Climate change adaptation strategies in the highland by vegetable farmers

A Hermawan1,2, I Ambarsari1, Sarjana1, A C Kusumasari1, G N Oktaningrum1

1Assessment Institute for Agricultural Technology (AIAT) Central Java – Indonesian Agency for Agricultural Research and Development (IAARD), Jl. Soekarno Hatta KM.26 No.10, Bergas, Kabupaten Semarang, Central Java 50552, Indonesia
2Corresponding author: agushermawan832@gmail.com

Abstract. The Highland of Magelang Regency has a strategic role as a vegetable production center in Central Java. Farmers in the highlands of Magelang cultivate various types of vegetables. Since highland vegetable farming hugely depends on rainfall as a primary water source, climate change remarkably affects farming. Vegetable farmers often encounter problems due to climate changes in drought and highly intense rainfall, which caused crop damage. Since specific studies on vegetable farmers’ adaptation strategies to cope with climate changes and their economic effects are still limited, this research aimed to study the phenomenon. The observation was performed by interviewing all members (20 farmers) of the Mutiara Organic farmers group in Sumberejo Village, Ngablak Sub-Regency, Magelang Regency, conducting field observation and soil analysis in September-November 2018. The results showed that farmers developed several adaptation strategies to deal with climate change, namely applying multiple cropping systems, developing organic agriculture, growing vegetables under plastic shelters, and expanding a vegetable nursery as an alternative source of income. Farmers cultivated extra crops in the wet season due to abundant water availability. Organic vegetable farming, which began in 2013, from the higher value of the benefit-cost ratio, was more profitable than non-organic farming. Besides, organic farming’s land quality was also better based on organic carbon (C-organic), Nitrogen (N), Cation Exchange Capacity (CEC), and other nutrients. Therefore this study recommended to develop organic vegetable farming on a broader scale and seriously support farmers’ vegetable nursery business, since it was profitable, contributed significant income for farmers, and strategic for vegetable farming industries development.

1. Introduction
Magelang Regency is the primary vegetable production center in Central Java Province. Of the 26 types of vegetables, consecutively 7, 2, 3, and 4 vegetable types are produced in Magelang and lies in the first, second, third, and fourth-largest area and highest production in the province [1]. These vegetables are generally grown in the highlands, including in the Merapi and Merbabu areas [2]. As a cash crop, vegetable farming is a source of income and welfare for farmers [3].

Vegetable farming depends heavily on climatic conditions due to rainfall as a source of water. Therefore climate change has a broad impact, as in other agricultural sectors [4]. Climate change impacted biophysics, genetics, and management of agriculture [5]. Erratic rainfall patterns, the increasing atmosphere temperature, and the early rainy season followed by dry weeks are common natural phenomena due to climate change [6]. In vegetable and fruit crops, climate change reduces the
quantity and quality of production, the emergence of new pests, increased pest and disease attacks, crop failure, decreased irrigation water capacity, and changes in land and crop suitability [7].

By nature, farmers are risk averters [8]. They apply mitigation and adaptation efforts to anticipate climate change impacts [4][9]. It encourages many researchers to study farmers’ decision and intensity of climate change adaptation in several parts, as in Chile [10], China [11], West Africa [12], and Indonesia [6][7]. Servina [7] stated that farmers apply several adaptation strategies, namely the environmentally stress-tolerant varieties, adjusting planting times, using water-efficient irrigation techniques, develop new watering technology, and using screen/plastic houses. This paper aimed to identify Magelang vegetable farmers’ adaptation strategies to anticipate climate change and examine their feasibilities.

2. Research method
The research was conducted in Sumberejo Village, Ngablak Sub-Regency, Magelang Regency, in September-November 2018 at 1250 meter above sea level (m asl). The observation was performed by interviewing all members of the Mutiara Organic Farmer Group (20 people) to find out farmers’ strategies in climate change, field observation and soil analysis. The soil analysis compares the quality of organic and non-organic (conventional) cultivated land. The soil analysis included C-organic, Nitrogen (Kjeldahl method), boron, and the availability of nitrate (NO$_3^-$) as well as ammonium (NH$_4^+$).

Finally, vegetable farming profit was counted [13][14]:

$$\pi = TR - TC$$ \hspace{1cm} (1)

where: π = farmers’ income/profits (IDR/ha); TR = total revenue (IDR/ha), and; TC = total cost (IDR/ha).

