Two-type Estimates for the Boundedness of Generalized Riesz Potential Operator in the Generalized Weighted Local Morrey Spaces

Abdulhamit Kucukaslana,b,1

bInstitute of Mathematics of Czech Academy of Sciences, 115 67, Prague, Czech Republic
aSchool of Applied Sciences, Pamukkale University, 20680, Denizli, Turkey

Abstract

In this paper, we prove the Spanne-type boundedness of the generalized Riesz potential operator I_ρ from the one generalized weighted local Morrey spaces $M_{1,\varphi_1}(w,\mathbb{R}^n)$ to the another one $M_{q,\varphi_2}(w,\mathbb{R}^n)$ with $w^q \in A_{1+\frac{q}{p}}$ for $1 < p < q < \infty$ and from the generalized weighted local Morrey spaces $M_{1,\varphi_1}(w,\mathbb{R}^n)$ to the weak generalized weighted local Morrey spaces $WM_{q,\varphi_2}(w,\mathbb{R}^n)$ with $w \in A_{1,q}$ for $1 < q < \infty$. We also prove the Adams-type boundedness of the operator I_ρ from the weighted spaces $M_{\mu,\varphi}(w,\mathbb{R}^n)$ to the another one $M_{\mu,\varphi}(w,\mathbb{R}^n)$ with $w \in A_{\mu,q}$ for $1 < \mu < \infty$ and from the weighted spaces $M_{1,\varphi}(w,\mathbb{R}^n)$ to the weak weighted spaces $WM_{\mu,\varphi}(w,\mathbb{R}^n)$ with $w \in A_{1,q}$ for $1 < q < \infty$.

AMS Mathematics Subject Classification: 42B20, 42B25, 42B35.

Key words: Generalized Riesz potential operator, generalized weighted local Morrey spaces, generalized weighted Morrey spaces, Muckenhoupt-Weeden classes.

1Corresponding author.

The research of Abdulhamit Kucukaslan was supported by the grant of The Scientific and Technological Research Council of Turkey, Grant TUBITAK-1059B191600675.

E-mail address: kucukaslan@pau.edu.tr (A. Kucukaslan).
1 Introduction

Morrey spaces \(M_{p,\lambda}(\mathbb{R}^n)\) were introduced by Morrey in \([18]\) and defined as follows: For \(0 \leq \lambda < n\), \(1 \leq p \leq \frac{n}{\lambda}\), \(f \in M_{p,\lambda}(\mathbb{R}^n)\) if \(f \in L^p_{\text{loc}}(\mathbb{R}^n)\) and

\[
\|f\|_{M_{p,\lambda}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, r > 0} r^{-\frac{\lambda}{p}} \|f\|_{L^p(B(x,r))} < 1
\]

holds. Morrey spaces found important applications to potential theory \([1]\), elliptic equations with discontinuous coefficients \([3]\) and Shrödinger equations \([26]\).

On the other hand, on the weighted Lebesgue spaces \(L^p(w, \mathbb{R}^n)\), the boundedness of some classical operators were obtained by Muckenhoupt \([19]\), Muckenhoupt and Wheeden \([20]\), and Coifman and Fefferman \([4]\).

Recently, weighted Morrey spaces \(M_{p,\kappa}(w, \mathbb{R}^n)\) were introduced by Komori and Shirai \([13]\) as follows: For \(1 \leq p \leq \frac{n}{\kappa}\), \(0 < \kappa < 1\) and \(w\) be a weight, \(f \in M_{p,\kappa}(w, \mathbb{R}^n)\) if \(f \in L^p_{\text{loc}}(w, \mathbb{R}^n)\) and

\[
\|f\|_{M_{p,\kappa}(w,\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, r > 0} w(B(x,r))^{-\frac{1}{\kappa}} \|f\|_{L^p(w,B(x,r))} < 1.
\]

They studied the boundedness of the aforementioned classical operators in these spaces. These results were extended to several other spaces in \([11]\). Weighted inequalities for fractional operators have applications to potential theory and quantum mechanics.

For a fixed \(x_0 \in \mathbb{R}^n\) the generalized weighted local Morrey spaces \(M_{p,\varphi}(w, \mathbb{R}^n)\) are obtained by replacing a function \(\varphi(x_0, r)\) instead of \(r^\lambda\) in the definition of weighted local Morrey space, which is the space of all functions \(f \in L^p_{\text{loc}}(w, \mathbb{R}^n)\) with finite norm

\[
\|f\|_{M_{p,\varphi}(w,\mathbb{R}^n)} = \sup_{r > 0} \varphi(x_0,r)^{-1} w(B(x_0,r))^{-\frac{1}{p}} \|f\chi_{B(x_0,r)}\|_{L^p(w,\mathbb{R}^n)}.
\]

During the last decades, the theory of boundedness of classical operators of the harmonic analysis in the generalized Morrey spaces \(M_{p,\varphi}(\mathbb{R}^n)\) have been well studied by now, we refer the readers to \([9, 14, 15, 21]\) and \([23]\).

For a measurable function \(\rho : (0,1) \to (0,1)\) the generalized Riesz potential operator (or generalized fractional integral operator) \(I_\rho\) is defined by

\[
I_\rho f(x) = \int_{\mathbb{R}^n} \frac{\rho(|x-y|)}{|x-y|^n} f(y)dy
\]
for any suitable function f on \mathbb{R}^n. If $\rho(t) \equiv t^\alpha$, then we get the Riesz potential operator I_α. The generalized Riesz potential operator I_ρ was initially investigated in [22]. Nowadays many authors have been culminating important observations about I_ρ especially in connection with Morrey spaces. Nakai [22] proved the boundedness of I_ρ from the generalized Morrey spaces $M_{1,\varphi}(\mathbb{R}^n)$ to the spaces $M_{1,\psi}(\mathbb{R}^n)$ for suitable functions φ and ψ. The boundedness of I_ρ from the generalized Morrey spaces $M_{p,\varphi}(\mathbb{R}^n)$ to the spaces $M_{q,\psi}(\mathbb{R}^n)$ is studied by Eridani [5], Guliyev et al [9], Kucukaslan et al [14, 15], Kucukaslan [16, 17], Nakai [23] and Nakamura [24].

Spanne-type and Adams-type boundednesses of generalized fractional maximal operator M_ρ in the generalized weighted local Morrey spaces $M_{p,\varphi}(x_0,w,\mathbb{R}^n)$ and generalized weighted Morrey spaces $M_{p,\varphi}(w,\mathbb{R}^n)$ were studied in [17]. But, Spanne-type and Adams-type boundedness of the generalized Riesz potential operator I_ρ in the spaces $M_{p,\varphi}(w,\mathbb{R}^n)$ and $M_{p,\varphi}(w,\mathbb{R}^n)$ have not been studied, yet.

