Transverse Λ Polarization at LHC

Daniël Boer *

Department of Physics and Astronomy - Vrije Universiteit Amsterdam
De Boelelaan 1081 - 1081 HV Amsterdam - The Netherlands

Transverse polarization of Λ hyperons produced in \(pp \) and \(pPb \) collisions is discussed. A factorized description in the intermediate to high \(p_T \) region is considered that involves transverse momentum and spin dependence in the fragmentation process. Consequences and suggestions for investigations at LHC are pointed out for the process \(p + p \rightarrow \Lambda^+ + \mathrm{jets} + X \) at midrapidity and \(p + p/Pb \rightarrow \Lambda^+ + X \) in the forward region.

1 Introduction

It is well-known since the mid-1970’s that Λ hyperons produced in unpolarized \(pp \) collisions are to a large degree polarized transversely to the production plane. There have been many experimental and theoretical investigations aimed at understanding this striking polarization phenomenon, but no consensus has been reached about its origin. One of the difficulties in interpreting the available (mostly fixed target) data is that they are not or only partially in a region where a factorized description of the cross section is expected to be applicable. High-energy hadron collider data would be very welcome, for instance from RHIC, Tevatron or LHC, but there the capabilities to measure Λ polarization via the self-analyzing parity violating decay Λ \(\rightarrow p \pi^- \) are typically restricted to the midrapidity region, where protons can be identified, but the degree of transverse polarization \(P_{\Lambda} \) is expected to be very small. For symmetry reasons \(P_{\Lambda} = 0 \) at midrapidity in \(pp \) collisions in the center of mass frame. Nevertheless, some interesting Λ polarization studies can be done using the process \(p + p \rightarrow \Lambda^+ + \mathrm{jets} + X \) where the Λ and jets can be in the midrapidity region without paying a suppression penalty. It is especially of interest at LHC, where the asymmetry expressions may take a particularly simple form depending on the importance of gluons. Also, transverse Λ polarization measurements at forward rapidities at LHC will be discussed below, as it offers a promising way of extracting the \(x \) dependence of the saturation scale. These two suggestions will hopefully enhance the interest in Λ polarization measurements at high energy colliders, at LHC in particular.

2 Transverse Λ polarization in unpolarized collisions

Large asymmetries have been observed in \(p + p \rightarrow \Lambda^+ + X \) [4]. The main features of the asymmetry are: \(|P_{\Lambda}| \) grows with \(x_F \) and \(p_T (\lesssim 1 \text{ GeV}/c) \); for \(p_T \gtrsim 1 \text{ GeV}/c \) it becomes flat (measured up to 4 GeV/c); no \(\sqrt{s} \) dependence has been seen. For a comprehensive review of data cf. Ref. [3]. Many QCD-inspired models have been proposed to explain the transverse Λ polarization data. Most models give qualitative descriptions of the data for \(p_T \lesssim 1-2 \text{ GeV}/c \). However, \(P_{\Lambda} \) stays large at least until the highest measured \(p_T \sim 4 \text{ GeV}/c \). For sufficiently large \(p_T \) perturbative QCD and collinear factorization should become applicable. Consider for example the \(qg \rightarrow qg \) subprocess contribution to the \(pp \rightarrow \Lambda X \) cross section in collinear factorization. It is of the form: \(\sigma \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qg\rightarrow qg} \otimes D_{\Lambda/q}(z) \),

