Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana

Ping Wang, Natalie M. Clark, Trevor M. Nolan, Gaoyuan Song, Parker M. Bartz, Ching-Yi Liao, Christian Montes-Serey, Ella Katz, Joanna K. Polko, Joseph J. Kieber, Daniel J. Kliebenstein, Diane C. Bassham, Justin W. Walley, Yanhai Yin, and Hongqing Guo

Abstract

The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of omics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVES (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.
Introduction

The receptor kinase FERONIA (FER) plays important roles in plant growth and development, abiotic and biotic stress responses, and reproduction (Franck et al., 2018; Duan et al., 2020; Liu et al., 2021; Ortiz-Morea et al., 2021). Loss-of-function fer mutants display skewed male and female interactions and reduced fertility (Escobar-Restrepo et al., 2007; Duan et al., 2020), stunted vegetative growth (Guo et al., 2010), hypersensitivity to high concentrations of NaCl (Chen et al., 2016), susceptibility to bacterial pathogens (Stegmann et al., 2017; Guo et al., 2018), and resistance to fungal pathogens (Kessler et al., 2010; Masachis et al., 2016) and nematodes (Zhang et al., 2020). Most recently, FER was shown to restrict the spread of *Pseudomonas fluorescens* in the rhizosphere, and the loss-of-function fer-8 mutant displayed increased infection by rhizosphere *P. fluorescens* (Song et al., 2021). FER function is modulated through peptides from the rapid alkalization factor (RALF) family, which can function as ligands for FER and its co-receptors LORELEI/LORELEI-like glycosylphosphatidylinositol (GPI)-anchored proteins (LRE/LLGs) (Haruta et al., 2014; Li et al., 2015; Stegmann et al., 2017; Guo et al., 2018; Lin et al., 2018, 2021; Xiao et al., 2019). Cell wall pectin can also be recognized by the FER extracellular domain, which mediates salt stress responses and the orientation of microtubules and plays a key role in directing patterns of cellulose biosynthesis (Feng et al., 2018; Lin et al., 2018; Tang et al., 2021). Extracellular proteins such as leucine-rich repeat extensions (LRXs) can interact with FER indirectly through RALFs or directly to modify cell wall expansion and cell growth and salt stress responses (Zhao et al., 2018; Dunser et al., 2019; Herger et al., 2019). FER and its close paralogs, ANXUR1/2, have been shown to form a complex with immune receptors FLAGELLIN-SENSITIVE 2 (FLS2) and EF-TU RECEPTOR (EFR) to facilitate pathogen-associated molecular pattern-triggered immunity (Mang et al., 2017; Stegmann et al., 2017), and FER functions through the guanine exchange factors/Rho GTPases of plants (ROPs) and receptor-like cytoplasmic kinases, RPM1-INDUCED PROTEIN KINASE (RIPK) and MARIS to regulate root-hair development (Duan et al., 2010; Boisson-Dernier et al., 2015; Du et al., 2016). Moreover, FER can directly regulate proteins involved in the control of transcription and translation. FER phosphorylates and destabilizes MYC2, the major transcriptional factor in the jasmonic acid (JA) signaling pathway to negatively regulate JA-mediated host susceptibility (Guo et al., 2018). FER also phosphorylates ERBB-3-binding protein 1 (EBP1), a DNA-binding protein, to promote its nuclear translocation and transcriptional activity (Li et al., 2018). Moreover, FER phosphorylates eukaryotic translation initiation factor 4E1 (eIF4E1) to regulate protein synthesis (Zhu et al., 2020).

FER plays critical roles in plant growth and stress responses. The functional and mechanistic studies of FER can illustrate how a cell surface receptor kinase integrates diverse signals to profoundly influence various cellular pathways and thus balance growth and stress in response to environmental conditions. Studies on FER also provide an important paradigm for a better understanding of receptor kinase signaling in general.

To gain new insights into the functions and mechanisms associated with FER, we globally quantified transcripts, proteins, and phosphorylation sites in wild-type (WT) plants and the fer-4 mutant. Our study validated many known functions of FER and revealed several interesting novel functions for this receptor kinase. We discovered that FER is...
involved in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NA11 to negatively mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NA11. We also determined that FER phosphophorylates and destabilizes abscisic acid (ABA)-INSENSITIVE 5 (ABIS), a critical transcriptional regulator of cotyledon greening (Guan et al., 2014), which provides a novel mechanism underlying the negative role of FER in ABA signaling. Taking advantage of the comprehensive integrated omics analysis along with genetics, cell biology, and biochemistry experiments, our study reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.

Results

Integrated omics confirm known functions and predict novel functions of FER

We performed multiomics analyses on 4.5-week-old Arabidopsis rosette leaves from the WT Columbia-0 (Col-0) and fer-4 (hereafter fer) grown under long-day conditions (see "Materials and methods"). Under our growth conditions, 4.5-week-old fer plants showed a pronounced stunted growth phenotype with smaller rosettes, while 10-day-old fer seedlings exhibited an overall similar growth to that of WT (Supplemental Figure S2, C and D). Transcriptome profiling by 3’-based RNA sequencing (QuantSeq) identified 3,908 (q < 0.05) transcripts that are differentially expressed in fer (Supplemental Figure S1), of which 2,299 had increased levels and 1,609 decreased levels in the mutant compared to WT (Figure 1A; Supplemental Data Set 1). More than 50% of the 3,908 genes (2,190/3,908) were also identified as differentially expressed in fer mutants in our previous report (Guo et al. 2018; Supplemental Figure S2B). We determined that 4,129 (q < 0.05) proteins have different abundance in the fer mutant out of 8,621 quantified proteins (i.e. protein groups; Supplemental Figure S1). Among the differentially abundant proteins (DAPs), 2,346 had increased and 1,783 had decreased levels in the fer mutant (Figure 1A; Supplemental Data Set 1). Finally, we detected 11,955 phosphosites from 2,959 proteins (i.e. protein groups), among which 3,432 phosphosites (q < 0.2) had altered phosphorylation status in the mutant background relative to the WT (Supplemental Figure S1). Further, 1,577 phosphosites (from 703 different proteins) had elevated phosphorylation, and 1,855 phosphosites (from 691 different proteins) exhibited decreased phosphorylation, with 110 proteins displaying both elevated and decreased phosphorylation levels at different sites (Figure 1A; Supplemental Data Set 1). Comparisons among the three sets of omics data revealed that 29% of all DAPs also exhibit differential expression of their cognate transcripts in fer, with most of the DAPs following the same direction of change as their transcript (Figure 1B; Supplemental Figure S2A). Similarly, 47% of the differentially phosphorylated proteins also showed an alteration at the corresponding transcript or protein levels (Figure 1B; Supplemental Figure S2A).

We performed gene ontology (GO) analysis using ClueGO in Cytoscape on our multiomics data (Bindea et al., 2009) (Supplemental Figures S3–S8; Supplemental Data Set 2). We considered GO terms with a corrected P < 0.05 as significantly enriched. The GO analysis validated many previous findings concerning FER function in plants. Namely, GO terms related to stress phytohormones were enriched (Figure 1C; Supplemental Data Set 2). For example, GO terms such as response to JA (GO:0009737), response to ABA (GO:0009734), and ethylene (GO:0071369), were significantly enriched among transcripts and/or proteins with increased levels in fer, which corroborated the previous findings that FER regulates ABA, JA, and ethylene signaling pathways and that loss-of-function fer mutants are hypersensitive to these phytohormones (Deslauriers and Larsen, 2010; Yu et al., 2012; Guo et al., 2018). Additionally, GO terms related to growth-promoting phytohormones were enriched (Figure 1C). Consistent with a role for FER in brassinosteroid (BR)-mediated plant growth, the GO terms response to BR (GO:0009741) and BR-mediated signaling pathway (GO:0009742) were enriched among proteins with decreased phosphorylation levels (Guo et al., 2009b). Providing support for the findings that FER is involved in auxin-regulated processes, GO terms such as auxin polar transport (GO:0009926), auxin activated signaling pathway (GO:0009734), and response to auxin (GO:0009733) were also enriched among transcripts with lower levels in fer (Duan et al., 2010; Figure 1C; Supplemental Figures S3–S8; Supplemental Data Set 2).

We also observed the enrichment of GO terms related to various biotic stresses, for example, defense response to bacterium (GO:0042742), and defense response to fungus (GO:0050832; Figure 1C; Supplemental Data Set 2), which confirmed the involvement of FER in fungal and bacterial defense responses (Masachis et al., 2016; Stegmann et al., 2017; Guo et al., 2018). Similarly, GO terms related to abiotic stresses were enriched, for example, response to cold (GO:0009409), response to salt stress (GO:0009651), and response to osmotic stress (GO:0006970; Figure 1C; Supplemental Data Set 2). Consistent with our findings, FER has been experimentally shown to regulate responses to cold stress, salt stress, and osmotic stress imposed by mannitol. In agreement, the loss-of-function fer mutant is hypersensitive to cold and high salt and is resistant to osmotic stress (Chen et al., 2016; Feng et al., 2018; Zhao et al., 2018).

Moreover, the analysis of the omics data predicted previously unknown functions for FER (Figure 1C; Supplemental Data Set 2). Among these, ER body (GO:0010168) and glucosinolate metabolism (GO:0019760) were enriched, suggesting that FER is involved in ER body formation and glucosinolate metabolism.

