Original Article / Оригинални Рад

Informatics literacy among first-year students of medicine, dentistry and pharmacy at the University of Niš in compliance with European Computer Driving Licence

Aleksandar Višnjić1,2, Jelena Višnjić1, Nataša Milosavljević1, Roberta Marković1,2, Tamara Jovanović1,2
1University of Niš, Faculty of Medicine, Niš, Serbia; 2Institute of Public Health of Niš, Niš, Serbia

SUMMARY

Introduction/Objective Having taken into account the complex role of students and teachers participating in the global education system and the creation of European Higher Education Framework, it was necessary to perform research on Informatics Literacy (IL). Therefore, our aim was to analyze IL of the students including the knowledge of each of the four core modules and two standard European Computer Driving Licence modules, as well as to propose measures to improve students’ IL. The objective of the research was to evaluate the effect of therapy with stabilizing occlusal splint in the control of painful symptoms of TMD in comparison with the effect of drug therapy.

Methods We conducted a cross-sectional study during 2015/2016 at the Faculty of Medicine, University of Niš, and included 292 first year students. Parts of the questionnaire that related to the self-assessment, as well as the test of knowledge in Informatics, modeled after the ECDL consisted of questions from six thematic sections.

Results The study included 88 male (30.1%) and 204 female (69.9%) students. The computer is mostly used for the Internet (69.5%), then for entertainment (24.3%), and seldom for data processing programs (6.2%). Medical students showed higher level of knowledge of all six modules (p < 0.001). Male students also had higher level of IL (OR = 0.38, 95% CI 0.20–0.73). Students who completed high school showed better IL compared to students who completed secondary medical school (OR = 0.34, 95% CI 0.18–0.66). Education of parents and monthly income had no impact on students’ IL.

Conclusion IL of students is not satisfactory. It is necessary to modify the Informatics curriculum according to European standards and to introduce the course to all study groups.

Keywords: informatics literacy; students; ECDL

INTRODUCTION

What is informatics literacy?

The need for literacy has changed over time, so that policy and teaching of literacy nowadays is beyond the scope of understanding it in the past. Primary or elementary literacy includes reading and writing skills. Secondary or functional literacy includes understanding of written documents in everyday life (e.g. filling instructions and forms). Tertiary literacy encompasses informatics, computer, Internet, SMS literacy, etc. The development of information technology and its presence in all segments of society has led to increased understanding of broader concept of informatics literacy (IL) which is the basis for the development of modern society [1].

The terms IL and “information literacy” are different. The term “information literacy” refers to the ability to collect, transfer, and process data and use the specific information, while IL (computer literacy) refers to the general ability for work on the computer and use of computer programs [2, 3, 4]. Although nowadays they are considered interlocked, they are not synonymous.

Since the 1990s, there have been frequent discussions about computer literacy as a skill that everyone should adopt in order to be able to work effectively in the modern world. In fact, computers have become an inevitable tool not only in all disciplines and areas, but in everyday life as well. The concept, then, has been expanded to some basic informatics knowledge, and started to include IL. However, there was no defined standard, which could determine the level of knowledge and skills required for IL.

The aim of education is to create conditions for scientific literacy based on developed informatics and information literacy in the process of creating the knowledge society [2, 3]. In the case of higher education, it is necessary to create such conditions that would enable every student to be the part of the system in which new values are deeply rooted in knowledge and there its foundation will be created, grounded in informatics and information literacy.

In the field of higher education it is expected that students and teachers can respond to all elements of IL, which provides education
with the role of the common good, as proclaimed by the UNESCO Conference on Higher Education in Paris in 2009 [2, 4]. Some of the proclaimed goals include IL set in the EU member states. ECDL was accepted for a short time outside the EU, so it is now used in 148 countries and in 36 languages. In Serbia, along with efforts to join the EU defined the ECDL and its “Strategy of development of the information society” in 2006 [8].

ECDL curriculum and syllabus include knowledge assessment of several thematic sections or modules, which may be basic, standard, and advanced. Basic modules represent a set of primary skills that are essential for each individual. By taking examination in all four basic modules, a person obtains ECDL Start certificate. This level includes the following modules consisting of the skills below:

1. Basic computer use – knowledge and skills referring to device use, creation and arrangement of files, network and security aspects;
2. Basics of Internet use – knowledge and skills related to Web search, efficient information finding, online communication and e-mail messages;
3. Text processing – knowledge and skills necessary for efficient use of application for creation, formation and final text processing;
4. Tabular calculations – knowledge and skills necessary for efficient use of applications for creation, formation, changing and use of working sheets, standard formulas, functions and graph creation.

