В настоящем обзоре обсуждаются ключевые этапы развития технологии редактирования геномов CRISPR/Cas от истории открытия до современных разработок в различных областях, включая применение данной технологии в медицине. Рассматриваются также технические и этические проблемы, связанные с использованием CRISPR/Cas для редактирования геномов эмбрионов человека.

Ключевые слова: CRISPR, Cas, редактирование геномов, история науки
DOI: 10.31857/S0475145022040073
номах
"тандемные повторы", как они их назвали, в ге-
с соавт. (Mojica et al., 1995) подробно описали эти
мент ученому было всего 30 лет. В 1995 г. Ф. Мохика
ровалась 1–2 раза за год.
отклика – до 2007 г. публикация Е. Исино цити-
Среди коллег работа также не вызвала большого
дали большого значения своему наблюдению.
повторяющихся последовательностей и не при-
гического объяснения наличия и функции этих
еталерий из 29 нуклеотидов, расположенные
дились "пять высоко гомологичных последова-
менную конверсию щелочной фосфатазы, нахо-

номах, продукты которого ответственны за изофер-
ментную конверсию щелочной фосфатазы, наход-
ились “пять высоко гомологичных последова-
тельностей из 29 нуклеотидов, расположенные как
постоянно с интервалом в 32 нуклеотида” (Ishi-
no et al., 1987). Е. Исино с соавт. не нашли биоло-
ковые работы над аналогичными проблемами.
и других видов бактерий, они
3–9 п.н. и простиралась
рета" (Ishino et al., 1993), стрептококка (Hoe et al., 1999), ци-
саны в геномах
дочерних клеток в процессе деления. При-
лении (сегрегации) удвоенной хромосомы между
ится в Испанию, где попытался основать свою
исследовательскую группу по изучению “тандем-
ных повторов”. Сам ученый отмечал, что в то время
его заявки на исследования не получили грантов, и
он был существенно ограничен в финансировании
их работ и в создании инфраструктуры соб-
ственной лаборатории (Mojica, Rodriguez-Valera,
2016). Несмотря на затруднения, ученый продол-
жил исследования. В качестве модельного орга-
низма Ф. Мохика переориентировался на E. coli,
но воспроизведение экспериментов, проведен-
ных им ранее на H. volcanii, не дало ожидаемых
результатов: четкого фенотипа нарушения сегре-
гации генома E. coli при внесении в ее геном до-
полнительной копии “тандемного повтора” не
наблюдалось. Второй гипотезой ученого стало то,
что тандемные повторы служат ориентирами для
связывания ДНК с клеточными структурами (на-
пример, белками клеточной мембраны или раство-
римыми белками). Однако никаких повтор-связы-
вающих белков в клеточных экстрактах E. coli
им не обнаружено не было. Третье предположение со-
стояло в том, что повторы могут влиять на трех-
мерную структуру молекулы ДНК, в которой они
находятся, но и это не подтвердилося: анализ
плиазмидной ДНК показал, что внесение участков
поворотов не влияло на ее топологию (Mojica, Ro-
driguez-Valera, 2016).

Необычные повторяющиеся последовательно-
сти в геномах прокариот заинтересовали испанско-
го исследователя Франсиско Мохика (F.J. Mojica),
который обнаружил их в геноме археи Haloferax
mediterranei в 1993 г. (Mojica et al., 1993), на тот мо-
мент ученому было всего 30 лет. В 1995 г. Ф. Мохика
с соавт. (Mojica et al., 1995) подробно описали эти
“тандемные повторы”, как они их назвали, в ге-
номах Haloferax mediterranei и H. volcanii: последо-
вательность из 30 п.н. с диадной симметрией по-
вторялась в тандеме с вкраплениями уникальных
последовательностей из 33–39 п.н. и простиралась
на большие участки — 1.4 тыс. п.н. в хромосоме
H. mediterranei и около 3 тыс. п.н. в хромосоме
H. volcanii. Чтобы понять роль этого участка ДНК,
групфа Ф. Мохика решила внести его дополнитель-
ную копию в клетки архей H. volcanii путем
рандомной рекомбинантной плазмидой, со-
держащей фрагмент тандемных повторов длиной
1.1 тыс. п.н. Это привело к значительному сниже-
нию жизнеспособности клеток и нарушило рас-
пределение генома среди дочерних клеток (Mojica
et al., 1995). Так возникла первая гипотеза, что
биологическая роль тандемных повторов в гено-
мах прокариот заключается в их участии в разде-
лении (сегрегации) удвоенной хромосомы между
dочерними клетками в процессе деления. При-
мерно в это же время похожие повторы были опи-
sаны в геномах Mycobacterium tuberculosis (Groenen
et al., 1993), стрептококка (Hoe et al., 1999), ци-
анобактерии Anabaena sp. (Masepohl et al., 1996),
Shigella dysenteriae, Salmonella typhimurium
(Nakata et al., 1989) и других видов бактерий. Высказыва-
lась предположения, что данные повторы могут
участовать в хромосомных перестройках, реком-
бинации или являются местами посадки белков,
регулирующих соседствующие с повторами гены
(Nakata et al., 1989; Groenen et al., 1993), однако
экспериментально эти предположения не прове-
рялись.

