EPILITHIC DIATOM-BASED ECOLOGICAL ASSESSMENT IN TAŞMANLI POND (SINOP, TURKEY)

Fatih GÜMÜŞ1*, Arif GÖNÜLOL2

1Sinop University, Faculty of Art and Science, Department of Biology, Sinop, TURKEY
2Ondokuz Mayis University, Faculty of Art and Science, Department of Biology, Samsun, TURKEY
*Corresponding author: e-mail: lakustrin@gmail.com

Abstract: The common goal of the Water Framework Directive (WFD) published by The European Parliament and European Council and the Regulation on the Management of Surface Water Quality Directive (RMSWQ) published by the Republic of Turkey, Ministry of Forestry and Water Affairs, is to provide all water bodies to achieve a fine ecological status. These directives require the use of relevant biological quality elements and diatoms constitute an important group within these elements. The use of diatom based indices for assessing ecological conditions in inland water systems is increasing day by day. The current study was performed with the aim of determining the ecological status of the Taşmanlı Pond based on epilithic diatoms, physico-chemical parameters and to estimate pond water quality using diatom indices. For this purpose, epilithic diatom and water samples were collected from 3 stations in the pond in monthly intervals from March 2008 to March 2009. The identifications of the sampled revealed presence of a total of 46 taxa in the sampled stations. Achnanthidium minutissimum (Kützing) Czarnecki, Nitzschia acicularis (Kützing) W. Smith, Navicula cincta (Ehrenberg) Ralfs in Pritchard and Navicula cryptcephala Kützing were the dominant taxa in all stations. According to Regulation on the Management of Surface Water Quality directive, the pond water was classified as III-IV quality class and trophic status changed from mesotrophic to eutrophic. Significant correlation was determined between LTDI (Lake Trophic Diatom Index) and EQR (Ecological Quality Ratio). The values of LTDI and EQR indicate that, pond water has class III (poor, moderately polluted site) water quality.

Key words: Epilithic, Diatom, LTDI, EQR, Pond, Taşmanlı, Sinop, Turkey.

Introduction

Water is vital for any type of life on earth. The world contains aquatic and terrestrial ecosystems that are in very close contact with each other resulting in a delicate balance. The continuity of life is directly related to the continuity of this dynamic ecosystem interaction. Moreover, the continuity of socioeconomic inputs for humans is realized by the continuity of this system. Algae are primary producers of aquatic ecosystems and ensure the continuity of the systems they are involved in. This essential component creates the natural energy inputs of aquatic ecosystems and forms the most fragile link.

Aquatic systems, freshwater ecosystems in particular, are under a constant and strong pressure of human related activities (Gümüş 2010). Therefore, protection of natural water resources and the dominance of aquatic systems is one of the most important elements to be used in determination of future standard of life quality. Small physico-chemical changes in water initiate a chain
reaction that affects both algae and our life quality. Phytobenthos is one of the biological quality elements that must be contained in The Water Framework Directive (WFD, “Directive 2000/60/EC” The European Parliament and European Council 2000) assessments of ecological status of freshwaters and diatoms are good environmental indicators and are often the main component of phytobenthos (Della Bella et al. 2007). Although diatoms are one of the important components of phytobenthos in aquatic systems, only some countries have yielded WFD-compliant phytobenthos tools specifically for lakes (Bennion et al. 2014). Diatoms are also taken into account as key organisms used as biological indicators in ecological quality analysis. Diatom-based water quality evaluation is a new process for Turkey and the first studies have begun after 2000s. Some of these studies were performed in Antalya River basin (Kalyoncu 2002, Solak et al. 2007a, Kalyoncu et al. 2009), Büyük Menderes River basin (Barlas et al. 2001, 2002, Solak et al. 2007b), Fırat River basin (Gürbüz & Kıvrak 2002), Kızılırmak River basin (Akbulut et al. 2010), Sakarya River basin (Solak et al. 2009, Solak 2011) and Susurluk River basin (Dalkıran et al. 2008, Karacağlı et al. 2008, Solak et al. 2011, Solak & Acs 2011), showing that no study has been performed so far in Taşmanlı Pond on the subject of diatom-based water quality evaluation.

The present study was performed in order to determine the ecological status of Taşmanlı Pond based on epilithic diatoms and to estimate pond water quality using diatom indices.

