Elliptic Islands on the Elliptical Stadium

Sylvie Oliffson Kamphorst Sônia Pinto de Carvalho
Departamento de Matemática, ICEx, UFMG
C.P. 702, 30161–970, Belo Horizonte, Brasil.

Abstract

We investigate the existence of elliptic islands for a special family of periodic orbits of a two-parameter family of maps $T_{a,h}$, corresponding to the billiard problem on the elliptical stadium.

The hyperbolic character of those orbits were studied in 2 for $1 < a < \sqrt{2}$ and here we look for the elliptical character for every $a > 1$.

We prove that, for $a < \sqrt{2}$, the lower bound for chaos $h = H(a)$ found in 2 is the upper bound of ellipticity for this special family.

For $a > \sqrt{2}$ we prove that there is no upper bound on h for the existence of elliptic islands.

The main results we use are Birkhoff Normal Form and Moser’s Twist Theorem.

1 Introduction

The elliptical stadium is a plane region bounded by a curve Γ, constructed by joining two half-ellipses, with major axes $a > 1$ and minor axes $b = 1$, by two straight segments of equal length $2h$ (see fig. 1).

![Figure 1: The elliptical stadium.](image)

The billiard on the elliptical stadium consists in the study of the free motion of a point particle inside the stadium, being reflected elastically at the impacts with Γ. Since the motion is free inside Γ, it is determined either by two consecutive points of reflection at Γ or by the point of reflection and the direction of motion immediately after each collision.

For fixed a and h, let $s \in [0, L)$ be the arc length parameter for Γ and the direction of motion be given by the angle β with the normal to the boundary at the impact point. The billiard defines an invertible map $T_{a,h}$ from the annulus $\mathcal{A} = [0, L) \times (-\pi/2, \pi/2)$ into itself, preserving the measure $d\mu = \cos \beta \, d\beta \, ds$.\footnote{AMS subject classification: 37E40, 70K42}
Since \(\Gamma \) is globally \(C^1 \) but not \(C^2 \), \(T_{a,h} \) is a homeomorphism (see, for instance, [6]) and if \((s_0, \beta_0)\) and \((s_1, \beta_1) = T_{a,h}(s_0, \beta_0) \in \mathcal{A} \) such that \(\Gamma \) is analytic in some neighborhoods of \(s_0 \) and \(s_1 \), then clearly \(T_{a,h} \) is analytic in some neighborhoods of \((s_0, \beta_0)\) and \((s_1, \beta_1)\).

For each \((a, h)\), \((\mathcal{A}, \mu, T_{a,h})\) defines a discrete dynamical system, whose dynamics depends on the values of \(a \) and \(h \). For instance, when \(h = 0 \) we have an ellipse and the billiard is integrable.

When \(h \neq 0 \), two main features appear. If \(a < \sqrt{2} \), Donnay [3] proved that the billiard on the elliptical stadium is chaotic (in the sense of non-vanishing Lyapunov exponents) when \(h \) is sufficiently large. Lower bounds for \(h \) for this behaviour were found by Markarian and ourselves in [5] and by Canale, Markarian and ourselves in [2]. In the present work we show that the lower bound found in [2] is optimal, in the sense that below it we can assure the existence of elliptic islands of positive measure.

In [1] Bunimovich conjectured the existence of a stable periodic orbit, with island of positive measure, for billiards such as the elliptical stadium with \(a > \sqrt{2} \) and \(h \neq 0 \). In this work we make some progress in this direction, proving that there is no upper bound on \(h \) for the existence of elliptic islands if \(a > \sqrt{2} \). So, there is no way to destroy the elliptic islands by just increasing the distance between the half-ellipses.

To prove the existence of elliptic islands we extend the results about a special family of periodic orbits, called pantographic, studied in [2] and find regions on the parameter plane where at least one of its members is elliptic and stable, so, with islands of positive measure in phase space.

2 Pantographic orbits: existence and ellipticity

In this section we define the special family of periodic orbits and investigate the existence and ellipticity of its members. This family has already been investigated in [2] for \(a < \sqrt{2} \). Here we extend that work for all \(a > 1 \). We will skip most of the proofs which can be found in the work cited above.

Given \(a, h \) and a positive integer \(n \), an \((n, a, h)\)-pantographic orbit, denoted by \(Pan(n, a, h) \), is a symmetric \((4 + 2n)\)-periodic orbit, with exactly 2 impacts at each half-ellipse, joined by a vertical path, and crossing any vertical line only twice. One example can be seen in figure 2.

