The genus *Cuscuta* (Convolvolaceae): An updated review on indigenous uses, phytochemistry, and pharmacology

Shazia Noureen 1, Sobia Noreen 1*, Shazia Akram Ghumman 2, Fozia Batool 1, Syed Nasir Abbas Bukhari 3

1 Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan
2 College of Pharmacy, University of Sargodha, Sargodha-40100, Pakistan
3 Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka2014, Saudi Arabia

Article type: Review article

Article history:
- Received: Oct 23, 2018
- Accepted: May 10, 2019

Keywords: Bioactive, Cuscuta, Folk medicines, Pharmacological activities, Phytochemicals

Abstract

Cuscuta, commonly known as dodder, is a genus of family convolvolaceae. Approximately 170 species of *Cuscuta* are extensively distributed in temperate and subtropical areas of the world. Species of this genus are widely used as essential constituents in functional foods and traditional medicinal systems. Various parts of many members of *Cuscuta* have been found efficacious against a variety of diseases. Phytochemical investigations have confirmed presence of biologically active moieties such as flavonoids, alkaloids, lignans, saponines, phenolics, tannins, and fatty acids. Pharmacological studies and traditional uses of these plants have proved that they are effective antibacterial, antioxidant, anti-inflammatory, antitumor, antipyretic, anticancer, analgesic, anti hair fall, and antiatherogenic agents.

Introduction

Plant-based medicines are an integral part of virtually all cultures since immemorial times. The journey of information from prehistoric texts to various indigenous folklores and modern preparations has witnessed the presence of bioactive moieties with therapeutic potential in these herbs (1-4). The immense population of current allopathic products is embedded in nature. More than half of the clinically approved drugs in the world are either natural products or their modifications. Higher plants being an endless reservoir contribute above one fourth. The remarkable resurgence of interest in nature to explore pharmaceutical and nutraceutical agents is still marching towards new horizons (5-7).

Ever growing consumption of natural products by local masses has forcefully motivated the scientists to acquire systematic, elaborated, and practical knowledge about their constituents by using advanced technologies (8). Herbal products, both as purified compounds and in the form of standard extracts, offer infinite odds for novel pharmaceutical products due to the matchless accessibility to different chemical species (9). Target-based phytochemicals have transfigured the medicinal industry because these are not only directly utilized for treatment purposes but also act as leads and standard template for synthetics drugs (10-11). Therefore, modern scientific investigations are turning towards traditional medicines to look for new windows of opportunities giving rise to superior pharmacologically active agents against diseases (12).

The genus *Cuscuta* L. commonly known as dodder is one of the essential herbal constituents of pharma foods and curative tonics that are frequently prescribed to nourish various body parts. It is used to enhance the nutritional value of porridge and alcoholic beverages (13). The genus has a rich history of folk medicinal uses, and numerous phytoconstituents of therapeutic value have been isolated and identified (14). Various species are indigenousy used to cure fits, melancholy, insanity (15), fertility problems (16), tumors (17), scabies, eczema (18), chronic ulcer, jaundice, inflammation (19), chest pain (20), fever, itching (21), osteoporosis (22), diarrhea, oedema, stomach ache, infections, measles, sores, kidney problems (23), sprain (24), alleviation of high blood pressure, leucorrhoea (25), obesity (26), migraine, amnesia, epilepsy, and constipation (27).

Pharmacological analysis of various *Cuscuta* species unveiled their antitumor, antimicrobial (28-31), hepatoprotective (32-33), anticonvulsant (34), immunostimulatory, antioxidant (14, 35-37), α-glucosidase inhibition (38), psychopharmacological (39), hair-growth promoting (40-41), anti-steroidogenic (42), anti-inflammatory (43-44), diuretic (45), analgesic (46), antipyretic (47-48), anti-HIV (49), antidiabetic (50), neuroprotective (51), antilucer (52), antispasmodic, hemodynamic, bradycardia, anti-atherogenic, cardiotoxic, and muscle relaxant activities (53).

Cuscuta species are rich in bioactive constituents that exhibit a wide variety of pharmacological activities. Presence of a good deal of valuable components, broad range of biological attributes and medicinal value of these plants in folk medicinal systems gives stimulation toward the concept that this genus can play an important role in discovery of new and more efficient therapeutic agents. This review is an effort to edify knowledge of its phytochemical richness, pharmacological and biological significance, and folk medicinal uses, which will enhance its value as a potent pharmaceutical precursor.

Corresponding author: Sobia Noreen. Department of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan. Tel: +923018434400; Email: sobianoreen@uos.edu.pk
Methods
This review on Cuscuta genus has been written according to the information collected from various scientific databases such as Scopus, Researchgate, Web of Science, ScienceDirect, and PubMed up to August 2018.

Distribution and botanical description
Cuscuta, a flowering parasitic genus was previously placed in the Convolvulaceae family, but later it was segregated as the separate family Cuscutaceae (54-57). Global distribution record indicates that most of the species are concentrated in tropical and subtropical areas and fewer in temperate regions. This parasitic genus is known by many common names such as dodder, gold-thread, hair-weed, devil’s hair, hell-vine, strangler, love-vine, pull-down, etc. in different regions of the world. The number of species documented by various authors varies from 100 to 170 (58-66). Medicinally important species are C. reflexa Roxb. (67), C. chinesis Lam. (68), C. japonica Choisy (69), C. australis R. Br. (70), C. europaea Linn. (71), C. gigantea Griff. (72), C. hyalina Roth. (73), C. campestris Yuncker. (47), C. racemosa Mart. (52), C. pedicellata Ledeb. (74), C. epithymum L. (75), C. kilimanjari Oliv. (76), C. kotschyanà Boiss. (77), C. mitraeformis Englelm. (78), C. tinctoria Mart (79), and C. capitata Roxb. (80).

Cuscuta species are holophrastic, annual or perennial, herbaceous vines. The thread-like slender, twining stems have orange, red, or yellow color. Majority of the members have a chlorophyllous, scaly leaves while some of them are with reduced synthetic apparatus and can perform localized and limited photosynthesis. Bisexual flowers in multiple colors like cream, yellow, white, and pink are pollinated by insects. Roots are absent, and haustoria are used to suck water and nutrients. Several morphological and physiological simplifications, for instance absence of cotyledons or radicles in their embryos, scaly leaves without vascular tissue and haustoria represent an adaptation to parasitism. They are obligate parasitic plants (54, 61, 81-84). These stem and leaf parasites depend entirely on their host plant, thus reducing the growth and yield of the host. They mostly infect many broadleaf crops, ornamentals, plants, weeds, and a few monocot crops. Some of the species are strictly host-specific while others thrive on diverse hosts (85, 86). The usual growing season is early summer; germination starts in May, parasites invade the host by haustoria and may wither and die in the absence of a suitable host within two weeks (87). Flowering starts in June and seed production in November (88).

Table 1. Common names and global distribution of some medicinally important Cuscuta species

Name	Common name	Distribution	References
C. reflexa	Best weed, paddingLeft, beggar wood, strangler teak, scald wood, dodder of thyme, greater dodder, lesser dodder	Pakistan, India, China, Iraq, Afghanistan, Bangladesh, Ethiopia, Kazakstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Mongolia, Russia, China, Iran, Iraq, Afghanistan, India, Sri Lanka, Indonesia, Korea, Japan, Taiwan, Thailand, Australia, Korea	(58, 91)
C. chinesis	Chinese dodder	Mongolia, Russia, China, Iran, Iraq, Afghanistan, India, Sri Lanka, Indonesia, Korea, Japan, Taiwan, Thailand, Australia, Ethiopia	(68, 92)
C. japonica	Japanese dodder	Taiwan, Africa, Japan, Australia, Madagascar, Europe, Asia, Senegal, Ethiopia, Korea	(23, 76, 94-96)
C. australis	Australian dodder, Omorfengelje, southern dodder	India, Romania, Bulgaria, Iran, Pakistan, China, Afghanistan, Tajikistan, Uzbekistan, Mongolia, Russia, China, Iran, Iraq, Afghanistan, India, Sri Lanka, Indonesia, Korea, Japan, Taiwan, Thailand, Australia, Ethiopia	(62, 72)
C. europaea		Pakistan, China, Afghanistan, Tajikistan, Uzbekistan, Mongolia, Russia, China, Iran, Iraq, Afghanistan, India, Sri Lanka, Indonesia, Korea, Japan, Taiwan, Thailand, Australia, Ethiopia	(97-99)
C. gigantea		Pakistan, Ethiopia, Sudan, Kenya, Uganda, Burundi, Rwanda, Zimbabwe, India, Botswana, Namibia, South Africa	(100)
C. hyalina		Pakistan, Ethiopia, Sudan, Kenya, Uganda, Burundi, Rwanda, Zimbabwe, India, Botswana, Namibia, South Africa	(101)
C. plomiflora	Small wood dodder, red dodder	North Africa, Southwestern and southeastern Asia, Ethiopia, Madagascar, Angola	(23, 101-102)
C. campestris	Field dodder, common dodder, prairie dodder, yellow dodder, common weed, clover dodder,	Saudi Arabia, Nigeria, South America, Europe, Asia, Africa, Australia, Taiwan	(81, 86, 103-105)
C. racemosa	Chilean dodder, lead-vine, golden thread	Brazil, Chile	(52, 106)
C. pedicellata	Clover dodder	Pakistan, Egypt, Qatar, Saudi Arabia, UAE, Iran	(26, 99, 107-109)
C. epithymum	Common dodder, Clover dodder, lesser dodder, thin dodder	Pakistan, Ireland, Iran, Poland	(95, 106, 110-112)
C. kotschyanà	Dodder	Sudan, Ethiopia, Congo, Malawi, Zimbabwe, Mozambique, Limpopo, Madagascar	(23, 96)
C. monogyna	Eastern dodder	Iran	(113)
C. approximata	Alfalfa dodger	Turkey, Iran	(14, 114-115)
C. kotschyanà	Smooth seed alfalfa dodger	Iran	(99)
C. capitata		India, Nepal	(80, 116)
C. mitraeformis		Mexico	(79)

C. Cuscuta
Medicinal uses

The local inhabitants of rural areas are aware of inherent properties of various plants. They preferentially use these herbs and their products to treat multiple types of diseases due to their handiness and low cost (117). Potentially useful plants have been acknowledged and sequentially conveyed throughout the centuries in all societies. Some of them are used through self-medication, while others are recommended by traditional healers (118). Plant utilization as medicine ranges from the direct administration of the leaves, seeds, barks, roots, and stems to the extracts and decoctions from different parts of the plants (119).

Many *Cuscuta* species being rich sources of diverse phytochemicals are popular components of various folk medicinal systems. *Cuscuta* species are used in traditional medicine as a purgative, diaphoretic, anthelmintic, diuretic, and tonic as well as a treatment for itching and bilious disorders (120, 121). Seeds, stem, and whole plant are utilized as prescription to treat different types of ailments. Medicinal uses of several parts of *Cuscuta* members are given in Table 2.

C. reflexa is a treasured medicinal herb and widely used in conventional medicinal system of various Asian countries including China, India, Bangladesh, and Thailand for treating multiple disorders (122). It is called a miracle therapeutic plant in the ethnobotany, and a wide array of chemical compounds has been isolated with diverse medicinal properties (123). *C. reflexa* whole plant is used to treat conjunctivitis, respiratory disorders, piles, ulcers, and stomach problems (124). The paste of whole plant mixed with latex *Carica papaya* causes abortions (125). In rural areas of India its juice is used against jaundice. Paste of plant is effective to

| Table 2. Traditional medicinal uses of some Cuscuta species |
|-------------|-------|---------------|-----------------|-----------------|
| Species | Plant part | Preparation | Traditional use | References |
| *C. reflexa* | WP | Paste | Treatment of swollen testicles, gout and joint pain, | (67, 125, 127- |
| | | | causes abortion, anti-rheumatic, analgesic | 128, 132, 169-|
| | | | | 176 |
| | | Infusion | Infection treatment | (149) |
| | | Decoction | Use of skin disease, used for jaundice, cough, blood | (171-172) |
| | | | purification, bronchitis, fever, sex stimulation | |
| | | | Antidiarrheal, anti-inflammatory, anti-ulcer, purgative, | (124, 131, 144, |
| | | | antioxidant, conjunctivitis, analgesic, | 150, 169, 173-|
| | | | hepatoprotective, useful in cough, cephalalgia, fever, | 175 |
| | | | leucorrhoea, and paralysis, respiratory disorders, | |
| | | | piles, stomach problem, constipation, spleen diseases,| |
| | | | helminthiasis, fracture joining | |
| Stem | Decoction | Paste | Anti-hair fall, anti-rheumatic, useful in skin diseases| (29, 128, 144) |
| | | Juice | Jaundice treatment | (126, 176) |
| | | Crushed | Blood purifier, purgative, good for brain, fever, | (135, 138) |
| | | | anthrax in cattle | |
| | | Decoction | Effective in bilious disorders and fever | (133-134) |
| Seeds | Decoction | Paste | Cause abortion | (144) |
| | | | Carminative, anthelmintic, alternative, emmenagogue, | (129, 170) |
| | | | sedative, diuretic, useful in ulcer, liver disorders | |
| | | Poultice | Pain reliever | (177) |
| Leaves | Extract | Juice | Anti-hypertensive, anti-diarrheal, useful in jaundice.| (179) |
| | | | Effect in scabies, eczema, inducing sterility | (18, 180) |
| | | Fruits | Anti-pyretic, cough reliever | (67) |
| *C. chinensis* | WP | Juice | Anti-ulcer, anti-inflammatory, wound healer, jaundice| (19) |
| | | Paste | Treatment | |
| Seeds | | Paste | Carminative, tonic, diuretic, sedative, diuretic | (155) |
| Stem | Paste | | Joining fractures | (155) |
| | | | Expectorant, carminative, tonic, anthelmintic, | (158) |
| | | | purgative, diuretic, anti-inflammatory, analgesic | |
| *C. japonica* | Leaves | | Antihypertensive | (93) |
Continued Table 2.

Species	Part Used	Preparation	Use
C. australis			Laxative, anthelmintic, astringent, emollient, sedative, sudorific, liver and kidney tonic, useful in sores and measles (23)
C. australis	seeds	Decoction	Brain tonic (181)
C. europaea	Sap		Carminative (71)
C. europaea	WP	Extract	Anti-psoriasis (71)
C. gigantea	Juice		Antipoisonous (72, 164)
C. gigantea			Anti-septic (116)
C. hyalina	WP		Purgative, useful externally against itching and internally in protracted fevers (21)
C. hyalina		Infusion	Sores washers (21)
C. hyalina			Abortion treatment (73)
C. planiflora	WP	Extract	Antiulcer, against culex mosquito, (23)
C. campestris	WP	Decoction	Purgative, useful in constipation, poultice (105)
C. racemosa			Anti-inflammatory, diuretic, effective in the stomach and hepatic disorders and fresh wounds (52)
C. pedicellata			Anti-obesity (26)
C. epithymum	WP		Purgative, wound healer, anti-inflammatory, antihypertensive, useful in Stomachache (168)
C. kilimanjari	Stem		Diuretic, laxative, liver and kidney tonic, to treat sciatica, scurvy and scrofula derma (163, 182)
C. capitata	WP	Powder	Astringent, Laxative, detereive (75)
C. capitata		Extract	Scleroderma treatment (162)
C. approximata	WP	Sap	Effective in stomach ache, edema, veterinary treatment, agalactia (76)
C. approximata		Stem	Useful in epilepsy (183)
C. capitata	WP	Sap	Treatment of ringworm and warts (79)
C. capitata		Powder	Reduces irritation of bladder and improves urinary function (80)
C. capitata			Useful in kidney problems (116)
C. capitata			Useful in sin disease (116)

*C. Cuscuta; *Whole plant

C. reflexa stems are crushed with *Clerodendrum viscosum* leaves and fed to cattle to treat anthrax (138). The plant is used for skin infections and dandruff (139-140). The paste of whole plant with *Achyranthes aspera* is used to control excessive bleeding during menstruation (141). It is also used for treatment of bone fracture and body pain (142). In folk medicine of Bangladesh, it is used to cure tumors (17). The Tripura community of Bangladesh and Satar tribes in Nepal use this plant to cure edema, body ache and for maintenance of liver function. It is used for treating constipation, spleen diseases, diarrhea, and inflammation. Paste mixed with sesame oil is applied for curing hair fall. The decoction of stem is used to cure diarrhea, cholera, and asthma, while decoction of seeds causes depression, nausea, and vomiting (29, 143-145). Whole plant powder is used to treat jaundice by tribal people of nallalamais in Andhra Pradesh (146).

