating calcium responses to glutamate and membrane depolarization, and AMPA receptors, GLP-1 RA may play important roles in regulating neuronal plasticity.

GLP-1 RA in Diabetes-Related AD and PD

AD is an insidiously progressive ND clinically characterized by memory impairment, aphasia, apraxia, agnosia, impaired executive function, personality and behavior changes, and other comprehensive dementia manifestations. PD is another common degenerative disease, and the main pathology is the degeneration and death of dopaminergic (DA) neurons in the substantia nigra of the midbrain, which leads to a significant decrease in DA content in the striatum. Both AD and PD are NDs associated with diabetes; however, the current treatment of these two diseases still focuses on the improvement of symptoms. It is necessary to better understand their mechanisms to obtain better medications on their pathogenesis.

Diabetes and Alzheimer’s Disease

Diabetes is closely linked to AD, and a meta-analysis showed that patients with diabetes had a significantly higher incidence of AD than in those without diabetes (relative risk [RR], 1.53; 95% CI, 1.42–1.63), suggesting that diabetes may promote the development of AD. Insulin acts on β-site amyloid precursor protein cleaving enzyme 1 and γ-secretase to regulate Aβ levels and degrades excess Aβ by modulating insulin-degrading enzyme. Activation of insulin signaling pathway PI3k/Akt leads to Ser9 phosphorylation of GSK3β and its impaired kinase activity leads to phosphorylation of tau. Hence, IR promotes the pathology of AD by reducing amyloid clearance and increasing tau hyperphosphorylation neurofibrillary tangles, both of which are associated with cognitive impairment.

It is widely accepted that changes in the mitochondria are involved in the development of AD. The manifestations of mitochondrial dysfunction in AD mainly include increased oxidative stress and ROS production, mitochondrial DNA damage, mitochondrial respiratory injury, and calcium abnormalities. Mitophagy, mitochondrial dynamics, and mitochondrial biogenesis are also affected in patients with AD, ultimately resulting in the accumulation of dysfunctional mitochondria and mitochondrial fragmentation. Mitochondrial damage may not only be the common pathological mechanism of diabetes and AD, but also the key point of crosstalk between them. Two AD-related markers, Aβ-production and tau phosphorylation induced by IR, may be the upstream mechanisms of AD-related mitochondrial damage. In addition, mitochondrial damage may be a contributing factor to the progression of diabetes to AD, as exposure to Aβ increases the vulnerability of brain mitochondria in diabetic rats.

ER stress plays a complex role in the control of neuronal survival, amyloid cascade, neurodegeneration, and synaptic function in AD. In vitro, the abovementioned ER stress/JNK/IRS1 pathway was involved in Aβ1-42 oligomer-induced tau hyperphosphorylation, which may indicate that IR promotes the role of ER stress in AD. De la Monte et al suggested that in AD, a triangulated Mal-signaling network initiated by the brain’s insulin/IGF resistance is transmitted through the ceramides and ER stress homeostasis disorder, which in turn promotes IR.

Studies have established that inflammation contributes to the pathogenesis of AD. In AD, Aβ damages microglia, produces inflammatory cytokines and chemokines, and affects surrounding CNS resident cells (astrocytes, oligodendrocytes, and neurons), which may aggravate tau pathology and ultimately lead to neurodegeneration and neuron loss. Inflammation may also be a potential link between diabetes and AD. Takeda et al crossed Alzheimer transgenic mice (APP23) with two types of diabetic mice (ob/ob and NSY mice) and found a significant increase in IL-6 in the brains of hybrid mice fed with a high-fat diet. In addition, it has been shown that feeding AD model mice (triple transgenic AD
[3xTgAD]) a high-fat diet may increase the activation of microglia. These studies suggest that diabetes mellitus and a high-fat diet may exacerbate AD inflammation.

Neurogenesis is defective in the AD model, which is characterized by decreased proliferation and differentiation, diminished neuronal maturity, and reduced survival, before processes that may secondarily affect neurogenesis, such as neuronal loss, amyloid deposition, and inflammation. Chronic hyperglycemia decreases the complexity and differentiation of 3xTg-AD newborn neurons and depressed synaptic facilitation, accompanied by defective hippocampal-dependent memory, suggesting that diabetes promotes changes in AD neurogenesis that ultimately exacerbates cognitive impairment.

Diabetes and Parkinson’s Disease

A systematic review and meta-analysis suggested that diabetes was a risk factor for PD (RR = 1.37, 95% CI, 1.21–1.55; P < 0.0001). Diabetes may exacerbate the progression of PD, including cognitive impairment and axial motor symptoms. IR is still the key link between diabetes and PD and may impair nigrostriatal dopamine function, exacerbate nigrostriatal DA depletion, and enhance cognitive impairment and behavioral abnormalities.

Mitochondrial dysfunction is a defect in the early stage of PD and mainly includes impairment of the mitochondrial electron transport chain, alterations in mitochondrial morphology and dynamics, mutations in mitochondrial DNA, and anomalies in calcium homeostasis, which are closely related to the PD phenotype. Mitochondrial damage may also be the reason why diabetes-related IR promotes the development of PD. In vitro, in differentiated human DA neurons, IR was associated with increased α-synuclein and ROS levels, as well as mitochondrial depolarization, which may be mediated by polo-like kinase-2. In vivo, mitochondrial dynamics-related factor Parkin was significantly reduced in the substantia nigra of a mice fed a high-fat diet and a diabetic mice, leading to the accumulation of Parkin-interacting substrate and the reduction of PGC-1α. Also, high glucose levels may modulate Parkin/PINK1-mediated mitochondrial autophagy in DA cells through the thioredoxin-interacting protein. All the above mechanisms suggest that diabetes-related metabolic factors may promote PD by regulating the mitochondria.

All branches of the UPR in ER stress are likely implicated in PD etiology. At present, studies on whether diabetes and IR aggravate ER stress in PD are few. However, given the ubiquity of ER stress-related pathways and IR crosstalk mentioned above, diabetes-related IR is likely to be involved in the generation of ER stress in PD.

Similar to AD, neuroinflammation is involved in the degeneration of DA neurons, which is mainly mediated by activated glial cells and surrounding immune cells. This cellular response may eventually lead to the death of DA cells, leading to disease progression. A study that used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to mimic PD-like neural injury found that neuroinflammation is aggravated in the midbrain of type 2 diabetes mice, who are more susceptible to the neurotoxicity induced by MPTP. This may indicate that diabetes exacerbates DA neuronal degeneration during the progression of PD, which may be mediated by neuroinflammation.

Adult neurogenesis is severely affected in PD, although the exact mechanisms and effects of these changes are not fully understood, there may be a dynamic interaction between them and PD-related pathology. Although it is not clear whether there is crosstalk between diabetes and PD in neurogenesis, similar pathophysiological changes may indicate a close association between the two diseases.

