Taxonomic Paper

Two new species of *Neopestalotiopsis* from southern China

Qi Yang‡, Xiang-Yu Zeng‡, Jun Yuan‡, Qian Zhang‡, Yu-Ke He§, Yong Wang‡

‡ Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China
§ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand

Corresponding author: Yong Wang (yongwangbis@aliyun.com)
Academic editor: Renan Barbosa
Received: 21 Jun 2021 | Accepted: 24 Jul 2021 | Published: 25 Aug 2021
Citation: Yang Q, Zeng X-Y, Yuan J, Zhang Q, He Y-K, Wang Y (2021) Two new species of *Neopestalotiopsis* from southern China. Biodiversity Data Journal 9: e70446. https://doi.org/10.3897/BDJ.9.e70446

Abstract

Background

Pestalotiopsis-like fungi are widely distributed in many plants and include endophytes, pathogens and saprobes. Five strains of *Neopestalotiopsis* were isolated from diseased leaves of *Rhapis excelsa* (Principes, Palmae), *Rhododendron simsii* and *Rho. championiae* (Ericales, Ericaceae) and *Erythropalum scandens* (Santalales, Olacaceae) in southern China.

New information

Based on morphology and multi-gene (ITS, *tub2*, *tef1*) phylogeny, our five strains of *Neopestalotiopsis* represent two new species and one extant species. Descriptions, illustrations and notes are also provided for the new species.

Keywords

two new taxa, Sporocadaceae, taxonomy

© Yang Q et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Sporocadaceae was introduced by Corda (1842) and comprised abundant endophytic, plant pathogenic or saprobic taxa (Liu et al. 2019). A great part of Sporocadaceae species were reported as important plant pathogenic fungi that mainly harm various economic crops, such as tea, blueberry and elephant apple (Fernández et al. 2015, Banerjee et al. 2018, Tsai et al. 2020). Jaklitsch et al. (2016) synonymised Bartaliniaceae, Discosiaceae, Pestalotiopsidaceae and Robillardaceae under Sporocadaceae. Liu et al. (2019) studied the taxonomy of Sporocadaceae and accommodated 30 genera in it. Hyde et al. (2020) and Wijayawardene et al. (2020) placed Sporocadaceae in Amphisphaeriales and accepted 33 genera.

Neopestalotiopsis was introduced by Maharachchikumbura et al. (2014) to accommodate pestalotiopsis-like taxa that had versicolorous median cells and indistinct conidiophores. Until now, 49 taxa of Neopestalotiopsis are known (Mycobank 2021: https://www.mycobank.org/page/Home). This group commonly occurs on plants as endophytes, pathogens or saprobes (Jeewon et al. 2004, Liu et al. 2010, Hyde et al. 2016, Reddy et al. 2016, Shetty et al. 2016, Ran et al. 2017, Bezerra et al. 2018, Freitas et al. 2019). Recently, research showed them as plant pathogens causing stem blight, flower bight, twig dieback and fruit rot (Akinsanmi et al. 2016, Borrero et al. 2017, Mahapatra et al. 2018, Rodríguez-Gálvez et al. 2020). In the past few years, China and Thailand are places where most species of Neopestalotiopsis were found (Norphanphoun et al. 2019).

Amongst surveys of microfungi in southern China, we made five collections of Neopestalotiopsis from four host plants. Based on morphological descriptions and molecular analyses of three gene loci, our strains represent two new species and one known species.

Materials and methods

Sample collection and fungi isolation

Diseased leaf samples with fruiting bodies were collected from major botanical gardens in Yunnan, Guangxi and Guizhou Provinces in southern China. After surface disinfection of the diseased tissues (Zhang et al. 2020), the single-spore method was used for obtaining a pure culture (Senanayake et al. 2020). The isolates were transferred to new potato dextrose agar (PDA) plates to obtain a pure strain.

Morphology study

Cultures growing on potato dextrose agar (PDA) were incubated under moderate temperatures (28°C) for 2–4 weeks in 12 h daylight. The diameter of cultures was measured after 1 week and the colour was determined with the colour charts of Rayner (1970). The morphological features were noted and recorded following Hu et al. (2007). Microscopic preparations were prepared in lactophenol and over 30 measurements were
obtained per structure. Photographs were taken using a compound microscope (Olympus BX53, Japan). The holotype specimens were deposited in the Herbarium of Department of Plant Pathology, Agricultural College, Guizhou University (HGUP). Ex-type cultures were deposited in the Culture Collection at the Department of Plant Pathology, Agriculture College, Guizhou University, China (GUCC).

DNA extraction and PCR amplification

DNA extraction and PCR amplification follow Dissanayake et al. (2020) with some minor changes. A Fungus Genomic DNA Extraction Kit (Biomiga#GD2416, San Diego, California, USA) was used to extract fungal genome DNA. DNA amplification was performed in a 25 µl reaction mixture which contains 2.5 µl 10 × PCR buffer, 1 µl of each primer (10 µM), 1 µl template DNA and 0.25 µl Taq DNA polymerase (Promega, Madison, WI, USA). The ITS rDNA region was amplified using primer pairs ITS4 and ITS5 (White et al. 1990). The partial tub2 gene region was amplified with primer pairs T1 and Bt2b (Glass and Donaldson 1995, O'Donnell and Cigelnik 1997). The tef1 gene fragment was amplified using the primer pairs EF1-728F and EF-2 (O'Donnell et al. 1998, Carbone and Kohn 1999). PCR amplification conditions were performed according to the methods described by Norphanphoun et al. (2019). The PCR products were sent to SinoGenoMax company (Beijing, China) which used the fluorescently-labelled Sanger method for sequencing. The resulting DNA sequences were submitted to GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and their accession numbers were provided in Table 1.