![Figure 2: The 10-periodic pantographic orbit \((n = 3)\).](image)

Let the right half-ellipse of the stadium be parametrized by \((x, y) = (a \cos \lambda + h, \sin \lambda)\) and \(P \) be the point marked on figure 2. Using the obvious symmetries (see figure 3), the parameter \(\lambda \) of \(P \) must satisfy:

\[
\tan 2\beta = \frac{a \tan \lambda}{a^2 \tan^2 \lambda - 1} = \frac{h + a \cos \lambda}{n + \sin \lambda} \quad \text{and} \quad \tan \beta = \frac{\cos \lambda}{a \sin \lambda} \quad (1)
\]

where \(\beta > 0 \) is, as defined above, the angle of the trajectory from \(P \), with the normal to the boundary.
The following proposition gives the region of existence of those pantographic orbits in the parameter plane.

Proposition 1

- \(Pan(0, a, h) \) and \(Pan(1, a, h) \) exist for every \(a > 1 \) and \(h > 0 \).

- For \(n \geq 2 \), \(Pan(n, a, h) \) exists for every \(1 < a \leq 2 \) and \(h > 0 \) or for every \(a > 2 \) and \(h > (n - 1) \sqrt{a(a - 2)} \).

Proof: Equation (1) can be written as

\[
 n = \frac{a^2 t^2 - 1}{2at} h + \frac{(a^2 - 2)t^2 - 1}{2t\sqrt{1 + t^2}}.
\]

where \(t = \tan \lambda \). As proven in [2], for each integer \(n \geq 0 \), this equation has a unique solution \(t(n, a, h) = \tan \lambda(n, a, h) > 0 \) for every \(a > 1 \) and \(h > 0 \) and \(t(n, a, h) \in \left(\frac{1}{a}, +\infty\right) \).

For \(n = 0 \) and \(n = 1 \) this results implies the existence of the corresponding \(Pan(n, a, h) \) for every \(a > 1 \) and \(h > 0 \).

However, for \(n \geq 2 \) one must also ask that

\[
 \tan 2\beta \geq \frac{a \cos \lambda}{1 + \sin \lambda}
\]

in order to guarantee that the next impact point from \(P \) is on the straight part of the boundary. This is equivalent to

\[
 0 \leq \sin \lambda \leq \frac{1}{a - 1}
\]

(3)
which is always true if $1 < a \leq 2$.

If $a > 2$ we rewrite (3) as $0 \leq t = \tan \lambda \leq \frac{1}{\sqrt{a(a-2)}}$. Since $\frac{\partial h}{\partial t}(n, a, h) < 0$ (which is easily verified from (2)), and $\frac{1}{a} < \frac{1}{\sqrt{a(a-2)}}$ there exists a unique \overline{h} such that $t(n, a, \overline{h}) = \frac{1}{\sqrt{a(a-2)}}$ and if $h > \overline{h}$, $\frac{1}{a} < t(n, a, h) < \frac{1}{\sqrt{a(a-2)}}$. From (3), $\overline{h} = (n-1)\sqrt{a(a-2)}$.

For each fixed n, we denote by U_n the open region in the parameter plane where $Pan(n, a, h)$ exists, according to Proposition 4. For $(a, h) \in U_n$, let s be the arc length corresponding to the point P of $Pan(n, a, h)$ and β the angle with the normal of the trajectory at this point as before. Then $T_{a, h}^{4+2n} (s, \beta)$ is the ellipse at (s, β) and the ellipticity of this orbit is determined by the eigenvalues of $DT_{a, h}^{4+2n}(s, \beta)$.

As shown in [2], we can write $DT_{a, h}^{4+2n}(s, \beta) = (M_1 M_2)^2$ with

$M_j = \frac{1}{cos \beta} \begin{pmatrix} l_j K - cos \beta & l_j \\ K(l_j K - 2 cos \beta) & l_j K - cos \beta \end{pmatrix}$

and where l_1 is the length of the trajectory between two impacts with the same half-ellipse, l_2 is the length of the trajectory between two impacts with the different half-ellipses and K is the curvature of the ellipse at s.

Let

$\Delta_n(a, h) = \left(\frac{l_1 K}{cos \beta} - 1 \right) \left(\frac{l_2 K}{cos \beta} - 1 \right)$.

Since $det(M_1 M_2) = 1$ and $tr(M_1 M_2) = 4\Delta_n(a, h) - 2$, it follows that if $0 < \Delta_n(a, h) < \frac{1}{2} < \Delta_n(a, h) < 1$ then $Pan(n, a, h)$ is elliptic (meaning that the eigenvalues of $DT_{a, h}^{4+2n}(s, \beta)$ are unitary with non zero imaginary part).