GLP-1 RA Show Effects

Some similar or overlapping mechanisms certainly exist between diabetes and AD or PD, such as mitochondrial dysfunction, oxidative stress, and inflammation, that may strengthen their correlation. Furthermore, these mechanisms may underlie the use of the diabetes drug GLP-1 RA to treat AD and PD. In some AD and PD models, a considerable number of studies have clarified the role of GLP-1 RA in these cellular processes. However, GLP-1 RA also has some disease-specific effects in AD and PD, such as reduced Aβ levels, tau hyperphosphorylation in AD, and reduced α-synuclein pathology and DA neuronal loss in PD, suggesting that GLP-1 RA has a strong neuroprotective function.

The mechanism of GLP-1 RA on Aβ is not clear. One possibility is that amyloid precursor protein (βAPP) binds to GLP-1 as a G-protein-coupled receptor, resulting in reduced βAPP synthesis. GLP-1 RA reduces tau
phosphorylation not only in the AD model, but also in diabetes. However, the mechanism by which GLP-1 RA reduces tau hyperphosphorylation may be complex. It has been reported that GLP-1 RA reduces tau phosphorylation through Akt and GSK-3β, a pathway related to insulin signaling, which also confirmed that insulin resistance is the key to tau phosphorylation. It has also been reported that the effects of liraglutide on decreasing the hyperphosphorylation of tau by enhancing O-glycosylation of neuronal cytoskeleton protein, improving the JNK and ERK signaling pathway. In addition, the mitochondrial PGC-1α signaling pathway is also the mechanism of GLP-1 RA to protect neurons from tau hyperphosphorylation, indicating that mitochondrial dysregulation has cross-talk with tau pathology.

| Table 1 Effects of GLP-1 Receptor Agonists in Models of AD: Data from Animal Experimental Models |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Cellular Processes	Drug	Animal Model	Results and/or Effects	Reference
Mitochondrial dysfunction and/or Oxidative Stress	Exendin-4	Aβ (1–42)-induced cognitive deficit rats	Increased amyloid β protein (Aβ)-induced decrease in mitochondrial function, integrity, respiratory control rate, and ADP/O in all brain regions. Decreased Aβ-induced increase in the mitochondrial complex enzyme-I, IV, and V activities in all brain regions.	[36]
	Exenatide	5xFAD transgenic mice	Improved mitochondrial morphology, alleviated oxidative stress and energy crisis, normalized mitochondrial dynamics.	[48]
	Liraglutide	3xTg-AD female mice	Rescued brain oxidative/nitrosative stress markers, and attenuated the altered mitochondrial fission/fusion proteins.	[204]
CNS Inflammation	Liraglutide	APP/PS1 mice	Reduced cortical astrocytosis.	[205]
	Liraglutide	APP/PS1 mice	Reduced activated microglia.	[206]
	Liraglutide	APP/PS1 mice	Halved activated glia.	[207]
	Exenatide	3xTg-AD mice	Decreased NF-κB Inflammatory pathway levels.	[33]
	Lixisenatide	3xTg-AD female mice	Decreased activation of microglia in the hippocampi.	[208]
Neurogenesis	Liraglutide	APP/PS1 mice	Increased the number of young neurons in the dentate gyrus was increased, and normalized cell proliferation.	[206]
	Liraglutide	APP/PS1 mice	Increased in neurogenesis.	[207]
	Liraglutide	APP/PS1 mice	Improves cell proliferation in subgranular zone, and increased differentiation of progenitor cells to neurons.	[209]
Synaptic Plasticity	Liraglutide	APP/PS1 mice	Enhanced long-term enhancement (LTP), and increased synaptophysin levels.	[206]
	Exenatide	3xTg-AD mice	Positively affected brain-derived neurotrophic factor signaling.	[35]
	Lixisenatide	Aβ-induced impairments in rats	Prevented suppression of hippocampal LTP.	[210]
Aβ levels	Liraglutide	5xFAD mice and streptozotocin-induced sporadic AD mice	Reduced the amount of Aβ Levels in the cortical and the hippocampal of the 5xFAD Mice, but not in sporadic AD mice.	[211]
	Exendin-4	Aβ (1–42)-induced cognitive deficit rats	Decreased Aβ-induced increase in the level of Aβ.	[36]
	Liraglutide	3xTg-AD female mice	Reduced brain Aβ1–42 levels.	[204]
	Liraglutide	APP/PS1 xdb/db mice	Reduced Aβ aggregates levels.	[212]
	Exenatide	5xFAD transgenic mice	Reduced Aβ1–42 deposition in the hippocampal CA1 region.	[48]
	Exendin-4	STZ 3xTg-AD mice	Reduced Aβ protein precursor and Aβ.	[213]
	Liraglutide	APP/PS1 mice	Reduction in the number of amyloid plaques in the cortex and hippocampus.	[207]
Tau levels	Lixisenatide	3xTg-AD female mice	Reduced amyloid plaques.	[208]
	Liraglutide	Aβ1–42 induced AD in mice	Reduces tau hyperphosphorylation.	[186]
	Liraglutide	APP/PS1 xdb/db mice	Reduced tau hyperphosphorylation.	[212]
	Liraglutide	hTaup301L mouse	Reduced neuronal phospho-tau load.	[214]
	Liraglutide	3xTg-AD mice	Decreased levels of hyperphosphorylated tau.	[190]

Drug Design, Development and Therapy 2022:16
https://doi.org/10.2147/DDDT.S348055
DovePress
Cheng et al

Powered by TCPDF (www.tcpdf.org)
hyperphosphorylation may be the restoration of protein phosphatase 2A activity and inhibition of β- and γ-secretase.191 The mechanism of GLP-1 RA to improve dopaminergic degeneration and pathological α-synuclein aggregation in the PD model may involve inhibiting the PI3K/Akt/mTOR pathway192 and enhancing AMPK/PGC-1a signaling pathway.193

Although some results have been achieved in animal models, clinical studies on GLP-1 RA remain limited. This review summarizes some of the clinical data on GLP-1 RA (Table 3), with some exciting results. But some studies failed to find efficacy due to early termination194 or some studies may fail to find drug effects due to short follow-up time or low statistical thresholds.195 Several systematic reviews or meta-analyses have attempted to comprehensively summarize the clinical data of GLP-1 RA in the treatment of AD or PD, but the results are still inconclusive,196–200 possibly because some clinical studies are still ongoing and require ongoing attention.201,202 Due to the limitations of clinical studies,

Table 2 Effects of GLP-1 Receptor Agonists in Models of PD: Data from Animal Experimental Models