Using the hypophosphoryilated proteins in the fer mutant that are potential FER substrates, we predicted the consensus sequences of the FER phosphorylation sites using the motifER
software (Wang et al., 2019a), which identified 33 significantly enriched consensus sequences of FER phosphorylation motifs (Supplemental Data Set 3). The LOGOs of the three most enriched sequences are shown in Supplemental Figure S9A. Furthermore, we carried out an in vitro kinase assay to validate potential FER substrates. We selected nine proteins for this assay, each harboring at least one of the 33 enriched FER phosphorylation motifs. These proteins have diverse functions, including transcription factors (ABA-RESPONSIVE ELEMENTS-BINDING FACTOR3 [ABF3], OXIDATIVE STRESS2 [OXS2], FLOWERING BHLH3 [FBH3], ABI5, and GT2), a plasma-membrane-localized protein (SHOU4) involved in cellulose biosynthesis (Polko et al., 2018), a cytoplasmic protein (NAIP1, At3g51950) involved in ER body formation (Wang et al., 2019b) and a nucleus/chloroplast-localized protein (NUCLEAR SHUTTLE INTERACTING, NSI). The identified phosphopeptides and phosphorylation sites in these proteins are shown in Figure 2A. We performed the above in vitro kinase assays with FER kinase (FERK, consisting of the FER C-terminus containing the kinase domain) fused to glutathione S-transferase (GST) as described (Guo et al., 2018), with the nine candidate substrate proteins fused to maltose-binding protein (MBP). The kinase assays revealed that seven of the nine proteins are phosphorylated in the presence of FERK (Figure 2B), suggesting that FER can directly phosphorylate these proteins.

The K565R (lysine 565 to arginine) mutation in the FER kinase domain (mFERK) greatly decreases FER kinase activity (Escobar-Restrepo et al., 2007; Haruta et al., 2018). To confirm that FERK itself is responsible for the phosphorylation of these substrates in the in vitro kinase assay, we repeated the assay with FERK and mFERK (K565R) using three of the substrate proteins, FBH2, GT2, and NSI. FERK showed both autophosphorylation and phosphorylation of its putative

Figure 1 Integrated omics confirm known functions and predict novel functions of FER. A, Summary table of the results from transcriptome, proteome, and phosphoproteome analyses. The number of identified transcripts, peptides, protein groups, phosphorylation sites, and phosphorylated proteins in this study as well as the number of differentially expressed genes or DAPs or differentially phosphorylated proteins in the fer-4 mutant are shown. B, Venn diagram showing the extent of overlap between differentially expressed transcripts, DAPs, and differentially phosphorylated proteins. C, Selected GO terms that corroborate the known functions of FER, and those that predict novel functions for FER. GO enrichment analysis was performed using the ClueGO application in Cytoscape (Bindea et al., 2009). Terms with corrected \(P < 0.05 \) were considered enriched, and the \(P \)-values are indicated with stars (\(^* P < 0.05; ^{**} P < 0.01; ^{***} P < 0.001 \)).

Table A:

GO terms confirming known functions	Transcripts	Proteins	Phospho
GO:0071395	cellular response to jasmonic acid stimulus
GO:0096956	jasmonic acid biosynthetic process
GO:009867	jasmonic acid-mediated signaling pathway
GO:009694	jasmonic acid metabolic process
GO:0071369	cellular response to ethylene stimulus
GO:0099268	auxin polar transport
GO:0099378	response to abscisic acid
GO:009734	auxin-activated signaling pathway
GO:007136	cellular response to auxin stimulus
GO:0099373	response to auxin
GO:009617	response to molecule of bacterial origin
GO:0042742	defense response to bacterium
GO:009816	defense response to bacterium, incompatible interaction
GO:009620	response to fungus
GO:009651	response to salt stress
GO:009672	response to water
GO:009672	response to abscisic acid
GO:0096970	response to osmotic stress
GO:009409	response to cold
GO:004654	response to steroid hormone
GO:003401	steroid hormone-mediated signaling pathway
GO:0071367	cellular response to brassinosteroid stimulus
GO:0071383	cellular response to steroid hormone stimulus
GO:009742	brassinosteroid-mediated signaling pathway

Table B:

GO terms predicting new functions	Transcripts	Proteins	Phospho
GO:0010168	ER body
GO:0066914	autophagy
GO:002415	response to water
GO:002415	response to water deprivation
GO:0096269	response to desiccation
GO:006833	water transport
GO:006979	response to oxidative stress
GO:003476	response to endoplasmic reticulum stress
GO:006338	photosystem
GO:0019760	guanosine5'-diphosphate metabolic process
GO:0080227	response to herbicides
substrates, mFERK did not show appreciable levels of auto-
phosphorylation or phosphorylation of any of these sub-
strates when provided in amounts equal to those used for
FERK (Figure 2C). Interestingly, a larger amount of mFERK
(i.e. approximately 200 times more than FERK) showed
autophosphorylation in an in vitro kinase assay (Figure 2D),
suggesting residual kinase activity in this mutant. We esti-
mated the amount of FERK and mFERK used for kinase as-
say by immunoblotting using an anti-FER antibody
(Supplemental Figure S9B; Guo et al., 2018).

Figure 2 FER directly phosphorylates many proteins with diverse functions. A, List of proteins selected for in vitro kinase assays, with gene identi-
fi er, phosphopeptide(s), phosphosites, and the change in phosphorylation levels in fer, as indicated by Log₂ (fold-change[fer/WT]). B, In vitro kinase
assay of the selected proteins. Top, autoradiograph of the in vitro kinase assay, showing FER autophosphorylation (red arrow) and phosphoryla-
tion of the selected proteins (asterisks). Note that NAIP1 phosphorylation overlaps with FER autophosphorylation. Bottom, SYPRO RUBY staining
of the gel with the same amount of proteins run separately. C, In vitro kinase assay of FBH3, GT2, and NSI using a similar amount of FERK and
FERKΔK565R (mFERK). D, Autophosphorylation of FERK and different amounts of mFERK. 1/C2 mFERK indicates the same amount as FERK. Note the
change in mobility of FERK K565R compared to FERK when resolved on 8% SDS–PAGE. E, Protein-protein interaction by BiFC in N. benthamiana
leaves. Fluorescence and light images of leaf epidermal cells are shown. Scale bars = 100 μm. F–G, Co-IP assays confirming the interactions of FER
with SHOU4 (F) and FBH3 (G). Constructs were co-infiltrated in N. benthamiana. Proteins were immunoprecipitated with anti-FLAG (mouse) and
detected with anti-FLAG (rabbit) and anti-GFP (rabbit) antibodies.
noting that the mFERK appears to migrate faster than FERK when resolved on 8% (w/v) sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS–PAGE) (Supplemental Figure S9B).

We also tested the potential for interaction between FER and its putative substrates using bimolecular fluorescence complementation (BiFC) assays in transiently infiltrated Nicotiana benthamiana leaves. FER interacted with SHOU4, FBH3, and ABIS (Figure 2E; Supplemental Figure S9C). DAWDLE (DDL), a mostly nucleus-localized protein that is not among the proteins detected in the phosphoproteomics data, was used as a negative control (Supplemental Figure S9D). We confirmed the interaction between FER and the substrates SHOU4 and FBH3 by co-immunoprecipitation (Co-IP) assays in N. benthamiana leaves transiently infiltrated with constructs encoding tagged versions of each protein (Figure 2, F and G). The Co-IP did not detect an interaction between FER and ABIS, which might be due to a highly transient interaction and/or highly unstable FER-phosphorylated ABIS.

Taken together, our multiomics data analysis validated previous findings that FER plays important roles in plant growth and development, abiotic and biotic stress responses. The phosphoproteomics detected many FER substrates in planta. We further validated some of the FER substrates using in vitro kinase assays, BiFC, and Co-IP. The multiomics data analysis also predicted novel functions for FER in ER body formation and glucosinolate biosynthesis, as well as FER regulation of ABIS in ABA signaling. As detailed in the next sections, we explored and experimentally validated the role of FER in these processes.

FER negatively regulates ER body formation

The ER body is a type of membranous structure, 1 × 10 μm in size, that is contiguous with the ER and is surrounded by ribosomes in the Arabidopsis cytoplasm (Hayashi et al., 2001). ER bodies, specific to Brassicales, are constitutively present in epidermal cells of healthy young seedlings but absent in rosette leaves of healthy WT plants (Hayashi et al., 2001). NAI1, a basic helix-loop-helix (bHLH) transcription factor, is required for ER body formation (Matsushima et al., 2003a, 2004) and a loss-of-function nai1 mutant lacks ER bodies even in young seedlings. Many ER body-localized or body-related proteins are known (Matsushima et al., 2003b), and the expression of many of the genes encoding these proteins is regulated by NAI1 (Yamada et al., 2008).

Consistent with the enrichment of the GO term for ER body (GO:0010168) (Figure 1C; Supplemental Data Set 2), 16 out of the 17 known ER body-associated genes (listed in Figure 3A; Wang et al., 2017) displayed increased transcript levels, and 14 of the 16 had increased protein abundance in the fer mutant background compared to WT (Figure 3A), suggesting that FER negatively regulates ER body formation. Sixteen of the 17 genes also exhibited increased transcript levels in the fer mutant in a previously described transcriptome dataset (fer-DEs-CB in Figure 3A) (Guo et al., 2018). We also generated an additional set of QuantSeq transcriptome data from 10-day-old seedlings for WT and the fer mutant and identified 7,718 differentially expressed transcripts (2,718 of them downregulated and 5,018 upregulated, respectively, in fer relative to WT) (Supplemental Data Set 4). All 17 ER body genes showed increased transcript levels (Figure 3A). A volcano plot also revealed the significant alterations in abundance for their encoded proteins (Figure 3B). We confirmed the expression pattern of three selected ER body genes by reverse transcription–quantitative polymerase chain reaction (RT-qPCR) in 3-week-old plants (Figure 3E). Consistent with the transcriptome data from 4.5-week-old plants and 10-day-old seedlings, NAI1, NAI2, and PYK10 transcripts accumulated to higher levels in fer relative to WT. NAI2 and PYK10 were expressed at lower levels in the nai1 mutant, corroborating the previous findings that NAI1 activates NAI2 and PYK10 transcription (Yamada et al., 2008). To better understand the genetic interaction between FER and NAI1, we constructed the fer nai1 double mutant. Interestingly, the expression of NAI2 and PYK10 decreased in the fer nai1 double mutant compared to the fer single mutant, suggesting that FER regulates the expression of ER body genes through NAI1. It is worth noting that the nai1 mutant (CS69075) we used in this study has a point mutation (Matsushima et al., 2004) that does not disrupt the transcription of the mutant allele or its regulation by FER (Figure 3E).

