СУЧАСНІ АСПЕКТИ РОЛІ ГЛІКОЗАМІНОГЛІКАНІВ
ЕКСТРАЦЕЛЮЛЯРНОГО МАТРИКСУ У РОЗВИТКУ
ГЕНЕРАЛІЗОВАНОГО ПАРОДОНТИТУ ТА ПЕРЕБІГУ
ПРОЦЕСІВ РЕПАРАЦІЇ

Олеся Годована
Львівський національний медичний університет імені Данила Галицького,
Львів, Україна, ohodovana@gmail.com

За останні десятиліття поширеність захворювань тканин пародонта, зокрема генералізованого пародонтиту, збільшилась до 98,5%. Розкриття причинно-наслідкових зв’язків розвитку запальних і дистрофічно-запальних захворювань пародонта є актуальною проблемою сучасної стоматології. З’ясовано, що структура тканин пародонта підтримують сульфатовані та несульфатовані глікозаміноглікани (ГАГ). У кістковій тканині альвеолярних відростків група сульфатованих глікозаміногліканів (сГАГ) представлена хондроїтинсульфатами, дерматансульфатом, кератансульфатом і гепарансульфатом. У невеликій кількості є гіалуронова кислота, яка належить до несульфатованих глікозаміногліканів. Активну роль сГАГ відіграють у процесах зазоєння пародонта: 1) пригнічення синтезу ліпідів; 2) пригнічення активності протеолітичних ферментів; 3) пригнічення синергічної дії ферментів і кисневих радикалів; 4) зниження біосинтезу мідіаторів запалення за рахунок маскування вторинних антигенних детермінант і пригнічення хемотаксису; 5) пригнічення апоптозу; 6) побудова колагенових волокон; 7) регуляція проліферації клітин; 8) регуляція біосинтезу компонентів міжклітинного матриксу; 9) поліпшення процесів мікроциркуляції; 10) перебудова у структурах протеогліканів; 11) регуляція хондро- ї остеогенезу.

У сучасній пародонтології найперспективнішими вважають підходи з застосуванням природних регуляторів фізіологічних і патологічних процесів, які позбавлені будь-якої токсичної дії на клітини та тканини. Саме таким перспективним агентом є препарати на основі сульфатованих і несульфатованих ГАГ. У літературі подано узагальнене формулювання основних механізмів дії глікозаміногліканів пародонтальних структур, що є актуальним та потребує продовження дослідження.

Ключові слова: тканини пародонта, компоненти міжклітинної речовини, загоєння.
CURRENT ASPECTS OF THE ROLE OF GLYCOSAMINOGLYCANS OF THE EXTRACELLULAR MATRIX IN THE DEVELOPMENT OF GENERALIZED PERIODONTITIS AND THE COURSE OF REPAIR PROCESSES

Olesya Hodovana
Danylo Halytsky Lviv National Medical University Lviv, Ukraine, ohodovana@gmail.com

The prevalence of periodontal disease, in particular of generalized periodontitis, has increased up to 98.5% over the past decades. The topical issue of modern dentistry is to find the cause-effect relations of the development of inflammatory and dystrophic inflammatory periodontal diseases. It has been established that sulfated and non-sulfated glycosaminoglycans (GAGs) support the structure of periodontal tissues. The group of sulfated glycosaminoglycans (sGAGs) is represented in the bone tissue of the alveolar ridges by chondroitin sulfates, dermatan sulfate, keratan sulfate and heparan sulfate. Hyaluronic acid, which belongs to non-sulfated glycosaminoglycans, is present in a small amount.

The role of biofilm proteinase is important in the pathogenesis of gingivitis and periodontitis, when the activity of acidic and faintly acid proteinases of dental deposits and gum tissues increases 4-5 times. This process is accompanied by degradation of glycoproteins and other proteins of periodontal tissues. The enzymes of beta-glucuronidase, hyaluronidase, beta-N-Acetylhexosaminidase and chondroitin sulfatase are actively involved in the cleavage of acid glycosaminoglycans and glycoproteins of the intercellular substance, periodontal cell membranes, and thus the destruction of circular ligament and periodontal tissues in general.

Healing, as a complex dynamic process, is implemented with the inclusion of soluble mediators, blood cells, components of the extracellular matrix and resistant cells involved in recovery and tissue integration. Therefore, the role of GAGs in the processes of periodontal healing is active: 1. Inhibition of synthesis of lipids; 2. Inhibition of activity of proteolytic enzymes; 3. Inhibition of synergistic effect of enzymes and oxygen radicals; 4. Reduction of biosynthesis of inflammation mediators due to masking of secondary antigenic determinants and inhibition of chemotaxis; 5. Inhibition of apoptosis; 6. Construction of collagen fibers; 7. Regulation of cell proliferation; 8. Regulation of biosynthesis of the intercellular matrix components; 9. Improvement of microcirculation processes; 10. Rearrangement in structures of proteoglycans; 11. Regulation of chondro- and osteogenesis. The references present a generalized formulation of the main mechanisms of effect of periodontal structures glycosaminoglycans, which is relevant and requires further studying.

Key words: periodontal tissue, components of intercellular substance, healing.
як 10% осіб страждають на III ступінь генералізованого пародонтиту (Malyi and Antonenko, 2013) [26]. Результати статистично достовірних досліджень свідчать про те, що поширеність захворювань тканин пародонта серед дорослого населення України становить 85-96%, а найвищий рівень захворюваності припадає на вік 35-44 років та 15-19 років (Beloklitskaia and Pavlenko, 2013; Khomenko et al., 2006; Chumakova, 2007) [2, 21, 7].

За останні десятиліття збільшилася кількість фундаментальних праць вітчизняних і закордонних авторів, які присвячені з’ясуванню причинно-наслідкових зв’язків розвитку запальних і дистрофічно-запальних захворювань тканин пародонта за участю інфекційних, імунних, спадкових, травматичних та інших агентів на тлі анатомо-топографічної специфіки тканин порожнини рота (Biloklytska et al., 2004; Danylevskyi et al., 2008; Persson, 2008, Hodovana, 2009, Zabolotnyi et al., 2011) [3, 8, 31, 15, 46]. Проте у вітчизняній літературі недостатньо уваги приділено вивченню ролі окремих компонентів міжклітинного матриксу кісткової тканини пародонта у нормі, у патологічному стані та на етапах загоєння. Нечисленні дослідження зарубіжних авторів, які проведено у напрямі вивчення перебігу метаболічних процесів в органічному матриксові кісткової тканини, зокрема одного з його компонентів – протеогліканів, що забезпечують консолідацію колагенових волокон та їхній зв’язок із кристалами мінералів (Bartold, 1990; Chen et al., 2004; Grzesik et al., 2002; Iozzo, 1998; Jones et al., 2000; Pins et al., 1997) [1, 5, 14, 18, 20, 32].

