Insecticidal Activities and GC-MS Analysis of the Selected Family Members of Meliaceae Used Traditionally as Insecticides

Kolwane Calphonia Shilaluke * and Annah Ntsamaeeng Moteetee

Department of Botany and Plant Biotechnology, University of Johannesburg,
P.O. Box 524, Auckland Park 2006, South Africa
* Correspondence: 201311632@student.uj.ac.za; Tel.: +27-78-850-7971

Abstract: The environmental and health risks associated with synthetic pesticides have increased the demand for botanical insecticides as safer and biodegradable alternatives to control insect pests in agriculture. Hence in this study, five Meliaceae species were evaluated for their insecticidal activities against the Spodoptera frugiperda and the Plutella xylostella larvae, as well as their chemical constituents. Repellence, feeding deterrence, and topical application bioassays were employed to evaluate their insecticidal activities. GC-MS analysis was performed to identify chemical compounds present in each plant. The repellence bioassay indicated that Melia azedarach extracts exhibited the highest repellence percentage against S. frugiperda (95%) and P. xylostella (90%). The feeding deterrence bioassay showed that M. azedarach and Trichilia dregeana extracts displayed excellent antifeeding activity against the S. frugiperda (deterrent coefficient, 83.95) and P. xylostella (deterrent coefficient, 112.25), respectively. The topical application bioassay demonstrated that Ekebergia capensis extracts had the highest larval mortality against S. frugiperda (LD$_{50}$ 0.14 mg/kg). Conversely, M. azedarach extracts showed the highest larval mortality against P. xylostella (LD$_{50}$ 0.14 mg/kg). GC-MS analysis revealed that all plant extracts had compounds belonging to the two noteworthy groups (phenols and terpenes), which possess insecticidal properties. Overall, this study lends scientific credence to the folkloric use of Meliaceae species as potential biocontrol agents against insect pests.

Keywords: antifeedants; botanical insecticides; insect pests; Meliaceae; synthetic pesticides

1. Introduction

The agricultural sector has always been faced with challenges due to insect pests and will continue to do so in the future [1]. These pests damage crops during the growing period, and they may also subsequently cause damage to the harvested products stored in storehouses [2]. Controlling insect pests remains a problem as the insects keep building resistance to common pesticides while, on the other hand, toxic pesticides are being removed from the markets [1]. Synthetic pesticides have been commonly used and are considered a highly effective means of controlling plant damage caused by insects [3], which leads to remarkable improvements in plant yield productivity [4]. However, the indiscriminate and haphazard usage of synthetic pesticides has adversely affected human health and the ecosystem as a whole [5].

The presence of pesticide residues in foods, fruits, vegetables, and even in breastfeeding mothers’ milk creates a threat to human health. In developing countries, nearly 3 million farmworkers experience severe pesticide poisoning, resulting in about 18,000 deaths, while 25 million workers suffer from mild pesticide poisoning each year [6]. The use of synthetic pesticides also raises several environmental concerns because over 5% of the sprayed synthetic pesticides do not reach their target insect pests; instead, they can be found in air, soil, and water streams [7]. As a result of these devastating occupational synthetic pesticides...
pesticide poisoning cases, research to find alternative methods that are environmentally friendly and cost-effective in controlling insect pests has increased [1].

Based on recent studies to find ways to mitigate problems caused by synthetic pesticides, natural bio-insecticides from medicinal plants can be an excellent alternative strategy to overcome pest resistance and environmental contamination [8]. This possibility is not surprising as plants are rich sources of bioactive chemicals, and botanical insecticides have been reported to have fewer adverse effects on the environment or human health [1].

Meliaceae is one of two flowering plant families that have gained considerable attention, whereby systematic investigations of its members for their insecticidal potential have been undertaken [9,10]. Chemicals extracted from members of the Meliaceae have received attention recently from applied entomologists due to their excellent properties as control agents for insects [11]. This knowledge has prompted the interest to assess other family members for their insecticidal and antifeedant properties in this study.

Platypus xylostella (L.) (Lepidoptera: Plutellidae), commonly known as the diamondback moth (DBM) or the cabbage moth, is an economically important pest of cruciferous plants globally [12]. The Diamondback moth is an oligophagous insect that mainly feeds on cole crops, including broccoli, brussel sprouts, canola, cauliflower, and cabbage, which are of essential economic value [13]. The insect is important in agriculture as causes yield losses of as much as 100% [14]. In the 1970s, there was a major outbreak of DBM, mainly due to the development of resistance to synthetic insecticides [13]. It has been estimated that the yield losses and control associated with diamondback moth globally ranged between 4–5 US billion dollars yearly [14]. In sub-Saharan Africa, crop losses due to diamondback moths have been reported to be between 8–22% in the field [15].

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), commonly known as the fall armyworm (FAW), is a polyphagous insect that is important in agriculture as it is difficult to control and, as a result, causes a lot of damage [16]. This migratory insect also causes enormous economic losses, mainly attacking crops that form part of the primary staple food [17], including rice, maize, forage grasses, sorghum, alfalfa, vegetable crops, and many others [16]. The first case to be reported in Africa of the fall armyworm was in late 2016, when it attacked most West African farms and subsequently spread throughout the continent rapidly and is now found in 44 African countries [18]. Environmentally friendly and effective methods to control fall armyworms are crucial as these insects are heavy foliage feeders [17] and can result in the total loss of crops. In sub-Saharan Africa, maize, rice, sorghum, and sugarcane crop damage is estimated to cause up to USD 13 billion yearly [19].

Ever since plant-derived products have gained increased attention from researchers to assess their insecticidal properties, more than 2000 plant species have been recorded to be used traditionally as insecticides [20]. However, many studies that attempted to validate these properties scientifically are incomplete; the bioassays procedures used were usually inappropriate or inadequate [21]. As a result, biological compounds that are potentially useful remain uninvestigated, undiscovered, underutilized, or undeveloped from this reservoir of unstudied plant materials [22]. Hence, in this study, four Meliaceae species that had previously not been evaluated extensively for their insecticidal and antifeedant properties against the test insects _S. frugiperda_ and _P. xylostella_ were selected. _Melia azedarach_ was chosen as a positive control as it is a well-known bioinsecticide plant. Water extracts were selected for extraction in this study because it is one of the simplest and safest (non-toxicity) solvents. In addition, aqueous plant extracts are traditionally used to control insect pests. Using aqueous extracts is fitting because the main purpose of this study is to identify safer, cost-effective, and renewable alternative methods to synthetic pesticides. Slightly polar acetone and ethanol extracts were selected because the main targeted compounds, limonoids (terpenes), were reported to have a higher solubility in polar solvents and alcohol [23].
2. Results
2.1. Antifeedant and Insecticidal Analysis
2.1.1. Repellence Test

Repellence Bioassay against *S. frugiperda* Larvae

Table 1 indicates the results of the repellence bioassay test of the five selected Meliaceae species against the *S. frugiperda*. Positive average percentage repulsion values exhibit repellence, and negative average percentage repulsion values exhibit attractancy. Plant extracts that are ranked in higher classes (i.e., III, IV, and V) are considered to have a high repellence against the larvae, and those that are ranked to lower classes (I and II) have partial repellence against the larvae. Aqueous and ethanolic extracts of *Melia azedarach* L. and *Trichilia dregeana* Harv. & Sond. acetone extracts were found to have strongly repelled the *S. frugiperda* larvae with repellence of 95%, 65%, and 71%, and they belonged to class V, IV, and IV, respectively. It is followed by aqueous extracts of *Turraea floribunda* Hochst. (49%) belonging to class III. Aqueous and ethanol extracts of *T. dregeana* and ethanolic extracts of *Turraea obtusifolia* Hochst. moderately repelled the *S. frugiperda* with repellence of 40%, 30%, and 30%, respectively. Aqueous and acetone extracts of *T. obtusifolia* were recorded to have the lowest repellency (3% and 5%) and were all assigned to the lowest class (I). Ethanolic extracts of *T. floribunda* (−55%) indicated *S. frugiperda* larvae stimulation.

Table 1. Average repellence of five Meliaceae species leaf extracts against *Spodoptera frugiperda* larvae using the treated filter paper test.

Plant Species	Extract	Dose/Concentration (%)	Percentage Repulsion (PR) = 2 × (C − 50) in Hours	Average (PR)	Class
			1 H 2 H 3 H 4 H		
1. *Ekebergia capensis*	Aqueous	0.5	60 60 0 100	33	II
		1.0	−20 20 20 20	15	I
	Aqueous	0.5	−20 20 20 20	10	I
	Acetone	0.5	60 60 20 20		
		1.0	−60 −20 20 20		
2. *Melia azedarach* L.	Aqueous	0.5	100 100 100 100	95	V
		1.0	100 60 100 100		
	Acetone	0.5	20 60 0 0	28	II
		1.0	60 −20 100 0		
3. *Trichilia dregeana*	Aqueous	0.5	20 20 20 20	40	II
Harv. & Sond.		1.0	20 60 60 100		
	Acetone	0.5	60 60 50 0	71	IV
		1.0	100 100 100 100		
4. *Turraea floribunda*	Aqueous	0.5	−60 100 100 100	49	III
Hochst.		1.0	0 100 0 50		
	Acetone	0.5	60 60 20 100	20	I
		1.0	100 −100 −60 −20	−55	
	Ethanol	0.5	−60 −60 −60 −60		
		1.0	−60 −60 20 −20		
Table 1. Cont.

