Subgroups of minimal index in polynomial time

S.V. Skresanov*

Abstract
Let G be a finite group and let H be a proper subgroup of G of minimal index. By applying an old result of Y. Berkovich, we provide a polynomial algorithm for computing $|G:H|$ for a permutation group G. Moreover, we find H explicitly if G is given by a Cayley table. As a corollary, we get an algorithm for testing whether a finite permutation group acts on a tree or not.

Keywords: subgroup of minimal index, minimal permutation representation, group representability problem, group representability on trees, permutation group algorithms.

1 Introduction
In [1] S. Dutta and P.P. Kurur introduced the following:

Group representability problem. Given a group G and a graph Γ decide whether there exists a nontrivial homomorphism from G to the automorphism group of Γ.

By [1, Theorem 3], the graph isomorphism problem reduces to the abelian group representability problem, so the latter inherits the notorious difficulty of the former.

As an attack from a different angle, one can consider the problem of group representability on trees. In [1] authors speculate that there might be no polynomial algorithm even for such a restriction. Nevertheless, in [1] Theorems 6 and 8] they provide a polynomial reduction of that problem to the

Permutation representability problem. Given a group G and a positive integer n, decide whether there exists a nontrivial homomorphism from G into the symmetric group Sym_n.

Denote by $\kappa(G)$ the degree of a minimal (not necessarily faithful) nontrivial permutation representation of G. Since such permutation representations are always transitive, we see that $\kappa(G) = \min\{|G:H| \mid H < G\}$. Notice that permutation representability problem reduces to the task of computing $\kappa(G)$,

*The work is supported by Russian Science Foundation (project 14-21-00065)
since for \(n \geq \kappa(G) \) there always exists a nontrivial homomorphism from \(G \) into \(\text{Sym}_n \).

Now, let \(\mu(G) \) be the degree of a minimal faithful permutation representation of \(G \). Obviously \(\kappa(G) \leq \mu(G) \) and the equality should not hold in general. The following not widely known theorem of Berkovich tells us exactly when it holds.

Theorem 1 ([2, Theorem 1]). Let \(G \) be a finite group. \(G \) is simple if and only if \(\kappa(G) = \mu(G) \).

As a consequence, if \(H \) is a proper subgroup of minimal index in \(G \), then \(G/\text{core}_G(H) \) is a simple group, where \(\text{core}_G(H) = \bigcap_{g \in G} H^g \). This observation allows one to search for subgroups of minimal index only in simple quotients of \(G \). We have the following result.

Theorem 2. Let \(G \) be a finite permutation group given by generators. Then \(\kappa(G) \) can be computed in polynomial time in the degree of \(G \).

Corollary. The group representability on trees where the group is presented as a permutation group via a generating set can be solved in polynomial time.

We note that in [1] authors are mainly focused on groups given by Cayley tables, so we in fact answered a more general question.

Notice that we do not claim to find the subgroup of minimal index itself (which is required to reconstruct the corresponding action of a group on a tree). Nevertheless, in the case when the group is given by its Cayley table, it is possible to enumerate all such subgroups.

Theorem 3. Let \(G \) be a finite group given by its Cayley table. Then the set \(\{ H < G \mid |G:H| = \kappa(G) \} \) can be computed in time polynomial in \(|G| \).

It might be very plausible that (at least one) subgroup of minimal index can be computed in polynomial time in the case of permutation groups, but it most certainly would need a more advanced machinery.

The author would like to express his gratitude to prof. Avinoam Mann, who pointed out that Theorem 1 was proved earlier and gave the reference to Berkovich’s paper.

2 Proof of Theorem 1

The article [2] besides the original proof by Berkovich (originating in [3]) contains another very short and elegant proof attributed by the author to M.I. Isaacs. We reproduce it with almost no changes for the sake of completeness.

If \(G \) is simple, then clearly \(\kappa(G) = \mu(G) \). Therefore it suffices to prove the converse statement.

Let \(H \) be a subgroup of index \(\kappa(G) \) in \(G \) such that \(\text{core}_G(H) = 1 \). Suppose that \(N \) is a nontrivial proper normal subgroup of \(G \). Since \(H \) is maximal, we have \(G = NH \). Let \(U \) be a subgroup of \(H \) minimal with \(G = NU \). Obviously
$U > 1$, and U does not lie in H^g for some $g \in G$. Set $V = U \cap H^g < U$. We have

$$|G : NV| = |NU : NV| = \frac{|N||U||N \cap V|}{|N||V||N \cap U|} \leq |U : V| < |G : H|,$$

since $|U : V| = |UH^g : H^g| = |UH^g|/|H|$ and $UH^g \subseteq HH^g \subseteq G$. By minimality of $|G : H|$ it follows that $G = NV$, contrary to the choice of U.

