Comparative evaluation of substantivity of two biguanides - 0.2% polyhexanide and 2% chlorhexidine on human dentin

Rita Chandki, Vineeta Nikhil, S. Sai Kalyan

Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India, 1Department of Conservative Dentistry and Endodontics, Subharti Dental College and Hospital, Meerut, Uttar Pradesh, 2Department of Conservative Dentistry and Endodontics, Rural Dental College, Loni, Maharashtra, India

Abstract

Background: Substantivity is one of the desirable characteristics of root canal irrigants. Among conventional endodontic irrigants, only chlorhexidine (CHX) is known to exert significant substantivity on root canal dentin. This study explored the substantivity activity of a polymeric biguanide-poly hexamethylene biguanide (PHMB).

Aim: The aim of this study was to determine the substantivity of a polymeric biguanide - 0.2% PHMB and compare it with that of 2% CHX.

Materials and Methods: To evaluate and compare the substantivity of 0.2% PHMB and 2% CHX on root canal dentin, dentin disks were prepared and substantivity after 1 h, 24 h, 7 days and 21 days was measured using spectrophotometry.

Statistical Analysis Used: The data so obtained were analyzed, and the intergroup comparison was made using unpaired t-test.

Results: The results of this study indicated that 0.2% PHMB exerts significantly greater substantivity than 2% CHX on human dentin.

Conclusion: Within the limitations, this study supports the use of 0.2% polyhexanide as an endodontic irrigant based on its property of substantivity.

Keywords: Chlorhexidine; endodontic irrigants; poly hexamethylene biguanide; polyhexanide; substantivity

INTRODUCTION

Micro-organisms are the known cause of root canal infections.[1-4] The role of chemo-mechanical preparation in eradicating microflora from infected root canal space and establish a sterile condition has been emphasized on.[5-10] However, to date, by no means, bacteria can be completely eliminated from the root canal system. All our methods of chemomechanical preparation aim to lessen the microbial load as much as possible.

Address for correspondence:
Dr. Rita Chandki, 12-A Vaishali Nagar,
Indore - 452 009, Madhya Pradesh, India.
E-mail: chandki.rita@gmail.com

Date of submission: 16.05.2019
Review completed: 07.06.2020
Date of acceptance: 04.08.2020
Published: 10.10.2020

Access this article online

Quick Response Code:
Website: www.jcd.org.in
DOI: 10.4103/JCD.JCD_256_19

How to cite this article: Chandki R, Nikhil V, Kalyan SS. Comparative evaluation of substantivity of two biguanides - 0.2% polyhexanide and 2% chlorhexidine on human dentin. J Conserv Dent 2020;23:46-50.
Chandki, et al.: Substantivity of 0.2%PHMB and 2%CHX on dentin

In these circumstances, it seems logical to incorporate a long-acting antimicrobial agent in endodontic therapy to eliminate the residual bacteria and/or to counteract the bacterial leakage and thus prevent reinfection. Substantivity refers to the prolonged association between the material and a substrate. It is not just a simple deposition of the material on the substrate.

Among intracanal medicaments, the gold standard is calcium hydroxide (Ca(OH)₂). Its antimicrobial activity is linked to the hydroxyl ions release under aqueous conditions. These hydroxyl ions are powerful antioxidants and mediate bactericidal effect via damage to cytoplasmic membranes, proteins, and bacterial DNA. Ca(OH)₂ is bactericidal against a wide spectrum of endodontic pathogens but has relatively weak activity against Enterococcus faecalis (E. faecalis). Ballal et al. showed that the antimicrobial potential of Ca(OH)₂ against E. faecalis reduces rapidly as time elapses, possibly due to dilution of the chemical.

Amongst conventional root canal irrigants, chlorhexidine (CHX) is known to exert a residual antibacterial effect on root canal dentin for up to 3 weeks. The aim of this study was to determine the substantivity of a polymeric biguanide-0.2% poly hexamethylene biguanide (PHMB) and compare it with that of 2% CHX.