Cellular Processes	Drug/Model	Animal Model	Results and/or Effects	Reference
Mitochondrial dysfunction and/or Oxidative Stress	Semaglutide and Liraglutide, Liraglutide, Exenatide	MPTP mouse model	Inhibited the mitochondrial mitophagy signaling pathway	[215]
		Acute MPTP mouse model	Normalized mitochondria dynamic imbalance, enhanced impaired autophagy flux, and relieved oxidative stress	[216]
		Rotenone-Induced Rat Model	Decreased malondialdehyde	[217]
	Exenatide	MPTPx STZ rats	Reduced striatal oxidative stress markers	[218]
CNS inflammation	Semaglutide and Liraglutide, Exendin-4	MPTP mouse model	Alleviated astrocyte and microglia activation in the striatum	[215]
		MPTP mouse model	Prevented microglial activation	[219]
		Rotenone-Induced Rat Model	Decreased tumor necrosis factor alpha levels	[217]
	Exenatide	MPTPx STZ model rats	Reduced striatal inflammatory markers	[218]
Neurogenesis	Exendin-4	6-OHDA model rats	Stimulated subventricular zone neurogenesis	[220]
Synaptic Plasticity	Liraglutide	MPTP mouse model	Increased synaptophysin and neuroprotective growth factor glial-derived neurotrophic factor expression	[221]
α-synuclein pathology	Liraglutide	Acute MPTP mouse model	Decreases α-synuclein aggregation in substantia nigra	[216]
	Exendin-4	AAV-A53T-α-syn-injected rats	Mitigated pathologic α-synuclein aggregation	[192]
Dopaminergic neuronal loss	Semaglutide and Liraglutide	MPTP mouse model	Reduced the levels of α-synuclein	[215]
	Liraglutide	Acute MPTP mouse model	Protected dopaminergic neurons	[216]
		MPTP mouse model	Attenuated dopaminergic neuronal loss	[215]
	Exendin-4	MPTP mouse model	Reduced nigrostriatal dopaminergic loss	[219]
	Exenatide	Rotenone-Induced Rat Model	Reduced the loss of dopaminergic neurons in the striatum	[217]
There is reason to believe that with the continuous improvement of technology, the judgment of drug efficacy will be easier and more diversified.

Conclusion

In recent years, clinical guidelines have begun to emphasize the importance of diabetes-related NDs and their risk of cognitive impairment, despite widespread concerns. Diabetes and related NDs share common mechanisms, such as central IR, oxidative stress, and inflammation, which underlie their crosstalk, which has also inspired the investigation of hypoglycemic agents, particularly GLP-1 RA, as potential treatments for diabetes and related NDs.
This review describes in detail the beneficial effects of GLP-1 RA on the central pathological mechanisms of diabetes and related degenerative diseases. However, the role of GLP-1 RA in the body is complex. First, GLP-1 RA has been shown to have powerful hypoglycemic effects, and the influence of blood glucose on these mechanisms cannot be ruled out. Second, IR exists in the brains of patients with diabetes mellitus, AD, and PD and is also a factor affecting these mechanisms. Therefore, it is not clear whether GLP-1 RA directly improves mitochondrial function, reduces ER stress, and reduces neuroinflammation, or indirectly improves these mechanisms by lowering blood glucose and improving IR. Further studies are needed to confirm the central protective effect of GLP-1 RA, and further clinical trials should be actively conducted.

Abbreviations

Aβ, amyloid β protein; AD, Alzheimer’s disease; AGE, advanced glycation end product; Akt, protein kinase B; AMPA, amino-3-hydroxy-5-methyl-4-isoxazolepro-pionicacid; AMP, adenosine 5′-monophosphate; AMPK, AMP-activated protein kinase; Arc, activity-regulated cytoskeleton; ATF6, activating transcription factor 6; βAPP, amyloid precursor protein; BDNF, brain-derived neurotrophic factor; BiP, binding immunoglobulin protein; CHOP, C/EBP homologous protein; CNS, central nervous system; cAMP, cyclic adenosine monophosphate; COX, cyclooxygenase; CREB, cAMP response element-binding protein; DA, dopaminergic; Drp1, dynamin-related protein 1; ER, endoplasmic reticulum; ERK-Yap, extracellular signal-regulated kinase-Yes-associated protein; GADD34, growth arrest and DNA damage inducible gene 34; GLP-1, glucagon-like peptide 1; GLP-1 RA, GLP-1 receptor agonists; GLP-1R, GLP-1 receptor; GRP78, 78-kDa glucose-regulating protein; GSK-3β, glycogen synthase kinase 3β; HDAC, histone deacetylase; HSP, heat shock protein; IGF, insulin-like growth factor; IKKβ, inhibitor kappa B kinase β; IR, insulin resistance; IRE-1, inositol-requiring enzyme 1; IRS, insulin receptor substrate; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; LTD, long-term depression; LTP, long-term enhancement; MAPK, mitogen-activated kinase; Mash1, mammalian achaete-scute homologue 1; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; mTOR, mammalian target of rapamycin; ND, neurodegenerative disease; NLRP3, recombiant NLR Family, pyrin domain containing protein 3; NMDA, N-methyl-D-aspartate; NSCs, neural stem cells; NF-κB, nuclear transcription factor-κB; PD, Parkinson’s disease; PERK, PKR-like ER kinase; PGClα, peroxisome proliferator-activated receptor c coactivator 1α; PI3K, phosphoinositide-3 kinase; p-JNK, phospho-Jun N-terminal kinase; PKA, protein kinase A; PSD95, postsynaptic density protein-95; PKR, protein kinase R; ROS, reactive oxygen species; RR, relative risk; SIRT1, NAD-dependent protein deacetylase sirtuin 1; UPR, unfolded protein response; 3xTgAD, triple transgenic AD.

Acknowledgments

This work was supported by the grant from the National Natural Science Fund of China (81970687, 81670732 belonging to Guixia Wang; 81900726 belonging to Xue Zhao); the grant from the Engineering Research Center of Individualized Accurate Diagnosis and Treatment of Jilin Province Science and Technology Department Project (20170623005TC); the grant from Development and Reform Commission Innovation Project (2017C019); the grant from Department Science and Technology Department of Jilin Province (20190901006JC belonging to Guixia Wang; 20210101439JC belonging to Xue Zhao); the grant from Research Fund of the First Hospital of Jilin University (2021-zl-01 belonging to Xue Zhao) and the grant from Jilin Medical and Health Talent Project (JLSWSRCZX2021-081 belonging to Xue Zhao).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. *Lancet* (London, England). 2017;389(10085):2239–2251. doi:10.1016/S0140-6736(17)30058-2
2. Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction—towards effective management of both comorbidities. *Lancet Diabetes Endocrinol*. 2020;8(6):535–545. doi:10.1016/S2213-8587(20)30118-2
3. Biessels GJ, Whittern RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines. *Diabetologia*. 2020;63(1):3–9. doi:10.1007/s00125-019-04977-9
4. Holst JJ. The physiology of glucagon-like peptide 1. *Physiol Rev*. 2007;87(4):1409–1439. doi:10.1152/physrev.00034.2006
Batista AF, Forny-Germano L, Clarke JR, et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Prog Neurobiol 2015;112(11):3463–3468. doi:10.1016/j.pneurobio.2014.02.005

Laakso M, Zilinskaite J, Hansen T, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018;14(3):168–181. doi:10.1038/nrneurol.2017.185

Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther 2012;136(1):82–93. doi:10.1016/j.pharmthera.2012.07.006

Golpich M, Amini E, Hemmati F, et al. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson’s disease. Pharmacol Res 2015;97:16–26. doi:10.1016/j.phrs.2015.03.010

Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011;1813(11):1978–1986. doi:10.1016/j.bbamcr.2011.03.010

Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 2010;38:349–49. doi:10.1016/j.nbd.2010.03.014

