A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

Kains, N.; Street, R.A.; Choi, J.-Y.; Han, C.; Udalski, A.; Almeida, L.A.; Jablonski, F.; Tristram, P.J.; Jørgensen, Uffe Gråe; Szymanski, M.K.

Published in:
Astronomy & Astrophysics

Link to article, DOI:
10.1051/0004-6361/201220626

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kains, N., Street, R. A., Choi, J-Y., Han, C., Udalski, A., Almeida, L. A., Jablonski, F., Tristram, P. J., Jørgensen, U. G., Szymanski, M. K., Kubiak, M., Pietrzynski, G., Soszynski, I., Poleski, R., Kozowski, S., Pietrukowicz, P., Ulaczyk, K., Wyrzykowski, L., Skowron, J., ... Zub, M. (2013). A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251. Astronomy & Astrophysics, 552, A70. https://doi.org/10.1051/0004-6361/201220626

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A giant planet beyond the snow line in microlensing event
OGLE-2011-BLG-0251

N. Kains,⋆ R. A. Street, J.-Y. Choi, C. Han,⋆⋆ A. Udalski,⋆⋆⋆ A. Almeida,⋆⋆⋆ A. Jablonski,⋆ P. J. Tristram, U. G. Jørgensen,⋆⋆⋆ and M. K. Szymański, M. Kubiak, G. Pietrzyński, I. Soszyński, R. Poleske,2 S. Kozłowski, P. Pietrukowicz, K. Ulaczyk, Ł. Wyrzykowski,4 J. Skowron,44 (The OGLE collaboration) and K. A. Alsubai,9 V. Bozza,10,11 P. Browne,12 M. J. Burgdorf,13,14 S. Calchi Novati,10,15 P. Dodds,12 M. Dominik,⋆⋆ S. Dreizler,16 X.-S. Fang,18 F. Grundahl,19 C.-H. Gu,18 S. Hardis,7 K. Harpsøe,17,20 A. Hornstrup,22 M. Hundertmark,12,16 J. Jessen-Hansen,19 E. Kerins,22 C. Liebig,12,15 M. Lund,19, M. Lundkvist,19 L. Mancini,23 M. Mathiasen,7 M. T. Penny,22,24 S. Rahvar,25,26 D. Ricci,27 K. C. Sahu,28 G. Scarpetta,10,29 J. Skottfelt,7 C. Snodgrass,31 J. Southworth,32 J. Surdej,27 J. Tregloan-Reed,32, J. Wambsganss,33 O. Wertz,27 (The MiNDSTEp consortium) and D. Bajek,12 D. M. Bramich,1 K. Horne,12 S. Ipatov,35 I. A. Steele,36 Y. Tsapras,2,37 (The RoboNet collaboration) and F. Abe,59 D. P. Bennett,60 I. A. Bond,61 C. S. Botzler,62 P. Chote,6 M. Freeman,62 A. Fukui,63 K. Furusawa,59 Y. Itow,59 C. H. Ling,61 K. Masuda,59 Y. Matsubara,59 N. Miyake,59 Y. Muraki,65 K. Ohishi,66 N. Rattenbury,62 T. Saito,67 D. J. Sullivan,6 T. Sumi,68 D. Suzuki,68 K. Suzuki,69 W. L. Sweatman,61 S. Takini,59 K. Wadi,68, P. C. M. Yock,62 (The MOA collaboration) and W. Allen,38 V. Batista,24 S.-J. Chung,17 G. Christie,39 D. L. DePoy,41 B. S. Gaudi,24 A. Gould,24 C. Henderson,24 Y.-K. Jung,3 J.-R. Koo,17 C.-U. Lee,17 J. McCormick,42 D. McGregor,43 J. A. Muñoz,45 T. Natusch,59,47 H. Ngan,39 H. Park,3 R. W. Poppe,24 I.-G. Shin,4, J. Yee,24 (The µFUN collaboration) and M. D. Albrow,47 E. Bachelet,52,53 J.-P. Beaulieu,46, S. Brilliant,30 J. A. R. Caldwell,48 A. Cassan,46 A. Cole,50, E. Corrales,46, Ch. Coutures,48, S. Dieters,52, D. Dominis Prester,54 J. Donatowicz,55 P. Fouqué,52,53 J. Greenhill,50, S. R. Kane,56, D. Kubas,50,46, J.-B. Marquette,46, R. Martin,57, P. Meintjes,49 J. Menzies,58, K. R. Pollard,47, A. Williams,33, D. Wouters,46, and M. Zurb (The PLANET collaboration) (Affiliations can be found after the references)

Received 24 October 2012 / Accepted 1 March 2013

ABSTRACT

Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge.

Methods. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio $q = 1.9 \times 10^{-3}$. Thanks to our detection of higher-order effects on the light curve due to the Earth’s orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously.

