A NOTE ON PROJECTIVE DIMENSION OVER TWISTED COMMUTATIVE ALGEBRAS

STEVEN V SAM AND ANDREW SNOWDEN

Abstract. Let M be a finitely generated module over a free twisted commutative algebra A that is finitely generated in degree one. We show that the projective dimension of $M(C^n)$ as an $A(C^n)$-module is eventually linear as a function of n. This confirms a conjecture of Le, Nagel, Nguyen, and Römer for a special class of modules.

1. Introduction

Fix a positive integer d and let $A = C[x_{i,j} | 1 \leq i \leq d, 1 \leq j]$ be the infinite variable polynomial ring. One can picture the variables as the entries of a $d \times \infty$ matrix. The ring A is obviously not noetherian, but it is known to be equivariantly noetherian with respect to the infinite symmetric group \mathfrak{S} or the infinite general linear group GL; this means that the ascending chain condition holds for invariant ideals. The noetherian result for \mathfrak{S} was proved by Cohen [Co]. The noetherian result for GL follows from this, but also admits a direct (and easier) proof [SS2, §9.1.6].

Let M be a module for A that is equivariant with respect to \mathfrak{S} or GL. We also assume that M is finitely generated in the equivariant sense and “nice” as a representation. Taking invariants under an appropriate subgroup, one obtains a module M_n over the finite variable polynomial ring $A_n = C[x_{i,j} | 1 \leq i \leq d, 1 \leq j \leq n]$. Given the above noetherian results, one might hope that this sequence of modules is well-behaved.

In the case of the symmetric group (and where M is a homogeneous ideal of A), this has been investigated by Le, Nagel, Nguyen, and Römer. In [NR, Theorem 7.7], the authors show that the Hilbert series of M_n behaves in a regular manner as n varies: the generating function of this sequence of rational functions is itself a rational function in two variables. As a consequence, they show that the Krull dimension of M_n is eventually linear [NR, Theorem 7.9]. In [LNNR1, Conjecture 1.1], the authors conjecture that the Castelnuovo–Mumford regularity of M_n is eventually linear, and in [LNNR2, Conjecture 1.3] they conjecture the same for projective dimension.

In this paper, we consider the case of the general linear group. Since \mathfrak{S} is a rather small subgroup of GL, it follows that GL-equivariant modules are much more constrained than \mathfrak{S}-equivariant modules. Unsurprisingly, many of the above results were previously known in the GL-case: for instance, very precise results are known on the Hilbert series, and it is known that regularity is eventually constant; see [NSS, SS1, SS3, SS4, SS5]. The main result of this paper (Theorem 4.1) shows that the projective dimension of M is eventually linear. This confirms the conjecture of [LNNR2] in the GL case. The key tools are the structure theory for modules developed in [SS3].

Date: July 14, 2022.

SS was supported by NSF grant DMS-1812462.

AS was supported by NSF grants DMS-1453893.
2. Set-up

We work over the complex numbers. We assume general familiarity with Young diagrams, polynomial representations, polynomial functors, and Schur functors (denoted by S_λ where λ is an integer partition), and refer to [SS2] for the relevant background information and detailed references. Let $V = \bigcup_{n \geq 1} C^n$ and let $GL = \bigcup_{n \geq 1} GL_n$. Let $Rep^{pol}(GL)$ be the category of polynomial representations of GL. This is equivalent to the category of polynomial functors, and we freely pass between the two points of view. The simple objects of $Rep^{pol}(GL)$ are given by $S_\lambda(V)$ as λ ranges over all partitions.

A twisted commutative algebra (tca) is a commutative algebra object in $Rep^{pol}(GL)$. Fix a d-dimensional vector space E, and put $A = Sym(V \otimes E)$. This is a tca. It is the same ring introduced in §1, but written in a coordinate-free manner.

By an A-module we always mean a module object for A in $Rep^{pol}(GL)$. Explicitly, this is a module in the ordinary sense equipped with a compatible action of GL under which it forms a polynomial representation. Suppose that M is an A-module. Treating M and A as polynomial functions, $M(C^n)$ is an $A(C^n \otimes E)$-module; note that $A(C^n \otimes E) = Sym(C^n \otimes E)$ is a finite variable polynomial ring. These are the objects M_n and A_n from §1.

We say that a function $f: N \to N$ is eventually linear (here N denotes the set of non-negative integers) if there exists $a \in N$ and $b \in Z$ such that $f(n) = an + b$ for all $n \gg 0$; we then call a the slope of f.