MATERIALS AND METHODS

Preparation of test specimens
Eighty dentin disks, of 1 mm [Figure 1a] were obtained by decoronation of the crown and required apical resection of the selected teeth using a diamond disk, at slow speed (<100 rpm) with water coolant. To ensure standardization, dentin disk thickness was measured by means of a vernier caliper (GDC, India) [Figure 1b], and pulpal lumen of 1 mm diameter was obtained using an ISO #FG 57 straight fissure bur (SS white, USA).

The dentin disks were serially treated in an ultrasonic bath with each of the following solutions for 4 min to eliminate smear layer-5% sodium hypochlorite (NaOCl) and 17% ethylenediaminetetraacetic acid liquid. Following this, the dentin disks were autoclaved at 121°C for 15 min at 15 psi above atmospheric pressure. Thereafter, the dentin disks were randomly assigned to two equal groups (n = 40) on the basis of irrigant used. The irrigation solution for the two groups consisted of 0.2% PHMB solution and 2% CHX (Prevest Denpro Limited, India), respectively.

Evaluation of substantivity of 0.2% PHMB and its comparison with 2% CHX:

The dentin disks were treated as follows:

Group I (n = 40) – Treatment with 0.2% PHMB

Group II (n = 40) – Treatment with 2% CHX.

A fresh solution of 0.2% PHMB was prepared in deionized double distilled water using 98% w/v of PHMB in powdered crystalline form (Sinobio chemistry Ltd., China). The dentin disks were treated with 10 µl of 0.2% PHMB and 2% CHX for 20 s in groups one and two, respectively. The treated dentin disks were moved to 2 ml centrifuge tubes containing 1 ml of PBS solution. Thereafter, the tubes were incubated at 37°C. After each test period, centrifugation was done for 2 min. One ml of Phosphate buffered saline solution was then withdrawn from the tube using a micropipette and subjected to spectrophotometry. The spectrophotometric analysis (BioMate 3, Thermo Fisher Scientific, India) was carried out at 260 nm for CHX and 598 nm for PHMB.

The concentrations of the irrigants were determined based on UV-absorbances versus test irrigants, on a standard curve. The substantivity of 2% CHX or 0.2% PHMB to dentin was expressed in percentage based on their applied dose.

The values were submitted to statistical analysis with unpaired Student’s t-test to find which material differed from the others at different intervals.

![Figure 1](image1.png)

Figure 1: (a) Prepared dentin disk specimen. (b) Measurement of dentin disk using Vernier caliper

![Figure 2](image2.png)

Figure 2: Bar diagram comparing substantivity of 2% chlorhexidine and 0.2% poly hexamethylene biguanide
RESULTS

The following observations were made from the descriptive statistics represented in Table 1 and Figure 2.

The mean substantivity for 0.2% PHMB at incubation period of 1 h was (73.73 ± 1.41), at 24 h was (76.32 ± 2.78), at 7 days was (77.74 ± 1.33) and at 21 days was (69.98 ± 6.89).

The mean substantivity for 2% CHX at incubation period of 1 h was (67 ± 1.88), 24 h was (67.06 ± 3.11), 7 days was (66.51 ± 1.95), and at 21 days was (57.4 ± 5.45).

Intergroup comparison using an unpaired t-test [Table 2] indicated a significant difference in the substantivity values of 0.2% PHMB and 2% CHX at all the incubation periods. The substantivity of PHMB was statistically superior to CHX at all the incubation periods. The results are represented in Table 1.

The results displayed higher substantivity for 0.2% PHMB than 2% CHX at all the time intervals.

DISCUSSION

Biguanides include bis (biguanides) and polymeric biguanides. CHX and alexidine are known bis (biguanides) and have been shown to possess many desirable properties of an endodontic irrigant. Both have antimicrobial properties and exert a substantive residual activity on dentin.[29,30]

PHMB is a polymeric biguanide which was first synthesized by Rose and Swain in 1954.[31] PHMB is a cation with a backbone of polymeric biguanide units. It can be presented as \([-(CH_2)_6.NH.C(=NH).NH.C(=NH).NH-N] \) (n = 2–40; average = 11).[32] PHMB exists as a colorless, odorless solid/powder of >94.2% purity. It is neither corrosive nor irritating. It is highly water-soluble and stable.[33]

PHMB is a safe biocide and is not detrimental to environmental and public health.[34] It has found several antimicrobial applications in medicine, dentistry, and environmental sciences.[35,36] However, its utility in endodontic disinfection has seldom been explored. This study compared the substantivity of two biguanides-CHX and PHMB.

