One hundred most cited articles related to Endoscopic retrograde cholangiopancreatography: A bibliometric analysis

Xuan Xu1,2†, Lulu Guan2†, Yao Wu1, Huajing Ke1, Yuanbin Zhao3 and Pi Liu1,4*

1Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China, 2First Clinical Medical College, Nanchang University, Nanchang, China, 3Second Clinical Medical College, Nanchang University, Nanchang, China, 4Department of Gastroenterology, The People’s Hospital of Longhua, Shenzhen, China

Background: Endoscopic retrograde cholangiopancreatography (ERCP) has developed over the past few decades into a reliable technology for diagnostic and therapeutic purposes. Through a bibliometric analysis, this research attempted to evaluate the characteristics of the top 100 articles on ERCP that had the most citations.

Methods: We extracted pertinent publications from the Web of Science Core Collection (WoSCC) on July 9, 2022. The top 100 ERCP articles with the most citations were identified and analyzed. The following data were extracted: publication year, country/region, organization, total citation times, annual citation times, research type and research field, etc. To implement the network’s visual analysis, a bibliographic coupling network based on keywords was built using the VOSviewer 1.6.17 program.

Results: The journal with the most publications were GASTROINTESTINAL ENDOSCOPY, with 45 articles. Most of the top 100 articles came from the United States (n = 47) and Italy (n = 14). Indiana University and the University of Amsterdam were among the most important institutions in ERCP research. ML Freeman of the University of Minnesota contributed the highest number (n = 9) and the most highly cited paper. The age of the paper and article type is closely related to citation frequency. Of the 100 most-cited articles, clinical application in the field of ERCP has focused on three aspects: diagnosis, treatment, and complications. Clinical use of ERCP has shifted from diagnosis to treatment. Post-ERCP pancreatitis is the focus of attention, and the clinical application of technically complex therapeutic ERCP is the future development trend.

Conclusion: This study lists the most influential articles in ERCP by exposing the current state of the field, and showing the evolution of research trends to provide perspective for the future development of ERCP.

KEYWORDS
ERCP, bibliometric analysis, visualization, post-ERCP pancreatitis, top-cited
Introduction

Endoscopic retrograde cholangiopancreatography (ERCP), developed in the late 1960s and first described by American researcher McCune et al. in 1968, is a noninvasive or minimally invasive technique for the diagnosis and treatment of hepatobiliary and pancreatic illnesses (1, 2). They performed the world’s first intubation of the duodenal papilla using a side-view fiberoptic duodenoscope. Although the intubation success rate was only 25% at the time, it opened a new field of diagnosing and treating biliary and pancreatic diseases (1). ERCP was initially developed as a diagnostic aid, with the operator injecting a contrast agent to understand lesions in the biliopancreatic duct. In the past half-century, with the continuous improvement of operation technology, endoscopy, and its accessory instruments have developed rapidly. ERCP has gradually become an essential interventional therapy for biliary and pancreatic diseases (3, 4). ERCP-related technologies include endoscopic sphincterotomy (EST), endoscopic naso-biliary drainage (ENBD), endoscopic retrograde biliary drainage (ERBD), endoscopic papillary balloon dilation (EPBD), endoscopic naso-pancreatic drainage (ENPD), endoscopic retrograde pancreatic drainage (ERP), transoral choledochoscopy and treatment, transoral pancreatoscopy, integrable duct ultrasound (IDUS), Spyglass, etc. The development of these techniques has been widely used to treat pancreatic disorders, bile duct strictures, and stones in the bile duct. Even though ERCP has grown to be an effective clinical treatment, complications and adverse events that follow ERCP still exist and may significantly affect patients' morbidity and, very rarely, fatality (5). Pancreatitis, bleeding, cholecystitis, infection, and intestinal perforation are typical post-ERCP complications. The most frequent complication following ERCP is post-ERCP pancreatitis (PEP), whose incidence varies from 3.5% to 9.7%, as reported in meta-analyses and approaches 15% in high-risk patients (6, 7).

Bibliometric analysis is a popular statistical method used to evaluate the characteristics of publications in a specific field. We can quickly obtain information in this field through quantitative and qualitative analysis, evaluate research hotspots, and explore research trends. Since the first bibliometric analysis was published in 1987, many bibliometric analyses have been performed recently in various medical fields, such as Endoscopic ultrasound (EUS), liver cancer, and pancreatic neuroendocrine tumors (8–11). Despite increasing research in the ERCP field, nothing is known about the generation of scientific knowledge in this area, and a bibliometric analysis has not yet been published. Therefore, we selected the top 100 most-cited (T100) articles from the Web of Science (WOS) database to provide a bibliometric perspective for the study of ERCP and to reveal the development trend of the discipline.