3. The key technical result

For a polynomial representation M of GL, we let $\gamma_M(n)$ or $\gamma(M; n)$ be the maximum size of a partition with at most n columns appearing in M. The following is the key technical result we need to prove our main theorem:

Theorem 3.1. If M is a finitely generated A-module then γ_M is eventually linear with slope at most d.

Example 3.2. Let $M = A/a_r$ be the coordinate ring of the rank $\leq r$ matrices in $E \otimes V$. Suppose that $\min(n, d) \geq r$. The Cauchy identity gives the decomposition

$$M(C^n) = \bigoplus_{\ell(\lambda) \leq r} S_\lambda(E) \otimes S_{\lambda}(C^n)$$

where the sum is over all partitions with at most r many parts. Hence $\gamma_M(n) = rn$. □

It is possible to give an elementary proof of Theorem 3.1 (see Remark 3.5), but we will give a more conceptual proof based on the structure theory of A-modules from [SS3]. We define the formal character of a polynomial representation M of GL, denoted Θ_M, to be the formal series $\sum_\lambda m_\lambda s_\lambda$, where the sum is over partitions, m_λ is the multiplicity of $S_\lambda(V)$ in M, and s_λ is a formal symbol. Note that we can read off γ_M from Θ_M.

Let $a_r \subset A$ be the determinantal ideal, as in Example 3.2. Let $Mod_{A, \leq r}$ be the category of modules (set-theoretically) supported on $V(a_r)$, and let $Mod_{A, > r} = Mod_A / Mod_{A, \leq r}$ be the Serre quotient category. Let $T_{> r}: Mod_A \to Mod_{A, > r}$
be the quotient functor, let $S_{>r}$ be its right adjoint, and let $\Sigma_{>r} = S_{>r} \circ T_{>r}$ be the saturation functor. Also let

$$\Gamma_{\leq r}: \text{Mod}_A \to \text{Mod}_A,_{\leq r}$$

be the functor assigning to a module its maximal submodule supported on $V(\mathfrak{a}_r)$. By [SS3, Theorem 6.10], $\Sigma_{>r}$ and $\Gamma_{\leq r}$ preserve the finitely generated bounded derived categories.

Let $D(A)_{\leq r}$, resp. $D(A)_{>r}$, be the full subcategories of the derived category $D(A)$ spanned by modules M with $\Sigma_{>r}(M) = 0$, resp. $\Gamma_{\leq r}(M) = 0$, and let

$$D(A)_r = D(A)_{\leq r} \cap D(A)_{>r}.$$

Then $D(A)$ admits a semi-orthogonal decomposition into the $D(A)_0, \ldots, D(A)_d$. This holds for the finitely generated bounded derived categories too [SS3, §4]. Letting $K(A)$ denote the Grothendieck group of the category of finitely generated A-modules, we have $K(A) = \bigoplus_{r=0}^d K(A)_r$, where $K(A)_r$ is the Grothendieck group of $D^b_r(A)_r$. By [SS3, Theorem 6.19], we have a natural isomorphism $K(A)_r = \Lambda \otimes K(\text{Gr}_r(E))$, where Λ is the ring of symmetric functions and $\text{Gr}_r(E)$ is the Grassmannian of r-dimensional quotient spaces of E. We note that Θ defines an additive function on $K(A)$.

For a partition λ, we let $\lambda[n^r]$ be the partition $(n, \ldots, n, \lambda_1, \lambda_2, \ldots)$, where the first r coordinates are n. This is a partition provided that $n \geq \lambda_1$.

Lemma 3.3. Let $c \in K(A)_r$ be the class $s_\lambda \otimes [\mathcal{F}]$, where \mathcal{F} is a coherent sheaf on $\text{Gr}_r(E)$.

(a) Every partition appearing in Θ_c is contained in $\lambda[n^r]$ for some n.

(b) For $n \geq \lambda_1$, the coefficient of $\lambda[n^r]$ in Θ_c is $h_{\mathcal{F}}(n)$, where $h_{\mathcal{F}}$ is the Hilbert polynomial of \mathcal{F} with respect to the Plücker embedding.