Standard modules represent a set of practical skills used in each of the corresponding areas chosen by candidates themselves according to their needs at work. There are nine standard modules, and by taking combined examination version with basic modules ECDL Core or ECDL Profile certificate could be obtained. The standard modules include:

(i) Presentations, (ii) Use of data base, (iii) IT safety, (iv) Online collaboration, (v) Image processing, (vi) Web site processing, (vii) Project planning, (viii) 2D Computer Aided Design, and (ix) Use of health information system (Appendix 1).

Advanced modules allow the user to become “a powerful computer user” and use completely four most common applications. ECDL advanced levels are: Advanced text processing, Advanced table calculations, Advanced databases and Advanced presentations.

In accordance with the conclusions of the Commission for education program harmonization with ECDL standards, pupils from elementary or secondary school who obtain very good (4) or excellent grade (5) in Informatics or students at university who get grades 8 (very good), 9 (excellent) or 10 (remarkable) can obtain ECDL certificate. Hereby, the Informatics curriculum has to comply with the ECDL modules in the following way:

If the curriculum includes all four basic modules, then a student can obtain ECDL Start certificate. If, in addition to four basic modules, the curriculum includes standard modules of Presentations and Database use, then a student can obtain ECDL Core certificate [8].

It is exactly this principle that we used in the analysis of IL among first-year students of the Departments of Medicine, Dentistry, and Pharmacy of the Medical Faculty in Niš, taking into account the fact that similar research has not been conducted according to accepted ECDL European standards in our region. However, the main goal of this research was not only to determine the level of IL acquired during secondary education, but also to find optimal solutions that would increase the IL of students during their studies.
Appendix 2 – QUESTIONNAIRE

1) What is your study group?
 a) Medicine b) Dentistry c) Pharmacy

2) Sex
 a) Male b) Female

3) What secondary school did you complete?

4) Are you satisfied with the Informatics knowledge acquired in secondary school?
 a) Yes b) No

5) What are your parents’ qualifications?
 a) Elementary school
 b) Secondary school
 c) College
 d) University
 e) Master/doctoral degree

 Mother: ________________________________
 Father: ________________________________

6) What is the total monthly income of your household (roughly)? ___________

7) How many members are there in your family? ___________

8) Do you have a computer at home or temporary residence?
 a) Yes (circle the type of computer – more than one answer possible)
 i) Desktop computer ii) Laptop iii) Tablet
 b) No

9) How many computers are there in your household? ___________

10) How old were you when you started using a computer? ___________

11) What is the purpose for which you use a computer?
 a) Entertainment (playing games, watching movies, …)
 b) Internet use
 c) Data processing using (Word, Excel, Power Point, …)

12) How would you assess your knowledge of operation system?
 a) Not enough b) Enough c) Good d) Very good e) Excellent

13) How would you assess your knowledge of Microsoft Office Word?
 a) Not enough b) Enough c) Good d) Very good e) Excellent

14) How would you assess your knowledge of Microsoft Office Excel?
 a) Not enough b) Enough c) Good d) Very good e) Excellent

15) How would you assess your knowledge of Microsoft Office Power Point?
 a) Not enough b) Enough c) Good d) Very good e) Excellent

16) How would you assess your knowledge of Microsoft Office Access?
 a) Not enough b) Enough c) Good d) Very good e) Excellent

17) How would you assess your knowledge of Internet?
 a) Not enough b) Enough c) Good d) Very good e) Excellent

18) File with.xlsx (.xls) extension represents:
 a) database b) compressed file c) text document d) I do not know.

19) File with .xml (.xsl) extension represents:
 a) table b) presentation c) web document d) I don’t know.

20) File with .pptx (.ppt) extension represents a:
 a) text document b) video file c) presentation d) I don’t know.

21) File with .accdb (.mdb) extension is:
 a) video file b) executable file c) database d) I don’t know.

22) Which of the following belongs to computer operation system?
 a) Avast b) Windows c) WinZip d) I don’t know

23) Is it possible to search a document in Word using a key word?
 a) Yes b) No c) I don't know

24) Can functions in Excel be applied to numerical data?
 a) Yes b) No c) I don’t know

25) While printing a presentation it is possible to print several slides on one piece of paper?
 a) Yes b) No c) I don’t know

26) Is it possible to copy table from Excel to Word document?
 a) Yes b) No c) I don’t know

27) Is it possible to insert both text and image on the same slide in Power Point presentation?
 a) Yes b) No c) I don’t know

28) In an email address petar10@gmail.com, petar10 represents:
 a) password b) user name c) domain d) I do not know.