3 Proof of Theorem 2

In what follows, we assume the standard polynomial-time toolbox from [4].

Let S be a simple group. Denote by $O_S(G)$ the minimal normal subgroup of G such that each composition factor of $G/O_S(G)$ is isomorphic to S. It is noted in [4] that an algorithm for computing $O_S(G)$ in polynomial time is implicit in [5].

Now let G be a permutation group given by its generators. Compute the composition series of G, and let Σ be the collection of isomorphism types of composition factors. By Theorem 1, if H is a subgroup of minimal index, then it contains the maximal normal subgroup $N = \text{core}_G(H)$. The quotient G/N is simple, therefore its isomorphism type S lies in Σ and $O_S(G) \leq N < G$.

Moreover, $\kappa(G) = \kappa(G/N) = \mu(S)$, so

$$\kappa(G) = \min \{ \mu(S) \mid S \in \Sigma, O_S(G) < G \},$$

where $\mu(S)$ can be found by checking the description of minimal faithful permutation representations of finite simple groups, which is well-known (for example, see [6, Table 4] for groups of Lie type and [7, Table 4] for sporadic simple groups). Since all steps can be performed in polynomial time, we obtain the required algorithm.

4 Proof of Theorem 3

The key observation is the following.

Lemma 1. Let G be a finite simple group given by its Cayley table. Then the set of maximal subgroups of G can be computed in time polynomial in $|G|$.

Proof. Try all possible 4-tuples of elements of G (there are $|G|^4$ of those) and generate corresponding subgroups. One can test in polynomial time if a given subgroup is maximal, so we obtain the list of all maximal subgroups of G generated by 4 elements. By [8, Theorem 1] every maximal subgroup of a finite simple group is 4-generated, so we in fact found all maximal subgroups of G.

Set $\mathcal{M}(G) = \{ N \triangleleft G \mid N$ is a normal subgroup of G, and G/N is simple$\}$, and recall that we can compute $\mathcal{M}(G)$ in polynomial time even for permutation
groups (see the proof of [5, Lemma 7.4]). Notice that we can find the following set in polynomial time:

$$A_N = \{ H < G \mid N \leq H, |G : H| = \kappa(G) \}.$$

Indeed, $\kappa(G)$ can be computed in polynomial time by Theorem [2] and obviously the Cayley table for G/N can be found in polynomial time, thus by Lemma [1] we can find all maximal subgroups of G/N. By taking preimages and keeping only subgroups of index equal to $\kappa(G)$, we find the required set.

Now, by Theorem [1] every subgroup H with $|G : H| = \kappa(G)$ contains a maximal normal subgroup. Therefore $$\{ H < G \mid |G : H| = \kappa(G) \} = \bigcup_{N \in \mathcal{M}(G)} A_N,$$

and this set can be computed in polynomial time.

References

[1] S. Dutta, P.P. Kurur, Representing Groups on Graphs, Mathematical Foundations of Computer Science (2009), 295-306.

[2] Y. Berkovich, The Degree and Index of a Finite Group, Journal of Algebra, 214 (1999), 740–761.

[3] Y. Berkovich, A necessary and sufficient condition for the simplicity of a finite group, Algebra and number theory, Nal’chik (1979), 17–21 (Russian).

[4] Á. Seress, Permutation Group Algorithms, Cambridge University Press (2003).

[5] L. Babai, E.M. Luks, Á. Seress, Permutation groups in NC, Proc. 19th ACM STOC (1987), 409–420.

[6] S. Guest, J. Morris, C.E. Praeger, P. Spiga, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc., 367 (2015), 7665–7694.

[7] V.D. Mazurov, Minimal permutation representations of Thompson’s simple group, Algebra and Logic, 27, 5 (1988), 350–361.

[8] T.C. Burness, M.W. Liebeck, A. Shalev, Generation and random generation: From simple groups to maximal subgroups, Advances in Mathematics, 248 (2013), 59–95.

Saveliy V. Skresanov
Novosibirsk State University, 2 Pirogova Str.,
Novosibirsk, 630090, Russia
e-mail: s.skresanov@g.nsu.ru