Reconstruction of omega-categorical structures from their endomorphism monoids

David Evans

School of Mathematics, UEA, Norwich.
From September 2015: Dept. of Mathematics, Imperial College, London.

Durham, July 2015.
Joint with Manuel Bodirsky, Michael Kompatscher and Michael Pinsker.
Non-reconstructibility

Fact
There exist separable profinite groups G_1, G_2 which are isomorphic as groups, but not as topological groups.

Theorem (DE + P. Hewitt, 1990)
There exist two countable, ω-categorical structures $\mathcal{M}_1, \mathcal{M}_2$ whose automorphism groups are isomorphic as groups, but not as topological groups.

Theorem (M. Bodirsky + DE + M. Kompatscher + M. Pinsker, ’14)
There exist two countable, ω-categorical structures $\mathcal{M}_1, \mathcal{M}_2$ whose endomorphism monoids are isomorphic as monoids, but not as topological monoids.

- Can use the same $\mathcal{M}_1, \mathcal{M}_2$.
- Question asked by Lascar (’87); Bodirsky, Pinsker, Pongrácz (’14).
Endomorphisms

Relational structure with domain A: $\mathcal{A} = (A; (R_i : i \in I))$, where $R_i \subseteq A^{n_i}$, $n_i \in \mathbb{N}$.

Endomorphism of \mathcal{A}: $\alpha : A \rightarrow A$, $\alpha(R_i) \subseteq R_i$ for all $i \in I$.

End(\mathcal{A}): monoid of endomorphisms of \mathcal{A}.

Caveat: Sensitive to the language (ie. choice of the atomic relations R_i).

Aut(\mathcal{A}): group of units in End(\mathcal{A}).

Topological monoid: End$(\mathcal{A}) \subseteq A^A$.
Translations

Closed subgroups of $\text{Sym}(A) \leftrightarrow \text{Aut}(A)$, A relational structure with domain A.

Closed submonoids of $A^A \leftrightarrow \text{End}(A)$, A relational structure with domain A.

Suppose A is countable:

Closed oligomorphic subgps of $\text{Sym}(A) \leftrightarrow \text{Aut}(A)$, A ω-categorical.

Oligomorphic: finitely many orbits on A^n, for all $n \in \mathbb{N}$.

Closed submonoids of $A^A \leftrightarrow \text{End}(A)$, A ω-categorical.

with oligomorphic unit group

If A is ω-categorical the closure of $\text{Aut}(A)$ in $\text{End}(A)$ is the monoid $E\text{Emb}(A)$ of elementary embeddings $A \to A$.

David Evans (UEA/IC)
Suppose $\mathcal{A}_1, \mathcal{A}_2$ are countable, ω-categorical structures.
Suppose X denotes Aut, End or EEmb.

Suppose $X(\mathcal{A}_1)$ and $X(\mathcal{A}_2)$ are isomorphic as algebraic objects. How are \mathcal{A}_1 and \mathcal{A}_2 related?

REMARK: If $\text{Aut}(\mathcal{A}_1)$ and $\text{Aut}(\mathcal{A}_2)$ are isomorphic as topological groups, then $\mathcal{A}_1, \mathcal{A}_2$ are biinterpretable.
Failure of automatic continuity

Theorem (Bodirsky, Pinsker, Pongrácz, 2014)

Let \mathcal{A} be countable ω-categorical. Then there is a monoid homomorphism $\xi : EEmb(\mathcal{A}) \to A^A$ which is not continuous.
Lascar’s Theorem

Definition: (1) If S is a topological group, denote by S° the intersection of the closed subgroups of finite index in S.
(2) A countable, ω-categorical structure \mathcal{A} is *G-finite* if for every open subgroup $U \leq \text{Aut}(\mathcal{A})$ the subgroup U° is of finite index in U.

