Development of a Spatio-temporal Contrast Sensitivity Test for Clinical Use

Marcelo Fernandes Costa¹², PhD; Leonardo Dutra Henriques¹, PhD; Otávio Côrrea Pinho¹, BPsy

¹Laboratório da Visão, Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
²Núcleo de Neurociências Aplicada, Universidade de São Paulo, São Paulo, Brazil

ORCID:
Marcelo Fernandes Costa: https://orcid.org/0000-0002-3944-8457

Abstract

Purpose: We developed a contrast sensitivity test that considers an integrative approach of spatial and temporal frequencies to evaluate the psychophysical channels in processing two-dimensional stimulus for clinical use. Our new procedure provides a more efficient isolation of the magnocellular and parvocellular visual pathways supporting spatiotemporal contrast sensitivity processing.

Methods: We evaluated 36 participants of both sexes aged 18–30 years with 20/20 or better best-corrected visual acuity. Two spatial frequencies (0.5 cycles per degree [cpd] and 10 cpd), being in one of the three temporal frequencies (0.5 cycle per second [cps], 7.5 cps, and 15 cps), were presented in a high-resolution gamma corrected monitor. A two-alternative forced-choice procedure was conducted, and the staircase method was used to calculate the contrast sensitivity. Reliability was assessed using a retest procedure within a month (±5 days) under the same conditions.

Results: Results showed statistical significance in 0.5 cpd and 10 cpd spatial frequencies for 0.5 cps ($F = 77.36; p < 0.001$), 7.5 cps ($F = 778.37; p < 0.001$), and 15 cps ($F = 827.23; p < 0.001$) with a very high ($\eta^2 = 0.89$) effect size. No statistical differences were found between the first and second sessions for all spatial frequencies. For reliability, a significantly high correlation and high internal consistency were found in all spatiotemporal conditions. The limits were calculated for normality.

Conclusion: We developed an approach to investigate the spatiotemporal integration of contrast sensitivity designed for clinical purposes. The relative contribution of the low spatial frequencies/high temporal frequencies and the high spatial frequencies/low temporal frequencies of the psychophysical channels can also be evaluated separately.

Keywords: Clinical Psychophysics; Drifting Grating; Dynamic Contrast Sensitivity; Primary Visual Pathway; Spatial Vision

J Ophthalmic Vis Res 2022; 17 (1): 69–77
INTRODUCTION

The evaluation of visual functions has improved in the last three decades with the development of visual tests for visual acuity (VA), contrast sensitivity (CS), color vision (CV), motion perception (MP), and stereopsis (ST) among others. Despite these developments and multiple studies showing that visual functions other than VA provide diagnosis for subclinical and early impairments in visual function, spatio-temporal contrast sensitivity test; however, they were designed to identify the psychophysical signature of the PC and MC pathways, and they took a long time to be completed (about one and a half hour), which made them unusable for clinical purposes.

Considering the above, we purposed a new CS test which intends to deal with chart measurement problems, and aimed to make the test user-friendly. The use of the same test for children and adults can make data comparable for development follow-ups, including a dynamic variable that amplifies the differences between PC and MC pathways. The possibility of isolating visual pathways is mandatory because many ocular and cerebral diseases affect these pathways differently. Our experience in the study of the traditional CS measurements in mercury, diabetes mellitus type 2, multiple sclerosis, and Leber’s Ocular Hereditary Neuropathy motivated us to develop a CS test with greater efficiency in isolating PC and MC pathways for clinical testing.

METHODS

Participants

We evaluated 36 participants (17 men and 19 women) with a best-corrected VA of 20/20 or
better, measured using the ETDRS–Tumbling E chart (Xenônio Rep. Prod., São Paulo, Brazil). The exclusion criteria were absence of ophthalmologic complaints and/or diabetes mellitus, rheumatoid arthritis, systemic arterial hypertension, any other known systemic diseases, smokers, and the presence of dichromacy or anomalous trichromacy using the 38 plates version of the Ishihara pseudoisochromatic plates (Kanehara Trade Inc., Tokyo, Japan).