Results. We find that the lens is made up of a planet of mass $0.53 \pm 0.21 M_J$ orbiting an M dwarf host star with a mass of $0.26 \pm 0.11 M_\odot$. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is $d = 1.408 \pm 0.019$, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around $\sim 1\text{--}1.5$ AU.

Key words. gravitational lensing: weak – planets and satellites: detection – planetary systems – Galaxy: bulge

* Corresponding authors: nkains@eso.org; cheongho@astroph.chungbuk.ac.kr
** Royal Society University Research Fellow.
1. Introduction

Gravitational microlensing is one of the methods that allow us to probe the populations of extrasolar planets in the Milky Way, and has now led to the discoveries of 16 planets\(^1\), several of which could not have been detected with other techniques (e.g. Beaulieu et al. 2006; Gaudi et al. 2008; Muraki et al. 2011). In particular, microlensing events can reveal cool, low-mass planets that are difficult to detect with other methods. Although this method presents several observational and technical challenges, it has recently led to several significant scientific results. Sumi et al. (2011) analysed short time-scale microlensing events and concluded that these events were produced by a population of Jupiter-mass free-floating planets, and were able to estimate the number of such objects in the Milky Way. Cassan et al. (2012) used 6 years of observational data from the PLANET collaboration to build on the work of Gould et al. (2010) and Sumi et al. (2011), and derived a cool planet mass function, suggesting that, on average, the number of planets per star is expected to be more than 1.

Modelling gravitational microlensing events has been and remains a significant challenge, due to a complex parameter space and computationally demanding calculations. Recent developments in modelling methods (e.g. Cassan 2008; Kains et al. 2009, 2012; Bennett 2010; Ryu et al. 2010; Bozza et al. 2012), however, have allowed microlensing observing campaigns to optimise their strategies and scientific output, thanks to real-time modelling providing prompt feedback to observers as to the possible nature of ongoing events.

In this paper we present an analysis of microlensing event OGLE-2011-BLG-0251, an anomalous event discovered during the 2011 season by the OGLE collaboration and observed intensively by follow-up teams. In Sect. 2, we briefly summarise the basics of relevant microlensing formalism, while we discuss our data and reduction in Sect. 3. Our modelling approach and results are outlined in Sect. 4; we translate this into physical parameters of the lens system in Sect. 5 and discuss the properties of the planetary system we infer.

2. Microlensing formalism

Microlensing can be observed when a source becomes sufficiently aligned with a lens along the line of sight that the deflection of the source light by the lens is significant. A characteristic separation at which this occurs is the Einstein ring radius. When a single point source approaches a single point lens of mass \(M\) with a projected source-lens separation \(s\), the source brightness is magnified following a symmetric “point source-point lens” (PSPL) pattern which can be parameterised with an impact parameter \(u_0\) and a timescale \(t_E\), both expressed in units of the angular Einstein radius (Einstein 1936),

\[
\theta_E = \sqrt{\frac{4GM}{c^2}}\left(\frac{D_S - D_L}{D_S D_L}\right)
\]

(1)

where \(G\) is the gravitational constant, \(c\) is the speed of light, and \(D_S\) and \(D_L\) are the distances to the source and the lens, respectively, from the observer. The timescale is then \(t_E = \theta_E/\mu\), where \(\mu\) is the lens-source relative proper motion. Therefore the observable \(t_E\) is a degenerate function of \(M, D_L\) and the source’s transverse velocity \(v_s\), assuming that \(D_S\) is known.

\(^{1}\) http://exoplanet.eu

However, measuring certain second-order effects in microlensing light curves such as the parallax due to the Earth’s orbit allows us to break this degeneracy and therefore measure the properties of the lensing system directly.

When the lens is made up of two components, the magnification pattern can follow many different morphologies, because of singularities in the lens equation. These lead to source positions, along closed caustic curves, where the lensing magnification is formally infinite for point sources, although the finite size of sources means that, in practice, the magnification gradient is large rather than infinite. A point-source binary-lens (PSBL) light curve is often described by 6 parameters: the time at which the source passes closest to the centre of mass of the binary lens, \(t_\text{eq}\), the Einstein radius crossing time, \(t_E\), the minimum impact parameter \(u_0\), which are also used to describe PSPL light curves, as well as the source’s trajectory angle \(\alpha\) with respect to the lens components, the separation between the two mass components, \(d\), and their mass ratio \(q\). Finite source size effects can be parameterised in a number of ways, usually by defining the angular size of the source \(\rho_s\) in units of \(\theta_E\):

\[
\rho_s = \frac{\theta_s}{\theta_E},
\]

(2)

where \(\theta_s\) is the angular size of the source in standard units.