It is also used as expectorant, aphrodisiac, is useful to treat headache, gout, and rheumatism (67, 126-128). Plant juice mixed with other decoctions is purgative. Seeds of *C. reflexa* are carminative, anthelmintic, alterative, emmenagogue, sedative, and diuretic. It is effective against warts (116, 129). Leaves are used to treat eczema, scabies, cold, and to induce sterility (18, 130). Rabha tribes of west Bengal use the whole plant to treat leucorrhoea (131). It is applied internally to cure protracted fevers and externally on itchy skin. The plant is frequently used in Ayurvedic medicine to give relief in urinating difficulties, muscle pain, and coughs (132, 133). Pills prepared from the dried plant are used for treatment of tuberculosis (89). Its stem is a blood purifier, good for brain and fever (134-135). Tribal people use its various parts to treat fits, insanity, melancholy, and to control fertility (15). It is commonly used in veterinary medicines as poultice and sprains. The powder is used as astringent and diaphoretic for cattle (136-137).
in vomiting, and purifies the blood (32). C. reflexa is an essential constituent of several medical compositions, which are used in the treatment of migraine, headache, chronic catarrh, epilepsy, amnesia, and to prolong fever (27, 147-148). Maceration of whole plant is used to treat infections (149). The whole plant is also useful in cephalagia, paralysis, stomach pain and helmintihsis (89, 150).

C. chinesis Lam. also known as Chinese dodder or Tu-Si-Zi, also has a wide range of uses. It has been mentioned in various old Chinese scripts and recommended by many herbal practitioners (68). Besides China it is also a famous prescription in many other countries. In Pakistan dressing made of plant is used on painful inflammations. Moreover, paste is useful for chronic ulcers and wounds (151). In traditional Indian system, leaves and stems are used to enhance lactation (152). In Vietnam people use whole plant in back pain and constipation (153). In Korea, seeds with other herbal prescriptions are effective to improve sexual function and health (154). Stem paste of C. chinensis is applied to fractured bone to promote the joining (155). Whole plant juice is used to treat inflammation and jaundice (19, 156). A lotion prepared from stem is used to treat sore heads and inflamed eyes. It has been found useful in the treatment of impotence, nocturnal emissions, dizziness, lumbaro, leucorrhoea, decreased eyesight, abortion, and chronic diarrhea (133). C. chinensis is used in treatment of mania, epilepsy, and insanity (157).

Its stem and seeds are considered tonic, expectorant, purgative, sedative, diuretic, diaphoretic, carminative, antihelmintic, and advantageous in muscles and joints pain (158-159). Prescriptions containing C. chinensis are used to treat impairment of sexual function, cure cardiovascular diseases and osteoporosis, treatment of premature ejaculation, to treat lower abdominal and back pain, infertility, wet dreams, impotence, urinary retention, and urinary incontinence (68). It is also used to cure melisma, freckles and considered as antidandruff agent (160-161).

C. epithymum is a mild diuretic and used to treat sciatica and scurvy. The fresh plant is applied to the skin against scrofula derma and scleroderma. It is associated with the health of liver and kidneys and used in various formulas. It is considered a mild laxative (162-163). The whole plant is dried and used as astringent and demulcent (75). Whole plant decoction of C. campestris is used as purgative and poultice (105). The sap of C. tinctoria is used to cure ringworm and warts (79). Juice of C. gigantea plant is famous as an anti-poisonous agent (140, 164). The sap of C. europaea is used as a carminative, and the extract is applied to treat psoriasis (165). Seeds and vegetative parasitic plant is used as laxative, diuretic, and pain reliever and is poisonous. The juice is used for skin treatment (166-167). C. capitata whole plant reduces irritation of bladder and improves urinary function (80). C. hyline is used to treat chest pain (20, 24). Its infusion is used as sores washer and to prevent abortion (21, 73). It is antiulcer and used against culex mosquito. C. australis is used as laxative, antihelmintic, astringent, for treatment of sores, measles and as kidney and liver tonic, emollient, sedative, and sudorific (23).

Leaves of C. japonica are considered anthythontic (93). The sap of C. kilimanjari collected from stems is directly installed to treat ear, nose, and throat diseases in central Kenya. The whole plant is used to treat stomach ache, edema, agalactia, and in veterinary medicines (23, 76). C. pedicellate is used for treatment of obesity, stomachache, to cure wounds, hypertension, as purgative, and anti-inflammatory agent (26, 168). The whole plant of C. planiflora is carminative and laxative, and the stem is anti-diarrheal (23, 130). C. racemosa has anti-inflammatory and diuretic effects, is also used for stomach and hepatic complaints and treatment of fresh wounds (52).

Phytochemistry

Exploration of nature's garden of medication to expose more acceptable solutions with safety is a subject of interest from prehistoric era as more than half of world population still relies on medicinal plants to sustain life. The capability of these odds to appease and treat various diseases and infirmity is undoubted. The curative plants are extensively used in pharmaceuticals, food industry mostly as functional food, agricultural, and cosmetics. Various herbs, their extracts, and prescriptions are loaded with different biologically active constituents particularly alkaloids, steroids, saponins, flavonoids, and terpenoids that are responsible for their therapeutic outcomes (27, 184-189). Phytochemical screening of ever more medicinal plants is extremely momentous in detecting and identifying innovative sources of healing as well as commercially important compounds (190).

Genus *Cuscuta* is rich in many phytoconstituents representing a varied spectrum of secondary metabolites including flavonoids, alkaloids, lignans, polysaccharides, steroids, volatile oils, and resin glycosides (191-199). In a comparative study it was suggested that the plants in the *Cuscuta* species are blessed with almost same soluble phenolic secondary metabolites as Chlorogenic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, hyperoside, quercetin, astragalin, kaempferol-3-O-galactoside, and quercetin-3-O-glucoside but with varying quantities (200).

Chemical constituents of *Cuscuta* species are host-dependent. For instance, a large number of alkaloids identified in these parasitic plants are the same as those found in their alkaloid containing hosts except a very few (201). These species can synthesize flavonoids, while the study of relation between flavonoids of host and parasite is under consideration. Preliminary determination indicates that flavonoid content of various *Cuscuta* samples growing on different hosts is quite different (202). The most thoroughly characterized species of this genus are *C. reflexa* and *C. chinensis* (67-68, 203).

Essential component of many medicinal compositions of *C. reflexa* has an extensively varied array of phytochemicals identified as phenolic compounds, flavonoids, alkaloids, phytosterols, amarbelin, betasterol, stigmasterol, glycosides, saponins, cucuritine, myricetin, dulcitol, coumarin, cucurbitane, luteolin, bergenin, proteins, fixed oils, fats, and carbohydrates (27, 67, 204).

This genus is a source of many novel metabolites. Qualitative analysis of methanolic extract of *C. reflexa* isolated two new compounds named as 7′-(3′,4′-dihydroxyphenyl)-N-[4-(methoxyphenyl)ethyl]...
propanamid and 7’-(4’-hydroxy,3’-methoxyphenyl)-N-[(4-butylphenyl)ethyl]propanamid (38). From aerial parts of same plant two novel tetrahydrofuran derivatives, namely Swarnalin and Cis-swarnelin were separated (205) while a flavanone, reflexin chemically named as 5-hydroxy-7-methoxy-6-(2,3-epoxy-3-methylbutyl)-flavanone, was isolated from the stem (206). Moreover, 3’-methoxy-3,4’5,7-tetrahydroxy flavone and 3’-methoxy-4’,5,7-trihydroxy flavone-3-glucoside were isolated from whole plant (207). An antiviral protein with molecular weight about 14,000–18,000 Daltons was separated and evaluated against several isometric and anisometric viruses (208).

Phytochemical investigations of C. chinensis have shown that flavonoids, alkaloids, poly-saccharides, steroids, lignans, and volatile oils are mostly reported and evaluated against several isometric and anisometric viruses (208).

C. chinensis extract afforded four new lignans cuscutoside A (2’-hydroxyl asarinin 2’-O-β-D-glucopyranoside), cuscutoside D (2’-hydroxyl asarinin 2’-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside) and neo-sesamin (188, 193, 210). C. chinensis and C. australis are used to prepare the famous Chinese herbal prescription Tu-Si-Zi. Phytochemical analysis was done to compare the phenolic constituents of both plants. Principal compounds of C. australis were kaempferol and astragalin while hyperoside was predominant in C. chinensis (211). Several Phytoestrogens were isolated and identified from C. chinensis. Ethanolic extract of seeds afforded three new lignans named cuscutarensins A–C (212). In another investigative study, four new glycosidic acids called cuscutic acids A–D were isolated from the alkaline hydrolysate of the ether-insoluble resin glycoside (191). Up till now bulk of the phytochemical investigations on C. chinensis targeted the seeds while other parts of the plant have had much less attention by the researchers.

An ether insoluble resin glycoside fraction was separated from seeds of C. australis and identification and characterization of resin matrix revealed the presence of three new glycosidic acids, cuscutic acids A–D were isolated from the alkaline hydrolysate of the ether-insoluble resin glycoside (191).

Name	Plant part	Solvent	Extraction	Separation technique	Phytochemicals	References
C. reflexa	WP	MeOH	Maceration	CC	7’-(4’-dihydroxyphenyl)-N-[(4-methoxyphenyl)ethyl]propanamid	(38)
					7’-(4’-hydroxy,3’-methoxyphenyl)-N-[(4-butylphenyl)ethyl]propanamid	
					6,7-dimethoxy-2H-1-benzopyran-2-one	
					2-(3-hydroxy-4-methoxyphenyl)-3,5-dihydroxy-7-O-β-D-glucopyranoside-4H-1-benzopyran-4-one,	
					3-(3,4-dihydroxyphenyl)-2-propen-1-ol	
					6,7,8-trimethoxy-2H-1-benzopyran-2-one	
					3-(4-O-β-D-glucopyranoside-3, dimethoxyphenyl)-2-propen-1-ol	
Aq. ETOH	Soshlet	THLC		HPLC	Kaempferol	(215)
					Quercetin	
					Lupeol	
					β-sitosterol	
EtOH	Soshlet	VLCC		GC-MS	Gallic acid	(53)
					Quercetin	
					Oridoside H	(216)
					21-hydroxyodoroside H	
					Neritaloside	
					Strospeside	
					16-, hydroxydigitoxin	
					N-trans and cis feruloyltyramines	
					Ethyl caffeate	
					Coumarins	
					Ursolic acid _-sitosterol	
					Glucoside	
					4-O-p-coumaroyl-β-D-glucoside	(217)
n-hex	Soshlet	GC-MS			Hensescosanic acid	
					Pentadecanoic acid	

Table 3. Phytochemical profile of various Cuscuta species
Stem	EA	Maceration	GC-MS
C. chinesis	WP	Maceration	CC
1	2, 3-Propenyltetrahydro-pyran-3-ol, 1- acetate, benzofuran 2, 3, dihydroy	Glycerol 1, 2- diacetate	
1H-1, 2, 4-triazole-5-amine 1-ethyl-2-methoxy-4-vinlyphenol			
2-Methoxy-4-vinlyphenol			
Tricinnet			
D - glucitol, 4 - O- benzyl	3,4,5-trimethoxy cinnamic acid		
3,6 - di methoxy phenanthrene			
3, 5 - di - tert-Butyl - 4 - hydroxyanisole	Vanillin		
3 - aminopyrrolidine			
Cetene			
Sarcosine, N - isobutyryl, tetradecyl ester			
4 - ((1E) - 3 - hydroxy - 1 - propenyl)-2 - methoxy phenol	1,5-diphenyl-2H-1,2,4-triazoline-3-thione		
1-octadecene			
Heptanamide, N-(1-cyclohexylethyl)-2-methyl Scopolone	Hexadecanonic acid, ethyl ester		
3'-Methyl-2-benzylidenecomaran-3-one			
5-hydroxy-7-methoxy-6-(2,3-epoxy-3-methylbutyl)-flavonone	(reflexin)		
Isorhamnetin	(122)		
Isorhamnetin-3-O-glucoside			
Isorhamnetin-3-D-robinobioside			
2-Methoxy-4-vinyl phenol			
Benzofuran-2,3-dihydro			
3,5-di-tet-Butyl-4-hydroxyanisole	Hexatriacontane		
n-Hexadecanonic acid	Scopolone		
Hexadecanonic acid methyl ester	1,3-Benzenediamine, N, N, N', N' tetramethyl-		
Phenol, 4(3-hydroxy-1-propenyl), 2-methoxy Phenol, 2,4 bis (1,1dimethylethyl),2,3,5,6-Tetramethyl para phenylene diamine	Retinoic acid,5,6-epoxy-5,6-dihydro		
2,4-Dihydroxy-	2,5-dimethyl-3(2H) furan-3-one		
2,3-dihydroxy-3,5,6,7,8-octacyclopyran-3-ol	Progesterone-4-one-11-oic acid		
AP	MeOH	Maceration	RHPLC
Water	------	------	HPLC
Coumarin 5, 6, 7-trimethoxycoumarin	Aromadendrin	(49)	
Taxifolin	Aromadendrin-7-O-β-D-glucopyranoside		
Taxifolin-7-0-β-D-glucopyranoside			
Cecolinoside B			
Pruning			
3-O-dicaffeoyl quinic acid	3-4-O-dicaffeyl quinic acid		
3, 4, 5-O-Tricaffeylquinic acid			
DCM	Maceration	HPLC	
Violaxanthin	Lutein	(220)	
Lycopeone	β , α-carotene	Ruboxanthin	
Continued Table 3.

Fil.	Water	Maceration	CC	An antiviral protein with molecular weight about 14,000—18,000 daltons
C. chinensis	Fruit	50 % MeOH	---	Cuscutamine
				Cuscutoside A (2'-hydroxy) asarinin 2'-O-β-D-apiofuranosyl(1 → 2)β-D-glucopyranoside
				Cuscutoside B (2'-hydroxy) asarinin 2'-O-β-D-xylpyranosyl(1 → 6)β-D-glucopyranoside
Stem	Pet. eth	---	---	Neo-sesamin
	Pet. eth	Reflux	CC	Kaempherol
				Kaempferol-3-O-β-D-glucopyranoside
				4', 4, 6-trihydroxyaurone
Seed	Pet. eth	reflux	CC	Cuscutoside C (2'-hydroxy) asarinin 2'-O-β-D-glucopyranoside
				Cuscutoside D (2'-hydroxy) asarinin 2'-O-β-D-apiofuranosyl(1 → 2)β-D-glucopyranosyl(1 → 6)β-D-glucopyranoside
Ether	Water	Saponification	CC	A trisaccharide
				Four new glycosidic acids (cuscutic acids A-D)
				Acetic acid
				Propanoic acid
				2-methy lactate
				Tiglic acid
				Nitic acid
				Convolvulolic acid
				Jalapinolic acid
Ether	Water	Saponification	CC	Cuscuta resinols A-C
				(+)-sesamin
				(+)-xanthosylol
				9-hydroxy sesaminol
				Kaempferol
Continued Table 3.