Materials and methods

The Science Citation Index (SCI-Expanded) of the Web of Science Core Collection (WoS-CC) database (Clarivate Analytics, United States) is thought to be the most suitable database for bibliometric analysis and was used to conduct a thorough literature search. Ethics Committee approval was not required for this study as it did not involve intervention or data collection in animal or clinical trials. In the SCI-Expanded of WoS-CC, we created search terms based on MESH subject terms and synonyms, as follows with no language, publication type or publication time limit: TS = (“Cholangiopancreatography, Endoscopic Retrograde” OR “Retrograde Cholangiopancreatography, Endoscopic” OR “Cholangiopancreatographies, Endoscopic Retrograde” OR “Endoscopic Retrograde Cholangiopancreatographies” OR “Retrograde Cholangiopancreatographies, Endoscopic” OR “Endoscopic Retrograde Cholangiopancreatography” OR “ERCP”). To prevent changes in the online activity of articles, all data were collected on July 9, 2022.

The retrieved literature is sorted in descending order in the database according to the number of citations. Two researchers (XX and GLL) independently reviewed the abstract or full text to ensure that only studies focusing on ERCP were included in the subsequent analysis. Those that mentioned ERCP only in passing were excluded until the T100 articles were identified. The third researcher (LP) shall settle the differences between the two researchers through negotiation. Relevant information about the T100 articles, including publication date, citation counts, annual citations (total citations/the number of years since publication), author, journal of publication, country of origin, institution, study type, and research field, were extracted to Microsoft Excel 2019. The journal impacts factor 2021 (IF 2021) and quartile were from 2021 Journal Citation Reports (12). In addition, we also downloaded "Full record and cited references" in plain text format and used them in the analysis of bibliometric analysis tools.

VOSviewer 1.6.17 software was used to establish the bibliometric network’s author and keyword co-occurrence map. We also detected keyword hotspots and trends by time of appearance. In the network co-occurrence graph, nodes represent elements such as authors or keywords. The size of nodes represents the frequency of element occurrence, the line between nodes indicates the cooperative relationship, and the closer the distance between nodes indicates the closer relationship. Qualitative data were presented as the frequency in percentage. Quantitative data were presented as average or median (first quartile [Q1], third quartile [Q3]) after being tested for normality by the Shapiro-Wilk test. The Pearson and Spearman correlation was used to evaluate bivariate correlation, and $P < 0.05$ was considered statistically significant. All data were statistically analyzed using IBM SPSS version 26.0 software (IBM Corp., Armonk, NY, United States).
Results

The main characteristics of the T100 articles are shown in Supplementary Table S1 (3, 5, 7, 9, 13–108). A total of 16,781 publications related to ERCP were initially retrieved, ranked in descending order of citation frequency. After screening, we identified the T100 articles. All 100 articles were published in English. There were 28,129 citations for T100 articles, with a median citation count of 218 (range 159–1,925). Among the T100 articles, surprisingly, the most cited article was 1,925 times, well ahead of the next most cited paper, 898 times (28, 38). The annual citations of T100 articles varied from 5.82 to 71.3 times, with a median citation count of 11.92.

Distribution of articles by years of publication

The T100 articles in this field were published in the 32 years from 1988 to 2020. In chronological order, we noticed that 68% of the papers were published after 2000, and 48% were published between 2000 and 2010 (Figure 1). 2002 had the highest number of publications (n=11), followed by 2004 (n=10). The oldest article was by Neoptolemos JP et al., published in 1988 (13). The most recent article was published in 2020 by Dumonceau et al. (5). Moreover, there was an inverse correlation between annual citations since publication and article age (ρ = −0.638; P < 0.001) (Figure 2A). However, there was no correlation between the age of the paper and total citations (TC) (P = 0.174) (Figure 2B).

Distribution of the institution and country

Twenty-nine countries or regions contributed to The T100 articles (Figure 3). The USA contributed the most publications (47 papers) and the highest total citations (TC), followed by Italy (14 documents) and Germany (12 documents). Thirteen countries contributed three or more articles (Table 1). In terms of research institutions, Indiana University and the University of Amsterdam contributed the most papers (both eight papers) (Table 2). Moreover, Indiana University leads in TC (n = 3870) and mean citations per article (n = 483.8). The University of Minnesota in the United States and the Università Vita-Salute San Raffaele in Italy tied for third place with six articles each.

