Research article

An N6-methyladenosine and target genes-based study on subtypes and prognosis of lung adenocarcinoma

Xiao Chu1, Weiqing Wang1, Zhaoyun Sun1, Feichao Bao2,* and Liang Feng1,*

1 Department of Thoracic Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
2 Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China

* Correspondence: Email: fengliang5th@126.com, baofeichao@126.com.

Abstract: Purpose: Lung adenocarcinoma (LUAD) is a highly lethal subtype of primary lung cancer with a poor prognosis. N6-methyladenosine (m6A), the most predominant form of RNA modification, regulates biological processes and has critical prognostic implications for LUAD. Our study aimed to mine potential target genes of m6A regulators to explore their biological significance in subtyping LUAD and predicting survival. Methods: Using gene expression data from TCGA database, candidate target genes of m6A were predicted from differentially expressed genes (DEGs) in tumor based on M6A2 Target database. The survival-related target DEGs identified by Cox-regression analysis was used for consensus clustering analysis to subtype LUAD. Uni-and multi-variable Cox regression analysis and LASSO Cox-PH regression analysis were used to select the optimal prognostic genes for constructing prognostic score (PS) model. Nomogram encompassing PS score and independent prognostic factors was built to predict 3-year and 5-year survival probability. Results: We obtained 2429 DEGs in tumor tissue, within which, 1267 were predicted to m6A target genes. A prognostic m6A-DEGs network of 224 survival-related target DEGs was established. We classified LUAD into 2 subtypes, which were significantly different in OS time, clinicopathological characteristics, and fractions of 12 immune cell types. A PS model of five genes (C1QTNF6, THSD1, GRIK2, E2F7 and SLCO1B3) successfully split the training set or an independent GEO dataset into two subgroups with significantly different OS time (p < 0.001, AUC = 0.723; p = 0.017, AUC = 0.705). A nomogram model combining PS status, pathologic stage, and recurrence was built, showing good performance in predicting 3-year and 5-year survival probability (C-index = 0.708, 0.723, p-value = 0). Conclusion: Using candidate m6A target genes, we obtained two molecular subtypes and designed a reliable five-gene PS score model for survival prediction in LUAD.
Keywords: N^6^-methyladenosine (m^6^A); consensus clustering; prognostic score; immune cells; nomogram

1. Introduction

Lung adenocarcinoma (LUAD) is the most common histological subtype of lung primary lung malignancy, approximately accounting for 40% of all cases [1]. LUAD is a leading cause of cancer-related mortality worldwide, with overall survival (OS) time shorter than five years [2]. LUAD frequently involves disseminated metastasis and is highly resistant to conventional radiotherapies and chemotherapies [3]. LUAD patients have high recurrence rate after surgical excision [4]. Therefore, identification of prognostic biomarkers of LUAD is critical for improving long-term survival of LUAD patients and facilitates developing novel effective treatment strategies.

N^6^-methyladenosine (m^6^A) is the most abundant and prevalent modification in the regulation of splicing, stability, translocation, and translation of eukaryotic mRNAs [5]. The m^6^A regulators are primarily comprised of “writers” (methyltransferase), such as METTL3, RBM15/15B, “erasers” (demethylase), such as FTO and ALKBH5, and “readers” (m^6^A-binding proteins that targets the m^6^A site on mRNA), such as YTHDF1 and YTHDF2 [6]. The aberrantly expressed m^6^A regulators play a critical role in tumorigenesis [7]. Several pieces of evidences have revealed that m^6^A regulators have important prognostic implications in LUAD [8,9]. m^6^A writers, erasers, and readers could serve prognostic biomarkers in LUAD [10]. Moreover, a growing number of studies have developed useful risk scoring systems based on the m^6^A regulators to predict survival in LUAD [11–13]. However, these studies only characterize prognostic roles of m^6^A regulators in LUAD, their regulatory mechanisms including downstream target genes and relevant prognostic implications remain elusive.

Here we drew on gene expression data of LUAD from The Cancer Genome Atlas (TCGA) database to identify the potential target genes of m^6^A methylation regulators and investigate their associations with LUAD subtyping and prognosis prediction. We developed a prognostic score (PS) system based on prognostic target genes to predict survival of patients. This study provided illuminating insights into the biological roles of m^6^A methylation regulators in LUAD.

2 Materials and methods

2.1. Data source and preporcessing

Microarray gene expression data of 501 tumor samples and 58 normal samples with corresponding clinical characteristics (Illumina HiSeq 2000 RNA Sequencing platform) were downloaded from TCGA database (https://gdc-portal.nci.nih.gov/) and used as training set.

We launched a search for validation datasets in the Gene Expression Omnibus (GEO) [14] at the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/geo/). The following criteria should be met: gene expression data; tumor tissue samples; histology type information available; all samples no less than 150 and eligible samples no less than 100; survival information available. GSE50081 [15] included 127 tumor samples with corresponding clinical information (GPL570 Affymetrix Human Genome U133 Plus 2.0 Array platform) and was used as the validation dataset.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 253–270.
2.2. Differential expression analysis

Differentially expressed genes (DEGs) were screened between normal tissue samples and tumor tissue samples, with FDR < 0.05 and |log₂FC| > 1 as the cutoff. Using expression data of top 50 up-regulated DEGs and top 50 down-regulated DEGs according to descending value of |log₂FC|, two-way hierarchical clustering analysis was performed using pheatmap version 1.0.8 (https://cran.r-project.org/web/packages/pheatmap/index.html) in R3.6.1 based on centered pearson correlation.