* Talk presented at the XVII International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2009), Madrid, April 26-30, 2009
where $q(x_1)$ is the quark density in proton 1, $g(x_2)$ is the gluon density in proton 2, and $D_{\Lambda/q}(z)$ is the Λ fragmentation function (FF). In a similar way the transverse polarization should be of the form: $P_\Lambda \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qq\to qg} \otimes \hat{?}$, involving the unpolarized parton densities and the unpolarized hard partonic subprocess. The latter because Λ polarization created in the helicity conserving hard partonic scattering is very small, $P_\Lambda \sim \alpha_s m_q / \sqrt{s}$ \cite{4}. The question mark indicates that at leading twist there is no collinear fragmentation function describing $q \rightarrow \Lambda^\uparrow X$ for symmetry reasons. In collinear factorization P_Λ is necessarily power suppressed. Dropping the demand of collinear factorization, does allow for a leading twist solution: the function $D_{\perp 1T}(z, k_T)$ \cite{5} for Λ’s, depicted in Fig. 1. It describes a nonperturbative $k_T \times S_T$ dependence in the fragmentation process, which is allowed by the symmetries (parity and time reversal). As the Λ polarization arises in the fragmentation of an unpolarized quark, the descriptive name “polarizing fragmentation function” was suggested for it \cite{6}. Currently $D_{\perp 1T}$ is expected to be universal, despite its potential color flow dependence \cite{7}. Reasonable functions are obtained: $D_{\perp 1T}$ has opposite signs for u/d versus s quarks, and the latter is larger. This leads to cancellations in order that $P_{\bar{\Lambda}} \approx 0$. This extraction has been done under the restriction of $p_T > 1$ GeV/c to exclude the soft regime, but also to retain sufficient data to make a fit to. Whether this restriction is sufficiently strict to ensure the validity of the description is a matter of concern, due to the large K factors required to obtain a cross section description.

3 Jet-Λ^\uparrow production

The validity of the factorized description depends on whether a proper cross section description can be obtained. This requires data at higher \sqrt{s} and p_T, but not necessarily also at large x_F if one goes beyond $p p \rightarrow \Lambda^\uparrow X$. If the origin of the transverse Λ polarization is indeed due to polarizing fragmentation, then another related asymmetry could be observed that does not need to vanish at $\eta_\Lambda = 0$, namely in the process $p p \rightarrow (\Lambda^\uparrow \text{jet}) \text{jet} X$ \cite{8}. The suggestion is to select two-jet events and to measure the jet momenta K_j and K_j' (with $K_j \cdot K_j' = O(\hat{s})$), in addition to the momentum K_Λ and polarization S_Λ of the Λ that is part of either of the two jets. A single spin asymmetry proportional to $\epsilon_{\mu\nu\alpha\beta} K_\mu^\Lambda K'_\nu^\Lambda K_\alpha^\Lambda S_\beta^\Lambda$ can then arise, which is neither power suppressed, nor needs to be zero at midrapidity. In the center of mass frame of the two jets the asymmetry is of the form:

$$SSA = \frac{d\sigma(+S_\Lambda) - d\sigma(-S_\Lambda)}{d\sigma(+S_\Lambda) + d\sigma(-S_\Lambda)} = \frac{\hat{K}_j \cdot (K_\Lambda \times S_\Lambda)}{z M_\Lambda} \frac{d\sigma_T}{d\sigma_U}$$ \hspace{1cm} (1)

DIS 2009
The analyzing power $d\sigma_T/d\sigma_U$ of the asymmetry depends on $D_{1T}^{\perp g}$. This new Λ-jet observable could allow for a more trustworthy extraction of $D_{1T}^{\perp g}$ (for both quarks and gluons) and subsequent predictions, for instance for semi-inclusive DIS [9].

At LHC (and at RHIC) this process $pp \rightarrow (\Lambda^\perp \text{jet})$ jet X can be studied. For instance, ALICE with its excellent PID capabilities can measure Λ's over a wide p_T range (for example, in a typical yearly heavy ion collision run at least up to 16 GeV/c). The ALICE rapidity coverage is $-0.9 \leq \eta \leq +0.9$. Jets can be reconstructed above 30 GeV (up to 250 GeV in a typical yearly run). If the jet rapidities ($\eta_{j,j'}$) are in this kinematic region and if gluon fragmentation is at least as important as quark fragmentation for both unpolarized and polarized Λ production, then the process is dominated by gluon-gluon ($gg \rightarrow gg$) scattering [4].

$$
\frac{d\sigma_T}{d\sigma_U} \approx \frac{D_{1T}^{\perp g}(z,K_{T}^2)}{D_{1T}^{g}(z,K_{T}^2)}.
$$

Because no model or fit for $D_{1T}^{\perp g}$ is available yet, no predictions can be made in this case.

