Coordinated Dispersal and Pre-Isthmian Assembly of the Central American Ichthyofauna

VICTOR A. TAGLICOLLO1,2, SCOTT M. DUKE-SYLVENST İ, WILFREDO A. MATAMOROS3, PROSAN TA CHAKRABARTY4, and JAMES S. ALBERT1,*

1Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-2453, USA; 2Instituto de Biociências de Botucatu, Universidade Estadual Paulista – UNESP, Botucatu, São Paulo 18618-970, Brazil; 3Facultad de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Col. Lajas Maciel, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico; 4Department of Biological Sciences, Museum of Natural Science (Fish Section), Louisiana State University, Baton Rouge, LA 70803, USA

*Correspondence to be sent to: Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-2453, USA; E-mail: jalbert@louisiana.edu.

Abstract — We document patterns of coordinated dispersal over evolutionary time frames in hermine cichlids and poeciliine live-bearers, the two most species-rich clades of freshwater fishes in the Caribbean basin. Observed dispersal rate (D_O) values were estimated from time-calibrated molecular phylogenies in LAGRANGE, a modified version of the ML-based parametric biogeographic program LAGRANGE. D_O is measured in units of “units” (u) as the number of biogeographic range-expansion events per million years. D_O estimates were generated on a dynamic paleogeographic landscape of five areas over three time intervals from Upper Cretaceous to Recent. Expected dispersal rate (D_E) values were generated from alternative paleogeographic models, with dispersal rates proportional to target area and source-river discharge volume, and inversely proportional to paleogeographic distance. Correlations between D_O and D_E were used to assess the relative contributions of these three biogeographic parameters. D_O estimates imply a persistent dispersal corridor across the Eastern (Antillean) margin of the Caribbean plate, under the influence of prevailing and perennial riverine discharge vectors such as the Proto-Orinoco–Amazon river. Ancestral area estimation places the earliest colonizations of the Greater Antilles and Central America during the Paleocene–Eocene (ca. 58–45 Ma), potentially during the existence of an incomplete Paleogene Arc (∼59 Ma) or Lesser Antilles Arc (∼45 Ma), but predating the GAARlandia land bridge (∼34–33 Ma). Paleogeographic distance is the single best predictor of D_O. The Western (Central American) plate margin did not serve as a dispersal corridor until the Late Neogene (12–0 Ma), and contributed relatively little to the formation of modern distributions.

Received 13 January 2015; reviews returned 26 August 2015; accepted 27 August 2015

Associate Editor: Adrian Paterson

The powerful central insight of historical biogeography is that Earth history events impose common influences on the evolutionary diversification of multiple species, higher taxa, and portions of whole biotas (Rosen 1978; Humphries and Parenti 1986, 1999; Wiley 1988; Crisci et al. 2003). Under the vicariance paradigm, geographic distributions are explained as arising from a common history of geographic-range fragmentation, and dispersal is treated as an idiosyncratic and uncoordinated process producing no persistent dispersal vectors (De Queiroz 2005; McGlone 2005; Cowie and Holland 2006; Samonds et al. 2012). For example, stable, long-term patterns of atmospheric and oceanic circulation (i.e., prevailing winds and sea currents), coupled with the position of geological terranes in time and space, have been implicated in the formation of dispersal-assembled faunas of the Greater Antilles (Matthew 1919; Darlington 1938; Hodges et al. 1992; Censky et al. 1996; Ibarra-Vincent and MacPhee 1999; Glor et al. 2005; Ibarra-Vincent 2006; Heinicke et al. 2007; Michelangeli et al. 2008; Pyron 2014; Lewis et al. 2015), and Central America (McCaffrey 1998; Smith and Bermingham 2005).

The Greater Antilles and Central America (henceforth GACA) region has figured prominently in studies of how vicariance, geospatial, and coordinated dispersal affect the formation of insular biotas (Rosen 1975, 1978; Hedges et al. 1992; Leins and Schluter 2000; Trejo-Torres and Ackerman 2001; Graham 2003; Losos and Ricklefs 2009). The geological history of the Caribbean plate is incompletely understood and the timing of many important tectonic events is poorly constrained. However, at least three major geological events (and the geographic structures they produced) have been hypothesized to affect the distributions of species among landmasses of the Caribbean basin. These events are the formation of: 1) the Upper Cretaceous to Paleocene (94–63 Ma) Caribbean Large Igneous Province and associated movement of the Proto-Antilles arc between
South America and Central America (Holden and Dietz 1972; Malfait and Dinkelman 1972; Mann 1999; Pindell and Kennan 2009; Loewen et al. 2013), 2) the Eocene–Oligocene (ca. 34–33 Ma) Greater Antilles–Aves Ridge (GAAR; Landia) land bridge between southern South America and the Greater Antilles (Iturralde-Vinent and MacPhee 1999; Escalona and Mann 2011), and 3) the Middle Miocene to Pleistocene (12–3 Ma) uplift of the Isthmus of Panama (Bacon et al. 2015; Montes et al. 2015).

Freshwater fishes have long been used as empirical models in the study of GACA biogeography, as they exhibit limited ecophysiological tolerances to salty marine waters and low capacities to traverse marine barriers (Myers 1949, 1966; see Sparks and Smith 2005). The GACA ichthyofauna is composed of about 600 species distributed across the Eastern (Antillean) and Western (Central American) margins of the Caribbean plate. The majority of these species are secondary freshwater fishes, especially Cichlidae and Cyprinodontiformes, which exhibit some tolerance to brackish waters, and which can occasionally cross narrow marine barriers (Myers 1949, 1966). The GACA ichthyofauna is dominated by clades with Neotropical distributions, including 454 species (86%) in 20 clades with South American origins (Matamoros et al. 2012, 2015). The taxonomic composition of the GACA ichthyofauna is a filtered version of the Neotropical fish fauna as a whole, including about one-third of the orders and families, and about 10% of the species of the Caribbean plate. The majority of these species (Antillean) and Western (Central American) margins of about 600 species distributed across the Eastern (Antillean) and Western (Central American) margins of the Caribbean plate. The majority of these species are secondary freshwater fishes, especially Cichlidae and Cyprinodontiformes, which exhibit some tolerance to brackish waters, and which can occasionally cross narrow marine barriers (Myers 1949, 1966). The GACA ichthyofauna is dominated by clades with Neotropical distributions, including 454 species (86%) in 20 clades with South American origins (Matamoros et al. 2012, 2015). The taxonomic composition of the GACA ichthyofauna is a filtered version of the Neotropical fish fauna as a whole, including about one-third of the orders and families, and about 10% of the species (Chakrabarty and Albert 2011). The two most species-rich clades in the GACA region are secondary freshwater fishes of Neotropical origins, heroine cichlids (132 species) and poeciliine live-bearers (204 species), which together comprise about 74% of the regional species pool (Matamoros et al. 2012, 2015).

Parametric biogeography is an emerging field at the interface of macroevolution and historical biogeography that models the history of geographic range evolution within explicitly phylogenetic and spatial contexts (Ree and Sanmartin 2009; Sanmartin 2010). Current methods to estimate macroevolutionary dispersal and extinction rates use maximum-likelihood or Bayesian methods and a dispersal–extinction–cladogenesis (DEC) model of species range evolution (Ree et al. 2005; Ree and Smith 2008; Ree and Sanmartin 2009; Smith 2009; Buerki et al. 2011; Goldberg et al. 2011; Ronquist and Sanmartin 2011; Landis et al. 2013; Wood et al. 2013). A shortcoming of existing implementations of the DEC model, however, is the requirement for the user to input dispersal rates (Buerki et al. 2011; Ronquist and Sanmartin 2011; Landis et al. 2013; Matzke 2013a, 2013b). A preferable approach is to use data from time-calibrated phylogenies, and the geographic distributions of extant species, to estimate empirical rates of macroevolutionary dispersal.

