Variability in soil properties influencing pigeonpea (*Cajanus cajana L.*) yield: a multivariate statistical analysis

Rajesh N L, Narayana Rao K, Sathishkumar U, Wali V B, Basavaraj K, Rudramurthy H V, Desai B K

1Soil Science and Agricultural Chemistry, University of Agricultural Sciences Raichur, Raichur, Karnataka, 584104, India
2Soil Water Conservation Engineering, University of Agricultural Sciences Raichur, Raichur, Karnataka, 584104, India
3Agricultural Statistics, University of Agricultural Sciences Raichur, Raichur, Karnataka, 584104, India
4Agronomy, University of Agricultural Sciences Raichur, Raichur, Karnataka, 584104, India

Abstract
Aims: The aim of the study was to reveal the variability in soil properties influencing pigeonpea (*Cajanus cajana L.*) seed yield under semi-arid rainfed condition.

Methods: Soils were initially classified into series level and further these series were divided into soil-phase units. For two site years viz., 2018-19 and 2019-20, surface soil samples from each soil-phase unit were collected before sowing of pigeonpea and subsequently crop growth parameters at critical stages were recorded.

Results: The principal component analysis with varimax rotation resulted in seven components for both the site years, having eigenvalues greater than one, explained more than 80% of the variability. The step wise linear regression analysis showed that the pigeonpea seed yield was linearly correlated with PC3 (p<0.01), PC4 (p<0.01) and PC7 (p<0.05) of soil properties with $R^2 = 0.679$, during 2018-19. Whereas, during 2019-20, the seed yield was linearly correlated with PC1 (p<0.01), PC3 (p<0.01) and PC6 (p<0.05) with $R^2 = 0.677$. In site year 1, the available P$_2$O$_5$, Fe, Zn, S, Cu, number of pods, surface soil moisture determined the yield. In site year 2, the available K$_2$O, P$_2$O$_5$, Fe, Zn, S, clay, CEC and available water content determined the yield. All these variables together explain variability in yield.

Keywords
Soil-phase unit, Soil-plant relationship, Principal component regression analysis
Corresponding author: Rajesh N L (rajesh.neralikere@gmail.com)

Author roles: N L R: Conceptualization, Data Curation, Formal Analysis, Methodology, Writing – Original Draft Preparation; K NR: Supervision, Visualization; U S: Resources, Validation, Visualization; V B W: Formal Analysis, Software, Writing – Review & Editing; K B: Data Curation, Resources; H V R: Data Curation, Methodology, Validation, Visualization; B K D: Funding Acquisition, Validation, Visualization

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by The World Bank, Watershed Development Department, GoK, Bengaluru. & NBSSLUP, Regional Centre, Bengaluru.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2023 N L R et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: N L R, K NR, U S et al. Variability in soil properties influencing pigeonpea (Cajanus cajana L.) yield: a multivariate statistical analysis [version 3; peer review: 2 approved] F1000Research 2023, 10:944
https://doi.org/10.12688/f1000research.53095.3

First published: 20 Sep 2021, 10:944 https://doi.org/10.12688/f1000research.53095.1
Introduction

Despite environmental perturbations, agricultural landscapes provide diverse ecosystem services and maintain crop yields (John, 2020). The resilience of agricultural landscapes is underpinned by complex interactions between environmental factors (precipitations, temperature, pollutants, and sunlight) and agricultural inputs provided during crop cultivation (FAO, 2013). Inherent soil properties, namely soil texture, type of clay, soil depth to bed rock and drainage class which result primarily from the soil-forming factors such as climate, topography, parent material, biota and time, influence the land suitability to cultivate a given crop to produce maximum yield (Moore, 2001). Therefore, the relationship between soil and crop yield mostly depends on the prevailing climate and the landscape. The process of deriving spatial or statistical models to establish a relationship between soil and crop yield involves a systematic inventory of land resources, specifically soil (physico-chemical properties) and plant variables (growth and yield parameters). Efforts have been made using multivariate statistical analysis to reclassify the soil variability into spatial management units, based on principles of similarity which are analogous to crop yield.

Although a soil-phase is a unit of soil outside the system of soil taxonomy, understanding the variability of landscape and soil properties and their effect on crop yield is a critical component of site-specific and sustainable management interventions (Juhos et al., 2015). Therefore, soil-phase taxa at soil series level is a functional management unit delineated based on the differentiating soil (texture, pH, EC) and land surface (gravel, slope, erosion) characteristics. Pigeonpea is a multi-purpose leguminous crop that plays an important role in food security, maintenance of soil fertility through litter fall, nitrogen fixation, provision of fodder for livestock and fuel for small-scale farmers in subsistence-agriculture (Egbe & Kalu, 2006). It improves soil organic matter content by leaf fall at the time of maturity and its deep tap root system breaks the plough pans and improves the soil structure. Hence, pigeonpea is often called as “Biological plough”. Extensive ground cover by pigeonpea prevents soil erosion due to wind and water which encourages the infiltration of rainwater and smother the weeds.

Multivariate analysis would be most appropriate to understand the specific variables influencing crop yield. Principal component analysis (PCA) is an extremely powerful analytical technique and can often indicate which variables in a data set have a significant effect on the response variables, and which are not significant (Hair et al., 2003). PCA can simplify the structure of a set of variables by replacing those with a few uncorrelated linear combinations of original variables. As soil parameters are correlated with each other due to their multicollinearity, it makes sense to examine them jointly (Zsigrai, 1999); therefore, there is the need to evaluate the correlation among the soil properties and crop growth parameters using PCAPCA is a mathematical linear transformation of the original variables, which accounts for the maximum share of the variability present in the original set of variables, with a minimum number of composite variables and makes no assumption of a model (Jolliffe & Cadima, 2016). Therefore, stepwise linear regression analysis to check the significance of soil properties and plant growth attributes is important for better understanding of the maximum share of variability present in the original set of variables. Further, these derived significant variables could be considered as primary targets for interventions to address the site-specific soil variability and improve the crop yield.

Methods

Study setting

The study area was located in the Northern dry zone of Karnataka State, India (Figure 1), between latitudes and longitudes of 17°40'17.956'' N - 76°59'46.836'' E and 17°38'12.689'' N - 77°1'17.049'' E, covering 645.20 ha, at an altitude of 511 - 637.86 m above mean sea level. The study was planned for two site years viz., during kharif (cropping season between June to October) 2018–2019 and kharif 2019–2020, to assess the variability in surface soil properties for each soil phase and crop growth parameters influencing pigeonpea yield.

