Role of c-Src Tyrosine Kinase in G Protein-coupled Receptor- and Gβγ Subunit-mediated Activation of Mitogen-activated Protein Kinases*

(Received for publication, March 1, 1996, and in revised form, May 10, 1996)

Louis M. Luttrell‡§, Brian E. Hawes‡, Tim van Biesen‡, Deirdre K. Luttrell‡, Timothy J. Lansing‡, and Robert J. Lefkowitz‡

From the ‡The Howard Hughes Medical Institute and the Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710 and the ¶Department of Molecular Cell Biology, Glaxo Wellcome Inc., Research Triangle Park, North Carolina 27709

Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gβγ subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway by endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gβγ subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gβγ subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gβγ subunits resulted in c-Src activation, as assessed by increased c-Src auto-phosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, led to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gβγ subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc Grb2 complex formation, and MAP kinase activation. These data suggest that Gβγ subunit-mediated formation of Shc-c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.

Many receptors that couple to heterotrimeric G proteins have been shown to mediate the rapid activation of MAP1 kinases. Among these are receptors for several substances either present in the general circulation, released as neurotransmitters, or produced locally by vascular endothelium or activated platelets. These include catecholamines, acetylcholine, pituitary glycopeptide hormones, adenosine, angiotensins, bombesin, endothelins, LPA, and α-thrombin (1). Receptors for these substances, activated in response to systemic or locally generated ligands, may in turn play significant roles in the endocrine or paracrine regulation of cell proliferation.

Heterogeneity exists in the mechanisms whereby G protein-coupled receptors activate MAP kinases. Depending upon receptor and cell type, MAP kinase activation may be mediated by pertussis toxin-sensitive or -insensitive G proteins and be either PKC- or Ras-dependent. In COS-7 cells, for example, activation of MAP kinase via the pertussis toxin-insensitive, Gq-coupled, α1B adrenergic and M1 muscarinic acetylcholine receptors is significantly inhibited by PKC depletion but insensitive to expression of a dominant-negative mutant of Ras. In contrast, activation of MAP kinase via the pertussis toxin-sensitive Gi-coupled α2A adrenergic and M2 muscarinic acetylcholine receptors is PKC-independent but requires Ras activation and is sensitive to inhibitors of tyrosine protein kinases (2). Similarly, LPA, a potent stimulator of mitogenesis in quiescent fibroblasts that signals via a G protein-coupled receptor coupling to both pertussis toxin-sensitive and -insensitive G proteins (3–5), activates MAP kinase via a pertussis toxin-sensitive pathway involving Ras and Raf activation (6, 7). LPA-mediated MAP kinase activation is sensitive to tyrosine kinase inhibitors (7, 8) but independent of its effects on phosphatidylinositol hydrolysis and its ability to inhibit adenylyl cyclase (4, 8). In COS-7 cells, Ras-dependent MAP kinase activation via α2A adrenergic (9), M2 muscarinic acetylcholine, D2 dopamine, and A1 adenosine receptors (10) is mediated largely by Gβγ subunits derived from pertussis toxin-sensitive G proteins. Indeed, overexpression of Gβγ subunits, but not constitutively activated Gαi1 or Gαi2 mutants, is sufficient to activate MAP kinase (9–11) in these cells.

* This work was supported in part by National Institutes of Health Grant HL16037 (to R. J. L.) and a postdoctoral fellowship from the Albert Foundation for Medical Research (to T. V. B.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Recipient of a National Institutes of Health Clinical Investigator Development Award.

1 To whom correspondence should be addressed: Howard Hughes Medical Institute, Duke University, Box 3821, Durham, NC 27710, Tel.: 919-684-2974; Fax: 919-684-8875.

2 The abbreviations used are: MAP, mitogen-activated protein; LPA, lysophosphatidic acid; PKC, protein kinase C; ARK, β adrenergic receptor kinase; PAGE, polyacrylamide gel electrophoresis; PIPES, 1,4-piperazineethanesulfonic acid; MBP, myelin basic protein; EGF, epidermal growth factor; PI3K, phosphatidylinositol 3-kinase; Btk, Bruton’s tyrosine kinase.
We have shown previously that Ras-dependent MAP kinase activation via LPA and α2A adrenergic receptors in COS-7 cells is associated with increased tyrosine phosphorylation of the Shc adapter protein and is dependent upon Grb2-mediated recruitment of the Ras guanine nucleotide exchange factor mSos-1 (9). Stimulation of LPA, α2A adrenergic (9), thyrotropin-releasing hormone (12), endothelin 1 (13), and formyl methionyl peptide receptors (14) has been reported to cause rapid and transient increases in Shc tyrosine phosphorylation and Shc-Grb2 complex formation. Thyrotropin-releasing hormone and formyl methionyl peptide receptor-mediated Shc phosphorylation is not mimicked by Ca²⁺ ionophore, suggesting that the signal is not PKC-dependent. The α2A adrenergic and formyl methionyl peptide receptor-mediated Shc phosphorylation is pertussis toxin-sensitive and can be mimicked by transient expression of Gαi subunits (9, 14, 15). Furthermore, cellular expression of a specific Gαi subunit sequester peptide derived from the carboxy-terminal Gαs subunit-binding domain of the β α-adrenergic receptor kinase 1 (pARK1) (16, 17) inhibits LPA and α2A adrenergic receptor-mediated Shc phosphorylation in COS-7 cells (9), indicating that the phosphorylation is mediated largely via Gαi subunits derived from pertussis toxin-sensitive G proteins. These data suggest that Gγi subunit-mediated formation of tyrosine-phosphorylated intermediates is one of the earliest events in a MAP kinase activation pathway cascade used by a significant subset of G protein-coupled receptors.