Plant Species	Extract	Dose/Concentration (%)	Percentage Repulsion (PR) = 2 × (C − 50) in Hours	Average (PR)	Class					
		1 H	2 H	3 H	4 H					
5. *Turracea obtusifolia* Hochst.	Aqueous	0.5	0	0	5	0	3	1		
		1.0	−20	−20	20	20	5	1		
	Acetone	0.5	60	−20	60	−20	20	20	30	II
		1.0	−20	−20	−20	−20	20	20	30	II
	Ethanol	0.5	−20	20	20	20	20	30	II	
		1.0	20	60	60	60	60	30	II	

Repellence Bioassay against *P. xylostella* Larvae

Table 2 indicates the average percentage repulsion for the five Meliaceae species screened for their repellence activity against *P. xylostella* larvae. The overall highest percentage repulsion against the *P. xylostella* larvae was recorded for the aqueous (90%) and ethanol (80%) extracts of *Melia azedarach*, meaning that they exhibited excellent repellent activity, hence they were assigned to classes V and IV, respectively. Good repellent activity against *P. xylostella* was also recorded for acetone (65%) and ethanol (65%) extracts of *T. dregeana*, and they were assigned to class IV. Extracts of *E. capensis* moderately repelled *P. xylostella* larvae with repellence of 60% (aqueous), 50% (acetone), and 50% (ethanol), assigned to class III. All extracts of *T. obtusifolia*, i.e., aqueous (15%), acetone (30%), and ethanol (31%), recorded the lowest repellent activities against *P. xylostella*. Ethanolic extracts of *T. floribunda* (−10%) indicated the *P. xylostella* larvae stimulation.

Table 2. Average repellence of five Meliaceae species leaf extracts against *Plutella xylostella* larvae using the treated filter paper test.
2.1.2. Feeding Deterrence Test

Feeding Deterrence Activity of *S. frugiperda* Larvae

Table 3 indicates the feeding deterrent activity coefficients of Meliaceae species against the fall armyworm larvae. All extracts exhibited feeding activity against the larvae to a certain extent, except for the ethanolic extracts of *T. floribunda*, which were found to have inert antifeedant compounds against the *S. frugiperda* larvae with a feeding deterrent coefficient of −12.89. Of all the tested extracts, aqueous extracts of *M. azedarach* (83.92) and aqueous (68.44) and ethanol (67.29) extracts of *T. obtusifolia* recorded the highest coefficient of deterrence, indicating a good feeding deterrence activity. Aqueous extracts of *T. floribunda* and aqueous extracts of *T. dregeana* moderately caused larvae fertility, with feeding coefficient of 66.96 and 62.02, respectively, ranked ++. Furthermore, ethanolic extracts of *E. capensis* and acetone extracts of *T. floribunda* were the least effective feeding deterrents against the *S. frugiperda* larvae.

Feeding Deterrence Activity of *P. xylostella* Larvae

Table 4 indicates the feeding deterrent activities of the studied Meliaceae species against the diamondback moth larvae. All plant extracts exhibited noteworthy deterrence against the *P. xylostella* larvae. All extracts of *T. dregeana* showed exceptionally high feeding deterrent activities, with acetone recording a 112.25 deterrence coefficient ranked ++++, ethan (99.39, +++), and aqueous (98.77, ++). Aqueous extracts of *T. obtusifolia* and ethanolic extracts of *E. capensis* moderately caused feeding deterrence of the larvae, with feeding coefficients of 86.74 and 85.79, respectively, both ranked ++. Meanwhile, aqueous (13.95, +) and acetone (25.93, +) extracts of *T. floribunda* were the least effective feeding deterrents against *P. xylostella* larvae.
Table 3. Feeding deterrent activity coefficient of five Meliaceae species leaf extracts against *Spodoptera frugiperda*.

Plant Species	Extract	Coefficient of Deterrence	Efficacy of Extract		
		Absolute (A)	Relative (R)	Total (T)	
1. *Ekebergia capensis*	Aqueous	21.66	26.61	48.27	+
	Acetone	25.14	19.97	45.11	+
	Ethanol	-10.77	28.55	17.78	+
2. *Melia azedarach*	Aqueous	48.04	35.88	83.92	++
	Acetone	58.14	3.43	61.57	++
	Ethanol	28.96	8.39	37.35	+
3. *Trichilia dregeana*	Aqueous	29.95	32.07	62.02	++
	Acetone	29.01	23.84	52.85	++
	Ethanol	14.30	31.99	46.29	+
4. *Turraea floribunda*	Aqueous	24.40	42.56	66.96	++
	Acetone	17.86	3.04	20.90	+
	Ethanol	3.04	-15.93	-12.89	0
5. *Turraea obtusifolia*	Aqueous	40.91	26.38	67.29	++
	Acetone	17.51	17.17	34.65	+
	Ethanol	27.06	41.38	68.44	++

Table 4. Feeding deterrent activity coefficient of five Meliaceae species leaves extracts against *Plutella xylostella* larvae.

Plant Species	Extract	Coefficient of Deterrence	Efficacy of Extract		
		Absolute (A)	Relative (R)	Total (T)	
1. *Ekebergia capensis*	Aqueous	27.65	3.61	31.26	+
	Acetone	50.60	2.57	53.17	++
	Ethanol	40.39	45.40	85.79	++
2. *Melia azedarach*	Aqueous	34.79	3.34	38.13	+
	Acetone	32.89	13.55	46.44	+
	Ethanol	56.13	4.13	60.26	++
3. *Trichilia dregeana*	Aqueous	45.85	52.92	98.77	++
	Acetone	62.37	49.88	112.25	+++
	Ethanol	63.52	35.87	99.39	++
4. *Turraea floribunda*	Aqueous	34.70	-20.75	13.95	+
	Acetone	49.41	-23.48	25.93	+
	Ethanol	49.65	-5.43	44.22	+
5. *Turraea obtusifolia*	Aqueous	42.24	44.50	86.74	++
	Acetone	38.94	0.94	39.88	+
	Ethanol	55.43	-1.06	54.37	++
2.1.3. Topical Application Test
Contact Toxicity against *S. frugiperda* Larvae

Table 5 shows the direct contact toxicity of the Meliaceae plant extracts to the *S. frugiperda* larvae using different concentrations. Aqueous extracts of *T. dregeana* and *M. azedarach* exhibited a positive correlation, where the least concentrated extracts [0.5] showed less toxicity than the more concentrated extracts [1.0]. At [0.5], extracts recorded a 20% mortality rate, while [1.0] recorded an 80% mortality rate. The negative correlation between the concentration of extracts and the rate of mortality observed was recorded for *E. capensis* (acetone), *M. azedarach* (acetone and ethanol), and *T. floribunda* (acetone), where at [0.5] 20%, the mortality rate and at [1.0] mortality rate was 80%. Extracts that did not show any correlation and had constant mortality rates were aqueous extracts of *E. capensis* where, at [0.5] and [1.0], 80% of the larvae died, aqueous extracts of *T. floribunda* at [0.5] and [1.0] caused 60% mortality, and ethanolic extracts of *T. floribunda* at [0.5] and [1.0] caused 20% larval mortality. Probability unit (Probit) analysis showed that aqueous extracts of *E. capensis* (LD$_{50}$ value of 0.14 mg/kg) and *T. floribunda* (LD$_{50}$ value of 0.56 mg/kg) were more toxic to the *S. frugiperda* larvae. Probit analysis also indicated that ethanolic extracts of *E. capensis* were the least toxic to the fall armyworm, with LD$_{50}$ values of 851.14 mg/kg.

Contact Toxicity against *P. xylostella* Larvae

Results of the direct contact toxicity of the Meliaceae plant extracts to the *P. xylostella* larvae using different concentrations are outlined in Table 6. All extracts of *M. azedarach* at 500 ppm and 1000 ppm concentrations showed excellent results, as they killed 80% of the *P. xylostella* larvae. The Probit analysis further supported this and indicated that all three different extracts of *M. azedarach* were the most toxic to *P. xylostella*, with LDL$_{50}$ of 0.14 mg/kg. Results for acetone extracts of *E. capensis* and ethanolic extracts of *T. floribunda* showed a positive correlation between the concentration of extracts and mortality rates recorded. At [0.5], *E. capensis* and *T. floribunda* recorded a mortality of 20%, and at [1.0], they recorded an 80% mortality rate. The negative correlation between the concentration of extracts and the rate of mortality observed was recorded for acetone extracts of *T. dregeana* and aqueous extracts of *T. floribunda*. At [0.5], both extracts killed 80% of the larvae; at [1.0], *T. dregeana* killed 20%, while *T. floribunda* killed 40% of the larvae. Extracts that did not show any correlation and had constant mortality rate were aqueous extracts of *T. obtusifolia* because, at [0.5] and [1.0], the extracts killed 40% of the *P. xylostella* larvae. Probit analysis indicated that only the aqueous extract of *T. obtusifolia* was the second most toxic to the *P. xylostella* larvae, with an LDL$_{50}$ value of 1.78 mg/kg. Meanwhile, all other plant extracts displayed insignificant toxicity to the *P. xylostella*, with acetone and ethanol extracts of *T. obtusifolia* recording the highest LDL$_{50}$ value of 1318.26 mg/kg.

