MIXED NORM SPACES AND \(RM(p,q) \) SPACES

TANAUSÚ AGUILAR-HERNÁNDEZ

ABSTRACT. In this paper we present the containment relationship between the spaces of analytic functions with average radial integrability \(RM(p,q) \) and a family of mixed norm spaces.

1. INTRODUCTION

The belonging of a function to a certain Banach space of analytic functions is usually given in terms of boundedness (or integrability) of a certain average of the function on circles centered at the origin or in terms of the integrability with respect to the Lebesgue area measure, maybe with a certain weight (see, i.e., [5,8–10]). The most classical examples in this situation are the Hardy spaces but also the mixed norm spaces \(H^{q,p} \) defined explicitly by Flett in [6,7] and, nowadays, widely studied (see [10]). Let us recall that a holomorphic function \(f \) in the unit disc belongs to \(H^{q,p} \) if

\[
\left(\int_0^1 \left(\int_0^{2\pi} |f(re^{i\theta})|^q \frac{d\theta}{2\pi} \right)^{p/q} dr \right)^{1/p} < +\infty.
\]

In other less studied cases, the belonging to a Banach space of analytic functions is determined by the average radial integrability. Maybe the most well-known space in this situation is the spaces of bounded radial variation \(BRV \), a topic that goes back to Zygmund and where many different authors have work (see, i.e., [4,11,12]). This space of analytic function with bounded radial variation consists of those holomorphic functions \(g \in \mathcal{H}(D) \) such that

\[
\sup_\theta \int_0^1 |g'(te^{i\theta})| \ dt < +\infty.
\]

Date: March 10, 2022.

2010 Mathematics Subject Classification. Primary 30H20; Secondary 46E15, 46B10.

Key words and phrases. Mixed norm spaces, radial integrability, Bergman projection.

This research was supported in part by Ministerio de Economía y Competitividad, Spain, MTM2015-63699-P, and Junta de Andalucía, FQM133.
Other different situation where the radial integrability plays an important role is in the Féjer-Riesz theorem which says that if \(f \) belongs to the Hardy space \(H^p \) then
\[
\sup_\theta \left(\int_0^1 |f(re^{i\theta})|^p \, dr \right) \leq \frac{1}{2} \|f\|_{H^p}^p.
\]

Recently, a family of spaces of holomorphic functions in the unit disc with average radial integrability, denoted by \(RM(p,q) \), has been studied in \([1,2]\). These spaces are formed by the analytic functions such that
\[
\left(\int_0^{2\pi} \left(\int_0^1 |f(re^{i\theta})|^p \, dr \right)^{q/p} \frac{d\theta}{2\pi} \right)^{1/q} < +\infty
\]
for \(0 < p, q < +\infty \). If either \(p \) or \(q \) is infinity, we change the integral by the essential supremum, respectively. This family contains the classical Hardy spaces \(H^q \) (when \(p = +\infty \)) and Bergman spaces \(A^p \) (when \(p = q \)).

Looking at (1.1) and (1.2), a natural question that has been raised is the containment relationship with the mixed norm spaces \(H^{q,p} \) and \(RM(p,q) \). Notice that by Fubini’s theorem, it is clear that \(RM(p,p) = H^{p,p} \) for all \(1 < p < \infty \). The main result of this paper will provide an answer to the above question:

Theorem 1.1. Let \(1 < p, q < +\infty \).

a) If \(p > q \), then \(RM(p,q) \subsetneq H^{q,p} \).

b) If \(q > p \), then \(H^{q,p} \subsetneq RM(p,q) \).

Throughout the paper the letter \(C = C(\cdot) \) will denote an absolute constant whose value depends on the parameters indicated in the parenthesis, and may change from one occurrence to another. We will use the notation \(a \lesssim b \) if there exists a constant \(C = C(\cdot) > 0 \) such that \(a \leq Cb \), and \(a \gtrsim b \) is understood in an analogous manner. In particular, if \(a \lesssim b \) and \(a \gtrsim b \), then we will write \(a \asymp b \).

2. First definitions

We start by recalling the definition of the spaces with average radial integrability \(RM(p,q) \). These spaces are formed by those holomorphic functions in \(\mathbb{D} \) such that taking the \(p \)-norm in every radius and then the \(q \)-norm, the result is a finite number. More precisely, we give the following definition.