Kalmandari Tanda-1 micro-watershed (MWS) reported mean monthly minimum and mean monthly maximum temperatures of 19.08°C and 31.97°C, respectively, during January 2018 and May 2018, whereas the reported values for these variables were respectively 18.89°C and 33.7°C for January 2019 and May 2019. The average annual rainfall measured by Kalmandari Tanda-1 MWS was 442 mm and 831.50 mm in 2018 and 2019, respectively (Figure 2 and Figure 3).

Experimental procedures.

A comprehensive methodological workflow adopted in this study is presented in Figure 4. To divide the entire micro-watershed into different soil phase units, a detailed land resource inventory was initially carried out at a 1:8000 scale, using Indian Remote Sensing Satellite-P6 (IRS P6) Cartosat-1 merged LISS-IV satellite imagery (2.5 m spatial resolution) as base map to interpret the soil physiographic unit map (Figure 1). The soil (soil profile depth, number of horizons, soil color, soil structure, texture, consistency, presence of carbonates, and soil pH) and site (slope, erosion, drainage, runoff, gravelliness, stoniness, presence of rocks on surface, lithology/parent material and current land use) characteristics were recorded for all soil profile sites on a standard pro forma (Pedon description form which consists of a list of soil and site parameters that need to be recorded during a field study. A copy is provided in the Data availability section (see
In this micro-watershed, both Vertisol and Alfisol soils were found, which are soils derived from basalt and basalt-laterite intrusion parent materials, respectively (Government of India, 2008). Pedons that showed similar soil profile horizons in soil color, soil texture, soil pH, and consistence, mineral and chemical compositions were grouped into soil series (FAO, 2006) and further, these soil series were divided into 23 soil phases (Figure 5), based on surface characteristics with respect to soil texture, slope, erosion and gravelliness.

A total of 462 surface soil samples (0–30 cm) were collected in two site years. Each year, before sowing of pigeon pea, 231 soil samples were collected from the same locations (recorded using Trimble Juno 3D, a hand-held GPS) of each soil phase of the micro-watershed. Physico-chemical properties of all collected surface soil samples were analyzed using standard procedures. Erosion hazards were judged through the visible soil erosion method, by assessing the presence of rills and gullies within a field, as well as their associated deposits (Evans, 2013). Soil texture was evaluated using the feel method, and slope with the help of a dumpy level. Organic carbon (OC) was determined using the Walkley & Black (1934) wet oxidation method. Available N was determined by a modified alkaline potassium permanganate method as described by Subbiah & Asija (1956). Available P₂O₅ was determined using Olsen’s method. Available K₂O was estimated using a flame photometer after extraction with ammonium acetate. Soil reaction (pH) was determined in 1:2.5 soil water suspensions using a glass electrode (Piper, 1966). Electrical conductivity was measured in the soil water (1:2.5) suspension using a conductivity bridge (Jackson, 1973). The level of free calcium carbonate ions in soil samples was determined using a rapid titration method with standard HCl (Piper, 1966).

Cationic micronutrients like iron, copper, manganese and zinc were extracted using diethylene triamine penta acetic acid (DTPA, 0.005 M and 0.01 M CaCl₂ + 0.1N tri-ethanol-amine
at pH 7.3), and the concentration was measured using an atomic absorption spectrophotometer (ConAA 700 Make) as outlined by Lindsay & Norvell (1978). Available boron in soil was estimated with a colorimetric method using hot water as extractant and expressed in mg kg⁻¹ (Page et al., 1982). Available sulphur in soil was estimated with a colorimetric method using hot water as extractant and expressed in mg kg⁻¹ (Page et al., 1982). Available sulphur in soil was extracted with CaCl₂·2H₂O (0.15%), and the extract was reacted with barium chloride crystals. The intensity of the resulting turbidity was measured using a spectrophotometer at a wavelength of 420 nm (Jackson, 1973)

The bulk density was estimated using Keen’s cup method for the disturbed soils (Piper, 1966). Particle size distribution of soil samples was determined using the “International Pipette” method (Piper, 1966); the soil’s cation exchange capacity (CEC) was determined by equilibrating the soil with 1N sodium acetate solution using a flame photometer, to calculate the CEC. The exchangeable sodium percentage (ESP) was calculated by dividing the exchangeable sodium by CEC and exchangeable bases (Ca, Mg, and K, Na), which were measured by titration and flame photometer respectively.

Pigeon pea growth and yield parameters were recorded using a crop cutting experiment, where observations were regularly made in the farmer’s field at specific locations of the study area and at different crop growth stages. The growth parameters viz., plant height (in centimeter), number of branches per plant, and leaf area index (AccuPAR Cepeterm model LP-80) were recorded for each soil phase. Five pigeon pea plants were labeled in a 1 m² area of each soil phase unit and the growth parameters were recorded at 30, 60, and 90 days after sowing (DAS), as well as during the crop harvesting stage. Similarly, pigeon pea yield parameters, namely the number of pods per plant and grain yield (kg ha⁻¹), were recorded at the harvest stage and after the harvest respectively. Details of pigeon pea varieties and fertilizer doses (urea and di-ammonium phosphate manufactured by Zuari Agro Chemical Ltd., India) used are given in the

Figure 2. Mean monthly weather parameters of Kalmandari Tanda-1 MWS during 2018.
Extended data (Rajesh, 2021). Meanwhile, soil moisture and available water content (AWC) at each soil-phase were measured using a theta probe (Stevens Water Monitoring Systems Inc, S/N 238825) and pressure plate membrane apparatus (SOILMOISTURE Equipment Corp, Model #1500F2), respectively.

Statistical analysis
Descriptive statistics and principal component regression analysis of soil and plant parameters were carried out in SPSS v.16. An assessment of the normality of the data is prerequisite for PCA. A Z-scale test was applied for normality test using skewness and kurtosis (for n < 300). The distribution is approximately normal if skewness and kurtosis are between -1 and 1. The right and left skewed data (Table 1 and Table 2) were subjected to logarithmic and square root transformation to improve the normality. These transformed variables were subjected to a PCA with varimax rotation (Ayoubi et al., 2009; Cox et al., 2003; Shukla et al., 2004b). The descriptive statistics of physico-chemical properties of soil and plant growth parameters are presented in Table 1 and Table 2, respectively.