2.3. Construction of prognostic m⁶A-DEGs network

In order to investigate the m⁶A-related regulatory mechanisms, target genes of m⁶A regulators were predicted based on M⁶A2 Target database [16] (http://m6a2target.canceromics.org/) and were then mapped to the identified DEGs. The overlapped genes were subjected to the uni-variate Cox-regression analysis. The significant survival-related target genes and m⁶A RNA methylation regulators were used to construct a prognostic m⁶A-DEGs network. The network was visualized and its topological characteristics was analyzed using Cytoscape software [17] (version 3.6.1, https://cytoscape.org/). Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed for the genes in the network using the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool (version 6.8. https://david.ncifcrf.gov/). The cutoff was set at p-value < 0.05 and the count of significantly enriched genes > 5.

2.4. LUAD subtypes analysis

Using gene expression data of the survival-related target genes, consensus clustering analysis was performed by ConsensusClusterPlus Version 1.54.0 to identify subtypes of LUAD. ConsensusClusterPlus implements the consensus clustering method in R that provides quantitative and visual stability evidence for estimating the number of unsupervised classes in a dataset [18]. The optimal clusters were determined according to cumulative distribution function. Overall survival (OS) time, clinical characteristics and fractions of tumor-infiltrating immune cells (TIICs) were compared between different subtypes. CIBERSORT [19] software (https://cibersort.stanford.edu/index.php) was used to estimate proportions of tumor-infiltrating immune cells.

2.5. Development of A PS model for prognosis prediction

To build a PS model for predicting prognosis in LUAD, firstly, multi-variable Cox regression analysis was performed to identify independent prognostic genes with log-rank p-value < 0.05 from the survival-related target genes. Least absolute shrinkage and selection operator (LASSO) Cox-PH regression model [20] was used to determine the optimal prognostic genes from the independent prognostic genes. Prognostic score (PS) was defined as the linear combination of logarithmically transformed gene expression levels of the optimal prognostic genes weighted by canonical discriminant function coefficients and was used to evaluate mortality risk of a patient. Using expression levels and regression coefficients of the optimal prognostic genes, PS score was
calculated for every sample using the following formula:

\[
\text{Prognostic score (PS)} = \sum \text{Coef}_{\text{genes}} \times \text{Exp}_{\text{genes}}
\]

where Coef_{genes} represents regression coefficient of a prognostic gene and Exp_{genes} represents expression level of a prognostic gene.

According to median PS score, all samples of the training set or the validation set were separated into a high-risk group and a low-risk group.

2.6. Construction and assessment of a nomogram model

Uni-variable and multi-variable Cox regression analysis was performed for all clinical characteristics and PS status. Nomogram is a graphical calculating tool for individualized risk estimation based on use of multiple variables and continuous variables continuously [21]. A nomogram model incorporating all independent prognostic factors was built to predict 3-year and 5-year survival probability. Calibration curves of the nomogram were plotted and concordance index (C-index) [22] was calculated to evaluate its predictive performance.

2.7. Statistical analysis

Survival analysis was performed to compare OS probabilities of different groups using Kaplan-Meier method and log-rank test with the threshold of p-value < 0.05. Receiver Operating Characteristic (ROC) curves were plotted to analyze accuracy of the PS system.

The bioinformatics analyses below were carried out using different packages of R software (version 3.6.1): limma [23] package (version 3.34.7) for differential expression analysis (https://bioconductor.org/packages/release/bioc/html/limma.html); pheatmap [24] package (version 1.0.8, https://cran.r-project.org/web/packages/pheatmap/index.html) for hierarchical clustering analysis; survival [25] package (version 2.41-1, http://bioconductor.org/packages/survival/) for uni- and multi-variable Cox regression analysis and survival analysis; ConsensusClusterPlus [18] package (version 1.54.0, http://www.bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html) for consensus clustering analysis; lars package (version 1.2) for LASSO Cox-PH regression model; rms package [26] (version 5.1-2, https://cran.r-project.org/web/packages/rms/index.html) for nomogram. P-value < 0.05 suggested significance. Analytical flow chart of this study is shown in Figure 1.

3. Results

3.1. Identification of DEGs in LUAD

A total of 2429 genes that met the criteria of FDR < 0.05 and |log2FC| > 1 were significantly differentially expressed between tumor samples (N = 501) and normal samples (N = 58, Figure 2A) in the training set. As shown in a heatmap (Figure 2B), expression patterns of top 50 up-regulated DEGs and top 50 down-regulated DEGs were obviously different between tumor samples and normal samples, indicating the DEGs are able to distinguish tumor and normal samples.
3.2. A prognostic m⁶A-DEGs network included 12 m⁶A RNA methylation regulators and 224 genes

Total 1267 DEGs were predicted to be target genes of m⁶A RNA methylation regulators based on m⁶A2 Target database and 224 of these were significantly associated with survival in uni-variable Cox regression analysis. Consequently, 12 m⁶A RNA methylation regulators (writers: RBM15, RBM15B; erasers: FTO; readers: YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3) and the 224 survival-related target genes formed a prognostic m⁶A-DEGs network (Figure 3). Topological analysis showed that IGF2BP1 was the most hub gene with a degree of 145. The other nodes with high degree included YTHDF1, YTHDC1, IGF2BP2 and IGF2BP3 (Table 1). The genes in the network were significantly involved in 26 GO biological processes largely related to cell cycle, and 5 KEGG pathways, such as cell cycle and p53 signaling pathways (Table 2).

