ARTICLE OPEN

Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in *Bacillus anthracis*

Gunjan Arora, Andaleeb Sajid, Richa Virmani, Anshika Singhal, C. M. Santosh Kumar, Neha Dhasmana, Tanya Khanna, Abhijit Maji, Richa Misra, Virginie Molle, Dörte Becher, Ulf Gerth, Shekhar C. Mande and Yogendra Singh

PrkC is a conserved Ser/Thr protein kinase encoded in *Bacillus anthracis* genome. PrkC is shown to be important for *B. anthracis* pathogenesis, but little is known about its other functions and phosphorylated substrates. Systemic analyses indicate the compelling role of PrkC in phosphorylating multiple substrates, including the essential chaperone GroEL. Through mass spectrometry, we identified that PrkC phosphorylates GroEL on six threonine residues that are distributed in three canonical regions. Phosphorylation facilitates the oligomerization of GroEL to the physiologically active tetradecameric state and increases its affinity toward the co-chaperone GroES. Deletion of *prkC* in *B. anthracis* abrogates its ability to form biofilm. Overexpression of native GroEL recovers the biofilm-forming ability of *prkC* deletion strain. Similar overexpression of GroEL phosphorylation site mutants (Thr to Ala) does not augment biofilm formation. Further analyses indicate the phosphorylation of GroEL in diverse bacterial species. Thus, our results suggest that PrkC regulates biofilm formation by modulating the GroEL activity in a phosphorylation-dependent manner. The study deciphers the molecular signaling events that are important for biofilm formation in *B. anthracis*.

npj Biofilms and Microbiomes (2017) 3:7; doi:10.1038/s41522-017-0015-4

INTRODUCTION

Bacillus anthracis (*B. anthracis*) is a bacterial pathogen that causes anthrax and has been historically used as a model organism to understand the bacterial response during infection. The lifecycle of *B. anthracis* comprises of vegetative and sporulation phases and possess the ability to form capsules and biofilms. *B. anthracis, Bacillus cereus,* and *Bacillus thuringiensis* are the three major species comprising the pathogenic *Bacillus cereus* group. These bacteria are difficult to eradicate, both in the environment and during infection, mainly due to the efficient development of spores and biofilms. *B. anthracis* cells readily form biofilms under stagnant conditions in environment and protect the vegetative cells, which continue to divide within biofilm communities. The cells can eventually sporulate and disseminate, thus causing exponential increase in bacterial cell number under favorable conditions. During infection, pathogens tend to sporulate or form biofilms on epithelial cells, enabling the bacteria to escape innate immune responses and become antibiotic-resistant. Thus, entering the sporulation phase or forming biofilm is a survival strategy for bacteria. The mechanism of biofilm formation remains poorly understood in *B. anthracis*, although biofilm-forming cells are suggested to be particularly resistant to high levels of antibiotic treatments. Further, *Bacillus* forms communities that have both biofilm and spores, and the biofilm disassembly leads to spore release. It is plausible that for planktonic cells biofilm-associated growth provides fitness advantage. Bacterial cells sense extracellular signals and respond in a concerted manner during morphogenesis. The role of molecular signaling events occurring inside *B. anthracis* remains unknown. The cascades initiate at cellular surface and culminate in the modulation of defined set of proteins, leading to specific cellular response, such as biofilm formation. In *B. anthracis*, PrkC is the only known Ser/Thr protein kinase (STPK) with a sensor domain capable of receiving external signals. PrkC senses mureptides through the extracellular C-terminal PASTA domains, but its downstream signaling events are not yet known. Homologs of PrkC are conserved in many bacteria such as *Mycobacterium, Streptomyces, Staphylococcus, Corynebacterium,* and other diverse gram-positive bacteria along with its cognate Ser/Thr phosphatase (PrpC), and is known to regulate vital functions. PrkC plays an important role in virulence of *B. anthracis* and is important for survival in macrophages during infection. PrkC is capable of transducing signals efficiently during environmental stress conditions and has been proposed to function even in the spores. In view of these facts, we aimed to explore the importance of *B. anthracis* PrkC in the cellular signaling events. To identify its role(s) in vivo, we searched for proteins phosphorylated by PrkC. Further, using a *B. anthracis* deletion strain of *prkC* (*Bas*Δ*prkC*), we investigated its role in regulation of biofilm formation. In accordance to our hypothesis, deletion of *prkC* resulted in complete loss of biofilm formation and possibly altered cell-to-cell adherence properties. Our results indicated that PrkC may regulate biofilm formation by activating an essential chaperone GroEL. Thus, this study describes the novel signaling pathway involving the conserved STPK and chaperone in *B. anthracis* biofilm development.
RESULTS
PrkC regulates B. anthracis biofilm formation
To understand the effect of PrkC in B. anthracis biofilm formation, we utilized the deletion strain B.ΔprkC, and compared it with the wild-type Baz-wt. We observed that deletion of prkC did not cause any change in bacterial culture growth rate, as described earlier. However, BazΔprkC cells appeared to have loose settling and surface-adherence property as compared with Baz-wt. Adherence to the growth surface is achieved by forming biofilms at the liquid-air interface. To test the biofilm formation, Baz-wt and BazΔprkC were cultured under static conditions. We observed that Baz-wt cells were able to form biofilm within 3 days, while this property was lost in BazΔprkC (Fig. 1a, b). To further substantiate this observation, deletion strain was complemented with prkC (BazΔprkC-comp). Biofilm-forming ability of all three strains, Baz-wt, BazΔprkC, and BazΔprkC-comp, was compared using the quantitative crystal violet assay. BazΔprkC-comp regained the property of biofilm formation to a level similar to Baz-wt (Fig. 1b), indicating that PrkC is involved in biofilm formation. Being a regulatory protein kinase, PrkC exerts its effects through signal transduction pathways involving phosphorylation of its substrates. Thus, changes in biofilm formation may be attributed to PrkC-mediated phosphorylation of specific substrate(s), as discussed in the following sections.

