Orbital Molecules in the New Spinel GaV2O4

Citation for published version:
Browne, AJ, Lithgow, C, Kimber, SAJ & Attfield, JP 2018, 'Orbital Molecules in the New Spinel GaV2O4', Inorganic Chemistry, vol. 57, no. 5, pp. 2815-2822. https://doi.org/10.1021/acs.inorgchem.7b03221

Digital Object Identifier (DOI):
10.1021/acs.inorgchem.7b03221

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Inorganic Chemistry

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Orbital molecules in the new spinel GaV$_2$O$_4$

Alexander J. Browne,† Calum Lithgow,‡ Simon. A. J. Kimber,‡ and J. Paul Attfield*†

†Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3FD, United Kingdom
‡Diffraction Group, Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.

ABSTRACT: The structures and properties of vanadium oxides are often related to the formation of molecule-like clusters of vanadium cations through direct V-V bonding. GaV$_2$O$_4$, a new vanadium spinel, has been synthesized. Powder diffraction and X-ray total scattering studies, complemented by magnetization and resistivity measurements, reveal that the low temperature phase of this material is structurally distorted and features ordered pairs of three- and four-atom vanadium clusters. These clusters persist into a disordered cubic phase above the charge ordering transition at $T_{CO} = 415$ K. Furthermore, quasi-elastic neutron scattering indicates that the disordered clusters remain well defined and static to 1100 K.

INTRODUCTION

The notable electronic properties of vanadium oxides have led to these materials finding numerous applications. Several systems, such as layered Li$_{16}$V$_4$O$_8$ and Na$_x$VO$_2$ phases and nanostructured V$_x$O$_y$ are being investigated as battery electrode materials. Nanospheres of the spinel ZnV$_2$O$_4$ have promising supercapacitance and hydrogen storage properties;‡ BIMEVOX phases derived from γ-Bi$_2$V$_4$O$_9$ are a prominent family of oxide ion conductors;§ and many vanadium oxides are used as catalysts. In some vanadium oxides, functionality is the result of an electronic ordering transition. A prominent example is VO$_2$, which undergoes an ultrafast metal-insulator transition at 340 K. There is considerable interest in developing technology that exploits the dramatic change in properties associated with this transition, ranging from electronic switches to chemical sensors and thermochromic window coatings.

At the metal-insulator transition, VO$_2$ undergoes changes to both its electronic and crystallographic structure. In the high temperature metallic phase there is a single V-V nearest-neighbor distance (2.87 Å), found along chains of edge-sharing VO$_6$ octahedra, but this splits into alternatingly short (2.65 Å) and long (3.12 Å) separations in the low temperature insulating regime. This is an example of an orbital molecule state – the short V-V separations in insulating VO$_2$ define spin-singlet (V1) dimers. Orbital molecules are clusters of transition metal cations formed when orbital ordering localizes electrons into directly-interacting d orbitals and are found in the ground states of many vanadium oxides. Mixed-valence oxides such as V$_4$O$_7$, which are structurally related to VO$_2$, also exhibit metal-insulator transitions accompanied by V-V dimerization. Triangular (V3), spin-singlet trimers form in LiVO$_3$ and Li$_{16}$V$_4$O$_8$ (x ≤ 0.1), and BaV$_6$O$_{12}$. NaV$_2$O$_7$ undergoes orbital ordering without forming orbital molecules, but interestingly the ground states of different polymorphs of Na$_{0.5}$VO$_2$, corresponding to different arrangements of the Na-site vacancies, exhibit different vanadium clusterings, and both dimer and trimer ground states have been found. In all of these materials the formation of orbital molecules coincides with dramatic changes to their electronic structure, and hence to their electrical and magnetic properties.

Understanding the microscopic mechanism of orbital molecule formation is desirable for developing this behavior into functionality. Typically, V-V bonds emerge when a uniform structure distorts below an electronic transition temperature. In both VO$_2$ and LiVO$_2$, the distortion is driven by orbital polarizations that result in significant d-d bonding interactions. This is similar to the orbitally induced Peierls transition used to describe the formation of orbital dimer states in the spinels CuIr$_2$S$_4$ and MgTi$_2$O$_4$. However, we have recently found a very different type of orbital molecule behavior in the spinel AlV$_4$O$_7$. Investigation of the local structure of this material through analysis of the pair distribution function (PDF) revealed ordered (V3)$_3$ trimers and (V3)$_4$ tetramers – the largest known orbital molecules – in the distorted R3 space group state, and not V$^{7+}$ heptamers as previously proposed. This ground state is the result of long-range orbital- and charge-ordering, corresponding to the electronic description Al$_4$8V$_4$6V33O$_{16}$. Above the transition temperature $T_{CO} = 700$ K this long-range order is lost and the material has a
cubic $Fd\bar{3}m$ average structure with uniform V-V nearest-neighbor distances. However, short-range order is retained and the trimers and tetrarers persist in a structurally disordered phase to at least 1100 K (1.67°C). This is consistent with magnetization and resistivity measurements, which show very little change across the transition temperature. The stability of V-V bonding well above the long-range ordering temperatures indicates a fundamentally different mechanism of orbital molecule formation in AlV$_2$O$_4$ than is found in other vanadium oxides – in the high temperature phase of VO$_2$, the dimers do not persist on either the long-range or local scale.