The identity of the tyrosine kinase(s) and their mechanism of activation by G protein-coupled receptors remains unclear. Several cell surface receptors that lack intrinsic tyrosine kinase activity, including the antigen receptors on T and B cells as well as the receptors for growth hormone, erythropoietin and several cytokines, stimulate tyrosine phosphorylation through association with Src family tyrosine kinases such as Lck, Lyn, and Fyn (18). Similar recruitment of nonreceptor tyrosine kinases might play a role in G protein-coupled receptor signaling. To test this possibility, we have investigated the role of Src kinases in LPA receptor and Gβγ subunit-mediated, Ras-dependent MAP kinase activation in COS-7 cells.

EXPERIMENTAL PROCEDURES

DNA Constructs—The cDNAs encoding Gγ1 (19) and Gγ2 (20) were provided by M. Simon. The cDNA encoding human p60src (21) was provided by D. Fujita, and the cDNA encoding p50ras (22) was provided by H. Hanafusa. The constitutively activated Y530F p60src (TAC(Y) → TTC(F)); Refs. 23–25) and kinase inactive K298M p60src (AAA(K); Ref. 26) mutants were constructed by oligonucleotide-directed mutagenesis using a Skou-plot kit (Amersham Corp.). The cDNA encoding mSos-1 was provided by M. Sakaue. The dominant-negative Src-Pro construct, encompassing the proline-rich carboxy-terminal fragment of mSos-1, was prepared as described (9). The cDNAs encoding constitutively activated T24 p21ras (27) and dominant-negative N17 p21ras (28) were provided by D. Altschuler and M. Ostrowski. The cDNA encoding the p74Ets-1 (29) dominant-negative mutant was provided by L. T. Williams. The cDNA encoding hemagglutinin-tagged p44src (30) was provided by J. Pouyssegur. All cDNAs were subcloned into pRK5 or pcDNA eukaryotic expression vectors for transient transfection.

Cell Culture and Transfection—COS-7 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 100 μg/ml gentamicin at 37°C in a humidified 5% CO₂ atmosphere. Transfections were performed on 80–90% confluent monolayers in 100-mm dishes for immunoprecipitation and c-Src kinase assays or in 6-well tissue culture plates for MAP kinase assays. For transient transfection, cells were incubated at 37°C in serum-free Dulbecco's modified Eagle's medium (4 ml containing 6–10 μg of DNA/100-mm dish or 1 ml containing 1–2 μg of DNA (well) plus 6 μl of LipofectAMINE reagent (Life Technologies, Inc)/μg of DNA. Empty pRK5 vector was added to transfections as needed to keep the total mass of DNA added per dish constant within an experiment. After 3–5 h of exposure to the transfection medium, monolayers were refed with growth medium and incubated overnight. Assays were performed 48 h after transfection. LipofectAMINE transfection of COS-7 cells consistently resulted in transfection efficiencies of greater than 80% (data not shown). Transient expression of Gγ1 and Gγ2 subunits, Csk, wild-type and mutant c-Src, and c-Src phospho-specific proteins, Sos-Pro, N17 Ras and T24Ras, and DNraf were confirmed by immunoblotting of transfected whole-cell lysates using commercially available antisera. Transfected monolayers were serum-starved in Dulbecco's modified Eagle's medium supplemented with 0.1% bovine serum albumin and 10 μM Hepes, pH 7.4, for 16–20 h prior to stimulation.

Immunoprecipitation and Immunoblotting—Stimulations were carried out at 37°C in serum-free medium as described in the figure legends. After stimulation, monolayers were washed once with ice-cold phosphate-buffered saline, lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.5, 0.25% sodium deoxycholate, 0.1% Nonidet P-40, 1 mM NaVO₄, 1 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, and 10 μg/ml leupeptin), sonicated briefly, clarified by centrifugation, and diluted with RIPA buffer to a protein concentration of 2 mg/ml. Endogenous Shc was immunoprecipitated from 1 ml of lysate using 4 μg/sample of polyclonal anti-Shc antibody (Transduction Laboratories) plus 50 μl of a 50% slurry of Protein G plus/Protein A agarose (Oncogene Science) agitated for 1 h at 4°C. Immune complexes were washed twice with ice-cold RIPA buffer and once with phosphate-buffered saline and then in Laemmli sample buffer. Samples were resolved by SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose membranes, immunoblots were performed to detect Shc phosphotyrosine or the presence of coprecipitated proteins. Shc phosphotyrosine was detected using a 1:1000 dilution of horseradish peroxidase-conjugated anti-phosphotyrosine monoclonal antibody (Transduction Laboratories). Shc protein was detected using a 1:1000 dilution of rabbit polyclonal anti-Grb2 IgG (Transduction Laboratories), and Grb2 was detected using a 1:1000 dilution of rabbit polyclonal anti-Grb2 IgG (Santa Cruz Biotechnology), each with horseradish peroxidase-conjugated donkey anti-rabbit IgG (Jackson Laboratories) as secondary antibody. Wild-type and mutant c-Src were detected using a 1:100 dilution of mAb 327 anti-Src monoclonal antibody (21) with horseradish peroxidase-conjugated donkey anti-mouse IgG (Jackson Laboratories) as secondary antibody. Fyn and c-Yes immunoblots were performed using rabbit polyclonal anti-Fyn and anti-Yes antibodies (Santa Cruz Biotechnology). Immunocomplexes on nitrocellulose were visualized by enzyme-linked chemiluminescence (Amersham) and quantified by scanning laser densitometry.