The following lemma summarizes some properties of $\Delta_n(a, h)$ and its technical proof has been postponed to the appendix.

Lemma 2 For every $n \geq 0$, let

$\hat{U}_n = \{(a, h) | 1 < a < \sqrt{2}, h > 0\} \cup \{(a, h) | a \geq \sqrt{2}, h > na\sqrt{a^2 - 2} \equiv h_0^n(a)\} \subset U_n$.

The function $\Delta_n(a, h)$ has the following properties:

1. $\Delta_n(a, h)|_{\hat{U}_n} > 0$
2. $\frac{\partial \Delta_n}{\partial h}|_{\hat{U}_n} > 0$
3. $\lim_{h \to +\infty} \Delta_n(a, h) = +\infty$
4. for $1 < a < \sqrt{2}$, $\lim_{h \to 0} \Delta_n(a, h) = L_n(a) = \left(\frac{2}{a^2} - 1 \right)\left(\frac{2(n+1)}{a^2} - 1 \right) > 0$
 for $a \geq \sqrt{2}$, $\lim_{h \to na\sqrt{a^2 - 2}} \Delta_n(a, h) = 0$.

For each $0 < c \leq 1 + 2n$, let α_n^c be the unique solution of $L_n(a) = c$. We have that $1 < \alpha_n^c < \sqrt{2}$ and if $c < d$ then $\alpha_n^d < \alpha_n^c$.

It follows from the lemma that every level curve $\Delta_n = c$ is given by a graph $h_n^c : (\alpha_n^c, +\infty) \to \mathbb{R}$ such that $\Delta_n(a, h_n^c(a)) = c$ and $\Delta_n(a, h) < c$ if $h < h_n^c(a)$ and $\Delta_n(a, h) > c$ if $h > h_n^c(a)$.

The characterization of the region of ellipticity is then given by:
Figure 4: Region of ellipticity with lines of resonance up to order 4 for $n = 3$

Proposition 3 For each fixed n, the region in the parameter plane where $P_{an}(n,a,h)$ is elliptic is the union of two open adjacent strips, bounded by the graphs of $h^0_n(a), h^{1/2}_n(a), h^1_n(a)$ and by the segments $\{(a,0)|\alpha^1_n < a < \alpha^{1/2}_n\}$ and $\{(a,0)|\alpha^{1/2}_n < a < \sqrt{2}\}$. (see figure [4]).

For each n and (a,h) in the region of ellipticity of $P_{an}(n,a,h)$, let μ and $\bar{\mu}$ be the eigenvalues of $DT_{a,h}^{4+2n}|_{(s,\beta)}$. $P_{an}(n,a,h)$ has a resonance of order k if $\mu^k = 1$, i.e., $\mu = e^{j\pi k/2n}$, $j = 1, \ldots, k - 1$. It is easy to show that this corresponds, for $k > 1$, to

$$\Delta_n(a,h) = \frac{1}{2} \left(1 + \cos \frac{j\pi}{k} \right) \equiv c_{jk}.$$

Clearly $0 < c_{jk} < 1$ and we have the curves of resonance given by the graphs of $h^{c_{jk}}_n : (\alpha_n^{c_{jk}}, +\infty) \rightarrow \mathbb{R}$.

We can then characterize the region of ellipticity with no resonances up to order k by:

Proposition 4 For a fixed n, the region in the parameter plane where $P_{an}(n,a,h)$ is elliptic with no resonances up to order k is a finite union of open disjoint adjacent strips contained in the region of ellipticity. (see figure [4])

3 Existence of elliptic islands

In order to establish if the elliptic periodic orbits described in the previous section have invariant curves surrounding them, we will invoke the two classical results:

Birkhoff Normal Form: Let f be an area preserving map in C^l ($l \geq 4$) with a fixed point at the origin, with eigenvalues μ and $\overline{\mu}$, $|\mu| = 1$. If for some integer q in $4 \leq q \leq l + 1$ one has $\mu^k \neq 1$ for $k = 1, 2, \ldots, q$ then there exists a real analytic transformation taking f into the normal form

$$\zeta \rightarrow f(\zeta,\overline{\zeta}) = \mu \zeta e^{i\tau(\zeta\overline{\zeta})} + g(\zeta,\overline{\zeta})$$

(4)
where $\tau(\zeta^2) = \tau_1|\zeta|^2 + ... + \tau_s|\zeta|^{2s}$, with $s = \left[\frac{q}{2}\right] - 1$, is a real polynomial in $|\zeta|^2$ and g vanishes with its derivatives up to order $q - 1$ at $\zeta = 0$.