Definition 2.1. Let \(1 \leq p, q < +\infty \). We define the spaces of analytic functions
\[
RM(p,q) = \{ f \in \mathcal{H}(\mathbb{D}) : \rho_{p,q}(f) < +\infty \}
\]
where
\[
\rho_{p,q}(f) = \left(\frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^1 |f(re^{it})|^p \, dr \right)^{q/p} \frac{d\theta}{2\pi} \right)^{1/q}, \quad \text{if } p, q < +\infty.
\]
It is easy to see that $RM(p, q)$ endowed with the norm $\rho_{p,q}$ is a Banach space whenever $p, q \geq 1$.

One example of functions in $RM(p, q)$, that we will play an important role in the main result of this work, is the following family of functions.

Proposition 2.2. Let $0 < p, q \leq +\infty$. Let $\alpha \in \mathbb{D}$ and $\beta > \frac{1}{p} + \frac{1}{q}$ then

$$\rho_{p,q}((1 - \alpha z)^{-\beta}) \asymp (1 - |\alpha|)^{\frac{1}{p} + \frac{1}{q} - \beta},$$

where we are using the main branch of the logarithm to define $w^{-\beta}$. We underline that the equivalent constants depend on p, q and β, but not on α.

Proof. Let $0 < p, q < +\infty$. We can assume without loss of generality that $\alpha \in [0, 1)$. Moreover, we can assume that $1/2 \leq \alpha < 1$.

Let us estimate the quantity $|1 - \alpha r e^{i\theta}|^2$ for points around 1. If $0 < \theta < 1 - \alpha$ and $1/2 < r < 1$, then $|1 - \alpha r e^{i\theta}|^2 \asymp (1 - r \alpha)^2$. If $1/2 > \theta > 1 - \alpha$, then

$$|1 - \alpha r e^{i\theta}|^2 \asymp \begin{cases} \theta^2, & 1 > r \geq \frac{1 - \theta}{\alpha}, \\ (1 - r \alpha)^2, & 1/2 < r \leq \frac{1 - \theta}{\alpha}. \end{cases}$$

First of all, let us see that $\rho_{p,q}((1 - \alpha z)^{-\beta}) \lesssim (1 - |\alpha|)^{\frac{1}{p} + \frac{1}{q} - \beta}$ if $\beta > \frac{1}{p} + \frac{1}{q}$. Using the symmetry in θ and the monotonicity in θ and r, we have

$$\int_0^{2\pi} \left(\int_0^1 \frac{dr}{|1 - \alpha r e^{i\theta}|^{\beta p}} \right)^{q/p} d\theta \leq \int_0^{1/2} \left(\int_0^1 \frac{dr}{|1 - \alpha r e^{i\theta}|^{\beta p}} \right)^{q/p} d\theta$$

Therefore,

$$\int_0^{2\pi} \left(\int_0^1 \frac{dr}{|1 - \alpha r e^{i\theta}|^{\beta p}} \right)^{q/p} d\theta$$

$$\leq \left(\int_{1/2}^{1} \left(\int_{1/2}^1 \frac{dr}{|1 - \alpha r e^{i\theta}|^{\beta p}} \right)^{q/p} d\theta \right) + \left(\int_{1/2}^{1} \left(\int_{1/2}^1 \frac{dr}{|1 - \alpha r e^{i\theta}|^{\beta p}} \right)^{q/p} d\theta \right)$$

$$\leq \left(\int_{1/2}^{1/2} \left(\int_{1/2}^{1/2} \frac{dr}{\alpha \theta^{\beta p}} + \int_{1/2}^1 \frac{dr}{(1 - r \alpha)^{\beta p}} \right)^{q/p} d\theta \right) + \left(\int_{1/2}^{1} \left(\int_{1/2}^1 \frac{dr}{(1 - r \alpha)^{\beta p}} \right)^{q/p} d\theta \right)$$

$$\leq \int_{1/2}^{1/2} \left(\frac{\theta - (1 - \alpha)}{\alpha \theta^{\beta p}} + \frac{1}{\alpha (\beta p - 1)} \left(\frac{1}{\theta^{\beta_p-1}} - \frac{1}{(1 - \alpha/2)^{\beta_p-1}} \right) \right)^{q/p} d\theta$$

$$+ \int_{0}^{1/2} \left(\frac{1}{\alpha (\beta p - 1)} \left(\frac{1}{(1 - \alpha)^{\beta_p-1}} - \frac{1}{(1 - \alpha/2)^{\beta_p-1}} \right) \right)^{q/p} d\theta$$
\[
\leq \left(\frac{\beta p}{\alpha (\beta p - 1)} \right)^{q/p} \left(\int_{1/2}^{1/2} \frac{1}{\theta^{q/p} - q/p} \, d\theta + \frac{1}{(1 - \alpha)^{q/p} - q/p} \right) \\
\leq \left(\frac{\beta p}{\alpha (\beta p - 1)} \right)^{q/p} \left(\frac{\beta q - q/p}{\beta q - q/p - 1} \frac{1}{(1 - \alpha)^{1 + q/p - \beta}} \right).
\]

