Quantum Anomaly Dissociation of Quasibound States Near the Saddle-Point Ionization Limit of a Rydberg Electron in Crossed Electric and Magnetic Fields

Jian-Zu Zhang 1), *, Li-Ming He 1), 2), Yun-Xia Zhu 2)

1) Institute for Theoretical Physics, East China University of Science and Technology, Box 316, Shanghai 200237, P. R. China
2) Department of Physics, East China University of Science and Technology, Shanghai 200237, P. R. China

Abstract

In the combination of crossed electric and magnetic fields and the Coulomb field of the atomic nucleus the spectrum of the Rydberg electron in the vicinity of the Stark saddle-point are investigated at a quantum mechanical level. The results expose a quantum anomaly dissociation: quasibound states near and above the saddle-point ionization limit predicted at the semi-classical level disappear at a quantum mechanical level.

PACS numbers: 32.60.+i

* Corresponding author
Twenty years ago Clark et al. [1] claimed that the combination of crossed electric and magnetic fields and the Coulomb field of the atomic nucleus can lead to the localization of the Rydberg electron in the vicinity of the Stark saddle-point. When the characteristic parameter $\omega^2_t > 0$ in the classical equation of motion the electron motion is periodic in an elliptical orbit. Such orbits give rise to electron states which are localized above the saddle-point and whose spectrum is that of a harmonic oscillator. Divergent hyperbolic trajectories are obtained in the case when $\omega^2_t < 0$. The classical equation of motion includes both type of solutions. The periodic orbits are unstable with respect to small perturbations, thus assume the character of quasibound states. Ref. [1] focused attention on the energy region near the ionization threshold for the first time in literature. The distinctive character of this portion of the spectrum makes it an attractive target of experimental investigation. Their treatment is semi-classical. The determination of the lifetimes of these states and their associated transition moments awaits a full quantum mechanical treatment.

The full quantum mechanical treatment of the above-ionization-threshold spectra of atoms in crossed electric and magnetic fields can be investigated globally and locally. In literature there were a lot of works focused on the global aspect of this problem, for example, see Main and Wunner [2], Main, Schwacke and Wunner [3], etc. and references there in. Clark et al [1] considered, classically, the local aspect of the above system.

In this Letter we investigate the local aspect of the above system for Clark’s case [1] at a quantum mechanical level. The results reveal a quantum anomaly dissociation: bound states which exist at a semi-classical level may disappear at a quantum mechanical level. For the present example, we find that quasibound states of the harmonic type above the saddle-point ionization limit predicted in Ref. [1] do not exist at a quantum mechanical level. This explains the reason that non of the suggested experiments yet has been realized.

Let the constant electric field $\mathbf{E} = -E \mathbf{i}$, and the uniform magnetic field \mathbf{B} aligning the x_3 axis. We can choose a gauge so that the corresponding vector potential A_i reads $A_i = \frac{1}{2} \epsilon_{ij} B_j \hat{x}_j$, where ϵ_{ij} is a 2-dimensional antisymmetric unit tensor, $\epsilon_{12} = -\epsilon_{21} = 1$, $\epsilon_{11} = \epsilon_{22} = 0$. In the combination of the crossed uniform magnetic and electric fields, and the Coulomb field of the atomic nucleus the Hamiltonian H of the Rydberg electron,
globally, reads (the summation convention is used henceforth)
\[
H = \frac{1}{2\mu} \dot{p}_i^2 - \frac{e^2}{\tilde{r}} - \frac{1}{2} \omega_c \epsilon_{ij} \tilde{p}_i \tilde{x}_j + \frac{1}{8} \omega_c^2 \tilde{x}_i^2 - eE \tilde{x}_1, \quad (i, j = 1, 2)
\]
where \(\tilde{r} = (\tilde{x}_1^2 + \tilde{x}_2^2 + \tilde{x}_3^2)^{1/2} \), and \((\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)\) are the coordinates of the electron centered about the atomic nucleus. In the above \(\mu \) and \(-e \) are, respectively, the mass and the electric charge of the electron; The magnetic cyclotron frequency \(\omega_c = eB/\mu c \).

