Convergence and path divergence sets for bounded analytic functions in the disk.

Trevor Richards*

Mathematics Department, Washington and Lee University
Lexington, VA United States

September 29, 2016

Abstract
Let $f : \mathbb{D} \to \mathbb{C}$ be a bounded analytic function, such that f has a non-tangential limit at 1. A set $K \subset \mathbb{D}$ which contains 1 in its closure is called a convergence set for f at 1 if $f(z)$ converges to some value ζ as $z \to 1$ with z in K. K is called a path divergence set for f at 1 if f diverges along every path γ which lies in K and approaches 1. In this paper, we show that if γ_1 and γ_2 are paths in the disk approaching 1, and f converges along γ_1 and γ_2, then the region between γ_1 and γ_2 is a convergence set for f at 1. On the other hand, if γ_3 is any path in the disk approaching 1 along which f diverges, then either the region above γ_3 or the region below γ_3 is a path divergence set for f at 1. We conclude the paper with an examination of the convergence and path divergence sets for the function $e^{\frac{z+1}{z-1}}$ at 1.

1 Introduction
Let $f : \mathbb{D} \to \mathbb{C}$ be analytic and bounded. It is well known (see for example Theorem 5.2 in [2]) that the non-tangential limit of f exists at almost every point in $\partial \mathbb{D}$. The sectorial limit theorem (see for example Theorem 5.4 in [2]) states that if f has a limit ζ along any path γ in \mathbb{D} which approaches some point $w \in \partial \mathbb{D}$, then the non-tangential limit of f at w exists and equals ζ. This paper is concerned with local convergence properties of f, so throughout we will assume that the point w being approached is just the point 1. We will also assume for the sake of convenience that unless otherwise specified every path γ mentioned in this paper is a path in \mathbb{D} from -1 to 1. That is, $\gamma : [0, 1] \to \mathbb{C}$ with $\gamma(0) = -1$, $\gamma(1) = 1$, and for all $s \in (0, 1)$, $\gamma(s) \in \mathbb{D}$. We will also use the symbol “γ” at times to denote the trace of γ as a subset of the plane.

To say that f has the non-tangential limit ζ at 1 is to say that for any Stolz region S with vertex at 1,

$$\lim_{z \to 1, z \in S} f(z) = \zeta.$$
In this paper we generalize the notion of convergence or divergence in a Stolz region as follows.

Definition Let $K \subset \mathbb{D}$ be a set, and assume that $1 \in \partial K$.

- If \(\lim_{z \to 1, z \in K} f(z) \) exists, then we call K a **convergence set** for f at 1.
- If $\lim_{n \to \infty} f(z_n)$ does not converge for every sequence $\{z_n\} \subset K$, then we call K a **divergence set** for f at 1.
- If $\lim_{s \to 1^-} f(\gamma(s))$ exists for every path $\gamma \subset K$, then we call K a **path convergence set** for f at 1.
- If $\lim_{s \to 1^-} f(\gamma(s))$ does not exist for every path $\gamma \subset K$, then we call K a **path divergence set** for f at 1.

Although we made the definition above for a divergence set for f at 1 for the sake of symmetry in the definitions, we observe that since f is bounded, compactness considerations immediately imply that f does not have any divergence sets at 1 (or anywhere on the boundary of \mathbb{D}).

We can now restate the sectorial limit theorem by saying that if there is a path γ along which f has a limit, then every Stolz region with vertex at 1 is a convergence set for f at 1. In Section 2, we will prove the following theorem which guarantees the existence of convergence and path divergence sets for f at 1 in relation to paths along which f converges or diverges respectively. We must first make a definition.

Definition Let γ_1, γ_2, and γ_3 be paths.

