Phthalate Exposure Enhances Incidence of Urinary Incontinence: US NHANES, 2003-2004 and 2005-2006

Xianyanling Yi
Sichuan University West China Hospital Department of Urology

Kun Jin
Sichuan University West China Hospital Department of Urology

Shi Qiu
Sichuan University West China Hospital Department of Urology

Xingyu Xiong
Sichuan University West China Hospital Department of Urology

Tianyi Zhang
Sichuan University West China Hospital Department of Urology

Ge Peng
Sichuan University West China Hospital Department of Endocrinology and Metabolism

Dazhou Liao
Institute of Urology, West China Hospital, Sichuan University

Xiaonan Zheng
Sichuan University West China Hospital Department of Urology

Hang Xu
Sichuan University West China Hospital Department of Urology

Hong Li
Sichuan University West China Hospital Department of Urology

Lu Yang
Sichuan University West China Hospital Department of Urology

Qiang Wei
Sichuan University West China Hospital Department of Urology

Jianzhong Ai
jianzhong.ai@scu.edu.cn
Sichuan University West China Hospital Department of Urology

Research Article

Keywords: phthalate, urinary incontinence, exposure, association, General population, NHANES

Posted Date: September 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-811494/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: The aim of this study is to investigate the associations between phthalate exposure and UI in a nationally representative sample of US adults.

Methods: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) database was used for analysis. In total, 2,818 participants with measurements for phthalate metabolites and complete UI questionnaire data were enrolled in our study. Further, seven phthalate metabolites were measured, which were obtained from urine samples and creatinine-standardized in the subsequent analyses. After divided these phthalate metabolites into three groups, multivariable regression models were performed to evaluate the association between phthalate metabolites and UI rates. Moreover, interaction analyses and subgroup analyses stratified by gender were performed.

Results: In these seven phthalate metabolites, high level of mono-carboxynonyl phthalate (MCNP), mono-carboxyoctyl phthalate (MCOP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP) and mono-3-carboxypropyl phthalate (MCPP) showed increased risk of UI [odds ratio (OR) = 1.52, 1.42, 1.43, 1.50, 1.51, respectively, all p value < 0.05]. Trend test showed that incidence of UI increased significantly with concentration. A higher incidence of UI among participants was observed in the maximal tertile of phthalate when comparing with the lowest tertile. Subgroup analysis found that different phthalates have varying influence for different types of UI. Moreover, the analyses stratified for sex indicated that the high concentrations of MCNP and median concentrations of MCCP were associated with increase of the odds of UI in women and in men, respectively.

Conclusion: Overall, the exposure to phthalates was positively associated with UI among US adults. Notably, different phthalates have varying influence for different types of UI, and male and female exposure to phthalate could result in the different prevalence of UI.

Highlights

- Phthalate exposure is positively associated with the risk of UI among US adults.
- Different phthalates have varying influence for different types of UI.
- Male and female exposure to phthalate could result in the different prevalence of UI.

1. Introduction

Phthalates are a group of chemical additives commonly used in plastics and personal care products (Barr, et al. 2003; Hauser and Calafat 2005). Previous study has reported that urinary metabolites of phthalates were detectable in 75–90% of the individuals, with global annual production of phthalates approximately 8 million tons (Gao and Wen 2016; Silva, et al. 2004). In addition, people encounter widespread exposures to phthalates for the weak binding of phthalates to these products and vulnerable to release into the environment (Meeker, et al. 2009b). By hydrolysis and oxidation, phthalates are quickly metabolized to monoester metabolites in vivo and then excreted in urine within 24 h (Albro, et al. 1982).

Urinary incontinence (UI) is defined as the involuntary loss of urine, represents a common health problem worldwide (Keller 2010; Rogers, et al. 2018). The symptoms of UI adversely affect these individuals’ life and work, including poor personal hygiene, poor self-esteem and restricted social networks. Hence, it can be debilitating the life quality and satisfaction of life in this population. Additionally, the ongoing pain will cause a significant burden for individuals and the healthcare system (Abrams, et al. 2010; Farrington, et al. 2015; Pintos-Díaz, et al. 2019). Many factors were involved in the progression of UI, including chronic diseases, medicine, intrapartum-related complications and environmental factors (Sun, et al. 2016; Tähtinen, et al. 2016). The conservative and surgical interventions were used to treat UI, and both of them have achieved some therapeutic effects (Lightner, et al. 2019; Lucas, et al. 2012; Qaseem, et al. 2014). However, UI treatment remains complicated due to its multiple etiologies.

As a type of endocrine-disrupting chemicals, phthalate had been proved that it is closely related to the occurrence of many diseases, especially for the reproductive system diseases and cardiovascular diseases (Hauser and Calafat 2005; Mariana, et al. 2016). As reported previously, phthalate resulted in significant decrease in testosterone (Meeker 2010), and some phthalates, such as di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DnBP), exhibited weak estrogenic activity (Hannas, et al. 2011). Beyond endocrine disruption, phthalate can also involve in the processes of oxidative stress and inflammation (Ferguson, et al. 2011; Wang, et al. 2020). Some phthalates enhanced inflammation through the induction of macrophage-releasing chemokines and growth factors (Nishioka, et al. 2012). Similarly, it can also increase the rate of obesity, alter thyroid function, increase insulin resistance, impair the respiratory system (Hoppin, et al. 2004; Huang, et al. 2007; Meeker, et al. 2009a; Trasande, et al. 2013). The etiology and pathogenesis of UI are complicated and multifactorial, including intrinsic sphincter deficiency, pelvic floor dysfunction (PFD), inflammation, changes in circulating estrogen levels, oxidative stress and others (Hakimi, et al. 2020; Markland, et al. 2011).