Detection of Shc-associated Tyrosine Kinase Activity—Shc immune complexes on agarose beads were prepared from RIPA lysates of appropriately stimulated cells as described. To detect coprecipitated tyrosine kinase activity, washed pellets were incubated for 15 min at 20°C in 30 μl of reaction mix (10 mM PIPES, pH 7.0, 10 mM MgCl₂, 5 mM Val₂-angiotensin II (Sigma), 10 mM ATP, and 10 μM l-(γ-³²PATP). Reactions were initiated by the addition of 10 μl of stop solution (0.1 M bovine serum albumin and 200 μM EDTA) and briefly centrifuged. Twenty-μl aliquots of each supernatant were added to 40 μl of ice cold 10% trichloroacetic acid, precipitated for 20 min, and centrifuged. Forty-μl aliquots of each clarified supernatant were spotted on P81 paper and washed three times in 0.425% phosphoric acid and once in acetone; then each was air-dried and l-(γ-³²PATP activity was quantified by scintillation counting.

Measurement of c-Src Autophosphorylation—Rabbit antiserum specific for Y¹⁹³₅ phosphotyrosylated Src was the generous gift of M. Weber. To detect endogenously autophosphorylated c-Src, clarified RIPA whole-cell lysates of appropriately stimulated or transfected cells (50 μg of whole-cell protein) were resolved on 7.5%–15% SDS–PAGE and transferred to nitrocellulose. Y¹⁹³₅-phosphorylated c-Src was detected using a 1:5000 dilution of anti-pY¹⁹³₅ Src antibody, with horseradish peroxidase-conjugated donkey anti-rabbit IgG (Amersham) as secondary antibody. Identical samples were immunoblotted with mAb 327 as controls. Immunocomplexes on nitrocellulose were visualized by enzyme-linked chemiluminescence (Amersham) and quantified by scanning laser densitometry.

Measurement of MAP Kinase Activation—Activation of epitope-tagged p44src (28) was determined using myelin basic protein (MBP) as substrate (30). Appropriately transfected, serum-starved cells in 6-well plates were stimulated as described in the figure legends, lysed in 200 μl of ice-cold RIPA/SDS lysis buffer (150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 0.5% sodium deoxycholate, 1% Nonidet P-40, 0.2% SDS, 10 mM NaF, 10 mM sodium pyrophosphate, and 0.1 mM phenylmethylsulfonyl fluoride) and clarified by centrifugation. Immunoprecipitation of p44src (28) from the clarified supernatants was performed using 6.5 μg of anti-HA-12CA5 antibody (Boehringer Mannheim) plus 25 μl of a 50% slurry of protein A-agarose (Oncogene Science) for 1 h at 4°C. Immune-com
Transient Expression of G protein Signaling Complexes following LPA Receptor Stimulation or pertussis toxin (were serum-starved overnight in the presence or absence of pertussis toxin). Shc phosphotyrosine and Shc increase over nonstimulated controls and represent the means (20 mM HEPES, pH 7.4, 10 mM MgCl₂, and 1 mM dithiothreitol). MBP immunoblotted with anti-phosphotyrosine (nondenatured RIPA buffer lysates were resolved by SDS-PAGE and isoforms and Grb2 are as indicated.

p52
subunits, on Shc tyrosine phosphorylation and Shc complexes, we assayed for tyrosine kinase activity in Shc immunoprecipitates following endogenous LPA receptor stimulation or transient overexpression of Gβgamma subunits. Cells were serum-starved in the presence or absence of pertussis toxin (100 ng/ml) and stimulated for 1 min with LPA (10 μM) (left panel) or transiently cotransfected with empty pRK5 vector (NT) or Gβ1 and Gγ2 expression plasmids (right panel). Shc immunoprecipitates were prepared and assayed in vitro for coprecipitated tyrosine kinase activity as described. Data are presented as fold increase over nonstimulated or vector-only transfected controls. Data shown represent the means (bars, S.E.) for four separate experiments.

pertussis toxin, as is LPA receptor-mediated MAP kinase activation in these cells (6).

To determine whether stimulation of endogenous LPA receptors or transient expression of Gβgamma subunits lead to direct recruitment of a tyrosine kinase into Shc-containing signaling complexes, we assayed for tyrosine kinase activity in Shc immunoprecipitates from COS-7 cells stimulated with LPA or transiently cotransfected with Gβ1γ2 subunits. As shown in Fig. 2A, LPA stimulation resulted in the rapid appearance of tyrosine kinase activity in Shc immunoprecipitates assessed by an in vitro kinase assay using Val⁴⁵-angiotensin II as exogenous substrate. The kinase activity was maximal 1–2 min after stimulation and declined subsequently. As shown in Fig. 2B, the LPA-induced recruitment of tyrosine kinase activity was pertussis toxin-sensitive. Cells transiently expressing Gβgamma subunits showed a similar 6–8-fold increase in Shc-associated tyrosine kinase activity, suggesting that the presence of free Gβgamma subunits alone was sufficient for kinase recruitment.

The Src family kinases Src, Fyn, and Yes are expressed in COS-7 cells (data not shown). To determine whether recruitment of Src family kinases could account for the increase in Shc-associated tyrosine kinase activity, Shc immunoprecipitates were immunoblotted with antibodies specific for Src, Fyn, or Yes. Only c-Src was detected in Shc immunoprecipitates from cells following LPA or EGF stimulation, as shown in Fig. 3A. Coprecipitation of a c-Src with Shc was also observed in cells transiently expressing a constitutively activated human c-Src mutant (Y530F) (23–25). As shown in Fig. 3B, the LPA-stimulated association between c-Src and Shc was rapid and transient, reaching a maximum within 1–2 min of stimulation. Thus, the time course of c-Src/Shc protein complex formation paralleled the time course of Shc tyrosine phosphorylation and recruitment of tyrosine kinase activity into Shc immunoprecipitates.