Materials and Methods

Study Area

Taşmanlı Pond (41°54’N, 35°02’E) is located in the southern part of Sinop (Fig. 1) and covers an area of 222,000 square meters. The maximum depth of the pond is 15m and the minimum is 3-4m. The pond was constructed in 1977 by the General Directorate of State Hydraulic Works (DSI) for irrigation and it does not freeze in winter. The pond is free of industrial waste water discharge and juvenile common carp (Cyprinus carpio Linnaeus) were released a few times to the pond with the aim of breeding. Forest and scrub vegetation is observed in the drainage basin of the pond.

Sampling and Chemical Analysis

The samples were collected monthly from March 2008 to March 2009. Epilithic samples were collected from the stones by brushing, brought to the laboratory in plastic cups then preserved in 4% formalin solution. Diatoms were cleaned using hydrogen peroxide (H₂O₂) and diluted hydrochloric acid (3%) was added to purify calcium carbonate (Renberg 1990). After cleaning, the diatom frustules were washed with distilled water and rinsed. Clean diatom frustules were mounted in a synthetic resin (Naphrax). Diatom species were identified according to Krammer & Lange-Bertalot (1991a, 1991b, 1999a, 1999b), Round et al. (1990) and Sims (1996). Relative abundances of diatom species were evaluated by counting 300 valves per sample (Round 1953). Identified species were checked in algae databases and necessary taxonomic corrections were made (Guiry & Guiry 2017, Gönülol 2017). The author names were abbreviated according to Brummit & Powell (1992).

The surface water samples for physico-chemical analysis in laboratory were taken from all stations using plastic bottles. Environmental parameters such as dissolved oxygen of the water, temperature were measured in field with portable instruments.

Fig. 1. A) The maps showing locations of Sinop in Turkey (on the top left) and Taşmanlı Pond in Sinop (on the top right) and B) the schematic representations of the locations of the stations in the pond.
Chemical analysis were carried out according to APHA protocols (APHA 1998) and contained nutrients and ions such as chloride, nitrates, alkalinity, silica and phosphates. The water conductivity and pH were measured using a portable digital pH meter (Hach®HQ40d). The temperature and the dissolved oxygen values –as environmental parameters- of the water samples were measured in the filed using a portable handheld dissolved oxygen and temperature system (YSI®55).

Data Analysis

The average values and standard errors of all physico-chemical analysis were computed using “Microsoft® Office Excel 2003”. Diatom diversity “H´” (Shannon & Weaver 1949) and evenness “J´” (Pielou 1975) indexes were computed with Primer5 software (Clarke 1993). Trophic diatom indices were computed by two different softwares; i) Trophic Diatom Index for Lakes (TDIL) was computed with the DILSTORE software (Hajnal et al. 2009) and ii) Lake Trophic Diatom indices (LTDI) developed based on modification of the trophic diatom index (TDI) (Kelly & Whitton 1995) and Ecological Quality Ratio (EQR) were computed with the DARLEQII Software (WFD-UKTAG 2014).

Results

The identifications of the collected material showed that a total 46 taxa were present in the sampled stations of the pond (Table 1). The numerical distributions of the taxa with respect to the sampling months were given in Figure 2. *Achnanthisium minutissimum* (Kützing) Czarnecki, *Nitzschia acicularis* (Kützing) W.Smith, *Navicula cincta* (Ehrenberg) Ralfs in Pritchard and *Navicula cryptcephala* Kützing were the dominant taxa in all stations. The lowest nitrate value was measured in March 2008 with 1.17mgL⁻¹ in St1 and the highest value was measured in August 2008 with 1.46mgL⁻¹ in St2. The lowest phosphate value was measured in March 2009 in St2 with 0.14mgL⁻¹ and the highest value was measured in August 2008 in St 1 with 2.97mgL⁻¹. The lowest value of silica was recorded in May 2008 in St3 with 0.09mgL⁻¹ and the highest value was measured in March 2009 in St1 with 3.10mgL⁻¹. Total alkalinity ranged from 12.20 to 109mgL⁻¹ CaCO₃. Maximum, minimum and average values and the standard deviations of measured physico-chemical variables were given in (Table 2). The lowest values of Shannon-Weaver and Evenness indices for all three stations were calculated in May. Although the numbers of sampled individuals for the identified taxa were higher than other months, all stations were represented with a less diverse species moiety in May. In particular, *Pantocsekiella ocellata* and *Achnanthisium minutissimum* reached the dominant position by reaching their highest numbers in this month. This is also consistent with the low index values observed in May. Diversity (H’) and evenness (J’) indices and species richness were shown graphically in Fig. 2.

