The Need for a Photon-Photon Collider in addition to LHC & ILC for Unraveling the Scalar Sector of the Randall-Sundrum Model

JOHN F. GUNION

Department of Physics, University of California at Davis, Davis CA 95616

In the Randall-Sundrum model there can be a rich new phenomenology associated with Higgs-radion mixing. A photon-photon collider (\(\gamma C\)) would provide a crucial complement to the LHC and future ILC colliders for fully determining the parameters of the model and definitively testing it.

First, I review the essential features of the Randall-Sundrum (RS) model \cite{1}. There are two branes, separated in the 5th dimension, \(y\), and \(y \rightarrow -y\) symmetry is imposed. With appropriate boundary conditions, the 5D Einstein equations yield the metric

\[
ds^2 = e^{-2\sigma(y)}\eta_{\mu\nu}dx^\mu dx^\nu - b_0^2dy^2,
\]

where \(\sigma(y) \sim m_0b_0|y|\). Here, \(e^{-2\sigma(y)}\) is the warp factor which reduces scales of order \(M_{\text{Plank}}\) at \(y = 0\) on the hidden brane to scales of order a TeV at \(y = 1/2\) on the visible brane. Fluctuations of \(g_{\mu\nu}\) relative to \(\eta_{\mu\nu}\) are the KK excitations \(h_{\mu\nu}^n\). Fluctuations of \(b(x)\) relative to \(b_0\) define the radion field. In addition, we place a Higgs doublet \(\hat{H}\) on the visible brane. After various rescalings, the properly normalized radion and Higgs quantum fluctuation fields are denoted by \(\phi_0\) and \(h_0\). The action responsible for Higgs-radion mixing \cite{2} is

\[
S_\xi = \xi \int d^4x \sqrt{g_{\text{vis}}} R(g_{\text{vis}}) \hat{H}^\dagger \hat{H},
\]

where \(R(g_{\text{vis}})\) is the Ricci scalar for the metric induced on the visible brane.

A crucial parameter is the ratio \(\gamma \equiv v_0/\Lambda_\phi\) where \(v_0 = 246\) GeV is the SM Higgs vev and \(\Lambda_\phi\) is the vacuum expectation value of the radion field. The full quadratic structure of the Lagrangian, including \(\xi \neq 0\) mixing, takes a form in which the \(h_0\) and \(\phi_0\) fields for \(\xi = 0\) are mixed and have complicated kinetic energy normalization. We must diagonalize and rescale to get the canonically normalized mass eigenstate fields, \(h\) and \(\phi\) \cite{3}:

\[
h_0 \equiv dh + c\phi \quad \phi_0 \equiv a\phi + bh.
\]

In the above equations, \(a, b, c, d\) are functions of \(\xi, \gamma\) and the bare masses, \(m_{h_0}\) and \(m_{\phi_0}\). For given values of \(\xi, \gamma\) and the bare masses, \(m_{h_0}\) and \(m_{\phi_0}\), one must invert a set of equations to determine \(m_{h_0}\) and \(m_{\phi_0}\) and, thence, \(a, b, c, d\). Requiring consistency
leads to strong constraints on the allowed ξ values for fixed m_h, m_ϕ and γ, leading to an hourglass shape for the theoretically allowed region in (ξ, m_ϕ) parameter space at fixed m_h and fixed γ (equivalently, fixed Λ_ϕ), as shown in Fig. 1 [4,5]. The precision EW studies of Ref. [6] suggest that some of the larger $|\xi|$ range is excluded, but we studied the whole range just in case.

![Contours of $g_{ZZh}^2 = (d + \gamma h)^2$](image1.png)

![Contours of $g_{ZZ\phi}^2 = (c + \gamma \phi)^3$](image2.png)

Figure 1: Contours of $g_{ZZh}^2 = g_{7Vh}^2$ and $g_{ZZ\phi}^2 = g_{7V\phi}^2$ [defined relative to the SM Higgs, Eq. (4)] for $\Lambda_\phi = 5$ TeV and $m_h = 120$ GeV. Regions outside the hour-glass shape are theoretically inconsistent. LEP direct discovery limits have been imposed and (at large $|\xi|$) cut out parts of the otherwise allowed $m_\phi < m_h$ parameter region. From [4].

