Galactagogue Effects of *Musa x paradisiaca* Flower Extract on Lactating Rats

Azizah Mahmood*, Muhammad Nor Omar*, Nurziana Ngah* and Azhari Yahaya**

* Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.
** Food Technology Department, Polytechnic of Sultan Haji Ahmad Shah, Kuantan, Pahang, Malaysia.
E-mail: nurziana@iium.edu.my

ABSTRACT

Musa x paradisiaca flower extracts was investigated for its potential to promote milk production of lactating rats and its effects on growth of the suckling pups. Galactagogue activity was evaluated in terms of quantity of milk produced from the rats treated with petroleum ether, ethanol or water extracts of the flower. Lactating rats (n=5) of Spraque Dawley with six pups each were daily administered via oral feeding starting from Day 5 until Day 14 and the performance of milk production was measured along the experimental period by weight-suckling-weight method. Results were statistically analyzed using SPSS by means of ANOVA at 0.05 and was expressed as their mean ± standard deviation. The rates of pups growth were measured as the weight gain along the experimental period. The rats treated with aqueous extract produced higher milk than control and ethan groups. Aqueous extract was identified to increase milk production by 25%, while petroleum ether extract by 18%. The mean of yields produced by the rats during suckling period for aqueous, petroleum ether, ethanol and control were 4.62 ± 2.45, 4.37 ± 1.93, 3.65 ± 1.89 and 3.69 ± 1.79, respectively. Growth rates of pups for the rats treated with control, aqueous, ethanol and petroleum ether were 1.85 ± 0.49, 1.78 ± 0.56, 1.65 ± 0.46 and 1.56 ± 0.42 g/pup, respectively. The present study reveals the potential of *Musa x paradisiaca* flower to enhance milk production of nursing mothers which could be exploited for commercialization of the isolated extract.

Keywords: Banana flower, *Musa x paradisiaca*, galactagogue, lactating rats, phytochemicals

INTRODUCTION

Bananas and plantains are among the popular and cheapest foods throughout the tropical and subtropical regions of the world. Although banana is one of the most important commercial crops in the world, it is estimated that 87% of the production is purposely for local consumption [1]. All parts of banana plants are practically being used for various purposes such as food, beverages, fermented sugars, medicines, flavorings, silage, fragrance, rope, cordage, garlands, shelter, clothing, smoking material, and numerous ceremonial and religious uses [2, 3]. Although banana family is preferred for its nutrients rather than medicinal properties, but it is believed that the plants propose some traditional medicinal value [4].

Banana flower has yet received very little attention from the world of science particularly on the medicinal value toward human health. Based on ethnomedicinal surveys around the world and supported by limited bioactivities and clinical research, it should have tremendous pharmacological value. The flowers have been traditionally used to alleviate heart pain, asthma, diabetes mellitus, menorrhagia, painful menses, diarrhea and stomach cramps [5]. Extracts from the flowers have been reported to have medicinal properties for illness such as diabetes mellitus, oxidative stress [6] and malaria [7].

Previous research showed that many plants have been identified to possess galactopoietic effects such as fenugreek, goat’s rue, milk thistle, aniseed, *Asparagus racemoses*, Grap sap, fennel seeds, dill, borage, comfrey and Lamiaceae. They are commonly used in the world to enhance milk supply [8, 9]. These herbs could be either fresh prepared or added as spices to foods. Since most galactagogue herbs normally applied as infusions or decoctions, thus its actions are unnoticeably. Traditionally in India and Indonesia, women have been used fenugreek (*Trigonella foenum-graecum*) as spice and eat torbangun (*Coleus amboinicus Lour*) soup, respectively to increase the
flow of milk [8, 10]. Despite, most of the plant substances have not been scientifically evaluated but
ethnomedicinally has suggested them as safe and show its efficacy.
Taking into consideration of the effectiveness of the galactagogue herbs, Musa x paradisiaca flower
were investigated for its functional properties of milk production on lactating rats.

MATERIALS AND METHODS

Chemicals
All the chemicals used are analytical grade obtained from SYSTERM include petroleum ether
(40:60°C), ethanol (95%) and Tween 20.