Theorem (Moser, [8], p.56) If the polynomial $\tau(|\zeta|^2)$ does not vanishes identically, $\zeta = 0$ is a stable fixed point (which means that there are invariant curves surrounding it, and so an elliptic island of positive measure).

For each fixed period n_0, we will then investigate the resonances of $T_{a,h}^{4+2n_0}$ and the zeros of the coefficients of its Birkhoff normal form, near the Pantographic orbit.

Let us fix a period n_0 and a major axis $a_0 > a_{n_0}^1 = \sqrt{(2 + 2n_0)/(2 + n_0)}$. According to proposition [4], $\text{Pan}(n_0, a_0, h)$ is elliptic with no resonances up to order q if h is in the finite union of open disjoint adjacent intervals denoted $\cup I_j^q$.

Let $\lambda(h), s(h), \beta(h)$ be respectively the parameter, the arc length and the angle with the normal for the point P of $\text{Pan}(n_0, a_0, h)$.

Lemma 5 For any $q \geq 4$, $\lambda(h), s(h)$ and $\beta(h)$ are analytic functions of h on each I_j^q.

Proof: The point P will belong to $\text{Pan}(n_0, a_0, h)$ if $t = \tan \lambda$ satisfies equation (8):

$$n_0 = \frac{(a_{n_0}^2 - 1)^2}{2a_{n_0}^2} h + \frac{(a_{n_0}^2 - 2)t^2 - 1}{2t(1 + t^2)}.$$

$A(t) = \frac{2t^2 - 1}{2a_{n_0}^2}$ and $B(t) = \frac{(a_{n_0}^2 - 2)t^2 - 1}{2t(1 + t^2)}$ are analytical functions of t and $A(t) \neq 0$, since $\frac{1}{a_{n_0}^2} < t < \infty$. So $h = h(t) = \frac{n_0 - B(t)}{A(t)}$ is analytic. As this equation has a unique solution for each h, the inverse $t = t(h)$ exists and is then locally analytic for every $h \in I_j^q$.

The functions $\lambda(h) = \arctan t(h)$ and the corresponding arc length of the ellipse $s(h) = s(\lambda(h))$ are then analytic. The same is true for $\beta(h) = \beta(\lambda(h))$.

For each fixed h, let f be the translation of $T_{a_0,h}^{4+2n_0}$ by $(s(h), \beta(h))$. The map f is clearly area preserving and analytic in (s, β) on a neighbourhood of the origin. The eigenvalues of $Df(0,0)$ are the same as those of $DT_{a_0,h}^{4+2n_0}(s(h), \beta(h))$. If $h \in I_j^q$, f can be written in the Birkhoff normal form (18). If one of the Birkhoff coefficients is not zero, f has an elliptic island surrounding $(0,0)$ and, by translation, there is an elliptic island surrounding $\text{Pan}(n_0, a_0, h)$.

Lemma 6 For $1 \leq m \leq \left[\frac{q}{2}\right] - 1$, $\tau_m(h)$, the m-th Birkhoff coefficient of f, is an analytic function of h on each I_j^q.

Proof: For each fixed h, $\tau_m(h)$ is a combination of the coefficients of the $(q - 1)$-th jet of f at $(0,0)$ (see, for instance, [4]). The steps giving rise to the calculation of $\tau_m(h)$ (complexification of the space, elimination of unwanted terms) are analytical. So, if the coefficients of the jet $J_{q-1}f(0,0)$ are analytical in h, then $\tau_m(h)$ will also be an analytic function of h.

Now these coefficients are combinations of the entries of $DT_{a_0,h}^{4+2n_0}$ and their derivatives up to $(q - 1)$-th order with respect to s and β, calculated at $(s(h), \beta(h))$.

Let (s, β) and (s', β') be two consecutive impacts of a trajectory with the two different half-ellipses (with $l \geq 0$ impacts with the straight parts between them), or two consecutive impacts of a trajectory with the
same half-ellipse (with $l = 0$). Then $DT^{4+2n}_0(h)$ is a finite product of matrices of the form (see, for instance, [6])

$$
\left(\frac{-1}{\cos \beta'} \begin{array}{cc}
LK - \cos \beta \\
KK' - K' \cos \beta - K \cos \beta' \\
LK' - \cos \beta'
\end{array}\right)
$$

where K stands for the curvature of the ellipse at the impact and L is the total length of the trajectory between the two impacts with the half-ellipses.

Since $\cos \beta \neq 0$ for β near $\beta(h)$, all the entries of the matrix above, as well as their derivatives up to any order in s and β, are analytic functions of h. Using lemma [6] we conclude that all the coefficients of $J_{q-1,f(0,0)}$ are analytic in h.