Plant Species	Part	Solvent	Method	Isolated Compounds	
C. australis	Stem	EtOH	90 % acetone CC	Quercetin, kaempferol, astragalin, isorhamnetin, hyperoside	
	Seed	MeOH		16 fatty acids including Palmitic acid, Linoleic acid, Oleic acid, Linolenic acid	
		MeOH		Methyl 4-hydroxy-3,5dimethoxycinnamate, Caftaric, Quercetin, Kaempferol, Calyxopterin	
		EtOH		20 fatty acids including	*(continued)*
C. japonica	Seed	MeOH	FCC	3, 5-Di-O-cafeoylquinic acid, 3, 4-Di-O-cafeoylquinic acid, Methyl 3, 5-Di-O-cafeoylquininate, Methyl 3, 4-Di-O-cafeoylquininate	
C. australis	Stem	MeOH		α-carotene-5, 6-epoxide, β- and γ-carotene, Xanthophyll, Taraxasthine	
	Seed	EtOH		Cuscutic acids A1-A4, Acetic acid, Isobutyric acid, 2-methylbutyric acid, Tigliic acid	
C. europaea				Nilic (3-hydroxy-2-methylbutyric) acid, β-sitosterol, Sesamin, Hexadecanoic acid, Hexadecanoic acid, Kaempferol, Quercetin, Astragaloide, Hyperoside, caffeic acid, Quercetin-3-O-β-D-galactopyranosyl-β-D-apiofuranoside	
C. campestris	AP	MeOH	Maceration HPLC	Sinapic acid, Quercetin, Hyperoside, Eugenol, Flavonoids	
C. racemosa	WP	70 % ETOH	Percolation TLC	Flavonoids, Tannins	

Notes: weitere nicht isolierte Substanzen.
Pharmacological attributes

Impressive medicinal background of *Cuscuta* species has attracted the attention of many pharmacological researchers. A good deal of biological attributes has been studied and is listed in tabular form in Table 4.

Antioxidant

Medically important plants are endless reservoirs of antioxidants that enhance the antioxidant capacity of the body, which lead to a reduced risk of many diseases (234-235). Although a diverse population of synthetic analogs is commercially available due to side effects (liver impairment and carcinogenesis) blind reliance on these formulations has been over. Therefore, plants can play a key role to fulfill prerequisite for exploration of effective, biocompatible, and economic antioxidants (236).

Many investigators have employed different
qualitative and quantitative approaches to detect antioxidants in various *Cuscuta* species. Stem collected from different hosts and extracted with various solvents (100% methanol, 80% methanol, 100% ethanol, 80% ethanol, water, and n-hexane) were analyzed for quantity of phenolics and flavonoids content. Their antioxidant capacity was measured by using a variety of assays including reducing power, DPPH scavenging activity, percent inhibition of linoleic acid peroxidation and δ-tocopherol. It was observed that there was a strong correlation between amount of total phenolics and antioxidant capacity (13).

C. reflexa has been reported for its antioxidant potential (37, 237). Free radical scavenging capacity of methanolic extract of *C. reflexa* was evaluated by DPPH and reducing power assays. Results of DPPH assay, illustrated as IC50 value demonstrated its antioxidant activity 359.48 μg/ml as compared to 9.22 μg/ml value for ascorbic acid used as standard. The reducing power of extract was found dose-dependent and increased by increasing concentration (35). Ethyl acetate fraction of ethanolic extract of *C. reflexa* was significantly antioxidant. Activity may be related to presence of flavonoids, alpha tocopherol, and rutin, which were confirmed in preliminary phytochemical screening (238).

Table 4. Pharmacological attributes exhibited by *Cuscuta* species

Species	Activity	Plant part	Method	Extract type	Test applied	Testing model	Effective dose/conc.	Reference
C. reflexa	Antioxidant	St	Soxhlet	MeOH	DPPI and FRAP assay	--------------	600 μg/ml	(35)
L	Ethanol	Non-Enzymatic Glycolysis	of Haemoglobin	Homogluin		---------------		(238)
Fl	None	MeOH	DPPH assay			---------------		(323)
Antibacterial	L	Soxhlet	50% Ethanol	Cap plate method	Staphylococcus aureus	125 μg/ml	(259)	
St	MeOH							
WP	DCM petrol. eth	Disc diffusion method				16 to 512 μg/ml	(235)	
Seeded	Ethanol	Agar well diffusion assay				500 μg/ml	(324)	
------	MeOH	Agar well diffusion						
Antifungal	L	Soxhlet	50% Ethanol					(260)
------	Water	well diffusion method						
Antihypertensive	WP	Soxhlet	Ethanol			0.1 ml bolus injection	(283)	
Psychopharmacological effect	St	Soxhlet	Petrol. ether		General and exploratory behavior study	Swiss albino mice	(39)	
Anti-inflammatory	St	Soxhlet	Methanol/Petrol. ether		Membrane stabilizing activity	Rats	(44)	

Table 5. Phytochemicals

Phytochemicals	Content	Reference
Alkaloids	(-)	
Flavonoids	(-)	
Phenolics	(-)	
Tannins	(-)	
Saponins	(-)	
Terpenoids	(-)	

Table 6. Microorganisms used

Microorganisms	Species
Bacillus	spp.
Escherichia	coli
Klebsiella	pneumonia
Macrophomina	phaseolina
Pseudomonas	aeruginosa
Staphylococcus	aureus

Table 7. Cancer cell lines

Cancer cell lines	Species
Bacillus	spp.
Escherichia	coli
Klebsiella	pneumonia
Macrophomina	phaseolina
Pseudomonas	aeruginosa
Staphylococcus	aureus

Table 8. Enzymes

Enzymes	Activity	Reference
Caspase	Activation	(44)
Annexin V	Staining	(32)
DAPI	Staining	(32)
TUNEL	Staining	(32)

Table 9. Histopathological parameters

Parameters	Activity	Reference
Membrane stabilization	Activity	(32)
Enzymatic glycogen	Hydrolysis	(15)
General and exploratory behavior study	Activity	(39)
Hepatoprotective effect	Activity	(254)
Continued Table 4.

Effect	Species/Concentration	Method/Assay	Cell Line/Species		
Diuretic activity	AP	EthOH water	Mouse macrophage cell line RAW264.7	300 mg/kg (45)	
Hepatoprotective	WP	Aq.	Albino rats	200 mg/kg (242)	
Antihypertensive	AP	Methanol	Albino rats	20% extract in vehicle	250 mg/kg (313)
Antidiabetic	St	MeOH CF	Long Evans rats and Swiss albino mice	50-200 mg/kg bw	400 mg/kg (245)
Antimutagenic	St	MeOH	Salmonella typhimurium	TA 98 and TA 100	20-50 mg/ml (44)
Antihelmintic	WP	Pet. eth. CF MeOH	P. felifiliformis	40 mg/kg (50)	
Anti-inflammatory	WP	MeOH	Sprague-Dawley rats	600 mg/kg (321)	
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg (321)	
Anticancer	St	70% MeOH	Albino mice	200 and 400 mg/kg	80% MeOH (33)
Genetic effects	L	EOH	Albino mice	100 mg/kg (30)	
Anti-bacterial	L	EOH	Albino mice	100 mg/kg (327)	
C. rhemensis	L	EthOH	Albino rats	80% MeOH (277)	
Neuronal differentiation	Ld	MeOH	Rat pheochromocytoma	200 mg/l (277)	
Adjacent effect	Ld	70% EthOH	PC12 cells	50 mg/ml (287)	
Hepatoprotective	Sd	EOH	Wistar-albino rats	125 and 250 mg/kg	95% EthOH (33)
Antioxidant	Sd	EOH	Wistar-albino rats	125 and 250 mg/kg	95% EthOH (33)
Antitumorant	Sd	EOH	UMB-106 cells	95% EthOH (33)	
Improve erectile dysfunction	Sd	EOH	New Zealand white rabbits	1-5 mg/ml (288)	
Anti-inflammatory	Sd	EOH	Mouse microglia line BV-2 cells	500 µg (287)	
Anti-apoptosis	Sd	EOH	Line B105 mouse melanoma	95% EthOH (33)	
Effect on Melanogenesis	Sd	EthOH water	B16/F10 mouse melanoma	95% EthOH (33)	

Note: The table continues with various species and concentrations, each with corresponding methods and results. The entries are too detailed to fully transcribe here, but they include methods like MTT assay, DAPI staining, Annexin V staining, and various cellular models and concentrations. Each effect is accompanied by a specific concentration or dose, and the results are typically reported in mg/kg or similar units.
Continued Table 4.

Species	Method	Assay/Parameter	Species/Tissue	Concentration	Species/Tissue	Concentration
C. pedicellata						
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg		
Anti-inflammatory						
Antioxidant						
Antihypertensive						
Anticonvulsant						
Genotoxic effects						
Anti-allergic						
Anticancer						
C. campestres						
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg		
Anti-inflammatory						
Antioxidant						
Antihypertensive						
Anticonvulsant						
Genotoxic effects						
Antiallergic						
Anticancer						
C. europaea						
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg		
Anti-inflammatory						
Antioxidant						
Antihypertensive						
Anticonvulsant						
Genotoxic effects						
Antiallergic						
Anticancer						
C. australis						
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg		
Anti-inflammatory						
Antioxidant						
Antihypertensive						
Anticonvulsant						
Genotoxic effects						
Antiallergic						
Anticancer						
C. japonica						
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg		
Anti-inflammatory						
Antioxidant						
Antihypertensive						
Anticonvulsant						
Genotoxic effects						
Anti-allergic						
Anticancer						
C. chinensis						
Nephroprotective	St	70% MeOH	Sprague-Dawley rats	600 mg/kg		
Anti-inflammatory						
Antioxidant						
Antihypertensive						
Anticonvulsant						
Genotoxic effects						
Anti-allergic						
Anticancer						
Seed oil of *C. pedicellata* was extracted with petroleum ether (pet. ether) and lipid contents were saponified to separate unsaponifiable materials and fatty acids. The extract was fractionated by using various solvents, and antioxidant activity of all extracts (pet. ether, unsaponifiable, fatty acids, 70 % methanol, ethyl acetate, and chloroform) was appraised by DPPH free radical assay. The methanol extract was found most potent (230).

In another study, a correlation was established between antioxidant activity and total phenolic content of aerial parts of three Iranian *Cuscuta* species. *C. approximate*, *C. monogyna* and *C. campestris* were estimated by using DPPH microplate method. The highest concentration of phenolic compounds was found in *C. monogyna* and *C. approximate*. TPC of plant methanolic extracts was determined. Methanolic extracts of *C. approximata* and *C. monogyna* contain highest amounts of total phenolic, 56.67 mg/g and 49.59 mg/g, respectively, while antioxidant potential was in the order *C. monogyna* > *C. approximate* > *C. campestris* (14).

Ethyl acetate fraction of ethanol extract of *C. chinensis* seeds possesses strongest antioxidant effect with kaempferol and quercetin as its main constituents. It hunts free radicals and inhibits liquid peroxidation (198, 239). The same fraction of methanolic extract was ascertained as an effective antioxidant by DPPH free radical scavenging assay (222). Moreover, aqueous extract of *C. chinensis* can protect murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury because of its oxidation...
stress management potential and functioning against mitochondria-dependent pathways (240). In another experiment, flavonoids of *C. chinensis* were evaluated for their protective effect against oxidative stress. The survival rate of PC12 cells having H2O2-induced apoptosis was measured. The protective effect was possibly due to scavenging of reactive oxidative species and enhanced activity of antioxidant enzyme (241). Essential oils and carotenoids separated from *C. mitraeformis* also showed antioxidant activity (78). These results suggest that *Cuscuta* plants are enriched with highly important natural antioxidants that may be used in development of functional foods and drugs effective against diseases caused by oxidative stress. Isolation, identification and possible synergism among various components may be the subject of interest for further studies.

Hepatoprotective

Anti-hepatotoxic drug designing is a major thrust area seeking the attention of natural product researchers because synthetic formulations have serious side effects. *C. epithymum* is traditionally used as a liver tonic. *C. epithymum* whole plant extract in methanol exhibited appreciably high hepatoprotective effect against CCl4-induced hepatotoxicity in albino rats. Elevated serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin have confirmed hepatic damage after CCl4 administration. *C. epithymum* prevented the toxic effect in both anticipatory and curative models, which may be due to the presence of various bioactive moieties, including phenolics, flavonoids, and alkaloids (185).

Many investigators have studied the curative effect of *C. reflexa* against liver damage induced by cisplatin, paracetamol, carbon tetrachloride, ethanol, isoniazid, and rifampicin. Various biochemical measurements were observed including ALT, AST, ALP, and total bilirubin before and after the administration of *C. reflexa* extract. It improved liver function by significantly reducing the serum ALT, AST, and ALP levels in affected rats comparable to standard. Histopathological examination of liver section supports the results (32, 242, 243).

Ethanolic extract of *C. australis* also appeared as liver protector against aceticaminophen intoxication in an animal model. Two groups of rats were intoxicated on day eight after receiving doses of *C. australis* seed and stem extract separately for seven days. In untreated rats, severe periportal hepatic necrosis, considerably raised serum liver damage markers, noticeably augmented lipid peroxidation and suppressed liver antioxidant enzymes activities were witnessed. Comparative evaluation of seed and stem extract proves that stem is a more potent hepatoprotective counterpart than seed (70).

Seeds of *C. chinensis* are commonly employed to nourish and improve hepatic disorders in China and various other Asian countries. Oxidative stress can stimulate the development of aceterminophen-induced hepatotoxicity. Liver protecting and antioxidant activities of ethanolic and aqueous extracts of *C. chinensis* on aceterminophen-induced hepatotoxicity in rats. Ethanolic extract showed a significant hepatoprotective effect at an oral dose of 125 and 250 mg/kg confirmed by the measurement of various parameters and observation of liver histopathology. Comparatively same doses of the aqueous extract were found ineffective rather; it resulted in further hepatic deterioration (33). *C. chinensis* nanoparticles were found more effective in this regard (198, 239). Thus, from the above findings it can be observed that many *Cuscuta* species are promising hepatoprotective agents supporting the claims of traditional healers. Further investigations on chemical components are needed to pinpoint the findings.

Antidiabetic

Diabetes mellitus is becoming a growing threat for a vast population in almost all countries of the world due to a sluggish lifestyle leading to reduced physical activity and increase in obesity (244). Methanolic and chloroform extracts of *C. reflexa* whole plant exhibited significant hypoglycemic activity at doses of 50, 100, and 200 mg/kg body weight. Oral glucose tolerance test was used to estimate the effect in glucose-loaded Long Evans rats (50). Administration of methanolic extract *C. reflexa* to glucose-loaded mice led to notable reductions in blood glucose and improved metabolic alterations, thereby justifying its traditional folkloric claims (89, 245).