A particle trap using static fields must confine the electron about the Stark saddle-point where the net electric force vanishes. We therefore consider, locally, the Schrödinger equation in coordinates centered about the saddle point rather than about the atomic nucleus. The coordinate of the saddle point is \(x_{10} = \sqrt{e/E} \). In this coordinate system the coordinates of the electron are \((x_1, x_2, x_3)\). The electrostatic potential is given by \(\Phi = e/[(x_1 + x_{10})^2 + x_2^2 + x_3^2]^{1/2} + E(x_1 + x_{10}) \). A harmonic approximation of the potential in the region around the saddle point is enough. For small \(x_1, x_2 \) and \(x_3 \) the electrostatic potential is approximated by \(\Phi = -\frac{1}{e} V_c - \frac{1}{2} \omega_z^2 (-2x_1^2 + x_2^2 + x_3^2) \), where \(V_c = -2e\sqrt{eE} \) is the energy of the classical ionization limit in the presence of the electric field, and \(\omega_z^2 = e^2/\mu x_{10}^3 \) is the axial frequency. The Hamiltonian \(H \) of this system can be decomposed into a 2-dimensional Hamiltonian \(H_\perp \) and a one-dimensional harmonic Hamiltonian \(H_z \) with the axial frequency \(\omega_z \): \(H = H_\perp + H_z \). The 2-dimensional Hamiltonian \(H_\perp \) is, locally, the type of a quasi-Penning trap
\[
H_\perp = \frac{1}{2\mu} (p_i - \frac{1}{2} \mu \omega_z \epsilon_{ij} x_j)^2 + \frac{1}{2} \mu \omega_z^2 (-2x_1^2 + x_2^2) + V_c = \frac{1}{2\mu} p_i^2 - \frac{1}{2} \mu \epsilon_{ij} p_i x_j + \alpha_1 x_1^2 + V_c, \quad (2)
\]
where \(\alpha_1 = \mu (\omega_c^2 - 8\omega_z^2)/8, \alpha_2 = \mu (\omega_c^2 + 4\omega_z^2)/8 \). The magnetic field should be strong enough to satisfy a condition \(\omega_c^2 > 8\omega_z^2 \) so that \(\alpha_1 > 0 \). At the semi-classical level the magnetic field \(B \) itself enters into the classical equation of motion. At a quantum mechanical level the vector potential \(A_i \) enters into the Schrödinger equation. Comparing Eq. (2) with the coefficients \(\omega_i^2 \) of \(x_i \) terms in the classical equation of motion in Ref. [1], it shows that the coefficients \(\alpha_i \) of \(x_i^2 \) terms in the Schrödinger equation include more information [4].

In the following discussions the starting point is the Hamiltonian (2), that is, we shall take the Hamiltonian (2) as the definition of the model of the (local) quasi-Penning trap without making further reference to the original (global) Hamiltonian (1).
This system is unlike the case in Ref. [5–7]. Because of lacking symmetry in the above crossed electric and magnetic fields, the situation of this system is involved. We find that this system is solved by the following ansatz. We define the canonical variables X_{η} and P_{η} ($\eta = a, b$) as

\[
X_a \equiv \sqrt{\mu \Omega_1/2} x_1 - \sqrt{1/2} \mu \Omega_1 \omega_1 p_2, \quad X_b \equiv \sqrt{\mu \Omega_2/2} x_1 + \sqrt{1/2} \mu \Omega_2 \omega_2 p_2,
\]
\[
P_a \equiv \sqrt{\omega_1 \omega_2} p_1 + \sqrt{\mu \Omega_1 \omega_1} (\omega_2 - \omega_1) x_2,
\]
\[
P_b \equiv \sqrt{\omega_1 \omega_2} p_1 - \sqrt{\mu \Omega_1 \omega_1} (\omega_2 - \omega_1) x_2.
\]

In the above the parameters $\Omega_{1,2}$ and $\omega_{1,2}$ are, respectively, defined as

\[
\Omega_{1,2} \equiv \{ \pm (\alpha_2 - \alpha_1) + [(\alpha_2 - \alpha_1)^2 + \mu \omega_c^2 (\alpha_1 + \alpha_2)]^{1/2} \}/\mu \omega_c,
\]
\[
\omega_{1,2} \equiv (\Omega_1 + \Omega_2)(2\Omega_{1,2} + \omega_c)/4\Omega_{1,2}.
\]

The above definitions give that $\Omega_{1,2} > 0$, $\omega_2 > 0$. From $\omega_2 - \omega_1 = \omega_c (\Omega_1 + \Omega_2)^2/4\Omega_1 \Omega_2 > 0$, it follows that $\omega_2/\omega_1 = \Omega_1 (2\Omega_2 + \omega_c)/\Omega_2 (2\Omega_1 - \omega_c) > 1$, which shows $(2\Omega_1 - \omega_c) > 0$, hence $\omega_1 > 0$. These results confirm that the definitions of X_{η} and P_{η} are meaningful. Furthermore, the canonical variables X_{η} and P_{η} satisfy $[X_{\eta}, P_{\rho}] = i\hbar \delta_{\eta\rho}$ ($\eta, \rho = a, b$) and $[X_a, X_b] = [P_a, P_b] = 0$, which show that modes a and b are fully decoupled at the quantum mechanical level. Finally, we define the parameters $\omega_{a,b}^2$ as

\[
\omega_{a,b}^2 \equiv \Omega_{1,2} \omega_{1,2} (\omega_c = 2\Omega_{2,1})/(\Omega_1 + \Omega_2).
\]

From Eqs. (3)-(5) it follows that the Hamiltonian H_\perp in Eq. (2) decouples into two modes

\[
H_\perp = H_a + H_b + V_c,
\]
\[
H_{a,b} = \frac{1}{2} P_{a,b}^2 + \frac{1}{2} \omega_{a,b}^2 X_{a,b}^2.
\]

