DEVELOPING STUDENTS' CREATIVE ABILITIES BY MAKING PROBLEM SOLUTION SITUATION IN DRAWING SUBJECT

Xalimov Moxir Karimovich
Associate professor
Tashkent State pedagogical university named after Nizami

Farxodova Zilola Xikmat qizi
Student, group 402
Tashkent State pedagogical university named after Nizami
REPUBLIC OF UZBEKISTAN

It is well known that the future of a society is determined by the level of development of the education system which is mentioned as an integral part. Currently, the task of education is to teach for increasing the effectiveness of lessons in the information-educational environment, on the basis of various game technologies, to create a problem solution situation, to use information technology independently and to organize teaching on the basis of new technologies. So, what is the problematic situation? The influence of the problem situation in teaching is that it makes difficulty. It can be overcome by the student's own active thinking. The problem situation should be relevant to the student. Its occurrence should be related to the student's previous experience and interest, and should ultimately include personal issues as well as general problem situations [1-5]. The foundations of problem-based learning were found by an American psychologist, philosopher, and educator J. Dyui (1859-1952) in 1894 when he opened an experimental school in Chicago. Game and work develop a curriculum for active learning. In the classroom, students work to create new knowledge by creating and solving problems and situations. The thinker Abu Rayhan Beruni (973-1048) in his pedagogical and didactic views mentioned that on the creation of problematic situations in the minds of students, the activity of thinking, the thorough mastery of educational material on various topics in the process of teaching and education: “Our goal is not to make get bored learners, because reading something becomes boring and tedious, emphasizing that students should not be boring, that the memory should not be simple and boring. If a student moves from one subject to another, it is as if he is walking in different gardens, and as soon as he passes one garden, another garden begins. Everyone wants to see them all. New things are fun and makes people relax” wrote Beruni.\(^2\)

The general problem solution situation should be divided into a number of sub-problems that arise and must be related to each other [6-9].

The most common types of problem situations in the learning process are:
1. A problematic situation arises when students discriminate between the system of knowledge they acquired before and the new knowledge they have acquired.
2. There is a trouble in solving the problem in the system of students' knowledge,

\(^2\)“Pedagogy”, under the general editorship of A.Q Munavarov, T. “Teacher”, 1996. p.99
in choosing which the right way is.

3. When students put their knowledge into practice in new contexts, they come across difficulties to find new ways.

4. A problem situation arises when choosing a method that is practically unsolvable or inexpedient to make solutions for problems that can theoretically be solved. Furthermore, the practical solution lacks a theoretical basis for implementation.

5. The reason for the problematic situation in the solution of technical problems is the direct incompatibility of the appearance of the schematic drawings and the technical device in the design. An alternative form of problem-based learning is heuristic learning.

Rules for organizing problem solution situations:

1. Theoretical and practical exercises for students should be well-planned that they must acquire new knowledge.

2. The given task for students should be fit and correct for their intellectual potential.

3. When faced with more complex problem situations, a system of sequential application of the problem situations should be created. The first problem here is that students must learn and know.

4. Usage of a programmed method. In this case, the teacher has to implement the whole system. In this case, each issue consists of separate parts on the basis of the program and is developed independently or with the participation of the teacher to perform the task in a separate or focused method.

5. When the problem situation reaches the "nearest" development zone (maybe high point), students can solve the problem by using their limitations of knowledge and the level of intellectual and positive activity.

Main role of the teacher in the problem solving situation the nature and objectives of problem-based learning introduce enough new assimilations into the teacher's work. They help students prepare material, create situation stages, respond to the problematic situations, master the task assigned to them, know how to create and solve a problem situation at any time, provide students with information on the topic as well as providing, increasing their creativity [10].

Here, the teacher has to take the lead in solving the problem with the students in a problematic situation and has to be at a much higher level than his students. It is important to guide students in solving the problem. The main concepts of the problem-solving complex are the problem situation, the "problem" and the "problematic issue". The challenge is for the student to consciously challenge new knowledge, new methods, new modern technologies, creativity and action [11-14]. If a student is not given the basics of a creative quest to overcome adversity, there is nothing to think about. This means that the student will not accept it for solution. Student thinking begins with describing and identifying the problem. Now, in this case, the problem situation becomes a problem, and requires creativity from the student. The problem does not indicate the direction of the solution, or it doesn't limit it. There will be a problem specifying some parameters for the solution. In the course of the lesson, problem-solving situations arise that motivate the student to search for and master logically correct, scientific conclusions in the activity of thinking about the topic being mastered. Problem situations can be natural or artificial. For example, in the geometric constructions of the geometric drawing department of the science of drawing, when a circle is divided into six equal parts, and a regular hexagon is formed, some of the sides of the hexagon may become smaller or larger. By looking for the
cause of such a problem, it is necessary to overcome it through the creativity of the student. Research has shown that the center lines of a circle are not perpendicular to each other, and when you redraw, the result is correct, which is the result of neglect. For example, students do some non-standard work during independent work on the topic of slice (draft 1, a, b).