To visualize ER bodies in plants, we crossed the ER marker GFP-HDEL (encoding the green fluorescent protein [GFP] with the ER retention signal HDEL) into the fer mutant background. We observed ER bodies in 5- and 10-day-old seedlings and 3-week-old rosette leaves of fer-GFP-HDEL (Figure 3, C–D; Supplemental Figure S10, A–C). We used 5-day-old seedlings, in which ER bodies are abundant, and 10-day-old seedlings, in which ER bodies are largely diminished in WT cotyledons expressing GFP-HDEL, in the rest of this study. In 5-day-old seedlings, we observed ER bodies in the cotyledons, hypocotyls, and roots of both GFP-HDEL and fer-GFP-HDEL, while we detected no ER bodies in nai1 GFP-HDEL except for a very few in roots (Supplemental Figure S10, B and C). We counted more ER bodies in the cotyledons and roots of fer GFP-HDEL compared to the GFP-HDEL line, likely due to increased NAI1 expression in the fer mutant (Supplemental Figure S10, B and C). While we failed to observe ER bodies in the cotyledons of 10-day-old GFP-HDEL seedlings (Figure 3, C and D), we did detect many in the cotyledons of fer-GFP-HDEL (Figure 3, C and D), suggesting that FER negatively regulates ER body formation in older cotyledons and rosette leaves (Figure 3, C–D; Supplemental Figure S10A).

NAI1 was more highly expressed in fer relative to WT (Figure 3, A and E). To test our hypothesis that FER regulates ER body by negatively regulating NAI1, we generated the fer nai1 double mutant harboring the GFP-HDEL reporter, yielding fer nai1 GFP-HDEL. Similar to nai1 GFP-HDEL, 5-day-old fer nai1 GFP-HDEL seedlings lacked ER bodies (Supplemental Figure S10, B and C). The increased ER body...
Table 1 List of ER body-associated genes (Wang et al., 2017) and their regulation in the differentially expressed transcripts and DAPs in 4.5-week-old fer plants, differentially expressed transcripts in 10-day-old fer seedlings (Transcripts 10 days) and previously published fer transcriptome data (fer DESs (2018)) (Guo et al., 2018). Up: increased levels in fer mutant. NS: detected, but no statistically significant differences. ND: not detected.

Gene ID	Name	Transcript	Protein	Transcripts	DESs (2018)
AT3g99260	PYK10/BGLU23	Up	Up	Up	Up
AT1g66270	BGLU21	ns	nd	Up	Up
AT1g69280	BGLU22	Up	Up	Up	Up
AT3g16420	PBP1/JAL30	Up	Up	Up	Up
AT3g16430	JAL31	Up	Up	Up	Up
AT3g16450	JAL33	Up	Up	Up	Up
AT3g16460	JAL34	Up	Up	Up	Up
AT3g16470	JAL35	Up	Up	Up	Up
AT1g54000	GLL22	Up	Up	Up	ns
AT2g22770	NAI1	Up	nd	Up	Up
AT4g27660	MEB1	Up	Up	Up	Up
AT5g24090	MEB2	Up	Up	Up	Up
AT1g52400	BGLU18	Up	Up	Up	Up
AT5g23820	ML3	Up	Up	Up	Up
AT1g54030	MVP1	Up	Up	Up	Up
AT1g59850	NAI2	Up	Up	Up	Up

Figure 3 FER negatively regulates ER body formation. A. List of ER body-associated genes (Wang et al., 2017) and their regulation in the differentially expressed transcripts and DAPs in 4.5-week-old fer plants, differentially expressed transcripts in 10-day-old fer seedlings (Transcripts 10 days) and previously published fer transcriptome data (fer DESs (2018)) (Guo et al., 2018). Up: increased levels in fer mutant. NS: detected, but no statistically significant differences. ND: not detected. B. Volcano plot constructed with the 8,621 detected proteins, with ggplot2 (Wickham, 2016) in R using −Log_{10}-transformed q-values and Log_{2}(Fold-change) of protein abundance. The x-axis represents Log_{2}(Fold-change) of protein levels between fer and WT; the y-axis represents statistical significance using −Log_{10}(adjusted P-value). Black, no statistically significant changes in fer; blue, decreased levels in fer; red, increased levels in fer. Selected ER body-associated proteins are indicated. C. Number of ER bodies in 10-day-old cotyledons, quantified from confocal images of the four genotypes overexpressing the ER marker GFP-HDEL. WT (n = 31), fer (n = 18), nai1 (n = 31), and fer nai1 (n = 28). Data are shown as violin plots with median, first and third quartiles. Different letters indicate significant differences according to one-way analysis of variance (ANOVA) Tukey's multiple range tests (P < 0.025). D. Representative confocal microscopy images from (C). Scale bar = 20 μm. E, RT-qPCR of representative ER body-related genes (NAI1, NAI2, and PYK10) in 3-week-old rosette leaves of WT, fer, nai1, and fer nai1 overexpressing GFP-HDEL. Relative expression levels were normalized to those of the reference gene ACTIN2. qPCR was performed with two to three technical replicates of three to four independent biological replicates. Data represent means ± SEM. Different letters indicate significant differences according to one-way ANOVA Tukey's multiple range test (P < 0.05).
phenotype observed in 10-day-old fer GFP-HDEL also diminished in the fer nai1 GFP-HDEL background (Figure 3, C and D), suggesting that FER functions through NAI1 to regulate ER body formation.

To further support a role for FER in ER body formation, we transformed an artificial microRNA (amiRNA) specific for FER (FER-amiRNA) into the GFP-HDEL reporter line to generate the FER-amiRNA GFP-HDEL line. The FER-amiRNA has previously been shown to effectively knock down endogenous FER transcripts, with the knockdown plants behaving similarly to fer mutants for both plant growth and bacterial defense in T2 transgenic lines (Guo et al., 2009b, 2018). In FER-amiRNA GFP-HDEL T2 lines, FER protein abundance was much lower than in the GFP-HDEL line (Supplemental Figure S11A). We counted more ER bodies in 10-day-old cotyledons in all three FER-amiRNA GFP-HDEL T2 lines tested here (lines #2, #4, and #8; Supplemental Figure S11, D and E). FER-amiRNA GFP-HDEL lines also exhibited a slight increase in the number of ER bodies in 5-day-old cotyledons compared to the GFP-HDEL line (Supplemental Figure S11, B and C), similar to fer GFP-HDEL (Supplemental Figure S10, B and C). In summary, these results suggest that FER negatively regulates ER body formation by negatively regulating NAI1.

Complementation assays with full-length intact FER and mutant FERK565R constructs revealed that FER kinase activity is not required for some FER-mediated processes, such as ovule fertilization (Kessler et al., 2015), but was for other processes, such as stomatal movement, vegetative growth, and root elongation (Chakravorty et al., 2018; Haruta et al., 2018). Chakravorty et al. further showed that high levels of FERK565R protein can complement the fer dwarf growth phenotype and restore stomatal movements regulated by the ligand RALF1. We thus investigated if ER body regulation by FER requires its kinase activity. From our transcriptome data and RT-qPCR results, we observed that the expression pattern of ER body genes is a good indicator of ER body phenotype. We measured the expression of ER body genes in WT, fer, and complementation lines harboring an intact FER or FERK565R transgene (fer FERpro:FER-GFP, fer FERpro:FERK565R-GFP #5 and fer FERpro:FERK565R-GFP #8; Shih et al., 2014; Chakravorty et al., 2018). Consistent with their reported growth phenotypes, the FERpro:FER transgene fully complemented the ER body gene expression pattern seen in fer. The lines FERpro:FERK565R-GFP #5 and #8 showed partial restoration, with line #8, with higher levels of the FERK565R-GFP fusion protein, showing greater rescue than line #5 (Figure 3F). These results suggest that FER regulation of ER body formation is dependent on its kinase activity.

NAI2 is an ER body protein found only in Brassicales that is involved in ER body formation and function; loss-of-function nai2 mutants largely lack ER bodies (Yamada et al., 2008; Wang et al., 2019b). NAI1, the major transcription factor in ER body formation, was shown to activate NAI2 gene expression by directly binding to its promoter (Sarkar et al., 2021). To further support the conclusion that FER functions through NAI1 to regulate ER body formation, we generated FER-amiRNA nai2-2 GFP-HDEL lines, in which FER levels dropped relative to nai2-2 (Figure 4A). Similar to nai2-2 GFP-HDEL, all three individual FER-amiRNA nai2-2 GFP-HDEL lines lacked ER bodies in the cotyledons of both 5- and 10-day-old seedlings, while FER-amiRNA GFP-HDEL showed ER body formation in both 5- and 10-day-old seedlings (Figure 4, B–E). These results further demonstrate that FER negatively regulates NAI1 and hence NAI2 to control ER body formation.

FER negatively regulates indole glucosinolate biosynthesis

Glucosinolates are a family of secondary metabolites specific to Brassicales order that play important roles in responses to biotic stresses such as insect herbivory (Burrow et al., 2010). The two major forms of Arabidopsis glucosinolates are aliphatic glucosinolates (AG) synthesized from methionine, and indolic glucosinolates (IG) synthesized from tryptophan (Sønderby et al., 2010), and their levels can be induced by JA treatment (Kliebenstein et al., 2002). Consistent with the enrichment of the GO term glucosinolate metabolism (GO:0019760) in our omics data (Figure 1C; Supplemental Data Set 2), the transcript abundance and the levels of the encoding proteins of many IG biosynthetic genes and the genes that are involved in both IG and AG biosynthesis increased in fer relative to WT (Figure 5, A and B). Consistent with the increased gene expression, we observed a rise in the levels of three different IGs in the fer mutant, indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (4MOI3M), and 1-methoxy-indol-3-ylmethyl (1MOI3M; Figure 5, C–E). Furthermore, while we did not see significant changes in the levels of I3M or 4MOI3M in the nai1 mutant compared to WT, their levels did decrease in the fer nai1 double mutant compared to those measured in fer, suggesting that NAI1 functions downstream of FER to promote the biosynthesis of I3M and 4MOI3M. Disruption of NAI1 did not alter 1MOI3M biosynthesis (Figure 5E), consistent with previous observations that 1MOI3M is regulated independently from other IGs (Kliebenstein et al., 2002).