The KK-graviton couplings to the h and ϕ are determined by Λ_ϕ. Fortunately, Λ_ϕ can be extracted using measurements of the KK-graviton spectrum at the LHC. In particular, the mass of the first KK-excitation is given by $m_1 = x_1 \frac{m_0 \Lambda_\phi}{\sqrt{6}}$, where x_1 is the first zero of the Bessel function J_1.

while the excitation spectrum as a function of m_{jj} in the vicinity of m_1 determines m_0/M_{Planck} (see, for example, the plots in [7]). The ratio m_0/M_{Planck} is related to the curvature of the brane and should be a relatively small number for consistency of the RS scenario. Sample parameters that are safe from precision EW data and Run I Tevatron constraints are $\Lambda_\phi = 5$ TeV and $m_0/M_{Planck} = 0.1$ (the latter is employed for all plots presented). These give $m_1 \sim 780$ GeV, well within the LHC reach. Once Λ_ϕ is determined, the goal will be to extract ξ, m_h and m_ϕ from Higgs-radion measurements.

Crucial to determining these model parameters are the $f f$ and $V V$ couplings of the h and ϕ. For $V = W, Z$ and all f, the h and ϕ couplings are rescaled relative to SM h_{SM} couplings by the universal factors $g_{fV h}$ and $g_{fV \phi}$:

$$g_{fV h} = (d + \gamma b), \quad g_{fV \phi} = (c + \gamma a).$$ \hspace{1cm} (4)

In contrast, the gg and $\gamma \gamma$ couplings of the h and ϕ come from two sources: (1) the standard loop contributions computed using the above $f f / V V$ strength factors $g_{fV h}$ or $g_{fV \phi}$; and (2) "anomalous" contributions which are expressed in terms of the SU(3)\timesSU(2)\timesU(1) β function coefficients. The complicated dependence of $g_{fV h}^2$ and $g_{fV \phi}^2$ on ξ and m_ϕ is shown in Fig. 1 for $m_h = 120$ GeV and $\Lambda_\phi = 5$ TeV. Note that if $g_{fV h}^2 < 1$ is observed, then $m_\phi > m_h$, and vice versa, except for a small region near $\xi = 0$. Also note that the radion coupling $g_{fV \phi}^2$ is generally rather small and exhibits zeroes; however, if $m_\phi > m_h$ then at large $|\xi|$ the $ZZ\phi$ couplings can become sort of SM strength, implying SM type discovery modes could become relevant (see [4]).

A few notes on branching ratios (see [4]). The h branching ratios are quite SM-like (even if partial widths are different) except that $h \to gg$ can be bigger than normal, especially when $g_{fV h}^2$ is suppressed. For $m_\phi < 2m_W$, $\phi \to gg$ is very possibly the dominant mode in the substantial regions near zeroes of $g_{fV \phi}^2$. However, for $m_\phi > 2m_W$ the ϕ branching ratios are sort of SM-like (except at $\xi \simeq 0$) but total and partial widths are rescaled.

We now turn to the LHC, ILC and γC capabilities. We will focus entirely on the case of $m_h = 120$ GeV. For the LHC and ILC, we summarize the work of Ref. [8]. For the LHC, we rescaled the statistical significances predicted for the SM Higgs boson at the LHC using $g_{fV h}^2$ or $g_{fV \phi}^2$ and the modified branching ratios. We found that the most important modes for Higgs-radion discovery are $gg \to h \to \gamma \gamma$ and $gg \to \phi \to ZZ^* \to 4\ell$. Also useful are $t\bar{t}h$ with $h \to bb$ and $gg \to h \to ZZ^* \to 4\ell$. Fig. 2 summarizes our results. It shows that the LHC can find either the h or ϕ unless $m_\phi < m_h$ and $\xi > 0$ and large. c The region