Collection and preparation of plant materials
The study was carried out on the flower of M. x paradisiaca (Pisang Nipah). The sample was
obtained from cultivated local farmland in Jerantut, Pahang and was identified by a Botanist from
the Institute of Biosciences, University Putra Malaysia. The flowers were separated into florets and
bracts, then dried in the oven for seven days at 40°C. After dried, the samples were ground into
powder using grinder. The dried samples were then stored in air-tight container before extraction.

Sample extraction
For each 500 g samples, it was extracted with petroleum ether and ethanol (95%) respectively
using soxhlet method. The samples were extracted until the solvents become colourless. The
solvents were evaporated to dryness under vacuum using rotary evaporator. In water extraction,
the sample was shaken in water bath at 60°C for 6 hrs followed by filtration and centrifugation at
4000 rpm for 10 mins. The precipitate was discarded and the supernatant was freeze-dried to get
powder extract.

Animal
All the experiments were carried out with Spraque Dawley rats purchased from the University
Putra Malaysia. The rats were kept in the animal room with a constant temperature at 21 ± 2°C.
They were kept on wood shavings in plastic boxes with wire covers and the lighting was adjusted
with 14 hrs of lightness and 10 hrs of darkness in a day. They were fed with commercial feeds
(BARASTOC from Ridgel Agriproducts Pty.Ltd., Victoria, Australia) and tap water ad libitum prior
to and throughout the experiment. All experiments were approved by the animal ethics committee
of International Islamic University Malaysia.

Intervention procedures
Twenty female rats at age three months old with the weight of 200 – 350 g were housed and mated
with male rats. The rats were allowed to deliver their youngs, and the day of parturition was
designated as Day 1 of lactation. All the lactating rats were randomly divided into four groups of
five rats each (n=5). Each mother was adjusted to have only six pups per litter within 48 hrs. The
group treated with crude extract was administered with any one of these; petroleum ether, ethanol
or aqueous extract and the controls were given distilled water. The dose applied to each mother
was 500 mg/kg of the body weight. All the treatments samples including control were added with
0.05% of Tween 20. The groups were administered with either plant extracts or control via oral
using animal feeding tubes.
The treatments to dam were daily administered at 1600 hr starting from Day 5 to Day 14 of
lactation period. The milk productions were measured daily after 12 hrs of treatment starting from
Day 6 until Day 15. Prior to the first treatment, the pups were separated for 2 hrs on the second day
and the separation period were increased gradually to 6 hrs on Day 5 of postpartum. Litters of the
pup were isolated from their dams for 6 hrs before milking. The weights of the litters before and
after 60 mins of suckling were measured to estimate milk yield. The differences in weight of the
litters were considered as the amount of yield. The measurement of milk production and weight
gain of littermates along the experimental period were compared between the treatment groups
and their respective control group. All the measurements of weight were read with accuracy of 0.01

Statistical analysis
The result was expressed as their mean ± standard deviation. The differences in mean value
amongst the treatment groups were analyzed by one-way ANOVA followed by the least square
difference (LSD), using statistical package of SPSS (version 17 for Windows). $P \leq 0.05$ was considered to be statistically significant.

RESULTS AND DISCUSSION

Milk production

Estimated milk production for rats that were subjected to different treatments of solvent extracts and distilled water are presented in Table 1. Total milk production during 10 days of the lactation for the rats treated with aqueous extract was the highest followed by petroleum ether, ethanol and negative control. The aqueous extract group was found to give significant yield compared to control ($P \leq 0.05$). Relatively, the aqueous and petroleum ether extract groups produced 25% and 18% more milk than the control. The percentage of milk produced by the rats treated with ethanol extract was a little bit lower than the control. Statistically, the amount of milk produced in the rats treated with petroleum ether extract was not significant compared to control and aqueous extract. Milk production of the ethanol group is comparable with the control group along the experimental period.

Since there was no significant different in milk production between petroleum ether and aqueous extract, therefore it is likely that petroleum ether extract give significant yield if the higher dose applied to the rats.