Symbol	Average Shortest Path Length	Betweenness Centrality	Closeness Centrality	Degree
IGF2BP1	1.7167382	0.34083022	0.5825	145
YTHDF1	1.89699571	0.25043473	0.52714932	123
YTHDC1	1.97424893	0.27286644	0.50652174	114
IGF2BP2	2.07725322	0.15502202	0.48140496	103
IGF2BP3	2.19742489	0.10570453	0.45507813	90
RBM15B	2.62660944	0.01980201	0.38071895	38
YTHDF2	2.72961373	0.0403311	0.3663522	26
YTHDF3	2.77253219	0.0139253	0.36068111	22
RBM15	2.83261803	0.00242151	0.3530303	14
HNRNPC	2.87553648	0.00141667	0.34776119	11
CDCA5	1.97424893	0.00901307	0.50652174	9
HHIPL2	2.03433476	0.00668609	0.49156118	8
ASPM	1.99141631	0.00712224	0.50215517	8
ZIC2	2	0.00689336	0.5	8
PLK1	1.99141631	0.00648788	0.50215517	7
CDK5R1	2	0.00649329	0.5	7
FAM83A	2.43776824	0.00945876	0.41021127	7
ZIC5	2.04291845	0.00450393	0.4894958	7
HCN2	1.99141631	0.00648788	0.50215517	7
CENPF	2.02575107	0.00463828	0.49364407	7

3.3. Two LUAD subtypes had different OS time, clinicopathological characteristics and fractions of TICCs

Consensus clustering analysis for the 224 survival-related genes led to the identification of two LUAD subtypes (Figure 4A). In the training set, 222 tumor samples belonged to subtype 1, while 279 tumor samples fell into subtype 2. Kaplan-Meier survival curves in Figure 4B showed that subtype 2 had significantly shorter OS time compared to subtype 1 (p-value = 0.00096). Subtype 2 had less patients older than 60 years (p-value = 2.51E–03), less female patients (p-value = 1.15E–03), higher Pathologic N stage (p-value = 4.68E–03), higher Pathologic T stage (p-value = 2.85E–03), higher...
pathologic stage (p-value = 5.81E–04), and less never-smokers (p-value = 1.33E–02, Table 3) in comparison with subtype 1.

| Table 2. Significant GO biological processes and KEGG signaling pathways. |
|-----------------------------|-----------------|-----------------|-----------------|
| Category | Term | Count of genes | P-value | FDR |
| GO Biology Process | | | | |
| Cell division | | 39 | 2.10E–25 | 2.31E–22 |
| Mitotic nuclear division | | 34 | 5.76E–25 | 3.17E–22 |
| Sister chromatid cohesion | | 21 | 7.80E–19 | 2.87E–16 |
| Mitotic sister chromatid segregation | | 10 | 8.34E–12 | 2.30E–09 |
| Chromosome segregation | | 13 | 3.00E–11 | 6.1E–09 |
| DNA replication | | 17 | 6.75E–11 | 1.24E–08 |
| G2/M transition of mitotic cell cycle | | 16 | 1.17E–10 | 1.84E–08 |
| G1/S transition of mitotic cell cycle | | 13 | 3.88E–09 | 5.34E–07 |
| Mitotic cytokinesis | | 8 | 4.38E–08 | 5.37E–06 |
| Mitotic metaphase plate congression | | 8 | 2.66E–07 | 2.67E–05 |
| Regulation of cell cycle | | 12 | 3.32E–07 | 3.05E–05 |
| Anaphase-promoting complex-dependent catabolic process | | 10 | 4.77E–07 | 3.75E–05 |
| Spindle organization | | 6 | 9.87E–07 | 7.25E–05 |
| Mitotic spindle assembly checkpoint | | 6 | 3.37E–06 | 2.32E–04 |
| Mitotic spindle assembly | | 7 | 4.29E–06 | 2.78E–04 |
| Microtubule-based movement | | 9 | 6.23E–06 | 3.81E–04 |
| Mitotic cell cycle checkpoint | | 6 | 3.89E–05 | 2.14E–03 |
| Cell proliferation | | 16 | 4.26E–05 | 2.23E–03 |
| DNA repair | | 12 | 1.45E–04 | 6.39E–03 |
| CENP-A containing nucleosome assembly | | 6 | 1.67E–04 | 6.80E–03 |
| Cytokinesis | | 6 | 2.82E–04 | 1.07E–02 |
| KEGG Pathway | | | | |
| Cell cycle | | 20 | 2.67E–16 | 3.71E–14 |
| Oocyte meiosis | | 13 | 8.39E–09 | 5.83E–07 |
| Progesterone-mediated oocyte maturation | | 10 | 1.02E–06 | 4.74E–05 |
| p53 signaling pathway | | 7 | 1.63E–04 | 5.66E–03 |
| Fanconi anemia pathway | | 4 | 2.74E–02 | 7.61E–01 |

Note: Count of genes stand for the number of significantly enriched genes. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

It has been reported that the m6A genes are important regulators in tumor microenvironment of LUAD and affect TIICs [7]. Therefore, we also analyzed composition of TIICs in the two subtypes. Remarkably, compared to subtype 1, subtype 2 had significantly less memory B cells, more CD8+ T cells, less resting CD4+ memory T cells, more activated CD4+ memory T cells, more Tfh cells, more activated NK cells, less monocytes, more M0 and M1 macrophages, less M2 macrophages, more resting myeloid dendritic cells, less activated mast cells, more resting mast cells, and more Neutrophils (p-value < 0.001, Figure 5).
Table 3. Comparative analysis of clinicopathological characteristics of two subtypes.