Two- to 3-fold increases in c-Src autophosphorylation and

RESULTS

Activation and Recruitment of c-Src into Shc Adapter Protein Signaling Complexes following LPA Receptor Stimulation or Transient Expression of Gβgamma Subunits—Fig. 1A depicts the effects of endogenous LPA or epidermal growth factor (EGF) receptor stimulation, or transient coexpression of Gβ1 and Gγ2 subunits, on Shc tyrosine phosphorylation and ShcGrb2 complex formation in COS-7 cells. LPA stimulation resulted in a transient 3–4-fold increase in Shc phosphotyrosine and ShcGrb2 complex formation, compared with a 10–12-fold increase resulting from stimulation of the endogenous EGF receptor tyrosine kinase. Overexpression of Gβ1γ2 subunits resulted in a sustained 2-fold increase. As shown in Fig. 1B, LPA receptor-mediated Shc tyrosine phosphorylation and ShcGrb2 complex formation were maximal after 2–5 min of stimulation. The responses were inhibited by pretreatment of cells with

FIG. 2. Detection of tyrosine kinase activity in Shc immunoprecipitates of COS-7 cells following endogenous LPA receptor stimulation or transient overexpression of Gβgamma subunits. A, time course of recruitment of tyrosine kinase activity into Shc immunoprecipitates following stimulation of endogenous LPA receptors. Serum-starved cells were stimulated for the indicated times with LPA (10 μM), and Shc immunoprecipitates from nondenatured RIPA buffer lysates were prepared as described. Shc-containing immune complexes were assayed in vitro for the presence of coprecipitated tyrosine kinase activity using Val⁴⁵-angiotensin II as substrate as described. Data are presented net [³²P] dpm incorporated into Val⁴⁵-angiotensin II and represent the means (bars, S.E.) for duplicate determinations in one of three separate experiments.

B, pertussis toxin-sensitive recruitment of tyrosine kinase activity into Shc immunoprecipitates following endogenous LPA receptor stimulation or transient overexpression of Gβgamma subunits. Cells were serum-starved in the presence or absence of pertussis toxin (100 ng/ml) and stimulated for 1 min with LPA (10 μM) (left panel) or transiently cotransfected with empty pRK5 vector (NT) or Gβ1 and Gγ2 expression plasmids (right panel). Shc immunoprecipitates were prepared and assayed in vitro for coprecipitated tyrosine kinase activity as described. Data are presented as fold increase over nonstimulated or vector-only transfected controls. Data shown represent the means (bars, S.E.) for four separate experiments.

FIG. 1. Stimulation of Shc tyrosine phosphorylation and ShcGrb2 complex formation in COS-7 cells following endogenous LPA receptor activation or transient overexpression of Gβgamma subunits. A, immunoblots of Shc phosphotyrosine and Grb2 from Shc immunoprecipitates following LPA or EGF stimulation or transient overexpression of Gβgamma subunits. Serum-starved cells were stimulated for the indicated times with LPA (10 μM) or EGF (10 ng/ml) (left panel) or transiently cotransfected with empty pRK5 vector (NT) or Gβ1 and Gγ2 expression plasmids (right panel). Immunoprecipitates of Shc from nondenatured RIPA buffer lysates were resolved by SDS-PAGE and immunoblotted with antiphosphotyrosine (upper panel) or anti-Grb2 (lower panel) as described. The position of tyrosine phosphorylated Shc isoforms and Grb2 are as indicated. B, time course of LPA-mediated p52BG tyrosine phosphorylation and ShcGrb2 complex formation. Cells were serum-starved overnight in the presence or absence of pertussis toxin (PTx) (List Biological Labs; 100 ng/ml) prior to stimulation for the indicated times with LPA, Shc phosphotyrosine and ShcGrb2 complex formation were determined as described. Data are presented as fold increase over nonstimulated controls and represent the means (bars, S.E.) for three separate experiments.

plexes were washed twice with lysis buffer and twice with kinase buffer (20 mM HEPES, pH 7.4, 10 mM MgCl₂, and 1 mM dithiothreitol). MBP phosphorylation was performed at 20°C for 30 min in 40 μl of kinase buffer containing 250 μg/ml MBP, 20 μM ATP, and 4 μM [γ-³²P]ATP. Reactions were terminated by the addition of 2 × Laemmli sample buffer, and labeled MBP was resolved by SDS-PAGE. Quantitation of labeled MBP was performed using a Molecular Dynamics PhosphorImager. Equal expression of p44HA-masp from cotransfected cells was confirmed by immunoblotting with anti-erk1 following immunoprecipitation of p44HA-masp from whole-cell lysates using 12CA5 monoclonal antibody.

