A Multi-Center Study to Evaluate the Performance of Phage Amplified Biologically Assay for Detecting TB in Sputum in the Pulmonary TB Patients

Changtai Zhu1,2, Zhenling Cui1, Ruijuan Zheng1, Hua Yang1, Ruiliang Jin1, Lianhua Qin1, Zhonghua Liu1, Jie Wang1, Zhongyi Hu1*

1 Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 2 Department of Laboratory Medicine, Changzhou Tumor Hospital Soochow University, Changzhou, People's Republic of China

Abstract

Objective: To evaluate the performance of phage amplified biologically assay (PhaB) for detecting tuberculosis (TB) in sputum in the pulmonary tuberculosis (PTB) patients.

Methods: Shanghai Tuberculosis Key Laboratory of Shanghai Pulmonary Hospital participated in the project in collaboration with the laboratories of six hospitals and a total of 1660 eligible participants (1351 PTB patients and 309 non-TB patients) were included in the study. The sputum samples from the participants were detected by smear microscopy, PhaB, and Löwenstein-Jensen (L-J) culture method, respectively.

Results: The overall sensitivity of PhaB were higher than that of L-J culture and smear microscopy (p<0.05). The sensitivity of PhaB for detecting smear-negative specimens was obviously higher than that of L-J culture (p<0.05). Compared with L-J culture, the overall specificity, specificity, PPV, NPV, ACC and Kappa value of PhaB were 98.4 (95% CI: 96.9–99.3), 71.6 (95% CI: 68.4–74.6), 67.7, 98.7, 81.7% and 0.643, respectively. The detection median time of PhaB only needed 48 hours, which was significantly less than that (31 days) of L-J culture method.

Conclusion: PhaB method is a rapid and sensitive method for detecting TB in sputum in PTB patients; especially for the diagnosis of smear-negative PTB, PhaB method is obviously more sensitive than L-J culture method.

Introduction

Tuberculosis (TB) is a common and deadly infectious disease that is caused by Mycobacterium tuberculosis (MTB). The World Health Organization estimated that, the global burden of disease caused by TB in 2009 are as follows: 9.4 million incident cases (range, 8.9 million–9.9 million), 14 million prevalent cases (range, 12 million–16 million), 1.3 million deaths among HIV-negative people (range, 1.2 million–1.5 million) and 0.38 million deaths among HIV-positive people (range, 0.32 million–0.45 million). Most cases were in the South-East Asia, African and Western Pacific regions (35, 30 and 20%, respectively) [1]. China is a country of high incidence of TB, with about 4.5 million TB patients, ranking second in the world [1]. Undoubtedly, a rapid and accurate detection is vital to TB diagnosis, treatment, prevention and control, which has been the focus of the study for TB worldwide [2,3]. Phage amplified biologically assay (PhaB) was an established diagnostic technique for the detection of TB in recent years [4–6]. PhaB delicately utilized the ability of mycobacteriophages to infect mycobacteria to detect TB. In detail, mycobacteriophages internalized TB could be protected from chemical inactivation and replicated, which could lyse mycobacteria and the progeny phages were released. And the released phages can lyse fast-growing Mycobacterium smegmatis (indicator cell) added subsequently. As a result, on the agar plate would appear translucent plaques. The testing result could be judged from the observation of the plaques [7]. Figure 1 show the primary procedures of PhaB. Recently, PhaB has also been reported to be used in isoniazid, rifampicin and fluoroquinolone susceptibility testing of TB [8–13]. However, it still lacks systematic large-scale clinical studies on PhaB. The purpose of the study is to evaluate the performance of phage amplified biologically assay (PhaB) for detecting TB in sputum in the pulmonary tuberculosis (PTB) patients through multi-center cooperation.

Materials and Methods

Ethics Statement

All these patients were treated in accordance with the Helsinki Declaration on the participation of human subjects in medical...
The ethics approvals were obtained for this study from Tongji University Ethics Committee, Anhui Province Pulmonary Hospital Ethics Committee, Hebei Province Chest Hospital Ethics Committee, Changchun Infectious Diseases Hospital Ethics Committee, Jiangxi Province Chest Hospital Ethics Committee, Tianjin Haihe Hospital Ethics Committee and Chongqing Municipal Public Health Medical Center Ethics Committee. A written informed consent was obtained from each of participants.

