Biofilm Targeting Strategy in the Eradication of *Burkholderia* Infections: A Mini-Review

Wani D. Gunardi¹*, Kris H. Timotius¹, Agustine Natasha¹ and Paulina R. Evriarti²,³

¹Department of Microbiology, Faculty of Medicine, Krida Wacana Christian University (UKRIDA), Jakarta, Indonesia
²Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
³Department of Microbiology, Health Laboratory of Makassar (BBLK Makassar), Makassar, Indonesia

Abstract:
Burkholderia are intracellular pathogenic bacteria which can produce biofilm. This biofilm protects the intracellular pathogenic bacteria from antibiotic treatment and the immunological system of the host. Therefore, this review aims to describe the capacity of *Burkholderia* to form a biofilm, the regulation of its biofilm formation, the efficacy of antibiotics to eradicate biofilm, and the novel therapy which targets its biofilm.

Burkholderia’s biofilm is characterized by its lipopolysaccharides, exopolysaccharides (EPSs), biofilm-associated proteins, and eDNA. Its regulation is made by quorum sensing, c-di-AMP, sRNA, and two component systems. Many antibiotics have been used as sole or mixture agents; however, they are not always effective in eradicating the biofilm-forming *Burkholderia*. Inhibitors of quorum sensing and other non-conventional antibiotic approaches are promising to discover effective treatment of *Burkholderia* infections.

Keywords: Antibiotic, Biofilm, *Burkholderia*, Exopolysaccharide, Lipid A, Quorum sensing.

1. INTRODUCTION

Burkholderia is a gram-negative bacilli group and living as saprophyte primarily in soil and water [1]. However, several *Burkholderia* species can cause infectious diseases in human beings, such as *Burkholderia pseudomallei*, which cause Melioidosis and *B. cepacia* complex, which cause pneumonia, bacteremia, UTIs, and septic arthritis in patients with cystic fibrosis [2, 3]. Melioidosis is endemic in Southeast Asia and Northern Australia. From 2014 - 2017, a study reported that there were increasing Melioidosis cases (145 cases) in Indonesia, with a mortality percentage that reached 43% more than the previous year [4]. The virulence factors such as hydroxytetradecanoic acid, biofilm formation, flagella expression, and ultrastructure adapt to the host tissue and probably impact it by causing Melioidosis [2].

Biofilm formation by *Burkholderia* has an important role in its pathogenesis process. As a virulence factor, Biofilm is defined as sessile microbial communities that attached irreversibly to organic or inorganic surfaces of each other. *Burkholderia* produces matrices of extracellular polymeric substances (EPS), which is embedded in them, and exhibit phenotype changes in line with the growth rate and gene transcription [5]. Biofilm increases the ability of *B. pseudomallei* to survive in the host cell and escape from the immune system [6]. Compared to other bacterial infections, *Burkholderia* infections cause a very high relapse rate associated with biofilm formation [7]. Moreover, previous studies reported that *Burkholderia* is more resistant to antibiotics when growing as a biofilm than their free-living [planktonic] counterparts [6, 8].

Resistance to many antimicrobial agents, including first and second generations of cephalosporins penicillins, macrolides, colistin, rifamycins, and aminoglycosides have been found in *Burkholderia* [9]. Several novel antibiotic combination therapies for *Burkholderia* infections have been reported [10]. However, biofilm-targeted therapies among *Burkholderia* have not been reported. Therefore, this review aims to describe the capacity of *Burkholderia* to form biofilm, the regulation of *Burkholderia* biofilm formation, antibiotic efficacy in the eradication of biofilm, and the biofilm targeting therapy in *Burkholderia* infections. The *Burkholderia* discussed in this review are the human pathogens, namely *B. pseudomallei, B. mallei*, and *Bcc* (*Burkholderiacepaia* complex), including *B. cepacia, B. multivorans, B. cenocepacia*, and *B. stabilis.*
2. BIOFILM FORMATION IN *Burkholderia*