If follows that $\tau_m(h)$ is analytic in h, leading immediately to the next corollary.

Corollary 7 On each I^q_j and for $1 \leq m \leq \left\lfloor \frac{q}{2} \right\rfloor - 1$, the set $\{h / \tau_m(h) = 0\}$ is either the entire I^q_j or a discrete set.

In order to prove the existence of islands we use the natural recurrence on the order of the resonances.

We begin by analysing the zeros of τ_1 on the non resonant intervals I^4_j. If $\tau_1 = 0$ only on a discrete subset of each I^4_j, $Pan(n_0,a_0,h)$ has elliptic island except for a discrete set of values of h (which can be smaller than the union of the discrete subsets of zeros of τ_1 and the values of resonance up to order 4, since on the discrete subsets a non resonant value of higher order may have a non zero Birkhoff coefficient).

If τ_1 is identically zero on one of those intervals, we proceed to the next step, applying the same analysis to the zeros of τ_2.

We continue the recurrence and it will end up in a finite number of steps if for some order of resonance the last Birkhoff coefficient does not vanish identically on a whole non resonant interval. Otherwise, all the Birkhoff coefficients will vanish on at least one open interval, bounded by resonant values of h. In this last case, since $\frac{\partial \rho}{\partial h} > 0$, the rotation number $\rho(h)$ of $Pan(n_0,a_0,h)$ is not constant and there exists h_0 such that $\rho(h_0)$ is diophantine. As f is analytic, it is conjugate to a rotation and there will be invariant curves [4].

We conclude that:

Theorem 1 Given n and $a > a_n^1$, there are at least countably many values of h in $\cup I^4_j$ such that $Pan(n,a,h)$ has an elliptic island.

Remark: As Moeckel proved in [7], in a generic one-parameter family of area preserving maps with elliptic fixed points, the first Birkhoff coefficient τ_1 varies from $-\infty$ to $+\infty$ as the rotation number varies from 0 to $1/3$ or from $2/3$ to 1. So, we do not expect $\tau_1(h)$ to be always different from zero, neither to vanish identically. Furthermore, generically, at a zero of τ_1, a higher Birkhoff coefficient will not vanish. So, although we can handle the case $\tau_s(h_0) = 0$, $\forall s$, we do not expect it to happen in our case.

4 Bounds for the existence of islands
4.1 The case $a < \sqrt{2}$

As shown in proposition 3 and in [2], if (a, h) is in the region of ellipticity of $Pan(n, a, h)$ then $a \geq \alpha_n^1 = \frac{2n+2}{n+2}$. So, given $a \in (1, \sqrt{2})$, there is only a finite number of periods $4+2n$ such that $Pan(n, a, h)$ can be elliptic. More precisely, $n \leq \frac{2(a^2-1)}{a^2-2}$.

Let $H(a)$ be the maximum of $h_n^1(a)$ for those periods. As proved in [2], $H(a)$ is a lower bound for chaos. By theorem 1, it is also an upper bound for the existence of elliptic islands for the Pantographic family.

4.2 The case $a > \sqrt{2}$

On the other hand, if $a > \sqrt{2}$, $Pan(n, a, h)$ can be elliptic for any period n. Moreover, for each n and q, $\cup I^q_n \subset (h^0_n(a), h^1_n(a))$, with $h^0_n(a) = na\sqrt{a^2-2}$. We also have that $(h^0_n(a), h^1_n(a)) \cap (h^0_{n+1}(a), h^0_{n+1}(a))$ is a non empty open interval. So we can find h, $na\sqrt{a^2-2} < h < (n+1)a\sqrt{a^2-2}$ such that $Pan(n, a, h)$ has an elliptic island. This proves the following

Theorem 2 Given $a > \sqrt{2}$ there is no upper bound on h for the existence of elliptic islands on the elliptical stadium billiard.

However, as can be seen in figure 5, for values of a further away from $\sqrt{2}$, the strips of ellipticity are disjoint. In these gaps all pantographic orbits are hyperbolic, having, thus, no islands.

![Figure 5: Gaps between the strips of ellipticity](image)

Nevertheless, in our simulations other islands appear, obviously corresponding to different periodic orbits. In figure we exemplify this fact for $a = 2$ and $h = 2$, a value located in the gap between the strips of ellipticity for $n = 0$ and $n = 1$ (see figure 5). We show three non-pantographic orbits and their islands and the whole phase space, where we can see many other islands surrounded by what seems to be a chaotic sea. As far as our results indicate and our simulations show, this should be the typical picture for the phase space when $a > \sqrt{2}$.
Figure 6: Phase space for \((a, h) = (2, 2)\)

5 Appendix

5.1 Some properties of \(t(n, a, h)\)

We called
\[U_n \]
the open region in the parameter plane where \(Pan(n, a, h)\) exists:
\[U_0 = U_1 = \{(a, h) / a > 1, h > 0\} \]
\[U_n = \{(a, h) / 1 < a \leq 2, h > 0\} \cup \{(a, h) / a > 2, h > (n - 1)\sqrt{a(a-2)}\}, \]
for \(n \geq 2\).