- By the **region between γ_1 and γ_2** we mean the set of all points $z \in \mathbb{D}$ such that z is in γ_1, z is in γ_2, or z is in a bounded component of $(\gamma_1 \cup \gamma_2)^c$.
- The component of $\mathbb{D} \setminus \gamma_3$ which contains i in its boundary is called the **region above γ_3**, and the component of $\mathbb{D} \setminus \gamma_3$ which contains $-i$ in its boundary is called the **region below γ_3**.

Theorem 1.1. Let γ_1, γ_2, and γ_3 be paths such that the limit of f exists along γ_1 and along γ_2, and does not exist along γ_3. Then the following hold.

- The region between γ_1 and γ_2 is a convergence set for f at 1.
- Either the region above γ_3 or the region below γ_3 is a path divergence set for f at 1.

Note that the first item in the above theorem immediately implies the second item.

In Section 3, we will examine the convergence and path convergence/divergence sets for the function $g(z) = e^{\frac{z}{1+z}}$ at 1. Although no open disk $U \subset \mathbb{D}$ which is tangent to the unit circle at 1 can be a convergence set for g at 1, we will find a convergence set for g at 1 with smooth boundary close to 1 that is tangent to the unit circle at 1.
2 Main Results

In our proof of Theorem 1.1, we will use a result having to do with the cluster sets of a disk function, so we make the following definition.

Definition Let $h : \mathbb{D} \to \mathbb{C}$ be a meromorphic function such that h extends continuously to each point in $\partial \mathbb{D}$ in a neighborhood of 1 except possibly at 1.

- The cluster set of h at 1, denoted $\mathcal{C}(h,1)$, is the set of all values $\zeta \in \hat{\mathbb{C}}$ such that there is some sequence of points $\{z_n\}$ contained in the disk such that $z_n \to 1$ and $h(z_n) \to \zeta$.

- The boundary cluster set of h at 1, denoted $\mathcal{C}_B(h,1)$, is the set of all values $\zeta \in \hat{\mathbb{C}}$ such that there is some sequence of points $\{z_n\}$ contained in the unit circle such that $z_n \to 1$ and $h(z_n) \to \zeta$.

We will use the following fact regarding these cluster sets (which appears as Theorem 5.2 in [1]), which says that the boundary of the cluster set for a meromorphic disk function h at 1 is contained in the boundary cluster set of h at 1.

Fact 2.1. Let $h : \mathbb{D} \to \hat{\mathbb{C}}$ be a meromorphic function such that h extends continuously to each point in $\partial \mathbb{D}$ in a neighborhood of 1 except possibly at 1. Then

$$\partial \mathcal{C}(h,1) \subset \mathcal{C}_B(h,1).$$

We continue with several lemmas.

Lemma 2.2. Let γ be a path. Then $\lim_{z \in \gamma, z \to 1} \gamma^{-1}(z) = 1$, in the sense that as $z \in \gamma$ approaches 1, $\max(1 - s : s \in \gamma^{-1}(z)) \to 0$.

Proof. This follows from basic compactness and continuity properties. \hfill \square

Lemma 2.3. Let E_1 and E_2 be disjoint circles in \mathbb{C}, and let $\gamma : [0,1] \to \mathbb{C}$ be any path. Then only finitely many of the components of γ^c can intersect both E_1 and E_2.

Proof. For $r > 0$, define C_r to be the circle centered at the origin, with radius r. By first applying a homeomorphism to the sphere, we may assume without loss of generality that $E_1 = C_1$ and $E_2 = C_2$.

Suppose by way of contradiction that there are infinitely many components of γ^c which intersect both C_1 and C_2. Since each component of γ^c is open, there are only countably many of them. Let $\{F_j\}_{j=0}^{\infty}$ be an enumeration of the components of γ^c which intersect both C_1 and C_2. Since each F_j is open and connected in \mathbb{C}, it is also path connected. Therefore for each j, we may define a path $\varphi_j : [0,1] \to F_j$ such that $\varphi_j(0) \in C_1$ and $\varphi_j(1) \in C_2$. By restricting φ_j if necessary, we may also assume that for each $t \in (0,1)$, $|\varphi_j(t)| \in (1,2)$. Define $a_j = \varphi_j(0)$ and $c_j = \varphi_j(1)$. Define $r_j \in (0,1)$ to be the smallest number such that $|\varphi_j(r_j)| = 1.5$, and define $b_j = \varphi_j(r_j)$.