Now, we will show that \(\rho_{p,q}\left((1 - \alpha z)^{-\beta}\right) \gtrsim (1 - |\alpha|)^{\frac{1}{p} + \frac{1}{q} - \beta} \) if \(\beta > \frac{1}{p} + \frac{1}{q} \). Since for \(0 < \theta < 1 - \alpha \) and \(0 \leq r < 1 \) one have that \(|1 - \alpha re^{i\theta}| \lesssim (1 - \alpha r) \), we have

\[
\int_0^{2\pi} \left(\int_0^1 \frac{dr}{|1 - \alpha re^{i\theta}|^{3p}} \right)^{q/p} \, d\theta \gtrsim \int_0^{1-\alpha} \left(\int_0^1 \frac{dr}{(1 - \alpha r)^{3p}} \right)^{q/p} \, d\theta \\
\gtrsim \frac{1}{(\beta p - 1)^{q/p} \alpha^{q/p}} \int_0^{1-\alpha} \left(\frac{1}{(1 - \alpha)^{3p} - 1} \right)^{q/p} \, d\theta \\
\gtrsim \left(\frac{1 - (1/2)^{3p-1}}{(\beta p - 1)\alpha} \right)^{q/p} (1 - \alpha)^{1 + q/p - \beta}.
\]

If \(p \) or \(q \) is \(\infty \), the proof follows similarly. \(\square \)

Now, we continue with the definition of a particular case of the mixed normed spaces. Bearing in mind the \(RM(p,q) \) spaces, they are defined interchanging the order of integration, that is, they are formed by those holomorphic functions in \(\mathbb{D} \) such that taking the \(q \)-norm in every circle and then the \(p \)-norm, the result is a finite number. More precisely,

Definition 2.3. Let \(0 < p, q < +\infty \). We define the mixed norm spaces

\[
H^{q,p} = \{ f \in \mathcal{H}(\mathbb{D}) : \| f \|_{H^{q,p}} < +\infty \}
\]

where

\[
\| f \|_{H^{q,p}} = \left(\int_0^{1} \left(\int_0^{2\pi} |f(re^{i\theta})|^{q} \frac{d\theta}{2\pi} \right)^{p/q} \, dr \right)^{1/p}.
\]

By Fubini’s theorem, it is clear that

\[
\| f \|_{H^{p,q}} = \rho_{p,q}(f).
\]

Thus, it is a natural question to analyse what happens when \(p \neq q \). This is the aim of this work.

Along the same lines as for the \(RM(p,q) \) spaces, we have one example of functions that belong to these mixed norm spaces is the following family of analytic functions.

Proposition 2.4. [3, Proposition 2, p. 947] Let \(0 < p, q < +\infty \). Let \(\alpha \in \mathbb{D} \) and \(\beta > \frac{1}{p} + \frac{1}{q} \) then

\[
\|((1 - \alpha z)^{-\beta})\|_{H^{q,p}} \asymp (1 - |\alpha|)^{\frac{1}{p} + \frac{1}{q} - \beta},
\]
where we are using the main branch of the logarithm to define $w^{-\beta}$. We underline that the equivalent constants depend on p,q and β, but not on α.

3. Containment relationships

We proceed with the presentation of the containment relationship between the $RM(p,q)$ spaces and a particular case of the mixed norm spaces, which we have defined above.

Bearing in mind the standard argument of [1, Corollary 4.8, p. 29], one can prove an analogous duality result for the mixed norm spaces by means of the boundedness of the weighted Bergman projection:

Proposition 3.1. [10, Corollary 7.3.4, p. 153] Let $1 \leq p,q < +\infty$ and $1/p < \gamma + 1$. Then the operator

$$P_\gamma f(z) = (\gamma + 1) \int_\mathbb{D} \frac{(1-|w|^{2})^{\gamma}f(w)}{(1-z\overline{w})^{2+\gamma}} dA(w)$$

is a bounded projection mapping $L^{q,p}$ onto $H^{q,p}$, where $L^{q,p}$ is the corresponding space of equivalence classes of measurable functions. In particular ($\gamma = 0$), we have the Bergman projection P maps $L^{q,p}$ onto $H^{q,p}$, when $1 < p < +\infty$.