p52
p44

Subunits—

Fig. 1

Subunit-mediated MAP Kinase Regulation

The Src family kinases Src, Fyn, and Yes are expressed in COS-7 cells (data not shown). To determine whether recruitment of Src family kinases could account for the increase in Shc-associated tyrosine kinase activity, Shc immunoprecipitates were immunoblotted with antibodies specific for Src, Fyn, or Yes. Only c-Src was detected in Shc immunoprecipitates from cells following LPA or EGF stimulation, as shown in Fig. 3A. Coprecipitation of a c-Src with Shc was also observed in cells transiently expressing a constitutively activated human c-Src mutant (Y530F) (23–25). As shown in Fig. 3B, the LPA-stimulated association between c-Src and Shc was rapid and transient, reaching a maximum within 1–2 min of stimulation. Thus, the time course of c-Src/Shc protein complex formation paralleled the time course of Shc tyrosine phosphorylation and recruitment of tyrosine kinase activity into Shc immunoprecipitates.
kinase activity have been reported following stimulation of LPA (32), α-thrombin, α2A adrenergic, M2 muscarinic (33), and angiotensin II receptors (34). Because there is a correlation between autophosphorylation of Y416 and activation of the c-Src kinase (24), whole-cell lysates from stimulated cells were assayed for c-Src activation by immunoblotting using antisera specific for autophosphorylated c-Src (anti-pY416 c-Src) (35). As shown in Fig. 4A, in control immunoblots of c-Src from cells expressing kinase-deficient, K298M (26) or constitutively active c-Src mutants, Y530F, immunoprecipitates of Shc from nondenatured RIPA buffer lysates were resolved by SDS-PAGE and immunoblotted with anti-Shc (upper panel) or anti-Src monoclonal antibody (lower panel) as described. The position of Shc isoforms and c-Src are as indicated. B, time course of recruitment of c-Src into Shc immunoprecipitates following stimulation of endogenous LPA receptors. Serum-starved cells were stimulated for the indicated times with LPA (10 μM) or EGF (10 ng/ml) or transiently transfected with the constitutively active c-Src mutant, Y530F. Immunoprecipitates of Shc from empty pRK5 transfected cells or cells transiently expressing kinase-deficient mutant c-Src (K298M) or constitutively active c-Src (Y530F) were resolved by SDS-PAGE, and c-Src was detected by protein immunoblotting using either anti-Src monoclonal antibody 327 (upper panel) or polyclonal antisera specific for Y416-phosphorylated Src (lower panel). Control immunoblots for each antibody were performed on lysates prepared from nondenatured RIPA buffer lysates resolved by SDS-PAGE, and c-Src was detected by protein immunoblotting using antisera specific for Y416-phosphorylated Src (35). Autoradiographs were quantified by scanning laser densitometry, and data are presented as fold increase over nonstimulated controls and represent the means (bars, S.E.) for three separate experiments.

Shc Tyrosine Phosphorylation and Ras-dependent MAP Kinase Activation by c-Src—The transforming viral oncogene product v-Src is known to mediate tyrosine phosphorylation of Shc (36), suggesting that the cellular homologues might play a similar role. As shown in Fig. 5A, transient overexpression of wild-type c-Src or the Y530F and K298M mutants resulted in increased ShcShc complex formation, detected in c-Src immunoblots performed on Shc immunoprecipitates. As shown in Fig. 5B, Shc immunoprecipitates from wild-type c-Src and Y530F-expressing cells contained increased tyrosine kinase activity, whereas cells expressing the kinase inactive K298M mutant exhibited less than basal levels of Shc-associated tyrosine kinase activity, suggesting that the overexpressed kinase inactive mutant competed with endogenous kinase for Shc binding. Fig. 5C depicts the effects of c-Src overexpression on Shc tyrosine phosphorylation and ShcGrb2 complex formation. Transient expression of wild-type c-Src or the activated Y530F mutant increased Shc phosphorylation and ShcGrb2 association to a level comparable to that observed following EGF stimulation. The ability of wild-type c-Src to induce Shc phosphorylation comparable to the constitutively active Y530F mutant probably results from the high levels of expression achieved in the transient transfection system.

To determine whether c-Src expression could mimic the effects of LPA stimulation and Gβγ subunit expression on MAP kinases, we determined the effects of each on Ras-dependent
FIG. 5. Recruitment of c-Src into Shc immunoprecipitates and enhanced tyrosine phosphorylation of Shc in COS-7 cells transiently expressing wild-type and mutant c-Src. A, detection of c-Src in Shc immunoprecipitates of cells transiently expressing wild-type and mutant c-Src. Cells were transiently transfected with empty pRK5 vector (NT) or expression plasmids encoding wild-type (c-Src) constitutively active mutant (Y530F), constitutively active mutant (Y530F), or kinase-inactive (K298M) c-Src. Whole-cell lysates (upper panel) and Shc immunoprecipitates from non-denatured RIPPA buffer lysates (lower panel) were resolved by SDS-PAGE and immunoblotted with anti-p60c-src and anti-p60c-src monoclonal antibody as described. B, detection of tyrosine kinase activity in Shc immunoprecipitates of cells transiently expressing wild-type and mutant c-Src. Immunoprecipitates of Shc from cells transiently expressing wild-type (c-Src), constitutively active mutant (Y530F), or kinase-inactive mutant (K298M) c-Src were prepared as described. Shc-containing immune complexes were assayed in vitro for the presence of coprecipitated tyrosine kinase activity using Val-angiotensin II as substrate. Data are presented as fold increase over empty pRK5 vector-transfected controls. C, immunoblots of Shc phosphotyrosine and Grb2 from Shc immunoprecipitates following transient overexpression of wild-type and mutant c-Src. Immunoprecipitates of Shc from cells transiently expressing wild-type (c-Src) or constitutively active mutant (Y530F) c-Src were resolved by SDS-PAGE and immunoblotted with anti-phosphotyrosine (upper panel) or anti-Grb2 (lower panel) as described. Non-stimulated and EGF-stimulated lanes are shown as controls. The position of tyrosine-phosphorylated Shc isoforms and Grb2 are as indicated.

MAP kinase activation. As shown in Fig. 6, stimulation of endogenous LPA receptors or transient overexpression of either Gβ1γ2 subunits or c-Src resulted in MAP kinase activation, as determined by an in vitro kinase assay following immunoprecipitation of coexpressed epitope-tagged p44MAPK (30). In each case, MAP kinase activation was inhibited by coexpression of dominant negatives of mSos1 (9, 37), p21ras (28), and p74mapk (29), indicating that the activation was Ras-dependent. Thus, overexpression of c-Src mimicked the effects of LPA receptor activation and Gβγ subunit expression, resulting in tyrosine phosphorylation of Shc, ShcGrb2 complex formation, and Ras-dependent activation of MAP kinase.

