Radiation Treatment for WHO Grade II and III Meningiomas

Citation
Walcott, Brian P., Brian V. Nahed, Priscilla K. Brastianos, and Jay S. Loeffler. 2013. “Radiation Treatment for WHO Grade II and III Meningiomas.” Frontiers in Oncology 3 (1): 227. doi:10.3389/fonc.2013.00227. http://dx.doi.org/10.3389/fonc.2013.00227.

Published Version
doi:10.3389/fonc.2013.00227

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877009

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
The treatment of meningiomas is tailored to their histological grade. While World Health Organization (WHO) grade I lesions can be treated with either surgery or external beam radiation, WHO Grade II and III lesions often require a combination of the two modalities. For these high-grade lesions, conventional external beam radiation is delivered to either the residual tumor or the surgical resection margin. The optimal timing of radiation, either immediately following surgical resection or at the time of recurrence, is yet to be determined. Additionally, another method of radiation delivery, brachytherapy, can be administered locally at the time of surgery for recurrent lesions. Altogether, the complex nature of WHO grade II and III meningiomas requires careful treatment planning and delivery by a multidisciplinary team.

Keywords: meningioma, radiosurgery, proton therapy, surgery, brachytherapy
In the typical patient, diagnosis is first obtained by surgery. Post-operative radiation is administered to decrease the likelihood of recurrence in many cases and almost universally in cases of subtotal resection. If recurrence occurs, retreatment with radiation and/or surgery are both viable options and should be individualized based on the unique clinical scenario.

For the entire cohort, the actuarial recurrence rates at 1, 5, and 10 years were 7, 41, and 48%, underscoring the propensity of these lesions to recur. Disease-specific survival after first recurrence was 86 and 69% at 5 and 10 years, respectively.

In comparison to grade II meningiomas, grade III meningiomas have a more dismal prognosis, as illustrated in several case series. In a group of 13 patients with WHO grade III meningiomas who underwent surgical resection, recurrence occurred in 92% of patients at a time interval of 0.4–2.8 years (29). The 5- and 8-year actuarial survival in this group was 47 and 12%, respectively. Only three of the initial cohort received adjuvant radiation therapy following primary resection. In another study of grade III meningiomas, the 5- and 10-year survival rates were found to be slightly higher at 64.3 and 34.5%, respectively (9). Despite the aggressive nature of these tumors, adjuvant radiation therapy is not routinely administered. One survey reported that only 9 of the 56 studied centers recommended radiation after gross total resection of an atypical meningioma (30).

Undoubtedly, treatment plans for patients are individualized and based on a multitude of factors. Recent elucidation of the genomic landscape of these lesions has identified several genetic subtypes of tumors that may prove to have distinct clinical characteristics and even the potential for response to targeted therapeutics (31–33). Additionally, atypical meningiomas (WHO grade II) with osseous involvement are associated with poorer outcomes. In 47 patients with atypical meningiomas treated at our institution, bony involvement was associated with an increased rate of disease progression and decreased survival (34). Therefore, bone assessment radiographically and histologically is important, and further...
studies should assess the effectiveness of bone resection and/or targeted radiation therapy to the bone to improve outcome.

BRACHYTHERAPY

Brachytherapy, the local implantation of a radiation source, is considered "salvage" therapy for the recurrence of aggressive atypical and anaplastic meningiomas. At the time of re-operation, radioactive sources or "seeds" of iodine-125 are implanted in the resection cavity in an array that generally generates a median total activity of between 20 and 60 mCi. Success has been reported with this type of radiation treatment modality, with early reports of two patients with recurrent malignant meningiomas having long term remission after interstitial brachytherapy (35). The largest series to date (21 patients) reported a median survival following implantation of 1.6 years for atypical meningioma and 2.4 years for anaplastic meningioma (36). In this same series, a very high complication rate was reported, with 27% of patients experiencing radiation necrosis and 27% with wound complications requiring re-operation.

ONGOING STUDIES

Several trials are studying the role of radiation therapy in the management of patients with atypical or anaplastic meningiomas. Some studies are evaluating differences in radiation delivery modalities and techniques, such as UPCC 24309 (ClinicalTrials.gov Identifier: NCT01117844). In this trial, outcomes from proton beam therapy will be compared to historical controls associated with conventional photon beam treatment. Other studies aim to determine the efficacy of immediate post-operative radiation...
therapy of meningiomas following resection. One trial conducted by the Radiation Therapy Oncology Group (protocol RTOG 0539, ClinicalTrials.gov Identifier: NCT00895622) is monitoring low-grade meningiomas (WHO Grade I) with clinical observation following initial surgery, while those with intermediate or high-risk disease (such as all WHO grade II and III meningiomas) receive 6 weeks of radiation therapy using either three-dimensional conformal RT or intensity-modulated radiation therapy.