The participants, aged between 18 and 30 years (M = 22.6; SD = 3.7) were undergraduate and graduate students of the Institute of Psychology of the University of São Paulo. This study was approved by the local ethics committee via the approval number 66767317.5.0000.5561. All participants provided written consent for the inclusion of material about themselves and acknowledged that they could not be identified, as we ensured complete anonymity. The study followed the principles of the 1964 Declaration of Helsinki and its revised version.

Equipment and Stimulus

CS functions were also measured psychophysically with the software PSYCHO for Windows v2.36 (Cambridge Research) using a Sony Trinitron 19 in. (GFD-420). The monitor was driven by a Cambridge Research VSG 2/4 graphics board with a refresh rate of 100 Hz non-interlaced and an 800 × 600 resolution.

The stimuli used were horizontal sinusoidal gratings with an average luminance of 10 fl, that is, 34.4 cd/m², measured using an Optical OP200-E photometer (Cambridge Research) and a visual angle of 4°. The luminance output of the screen was calibrated using a luminance meter (LS-110, Konica Minolta Sensing, Inc., Osaka, Japan). Screen uniformity was checked at maximum output. The contrast of the sinusoidal grating is defined as a Michelson contrast:

\[C = \frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}} \]

where \(L_{\text{max}} \) is the maximum and \(L_{\text{min}} \) is the minimum luminance consisting of a dimensional value. Gratings of 0.5 cycles per degree (cpd) and 10 cpd drifted rightward and leftward at temporal frequencies of 0.5, 7.5, and 15 cycles per second (cps). Testing was conducted in a dark room with the participants positioned 1 m away from the video monitor.

Procedure

Participants were sat in a comfortable chair 1 m away from the monitor screen and were instructed to keep their eye fixed on a small black cross centered on the screen. Head stabilization was not performed. Ophthalmological patches (Oftan, AMP, São Paulo, Brazil) were used to cover one randomly chosen eye.

At the beginning of the experiment, the participant was adapted to a gray mean luminance in the dark for 5 min. The stimulation consisted of a drifting grating with a randomly chosen spatial frequency presented by 1000 ms, followed by 3000 ms for the response in a two-alternative forced-choice (2-AFC) procedure, pressing a specific keyboard key for the right (m) and left (z) based on their perception of the grating's drifting side [Figure 1].

A psychophysical staircase procedure with a dynamic step size was used to determine the threshold. The staircase began with a high contrast level (70 ± 10 randomly chosen), which changed the luminance to the mean luminance background. The change depended on the participant’s response: the grating contrast approached the background mean luminance every time there was a correct response and moved away from it when there was an incorrect response. The dynamic step consisted of a 50% reduction of the contrast level between the stimulus and background luminance. After the second reversal, the reduction changed to 12.5% between the stimulus level and background luminance. The contrast improvement always changed in increments of 25%. After seven staircase reversals, the program automatically calculated the contrast thresholds as the average luminance corresponding to the last five reversals. All testing procedures, including the adaptation time, lasted approximately 20 min.

For all spatial frequencies, the contrast thresholds were converted to CS according to the following equation:

\[S = \frac{1}{Ct} \]

where \(Ct \) is the contrast threshold. To define the CS function, the CS for each spatial frequency was plotted.
Test reliability was estimated by comparing CS measurements in a test–retest design. The retest of the CS measurements was performed in all participants with a mean interval of one month (±5 days) between the first and second measurements. The retests were also performed monocularly in the same eye and under the conditions of the first test.

