Aicardi-Goutières Syndrome: Neuroradiologic Findings and Follow-Up

BACKGROUND AND PURPOSE: To date, few studies have focused specifically on imaging findings in Aicardi-Goutières syndrome (AGS). We set out to evaluate retrospectively neuroradiologic data from a large sample of patients with AGS, focusing on the pattern of white matter abnormalities and the temporal evolution of the cerebral involvement to establish the radiologic natural history of the disease.

MATERIALS AND METHODS: Thirty-six patients, 18 girls and 18 boys, were included. All had a clinical diagnosis of AGS, genetically confirmed in 31 of them. For every subject, we reviewed at least 1 CT and 1 MR imaging study; 19 (52.7%) had multiple examinations. In all, we reviewed 109 examinations. Clinical-neuroradiologic comparisons were analyzed by using the \(\chi^2 \) test.

RESULTS: Calcifications were found in all subjects, mainly in the basal ganglia, lobar white matter, and dentate nuclei. Abnormal white matter was present in all the subjects, showing 2 patterns of distribution: diffuse in 18 (50%) and an anteroposterior gradient in 18 (50%). Cystic areas were observed in the temporal and/or frontal lobes in 12/36 patients (33.3%). A correlation was found between early age at onset and severity of the leukoencephalopathy in the frontal \((P = .024) \) and temporal \((P = .034) \) regions. A significant degree of cerebral atrophy was found in 31/36 subjects (86.1%). The neuroradiologic presentation remained substantially stable with time.

CONCLUSIONS: The different neuroradiologic presentations of AGS are here outlined for the first time in a large sample of patients. These findings may facilitate more precise and earlier diagnosis of this rare but probably underdiagnosed syndrome.
Materials and Methods

Subjects
The informed consent requirement was waived in this study because of its retrospective nature.

Patients were selected from the IAGSA data base on the basis of the following inclusion criteria:

1) A genetic and/or clinical diagnosis of AGS in accordance with the literature1,2, neurologic signs of encephalopathy, cerebral calcifications, negative serologic investigations for TORCH and for congenital infections, and CSF lymphocytosis (>5 cell/mm³) and/or elevation of CSF IFN-α (>2 U/L or >10 pg/mL).

2) Availability of clinical data and information.

3) Availability of at least 1 brain CT scan and 1 brain MR image, both of diagnostic image quality.

On this basis, 36 patients, 18 (50%) girls and 18 (50%) boys, were identified and included in the study.

All the patients except 2 had undergone genetic analysis to confirm the clinical diagnosis, with specific genetic alterations being identified in 31 of them. Four subjects presented mutations in AGS1 (11.1% of the sample); 23 subjects, in AGS2 (63.8%); 2 subjects (siblings), in AGS3 (5.6%) and 1, in AGS4 (2.7%). One child had a single heterozygous mutation in AGS4 (2.7%). No mutations in the AGS1–4 genes were found in 3 subjects (8.3%).

Imaging
All the patients underwent neuroradiologic investigations as part of their diagnostic work-up.

The age of the patients at the time of the examinations ranged from 12 days to 17 years (mean, 29 ± 38.3 months). Nineteen patients (19/36, 52.7%) had multiple examinations, with a maximum interval of 11.1 years between the first and the last; the mean duration of follow-up was 39 ± 37.8 months. In all, we reviewed 109 neuroradiologic examinations (56 brain MR images and 53 brain CT scans).

Twenty-two patients (22/36; 61.1%) were examined at our institution. The clinical and neuroradiologic data for the other 14 came from several different specialist centers around the world, having been sent to us for our diagnostic opinion. Therefore, the studies we analyzed showed some variation in sequences and in image quality.

Four subjects (4/36; 11%) underwent scanning after intravenous administration of contrast medium: MR imaging in 3 patients at 2, 12, and 40 months of age, respectively, and CT in 1 patient at 2 weeks of age.

