Title
Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome Composition.

Permalink
https://escholarship.org/uc/item/4mm5d82n

Journal
mSystems, 6(2)

ISSN
2379-5077

Authors
Marotz, Clarisse
Cavagnero, Kellen J
Song, Se Jin
et al.

Publication Date
2021-04-27

DOI
10.1128/msystems.01329-20

Peer reviewed
Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome Composition

Clarisse Marotz, Kellen J. Cavagnero, Se Jin Song, Daniel McDonald, Stephen Wandro, Greg Humphrey, MacKenzie Bryant, Gail Ackermann, Edgar Diaz, Rob Knight

Department of Pediatrics, University of California San Diego, La Jolla, California, USA
Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
Department of Dermatology, University of California San Diego, La Jolla, California, USA

Clarisse Marotz and Kellen J. Cavagnero contributed equally to this work. Author order was determined by submission organization and formatting time.

ABSTRACT As the number of human microbiome studies expand, it is increasingly important to identify cost-effective, practical preservatives that allow for room temperature sample storage. Here, we reanalyzed 16S rRNA gene amplicon sequencing data from a large sample storage study published in 2016 and performed shotgun metagenomic sequencing on remnant DNA from this experiment. Both results support the initial findings that 95% ethanol, a nontoxic, cost-effective preservative, is effective at preserving samples at room temperature for weeks. We expanded on this analysis by collecting a new set of fecal, saliva, and skin samples to determine the optimal ratio of 95% ethanol to sample. We identified optimal collection protocols for fecal samples (storing a fecal swab in 95% ethanol) and saliva samples (storing unstimulated saliva in 95% ethanol at a ratio of 1:2). Storing skin swabs in 95% ethanol reduced microbial biomass and disrupted community composition, highlighting the difficulties of low biomass sample preservation. The results from this study identify practical solutions for large-scale analyses of fecal and oral microbial communities.

IMPORTANCE Expanding our knowledge of microbial communities across diverse environments includes collecting samples in places far from the laboratory. Identifying cost-effective preservatives that will enable room temperature storage of microbial communities for sequencing analysis is crucial to enabling microbiome analyses across diverse populations. Here, we validate findings that 95% ethanol efficiently preserves microbial composition at room temperature for weeks. We also identified the optimal ratio of 95% ethanol to sample for stool and saliva to preserve both microbial load and composition. These results provide rationale for an accessible, nontoxic, cost-effective solution that will enable crowdsourcing microbiome studies, such as The Microsetta Initiative, and lower the barrier for collecting diverse samples.

KEYWORDS 16S rRNA gene amplicon sequencing, benchmarking, metagenomics, microbiome, preservation

Next generation sequencing has enabled an unprecedented view of human-associated microbial communities. This insight has been leveraged to improve understanding of how such communities contribute to human health. Many investigations focus on the gut, using fecal samples as a proxy for the intestinal microbiome, but skin and oral samples are also commonly collected for human microbiome analysis. To comprehensively understand human-associated microbiomes, samples have been acquired from healthy and diseased patients in the clinical setting (1), indigenous peoples in the field (2), and individuals across the globe through community science
efforts (3–5). In the clinic, samples are typically frozen immediately at −20°C or below until nucleic acid extraction and sequencing, the gold standard in the microbiome field. However, beyond the clinic, immediate freezing is often not possible, thus leading to the use of preservatives. Importantly, there is currently no standard protocol for microbiome preservation. Identifying a cost-effective, practical solution to microbiome sample preservation could help reduce the barrier to collecting specimens from geographic locations that contain high microbial diversity but are vastly underrepresented (6).

Numerous studies have aimed to understand how fecal storage affects microbiome composition (7–10). In 2016, our group reported one of the largest investigations thus far (11). We performed 16S rRNA gene amplicon sequencing on over 1,200 samples, which included fecal samples from 15 individuals subjected to six preservatives, six storage temperatures, and four time points. Our analysis revealed that composition was well maintained over time and across temperatures when samples were stored in 95% ethanol.