Spanne [25] and Adams [1] studied boundedness of the Riesz potential in Morrey spaces. Their results, can be summarized as follows.

Theorem A. (Spanne, but published by Peetre [22]) Let $0 < \alpha < n$, $1 < p < \frac{n}{\alpha}$, $0 < \lambda < n - \alpha p$. Moreover, let $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n}$ and $\frac{1}{p} = \frac{\mu}{q}$. Then for $p > 1$, the operator I_α is bounded from $M_{p,\lambda}(\mathbb{R}^n)$ to $M_{q,\mu}(\mathbb{R}^n)$ and for $p = 1$, I_α is bounded from $M_{1,\lambda}(\mathbb{R}^n)$ to $WM_{q,\mu}(\mathbb{R}^n)$.

Theorem B. (Adams [1]) Let $0 < \alpha < n$, $1 < p < \frac{n}{\alpha}$, $0 < \lambda < n - \alpha p$ and $\frac{1}{p} - \frac{1}{q} = \frac{\alpha - \lambda}{n - \lambda}$. Then for $p > 1$, the operator I_α is bounded from $M_{p,\lambda}(\mathbb{R}^n)$ to $M_{q,\lambda}(\mathbb{R}^n)$ and for $p = 1$, I_α is bounded from $M_{1,\lambda}(\mathbb{R}^n)$ to $WM_{q,\lambda}(\mathbb{R}^n)$.

In the following theorems which were proved in [9], we give Spanne and Adams type results for the boundedness of operator I_ρ on the generalized local Morrey spaces $M_{p,\varphi}^{(x_0)}(\mathbb{R}^n)$ and on the generalized Morrey spaces $M_{p,\varphi}(\mathbb{R}^n)$, respectively.

Theorem C. (Spanne type result [9]) Let $x_0 \in \mathbb{R}^n$, $1 \leq p < q < \infty$, the function ρ satisfy the conditions $[3.1]$, $[3.2]$ and $[3.4]$ for $w = 1$. Let also (φ_1, φ_2) satisfy the conditions

$$\text{ess inf}_{t<s<\infty} \varphi_1(x_0,s)s^{\frac{n}{p}} \leq C \varphi_2(x_0,\frac{t}{2})t^{\frac{n}{q}},$$

$$\int_r^\infty \left(\text{ess inf}_{t<s<\infty} \varphi_1(x_0,s)s^{\frac{n}{p}} \right) \frac{\rho(t)}{t^{\frac{n}{q}+1}} dt \leq C \varphi_2(x_0,r),$$

where C does not depend on x_0 and r. Then the operator I_ρ is bounded from
one generalized local Morrey spaces \(M_{\{x_0\}}^{p,\varphi_1}(\mathbb{R}^n) \) to another one \(M_{\{x_0\}}^{q,\varphi_2}(\mathbb{R}^n) \) for \(p > 1 \) and from the spaces \(M_{1,\varphi_1}(\mathbb{R}^n) \) to the weak space \(WM_{\{x_0\}}^{q,\varphi_2}(\mathbb{R}^n) \) for \(p = 1 \).

Theorem D. (Adams type result [9]) Let \(1 \leq p < \infty, q > p, \rho(t) \) satisfy the conditions (3.2) and (3.4) for \(w = 1 \). Let also \(\varphi(x,t) \) satisfy the conditions

\[
\sup_{r<t<\infty} \varphi(x,t) \leq C \varphi(x,r),
\]

\[
\int_r^\infty \varphi(x,t)^{\frac{1}{p}} \frac{\rho(t)}{t} dt \leq C \rho(r)^{-\frac{1}{p-1}},
\]

where \(C \) does not depend on \(x \in \mathbb{R}^n \) and \(r > 0 \). Then the operator \(I_\rho \) is bounded from the one generalized Morrey space \(M_{\{x_0\}}^{p,\varphi_1}(\mathbb{R}^n) \) to another one \(M_{\{x_0\}}^{q,\varphi_2}(\mathbb{R}^n) \) for \(p > 1 \) and from the space \(M_{1,\varphi}(\mathbb{R}^n) \) to the weak space \(WM_{\{x_0\}}^{q,\varphi_2}(\mathbb{R}^n) \) for \(p = 1 \).

In this study, by using the method given in [10], we prove the Spanne and Adams type estimates for the boundedness of generalized Riesz potential operator \(I_\rho \) on the generalized weighted local Morrey spaces \(M_{\rho,\varphi_1}^{p,\varphi}(w^p,\mathbb{R}^n) \) with \(1 \leq p < q < \infty, w^a \in A_{\frac{1}{p}, \frac{1}{q}} \) belonging to Muckenhoupt-Weeden class \(A_{p,q} \). We find conditions on the triple \((\varphi_1, \varphi_2, \rho) \) which ensure the Spanne-type boundedness of the operator \(I_\rho \) from one generalized weighted local Morrey spaces \(M_{\rho,\varphi_1}^{p,\varphi}(w^p,\mathbb{R}^n) \) to another \(M_{\rho,\varphi_2}^{q,\varphi}(w^q,\mathbb{R}^n) \) with \(w^a \in A_{1+\frac{1}{q}, \frac{1}{q}} \) for \(1 < q < \infty \) and \(M_{1,\varphi_1}(w,\mathbb{R}^n) \) to the weighted weak space \(WM_{\rho,\varphi_2}^{q,\varphi}(w^q,\mathbb{R}^n) \) with \(w \in A_{1,q} \) for \(1 < q < \infty \) (see Theorem 3.3). We also find conditions on the pair \((\varphi, \rho) \) which ensure the Adams-type boundedness of \(I_\rho \) from \(M_{\rho,\varphi_1}^{p,\varphi}(w,\mathbb{R}^n) \) to \(M_{\rho,\varphi_2}^{q,\varphi}(w,\mathbb{R}^n) \) for \(1 < p < q < \infty, w \in A_{1+\frac{1}{p}, \frac{1}{p}} \) and from \(M_{1,\varphi}(w,\mathbb{R}^n) \) to \(WM_{\rho,\varphi_2}^{q,\varphi}(w,\mathbb{R}^n) \) for \(1 < q < \infty, w \in A_{1,q} \) (see Theorem 4.1).

In all cases the conditions for the boundedness of \(I_\rho \) are given in terms of Zygmund-type integral inequalities on the all \(\varphi \) functions and \(r \) which do not assume any assumption on monotonicity of \(\varphi_1(x,r), \varphi_2(x,r) \) and \(\varphi(x,r) \) in \(r \).