Clinical signs of Melioidosis vary from acute septicemia to chronic inflammation or subclinical infections. These signs are determined by the capacity of *B. pseudomallei* to produce biofilm. *B. pseudomallei* biofilm plays a role during bacterial-host interaction. Biofilm determines the adhesion to epithelial cells of the human lungs, interactive intercellular processes, apoptosis/necrosis, proinflammatory responses, and cellular pathogenesis [11]. Biofilm formation begins with biofilm surface attachment by flagella or pili, then makes cell-to-cell interactions or micro-colony formations, and finishes with exopolysaccharide secretion or a biofilm matrix [12]. A biofilm matrix glues cells together on a surface and eventually releases them to make new colonization of other surfaces [13]. The capacity of *Burkholderia* form biofilm is affected by several factors, such as the cell wall structure (lipopolysaccharides), biofilm proteins, and extracellular DNA (eDNA).

2.1. Lipopolysaccharides (LPS)

Lipopolysaccharides (LPS) are common structural components in a Gram-negative bacteria cell wall, including *Burkholderia*. Generally, LPS has a role as endotoxin and triggers the defense-related immune responses of the host [14, 15]. Moreover, LPS also able to determine the resistance to antimicrobial peptides and also have the other function that was listed in Table 1. Structurally, the LPS component of *Burkholderia* species is varied, but mostly it has three regions such as Lipid A, core oligosaccharide, and O-polysaccharides (OPS) [16].

Type of LPS	Function
BP-LPS	Endotoxin, tumour necrosis factor, interleukin-6, and nitric oxide
LPS	Antigen
B. cenocepacia	Cytokine induction
LPS	Determine resistance to antimicrobial peptides
B. cenocepacia	Prevent binding of the peptide to the bacterial cell envelope
LPS	Induce a strong immune response that can contribute to host cell damage.
Bcc	Lower the anionic charge of the Bcc cell surface, which inhibits the binding and subsequent effects of cationic antibiotics
LPS	Play a significant role in the pathogenesis of human disease.
B. mallei	Produce high levels of TNF-alpha, IL-6 and RANTES
CPS, B. mallei and B. pseudomallei	Antigen

Lipid A is composed of hexa-acylated diglucosamine that binds LPS to the outer membrane [15, 16]. Lipid A is potentially immunogenic and can interact with receptor proteins of the innate immune system such as Toll-like receptor 4; such interactions are the first line of defense against bacterial infections and can trigger caspase-11 mediated cell death [17]. O-polysaccharides (OPS) are attached to the core of oligosaccharides and are comprised of repeating units of three to five sugars, each of which may bear a range of post-glycosylation modifications [16, 17].

LPS in different species of *Burkholderia* is varied. LPS of *B. multivorans* has two O-polysaccharide chains. The *B. cenocepacia* LPS inner core oligosaccharide determines the in vitro resistance to antimicrobial peptides and *B. pseudomallei*. LPS has three types that are serologically different [type A, type rough, and type B smooth] [18]. A study conducted by Narisara et al. [18] showed that the type A LPS of *B. pseudomallei* produced the lowest amount of biofilm. Therefore, it means that the different types of LPS impact the capacity of *Burkholderia* from a biofilm.

2.2. Exopolysaccharides (EPSs)

Burkholderia can produce extracellular polysaccharides or exopolysaccharides (EPSs), the high-molecular-weight sugar-based polymers that are synthesized and secreted by multi microorganisms. EPSs have the function as a scaffold of biofilms to cross-link the bacterial cells together and make bacterial adaptation to different stress conditions [19, 20]. Pellizzoni et al. reported that *B. cenocepacia* in a non-mucoid state could form biofilm containing EPSs [21].

2.3. Biofilm-Associated Proteins

Biofilm-associated proteins in *Burkholderia* are unclearly identified. However, previous studies reported that some proteins and encoded genes had a role in biofilm formation.