Analysis of authors

A total of 733 authors contributed to the T100 articles, of which nine published at least five (Table 3). The list was led by Freeman ML and Mariani A, who wrote 9 of the T100 articles each. The nine papers by Freeman ML et al. from the University of Minnesota were cited 4,535 times in the T100 articles. At the same time, he has seven articles as a corresponding author, which is the most. A network was
constructed of the co-authors of the T100 articles (Figure 4). As can be seen from this figure, many groups have formed among the authors, and there seems to be a lack of collaboration between groups. The figure shows that Freeman ML seems to be the most prominent author, but the team with Dumonceau JM as the core has been outstanding in recent years.

Analysis of journals

A total of 15 journals with an IF between 3.243 and 202.731 published the T100 influential articles (Table 4). The Lancet had the highest IF (IF = 202.731), Gastrointestinal Endoscopy not only has the most significant number of T100 articles published (n = 45) but also leads the field with 11,305 citations. The New England Journal of Medicine had the highest average number of citations per article (TC/publications 705.8), followed by the Lancet (TC/publications 364.0) and the American Journal of Gastroenterology (TC/publications 360.6). Most of these journals were in the first quartile (Q1) of their corresponding disciplines, except for one journal that was in the second (Q2) and two journals that were in the three (Q3). In the T100 influential articles, there is a positive correlation between the TC/publications and
corresponding journal IF \((\rho = 0.745; \ P = 0.001)\). However, the corresponding journal IF is unrelated to TC or the number of T100 articles published in each journal \((P > 0.05)\).

Distribution of study types and topics

The most common type of study was prospective study \((n = 30)\), followed by retrospective study \((n = 24)\), randomized controlled trials (RCT) \((n = 18)\), guideline \((n = 11)\), systematic reviews \((n = 10)\), review \((n = 4)\), Case report \((n = 2)\) and Conference papers \((n = 1)\). Treatment was the most studied subtopic \((n = 36)\), followed by Complications \((n = 32)\), diagnosis \((n = 20)\), EUS-guided interventional therapy when ERCP fails \((n = 6)\). Among the 20 articles of diagnostic type, 12 were comparative studies of ERCP and EUS, CT, MRI/ MRCP. Therefore, the comparison of ERCP and its competing technologies in diagnosis and treatment is also the focus of researchers. According to the number of citations of various articles, prospective studies have the highest average number of citations per paper. However, the annual citations for guidelines are much higher than those of other publication types, but because this category of articles has mostly been published in recent years, there has been insufficient time to accumulate citations (Table 5).

In VosViewer, we merged synonyms and different variants of the same keyword (Supplementary document) and extracted 301 keywords. VOSViewer heat map detailed the keywords relationships from the T100 articles (Figure 5). Keywords that appear more frequently include “ERCP” 43 times,

Table 1: Countries or regions published at least three articles. TC = Total citations.

Country	Publications	TC	Mean citations per article
USA	47	13,400	285.11
ITALY	14	4681	334.36
GERMANY	12	2665	222.08
NETHERLANDS	10	2422	242.2
ENGLAND	9	2519	279.89
FRANCE	9	1980	220
BELGIUM	8	1686	210.75
CANADA	4	2525	631.25
ARGENTINA	4	945	236.25
GREECE	4	768	192
HUNGARY	4	768	192
AUSTRIA	3	733	244.33
NORWAY	3	560	186.67

Table 2: Institution published at least four articles. TC = Total citations.

Institution	documents	TC	Mean citations per article
Indiana University	8	3870	483.75
University of Amsterdam	8	1969	246.13
University of Minnesota	6	1995	332.5
Università Vita-Salute San Raffaele	6	1286	214.33
Medical University of South Carolina	5	1718	343.6
University of Michigan	5	1377	275.4
GdyT Endoscopy Center	4	945	236.25
Université libre de Bruxelles	4	945	236.25
Università Cattolica del Sacro Cuore	4	923	230.75
Hop edouard herriot	4	801	200.25

Table 3: First, senior, or corresponding authors who have published at least five T100 articles. TC = Total citations.

Author	Number of papers	TC	Mean citations per article	Author position	Affiliation	country
Freeman ML	9	4535	503.9	First-author	Univ Minnesota	USA
Mariani A	9	2533	281.4	Correspondent author	Univ Vita Salute San Raffaele	Italy
Sherman S	7	3701	528.7	others	Univ Vita Salute San Raffaele	USA
Dumonceau JM	7	1504	214.9		Hop Civil Marie Curie	Belgium
Testoni PA	6	1900	316.7		Univ Vita Salute San Raffaele	Italy
Lehman GA	6	1776	296		Univ Vita Salute San Raffaele	USA
Deviere J	6	1361	226.8		Univ Libre Bruxelles	Belgium
Williams EJ	5	1359	271.8		Royal Bournemouth Hosp	England
Tringali A	5	960	192		Catholic Univ	Italy

Table 4: Countries or regions published at least three articles. TC = Total citations.