![Graphical representation of A) species richness and B) diversity and C) evenness indexes. The sampling months were given as abbreviations.](image-url)
Table 1. Epilithic diatom list of Taşmanlı Pond.

Phylum: Bacillariophyta
Class: Bacillariophyceae
Order: Mastogloiales
Achnanthes brevipes C.Agardh
Achnanthes coarctata (Bréb. ex W.Sm.) Grunow
Mastogloia baltica Grunow
Order: Cocconeidales
Achnanthidium exiguum (Grunow) Czarnecki
Achnanthidium minutissimum (Kütz.) Czarnecki
Order: Bacillariales
Hantzschia amphioxys (Ehrenb.) Grunow
Nitzschia acicularis (Kütz.) W.Sm.
Nitzschia dissipata (Kütz.) Raben.
Nitzschia gracilis Hantzsch
Nitzschia palea (Kütz.) W.Sm.
Nitzschia recta Hantzsch ex Raben.
Nitzschia sigmoidea (Nitzsch) W.Sm.
Order: Fragilariidae
Fragilaria capucina Desmaz.
Fragilaria capucina var. *gracilis* (Oestrup) Hustedt
Order: Licmophorales
Ulmania ulna (Nitzsch) Compère
Order: Naviculales
Cricula halophila (Grunow) D.G.Mann
Diioneis parma Cleve
Gyrosigma acuminatum (Kütz.) Raben.
Halamphora veneta (Kütz.) Levkov
Lacustra matica (Kützing) D.G.Mann
Lacustra nivalis (Ehrenb.) D.G.Mann
Lacustra ventricosa (Kütz.) D.G.Mann
Navicula cari Ehrenh.
Navicula cincta (Ehrenb.) Rals
Navicula cryptochaeta Kütz.
Navicula rhynochaeta Kütz.
Navicula trivalvis Lange-Bert.
Navicula veneta Kütz.
Neidium dubium (Ehrenb.) Cleve
Sellaphora papula (Kütz.) Mereschk.
Order: Surirellales
Surirella amphioxys W.Sm.
Surirella angustus Kütz.
Surirella libris (Ehrenb.) Ehrenb.
Surirella minuta Bréb. ex Kütz.
Surirella ovalis Bréb.
Order: Thalassiosiidales
Amphora ovata (Kütz.) Kütz.
Class: Mediophysceae
Order: Stephanodiscidales
Cyclotella meneghiniana Kütz.
Cyclotella sp.
Pantocsekia ocellata (Pant.) Kiss & Acs

According to the Regulation on the Management of Surface Water Quality Directives “Republic of Turkey, Ministry of Forestry and Water Affairs, 2015”, the water bodies of all stations in Spring/Winter and Summer/Fall seasons have been identified as Class III and Class IV, polluted areas respectively. According to Trophic Classification System Limit Values in the directive, the water body of Taşmanlı Pond is in the limit values from mesotrophic to eutrophic waters. Index values of measured based on the sampled epilithic diatoms were given Table 3.

![Fig. 3. The relationship between phosphate (PO₄-P) values determined in the pond with respect to seasons and the abundance of *Achnanthidium minutissimum* (Achmin).](image)

Table 2. The minimum, maximum and average values of the measured physic-chemical parameters of surface water in all sampling stations.

Parameter	Min.	Max.	Average
Dissolved O₂ (mgL⁻¹)	5.40	15.62	9.88 ± 3.32
pH	7.28	9.06	8.14 ± 0.56
Alkalinity (mgL⁻¹)	12.20	109.80	49.26 ± 0.62
Chloride (mgL⁻¹)	46.40	72.70	59.24 ± 7.18
Temperature (°C)	6.00	26.00	15.00 ± 7.37
Nitrate (mgL⁻¹)	0.17	1.46	0.52 ± 0.44
Phosphate (mgL⁻¹)	0.14	2.97	0.98 ± 0.12
Silica (mgL⁻¹)	0.09	3.10	0.85 ± 0.47

Table 3. Index values for the sampling stations.

St.1	St.2	St.3	
Trophic Diatom Index for Lakes (TDIL)	1.38	1.42	1.48
Lake Trophic Diatom Index (LTDI)	76.57	80.17	75.21
Ecological Quality Ratio (EQR)	0.36	0.31	0.38

Table 4. Ecological Quality Ratio (EQR) class boundaries for the 3 alkalinity types (Bennion et al. 2014). LA: low alkalinity, MA: medium alkalinity, HA: high alkalinity. H: high, G: good, M: moderate, P: poor, B: bad ecological status.