All the examinations were reviewed by a single neuroradiologist (C.U.) with >20 years’ experience, who was initially blinded to the clinical data. The CT scans were analyzed for the presence, distribution, and severity of calcifications. The MR images were analyzed for changes in signal intensity in the supratentorial and infratentorial regions. Leukoencephalopathy was categorized by using a scoring list based on the one suggested by van der Knaap and Valk.18 The subcortical, periventricular, and lobar white matter (considering frontal, temporal, parietal, and occipital white matter as distinct entities); corpus callosum; internal and external capsules; optic radiations; cerebellar white matter; and brain stem were analyzed separately. We noted the following characteristics of the signal-intensity alterations: location, distribution (caudocranial, central-peripheral, or antero-posterior gradients), symmetry (symmetric/asymmetric), and homogeneity (confluent/isolated/multifocal involvement). The degree of white matter myelination (normal/delayed/no or hardly any myelin present) was also noted. The severity of leukoencephalopathy was graded from 0 to 4 on the basis of signal-intensity alteration (0 = no signal intensity alteration, 1 = mild signal intensity alteration, 2 = moderate signal intensity alteration, 3 = severe signal intensity alteration, 4 = severe signal intensity alteration and the presence of cystic degeneration).

Both the MR images and the CT scans were analyzed for patterns of brain atrophy. No volumetric studies were available, so we considered the following aspects instead: enlargement of the cortical sulci and dilation of the ventricular system. Atrophy was graded from 0 to 2 (0 = no atrophy, 1 = mild to moderate atrophy, 2 = severe atrophy).

Follow-up studies were compared with the original reference studies to look for increases in calcifications and to ascertain deterioration, stability, or improvement of the white matter abnormalities and of the brain atrophy.

Statistical Analysis
The direct comparisons of neuroradiologic findings (severity of calcifications/severity of leukoencephalopathy/degree of atrophy) with each other and with selected demographic/clinical variables (sex, age at onset, severity of neurologic involvement, systemic involvement, and presence of mutations in AGS2) were performed by using the χ² test for discrete variables (P < .05 was considered significant). The size of the sample precluded more complex statistical analyses and multiple comparisons. The qualitative analysis of the data was performed by using the Statistical Package for Social Sciences software (Version 10.0 for Windows; SPSS, Chicago, Ill).

Results
On-line Tables 1–3 set out, in detail, the clinical features of the sample and the neuroradiologic findings (presence of calcifications and leukoencephalopathy). The numbering of the patients (progressively by age at onset) is exactly the same in all the tables, to facilitate comparison of data.

Clinical Features
In most of the patients (34/36 subjects, 94.4%), the clinical presentation was characterized by the presence of spastic-dystonic tetraplegia, usually (in 33 patients) associated with severe developmental delay or mental retardation; 1 patient showed mild developmental delay. All except 1 of these 34 subjects (33/36; 91.7%) had microcephaly. Two subjects (5.6%) had head circumferences in the normal range for their age and spastic diplegia, without developmental delay or mental retardation. The clinical data of the sample are set out in detail in on-line Table 1.

Neuroradiologic Findings
Cerebral Calcifications. All patients (100%) showed cerebral calcifications on CT scans; in most cases, these were also evident on MR images as hypointense signals on T2-weighted images (Fig 1A). In the lentiform nucleus, the putamen and globus pallidus were equally affected by calcifications. The dentate nuclei were affected in 11 cases (30.5%). Cerebral calcifications in the white matter were located mainly in lobar zones and, in a small number of subjects, were also found in periventricular areas; otherwise, they were located as specified in on-line Table 2. The calcifications were typically small and punctuate, but in 3 patients (3/36; 8.3%), they were large and isolated (Fig 2). Calcific lesions were symmetrically distrib-
White Matter Abnormalities. White matter abnormalities were found in all the subjects (100%). These could always be seen on T2-weighted images and, when particularly severe, also on T1-weighted images as hypointense signals. Four patients (11.1%) presented only mild alterations, which, also due to the age of these patients, could still be attributable to severe myelination delay. With the exception of 1 patient (2.7%) with leukoencephalopathy mainly involving the left hemisphere, all the images examined showed a symmetric distribution of the white matter alterations.

