Case Report

Successful endovascular treatment of ruptured bilateral ophthalmic frontal dural arteriovenous fistula

S. Sirakov a,*, A. Sirakov a, H. Hristov b, K. Ninov b

a Radiology Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
b Neurosurgery Department, University Hospital St Ivan Rilski, Sofia, Bulgaria

ARTICLE INFO

Article history:
Received 9 February 2018
Accepted 5 April 2018
Available online 1 June 2018

Keywords:
Embolization
AV fistula
Bilateral ophthalmic
PHIL

ABSTRACT

Bilateral ophthalmic-ethmoidal dural arteriovenous fistulas (DAVFs) are extremely rare and may present as complex lesions. These DAVFs are associated with high risk of intracranial hemorrhage but can be presented with ocular symptoms, cranial nerve palsy or epistaxis. Endovascular approaches have been used to manage an increasing proportion of complex intracranial DAVFs safely and with good clinical results. We present a patient with subdural hematoma and severe epistaxis due to ruptured bilateral ophthalmic-ethmoidal DAVF that was successfully treated by transarterial embolization with precipitating hydrophobic injectable liquid.

© 2018 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Case presentation

A 40-year-old man presented with sudden onset of thunder-clap headache, vomiting, and epistaxis while at home. There was no clear history of trauma and loss of consciousness. The patient was ex-smoker and on regular medications for a known hypertension. General physical examinations were within normal limits. Anterior nasal packing was done due to worsening of the nasal bleeding.

Computed tomography (CT) study was performed, which showed right frontal subdural hematoma with a prominent aneurysmal-like venous channel suspicious of dural arteriovenous fistula (DAVF; Fig. 1).

Both the ophthalmic arteries were supplying the finding. Digital subtraction angiography (DSA) was subsequently performed and DAVF in the right and left basifrontal region was fed by the anterior ethmoidal branches of the bilateral ophthalmic arteries.

The pathological fistula was draining into the mid superior sagittal sinus via a venous aneurysmal-like formation (Fig. 2).

With worsening of the symptoms taken into account, endovascular treatment was planned. However, a backup surgical approach was discussed. The patient and the relatives were informed according to our local institutional policy. Under general anesthesia a 6-Fr guiding catheter was placed in the left cavernous segment of the left carotid artery. Due to excessively tortuous origin of the left ophthalmic artery

* Corresponding author.
E-mail address: ssirakov@bsunivers.com (S. Sirakov).
https://doi.org/10.1016/j.radcr.2018.04.011
1930-0433/© 2018 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
a successful catheterization was not achieved. In this case a Comaneci (0.021") device was carefully navigated through a Headway 0’27 microcatheter (Microvention) and placed distal from the origin of the ophthalmic artery. The support from the Comaneci device was used to selectively catheterize the left ophthalmic artery via microguidewire SilverSpeed 0.010” (Covidien, Irvine, California, USA) and microcatheter Apollo with 1.5-cm detachable tip (Covidien, Irvine, California, USA). Control contrast injections were performed to confirm the safe position of the microcatheter distal to the origin of the central retinal arteries and as close as possible to the fistula. Under road map-guided injections of precipitating hydrophobic injectable liquid, 25% led to complete occlusion of the fistula with preservation of the retinal perfusion. Any possible reflux or backflow of embolizing material was not observed during the procedure. Following control contrast injection in both the internal carotid arteries showed complete fistula occlusion and no remnant arteriovenous shunts (Fig. 3).

The subdural hemorrhage was carefully drained right after the procedure by Burr hole surgery.

The patient’s condition improved 3 days after the procedure. No nasal bleeding was observed after the anterior packing removal. The patient was discharged in a week with normal neurological and laboratory hemoglobin levels. On the 30th day of control angio, there is no sign of recanalization of the fistula (Fig. 4).
2. Discussion

Dural arteriovenous malformations involve the anterior fossa–falx, the most infrequent among all other DAVFs. High risk for fatal hemorrhage is associated because of their cortical venous drainage [2]. Previous reports and series, these kinds of lesions have been addressed as challenging and difficult lesion to treat via the endovascular approach [5,6]. Halback et al. [1] published a study, reviewing 33 similar cases. The very first case of a patient similar to the one we described, presented with bilateral ethmoidal DAVF was published by Deshmukh et al. [3], as well as second case reported by Komotar et al. [4]. Careful evaluation of the CT/MR scan and diagnostic angiogram of the lesions is essential to choose the adequate approach.

Frontal DAVFs are rare, heterogenous, and often complex lesions presented with intracranial hemorrhage. Disconnection of the AVs fistulous site by occlusion of the all arterial supply and venous drainage can be done by surgical, endovascular approach or a combination of both methods. However, for anterior fossa fistulas endovascular approaches may carry high risk of complications given the surrounding anatomy, small tortuous ophtalmic arteries, and possible occlusion of the central retinal artery.
Fig. 3 – Superselective catheterization of left ophthalmic artery and embolization of the Arterio-venous shunt (black arrow) with preserved retina centralis at the end of the procedure (white arrow).
Fig. 4 – Control angio (DSA) was performed 30 days the procedure, with no evidence of recanalization.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.radcr.2018.04.011.

REFERENCES

[1] Halbach VV, Higashida RT, Hieshima GB, Wilson CB, Barnwell SL, Dowd CF. Dural arteriovenous fistulas supplied by ethmoidal arteries. Neurosurgery 1990;26:816–23.

[2] Martin NA, King WA, Wilson CB, Nutik S, Carter LP, Spetzler RF. Management of dural arteriovenous malformations of the anterior cranial fossa. J Neurosurg 1990;72:692–7.

[3] Deshmukh VR, Chang S, Albuquerque FC, McDougall CG, Spetzler RF. Bilateral ethmoidal dural arteriovenous stulae: a previously unreported entity: case report. Neurosurgery 2005;57:E809.

[4] Komotar RJ, Connolly ES Jr, Lignelli AA, Mack WJ, Mocco J, Harbaugh RE. Clinicoradiological review: bilateral ethmoidal artery dural arteriovenous stulas. Neurosurgery 2007;60:131–35.
[5] Defreyne L, Vanlangenhove P, Vandekerckhove T, et al. Transvenous embolization of a dural arteriovenous fistula of the anterior cranial fossa: preliminary results. AJNR Am J Neuroradiol 2000;21:761–5.

[6] Inoue A, Tagawa M, Kumon Y, Watanabe H, Shoda D, Sugi K, Ohnishi T. Ethmoidal dural arteriovenous fistula with unusual drainage route treated by transarterial embolization. J Neurointerventional Surg 2015;7(April(4)):e15.