Role of adjuvant radiotherapy in Gall bladder cancers: A review of literature

Authors
Dr Kushboo Jain¹, Dr Rajan Yadav², Dr Shreena Patidar³, Dr Ankita Parikh⁴
Dr U. Suryanarayan⁵, Dr Maitrik Mehta⁶, Dr Tasneem Nalawala⁷, Dr Tejal Choudhari⁸
¹3rd year Resident, MD Radiation Oncology, Department of Radiotherapy, GCRI
²Assistant Professor, Department of Radiotherapy, GCRI
³3rd year Resident, MD Radiation Oncology, Department of Radiotherapy, GCRI
⁴Professor, Department of Radiotherapy, GCRI
⁵Professor and HOD, Department of Radiotherapy, GCRI
⁶Associate Professor, Department of Radiotherapy, GCRI
⁷,⁸2nd year Resident, MD Radiation Oncology, Department of Radiotherapy, GCRI

Abstract
Gall bladder cancer (GBC) represents the most common biliary tract malignancy, however it is a rare malignancy overall. Historical work has established complete resection as standard of care. Despite R0 resection the local recurrence (LR) rates remain high. High LR rates prompted interest in study of role of adjuvant therapy in form of radiotherapy and/or chemotherapy after resection. We attempt to review the role of adjuvant radiotherapy in GBC and also to discuss prognostic factors and key problems in management of gall bladder cancers.

Keyword: Gall Bladder Cancer, Adjuvant Radiotherapy.

Introduction
Primary gall bladder cancer (GBC) is a disease with poor prognosis, 5 year overall survival of less than 10%. Incidence increases with age and women are affected more than men. Carcinoma gall bladder is a relatively rare malignancy, accounting for less than 1% of all cancers, they rank amongst the first ten cancers in Indian Council of Medical Research (ICMR) registries in India.(¹) It is common in northern and central regions of India.² Gall bladder has a thin muscular wall which lacks serosal layer adjacent to liver, GBCs therefore commonly present with invasion into liver and surrounding structures. They also present with early lymph node involvement. Majority of patients (>70%) present in advanced stages (stage III or stage IV with lymphatic and/or hepatic infiltration.³) Complete resection of the tumour is the mainstay of treatment however due to late presentation, complete resection is possible in only 10-30% of patients.⁴ 5 year survival rates according to SEER database of United states is: for localized stage (AJCC stage 1 and 2) is 61%, for regional stage (AJCC stage 3 and some stage 4 cancers) is 26% and for distant stage (AJCC stage 4) is 2%. These lethal outcomes are attributed to the loco-regional recurrences (LRR) and distant failures.
overcome LRR, adjuvant therapy in form of radiotherapy, chemotherapy or chemoradiotherapy have been tried in multiple small studies and retrospective analysis. NCCN guidelines also recommend adjuvant therapy. As GBC is rare and has a poor prognosis, large prospective randomised trials have not been reported in literature, paucity of data makes it difficult to generate level 1 evidence of adjuvant therapy in GBC. Role of adjuvant radiotherapy remains a matter of debate in GBCs. This review is aimed to evaluate the role of adjuvant radiotherapy in preventing loco-regional relapse in gall bladder cancers.

Standard of care: Surgery
Goal of R0 resection with initial cholecystectomy, en-bloc hepatic resection and lymphadenectomy (extended cholecystectomy) is the standard approach in GBC. Multiple studies have shown that survival may be improved with more radical resections in patients with stage T2N0 or more. After gross total resection, positive surgical margins (R1) have a statistically worse outcome as compared to microscopically negative margins. Locoregional recurrences are common and ultimately prove to be lethal due to complications arising from biliary tract obstruction and liver failure. Following radical surgery, the loco-regional recurrences due to occult nodal metastasis and hepatic invasion are seen in upto 70-90% of cases. This has been reported in an autopsy series. A large study from Memorial Sloan-Kettering Cancer Center showed that there were 45% of locoregional relapse in patients who underwent radical resection for GBC.

Adjuvant Radiotherapy
Role of adjuvant radiotherapy has been controversial in operated cases of GBC. Gall bladder cancers are considered radio-resistant and definite role of radiotherapy is uncertain. However, a number of small series have reported use of radiation in form of radical treatment, palliation, post-operative adjuvant treatment, intra-operative therapy etc. The major limiting factor in radiating GBC is the nearby critical structures like liver, pancreas, stomach, kidney and small bowel.