Here we report the synthesis and characterization of GaV$_4$O$_9$, a new vanadium oxide spinel. It exhibits the complex orbital molecule behavior found in isoelectronic AlV$_2$O$_4$, but with a lower T_{CO} of 415 K, hence we demonstrate the persistence of disordered orbital molecules to the relatively higher temperature of 2.7 T_{CO}. Furthermore, we have used quasi-elastic neutron scattering (QENS) to investigate whether the orbital molecules have static or dynamic disorder at high temperatures.

EXPERIMENTAL SECTION

Synthesis. Polycrystalline GaV$_4$O$_9$ was synthesized by a high temperature solid state reaction. Powdered Ga$_2$O$_3$ (Sigma Aldrich, 99.99%), V (Alfa Aesar, 99.5%) and VO$_2$ (Alfa Aesar, 99.6%) in the stoichiometric ratio were ground together, pressed into pellets, and sealed in an evacuated quartz ampoule, which was heated at 1000 °C for 48 hours.

Structural characterization. High-resolution powder X-ray diffraction data were collected at beamline ID22 at the European Synchrotron Radiation Facility, using a multianalysers stage detector and 27.5 keV radiation ($\lambda = 0.450842$ Å). Data were collected on warming, with the sample loaded in a 0.5 mm diameter borosilicate capillary and heated from room temperature to 500 K using a nitrogen cryostream. X-ray total scattering data were also collected at ID22. In order to access the high momentum transfers Q needed to generate good quality PDFs, a Perkin Elmer XRD6100 2D detector and 60 keV radiation ($\lambda = 0.206547$ Å) were used. The sample was held in a 0.7 mm diameter quartz capillary and heated from 300 to 1100 K using a hot air blower, with measurements made on warming. 201 exposures were collected at each temperature step and averaged to give a total scattering pattern. Rietveld analysis was performed using GSAS. Total scattering functions $S(Q)$ were transformed to PDFs $G(r)$ using PDFgetX3, for $0.5 \leq Q$ (Å$^{-1}$) ≤ 25.8, after making suitable background corrections. Structural models were refined against $G(r)$ using PDFgui, which includes simulation of termination ripples, for interatomic distances $1.5 \leq r$ (Å) ≤ 12.

Powder neutron diffraction was carried out with the HRPD beamline at the ISIS pulsed neutron and muon source. A 2.7 g sample in a vanadium can was loaded into a furnace, heated to 550 K, and data were collected on cooling to room temperature. Diffraction patterns collected by the 168° detectors were analysed by Rietveld refinement using GSAS.

Magnetic and transport property measurements. The magnetic behaviour of GaV$_4$O$_9$ was measured using a Quantum Design SQUID MPMS XL. Measurements were made over the temperature range 2–300 K in an applied field of 100 Oe, under zero-field cooled and field cooled conditions, and on heating from 300 to 600 K in an applied field of 5000 Oe. The electrical resistivity of a sintered pellet of GaV$_4$O$_9$ was measured over the range 300–800 K by a conventional four-probe technique, using in-house apparatus.

Quasi-elastic neutron scattering. QENS data were collected with the time-of-flight spectrometer IN6 at the Institut Laue Langevin. The sample was loaded into a niobium can in a furnace, and spectra were collected between 400 K and 1100 K using neutrons with incident wavelength $\lambda = 5.12$ Å. Eight spectra were collected at each temperature and averaged scattering functions $S(Q,E)$, where E is the energy transfer, were generated with vanadium normalization and corrections for the empty can background.

