Gaps in the management of diabetes in Asia: A need for improved awareness and strategies in men’s sexual health

Waye-Hann Kang1†, Muhammad Navid Mohamad Sithik2†, Jun-Kit Khoo2, Ying-Guat Ooi2, Quan-Hziung Lim2, Lee-Ling Lim2,3,4†

‡Department of Medicine, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Selangor, Malaysia, 2Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 3Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China, and 4Asia Diabetes Foundation, Hong Kong SAR, China

Keywords
Diabetes mellitus, Male hypogonadism, Sexual dysfunction

*Correspondence
Lee-Ling Lim
Tel: 603-79492868
Fax: 603-79492030
E-mail address: leeling.lim@ummc.edu.my

J Diabetes Investig 2022; 13: 1945–1957
doi: 10.1111/jdi.13903

INTRODUCTION
Traditionally, men’s health has always been associated with male sexual concerns, but it has now evolved and encompasses (1) male gender-specific diseases; (2) non-gender-specific diseases that impact males such as non-communicable diseases and malignancies; (3) male behavior that imposes an increased health risk such as smoking and substance abuse. The European Men’s Health Forum defined men’s health as ‘a male health issue arising from physiological, psychological, social, cultural or environmental factors that have a specific impact on boys or men and/or where particular interventions are required for boys or men in order to achieve improvements in health and well-being at either the individual or the population level’. In this review, we shall focus on the sexual health of males living with diabetes, particularly in Asia.

Sexual health is an important factor of men’s health. Sound sexual health includes the ability to have good erectile function and sexual desire, and it is not merely the absence of disease. Male sexual dysfunction is defined as ‘difficulty during any stage of the sexual encounter that prevents or impairs the individual or couple from enjoying sexual activity’, is globally prevalent in males with prediabetes and diabetes. It is an early harbinger of cardiovascular diseases and has a profound impact on one’s physical, mental, and social health. Among patients with either prediabetes or diabetes, the most common male sexual dysfunctions are hypogonadism, erectile dysfunction, and premature ejaculation. In Asia, although sexual health is an important factor of men’s health, it is rarely discussed freely in real-life practice. Addressing sexual health in Asian males has always been challenging with multiple barriers at the levels of patients and health care providers. Therefore, the assessment and management of sexual dysfunction in routine clinical practice should involve a holistic approach with effective patient–provider communication. In this review, we discuss the epidemiology, pathophysiology, and the management of hypogonadism, erectile dysfunction, and premature ejaculation among males with either prediabetes or diabetes (type 1 and type 2), as well as the evidence gaps across Asia.

ABSTRACT
Sexual dysfunction, which is defined as ‘difficulty during any stage of the sexual encounter that prevents or impairs the individual or couple from enjoying sexual activity’, is globally prevalent in males with prediabetes and diabetes. It is an early harbinger of cardiovascular diseases and has a profound impact on one’s physical, mental, and social health. Among patients with either prediabetes or diabetes, the most common male sexual dysfunctions are hypogonadism, erectile dysfunction, and premature ejaculation. In Asia, although sexual health is an important factor of men’s health, it is rarely discussed freely in real-life practice. Addressing sexual health in Asian males has always been challenging with multiple barriers at the levels of patients and health care providers. Therefore, the assessment and management of sexual dysfunction in routine clinical practice should involve a holistic approach with effective patient–provider communication. In this review, we discuss the epidemiology, pathophysiology, and the management of hypogonadism, erectile dysfunction, and premature ejaculation among males with either prediabetes or diabetes (type 1 and type 2), as well as the evidence gaps across Asia.

As with other diabetes-related complications, sexual dysfunction is prevalent worldwide in males living with diabetes, yet this problem is rarely addressed by health care providers (Figure 1). In Asia, this condition is often overlooked due to fear of embarrassment, cultural sensitivity, and the barriers faced by healthcare providers. This review aims to discuss the epidemiology, pathophysiology, and management of reproductive and sexual functions, but it also leads to a poor relationship of the couple, psychological well-being, and the quality of life.

Acknowledgments
This work was supported by grants from the Asia Diabetes Foundation, Hong Kong SAR, China.

Received 14 March 2022; revised 22 July 2022; accepted 17 August 2022
SEXUAL DYSFUNCTION

Hypogonadism
Male hypogonadism is a state of androgen deficiency where there is the presence of clinical and biochemical evidence of low testosterone levels (<12.1 nmol/L). Blood samples should be obtained before 11 a.m. while fasting, and two measurements of low testosterone are required to establish the diagnosis. A decline in testosterone levels can manifest with various clinical presentations due to its universal role in the regulation of male physiology such as gonadal function, mood and behavior, muscle mass, lipid, bone formation, erythropoiesis, and immune function.

The prevalence of hypogonadism in males with prediabetes ranges between 30% and 40%. There is a significant inverse association between prediabetes and the total testosterone/sex hormone binding globulin (SHBG) levels after adjustment for age, ethnicity and adiposity. Males with prediabetes had an increased risk of hypogonadism with more severe sexual and depressive symptoms compared to healthy individuals from similar age groups.

Up to 66% of males with type 2 diabetes are reported to have low testosterone levels. Literature reported significant inverse associations between testosterone levels and age, obesity, insulin resistance, duration of diabetes, HbA1C, and the presence of diabetes-related complications. However, evidence of type 1 diabetes and hypogonadism is lacking. In the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complication (DCCT/EDIC) cohort, the reported prevalence was only 9.5%.