Структура екстрацелюлярного матриксу тканин пародонта, як складна мережа у вигляді напівпідтікного в’якого гелю, складається головно з колагенових білків, протеогліканів та гілокопротеїнів. В утворені існує матрикс бере участь фібробласти, хондробласти, остеобласти, одонтобласти, цементобласти та ін. Заразом матрикс містить молекули, які взаємодіють здатністю утворювати комплекси. Відтак специалізованою формою позаклітинного матриксу тканин у нормі є базальна мембрана, яка утворює дискретну структуру, що відмежовує одну клітинну верству від іншої (Graber et al., 1999; Hodovana, 2009; Kordiak, 2011) [12, 15, 24].

The number of fundamental works of domestic and foreign authors has increased over the past decades. They deal with establishing cause-effect relations of inflammatory and dystrophic inflammatory diseases of periodontal tissues with the participation of infectious, immune, hereditary, traumatic and other agents, against the background of anatomical and topographical specificity of oral tissues (Biloklytska et al., 2004; Danylevskyi et al., 2008; Persson 2008; Hodovana, 2009; Zabolotnyi et al., 2011) [3, 8, 31, 15, 46]. However, not enough attention is paid in the domestic literature to the study of the role of individual components of the intercellular matrix of periodontal bone tissue under normal conditions, under pathological conditions and at the stages of healing. A few studies of foreign authors are conducted in the direction of studying the course of metabolic processes in the organic matrix of bone tissue, in particular of one of its components - proteoglycans, which ensure consolidation of collagen fibers and their connection with mineral crystals (Bartold, 1990; Chen et al., 2004; Grzesik et al., 2002; Iozzo, 1998; Jones et al., 2000; Pins et al., 1997) [1, 5, 14, 18, 20, 32].

The structure of extracellular matrix of periodontal tissue, as a complex network in the form of a semi-liquid cohesive gel, consists mainly of collagen proteins, proteoglycans and glycoproteins. Fibroblasts, chondroblasts, osteoblasts, odontoblasts, cementoblasts, etc. are involved in the formation of this matrix. At the same time, the matrix contains molecules that can form complexes. Thus, a specialized form of the extracellular matrix of tissues is a basement membrane under normal conditions, which forms a discrete structure that separates one cell layer from another (Graber et al., 1999; Hodovana, 2009; Kordiak, 2011) [12, 15, 24].
Основу екстрацелюлярного матриксу становить сім’я колагенових білків, яка належить до глікопротеїнів і містить залишки гліцин, пролін та гідроксипроліну. Будь-які порушення у синтезі колагенових білків у тканинах пародонта клінічно проявляються у вигляді таких ознак запалення – набряк і кровоточивість ясен, що супроводжують формування пародонтальних кишень, появу гноетечі і у підсумку – виникнення рухомості зубів та випадіння. Серед причин, які зумовлюють появу таких станів, є різні аутоімунні стани, генетичні дефекти, дефіцит аскорбінової кислоти, іонів Cu²⁺ та багато інших (Giannobile et al., 1993; Graber et al., 1999; Hodovana, 2009; Kinane and Mombelli, 2012; Persson, 2008) [10, 12, 15, 22, 31].

Поряд із колагеновими білками у міжклітинному матриксі наявні і неколагенові – еластин, глікопротеїни, протеоглікані та ін. Глікопротеїни – це складні білки, до складу яких входить вуглецевий компонент. Білок у цих сполуках є своєрідною основою, до якої дуже міцно приєднані вуглецеві (гліканові) ланцюги. Відповідно до особливостей хімічної будови глікопротеїни можна поділити на істинні (правдиві) глікопротеїни і протеоглікані (глікоамінопротеоглікані). Головна різниця між ними полягає у тому, що вуглецюві вугруповання істинних глікопротеїнів мають зазвичай 15-20 моносахаридних компонентів, які не утворюють повторюваних олігосахаридних фрагментів, тоді як у протеогліканів ці вугруповання побудовані з дуже великої кількості одиниць, що повторюються і здебільшого мають своєрідний дисахаридний характер. Найчастіше такий дисахарид містить гліказамін або галактозамін у сульфованому чи несульфованому вигляді й уронову кислоту (глікуронову чи ідурово ву) (Jackson et al., 1991; Rees et al., 2002; Sugahara and Kitagawa, 2000) [19, 34, 41].

Серед численних функцій глікопротеїнів віділяють:
1. Функцію вибіркової взаємодії, високоспецифічного вплинування, наприклад, клітинна-клітинна; вірус-клітинна; бактерія-клітинна; гормональні рецептори. До складу поверхневих мембран разом з іншими компонентами входять глікопротеїни, які беруть участь у дуже тонких процесах біологічного вплинування та міжклітинної взаємодії, виконуючи роль рецепторних систем для певних сполук і клітин;

The basis of the extracellular matrix makes the family of collagen proteins belonging to glycoproteins and containing the residues of glycine, proline and hydroxyproline. Any disturbances in the synthesis of collagen proteins in the periodontal tissues are clinically manifested, in the first place, in the form of signs of inflammation, such as edema and bleeding gum, which is accompanied by the formation of periodontal pockets, the appearance of purulent discharge and, as a consequence, the emergence of tooth loosening and their loss. Among the reasons that trigger the appearance of these changes are various autoimmune conditions, genetic deficits, deficiency of ascorbic acid, Cu²⁺ ions, and many others (Giannobile et al., 1993; Graber et al., 1999; Hodovana, 2009; Kinane and Mombelli, 2012; Persson, 2008) [10, 12, 15, 22, 31].