2.2. GC-HRT-MS Analyses

The presence of chemical compounds in plants is important as they may be responsible for their biological activities, antifeedant and insecticidal properties. Tables 7–14 indicate active compounds present in each Meliaceae species using GC-MS analyses, with their retention time (RT), observed mass to charge ion ratio (m/z), molecular formula (MF), metabolite class (MC), and fold change (FC, the average of the peak area values obtained at the different injections of the same compound). In *E. capensis* acetone extracts, thirty-three compounds were identified (Table 7), most of which are triterpenoids (five), alkanes (three), esters (three), sesquiterpenoids (three), diterpenoids (two), methyl esters (two), and two compounds were unclassified. Ethanolic extracts of *E. capensis* in Table 8 identified fifty compounds, of which most are sesquiterpenoids (eight), fatty acids (five), diterpenoids (three), methyl esters (three), triterpenoids (three), benzofurans (two), esters (two), fatty amides (two), and one compound was unclassified.
Table 5. Toxicity of five Meliaceae species leaf extracts applied topically to *Spodoptera frugiperda* larvae.

Plant Species	Extracts	Concentration (ppm)	log10 (Concentration)	% Dead	Probit	LD₅₀ (mg/kg)
1. *Ekebergia capensis*	Aqueous	500	2.70	80	5.84	0.14
	1000	3.00	80	5.84		
	Acetone	500	2.70	80	5.84	707.95
	1000	3.00	20	4.16	851.14	
	Ethanol	500	2.70	20	4.16	
	1000	3.00	60	5.25		
2. *Melia azedarach*	Aqueous	500	2.70	20	4.16	707.95
	1000	3.00	80	5.84	707.95	
	Acetone	500	2.70	80	5.84	707.95
	1000	3.00	20	4.16	707.95	
	Ethanol	500	2.70	80	5.84	707.95
	1000	3.00	20	4.16	707.95	
3. *Trichilia dregeana*	Aqueous	500	2.70	20	4.16	707.95
	1000	3.00	80	5.84	707.95	
	Acetone	500	2.70	60	5.25	707.95
	1000	3.00	40	4.75	588.84	
	Ethanol	500	2.70	40	4.75	
	1000	3.00	80	5.84		
4. *Turraea floribunda*	Aqueous	500	2.70	60	5.25	0.56
	1000	3.00	60	5.25	707.95	
	Acetone	500	2.70	80	5.84	707.95
	1000	3.00	20	4.16	6.92	
	Ethanol	500	2.70	20	4.16	
	1000	3.00	20	4.16		
5. *Turraea obtusifolia*	Aqueous	500	2.70	60	5.25	371.54
	1000	3.00	80	5.84	707.95	
	Acetone	500	2.70	40	4.75	371.54
	1000	3.00	60	5.25	707.95	
	Ethanol	500	2.70	60	5.25	371.54
Plant Species	Extracts	Concentration (ppm)	log10 (Concentration)	% Dead	Probit	LD\(_{50}\) (mg/kg)
---------------	--------------	---------------------	-----------------------	--------	--------	-------------------
1. Ekebergia capensis	Aqueous	500	2.70	40	4.75	691.83
		1000	3.00	60	5.25	707.95
	Acetone	500	2.70	20	4.16	707.95
		1000	3.00	80	5.84	691.83
	Ethanol	500	2.70	40	4.75	691.83
		1000	3.00	60	5.25	707.95
2. Melia azedarach	Aqueous	500	2.70	80	5.84	0.14
		1000	3.00	80	5.84	0.14
	Acetone	500	2.70	80	5.84	0.14
		1000	3.00	80	5.84	0.14
	Ethanol	500	2.70	80	5.84	0.14
		1000	3.00	80	5.84	0.14
3. Trichilia dregeana	Aqueous	500	2.70	40	4.75	691.83
		1000	3.00	60	5.25	707.95
	Acetone	500	2.70	80	5.84	691.83
		1000	3.00	20	4.16	707.95
	Ethanol	500	2.70	60	5.25	691.83
		1000	3.00	40	4.75	691.83
4. Turraea floribunda	Aqueous	500	2.70	80	5.84	851.14
		1000	3.00	40	4.75	851.14
	Acetone	500	2.70	20	4.16	707.95
		1000	3.00	60	5.25	707.95
	Ethanol	500	2.70	20	4.16	707.95
		1000	3.00	80	5.84	707.95
5. Turraea obtusifolia	Aqueous	500	2.70	40	4.75	1.78
		1000	3.00	40	4.75	1318.26
	Acetone	500	2.70	20	4.16	1318.26
		1000	3.00	40	4.75	1318.26
	Ethanol	500	2.70	80	5.84	1318.26
		1000	3.00	60	5.25	1318.26
Table 7. Compounds identified in leaf acetone extracts of *Ekebergia capensis*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC
1.	13.95	C15H24O	(1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene Epoxide	26,6925.50	
2.	29.96	C13H20N2SSi	1,2-Benzisothiazol-3-amine, TBDMS derivative Sugar	18,674.71	
3.	13.45	C13H22	1,8-Cyclopentadecadiyne Sesquiterpenoid	115,106.00	
4.	12.71	C11H16O2	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-	132,297.50	
5.	16.78	C13H26O	2-Undecanone, 6,10-dimethyl-	204,579.33	
6.	30.25	C24H36O2Si2	4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2TMS derivative Bisphenol A	25,467.00	
7.	18.36	C20H40	5-Eicosene, (E)-	70,769.00	
8.	21.85	C19H35NO	9-Octadecenamide, (Z)-	448,270.50	
9.	20.26	C11H16FNO3	Benzeneethanamine, 2-fluoro-β,3,4-trihydroxy-N-isopropyl-	173,648.67	
10.	24.10	C20H26O4	Bis[2-(cinnamoyloxy)-1-naphthyl]methane	10,127.50	
11.	13.56	C15H24O	Caryophyllene oxide Sesquiterpenoid	411,365.67	
12.	27.33	C27H44O	Cholesta-4,6-dien-3-ol, (3β)-	108,829.33	
13.	28.04	C46H35O3Si3	Cyclotrisiloxane, hexamethyl-	24,262.25	
14.	22.87	C27H36	Heptacosane	215,283.20	
15.	13.54	C16H34	Hexadecane	729,031.09	
16.	2.59	H4N2	Hydrazine	12,709.83	
17.	29.62	C36H50O	Lupeol	84,095.50	
18.	2.96	CH3O	Methyl Alcohol	2773,625.86	
19.	18.18	C14H22O2	n-Hexadecanoic acid Fatty acid	829,242.33	
20.	16.70	C20H38	Neophytadiene	202,795.80	
Table 7. Cont.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
21	21.89	154.1226	C₉H₁₀NO	Nonanamide	Amide	349,356.50
22	24.39	218.7771	C₂₈H₆₈	Octacosane	Alkane	171,462.67
23	29.30	408.3768	C₃₂H₅₂O₂	Olean-12-en-3-ol, acetate, (3β)-	Triterpenoid	210,758.00
24	17.09	224.0999	C₂₂H₂₁NO₄	Phthalic acid, 4-cyanophenyl heptyl ester	Ester	454,868.00
25	23.33	218.8161	C₂₅H₅₀O₁	Phthalic acid, heptyl 3-methylbutyl ester	Ester	4577,088.00
26	16.70	218.8513	C₂₀H₄₀O	Phytol	Diterpenoid	202,160.25
27	14.32	218.8335	C₁₈H₂₄O	Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol, 4,4-dimethyl-	No records	91,373.50
28	17.65	227.2006	C₁₄H₂₆O₂	Tridecanoic acid, methyl ester	Methyl ester	380,039.50
29	30.36	283.8030	C₁₆H₄₅AsO₃Si₃	Tris(tert-butylmethyldisilyloxy)arsane	Ester	29,655.00
30	19.68	199.1691	C₁₂H₂₄O₂	Undecanoic acid, methyl ester	Methyl ester	74,944.00
31	14.46	200.1558	C₁₅H₃₀	α-Calacorene	Sesquiterpenoid	49,402.00
32	27.58	431.3842	C₃₁H₅₂O₃	α-Tocopheryl acetate	Triterpenoid	183,414.80
33	28.36	401.3731	C₃₁H₅₂O₂	β-Sitosterol acetate	Triterpenoid	696,117.67