Currently, the association between phthalates and UI remained unclear. Considering the previous studies identified that UI is associated with inflammation, oxidative stress, estrogen levels, androgen levels, obesity and depression, there may be a potential relationship between phthalate exposure and UI. Thus, we hypothesized that there might be some relationships between phthalate exposure and UI. The National Health and Nutrition Examination Survey (NHANES) datasets were analyzed to assess the relationship between phthalate exposure and UI.

2. Methods

2.1 Study design and participants

The NHANES is an ongoing cross-sectional study of a nationally representative sample of the noninstitutionalized civilian US population. It is conducted by the National Center for Health Statistics (NCHS), and the data were collected using a complex, multistage, stratified, clustered probability design. Participants
completed household interviews about their demographic, dietary, socioeconomic, behavioral factors and health information. After that, they were invited to undergo a further physical examination, and urine and blood sampling were conducted at mobile examination centers. Ethics approval for NHANES was granted by the National Center for Health Statistics Research Ethics Review Board.

Our analysis included four years of NHANES data, 2003–2004 and 2005–2006. Participants who had measurements for the phthalate metabolites and urine creatinine levels were enrolled. In addition, individuals with incomplete UI questionnaire data and/or missing data were excluded from this study (Fig. 1).

2.2 Assessment of UI

Two incontinence questions were studied. Participants were defined as stress UI if they had answered yes to the question “During the past 12 months, have you leaked or lost control of even a small amount of urine with an activity like coughing, lifting, or exercise?”. Participants were defined as urgency UI if they had answered yes to the question “During the past 12 months, have you leaked or lost control of even a small amount of urine with an urge or pressure to urinate and you couldn’t get to the toilet fast enough?”. If participants responded yes to both questions, they were classified as mixed UI. In the concurrent phase, both questions also asked the frequency of the situation that occurred (every day, a few times a week, a few times a month, a few times a year).

2.3 Urinary phthalate metabolites

Phthalate metabolites were measured by single spot urine samples obtained from a one-third subsample of respondents who provided spot urine specimens during physical examinations. These spot urine samples were collected and then frozen at −20°C and shipped to the National Center for Environmental Health for analysis of various phthalate metabolites. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used for phthalate analyzing. Further details on the laboratory procedures are provided elsewhere(Silva, et al. 2004).

The following seven phthalate metabolites were measured: mono-carboxynonyl phthalate (MCNP), mono-carboxyoctyl phthalate (MCOP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), mono-ethyl phthalate (MEP), mono-3-carboxypropyl phthalate (MCP), di-2-ethylhexyl phthalate (DEHP). Phthalate metabolites for which > 75% of measurements were below the limit of detection (LOD) were excluded in our further statistical analysis. Additionally, phthalate values below the LOD were assigned a value equal to the LOD divided by the square root of two(Varshavsky, et al. 2018). Phthalate levels were adjusted by urinary creatinine (presented as ng/ml creatinine) to account for dilution of the urine.

2.4 Covariates

Age, race/ethnicity (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, other Race), education (above high school, high school or equivalent, under high school), marital status (married or living with partner, living alone), family poverty income ratio (PIR) (≤ 1.3, 1.3–3.5, > 3.5), physical activity in recreational time (less than moderate, moderate, vigorous), smoking status (current, never, former) in participants were self-reported by questionnaire. Body mass index was categorized as normal weight of < 25, overweight of 25 to < 30 and obesity of ≥ 30.

2.5 Statistical analysis

All statistical analyses were performed using EmpowerStats (http://www.empowerstats.com), version number 2018-05-05 (X&Y Solutions, Inc., Boston, MA, UA). Because NHANES is a complex and multistage design, appropriate sample weights, primary sampling units, strata and cluster variables were applied to improve the accuracy of data. Moreover, differences with P < 0.05 were considered significant. Numbers, percentages, mean values and standard errors were calculated to describe demographics. Chi-square test (χ^2) or Fisher exact test was adopted in categorical variables, and Kruskal-Wallis was used in continuous variables to determine the differences between groups. The creatinine-corrected urinary phthalate metabolite concentrations were weighted using sample weights, and we depicted the phthalate level by the geometric means (GM), 95 % confidence intervals (CIs) and percentile.

In this study, all concentrations for analysis were creatinine-standardized. We assigned tertiles of urinary phthalate metabolites as exposure variables. Log-transformed phthalate metabolite concentrations were also used as exposure variables due to skewed distributions. The association between phthalate and urinary incontinence was estimated by multivariable linear regression models with β coefficient and 95% CIs. Tertile 1 as a reference with OR = 1. In further analyses, we adjusted for the following confounders in multivariable regression models (model 1): age, race/ethnicity, BMI, education level, ratio of family income to poverty, comorbidity index. Otherwise, we also adjusted marital status, physical activity and smoking status in addition to the factors listed above in model 2. In order to evaluate the tendency between phthalates and UI, we performed trend test.

In order to explore association between phthalate exposure and different types of UI, subgroup analysis was conducted according to the different UI types. According to previous data, UI presents more commonly in the woman(Abrams, et al. 2018). Thus, we also performed stratified analyses by sex, and assigned tertiles of urinary phthalate metabolites as exposure variables. With the exception of the sex variable, the multivariable linear multiple regression models were identical as described above.

3. Results

3.1 Characteristic of participants

A total of 20,470 participants from NHANES for cycles 2003-2004 and 2005-2006 were interviewed and underwent a physical examination. However, only a small fraction of them (n=5,153) measured the levels of urinary phthalate biomarkers. Among them, participants who did not complete the incontinence questions or with incomplete UI data were excluded (n=2,335). Finally, 2,818 participants were included in the final analytic data set.