The following lemma gives some useful information about \(t(n, a, h)\), the solution of \(f)\) or \(g)\).

Lemma 8 Given \(n \geq 0\), let \((a, h) \in U_n\) and \(t(n, a, h)\) be the unique solution of \(f)\). Then

- \(\forall n, \) when \(h \to +\infty\), \(t(n, a, h) \to \frac{1}{n}\).
- **For** \(n = 0\)
 - if \(1 < a \leq \sqrt{2}\), when \(h \to 0^+\), \(t(0, a, h) \to +\infty\)
 - if \(a > \sqrt{2}\), when \(h \to 0^+\), \(t(0, a, h) \to \frac{1}{\sqrt{a-2}}\)
- **For** \(n = 1\)
 - if \(1 < a \leq 2\), when \(h \to 0^+\), \(t(1, a, h) \to +\infty\)
 - if \(a > 2\), when \(h \to 0^+\), \(t(1, a, h) \to \frac{1}{\sqrt{a(a-2)}}\)
- **For** \(n \geq 2\)
 - if \(1 < a \leq 2\), when \(h \to 0^+\), \(t(n, a, h) \to +\infty\)
 - if \(a > 2\), when \(h \to (n - 1)\sqrt{a(a-2)}^+\), \(t(n, a, h) \to \frac{1}{\sqrt{a(a-2)}}\)
Proof: Since $\frac{\partial}{\partial n} < 0$ and $\frac{1}{a} < t$, $\lim_{h \to +\infty} t$ exists. From equation (1),

$$at - \frac{1}{at} = 2 \frac{n\sqrt{1+t^2} + t}{h\sqrt{1+t^2} + a} \to 0$$

as $h \to +\infty$ and so $t \to \frac{1}{a}$.

To study the limit as $h \to 0^+$, let us take $x = \frac{1}{a}$. Equation (1) becomes

$$x(2n\sqrt{1 + x^2} + x^2 - (a^2 - 2)) = (a^2 - x^2)\sqrt{1 + x^2} \frac{h}{a}.$$

Since $0 < x < \frac{1}{a}$, $x(2n\sqrt{1 + x^2} + x^2 - (a^2 - 2)) > 0$.

Let $\mathcal{P} = \lim_{h \to 0^+} x$. We have that $0 \leq \mathcal{P} \leq a$ and $\mathcal{P}(2n\sqrt{1 + \mathcal{P}^2} + \mathcal{P}^2 - (a^2 - 2)) = 0$.

For $n = 0$, if $1 < a \leq \sqrt{2}$, $\mathcal{P} = 0$ is the unique solution of this equation and $\lim_{h \to 0^+} t(0, a, h) = +\infty$. If $a > \sqrt{2}$ we have a new solution $\mathcal{P} = \sqrt{a^2 - 2}$. But for $0 < x < \sqrt{a^2 - 2}$, $x(x^2 - (a^2 - 2)) < 0$. So $\lim_{h \to 0^+} x = \sqrt{a^2 - 2}$ and $\lim_{h \to 0^+} t(0, a, h) = \frac{1}{\sqrt{a^2 - 2}}$.

For $n = 1$ we have $\mathcal{P}(2\sqrt{1 + \mathcal{P}^2} + \mathcal{P}^2 - (a^2 - 2)) = 0$. If $a^2 - 2 \leq 2$, i.e. $a \leq 2$, the unique solution is $\mathcal{P} = 0$ and $\lim_{h \to 0^+} t(1, a, h) = +\infty$. If $a > 2$ the second solution is $\mathcal{P} = \sqrt{a(a - 2)}$. As above, if $0 < x < \sqrt{a(a - 2)}$, $x(2\sqrt{1 + x^2} + x^2 - (a^2 - 2)) < 0$ and so $\lim_{h \to 0^+} t(1, a, h) = \frac{1}{\sqrt{a(a - 2)}}$.

For $n \geq 2$, we remark first that if $k > l$ then $t(k, a, h) > t(l, a, h)$. So, for $1 < a \leq 2$ $\lim_{h \to 0^+} t(n, a, h) = +\infty$.