The other study, run by the European Organization for Research and Treatment of Cancer (protocol EORTC 22042, ClinicalTrials.gov Identifier NCT00626730), has patients with atypical or malignant meningioma being treated with adjuvant radiation therapy following surgical resection. While we eagerly await the results of these trials to optimize patient care, current management of patients is based on the best evidence available. While randomized trials do not exist, adjuvant radiation therapy immediately following initial surgery for WHO Grade II and III meningioma should be considered given the high rate of local recurrence (Figure 1). Radiation should also be administered for patients undergoing subtotal resection. These recommendations are congruent with National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (37).

CASE ILLUSTRATION 1
A 50-year-old female initially presented 8 years prior with a 5 cm × 5.5 cm × 5 cm enhancing parasagittal lesion with osseous invasion and left sided motor weakness. She underwent a subtotal resection; the pathological diagnosis was consistent with meningioma WHO grade I with no atypical features and a MIB index of 5% (38). Postoperatively, her weakness resolved, but 2 months later she was found to have a new nodular enhancing component in the inferior aspect of the resection site measuring 1.5 cm × 1.5 cm × 1.3 cm. She underwent intensity-modulated radiation therapy 6000 cGy without complication. Six years following radiation, she presented with right-sided weakness and was found to have very aggressive interval growth of the residual tumor (Figure 2). Given the suspicion that her tumor had undergone either atypical or anaplastic transformation, she underwent subtotal resection and placement of interstitial brachytherapy I(125) seeds (Figures 3 and 4). Pathological diagnosis of the tumor removed at the time of the second surgery revealed an atypical meningioma, WHO Grade II or III with high cell density, architectural sheeting, and prominent nucleoli. This case highlights the unique scenario of tumor of progression following treatment. When atypical or malignant progression is suspected on pre-operative imaging, brachytherapy can be considered at the time of re-operation.

CASE ILLUSTRATION 2
A 60-year-old woman underwent gross total resection of her right frontal convexity meningioma; and received post-operative
REFERENCES

1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. *Acta Neuropathol* (2007) 114(2):79–103. doi:10.1007/s00401-007-0243-4

2. Aghi MK, Carter BS, Cosgrove GR, Ojemann RG, Amin-Hanjani S, Martuza RL, et al. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. *Neurosurgery* (2009) 64(1):56–60. doi:10.1227/01.NEU.0000330399.55586.63

3. Stafford SL, Perry A, Suman VI, Meyer FB, Scheithauer BW, Lunsford LD, et al. The effect of radiosurgery during management of aggressive meningiomas. *Surg Neurol* (2003) 60(4):298–305. doi:10.1016/S0090-3019(03)00320-9

4. Has J, Lee HJ, Omalu B, Flickinger JC, Kondziolka D, Lunsford LD, et al. The principal risk factors for post treatment edema in patients treated with stereotactic radiosurgery for meningiomas. *Neurosurgery* (2010) 67(6):865–71. doi:10.1227/01.neu.0000356566.53377.88

5. Kato H, Takahashi JA, Katsuki T, Araki N, Oya N, Hiraoka M, et al. Long-term results from the Paul Scherrer Institute. *Int J Radiat Oncol Biol Phys* (2012) 83(3):856–71. doi:10.1016/j.ijrobp.2011.08.027

6. Van Dyk SW, Simpson W. Radiotherapy for atypical or malignant intracranial meningiomas. *Acta Neurochir* (2000) 48(2):151–60. doi:10.1023/A:1005708.68951.e

7. Palma L, Celli P, Franco C, Cervoni L, Cantore G. Long-term prognostic implications of clinicopathological features in atypical and malignant meningiomas: a study of 71 surgical cases. *J Neurosurg* (1997) 86(5):793–800. doi:10.3171/jns.1997.86.5.7973

8. O'Byrne DJ, Hruban RH, Chao ST, Suh JH. Peritumoral edema after stereotactic radiotherapy. *Neurosurgery* (2005) 57(2):435–42. doi:10.1016/j.ijrobp.2007.08.011

9. Milosevic F, Frost P, Laperriere N, Wong C, Simpson W. Radiotherapy for atypical or malignant intracranial meningioma. *Int J Radiat Oncol Biol Phys* (1996) 34(4):817. doi:10.1016/0360-3016(96)00116-3

10. Hopefully, J, Kim JH, Park SH, Han JG, Chung YS, Jung H-W. Atypical and malignant meningiomas: an indication for initial aggressive surgery and adjuvant radiotherapy. *J Neuro Oncol* (1998) 37(2):177–88. doi:10.1023/A:1005853720926

