The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review

Wenhan Wu¹*, Shijian Zhang² and Jia He³

¹Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China, ²School of Clinical Medicine, Southwest Medical University, Luzhou, China, ³Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China

Background and purpose: Radioresistance remains a significant challenge in tumor therapy. This systematic review aims to demonstrate the role of long non-coding RNA (lncRNA) in cancer radioresistance/radiosensitivity.

Material and methods: The electronic databases Pubmed, Embase, and Google Scholar were searched from January 2000 to December 2021 to identify studies addressing the mechanisms of lncRNAs in tumor radioresistance/sensitivity, each of which required both in vivo and in vitro experiments.

Results: Among the 87 studies identified, lncRNAs were implicated in tumor radioresistance/sensitivity mainly in three paradigms. 1) lncRNAs act on microRNA (miRNA) by means of a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) lncRNAs directly interact with proteins, affecting the cell cycle and autophagy to contribute to tumor radioresistance. 3) lncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance.

Conclusion: lncRNAs are important regulators involved in tumor radioresistance/sensitivity. Different lncRNAs may participate in the radioresistance with the same regulatory paradigm, and the same lncRNAs may also participate in the radioresistance in different ways. Future research should focus more on comprehensively characterizing the mechanisms of lncRNAs in tumor radioresistance to help us identify corresponding novel biomarkers and develop new lncRNA-based methods to improve radioresistance.

Keywords: long non-coding RNA, cancer, radioresistance, radiosensitivity, systematic review
INTRODUCTION

Radiotherapy is a standard treatment for many malignant tumors. About half of tumor patients receive this treatment, including radical, adjuvant, and palliative radiotherapy (Delaney et al., 2005; Schaeu and McBride, 2015). Some tumors are sensitive to radiotherapy, which can achieve a radical cure. Some malignant tumors can be cured by a combination of radiotherapy, surgery, and chemotherapy. Besides, radiotherapy can also improve the quality of life and prolong the survival of patients with advanced tumors. The impact of radiotherapy on tumors is a complex process encompassing multiple factors and mechanisms. During radiotherapy, radiation can directly act on biologically active macromolecules, such as DNA and enzymes, causing abnormalities in their structure and function. It can also cause ionization and excitation of water molecules, producing free radicals and resulting in secondary damage to biological macromolecules (Nascimento and Bradshaw, 2016). In addition, radiation may have a secondary effect by affecting neurohumoral disorders, changing the permeability of cell membranes and blood vessel walls, and causing toxemia (Sharma et al., 2001; Wang et al., 2018).

While radiotherapy improves the prognosis of tumor patients, tumor cells exhibit varying degrees of resistance to it. The cancer radiosensitivity directly affects the effectiveness of radiation treatment on tumors, which is closely related to the poor prognosis in patients. Accordingly, tumor cells may possess mechanisms of radiotherapy resistance. However, the molecular mechanisms of radiation resistance of tumor cells remain poorly understood. Obviously, these mechanisms are complex and require more extensive characterization.

The long non-coding RNA (IncRNA) is a type of non-coding RNA with a length greater than 200 nucleotides. They participate in various cellular processes and are involved in the development of diseases (Mercer et al., 2009). It has been estimated that the human genome encodes more than 28,000 different IncRNAs (Tragante et al., 2014). Generally, the expression of IncRNA is typically lower than that of protein-coding genes and is highly tissue and time specific (Derrien et al., 2012). Evidence suggests that IncRNA can participate in multiple biological processes of tumor cells through various mechanisms, such as signal molecules, decoy molecules, guide molecules, scaffold molecules, and RNA sponges (Yang et al., 2014). More recent evidence indicates that IncRNA can modulate radiotherapy response by regulating key signal pathways, including DNA damage repair, cell apoptosis, cell metabolism, and autophagy (Podralska et al., 2020). However, to the best of our knowledge, no systematic review has been published to summarize the mechanisms of IncRNA in cancer radiotherapy resistance.

This study aimed to systematically review the literature and summarize the mechanism by which IncRNA contributes to cancer radioresistance/radiosensitivity. These findings may provide new insights for improving the efficiency of tumor radiotherapy, discovering new therapeutic targets, and translational medicine in the future.

MATERIAL AND METHODS

This research strictly followed the PRISMA (Preferred Reporting Items for Systematic review and Meta-analyses) (Moher et al., 2009). This study was a systematic review and did not directly involve the issue of humans, so the review of the Institutional Review Board (IRB) was exempted.

Search Strategy

The databases Pubmed, Embase, and Google Scholar were used for literature search. The search period for the literature was set from 1 January 2000 to 31 December 2021, and the language was restricted to English.

This study adopted the strategy of combining Pubmed mesh term and free words to determine the search terms, such as “neoplasms”, “cancer”, “tumor”, “RNA, long noncoding”, “long non-coding RNA”, “IncRNA”, “radiotherapy”, “ionizing radiation”, “ionizing”, “radiation”, “radioresistance”, and “radiosensitivity”. The search strategy based on Pubmed was shown in Supplementary Table S1.

Exclusion and Inclusion Criteria

Two researchers (Wenhan Wu and Shijian Zhang) independently searched and screened the literature using inclusion and exclusion criteria. We excluded irrelevant records based on the titles and abstracts and carefully evaluated the full text of the remaining documents. If there was a dispute between the two researchers, a third researcher (Jia He) would resolve the matter independently, and a consensus would be reached. Where possible, the original authors were contacted for more detailed data.

Inclusion Criteria

1) Human tumor subjects; 2) the expression of IncRNA and cancer; 3) availability of data for both in vitro cell lines and animal studies; 4) IncRNAs involvement in cancer radioresistance/radiosensitivity and their specific mechanism.

Exclusion Criteria

1) Only including vitro cell lines or animal studies; 2) review, editorial, and case reports; 3) incomplete data or uncertain mechanism.

Data Extraction and Data Items

The literature included in this study has analyzed the relationship between IncRNA and cancer radioresistance/radiosensitivity in specific tumors, and determined their corresponding mechanism. We extracted the following data from each article: author, publication date, title, type of tumor and radiotherapy, involved IncRNAs and their expression levels, type of cell line, and corresponding mechanism of IncRNA.

RESULTS

Study Search and Characteristics

A diagram illustrating the literature search and selection process was shown in Figure 1. In the initial search, we identified a total
of 5,653 potentially relevant documents. After removing duplicate publications, 1,668 studies remained. Based on the inclusion and exclusion criteria, we then carefully reviewed the abstracts of these studies and excluded 1,098 records, including reviews, meta-analyses, case reports, and other unrelated studies. We further evaluated the full text of the remaining 570 studies and excluded 483 studies. Because these excluded studies lacked in vivo or in vitro data, or their data was unclear. Finally, A total of 87 articles were included in this study.