Theorem (Lascar, 1980’s)

Suppose $\mathcal{A}_1, \mathcal{A}_2$ are countable, G-finite, ω-categorical structures and $\alpha : \text{EEmb}(\mathcal{A}_1) \to \text{EEmb}(\mathcal{A}_2)$ is an isomorphism of monoids. Then the restriction of α to $\text{Aut}(\mathcal{A}_1)$ is a topological isomorphism between $\text{Aut}(\mathcal{A}_1)$ and $\text{Aut}(\mathcal{A}_2)$. In particular, \mathcal{A}_1 and \mathcal{A}_2 are biinterpretable.

Start of proof: For $e, f \in \text{EEmb}(\mathcal{A}_1)$, write $e \leq f$ iff there is $k \in \text{EEmb}(\mathcal{A}_1)$ with $e = fk$. Note that this is preserved by α and $e \leq f$ iff $\text{im}(e) \subseteq \text{im}(f)$. So we can recover the poset of elementary submodels of \mathcal{A}_1 from the algebraic structure of $\text{EEmb}(\mathcal{A}_1)$. . .

Question: Can we recover $\text{EEmb}(\mathcal{A})$ from the algebraic structure of $\text{End}(\mathcal{A})$ (for ω-categorical \mathcal{A})?
Profinite quotients

Any separable profinite group K embeds as a closed subgroup of $\Pi_{n \in \mathbb{N}} \text{Sym}(n)$.

Fact (Cherlin - Hrushovski)

There is a countable, ω-categorical structure \mathcal{A} and a continuous surjection $\theta : \text{Aut}(\mathcal{A}) \to \Pi_{n \in \mathbb{N}} \text{Sym}(n)$ with kernel $\Phi = (\text{Aut}(\mathcal{A}))^\circ$.

So if $K \leq \Pi_{n \in \mathbb{N}} \text{Sym}(n)$ is closed, then $\Sigma_K = \theta^{-1}(K)$ is a closed, oligomorphic group, $\Sigma_K^\circ = \Phi$, and $\Sigma_K / \Phi \cong K$.

Remark: If $K_1, K_2 \leq \Pi_{n \in \mathbb{N}} \text{Sym}(n)$ are closed and algebraically isomorphic, there does not seem to be any reason to expect that Σ_{K_1} and Σ_{K_2} should be algebraically isomorphic.
Examples for non-reconstructibility

Fact

There is a separable profinite group G with the following properties:

- G has a finite, central subgroup $F \neq 1$ such that F has a complement in G and any such complement is dense in G.
- G is nilpotent of class 2 and the derived subgroup $G^{(1)}$ is a proper, dense subgroup of the centre $Z(G)$.

From the first point, there is a subgroup $E \leq G$ with $G = F \times E$, and any such E is dense in G.

If $H = G/F$, then H is algebraically isomorphic to E, but not topologically.

Thus $K = F \times H$ and G are profinite groups which are isomorphic as groups.

Note that $Z(K) = F \times Z(H)$ and $K^{(1)} = 1 \times H^{(1)}$, so the derived group of K is not dense in its centre. So G, K are not topologically isomorphic.
Consider $G \xrightarrow{\pi} H = G/F$ and $\eta : H \rightarrow E$ given by $(\pi|E)^{-1}$ (discontinuous).

G has a base $(G_i : i \leq \omega)$ of open neighbourhoods of 1 where $G_i \trianglelefteq G$ and $\bigcap_{i<\omega} G_i = F$.

Let $H_i = \pi(G_i)$ for $i < \omega$ and $H_\omega = \pi(G_\omega \cap E)$.

Let $X = \bigsqcup_{i<\omega} H/H_i$ and $C = H/H_\omega$.

The action of H on X gives a continuous embedding $H \rightarrow \text{Sym}(X)$.

The action of H on $X \cup C$ gives an embedding $H \rightarrow \text{Sym}(X \cup C)$ which is not continuous. The closure of the image is topologically isomorphic to G.