In this study, dentin disks were subjected to treatment with either 0.2% PHMB or 2% CHX for 20 s. This was followed by substantivity determination at four different incubation periods.

Different approaches have been used in dental literature to determine the substantivity of dental materials, including UV spectrophotometry,[32] liquid chromatography,[33] and microbiological assays.[34] In this study, dentin disks were prepared, and UV spectrophotometry was utilized to determine substantivity. Previous studies have successfully utilized this method for the determination of substantivity.[35,36]

Souza et al.[33] determined in a clinical assay using reverse-phase high-performance liquid chromatography, the retention of antimicrobial activity of 2% CHX formulations (gel and liquid) and QMix on root canal dentin. The observations were made at different intervals of time. It was found that all three test agents were retentive after 120 days. After 24 h evaluation period, CHX gel had significantly better substantivity than CHX liquid. However, they did not perform statistically different later. On the contrary, the substantivity of Qmix was significantly less than the two CHX formulations at all the time intervals tested in this study.

Komorowski et al.[57] evaluated the substantivity of CHX against E. faecalis. 0.2% CHX was compared with 2.5% NaOCl and sterile saline. The observations were made up to 21 days. Results indicated that 7 days treatment with CHX was associated with significantly low bacterial colonization of root dentin.

Rosenthal et al.[55] used a similar methodology to evaluate the substantivity of CHX on bovine root canal dentin. The evaluation periods included 1 day, 3 weeks, 6 weeks, and 12 weeks. CHX extracts were associated with all the time intervals tested with the highest values after 1 day and lowest values at 12 weeks.

In a semiquantitative essay employing measurement of zones of inhibition, White et al.[36] found that both 2.0% and 0.12% CHX treated teeth were associated with persisting antimicrobial activity. However, the values for 2% CHX were significantly more than in 0.2% group. In view of the substantivity, CHX was found to be significantly more than the two CHX formulations at all the time intervals tested in this study.

Table 1: Mean and standard deviation of substantivity of 2% chlorhexidine and 0.2% poly hexamethylene biguanide at different time intervals

Time interval	1 h	24 h	168 h/7 days	21 days
PHMB	73.73	76.32	77.74	69.98
SD	1.41	2.78	1.33	6.89
CHX mean	67	67.06	66.51	57.4
SD	1.88	3.11	1.95	5.45

Table 2: Intergroup comparison using Student’s t-test

Time interval	1 h	24 h	168 h/7 days	21 days
CHX versus PHMB	0.000	0.000	0.000	0.000

PHMB: Poly hexamethylene biguanide, CHX: Chlorhexidine
to 72 h, the authors suggested that CHX could be used as a potential replacement to NaOCl for endodontic irrigation.

Mahendra et al.[9] conducted a microbiological study to compare the antimicrobial substantivity of varying concentrations of CHX as root canal irrigant. Through observation of time periods of 12 h, 1 day, 2 days, and 3 days, antibacterial substantivity of varying concentrations of CHX were rated in the following order 2% > 1% > 0.1%.

To the extent of the author’s belief, none of the studies published till dates have compared the substantivity of 0.2% PHMB and 2% CHX.

In this study, both the cationic biguanides displayed a strong affinity toward anionic dentin. PHMB was significantly better than CHX at all the test intervals. The exact reason for this difference is not known. However, this could be attributed to the polymeric existence of PHMB.