Table 8. Compounds identified in leaf ethanol extracts of *Ekebergia capensis*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
1	13.49	218.9559	C₁₅H₂₄O	(-)-Spathulenol	Sesquiterpenoid	225,729.33
2	23.93	150.1032	C₁₂H₁₅ClN₂	(1R,2R,4S)-2-(6-Chloropyridin-3-yl)-7-methyl-7-azabicyclo[2.2.1]heptane	Epibatidine analogues	148,243.33
3	13.98	220.1821	C₁₅H₂₄O	(1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene	Epoxide	499,685.75
4	29.29	263.9630	C₁₃H₂₀N₂Si	1,2-Benzisothiazol-3-amine, TBDMS derivative	Sugar	23,401.00
5	14.34	218.7645	C₁₃H₂₀O	10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol	Epoxide	193,820.25
6	19.99	265.2496	C₂₁H₃₆O₂	11,14,17-Eicosatrienoic acid, methyl ester	Methyl ester	815,008.50
7	12.74	180.1142	C₁₁H₁₆O₂	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-	Benzofuran	260,204.00
RT (min)	Observed Ion m/z	MF.	Name	MC	FC	
---------	------------------	-----	------	----	----	
8. 4.15	110.0360 C6H6O2	2-Furancarboxaldehyde, 5-methyl-	Aryl-aldehyde	76,995.50		
9. 4.59	112.0154 C5H4O3	2H-Pyran-2,6(3H)-dione	Valerolactone	166,899.00		
10. 8.89	150.0679 C4H10O2	2-Methoxy-4-vinylphenol	Ketone	215,229.67		
11. 5.13	102.0550 C6H12NO	2-Pyrrolidinemethanol, 1-methyl-	Proline	1586,572.00		
12. 16.80	193.1957 C13H26O	2-Undecanone, 6,10-dimethyl-	Fatty aldehyde	441,117.67		
13. 17.00	278.2967 C20H40O	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	Diterpenoid	321,637.00		
14. 14.96	218.7685 C20H12FO	3-Fluorobenzoic acid, tridec-2-ynyl ester	Organofluorine compound	255,232.00		
15. 6.58	144.0415 C6H6O4	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	Fatty acid	1257,832.00		
16. 13.21	200.1558 C15H20	4-Isopropyl-6-methyl-1-methylene-1,2,3,4-tetrahydronaphthalene	Sesquiterpenoid	67,046.83		
17. 28.47	340.8050 C24H36O2Si2	4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2TMS derivative	Bisphenol A	17,941.50		
18. 15.56	218.8078 C15H20O2	6,6-Dimethyl-2-(3-oxobutyl)bicyclo[3.1.1]heptan-3-one	Oxepane	360,494.00		
19. 16.14	196.1090 C11H14O3	6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one	Benzofuran	480,778.00		
20. 15.70	180.0778 C12H26O2	7-Acetyl-2-hydroxy-2-methyl-5-isopropylbicyclo[4.3.0]nonane	Sesquiterpenoid	296,149.33		
21. 21.89	282.2742 C18H18NO	9-Octadecanamide, (Z)-	Fatty amide	875,563.20		
22. 10.36	122.0361 C7H6O2	Benzaldehyde, 4-hydroxy-	Hydroxybenzaldehyde	78,283.50		
23. 28.39	400.3717 C28H46O	Campsterol	Ergosterol	683,575.33		
24. 14.80	218.9483 C12H24O	Caryophylla-4(12),8(13)-dien-5α-ol	Sesquiterpenoid	309,195.00		
25. 13.60	220.1821 C15H24O	Caryophyllene oxide	Sesquiterpenoid	768,061.33		
26. 8.55	110.0361 C6H6O2	Catechol	Catechol	198,727.00		
27. 27.36	379.3372 C27H44O	Cholesta-4,6-dien-3-ol, (3β)-	Cholesterol	293,677.67		
28. 13.34	218.7878 C12H2Cl3O4	Fumaric acid, ethyl pentachlorophenyl ester	Ester	166,528.00		
Table 8. Cont.

RT (min)	Observed Ion m/z	MF.	Name	MC	FC
29.	3.38	C_6H_8O_4	Glycolaldehyde dimer	Pentose	8,931.50
30.	20.31	C_16H_33NO	Hexadecanamide	Fatty amide	594,910.67
31.	23.05	C_18H_38O_4	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	1-monoacylglycerol	184,585.67
32.	2.60	H_3N_2	Hydrazine	Non-metal compound	24,186.67
33.	2.97	CH_4O	Methyl Alcohol	Alcohol	1931,798.17
34.	14.84	C_15H_18	Naphthalene, 1,6-dimethyl-4-(1-methylethyl)-	Sesquiterpenoid	72,764.67
35.	16.72	C_20H_38	Neophytadiene	Diterpenoid	454,427.18
36.	18.26	C_16H_32O_2	n-Hexadecanoic acid	Fatty acid	2543,102.33
37.	6.28	C_6H_13NO	N-Methyl-L-prolinol	Amino acid	957,665.00
38.	20.13	C_18H_36O_2	Octadecanoic acid	Fatty acid	650,507.00
39.	12.24	C_14H_22O	Phenol, 3,5-bis(1,1-dimethylethyl)-	Sesquiterpenoid	100,587.50
40.	18.16	C_20H_40O_4	Phthalic acid, heptyl penty l ester	Ester	7104,005.33
41.	19.61	C_20H_40O	Phytol	Diterpenoid	714,988.60
42.	28.60	C_26H_48O	Stigmasterol	Steroid	825,673.33
43.	15.83	C_14H_28O_2	Tetradecanoic acid	Fatty acid	274,646.67
44.	18.28	C_16H_30O_2	Tridecanoic acid	Fatty acid	5679,271.50
45.	17.67	C_14H_26O_2	Tridecanoic acid, methyl ester	Methyl ester	307,666.00
46.	17.69	C_12H_22O_2	Undecanoic acid, methyl ester	Methyl ester	255,331.00
47.	12.89	C_15H_30	α-Calacorene	Sesquiterpenoid	60,816.33
48.	27.60	C_31H_52O_3	α-Tocopheryl acetate	Triterpenoid	681,154.00
49.	29.34	C_30H_50O	β-Amyrin	Triterpenoid	390,576.00
50.	29.01	C_20H_50O	β-Sitosterol	Triterpenoid	1529,284.00
Table 9. Compounds identified in leaf acetone extracts of Melia azedarach.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
1.	30.53	C$_{14}$H$_{22}$O$_x$	1,2,4-Benzene	triscarboxylic acid, 1,2-dimethyl ester	Benzoic acid	21,666.00
2.	30.13	C$_{13}$H$_{18}$N$_2$Si	1,2-Benzothiazol-3-amino, TBDMS derivative	Sugar	23,300.33	
3.	28.24	C$_{13}$H$_{22}$Si$_2$	1,2-Bis(trimethylsilyl)benzene	Organosilicon	11,527.50	
4.	16.78	C$_{15}$H$_{19}$O	2-Tetradecanone	Ketone	182,214.50	
5.	21.78	C$_{21}$H$_{40}$O	4,8,12,16-Tetramethylhexadecan-4-olide	Beta-diketone	73,950.50	
6.	30.24	C$_{24}$H$_{36}$O$_2$Si$_2$	4-Methyl-2,4-bis(3-hydroxyphenyl)pent-1-ene, 2TMS derivative	Bisphenol A	56,309.00	
7.	14.92	C$_{18}$H$_{30}$O$_2$	8-(2-Acetoxypiperidin-2-yl)-6,6-dimethyloct-3,4-dien-2-one	Fatty alcohol ester	151,894.00	
8.	23.33	C$_{12}$H$_{16}$O$_4$	Bis(2-ethylhexyl)phthalate	Ester	54,139.00	
9.	28.57	C$_{20}$H$_{46}$	Cholesterol	Cholesterol	449,205.00	
10.	28.25	C$_{15}$H$_{30}$O$_2$Si$_2$	Cyclohexanone, hexamethyl-	Organosilicon	22,319.83	
11.	20.34	C$_{27}$H$_{56}$	Heptacosane	Alkane	136,232.20	
12.	18.43	C$_{16}$H$_{34}$	Hexadecane	Alkane	461,468.60	
13.	2.59	C$_{12}$H$_{24}$O$_2$	Hydrazine	Non-metal compound	31,792.00	
14.	2.93	C$_{18}$H$_{34}$NO	Hydroxylamine	Amine	687,694.00	
15.	24.40	C$_{20}$H$_{40}$O$_2$	Isobutyl hexadecyl ether	Ether	99,861.00	
16.	15.46	C$_{10}$H$_{18}$F$_2$O$_4$	Isophthalic acid, 3,5-difluoroethyl pentyl ester	Ester	9,181.00	
17.	2.97	C$_{12}$H$_{24}$O$_2$	Methyl Alcohol	Methyl alcohol	2893,853.89	
18.	16.70	C$_{20}$H$_{38}$	Neophytadiene	Diterpenoid	212,138.00	
19.	20.24	C$_{18}$H$_{30}$NO	Nonanamide	Amide	100,542.80	
20.	19.59	C$_{19}$H$_{40}$O$_2$	Phytol	Diterpenoid	354,182.00	
21.	17.66	C$_{12}$H$_{24}$O$_2$	Tridecanoic acid, methyl ester	Methyl ester	263,243.33	
22.	30.06	C$_{20}$H$_{40}$AsO$_x$Si$_3$	Tris(tert-butyl)dimethylsilyloxy)arsane	Ester	21,078.67	
23.	19.68	C$_{20}$H$_{42}$O$_2$	Undecanoic acid, methyl ester	Methyl ester	67,474.00	
24.	29.63	C$_{12}$H$_{24}$O$_2$	α-Tocopheryl acetate	Triterpenoid	222,825.33	
25.	28.37	C$_{13}$H$_{26}$O$_2$	β-Sitosterol acetate	Triterpenoid	548,590.25	