It is immediate from their definition that, for any $j,k \in \mathbb{N}$, if $j \neq k$, then φ_j and φ_k are disjoint from each other. Since they do not cross in the region $\{z : 1 < |z| < 2\}$, it follows that the orientation of the a_j around C_1 is the same as the orientation of the
c_j around C_2 and the b_j around $C_{1.5}$. That is, for any distinct $j, k, l \in \mathbb{N}$, if a_j, a_k, a_l is the order in which those points appear when C_1 is traversed with positive orientation, then c_j, c_k, c_l is the order in which those points appear when C_2 is traversed with positive orientation, and b_j, b_k, b_l is the order in which those points appear when $C_{1.5}$ is traversed with positive orientation.

Since γ is continuous on the compact set $[0, 1]$, it is uniformly continuous, therefore we may choose a $\delta > 0$ such that for any $s, t \in [0, 1]$, if $|\gamma(s) - \gamma(t)| > 1/4$, then $|s - t| > \delta$. Choose an $N > 0$ such that $N\delta > 1$. By reordering the elements described above, we may assume that the points a_0, a_1, \ldots, a_N appear in precisely this order as C_1 is traversed with positive orientation. For the remainder of the proof, addition is done modulo $N + 1$.

For each $j \in \{0, 1, \ldots, N\}$, let G_j denote the domain which is bounded by the paths φ_j, φ_{j+1}, the arc of the circle C_1 with end points a_j and a_{j+1} which does not contain a_{j+2}, and the arc of the circle C_2 with end points c_j and c_{j+1} which does not contain c_{j+2}. If $\gamma(1) \in G_j$ for some $0 \leq j \leq N - 1$, we just remove this region from our list, and shift all indices greater than j down by 1. Thereby we may assume that $\gamma(1) \notin G_j$ for all $0 \leq j \leq N - 1$.

Since b_j and b_{j+1} are in different faces of γ, the arc of $C_{1.5}$ with end points b_j and b_{j+1} which does not contain b_{j+2}, must intersect γ in some point $\alpha_j \in G_j$. Define $s_j \in (0, 1)$ to be the smallest number such that $\gamma(s_j) = \alpha_j$. Since $\gamma(1) \notin G_j$, we may define $t_j \in (s_j, 1)$ to be the smallest number such that $\gamma(t_j) \in \partial G_j$. Define $\beta_j = \gamma(t_j)$.

The point $\beta_j \in \partial G_j$ must be in either C_1 or C_2, since the portion of ∂G_j which is not in either C_1 or C_2 (namely φ_j and φ_{j+1}) is contained in γ^c. Since $|\alpha_j| = 1.5$ and $|\beta_j| = 1$ or 2, it follows that $|\gamma(s_j) - \gamma(t_j)| = |\alpha_j - \beta_j| > 1/4$, and thus $t_j - s_j > \delta$. Note that for any distinct $j, k \in \{0, 2, \ldots, N - 1\}$, since G_j and G_k are disjoint, $\gamma([s_j, t_j])$ and $\gamma([s_k, t_k])$ are disjoint, and thus $[s_j, t_j]$ and $[s_k, t_k]$ are disjoint. We thus have that $\{[s_j, t_j]\}_{i=0}^{N-1}$ is a sequence of disjoint intervals in $[0, 1]$, giving us the contradiction

$$1 = \lambda([0, 1]) \geq \sum_{j=0}^{N-1} t_j - s_j \geq \sum_{i=0}^{N-1} \delta = N\delta > 1.$$

This concludes the proof.

