Early and late intramedullary nailing of femur fracture: A single center experience

Ahmad S. Alobaidi, Ammar Al-Hassani, Ayman El-Menyar, Husham Abdelrahman, Mazin Tuma, Hassan Al-Thani, Mohammed A. Aldosari

Department of Orthopedic Surgery, Al-Wakra Hospital, Hamad Medical Corporation, Department of Surgery, Section of Trauma Surgery, Hamad Medical Corporation, Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar

Address for correspondence: Dr. Ahmad S. Alobaidi, Department of Orthopedic Surgery, Al-Wakra Hospital, Hamad Medical Corporation, Doha, Qatar. E-mail: traumaresearch@hamad.qa

ABSTRACT

Background: Femur fracture (FF) is a common injury, and intramedullary nailing (IMN) is the standard surgical fixation. However, the time of intervention remains controversial. We aimed to describe the reamed IMN (rIMN) timing and hospital outcomes in trauma patients presenting with FF.

Materials and Methods: A retrospective analysis was conducted for all patients admitted with FF and they underwent fixation at level 1 trauma unit between January 2010 and January 2012. Patients were divided into Group I with early rIMN (<12 h) and Group II with late rIMN (≥12 h). Patients’ demographics, clinical presentations, mechanism of injury, pulmonary complications, organ failure, length of stay, and mortality were described.

Results: A total of 307 eligible patients with FF were identified (156 patients in Group I and 151 patients in Group II). Patients in Group II were older (36 ± 18 vs. 29 ± 9; \(P = 0.001 \)) and had higher rate of polytrauma (35% vs. 18%, \(P = 0.001 \)), head injury (5% vs. 12%, \(P = 0.68 \)) and bilateral FF (10.7% vs. 5.1%; \(P = 0.07 \)) in comparison to Group I. Group II had longer stay in Intensive Care Unit (7 [1–56] vs. 2 [1–17] days; \(P = 0.009 \)) and hospital (13 [2–236] vs. 9 [1–367]; \(P = 0.001 \)). There were no significant differences in outcomes between the two groups in terms of sepsis, renal failure, fat embolism, adult respiratory distress syndrome and death.

Conclusions: Based on this analysis, we believe that early rIMN is safe in appropriately selected cases. In patients with traumatic FFs, early rIMN is associated with low hospital complications and shorter hospital stay. The rate of pulmonary complications is almost the same in the early and late group. Further prospective randomized studies with large sample size would be ideal using the information garnered from the present study.

Key Words: Femur, fracture, intramedullary nailing, outcomes, reamed, timing, trauma

INTRODUCTION

Traumatic femur fractures (FFs) continue to be a major cause of morbidity and mortality worldwide. \(^1\) Regardless of the patient age and injury severity, a previous study showed that in comparison to delayed stabilization, an early definitive stabilization of FF is found to have fewer complications. \(^2\) Currently the standard of care for definitive treatment for most diaphyseal fractures of the femur is intramedullary nailing (IMN). \(^3\) This approach can be performed expediently, through minimal incisions with almost no significant blood loss, and in most cases, patients can be early mobilized. However, in patient with multiple injuries, the type and timing of FF stabilization remains controversial. \(^4\) There are rationales for early

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Alobaidi AS, Al-Hassani A, El-Menyar A, Abdelrahman H, Tuma M, Al-Thani H, et al. Early and late intramedullary nailing of femur fracture: A single center experience. Int J Crit Illn Inj Sci 2016;6:143-7.
FF fixation as it associated with increased patient mobility, lesser pulmonary complications, and reduced length of hospital and Intensive Care Unit (ICU) stay.[5-8] Some studies suggested that early definitive surgery in polytrauma patients, especially with chest and head injuries, resulted in increased rate of complications and mortality.[9-16] Contrarily, Brundage \textit{et al.}[17] reported early internal fixation after adequate resuscitation (<24 h) was correlated with better prognosis in concomitant head or chest trauma patients. However, regardless of the associated injuries, two systematic reviews demonstrated no difference in morbidity or mortality between early (<24 h) and late operative treatment of femoral shaft fractures.[18,19]

Alternatively, damage-control orthopedics (DCO) involves external fixation followed by delayed definitive treatment has the advantage of giving more time for resuscitation, and might halt the inflammatory cascade provoked by polytrauma and definitive surgery.[20-22] The present study aims to describe the reamed (rIMN) and its timing on the in-hospital outcomes in trauma patients presenting with FF.