The economic feasibility of vegetable farming was analyzed using a benefit-cost ratio (B/C) [14]:

$$\frac{B}{C} = \frac{\pi}{TC}$$ \hspace{1cm} (2)

While the benefit of organic farming over non-organic/conventional farming was analyzed using marginal benefit costs ratio [14]:

$$MBCR_i = \frac{\frac{\pi_i}{TC_i} - \frac{\pi_j}{TC_j}}{\frac{\pi_j}{TC_j}}$$ \hspace{1cm} (3)

where: MBCR = Marginal benefit-cost ratio of organic over non-organic/conventional farming; i = organic farming, and; j = non-organic/conventional farming. Criteria: $MBCR = 1$: additional income equal additional costs; $MBCR < 1$: additional income is less than the additional cost, and; $MBCR > 1$: additional income is higher than the additional cost.

3. Results and discussion
3.1. Overview of the research site
Sumberejo Village, Ngablak Sub-Regency, is located in the highlands. The land is dominated by sloping land, relatively thick (> 60 cm) depth of the slump, with good fertility and drainage, making it suitable for vegetable farming activities.

Adequate rainfall (2,250 mm/year) supports agriculture activities. Water shortages rarely happened, even though most areas had no irrigation infrastructure. The general population in highland were farmers, even in relatively narrow land (0.1-0.25 ha). Farmers at least cultivated 23 types of vegetables, namely broccoli, beets, chili, chicory, green mustard, cabbages, celery, lettuce, tomatoes, carrots, potatoes, green curly, parsley, green beans, romaine, spinach, radish, zucchini, Chinese cabbages (pakchoy), coriander, and peas.
Table 1. General conditions of site research and agricultural land in Sumberejo Village and Ngablak Sub-Regency

Description	Sumberejo Village	Ngablak Sub-Regency
Altitude (m asl)	1250	1160.3
Land slope (%)	30	39.7
Topsoil depth (cm)	60	65.9
pH	6	6.2
Drainage	Good	Good
Soil fertility	Good	Good

3.2. Farmers' adaptation strategies

Vegetable farmers in Magelang Regency developed several adaptation strategies to face climate change were as follows: applying multiple cropping systems, developing organic agriculture, growing vegetables using the plastic shelter, and vegetable nursery as an alternatives source of income. The strategies were as follows.

Table 2. Opportunities for farmers to grow a particular type of vegetable (%) in wet and the dry season

Vegetable	Wet season	Dry season
Broccoli	100.0	100.0
Chili	83.3	72.2
Cabbage	66.7	27.8
Chinese cabbage	72.2	55.6
Beetroot	55.6	55.6
Celery	55.6	44.4
Tomato	55.6	50.0
Carrot	55.6	50.0
Pakcoy	55.6	44.4
Lettuce	27.8	33.3
Potato	22.2	16.7
Spinach (Horenso)	16.7	11.1
mustard greens	5.6	0.0
Parsley	11.1	11.1
Bean	5.6	5.6
Green curly	5.6	16.7
Radish	5.6	0.0
Green Romain	5.6	5.6
Spinach	5.6	5.6
Zucchini	5.6	0.0
Coriander	5.6	0.0
Peas	0.0	5.6
Others	44.4	38.9

3.2.1. Multiple cropping

In line with other studies [11][12], farmers applied multiple cropping to reduce crop failure due to climate change adaptation. Besides, the farmer group asked members to plant a
specific commodity to meet consumers’ demands. The crops cultivated in each season depending on the age of the vegetables, prices, and rainfall.

Farmers in Central-Benin, West Africa, apply multiple cropping systems by growing two or more crops on the same field either simultaneously or one after another [12]. On the other hand, vegetable farmers in Ngablak divided their land into several parts with different crop-combinations. At each area, farmers planted various types of vegetables, ranging from two to four commodities. Among the approximately 23 vegetable types, there were at least 37 and 32 crop-combinations in the rainy and dry seasons.

Vegetable types cultivated in the wet and dry seasons were similar. However, the number of commodities in the dry season was less (Table 2), related to the limited water sources. Farmers did not plant some commodities in the dry season. The three primary commodities planted in the rainy season were broccoli, chili, and Chinese cabbage. In contrast, most farmers plant broccoli, chili, Chinese cabbage, and beetroot in the dry season.

3.2.2. Organic vegetables. Vegetable farmers commonly applied high doses of chemical fertilizers and pesticides. Farmers applied pesticides to anticipate pests and disease attacks. Several factors influenced farmers' perceptions of pesticide use, namely, pest attack risk, the cultivars' resistance to pests, and farmers' knowledge of pesticide impact [15]. Continuous high doses of pesticides will accumulate on products, polluting the environment, reducing productivity, and poisoning humans as well as animals [16].