Table 10. Compounds identified in leaf ethanol extracts of Melia azedarach.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
1.	14.94	C$_{13}$H$_{24}$O$_2$	1,6,6-Trimethyl-7-(3-oxobut-1-etyl)-3,8-dioxaspiro[5.1.0](2,4)octan-5-one	Ketone	208,378.00	
2.	17.00	C$_{16}$H$_{30}$	1-Hexadecyne	Hydrocarbon	146,746.50	
3.	17.00	C$_{16}$H$_{30}$	1-Octadecyne	Hydrocarbon	182,460.00	
RT (min)	Observed Ion m/z	MF	Name	MC	FC	
---------	------------------	----------	--	------------------	-------	
4.	2.77	43.0049	C₇H₈ClO	2-Chloroethanol	Chloroethanol	10,825.00
5.	12.38	155.0941	C₅H₁₃NO₂	2-Hydroxy-1-(1′-pyrrolidyl)-1-buten-3-one	No record	163,420.00
6.	16.79	218.8744	C₆H₁₂O	2-Tetradecanone	Ketone	191,685.50
7.	16.79	218.8549	C₁₂H₂₆O	2-Undecanone, 6,10-dimethyl-	Fatty aldehyde	177,821.00
8.	16.94	49.9534	C₃H₄N₂	3-Methyl-1,2-diazirine	No record	10,163.33
9.	16.30	144.0416	C₆H₁₄O	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	Fatty acid	419,184.67
10.	21.87	218.9503	C₁₂H₂₅NO	9-Octodecanamide, (Z)-	Fatty amide	368,824.25
11.	12.30	220.1819	C₁₃H₂₆O	Butylated Hydroxytoluene	Phenylpropane	26,415.67
12.	28.39	405.0388	C₁₈H₃₅NO	9-Octadecenamide, (Z)-	Fatty amide	107,671.50
13.	29.66	430.3826	C₁₉H₃₂O	dl-α-F	Resorcinol	505,469.00
14.	20.27	130.0692	C₁₀H₂₅NO	Dodecanamid	Fatty amide	74,969.00
15.	13.24	128.0426	C₁₈H₃₇O₄	Fumaric acid, ethyl pentachlorophenyl ester	Ester	90,985.50
16.	20.27	130.9721	C₁₀H₂₀NO	Hexadecanamide	Fatty amide	163,949.33
17.	2.90	32.0228	CH₄O	Methyl Alcohol	Alcohol	1607,627.00
18.	13.03	157.1220	C₁₂H₂₅O₂	n-Decanoic acid	Fatty acid	86,722.40
19.	18.19	124.0390	C₁₀H₁₈	Neophytadiene	Diterpenoid	454,350.71
20.	17.21	256.2401	C₁₂H₂₀O₂	n-Hexadecanoic acid	Fatty acid	163,949.33
21.	17.21	154.1226	C₁₀H₂₅NO	Nonanamide	Amide	223,305.67
22.	22.39	340.2390	C₁₀H₂₅O₂	Phenol, 2,2′-methylenebis[(1,1-dimethyl-4-methyl)-	Diterpenoid	40,545.33
23.	12.23	206.1636	C₁₀H₁₂O	Phenol, 2,5-bis[(1,1-dimethyl)-]	Sesquiterpenoid	29,976.67
24.	18.16	278.1512	C₁₀H₂₀O₄	Phthalic acid, heptyl pentyl ester	Ester	4299,525.00
25.	17.11	223.0966	C₁₂H₂₅NO₃	Phthalic acid, monoamidate, N-ethyl-N-(3-methylphenyl)-, isoamidinyl ester	Ester	197,285.67
26.	19.62	278.2864	C₁₂H₁₆O	Phytol	Diterpenoid	658,472.67
27.	29.10	331.0578	C₁₄H₁₆O	Stigmasta-5,24(28)-dien-3-ol, (3β,24Z)-	Steroid	57,701.00
28.	28.61	412.3719	C₁₂H₁₆O	Stigmasterol	Steroid	701,624.67
29.	21.80	130.8943	C₁₀H₁₄O₂	Tetrahydrofuran-2-one, 3-[2-phenyl]-4-methyl-	Fatty acid ester	65,973.00
30.	19.56	85.0280	C₃H₅O₂	Tetrahydrofuran Z-10-dodecanoate	Ester	18,107.50
31.	17.68	218.9267	C₁₂H₂₅O₂	Tridecanolic acid, methyl ester	Methyl ester	119,263.00
32.	27.60	431.3843	C₁₀H₂₀O	α-Tocopheryl acetate	Triterpenoid	70,903.00
33.	29.01	414.3875	C₁₀H₁₄O	β-Sitosterol	Triterpenoid	1380,935.00
Table 11. Compounds identified in leaf acetone extracts of *Trichilia dregeana*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
1.	20.94	272.2504	C_{20}H_{32} (R,1E,5E,9E)-1,5,9-Trimethyl-12-(prop-1-en-2-yl)cycloketetradeca-1,5,9-triene	Diterpenoid	661,369.50	
2.	29.36	263.7976	C_{13}H_{20}N_{2}Si	1,2-Benzisothiazol-3-amine, TBDMS derivative	Sugar	24,657.75
3.	5.25	109.1014	C_{6}H_{14} 1,6-Heptadiene, 2-methyl-	Alkadiene	241,431.50	
4.	18.65	277.2445	C_{20}H_{34}O 1H-Naphtho[2,1-b]pyran, 3-ethenylidodecahydro-3,4a,7,7,10a-pentamethyl-	Triterpenoid	254,957.50	
5.	21.38	218.9118	C_{15}H_{26}O 1-Naphthalenemethanol, 1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethyl-	Sesquiterpenoid	910,101.00	
6.	22.82	292.1670	C_{17}H_{34}O_{4} 2-Hydroxy-4-methoxy-7-methyl-	Gingerdione	53,596.00	
7.	16.78	180.1858	C_{15}H_{26}O 2-Undecanone, 6,10-dimethyl-	Fatty aldehyde	498,290.33	
8.	21.78	263.8585	C_{21}H_{40}O_{2} 4,8,12,16-Tetramethylheptadecan-4-olide	Beta-diketone	288,631.33	
9.	29.60	281.9882	C_{17}H_{30}OSi 4-tet-Octylphenol, TMS derivative	Alkylbenzene	32,218.33	
10.	21.69	270.2347	C_{20}H_{30} Bicyclo[3.1.1]hept-2-ene, 2,2′-(1,2-ethanediyl)bis[6,6-dimethyl-	Diterpenoid	205,660.50	
11.	23.33	218.8484	C_{24}H_{38}O_{4} Bis(2-ethylhexyl) phthalate	Ester	105,403.33	
12.	21.69	289.2480	C_{26}H_{40}O_{2} Butyl 4,7,10,13,16,19-docosahexaenoate	Fatty acid	286,373.50	
13.	20.88	263.9540	C_{20}H_{40}O_{2} Butyric acid, hexadecyl ester	Fatty acid	180,132.50	
14.	28.14	226.1588	C_{6}H_{13}O_{3}Si_{3} Cyclotrisiloxane, hexamethyl-	Organosilicon	21,468.33	
15.	18.15	278.1513	C_{16}H_{22}O_{4} Dibutyl phthalate	Ester	5113,869.00	
16.	15.29	87.0440	C_{13}H_{20}O_{2} Dodecanoic acid, 2-methyl-	Ester	161,611.50	
17.	18.47	263.8584	C_{20}H_{42} Eicosane	Alkane	491,217.33	
18.	28.36	417.0340	C_{30}H_{50}O_{2} Ergost-5-en-3-ol, acetate, (3β,24R)-	Triterpenoid	303,607.00	
19.	20.35	218.8367	C_{27}H_{56} Heptacosane	Alkane	179,363.50	
20.	13.54	130.8832	C_{16}H_{34} Hexadecane	Alkane	578,509.80	
21.	20.96	263.8346	C_{21}H_{44}O Hexadecyl pentyl ether	Ether	415,977.00	
22.	2.58	32.0175	H_{2}N_{2} Hydrazine	Non-metal compound	195,016.33	
23.	21.06	272.2508	C_{20}H_{32} Kaur-15-ene	Diterpenoid	464,961.67	
24.	2.89	32.0474	CH_{4}O Methyl Alcohol	Alcohol	3486,357.33	
25.	16.70	218.8848	C_{20}H_{38} Neophytadiene	Diterpenoid	115,963.50	
26.	20.27	130.9004	C_{8}H_{10}NO Nonanamide	Amide	132,986.33	
Table 11. Cont.

RT (min)	Observed Ion m/z	MF	Name	MC	FC
27.	18.37	C_{20}H_{32}	Phenanthrene, 7-ethenyl-1,2,3,4,4a,4b,5,6,7,9,10a-dodecahydro-1,1,4a,7-tetramethyl-, [4aS-(4aa,4bb,7b,10aβ)]-		728,659.00
28.	17.09	C_{22}H_{32}NO_{4}	Phthalic acid, 4-cyanophenyl heptyl ester	Ester	230,352.00
29.	19.58	C_{20}H_{40}O	Phytol	Steroid	308,190.00
30.	28.57	C_{20}H_{40}O	Alkylthiol		687,016.50
31.	17.67	C_{14}H_{28}O_{2}	Tridecanoic acid, methyl ester	Fatty ester	219,513.33
32.	18.43	C_{15}H_{24}O_{2}	1,2-Benzenediol, α-chloroacetyl-α'-cyclopropanecarbonyl-	7-hydroxycoumarin	82,416.00
33.	27.58	C_{31}H_{30}O_{3}	α-Tocopheryl acetate	Triterpenoid	186,539.25
34.	28.99	C_{29}H_{50}O	γ-Sitostenone	Steroid	519,588.00

Table 12. Compounds identified in leaf ethanol extracts of *Trichilia dregeana*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC
1.	13.97	C_{15}H_{24}O	(1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene		100,323.50
2.	20.96	C_{20}H_{34}O	(E)-3-Methyl-5-((1R,4aR,8aR)-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)pent-2-en-1-ol	Diterpenoid	545,931.00
3.	22.71	C_{12}H_{16}Cl_{2}O_{4}	1,2-Benzisothiazol-3-amine, TBDMS derivative		9,766.00
4.	23.14	C_{20}H_{32}O_{2}	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E)-		136,124.67
5.	12.49	C_{15}H_{24}O	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-	Sesquiterpenoid	136,124.67
6.	20.84	C_{17}H_{24}O_{4}	2-Hydroxy-4-methoxy-7-methyl-7,8,9,10,11,12,13,14-octahydro-6-oxazabicyclododecen-5-one		45,244.00
Table 12. Cont.