Species name	Strain number	GenBank Accession numbers	Reference			
Neopestalotiopsis acrostichi	MFLUCC 17-1754T	MK764272, MK764338, MK764316	Norphanphoun et al. (2019)			
	MFLUCC 17-1755	MK764273, MK764339, MK764317	Norphanphoun et al. (2019)			
N. alpapicalis	MFLUCC 17-2544	MK357772, MK463545, MK463547	Kumar et al. (2019)			
	MFLUCC 17-2545	MK357773, MK463546, MK463548	Kumar et al. (2019)			
N. aotearoa	CBS 367.54T	KM199369, KM199454, KM199526	Maharachchikumbura et al. (2014)			
	HNPeHNLD2001	MT764947, MT796262, MT800516	Direct submission			
N. asiatica	MFLUCC 12-0286T	JX398983, JX399018, JX399049	Maharachchikumbura et al. (2012)			
N. australis	CBS 114159T	KM199348, KM199432, KM199537	Maharachchikumbura et al. (2014)			
N. brachiata	MFLUCC 17-1555T	MK764274, MK764340, MK764318	Norphanphoun et al. (2019)			
Species name	Strain number	GenBank Accession numbers	Reference			
-----------------------	---------------	---------------------------	----------------------------			
ITS						
N. brasiliensis	COAD 2166^T	MG688469 MG692400 MG692402	Bezerra et al. (2018)			
N. chiangmaiensis	MFLUCC 18-0113^T	- MH412725 MH388404	Tibpromma et al. (2018)			
N. chrysea	MFLUCC 12-0261^T	JX398985 JX399020 JX399051	Maharachchikumbura et al. (2012)			
N. clavispora	MFLUCC 12-0281^T	JX398979 JX399014 JX399045	Maharachchikumbura et al. (2012)			
N. egyptiaca	COAD 2167	MG688470 MG692401 MG692403	Silva et al. (2018)			
N. ellipsospora	MFLUCC 12-0284	JX398981 JX399015 JX399046	Maharachchikumbura et al. (2012)			
N. eucalypticola	CBS 126.37^T	KM199376 KM199431 KM199551	Maharachchikumbura et al. (2014)			
N. foedans	CGMCC3.9178	JX398989 JX399024 JX399055	Maharachchikumbura et al. (2014)			
N. formicarum	CBS 362.72^T	KM199358 KM199455 KM199517	Maharachchikumbura et al. (2014)			
N. honoluluana	CBS 111535	KM199363 KM199461 KM199546	Maharachchikumbura et al. (2014)			
N. iranensis	CBS 137768^T	KM074048 KM074057 KM074051	Ayoubi and Soleimani (2016)			
N. javaensis	CBS 257.31^T	KM199357 KM199437 KM199543	Maharachchikumbura et al. (2014)			
N. ketleieeria	MFLUCC 12-0594	KX816905 KX816933 KX816874	Maharachchikumbura et al. (2014)			
N. macadamiae	BRIP 63737c^T	KX186604 KX186654 KX186627	Akinsanmi et al. (2017)			
Species name	Strain number	GenBank Accession numbers	Reference			
----------------------	----------------	---------------------------	----------------------------------			
		ITS	tub2	tef1		
BRIP 63757a		X186592	X186674	X186647	Akinsanmi et al. (2017)	
N. magna	MFLUCC 12-0652^T	KF582795	KF582793	KF582791	Maharachchikumbura et al. (2014)	
N. mesopotamica	CBS 336.88^T	KM199362	KM199441	KM199555	Maharachchikumbura et al. (2014)	
	CBS 299.74	KM199361	KM199435	KM199541	Maharachchikumbura et al. (2014)	
N. musae	MFLUCC 15-0776^T	KX789683	KX789686	KX789685	Hyde et al. (2016)	
N. natalensis	CBS 138.41^T	KM199377	KM199466	KM199552	Maharachchikumbura et al. (2014)	
N. nebuloides	BRIP 66617^T	MK966338	MK977632	MK977633	Crous et al. (2020)	
N. pandanicola	KUMCC 17-0175^T	-	MH412720	MH388389	Tibpromma et al. (2018)	
N. pernambucana	URM7148	-	-	KU306739	Silvério et al. (2016)	
N. petila	MFLUCC 17-1737^T	MK764275	MK764341	MK764319	Norphanphoun et al. (2019)	
	MFLUCC 17-1738	MK764276	MK764342	MK764320	Norphanphoun et al. (2019)	
N. phangngaensis	MFLUCC 18-0119^T	MH388354	MH412721	MH388390	Tibpromma et al. (2018)	
	MFLUCC 19-2741	-	-	MW148259	MW192200	Direct submission
N. piceana	CBS 394.48^T	KM199368	KM199453	KM199527	Maharachchikumbura et al. (2014)	
	CBS 254.32	KM199372	KM199452	KM199529	Maharachchikumbura et al. (2014)	
N. protearum	CBS 114178^T	JN712498	KM199463	KM199542	Maharachchikumbura et al. (2014)	
	CBS 111506	MH553959	MH554618	MH554377	Liu et al. (2019)	
N. raphidis	GUCC 21501	MW931620	MW980441	MW980442	This study	
N. rhizophorae	MFLUCC 17-1551^T	MK764277	MK764343	MK764321	Norphanphoun et al. (2019)	
	MFLUCC 17-1550	MK764278	MK764344	MK764322	Norphanphoun et al. (2019)	
N. rhododendri	GUCC 21504	MW979577	MW980443	MW980444	This study	
	GUCC 21505	MW979576	MW980445	MW980446	This study	
N. rosae	CBS 101057^T	KM199359	KM199429	KM199523	Maharachchikumbura et al. (2014)	
	CBS 124745	KM199360	KM199430	KM199524	Maharachchikumbura et al. (2014)	
N. rosicola	CFCC 51992	KY885239	KY885245	KY885243	Jiang et al. (2018)	
Species name	Strain number	GenBank Accession numbers	Reference			
-------------------	---------------	---------------------------	-----------------------------------			
Neopestalotiopsis	CFCC 51993	KY885240 KY885246 KY885244	Jiang et al. (2018)			
N. samarangensis	CBS 115451	KM199365 KM199447 KM199556	Maharachchikumbura et al. (2014)			
N. saprophytica	SS010	JQ968609 JQ968610 JQ968611	Direct Submission			
N. sichuanensis	SS010	JQ968609 JQ968610 JQ968611	Direct Submission			
N. sonneratae	MFLUCC 17-1744	MK764279 MK764345 MK764323	Norphanphoun et al. (2019)			
N. steyaertii	IMI 192475T	KF582796 KF582794 KF582792	Jiang et al. (2021)			
N. surinamensis	CBS 450.74T	KM199351 KM199465 KM199518	Maharachchikumbura et al. (2014)			
N. thailandica	MFLUCC 17-1730T	MK764281 MK764347 MK764325	Norphanphoun et al. (2019)			
N. umbrinospora	MFLUCC 12-0285T	JX399884 JX399019 JX399050	Maharachchikumbura et al. (2014)			
N. vitis	MFLUCC 17-1108	MG807045 MG859849 MG859769	Jayawardena et al. (2016)			
N. zimbabwana	CBS 111495T	- KM199456 KM199545	Maharachchikumbura et al. (2014)			
Pestalotiopsis	MFLUCC 12-0287T	JX399009 JX399040 JX399073	Maharachchikumbura et al. (2012)			
P. trachicarpica	OP068 T	JQ845947 JQ845945 JQ845946	Zhang et al. (2012)			
Sequence alignment and phylogenetic analyses