Inhibition of LPA Receptor- and Gβγ subunit-mediated Shc Phosphorylation and MAP Kinase Activation by Csk Overexpression—To directly determine whether Src family kinase activity is necessary for LPA receptor- and Gβγ subunit-mediated signaling, we determined the effects of cellular expression of the c-Src kinase, Csk, on Shc phosphorylation and MAP kinase activation. Csk is a cytoplasmic protein tyrosine kinase (22) that inactivates Src family kinases by phosphorylating a carboxyl-terminal regulatory tyrosine residue. Mouse embryos lacking csk exhibit increased c-Src, Fyn, and Lyn activity and increased levels of tyrosine protein phosphorylation (38). Overexpression of wild-type Csk suppresses endogenous c-Src activity (39) and, in opossum kidney cells, blocks acid-induced activation of Na+/H+ antiporter, a process associated with p60c-src activation (40).

FIG. 7A depicts the effects of Csk overexpression on LPA- and EGF-stimulated Shc tyrosine phosphorylation and ShcGrb2 association in transfected COS-7 cells. EGF-induced Shc phosphorylation was reduced by approximately 40%, whereas the LPA-mediated signal was abolished. The inhibition of ShcGrb2 complex formation paralleled the effects on Shc phosphorylation. As shown in Fig. 7B, LPA-stimulated Shc tyrosine phosphorylation and ShcGrb2 complex formation were reduced to levels not significantly different from basal in cells expressing Csk.

The effects of Csk expression on MAP kinase activation are depicted in Fig. 8. In Csk-transfected cells, LPA-stimulated MAP kinase activation was reduced by 60% and Gβγ subunit-mediated MAP kinase activation was reduced by 60% and Gβγ subunit-mediated MAP kinase activation. COS-7 cells were transiently cotransfected with hemagglutinin-tagged p44MAPK (p44MAPK) and either empty vector (Control) or dominant-negative mutants of mSos (Sos-Pro), p21ras (N17ras) or p74mapk (ΔNraf) plus expression plasmids encoding Gβ1 and Gγ2 or wild-type c-Src as indicated. Basal or 5-min LPA-stimulated (10 μM) p44MAPK activity was determined following immunoprecipitation of p44MAPK using MBP as substrate as described. Expression of p44MAPK was not significantly affected by coexpression of Sos-Pro, N17ras, or ΔNraf, as determined in anti-p44MAPK immunochemiluminescence following cotransfection of cells (data not shown). Data are presented as fold increase in p44MAPK activity over nonstimulated, empty pRK5 vector cotransfected controls (NS). Data shown represent the means (bars, S.E.) of duplicate determinations in one of three separate experiments.

FIG. 6. Effects of dominant-negative Sos, Ras, and Raf proteins on LPA, Gβγ, and c-Src-mediated MAP kinase activation. COS-7 cells were transiently cotransfected with hemagglutinin-tagged p44MAPK (p44MAPK) and either empty vector (Control) or dominant-negative mutants of mSos (Sos-Pro), p21ras (N17ras) or p74mapk (ΔNraf) plus expression plasmids encoding Gβ1 and Gγ2 or wild-type c-Src as indicated. Basal or 5-min LPA-stimulated (10 μM) p44MAPK activity was determined following immunoprecipitation of p44MAPK using MBP as substrate as described. Expression of p44MAPK was not significantly affected by coexpression of Sos-Pro, N17ras, or ΔNraf, as determined in anti-p44MAPK immunochemiluminescence following cotransfection of cells (data not shown). Data are presented as fold increase in p44MAPK activity over nonstimulated, empty pRK5 vector cotransfected controls (NS). Data shown represent the means (bars, S.E.) of duplicate determinations in one of three separate experiments.
mediated activation by greater than 90%, with no significant effect on basal levels of MAP kinase activity. In contrast, EGF-stimulated MAP kinase activation was impaired by only 25%, consistent with the less dramatic effects of Csk expression on EGF-mediated Shc phosphorylation. Phorbol ester-mediated MAP kinase activation and that resulting from overexpression of constitutively activated p21^{ras} (T24ras) (27) were not significantly affected, suggesting that the Csk-sensitive step lies at a point in the pathway upstream of Ras and is not involved with PKC-dependent MAP kinase activation. The partial inhibition of LPA-mediated MAP kinase activation by Csk overexpression, compared to nearly complete inhibition of LPA-stimulated Shc phosphorylation, probably reflects downstream signal amplification occurring in subsequent steps of the pathway. Although LPA receptors have been reported to couple both to Gi and Gq/11 family G proteins, LPA-stimulated MAP kinase activation observed in COS-7 cells was greater than 90% pertussis toxin-sensitive (data not shown). Thus, the alternative pertussis toxin-insensitive, Ras-independent, PKC-mediated MAP kinase activation pathway, used by M1 muscarinic and α1B adrenergic receptors in COS-7 cells (2), probably does not account for the residual signal in the Csk-expressing cells. The ability of Csk expression to inhibit pertussis toxin-sensitive G protein-mediated Shc phosphorylation, Shc-Grb2 complex formation, and MAP kinase activation without affecting PKC- or T24ras-dependent MAP kinase activation suggests that Src family kinases are required for the G protein-coupled, receptor-mediated tyrosine phosphorylation events that precede Ras activation.