Farmers' blood tests in Sumberejo Village showed a tendency of health problems [16], supporting the previous results. In July 2007, in Kanigor Village, Ngablak Sub-Regency, Magelang, nine residents are reported dead due to pesticide residues [17].

Such condition encourages young farmers to develop organic vegetables, especially since organic vegetables' price is higher than non-organic. One of them was Mutiara Organic, established in 2013. Organic vegetable demand increases since it is considered healthier than non-organic [18].

Vegetable farming was profitable (Table 3). However, the B/C value of organic farming was higher than conventional. The marginal benefit-cost ratio (MBCR) values were higher than 1, which means additional profits were higher than the additional costs. Organic farming's real profit was even higher since farmers did not pay in cash some of the costs, namely homemade liquid organic fertilizers and laborers.

Although organic farming was more profitable than conventional, farmers could not instantly change their conventional to organic farming. A particular certification body should inspect the land. Besides, there was a transition period from conventional to organic farming. During the period, farmers almost did not get any yield. Farmers benefit in the third year, and the yield gradually increased.

Item	Broccoli	Cabbage	Mustard greens			
	non-organic	organic	non-organic	Organic		
I. Costs:	2.323	2.654	1.446	1.415	1.230	2.300
- Seed	234	250	90	90	70	100
- Fertilizers	742	584	216	325	395	550
- Pesticides	158	584	140	-	21	-
- Labor	1.189	1.820	1.000	1.000	744	1.650
II. Return	5.409	6.358	2.000	2.500	2.625	4.900
III. Benefit	3.020	3.640	554	1.085	1.395	2.600
B/C	1.30	1.37	0.38	0.77	1.13	1.13
MBCR	1.87	17.13				
Organic farming was considered one of the climate change adaptation efforts [19] since it emits much lower greenhouse gas (GHG) emissions and fastly, affordable and effectively sinks carbon into the soil. Organic farming reduces GHG, mainly because it does not use any chemical fertilizers. Soil analysis showed that the nutrients and quality of land utilized in organic farming were better than non-organic (Table 4). It indicated the positive impact of organic farming on land quality. Previous research reported that organic fertilizers can increase soil fertility, land quality, and soil productivity [20][21]. The application of organic fertilizers able to repair soil characteristics (physical, chemical, and biological), intensify land productivity, narrow the environmental pollution, and prevent land degradation [21][22].

Organic fertilizers are the primary source of soil nitrogen, increasing the C/N ratio. Plants achieve optimal productivity when the C-organic is more than 2.0% [22]. Organic and clay materials are the main components in the formation of aggregates, thereby increasing the soil's porosity and facilitating the absorption of water into the soil, thereby increasing the storage capacity of groundwater [21].

3.2.3. Plastic shelter. During the last few years, some farmers planted vegetables under Ultra Violet (UV) plastic shelter supported by bamboo. Plastic shelters have no walls so that organisms and air can freely enter and exit. However, a plastic shelter can function as part of the greenhouse. Plastic house is part of an effort to lower the negative impact of climate change [7].

Farmers stated that the chances of success in vegetable farming under plastic shelters were higher than without shelters. The percentage success of vegetable farming under plastic shelters was about 81.25-90.0% in the wet season and 70-83.57% in the dry season. Meanwhile, without shelter, it was decreased to 70-86.25% in the wet season and 67.5-76.67 in the dry season (Table 5). Previous reports support the results, in which tomato [23] and shallot [24] under plastic shelter do not suffer from high rain intensity.

Unfortunately, not many farmers built plastic shelters. Only one-third of the Mutiara Organic members used plastic shelters due to their high investment and cost. It cost around IDR 24.4 million (Table 6) per 500 square meters. Plastic shelters also required maintenance of as much as IDR 467 thousand a year. Farmers stated that plastic shelter had a shelf life of about 4.08 years.