RESULTS AND DISCUSSION

Average structure. High-resolution powder X-ray diffraction was used to study the average structure of GaV$_4$O$_9$, and a distortion analogous to that found in AlV$_2$O$_4$ is observed. At room temperature, GaV$_4$O$_9$ has an $R\bar{3}m$ unit cell (Figure 1): Rietveld analysis (Figure 2a) gives lattice parameters $a_{\mu} = 5.86207(4)$ Å and $c_{\mu} = 28.98269(37)$ Å, and the refined atomic parameters are given in Table 1. Bond distances and angles are provided in the Supporting Information. There are three vanadium crystallographic sites, and refinement of their positions defines V_1 trimers and V_4 tetrarers through short (∼2.80 Å) V-V nearest-neighbor distances. Tetrarers are formed by the V_2 site and half of the V_3 site cations; the remaining V_3 cations form trimers, and the V_4 site is non-bonding (Figure 1a). In this low temperature phase, pairs of a V_5 cluster and V_4 cluster have long-range structural order but there are two possible configurations of the clusters within each pair. This disorder in the average structure is modelled by splitting the V_2 site (Figure 1b). An impurity phase, V_5O_2, with weight fraction 5.3% was also found in the Rietveld fits.

On heating, a structural phase transition from the $R\bar{3}m$ superstructure to the cubic $Fd\bar{3}m$ normal spinel arrangement is observed. Within this average structure there is only a single V^{2+} crystallographic site and all V-V nearest-neighbor distances are equivalent (∼2.95 Å). However, as found for AlV$_2$O$_4$, Rietveld fits are improved by letting 7/8 of the vanadium (the proportion of vanadium cations involved in orbital molecule bonding) displace away from this ideal position as a split site, indicating disorder in the high temperature phase.
Table 1. Atomic parameters of $R\bar{3}m$ GaV$_2$O$_4$ at room temperature, from Rietveld refinement against the high-resolution powder X-ray diffraction data.

Atom	Site	x	y	z	Occupancy	$U_{iso} (\AA^2)$
Ga1	6c	0	0	0.18489(9)	1	0.0069(1)
Ga2	6c	0	0	0.31051(9)	1	0.0059(2)
V1	3a	0	0	0	1	0.0103(4)
V2	6c	0	0	0.49537(32)	0.5	-
V3	8h	0.83982(19)	0.16018(19)	0.41668(9)	1	0.0103(4)
O1	6c	0	0	0.12468(44)	1	0.0103(4)
O2	6c	0	0	0.37486(40)	1	0.0103(4)
O3	8h	0.83614(70)	0.16386(70)	0.54552(29)	1	0.0103(4)
O4	8h	0.82758(70)	0.17242(70)	0.28884(28)	1	0.0103(4)

The thermal variation of an order parameter-like quantity X below the long-range ordering transition temperature T_{CO} can be described by the critical equation:

$$X = X_{CO} + (X_0 - X_{CO}) \tanh(W_X t^{1/2}) / \tanh(W_X) \tag{1}$$

where X takes values X_0 and X_{CO} at $T = 0$ and $T = T_{CO}$, respectively; the reduced temperature is $t = (T_{CO} - T)/T_{CO}$; and $W_X = 2$ is a fitting parameter. Equation 1 has been used to describe the behavior of structural quantities below the Verwey transition in magnetite. Applying Eq 1 to the thermal variation of the reduced lattice parameters of GaV$_2$O$_4$, $\sqrt{2}a_{1/2}$ and $c_{1/2}/\sqrt{2}$, taken from Rietveld refinements, gives good fits and determines $T_{CO} = 415$ K (Figure 3a).

Conversion of the high temperature $Fd\bar{3}m$ structure into the low temperature $R\bar{3}m$ structure is evident as a splitting of the Bragg peaks of the cubic phase (Figure 2a, insets), as the rhombohedral distortion causes the lattice parameters $a_{1/2}$ and $c_{1/2}$ to deviate from metrically cubic values $a = a_c/\sqrt{2}$ and $c_{1/2} = (\sqrt{3}a_c)/2$. The thermal variation of an order parameter-like quantity X below the long-range ordering transition temperature T_{CO} can be described by the critical equation:

$$X = X_{CO} + (X_0 - X_{CO}) \tanh(W_X t^{1/2}) / \tanh(W_X) \tag{1}$$

where X takes values X_0 and X_{CO} at $T = 0$ and $T = T_{CO}$, respectively; the reduced temperature is $t = (T_{CO} - T)/T_{CO}$; and $W_X = 2$ is a fitting parameter. Equation 1 has been used to describe the behavior of structural quantities below the Verwey transition in magnetite. Applying Eq 1 to the thermal variation of the reduced lattice parameters of GaV$_2$O$_4$, $\sqrt{2}a_{1/2}$ and $c_{1/2}/\sqrt{2}$, taken from Rietveld refinements, gives good fits and determines $T_{CO} = 415$ K (Figure 3a).