Multivariate analysis
PCA was used as a data reduction technique. The independent variables such as soil properties (soil pH, EC, CaCO₃, OC, available N, P₂O₅, K₂O, S, Zn, Fe, Cu, Mn, B, exchangeable Ca, Mg, Na, ESP, CEC [Cmol(p-kg⁻¹), Sand [%], Silt [%], Clay [%], bulk density [Mgm⁻³], permanent wilting point [PWP in %], field capacity [FC in %], AWC [%]) and plant growth parameters (plant height, number of branches per plant, LAI, number of pods at harvest stage) were subjected to a PCA; variables with factor loadings greater than the measured Kaiser-Meyer-Olkin (KMO) values, were chosen as highly correlated variables from the derived principal components (PCs) with eigenvalues greater than one (Suryanarayana & Mistry, 2016). The KMO test is a measure of sampling adequacy and factorability. The KMO tests
Figure 4. Methodological workflow.

whether the partial correlations within the data are close enough to zero to suggest that there is at least one latent underlying factor among variables (Vijayamohanan Pillai & Asalatha, 2020). As a KMO value of < 0.5 is unacceptable (Hair et al., 2003), the results of the PCA with a KMO > 0.5 loadings indicate that the chosen correlation matrix was appropriate for factor analysis.

The Kaiser Meyer Olkin (KMO) test is given by:

Equation 1: \[MO_j = \frac{\sum_{i \neq j} r_{ij}^2}{\sum_{i \neq j} r_{ij}^2 + \sum_{i \neq j} U} \]

Where, \(r = [r_{ij}] \) - Correlation matrix
\(U = [u_{ij}] \) - Partial covariance matrix

The eigenvalue is the variance explained by a component or factor and is denoted by lambda.

Equation 2: \[\lambda_k = \sum_{i=1}^{n} A^2_{ik} \]

Where, \(A_{ik} \) is the factor loading for variable \(i \) on component \(k \), and \(n \) is the number of variables. A low eigenvalue represents a lower contribution to the variance in the analyzed set of variables. The component matrix table shows the component loadings, which represent the correlations between the variables and the components. As a rule of thumb, the larger the size of the component loading for a variable, the more significant the variable is in the interpretation of the component (Nargundkar, 2005). The first component is generally more highly correlated with the variables than the second components, and so on.
A varimax rotation enhances the interpretability of the uncorrelated components; therefore, only the outcomes of the rotated component matrix are presented in our results.

Linear principal component regression (LPCR) analysis

The derived PCs were subjected to a stepwise linear regression analysis, which is an alternative to multiple regressions analysis. In LPCR, instead of regressing the dependent variables on the explanatory variables directly, the principal components of the explanatory variables were used as regressors, each time removing the weakest correlated variable. The highly correlated and significant soil and plant independent/explanatory variables from each PC were fitted to the dependent variable (pigeon pea crop yield). Further linear equations were drawn separately.

Results and discussion

The soil phases GutmB2g1, GutmC2g1 and GutmC3g1 from the Gutti soil series (Figure 6) showed maximum crop yield (pooled) during kharif (June to October) 2018–19 (4073 kg ha⁻¹) and 2019–20 (4443 kg ha⁻¹). The GutmB2g1 soil phase prevailed on gentle slopes (1–3%) could give rise to a maximum yield of 1394 and 1496 kg ha⁻¹ during kharif 2018–19 and 2019–20 respectively. However, of the two site years, crop yield was greater during kharif 2019–2020, due to a greater available soil moisture than that of kharif 2018–2019. The KKTHe3g1s1 and KKTThF3g1s1 soil phases of Kurukota series prevailed on stronger slopes (10–15 %), showed severe erosion (3), and led to a low yield in both kharif 2018–19 (respectively 1325 and 1295 kg ha⁻¹) and kharif 2019–20 (respectively 1368 and 1343 kg ha⁻¹). Thus, these soil phases would need intensive care and management, including fertilizer input and soil and water conservation strategies, so as to boost crop productivity.

PCA & LPCR to assess the influence of soil properties on pigeon pea yield

Seven components were extracted with total cumulative variances of 82.30% and 80.75% during 2018 (Table 3) and 2019 (Table 4), respectively. The principal component 1 (PC1) in each site year was identified as soil available nutrient content with high loadings of K₂O (0.843 and 0.764, respectively), Mn (0.870 and 0.882 respectively), Ca (0.845 and 0.900), and Mg (0.835 and 0.919 respectively). The presence of these adsorbed cations on negatively charged clay surfaces (supported...
Table 1. Descriptive statistics of physico-chemical properties of surface soil (before sowing) during 2018-2019 and 2019-2020.

Parameters	2018–19	2019–20				
	Min	Max	Mean	SD	Skewness	Kurtosis
pH	6.08	8.60	6.75	0.57	1.849	4.416
EC (dSm⁻¹)	0.13	0.50	0.31	0.10	-0.101	0.862
CaCO₃ (%)	3.25	5.07	4.10	0.15	0.101	0.862
OC (%)	0.32	0.74	0.55	0.09	-0.101	0.862
Available P₂O₅ (kg/ha⁻¹)	14.40	33.00	24.87	6.70	-0.101	0.862
Available Ca (Cmol(p+)kg⁻¹)	14.80	28.54	21.87	4.06	0.009	0.862
Available Mg (Cmol(p+)kg⁻¹)	4.23	8.15	6.26	1.14	0.009	0.862
Available B (ppm)	0.65	1.30	0.94	0.06	-0.936	0.862
Available Fe (ppm)	1.30	1.50	1.09	0.28	-0.936	0.862
Available Zn (ppm)	0.65	1.50	1.09	0.28	-0.936	0.862
Available Mn (ppm)	2.60	5.50	3.50	1.00	-0.936	0.862
Exch. Na (Cmol(p+)kg⁻¹)	0.78	1.89	1.12	0.28	-0.936	0.862
Exch. Ca (Cmol(p+)kg⁻¹)	0.78	1.89	1.12	0.28	-0.936	0.862
Exch. Mg (Cmol(p+)kg⁻¹)	0.78	1.89	1.12	0.28	-0.936	0.862
Exch. K (Cmol(p+)kg⁻¹)	0.78	1.89	1.12	0.28	-0.936	0.862
Exch. B (ppm)	0.65	1.30	0.94	0.06	-0.936	0.862
Exch. Fe (ppm)	1.30	1.50	1.09	0.28	-0.936	0.862
Exch. Zn (ppm)	0.65	1.50	1.09	0.28	-0.936	0.862
Exch. Mn (ppm)	2.60	5.50	3.50	1.00	-0.936	0.862

Inference from multivariate analysis: During 2018–19, yield contributing variables such as soil available P₂O₅, Fe, Zn, Cu and soil moisture (% AWC) had a higher availability of these variables will be more beneficial. Exch: exchangeable; ESP: exchangeable sodium percentage; CEC: cation exchange capacity; BD: bulk density; PWP: permanent wilting point; FC: field capacity.
Table 2. Descriptive statistics of plant growth parameters at Kalmandari Tanda-1 MWS during 2018–19 and 2019–20.