Identification of PrkC substrates
To identify the targets of PrkC in B. anthracis, the lysates of Baz-wt and BazΔprkC were resolved by two-dimensional gradient SDS-PAGE. The gels were stained with phosphorylation-specific Pro-Q Diamond stain and the signal was normalized to total protein levels by SYPRO Ruby staining. We selected two types of protein spots in Pro-Q stained gels (Fig. 1c and S1): (1) proteins that are present in both the strains but have higher intensity in Baz-wt as compared with BazΔprkC (PrkC-influenced), and (2) proteins in Baz-wt that are absent in BazΔprkC (PrkC-specific). These differentially phosphorylated protein spots were identified by mass spectrometry (Table 1). We could identify 20 different proteins, of which 9 were PrkC-specific while 10 were PrkC-influenced. Our analysis identified GroEL phosphorylation as a signature of PrkC activity in B. anthracis.

To confirm the substrates of PrkC, we followed two more strategies: immunoprecipitation and phospho-enrichment. Immunoprecipitation was performed with antibodies specific to pSer and pThr using B. anthracis whole cell protein lysate. Using this approach, seven prominently phosphorylated proteins were identified by mass spectrometry (Table 2). Phospho-enrichment was performed using lysates of strains Baz-wt and BazΔprkC (using Qiagen Phospho-enrichment kit). Equal amounts of phospho-enriched proteins from both the samples were analyzed by SDS-PAGE to detect the differentially enriched proteins because of variable phosphorylation, followed by mass spectrometry to identify the PrkC phosphorylated proteins (Table 3).

Three substrates identified in screening were independently validated by in vitro phosphorylation assay using recombinant PrkC. Time-dependent phosphorylation kinetics showed optimal time for efficient in vitro phosphorylation (Fig. 2a, b, S2). Ef-Tu that has previously been shown to be phosphorylated by PrkC (and homologs) in B. anthracis, Bacillus subtilis (B. subtilis), and M. tuberculosis was used as a positive control to corroborate our results. The experiment confirmed phosphorylation of SodA2, Ef-G, and GroEL by PrkC (Fig. 2, S3). PrkC-K40M mutant was

Fig. 1 PrkC-dependent biofilm formation in B. anthracis and identification of in vivo substrates: a Biofilm formation in 3-day static culture of Baz-wt and BazΔprkC strains after staining with crystal violet as observed under microscope. b Efficiency of biofilm formation in Baz-wt, BazΔprkC, and complemented BazΔprkC strains was calculated by crystal violet assay. Extent of biofilm formation was calculated considering Baz-wt as 100%. The experiment was performed thrice and the error bars indicate the standard error (SE) of three independent values. c Baz-wt and BazΔprkC lysates were separated by two-dimensional PAGE using 4–16% gradient gels and visualized with Pro-Q Diamond phospho-specific staining. These proteins were subsequently analyzed by staining the gels with SyproRuby stain (Fig. S1). The more intense (blue numbered, PrkC-influenced) or unique spots (black numbered, PrkC-specific) in Baz-wt as compared with BazΔprkC were analyzed by mass spectrometry (Table 1). The bands are also encircled with corresponding color.
and Mycobacteria protein GroEL is involved in biofilm formation, we demonstrate that the kinase-phosphatase pair PrkC-PrpC regulating phosphorylation. Subsequently, to test the reversibility of phosphorylation, phosphorylated GroEL was incubated with PrpC, which led to its dephosphorylation (Fig. 2d). These results were newly phosphorylated were grouped under “PrkC-influenced” proteins that were newly phosphorylated were grouped under “PrkC-specific”, denoting the PrkC-specific phosphorylated proteins (Fig. 1c, S1).

Table 1. Differentially phosphorylated proteins identified by mass spectrometry

Spot number	Gene ID	Protein encoded
PrkC-specific		
1	Bas0107, fusA	Elongation factor-G
2	Bas3470	Transketolase
3	Bas0253, groEL	GroEL, 60 kDa chaperone
4	Bas4937, murB	UDP-N-acetylglucosamine reductase
5	Bas4985, eno	Phosphorylase hydratase
6	Bas5155	ATP synthase F0F1 subunit beta
7	Bas3882	Pyruvate dehydrogenase E1 component subunit beta
8	Bas4070	Leucine dehydrogenase
9	Bas3677, tsf	Elongation factor-Ts
PrkC-influenced		
1	Bas4213, dnaK	Molecular chaperone DnaK
2	Bas0253, groEL	GroEL, 60 kDa chaperone
3	Bas4792, pepA	Leucyl aminopeptidase
4	Bas0330	Alkyl hydroperoxide reductase
5	Bas0295	1-Pyrroline-5-carboxylate dehydrogenase
6	Bas3392	DNA topoisomerase IV subunit B, DNA gyrase
7, 8	Bas0108, tuf	Elongation factor-Tu
9	Bas4297, aspS	Aspartyl-tRNA synthetase
10	Bas1408, rpsA	30S ribosomal protein S1
11	Bas3408	Aconitate hydratase

Note: The proteins that showed higher intensity were grouped as “PrkC-influenced”; denoting increased phosphorylation in presence of PrkC. The proteins that were newly phosphorylated were grouped under “PrkC-specific”, denoting the PrkC-specific phosphorylated proteins (Fig. 1c, S1).