3. Observational data

The microlensing event OGLE-2011-BLG-0251 was discovered by the Optical Gravitational Lens Experiment (OGLE) collaboration’s Early Warning System (Udalski 2003) as part of the release of the first 431 microlensing alerts following the OGLE-IV upgrade. The source of the event has equatorial coordinates \(\alpha = 17^h38^m14.18^s\) and \(\delta = -27^\circ08'11''\) (J2000.0), or Galactic coordinates of \((l, b) = (0.67^\circ, 2.33^\circ)\). Anomalous behaviour was first detected and alerted on August 9, 2011 (HJD = 2455722.5) thanks to real-time modelling efforts by various follow-up teams that were observing the event, but by that time a significant part of the anomaly had already passed, with sub-optimal coverage due to unfavourable weather conditions. The anomaly appears as a two-day feature spanning HJD = 2455779.5 to 2455781.5, just before the time of closest approach \(t_0\). Despite difficult weather and moonlight conditions, the anomaly was securely covered by data from five follow-up telescopes in Brazil (μFUN, Pico dos Dias), Chile (MiNDSTēp Danish 1.54 m) New Zealand (μFUN Vintage Lane, and MOA Mt. John B&C), and the Canary Islands (RoboNet Liverpool Telescope).

The descending part of the light curve also suffered from the bright Moon, with the source ~5 degrees from the Moon at ~85% of full illumination, leading to high background counts in images and more scatter in the reduced data. We opted not to include data from Mt. Canopus 1 telescope in the modelling because of technical issues at the telescope affecting the reliability of the images, and also excluded the I-band data from CTIO because they also suffer from large scatter, probably due to the proximity of the bright full Moon to the source.

The data set amounts to 3738 images from 13 sites, from the OGLE survey team, the MiNDSTēp consortium, the RoboNet team, as well as the μFUN, PLANET and MOA collaborations in the I, V and R bands, as well as some unfiltered data; data sets are summarised in Table 1 and the light curve is shown in Fig. 1. We reduced all data using the difference imaging pipeline DanDIA (Bramich 2008; Bramich et al. 2013), except for the OGLE data, which was reduced by the OGLE team with their optimised offline pipeline.
For each data set, we applied an error bar rescaling factors a and b to normalise error bars with respect to our best-fit model (see Sect. 4), using the simple scaling relation $\sigma'_i = a \sqrt{\sigma^2_i + b^2}$ where σ'_i is the rescaled error bar of the ith data point and σ_i is the original error bar (e.g. Bachelet et al. 2012). The error bar rescaling factors for each data set is given in Table 1. We did not exclude outliers from our data sets, unless we had reasons to believe that an outlier had its origin in a bad observation, or in issues with the data reduction pipeline.

4. Modelling
We modelled the light curve of the event using a Markov chain Monte Carlo (MCMC) algorithm with adaptive step size. We first used the “standard” PSBL parameterisation in our

Table 1. Data sets for OGLE-2011-BLG-0251, with the number of data points for each telescope/filter combination.

Team and telescope	filter	Aperture	Location	N	a	b
OGLE	I	1.3 m	Las Campanas, Chile	1527	0.369	0.020
OGLE	V	1.3 m	Las Campanas, Chile	27	0.937	0.010
MiniSTeP Danish	I	1.54 m	La Silla, Chile	454	1.085	0.020
LCOGT Liverpool Telescope	I	2 m	La Palma, Canary Islands	191	2.434	0.001
LCOGT Faulkes North	I	2 m	Haleakula, Hawai‘i	41	1.806	0.005
LCOGT Faulkes South	I	2 m	Siding Spring Observatory, Australia	31	1.119	0.005
μFUN CTIO	V	1.3 m	Cerro Tololo, Chile	6	1.000	0.020
μFUN Possum	R	0.36 m	Auckland, New Zealand	60	1.027	0.010
μFUN Farm Cove	–	0.36 m	Auckland, New Zealand	47	0.841	0.005
μFUN Auckland	–	0.4 m	Gisborne, New Zealand	5	1.000	0.020
μFUN Vintage Lane	–	0.4 m	Blenheim, New Zealand	17	2.055	0.001
μFUN Pico dos Dias	I	0.6 m	Minas Gerais, Brazil	572	3.095	0.001
MOA Mt John B&C	I	0.6 m	South Island, New Zealand	621	5.175	0.001
MOA Mt John B&C	V	0.6 m	South Island, New Zealand	5	1.000	0.020
PLANET SAAO	I	1 m	SAAO, South Africa	134	1.931	0.010

Total | 3738 |

Notes. The rescaling coefficients a and b are also given, with error bars rescaled as $\sigma' = a \sqrt{\sigma^2 + b^2}$, where σ' is the rescaled error bar and σ is the original error bar.
modelling, whereby a binary-lens light curve can be described by 6 parameters: those given in Sect. 2, ignoring the second-order ρ, parameter described in that section. For all models and configurations we searched the parameter space for solutions with both a positive and a negative impact parameter m_0.

We started without including second-order effects of the source having a finite size or parallax due to the orbital motion of Earth around the Sun, and then added these separately in subsequent modelling runs by fitting the source size parameter ρ, as defined in Sect. 2, and the parallax parameters described below. Both effects led to a large decrease in the χ^2 statistic of the model (>1000), which could not be explained only by the extra number of parameters.