Bassil F, Fernagut PO, Bezard E, Meissner WG. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2011;94:1–18. doi:10.1016/j.pneurobio.2010.02.005

Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci 2005;28(8):436–445. doi:10.1016/j.tins.2005.06.005

Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997;20:245–267. doi:10.1146/annurev.neuro.20.1.245

Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015;89(6):867–882. doi:10.1007/s00204-015-1472-2

Wu F, Yang L, Hang K, et al. Full-length human GLP-1 receptor structure without orthosteric ligands. Nat Commun 2020;11(1):1272. doi:10.1038/s41467-020-14934-5

Llewellyn-Smith JJ, Reimann F, Grible FF, Trapp S. Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 2011;180:111–121. doi:10.1016/j.neuroscience.2011.02.023

Hisadome K, Reimann F, Grille FF, Trapp S. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like peptide-1 neurons. Diabetes 2010;59(8):1890–1898. doi:10.2337/db10-0128

Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 1997;77(1):257–270. doi:10.1016/S0306-4522(96)00434-4

Kappe C, Tracy LM, Patrone C, Iverfeldt K, Sjöholm Å. GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J Neuroinflammation 2012;9:276. doi:10.1186/1742-2092-9-276

Laakso M, Zilinskaite J, Hansen T, et al. Insulin sensitivity, insulin release and glucagon-like-peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia 2008;51(3):502–511. doi:10.1007/s00125-007-0899-2

Jantraprom S, Nimlamoow W, Chattipakorn N, et al. Liraglutide Suppresses Tau Hyperphosphorylation, Amyloid Beta Accumulation through Regulating Neuronal Insulin Signaling and BACE-1 Activity. Int J Mol Sci 2020;21(5):1725. doi:10.3390/ijms21051725

Ma DL, Chen FQ, Xu WJ, Yue WZ, Yuan G, Yang Y. Early intervention with glucagon-like peptide 1 analog liraglutide prevents tau hyperphosphorylation in diabetic db/db mice. J Neurochem 2015;135(2):301–308. doi:10.1111/jnc.13248

Yang Y, Zhang L, Ma D, et al. Subcutaneous administration of liraglutide ameliorates Alzheimer-associated tau hyperphosphorylation in rats with type 2 diabetes. J Alzheimers Dis 2013;37(3):637–648. doi:10.3233/JAD-130491

Batista AF, Forny-Germano L, Clarke JR, et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J Pathol 2018;245(1):85–100. doi:10.1002/path.5056

Bombà M, Granzotto A, Castelli V, et al. Exenatide reverts the high-fat-diet-induced impairment of BDNF signaling and inflammatory response in an animal model of Alzheimer’s disease. J Alzheimers Dis 2019;70(3):793–810. doi:10.3233/JAD-190237

Garabedian D, Verna J. Exenatide-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1-42)-induced cognitive deficit rats. Neurochem Int 2019;128:39–49. doi:10.1016/j.neuint.2019.04.006

Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A 2015;112(11):3463–3468. doi:10.1073/pnas.1500877112

Cheng et al 2015;2012;7:180.114187. doi:10.1016/j.hcpr.2020.114187

Kastin AJ, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord 2003;27(3):313–318. doi:10.1016/sij.0802206

Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 2012;13:33. doi:10.1186/1471-2202-13-33

Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018;14(10):591–604. doi:10.1038/s41574-018-0048-7

Luchsinger JA. Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease: an epidemiological perspective. Eur J Pharmacol 2008;585(1):119–129. doi:10.1016/j.ejphar.2008.02.048