The signal-intensity alteration mainly involved the lobar white matter, whereas the white matter of the strictly periventricular area, of the corpus callosum, of the capsules, and of the optic radiations was relatively spared; conversely, the subcortical arcuate fibers frequently showed abnormalities (Fig 3). Signal intensity was homogeneous in 18 subjects (18/36, 50%). In the other 18 (18/36, 50%), it was inhomogeneous and often characterized by the presence of more intense signal-intensity alterations in frontopolar areas (Fig 1). In 11 subjects (30.6%), the altered signal intensity corresponded to cystic degeneration, which was located in both the frontal and the temporal lobes in 6 patients (16.7%), only in the frontal lobes in 2 patients (5.6%), and only in the temporal lobes in the other 3 patients (8.3%). More detailed data are reported in Table 3.

Cerebral Atrophy. Some degree of cerebral atrophy was present in 31/36 subjects (86.1%). In 16/36 (44.4%), the atrophy, both superficial and deep, was severe (Figs 1 and 3). Moderate atrophy was present in 9 subjects (9/36, 25%). Six patients (6/36, 16.7%) had mild atrophy. In 3 patients with microcephaly (3/36, 8.3%), there was no...
Evidence of enlargement of the ventricular system or sulci. Two patients (2/36, 5.6%) showed neither microcephaly nor evidence of cerebral atrophy. The volume of the brain stem was reduced in 14/36 cases (14/36, 38.9%). No abnormalities of the cortex were found in any subject. Two siblings with mutations in the RNaseH2C gene (of the cortex were found in any subject. Two siblings with mutations in the RNaseH2C gene (AGS3) showed enlargement of the cisterna magna and upward rotation of the vermis.

Contrast Enhancement. No image enhancement was observed in any of the 4 subjects (4/36; 11.1%) scanned after intravenous administration of a contrast medium (Fig 2B).

Follow-Up. Modifications of the calcifications, white matter abnormalities, and atrophy in the 19 subjects undergoing multiple examinations are detailed below and in on-line Table 4. The cerebral calcifications remained unchanged in 15/19 subjects (79%); in the other 4 (21%) (ie, cases 17, 23, 27, and 36), they increased in the first 2 years after diagnosis before becoming stable. The white matter abnormalities also remained stable in 15/19 subjects (79%), whereas in the other 4 (21%) (ie, cases 10, 13, 19, and 3), they became more marked in the first 2 years following the diagnosis, thereafter becoming stable. The degree of cerebral atrophy was unchanged in 12/19 subjects (63.2%), whereas it progressively increased in the other 7/19 subjects (36.8%).

Statistical Analysis

Comparisons of Neuroradiologic Findings. Direct comparisons of neuroradiologic findings (severity of calcifications and severity of white matter abnormalities, severity of the calcifications and degree of cerebral atrophy, severity of white matter abnormalities and degree of cerebral atrophy) did not result in statistical significance.

Comparisons of Neuroradiologic Findings and Clinical Data. No correlations emerged between sex and neuroradiologic findings. A statistically significant correlation between the severity and site of white matter abnormalities and age at onset emerged when considering white matter abnormalities located in the frontal and temporal lobes (P = .024 and P = .034, respectively) (Fig 4).

Of the subjects with severe white matter abnormalities in the frontal and temporal lobes, 64.3% and 54.5%, respectively, had an age at onset of younger than 3 months; of those with moderate white matter abnormalities in the frontal and temporal lobes, 42.9%, in both cases, had an age at onset of younger than 3 months. Cystic degeneration in the frontal and/or temporal lobes was always (12/12; 100%) associated with an age at onset of younger than 3 months.

Given the variables of severity of calcifications and age at onset, 8 subjects with an age at onset of younger than 3 months presented with severe cerebral calcifications, whereas a similar presentation was found in only 1 subject with an age at onset of older than 3 months. This difference failed to reach statistical significance.

In the 2 subjects with a mild neurologic presentation (pyramidal signs without developmental delay and normal head circumference), it was deemed opportune to look for qualitative differences in the neuroradiologic presentation compared with the rest of the sample. They showed mild signal-intensity alteration in the white matter and minimal cerebral atrophy. In the 8 subjects with systemic involvement other than skin lesions, no correlation was found between the clinical and neuroradiologic presentations.