Table 4. Soil analysis on the organic and non-organic vegetable in Sumberejo Village, Ngablak Sub-Regency, Magelang Regency
Organic soil depth (cm)

C-organic (%)
0-20
3.72
2.55
N-Kjeldahl (%)
0.49
0.36
CEC cmol (+) kg-1
32.61
23.89
Total nutrients:
Boron (ppm)
34.20
50.67
Available nutrients:
Boron (ppm)
0.87
0.46
NO₃ available (ppm)
45.27
27.92
NH₄ available (ppm)
17.57
5.86
It encouraged vegetable seed cultivate reaching an average of 13%. The value is much lower than the contribution of farmers' income from vegetables. Some vegetable farmers also produce ready plant seeds. Farmers commonly avoid risks by using certified seeds for higher productivity [8] and stress-tolerant varieties [7]. The availability of qualified vegetable seeds is crucial [3]. As in other places [25], it encouraged vegetable seed and nursery industries growth in Ngablak. In the vegetable nursery, farmers sowed the seeds, care for, and sell the ready-to-plant seedling to farmers. Some vegetable farmers also produce ready-to-plant seeds. Farmers did the business to diversify their income source, especially in the drought incidences when no harvest vegetables.

The contribution of the ready-to-plant vegetable seeds to household income was quite significant, reaching an average of 13%. The value is much lower than the contribution of farmers' income from vegetable seed producers (cucumber, chili, and eggplant) in Karang Sidemen Village, North Batukliang Sub-Regency, Central Lombok Regency, which reaches 84.9% in the six months [26].

Farmers marketed the seeds inside and outside the district, and even outside the province. Farmers cultivated various types of ready-to-plant seeds. Some of them were broccoli, chicory, chili, tomato, and

3.2.4. Vegetable nursery as an alternative source of income. Farmers commonly avoid risks by using certified seeds for higher productivity [8] and stress-tolerant varieties [7]. The availability of qualified vegetable seeds is crucial [3]. As in other places [25], it encouraged vegetable seed and nursery industries growth in Ngablak. In the vegetable nursery, farmers sowed the seeds, care for, and sell the ready-to-plant seedling to farmers. Some vegetable farmers also produce ready-to-plant seeds. Farmers did the business to diversify their income source, especially in the drought incidences when no harvest vegetables.

The contribution of the ready-to-plant vegetable seeds to household income was quite significant, reaching an average of 13%. The value is much lower than the contribution of farmers' income from vegetable seed producers (cucumber, chili, and eggplant) in Karang Sidemen Village, North Batukliang Sub-Regency, Central Lombok Regency, which reaches 84.9% in the six months [26].

Farmers marketed the seeds inside and outside the district, and even outside the province. Farmers cultivated various types of ready-to-plant seeds. Some of them were broccoli, chicory, chili, tomato, and

Table 5. The chance of success (%) of vegetables planted by season in Sumberejo Village, Ngablak Sub-Regency, Magelang Regency

Commodity	Without plastic shelter	Under plastic shelter		
	Wet season	Dry season	Wet season	Dry season
Broccoli	80.88±2.26	74.58±4.16	88.50±2.09	80.00±6.42
Celery	77.73±3.82	70.68±5.45	86.43±4.64	73.00±7.33
Carrots	86.25±2.99	69.04±4.28	90.00±5.06	68.00±6.65
Beets	83.18±4.99	74.38±5.47	89.72±4.65	83.57±8.74
Chicory	79.38±3.68	70.31±5.55	85.94±5.07	75.71±9.43
green mustard	80.42±4.74	72.12±6.37	89.50±3.08	79.29±12.18
Chilli	79.64±4.53	68.04±4.93	82.50±4.90	75.71±8.12
Tomatoes	75.91±5.88	69.00±5.23	81.25±8.92	66.67±8.64
Horenso	70.00±19.60	66.67±3.27	85.00±0.00	70.00±0.00
Tatsoi pagoda	60.00±0.00	60.00±0.00	80.00±0.00	70.00±0.00
Cabbages	70.00±0.00	70.00±0.00	90.00±0.00	80.00±0.00
Potatoes	80.00±0.00	60.00±19.60	-	-
Romaine	80.00±0.00	70.00±0.00	-	-
coriander	80.00±0.00	70.00±0.00	-	-
Kale	90.00±0.00	70.00±0.00	-	-
Parsley	90.00±0.00	70.00±0.00	-	-

Table 6. Investment costs of plastic shelters for vegetable farming in Sumberejo Village, Ngablak Sub-Regency, Magelang Regency

Items	Volume (unit)	Price per unit (IDR)	Amount (IDR)
Material costs			
- Bamboo	311.67 Trees	20,833.33	6,493,056
- nails	8.83 Kilograms	15,000.00	132,500
- Wire / string	14.17 Kilograms	53,000.00	750,833
- UV Plastic	354.17 Meters	22,083.33	7,821,181
- Screen	10.00 Roller	268,750.00	2,687,500
Labor	1.00 Package	6,503,000.00	6,503,000
Total costs			24,388,069
cabbage. The production capacity of seeds in the rainy season was much higher than in the dry season because most of the consumers come from dry land/non-irrigated land areas, which highly depends on the season.