Pinweha reported the bpsl1039-1040 ATP-binding cassette transporter's inactivation reduced the biofilm formation of *B. pseudomallei* [22], and BcpA protein in *Burkholderia* plays an important role in biofilm development. [23] However, the BcpA activity is an independent contact-dependent growth inhibition (CDI) system. CDI is the toxic C-terminus of a surface exoprotein used to inhibit the growth of susceptible bacteria on cell contact. CDI proteins are important in cooperative behaviors to build biofilm communities and prevent non-self-bacteria from entering the community [23]. Encoded genes for surface proteins involved in the biogenesis and maintenance of an integral outer membrane. Encoded genes for regulatory factors are required for biofilm maturation [24].

2.4. Extracellular DNA

Extracellular DNA (eDNA) is an essential component of biofilm. eDNA is released from the autolysis processes. The lysis of a bacterial subpopulation generates eDNA under the control of the quorum-sensing system or proceeded in a fratricide mode/suicide similar to eukaryotic cells’ necrosis. The eDNA is an important substance in biofilm formation, especially in DNA damage repair, gene transfer, and nutrient source. Other functions of eDNA are to stabilize biofilm, bind and shield biofilm from antibiotics and aminoglycosides, as well as to induce antimicrobial peptide resistance. The acidification of biofilm by eDNA increases aminoglycoside resistance [25]. Pakkulunan et al. (2019) reported that eDNA is important during bacterial cell attachment and biofilm formation [26].
3. REGULATION OF BIOFILM FORMATION

Biofilm formation is a complex process that needs multifactorial things to develop. The regulation of biofilm formation is controlled by a quorum-sensing system (QS), second messenger cyclic di-3′,5′-monophosphate (c-di-GMP) as a global intracellular protein expression, small RNAs (sRNAs), and Two Component Systems (TCSs) [27, 28]. QS is responsible for regulating the eDNA release, biosurfactants production, and the expression of a large surface protein. c-di-GMP is important in the regulation of the production of EPS and surface proteins. sRNAs are able to regulate the production of EPS [27]. The last TCSs have functions in multiple mechanisms such as cross-regulate, integrate, and coordinate various input stimuli to control biofilm formation [28].

3.1. Quorum Sensing System of Burkholderia

Two main behavioral traits of Burkholderia are intracellular life and biofilm formation [29]. The expression of these two virulence factors determines antibiotic treatment failures and is associated with quorum sensing. Two recognized signaling systems of quorum sensing in Burkholderia are the diffusible signal factor cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactones (AHLs). Both control similar phenotypic traits [30].

Acyl-HSL [Acy1 homoserine lactone] mediates the gene regulation that influences biofilm formation. Most of the synthesized acyl-HSL is octanoyl-HSL [31]. The synthesis of Acyl-HSL is associated with biofilm formation. Therefore, quorum sensing plays an important role in the pathogenesis of Burkholderia, even though it does not regulate biofilm formation under all growth conditions [31].

The diffusible signal factor (DSF) molecule involved in biofilm formation and pathogenesis is a medium-length chain of monounsaturated fatty acids with an unusual cis-2 double bond. Burkholderia has DSF (named BDSF), which contains cis-2-dodecenoic acid that can inhibit the formation and cause the dispersion of biofilm. Moreover, BDSF can regulate the expression of many genes, such as chitinase, which is responsible for biofilm formation. The presence of chitinase affects the antibiotic activity of BDSF [32].

3.2. Cyclic Diguinosine-5′-Monophosphate (c-di-GMP)

Cyclic diguanosine-5′-monophosphate (c-di-GMP) is a second messenger that plays a main role in regulating biofilm formation in many bacteria, including Burkholderia. [33] In general, high intracellular c-di-GMP levels induce the production of extracellular biofilm matrix components. In contrast, low intracellular c-di-GMP levels suppress the production of matrix components and promote single cell motility [34, 35]. To regulate these cellular functions, c-di-GMP binds to specific effectors, which could be proteins or RNA, and alters their structure [36]. The presence of higher intracellular c-di-GMP concentration correlates with the increasing cell-to-cell aggregation and EPS production, swimming motility of flagella, and abundance of biofilm [37].

