Dermoscopy could be useful in differentiating sarcoidosis from necrobiotic granulomas even after treatment with systemic steroids

Shahira Ramadan1, Dalia Hossam1, Marwah A. Saleh1

1 Dermatology Department Cairo University, Cairo, Egypt

Key words: cutaneous sarcoidosis, dermoscopy, necrobiotic granuloma, steroids, treatment

Citation: Ramadan S, Hossam D, Saleh MA. Dermoscopy could be useful in differentiating sarcoidosis from necrobiotic granulomas even after treatment with systemic steroids. Dermatol Pract Concept 2016;6(3):5. doi: 10.5826/dpc.0603a05

Received: August 2, 2015; Accepted: May 24, 2016; Published: July 31, 2016

Copyright: ©2016 Ramadan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: None.

Competing interests: The authors have no conflicts of interest to disclose.

All authors have contributed significantly to this publication.

Corresponding author: Marwah Adly Saleh, MD, PhD, Department of Dermatology, Cairo University School of Medicine, Kasr Al Ainy Hospital, PO 11956, Cairo, Egypt. Tel. +201223132773. Email: salehmarwah@kasralainy.edu.eg

ABSTRACT

Background: Diagnosing cutaneous sarcoidosis and necrobiotic granulomas is challenging.

Objective: Assessing the value of dermoscopy in differentiating cutaneous sarcoidosis from necrobiotic granulomas and evaluating whether their dermoscopic features will be altered after treatment.

Methods: Nineteen cutaneous sarcoidosis and 11 necrobiotic granuloma patients (2 necrobiosis lipoidica, 4 granuloma annulare and 5 rheumatoid nodule) were included in this study. The diagnosis was confirmed by skin biopsy. The lesions were examined using non-contact polarized dermoscope (Dermlite 2 HR-Pro; 3Gen, San Juan Capistrano, CA).

Results: Ten out of 19 cutaneous sarcoidosis patients and 7/11 necrobiotic cases group were receiving treatments (topical, intralesional or systemic steroids ± chloroquine) but still have cutaneous lesions. Treatment duration in the sarcoidosis group ranged from 2 months to 10 years (median 3 years) and in the necrobiotic cases group ranged from 3 months to 16 years (median 2 years). Pink homogenous background, translucent orange areas, white scar-like depigmentation and fine white scales were significantly associated with the cutaneous sarcoidosis compared to necrobiotic cases group. On the other hand mixed pink, white and yellowish background was significantly associated with the necrobiotic cases group. No significant difference in the dermoscopic findings was detected between treated and non-treated patients.

Conclusion: Some dermoscopic findings are shared between the cutaneous sarcoidosis group and the necrobiotic cases group, yet dermoscopy could be a useful aid in differentiating them even after treatment.

Introduction

Dermoscopy is gaining popularity in the diagnosis of inflammatory dermatoses. Polarized dermoscopes are widely used due to their better visualization of the deeper epidermis and papillary dermis [1].

A granulomatous disorder is a pathological description of a variety of conditions that have different etiologies but...
was represented using the terms sensitivity, specificity, +ve predictive value, -ve predictive value, and overall accuracy. P values less than 0.05 was considered statistically significant. All statistical calculations were done using computer program SPSS (Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA) release 15 for Microsoft Windows (2006).

2.2 Accuracy calculations

\[
\text{Sensitivity} = \frac{T(+)ve}{T(+)ve + F(-)ve} \\
\text{Specificity} = \frac{T(-)ve}{T(-)ve + F(+)ve} \\
\text{Positive predictive value} = \frac{T(+)ve}{T(+)ve + F(+)ve} \\
\text{Negative predictive value} = \frac{T(-)ve}{T(-)ve + F(-)ve} \\
\text{Overall accuracy} = \frac{T(+)ve + T(-)ve}{\text{All sample}}
\]

Results

The demographic data of the patients are summarized in Table 1. Nineteen cutaneous sarcoidosis cases and 11 necrobiotic cases groups (2 necrobiosis lipoidica, 4 granuloma annulare and 5 rheumatoid nodule) were included in this study. The number of examined lesions in the cutaneous sarcoidosis group ranged from 1 to 16 lesions (median=3). The number of examined lesions in the necrobiotic cases group (necrobiosis lipoidica, granuloma annulare and rheumatoid nodules) ranged from 1 to 14 lesions (median=2).

Ten out of 19 cutaneous sarcoidosis cases and 7/11 of the necrobiotic cases group were receiving treatments but still had cutaneous lesions. The cutaneous sarcoidosis patients received systemic steroids and chloroquine. One patient received adjuvant intralesional steroids. Three patients from the necrobiotic cases group received topical steroids, 1 patient received systemic steroids, 2 patients received systemic steroids and methotrexate and 1 patient received systemic steroids, methotrexate and chloroquine.