\footnote{Note that m_1 is typically too large for KK graviton excitations to be present, or if present, important, in h, ϕ decays.}

\footnote{However, $|\xi| \lesssim 1.5$ is preferred by precision data in the $\Lambda_\phi = 5$ TeV case.}

\footnote{The region $|\xi| \lesssim 1.5$ is preferred by precision data in the $\Lambda_\phi = 5$ TeV case.}
Figure 2: We consider $L = 30 \text{ fb}^{-1}$ at the LHC for $m_h = 120$ GeV. The hour-glass outer boundaries define the theoretically consistent parameter region. Within these, the blank (white) regions are where neither the $gg \rightarrow h \rightarrow \gamma\gamma$ mode nor the $gg \rightarrow h \rightarrow 4\ell$ mode yields a $> 5\sigma$ signal. The regions between dark blue curves are where $gg \rightarrow \phi \rightarrow 4\ell$ is $> 5\sigma$. The graphs are for $\Lambda_{\phi} = 2.5 \text{ TeV}$ (left) $\Lambda_{\phi} = 5 \text{ TeV}$ (center) and $\Lambda_{\phi} = 7.5 \text{ TeV}$ (right). From [8].

where neither the h nor the ϕ can be detected grows (decreases) as m_h decreases (increases). It diminishes as m_h increases since the $gg \rightarrow h \rightarrow 4\ell$ rate increases at higher m_h. The regions where the h is not observable are reduced by considering either a larger data set or qqh Higgs production, in association with forward jets. Figure 2 also exhibits regions at large $|\xi|$ with $m_\phi > m_h$ in which both the h and ϕ mass eigenstates will be detectable. In these regions, the LHC will observe two scalar bosons somewhat separated in mass, with the lighter (heavier) having a non-SM-like rate for the $gg \rightarrow h \rightarrow \gamma\gamma$ ($gg \rightarrow \phi \rightarrow ZZ$) final state. Additional information will be required to ascertain whether these two Higgs bosons derive from a multi-doublet or other type of extended Higgs sector or from the present type of model with Higgs-radion mixing. For this, we must turn to the ILC and γC.

At an $e^+ e^-$ ILC, any light scalar, s, will be detected in the $Z^* \rightarrow Z s$ mode if $g_{ZZs}^2 / g_{ZZh_{SM}}^2 \geq 0.01$. Since $g_{ZZh}^2 / g_{ZZh_{SM}}^2 = g_{V_{h}}^2 \geq 0.2$ throughout all of the allowed parameter region, see Fig. 1, observation of the h at the ILC is guaranteed. In contrast, Fig. 1 shows that $g_{V_{\phi}}^2 \leq 0.01$ for a significant part of parameter space (smaller $|\xi|$, especially when $m_\phi > m_h$). Unfortunately, as shown in Ref. [8], this is also the region where precision measurements of the h properties at the ILC will deviate by $< 2.5\sigma$ from SM expectations and we could mistakenly conclude that the Higgs sector was that of the SM.

Can a $\gamma\gamma$ collider at the ILC or $\gamma\gamma$ collider based on a few CLIC modules help? To assess, we recall the results for the SM Higgs boson obtained in the CLIC study of [9]. There, a SM Higgs boson with $m_{h_{SM}} = 115$ GeV was examined. After cuts, one obtains signal and background rates of $S = 3280$ and $B = 1660$ in the $\gamma\gamma \rightarrow h_{SM} \rightarrow b\bar{b}$ channel, corresponding to $S/\sqrt{B} \sim 80!$