Here we investigate alternative hypotheses for the formation of GACA freshwater fish assemblages using parametric biogeographic methods to estimate historical rates of coordinated dispersal in heroine cichlids and poeciliine live-bearers. We develop and implement new methods for: 1) measuring macroevolutionary dispersal rates in the context of a landscape with changing paleogeographic interconnections; 2) estimating expected rates of dispersal from paleogeographic considerations of area, river discharge volume, and distance; and 3) comparing observed and expected dispersal rate values to identify the relative contributions of these paleogeographic agencies.

MATERIALS AND METHODS

Phylogenetic Methods and Divergence Time Estimates

We acquired sequence data from published sources available in GenBank. For cichlids these data include three nuclear (RAG1, 1475 bp, RAG2, 850 bp, and S7 intron 1550 bp) and four mitochondrial (16S, 550 bp; Cytb, 1100 bp; ND4, 647 bp; and COI 542 bp) genes, for a total of 4662 bp in 164 cichlid species, including 97 heroine species, and 8 percomorph outgroups (Martin and Bermingham 1998; Farias et al. 2001; Concheiro-Pérez et al. 2007; Ricán et al. 2008; Smith et al. 2008; Lopez-Fernandez et al. 2010; Chakrabarty and Albert 2011). For poeciliines these data include two nuclear (RAG2, 954 bp and S7 intron, 712 bp) and four mitochondrial (16S, 596 bp; Cytb, 1137 bp; ND4, 673 bp; and COI, 590 bp) genes, for a total of 3787 bp in 103 species; Schartl 1994; Lydeard et al. 1995; Hrbeek et al. 2006). All gene sequences were independently aligned using MAFFT v. 5.3 under default parameters (Katoh et al. 2002, 2005). Optimum partitioning schemes and substitution models were estimated in PartitionFinder (Landear et al. 2012). Analyses started with a fully partitioned data set (by gene and by codon position in protein-coding sequences) and the best-fit partitioning scheme and nucleotide substitution models were selected based on corrected Akaike Information Criterion (AICc: Akaike 1974).

We performed Bayesian analyses in BEAST v.1.4.7 (Drummond et al. 2006; Drummond and Rambaut 2007) to simultaneously estimate tree topology and lineage divergence times using a lognormal relaxed molecular clock, and prior palaeontological constraints. BEAST analyses were composed of two independent runs, each starting from a random tree, using birth–death priors for branching times, and sampling parameter values and single trees every 5×10^7 generations. The two runs were combined using LOGCOMBINER v.1.7.5. Model parameter values were inspected for stationary convergence in Tracer v1.5. To ensure adequate mixing of the Markov Chain Monte Carlo, we inspected parameter estimates for effective sample sizes. The initial 2.5×10^7 generations were discarded as burn-in. Posterior probability densities were summarized as a 95% maximum clade credibility tree using TREEANNOTATOR v.1.7.5. Posterior probabilities at nodes, means, and 95% highest posterior density estimates of divergence times were visualized in FigTree v1.4.0.

We constrained absolute divergence times by using lognormal calibration priors based on dated fossils. The dates were assigned using geological records from...
FIGURE 1. Estimating observed dispersal rates (D_{0}) across the Caribbean Plate margins in LAGRANGE+. Paleogeographic reconstructions (left) and models of area connectivity through time (center), represented as a dispersal rate matrices (right). Dispersal rate parameters (Greek letters) are estimated in an ML framework employing a Dispersal–Extinction–Cladogenesis (DEC) model of geographic range evolution and empirical time-calibrated molecular phylogenies. Time intervals (I–III) encompass major geological events thought to have affected vicariance and dispersal across the Caribbean plate (see text). Paleogeographic maps and data from Pindell and Kennan (2009) and Blakey (2011). Areas: A, Cis-Andean; B, Trans-Andean; C, Panama; D, Nuclear Central America; and E, Greater Antilles.

The oldest known fossils for clades of cichlids and poeciliids. Cichlid fossils include: †Proterocara argentina (mean: 2.0, SD: 1.0, offset: 49.0, calibration: Crenicichla + Teleocichla) and †Gymnogeophagus occidentalis (mean: 2.0, SD: 1.0, offset: 49.0) calibration: Gymnogeophagus) from the Paleocene–Eocene Lumbrera and Maiz Gordo Formations in northern Argentina (Malabarba et al. 2006, 2010); †Tremembichthys garciae (mean: 2.0, SD: 1.0, offset: 33.9 calibration: Cichlasomatinae) from the Oligocene Tremembé Formation in southern Brazil (Malabarba and Malabarba 2008); †Aequidens saltensis (mean: 2.5, SD: 1.0, offset: 12.0, calibration: Aequidens) from the Miocene Anta Formation in Argentina (Bardack 1961); and †Nandopsis woodringi (mean: 2.5, SD: 1.0, offset: 6.0, calibration: Nandopsis) from the Miocene Laschobas Formation in Haiti (Cockerell 1923). Offset values for the minimum age of cichlids were set at 95 Ma (mean: 2.0, SD: 1.0), as the approximate age of the oldest acanthomorph fossil taxon †Polypterus sp. (Patterson 1993). Poeciliid fossils include: 1) an undescribed species (mean: 2.0, SD: 1.0, offset: 40.0) calibration point: clade Poeciliidae) from the Salta Formations of northwestern Argentina estimated at about 40 Ma (Pascual et al. 1981) and †Prolebias (mean: 2.0, SD: 1.0, offset: 30.0, calibration point: clade Aphanius) from the middle Oligocene of Europe dated to about 30 Ma (Hrbeck and Meyer 2003).

Mean, SD, and offset represent a set of parameters for the lognormal prior resulting in a distribution curve with lower and upper bounder of absolute ages.

Parametric Biogeography

Our goal was to estimate observed (i.e., empirical) dispersal rates (D_{0}) directly from time-calibrated molecular phylogenies on a geologically informed paleogeographic landscape. To accomplish this goal we modified the Python code of the parametric biogeography program LAGRANGE (Ree and Smith 2008; Ree and Sanmartin 2009), to search for multiple independent dispersal rate estimates. This modified version of LAGRANGE is referred to here as LAGRANGE+. LAGRANGE+ differs from the original LAGRANGE program in treating each dispersal rate parameter in the dispersal matrix as a separate value to be estimated. The dispersal scalar is removed from the process, and the dispersal matrix is then interpreted as a set of absolute (not relative) dispersal rates. The models of area connectivity through time (Fig. 1, center panel) employ eight independent dispersal rate parameters among five geographic areas and three time intervals.
Sensitivity of the LAGRANGE+ ancestral area estimates to model assumptions was assessed using several alternative analytical methods implemented in BioGeoBears (Matzke 2013a, 2013b, 2014). These analyses differed in the model of biogeographic range evolution (i.e., DEC and DEC), and in how parameters were used to calculate ancestral areas using the LAGRANGE, DIVA-LIKE, BAY-AREA-LIKE analytical methods. The DIVA-LIKE model uses likelihood not parsimony to estimate ancestral areas, and is therefore referred to as DIVA-LIKE. The BAY-AREA-LIKE model is a likelihood interpretation of the Bayesian model implemented in the BAYAREA program of Landis et al. (2015).