\textbf{Lemma 2.4.} Let $\gamma : [0, 1] \to \mathbb{C}$ be a path, and let F be a bounded component of γ^c. Then for any Riemann map $\tau : \mathbb{T} \to F$, τ extends to a homeomorphism $\tau : \text{cl}(\mathbb{D}) \to \text{cl}(F)$.

\textbf{Proof.} Let E denote the union of every component of γ^c other than F. Since E is open, E is locally connected. By the Hahn–Mazurkiewicz theorem (see for example Theorem 3-30 in [3]) since γ is the continuous image of the unit interval, γ is locally connected. Thus $\mathbb{C} \setminus F$ is the disjoint union of two locally connected sets, and is thus locally connected.

Now the Caratheodory–Torhorst theorem gives that any Riemann map $\tau : \mathbb{D} \to F$ extends to a homeomorphism from the closure of the unit disk to the closure of F. \hfill \Box

\textbf{Lemma 2.5.} Let γ be a path. If $\lim_{s \to 1^-} f(\gamma(s)) = 0$, then $\lim_{z \to 1, z \in \gamma} f(z) = 0$.

\textbf{Proof.} Fix an $\epsilon > 0$, and choose a $\delta > 0$ small enough that for every $s \in (1 - \delta, 1)$, $|f(\gamma(s))| < \epsilon$. Define $\epsilon = \min_{s \in [0, 1 - \delta]} |f(\gamma(s) - 1)|$. Then for any $z \in \gamma$ with $|z - 1| < \epsilon$, we must have $\gamma^{-1}(z) \subset (1 - \delta, 1)$, and thus $|f(z)| < \epsilon$. We conclude that $\lim_{z \to 1, z \in \gamma} f(z) = 0$. \hfill \Box
Proof of Theorem 1.1. Let γ_1, γ_2, and γ_3 be paths (subject to the assumptions mentioned in the introduction, that each path lies in the unit disk and interpolates from -1 to 1.

Let $\{z_n\}_{n=1}^\infty$ be a sequence of points contained in the region between γ_1 and γ_2. The sectorial limit theorem immediately implies that the limit ζ of f along γ_1 must equal the limit of f along γ_2. Replacing f with $f - \zeta$, we assume that this common limit is 0. We wish to show that $f(z_n) \to 0$ as $n \to \infty$. Partition the natural numbers two sets A and B by the rule that if $n \in A$ if z_n is in either γ_1 or γ_2, and $n \in B$ if z_n is contained in a bounded component of $(\gamma_1 \cup \gamma_2)^c$. It is immediately clear from Lemma 2.2 that $\lim_{n \to \infty, n \in A} f(z_n) = 0$.

It remains to show that $\lim_{n \to \infty, n \in B} f(z_n) = 0$.

Fix an $\epsilon > 0$. Choose an $\iota_1 > 0$ such that for all $s \in (1 - \iota_1, 1)$, $|f(\gamma_1(s))| < \epsilon$ and $|f(\gamma_2(s))| < \epsilon$. Define $\delta_1 = \min_{s \in [0,1-\iota_1]}(|\gamma_1(s) - 1|, |\gamma_2(s) - 1|)$. By Lemma 2.3 there are only finitely many faces of $(\gamma_1 \cup \gamma_2)^c$ that intersect both the domain $\{z : |z - 1| > \delta_1\}$ and the disk $\{z : |z - 1| < \delta_1/2\}$. Choose a $\delta_2 \in (0, \delta_1/2)$ small enough so that every bounded component of $(\gamma_1 \cup \gamma_2)^c$ which intersects the disk $\{z : |z - 1| < \delta_2\}$ is either contained in the disk $\{z : |z - 1| < \delta_1\}$, or contains 1 in its boundary.

Let F be some component of $(\gamma_1 \cup \gamma_2)^c$ which intersects $\{z : |z - 1| < \delta_2\}$.