Antidiabetic activity of *C. chinensis* was evaluated in dexamethasone-induced insulin-resistant human liver carcinoma (HepG2) cells (246). *C. chinensis* polysaccharides can reduce blood sugar level in type-2 diabetes. Efficacy was tested on aloxan-induced diabetes in a mice model. Orally administrated doses of 300 and 600 mg/kg remarkably decreased the elevated fasting blood glucose (247-248). In a similar study, oral administration of 200 and 400 mg/kg polysaccharides significantly lessened blood glucose along with glycosylate serum protein (249). A Chinese herbal prescription, Zhujing pill, having more than 50 % *C. chinensis* protected retina of diabetic rats, possibly through its antioxidation and anti-inflammatory effects (250). Recently mechanism of hypoglycemic activity of *C. chinensis* on type 1 diabetic disease was investigated using a rat model. Daily administration of *C. chinensis* extract returned fasting serum insulin and fasting blood glucose to normal value by upregulating the gene expression of hepatic and pancreas genes (251). It is crucial to continue the exploration of hypoglycaemic effect of more plants as these are blessed with similar chemical profile.

Anti-inflammatory

Inflammatory reactions play a decisive role in different phases of pathogenesis of cancer. So, there may be an assumption that anti-inflammatory drugs can induce apoptosis in cancerous cells and may be equally beneficial as preventive measure and therapy (252). Aqueous and alcoholic extracts of stem of *C. reflexa* and its ethyl acetate fraction showed remarkable anti-inflammatory activity in *in vitro* and *in vivo* tests. Inflammation was induced by various chemicals like histamine and lipopolysaccharide. It was observed that extracts inhibited inflammatory responses that can be related to the presence of flavonoids, phenols, and polyphenols in this plant (43-44, 253). *C. reflexa* significantly suppressed inflammation by reducing
edema volume up to 80% in rats as compared to standard 96.36% (254). *C. campestris* markedly inhibited carrageenan-induced edema in rats by oral pretreatment with 100 mg/kg extract (47). *C. chinensis*, by suppressing the inflammatory responses showed the potential for treatment of brain inflammation (255). Moreover, \(\lambda\)-carrageenan-induced paw edema treatment by using the methanolic extract of *C. chinensis* seed in mice, also confirmed its anti-inflammatory effect (256). *C. pedicellata* and *C. arvensis* were found effective against inflammation (168, 257). Further studies must be conducted to clarify the mechanism and to figure out the active principle behind the activity.

Antibacterial, antifungal, and antiviral

Continuous and urgent exploration is required for new antimicrobial agents with new compositions and diverse mechanisms of action to overcome antimicrobial modifications (9). Methanolic extract of *C. reflexa* was found significantly active against a broad spectrum of bacterial species including *S. aureus*, *P. aeruginosa*, *S. dysenteriae*, *S. boydii*, and *E. coli* with impressive zone of inhibition (27, 258-260).

Xanthomonas campestris (XC) is a widely spread infectious agent causing a huge loss in food crops with visible symptoms and leave shedding. Aqueous decoction and infusion extract of *C. pedicellata* were evaluated for antibacterial activity against diverse pathogens of XC using in vitro well diffusion method. Inhibition zone diameter was observed from 1.0 to 5.0 cm (74). The methanolic extract also showed promising high antimicrobial activity (168). *C. australis* is another species having notable antibacterial effect. The 50% methanolic extract was fractionated by hexane, ethyl acetate, and butanol with various polarities. All fractions were tested against fungal, yeast and various Gram-positive and Gram-negative bacteria. All extracts except n-hexane were found effective against different species (261). Additionally, methanolic extract of *C. epithymum* was also significantly active against *Bordetella bronchiseptica* demonstrating zone of inhibition from 10–14 mm (262). *C. europaea* was active against *Staphylococcus aureus* even higher than standard drug Amoxicillin. These results lead toward the concept that this plant can be used as a safer option against this microbe (263). Recently essential oils and carotenoids separated from *C. mitraeformis* were found antibacterial (78).

In addition to many other species of genus Cuscuta, *C. racemose* offers flavonoids as chief metabolites. Slightly positive antimicrobial activity of this plant was observed against *S. aureus* using dilution in a liquid medium method. Minimum inhibiting concentration was 2.0 mg/ml. Phenolic compounds are documented as antimicrobial substances. So, the activity can be ascribed to the flavonoids and tannins in the plant (52).

Several secondary metabolites like flavans, flavones, and quinic acid derivatives have been found active against HIV infection. Crude aqueous extracts of *C. reflexa* exhibited anti-HIV activity. Virus inhibition may be attributed to the combinatorial effects of nine closely related compounds (49). An antiviral protein with significantly high inhibiting property was isolated from the aqueous extract of *C. reflexa* (219). Methanolic extract of *C. campestris* showed weak anti-HIV activity (264). A number of species have been found effective against microbes. It is recommended that further studies with isolated components instead of extracts may be more useful to identify the active compounds.

Antitumor effect

Some species of the genus *Cuscuta* afford alkaloids with indolic nuclei that are considered potential antitumor substances. *C. chinensis* is a popular antitumor prescription in the Unani medicine system. Oral administration of the plant extract at a dose of 1 g/kg noticeably delayed the appearance and growth of skin papilloma and reduced the chances of carcinoma (30). Anticancer activity of *C. chinensis* has been evaluated by several pharmacological studies using a variety of cell lines. Results prove that it can act as an integrative approach to encounter ever-growing disease management (22, 31, 265-267).

In vivo anticancer potential of *C. reflexa* was determined by using murine models. Alcoholic extract and its chloroform fraction were found more potent. It showed highest toxicity against human breast cancer cell lines. Similarly, chloroform part of extract of alcohol showed considerable tumor growth inhibition, which reveals that these extracts interfere in cell proliferation to inhibit cancer (15). It can induce apoptosis in Hep3B cells (253). Phenolic components isolated from *C. reflexa* were also assessed in HCT116 colorectal cells amongst which 1-O-p-hydroxyxycinnamoylgucose could show considerable anticancer activity (10).

The seed extract of *C. kotschyanana* induced apoptosis in breast cancer cell line (MCF7) (77). As the major active phytoconstituents of *C. kotschyanana* are flavonols, quercetin, and kaempferol (231) and quercetin has been found to reduce cell viability of quite a lot of cancer cell lines in vitro (268-269). Therefore, these facts are consistent with results that the exposure of MCF7 cells to *C. kotschyanana* considerably reduced viability (77).

C. campestris also has antitumor agents (270). Detection and evaluation of phytochemicals suggested that eugenol epoxide, lutein epoxide, and luteol epoxide formed the most active fractions and exhibited the cytotoxic effects against breast cancer cells (271). In a recent effort, efficacy of a Korean herbal formula Ga Gam Nai Go Hyan containing *C. japonica* against benign prostatic hyperplasia was evaluated. This herbal prescription significantly decreases prostate weight by regulating inflammatory responses and apoptosis (92). There is need to develop new technologies such as nanoparticles to improve the therapeutic effect of compounds isolated from these plants. Further efforts may be used to design sustained and targeted drug release systems to improve avoiding side effects.

Immunological effects

Ethanol extract of *C. chinensis* showed considerable adjuvant potentials towards cellular and humoral immune responses in mice models and can be used as vaccine adjuvants. Extract enhanced specific antibodies (IgG, IgG1, and IgG2b) to a noticeably high level by affecting Th1 and Th2 cell functions (272). Dendritic cells play a key role in regulating immune responses
and are a major target to develop immune modulators. n-butanol and methanol extracts exhibited the immunosuppressive effect on dendritic cells. Kaempferol was identified as the main flavonoid of methanol fraction. Results suggest that kaempferol has potential to treat chronic inflammatory and autoimmune diseases (273). Furthermore, aqueous extract of C. chinensis also improved the immune responses (274). C. chinensis can protect against tertiary butyl hydroperoxide induced murine osteoblastic MC3T3-E1cell injury. Aqueous extract of seeds protected cells in a dose-dependent manner by modulating the oxidative stress-induced apoptosis probably owing to its antioxidant potential (240). C. australis may act as an immunopotentiator for mammals by increasing the percentage of phagocytosis (275). C. australis hyperoside can decrease T or B lymphocyte proliferation and phagocytic activity of the peritoneal M and mediate immune regulation (276).

Effect on the neuronal system

C. chinensis can act as a neuroactive agent and improves memory by inducing cell differentiation. Glicoside of the plant induced neuronal differentiation in rat pheochromocytoma PC12 cells (277). In another experiment, C. chinensis improved memory and inhibited acetylcholinesterase activity in scopolamine-induced dysnesia mice (278). Oral administration of its aqueous extract recovered the ischemia-induced lethal damage of neurons and prevented learning disability (51). A traditional Chinese formula Wu-Zi-Yan-Zong containing C. chinensis suppresses neuroinflammatory responses and can act as an effective therapeutic agent to prevent and treat neuroinflammatory defects (279).

Anti-aging activities

C. chinensis is an important antiaging prescription of the Chinese herbal medicinal system. Various experimental efforts have been employed to test the certainty of the claim. Polysaccharides of C. chinensis can exhibit anti-aging effects by scavenging free radicals and opposing lipid peroxidation (280). Ethanolic extract of C. chinensis significantly suppressed the non-enzymatic glycosylation of D-galactose-induced rat aging model (281). Various research reports obviously show that it can regulate immune responses, prolong cell cycle, positively affect body metabolism, improve physiology of internal body organs, and stress management, which proves its anti-aging effects (282).

Antihypertensive

Ethanolic extract of C. reflexa decreased arterial blood pressure and heartbeat rate in Pentothal anesthetized rats. Experimental data indicated that it is a non-specific depressant on all the isolated tissues tested (283). In the course of experiments, ethyl acetate fraction of C. japonica exhibited distinctive angiotensin-converting enzyme (ACE) inhibition at a dose of 400 mg/ml. Four caffeoylquinic acid derivatives were isolated from the active fraction having inhibitory effects on ACE activity. Presence of these metabolites, at least in part is responsible for the antihypertensive activity extract (229).

Anti-osteoporotic activity

C. chinensis effectively boasted tissue regeneration of damaged bones by promoting the formation of osteoblasts from their precursor cells (284). It has been demonstrated in an experimental report that aqueous extract of C. chinensis significantly stimulated the differentiation and proliferation of osteoblasts in rat bone cells, but the osteoclasts activities were inhibited (285-286). Antagonistically antiosteoporotic effect of C. chinensis was also observed. Five flavonoids were isolated from which kaempferol and hyperoside were found osteogenic in nature (22).

Renoprotective effects

Aqueous and alcoholic extract of C. reflexa exhibited substantial diuretic activity in Wister rats. Total urine volume and Na+, K+ and Cl− concentration was estimated after a dose of 300 mg/kg extract. There was a marked rise in Na+ and K+ excretion (45). C. chinensis has been used as a kidney tonic since ancient times. Effect of seed extract on renal function parameters in the rat model having ischemia/reperfusion-induced acute renal failure was studied. Results indicate that C. chinensis extract ameliorates renal functions and regulates urine concentration (287).

Effect on the reproductive system

C. reflexa has an anti-fertility effect. Methanolic extract arrested the normal estrus cycle and decreased ovarian and uterus weight in adult female mice. Flavonoids are reported as anti-fertility agents, and C. reflexa is rich in flavonoids, so results can be attributed to the presence of such compounds (42).

C. chinensis extract, and its isolations can improve reproductive systems of both males and females. Ethanolic extract of C. chinensis induces a relaxing effect on cavernous penile tissue and may improve erectile dysfunction conditions (288). Many formulations of C. chinensis with other herbal prescriptions enhanced penile erection, improved erectile dysfunction, infantile uteruses, and motility of sperm (154, 289-291). An herbal formula, KH-204 containing C. chinensis, ameliorates erectile dysfunction by its antioxidant and lipid profile improving property (292). Effect of various flavonoids from C. chinensis on sex hormones, and prevention of induced and threatened abortion were evaluated by measuring different parameters in a mice model (293-297).

Anti-mutagenic activity

Mutations elicit an innate metabolic defect in regular cellular systems and lead to morbidity and mortality in mutated organisms. Therefore, exploration for novel bioactive phytocompounds to encounter promutagenic and carcinogenic effects is a subject of keen interest (298). Preliminary evaluation of methanolic extract of C. chinensis suppressed 90 % of mutagenic effect against Trp-P-1 in the Ames test, suggesting it as a potential antimutagenic agent (299).

Mutagenic and antimutagenic effects of C. reflexa were also studied by the Ames test against well-known positive mutagens including 2-aminofluorine, 4-nitro-o-phenylenediamine, and sodium azide in Salmonella typhimurium (TA 98 and TA 100) bacterial strains. The extract revealed noteworthy antimutagenic activity against 4-nitro-o-phenylenediamine and sodium azide
for S. typhimurium strains (122).

Cardiovascular activities

The aging process is accompanied by so many diseases like diabetes, cancer, dementia, and cardiovascular diseases. Heart diseases, leading causes of mortality are due to cardiomyocyte apoptosis which play a key role in myocardial damage and heart failure (300-302). In an experiment, effect of polysaccharide of *C. chinensis* was investigated on D-galactose induced apoptosis of cardiomyocytes in an aging rate model. Apoptosis parameter evaluation indicated that polysaccharide extract decreased the apoptosis of cardiomyocytes (303). *C. chinensis* extract can increase coronary blood flow and decrease myocardial oxygen consumption (304).

CNS depressant activities and anti-depressant activities

Central nervous system (CNS) disorders comprise 12 % of deaths worldwide and are still a hugely challenging endeavor for health care systems. Plenty of Convolvulaceae species, including Cuscuta members, are used to treat CNS related diseases traditionally and might be used as alternatives (184).

C. campestris affects the CNS action and decreases motor activity of mice sited on a rotarod. Various tests applied indicated the CNS-depressant activity of the extract, which probably seems due to an anesthetizing effect (8, 47). In another experimental trial, methanolic extract of *C. reflexa* served as a good anxiolytic agent in mice at a dose of 400 mg/kg (305).

C. chinensis methanolic extract considerably reduced immobility times estimated by FST forced swimming test, which reveals its antidepressant activity (306). While its aqueous extract shows CNS-depressant activity in mice by reducing motor activity and the tonic/clonic phases of electrically-induced seizures in rats (157). Recently a Chinese herbal medicine, Tansi liquid, containing *C. chinensis* was evaluated for its antidepressant activity, and possible mechanism of action was predicted by *in silico* study (307). Capsules of *C. planiflora* (500 mg) prepared by a pharmacist were found effective for major depression patients. In a study period of eight weeks depression was measured before and after by Beck Depression Inventory and Hamilton Depression Inventory (308).

Effect on melanin production

C. chinensis can promote melanogenesis of amelanotic melanocytes and improved the tyrosinase activities (247-248). Furthermore, it significantly enhanced skin melanin and tyrosinase production. It also positively affected vitiligo treatment in guinea pigs (309). Moreover, there is another report on melanogenesis effect of *C. chinensis* seeds aqueous and ethanolic extracts both *in vitro* and *in vivo*. The aqueous extract showed inhibitory effect on tyrosinase, while the ethanolic extract displayed the opposite effect in tyrosinase activity (160). In a similar study aqueous and ethanolic extracts of *C. chinensis* seeds significantly influenced the melanogenesis by regulating the activity of tyrosinase (310). Consumption of the *C. chinensis* extract with milk reduced the melanin synthesis and thus ameliorated the elimination of melasma (311).

C. japonica has an inhibitory effect on mushroom tyrosinase activity (312). It can also be used to improve hyperpigmentation. It was ascertained by the treatment of alpha-melanocyte-stimulating hormone-induced melanogenesis with aqueous extract in mouse melanoma cells (69).