MATERIALS AND METHODS

A retrospective analysis was conducted for data of the trauma registry at Hamad General Hospital, the only level 1 trauma center in Qatar over a period of 24 months from January 2010 to January 2012.

Inclusion criteria

All patients ≥14 years and <80 years who sustained trauma with single or bilateral FFs (shaft) and underwent IMN (piriformis entry and close nailing). All patients underwent reamed antegrade nailing. Although retrograde nailing is preferable in bilateral FF, our institution used that for some ipsilateral femur and tibia fracture as well as some distal shaft FF; this mostly depends on the surgeon discretion and availability of resources. Using AO nails or Trigen nails entirely depends on surgeon’s preference.

Exclusion criteria

Patients <14 and ≥80 years, patients who died within 24 h of admission, and patients with femoral neck fractures, or pathological fracture.

All the trauma patients were initially resuscitated in the trauma room according to advanced trauma life support protocol. Patients were taken to the operating room (OR), trauma ICU, or trauma ward depending on the patient stability and associated injuries. The charts of all patients were reviewed and data were gathered including age, sex, mechanism of injury, pattern of injuries (unilateral or bilateral), FFs, associated injuries to other systems, injury severity scoring (ISS), abbreviated injury scale, systemic inflammatory response syndrome (SIRS) and hospital outcomes (length of stay [LOS], pulmonary complications, organ failure, sepsis, and mortality).

Treatment groups

Patients were divided into two groups: Group I (early); those whose FFs were treated with primary rIMN <12 h of injury and Group II (late); those whose FFs were treated ≥12 h. All operative notes were reviewed to determine the time and date of each surgical procedure.

Definitions

SIRS was defined as presence of the following criteria: Body temperature ≥38°C/≤36°C, heart rate ≥90 bpm, respiratory rate ≥20/min or PaCO\textsubscript{2} <32 mmHg, and neutrophil count ≥12,000/mL or ≤4000/mL.[23]

Adult respiratory distress syndrome (ARDS) is defined as the acute onset of respiratory failure, bilateral infiltrates on chest radiograph, hypoxemia as defined by a PaO\textsubscript{2}/FiO\textsubscript{2} ratio ≤200 mmHg, and no evidence of left atrial hypertension or a pulmonary capillary pressure <18 mmHg (if measured) to rule out cardiogenic edema.[24]

Polytrauma is defined as two or more severe injuries in at least two areas of the body with an ISS ≥16.[25]

Death during the primary hospitalization was documented in the trauma database.

The need for informed consent was waived by the Ethical Committee since rights and interests of the patients would not be violated and their privacy and anonymity would be assured by this study design. This study was approved by the Medical Research Center at Hamad Medical Corporation; Institutional Review Board#12176/12.

Statistical analysis

The data were presented as proportions, medians, or mean ± standard deviation, as appropriate. Comparison was carried mainly between early (<12 h) and late treatment (≥12 h) groups. Differences in categorical variables were analyzed using the Chi-square test and the continuous variables were analyzed using Student’s t-test. Two-tailed \(P < 0.05 \) was considered statistically significant. All data analyses were carried out using the Statistical Package for the Social Sciences version 18 (SPSS, Inc., Chicago, IL, USA).

RESULTS

During the study period, out of 2800 trauma patients admitted to our center, 355 patients had FFs. After
exclusion of 48 patients who were not fixed due to early mortality from severe head injury, 307 patients met the inclusion criteria. The majority of patients were males (96%) involved in traffic-related injuries or fall from height during construction work. Patients’ age ranged from 16 to 48 years with a mean of 33 ± 14.7 years. The patient demographics in each group were similar for sex and mechanism of injury; however, patients in Group II were 7 years older (P = 0.001). Open fractures were greater in Group I in comparison to Group II (14% vs. 4%; P = 0.002).