Along with collagen proteins the intercellular matrix also contains non-collagen ones - elastin, glycoproteins, proteoglycans, and others. Glycoproteins are complex proteins, which include the carbohydrate component. The protein in these compounds is a peculiar basis, to which the hydrocarbon (glycan) chains are very firmly attached. In accordance with the peculiarities of the chemical structure, glycoproteins can be divided into genuine (true) glycoproteins and proteoglycans (glycosaminoglycans). The main difference between them is that the carbohydrate groupings of true glycoproteins typically have 15-20 monosaccharide components that do not form repeated oligosaccharide fragments, while in proteoglycans these groupings are made of a very large number of repeated units, which, basically, have a peculiar disaccharide nature. Most typically this disaccharide contains glucosamine or galactosamine in sulfated or non-sulfated form and uronic acid (glucuronic or iduronic acid) (Jackson et al., 1991; Rees et al., 2002; Sugahara and Kitagawa, 2000) [19, 34, 41].

Among the numerous functions of glycoproteins there are:
1. Function of selective interaction, highly specific recognition, for example: cell-cell; virus-cell; bacteria-cell; hormonal receptors. The outer membranes, along with other components, include glycoproteins that take part in the very fine processes of biological recognition and cell-to-cell cooperation, acting as the receptor systems for certain compounds and cells;
Серед глікопротеїнів кісткової тканини пародонта важлива роль відведена остеонектину, остеопонтину, кістковому сіалопротеїну, кістковому кислотному глікопротеїну-75, Гла-блікці, остеокальцину та матриксному Гла-бліку. Білки мінералізовані тканини пародонта становлять основу для прикріплення мінералів і визначають процеси мінералізації. Особливістю таких білків є наявність залишків фосфосерину, глутамату і аспарату, що здатні зв’язувати Са²⁺ і брати участь в утворенні кристалів апатиту на початковому етапі. Інша особливість полягає в наявності вуглеводів і послідовності амінокислотних залишків арг-глі-асп у первинній структурі білків, що забезпечує їхнє зв’язування з клітинами та білками, які формують екстрацелюлярний матрикс. Остеонектин — глікопротеїн, який у великих кількостях наявний у мінералізованій частині тканин пародонта. Білок інтегрується остеобластами, фіbroblastами, одонтобластами, у невеликій кількості хондроцитами та ендотелійними клітинами. В N-кінцевій ланці остеонектину розташована значна кількість негативно заряджених амінокислот, а також простежується до 12 ділянок зв’язування Са²⁺, який входить до складу гідроксіапатиту. Через вуглеводний компонент остеонектин зв’язується з колагеном I типу. Зарозам остеонектин не тільки забезпечує взаємодію компонентів матриксу, а й регулює проліферацію клітин, бере участь у численних процесах на етапі розвитку та дозрівання мінералізованих тканин. Остео-
понтин – білок, який містить декілька по- вторів, збагачених аспаргіновою кислотою, які надають йому здатності зв'язуватися з кристалами гідроксіапатиту. Середня частина молекули містить послідовність арг-глі-асн, що відповідає за прикріплення клітин. Цей білок відіграє провідну роль у побудові мінералізованого матриксу, взаємодії клітин і матрикусу, у транспорті неорганічних іонів. Кістковий сіалопротеїн – специфічний білок мінералізованих тканин, який ска- дається з вуглеводів і зазнає численних модифікацій у реакціях сульфатування ти- розину. У складі кісткового сіалопротеїну визначається до 30% фосфорильованих залишків серину та повторюваної послідовності глутамінової кислоти, що беруть участь у зв'язуванні Ca²⁺. Кістковий сіалопротеїн виявлений в усіх мінералізованих компонен- тах пародонта (кісткова тканина, дентин, цемент кореня), зокрема в гіпертрофованих хондроцитах і остеокластах та відповідає за прикріплення клітин і мінералізацію матрик- су. Кістковий кислий глікопротеїн-75 – білок, який інгібуве процеси резорбції у мінералізованих тканинах, також виявлений в кістковій тканині альвеолярного відростка, дентині зуба та хрящевій ростковій пластин- ці. Остеокальцин (кістковий глутаміновий білок) зв'язує іони Ca²⁺, які надходять для утворення кристалів гідроксіапатиту. У процесах ремоделювання кісткової тканини альвеолярного відростка активна участь на- лежить остеопротеінгерін – глікопротеїну, який належить до родини рецепторів фактора некрозу пухлин та пригіднує мобілізацію, проліферацію і активацію остеокластів (Riggz and Melton, 2000; Varki, 2009) [35, 45]. Ще одним компонентом екстрацелюлярного матриксу тканин неякогеневі білки протеоглікани. Цей клас складних білків побудований із різних стержневих (ко- рових) білків, до яких через N- і O-глікосидні зв'язки приєднуються олігосахариди, з'єд- нані з ланцюгами глікоміногліканів (ГАГ). Різні протеоглікани відрізняються розмірами молекул, відносним вмістом білка і набором ГАГ. Протеоглікани виконують функції рецепторів у побудові екстрацелюлярного матриксу, полегшуючи клітинне прикріплення і регулюють процеси росту клітин. Вони здат- ні утворювати комплекси з деякими білками, наприклад, факторами росту. В утворених комплексах білки захищені від протеолітич-
них ферментів. Такі комплекси виконують функції резервуарів, і тільки у разі потреби, за несприятливих умов, фактор росту вивільняється і набуває здатність виявляти свою біологічну активність. Загалом забезпечення біомеханічних і фізіологічних особливостей сполучної тканини пародонтального комплексу здебільшого визначається підтриманням балансу між процесами біосинтезу і декорданції колагенів та протеогліканів. Розпад і синтез протеогліканів регулюють такі гормони: соматотропін, тироксин, інсулін, а також цитокіни (інтерлейкін-1 та ін.), вітаміни групи А і С, мікроелементи та фактори росту (Gotte, 2003; Pins et al., 1997) [11, 32].