The dermoscopic findings are summarized in Table 2. The results showed that pink homogenous background, translucent orange areas, white scar-like depigmentation and fine white scales (Figure 1) were significantly associated with cutaneous sarcoidosis compared to the necrobiotic
TABLE 2. Summary of the dermoscopic findings [Copyright: ©2016 Ramadan et al.]

	Cutaneous sarcoidosis (n=19)	Necrobiotic cases group	P value		
Background color					
Pink homogenous	14	0	0	*0.018	
background		0	0		
Mixed pink	0	1	0	0.298	
and white homogenous		background			
Mixed pink	0	2	2	*0.012	
white and yellowish		background			
background	5	0	0	0.082	
Mixed pink and					
orange background	5	0	0		
Translucent orange	4	0	0	0.141	
globules and areas					
Translucent orange	12	0	0	*0.001	
globules					
Translucent orange	5	0	2	1	0.637
areas					
Blood vessels					
Arborizing vessels	9	0	2	1	0.245
Short linear	9	0	2	1	0.637
blood vessels					
Pigmentation					
Hypopigmented areas	0	2	0	0	0.367
Scar like depigmentation	7	0	0	0	*0.025
Reticulate pigmentation	1	1	2	1	*0.047
Scales					
Fine white scales	9	0	0	0	*0.006

*P value <0.05 is significant

Figure 1. Dermoscopic picture of cutaneous sarcoidosis cases showing (a) arborizing blood vessels (black arrow) (no treatment); (b) translucent orange areas (black arrow) (treatment for 3 years); (c) scar-like depigmentation (black arrow) (no treatment); (d) white scales (black arrow) (no treatment). [Copyright: ©2016 Ramadan et al.]
Discussion

The spectrum of inflammatory diseases that can be diagnosed using a dermoscope has markedly increased. Granulomatous skin diseases are a group of inflammatory dermatoses that are characterized pathologically by granuloma formation. Few studies evaluated the use of dermoscopy in diagnosing cutaneous sarcoidosis; the largest of which was using 7 cases [7]. In this work we aimed to assess the value of the dermoscope in diagnosing cutaneous sarcoidosis using a larger number of patients. Moreover, we tried to evaluate whether receiving treatment affected the dermoscopic findings. We compared the dermoscopic findings of the patients who were receiving treatment with those who had not started any treatment. However, the results were not significant in all the dermoscopic findings (Table 3) (Figure 3).

TABLE 3. Comparison between dermoscopic findings in treated and untreated cases
Cutaneous sarcoidosis (n=19)
Background color
Pink homogenous background
Mixed pink and white homogenous background
Mixed pink, white and yellowish background
Mixed pink and orange background
Translucent orange globules and areas
Translucent orange globules
Translucent orange areas
Blood vessels
Arborizing vessels
Short linear blood vessels
Pigmentation
Hypopigmented areas
Scar like depigmentation
Reticulate pigmentation
Scales
Fine white scales

Figure 2. Dermoscopic picture of necrobiotic cases group (a) necrobiotic granuloma showing mixed pink, white and yellowish background and arborizing blood vessels (black arrow) (no treatment); (b) granuloma annulare showing hypopigmented areas (black arrow) (no treatment); (c) rheumatoid nodule showing mixed pink and white background and short linear vessels (black arrow) (treatment for 2 years). [Copyright: ©2016 Ramadan et al.]
authors stated that arborizing blood vessels were detected in necrobiosis lipoidica while linear vessels were detected in sarcoidosis. Nonetheless, we detected arborizing blood vessels in 5 (26.3%) cases of cutaneous sarcoidosis. Those arborizing blood vessels might be shorter with fewer branches in sarcoidosis than necrobiosis lipoidica.

Necrobiosis lipoidica is a rare disease. Bakos et al. [12], Pellicano et al. [11] and Lallas et al. [13] all reported the presence of arborizing vessels on yellowish background in necrobiosis lipoidica, and our results confirm their findings. Hairpin like structures were detected by Bakos et al. in necrobiosis lipoidica; although we did not detect any hair pin like structures, we noticed that short linear blood vessels can be seen in necrobiosis lipoidica patients.

Lallas et al [13] reported the dermoscopic findings of granuloma annulare in 47 lesions of 24 patients. They found that the dermoscopic findings in granuloma annulare are heterogeneous. The background color is a combination of red and white in 42.6%, dotted vessels in 40.4%, short linear vessels in 21% and arborizing vessels in 14.9% of the lesions. In this work we found mixed pink and white background in 1 patient. Interestingly we found hypopigmented areas in 2/4 granuloma annulare patients and mixed pink white and yellow background in 1 patient.