29) Which program opens a pdf file?
 a) Windows Media Player b) Adobe Reader c) Kaspersky AVP d) I do not know

30) Page numbering in Word:
 a) cannot be inserted; b) can be inserted only at the top of page;
 c) can be inserted only at the bottom of the page;
 d) can be inserted both at the top and bottom of page;
 e) I do not know

31) Data sorting in a table created in Access is possible:
 a) only using one criterion; b) using several criteria;
 c) only in increasing order; d) I do not know.

32) The function of Outlook Express program is for:
 a) creating Web presentations; b) Internet access;
 c) receiving and sending e-mails; d) I do not know

33) Which statement is correct?
 a) Operation system provides computer protection from viruses.
 b) Operation system represents a sum of all programs on a computer.
 c) Operation system is necessary for the use of programs and files.
 d) I do not know.

34) One table in Access may have:
 a) only one primary key; b) multiple primary keys;
 c) maximum two primary keys; d) I do not know.

35) Modem is:
 a) an electronic device enabling Internet access;
 b) operation system of a computer by means of which we get connected to Internet;
 c) program enabling Internet access;
 d) I do not know.

Srp Arh Celok Lek. 2019 Nov-Dec;147(11-12):736-745

DOI: https://doi.org/10.2298/SARH180704047V

Višnić A. et al.
METHODS

The research represents a cross-sectional study carried out in academic 2015/2016 at the Medical Faculty of University in Niš. This study was done in accord with standards of the institutional Committee on Ethics. Out of the total number of 336 first year students of integrated studies of Medicine, Dentistry and Pharmacy 292 of them were included in the study. They gave consent to participate in the study and filled in anonymous questionnaire at lectures and practical. Completing of the questionnaire lasted for 15 minutes, including the time for the interviewer’s instructions.

Out of the total number of 195 first-year students of the Department of Medicine, 186 were included in the study; 45 students of the Department of Dentistry (out of 71) and 69 students (out of 70) of the Department of Pharmacy were also included in this study. The questionnaire consists of three thematic units (Appendix 2):

- open and closed questions relating to demographic and socioeconomic characteristics;
- closed questions relating to students’ self-assessment of their IL;
- closed questions relating to objective assessment of students’ IL.

Parts of the questionnaire relating to self-assessment as well as objective assessment of Informatics competence based on the test using ECDL, consisted of questions grouped in six thematic units – modules (Figure 1). The part of the questionnaire relating to the self-assessment of competence in six thematic units (modules) from Informatics contained six questions – one question for each module. These six questions had five possible answers from “not enough” (1) to “excellent” grade (5).

Analysis of self-assessment of “Start” and “Core” information literacy of respondents was done in two ways:

- The first way implied that the respondents possessed a “Start” or “Core” information literacy if they had grade 4 or 5; or if they graded their knowledge for each module (if they graded their knowledge for each module ≥ 2) and had 4 as the final grade.

The examined factors were compared between these groups. Statistical analysis was performed in SPSS 17.0 (SPSS Inc., Chicago, IL, USA) in Windows 7 environment. The results were presented in tables. Statistical analysis included the application of descriptive statistics (percent-age distribution, mean value, median), parametric tests (Student’s t-test), Spearman rank correlation and nonparametric tests (Pearson’s χ² test, Fischer’s exact test) as well as binary logistic regression model. Statistical significance was taken at p < 0.05.

RESULTS

Assessment of students’ knowledge of modules

Out of the total number of 292 examined students, 88 were male (30.1%) and 204 were female (69.9%). Exactly 184 students (63%) completed secondary medical school (or similar vocational school), and 108 (37%) completed high
school. As for study courses, there were 182 respondents from the Medicine study program, 44 respondents were from the Dentistry study program, and 66 respondents were from the Pharmacy study program. Exactly 138 (47.3%) respondents were satisfied with the information knowledge acquired in secondary school, while 154 (52.7%) students were dissatisfied (Table 1).

Almost all examined students (97.9%) possessed and used a computer (at least one). Only four of them reported that they did not own a computer. The average income per household was 76,129.63 Serbian dinars, with the average number of household members 4.12 (i.e., the average income per household member is 18,487.06 Serbian dinars). The average number of computers per household was 2.25. The average age when respondents started to use computer was 9.59 years.

Respondents most often used their computer for the Internet (69.5%), then for entertainment purposes (playing computer games, watching movies, listening to music, etc.) (24.3%), and for data processing program (6.2%) (MS Word, MS Excel, MS Power Point, etc.).