У тканинах пародонта як фактори росту виступають зазвичай невеликі поліпептиди, що стимулюють чи інгібують проліферацію окремих типів клітин (трансформуваючий фактор росту типу бета, морфогенетичний білок кістки, фактор росту ендотелію, інсуліноподібний фактор росту, фактор росту фібробластів, фактор росту тромбоцитів та ін.). Трансформуваючий фактор росту типу бета – родина глікопротеїнів, що активуює синтез білків екстраелектролітарного матриксу, наприклад, колагену I типу і металопротеїназ, а також діє як фактор хемотаксису для моноцитів і фібробластів. Також він пригнічує проліферацію і функцію Т і В-лімфоцитів, ендотеліальних клітин. Серед складної мережі цитокінів, які впливають на функцію одонтобластів у процесі репарації, саме трансформуваючий фактор росту типу бета функціонує як потужний імунодепресант, індукутор синтезу білків і підтримує гомеостаз в ендопародонтальному вогнищі у разі запалення. Морфогенетичний білок кістки – кислий глікопрофілін, що виконує роль в балансі глицину та серину і в місті три дисульфідних зв'язків. Відновлення дисульфідних зв'язків зумовлює інактивовання морфогенетичного білка кістки. У пульзі зуба він секретується одонтобластами у відповідь на зовнішній агент, який стимулює формування відновленої структури. Ендотелійна зв'язків утворюється за участию диференціювання стовбурових клітин в остеогенні. Фактор росту ендотелію – глікопротеїн, який використовується лише з клітинами ендотелію судин і стимулює їхню проліферацію. Фактор росту ендотелію має здатність активувати специфічний білок, який охоплює кіназний комплекс. Фосфорилювані білки, які утворюються під час цього процесу, спонукають переміщення клітин, тому при ушкодженні компонентів пародонтальних резервуарів, та тим, коли необхідна активність. Фактор росту ендотелію має здатність активувати специфічний білок, який охоплює кіназний комплекс. Фосфорилювані білки, які утворюються під час цього процесу, спонукають переміщення клітин, тому при ушкодженні компонентів пародонтального комплексу
Праці НТШ
Медичні науки 2017, 2 (L)
Огляд

Review

Медичні науки 2017, 2 (L)

Proc. Shevchenko Sci. Soc.
Medical sciences 2017, 2 (L)

Огляд

тального комплексу (кісткової тканини альвеолі, слизової оболонки ясен, періодонтальної зв'язки, пульпи зуба) під впливом фактору росту ендотелію відбувається швидке перетворення, збільшення та диференціація клітин з активацією лужної фосфатази. Фактор росту ендотелію також викликає розширення кровоносних судин, що є важливою умовою для підтримання кровотоку у тканинах у разі запалення. Він збільшує синтез інтерлейкіну-1, фактор некрозу пухлин, які суттєво впливають на розширення судин при патологічних процесах, яке супроводжується збільшенням осмотичного тиску, болем і незворотними змінами у тканинах. Інсуліноподібний фактор росту володіє аутокринною та паракринною дією. Пригустима його участь у швидкому рості клітин, їхньому диференціюванні та мінералізації тканин. Фактор росту фібробластів – це родина структурно зв'язаних поліпептидів, яка представляє дев'ять білків із прямиами спорідненості до гепарину. Цей фактор росту зумовлює розширення судин, бере участь у диференційовані фібробластів при утворенні фіброзної капсули навколо вогнища запалення. Фактор росту тромбоцитів – впливає на численні клітини, індукуючи синтез лужної фосфатази та протеогліканів в одонтобластичних клітинках пульпи зуба та кісткової тканини пародонта (Jones et al., 2000; Taylor and Gallo, 2006; Varki, 2009) [20, 44, 45].

Протеоглікані, зокрема версікан, біглікан, декорин і сінденкан, у великій кількості представлені у тканинах пародонта (цементні кореня, дентин та пульпи зуба, періодонтальні зв'язки, компактні частини альвеоли, слизовий ясен) (Gotte, 2003) [11]. У зв'язуваних протеогліканів зі специфічними білками головна роль належить молекулам глікозаміногліканів. Глікозаміноглікані (ГАГ), які належать до гетерополісахаридів, представлені у вигляді лінійних структур та побудовані з дисахаридних одиниць, які повторюються. Молекула дисахариду складається з уронової кислоти й аміносахару, аміногрупа якого зазвичай ацетилована. Наявність сульфатних і карбоксильних груп у ГАГ наділяє їх великим негативним зарядом та здатністю зв'язувати воду. Завдяки високій щільності негативного заряду на їхній поверхні, вони зв'язують катіони Ca²⁺, Na⁺, K⁺ і беруть участь у мінеральному обміні. Структуру тканин пародонта підтримують такі сульфатовані ГАГ: хондроїтин-4-сульфат, хондроїтин-6-сульфат, дерматансульфат, damaged (bone tissue of the alveolus, gingival mucosa, periodontal ligament, tooth pulp) under the influence of the endothelial growth factor, there is a rapid movement, an increase and differentiation of cells with activation of alkaline phosphatase. The endothelial growth factor also causes the expansion of the blood vessels, which is an important condition for maintaining blood flow in the tissues in case of inflammation. It increases the synthesis of interleukin-1, tumor necrosis factor, which have a significant effect on vasodilatation in pathological processes, which is accompanied by an increase in osmotic pressure, pain and irreversible changes in tissues. The insulin-like growth factor has an autocrine and paracrine effect. Its participation in the rapid growth of cells, their differentiation and mineralization of tissues is permissible. The fibroblast growth factor is a family of structurally bound polypeptides, represented by nine proteins with manifestations of heparin affinity. This growth factor causes vasodilatation, participates in the differentiation of fibroblasts in the formation of a fibrous capsule around the focus of inflammation. The platelet growth factor influences numerous cells inducing the synthesis of alkaline phosphatase and proteoglycans in odontoblastic cells of the tooth pulp and periodontal bone tissue (Jones et al., 2000; Taylor and Gallo, 2006; Varki, 2009) [20, 44, 45].