Dynamic Paleogeographic Model of the Caribbean Plate

The Caribbean plate occupies approximately 3.2 million km2 between the North American, South American, Nazca, and Cocos plates. The Eastern margin of the Caribbean plate is marked by the Antillean Arc with an emergent (sub-aerial) land area of about 220,000 km2, taken as the sum of the areas of modern Cuba, Jamaica, Puerto Rico, Hispaniola, Cayman Islands and Lesser Antilles. The Western margin of the Caribbean plate is marked by Central America, extending between the Isthmus of Tehuantepec in southern Mexico (∼19° North latitude) and the Isthmus of Panama (∼7° North latitude), with an emergent land area of about 2,580,000 km2 (Chakrabarty and Albert 2011). Central America is composed of three principal geological terrains; Nuclear Central America in the region of modern Honduras, El Salvador and Nicaragua dating from the Upper Cretaceous (100–66 Ma); Southern Central America in the region of modern Costa Rica dating from the Paleogene (66–23 Ma); and the Panamanian Isthmus in the region of modern Panama dating from the Late Miocene to Pliocene (12–3 Ma; Pindell and Kennan 2009; Bacon et al. 2015; Montes et al. 2015).

For the LAGRANGE+ study we designed a dynamic model of Caribbean plate evolution using paleogeographic data summarized in Pindell and Kennan (2009). D_O estimates were generated between five geographic areas (A–D) over three time intervals (Fig. 1, I–III). The five areas were delineated using published biogeographic criteria (Chakrabarty and Albert 2011; Matamoros et al. 2012, 2015): A) cis-Andean South America (Orinoco and Amazon basins); B) trans-Andean South America (Magdalena, Atrato, San Juan, and Baudo basins); C) Southern Central America (including Costa Rica and Panama); D) Nuclear Central America (Chortis Block including most of Nicaragua, Honduras, Guatemala, and El Salvador); and E) Greater Antilles (Cuba, Hispaniola, Puerto Rico, Jamaica). Species geographic distributions were estimated from museum collection records.

The three time intervals encompass geological events previously hypothesized to have affected vicariance and dispersal across the Caribbean plate. Time interval I encompasses the Upper Cretaceous to Eocene (80–35 Ma) movement of the Proto-Antilles between South America and Central America. Time interval II encompasses the Greater Antilles–Aves Ridge (GAARlandia) land bridge purported to have served as a transient terrestrial connection between northern South America and Greater Antilles at about the Eocene–Oligocene boundary (ca. 34–33 Ma; Iturralde-Vinent and MacPhee 1999). Time interval III encompasses the Middle Miocene to Pleistocene (12–3 Ma) rise of the Isthmus of Panama. In the paleogeographic model dispersal was disallowed between South America and the Western margin in Time intervals I and II (parameters $\epsilon_1, \epsilon_2, b_1, b_2$).

Observed—Dispersal Rates

We define “dispersal rate” (D) as the number of biogeographic range expansion events per million years in taxa leaving descendants that persist to the Recent. We measure D in units of “wallaces” (wa) to honor the contributions of Alfred Russel Wallace to the field of biogeography. The wa is introduced here as a standard metric to compare observed and expected rates of species-range expansion. This wa can also be used to compare quantitative dispersal rate estimates generated from biogeographic studies of different taxa across time and space, as for example, in the emerging fields of parametric biogeography (e.g., Landis et al. 2013; Peter Linder et al. 2013; Meseguer et al. 2014) and invasion biology (e.g., Schurr et al. 2012; Phillips 2012; Travis and Dytham 2012).

Here dispersal refers to the colonization of new areas outside an established species range, in contrast to dispersion, which refers to movements of organisms within an established species range (Armstrong 1977; Platnick 1979; Lomolino et al. 2010). Observed dispersal rate estimates (D_O) were generated in LAGRANGE+ from 100 replicate maximum-likelihood searches, each initialized with a randomly produced set of dispersal rates (Table 1). Maximum-likelihood searches replicates were run in parallel on a 680 node shared Linux cluster operated by the Louisiana Optical Network Initiative until each search had converged. Results were pooled across replicates to find the parameter values with the best AIC value. Sensitivity analyses to investigate the effect of dispersal constraints on estimates of ancestral areas were also conducted in LAGRANGE+, employing dispersal rates selected from across a broad range of plausible values (10^2–10^{-10} wa). Because LAGRANGE does not perform reliably with dispersal input values of 0, low-end values were input as 10^{-30} wa.

Expected Dispersal Rates

Expected dispersal rates (D_E) were generated from nine alternative paleogeographic models, employing two parameters based on island biogeography theory...
Table 1. Observed dispersal rates (D_{ij}) for freshwater fish clades across the Caribbean plate margins.

Parameter	Mean (D_{ij})	SEM	Median	Best
a_1	1.17E–01	3.36E–02	1.14E–01	1.37E–01
a_2	8.49E–03	5.41E–03	1.52E–02	3.15E–03
a_3	2.18E–02	9.50E–03	4.95E–02	1.04E–02
b_1	3.20E–02	1.85E–01	1.06E–02	1.19E–02
b_2	9.43E–03	5.27E–03	1.96E–02	2.72E–03
b_3	1.24E–03	1.84E–03	1.95E–01	3.92E–03
b_4	2.97E–02	1.99E–02	4.37E–02	1.07E–02
c_1	2.26E–03	2.49E–03	1.76E–02	4.94E–03
c_2	1.71E–02	2.42E–03	1.90E–02	1.32E–02
nLog L	1.16E+02	8.49E+00	1.14E+02	9.58E+01

Notes: Absolute D_{ij} values (in m/m) for eight rate parameters (Greek letters as in Fig. 1) estimated by LAGRANGE^+, reported as mean ± 1 SEM, median, and best ML values from 100 replicate runs. Global (tree-wide) extinction rates (μ) and negative log likelihood (nLog L) values also reported for each clade.

Results

Phylogenetic trees and ancestral area estimates are summarized in Figure 2 and Supplementary Figure S1, available on Dryad at http://dx.doi.org/10.5061/dryad.11cv0. Results for cichlids depict interrelationships for the 97 heroine species of the total of 172 cichlid species used in the analysis. The results of the LAGRANGE^+ ancestral area estimates reveal a geologically persistent dispersal corridor along the Eastern Margin of the Caribbean plate during the Paleogene (66–23 Ma). The earliest time frame for dispersal to the Antilles occurred from 48.9 to 42.6 Ma in Heroini, from 59.6 to 49.5 Ma in Poeciliinae (Fig. 3). Ancestral areas estimated for heroine and poeciliine fishes using 12 alternative models of biogeographic range evolution in BiogeOBears (Matzke 2013a, 2013b) are reported in Supplementary Figure S2, available on Dryad at http://dx.doi.org/10.5061/dryad.11cv0, and likelihood results and AIC statistics from these analyses are shown in Table 2. Quantitatively, the best-fit analyses for heroine employed the DEG^+ model of biogeographic range evolution, and the Bay-Area-Like set of parameter treatments, and the best-fit analysis for Poeciliinae employed the DEC^+ model of biogeographic range evolution, and the Diva-Like set of parameter treatments. Qualitatively, the LAGRANGE^+ ancestral area estimates for tree branches in both Heroini and Poeciliinae (Fig. 3) at transitions among the five geographic areas (Fig. 1) are identical to those recovered by all 12 alternative models of biogeographic range evolution (Supplementary Fig. S2, available on Dryad at http://dx.doi.org/10.5061/dryad.11cv0).
Normalized observed dispersal rates \((D_O)\) of Heroini (diamond symbols and blue lines) and Poeciliinae (square symbols and red lines) through time and across the Caribbean plate margins. \(D_O\) estimates from \textsc{LagrAngE} normalized to maximum observed values of each rate parameter (Greek letters as in Fig. 1). Note \(D_O\) estimates along the Eastern margin \((\alpha_t, \beta_t)\) indicate high connectivity between northern South America and Nuclear Central America from the Cenomanian to Eocene (ca. 80–35 Ma), but are not consistent with GAARlandia hypothesis of high dispersal rates at or around the Eocene–Oligocene boundary (ca. 34–33 Ma). Note also that \(D_O\) estimates for the Western margin \((\varepsilon_t, \delta_t)\) indicate high connectivity only during the Neogene (12–0 Ma), associated with biotic interchanges across the emerging Isthmus of Panama. These results illustrate a pattern of coordinate dispersal, that is, qualitatively similar \(D_O\) values between the two fish clades in 11 of the 12 rate parameters across the Caribbean plate margins, differing substantially only at \(\beta_t\).