Powder neutron diffraction (Figure 2b) corroborates the above structural characterization, although as a result of poor thermal equilibration of the large sample used for this experiment the value of T_{CO} appears as 465 K. As vanadium scatters neutrons very weakly no site splitting to describe disordered orbital molecules was included in the refinement models. However, the high neutron scattering contrast between Ga and V confirms that there is no antosite disorder.

Both the X-ray and neutron refinements reveal that a proportion of GaV$_2$O$_4$ remains cubic below T_{CO}. This is most likely due to microstructural stresses that prevent some regions of the polycrystalline sample from converting to rhombohedral below the transition. A similar suppression of the orbital molecule ordering transition in strained crystallites has been observed in magnetite. The fractions of the two GaV$_2$O$_4$ phases were extracted through Rietveld refinement, and the decreasing fraction of the $R\bar{3}m$ phase on warming is described well by Eq 1 (Figure 3b).

Figure 1. (a) Local structure in the $R\bar{3}m$ phase of GaV$_2$O$_4$. Ga (green), V (blue) and O (red) are shown, with the three different vanadium sites labeled and the short (~2.80 Å) V-V separations defining the V$_3$ trimers and V$_4$ tetramers shown. One local configuration of each orbital molecule pair is shown here but these are disordered over two possible configurations (trimer-tetramer or tetramer-trimer) in the average structure, shown in (b), which is modelled by splitting the z-coordinate of the V$_2$ site in Rietveld refinements. (c) The $R\bar{3}m$ structure used for PDF fits, in which all orbital molecule pairs have the same orientation.
Figure 2. Rietveld analyses of GaV$_2$O$_4$. Tick marks correspond to the $R3m$ (blue) and $Fd\bar{3}m$ (grey) phases of GaV$_2$O$_4$, and a V$_2$O$_3$ impurity (pink). (a) Fits to high-resolution powder X-ray diffraction data collected at room temperature (upper, $R_w=12.3\%$) and 500 K (lower, $R_w=9.0\%$), with insets showing the peak splitting associated with the rhombohedral distortion in an expanded region. (b) Fit to powder neutron diffraction data collected at room temperature ($R_w=5.7\%$).

Rietveld fits to neutron diffraction data collected in the critical region were used to determine the lattice parameters of the rhombohedral (a_H and c_H) and cubic (a_C) phases, and the spontaneous strains for the low temperature phase were calculated as:

\[s_a = \frac{\sqrt{2} a_H - a_C}{a_C} \]
\[s_c = \frac{c_H/\sqrt{12} - a_C}{a_C} \]

Spontaneous strain is an order parameter and for a (near) second-order transition close to the transition temperature the variation:

\[s^2 = s_0^2 \left(1 - \frac{T}{T_{CO}}\right) \]

is expected. Plots of s_a^2 and s_c^2 against T/T_{CO} confirm the quasi-continuous nature of the structural transition (Figure 3c).

Figure 3. (a) Lattice parameters of the rhombohedral and cubic phases of GaV$_2$O$_4$, and (b) the rhombohedral phase fraction, from high-resolution powder X-ray diffraction showing fits of Eq 1 below $T_{CO} = 415$ K. (c) Squared spontaneous lattice strains of rhombohedral GaV$_2$O$_4$ from powder neutron diffraction fits decrease linearly to zero at $T = T_{CO}$, in keeping with Eq 4 for a continuous transition.
Local structure. X-ray total scattering data have been used to characterize the local V-V interactions in GaV$_2$O$_4$. Rietveld analyses of these data, using the split-site $R3\bar{m}$ and $Fd\bar{3}m$ models described previously, are consistent with those using the high-resolution powder diffraction data. Analysis of the PDFs generated from the total scattering data shows that the real-space structure described by the PDFs is consistent with that determined from Rietveld refinement below T_{CO}, with ordered pairs of V_3 and V_4 orbital molecules (Figure 4a). A modified model was used to fit these PDFs – instead of $R3\bar{m}$ symmetry with a split V_2 site a lower symmetry $R3m$ model, in which the V_2 site displaces with full occupancy, was used (though constraints consistent with $R3m$ symmetry were applied to all other sites to reduce the number of refined variables).

Figure 4. (a) Fit of the $R3m$ model, featuring V_3 and V_4 orbital molecules, to the 300 K PDF of GaV$_2$O$_4$ ($R_w = 11.9\%$) where the presence of short and long V-V distances gives rise to two peaks in the shaded region. (b) Fits to the 1100 K PDF using the $Fd\bar{3}m$ average structure model (upper, $R_w = 13.5\%$), in which all V-V nearest-neighbor distances are equal, and the $R3m$ model representing disordered orbital molecules (lower, $R_w = 10.3\%$).