Characteristics	N of cases	Subtype 1 (N = 222)	Subtype 2 (N = 279)	P-value
Age(years)				
≤ 60	157	54	103	2.51E−03
> 60	334	164	170	
Gender				
Male	231	84	147	1.15E−03
Female	270	138	132	
Pathologic M				
M0	333	149	184	8.63E−02
M1	24	6	18	
Pathologic N				
N0	324	158	166	4.68E−03
N1	94	34	60	
N2	72	22	50	
Pathologic T				
T1	167	93	74	2.85E−03
T2	267	100	167	
T3	45	19	26	
T4	19	8	11	
Pathologic stage				
Stage I	268	140	128	5.81E−04
Stage II	119	42	77	
Stage III	81	27	54	
Stage IV	25	7	18	
Recurrence				
Yes	151	59	92	8.38E−02
No	275	132	143	
Tobacco smoking history				
Never	28	17	11	1.33E−02
Reform	127	67	60	
Current	46	14	32	

3.4. A five-gene PS model for stratification of LUAD patients

Total 93 genes in the m⁶A-DEGs network were found to be independent prognostic factors in multi-variable Cox regression analysis. Five independent prognostic genes [C1QTNF6 (C1q/tumor necrosis factor-related protein 6), THSD1 (Thrombospondin type I domain 1), GRIK2 (Glutamate receptor, ionotropic, kainate 2), E2F7 (E2F transcription factor 7) and SLCO1B3 (solute carrier organic anion transporter family member 1B3)] achieved the optimal lambda value and were selected by LASSO Cox-PH model as the optimal gene panel for prognosis prediction (Table 4 and Figure 6). Kaplan-Meier survival curves in Figure 7 showed that for each of the five optimal prognostic genes,
the high expression and low expression samples had significantly different OS time (p < 0.001, p = 0.0052, p = 0.00092, p = 0.00012, and p = 0.0036) in the training set.

Based on expression levels and regression coefficients of the five optimal prognostic genes, PS score was calculated for every sample in the training set. With median PS score as the cutoff, the training set was split in a high-risk group and a low-risk group. The high-risk patients had significantly shorter OS time compared to the low-risk patients (p < 0.0001, Figure 8A). AUC for the training set was 0.723 (specificity = 0.560, sensitivity = 0.820, Figure 8B). Similarly, the validation set (GSE50081) was divided by the five-gene PS score into high-risk and low-risk groups with significantly different OS time (p = 0.017, Figure 8A). AUC for the validation set was 0.705 (specificity = 0.711, sensitivity = 0.627, Figure 8B).

Table 4. Details of the five optimal prognostic genes by LASSO-PH mode.

Gene name	Hazard Ratio	95% Confidence Interval	Standard error	Z score	P-value	LASSO Coefficient
C1QTNF6	1.477	1.239–1.761	0.090	4.341	1.420E–05	0.02171
THSD1	0.683	0.488–0.958	0.172	–2.210	2.711E–02	–0.00642
GRIK2	1.491	1.083–2.052	0.163	2.451	1.423E–02	0.00173
E2F7	1.386	1.091–1.759	0.122	2.679	7.390E–03	0.00650
SLCO1B3	1.261	1.084–1.466	0.077	3.002	2.680E–03	0.00430

3.5. A nomogram model was based on pathologic stage, tumor recurrence and PS status

In uni-variable Cox regression analysis, Pathologic M (p = 5.361E–03), Pathologic N (p = 3.993E–11), Pathologic T (p = 3.102E–06), Pathologic stage (p = 2.942E–14) and recurrence (p = 2.438E–07) were significantly related to OS time. Pathologic stage (p = 3.850E–02, HR (95% CI) = 1.919[1.035–3.559]), recurrence (p = 1.510E–05, HR (95% CI) = 2.496[1.649–3.778]) and PS status (p = 3.550E–03, HR (95% CI) = 1.584[1.032–2.433]) were further found to be independent prognostic factors in multi-variable Cox regression analysis (Figure 9A, Table 5). In order to improve predictive performance of the five-gene PS score and facilitate its application, we combined pathologic stage, recurrence and PS status to build a nomogram for predicting 3-year and 5-year survival probability (Figure 9B). Calibration plots for the nomogram showed good consistence between the predicted and actual 3-year and 5-year survival probabilities (C-index = 0.708, 0.723, p-value = 0, Figure 9C), suggesting good predictive accuracy of the composite nomogram based on pathologic stage, recurrence and PS status. All these results demonstrated that the five-gene PS score was a useful prognostic tool in LUAD.