CONCLUSION

Within the constraints of this study, it was concluded that 0.2% PHMB solution shows a statistically higher substantivity than 2% CHX at all the incubation periods. 0.2% PHMB solution could be used as an alternative to CHX in root canal irrigation.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Miller WD. An introduction in the study of the bacterio-pathology of the dental pulp. Dent Cosmos 1984;36:505-28.
2. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 1965;20:340-9.
3. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:96-93.
4. Möller AJ, Fabricius L, Dahlén G, Ohman AE, Heyden G. Influence on re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:96-93.
5. Möller AJ, Fabricius L, Dahlén G, Ohman AE, Heyden G. Influence on periapical tissues of indigenous oral bacteria and necrotic pulp tissue in monkeys. Scand J Dent Res 1981:89:475-84.
6. Byström A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res 1981:89:321-8.
7. Gutmann JL, Dumsha T. Cleaning and shaping the root canal system. In: Cohen S, Burns RC, editors. Pathways of the Pulp. 4th ed. St. Louis: Mosby; 1987. p. 156-82.
8. Salgar A, Chandak M, Dass A, Saxena A, Bhatia C, Chandak R. Comparison of different irrigating solutions on root canal disinfection after mechanical preparation by using scanning electron microscope: An in vitro study. J Interdiscip Dent 2015;5:65-70.
9. Zhender M. Root canal irrigants. J Endod 2006;32:389-98.
10. Kuruvilla JR, Kamath MP. Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. J Endod 1998;24:472-6.
11. Vatkar NA, Hegde V, Sathe S. Vitality of E. faecalis inside dentinal tubules after five root canal disinfection methods. J Conserv Dent 2016;19:445-9.
12. Ricucci D, Siqueira JF Jr., Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: A retrospective study from twenty-four patients. J Endod 2009;35:493-502.
13. Ricucci D, Siqueira JF. Jr. Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J Endod 2010;36:1277-88.
14. Siqueira JF Jr. Aetiology of root canal treatment failure: Why well-treated teeth can fail. Int Endod J 2001;34:1-10.
15. Peters OA, Schonenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J 2001;34:221-30.
16. Weiger R, Eliyau A, Löst C. Efficiency of hand and rotary instruments in shaping oval root canals. J Endod 2002;28:580-3.
17. Peters OA, Laib A, Göhring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod 2001;27:16.
18. Röças IN, Siqueira JF Jr. Identification of bacteria enduring endodontic treatment procedures by a combined reverse transcriptase-polymerase chain reaction and reverse-capture checkerboard approach. J Endod 2010;36:45-52.
19. Peculiene V, Rimkuviene J, Maneliene R, Ivaunauskaite D. Apical periodontitis in root filled teeth associated with the quality of root fillings. Stomatologija 2006;8:122-6.
20. Chong BS. Coronal leakage and treatment failure. J Endod 1996;21:159-60.
21. Greenstein G, Polson A. The role of local drug delivery in the management of periodontal diseases: A comprehensive review. J Periodontol 1998;69:507-20.
22. Ghatoole K, Gowdra RH, Azner S, Sabharwal S, Singh VT, Sundaransajan BV. Enhancing the antibacterial activity of the gold standard intracanal medicament with incorporation of silver zeolite: An in vitro study. J Int Soc Prev Community Dent 2016;6:75-9.
23. Kim D, Kim E. Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: A literature review-Part I. In vitro studies. Restor Dent Endod 2014;39:241-52.
24. Freeman BA, Crapo JD. Biology of disease: Free radicals and tissue injury. Lab Invest 1982;47:412-26.
25. Siqueira JF Jr., Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. Int Endod J 1999;32:361-9.
26. Pavlici B, Anić I, Najar-Fleger D, Stilinovic B, Temmer K. The antimicrobial efficiency of aqueous solutions of calcium hydroxide on Streptococcus mutans, Streptococcus faecalis and Candida albicans, in vitro. Acta Stomatol Croat 1991:29:207-12.
27. Podbielski A, Spahr A, Haller B. Additive antimicrobial activity of calcium hydroxide and chlorhexidine on common endodontic bacterial pathogens. J Endod 2003;29:340-5.