Figure 5. Structural parameters extracted from PDF (filled symbols) and Rietveld (open symbols) analyses of the X-ray total scattering data, evidencing the persistence of disordered orbital molecules to 1100 K. (a) V-V bonding causes the vanadium atoms to be displaced from ideal spinel positions. The V_2 and V_3 sites displace independently below T_{CO}, with the split-site $R3\bar{m}$ model used for Rietveld fits and the $R3m$ model for PDF fits. Above T_{CO} Rietveld analysis using the split-site $Fd\bar{3}m$ model reveals significant displacement of vanadium away from its ideal site, and PDF fits using the $R3m$ model yield similar displacements (for refinement stability, the V_2 and V_3 site displacements were constrained to be equal). (b) PDF fits reveal that the short V-V distances that define the ordered V_3 and V_4 orbital molecules in the ground state evolve continuously through T_{CO}, though Rietveld analysis of the cubic average structure gives only a single V-V distance.
Both the $R\overline{3}m$ and $R3m$ models feature $V_3^+V_4$ orbital molecule pairs, so the local structural correlations in both are the same. However, whilst in the $R\overline{3}m$ model different pairs adopt different configurations and are disordered, in the $R3m$ model all pairs have the same orientation. The two models therefore represent different average structures (Figures 1b and 1c). As the $R\overline{3}m$ model gives a better Rietveld fit than the $R3m$ model, the disordered pairs scenario is a better overall description of the structure of rhombohedral GaV$_4$O$_8$, as was also found for AlV$_4$O$_8$. The $R3m$ model was used for the PDF fits as the half-occupied split-site used to model the disorder in the $R\overline{3}m$ model, whilst suitable for describing the average atomic distribution, does not meaningfully represent the local structure.

Above 415 K, the PDFs are not well fit by an ideal cubic spinel model in which the V-V nearest-neighbor distances are equal (Figure 4b). This is particularly evident in the first V-V coordination shell, which corresponds to the PDF intensity in the range 2.5 ≤ r (Å) ≤ 3.2 (the shaded region in Figure 4), indicative of local V site displacements. A much better fit is achieved using the same $R\overline{3}m$ model as used to fit the PDFs below T_{CO}. a_h and c_h were constrained in the metrically cubic ratio, consistent with the average structure, and the V_2 and V_3 site displacements were constrained to be equal to improve refinement stability (consequently, the two short bonding V-V distances are equal). V site displacements of ~0.1 Å, consistent with those found through split-site Rietveld refinements, are present at 1100 K (Figure 5a), and result in short V-V distances corresponding to locally ordered V_3 and V_4 orbital molecules (Figure 5b). The V-V distances determined at 300 K and 1100 K are tabulated in the Supporting Information. The residual cubic phase below T_{CO} was not included in the analysis of the X-ray total scattering data: the resolution of the diffraction patterns is insufficient for it to be included in Rietveld fits, and as both phases of GaV$_4$O$_8$ are likely to have the same local structure it does not need to be accounted for separately in the PDF analysis.

The persistence of the orbital molecules to high temperatures in GaV$_4$O$_8$, with T_{CO} indicating their order-disorder transition, is consistent with the orbital molecule behavior found in AlV$_4$O$_8$ though the value of T_{CO} = 415 K in GaV$_4$O$_8$ is substantially lower than that for AlV$_4$O$_8$ (700 K). This is likely due to Ga$^{3+}$ having a larger ionic radius than Al$^{3+}$, so the average lattice V-V separation = 2.96 Å in GaV$_4$O$_8$ at 1100 K, compared to 2.92 Å in AlV$_4$O$_8$ – is correspondingly larger. This weakens the tendency of orbital molecules to long-range order and hence suppresses T_{CO}. Furthermore, the larger average separation weakens the interactions within the orbital molecules. Not only are the bonding V-V distances in GaV$_4$O$_8$ (both 2.72 Å at 300 K) not as short as those in AlV$_4$O$_8$ (2.59 Å and 2.65 Å), but the difference between bonding and non-bonding distances (2.72–3.13 Å in GaV$_4$O$_8$; 2.59–3.17 Å in AlV$_4$O$_8$) is less. The smaller spin-gap energy, discussed in the following section, also evidences weaker bonding interactions in GaV$_4$O$_8$.