Hypogonadism in males with type 2 diabetes can be explained by a defective hypothalamic-pituitary-gonadal axis (HPA). Although the exact pathophysiology remains multifactorial, several studies reported that suppression of the HPA axis is primarily contributed by insulin resistance and increased adiposity. This has been demonstrated by Dhindsa et al., where low testosterone levels have been positively associated among males with diabetes and obesity. Many studies reported a decrease in insulin signaling as a consequence of insulin resistance in the central nervous system. This led to a...
Sexual dysfunction in men with diabetes

Erectile dysfunction

Erectile dysfunction is defined as a failure to achieve and maintain penile erection necessary for sexual activity. Various published literature has established the associations between erectile dysfunction, prediabetes and diabetes (Tables S1–S4). The first report about the link between dysglycemia and the risk of erectile dysfunction was by Corona et al. in 2012, where males with impaired fasting glucose (IFG) had a higher risk of severe erectile dysfunction (hazard ratio [HR] 1.127, 95% CI 1.038–1.223) and reduced penile blood flow (HR 1.293, 95% CI 1.097–1.525). In the SUBITO-DE (sexual dysfunction in newly diagnosed type 2 diabetes male patients) study involving 1,503 males with type 2 diabetes diagnosed within 24 months of enrolment, the prevalence of erectile dysfunction was 43%. Another study in Kuwait showed a 31% prevalence of erectile dysfunction in males with type 2 diabetes diagnosed within 12 months. The reported prevalence of erectile dysfunction among males with type 2 diabetes ranged between 35% and 90%, due to the variations in age, duration of dysglycemia, type of diabetes, and the diagnostic criteria used. Taken together, these findings suggested that the development of erectile dysfunction might have started during prediabetes, similar to that in cardiovascular disease.

Several studies reported that the prevalence of erectile dysfunction in males with type 2 diabetes was positively associated with advancing age, poor glycemic control, increased duration of diabetes, the presence of macro- or microvascular complications, and the presence of comorbidities (anxiety, depression, hypertension, dyslipidemia, or cardiovascular diseases). Given its close association with obesity and cardiovascular disease, erectile dysfunction is often viewed as a clinical manifestation of obstructive sleep apnea syndrome and shares pathophysiological mechanisms such as endothelial dysfunction. Erectile dysfunction is also associated with ethnicity, in which Hispanic males, Asian Indian, and other ethnicities are more likely to develop erectile dysfunction. This can in part be due to the increased prevalence of comorbidities such as dyslipidemia and diabetes. In addition to this, socioeconomic factors also can contribute to the risk of developing erectile dysfunction.

The prevalence of erectile dysfunction was up to 83.6% among males with type 2 diabetes, with the severity of erectile dysfunction increasing with the duration of diabetes. Exercise was reported to be protective. In Korea, males who exercised at least once a week had a lower risk of erectile dysfunction compared with sedentary males (odds ratio [OR] 0.62, 95% CI 0.44–0.89), while increased physical activity level reduced the risk of erectile dysfunction (OR 0.50, 95% CI 0.35–0.71). However, the duration and type of physical activities were not defined. Compared with normal populations, males with either type 1 diabetes or type 2 diabetes were more likely to have more severe refractory erectile dysfunction, resulting in depression and a poorer quality of life.

Epidemiological data on erectile dysfunction in males with type 1 diabetes is limited. Its prevalence ranged between 26% and 35%. A cross-sectional study in Italy showed males with type 1 diabetes were more likely to have erectile dysfunction than those with type 2 diabetes (odds ratio [OR] 0.7, 95% CI 0.6–0.8). Compared with males with type 1 diabetes, the prevalence of erectile dysfunction in males with type 1 diabetes was lower due to a lower BMI with less insulin resistance. Males with type 1 diabetes were more likely to have ED if they had a high BMI (>29 kg/m²) (OR 2.5, 95% CI 1.5–4.1) or actively smoked (OR 1.6, 95% CI 1.1–2.4).

The pathogenesis of erectile dysfunction in males with diabetes is due to cavernosal arterial dysfunction and oxidative stress, leading to reduced synthesis of nitric oxide with vasoconstriction and failure to initiate and maintain erection. It is a complex interplay of vasculopathy, neuropathy, visceral adiposity, insulin resistance, and hypogonadism. The artery size hypothesis suggests that erectile dysfunction and coronary artery disease represent two spectrums of atherosclerosis; smaller penile arteries are involved in erectile dysfunction, whilst larger coronary arteries are generally affected in coronary artery disease. Hence, erectile dysfunction can be a harbinger of cardiovascular disease. Males with type 2 diabetes and erectile dysfunction had increased risk of angiographically verified asymptomatic coronary artery disease (OR 14.8, 95% CI 3.8–56.9). Another study reported that erectile dysfunction was an independent predictor for coronary artery disease in males with type 2 diabetes after a mean follow-up of 4 years (HR 1.58, 95% CI 1.08–2.30).

Premature ejaculation

Premature ejaculation is defined as ‘persistent or recurrent ejaculation with minimal stimulation before, during, or shortly after...
penetration, and before the person wishes it, due to little or no voluntary control, resulting in distress to the patient and/or partner. There is a lack of evidence on premature ejaculation in prediabetes and diabetes. A recent study has reported a positive association between IFG (defined as \(\geq 6.1 \text{ mmol/L} \) or more) and premature ejaculation, evidenced by shorter intravaginal ejaculatory latency time. The prevalence of premature ejaculation in males with diabetes ranged between 37% and 80% in Asian populations. Similarly, a prospective study showed that males with type 2 diabetes and duration of diabetes >10 years were 2.7 times more likely to develop premature ejaculation compared with males with duration of diabetes <5 years. There was also a significant association between premature ejaculation and HbA1c >7% \((P < 0.05)\).

The pathogenesis of premature ejaculation in diabetes is not fully understood. Traditionally, it has been linked to psychogenic factors such as performance anxiety and depression. Neurotransmitters such as serotonin (5-HT) which primarily inhibit ejaculation, are also considered to play an important role in the pathophysiology of premature ejaculation in diabetes. Animal studies showed that serotonin receptors, in particular 5-HT_2C which is shown to suppress ejaculation in rats, were involved in glucose homeostasis, suggesting that there is an interplay between glucose, serotonin transmission, and ejaculation. Hyperglycemia may also impair nitric oxide synthesis with microvascular abnormalities and autonomic dysfunction causing disruption in the control of ejaculation.