Maciejczyk M, Zebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What’s New? Int J Mol Sci 2019;20(4):874. doi:10.3390/ijms20040874
38. Fauconnier J, Lanner JT, Zhang SJ, et al. Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. *Diabetes*. 2005;54(8):2375–2381. doi:10.2337/diabetes.54.8.2375
39. Wright LE, Vecellio Reane D, Milan G, et al. Increased mitochondrial calcium unipporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. *Am J Physiol Endocrinol Metab*. 2017;313(6):E641–E650. doi:10.1152/ajpendo.00143.2016
40. Huang S, Wang Y, Gan X, et al. Drp1-mediated mitochondrial abnormalities link to synaptic injury in diabetes model. *Diabetes*. 2015;64(5):1728–1742. doi:10.2337/db14-0758
41. Khang R, Park C, Shin JH. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice. *Neuroscience*. 2015;294:182–192. doi:10.1016/j.neuroscience.2015.03.017
42. Noniskyte U, Gross CT. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. *Nat Rev Neurosci*. 2017;18(11):658–670. doi:10.1038/nrn.2017.110
43. Verdile G, Keane KN, Cruzat VF, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. *Mediators Inflamm.* 2015:2015828. doi:10.1155/2015/105828
44. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. *Cell Res*. 2011;21(1):103–115. doi:10.1083/cr.2010.178
45. Di Meco S, Iossa S, Venditti P. Skeletal muscle insulin sensitivity: role of mitochondria and other ROS sources. *J Endocrinol*. 2017;233(1):R15–r42. doi:10.1530/JOE-16-0598
46. An FM, Chen S, Xu Z, et al. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: studies in vivo and in vitro. *Neuroscience*. 2015;300:75–84. doi:10.1016/j.neuroscience.2015.05.023
47. Ma T, Du X, Pick JE, Sui G, Brownlee M, Klann E. Glucagon-like peptide-1 cleavage product GLP-1(9-36)amide rescues synaptic plasticity and memory deficits in Alzheimer’s disease model mice. *J Neurosci*. 2012;32(40):13701–13708. doi:10.1523/JNEUROSCI.2107-12.2012
48. An J, Zhou Y, Zhang M, et al. Exendin-3 alleviates mitochondrial dysfunction and cognitive impairment in the 5-FAD mouse model of Alzheimer’s disease. *Behav Brain Res*. 2019;370:111932. doi:10.1016/j.bbr.2019.111932
49. Zhang X, Zhang Z, Zhao Y, et al. Alogliptin, a dipeptidyl peptidase-4 inhibitor, alleviates atrial remodeling and improves mitochondrial function and biogenesis in diabetic rabbits. *J Am Heart Assoc*. 2017;6(5). doi:10.1161/JAHA.117.005945
50. Qiao H, Ren H, Du H, Zhang M, Xiong X, Lv R. Liraglutide repairs the infarcted heart: the role of the SIRT1/Parkin/mitophagy pathway. *Mol Med Rep*. 2018;17(3):3722–3734. doi:10.3892/mmr.2018.8371
51. Morales PE, Torres G, Sotomayor-Flores C, et al. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling. *Biochem Biophys Res Commun*. 2014;446(1):410–416. doi:10.1016/j.bbrc.2014.03.004
52. Li J, Li N, Yan S, et al. Liraglutide protects renal mesangial cells against hyperglycemia-mediated mitochondrial apoptosis by activating the ERK-Yap signaling pathway and upregulating Sirt3 expression. *Mol Med Rep*. 2019;19(4):2849–2860. doi:10.3892/mmr.2019.9946
53. Xiong X, Lu W, Qin X, Luo Q, Zhou W. Downregulation of the GLP-1/CREB/adiponectin pathway is partially responsible for diabetes-induced dysregulated vascular tone and VSMC dysfunction. *Biomed Pharmacother*. 2020;127:110218. doi:10.1016/j.biopha.2020.110218
54. Zhang WY, Hu XF, Nan N, et al. Protective effect of the glucagon-like peptide-1 analogue liraglutide on carbon tetrachloride-induced acute liver injury in mice. *Diabetes Metab*. 2019;45(8):938–942. doi:10.1530/JOE-16-0598
55. Li J, Li N, Yan S, et al. Cardioprotection by exenatide: a novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. *Int J Mol Med*. 2018;41(3):693–703. doi:10.3892/ijmm.2017.3318
56. Lee J, Ozcan U. Unfolded protein response signaling and metabolic diseases. *J Biol Chem*. 2014;289(3):1203–1211. doi:10.1074/jbc.R113.534743
57. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. *Nat Rev Neurol*. 2017;13(8):477–491. doi:10.1038/nrneur.2017.39
58. Salvadó L, Palomer X, Barroso E, Vázquez-Carrera M. Targeting endoplasmic reticulum stress in insulin resistance. *Trends Endocrinol Metab*. 2015;26(8):438–448. doi:10.1016/j.tem.2015.05.007
59. Tsotra PC, Tsigos C. Stress, the endoplasmic reticulum, and insulin resistance. *Ann N Y Acad Sci*. 2006;1083:63–76. doi:10.1196/annals.1367.001
60. Rieu J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: distinct or interrelated roles? *Diabetes Metab*. 2015;41(5):358–368. doi:10.1016/j.diabet.2015.02.006
61. Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetalplacental tissue in diabesity. *Mol Aspects Med*. 2019;66:49–61. doi:10.1016/j.mam.2018.11.001
62. Rocha M, Diaz-Morales N, Rovira-Llopis S, et al. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetalplacental tissue in diabesity. *Mol Aspects Med*. 2016;42(18):2640–2649. doi:10.1016/j.mam.2017.03.016
63. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. *Science (New York, NY)*. 2004;306(5695):457–461. doi:10.1126/science.1103160
64. Kawasak I, Asada R, Saito A, Kanemoto S, Imaiizu K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. *Sci Rep*. 2012;2:799. doi:10.1038/srep00799
65. Nakatani Y, Kaneto H, Kawamori D, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. *J Biol Chem*. 2005;280(1):847–851. doi:10.1074/jbc.M411860200
66. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. *Science (New York, NY)*. 2000;287(5453):664–666. doi:10.1126/science.287.5453.664
67. Liang L, Chen J, Zhan L, et al. Endoplasmic reticulum stress impairs insulin receptor signaling in the brains of obese rats. *PLoS One*. 2015;10(5):e0126384. doi:10.1371/journal.pone.0126384
68. Wang Z, Huang Y, Cheng Y, et al. Endoplasmic reticulum stress-induced neuronal inflammatory response and apoptosis likely plays a key role in the development of diabetic encephalopathy. *Oncotarget*. 2016;7(48):78455–78472. doi:10.18632/oncotarget.12925
69. Duran-Aniotz C, Cornejo VH, Espinoza S, et al. IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. *Acta Neuropathol*. 2017;134(3):489–506. doi:10.1007/s00401-017-1694-x
70. Seppa K, Toots M, Reimets R, et al. GLP-1 receptor agonist liraglutide has a neuroprotective effect on an aged rat model of Wolfram syndrome. *Sci Rep*. 2019;9(1):15742. doi:10.1038/s41598-019-52295-2
71. Toots M, Seppa K, Jagomäe T, et al. Preventive treatment with liraglutide protects against development of glucose intolerance in a rat model of Wolfram syndrome. Sci Rep. 2018;8(1):10183. doi:10.1038/s41598-018-28314-z
72. Panagaki T, Michael M, Hölscher C. Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep. 2017;7(1):16158. doi:10.1038/s41598-17-16488-x
73. Chen J, Xie JJ, Shi KS, et al. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 2018;9(2):212. doi:10.1038/s41419-017-0217-y
74. He J, Wang C, Sun Y, et al. Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the CAMP/PKA signaling pathway and the attenuation of ER stress. Int J Mol Med. 2016;37(4):889–900. doi:10.3892/ijmm.2016.2509
75. Wang MD, Huang Y, Zhang GP, et al. Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway. Neuroscience. 2012;226:388–396. doi:10.1016/j.neuroscience.2012.09.025
76. Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006;4(5):391–406. doi:10.1016/j.cmet.2006.10.001
77. Cunha DA, Ladrère L, Ortis F, et al. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of PEP and JNβ. Diabetes. 2009;58(12):2851–2862. doi:10.2373/dob/08-0685
78. Zheng X, Xu F, Liang H, et al. SIRT1/HSF1/HSP pathway is essential for exenditide-alleviated, lipid-induced hepatic endoplasmic reticulum stress. Hepatology (Baltimore, Md). 2017;66(3):803–824. doi:10.1002/hep.29238
79. Cheng CK, Luo JY, Lau CW, et al. A GLP-1 analog lowers ER stress and enhances protein folding to ameliorate homocysteine-induced endothelial dysfunction. Acta Pharmacol Sin. 2021;42(10):1598–1609. doi:10.1038/s41401-020-00589-x
80. Chen DL, Xiang JN, Yang LY. Role of ER stress in the hippocampus in maternal perinatal food restriction. J Pharmacol Sci. 2020;152:104615. doi:10.1016/j.jphrs.2019.104615
81. Solmaz V, Çınar BP, Yiğittürk G, Çavuşoğlu T, Taşkıran D, Erbaş O. Exenatide reduces TNF-α expression and improves hippocampal neuron number and memory in streptozotocin treated rats. Eur J Pharmacol. 2016;765:482–487. doi:10.1016/j.ejphar.2015.09.024
82. Fakhoury M. Role of Immunity and Inflammation in the Pathophysiology of Neurodegenerative Diseases. Neurodegener Dis. 2015;15(2):63–69. doi:10.1159/000369933
83. Esmaeili MH, Enayati M, Khabbaz Abkenar F, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res. 2020;379:112359. doi:10.1016/j.bbr.2019.112359
84. Mehta BK, Singh KK, Banerjee S. Effect of exercise on type 2 diabetes-associated cognitive impairment in rats. Int J Neurosci. 2019;129(3):252–263. doi:10.1080/00207454.2018.1526795
85. Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or hyperlocomotion in rats. J Pharmacol Sci. 2020;141(8):2006–2016. doi:10.1016/j.jphrs.2019.104615
86. Parthsarathy V, Hölscher C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur J Pharmacol. 2013;700(1–3):42–50. doi:10.1016/j.ejphar.2012.12.012
87. Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, García-Segura LM, Mallo F. The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Pharmacol Sci. 2018;15(1):137–147. doi:10.1159/000430199
88. Jing GC, Zhang MR, Ji C, Zuo PP, Liu YQ, Gu B. Effect of exendin-4. Mol Neurobiol. 2016;55(4):352–360. doi:10.1007/s12035-017-0550-2
89. Huang HJ, Chen YH, Liang KC, et al. Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PLoS One. 2012;7(7):e39566. doi:10.1371/journal.pone.0039566
90. Liyanagamage D, Martinus RD. Role of Mitochondrial Stress Protein HSP60 in Diabetes-Induced Neuroinflammation. Mediators Inflamm. 2020;2020:8073516. doi:10.1155/2020/8073516
91. Chen DL, Xiang JN, Yang LY. Role of ERp46 in β-cell lipopapoptosis through endoplasmic reticulum stress pathway as well as the protective effect of exendin-4. Biochem Biophys Res Commun. 2012;426(3):324–329. doi:10.1016/j.bbrc.2012.08.072
92. Solmaz V, Çınar BP, Yiğittürk G, Çavuşoğlu T, Taşkıran D, Erbaş O. Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur J Pharmacol. 2016;765:482–487. doi:10.1016/j.ejphar.2015.09.024
93. Nardin P, Zanotto C, Hansen F, et al. Peripheral levels of AGEs and astrocyte alterations in the hippocampus of STZ-diabetic rats. Mol Neurobiol. 2016;53(4):3007–3020. doi:10.1007/s12035-017-0550-2
121. Yang J, Song Y, Wang H, et al. Insulin treatment prevents the increase in D-serine in hippocampal CA1 area of diabetic rats.