The proof of the next result follows the same scheme as for the spaces $RM(p,q)$ [1, Corollary 4.8, p. 29].

Proposition 3.2. Let $1 < p,q < +\infty$. Then $(H^{q,p})^* \cong H^{q',p'}$, where $\frac{1}{p} + \frac{1}{p'} = 1$ and $\frac{1}{q} + \frac{1}{q'} = 1$. The antiisomorphism between $H^{q',p'}$ and $(H^{q,p})^*$ is given by the operator

$$g \mapsto \lambda_g$$

where λ_g is defined by

$$\lambda_g(f) = \int_\mathbb{D} f(z)\overline{g(z)} \, dA(z), \quad f \in H^{q,p}.$$

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. a) If $p \geq q$ then $RM(p,q) \subset H^{q,p}$, because using Minkowski’s integral inequality we have

$$\left(\int_0^{2\pi} \left(\int_0^1 |f(re^{i\theta})|^q \frac{d\theta}{2\pi} \right)^{p/q} dr \right)^{1/p} \leq \left(\int_0^{2\pi} \left(\int_0^1 |f(re^{i\theta})|^p \frac{d\theta}{2\pi} \right)^{q/p} d\theta \right)^{1/q}.$$

Let us see that $RM(p,q) \not\subset H^{q,p}$ if $p > q$.

Consider the functions

$$u_\delta(z) = \frac{\delta}{(1 + \delta - z)^{1+p/q}} \quad z \in \mathbb{D},$$
where $0 < \delta < 1/2$. One can see that $\|u_\delta\|_{H^{s,p}} \asymp \rho_{p,q}(u_\delta) \asymp 1$, because, for $\alpha \in \mathbb{D}$,

\[
\|(1 - \alpha z)^{-1/2 - \frac{1}{q}}\|_{H^{s,p}} \asymp (1 - |\alpha|)^{-1}
\]

(see Proposition 2.4) and

\[
\rho_{p,q}((1 - \alpha z)^{-1/2 - \frac{1}{q}}) \asymp (1 - |\alpha|)^{-1}
\]

(see Proposition 2.2).

Let $\{\delta_n\}$ be a sequence of positive numbers such that $n^2\delta_n < \frac{1}{4}$ for all $n \geq 1$, $\delta_n/n^{2p} > (n + 1)\delta_{n+1}^{1/2}$ for all $n \geq 1$, and $\sum_{j=1}^{\infty} j^2\delta_j < 2$. Define the sets

\[
A_n := \{re^{i\theta} : |\theta - \theta_n| \leq n^2\delta_n, r \in [1 - n\delta_n^{1/2}, 1 - \delta_n/n^{2p}]\},
\]

where $\theta_1 = \delta_1$ and $\theta_n - \theta_{n-1} = \frac{1}{n^2} + (n - 1)^2\delta_{n-1} + n^2\delta_n$, for $n \geq 2$. Observe that $A_n = \{re^{i\theta} : r \in I_n, \theta \in J_n\}$ where the sets $\{I_n\}$ are pairwise disjoint and so are the sets $\{J_n\}$.

Let us check that $\rho_{p,q}(u_{\delta_n}(ze^{-i\theta_n})\chi_{\mathbb{D}\setminus A_n}(z)) \lesssim \frac{1}{n^2}$. Firstly, notice that

\[
\rho_{p,q}(u_{\delta_n}(ze^{-i\theta_n})\chi_{\{0 < |w| < 1 - n\delta_n^{1/2}\}}(z))
\]

\[
= \left(\int_0^{2\pi} \left(\int_0^{1-n\delta_n^{1/2}} \frac{\delta_n^p}{|1 + \delta_n - re^{i\theta}|^{p(1+\frac{1}{p}+\frac{1}{q})}} dr \right)^{q/p} \frac{d\theta}{2\pi}\right)^{1/q}
\]

\[
\leq \left(\int_0^{1-n\delta_n^{1/2}} \frac{\delta_n^p}{(1 + \delta_n - r)^{p(1+\frac{1}{p}+\frac{1}{q})}} dr \right)^{1/p} \leq \frac{\delta_n}{(n\delta_n^{1/2} + \delta_n)^{1+\frac{1}{q}}}
\]

\[
\leq \frac{\delta_n}{(n\delta_n^{1/2})^{1+\frac{1}{q}}} \leq \frac{1}{n^2}.
\]