Statistical Analysis

Statistical analyses were performed using Statistica v.6.0.4, (StatSoft Inc., Tulsa, OK, USA, 2001). A complete descriptive analysis was performed. The normal distribution was checked by the Shapiro–Wilk and Kolmogorov–Smirnoff tests. A repeated-measures ANOVA was used to evaluate the statistical differences between spatial frequencies, drift velocity, and test–retest conditions. The correlation was calculated using the Pearson's product moment correlation test. No significant differences \(p < 0.05 \) were observed between the conditions. The effect size, which is a quantitative measure of the magnitude of the experiment effect, was assessed using Cohen's \(d \) classification, that is, \(d = 0.2 \) was considered a “small” effect size, \(d = 0.5 \) represented a “medium” effect size, \(d = 0.8 \) a “large” effect size, and \(d = 1.4 \) a “huge effect” size.\(^{[56]} \) The interpretation of the effect size was that if the means of the two groups do not differ by 0.2 or more SD, the difference could be considered trivial, even if it is statistically significant.

Figure 1. The illustrative timeline of the testing session. A spatial frequency randomly chosen was presented by 1 s, moving rightward or leftward in an also randomly chosen temporal frequency. The patient had up to 3 s to judge the movement of the grating in a two-AFC procedure.
RESULTS

All participants successfully completed both the first and second sessions. The CS measured in the first and second experimental sessions is described in detail in Table 1.

Considering the spatial frequencies of the grating, statistically significant results were found between 0.5 cpd and 10 cpd for 0.5 cps ($F = 77.36; p < 0.001$), 7.5 cps ($F = 778.37; p < 0.001$), and 15 cps ($F = 827.23; p < 0.001$) in the first and second sessions. The calculated effect size was considered to be very high ($\eta^2 = 0.89$). No statistical difference was found between the first and second sessions for all spatial frequencies for 0.5 cps ($F = 0.11; p = 0.73$), 7.5 cps ($F = 0.06; p = 0.93$), and 15 cps ($F = 0.24; p = 0.63$). The results are shown in Figure 2.

Reliability was assessed using Pearson's correlation, and the results are shown in Figure 3. A significantly high correlation was found in 0.5 cpd for 0.5 cps ($r = 0.988; p < 0.001$), 7.5 cps ($r = 0.919; p < 0.001$), and 15 cps ($r = 0.985; p < 0.001$), and in 10 cpd for 0.5 cps ($r = 0.989; p < 0.001$), 7.5 cps ($r = 0.972; p < 0.001$), and 15 cps ($r = 0.980; p < 0.001$).

Internal consistency was assessed using Cronbach's alpha coefficient. A high internal consistency was obtained for 0.5 cpd ($\alpha = 0.8449$) with high item-total correlation for 0.5 cps ($r = 0.880$), 7.5 cps ($r = 0.836$), and 15 cps ($r = 0.894$). Similarly, a high item-total correlation was also observed for 10 cpd ($\alpha = 0.8963$) to 0.5 cps ($r = 0.997$), 7.5 cps ($r = 0.994$), and 15 cps ($r = 0.979$).

Based on the tolerance limits, we calculated the boundaries of the CS normality range for clinical purposes. Tolerance limits were calculated considering the mean value (X) and with a factor (k) multiplied by the standard deviation (SD). The k factor can be chosen considering the percentage of the population covered (90%, 95%, or 99%) and the significance level of 0.90, 0.95, or 0.99, according to the number of participants. For our number of participants, we used the value 2.03, in which we covered 95% of the population with a p-value of 0.95. The tolerance limits are presented in the rightmost columns of Table 1.

DISCUSSION

Clinical evaluation of CS has been improved in ophthalmological clinics\cite{47, 57} and it is a good step forward in understanding the spatial vision of their patients, as VA is a one-dimensional evaluation and CS is a two-dimensional test, since contrast is added to each spatial frequency measured. In our study, we included one more dimension by adding temporal modulation, which is a significant improvement, considering that objects in our visual environment are frequently moving. Using this more complex approach to investigate spatial vision, we can potentially be able to help our patients more efficiently and conduct more informative studies about visual and ophthalmological diseases and about the visual impairment suffered.

The robustness of our CS test was addressed by calculating the validity and reliability of the measurement. Validity was assessed by measuring the Pearson's correlation coefficients of the first and second measurements. We had a high correlation coefficient for both low (0.5 cpd) and high (10 cpd) spatial frequencies, regardless of the temporal frequency used. Since both the first and second measurements were highly correlated, this suggested that the influence of external variables had a low impact on the results obtained. Further, the reliability was considered high, suggesting that the reliability of our test was strong.