First, consider the h. By rescaling to obtain S_h from $S_{h_{SM}}$, one finds that
the $\gamma\gamma \rightarrow h \rightarrow b\bar{b}$ rate is either changed very little or somewhat enhanced for $m_\phi < m_h$ and only modestly suppressed for $m_\phi > m_h$ (e.g., a factor of 2 at $m_\phi = 200$ GeV). Thus, at worst, we would have $S_h/\sqrt{B} \sim 480 \sim 40$, which is still a very strong signal. In fact, we can afford a reduction by a factor of 16 before we hit the 5σ level! Thus, the $\gamma\gamma$ collider will allow h discovery (for $m_h = 120$) throughout the entire hourglass, which is something the LHC cannot absolutely do. In contrast, using the factor of 16 mentioned above, the ϕ with $m_\phi < 120$ GeV is very likely to elude discovery in the $\gamma\gamma \rightarrow \phi \rightarrow b\bar{b}$ mode. For the $m_\phi > m_h$ region, $\gamma\gamma \rightarrow \phi \rightarrow WW, ZZ$ would be the best mode, but our current results are not encouraging.

It is important to emphasize that the γC can play a very special role even if we only observe the h there. Indeed, let us suppose that the ϕ is not seen at any of the three colliders. The h is very likely to be seen at the LHC for $L > 100 \text{ fb}^{-1}$ and, as discussed, will be seen at the γC and the ILC. Since m_h will be well-measured, only m_ϕ and ξ need to be determined (Λ_ϕ having been determined as outlined earlier). This requires two measurements, with three or more measurements needed to test the model. If we could trust LHC and γC and ILC absolute rates (systematics being the question), their different dependencies on the parameters imply that we could then determine m_ϕ and ξ and test the model even if we don’t see the ϕ. An interesting way to phrase the LHC and γC rate measurements is in terms of the ratio of the rates:

$$\frac{\text{Rate}(gg \rightarrow h \rightarrow \gamma\gamma)}{\text{Rate}(\gamma\gamma \rightarrow h \rightarrow b\bar{b})} = \frac{\Gamma(h \rightarrow gg)}{\Gamma(h \rightarrow b\bar{b})},$$

which is the most direct probe for the presence of the anomalous ggh coupling [10]. In particular, $R_{hgg} = 1$ if the only contributions to $\Gamma(h \rightarrow gg)$ come from quark loops and all quark couplings scale in the same way. Since the RS model predicts anomalous gg coupling contributions in addition to rescaled standard loop contributions, substantial deviations from $R_{hgg} = 1$ are predicted, as shown in Fig. 3.

We can estimate the accuracy with which R_{hgg} can be measured as follows. Assuming the maximal reduction of $S_h/S_{hSM} = 1/2$, we find that $\Gamma(h \rightarrow \gamma\gamma)/\Gamma_{tot}$ can be measured with an accuracy of about $\sqrt{S_h + B}/S_h \sim \sqrt{3200}/1600 \sim 0.035$. The dominant error will then be from the LHC which will typically measure $\Gamma(h \rightarrow gg)/\Gamma_{tot}$ with an accuracy of between 0.1 and 0.2 (depending on parameter choices and available L). From Fig. 3, we see that 0.2 fractional accuracy will reveal deviations of R_{hgg} from 1 for all but...
Figure 3: We plot the ratios R_{hgg} and $R_{\phi gg}$ obtained after including the anomalous ggh and $g\phi g$, respectively, coupling contributions. Results are shown for $m_h = 120$ GeV and $\Lambda_{\phi} = 5$ TeV as functions of ξ for $m_\phi = 20$, 55 and 200 GeV. (The same type of line is used for a given m_ϕ in the right-hand figure as is used in the left-hand figure.) From [4].

the smallest ξ values. Given the measured m_h, the direction and magnitude of those deviations will give a strong constraint on m_ϕ relative to ξ (although, for instance, you can’t tell if $m_\phi < m_h$ and $\xi < 0$ or $m_\phi > m_h$ and $\xi > 0$).