Supplementary Table S2 listed the IncRNAs involved in cancer radioresistance/radiosensitivity and their concise mechanisms. The sources of cancer included bladder cancer (Tan et al., 2015; Jiang et al., 2017), breast cancer (Liu et al., 2019a; Zhang et al., 2019a; Wang et al., 2019; Qian et al., 2020; Zhang et al., 2020a), cardiac cancer (Jia et al., 2019), gastric cancer (Jiang et al., 2020; Lu et al., 2020; Xiao et al., 2020), cervical cancer (Jing et al., 2015; Li et al., 2018a; Han et al., 2018; Gao et al., 2019; Zhao et al., 2019; Wang et al., 2020a; Ge et al., 2020), colorectal cancer (Liu et al., 2020a; Liu et al., 2020b; Li et al., 2021; Liang et al., 2021), esophageal cancer (Li et al., 2017; Chen et al., 2018a; Zhang et al., 2019b; Wang et al., 2020b; Cheng et al., 2020; Liu et al., 2021a; Sun et al., 2021; Yang et al., 2021), glioblastoma (Li et al., 2018b; Ahmadov et al., 2021; Li et al., 2022), glioma (Yang et al., 2016; Zheng et al., 2016; Wang et al., 2020c; Wang et al., 2020d; Tang et al., 2020; Zheng et al., 2020; Gao et al., 2021; Tian et al., 2021), head and neck squamous cell cancer (Li et al., 2020a), laryngeal cancer (Cui et al., 2019; Tang et al., 2019; Tang and Shan, 2019), nasopharyngeal cancer (Jin et al., 2016; Wang et al., 2017; Ma et al., 2018; Yi et al., 2019; Han et al., 2020a; Han et al., 2020b; Wang et al., 2020c; Zhong et al., 2020; Wang et al., 2021a; Liu et al., 2021b; Guo et al., 2021), hepatocellular cancer (Chen et al., 2018b; Song et al., 2019; Yang et al., 2020a; Jin et al., 2021; Yu et al., 2021), lung cancer (Chen et al., 2015; Wu et al., 2017; Xue et al., 2017; Liu et al., 2019b; Wang and Hu, 2019; Yang et al., 2019; Brownmiller et al., 2020; Han et al., 2020c; He et al., 2020; Hou et al., 2020; Yu et al., 2020; Wang et al., 2021b; Liu et al., 2021c; Jiang et al., 2021; Zhang et al., 2021), medulloblastoma (Zhu et al., 2021), melanoma (Cui et al., 2021; Liu et al., 2021d), neuroblastoma (Yang et al., 2020b; Mou et al., 2021), prostate cancer (Chen et al., 2018c; Ma et al., 2020; Xiu et al., 2020), renal cell cancer (Zhou et al., 2021), and thyroid cancer (Li et al., 2020b; Chen et al., 2021). Out of the 87 studies, a total of 11 types of IncRNA have been independently reported in at least two articles to participate in cancer radioresistance/radiosensitivity, including IncRNA HOTAIR (n = 7), IncRNA GAS5 (n = 5), IncRNA PVT1 (n = 4), IncRNA TUG1 (n = 4), IncRNA NEAT1 (n = 3), IncRNA DGCR5 (n = 2), IncRNA FAM201A (n = 2), IncRNA KCNN1OT1 (n = 2), IncRNA LINCO0958 (n = 2), IncRNA MALAT1 (n = 2), and IncRNA XIST (n = 2).
Mechanism of IncRNA Contributing to Cancer Radioresistance/Radiosensitivity Acting on miRNA by Acting as a Sponge to Regulate Downstream Signals

Among the IncRNAs identified in this study, the majority acted as competitive endogenous RNA (ceRNA) in regulating cancer radioresistance/radiosensitivity. The fundamental mechanism was that IncRNA acted on microRNA (miRNA) by acting as a sponge to regulate downstream signals. In our study, the downstream signals that were regulated by the IncRNA/miRNA paradigm and mediated cancer radioresistance/radiosensitivity mainly included some specific molecular biological processes and some signaling mediators that regulate various biological processes (Figure 2). These specific molecular biological processes mainly included DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), and cellular energy metabolism. Those signaling mediators primarily included transcription factors, kinases, or some important signal transduction pathways, which often promoted tumor radioresistance/sensitivity through various mechanisms. It is worth noting that a total of six IncRNA/miRNA downstream mechanisms were not fully elucidated, representing the direction of further research (Wu et al., 2017; Xue et al., 2017; Jia et al., 2019; Tang et al., 2019; Jiang et al., 2020; Jin et al., 2021).

Molecular Biological Process 1: DNA Repair and Chromosome Stabilization

DNA double-strand break (DSB) is the most common cellular damage induced by ionizing radiation. If it is not repaired correctly, it may cause chromosomal abnormalities and even cell death. There is growing evidence of the role of IncRNA in DNA repair and chromosome stabilization via miRNA. In gastric cancer, IncRNA LINC01436 was reported to upregulate radioresistance through miR-513a-5p/APE1 axis (Lu et al., 2020). APE1 (DNA-(apurinic or apyrimidinic site) endonuclease) is a protein with multiple functions. It usually participates in DNA damage repair through the DNA base excision repair (BER) pathway (Wierstra, 2013). There was evidence that the IncRNA LINC00958 enhanced radioresistance via miR-5095/RRM2 in cervical cancer (Zhao et al., 2019). RRM2 (ribonucleotide reductase regulatory subunit M2) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, which is the rate-limiting enzyme for DNA synthesis or repair, and plays a crucial role in tumor cell DNA synthesis and proliferation (Zhong et al., 2016). In colorectal cancer, IncRNA Inc-R1 enhanced radioresistance through miR-4727-5p/LIG4 (Liu et al., 2020b). LIG4 (DNA ligase 4) is a DNA ligase, which is essential for V(D)J recombination and DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ) (Gu et al., 2007). In esophageal squamous cell cancer, IncRNA FAM201A was reported to upregulate radioresistance via miR-101/ATM axis (Chen et al., 2018a). ATM (ATM serine/threonine kinase) is an essential component of the response to DNA damage and the maintenance genome stability, which is the main repair protein involved in double-strand break (DSB) homologous recombination repair (HRR) induced by ionizing radiation (Qin et al., 2019). Besides, IncRNA NORAD was reported to upregulate esophageal squamous cell cancer radioresistance via miR-199-a1/EEPD1 (Sun et al., 2021). EEPD1 (endonuclease/exonuclease/phosphatase family domain containing 1) participates in DNA repair and maintains genome stability by promoting end excision and homologous recombination repair.
The dysfunctional regulation of the cell cycle and proliferation is also associated with cancer radioresistance/radiosensitivity. A study reported that lncRNA SNHG12 enhanced radioresistance in cervical cancer via miR-148a/CDK1 (Wang et al., 2020a). CDK1 (cyclin-dependent kinase 1) promotes the transition from the G2 to M phase of the cell cycle, thereby promoting the proliferation of tumor cells (Hirai et al., 1995). lncRNA NEAT1 was also reported to enhance cervical cancer radioresistance via miR-193b-3p/CCND1 axis (Han et al., 2018). CCND1 (cyclin D1) is a highly conserved cyclin, which is mainly involved in the transition of the G1/S phase of the cell cycle by regulating CDK (Jares et al., 2007). In glioblastoma, lncRNA RBM5-AS1 downregulate radioresistance via miR-301a-3p/CAMTA1 axis (Li et al., 2022). CAMTA1 (calmodulin-binding transcription activator 1) is a transcription factor, which induces the expression of natriuretic peptide A (NPPA), an anti-proliferative cardiac hormone (Schraivogel et al., 2011). Besides, in nasopharyngeal cancer, lncRNA PTPRG-AS1 enhanced radioresistance via miR-194-3p/PRC1 (Yi et al., 2019). PRC1 (protein regulator of cytokinesis 1) is a protein involved in cytokinesis. This protein is present at high levels during the S and G2/M phases of mitosis, but when the cell exits mitosis and enters the G1 phase, its level drops sharply (Zhan et al., 2017).