Закончив аспирантуру в 1995 г., Франсиско
Мохика некоторое время работал постдокторан-
tом в Оксфордском университете, а затем, дви-
жимый интересом к загадочным повторам, вер-
нулся в Испанию, где попытался основать свою
исследовательскую группу по изучению “тандем-
ных повторов”. Сам ученый отмечал, что в то время
его заявки на исследования не получили грантов, и
он был существенно ограничен в финансировании
их работ и в создании инфраструктуры соб-
ственной лаборатории (Mojica, Rodriguez-Valera,
2016). Несмотря на затруднения, ученый продол-
жил исследования. В качестве модельного орга-
низма Ф. Мохика переориентировался на E. coli,
но воспроизведение экспериментов, проведен-
ных им ранее на H. volcanii, не дало ожидаемых
результатов: четкого фенотипа нарушения сегре-
гации генома E. coli при внесении в ее геном до-
полнительной копии “тандемного повтора” не
наблюдалось. Второй гипотезой ученого стало то,
что тандемные повторы служат ориентирами для
связывания ДНК с клеточными структурами (на-
пример, белками клеточной мембраны или раство-
римыми белками). Однако никаких повтор-связы-
вающих белков в клеточных экстрактах E. coli
им не обнаружено не было. Третье предположение со-
стояло в том, что повторы могут влиять на трех-
мерную структуру молекулы ДНК, в которой они
находятся, но и это не подтвердилося: анализ
плиазмидной ДНК показал, что внесение участков
поворотов не влияло на ее топологию (Mojica, Ro-
driguez-Valera, 2016).

Но Франсиско Мохика не славился в своих на-
мерениях найти функции таинственных повторов.
Постепенное развитие технологий секвенирования
облегчило поиск подобных структур в геномах дру-
гих организмов, и коллега Мохика, Сезар Диес-
Вильясенор (C. Díez-Villaseñor), создал программу
для поиска повторяющихся регионов в геномах
прокариот. K 2000 г. Ф. Мохика с соавт. (Mojica et al.,
2000) систематизировали данные о геномных по-
ворах у 9 видов архей и 10 видов бактерий, они
dали им название: короткие регулярно располо-
женные повторы (SPSR, от англ. SPacers Interspersed Di-
rect Repeats; аббревиатура, также указывает на
пример, белками клеточной мембраны или раство-
римыми белками). Однако никаких повтор-связы-
вающих белков в клеточных экстрактах E. coli
им не обнаружено не было. Третье предположение со-
стояло в том, что повторы могут влиять на трех-
мерную структуру молекулы ДНК, в которой они
находятся, но и это не подтвердилося: анализ
плиазмидной ДНК показал, что внесение участков
поворотов не влияло на ее топологию (Mojica, Ro-
driguez-Valera, 2016).

Группа голландского микробиолога Руда Ян-
сена (R. Jansen) (Jansen et al., 2002a), описывая
тандемные повторы у Mycobacterium tuberculosis
и других видов прокариот, дала тандемам название:
прямые повторы, перемежающиеся спейсерами
(SPISR, от англ. SPacers Interspersed Direct Re-
peats). Чтобы избежать дальнейшей путаницы в
быстрорастущей тематике, Ф. Мохика и Р. Янсен
совместно решили заменить названия: прямые повторы, тандемные повторы, SRSR, SPIDR и другие вариации названий, на простое, “хрустящее” (по меткому замечанию самого Р. Янсена) и известное нам сегодня – CRISPR (рис. 1). В 2002 г. Р. Янсен с соавт. (Jansen et al., 2002b) идентифицировали также, что рядом с локусами повторов находятся гены, кодирующие белки, которым они дали название CRISPR-ассоциированные (Cas) белки.

Хотя на тот момент роль геномных повторов оставалась загадкой для ученых, широкое распространение повторных последовательностей у разных видов прокариот указывало на их несомненную значимость и фундаментальную клеточную роль. Открытие Cas белки, Р. Янсен выдвинул предположение, что, имея структуру, похожую с ДНК-хеликазами или экзонуклеазами, данные белки участвуют в метаболизме ДНК или регуляции экспрессии генов в какой-то области генома, функционально связанной с локусом CRISPR (Jansen et al., 2002b).

Однако финальным ключом к разгадке функций системы CRISPR/Cas стало открытие происхождения уникальных промежуточных спейсеров. Роль этих последовательностей долгое время оставалась загадкой. Франсиско Мохика поначалу не придавал им особого значения, он писал: "само название спейсер намекает на их несущественную роль в повторах, как последовательностей", просто разделяющих палиндромы" (Mojica, Rodríguez-Valera, 2016). В начале 2000-х гг. его исследовательская группа продолжала работать над повторами CRISPR в E. coli. Они регулярно амплифицировали локусы CRISPR с помощью ПЦР, секвенировали их и сравнивали с общедоступными базами данных нуклеотидов. И вот однажды ученых постигла удача: один из запросов выдал совпадающую последовательность, они обнаружили, что последовательность спейсера гомологична кусочку генома бактериофага E. coli. Постепенно, Франсиско Мохика с соавт. накопили данные и о других спейсерах, которые имели сходство с последовательностями в бактериофагах или в конъюгативных плазмидах (Mojica et al., 2005). Оказалось, что бактериофаги, чьи последовательности находили в спейсерах CRISPR, были неспособны инициировать клетку-носитель, но инициировали близкородственные штаммы, лишенные данного спейсера (Mojica et al., 2005). Произошло озарение, и Ф. Мохика первым высказал верное предположение,
что роль системы CRISPR заключается в приобретении иммунитета против чужеродной ДНК, а сам локус является “отсеком для хранения фрагментов ДНК захватчиков” (Mojica et al., 2005). Стоит вновь упомянуть о трудностях признания, с которыми столкнулись авторы революционного открытия при попытке опубликовать свои находки. Приводим эти факты (Lander, 2016) не с целью вызывать в читателе разочарование в объективности современных научных издательств, хотя таковое было бы небезосновательным в обсуждаемом случае, а скорее для утешения тех ученых, которым эта история даст налажу на последующее признание их работ независимо от первоначально негативной реакции научного сообщества на совершенное открытие. Понимая важность своего научного вывода, Ф. Мохика отправил статью в журнал Nature. В ноябре 2003 г. редакция Nature отклонила статью, даже не отправив ее рецензентам: по непонятным причинам редактор заявил, что идея статьи уже известна. В январе 2004 г. в Proceedings of the National Academy of Sciences (PNAS) также решили, что статье не хватает “новизны и важности”, чтобы отправить ее на рецензию. Следующим рукопись Ф. Мохики отклонялась журналами Molecular Microbiology и Nucleic Acid Research. Отчаявшийся и переживающий, что его статьи не примут к опубликованию даже в PNAS, журнал Nature, отвергнута статья, даже не отправив ее рецензентам, Ф. Мохика отправил статью в журналы PNAS, Journal of Bacteriology, Nucleic Acids Research и Genome Research, прежде чем была опубликована в Microbiology 1 марта 2005 г.