In the next inequalities we use that, for $|\theta| \leq 1$ and $r \geq 1 - n\delta_n^{1/2}$

\[
|1 + \delta_n - re^{i\theta}|^2 = (1 + \delta_n - r)^2 + 2r(1 + \delta_n)(1 - \cos(\theta)) \geq (1 + \delta_n - r)^2 + \frac{r\theta^2}{2} \geq (1 + \delta_n - r)^2 + (1 - n\delta_n^{1/2})\frac{\theta^2}{2} \geq (1 + \delta_n - r)^2 + \frac{\theta^2}{4}.
\]
Thus, it follows

\[
\rho_{p,q}^q \left(u_{\delta_n}(z e^{-i\theta}) \chi_{\{r e^{i\theta} : 1-n\delta_n^{1/2} < r < 1, |\theta - \theta_n| > n^2\delta_n\}}(z) \right) \\
= 2 \int_{n^2\delta_n}^{\pi} \left(\int_{1-n\delta_n^{1/2}}^{1} \frac{\delta_n^p}{\left| 1 + \delta_n - r e^{i\theta_n} \right|^{p \left(\frac{1}{p} + \frac{1}{q} \right)}} \, dr \right)^{q/p} \frac{d\theta}{2\pi} \\
\leq 2 \left(\frac{\pi - n^2\delta_n}{1 - n^2\delta_n} \right) \int_{n^2\delta_n}^{1} \left(\int_{1-n\delta_n^{1/2}}^{1} \frac{\delta_n^p}{\left| 1 + \delta_n - r e^{i\theta_n} \right|^{p \left(\frac{1}{p} + \frac{1}{q} \right)}} \, dr \right)^{q/p} \frac{d\theta}{2\pi},
\]

since the inner integral is a decreasing function in \(\theta \). Therefore,

(3.2) \[
\rho_{p,q}^q \left(u_{\delta_n}(z e^{-i\theta}) \chi_{\{r e^{i\theta} : 1-n\delta_n^{1/2} < r < 1, |\theta - \theta_n| > n^2\delta_n\}}(z) \right) \\
\leq 2^{3q+1} \int_{n^2\delta_n}^{n^2\delta_n + n^{1/2}} \left(\int_{1-n\delta_n^{1/2}}^{1} \frac{\delta_n^p}{\left| 1 + \delta_n - r \right|^{p \left(\frac{1}{p} + \frac{1}{q} \right)}} \, dr \right)^{q/p} \frac{d\theta}{\theta^q \left(\frac{1}{p} + \frac{1}{q} \right)} \\
+ 2^{3q+1} \int_{n^2\delta_n}^{n^2\delta_n + n^{1/2}} \left(\int_{1-n\delta_n^{1/2}}^{1} \frac{\delta_n^p}{\theta^p \left(1 + \frac{1}{q} \right)} \, dr \right)^{q/p} \frac{d\theta}{\theta^q \left(\frac{1}{p} + \frac{1}{q} \right)} \\
\leq 2^{3q+12} \frac{1}{\theta^q \left(\frac{1}{p} + \frac{1}{q} \right)} \leq 2^{3q+12} \frac{1}{\theta^q \left(\frac{1}{p} + \frac{1}{q} \right)} \leq 2^{3q+12} \frac{1}{n^{2q}}.
\]
Similarly, we obtain

\begin{equation}
\rho_{p,q}^{\delta}(u_{\delta_n}(ze^{-i\theta_n})\chi_{\{re^{i\theta} : 1-\frac{\delta_n}{n^{2p}} < r < 1, \ |\theta - \theta_n| < n^2\delta_n\}}(z))
\end{equation}