Case 2.5.1. F is not contained in the disk $\{z : |z - 1| < \delta_1\}$.

Let $\tau : \mathbb{D} \to F$ be some Riemann map for F. Lemma 2.4 implies that τ extends to a homeomorphism $\tau : \partial \mathbb{D} \to \partial F$. We adopt the normalization $\tau(1) = 1$. Since f is analytic on $\partial F \setminus \{1\}$, it thus follows that $f \circ \tau$ extends continuously to every point on $\partial \mathbb{D}$ except possibly to 1. Moreover, as $\theta \to 0$, $\tau(e^{i\theta})$ approaches 1 in ∂F (which is in turn contained in $\gamma_1 \cup \gamma_2$), so that $f \circ \tau(e^{i\theta})$ approaches 0 (by Lemma 2.5).

Therefore $C_B(f \circ \tau, 1)$ consists of the single point 0 only. Since $f \circ \tau$ is bounded in the disk, compactness considerations imply that $C(f \circ \tau, 1)$ is non-empty. Fact 2.1 now immediately implies that $C(f \circ \tau, 1) = \{0\}$, and thus that $f \circ \tau(z) \to 0$ as $z \to 0$ in the disk. Finally we conclude that $f(z) \to 0$ as $z \to 1$ in F.

Case 2.5.2. F is contained in the disk $\{z : |z - 1| < \delta_1\}$.

By choice of δ_1, for all $z \in \partial F \cap \mathbb{D}$, $|f(z)| < \epsilon$. Compactness and continuity considerations show that if $\partial F \cap \partial \mathbb{D} \neq \emptyset$, then $\partial F \cap \partial \mathbb{D} = \{1\}$, and work in the previous case shows that $\lim_{z \to 1, z \in F} f(z) = 0$. Thus we have that for all $w \in \partial F$, either $|f(w)| < \epsilon$ or $\lim_{z \to w, z \in F} f(z) = 0$. The maximum modulus principle now implies that for all $z \in F$, $|f(z)| < \epsilon$.

Since $f(z)$ converges to 0 as z approaches 1 in each of the finitely many components of $(\gamma_1 \cup \gamma_2)^c$ which intersect both $B(1; \delta_1)^c$ and $B(1; \delta_2)$, and $|f(z)| < \epsilon$ for all z in the components of $(\gamma_1 \cup \gamma_2)^c$ which are contained entirely in $B(1; \delta_1)$, we can choose an $\delta_3 \in (0, \delta_2)$ small enough so that for all z contained in a bounded face of $(\gamma_1 \cup \gamma_2)^c$, if $|z - 1| < \delta_3$, then $|f(z)| < \epsilon$.

Now choose a $M \in \mathbb{N}$ large enough so that for all $n > M$, $|z_n - 1| < \delta_3$. If $n > M$ is in B, then $|f(z_n)| < \epsilon$. We conclude that $\lim_{n \to \infty, n \in B} f(z_n) = 0$, concluding the proof of the first item of the theorem.

In order to prove the second item, suppose by way of contradiction that neither the region above γ_3 nor the region below γ_3 is a domain of path divergence. Then there are
two paths ψ_1 and ψ_2 along which f converges, such that ψ_1 lies above γ_3 and ψ_2 lies below γ_3. By the first item of the theorem, the region between ψ_1 and ψ_2 is a convergence set for f at 1, but γ_3 lies in the region between ψ_1 and ψ_2, providing us with the desired contradiction.

\section{Convergence and Divergence Sets for $g(z) = e^{\frac{z+1}{z-1}}$}

In this section we will explore the convergence and path convergence/divergence sets of the function $g(z) = e^{\frac{z+1}{z-1}}$. We start with a definition.