Eq. (5) shows that $\omega_b^2 > 0$. The mode b is a harmonic oscillator with the unit mass. It is worth noting that

\[
\omega_c - 2\Omega_2 = \{ (\omega_c^2 + 3\omega_z^2) - [(\omega_c^2 + 3\omega_z^2)^2 - 8\omega_c^2 \omega_z^2]^{1/2} \}/\omega_c > 0,
\]

from which Eq. (3) also gives that $\omega_a^2 > 0$. The possibility of ω_a^2 can’t be changed through tuning external parameters like the magnetic field B and/or the electric field E. The
Schrödinger equation of the mode a reads

$$i\hbar \frac{\partial}{\partial t} \psi_a(X_a, t) = \left(\frac{1}{2} p_a^2 - \frac{1}{2} \omega_a^2 X_a^2 \right) \psi_a(X_a, t).$$ \hspace{1cm} (8)

In the above the system (2) is solved exactly.

At the quantum mechanical level the normalization conditions of wave functions of bound states are a key point. The minus sign of the X_a^2 term in Eq. (8) elucidates that normalized wave functions $\psi_a(X_a, t)$ of bound states of the mode a do not exist, thus for the whole system normalized wave functions $\Psi(X_a, X_b, t) = \psi_a(X_a, t) \psi_b(X_b, t)$ of bound states do not exist either. Thus it is impossible to locate an electronic state. This observation reveals the phenomenon of the quantum anomaly dissociation that quasibound states predicted in Ref. [1] do not exist at the quantum mechanical level.

Discussions - (i) The conclusion about the quantum anomaly dissociation applies only, locally, to the Hamiltonian (2) of the system in the region above the saddle point.

Globally, the Hamiltonian of the system is Eq. (1). Main and Wunner [2], Main, Schwacke and Wunner [3] et al. performed, full quantum-mechanically, numerical calculation of the system (1). The results showed the existence of quite a few bound states near or above the ionization threshold. The features of these bound states are different from the bound states predicted by Clark et al. [1]. For Clark’s case the energy spectrum associated with the periodic elliptical orbits is the type of a harmonic oscillator.

(ii) Glas, Mosel and Zint showed that [8] in the cranked oscillator model when the parameters satisfy certain conditions the square of frequencies of the two decoupled modes are positive. The bound states exist. The situation of the Hamiltonian (2) is different from the cranked oscillator. All the parameters of the Hamiltonian (2) depend on the external magnetic field B and/or the electric field E. Their relations are fixed. Eq. (7) shows that the sign of ω_a^2 and in turn the minus sign of the term X_a^2 in Eq. (8) can’t be changed through tuning the external magnetic field B and/or the electric field E. Thus at the quantum mechanical level the bound states of the harmonic type corresponding to the classical periodic elliptical orbit predicted by Clark et al. [1] disappear exactly.

Up to now the quantum anomaly dissociation exposed in the Hamiltonian (2) is the only example. At the present the clarification of general conditions leading to such a
phenomenon is an open issue. Studies on this subject are important for experimental atomic physics which are based on the semi-classical treatment.

Note in revised version - Since submitting this paper, Connerade group has reached the same conclusion experimentally as the one in this paper [9]. However, they do find the states near the minimum of the outer well. They have lifetimes which seem to fit tunnelling rate between the two wells. The features of these states are different from the ones predicted by Clark et al. [1].

The author would like to thank J.-P. Connerade for communication. This work has been supported by the Natural Science Foundation of China under the grant number 10575037 and by the Shanghai Education Development Foundation.
References

[1] C. W. Clark, E. Korevaar, M. G. Littman, Phys. Rev. Lett. 54, 320 (1985).

[2] J. Main, G. Wunner, Phys. Rev. Lett. 69, 586 (1992).

[3] J. Main, M. Schwacke, G. Wunner, Phys. Rev. A57, 1149 (1998).

[4] It was realized that in the general case of 4-dimensional space-time the field strength $F_{\mu\nu}$ by itself does not, in quantum theory, completely describe all electromagnetic effects on wave functions of the electron, that is, it underdescribes electromagnetism. The 4-vector potential A_{μ} includes more information, but some additional information is not measurable. This raises the question of what constitutes an intrinsic and complete description of electromagnetism. An examination of the Bohm-Aharonov experiment indicates that a complete description that is neither too much nor too little is the phase factor $\exp \left[\left(ie/\hbar c \right) \oint A_{\mu} dx^\mu \right]$ of the 4-vector potential A_{μ}. See T. T. Wu, C. N. Yang, Phys. Rev. D12, 3845 (1975).

[5] C. Baxter, Phys. Rev. Lett. 74, 514 (1995).

[6] Jian-zu Zhang, Phys. Rev. Lett. 77, 44 (1996).

[7] Jian-zu Zhang, Phys. Rev. Lett. 93, 043002 (2004).

[8] D. Glas, U. Mosel, P. G. Zint, Z. Phys. A285, 83 (1978).

[9] J.-P. Connerade (Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London), private communication in the E-mail on 6th of December, 2005.