SOME SUBCLASSES OF ANALYTIC FUNCTIONS WITH RESPECT TO \((j, k)\)-SYMMETRICAL POINTS

K. Ramachandran
Assistant Professor, Department of Mathematics, SRM University, Ramapuram, Chennai-600048, Tamilnadu, India.
E-mail: bharaniram22@gmail.com

R. Vanaja
Assistant Professor, Department of Mathematics, SRM University, Ramapuram, Chennai-600048, Tamilnadu, India.
E-mail: rvanajamaths@gmail.com

K. Ramamoorthy
Assistant Professor, Department of Mathematics, LVCE, Walajapad, Kanchipuram, Tamilnadu, India.
E-mail: mailtoramamoorthy@gmail.com

Abstract. In this paper, the author introduces a new subclasses of analytic functions with respect to \((j,k)\)-symmetric points and investigate various inclusion properties for these classes. Integral representation for functions in these classes and some interesting applications.

1. Introduction

Let \(\mathcal{A} \) be a class of functions analytic in an open unit disc \(\mathcal{U} = \{ z \in \mathbb{C} : |z| < 1 \} \) and is of the form

\[
f(z) = z + \sum_{n=0}^{\infty} a_n z^n
\]

Also let \(\mathcal{S} \) be the subclass of \(\mathcal{A} \) consisting of all functions which of the form

\[
f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (a_n \geq 0)
\]
On A Class Of Univalent Starlike Functions

Let \(S(\lambda, \alpha) \) be the subclass of \(S \) consisting of functions \(f(z) \) which satisfy the following inequality

\[
\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (z \in \mathcal{U}),
\]

for some \(\alpha(0 \leq \alpha < 1) \) and \(\lambda(0 \leq \lambda < 1) \) and let \(C(\lambda, \alpha) \) be the subclass of \(S \) consisting of functions \(f(z) \) which satisfy the following inequality

\[
\text{Re} \left(\frac{1 + zf''(z)}{1 + \lambda zf''(z)} \right) > \alpha \quad (z \in \mathcal{U}),
\]

for some \(\alpha(0 \leq \alpha < 1) \) and \(\lambda(0 \leq \lambda < 1) \). The classes \(S(\lambda, \alpha) \) and \(C(\lambda, \alpha) \) were first introduced and investigated by Altinas and Owa, [1] then were studied by Aouf et al. [2]

Let the functions \(f(z) \) and \(g(z) \) be members of \(A \). We say that the function \(f \) is subordinate to \(g \) (or \(g \) is superordinate to \(f \)), written \(f \prec g \), if there exists a Schwarz function \(w \) analytic in \(\mathcal{U} \), with \(w(0) = 0 \) and \(|w(z)| < 1 \) and such that \(f(z) = g(w(z)) \).

In particular, if \(g \) is univalent, then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(U) \subset g(U) \).

Motivated by the concept introduced by K. Sakaguchi in [11], recently several subclasses of analytic functions with respect to \(k \)-symmetric points were introduced and studied by various authors. More prominently, Wang et. al. [12] introduced class \(S_{s}^{(k)}(\varphi) \) of functions \(f \in A \) subject to satisfying the condition

\[
\frac{zf'(z)}{f_{k}(z)} < \varphi(z) \quad (z \in \mathcal{U}),
\]

where \(\varphi(z) \in \mathcal{P}, k \geq 1 \) is fixed positive integer and \(f_{k}(z) \) is defined by the equality

\[
f_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu} f(\varepsilon^{\nu}z).
\]

Similarly, \(C_{s}^{(k)}(\varphi) \) denote the class of functions in \(S \) satisfying the condition

\[
\frac{(zf'(z))'}{f_{k}'(z)} < \varphi(z) \quad (z \in \mathcal{U}),
\]

where \(\varphi(z) \in \mathcal{P}, k \geq 1 \) is fixed positive integer.