The results of self-assessed and examined knowledge of all six modules were presented in Table 2. In terms of the order of the number of students who were trained to work in these thematic units, the result was as follows (very good and excellent grades of respondents were taken into account):

1. Internet – 189 respondents (63.7%)
2. Microsoft Office Power Point – 133 respondents (45.6%)
3. Microsoft Office Word – 120 respondents (40.2%)
4. Basics of computer use – 69 respondents (23.6%)
5. Microsoft Office Excel – 65 respondents (22.3%)
6. Microsoft Office Access – 29 respondents (9.9%)

Table 1. General overview of respondents

Parameters	Sex	Secondary school	Satisfied with their knowledge from secondary school	Total				
	Male	Female	High school	Secondary medical school	Yes	No		
Study group								
Medicine	56	126	73	109	90	92	182	
	% 30.8%	69.2%	40.1%	59.9%	49.5%	50.5%	100%	
Dentistry	16	28	9	35	23	21	44	
	% 36.4%	63.6%	20.5%	79.5%	52.3%	47.7%	100%	
Pharmacy	16	50	26	40	25	41	66	
	% 24.2%	75.8%	39.4%	60.6%	37.9%	62.1%	100%	
Total	88	204	108	184	138	154	292	
	% 30.1%	69.9%	37%	63%	47.3%	52.7%	100%	

Table 2. Informatics literacy of students in relation to modules

	Not enough	Enough	Good	Very good	Excellent	No knowledge	Poor knowledge	Average knowledge	Very good knowledge
Basics of computer use	46	95	82	50	19	6	44	130	112
	15.8%	32.5%	28.1%	17.1%	6.5%	2.1%	15.1%	44.5%	38.4%
Microsoft Office Word	16	70	86	75	45	17	55	89	131
	5.5%	24%	29.5%	25.7%	15.4%	5.8%	18.8%	30.5%	44.9%
Microsoft Office Excel	56	80	91	49	16	59	97	84	52
	19.2%	27.4%	31.2%	16.8%	5.5%	20.2%	33.2%	28.8%	17.8%
Microsoft Office Power Point	21	59	79	82	51	10	39	98	145
	7.2%	20.2%	27.1%	28.1%	17.5%	3.4%	13.4%	33.6%	49.7%
Microsoft Office Access	122	82	59	21	8	156	89	36	11
	41.8%	28.1%	20.2%	7.2%	2.7%	53.4%	30.5%	12.3%	3.8%
Internet	3	28	72	92	97	14	43	86	149
	1%	9.6%	24.7%	31.5%	33.2%	4.8%	14.7%	29.5%	51%
Correlations between self-assessed and examined knowledge of modules

The correlation between self-assessed and examined knowledge was investigated using Spearman’s rank correlation. Preliminary analyses were performed to prove assumptions of normality, linearity, and homogeneity of variance. Strong positive correlations were calculated between these two variables. According to Cohen, correlation strength between these two variables was medium (0.3 < r < 0.49) for all these modules except for Microsoft Excel, where correlation was slightly lower (Table 3).

Table 3. Correlation between self-assessed and assessed (by test) knowledge of modules

Self-assessment of knowledge	Assessment of knowledge (test)	Spearman's ρ
Basics of computer use	0.331**	
Word	0.406**	
Excel	0.283**	
Power Point	0.435**	
Acces	0.348**	
Internet	0.320**	

**p < 0.001

Thus, high levels of subjectively experienced knowledge were accompanied by high levels of objectively examined knowledge.

Overall IL of respondents

Comparison of IL between results obtained by self-assessment and results obtained by knowledge assessment was performed in two ways:

Traditional assessment

According to the model of the ECDL, a student is said to have the basic level of IL (“Start”) if he has a very good knowledge of each of the four core modules (basics of computer use, text processing, table calculations, and Internet). If a student had a very good knowledge of each of the six modules, i.e. of all four basic modules and two from the nine standard modules (Presentations and Use of the database), then he was said to have standard level of IL (“Core”).

The results relating to the students’ knowledge of above-mentioned six modules (grades 4 and 5 were taken into account) are as presented in Table 4.

χ² test of independence showed a significant difference between the study groups and self-assessed knowledge of “Start” module (χ² = 6.034, df = 2, p = 0.049 and Cramer’s V = 0.144). Medical students assessed their knowledge as better compared to other two study groups.

χ² tests of independence (with continuity correction by Yates) showed significant differences: between sex and self-assessed knowledge of “Start” program (χ² = 4.805, df = 1, **p < 0.001**

Thus, high levels of subjectively experienced knowledge were accompanied by high levels of objectively examined knowledge.