In the last 4 years, microbiome sequencing techniques and the computational tools to analyze next generation sequencing data have advanced considerably. Here, we aimed to improve the understanding of how storage affects microbiome composition using state-of-the-art methods. First, we reanalyzed our original 16S rRNA gene amplicon sequencing data set using a high-resolution exact sequence variant method (12, 13). Next, to further increase resolution (14), we performed shallow shotgun metagenomic sequencing on archived DNA from our original study. Results from these studies confirmed our original conclusion that 95% ethanol is efficacious in preserving fecal microbiome integrity. Finally, we extended our study of 95% ethanol to investigate optimal sample collection protocols for fecal, saliva, and skin samples.

RESULTS

95% EtOH is an efficient room temperature preservative for microbiome analyses. We first set out to determine the effect of sample storage on fecal microbial composition. To that end, we reanalyzed 16S rRNA gene amplicon sequencing (16S) data from our previous storage study (11). Because shotgun metagenomic sequencing provides deeper characterization of microbial communities and does not necessarily reproduce results from 16S analyses (14), we also performed shotgun metagenomic sequencing on remaining nucleic acid extracts. In the prior study, fecal samples had been obtained from 15 subjects (10 humans and 5 dogs) and subjected to six different preservative conditions (no preservative [None], 70% ethanol [EtOH], 95% ethanol, RNAlater, OMNi-gene GUT [OMNi], and FTA cards [FTA]), up to six different temperature conditions (ambient, −20°C, −20°C after 1 week, 4°C, freeze-thaw, and heat), and up to four time points (fresh, 1 week, 4 weeks, and 8 weeks).

We assessed phylogenetically informed beta-diversity in our shotgun metagenomic sequencing data set using a curated microbial phylogenetic tree (15) (see Materials and Methods). In both 16S (see Fig. S1A in the supplemental material) and shotgun data sets (Fig. 1A), weighted UniFrac beta-diversity was driven primarily by subject and subject species, rather than by whether samples were stored or not, or by specific storage method. This finding held true across six different beta-diversity metrics (see Table S1 in the supplemental material).

To determine which storage method induced the least amount of change in fecal microbiome composition, we compared weighted UniFrac distances between each subject’s fresh and stored samples. As expected, immediate sample freezing (−20°C) resulted in the least change across conditions with both shotgun (Fig. 1B) and reprocessed 16S data (Fig. S1B). As in our original 16S analysis (11), samples left unfixed or preserved in 70% ethanol exhibited the greatest compositional change with storage, while 95% ethanol, FTA, OMNi-gene GUT, and RNAlater minimized changes in composition.

To identify potential changes in the relative abundance of specific taxonomic clades, we compared the relative abundance of each genus in each subject’s sample processed fresh versus 8 weeks out for each preservative (Fig. 1C, Fig. S1C). As expected, the correlation between fresh and 8-week samples was markedly reduced
FIG 1 Effect of storage on fecal microbiome composition with shallow shotgun metagenomic sequencing. (A) Beta-diversity of shotgun metagenomic sequencing data estimated with weighted UniFrac, colored by participants. Diamonds represent fresh samples. (B) Weighted UniFrac (Continued on next page)
without the use of a fixative—unless the sample was immediately frozen (−20°C). Samples stored in 95% ethanol, FTA, and OMNI-gene GUT had similarly tight taxonomic correlations across conditions, while 70% ethanol-treated samples correlated relatively poorly under several conditions.

Previous reports have shown microbial blooms occur over time in fecal samples without the use of preservatives (11, 16). Therefore, we determined the percentage of taxa with a greater than 10-fold change in relative abundance over time for each stored sample. As expected, microbial blooms occurred in samples unfixed and stored ambiently, and blooming was prevented by immediately freezing (Fig. 1D, Fig. S1D). As in our previous report, we found that samples stored in 70% ethanol contained similar levels of blooming organisms to unfixed samples, whereas samples stored in 95% ethanol, OMNI-gene GUT, FTA, and RNAlater contained levels of blooming organisms similar to those of immediately frozen samples.