\(D_O\) estimates for Eastern margin parameters \((\alpha_t, \beta_t)\) indicate high connectivity between northern South America and Nuclear Central America during Time interval I (80–35 Ma), but low connectivity during Time interval II (34–13 Ma) and Time interval III (12–0 Ma). The \(D_O\) estimates for Western margin parameters \((\varepsilon_t, \delta_t)\) indicate high connectivity among trans-Andean, Southern Central American, and Nuclear Central American areas during the Neogene (12–0 Ma; Time Interval III), suggesting biotic interchanges during the Plio-Pleistocene across the Isthmus of Panama (Bermingham et al. 1997; Reeves and Bermingham 2006; McCafferty et al. 2012; Alda et al. 2013). On the other hand, estimates of \(D_O\) for the Western margin indicate more dispersal among trans-Andean (area B), Panama (area C), and Nuclear Central America (area D) during the Neogene (Time III: 12–0 Ma). The relatively high values of \(\varepsilon_3\) and \(h_3\) in Figure 3 indicate successful colonization events from Nuclear Central America (area D) and Southern Central America (area C) to trans-Andean northern South America (area B), events referred to as “Isthmian biogeographic reversals” by Chakrabarty and Albert (2011).

Correlations between estimates of \(D_O\) and \(D_E\) were assessed as coefficients of determination \((R^2\) values from linear regressions) for each of the three time intervals of Figure 1, with \(D_E\) values multiplied by \(T\), the duration of the time interval (in MY). Adjusted \(R^2\) \((R\bar{^2}\) bar-squared) values were used to adjust for different numbers of \(D_E\) model parameters (degrees of freedom) in correlations of data pooled for Heroini and Poeciliinae. The nine alternative paleogeographic models (Table 3) predicted relatively high expected dispersal rates \((D_E)\) along the Eastern margin during the late Upper Cretaceous and early Paleogene, and relatively low \(D_E\) values along the Western margin during this same time interval. The variance of \(D_E\) estimates increases with age due to accumulating uncertainties in relative POA discharges.

Geographic distance \((r^2)\) is the single best predictor of \(D_O\) among the paleogeographic parameters examined in this analysis, with \(R^2\) values approximating unity in regressions against all four dispersal rate parameters \((\alpha_t, \beta_t)\) in both Heroini and Poeciliinae (Table 4). Two other paleogeographic dispersal parameters, \(A_1\) (but not \(A_3\)) and \(V_3\) (but not \(V_1\)), significantly predict dispersal rates on the Eastern margin \((\alpha_t, \beta_t)\). These results imply
Figure 3. LAGRANGE+ ancestral area estimates reveal a geologically persistent dispersal corridor along the Eastern margin of the Caribbean plate. Time-calibrated phylogenies of heroine cichlids (left) and poeciliine live-bearers (right) from BEAST analyses newly reported herein. Vertical gray bars indicate earliest time interval for the colonization of Nuclear Central America via the Eastern plate margin. Colors of branches and ancestral ranges indicate geographic areas (A–E) of Figure 1; biotic dispersals indicated by color changes along branches. Squares at branch corners indicate most likely ancestral ranges, of either one (i.e., A) or multiple (i.e., ABDE) areas.

that the land surface area of the Greater Antilles and the relative volume of the POA discharge strongly affected the probability of overseas colonization. The lack of an association between \(D_O \) and area variability (\(A_j \)) on the Eastern margin may result from the approximately perpendicular orientation of the plate margin arc to the north coast of South America. In this configuration, even large changes in total emergent land area do not substantively alter the target area for overseas dispersal. However, several paleo land arcs potentially shortened this distance between the American continents and the Antilles (or even closed it) at several times since the Cretaceous (33). The correlations between \(D_O \) and \(D_C \) we recovered for Heroini are almost identical to correlations in these dispersal rates we obtained from a separate LAGRANGE+ analysis of a previously published phylogenetic analysis of Heroini (Ričan et al. 2013). The main differences between the two analyses are in the
significance values for pooled data in model parameters θ_1 and θ_2 (Table 5).

On the Western margin, paleogeographic distance (r^2) is the only significant predictor of dispersal rate (parameters θ_1, θ_2). Neither A or V alone or in combination are good predictors. Models combining distance, area, and discharge volume do not provide substantially better fits than the single-parameter models. The qualitative fits of alternative paleogeographic dispersal models to D^2 parameters are identical in the LAGRANGE-DEC analyses of Heroini and Poeciliinae; that is, these clades exhibit similar patterns of paleogeographic connectivity through time.

DISCUSSION

The chances of dispersal of organisms across a barrier vary inversely as the square of distance (Schubert 1935).

The probability of rare events increases with longer time frames (Landres et al. 1999).

Our main finding is that paleogeographic distance (r^2) is the strongest predictor of observed dispersal rates (D^2) in heroine cichlids and poeciliine live-bearers (Table 4). This result is consistent with overseas dispersal by means of rafting on a freshwater plume to the Antilles during the Paleogene, but not to Central America during the Neogene. Due to the westward movement of South America relative to the Caribbean plate, the mouth of the POA river reached its closest proximity to the Eastern (Antillean) margin during the Paleogene. Schubert (1935) and other early investigators (Forster 1778; Matthew 1919; Darlington 1938) recognized the importance of geographic distance limiting the dispersal of continental organisms to oceanic islands, and distance from source species pools is a principal parameter of the theory of Island Biogeography (MacArthur and Wilson 1967; Simberloff 1974; Whittaker and Fernández-Palacios 2007). The expectation that dispersal probability declines with the inverse square of geographic distance is predicted by ecological theory (Harper 1977; Viswanathan et al. 1999; Shaw et al. 2006; Cushman and Landguth 2010).

An inverse square relationship of ecological dispersion with distance is widely reported in plants and diseases (Wilsson 1993; Turnbull et al. 2000; Mundt et al. 2009), and to a lesser extent in animals (Griffin 1952; Murray and Gillibrand 2006; Meats and Edgerton 2008). The inverse square law has only occasionally been applied in the context of island biogeography (Quinn et al. 1987; Gardner and Engelhardt 2008).