The reference sequences were downloaded from GenBank for phylogenetic analyses (Table 1). Multiple sequence alignments were generated with MAFFT v. 7.307 online version (Katoh and Standley 2016) and manually improved in MEGA v. 6.06, where necessary (Tamura et al. 2013). Concatenated multi-locus datasets for the three gene regions were aligned using Mesquite v. 2.75 (Maddison 2008). Manual improvement, when necessary, was done using AliView (Larsson 2014). Terminal ends and ambiguous regions of the alignment were deleted manually. Phylogenetic analyses were performed using concatenated sequences of the three loci (ITS, tub2 and tef1) with Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian Inference (BI).

Maximum Likelihood analysis was performed at the CIPRES Science Gateway web portal (Miller et al. 2010) using RAxML-HPC BlackBox v. 8.2.12 with the GTR+G+I model and 1,000 rapid bootstrap (BS) replicates (Stamatakis 2014).

Bayesian analysis was conducted with MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001). Parameters of Bayesian analysis in MrBayes v. 3.2; Markov chains were run for 1000000 generations and trees were sampled every 100th generation (printfreq = 100) and 10000 trees were obtained. The last standard deviation of split frequencies was below 0.01. Initial trees were discarded (25% burn-in value) and the remaining trees were used to evaluate posterior probabilities (PP) in the majority rule consensus tree.

PAUP v. 4.0b10 (Swofford 2002) was used to perform Maximum Parsimony (MP) analyses. Trees were inferred by using the heuristic search option with 1,000 random sequence additions and tree bisection and reconnection (TBR) as the branch-swapping algorithm. The maxtrees were set as 5000. Descriptive tree statistics for parsimony (tree length (TL), consistency index (CI), retention index (RI), related consistency index (RC) and homoplasy index (HI)) were calculated.

Taxon treatments

Neopestalotiopsis rhapidis Qi Yang & Yong Wang bis, sp. nov.

- MycoBank 840065

Material

Holotype:

- scientificName: *Neopestalotiopsis rhapidis*; order: Amphisphaeriales; family: Sporocadaceae; genus: *Neopestalotiopsis*; country: China; stateProvince: Guangxi; locality: Nanning City, Guangxi Medicinal Botanical Garden; verbatimCoordinates: 108°19' E,22°51' N; recordedBy: Qi Yang; identifiedBy: Qi Yang; dateIdentified: 2021; collectionID: HGUP 332; occurrenceID: GUCC 21501
Description

Disease symptom: Pathogenic causing spots on leaves tip of *Rhapis excelsa*. Leaf spots shape irregular, brown, slightly sunken on leaves tip. Small brown spots appeared initially and then gradually enlarged, changing to dark brown spots with a yellow border and jagged edge.

Colonies on PDA reach 7.5–8 cm in diam. after 7 d at room temperature (28°C), under light 12 hr/dark. *Colonies* filamentous to circular, whitish, with clustered black fruiting bodies and filiform and fluffy margin, white from above and light yellow from the reverse. Sexual morph: undetermined. Asexual morph (Fig. 1): *Conidiomata* 560–1405 µm in diam., pycnidial, globose, solitary, black, semi-immersed on PDA, exuding brown to dark brown conidia. *Conidiophores* branched or unbranched, hyaline, thin-walled. *Conidiogenous cell* discrete to lageniform, obclavate, hyaline or rarely light brown, smooth-walled. *Conidia* (22–)25.5 × 4(–6) µm (x = 23 × 5.2 µm, n = 30), fusiform to clavate, straight to slightly curved, 4-septate; basal cell cylindrical to obconic, hyaline, thin-walled, smooth, 3–5 µm (x = 3.7 µm, n = 30); the three median cells 11.5–15 µm (x = 13.3 µm, n = 30), dark brown with septa darker than the rest of the cells, the second cell from base 3–5 µm (x = 4 µm, n = 30); the third cell 2.5–6 µm (x = 3.9 µm, n = 30); the fourth cell 3–4.5 µm (x = 3.8 µm, n = 30); apical cell 2–4.5 µm (x = 3.3 µm, n = 30), cylindrical, hyaline; 2–3 (mostly 3) tubular apical appendages, arising from the apex of the apical cell each at different points, flexuous, 11–16 µm (x = 13.6 µm, n = 30); basal appendage present, single, tubular, unbranched, 2–5.5 µm (x = 4 µm, n = 30).