DISCUSSION

Gi-coupled receptors transduce intracellular signals via the stimulation or inhibition of several effectors, including phospholipase C and adenylyl cyclase isoforms and some ion channels. Recently, pertussis toxin-sensitive activation of the Src family kinases Src, Fyn, Yes, and Lyn in various cell types has been reported (14, 33, 34), suggesting that these kinases may also function in Gi-coupled receptor signaling. Here, we demonstrate that recruitment and activation of c-Src is involved in Gi-coupled receptor-mediated activation of the Ras/MAP kinase pathway. In COS-7 cells, LPA receptor stimulation leads to the rapid and transient formation of protein complexes containing Shc and c-Src, which parallels the time course of LPA-stimulated Shc tyrosine phosphorylation and Shc-Grb2 association. These events are mimicked both by cellular expression of Gβγ subunits and activated c-Src mutants. Furthermore, expression of Csk, which inactivates Src kinases, inhibits both LPA receptor-mediated Shc tyrosine phosphorylation and MAP kinase activation, indicating that Src family kinase activity is an important intermediate in the signal transduction pathway. These results support a model of MAP kinase activation wherein stimulation of Gi-coupled receptors and release of free Gβγ subunits leads to activation of c-Src and Src kinase-dependent tyrosine phosphorylation of Shc, followed by Grb2-mediated recruitment of Ras guanine nucleotide exchange factor and Ras activation.

Our data directly implicate c-Src in Gβγ subunit-mediated MAP kinase activation in COS-7 cells. Although it is likely that other Src family tyrosine kinases, such as Lyn, Fyn and Yes, function in an analogous manner in other cell types, we were able to demonstrate only c-Src in Shc immunoprecipitates from COS-7 cells. Since Csk specifically phosphorylates and inactivates Src family kinases, such as Src, Fyn, and Yes (41), its inhibition of LPA receptor and Gβγ subunit-mediated MAP kinase activation in COS-7 cells supports a requirement for c-Src in the pathway. Since transient overexpression of c-Src was sufficient to cause Shc tyrosine phosphorylation and Grb2 recruitment, LPA receptor-mediated activation of Src kinase is probably sufficient to account for the tyrosine phosphorylation events required for Ras activation. In our system, coexpression of the kinase-deficient K298M c-Src mutant also blocks LPA- and Gβγ subunit-stimulated MAP kinase activation. Unlike Csk expression, however, this construct also strongly inhibits EGF receptor-, T24ras-, and PMA-stimulated MAP kinase ac-
tivation (data not shown). This apparently non-specific effect on MAP kinase activation probably results from overexpression of the c-Src SH2 domain, which at high levels of expression could function as a relatively non-specific phosphotyrosine-binding protein, blocking the MAP kinase signal transduction pathway at some point downstream of the initial c-Src-dependent phosphorylations.

The detection of endogenous or transiently expressed c-Src in Shc immunoprecipitates may reflect either a direct interaction between the two molecules or an association of both with an unknown intermediate. However, in stimulated neutrophils (14), the Lyn kinase can be precipitated by a Shc-SH2 domain containing fusion protein, supporting the hypothesis that the interaction between Shc and this Src family kinase is direct and SH2 domain-mediated.

Activation of c-Src via G protein-coupled receptors may also provide a direct link between this class of receptor and other receptor pathways involved in the regulation of cell growth and differentiation. Src associates with activated platelet-derived growth factor receptor, EGF receptor, and ErbB2 (42) and phosphorylates EGF receptor and ErbB2 on nonautophosphorylation sites required for the binding of Src and possibly other signaling molecules (43). Genistein-sensitive tyrosine phosphorylation of insulin-like growth factor-1 receptor and IRS-1 following thyronine stimulation of rat aortic smooth muscle cells has been reported (44). Thus, Src activation might provide a mechanism for G protein-coupled, receptor-mediated assembly of a mitogenic signaling complex directly on a tyrosine kinase growth factor receptor scaffold. Recent data have suggested such a role for platelet-derived growth factor receptors in vascular smooth muscle cells (45) and for EGF receptor and p185
gbg
 in Rat-1 fibroblasts (46). Src is also known to redistribute into a cytoskeletal compartment upon activation, where it associates with integrin-dependent cytoskeletal complexes. Bombesin, vasopressin, endothelin, thrombin, and LPA receptors stimulate tyrosine phosphorylation of focal adhesion kinase through both PKC-dependent and -independent pathways. In addition to focal adhesion kinase and Src, integrin signaling complexes contain Csk, the protein tyrosine phosphatase PTP1B, P13K, and Grb2-Sos, suggesting that these complexes may regulate intracellular signal transduction pathways as well as integrin-mediated cell adhesive interactions (47).

The focal adhesion kinase-related protein-tyrosine kinase PYK-2, which is highly expressed in brain, has been implicated in ShcGrb2-Sos complex formation. Activation of PYK-2 is Ca2+
 and PKC-dependent and occurs following stimulation of the Gq-coupled bradykinin receptor in PC12 cells (48). Thus, in appropriate tissues, G protein-coupled, receptor-mediated phospholipase C activation and Ca2+
 influx might mediate Ras-dependent MAP kinase activation via PYK-2-induced tyrosine phosphorylation. The mechanism whereby Gbg subunit-regulated effector(s) produces tyrosine phosphorylation of Ras remains unclear. Gbg subunit-mediated phosphatidylinositol hydrolysis and Ca2+
 mobilization are unable to account for Gbg subunit-mediated tyrosine phosphorylation in COS-7 cells (4, 8). Gbg subunit-mediated phosphorylation of p52
 is inhibited by the PI3K inhibitor, wortmannin, (15), suggesting that P13K activity is required for assembly of the Ras activation complex. Gbg subunit-sensitive P13K activity has been described in neutrophils and platelets (49, 50), and the recently cloned p110 PI3Kγ can be activated by Gbg subunits (51). Association between c-Src and PI3K has been reported in chicken embryo fibroblasts expressing activated c-Src mutants (52). Direct interaction between phosphatidylinositol 3,4,5-trisphosphate and the Src SH2 domain has also been proposed (53) and might contribute to the localization or activation of the kinase.