Liczberski and Połubinski in [7] introduced the notion \((j, k)\) symmetrical function \((k = 2, 3, \ldots; j = 0, 1, \ldots, k-1)\), which is a generalization of even, odd and \(k \)-symmetrical functions. A function \(f \in A \) is said to be \((j, k)\)-symmetrical if for each \(z \in \mathcal{U} \)

\[
f(\varepsilon z) = \varepsilon^{j} f(z),
\]

(1)

\[(k = 1, 2, \ldots; j = 0, 1, 2, \ldots(k-1)), \]
On A Class Of Univalent Starlike Functions

where \(\epsilon = \exp(2\pi i/k) \). The family of \((j, k)\)-symmetrical functions will be denoted by \(\mathcal{F}_k^j \). We observe that \(\mathcal{F}_2^1, \mathcal{F}_2^0 \) and \(\mathcal{F}_k^1 \) are well-known families of odd functions, even functions and \(k \)-symmetrical functions respectively. It was further proved in [7] that each function defined on a symmetrical set can be uniquely represented as the sum of an even function and an odd function.

Also let \(f_{j,k}(z) \) be defined by the following equality

\[
f_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \frac{f(\epsilon^\nu z)}{\epsilon^{\nu j}},
\]

\((f \in A_p; k = 1, 2, \ldots; j = 0, 1, 2, \ldots (k-1))\).

Motivated by the classes \(S(\lambda, \alpha) \) and \(C(\lambda, \alpha) \), We now introduced and investigated the following two subclasses of \(A \) with respect to \((jk)\)-symmetric points and obtain some interesting results.

We now define the following:

Definition 1.1 Let \(f \in A \) is in the class \(P_{j,k}(\lambda, \alpha) \) if it satisfies the following inequality

\[
\text{Re} \left(\frac{z(f(z))^{(m+1)}(f_{jk}(z))^{(m)}}{\lambda(z(f(z))^{(m+1)}(f_{jk}(z))^{(m)}) + (1-\lambda)} \right) > \alpha \quad (z \in U, m \in \mathbb{N} \cup 0)
\]

where \(0 \leq \lambda < 1 \), \(0 \leq \alpha < 1 \), \(k \geq 1 \) is a fixed positive integer, \(f_{jk}(z) \neq 0 \) in \(U \) and a function \(f^{(m)}(z) \in A \) is in the class \(Q_{j,k}(\lambda, \alpha) \) if and only if \(zf^{(m+1)}(z) \in P_{j,k}(\lambda, \alpha) \).

2. INTEGRAL REPRESENTATIONS

Theorem 2.1 Let \(f \in P_{j,k}(\lambda, \alpha) \), then we have

\[
f_{jk}^{(m)}(z) = z \exp \left\{ \frac{1}{k} \sum_{\nu=0}^{k-1} \int_0^z \frac{2(1-\alpha)w(t)}{t[1-\lambda-(1+2\alpha\lambda)w(t)]} \right\}
\]

where \(f \in P_{j,k}(\lambda, \alpha) \) defined by equality (2), \(w(z) \) is analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1\).

Proof. Let \(f \in P_{j,k}(\lambda, \alpha) \). In view of the equivalent subordination condition proved by Kuroki and Owa in [6] for the class \(f \in P_{j,k}(\lambda, \alpha) \), we have

\[
\frac{z(f(z))^{(m+1)}(f_{jk}(z))^{(m)}}{\lambda(z(f(z))^{(m+1)}(f_{jk}(z))^{(m)}) + (1-\lambda)} < \frac{1 + (1-2\alpha)z}{1 - z} \quad (z \in U)
\]

\((3) \)

\[
\frac{z(f(z))^{(m+1)}(f_{jk}(z))^{(m)}}{\lambda(z(f(z))^{(m+1)}(f_{jk}(z))^{(m)}) + (1-\lambda)} = \frac{1 + (1-2\alpha)w(z)}{1 - w(z)} \quad (z \in U)
\]