The basic characteristics of 2,818 participants were presented in Table 1, of which 987 participants of those exposed to phthalates developed UI. Univariate analysis revealed that the following factors were significantly associated with UI among participants with a history of phthalates exposure: age, education,
androgens receptor to affect pelvic musculature. Likewise, urethral tissue contains estrogen receptors, and the decrease of estrogen is related to laxity of pelvic floor muscles.

2018), found that low levels of serum testosterone increase the risk of SUI and mixed UI in women, and the underlying mechanism may be through depression-like behavior in adult mice (Zuo, et al. 2014). In addition, it has been reported previously that MCPP, MCNP and MBP exposure were positively correlated with the incidence of SUI. This might be an explanation for the higher OR of UI in individuals exposed to MCPP, MCNP and MBP. Indeed, in our subgroup analysis, we found that MCNP and MBP exposure were positive associated with the incidence of SUI (Table 3).

3.3 Subgroup analysis

Tables 4-5 show the results of subgroup analysis. We found that different phthalates have varying influence for different types of UI. Higher concentrations of MIBP increases the risk of developing UII, SUI and MUI. MCOP and MCPP showed an increased risk in the incidence of UII. MCNP and MBP showed an increased risk in the incidence of SUI. Besides, MBP was also positive associated with MUI. In addition, stratified modeling revealed outcomes vary between males and females. After adjusting by age, race and BMI, we found that highest tertile of MCNP metabolite concentrations was associated with increase of the odds of UI in women (OR=1.67, 95%CI=1.16-2.41). Moreover, highest tertile of MCPP metabolite concentrations was associated with increase of the odds of UI in men (OR=1.72, 95%CI=1.06-2.80), but following the adjustments for confounding parameters, there was no significant difference. Notably, males in tertile 2 had a significantly higher risk of UI with MBP metabolite concentrations (OR=1.59, 95%CI=1.01-2.49).

4. Discussion

The present cross-sectional, population-based analysis based on a nationally representative sample of general adults from NHANES evidenced positive associations between phthalate exposure and urinary incontinence. Specifically, it was found that a one-unit increase in log-transformed phthalates MNCP, MIBP, MBP and MCPP in participants, could have a higher likelihood of UI. Moreover, a higher level of phthalate exposure displayed a higher incidence of UI in comparison with those in the lowest tertile after multivariable adjustment. Importantly, our study was the first study that considered the relationship between exposure to phthalates and UI in general adults.

The underlying mechanisms involved in increasing risk of UI by phthalate exposure had not been unraveled. As described in previous studies, phthalate exposure may have an effect on inflammation and oxidative stress. For example, Nishioka et al. (Nishioka, et al. 2012) reported that DEHP stimulated macrophages to express inflammatory cytokines and chemokines that exacerbating their inflammatory response. Mono(2-ethylhexyl) phthalate (MEHP) was found to increase the production of IL-8 in adult neutrophils and IL-1β in neonatal neutrophils (Vetrano, et al. 2010). Furthermore, within animals, DEHP could rapidly activate NADPH oxidase and nuclear factor-kB (NF-kB) in the liver, resulting in the production of cytokines and TNFα (Rusyn, et al. 2001). And di-n-butyl phthalate (DBP) exhibited cell apoptosis induction effects by infection-induced oxidative stress in testes (Kasahara, et al. 2002; Zhou, et al. 2010). Taken together, these studies provide evidences that phthalate exposure leads to UI that is potentially mediated through oxidative stress and inflammation.

Inflammation plays a key role in the process of UI (stress UI or urgency UI). Long-term inflammation could lead to bladder fibrosis, reduce bladder compliance, decrease the functional capacity of the bladder progressively and increase intravesical pressure, ultimately results in the occurrence of UI. Excessive production of reactive oxygen species (ROS) can lead to oxidative damage, leading to cell apoptosis (Jia, et al. 2015). Additionally, persistent inflammation and oxidative stress could lead to persistent urethral irritation, which might be the crucial factor for promoting bladder overactivity (Li, et al. 2011).

The association between phthalate exposure and UI might be explained by depression and obesity. Phthalate exposure was associated with depression-like behavior in adult mice (Zuo, et al. 2014). In addition, it has been reported previously that MCPP, MCNP and MBP exposure were positively correlated with the risk of depression (Kim, et al. 2016). Some studies have accounted for the association between phthalate exposure and obesity, although the results are controversial. Specifically, there is a positive association between urinary low molecular weight (LMW) phthalates metabolites and rate of obesity. While urinary high molecular weight (HMW) phthalates and DEHP phthalate exposure are associated with higher OR for obesity in male adults (more than or equal to 60 years old) (Buser, et al. 2014; Trasande, et al. 2013). Notably, depression and obesity can cause chronic damage to the pelvic floor muscles and diminish the effect on supporting pelvic viscera. This identifies them as a factor in the pathogenesis of SUI (Bart, et al. 2008; Moser, et al. 2018; Treister-Goltzman and Peleg 2018). This might be an explanation for the higher OR of UI in individuals exposed to MCPP, MCNP and MBP. Indeed, in our subgroup analysis, we found that MCNP and MBP exposure were positive associated with the incidence of SUI.

Previous studies confirmed that phthalate exposure has an antiandrogenic effect (Radke, et al. 2018; Swan 2006; Swan, et al. 2015) and was associated with lower testosterone in male animals and humans (Botelho, et al. 2009; Meeker and Ferguson 2014). Data from NHANES, 2013–2016 demonstrated HMW phthalates could reduce the level of total, free and bioavailable testosterone among men aged ≥ 60 (Woodward, et al. 2020). For menopausal women, DEHP exposure was associated with lower bioavailable testosterone and estradiol concentrations (Long, et al. 2021). A study done by Kim et al. (Kim and Kreydin 2018), found that low levels of serum testosterone increase of the risk of SUI and mixed UI in women, and the underlying mechanism may be through androgens receptor to affect pelvic musculature. Likewise, urethral tissue contains estrogen receptors, and the decrease of estrogen is related to laxity of urethral sphincter and ligament, which results in a high incidence of SUI (Adamiak-Godlewska, et al. 2018; Aoki, et al. 2017). Thus, exposure to phthalates may	

Page 4/15
lead to UI by affecting testosterone and estradiol concentrations. In brief, phthalate exposure has been found to participate in UI development by affecting multifaceted etiology.