Table 4. Start and Core IL according to European Computer Driving Licence standards in relation to study group, sex, and completed secondary school – traditional and school scoring

Parameters	Start	Core		
	Self-assessment	Assessment (test)	Self-assessment	Assessment (test)
Traditional grading				
Faculty				
Medicine	29	15.93%	17	9.34%
Dentistry	2	4.54%	1	2.72%
Pharmacy	5	7.57%	2	3.03%
Sex				
Male	17	19.32%	10	11.36%
Female	19	9.31%	10	4.9%
Secondary school				
High school	20	18.52%	10	9.26%
Secondary medical school	16	8.7%	10	5.43%
Total	36	12.33%	20	6.85%
School grading				
Faculty				
Medicine	74	40.66%	84	46.15%
Dentistry	14	31.82%	13	29.55%
Pharmacy	19	28.79%	9	13.64%
Sex				
Male	39	44.32%	43	48.86%
Female	68	33.33%	63	30.88%
Secondary school				
High school	60	55.56%	57	52.78%
Secondary medical school	47	25.54%	49	26.63%
Total	107	36.64%	106	36.3%

Overall IL of respondents

Comparison of IL between results obtained by self-assessment and results obtained by knowledge assessment was performed in two ways:

Traditional assessment

According to the model of the ECDL, a student is said to have the basic level of IL (“Start”) if he has a very good knowledge of each of the four core modules (basics of computer use, text processing, table calculations, and Internet). If a student had a very good knowledge of each of the six modules, i.e. of all four basic modules and two from the nine standard modules (Presentations and Use of the database), then he was said to have standard level of IL (“Core”).

The results relating to the students’ knowledge of above-mentioned six modules (grades 4 and 5 were taken into account) are as presented in Table 4.

χ² test of independence showed a significant difference between the study groups and self-assessed knowledge of “Start” module (χ² = 6.034, df = 2, p = 0.049 and Cramer’s V = 0.144). Medical students assessed their knowledge as better compared to other two study groups.

χ² tests of independence (with continuity correction by Yates) showed significant differences: between sex and self-assessed knowledge of “Start” program (χ² = 4.805, df = 1,
p = 0.028 and $\varphi = -0.14$), whereby it was found that male students were more familiar with this program; between high schools and secondary medical schools in relation to self-assessed knowledge of “Start” program ($\chi^2 = 5.200, df = 1, p = 0.023$ and $\varphi = -0.144$) in favor of the high school.

School assessment

We used school assessment system for analysis of results following ECDL model. The requirement was that the student obtained minimum grade 2 from each module, (i.e. that he “passed” each module) and at the same time had a very good or excellent final grade from all the modules together (according to self-assessment). In the process of knowledge assessment a student was obliged to have the final grade 4 (whereby he had to have at least one correct answer – i.e. that “he passed” each module).

χ^2 test of independence showed a significant difference between the study group and “Start” program self-assessment ($\chi^2 = 23.171, df = 2, p = 0.000$ and Cramer’s $V = 0.282$), as well as between the study group and the “Core” program of knowledge assessment ($\chi^2 = 15.983, df = 2, p = 0.000$ and Cramer’s $V = 0.234$), in favor of students of medicine in both cases.

χ^2 tests of independence (with Yates’ Correction for Continuity) showed significant differences between sex and test-assessed knowledge of “Start” program ($\chi^2 = 7.836, df = 1; p = 0.005$ and $\varphi = -0.172$) in favor of the male students.

Testing prognostic values of certain parameters for IL

Binary logistic regression was conducted to assess the impact of various factors on the possibility that students would have good knowledge of Start program. The model contained six independent variables (sex, secondary school, mother’s education, father’s education, monthly income and the age of starting to use computer) and was statistically significant, $\chi^2 (5, N = 292) = 33.106, p < 0.001$. The model explained variances between 14.3% (r^2 Cox and Snell) and 19.5% (r^2 Nagelkerke) in proven excellent knowledge of “Start” program and correctly classified 70.2% of cases.

As shown in Table 5, only two independent variables made a statistically significant contribution to a unique model (sex and secondary school). The strongest predictor of the response that a student had excellent knowledge was completed secondary school with OR = 0.34 (95% CI 0.18–0.66). This implied that students who completed high school had three times better knowledge than students from secondary medical or other vocational schools (with all other equal factors in the model). Odds ratio for sex was 0.38 (95% CI 0.20–0.73). Parents’ education and income showed no significant association with IL.

DISCUSSION

The research results showed that not all participants had their personal computer, the reason of which lies in a poor economic situation in the region. This represents a sort of disadvantage because in the contemporary informatics era the computer is indispensable tool in all spheres of life and all professions. Therefore, it is desirable that each individual has a personal computer, which would significantly increase computer literacy, improve learning process and general knowledge.