To further strengthen the correlation between IG levels and the expression levels of IG genes, we carried out RT-qPCR in 3-week-old plants for six genes involved in IG biosynthesis: ANTHRANILATE SYNTHASE ALPHA SUBUNIT1 (ASA1), INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE5 (IGMT5), MYC2, CYTOCHROME P450 8381 (CYP8381), CYP79B2, and CYP79B3. Consistent with the increased IG levels in fer, all six genes displayed increased transcript levels in fer (Figure 6A). While we observed no major changes in the expression of these six genes in the nai1 mutant, the expression of MYC2 decreased in the fer nai1 double mutant, suggesting that NAI1 is required for optimal MYC2 expression and also supports the observation that I3M and 4MOI3M levels are lower in fer nai1 compared to fer. We also performed RT-qPCR using the FERpro:FER-GFP and FERpro:FERK565R-GFP complementation lines. While...
FERpro:FER-GFP completely restored the expression of all six genes back to WT levels, we witnessed little to partial rescue in FER-pro:FER#565R-GFP #5 and partial to complete rescue in FERpro:FER#565R-GFP #8 (Figure 6B). These results demonstrated that optimal FERK activity is important for the regulation of IG biosynthesis.

Taken together, our results suggest that FER negatively regulates indole glucosinolate biosynthesis while inhibiting ER body formation, which strongly corroborates the previous findings of co-regulation between ER body-related genes and glucosinolates biosynthesis and catabolic genes (Nakano et al., 2017; Wang et al., 2017). Further, these results suggest that FER functions as a potential link between environmental signals and ER body formation/IG biosynthesis in response to stress conditions.

FER negatively regulates ABA signaling during cotyledon greening through ABI5

FER has been shown to negatively regulate ABA signaling by interacting with ABI2 (Yu et al., 2012; Chen et al., 2016). An interesting finding from our phosphoproteomics analysis was that a group of TFs whose transcription is induced by ABA, including ABF1 (At1g49720), ABF2 (At1g45249), ABF3 (At4g34000), ABF4 (At3g19290), ABA-RESPONSIVE ELEMENT BINDING PROTEIN3 (AREB3; At3g56850),
ENHANCED EM LEVEL (EEL; At2g41070), and FBH3 (At1g51140; Song et al., 2016) are hypophosphorylated in fer, suggesting that FER regulates their phosphorylation. Direct target genes were reported for ABF1, ABF2, ABF3, and FBH3 from chromatin immunoprecipitation deep sequencing (ChIP-seq) studies (Song et al., 2016). We observed a significant overlap between fer-regulated genes and the target genes of these ABA-related TFs (Supplemental Figure S12A; Supplemental Data Set 5), suggesting that FER can function through these TFs to regulate ABA signaling.

Among the peptides that are hypophosphorylated in fer, we mapped the phosphopeptide QG(pS)LTLPR to ABF1, ABF2, ABF3, AREB3, and EEL. Further examination revealed that the phosphorylated serine residue and seven out of the eight amino acids in the peptide are also conserved in ABI5, a transcription factor involved in ABA-mediated cotyledon greening (Figure 7A), raising the possibility that FER regulates ABA signaling. ABI5 can be phosphorylated at many sites by the kinase(s) responsible for phosphorylating Ser-145 in ABI5 has yet to be identified (Lopez-Molina et al., 2002; Yu et al., 2015). To test the hypothesis that FER regulates ABI5 to regulate cotyledon greening, we generated the fer abi5-7 double mutant. In the cotyledon greening assay, while fer was hypersensitive and abi5-7 was resistant to 1-μM ABA treatment, as quantified by the percentage of seedlings with green cotyledons, the fer abi5-7 double mutant showed a level of tolerance to ABA similar to that of abi5-7, suggesting that FER represses ABI5 function during cotyledon greening (Figure 7, B and C; Supplemental Figure S12B). Further analysis of the cotyledon greening with complementation fer lines showed that FERpro:FER-GFP can largely rescue the ABA hypersensitivity of fer. The complementation by FERpro:FERK565R-GFP was partial, and the degree of the complementation positively correlated with FERK565R-GFP protein abundance, as measured with an anti-GFP antibody (Supplemental Figure S12D; Chakravorty et al., 2018), which demonstrates that FER regulation of ABA-mediated cotyledon greening is dependent on its kinase activity.

To elucidate the potential mechanisms by which FER regulates ABI5, we co-infiltrated the constructs ABI5-FLAG and FER-GFP, mFER-GFP (FERK565R-GFP), or GFP

Figure 5 FER negatively regulates indole glucosinolate biosynthesis, partially through NAI1. A, Summary of gene expression and protein accumulation patterns involved in indole glucosinolate biosynthesis in the transcriptome and proteome data of 4.5-week-old fer plants and aliphatic glucosinolate biosynthesis in our transcriptome and proteome data. For (A) and (B), Up: increased levels in the fer mutant. NS: detected but no statistically significant differences. C–E, Mean contents for the three IGs, I3M, 4MOI3M, and 1MOI3M in the four genotypes, WT, fer, nai1, and fer nai1, given as pmol/mg fresh whole rosettes (3-week-old). Data represent mean ± SEM from three to four biological replicates. Different letters indicate significant differences according to one-way ANOVA Tukey’s multiple range tests (P < 0.05).
control into *N. benthamiana* leaves. Immunoblots established the lower accumulation of ABI5 when ABI5-FLAG was co-infiltrated with FER-GFP, compared to the GFP control (Figure 7F), suggesting that FER negatively regulates ABI5 protein levels. *mFER*-GFP did not appreciably change ABI5 protein abundance, suggesting that the negative regulation of ABI5 by FER is kinase dependent. We further generated ABI5-yellow fluorescent protein (YFP) transgenic plants by introducing a transgene consisting of the ABI5 coding sequence cloned in-frame and upstream of YFP and driven by the cauliflower mosaic virus 35S promoter (35Spro:ABI5-YFP OX). We then crossed the resulting transgenic lines to *fer* and generated 35Spro:ABI5-YFP OX lines (Supplemental Figure S12C). To test the effect of FER on ABI5 stability, we treated the rosette leaves of 35Spro:ABI5-YFP OX and *fer 35Spro:FER-GFP* or *fer 35Spro:FERK565R-GFP* complemented lines (B). Relative expression levels were normalized to those of the reference gene ACTIN2. qPCR was performed on two to three technical replicates of three to four independent biological replicates. Data represent means ± SEM. Different letters indicate significant differences according to one-way ANOVA Tukey’s multiple range tests (P < 0.05).

Figure 6 FER negatively regulates IG biosynthetic gene expressions. A and B, RT-qPCR of selected genes involved in IG biosynthesis (ASA1, IGMT5, MYC2, CYP83B1, CYP79B2, and CYP79B3) in 3-week-old rosette leaves of WT, *fer, nai1*, and *fer nai1* overexpressing GFP-HDEL (A) and in 3-week-old WT, *fer, fer FERpro:FER-GFP, or fer FERpro:FERK565R-GFP* complemented lines (B). Relative expression levels were normalized to those of the reference gene ACTIN2. qPCR was performed on two to three technical replicates of three to four independent biological replicates. Data represent means ± SEM. Different letters indicate significant differences according to one-way ANOVA Tukey’s multiple range tests (P < 0.05).
An in vitro kinase assay showed that ABI5 can be directly phosphorylated by FER (Figure 2C). We thus mutated Ser-145 in ABI5 to Ala to produce the nonphosphorylatable variant ABI5 S145A. In vitro kinase assay determined that FER phosphorylation of ABI5 S145A is greatly reduced compared to that of intact ABI5, suggesting that FER phosphorylates ABI5 at S145 (Figure 7H). Furthermore, we generated transgenic Arabidopsis lines overexpressing ABI5 S145A-YFP...
ABI5S145A-YFP appeared to be more stable than ABI5-YFP when seedlings were treated with the protein synthesis inhibitor cycloheximide (CHX; Figure 7I), suggesting that FER destabilizes ABI5 through phosphorylation at S145 in planta. Similar to ABI5-YFPOX seedlings, ABI5S145A-YFPOX lines were also hypersensitive to ABA during cotyledon greening (Supplemental Figure S12D). Taken together, our results indicate that FER negatively regulates ABA responses during cotyledon greening through phosphorylation and destabilization of ABI5, in addition to the known regulation of ABI2 by FER (Yu et al., 2012; Chen et al., 2016).

Discussion

The receptor kinase FER plays critical roles in mediating plant growth and development, as well as responses to biotic and abiotic stress. Our integrated omics analysis of the fer-4 mutant not only corroborated previous findings but also revealed new pathways and potential underlying mechanisms of FER function (Figure 8). We showed here that FER negatively regulates ER body formation by regulating the transcription factor NA1, along with the protein encoded by its target gene NA1. FER also repressed indole glucosinolate biosynthesis, which was consistent with the previously observed co-occurrence of ER body formation and IG biosynthesis and catabolism (Nakano et al., 2017; Wang et al., 2017). In addition, our phosphoproteomics analysis identified a group of TFs whose encoding genes are induced by ABA and whose phosphorylation is regulated by FER and likely act downstream of FER. We also showed that ABI5 functions downstream of FER and is phosphorylated at the S145 residue by FER, leading to ABI5 destabilization. Thus, our integrated omics study provided new insights into FER functions and underlying molecular mechanisms.

Although ER bodies have been implicated in stress responses, how they are regulated by signaling pathways remains largely unknown. Unlike young seedlings with many ER bodies, the rosette leaves of adult Arabidopsis plants and older seedlings are largely free of ER bodies (Hayashi et al., 2001; Wang et al., 2017). The fact that the fer mutant retains ER bodies in older seedlings and adult leaves indicated that
FER negatively regulates ER body formation. We further determined that FER inhibits ER body formation through the negative regulation of NAI1, a master transcription factor controlling ER body-related gene expression such as the ER body resident gene NAI2. ER body formation can also be induced by wounding and phytohormones such as JA in Arabidopsis (Hara-Nishimura and Matsushima, 2003; Geem et al., 2019; Stefanik et al., 2020). We showed previously that FER negatively regulates the JA signaling pathway by phosphorylating and destabilizing MYC2, the master transcription factor in the JA pathway (Guo et al., 2018). MYC2 and its homologs MYC3 and MYC4 activate the expression of the ER body gene TRYPTOPHAN SYNTHASE ALPHA CHAIN1, which is involved in JA-induced ER body formation in Arabidopsis adult leaves (Stefanik et al., 2020), which suggests that FER can also regulate ER body formation by regulating the JA signaling pathway. This study thus provides an important link between FER-mediated signaling pathway and ER body formation, and a platform to study the mechanisms by which internal and external stimuli are integrated through the receptor kinase FER to regulate ER body formation and plant stress responses.