122. Valastro B, Cossette J, Lavoie N, Gagnon S, Trudeau F, Massicotte G. Up-regulation of glutamate receptors is associated with LTP defects in
cells from diabetic rats. J Neurosci. 2010;30(16):5391–5401. doi:10.1523/JNEUROSCI.0073-10.2010

123. Tekkök S, Krnjević K. Diabetes mellitus preserves synaptic plasticity in hippocampal slices from middle-aged rats. J Pharmacol Exp Ther. 2010;332(1):285–293. doi:10.1124/jpet.109.156815

124. Zhong Y, Zhu Y, He T, Li X, Yan H, Miao Y. Rolipram-induced improvement of cognitive function correlates with changes in hippocampal
CREB phosphorylation, BDNF and Arc protein levels. Neurosci Lett. 2016;610:171–176. doi:10.1016/j.neulet.2015.09.023

125. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus
and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. J Mol Neurosci. 2012;49(4):437–447. doi:10.1007/s12031-011-9304-3

126. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus
and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. J Mol Neurosci. 2012;49(4):437–447. doi:10.1007/s12031-011-9304-3

127. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus
and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. J Mol Neurosci. 2012;49(4):437–447. doi:10.1007/s12031-011-9304-3

128. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus
and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. J Mol Neurosci. 2012;49(4):437–447. doi:10.1007/s12031-011-9304-3

129. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus
and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. J Mol Neurosci. 2012;49(4):437–447. doi:10.1007/s12031-011-9304-3

130. Sasaki-Hamada S, Sacai H, Oka JI. Diabetes onset influences hippocampal synaptic plasticity in streptozotocin-treated rats. J Neurosci. 2010;30(16):5391–5401. doi:10.1523/JNEUROSCI.0073-10.2010

131. Tekkök S, Krnjević K. Diabetes mellitus preserves synaptic plasticity in hippocampal slices from middle-aged rats. J Pharmacol Exp Ther. 2010;332(1):285–293. doi:10.1124/jpet.109.156815

132. Youssef FF, Manswell S, Homeward L. Effect of acute changes in glucose concentration on neuronal activity and plasticity in the rat hippocampus. West Indian Med J. 2009;58(5):410–416.

133. Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol. 2004;490(1–3):177–186. doi:10.1016/j.ejphar.2004.02.055
134. Chabot C, Massicotte G, Milot M, Trudeau F, Gagné J. Impaired modulation of AMPA receptors by calcium-dependent processes in streptozocin-induced diabetic rats. *Brain Res.* 1997;768(1–2):239–256. doi:10.1016/S0006-8993(97)00648-3

135. Nistico R, Cavallucci V, Piccinin S, et al. Insulin receptor β-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. *Neuromolecular Med.* 2012;14(4):262–269. doi:10.1007/s12017-012-8184-z

136. Martin ED, Sánchez-Perez A, Trejo JL, et al. IRS-2 deficiency impairs NMDA receptor-dependent long-term potentiation. *Cereb Cortex.* 2012;22(8):1717–1727.

137. Yao ZG, Liu Y, Zhang L, et al. Co-location of HDAC2 and insulin signaling components in the adult mouse hippocampus. *Cell Mol Neurobiol.* 2012;32(8):1337–1342. doi:10.1007/s10571-012-9859-6

138. Wang M, Yoon G, Song J, Jo I. Exendin-4 improves long-term potentiation and neuronal dendritic growth in vivo and in vitro obesity condition. *Sci Rep.* 2021;11(1):826. doi:10.1038/s41598-021-87809-4

139. Ohtake N, Saito M, Eto M, Seki K. Exendin-4 promotes the membrane trafficking of the AMPA receptor GluR1 subunit and ADAM10 in the mouse neocortex. *Regul Pept.* 2019;190–191:1–11. doi:10.1016/j.regpep.2014.04.003

140. Porter DW, Kerr BD, Flatt PR, Holscher C, Gauld VA. Four weeks administration of Liraglutide improves memory and learning as well as glycaemic control in mice with high fat diet-induced obesity and insulin resistance. *Diabetes Obes Metab.* 2010;12(10):891–899. doi:10.1111/j.1463-1326.2010.01259.x

141. McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. *Neuropharmacology.* 2014;76(Pt A):57–67. doi:10.1016/j.neuropharm.2013.08.005

142. Abbas T, Fairev E, Hölscher C. Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: interaction between type 2 diabetes and Alzheimer’s disease. *Behav Brain Res.* 2009;205(1):265–271. doi:10.1016/j.bbr.2009.06.035

143. Lennox R, Flatt PR, Gauld VA. Lixisenatide improves recognition memory and exerts neuroprotective actions in high-fat fed mice. *Peptides.* 2014;61:38–47. doi:10.1016/j.peptides.2014.08.014

144. Gilman CP, Perry T, Furukawa K, Grieg NH, Egan JM, Mattson MP. Glucagon-like peptide 1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. *J Neurochem.* 2003;87(5):1137–1144. doi:10.1046/j.1471-4159.2003.02073.x

145. Park SW, Mansur RB, Lee Y, et al. Liraglutide activates mTORC1 signaling and AMPA receptors in rat hippocampal neurons under toxic conditions. *Front Neurol.* 2018;12:756. doi:10.3389/fnneu.2018.00756

146. Zhang J, Chen C, Hua S, et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. *Diabetes Res Clin Pract.* 2017;124:41–47. doi:10.1016/j.diabres.2016.10.024

147. Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. *Saudi J Biol Sci.* 2020;27(2):736–750. doi:10.1016/j.sjbs.2019.12.028