3.3. Small Non-Coding RNAMolecules (sRNAs): Genetic Control for Bacterial Biofilms

Small non-coding RNA molecules (sRNAs) are an RNA fragment that is 50–500 nucleotides in size and can regulate gene expression by interacting with other RNAs or proteins [38, 39]. As a regulator, sRNAs play the main role in the regulatory network of the post-transcriptional level of biofilm formation.[40, 41] Sasset et al. reported that the biofilm matrix of B. cenocepacia had more sRNAs than planktonic cultures [42].

3.4. Two-Component Systems (TCSs)

Two-component systems (TCSs) are essential in signaling events. Adaptation to environments, cell-cell communication, and pathogenesis are associated with TCSs. TCSs are absent in humans and other mammals. Adaptive changes in cellular processes are regulated by TCSs to respond to changes in environmental conditions [42, 43]. A study reported a novel TCS in B. cenocepacia, namely RqsR, which plays an important role in modulating QS and pathogenesis in B. cenocepacia. Mutations in rqsR and rqsR exert overlapping effects on B. cenocepacia transcriptomes and phenotypes, including motility, biofilm formation, and virulence [44].

Besides the rqsR gene, another response regulator gene of TCS is bfmR (biofilm formation-associated regulator), which regulates B. pseudomallei biofilm formation. A mutant of the bfmR gene shows suppression of assembly of fimbriae on the cell surface. It reduces biofilm formation that is led by a decrease in the expression of fimbriae chaperone-usher assembly genes. The low-iron growth condition upregulates the bfmR gene expression. Bacteria in low-medium iron with mutant bfmR show retarded growth. Therefore, bfmR is considered an important positive regulator in controlling the assembly of fimbriae and biofilm formation and is upregulated under low-iron conditions [45]. Mangalea and Borlee also investigated the role of a two-component nitrate sensing system, NarX-NarL, in the biofilm formation of B. pseudomallei. They found that the deletion of narX and narL could decrease the biofilm inhibition activity by nitrate. It means that the NarX-NarL two-component system is a global regulator of biofilm formation [46].

4. ANTIBIOTIC EFFICACY FOR Burkholderia INFECTIONS

Resistance to antibiotics is one of the characteristics of biofilm bacteria, including Burkholderia biofilm [47]. Caraher et al. [2007] reported that antimicrobial agents were active against all the Burkholderia strains when cultured planktonically; however, antimicrobial agents’ activity diminished when the Burkholderia strains were grown as biofilms [48]. Following the result, the next study reported multidrug-resistance in Burkholderia following the use of beta-lactams, including meropenem, piperacillin/tazobactam, ceftazidime, and imipenem. B. cenocepacia is also reported to be resistant to antimicrobial peptides, such as polymyxin B (PmB) [49]. Burkholderia pseudomallei Bp1651 has been also found to be resistant to several classes of antibiotics that were usually effective for the treatment of Melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem) [50]. Therefore, in many cases, antibiotics were only effective when used in combination.

Combination therapy can be used to increase the efficacy of treatment. The summary of several examples of antibiotics used for Burkholderia infections is listed in Table 2.
Burkholderia has been resistant to many antibiotics when used as a single therapy, but they are effective in combination, such as Burkholderia is resistant to tobramycin but susceptible when tobramycin and amiloride are used as a combination therapy (Table 2).

5. RECOMMENDATIONS FOR THE FUTURE IN THERAPEUTIC TARGETING Burkholderia BIO-FILMS

Alternative approaches are needed to tackle Burkholderia resistance issues, especially in therapies to improve cystic fibrosis' patients' life expectancy and eradicate Burkholderia infections. The main problem of the resistance is Burkholderia can form biofilm. Therefore, alternative treatment strategies need to be explored to ensure a robust pipeline of effective therapies, especially targeting Burkholderia biofilm.

Many studies have been conducted to find a new strategy that can increase the eradication of Burkholderia infections. As an example, Sidrim et al. found that Promethazine, an efflux pump inhibitor, could improve the antibiotic efficacy and disrupt biofilms of Burkholderia pseudomallei [51]. The disruption of biofilm formation can be done from its eDNA, quorum sensing, etc. (Table 3).