For the finite-source effect, we additionally considered the limb-darkening variation of the source star surface brightness by modelling the surface-brightness profile as

$$I_{\theta,0} = I_{\theta,0}[1 - c_1(1 - \cos\psi)],$$

where $I_{\theta,0}$ is the brightness at the centre of the source, and ψ is the angle between a normal to the surface and the line of sight. We adopt the limb-darkening coefficients based on the source type determined from the dereddened colour and brightness (see Sect. 5.1). The values of the adopted coefficients are $c_0 = 0.073$, $c_1 = 0.624$, $c_R = 0.542$, based on the catalogue of Claret (2000).

Finally, in a third round of modelling, we included both the effects of parallax and finite source size (“ESBL + parallax”). Including these effects together led to a significant improvement of the fit, with $\Delta \chi^2 > 500$ compared to the fits in which those effects were added separately. Computing the f-statistic (see e.g. Lupton 1993) for this difference tells us that the probability of this difference occurring solely due to the number of degrees of freedom decreasing by 1 or 2 is highly unlikely. Our best-fit ESBL + parallax model is shown in Fig. 1.

To model the effect of parallax, we used the geocentric formalism (Dominik 1998; An et al. 2002; Gould 2004), which has the advantage of allowing us to obtain a good estimate of t_0, E and m_0 from a fit that does not include parallax. This formalism adds a further 2 parallax parameters, π_E and π_N, the component of the lens parallax vector π projected on the sky along the east and north equatorial coordinates, respectively. The amplitude of π is then

$$\pi = \sqrt{\pi_E^2 + \pi_N^2}. \quad \text{(4)}$$

Measuring π in addition to the source size allows us to break the degeneracy between the mass, distance and transverse velocity of the lens system that is seen in Eq. (1). This is because π also relates to the lens and source parallaxes π_L and π_S as

$$\pi = \pi_L - \pi_S = \frac{D_R^{-1} - D_E^{-1}}{\theta_E}. \quad \text{(5)}$$

Using this in Eq. (1) allows us to solve for the mass of the lens.

As an additional second-order effect, we also consider the orbital motion of the binary lens. Under the approximation that the change rates of the binary separation and the rotation of the binary axis are uniform during the event, the orbital effect is taken into consideration with 2 additional parameters of \dot{a} and $\dot{\psi}$, which represent the rate of change of the binary separation and the source trajectory angle with respect to the binary axis, respectively. It is found that the improvement of fits by the orbital effect is negligible and thus our best-fit model is based on a static binary lens.

![Fig. 2. Constraints from the xallarp fit as a function of the orbital period P of the source star. The top panel shows χ^2 of the xallarp fit as a function of P, with a red circle marking the location of the best parallax model. The bottom panel shows the minimum mass of the source companion as a function of P. The shaded area in both panels indicates where models are excluded based on conservative blending constraints on the source companion’s mass.](a70fig2)

Below we outline our modelling efforts that resulted in fits that were not competitive with our best-fit ESBL + parallax models, and which we therefore excluded in our light curve interpretation.

4.1. Excluded models

4.1.1. Xallarp

We attempted to model the effects of so-called xallarp, orbital motion of the source if it has companion (Griest & Hu 1992). Modelling this requires five additional parameters: the components of the xallarp vector, ξ_E and ξ_N, the orbital period P, inclination i and the phase angle ψ of the source orbital motion. By definition, the magnitude of the xallarp vector is the semi-major axis of the source’s orbital motion with respect to the centre of mass, a_S, normalised by the projected Einstein radius onto the source plane, $\tilde{r}_E = D_S\theta_E$, i.e.

$$\xi = a_S/\tilde{r}_E. \quad \text{(6)}$$

The value of a_S is then related to the semi-major axis of the binary by

$$a_S = \frac{a}{M_1 + M_2}, \quad \text{(7)}$$

where M_1 and M_2 are the masses of the source components.

In Fig. 2, we show χ^2 of the fit plotted as a function of the orbital period of the source star. We compare this to the χ^2 statistic of the best parallax fit. We find that xallarp models provide fits competitive with the parallax planetary models for orbital periods $P > 1$ year. However, the solutions in this range cannot meet the constraint provided by the source brightness. Combining Eqs. (6) and (7) with Kepler’s third law, $P^2 = a^3/\mu$ yields (Dong et al. 2009)

$$P^2 = \frac{(M_1 + M_2)^2}{M_2^3} \left(\frac{\xi \tilde{r}_E}{\text{AU}}\right)^3. \quad \text{(8)}$$
Rearranging this equation for M_2, and using the fact that $M_2/(M_1 + M_2) < 1$, we can derive a lower limit for the mass of M_2,

$$M_{2,\text{min}} = \frac{(\xi E \hat{r}_E)^3}{P^2}. \quad (9)$$

In the lower panel of Fig. 2, we show the minimum mass of the source companion as a function of orbital period. The blending constraint means that the source companion cannot be arbitrarily massive, and we use a conservative upper limit for its mass of $3 M_\odot$. With this constraint, we find that xallarap models are not competitive with parallax planetary models, and we therefore exclude the xallarap interpretation of the light curve.