Proof. Let Q be the rank r tautological quotient bundle on $X = \text{Gr}_r(E)$ and let $B = \text{Sym}(V \otimes Q)$, which can be thought of as a tca on X. If M is a B-module then $\Gamma(X, M)$ is naturally an A-module [SS3, §6.2]. Under the description of $K(A)$ given above, c is the class of the complex $\Gamma(X, M)$ where $M = S_\lambda(V) \otimes \mathcal{F} \otimes B$ (see [SS3, §6.6]). Using the Cauchy decomposition for B, we have

$$H^i(X, M) = S_\lambda(V) \otimes \bigoplus_{\ell(\mu) \leq r} (S_\mu(V) \otimes H^i(X, \mathcal{F} \otimes S_\mu(Q))).$$

Note that the cohomology group above is just a vector space; the GL action comes from the first two Schur functors. Since μ has at most r rows, the Littlewood–Richardson rule shows that all partitions appearing in $S_\lambda \otimes S_\mu$ are contained in $\lambda[n^r]$ for some n. This proves (a). The Littlewood–Richardson rule also shows that $\lambda[n^r]$ appears with multiplicity one in $S_\lambda \otimes S_{(n^r)}$ for $n \geq \lambda_1$, and does not appear in any other $S_\lambda \otimes S_\mu$ with $\ell(\mu) \leq r$. Note that $S_{(n^r)}(Q) = \det(Q)^{\otimes n}$ and $\det(Q)$ is the Plücker bundle. We thus see that the coefficient of $\lambda[n^r]$ in Θ_c is

$$\sum_{i \geq 0} (-1)^i \dim H^i(X, \mathcal{F}(n)) = h_{\mathcal{F}}(n),$$

which proves (b).

Proof of Theorem 3.1. Let M be a finitely generated A-module, and suppose that M is supported on $V(\mathfrak{a}_r)$ with r minimal. By [SS3, Theorem 6.19], we then have the following:

- In $K(A)$, we have $[M] = c_0 + \cdots + c_r$ with $c_i \in K(A)_i$. Write $c_i = \sum_{\lambda} c_{i,\lambda}$ where $c_{i,\lambda} = s_\lambda \otimes [\mathcal{F}_{i,\lambda}]$ and $\mathcal{F}_{i,\lambda}$ is a coherent complex on $\text{Gr}_i(E)$.
- The class $[\mathcal{F}_{r,\lambda}]$ is effective, i.e., we can assume $\mathcal{F}_{r,\lambda}$ is a coherent sheaf.
There is a partition λ such that $[F_{r,\lambda}] \neq 0$.

By Lemma 3.3(a) a partition with $\leq n$ columns appearing with non-zero coefficient in $\Theta_{c,\mu}$ has size $\leq in + |\mu|$. We thus see that $\gamma_M(n) \leq rn + b$ where b is the maximal size of a partition λ with $F_{r,\lambda} \neq 0$, at least for $n \gg 0$.

Now, let λ be a partition of size b with $F_{r,\lambda}$ non-zero. By Lemma 3.3(b), $\lambda[n^r]$ appears with positive coefficient in $\Theta_{c,\lambda}$ for $n \gg 0$. Furthermore, the lemma shows that $\lambda[n^r]$ does not appear in $\Theta_{c,\mu}$ for any $(i, \mu) \neq (r, \lambda)$ and for $n \gg 0$. We thus see that $\lambda[n^r]$ has positive coefficient in Θ_M, and so $\gamma_M(n) \geq rn + b$. This completes the proof. \hfill \Box

Remark 3.4. The proof shows that the slope of γ_M is the minimal r such that M is supported on $V(a_r)$. \hfill \Box

Remark 3.5. Here is how one can prove Theorem 3.1 without using the theory of [SS3]. For a polynomial representation M, let $M[n]$ be the sum of the λ-isotypic pieces of M over those λ of size at least n and with at most n columns, and let $M = \bigoplus_{n \geq 0} M[n]$. Suppose M is a finitely generated A-module. One then shows that M' is a finitely generated A^\dagger-module, and from this deduces the structure of the bi-variate Hilbert series of M' (note that M' is bi-graded since each $M[n]$ is graded). One can deduce the theorem from this, as the Hilbert series determine γ_M. \hfill \Box

4. Depth and Projective Dimension

Let M be an A-module. We write $\operatorname{depth}_{A}(n)$ or $\operatorname{depth}(M; n)$ for the depth of $M(C^n)$ as an $A(C^n)$-module, and $\operatorname{pdim}_{M}(n)$ or $\operatorname{pdim}(M; n)$ for the projective dimension of $M(C^n)$ as an $A(C^n)$-module. Our main result is the following theorem:

Theorem 4.1. If M is a finitely generated A-module then pdim_{M} and depth_{M} are eventually linear with slope at most d.

Example 4.2. Let $M = A/a_r$ be the coordinate ring of the rank $\leq r$ matrices, as in Example 3.2. Suppose that $\min(n, d) \geq r$. Then $M(C^n)$ has codimension $(d-r)(n-r)$ and is Cohen–Macaulay, so its projective dimension is $\operatorname{pdim}_{M}(n) = (d-r)n - (d-r)r$ and by the Auslander–Buchsbaum formula, its depth is $\operatorname{depth}_{M}(n) = rn + r(d-r)$. \hfill \Box

We now prove Theorem 4.1. The Auslander–Buchsbaum formula states that

$$\operatorname{depth}_{M}(n) + \operatorname{pdim}_{M}(n) = dn,$$

which allows us to deduce the result for depth from that for pdim.