\begin{align*}
&= 2 \int_0^{n^2\delta_n} \left(\int_1^{1-\frac{\delta_n}{n^{2p}}} \frac{\delta_n^p}{\delta_n^p (1+\delta_n - re^{i\theta})^{p(1+\frac{1}{p}+\frac{1}{q})}} \, dr \right)^{q/p} \frac{d\theta}{2\pi} \\
& \leq 2 \int_0^{\delta_n} \left(\int_0^{1-\frac{\delta_n}{n^{2p}}} \frac{\delta_n^p}{\delta_n^p (1+\delta_n - r)^{p(1+\frac{1}{p}+\frac{1}{q})}} \, dr \right)^{q/p} \frac{d\theta}{2\pi} \\
& \quad + 2^{3q+1} \int_{\delta_n}^{n^2\delta_n} \left(\int_0^{1} \frac{\delta_n^p}{\delta_n^p (1+\delta_n - r)^{p(1+\frac{1}{p}+\frac{1}{q})}} \, dr \right)^{q/p} \frac{d\theta}{2\pi} \\
& \leq 2\delta_n^{q/p} \left(\frac{\delta_n}{n^{2p}} \right)^{q/p} \int_0^{\delta_n} \frac{1}{\delta_n^{(1+\frac{1}{p}+\frac{1}{q})}} \frac{d\theta}{2\pi} + 2^{3q+1}\delta_n^{q/p} \left(\frac{\delta_n}{n^{2p}} \right)^{q/p} \int_{\delta_n}^{n^2\delta_n} \frac{1}{\delta_n^{(1+\frac{1}{p}+\frac{1}{q})}} \frac{d\theta}{2\pi} \\
& \leq \frac{8q+1}{2\pi} \delta_n^{q/p} \left(\frac{\delta_n}{n^{2p}} \right)^{q/p} = \frac{8q+1}{2\pi} \frac{1}{\delta_n^{(1+\frac{1}{p}+\frac{1}{q})}}.
\end{align*}

Using inequalities (3.1), (3.2), and (3.3) we deduce

\[
\|u_{\delta_n}(ze^{-i\theta_n})\chi_{\Omega \setminus A_n}(z)\|_{H^{q,p}} \leq \rho_{p,q}(u_{\delta_n}(ze^{-i\theta_n})\chi_{\Omega \setminus A_n}(z)) \lesssim \frac{1}{n^2}.
\]

Now, by the very definition of \(A_n\), the sets \(\{A_n\} \) are pairwise disjoint. Define the functions \(g_n(z) = u_{\delta_n}(ze^{-i\theta_n})\chi_{\Omega \setminus A_n}(z)\) and \(f_n(z) = u_{\delta_n}(ze^{-i\theta_n})\chi_{\Omega \setminus A_n}(z)\) such that \(u_{\delta_n}(ze^{-i\theta_n}) = f_n(z) + g_n(z)\). As we have seen, we have that \(\rho_{p,q}(g_n) \lesssim \frac{1}{n^q}\) and \(\|g_n\|_{H^{q,p}} \lesssim \frac{1}{n^q}\) for \(n \in \mathbb{N}\). In addition, one can see that \(\rho_{p,q}(f_n) \asymp \|f_n\|_{H^{q,p}} \asymp 1\) because \(\rho_{p,q}(u_{\delta_n}(ze^{-i\theta_n})) \asymp \|u_{\delta_n}(ze^{-i\theta_n})\|_{H^{q,p}} \asymp 1\).

Given a measure space \((\Omega, \mathcal{A}, \mu)\). We have that for any sequence of measurable functions \(h_n : \Omega \to \mathbb{C}\) whose supports are pairwise disjoint, it holds that

\[
\int_{\Omega} \left| \sum_n h_n(w) \right|^s \, d\mu(w) = \sum_n \int_{\Omega} |h_n(w)|^s \, d\mu(w)
\]

for all \(s > 0\). Then, using this fact twice (one in each variable, first with \(s = q\) and then with \(s = p/q\)), we obtain