Parameters	2018–19		2019–20									
	Minimum	Maximum	Mean	Std. Deviation	Skewness	Kurtosis	Minimum	Maximum	Mean	Std. Deviation	Skewness	Kurtosis
Pht at 30 DAS	21.00	34.00	26.96	0.17	4.416	25.00	38.00	31.13	3.17	0.16	-0.23	
Pht at 60 DAS	65.00	92.00	77.04	0.22	-0.862	70.00	97.00	82.04	2.21	0.23	3.41	
Pht at 90 DAS	100.00	118.00	108.22	0.40	2.272	103.00	121.00	111.13	6.28	0.38	-1.40	
Pht at harvest	110.00	134.00	122.52	0.34	-0.899	110.00	136.00	124.57	6.98	-0.26	-0.37	
Br at 30 DAS	3.00	5.00	3.96	0.06	1.144	4.00	6.00	4.96	0.74	0.07	-0.85	
Br at 60 DAS	7.00	10.00	8.78	0.34	-0.899	9.00	12.00	10.78	0.912	-0.35	-0.46	
Br at 90 DAS	9.00	13.00	10.96	0.49	-0.914	13.00	17.00	15.17	1.27	-0.06	1.06	
Br at harvest	11.00	15.00	13.17	0.06	-1.098	14.00	18.00	16.17	1.33	-0.06	-1.06	
LAI at 30 DAS	0.31	1.02	0.68	0.20	-0.181	0.44	1.15	0.83	0.19	-0.40	0.42	
LAI at 60 DAS	0.93	2.04	1.74	0.25	-1.53	1.14	2.25	1.95	0.25	-1.53	3.76	
LAI at 90 DAS	2.04	3.91	2.80	0.55	-0.793	2.22	3.89	2.88	0.43	0.88	0.74	
LAI at harvest	0.64	1.85	1.07	0.30	-0.936	0.74	1.95	1.17	0.365	1.35	1.60	
Pod at harvest	45.00	64.00	54.48	0.53	-1.174	49.00	73.00	59.74	5.96	0.03	-0.17	
Crop yield	1207.00	1394.00	1300.90	51.01	-1.105	1325.00	1496.00	1421.00	47.69	-0.47	-0.60	

Note: Pht: Plant height, Br: Number of branches, LAI: Leaf area index, DAS: Days after sowing.

Inference from multivariate analysis: In both the site years ‘number of pods at harvest’ have contributed to the yield and is the one which explains yield variability among plant growth & yield parameters.

by high loadings of clay content (0.905 and 0.929) contributed to significantly high CEC loadings (0.897 and 0.937) (Schoonheydt et al., 2018). High clay content supported high available water content with loadings of 0.822 and 0.625 during 2018–19 and 2019–20 respectively. Therefore, sand (-0.858 and -0.901) and bulk density (-0.927 and -0.743) are negatively correlated in PC1 of both the site years. Though the initial mean available water content is high (27.93 %) in soils during 2018–19 (Table 1), the scarcer rains in subsequent months during 2018–19 (Figure 2) has inferred that there was no sufficient soil moisture to dissolve the soil nutrients to make it readily available to pigeon pea plant when compared to the rains of 2019–20 (Figure 3). In 2018, PC2 was identified as humification and vegetative growth with high loadings of OC and available N. The high loading of EC during 2018 may be due to the retention of dissolved salts associated with low precipitation. In 2019, because of higher precipitation levels (Figure 3) the results of PC2 converged towards enhanced calcification with high loadings of CaCO3 (0.793) due to dissolution of CaCO3 in the presence of CO2 (Neina, 2019) which is normally found at ten times greater levels in soil (0.3 % CO2) when compared to the CO2 concentration (0.03%) in the atmospheric air above the soil. Further, PC2 in site year 2 was also identified as qualitative vegetative growth with high loadings of Cu (0.764), which enhances plant photosynthesis; this was also supported by an increased number of branches (0.595) per plant at the time of harvest. PC3 in 2018 and 2019 was identified as improved enzyme activity and pod formation stage, which was supported by high loadings of Fe (0.919 and 0.88), Zn (0.846 and 0.735) and number of pods (0.736 and 0.605) at harvest.

In 2018 (site year 1), PC4 was identified as root proliferation stage, with high loadings of P2O5 (0.801) and surface soil moisture (0.727). Root interception of inorganic phosphorous increases with root proliferation. The diffusion of P2O5 from the soil through the roots increases with increased moisture content of dry soil (Lambers et al., 2006). Low rainfall (Figure 2) events during critical growth stages of pigeon pea (September 2018 to December 2018), led to dry soil and reduced the dissolution of readily available (water-soluble) nutrients, which are required for plant growth. During the drought, when soil...
Figure 6. Pigeon pea crop yield (kg ha⁻¹) during 2018–19 and 2019–20.

Table 3. Factor loadings of soil properties (before sowing during June 2018).