For $a > 2$, the limit as $h \to (n-1)\sqrt{a(a - 2)}$ is the unique solution of equation (1) for $h = (n-1)\sqrt{a(a - 2)}$ which is $t = \frac{1}{\sqrt{a(a - 2)}}$.

Remark: When $h \to 0^+$, the elliptical stadium becomes an ellipse. $t \to +\infty$ means that the pantographic orbit goes to the elliptic periodic orbit which corresponds to the minor axis of the ellipse.

Let us call pantographic-like orbits in the elliptical billiard the periodic trajectories that have vertical segments both at left and right extremes. As can be seen in (1), the 4-periodic pantographic-like orbit exists if $a > \sqrt{2}$ and the 6-periodic if $a > 2$, they are parabolic and their position is given, respectively, by $t = \frac{1}{\sqrt{a^2 - 2}}$ and $t = \frac{1}{\sqrt{a(a - 2)}}$. They are the calculated limits of the 4 and 6-periodic pantographic orbits of the elliptical stadium.

5.2 Proof of the lemma 2

For a fixed n, let $(a, h) \in U_n$ and $\lambda_n(a, h)$ be the solution of (1), β be the angle, with the normal, of the outgoing trajectory at $P = (a \cos \lambda_n + h, \sin \lambda_n)$ and s the corresponding arc length.

Let

$$\Delta_n(a, h) = \left(\frac{l_1 K}{\cos \beta} - 1\right) \left(\frac{l_2 K}{\cos \beta} - 1\right)$$

where $l_1 = 2 \sin \lambda_n$, $l_2 = 2 \sqrt{(h + a \cos \lambda_n)^2 + (n + \sin \lambda_n)^2}$ and $K = a/(a^2 \sin^2 \lambda_n + \cos^2 \lambda_n)^{3/2}$.

Let $\delta_1(a, h) = \left(\frac{l_1 K}{\cos \beta} - 1\right)$ and $\delta_2(a, h) = \left(\frac{l_2 K}{\cos \beta} - 1\right)$.

Lemma 9 For every $n \geq 0$ the function $\delta_1(a, h)$ has the following properties:
1. $\delta_1(a, h) > 0$ for $1 < a < \sqrt{2}$ and $h > 0$.

2. $\lim_{h \to 0^+} \delta_1(a, h) = \frac{a}{2} - 1$ for $1 < a < \sqrt{2}$.

3. $\delta_1(a, n a \sqrt{a^2 - 2}) = 0$ for $a \geq \sqrt{2}$.

4. $\frac{\partial \delta_1}{\partial h} > 0$ for $(a, h) \in U_n$.

Proof: We have $\delta_1(a, h) = \frac{h K}{\cos \beta} + 1 = 2 \frac{1 + a^2 t^2}{1 + a^2(1 + t^2)} - 1$ and properties 1 and 2 follow immediately.

If $a \geq \sqrt{2}$, $\delta_1 = 0$ implies $(a^2 - 2)t^2 - 1 = 0$ and $t = \frac{1}{\sqrt{a^2 - 2}}$. From equation (2), $h = na\sqrt{a^2 - 2}$ and property 3 follows.

Since $\frac{\partial \delta_1}{\partial h} = \frac{\partial_1 \partial h}{\partial h}$, as $\frac{\partial_1 \partial}{\partial h} = \frac{4(1-a^2)(1+\alpha^2)}{(1+a^2) \sqrt{2}} < 0$, for $a > 1$, and $\frac{\partial_1}{\partial h} < 0$, $\frac{\partial_2 \delta_1}{\partial h} > 0$.

Lemma 10 For every $n \geq 0$ the function $\delta_2(a, h)$ has the following properties:

1. $\delta_2(a, h) > \delta_1(a, h) > 0$ for $(a, h) \in U_n$.

2. $\lim_{h \to 0^+} \delta_2(a, h) = 2 \frac{n+1}{a^2} - 1$ for $1 < a < \sqrt{2}$.

3. $\lim_{h \to +\infty} \delta_2(a, h) = +\infty$ for $1 < a$.

4. $\frac{\partial \delta_2}{\partial h} > 0$ for $(a, h) \in U_n$.

Proof: Since $l_2 > l_1$, $\delta_2 > \delta_1$.

For $1 < a < \sqrt{2}$, when $h \to 0$, $t(n, a, h) \to +\infty$. So $l_2 \to 2(n+1), K \to 1/a^2$ and $\cos \beta \to 1$ and property 2 follows.

Property 3 is obvious since $l_2 \to \infty$ as $h \to \infty$ and all the other quantities are bounded.