Author	year	comparison	method	conclusion
Brian et al. (10)	2005	Resected, non-metastatic GBC: adjuvant radiation with or without concurrent chemotherapy (5-FU)	22 cases: treated with adjuvant RT, 18 cases received concurrent chemotherapy	Radical resection followed by adjuvant radiation with radio-sensitizing 5-FU may improve survival in locally advanced GBC.
Mahantshetty et al. (11)	2006	Resected GBC: adjuvant Chemotherapy/ adjuvant CT-RT/ adjuvant RT	60 cases: 13 cases- no adjuvant therapy, 32 received adjuvant RT alone, 8 received CT-RT and 7 received CT alone	Following curative surgery, pathological T stage and stage grouping are very important prognostic factors. Adjuvant chemotherapy and radiation favour local control in advanced cases.
Mojica et al. (12)	2007	Resected GBC: adjuvant RT vs no adjuvant RT	3,187 cases: 542 cases received adjuvant RT, median overall survival 14 months (with adjuvant RT) vs 8 months (without adj. RT) (p<0.001) Overall survival benefit limited to pT3-T4 or pN+ disease	Adjuvant RT is of benefit in pT3-T4 and pN+ cases with improved overall survival
Wang et al. (13)	2008	Resected GBC: adjuvant RT vs no adjuvant RT	4,180 cases: 752 cases received adjuvant RT	Significant OS benefit of varying degree with adjuvant RT for patients with pT2 or higher T stage and / or pN+.

Studies reporting adjuvant radiotherapy with or without concurrent chemotherapy in operated cases of gall bladder carcinoma
Authors	Year	Study Details	Details
Wang et al.	2011	Resected GBC: adjuvant chemoradiotherapy vs adjuvant chemotherapy	1,137 cases: 125 cases received adjuvant CRT and 125 received adjuvant chemotherapy
Horgan et al.	2012	Meta-analysis including studies with adjuvant chemotherapy, adjuvant radiotherapy and adjuvant chemoradiotherapy	6 studies were included
Ben- Josef et al.	2015	Single arm study in pT2-T4 or pN+ or R1 resection, 4 cycles of adjuvant GBC: adjuvant therapy vs surveillance only	79 cases
Hassan et al.	2018	Stage I-III resected GBC: adjuvant therapy vs surveillance only	251 cases: 78 received adjuvant therapy (CT/CT-RT) vs 173 were observed.

Hanna and rider reported results of 51 patients of resected GBC and concluded that survival in adjuvant radiotherapy arm was much more significant as compared to surgery alone arm. Another study reported median survival of 63 months in post-op RT arm as compared to 29 months in only surgery arm. Todoroki et al. examined intra-operative radiotherapy in resected cases of stage IV GBC, with 3 year OS of 10% vs 0% in surgery alone arm. The dose of adjuvant radiotherapy reported has been in range of 45 Gy to 54 Gy with a mean dose of 47 Gy and median dose of 50 Gy. IMRT has been suggested for dose escalation by Eisbruch et al. and Wu et al. with benefit of maximal sparing of nearby normal structures. All these studies suggest that use of adjuvant radiotherapy with or without concurrent chemotherapy in locally advanced operated cases of GBC have resulted in improvement in 5 year overall survival in the range of 33% to 45%. However, with development of safer radiation techniques and more effective chemotherapy drugs, a larger prospective trial is needed to pinpoint the exact role of radiation therapy in gall bladder cancer.

Adjuvant chemotherapy

Many studies have evaluated the role of adjuvant chemotherapy alone in resected GBC. However no statistically significant benefit has been reported. Most of the studies used 5-FU infusion while some studies used capecitabine and/or gemcitabine too. The major advantage was seen when chemotherapy was used concurrently with radiotherapy with maximal benefit seen in OS and DFS. To validate use of chemotherapy, a larger randomised trial is necessary before coming to any conclusion.

Conclusion

Gall bladder cancers are rare but potentially lethal. Because of lower number of cases reported, a definite guideline to treatment of these cancers has not been established. R0 resection is the primary aim of treatment and most important prognostic factors would be adjuvant therapy.
factor too. Presently available literature suggests that adjuvant therapy should be considered in pT3-T4 cases, pN+ cases and in R1 resection as these are the cases which seem to be benefited the most. Adjuvant chemo-radiotherapy results are superior to the use of either of the single modality treatment in terms of local control, overall survival and disease free survival. However larger randomised study with adequate sample size needs to be done to see the role of newer chemotherapeutic agents and the high-end radiation technologies available in present era to establish the role of adjuvant therapy in gall bladder cancers.