Using [SS3, Theorem 7.7], there are finitely generated A-modules $F_k(M)$ that can be extracted from the linear strands of the minimal free resolution of M; its graded components are given by

$$F_k(M)_{p+k} = \operatorname{Tor}_{p}^{A}(M, C)_{p+k},$$

where \vee is the duality on polynomial functors which fixes simple objects (see [SS2, (6.1.6)]), and \dag is the equivalence on polynomial functors which interchanges the usual symmetric structure with the graded symmetric structure, and in particular has the effect $S^\dag_k = S_k$ (see [SS2, (6.1.5)]). There are only finitely many values of k for which $F_k(M)$ is non-zero.

The theorem is now a consequence of Theorem 3.1 and the following lemma:

Lemma 4.3. Let M be a finitely generated A-module. Then

$$\operatorname{pdim}_{M}(n) = \max_{k}(\gamma(F_k(M); n) - k).$$
Proof. Fix n, and let N be the maximum appearing on the right side of the above equation. For this proof, write $T_i(M)$ for $\text{Tor}^A_i(M, C)$. By definition, we have

$$T_p(M) = \bigoplus_k F_k(M)_{p+k}.$$

We thus see that $T_q(M)(C^n) \neq 0$ for some $q \geq p$ if and only if there exists some k such that $F_k(M)$ has a partition of size at least $p + k$ with at most n columns, that is, $\gamma(F_k(M); n) \geq p + k$. Therefore, the maximum p for which $T_p(M)(C^n) \neq 0$ is $p = N$, and the result follows since $\text{pdim}_A(n)$ is the maximum p for which

$$T_p(M)(C^n) = \text{Tor}^A_p(C^n)(M(C^n), C)$$

is non-zero.

5. Krull dimension

Let B be a quotient tca of A. Define $\delta_B(n)$ to be the Krull dimension of the ring $B(C^n)$. Since the defining ideal for B is stable under the infinite symmetric group \mathfrak{S}, it follows from [NR, Theorem 7.9] that δ_B is eventually linear. We now give an easy proof of a more precise result by leveraging the theory from [SS3].

We first recall some relevant information from [SS3, §3]. Let C be any tca. An ideal I of C is prime if, given any other ideals J, J' of C, we have that $JJ' \subseteq I$ if and only if $J \subseteq I$ or $J' \subseteq I$. (Note that, by definition, all ideals are GL-stable.) The spectrum $\text{Spec}(C)$ is defined to be the set of prime ideals of C, and is equipped with the Zariski topology (defined in the same way as for ordinary rings).

Next, let $\text{Gr}_r(E)$ denote the underlying topological space of the Grassmannian (thought of as a scheme) parametrizing rank r quotients of E. The total Grassmannian of E, denoted $\text{Gr}(E)$, is $\bigsqcup_{r=0}^d \text{Gr}_r(E)$ as a set. We topologize $\text{Gr}(E)$ by defining a subset $Z \subset \text{Gr}(E)$ to be closed if and only if

- $Z \cap \text{Gr}_r(E)$ is closed for all r, and
- Z is closed under taking quotients: if $E \to U$ is in Z, then so is $E \to U'$ for any quotient space U' of U.

By [SS3, Theorem 3.3], we have a homeomorphism $\text{Spec}(A) \cong \text{Gr}(E)$, and hence $\text{Spec}(B)$ can be identified with a closed subset of $\text{Gr}(E)$. If $Z \subset \text{Gr}_r(E)$ is a Zariski closed irreducible subset, then its closure in $\text{Gr}(E)$ is irreducible, and every irreducible closed subset of $\text{Gr}(E)$ is of this form [SS3, Proposition 3.2]. Hence we can label irreducible closed subsets of $\text{Gr}(E)$ by pairs (r, Z) where $Z \subset \text{Gr}_r(E)$ is a Zariski closed irreducible subset.

We then have the following result:

Theorem 5.1. Let B be as above, and recall that $d = \text{dim}(E)$.

(a) There exist integers $0 \leq a \leq d$ and $0 \leq b \leq (d - a)a$ such that $\delta_B(n) = an + b$ for all $n \gg 0$.

Now assume that $\text{Spec}(B)$ is irreducible.

(b) If $\text{Spec}(B)$ corresponds to the pair (r, Z), then $a = r$ and $b = \text{dim} Z$.