Во второй из французских исследовательских групп работали наши бывшие соотечественники, изучавшие в Париже стрептококков, — Александр Болотин и Алексей Сорокин. Как вспоминает профессор Института общей генетики им. Н. И. Вавилова РАН, Сергей Киселев, к Александру Болотину в то время “обратилась крупная фирма по производству йогуртов с просьбой разобраться, почему им перестало удаваться уничтожение ненужных бактерий в закваске. Для подавления их жизнедеятельности производители всегда использовали специальные вирусы, но в какой-то момент бактерийурыфаги перестали убивать бактерии” (Веденеева, 2020).

Стоит разные исследования (изучение биологического оружия и йогуртов), тем не менее, привели к схожим научным выводам. Обе группы, подтвердив гипотезу Ф. Мохика, высказались о роли CRISPR в формировании приобретенного иммунитета бактерий. В 2006 г. группа ученых США (все являлись выходцами из бывшего СССР) К. С. Макарова, Н. В. Гришин, С. А. Шабалина, Ю. И. Вольф, Е. В. Кунин (K.S. Makarova, N.V. Grishin, S.A. Shabalina, Y.I. Wolf, E.V. Koonin) (Makarova et al., 2006) проанализировала все доступные на тот момент геномы прокариот и обнаружила несколько кластеров генов, соответствующих белкам Cas. Исследователи классифицировали Cas на белковые семейства, описывали их вероятные функциональные и структурные особенности. Предполагая, что система иммунной защиты CRISPR/Cas работает по принципу РНК-интерференции, они проанализировали схожесть Cas-белков с белками системы РНК−интерференции, но сходства не нашли. Макарова с соавт. (Makarova et al., 2006), тем не менее, сделали ряд предположений о механизме работы CRISPR/Cas и о том, как могут приобретаться новые спейсеры.

Без прямого экспериментального подтверждения находки лишь подкрепляли гипотезу, но не
доказывали ее безоговорочно. Однако доказательства красивой гипотезы о приобретенном иммунитете прокариот не заставили себя ждать: в 2007 г. исследовательская группа французского ученого Филиппа Хорвата (P. Horvath) (Barrangou et al., 2007) продемонстрировала, что после заражения вирусом, бактерии интегрировали новые спейсеры, полученные из геномных последовательностей фага; а удаление или добавление определенных спейсеров модифицировало фагорезистентность прокариотической клетки. Они показали, что Cas9 является ключевым белком, необходимым для процесса, посредством которого система CRISPR инактивирует вторгающийся фаг (Barrangou et al., 2007). В очередной раз находке послоспособствовал запрос пищевой промышленности: авторы статьи – Родольф Баррангу (R. Barrangou), Филипп Хорват, работали в то время на датского производителя пищевых ингредиентов Danisco (теперь DuPont) и занимались секвенированием геномов бактерий, используемых в качестве заквасочных культур в молочной промышленности для производства йогуртов и сыров. Они также секвенировали бактериофаги, заражавшие и разрушавшие молочные культуры (Nair, 2017). Примечательно, что с 2011 г. йогуртовые и сырые культуры DuPont “вакционируются” против бактериофагов, заражающих их. Это подтвердило, что система CRISPR/Cas способна работать автономно, а все ее необходимые элементы (Cas9, crRNA и tracrRNA) уже известны. Однако дуплекс crРНК, и именно этот дуплекс направляет Cas9 к его ДНК-мишени (Deltcheva et al., 2011). Система CRISPR/Cas начала использоваться в качестве прицельного инструмента для разрезания ДНК без отрыве от бактерий-хозяев: механизм работы CRISPR/Cas начал использоваться в качестве прицельного инструмента для разрезания ДНК в 2011 г. они выяснили, что в дополнение к crРНК существует вторая малая РНК, которую авторы назвали трансактивирующей CRISPR РНК (tracrRNA). Обнаружена последняя была с помощью секвенирования нового поколения, благо tracrRNA находится на 3 месте по распространенности в транскриптах. Обнаружена последняя была с помощью секвенирования нового поколения, благо tracrRNA находится на 3 месте по распространенности в транскриптах. Обнаружена последняя была с помощью секвенирования нового поколения, благо tracrRNA находится на 3 месте по распространенности в транскриптах.
ции, В. Шикшнис сократил рукопись и отправил ее 21 мая в PNAS, где она была опубликована 4 сентября (Lander, 2016).