Seven of the 8 subjects with mutations in genes other than AGS2 (87.5%) showed very severe cerebrobral calcifications. This degree of severity was found in only 2 (8.7%) of the 23 subjects with mutations in AGS2. This difference was highly statistically significant (P < .0001). Of the 7 subjects showing mutations in genes other than AGS2 and very severe cerebral calcifications, 6 also had severe white matter abnormalities. Despite this, the severity of white matter abnormalities was not found to correlate with genetic findings.

Discussion

This retrospective study of 36 subjects with AGS, which included the serial evaluation of 53 CT scans and 56 MR images, has allowed us to explore in detail the complex imaging findings associated with this disease and to describe the evolution of the neuroradiologic presentation with time.

The presence of cerebral calcifications is a classic criterion for a diagnosis of AGS.1,2 In this patient series, too, all the subjects had calcifications, which displayed the distribution
and morphology typical of the syndrome. However, in view of the fact that in 1 of the subjects affected by late-onset AGS, calcifications were not detected on the first CT scan but appeared 3 months later, we believe that this classic diagnostic criterion should be reviewed and that a diagnosis of AGS cannot be excluded purely on the basis of absence of documented calcifications, certainly at the onset of the disease. This is, moreover, a view supported by literature reports of other cases, including 2 subjects described by Aicardi and Goutières and Goutières et al2 and a recent atypical case.16

Nevertheless, the presence of calcifications remains an extremely important finding in the diagnostic work-up of AGS, and in uncertain cases, we believe that an MR imaging investigation should always be associated with a CT scan, which is more sensitive in detecting them. Another pattern (not previously described) that emerged in our study, albeit without reaching statistical significance, was an apparent association (cerebellum, brain stem, optic radiations) tend to be affected by the pathologic process, the more severe its involvement will be. This hypothesis is supported by the observation that the structures in which myelination occurs earlier (cerebellum, brain stem, optic radiations) tend to be spared, whereas the frontotemporal regions, in which myelination occurs later, are particularly affected.

The severity of white matter abnormalities and the severity of calcifications did not reach a statistical relationship. However, this could be due to the relatively small size of the sample. The white matter MR imaging alterations were usually stable with time. In the few patients in whom they were progressive, this progression was noted only in the first 2 years following the clinical onset of the syndrome. This reflects the clinical pattern of AGS, which, after an initially acute period lasting ≤2 years, tends to show no signs of further progression. In these few patients with progressive white matter abnormalities, it was not changes in the distribution or size of the affected area that were observed but rather an increase in the signal intensity, culminating in the formation of areas of cystic degeneration in the already altered white matter.

Reduction in the quantity of cerebral white matter explained, in all the subjects displaying it, the presence of cerebral atrophy and microcephaly. The degree of cerebral atrophy also tended to be stable with time. Small changes (for better or for worse) in the width of the cerebral sulci were considered possible effects of changes in the general conditions of the patients and thus secondary to the hydration levels of the brain. Our findings suggest that the neuroradiologic presentation (like the clinical course) tends to remain stable with time, following an initial period in which it may be progressive.

Thinning of the brain stem, which is often considered a typical finding in AGS, was present in 38.9% of the patients in our series. Alternatively, brain stem hypotrophy, as well as thinning of the corpus callosum, could be linked to severe atrophy of the supratentorial structures, leading to thinning of the corticospinal tracts, and therefore might not constitute a definite sign of direct involvement of the brain stem. In fact, only 1 patient showed calcifications in both the pontine and the mesencephalic regions, and no specific morphologic or signal-intensity alterations were ever detected in the brain stem.

We did not observe any abnormalities of the cerebral cortex. From a neuroradiologic perspective, in accordance with literature data, AGS is, to all intents and purposes, a leukoencephalopathy, characterized by the presence of mixed features attributable to hypomyelination, dysmyelination, and gliosis. As the most recent immunohistochemical studies, too, have shown, astrocytes produce the INF-α, responsible for the cascade of events leading to the autoimmune inflammatory reaction, and the cerebral white matter is the “battlefield” where this reaction takes place.