\((4) \)
On A Class Of Univalent Starlike Functions

This yields

\[
\frac{z(f(z))^{(m+1)}}{(f_{jk}(z))^{(m)}} = \frac{(1 - \lambda)[1 + (1 - 2\alpha)w(z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(z)} \quad (z \in \mathcal{U})
\]

(5)

where \(w(z)\) is analytic in \(U\) and \(w(0) = 0, |w(z)| < 1\). Substituting \(z\) by \(\varepsilon^v z\) in the equality (3) respectively \((v = 0, 1, 2, \ldots k - 1, \varepsilon^k = 1)\), we have

\[
e^v z (f(\varepsilon^v z))^{(m+1)} = \frac{(1 - \lambda)[1 + (1 - 2\alpha)w(\varepsilon^v z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(\varepsilon^v z)}
\]

(6)

Using \(f_{jk}(\varepsilon^v z) = e^{v\psi} f_{jk}(z)\) can be rewritten in the form

\[
e^{v(m+1)-v_j z} (f(\varepsilon^v z))^{(m+1)}
\]

(7)

Let \(v = 0, 1, 2, \ldots k - 1\) in respectively and summing them, we get

\[
\frac{z(f_{jk}^{(m+1)}(z))}{f_{jk}^{(m)}(z)} = \frac{1}{k} \sum_{v=0}^{k-1} \frac{(1 - \lambda)[1 + (1 - 2\alpha)w(\varepsilon^v z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(\varepsilon^v z)}
\]

On simplifying and integrating, we get

\[
\log \left(\frac{f_{jk}^{(m)}(z)}{z} \right) = \frac{1}{k} \sum_{v=0}^{k-1} \int_0^\varepsilon^v z \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} \, dt
\]

(7)

The difficulty to integrate the term with presence of the first order pole at the origin, has been avoided by integrating from \(z_0\) to \(z\) with \(z_0 \neq 0\) and then let \(z_0 \to 0\). Further simplifying (7), we get

\[
f_{jk}^{(m)}(z) = z \exp \left\{ \frac{1}{k} \sum_{v=0}^{k-1} \int_0^{\varepsilon^v z} \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} \, dt \right\}
\]

This completes the proof of theorem.

Theorem 2.2 Let \(f \in \mathcal{P}_{jk}(\lambda, \alpha)\), then we have

\[
f(z) = \int_0^z \int_0^z \ldots \int_0^z \exp \left\{ \frac{1}{k} \sum_{v=0}^{k-1} \int_0^{\varepsilon^v z} \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} \, dt \right\}
\]

\[
\times \left[\frac{(1 - \lambda)[1 + (1 - 2\alpha)w(\zeta)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(\zeta)} \right]^{d\zeta} \ldots dz \, dz.
\]

Where \(w(z)\) is analytic in \(U\) with \(w(0) = 0\) and \(|w(z)| < 1\) \((z \in \mathcal{U})\)

Proof. Suppose \(f \in \mathcal{P}_{jk}(\lambda, \alpha)\). It follows

\[
\frac{z(f(z))^{(m+1)}}{(f_{jk}(z))^{(m)}} = \frac{(1 - \lambda)[1 + (1 - 2\alpha)w(z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(z)}
\]

Or equivalently,

\[
f^{(m+1)}(z) = \exp \left\{ \frac{1}{k} \sum_{v=0}^{k-1} \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} \right\} \times \left[\frac{(1 - \lambda)[1 + (1 - 2\alpha)w(z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(z)} \right]
\]
On A Class Of Univalent Starlike Functions

Integrating the above expression \(m + 1 \) times, we have

\[
f(z) = \int_0^z \int_0^z \cdots \int_0^z \exp \left\{ \frac{1}{k} \sum_{v=0}^{k-1} \int_0^{e^{v \xi}} \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} \right\}
\times \left[\frac{(1 - \lambda)[1 + (1 - 2\alpha)w(\xi)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(\xi)} \right] d\xi \cdots dz.
\]

Corollary 2.3 If \(f \in Q_{jk}(\lambda, \alpha) \) then the integral representation of \(f^{(m)}(z) \) is given by

\[
f^{(m)}_{jk}(z) = \int_0^z \int_0^z \cdots \int_0^z \exp \left\{ \frac{1}{k} \sum_{v=0}^{k-1} \int_0^{e^{v \xi}} \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} dt \right\} d\xi.
\]

Where \(w(z) \) is analytic in \(\mathcal{U} \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) \((z \in \mathcal{U})\).