If it happens that $D_{1T}^{\perp g} \ll D_{1T}^{g}$, then one can use the extracted D_{1T}^{g} to obtain an estimate. When gluons still dominate in the denominator, one finds for $\eta_j \approx -\eta_j$ ($x_1 \approx x_2$)

$$
\frac{d\sigma_T}{d\sigma_U} \approx \left[b(y) + b(1-y) \right] \frac{\sum f_i^g(x_1) D_{1T}^{\perp g}(z,K_{T}^2)}{f_i^g(x_1) D_{1T}^{g}(z,K_{T}^2)},
$$

where $y = (e^{2\eta_j} + 1)^{-1}$, $x_1 \approx x_\perp/2\sqrt{y(1-y)}$, and $b(y) = d\hat{\sigma}_{qg \rightarrow qg}/d\hat{\sigma}_{gg \rightarrow gg}$. In the considered rapidity interval the prefactor $b(y) + b(1-y)$ (≈ 0.4) is almost y independent.

In practice, it may be that D_{1T}^{g} is considerably smaller than D_{1T}^{g}. In that case the $qg \rightarrow qg$ subprocess needs to be taken into account in the denominator of the asymmetry too (not done in [1]). Here we will use the DSV fragmentation functions of Ref. [11] which indeed has $D_{1T}^{g} \ll D_{1T}^{g}$ at larger z. The asymmetry is given in Fig. 2 for three different values of the Λ momentum component transverse to the jet direction. For very low values of this $K_{T\perp}$ the asymmetry at large z exceeds -1, which is unphysical. It signals a problem with the $k_T\perp$-dependence of the function $D_{1T}^{\perp g}$ for which it was not properly taken into account that for each value of $K_{T\perp}$ the positivity bound has to be satisfied [9]. Nevertheless, it may be expected that the result at least has the generic shape for negligible $D_{1T}^{\perp q}$. The asymmetry is quite sensitive to the cancellation between u/d and s contributions, like in SIDIS [9], and

\footnote{Unlike in Ref. [8], here it will be assumed that universality of $D_{1T}^{\perp g}$ holds throughout. Furthermore, chiral-odd contributions [10] will not be considered here.}

Figure 2: The asymmetry $d\sigma_T/d\sigma_U$ for $\eta_j,\eta_j' = 0$ and $|K_{\perp,j}|,|K_{\perp,j'}| = 70 \text{ GeV}/c$, using DSV FFs.
can even flip its overall sign depending on the amount of SU(3) breaking in the unpolarized fragmentation functions (DSV assumes SU(3) symmetry). More reliable estimates are not possible at this stage. ALICE would have most data in the region \(z < 0.5 \) and would therefore provide valuable information on gluonic contributions to \(D_{1T}^⊥ \).

4 \(\Lambda^1 \) at forward rapidities and gluon saturation

\(\Lambda \) polarization is also very interesting in \(pA \) reactions at very high \(\sqrt{s} \), large \(A \) and \(\eta \). In that kinematic regime of small \(x \), saturation of the gluon density is expected. The process \(pA \to \Lambda^1 X \) is sensitive to saturation and could help to determine properties of this phenomenon. None of the existing data is in the saturation regime. At high energy colliders, such as RHIC and LHC, protons often cannot be identified in the forward direction, which hampers the measurement of \(\Lambda \) polarization. Although relatively forward \(\Lambda \)'s \((y = 2.75) \) in \(dAu \) collisions have been identified through event topology \[12\], it is not clear whether the polarization can be reconstructed in this way too, despite the self-analyzing decay property. An alternative may be to use neutral decays \(\Lambda \to n\pi^0 \) (50\% less frequent than \(p\pi^- \)). Despite being a very challenging measurement, \(\Lambda \) polarization at forward rapidities offers a unique direct probe of gluon saturation in both \(pp \) and \(pPb \) collisions at LHC. The saturation scale \(Q_s \) and even its evolution with \(x \) could be probed in this way \[13, 14\].