Figure 1. *Neopestalotiopsis rhapidis* (GUCC 21501). a. Leaf spots of *Neopestalotiopsis rhapidis*; b, c. Culture on PDA (b-above, c-reverse); d. Colony sporulating on PDA; e–g. Conidiophores; h–k. Conidia. Scale bars: d = 1000 µm, e–k = 20 µm.
Etymology

Latin, raphidis, refers to the host plant (Rhapis excelsa) from which the fungus was isolated.

Notes

Neopestalotiopsis raphidis clustered with N. cocoes (MFLUCC 15-0152) with 85% ML support, although without enough MP and BI support. Within comparison of the three gene regions, there were only three character differences in the ITS region, but 27 in the tef1 region. Neopestalotiopsis raphidis has longer conidia and shorter apical appendages than those of N. cocoes (19–22.5 ×7.5–9.5 µm; 14.9–21 µm) (Hyde et al. 2016). Thus, Neopestalotiopsis raphidis (GUCC 21501) is introduced as a new species herein.

Neopestalotiopsis rhododendri Qi Yang & Yong Wang bis, sp. nov.

- MycoBank 840066

Materials

Holotype:

a. scientificName: Neopestalotiopsis rhododendri; order: Amphisphaeriales; family: Sporocadaceae; genus: Neopestalotiopsis; country: China; stateProvince: Yunnan; locality: Kunming; verbatimCoordinates: 102°72' E,25°05' N; recordedBy: Qi Yang; identifiedBy: Qi Yang; dateIdentified: 2021; collectionID: HGUP 134; occurrenceID: GUCC 21504

Other material:

a. scientificName: Neopestalotiopsis rhododendri; order: Amphisphaeriales; family: Sporocadaceae; genus: Neopestalotiopsis; country: China; stateProvince: Guizhou; locality: Kaili; verbatimCoordinates: 107°97' E,26°58' N; recordedBy: Qi Yang; identifiedBy: Qi Yang; dateIdentified: 2021; collectionID: HGUP 997; occurrenceID: GUCC 21505

Description

Disease symptom: Associated with leaf spots of Rhododendron simsii. The leaf spots are small irregular to subcircular shape, brown, slightly sunken spots appear on surface leaves of R. simsii, which scattered on the surface leaves tip and eventually develops into a large lesion. Small off-white spots appeared initially and then gradually enlarged, changing to light brown circular ring spots with a dark brown border.

Colonies on PDA reaching 6.5–7 cm in diam. after 7 d at room temperature (28°C), under light 12 hr/dark. Hyphae white, colonies filamentous to circular, slightly undulate at the edge, with black fruiting bodies clustered, has filiform and fluffy margin, white from above and light yellow from the reverse. Sexual morph: undetermined. Asexual morph (Fig. 2) : Conidiomata 55–280 µm in diam., pycnidial, globose, solitary, black,
semi-immersed on PDA, exuding brown to dark brown mass of conidia. *Conidiophores* often reduced to conidiogenous cell, regularly septate and branched at the base. *Conidiogenous cells* mostly integrated, ampulliform, cylindrical, hyaline to light brown, smooth-walled. *Conidia* (25.5–)30 × 5(–6) µm (\(\bar{x} = 27.6 \times 5.5 \) µm, \(n = 30 \)), fusiform to clavate, straight to slightly curved, 4-septate; basal cell obconic, hyaline, thin-walled, smooth, 3.5–6.5 µm (\(\bar{x} = 4.5 \) µm, \(n = 30 \)); the three median cells 13.5–19.5 µm (\(\bar{x} = 16.3 \) µm, \(n = 30 \)), light brown to dark brown with septa darker than the rest of the cells, the second cell from base 4–6 µm (\(\bar{x} = 5 \) µm, \(n = 30 \)); the third cell 3.5–5.5 µm (\(\bar{x} = 4.5 \) µm, \(n = 30 \)); the fourth cell 4–6.5 µm (\(\bar{x} = 4.8 \) µm, \(n = 30 \)); apical cell 3.5–6.3 µm (\(\bar{x} = 5 \) µm, \(n = 30 \)), cylindrical to sub-cylindrical, hyaline, 1–3 (mostly 2) tubular apical appendages, arising from the apex of the apical cell each at different points, 21–38.5 µm (\(\bar{x} = 29.2 \) µm, \(n = 30 \)); basal appendage present most of the time, single, tubular, unbranched, 6–11.5 µm (\(\bar{x} = 8.5 \) µm, \(n = 30 \)).

![Image of Neopestalotiopsis rhododendri](https://example.com/neopestalotiopsis-rhododendri)

Etymology

China, Yunnan Province, Kunming City, from leaves of *Rhododendron simsii*, 12 February 2018, Q. Zhang, HGUP 134, holotype, ex-type living culture GUCC 21504.
Notes

In the multi-gene analysis, strain GUCC 21504 formed a distinct clade with a sister strain GUCC 21505, but the node support values were 68/90/- (MP/ML/BI) and these two strains were close to *N. protearum* (CBS 114178). When comparing the polymorphic nucleotide differences of our two strains, there are 18 base pair differences, seven in ITS, two in *tub2* and nine in *tef1*, but without obvious distinction (higher than 98.5%). Compared with *N. protearum* and our ex-type strain (GUCC 21504), there were six character differences with *N. protearum* in the ITS region, three character differences with *N. protearum* in the *tub2* region, but 12 character differences from *N. protearum* in the *tef1* region; thus the DNA base pair differences were mainly in the *tef1* gene regions. The morphological differences between our strains and *N. protearum* were wider conidia (*N. protearum*: 24.8 ± 1.5 × 8.5 ± 0.6 µm), more apical appendages (*N. protearum*: 3–5) and shorter basal appendages (*N. protearum*: 5–8 µm) (Maharachchikumbura et al. 2014). Thus, *Neopestalotiopsis rhododendri* is introduced as a novel taxon, based on morphology and phylogeny.