Molecular Biological Process 5: Autophagy-Related Pathways
The autophagy pathway mediates the degradation of dysfunctional organelles and promotes protein turnover, thereby promoting radioresistance as a means of survival and adaptation in the presence of ionizing radiation. In colorectal cancer, lncRNA HOTAIR enhanced radioresistance via miR-194-3p/PTMA axis (Yin et al., 2019). E2F2 (E2F transcription factor 2) is a member of the E2F transcription factor family and plays an inhibitory role in p53-independent apoptosis induced by ionizing radiation (IR) (Wichmann et al., 2010). In non-small cell lung cancer, lncRNA CYTOR upregulated radioresistance via miR-194-3p/PTMA axis (Jiang et al., 2020). PTMA (prothymosin alpha) involved in inhibiting apoptosis (Malicet et al., 2006).
Molecular Biological Process 6: Epithelial-Mesenchymal Transition

EMT is the process that epithelial cells transform into mesenchymal cells and acquire the ability to migrate. The acquisition of EMT in tumor cells is associated with radioresistance and poor prognosis. lncRNA TUG1 has been found to enhance radioresistance in bladder cancer via miR-145/ZEB2 axis (Tan et al., 2015). ZEB2 (zinc finger E-box binding homeobox 2) usually functions as a repressor of DNA transcription in the nucleus and plays a crucial role in the EMT of tumor cells (Fardi et al., 2019). In nasopharyngeal cancer, lncRNA MINCR upregulated radioresistance via miR-223/ZEB1 (Zhong et al., 2020), and ZEB1 (zinc finger E-box binding homeobox 1) drives the induction of EMT by activating stem cell characteristics, immune evasion, and epigenetic reprogramming (Zhang et al., 2019c). In neuroblastoma, lncRNA XIST was reported to enhance radioresistance through miR-375/LICAM axis (Yang et al., 2020b). LICAM (L1 cell adhesion molecule) is a glycoprotein involved in cancer development, which plays a role in EMT primarily through interactions with other cell adhesion molecules, integrins, or growth factor receptors (Maten et al., 2019).

Molecular Biological Process 7: Cellular Energy Metabolism

Changes in the metabolic pathways of tumor cells are considered to be a hallmark of tumors, and these changes can lead to radioresistance. In neuroblastoma, lncRNA LINC01410 was found to upregulate radioresistance via miR-545-3p/HK2 axis (Mou et al., 2021). HK2 (hexokinase 2) is located in the outer membrane of mitochondria, participates in most glucose metabolism pathways, and is thought to be involved in the supply of tumor cells (Liu et al., 2019c). In melanoma, lncRNA LINC01224 was reported to upregulate radioresistance via miR-193a-5p/NR1D2 axis (Cui et al., 2021). NR1D2 (nuclear receptor subfamily 1 group D member 2) acts as a transcription inhibitor and may affect cancer carbohydrate and lipid metabolism (Yu et al., 2018).

Signaling Mediator 1: Transcription Factor

Besides, the downstream targets of IncRNAs mediated by miRNA and involved in tumor radioresistance/radiosensitivity also included some transcription factors, kinases, or some important signal transduction pathways. These regulated downstream targets often have multiple biological functions in tumor development. In gastric cancer, lncRNA TRPM2-AS enhanced radioresistance via miR-612/NOTCH2 axis (Zhang et al., 2019). NOTCH2 (notch receptor 2) is a member of the Notch family. The continuous Notch2 signal promotes tumor cell EMT while avoiding apoptosis, and the increase of Notch2 expression is related to the poor clinical prognosis of patients (Xiu and Liu, 2019).

Signaling Mediator 2: Kinase

In breast cancer, lncRNA LINC00963 upregulated radioresistance via miR-324-3p/ACK1 axis (Zhang et al., 2019a). ACK1 (activated CDC42 kinase 1) is a serine/threonine-protein kinase that contributes to cancer migration, survival, and proliferation via regulating WWOX and AKT1 (Mahajan and Mahajan, 2013). In rectal cancer, lncRNA EGOT enhanced radioresistance via miR-211-5p/ErbB4 axis (Li et al., 2021). ErbB4 (erb-b2 receptor tyrosine kinase 4) is a single-pass type I membrane protein with multiple cysteine rich domains, a transmembrane domain, and a tyrosine kinase domain. It is related to cell proliferation and differentiation in tumors (Segers et al., 2020). In colorectal cancer, lncRNA LINC00958 upregulated radioresistance via miR-422a/MAPK1 axis (Liang et al., 2021). While in glioma, lncRNA TPT1 downregulated radioresistance through miR-106a-5p/P38 MAPK (Tang et al., 2020). Moreover, in nasopharyngeal cancer, lncRNA LINC00114 enhanced radioresistance via miR-203/ERK/JNK signaling pathway (Han et al., 2020a). There are three well-defined MAPK subfamilies in mammals: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase. The activation of each MAPK signal follows a three-layer kinase module, in which MAP3K phosphorylates and activates MAP2K, and MAP2K phosphorylates and activates MAPK. Once activated, MAPK controls a variety of cellular responses, such as tumor proliferation, differentiation, apoptosis, angiogenesis, and metastasis (Cargnello and Roux, 2011; Guo et al., 2020).

Signaling Mediator 3: Signal Transduction Pathway

In laryngeal cancer, lncRNA DGCR5 upregulated radioresistance through miR-506/Wnt pathway (Tang and Shan, 2019), and Wnt pathway is one of the key cascades that regulate cancer development and stemness (Zhan et al., 2017b). Besides, in lung cancer, lncRNA AGAP2-AS1 enhanced radioresistance through miR-296/NOTCH2 axis (Zhang et al., 2021). NOTCH2 (notch receptor 2) is a member of the Notch family. The continuous Notch2 signal promotes tumor cell EMT while avoiding apoptosis, and the increase of Notch2 expression is related to the poor clinical prognosis of patients (Xiu and Liu, 2019).

Acting on Protein to Regulate Downstream Signals

In addition to regulating miRNAs, IncRNAs can also directly interact with specific proteins to participate in cancer radioresistance/radiosensitivity. In breast cancer, lncRNA LINC02582 directly interacted with a ubiquitinase USP7, which reduced the level of CHK1 protein, resulting in radioresistance (Wang et al., 2019). In glioma, Linc-RA1 can combine with H2B to stabilize the level of H2B K120
monoubiquitination and inhibit the interaction between H2Bub1 and ubiquitin-specific protease 44 (USP44), thus regulating autophagy and enhanced radioresistance (Zheng et al., 2020). In non-small cell lung cancer, IncRNA linc-SPRY3 could bind to IGFBP3 (Insulin Like Growth Factor 2 MRNA Binding Protein 3), which leads to the destabilization of c-Myc and HMGAA2, and improves the radiosensitivity of tumors (Brownmiller et al., 2020).