Table 2. List of used antibiotic for Burkholderia infections [49, 61, 62].

Antibiotic	Burkholderia	Description
Amikacin	B. cepacia	Resistance
Azithromycin-trimethoprim-sulfamethoxazole	Bcc	Inhibit
Azithromycin-cefazidime	Bcc	Inhibit
Azithromycin-doxycycline	Bcc	Inhibit
Azithromycin-trimethoprim-sulfamethoxazole	Bcc	Inhibit
Biapenem	B. cepacia	Resistance
Carbenicillin	B. cepacia	Resistance
Cefotaxime	B. cepacia	Resistance
Cefuroxime	B. cepacia	Resistance
Chloramphenicol	B. cepacia	Resistance
Ciprofloxacin, imipenem	B. cepacia	Resistance
Gentamicin	B. cepacia	Resistance
Polymyxin (PmB).	B. cepacia	Resistance
Sulphamethoxazole	B. cepacia	Resistance
Piperacillin/ tazobactam	B. cepacia	Resistance
Tobramycin	Bcc	Resistance
Tobramycin & amiloride	B. cepacia	Susceptible
Tobramycin & dichloro-isoproterenol & propranolol	B. cepacia	synergistic with dichloroisoproterenol and propranolol.
Trimethoprim	B. cepacia	Resistance
Clarithromycin-tobramycin	P. aeruginosa	Active/effective
Tobramycin & trioclan	Bcc	reduction of viable cells within biofilms but no antimicrobial activity

Table 3. List of alternative targets for the treatment of Burkholderia infection.

Target	Description
BiofilmReg operon	Need to develop a common drug which is effective for treating all these causative agents [63]
DNABII	Antiserum [64]
eDNA	Tobramycin & DNase (rhDNase) &dispersin [65]
Efflux pump	phenylalanine arginine beta-naphthylamide (PABetaN), a universal efflux inhibitor & CTZ and DOX [8]
Polysaccharides	Cellulase development resistance [8]
PNAG	Immunotherapy. Antisera [67]
LpxC	LpxC inhibitor, and LpxC-4 in combination with CAZ [68]
LpxC-4	sulphonamide derivates [69]
QS	Quorum sensing inhibitors (QSIs) [70]

Note: 1) BceSR: BceS, a sensor kinase, BceR, a response regulator.
2) LpxC is UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase, a metalloenzyme that catalyzes the second step in the biosynthesis of lipid A.
eDNA is an attractive target because it is a matrix component of biofilm. eDNA enzymatic degradation can sensitize biofilm to antimicrobials. In this case, bacterial nucleases can be applied to degrade eDNA (Fig. 1). This means that eDNA could be targeted therapy by disrupting its interactions with other matrix components. It was discovered that eDNA-binding matrix components have come to light. Therefore, targeting the biofilm matrix via eDNA is emerging and promising [52].

In fact, pathogens that colonized the host cell will produce virulence factors and then do the QS signaling to form a biofilm. This bacteria conversation is broken by using anti-QS agents, making pathogens more susceptible to host immune responses and antibiotics (Fig. 1). The QS disruption strategies can be managed by several methods, including signal synthesis inhibition, receptor inactivation, signaling blockage by antibodies, and signal degradation. This way can be used as a potential therapeutic target for bacterial diseases [53].

Carbonic anhydrase (BpsCAgamma) as crucial enzymes in B. pseudomallei can be interfered with by Carbonic anhydrase inhibitors. The most effective inhibitors of BpsCAgamma are acetazolamide, benzolamide, and metanilamide. Other sulfonamides/sulfamates such as ethoxzolamide, topiramate, sulpiride, indisulam, sulthiame, and saccharin are also active even in a higher range [54].