Parameters	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Eigen value	7.425	3.132	2.678	1.979	1.912	1.824	1.626
% of Variance	29.700	12.528	10.714	7.915	7.647	7.298	6.504
Cumulative %	29.700	42.228	52.942	60.857	68.504	75.802	82.306

KMO=0.611

Parameters	PC1	PC2	PC3	PC4	PC5	PC6	PC7
pH	0.346	-0.067	-0.101	-0.150	0.752	-0.118	0.031
EC	0.059	0.858	-0.045	-0.063	0.081	-0.205	-0.019
OC	0.379	0.840	0.100	0.054	-0.187	-0.110	0.146
CaCO₃	-0.035	0.073	0.135	-0.105	-0.065	-0.781	0.122
N	0.381	0.839	0.100	0.056	-0.185	-0.107	0.148
P₂O₅	-0.110	0.053	0.056	0.801	-0.119	-0.121	-0.021
K₂O	0.843	0.040	-0.019	-0.146	-0.053	-0.036	-0.267
S	-0.050	0.010	-0.003	-0.442	0.254	0.158	-0.688
Fe	0.050	-0.080	0.919	-0.020	0.010	0.048	0.144
Parameters	PC1	PC2	PC3	PC4	PC5	PC6	PC7
------------	------	------	------	------	------	------	------
Zn	0.002	0.037	**0.846**	0.024	-0.039	-0.123	-0.159
Mn	**0.870**	0.078	0.031	0.059	0.085	-0.171	0.115
Cu	0.111	0.350	0.028	-0.401	0.029	0.141	**0.682**
B	-0.173	-0.275	0.081	-0.186	-0.186	**0.788**	0.108
Ca	**0.845**	0.365	-0.146	0.208	0.127	0.022	0.031
Mg	**0.835**	0.371	-0.168	0.216	0.112	0.025	0.074
ESP	-0.205	-0.178	-0.036	-0.308	0.437	0.499	0.010
CEC	**0.897**	0.200	0.232	-0.047	0.130	0.007	0.123
Sand	-0.858	-0.038	-0.193	0.068	-0.314	-0.024	0.087
Silt	0.174	-0.054	0.325	0.235	**0.674**	0.183	-0.394
Clay	**0.905**	0.076	0.094	-0.183	0.099	-0.041	0.068
BD	-0.927	-0.063	-0.069	-0.012	-0.061	0.255	-0.010
AWC	**0.822**	0.182	0.184	-0.020	-0.313	0.161	0.198
TProbe	0.032	-0.012	0.437	**0.727**	0.169	0.119	0.068
Br_har	0.081	0.516	0.170	0.102	0.445	-0.096	0.492
Pod_har	0.318	0.320	**0.736**	0.242	0.117	-0.074	0.104

Bold typeface - Strong correlation coefficient

TProbe: Surface soil moisture, Br_har: Number of branches at harvest, Pod_har: Number of pods at harvest, EC: electric conductivity, ESP: exchangeable sodium percentage, CEC: cation exchange capacity, BD: bulk density, AWC: available water content.

Table 4. Factor loadings of soil properties (before sowing during June 2019).

Parameters	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Eigen value	7.567	2.743	2.288	2.146	2.102	1.689	1.653
% of Variance	30.269	10.971	9.154	8.586	8.408	6.754	6.612
Cumulative %	30.269	41.240	50.393	58.979	67.387	74.141	80.753
KMO=0.555							
pH	0.176	0.285	-0.052	**-0.614**	-0.167	0.372	0.422
EC	-0.022	0.116	0.084	**0.838**	-0.040	0.164	0.112
OC	0.405	0.529	0.100	**0.558**	0.348	-0.196	0.137
CaCO₃	-0.001	**0.793**	-0.174	-0.110	0.144	-0.133	0.017
N	0.408	0.529	0.100	**0.557**	0.345	-0.198	0.137
P₂O₅	-0.351	-0.128	0.104	0.206	0.125	**-0.715**	0.349
K₂O	**0.764**	-0.110	0.036	-0.062	0.281	0.174	0.358
S	-0.091	-0.271	0.089	0.120	-0.016	**0.719**	0.307
Fe	0.145	-0.056	**0.889**	0.030	-0.180	0.043	-0.024
Zn	-0.065	-0.065	**0.735**	0.138	0.163	-0.055	-0.367
Mn	**0.882**	0.243	0.182	-0.073	0.061	0.023	0.145
Parameters	PC1	PC2	PC3	PC4	PC5	PC6	PC7
-----------	-----	-----	-----	-----	-----	-----	-----
Cu	0.073	**0.764**	0.063	0.095	0.083	0.158	-0.244
B	-0.165	0.118	0.238	-0.109	-0.091	-0.013	**-0.726**
Ca	**0.900**	0.143	-0.153	0.196	0.074	-0.042	0.054
Mg	**0.919**	0.082	-0.207	0.153	0.014	-0.023	-0.014
ESP	-0.094	-0.036	-0.183	0.129	**-0.657**	0.495	-0.023
CEC	**0.937**	0.150	0.212	0.077	-0.012	0.030	-0.069
Sand	**-0.901**	0.051	-0.150	0.014	0.165	-0.087	-0.059
Silt	0.247	-0.209	0.306	-0.021	**-0.583**	0.096	0.377
Clay	0.929	0.042	0.047	0.000	0.031	0.065	-0.086
BD	**-0.743**	-0.017	-0.098	0.263	-0.120	0.056	-0.308
AWC	0.625	0.205	0.361	0.121	0.365	-0.128	0.078
TProbe	0.319	0.061	-0.066	0.241	**0.754**	0.084	0.217
Br_har	0.212	**0.595**	0.101	0.311	-0.343	-0.166	0.001
Pod_har	0.537	0.441	**0.605**	0.043	0.034	-0.126	0.165

Bold: Strong correlation coefficient

TProbe: Surface soil moisture, Br_har: Number of branches at harvest, Pod_har: Number of pods at harvest, EC: electric conductivity, ESP: exchangeable sodium percentage, CEC: cation exchange capacity, BD: bulk density, AWC: available water content.