It can be concluded after analyzing of the cuts which have made above:
1. All students understood the surface of the part to be cut.
2. Some students misunderstood the groove on the outside, so a mistake was made.

After analyzing how this problem appears, the following conclusions can be noted:
1. The teacher did not explain the requirements of the standard in full and in detail, or did not pay attention to some elements of the explanation process. As a result, students have different perceptions.
2. The teaching process was not interesting and exciting, it might little attention be paid to standard requirements.
3. Some students got bored in the lesson and did not pay attention to the topic of the lesson.
4. The lesson was not in the required level that the teacher did not check satisfactorily the knowledge which acquired by the students using questions and answers or various pedagogical factors.

This process helps to nurture students to improve formal qualities as curiosity, intelligence, independence, and a desire to be creative by making problematic situations in their thinking activities. Thus, it is possible to create a problematic situation that leads to search in which students can develop a passion for learning, creativity, intellectual perceptions and emotional experiences related to the problem-solving process. By creating a challenging situation in the teaching of drawing, the above examples will help to increase the effectiveness of the lesson, as well as develop students' creativity.

References:

[1] Рихсибоева, Х. М., Халимов, М. К., & Рихсибоев, Т. (2016). Совершенствование и модернизация алгоритмов решения метрических задач в начертательной геометрии. Молодой ученый, (4), 816-819.
[2] Мирзалиев, З. Э., Халимов, М. К., Маликов, К. Г., & Абдухонов, Б. Х. (2017). Методика использования нового механизма для построения аксонометрических проекций. Молодой ученый, (8), 1-6.
[3] Мурадов, Ш. К., Халимов, М. К., Мирзалиев, З. Э., & Рамазанова, Г. С. (2017). Определение параметров формы и положения кривых 2-го порядка. Молодой ученый, (7), 454-457.
[4] Malikov, K. G. (2020). THEORY AND PRACTICE OF CONSTRUCTION OF AXONOMETRIC PROJECTS. European Journal of Research and Reflection in Educational Sciences Vol, 8(9).
[5] Мирзалиев, З. Э., Халимов, М. К., Маликов, К. Г., & Абдухонов, Б. Х. (2017). Методика использования нового механизма для построения аксонометрических проекций. Молодой ученый, (8), 1-6.
[6] Valiev, A. (2021). ABOUT THE FEATURES OF THE PERSPECTIVE OF SIMPLE GEOMETRIC SHAPES
AND PROBLEMS IN ITS TRAINING. Збірник наукових праць SCIENTIA.

[7] Валиев, А. Н. (2021). Об Особенностях Перспективы Простых Геометрических Фигур И Проблемах В Ее Обучении. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(4), 54-61.

[8] Jabbarov, R. (2021, March). PRIORITIES FOR THE DEVELOPMENT OF PAINTING. In Конференции.

[9] Tashimov, N., & Samandar, Z. (2021). Improving the quality and efficiency of teaching descriptive geometry in a credit-modular system. ACADEMIA: AN INTERNATIONAL MULTIDISCIPLINARY RESEARCH JOURNAL, 11(2), 730-733. DOI: 10.5958/2249-7137.2021.00398.0

[10] Жаббаров Рустам (2019) "Манзара ранг тасвири"ни ўқитиш орқали талабаларнинг ижодий кобилиятларини ривожлантириш. uzbekistan state institute of arts and culture https://uzjournals.edu.uz/cacenas/ Culture and Arts of Central Asia, pp-48-52, ISSN: 2181-8932, E-ISSN: 2181-1202, http://dsmi.uz/

[11] BULATOV, S., & JABBAROV, R. (2016). № 2 National traditional basis of symbol of Khumo. Central Asian Journal of Education, 1.

[12] Bulatov, C. S., & Jabbarov, R. R. (2010). Philosophical and psychological analysis of works of fine arts (monograph). Science and Technology Publishing House.

[13] Nozimovich, T. N., Ibrahimovna, Y. N., & Ravshanovich, J. R. (2020). Development Of Student’s Creative Abilities In The Fine Arts In The Higher Education System. The American Journal of Social Science and Education Innovations, 2(07), 232-238.

[14] Jabbarov, R. (2019). Formation of Fine Art Skills by Teaching Students the Basics of Composition in Miniature Lessons. International Journal of Progressive Sciences and Technologies, 17(1), 285-288.