By \(A \lesssim B \) we mean that \(A \leq CB \) with some positive constant \(C \) independent of appropriate quantities. If \(A \lesssim B \) and \(B \lesssim A \), we write \(A \approx B \) and say that \(A \) and \(B \) are equivalent.
2 Preliminaries

Let $x \in \mathbb{R}^n$ and $r > 0$, then we denote by $B(x, r)$ the open ball centered at x of radius r, and by $\mathcal{C}B(x, r)$ denote its complement. Let $|B(x, r)|$ be the Lebesgue measure of the ball $B(x, r)$. A weight function is a locally integrable function on \mathbb{R}^n which takes values in $(0, 1)$ almost everywhere. For a weight w and a measurable set E, we define $w(E) = \int_E w(x)dx$, the Lebesgue measure of E by $|E|$ and the characteristic function of E by χ_E. If w is a weight function, for all $f \in L^1_{\text{loc}}$ we denote by $L^{p}_{\text{loc}}(w, \mathbb{R}^n)$ the weighted Lebesgue space defined by the norm

$$
\|f\chi_{B(x,r)}\|_{L^p(w, \mathbb{R}^n)} = \left(\int_{B(x,r)} |f(x)|^pw(x)dx \right)^{\frac{1}{p}} < 1,
$$

when $1 \leq p < 1$ and by

$$
\|f\chi_{B(x,r)}\|_{L^1(w, \mathbb{R}^n)} = \text{ess sup}_{x \in B(y, r)} |f(x)w(x)| < 1,
$$

when $p = 1$.

We recall that a weight function w belongs to the Muckenhoupt-Wheeden class $A_{p, q}$ (see [19]) for $1 < p < q < 1$, if

$$
\sup_B \left(\frac{1}{|B|} \int_B w(x)^qdx \right)^{\frac{1}{q}} \left(\frac{1}{|B|} \int_B w(x)^{-\frac{q}{p'}}dx \right)^{\frac{1}{p'}} \leq C,
$$

where the supremum is taken with respect to all balls B and $C > 0$. Note that, for all balls B by Hölder’s inequality we get

$$
|B|^{\frac{1}{p}-\frac{1}{q}-1}\|w\|_{L^q(B)}\|w^{-1}\|_{L^{p'}(B)} \geq 1. \tag{2.1}
$$

If $p = 1$, w is in the $A_{1, q}$ with $1 < q < 1$ if

$$
\sup_B \left(\frac{1}{|B|} \int_B w(x)^qdx \right)^{\frac{1}{q}} \left(\text{ess sup}_{x \in B} \frac{1}{w(x)} \right) \leq C,
$$

where the supremum is taken with respect to all balls B and $C > 0$.

The weight function w satisfies the reverse doubling condition if there exist constants $\alpha_1 > 1$ and $\alpha_2 < 1$ such that

$$
w(B(x, r)) \leq \alpha_2 w(B(x, \alpha_1 r)) \tag{2.2}
$$

for arbitrary $x \in \mathbb{R}^n$ and $r > 0$.

Lemma 2.1. If \(w \in A_{p,q} \) with \(1 < p < q < 1 \), then the following statements are true.

(i) \(w^q \in A_r \) with \(r = 1 + \frac{q}{p'} \).

(ii) \(w^{-p'} \in A_{r'} \) with \(r' = 1 + \frac{p'}{q} \).

(iii) \(w^p \in A_s \) with \(s = 1 + \frac{q'}{p} \).

(iv) \(w^{-q'} \in A_{s'} \) with \(s' = 1 + \frac{q'}{p} \).

We find it convenient to define the generalized weighted local Morrey spaces in the form as follows.

Definition 2.2. Let \(1 \leq p < \infty \) and \(\varphi(x,r) \) be a positive measurable function on \(\mathbb{R}^n \times (0,\infty) \). For any fixed \(x_0 \in \mathbb{R}^n \) we denote by \(M_{p,\varphi}^{\{x_0\}}(w,\mathbb{R}^n) \) the generalized weighted local Morrey space, the space of all functions \(f \in L^\text{loc}_p(w,\mathbb{R}^n) \) with finite quasinorm

\[
\|f\|_{M_{p,\varphi}^{\{x_0\}}(w,\mathbb{R}^n)} = \|f(x_0 + \cdot)\|_{M_{p,\varphi}(w,\mathbb{R}^n)}.
\]

Also by \(WM_{p,\varphi}^{\{x_0\}}(w,\mathbb{R}^n) \) we denote the weak generalized weighted local Morrey space of all functions \(f \in W L^\text{loc}_p(w,\mathbb{R}^n) \) for which

\[
\|f\|_{WM_{p,\varphi}^{\{x_0\}}(w,\mathbb{R}^n)} = \|f(x_0 + \cdot)\|_{WM_{p,\varphi}(w,\mathbb{R}^n)} < \infty.
\]

According to this definition, we recover the weighted local Morrey space \(M_{p,\lambda}^{\{x_0\}}(w,\mathbb{R}^n) \) and weighted weak local Morrey space \(WM_{p,\lambda}^{\{x_0\}}(w,\mathbb{R}^n) \) under the choice \(\varphi(x, r) = r^{\frac{\lambda-n}{p}} \):

\[
M_{p,\lambda}^{\{x_0\}}(w,\mathbb{R}^n) = M_{p,\varphi}^{\{x_0\}}(w,\mathbb{R}^n) \big|_{\varphi(x_0, r) = r^{\frac{\lambda-n}{p}}},
\]

\[
WM_{p,\lambda}^{\{x_0\}}(w,\mathbb{R}^n) = WM_{p,\varphi}^{\{x_0\}}(w,\mathbb{R}^n) \big|_{\varphi(x_0, r) = r^{\frac{\lambda-n}{p}}}.\]

We denote by \(L_\infty(w, (0,\infty)) \) the space of all functions \(g(t), t > 0 \) with finite norm

\[
\|g\|_{L_\infty(w, (0,\infty))} = \sup_{t>0} w(t)g(t)
\]

and \(L_\infty(0,\infty) \equiv L_\infty(1, (0,\infty)) \). Let \(\mathcal{S}(0,1) \) be the set of all Lebesgue-measurable functions on \((0,1) \) and \(\mathcal{S}^+(0,1) \) its subset consisting of all non-negative functions on \((0,1) \). We denote by \(\mathcal{S}^+(0,1;\uparrow) \) the cone of all functions in \(\mathcal{S}^+(0,1) \) which are non-decreasing on \((0,1) \) and

\[
\mathbb{A} = \left\{ \varphi \in \mathcal{S}^+(0,1;\uparrow) : \lim_{t \to 0^+} \varphi(t) = 0 \right\}.
\]
The following theorem was proved in [9] which we will use while proving our main results.