Now suppose we also observe the ϕ. If $|\xi|$ is large, this is possible at the ILC for any m_ϕ (see the $g_{T\phi}^V = 0.01$ contour of Fig. 1) and at the LHC if $m_\phi > m_h$ (see Fig. 2). The value of R_{hgg} combined with knowing m_ϕ will then determine ξ without relying on any absolute rates. In addition, the $e^+e^\to Z^* \to Z\phi$ rate will have reliable absolute normalization and it directly determines $g_{Z\phi}^2/g_{ZH}^2_{SM} = g_{T\phi}^V$. Since $g_{T\phi}^V$ is wildly varying as a function of the model parameters (see Fig. 1), its measured value will over constrain and test the model. If the LHC also sees the ϕ we get the model-testing $gg \to \phi \to ZZ$ rate, leading to a further cross check on the model.

We summarize assuming that $\Lambda_\phi \lesssim 20$ TeV. First, Λ_ϕ will be measured from the KK m_{jj} spectrum at the LHC. Further, for such Λ_ϕ, the γC, like the ILC, can see a light h for all of the (ξ, m_ϕ) RS parameter space. Both colliders can see the h where the LHC can’t, although the “bad” LHC regions are not very big for full L. The ability to measure R_{hgg} may be the strongest reason for having the γC as well as the LHC and ILC, not only in the RS context but also since most non-SM Higgs theories predict $R_{hgg} \neq 1$ for one reason or another,
unless one is in the decoupling limit. Further, if the ϕ, as well as the h, is detected at the ILC, the motivation for building the γC becomes even stronger since the measured values of m_h, m_ϕ, R_{hgg} and $g_{VV\phi}^2$ provide a very definitive over constrained test of the RS model. If $m_\phi > m_h$ and $|\xi|$ is large enough for detection of $gg \to \phi \to ZZ$ at the LHC to be possible, the ILC would not be critical (but the γC would be) since we could get a definitive determination of ξ using the measured m_h, m_ϕ and R_{hgg} values and then the $gg \to \phi \to ZZ$ rate would test the model. Further model tests would be possible if we could accurately measure the rate for h production in other LHC and/or γC channels — something that is certainly possible, but not guaranteed (especially with high accuracy). Overall, there is a nice complementarity among the machines — each brings new abilities to probe and definitively test the scalar sector of the RS model. Very generally, the case for a (low-energy) γC is compelling if a Higgs boson is seen at the LHC that has non-SM-like rates and properties.

Acknowledgment

This review derives from work in collaboration with D. Asner, M. Battaglia, S. de Curtis, A. De Roeck, D. Dominici, J. Gronberg, B. Grzadkowski, M. Velasco, M. Toharia, and J. Wells and was supported by the U.S. Department of Energy.

References

1. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221]; Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].
2. G. Giudice, R. Rattazzi, J. Wells, Nucl. Phys. B595 (2001), 250 [arXiv:hep-ph/0002178].
3. C. Csaki, M.L. Graesser, G.D. Kribs, Phys. Rev. D63 (2001), 065002-1 [arXiv:hep-th/0008151].
4. D. Dominici, B. Grzadkowski, J. F. Gunion and M. Toharia, Nucl. Phys. B 671, 243 (2003) [arXiv:hep-ph/0206192].
5. J. L. Hewett and T. G. Rizzo, JHEP 0308, 028 (2003) [arXiv:hep-ph/0202155]. The results contained in their July 2, 2003 revision of their work are in reasonable agreement with [4].
6. J. F. Gunion, M. Toharia and J. D. Wells, Phys. Lett. B 585, 295 (2004) [arXiv:hep-ph/0311219].
7. H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. Lett. 84, 2080 (2000) [arXiv:hep-ph/9909255].
8. M. Battaglia, S. De Curtis, A. De Roeck, D. Dominici and J. F. Gunion, Phys. Lett. B 568, 92 (2003) [arXiv:hep-ph/0304245].
9. D. Asner et al., Eur. Phys. J. C 28, 27 (2003) [arXiv:hep-ex/0111056].
10. D. Asner, et al, arXiv:hep-ph/0208219 and D. Asner et al., arXiv:hep-ph/0308103.