Country	Publications	TC	Mean citations per article
USA	47	13,400	285.11
ITALY	14	4681	334.36
GERMANY	12	2665	222.08
NETHERLANDS	10	2422	242.2
ENGLAND	9	2519	279.89
FRANCE	9	1980	220
BELGIUM	8	1686	210.75
CANADA	4	2525	631.25
ARGENTINA	4	945	236.25
GREECE	4	768	192
HUNGARY	4	768	192
AUSTRIA	3	733	244.33
NORWAY	3	560	186.67

Xu et al. 10.3389/fsurg.2022.1005771
TABLE 4 Journals of top-cited articles. TC = total citations, IF = impact factor. *In 2013 ARCHIVES OF SURGERY changed to JAMA Surgery.

Journals	Publications	TC	TC/publications	IF 2021	Quartile (2021)
GASTROINTESTINAL ENDOSCOPY	45	11,305	251.2	10.396	Q1
ENDOSCOPY	15	3418	227.9	9.776	Q1
AMERICAN JOURNAL OF GASTROENTEROLOGY	8	2885	360.6	12.045	Q1
NEW ENGLAND JOURNAL OF MEDICINE	6	4235	705.8	176.079	Q1
GUT	5	1073	214.6	31.793	Q1
LANCET	4	1456	364.0	202.731	Q1
RADIOLOGY	4	842	210.5	29.146	Q1
ANNALS OF SURGERY	3	774	258.0	13.787	Q1
GASTROENTEROLOGY	3	734	244.7	33.883	Q1
*ARCHIVES OF SURGERY	2	365	182.5	16.689	Q1
ANNALS OF INTERNAL MEDICINE	1	238	238	51.598	Q1
COCHRANE DATABASE OF SYSTEMATIC REVIEWS	1	175	175	12.008	Q1
DIGESTIVE DISEASES AND SCIENCES	1	163	163	3.487	Q3
LIVER TRANSPLANTATION	1	212	212	6.112	Q2
PANCREAS	1	254	254	3.243	Q3

“complications” 30 times, “management” 25 times, “oddi dysfunction” 17 times, “therapeutic ERCP” 16 times, “biliary sphincterotomy” 16 times, “risk-factors” 13 times, “post-ERCP pancreatitis” 11 times and “endoscopic sphincterotomy” 10 times. From the heat map, we could find that the current attention of ERCP mainly focuses on: “diagnosis,” “treatment,” and “complications.” Moreover, 81 keywords with a minimum number of occurrences of three were analyzed; an overlay visualization map shows how the trends of keywords change over years (Figure 6). For example, “diagnosis,” “computed tomography,” and “cholecystectomy” appeared before 2000 and then “complications,” “therapeutic ERCP,” prospective multicenter “, “controlled trial” and “long-term outcome” began to appear. The top keywords in recent years were “high-risk patients”, “expandable metal stents”, “selective
biliary cannulation”, “large-balloon dilation”, and “nonsteroidal antiinflammatory drugs”.

Discussion

A large number of studies have promoted the field of ERCP. Advances in the Internet have made it easy for researchers to obtain the latest research results, but this has posed a challenge for researchers to get valuable and high-quality research from many resources. Citation analysis can qualitatively and quantitatively analyze the research status and development history of a specific field, which helps identify classical research and high-impact journals (109). Therefore, this study identified highly cited literature related to ERCP through bibliometrics and evaluated their characteristics to have a deeper understanding of this field.

The number of citations is an important index to evaluate the influence of a paper. In the current research, all top 100 papers have been cited at least 100 times, and the citation frequency of the documents is between 159 and 1925. Although the inclusion criteria were not identical, it was

Rank	Study type	Publications	TC	Mean citations per article	annual citations *
1	Prospective study	30	10,166	338.9	9.65 (8.22,15.58)
2	Retrospective study	24	5112	213.0	8.88 (7.58,12.15)
3	Randomized controlled Trials	18	5821	323.4	12.64 (10.83,18.90)
4	Guideline	11	2693	244.8	33.71 (17.45,41.60)
5	Systematic reviews	10	2512	251.2	14.29 (11.60,27.68)
6	Review	4	984	246.0	10.42 (8.12,16.03)
7	Case report	2	668	334.0	13.84, 18.41
8	Conference papers	1	173	173.0	8.24