Table 2. List of proteins identified by immunoprecipitation with α-pSer/α-pThr antibodies

Protein identified	Gene ID	MS score	Sequence coverage
Elongation factor Tu	Bas0108	99	50.5%
Superoxide dismutase	Bas5300	105	60.3%
GroEL, 60 kDa chaperone	Bas0253	97	44.1%
Aldehyde dehydrogenase	Bas3348	113	54.5%
1-Pyrroline-5-carboxylate dehydrogenase	Bas0295	197	52.0%
Formate acetyltransferase	Bas0481	94	42.3%
Alcohol dehydrogenase	Bas2111	144	59.7%

used as negative control, which is incapable of carrying out phosphorylation. Subsequently, to test the reversibility of phosphorylation, phosphorylated GroEL was incubated with PrpC, which led to its dephosphorylation (Fig. 2d). These results demonstrate that the kinase-phosphatase pair PrkC-PrpC regulates GroEL phosphorylation reversibly. Since the chaperone protein GroEL is involved in biofilm formation in Streptococci and Mycobacteria, and was the only phosphorylated protein identified by all three methods, we investigated the role of PrkC in regulating B. anthracis GroEL.

Expression and phosphorylation status of GroEL in B. anthracis

To understand the role of GroEL in biofilm formation, we compared its expression profile in Bas-wt and BasΔprkC cells (grown in liquid media with shaking) with Bas-wt biofilms (grown in static condition), using immunoblotting with anti-GroEL antibodies. There was no change in expression of GroEL in the BasΔprkC strain as compared with Bas-wt, but the expression increased marginally in biofilm-forming cells, indicating that it might be important under such conditions (Fig. 3a). To understand the in vivo status of GroEL phosphorylation, we overexpressed GroEL in Bas-wt and BasΔprkC. Overexpressed GroEL purified from Bas-wt and BasΔprkC was subjected to immunoblotting using anti-pThr antibodies and the result shows PrkC-mediated phosphorylation of GroEL in Bas-wt (Fig. 3b). Further to understand the stoichiometry of GroEL phosphorylation, we parsed the phosphorylated and unphosphorylated isoforms. Whole cell protein extracts from Bas-wt and BasΔprkC strains were resolved by two-dimensional PAGE followed by immunoblotting using anti-GroEL antibody. In BasΔprkC, we observed only one GroEL protein isoform that migrated to an approximate pI of 4.7 (Fig. 3c). However in Bas-wt cells, we identified four isoforms of GroEL, of which one was at pl similar to that in BasΔprkC strain (i.e., ~4.7), and the other spots migrated to a lower pl range nearing 4.0 (Fig. 3c). Since the phosphorylated species are more acidic in nature, we concluded that the additional GroEL isoforms refer to the phosphorylated species. This indicated the presence of phosphorylated species of GroEL in Bas-wt as compared with single species (unphosphorylated) in BasΔprkC strain. The stoichiometry of GroEL phosphorylation was subsequently assessed in biofilm-forming cells (Bas-BF). We identified multiple isoforms with lower pl as compared with BasΔprkC strain and Bas-wt cells (Fig. 3c). These results clearly indicate that GroEL expression and its phosphorylation are associated with biofilm formation, and it is imperative to analyze the underlying regulatory process.

Co-expression of GroEL with PrkC/PrpC and effect of phosphorylation on oligomerization

Since GroEL, a protein-folding chaperone, is essential for major cellular processes and development including biofilm formation in...
some bacteria, we wanted to further understand the molecular implications of PrkC-mediated GroEL phosphorylation. GroEL was expressed in the presence of either PrkC or PrpC in the surrogate host Escherichia coli (E. coli). The phosphorylation was confirmed by metabolic labeling with [32P]orthophosphoric acid (Fig. 4a) and Pro-Q Diamond staining (Fig. 4b). PrkC readily phosphorylated GroEL (GroEL-P), whereas no phosphorylation was observed in the presence of the corresponding phosphatase PrpC (GroEL-UP) (Fig. 4a, b). The stoichiometry of GroEL-P and GroEL-UP was analyzed by two-dimensional PAGE-based separation followed by immunoblotting with anti-GroEL antibodies. We found multiple isoforms generated after phosphorylation in GroEL-P and separated on the basis of their isoelectric points (Fig. 4c). In contrast, a single species of GroEL-UP was observed, indicating the lack of phosphorylation. These results are in agreement with above-mentioned status of GroEL phosphorylation during biofilm formation (Fig. 3b).

To understand the impact of GroEL phosphorylation, we analyzed the chaperonin function on the basis of structural organization of GroEL. The chaperone complex is formed by specialized tetradecameric GroEL rings that work in conjunction with a heptameric GroES cap.34 GroEL monomeric forms have negligible folding activity in vitro and the oligomeric structure of GroEL/GroES is required for biologically significant chaperonin.
The activity of GroEL is dependent on the successful interaction with the co-chaperone, GroES. To evaluate the effect of GroEL phosphorylation on its interaction with GroES, we utilized proteinase K resistance assay. In the absence of GroES, proteinase K preferentially cleaves GroEL at the accessible C-terminal region, resulting in a truncated protein of ~52 kDa. The compact double-ring cylindrical GroEL structure becomes more stable in the presence of GroES and is therefore protected from proteinase K digestion. We observed that GroES protected the phosphorylated form of GroEL (53%) more than the unphosphorylated form (36%), indicating that GroES:GroEL interaction is stronger than GroES:GroEL-UP, and there-fore GroEL-P interaction regulates biofilm formation (Bas-BF) as observed by the increased number of spots (third panel).