\[
\left\| \sum \alpha_n f_n \right\|_{H^{q,p}} = \left(\int_0^{2\pi} \int_0^1 \left| \alpha_n \right|^p \left(\int_0^{2\pi} \left| f_n(re^{i\theta}) \right|^q \frac{d\theta}{2\pi} \right)^{p/q} \, dr \right)^{1/p} \asymp \left(\sum |\alpha_n|^p \right)^{1/p}.
\]
By the same reason,
\[
\rho_{p,q} \left(\sum |\alpha_n f_n| \right) = \left(\int_0^{2\pi} \left(\int_0^1 |f_n(r e^{i\theta})|^p \, dr \right)^{q/p} \, d\theta \right)^{1/q}
\]
\[
= \left(\sum |\alpha_n|^q \rho_{p,q}^q(f_n) \right)^{1/q} = \left(\sum |\alpha_n|^q \right)^{1/q}.
\]
Hence, if we consider the function \(F_m(z) := \sum_{n=1}^m u_{\delta_n}(ze^{-i\theta_n}) \) we obtain that
\[
\rho_{p,q}(F_m) \leq \rho_{p,q} \left(\sum_{n=1}^m f_n \right) + \rho_{p,q} \left(\sum_{n=1}^m g_n \right) \lesssim m^{1/q} + m \sum \frac{1}{n^2}
\]
\[
\leq m^{1/q} + \frac{\pi^2}{6} \leq \left(1 + \frac{\pi^2}{6} \right) m^{1/q}
\]
and
\[
\rho_{p,q}(F_m) \geq \rho_{p,q} \left(\sum_{n=1}^m f_n \right) - \rho_{p,q} \left(\sum_{n=1}^m g_n \right) \gtrsim m^{1/q}
\]
for \(m \) big enough. So that \(\rho_{p,q}(F_m) \asymp m^{1/q} \). In the same way for the norm in \(H_{q,p}^q \), it follows that \(\|F_m\|_{H_{q,p}^q} \asymp m^{1/q} \) using the same argument.

Therefore, if it were true that \(RM(p,q) = H_{q,p}^q \), then we would have \(\rho_{p,q}(F_m) \asymp \|F_m\|_{H_{q,p}^q} \). But if \(p > q \) this is impossible, because this implies that \(m^{1/p} \asymp m^{1/q} \) for all \(m \in \mathbb{N} \). Thus, we conclude a).

b) If \(q \geq p \) then \(H_{q,p}^p \subset RM(p,q) \), using Minkowski’s integral inequality we have
\[
\left(\int_0^{2\pi} \left(\int_0^1 |f(r e^{i\theta})|^p \, dr \right)^{q/p} \, d\theta \right)^{1/p} \leq \left(\int_0^1 \left(\int_0^{2\pi} |f(r e^{i\theta})|^q \, d\theta \right)^{p/q} \, dr \right)^{1/p}.
\]
Let us see that \(H_{q,p}^p \neq RM(p,q) \) for \(q > p \). Assume that \(H_{q,p}^p = RM(p,q) \) then \((H_{q,p}^p)^* = (RM(p,q))^* \). By [1, Corollary 4.8, p. 29] and Proposition 3.2, we have that \(H_{q',p'} \neq RM(p',q') \) for \(p' > q' \). But this contradicts a). So b) holds and we are done.

References

[1] T. Aguilar-Hernández, M.D. Contreras, and L. Rodríguez-Piazza, Average radial integrability spaces of analytic functions, J. Funct. Anal. 282, 1 (2022), Article number: 109262.
[2] T. Aguilar-Hernández, M.D. Contreras, and L. Rodríguez-Piazza, Integration operators in average radial integrability spaces of analytic functions, Mediterr. J. Math. 18 (2021), Article number: 117.
[3] I. Arévalo, A characterization of the inclusions between mixed norm spaces, J. Math. Anal. Appl. 429 (2015), 942–955.
[4] J. Bourgain, On the radial variation of bounded analytic functions on the disc, Duke Math. J. 69, 3 (1993), 671–682.
[5] P. L. Duren, Theory of \(H^p \) spaces, Dover, New York, 2000.
[6] T. M. Flett, *The dual of an inequality of Hardy and Littlewood and some related inequalities*, J. Math. Anal. Appl. **38** (1972), 746–765.

[7] T. M. Flett, Lipschitz spaces of functions on the circle and the disk, J. Math. Anal. Appl. **39** (1972), 125–158.

[8] J. Garnett, *Bounded Analytic Functions*, Graduate Texts in Mathematics, Springer-Verlag, 2007.

[9] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman Spaces*, Springer-Verlag, 2000.

[10] M. Jevtić, D. Vukotić, and M. Arsenović, *Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces*, Springer-Verlag, 2016.

[11] W. Rudin, *The radial variation of analytic functions*, Duke Math. J. **22** (1955), 235–242.

[12] A. Zygmund, *On certain integrals*, Trans. Amer. Math. Soc. **55** (1944), 170–204

Departamento de Matemática Aplicada II and IMUS, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n 41092, Sevilla, Spain

Email address: taguilar@us.es