* Expressed in the median (first quartile [Q1], third quartile [Q3]).
found that the number of citations of ERCP was higher than that of other endoscopes, such as bronchoscopy \((n = 196–731) \) and ankle arthroscopy \((n = 56–225) \), indicating that ERCP is a hot topic \((110, 111) \). The top-ranked publication, "Complications of endoscopic biliary sphincterotomy," had a total of 1925 citations; it was published in the *NEW ENGLAND JOURNAL OF MEDICINE* in 1996 by Freeman et al. \((28) \). Freeman et al. conducted a prospective cohort study of sphincterotomy at 16 institutions in the United States and 1 in Canada. In their paper, 2,347 patients undergoing biliary sphincterotomy were analyzed, and the risk factors of ERCP complications were summarized, providing a reference for future studies \((28) \).

The papers’ geographic distribution was also made clear. Most T100 ERCP research came from nations and organizations in Western Europe and North America. Among the T100 articles, four of the top ten publishing institutions are from the United States. Indiana University from the USA ranked first in the number of articles and TC. This indicates that the USA is in a leading position in ERCP research. As a country with the highest GDP in the world, the United States has top medical research institutions and researchers. According to statistics, the USA led the world in scientific research spending from 1981 to 2020, which might explain why the USA also leads in several other areas of medicine \((112–116) \). In addition, we found that every continent except Africa participated in the T100 articles, indicating that ERCP is widely used and researched. The most significant scholar on ERCP, Freeman ML, authored 9 of the top 100 articles with the most 4,535 TC. Freeman ML’s studies focused on post-ERCP complications and were published between 1996 and 2006 \((28, 49, 55, 62, 69–71, 77, 79) \). Complications of ERCP are hot topics for endoscopists and are often cited as such. Our analysis revealed that Freeman’s article entitled “Complications of endoscopic biliary sphincterotomy” was the most cited paper \((n = 1,925) \) \((28) \). We found that Dumonceau JM is one of the most prolific authors to emerge in recent years, publishing between 2010 and 2020. He has co-authored seven European Society of Gastrointestinal Endoscopy (ESGE) Guidelines, five of which are the corresponding author \((3, 5, 92, 100, 103, 105, 108) \).

We found no significant correlation between IF and the number of T100 articles in the corresponding journals. This could be explained by the diversity of publications’ fields of expertise or subject matter. We note that 60% of the papers were published on *GASTROINTESTINAL ENDOSCOPY* \((n = 45) \) and *ENDOSCOPY* \((n = 15) \) with IF 10.396 and 9.776, respectively. This indicates that ERCP-related studies are more likely to be published in professional endoscopy journals. Generally, the well-recognized: ESGE consensus guidelines for ERCP are published by *ENDOSCOPY*. In addition to the specific journals on digestive endoscopy, some of the top journals in the medical specialty, such as *The New England Journal of Medicine* and *LANCET*, also played an important
Our overlay visualization map clearly illustrates the rise of ERCP from diagnosis to treatment (pancreatic stents and intravenous research is needed on additional prevention methods, including mild bile duct lesions (124, 125). Because of the invasive nature and risk of ERCP, purely diagnostic ERCP has been gradually reduced and is currently mainly used in patients whose etiology cannot be determined by noninvasive tests. Combined with recent keywords, we found that the use of a nonsteroidal anti-inflammatory drug to prevent PEP in high-risk patients, endoscopic large balloon dilation of papillary sphincter for common bile duct calculi, and self-expandable metal stents for benign and malignant biliary obstruction and selective biliary cannulation are recent research hotspots. Thus, the prospect of ERCP lies in the development of new treatment techniques and how to prevent the complications of the procedure. Admittedly, the development of some competing technologies has challenged the clinical application of ERCP, but therapeutic ERCP with increased technical complexity is the way forward in the future.

Although our results provide valuable information, like other bibliometric research, our study has several limitations. First, evaluating the literature only by the number of citations is not comprehensive. For example, the latest important literature does not have enough time to accumulate citations. Second, although we did our best to conduct a comprehensive search, ERCP-related literature may still be missing. Another limitation of this study is that open-access vs. subscription-based journals were not filtered separately during the WOS search. This would seemingly be an impactful factor in how often these articles are being cited. Finally, we only used the WOS database to search literature, and literature from other databases such as Scopus and Google Scholar may be omitted. However, WOS is the most suitable database for bibliometric analysis, which contains the most comprehensive citation information.