As with composition, differences in Shannon and Simpson alpha-diversity across storage times were largest when samples were unfixed or stored in 70% EtOH, and smallest when stored in 95% EtOH, OMNI-gene GUT, FTA, and RNAlater (Fig. S2). To determine the ability to correctly classify samples after preservation, we trained a random forest sample classifier on subjects’ fresh samples (none, fresh, and ambient) and determined the accuracy of the classifier in predicting the subject from which each stored sample was derived for each storage condition. The classifier was nearly perfect at predicting sample donors across storage methods (Fig. S3). Of the few misclassified samples, most were not immediately frozen or fixed in 95% ethanol.

Collectively, our findings indicate that 95% ethanol, OMNI-gene GUT, FTA, and RNAlater are effective fecal microbiome preservatives. In our view, 95% ethanol is the most practical as it is nontoxic and cost-effective. Because our reanalyzed 16S data and shotgun metagenomic data were highly consistent (Fig. S4, Mantel Spearman correlation = 0.75), we performed a follow-up experiment with 16S rRNA gene amplicon sequencing to determine the optimal sample to 95% ethanol ratio for sample collection.

Optimizing the ratio of 95% ethanol preservative to sample. To determine the optimal ratio of 95% EtOH to fecal sample for microbiome analyses, fecal samples from 12 participants were divided into seven categories for comparison (Fig. 2A); a fecal sample was swabbed following the American Gut Project protocol (4) and immediately frozen, a 1-g aliquot of the fecal sample was frozen immediately with no preservative, a 1-g aliquot of fecal sample was stored in 1 ml, 2 ml, or 5 ml of 95% ethanol and left at room temperature, or a fecal swab was stored in 1 ml of 95% ethanol and left at room temperature, and sample was extracted from the swab or remaining 95% ethanol eluent.

Microbial load was evaluated via quantitative PCR (qPCR) of the 16S rRNA gene. Fecal swabs stored in 95% ethanol and extracted from the swab head had the closest amount of microbial load to the gold standard out of all the samples stored at room temperature (Fig. 2B). Principal coordinate analysis (PCoA) calculated with weighted UniFrac revealed that samples tended to cluster by host subject rather than storage method (Fig. 2C). Permutational multivariate analysis of variance (PERMANOVA) analysis across all distance metrics tested confirmed that beta-diversity was more strongly driven by host subject rather than storage method (Table S2). The relative abundance of each genus was compared between the gold standard (swab immediately frozen) and each storage method. Relative abundances of all storage methods were significantly correlated with the gold standard (Fig. 2D), and swab stored in 95% ethanol had one of the strongest correlations (Pearson R = 0.973).
Next, we applied the same experimental design to oral microbiome samples. Twelve participants provided unstimulated saliva samples which were stored in seven different ways for comparison (Fig. 3A). A saliva sample was swabbed following the American Gut Project (AGP) protocol (4) and immediately frozen, a 500-μl aliquot of saliva sample was frozen immediately with no preservative, a 500-μl aliquot of saliva sample was stored in 0.5 ml, 1 ml, or 2 ml of 95% ethanol and left at room temperature, or a saliva swab was stored in 1 ml of 95% ethanol and left at room temperature, and a sample was extracted from the swab or remaining 95% ethanol eluent.

qPCR analysis revealed that saliva samples stored in 95% ethanol at a ratio of 1:1 or 2:1 had the closest amount of microbial load to the gold standard out of all the samples stored at room temperature (Fig. 3B). Saliva swabs stored in 95% ethanol had significantly lower 16S rRNA gene copies whether the sample was extracted from the swab head or the remaining 95% ethanol. Similar to fecal samples, PCoA of the saliva samples revealed that beta-diversity was more strongly driven by host subject rather than storage method across all distance metrics (Fig. 3C, Table S2). The genus-level relative abundances of all storage methods were significantly correlated with the gold standard (Fig. 3D), and saliva samples were stored in 95% ethanol at a ratio of 1:1 (Pearson R = 0.88), 2:1 (Pearson R = 0.89), and 4:1 (Pearson R = 0.91) had the strongest correlations.