Study participants

Shanghai Pulmonary Hospital in combination with six other hospitals of China (Anhui Province Pulmonary Hospital, Hebei Province Chest Hospital, Changchun Infectious Diseases Hospital, Jiangxi Province Chest Hospital, Tianjin Haihe Hospital and Chongqing Municipal Public Health Medical Center) participated in the project. The unified research plans were carefully designed. The clinical diagnoses for PTB were conducted by the physicians according to the guidelines for diagnosis and treatment of pulmonary tuberculosis by the Respiratory Disease Branch of the Chinese Medical Association [14]. The criteria mainly involve symptoms, radiographic findings (chest X-rays or CT scans), tuberculin skin tests, a physical examination, and a medical history. The non-TB patients (having a definite diagnosis of non-TB pulmonary disease) were randomly selected and included in the study for the controls. According to the guidelines recommended by WHO and IUTALD, three sputum samples were collected from each of the participants. The samples were tested immediately for smear microscopy, PhaB and Löwenstein-Jensen (L-J) culture. The physicians were blinded to the results of the mentioned assays and the lab staffs were blinded to the diagnosis of the patients. A total of 1660 eligible participants (1351 consecutive PTB patients and 309 random non-TB patients) were included in the study between Jan

Table 1. Characteristics of the clinical PTB patients and non-TB patients.

Characteristics	PTB patients	Non-TB patients
Total Number	1351	309
Age, Median in years (Range, IQR)	34 (10–87, 21–42)	38 (12–85, 22–45)
Male: female	683:668	167:142
Known previous history of PTB	97 (7.2%)	0
Received antimycobacterial therapy	42 (3.1%)	0
HIV testing results		
Positive	0	0
Negative	1026	309
Undone	305	0
Classification of disease		
Pneumonia	-	115 (37.22%)
Bronchitis	-	109 (35.28%)
Lung cancer	-	61 (19.74%)
Lung abscess and other	-	24 (7.77%)

IQR: inter quartile range.

doi:10.1371/journal.pone.0024435.t001
2007 and Dec 2010. The overall characteristics of the enrolled participants were given in Table 1. The flow chart of patients included in the study was shown in Figure 2.

Sputum samples processing
According to the Chinese Anti-tuberculosis Association (CATA) guidelines, the decontamination of sputum specimen was conducted by 4% NaOH-N-acetyl cysteine methods. Based on the degree of sputum viscosity, 2 to 4-fold volume of the liquefier was added. Shook the mixture for 30 s at oscillator and then incubated it at 37°C for 15 min. Added 5 ml liquid medium, centrifuged and washed two times. Subsequently, the supernatant was discarded and the sediment was resuspended in 0.3 ml liquid medium. Finally, 0.1 ml of the mixture suspension was put onto slides for homogenous smear preparation and 0.1 ml of the homogenous suspension was inoculated into L-J slant medium, and 0.1 ml of the remaining was used for PhaB.

Sputum smear microscopy
The smears were stained by Ziehl-Neelsen (ZN) method according to World Health Organisation (WHO) standard protocol [15].

Related reagents and materials preparation for PhaB

Working phage preparation. The procedures referred to the previous study [13]. Mycobacterium smegmatis (ATCC607), kindly offered by China General Microbiological Culture Collection Center (CGMCC), were used for the proliferation of D29 mycobacteriophage (CGMCC) and the filtrate of the proliferation medium was concentrated via filtering using 0.22 μm sterile filter membrane. Subsequently, the phage titer was determined. Finally, the phage was adjusted to 10^9 PFU/ml for the working concentration (stored at 4°C).

The indicator cells preparation. The fast-growing Mycobacterium smegmatis was used for indicator cells (acceptance for mycobacteriophage). With the liquid medium, Mycobacterium smegmatis being in the exponential growth phase were adjusted to 10^8 plaque forming unit (PFU)/ml for the working concentration. It was stored at 4°C.

Liquid medium. Middlebrook 7H9 culture media were kindly offered by Difco U.S. and nutritional additives (oleic acid, catalase, bovine serum albumin and glucose) were purchased from Sigma. Middlebrook 7H9 liquid medium containing 10% of the nutrition additives was prepared for the experiment.

Phage inactivator. With sterile distilled water, ferrous ammonium sulfate (Sigma) was adjusted to 100 mol/L as the Phage inactivator.

PhaB procedures
The PhaB procedures were referred to the literature [4]. Briefly introduced as follows: 0.2 ml of the suspension of the processed sputum sample, after adding 1 ml liquid medium, was solved and cultured at 37°C for 24 h. 0.1 ml working phage was added and the medium was incubated at 37°C for 1 h. 0.1 ml phage inactivator was added into the medium. Subsequently, the mixture medium was incubated at 37°C for 5 min. Then, added 5 ml liquid medium and 1 ml indicator cells. With 5 ml 1.5% melted agar, the mixture was pour into the plate. After a while, the concretionary plate was incubated at 37°C for overnight. Meanwhile, on each run the positive and negative controls were set for verifying the experimental validation

Observation for the results of PhaB
In positive results more than 20 phage plaques in 1–2 mm diameter or the transparent color by merging into many plaques could be seen. In negative results the plaques number appeared in the plate should be less than 20. The negative control should show no plaques and the plaques number of the positive control should be between 20 and 30.