Gaps to improving men’s health in males with diabetes

Most males with diabetes rarely proactively seek help for issues about their sexual health. Sexual dysfunction is a sensitive issue and is rarely openly discussed in real-life practice in Asia. There are several reasons why patients are reluctant to divulge their sexual problems such as embarrassment, social taboo, misconception that sexual dysfunction has low medical importance, false perception of no effective treatment for sexual problems, or that the doctor is too young to discuss erectile dysfunction with. In China, sexual health is considered as lewd and it is inappropriate to discuss about one’s sexual behavior. A study in Hong Kong comprising 4,040 males with diabetes showed that 86% of them did not request for treatment for erectile dysfunction due to embarrassment and disease misconceptions. Another study with 603 participants in China showed that 79% males with diabetes had erectile dysfunction but fewer than 10% requested treatment during consultation, although 76% of them expressed the desire to be treated.

In addition, Asian males believe masculinity (defines a man’s role in the society) is a crucial aspect in the society. Masculine health behavior (or ‘manliness’) is often described as being enduring, stoic, and independent. They believed that they needed to portray a masculine health behavior and thus, being dependent on health care providers could demasculinize them. Males with illness who rely on medical practitioners are viewed as ‘weak’ and ‘unmanly’, and seeking medical treatment for a sexual problem is considered as ‘losing face’ or being undignified. Other factors that may influence their health-seeking behavior include socioeconomic status, stress levels, employment status, social support, and access to gender-specific (i.e., male-specific) health care services. There are also barriers at the level of health care providers. Nearly 67–90% of males with sexual dysfunction were not being assessed about their sexual dysfunction during physician visits. Most patients prefer their physicians to initiate discussion on their sexual health, rather than providing this information voluntarily. Variations in local customs, traditions, culture, beliefs, and health delivery systems can also contribute to these gaps in diagnosis and treatment. Health care providers also face several obstacles such as clinical inertia (lack of training), lack of time, patient’s discomfort or sexual health having lower medical importance than other conditions. They may assume that patients do not like to be asked about sexual problems, citing their concerns that the discussion may cause harm to the patient or be inappropriate for older patients. Some primary care providers think patients would be embarrassed talking about their sexual health unless they initiate it, as they worry that bringing up this issue without an apparent reason would lead to a patient’s suspicions of their intentions. Improved patient–provider communication plays a major role in long-term diabetes management. Due to social taboos, it may be prudent to choose a more sensitive screening method, such as self-administered questionnaires to reduce embarrassment. Patients prefer to discuss their sexual health with a primary care physician, gynecologist, and/or sex medical practitioner, especially in the presence of trusting patient–provider relationship. Hence, good continuity of care can lead to more opportunities and higher levels of comfort in discussing health issues. A more gender-specific approach to assess, stratify and improve men’s health should be integrated into routine diabetes care. Refusal of a diabetologist/endocrinologist to address the patient’s sexual health issues and referring them to a different specialty may result in diffusion and dilution of patient care. Hence, continuous training in sexual health among diabetologists, endocrinologists, and primary care physicians is required to provide holistic care. Integrating the service of allied health personnel such as nurses, diabetes educators, and pharmacists in the sexual health assessment can reduce the burden of physicians.
the majority of trained nurses and diabetes educators are females, which may pose a challenge for them to engage in an open and patient-centered discussion on sexual health. Nonetheless, there are studies suggesting that males might be more comfortable and assertive while speaking to female allied health personnel, especially when trust and rapport had been established.112,113

Traditional/complementary medicine plays a major role in Asian cultures. Studies have reported that Asian males tend to seek help from traditional complementary medical practitioners, especially for chronic illnesses, which were perceived as ‘controllable but uncurable’.96 Asians tend to believe strongly in traditional treatment which is said to ‘promote general well-being by restoring and realigning the body’s function’, with fewer side effects compared with Western medicine.114 Traditional/complementary medicine is often an alternative to avoid embarrassment with their health care providers, and to males who are worried about adverse effects of medications, or unhappy with the treatment provided.114 In Malaysia, 65% of males believed that traditional/complementary medicine was superior to Western medicine.115 However, more research is required to determine the efficacy and safety of traditional/complementary medicine.114,116,117

Approach to the management of sexual dysfunction in patients with diabetes

All males with diabetes should be routinely screened for sexual dysfunction as part of cardiovascular risk assessment during physician visits. Validated and self-administered questionnaires such as the International Index of Erectile Function (IIEF), can be used to assess sexual health while patients are waiting for consultation to avoid embarrassment and to overcome time constraints.118 Once diagnosed, males with erectile dysfunction should be assessed thoroughly for subclinical cardiovascular diseases.119 There is controversy on the routine testing of total testosterone levels in males with diabetes. To date, it is not recommended by professional organizations unless the patient has specific symptoms of hypogonadism.120,121 As obesity and insulin resistance reduce sex hormone-binding globulin (SHBG) levels, a free or bioavailable testosterone level should be used in patients with obesity and borderline low total testosterone levels.120 Males with established hypogonadism should be referred to an endocrinologist to investigate if it is primary or secondary hypogonadism.120

Lifestyle intervention, especially weight loss of at least 10% by any means, improves total and free testosterone levels.122-124 Very low-calorie diets (VLCD) or low-calorie diets (LCD) with physical activity could reduce insulin resistance and leptin levels with improvements in SHBG and total testosterone levels.125 A trial comparing the effects of LCD on insulin sensitivity, testosterone levels, and erectile function over 8-weeks in obese males who achieved a weight reduction (≥10% or more) found a significant increase in insulin sensitivity, testosterone levels ($r = -0.34$), and erectile function ($r = -0.26$), irrespective of their status of diabetes.126 A study on 104 randomly assigned men were given comprehensive instruction about lifestyle interventions such as weight reduction, increased physical activity, and choice of food reported that 23 males had their erectile function restored after 2 years.127 Similarly, in a randomized clinical trial which involved males with BMI ≥ 30 kg/m² and hypogonadism, all were included in an intensive weight loss program comprising 10 weeks of hypocaloric diet, followed by 46 weeks of weight maintenance. Compared with those without testosterone replacement, males who received testosterone replacement had greater reductions in fat mass (mean adjusted-group difference [MAD] -2.9 kg, 95% CI -5.7 to -0.2) and visceral fat area (MAD $-2,678$ mm², 95% CI $-5,180$ to -176)128,129. Another clinical trial of 65 males from Australia with metabolic syndrome and erectile dysfunction, where one group was given instruction about the Mediterranean diet (comprising whole grain, seafood, fruits, vegetables, beans, and nuts). Two years later, 13/35 following the Mediterranean diet had a restoration of normal erectile function compared with the group who was only given general information on healthy food.130 Moreover, a prospective study in Singapore on meal replacements reported them as an effective strategy in reducing weight (4.2 ± 0.8 vs 2.5 ± 0.4), abdominal obesity (4.6 ± 0.7 vs 2.6 ± 0.5), and improving erectile function (IIEF scores: 3.4 ± 0.7 vs 2.5 ± 0.5) compared with a conventional reduced fat diet.131