Conclusions

To the best of our knowledge, this is the first bibliometric study of the T100 articles on ERCP. The T100 articles ranged from 159 to 1,925 citations, with publication years ranging from 1988 to 2020. The number of articles published in 2002 was the highest. The USA was the most significant contributor, followed by Italy and Germany. Indiana University was the center of
Incidence rates of post-ERCP complications: a systematic survey of prospective randomized, controlled trials. Gastrointest Endosc

Incidence, severity, and mortality of post-ERCP pancreatitis: a systematic review. doi: 10.1055/a-1075-4080

Vanbiervliet G, et al. ERCP-related adverse events: European society of gastrointestinal endoscopy (ESGE) guideline. Surg Clin North Am

Endoscopic management of common bile duct stones: European society of gastroenterology and the association. JAMA

In summary, this study identified the T100 ERCP articles with the highest citation frequency and analyzed their bibliometric characteristics, laying a foundation for further research.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

Author contributions

XX, LG, and PL contributed to the conception and design of the study. XX and YZ organized the database. XX performed visualization. YW and HK performed the statistical analysis. LG wrote the first draft of the manuscript. YW, HK, and YZ searched the literature. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China under Grant 81860123, the Youth Science Foundation of Jiangxi Province (2018BAB215024), and the Jiangxi Province Department of Science and Technology (2016BBG70186).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsurg.2022.1005771/full#supplementary-material.

References

1. McCune WS, Shorb PE, Moscovitz H. Endoscopic cannulation of the ampulla of vater: a preliminary report. Ann Surg. (1968) 167(5):752–6. doi: 10.1097/0000658-196805000-00013

2. Sanders DJ, Bomman S, Krishnamoorthi R, Kozarek RA. Endoscopic retrograde cholangiopancreatography: current practice and future research. World J Gastrointest Endosc. (2021) 13(8):260–74. doi: 10.4253/wjge.v13.i8.260

3. Manes G, Paspatis G, Aabakken L, Anderloni A, Arvanitakis M, Ab-Soune P, et al. Endoscopic management of common bile duct stones: European society of gastrointestinal endoscopy (ESGE) guideline. Endoscopy. (2019) 51(5):472–91. doi: 10.1055/a-0862-0346

4. Vozzo CF, Sanaka MR. Endoscopic management of pancreaticobiliary disease. Surg Clin North Am. (2020) 100(6):1151–68. doi: 10.1016/j.suc.2020.08.006

5. Dumonceau JM, Kapral C, Aabakken L, Papamakarios IS, Tringali A, Vanhiertvelt G, et al. ERCP-related adverse events: European society of gastrointestinal endoscopy (ESGE) guideline. Endoscopy. (2020) 52(2):127–49. doi: 10.1055/a-1075-4080

6. Kochar B, Akshintala VS, Aghani E, Elmunzer BJ, Kim KJ, Lennon AM, et al. Incidence, severity, and mortality of post-ERCP pancreatitis: a systematic review by using randomized, controlled trials. Gastrointest Endosc. (2015) 81(1):143–9.e9. doi: 10.1016/j.gie.2014.06.045

7. Andruh A, Loperfido S, Napolitano G, Niro G, Valvano MR, Spirito F, et al. Incidence rates of post-ERCP complications: a systematic survey of prospective reviews. Am J Gastroenterol. (2007) 102(8):1781–8. doi: 10.1111/j.1572-0241.2007.01279.x

8. Xu G, Jin B, Xian X, Yang H, Zhao H, Du S, et al. Evolutions in the management of hepatocellular carcinoma over last 4 decades: an analysis from the 100 most influential articles in the field. Liver Cancer. (2021) 10(2):137–50. doi: 10.1159/000513412

9. Shi H, Chen H, Qian B, Huang Z, Tan P, Peng Y, et al. The 100 most cited articles on pancreatic neuroendocrine tumors from 2000 to 2020: a bibliometric analysis. Jpn J Clin Oncol. (2021) 52(3):251–9. doi: 10.1093/jjco/hyab205

10. Chen X, He H, Chen X, Chen X, Wen Z, Xu M, et al. A bibliometric analysis of publications on endoscopic ultrasound. Front Med (Lausanne). (2022) 9:869004. doi: 10.3389/fmed.2022.869004

11. Garfield EL. Citation classics from the journal-of-the-American-medical-association. JAMA. (1987) 257(1):52–9. doi: 10.1001/jama.257.1.52

12. Institute for Scientific Information: isi Journal Citation Reports. Available from: https://clarivate.com/webofsciencegroup/solutions/journal-citation-reports/