Anti hair fall and anthelmintic activities

Hair loss is a feared side effect of chemotherapy and creates a psychologically distressing condition among millions of men and women due to the deprivation of their major esthetic display feature. Plants as hair growth promoters have found their use in almost all traditional medicinal systems. *C. reflexa* extract is useful in the treatment of alopecia by promoting hair growth (40, 313). Methanolic extract of *C. chinensis* was used as an anthelmintic drug against *Dactylogyrus intermedius* in goldfish (314).

Analgesic and psychopharmacological

C. campestris has analgesic properties. The whole plant grown on *Nerium indicum* was studied. Acetic acid induced writhing test and heat conduction method were used to study the described activity in an animal model. A dose of 400 mg/kg methanolic extract gave significant results as compared to standard Diclofenac sodium (46). In a similar experiment, protecting response against p-benzoquinone-induced writhing was studied by giving a dose of 100 mg/kg to mice, which suggested the analgesic activity of the extract (47). *C. chinensis* also has a pain-relieving ability which was examined by using acetic acid-induced writhing response and formalin-induced paw licking method (256).

Petroleum ether extract of *C. reflexa* noticeably decreased the spontaneous activity and behavior profile of Swiss albino mice. Steroids, the major constituents of the extract may be responsible for such changes (39). *C. japonica* treatment improved the cognitive function of mice in a dose-dependent manner. Novel object recognition and passive avoidance test proved that it might improve learning and memory (315).

Antipyretic and antiulcer

Antipyretics agents lessened the body temperature in fever. Efficacy of *C. reflexa* as an antipyretic agent was confirmed in yeast induced pyrexia in rats. Aqueous and ethanolic extracts were both found active and started rectal temperature decline after three hours of dose. A dose of 400 mg/kg weight reduced the elevated temperature approximately 83.8 % (ethanolic) and 79 % (aqueous) as compared to the standard drug (96.5 %, Paracetamol) after six hours of treatment (48). *C. campestris* markedly lowered the body temperature of hyperthermic and normothermic mice (47).

Lyophilized raw extract of *C. racemosa* possesses antiulcer activity, which was ascertained by a test showing 44.22 % rate of activity, and 37.05 % rate of cure against acute and sub-chronic models of ulcers, respectively (52).

Anticonvulsant and anti-obesity

C. epithymum have effective anticonvulsant constituents and delayed the onset of seizure (316).
Methanolic extract of *C. reflexa* stem demonstrated preventive effects against convulsion created by chemical agents in mice. Catecholamines levels augmented considerably. After a six-week treatment, γ-aminobutyric acid (GABA) involved in seizure activity was noticeably increased in the brains of mice (317). Ethanolic extract of *C. reflexa* significantly reduced convulsions by delaying onset and duration of seizures in an albino mice model. A dose of 400 mg/kg showed maximum delay in pentylentetrazole induced convulsions (238).

C. pedicellata is widely used for management of obesity. Ethanolic extract of *C. pedicellata* has significantly reduced the bodyweight along with serum lipid profile in high-fat diet-fed rats (26). Recently, polyphenols are reported to possess anti-obesity activity (310).

Cytotoxicity, insecticidal, antiarthritic, and wound healing activity

The ethanolic extract *C. reflexa*, parasitizing *Nerium oleander*, exhibited promising cytotoxic activity (208). Lectin-like glycoproteins isolated from *C. europaea* demonstrated the cytotoxic effects of LLP and LLP on C127 and B-16 cells (319). Various extracts of the plant have larvicidal potential against mosquitoes (320). *C. reflexa* protects against arthrosis and nephrotoxicity. A dose at 600 mg/kg considerably reduced paw edema and joint swelling up to 71.22 % (321). Aqueous and ethanolic extracts of *C. reflexa* stem at 200 mg/kg and 400 mg/kg were able to heal wounds in a rat model (322).

Conclusion

Cuscuta genus is a rich and diverse source of many valuable chemical components. It is loaded with flavonoids, alkaldoids, lignans, polysaccharides, steroids, volatile oils, and resin glycosides. Medicinal importance of its various species is part of prehistoric texts. Traditionally it is considered a miracle genus equipped with broad spectrum of remedial values. Decotions, extracts, paste, powder, juice, and infusions of different parts of the plants are important herbal prescriptions in traditional medicinal systems.

A lot of experimentation has been employed to verify its phytotherapy as claimed by traditional healers and traditional medicinal systems. Various parts of three *Cuscuta* species. Anal Chem Lett 2015; 5:377-381.

Antioxidant activity and total phenolic content from aerial parts of three *Cuscuta* species. J Food Process Preserv 2007; 31:198-205.

References

1. Sermaklani M, Thangapandian V. GC-MS analysis of *Cassia italica* leaf methanol extract. Asian J Pharm Clin Res 2012; 5:90-94.
2. Gulfray M, Sadiq A, Tariq H, Imran M, Qureshi R, Zeenat A. Phytochemical analysis and antibacterial activity of *Erucia sativa* seed. Pak J Bot 2011; 43:1351-1359.
3. Ramasamy S, Manoharan AC. Antibacterial effect of volatile components of selected medicinal plants against human pathogens. Asian J Microbiol Biotechnol Environ Sci 2004; 6:209-210.
4. Hoareau L, DaSilva EJ. Medicinal plants: a re-emerging health aid. Electron J Biotechnol 1999; 2:3-4.
5. Gurb-Jakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006; 27:1-93.
6. Rates SM. Plants as sources of drugs. Toxicon 2001; 39:603-613.
7. Balandrin MF, Klocke JA. Medicinal, aromatic, and industrial materials from plants. In Medicinal and Aromatic Plants I. Berlin. Heidelberg: Springer 1988; p.3-6.
8. Prajapathi ND, Purohit SS. Agro S Colour Atlas of Medicinal Plants. Agrobios (India); 2003.
9. Rojas R, Bustamante B, Bauer J, Fernández I, Albán J, Lock O. Antimicrobial activity of selected Peruvian medicinal plants. J Ethnopharmacol 2003; 88:199-204.
10. Riaz M, Bilal A, Ali MS, Fatima I, Faisal A, Sherkheli MA, et al. Natural products from *Cuscuta reflexa* Roxb. with anti-inflammation activities in HCT116 colorectal cell lines. Nat Prod Res 2017; 31:583-587.
11. Kaul K, Jaitak V, Kaul VK. Review on pharmaceutical properties and conservation measures of *Potentilla fulgens* Wall. ex Hook.-a medicinal endangered herb of higher Himalaya. Indian J Nat Prod Resour 2011; 2:298-306.
12. Benkebia N. Antimicrobial activity of essential oil extracts of various onions (*Allium cepa*) and garlic (*Allium sativum*). Food Sci Technol 2004; 37:263-268.
13. Anjum F, Bukhari SA, Shahid M, Anwar S, Afzal M and Akhter N. Comparative evaluation of antioxidant potential of parasitic plant collected from different hosts. J Food Process Technol 2013; 4:1-6.
14. Jafari E, Bahmanzadegan A, Ghanbarian G, Rowshan V. Antioxidant activity and total phenolic content from aerial parts of three *Cuscuta* species. Anal Chem Lett 2015; 5:377-384.
15. Bhagat M, Arora JS, Saxena AK. *In vitro* and *in vivo* antiproliferative potential of *Cuscuta reflexa* Roxb. J Pharm Res 2013; 6:690-695.
16. Rao VS, Dasaradhan P, Krishnaiah KS. Antifertility effect of some indigenous plants. Indian J Med Res 1979; 70:517-520.
17. Costa-Louto LF, Khan MT, Ather A, Wilke DV, Jimenez PC, Pessoa C, et al. Studies of the anticaner potential of plants used in bangladeshi folk medicine. J Ethnopharmacol 2005; 99:21-30.
18. Begum HA, Hamayun M, Zaman K, Hussain A, Ruaf M. Phytochemical evaluation of ethnoveteranotically selected medicinal plants of mardan, pakistan. J Adv Bot Zool 2015; 3:1-5.
19. Qureshi R, Bhatti GR. Ethnobotany of plants used by the thari people of nara desert, pakistan. Fitoterapia 2008; 79:468-473.
20. Sharma H, Kumar A. Ethnobotanical studies on medicinal plants of rajasthan (india): a review. J Med Plants Res 2011; 5:1107-1112.
21. Malhotra SP, Dutta BK, Gupta R, Gaur YD. Medicinal plants of the indian arid zone. J Agric Tradit Bot Appl 1966; 13:247-288.
22. Yang L, Chen Q, Wang F, Zhang G. Antioxidant compounds from seeds of Cuscuta chinensis. J ethnopharmacol 2011; 135:553-560.
23. Schmelzer GH, Gurb-Fakim A. (2013). Plant resources of tropical Africa 11 (2): medicinal plants 2. Plant resources of tropical Africa 11: Medicinal Plants 2 P.101-105
24. Sharma L, Khandelwal S. Weeds of rajasthan and their ethno-botanical importance. Stud Ethno-Med 2010; 4:75-79.
25. Jang IM. Treatise on asian herbal medicines. Seoul: Haksul-pyunsu-kwan in Research Institute of Natural Products of Seoul National University. 2003.
26. Zekry SH, Abo-elmatty DM, Zayed RA, Radwan MM, ElSohy MA, Hassanean HA, et al. Effect of metabolites isolated from Cuscuta pedicellata on high fat diet-fed rats. Med Chem Res 2015; 24:1964-1973.
27. Raza MA, Muldhtar F, Danish M. Cuscuta reflexa and Carthamus oxyacantha: potent sources of alternative and complimentary drug. SpringerPlus. 2015; 4:76-82.
28. Inamdar FB, Oswal RJ, Chorage TV, Garje K. In vitro antimicrobial activity of Cuscuta reflexa Roxb. Int J Res I Pharm 2011; 2:214-216.
29. Kalita D, Saikia J. Ethnomedicinal, Antibacterial and antifungal potentiality of Centella asiatica, Nerium indicum and Cuscuta reflexa -widely used in tiwa tribe of morigaon district of assam, india. Int J Phytomed 2012; 4:380-385.
30. Nisa M, Akbar S, Tariq M, Hussain Z. Effect of Cuscuta chinensis water extract on 7, 12-dimethylbenz[a]anthracene-induced skin papillomas and carcinomas in mouse. J Ethnopharmacol 1986; 18:21-31.
31. Umehara K, Nemoto K, Ohkubo T, Miyase T, Degawa M, et al. Effect of metabolites isolated from Cuscuta reflexa stem in mice. Acta Pol Pharm 2010; 2:199-204.
32. Roy RK, Thakur M, Dixit VK. Evaluation of anti-inflammatory activity of stem extracts of Cuscuta reflexa Roxb in rats. Int J Pharm Biomed Sci 2012; 3:1805-1808.
33. Katiyar NS, Rao NV, Gangwar AK. Evaluation of antihyperglycemic effects of Cuscuta reflexa Roxb. Med Chem Res 2013; 1:45-51.
34. Agha AM, Sattar EA, Galal A. Pharmacological study of Cuscuta campestris Yuncker a parasitic plant grown on Nerium indicum Mill. J Adv PharmTechol Res 2011; 2:1107-120.
35. Bhatccharyya S, Roy B. Preliminary investigation on antipyretic activity of Cuscuta reflexa in rats. J Adv Pharm Techol Res 2010; 1:83-87.
36. Mahmood N, Piccante S, Burke A, Khan AL, Pizza C. Constituents of Cuscuta reflexa are anti-HIV agents. Antivir Chem Chemother 1997; 8:70-74.
37. Rahmanullah M, Sultan S, Toma T, Lucky S, Chowdhury M, Haque W, et al. Effect of Cuscuta reflexa stem and Calotropis procera leaf extracts on glucose tolerance in glucose-induced hyperglycemic rats and mice. Afr J Tradit Complementary Altern Med 2010; 7:109-112.
38. Chung TW, Koo BS, Choi EG, Kim MG, Lee IS, Kim CH. Neuroprotective effect of a chuk-me-sun-dan on neurons from ischemic damage and neuronal cell toxicity. Neurochem Res 2006; 31:1-9.
39. Ferraz HO, Silva MG, Kato ETM, Barros S, Barc EM. Antilulcer and antioxidant activities and acute toxicity of extracts of Cuscuta racemosa Mart (Convolvulaceae). Lat Am J Pharm 2011; 30:1090-1097.
30. Teware K. Pytochemical extraction and TLC estimation of extract of Cuscuta reflexa. World J Pharm Sci Pharm 2016; 5:378-384.
41. Kuijt J. The biology of parasitic flowering plants. University of California Press, Berkeley; 1969.
42. Liao GL, Chen MY, Kuoh CS, Cuscuta L. (Convolvulaceae) in Taiwan. Taiwania 2000; 45:226-234.
43. Parker C, Riches CR. Parasitic weeds of the world: biology and control. CAB international; 1993.
44. Yuncler TG. The genus Cuscuta. Mem Torrey Bot Club
An overview of the genus Cuscuta