Технологическим прорывом стала работа Эммануэль Шарпантье (E. Charpentier) в сотрудничестве с Дженнифер Даудна (J.A. Doudna), которые в 2012 г. (Jinek et al., 2012) сообщили, что crRNA и tracrRNA могут быть объединены вместе в одну синтетическую гидовую РНК (sgRNA), именно такой технологией пользуются сейчас исследователи, которым для программирования прицельного разрезания ДНК необходимо лишь два элемента: нуклеаза Cas9 и гидовая РНК, которая направляет нуклеазу (Jinek et al., 2012). Как и В. Шикшнис, Э. Шарпантье и Д. Даудна показали, что Cas9 может разрезать очищенную ДНК in vitro, и что последняя может быть запрограммирована специально сконструированными crRNA. Их работа была подана в Science 8 июня и опубликована 28 июня 2012 г. Примерно в то же время Д. Даудна подала заявку на патент системы редактирования генов CRISPR/Cas9.

Наконец, в 2013 г. Фэн Чжан (Feng Zhang), который ранее работал с программируемыми нуклеазами TALEN (transcription activator-like effectors), первым успешно адаптировал CRISPR/Cas9 для редактирования генома в эукариотических клетках (Cong et al., 2013). Он применил CRISPR/Cas9 для прицельного редактирования разных локусов генома в клетках человека и мыши (Cong et al., 2013). Примерно в это же время аналогичные результаты представил Джордж Черч (G.M. Church) (Mali et al., 2013). После публикации, Фэн Чжан также подал заявку на патент от своего имени и смог получить его раньше, чем Д. Даудна.

НОБЕЛЕВСКАЯ ПРЕМИЯ

На сегодняшний день CRISPR считают наиболее важным открытием в молекулярной биологии со времен ПЦР, повлекшим создание новейшей и успешной технологии генной инженерии. И, понимая важность данного открытия, исследователи и люди, заинтересованные наукой, гадали, когда же будет вручена Нобелевская премия за CRISPR/Cas. Многие опасались, что от технологии ждут каких-то практических достижений, чтобы, наконец, вручить премию.

В 2020 г. Нобелевскую премию по химии получили Эммануэль Шарпантье и Дженифер Даудна за развитие метода редактирования генов с помощью CRISPR/Cas9. Во-первых, это, конечно, выбор в пользу прикладной, а не фундаментальной науки, т.к. если бы премию вручили за открытие CRISPR/Cas, то ей, несомненно, стоило бы отметить заслуги Ф. Мохики. Тем не менее формулировка Нобелевского комитета недвусмысленно говорит именно о “развитии метода”. Во-вторых, за одно открытие Нобелевскую премию могут вручить максимум трем людям, и ее вручение двум исследовательницам, Шарпантье и Даудне, можно рассматривать как своего рода заявление Нобелевского комитета. До вручения частию научного сообщества считалось, что ее получат Шарпантье, Даудна и Чжан (реже третьим называли Шикшниса), как те, кто вложил большой вклад в применение CRISPR/Cas для редактирования генов in vitro и in vivo, в прокариотических и эукариотических клетках.

В целом, в эпоху коллективизма в науке оправданность вручения Нобелевских премий двум-трем людям все больше ставится под сомнение, ведь многие открытия — достижение не одного десятка ученых и их научных коллективов.

СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ CRISPR/Cas

Одним из наиболее заинтересованных в CRISPR/Cas промышленных секторов является сельское хозяйство. Прицельное редактирование геномов растений активно используют для повышения урожайности плодовых и зерновых культур, придания им устойчивости к заболеваниям и изменению погодных условий, а также других желаемых качеств. Например, редактирование генов, связанных с цитокиновым сигналинизмом, позволило значительно увеличить урожайность риса и пшеницы (Cong et al., 2013; Wang et al., 2014). Мутация генов CLV (Rodríguez-Leal et al., 2017) и ENO (Yuste-Lisbona et al., 2020), ответственных за размер меристемы, позволила увеличить урожайность томатов. Людям, страдающим целиакией, важно контролировать потребление в пищу глютена, которым особенно богаты продукты из пшеницы. С помощью технологии CRISPR/Cas была создана разновидность пшеницы со сниженным содержанием глютена и на 85% меньшей иммуно-генностью. Такого результата было практически невозможно достичь классическими методами скрещивания, так как в геноме пшеницы белки группы глютенов разбросаны в около сотне локусов (Sánchez-León et al., 2018). Большинство генетически модифицированных растений все еще находятся на стадии разработки и не используются для массового культивирования, однако есть и немало исключений. К настоящему времени уже более сотни разновидностей растений, выведенных методом CRISPR/Cas, официально разрешены к выращиванию. Это, например, соя с повышенным содержанием олеиновой кислоты за счет мутации в гене десатуразы омега-6 жирных кислот.
лот и пищевица, устойчивая к мучнистой росе за счет редактирования локуса генов MLO, подавляю- щих защитные механизмы растения против грибковых инфекций (Wang et al., 2014).

Еще одно перспективное направление для ис- пользования CRISPR/Cas в живых организмах — редактирование геномов переносчиков инфекцио- нных и паразитарных заболеваний для снижения численности их популяций, либо снижения спо- собности передавать те или иные болезни: напри- мер, ведутся исследования по индуцированию стерилизности малярийных комаров (North et al., 2020), что способно привести к существенному сокращению популяции переносчиков малярии. Такая инженерия может помочь контролировать передачу болезней и защитить экосистемы от опасных для человека видов.