Table 7. Description of vegetable nursery business in Sumberejo Village, Ngablak Sub District, Magelang District

Commodities	Production periods (times/season)	Production capacity (seeds/period)	Seed price (IDR/plant)	Share/season (x 1000 IDR)				
	Wet season	Dry season						
Broccoli	5.67	4.67	45,667	24,556	150	150	9,250	4,283
Chinese cabbage	7.00	7.00	60,714	32,143	150	150	6,071	3,214
Cayenne pepper	3.33	4.00	45,000	31,250	150	150	6,071	3,214
Curly Red Chili	3.00	-	6,000	-	150	-	4,500	-
Tomato	5.67	4.33	40,222	14,556	150	150	9,111	2,911
Cabbage	4.00	4.00	50,000	55,000	150	150	5,000	5,500

Table 8. Financial analysis of broccoli and cabbage nursery (per 100 m² of plastic shelter) in Sumberejo Village, Ngablak Sub-Regency, Magelang Regency

Items	Broccoli	Cabbage
Production capacity per period	100,000	190,000
Cost (IDR)	3,721,025	6,313,025
– Input costs	2,193,000	4,685,000
– labor	900,000	1,000,000
– Depreciation	628,025	628,025
Return (IDR)	13,500,000	19,000,000
Benefit (IDR)	9,778,975	12,686,975
B/C	2.63	2.01
4. Conclusion
Vegetable farmers applied four adaptation strategies to cope with climate change, namely multiple cropping, organic farming, plastic shelter using, and developing vegetable nursery for income diversification. Multiple cropping with organic farming was more profitable than non-organic vegetable farming. Soil analysis results also showed that organic farming's land quality was higher (C-organic, N, CEC, and available nutrients) than those managed conventionally.

Planting vegetables under plastic shade was also prospective as an adjustment to climate change. The chances of the success of farming vegetables grown under plastic shelter were higher than without shading. To reduce uncertainty income from vegetable farming due to climate change, farmers developed a vegetable nursery business. Aside from supporting vegetable farming in the region, the profitable business contributed enough income to farmers highly.

The research recommended developing broader scale organic vegetable farming. Besides producing healthier products, organic vegetables did not harm farmers and their families' health and ensure food production sustainability in the future. It also recommended supporting the development of farmers' vegetable seed industries. Farmers needed to be equipped with knowledge about healthy nursery technology to prevent the spread of seed-borne disease and the use of certified seeds. This research was a case study. Therefore, more research is needed to obtain in-depth and broader information on farmers’ perceptions and adaptation efforts to cope with climate change, which involves more respondents from several vegetable production centers.