RT (min)	Observed Ion m/z	MF	Name	MC	FC
11.	16.80 179.1786 C12H26O	2-Undecanone, 6,10-dimethyl-	Fatty aldehyde	393,929.33	
12.	20.91 263.8061 C14H28O3	3-Hydroxymyristic acid	Fatty acid	161,204.00	
13.	21.21 274.2300 C19H30O	4,14-Dimethyl-11-isopropyltricyclo[7.5.0.0(10,14)]tetradec-4-en-8-one	Androgen	101,356.00	
14.	21.80 263.9405 C21H40O2	4,8,12,16-Tetramethylheptadecan-4-olide	Beta-diketone	269,254.50	
15.	11.17 130.8733 C7H12O	4-Hepten-2-one, (E)-	Organoxygen compound	136,106.00	
16.	21.88 263.8605 C18H35NO	9-Octadecanamide, (Z)-	Fatty amide	708,408.50	
17.	21.71 289.2489 C26H40O2	Butyl 4,7,10,13,16,19-docosahexaenoate	Fatty acid	318,610.00	
18.	12.29 220.1824 C15H24O	Butylated Hydroxytoluene	Phenylpropane	27,910.67	
19.	2.88 41.0132 CH6N4O	Carbohydrazide	Carbohydrazide	151,106.00	
20.	23.54 257.2272 C12H25NO	Dodecanamide	Fatty amide	55,399.50	
21.	17.69 227.2003 C13H26O2	Dodecanoic acid, methyl ester	Methyl ester	127,277.00	
22.	2.62 31.0644 C2H4Cl2O	Ethanol, 2,2-dichloro-	Alcohol	12,654.00	
23.	21.41 218.8306 C15H26O	Humulane-1,6-dien-3-ol	Sesquiterpenoid	1117,231.00	
24.	11.43 130.9770 C16H24	Humulene	Sesquiterpenoid	33,834.00	
25.	2.86 32.0543 H4N2	Hydrazine	Non-metal compound	29,779.50	
26.	21.08 272.2510 C20H32	Kaur-15-ene	Diterpenoid	494,925.33	
27.	2.65 31.9949 CH4O	Methyl Alcohol	Alcohol	1822,640.42	
28.	15.82 171.1382 C10H20O2	n-Decanoic acid	Fatty acid	115,234.67	
29.	16.72 137.1327 C20H38	Neophytadiene	Diterpenoid	139,113.50	
30.	18.22 256.2398 C16H32O2	n-Hexadecanoic acid	Fatty acid	1293,680.33	
31.	18.39 272.2504 C20H32	Phenanthrene, 7-ethylbenz	Diterpenoid	807,281.67	
32.	22.39 340.2411 C23H32O2	Phenol, 2,2′-methylenebis[6-(1,1-dimethyl)-4-methyl]-	Diterpenoid	67,053.50	
33.	12.22 206.1663 C14H22O	Phenol, 2,5-bis(1,1-dimethylethyl)-	Sesquiterpenoid	41,210.00	
34.	15.89 218.9111 C5F9P	Phosphine, tris(trifluoromethyl)-	Organofluorine	14,308.25	
35.	18.17 278.1507 C20H30O4	Phthalic acid, heptyl pentyl ester	Ester	3770,875.00	
RT (min)	Observed Ion m/z	MF	Name	MC	FC
---------	-----------------	--------	--	--------	-------
36.	17.11	223.0962	C_{21}H_{25}NO_{3} Phthalic acid, monoamide, N-ethyl-N-(3-methylphenyl)-, isobutyl ester	Ester	244,482.50
37.	19.61	137.1326	C_{26}H_{40}O Phytol Diterpenoid	Diterpenoid	223,292.75
38.	28.34	380.3446	C_{26}H_{46}O Stigmaster-5,24(28)-dien-3-ol, (3β,24Z)-	Steroid	234,342.50
39.	25.42	218.9552	C_{30}H_{50} Supraene Triterpenoid	Triterpenoid	565,315.33
40.	27.60	431.3852	C_{31}H_{46}O_{3} a-Tocopherol acetate	Triterpenoid	264,498.80
41.	29.01	414.3875	C_{29}H_{50}O_{β} β-Sitosterol	Triterpenoid	1371,309.00
42.	30.00	412.3724	C_{28}H_{48}O_{γ} γ-Sitostenone	Steroid	540,348.67
43.	27.05	416.3666	C_{28}H_{46}O_{γ} γ-Tocopherol	Steroid	121,387.50

Table 13. Compounds identified in leaf acetone extracts of *Turraea floribunda*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
1.	15.00	220.1822	C_{15}H_{24}O ((4aS,8S,8aR)-8-Isopropyl-5-methyl-3,4,4a,7,8,8a-hexahydrornaphthalen-2-yl)methanol	Sesquiterpenoid	171,920.00	
2.	19.57	201.1638	C_{15}H_{24} (1R,4S,5S)-1,8-Dimethyl-4-(prop-1-en-2-yl)spiro[4.5]dec-7-ene	Hydrocarbon	192,589.50	
3.	26.14	263.8413	C_{20}H_{32} (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10-pentaene	Diterpenoid	480,221.00	
4.	21.84	273.2215	C_{20}H_{32} 1,3,6,10-Cyclotetradecaetraene, 3,7,11-trimethyl-14-(1-methylpentyl)-, [S-(E,Z,E,E)]-	Diterpenoid	484,433.00	
5.	20.78	201.1639	C_{13}H_{22} 1,3,7,11-Cyclotetradecaetraene, 2-methyl-		902,135.00	
6.	18.80	263.7967	C_{20}H_{34}O 1,6,10,14-Hexadecatetraen-3-ol, 3,7,11,15-tetramethyl-, (E,E)-	Diterpenoid	650,540.67	
7.	13.56	202.1714	C_{15}H_{26} 1H-3a,7-Methanoazulene, octahydro-1,4,9,9-tetramethyl-	Sesquiterpenoid	128,891.33	
8.	8.68	142.0775	C_{11}H_{10} 1H-Indene, 1-ethylidene-	Hydrocarbon	28,659.00	
9.	12.71	161.1324	C_{11}H_{16}O_{2} 2(4H)-Benzofuranone, 5,6,7a-tetrahydro-4,4,7a-trimethyl-, (R)-	Benzoferan	135,928.67	
10.	26.14	280.9475	C_{22}H_{30}O_{2} 2,6,10,14-Hexadecatetraen-1-ol, 3,7,11,15-tetramethyl-, acetate, (E,E,E)-	Fatty alcohol	176,010.50	
11.	15.19	210.1614	C_{13}H_{22}O_{2} 2-Cyclohexen-1-one, 4-(3-hydroxybutyl)-3,5,5-trimethyl-	Apocarotenoid	82,345.33	
12.	16.79	263.8863	C_{16}H_{30}O 2-Pentadecanone, 6,10,14-trimethyl-	Ketone	1520,735.33	
13.	16.97	263.7692	C_{20}H_{40} 3,7,11,15-Tetramethyl-2-hexadecen-1-ol	Diterpenoid	19,984.50	
14.	25.67	218.8406	C_{15}H_{23}N 3-Cyano-3-octyl-1,4-cyclohexadiene		98,440.00	
15.	5.24	105.0696	C_{8}H_{14} 4-Methyl-1,5-Heptadiene	Alkene	238,594.00	
16.	12.47	221.1901	C_{15}H_{24}O 6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	Fatty alcohol	132,884.67	
RT (min)	Observed Ion m/z	MF	Name	MC	FC	
----------	------------------	----	------	----	----	
17.	20.45	263.8287	C_{21}H_{30}O_{4}	9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-	Lineolic acid	24,402.00
18.	21.75	288.2451	C_{32}H_{54}O_{2}	9,19-Cyclolanostan-3-ol, acetate, (3β)-	Cycloartanol	185,601.00
19.	3.21	43.0106	C_{2}H_{4}N_{2}O	Acetic acid, hydrazide	N-nitroso compound	9,648.50
20.	3.40	130.9333	C_{2}H_{4}O	Acetic acid, hydroxy-	Hydroxy acid	16,192.00
21.	8.01	136.0518	C_{6}H_{12}O_{2}	Benzeneacetic acid	Benzene	823,393.50
22.	20.33	218.8824	C_{11}H_{16}FNO_{3}	Benzeneethanamine, 2-fluoro-β,3,4-trihydroxy-N-isopropyl-	Organofluorine compound	461,586.67
23.	21.65	274.2253	C_{20}H_{34}O_{2}	Butyric acid, 6,9,12-hexadecatrienoate	No records	120,874.00
24.	20.40	263.7774	C_{20}H_{30}O_{2}	cis-5,8,11,14,17-Eicosapentaenoic acid	Fatty acid	67,970.33
25.	14.77	218.7973	C_{15}H_{24}O	cis-Z-α-Bisabolene epoxide	Sesquiterpenoid	163,987.00
26.	29.61	224.8923	C_{6}H_{12}O_{3}Si_{3}	Cyclotrisiloxane, hexamethyl-	Organosilicon	37,777.00
27.	6.10	130.9737	C_{10}H_{11}N_{2}O	dl-7-Azatryptophan	L-alpha-amino acid	5,636.50
28.	27.58	430.3826	C_{20}H_{40}O_{2}	dl-α-Tocopherol	Resorcinol	308,112.50
29.	18.43	218.9230	C_{20}H_{42}	Eicosane	Alkane	773,942.50
30.	28.37	401.3748	C_{30}H_{50}O_{2}	Ergost-5-en-3-ol, acetate, (3β,24R)-	Triterpenoid	400,755.50
31.	16.60	134.1088	C_{12}H_{18}	Geijerene	Monoterpenoid	506,492.50
32.	4.79	68.9660	C_{3}H_{6}O_{3}	Glycerin	Sugar alcohol	1247,390.50
33.	20.35	263.9279	C_{25}H_{56}	Heptacosane	Alkane	459,191.00
34.	13.54	154.1719	C_{16}H_{34}	Hexadecane	Alkane	887,579.50
35.	2.58	32.0644	H_{2}N_{2}	Hydrazine	Non-metal compound	16,395.00
36.	21.65	218.9095	C_{15}H_{24}O	Isoaromadendrene epoxide	Sesquiterpenoid	87,763.50
37.	17.91	278.2969	C_{22}H_{46}O	Isophytol	Diterpenoid	581,608.33
38.	21.36	263.8432	C_{22}H_{34}O_{2}	Methyl 6,9,12,15,18-heneicosapentenoate	Methyl ester	222,155.00
39.	19.47	263.8150	C_{18}H_{30}O_{2}	Methyl 8,11,14-heptadecatrienoate	Methyl ester	143,481.00
40.	2.63	32.0319	CH_{4}O	Methyl Alcohol	Alcohol	2542,812.29
41.	16.70	218.9458	C_{20}H_{38}	Neophytadiene	Diterpenoid	455,672.53
42.	17.92	218.9160	C_{16}H_{36}O	Octadecanal	Fatty aldehyde	7,428.50
43.	22.38	340.2405	C_{23}H_{32}O_{2}	Phenol, 2,2'-methylenebis[6-(1,1-dimethyllethyl)-4-methyl-	Diterpenoid	98,778.00
Table 13. Cont.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
44.	12.20	206.1665	C_{14}H_{22}O	Phenol, 2,6-bis(1,1-dimethylethyl)-	Sesquiterpenoid	26,409.00
45.	17.09	263.7937	C_{22}H_{31}NO_{4}	Phthalic acid, 4-cyanophenyl heptyl ester	Ester	863,842.00
46.	23.33	279.1599	C_{33}H_{50}O_{4}	Phthalic acid, heptadecyl 2-propylpentyl ester	Ester	192,600.50
47.	18.14	279.1561	C_{20}H_{30}O_{4}	Phthalic acid, heptyl pentyl ester	Ester	7570,367.00
48.	2.96	31.4619	H_{4}Si	Silane	Non-metal compound	14,625.00
49.	29.96	412.3726	C_{29}H_{48}O	Stigmast-4-en-3-one	Steroid	315,755.67
50.	25.39	231.2112	C_{30}H_{50}	Supraene	Triterpenoid	784,372.00
51.	15.80	218.9575	C_{14}H_{22}O_{2}	Tetradecanoic acid	Fatty acid	201,837.50
52.	7.28	86.0223	C_{4}H_{7}S	Thiophene, 2,3-dihydro-	Dihydrothiophene	156,903.67
53.	13.54	218.8948	C_{13}H_{28}	Tridecane	Alkane	208,627.00
54.	17.65	228.2039	C_{14}H_{22}O_{2}	Tridecanoic acid, methyl ester	Methyl ester	395,572.00
55.	12.99	157.1222	C_{11}H_{22}O_{2}	Undecanoic acid	Methyl ester	51,909.00
56.	12.87	157.1011	C_{15}H_{20}	α-Calacorene	Sesquiterpenoid	30,917.33
57.	29.63	431.3858	C_{31}H_{52}O_{3}	α-Tocopheryl acetate	Triterpenoid	199,285.00
58.	21.51	218.7617	C_{15}H_{24}O	β-Santalol	Triterpenoid	80,032.50
59.	28.98	414.3873	C_{20}H_{30}O	β-Sitosterol	Triterpenoid	833,435.33