4. Discussions

m6A RNA methylation is a critical player in tumor initiation and progression through affecting gene expression and various cellular processes [27]. m6A genes have been increasingly acknowledged as potential prognostic biomarkers of LUAD [28]. However, candidate target genes of m6A modification regulators and their prognostic significance remain poorly studied. Our present study predicted 1267 DEGs in LUAD tumor as candidate target genes of m6A regulators based on m6A2 Target database. Using the 224 survival-related target genes, we obtained a prognostic
m^6A-DEGs network and two molecular subtypes (subtype 1 and 2) of LUAD with significantly different OS time, distinct clinical characteristics and composition of immune cells. Moreover, we developed and validated a robust five-gene PS system for survival prediction in LUAD. This study deepens our understanding on the regulatory mechanisms underlying the roles of m^6A RNA methylation in LUAD, contributing to improvement of prognosis prediction and aiding in individualized genome-based therapy in LUAD.

Table 5. Uni-variable and multi-variable Cox-regression results for clinical characteristics and PS status.

Clinical characteristics	TCGA(N = 501)	Uni-variable cox	Multi-variable cox		
		HR (95% CI)	P value	HR (95% CI)	P value
Age(years, mean ± sd)	65.28 ± 10.05	1.009[0.994-1.0 24]	1	2.640E-0	-
Gender(Male/Female)	231/270	1.060[0.792-1.4 18]	1	-	-
Pathologic M(M0/M1/-)	333/24/144	2.111[1.232-3.6 16]	3	0.304[0.061-1. 511]	01
Pathologic N(N0/N1/N2/-)	324/94/72/11	1.782[1.493-2.1 28]	1	0.965[0.552-1. 685]	01
Pathologic T(T1/T2/T3/T4/-)	167/267/45/1	1.550[1.289-1.8 93]	6	1.221[0.823-1. 531]	01
Pathologic stage(I / II / III / IV /-)	268/119/81/2	1.679[1.463-1.9 58]	4	1.919[1.035-3. 559]	02
Recurrence(Yes/No/-)	151/275/75	2.392[1.700-3.3 67]	7	2.496[1.649-3. 778]	05
Smoking history(Never/Reform/Current/-)	28/127/46/30	0.765[0.542-1.0 65]	1	1.287E-0	-
PS status(High/Low)	250/251	2.201[1.625-2.9 81]	7	1.584[1.032-2. 433]	03

Note: PS status stands for prognostic score status.

LUAD has various histological subtypes ranged from pre-invasive lesion to aggressive adenocarcinoma [2]. Our study identified two molecular subtypes of LUAD (subtype 1 and 2) using consensus clustering analysis based on expression data of the survival-related target genes. Subtype 2 had poorer survival than subtype 1. Subtype 2 was prone to be at more advanced stage and behave more aggressively and invasively. These results suggest that these survival-related target genes are important determinants in LUAD progression in consistence with a previous report [29]. Besides, subtype 2 is more likely to be observed in young male smokers, while subtype 1 has a greater propensity to be found in older female never-smokers. TIICs have a close association with LUAD progression and prognosis [30]. Our study found that subtype 1 and 2 were significantly different in proportions of 14 types of immune cells. These findings together demonstrate diverse clinicopathological characteristics and varied composition of immune cells between the two subtypes. Identification of the two m^6A methylation-related molecular subtypes may have important clinical implications and lend support to targeted therapies to combat LUAD.
The present study showed that our PS model was a reliable and robust tool for survival prediction in LUAD, manifested in several levels. Firstly, the PS score could discriminate high-risk patients from low-risk patients in the training set. Secondly, prognostic performance of our PS model was successfully verified in an independent dataset from GEO database, supporting the generalizability of the PS model. Thirdly, AUC values of ROC curves for the two sets were larger than 0.7, providing evidence for predictive accuracy of the PS model. Fourthly, PS status had been identified as an independent prognostic factor of LUAD. Finally, the nomogram model incorporating PS status, pathologic stage and recurrence performed well in predicting 3-year and 5-year survival probability of LUAD patients (C-index > 0.7).

Our PS model was developed based on five optimal prognostic genes (C1QTNF6, THSD1, GRIK2, E2F7 and SLCO1B3). According to the HR values, 4 genes (C1QTNF6, GRIK2, E2F7 and SLCO1B3) were associated with increased risk of LUAD, while the expression level of one gene (TNSD1) was associated with reduced risk of LUAD. C1QTNF6 overexpression is involved in cell proliferation, migration and invasion and may be an independent prognostic factor in LUAD [31,32]. Inhibition of C1QTNF6 could attenuate cell proliferation, migration, and invasion and promote apoptosis, indicating C1QTNF6 might be a new perspective in treating non-small-cell lung cancer [33]. GRIK2 belongs to an ionotropic glutamate receptor and is identified as a novel epigenetic target in gastric cancer [34]. Its high expression is related to a poor prognosis in urinary tract carcinoma [35]. E2F7 is an E2F transcription factor, which plays an essential role in regulation of cell cycle progression [36]. E2F7 is highly upregulated in non-small-cell lung cancer samples, and aberrantly allow the cells to enter into S phase of cell cycle [37]. High expression of E2F7 is associated with short OS time of LUAD patients [38]. SLCO1B3 is mainly expressed in the basement membrane of liver cells and plays important roles in transporting endogenous compounds into cells [39]. It has been recognized as a positive prognostic biomarker of breast cancer [40]. SLCO1B3 exerts an oncogenic effect through promoting epithelial–mesenchymal transition in progression of non-small cell lung cancer [41]. Nagai et al. showed that SLCO1B3 is expressed in lung cancer tissues but not in normal tissues [42]. Taken together, C1QTNF, GRIK2, E2F7 and SLCO1B3 are highly expressed in cancer samples, which are consistent with our results. THSD1 is a novel tumor suppressor gene mapping to 13q14. It is demonstrated to be downregulated in esophageal squamous cell carcinoma, which might be related with promoter hypermethylation [43]. In LUAD, THSD1 is found being aberrantly methylated and its expression is significantly correlates with prognosis of LUAD patients [44]. Our result found that TNSD1 was associated with reduced risk of LUAD, further suggesting its role as a tumor suppressor gene. Nevertheless, molecular mechanism and prognostic significance of GRIK2 in LUAD remains poorly understood. The molecular and cellular mechanisms of different cancers share similarities, such as mutations in proto-oncogenes and tumor suppressors, exposures to chemicals and discordant regulation or activities of many critical signaling pathways [45]. The dysregulation or association with prognosis of the identified predictive genes in other neoplastic conditions might provide evidence of their role in LUAD carcinogenesis. However, downstream analysis on the roles of them in carcinogenesis broadly are still warranted to identify cross-talk and pleiotropic mechanisms as well as potential adjuvant therapies and repurposable drugs across different neoplastic conditions.