We also compared the mean contrast sensitivities of the first and second measurements. The absence of statistical significance in the same spatial frequencies compared to the first and second testing sessions and the statistical difference between the temporal frequencies within the first and the second testing sessions corroborate that our new CS test is robust.

An additional advantage of our measurement is the possibility of isolating the MC and PC visual pathways that contribute to CS. Using the amplitude of extracellular synaptic potential recordings for different Michelson contrast levels, retinal cells that project to the MC layer of the lateral geniculate nucleus (LGN) showed a logarithmic curve, in which huge improvements in amplitude responses occurred with small contrast increments. For the retinal ganglion cells projecting to the PC layer of the LGN, a linear curve was modeled with a small increase in amplitude response with a moderate increase in contrast levels.\cite{44} The psychophysical correlates of these visual pathways were obtained using a pedestal paradigm.\cite{47} MC-inferred responses were related to high temporal frequencies and PC-inferred responses related
Table 1. Descriptive data from the first and second contrast sensitivity measurements

Spatial frequency	First measurement	Second measurement				
	0.5 cps	7.5 cps	15 cps	0.5 cps	7.5 cps	15 cps
0.5 cpd	174.2 (32.5)	332.6 (78.6)	163.2 (37.4)	174.8 (32.2)	332.6 (56.9)	167.2 (33.4)
10 cpd	113.7 (43.7)	76.2 (25.4)	34.7 (7.8)	117.7 (41.3)	77.7 (25.9)	35.2 (6.9)

cpd, cycle per degree; cps, cycle per second

Table 2. Tolerance limits of contrast sensitivity for normality ranges

Spatial frequency	Tolerance limits		
	0.5 cps	7.5 cps	15 cps
0.5 cpd			
Upper	240.3	492.2	239.1
Lower	108.2	173	87.3
10 cpd			
Upper	202.5	127.9	50.5
Lower	24.8	24.6	18.8

cpd, cycle per degree; cps, cycle per second

Figure 2. The psychophysical CS signature for the low (0.5 cpd) and high (10 cpd) spatial frequency. (A) The mean and standard deviation of the spatiotemporal interaction. (B) The normality range to be used for clinical purposes. In both panels, it is evident that the middle and high temporal frequencies are more discriminable areas to isolate the MC and PC contribution in the CS.
to low temporal frequencies. According to the spatial profile, low spatial frequencies were related to the MC-inferred pathway and the PC-inferred pathway related to high spatial frequencies. The results obtained in our test are in line with earlier studies since the high spatial frequency with a low temporal modulation had better CS than the results for the middle or high temporal frequencies. On the other hand, better CS was obtained for the middle and high temporal modulations for low spatial frequencies.

Furthermore, we found a significantly different signature of CS spatiotemporal integration. For the low spatial frequency, there was a reduction in CS as the temporal frequency increased in an almost linear fashion. For the high spatial frequency, the curve had an inverted U-shape, in which there was an increase in CS as the temporal frequency increased from 0.5 to 7.5 Hz and then, there was an inversion of the relation since the CS reduced as the temporal frequency increased from 7.5 to 15 Hz. The different signatures of the MC- and PC-CS measured psychophysically have two important implications. First, the test was successful in isolating the MC and PC contributions of the measured spatiotemporal CS. Second, the difference in the CS shape has an important contribution for diagnostic purposes, adding resolution to the CS measurement.

The isolation of MC and PC pathways has a huge clinical significance because many ophthalmological and neurological diseases affect these visual pathways differently. Visual impairment related to reading problems in children with learning difficulties and dyslexia has been related to the reduction of CS at low spatial frequencies, suggesting an MC pathway failure. MP, also an MC pathway function, is impaired in children with Down's Syndrome and strabismic amblyopia. We believe that our test improves the MC- and PC-mediated CS measurements because it integrates spatial and temporal proprieties in one measurement.