References
1. National Cancer Registry Programme, Indian Council of Medical Research: Three Year Report of Population Based Cancer Registries; 2009-2011. ICMR, Three Year Report of the PBCRs: 2006-2008; 2008. Available from: http://www.pbcrrindia.org/.
2. Nandakumar A, Gupta PC, Gangadharan P, Visweswara RN, Parkin DM. Geographic pathology revisited: Development of an atlas of cancer in India. Int J Cancer 2005;116:740-54.
3. Piehler JM, Crichlow RW. Primary carcinoma of the gallbladder. Surg Gynecol Obstet 1978;147:929-42. [PUBMED]
4. Misra S, Chaturevedi A, Misra NC, Sharma ID. Carcinoma of the gall bladder. Lancet Oncol 2003;4:167-76.
5. Morrow CE, Sutherland DE, Florack G, Eisenberg MM, Grage TB. Primary gallbladder carcinoma: Significance of subserosal lesions and results of aggressive surgical treatment and adjuvant chemotherapy. Surgery 1983;94:709-14. [PUBMED]
6. Shirai Y, Yoshida K, Tsukada K, Muto T. Inapparent carcinoma of the gallbladder. An appraisal of a radical second operation after simple cholecystectomy. Ann Surg 1992;215:326-31.
7. Muratore A, Polastri R, Bouzari H, Vergara V, Capussotti L. Radical surgery for gallbladder cancer: A worthwhile operation? Eur J Surg Oncol 2000;26:160-3.
8. Kresl JJ, Schild SE, Henning GT, Gunderson LL, Donohue J, Pitot H, et al. Adjuvant external beam radiation therapy with concurrent chemotherapy in the management of gallbladder carcinoma. Int J Radiat Oncol Biol Phys 2002;52:167-75.
9. Vaittinen E. Carcinoma of the gallbladder. A study of 390 cases diagnosed in Finland 1953-1967. Ann Chir Gynaecol Fenn Suppl 1970;168:1-81.
10. Brian G, CzitoM.D., Herbert I.Hurwitz M.D., et al. Adjuvant external-beam radiotherapy with concurrent chemotherapy after resection of primary gallbladder carcinoma: A 23-year experience international journal of radiation oncology*biology*physics 2005:1030-34.
11. Mahantshetty UM, Palled S R, Engineer R, Homkar G, Shrivastava S K, Shukla P J. Adjuvant radiation therapy in gall bladder cancers: 10 years experience at Tata Memorial Hospital. J Can Res Ther 2006;2:52-6
12. Mojica P, Smith D, Ellenhorn J. Adjuvant radiation therapy is associated with improved survival for gallbladder carcinoma with regional metastatic disease.J Surg Oncol 2007;96:8-13. 10.1002/jso.20831 [PubMed] [CrossRef] [Google Scholar]
13. Wang SJ, Fuller CD, Kim JS, et al. Prediction model for estimating the survival benefit of adjuvant radiotherapy for gallbladder cancer.J Clin Oncol 2008;26:2112-7. 10.1200/JCO.2007.14.7934 [PubMed] [CrossRef] [Google Scholar]
14. Wang SJ, Lemieux A, Kalpathy-Cramer J, et al. Nomogram for predicting the benefit of adjuvant chemoradiotherapy for resected gallbladder cancer. J Clin Oncol 2011;29:4627-32. 10.1200/JCO.2010.33.8020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Horgan AM, Amir E, Walter T, et al. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol 2012;30:1934-40. 10.1200/JCO.2011.40.5381 [PubMed] [CrossRef] [Google Scholar]

16. Ben-Josef E, Guthrie KA, El-Khoueiry AB, et al. SWOG S0809: A Phase II Intergroup Trial of Adjuvant Capecitabine and Gemcitabine Followed by Radiotherapy and Concurrent Capecitabine in Extrahepatic Cholangiocarcinoma and Gallbladder Carcinoma. J Clin Oncol 2015;33:2617-22. 10.1200/JCO.2014.60.2219 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Hassan, m. (2019). Role of adjuvant therapy in resected gallbladder cancer. | Journal of Clinical Oncology. [online] Ascopubs.org. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.4_suppl.452

18. Vaittinen E. Carcinoma of the gall-bladder. A study of 390 cases diagnosed in Finland 1953-1967. Ann Chir Gynaecol 1970;168:1-81.

19. Todoroki T, Gunderson LL, Nagorney D, et al. Biliary tract IORT: Bile duct and gall bladder. Intraoperative irradiation techniques and results. Humana Press: Totowa, NJ; 1999. p. 223-49.

20. Eisbruch A, Dawson LA, Kim HM, Bradford CR, Terrell JE, Chepeha DB, et al. Conformal and intensity modulated irradiation of head and neck cancer: The potential for improved target irradiation, salivary gland function, and quality of life. Acta Otorhinolaryngol Belg 1999;53:271-5.

21. Wu Q, Manning M, Schmidt-Ullrich R, Mohan R. The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: A treatment design study. Int J Radiat Oncol Biol Phys 2000;46:195-205.