There are some limitations in our study. First, we have identified two subtypes of LUAD based on the expression level of 222 DEGs that were significantly related with survival. These subtypes might be clinically meaningful. However, sub-types need to be widely validated before they could be
agreed upon as acceptable. Second, downstream analyses on the roles of the identified predictive genes are still warranted. Third, clinical information of some patients in the training set and validation set is lacking, which might lead to bias in Cox regression analysis.

Figure 1. Analytical flow chart.

Figure 2. Graphical illustrations of the DEGs in LUAD. A, volcano plot. Red and blue dots represent up-regulated and down-regulated DEGs, respectively. The horizontal dashed line represents a threshold of FDR=0.05. The vertical dashed line represents the threshold of Log_{2}FC = -1 or 1. B, two-way hierarchical clustering heatmap of top 50 up-regulated and down-regulated DEGs. Clustering is performed based on centered pearson correlation.
Figure 3. A prognostic m\(^6\)A-DEGs network. Yellow square nodes represent m\(^6\)A genes. Oval nodes represent DEGs. Color bar from blue to red indicate the range of log\(_2\) FC value (−5 to 5).

Figure 4. Identification of two LUAD subtypes by consensus clustering analysis. A, heatmap of the matrix of co-occurrence proportions for LUAD samples; B, Kaplan-Meier survival curves for two subtypes.
Figure 5. Proportions of 14 types of immune cells between two subtypes of LUAD. ***p-value < 0.001.

Figure 6. Forest plot of the five optimal prognostic genes.
Figure 7. Kaplan-Meier survival curves of high expressed and low expressed samples for C1QTNF6, THSD1, GRIK2, E2F7 or SLCO1B3.

Figure 8. Performance of the five-gene PS score in the training set and the validation set. A, Kaplan-Meier survival curves of high-risk and low-risk samples in the training set and the validation set. B, ROC curves of the training set (AUC = 0.723, specificity = 0.560, sensitivity = 0.820) and the validation set (AUC = 0.705, specificity = 0.711, sensitivity = 0.627).
Figure 9. Nomogram model for predicting 3-year and 5-year survival probability. A, Forest plot of independent prognostic factors. B, nomogram of pathologic stage, recurrence and PS status. C, calibration plots for nomogram in predicting 3-year (upper) and 5-year survival probability (lower).

5. Conclusions

Using predicted target genes of m\(^6\)A regulators, we obtained two molecular subtypes of LUAD with differential survival time, distinct clinicopathological and immunological features. Based on five prognostic target genes, we developed and validated a PS model for risk in LUAD. This study contributes to better tumor classification and supplies a reference for individualized survival estimation and targeted treatment strategy for LUAD.

Acknowledgments

The study was funded by Talent Development Plan funded by Shanghai Fifth People’s Hospital, Fudan University (Award Number 2020WYRCJY06).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. B. C. Bade, C. S. D. Cruz, Lung cancer 2020: epidemiology, etiology, and prevention, Clin. Chest. Med., 41 (2020), 1–24. doi: 10.1016/j.ccm.2019.10.001.
2. B. D. Hutchinson, G. S. Shroff, M. T. Truong, J. P. Ko, Spectrum of lung adenocarcinoma, *Semin. Ultrasound CT MR*, **40** (2019), 255–264. doi: 10.1053/j.sult.2018.11.009.

3. T. V. Denisenko, I. N. Budkevich, B. Zhivotovsky, Cell death-based treatment of lung adenocarcinoma, *Cell Death Dis.*, **9** (2018), 117. doi: 10.1038/s41419-017-0063-y.

4. F. R. Hirsch, G. V. Scagliotti, J. L. Mulshine, R. Kwon, W. J. C., Jr, Y. Wu, et al., Lung cancer: current therapies and new targeted treatments, *Lancet*, **389** (2017), 299–311. doi: 10.1016/S0140-6736(16)30958-8.

5. L. He, H. Li, A. Wu, Y. Peng, G. Shu, G. Yin, Functions of N6-methyladenosine and its role in cancer, *Mol. Cancer*, **18** (2019), 176. doi: 10.1186/s12943-019-1109-9.