Identification of phosphorylation sites in GroEL and their structural arrangement

Presence of multiple isoforms on two-dimensional PAGE led us to hypothesize that GroEL-P is phosphorylated on more than one amino acid residues (Fig. 3c). To validate this hypothesis, GroEL-P and GroEL-UP were subjected to mass spectrometry. The analysis identified six phosphorylated threonine residues in GroEL-P-Thr21, Thr132, Thr172, Thr328, and Thr329 (Fig. 5). Mass spectrometry did not identify any phosphorylated residue in GroEL-UP, indicating the specificity of PrkC-mediated GroEL phosphorylation. To study the contribution of individual sites in GroEL phosphorylation, the non-phosphorylatable mutants were generated as—GroEL-T21A, GroEL-T132A, GroEL-T172A, GroEL-T184A, GroEL-T328A, GroEL-T329A, and the double mutant GroEL-T328/329A. The phosphorylation of GroEL was compared with each of these mutants. As shown in Fig. 6a, GroEL-T21A, GroEL-T132A, and GroEL-T328/329A showed maximum loss in phosphorylation compared with GroEL. These results suggest that Thr21, Thr132 and either of Thr328 or Thr329 are the major phosphorylation sites in GroEL.

Complementation of the groEL44 allele in E. coli

To establish that phosphorylation is essential for GroEL activity in vivo, the effect of GroEL phosphorylation was subsequently tested for complementation of E. coli groEL. E. coli SV2 strain harbors a temperature-sensitive groEL44 allele and cannot be grown at 42 °C unless expressing a functional GroEL. We tested GroES-mediated protection of GroEL-P and GroEL-UP, and measured the uncleaved GroEL fraction. We observed that GroES protected the phosphorylated form of GroEL (53%) more than the unphosphorylated form (36%) from the proteinase K cleavage (Fig. 4e). This indicate that GroES:GroEL-P interaction is stronger than GroES:GroEL-UP, and therefore GroEL-P represents the active form of protein.

Function 32: We performed size exclusion chromatography of GroEL-P and GroEL-UP (using Superose 6 column) to determine GroEL complexes in both forms. Multimeric forms of GroEL-UP eluted as three peaks at 8.5, 13.5, and 15 ml, corresponding to tetradecamer (14-mer), heptamer (7-mer), and dimer (2-mer), respectively (Fig. 4d). Interestingly, maximum proportion of GroEL-P was found to be in the tetradecamer form. This indicated that phosphorylation of GroEL increases intermolecular interactions resulting in the formation of active tetradecamers. This observation also led us to speculate that PrkC-mediated phosphorylation might occur at the oligomerization interface of GroEL (equatorial domain).
Phenotypic complementation of PrkC by GroEL

Our results establish that GroEL is an important substrate of PrkC and its structural stabilization and activity is dependent on PrkC-mediated phosphorylation. Since prkC deletion caused loss in biofilm formation (Fig. 1), and if it is mediated by the downstream substrate GroEL, the loss should get complemented by increasing GroEL concentration. To test this hypothesis, GroEL was overexpressed in BasΔprkC strain and its effect was analyzed on biofilm formation. Expressing GroEL at higher concentration led to a partial resumption of biofilm formation in BasΔprkC strain (Fig. 7b). This result showed that GroEL is required for biofilm formation in B. anthracis and its overexpression can compensate for the defect in PrkC.

To further understand the role of phosphorylated residues in GroEL on biofilm formation, we overexpressed each non-phosphorylatable GroEL mutant, GroEL-T21A, GroEL-T132A, and GroEL-T329A, in BasΔprkC and compared the biofilm formation with Bas-wt and BasΔprkC+groEL strains (Fig. 7c). As evident from the Fig. 7c, BasΔprkC strain did not form biofilm when GroEL phospho-ablative mutants were overexpressed, and thus were not able to compensate for the loss of PrkC as compared with native GroEL. This data indicated that Thr21, Thr132, and Thr329 are critical for the activity of GroEL, and any perturbation of these residues may influence GroEL activity, and consequently the biofilm-forming ability of B. anthracis.

Phosphorylation of GroEL in other bacteria

PrkC homologs phosphorylate multiple substrates and have a role in virulence and bacterial development.14, 15, 19, 21, 22, 27, 37-40 To test the dependency of GroEL phosphorylation on PrkC in B. subtilis, a close relative of B. anthracis, we compared the phosphorylation status of GroEL by protein isoform analysis. On comparing the B. subtilis wild-type, B. subtilisΔprkC, and B. subtilis prkC complemented strains, we observed that only a single species of GroEL was present in the B. subtilisΔprkC strain whereas multiple isoforms were observed in the presence of PrkC (Fig. 8b). Thus, as in B. anthracis, GroEL is specifically phosphorylated by PrkC in B. subtilis. Since PrkC is a conserved Ser/Thr kinase that can get activated by sensing shared environmental cues, so bacteria may share common regulatory strategies involving PrkC and...
GroEL. To confirm this, we selected five diverse bacterial species that encode a chaperone with close homology to *B. anthracis* GroEL (Supplementary File, multiple sequence alignment). We prepared whole cell lysates of bacteria—*B. subtilis*, *Staphylococcus aureus* (*S. aureus*), *Streptococcus agalactiae* (*S. agalactiae*), *Pseudomonas aeruginosa* (*P. aeruginosa*), and *Mycobacterium smegmatis* (*M. smegmatis*)—and performed two-dimensional SDS-PAGE followed by immunoblotting with *B. anthracis* GroEL antibodies.