Finally, we applied the same experimental design to skin microbiome samples. Twelve participants provided triplicate skin swabs each from their forehead and right palm, which were then stored in three different ways for comparison (Fig. 4A). Skin swabs were either...
immediately frozen or stored in 1 ml 95% ethanol and left at room temperature, and sample was extracted from the swab or remaining 95% ethanol eluent. qPCR analysis revealed that both forehead and palm swab samples stored in 95% ethanol had significantly reduced microbial loads compared to swabs stored at −80°C without preservative (Fig. 4B). Similar to saliva and fecal samples, beta-diversity was most strongly driven by storage method across all distance metrics calculated (Fig. 4C, Table S2). The genus-level relative abundances were correlated better with the gold standard in forehead samples extracted from swab (Pearson $R = 0.94$) than ethanol (Pearson $R = 0.70$). This held true for palm samples (swab extraction Pearson $R = 0.78$, ethanol extraction Pearson $R = 0.61$), although these correlated less well than forehead samples (Fig. 4D).

DISCUSSION

Efficient, cost-effective preservatives for microbiome analyses are increasingly important as the scientific community expands sampling efforts to include more diverse communities and organisms. Here, we used a state-of-the-art denoising tool to reanalyze amplicon sequencing data from a large comparative study (11). We also generated shotgun metagenomic sequencing on these remnant samples. Both the updated 16S sequencing results and the shotgun metagenomics validated our previous finding that 95% ethanol performs well to preserve microbiome samples when immediate, consistent freezing is not an option.
We performed follow-up experiments to determine the optimal ratio of sample to 95% EtOH for different sample types, including fecal, saliva, and skin samples. For fecal samples, storing a swab of feces in 95% EtOH and extracting from the fecal swab provided the best recovery of biomass and high fidelity of microbial composition compared to the gold standard of freezing. For saliva samples, the best solution was storing liquid saliva at a ratio of 1:2 with 95% EtOH. Skin sample preservation did not work nearly as well at retaining biomass or microbial composition as saliva and fecal samples. One reason could be that the primers targeting the V4 region of the 16S rRNA gene used in this study are suboptimal for skin amplicon sequencing (17); therefore, these results may need to be validated via shotgun metagenomic sequencing. However, this is complicated because skin samples are extremely low biomass and contain a high percentage of host DNA (18), underscoring the difficulty of designing a standardized skin sample collection method for high-throughput analysis.

Together, our findings support the use of 95% EtOH for fecal and saliva sample preservation for downstream microbiome sequencing analyses. These results will guide collection protocols and improve our ability to collect samples for microbiome analysis when immediate freezing is not available.

MATERIALS AND METHODS

Validation of Song et al. study with updated techniques.

(i) Shotgun metagenomic sequencing. Remnant genomic DNA (gDNA) from Song et al. (11) was used for shotgun metagenomic sequencing as previously described (19). Briefly, gDNA was quantified with Quant-iT PicoGreen double-stranded DNA (dsDNA) assay kit (ThermoFisher Scientific), and 1 ng of
input DNA was used in a 1:10 miniaturized Kapa HyperPlus protocol. For samples with less than 1 ng DNA, a maximum volume of 3.5 μl input was used. Equimolar amounts of each sample were pooled, and the library was size selected for fragments between 300 and 700 bp on the Sage Science PippinHT. The pooled library was sequenced as a paired-end 150-cycle run on an Illumina HiSeq2500 v2 run at the University of California San Diego (UCSD) IGM Genomics Center.

(ii) Shotgut metagenomic and 16S analysis. Shallow shotgun metagenomic reads were aligned using SHOGUN (20) with the default settings against the Web of Life database (https://github.com/qiuyunzhu/woltka) and clustered using the genome operational taxonomic unit (gOTU) pipeline (https://github.com/qiuyunzhu/woltka). For 16S rRNA gene amplicon sequencing (16S), reads were demultiplexed, quality control filtered, and trimmed to 100 nucleotides (nt) using Qiita (study identifier ID) 10934. Reads were then denoised into amplicon sequence variants using Deblur v1.1.0 (13). Fragments were inserted into the Greengenes 13.8 reference phylogeny (21) using SEPP (22) with QIIME 2’s (23) q2-fragment-insertion plugin (24). QIIME 2 version 2019.7 was used throughout our validation of the Song et al. study.