There were 24 (8%) patients with bilateral FFs, 28 (9%) patients with open fractures and 38 (12.4%) patients had associated tibia fractures.

Patients were divided into two groups: 156 (51%) were in Group I (rIMN < 12 h) and 151 (49%) were in Group II (rIMN ≥ 12 h). There were 22 (14%) and 6 (4%) patients with open FF in Group I and Group II, respectively, (P = 0.002). In Group I, bilateral FF was present in eight (5%) cases whereas 16 (10.7%) patients had bilateral FFs in Group II. The associated tibial fractures were comparable among the two groups [Table 1].

The median time from admission to primary IMN for the early group was 3.2 h and for the late group was 68 h. Severe injury (ISS > 15) was more frequently seen in Group II in comparison to Group I (23 ± 6 vs. 21 ± 4; P = 0.044). There were significantly more number of patients in Group II who had polytrauma than in Group I (34% vs. 17%; P = 0.001) [Table 2].

The number of mean red blood cells units transfused within first 24 h was comparable among the two groups [Table 3]. Group II had longer stay in ICU (7 ± 1–56) vs. 2 ± 1–17; P = 0.009) days and hospital (13 ± 2–236) vs. 9 ± 3–367; P = 0.001). Although, complications were greater in Group II, there were no significant differences in the outcomes between the two groups in terms of wound infection, sepsis and ARDS. The rates of SIRS and fat embolism were similar in the two groups and no cases of renal failure were reported in either group. Only one case of death was reported in Group I; it was isolated FF complicated with fat embolism and ARDS.

DISCUSSION

The present study describes the rIMN timing (early vs. late fixation) and hospital outcomes in nonhomogenous trauma patients presenting with FF in a single trauma tertiary center. According to this analysis, the rate FF is around 11 cases/100,000/year which is consistent with the international rates (10–21 cases/100,000/year). Nearly, half of our patients had early fixation and showed few complications, and short hospital stay. This finding is in agreement with previous studies showing a potential benefit of early definitive surgery in patients who are stable enough for IMN.\(^7\)\(^8\) Moreover, the late FF fixation group tended to be severely injured, as evident from ISS and associated injuries. In addition, the most common cause of delay in polytrauma patients was head injury and lack of immediate OR availability.

The present report also shows that the hospital complications in patients who underwent rIMN beyond 12 h of admission were not high as well. In a recent study by Harvin et al.,\(^1\) a 57% decrease in pulmonary complication was observed when IMN was performed within 24 h of admission and even when considering only those patients with high ISS.

The only statistical significant difference in our data is the length of ICU and hospital stay, which basically reflected the higher ISS and thus the severity and multiplicity of

Table 1: Demographics and outcomes based on time to operate

Variable	<12 h (n=156) (%)	≥12 h (n=151) (%)	P
Age (mean±SD)	29 ± 9	36 ± 18	0.001
Males	149 (95.5)	137 (88.7)	0.27
Motor vehicle crash	74 (47.4)	71 (47)	0.45
Pedestrian injury	14 (9)	14 (9.3)	0.45
Fall from height	36 (23)	46 (30.5)	0.45
Bilateral	8 (5.1)	16 (10.7)	0.07
Open fracture	22 (14)	6 (4)	0.002
Tibia fracture	18 (11.7)	20 (13.7)	0.60
ISS >15 (polytrauma)	22 (17-34)	23 (17-43)	0.044
Mean (SD)	21 ± 4	23 ± 6	0.001
Time (h) median; range	3.2 (1-12)	68 (13-526)	0.001

Table 2: Associated injuries

Variable	<12 h (n=156) (%)	≥12 h (n=151) (%)	P
Polytrauma (%)	27 (17)	51 (34)	0.001
Head AIS	3 (2-3)	3 (2-5)	0.68
Chest AIS	3 (1-3)	3 (1-3)	0.79
Abdominal AIS	2 (2-4)	2 (2-4)	0.13
Pelvis AIS	2 (2-4)	2 (2-4)	0.44