Neopestalotiopsis saprophytica (Maharachch. & K.D. Hyde) Maharachch., K.D. Hyde & Crous, 2014

- MycoBank 809780

Materials

a. scientificName: *Neopestalotiopsis saprophytica*; order: **Amphisphaeriales**; family: Sporocadaceae; genus: *Neopestalotiopsis*; country: China; stateProvince: Guangxi; locality: Nanning City, Guangxi Medicinal Botanical Garden; verbatimCoordinates: 108°19' E,22°51' N; recordedBy: Qi Yang; identifiedBy: Qi Yang; dateIdentified: 2021; collectionID: HGUP 423; occurrenceID: GUCC 21506

b. scientificName: *Neopestalotiopsis saprophytica*; order: **Amphisphaeriales**; family: Sporocadaceae; genus: *Neopestalotiopsis*; country: China; stateProvince: Guangxi; locality: Nanning City, Guangxi Medicinal Botanical Garden; verbatimCoordinates: 108°19' E,22°51' N; recordedBy: Qi Yang; identifiedBy: Qi Yang; dateIdentified: 2021; collectionID: HGUP 133; occurrenceID: GUCC 21507

Description

Disease symptom: Pathogenic causing spots on leaves of *Erythropalum scandens*. Leaf spots shape irregular, brown to reddish-brown, slightly sunken spots appear on surface leaves of *E. scandens*, which scattered on the leaves tip. Small brown spots appeared initially and then gradually enlarged, changing to reddish-brown spots with a yellow border.

Colonies on PDA reaching 7.5–8 cm in diam. after 7 d at room temperature (28°C), under light 12 hr/dark. Hyphae change from light pink to off-white. Colonies filamentous to circular, slightly undulate at the edge, with black fruiting bodies clustered, filiform margin, light pink from above and light yellow from the reverse. Sexual morph: undetermined. Asexual morph (Fig. 3): Conidiomata up to 280 µm in diam., pycnidial,
globose, solitary, black, semi-immersed on PDA, exuding brown to dark brown mass of conidia. *Conidiophores* branched or unbranched, hyaline, thin-walled. *Conidiogenous cells* discrete, ampulliform to lageniform, hyaline, thin-walled, smooth. *Conidia* (21.5–)26.5 × 4.5(–6.5) µm (x̄ = 23.2 × 5.2 µm, n = 30), fusiform to clavate, straight to slightly curved, 4-septate; basal cell obconic, hyaline or sometimes pale brown, thin-walled, smooth, 3–5 µm (x̄ = 4 µm, n = 30); the three median cells 13–17 µm (x̄ = 14.9 µm, n = 30), pale brown to brown, dark brown with septa darker than the rest of the cells, the second cell from base 4–6.5 µm (x̄ = 4.9 µm, n = 30); the third cell 3–5 µm (x̄ = 4.1 µm, n = 30); the fourth cell 3.5–6 µm (x̄ = 4.8 µm, n = 30); apical cell 3–5 µm (x̄ = 3.9 µm, n = 30), cylindrical, hyaline; 1–4 (mostly 3) tubular apical appendages, arising from the apex of the apical cell each at different point, flexuous, 18–28.5 µm (x̄ = 22.4 µm, n = 30); basal appendage present most of the time, single, tubular, unbranched, 3.3–7 µm (x̄ = 4.3 µm, n = 30).

Notes

GUCC 21506 and GUCC 21507 with the same nucleotides sequences were related to *N. dendrobii* (MFLUCC 14-0106) and *N. saprophytica* (CBS 115452). There were ten character differences with *N. dendrobii* and 11 character differences with *N. saprophytica*, but the most differences (nine character differences) between our strains and *N. saprophytica* were only in the *tef1* region. Alternatively, collection differed to *N. dendrobii* in having more apical appendages (*N. dendrobii*: 2–3) and much longer apical appendages (*N. dendrobii*: 6 ± 0.9 µm) (Ma et al. 2019). Morphological
characters of our collections and \textit{N. saprophytica} overlapped (Maharachchikumbura et al. 2014). Thus, GUCC 21506 and GUCC 21507 are considered as \textit{N. saprophytica}.

Analysis

Phylogenetic analyses

The final dataset consists of 57 taxa, including \textit{Pestalotiopsis diversiseta} (MFLUCC 12-0287) and \textit{P. trachicarpicola} (OP068) as the outgroup taxa. It comprised 2052 characters including gaps (\textit{tef1}: 1–606, \textit{tub2}: 607–1443 and ITS: 1444–2052). There were 1426 constant, 284 parsimony uninformative and 342 parsimony informative characters (TL = 1225 steps, CI = 0.66, RI = 0.70, RC= 0.46 and HI= 0.34). The most parsimonious tree generated from combined ITS, \textit{tub2} and \textit{tef1} sequence data of species of \textit{Neopestalotiopsis} is shown in Fig. 4.

In the phylogenetic analyses, GUCC 21501 was sister to \textit{N. cocoes} (MFLUCC 15-0152T), but only with a 85% ML bootstrap support. GUCC 21504 and GUCC 21505 formed an independent clade with MP and ML (68/90) supports and were close to \textit{N. protearum} (CBS 111506T). GUCC 21506 and GUCC 21507 clustered with moderate and high supports (65/99/1: MP/ML/BI) and kept a very close relationship with \textit{N. saprophytica} (CBS 115452) by credible statistic support (100/67/1: MP/ML/BI). DNA sequence differences between our strains and related species are listed in Table 2.
Table 2.
DNA sequence differences of the three gene regions between our strains and related species.