Theorem 2.3. Let w_1, w_2 be non-negative measurable functions satisfying $0 < \|w_1\|_{L^1(t, \infty)} < 1$ for any $t > 0$. Then the identity operator I is bounded from $L^1(w_1, (0, 1))$ to $L^1(w_2, (0, 1))$ on the cone A if and only if

$$\left\| w_2 \left(\frac{1}{\|w_1\|_{L^1(t, \infty)}} \right) \right\|_{L^1(0, 1)} < 1.$$

We will use the following statement on the boundedness of the weighted Hardy operator

$$H_wg(t) := \int_{t}^{1} g(s)w(s)d\mu(s), \quad 0 < t < \infty,$$

where w is weight and $d\mu(s)$ is a non-negative Borel measure on $(0, 1)$.

The following theorem was proved in [2].

Theorem 2.4. Let w_1, w_2 and w be weights on $(0, \infty)$ and $w_1(t)$ be bounded outside a neighborhood of the origin. The inequality

$$\text{ess sup}_{t>0} w_2(t)H_wg(t) \leq C \text{ ess sup}_{t>0} w_1(t)g(t)$$ \quad (2.3)$$

holds for some $C > 0$ for all non-negative and non-decreasing g on $(0, 1)$ if and only if

$$B := \sup_{t>0} w_2(t) \int_{t}^{1} \frac{w(s)ds}{\text{ess sup}_{s<\tau<\infty} w_1(\tau)} < \infty.$$ \quad (2.4)$$

Moreover, the value $C = B$ is the best constant for (2.3).

Remark 2.5. In (2.3) and (2.4) it is assumed that $\frac{1}{t} = 0$ and $0 \cdot 1 = 0$.

3 Spanne-type result for the operator I_ρ in the spaces $M_{p,\varphi}(w^p, \mathbb{R}^n)$

We assume that

$$\int_{1}^{1} \frac{\rho(t)}{t^n} \frac{dt}{t} < \infty,$$ \quad (3.1)$$
so that the generalized Riesz potential $I_\rho f$ is well defined, at least for characteristic functions $1/|x|^{2n}$ of complementary balls:

$$f(x) = \frac{\chi_{\mathbb{R}^n \setminus B(0,1)}(x)}{|x|^{2n}}.$$

In addition, we shall also assume that ρ satisfies the growth condition: there exist constants $C > 0$ and $0 < 2k_1 < k_2 < 1$ such that

$$\sup_{r < s \leq 2r} \frac{\rho(s)}{s^n} \leq C \int_{k_1 r}^{k_2 r} \frac{\rho(t) \, dt}{t^n}, \quad r > 0.$$ (3.2)

This condition is weaker than the usual doubling condition for the function $\frac{\rho(t)}{t^n}$: there exists a constant $C > 0$ such that

$$\frac{1}{C} \frac{\rho(t)}{t^n} \leq \frac{\rho(r)}{r^n} \leq C \frac{\rho(t)}{t^n},$$ (3.3)

whenever r and t satisfy $r, t > 0$ and $\frac{1}{2} \leq \frac{r}{t} \leq 2$.

In the sequel for the generalized Riesz potential operator I_ρ we always assume that ρ satisfies the conditions (3.1) - (3.3), and then denote the set of all such functions by \tilde{G}_0. We will write, when $\rho \in \tilde{G}_0$,

$$\tilde{\rho}(r) := Cr^n \int_r^\infty \frac{\rho(t) \, dt}{t^n}.$$

The following lemma is valid for the operator I_ρ.

Lemma 3.1. [7] Let $w^q \in A_{1+\frac{q}{p}}$ satisfies (2.2), the function ρ satisfies the conditions (3.1) - (3.3), and $f \in L_{1}^{\text{loc}}(w, \mathbb{R}^n)$. Then there exist $C > 0$ for all $B(x,r) \subset \mathbb{R}^n$ such that the inequality

$$\sup_{x \in \mathbb{R}^n, r > 0} \frac{\rho(r)}{r^n} \left(\int_{B(x,r)} w^q(x) \, dx \right)^{\frac{1}{q}} \left(\int_{B(x,r)} w(x)^{-p'} \, dx \right)^{\frac{1}{p'}} \leq C$$ (3.4)

is necessary and sufficient condition for the boundedness of generalized Riesz potential operator I_ρ from $L_p(w^p, \mathbb{R}^n)$ to $WL_q(w^q, \mathbb{R}^n)$ for $1 \leq p < q < \infty$, and from $L_p(w^p, \mathbb{R}^n)$ to $L_q(w^q, \mathbb{R}^n)$ for $1 < p < q < \infty$, $w^q \in A_{1+\frac{q}{p}}$, where the constant C does not depend on f.

The following is weighted local $L_p(\mathbb{R}^n)$-estimate for the operator I_ρ.

8
Lemma 3.2. Let fixed \(x_0 \in \mathbb{R}^n \), and \(1 \leq p < q < 1 \), \(w \in A_{1+\frac{1}{p}} \) and \(\rho(t) \) satisfy the conditions (3.1) and (3.2).

If the condition (3.4) is fulfill, then the inequality
\[
\|I_\rho f\chi_{B(x_0,r)}\|_{L_q(w^q,\mathbb{R}^n)} \leq \|f\chi_{B(x_0,2r)}\|_{L_p(w^p,\mathbb{R}^n)}
\]
\[
+ (w^q(B(x_0,r)))^{\frac{1}{q}} \int_{2r}^r \|f\chi_{B(x_0,t)}\|_{L_p(w^p,\mathbb{R}^n)} (w^q(B(x_0,t)))^{-\frac{1}{n} \frac{\rho(t)}{t^n}} \frac{dt}{t} \tag{3.5}
\]
holds for the ball \(B(x_0, r) \) and for all \(f \in L_{loc}^1(\mathbb{R}^n, w) \).

If the condition (3.4) is fulfill, then for \(p = 1 \) the inequality
\[
\|I_\rho f\chi_{B(x_0,r)}\|_{W_{L_q(w^q)}} \lesssim \|f\chi_{B(x_0,2r)}\|_{L_1(w)}
\]
\[
+ (w^q(B(x_0,r)))^{\frac{1}{q}} \int_{2r}^r \|f\chi_{B(x_0,t)}\|_{L_1(w)} (w^q(B(x_0,t)))^{-\frac{1}{n} \frac{\rho(t)}{t^n}} \frac{dt}{t} \tag{3.6}
\]
holds for the ball \(B(x_0, r) \) and for all \(f \in L_{loc}^1(\mathbb{R}^n) \).