Corollary 2.4 If \(f \in Q_{jk}(\lambda, \alpha) \), then

\[
\frac{z(f(z))^{(m+1)}}{(f^{(m)}_{jk}(z))^{(m)}} = \frac{(1 - \lambda)[1 + (1 - 2\alpha)w(z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(z)}
\]

then the integral representation of \(f(z) \) is given by

\[
f(z) = \int_0^z \int_0^z \cdots \int_0^z \int_0^{e^{v \xi}} \exp \left\{ \frac{1}{k} \sum_{v=0}^{k-1} \int_0^{e^{v \xi}} \frac{2(1 - \alpha)w(t)}{t[1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(t)]} dt \right\}
\times \left[\frac{(1 - \lambda)[1 + (1 - 2\alpha)w(\xi)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)w(\xi)} \right] d\xi d\eta \cdots dz.
\]

Where \(w(z) \) is analytic in \(\mathcal{U} \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) \((z \in \mathcal{U})\).

3. Convolution conditions

We provide the convolution conditions for the classes \(\mathcal{P}_{jk}(\lambda, \alpha) \) and \(\mathcal{Q}_{jk}(\lambda, \alpha) \).

Let \(f, g \in \mathcal{A} \) Where \(f(z) \) is given by

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

and \(g(z) \) is defined by

\[
g(z) = z + \sum_{n=2}^{\infty} c_n z^n
\]

then the hadamard product \(f \ast g \) is defined by

\[
(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n c_n z^n = (g \ast f)(z)
\]
Remark 3.1 For a case of \(m = 0 \) in the definition, a function \(f \in \mathcal{P}_{jk}(\lambda, \alpha) \) if and only if

\[
\frac{1}{z} \left\{ f * \left\{ \frac{z}{(1 - z)^2} \left\{ (1 - e^{i\theta}) - \lambda[1 + (1 - 2\alpha)e^{i\theta}] \right\} - (1 - \lambda)[1 + (1 - 2\alpha)e^{i\theta}]h(z) \right\} \right\} \neq 0
\]

\(\forall z \in \mathcal{U} \) and \(0 \leq \theta < 2\pi \), Where \(h(z) \) is given by

\[
h(z) = \frac{1}{k} \sum_{v=0}^{k-1} \frac{z}{1 - e^{i\theta}z} \quad (z \in \mathcal{U})
\]

result proved by zhi gang wang and di song.

Remark 3.2 For a case of \(m = 0 \) in the definition, a function \(f \in \mathcal{Q}_{jk}(\lambda, \alpha) \) if and only if

\[
\frac{1}{z} \left\{ f * \left\{ z \left\{ \frac{z}{(1 - z)^2} \left\{ (1 - e^{i\theta}) - \lambda[1 + (1 - 2\alpha)e^{i\theta}] \right\} - (1 - \lambda)[1 + (1 - 2\alpha)e^{i\theta}]h(z) \right\} \right\} \right\} \neq 0
\]

\(\forall z \in \mathcal{U} \) and \(0 \leq \theta < 2\pi \), Where \(h(z) \) is given by

\[
h(z) = \frac{1}{k} \sum_{v=0}^{k-1} \frac{z}{1 - e^{i\theta}z} \quad (z \in \mathcal{U})
\]

result proved by zhi gang wang and di song.