Генная инженерия с использованием CRISPR/Cas предоставляет также уникальные медицинские возможности: например, с помощью данной тех- нологии возможно производство органов свиньи, совместимых с человеческим организмом с це- лью трансплантации. Использование технологии CRISPR/Cas решает трансплантационные про- блемы совместимости и иные проблемы, связан- ные с использованием органов свиньи у человека. К ним относится проблема патологичности для человека свинов эндогенных ретровирусов. В ла- боратории Джорджа Черча успешно применили CRISPR/Cas9 для инактивации всех 62 копий ретровирусов в клетках свиньи (Yang et al., 2015); что, кстати, стало рекордом по количеству моди- фицированных локусов в одиночном экспери- менте. Ученый-хирург Мухаммад Мохиуддин, уро- женец Пакистана, занимается проблемами имму- носовместимости между свиньими и человеческим организмом при ксенотранспланта- ции сердца в Университете Мэриленда, США. Его группа создала свиней с нокаутом трех генов, от- ветственных за синтез углеводных антигенов и гена рецептора гормона роста (GHR) (Goerlich et al., 2021). GHR, участвующий в передаче сигнала от тормозной системы комплемента (C5, C6, C7, C8, C9) к реакции свертывания крови (hTBM, hEPCR), и двух генов регуляторов си- стемы комплемента (hCD46, hDAF) (Goerlich et al., 2021). Пересадка сердца от генномодифицирован- ных свиней была испытана на бабуинах и показа- ла хорошие результаты (Goerlich et al., 2021). Бла- годаря работе команды Мохиуддина, громким до- стижением нынешнего года стала первая в мире пересадка сердца генномодифицированной сви- ньи человеку 7 января 2022 г. группой М. Мохиуд- дина (Reardon, 2022; Jee, 2022).

В 2021 г. были опубликованы результаты кли- нических испытаний применения CRISPR/Cas9 в человеческих клетках ex vivo. Группа доктора Хайдара Франгула (Haydar Frangoul) осуществила редактирование гематопоэтических стволовых клеток с целью нокаута энхансера BCL11A у двух пациентов с серповидно-клеточной анемией и β-талассемией (моногенные заболевания, вы- званные мутациями гена HBB, кодирующего β-субъединицу гемоглобина) (Frangoul et al., 2021). BCL11A — репрессор экспрессии γ-субъ- единицы гемоглобина, и его нокаут приводит к росту экспрессии фетального гемоглобина HbF, что увеличивает выживаемость у пациентов с сер- повидно-клеточной анемией и β-талассемией. Ex vivo скорректированные клетки были возвраще- ны пациентам (аутологическая трансплантация гематопоэтических стволовых клеток), что при- вело к росту концентрации в крови HbF и облег- чению симптомов заболевания (Kaiser, 2020; Fran- goul et al., 2021).

В настоящее время исследования самой техно- логии CRISPR/Cas активно развиваются по не- скольким направлениям, включая разработку эф- фективных способов доставки компонентов CRISPR/Cas в клетки (в виде ДНК, РНК или ги- нуклеопротеинов) с использованием биологиче- ских (вирусы, вирусоподобные частицы, пептиды клеточной пенетрации), химических (липосомы, наночастицы) и физических методов (электропо- рация, сонопорация, микроинъекция) (Taha et al., 2022); а также разработку подходов, нацеленных на улучшение целевой (on-target) и снижение не- целевой мутагенной (off-target) активности Cas бел- ков (Nidhi et al., 2021). Для минимизации нецеле- вого редактирования разрабатываются различные программные обеспечения, нацеленные на in silico предсказание off-target активности и подбор оп- тимальных и специфичных гидов РНК; ис- пользуются химически-модифицированные ги- довые РНК, обладающие большей специфично- стью; отбираются и конструируются улучшенные варианты нуклеаз Cas (Naeem et al., 2020).

Стоит отметить, что в России также есть ряд научных групп, которые занимаются исследова- нием системы CRISPR/Cas и разработкой техно- логий на ее основе. Научная группа Константина Викторовича Северинова из Сколковского ин- ститута науки и технологий (SkolTech) занимается предсказанием и функциональной характеристикой новых систем CRISPR/Cas. Сергей Шмаков из команды Северинова создал полуавтоматиче- скую поисковую систему, которая обнаруживает новые системы CRISPR/Cas (Shmakov et al., 2019). С
Использование CRISPR/Cas для редактирования наследуемой ДНК

Поскольку система CRISPR/Cas – это удобный инструмент редактирования генома, почти сразу после описания ее использования в эукариотических клетках начались исследования возможности ее применения в человеческих эмбрионах как для корректировки патологических мутаций, так и для фундаментальных исследований раннего эмбрионального развития человека. Изучению подвергались эффективность данного подхода, неспешная мутагенность, частота редактирования (мозаичность эмбрионов), возможность последующего развития эмбрионов (Ormond et al., 2017; Lea, Niakan, 2019). Источниками эмбрионов в таких работах являются невостребованные эмбрионы от процедуры экстракорпорального оплодотворения (Fogarty et al., 2017). Оказалось, что нокаутные модели на мышах не всегда точно отражают роль изучаемых генов в эмбриональном развитии человека (Fogarty et al., 2017). Несмотря на разные подходы, точное прицельное редактирование эмбрионов (за счет репарации ДНК по механизму гомологичной рекомбинации) остается низкоэффективным, в большинстве случаев после двуцепочечных разрывов возникают делеции или инсерции, а механизмы ранней эмбриональной репарации ДНК мало изучены (Ma et al., 2017). По этой причине использование CRISPR/Cas для корректировки патологических мутаций в эмбрионах затруднено. Вместе с этим, использование CRISPR/Cas для прицельного мутагенеза и нокаута генов также представляет определенные риски: по-видимому, двуцепочечные разрывы, вносимые Cas9 в одном локусе, приводят к делециям, которые могут простираться на несколько тысяч нуклеотидов (Kosicki et al., 2018). Среди других интересных работ российских ученых – разработка метода быстрой сортировки клеток с генетическими модификациями после действия CRISPR/Cas9 на основе короткого пептида в Институте биологии гена (Medvedev et al., 2019), в том числе с использованием системы CRISPR/Cas9 болезни Хантингтона (Morozova et al., 2018; Malankhanova et al., 2020), бокового амиотрофического склероза (Ustyantseva et al., 2019), спинальной мышечной атрофии (Ballezzinova et al., 2020) и применения технологии CRISPR/Cas для нокаутирования генов интереса, для регуляции экспрессии генов на эпигенетическом уровне, для моделирования однокопонентных полиморфизмов с целью создания клеточных и тканевых моделей изучения процессов развития и регенерации тканей (Karagyaur et al., 2018; Rysenkova et al., 2018; Tyurin-Kuzmin et al., 2018; Dyikanov et al., 2019; Слободкина и др., 2020; Rusanov et al., 2020). Среди других интересных работ российских ученых – разработка метода быстрой сортировки клеток с генетическими модификациями после действия CRISPR/Cas9 на основе короткого пептида в Институте биологии гена (Zotova et al., 2019) и применение технологии CRISPR/Cas9 для одновременного создания двух-трех двуцепочечных разрывов в разных хромосомах для изучения механизмов хромосомных транслокаций в Институте биологии развития (Shmakova et al., 2019; Canoy, Vassetztzy, 2021).