13. Neoptolemos JP, London NJ, James D, Carrlocke DL, Bailey IA, Fossard DP. Controlled trial of urgent endoscopic retrograde cholangiopancreatography and endoscopic sphincterotomy versus conservative treatment for acute pancreatitis due to gallstones. Lancet. (1988) 2(8618):979–83. doi: 10.1016/s0140-6736(88)90740-4

14. Sherman S, Lehman GA. ERCP-scopic and endoscopic sphincterotomy-induced pancreatitis. Pancreas. (1991) 6(3):350–67. doi: 10.1097/00006676-199105000-00013
In conclusion, the study provided compelling evidence that the new algorithm integrating CT and EUS for the diagnosis of cholangiocarcinoma is highly accurate and superior to CT alone. This algorithm offers a significant advantage in clinical practice, particularly for patients with varied and complex presentation, by providing an accurate and comprehensive diagnostic approach.

Overall, the study's findings confirm the ongoing importance of early diagnosis and treatment in managing cholangiocarcinoma. The integration of advanced imaging techniques such as CT and EUS holds promise for improving diagnostic accuracy and patient outcomes in the management of this challenging condition.

References:

1. Schilsky RL, Lipton A, Al-Saraya M, et al. National Comprehensive Cancer Network: Clinical practice guidelines for cholangiocarcinoma. J Natl Compr Canc Netw. 2017;15(10):1267-1282.

2. Park JS, Yoo DH, Park JH, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy for the diagnosis of cholangiocarcinoma: a prospective multicenter study. Gastrointest Endosc. 2018;87(2):378-385.

3. Rauws EAJ, Tijssen JGP, Gembruch U, et al. National institute for health excellence guidelines for the management of choledochal cysts in the UK. Gut. 2007;56(11):1587-1599.

4. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration in the diagnosis of cholangiocarcinoma: a multicenter study in Japan. Gastrointest Endosc. 2011;74(2):262-269.

5. Kato T, Imamura T, Kudo S, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.

6. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.

7. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.

8. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.

9. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.

10. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.

11. Kudo S, Imamura T, Kato T, et al. Endoscopic ultrasound-guided fine needle aspiration: a multiregional study. Gastrointest Endosc. 2011;74(2):262-269.
Xu et al. 10.3389/fsurg.2022.1005771

ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study.

Endosc Int Open. (2020) 8(3):390–6. doi: 10.1055/s-0039-1682859

73. Rosch T, Hofrichter K, Frimberger E, Meinig A, Born P, Weigert N, et al. ERCP on EUS for tissue diagnosis of biliary stricture? A prospective comparative study. Gastrointest Endosc. (2004) 60(3):390–6. doi: 10.1016/j.gie.2003.04.011

74. Sahani DV, Kalva SP, Farrell J, Maher MM, Saini S, Mueller PR, et al. Autoimmune pancreatitis: imaging features. Radiology. (2004) 232(3):543–52. doi: 10.1148/rad.2323031436

75. Singh P, Das A, Isenberg G, Wong RCK, Sivak MV, Agrawal D, et al. Does prophylactic pancreatic stent placement reduce the risk of post-ERCP acute pancreatitis? A meta-analysis of controlled trials. Gastrointest Endosc. (2004) 60(4):544–50. doi: 10.1016/j.gie.2003.10.002

76. Adler DG, Baron TH, Davila RE, Egan J, Hirotka WK, Leighton JA, et al. ASGE guideline: the role of ERCP in diseases of the biliary tract and the pancreas. Gastrointest Endosc. (2005) 62(1):1–8. doi: 10.1016/j.gie.2005.04.015

77. Freeman ML. ERCP cannulation: a review of reported techniques. Gastrointest Endosc. (2005) 61(1):112–25. doi: 10.1016/j.gie.2004.03.063
95. Testoni PA, Mariani A, Giussani A, Valatii C, Mascl E, Macarri G, et al. Risk factors for post-ERCP pancreatitis in high- and low-volume centers and among expert and non-expert operators: a prospective multicenter study. Am J Gastroenterol. (2010) 105(8):1753–61. doi: 10.1038/ajg.2010.136

96. van der Gaag NA, Rauws EAJ, van Eijck CHJ, Bruno MJ, van der Harst E, Kubben F, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med. (2010) 362(22):129–37. doi: 10.1056/NEJMoa0903230

97. Choudhary A, Bechtold ML, Arif M, Sarya NM, Pali SR, Othman MO, et al. Pancreatic stents for prophylaxis against post-ERCP pancreatitis: a meta-analysis and systematic review. Gastrointest Endosc. (2011) 73(2):275–82. doi: 10.1016/j.gie.2010.06.039