Proof. Let \(1 \leq p < q < 1 \) and \(w \in A_{1+\frac{1}{p}} \). For fixed \(x_0 \in \mathbb{R}^n \), set \(B \equiv B(x_0, r) \) for the ball centered at \(x_0 \) and of radius \(r \). Write \(f = f_1 + f_2 \) with \(f_1 = f\chi_{2B} \) and \(f_2 = f\chi_{\mathbb{R}^n \setminus (2B)} \). Hence, by the Minkowski inequality we have
\[
\|I_\rho f\chi_{B}\|_{L_q(w^q,\mathbb{R}^n)} \leq \|I_\rho f_1\chi_{B}\|_{L_q(w^q,\mathbb{R}^n)} + \|I_\rho f_2\chi_{B}\|_{L_q(w^q,\mathbb{R}^n)}.
\]

Since \(f_1 \in L_p(w^p,\mathbb{R}^n) \), \(I_\rho f_1 \in L_q(w^q,\mathbb{R}^n) \) and from condition (3.4) we get the boundedness of \(I_\rho \) from \(L_p(w^p,\mathbb{R}^n) \) to \(L_q(w^q,\mathbb{R}^n) \) (see Lemma 3.1) and it follows that:
\[
\|I_\rho f_1\chi_{B}\|_{L_q(w^q,\mathbb{R}^n)} \leq \|I_\rho f_1\|_{L_q(w^q,\mathbb{R}^n)} \leq C \|f_1\|_{L_p(w^p,\mathbb{R}^n)} = C \|f\chi_{2B}\|_{L_p(w^p,\mathbb{R}^n)},
\]
where constant \(C > 0 \) is independent of \(f \).

It’s clear that \(z \in B \), \(y \in B(2B) \) implies \(\frac{1}{2}|x_0-y| \leq |z-y| \leq \frac{3}{2}|x_0-y| \). Then from conditions (3.1), (3.2) and by Fubini’s theorem we have
\[
|I_\rho f_2(z)| \lesssim \int_{B(2B)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| dy \lesssim \int_{2r}^r \int_{B(x_0,t)} |f(y)| dy \frac{\rho(t)}{t^n} \frac{dt}{t}.
\]
Applying Hölder’s inequality and from (2.1), we get
\[
\int_{B(2B)} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| dy
\]
\[
\lesssim \int_{2r}^r \|f\chi_{B(x_0,t)}\|_{L_p(w^p,\mathbb{R}^n)} \|w^{-1}\chi_{B(x_0,t)}\|_{L_{\rho(t)(\mathbb{R}^n)}} \frac{\rho(t)}{t^n} \frac{dt}{t}
\]
\[
\lesssim \int_{2r}^r \|f\chi_{B(x_0,t)}\|_{L_p(w^p,\mathbb{R}^n)} (w^q(B(x_0,t)))^{-\frac{1}{q} \frac{\rho(t)}{t^n}} \frac{dt}{t}.
\]
Moreover, for all \(p \in [1, 1) \) the inequality
\[
\|I_p f \chi_B\|_{L_q(w^p, \mathbb{R}^n)} \lesssim (w^q(B))^{\frac{1}{q}} \int_{2r}^1 \|f \chi_{B(x_0,t)}\|_{L_p(w^p, \mathbb{R}^n)} (w^q(B(x_0,t)))^{-\frac{1}{q}} \frac{\rho(t)\,dt}{t^n} \tag{3.7}
\]
is valid. Thus
\[
\|I_p f \chi_B\|_{L_q(w^p, \mathbb{R}^n)} \lesssim \|f \chi_{2B}\|_{L_p(w^p, \mathbb{R}^n)}
+ (w^q(B))^{\frac{1}{q}} \int_{2r}^1 \|f \chi_{B(x_0,t)}\|_{L_p(w^p, \mathbb{R}^n)} (w^q(B(x_0,t))) \rho(t)\,dt\frac{t^n}{t}.
\]
On the other hand,
\[
\|f \chi_{2B}\|_{L_p(w^p, \mathbb{R}^n)} \approx \frac{r^\frac{n}{p}}{\rho(r)} \|f \chi_{2B}\|_{L_p(w^p, \mathbb{R}^n)} \int_r^3 \rho(t)\,dt\frac{t^n}{t}
\leq \frac{r^\frac{n}{p}}{\rho(r)} \int_{2r}^1 \|f \chi_{2B(x_0,t)}\|_{L_p(w^p, \mathbb{R}^n)} \rho(t)\,dt\frac{t^n}{t}
\lesssim (w^q(B))^{\frac{1}{q}} \|w^{-1}\chi_B\|_{L_p(w^p, \mathbb{R}^n)} \int_{2r}^1 \|f \chi_{2B(x_0,t)}\|_{L_p(w^p, \mathbb{R}^n)} \rho(t)\,dt\frac{t^n}{t}
\lesssim (w^q(B))^{\frac{1}{q}} \int_{2r}^1 \|f \chi_{2B(x_0,t)}\|_{L_p(w^p, \mathbb{R}^n)} (w^q(B(x_0,t)))^{-\frac{1}{q}} \rho(t)\,dt\frac{t^n}{t}. \tag{3.8}
\]
Hence by
\[
\|I_p f \chi_B\|_{L_q(w^p, \mathbb{R}^n)} \lesssim (w^q(B))^{\frac{1}{q}} \int_{2r}^1 \|f \chi_{B(x_0,t)}\|_{L_p(w^p, \mathbb{R}^n)} (w^q(B(x_0,t)))^{-\frac{1}{q}} \rho(t)\,dt\frac{t^n}{t}
\]
we get the inequality (3.7).
Now let $p = 1$ and $w \in A_{1,q}$. In this case by (3.4) we obtain
\[
\| I_\rho f_1 \chi_B \|_{WL_q(w^q, \mathbb{R}^n)} \leq \| I_\rho f_1 \|_{WL_q(w^q, \mathbb{R}^n)} \lesssim \| f_1 \|_{L_1(w, \mathbb{R}^n)} = \| f \chi_B \|_{L_1(w, \mathbb{R}^n)}
\]

\[
\approx \frac{r^n}{\rho(r)} \| f \chi_{2B} \|_{L_1(w, \mathbb{R}^n)} \int_r^1 \frac{\rho(t) dt}{t^n}
\]

\[
\leq \frac{r^n}{\rho(r)} \int_{2r}^1 \| f \chi_{2B(x_0,t)} \|_{L_1(w, \mathbb{R}^n)} \frac{\rho(t) dt}{t^n}
\]

\[
\lesssim (u^q(B)) \frac{1}{q} \| \chi_{B} \|_{L_1(w, \mathbb{R}^n)} \int_{2r}^1 \| f \chi_{2B(x_0,t)} \|_{L_1(w, \mathbb{R}^n)} \frac{\rho(t) dt}{t^n}
\]

\[
\lesssim (u^q(B)) \frac{1}{q} \int_{2r}^1 \| f \chi_{2B(x_0,t)} \|_{L_1(w, \mathbb{R}^n)} \| \chi_{B(x_0,t)} \|_{L_1(w, \mathbb{R}^n)} \frac{\rho(t) dt}{t^n}
\]

\[
\lesssim (u^q(B)) \frac{1}{q} \int_{2r}^1 \| f \chi_{2B(x_0,t)} \|_{L_1(w, \mathbb{R}^n)} (u^q(B(x_0,t))) \frac{\rho(t) dt}{t^n}. \quad (3.9)
\]

Then from (3.8) and (3.9) we get the inequality (3.6). \qed

The following theorem one of the main result of our paper, in which we prove the Spanne-type estimate for the boundedness of generalized fractional integral operator I_ρ from generalized weighted local Morrey spaces $M_{p,\varphi_1}^{(x_0)}(w^p, \mathbb{R}^n)$ to $M_{q,\varphi_2}^{(x_0)}(w^q, \mathbb{R}^n)$.