Our results also show a strong positive relationship between overseas dispersal probability in heroines and poeciliines, and the volume of the POA freshwater plume (Table 4). This finding supports the hypothesis that paleo-river discharges influence the formation of dispersal-assembled regional freshwater fish faunas in the Neotropics (Albert et al. 2006). The modern Amazon river has the largest freshwater discharge in the world, with an annual mean discharge rate of about $193,000 m^3 s^{-1}$, an annual volume of $2 \times 10^{15} m^3$, and a maximum areal extent of $1.2 \times 10^4 km^2$ (Milliman and Meade 1983; Grodsky et al. 2014). The modern Orinoco has the fourth largest annual discharge at $31,000 m^3 s^{-1}$ (Perry et al. 1996). The seasonally recurrent plumes of these large Neotropical rivers form large offshore lenses of low-salinity water along the northern margin of South America, varying from 80 to 200 km wide and 3 to 10 m thick (Müller-Karger et al. 1988). Direct measurements of sea surface salinities from buoys and satellite remote sensing show shallow water with riverine values (absorption coefficients close to 1.0) about 580 km from the nearest point to the South American coastline. By comparison the south shore of Hispaniola is about 585 km from the nearest points on the South American coastline. The Amazon freshwater plume also has strong effects on the ecology (Johns et al. 2014) and biogeography (Ludt and Rocha 2015) of Caribbean marine fish species. Overseas fish dispersal events may also have been facilitated by ephemeral island arcs that shortened the distance between landmasses, and the prevailing southeast-to-northwest direction of the circumpolar paleocurrent and Western Atlantic hurricane track.

The results of the model-fitting (Table 4) imply a history of overseas dispersal events across the Caribbean plate margins, coordinated and constrained by the paleogeographic configuration of landmasses, and by prevailing and perennial vectors of atmospheric and oceanic circulation operating over geological time intervals. Coordinated dispersal refers to the influence of similar paleogeographic constraints on the distribution of taxa in space, and does not necessarily
Table 3. Expected dispersal rates (ΔD) for freshwater taxa across the Caribbean plate margins

Interval	TA₁	TA₂	TV₁	TV₂	T/r	T/r²	TA₁/r²	TV₁/r²	TA₁TV₁/r²
Eastern margin									
T₁	5.1E+01	1.3E+01	1.3E+01	5.1E+01	2.2E−01	9.9E−04	6.6E+05	6.6E+05	1.6E+05
T₂	2.1E+01	1.1E+01	1.1E+01	2.1E+01	3.0E−02	4.3E−05	5.1E+06	5.1E+06	2.6E+06
T₃	1.2E+01	1.2E+01	1.2E+01	1.2E+01	3.0E−02	7.5E−05	1.9E+06	1.9E+06	1.9E+06
Dₑ−max	5.1E+01	1.3E+01	1.3E+01	5.1E+01	2.2E−01	9.9E−04	5.1E+06	5.1E+06	2.6E+06
Western margin									
T₁	1.3E+01	5.1E+01	1.3E+01	5.1E+01	3.5E−02	2.3E−05	2.8E+07	2.8E+07	6.9E+06
T₂	1.1E+01	2.1E+01	1.1E+01	2.1E+01	2.6E−02	1.9E−05	1.2E+07	1.2E+07	5.8E+06
T₃	1.2E+01	1.2E+01	1.2E+01	1.2E+01	3.7E−02	1.1E−04	1.3E+06	1.3E+06	1.3E+06
Dₑ−max	1.3E+01	5.1E+01	1.3E+01	5.1E+01	3.7E−02	1.1E−04	2.8E+07	2.8E+07	6.9E+06

B Normalized ΔD values

Interval	Eastern margin								
T₁	1.000	1.000	1.000	1.000	1.000	1.000	0.128	0.128	0.064
T₂	0.412	0.824	0.824	0.412	0.134	0.043	1.000	1.000	1.000
T₃	0.235	0.941	0.941	0.235	0.134	0.076	0.373	0.373	0.746

C Paleogeographic parameterization

Interval	Eastern margin								
T₁	1.00	0.25	1.00	0.25	228	4.4E−03	1.9E−05	9.9E−04	51
T₂	1.00	0.50	1.00	0.50	700	1.4E−03	2.0E−06	4.3E−05	21
T₃	1.00	1.00	1.00	1.00	400	2.5E−03	6.3E−06	7.5E−05	12

Interval	Western margin								
T₁	1.00	0.25	1.00	0.25	1478	6.8E−04	4.6E−07	2.3E−05	51
T₂	1.00	0.50	1.00	0.50	1050	9.5E−04	9.1E−07	1.9E−05	21
T₃	1.00	1.00	1.00	1.00	325	3.1E−03	9.5E−06	1.1E−04	12

Notes: (A) Absolute ΔD values (in m²) from nine alternative paleogeographic models. ΔD values from equation: ΔDₑ = (λₑVₑ)/r², where λₑ is the relative land area of Eastern or Western margins, Vₑ is the relative water discharge volume of Paleo-Chinchoro–Amazon river, r represents the proportion of modern values, r is the closest paleogeographic distance between the coastlines of northern South America and plate margins, and k is a scaling constant (see Methods for details). (B) ΔDₑ values normalized to 1.0 from the maximum ΔDₑ value (ΔDₑ−max) of each model across a given plate margin. (C) Paleogeographically derived data used in model parameterization.

The timing of dispersal events recovered here supports the hypothesis that cichlids and poeciliids became established in Central America during the early Cenozoic. Because most GACA freshwater fish clades have closest relatives in South America, early workers speculated these taxa originated from dispersal over the Panamanian land bridge about 3.0–3.5 Ma (Lomolino et al. 2010). Yet it has long been hypothesized that some obligate freshwater fish taxa, cichlids and poeciliids in particular, may have dispersed to Central America before the rise of the Panamanian Isthmus (Myers 1949, 1966; Miller 1966; Bussing 1976, 1985) by overseas dispersal. Recent phylogenetic studies of Neotropical freshwater fishes have supported a pre-Isthmian date for expansion into Central America (Smith and Beringham 2005; Chakrabarty 2006; Hrbeč et al. 2006; Chakrabarty and Albert 2011; Říčan et al. 2013; Matamoros et al. 2015).
Notes: Correlations differ from those in Table 4 only in the significance values for pooled data in models parameters α_i and β_i, with slightly lower correlation coefficients for α_i, and slightly higher correlations for β_i.

Methods for estimating macroevolutionary rate parameters from molecular phylogenies are still in an active stage of development and the precise biological meaning of the rate estimates reported here is incompletely understood (Rabosky 2010; Morlon et al. 2011; Stadler 2011; Pyron and Burbrink 2013). For example, the extinction rates reported here have biological meaning of the rate estimates reported here in an active stage of development and the precise biological meaning of the rate estimates reported here is incompletely understood (Rabosky 2010; Morlon et al. 2011; Stadler 2011; Pyron and Burbrink 2013).
knowledge can strongly affect estimates of some biogeographic rate processes. For example, knowledge that the Isthmus of Panama arose during the late Neogene (12–3 Ma) constrains numerical estimates of biogeographic rate processes. For example, knowledge can strongly affect estimates of some rate parameters at time intervals I and II (\(R^2 < 0.00\)). However, rates estimates for the constrained and unconstrained analyses are significantly negative log likelihood (\(\Delta \log L \)) and ensemble (tree-wide) extinction rates (\(R \)) from the constrained and unconstrained analyses are significantly lower than the value of 0.00 in the paleogeographically constrained analysis.