Lemma 3.1 [8] Let \(-1 \leq B_2 \leq B_1 < A_1 \leq A_2 \leq 1\), then we have

\[
1 + A_1z \prec 1 + A_2z \\
1 + B_1z \succ 1 + B_2z
\]

4. Inclusion Relationships

We give some inclusion relationships for the classes \(\mathcal{P}_{jk}(\lambda, \alpha) \) and \(\mathcal{Q}_{jk}(\lambda, \alpha) \).

Theorem 4.1 Let \(0 \leq \lambda_1 \leq \lambda_2 < 1 \), and \(0 \leq \alpha_1 \leq \alpha_2 < 1 \) then we have

\(\mathcal{P}_{jk}^*(\lambda_1, \alpha_1) \subset \mathcal{P}_{jk}^*(\lambda_2, \alpha_2) \)

Proof. Suppose \(f(z) \in \mathcal{P}_{jk}^*(\lambda_2, \alpha_2) \), we have

\[
z(f(z))^{(m+1)}(f_{jk}(z))^{(m)} \prec \frac{(1 - \lambda_2)[1 + (1 - 2\alpha_2)z]}{1 - \lambda_2 - (1 + \lambda_2 - 2\alpha_2\lambda_2)z}
\]

since \(0 \leq \lambda_1 \leq \lambda_2 < 1 \), and \(0 \leq \alpha_1 \leq \alpha_2 < 1 \), then we have

Thus by lemma 3.1., we have

\[
z(f(z))^{(m+1)}(f_{jk}(z))^{(m)} \prec \frac{(1 - \lambda_2)[1 + (1 - 2\alpha_2)z]}{1 - \lambda_2 - (1 + \lambda_2 - 2\alpha_2\lambda_2)z} \prec \frac{(1 - \lambda_1)[1 + (1 - 2\alpha_1)z]}{1 - \lambda_1 - (1 + \lambda_1 - 2\alpha_1\lambda_1)z}
\]
On A Class Of Univalent Starlike Functions

ie \(f(z) \in \mathcal{P}^*_jk \), this means that

\[
\mathcal{P}^*_jk(\lambda_2, \alpha_2) \subset \mathcal{P}^*_jk(\lambda_1, \alpha_1)
\]

similarly, for the class \(\mathcal{Q}^*_jk(\lambda, \alpha) \) we have

Corollary 4.2 Let \(0 \leq \lambda_1 \leq \lambda_2 < 1 \) and \(0 \leq \alpha_1 \leq \alpha_2 < 1 \) then we have

\[
\mathcal{Q}^*_jk(\lambda_1, \alpha_1) \subset \mathcal{Q}^*_jk(\lambda_2, \alpha_2)
\]

5. References

[1] O. Altinas and S. Owa, on subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math J. 4(1988), 41-56.
[2] M. K. Aouf, H. M. Hossen and A. Y. Lashin, convex subclass of starlike functions, Kyung-pook math J. 40(2000), 287-297.
[3] Teodor Bulboacă, Differential subordinations and superordinations. Recent result, House of Science Book Publ., Cluj-Napoca, 2005.
[4] A. W. Goodman, *Univalent functions. Vol. I*, Mariner, Tampa, FL, 1983.
[5] I. Graham and G. Kohr, *Geometric function theory in one and higher dimensions*, Dekker, New York, 2003.
[6] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kôkyûroku, 1772 (2011) pp. 21-25.
[7] P. Liczberski and J. Połubiński, On \((j,k)\)-symmetrical functions, Math. Bohem. 120 (1995), no. 1, 13-28.
[8] M. S. Liu, on a subclass of \(p \)-valent close-to-convex functions of order \(\beta \) and type \(\alpha \), J. Math. Study 30(1997), 102-104.
[9] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (2003), no. 10, 815-826.
[10] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), no. 1, 1-12.
[11] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
[12] Z.-G. Wang, C.-Y. Gao and S.-M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to \(k \)-symmetric points, J. Math. Anal. Appl. 322 (2006), no. 1, 97-106.