Ahmad, Faseeh; Benedetto, Robert L.; Cain, Jennifer; Carroll, Gregory; Fang, Lily

The arithmetic basilica: a quadratic PCF arboreal Galois group. (English) [Zbl 07569757]

J. Number Theory 238, 842-868 (2022)

Summary: The arboreal Galois group of a polynomial \(f \) over a field \(K \) encodes the action of Galois on the iterated preimages of a root point \(x_0 \in K \), analogous to the action of Galois on the \(\mathbb{Q}/\mathbb{Z} \)-power torsion of an abelian variety. We compute the arboreal Galois group of the postcritically finite polynomial \(f(z) = z^2 - 1 \) when the field \(K \) and root point \(x_0 \) satisfy a simple condition. We call the resulting group the \textit{arithmetic basilica group} because of its relation to the basilica group associated with the complex dynamics of \(f \). For \(K = \mathbb{Q} \), our condition holds for infinitely many choices of \(x_0 \).

MSC:
- 37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
- 11R32 Galois theory
- 14G25 Global ground fields in algebraic geometry

Keywords:
arithmetic dynamics; arboreal Galois representations

Full Text: DOI

References:
[1] Aitken, Wayne; Hajir, Farshid; Maire, Christian, Finitely ramified iterated extensions, Int. Math. Res. Not., 855-880 (2005)
[2] Anderson, Jacqueline; Bouw, Irene I.; Ejder, Ozlem; Girgin, Neslihan; Karemaker, Valentijn; Manes, Michelle, Dynamical Belyi maps, (Women in Numbers Europe II (2018), Springer: Springer Cham), 57-82
[3] Bartholdi, Laurent; Grigorchuk, Rostislav; Nekrashevych, Volodymyr, From fractal groups to fractal sets, (Fractals in Graz 2001 (2003), Birkhäuser: Birkhäuser Basel), 25-118
[4] Benedetto, Robert L.; Faber, Xander; Hutz, Benjamin; Juul, Jamie; Yasufuku, Yu, A large arboreal Galois representation for a cubic postcritically finite polynomial, Res. Number Theory, 3, Article 29 pp. (2017)
[5] Benedetto, Robert L.; Juul, Jamie, Odoni’s conjecture for number fields, Bull. Lond. Math. Soc., 51, 237-350 (2019)
[6] Boston, Nigel; Jones, Rafe, Arboreal Galois representations, Geom. Dedic., 124, 27-35 (2007)
[7] Bridy, Andrew; Tucker, Thomas J., Finite index theorems for iterated Galois groups of cubic polynomials, Math. Ann., 373, 37-72 (2019)
[8] Bush, Michael R.; Hindes, Wade; Looper, Nicole R., Galois groups of iterates of some unicritical polynomials, Acta Arith., 181, 57-73 (2017)
[9] Ferraguti, Andrea; Micheli, Giacomo, An equivariant isomorphism theorem for mod \(\mathfrak{p} \) reductions of arboreal Galois representations (2019), preprint, Available at
[10] Ferraguti, Andrea; Pagano, Carlo; Casazza, Daniele, The inverse problem for arboreal Galois representations of index two (2019), preprint, Available at
[11] Gottesman, Richard; Tang, Kwokfung, Quadratic recurrences with a positive density of prime divisors, Int. J. Number Theory, 6, 1027-1045 (2010)
[12] Gratton, Chad; Nguyen, Khoa; Tucker, Thomas J., ABC implies primitive prime divisors in arithmetic dynamics, Bull. Lond. Math. Soc., 45, 1194-1208 (2013)
[13] Hindes, Wade, Average Zsigmondy sets, dynamical Galois groups, and the Kodaira-Spencer map, Trans. Am. Math. Soc., 370, 6391-6420 (2018)
[14] Hindes, Wade, Classifying Galois groups of small iterates via rational points, Int. J. Number Theory, 14, 1403-1426 (2018)
[15] Ingram, Patrick, Arboreal Galois representations and uniformization of polynomial dynamics, Bull. Lond. Math. Soc., 45, 301-308 (2013)
[16] Jones, Rafe, Galois representations from pre-image trees: an arboreal survey, (Actes de la Conférence “Théorie des Nombres et Applications” (2013), Pub. Math. Besançon), 107-136
[17] Jones, Rafe; Manes, Michelle, Galois theory of quadratic rational functions, Comment. Math. Helv., 89, 173-213 (2014)
[18] Juul, Jamie, Iterates of generic polynomials and generic rational functions, Trans. Am. Math. Soc., 371, 809-831 (2019)
[19] Juul, Jamie; Krieger, Holly; Looper, Nicole; Manes, Michelle; Thompson, Bianca; Walton, Laura, Arboreal representations for rational maps with few critical points (2018), preprint, Available at

[20] Juul, Jamie; Kurlberg, Pär; Madhu, Kalyani; Tucker, Tom J., Wreath products and proportions of periodic points, Int. Math. Res. Not., 3944-3969 (2016)

[21] Kadets, Borys, Large arboreal Galois representations (2018), preprint, Available at

[22] Looper, Nicole, Dynamical Galois groups of trinomials and Odoni’s conjecture, Bull. Lond. Math. Soc., 51, 278-292 (2019)

[23] Nekrashevych, Volodymyr, Self-Similar Groups (2005), American Mathematical Society: American Mathematical Society Providence

[24] Odoni, R. W.K., The Galois theory of iterates and composites of polynomials, Proc. Lond. Math. Soc. (3), 51, 3, 385-414 (1985)

[25] Pink, Richard, Profinite iterated monodromy groups arising from quadratic polynomials (2013), preprint, Available at

[26] Serre, Jean-Pierre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 15, 259-331 (1972)

[27] Specter, Joel, Polynomials with surjective arboreal Galois representations exist in every degree (2018), preprint, Available at

[28] Stoll, Michael, Galois groups over Q of some iterated polynomials, Arch. Math. (Basel), 59, 239-244 (1992)

[29] Swaminathan, Ashvin A., On arboreal Galois representations of rational functions, J. Algebra, 448, 104-126 (2016)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.