(iii) Diversity measures. 16S and shotgun metagenomic data were first rarefied to 10,000 and 250,000 reads, respectively. Alpha-diversity (Shannon, Simpson) and beta-diversity (unweighted UniFrac (25), weighted UniFrac, Bray Curtis, Jaccard, Aitchison (26), robust principal component analysis [RPCA] (27)) were calculated using the QIIME 2’s q2-diversity plugins “alpha-group-significance” and “beta-group-significance,” respectively. EMPeror (28) plots were visualized using QIIME2 view. To understand the effect of each preservative on bacterial composition and diversity, we plotted the weighted UniFrac distance and Shannon diversity difference between individuals’ preserved samples and nonpreserved, fresh samples.

(iv) Relative abundance analyses. To determine sample relative abundance, reads were first classified by taxon using the QIIME 2 plugin q2-feature-classifier (29) with the “classify-sklearn” action against the default Greengenes 13.8 classifier, and then collapsed to genus level using the QIIME 2 plugin q2-taxa with the “collapse” action. For each preservative and storage temperature, genus level relative abundances from fresh samples were plotted against 8-week-old samples, and Pearson correlation coefficients were calculated. To determine the impact of each preservative on microbial bloom formation over time, the fraction of taxa with greater than 10-fold change relative to fresh samples was calculated for each preservative (at ambient temperature) at each time point. As a control, the fraction of taxa with greater than 10-fold change relative to fresh samples was calculated for frozen samples at each time point.

(v) Sample classification. A supervised learning approach was used to determine whether stored samples were similar enough to fresh samples to predict the donor of each stored sample. We trained a model on fresh replicate samples (six per individual) and determined the model’s ability to accurately classify individuals for each storage condition. To that end, we utilized the QIIME 2’s q2-sample-classifier (30) plugin with the “classify-samples” action.

(vi) Procrustes analysis. To directly compare the beta-diversity of the 16S and shotgun data sets, we used the QIIME 2 q2-diversity plugin with the “procrustes-analysis” action using unweighted UniFrac data.

95% ethanol ratio optimization experiments.

(i) Sample collection and storage. We recruited 12 participants under institutional review board (IRB) 150275 to provide stool, saliva, and skin samples for the sample collection protocol optimization portion of this study. For stool samples, full fecal specimens were collected into commode specimen collection tubes (Fisher Scientific, catalog number 02-644-208) and were processed for storage within 1 h of collection; one gram of feces stored at −80°C, one fecal swab (BD Sterile Falcon Swuve, catalog number 220090) stored at −80°C, one gram of feces stored in either 1 ml, 2 ml, or 5 ml of 95% EtOH at room temperature, and one fecal swab in 1 ml of 95% EtOH at room temperature. For saliva samples, participants were asked to provide 4 ml of saliva into a sterile 15-ml conical tube. All saliva samples were vortexed well and processed for storage within 1 h of collection; 0.5 ml stored at −80°C, saliva swab (BD Sterile Falcon Swuve, catalog number 220090) stored at −80°C, 0.5 ml saliva stored in either 0.5 ml, 1 ml, or 2 ml 95% EtOH, and one saliva swab stored in 1 ml of 95% EtOH at room temperature. For skin samples, participants were asked to rub a dry, double-headed swab (BD Sterile Falcon Swube, catalog number 220090) against their right palm for 30 s. One swab head was immediately frozen at −80°C, and the other was stored in 1 ml of 95% EtOH. This process was repeated on the forehead. All samples were extracted 7 or 8 days after sample collection as described below.