Table 3: Posttreatment complications

Variable	<12 h (n=156) (%)	≥12 h (n=151) (%)	P
ICU LOS	2 (1-17)	7 (1-56)	0.009
Hospital LOS	9 (1-369)	13 (2-236)	0.001
RBCs units (1st 24 h)	5.9 ± 8.6	8.1 ± 5.4	0.430
SBP < 90 mmHg	4 (2.5)	5 (3.3)	0.67
SIRS	54 ± 54.1	54.1	0.99
Bed sore	0 (0)	1 (0.7)	0.39
Wound infection	3 (1.9)	8 (5.3)	0.11
Sepsis	1 (0.6)	2 (1.3)	0.54
Renal failure	0 (0)	0 (0)	1.00
Fat embolism	1 (0.6)	1 (0.7)	0.54
ARDS	1 (0.6)	2 (1.3)	0.032
Deaths	1 (0.6)	0 (0)	0.32

SD: Standard deviation, ISS: Injury severity scoring

AIS: Abbreviated injury scale, All continuous data are presented in median and range

ICU: Intensive Care Unit, RBCs: Red blood cells, SBP: Systolic blood pressure, ARDS: Adult respiratory distress syndrome, LOS: Length of stay, SIRS: Systemic inflammatory response syndrome
associated injuries, particularly head injury which may confound the decision to operate and prolong the stay both in ICU and hospital.

Consistently, Brundage et al.,[17] did find a significant increase in complications such as pneumonia, ARDS, and length of hospital stay among patients who were managed between 2 and 5 days after the injury. However, the authors did not report significant difference in mortality in association with the treatment timing. Another retrospective study evaluated 97 severely injured patients with ISS > 25 and found no difference in the rate of ARDS, multiple organ failure, and LOS when early IMN and DCO were compared.[28] In our study, only two cases underwent external fixation before conversion to rIMN in Group II.

A recent multicenter randomized control trial compared early IMN (<24 h) and DCO for FFs in 165 patients.[27] The authors concluded that primary femoral IMN is associated with shorter ventilation time in stable cases, a higher incidence of lung dysfunction in borderline cases in comparison to those who underwent external fixation and later conversion to IMN. In that study, IMN affected the outcome mainly in patients with polytrauma.

Also, Nahm et al.[2] reported that early fixation is associated with fewer complications (pulmonary problems, organ failure, sepsis, and deep vein thrombosis [DVT]), and shorter LOS suggesting that it is an appropriate option for most patients. In addition, delay in definitive stabilization of FFs was directly proportional to the development of both pulmonary and other complications. These findings are coined in other studies.[12,16] Morshed et al.[16] studied the impact of timing of definitive femoral shaft fracture fixation among polytrauma subjects with ISS > 15. Patients were divided into three subgroups based on the timing of femoral fixation (within 12 h, 12 h to 24 h, and > 24 h). Mortality rates for these groups were 3.7%, 1.9%, and 4.3%, respectively. In our study, the overall mortality was very low, one death only in the early group (<12 h) that was related to fat embolism and pulmonary complications.

It has been proposed that delayed femoral repair beyond 12 h after injury may afford time for adequate resuscitation, which could reduce the risk of mortality by 50% in polytrauma patients and head injury.[16]

The incidence of ARDS was nonsignificantly lower in the early group, compared to the delayed group in our study. Nahm et al.[2] reported ARDS more often in patients treated after 24 h (4.8%). Harvin et al.[4] reported very low rate of ARDS (0.6%) for those who underwent IMN, even in the presence of multiple injuries. Furthermore, O’Toole et al.[28] studied the ARDS incidence in several subgroups of patients with polytrauma who had early definite fixation versus DCO and found that patients who underwent primary IMN had lower incidence of ARDS (1.5%).

The proportion of sepsis in the present study was higher in the delayed treatment group, however, this observational difference was statistically nonsignificant and could be attributed in part to the presence of associated injuries and/or prolonged hospital LOS.

Because the complications were low in early treatment group, early fixation could facilitate early mobility, minimize hospital stay and reduce the risk of sepsis. We could not report pneumonia or DVT during patients hospital stay.