Table 14. Compounds identified in leaf ethanol extracts of Turraea floribunda.

RT (min)	Observed Ion m/z	MF.	Name	MC	FC	
1.	28.27	218.8544	C_{13}H_{20}N_{2}Si	1,2-Benzisothiazol-3-amine, TBDMS derivative	Sugar	21,941.25
2.	16.77	130.9077	C_{16}H_{30}O_{2}	2,15-Hexadecanedione	Fatty acid	8,739.00
3.	2.79	42.9883	C_{2}H_{5}ClO	2-Chloroethanol	Chloroethanol	17,013.50
4.	17.66	218.9181	C_{8}H_{16}BrNO	2-Piperidinone, N-[4-bromo-n-butyl]-	Delta-lactam	212,874.00
5.	16.78	218.8178	C_{13}H_{26}O	2-Undecanone, 6,10-dimethyl-	Fatty aldehyde	331,058.75
6.	30.93	250.8218	C_{28}H_{46}O_{2}	4,4′-bi-4H-pyran, 2,2′,6,6′-tetrakis(1,1-dimethylethyl)-4,4′-dimethyl-	13,508.50	
7.	27.65	206.9513	C_{24}H_{36}O_{2}Si	4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2TMS derivative	Bisphenol A	25,492.75
8.	28.52	207.8478	C_{17}H_{30}OSi	4-tert-Octylphenol, TMS derivative	Alkylbenzene	23,331.67
Table 14. Cont.

RT (min)	Observed Ion m/z	MF. Name	MC	FC
9.	6.56	C₆H₄O₄ 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	Fatty acid	123,337.50
10.	28.19	C₉H₂AsO₂Si₃ Arsenous acid, tris(trimethylsilyl) ester	Trialkylheterosilane	17,467.00
11.	21.85	C₁₁H₁₆FNO₃ Benzenethanamine, 2-fluoro-β,3,4-trihydroxy-N-isopropyl-	Organosilicone	197,067.50
12.	28.20	C₉H₁₈O₂Si₃ Cyclotrisiloxane, hexamethyl-	Organosilicon	10,533.67
13.	18.93	C₁₀H₁₁N₂O₂ dl-7-Azatryptophan	L-alpha-amino acid	13,803.00
14.	2.87	H₄N₂ Hydrazine	Non-metal compound	29,112.33
15.	2.89	H₃NO Hydroxylamine	Amine	19,833.67
16.	17.92	C₂₀H₄₀O Isophytol	Diterpenoid	126,936.00
17.	2.59	CH₄O Methyl Alcohol	Alcohol	3945,937.00
18.	15.78	C₁₀H₂₀O₂ n-Decanoic acid	Fatty acid	56,292.00
19.	18.17	C₁₆H₃₂O₂ n-Hexadecanoic acid	Fatty acid	1236,320.33
20.	8.69	C₁₁H₁₀ Naphthalene, 2-methyl-	Naphthalene	16,237.00
21.	16.71	C₂₀H₃₈ Neophytadiene	Diterpenoid	212,701.60
22.	20.27	C₉H₁₉NO Nonanamide	Amide	135,588.33
23.	18.14	C₂₀H₃₀O₄ Phthalic acid, heptyl pentyl ester	Ester	4220,463.00
24.	19.59	C₂₀H₄₀O Phytol	Diterpenoid	332,925.75
25.	28.57	C₂₀H₄₀O Stigmasterol	Steroid	263,092.00
26.	19.68	C₁₄H₂₈O₂ Tridecanoic acid, methyl ester	Methyl ester	162,963.00
27.	28.28	C₁₆H₄₅AsO₃Si₃ Tris(tert-butyldimethylsilylox)arsane	Ester	23,852.50
28.	17.66	C₁₂H₂₄O₂ Undecanoic acid, methyl ester	Methyl ester	230,369.50
29.	28.97	C₃₁H₅₂O₂ β-Sitosterol acetate	Triterpenoid	330,908.00

Table 9 shows the results of acetone extracts of *M. azedarach*; twenty-six compounds were identified. Of these, two are classified as esters, alkanes (three), diterpenoids (two), methyl esters (two), non-metal compounds (two), organosilicons (two), and triterpenoids (two). Thirty-three compounds were identified in ethanolic extracts of *M. azedarach*, shown in Table 10. Four compounds are classified as esters, diterpenoids (three), fatty acids (three), fatty amides (three), hydrocarbons (two), ketones (two), steroids (two), triterpenoids (two), and three compounds were unclassified.

Thirty-nine compounds were identified in acetone extracts of *T. dregeana* (Table 11), most of which are diterpenoids (six), esters (four), triterpenoids (four), alkanes (three), fatty acids (two), non-metal compounds (two), steroids (two), and one compound was unclassified. Forty-three compounds were identified in ethanolic extracts of *T. dregeana* (Table 12),
with most of the compounds in the classes: diterpenoids (seven), sesquiterpenoids (five), fatty acids (four), triterpenoids (four), steroids (three), alcohols (two), fatty amides (two), and one compound was unclassified.

Acetone leaf extracts of *T. floribunda* (Table 13) had sixty compounds, of which seven are diterpenoids (seven), sesquiterpenoids (seven), alkanes (four), methyl esters (four), triterpenoids (four), non-metal compounds (three), esters (three), fatty acids (two), fatty alcohols (two), hydrocarbons (two), and three compounds were unclassified. Table 14 shows thirty compounds identified in ethanol extracts of *T. floribunda*; most of the chemical compounds belong to the chemical classes: fatty acids (four), diterpenoids (three), esters (two), methyl esters (two), non-metal compounds (two), and one compound was unclassified.

Table 15 shows forty-four compounds identified in acetone extracts of *T. obtusifolia*; chemical classes with the most chemical compounds are: fatty acids (six), sesquiterpenoids (five), alkanes (three), diterpenoids (three), triterpenoids (three), esters (two), non-metal compounds (two), steroids (two), and two compounds were unclassified. There were forty-six compounds identified in ethanolic extracts of *T. obtusifolia* (Table 16), chemical classes with the most chemical compounds: sesquiterpenoids (seven), diterpenoids (five), fatty acids (five), methyl esters (three), steroids (three), fatty alcohols (two), resorcinols (two), and five compounds were unclassified.