Таким образом, использование технологии редактирования генома CRISPR/Cas в различных сферах и в различных организмах, предоставляет уникальные производственные и медицинские возможности для улучшения качества жизни.
менее в ноябре 2018 г., редактирование генома прошло успешно и привело к рождению здоровых девочек-близнецов Лулу и Наны (Cyranoński, Ledford, 2018). Стоит отметить, что ни план, ни результаты данной работы не были полностью опубликованы или подвергнуты рецензированию научным сообществом. 29 ноября 2018 г. власти Китая приостановили научную деятельность Хэ Цзянкуя в его отношении было заведено уголовное дело за нарушение китайского законодательства в области экспериментов с людьми и за оказание неквалифицированной медицинской помощи, в декабре 2019 г. ученый был приговорен к 3 г. лишения свободы и штрафу в 3 млн юаней.

Хэ Цзянкуй, пытаясь опубликовать результаты своего громкого эксперимента, подал статью под названием “Рождение близнецов после редактирования генома устойчивости к ВИЧ” в Nature и JAMA, обеими журналами статья была отвергнута (Regalado, 2019). Что интересно, в соавторах Хэ Цзянкуя был указан Майкл Дим, ученый из Университета Райса (Хьюстон, Техас, США). Несмотря на утверждения о том, что он не давал согласия на публикацию данных, в отношении М. Дима началась служебная проверка, результаты которой за- секречены, но по состоянию на 2021 он больше не работает в Университете Райса.

Исследование Хэ Цзянкуя подверглось жесткой критике со стороны ученых по нескольким причинам:

1. Утверждения, заявленные в статье, не подтверждены предоставленными данными. Не следует на то, что в статье указано, что они пытались воспроизвести частый вариант мутации CCR5Δ32, фактически, это не так: в ген CCR5 были внесены другие мутации, роль которых в обеспечении резистентности к вирусу не изучена даже в in vitro. В так и неопубликованной статье не при- водилось доказательств, что генетическая манипуляция действительно привела к резистентности в отношении ВИЧ, хотя это могло быть проверено благодаря мутациям, которые экспериментаторы поставили в удобной стадии до имплантации на off-target мутации и ключевой проблемой здесь является то, что селекция отобранных клеток до имплантации на off-target мутации и национальные исследования некоторых мутаций в других местах генома (т.н. off-target). Команда Хэ Цзянкуя тестировала отобранные 3–5 клеток из эмбрионов на ранней стадии до имплантации на off-target мутации и нашла одиннадцатый вариант в некотором месте генома у одного эмбриона. Однако ключевой проблемой здесь является то, что селекция на предмет мутаций подразумевает лизирование клеток и выделение ДНК, т.е. в этом регионе, роль которых также не изучена.

2. Родители близнецов могли быть мало информированы о природе эксперимента или согласиться на проведение эксперимента под давлением. В настоящий момент существуют устоявшиеся эффективные методы для экстракорпорального оплодотворения у ВИЧ+ родителей, которые снижают риск заражения эмбриона или плода к нулю. В связи с этим, процедура модификации генома не давала никакого медицинского преимущества, но привносила неоправданные риски, о чем пара могла быть не осведомлена. Более того, в Китае ВИЧ-положительные люди не имеют доступа к лечению бесплодия и экстракорпоральному оплодотворению, что указывает на то, что пара могла пойти на эксперимент вынужденно, так как это давало им единственный шанс иметь ребенка.

3. Заявленное медицинское преимущество де- лении CCR5 вызывает сомнение. Даже если метод CRISPR эффективен для создания людей, устой- чивых к ВИЧ, он вряд ли будет широко использован, особенно в местах, где разорвачивается эпидемия ВИЧ, например, в южной Африке, ведь его сложности, дороговизны, необходимости постоянного контроля и целого ряда других причин. Впрочем, потребуется много десятилетий широ- кого использования генетического редактирова- ния с использованием CRISPR (такого применения CRISPR (при условии его эффективности), чтобы остановить эпидемию ВИЧ. Инициативы в области общественного здраво- охранения, образования и широкого доступа к антиретровирусным препаратам являются более логичными и эффективными решениями для кон- троля над эпидемией ВИЧ.