Considering the significant clinical applications, we calculated the normality range for clinical purposes. Of course, there are some restrictions on the use of normal ranges, as we calculated based on the age of our sample. For children and

Figure 3. Correlations between the first and second measurements for reliability purposes. A strong correlation is evident for both low and high spatial frequencies in all temporal frequencies.
elderly patients, additional measurements should be performed in future studies.

In summary, we developed a test to investigate the spatiotemporal integration of CS, designed for clinical purposes. The relative contribution of the low spatial frequencies/high temporal frequencies, and the high spatial frequencies/low temporal frequencies of the psychophysical channels can also be evaluated separately. The validation and replicability were highly successful, and tolerance limits were calculated to define the normality ranges.

Acknowledgments

The authors would like to thank all the students at the Psychology Institute, University of São Paulo, who voluntarily participated in the experiments.

Financial Support and Sponsorship

This research was supported by grants from FAPESP (Projeto Tematico # 2014/26818-2 to Dora Fix Ventura and Marcelo Fernandes Costa); CNPq #401153/2009-6 to M.F.C.; M.F.C. is CNPq research fellow.

Conflicts of Interest

The authors declare that they have no conflict of interest.

REFERENCES

1. Ferris FL 3rd, Kassoff A, Bresnick GH, Bailey I. New visual acuity charts for clinical research. Am J Ophthalmol 1982;94:91–96.
2. Adoh TO, Woodhouse JM. The Cardiff acuity test used for measuring visual acuity development in toddlers. Vision Res 1994;34:555–560.
3. Bach M. The Freiburg Visual Acuity Test – variability unchanged by post-hoc re-analysis. Graef Arch Clin Exp 2007;245:965–971.
4. Bastawrous A, Rono HK, Livingstone IA, Weiss HA, Jordan S, Kuper H, et al. Development and validation of a smartphone-based visual acuity test (Peek Acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmol 2015;133:930–937.
5. Becker R, Teichler G, Graf M. Comparison of visual acuity measured using Landolt-C and ETDRS charts in healthy subjects and patients with various eye diseases. Klin Monatsbl Augenh 2011;228:864–867.
6. Manny RE, Hussein M, Gwiazda J, Marsh-Totle W. Repeatability of ETDRS visual acuity in children. Invest Ophth Vis Sci 2003;44:3294–3300.
7. Ginsburg AP. A new contrast sensitivity vision test chart. Am J Optom Physiol Opt 1984;61:403–407.
8. Adams RJ, Mercer ME, Courage ML, Vanhovanduin J. A new technique to measure contrast sensitivity in human infants. Optometry Vision Sci 1992;69:440–446.
9. Alexander KR, McAnany JJ. Determinants of contrast sensitivity for the Tumbling E and Landolt C. Optometry Vision Sci 2010;87:28–36.
10. Alexander KR, Xie W, Derlacki DJ. Visual acuity and contrast sensitivity for individual Sloan letters. Vis Res 1997;37:813–819.
11. Choi AJ, Nivison-Smith L, Phu J, Zangerl B, Khuu SK, Jones BW, et al. Contrast sensitivity isocountours of the central visual field. Sci Rep 2019;9:1603.
12. Dakin SC, Turnbull PR. Similar contrast sensitivity functions measured using psychophysics and optokinetic nystagmus. Sci Rep 2016;6:34514.
13. Atchison DA, Bowman KJ, Vingrys AJ. Quantitative scoring methods for D15 panel tests in the diagnosis of congenital color vision deficiencies. Optometry Vision Sci 1991;68:41–48.
14. Bailey JE, Neitz M, Tait DM, Neitz J. Evaluation of an updated HRR color vision test. Visual Neurosci 2004;21:431–436.
15. Birch J. Clinical use of the City University Test (2nd Edition). Ophthalmic Physiol Opt 1997;17:466–472.
16. Reffin JP, Astell S, Mollon JD. Trials of a computer-controlled color-vision test that preserves the advantages of pseudoisochromatic plates. In: Drum B, Moreland JD, Serra A, editors. Colour vision deficiencies X. Dordrecht: Springer; 1991. 69–76 p.
17. Armstrong V, Maurer D, Lewis TL. Sensitivity to first- and second-order motion and form in children and adults. Vis Res 2009;49:2774–2781.
18. Borghuis BG, Tadin D, Lankheet MJM, Lappin JS, van de Grind WA. Temporal limits of visual motion processing: psychophysics and neurophysiology. Vision 2019;3:5.
19. Hollants-Gilhuijs MA, Ruijter JM, Spekreijse H. Visual half-field development in children: detection of motion-defined forms. Vis Res 1998;38:651–657.
20. Manny RE, Fern KD. Motion coherence in infants. Vis Res 1990;30:1319–1329.
21. Birch E, Petrig B. FPL and VEP measures of fusion, stereopsis and stereoacuity in normal infants. Vis Res 1996;36:1321–1327.
22. Earle DC. Perception of glass pattern structure with stereopsis. Perception 1985;14:545–552.
23. Langley K, Fleet DJ, Hibbard PB. Stereopsis from contrast envelopes. Vis Res 1999;39:2313–2324.
24. Norman JF, Norman HF, Craft AE, Walton CL, Bartholomew AN, Burton CL, et al. Stereopsis and aging. Vis Res 2008;48:2456–2465.
25. Shea SL, Fox R, Aslin RN, Dumas ST. Assessment of stereopsis in human infants. Invest Ophth Vis Sci 1980;19:1400–1404.
26. Wilcox LM, Harris JM, McKee SP. The role of binocular stereopsis in monoptic depth perception. Vis Res 2007;47:2367–2377.
27. Costa M, Oliveira A, Santana C, Ventura D, Zatz M. Red-green color vision impairment in Duchenne muscular dystrophy. Neuromuscular Disord 2007;17:815.
28. Costa MF, Cunha G, de Oliveira Marques JP, Castello-Branco M. Strabismic amblyopia disrupts the hemispheric asymmetry for spatial stimuli in cortical visual processing. Br J Vis Impair 2016;34:141–150.