Species	Strain number	tef1 (characters: 1-606)	tub2 (characters: 607-1443)	ITS (characters: 1444-2052)
N. rhapidis	GUCC 21501	0	0	0
	MFLUCC 15-0152T	27 (gaps: 2)	-	3 (gaps: 3)
N. saprophytica	GUCC 21506	0	0	0
	GUCC 21507	0	0	0
N. dendrobii	MFLUCC 14-0106T	5 (gaps: 3)	4 (gap: 1)	1 (gap: 0)
N. saprophytica	CBS 115452	9 (gaps: 3)	1 (gap: 0)	1 (gap: 1)
N. rhododendri	GUCC 21504	0	0	0
	GUCC 21505	9 (gap: 0)	2 (gap: 0)	7 (gap: 1)
N. protearum	CBS 114178T	12 (gaps: 6)	3 (gap: 0)	9 (gaps: 2)

Discussion

Hu et al. (2007) believed that pestalotiopsis-like fungi had different phenotypes in conidial morphology. Maharachchikumbura et al. (2014) summarised some stable characteristics for determining pestaloids, such as the length and width of conidia, length of the apical appendages, presence or absence of knobbed apices and the position of the apical appendage attached to the conidial body. However, as these characteristics were often similar or overlapped, sequence data are crucial for the identification of pestalotioid, and as well as for the introduction of new species (Norphanphoun et al. 2019).

In this study, we describe two new species as *Neopestalotiopsis rhapidis* and *N. rhododendri*. The species were distinct from extant *Neopestalotiopsis* species, based on morphological and phylogenetic analyses. However, the statistical support of main nodes for the genus were very low (Fig. 4). The reason might be that the reference sequences we used were short, including the short *tef1* and *tub2* sequences (Ran et al. 2017). Longer sequences with more informative data are needed to solve this problem. Furthermore, our study also found that the evolutionary relationships amongst species of *Neopestalotiopsis are unstable* (Maharachchikumbura et al. 2014, Jiang et al. 2018, Kumar et al. 2019, Tsai et al. 2020). Therefore, other genes are needed to distinguish the inter-species
relationships in *Neopestalotiopsis* (Maharachchikumbura et al. 2014, Kumar et al. 2019, Norphanphoun et al. 2019).

Several indicators could be used in the classification of *Neopestalotiopsis* in this study, such as the size of conidia and the number and length of appendages (Maharachchikumbura et al. 2014, Freitas et al. 2019, Kumar et al. 2019). The differences in the colour of three median cells and the length of other cells, however, lacked significant variation to clearly distinguish the species of *Neopestalotiopsis*. Therefore, as the morphological identification alone cannot accurately identify the fungi of the genus *Neopestalotiopsis*, it must be combined with the phylogenetic tree (Liu et al. 2019, Norphanphoun et al. 2019, Tsai et al. 2020, Jiang et al. 2021).

Acknowledgements

The research was supported by National Natural Science Foundation of China (No. 31972222, 31560489), Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023), Talent Project of Guizhou Science and Technology Cooperation Platform ([2017]5788-5, [2019]5641 and [2020]5001) and Guizhou Science, Technology Department International Cooperation Basic Project ([2018]5806). We also thank Profs. Kevin D. Hyde and Sajeewa Maharachchikumbura for their help to improve this paper.