Glucosinolates are a group of secondary metabolites that exert important functions in plant responses to biotic stresses (Burrow et al., 2010). ER body-related genes and glucosinolate biosynthetic and catabolic genes are strongly co-expressed, and ER body formation co-occurs with indole glucosinolates (Nakano et al., 2017; Wang et al., 2017). ER bodies are known to accumulate beta-glucosidases such as PYK10 and BGLU21 that are involved in the hydrolysis of glucosinolates and defense against herbivores such as woodlice (Armadillidium vulgare), thereby influencing Arabidopsis/endophyte interactions (Sherameti et al., 2008; Nakazaki et al., 2019; Yamada et al., 2020). In the fer mutant, ER body formation is constitutive with increased levels of beta-glucosidases, as well as elevated indole glucosinolates, which suggests a role for FER in herbivory and other biotic interactions. Future studies should help establish the functions of FER and underlying molecular mechanisms in plant–biotic interactions mediated by ER body and glucosinolates.

Our study further highlights that FER regulates diverse biological processes through the regulation of transcription factors. In addition to our previous finding that FER regulates MYC2 to modulate JA signaling and plant immunity (Guo et al., 2018), here we discovered that (1) FER negatively regulates NAI1 in controlling ER body formation and partially controlling IG biosynthesis, likely through intermediate proteins (Figures 3–6) and (2) that FER phosphorylates and destabilizes AB15 to control cotyledon greening (Figure 7). In addition, we looked for all 2,492 transcription factors encoded by the Arabidopsis genome (Pruneda-Paz et al., 2014) among differentially expressed transcripts, DAPs, and phosphoproteins in fer. This analysis showed that more than 20% of the transcription factors (524/2,492) exhibit altered levels for their transcripts, encoded proteins, or phosphorylation state (Supplemental Figure S13; Supplemental Data Set 6), which strongly suggests that FER regulates diverse biological processes through the extensive involvement of multiple transcription factors, directly or indirectly. Future analysis of these transcription factors should reveal a more comprehensive FER signaling network and provide a better understanding of the molecular interplay in FER-mediated signaling pathways.

Materials and methods

Plant materials and growth conditions

The Arabidopsis accession Col-0 was used as WT in all experiments. The T-DNA insertion mutant fer-4 (GABI-106A06, referred to as fer) and the nai1-1 GFP-HDEL mutant (CS69075) were described previously (Matsushima et al., 2004; Guo et al., 2018). Seeds for the nai2-2 (SALK_005896) mutant harboring the GFP-HDEL transgene (Yamada et al., 2008) were generously provided by Dr. Kenji Yamada. Ab15-7 seeds (Nambara et al., 2002) were provided by Dr. Yan Bao. GFP-HDEL seeds were described previously (Batoko et al., 2000). The fer complementation lines fer FERpro:FER-GFP and fer FERpro:FER^{35S::GFP} (lines #5, #6, and #8) (Shih et al., 2014; Chakravorty et al., 2018) were generously provided by Prof. Sarah M. Assmann. For all experiments involving Arabidopsis plants, seeds were surface sterilized with 70% (v/v) ethanol containing 0.1% (v/v) Triton X-100 and sown on half-strength Murashige and Skoog (MS) medium with 1% (w/v) sucrose and 0.8% (w/v) agar, with or without treatments as indicated. Ten-day-old seedlings were transferred to soil at 22°C under long-day (16-h light/8-h dark) conditions with a light intensity of ~120–150 μmol m^{–2}s^{–1}.

Quantitative proteomics and phosphoproteomics

Protein extraction and digestion

The proteomics experiments were carried out based on established methods as follows (Walley et al., 2018; Song et al., 2018a, 2018b, 2020). Three biological replicate samples were collected from 4.5-week-old entire rosettes from both Col-0 and the fer mutant, with 4–5 Col-0 rosettes and 8–10 fer rosettes per replicate. Lysis buffer consisting of 8 M urea, 100 mM Tris–HCl pH 7, 5 mM tris(2-carboxyethyl)phosphine (TCEP) and 1 mM phosphatase inhibitor (2.5 mM NaF, 0.25 mM Na₃VO₄, 0.25 mM sodium pyrophosphate decahydrate, and 0.25 mM glycerophosphate in H₂O) was added to 250 μg tissue at a ratio of 1:2 sample:buffer (v:v). Zirconium oxide beads (1-mm diameter, Next Advance) were added to the samples at a 1:1 ratio. 4% w/v zirconium oxide beads (1-mm diameter, Next Advance) were added to the samples at a 1:1 ratio (w:v) and then the samples were shaken using a GenoGrinder (SPEX) at 1,500 rpm for 3 min. The samples were centrifuged at 4,000 g for 3 min. The shaking and centrifugation steps were repeated once. Samples were transferred to new tubes, to which four volumes of prechilled 100% acetone were added. Samples were precipitated at −20°C for >30 min followed by centrifugation at 4,500 g for 10 min at 4°C. Acetone (80%, v/v) was added to the pellets and the samples were probe-sonicated to resuspend the pellet and shear DNA. Samples were incubated at −20°C for
> 5 min and then centrifuged at 4,500 g for 10 min at 4°C. Precipitation and sonication in 80% (v/v) acetonitrile was performed 3 times in total. Prechilled 100% methanol was then added to each pellet, the samples were probe-sonicated, and kept at −20°C for 30 min prior to centrifugation at 4,500 g for 10 min at 4°C. Methanol precipitation was repeated once. The supernatant was discarded and the pellet was placed in a vacuum concentrator until nearly dry.

Proteins were solubilized in 0.5-mL protein resuspension buffer (8 M urea, 0.1-M Tris–HCl pH 7.0, 5-mM TCEP, 1 × phosphatase inhibitor) and probe-sonicated. The protein amount was evaluated by Bradford assay and ~1 mg was mixed with 3.5-mL urea solution (8 M urea, 0.1-M Tris–HCl pH 8.0, 1 × phosphatase inhibitor). This solution was added to an Amicon Ultracel—30K centrifugal filter (Cat # UFC803008) and centrifuged at 4,000 g for 20–40 min at room temperature. This step was repeated once. Then 4 mL of urea solution with 2-mM TCEP was added to the filter unit and centrifuged at 4,000 g for 20–40 min. Next, 2-mL iodoacetamide (IAM) solution (50-mM IAM in 8-M urea) was added and incubated without mixing at room temperature for 30 min in the dark prior to centrifugation at 4,000 g for 20–40 min. Two milliliters of 8-M urea were added to the filter unit, which was then centrifuged at 4,000 g for 20–40 min. This step was repeated once. Then, 2 mL of 0.05 M NH₄HCO₃ with 1 × phosphatase inhibitor was added to the filter unit and centrifuged at 4,000 g for 20–40 min. This step was repeated once. Then the filter unit was added to a new collection tube and 2 mL of 0.05 M NH₄HCO₃ with 1 × phosphatase inhibitor with trypsin (enzyme to protein ratio 1:100, w/w) was added. Samples were incubated at 37°C overnight. Undigested proteins were estimated using Bradford assays before adding trypsin (1 µg/µL) at a ratio of 1:100 (w/v) and an equal volume of Lys-C (0.1 µg/µL) was added and incubated for an additional 4 h at 37°C. The filter unit was centrifuged at 4,000 g for 20–40 min. One milliliter of 0.05-M NH₄HCO₃ with 1 × phosphatase inhibitor was added and centrifuged at 4,000 g for 20–40 min. The samples were acidified to pH 2–3 with 100% formic acid and centrifuged at 21,000 g for 20 min. Finally, samples were desalted using 50 mg Sep-Pak C18 cartridges (Waters, Milford, MA, USA). Eluted peptides were dried using a vacuum centrifuge (Thermo Fisher Scientific, Waltham, MA, USA) and resuspended in 0.1% (v/v) formic acid. Peptide amount was quantified using the Pierce BCA Protein assay kit.

TMT labeling

TMTsixplex label reagents (Thermo Fisher Scientific, Lot #SH254566) were used to label the samples according to the manufacturer’s recommended peptide-to-tandem mass tag (TMT) reagent ratio. Four hundred micrograms of vacuum-dried peptides from each sample were resuspended with 400-µL 50 mM TEAB buffer and vortexed for 10 min at room temperature. Then, 41-µL acetonitrile was added to each tube of TMT label (0.8 mg), vortexed, and incubated at room temperature for 5 min to resuspend the labels. Four tubes (4 × 41 µL) of each type of TMT label (3.2-mg TMT label in total) were added to each tube of peptides (400 µg), pipetted up and down several times, and vortexed to mix them well. After a 2-h incubation at room temperature, 32 µL of 5% (w/v) hydroxylamine was added to each tube, vortexed, and incubated at room temperature for 15 min to quench the labeling reaction. Next, the six samples were mixed together, a 35-µg aliquot of peptides was reserved for protein abundance profiling, and the remaining peptides were used for phosphopeptide enrichment, and stored at −80°C.