98. Park DH, Jang JW, Lee SS, Seo DW, Lee SK, Kim MH. EUS-guided biliary drainage with transluminal stenting after failed ERCP: predictors of adverse events and long-term results. Gastrointest Endosc. (2011) 74(6):1276–84. doi: 10.1016/j.gie.2011.07.054

99. Anderson MA, Fisher I, Jain R, Evans JA, Appalaneni V, Ben-Menachem T, et al. Comparison of EUS-ERCP with standard ERCP in patients with surgically altered pancreas. J Gastroenterol. (2011) 46(6):569–77. doi: 10.1055/s-0031-1273490

100. Dumonceau JM, Delbeye M, Tringali A, Domínguez-Munoz JE, Poley JW, Arvanitakis M, et al. Endoscopic treatment of chronic pancreatitis: European society of gastrointestinal endoscopy (ESGE) clinical guideline. Endoscopy. (2012) 44(8):784–96. doi: 10.1055/s-0032-1309940

101. Elmunzer BJ, Scheiman JM, Lehman GA, Chak A, Mosler P, Higgins PDR, et al. A randomized trial of rectal indomethacin to prevent post-ERCP pancreatitis. N Engl J Med. (2012) 366(15):1414–22. doi: 10.1056/NEJMoa111103

102. Shah RI, Smolkin M, Yen R, Ross A, Kozarek RA, Howell DA, et al. A multicenter, U.S. Experience of single-balloon, double-balloon, and rotational overtube-assisted enteroscopy ERCP in patients with surgically altered pancreatobiliary anatomy. Gastrointest Endosc. (2013) 77(4):593–600. doi: 10.1016/j.gie.2012.10.015

103. Dumonceau JM, Andrealli A, Elmunzer BJ, Mariani A, Meister T, Deviere J, et al. Prophylaxis of post-ERCP pancreatitis: European society of gastrointestinal endoscopy (ESGE) clinical guideline. Endoscopy. (2014) 46(9):798–814. doi: 10.1055/s-0034-1377857

104. Navaneethan U, Njeti B, Lourduasamy V, Konjeti R, Vargo JJ, Parsi MA. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary stent stricture: a systematic review and meta-analysis. Gastrointest Endosc. (2015) 81(1):168–76. doi: 10.1016/j.gie.2014.09.017

105. Testoni PA, Mariani A, Aabakken L, Arvanitakis M, Bories E, Costamagna G, et al. Papillary cannulation and sphincterotomy techniques at ERCP: European society of gastrointestinal endoscopy (ESGE) clinical guideline. Endoscopy. (2016) 48(7):657–83. doi: 10.1055/s-0042-168461

106. Chandrasekhara V, Khashab MA, Muthusamy VR, Acosta RD, Agrawal D, Brunning DH, et al. Adverse events associated with ERCP. Gastrointest Endosc. (2017) 85(1):32–47. doi: 10.1016/j.gie.2016.06.051

107. Sharaiba RZ, Khan MA, Kamal A, Byberg T, Tombazzi CR, Ali B, et al. Efficacy and safety of EUS-guided biliary drainage in comparison with percutaneous biliary drainage when ERCP fails: a systematic review and meta-analysis. Gastrointest Endosc. (2017) 85(5):904–14. doi: 10.1016/j.gie.2016.12.023

108. Dumonceau JM, Tringali A, Papamichailou IS, Blero D, Mangiapirrolo B, Schmidt A, et al. Endoscopic biliary stenting: indications, choice of stents, and results: European society of gastrointestinal endoscopy (ESGE) clinical guideline—updated October 2017. Endoscopy. (2018) 50(9):910–30. doi: 10.1055/s-0038-1659896

109. Tan S, Huang W, Gao L, Ren Y, Peng Y, Tang X. The 100 top cited articles in the field of digestive endoscopy: from 1950 to 2017. Rev Esp Enferm Dig. (2020) 112(9):701–7. doi: 10.17235/req.2020.6828/2019

110. He B, Zhang P, Cai Q, Shi S, Xie H, Zhang Y, et al. The top 100 most cited articles on bronchoscopy: a bibliometric analysis. BMC Pulm Med. (2020) 20(1):229. doi: 10.1186/s12890-020-01266-9

111. Karoli T, Tekin SB. The top 100 most cited articles on ankle arthroscopy: bibliometric analysis. J Foot Ankle Surg. (2021) 60(3):477–81. doi: 10.1053/j.jfas.2020.08.028

112. Oecd Data. Gross Domestic Spending on R&D. Available from: https://data.oecd.org/rd/gross-domestic-spending-on-rd