28. Ballal V, Kundabala M, Acharya S, Ballal M. Antimicrobial action of calcium hydroxide, chlorhexidine and their combination on endodontic pathogens. Aust Dent J 2007;52:118-21.
29. Basrani B, Santos JM, Tjäderhane L, Grad H, Gorduysus O, Huang J, et al. Substantive antimicrobial activity in chlorhexidine-treated human root dentin, Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:240-5.
30. Barbacín R, Ferrer-Luque CM, Arias-Moliz MT, Ruiz-Linares M, Bravo M, Baca P. Antimicrobial substantivity of alexidine and chlorhexidine in dentin. J Endod 2013;39:1413-5.
31. Varadan P, Ganesh A, Konidala R, Nagendrababu V, Ashok R, Deviavanagam K. Comparison of the antibacterial efficacy of alexidine and chlorhexidine against Enterococcus faecalis: An in vitro study. Cureus 2017;9:e1805.
32. Rose FL, Swain G. Biguanides having antibacterial activity. J Chem Soc 1956;0:4422-5.
33. Dugard PH, Mawdsley SJ. [14C]-Polyaminopropyl biguanide (PHMB): Absorption through human epidermis and rat skin in vitro. Imperial Chemical Industries, Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, UK. Report No.: CTL/R/579, Unpublished Data, 1982.
34. Mashit BH, Polyhexamethylene Biguanide Hydrochloride: Features and Applications British Journal of Environmental Sciences 2016;4(1):49-55.
35. Kusters M, Beyer S, Kutscher S, Schlesinger H, Gerhartz M. Rapid, simple and stability-indicating determination of polyhexamethylene biguanide in liquid and gel-like dosage forms by liquid chromatography with diode-array detection. J Pharm Anal 2013;3(6):408-14.
36. Pandi A, Ahuja R, Biswas NR, Satpathy G, Khokhar S. Role of 0.02% polyhexamethylene biguanide and 1% povidone iodine in experimental Aspergillus keratitis. Cornea 2003;22:138-41.
37. Marelli G, Papaleo E, Origoni M, Caputo L, Ferrari A. Polyhexamethylene biguanide for treatment of external genital warts: A prospective,
double-blind, randomized study. Eur Rev Med Pharmacol Sci 2005;9:369-72.
37. Sibbald RG, Coutts P, Woo KY. Reduction of bacterial burden and pain in chronic wounds using a new polyhexamethylene biguanide antimicrobial foam dressing-clinical trial results. Adv Skin Wound Care 2011;24:78-84.
38. Gentile A, Gerli S, Di Renzo GC. A new non-invasive approach based on polyhexamethylene biguanide increases the regression rate of HPV infection. BMC Clin Pathol 2012;12:17.
39. Gerli S, Bavetta F, Di Renzo GC. Antisepsis regimen in the surgical treatment of HPV generated cervical lesions: Polyhexamethylene biguanide vs chlorhexidine. A randomized, double blind study. Eur Rev Med Pharmacol Sci 2012;16:1994-8.
40. Oulé MK, Quinn K, Dickman M, Bernier AM, Rondeau S, De Moissac D, et al. Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: A novel tool to fight bacterial spores and nosocomial infections. J Med Microbiol 2012;61:1421-7.
41. Gaspard F, Brassard P, Alam T, Robineau C, Page G, Dell Aniello S, et al. Impact of an antimicrobial dressing in reducing surgical site infections in cardiac surgery patients. Wounds 2013;25:178-85.
42. Choi H, Kim KJ, Lee DG. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol 2017;121:53-60.
43. Rosin M, Welk A, Bernhardt O, Ruhnau M, Pitchen FA, Kocher T, et al. Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. J Clin Periodontol 2001;28:1121-6.
44. Rohrer N, Widmer AF, Wallmo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, et al. Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: Can chlorhexidine be replaced? Infect Control Hosp Epidemiol 2010;31:733-9.
45. Ashraf S, Akhtar N, Ghauri MA, Rajoka MI, Khalid Z, Hussain I. Antimicrobial activity of chlorhexidine‑treated bovine root dentin. J Endod 2000;26:315‑7.
46. Komorowski R, Grad H, Wu XY, Friedman S. Chlorhexidine substantivity in root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:488-92.
47. Charone S, Cardoso Cde A, Kato MT, Ducati R, Fukushima R, Gennaro G, et al. The effect of mouthwashes containing biguanides on the progression of erosion in dentin. BMC Oral Health 2014;14:131.