A lower T_{CO} does, however, allow the temperature scale over which local orbital molecule interactions are found to be extended. The total scattering analysis demonstrates the persistence of structurally disordered orbital molecules in GaV$_4$O$_8$ to 1100 K which is 2.7T_{CO}, far above the critical regime.
Magnetic and transport properties. Although the presence of orbital molecules in GaV$_2$O$_4$ has been deduced through structural analysis and the identification of unusually short V-V distances, their presence impacts on, and can be corroborated by characterizing, the material's magnetic and electrical properties. The formation of orbital molecules requires electrons to be paired in V-V bonds, and the properties of GaV$_2$O$_4$ are based on the electronic description Ga$_4$[V$_4$$^{8+}V_3$$^{9+}V_3$$^{3+}$]O$_{16}$. For every eight vanadium atoms, which have an average oxidation state of 2.5, a V$_4$$^{8+}$tetramer and a V$_3$$^{9+}$trimer are formed by the two-center two-electron bonding of four V$^{2+}$ and three V$^{3+}$, respectively. These are both spin-paired (S = 0) species, but the remaining vanadium is a monomeric and paramagnetic (S = 1) V$^{3+}$ cation.

Equation 5, used previously to characterize the magnetic behavior of AlV$_2$O$_4$,32 treats the total susceptibility as the sum of a Curie-Weiss term for the monomeric V$^{3+}$ cations, and a generic spin-gap term for the spin-singlet clusters, which can be thermally excited to a triplet state:

$$\chi = \frac{C}{T-\theta} + \frac{D}{T[1 + \frac{1}{3}\exp\left(\frac{E_g}{k_B T}\right)]}$$

Equation 5 gives a reasonable fit to the measured susceptibility of GaV$_2$O$_4$, with parameters $C = 0.225$ emu K mol$^{-1}$, $\theta = -25.4$ K, $D = 0.662$ emu K mol$^{-1}$, and $E_g/k_B = 416.2$ K (Figure 6a). These values are in keeping with those determined for AlV$_2$O$_4$, and give a paramagnetic moment $\mu_{\text{eff}} = 2.68 \mu_B$ (the predicted values for a d0 cation are $C = 0.25$ emu K mol$^{-1}$ and $\mu_{\text{eff}} = 2.83 \mu_B$). The average spin-gap energy $E_g/k_B = 416$ K shows that strong spin pairing is present, though a smaller value than for AlV$_2$O$_4$ (844 K) is consistent with GaV$_2$O$_4$ having weaker bonding interactions. An improved fit to the low temperature susceptibility is, however, obtained by using a temperature-independent constant to account for the susceptibility contributions of the orbital molecules:

$$\chi = \frac{C}{T-\theta} + A$$

with fitting parameters $C = 0.0793$ emu K mol$^{-1}$, $\theta = -6.2$ K and $A = 1.46 \times 10^{-3}$ emu mol$^{-1}$. A negative value of θ, indicating antiferromagnetic correlations of the V$^{3+}$ spins, is again obtained, though the value of C gives a moment $\mu_{\text{eff}} = 1.59 \mu_B$ that is smaller than expected for $S = 1$ V$^{3+}$. A sharp cusp in the susceptibility, below which the zero-field cooled and field cooled susceptibilities diverge, is observed at 3.8 K and is attributed to the freezing or ordering of the monomeric V$^{3+}$ spins.

Although a structural distortion occurs in GaV$_2$O$_4$ at $T_{\text{CO}} = 415$ K, no corresponding change in the high temperature susceptibility is observed. This is consistent with the structural description of local V$_1$ and V$_2$ orbital molecules persisting above T_{CO}, as the breakup of these spin-singlet clusters should lead to large increases of the susceptibility – complete decomposition would lead to $C = 2.88$ emu K mol$^{-1}$ for paramagnetic GaV$^{2+}$V$^{3+}$O$_4$. Similarly, there is no change in resistivity that might arise if the bonding electrons became delocalized (Figure 6b). GaV$_2$O$_4$ is a semiconductor with an activation energy of 0.24 eV, and only a slight change of slope is observed around T_{CO}. Equivalent measurements of the properties of AlV$_2$O$_4$ also only show small changes to the susceptibility and resistivity on crossing T_{CO}. Hence the physical properties of these materials are consistent with a change from ordered to disordered orbital molecules at the transition, rather than any changes in the V-V bonding.

Quasi-elastic neutron scattering. The total scattering analysis and property measurements described previously demonstrate the persistence of structurally disordered orbital molecules in GaV$_2$O$_4$ (as in AlV$_2$O$_4$) to 1100 K. However, from these analyses it is not clear whether the disordered orbital molecules in these materials are static (glass-like) or dynamic (liquid-like). QENS has been used to investigate whether dynamical motion or interchange of V atoms between orbital molecules in GaV$_2$O$_4$ becomes evident at high temperatures. Dynamic behavior would result in quasi-elastic scattering, which would appear as a broadening of the elastic scattering line.