Table 6. LAGRANGE+ estimates of \(D \Omega \) for Heroini and Peconiinae across the Caribbean plate margin, with and without paleogeographic constraints

Parameter	Eastern margin	Pecoliinae
\(a_1 \)	1.37E–01	0.00E+00
\(a_2 \)	3.15E–03	3.58E–28
\(a_3 \)	1.04E–28	2.43E–25
\(b_1 \)	1.19E–02	6.78E–01
\(b_2 \)	2.72E–03	2.44E–30
\(b_3 \)	5.57E–09	3.91E–36
\(c_1 \)	0.00E+00	1.38E–01
\(c_2 \)	0.00E+00	2.99E–02
\(c_3 \)	4.94E–03	1.92E–03
\(\mu \)	1.32E–02	1.92E–02
\(n \log L \)	9.58E+01	1.32E+02

Notes: Paleogeographically constrained values of Western margin rate parameters at time intervals I and II (\(b_1, b_2, c_1, c_2 \)) set to 0.00. Unconstrained rate values estimated from the time-calibrated trees and extant species distributions alone (Fig. 1). ML values from 100 replicate runs. Ensemble (tree-wide) extinction rates (\(\mu \)) and negative log likelihood (\(n \log L \)) values also reported. Rates estimates from the constrained and unconstrained analyses are significantly correlated (Heroini, \(R^2 = 0.992, P < 0.001 \); Pecoliinae, \(R^2 = 0.911, P < 0.001 \)). However, rates estimates for the constrained and unconstrained analyses differ by many orders of magnitude (values in bold) for three rate parameters on the Eastern margin (\(a_2, b_2, b_3 \)), and three rate parameters on the Western margin (\(b_1, b_2, c_1 \)).

Authors’ Contributions

V.A.T., S.M.D.-S., and J.S.A. conceived the ideas; V.A.T., P.C., and W.A.M. collected the data; S.M.D.-S. wrote the computer code; all authors analyzed the data; J.S.A. led the writing.

Supplementary Material

Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.11cv0.

Funding

This work was supported by the United States National Science Foundation (DEB 0916695 and 1354511 to P.C., and DEB 0614334, 0741450, and 1354511 to J.S.A.); the Fundação de Amparo à Pesquisa do Estado de São Paulo [2012/09990-0 to V.A.T.]; and the Louisiana Education Quality Support Fund [2011-14-RD-A-27 to S.M.D.-S.].

Acknowledgments

The authors thank Michael Landis and Nicholas Matzke for valuable comments and suggestions on a previous version of this manuscript. They also thank Tiago Carvalho, William Crampton, Hernán López-Fernández, Kirk Winemiller, and Roberto Reis for advice and discussion. For access to supercomputing resources the authors acknowledge LONI, the Louisiana Optical Network Initiative.

References

Akaichi H. 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:786–792.

Albert J.S., Carvalho T.P. 2011. Neogene assembly of modern faunas. In: Albert J.S., Reis R.E., editors. Historical biogeography of Neotropical freshwater fishes. Berkeley: University of California Press. p. 193–201.

Albert J.S., Petry P., Reis R.E. 2011. Major biogeographic and phylogenetic patterns. In: Albert J.S., Reis R.E., editors. Historical biogeography of Neotropical freshwater fishes. Berkeley: University of California Press. p. 2–20.

Aldá F., Reina R.G., Doadrid I., Bermingham E. 2013. Phylogenetics and biogeography of the Pecoliinae sphenops species complex (Actinopterygii, Pecoliidae) in Central America. Mol. Phylogenet. Evol. 66:1011–1026.

Ali J.R. 2012. Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis gaining a foothold? J. Biogeogr. 39:431–433.

Armstrong D.M. 1977. Dispersal vs. dispersion: Process vs. pattern. Syst. Zool. 26:200–211.

Bacon C.D., Silvestro D., Jaramillo C., Smith B.T., Chakrabarty P., Antonelli A. 2015. Biological evidence supports an early and
complex emergence of the Isthmus of Panama. Proc. Natl Acad. Sci. U.S.A. 112:610−6115.

Bandack D. 196. New tertiary tectoest from Argentina. American Museum Novitates 2041.1−27

Bermingham E., McCaftery S.S., Martin A.P. 1997. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In: Kocher T.D., Steiper C.A., editors. Molecular Systematics of Fishes. p. 113−128.

Blakey R. 2011. Global paleogeography. Available from: URL https://www2.nau.edu/rcb7/index.html.

Buerki S., Forest F., Alvarez N., Nylander J.A., Arrigo N., Sammartin J. 2011. An evaluation of new parsimony-based versus parametric inference methods in biogeography: A case study using the globally distributed plant family Sapindaceae. J. Biogeogr. 38: 531−550.

Bussing W. 1976. Geographic distribution of the San Juan Ichthyofauna of Central America with remarks on its origin and ecology. In: Throrsen T.B., editor. Investigations of the Ichthyofauna of Nicaraguan Lakes. Lincoln: University of Nebraska. p. 157−175.

Bussing W.A. 1985. Patterns of distribution of the Central American Ichthyofauna. In: Stohls F.G., Webb S.D., editors. The Great American biotic interchange. New York: Plenum Press. p. 453−473.

Census E.J., Hodg K., Dauz J. 1994. Over-water dispersal of lizards due to hurricanes. Nature 395:556−556.

Chakrabarty P. 2014. Cichlid biogeography: Comment and review. Fish Biogeogr. 5:97−119.

Chakrabarty P. 2006. Systematics and historical biogeography of Greater Antillean Cichlidae. Mol. Phylogenet. Evol. 39: 619−627.

Chakrabarty P., Albert J.S. 2011. Not so fast: A new take on the Great American biotic interchange. In: Albert J.S., Reis R.E., editors. Historical Biogeography of Neotropical Freshwater Fishes. Berkeley: University of California Press. p. 293−306.

Cockerell T.D.A. 1923. A fossil cichlid fish from the Republic of Haiti. Proceedings of the United States National Museum 63:1−3.

Concheiro-Pérez G.A.C., Rincón O., Ortí G., Bermingham E., Daadri D., Zardoya R. 2007. Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei : Cichlidae) based on sequences of the cytochrome b gene. Mol. Phylogenet. Evol. 43: 986−998.

Cousineau T.L., Père M.D., Chastou L.W., Saunders R.M., Su Y.C., Richardson J.E., Erkens R.H. 2011. Early evolutionary history of the flowering plant family Annonaceae: Steady diversification and boreotropical progenitor. J. Biogeogr. 38: 264−268.

Cowie R.H., Holland B.S. 2006. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33:193−198.

Crici J.V., Katina L., Posadas P. 2003. Historical biogeography: An introduction. Harvard: Harvard University Press.

Cunningham C.W., Collins T.M. 1994. Developing model systems for molecular biogeography: Vicariance and interchange in marine and terrestrial biota. In: Swarzenski B.W., Stein B., Wagner G.P., DeSalle R., editors. Molecular ecology and evolution: Approaches and applications. Basel: Birkhäuser. p. 405−433.

Cushman S.A., Landguth E.L. 2010. Spurious correlations and inference in landscape genetics. Mol. Ecol. 19:3592−3602.

Darlington P.J. 1938. The origin of the fauna of the Greater Antilles, with discussion of dispersal of animals over water and through the air. Quart. Rev. Biol. 13:274−300.

De Queiroz A. 2005. The resurrection of oceanic dispersal in historical biogeography. Integr. Comp. Biol. 43:261−270.

De Queiroz A. 2005. The resurrection of oceanic dispersal in historical biogeography. Integr. Comp. Biol. 43:261−270.

Drumond A.J., Ho S.Y., Phillips M.J., Rambaut A. 2006. Relaxed molecular clock and molecular dating with confidence. PLoS Biol. 4:e88.

Drumond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:224.

Escalona A., Mann F. 2011. Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone. Mar. Petrol. Geol. 28:8−39.

Farias I.P., Ortí G., Sampayo I., Schneider H., Meyer A. 2001. The cytochrome b gene as a phylogenetic marker: The limits of resolution for analyzing relationships among cichlid fishes. J. Mol. Evol. 53:89−103.

Foerster J.R. 1776. Observations made during a voyage round the world. Honolulu: University of Hawaii Press.

Gardner R.H., Engelhardt K.A. 2008. Spatial processes that maintain biodiversity in plant communities. Persp. Plant Evol. Ecol. Syst. 9:211−228.