(c) If $b = 0$ then $\text{Spec}(B) = V(I)$ where I is generated by linear forms.

(d) If $b = (d - a)a$ then $\text{Spec}(B)$ is the determinantal variety of rank $\leq a$ maps.
Proof. By noetherianity of A, Spec(B) has finitely many irreducible components, so it suffices to prove (a) when Spec(B) is irreducible. We will assume that from the beginning. Suppose Spec(B) corresponds to (r, Z). Let $Y_n \subset$ Spec$(A(C^n))$ be the space of maps of rank exactly r. Then the natural map $\pi_n : Y_n \to Gr_r(E)$ is a fibration of relative dimension rn. Furthermore, Spec$(B(C^n))$ is the inverse image of Z under π_n (see [SS3, Lemma 3.7]). This proves (a) and (b). If $b = 0$ then Z is a point, while if $b = (d - a)a$ then Z is all of $Gr_r(E)$; (c) and (d) follow. □

6. Local cohomology

Let M be a finitely generated A-module. We have seen that depth$_M$ is eventually linear (Theorem 4.1). This tells us that the local cohomology groups $H^i_{m(C^n)}(M(C^n))$ have some uniformity as n varies, where m is the maximal ideal of A. In [SS3, §6], we defined local cohomology groups $H^i_{a_r}(M)$ for M at each determinantal ideal a_r, and proved a finiteness result about them. A natural problem is to try and relate these two local cohomology groups. This is addressed by the following theorem:

Theorem 6.1. Let M be a bounded A-module. Then there is a canonical isomorphism of $A(C^n)$-modules $H^i_{a_r}(M)(C^n) \cong H^i_{a_r}(C^n)(M(C^n))$ for $n \geq \max(\ell(M), i + d)$.

The proof of this result is somewhat lengthy, so we have not included it.

REFERENCES

[Co] D. E. Cohen. Closure relations, Buchberger’s algorithm, and polynomials in infinitely many variables. In Computation theory and logic, volume 270 of Lect. Notes Comput. Sci., pp. 78–87, 1987. DOI:10.1007/3-540-18170-9

[LNNR1] Dinh Van Le, Uwe Nagel, Hop D. Nguyen, Tim Römer. Castelnuovo–Mumford regularity up to symmetry. Int. Math. Res. Not. IMRN (2021), no. 14, pp. 11010–11049. DOI:10.1093/imrn/rnz382 arXiv:1806.00457v3

[LNNR2] Dinh Van Le, Uwe Nagel, Hop D. Nguyen, Tim Römer. Codimension and projective dimension up to symmetry. Math. Nachr. 293 (2020), no. 2, pp. 346–362. DOI:10.1002/mana.201800413 arXiv:1809.06877v2

[NR] Uwe Nagel, Tim Römer. Equivariant Hilbert series in non-noetherian polynomial rings. J. Algebra 486 (2017), pp. 204–245. DOI:10.1016/j.jalgebra.2017.05.011 arXiv:1510.02757v2

[NSS] Rohit Nagpal, Steven V Sam, Andrew Snowden. Regularity of FI-modules and local cohomology. Proc. Amer. Math. Soc. 146 (2018), no. 10, pp. 4117–4126. DOI:10.1090/proc/14121 arXiv:1703.06326v3

[SJ] Steven V Sam, Andrew Snowden. GL-equivariant modules over polynomial rings in infinitely many variables. Trans. Amer. Math. Soc. 368 (2016), pp. 1097–1158. DOI:10.1090/tran/6355 arXiv:1206.2233v3

[SS2] Steven V Sam, Andrew Snowden. Introduction to twisted commutative algebras. arXiv:1209.5122v1

[SS3] Steven V Sam, Andrew Snowden. GL-equivariant modules over polynomial rings in infinitely many variables. II. Forum Math. Sigma 7 (2019), e5, 71pp. DOI:10.1017/fms.2018.27 arXiv:1703.04516v2

[SS4] Steven V Sam, Andrew Snowden. Regularity bounds for twisted commutative algebras. Bull. Lond. Math. Soc. 52 (2020), no. 2, pp. 299–315. DOI:10.1112/blms.12326 arXiv:1704.01630v1

[SS5] Steven V Sam, Andrew Snowden. Hilbert series for twisted commutative algebras. Algebr. Comb. 1 (2018), no. 1, pp. 147–172 DOI:10.5802/alco.9 arXiv:1705.10718v2

[Wey] Jerzy Weyman. Cohomology of Vector Bundles and Syzygies. Cambridge Tracts in Mathematics 149, Cambridge University Press, Cambridge, 2003. DOI:10.1017/CBO9780511546556