The migration of bacterial cells is allowed by swarming. Swarming motility might thus represent a form of social behavior and is associated with widespread antibiotic resistance [55]. One strategy to block social behaviour of bacteria is to interfere the flagella as an apparatus to motile, cell-cell interactions and decreases the presence of surfactant. Therefore swarming motility might be useful as a model and target of eradicating biofilm antibiotic resistance [56 - 66].

CONCLUSION
Biofilm is a complex adherence structure to the surface that has a single type of cell or different bacterial colonies. Extracellular polymeric substances (matrix) submerge these colonies. The matrix is composed of proteins, eDNA, and polysaccharides, showing high resistance to antibiotics. Biofilm formation is regulated by quorum sensing. Several approaches are used to inhibit the biological activities of Burkholderia. Inhibitors of quorum sensing need to be discovered and screened. Conventional antibiotic therapy is not effective enough to remedy Burkholderia infections. Therefore, combining other non-conventional antibiotic approaches is promising to discover effective treatments of Burkholderia infections.

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
None.

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES
[1] Talaro K, Chess B, Wiersema DS, Sen P. Foundations in Microbiology, 2012. McGraw-Hill 2013.
[2] Chen YS, Shieh WJ, Goldsmith CS, et al. Alteration of the phenotypic and pathogenic patterns of Burkholderia pseudomallei that persist in a soil environment. Am J Trop Med Hyg 2014; 90(3): 469-79. [http://dx.doi.org/10.4269/ajtmh.13-0051] [PMID: 24445207]
[3] Wanger A, Chavez V, Huang R, Wahed A, Dasgupta A, Actor JK. Microbiology and molecular diagnosis in pathology: a comprehensive review for board preparation, certification and clinical practice. Elsevier 2017.
[4] Tauran PM, Wahyunie S, Saad F, et al. Emergence of melioidosis in Indonesia and today’s challenges. Trop Med Infect Dis 2018; 3(1): 32. [http://dx.doi.org/10.3390/tropicalmed3010032]
[5] Donlan RM, Costerton JW. Biofilms: survival mechanisms of...
Pseudomonas aeruginosa and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.

Burkholderia pseudomallei and biofilms. Asian Biomed [12] 2016; 16(2): 283-94.
Burkholderia Biofilm as a Target of Treatment

The Open Microbiology Journal, 2021, Volume 15 57

dependent translational regulation in prokaryotes. Trends Genet 2013; 29(2): 92-8.

Michaux C, Verneuil N, Hartke A, Giard JC. Physiological roles of small RNA molecules. Microbiology (Reading) 2014; 160(Pt 6): 1007-19.

Chambers JR, Sauer K. Small RNAs and their role in biofilm formation. Trends Microbiol 2013; 21(1): 39-49.

Van Puyvelde S, Steenackers HP, Vanderleyden J. Small RNAs regulating biofilm formation and outer membrane homeostasis. RNA Biol 2013; 10(2): 185-91.

Sass A, Kieken S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7(1): 15665.

Kanthawong S, Bolscher JG, Veerman EC, and host-associated survival in a global regulator of biofilm formation, natural product biosynthesis, Borlee BR, Mangaleza MR. The NarX-NarL two-component system is a potential role in carbon and iron metabolism. Sci Rep 2017; 7(1): 3979-90.

Faksri K, Namwat W. Characterization of a novel two-component system in Tabunhan S, Wongratanacheewin S, Wongwajana S, Welbat TU, CL. Characterization of a novel two-component system in Burkholderia cenocepacia. Environ Microbiol Rep 2011; 3(2): 278-85.

Cui C, Yang C, Song S, et al. A novel two-component system modulates quorum sensing and pathogenicity in Burkholderia cenocepacia. Mol Microbiol 2018; 108(1): 32-44.

Tabunhan S, Wongratanacheewin S, Wongwajana S, Welbat TU, Faksri K, Namwat W. Characterization of a novel two-component system response regulator involved in biofilm formation and a low iron response of Burkholderia pseudomallei. Southeast Asian J Trop Med Public Health 2014; 45(5): 1665-79.