By definition $\delta_2(a, h) = l_2(a, h, t(a, h)) = \frac{K(t(a, h))}{\cos \beta(t(a, h))} - 1$ and $\frac{\partial \delta_2}{\partial t} = \frac{K}{\cos \beta} \frac{\partial l_2}{\partial t} + \frac{\partial}{\partial t} \left(\frac{l_2 \cos \beta}{\cos \beta} \right) \frac{\partial l_2}{\partial \beta}$.

We have that $\frac{\partial l_2}{\partial h} < 0$ and $\frac{\partial l_2}{\partial \beta} > 0$. The curvature $K > 0$ and for $0 < \lambda < \pi/2$, $\frac{\partial K}{\partial x} < 0$. So $\frac{\partial K}{\partial \beta} < 0$. As $0 < \beta < \pi/4$, $\cos \beta > 0$. As $\tan \beta = 1/\alpha$, $\frac{\partial}{\partial t} \cos \beta > 0$. This implies that $\frac{\partial}{\partial t} \left(\frac{K}{\cos \beta} \right) < 0$.

We have that $\frac{1}{l_2} \frac{\partial l_2}{\partial h} = (h + a \cos \lambda)^2 + (n + \sin \lambda)^2$. So $\frac{1}{l_2} \frac{\partial l_2}{\partial h} = 2(h + a \cos \lambda) > 0$ in U_n, implying that $\frac{\partial l_2}{\partial h} > 0$. We also have that $\frac{\partial l_2}{\partial h} = -2a \sin \lambda(n + \sin \lambda)(\tan 2\beta - \tan \beta) < 0$ at $0 < \beta < \pi/4$. So $\frac{\partial l_2}{\partial h} = \frac{\partial l_2}{\partial \beta} \frac{\partial \lambda}{\partial \lambda} < 0$, and $\frac{\partial l_2}{\partial \beta} < 0$.

This shows that $\frac{1}{l_2 \cos \beta}$ is the product of two positive decreasing functions of t and so $\frac{\partial}{\partial t} \left(\frac{l_2 \cos \beta}{K} \right) < 0$.

We conclude that $\frac{\partial \delta_2}{\partial h} > 0$.

We have defined $\tilde{U}_n = \{(a, h)/1 < a < \sqrt{2}, h > 0\} \cup \{(a, h)/a \geq \sqrt{2}, h > na\sqrt{a^2 - 2}\} \subset U_n$.

Lemma 2 For every $n \geq 0$ the function $\Delta_n(a, h)$ has the following properties:
1. $\Delta_n(a, h)|_{\tilde{U}_n} > 0$

2. $\frac{\partial \Delta_n}{\partial h}|_{\tilde{U}_n} > 0$

3. $\lim_{h \to +\infty} \Delta_n(a, h) = +\infty$

4. for $1 < a < \sqrt{2}$, $\lim_{h \to 0} \Delta_n(a, h) = L_n(a) = \left(\frac{2}{a^2} - 1\right)\left(\frac{2(n+1)}{a^2} - 1\right) > 0$

 for $a \geq \sqrt{2}$, $\lim_{h \to 0} \Delta_n(a, h) = 0$.

Proof: In \tilde{U}_n, Δ_n is the product of two positive increasing functions of h and properties 1 and 2 follows. Properties 3 and 4 follow immediately from lemmas 9 and 10.

Acknowledgments

We want to thank A.Chenciner, M.Herman, C.Grotta Ragazzo and R.Roussarie. We also thank the support of CNPq during this work.

References

[1] L. A. Bunimovich: Conditions on stochasticity of two-dimensional billiards. Chaos 1, 187-193, (1991)

[2] E. Canale, R. Markarian, S. Oliffson Kamphorst, S. Pinto de Carvalho: A lower bound for chaos on the elliptical stadium. Physica D 115, 189-202 (1998)

[3] V. J. Donnay: Using integrability to produce chaos: billiards with positive entropy. Comm. Math. Phys. 141, 225-257 (1991)

[4] M. Herman: private communication

[5] R. Markarian, S. Oliffson Kamphorst, S. Pinto de Carvalho: Chaotic Properties of the Elliptical Stadium. Comm. Math. Phys. 174, 661-679 (1996)

[6] R. Markarian: Introduction to the ergodic theory of plane billiards. In: Dynamical Systems, Santiago de Chile, 1990.

[7] R. Moeckel: Generic bifurcations of the twist coefficient, Erg.Th.Dyn.Syst. 10, 185-195 (1990)

[8] J. Moser: Stable and random motions in dynamical systems, PUP, Princeton, 1973.

email: syok@mat.ufmg.br and sonia@mat.ufmg.br