Goldberg E.E., Lancaster L.T., Ree R.H. 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60:435−465.

Graham A. 2003. Historical biogeography of the Greater Antilles. Britonia 55:357−383.

Grifﬁn D.R. 1952. Radioactive tagging of animals under natural conditions. Ecology 33:329−333.

Grodek S.A., Reverdin G., Carton J.A., Coles V.J. 2014. Year-to-year salinity changes in the Amazon plume. Contemp. 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens. Environ. 140:14−22.

Grot R.E., Losso J.B., Larson A. 2005. Out of Cuba: Over-water dispersal and speciation among lizards in the Anolis carolinensis subgroup. Mol. Ecol. 14:2419−2433.

Gregory-Wodzicki K.M. 2000. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112:1091−1105.

Harper J.L. 1977. Population biology of plants. London: Academic Press.

Hedges S.B., Hass C.A., Masson L.R. 1992. Caribbean biogeography: Molecular evidence for dispersal in West Indian terrestrial vertebrates. Proc. Natl Acad. Sci. U.S.A. 89:1909−1913.

Heinicke M.P., Duellman W.E., Hedges S.B. 2007. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl Acad. Sci. U.S.A. 104:10992−10997.

Hember D.I. 2006. Amphibian paleobiogeography: Evidence of vicariance and gooddispersal patterns. Palaeeoecologi. Palaeeoecologi. Palaeoecol. 235:340−354.

Hemen D.J., Dietz R.S. 1972. Galapagos gore, NazCoPac triple junction and Carnegie/Cocos ridges. Nature 235:266−269.

Hirshk A., Meyer A. 2003. Closings of the Tehyu Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J. Evol. Biol. 16:17−36.

Hirshk A., Seckinger J., Meyer A. 2006. A phylogenetic and biogeographical perspective on the evolution of poeciliid fishes. Mol. Phylogenet. Evol. 43:986−998.

Hu C., Montgomery E.T., Schmitt R.W., Muller-Karger F.E. 2004. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: Observation from space and S-P ALACE ﬂoats. Deep Sea Res. Part II Top. Stud. Oceanogr. 51:1151−1171.

Humphries C.J., Parenti L.R. 1986. Cladistic biogeography. Oxford: Oxford University Press.

Humphries C.J., Parenti L.R. 1999. Cladistic biogeography: Interpreting patterns of plant and animal distributions. 2nd ed. Oxford: Oxford University Press.

Iturralde-Vinent M.A. 2006. Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. Int. Geol. Rev. 48:79−827.

Iturralde-Vinent M.A., MacPhee R.D.E. 1999. Paleogeography of the Caribbean region: Implications for the historical biogeography of the region. Bull. Am. Mus. Nat. Hist. 238:1−95.

Johnstone I.M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biol. Rev. 61:369−394.

Johnstone I.M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biol. Rev. 61:369−394.

Johnstone I.M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biol. Rev. 61:369−394.

Johnstone I.M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biol. Rev. 61:369−394.
Ludt W.B., Kuma K., Tob H., Miyata T. 2005. MAFFT version 5: Improvement of accuracy of multiple sequence alignment. Nucleic Acids Res. 33:511–518.

Ludt W.B., Masui K., Kuma K., Miyata T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066.

Landis M.J., Matzke N.J., Moore B.R., Huchon D.J. 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62:789–810.

Launder P.B., Morgan P., Swanson F.J. 1999. Overview of the use of natural variability concepts in managing ecological systems. Ecol. Appl. 9:1179–1188.

Lande R., Caletto B., Ho S.Y.W., Guindon S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29:1695–1701.

Lewis D.S., Sperling F.A., Nakahara S., Cotton A.M., Kawahara A.Y., Condamine F.L. 2015. Role of Caribbean Islands in the diversification and biogeography of Neotropical Herculides swallowtails. Cladistics 31:291–334.

Lieberman B.S. 1997. Early Cambrian paleogeography and tectonic history: A biogeographic approach. Geol. Soc. Am. Spec. Pap. 31:291–314.

Lieberman B.S., Eldredge N. 1996. Trilobite biogeography in the Middle Devonian: Geological processes and analytical methods. Paleobiology 22:66–79.

Lomolino M.V., Riddle B.R., Whittaker R.J., Brown J.H. 2010. Biogeography. 4th ed. New York: Sinauer.

López-Fernández H., Winemiller K.O., Honeycutt R.L. 2010. Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Percomorphi: Cichlidae: Cichlinae). Mol. Phylogenet. Evol. 55:1070–1086.

Losos J.B., Ricklefs R.E. 2009. Adaptation and diversification on islands. Nature 457:847–850.

Losos J.B., Schluter D. 2000. Analysis of an evolutionary species-area relationship. Nature 408:847–850.

Losos J.B., van Hoorn R., Randall D., Kent A.J., Krysl K. 2013. Prolonged plume volcanism in the Caribbean Large Igneous Province: New insights from Curacao and Haiti. Geochim. Geophys. Geosyst. 14:4241–4259.

Ludt W.B., Rocha L.A. 2015. Shifting seas: The impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J. Biogeogr. 42:25–38.

Machado C., Wooten M.C., Meyer A. 1995. Molecules, morphology, and area cladograms: A cladistic and biogeographic analysis of Gomphus (Teleostei: Poeciliidae). Syst. Biol. 44:221–236.

MacArthur R.H., Wilson E.O. 1967. The theory of island biogeography. Princeton: Princeton University Press.

Malabarba M.C., Malabarba L.R. 2008. A new cichlid Tremichromis guruci (Actinopterygii, Perciformes) from the Eocene-Oligocene of Eastern Brazil. Rev. Bras. Paleontol. 11:59–68.

Malabarba M.C., Malabarba L.R., Del Papa C. 2010. Gymnocephalus eucenicus, n. sp. (Percomorphi: Cichlidae), an Eocene Cichlid from the Lumbreira Formation in Argentina. J. Verteb. Paleontol. 30:341–350.

Malabarba M.C., Zuleta O., Del Papa C. 2016. Proteroca argentina, a new fossil cichlid from the Lumbreira Formation, Ecocene of Argentina. Zool. Sci. 33:177–188.

Matallat B., Dinkelman M. 1972. Circum-Caribbean tectonics and igneous activity and the evolution of the Caribbean plate. Geol. Soc. Am. Bull. 83:261–272.

Mann P. 1999. Caribbean sedimentary basins: Classification and tectonic setting from Jurassic to present. In: Mann P., editor. Caribbean basins. Sedimentary basins of the world. Vol. 4. Amsterdam: Elsevier Science B.V. p. 3–31.

Martin A.P., Bermingham E. 1998. Systematics and evolution of lower Neotropical fishes (Perciformes: Cichlidae: Cichlinae). Mol. Phylogenet. Evol. 17:399–402.

Martins C.M., Cardona A., Jaramillo C., Pardo A., Silva J.C., Valencia V., C.M., Wesselingh F., editors. Neogene history of Western Amazonia: Subandean zones: Implications for Neogene Amazonia. In: Hoorn M.C., Sobel E.R., Strecker M.R. 2010. Tectonic history of the Andes and its relevance to invasive potential, sterile insect technique and surveillance trapping. Anim. Prod. Sci. 48:1237–1245.

Measey J.G., Vences M., Drewes R.C., Chiari Y., Melo M., Bourles B. 2007. Freshwater paths across the ocean: Molecular phylogeny of the frog Phyllomedusa bicolor. J. Biogeogr. 34:79–90.