The effects of testosterone replacement therapy in males with pre-diabetes or diabetes are debatable. Earlier studies reported that testosterone replacement therapy was associated with increased lean mass and reduced fat mass. Yet, the effects of testosterone replacement on insulin resistance and glycemic control are inconsistent.50 Previous trials have reported conflicting results on the effects of testosterone replacement therapy on quality of life, sexual function,132-136 glycemic control,124,133,134,137-141 and/or cardiovascular outcomes.142,143 A meta-analysis of eight trials of testosterone replacement therapy in males with type 2 diabetes and hypogonadism reported significant improvements in HOMA-IR (mean difference [MD] -0.79, 95% CI -1.23 to -0.34) and HbA1c (MD -0.45%, 95% CI -0.73 to -0.16), but not for body fat percentage (MD -0.33, 95% CI -0.92 to 0.26) and BMI (MD 0.29, 95% CI -0.84 to 1.41).144 Hence, professional organizations do not recommend testosterone replacement therapy in asymptomatic males with type 2 diabetes to improve their metabolic profiles.120,145

In the large-scale Testosterone for Diabetes Mellitus (T4DM) trial involving 1,007 obese males (waist circumference >95 cm and total testosterone <14 nmol/L), testosterone replacement therapy for 2 years was associated with a 41% reduced risk of progression to type 2 diabetes (relative risk [RR] 0.59, 95% CI 0.43–0.80), mainly due to reduction in abdominal fat mass by 2.3% and increased total muscle mass by 1.7 kg.146 This finding resonated with another prospective study involving testosterone replacement therapy in 316 males with prediabetes and symptomatic hypogonadism (total testosterone ≤12.1 nmol/L). A
total of 90% of the treatment group had a HbA1c reduction of 0.39% and achieved normal HbA1c of <5.7%, compared with the untreated group.147

Treatment for erectile dysfunction and/or premature ejaculation can be initiated, regardless of the gonadal status (Figure 2). Apart from lifestyle interventions including weight loss, smoking cessation and increased physical activity level, phosphodiesterase type 5 inhibitors (PDE5 inhibitors) are currently recommended as the first-line treatment for erectile dysfunction in males with diabetes.148,149 PDE5 inhibitors can improve erectile function and quality of life, showing a higher efficacy with scheduled daily therapy vs an on-demand regimen.55,149 Notably, they are contraindicated in males with either untreated coronary artery disease or the concomitant usage of nitrates. Patients who are not responding to or contraindicated for PDE5 inhibitors should be referred to a urologist for second-line treatment such as vacuum constriction devices, intracorporeal/intraurethral prostaglandin E1 therapy, prostaglandin E1-papaverine-phenolamine combination therapy, or even penile prosthesis insertion (Table 1).55,149-151

Figure 2 | Proposed approach to addressing males health in a routine outpatient setting. IIEF, International Index of Erectile Function.
As serotonin is the primary neurotransmitter involved in the control of ejaculation, selective serotonin re-uptake inhibitors (SSRIs) such as dapoxetine are the mainstay of treatment for premature ejaculation. Besides, psychosexual-behavioral therapy can be used to identify psychological factors that may contribute to premature ejaculation, in which tailored management can be offered.

CONCLUSION

Sexual dysfunction, an early harbinger of cardiovascular diseases, is common in males with prediabetes and diabetes. However, addressing sexual health in Asian males has been challenging with multiple barriers at the levels of patients and health care providers. Assessment of sexual health with effective patient–provider communication should be integrated into routine practice to narrow the gaps in the management of males with prediabetes and diabetes.

FUNDING

This work was supported by the UK-Malaysia Joint Partnership on Non-Communicable Diseases under the Malaysia Partnership and Alliances in Research (MyPAiR), funded by the Ministry of Education, Malaysia and Medical Research Council, United Kingdom (Grant number: IF076-2019). The funders did not have any role in the design, interpretation of the study, or the decision to publish the results.

DISCLOSURE

The authors declare no conflict of interest.

Approval of the research protocol: N/A.
Informed consent: N/A.
Approval date of registry and the registration no. of the study/trial: N/A.
Animal studies: N/A.