Clinical PTB patients (n = 1351)	Non-TB patients (n = 309)	Testing performances (%), excluded K value
Smear	Positive 493 Negative 858	36.5 (33.9–39.1) 100 (98.8–100.0) 100 36 48.3 0.176
L-J culture	Positive 509 Negative 842	37.7 (35.1–40.3) 98.7 (96.7–99.6) 99.2 26.6 49 0.178
PhaB	Positive 740 Negative 611	54.8 (52.1–57.5) 99 (97.2–99.8) 99.6 33.4 63 0.306

SN: Sensitivity. SP: Specificity. PPV: Positive predictive value. NPV: Negative predictive value. ACC: Accuracy. CI: Confidence interval. K value: Kappa value.

doi:10.1371/journal.pone.0024435.t002
L-J culture for TB

The procedures of L-J culture and observation for the results were performed according to the CATA guidelines. The description in detail is as follow: 0.2 ml processed specimens were inoculated on the slants of L-J medium (Becton Dickinson) and incubated at 37°C. The slants were inspected every day for first week and then weekly for 8 weeks. All culture positives were identified by ZN staining and standard biochemical identification tests.

Data analysis

In this study, L-J culture was considered as the gold standard. The performances and comparisons of the test results were performed using Stata version 9 (Statacorp, Texas, USA).

Results

The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and Kappa value of PhaB, compared with the reference standard defined by clinical diagnosis, were 54.8 (95% CI: 52.1–57.5), 99 (95% CI: 97.2–99.8), 99.6, 33.4, and 0.306, respectively (Table 2). The sensitivity and ACC of PhaB were higher than that of L-J culture and smear method (p<0.05).

The testing results stratified by smear microscopy showed that the sensitivity of PhaB for detecting smear-negative specimens was higher than that of L-J culture (Table 3).

Compared with gold standard of TB diagnosis, namely L-J culture, the overall PhaB sensitivity, specificity, PPV, NPV, ACC and Kappa value were 98.4 (95% CI: 96.9–99.3), 71.6 (95% CI: 68.4–74.6), 67.7, 98.7, 81.7% and 0.643, respectively (Table 4); while the counterparts of smear microscopy was 79.4 (95% CI: 75.6–82.8), 89.4 (95% CI: 87.2–91.4), 48.0, 87.8, 85.6% and 0.692, respectively (Table 5). The results showed that PhaB for detection of PTB was more sensitive than smear microscopy (p<0.05).

As far as the consuming time was concerned, median time of PhaB method is 48 hours (inter quartile range [IQR]: 42–51 hours), whereas that of L-J culture method would take 31.0 days (IQR: 28–35 days). The detection time of PhaB method was significantly less than that of L-J culture method (p<0.05).

Discussion

Previous small samples reports showed that the PhaB could be used as a tool of PTB diagnosis indicating that PhaB might be of potential clinical value [16–19]. In this study, based on the previous studies, we set up the standard PhaB procedures. Furthermore, in order to fulfill to the clinical application in large scale, we made a set of kits (consisting of working phage 1 bottle, indicator cell 1 bottle, liquid medium 1 bottle, phage inactivator 1 bottle and the controls 2 bottles), which was very convenient for routine use in common clinical laboratories. To evaluate the performance of the kits, we combined the six laboratories in China, as the unified designed project, 1660 sputum samples were detected by PhaB and culture method, respectively.

In this study, the sensitivity of PhaB, L-J culture and smear method in comparison with the reference standard defined by clinical diagnosis, were 54.8 (95% CI: 52.1–57.5), 99 (95% CI: 97.2–99.8), 99.6, 33.4, and 0.306, respectively (Table 2). The sensitivity and ACC of PhaB were higher than that of L-J culture and smear method (p<0.05).

The testing results stratified by smear microscopy showed that the sensitivity of PhaB for detecting smear-negative specimens was higher than that of L-J culture (Table 3).
Table 5. Smear microscopy performance for the detection of the sputum specimens from clinical PTB patients compared with L-J culture method.