29. Costa MF, Moreira SM, Hamer RD, Ventura DF. Effects of age and optical blur on real depth stereoaucuity. Ophthalmic Physiol Opt 2010;30:660–666.

30. Costa MF, Tomaz S, de Souza JM, Silveira LC, Ventura DF. Electrophysiological evidence for impairment of contrast sensitivity in mercury vapor occupational intoxication. Environ Res 2008;107:132–138.

31. da Costa MF, Paranhos A, Lottenberg CL, Castro LC, Ventura DF. Psychophysical measurements of luminance contrast sensitivity and color discrimination with transparent and blue-light filter intraocular lenses. Ophthalmal Ther 2017;6:301–312.

32. Cormack FK, Tovee M, Ballard C. Contrast sensitivity and visual acuity in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2000;15:614–620.

33. Croningolomb A, Sugira R, Corkin S, Growdon JH. Incomplete achromatopsia in Alzheimers disease. Neurobiol Aging 1993;14:471–477.

34. Del Viva MM, Tozzi A, Bargagna S, Cioni G. Motion perception deficit in Down Syndrome. Neuropsychologia 2015;75:214–220.

35. Aen-Stockdale C, Hess RF. The amblyopic deficit for global motion is spatial scale invariant. Vis Res 2008;48:1965–1971.

36. Acheson JF, Cassidy L, Shallo-Hoffman JA, Bronstein AM. Elevated visual motion detection thresholds in adults with acquired ophthalmoplegia. Br J Ophthalmol 2001;85:1447–1449.

37. Boets B, Wouters J, van Wieringen A, Ghesquiere P. Coherent motion detection in preschool children at family risk for dyslexia. Vis Res 2006;46:527–535.