(ii) gDNA extraction and 16S rRNA gene amplicon sequencing. Samples were extracted using the Qiagen PowerSoil MagAttract DNA kit as previously described (31). For swab samples, the entire swab head was broken off into the extraction vial. For the 95% EtOH eluent samples, 400 μl was added to the extraction vial. For all other samples (fecal or saliva aliquots in 95% EtOH), the sample was swabbed and the head broken off into the extraction vial. 16S rRNA gene amplification was performed according to the Earth Microbiome Project protocol (32). Briefly, Illumina primers with unique reverse primer barcodes (33) were used to amplify the V4 region of the 16S rRNA gene (515fbc-806r (34)). Amplification was performed in a miniaturized volume (35), with single reactions per sample (36). Equal volumes of each amplicon were pooled, and the library was sequenced on the Illumina MiSeq sequencing platform with a MiSeq reagent kit v2 and paired-end 150-bp cycles. Raw data and associated feature tables are publicly available in Qiita (qiita.ucsd.edu) as study ID 12610.

(iii) Microbial load assessment via qPCR. To estimate microbial load, sample gDNA was evaluated in triplicate with KAPA Universal qPCR Master Mix (catalog number KK4828) using the Bakt 341F-805R primers (Bakt 341F 5’-CCCTACGGGNGGCWGCAG-3’ and Bakt 805R 5’-GACTACHVGGGTATCTAATCC-3’))
(37). Amplification was performed in triplicate 10-μl reaction mixtures each containing 5 μl KAPA MasterMix, 0.5 μl primer mix containing 5 μM forward and reverse primers, 2 μl KAPA DNA, and 2.5 μl H₂O. The PCR mix was cycled through the following temperatures on a Bio-Rad CFX real-time PCR system: (i) 95° for 5 min; (ii) 40 cycles with 1 cycle consisting of 95°C for 30 s and 60°C for 30 s; and (iii) 4°C hold. The median value of the triplicate reactions was normalized to the value for the gold standard (frozen swab) for each sample.

Data availability. Data are publicly available in Qiita (38) under study IDs 10394 (validation of Song et al.) and 12610 (95% EtOH sample collection study) and through the European Nucleotide Archive under study ID PRJEB42056.

SUPPLEMENTAL MATERIAL

Supplemental material is available only online.

FIG S1, TIF file, 2.1 MB.
FIG S2, TIF file, 1.7 MB.
FIG S3, TIF file, 2.6 MB.
FIG S4, TIF file, 1 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS

We thank Qiyun Zhu for his assistance in performing the shotgun metagenomic taxonomy alignment.

C.M. was funded by NIDCR NRSA F31 Fellowship 1F31DE028478-01. K.J.C. is supported by NIH grant T32 DK007202.

REFERENCES

1. Wu W-K, Chen C-C, Panyod S, Chen R-A, Wu M-S, Sheen L-Y, Chang S-C. 2019. Optimization of fecal sample processing for microbiome study — the journey from bathroom to bench. J Formos Med Assoc 118:545–555. https://doi.org/10.1016/j.jfma.2018.02.005.

2. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bells G, Luisselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. 2014. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654. https://doi.org/10.1038/ncomms4654.

3. Falony G, Joosens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov S, Aonner MJ, Valles-Colomer M, Vandevenne D, Tito RR, Chaffron S, Rymanens L, Verspecht C, De Sutter L, Lima-Mendez G, D’ho H, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaut L, Fuj F, Henckaerts L, Zhanakova A, Wijmenga C, Raes J. 2016. Population-level analysis of gut microbiome variation. Science 352:560–564. https://doi.org/10.1126/science.aad3503.

4. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsa B, Brennan C, Chen Y, Goldaizh LD, Dorrestein PC, Dunn RR, Fahimiou AP, Gaffney J, Gilbert JA, Gogul G, Green JL, Humphrey G, Hutttenhower C, Jackson MA, Jansen S, Jeste DV, Jiang L, Kelley ST, Knights D, Koscikow T, Ladau J, Leach M, Marotz C, Meleshko D, Melnik AV, Metcalf JL, Mohimani H, Montassier E, Navas-Molina J, Nguyen TT, Peddada S, Pevzner P, Pollard KS, Rahnavaad G, Robbins-Pianka A, Sangwong N, Stone uterus L, Smarr R, Song SJ, Tucker J, Swafford AD, Thackray VG, Thompson LR, et al. 2018. American Gut: an open platform for citizen science microbiome research. mSystems 3:00031-18. https://doi.org/10.1099/mSystems.00031-18.