4.1.2. Binary source

We also attempted to model this event as a binary source - point lens (BSPL) event; indeed it has been shown that binary sources can sometimes mimic planetary signals (Gaudi 1998). For this we introduced three additional parameters: the impact parameter of the secondary source component, $u_{0,2}$, and its time of closest approach, $t_{0,2}$, as well the flux ratio between the source components. We note that parallax is also considered in our binary source modelling, for fair comparison to other models. We find that the best binary-source model provides a poorer fit, with $\chi^2 = 3809$, which gives $\Delta \chi^2 > 500$. Best-fit parameter for each of the local minima are given in Table 2, while Fig. 5 shows the geometry of the source trajectories with respect to the caustics for all four minima. We note that the pairs of solutions A and D, and B and C, are degenerate under the well-known $d \leftrightarrow d^{-1}$ degeneracy (Griest & Safizadeh 1998; Dominik 1999); this is caused by the symmetry of the lens mapping between binaries with d and d^{-1}. Comparing the pairs of solutions, we find that the A-D pair is favoured, with $\Delta \chi^2 > 40$ compared to the B-C pair. On the other hand, the degeneracy between the A and D solutions is very severe, with only $\Delta \chi^2 \sim 7$. In Fig. 6, we also show parameter-parameter correlations plots for model D, showing also the uncertainties in the measured lensing parameters.

5. Lens properties

In this section we determine the properties of the lens system, using our best-fit model parameters, i.e. our wide-configuration ESBL + parallax model. We also calculated the lens properties for the competitive close-configuration model, with both sets of parameter values listed in Table 3.

4.2. Best-fit models

We searched the parameter space using an MCMC algorithm as well as a grid of (d, q, α) to locate good starting points for the algorithm (see e.g. Kains et al. 2009), over the range $-4 < \log q < 0$ and $-1.0 < \log d < 2$. This encompasses both planetary and binary companions that might cause the central perturbation. In Fig. 4 we present the χ^2 distribution in the d, q plane. We find four local solutions, all of which have a mass ratio corresponding to a planetary companion. We designate them as A, B, C and D; the degeneracy among these local solutions is rather severe, as can be seen from the residuals shown in Fig. 3.

For the identified local minima, we then further refine the lensing parameters by conducting additional modelling, considering higher-order effects of the finite source size and the Earth’s orbital motion. It is found that the higher-order effects are clearly detected with $\Delta \chi^2 > 500$. Best-fit parameter for each of the local minima are given in Table 2, while Fig. 5 shows the geometry of the source trajectories with respect to the caustics for all four minima. We note that the pairs of solutions A and D, and B and C, are degenerate under the well-known $d \leftrightarrow d^{-1}$ degeneracy (Griest & Safizadeh 1998; Dominik 1999); this is caused by the symmetry of the lens mapping between binaries with d and d^{-1}. Comparing the pairs of solutions, we find that the A-D pair is favoured, with $\Delta \chi^2 > 40$ compared to the B-C pair. On the other hand, the degeneracy between the A and D solutions is very severe, with only $\Delta \chi^2 \sim 7$. In Fig. 6, we also show parameter-parameter correlations plots for model D, showing also the uncertainties in the measured lensing parameters.

5.1. Source star and Einstein radius

We determined the Einstein radius by first calculating the angular size of the source. This can be done by using the magnitude and colour of the source (e.g. Yoo et al. 2004), and empirical relations between these quantities and the angular source
size. We start by using the location of the red giant clump (hereafter RC) on our colour–magnitude diagram (Fig. 7) to estimate the reddening and extinction along the line of sight. We use an I-band absolute magnitude for the RC of $M_{I, RC, 0} = -0.12 \pm 0.09$ (Nataf et al. 2012), as well as a colour $(V - I)_{RC, 0} = 1.06 \pm 0.12$ (Bensby et al. 2011). We compare these values to those on our colour–magnitude diagram (CMD), which we generated using OGLE I- and V-band photometry. From Fig. 7,
the location of the RC on our CMD is

$$(I, V - I)_{RC} = (17.19 \pm 0.05, 3.45 \pm 0.05)$$

so, using a distance modulus of $\mu = 14.52 \pm 0.09$, i.e. a distance to the Galactic bulge of 8.0 ± 0.3 kpc (Yelda et al. 2011), we find $A_I = 2.79 \pm 0.10$ and $E(V - I) = 2.39 \pm 0.13$.