Borerre BR, Mangalee MR. The NarX-NarL two-component system is a global regulator of biofilm formation, natural product biosynthesis, and host-associated survival in Burkholderia pseudomallei. bioRxiv 2020.

Kanthawong S, Bolscher JG, Veerman EC, et al. Anti-microbial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents 2012; 39(1): 39-44.

Carager E, Reynolds G, Murphy P, McClean S, Callaghan M. Comparison of antibiotic susceptibility of Burkholderia cenocepacia complex organisms when grown planktonically or as biofilm in vitro. Eur J Clin Microbiol Infect Dis 2007; 26(3): 213-6.

Louet SA, Valvano MA. Extreme antitubercular peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol 2011; 1: 6.

Bugarsheva JV, Sue D, Gee JI, et al. Antibiotic resistance markers in Burkholderia pseudomallei strain Bp1651 identified by genome sequence analysis. Antimicrob Agents Chemother 2017; 61:e00010-17.

Siddique J, Walshe S, Robinson IC, et al. Protein remodelling improves antibiotic efficacy and disrupts biofilms of Burkholderia pseudomallei. Biofouling 2017; 33(1): 88-97.

Okshovsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol 2015; 33: 73-80.

Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Research International 2019; 15.

Del Prete S, Vallo D, Foroni P, et al. Sulphonylamine inhibition profile of the β-carboxy anhydride identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorg Med Chem Lett 2017; 27(3): 490-5.

Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 2009; 11(1): 126-36.

Erhardt M. Strategies to block bacterial pathogenesis by interference with motility and chemotaxis. How to Overcome the Antibiotic Crisis 2016; pp: 185-205.

Ortega X, Silipo A, Saldías MS, Bates CC, Molinario A, Valvano MA. Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide: truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J Biol Chem 2009; 284(23): 21738-51.

Bayliss M, Donaldson MJ, Nepogodiev SA, et al. Structural characterisation of the capsular polysaccharide expressed by Burkholderia thailandensis strain E255: wb1 (pKnock-KnoR) and assessment of the significance of the 2-O-acetyl group in immune protection. Carbohydr Res 2017; 452: 17-24.

Brett PJ, Burtwick MN, Snyder DS, Shannon JG, Azadi P, Gherardin FC. Burkholderia mallei expresses a unique lipopolysaccharide mixture that is a potent activator of human Toll-like receptor 4 complex. Mol Microbiol 2007; 62(3): 379-90.

Tavares-Carreon F, Patel KB, Valvano MA. Burkholderia cenocepacia and Salmonella enterica AntI proteins that transfer 4-amino-4-deoxy-1-arabinose to lipopolysaccharide share membrane topology and functional amino acids. Sci Rep 2015; 5: 10773.

Loutet SA, Musseen LE, Flannagan RS, Valvano MA. A two-tier model of polymyxin B resistance in Burkholderia cenocepacia. Environ Microbiol Rep 2011; 3(2): 278-85.

Novotny LA, Ager AO, Brockson ME, Goodman SD, Bakalest I.O. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One 2013; 8(6):e67629.

Messiaen AS, Nelis H, Coenye T. Investigating the role of matrix ArnT proteins that transfer 4-amino-4-deoxy-1-arabinose to lipopolysaccharide and disruption of biofilms of Burkholderia pseudomallei. Microbiol Rep 2011; 3(2): 67-73.

Rajashekaran SK, Ramesh S. Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Pol J Microbiol 2013; 62(3): 327-30.

Skurnik D, Davis MR Jr, Benedetti D, et al. Targeting pan-resistant bacteria with antibodies to a broadly conserved surface polysaccharide expressed during infection. J Infect Dis 2012; 205(1): 1709-18.

Sengyee S, Saiprom N, Paksanont S, Limmathurotsakul D, et al. Bacterial Genomes. BioMed Res Int 2016; 20166560534.

ArnT proteins that transfer 4-amino-4-deoxy-1-arabinose to lipopolysaccharide and disruption of biofilms of Burkholderia pseudomallei. Microbiol Rep 2011; 3(2): 67-73.