moisture slightly increased from an uneven and low precipitation pattern during November and December 2018, the plant enhanced its root proliferation in the presence of high available soil P₂O₅, in search of soil nutrients (Basu et al., 2016; Peret et al., 2014). In 2019 (site year 2), PC4 was identified as humification with high loadings of EC (0.838), OC (0.558) and N (0.557) suggesting activation of humification (Doni et al., 2014). In site year 1, PC5 was identified as chemical changes in soil, and soil aeration supported by high loadings of soil pH (0.752) and silt (0.674). During site year 2, in PC5, soil ESP (-0.657) and silt (-0.583) showed a high negative factor loading, however available surface moisture (0.754) exhibited a high positive factor loading; this implies that when in water, dissociated calcium cations from CaCO₃ in the presence of CO₂ have replaced sodium ions and adsorbed on the soil colloids (van de Graaff & Patterson, 2001). In site year 1, PC6 had high negative factor loadings of CaCO₃ (-0.781) and positive factor loadings of available bron (0.788), which are attributed to plant cell wall synthesis and root nodule formation for N₂ fixation in leguminous crops. Growing plant cells responds well to boron for dividing and synthesizing cell walls when compared to growth-limited plant cells, in which the synthesis of primary cell walls is negligible (Fleischer et al., 1998). In leguminous plant roots, the development of symbiosis with soil Rhizobium bacteria depends on the concentration of available soil boron and calcium and that both nutrients are essential for nodule structure and fixing atmospheric nitrogen in the plant roots (Redondo-Nieto et al., 2003). As CaCO₃ is a source of calcium required by the plants during critical growth stages, the dissolution of CaCO₃ in soil will be very rapid in the presence of carbon monoxide (CO), (Gallagher & Breecker, 2020), therefore the negative factor loading of CaCO₃ was observed in PC6 of site year 1. In PC6 of site year 2, high factor loadings of available P₂O₅ (-0.715) and sulphur (0.719) were found, whereas in PC7 of site year 1, available copper (0.682) and sulphur (-0.688) had high loadings associated with enhanced enzyme activity essential for nodule formation and nitrogen fixation in the leguminous plant roots (Weisany et al., 2013). PC7 of site year 2 showed a high negative factor loading of available boron (-0.726). Legume crops required more amount of boron compared to most field crops as boron plays a vital role in the development of reproductive organs, pollen germination, flower and fruit setting. Boron being a required trace element, there is a narrow gap between deficiency and toxicity in soil–plant systems (Chatterjee & Bandyopandhyay, 2017). Therefore, one spray at the initiation of the reproductive phase is sufficient for optimum flowering and pod yield (Subasinghe et al., 2003); without initial boron spray, plant uptake will deplete boron in the soil, hence the factor loading in PC7 being negative for boron.

All seven PCs of site year 1, when subjected to stepwise linear regression with crop yield, explained the variance with an R² = 0.68 (p<0.01). The F test of ANOVA was significant at the 1% level. The coefficients of PC3 and PC4 were significant at the 1% level independently, whereas PC7 was significant at the 5% level. Therefore, the variables explaining PC3, PC4 and PC7 such as Fe, Zn, number of pods at harvest, available P₂O₅, soil moisture, and copper significantly influenced the yield (Equation 3, Table 5). Available Zn and P₂O₅ help in
seed formation, whereas available soil moisture supports crop growth, which was observed in terms of number of pods per plant and seed yield at the time of harvest. (Subrahmaniyan et al., 2008).

Equation 3:

\[Y_{\text{seed}} = 1300.913 + 0.636 \times PC3 + 0.397 \times PC4 + 0.341 \times PC7, \]

\[F = 13.414^*, R^2 = 0.679 \]

All seven PCs of site year 2, when subjected to stepwise linear regression with crop yield, explained the variance significantly at the 1% level (\(R^2 = 0.677\) p<0.01). The PC1 and PC3 coefficient was significant at the 1% level. PC6 coefficient was significant at 5% level (p<0.05). Therefore, the variables constituting PC1, PC3 and PC6 such as K\textsubscript{2}O, S, Fe, Zn, Mn, Ca, Mg, CEC, clay, available water content and number of pods at harvest were significantly influencing the yield (Equation 4, Table 5). This may be due to increased availability of nutrients such as K\textsubscript{2}O, Fe, Zn, Mn, and the presence of high clay content, which enhances the available water and water holding capacity of the soil; this facilitates nutrient uptake, leading to the increase in number of pods (Rana & Badiyala, 2014; Zarei et al., 2011).

Equation 4:

\[Y_{\text{seed}} = 1421.000 + 0.698 \times PC1 + 0.339 \times PC3 - 0.275 \times PC6, \]

\[F = 13.264^*, R^2 = 0.677 \]

Conclusion

In the present study, a systematic methodological approach was adopted, using geospatial and multivariate statistical techniques for spatial classification of soils, and to gauge the major variables influencing crop yield, which helps in deriving land- or soil-specific management interventions.

Our study revealed that the predominant yield-contributing variables in rainfed agriculture depended on a number of factors, including distribution of rainfall and prevailing land slope. During a drought year (site year 1), the availability of P\textsubscript{2}O\textsubscript{5}, Fe, Zn, Cu in the soil, and number of branches and pods determined the yield. In contrast, during a high-precipitation monsoon year (site year 2), availability of K\textsubscript{2}O, Mn, Ca, Mg, Fe, Zn, S, CEC, clay content, available water content and number of pods per plant were the main yield-contributing factors. Therefore, in a semi-arid region, an increase in soil moisture/available water content to an optimum level (25–30% AWC) will help dissolve most soil nutrients, and increases CEC and nutrient uptake, thus leading to a higher crop yield.

The principal component regression analysis performs a reasonable dimension reduction and operates well with highly correlated variables. Crop growth and yield depend on multiple factors but are limited by the least-available nutrient present in the environment relative to demands of this nutrient for growth. Therefore, all the loaded PCs with a minimum of 80% cumulative variance should be considered for principal component regression analysis. The variables which were identified from the principal component regression analysis can efficiently explain the yield variability; further cross-verification of these variables with their availability in each soil management/soil-phase unit, may help to identify limiting factors, such as land surface parameters, soil depth, slope, and available soil moisture. Interventions involving these variables would need to be applied in a site-specific way to increase crop yield.

Data availability

Underlying data

Mendeley Data: Support for improved program integration under rainfed areas, https://data.mendeley.com/datasets/ng5v92xht3/4 (Rajesh, 2021).

This project contains the following underlying data:

- Table-1 2018–19-Before Sowing.xlsx (Physico-chemical properties of initial surface soil samples of Kalmandari Tanda-1 MWS during June 2018)
- Table-1-2019–20-After harvest.xlsx (Physico-chemical properties of surface soil samples (after harvest) of Kalmandari Tanda-1 MWS during 2018–19)
- Table-2-2018–19-Crop growth yield.xlsx (Pigeonpea plant growth and yield parameters of Kalmandari Tanda-1 MWS during kharif 2018–19)
Extended data
Mendeley Data: Support for improved program integration under rainfed areas, https://data.mendeley.com/datasets/ng5v92xht3/4 (Rajesh, 2021).