Phosphopeptide enrichment

The TMT-labeled phosphopeptides were enriched using Titansphere Phos-TiO₂ beads (GL Sciences 5010–21315) based on previously published methods (Kettenbach and Gerber, 2011; Song et al., 2018b). The beads were prepared by resuspending in 1.5-mL wash and binding buffer (2 M lactic acid in 50% (v/v) acetonitrile), vortexing, and then centrifugation at 3,000 g for 1 min at room temperature; this was repeated a total of 3 times. At the last washing step, 5 and 11 mg of TiO₂ beads were aliquoted into new tubes before centrifugation. After centrifugation, the wash and binding buffer were removed and the TiO₂ beads were saved for phosphopeptide enrichment. About 2.4 mg of TMT6-labeled and vacuum-dried peptides were resuspended with 2.4 mL wash and binding buffer and then added to the tube containing 11 mg TiO₂ beads, rotated at room temperature for 1 h, and then centrifuged at 3,000 g for 1 min at room temperature. The supernatant was processed with a second round of enrichment using 5 mg of TiO₂ beads. Then, 1.8–mL wash and binding buffer was added to each tube from the two enrichment steps, vortexed, and centrifuged at 3,000 g for 1 min at room temperature. This wash was repeated once. Next, the TiO₂ beads were washed twice with 1.8 mL of 50% (v/v) acetonitrile in 0.1% (v/v) trifluoroacetic acid. After the wash steps, 500 µL of 3% (w/v) ammonium hydroxide was added to each tube of the two enrichment steps, vortexed and centrifuged at 3,000 g for 1 min at room temperature. The eluted supernatants were combined. One more elution step was performed with 5% (w/v) ammonium hydroxide. All supernatants from the two elution steps were combined and dried in a speed vac; the phosphopeptides were then resuspended in 0.1% (w/v) FA, and stored at −80°C until liquid chromatography-tandem mass spectrometry (LC/MS–MS) run.

LC/MS–MS

An Agilent 1,260 quaternary high-performance liquid chromatography (HPLC) was used to deliver a flow rate of ~600 nL min⁻¹ via a splitter. All columns were packed in-house using a Next Advance pressure cell, and the nanopoint tips were fabricated using a fused silica capillary that was pulled to a sharp tip using a laser puller (Sutter P-2000). Thirty-five micrograms of TMT-labeled peptides (nonmodified proteome), or 25 µg TiO₂-enriched peptides...
(phosphoproteome), were loaded onto 20-cm capillary columns packed with 5-µM Zorbax SB-C18 (Agilent Technologies, Inc., St Clara, CA, USA), which was connected using a zero dead volume 1-µm filter (Upchurch, M548) to a 5-cm long strong cation exchange (SCX) column packed with 5-µm PolySulfoethyl (PolyLC). The SCX column was then connected to a 20-cm nanospray tip packed with 2.5-µM C18 (Waters). The three sections were joined and mounted on a custom electrospray source for online nested peptide elution. A new set of columns was used for each sample. Peptides were eluted from the loading column onto the SCX column using a 0%–80% (v/v) acetonitrile gradient over 60 min. Peptides were then fractionated from the SCX column using a series of salt steps. For the nonmodified proteome, the following ammonium acetate salt steps were used (in millimolar): 10, 25, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 45, 47, 50, 55, 65, 75, 90, 98, 100, 110, 130, 150, 200, and 1,000. For the phosphoproteome analysis, ammonium acetate salt steps of 6, 10, 12, 15, 18, 21, 30, 45, 70, 90, 100, 150, 200, and 1,000 mM were used. For these analyses, buffers A and C (100 mM ammonium acetate, 2% [v/v] formic acid), and D (2 M ammonium acetate, 2% [v/v] formic acid) were utilized. For each salt step, a 150-min gradient program consisted of a 0–5 min increase to the specified ammonium acetate concentration, 5–10 min hold, 10–14 min at 100% buffer A, 15–120 min 5–35% buffer B, 120–140 min 35–80% buffer B, 140–145 min 80% buffer B, and 145–150 min buffer A was employed.

Eluted peptides were analyzed using a Thermo Scientific Q-Exactive Plus high-resolution quadrupole Orbitrap mass spectrometer, which was directly coupled to the HPLC. Data-dependent acquisition was obtained using Xcalibur version 4.0 software in positive ion mode with a spray voltage of 2.00 kV and a capillary temperature of 275°C and a retention factor of 60. MS1 spectra were measured at a resolution of 70,000, an automatic gain control (AGC) of 3 × 10^6 with a maximum ion time of 100 ms and a mass range of 400–2,000 m/z. Up to 15 MS2 were triggered at a resolution of 17,500 with a fixed first mass of 120 m/z for the phosphoproteome and 115 m/z for the proteome. An AGC of 1 × 105 with a maximum ion time of 50 ms, an isolation window of 1.3 m/z for phosphoproteome and 1.2 m/z for proteome, and a normalized collision energy of 31 and 32 were used for nonmodified and phosphoproteomes, respectively. Charge exclusion was set to unassigned, 1, 5–8, and >8. MS1 that triggered MS2 scans were dynamically excluded for 25 or 30 s for nonmodified and phosphoproteomes, respectively.

Data analysis
The raw data were analyzed using MaxQuant version 1.6.1.0 (Tyanova et al., 2016). Spectra were searched, using the Andromeda search engine (Cox et al., 2011) against the Arabidopsis TAIR10 proteome file entitled “TAIR10_pep_20101214” that was downloaded from the TAIR website (https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FProteins%2FTAIR10_protein_lists) and was complemented with reverse decoy sequences and common contaminants by MaxQuant. Carbamidomethyl cysteine was set as a fixed modification, while methionine oxidation and protein N-terminal acetylation were set as variable modifications. For the phosphoproteome, "Phosho STY" was also set as a variable modification. The sample type was set to “Reporter Ion MS2” with “6plex” “MT” selected for both lysine and N termini. TMT batch-specific correction factors were configured in the MaxQuant modifications tab (TMT Lot SH254566). Digestion parameters were set to “specific” and “Trypsin/P;LysC.” Up to two missed cleavages were allowed. A false-discovery rate, calculated in MaxQuant using a target-decoy strategy (Elias and Gygi, 2007) of less than 0.01 at both the peptide spectral match and protein identification level was required. The “second peptide” option to identify co-fragmented peptides was not used. The match between runs feature of MaxQuant was not utilized.

Prior to statistical analysis, protein/phosphosite intensity data were normalized such that the total intensity for each TMT lane was equal across the run (referred to as sample loading normalization). No imputation for missing values was performed. Then, statistical analysis was performed using the PoisonSeq package in R (Li et al., 2012). Proteins were categorized as differentially abundant if they had a q ≤ 0.05. For phosphosites, we categorized differential abundance as those sites with q ≤ 0.2 based on the q-value histogram (Supplemental Figure S1).

RNA extraction and 3′-RNA sequencing
Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany; catalog # 74904), and genomic DNA contamination was removed using RNase-free DNase I Set (Qiagen; catalog # 79254) in-column during RNA extraction according to the manufacturer’s protocols. Libraries were constructed using QuantSeq 3′-mRNA-Seq Library Prep Kit from Illumina. Libraries were run on a HiSeq4000 with 50-bp reads, as QuantSeq is optimized for 50- to 100-bp reads (Moll et al., 2014). Each library was run twice to increase the average read count to ~6 million reads per sample. Read alignment to the TAIR10 genome was performed using the STAR aligner (Dobin et al., 2013) using default parameters except –outFilterMismatchNoverLmax was set to 0.6 to account for the shorter QuantSeq reads, resulting in ~70% of reads uniquely mapped per sample, which is expected for QuantSeq (Moll et al., 2014). Counts per transcript were obtained using htseq-count using the intersection-nonempty parameter for reads spanning more than one feature (Anders et al., 2015).

Data analysis of the transcriptome, proteome, and phosphoproteome
The pcomp function in R, and PCA plots were constructed using ggbiplot (https://github.com/vqv/ggbiplot).
GO enrichment analysis and network reconstruction were performed using the ClueGO application in Cytoscape (Bindea et al., 2009). Terms were considered enriched if they had a corrected P < 0.05.

Volcano plots were constructed with ggplot2 (Wickham, 2016) in R using -log10-transformed q-values and Log2(Fold-change [fer/WT]) of protein.

The enrichment of consensus sequences for FER phosphorylation was performed using the motifER R package (Wang et al., 2019a, 2019b) with default settings. Sequence logos were made using the ggsqlogo R package (Wagih, Core Team, 2019). Two analyses were performed in R version 3.6.2 (R Core Team, 2019).

Venn diagrams were generated using Venny (http://bioin.fogp.cnb.csic.es/tools/venny/).

Plasmids construction

Using primers listed in Supplemental Table S1, ABI5 was PCR amplified from Col-0 cDNA and cloned into vector pXY136-35SP-YFP (Nolan et al., 2017). The ABI5 coding sequence was cloned in-frame with mutation, 5′-ggagtctcagccgctttgacacttccagc-3′; forward primer 5′-caggtcgacGAGTGACAACTCGGGTTC-3′ and reverse primer 5′-caggtcgacGAGTGACAACTCGGGTTC-3′, using the pXY136-35SP-ABI5-YFP vector as template. Second, the full-length ABI5 coding sequence was then PCR amplified using forward primer 5′-caggtcgacATGGTAACTAGAGAAACGAAG-3′ and reverse primer 5′-caggtcgacATGGTAACTAGAGAAACGAAG-3′, and cloned into vector pXY136-35SP-YFP.

The sequences encoding the substrate proteins: ABF3, OXS2, ABI5, ABI5 S145A, SHOU4, and NAIP1 were PCR amplified from Col-0 cDNA and cloned into vector pXY136-35SP-YFP (Nolan et al., 2017). The coding sequences were cloned in-frame and upstream of the sequence encoding the N terminus of YFP. All resulting plasmids were individually introduced into Agrobacterium (Agrobacterium tumefaciens) (strain GV3101). Positive Agrobacterium colonies were cultured in liquid LB medium containing 0.2-mM acetosyringone for 1–2 days. Cells were collected by centrifugation, washed, and resuspended in infiltration buffer (10-mM MgCl2, 10-mM MES, pH 5.7, 0.2-mM acetosyringone) to a final optical density (OD) measured at a wavelength of 600 nm (OD600) of 0.9. Agrobacteria carrying appropriate pairs of nYFP and cyYFP constructs were mixed in a 1:1 ratio and infiltrated into the lower surface of N. benthamiana leaves from 2-month-old plants grown on soil. After 36 h, YFP signals were detected using a Zeiss Laser Scanning Microscope 700 (LSM700).