The following are the key strengths of the present study. This is the first report on the association between phthalate exposure and UI. A nationally representative sample was used for analyses. Therefore, the present results might be generalizable to the entire population of US adults. Strict quality control procedures were performed to analyze 7 urinary phthalate metabolites. Moreover, to get more accurate results, regressions were adjusted for the main potential confounders, including age, race/ethnicity, BMI, education level, comorbidity index, etc. Uniquely, our study took into account the difference between the sexes in terms of UI occurrence, and the analyses stratified for sex indicate that male and female exposure to phthalate can result in the different prevalence of UI. We also considered the association between phthalate exposure and different types of UI.

There are some limitations in our study. Firstly, since the overall study design is a cross-sectional study, no causal relationships could be deduced. We have adjusted possible confounders. Nevertheless, residual confounding remains a possibility. Second, with four years (2003–2004 and 2005–2006) of NHANES data involved phthalate exposure and UI at the same time, the sample size analyzed in this study was sufficient. Third, concentrations of phthalate metabolites were detected from spot urine samples instead of 24-hour urine samples, which may not take into account potential changes of phthalate within-person over time. Nevertheless, a single measurement of urine may be representative in the long term, although phthalate metabolites have a short half-life. Last but not least, the questionnaire interview on UI is not a diagnostic tool, but it is a valid and reliable tool for identifying UI.

5. Conclusion

In this study, we found that several phthalates were positively associated with the risk of UI among the general US population. These findings may motivate people to reduce exposure to phthalate to achieve the purpose of decreasing the incidence of UI. However, further studies are warranted to verify our findings and explore the potential mechanisms.

Abbreviations

urinary incontinence, UI
mono-carboxynonyl phthalate, MCNP
mono-carboxyoctyl phthalate, MCOP
mono-isobutyl phthalate, MiBP
mono-n-butyl phthalate, MBP
mono-ethyl phthalate, MEP
mono-3-carboxypropyl phthalate, MCPP
di-2-ethylhexyl phthalate, DEHP
odds ratio, OR
National Health and Nutrition Examination Survey, NHANES
Body mass index, BMI
family poverty income ratio, PIR
geometric means, GM
confidence intervals, CIs

Declarations

Acknowledgements

This study was supported by grants from National Natural Science Foundation of China (82070784, 81974099), and a grant from 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18011) to H.L.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.
Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

J. Ai, Q. Wei and X. Yi conceived the project and drafted the manuscript, K. Jin, X. Xiong, T. Zhang and G. Peng searched the databases, S. Qiu, X. Zheng, D. Liao and H. Xu analyzed data, H. Li and L. Yang revised the manuscript.