References
[1] BPS_Jateng 2018 Harvested Area and Production of Seasonal Vegetable and Fruit Plants by Regency/Municipality in Jawa Tengah, 2015 - 2016 Biro Pus. Stat. Jawa Teng.
[2] Lestari P 2012 Performance and Continuity Prospect of Sub Terminal Agribisnis Sewukan, Kabupaten Magelang in Increasing Farmer’s Wealth in Merapi Merbabu Area after Merapi Eruption J. Pembrang. Wil. dan Kota 8 65–75
[3] Anwar A, Sudarsono and Ilyas S 2005 Perbenihan Sayuran di Indonesia: Kondisi Terkini dan Prospek Bisnis Benih Sayuran Bul. Agron 33 38–47
[4] Surmaini E, Runtuwenuw E dan Las I 2010 Upaya Sektor Pertanian dalam Menghadapi Perubahan Iklim J. Litbang Pertan. 30 1–7
[5] Adib M 2014 Pemanasan Global, Perubahan Iklim, Dampak, dan Solusinya di Sektor Pertanian BioKultur 3 420–9
[6] Adiyoga W dan Basuki R S 2018 Persepsi Petani Sayuran Tentang Dampak Perubahan Iklim di Sulawesi Selatan J. Hort. 28 133–46
[7] Servina Y 2019 Dampak Perubahan Iklim dan Strategi Adaptasi Tanaman Buah dan Sayuran di Daerah Tropis J. Litbang Pertan. 38 65–76
[8] Pujiharto dan Wahyuni S 2017 Analisis Perilaku Petani Terhadap Risiko Usahatani Sayuran Dataran Tinggi: Penerapan Moscardi and de Janvry Model AGRITECH 19 65–73
[9] Murniati K, Mulyo J H, Irham dan Hartono S 2014 Efisiensi Teknis Usaha Tani Padi Organik Lahan Sawah Tadah Hujan di Kabupaten Tungalow Provinsi Lampung J. Penelit. Pertan. Terap. 14 31–8
[10] Roco L, Engler A, Bravo-ureta B dan Jara-rojas R 2014 Farm level adaptation decisions to face climatic change and variability: Evidence from Central Chile Environ. Sci. Policy 44 86–96
[11] Liu L, Xu X, Zhuang D, Chen X dan Li S 2013 Changes in the Potential Multiple Cropping System in Response to Climate Change in China from 1960 – 2010 PlosS ONE 8
[12] Degla P K, Adekambi S A dan Adanhoussode P 2016 Drivers of Multiple Cropping-Systems as Adaptive Strategy to Climate Change in Central-Benin (West Africa) J. Agric. Sci. 8 48–58
[13] Damanik K I dan Sasonko G 2010 Pengantar Ilmu Ekonomi Mikro Ekonomi (Salatiga: FEB, UKSW)
[14] CIMMYT 1988 From Agronomic Data to Farmer Recommendations: An Economics Training Manual 79
[15] Ameriana M 2008 Perilaku Petani Sayuran dalam Menggunakan Pestisida Kimia J. Hort. 18 95–106
[16] Rizqyana I F, Setiani O dan Lanang H 2017 Hubungan Riwayat Paparan Pestisida dengan Jumlah Eritosit, MCV, MCH, dan MCHC pada Petani Sayuran di Desa Sumberejo Kecamatan Ngablak Kabupaten Magelang J. Kesehat. Masy. 5 383–91
[17] Raini M 2007 Toksikologi Pestisida dan Penanganan Akibat Keracunan Pestisida Media Litbang Kesehat. Vol. 17 10–8
[18] Mayrowani H 2012 Pengembangan Pertanian Organik di Indonesia Forum Penelit. Agro Ekon. 30 91–108
[19] FAO 2010 Pacific Food Security Toolkit, Building Resilience to Climate Change: Root Crop and Fishery Production (Rome, Italy)
[20] Roidah I S 2013 Manfaat Penggunaan Pupuk Organik untuk Kesuburan Tanah J. Univ. Tulungagung BONOROWO 1 31–42
[21] Juarsah I 2014 Pemanfaatan pupuk organik untuk pertanian organik dan lingkungan berkelanjutan Prosiding Seminar Nasional Pertanian Organik (Bogor: Balitbangtan) hal 127–36
[22] Hartatik W dan Setyorini D 2012 Pemanfaatan Pupuk Organik untuk Meningkatkan Kesuburan Tanaman Prosiding Seminar Nasional Teknologi Pemupukan dan Pemulihan Lahan Terdegradasi ed W Putu (Balitbangtan) hal 571–82
[23] Korlina E, Latifah E dan Andri K B 2016 Pengaruh Naungan Plastik dan Fungisida Berbahan Aktif Asam Fosfit terhadap Perkembangan Penyakit dan Produksi Tomat J. Hort. 26 89–96
[24] Sumarni N dan Rosliani R 2010 Pengaruh Naungan Plastik Transparan, Kerapatan Tanaman, dan Dosis N terhadap Produksi Umbi Bibit Asal Biji Bawang Merah J. Hort. 20 52–9
[25] Wahyudi M I, Wijaya I, Hadi S dan Ridho A A 2017 Analisis Peluang dan Keuntungan Usaha Pembibitan Tanaman Sayuran di Kabupaten Jember Prosiding Seminar Nasional Hasil Penelitian Pertanian VII 2017 ed T Joko, A B Raya, Suryanti, A D Nugroho, E Ambarwati, D Utami, R P Kirana, I M Y Prasada dan S K Putri (Yogyakarta: Fakultas Pertanian Universitas Gadjah Mada) hal 163–70
[26] Hanapi, Halil dan Ibrahim 2016 Kontribusi Usaha Penangkaran Benih Sayuran (Mentimun, Cabai Dan Terong) terhadap Pendapatan Rumah Tangga Petani di Desa Karang Sidemen Kecamatan Batukliang Utara Kabupaten Lombok Tengah 10