Alkalinity type (Annual mean CaCO₃ mgL⁻¹)	H/G	G/M	M/P	P/B
LA (<10)	0.92	0.70	0.46	0.23
MA (10-50)	0.95	0.70	0.46	0.23
HA (>50)	0.92	0.70	0.46	0.23
Table 5. Class boundaries and trophic status according to TDIL.

Class boundary	Ecological status
4 – 5	Excellent
3 < 4	Good
2 < 3	Medium
1 < 2	Tolerable
0 < 1	Bad

Discussion

Achnanthisium minutissimum (Kütz.) Czarnecki, was described as the most common and abundant diatom in well-oxygenated, neutral or alkaline lakes and streams with low or moderate concentrations of nutrients and organic pollution. It can also be present in high numbers in streams exposed to heavy metal pollution and in eutrophic inland waters (Bennion et al. 2014, Stenger et al. 2007, Kelly et al. 2005). Some former studies suggested that taxa in the A. minutissimum complex can be assigned to morphological groups, each with differing ecological preferences though these morphological groups are not discontinuous (Potapova and Hamilton 2007). However, palaeoecological works indicates that a slightly change in planktonic diatoms suggest the early stages of nutrient enrichment rather than changes in non-planktonic diatoms (Bennion et al. 2004). Indeed, as revealed in the present study, A. minutissimum became a dominant species in spring months when the pond water began to be enriched with nutrients (Fig. 3).

Cyclotella meneghiniana Kütz., Gyrosigma acuminatum (Kütz.) Rabenh., Lutiola mutica (Kütz.) D.G.Mann, Sellaphora pupula (Kütz.) Mereschk., Navicula rynchocephala Kütz., N. cryptocephala Kütz., N. veneta Kütz., N. trivalis Lange-Bert., N. cincta (Ehrenb.) Ralfs, Gomphomena parvulum (Kütz.) Kütz., Nitzschia palea (Kütz.) W.Smith, N. gracilis Hantsch, and N. acicularis (Kütz.) W.Smith were detected as constant species of Taşmanlı pond. According to the literature the species listed above were pollution-tolerant and they were found in eutrophic and mesotrophic waters (Taylor et al. 2007, Kelly et al. 2005, Van Dam et al. 1994, Hall et al. 1999).

The common goal of both WFD and RMSWQT is to obtain water bodies with better ecological status. According to RMSWQT directives, the pond water were classified as III-IV quality class and the trophic status change from mesotrophic to eutrophic. Significant correlation was determined between LTDI (Lake Trophic Diatom Index) and EQR (Ecological Quality Ratio). The values of TDIL, LTDI and EQR indicate that the pond water have class III (poor, moderately polluted site) water quality. Consequently, it can be said that Taşmanlı Pond is under pollution effect and diatom community content is closely related with water quality. Therefore, the epilithic diatom metrics can be used in monitoring in Taşmanlı Pond.