4. Побочные эффекты применения редактирова- ния генома людей мало изучены, и исследовате- ли под руководством Хэ Цзянкуя приступили к созданию генетически модифицированных жи- вых людей до того, как полностью осознали по- следствия внесенных ими правок. Технология CRISPR/Cas не обладает 100% специфичностью в отношении выбранного гена и внесение нукле- азы с гидовой РНК может приводить к непредна- меренным мутациям в других местах генома (т.н. off-target). Команда Хэ Цзянкуя тестировала отобранные 3–5 клеток из эмбрионов на ранней стадии до имплантации на off-target мутации и нашла одиннадцатый вариант в некотором месте генома у одного эмбриона. Однако ключевой проблемой здесь является то, что селекция на предмет мутаций подразумевает лизирование клеток и выделение ДНК, т.е. про- тестированные клетки не могут быть в дальнейшем использованы для оплодотворения и могут отличаться от эмбриона, из которого они взяты. И напротив, эмбрионы, которые дали начало близнякам, не могли быть полностью проверены на наличие off-target мутаций в каждой из клеток. К примеру, использование CRISPR/Cas9 на эм- брионах овцу совместно с предимплантационным скринингом и отбором эмбрионов с желаемой му- тацией приводит тем не менее к мозаике генома по- полвине плодов (Vilarino et al., 2018). В недавнем
исследования применения CRISPR/Cas9 на человеческих эмбрионах для коррекции гена EYS обнаружено, что on-target и off-target разрезание Cas9 может приводить к полным или частичным хромосомальным потерям (Zuccaro et al., 2020).

В заключение необходимо еще раз подчеркнуть, что генетическая модификация людей на эмбриональной стадии продолжает считаться процедурой с недоказанной степенью риска и массовое внедрение технологии CRISPR/Cas потребует введения законов, гарантирующих, что технология не будет использоваться с нарушением этических правил.

Помимо редактирования генома эмбриона человека, к наследуемым изменениям относится редактирование половых клеток человека (сперматозоидов, яйцеклеток). Введение в яйцеклетки компонентов CRISPR/Cas9 совместно со сперматозоидами (в рамках экстракорпорального оплодотворения) предлагалось для повышения эффективности редактирования и снижения риска мозаичизма эмбрионов (Ma et al., 2017). Генетическая модификация сперматоцитов и сперматозоидов была испытана на мышах (Wu et al., 2015), свиньях (Webster et al., 2021). Однако, в целом, экспериментальные разработки по редактированию половых клеток человека довольно немногочисленны.

Руководящие этические и социальные принципы касательно клинического редактирования генома эмбриона человека были изложены американскими Национальными академиями наук, инженерии и медицины и английским советом на биоэтике (National Academies of Sciences, 2017; Nuffield Council on Bioethics, 2018). В 2019 г. было опубликован призыв ряда ведущих ученых, среди которых Эммануэль Шарпантье, Эрик Ландер, Фэн Чжан, к глобальному мораторию на любое клиническое использование редактирования наследуемой ДНК. Следует помнить, что только неугасающий интерес первооткрывателей (в особенности, Франсиско Мохика), позволил нам оказать на всем уровне знаний, на котором мы сейчас находимся.

В настоящее время исследователи почти каждой биохимической, молекулярно-биологической или цитологической лаборатории используют CRISPR/Cas для редактирования генома. Бурное развитие методики привело общество к поворотному пункту: перед нами открылась возможность редактировать геномы людей. Тем не менее, осознаны и существующие риски. Является ли технология полностью безопасной для человека ввиду возможных off-target эффектов? Как исключить возможное преступное и антисоциальное использование методики? Невозможность протестировать побочные эффекты CRISPR/Cas на ранних стадиях развития эмбриона (вплоть до рождения) приводит к важной морально-этической проблеме: кто будет нести ответственность в случае рождения ребенка с генетическими аномалиями?

Появляются и иные насущные вопросы: можно ли применять CRISPR/Cas для несмертельных, купируемых заболеваний? Можно ли применять CRISPR/Cas на популяционном уровне? Не вызовет ли внедрение в практику этой современейшей и дорогой технологии еще большего разделения между бедными и богатыми, давая последним больше преимуществ? Наконец, можно ли массово применять CRISPR/Cas для “улучшения” генетики людей?

ЗАКЛЮЧЕНИЕ

Еще 20 лет назад система CRISPR/Cas была известна лишь узкому кругу ученых, занимавшихся этой проблемой. Загадочная система повторов и спейсеров интересовала лишь некоторых микробиологов, работавших с бактериями или археями и не надеявшихся на грандиозные научные прорывы. Сегодня методика стала предметом пристального внимания всего научного сообщества, включая как узких специалистов, так и историков науки, философов, обсуждающих возникшие этические проблемы, а также общества в целом. По тематике CRISPR/Cas активно получают гранты, по ней охотно публикуются статьи. Следует помнить, что только неугасающий интерес первооткрывателей (в особенности, Франсиско Мохика), позволил нам оказать на том уровне знаний, на котором мы сейчас находимся.

ОТНОГЕНЕЗ том 53 № 4 2022
генные признаки, изменение которых с помощью CRISPR/Cas сложно или даже невозможно, то редактирование единичных генов выглядит разрешимой научной задачей. Прецедент с редактированием гена CCR5 заставил глубоко задуматься всю информированную общественность, ведь помимо описанной резистентности к ВИЧ, мутация CCR5 ассоциирована с улучшением памяти и способности к обучению (Zhou et al., 2016). Захотят ли будущие родители улучшать когнитивные способности своих еще нерожденных детей за счет редактирования генома?

На все подобные вопросы предстоит ответить в недалеком будущем, лучше сделать это прежде, чем приступать к редактированию генома людей.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (075-15-2020-773) и программы фундаментальных исследований ИБР РАН (0088-2021-0007).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что какой-либо конфликт интересов отсутствует.

СПИСОК ЛИТЕРАТУРЫ

Валентинова К.Р., Овечкина В.С., Пригорева Е.В. и др. Использование системы CRISPR/CAS9 для изучения клеточной модели спинной мышечной атрофии // Гены и клетки. 2017. Т. 12. № 3.