All authors read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests

References

1. Abrams, P., et al. 2018 6th International Consultation on Incontinence. Recommendations of the International Scientific Committee: EVALUATION AND TREATMENT OF URINARY INCONTINENCE, PELVIC ORGAN PROLAPSE AND FECAL INCONTINENCE. Neurourol Urodyn 37(7):2271-2272.
2. Abrams, P., et al. 2010 Fourth International Consultation on Incontinence Recommendations of the International Scientific Committee: Evaluation and treatment of urinary incontinence, pelvic organ prolapse, and fecal incontinence. Neurourol Urodyn 29(1):213-40.
3. Adamiak-Godlewska, A., et al. 2018 Stress urinary incontinent women, the influence of age and hormonal status on estrogen receptor alpha and beta gene expression and protein immunorexpression in paraurethral tissues. J Physiol Pharmacol 69(1):53-59.
4. Albro, P. W., et al.1982 Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect 45:19-25.
5. Aoki, Y., et al.2017 Urinary incontinence in women. Nat Rev Dis Primers 3:17042.
6. Barr, D. B., et al.2003 Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect 111(9):1148-51.
7. Bart, S., et al.2008 [Stress urinary incontinence and obesity]. Prog Urol 18(8):493-8.
8. Botelho, G. G., et al.2009 Reproductive effects of di(2-ethylhexyl)phthalate in immature male rats and its relation to cholesterol, testosterone, and thyroxin levels. Arch Environ Contam Toxicol 57(4):777-84.
9. Buser, M. C., H. E. Murray, and F. Scinicariello 2014 Age and sex differences in childhood and adulthood obesity association with phthalates: analyses of NHANES 2007-2010. Int J Hyg Environ Health 217(6):687-94.
10. Farrington, N., et al.2015 Exploring the role of practical nursing wisdom in the care of patients with urinary problems at the end of life: a qualitative interview study. J Clin Nurs 24(19-20):2745-56.
11. Ferguson, K. K., R. Loch-Caruso, and J. D. Meeker 2011 Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999-2006. Environ Res 111(5):718-26.
12. Gao, D. W., and Z. D. Wen 2016 Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986-1001.
13. Hakimi, S., et al. 2020 Prevalence and Risk Factors of Urinary/Anal Incontinence and Pelvic Organ Prolapse in Healthy Middle-Aged Iranian Women. J Menopausal Med 26(1):24-28.
14. Hoppin, J. A., R. Ulmer, and S. J. London 2004 Phthalate exposure and pulmonary function. Environ Health Perspect 112(5):571-4.
15. Huang, P. C., et al. 2007 Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod 22(10):2715-22.
16. Jia, L. X., et al. 2015 Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection. J Pathol 236(3):373-83.
17. Kasahara, E., et al. 2002 Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J 365(Pt 3):849-56.
18. Keller, D. L. 2010 Idiopathic urgency urinary incontinence. N Engl J Med 362(27):2672; author reply 2672.
19. Kim, K. N., et al. 2011 Urinary phthalate metabolites and depression in an elderly population: National Health and Nutrition Examination Survey 2005-2012. Environ Res 145:61-67.
20. Kim, M. M., and E. I. Kreydin 2018 The Association of Serum Testosterone Levels and Urinary Incontinence in Women. J Urol 199(2):522-527.
21. Li, M., et al. 2011 Increased transient receptor potential vanilloid type 1 (TRPV1) signaling in idiopathic overactive bladder urothelial cells. Neurourol Urodyn 30(4):606-11.
22. Lightner, D. J., et al. 2019 Diagnosis and Treatment of Overactive Bladder (Non-Neurogenic) in Adults: AUA/SUFU Guideline Amendment 2019. J Urol 202(3):558-563.
25. Long, S. E., et al. 2021 Urinary phthalate metabolites and alternatives and serum sex steroid hormones among pre- and postmenopausal women from NHANES, 2013-16. Sci Total Environ 769:144560.
26. Lucas, M. G., et al. 2012 EAU guidelines on surgical treatment of urinary incontinence. Eur Urol 62(6):1118-29.
27. Mariana, M., et al. 2016 The effects of phthalates in the cardiovascular and reproductive systems: A review. Environ Int 94:758-776.
28. Markland, A. D., et al. 2011 Prevalence and trends of urinary incontinence in adults in the United States, 2001 to 2008. J Urol 186(2):589-93.
29. Meeker, J. D. 2010 Exposure to environmental endocrine disrupting compounds and men's health. Maturitas 66(3):236-41.
30. Meeker, J. D., and K. K. Ferguson 2014 Urinary phthalate metabolites are associated with decreased serum testosterone in men, women, and children from NHANES 2011-2012. J Clin Endocrinol Metab 99(11):4346-52.
31. Meeker, J. D., et al. 2009a Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect 117(10):1587-92.
32. Meeker, J. D., S. Sathyanarayana, and S. H. Swan 2009b Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci 364(1526):2097-113.
33. Moser, H., et al. 2018 Pelvic floor muscle activity during impact activities in continent and incontinent women: a systematic review. Int Urogynecol J 29(2):179-196.
34. Nishioka, J., et al. 2012 Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm Res 61(1):69-78.
35. Pintos-Díaz, M. Z., et al. 2019 Living with Urinary Incontinence: Potential Risks of Women's Health? A Qualitative Study on the Perspectives of Female Patients Seeking Care for the First Time in a Specialized Center. Int J Environ Res Public Health 16(19).
36. Qaseem, A., et al. 2014 Nonsurgical management of urinary incontinence in women: a clinical practice guideline from the American College of Physicians. Ann Intern Med 161(6):429-40.
37. Radke, E. G., et al. 2018 Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environ Int 121(Pt 1):764-793.
38. Rogers, R. G., et al. 2018 An international Urogynecological association (IUGA)/international continence society (ICS) joint report on the terminology for the assessment of sexual health of women with pelvic floor dysfunction. Int Urogynecol J 29(5):647-666.
39. Rusyn, I., et al. 2001 Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Mol Pharmacol 59(4):744-50.
40. Silva, M. J., et al. 2004 Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect 112(3):331-8.
41. Sun, S., D. Liu, and Z. Jiao 2016 Coffee and caffeine intake and risk of urinary incontinence: a meta-analysis of observational studies. BMC Urol 16(1):61.
42. Swan, S. H. 2006 Prenatal phthalate exposure and anogenital distance in male infants. Environ Health Perspect 114(2):A88-9.
43. Swan, S. H., et al. 2015 First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod 30(4):963-72.
44. Tähtinen, R. M., et al. 2016 Long-term Impact of Mode of Delivery on Stress Urinary Incontinence and Urgency Urinary Incontinence: A Systematic Review and Meta-analysis. Eur Urol 70(1):148-158.
45. Trasande, L., et al. 2013 Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect 121(4):501-6.
46. Treister-Goltzman, Y., and R. Peleg 2018 Urinary incontinence among Muslim women in Israel: risk factors and help-seeking behavior. Int Urogynecol J 29(4):539-546.
47. Varshavsky, J. R., et al. 2018 Dietary sources of cumulative phthalates exposure among the U.S. general population in NHANES 2005-2014. Environ Int 115:417-429.
48. Vetrano, A. M., et al. 2010 Inflammatory effects of phthalates in neonatal neutrophils. Pediatr Res 68(2):134-9.
49. Wang, Z., et al. 2020 Constitutive androstane receptor (CAR) mediates dieldrin-induced liver tumorigenesis in mouse. Arch Toxicol 94(8):2873-2884.
50. Woodward, M. J., et al. 2020 Phthalates and Sex Steroid Hormones Among Men From NHANES, 2013-2016. J Clin Endocrinol Metab 105(4):e1225-34.
51. Zhou, D., et al. 2010 Di-n-butyl phthalate (DBP) exposure induces oxidative damage in testes of adult rats. Syst Biol Reprod Med 56(6):413-9.
52. Zuo, H. X., et al. 2014 Di-(n-butyl)-phthalate-induced oxidative stress and depression-like behavior in mice with or without ovalbumin immunization. Biomed Environ Sci 27(4):268-80.