6. D. Dai, H. Wang, L. Zhu, H. Jin, X. Wang, N6-methyladenosine links RNA metabolism to cancer progression, *Cell Death Dis.*, **9** (2018), 124.doi: 10.1038/s41419-017-0129-x.

7. Y. Li, J. Gu, F. Xu, Q. Zhu, Y. Chen, D. Ge, et al., Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma, *Brief Bioinform.*, **22** (2020), bbaa225. doi: 10.1093/bib/bbaa225.

8. Y. Zhang, X. Liu, L. Liu, J. Li, Q. Hu, R. Sun, Expression and prognostic significance of m6A-related genes in lung adenocarcinoma, *Med. Sci. Monit.*, **26** (2020), e919644.doi: 10.12659/MSM.919644.

9. F. Li, H. Wang, H. Huang, L. Zhang, D. Wang, Y. Wan, m6A RNA methylation regulators participate in the malignant progression and have clinical prognostic value in lung adenocarcinoma, *Front. Genet.*, **11** (2020), 994. doi: 10.3389/fgene.2020.00994.

10. H. Wang, X. Zhao, Z. Lu, m6A RNA methylation regulators act as potential prognostic biomarkers in lung adenocarcinoma, *Front. Genet.*, **12** (2021), 622233. doi: 10.3389/fgene.2021.622233.

11. J. Zhu, M. Wang, D. Hu, Deciphering N6-methyladenosine-related genes signature to predict survival in lung adenocarcinoma, *Biomed Res. Int.*, **2020** (2020), 2514230. doi: 10.1155/2020/2514230.

12. C. Gao, J. Zhuang, H. Li, C. Liu, C. Zhou, L. Liu, et al., Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database, *Aging (Albany NY)*, **13** (2021), 3957–3968. doi: 10.18632/aging.202364.

13. Y. Liu, X. Guo, M. Zhao, H. Ao, X. Leng, M. Liu, et al., Contributions and prognostic values of m6A RNA methylation regulators in non-small-cell lung cancer, *J. Cell. Physiol.*, **235** (2020), 6043–6057. doi: 10.1002/jcp.29531.

14. E. Clough, T. Barrett, The gene expression omnibus database, *Methods Mol. Biol.*, **1418** (2016), 93–110. doi: 10.1007/978-1-4939-3578-9_5.

15. S. D. Der, J. Sykes, M. Pintilie, C. Q. Zhu, D. Strumpf, N. Liu, et al., Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients, *J. Thorac. Oncol.*, **9** (2014), 59–64. doi: 10.1097/jto.0000000000000042.

16. S. Deng, H. Zhang, K. Zhu, X. Li, Y. Ye, R. Li, et al., M6A2target: a comprehensive database for targets of m6A writers, erasers and readers, *Brief. Bioinform.*, **22** (2020). doi: 10.1093/bib/bbaa055.

17. M. Kohl, S. Wiese, B. Warscheid, Cytoscape: software for visualization and analysis of biological networks, *Methods Mol. Biol. (Clifton, N. J.)*, **696** (2011), 291–303. doi: 10.3390/ijms18091880.
18. M. D. Wilkerson, D. N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, *Bioinformatics*, **26** (2010), 1572–1573. doi: 10.1093/bioinformatics/btq170.

19. B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, *Methods Mol. Biol.*, **1711** (2018), 243–259. doi: 10.1007/978-1-4939-7439-1_12.

20. S. Huang, C. Yee, T. Ching, H. Yu, L. X. Garmire, A novel model to combine clinical and pathway-based transcriptomic information for the prognosis prediction of breast cancer, *PLoS Comput. Biol.*, **10** (2014), e1003851. doi: 10.1371/journal.pcbi.1003851.

21. S. Wang, L. Yang, B. Ci, M. Maclean, D. E. Gerber, G. Xiao, Development and validation of a nomogram prognostic model for SCLC patients, *J. Thorac. Oncol.*, **13** (2018), 1338–1348. doi: 10.1016/j.jtho.2018.05.037.

22. E. Longato, M. Vettoretti, B. Di Camillo, A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models, *J. Biomed. Inform.*, **108** (2020), 103496. doi: 10.1016/j.jbi.2020.103496.

23. M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi , Limma powers differential expression analyses for RNA-sequencing and microarray studies, *Nucleic Acids Res.*, **43** (2015), e47–e47. doi: 10.1093/nar/gkv007.

24. L. Yang, L. Xu, Q. Wang, M. Wang, G. An, Dysregulation of long non-coding RNA profiles in human colorectal cancer and its association with overall survival, *Oncol. Lett.*, **12** (2016), 4068–4074. doi: 10.3892/ol.2016.5138.

25. P. Wang, Y. Wang, B. Hang, X. Zou, J. H. Mao, A novel gene expression-based prognostic scoring system to predict survival in gastric cancer, *OncoTarget*, **7** (2016), 55343–55351. doi: 10.18632/oncotarget.10533.

26. Z. Zhang, M. W. Kattan, Drawing nomograms with R: applications to categorical outcome and survival data, *Ann. Transl. Med.*, **5** (2017). doi: 10.21037/atm.2017.04.01.

27. Q. Lan, P. Y. Liu, J. Haase, J. L. Bell, S. Hüttelmaier, T. Liu, The critical role of RNA m6A methylation in cancer, *Cancer Res.*, **79** (2019), 1285–1292. doi: 10.1158/0008-5472.CAN-18-2965.