References

- Akinsanmi OA, Nisa S, Jeffego OS, Drenth A (2016) Multiple *Pestalotiopsis* and *Neopestalotiopsis* species cause flower bight of macadamia in Australia. Phytopathology 106 (12): 122-122.
- Akinsanmi OA, Nisa S, Jeffego OS, Shivas RG, Drenth A (2017) Dry flower disease of macadamia in Australia caused by *Neopestalotiopsis macadamiae* sp. nov. and *Pestalotiopsis macadamiae* sp. nov. Plant Disease 101 (1). https://doi.org/10.1094/PDIS-05-16-0630-RE
- Ayoubi N, Soleimani MJ (2016) Strawberry fruit rot caused by *Neopestalotiopsis iranensis* sp. nov. and *N. mesopotamica*. Current Microbiology 72 (3): 329-336.
- Banerjee A, Mandal R, Nath PS (2018) First report of leaf spot disease of elephant apple (*Dillenia indica*) caused by *Pestalotiopsis* sp. in India. New Disease Reports 37: 14. https://doi.org/10.5197/J.2044-0588.2018.037.014
- Bezerra JDP, Machado AR, Firmeno AL, Rosado AWC, Souza CAF, Souza-Motta CM, Freire KTLS, Paiva LM, Magalhães OMC, Pereira OL (2018) Mycological diversity description I. Acta Botanica Brasilia 32: 1-11. https://doi.org/10.1590/0102-33062018abb0154
- Borrero C, Castaño R, Avilés M (2017) First report of *Pestalotiopsis clavispora* (*Neopestalotiopsis clavispora*) causing canker and twig dieback on blueberry bushes in Spain. Plant Disease 102 (6): 1178-1178. https://doi.org/10.1094/PDIS-10-17-1529-PDN
- Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91 (3): 553-556. https://doi.org/10.2307/3761358
• Corda ACJ (1842) Icones fungorum hucusque cognitorum. Calve JG
• Crous PW, Crous PW, Chooi YH, Gilchrist CLM, Lacey E, Pitt JI, Roets F, Swart WJ, Cano-Lira JF, Valenzuela-Lopez N, Hubka V, Shivas RG, Stchigel AM, Holdom DG, Jurjević Z, Kachalkin AV, Lebel T, Lock C, Martín MP, Tan YP, Tomashevskaya MA, Vitelli JS, Baseia IG, Bhatt VK, Brandrud TE, De Souza JT, Dima B, Lacey HJ, Lombard L, Johnston PR, Morte A, Papp V, Rodríguez A, Rodríguez-Anrade E, Semwal KC, Tegart L, Abad ZG, Akulov A, Alvarado P, Alves A, Andrade JP, Arenas F, Asenjo C, Ballarà J, Barrett MD, Berná LM, Berraf-Tebbal A, Bianchinotti MV, Bransgrove K, Burgess Ti, Carmo FS, Chávez R, Čmoková A, Dearnaley JDW, de A. Santiago ALCM, Freitas-Neto JF, Denman S, Douglas B, Doyva F, Eichmeier A, Esteve-Raventós F, Farid A, Fedosova AG, Ferisin G, Ferreira RJ, Figueiredo CN, Figueiredo YF, Reinoso-Fuentealba CG, Garrido-Benavent I, Canete-Gibas CF (2020) Fungal planet description sheets: 1042–1111. Persoonia: Molecular Phylogeny and Evolution of Fungi 44: 301-459. https://doi.org/10.3767/persoonia.2020.44.11
• Dissanayake AJ, Bhunjun CS, Maharachchikumbura SSN, Liu JK (2020) Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11: 2652-2676. https://doi.org/10.5943/mycosphere/11/1/18
• Fernández RL, Rivera MC, Varsallona B, Wright ER (2015) Disease prevalence and symptoms caused by Alternaria tenuissima and Pestalotiopsis guepinii on blueberry in Entre Ríos and Buenos Aires, Argentina. American Journal of Plant Sciences 6 (19): 3082-3090. https://doi.org/10.4236/ajps.2015.619301
• Freitas E, Silva MD, Barros M, Kasuya M (2019) Neopestalotiopsis hadrolaeliae sp. nov. a new endophytic species from the roots of the endangered orchid Hadrolaelia jongheana in Brazil. Phytotaxa 416 (3): 211-220. https://doi.org/10.11646/phytotaxa.416.3.2
• Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61 (4): 1323-1330. https://doi.org/10.1002/bit.260460112
• Huelsenbeck JP, Ronqvist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
• Hu HL, Jeewon R, Zhou DQ, Zhou TX, Hyde KD (2007) Phylogenetic diversity of endophytic Pestalotiopsis species in Pinus armandii and Ribes spp.: evidence from rDNA and β-tulin gene phylogenies. Fungal Diversity 24: 1-22.
• Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsa R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti O, Cui BK, Daranagama DA, Das K, Dayarathne MC, de Silva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Go’es-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoune C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, de A. Santiago ALCM, Drechsler-Santos ER, Senanayake IC, Tanaka K (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80 (1): 1-270. https://doi.org/10.1007/s13225-016-0373-x
• Hyde KD, Norphanphoune C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaivan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilomy M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS,
Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes. Mycosphere 11 (1): 305-1059. https://doi.org/10.5943/mycosphere/11/1/7
• Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia: Molecular Phylogeny and Evolution of Fungi 37: 82-105. https://doi.org/10.3767/003158516X690475.
• Jayawardena RS, Liu M, Maharachchikumbura SSN, Zhang W, Xing Q, Hyde KD, Nilthong S, Yan J (2016) Neopestalotiopsis vitis sp. nov. causing grapevine leaf spot in China. Phytotaxa 258: 63-74. https://doi.org/10.11646/phytotaxa.258.1.4
• Jeewon R, Liew ECY, Hyde KD (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Diversity 17: 39-55. https://doi.org/10.1016/j.femsyr.2004.06.001
• Jiang N, Bonthond G, Fan XL, Tian CM (2018) Neopestalotiopsis rosicola sp. nov. causing stem canker of Rosa chinensis in China. Mycotaxon 133 (2): 271-283. https://doi.org/10.5248/133.271
• Jiang N, Fan XL, Tian CM (2021) Identification and characterization of leaf-inhabiting fungi from Castanea plantations in China. Journal of Fungi 7 (1): 64. https://doi.org/10.3390/jof7010064
• Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32: 1933-1942. https://doi.org/10.1093/bioinformatics/btw108
• Kumar V, Cheewangkoon R, Gentekaki E, Maharachchikumbura SSN, Brahmanage RS, Hyde KD (2019) Neopestalotiopsis alpapicalis sp. nov. a new endophyte from tropical mangrove trees in Krabi Province (Thailand). Phytotaxa 393: 251-262. https://doi.org/10.11646/phytotaxa.393.3.2
• Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30 (22).
• Liu AR, Chen SC, Wu SY, Xu T, Guo LD, Jeewon R, Wei JG (2010) Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Molecular Phylogenetics and Evolution 57: 528-535. https://doi.org/10.1016/j.ympev.2010.07.017
• Liu F, Bonthond G, Groenewald JZ, Cai L, Crous PW (2019) Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Studies in Mycology 92: 287-415. https://doi.org/10.1016/j.simyco.2018.11.001
• Maddison WP (2008) Mesquite: a modular system for evolutionary analysis. Evolution 62: 1103-1118.
• Mahapatra S, Banerjee J, Kumar K, Pramanik S, Pramanik K, Islam S, Das S (2018) Leaf spot and fruit rot of strawberry caused by Neopestalotiopsis clavispora in indogangetic plains of India. Indian Phytopathology 71 (2): 1-5. https://doi.org/10.1007/s42360-018-0043-x
• Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Hyde KD (2012) A multi-locus backbone tree for pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity 56 (1): 95-129. https://doi.org/10.1007/s13225-012-0198-1

• Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous PW (2014) Pestalotiopsis revisited. Studies in Mycology 79: 121-186. https://doi.org/10.1016/j.simyco.2014.09.005

• Ma XY, Maharachchikumbura SSN, Chen BW, Hyde KD, McKenzie EHC, Chomnunti P, Kang JC (2019) Endophytic pestalotia taxa in Dendrobium orchids. Phytotaxa 419 (3): 268-286. https://doi.org/10.11646/phytotaxa.419.3.2

• Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees, Gateway Computing Environments Workshop (GCE). New Orleans, LA, pp.1-8.