\textbf{Definition}

- For any $-\infty \leq p < q \leq \infty$, define $H_{Re}(p, q) = \{ w \in \mathbb{C} : p < Re(w) < q \}$.
- For any $-\infty \leq p < q \leq \infty$, define $H_{Im}(p, q) = \{ w \in \mathbb{C} : p < Im(w) < q \}$.

Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ denote the M"{o}bius transformation $R(z) = \frac{z+1}{z-1}$. R is a conformal map from the unit disk \mathbb{D} to the half plane $H_{Re}(-\infty, 0)$. Moreover if $\{z_n\}$ is any sequence of points in \mathbb{D}, $z_n \to 1$ if and only if $R(z_n) \to \infty$ in $H_{Re}(-\infty, 0)$. Thus in order to study the convergence and path convergence/divergence sets of g at 1, it suffices to study the convergence and path convergence/divergence sets of the function $h : H_{Re}(-\infty, 0) \to \mathbb{D}$ defined by $h(w) = e^w$, as $w \to \infty$ in $H_{Re}(-\infty, 0)$, and we will treat the two settings as interchangable in what follows.

It is easy to see that as $w \to \infty$ in $H_{Re}(-\infty, 0)$ in the real line, $h(w) \to 0$. Therefore by the sectorial limit theorem, if ψ is any path in $H_{Re}(-\infty, 0)$ approaching ∞, and h converges along ψ, then h must converge to 0 along ψ.

Note that for $w = x + iy \in H_{Re}(-\infty, 0)$, $|h(w)| = e^x$. Therefore in the following subsections we will use the fact that $h(w) \to 0$ in $H_{Re}(-\infty, 0)$ if any only if $x \to -\infty$.

\subsection{Convergence Sets for g at 1}

While it is possible to construct a convergence set for h at ∞ in which h approaches any fixed value in the disk, we are interested in large sets in $H_{Re}(-\infty, 0)$ in which h approaches 0. A set $G \subset H_{Re}(-\infty, 0)$ is a convergence set for h at ∞ in which h approaches 0 (equivalently $K = R^{-1}(G)$ is a convergence set for g at 1 in which g approaches 0) if and only if for every sequence of points $\{w_n = x_n + iy_n\}$ contained in G, if $w_n \to \infty$, then $x_n \to -\infty$.

Therefore G is a convergence set for h at ∞ in which h approaches 0 if and only if for every number $p \in (-\infty, 0)$, the set $G \cap H_{Re}(p, 0)$ is bounded. Since the region to the left of a verticle line in $H_{Re}(-\infty, 0)$ is mapped by τ^{-1} to the interior of a circle contained in the unit disk which is tangent to the unit circle at 1, we may translate the above observation to the disk as follows.

\textbf{Proposition 3.1.} Let $K \subset \mathbb{D}$ be a set with $1 \in \partial K$. K is a convergence set for g at 1 in which g approaches 0 if and only for every disk $D \subset \mathbb{D}$ which is tangent to the unit circle at 1, there is an $\epsilon > 0$ such that $K \cap B(1; \epsilon) \subset D$.

3.2 Path Convergence Sets for \(g \) at 1

It is of course easier for a set to be a path convergence set for \(h \) than it is to be a convergence set. Consider the following example. For any \(n \in \mathbb{N} \), let \(E_n \) be defined by

\[
E_n = \left\{ -\frac{1}{n} + iy : 0 \leq y \leq n \right\} \cup \left\{ x + in : -\infty < x \leq -\frac{1}{n} \right\}.
\]

Define \(E \) to be the union of the set \(\bigcup_{n=1}^{\infty} E_n \) with the interval in the real line \([-1, 0)\), and let \(G \) be a small neighborhood of \(E \). \(G \) is an open, unbounded, simply connected set, and any path \(\psi \) in \(G \) which approaches \(\infty \) must have bounded imaginary part, and thus \(g \) must converge to 0 along \(\psi \).