The cross section of forward hadron production in the (near-)saturation regime is schematically of the form: \(pdf \otimes dipole \text{ cross section} \otimes FF \[15\]. Since \(D_{1T}^⊥ \) is \(k_T \)-odd, it essentially probes the derivative of the dipole cross section. At transverse momenta of order \(Q_s \), the dipole cross section changes much, which thus leads to a \(Q_s \)-dependent peak in \(\Lambda \) polarization. This was first demonstrated in Ref. \[13\] for the McLerran-Venugopal model \[16\]. In this model \(Q_s \) is a constant, leading to a peak that is \(x_F \) independent. More realistically the saturation scale is expected to change with the small-\(x \) values probed: \(Q_s^2(x) \propto x^{-\lambda} \). Models that incorporate this are for instance: the well-known GBW model \[17\], which describes well small-\(x \) DIS data; the DHJ model \[18\], which describes well forward \(dAu \to \pi X \) RHIC data; and, the GS model \[19\], which describes well both types of data. In all three models \(\lambda = 0.3 \), as indicated by the DIS data. Here we will restrict to the latter two models. Although they have considerable differences (the GS model is geometrically scaling, the DHJ model is not; the GS model leads to more steeply falling \(p_T \) spectra of produced hadrons) \[19\], both the DHJ and GS models lead to the same conclusion about the peak of the \(\Lambda \) polarization: its \(x_F \) dependence is to very good approximation the \(x \) dependence of \(Q^2 \). This is shown in Fig. 3 for \(pPb \) collisions at LHC (the solid line is the GS model prediction, the dashed line the DHJ one). In \(pp \) collisions at LHC \(Q_s \) and hence the \(p_T \) position of the peak is slightly lower. At RHIC unfortunately the peak is likely situated below 1 GeV/c, where the formalism cannot be trusted. Therefore, \(\Lambda \) polarization studies at LHC could prove most interesting.

Acknowledgments

First of all, I thank my various collaborators on this topic. Second, I thank Gerry Bunce and Carl Gagliardi for useful discussions. Part of this research was funded by the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)”, which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”.

DIS 2009
Figure 3: Predictions of Λ polarization in $p + Pb \to \Lambda^+ + X$ at $\sqrt{s} = 8.8$ TeV [14].

References

[1] Slides: http://indico.cern.ch/contributionDisplay.py?contribId=109&sessionId=4&confId=53294

[2] A. Lesnik et al., Phys. Rev. Lett. 35 770 (1975); G. Bunce et al., Phys. Rev. Lett. 36 1113 (1976).

[3] A. D. Panagiotou, Int. J. Mod. Phys. A5 1197 (1990).

[4] G. L. Kane, J. Pumplin and W. Repko, Phys. Rev. Lett. 41 1689 (1978).

[5] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461 197 (1996).

[6] M. Anselmino, D. Boer, U. D’Alesio and F. Murgia, Phys. Rev. D63 054029 (2001).

[7] A. Metz, Phys. Lett. B549 139 (2002); L. P. Gambera, A. Mukherjee and P. J. Mulders, Phys. Rev. D77 114026 (2008); S. Meissner and A. Metz, arXiv:0812.3783 [hep-ph]; F. Yuan and J. Zhou, arXiv:0903.4680 [hep-ph].

[8] D. Boer, C. J. Bomhof, D. S. Hwang and P. J. Mulders, Phys. Lett. B659 127 (2008).

[9] M. Anselmino, D. Boer, U. D’Alesio and F. Murgia, Phys. Rev. D65 114014 (2002).

[10] Y. Kanazawa and Y. Koike, Phys. Rev. D64 034019 (2001) & arXiv:hep-ph/0012005

[11] D. de Florian, M. Stratmann and W. Vogelsang, Phys. Rev. D57 5811 (1998).

[12] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C76 064904 (2007).

[13] D. Boer and A. Dumitru, Phys. Lett. B556 33 (2003).

[14] D. Boer, A. Utermann and E. Wessels, Phys. Lett. B671 91 (2009).

[15] A. Dumitru and J. Jalilian-Marian, Phys. Rev. Lett. 89 022301 (2002).

[16] L. D. McLerran and R. Venugopalan, Phys. Rev. D49 2233 & 3352 (1994).

[17] K. J. Golec-Biernat and M. Wüsthoff, Phys. Rev. D59 014017 (1999).

[18] A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 464 (2006).

[19] D. Boer, A. Utermann and E. Wessels, Phys. Rev. D77 054014 (2008).

(DIS 2009)