Out of the total number of respondents, 69.5% of them use the computer for Internet access, 24.3% of them for entertainment purposes (playing computer games, watching movies, listening to music, etc.), and only 6.2% of them for data processing programs (MS Word, MS Excel, MS Power Point, etc.). Thus, it could be concluded that only a small number of students use programs for word processing, tabular calculations and making presentations, where no significant differences were found in relation to secondary school completed.

Generally, the students’ IL is not satisfactory. Based on the self-assessment, the number of students having an elementary computer literacy according to ECDL standard is 12.33% of the total number. When testing their knowledge even lower results (only 6.85%) were obtained of basic IL. Only the knowledge of Microsoft Office Word was satisfactory.

It may be possible to explain that those students use it most when it comes to faculty work (writing seminar papers, etc.), while other software tools are rarely in use.

There is a significant difference in the knowledge of all six test modules among students from different study groups indicating that medical students are more competent compared to dental and pharmacy students. Male students have a higher level of literacy in relation to female students. Students who completed high school show better

Parameters	B	Stand. error	Wald	df	p	OR	95% CI for EXP(B)	Lower	Upper
Sex	-0.964	0.335	8.294	1	0.004	0.381	0.198	0.735	
Secondary school	-1.078	0.336	10.278	1	0.001	0.340	0.176	0.658	
Educational background of a mother	0.135	0.172	0.621	1	0.431	1.145	0.818	1.602	
Educational background of a father	0.151	0.180	0.708	1	0.400	1.163	0.818	1.654	
Monthly income	0.000	0.000	0.081	1	0.776	1.000	1.000	1.000	
The start year of computer use	-0.012	0.065	0.034	1	0.854	0.988	0.870	1.123	
Constant	-0.073	0.884	0.007	1	0.934	0.930			

Hosmer and Lemeshow test: $\chi^2 = 4.078, df = 8, p = 0.850 (>0.05)

B – coefficient for the constant (“intercept”) in the null model; OR – odds ratio; Wald – Wald χ^2 test; Exp(B) – exponentiation of the B coefficient (odds ratio); df – the degrees of freedom for each variable
Informatics literacy among first-year students of medicine, dentistry and pharmacy at the University of Niš in compliance with ECDL

The goal of all education systems is to improve the learning process, and educators need to know the educational strategies, methods and procedures, as well as the ways in which students learn. New technological developments are reflected directly in the educational system, and the way of their application and implementation depends on informatics and communication technologies [23, 36]. As the communication technologies are inevitable in all spheres of life and work, all students should be well prepared to apply informatics technologies in the future workplace.

The current state of equipment and practical instruction of Informatics module at the Faculty of Medicine in Niš

In 2010, the computer network of the Faculty of Medicine had about 350 computers located at institutes, amphitheaters, and classrooms. In this way, teachers and teaching associates could perform teaching in a more modern way, and have an access to numerous specialized databases. At that point, the Computer Centre was an integral part of a worldwide network and with its communication, equipment completely satisfied European standards.

Considering that average life span of computers is five years, computers at the Faculty of Medicine no longer represent adequate equipment for practical training of students. Due to low RAM memory, they cannot support new versions of operating systems and more demanding programs cannot be carried out at necessary speed. All the above-mentioned facts indicate that it is not possible to carry out instruction at a satisfactory level.

CONCLUSION

Generally, students’ elementary IL is not satisfactory. Medical students are more competent, compared to dental and pharmacy students, and male students have a higher level of literacy than female ones. Students who completed high school show better IL compared to those who completed specialized schools. Educational background of parents and monthly income had no impact on IL.

Proposed measures

It is necessary to modify the curriculum and syllabus of the Informatics course and make it compatible with practical work in computer classroom, as well as to include new modules in the curriculum along with the modernization of computer equipment at the Faculty (as well as in high schools). In addition, the curriculum of the Informatics course should be adjusted to European standards – ECDL program with the introduction of the elective or compulsory Informatics course for all study groups.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (Project 43012 and 41018).