The testing results	Smear microscopy performance (%), excluded K value							
L-J culture positive (N = 509)	L-J culture negative (N = 842)	SN (95% CI)	SP (95% CI)	PPV	NPV	ACC	K value	
Smear positive (N = 493)	404	89	79.4 (75.6–82.8)	89.4 (87.2–91.4)	48.0	87.8	85.6	0.692
Smear negative (N = 858)	105	753	98.4%	79.4%	98.4%	79.4%		

References
1. WHO global tuberculosis control report (2010) Summary. Cent Eur J Public Health 18: 237.
2. Rodrigues C (2011) Diagnostics for tuberculosis: Time to usher in a new era. Indian J Med Microbiol 29: 2–3.
3. Elzinga G, Raviglione MC, Maher D (2004) Scale up: meeting targets in global tuberculosis control. Lancet 363: 814–819.
4. McNerney R, Wilson SM, Sidhu AM, Harley VS, al Suwaidi Z, et al. (1998) Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res Microbiol 149: 487–495.
5. Samillo GK, Romasheva EN (1988) [Modified Fin-II medium for improving the bacteriological diagnosis of tuberculosis]. Voen Med Zh. 39 p.
6. Wattal C (2002) Improving bacteriological diagnosis of tuberculosis. Indian J Pediatr 69 Suppl 1: S11–19.

7. Albert H, Heydenrych A, Broskes R, Mole RJ, Harley B, et al. (2002) Performance of a rapid phage-based test, FASTPlaqueTB, to diagnose pulmonary tuberculosis from sputum specimens in South Africa. Int J Tuberc Lung Dis 6: 529–537.

8. Gali N, Dominguez J, Blanco S, Prat C, Alcaide F, et al. (2006) Use of a mycobacteriophage-based assay for rapid assessment of susceptibilities of Mycobacterium tuberculosis isolates to isoniazid and influence of resistance level on assay performance. J Clin Microbiol 44: 201–205.

9. Stella EJ, de la Iglesia Al, Morbidoni HR (2009) Comparison of the performance of two mycobacteriophage D29-based protocols for fluoroquinolone susceptibility testing in Mycobacterium tuberculosis. J Microbiol Methods 79: 371–373.

10. Chauca JA, Palomino JC, Guerra H (2007) Evaluation of rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis by a mycobacteriophage D29-based assay. J Med Microbiol 56: 360–364.

11. Butt T, Ahmad RN, Aftab RK, Mahnood A, Anwar M (2004) Rapid detection of rifampicin susceptibility of Mycobacterium tuberculosis in sputum specimens by mycobacteriophage assay. J Pak Med Assoc 54: 379–382.

12. Gali N, Dominguez J, Blanco S, Prat C, Quesada MD, et al. (2003) Utility of an in-house mycobacteriophage-based assay for rapid detection of rifampin resistance in Mycobacterium tuberculosis clinical isolates. J Clin Microbiol 41: 2647–2649.

13. Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F (1997) Evaluation of a new rapid bacteriophagel-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med 3: 465–468.

14. Respiratory Disease Branch of the Chinese Medical Association. The guide for diagnosis and treatment of pulmonary tuberculosis. J Chin Tuber Respir Dis 24: 70–74.

15. World Health Organisation Global Tuberculosis Programme. Laboratory Service in Tuberculosis Control: Part II. Microscopy. WHO/TB/98.258:World Health Organisation.

16. Butt T, Ahmad RN, Kazmi SY, Mahnood A (2004) Rapid diagnosis of pulmonary tuberculosis by mycobacteriophage assay. Int J Tuberc Lung Dis 8: 899–902.

17. Prakash S, Katiyar SK, Purwar S, Singh JP (2009) Clinical evaluation of the mycobacteriophage-based assay in rapid detection of Mycobacterium tuberculosis in respiratory specimens. Indian J Med Microbiol 27: 134–138.

18. Park HJ, Drobniewski FA, Meyer A, Wilson SM (2003) Use of a phage-based assay for phenotypic detection of mycobacteria directly from sputum. J Clin Microbiol 41: 680–681.

19. Chatterjee S, Mitra M, Das Gupta SK (2009) A high yielding mutant of mycobacteriophage L1 and its application as a diagnostic tool. FEMS Microbiol Lett 188: 47–53.

20. Yukiel P, Saribas S, Bagdath Y (2011) Comparison of the Versatrek and BACTEC MGIT 960 systems for the contamination rate, time of detection and recovery of mycobacteria from clinical specimens. Afr J Microbiol Res 5: 983–989.

21. Alcaide F, Gali N, Dominguez, J, Berlanga P, Blanco S, et al. (2003) Usefulness of a new mycobacteriophage-based technique for rapid diagnosis of pulmonary tuberculosis. J Clin Microbiol 41: 2867–2871.

22. Takiff H, Heffels I (2002) In search of rapid diagnosis and drug-resistance detection tools: is the FASTPlaqueTB test the answer? Int J Tuberc Lung Dis 6: 560–561.