1932; 18:109-331.
58. Chrtek J, Osbornová J. Notes on the synanthropic plants of Egypt 3. Grammica campestris and other species of family Cuscutaceae. Folia Geobot Phytox 1991; 1:267-314.
59. Cronquist A, Takhtadzhian AL. An integrated system of classification of flowering plants. Columbia University Press; 1981.
60. Dahgren G. The last Dahlgrenogram. System of Classification of the Dicotyledons. The Davis and Hedge Festschrift. 1989. p.249-260.
61. Dawson JH, Musselman LJ, Wolsinkwel Pl, Dörr I. Biology and control of Cuscuta. Rev Weed Sci 1994; 6:265-317.
62. Fang R, Musselman L, Plitmann U, Cuscuta In P. Raven and Boyd, Edinburgh; 1969.
63. Gwo-Ing LI, Ming-Yih CH, Chang-Sheng KU. Pollen morphology of Cuscuta (Convolvulaceae) in Taiwan. Bot Bull Acad Sinica 2005; 46:75-81.
64. Hadaĉ E, Chrtek J. Notes on the taxonomy of Cuscutaceae. Folia Geobot 1970; 5:443-445.
65. Täckholm V, Boulou S. Supplementary notes to Student’s flora of Egypt. Cairo Univ. Herbarium; 1974.
66. Takhtajan A. Flowering Plants: Origin and Dispersal, Oliver and Boyd, Edinburgh; 1969.
67. Patel S, Sharma V, Chauhan NS, Dixit VK. An updated review on the parasitic herb of Cuscuta reflexa R. Sch. J Chin Med 2012; 10:249-255.
68. Donespae S, Li J, Yang X, Ge AH, Donkor PO, Gao XM, Chang YX. Cuscuta chinensis Lam.: a systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J ethnomed 2018; 157:292-308.
69. Jang JY, Kim HN, Kim YR, Choi YH, Kim BW, Shin HK, et al. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells. J ethnopharmacol 2012; 141:338-344.
70. Folarin RO, Omirinde JO, Bejid R, Isola TO, Usende LI, Basiru M. A Comparative hepatoprotective activity of Cuscuta australis against acetaminophen intoxication in wistar rats. Int Sch Res Notices 2014; 2014:1-6.
71. Dangwal LR, Rana CS, Sharma A. Ethno-medicinal plants from transitional zone of Nanda evi Biosphere Reserve, District Chamoli, Uttarakand, India 2011; 2:116-120.
72. Haq F. The ethno botanical uses of medicinal plants of Allai Valley, Western Himalaya Pakistan. Int J Plant Res 2012; 2:21-34.
73. Meena AK, Rao MM. Folk herbal medicines used by the Meena community in Rajasthan. Asian J Tradit Med 2010; 5:19-31.
74. Ali A, Haider MS, Hanif S, Akhtar N. Assessment of the antibacterial activity of Cuscuta pedicellata Ledeb. Afr J Biotechnol 2014; 13:430-433.
75. Lakhdari W, Dehliz A, Acheuk F, Mlik R, Hammi H, et al. Ethnobotanical study of some parasitic plants in the transitional zone of Oued Righ (Algerian Sahara). J Med Plants Stud 2016; 4:6-10.
76. Njoroge GN, Bussmann RW. Traditional management of ear, nose and throat (ENT) diseases in Central Kenya. J Ethnobiol Ethnomed 2006; 2:54-63.
77. Sepehr MF, Jamie SB, Hajijafari B. The Cuscuta kotschyanu effects on breast cancer cells line MCF7. J Med Plants Res 2011; 5:6344-6351.
78. Villa N, Pacheco Y, Rubio E, Cruz R, Lozoya E. Essential oil composition, carotenoid profile, antioxidant and antimicrobial activities of the parasitic plant Cuscuta mitraeformis. Bol latinoam Caribe plantas med aromát 2017; 16:463-470.
79. Weimann C, Heinrich M. Indigenous medicinal plants in Mexico: the example of the Nahua (Sierra de Zongolica). Bot Acta 1997; 110:62-72.
80. Ballabh B, Chaurasia OP, Ahmed Z, Singh SB. Traditional medicinal plants of cold desert Ladak—he used against kidney and urinary disorders. J Ethnopharmacol 2008; 118:331-339.
81. Holm LG, Holm L, Holm E, Pancho JV, Herberger JP. World weeds: natural histories and distribution. John Wiley & Sons; 1997.
82. Furuhashi T, Furuhashi K, Weckwerth W. The parasitic mechanism of the holostemparasitic plant Cuscuta. J Plant Interact 2011; 6:207-219.
83. Kaiser B, Wieg G, Fürst UB, Albert M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front Plant Sci 2015; 6:45-54.
84. Shen HW, Ye W, Hong L, Huang H, Wang Z, Deng X, et al. Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biol 2006; 8:175-185.
85. Kelly Horning. Acquisition order and resource value in Cuscuta attenuata. Proc Nat Acad Sci 1999; 96:13219-13222.
86. Nwokocha MI, Aigbokhan EL. Host range and preference of Cuscuta campestris (Yunck). among common weeds in Benin city, Nigeria. J Ethnopharmacol 2014; 157:292-308.
87. Prather LA. Biology of Cuscuta Attenuata Waterfall. Proc Oklahoma AcadSci 1990; 73:7-13.
88. Diggis GM, Lipscomb BL, O’Kennon RJ, Mahler WF, Shinners LIH. Shinners’ and Mahler’s illustrated flora of North Central Texas. Bot Res Inst Texas 1999.
89. Akter MK, Akter MR, Rahmatullah M. Synergistic antihyperglycemic activity of Coccinia grandis leaves and Cuscuta reflexa stems. J Pharm Sci 2016; 5:236-243.
90. Viskumar S. Cuscuta reflexa Rchb.—a wonderful miracle plant in ethnomedicine. Indian J Nat Sci 2011; 11:676-683.
91. Mavlonov GT, Ulibdullaeva KA, Kadryaeva GV, Kuznetsova NN. Cytotoxic components of Cuscuta. Chem Nat Compd 2008; 44:409-410.
92. Shin SJ, Lee KH, Chung KS, Cheon SY, An HJ. The traditional Korean herbal medicine Ga-Gam-Nai-Go-Hyan suppresses testosterone-induced benign prostatic hyperplasia by regulating inflammatory responses and apoptosis. Exp Ther Med 2017; 13:1025-1031.
93. Talha J, Priyanka M, Akanksha A. Hypertension and herbal plants. Int Res J Pharm 2011; 2:26-30.
94. Kuo CS, Liao GL. Flower initiation and development in Cuscuta australis R. Br.(Convolvulaceae). Taiwania 1993; 38:99-108.
95. Quattrochi U. CRC world dictionary of plant names: common names, scientific names, eponyms, synonyms, and etymology: CRC Press. 2000.
96. Weinberg T, Lalazar A, Rubin B. Effects of bleaching herbs on field dodder (Cuscuta campestris). Weed Sci 2003; 51:663-670.
97. Joshi SK, Sanjay G. Cuscuta europaea Linn. (Dodder plant): an emerging threat to plant diversity of Valley of Flowers. Curr Sci 2003; 84:1285-1286.
98. Papuc C, Crivineanu M, Nicorescu V, Predescu C. Reactive oxygen species scavenging activity and hepatoprotective effects of a polyphenolic extract obtained from Cuscuta reflexa stems. J Plant Interact 2011; 6:207-219.
99. Jafari EF, Assadi MO, Ghanbarian GA. A revision of Cuscuta Europaea. Iran J Basic Med Sci, Vol. 22, No. 11, Nov 2019
of extensive hybridization from discordant nuclear and plastid phylogenies. Taxon 2010; 59:1783-1800.

101. Hashem A, Patabendige D, Roberts C. Biology and management of red dodder—a new threat to the grains industry. In 15th Australian Weeds Conference, Papers and Proceedings, Adelaide, South Australia, 24-28 September 2006: Managing weeds in a changing climate Weed Management Society of South Australia. 2006 p. 163-166.

102. Orr GL, Haidar MA, Orr DA. Smallseed dodder (Cuscuta planiflora) gravitropism in red light and in red plus far-red. Weed Sci 1996; 44:795-796.

103. Farah AF, Al-Abdulsalam MA. Effect of field dodder (Cuscuta campestris Yuncker) on some legume crops. Sci J King Faisal Univ (Basic Appl Sci) 2004; 5:103-113.

104. Peng WH, Chen YW, Lee MS, Chang WT, Tsai JC, Lin YC, et al. Hepatoprotective effect of Cuscuta campestris Yunck. whole plant on carbon tetrachloride induced chronic liver injury in mice. Int J Mol Sci 2016; 17:2056-2067.

105. Youssef SA. Medicinal and non-medicinal uses of some plants found in the middle region of Saudi Arabia. J Med Plants Res 2013; 7: 2501-2517.

106. Hillman FH. Dodder In Relation To Farm Seeds. US Department of Agriculture. 1907.

107. Mukhtar I, Atiq M, Hanan A, Iqbal Z. Antifungal activity of Santalaceae (thesium) and Orobanchaceae (euphrasia, Cuscuta, melampyrum, odontites, orthantha, and rhinanthus) in of santalaceae (thesium) and orobanchaceae (euphrasia, Cuscuta, melampyrum, odontites, orthantha, and rhinanthus) in. Ireland. In Biology and Environment: Proceedings of the Royal Irish Academy; 1993. p.61-67.

108. Quattrocchi U. CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology: CRC Press. 2012.

109. Shahid M, Rao NK. New records of three Convolvulaceae species to the flora of the United Arab Emirates. J New Biol Sci 2016; 5:114-121.

110. Doyle GJ. Cuscuta epithymum (L.) L. (Convulvaceae), its hosts and associated vegetation in a limestone pavement habitat in the Burren lowlands in county Clare (H9), Western Ireland. In Biology and Environment: Proceedings of the Royal Irish Academy; 1993. p.61-67.

111. Hussain F, Lughari IH, Naveed S. Vegetation in sindh: an analytical and literary study. Karoornihar 2015; 7:11-28.

112. Piwowarczyk R, Guzikowski S, Góralski G, Denysenko-Ireland. In Biology and Environment: Proceedings of the Royal Irish Academy; 1993. p.61-67.

113. Shimi P, Rezapanah MR. A study of Poland. Plant Dis 2018; 102:456-460.

114. Anac E, Kaya I, Tepe I. Determination of alfalfa dodder (Cuscuta approximata Bab.) damage on alfalfa (Medicago sativa L) grown in Van, Turkey. In Proceedings of Joint Workshop of the EWRS Working Groups Weed Management in Arid and Semi-arid Climate and Weed Management Systems in Vegetables 2011. p. 4-8.

115. Tepe I, Celebi SZ, Kaya I, Ozkan RY. Control of smoothseed alfalfa dodder (Cuscuta approximata) in alfalfa (Medicago sativa). Int J Agric Biol 2017; 19:199-203.

116. Bhadrea P, Kumar V, Kumar M. Medicinal plant growing under sub-optimal conditions in trans-himalaya region at high altitude. Def Life Sci 2017; 2:27-45.

117. Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman SU, et al. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J Ethnopharmacol 2014; 157:79-89.

118. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev 2012; 6:1-5.

119. Ogbulie JN, Ogueke CC, Okorondu S. Antibacterial properties of A. cordifolia, M. flurum, U. chamae, B. pinnatum, C. albidum and A. ciliata on some hospital isolates. Niger J Microbiol 2004; 18:249-255.

120. Chopra RN, Nayar L, Chopra IC. Glossary of Indian medicinal plants. New Delhi. C SIR. 1956.

121. Chopra R, Chopra Handa K, Kapur L. Indigenous drugs of India UN Dhur and Sons. Pvt. Ltd., Calcutta. 1958. p. 358.

122. Dokuparthi SK, Banerjee N, Kumar A, Singamaneni V, Giri AK, Mukhopadhyay S. Phytochemical investigation and evaluation of antimutagenic activity of the extract of Cuscuta reflexa Roxb by Ames Test. Int J Pharm Sci Res 2014; 5:3430-3434.

123. Saini P, Mithal R, Menghani E. A parasitic medicinal plant Cuscuta reflexa : an overview. Int J Sci Eng Res 2015; 6:951-959.

124. Singh S, Sharma A. Studies on ethnomedicinal Plant of Baghicha Jaspur Chattisgarh. J Sci Lett 2017; 2:48-55.

125. Basak S, Banerjee A, Manna CK. Role of some ethno medicines used by the Santal tribal people, of the district Bankura, WB, India, for abortifacient purposes. J Med Plants Stud 2016; 4:125-129.

126. Singh RS, Shahi SK. Diversity of medicinal plants of Ratanpur region of Bilaspur district (Chhattisgarh). J Med Plants 2017; 5:276-281.

127. Singh S. Ethnobotanical study of some climbers of Parsa district forest of Nepal. J Med Plants 2016; 4:6-10.

128. Mohapatra SS, Sarma J, Roy RK, Panigrahi S, Ganguly S. Ethnomedicinal plants used in balasore district of Odisha: a comprehensive report. Int J Cur Microbiol App Sci 2018; 7:1959-1963.

129. Kirtikar KR, Basum BD. Indian medicinal plants. Vol 1. Delhi: Periodical Experts Book Agency; 1984.

130. Darias V, Bravo L, Rabanal R, Mateos C, Luis RG, Perez AH. New contribution to the ethnopharmacological study of the Canary Islands. J Ethnopharmacol 1989 1; 25:77-92.

131. Chowdury M, Das AP. Folk medicines used by the Rabha tribe in Coochbehar district of West Bengal: a preliminary report. Adv Ethnobot 2007:289-296.

132. Rai Y, Kumar D. Survey on medicinal climbers in meerut district, Uttar Pradesh, India. Imperial J Interdisciplinary Res 2016; 2:603-610.

133. Patel JN, Patel NK. Study of parasite hosts of the genus Cuscuta and its traditional uses in Planpur Taluka, Gujarat, India. Ethnobot Leaf 2010; 14:126-135.

134. Dutta ML. Plants used as ethnomedicine by the Thengal Kacharies of Assam, India. Asian J Plant Sci Res 2017; 7:7-8.

135. Khalid M, Bilal M, Hassan D, Zaman S, Huang D. Characterization of ethno-medicinal plant resources of karamar valley Swabi, Pakistan. J Radiat Res Appl Sci 2017; 10:152-163.

136. Khattak NS, Nouroz F, Rahman IU, Noreen S. Ethno veterinary uses of medicinal plants of district Karak, Pakistan. J Ethnopharmacol 2015; 171:273-279.

137. Kumar S, Singh BS, Singh RB. Ethnomedicinal plants uses to cure different human diseases by rural and tribal peoples of Hathras district of Uttar Pradesh. J Pharmacogn Phytochem 2017; 6:346-348.

138. Azam MN, Mannan MA, Ahmed MN. Medicinal plants used by the traditional medical practitioners of Barendra and Shamatat (Rajshahi & Khulna Division) region in Bangladesh for treatment of cardiovascular disorders. J Med Plants 2014; 2:9-14.
139. Khanday ZH, Singh S. Ethnomedical Plants used for curing various skin diseases in Shopian district of Jammu and Kashmir. J Phytology 2017; 9:5-6.

140. Senthilkumar S, Vijayakumari K. A review-pharmacology of medicinal plants. Int J Univ Pharm Bio Sci 2016; 5:37-59.

141. Shahidullah M, Al-Mujahidee M, Uddin SN, Hossan MS, Hanif A, Bari S, et al. Medicinal plants of the Santal tribe residing in Rajshahi district, Bangladesh. Am Eur J Sustain Agric 2009; 3:220-226.

142. Singh EA, Kamble SY, Bipinraj NK, Jagtap SD. Medicinal plants used by the Thakar tribes of Raigad district, Maharashtra for the treatment of snake-bite and scorpion-bite. Int J Phythother Res 2012; 2:26-35.

143. Hossan MS, Hanif M, Khan M, Bari S, Jahan R, Rahmatullah M. Ethnobotanical survey of the Tripura tribe of Bangladesh. Am Eur J Sustain Agric 2009; 3:253-261.

144. Patel H, Patel N. Sacred and medicinal plant diversity of patan sacres grove of Patan District (NG). Life Sci Leaf 2017; 92:50-60.

145. Siwakoti M, Siwakoti S. Ethnomedical uses of plants among the satar tribe of Nepal. J Econ Taxon Bot 2000; 24:323-333.

146. Saheb TS, Rao BR, Venkateswarlu M, Swamulu M. Medicinal plants used for jaundice by the tribal people of nallamalais in Andhra Pradesh. J Pharmacogn Phytochem 2018; 7:528-531.

147. Divakara BN, Prasad S. Ethnomedical importance of invasive alien flora of latehar and hazaribagh districts: Jharkhand. Indian For 2015; 141:1172-1175.

148. Mahmoud MR, Parvin A, Amny IF, Akter F, Tarannom SR, Moury SI, et al. Home remedies of village people in six villages of Dinajpur and rangpur districts, Bangladesh. World J Pharm Pharm Sci 2015; 4:63-73.

149. Rahmatullah M, Khutan Z, Hasan A, Parvin W, Moniruzzaman M, Khutan A, et al. Survey and scientific evaluation of medicinal plants used by the Pahan and Teli tribal communities of Natore district, Bangladesh. Afr J Tradit Complementary Altern Med 2012; 9:366-373.

150. Seliya AR, Patel NK. Ethnomedical uses of climbers from Saraswati river region of Patan district, North Gujarat. Ethnobot leaf 2009; 13:865-872.

151. Qureshi R, Bhatti GR, Memon RA. Ethnomedical uses of herbs from northern part of Nara desert, Pakistan. Pak J Bot 2010; 42:839-851.

152. Patil JJ, Biradar SD. Foldloric medicinal plants of Hingoli district, Maharashtra. 2011; 2:97-101.

153. Van Sam H, Baas P, Kebler PJ. Traditional medicinal plants by a new herbal formula in penile tissues of spontaneous hypertensive male rats. J ethnopharmacol 2009; 120:176-180.

154. Deepakkumar R, Sahabi E, Karthick M, Raysad KS. Traditionally used ethno-medical plants of the Kurumba tribal communities in Thalasamai hills, Namakkal district, Tamil Nadu. South Indian J Biol Sci 2017; 3:15-26.