The fact that there were no areas of contrast enhancement, even in the acute phases of this devastating inflammatory process, could be explained by the observation that a large proportion of subjects affected by AGS do not show a significant increase in the cytokine CCL2, which is responsible for breaking down the blood-brain barrier; conversely, raised CCL2 levels are found in congenital infections.24

An improved characterization of the neuroradiologic findings in AGS could help in the differential diagnosis of the syndrome versus the numerous forms of childhood leukoencephalopathy with calcifications, of which the main ones are the intrauterine TORCH infections, especially cytomegalovirus (CMV). The distribution of the calcifications could be
useful in the differential diagnosis of AGS versus congenital CMV infection, in which they typically show a periventricular distribution.26 None of our subjects showed involvement of the cerebral cortex, which, instead, is a feature of the encephalopathy found in congenital CMV infection.26

Metabolic causes should also be considered in the differential diagnosis of AGS, in particular biotinidase deficiency27,28 and carbonic anhydride II deficiency.27

In view of the relative sparing of the brain stem and cerebellum in AGS, the differential diagnosis of the syndrome versus diseases such as pontocerebellar hypoplasia23 does not seem to present a particular problem. Finally, the better trophism of the supratentorial compared with the cerebral structures could be a useful criterion in the differential diagnosis of AGS versus the neonatal form of Cockayne syndrome, in which cerebellar atrophy is prevalent.27 Cockayne syndrome, too, is linked to a deoxyribonucleic acid repair defect.29

With regard to the different genetic forms of AGS, a statistically significant correlation emerged between the mutated gene and the severity of the presentation of cerebral calcifications: Compared with the subjects with AGS2, those with the AGS1, AGS3, and AGS4 forms had a much more severe presentation, in terms of the number, size, and extent of the lesions. These aspects could be useful in targeting the search for the genes responsible for the condition.

We were able to confirm, also from a neuroradiologic point of view, a finding produced by a previous genotype

1976 in frontotemporal lobes, and calcifications. The severity of the patients with other genetic forms of AGS.

More precise correlations might emerge from similar comparisons of neuroradiologic and genetic data in larger samples of patients with AGS, which is a rare but probably under-diagnosed disease. Useful information on the involvement of the cerebral white matter might also be provided by MR imaging studies conducted by using advanced techniques, in particular diffusion tensor imaging and MR spectroscopy.

Conclusions

The brain imaging findings in AGS were leukoencephalopathy, either diffuse or with a frontal-to-posterior gradient, cysts in frontotemporal lobes, and calcifications. The severity of neuroradiologic findings, in particular white matter involvement, reflects the precocity of the disease onset.

Acknowledgments

We thank all physicians for kindly providing images and clinical data of patients for this study, especially Daniel R. Carvalho, Roberta Biancheri, Alice Pessagno, Andrea Rossi, Francesco Pisani, Antonella Squarcia, Francesca Ormitti, Cyril Goizet, Curtis Rogers, Sally Lynch, Mary King, Hans Jurgen Christen, Wilfried Kratzer, and Marianne Till. Our thanks go to Antonietta Citterio for helping with the statistical analysis and to Catherine Wrenn for her valuable help in translating the manuscript. Special thanks go to IAGSA, especially its president, Fiammetta Boni Longo, and to the affected children and their families for their support and encouragement in our work.

References

1. Aicardi J, Goutieres F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. \textit{Ann Neurol} 1984;15:49–54

2. Goutieres F, Aicardi J, Barth PG, et al. Aicardi–Goutieres syndrome: an update and results of interferon-alpha studies. \textit{Ann Neurol} 1998;44:900 –07

3. Lanzi G, Fazzi E, D’Arrigo S, et al. The natural history of Aicardi–Goutieres syndrome: follow-up of 11 Italian patients. \textit{Neurology} 2005;64:1621–24

4. Goutieres F, Aicardi-Goutieres syndrome. Brain Dev 2005;27:201–06.

5. Rice G, Patrick T, Parmar R, et al. Clinical and molecular phenotype of Aicardi–Goutieres syndrome. \textit{Am J Hum Genet} 2007;81:713–25

6. Oreci S, La Piana R, Fassi E. Aicardi-Goutieres syndrome. \textit{Br Med Bull} 2009;89:183–201. Epub 2009 Jan 7

7. Lanzi G, Fazzi E, D’Arrigo S. Aicardi-Goutieres syndrome: a description of 21 new cases and a comparison with the literature. \textit{Eur J Pediatr Neurol} 2002;6(suppl A):A9–22, discussion A23–5, A77–86

8. Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3'–5' DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. \textit{Nat Genet} 2006;38:917–20. Epub 2006 Jul 16

9. Crow YJ, Leitch A, Hayward B, et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. \textit{Nat Genet} 2006;38:910–16

10. Crow YJ, Livingston JL. Aicardi-Goutieres syndrome: an important Mendelian mimic of congenital infection. \textit{Rev Med Child Neurol 2008;50:410–16. Epub 2008 Apr 14

11. Abdel-Salam GM, Zaki MS, Lebon P, et al. Aicardi-Goutieres syndrome: clinical and neuroradiologic findings of 10 new cases. \textit{Acta Paediatr} 2004;93:929–36

12. Robertson NJ, Stauffer P, Battini R, et al. Brain lactic acidosis in Aicardi-Goutieres syndrome. \textit{Neuropsychiatr 2004;35:20–26

13. Polkezi A, Pavone P, Parano E, et al. Lack of progression of brain atrophy in Aicardi-Goutieres syndrome. \textit{Pediatr Neurol} 2001;24:300 –02

14. Kothere SV, Punagavkar SA, Patkar DP, et al. Regression of white matter hypodensities with age in Aicardi-Goutieres syndrome: a case report. \textit{Childs Nerv Sys} 2006;22:1503–06

15. Östergaard JR, Christensen T. Aicardi-Goutieres syndrome: neuroradiological findings after nine years of follow-up. \textit{Eur J Paediatr Neurol} 2004;8:243–46

16. D’Arrigo S, Riva D, Bulgheroni S, et al. Aicardi-Goutieres syndrome: description of a late onset case. \textit{Dev Med Child Neurol 2008;50:631–34

17. Rigby R, Leitch A, Jackson AP. Nucleic acid-mediated inflammatory diseases. \textit{Bioessays 2006;30:833–42

18. van der Knaap M, Valk J. Inflammatory and autoimmune diseases. \textit{Magnetic Resonance of Myelination and Myelin Disorders}. 3rd ed. Berlin: Springer-Verlag; 543–721.

19. Orcesi S, Pessagno A, Biancheri R, et al. Aicardi-Goutieres syndrome presenting atypically as a sub-acute leukoencephalopathy. \textit{Eur J Paediatr Neurol} 2008;12:408–11

20. Barth PG, Walter A, van Gelderen I. Aicardi-Goutieres syndrome: a genetic microangiopathy? \textit{Acta Neuropathol 1999;98:212–16

21. Barth PG. Inherited progressive disorders of the fetal brain: a field in need of recognition. In: Fukuyama Y, Suzuki Y, Kamoshita S, et al, eds. \textit{Fetal and Perinatal Neurology}. Basel, Switzerland: Karger; 1992: 299 –313

22. Barth PG. \textit{The neuropathology of Aicardi-Goutieres syndrome}. \textit{Eur J Paediatr Neurol 2002;6(suppl A):A27–A31

23. Crow YJ, Massey RF, Innes JR, et al. Congenital glaucoma and brain stem atrophy as features of Aicardi-Goutieres syndrome. \textit{Am J Med Genet A} 2004;129A:303–07

24. van Heteren JT, Rozenberg F, Aronica E, et al. Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi-Goutieres syndrome. \textit{Glia} 2008;56:568–78

25. Schiffrin R, van der Knaap M. Invited article: an MRI-based approach to the diagnosis of white matter disorders. \textit{Neurology} 2009;72:750–59

26. Tortori-Donati P, Rossi A, Biancheri R. Infectious diseases. In: \textit{Pediatric Neuro-radiology Brain}. Berlin: Springer-Verlag; 468–535.

27. Patay Z. \textit{Metabolic diseases}. \textit{Pediatric Neuroradiology Brain}. Berlin: Springer-Verlag; 543–721.

28. van der Knaap M, Valk J. \textit{Magnetic Resonance of Myelination and Myelin Disorders}. 3rd ed. Berlin: Springer-Verlag; 2005:248–51

29. Brooks PJ, Cheng TF, Cooper L. Do all neurologic diseases in patients with DNA repair gene mutations result from the accumulation of DNA damage? \textit{DNA repair (Amst)} 2008;7:334–48.