References

1. Akbulut, N. Akbulut, A. Günsel, S. and Solak, C.N. 2010. Use of epilithic diatoms to evaluate water quality of Kızılırmak River. Hacettepe University Fund, No: 0701601006, final report [in Turkish].
2. Anonymous. 2000. Water Framework Directive (WFD), Directive 2000/60/EC, The European Parliament and European Council.
3. Anonymous. 2015. Regulation on the Management of Surface Water Quality in Turkey (RMSWQT). Republic of Turkey, Ministry of Forestry and Water Affairs.
4. APHA.1998. Standard Methods for the Examination of Water and Wastewater. 20th ed., Washington.
5. Barlas, M. Mumcu, M.F. Dirican, S. and Solak, C.N. 2001. Sarıçay (Milas)'da yaşayan epilithik diyatomelerin su kalitesine bağlı olarak incelenmesi, 5-8 Ekim 2001 Bodrum,IV. Ulusal Ekoji ve Çevre Kongresi.
6. Barlas, M. Mumcu, M.F. Solak, C.N. and Coban, O. 2002. Akçapınar Deresi ve Kadin Azmaçi Deresi (Muğla) epilithik alg florasının su kalitesine bağlı olarak incelenmesi. 4-7 Eylül 2002 Malatya VI. Ulusal Biyoloji Kongresi.
7. Bennion, H., Fluin, J. & Simpson, G. L. 2004. Assessing Eutrophication and Reference Conditions for Scottish Freshwater Lochs Using Subfossil Diatoms. Journal of Applied Ecology, 41: 124-138.
8. Bennion, H., Kelly, M. G., Juggins, S., Yallop, M. L., Burgess, A., Jamieson, J. & Krokowski, J. 2014. Assessment of Ecological Status in UK Lakes Using Benthic Diatoms. Freshwater Science, 33(2): 639-654.
9. Brummitt, R.K. & Powell, C.E. 1992. Authors of Plant Names. A List of Authors of Scientific Names of Plants, With Recommended Standard Forms of Their Names, Including Abbreviations. Royal Botanic Gardens, Kew: Pp [4],732 p. ISBN: 0-947643-44-23.
10. Clarke, K.R. 1993. Non-Parametric Multivariate Analyses of Changes in Community Structure. Australian Journal of Ecology, 18: 117-143.
11. Dalkırarı, N. Karacaoğlu, N. Dere, Ş. and Şentürk, E. 2008. Orhaneli Çayı'nın Kirilik Düzeyinin Diyatomelere Dayandırılarak Saptanması. 23-27 Haziran, 19. Ulusal Biyoloji Kongresi Özet Kitapçığı, 228. sayfa, Trabzon.
12. Della Bella, V., Puccinelli, C., Marcheggiani, S. & Mancini, L. 2007. Benthic diatom communities and their relationship to water chemistry in wetlands of central Italy. In Annales de Limnologie-International Journal of Limnology (Vol. 43, No. 2, pp. 89-99). EDP Sciences.
13. Hall, R. I., Smol, J. P., & Smol, J. P. 1999. Diatoms as indicators of lake eutrophication. The diatoms: applications for the environmental and earth sciences, 128-168.
14. Gönlülo, A. 2017. Turkıshalge Electronic Publication, Samsun, Turkey. http://turkiyealgleri.omo.edu.tr Date accessed: Jun 2017
15. Guiry, M.D. & Guiry, G.M. 2017. AlgaeBase. World-wide electronic database, National University of Ireland, Galway. www.algaebase.org Date accessed: 15 Jun 2017, 16 p.

16. Güümüş, F. 2010. Taşmanlı Göleti (Sinop) Kıyı Bölgesi Algleri Üzerine Nitel ve Nicel Araştırmalar. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 48 p. Samsun.

17. Gürbüz, H. and Kivrak, E. 2002. Use of epilithic diatoms to evaluate water quality in the Karasu River of Turkey. *Journal of Environmental Biology*, 23(3): 239-246.

18. Hajnal, É., Stenger-Kovács, C. & Padsisák, J. 2009. DILSTORE Software for Ecological Status Assessment of Lakes Based on Benthi Diatoms. *Fottea*, 9: 351-354.

19. Kalyoncu, H. 2002. Aksu Çayı’nın Fiziksel, Kimyasal ve Biyolojik Oraları incelenmesi, Doktora Tezi. S.D.U. Fen Bilimleri Enstitüsü, İsparta, 155 s.

20. Kalyoncu, H. Çiçek, N.L., Akköz, C. and Yorulmaz, B. 2009. Comparative performance of diatom indices in aquatic pollution assessment. *African Journal of Agricultural Research*, 4(10): 1032-1040.

21. Karacanlıoğlu, N. Dalkırnak, N. Dere, Ş. and Şentürk, E. 2008. Emet Çayı’nın Kirlik Düzenin Duyatometere Dayandırılışın Saptanması. 23-27 Haziran, 19. Ulusal Biyoloji Kongresi Özet Kitapçığı, 228. sayfa, Trabzon.

22. Kelly, M. G., Bennion, H., Cox, E. J., Goldsmith, B., Jamieson, J., Juggins, S., Mann, D.G. & Telford, R. J. 2005. *Common Freshwater Diatoms of Britain and Ireland: An Interactive Key*. Environment Agency, Bristol.

23. Krammer, K. & Lange-Bertalot, H. 1991a. *Bacillariophyceae, Band 2/3*, Teil :Centrales, Fragillariaeae, Eunotiaeae. Gustav Fischer-Verlag, Stuttgart, 576 pp.