Fig. 5 Phosphorylation sites of GroEL: mass spectrometry spectra showing the phosphorylation sites of GroEL. The spectra were displayed using the Scaffold software and corresponding trypsinized peptides are shown. Phosphorylated threonine residues within the identified peptides are marked in green.
and *M. tuberculosis* GroEL2 antibodies. In this experiment, we detected multiple isoforms of GroEL in all these bacteria, possibly indicating the phosphorylated species (Fig. 8a). Thus, GroEL phosphorylation seems to be a conserved phenomenon; however, the sites of phosphorylation and the mechanistic details of such regulation still needs to be defined.

DISCUSSION

Many species of pathogenic bacteria are difficult to eradicate due to formation of resistant biofilms and spores. PrkC, a sensory STPK, and its homologs control the bacterial cell fate being the key regulator of cellular development and physiology. In *B. subtilis*, PrkC regulates spore formation as well as germination and biofilm formation, although the role of other signaling modules has also been shown under certain conditions. Similar roles of PrkC in biofilm formation have been indicated in *Staphylococcal sp.* pathogens, but the molecular mechanism remains unknown. PrkC also affects the pathogenicity of *Streptococcus mutans* through regulation of multiple processes, such as genetic transformability, cell shape and division, growth and stress response. In this study, we have shown that PrkC plays a critical role in *B. anthracis* biofilm formation, with GroEL as the primary mediator. GroEL is an essential chaperone present in diverse bacteria that forms nanocages and provide central compartment to prevent aggregation of unfolded proteins. Employing biochemical and proteomic strategies, we found that GroEL is one of the most consistent substrate of *B. anthracis* PrkC, and this phosphorylation is conserved among other bacterial species. *B. anthracis* GroEL is highly immunogenic and generates stronger immune response. Mice pre-injected with GroEL are protected against anthrax infection, indicating that GroEL might be important for pathogenesis. GroEL is co-transcribed with the co-chaperone GroES and the GroEL–GroES complex mediates appropriate protein folding. GroEL forms homo-heptamers and two such heptamers join to form a tetradecameric ring-like
structure, which is assisted by a GroES heptameric cap. This whole complex mediates folding of unfolded or incorrectly folded peptides, resulting in a correctly folded and active protein. GroEL oligomerization is important for its protein-folding activity and possibly pathogenesis. Specifically, previous studies in *M. tuberculosis* and *E. coli* have shown that GroEL phosphorylation induces its multimerization, making it an active chaperone complex. We also found that GroEL-P is present in tetradecamer form as compared with unphosphorylated species. In addition, our results show that phosphorylated GroEL efficiently interacts with GroES, thus having a higher tendency to constitute an active complex. This indicates that phosphorylation facilitates the formation of active GroEL–GroES complex in *B. anthracis*.

The expression of GroEL is induced during stress conditions, such as high temperature, sporulation, or biofilm formation, indicating that GroEL is required for natural stress response of the cell. Furthermore, *B. anthracis* GroEL was found to be phosphorylated in biofilm-forming cells, indicating the necessity of the active protein for biofilm formation. Under these conditions, GroEL might promote the repair of damaged proteins or facilitate the folding of other overexpressed proteins. In addition, GroEL itself forms amyloid-like fibrils, and it would be interesting if it has any direct physical role in biofilm organization. Although, GroEL is known to be involved in biofilm formation of a number of bacteria such as *Haemophilus influenzae*, *Campylobacter jejuni*, *S. mutans*, and mycobacteria, we, however, cannot rule out the possible existence of other PrkC substrate proteins that can influence the biofilm formation in co-operation with GroEL. PrkC and its homologs are shown to regulate multiple pathways by phosphorylation of specific proteins and it is possible that defect in biofilm formation is due to GroEL. Deletion of *prkC* results
in unphosphorylated GroEL, which is less active, ultimately causing loss of biofilm formation in *B. anthracis*. Complementing the prkC deletion strain with GroEL partially regained its ability to form biofilms, indicating that an excess of unphosphorylated GroEL may partially supplement for phosphorylated active GroEL. To further confirm this phenomenon, we also complemented the prkC deletion strain with GroEL phosphorylation site mutants that were found to be inactive in *E. coli* SV2 complementation experiments. These mutants were not able to retrieve the biofilm formation in *BasΔprkC* strain, thus reaffirming our results.

Initiation of bacterial biofilm requires molecular factors for attachment and accumulation. In this complex, multifactorial process, both protein and DNA form biofilm matrix. The composition of the protein includes surface proteins and adhesins that form amyloid fibers. GroEL is often characterized as cell surface protein in gram-positive bacteria that overexpresses during biofilm formation. In fact *B. anthracis* GroEL has been reported to be present on the exosporium, cell surface, and secretome. GroEL is also known to bind to plasminogen and help in evading innate immune response. Opsonization of cell surface GroEL in *B. anthracis* leads to immunomodulation and protection in mice. This is the first study that connects the role of PrkC-mediated biofilm formation with GroEL phosphorylation. Being an abundant surface and secreted protein, GroEL nanocages can be a part of biofilm matrix or may aid in preventing proteosatis and aggregation. Future studies will be needed to define role of GroEL in biofilm formation and cell surface attachment in *B. anthracis*.