Theorem 3.3. Let fixed $x_0 \in \mathbb{R}^n$, $1 \leq p < q < \infty$, $w \in A_{1+\frac{1}{p}, \infty}$, the function ρ satisfy the conditions (3.1), (3.2) and (3.3). Let also (φ_1, φ_2) satisfy the conditions

\[
\text{ess inf}_{t < s < \infty} \varphi_1(x_0, s) s^{\frac{n}{q}} \leq C \varphi_2(x_0, \frac{t}{2}) \frac{t^{\frac{n}{q}}}{2}, \quad (3.10)
\]

\[
\int_r^\infty \text{ess inf}_{t < s < \infty} \varphi_1(x_0, s) (w^p(B(x_0, s)))^{\frac{1}{q}} \rho(t) \frac{dt}{t^{\frac{n}{q}}} \leq C \varphi_2(x_0, r), \quad (3.11)
\]

where C does not depend on x and r. Then the operator I_ρ is bounded from $M_{p,\varphi_1}^{(x_0)}(w^p, \mathbb{R}^n)$ to $M_{q,\varphi_2}^{(x_0)}(w^q, \mathbb{R}^n)$ for $p > 1$ and from $M_{1,\varphi_1}^{(x_0)}(w, \mathbb{R}^n)$ to $WM_{q,\varphi_2}^{(x_0)}(w^q, \mathbb{R}^n)$ for $p = 1$. Moreover, for $p > 1$

\[
\| I_\rho f \|_{M_{q,\varphi_2}^{(x_0)}(w^q, \mathbb{R}^n)} \lesssim \| f \|_{M_{p,\varphi_1}^{(x_0)}(w^p, \mathbb{R}^n)},
\]

and for $p = 1$

\[
\| I_\rho f \|_{WM_{q,\varphi_2}^{(x_0)}(w^q, \mathbb{R}^n)} \lesssim \| f \|_{M_{1,\varphi_1}^{(x_0)}(w, \mathbb{R}^n)}.
\]
Proof. Let \(p > 1 \). Then by Theorems 2.3, 2.4, Lemma 3.2 and conditions (3.10)-(3.11) we have that

\[
\| I_p f \|_{M_{p,q,2}^{(x_0)}(w^q,\mathbb{R}^n)} = \sup_{r > 0} \| \varphi_2(x_0, r)^{-1}(w^q(B(x_0, r)))^{-\frac{1}{q}} \| I_p f \|_{L_q(w^q, B(x_0, 2r))} \\
= \sup_{r > 0} \| \varphi_2(x_0, r)^{-1}(w^q(B(x_0, r)))^{-\frac{1}{q}} \| I_p f \chi_{B(x_0, 2r)} \|_{L_q(w^q, \mathbb{R}^n)} \\
\lesssim \sup_{r > 0} \| \varphi_2(x_0, r)^{-1}(w^q(B(x_0, r)))^{-\frac{1}{q}} \| \| f \|_{L_p(w^p, B(x_0, 2r))} \\
+ \sup_{r > 0} \| \varphi_2(x_0, r)^{-1} \int_r^1 \| f \|_{L_p(w^p, B(x_0, 2t))} \frac{\rho(t)}{t^{n+1}} dt \].
\]

\[
\approx \sup_{r > 0} \| \varphi_1(x_0, r)^{-1}(w^p(B(x_0, r)))^{-\frac{1}{p}} \| \| f \|_{L_p(w^p, B(x_0, r))} \\
= \| f \|_{M_{p^q_0,2}^{(x_0)}(w,\mathbb{R}^n)}.
\]

Now let \(p = 1 \) then

\[
\| I_p f \|_{W_{M_{p,q,2}^{(x_0)}(w^q,\mathbb{R}^n)}} = \sup_{r > 0} \| \varphi_2(x_0, r)^{-1}(w^q(B(x_0, r)))^{-\frac{1}{q}} \| I_p f \|_{W_{L_q(w^q, B(x_0, 2r))}} \\
= \sup_{r > 0} \| \varphi_2(x_0, r)^{-1}(w^q(B(x_0, r)))^{-\frac{1}{q}} \| I_p f \chi_{B(x_0, 2r)} \|_{W_{L_q(w^q, \mathbb{R}^n)} } \\
\lesssim \sup_{r > 0} \| \varphi_2(x_0, r)^{-1}(w^q(B(x_0, r)))^{-\frac{1}{q}} \| \| f \|_{L_1(w, B(x_0, 2r))} \\
+ \sup_{r > 0} \| \varphi_2(x_0, r)^{-1} \int_r^1 \| f \|_{L_1(w, B(x_0, 2t))} \frac{\rho(t)}{t^{n+1}} dt \].
\]

\[
\approx \sup_{r > 0} \| \varphi_1(x_0, r)^{-1}(w(B(x_0, r)))^{-\frac{1}{p}} \| \| f \|_{L_1(w, B(x_0, r))} \\
= \| f \|_{M_{p^q_0,1}^{(x_0)}(w,\mathbb{R}^n)}.
\]

Hence the proof is completed. \(\square \)

Corollary 3.4. In the case \(w \equiv 1 \) from Theorem 3.3 we get Theorem C, in which we give Spanne-type result for generalized Riesz potential operator \(I_p \) on generalized local Morrey spaces \(M_{p,q,2}^{(x_0)}(\mathbb{R}^n) \) which was proved in [12] (Theorem 16, p.6).

Corollary 3.5. In the case \(\rho(t) = t^\alpha, w \equiv 1, x \equiv x_0 \) from Theorem 3.3 we get Spanne-type result for Riesz potential operator \(I_\alpha \) on generalized Morrey spaces \(M_{p,\varphi}(\mathbb{R}^n) \) which was proved in [12] (Theorem 5.4, p.338).
Corollary 3.6. In the case $\rho(t) = t^\alpha$, $w \equiv 1$ and $\varphi(x_0, t) = t^{\frac{\lambda}{p-\lambda}}$, $0 < \lambda < n$ from Theorem 3.3 we get Spanne result for Riesz potential operator I_α on local Morrey spaces $M_{p,\lambda}^{\varphi}(\mathbb{R}^n)$ which is variant of Theorem A proved in [25].