Proteoglycans, in particular versican, biglycan, decorin, and syndecan, are represented in large quantities in periodontal tissues (root cement, dentin and tooth pulp, periodontal ligament, compact part of alveolus, gingival mucosa) (Gotte, 2003) [11]. The main role in binding of proteoglycans with specific proteins belongs to molecules of glycosaminoglycans. Glycosaminoglycans (GAGs) belonging to heteropolysaccharides are presented in the form of linear structures and are constructed from repeated disaccharide units. The disaccharide molecule consists of uronic acid and amino sugar, the amino group of which is usually acetylated. The presence of sulfated and carboxyl groups in GAGs give them a large negative charge and the ability to bind water. Due to the high density of negative charge on their surface, they bind Ca²⁺, Na⁺, K⁺ cations, and thus participate in mineral metabolism. The following sulfated GAGs support the structure of periodontal tissues: chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, keratan sulfate,
кератансульфат, гепарансульфат і гіалуронова кислота, що належить до несульфатованих глюкозаміногліканів (Giannobile et al., 1993; Moseley et al., 2002; Sukmanskyi and Horokhivskyi, 2009) [10, 30, 42].

У лікуванні захворювань тканин парodontа увагу дослідників привертають препарати на основі хондроїтину сульфату, глюкозаміну гідрохлориду та гіалуронової кислоти. Завдяки своїм фізико-хімічним властивостям, зокрема здатності утворювати протеогліканові агрегати, ці ГАГ здатні забезпечувати численні функції сполучної тканини: 1) трофічну – активний обмін речовин між кров'ю і тканинами; 2) бар'єрну – захист від зовнішніх подразників (модулювання функціонального стану фагоцитів та імунокомпетентних клітин); 3) пластичну – репарацію та заміщення дефектів (взаємодія з рецепторами клітинної поверхні, стимуляція міграції фібробласти і клітинної проліферації) (Jones et al., 2000; Iozzo and San Antonio, 2001; Rabenstein, 2002) [20, 17, 33].

Вивчаючи вплив препаратів на основі ГАГ на дистрофічно-запальний процес у тканинах парodontа, з’ясовано, що глюкозаміну гідрохлорид є специфічним субстратом, здатним пригнічувати утворення супероксидних радикалів та ферментів, які зумовлюють ушкодження тканин (колагенази та фосфоліпази). Глюкозамін гідрохлорид запобігає руйнівній дії глукокортикоїдів на хондроцити та порушенню синтезу ГАГ, бере активну участь у побудові колагенових волокон і міжклітинного матриксу в цілому, стимулює проліферацію хондроцитів та інших клітин сполучної тканини, підвищує їїнш біосинтетічну активність, поліпшує судинну мікроциркуляцію. Заразом, глюкозаміну гідрохлорид проявляє антиоксидантну дію завдяки хімічній структурі молекулі, який притаманні висока реакційна здатність і превалювання відновних властивостей над окислювальними. Препарати на основі хондроїтину сульфату знижують активність ферментів, які руйнують сполучну тканину, відтак стимулюють процеси репарації, знижуючи активність запального процесу на ранніх його стадіях і сприяють зменшенню більової реакції (Klishov et al., 1990; Manton et al., 2007; Rees et al., 2002; Sugahara and Kitagawa, 2000; Taylor and Gallo, 2006) [23, 27, 34, 41, 44]. З’ясовано, що хондроїтин сульфат збільшує експресію OPG в остеобластичних стадіях, в тим числі, у випадку з розвитком алергічної реакції, знижуючи активність змішаного походження. Останнє може робити верхній підрозділ важливим для прогнозування і прогностичного індикатора для ефективності лікування в правої специфічні його стадіях і сприяє зменшенню більової реакції (Klishov et al., 1990; Manton et al., 2007; Rees et al., 2002; Sugahara and Kitagawa, 2000; Taylor and Gallo, 2006) [23, 27, 34, 41, 44]. Chondroitin sulfate has been shown to increase the OPG exp-
У тканинах пародонта несулюфований ГАГ гіалуронова кислота утворює комплекси з білками та слугує біологічним цементом, за- повнюючи простір між клітинами. Вважають, що головна функція гіалуронової кислоти у сполучній тканині полягає у зв’язуванні води. Внаслідок такого сполучення міжклітинна речовина набуває характеру жепелодібного матрикусу, здатного “підтримувати” клітини. Важливу роль відіграє гіалуронова кислота і у регуляції проникності тканин. Спів гіалуронової кислоти у вигляді гелю є своєрідним фільтром, яка затримує мікробні й інші великі молекули, що потрапляють до організму. Роз- рив глікозидних зв’язків у ланцюгах гіалуро- нової кислоти викликає її деполімеризацію. Внаслідок цього фільтрувальна система по- рушується, пам'ят клітини потрапляють різні молекули, у тім числі й великі, накопичується міжклітинна вода, яка утримується незруй- нованим полімером (розвивається набряк). У клітинах організму спеціальний фермент гіалуронідаза виділяється у міжклітинний простір та може підвищувати міжклітинну проникність. Тому гіалуронідазу називають фактором проникності. Деякі бактерії містять фермент типу гіалуронідази, що дає їм змогу проникати з кров’яного русла у міжклітинний простір (Giannobile et al., 1993; Jackson et al., 1991; Jones et al., 2000; McCulloch, 1994; Moseley et al., 2002) [10, 19, 20, 29, 30].

У патогенезі гінгівіту та пародонтиту важливою є протеїназ біоплівка, коли активність кислих і слабокислих протеїназ на- зубних відкладень і тканин ясен зростає у 4-5 разів. Такий процес супроводжує- ється деградацією глікопротеїнів та інших білків тканин пародонта (Kordiak, 2011) [24]. Ферменти бета-глюкуронідаза, гіа- луронідаза, бета-N-акетилгексосамідаза та хондроїтинсульфатаза беруть актив- ну участь у розщепленні кислих ГАГ і глі- копротеїнів міжклітинної речовини, мем- бран клітин пародонта, а відтак спонукають руйнування циркулярної зв’язки і тканин пародонта в цілому (McCulloch, 1994; Shy- robokov et al., 2003) [29, 37]. Деградація компонентів екстрацелюлярного матрикусу та деструкція тканин пародонта спричи- pression in osteoblasts of subchondral bone tissue, which causes an increase of the OPG/ RANKL ratio and, as a result, reduces bone resorption (Smith et al., 1997; Varki et al., 2009) [38, 45].