METHODS

Bacterial strains and growth conditions

E. coli strain DH5α (Novagen) was used for cloning and BL21 (DE3) (Stratagene) was used for the expression of recombinant proteins. *E. coli* cells were grown as described before. *B. anthracis* strain (wild-type *Bas*-wt and *BasΔprkC*), and *B. subtilis* were grown in LB broth at 37 °C with shaking at 200 rpm. For solid media, LB-Agar was used for both *E. coli* and *B. anthracis*. *S. aureus* (ATCC 29213) and *P. aeruginosa* (ATCC 25668) strains were maintained on Mueller Hinton broth and agar (Difco, Franklin Lakes, NJ, USA). *M. smegmatis* was grown in standard culture medium as described before.

Biofilm formation in *B. anthracis* and crystal violet assay

B. anthracis Sterne strains (*Bas*-wt, *BasΔprkC*, *Bas-prkC-comp, BasΔprkC+groEL, BasΔprkC+groEL-T21A, BasΔprkC+groEL-T32A, and BasΔprkC+groEL-T329A) were grown until late log phase and secondary cultures (0.01%) were inoculated in 6-well plates containing 5 ml LB media. The plates were incubated without shaking at 37 °C for 72 h and biofilms were observed. For quantitation of biofilms, crystal violet assay was performed as described before. Microscopic images were taken by an inverted microscope (Nikon Eclipse Ti, Nikon, Tokyo, Japan).

B. anthracis lystate preparation

Cells were harvested from 50 ml logarithmic phase bacterial culture and washed twice with 1x PBS. Cells were resuspended in 5 ml of lysis buffer (PBS 1x, protease inhibitor cocktail [Roche], 1 mM PMSF, phosphatase inhibitor cocktail [Pierce], 1 mg/ml lysozyme, and 1 mM NaF) and sonicated for 10 min. The lysates were clarified and protein concentration was estimated by Bradford assay.

Immunoprecipitation of phosphorylated proteins in *B. anthracis*

B. anthracis Sterne strain grown to an OD_{600} ~1.0 in LB broth was harvested and suspended in lysis buffer containing 50 mM Tris-HCl [pH 7.5], 10% glycerol, 0.1% Triton X-100, 1X Protease inhibitor, and 1 mM PMSF and 50 ng/ml lysozyme. The suspended cells were incubated at 37 °C for 30 min and sonicated for 5 min. After sonication, the lysate was centrifuged at 15,000g for 30 min and the supernatant (containing 10 mg protein) was incubated overnight at 4 °C with Protein A-Sepharose (Invitrogen, India) linked to either α-pSer or α-pThr antibodies. Immunoprecipitates were washed several times with 1% Triton X-100 in 10 mM Tris-Cl [pH 7.5] and the protein-antibody complex was eluted using Glycine elution buffer [pH 2.0]. The eluted immunocomplexes were resuspended in 1x SDS sample buffer, resolved on SDS-PAGE, and analyzed by mass spectrometric analysis (UDSC, New Delhi) after staining with Coomassie Brilliant Blue R-250.

Phosphoenrichment

400 µg of cell lysates (*Bas*-wt and *BasΔprkC*) were phospho-enriched by Phospho-Protein purification kit (Pierce), according to the manufacturer’s instructions. The enriched proteins were concentrated and equal amounts were resolved on SDS-PAGE. Differentially enriched proteins were identified by mass spectrometry.

Identification of phosphorylation sites

To detect the phosphorylated proteins and peptides, the manually picked gel pieces were trypsinized and prepared for mass spectrometric analysis (Supplementary File).

Cloning and mutagenesis of *B. anthracis* genes and complementation in *B. anthracis*

Gene cloning and site directed mutagenesis was done using standard molecular biology procedures as described before. Briefly, *B. anthracis* groEL mutants and groES were cloned into pProEx-HTc and cloned in pACYCDuet-1, respectively. Individual groEL variants were co-expressed with groES in *E. coli* SV2. The cultures of *E. coli* SV2 expressing the required genes were serially diluted and spotted onto LB agar plates. The plates were incubated at permissive (30 °C) and restrictive (42 °C) conditions. Plasmid encoding *E. coli* GroES and pSCM1603, was included as control. Expression and purification of recombinant proteins from *E. coli*

The recombinant plasmids were transformed and proteins were overexpressed in *E. coli* BL-21 (DE3). The recombinant GST-tagged fusion proteins were affinity purified with glutathione sepharose column (Qiagen, India) and Ni-NTA affinity column (Qiagen, India), respectively, as described previously.

In vitro kinase and phosphatase assays

In vitro kinase assays (PrkC kinase/catalytic domain PrkC, 1 μg) were carried out in kinase buffer (20 mM HEPES pH 7.2, 10 mM MgCl₂, and 10 mM MnCl₂) containing 2 μM [γ-32P]ATP (BRIT, Hyderabad, India) followed by incubation at 25 °C for 30 min or as indicated in the text. Phosphorylation assays of substrates were carried out similarly, using 5 μg substrates (Ef-Tu, Ef-G, SodA2, and GroEL). Reactions were terminated by 5x SDS sample buffer followed by boiling at 100 °C for 5 min. Proteins were separated by SDS-PAGE and analyzed by Personal Molecular Image (PMI, BioRad). The images were quantitated by QuantityOne® software (PMI, BioRad). Dephosphorylation was carried out by incubating the kinase reaction samples with Ser/Thr phosphatase PrpC (1 μg) for additional 30 min at 37 °C, as described.