24. Krammer, K. & Lange-Bertalot, H. 1991b. Süßwasserflora von Mitteluropa Bacillariophyceae, Band 2/4, Teil:Acanthaceae, Kritische Ergänzungen zu Navicula (Lincolatae) und Gomphonema Gesamtliteraturverzeichnis. Gustav Fischer-Verlag, Stuttgart, 437 pp.

25. Krammer, K. & Lange-Bertalot, H. 1999a. Süßwasserflora von Mitteluropa Bacillariophyceae, Band 2/1, Teil :Naviculaceae. Spectrum Academischer-Verlag, Heidelberg, Berlin.

26. Krammer, K. & Lange-Bertalot, H. 1999b. Süßwasserflora von Mitteluropa Bacillariophyceae, Band 2/2, Teil: Bacillariaceae, Epithemiaceae, Surielliceae. Spectrum Academischer-Verlag, Heidelberg, Berlin.

27. Kelly, M.G. & Whitton, B.A. 1995. The Trophic Diatom Index: A New Index for Monitoring Eutrophication in Rivers. *Journal of Applied Phycology*, 7: 433-444.

28. Pielou, E.C. 1975. Ecological Diversity. John Wiley and Sons, New York, 165 p.

29. Potapova, M., and P. B. Hamilton. 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. *Journal of Phycology* 45:561-575.

30. Renberg, I. 1990. A Procedure for Preparing Large Sets of Diatom Slides from Sediment Cores. *Journal of Paleolimnology*, 4: 87-90.

31. Round, F.E. 1953. An Investigation of Two Benthic Algal Communities in Malhar Tarn, Yorkshire. *Journal of Ecology*, 41:174-197.

32. Round, F.E., Crawford, R.M. & Mann, D.G. 1990. *The Diatoms: Biology and Morphology of the Genera*. Cambridge University Press, Cambridge, 746 p.

33. Shannon, C.E. & Weaver W. 1949. *The Mathematical Theory of Communication*. Univ. Of Illinios Press, Urbana, 144 p.

34. Sims P.A. (1996). *An Atlas of British Diatoms*. Biopress Ltd., England, 601 s.

35. Solak, C.N. 2009. *The Determination of Pollution in Felent Stream by using Some Aquatic Organisms*. Ph.D. Thesis, Dumlupınar University, 143 pp [in Turkish].

36. Solak, C.N. 2011. The application of diatom indices in the Upper Porsuk River, Kütahya-Turkey. *Turkish Journal of Fisheries and Aquatic Sciences*, 11(1): 31-36.

37. Solak, C.N. Fehér, G. Barlas, M. and Pabuçcu, K. 2007a. Use of epilithic diatoms to evaluate water quality of Akçay Stream (Brief Menderes River) in Mugla Turkey. *Archiv Für Hydrobiologie Suppl.*, 161 (3-4), Large Rivers, 17 (3-4): 327-338.

38. Solak, C.N. Ács, É. and Pabuçcu, K. 2007b. BDI (Biyololjik Diyatome İndeksi) İndeksine Göre Düden Şelalesi (Antalya) Su Kalitesinin Durumu. 10-13 Eylül 2007 Malatya 7. Ulusal Ekoloji ve Çevre Sempozyumu Özet Kitapçığı 184 s.

39. Solak, C.N. Ács, É. and Dayioglu, H. 2009. The application of diatom indices in Felent Creek (Porsuk-Kütahya). *Diatomededlingen*, 33: 107-109.

40. Solak, C.N. & Ács, É. 2011. Water Quality Monitoring in European and Turkish Rivers Using Diatoms. *Turkish Journal of Fisheries and Aquatic Sciences*, 11(2): 329-337.

41. Stenger-Kovács, C., Buczko, K., Hajnal, E. & Padsisák J. 2007. Epiphytic, Littoral Diatoms as Bioindicators of Shallow Lake Trophic Status: Trophic Diatom Index for Lakes (TDIL) Developed in Hungary. *Hydrobiologia*, 589(1): 141-154.

42. Taylor, J.C., Harding, W.R. & Archibald, C.G.M. 2007. *An Illustrated Guide to Some Common Diatom Species from South Africa*. Pretoria: Water Research Commission, 225 p.

43. Van Dam, H., Mertens, A. & Sinkeldam, J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. *Aquat. Ecology*, 28(1): 117-133.

44. WFD-UKTAG, 2014. Phytobenthos – Diatoms for Assessing River and Lake Ecological Quality (DARLEQ2). Water Framework Directive – United Kingdom Technical Advisory Group (WFD-UKTAG), Scotland.