Conflict of interest: None declared.
REFERENCES

1. Nadjrjanski Đ. Informatics literacy and computerization of education. Informatologija. 2006; 39(4):262–6. [in Serbian]
2. Zejnalić-Hajrić M, Hadžibegović Z, Nušić J, Galijalić V. Informatics literacy and computer education usage: the case of chemistry and physics students at the University of Sarajevo. Proceedings of the 6th International Symposium: Technology, Informatics and Education for Learning and Knowledge Society; 2011 June 3–5, Čačak, Srbija. Čačak: Technical Faculty Čačak; 2011. p. 548–57.
3. Shapiro JJ, Hughes SK. Information Literacy as a Liberal Art. Enlightenment proposals for a new curriculum. Educom review. 1996; 31(2):31–5. Available at: http://www.educasue.edu/pub/er/review/reviewarticles/31231.html, last accessed: 20/05/2017.
4. Brydon D. Critical literacies for globalizing times. Critical Literacy: Theories and Practices. 2010; 4(2):16–28.
5. UNESCO (2004). The plurality of literacy and its implications for policies and programmes. UNESCO Education Sector Position Paper. Paris: UNESCO. Available at: http://unesdoc.unesco.org/images/0013/001362/136246e.pdf, last accessed: 20/05/2017.
6. UNESCO (2005). Perspectives on Distance Education: Lifelong Learning and Distance Higher Education. Available at: http://unesdoc.unesco.org/images/0014/001412/141218e.pdf, last accessed: 20/05/2017.
7. Bologna Process: Main documents – Ministerial Declarations and Communiqués. Available at: http://www.ond.vlaanderen.be/hogeronderwijs/bologna/documents/last accessed: 20/05/2017.
8. European Computer Driving Licence Foundation. Available at: http://ecdli.rs, last accessed: 20/05/2017.
9. X1 Elsborg L, Krossdal F, Kayser L. Health literacy among Danish university students enrolled in health-related study programmes. Scand J Public Health. 2017; 45(8):831–8.
10. Khajouei R, Salehi F. Health Literacy among Iranian High School Students. Am J Health Behav. 2017; 41(2):215–22.
11. Miletić V, Grga Đ. Computer literacy and access to the Internet among dental students. Stom Glas S. 2004; 51:97–102.
12. Obradović JL. Information literacy in health care oriented at ICT with an emphasis on lifelong learning. Proceedings of the 5th International Conference: Technics and Informatics in Education; 2014 May 30–31, Čačak, Srbija. Čačak: Faculty of Technical Sciences Čačak; 2014. p. 41–2.
13. Bazrafkan L, Asghar Hayat A, Abbasi K, Bazrafkan A, Rohalamin A, Fardid M. Evaluation of information literacy status among medical students at Shiraz University of Medical Sciences. J Adv Med Educ. 2017; 5(1):42–8.
14. Stoini D, Campbell S. Determining the information literacy needs of a medical and dental faculty. Journal of the Canadian Health Libraries Association. 2012; 32(3):48–59.
15. Dettor B, Booker L, Serenko A, Julien H. Student perceptions of information literacy instruction: The importance of active learning. Education for Information. 2012; 29(2):147–61.
16. Marino R, Habibi E, Morgan M, Au-Yeung W. Information and communication technology use among Victorian and South Australian oral health professions students. J Dent Educ. 2012; 76(12):1667–74.
17. McCourt JP, Ballantine JA, Whittington M. Evaluating the validity of self-assessment: Measuring computer literacy among entry-level undergraduates within accounting degree programmes at two UK universities. Accounting Education. 2003; 12(2):97–112.
18. Debehnke DJ, Valley VT. Assessment of the current computer literacy and future computer needs of emergency medicine residents and faculty. Am J Emerg Med. 1993; 11(4):371–3.
19. Bediang G, Stoll B, Geissbuhler A, Kohn AM, Stuckelberger A, Nikoł, S, et al. Computer literacy and E-learning perception in Cameroon: the case of Youande Faculty of Medicine and Biomedical Sciences. BMC Med Educ. 2013; 13(1):57.
20. Ranasinghe P, Wickramasinghe SA, Pieris WR, Karunathilake I, Constantine GR. Computer literacy among first year medical students in a developing country: A cross sectional study. BMC Res Notes. 2012; 5:S04.
21. Richardson JE, Bouquin DR, Tmanova LL, Wright D. Information and informatics literacies of first-year medical students. J Med Libr Assoc. 2015; 103(4):198–202.
22. Cole D, Rengasamy E, Batchelor S, Pope C, Riley S, Cunningham AM. Using social media to support small group learning. BMC Med Educ. 2017; 17(1):201.
23. Royal K, Hogdeth MW, McWhorter D. Students’ Perceptions of and Experiences with Educational Technology: A Survey. JMIR Med Educ. 2016; 2(1):e4.
24. Mahmood S, Al Jeadzi Z, Al-Onazi M, Al-Shehri A, Al-Harbi A. A Cross-Sectional Analysis of Use of Information Technology by Selected Students of Health Colleges of a Saudi University. J Coll Physicians Surg Pak. 2016; 26(6):527–30.
25. Mills J, Francis K, McLeod M, Al-Motlaq M. Enhancing computer literacy and information retrieval skills: A rural and remote nursing and midwifery workforce study. Collegian. 2014; 22(3):283–9.
26. Dowding D. Are nurses expected to have information technology skills? Nurs Manag (Harrow). 2013; 20(5):31–7.
27. Topkaya SG, Kaya N. Nurses’ computer literacy and attitudes towards the use of computers in health care. Int J Nurs Pract. 2015; 21(S2):141–9.
28. Mcneil BJ, Elfrink V, Beyea SC, Pierce ST, Bickford CJ. Computer literacy study: Report of qualitative findings. J Prof Nurs. 2006; 22(1):52–9.
29. Mantas J. Accreditation and Certification in Health Informatics: Principles and Procedures. Stud Health Technol Inform. 2017; 238:272–5.
30. Cox S, Pollock D, Rountree J, Murray CM. Use of information and communication technology amongst New Zealand dental students. Eur J Dent Educ. 2016; 20(3):135–41.
31. Robabi H, ArbabiSiaraju A. Computer literacy among students of Zahedan University of Medical Sciences. Glob J Health Sci. 2015; 7(4):136–42.
32. Tomasik MJ, Berger S, Moser U. On the Development of a Computer-Based Tool for Formative Student Assessment: Epistemological, Methodological, and Practical Issues. Front Psychol. 2018; 9:2245.
33. McClurg C, Powelson S, Lang E, Aghajafari F, Edworthy S. Evaluating effectiveness of small group information literacy instruction for Undergraduate Medical Education students using a pre- and post-survey design study. Health Info Libr J. 2015; 32(2):120–30.
34. Abdekhoda M, Dehmad A, Yousefi M. Effectiveness of training intervention to improve medical student’s information literacy skills. Korean J Med Educ. 2016; 28(4):391–5.
35. Boruff JT, Harrison P. Assessment of knowledge and skills in information literacy instruction for rehabilitation sciences students: a scoping review. J Med Libr Assoc. 2018; 106(1):15–37.
36. Buabbas AJ, Al-Shawaf HM, Almajran AA. Health Sciences Students’ Self-Assessment of Information and Communication Technology Skills and Attitude Toward e-Learning. JMIR Med Educ. 2016; 2(1):e9.
Информатичка писменост студената прве године студија медицине, стоматологије и фармације на Универзитету у Нишу у складу са Европском рачунарском дипломом (European Computer Driving Licence)