Proof: Identify X with $\bigsqcup_{i<\omega} G/G_i$ and C with G/G_ω via $\alpha : H/H_\omega \rightarrow G/G_\omega$ where $\alpha(hH_\omega) = \eta(h)G_\omega$. This is a bijection and $\eta(h)\alpha(kH_\omega) = \alpha(hkH_\omega)$.
From Σ_H to Γ

- Find A countable, ω-categorical, $\Sigma = \text{Aut}(A)$, with a continuous surjection $\nu : \Sigma \to H$ with kernel $\Phi = \Sigma^\circ$.
- Let $\Psi = \nu^{-1}(H_\omega)$; identify $C = H/H_\omega$ with Σ/Ψ.
- Let $B = A \cup C$ with $i : \Sigma \to \text{Sym}(B)$ the resulting action.
- Let Γ be the closure of $i(\Sigma)$ in $\text{Sym}(B)$.

Lemma

1. Γ is oligomorphic on B;
2. $\Gamma = i(\Sigma) \times \Gamma_A$ and $\Gamma_A \cong F$;
3. $\Gamma^\circ = i(\Phi)$;
4. Γ/Γ° is topologically isomorphic to G.
Conclusion - for automorphism groups

- There is an ω-categorical structure \mathcal{M}_1 with domain B and automorphism group Γ.
- There is an ω-categorical structure \mathcal{M}_2 with domain B and automorphism group $\Delta = \Sigma \times F$ (topological product).

Theorem

$\text{Aut}(\mathcal{M}_1)$ and $\text{Aut}(\mathcal{M}_2)$ are isomorphic as groups, but not as topological groups.

Proof: The groups are both isomorphic to $\Sigma \times F$.
Suppose $\beta : \Gamma \to \Delta$ is an isomorphism of topological groups. Then $\beta(\Gamma^\circ) = \Delta^\circ$ and so we have a topological isomorphism $\Gamma / \Gamma^\circ \to \Delta / \Delta^\circ$.
But $\Gamma / \Gamma^\circ \cong G$ and $\Delta / \Delta^\circ \cong F \times H$ (topologically). Contradiction. \square
Endomorphism monoids

- Canonical language for \mathcal{A}: atomic relation for each $\text{Aut}(\mathcal{A})$-invariant subset of A^n (all n).
- Let $\Lambda = \text{End}(\mathcal{A}) = \text{EEmb}(\mathcal{A}) = \tilde{\Sigma} \subseteq A^A$.
- $\nu : \Sigma \to H$ extends to a continuous monoid homomorphism $\mu : \Lambda \to H$.
- Λ acts on $C = H/H_\omega = G/G_\omega$ by $f(hH_\omega) = \mu(f)hH_\omega$.
- Obtain embedding $j : \Lambda \to B^B$ (where $B = A \cup C$) extending i.
- Let Ω be the closure of $j(\Lambda)$ in B^B.

Lemma

1. $\Omega = j(\Lambda) \times \Omega_A$ and $\Omega_A = \Gamma_A$.
2. The group of units in Ω is Γ.
Conclusion - for endomorphism monoids

- Assume $\mathcal{M}_1, \mathcal{M}_2$ have their canonical languages.
- $\Gamma = \text{Aut}(\mathcal{M}_1)$ and $\Omega = \text{End}(\mathcal{M}_1)$.
- $\text{End}(\mathcal{M}_2)$ is isomorphic to the topological product $\Lambda \times F$.
- Both $\mathcal{M}_1, \mathcal{M}_2$ are countable, ω-categorical.

Theorem

$\text{End}(\mathcal{M}_1)$ and $\text{End}(\mathcal{M}_2)$ are isomorphic as monoids, but not as topological monoids.

Proof: The monoids are isomorphic to $\Lambda \times F$. A topological isomorphism between them would induce a topological isomorphism between their groups of units, Γ and Δ, which is impossible. □