Transient infiltration assays

Agrobacteria carrying the constructs of interest were grown in liquid LB medium with antibiotics in a 30°C shaker for 2 days. After collecting the agrobacteria by centrifugation, the cells were resuspended in infiltration buffer (10-mM MgCl2, 10-mM MES pH 5.7, 200-μM acetosyringone) to a final OD600 of 0.3. Leaf infiltration was conducted with a 1-ml syringe on the abaxial side of the leaves, as above. At least two biological replicates were examined for each target construct.

Two days after infiltration, five leaf discs (7 mm in diameter) were collected for each sample and flash-frozen in liquid nitrogen and ground directly in 200 μL of 2 × SDS sample buffer. The samples were resolved on 8% (w/v) SDS–PAGE, followed by immunoblotting using commercial rabbit anti-GFP (A11122; Invitrogen, Waltham, MA, USA) or anti-FLAG antibodies (F7425; Sigma-Aldrich, St Louis, MO, USA) at a 1:1,000 dilution.

Co-IP

Agrobacteria carrying constructs encoding FLAG- and GFP-tagged proteins of interest were co-infiltrated into N. benthamiana leaves. Leaf samples were collected 2 days after the infiltration. One gram of each sample was ground in liquid nitrogen and homogenized in 2.5 mL IP buffer (10-mM HEPES Ph 7.5, 100-mM NaCl, 1-mM EDTA, 10% [v/v] glycerol, and 0.5% [v/v] Nonidet P-40) with 1-mM PMSF, 20-μM MG132, and protease inhibitor cocktail for 20 min at 4°C with rotation. Five micrograms of FLAG M2 antibody (F1804; Sigma-Aldrich) was prebound to 60-μL protein G Dynabeads (10003D; Thermo Fisher Scientific) for 30 min in 1× phosphate buffer saline (PBS) buffer with 0.02% (v/v) Tween-20 at room temperature. The beads were washed once with the same PBS buffer and resuspended in Co-IP buffer. After protein extraction, 20 μL of anti-FLAG pre-bound Dynabeads was added to each sample for another 1.5 h incubation at 4°C with rotation. Dynabeads were precipitated using DynaMagnetic rack (12321D; Thermo Fisher Scientific) and washed twice with Co-IP buffer with 0.5% (v/v) Nonidet P-40 and twice with Co-IP buffer without Nonidet P-40. The IP product was resuspended in 2 × SDS sample buffer and used for immunoblotting with rabbit

BiFC assays

The mFER coding sequence was cloned in-frame and upstream of the sequence encoding the N terminus of YFP, while the SHOU4, FBH3, ABI5, and DDL coding sequences were cloned in-frame and upstream of the sequence encoding the C terminus of YFP. All resulting plasmids were individually introduced into Agrobacterium (Agrobacterium tumefaciens) (strain GV3101). Positive Agrobacterium colonies were cultured in liquid LB medium containing 0.2-mM acetosyringone for 1–2 days. Cells were collected by centrifugation, washed, and resuspended in infiltration buffer (10-mM MgCl2, 10-mM MES, pH 5.7, 0.2-mM acetosyringone) to a final optical density (OD) measured at a wavelength of 600 nm (OD600) of 0.9. Agrobacteria carrying appropriate pairs of nYFP and cyYFP constructs were mixed in a 1:1 ratio and infiltrated into the lower surface of N. benthamiana leaves from 2-month-old plants grown on soil. After 36 h, YFP signals were detected using a Zeiss Laser Scanning Microscope 700 (LSM700).
anti-GFP (A11122; Invitrogen) and rabbit anti-FLAG antibody (F7425; Sigma-Aldrich).

ER body observation and quantification
For ER body observation, GFP-HDEL-labeled structures were observed and images were taken by confocal microscopy using a Zeiss Laser Scanning Microscope 700 (LSM700) with a 63 × oil immersion objective. GFP was excited with a 488 nm laser line and detected at 555 nm. The ER body quantification was carried out as described (Yamada et al., 2008).

Measurement of glucosinolate contents
Glucosinolates were measured as previously described (Brown et al., 2003; Klisiebenstein et al., 2001a–c). Briefly, 3-week-old whole rosettes were pooled, weighed, frozen, and harvested in 90% (v/v) methanol. Tissues were homogenized in a 1.5-ml Eppendorf tube and transferred to a 96-well filter plate with DEAE Sephadex. The filter plate with DEAE Sephadex was washed once with water, once with 90% (v/v) methanol, and once with water again. The Sephadex-bound glucosinolates were eluted after an overnight incubation with 110 µL of sulfatase. Individual desulfo-glucosinolates within each sample were separated and detected by high-performance liquid chromatography (HPLC)-diode array detection, identified using relative response factors developed by comparison to standards with known chemotypes, quantified using relative response factors developed by comparison to standard curves from purified compounds and re-validated using Arabidopsis genomics (HPLC)-diode array detection, identified using relative response factors developed by comparison to standards with known chemotypes, quantified using relative response factors developed by comparison to standard curves from purified compounds and re-validated using Arabidopsis genomics. The first-strand cDNA was synthesized with an iScript cDNA Synthesis Kit (BioRad, Hercules, CA, USA; catalog # 1708891). Real-time PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems, Waltham, MA, USA; catalog # 4309155) on the StepOnePlus Real-Time PCR system (Applied Biosystems). Relative gene expression was determined by applying the 2^{\Delta \Delta Ct} (CT, cycle threshold) method and normalized to the expression of the reference gene ACTIN2 (At3g18780). RT-qPCR was performed with two to three technical replicates from three to four independent biological replicates. Primers used for qPCR are provided in Supplemental Table S1.

Statistical analysis
Graphs were created in GraphPad Prism software (version 9.3.0). SPSS version 27.0 software (IBM, Armonk, NY, USA) was used for statistical data analysis. The data are shown as means ± standard error of the mean (SEM) and were subjected to one-way analysis of variance (ANOVA) Tukey’s multiple range tests (P < 0.05). ANOVA data are provided in Supplemental Table S7.

Accession numbers
The accession numbers of genes discussed in this article are: FER (At3g51550), SHOU4 (At1g78880), FBH3 (At1g51140), AB5 (At2g36270), NA1 (At2g22770) and NA12 (At3g15950), PYK10 (At3g09260), NAIP1 (At4g15545), ABF3 (At4g34000), OXS2 (At2g41900), At3g51950, GT2 (At1g76890), NIS1 (At1G32070), ASA1 (At5g07530), IGMT5 (At1g76790), MYC2 (At1g32640), CYP93B1 (At4g31500), CYP79B2 (At4g39950), CYP79B3 (At2g22330), and DLL (At3g02050). Raw sequencing data have been deposited at the Gene Expression Omnibus under series GSE143634 and GSE191303. Raw proteomics data have been deposited on MassIVE (https://massive.ucsd.edu) under series MSV000084804.

Supplemental data
The following materials are available in the online version of this article.

Supplemental Figure S1. FER omics data analyses parameters.

Supplemental Figure S2. The comparisons of differentially expressed transcripts and proteins in fer, and the differentially expressed transcripts of this study to that of the previous publication.

Supplemental Figure S3. Enriched GO terms in transcripts with increased levels in fer.

Supplemental Figure S4. Enriched GO terms in transcripts with decreased levels in fer.
Supplemental Figure S5. Enriched GO terms in proteins with increased levels in fer.

Supplemental Figure S6. Enriched GO terms in proteins with decreased levels in fer.

Supplemental Figure S7. Enriched GO terms in phosphoproteins with increased levels in fer.

Supplemental Figure S8. Enriched GO terms in phosphoproteins with decreased levels in fer.

Supplemental Figure S9. FER directly phosphorylates many proteins with diverse functions.

Supplemental Figure S10. FER negatively regulates ER-body formation.

Supplemental Figure S11. FER negative regulation of ER-body formation is validated using FER-miRNA knockdown.

Supplemental Figure S12. FER negatively regulates ABA response during cotyledon greening through ABI5.

Supplemental Table S1. Primers used in this study.

Supplemental Table S2. Constructs used in this study.

Supplemental Data Set 1. Misregulated gene list in FER omics data.

Supplemental Data Set 2. Enriched GO terms in FER omics data.

Supplemental Data Set 3. Enriched consensus sequences of FER phosphorylation sites.

Supplemental Data Set 4. Misregulated genes in 10-day-old fer seedlings.

Supplemental Data Set 5. The comparisons of FER omics data with ABF1, ABF3, ABF4, and FBH3 target genes (Song et al., 2016).

Supplemental Data Set 6. Transcription factors that are differentially expressed in FER omics data.

Supplemental Data Set 7. ANOVA results in this study.

Acknowledgments

We thank ABRC (https://abrc.osu.edu/) for providing T-DNA seeds. We thank Prof. Sarah M. Assmann for sharing fer mutant complementation transgenic lines. We thank Dr. Yan Bao for providing abi5-7 seeds. We thank Prof. Kenji Yamada for providing nai2-2 GFP-HDEL seeds. We thank Dr. Alfredo Kono, Tanner M. Cook, and Kaitlin M. Higgins for helping with experiments.

Funding

This work was supported by grants from National Institute of Health (NIH R01GM120316-01A1 to Y.Y., D.C.B., and J.W.W.), National Science Foundation (NSF MCB-1818160 to Y.Y. and J.W.W.), and Plant Sciences Institute at Iowa State University (to Y.Y. and J.W.W.).

Declaration of interest statement

H.G. and Y.Y. are co-inventors on the patent US9512440B2, titled “Modulation of receptor-like kinase for promotion of plant growth.”

Conflict of interest statement. None declared.