REFERENCES
1. Bardehle D, Dinges M, White A. What is Men’s Health? A definition. J Men’s Health 2017; 13: 40–52.
2. Savoie DWAE. Men’s health around the world: A review of policy and progress across 11 countries (2009), 2009.
3. Boeri L, Capogrosso P, Ventimiglia E, et al. Sexual dysfunction in men with prediabetes. Sex Med Rev 2020; 8: 622–634.
4. Furukawa S, Sakai T, Niiya T, et al. Depressive symptoms and prevalence of erectile dysfunction in Japanese patients with type 2 diabetes mellitus: the Dogo Study. Int J Impot Res 2017; 29: 57–60.
5. Oviredu WKBA, Alidu H, Amidu N, et al. Sexual dysfunction among diabetics and its impact on the SQoL of their partners. Int J Impot Res 2017; 29(6): 250–257.
6. De Berardis G, Franciosi M, Belfiglio M, et al. Erectile dysfunction and quality of life in type 2 diabetic patients: a serious problem too often overlooked. Diabetes Care 2002; 25: 284–291.
7. Ma RC, So WY, Yang X, et al. Erectile dysfunction predicts coronary heart disease in type 2 diabetes. J Am Coll Cardiol 2008; 51: 2045–2050.
8. Majzoub A, Arafa M, Al-Said S, et al. Premature ejaculation in type II diabetes mellitus patients: association with glycemic control. Trans Androl Urol 2016; 5: 248–254.
9. Jiaob BP, Lu CC, Lam HC, et al. Patterns and their correlates of seeking treatment for erectile dysfunction in type 2 diabetic patients. J Sex Med 2009; 6: 2008–2016.
10. Boeri L, Capogrosso P, Pederzoli F, et al. Unrecognized prediabetes is highly prevalent in men with erectile dysfunction-results from a cross-sectional study. J Sex Med 2018; 15: 1117–1124.
11. Bagatell CJ, Bremner WJ. Androgens in men—uses and abuses. N Engl J Med 1996; 334: 707–714.
12. Corona G, Rastrelli G, Belancia G, et al. Hormonal association and sexual dysfunction in patients with impaired fasting glucose: a cross-sectional and longitudinal study. J Sex Med 2012; 9: 1669–1680.
13. Colangelo LA, Ouyang P, Liu K, et al. Association of endogenous sex hormones with diabetes and impaired fasting glucose in men. Multi-Ethnic Study Atherosclerosis 2009; 32: 1049–1051.
14. Ho C-H, Yu H-J, Wang C-Y, et al. Correction: prediabetes is associated with an increased risk of testosterone deficiency, independent of obesity and metabolic syndrome. PLoS One 2013; 8(12): e74173. https://doi.org/10.1371/annotation/c226aa64-8d3b-4c29-971b-84f87b618291
15. Rabiejewski M, Papierska L, Kuczerowski R, et al. Hormonal determinants of the severity of andropausal and depressive symptoms in middle-aged and elderly men with prediabetes. Clin Interv Aging 2015; 10: 1381–1391.
16. Rajput R, Banerjee S. Prevalence of adult-onset hypogonadism and erectile dysfunction in males with prediabetes. Dubai Diabetes Endocrinol J 2018; 24: 2–7.
17. Dhindsa S, Prabhakar S, Sethi M, et al. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 5462–5468.
18. Kapoor D, Aldred H, Clark S, et al. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care 2007; 30: 911–917.
19. Al Hayek AA, Khader YS, Jafal S, et al. Prevalence of low testosterone levels in men with type 2 diabetes mellitus: a cross-sectional study. J Family Community Med 2013; 20: 179–186.
20. Herrero A, Marcos M, Galindo P, et al. Clinical and biochemical correlates of male hypogonadism in type 2 diabetes. Andrology 2018; 6: 58–63.
21. Anupam B, Shivaprasad C, Vijaya S, et al. Prevalence of hypogonadism in patients with type 2 diabetes mellitus among the Indian population. Diabetes Metab Syndr 2020; 14: 1299–1304.
22. Ahmad S, Jeramang P, Tohid H, et al. Testosterone deficiency syndrome among males with type 2 diabetes mellitus in East Malaysia. Nagoya J Med Sci 2020; 82: 613–621.
23. Li Y, Zhang M, Liu X, et al. Correlates and prevalence of hypogonadism in patients with early- and late-onset type 2 diabetes. Andrology 2017; 5: 739–743.
24. Agarwal PK, Singh P, Chowdhury S, et al. A study to evaluate the prevalence of hypogonadism in Indian males with type-2 diabetes mellitus. Indian J Endocrinol Metab 2017; 21: 64–70.
25. Ganesh HK, Vijaya Sarathi HA, George J, et al. Prevalence of hypogonadism in patients with type 2 diabetes mellitus in an Asian Indian study group. Endocr Pract 2009; 15: 513–520.
26. Cheung KK, Luk AO, So WY, et al. Testosterone level in men with type 2 diabetes mellitus and related metabolic effects: a review of current evidence. J Diabetes Investig 2015; 6: 112–123.
27. Li JY, Li XY, Li M, et al. Decline of serum levels of free testosterone in aging healthy Chinese men. Aging Male 2005; 8: 203–206.
28. Aboelnaga MM, Elshahawy H. Prevalence and predictors for low total testosterone levels among male type 2 diabetic patients: an Egyptian experience. Int J Res Med Sci 2017; 4: 3381–3387.
29. Hamilton EJ, Davis WA, Makepeace A, et al. Prevalence and prognosis of a low serum testosterone in men with type 2 diabetes: the Fremantle Diabetes Study Phase II. Clin Endocrinol (Oxf) 2016; 85: 444–452.
30. Cao W, Zheng R-D, Xu S-H, et al. Association between sex hormone and blood uric acid in male patients with type 2 diabetes. Int J Endocrinol 2017; 2017: 4375253.

31. Grossmann M, Thomas MC, Panagiotopoulos S, et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab 2008; 93: 1834–1840.

32. Fukui M, Soh J, Tanaka M, et al. Low serum testosterone concentration in middle-aged men with type 2 diabetes. Endocr J 2007; 54: 871–877.

33. Biswas M, Hampton D, Newcombe RG, et al. Total and free testosterone concentrations are strongly influenced by age and central obesity in men with type 1 and type 2 diabetes but correlate weakly with symptoms of androgen deficiency and diabetes-related quality of life. Clin Endocrinol (Oxf) 2012; 76: 665–673.

34. Zheng R, Cao L, Cao W, et al. Risk factors for hypogonadism in male patients with type 2 diabetes. J Diabetes Res 2016; 2016: 5162167.

35. Mohammed M, Al-Habori M, Abdullateef A, et al. Impact of metabolic syndrome factors on testosterone and shbg in type 2 diabetes mellitus and metabolic syndrome. J Diabetes Res 2018; 2018: 4926789.

36. Holt SK, Lopushnyan N, Hotaling J, et al. Prevalence of low testosterone and predisposing risk factors in men with type 1 diabetes mellitus: findings from the DCCT/EDIC. J Clin Endocrinol Metab 2014; 99: E1655–E1660.

37. Tripathy D, Dhindsa S, Garg R, et al. Hypogonadotropic hypogonadism in erectile dysfunction associated with type 2 diabetes mellitus: a common defect? Metab Syndr Relat Disord 2003; 1: 75–80.

38. Kapoor D, Malkin CJ, Channer KS, et al. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf) 2005; 63: 239–250.

39. Russo V, Chen R, Armamento-Villareal R. Hypogonadism, type-2 diabetes mellitus, and bone health: a narrative review. Front Endocrinol (Lausanne) 2021; 11: 607240.