155. Patil SJ, Patil HM. Ethnomedical herbal remedies from satpura hill ranges of shirpur tahsil, dhule, maharashtra. India Res J Recent Sci 2012; 1:333-336.

156. Akbar S, Nisa M, Tarig M. CNS depressant activity of Cuscuta chinensis Lam. Int J Crude Drug Res 1985; 23:91-94.

157. Fahmy GM. Qatar biodiversity newsletter. Ostrich 2008; 3:1-5.

158. Rizk AM, El-Ghazaly GA. Medical and poisonous plants of Qatar. University of Qatar; 1995.

159. Wang TJ, An J, Chen XH, Deng QD, Yang L. Assessment of Cuscuta chinensis seeds effect on melanogenesis: comparison of water and ethanol fractions in vitro and in vivo. J Ethnopharmacol 2014; 154:240-248.

160. Shubhangi P, Patil DA. Herbal haircare as revealed by people in Jalgao district, Maharashtra, India. J Exp Sci 2012; 3:32-34.

161. Ghayoumi A, Mashayekhi A. Scleroderma treatment in iranian traditional medicine: a case report. Adv Herb Med 2016; 2:1-4.

162. Tavili A, Farajollahi A, Pouzesh H, Bandak E. Treatment induced germination improvement in medicinal species of Foeniculum vulgare Miller and Cuscuta epithymum (L.) L. Mod Appl Sci 2010; 4:163-169.

163. Haq F, Ahmad H, Alam M. Traditional uses of medicinal plants of Nandiar Khuwarr catchment (District Battagram). Pakistan J Med Plants Res 2011; 5:39-48.

164. Singh EA, Kamble SY, Bipinraj NK, Jagtap SD. Medicinal and poisonous plants biodiversity and their resources of one serpentine site in the Rhodope MTS (Bulgaria). Nat Montenegr 2010; 4:387.

165. Nita RD, Harsh DL. Ethno-botanical survey of some medicinal plants in jatasankar region of girnar forest, gujarat, india. Glob J Res Med Plants Indig Med 2013; 2:830-841.

166. Paudel N, Adhikari DC, Das BD. Some medicinal plants uses in ethnical group from batnagar, eastern, Nepal. Am Sci Res J Eng Tech Sci 2018; 4:233-239.

167. Ahirwar RK. Diversity of ethnomedical plants in Boridand forest of district Koria, Chhattisgarh, India. Am J Plant Sci 2015; 6:413-425.

168. Yaseen G, Ahmad M, Potter D, Zafar M, Sultana S, Irfan M. Ethnobotany of medicinal plants for livelihood and community health in deserts of Sindh-Pakistan. In Plant and Human Health, Volume 1. Springer, Cham. 2018. p. 767-792.

169. Kala CP. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. J Ethnobiol Ethnomed 2005; 1:1-8.

170. Akter MH, Akter MH, Prodhan MT, Akter S, Akter N, Sultana J, et al. Documentation of plant-based remedies of a folk herbalist of Comilla district, Bangladesh. World J Pharm Pharm Sci 2017; 6:11-11.

171. Chakraborty M. Medicinal plants used by the village Pania under Baghmara District, Bangladesh. Discovery 2018; 54:60-71.

172. Azam MN, Ahmed MN, Rahman MM, Rahmatullah M. Ethnedicines used by the Oraon and Gor tribes of Sylhet district, Bangladesh. Am-Eurasian J Sustain Agric 2013; 7:391-402.

173. Verna N, Yadav RK. Cuscuta reflexa: a parasitic medicinal plant. Plant Arch 2018; 18:1938-1942.

174. Kumar S, Sharma SD, Kumar N. Ethnobotanical study of some common plants from district hamirpur of Himachal Pradesh (India). Int J Adv Res 2015; 3:492-496.
An overview of the genus Cuscuta

179. Shippa A, Koli S, Akter K, Shahriar SS, Rahmatullah M. Phytotherapeutic practices of a folk medicinal practitioner in Kishoreganj district, Bangladesh. J Med Plants 2018; 6:240-242.

180. Khan W, Khan SM, Ahmad H. Ethno-ecology, Human Health and Plants of the Thandian Sub Forest Division, Abbottabad, KP, Pakistan. In Plant and Human Health, Volume 1. Springer, Cham. 2018. p. 547-567.

181. Chen GT, Lu Y, Yang M, Li JL, Fan BY. Medicinal uses, pharmacology, and phytochemistry of convolvulae plants with central nervous system efficacies: a systematic review. Phytother Res 2018; 32:823-864.

182. Ganapaty SE, Ramaiah MA, Yasawini KA, Kumar CR, DBP. Characterization of total phenolic, flavonoid, alkaloidal contents and in vitro screening for hepatoprotective activity of Cuscuta epithymum (L) whole plant against CC14 induced liver damage animal model. Int J Pharm Pharm Sci 2013; 5:738-742.

183. Saharanand S, Ghasari S, Mosaddegh M. Medicinal plants used in Iranian traditional medicine to treat epilepsy. Seizure 2014; 23:328-332.

184. Farnsworth NR, Morris RW. Higher plants-the sleeping weeds from district attock Pakistan. Pak J Weed Sci Res 2006; 12:37-46.

185. Dhillon B, Shinde VM, Mahadik KR, Namdeo AG. Rapid densitometric method for simultaneous analysis of flavonoid contents from different extracts and fractions of Cuscuta chinensis. Phytochem 1998; 48:843-850.

186. Ahmad M, Khan MA, Zafar M, Sultana S. Ethnomedicinal demography and ecological diversification of some important weeds from district attack Pakistan. Pak J Weed Sci Res 2006; 12:37-46.

187. Dhalwal K, Shinde VM, Mahadik KR, Namdeo AG. Rapid densitometric method for simultaneous analysis of flavonoid contents from different extracts and fractions of Cuscuta chinensis. Phytochem 1998; 48:843-850.

188. Mir MA, Sawhney SS, Jassal MM. Qualitative and quantitative analysis of phytochemicals of Cuscuta chinensis and Cuscuta reflexa as a rich source of bioactive phenolic compounds. J Herbs Spices Med Plants 2017; 23:157-168.

189. Ramya B, Natrajan E, Vijaykumar S, John Vasanth MS, Muthuramsanjivani VK. Isolation and characterization of bioactive metabolites in Cuscuta reflexa. Indian J Nat Sci 2010; 1:134-139.

190. Uddin SJ, Shilpi JA, Middleton M, Byres M, Shoob M, Nahar L, et al. Swarnalín and cis-swarnalín, two new tetrahydrofuran derivatives with free radical scavenging activity, from the aerial parts of Cuscuta reflexa. Nat Prod Res 2007; 21:663-668.

191. Tripathi VJ, Yadav SB, Upadhyay AK. A new flavanone, reflexin, from Cuscuta reflexa and its selective sensing of nitric oxide. Appl Biochem Biotechnol 2005; 127:63-67.

192. Chatterjee DP, Sahu RK. Chemical characterization of the flavonoid constituents of Cuscuta reflexa. UK J Pharm Bio Sci 2014; 2:13-16.

193. Shekarchi M, Kondori BM, Rahmatullah M, Naseri M, Pourfarzib M, et al. SWARNA and cis-Swarnalin: A novel pair of tetrahydrofuran derivatives from the aerial parts of Cuscuta reflexa. UK J Pharm Bio Sci 2014; 2:13-16.

194. Almođalí F, Alsbíá C, Alhoulmendan G, Alammarí G, Kavita MS. Role of phytochemicals in health and nutrition. BAO J Nutr 2017; 3:28-34.

195. Savithramma N, Rao ML, Suhrlalatha D. Screening of medicinal plants for secondary metabolites. Middle East J Sci Res 2011; 8:579-584.

196. Yahara S, Domoto H, Sugimura C, Nohara T, Niño Y, Nakajima Y, et al. An alkald and two lignans from Cuscuta chinensis. Phytochemistry 1994; 37:1755-1757.

197. Garcia MR, Erazo GS, Pena RC. Flavonoids and alkaloids from Cuscuta (Cuscutaceae). Biochem Syst Ecol 1995; 23:571-572.

198. Wang J, Tan D, Wei G, Guo Y, Chen C, Zhu H, et al. Studies on the chemical constituents of Cuscuta chinensis. Chem Nat Compd 2016; 52:1133-1136.

199. Ibrahim M, Rehman K, Hussain I, Farooq T, Ali B, Majeed I, et al. Ethnopharmacological investigations of phytochemical constituents isolated from the genus Cuscuta. Crit Rev Eukaryot Gene Expr 2017; 27:113-150.

200. Löffler C, Czygan FC, Proksch P. Phenolic constituents as taxonomic markers in the genus Cuscuta (Cuscutaceae). Biochem Syst Ecol 1997; 25:297-303.

201. Wink M, Witte L. Quinolizidine alkaloids in Genista acanthoclada and its holoparasite, Cuscuta palaestina. Chem Nat Prod Res 2011; 8:579-584.

202. Mir MA, Sawhney SS, Jassal MM. Optimized separation and quantification of pharmacologically active markers quercetin, kaempferol, β-sitosterol and lupeol from Cuscuta reflexa. J Sep Sci 2007; 30:2053-2058.

203. Shekarchi M, Kondori BM, Hajimehdipoor H, Abdi L, Shekarchi M, et al. The purification and nature of an antiviral protein from Cuscuta reflexa plants. Arch Virol 1981; 70:215-223.

204. Shikari M, Kondori BM, Hajimehdipoor H. Abdi L, Naseri M, Pourfarzib M, et al. Finger printing and quantitative analysis of Cuscuta chinensis flavonoid contents from different hosts by RP-HPLC. Food Nutr Sci 2014; 5:914-922.

205. Zhan W, Zheng H. Studies on the chemical constituents of the seed of chinese dodder (Cuscuta chinensis). Chin Tradit Herb Drugs 1998; 9:115-117.

206. Ye M, Yan Y, Guo DA. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2005; 19:1469-1484.

207. Tsai YC, Lai WC, Du YC, Wu SF, El-Shazly M, Lee CL, et al. Lignan and flavonoid phytoestrogens from the seeds of Cuscuta chinensis. J Nat Prod 2012; 75:1424-1431.

208. Mir MA, Sawhney SS, Jassal MM, Liu Y, Guo YT, Miyahara K. Components of the ether-insoluble resin glycoside-like fraction from Cuscuta chinensis. Phytochemistry 1998; 48:843-850.

209. Yan FL, Wu TH, Lin LT, Cham TM, Lin CC. Concordance between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensis. Food Chem 2008; 108:455-462.

210. He XH, Yang WZ, Meng AH, He WN, Guo DA, Ye M. Two new lignan glycosides from the seeds of Cuscuta chinensis. J Asian Nat Prod Res 2010; 12:934-939.

211. Fan BY, Luo JG, Gu YC, Kong LY. Unusual ether-type resin glycoside dimers from the seeds of Cuscuta chinensis. Tetrahedron 2014; 70:2003-2014.
properties of acetone extract of \textit{Cuscuta reflexa} Roxb. grown on various host plants. Nat Prod Res 2017; 3:1-4.
238. Hussian SA, Farheen S, Sultana T, Tabassum A, Hussain SI, Khan R. Evaluation of anti-covulsant and anioxidant activity of selected medicinal plants. World J Pharm Pharm Sci 2017; 6:1899-1914.
239. Yen FL, Wu TH, Lin EZ, Cham TM, Lin CC. Nanoparticles formulation of \textit{Cuscuta chinensis} prevents aceterminophen-induced hepatotoxicity in rats. Food Chem toxicol 2008; 46:1771-1777.
240. Gao JM, Li R, Zhang L, Jia LL, Ying XX, Dou DQ, et al. \textit{Cuscuta chinensis} seed water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury. J Ethnopharmacol 2013; 148:59:57.
241. Zhen GH, Jiang B, Bao YM, Li DX, An LJ. The protective effect of flavonoids from \textit{Cuscuta chinensis} in PC12 cells from damage induced by H$_2$O$_2$. J Chin Med Mater 2006; 29:1051-1055.
242. Amaresp P, Seemanchala R, Debashis P, Arpan M, Bijan G, Kumar BN. Hepatoprotective activity of whole part of the plant \textit{Cuscuta reflexa} Roxb. (Convolvulaceae) in chloroform, ethanol and paracetamol induced hepatotoxic rat models. Int J Pharm Clin Res 2014; 6:127-132.
243. Taghizadeh M, Issabegloog E, Valiloo MR, Afshar F, Asad J. Hepatoprotective and antioxidant activity of ethanolic extract of aerial parts of \textit{Cuscuta reflexa} Roxb. on liver damage due to cisplatin in rats. Baltica 2014; 27:274-279.
244. Shaw JE, Siree RA, Zimmer PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Prac 2010; 87:4-14.
245. Rath D, Kar DM, Panigrahi SK, Maharanar L. Antidiabetic effects of \textit{Cuscuta reflexa} Roxb. in streptozotocin induced diabetic rats. J Ethnopharmacol 2016; 192:442-449.
246. Ma JZ, Yang LX, Shen XL, Qin JH, Deng LL, Ahmed S, et al. Effects of traditional Chinese medicinal plants on anti-insulin resistance bioactivity of DXMS-induced insulin resistant HepG2 cells. Nat Prod Bioprospect 2014; 4:197-206.
247. Li DZ, Peng DY, Zhang R, Xu XX. Effects of \textit{Cuscuta chinensis} polysaccharide on diabetic mice by alloxan. Anhui Med Pharm J 2008; 12:900-911.
248. Li XJ, You HY, Yang J, Liu BM, You G, Song Y. Aqueous extracts of \textit{Cuscuta chinensis} Lam induces differential ion of amelanotic melanocytes of human hair follicles. Chin J Dermatovenereol 2008; 22:13-15.
249. Xu XX, Li DZ, Peng DY, Zhang R. Effects of \textit{Cuscuta chinensis} polysaccharide on Glucose-lipid Metabolism in Diabetic Rats. Chin J Exp Tradit Med Formula 2011; 17:232-234.
250. Lei X, He J, Ren C, Zhou Y, Chen X, Dou J. Protective effects of the Chinese herbal medicine prescription Zhujing pill on retina of streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 90:64:1-650.
251. Al-Sultany, Fadia H, Al-Saadi AH, Al-Husainy IM. Evaluated the Up-regulation in gene expression of hepatic insulin gene and hepatic insulin receptor gene in type 1 diabetic rats treated with \textit{Cuscuta chinensis} Lam. J Babylon Univ 2018; 26:75-93.
252. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 2012; 30:677-706.
253. Suresh V, Sruthi V, Padmaja B, Asha VV. \textit{In vitro} anti-inflammatory and anti-cancer activities of \textit{Cuscuta reflexa} Roxb. J Ethnopharmacol 2011; 134:872-877.
254. Katiyar NS, Singh AP, Gangwar AK, Rao NV. Evaluation of carrageenan induced anti-inflammatory activity of stem extracts of \textit{Cuscuta reflexa} (Roxb) in rats. Int J Res Pharm Chem
Noureen et al. An overview of the genus Cuscuta

2015; 5:322-326. 255. Kang SY, Jung HW, Lee MY, Lee HJ, Chae SW, Park YK. Effect of the semen extract of Cuscuta chinensis on inflammatory responses in LPS-stimulated BV-2 microglia. Chin J Nat Med 2014; 12:573-581.

256. Liao JC, Chang WT, Lee MS, Chiu YJ, Chao WK, Lin YC, et al. Anticoagulant and anti-inflamatory activities of Cuscuta chinensis seeds in mice. The Am J Chin Med 2014; 42:223-242.