In periodontal tissues, the non-sulfated GAG - hyaluronic acid forms complexes with proteins and serves as biological cement, filling the space between cells. The main function of hyaluronic acid in the connective tissue is believed to be water binding. As a result of this binding, the intercellular substance becomes like a gelatinous matrix capable of “supporting” the cells. Hyaluronic acid’s role in the regulation of tissue permeability is also important. Hyaluronic acid’s grid in the form of a gel is a kind of filter that holds up microbial and other large molecules that get into the body. The rupture of glycoside bonds in the chains of hyaluronic acid causes its depolymerization. As a result, the filtering system is violated, various molecules get in between the cells, including large ones, intercellular water is accumulated, which is kept by whole polymer (edema develops). A special enzyme of hyaluronidase secretes into the intercellular space in the cells of the body, and can increase intercellular permeability. Therefore, hyaluronidase is called the permeability factor. Some bacteria contain hyaluronidase-like enzyme, which allows them to penetrate into the intercellular space from the bloodstream (Giannobile et al., 1993; Jackson et al., 1991; Jones et al., 2000; McCulloch, 1994; Moseley et al., 2002) [10, 19, 20, 29, 30].

In the pathogenesis of gingivitis and peri- odontitis, the role of the biofilm proteinases is important, when the activity of acid and faintly acid proteinases of dental deposits and gum tissues increases 4-5 times. The degradation of glycoproteins and other pro- teins of periodontal tissues accompany this process (Kordiak, 2011) [24]. The enzymes of beta-glucuronidase, hyaluronidase, beta-N-acetylhexosaminidase and chondroitin sulfatase are actively involved in the cleavage of acid GAGs and glycoproteins of the intercel- lular substance, periodontal cell membranes, and thus cause the destruction of circular ligament and periodontal tissues in general (McCulloch, 1994; Shyrobokov et al. 2003) [29, 37]. The degradation of the components of extracellular matrix and the destruction of the
У літературних джерелах трапляються повідомлення стосовно вивчення рівня ГАГ у крові для різних патологічних станів, що супроводжаються запальним процесом (Klishov et al., 1990) [23]. Зокрема представлені дані, які засвідчують інформативність показників метаболізму цих сполук при регенерації кісткової тканини (Riggz et al., 2000) [35]. Глибше розуміння ролі факторів росту, цитокінів і позаклітинних матричних молекул у процесах загострення описано у праці DeCarlo A.A. та Whitelock J.M. [4], де автори вивчали гепаран-сульфат позаклітинну молекулу, яка отримала назву перлекан. Вивчені також її важливу роль у потенціалі репаративних процесів кісткової тканини альвеолярного відростка, а саме стимулювальний вплив на клітинну адгезію, проліферацію, диференціацію та антігеннез (Iozzo and San Antonio, 2001) [17].

Оtte, згідно з аналізом літературних даних активною є роль сульфатованих і несульфатованих ГАГ у процесах репаративного остеогенезу тканин пародонту. Загострення як комплексний динамічний процес реалізується із включенням розчинних медіаторів, клі- periodontal tissue is also caused by the activity of matrix metalloproteinases (MMPs), which represent a large group of structurally related enzymes breaking down most of the proteins of extracellular matrix and basement membrane. Destructive processes in the aggressive course of periodontitis, which last for several months, lead to irreversible loss of periodontal tissues at all levels. However, MMPs have an important role in the development of osteoporotic processes in bone tissue (Sorsa et al., 2004; Grinin et al., 2011) [39, 13]. This group of enzymes is actively involved in the processes of degradation of the interaction chains of growth factors, cytokines, substances that participate in apoptosis and cellular adhesion. Together with other extracellular proteinases, MMPs are involved in the inflammatory process, implementation of the immune response, coagulation, physiological and post-traumatic tissue reconstruction. However, in the presence of pathological process MMPs cause tissue damage at all levels (Suomalainen et al., 1991) [43]. The reason for the increase in the MMPs activity under such conditions is the imbalance between MMPs and their locally active inhibitors - tissue inhibitors of matrix metalloproteinases (TIMPs) (Ingman et al., 1996) [16].

Таким чином, згідно з аналізом літературних даних активною є роль сульфатованих і несульфатованих ГАГ у процесах репаративного остеогенезу тканин пародонту. Загострення як комплексний динамічний процес реалізується із включенням розчинних медіаторів, клі-
тин крові, компонентів екстрацелюлярного матриксу і резистентних клітин, що беруть участь у відновленні та тканинній інтеграції (Gotte, 2003) [11]. Фаза запалення включає набряк тканини, екстравазацію клітин крові і у підсумку – формування кров'яного згустка. Саме у цей момент первинного ушкодження тканини в екстрацелюлярному матриксе у вільному вигляді починають визначатися сГАГ, фібронектин, поперечно-шніті форми фібрину, вітронектин, тромбоспондин і медіатори запалення (Selent and Kaleta, 2007; Sugahara and Kitagawa, 2002) [36, 40]. У поєднанні з набряком тканини (сГАГ зв'язують багато води), ці фактори сприяють локалізації запалення, перекриваючи його перехід на навколишні тканини, формують своєрідний бар’єр на шляху поширення інфекційного процесу (Taylor and Gallo, 2006) [44]. Вільні сГАГ, які зв’язуються з рецепторами тромбоцитів, у поєднанні з цитокінами на фоні високої активності протеолітичних ферментів, сприяють інсеграції таких факторів росту: фактор росту фібробластів, фактор росту ендотелю, епідермальний фактор росту та трансформаційний фактор (Sugahara and Kitagawa, 2000) [41].