5. Gevers D, Knight R, Petrovsky JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttynower C. 2012. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377. https://doi.org/10.1371/journal.pbiol.1001377.

6. Almeida A, Nayfach S, Boland M, Strozzi F, Beraochea M, Shi ZJ, Pollard KS, Sarkarho E, Parks DH, Hugenholtz P, Segata N, Finn RK. 2021. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 39:105–114. https://doi.org/10.1038/s41552-020-0603-3.

7. Illet EE, Jangens M, Nogueira-Julian M, Daugard G, Murray DD, Helberg M, Parides R, Lundgren J, Sengelov H, MacPherson C. 2019. Gut microbiome comparability of fresh-frozen versus stabilized-frozen samples from hospitalized patients using 16S rRNA gene and shotgun metagenomic sequencing. Sci Rep 9:13531. https://doi.org/10.1038/s41598-019-49956-7.

8. Pennington JS, Penno MAS, Ngui KM, Ajami NJ, Roth-Schulze AJ, Wilcox SA, Bandala-Sanchez E, Wentworth JM, Barry SC, Brown CY, Couper JJ, Petrovsky JF, Papenfuss AT, Harrison LC, ENDIA Study Group. 2018. Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Sci Rep 8:4386. https://doi.org/10.1038/s41598-018-22491-7.

9. Carruthers LV, Moses A, Adsh A, Faust CL, Tukahweba EM, Hall LJ, Ranford-Cartwright LC, Lamberton PHL. 2019. The impact of storage conditions on human stool 16S rRNA microbiome composition and diversity. Peerj 7:8133. https://doi.org/10.7717/peerj.8133.

10. Chen Z, Hui PC, Hui M, Yeoh YK, Wong PY, Chan MCW, Wong MCS, Ng SC, Chan FKL, Chan PKS. 2019. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling mSystems 4:e00271-18. https://doi.org/10.1128/mSystems.00271-18.

11. Song SJ, Amir A, Metcalfe JL, Amato KR, Xu ZZ, Humphrey G, Knight R. 2016. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1:e00021-16. [CrossRef] https://doi.org/10.1128/mSystems.00021-16.

12. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119.

13. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2:e00191-16. https://doi.org/10.1128/mSystems.00191-16.

14. Laundero J, Fulci V, Palone F, Stornati L, Cucchiara S, Carissimi C. 2018. Quantitative assessment of shotgun metagenomics and 16S rDNA amplification sequencing in the study of human gut microbiome. OMICS 22:248–254. https://doi.org/10.1089/omi.2018.0013.

15. Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, Belda-Ferre P, Al-Ghalith GA, Kopylova E, McDonald D, Koscikow T, Yin JB, Huang S, Salam N, Jiao J-Y, Wu Z, Xu ZZ, Cantrell K, Yang Y, Sayyari E, Rabiee M, Morton JT, Podell S, Knights D, Li W-J, Huttynower C, Segata N, Smith J, Mirzab S, Knight R. 2019. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun 10:5477. https://doi.org/10.1038/s41467-019-13443-4.

16. Amir A, McDonald D, Navas-Molina JA, Debelius J, Morton JT, Hyde E, Robbins-Pianka A, Knight R. 2017. Correcting for microbial blooms in fecal
samples during room-temperature shipping. mSystems 2:e00199-16. https://doi.org/10.1128/mSystems.00199-16.

17. Meisel JS, Hanning GD, Tyldesley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, Grice EA. 2016. Skin microbiome studies are strongly influenced by experimental design. J Invest Dermatol 136:947–956. https://doi.org/10.1016/j.jid.2016.01.016.

18. Bjørre RD, Hugert LH, Boulund F, Seifert M, Johansen JD, Engstrand L. 2019. Effects of sampling strategy and DNA extraction on human skin microbiome investigations. Res Rep 9:17287. https://doi.org/10.1038/s41598-019-53599-z.