Александар Вишњић1,2, Јелена Вишњић1, Наташа Милосављевић1, Робертa Марковић1,2, Тамара Јовановић1,2

1Универзитет у Нишу, Медицински факултет, Ниш, Србија;
2Институт за јавно здравље, Ниш, Србија

САЖЕТАК
Увод/Циљ Циљ рада је анализа информатичке писмености испитиваних студената преко познавања сваког од шест основних модула и два стандардна модула Европске рачунарске дипломе (ECDL), као и утврђивање предлога мера за унапређење информатичке писмености студената.

Циљ истраживања је био да се процени ефекат терапије стабилизационим оклузалним сплинтом у поређењу болних симптома ТМД у поређењу са ефектом терапије лековима.

Методе Студија пресека проведена је у току школске 2015/2016. године на Медицинском факултету Универзитета у Нишу и њоме су обухвата 292 студента прве године интегрисаних академских студија медицине, стоматологије и фармације. Делови упитника који су се односили на самопроцену, као и на проверу знања из информатике, према узору на ECDL, састојали су се од питања из шест тематских целина – модула.

Резултати Испитивано је 88 млађих (30,1%) и 204 девојке (69,9%). Рачунар користе најчешће приликом употребе интернета (69,5%), затим у сврху забаве (24,3%), а најреже за употребу неких од програма за обраду подataka (6,2%). Међу студентима различитих студијских група постоји значајна разлика у познавању рада свих шест испитиваних модула и то у корист студената медицине (p < 0,001). Студенти мушког пола имају већи степен информатичке писмености у односу на студенте женског пола (OR = 0,38, 95% CI 0,20–0,73). Студенти који су завршили гимназију показују бољу информатичку писменост у односу на студенте који су завршили средњу медицинску школу (OR = 0,34; 95% CI 0,18–0,66). Стручна спрема родитеља, као и месечна примања нису показали да имају утицај на информатичку писменост студената.

Закључак Основна информатичка писменост студената није на задовољавајућем нивоу. Неопходно је модификовати наставни план из Информатике према европским стандардима, уз увођење предмета на свим студијским групама.

Кључне речи: информатичка писменост; студенти; ECDL