Using these values, the best-fit value for the magnitude of the source $I_S = 15.97 \pm 0.01$, a source colour $(V - I)_{S,0} = 1.15$, and the empirical relations of Kervella & Fouqué (2008), we find an angular source radius $\theta_s = 10.41 \pm 1.18\,\mu$as, or a source star radius of $R_s = 10.53 \pm 1.19\,R_\odot$. This, together with the best-fit value of the source size parameter ρ_s, allows us to calculate the size of the Einstein radius, $\theta_E = \theta_s / \rho_s$. Using the relevant parameter values, we find $\theta_E = 0.749 \pm 0.283\,\mu$as. This in turn allows us to calculate the source-lens relative proper motion, $\mu_{rel} = \theta_E / t_E = 4.28 \pm 1.62\,\text{mas/yr}$.

Fig. 5. Source trajectory geometry with respect to the caustics for all four local minima identified in Fig. 4; the source size is marked as a red circle.
We can also rearrange Eq. (1) to derive an expression for the distance to the lens (defined by Eq. (4)):

$$D_L = \frac{\theta_\text{E} c^2}{4G\pi E}$$ \hspace{1cm} (11)

Using values found in the previous section, and our best-fit parallax parameter value $\theta_\text{E} = 0.35 \pm 0.05$ yields a total lens mass $M_L = 0.26 \pm 0.10 M_\odot$. Using the best-fit mass ratio parameter value of $q = (1.92 \pm 0.12) \times 10^{-3}$ yields component masses of $0.26 \pm 0.11 M_\odot$ and $0.53 \pm 0.21 M_\odot$, where M_\odot is the mass of Jupiter.

5.2. Masses of the lens components

Combining Eq. (1) and Eq. (5) allows us to derive an expression for the mass as a function of the parallax vector magnitude π_E (defined by Eq. (4)):

$$M_L = \frac{\theta_E c^2}{4G\pi E}$$ \hspace{1cm} (12)

Using our parameter values as well as the lens mass derived thanks to our parallax measurement, we find a distance to the lens of $D_L = 2.57 \pm 0.61$ kpc. This distance allows us to carry out a sanity check of the lens mass we derived in the previous section. By assuming that the contribution from the blended light comes from the lens, we can derive an upper limit to the I-band lens magnitude M_I using our best-fit blending parameter:

$$M_{I,L} = m_{I,b} - 5 \log_{10} D_L - 10 - A_{I,L},$$ \hspace{1cm} (13)

where $m_{I,b}$ is the apparent I-band magnitude of the blend, $A_{I,L}$ is the extinction between the observer and the lens, and D_L is in kpc. In practice, $A_{I,L} \leq A_I$ since the lens is in front of the source, so we use the extreme scenario where $A_{I,L} = A_I$ to derive an upper brightness limit (lower limit on the magnitude) for the lens. We find this to be $M_{I,L} = 2.19 \pm 0.53$ mag, which corresponds to a maximum mass of the lens of $M_{L,max} = 1.65 \pm 0.23 M_\odot$, assuming a main sequence star mass-luminosity relation, and assuming that the secondary lens component (i.e. the planet) does not contribute to the blended light. This is much larger than the value we derived in Sect. 5.2 for the mass of the primary lens component, which suggests that some blending comes from stars near the source rather than from the lens, although it is difficult to quantify this without an estimate of $A_{I,L}$.

Finally, we can also use the distance to the lens and the size of the Einstein ring radius to calculate the projected separation r_\perp between the lens components in AU. Using our best-fit projected angular separation $d = 1.408 \pm 0.019$, we find a projected (i.e. minimum) orbital radius $r_\perp = 2.72 \pm 0.75$ AU.

We can compare this to an estimate of the location of the “snow line”, which is the location at which water sublimated in the midplane of the protoplanetary disk, i.e. the distance at which the midplane had a temperature of $T_{\text{mid}} = 170$ K (although other studies have noted that this temperature varies; see e.g. Podolak & Zucker 2004). The core accretion model of planet formation predicts that giant planets form much more easily beyond the snow line, thanks to easier condensation of icy material and therefore easier formation of large solid cores in the early stages of the circumstellar disk’s evolution. Kennedy & Kenyon (2008) modelled the evolution of the snow line’s location, taking into account heating of the disk via accretion, as well as the influence of pre-main sequence stellar evolution. Using a rough extrapolation of their results, we estimate that the snow line (at $t = 1$ Myr)
for the planetary host star in OGLE-2011-BLG-0251 is located at around \(-1.5\) AU. We therefore conclude that OGLE-2011-BLG-0251Lb is a giant planet located beyond the snow line, with both of our competitive best-fit models yielding projected orbital radii larger than 1.5 AU.

We list all the lens properties in Table 3, both for the best-fit model parameters that we have used above, and for the close-configuration model, for comparison. Lens properties derived using the close-configuration model are very similar to those we found using the wide-configuration model, the only major difference being in the orbital radius. For the close model, we find an orbital radius of \(1.50 \pm 0.50\) AU, which is close to the location of the snow line.