The Src family tyrosine kinases Fyn, Lyn, and Hck have been reported to interact with the Bruton's tyrosine kinase (Btk) in hematopoietic cells via an SH3 domain-mediated interaction (53). Src/Btk interaction is associated with Btk autoactivation (54). Btk, and the related tyrosine kinases Itk, Tsk, and TecA, like the serine/threonine kinases bARK1 and bARK2, contain pleckstrin homology domains. The pleckstrin homology domain of bARK is required for kinase regulation, because it mediates Gbg subunit- and phosphatidylinositol-dependent translocation of the kinase from cytosol to membrane (55, 56). The activation of Btk and Tsk by Gbg subunits has been reported (57). These findings raise the interesting possibility that Gbg subunits, possibly in conjunction with the products of PI3K, might regulate a class of tyrosine protein kinase in a manner analogous to the bARK kinases and provide the initial signaling events leading to Src family kinase activation and a program of tyrosine protein phosphorylation. The relevance of G protein-coupled, receptor-regulated PI3K and pleckstrin homology domain-containing tyrosine protein kinases to the pathway of c-Src-dependent Ras and MAP kinase activation remains the subject of further study.

Acknowledgments—We thank D. Addison and M. Holben for excellent secretarial assistance.

REFERENCES

1. Dhanasekaran, N., Heasley, L. E., and Johnson, G. L. (1995) Endocrinology 136, 259–270
2. van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T., and Moolenaar, W. H. (1995) J. Biol. Chem. 270, 17148–17153
3. Moolenaar, W. H. (1995) J. Biol. Chem. 270, 12949–12952
4. van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T., and Moolenaar, W. H. (1995) J. Biol. Chem. 269, 3783–3788
5. Touhara, K., Hawes, B. E., Luttrell, L. M., and Lefkowitz, R. J. (1995) Nature 376, 781–784
6. Howe, L. R., and Marshall, C. J. (1995) J. Biol. Chem. 270, 20717–20720
7. Eichholtz, T., Groenink, A., and Moolenaar, W. H. (1994) EMBO J. 13, 24805–24809
8. Saltiel, A. R. (1994) Nature 367, 781–784
9. Ito, A., Satoh, T., Kaziro, Y., and Itoh, H. (1994) FEBS Lett. 368, 183–187
10. Ore, M., Yamauchi, T., Endo, T., and Itoh, H. (1993) BBA Mol. Enzymol. 1178, 1323–1326
11. Koch, W. J., Hawes, B. E., Iniguez-Lluhi, J. A., Touhara, K., Inglese, J., Luttrell, L. M., and Lefkowitz, R. J. (1993) Nature 367, 781–784
12. Porfiri, E., Sakaue, M., Luttrell, L. M., and Lefkowitz, R. J. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 1257–1261
13. Cartwright, C. A., Eckhart, W., Simon, S., and Kaplan, P. L. (1987) Cell 48, 261–270
14. Ptasznik, A., Traynor-Kaplan, A., and Bokoch, G. M. (1995) J. Biol. Chem. 270, 781–784
15. Cartwright, C. A., Eckhart, W., Simon, S., and Kaplan, P. L. (1987) Cell 48, 261–270
16. Inglese, J., Luttrell, L. M., Iniguez-Lluhi, J. A., Touhara, K., Koch, W. J., and Lefkowitz, R. J. (1994) J. Biol. Chem. 269, 6193–6197
17. Inglese, J., Luttrell, L. M., Iniguez-Lluhi, J. A., Touhara, K., Koch, W. J., and Lefkowitz, R. J. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 3637–3641
18. Satoh, T., Nakafuku, M., and Kaziro, Y. (1992) J. Biol. Chem. 267, 24149–24152
19. Graber, S. G., Figler, R. A., Kalmann-Matthes, V. K., Rahshaw, J. D., and Gan, C. H. (1992) Mol. Cell. Biol. 12, 13123–13126
20. Yatsunami, K., Pandya, B. V., Oprian, D. D., and Khorana, H. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1936–1940
21. Gilboa, C. P., Tanaka, A., Anderson, S. K., Radul, J., Baar, J., Ridgway, A., Kung, H. J., and Fujita, D. J. (1985) J. Virol., 59, 19–24
22. Noda, S., Okada, M., MacAuley, A., Cooper, J. A., and Nakagawa, H. (1991) Nature 351, 69–72
23. Cartwright, C. A., Eckhart, W., Simon, S., and Kaplan, P. L. (1987) Cell 49, 83–91
24. Krizek, T. E., and Shalowitz, D. (1987) Cell 49, 65–73
25. Piewicka-Worms, H., Supuran, C., Roberts, T. M., Smith, A. E., and Chen, H. S. (1997) Cell 89, 75–82
26. Snyder, M. A., Bishop, J. M., McGrath, J. P., and Levinson, A. D. (1985) Mol. Cell. Biol. 5, 1772–1781
27. Spandides, D. A., and Wilkie, N. M. (1984) Nature 310, 469–475
28. Felg, L. A., and Cooper, G. M. (1988) Mol. Cell. Biol. 8, 3235–3243
29. Schap, D. van der Wal, J., Howe, L. R., Marshall, C. J., and van Blitterswijk, W. J. (1993) J. Biol. Chem. 268, 20232–20236
30. Mello, S., Pages, G., and Pouyssegur, J. (1992) Mol. Cell. Biol. 3, 63–71
31. Lipsch, L. A., Lewis, A. J., and Brugge, J. S. (1983) J. Virol., 48, 352–360