Acting Like Transcription Factor to Regulate Downstream Signals

Besides, IncRNAs can also act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance/radiosensitivity. In esophageal cancer, IncRNA MAGI2-AS3 can recruit the histone methyltransferase EZH2 to the HOXB7 promoter region to initiate H3K27me3 and repress HOXB7 expression, resulting in enhanced tumor radiosensitivity (Cheng et al., 2020). In nasopharyngeal cancer, IncRNA PVT1 can act as a scaffold for the chromatin modifier KAT2A, recruiting the nuclear receptor-binding protein TIF1β to activate NF90 transcription, thereby increasing HIF-1α and upregulating radioresistance (Wang et al., 2020c). HIF-1α activates the transcription of many genes that encode proteins involved in cancer angiogenesis, glucose metabolism, cell proliferation/survival, and invasion/metastasis (Semenza, 2003). In lung adenocarcinoma, down-regulated IncRNA LINC00857 inhibited the expression of BIRC5 by inhibiting the enrichment of NF-κB1 in the promoter region of BIRC5, thereby enhancing radioresistance (Han et al., 2020c).

In addition, some studies have reported that IncRNAs could be involved in tumor radioresistance/sensitivity through DNA repair (Jiang et al., 2017; Li et al., 2018b; Zhang et al., 2019b; Qian et al., 2020), cell cycle regulation (Jing et al., 2015; Li et al., 2017), and EMT (Yang et al., 2016). However, the definite biological behaviors of IncRNAs remain to be further explored. Finally, we summarized the mechanism of IncRNA-induced tumor radiosensitivity/resistance according to molecular behavior of IncRNA, biological process/signaling mediator, and downstream key molecule in Table 1.

DISCUSSION

Radiation therapy is one of the core methods of cancer treatment. However, cancer radiation resistance often limits the effectiveness of this treatment, and the mechanisms of radioresistance remain largely unknown. With the development of biotechnologies such as high-throughput sequencing, bioinformatics analysis, and animal modeling, IncRNAs have been shown to play critical regulatory roles in tumorigenesis and progression (Yang et al., 2014). Their role in tumor therapy resistance provided new insights for identifying appropriate treatments for specific populations, improving treatment resistance, and developing novel therapeutic targets (Zhang et al., 2020b). Therefore, exploring the detailed function of IncRNAs in tumor radioresistance/sensitivity will allow us to identify corresponding novel biomarkers and develop new IncRNA-based methods to improve radioresistance to achieve precise radiotherapy for patients. To the best of our knowledge, this study is the first of its kind to systematically evaluate the functions of IncRNAs in cancer radioresistance/sensitivity on the basis of high-quality experimental evidence.

The mechanisms by which IncRNAs participate in tumor radioresistance/sensitivity may mainly include three categories. 1) IncRNAs act on microRNA (miRNA) through a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) IncRNAs directly interact with proteins to participate in tumor radioresistance through affecting the cell cycle and autophagy. 3) IncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance. Besides, the same IncRNA may be involved in radioresistance/sensitivity by different mechanisms in different tumors, such as IncRNA HOTAIR, IncRNA GAS5, IncRNA PVT1, IncRNA TUG1, IncRNA DGCR5, IncRNA FAM201A, IncRNA KCNQ1OT1, IncRNA LINC00958, IncRNA MALAT1, IncRNA NEAT1, and IncRNA XIST. This also revealed that IncRNAs may have multiple potential mechanisms of action in tumor radioresistance, and may act through multiple mechanisms simultaneously. Some bioinformatics methods, such as RNA-RNA binding, RNA-protein binding prediction algorithms, will provide clues to comprehensively characterize the biological behavior of IncRNAs (Rinn and Chang, 2012). Of course, further experimental verification is still the top priority.

There have been studies on the relationship between radiotherapy efficacy and IncRNAs as biomarkers for radiotherapy patients, such as in non-small cell lung cancer and glioma (Lin et al., 2020; Song et al., 2021). However, the clinical application of IncRNAs as biomarkers of radioresistance still faces huge challenges. First, in addition to collecting IncRNA data from patients who have already received radiation therapy, it is often necessary to collect IncRNA data from the control (normal) population, which is often difficult to accomplish. Organoids provide new insight into this dilemma, a method that can closely mimic the physiology of humans in vitro (Drost and Clevers, 2018). The expression levels of IncRNAs change dynamically, and the sample obtained represents a snapshot of the patient’s current state. However, radiotherapy is often time- and dose-dependent; therefore, it is imperative to investigate the time- and dose-dependent effects of IncRNAs on tumor radiation resistance. In addition, IncRNAs are highly tissue-specific, and it is also necessary to compare IncRNA-specific changes in different organs after irradiation. Therefore, a comprehensive understanding of the regulatory paradigm of
In conclusion, this systematic review studied the mechanism of lncRNA in cancer radioresistance/radiosensitivity. The mechanisms by which lncRNAs participate in tumor radioresistance/sensitivity may mainly include three categories. 1) lncRNAs act on microRNA (miRNA) through a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) lncRNAs directly interact with proteins to participate in tumor radioresistance through affecting the cell cycle and autophagy. 3) lncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance. Different lncRNAs may participate in the radioresistance with the same regulatory paradigm, and the same lncRNAs may also participate in the radioresistance through different mechanisms. More detailed studies on how lncRNAs are involved in tumor radioresistance are urgently needed to help us screen more suitable biomarkers and therapeutic targets. This will provide a rationale for large-scale clinical validation and may ultimately improve tumor radioresistance and patient prognosis.

AUTHOR CONTRIBUTIONS

The authors confirm contribution to the paper as follows: study conception and design: WW, SZ, JH; data collection: WW, SZ, JH; analysis and interpretation of results: WW, JH; draft manuscript preparation: WW, SZ, JH. All authors reviewed the results and approved the final version of the manuscript.

FUNDING

This study was supported by the Doctoral Research Initiation Fund of Affiliated Hospital of Southwest Medical University (No. 21041). Besides, thanks to BioRender.com (https://app.biorender.com/biorender-templates) for supporting the drawings in this article.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.879704/full#supplementary-material
REFERENCES

Ahmadov, U., Picard, D., and Bartl, J. (2021). The Long Non-coding RNA HOTAIRM1 Promotes Tumor Aggressiveness and Radiotherapy Resistance in Glioblastoma. *Cell Death Dis.* 12 (10), 1–11. doi:10.1038/s41419-021-04146-0

Amoldo, N., Raimondi, L., Juli, G., Stamato, M. A., Caracciolo, D., Tagliaferri, P., et al. (2018). MALAT1: a Druggable Long Non-coding RNA for Targeted Anti-cancer Approaches. *J. Hematol. Oncol.* 11 (1), 63–19. doi:10.1186/s13045-018-0606-4