Отож, у літературі представлено узагальнене формулювання основних механізмів дії сульфатованих і несульфатованих ГАГ парodontальних структур: 1) пригнічення синтезу ліпідів; 2) пригнічення активності протеолітичних ферментів; 3) пригнічення синергічної дії ферментів і кисневих радикалів; 4) зниження біосинтезу медіаторів запалення за рахунок маскування вторинних антигенних детермінант і пригнічення хемотаксису; 5) пригнічення апоптозу; 6) побудова колагенових волокон; 7) регуляція проліферації клітин; 8) регуляція біосинтезу компонентів міжклітинного матриксу; 9) поліпшення процесів мікроциркуляції; 10) перебудова у структурах протеогліканів; 11) регуляція хондро- і остеогенезу. Вищезазначене дає змогу зрозуміти як дослідження в галузі молекулярної та клітинної біології вплинули на розуміння перебігу патологічних процесів у кістковій тканині, перебігу процесів репаративного остеогенезу та можливості їхньої модуляції. У сучасній парodontології найперспективнішими вважають підходи зі застосуванням природних регуляторів фізіологічних і патологічних процесів, які позбавлені будь-якої токсичної дії на клітини та тканини. Саме таким перспективним

mediators, blood components of the extracellular matrix and resistant cells involved in recovery and tissue integration (Gotte, 2003) [11]. The inflammation phase includes swelling of the tissue, extravasation of blood cells and, as a consequence, formation of a blood clot. It is at this instant of the primary damage to the tissue in the extracellular matrix that sGAGs, fibronectin, cross-linked forms of fibrin, vitronectin, thrombospodin and inflammatory mediators begin to be determined in a free form (Selent and Kaleta, 2007; Sugahara and Kitagawa, 2002) [36, 40]. Combined with tissue swelling (sGAGs bind much water), these factors contribute to the localization of inflammation, impede its transition to surrounding tissues, and form a peculiar barrier on the way of the infectious process extension (Taylor and Gallo, 2006) [44]. Free sGAGs that bind to platelet receptors, in combination with cytokines against the background of high activity of proteolytic enzymes, contribute to activation of such growth factors as fibroblast growth factor, endothelial growth factor, epidermal growth factor and transforming factor (Sugahara and Kitagawa, 2000) [41].

Thus, a generalized formulation of the main mechanisms of action of sulfated and non-sulfated GAGs of periodontal structures is presented in the literature: 1. Inhibition of synthesis of lipids; 2. Inhibition of activity of proteolytic enzymes; 3. Inhibition of synergistic effect of enzymes and oxygen radicals; 4. Reduction of biosynthesis of inflammation mediators due to masking of secondary antigenic determinants and inhibition of chemotaxis; 5. Inhibition of apoptosis; 6. Construction of collagen fibers; 7. Regulation of cell proliferation; 8. Regulation of biosynthesis of the intercellular matrix components; 9. Improvement of microcirculation processes; 10. Rearrangement in structures of proteoglycans; 11. Regulation of chondro- and osteogenesis. The foregoing makes it possible to understand to what extent research in the field of molecular and cellular biology has influenced the understanding of the course of pathological processes in bone tissue, the course of reparative osteogenesis processes and the possibility of their modulation. The most promising in modern periodontology are considered to be the approaches with the use of natural regulators of physiological and pathological processes, which are deprived of any toxic effects on cells.
agent remains active and requires further study.

ЛІТЕРАТУРА/REFERENCES

1. Bartold PM. A biochemical and immunohistochemical study of the proteoglycans of alveolar bone. Journal of dental research. 1990 Jan;69(1):7-19.

2. Beloklytska GF, Pavlenko EM. Parodontologicheskii status liudei pozhylago i starcheskogo vozrasta [Periodontal status of people of elderly and old age]. Sovremennaia Stomatologiya. 2013(2):117-20.

3. Biloklytska GF, Tluzhova NA, Perova HI. Znachennia lokalnykh ta systemnykh porushen antyoksydantnoho homeostazu v rozvytku dystrofichno-zapalnykh zakhvoriuvan parodonta [Significance of local and systemic disorders of antioxidant homeostasis in the development of periodontitis and inflammatory diseases of periodontal disease]. Materialy II (IX) Zizdu Asotsiatsii Stomatolohiv Ukrainy. Kyiv. 2004:195-6.

4. DeCarlo AA, Whitelock JM. The role of heparan sulfate and perlecan in bone-regenerative procedures. Journal of dental research. 2006 Feb;85(2):122-32.

5. CHEN XD, FISHER LW, ROBEY PG, YOUNG MF. The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. The FASEB Journal. 2004 Jun 1;18(9):948-58.

6. Chumakova Yu.H. Yunatskyi parodontyt: poshyrenist, osoblyvosti diagnostyky, rezultaty likuvannia [Juvenile periodontitis: prevalence, peculiarities of diagnosis, results of treatment]. Implantolohia. Parodontolohia. Osteolohia. 2010(4):79-84.

7. Chumakova Yu.H. Yunatskyi parodontyt: poshyrenist, osoblyvosti diagnostyky, rezultaty likuvannia [Juvenile periodontitis: prevalence, peculiarities of diagnosis, results of treatment]. Implantolohia. Parodontolohia. Osteolohia. 2007(1):85-92.

8. Danylevskyi MF, Borysenko AV, Politun AM. Terapevtychna stomatolohia. T.3. Zakhvoriuvannia parodonta [Therapeutic stomatology. T.3. Periodontal disease]. Meditsina, Kyiv. 2008:164-70.

9. Genco RJ, Williams RC. Periodontal disease and overall health: a clinician’s guide. Yardley, Pennsylvania, USA: Professional Audience Communications Inc. 2010.

10. Giannobile WV, Riviere GR, Gorski JP, Tira DE, Cobb CM. Glycosaminoglycans and periodontal disease: analysis of GCF by safranin O. Journal of periodontology. 1993 Mar;64(3):186-90.

11. Götte M. Syndecans in inflammation. The FASEB Journal. 2003 Apr 1;17(6):575-91.

12. Gräber HG, Conrads G, Wilharm J, Lampert F. Role of interactions between integrins and extracellular matrix components in healthy epithelial tissue and establishment of a long junctional epithelium during periodontal wound healing: a review. Journal of periodontology. 1999 Dec 1;70(12):1511-22.

13. Grinin VM, Biaur I, Karaoglanova TB. Matriksnye metalloptoteinazy pri parodontite [Matrix metalloproteinases in periodontitis]. Stomatologiya. 2011(3):80-84.

14. Grzesik WJ, Frazier CR, Shapiro JR, Sponseller PD, Robey PG, Fedarko NS. Age-related changes in human bone proteoglycan structure Impact of osteogenesis imperfecta. Journal of Biological Chemistry. 2002 Nov 15;277(46):43638-47.

15. Hodovana VI. Zakhvoriuvannia parodontu [pathogenesis of periodontal disease] [Periodontal diseases (gingivitis, periodontitis, parodontosis)]., Lviv-Ternopil: Dzhura(in Ukrainian). 2009.