The aqueous extract group which was determined to produce significant milk production also indicated the highest quantity of milk during peak lactation time. The lactation peak was regarded as the time at which the yield of milk secretion was maximum. During the course of lactation in rats, milk secretions gradually increase to the peak and then decrease after the peak of lactation. Both aqueous and control showed peak lactation time at Day 13, meanwhile for petroleum ether at Day 10 and ethanol at Day 14. The amount of milk produced by day of lactation and the peak lactation time for all treatment groups are shown in Figure 1. The amount of milk produced at lactation peak for the rats treated with aqueous was the highest, followed by petroleum ether, control and ethanol.

Measurement of milk production was terminated at Day 16 due to the pups have started to eat solid food supplied to dam. Measurements of milk production were not corrected for any weight loss associate with metabolic process of the suckling pups. Correction to the weight perhaps exaggerates the amount of milk measured due to the pups generally do not defaecate or urinate after a few hours of separation from their mothers.

The increase of milk production in lactating rats was assumed due to the increase of cells proliferation in their mammary gland after intervention of the extract. Galactagogue herbs was reported to have a profound effects on the mammary secretory cells proliferation [11] which is used as an indicator for the activity of the secretory cells in secreting milk [12, 13]. Although some galactagogues were identified to act as dopamine antagonist, but the mechanism of action for most is simply unknown [8].

The rate of milk secretion during lactation in rats could be due to mammary secretory cell population and cellular activity [12, 14]. Despite the decrease of milk production is due to the decrease of mammary cell numbers, its remains to be determined whether significant cell turnover occurs during lactation. Most species share almost the same pattern of milk flow [15]. Milk output at first start with a rapid increase until the point of peak lactation is reach. Since aqueous extract has significantly affected the milk production in rats, thus it is assumed that the extract contains bioactive constituents that promote galactagogue.

Previous study on phytochemicals constituents in *M. paradisiaca* flower showed that it contains of alkaloids, saponins, glycosides, tannins, flavanoids and steroids [16]. The presence of these compounds such as saponins, tannins, alkaloids and flavanoids in *Hibiscus sabdariffa* l. was assumed to the increase of serum prolactin level, the hormone that associates to milk secretion [17]. Due to the fact that most polar compounds should have dissolved in polar solvent of extraction, thus it can be concluded that the compounds contain in the aqueous extract are the polar compounds. The presence of saponins and tannins in the aqueous extract of *Musa* flower [16] indicates that at least one of the two compounds should have influenced to the effects of galactagogue in this study.
Growth rate and weight gain of pups

Daily weight of all the suckling pups linearly increases over the period of 10 days of observation as shown in Figure 2. The slope of regression was measured as the r^2 value. The estimated r^2 value for ethanol, aqueous, control and petroleum ether groups are 0.838, 0.814, 0.799 and 0.649, respectively.

The changes of body weight of the suckling pups during lactation period for all treatment groups are shown in Figure 2. The pups body weight increased by 0.82 - 2.88, 0.66 - 2.58, 0.86 - 2.45 and 0.82 - 2.40 g/pup per day for control, aqueous, ethanol extract and petroleum ether, respectively. Table 2 shows the measurement of initial and final weight and also the weight gain of the suckling pups. The rats treated with aqueous extract indicated no difference in weight gain of their suckling pups compared to control (P<0.05). Lower growth rate found in the pups of the rats treated with petroleum ether and ethanol extracts.

The increment of pups body weight by different treatments along the experimental period is presented in Figure 3. The highest increment of body weight was for the pups of control, followed by aqueous, ethanol and petroleum ether extract. The mean of weight gain for control was the highest, followed by aqueous, ethanol and petroleum ether extracts.

There is considerable variation of pups growth during the first 3 or 4 days of life due to dehydration of the young and stabilization of the mothers habit toward lactation, thus data collection was only started on Day 6 of post-partum. The gain of pup was identified constant from day 5 to 15 of lactation. Thus, when this condition is met, growth rates can also be estimated from the slope of pup weight regressed against day of lactation. In most of the time, litter weight-gain per day is assumed to be approximately proportional to the milk production during lactation, thus was sometimes used as indicator of milk production in rats.