Bi, Z., Li, Q., Dinglin, X., Xu, Y., You, K., Hong, H., et al. (2020). Nanoparticles (NPs)-Mediated LncRNA AFAP1-AS1 Silencing to Block Wnt/b-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. *Adv. Sci. (Weinh)* 7 (18), 2000915. doi:10.1002/advs.202000915

Brownmiller, T., Juric, J. A., Ivey, A. D., Harvey, B. M., Westemeier, E. S., Winters, M. T., et al. (2020). Y Chromosome LncRNA Are Involved in Radiation Response of Male-Non-small Cell Lung Cancer Cells. *Cancer Res.* 80 (19), 4046–4057. doi:10.1158/0008-5472.CAN-19-4032

Cargnello, M., and Roux, P. P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. *Microbiol. Mol. Biol. Rev.* 75 (1), 30–83. doi:10.1128/MMBR.00031-10

Carrera, M., Bitu, C. C., de Oliveira, C. E., Cervigne, N. K., Graner, E., Manninen, A., et al. (2015). HOXA10 Controls Proliferation, Migration and Invasion in Oral Squamous Carcinoma Cell. *Int. J. Clin. Exp. Pathol.* 8 (4), 3613–3623.

Chen, C., Wang, K., Wang, Q., and Wang, X. (2018). LncRNA HULC Mediates Radioresistance via Autophagy in Prostate Cancer Cells. *Braz. J. Med. Biol. Res.* 51, e07080. doi:10.1590/1414-431x201807080

Chen, J., Shen, Z., Zheng, Y., Wang, S., and Mao, W. (2015). Radiotherapy Induced Lewis Lung Cancer Cell Apoptosis via Inactivating β-catenin Mediated by Upregulated PHTHAIR. *Int. J. Clin. Exp. Pathol.* 8 (7), 7878–7886.

Chen, M., Liu, P., Chen, Y., Chen, Z., Shen, M., Liu, X., et al. (2018). Long Noncoding RNA FAM201A Mediates the Radioresensitivity of Esophageal Squamous Carcinoma Cell by Regulating ATM and mTOR Expression via miR-101. *Front. Genet.* 9, 611. doi:10.3389/fgene.2018.00611

Chen, W., Yu, J., and Xie, R. (2021). Roles of the SNHG7/microRNA-9-5p/DPP4 ceRNA Network in the Growth and 131 Resistance of Thyroid Carcinoma Cells through PI3K/Akt Activation. *Onco. Rep.* 45 (4), 1. doi:10.3892/or.2021.7954

Chen, Y., Chen, Z., Zhi, Y., Zhou, H., Zhang, K., Wang, T., et al. (2018). Long Non-coding RNA ROR Promotes Radioresistance in Hepatocellular Carcinoma Cells by Acting as a ceRNA for microRNA-145 to Regulate RAD18 Expression. *Arch. Biochem. Biophys.* 645, 117–125. doi:10.1016/j.abb.2018.03.018

Cheng, W., Shi, X., Lin, M., Yao, Q., Ma, J., and Li, J. (2020). LncRNA MAGI2-AS3 Overexpression Sensitizes Esophageal Carcinoma Cells to Irradiation through Down-Regulation of HOXB7 via EZH2. *Front. Cel Develop. Biol.* 8. doi:10.3389/fcell.2020.58228

Cotta-Ramusino, C., McDonald, E. R., Hurov, K., Sowa, M. E., Harper, J. W., and Elledge, S. J. (2011). A DNA Damage Response Screen Identifies RHINO, a 9-1-1 and TopBP1 Interacting Protein Required for ATR Signaling. *Science* 332 (6035), 1313–1317. doi:10.1126/science.1203430

Cui, X., Xiao, D., Cui, Y., and Wang, X. (2019). Exosomes-derived Long Non-coding RNA HOTAIR Reduces Laryngeal Cancer Radioresistance by Downregulating miR-193b-3p/CCND1 axis. *Onco Targets Ther.* 12, 2349–2409. doi:10.2147/OTT.S23416

Han, F., Yang, S., Wang, W., Wang, H., Huang, D., and Chen, S. (2020). Silencing of IncRNA LINC00857 Enhances BRCA1-dependent Radio-Sensitivity of Lung Adenocarcinoma Cells by Regulating NF-KB1. *Mol. Ther. Nucleic Acids* 22, 981–993. doi:10.1016/j.omtn.2020.09.020

Han, Y., Li, F., Xie, J., Wang, Y., and Zhang, H. (2020). PVT1 Mediates Cell Proliferation, Apoptosis and Radioresistance in Nasopharyngeal Carcinoma through Regulating miR-515-5p/PIK3CA axis. *Cancer Manag. Res.* 12, 10077–10090. doi:10.2147/CMA.S257583

Han, Y. Y., Liu, K., Xie, J., Li, F., Wang, Y., and Yan, B. (2020). LINC00114 Promoted Nasopharyngeal Carcinoma Progression and Radioresistance In Vitro and In Vivo through Regulating ERK/mTOR Signaling Pathway via Targeting miR-203. *Eur. Rev. Med. Pharmacol. Sci.* 24 (5), 2491–2504. doi:10.26355/eurrev_202003_20517

He, H., Song, X., Yang, Z., Mao, Z., Zhang, K., Wang, Y., et al. (2020). Upregulation of KCNQ1OT1 Promotes Resistance to Stereotactic Body Radiotherapy in Lung Adenocarcinoma by Inducing ATG5/ATG12-Mediated Autophagy via miR-372-3p. *Cell Death Dis.* 11 (10), 883–914. doi:10.4119/14190-020-03083-8

Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A., and Sherr, C. J. (1995). Novel INK4 Proteins, P19 and P18, Are Specific Inhibitors of the Cyclin D-dependent Kinases CDK4 and CDK6. *Mol. Cell Biol.* 15 (5), 2672–2681. doi:10.1128/mcb.15.5.2672

Hou, J., Wang, Y., Zhang, H., Hu, Y., Xin, X., and Li, X. (2020). Silencing of LINC00461 Enhances Radioresistance of Lung Adenocarcinoma Cells by Down-Regulating HOXA10 via microRNA-195. *J. Cel Mol Med* 24 (5), 2879–2890. doi:10.1111/jcmm.14859

Jares, P., Colomer, D., and Campo, E. (2007). Genetic and Molecular Pathogenesis of Mantle Cell Lymphoma: Perspectives for New Targeted Therapeutics. *Nat. Rev. Cancer* 7 (10), 750–762. doi:10.1038/nrc2230

Jia, J., Zhang, X., Zhan, D., Li, J., Li, Z., and Huang, J. (2019). LncRNA H19 Interacted with miR-173a-3p and miR-17-5p to Modify Radio-resistance and Chemosensitivity of Cardiac Carcinoma Cells. *Cancer Med.* 8 (4), 1604–1618. doi:10.1002/cam4.1860

Jiang, G., Yu, J., and Zhang, F. (2021). LncRNA Cytoskeleton Regulator Reduces Non-small Cell Lung Cancer Radioresistance by Downregulating miRNA-206 and Activating Prothymosin α. *Int. J. Oncol.* 59 (5), 1–15. doi:10.3892/ijo.2021.5268
Jiang, H., Hu, X., Zhang, H., and Li, W. (2017). Down-regulation of LncRNA TUG1 Enhances Radiosensitivity in Bladder Cancer via Suppressing HMGB1 Expression. Radiat. Oncol. 12 (1), 65–10. doi:10.1186/s13014-017-0802-3