4 Adams-type result for the operator I_ρ in the spaces $M_{p,\varphi}(w)$

The following theorem is Adams-type estimate for generalized Riesz potential operator I_ρ on generalized weighted Morrey spaces $M_{p,\varphi}(w, \mathbb{R}^n)$.

Theorem 4.1. Let $1 \leq p < \infty$, $q > p$, $w \in A_{1+\frac{q}{p}}$, $\rho(t)$ satisfy the conditions (3.1), (3.2) and (3.4). Let also $\varphi(x, t)$ satisfy the conditions

\begin{equation}
\begin{aligned}
c^{-1} \varphi(x, r) &\leq \varphi(x, t) \leq c \varphi(x, r), \\
\int_r^\infty \frac{\text{ess inf}_{t<s<\infty} \varphi(x, s)}{w(B(x, s))^{\frac{1}{q}}} \rho(t) \frac{dt}{t} &\leq C \left(\rho(r)\right)^{-\frac{p}{q-p}},
\end{aligned}
\end{equation}

where C does not depend on $x \in \mathbb{R}^n$ and $r > 0$. Then the operator I_ρ is bounded from $M_{p,\varphi}^{\frac{1}{p}}(w, \mathbb{R}^n)$ to $M_{q,\varphi}^{\frac{1}{q}}(w, \mathbb{R}^n)$ for $p > 1$ and from $M_{1,\varphi}(w, \mathbb{R}^n)$ to $WM_{q,\varphi}^{\frac{1}{q}}(w, \mathbb{R}^n)$ for $p = 1$. Moreover, for $p > 1$

$$\|I_\rho f\|_{M_{q,\varphi}^{\frac{1}{q}}(w, \mathbb{R}^n)} \lesssim \|f\|_{M_{p,\varphi}^{\frac{1}{p}}(w, \mathbb{R}^n)},$$

and for $p = 1$

$$\|I_\rho f\|_{WM_{q,\varphi}^{\frac{1}{q}}(w, \mathbb{R}^n)} \lesssim \|f\|_{M_{1,\varphi}(w, \mathbb{R}^n)}.$$

Proof. Let $1 < p < \infty$, $q > p$, $w \in A_{1+\frac{q}{p}}$ and $f \in M_{p,\varphi}^{\frac{1}{p}}(w, \mathbb{R}^n)$. Write $f = f_1 + f_2$, where $B = B(x, r)$, $f_1 = f\chi_{2B}$ and $f_2 = f\chi_{(2B)}$. Then we have

$$I_\rho f(x) = I_\rho f_1(x) + I_\rho f_2(x).$$

For $I_\rho f_1(y)$, $y \in B(x, r)$, following Hedberg’s trick (see for instance [27], p. 354), we obtain

$$|I_\rho f_1(y)| \lesssim Mf(x)\rho(r),$$

13
(see [9], for more detail). Thus by taking $L_q(w, \mathbb{R}^n)$—norm we get
\[
\|I_{\rho}f\|_{L_q(B(x,r))}(w, \mathbb{R}^n) \leq w(B(x,r))^{1 \over q} \left(\int_{B(y,2r)} \left(\rho(\|y-z\|) \frac{1}{|y-z|^n}|f(z)| \right)^q dz \right)^{1/q}.
\]

For $I_{\rho}f(y)$, $y \in B(x,r)$ from (2.1) we have
\[
|I_{\rho}f(y)| \lesssim \rho(\|y-z\|) |y-z|^n |f(z)| dz
\]
\[
\lesssim \int_{2r}^1 \|f\|_{L_p(w, \mathbb{R}^n)} w(B(x,r))^{-1 \over q} \rho(t) dt \frac{dt}{t^n}.
\]

Then from condition (4.2) and inequality (4.3) for all $y \in B(x,r)$ we get
\[
|I_{\rho}f(y)| \lesssim \rho(r) Mf(x) + \int_{2r}^1 \|f\|_{L_p(w, \mathbb{R}^n)} w(B(x,r))^{-1 \over q} \rho(t) dt \frac{dt}{t^n}
\]
\[
\lesssim \rho(r) Mf(x) + \rho(r)^{-1 \over q} \|f\|_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)}.
\]

Hence choosing $\rho(r) = \left(\frac{\|f\|_{M_{p,\phi}^1(w, \mathbb{R}^n)}}{Mf(x)} \right)^{-\frac{2-p}{p}}$ for all $y \in B(x,r)$, we have
\[
|I_{\rho}f(y)| \lesssim (Mf(x))^{\frac{p}{q}} \|f\|^{1-p \over q}_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)}.
\]

Consequently the statement of the theorem follows in view of the boundedness of the maximal operator M in $M_{p,\phi}^{1 \over p}(\mathbb{R}^n)$ provided in [11] in virtue of condition (11), hence, for $1 < p < q < \infty$ we get
\[
\|I_{\rho}f\|_{M_{q,\phi}^{1 \over q}(w, \mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, t > 0} \varphi(x, t)^{-1 \over q} w(B(x,t))^{-1 \over q} \|I_{\rho}f\|_{L_q(w, B(x,t))}
\]
\[
\lesssim \|f\|_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)} \sup_{x \in \mathbb{R}^n, t > 0} \varphi(x, t)^{-1 \over q} w(B(x,t))^{-1 \over q} \|Mf\|_{L_p(w, B(x,t))}^{\frac{q}{p}}
\]
\[
= \|f\|_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)} \left(\sup_{x \in \mathbb{R}^n, t > 0} \varphi(x, t)^{-1 \over q} w(B(x,t))^{-1 \over q} \|Mf\|_{L_p(w, B(x,t))} \right)^{\frac{q}{p}}
\]
\[
= \|f\|_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)} \|Mf\|_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)}^{\frac{q}{p}}
\]
\[
\lesssim \|f\|_{M_{p,\phi}^{1 \over p}(w, \mathbb{R}^n)},
\]

14
and for $1 < q < \infty$

$$\|I_\rho f\|_{W^{q,q}_{\varphi}(w,\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, t > 0} \varphi(x,t)^{-\frac{1}{q}}w(B(x,t))^{-\frac{1}{q}}\|I_\rho f\|_{W^{q,q}_{\varphi}(w,\mathbb{R}^n)} \leq \|f\|_{\mathcal{M}_{1,\varphi}(w,\mathbb{R}^n)}^{1-\frac{1}{q}} \sup_{x \in \mathbb{R}^n, t > 0} \varphi(x,t)^{-1}w(B(x,t))^{-1}\|Mf\|_{W^{1,1}_{\varphi}(w,\mathbb{R}^n)}^{\frac{1}{q}}$$

$$= \|f\|_{\mathcal{M}_{1,\varphi}(w,\mathbb{R}^n)}^{1-\frac{1}{q}} \left(\sup_{x \in \mathbb{R}^n, t > 0} \varphi(x,t)^{-1}w(B(x,t))^{-1}\|Mf\|_{W^{1,1}_{\varphi}(w,\mathbb{R}^n)} \right)^{\frac{1}{q}}$$

$$\lesssim \|f\|_{\mathcal{M}_{1,\varphi}(w,\mathbb{R}^n)}.$$

Hence the proof is completed. \[\square\]

Corollary 4.2. In the case $w \equiv 1$ from Theorem 4.1 we get Theorem D, in which we give Adams type result for generalized Riesz potential operator I_ρ on generalized Morrey spaces $M_{p,\varphi}(\mathbb{R}^n)$ which was proved in [9] (Theorem 22, p.7).