The low rate of bilateral FF (0.8%) in our study over 2 years is consistent with the current literature.[28]

Limitations

There are some limitations to this study. It is a retrospective observational study and so the major bias is that the groups were retrospectively assigned based on the intervention (i.e. early or late fixation) which may introduce a selection bias. The younger, healthier and less injured cases got early fixation and vice versa. Therefore, patients with lower injury severity were likely elected to proceed with earlier intervention than the older, more severely injured patients. So, the two groups (early vs. late fixation) were not homogenous and cannot be controlled well. Unmeasured confounding factors such as time from injury to hospital admission could bias the effect of treatment time. In addition, head injury was the most common cause for the delayed intervention in our study population. Given the small sample size, and numbers of outcome variables, multivariate analysis could not be performed to adjust confounders in the study. The surgical procedures duration was not documented in the database. This study addressed only the short-term outcome, i.e. the pulmonary complication and hospital stay and therefore no long-term follow-up was reported, which is another limitation of this analysis. Although, Gustilo–Anderson open fracture classification system is the widely used classification system for open fractures,[28] we used broadly the term “open fracture” to refer to all fractures that had communication to the exterior and so we did not segregate them in groups.

The power of the study is not adequate to draw solid comparative difference between the two groups and to analyze those who underwent surgery beyond 12 h. Moreover, selection bias cannot be ruled out as the decision for surgery type was physician discretion. However, with the abovementioned limitations, the beneficial effect of early fixation cannot be ignored.
CONCLUSIONS