For time-dependent kinase assay, PrkC was first autophosphorylated (preactivated) using cold ATP. The autophosphorylated active kinase was then incubated with GroEL or SodA2 in kinase buffer containing 2 μC [γ-32P]ATP with increasing time points up to 30 min. The phosphotransfer on substrates was observed and quantitated.
Immunoblotting to identify phosphorylated residues
To detect the phosphorylated proteins, immunoblotting with α-pThr was performed as described previously. Proteins were resolved by SDS-PAGE and transferred onto a nitrocellulose membrane. Blots were exposed to α-pThr antibody and goat anti-rabbit IgG secondary antibodies. The blots were developed by SuperSignal® West Pico Chemiluminescent Substrate kit (Pierce Protein Research Products), according to the manufacturer’s instructions.

Co-expression of GroEL with PrkC and PrpC
Bac2023 cloned in pGEX-SX-3 or pProEx-HTC co-expressed in E. coli BL21 (DE3) cells with pACYC-PrkC or pACYC-PrpC to generate phosphorylated and unphosphorylated proteins, respectively. The co-expressed transformants were selected on ampicillin and chloramphenicol. The selected colonies were grown and maintained in media containing ampicillin and chloramphenicol and proteins were overexpressed with Isopropyl β-D-1-thiogalactopyranoside (IPTG). Phosphorylation status of these proteins was analyzed by Pro-Q® Diamond phospho-specific stain (Molecular Probes, Life Technologies) followed by SYPRO® Ruby Protein Gel stain (Molecular Probes, Life Technologies) and Coomassie Brilliant Blue stain, according to the manufacturer’s instructions. Pro-Q Diamond is a sensitive non-covalent fluorescent dye staining technology used for the detection of phosphoserine, phosphothreonine, and phosphotyrosine containing proteins. These proteins were used for subsequent assays.

Recombinant GroEL size exclusion chromatography
His6-tagged GroEL-UP or GroEL-P were used for purification by size exclusion chromatography. Similar procedure was followed as described earlier. Briefly, the Ni2+–NTA purified proteins were dialyzed with 50 mM Tris (pH 8.0), 150 mM NaCl, and 1 mM EDTA. The preparations were resolved on Superose 6 10/100 GL (GE Healthcare) connected to the NG Quest Plus Chromatography System (BioRad), with column volume of 23.6 ml and flow rate of 0.5 ml/min. The protein standards on Superose 6 column were: Thyroglobulin (660 kD), Ferritin (440 kD), BSA (66 kD), and RNase A (13.7 kD) that elute at 12, 14, 16.5, and 18 ml, with partition coefficients (K_p) of 0.28, 0.40, 0.56, and 0.72, respectively.

Proteinase K protection assay
Protection of GroEL by GroES was performed as described earlier with minor modifications.

GroEL structure generation
B. anthracis GroEL sequence was modeled using the co-ordinates from E. coli GroEL structure (PDB code: 1AON chain A) with Modeller v9.13. The GroEL sequence was modeled using the co-ordinates from S. agalactiae 2009-023 (PDB code: 346L chain A). The models were analyzed by Prody and Rotorfit. The models were then subjected to TCA precipitation and precipitates were resolved by SDS-PAGE and analyzed by immunoblotting using anti-GroEL antibodies.

The authors declare that they have no competing interest.

ACKNOWLEDGEMENTS
We thank Jonathan Dworkin (Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York) for providing the B. subtilis (wild type, prkC deletion, and prkC complement) strains and prkC deletion strain of B. anthracis. We also thank Lakshmi Rajagopal (Department of Pediatric Infectious Diseases and Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington) for providing S. agalactiae strains and Prof. Rakesh Bhatnagar (Jawaharlal Lal Nehru University, New Delhi, India) for providing the B. anthracis GroEL-specific antibodies. We thank Karin Bässl (Institute of Microbiology, Emst-Moritz-Arndt-University, Greifswald, Germany) for helping in the mass spectrometry-based phosphorylation site analysis. We thank Dr. Nirpendra Singh, UDSC, for his help in the mass spectrometry. This work was supported by Council of Scientific and Industrial Research (CSIR)-funded projects BSC-0123 and BSC-0104 and JC Bose Fellowship Research Grant (SERB) to Yogendra Singh.

AUTHOR CONTRIBUTIONS
G.A. and A. Sajid conceived and designed the experiments. A. Sajid, G.A, A. Singhal, R. V., C.M.S.K., N.D., T.K., A.M., R.M., V.M., and D.B. performed the experiments. A. Sajid and G.A. wrote the paper and prepared the figures. V.M., U.G., S.M., and Y.S. contributed reagents/materials/analysis tools. All authors have read and approved the manuscript.

COMPETING INTERESTS
The authors declare that they have no competing interest.