19. Sanders NJ, Nuk S, Salido RA, Minich J, Xu ZZ, Zhu Q, Martino C, Fedarko M, Arthur TD, Chen F, Boland BS, Humphrey GC, Brennan C, Sanders K, Gaffney J, Jepsen K, Khosroheidari M, Green C, Liyanage M, Dang JW, Phelton VV, Quinn RA, Bankevich A, Chang JT, Rana TM, Conrad DJ, Sandborn WJ, Smarr L, Dorrestein PC, Pevzner PA, Knight R. 2019. Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biol 20:226. https://doi.org/10.1186/s13059-019-1834-9.

20. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Kohl DM, Beckman KB, Knight R, Knights D. 2018. Evaluating the information content of shallow shotgun metagenomics. mSystems 3:00069-18. https://doi.org/10.1128/mSystems.00069-18.

21. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Kohl DM, Beckman KB, Knight R, Knights D. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139.

22. Mirarab S, Nguyen N, Warnow T. 2012. SEPP: SATé-enabled phylogenetic placement. Pac Symp Biocomput 2012:247–258. https://doi.org/10.1145/1978981.1978946_0024.

23. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvalllet C, Edwards CF, Ernst M, Estaki M, Eloe-Fadrosh E, Gilbert JA, González A, Grace Q, Groth CJ, Gourley K, Guo J, Harper AM, Henry N, Hutterer H, Huttenhower C, Janssen JS, Jarmusch AK, Jiang L, Kaehler BD, Kopylova E, Kostic AD, Kosciolek T, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosiol T, Kosciolek T, Bokulich NA, Knight R, Haroon MF, Kosciolek T, Bokulich NA, Knight R. 2019. Triplicate PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. mSystems 4:e00069-18. https://doi.org/10.1128/mSystems.00069-18.

24. Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8.

25. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-15. https://doi.org/10.1128/mSystems.00009-15.

26. Lipson SR, Roesch CC, Henry F, Gevers D, Knight R. 2012. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00005-15. https://doi.org/10.1128/mSystems.00005-15.

27. Bokulich NA, Dillon MR, Bolyen E, Knight R, Wang M, Rideout JR, Bokulich NA, Dillon MR, Bolyen E, Knight R. 2018. q2-sample-classifier: machine-learning tools for microbiome classification and regression. J Open Res Softw 3:934. https://doi.org/10.21105/jors.00934.

28. Zengler K. 2019. A novel sparse compositional technique reveals microbial perturbations. mSystems 4:e00016-19. https://doi.org/10.1128/mSystems.00016-19.

29. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. 2013. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2:16. https://doi.org/10.1186/2047-217X-2-16.

30. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s41668-018-0470-z.

31. Marotz C, Amir A, Humphrey G, Gaffney J, Gogul G, Knight R. 2017. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62:290–293. https://doi.org/10.2144/000114559.

32. Thompson LR, Sanders JG, McDonald D, Amir A, Ladua J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosiol T, Bokulich NA, Knight R, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosiol T, Bokulich NA, Knight R. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s41668-018-0470-z.

33. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8.

34. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-15. https://doi.org/10.1128/mSystems.00009-15.

35. Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE, Knight R. 2018. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3:e00166-18. https://doi.org/10.1128/mSystems.00166-18.

36. Marotz C, Sharma A, Humphrey G, Gottel N, Daum C, Gilbert JA, Eloe-Fadrosh E, Knight R. 2019. Triplicate PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. Biotechniques 67:29–32. https://doi.org/10.2144/btn-2018-0192.

37. Klinworth G, Pruesse E, Schuber P, Teppeis J, Quast C, Horn M, Glöckner FO. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808.

38. Gonzalez A, Navas-Molina JA, Koscielko T, McDonald D, Vázquez-Baeza Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB, Sanders JG, Shorenstein J, Holste H, Petrus S, Robbins-Planka A, Brislawn CJ, Wang M, Rideout JR, Bokulich NA, Dillon M, Caporaso JG, Dorrestein PC, Knight R. 2018. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 15:796–798. https://doi.org/10.1038/s41592-018-0141-9.