Jiang, Y., Jin, S., Tan, S., Xue, Y., and Cao, X. (2020). Long Noncoding RNA NEAT1 Regulates Radio-Sensitivity via microRNA-27b-3p in Gastric Cancer. Cancer Cell Int 20 (1), 581–612. doi:10.1186/s12935-020-01655-4

Jin, C., Yan, B., Lu, Q., Lin, Y., and Ma, L. (2016). The Role of MALAT1/miR-1/Slug axis on Radioresistance in Nasopharyngeal Carcinoma. Tumour Biol. 37 (3), 4025–4033. doi:10.1007/s13277-015-2427-z

Jin, H., Suh, D. S., Kim, T. H., Yeom, J. H., Lee, K., and Bae, J. (2015). IER3 Is a Crucial Mediator of TAp73-Induced Apoptosis in Cervical Cancer and Confers Epitope Sensitivity. Sci. Rep. 5 (1), 8367–8411. doi:10.1038/srep08367

Jin, Q., Hu, H., and Yan, S. (2021). lncRNA MIR22HG-Derived miR-22-5p Enhances the Radiosensitivity of Hepatocellular Carcinoma by Increasing Histone Acetylation through the Inhibition of HDAC2 Activity. Front. Oncol. 11, 56. doi:10.3389/fonc.2021.572585

Jing, L., Yuan, W., Runfeng, D., Jinjin, Y., and Haifeng, Q. (2015). HOTAIR Crucial Mediator of TAp73 β Histone Acetylation through the Inhibition of HDAC2 Activity. Enhances the Radiosensitivity of Hepatocellular Carcinoma by Increasing P21 in Cervical Cancer. Cell Biol Toxicol 31 (17), 7457–7468. doi:10.1007/s12935-019-01885

Li, J., Liu, X., Nan, S., and Xu, C. (2020). Silencing of Long Non-coding RNA LINC01410 Suppresses Tumorigenesis and Enhances Radiosensitivity of Non-small Cell Lung Cancer through Redox and DNA Repair by CRB3-AS1/miR-409-3p/SOD1 axis. Cancer letters.

Liu, J., Chen, C., Chen, X., Liu, J., Gu, H., Fan, R., et al. (2020). Long Non-coding RNA HOTAIR Knockdown Enhances Radiosensitivity through Regulating microRNA-93/ATG12 axis in Colorectal Cancer. Cell Death Dis 11 (3), 175–214. doi:10.1038/s41419-020-02268-8

Liu, Y., He, D., Xiao, M., Zhu, Y., Zhou, J., and Cao, K. (2021). Long Noncoding RNA LINC00518 Induces Radiosensitivity by Regulating Glyclosis through an miR-33a-3p/HIF-1α Negative Feedback Loop in Melanoma. Cell Death Dis 12 (1), 1–19. doi:10.1038/s41392-020-00353-z

Liu, M., Liu, D., and Li, Y. X. (2020). LINC01436 Promotes the Progression of Gastric Cancer via Regulating miR-513a-5p/APE1 Axis. Onco Targets Ther. 13, 10607–10619. doi:10.2147/OTT.S257747

Ma, X., Wang, Z., Ren, H., Bao, C., Xiang, Y., Wang, B., et al. (2020). Long Non-coding RNA GAS5 Suppresses Tumor Progression and Enhances the Radiosensitivity of Prostate Cancer through the miR-320a/RAB21 Axis. Cancer Manag. Res. 12, 8833–8845. doi:10.2147/CMAR.S244123

Ma, X., Zhou, J., Liu, J., Wu, G., Yu, Y., Zhu, H., et al. (2018). LncRNA ANCR Promotes Proliferation and Radiation Resistance of Nasopharyngeal Carcinoma by Inhibiting PTEN Expression. Onco Targets Ther. 11, 8399–8408. doi:10.2147/OTT.S82573

Mahajan, K., and Mahajan, N. P. (2013). ACK1 Tyrosine Kinase: Targeted Inhibition to Block Cancer Cell Proliferation. Cancer Lett. 338 (2), 185–192. doi:10.1016/j.canlet.2013.04.004

Malicet, C., Giroux, V., Vasseur, S., Dagorn, J. C., Neira, J. L., and Iovanna, J. L. (2018). MicroRNAs and LncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancer Gene Ther. 25 (11), 1177–1180. doi:10.1038/s41419-021-03523-z

Mou, L., Wang, L., Zhang, S., and Wang, Q. (2021). Long Noncoding RNA CBR3-AS1 Mediates Tumorigenesis and Radiosensitivity of Non-small Cell Lung Cancer through miR-499-5p/SOX2 axis. Cancer letters.

Mou, L., Wang, L., Zhang, S., and Wang, Q. (2021). Long NonCoding RNA LINC01410 Suppresses Tumor Progression and Enhances Radiosensitivity in Bladder Cancer via the miR-453-5p/HK2 Axis. Onco Targets Ther. 14, 3238–3248. doi:10.2147/OTT.S297969

Nascimento, F. J. A., and Bradshaw, C. (2016). Direct and Indirect Effects of Ionizing Radiation on Graft-Phytoplaston Interactions. J. Environ. Radioact 155–156, 63–70. doi:10.1016/j.jenvrad.2016.02.007

Podraska, M., Ciesielska, S., Kluiver, J., van den Berg, A., Dräkiewicz-Krawczyk, A., and Slezk–Prochazka, I. (2020). Non-coding RNAs in Cancer Radiosensitivity: MicroRNAs and LncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 12 (6), 1662. doi:10.3390/cancers12061662

Qian, L., Fei, Q., Zhang, H., Qiu, M., Zhang, B., Wang, Q., et al. (2020). IncRNA HOTAIR Promotes DNA Repair and Radiosensitivity of Breast Cancer via EZH2. DNA Cel Biol 39 (12), 2166–2173. doi:10.1089/dna.2020.5771

Qin, B., Yu, J., Noweheem, S., Wang, M., Xu, T., Liu, T., et al. (2019). UFL1 Promotes Histone H4 Ufmylation and ATM Activation. Nat. Commun. 10 (1), 1242–1313. doi:10.1038/s41467-019-09175-0

Rimm, J. L., and Chang, H. Y. (2012). Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 81, 145–166. doi:10.1146/annurev-biochem-051410-092902
Santos, T. G., Martins, V. R., and Haji, G. N. M. (2017). Unconventional Secretion of Heat Shock Proteins in Cancer. Int. J. Mol. Sci. 18 (5), 946. doi:10.3390/ijms18050946

Schaue, D., and McBreide, W. H. (2015). Opportunities and Challenges of Radiotherapy for Treating Cancer. Nat. Rev. Clin. Oncol. 12 (9), 527–540. doi:10.1038/nrclonc.2015.120

Schrävogel, D., Weimann, L., Beier, D., Tabatabai, G., Eichner, A., Zhu, J. Y., et al. (2011). CAMTA1 Is a Novel Tumour Suppressor Regulated by miR-9-9p in Glioblastoma Stem Cells. EMBO J. 30 (20), 4309–4322. doi:10.1038/emboj.2011.301