Thus \(G \) is a path convergence set for \(h \) at \(\infty \). However, for any \(p \in (-\infty, 0) \), \(H_{Re}(p, 0) \cap G \) is unbounded, so \(G \) is not a convergence set for \(h \) at \(\infty \). There does not appear to be a concise analytic characterization of the path convergence sets for \(g \) at 1.

3.3 Path Divergence Sets for \(g \) at 1

As mentioned above, for a path \(\psi \) approaching \(\infty \) in \(H_{Re}(-\infty, 0) \), by the sectorial limit theorem if \(h \) converges along \(\psi \), then \(h \) converges to 0 along \(\psi \). Therefore for a given path \(\psi \) approaching \(\infty \) in \(H_{Re}(-\infty, 0) \), \(h \) will not converge along \(\psi \) if and only if for some fixed \(p \in (-\infty, 0) \), \(\psi(s) \) revisits \(H_{Re}(p, 0) \) infinitely often as \(s \to 1^- \). Certainly for any \(p \in (-\infty, 0) \), \(H_{Re}(p, 0) \) itself will be a path divergence set for \(h \) at \(\infty \) (and thus given any disk \(D \) contained in the unit disk which is tangent to the unit circle at 1, \(D \setminus D \) is a path divergence set for \(g \) at 1). However as in the previous subsection, we will give a more interesting example. Let \(E \) denote the piecewise linear path in \(H_{Re}(-\infty, 0) \) obtained by concatenating the line segments with the following vertices listed in order:

\[-1 + i, -2 + 2i, -1 + 2i, -3 + 3i, -1 + 3i, -4 + 4i, -1 + 4i, \ldots \]

Let \(G \) be a small neighborhood of \(E \) in \(H_{Re}(-\infty, 0) \). \(G \) is an open, unbounded, simply connected set, and any path \(\psi \) in \(G \) which approaches \(\infty \) must revisit the vertical line \(\{ x + iy \in \mathbb{C} : x = 2 \} \) infinitely often, and thus \(g \) does not converge along \(\psi \).

3.4 Convergence Set for \(g \) at 1 with Vertical Tangent Line at 1

We will finish by considering a specific convergence set for \(g \) at 1. First let us translate the problem to the upper half plane \(H_{Im}(0, \infty) \) via the Möbius transformation \(S : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) defined by \(S(z) = -iz + i \).

\(S \) will transform any disk contained in \(\mathbb{D} \) which is tangent to the unit circle at 1 to a disk contained in \(H_{Im}(0, \infty) \) which is tangent to the real line at 0. Let \(G \subset H_{Im}(0, \infty) \) be defined by

\[
G = \left\{ x + iy : y > |x|^\frac{3}{2} \right\}.
\]

\(G \) is the region above the graph \(y = T(x) = |x|^\frac{3}{2} \). \(T(0) = 0 \) and \(T'(0) = 0 \), so \(y = T(x) \) has the real line as its tangent line at \(x = 0 \). An easy calculation shows that the curvature
of $y = T(x)$ at $x = 0$ is ∞, and that for any $s > 0$, the half circle $y = s - \sqrt{s^2 - x^2}$ lies below $y = T(x)$ in a neighborhood of $x = 0$.

Figure 1: The convergence set K.

Therefore defining $K = S^{-1}(G)$ (depicted in Figure 1), we now have that K is tangent to the unit circle at 1, and for any circle C in the disk which is tangent to the unit circle at 1, the restriction of K to some small neighborhood of 1 is contained in the bounded face of C. By Proposition 3.1, K is a domain of convergence for g at 1 in which g approaches 0.

References

[1] E. F. Collingwood and A. J. Lohwater. *The theory of cluster sets.* Cambridge University Press, Cambridge, 1966.

[2] J. Conway. *Functions of one complex variable II.* Springer–Verlag, New York, 1995.

[3] J. Hocking and G. Young. *Topology.* Addison–Wesley Publishing Company, Reading, Massachusetts, 1961.