This project contains the following extended data:
- Annexure-I.pdf (Pedon description form)
- Extended data-I.xlsx (pigeon pea growth variety and fertilizers used)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

Ayyoubi S, Khormali F, Sahrawat KL: Relationships of barley biomass and grain yields to soil properties within a field in the arid region: Use of factor analysis. *Acta Agric Scand B Soil Plant Sci.* 2009; 59(2): 107-117. Publisher Full Text

Basu PS, Singh U, Kumar A, et al.: Climate change and its mitigation strategies in pulses production. *Indian J Agron.* 2016; 61(4th IAC Special issue): 571–582. Reference Source

Chatterjee R, Bandypadhyay S: Effect of boron, molybdenum and biofertilizers on growth and yield of cowpea (*Vigna unguiculata* L. Walp.) in acid soil of eastern Himalayan region. *J Saudi Soc Agric Sci.* 2017; 16(4): 332–336. Publisher Full Text

Cox MS, Gerard PD, Wardlaw MC, et al.: Relationship of barley biomass and grain yields to soil properties within a field in the arid region: Use of factor analysis. *Acta Agric Scand B Soil Plant Sci.* 2009; 59(2): 107-117. Publisher Full Text

Cox MS, Gerardin MC, Wardlaw MC, et al.: Variability of selected soil properties and their relationships with soybean yield. *Soil Sci Soc Am J.* 2003; 67(4): 1296–1302. Publisher Full Text

Doni S, Macci C, Peruzzi E, et al.: Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems. *Hindawi Publishing Corporation.* *ScientificWorldJournal.* 2014; 2014: 416074. PubMed Abstract | Publisher Full Text | Free Full Text

Egbe OM, Kalu BA: Farming system study: Participatory Rural Appraisal of Pigeonpea cropping systems in Southern Guinea Savanna of Nigeria. *J of Environ.* 2006; 5(1): 37–47. Evans R: Assessment and monitoring of accelerated water erosion of cultivated land – when will reality be acknowledged. *Soil Use Manag.* 2013; 29(1): 105-118. Reference Source

FAO: Guidelines for soil description. *FAO 4th Edition.* Rome, 2006. Reference Source

FAO: Climate-smart agriculture sourcebook. 2013. Fleischer A, Titel C, Ethalow R: The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. *Plant Physiol.* 1998; 117(4): 1401-1410. PubMed Abstract | Publisher Full Text | Free Full Text

Gallagher TM, Breecker DO: The Obscuring Effects of Calcite Dissolution and Formation on Quantifying Soil Respiration. *Global Biogeochem Cycles.* 2020; 34(12): e2020GB006584. Publisher Full Text

Ground Water Information Booklet Gulbarga District, Karnataka. Government of India, Ministry of Water Resources Central Ground Water Board. 2008. Reference Source

Hair JF, Anderson RE, Tatham RL, et al.: *Multivariate data analysis.* Pearson Education, Singapore and India, 2003. Jackson ML: *Soil Chemical Analysis.* Prentice hall of India, New Delhi, 1973; 498. John WF: Biodiversity Conservation as a Strategy for Poverty Alleviation Around Protected Areas. A case of Bwindi Impenetrable National Park. *J Hosp Tour.* 2020; 18(2). Reference Source

Jolliffe IT, Cadima J: *Principal component analysis: a review and recent developments.* *Philos Trans A Math Phys Eng Sci.* 2016; 374(2106): 20150022. PubMed Abstract | Publisher Full Text | Free Full Text

Juhas K, Szabó S, Ladányi M: Influence of soil properties on crop yield: a multivariate statistical approach. *Int Agrophys.* 2015; 29: 433-440. Publisher Full Text

Lambers H, Shane MW, Cramer MD, et al.: *Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits.* *Ann Bot.* 2006; 98(4): 693–713. PubMed Abstract | Publisher Full Text | Free Full Text

Lindsay WL, Norvell WJ: Development of a DTPA soil test for zinc, iron, manganese, and copper. *Soil Sci Soc Am J.* 1978; 42(3): 421–428. Publisher Full Text

Moore GA: *Soilguide. A handbook for understanding and managing agricultural soils.* *Agriculture Western Australia Bulletin.* 2001; 4343. Reference Source

Narangdar R: *Marketing Research-text and cases.* (Publishing: Tata McGraw Hill), 2005. Rajan S, Reddy RS, Niranjana KV, et al.: Field guide for land resources inventory. *Sujala III project, Karnataka.* NBSS, (Publishing: ICAR-NBSS & LUP Bangalore), 2016; 154. Reference Source

Neina D: *The Role of Soil pH in Plant Nutrition and Soil Remediation.* *Hindawi Appl Environ Soil Sci.* 2019; 2019: 5794869. Publisher Full Text

Page AL, Miller RH, Keray DR: *Methods of Soil Analysis. Part-III Chemical and Microbiological properties.* American Society of Agronomy. (Publishing: Madison, Wisconsin, USA), 1982. Reference Source

Peret B, Desnos T, Jost R, et al.: *Root Architecture Responses: In Search of Phosphatase.* *Plant Physiol.* 2014; 164(4): 1713–1723. PubMed Abstract | Publisher Full Text | Free Full Text

Piper CS: *Soil and Plant Analysis.* Academic Press, New York, 1966; 367. Rajesh NL: Support for improved program integration under rainfed areas. Mendeley Data, V4, 2021. http://www.doi.org/10.17632/ng5v92xht3.4 Rana R, Badiyala D: Effect of integrated nutrient management on seed yield, quality and nutrient uptake of soybean (*Glycine max*) under mid hill conditions of Himachal Pradesh. *Indian J Agron.* 2014; 59(4): 641–645. Reference Source

Redondo-Nieto M, Wilmot AR, El-Hamdaoui A, et al.: Relationship between boron and calcium in the N-fixing legume-rhizobia symbiosis. *Plant Cell Environ.* 2003; 26(11): 1905–1915. Publisher Full Text

Shukla MK, Lal R, Ebinger M: *Clay minerals and their surfaces.* *Dev Clay Sci.* 2018; 9: 1–21. Publisher Full Text

Shukla MK, Lal R, Ebinger M: *Principal component analysis for predicting corn biomass and grain yields. Soil Science.* 2004b; 169(3): 215–224. Publisher Full Text