Mead A., Edgerton J.E. 2008. Short-and long-range dispersal of the Queensland fruit fly, Bactrocera tryoni and its relevance to invasive potential, sterile insect technique and surveillance trapping. Annu. Product. Sci. 48:1237–1245.

Meier J.G., Lieberman B.S. 2004. A paleomagnetic and palaeobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. J. Geol. Soc. 161:477–487.

Messer A.S., Lobo J.M., Ree R., Beerling D.J., Sanmartín I. 2014. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: The Case of Hypericum (Hypericaceae). Syst. Biol. 63:698.

Michelangeli F.A., Juud W.S., Penneys D., Skaan J.D., Jr., Bécquer-Granados E.R., Goldenberg R., Martin C.V. 2008. Multiple events of dispersal and radiation of the tribe Miconieae (Melastomataceae) in the Caribbean. Bot. Rev. 74:53–77.

Miller R.R. 1966. Geographical distribution of Central American freshwater fishes. Copeia 1966:773–802.

Milliman J.D., Meade R.H. 1983. World-wide delivery of river sediment to the ocean. Geol. Soc. Am. Bull. 94:17–31.

Montes C., Cardona A., Jaramillo C., Pardo A., Silva J.C., Valencia V., Ayala C., Perez-Angel L.C., Rodrigues-Parra L.A., Ramirez V., Nefo E. 2015. Middle Miocene closure of the Central American Seaway. Science 348:226–229.

Mora A., Baby P., Hermoza W., Brusset S., Parra M., Roddaz M., Espurt N., Sobel E.R., Strecker M.R. 2010. Tectonic history of the Andes and Subandean zones: Implications for Neogene Amazonia. In: Hoorn C.M., Wesselingh F., editors. Neogene history of Western Amazonia and its significance for modern biodiversity. London: Blackwell Publishing. p. 38–60.

Morton H., Parsons T.L., Plotkin J.B. 2011. Reconciling molecular and fossil records: Testing for and quantifying the effects of processes or biases that cause discordance. Paleobiology 37:384–392.

Murray A.G., Gillibrand P.A. 2006. Modelling salmon lice dispersal in the lower Kingsferry channel. Can. J. Fish. Aquat. Sci. 63:444–457.

Mutter R.J. 2011. A case study of the palaeobiogeography of Malabarba M.C., Malabarba L.R., Del Papa C. 2010. Gymnocephalus eucenicus, n. sp. (Percomorphi: Cichlidae), an Eocene Cichlid from the Lumbreira Formation in Argentina. J. Verteb. Paleontol. 30:341–350.

Nakajara A.Y., Katoh K., Misawa K., Kuma K., Miyata T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066.

Macleod J., Mutter R.J., Eckley I., Bercovitch F., McGowan A.J., Slater C.S.C., editors. Palaeoecology and palaeobiogeography: Biodiversity in space time. Boca Raton: CRC Press.
Myers G.S. 1949. Salt-tolerance of freshwater-fish groups in relation to zoogeographical problems. Bidrjagen tot Dierkunde 28: 315-322.

Myers G.S. 1966. Derivation of the freshwater fish fauna of Central America. Copeia 1966:766–773.

Fascial R., Bond M., Vucetich M. 1981. El Subgrupo Santa Bárbara (Grupo Salta) y sus vertederos, cronología, paleoambientes y paleobiogeografía. Actas 8 Congreso Geológico Argentino 3: 743–748.

Patterson C. 1993. An overview of the early fossil record of acanthomorphs. Bulletin of Marine Science 52:29–59.

Penny M.W., Harmon L.J., Uyeda J.C. 2014. Is there room for punctuated equilibrium in macroevolution? Trends Ecol. Evol. 29:23–32.

Perry G.D., Duffy P.B., Miller N.L. 1996. An extended data set of river discharges for validation of general circulation models. J. Geophys. Res. 101:23139–23149.

Peter Linder H., Antonelli A., Humphreys A.M., Pirse M.D., Wüest O.R. 2013. What determines biogeographical ranges? Historical wanderings and ecological constraints in the danthonioid grasses. Biol. J. Linn. Soc. 80:281–324.

Phillips B.L. 2012. Range shift promotes the formation of stable range edges. J. Biogeogr. 39:153–161.

Pindell J.L., Kennan L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geol. Soc. Lond. Spec. Publ. 328:1–55.

Platnick N.J. 1979. Philosophy and the transformation of cladistics. Syst. Zool. 28:537–546.

Pyron R.A. 2014. Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Syst. Biol. sysy042.

Pyron R.A., Burbrink F.T. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends Ecol. Evol. 28:729–736.

Quine S.L., Wilson J.B., Mark A.F. 1987. The island biogeography of freshwater fauna. Conserv. Biol. 13:1220–1222.

Randall J.D., Zaret K.M. 1976. Assembling geographic range evolution by dispersal, local extinction, and time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifoliaceae. J. Biogeogr. 36: 2324–2337.

Ree R.H., Sanmartin I. 2009. Prospects and challenges for parametric models in historical biogeographical inference. J. Biogeogr. 36: 1211–1220.

Ree R.H., Smith S.A. 2008. Maximum likelihood inference of molecular phylogenies. Evolution 62:1836–1824.

Rex R.H., Moore B.R., Webb C.O., Donoghue M.J. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59:2299–2311.

Rex R.H., Sanmartin I. 2009. Prospects and challenges for parametric models in historical biogeographical inference. J. Biogeogr. 36: 1211–1220.

Scharl M. 1994. Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 368:539.

Schaller C. 1935. Historical geology of the Antillean-Caribbean region. New York: John Wiley and Sons Inc.

Schult F.M., Papel J., Sarmento Cabral J., Groeneveld J., Byкова O., O’Hara R.B., Hattig F., Kissling W.D., Peter Linder H., Midgley G.F., Schröder B., Singer A., Zimmermann N.E. 2012. How to understand species’ niches and range dynamics: A demographic research agenda for biogeography. J. Biogeogr. 39:2146–2162.

Shaw M.W., Harwood T.D., Wilkinson M.J., Elliott L. 2006. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment. Proc. R. Soc. B. Biol. Sci. 273:1705–1713.

Simberloff D.S. 1974. Equilibrium theory of island biogeography and ecology. Annu. Rev. Ecol. Syst. 5:161–182.

Stoddard T. 2011. Inferring speciation and extinction processes from extant species data. Proc. Natl Acad. Sci. U.S.A. 108:16145–16146.

Stigall Rode A.L., Lieberman B.S. 2005. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing Laurentia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222:272–284.

Taylor D.J., Finston T.L., Hebert P.D. 1998. Biogeography of a widespread freshwater crustacean: Pseudocopeoniscus and cryptic endemism in the North American Drypetes arcis complex. Evolution 52:1648–1670.

Taylor D.J., Finston T.L., Hebert P.D. 1998. Biogeography of a widespread freshwater crustacean: Pseudocopeoniscus and cryptic endemism in the North American Drypetes arcis complex. Evolution 52:1648–1670.

Willson M.F. 1993. Dispersal mode, seed shadows, and colonization patterns. Vegetatio 107:261–280.

Whittaker R.J., Fernández-Palacios J.M. 2007. Island biogeography: Ecology, evolution, and conservation. Oxford: Oxford University Press. p. 59–67.

Wiley E.O. 1988. Vicariance biogeography. Annu. Rev. Ecol. Syst. 19:513–542.

Zink R.M., Blackvell-Rago R.C., Ronquist F. 2000. The shifting roles of dispersal and vicariance in biogeography. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 267:497–503.

Zink R.M., Blackvell-Rago R.C., Ronquist F. 2000. The shifting roles of dispersal and vicariance in biogeography. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 267:497–503.