Tables

Table 1. Basic characteristics of participants in US adults, NHANES 2003-2004 and 2005-2006.
Population characteristics	Normal	Urinary Incontinence	P value
N	1831	987	
Age (years, mean(SD))	45.86 (18.82)	54.79 (18.11)	<0.001
Race/ethnicity, n (%)			0.457
Mexican American	362 (19.77%)	200 (20.26%)	
Other Hispanic	52 (2.84%)	28 (2.84%)	
Non-Hispanic White	940 (51.34%)	533 (54.00%)	
Non-Hispanic Black	400 (21.85%)	187 (18.95%)	
Other Race	77 (4.21%)	39 (3.95%)	
Education, n (%)			0.011
Under high school	471 (25.72%)	297 (30.09%)	
High school or equivalent	442 (24.14%)	250 (25.33%)	
Above high school	918 (50.14%)	440 (44.58%)	
PIR\(^a\), n (%)			0.11
≤1.3	457 (24.96%)	269 (27.25%)	
1.3-3.5	762 (41.62%)	425 (43.06%)	
>3.5	612 (33.42%)	293 (29.69%)	
Marital status, n (%)			0.118
Married or living with partner	1155 (63.08%)	593 (60.08%)	
Living alone	676 (36.92%)	394 (39.92%)	
BMI\(^b\), n (%)			<0.001
≤25	630 (34.41%)	267 (27.05%)	
25-30	637 (34.79%)	324 (32.83%)	
≥30	564 (30.80%)	396 (40.12%)	
Physical activity in recreational time, n (%)			<0.001
Less than moderate	608 (33.21%)	389 (39.41%)	
Moderate	521 (28.45%)	338 (34.25%)	
Vigorous	702 (38.34%)	260 (26.34%)	
Smoking status, n (%)			<0.001
Never	940 (51.34%)	804 (81.46%)	
Former	535 (29.22%)	63 (6.38%)	
Current	356 (19.44%)	120 (12.16%)	

\(^a\) PIR: family poverty income ratio

\(^b\) BMI: body mass index

Table 2. Concentrations of sample-weighted, creatinine-corrected urinary phthalates metabolites (μg/g creatinine), NHANES 2003-2004 and 2005-2006
Phthalate (ng/ml creatinine)	LOD\(^{a}\)	GM\(^{b}\) (95%CI\(^{c}\))	Percentile							
		5	10	25	50	75	90	95	100	
MCNP	0.12	2.60 (2.50, 2.70)	0.62	0.90	1.45	2.43	4.25	8.30	13.40	702.00
MCOP	0.19	5.14 (4.93, 5.35)	1.14	1.54	2.56	4.54	8.88	20.62	38.05	3875.55
MIBP	0.12	5.71 (5.50, 5.92)	1.25	1.88	3.33	5.75	9.79	16.79	24.29	8451.74
MNBP	0.09	21.50 (20.74, 22.29)	5.46	7.56	12.18	20.99	36.70	65.26	95.88	3596.00
MEP	1.27	128.2 (121.97, 134.79)	19.40	26.69	50.06	114.40	295.65	717.14	1349.06	20316.25
MCPP	0.03	2.84 (2.75, 2.94)	0.75	1.02	1.67	2.70	4.64	8.14	12.29	426.22
DEHP	0.44	72.09 (69.26, 75.03)	16.98	22.77	35.91	63.13	123.95	277.15	528.94	4681.07

\(^{a}\) LOD: limit of detection

\(^{b}\) GM: geometric Means

\(^{c}\) CI: confidence intervals

Table 3 Association between exposure to phthalate and UI among US adults, NHANES 2003-2004 and 2005-2006.
	Unadjusted	Model 1\(^c\)	Model 2\(^d\)			
	OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	P	OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	P	OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	P
MCNP						
Tertile 1	Reference	Reference	Reference			
Tertile 2	1.28 (0.97, 1.68)	0.081	1.26 (0.95, 1.69)	0.110	1.29 (0.96, 1.73)	0.088
Tertile 3	1.52 (1.15, 2.00)	0.003	1.41 (1.05, 1.89)	0.021	1.43 (1.06, 1.93)	0.018
Trend test	1.23 (1.07, 1.41)	0.003	1.19 (1.03, 1.38)	0.021	1.20 (1.03, 1.39)	0.018
MCOP						
Tertile 2	1.41 (1.08, 1.84)	0.013	1.45 (1.09, 1.92)	0.011	1.41 (1.06, 1.89)	0.020
Tertile 3	1.42 (1.07, 1.86)	0.013	1.43 (1.07, 1.92)	0.017	1.46 (1.08, 1.97)	0.013
Trend test	1.19 (1.04, 1.37)	0.010	1.20 (1.04, 1.39)	0.014	1.21 (1.05, 1.41)	0.011
MiBP						
Tertile 2	1.07 (0.82, 1.40)	0.597	1.11 (0.84, 1.47)	0.455	1.14 (0.86, 1.52)	0.365
Tertile 3	1.43 (1.08, 1.89)	0.011	1.44 (1.07, 1.93)	0.015	1.42 (1.05, 1.91)	0.022
Trend test	1.19 (1.03, 1.36)	0.015	1.19 (1.03, 1.38)	0.017	1.19 (1.02, 1.38)	0.023
MBP						
Tertile 2	1.51 (1.17, 1.95)	0.002	1.63 (1.25, 2.14)	<0.001	1.66 (1.26, 2.18)	<0.001
Tertile 3	1.50 (1.15, 1.97)	0.003	1.47 (1.11, 1.97)	0.008	1.46 (1.09, 1.95)	0.011
Trend test	1.24 (1.08, 1.41)	0.002	1.23 (1.07, 1.42)	0.004	1.22 (1.06, 1.41)	0.005
MEP						
Tertile 2	1.19 (0.91, 1.56)	0.211	1.29 (0.97, 1.73)	0.081	1.29 (0.97, 1.73)	0.084
Tertile 3	1.13 (0.87, 1.46)	0.367	1.21 (0.91, 1.59)	0.186	1.21 (0.91, 1.60)	0.188
Trend test	1.06 (0.93, 1.21)	0.387	1.09 (0.95, 1.26)	0.203	1.09 (0.95, 1.26)	0.206
MCPP						
Tertile 2	1.20 (0.94, 1.54)	0.146	1.14 (0.87, 1.49)	0.333	1.13 (0.86, 1.48)	0.372
Tertile 3	1.51 (1.14, 1.99)	0.004	1.44 (1.07, 1.94)	0.015	1.44 (1.07, 1.94)	0.017
Trend test	1.23 (1.07, 1.41)	0.004	1.20 (1.03, 1.39)	0.017	1.19 (1.03, 1.38)	0.019
DEHP						
Tertile 2	1.24 (0.96, 1.59)	0.097	1.19 (0.91, 1.55)	0.211	1.20 (0.92, 1.57)	0.184
Tertile 3	1.10 (0.84, 1.45)	0.472	1.10 (0.82, 1.47)	0.516	1.13 (0.84, 1.51)	0.418
Trend test	1.06 (0.93, 1.21)	0.393	1.06 (0.91, 1.22)	0.457	1.07 (0.92, 1.24)	0.366