Subasinghe S, Dayatilake GA, Senaratne R: *Effect of B, Co and Mo on nodulation, growth and yield of cowpea (*Vigna unguiculata*)*. *Trop Agric Res* *Ext.* 2003; 6: 108-112. Reference Source

Subbajby BY, Asija GL: A rapid procedure for the estimation of available nitrogen in soils. *Curr Sci.* 1956; 25(8): 259-260. Publisher Full Text

Subrahmanyan K, Kalaiselvam P, Balasubramanian TN, et al.: *Soil properties and yield of groundnut associated with herbicides, plant geometry, and plastic mulch.* *Commun Soil Sci Plant Anal.* 2008; 39(7–8): 1206–1234. Publisher Full Text

Suryanarayana TMV, Mistry PB: *Principal component regression for crop yield estimation.* (Publishing: Singapore: Springer), 2016; 65. Publisher Full Text

van de Graaff R, Patterson RA: *Explaining the Mysteries of Salinity, Sodicity,*
SAR and ESP in On-site Practice. In: Proceedings of On-site ‘01 Conference: Advancing On-site Wastewater Systems, by R.A. Patterson & M.J. Jones (Eds). Published by Lanfax Laboratories, Armidale, 2001; 361-368.

Reference Source
Vijayamohan Pillai N, Asalatha R: Reliability, Validity and Uni-Dimensionality: A Primer. 2020.

Publisher Full Text
Walkley A, Black IA: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science. 1934; 37(1): 29-38.

Reference Source
Weisany W, Raei Y, Allahverdipoor KH: Role of some of mineral nutrients in biological nitrogen fixation. Bull Env Pharmacol Life Sci. 2013; 2(4): 77-84.

Reference Source
Zarei I, Khah EM, Mohammadi G, et al.: Assessment of growth and yield components following the application of different biological fertilizers on soybean (Glycine max L.) cultivation. Aust J Crop Sci. 2011; 5(13): 1776-1782.

Reference Source
Zsigrai Gy: The effect of fertilization on the soil is some chemical and maize yield in long-term experiments. PhD. Dissertation. Uni. Debrecen, Debrecen, Hungary, 1999.
Open Peer Review

Current Peer Review Status: ✓ ✓

Version 3

Reviewer Report 04 September 2023

https://doi.org/10.5256/f1000research.151777.r197715

© 2023 Awe G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✓ Gabriel Oladele Awe
Ekiti State University, Ado Ekiti, Nigeria

The authors have effected the corrections.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Soil and Water Conservation, Soil Physical processes, Irrigation, Soil tillage, Cropping systems

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 01 June 2023

https://doi.org/10.5256/f1000research.144782.r173203

© 2023 Awe G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

? Gabriel Oladele Awe
Ekiti State University, Ado Ekiti, Nigeria

The authors have improved the manuscript, however some of the issues raised by this Reviewer were unattended to.

1. The Introduction still has some Methodology statements, not acceptable.
2. One Figure (Fig 6) still has an embedded table displaying same information.

3. Repetition of equation with same information in Table 5.
See attached PDF for further comments.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Soil and Water Conservation, Soil Physical processes, Irrigation, Soil tillage, Cropping systems

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Version 1

Reviewer Report 17 February 2023

https://doi.org/10.5256/f1000research.56445.r157225

© 2023 Awe G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

? Gabriel Oladele Awe
Ekiti State University, Ado Ekiti, Nigeria

The paper sought to evaluate the variability of soil properties using multivariate analysis with a view to detecting which properties influence the yield of pigeon pea.

The study could contribute to knowledge in the area of site-specific agriculture. However, the Introduction requires thorough revision: it contains some statements that should appear in Methodology.

A table (Table 3) appears repeating information already presented in the text. Also the Table inserted under Figure 6 is a repetition of same Figure, remove!

For other comments, please refer to the text.

Is the work clearly and accurately presented and does it cite the current literature?

Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Soil and Water Conservation, Soil Physical processes, Irrigation, Soil tillage, Cropping systems

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 18 October 2021

https://doi.org/10.5256/f1000research.56445.r94826

© 2021 Ayyappa S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sathish Ayyappa
Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Bangalore, Bengaluru, India

The title of the article is precise and straight and does match with the research findings. Abstract and keywords are well framed within the 300 words. Methods adopted are very comprehensive and comprises a detailed soil survey at 1:8000 scale and classifying soils to series level and further dividing each series to soil phases/management units. Use of PCA and LPCR analysis to find out influence of soil properties on pigeonpea yield at soil phase level is also an indication of site specific management for various agronomic/soil operations. The technology adopted namely remote sensing data interpretation (for soil survey and classification), various lab standard analytical techniques/methods, GIS mapping, PCA, and LPCR are Apt. Therefore, the article can be approved for indexing with the following minor corrections:

1. Page no. 4: last line of the first paragraph in the second column of the page “with standard HCl (Piper, 1966).” w letter is missing.
2. Page no. 12 & 13: Expansion of AWC, just below the table 4 and 5, should be changed to Available water content instead of Average water content.

3. Page No. 8: Under the sub heading ‘PCA & LPCR to assess the influence of soil properties on pigeonpea yield’ 2nd column of the page no. 8, 7th line, high loadings of clay content (0.897 and 0.937) these values should be changed to (0.905 and 0.929) as per the table 4 & 5 respectively.

4. Page No. 8: Under the sub heading ‘PCA & LPCR to assess the influence of soil properties on pigeonpea yield’ 2nd column of the page no. 8, 9th to 14th line (on the other hand …..(Figure 2)). Please rewrite the sentence as given below;

"High clay content supported high available water content with loadings of 0.822 and 0.625 during 2018-19 and 2019-20 respectively. Therefore, sand (-0.858 and -901) and bulk density (-0.927 and -0.743) are negatively correlated in PC1 of both the site years. Though the initial mean available water content is high (27.93 %) in soils during 2018-19 (Table 1), the scarcer rains in subsequent months during 2018-19 (Figure 2) has inferred that there was no sufficient soil moisture to dissolve the soil nutrients to make it readily available to pigeonpea plant when compared to the rains of 2019-20 (Figure 3)."

5. Page No. 13: 2nd column, line 2, correct the spelling of ‘responds’.

6. Page 14: 2nd column of the page, under equation 1, line 5, The PC1 and PC3 coefficients were significant at 1 % (p<0.01) level. PC6 was significant at 5 % (p<0.05). Note that PC3 significant is only at 1 % and not at 5 %.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com