148. Ke YD, Delerue F, Gladbach A, Götz J, Ittner LM. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. *PloS One.* 2009;4(11):e7917. doi:10.1371/journal.pone.0007917

149. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. *Lancet Neurol.* 2020;19(9):758–766. doi:10.1016/S1474-4422(20)30231-3

150. Ciarmiello A, Giovannini E, Riondato M, et al. Longitudinal cognitive decline in mild cognitive impairment subjects with early amyloid-β deposition. *Neuromolecular Med.* 2019;21:2020–2029. doi:10.1007/s41598-019-04409-1

151. Bejanin A, Schönhaut DR, La Joie R, et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. *Brain.* 2017;140(12):3286–3300. doi:10.1093/brain/awx243

152. Bonda DJ, Wang X, Lee HG, Smith MA, Perry G, Zhu X. Neuronal failure in Alzheimer’s disease: a view through the oxidative stress looking-glass. *Neurosci Bull.* 2014;30(2):243–252. doi:10.1007/s12264-013-1424-x

153. Ahmad W, Ijaz B, Shahbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/ RNS coelectrochemical deposition. *Eur J Nucl Mol Imaging.* 2019;46(10):2090–2098. doi:10.1007/s00259-019-04409-1

154. Grimm A, Schmitt K, Eckert A. Advanced mitochondrial respiration assay for evaluation of mitochondrial dysfunction in Alzheimer’s disease. *Methods Mol Biol.* 2016;1303:171–183.

155. Gibson GE, Thakkar A. Interactions of mitochondria/metabolism and calcium regulation in Alzheimer’s disease: a calciumist point of view. *Neurochem Res.* 2017;42(6):1636–1648. doi:10.1007/s11064-017-2182-3

156. Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. *Trends Neurosci.* 2017;40(3):151–166. doi:10.1016/j.tins.2017.01.002

157. Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer’s disease. *Mol Cell Neurosci.* 2019;88:109–120. doi:10.1016/j.mcn.2019.06.009

158. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. *J Neuropathol Exp Neurol.* 2001;60(8):759–767. doi:10.1093/jnen/60.8.759

159. Pastorino L, Sun A, Lu PJ, et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. *Nature.* 2006;440(7083):528–534. doi:10.1038/nature04543

160. Corsetti V, Florenzano F, Atlante A, et al. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer’s disease. *Hum Mol Genet.* 2015;24(1):76. doi:10.1093/hmg/dsv297

161. Moreira PL, Santos MS, Moreno AM, Seica R, Oliveira CR. Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. *Diabetes.* 2003;52(6):1449–1456. doi:10.2337/diabetes.52.6.1449

162. Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. *FEBS J.* 2018;285(6):995–1011. doi:10.1111/febs.14332

163. Zhang X, Tang S, Zhang Q, et al. Endoplasmic reticulum stress mediates JNK-dependent IRS-1 serine phosphorylation and results in Tau hyperphosphorylation in amyloid β oligomer-treated PC12 cells and primary neurons. *Gene.* 2016;587(2):183–193. doi:10.1016/j.gene.2016.05.018

164. de la Monte SM, Re E, Longato L, Tong M. Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer’s disease. *J Alzheimers Dis.* 2012;30 Suppl 2(02):S217–229. doi:10.3233/JAD-2012-11728
Cheng et al

166. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358–372. doi:10.1038/nrn3880
167. Takeda S, Sato N, Uchio-Yamada K, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A. 2010;107(15):7036–7041. doi:10.1073/pnas.1006451107
168. Knight EM, Martinis IV, Gümüşgöz S, Allan SM, Lawrence CB. High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging. 2014;35(8):1821–1832. doi:10.1016/j.neurobiolaging.2014.02.010
169. Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener. 2011;6:85. doi:10.1186/1750-126x-6-85
170. Cereda E, Barichella M, Pedrolli C, et al. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes Care. 2011;34(12):2614–2623. doi:10.2337/dc11-1584
171. Giuntini M, Baldacci F, Del Prete E, Bonuccelli U, Ceravolo R. Diabetes is associated with postural and cognitive domains in Parkinson’s disease. Results from a single-center study. Parkinsonism Relat Disord. 2014;20(6):671–672. doi:10.1016/j.parkreldis.2014.02.016
172. Morris JK, Bomhoff GL, Gorres BK, et al. Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol. 2011;231(1):171–180. doi:10.1016/j.expneurol.2011.06.005
173. Morris JK, Bomhoff GL, Stanford JA, Geiger PC. Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1082–1090. doi:10.1152/ajpregu.00449.2010
174. Yang L, Wang H, Liu L, Xie A. The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in Parkinson’s disease dementia. Front Neurosci. 2018;12:73. doi:10.3389/fnins.2018.00073
175. Sharma S, Taiyian R. High fat diet feeding induced insulin resistance exacerbates 6-OHDA mediated neurotoxicity and behavioral abnormalities in rats. Behav Brain Res. 2018;351:17–23. doi:10.1016/j.bbr.2018.05.025
176. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106–107:17–32. doi:10.1016/j.pneurobio.2013.04.004
177. Hong CT, Chen KY, Wang W, et al. Insulin resistance promotes Parkinson’s disease through aberrant expression of α-synuclein, mitochondrial dysfunction, and deregulation of the poleo-kine 2 signaling. Cells. 2020;9(3):740. doi:10.3390/cells9030740
178. Su CJ, Shen Z, Cui RX, et al. Thioredoxin-interacting protein (TXNIP) regulates Parkin/PINK1-mediated mitophagy in dopaminergic neurons. Diabetes Care. 2014;37(8):2324–2333. doi:10.2337/dc14-0092
179. Costa CAD, Manaa WE, Duplan E, Checler F. The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells. 2020;9(11):2495. doi:10.3390/cells9112495
180. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–397. doi:10.1016/S1474-4422(09)70062-6
181. Wang L, Zhai YQ, Xu LL, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp Neurol. 2014;251:22–29. doi:10.1016/j.expneurol.2013.11.001
182. Marxreiter F, Regensburger M, Winkler J. Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci. 2013;70(3):459–473. doi:10.1007/s00018-012-1062-x
183. Perry TA, Greig NH. A new Alzheimer’s disease interventive strategy: GLP-1. Curr Drug Targets. 2004;5(6):565–571. doi:10.2174/1389450433425
184. Yang Y, Ma D, Xu W, et al. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level. Exp Neurol. 2014;256:137–146. doi:10.1016/j.expneuro.2013.10.038
185. Xu W, Yang Y, Yuan G, Zhu W, Ma D, Hu S. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J Invest Med. 2015;63(2):267–272. doi:10.1111/jim.12615
186. Qi L, Ke L, Liu X, et al. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced Alzheimer disease mouse model. Eur J Pharmacol. 2016;783:23–32. doi:10.1016/j.ejphar.2016.04.052
187. Qi L, Chen Z, Wang Y, et al. Subcutaneous liraglutide ameliorates methylglyoxal-induced Alzheimer-like tau pathology and cognitive impairment by modulating tau hyperphosphorylation and glycogen synthase kinase-3β. Am J Transl Res. 2017;9(2):247–260.
188. Chen S, An FM, Yin L, et al. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation. Neuroscience. 2014;256:137–146. doi:10.1016/j.neuroscience.2013.10.038
189. Xiong H, Zheng C, Wang J, et al. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice. J Alzheimer Dis. 2013;37(5):623–635. doi:10.3233/JAD-130584
190. Chen S, Sun J, Zhao G, et al. Liraglutide improves water Maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res. 2017;42(8):2326–2335. doi:10.1007/s11064-017-2250-8
191. Zhang Y, Xie IZ, Xu XY, et al. Liraglutide ameliorates hyperhomocysteinemia-induced Alzheimer-like pathology and memory deficits in rats via multi-molecular targeting. Neurosci Bull. 2019;35(4):724–734. doi:10.1007/s12264-019-00336-7
192. Lu LL, Liu YQ, Shen Y, et al. Neuroprotection of exendin-4 by enhanced autophagy in a Parkinsonian rat model of α-synucleinopathy. Neurotherapeutics. 2021;18(2):962–978. doi:10.1007/s13311-021-01018-5
193. Ma D, Liu X, Liu J, et al. Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1α signaling in diabetic mice. Brain Res. 2019;1714:126–132. doi:10.1016/j.brainsci.2019.02.030
194. Mullins RJ, Mustapic M, Chia CW, et al. A pilot study of exenatide actions in Alzheimer’s disease. Curr Alzheimer Res. 2019;16(8):741–752. doi:10.2174/156720501666190193155950
195. Watson KT, Wroolie TE, Tong G, et al. Neural correlates of liraglutide effects in persons at risk for Alzheimer’s disease. Behav Brain Res. 2019;356:271–278. doi:10.1016/j.bbr.2018.08.006
Hölscher C. The incretin hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. *Neuropharmacology*, 2014;80:24–34. doi:10.1016/j.neuropharm.2014.02.022