40. Betancourt-Albrecht M, Cunningham GR. Hypogonadism and diabetes. Int J Impot Res 2003; 15: S14–S20.

41. Andersson B, Märin P, Lissner L, et al. Testosterone concentrations in women and men with NIDDM. Diabetes Care 1994; 17: 405–411.

42. George JT, Veldhuis JD, Tena-Sempere M, et al. Exploring the pathophysiology of hypogonadism in men with type 2 diabetes: kisspeptin-10 stimulates serum testosterone and LH secretion in men with type 2 diabetes and mild biochemical hypogonadism. Clin Endocrinol (Oxf) 2013; 79: 100–104.

43. SkorupskiKte K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update 2014; 20: 485–500.

44. Pitteloud N, Haidin M, Dwyer AA, et al. Increasing Insulin resistance is associated with a decrease in leydig cell testosterone secretion in men. J Clin Endocrinol Metab 2005; 90: 2636–2641.

45. Zumoff B, Strain GW, MillerLK, et al. Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab 1990; 71: 929–931.

46. Vermeulen A, Kaufman JM, Deslypere JP, et al. Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J Clin Endocrinol Metab 1993; 76: 1140–1146.

47. Tomar R, Dhindsa S, Chaudhuri A, et al. Contrasting testosterone concentrations in type 1 and 2 diabetes. Diabetes Care 2006; 29: 1120–1122.

48. Ng Tang Fui M, Hoermann R, Cheung AS, et al. Obesity and age as dominant correlates of low testosterone in men irrespective of diabetes status. Andrology 2013; 1: 906–912.

49. Pivonello R, Menafra D, Riccio E, et al. Metabolic disorders and male hypogonadotropic hypogonadism. Front Endocrinol 2019; 10: 345.

50. Grossmann M, Ng Tang Fui M, Cheung AS. Late-onset hypogonadism: metabolic impact. Andrology 2020; 8: 1519–1529.

51. Lewis RW, Fugl-Meyer KS, Corona G, et al. Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med 2010; 7(4 Pt 2): 1598–1607.

52. Rabiewski M, Papierska L, Piątkiewicz P. The prevalence of prediabetes in population of Polish men with late-onset hypogonadism. Aging Male 2014; 17: 141–146.

53. Corona G, Giorda CB, Cucinotta D, et al. Exploring the prevalence and predictors of erectile dysfunction in men with newly diagnosed type 2 diabetes mellitus patients. J Endocrinol Invest 2013; 36: 864–868.

54. Al-Hunayan A, Al-Mutar M, Kehinde EO, et al. The multinational Men ATTitudes to Life Events and Sexuality study: the influence of diabetes on self-reported erectile function, attitudes and treatment-seeking patterns in men with erectile dysfunction. Int J Clin Pract 2007; 61: 1446–1453.
59. Giugliano F, Maiorino M, Bellastella G, et al. Determinants of erectile dysfunction in type 2 diabetes. *Int J Impot Res* 2010; 22: 204–209.

60. Lu CC, Jiann BP, Sun CC, et al. Association of glycemic control with risk of erectile dysfunction in men with type 2 diabetes. *J Sex Med* 2009; 6: 1719–1728.

61. Kalter-Leibovici O, Wainstein J, Ziv A, et al. Clinical, socioeconomic, and lifestyle parameters associated with erectile dysfunction among diabetic men. *Diabetes Care* 2005; 28: 1739–1744.

62. Yamasaki H, Ogawa K, Sasaki H, et al. Prevalence and risk factors of erectile dysfunction in Japanese men with type 2 diabetes. *Diabetes Res Clin Pract* 2004; 66: S173–S177.

63. Fukui M, Tanaka M, Okada H, et al. Prevalence of erectile dysfunction in Japanese diabetics. *Diabetes Res Clin Pract* 2005; 70: 81–89.

64. Cho NH, Ahn CW, Park JY, et al. Prevalence of erectile dysfunction in Korean men with type 2 diabetes mellitus. *Diabet Med* 2006; 23: 198–203.

65. Romeo JH, Seftel AD, Madhun ZT, et al. Sexual function in men with diabetes type 2: association with glycemic control. *J Urol* 2000; 163: 788–791.

66. Malavige LS, Jayaratne SD, Kothariarchchi ST, et al. Erectile dysfunction among men with diabetes is strongly associated with premature ejaculation and reduced libido. *J Sex Med* 2008; 5: 2125–2134.

67. Vrentzos GE, Paraskevas KI, Mikhailidis DP. Dyslipidemia as a risk factor for erectile dysfunction. *Curr Med Chem* 2007; 14: 1765–1770.

68. Defeudis G, Mazzilli R, Tenuta M, et al. Erectile dysfunction and diabetes: a melting pot of circumstances and treatments. *Diabetes Metab Res Rev* 2022; 38: e3494.

69. Shin HW, Rha YC, Han DH, et al. Erectile dysfunction and disease-specific quality of life in patients with obstructive sleep apnea. *Int J Impot Res* 2008; 20: 549–553.

70. Margel D, Cohen M, Livne PM, et al. Severe, but not mild, obstructive sleep apnea syndrome is associated with erectile dysfunction. *Urology* 2004; 63: 545–549.

71. Nordin RB, Soni T, Kaur A, et al. Prevalence and predictors of erectile dysfunction in adult male outpatient clinic attendees in Johor, Malaysia. *Singapore Med J* 2019; 60: 40–47.
syndrome: a prospective, comparative study. Int J Impot Res 2017; 29: 105–109.

89. El-Sakka AI. Premature ejaculation in non-insulin-dependent diabetic patients. Int J Androl 2003; 26: 329–334.

90. Owiredu WK, Amidu N, Alidu H, et al. Determinants of sexual dysfunction among clinically diagnosed diabetic patients. Reprod Biol Endocrinol 2011; 9: 70.

91. Althof SE, McMahon CG, Waldinger MD, et al. An update of the International Society of Sexual Medicine’s guidelines for the diagnosis and treatment of premature ejaculation (PE). Sex Med 2014; 2: 60–90.

92. Ng CJ, Low WY, Tan NC, et al. The role of general practitioners in the management of erectile dysfunction: a qualitative study. Int J Impot Res 2004; 16: 60–63.