6. Conclusions

Our coverage and analysis of OGLE-2011-BLG-0251 has allowed us to locate and constrain a best-fit binary-lens model corresponding to an M star being orbited by a giant planet. This was possible through a broad exploration of the parameters both in real time, thanks to the recent developments in microlensing modelling algorithms, and after the source had returned to its baseline magnitude. Various second-order effects, as well as other possible, non-planetary, interpretations for the anomaly were considered during the modelling process. Based on the best-fit solution, we were able to constrain the masses and separation of the lens components, as well as various other characteristics, thanks to a strong detection of parallax effects due to the Earth’s orbit around the Sun, in conjunction with the detection of finite source size effects. We found a planet of mass \(0.53 \pm 0.21\) \(M_J\) orbiting a lens of \(0.26 \pm 0.11\) \(M_\odot\) at a projected radius \(r_p = 2.72 \pm 0.75\) AU; the whole system is located at a distance of \(2.57 \pm 0.61\) kpc. Our competitive second-best model leads to similar properties, but a smaller projected orbital radius \(r_p = 1.50 \pm 0.50\). The two best-fit models are competitive and therefore we cannot make a strong claim about which orbital radius is favoured. However, comparing both values of the projected orbital radius to the approximate location of the snow line for a typical star of the mass of the primary lens component, we conclude that OGLE-2011-BLG-0251Lb is a giant planet located around or beyond the snow line. This is in line with predictions from the core accretion model of planet formation, from which we expect large planets to be more numerous beyond the snow line; this is also where microlensing detection sensitivity is at its highest, enabling us to probe a region of planetary parameter space that is difficult to reach for other methods.

Acknowledgements. N.K. acknowledges an ESO Fellowship. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements No 228517 and 268421. The OGLE project has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No 246678 to AU. K.A., D.B., M.D., K.H., M.H., S.L., C.R., Y.T. are supported by NRPB grant NPRP-09-476-1-78 from the Qatar National Research Fund (a member of Qatar Foundation). Work by C. Han was supported by Creative Research NPRP grant NPRP-09-476-1-78 from the Qatar National Research Fund (a member of Qatar Foundation). Work by J.C. Yee is supported by a National Science Foundation Graduate Research Fellowship under Grant No. 2009068160. A. Gould and B.S. Gaudi acknowledge support from NSF AST-1103471. B. S. Gaudi, A. Gould, and R. W. Pegge acknowledge support from NASA grant NNX12AB99G. The MOA experiment was supported by grants JSPS22403003 and JSPS23340064. T.S. was supported by the grant JSPS23340044. Y. Muraki acknowledges support from JSPS grants JSPS23540339 and JSPS19340058.

References

An, J. H., Albrow, M. D., Beaulieu, J.-P., et al. 2002, ApJ, 572, 521
Bachelet, E., Shin, I.-G., Han, C., et al. 2012, ApJ, 745, 73
Beaulieu, J.-P., Bennett, D. P., Fouqué, P., et al. 2006, Nature, 439, 437
Bennett, D. P. 2010, ApJ, 716, 1408
Bonsby, T., Aden, D., Meléndez, J., et al. 2011, A&A, 533, A134
Bozza, V., Dominik, M., Rattenbury, N. J., et al. 2012, MNras, 424, 902
Bramich, D. M. 2008, MNras, 386, L77
Bramich, D. M., Horne, K., Albrow, M. D., et al. 2013, MNras, 428, 2275
Cassan, A. 2008, A&A, 491, 587
Cassan, A., Kubas, D., Beaulieu, J.-P., et al. 2012, Nature, 481, 167
Claret, A. 2000, A&A, 363, 1081
Dominik, M. 1998, A&A, 329, 361
Dominik, M. 1999, A&A, 341, 943
Dominik, M., Horne, K., Allan, A., et al. 2008, Astron. Nachr., 329, 248
Dong, S., Gould, A., Udalski, A., et al. 2009, ApJ, 695, 970
Einstein, A. 1936, Science, 84, 506
Gaudi, B. S. 1998, ApJ, 506, 533
Gaudi, B. S., Bennett, D. P., Udalski, A., et al. 2008, Science, 319, 927
Gould, A. 2004, ApJ, 606, 319
Gould, A., Dong, S., Udalski, A., et al. 2010, ApJ, 720, 1073
Griest, K., & Hu, W. 1992, ApJ, 397, 362
Griest, K., & Safizadeh, N. 1998, ApJ, 500, 37
Kains, N., Browne, P., Horne, K., Hundertmark, M., & Cassan, A. 2012, MNras, 426, 2228
Kains, N., Cassan, A., Horne, K., et al. 2009, MNras, 395, 787
Kennedy, G. M., & Kenyon, S. J. 2008, ApJ, 673, 502
Kervella, P., & Fouqué, P. 2008, A&A, 491, 855
Lupton, R. 1993, British Astron. Associat., 103, 320
Muraki, Y., Han, C., Bennett, D. P., et al. 2011, ApJ, 741, 22
Nataf, D. M., Gould, A., Fouqué, P., et al. 2012 [arXiv:1208.1263]
Podolak, M., & Zucker, S. 2004, Meteorit. Planet. Sci., 39, 1859
Ryu, Y.-H., Han, C., Kwang, K.-H., et al. 2010, ApJ, 723, 81
Sumi, T., Kamya, K., Bennett, D. P., et al. 2011, Nature, 473, 434
Warszawa, Poland
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas, 1758 Sao Jose dos Campos, 12227-010
Brazil
School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand
Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, 2100 Copenhagen, Denmark
Centre for Star and Planet Formation, Geological Museum, Øster Voldgade 5, 1350 Copenhagen, Denmark
Qatar Foundation, PO Box 5825, Doha, Qatar
Dipartimento di Fisica “E.R Caianiello”, Università di Salerno, via Ponte Don Melillo, 84084 Fisciano, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Italy
SUPA School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
A70, page 10 of 10