QENS data were collected from 400 K, at which temperature the orbital molecule pairs have long-range order and are expected to be static, to 1100 K. The scattering functions $S(Q,E)$ at 400 K and 1100 K are provided in the Supporting Information, and the integrated functions $S(E)$ for all measured temperatures are plotted in Figure 7. Although the intensity of the elastic line decreases on heating, due to the Debye-Waller effect, no broadening of the elastic line is observed. This linewidth establishes that in GaV$_2$O$_4$, any dynamic behaviour must be slower than ~10^{-11}s, indicating that the clusters are well defined and statically disordered even at 1100 K.

Figure 7. Thermal variation of the QENS scattering function $S(Q,E)$ for GaV$_2$O$_4$, integrated over the full measured range of Q. Quasi-elastic scattering from orbital molecule dynamics that would broaden the elastic line is not seen, showing that the disordered orbital molecules remain static up to 1100 K.
CONCLUSION
GaV$_2$O$_4$, a new oxide spinel, has been synthesized. Long-range orbital- and charge-ordering in the ground state results in a structural distortion and pairwise order of V$^{9+}$ and V$^{8+}$ orbital molecules. Above $T_{CO} = 415$ K, long-range order is lost but short-range order remains, and the orbital molecules persist in a statically disordered phase to at least 2.7T_{CO}.

The orbital molecules in GaV$_2$O$_4$ and AlV$_2$O$_4$ are found to be stable to temperatures well above that at which they lose long-range structural order, unlike those in VO$_2$, which do not persist above the metal-insulator transition. This implies that the electronic interactions that result in V-V bonding in vanadium oxides can vary considerably, from real-space (molecular) to momentum-space (Fermi surface) electronic instabilities. To explore these variations of orbital molecule bonding, further investigations of the local and long-range structures of vanadium oxides will be required.

ASSOCIATED CONTENT
Supporting Information. Metal-oxygen bond distances and angles in the room temperature structure; V-V distances at 300 K and 1100 K; and QENS scattering functions at 400 K and 1100 K. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author
*E-mail: j.p.attfield@ed.ac.uk

Author Contributions
A.J.B., S.A.J.K. and J.P.A. designed the concept for this study. A.J.B. performed the experimental work and data analysis and C.L. made the resistivity measurement. A.J.B. and J.P.A. wrote the manuscript with inputs from all authors.

Funding Sources
This work was supported by the ERC (Advanced Grant EC339332) and access to facilities was provided by the STFC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT
We thank Mauro Coduri (ESRF), Kevin Knight (ISIS) and Michael Koza (ILL) for help with data collection; Ka H. Hong for assistance at ESRF; and James Cumby and Paul M. Sarte for assistance with data analysis.

ABBREVIATIONS
PDF, pair distribution function; QENS, quasi-elastic neutron scattering.