28. R. Xu, G. Pang, Q. Zhao, L. Yang, S. Chen, L. Jiang, The momentous role of N6-methyladenosine in lung cancer, *J. Cell. Physiol.*, **236** (2021), 3244–3256. doi: 10.1002/jcp.30136.

29. S. Ma, C. Chen, X. Ji, J. Liu, Q. Zhou, G. Wang, et al., The interplay between m6A RNA methylation and noncoding RNA in cancer, *J. Hematol. Oncol.*, **12** (2019), 121. doi: 10.1186/s13045-019-0805-7.

30. Q. Wang, M. Li, M. Yang, Y. Yang, F. Song, W. Zhang, et al., Analysis of immune-related signatures of lung adenocarcinoma identified two distinct subtypes: implications for immune checkpoint blockade therapy, *Aging (Albany NY)*, **12** (2020), 3312–3339. doi: 10.18632/aging.102814.

31. M. Han, B. Wang, M. Zhu, Y. Zhang, C1QTNF6 as a novel biomarker regulates cellular behaviors in A549 cells and exacerbates the outcome of lung adenocarcinoma patients, *in vitro Cell. Dev. Biol. Animal*, **55** (2019), 614–621. doi: 10.1007/s11626-019-00377-w.

32. W. Zhang, Y. Shen, G. Feng, Predicting the survival of patients with lung adenocarcinoma using a four-gene prognosis risk model, *Oncol. Lett.*, **18** (2019), 535–544. doi: 10.3892/ol.2019.10366.
33. W. Zhang, G. Feng, C1QTNF6 regulates cell proliferation and apoptosis of NSCLC in vitro and in vivo, *Biosci. Rep.*, 41 (2021). doi: 10.1042/BSR20201541.

34. C. S. Wu, Y. J. Lu, H. P. Li, C. Hsueh, C. Y. Lu, Y. Leu, et al., Glutamate receptor, ionotropic, kainate 2 silencing by DNA hypermethylation possesses tumor suppressor function in gastric cancer, *Int. J. Cancer*, 126 (2010), 2542–2552. doi:10.1002/ijc.24958.

35. R. Inoue, Y. Hirohashi, H. Kitamura, S. Nishida, A. Murai, A. Takaya, GRIK2 has a role in the maintenance of urothelial carcinoma stem-like cells, and its expression is associated with poorer prognosis, *Oncotarget*, 8 (2017), 28826–28839. doi: 10.18632/oncotarget.16259.

36. L. Di Stefano, M. R. Jensen, K. Helin, E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes, *Embo J.*, 22 (2003), 6289–6298. doi:10.1093/emboj/cdg613.

37. N. S. Moon, N. Dyson, E2F7 and E2F8 keep the E2F family in balance, *Dev. Cell.*, 14 (2008), 1–3. doi: 10.1016/j.devcel.2007.12.017.

38. X. Wu, Z. Sui, H. Zhang, Y. Wang, Z. Yu, Integrated analysis of lncRNA-mediated ceRNA network in lung adenocarcinoma, *Front. Oncol.*, 10 (2020), 554759. doi: 10.3389/fonc.2020.554759.

39. B. Hagenbuch, P. J. Meier, The superfamily of organic anion transporting polypeptides, *Biochim. Bioph. Acta*, 1609 (2003), 1–18. doi: 10.1016/s0005-2736(02)00633-8.

40. T. Tang, G. Wang, S. Liu, Z. Zhang, C. Liu, F. Li, et al., Highly expressed SLCO1B3 inhibits the occurrence and development of breast cancer and can be used as a clinical indicator of prognosis, *Sci. Rep.*, 11 (2021), 631. doi: 10.1038/s41598-020-80152-0.

41. H. Hase, M. Aoki, K. Matsumoto, S. Nakai, T. Nagata, A. Takeda, et al., Cancer type-SLCO1B3 promotes epithelial-mesenchymal transition resulting in the tumor progression of non-small cell lung cancer, *Oncol. Rep.*, 45 (2021), 309–316. doi: 10.3892/or.2020.7839.

42. M. Nagai, T. Furihata, S. Matsumoto, S. Ishii, S. Motohashi, I. Yoshino, et al., Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells, *Biochem. Bioph. Res. Commun.*, 418 (2012), 818–823. doi: 10.1016/j.bbrc.2012.01.115.

43. J. M. Ko, P. L. Chan, W. L. Yau, H. K. Chan, K. C. Chan, Z. Y. Yu, et al., Monochromosome transfer and microarray analysis identify a critical tumor-suppressive region mapping to chromosome 13q14 and THSD1 in esophageal carcinoma, *Mol. Cancer Res.*, 6 (2008), 592–603. doi: 10.1158/1541-7786.MCR-07-0154.

44. W. He, D. Ju, Z. Jie, A. Zhang, X. Xing, Q. Yang, Aberrant CpG-methylation affects genes expression predicting survival in lung adenocarcinoma, *Cancer Med.*, 7 (2018), 5716–5726. doi: 10.1002/cam4.1834.

45. A. D. Patterson, F. J. Gonzalez, G. H. Perdew, J. M. Peters, Molecular regulation of carcinogenesis: friend and foe, *Toxicol. Sci.*, 165 (2018), 277–283. doi: 10.1093/toxsci/kfy185.