93. Almigbal TH, Schattner P. The willingness of Saudi men with type 2 diabetes to discuss erectile dysfunction with their physicians and the factors that influence this. PLoS One 2018; 13: e0201105-e.

94. Nicolosi A, Glasser DB, Brock G, et al. Diabetes and sexual function in older adults: results of an international survey. Br J Diabetes Vasc Dis 2002; 2: 336–339.

95. Gott M, Hinchliff S, Galena E. General practitioner attitudes to discussing sexual health issues with older people. Soc Sci Med 2004; 58: 2093–2103.

96. Sun Y, Liu Z. Men’s health in China. J Men’s Health Gender 2007; 4: 13–17.

97. Lo WH, Fu SN, Wong CK, et al. Prevalence, correlates, attitude and treatment seeking of erectile dysfunction among type 2 diabetic Chinese men attending primary care outpatient clinics. Asian J Androl 2014; 16: 755–760.

98. Ho CC, Singam P, Hong GE, et al. Male sexual dysfunction in Asia. Asian J Androl 2011; 13: 537–542.

99. Tong SF, Low WY, Ismail SB, et al. Physician’s intention to initiate health check-up discussions with men: a qualitative study. Fam Pract 2011; 28: 307–316.

100. Moon DG. Changing men’s health: leading the future. World J Mens Health 2018; 36: 1–3.

101. Grant PS, Lipscomb D. How often do we ask about erectile dysfunction in the diabetes review clinic? Development of a neuropathy screening tool. Acta Diabetol 2009; 46: 285–290.

102. Perttula E. Physicat attitudes and behaviour regarding erectile dysfunction in at-risk patients from a rural community. Postgrad Med J 1999; 75: 83–85.

103. Nicolai MP, Both S, Liem SS, et al. Discussing sexual function in the cardiology practice. Clin Res Cardiol 2013; 102: 329–336.

104. Harding JR, Manry J. Provider sexual health assessment of the aging adult. Educ Gerontol 2017; 43: 462–467.

105. Baldwin K, Ginsberg P, Harkaway RC. Under-reporting of erectile dysfunction among men with unrelated urologic conditions. Int J Impot Res 2003; 15: 87–89.

106. Mellor RM, Greenfield SM, Dowsell G, et al. Health care professionals’ views on discussing sexual wellbeing with patients who have had a stroke: a qualitative study. PLoS One 2013; 8: e78802-e.

107. Lim LL, Lau ESH, Kong APS, et al. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care 2018; 41: 1312–1320.

108. Smith ML, Honoré Goltz H, Ahn S, et al. Correlates of chronic disease and patient-provider discussions among middle-aged and older adult males: implications for successful aging and sexuality. Aging Male 2012; 15: 115–123.

109. Rutte A, Welschen LM, van Splunter MM, et al. Type 2 diabetes patients’ needs and preferences for care concerning sexual problems: a cross-sectional survey and qualitative interviews. J Sex Marital Ther 2016; 42: 324–337.

110. Houman JJ, Eleswarapu SV, Mills JN. Current and future trends in men’s health clinics. Transl Androl Urol 2020; 9 (suppl 2): S116–S122.

111. Rosu MB, Oliffe JL, Kelly MT. Nurse practitioners and men’s primary health care. Am J Mens Health 2017; 11: 1501–1511.

112. Alexander JA, Hearld LR, Mittler JN, et al. Patient-physician role relationships and patient activation among individuals with chronic illness. Health Serv Res 2012; 47(3 Pt 1): 1201–1223.

113. Hall JA, Roter DL. Do patients talk differently to male and female physicians? A meta-analytic review. Patient Educ Couns 2002; 48: 217–224.

114. Lee JKC, Tan RBW, Chung E. Erectile dysfunction treatment and traditional medicine: can East and West medicine coexist? Transl Androl Urol 2017; 6: 91–100.

115. Low W-Y, Tan H-M. Asian traditional medicine for erectile dysfunction. J Men’s Health Gender 2007; 4: 245–250.

116. Li H, Jiang H, Liu J. Traditional Chinese medical therapy for erectile dysfunction. Transl Androl Urol 2017; 6: 192–198.

117. Chubak B, Doctor A. Traditional Chinese medicine for sexual dysfunction: review of the evidence. Sex Med Rev 2018; 6: 410–418.

118. Cappelleri JC, Rosen RC, Smith MD, et al. Diagnostic evaluation of the erectile function domain of the International Index of Erectile Function. Urology 1999; 54: 346–351.

119. Billups KL, Bank AJ, Padma-Nathan H, et al. Erectile dysfunction as a harbinger for increased cardiometabolic risk. Int J Impot Res 2008; 20: 236–242.

120. Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2018; 103: 1715–1744.

121. American Diabetes Association; Standards of Medical Care in Diabetes - 2018. Abridged for Primary Care Providers. Clin Diabetes 2018; 36(1): 14–37.

122. Grossmann M. Hypogonadism and male obesity: focus on unresolved questions. Clin Endocrinol (Oxf) 2018; 89: 11–21.
123. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab 2011; 96: 2341–2353.

124. Corona G, Rastrelli G, Monami M, et al. Body weight loss reverses obesity-associated hypogonadotrophic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol 2013; 168: 829–843.

125. Giagulli VA, Castellana M, Murro I, et al. The role of diet and weight loss in improving secondary hypogonadism in men with obesity with or without type 2 diabetes mellitus. Nutrients 2019; 11: 2975.

126. Khoo J, Piantadosi C, Worthley S, et al. Effects of a low-energy diet on sexual function and lower urinary tract symptoms in obese men. Int J Obes 2010; 34: 1396–1403.

127. Esposito K, Ciotola M, Giugliano F, et al. Effects of intensive lifestyle changes on erectile dysfunction in men. J Sex Med 2009; 6: 243–250.

128. Ng Tang Fui M, Hoermann R, Prendergast LA, et al. Symptomatic response to testosterone treatment in dieting obese men with low testosterone levels in a randomized, placebo-controlled clinical trial. Int J Obes (Lond) 2017; 41: 420–426.