11. Craig P, Raghavendra NS, Sloan MA, Newlands AE, Krouskop TA. Atypical meningiomas: a retrospective study. *Acta Neurochir* (2000) 48(2):151–60. doi:10.1023/A:1005708.68951.e

12. Byers KL, Mahon DS, Prayson RA, Lee J, Barnett GH. Local control and overall survival in atypical meningioma: a retrospective study. *Int J Radiat Oncol Biol Phys* (2008) 64(3):577–80. doi:10.1016/j.ijrobp.2007.08.011

13. Kano H, Takahashi JA, Katsuki T, Araki N, Oya N, Hiraoka M, et al. Long-term results from the Paul Scherrer Institute. *Int J Radiat Oncol Biol Phys* (2012) 83(3):856–71. doi:10.1016/j.ijrobp.2011.08.027

14. Wehrwein W, Seppanen T, Haapasalo H, Krokko K, Pasanen P, Marttila R, et al. Stereotactic radiosurgery of supratentorial tumoral edema after stereotactic radiotherapy. *Acta Neurochir* (2008) 150(8):861–6. doi:10.1007/s00401-008-0855-2

15. Milosevic F, Frost P, Laperriere N, Wong C, Simpson W. Radiotherapy for atypical or malignant intracranial meningioma. *Int J Radiat Oncol Biol Phys* (1996) 34(4):817. doi:10.1016/0360-3016(96)00116-3

16. O'Byrne DJ, Hruban RH, Chao ST, Suh JH. Peritumoral edema after stereotactic radiotherapy. *Neurosurgery* (2005) 57(2):435–42. doi:10.1016/j.ijrobp.2007.08.011
28. Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol (1993) 3(3):255–68. doi:10.1111/j.1750-3639.1993.tb00752.x
29. Rosenberg LA, Prayson RA, Lee J, Reddy C, Chao ST, Barnett GH, et al. Long-term experience with World Health Organization grade III (malignant) meningiomas at a single institution. Int J Radiat Oncol Biol Phys (2009) 74(2):427–32. doi:10.1016/j.ijrobp.2008.08.018
30. Simon M, Boström J, Koch P, Schramm J. Interinstitutional variance of postoperative radiotherapy and follow up for meningiomas in Germany: impact of changes of the WHO classification. J Neurol Neurosurg Psychiatry (2006) 77(6):767–73. doi:10.1136/jnnp.2005.054114
31. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet (2013). 45(3):285–9. doi:10.1038/ng.2526
32. Clark VE, Eronen-Ormay EZ, Serin A, Yin J, Cotnrey J, Osduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science (2013) 339(6123):1077–80. doi:10.1126/science.1233009
33. Gao F, Shi L, Russian J, Zeng L, Chang X, He S, et al. DNA methylation in the malignant transformation of meningiomas. PLoS ONE (2013) 8(1):e54114. doi:10.1371/journal.pone.0054114
34. Gabeau-Lacet D, Aghi M, Betensky RA, Barker FG, Loeffler JS, Louis DN. Bone involvement predicts poor outcome in atypical meningioma. J Neurosurg (2009) 111(3):464. doi:10.3171/2009.2.JNS08877
35. Gutin PH, Leibel SA, Hosobuchi Y, Crumley RL, Edwards MS, Wilson CB, et al. Brachytherapy of recurrent tumors of the skull base and spine with iodine-125 sources. Neurosurgery (1987) 20(6):938–45. doi:10.1227/00006123-19870600-00020
36. Ware ML, Larson DA, Sneed PK, Wara WM, McDermott MW. Surgical resection and permanent brachytherapy for recurrent atypical and malignant meningioma. Neurosurgery (2004) 54(1):55–64. doi:10.1227/01.NEU.0000097199.26412.2A
37. Brem SS, Bierman PJ, Brem H, Butowsk N, Chamberlain MC, Chiocca EA, et al. Central nervous system cancers. J Natl Comp Canc Netw (2011) 9(4):352–400
38. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM. The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas. Cancer (1998) 82(11):2262–9. doi:10.1002/(SICI)1097-0142(19980601)82:11<2262::AID-CNCR23>3.0.CO;2-R

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 June 2013; paper pending published: 26 July 2013; accepted: 16 August 2013; published online: 02 September 2013.

Citation: Walcott BP, Nahed BV, Brastianos PK and Loeffler JS (2013) Radiation treatment for WHO grade II and III meningiomas. Front. Oncol. 3:227. doi: 10.3389/fonc.2013.00227
This article was submitted to Radiation Oncology, a section of the journal Frontiers in Oncology. Copyright © 2013 Walcott, Nahed, Brastianos and Loeffler. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.