Веденева Н. Нобель по химии 2020: кто изменил код жизни курицы-несушки URL: https://www.mk.ru/science/2020/10/07/nobel-po-khimii-2020-kto-izmenil-kod-zhizni-kuricynesushki.html (дата обращения: 23.01.2022).

Слободкина Е.А., Карагяур М.Н., Балабаньян В.Ю. Ведение отсутствует.

Онтофенез том 53 № 4 2022
Groenen P.M., Bunschoten A.E., Soolingen D. van et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method // Mol. Microbiol. 1993. V. 10. № 5. P. 1057–1065.

Hille F., Charpentier E. CRISPR-Cas: biology, mechanisms and relevance // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2016. V. 371. № 1707. P. 20150496.

Hille F., Richter H., Wong S.P. et al. The biology of CRISPR-Cas: Backward and forward // Cell. 2018. V. 172. № 6. P. 1239–1259.

Hoe N.P., Nakashima K., Lukomski S. et al. Rapid selection of complement-inhibiting protein variants in group A Streptococcus epidemic waves // Nat. Med. 1999. V. 5. № 8. P. 924–929.

Ishino Y., Shingawara H., Makino K. et al. Nucleotide sequence of the tap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product // J. Bacteriol. 1987. V. 169. № 12. P. 5429–5433.

Jansen R., Embden J.D.A. van, Gaastra W. et al. The biology of CRISPR-Cas: Horizontal gene transfer in staphylococci by targeting DNA // Science. 2008. V. 322. № 5909. P. 1843–1845.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al.てくれるが、実際のRNAiがプロトケインを生成するモデルシステムについて // Mol. Microbiol. 2010. V. 77. № 6. P. 1341–1345.

Mojica F. J., Juez G., Rodríguez-Valera F. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Ferrer C., Juez G. et al. Long stretches of short tandem repeats are present in the largest replications of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replication partitioning // Mol. Microbiol. 1995. V. 17. № 1. P. 85–93.

Mojica F. J., Juez G., Rodríguez-Valera F. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA // Science. 2008. V. 322. № 5909. P. 1843–1845.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.

Mojica F. J., Díez-Villaseñor C., García-Martínez J. et al. The on-off switch of CRISPR immunity against phages in Escherichia coli // Nature. 1993. V. 366. № 6474. P. 523–526.
CRISPR/Cas: ИСТОРИЯ И ПЕРСПЕКТИВЫ

Naeem M., Majeed S., Hoque M.Z. et al. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing // Cells. 2020. V. 9. № 7. P. 1608.

Nair P. QnAs with Rodolphe Barrangou // PNAS. 2017. V. 114. № 28. P. 7183–7184.

Nakata A., Amemura M., Makino K. Unusual nucleotide arrangement with repeated sequences in the *Escherichia coli* K-12 chromosome // J. Bacteriology. 1989. V. 171. № 6. P. 3553–3556.

National Academies of Sciences, Engineering, and Medicine, National Academy of Medicine; National Academy of Sciences, Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations. Human Genome Editing: Science, Ethics, and Governance. Washington (DC): National Academies Press, 2017. PMID: 28796468.

Nidhi S., Anand U., Oleksak P. et al. Novel CRISPR–Cas systems: an updated review of the current achievements, applications, and future research perspectives // Int. J. Mol. Sci. 2021. V. 22. № 7. P. 3327.

North A.R., Burt A., Godfray H.C.J. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility // BMC Biology. 2020. V. 18. № 1. P. 98.

Novembre J., Galvani A.P., Slatkin M. The geographic spread of the CCR5 Δ32 HIV-resistance allele // PLoS Biol. 2005. V. 3. № 11. P. e339.

Nuffield Council on Bioethics. Genome editing and human reproduction: social and ethical issues. London: Nuffield Council on Bioethics, 2018. 205 p.

Ormond K.E., Mortlock D.P., Scholes D.T. et al. Human germ-line genome editing // Am. J. Hum. Genet. 2017. V. 101. № 2. P. 167–176.

Pourcel C., Salvignol G., Vergnaud G. CRISPR elements in *Yersinia pestis* acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies // Microbiology. 2005. V. 151. Pt 3. P. 653–663.

Reardon S. First pig-to-human heart transplant: what can scientists learn? // Nature. 2022. V. 601. № 7893. P. 653–663.

Regalado A. China’s CRISPR babies: Read exclusive excerpts from the unseen original research URL: https://www.technologyreview.com/2019/12/03/131752/chinas-crispr-babies-read-exclusive-excerpts-he-jiankui-paper/ (дата обращения: 23.01.2022).

Rodríguez–Leal D., Lemmon Z.H., Man J. et al. Engineering quantitative trait variation for crop improvement by genome editing // Cell. 2017. V. 171. № 2. P. 470–480. e8.

Rusanov A., Kozhin P., Romashin D. et al. Impact of p53 modulation on interactions between p53 family members during HaCat keratinocytes differentiation // Bulletin of Russian State Medical University. 2020.

Rysenkova K.D., Semina E.V., Karagyaur M.N. et al. CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation // Oncotarget. 2018. V. 9. № 50. P. 29414–29430.

Sánchez–Leín S., Gil–Humeses J., Ozuna C.V. et al. Low–gluten, nontransgenic wheat engineered with CRISPR/Cas9 // Plant Biotechnology J. 2018. V. 16. № 4. P. 902–910.
Discovery of the CRISPR/Cas system revolutionized biology and biomedicine in the 21st century. Here we discuss the milestones in the development of CRISPR/Cas genome editing technology, from the history of discovery to current developments, including medical applications. Technical and ethical problems associated with the use of CRISPR/Cas for editing human embryonic genomes are also discussed.

Keywords: CRISPR, Cas, genome editing, history of science