Some dermoscopic features of inflammatory lesions are lost after treatment with steroids, which makes their diagnosis difficult [14]. Regarding lichen planus, Wickham’s striae and peripheral homogenous vascular pattern disappeared after 4 weeks of treatment with topical steroids [14]. Interestingly, our results showed that the dermoscopic findings of cutaneous sarcoidosis and necrobiotic cases group remained even after several years of treatment. Some possible explanations are that topical and systemic steroids may not be effective in treating all patients [15] or that more time may be needed for these lesions to disappear. In addition to that, different drugs with different mechanisms of action may be responsible for different dermoscopic modifications after treatment.
Some limitations of this work should be highlighted: dermoscopic features before and after treatment have not been compared; the limited number of patients, especially in the necrobiotic cases group; and most of the patients were Fitzpatrick’s skin type IV skin phototype.

In conclusion, some dermoscopic findings are shared between the cutaneous sarcoidosis and necrobiotic cases group. However, translucent orange areas, white scar-like depigmentation and white scales may be more suggestive of cutaneous sarcoidosis, while mixed pink, white and yellowish background may be more suggestive of necrobiotic granuloma. The dermoscopic features of cutaneous sarcoidosis might remain even after receiving treatment.

Acknowledgment
The authors acknowledge Dr. Magdy Ibrahim, Professor of Obstetrics and Gynecology at Cairo University for his help with statistics.

References
1. Marghoob AA, Usatine RP, Jaimes N. Dermoscopy for the family physician. Am Fam Physician 2013;88:441-50. PMID: 24134084.
2. Weedon D, Strutton G, Rubin AI, Weedon D (eds). Weedon’s Skin Pathology. 3rd ed. London: Churchill Livingstone, 2010.
3. Hawryluk EB, Izikson L, English JC, 3rd. Non-infectious granulomatous diseases of the skin and their associated systemic diseases: an evidence-based update to important clinical questions. Am J Clin Dermatol 2010;11:171-81. PMID: 20184390. DOI: 10.2165/11530080-000000000-00000.
4. Katta R. Cutaneous sarcoidosis: a dermatologic masquerader. Am Fam Physician 2002;65:1581-4. PMID: 11989634.
5. Chiba T, Takahara M, Nakahara T, et al. Cutaneous sarcoidosis clinically mimicking necrobiosis lipoidica in a patient with systemic sarcoidosis. Ann Dermatol 2012;24:74-6. PMID: 22363160. DOI: 10.5021/ad.2012.24.1.74.
6. Igawa K, Maruyama R, Satoh T, et al. Necrobiosis lipoidica-like skin lesions in systemic sarcoidosis. J Dermatol 1998;25:653-6. PMID: 9830264. DOI: 10.1111/j.1346-8138.1998.tb02475.x.
7. Pellicano R, Todorovic-Zivkovic D, Gourhant Y, et al. Dermoscopy of cutaneous sarcoidosis. Dermatology 2010;221:51-4. PMID: 20375489; DOI: 10.1159/000284584.
8. Lallas A, Giacomel J, Argenziano G, et al. Dermoscopy in general dermatology: practical tips for the clinician. Br J Dermatol 2014;170:514-26. PMID: 24266695. DOI: 10.1111/bjd.12685.
9. Brasiello M, Zalaudek I, Ferrara G, et al. Lupus vulgaris: a new look at an old symptom—the lupoma observed with dermoscopy. Dermatology 2009;218:172-4. PMID: 19060460. DOI: 10.1159/000182255.
10. Vazquez-Lopez F, Palacios-Garcia L, Gomez-Diez S, Argenziano G. Dermoscopy for discriminating between lichenoid sarcoidosis and lichen planus. Arch Dermatol 2011;147:1130. PMID: 21931067. DOI: 10.1001/archdermatol.2011.278.
11. Pellicano R, Caldarola G, Filabozzi P, Zalaudek I. Dermoscopy of necrobiosis lipoidica and granuloma annulare. Dermatology 2013;226:319-23. PMID: 23797090. DOI: 10.1159/000350573.
12. Bakos RM, Cartell A, Bakos L. Dermatoscopy of early-onset necrobiosis lipoidica. J Am Acad Dermatol. 2012;66:e143-4. PMID: 22421129. DOI: 10.1016/j.jaad.2011.01.028.
13. Lallas A, Zaballos P, Zalaudek I, et al. Dermoscopic patterns of granuloma annulare and necrobiotic lipoidica. Clin Exp Dermatol 2013;38:425-7. PMID: 23495727 DOI: 10.1111/ced.12126.
14. Gungor S, Topal IO, Goncu EK. Dermoscopic patterns in active and regressive lichen planus and lichen planus variants: a morphological study. Dermatol Pract Concept. 2015;5(2): 45-53. PMID: 26114051. DOI: 10.5826/dpc.0502a06.
15. Katoh N, Miura H, Yasuno H. Cutaneous sarcoidosis successfully treated with topical tacrolimus. Br J Dermatol. 2002;147:154-6. PMID: 12100200. 10.1046/j.1365-2133.2002.04727.x.