REFERENCES
1. Hanna, P. C. & Ireland, J. A. Understanding Bacillus anthracis pathogenesis. Trends Microbiol. 7, 180–182 (1999).
2. Dworkin, J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr. Opin. Microbiol. 12, 451–476 (2009).
3. Lee, K. et al. Phenotypic and functional characterization of Bacillus anthracis biofilms. Microbiology 153, 1693–1701 (2007).
4. Shah, I. M. & Dworkin, J. Induction and regulation of a secreted peptidoglycan biosynthesis inhibitor resistant (MQSIR) bacteria. J. Bacteriol. 193, 186(2015).
5. Anand, A. et al. Polypeptide quinones are alternate intermediate electron carriers during mycobacterial respiration in oxygen-deficient niches. Mol. Cell. 6, 637–650 (2015).
6. Fagerlund, A. et al. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Mol. Microbiol. 3, 471–494 (2016).
7. Koul, S., Prakash, J., Mishra, A. & Kalia, V. C. Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Ind. J. Microbio. 1, 1–18 (2016).
8. Nguyên, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).
9. Auger, S. et al. Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol. 75, 6616–6618 (2009).
10. Branda, S. S. et al. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol. 186, 3970–3979 (2004).
11. Macfarlane, S. & Dillon, J. Mycobacterial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 102, 1187–1196 (2007).
12. Elsholz, A. K., Wacker, S. & Losick, R. Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes Dev. 15, 1710–1720 (2014).
13. Arora, G. et al. Unveiling the novel dual specificity protein kinases in Bacillus anthracis: identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase. J. Biol. Chem. 287, 26749–26763 (2012).
14. Arora, G. et al. Zinc regulates the activity of kinase-phosphatase pair (BasPrkC/ BasPrpC) in Bacillus anthracis. Biometals 26, 715–730 (2013).
15. Bryant-Hudson, K. M., Shakir, S. M. & Ballard, J. D. Autoregulatory characteristics of a Bacillus anthracis serine/threonine kinase. J. Bacteriol. 193, 1843–1842 (2011).
16. Shakir, S. M. et al. Regulatory interactions of a virulence-associated serine/threonine phosphatase-kinase pair in Bacillus anthracis. J. Bacteriol. 192, 400–409 (2010).
17. Shah, I. M., Laaber, M. H., Popham, D. L. & Dworkin, J. A. Eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496 (2008).
18. Shah, I. M. & Dworkin, J. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75, 1232–1243 (2010).
19. Dworkin, J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr. Opin. Microbiol. 24, 47–52 (2015).
20. Pereira, S. F., Gonzalez, R. L. Jr. & Dworkin, J. Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor. Proc. Natl. Acad. Sci. U. S. A. 112, E3274–E3281 (2015).
21. Sajid, A. et al. Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J. Bacteriol. 193, 5347–5358 (2011).
22. Sajid, A. et al. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS ONE 6, e17871 (2011).
23. Sajid, A., Arora, G., Singhal, A., Kalia, V. C. & Singh, Y. Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu. Rev. Microbiol. 69, 527–547 (2015).
24. Donat, S. et al. Transcriptional and functional analysis of the eukaryotic-type serine/threonine kinase PknB in Staphylococcus aureus. J. Bacteriol. 191, 4056–4069 (2009).

25. Fleury, A. et al. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516, 259–262 (2014).

26. Schmidt, S. R. et al. The stability of cytoadherence proteins in Mycoplasma pneumoniae requires activity of the protein kinase PrkC. Infect. Immun. 78, 184–192 (2010).

27. Chawla, Y. et al. Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem. 289, 13858–13875 (2014).

28. Sharma, A. et al. Serine/Threonine protein phosphatase PSTP of Mycobacterium tuberculosis is necessary for accurate cell division and survival of pathogen. J. Biol. Chem. 46, 24215–24230 (2016).

29. Absalon, C. et al. GroEL1: a dedicated chaperone involved in mycolic acid biogenesis. Cell 123, 861–873 (2005).

30. Lemos, J. A., Luzardo, Y. & Burne, R. A. Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans. J. Bacteriol. 189, 1582–1588 (2007).

31. Ojha, A. et al. GroEL1: a dedicated chaperone involved in mycopic acid biosynthesis during biofilm formation in mycobacteria. Cell 123, 861–873 (2005).

32. Horwich, A. L., Farr, G. W. & Fenton, W. A. GroEL-GroES-mediated protein folding. Chem. Rev. 106, 1917–1930 (2006).

33. Radford, S. E. GroEL: more than just a folding cage. Cell 125, 831–833 (2006).

34. Chakraborty, K. et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 112, 112–122 (2010).

35. Martin, J. GroEL/GroES interaction assayed by protease protection. Methods Mol. Biol. 140, 71–74 (2000).

36. Kumar, C. M. et al. Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization. J. Bacteriol. 191, 6525–6538 (2009).

37. Banu, L. D. et al. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect. Immun. 78, 2209–2220 (2010).

38. Gupta, M., Sajid, A., Arora, G., Tandon, V. & Singh, Y. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J. Biol. Chem. 284, 34723–34734 (2009).

39. Liu, Q. et al. The eukaryotic-type serine/threonine protein kinase STK is required for biofilm formation and virulence in Staphylococcus epidermidis. PLoS ONE 6, e25380 (2011).

40. Tamber, S., Schwartzman, J. & Cheung, A. L. Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant Staphylococcus aureus strain USA300. Infect. Immun. 78, 3637–3646 (2010).

41. Madec, E., Laszkiewicz, A., Iwanicki, A., Obuchowski, M. & Seror, S. Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Mol. Microbiol. 46, 571–586 (2002).

42. Chen, Y. et al. A Bacillus subtilis sensor kinase involved in biofilm formation on the roots of tomato plants. Mol. Microbiol. 85, 418–430 (2012).

43. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168 (2013).

44. Leiba, J. et al. A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Skt1 protein phosphorylation. J. Biol. Chem. 287, 43607–43619 (2012).

45. Beck, M. et al. The biofilm inhibitor caralacton disturbs membrane integrity and cell division of Streptococcus mutans through the serine/threonine protein kinase PknB. J. Bacteriol. 193, 5692–5706 (2011).

46. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Hartl, F. U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

47. Sinha, K. & Bhattacharjee, R. GroEL provides protection against Bacillus anthracis infection in BALB/c mice. Mol. Immunol. 48, 264–271 (2010).