\(^a\) OR: odds ratio
\(^b\) CI: confidence intervals

Page 10/15
Table 4. Association between phthalate exposure and different types of UI among US adults.
	UUI			**SU**			**MUI**		
	Unadjusted result	Adjusted result	Unadjusted result	Adjusted result	Unadjusted result	Adjusted result			
	OR of Urinary Incontinence (95% CI)	P	OR of Urinary Incontinence (95% CI)	P	OR of Urinary Incontinence (95% CI)	P	OR of Urinary Incontinence (95% CI)	P	
MCNP									
Tertile 1	Reference								
Tertile 2	1.21 (0.88, 1.66)	0.239	1.25 (0.89, 1.74)	0.196	1.39 (1.02, 1.90)	0.036	1.39 (1.01, 1.93)	0.046	
Tertile 3	1.25 (0.90, 1.72)	0.179	1.22 (0.86, 1.72)	0.263	1.53 (1.12, 2.09)	0.008	1.46 (1.05, 2.03)	0.026	
Trend test	1.04 (0.97, 1.12)	0.240	1.03 (0.96, 1.11)	0.377	1.08 (1.01, 1.16)	0.017	1.07 (1.00, 1.15)	0.057	
MCOP									
Tertile 1	Reference								
Tertile 2	1.33 (0.97, 1.82)	0.080	1.43 (1.02, 2.00)	0.036	1.52 (1.12, 2.05)	0.007	1.53 (1.12, 2.11)	0.008	
Tertile 3	1.41 (1.02, 1.94)	0.036	1.56 (1.11, 2.20)	0.011	1.29 (0.94, 1.77)	0.109	1.30 (0.93, 1.81)	0.128	
Trend test	1.03 (1.00, 1.05)	0.069	1.03 (1.00, 1.06)	0.028	1.01 (0.99, 1.04)	0.314	1.01 (0.98, 1.04)	0.365	
MBP									
Tertile 1	Reference								
Tertile 2	1.01 (0.73, 1.38)	0.967	1.07 (0.77, 1.49)	0.686	1.18 (0.87, 1.59)	0.292	1.20 (0.87, 1.64)	0.261	
Tertile 3	1.47 (1.07, 2.01)	0.017	1.41 (1.01, 1.98)	0.044	1.53 (1.12, 2.09)	0.007	1.49 (1.08, 2.07)	0.017	
Trend test	1.04 (1.01, 1.08)	0.013	1.04 (1.00, 1.07)	0.039	1.04 (1.01, 1.08)	0.007	1.04 (1.01, 1.07)	0.017	
MEP									
Tertile 1	Reference								
Tertile 2	1.38 (1.03, 1.84)	0.031	1.46 (1.08, 1.99)	0.015	1.62 (1.21, 2.16)	0.001	1.72 (1.28, 2.32)	<0.001	
Tertile 3	1.37 (1.01, 1.86)	0.046	1.31 (0.94, 1.81)	0.107	1.72 (1.28, 2.33)	<0.001	1.77 (1.29, 2.41)	<0.001	
Trend test	1.01 (1.00, 1.01)	0.081	1.01 (1.00, 1.01)	0.202	1.01 (1.00, 1.02)	0.001	1.01 (1.00, 1.02)	0.002	
MCPP									
Tertile 1	Reference								
Tertile 2	1.17 (0.87, 1.56)	0.288	1.13 (0.83, 1.54)	0.423	1.30 (0.98, 1.71)	0.067	1.21 (0.90, 1.61)	0.202	
Tertile 3	1.27 (0.94, 1.71)	0.114	1.38 (1.01, 1.90)	0.044	1.06 (0.79, 1.42)	0.702	1.14 (0.84, 1.55)	0.396	
Trend test	1.00 (1.00, 1.00)	0.137	1.00 (1.00, 1.00)	0.061	1.00 (1.00, 1.00)	0.669	1.00 (1.00, 1.00)	0.928	

Page 12/15
| Tertile 3 | 1.60 (1.17, 2.18) | 0.003 | 1.52 (1.09, 2.12) | 0.013 | 1.37 (1.01, 1.87) | 0.043 | 1.25 (0.90, 1.72) | 0.179 | 1.59 (1.06, 2.39) | 0.025 | 1.37 (0.89, 2.12) | 0.0 |
| Trend test | 1.10 (1.03, 1.18) | 0.003 | 1.09 (1.02, 1.17) | 0.012 | 1.06 (1.00, 1.13) | 0.063 | 1.04 (0.97, 1.11) | 0.227 | 1.09 (1.01, 1.19) | 0.034 | 1.06 (0.97, 1.16) | 0.0 |