• Norphanphoun C, Jayawardena RS, Chen Y, Wen TC, Meepol W, Hyde KD (2019) Morphological and phylogenetic characterization of novel pestalotioid species associated with mangroves in Thailand. Mycosphere 10 (1). https://doi.org/10.5943/mycosphere/10/1/9

• O'Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103-116. https://doi.org/10.1006/mpev.1996.0376

• O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95: 2044-2049. https://doi.org/10.1073/pnas.95.5.2044

• Ran SF, Maharachchikumbura SSN, Ren YL, Liu H, Chen KR, Wang YX, Wang Y (2017) Two new records in Pestalotiopsisidae associated with Orchidaceae disease in Guangxi Province, China. Mycosphere 8: 121-130. https://doi.org/10.5943/mycosphere/8/1/11

• Rayner RW (1970) A mycological colour chart. CMI & British Mycological Society Kew. Mycological Society, Kew, Surrey, UK.

• Reddy MS, Murali TS, Suryanarayanan TS, Rajulu MBG, Thirunavukkarasu N (2016) Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. Fungal Ecology 24: 70-75. https://doi.org/10.1016/j.funeco.2016.09.002

• Rodríguez-Gálvez E, Hilário S, Lopes A, Alves A (2020) Diversity and pathogenicity of Lasiodiplodia and Neopestalotiopsis species associated with stem blight and dieback of blueberry plants in Peru. European Journal of Plant Pathology 157: 89-102. https://doi.org/10.1007/s10658-020-01983-1

• Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D, Nguyen TT, Goonasekara ID, Abeywickrama PD, Bhunjus CS, Jayawardena RS, Wanasinghe DN, Jeewon R, Bhat DJ, Xiang MM (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11 (1): 2678-2754. https://doi.org/10.5943/mycosphere/11/1/20

• Shetty KG, Rivadeneira DV, Jayachandran K, Walke DM (2016) Isolation and molecular characterization of the fungal endophytic microbiome from conventionally and
organically grown avocado trees in South Florida. Mycological Progress 15: 977-986. https://doi.org/10.1007/s11557-016-1219-3

- Silva R, Soares AM, Pádua APSLD, Firmino AL, Souza-Motta CMD, Silva GAD, Plautz Jr H, Bezerra JDP, Paiva LM, Ryvarden L (2018) Mycological diversity description I. Acta Botanica Brasiliaca 32 (1): 163-173. https://doi.org/10.1590/0102-33062018abb0154

- Silvério ML, Calvacanti MADQ, Silva GAD, Oliveira RJVD, Bezerra JL (2016) A new epifoliar species of Neopestalotiopsis from Brazil. Agrotrópica 28 (2): 151-158. https://doi.org/10.21757/0103-3816.2016v28n2p151-158

- Song Y, Geng K, Hyde KD, Zhao W, Wei JG, Kang JC, Wang Y (2013) Two new species of Pestalotiopsis from Southern China. Phytotaxa 126 (1): 22-30. https://doi.org/10.11646/phytotaxa.126.1.2

- Song Y, Maharachchikumbura SSN, Jiang YL, Hyde KD, Wang Y (2014) Pestalotiopsis keteleeria sp. nov. isolated from Keteleeria pubescens in China. Chiang Mai Journal of Science 41 (4): 885-893.

- Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033

- Swofford D (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods), version 4.0 b10. MA: Sinauer Associates, Sunderland, UK.

- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolutionary 30: 2725-2729. https://doi.org/10.1093/molbev/mst197

- Tibpromma S, Hyde KD, McKenzie EH, Bhat DJ, Phillips AJ, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M (2018) Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Diversity 93: 840-928. https://doi.org/10.1007/s13225-018-0408-6

- Tsai I, Chung CL, Lin SR, Hung TH, Shen TL, Hu CY, Hozzein WN, Ariyawansa HA (2020) Cryptic diversity, molecular systematics, and pathogenicity of genus Pestalotiopsis and allied genera causing gray blight disease of tea in Taiwan, with a description of a new Pseudopestalotiopsis species. Plant DiseasePDIS-05.

- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California, USA: 315-322.

- Wiljayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Apptroot A, Leontyev D, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfieger WP, Horváth E, Bensch K, Kirk PM, Kolafaiková K, Raja HA, Radek R, Papp V, Dima V, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblóvá M, Doilom M, Dolatabadi S, Pawlowska J, Humber R, Koduseb R, Sánchez Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia L, Barbosa F, Fiуza P, Divakar P, Shenoy B, Castанаeda-Ruiz RF, Sorimuthipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li D, Kus İ, Matočeč N, Mešič A, Tkalčec Z, Maharachchikumbura S, Papizadeh M, Heredia G, Wartchow F, Bakhshi M,
Boehm E, Youssef N, Hustad V, Lawrey J, Santiago A, Bezerra J, SouzaMotta C, Firmino A, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake A, Monteiro J, Grossart H, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara D, Tang L, He M, Flakus A, Rodríguez-Flakus P, Zhurbenko M, McKenzie E, Stadler M, Bhat D, Liu J, Raza M, Jeewon R, Nassonova E, Prieto M, Jayalal R, Erdoğan M, Yurkov A, Schnittler M, Shchepin O, Novozhilov Y, Silva-Filho A, Gentekaki E, Liu P, Cavender J, Kang Y, Mohammad S, Zhang L, Xu R, Li Y, Dayarathne M, Ekanayaka A, Wen T, Deng C, Pereira O, Navathe S, Hawksworth D, Fan X, Dissanayake L, Kuhnert E, Grossart H, Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere 11 (1): 1060-1456.
https://doi.org/10.5943/mycosphere/11/1/8

- Zhang Q, Yang ZF, Cheng W, Wijayawardene NN, Hyde KD, Chen Z, Wang Y (2020) Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. nov. MycoKeys 63 https://doi.org/10.3897/mycokeys.63.49264

- Zhang Y, Maharachchikumbura SSN, Mckenzie EH, Hyde KD (2012) A novel species of Pestalotiopsis causing leaf spots of Trachycarpus fortunei. Cryptogamie Mycologie 33 (3): 311-318. https://doi.org/10.7872/crym.v33.iss3.2012.311