Corollary 4.3. In the case $\rho(t) = t^\alpha, w \equiv 1, x \equiv x_0$ from Theorem 4.1 we get Adams type result for Riesz potential operator I_α on generalized Morrey spaces $M_{p,\varphi}(\mathbb{R}^n)$ which was proved in [12] (Theorem 5.7, p.182).

Corollary 4.4. In the case $\rho(t) = t^\alpha, w \equiv 1$ and $\varphi(x_0,t) = t^{\frac{\lambda-n}{p}}$, $0 < \lambda < n$ from Theorem 4.1 we get Adams result for Riesz potential operator I_α on local Morrey spaces $M_{p,\lambda}^{(x_0)}(\mathbb{R}^n)$ which is variant of Theorem B proved in [22].

Acknowledgement

The author would like to express his gratitude to the referees for their (his/her) very valuable comments.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.
References

[1] D.R. Adams, *A note on Riesz potentials*, Duke Math., vol. 42(4)(1975), 765-778.

[2] M. Carro, L. Pick, J. Soria, V.D. Stepanov, *On embeddings between classical Lorentz spaces*, Math. Inequal. Appl. 4(3)(2001), 397-428.

[3] L. Cafarelli, *Elliptic second order equations*, Rend. Sem. Mat. Fis. Milano 58 (1998), (1990), 253-284. DOI 10.1007/BF02925245.

[4] R. R. Coifman, C. Fefferman, *Weighted norm inequalities for maximal functions and singular integrals*, Tamkang J. Math., Studia Math. 51 (1974), 241-250.

[5] A. Eridani, *On the boundedness of a generalized fractional integral on generalized Morrey spaces*, Tamkang J. Math., 33(4)(2002), 335-340.

[6] J. Garcia-Cuerva, J.L. Rubio de Francia, *Weighted Norm Inequalities and Related Topics*, North-Holland Math. 16, Amsterdam, 1985.

[7] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, *Solution of two-weight problems for integral transforms with positive kernels*, Georgian Math. J., 3(4)(1996), 31-342.

[8] L. Grafakos, *Classical and Modern Fourier Analysis*, Pearson Education, Inc. Upper Saddle River, New Jersey, 2004.

[9] V.S. Guliyev, A.F. Ismayilova, A. Kucukaslan, A. Serbetci, *Generalized fractional integral operators on generalized local Morrey spaces*, J. Funct. Spaces, Article ID 594323, (2015), 8 pages.

[10] V.S. Guliyev, *Integral operators on function spaces on the homogeneous groups and on domains in \(\mathbb{R}^n \).* [in Russian], Diss. Steklov Mat. Inst., (1994), Moscow.

[11] V.S. Guliyev, *Generalized weighted Morrey spaces and higher order commutators of sublinear operators*, Eurasian Math. J., 3(3)(2012), 33-61.

[12] V.S. Guliyev, S.S. Aliyev, T. Karaman, and P. S. Shukurov, *Boundedness of sublinear operators and commutators on generalized Morrey Space*, Integral Equat. Oper. Theor., 71(3)(2011), 327-355.
[13] T.Y. Komori, S. Shirai, \textit{Weighted Morrey spaces and a singular integral operator}, Math. Nachr. 282(2)(2009), 219-231.

[14] A. Kucukaslan, S.G. Hasanov, C. Aykol, \textit{Generalized fractional integral operators on vanishing generalized local Morrey spaces}, Int. J. of Math. Anal., 11(6)(2017) 277–291.

[15] A. Kucukaslan, V.S. Guliyev, A. Serbetci, \textit{Generalized fractional maximal operators on generalized local Morrey spaces}, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 69(1)(2020), pp. 73-87. DOI: 10.31801/cfsuasmas.

[16] A. Kucukaslan, \textit{Equivalence of norms of the generalized fractional fractional integral operator and the generalized fractional maximal operator on generalized weighted Morrey spaces}, Ann. Funct. Anal. 11(2020) pp. 1007-1026. https://doi.org/10.1007/s43034-020-00066-w

[17] A. Kucukaslan, \textit{Two-type estimates for the boundedness of generalized fractional maximal operators on generalized weighted local Morrey spaces}, Turk. J. Math. Comput. Sci., 12(1)(2020), pp. 57-66.

[18] C.B. Morrey, \textit{On the solutions of quasi-linear elliptic partial differential equations}, Trans. Amer. Math. Soc., 43 (1938), 126-166.

[19] B. Muckenhoupt, R. Wheeden, \textit{Weighted norm inequalities for the Hardy maximal function}, Trans. Amer. Math. Soc., 165 (1972), 261-274.

[20] B. Muckenhoupt, \textit{Weighted norm inequalities for fractional integrals}, Trans. Amer. Math. Soc., 192 (1974), 207-226.

[21] R. Mustafayev and A. Kucukaslan \textit{An extension of Muckenhoupt-Wheeden theorem to generalized weighted Morrey spaces}, Georgian Math. Journal, DOI: https://doi.org/10.1515/gmj-2020-2056.

[22] E. Nakai, \textit{On generalized fractional integrals}, Taiwanese J. Math., 5 (2001), 587-602.

[23] E. Nakai, \textit{Generalized fractional integrals on generalized Morrey spaces}, Math. Nachr., 287(2-3) (2014), 339–351.
[24] S. Nakamura, *Generalized weighted Morrey spaces and classical operators*, Math. Nachr. 289(1718)(2016). DOI:10.1002/mana.201500260.

[25] J. Peetre, *On the theory of $M_{p,\lambda}$*, J. Funct. Anal., 4(1969), 71-87.

[26] A. Ruiz and L. Vega, *Unique continuation for Schrödinger operators with potentials in the Morrey class*, Publ. Math. 35(2)(1991) 291-298, Conference of Mathematical Analysis (El Escorial, 1989).

[27] E.M. Stein, *Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals*, Princeton Univ. Press, Princeton NJ (1993).