Sengers, V. F. M., Dugaucquier, L., Feyen, E., Shakeri, H., and De Keulenaer, G. W. (2019). LncRNA TP73-AS1 Reduces Radioresistance in Hepatocellular Carcinoma via the PTEN/Akt 1-1155/2021/4338838

Song, J., Zhang, S., Sun, Y., Gu, J., Ye, Z., Sun, X., et al. (2021). A Radioresponse-Related IncRNA Biomarker Signature for Risk Classification and Prognosis Prediction in Non-small-cell Lung Cancer. J. Oncol. 2021, 4338838. doi:10.1155/2021/4338838

Song, W., Zhang, J., Xia, Q., and Sun, M. (2019). Down-regulated IncRNA TP73-AS1 Reduces Radioresistance in Hepatocellular Carcinoma via the PTEN/AKT Signaling Pathway. Cell Cycle 18 (22), 3117–3118. doi:10.1080/15384101.2019.1671089

Sun, Y., Wang, J., and Ma, Y. (2021). Radiation Induces NORAD Expression to Promote ESCC Radiotherapy resistance via EPEPD1/ATRI Chk1 Signalling and by Inhibiting Pri-miR-199a1 Processing and the Exosomal Transfer of miR-199a-5p. Exp. Clin. Cancer Res. 40 (1), 1–22. doi:10.1186/s13046-021-02084-5

Tan, J., Qiu, K., Li, M., and Liang, Y. (2015). Double-negative Feedback Loop between Long Non-coding RNA TUG1 and miR-145 Promotes Epithelial to Mesenchymal Transition and Radioresistance in Human Bladder Cancer Cells. FEBS Lett. 589 (20), 3175–3181. doi:10.1002/febs.2015.08.020

Tang, T., and Shan, G. (2019). DGCR5 Promotes Cancer Stem Cell-like Properties of Radioresistant Laryngeal Carcinoma Cells by Sponging miR-506 via Wnt Pathway. J. Cell Physiol 234 (10), 18423–18431. doi:10.1002/jcp.28478

Tang, T., Shan, G., and Zeng, F. (2019). Knockdown of DGCR5 Enhances the Radioresistance of Human Laryngeal Cancer Cells via Inducing miR-195. J. Cell Physiol 234 (8), 12918–12925. doi:10.1002/jcp.27958

Tang, T., Wang, L., Yang, M. L., and Zhang, R. M. (2020). IncRNA TPTP-1 Inhibits Stemness and Radioresistance of Glioma through miR-106a-5p-mediated P38 MAPK S-signaling. Mol. Med. Rep. 22 (6), 4857–4867. doi:10.4081/mmr.2020.11542

Tian, W., Zhang, Y., Liu, L., Yu, M., and Wang, L. (2021). The HNF1A-AS1/miR-92a-3p Axis Affects the Radioresistance of Non-small Cell Lung Cancer by Competitively Regulating the JNK Pathway. Cell Biol. Toxicol., 1–15. doi:10.1007/s10565-021-09595-x

Wichmann, A., Uyetake, L., and Su, T. T. (2010). E2F1 and E2F2 Have Opposite Effects on Radiation-Induced P53-independent Apoptosis in Drosophila. Dev. Biol. 346 (1), 80–89. doi:10.1016/j.ydbio.2010.07.023

Wierstra, I. (2013). FOXM1 (Forkhead Box M1) in Tumorigenesis: Overexpression in Human Cancer, Implication in Tumorigenesis, Oncogenic Functions, Tumor-Suppressiv Properties, and Target of Anticancer Therapy. Adv. Cancer Res. 119, 191–419. doi:10.1016/B978-0-12-407190-2.00016-2

Wu, D., Li, Y., Zhang, H., and Hu, X. (2017). Knockdown of LncRNA PVT1 Enhances Radioresistance in Non-small Cell Lung Cancer by Sponging Mir-195. Cell Physiol Biochem 42 (6), 2453–2466. doi:10.1159/000480209

Wu, S., Shi, Y., Mulligan, P., Gay, F., Landry, J., Liu, H., et al. (2007). A YY1 Inhibits Stemness and Radioresistance of Glioma through miR-106a-5p-mediated P38 MAPK S-signaling. Mol. Med. Rep. 22 (6), 4857–4867. doi:10.4081/mmr.2020.11542

Xiao, J., Lin, L., Luo, D., Shi, L., Chen, W., Fan, H., et al. (2020). Long Noncoding RNA TRPM2-AS Acts as a microRNA Sponge of miR-612 to Promote Gastric Cancer Progression and Radioresistance. Oncotarget 8 (41), 70156–70165. doi:10.18611/oncotarget.2019.11712

Yang, B., Ma, H., and Bian, Y. (2021). LINC00261 Inhibits Esophageal Cancer Promotion by Down-regulating miR-592. Oncotarget 12. doi:10.18611/oncotarget.2019.11712

Yang, G., Lu, X., and Yuan, L. (2014). LncRNA: a Link between RNA and Cancer. Mol. Med. Rep. 4867. doi:10.4081/mmr.2014.1109.1109. doi:10.3390/jcm13030599

Yamashita, A., Ohiishi, T., Kashima, I., Taya, Y., and Ohno, S. (2001). Human SMG-1, a Novel Phosphatidylinositol 3-Kinase-Related Protein Kinase, Associates with Components of the mRNA Surveillance Complex and Is Involved in the Regulation of Nonsense-Mediated mRNA Decay. Genes Dev. 15 (17), 2215–2228. doi:10.1101/gad.193001

Yang, B., Ma, H., and Bian, Y. (2021). LINC00261 Inhibits Esophageal Cancer Radioresistance by Down-Regulating microRNA-552-3p and Promoting DIRAS1. Cancer Manag. Res. 13, 8559–8573. doi:10.2147/CAMR.S332640

Yang, L., Xu, Y., and Yuan, L. (2014). LncRNA: a Link between RNA and Cancer. Biochim. Biophys. Acta 1839 (11), 1097–1109. doi:10.1016/j.bbamcr.2014.08.012
Yang, G., Zhou, L., Xu, Q., Meng, F., Wan, Y., Meng, X., et al. (2020). LncRNA KCNQ1OT1 Inhibits the Radiosensitivity and Promotes the Tumorigenesis of Hepatocellular Carcinoma via the miR-1464-5p/ACER3 axis. Cell Cycle 19 (19), 2519–2529. doi:10.1080/15384101.2020.1809259

Yang, H., Zhang, X., Zhao, Y., Sun, G., Zhang, J., Gao, Y., et al. (2020). Downregulation of LncRNA XIST Represses Tumor Growth and Boosts Radiosensitivity of Neuroblastoma via Modulation of the miR-375/L1CAM axis. Neurochem. Res. 45 (11), 2679–2690. doi:10.1007/s11064-020-03117-9