Egefjord L, Gejl M, Møller A, et al. Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer’s disease - protocol for a controlled, randomized double-blind trial. *Dan Med J.*, 2012;59(10):A4519.

Femminella GD, Edison P. Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging. *Alzheimers Dement.*, 2014;10(1 Suppl):S55–61. doi:10.1016/j.jalz.2013.12.012

Duarte AI, Candeias E, Alves IN, et al. Liraglutide protects against brain amyloid-β(1-42) accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. *Int J Mol Sci.*, 2020;21(5):1746. doi:10.3390/ijms21051746

Holubová M, Hrubá L, Popelová A, et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in animal models of β-amyloid pathology. *Neuropharmacology*, 2019;144:377–387. doi:10.1016/j.neuropharm.2018.11.002

McClean PL, Jalewa J, Hölscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. *Behav Brain Res.*, 2015;293:96–106. doi:10.1016/j.bbr.2015.07.024

Hölscher C. The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. *Alzheimers Dement.*, 2014;10(1 Suppl):S54–7. doi:10.1016/j.jalz.2013.12.009

Cai HY, Yang JT, Wang ZJ, et al. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. *Biochem Biophys Res Commun.*, 2018;495(1):1034–1040. doi:10.1016/j.bbrc.2017.11.114

Parthasarathy V, Hölscher C. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. *PloS One.*, 2013;8(3):e58784. doi:10.1371/journal.pone.0058784

Cai HY, Hölscher C, Yue XY, et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β-protein-induced impairments in rats. *Neuroscience.*, 2014;277:6–13. doi:10.1016/j.neuroscience.2014.02.022

Paladugu L, Gharabeh A, Kolli N, et al. Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer’s disease. *Int J Mol Sci.*, 2021;22(2):860. doi:10.3390/ijms22020860

Carranza-Naval MJ, Del Marco A, Hiero-Bualance C, et al. Liraglutide reduces vascular damage, neuronal loss, and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. *Front Aging Neurosci.*, 2021;13:741923. doi:10.3389/fnagi.2021.741923

Li Y, Duffy KB, Ottger MA, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. *J Alzheimers Dis.*, 2018;109(4):1205–1219. doi:10.3233/JAD-2010-1314

Hansen HH, Barkholt P, Fabricius K, et al. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. *Brain Res.*, 2016;1634:158–170. doi:10.1016/j.dnare.2015.12.052

Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. *J Parkinsons Dis.*, 2019;9(1):157–171. doi:10.3233/JPID-181503

Lin TK, Lin KJ, Lin HY, et al. Glucagon-Like Peptide-1 Receptor Agonist Ameliorates 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Neurotoxicity Through Enhancing Mitophagy Flux and Reducing α-Synuclein and Oxidative Stress. *Front Mol Neurosci.*, 2014;15:697440. doi:10.3389/fnmol.2014.697440

Aksoy D, Solmaz V, Çavuşoğlu T, Meral A, Ateş U, Erbay O. Neuroprotective effects of exenatide in a rotenone-induced rat model of Parkinson’s disease. *Am J Med Sci.*, 2017;354(3):319–324. doi:10.1016/j.ajms.2017.05.002

Elbasunni EA, Ahmed RF. Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson’s with pre-existing diabetes. *Neurochem Int.*, 2019;131:104583. doi:10.1016/j.nechev.2019.104583

Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. *J Endocrinol.*, 2009;202(3):431–439. doi:10.1677/JOE-09-0132

Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. *J Neurosci Res.*, 2009;86(2):326–338. doi:10.1002/jnr.21483

Feng P, Zhang X, Li D, et al. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. *Neuropharmacology.*, 2018;133:385–394. doi:10.1016/j.neuropharm.2018.02.012

Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. *Front Aging Neurosci.*, 2016;8:108. doi:10.3389/fnagi.2016.00108

Gejl M, Broek B, Egefjord L, Fang K, Rungby J, Gjedde A. Blood-brain glucose transfer in Alzheimer’s disease: effect of GLP-1 analog treatment. *Sci Rep.*, 2017;7(1):17490. doi:10.1038/s41598-017-1771-y

Aviles-Olmos I, Dickson J, Kefalopoulou Z, et al. Exenatide and the treatment of patients with Parkinson’s disease. *J Clin Invest.*, 2013;123(6):2730–2736. doi:10.1172/JCI68295

Aviles-Olmos I, Dickson J, Kefalopoulou Z, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. *J Parkinsons Dis.*, 2014;4(3):337–344. doi:10.3233/JPD-140364

Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. *Lancet (London, England).* 2017;390(10103):1664–1675. doi:10.1016/S0140-6736(17)31585-4

Athauda D, Maclagan K, Budnik N, et al. What effects might exenatide have on non-motor symptoms in Parkinson’s disease: a post hoc analysis. *J Parkinsons Dis.*, 2018;8(2):247–258. doi:10.3233/JPD-181329
228. Athauda D, Gulyani S, Karnati HK, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial. *JAMA Neurol.* 2019;76(4):420–429. doi:10.1001/jamaneurol.2018.4304

229. Athauda D, Maclagan K, Budnik N, et al. Post hoc analysis of the exenatide-PD trial-factors that predict response. *Eur J Neurosci.* 2019;49(3):410–421. doi:10.1111/ejn.14096