Milk consumed by pups is mainly for body maintenance and growth. Therefore, it is assumed that rapidly growing pups must have relatively consumed large amount of milk than more slowly growing pups. It is very important that the mother should be well-fed during lactation period. At early lactation, enough feed is required to meet the energy demand of lactation and maintenance requirement [18]. Another thing to consider in measuring milk yield is the number of pups per litter and the separation interval between the mother and the pups.

The litter requires small number of pups in order to obtain enough milk to grow at its maximum potential. This is because the growth of the mouse was strongly influenced by the quantity of the milk available during the suckling time. In most species, intake of food by mothers during lactation is dependent on the litter size. As the litter size increases, the milk secreted must be divided between more and more offspring which consequently reduce the pups body masses [19]. The separation had to be long enough so that the quantity of milk accumulate in the dams’ mammary glands could be measured accurately.

Result of this study showed although milk production in aqueous extract had increased significantly compared to control groups but the increase was not consistence with the increase of weight gain of the pups. Thus, we could not rely on the daily weight gain of suckling pups to determine milk production of lactating rats as it gives us inaccurate and unreliable estimation. Measurement of milk production by weight-suckle-weight method was identified as an accurate method which employs natural process of milking.

CONCLUDING REMARKS

The results also support the ethnomedicinal use of the flower among nursing women for galactagogue purpose. Aqueous extract of *M. x paradisiaca* flowers have shown a significant galactagogue in rats. This finding would raise confidence among consumers toward the effectiveness and safety of the extract since water was known as free risk from any chemicals. The flower of *Musa x paradisiaca* may have a potential use not only for human but also for ruminants in promoting milk production.

ACKNOWLEDGEMENTS

The authors are grateful to the Department of Biotechnology, Kulliyyah of Sciences, International Islamic University Malaysia (IIUM) for providing the facilities, the Malaysia Ministry of Higher
Education for their sponsorship in this study and the IIUM Endowment Fund for financial support to carry out this work.

Table 1: Milk production of various solvent extracts during 10 days of lactation

Treatment group	Mean of milk Production (g/pup/day) ± S.D	Total milk production during 10 days (g)	Quantity of milk at peak lactation time (g/day)	Percent increment of milk produced (%)
Aqueous extract	4.62 ± 2.45a	217.27	38.56	25
Petroleum ether extract	4.37 ± 1.93ab	214.25	32.28	18
Ethanol extract	3.65 ± 1.89b	178.93	22.86	-1
Control (distilled water)	3.69 ± 1.79b	177.31	29.91	-

Reported values are based on n = 5, with 6 pups per litter. Values are mean ± standard deviation. Means followed by different superscript letters in the same column represent significant difference (p < 0.05).

Table 2: Comparison between initial and final weight, and weight gain of pups

Treatment	Mean of Initial weight (g) ± SD	Mean of final weight (g) ± SD	Weight gain (g/pup) ± SD
Control (distilled water)	10.67 ± 1.67a	27.35 ± 3.76a	1.85 ± 0.49a
Aqueous extract	12.07 ± 1.36a	28.06 ± 3.36a	1.78 ± 0.56ab
Ethanol extract	11.71 ± 1.29a	26.55 ± 3.62a	1.65 ± 0.46bc
Petroleum ether extract	12.17 ± 2.98a	26.26 ± 3.89a	1.56 ± 0.42c

Reported values are based on n = 5, with 6 pups per litter. Values are mean ± standard deviation. Means followed by different superscript letters in the same column represent significant difference (p < 0.05). SD = Standard deviation

Figure 1: Effect of various solvent extracts of BF on milk production during 10 days of experimental period.
Figure 2: Changes in body weight (g) of pups in treated and control groups throughout the experimental period.