Yang, Q., S., Li, B., Xu, G., Yang, S. Q., Wang, P., Tang, H. H., et al. (2019). Long Noncoding RNA LINC00483/microRNA-144 Regulates Radiosensitivity and Epithelial-Mesenchymal Transition in Lung Adenocarcinoma by Interacting with HOXA10. J. Cell Physiol 234 (7), 11805–11821. doi:10.1002/jcp.27886

Yang, W., Yu, H., Shen, Y., Liu, Y., Yang, Z., and Sun, T. (2016). MiR-146b-5p Overexpression Attenuates Stemness and Radioresistance of Glioma Stem Cells by Targeting HuflncRNA-P21β-Catenin Pathway. Oncotarget 7 (27), 41505–41526. doi:10.18632/oncotarget.9214

Yang, Y., and Bedford, M. T. (2013). Protein Arginine Methyltransferases and Cancer. Nat. Rev. Cancer 13 (1), 37–50. doi:10.1038/nrc3409

Yazdi, P. T., Wang, Y., Zhao, S., Patel, N., Lee, E. Y., and Qin, J. (2002). SMC1 Is a Downstream Effector in the ATM/NBS1 branch of the Human-Specific Checkpoint. Genes Dev. 16 (5), 571–582. doi:10.1101/gad.970702

Yu, L., Ouyang, L., Wang, S., Li, S. S., and Yang, X. M. (2019). Long Noncoding RNA PTPRG-AS1 Acts as a microRNA-194-3p Sponge to Repress Radiosensitivity and Metastasis of Nasopharyngeal Carcinoma Cells via PRC1. J. Cell Physiol 234 (10), 19088–19102. doi:10.1002/jcp.28547

Yu, C., Liang, Y., Jin, Y., and Li, Q. (2021). LncRNA GAS5 Enhances Radiosensitivity of Hepatocellular Carcinoma and Restricts Tumor Growth and Metastasis by miR-144-5p/ATF2. Am. J. Transl. Res. 13 (9), 10896–10907.

Yu, M., Li, W., Wang, Q., Wang, Y., and Lu, F. (2018). Circadian Regulator NR1D2 Regulates Glioblastoma Cell Proliferation and Motility. Oncogene 37 (35), 4838–4853. doi:10.1038/s41388-018-0319-8

Yu, Z., Zhang, G., Wang, C., Liu, Y., Chen, W., Wang, H., et al. (2020). LncRNA SBF2-AS1 Acts on the Beta-Catenin Signaling Pathway in Lung Cancer via Modulating microRNA-302a/MBNL3 axis. Cell cycle 19 (3), 300–316. doi:10.1080/15384101.2019.1708016

Yuan, J., Yin, Z., Tao, K., Wang, G., and Gao, J. (2018). Function of Insulin-like Growth Factor 1 Receptor in Cancer Resistance to Chemotherapy. Oncol. Lett. 15 (1), 41–47. doi:10.3892/ol.2017.7276

Yun, C., and Lee, S. (2018). The Roles of Autophagy in Cancer. Ijms 19 (11), 3466. doi:10.3390/ijms19113466

Zhan, P., Zhang, B., Xi, G. M., Wu, Y., Liu, H. B., Liu, Y. F., et al. (2017). PRC1 Contributes to Tumorigenesis of Lung Adenocarcinoma in Association with the Wnt/β-Catenin Signaling Pathway. Mol. Cancer 16 (1), 108–115. doi:10.1186/s12943-017-0682-z

Zhan, T., Rindtorff, N., and Boutros, M. (2017). Wnt Signaling in Cancer. Oncogene 36 (11), 1461–1473. doi:10.1038/onc.2016.304

Zhang, F., Sang, Y., and Chen, D. (2021). M2 Macrophage-Derived Exosomal Long Non-coding RNA AGAP2-AS1 Enhances Radiotherapy Immunity in Lung Cancer by Reducing microRNA-296 and Elevating NOTCH2. Cell Death Dis. 12 (5), 1–15. doi:10.1038/s41419-021-03700-0

Zhang, H., Hua, Y., Jiang, Z., Yue, J., Shi, M., Zhen, X., et al. (2019). Cancer-associated Fibroblast-Promoted LncRNA DNM3OS Confers Radiosensitivity by Regulating DNA Damage Response in Esophageal Squamous Cell Carcinoma. Clin. Cancer Res. 25 (6), 1989–2000. doi:10.1158/1078-0432.CCR-18-0773

Zhang, N., Zeng, X., Sun, C., Guo, H., Wang, T., and Wei, L., et al. (2019). LncRNA LINC00963 Promotes Tumorigenesis and Radioresistance in Breast Cancer by Sponging miR-324-3p and Inducing ACK1 Expression. Mol. Ther. Nucleic Acids 18, 871–881. doi:10.1016/j.omtn.2019.09.033

Zhang, S., Wang, B., Xiao, H., Dong, J., Li, Y., Zhu, C., et al. (2020). LncRNA HOTAIR Enhances Breast Cancer Radioresistance through Facilitating HSPA1A Expression via Sequestering miR-449b-5p. Thorac. Cancer 11 (7), 1801–1816. doi:10.1111/tc.13450

Zhao, H., Zhang, G. H., Li, G. C., Xin, L., Wang, Y. S., and Chen, Y., et al. (2019). Long Noncoding RNA LINC00958 Regulates Cell Sensitivity to Radiotherapy through RRM2 by Binding to microRNA-5095 in Cervical Cancer. J. Cell Physiol 234 (12), 23349–23359. doi:10.1002/jcp.28902

Zheng, J., Wang, B., Zheng, R., Jiang, H., Huang, C., Zheng, R., et al. (2020). Linc-RA1 Inhibits Autophagy and Promotes Radioresistance by Preventing H2Bub1/USP44 Combination in Glioma Cells. Cell Death Dis. 11 (9), 758–810. doi:10.1038/s41419-020-02977-x

Zheng, R., Yao, Q., Ren, C., Liu, Y., Yang, H., Xie, G., et al. (2016). Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A. J. Radiat. Oncol. Biol. Phys. 96 (4), 877–887. doi:10.1002/jro.2016.07.036

Zhong, Z., Cao, Y., and Chen, Z. (2020). LncRNA MINCR Regulates Irradiation Resistance in Nasopharyngeal Carcinoma Cells via the microRNA-223/ZEB1 axis. Cell Cycle 19 (1), 53–66. doi:10.1080/15384101.2019.1692176

Zhong, Z., Cao, Y., Yang, S., and Zhang, S. (2016). Overexpression of RRM2 in Gastric Cancer Cells Promotes Their Invasiveness via AKT/NF-κB Signaling Pathway. Pharmacie 71 (5), 280–284.

Zhou, X., Zeng, B., Li, Y., Wang, H., and Zhang, X. (2021). LINC02532 Contributes to Radiosensitivity in Clear Cell Renal Cell Carcinoma through the miR-654-5p/Y1A Axis. Molecules 26 (22), 7040. doi:10.3390/molecules26227040

Zhu, C., Li, K., Jiang, M., and Chen, S. (2021). RBMS-AS1 Promotes Radiosensitivity in Medulloblastoma through Stabilization of SIRT6 Protein. Acta neuropathologica Commun. 9 (1), 1–13. doi:10.1186/s40478-021-01218-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Wu, Zhang and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.