16. Inman T, Tervahartiala T, Ding Y, Tschesche H, Haerien A, Kinane DF, Konttinen YT, Sorsa T. Matrix metalloproteinases and their inhibitors in gingival crevicular fluid and saliva of periodontitis patients. Journal of clinical periodontology. 1996 Dec 1;23(12):1127-32.

17. Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. Journal of Clinical Investigation. 2001 Aug 1;108(3):349.

18. Iozzo RV. Matrix proteoglycans. From molecular design to cellular function. 1998.

19. Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiological reviews. 1991;71(2):481-539.

20. Jones M, Tussey L, Athanasou N, Jackson DG. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronic receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. Journal of Biological Chemistry. 2000 Mar 17;275(11):7964-74.

21. Khomenko LA, Bidenko NV, Ostapko EI. Zabolevania parodonta u lits molodogo vozrasta [Significance of local and systemic disorders of antioxidant homeostasis in the development of periodontitis and inflammatory diseases of periodontal disease]. Materialy II (IX) Zizdu Asotsiatsii Stomatolohiv Ukrainy. Kyiv. 2004:195-6.

22. Klishov AA, Grafova GYa., Khilova YuK, Gololobov VG. Kletochno-diferonnaia organizatsia tkanei i problemy zahvoriuvannya [Cellular-differons tissue organization and the problem of healing wounds]. Arkhiv Anatomi, Gistologii i Embriologii (in Russian). 1990:98(4):5-23.
Review

25. Kulygina VN, Mohammad AM, Kozlova LL. Rezultaty issledovaniya rasprostranionnosti i struktury za-
bolevanii parodonta u lits molodogo vozrasta [Results of the study of the proliferation and structure of
periodontal diseases in young people]. Ukr. Stom. Alm. (in Russian). 2013(5):29-31.

26. Malyi DYu, Antonenko MYu. Epidemiология zakhvorivuan parodonta:vikovyi aspekt [Epidemiology of peri-
odontal diseases: age-old aspect]. Ukrainskyi Naukovo-Medyczni Molodizhnii Zhurnal, (in Ukrainian).
2013(4):41-3.

27. Manton KJ, Leong DF, Cool SM, Nurcombe V. Disruption of Heparan and Chondroitin Sulfate Signaling
Enhances Mesenchymal Stem Cell–Derived Osteogenic Differentiation via Bone Morphogenetic Protein
Signaling Pathways. Stem cells. 2007 Nov 1;25(11):2845-54.

28. Mazur IP. Porushennia kistkovoho metabolizmu u khvorykh na heneralizovany parodontyt (kliniko-ek-
sperrymentalne doslidzhennia) Chastyna 3 [Disorders of bone metabolism in patients with general-
ized periodontitis (clinical and experimental study) Part 3]. Implantolohia. Parodontolohia. Osteolohia.
2012;(2):70-74.

29. McCulloch CA. Collagenolytic enzymes in gingival crevicular fluid as diagnostic indicators of periodonti-
tis. Annals of the New York Academy of Sciences. 1994 Sep 1;732(1):152-64.

30. Moseley R, Waddington RJ, Embery G. Hyaluronan and its potential role in periodontal healing. Dental
Update. 2002 Apr 2;29(3):144-8.

31. Persson GR. Perspectives on periodontal risk factors. Journal of the International Academy of
Periodontology. 2008 Jul;10(3):71-80.

32. Pins GD, Christiansen DL, Patel R, Silver FH. Self-assembly of collagen fibers. Influence of fibrillar
alignment and decorin on mechanical properties. Biophysical Journal. 1997 Oct 1;73(4):2164-72.

33. Rabenstein DL. Heparin and heparan sulfate: structure and function. Natural product reports.
2002;19(3):312-31.

34. Rees SG, Wassell DT, Embery G. Interaction of glucuronic acid and iduronid acid-rich glycosaminoglycans
and their modified forms with hydroxyapatite. Biomaterials. 2002 Jan 31;23(2):481-9.

35. Riggz BL, Melton III LDJh. Osteoporoz [Osteoporosis]: Per s angl. SPb.: BINOM (in Russian). 2000.

36. Selent J, Kaleta J, Li Z, Lalmanach G, Brömme D.Selective inhibition of the collagenase activity of
cathepsin K. Journal of Biological Chemistry. 2007 Jun 1;282(22):16492-501.

37. Shyrobokov VP, Borisenko AV, Hivonenko LI. Bakteriologicheskii spekt r soderezhimogo parodontalnukh
karmanov u bolnykh generalizovannum parodontitom [Bacteriological spectrum of the content of pe-
riodontal pockets in patients with generalized periodontitis]. Sovremennaia Stomatologia (in Russian).
2003(2):29-32.

38. Smith AJ, Singhrao SK, Newman GR, Waddington RJ, Embery G. A biochemical and immuno-electron
microscopical analysis of chondroitin sulphate-rich proteoglycans in human alveolar bone. The
Histochemical journal. 1997 Jan 1;29(1):1-9.

39. Sorsa T, Tjäderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral diseases. 2004
Nov 1;10(6):311-8.

40. Sugahara K, Kitagawa H. Heparin and heparan sulfate biosynthesis. IUBMB life. 2002 Oct 1;54(4):163-75.

41. Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated
glycosaminoglycans. Current opinion in structural biology. 2000 Oct 1;10(5):518-27.

42. Sukmanskyi OI, Horokhivskyi VN. Glikozaminoglikany (GAG) i kistkova tkany na [Glycosaminoglycans
(GAG) and bone tissue]. Visnyk Stomatolohii. 2009(3):113-118.

43. Suomalainen K, Sorsa T, Saxén L, Vauhkonen M, Uitto VJ. Collagenase activity in gingival crevicular fluid
of patients with juvenile periodontitis. Molecular Oral Microbiology. 1991 Feb 1;6(1):24-9.

44. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns
for initiation and modulation of inflammation. The FASEB Journal. 2006 Jan 1;20(1):9-22.

45. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marsh JD, Bertozzi CR, Hart GW, Etzler ME. Sym-
bol nomenclature for glycan representation. Proteomics. 2009 Dec 1;9(24):S398-9.

46. Zabolotnyi TD. Generalizovany parodontyt [Generalized periodontitis] L.: HalDent (in Ukrainian).2009.