DEPH

Tertile	Reference											
Tertile 1	1.13 (0.85, 1.51)	0.401	1.00 (0.74, 1.36)	0.983	1.08 (0.81, 1.43)	0.600	1.04 (0.78, 1.39)	0.805	0.87 (0.60, 1.27)	0.478	0.74 (0.50, 1.10)	0.0
Tertile 2	1.06 (0.78, 1.44)	0.703	1.01 (0.73, 1.41)	0.949	1.04 (0.77, 1.41)	0.774	1.01 (0.74, 1.38)	0.971	0.97 (0.65, 1.43)	0.858	0.87 (0.57, 1.32)	0.0
Tertile 3	1.00 (1.00, 1.00)	0.842	1.00 (1.00, 1.00)	0.949	1.00 (1.00, 1.00)	0.858	1.00 (1.00, 1.00)	0.979	1.00 (1.00, 1.00)	0.984	1.00 (1.00, 1.00)	0.0

| Trend test | 1.00 (1.00, 1.00) | 0.842 | 1.00 (1.00, 1.00) | 0.949 | 1.00 (1.00, 1.00) | 0.858 | 1.00 (1.00, 1.00) | 0.979 | 1.00 (1.00, 1.00) | 0.984 | 1.00 (1.00, 1.00) | 0.0 |

a UUI, urge incontinence
b SUI, stress incontinence
c MUI, mix incontinence
d adjusted for age, race, BMI, ratio of family income to poverty, education level, marital, physical activity
e OR: odds ratio
f CI: confidence intervals

Table 5. Association between phthalate exposure and UI among US adults stratified by gender.
	Male Unadjusted result OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	Male Adjusted\(^c\) result OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	Female Unadjusted result OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	Female Adjusted\(^c\) result OR\(^a\) of Urinary Incontinence (95% CI\(^b\))	P		
MCNP							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	0.87 (0.53, 1.45)	0.600	1.34 (0.94, 1.91)	1.23 (0.83, 1.81)	0.301		
Tertile 3	1.07 (0.65, 1.76)	0.799	1.67 (1.16, 2.41)	1.53 (1.02, 2.29)	0.038		
Trend test	1.02 (0.92, 1.14)	0.709	1.11 (1.03, 1.20)	1.09 (1.00, 1.19)	0.043		
MCOP							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	1.17 (0.72, 1.91)	0.526	1.31 (0.92, 1.88)	1.16 (0.78, 1.71)	0.459		
Tertile 3	1.12 (0.67, 1.88)	0.673	1.25 (0.87, 1.80)	1.14 (0.77, 1.68)	0.528		
Trend test	1.01 (0.96, 1.05)	0.742	1.01 (0.98, 1.05)	1.01 (0.98, 1.04)	0.650		
MiBP							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	0.91 (0.55, 1.50)	0.711	0.95 (0.67, 1.35)	1.03 (0.70, 1.51)	0.900		
Tertile 3	1.55 (0.93, 2.57)	0.090	1.03 (0.72, 1.48)	1.07 (0.72, 1.60)	0.742		
Trend test	1.05 (0.99, 1.10)	0.081	1.01 (0.97, 1.04)	1.01 (0.97, 1.05)	0.740		
MBP							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	1.43 (0.95, 2.16)	0.090	1.06 (0.74, 1.51)	1.17 (0.80, 1.71)	0.429		
Tertile 3	1.37 (0.84, 2.26)	0.210	0.86 (0.60, 1.24)	0.91 (0.62, 1.34)	0.642		
Trend test	1.01 (1.00, 1.02)	0.203	1.00 (0.99, 1.00)	1.00 (0.99, 1.01)	0.412		
MEP							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	0.92 (0.58, 1.47)	0.730	0.97 (0.67, 1.40)	1.09 (0.74, 1.62)	0.659		
Tertile 3	1.15 (0.75, 1.76)	0.517	0.84 (0.59, 1.21)	0.88 (0.60, 1.30)	0.533		
Trend test	1.12 (1.01, 1.24)	0.031	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.315		
MCPP							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	1.36 (0.90, 2.07)	0.150	0.93 (0.66, 1.30)	0.86 (0.60, 1.24)	0.413		
Tertile 3	1.72 (1.06, 2.80)	0.028	1.02 (0.71, 1.47)	0.96 (0.65, 1.41)	0.827		
Trend test	Reference	Reference	Reference	Reference			
------------	-----------	-----------	-----------	-----------			
1.12 (1.01, 1.24)	0.031	1.10 (0.98, 1.23)	0.114	1.01 (0.94, 1.09)	0.831	1.00 (0.92, 1.08)	0.973
DEPH							
Tertile 1	Reference	Reference	Reference	Reference			
Tertile 2	1.45 (0.95, 2.21)	0.086	1.25 (0.80, 1.98)	0.329	0.84 (0.60, 1.18)	0.317	0.83 (0.58, 1.20)
Tertile 3	1.00 (0.62, 1.60)	0.993	0.83 (0.49, 1.40)	0.486	0.87 (0.60, 1.25)	0.444	0.88 (0.60, 1.30)
Trend test	1.00 (1.00, 1.00)	0.769	1.00 (1.00, 1.00)	0.368	1.00 (1.00, 1.00)	0.607	1.00 (1.00, 1.00)

a OR: odds ratio
b CI: confidence intervals
c adjusted for age, race, BMI

Figures

Figure 1
Flow chart of participants selection.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
- SupplementMaterial.docx