References

Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169

Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 12: 2201–2218

Bindega G, Mlcenic B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: 1091–1093

Boisson-Dernier A, Franck CM, Litteui DS, Grossniklaus U (2015) Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci USA 112: 12211–12216

Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62: 471–481

Burrow M, Halkier BA, Kliebenstein DJ (2010) Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Curr Opin Plant Biol 13: 347–352

Chakravorty D, Yu Y, Assmann SM (2018) A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett 592: 3429–3437

Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, et al. (2016) FERONIA interacts with AB12-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci USA 113: E5519–E5527

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794–1805

Deslauriers SD, Larsen PB (2010) FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3: 626–640

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21

Du C, Li X, Chen J, Chen W, Li B, Li C, Wang L, Li J, Zhao X, Lin J, et al. (2016) Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci USA 113: E8326–E8334

Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107: 17821–17826

Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5: 3129

Duan Q, Liu MJ, Kita D, Jordan SS, Yeh FJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, et al. (2020) FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579: 561–566

Dunser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J (2019) Extracellular matrix sensing by FERONIA and Lecuine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 35: e100353

Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4: 207–214

Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA
receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317: 656–660

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst, L, Schmitz-Thom I, et al. (2018) The FERONIA receptor kinase maintains cell-wall integrity during alyx stress through Ca(2+) signaling. Curr Biol 28: 666–675 e665

Franck CM, Westermann J, Boisson-Dernier A (2018) Plant male-fertilin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69: 301–328

Geem KR, Kim DH, Lee DW, Kwon Y, Lee J, Kim JH, Hwang I. (2009a) A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav 4: 784–786

Guo H, Li Y, Li L, Yin Y (2009b) A wound-inducible organelle that prepares for cell death or stresses in the epidermal cells of Arabidopsis thaliana. Proc Natl Acad Sci USA 106: 7648–7653

Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y (2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28: 3316–3324 e3316

Hara-Nishimura I, Matsushima R (2003) A wound-inducible organelle derived from endoplasmic reticulum: a plant strategy against environmental stresses? Curr Opin Plant Biol 6: 35–41

Hara-Nishimura I, Matsushima R (2019) Two related receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Curr Biol 29: R847–R858

Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q, Luo Y, Gu H, Dresselhaus T, et al. (2016) Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26: 2343–2350

Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16: 107–115

Kessler SA, Shimosato-Asano H, Kainth NF, Wuest SE, Ingrum G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330: 968–971

Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphorysine-specific phosphoproteomics experiments. Anal Chem 83: 7635–7644

Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indolic and benzyl glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159: 359–370

Kliebenstein DJ, Kromeyer J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olids T (2001b) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126: 811–825

Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olids T (2001c) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 681–693

Kliebenstein DJ, Figuth A, Mitchell-Olids T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161: 1685–1696

Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, et al. (2018) EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 16: e0260340

Li C, Yeh FL, Cheung AY, Duan Q, Kitaka D, Liu MC, Maman J, Luu BJ, Wu BW, Gates L, et al. (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4: e06587

Li J, Witten DM, Johnstone IM, Tibshirani R (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 13: 523–538

Lin W, Tang W, Anderson CT, Yang Z (2018) FERONIA’s sensing of cell wall pectin activates ROP GTPase signaling in Arabidopsis. bioRxiv https://doi.org/10.1101/269647 (February 22, 2018)

Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z (2021) Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol 32: 497–507 e4 https://doi.org/10.101/j.cub.2021.110.030

Liu C, Shen L, Xiao Y, Vyshdsky D, Peng C, Sun X, Liu Z, Cheng L, Zhang H, Chai J, et al. (2021) Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science 372: 171–175

Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32: 317–328

Mang H, Feng B, Hu Z, Boisson-Dernier A, Franck CM, Meng X, Huang Y, Zhou J, Xu G, Wang T, et al. (2017) Differential regulation of two-tiered plant immunity and sexual reproduction by ANXUR receptor-like kinases. Plant Cell 29: 3140–3156

Masachis S, Segorbe D, Turra D, Leon-Ruiz M, Furst U, El Ghalid M, Leonard G, Lopez-Berges MS, Richards TA, Felix G, et al. (2016) A fungal pathogen secretes plant alkalizing peptides to increase infection. Nat Microbiol 1: 16043

Matsushima R, Fukao Y, Nishimura M, Hara-Nishimura I (2004) NA11 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. Plant Cell 16: 1536–1549

Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I (2003a) A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. Plant J 33: 493–502

Matsushima R, Hayashi Y, Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2003b) The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol 44: 661–666

Moll P, Ante M, Seitz A, Reda T (2014) QuantSeq 3’ mRNA sequencing for RNA quantification. Nat Methods 11: i–iii

Nakano RT, Pilsen-Dedared M, Yamada K, Edger PP, Miyahara M, Kondo M, Böttcher C, Morig M, Nishimura M, Schulze-Lefert P, et al. (2017) PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Plant J 89: 204–220

Nakazaki A, Yamada K, Kunieda T, Sugiyama R, Hirai MY, Tamura K, Hara-Nishimura I, Shimada T (2019) Leaf ER bodies identified in Arabidopsis rosette leaves are involved in defense against herbivory. Plant Physiol 179: 1515–1524

Nambara E, Suzuki M, Abrams S, McCarty DR, Kamiya Y, McCourt P (2002) A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana. Genetics 161: 1247–1255

Integrated omics reveal novel functions for FERONIA...
Ngo QA, Vogler H, Litiev DS, Nestorova A, Grossniklaus U (2014) A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev Cell 29: 491–500

Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Wang X, Bassham DC, Walley J, Yin Y (2017) Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell 41: 33–46 e37

Ortiz-More A, Liu J, Shan L, He P (2021) Malecin-like receptor kinases as protector deities in plant immunity. Nat Plants https://doi.org/10.1038/s41477-021-01028-3.

Polko JK, Barnes WJ, Voiniciuc C, Doctor S, Steinwand B, Hill JL, Tien M, Pauly M, Anderson CT, Kieber JJ (2018) SHOU4 proteins regulate trafficking of cellulose synthase complexes to the plasma membrane. Curr Biol 28: 3174–3182

Pruneda-Paz JL, Breton G, Nagel DH, Kang SE, Bonaldi K, Doherty CJ, Ravelo S, Galli M, Ecker JR, Kay SA (2014) A genome-scale resource for the functional characterization of Arabidopsis transcription factors. Cell Rep 8: 622–632

Sarkar SNS, Kunieda T, Hara-Nishimura I, Yamada K (2021) The Arabidopsis transcription factor NAAL1 activates the NAII2 promoter by binding to the G-box motifs. Plant Signal Behav 16: 1846928

Sharameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Song G, Brachova L, Nikolau BJ, Jones AM, Walley JW (2018b) A calcium dialog mediated by the FERONIA signal transduction in Arabidopsis seedlings. Curr Biol 28: 3174–3182

Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24: 1887–1892

Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates gene discovery and beyond. Trends Plant Sci 15: 283–290

Song G, Brachova L, Nikolau BJ, Jones AM, Walley JW (2018b) Heterotrimeric G-protein-dependent proteome and phosphoproteome in unstimulated Arabidopsis roots. Proteomics 18: e1800323

Song G, Hsu PY, Walley JW (2018a) Assessment and refinement of sample preparation methods for deep and quantitative plant proterome profiling. Proteomics 18: e1800220

Song G, Montes C, Walley JW (2020) Quantitative profiling of protein abundance and phosphorylation state in plant tissues using tandem mass tags. Methods Mol Biol 2139: 147–156

Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354: aag1550

Song Y, Wilson AJ, Zhang XC, Thoms D, Sohrabi R, Song S, Geissmann Q, Liu Y, Walgren L, He SY, et al. (2021) FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nat Plants 7: 644–654

Stefanik N, Bizan J, Wilkens A, Tarnawska-Glatt K, Goto-Yamada S, Strzalka K, Nishimura M, Hara-Nishimura I, Yamada K (2020) NAII and TSA1 drive differentiation of constitutive and inducible ER body formation in brassicaceae. Plant Cell Physiol 61: 722–734

Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355: 287–289

Tang W, Lin W, Zhou X, Guo J, Dang X, Li B, Lin D, Yang Z (2021) Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr Biol 32: 508–517 e3. https://doi.org/10.1016/j.cub.2021.11.031

Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11: 2301–2319

Wagih O (2017) ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 33: 3645–3647

Walley JW, Shen Z, McReynolds MR, Schmelz EA, Briggs SP (2018) Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Proc Natl Acad Sci USA 115: 210–215

Wang JZ, Li B, Xiao Y, Ni Y, Ke H, Yang P, de Souza A, Bjornson M, He X, Shen Z, et al. (2017) Initiation of ER body formation and incole glucosinolate metabolism by the plastidial retrograde signaling metabolite, MeCPP. Mol Plant 10: 1400–1416

Wang S, Cai Y, Cheng J, Li W, Liu Y, Yang H (2019a) motiffet: an integrated web software for identification and visualization of protein posttranslational modification motifs. Proteomics 19: e1900265

Wang Z, Li X, Liu N, Peng Q, Wang Y, Fan B, Zhu C, Chen Z (2019b) A family of NAII2-interacting proteins in the biogenesis of the ER body and related structures. Plant Physiol 180: 212–227

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, NY

Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J (2019) Mechanisms of RALF peptide perception by a heterotopic receptor complex. Nature 572: 270–274

Yamada K, Goto-Yamada S, Nakazaki A, Kunieda T, Kuwata K, Nagano AJ, Nishimura M, Hara-Nishimura I (2020) single-cell chemical defense in Brassicaceae plants. Commun Biol 3: 1–10

Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M (2008) NAII2 is an endoplasmatic reticulum body component that enables ER body formation in Arabidopsis thaliana. Plant Cell 20: 2529–2540

Yu Y, Chakravorty D, Assmann SM (2018) The G protein beta-subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement. Plant Physiol 176: 2426–2440

Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, et al. (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109: 14693–14698

Yu F, Wu Y, Xie D (2015) Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci 20: 569–575

Zhang X, Peng H, Zhu S, Xing J, Li X, Zhu Z, Zheng J, Wang L, Wang B, Chen J, et al. (2020) Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol Plant 13: 1434–1454

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Tao WA, Lozano-Duran R, Zhu JK (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115: 13123–13128

Zhu S, Estevez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, et al. (2020) The RALF1-FERONIA complex phosphorylates elf4E1 to promote protein synthesis and polar root hair growth. Mol Plant 13: 698–716