257. Koca U, Kúpeli-Akkol E, Seheroglu N. Evaluation of in vivo and in vitro biological activities of different extracts of Cuscuta arvensis. Nat Prod Commun 2011; 6:1433-1436.

258. Islam R, Rahman MS, Rahman SM. GC-MS analysis and antibacterial activity of Cuscuta reflexa against bacterial pathogens. Asian Pac J Trop Dis 2015; 5:399-403.

259. Pal DK, Mandal M, Senthilkumar GP, Padhia A. Antibacterial activity of Cuscuta reflexa stem and Corchorus olitorius seed. Fitoterapia 2006; 77:589-591.

260. Bibi Y, Naem J, Zahara K, Arshad M, Qayyum A. In Vitro antimicrobial assessment of selected plant extracts from pakistan. Iran J Sci Technol A 2018; 42:267-272.

261. Okiei W, Ogunesi M, Ademoye MA. An assessment of the antimicrobial properties of extracts of various polarities from Chasmanthera dependens, Emilia coccinea and Cuscuta australis, herbal medications for eye diseases. J Appl Sci 2009; 9:4076-4080.

262. Bonjor S. Evaluation of antibacterial properties of some medicinal plants used in iran. J Ethnopharmacol 2004; 94:301-305.

263. Abdullah JA, Hammad AA, Hakem R, Hatef Z, Hussein N. Study effect of plant extract on Cuscuta europaea (Dodder) against two species of bacteria Staphylococcus aureus and Escherichia coli. J Contemp Med Sci 2016; 2:137-139.

264. Etedali P, Behbahan M, Rahiminejad RM, Rad SJ. Effect of crude extract of Cuscuta chinensis on the growth, invasion, and DNA integrity of breast and prostate cells on peripheral blood mononuclear cells and HIV replication. Int J Biosci 2014; 4:83-89.

265. Ahmed HM, Yeh JY, Tang YC, Cheng WT, Ou BR. Molecular screening of chinese medicinal plants for progestogenic and anti-progestogenic activity. J Biosci 2014; 39:453-461.

266. Alaloui-Jamali M, editor. Alternative and complementary therapies for cancer: Integrative approaches and discovery of conventional drugs. Springer Science Business Media; New York, USA, 2010. p.63.

267. Zeraati F, Zamani A, Goodarzi MT, Hashjin SM, Razaghi K. In vitro cytotoxic effects of Cuscuta chinensis whole extract on human acute lymphoblastic leukemia cell line. Iran J Med Sci 2015; 35:310-314.

268. Choi EJ, Kim GH, Kim T. Equol induced the apoptosis via cell cycle arrest in MDA-MB-453 but not in MCF-7 cells. Faseb J 2008; 22:265-265.

269. Magee PJ, Raschke M, Steiner C, Duffin JG, Pool-Zobel BL, Jokela T, et al. Phytochemical analysis of traditional chinese med using liquid chromatography with diode array detection. Anal Lett 2018; 51:1464-1478.

270. Behbahan M. Evaluation of in vitro anticancer activity of Ocimum basilicum, Allhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. PloS one 2014; 9:1-13.

271. Pan HJ, Sun HX, Pan YJ. Adjuvant effect of ethanol extract of semen cuscutae on the immune responses to ovalbumin in mice. J Ethnopharmacol 2005; 99:99-103.

272. Lin MK, Yu YL, Chen KC, Chang WT, Lee MS, Yang MJ, et al. Kaempferol from semen cuscutae attenuates the immune function of dendritic cells. Immunobiology 2011; 216:1103-1109.

273. Lin HB, Lin JQ, Lu N, Yi XY. Comparative study on immune enhancement effects of four kinds of dodder seeds in shandong province. Chin J Chin Mater Med 1990; 15:557-559.

274. Gu LG, Ye M, Yan YN, Jia L, Zhao JQ. Study of Cuscuta chinensis hyperoside on immunological function of mice in vitro and in vivo. Chin J Tradit Chin Med Inf 2001; 8:42-44.

275. Jian-Hui L, Bo J, Yong-Ming B, Li-Jia A. Effect of Cuscuta chinensis glycoside on the neuronal differentiation of rat pheochromocytoma PC12 cells. Int J Dev Neurosci 2003; 21:277-281.

276. Liu ZY, Yang YG, Zheng B. Effect of improving memory and inhibiting acetylcholinesterase activity by invigorating-qi and warming-yang recipe. Chin J Chin Tradit West Med 1993; 13:675-676.

277. Yu Q, Song FJ, Chen JF, Dong X, Jiang Y, Zeng KW, et al. Antineuroinflammatory effects of modified wu-zi-yan-zong prescription in β-amyloid-stimulated BV2 microglia via the NF-kB and ERK/p38 MAPK signaling pathways. J Evid Based Complementary Altern Med 2017; 2017:1-10.

278. Cai XG, Xu AX, Ge B, Gao X, Yang SH. Effects of a polysaccharide from CCL on inhibiting oxygen free radical threshold of senile mice model. Acta Acad Med Mil Tertiae 2005; 27:1326-1328.

279. Li CS, Deng HB, Li DD, Li ZH. Advances and challenges in screening traditional chinese anti-aging materia medica. Chin J Tradit Med 2013; 19:243-252.

280. Yang FV, Huang J. “Tai Ping Sheng Hui Fang” in the anti-aging effects medical research. J Guiyang Coll of Tradit Chin Med 1998; 2:7-8.

281. Gilani AU, Aftab K. Pharmacological actions of Cuscuta reflexa. Int J Pharma 1992; 30:296-302.

282. Yao CH, Tsai CC, Chen YS, Chang CJ, Liu BS, Lin CC, et al. Fabrication and evaluation of a new composite composed of tricalcium phosphate, gelatin and Chi-Li-Saan as a bone substitute. Am J Chin Med 2002; 30:471-482.

283. Yang HM, Shin HK, Kang YH, Kim JK. Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells. J Med Food 2009; 12:85-92.

284. Yang M, Sun J, Lu Z, Chen G, Guan S, Liu X, et al. Phytochemical analysis of traditional chinese med using liquid chromatography coupled with mass spectrometry. J Chromatogr A 2009; 1216:2045-2062.

285. Shin S, Lee YJ, Kim YJ, Lee AS, Kang DG, Lee HS. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats. Am J Chin Med 2011; 39:889-902.

286. Sun K, Zhao C, Chen XF, Kim HK, Choi BR, Huang YR, et al. Ex vivo relaxation effect of Cuscuta chinensis extract on rabbit corpus cavernosum. Asian J Androl 2013; 15:134-137.

287. Peng SJ, Lu RK, Yu LH. Effect of semen cucautae, rhizoma curculiginis, radix morindae, officinalis on human spermatozoa's motility and membrane function in vitro. Chin J West Med 1997; 17:145-147.

288. Shah GR, Chaudhari MV, Patankar SB, Pensalwar SV, Sabale VP, Sonawane NA. Evaluation of a multi-herb supplement for...
erectile dysfunction: a randomized double-blind, placebo-controlled study. BMC Complementary Altern Med 2012; 12:155-163.

291. Linmao Y. Integrating chinese and western medicine to treat infantile uterus. Herb J Tradit Chin Med 1992; 14:40-54.

292. Jang H, Bae WJ, Kim SJ, Cho HJ, Yuk SM, Han DS, et al. The herbal formula KH-204 is protective against erectile dysfunction by minimizing oxidative stress and improving lipid profiles in a rat model of erectile dysfunction induced by hypercholesterolemia. BMC Complementary Altern Med 2017; 17:129-140.

293. Yang J, Wang Y, Bao Y, Guo J. The total flavones from semen cuscutae reverse the reduction of testosterone level and the expression of androgen receptor gene in kidney-yang deficient mice. J Ethnopharmacol 2008; 119:166-171.

294. Wang J, Wang M, Ou Y, Wu Q. Effects of flavonoids from semen cuscutae on changes of beta-EP in hypothalampuses and FSH and LH in anterior pituitaries in female rats exposed to psychologic stress. J Chin Med Mater 2002; 25:886-888.

295. Ma HX, You ZL, Wang RG. Effect of total flavones from *Cuscuta chinensis* on expression of Th type-1/Th type-2 cytokines, serum P and PR in abortion rats model. J Chin Med Mater 2008; 31:1201-1204.

296. Ma HX, You ZL, Wang XY. Effect of total flavones from *Cuscuta chinensis* on expression of Fas/FasL, PCNA and HB-EGF in SD rats model with bromocriptine-induced abortion. J Chin Med Mater 2008; 31:1706-1709.

297. Zhu JE, She YC, Zhou CH. Experimental and clinical studies on the effect of Shou Tai Wan and additives on threatened abortion. J Integr Tradit Western Med 1997; 7:407-409.

298. Agil F, Zahnin M, Ahmad I. Antimitogenic activity of methanolic extracts of four ayurvedic medicinal plants. Indian J Exp Biol 2008; 46:668-672.

299. Nakahara K, Takaotivalkorn G, Alzoreky NS, Ono H, Onishi-Kameyama M, Yoshida M. Antimitogenicity of some edible Thai plants, and a bioactive carbazole alkaloid, mahanine, isolated from *Micromelum minutum*. J Agric Food Chem 2002; 50:4796-4802.

300. Zweier JL, Talukder MH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006; 70:181-190.

301. Veinot JP, Gattinger DA, Fliss H. Early apoptosis in human myocardial infarcts. Hu Pathol 1997; 28:485-492.

302. Rabkin SW. Apoptosis in human acute myocardial infarction: the rationale for clinical trials of apoptosis inhibition in acute myocardial infarction. Sci Res Exch 2009; 2009:1-10.

303. Sun SL, Guo L, Ren YC, Wang B, Li RH, Qi YS, et al. Anti-apoptosis effect of polysaccharide isolated from the seeds of *Cuscuta chinensis* lam on cardiomycocytes in aging rats. Mol Biol Rep 2014; 41:6117-6124.

304. Zhongrong L, Pengtie L, Tiejun E, Yuanqiao J, Ruozhu W. The effect of three extraction technique of Chinese dodder seed on cardiovascular activity. Nat Prod Res Develop 2004; 16:532-533.

305. Thomas S, Shrikumar S, Velmurugan C, Kumar BA. Evaluation of anxiolytic effect of whole plant of *Cuscuta reflexa*. World J Pharm Sci 2015; 4:1245-1253.

306. Mohktarifar N, Sharif B, Naderi N, Mosaddegh M, Faizi M. Evaluation of anti-depressant effects of *Cuscuta chinensis* in experimental models. Res Pharm Sci 2012; 7:826-827.

307. Cheng D, Murtaza G, Ma S, Li L, Li X, Tian F, et al. In silico prediction of the anti-depression mechanism of a herbal formula (tiansi liquid) containing *Morinda officinalis* and *Cuscuta chinensis*. Molecules 2017; 22:1614-1630.

308. Firoozabadi A, Zarshenas MM, Salehi A, Jahanbin S, Mohagheghzadeh A. Effectiveness of *Cuscuta planiflora* ten and *Nepera menthoides* Boiss & Buhse in major depression: a triple-blind randomized controlled trial study. J Evi based Complementary Altern Med 2015; 20:94-97.

309. Shen L, Huang YY, Wang XN, Du J, Wang YY, Zhang DQ. Pharmacological effect of *cuscutae Semen* by external use on experimental vitiligo in guinea pigs. Chin J Exp Tradit Med Formulae 2012; 18:199-202.

310. Wang TJ, An J, Chen XH, Deng QD, Yang L. Assessment of *Cuscuta chinensis* seeds effect on melanogenesis: comparison of water and ethanol fractions in vitro and in vivo. J Ethnopharmacol 2014; 154:240-248.

311. Mojtahaei M, Mokaberinejad R, Hamzeloo-Moghadam M, Nasab MR, Adhami S, Farahi S, et al. The effect of the traditional medicine product “Milke-Cuscuta” on skin hyperpigmentation in patients with melasma. Middle East J Family Med 2018; 7:204-211.

312. Suk KD, Lee SJ, Bae JM. Inhibitory effects of *Cuscuta japonica* extract and *C. australis* extract on mushroom tyrosinase activity. Korean J Pharma 2004; 35:380-383.

313. Patel S, Sharma V, Chauhan NS, Dixit VK. A study on the extracts of *Cuscuta reflexa* Roxb in treatment of cyclophosphamide induced alopecia. Daru J Pharm Sci 2014; 22:27-34.

314. Huang AG, Yi YL, Ling F, Lu L, Zhang QZ, Wang GX. Screening of plant extracts for anthelmintic activity against *Dactylogyrus intermedius* (Monogenea) in goldfish (*Carassius auratus*). Parasitol Res 2013; 112:4065-4072.

315. Moon M, Jeong HU, Choi JG, Jeon SG, Song EJ, Hong SP, et al. Memory-enhancing effects of *Cuscuta japonica* Choisy via enhancement of adult hippocampal neurogenesis in mice. Behav Brain Res 2016; 311:173-182.

316. Mehrabani M, Modirian E, Ebrahimabadi AR, Vafazadeh J. Study of the effects of hydro-methanol extracts of *Lavandula vera* DC and *Cuscuta epithymum* Murr on the seizure induced by pentylentetrazol in mice. J Kerman Univ Med Sci 2014; 14:25-32.

317. Gupta MA, Mazumder UK, Pal D, Bhattacharya S, Chakrabarty SU. Studies on brain biogenic amines in methanolic extract of *Cuscuta reflexa* Roxb and *Corchorus olitorius* Linn seed treated mice. Acta Pol Pharma 2003; 60:207-210.

318. Ohta Y, Sameki M, Kanda T, Saito K, Osada K, Kato H. Gene expression analysis of the anti-obesity effect by apple polyphenols in rats fed a high fat diet or a normal diet. J Oleo Sci 2006; 55:305-314.

319. Kakhoroava KA, Khashimova ZS, Terenteva EO. Studies on cytotoxicity and antioxidant activities of lectin-like proteins from phytoparasites (*Cuscuta eurospaea*). Asian Pharm 2006; 47:1251.

320. Bhan S, Mohan L, Srivastava CN. Efficacy of *Cuscuta reflexa* and *Cuscuta epithymum* Murr on skin hyperpigmentation. Nepal J Pharm Sci 2013; 12(1):5.

321. Firoozabadi A, Zarshenas MM, Salehi A, Jahanbin S, Mohagheghzadeh A. Effectiveness of *Cuscuta planiflora* ten and *Nepera menthoides* Boiss & Buhse in major depression: a triple-blind randomized controlled trial study. J Evi based Complementary Altern Med 2015; 20:94-97.
from *Cuscuta reflexa* Roxb (Convolvulaceae). Int J Pharmacogn Phytochem Res 2016; 8:930-932.
325. Praseeja RJ, Sreejith PS, Asha VV. Studies on the apoptosis inducing and cell cycle regulatory effect of *Cuscuta reflexa* Roxb chloroform extract on human hepatocellular carcinoma cell line, Hep 3B. Int J Appl Res Nat Prod 2015; 8:37-47.
326. Roohina Ali S, Haque S, Versiani MA, Faizi S, Farooq AD. Cytotoxicity and chromosomal aberrations induced by methanolic extract of *Cuscuta reflexa* and its pure compounds on meristematic cells of *Allium* species. Pak J Pharm Sci 2017; 30:521-529.
327. Mala FA, Sofi MA. Evaluation of antihistaminic Activity of herbal drug isolated from *Cuscuta reflexa* Roxb. Ann Plant Sci 2017; 6:1807-1810.