REFERENCES
(1) Armstrong, A.R.; Lyness, C.; Panchmatia, P. M.; Islam, M. S.; Bruce, P. G. The lithium intercalation process in the low-voltage lithium battery anode Li$_{0.8}$V$_2$O$_5$. Nat. Mater. 2011, 10, 223-229.
(2) Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaim, E.; Delmas, C. P2-NaVO$_3$ system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74-80.
(3) Wang, Y.; Cao, G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries. Adv. Mater. 2008, 20, 2257-2269.
(4) Butt, F. K.; Tahir, M.; Cao, C.; Idrées, F.; Ahmed, R.; Khan, W. S.; Ali, Z.; Mahmood, N.; Tanveer, M.; Mahmood, A.; Aslam, I. Synthesis of Novel ZnV$_2$O$_5$ Hierarchical Nanospheres and Their Applications as Electrochemical Super capacitor and Hydrogen Storage Material. Appl. Mater. Interfaces. 2014, 6, 15635-15641.
(5) Sammes, N. M.; Tompsett, G. A.; Näge, H.; Aldinger, F. Bismuth Based Oxide Electrolytes – Structure and Ionic Conductivity. J. Eur. Ceram. Soc. 1999, 19, 1801-1826.
(6) Wachs, I. E. Catalysis science of supported vanadium oxide catalysts. Dalton Trans. 2013, 42, 17162-17169.
(7) Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34-36.
(8) Yang, Z.; Ko, C.; Ramanathan, S. Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annu. Rev. Mater. Res. 2011, 41, 337-367.
(9) Wang, S.; Liu, M.; Kong, L.; Long, Y.; Jiang, X.; Yu, A. Recent progress in VO$_2$, smart coatings: Strategies to improve the thermochromic properties. Prog. Mater. Sci. 2016, 81, 1-54.
(10) Goodenough, J. B. The Two Components of the Crystallographic Transition in VO$_2$. J. Solid State Chem. 1971, 3, 490-500.
(11) Attfield, J. P. Orbital molecules in electronic materials. APL Mater. 2015, 3, 041510.
(12) Marezio, M.; McWhan, D. B.; Dernier, P. D.; Remeika, J. P. Structural Aspects of the Metal-Insulator Transition in V$_2$O$_5$. J. Solid State Chem. 1973, 6, 419-429.
(13) Pourpoint, F.; Hua, X.; Middlemiss, D. S.; Adamson, P.; Wang, D.; Bruce, P. G.; Grey, C. P. New Insights into the Crystal and Electronic Structures of Li$_{x}$V$_{1-x}$O$_{2}$ from Solid State NMR, Pair Distribution Function Analyses, and First Principles Calculations. Chem. Mater. 2012, 24, 2880-2893.
(14) Kajita, T.; Kanzaki, T.; Suzuki, T.; Kim, J. E.; Kato, K.; Takata, M.; Katsufuji, T. Opening of a charge gap with V trimerization in BaV$_5$O$_{13}$. Phys. Rev. B. 2010, 81, 060405(R).
(15) McQueen, T. M.; Stephens, P. W.; Huang, Q.; Klimeczuk, T.; Ronning, F.; Cava, R. J. Successive Orbital Ordering Transitions in NaVO$_2$. Phys. Rev. Lett. 2008, 101, 166402.
(16) Guignard, M.; Delmas, C. Using a Battery to Synthesize New Vanadium Oxides. ChemistrySelect 2017, 2, 5800-5804.
(17) Haverkort, M. W.; Hu, Z.; Tanaka, A.; Reichelt, W.; Streltsov, S. V.; Korotin, M. A.; Anisimov, V. I.; Hsieh, H. H.; Lin, H. J.; Chen, C. T.; Khomskii, D. I.; Tjeng, L. H. Orbital-assisted metal-insulator transition in VO$_2$. Phys. Rev. Lett. 2005, 95, 196404.
(18) Jin-no, T.; Shimizu, Y.; Itoh, M.; Niitaka, S.; Takagi, H. Orbital reformation with vanadium trimerization in \(d^4 \) triangular lattice LiVO\(_2\) revealed by \(^{51}\text{V} \) NMR. Phys. Rev. B. 2013, 87, 075135.

(19) Khomskii, D. I.; Mizokawa, T. Orbitally Induced Peierls State in Spinels. Phys. Rev. Lett. 2005, 94, 156402.

(20) Browne, A. J.; Kimber, S. A. J.; Attfield, J. P. Persistent three- and four-atom orbital molecules in the spinel AlV\(_2\)O\(_4\). Phys. Rev. Mater. 2017, 1, 052003(R).

(21) Horibe, Y; Shingu, M.; Kurushima, K.; Ishibashi, H.; Ikeda, N.; Kato, K.; Motome, Y.; Furukawa, N.; Mori, S.; Katsufuji, T. Spontaneous Formation of Vanadium “Molecules” in a Geometrically Frustrated Crystal: AlV\(_2\)O\(_4\). Phys. Rev. Lett. 2006, 96, 086406.

(22) Matsuno, K.; Katsufuji, T.; Mori, S.; Moritomo, Y.; Machida, A.; Nishibori, E.; Takata, M.; Sakata, M.; Yamamoto, N.; Takagi, H. Charge Ordering in the Geometrically Frustrated Spinel AlV\(_2\)O\(_4\). J. Phys. Soc. Jpn. 2001, 70, 1456-1459.

(23) Corr, S. A.; Shoemaker, D. P.; Melot, B. C.; Seshadri, R. Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO\(_2\). Phys. Rev. Lett. 2010, 105, 096404.

(24) Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86-748, 2004.

(25) Juhas, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 2013, 46, 560-566.

(26) Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Božin, E. S.; Bloch, J.; Proffen, Th.; Billinge, S. J. L. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter. 2007, 19, 335219.

(27) Senn, M. S.; Wright, J. P.; Cumby, J.; Attfield, J. P. Charge localization in the Verwey structure of magnetite. Phys. Rev. B. 2015, 92, 024104.
GaV$_2$O$_4$, a new vanadium spinel, has been synthesized. Powder diffraction and X-ray total scattering studies, complemented by magnetization and resistivity measurements, reveal that the low temperature phase of this material is structurally distorted and features ordered three- and four-atom vanadium clusters. These clusters persist into a disordered cubic phase above $T_{CO} = 415$ K. Furthermore, quasi-elastic neutron scattering indicates that the disordered clusters remain well defined and static to 1100 K.