Figure 3: Percentage of body weight increment of pups for various treatment groups

REFERENCES
1. Dzomeku, B. M., Ankomah, A. A., Quain, M. D., Lamptey, J. N. L., Anno-Nyako, F. O., and Aubyn, A. (2007) Agronomic evaluation of some ITA Musa hybrids in Ghana, pp 559-562.
2. Nelson, S. C., Ploetz, R. C., and Kepler, A. K. (2006) Musa species (banana and plantain), Musaeeae (banana family). Species Profiles for Pacific Island Agroforestry 15, pp15.
3. Ploetz, R. C., Kepler, A. K., Daniells, J., and Nelson, S. C. (2007) Banana and plantain—an overview with emphasis on Pacific island cultivars, Permanent Agric. Resour.
4. Alisi, C. S., Nwanyanwu, C. E., Akujobi, C. O., and Ibegbulem, C. O. (2008) Inhibition of dehydrogenase activity in pathogenic bacteria isolates by aqueous extracts of Musa paradisiaca (Var Sapientum), Afr. J. Biotech 7.
5. Sumathy, V., Lachumy, S. J., Zakaria, Z., and Sasidharan, S. (2011) In Vitro Bioactivity and Phytochemical Screening of Musa Acuminata Flower, Pharmacologyonline, 118-127.
6. Vinaykumar, T., Sumanth, M. H., Suman, L., Vijayan, V., Srinivasarao, D., Sharmila, A., Naveen, M., and Ramana, B. (2010) Reno protective and testicular protective effect of Musa paradisiaca flower extract in streptozotocin induced diabetic rats, J. Innov. Trends Pharm. Sci. 1.
7. Bagavan, A., Rahuman, A. A., Kaushik, N. K., and Sahal, D. (2010) In vitro antimalarial activity of medicinal plant extracts against Plasmmodium falciparum, Parasitol. Res., 1-8.
8. Dog, T. L. (2009). The use of botanicals during pregnancy and lactation, Altern. Ther. Health Med. 15, 54-59.
9. Zapantis, A., Steinberg, J. G., and Schilit, L. (2012) Use of Herbs as Galactagogues, J. Pharm. Pract.
10. Damanik, R., Wahlqvist, M. L., and Wattanapanpaiboon, N. (2006) Lactagogue effects of Torbangun, a Batakinese traditional cuisine, *Asia. Pac. J. Clin. Nutr.* 15, 267.
11. Lompo-Ouedraogo, Z., van der Heide, D., van der Beek, E. M., Swarts, H., Mattheij, J., and Sawadogo, L. (2004) Effect of aqueous extract of Acacia nilotica ssp adansonii on milk production and prolactin release in the rat, *J Endocrinol* 182, 257.
12. Sternlicht, M. D., Kouro-Mehr, H., Lu, P., and Werb, Z. (2006) Hormonal and local control of mammary branching morphogenesis, *Differentiation* 74, 365-381.
13. Capuco, A. V., and Akers, R. M. (2010) Management and environmental influences on mammary gland development and milk production, *Managing the Prenatal Environment to Enhance Livestock Productivity*, 259-292.
14. Wall, E., and McFadden, T. (2011) A local affair: how the mammary gland adapts to changes in milking frequency, *J. Anim. Sci.*
15. Hadsell, D., George, J., and Torres, D. (2007) The declining phase of lactation: Peripheral or central, programmed or pathological?, *J. Mammary Gland Biol. Neoplasia* 12, 59-70.
16. Mahmood, A., Ngah, N., and Omar, M. N. (2011) Phytochemicals Constituent and Antioxidant Activities in Musa x Paradisiaca Flower, *Eur. J. Sci. Res.* 66, 311-318.
17. Okasha, M. A. M., Abu Bakar, M. S., and Bako, I. G. (2008) Study of the effect of aqueous Hibiscus Sabdariffa Linn seed extract on serum prolactin level of lactating female albino rats, *Eur. J. Sci. Res.* 22, 575 – 583.
18. Baumgard, L. H., Odens, L. J., Kay, J. K., Rhoads, R. P., VanBaale, M. J., and Collier, R. J. (2006) Does negative energy balance (NEBAL) limit milk synthesis in early lactation, pp 181-187.
19. Speakman, J. R. (2008) The physiological costs of reproduction in small mammals, *Philosophical Transactions of the Royal Society B: Biological Sciences* 363, 375-398

[Received 10.08.12; Accepted: 09.12.12]