13 Deutsches SOFIA Institut, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
14 SOFIA Science Center, NASA Ames Research Center, Mail Stop N211-3, Moffett Field CA 94035, USA
15 Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Vietri Sul Mare (SA), Italy
16 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
17 Korea Astronomy and Space Science Institute, 305-348 Daejeon, Korea
18 National Astronomical Observatories/Yunnan Observatory, Joint laboratory for Optical Astronomy, Chinese Academy of Sciences, 650011 Kunming, PR China
19 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
20 Armagh Observatory, College Hill, Armagh, BT61 9DG, Northern Ireland, UK
21 Danmarks Tekniske Universitet, Institut for Rumforskning og -teknologi, Juliane Maries Vej 30, 2100 København, Denmark
22 Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
23 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
24 Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA
25 Department of Physics, Sharif University of Technology, PO Box 11555-9161, Tehran, Iran
26 Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON, N2L 2Y5, Canada
27 Institut d’Astrophysique et de Géophysique, Allée du 6 Août 17, Sart Tilman, Bât. B5c, 4000 Liège, Belgium
28 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
29 INFN, Gruppo Collegato di Salerno, Sezione di Napoli, Italy
30 European Southern Observatory (ESO), Alonso de Cordova 3107, Casilla 19001, Santiago 19, Chile
31 Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany
32 Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
33 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstr. 12-14, 69120 Heidelberg, Germany
34 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
35 Alsubais Establishment for Scientific Studies, Doha, Qatar
36 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, Wirral., CH4 1LD, UK
37 School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
38 Vintage Lane Observatory, 83 Vintage Lane, RD3, Blenheim, New Zealand
39 Auckland Observatory, 670 Manukau Rd, Royal Oak 1023, Auckland, New Zealand
40 Dept. of Physics and Astronomy, Texas A&M University College Station, TX 77843-4242, USA
41 Possum Observatory, Patutahi, Gisborne, New Zealand
42 Farm Cove Observatory, Centre for Backyard Astrophysics, Pakuranga, Auckland, New Zealand
43 Institute for Radiophysics and Space Research, AUT University, Auckland, New Zealand
44 Dept. of Astronomy and Space Science, Chungnam University, Korea
45 Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
46 UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France
47 University of Canterbury, Dept. of Physics and Astronomy, Private Bag 4800, 8020 Christchurch, New Zealand
48 McDonald Observatory, 16120 St Hwy Spur 78 #2, Fort Davis, TX 79734, USA
49 University of the Free State, Faculty of Natural and Agricultural Sciences, Dept. of Physics, PO Box 339, 9300 Bloemfontein, South Africa
50 School of Math and Physics, University of Tasmania, Private Bag 37, GPO Hobart, 7001 Tasmania, Australia
51 Institute of Geophysics and Planetary Physics (IGPP), L-413, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551, USA
52 Université de Toulouse, UPS-OMP, IRAP, 31400 Toulouse, France
53 CNRS, IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France
54 Physics Department, Faculty of Arts and Sciences, University of Rijeka, Omladsinska 14, 51000 Rijeka, Croatia
55 Technical University of Vienna, Department of Computing, Wiedner Hauptstrasse 10, Vienna, Austria
56 NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 S. Wilson Ave., Pasadena, CA 91125, USA
57 Perth Observatory, Walnut Road, Bickley, 6076 Perth, Australia
58 South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa
59 Solar-Terrestrial Environment Laboratory, National Radio Astronomy Observatory, Bag 4800, 8020 Christchurch, New Zealand
60 Dept. of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
61 Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland, New Zealand
62 Dept. of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand
63 Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, 719-0232 Okayama, Japan
64 Mt. John Observatory, PO Box 56, 8770 Lake Tekapo, New Zealand
65 Dept. of Physics, Konan University, Nishiokamoto 8-9-1, 658-8501 Kobe, Japan
66 Nagano National College of Technology, 381-8550 Nagano, Japan
67 Tokyo Metropolitan College of Industrial Technology, 116-8523 Tokyo, Japan
68 Dept. of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Osaka, Japan
69 Universidad de Concepción, Departamento de Astronomía, Casilla 160–C, Concepción, Chile