38. Ezzati A, Khadjevand F, Zandvakili A, Abbassian A. Higher-contrast sensitivities in asymptomatic carriers from a large Brazilian pedigree of 11778 Leber hereditary optic neuropathy. Invest Ophth Vis Sci 2008;25:463–468.

39. Gualtieri M, Bandeira M, Hamer RD, Costa MF, Oliveira AG, Moura AL, et al. Psychophysical analysis of contrast processing segregated into magnocellular and parvocellular systems in asymptomatic carriers of 11778 Leber’s hereditary optic neuropathy. Vis Neurosci 2008;25:469–474.

40. Ventura DF, Gualtieri M, Oliveira AG, Costa MF, Quiros P, Sadun F, et al. Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy. Invest Ophth Vis Sci 2007;48:2362–2370.

41. Keri S, Benedek G. Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Vis Neurosci 2007;24:183–189.

42. Pelli DG, Bex P. Measuring contrast sensitivity. Vis Res 2013;90:10–14.

43. Alexander KR, Barnes CS, Fishman GA, Pokorny J, Smith VC. Contrast sensitivity deficits in inferred magnocellular and parvocellular pathways in retinitis pigmentosa. Invest Ophthamol Vis Sci 2004;45:4510–4519.

44. Costa MF. Clinical psychophysical assessment of the ON- and OFF-systems of the magnoocular and parvacellular visual pathways. Neurosci Med 2011;2:330–340.

45. Onal S, Yenice O, Cakir S, Temel A. FACT contrast sensitivity as a diagnostic tool in glaucoma: FACT contrast sensitivity in glaucoma. Int Ophthamal 2008;28:407–412.

46. Smith VC, Sun VCW, Pokorny J. Pulse and steady-pedestal contrast discrimination: effect of spatial parameters. Vis Res 2001;41:2079–2088.

47. Canto-Pereira LHM, Lago M, Costa MF, Rodrigues AR, Saio CA, Silveira LCL, et al. Visual impairment on dentists related to occupational mercury exposure. Environ Toxicol Pharmacol 2005;19:517–522.

48. Feitosa-Santana C, Barboni MT, Oiwa NN, Paramei GV, Simoes AL, da Costa MF, et al. Irreversible color vision losses in patients with chronic mercury vapor intoxication. Vis Neurosci 2008;25:487–491.

49. Ventura DF, Simoes AL, Tomaz S, Costa MF, Lago M, Costa MTV, et al. Colour vision and contrast sensitivity losses of mercury intoxicated industry workers in Brazil. Environ Toxicol Pharmacol 2005;19:523–529.

50. Feitosa-Santana C, Oiwa NN, Paramei GV, Bimler D, Costa MF, Lago M, et al. Color space distortions in patients with type 2 diabetes mellitus. Vis Neurosci 2006;23:663–668.

51. Feitosa-Santana C, Paramei GV, Nishi M, Gualtieri M, Costa MF, Ventura DF. Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmal Physiol Opt 2010;30:717–723.

52. Moura AL, Teixeira RA, Oiwa NN, Costa MF, Feitosa-Santana C, Callegaro D, et al. Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test. Vis Neurosci 2008;25:469–474.

53. Gualtieri M, Bandeira M, Hamer RD, Costa MF, Oliveira AG, Moura AL, et al. Psychophysical analysis of contrast processing segregated into magnocellular and parvocellular systems in asymptomatic carriers of 11778 Leber’s hereditary optic neuropathy. Vis Neurosci 2008;25:469–474.

54. Ventura DF, Gualtieri M, Oliveira AG, Costa MF, Quiros P, Sadun F, et al. Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy. Invest Ophth Vis Sci 2005;46:4809–4814.

55. Cohen J. Quantitative methods in psychology. Psychol Bull 1992;112:155–159.

56. Dixon WJ, Massey FJ. Introduction to statistical analysis. 3rd ed. New York, NY: McGraw-Hill; 1969.

57. Aen-Stockdale C, Ledgeway T, Hess RF. Second-order optic flow deficits in amblyopia. Invest Ophth Vis Sci 2007;48:5532–5538.