We believe that early fixation is safe in appropriately selected cases. In our center, patients presenting with traumatic FFs, early rIMN is associated with low hospital complications and shorter hospital stay. The rate of pulmonary complications is almost the same in the early and late group. Further prospective randomized studies with large sample size would be ideal using the information garnered from the present study.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Enninghorst N, McDougall D, Evans JA, Sisak K, Balogh ZJ. Population-based epidemiology of femur shaft fractures. J Trauma Acute Care Surg 2013;74:1516-20.
2. Nahm NJ, Como JJ, Wilber JH, Vallier HA. Early appropriate care: Definitive stabilization of femoral fractures within 24 hours of injury is safe in most patients with multiple injuries. J Trauma 2011;71:175-85.
3. Ricci WM, Gallagher B, Haidukewych GJ. Intramedullary nailing of femoral shaft fractures: Current concepts. J Am Acad Orthop Surg 2009;17:296-305.
4. Harvin JA, Harvin WH, Camp E, Caga-Anan Z, Burgess AR, Wade CE, et al. Early femur fracture fixation is associated with a reduction in pulmonary complications and hospital charges: A decade of experience with 1,376 diaphyseal femur fractures. J Trauma Acute Care Surg 2012;73:1442-8.
5. Lhowe DW, Hansen ST. Immediate nailing of open fractures of the femoral shaft. J Bone Joint Surg Am 1988;70:812-20.
6. Scalea TM, Boswell SA, Scott JD, Mitchell KA, Kramer ME, Pollak AN. External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femoral fractures: Damage control orthopedics. J Trauma 2000;48:613-23.
7. Bone LB, Johnson KD, Weigelt J, Scheinberg R. Early versus delayed stabilization of femoral fractures. A prospective randomized study. J Bone Joint Surg Am 1989;71:336-40.
8. Behrman SW, Fabian TC, Kudsk KA, Taylor JC. Improved outcome with femur fractures: Early vs. delayed fixation. J Trauma 1990;30:792-7.
9. Pape HC, Regel G, Dwenger A, Sturm JA, Tischer H. Influence of thoracic trauma and primary femoral intramedullary nailing on the incidence of ARDS in multiple trauma patients. Injury 1993;24 Suppl 3:S82-103.
10. Jaicks RR, Cohn SM, Moller BA. Early fracture fixation may be deleterious after head injury. J Trauma 1997;42:1-5.
11. Townsend RN, Lheureux T, Protech J, Rimer B, Simon D. Timing fracture repair in patients with severe brain injury (Glasgow Coma Scale scores<9). J Trauma 1998;44:977-82.
12. Charash WE, Fabian TC, Croce MA. Delayed surgical fixation of femur fractures is a risk factor for pulmonary failure independent of thoracic trauma. J Trauma 1994;37:667-72.
13. Bosse MJ, MacKenzie EF, Riemer BL, Brumback RJ, McCarthy ML, Burgess AR, et al. Adult respiratory distress syndrome, pneumonia, and mortality following thoracic injury and a femoral fracture treated either with intramedullary nailing with reaming or with a plate. A comparative study. J Bone Joint Surg Am 1997;79:799-809.
14. Starr AJ, Hunt JL, Chason DP, Reinert CM, Walker J. Treatment of femur fracture with associated head injury. J Orthop Trauma 1998;12:38-45.
15. Weninger P, Figl M, Spitaler R, Mauritz W, Hertz H. Early unreamed intramedullary nailing of femoral fractures is safe in patients with severe thoracic trauma. J Trauma 2007:62:692-6.
16. Morshed S, Mclau T 3rd, Bembom O, Cohen M, Knudson MM, Colford JM Jr. Delayed internal fixation of femoral shaft fracture reduces mortality among patients with multisystem trauma. J Bone Joint Surg Am 2009;91:3-13.
17. Brundage SL, Mcghan R, Jurkovich GJ, Mack CD, Maier RV. Timing of femur fracture fixation: Effect on outcome in patients with thoracic and head injuries. J Trauma 2002;52:299-307.
18. Rixen D, Grass G, Sauerland S, Lefering R, Raum MR, Yücel N, et al. Evaluation of criteria for temporary external fixation in risk-adapted damage control orthopedic surgery of femur shaft fractures in multiple trauma patients: “Evidence-based medicine” versus “reality” in the trauma registry of the German Trauma Society. J Trauma 2005;59:1375-94.
19. Dunham CM, Bosse MJ, Clancy TV, Cole FJ Jr., Coles MJ, Knuth T, et al. Practice management guidelines for the optimal timing of long-bone fracture stabilization in polytrauma patients: The EAST Practice Management Guidelines Work Group. J Trauma 2001;50:958-67.
20. O’Toole RV, O’Brien M, Scalea TM, Habashi N, Pollak AN, Turen CH. Resuscitation before stabilization of femoral fractures limits acute respiratory distress syndrome in patients with multiple traumatic injuries despite low use of damage control orthopedics. J Trauma 2009;67:1013-21.
21. O’Brien PJ. Fracture fixation in patients having multiple injuries. Can J Surg 2003:46:124-8.
22. Pape HC, Grimme K, Van Griensven M, Sott AH, Giannoudis P, Morley J, et al. Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: Prospective randomized analysis by the EPOFF study group. J Trauma 2003;55:7-13.
23. Pittet D, Rangel-Frausto S, Li N, Tarara D, Costigan M, Rempe L, et al. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: Incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Med 1995;21:302-9.
24. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149 (3 Pt 1):818-24.
25. Mica I, Rufibach K, Keel M, Trentz O. The risk of early mortality of polytrauma patients associated to ISS, NISS, APACHE II values and prothrombin time. J Trauma Manag Outcomes 2013;7:6.
26. Tuttle MS, Smith WR, Williams AE, Aguadelo JP, Hartshorn CJ, Moore EE, et al. Safety and efficacy of damage control external fixation versus early definitive stabilization for femoral shaft fractures in the multiple-injured patient. J Trauma 2009;67:602-5.
27. Pape HC, Rixen D, Morley J, Huseby EE, Mueller M, Dumont C, et al. Impact of the method of initial stabilization for femoral shaft fractures in patients with multiple injuries at risk for complications (borderline patients). Ann Surg 2007;246:491-9.
28. Steinhausen E, Lefering R, Tjardes T, Neugebauer EA, Bouillon B, Rixen D. Committee on Emergency Medicine, et al. A risk-adapted approach is beneficial in the management of bilateral femoral shaft fractures in multiple trauma patients: An analysis based on the trauma registry of the German Trauma Society. J Trauma Acute Care Surg 2014;76:1288-93.
29. Gustillo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: Retrospective and prospective analyses. J Bone Joint Surg Am 1976;58:453-8.