129. Ng Tang Fui M, Prendergast LA, Dupuis P, et al. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Med 2016; 14: 153.

130. Hohmann MC, Kashanian JA. Can lifestyle modification affect men’s erectile function? Transl Androl Urol 2016; 5: 187–194.

131. Khoo J, Ling PS, Tan J, et al. Comparing the effects of meal replacements with reduced-fat diet on weight, sexual and endothelial function, testosterone and quality of life in obese Asian men. Int J Impot Res 2014; 26: 61–66.

132. Hackett G, Cole N, Bhartia M, et al. The response to testosterone undecanoate in men with type 2 diabetes is dependent on achieving threshold serum levels (the BLAST study). Int J Clin Pract 2014; 68: 203–215.

133. Hackett G, Cole N, Bhartia M, et al. Testosterone replacement therapy improves metabolic parameters in hypogonadal men with type 2 diabetes but not in men with coexisting depression: the BLAST study. J Sex Med 2014; 11: 840–856.

134. Gianatti EJ, Dupuis P, Hoermann R, et al. Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: a randomized controlled trial. Diabetes Care 2014; 37: 2098–2107.

135. Hackett G, Cole N, Bhartia M, et al. Testosterone replacement therapy with long-acting testosterone undecanoate improves sexual function and quality-of-life parameters vs. placebo in a population of men with type 2 diabetes. J Sex Med 2013; 10: 1612–1627.

136. Brooke JC, Walter DJ, Kapoor D, et al. Testosterone deficiency and severity of erectile dysfunction are independently associated with reduced quality of life in men with type 2 diabetes. Andrology 2014; 2: 205–211.

137. Cai X, Tian Y, Wu T, et al. Metabolic effects of testosterone replacement therapy on hypogonadal men with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Asian J Androl 2014; 16: 146–152.

138. Grossmann M, Hoermann R, Wittert G, et al. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Endocrinol (Oxf) 2015; 83: 344–351.

139. Corona G, Rastrelli G, Maggi M. Diagnosis and treatment of late-onset hypogonadism: systematic review and meta-analysis of TRT outcomes. Best Pract Res Clin Endocrinol Metab 2013; 27: 557–579.

140. Taylor SR, Meadowcroft LM, Williamson B. Prevalence, pathophysiology, and management of androgen deficiency in men with metabolic syndrome, type 2 diabetes mellitus, or both. Pharmacotherapy 2015; 35: 780–792.

141. Yassin DJ, Doros G, Hamremer PG, et al. Long-term testosterone treatment in elderly men with hypogonadism and erectile dysfunction reduces obesity parameters and improves metabolic syndrome and health-related quality of life. J Sex Med 2014; 11: 1567–1576.

142. Hackett G, Cole N, Mulay A, et al. Long-term testosterone therapy in type 2 diabetes is associated with reduced mortality without improvement in conventional cardiovascular risk factors. BJU Int 2019; 123: 519–529.

143. Corona G, Rastrelli G, Di Pasquale G, et al. Endogenous testosterone levels and cardiovascular risk: meta-analysis of observational studies. J Sex Med 2018; 15: 1260–1271.

144. Zhang J, Yang B, Xiao W, et al. Effects of testosterone supplement treatment in hypogonadal adult males with T2DM: a meta-analysis and systematic review. World J Urol 2018; 36: 1315–1326.

145. Yeap BB, Wu FCW. Clinical practice update on testosterone therapy for male hypogonadism: contrasting perspectives to optimize care. Clin Endocrinol (Oxf) 2019; 90; 56–65.

146. Wittert GA, Robledo KP, Grossmann M, et al. 274-OR: effect of testosterone treatment on type 2 diabetes incidence in high-risk men enrolled in a lifestyle program: a two-year randomized placebo-controlled trial. Diabetes 2020; 69 (Suppl 1): 274-OR.

147. Yassin A, Haider A, Haider KS, et al. Testosterone therapy in men with hypogonadism prevents progression from prediabetes to type 2 diabetes: eight-year data from a registry study. Diabetes Care 2019; 42: 1104–1111.

148. Balhara YP, Sarkar S, Gupta R. Phosphodiesterase-5 inhibitors for erectile dysfunction in patients with diabetes mellitus: a systematic review and meta-analysis of
randomized controlled trials. *Indian J Endocrinol Metab* 2015; 19: 451–461.

149. Tamás V, Kempler P. Sexual dysfunction in diabetes. *Handb Clin Neurol* 2014; 126: 223–232.

150. Bebb R, Millar A, Brock G. Sexual dysfunction and hypogonadism in men with diabetes. *Can J Diabetes* 2018; 42(Suppl 1): S228–s33.

151. Cohen SD. The challenge of erectile dysfunction management in the young man. *Curr Urol Rep* 2015; 16: 84.

152. Gillman N, Gillman M. Premature ejaculation: aetiology and treatment strategies. *Med Sci* 2019; 7: 102.

153. Evans JD, Hill SR. A comparison of the available phosphodiesterase-5 inhibitors in the treatment of erectile dysfunction: a focus on avanafil. *Patient Prefer Adher* 2015; 9: 1159–1164.

154. Wright PJ. Comparison of phosphodiesterase type 5 (PDE5) inhibitors. *Int J Clin Pract* 2006; 60(8): 967–975.

155. Andrews C, Wright SE, Raskin H. Library learning spaces: investigating libraries and investing in student feedback. *J Libr Adm* 2016; 56: 647–672.

156. Kang SG, Kim JJ. Udenafil: efficacy and tolerability in the management of erectile dysfunction. *Ther Adv Urol* 2013; 5 (2): 101–110.

157. Park HJ, Moon KH, Lee SW, et al. Mirodenafil for the treatment of erectile dysfunction: a systematic review of the literature. *World J Mens Health* 2014; 32(1): 18–27.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Summary of previous literature on the prevalence of erectile dysfunction among patients with prediabetes

Table S2 | Summary of previous literature on the prevalence of erectile dysfunction among patients with type 1 diabetes

Table S3 | Summary of previous literature on the prevalence of erectile dysfunction among patients with type 2 diabetes

Table S4 | Summary of previous literature on the prevalence of erectile dysfunction among patients with undefined type of diabetes