Table 15. Compounds identified in leaf acetone extracts of *Turraea obtusifolia*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
1.	15.00	220.182	C_{10}H_{16}O	(1R,2R,4S,6S,7S,8S)-8-Isopropyl-1-methyl-3-methyleneoctadecan-4-ol	Sesquiterpenoid	126,668.00
2.	15.10	263.826	C_{10}H_{16}O	1,3-Bis-(2-cyclopropyl,2-methylcyclopropyl)-but-2-en-1-one	2-benzopyran	92,518.50
3.	14.33	218.965	C_{10}H_{16}O	10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol	219,693.33	
4.	8.86	130.968	C_{10}H_{16}O	2,4-Decadienal	Aldehyde	75,217.75
5.	16.78	179.1793	C_{10}H_{16}O	2-Undecanone, 6,10-dimethyl-	Fatty aldehyde	255,603.50
6.	11.98	202.173	C_{10}H_{16}O	3,5,11-Eicosatriene	Sesquiterpenoid	56,152.67
7.	21.79	263.864	C_{10}H_{16}O	8,12,16-Tetramethylheptadecan-4-ol	Beta-diketone	410,582.00
8.	30.47	281.821	C_{10}H_{16}O	4-tert-Octylphenol, TMS derivative	Alkylbenzene	27,817.50
9.	14.78	218.8204	C_{10}H_{16}O	6,10-Dodecadien-1-yne-3-ol, 3,7,11-trimethyl-	Fatty alcohol	206,334.00
10.	15.85	218.167	C_{10}H_{16}O	7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,7,8-hexahydro-3H-naphthalen-2-one	Fatty alcohol	186,966.33
11.	20.00	263.9515	C_{10}H_{16}O	8,11,14-Eicosenoic acid, (Z,Z,Z)-	Fatty acid	13,480.00
12.	19.94	280.2397	C_{10}H_{16}O	9,12-Octadecadienoic acid, (Z,Z)-	Fatty acid	44,571.00
13.	29.97	422.3973	C_{10}H_{16}O	9,19-Cycloergost-24(28)-en-3-ol, 4,14-dimethyl-, acetate, (3β,4α,5α)-	Triterpenoid	182,421.67
14.	16.95	263.819	C_{10}H_{16}O	Andrographolide	Butyro lactone	235,288.00
15.	21.37	204.1875	C_{10}H_{16}O	Azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-((1-methyljethenyl)-[1S-(1α,7α,8β,8a)]-	Sesquiterpenoid	17,979.50
16.	8.67	142.077	C_{10}H_{16}O	Benzocycloheptatriene	Benzenoid	17,979.50
Table 15. Cont.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
17	27.85	218.8211	C_{27}H_{50}O_{12}	Cyclotrisiloxane, hexamethyl-	Organosilicon	19,618.33
18	10.01	130.9654	C_{10}H_{14}N_{2}O_{2}	dl-7-Azatryptophan	L-alpha-amino acid	12,483.25
19	13.94	218.8738	C_{22}H_{36}O_{2}	Docosene	Fatty acid	40,765.00
20	18.43	263.7630	C_{22}H_{44}	Eicosane	Alkane	644,244.67
21	11.70	202.1715	C_{15}H_{22}	Eudesmen-2,4,11-triene	Sesquiterpenoid	186,595.60
22	20.31	263.9065	C_{16}H_{33}NO	Hexadecanamide	Fatty amide	235,968.00
23	20.35	218.7788	C_{16}H_{34}	Hexadecane	Alkane	444,080.00
24	2.59	32.0455	H_{2}N_{2}	Hydrazine	Non-metal compound	27,402.00
25	17.91	263.7523	C_{20}H_{40}O	Isophytol	Diterpenoid	180,211.33
26	14.93	220.1819	C_{15}H_{26}O	Ledene oxide-(II)	Sesquiterpenoid	165,643.67
27	2.86	32.0231	CH_{4}O	Methyl Alcohol	Alcohol	3308,314.78
28	16.70	218.9564	C_{20}H_{38}	Neophytiadiene	Diterpenoid	239,419.44
29	18.21	256.2402	C_{16}H_{32}O_{2}	n-Hexadecanoic acid	Fatty acid	1312,119.00
30	16.22	218.7640	C_{21}H_{42}	Pentadecane	Alkane	703,400.00
31	6.40	130.9444	C_{6}H_{12}O_{3}	Pentanoic acid, 2-hydroxy-3-methyl-	Fatty acid	374,290.67
32	17.09	263.7686	C_{21}H_{21}NO_{3}	Phthalic acid, heptyl 4-nitrophenyl ester	Ester	403,612.00
33	18.14	279.1556	C_{20}H_{32}O_{4}	Phthalic acid, heptyl pentyl ester	Ester	4790,918.75
34	19.59	279.2999	C_{20}H_{40}O	Phytol	Diterpenoid	423,228.75
35	28.57	412.3719	C_{29}H_{46}O	Stigmasterol	Steroid	467,141.50
36	15.79	185.1536	C_{14}H_{28}O_{2}	Tetradecanoic acid	Fatty acid	105,645.50
37	3.07	70.0287	C_{2}H_{4}OS	Thioaetic acid	Alkylthiol	27,616.00
38	17.66	227.2008	C_{14}H_{30}O_{2}	Tridecanoic acid, methyl ester	Fatty acid ester	449,472.00
39	19.68	218.8289	C_{12}H_{24}O_{2}	Undecanoic acid, methyl ester	Methyl ester	180,225.75
40	27.58	430.3823	C_{20}H_{40}O	Vitamin E	Resorcinol	262,653.50
41	25.67	420.0371	C_{20}H_{50}O	α-Tocopheryl acetate	Triterpenoid	295,293.67
42	29.64	432.3904	C_{20}H_{50}O	α-Tocopherol A	Steroid	141,624.33
43	28.98	414.3868	C_{20}H_{50}O	β-Sitosterol	Triterpenoid	999,333.33
Table 16. Compounds identified in leaf ethanol extracts of *Turraea obtusifolia*.

RT (min)	Observed Ion m/z	MF	Name	MC	FC
1	13.98	C_{15}H_{24}O	(1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene Epoxide	360.103.67	
2	20.96	C_{20}H_{34}O	(E)-3-Methyl-5-(1R,4aR,8aR)-5,5,8a-trimethyl-2-methylenedeacydrophenanthalene-1-ylpent-2-en-1-ol Diterpenoid	115.266.00	
3	21.30	C_{15}H_{22}O	(R)-(-)-14-Methyl-8-hexadecyn-1-ol Fatty alcohol	73.991.50	
4	14.35	C_{10}H_{20}O	10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol	385.059.67	
5	17.93	C_{20}H_{40}O	1-Hexadecen-3-ol, 3,5,11,15-tetramethyl- Diterpenoid	315.859.50	
6	12.74	C_{11}H_{16}O	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-	93.776.33	
7	12.38	C_{6}H_{14}O	2-Hydroxy-1-(1′-pyrrolidiyl)-1-buten-3-one	99.138.00	
8	16.80	C_{15}H_{24}O	3,5,11-Eudesmatriene Sesquiterpenoid	84,655.00	
9	11.99	C_{20}H_{40}O	3,7,11,15-Tetramethyl-2-hexadecen-1-ol Diterpenoid	23,305.00	
10	12.38	C_{21}H_{40}O	4,8,12,16-Tetramethylheptadecan-4-olide Beta-diketone	348,560.00	
11	21.81	C_{15}H_{22}O	2-Hydroxy-1-(1′-pyrrolidiyl)-1-buten-3-one	99,138.00	
12	6.57	C_{6}H_{12}O	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- Fatty acid	842,545.00	
13	28.80	C_{17}H_{30}O	4-tert-Octylphenol, TMS derivative Alkylbenzene	31,758.67	
14	28.39	C_{19}H_{32}O	5-Cholestene-3-ol, 24-methyl- Steroid	548,943.50	
15	15.88	C_{15}H_{24}O	6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl- Fatty alcohol	153,763.25	
16	15.88	C_{15}H_{24}O	7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,7,8-hexahydro-3H-naphthalen-2-one	307,202.33	
17	20.97	C_{14}H_{30}O	9,12,15-Octadecatrienoic acid, (Z,Z,Z)- Methyl ester	923,805.50	
18	19.49	C_{14}H_{32}O	9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- Methyl ester	152,852.00	
19	19.88	C_{6}H_{18}O	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- Fatty acid	153,763.25	
20	2.95	C_{6}H_{12}O	Acetic acid, hydroxy- Hydroxy acid	8,158.50	
21	13.85	C_{15}H_{24}O	Bergamotol, Z-α-trans- Monoterpenoid	48,437.33	
22	13.60	C_{15}H_{24}O	Caryophyllene-oxide Sesquiterpenoid	487,571.00	
23	14.61	C_{15}H_{30}O	cis-Z-α-Bisabolene epoxide Sesquiterpenoid	177,591.67	
24	21.81	C_{15}H_{30}O	Cyclooctadecane, hexamethyl- Organosilicon	22,405.75	
25	21.81	C_{15}H_{30}O	2-Hydroxy-1-(1′-pyrrolidiyl)-1-buten-3-one	99,138.00	
26	17.67	C_{15}H_{30}O	Dodecanoic acid, methyl ester Methyl ester	353,733.33	
27	11.72	C_{15}H_{24}O	Eudesma-2,4,11-triene Sesquiterpenoid	160,053.60	
28	13.27	C_{15}H_{30}O	Fumaric acid, ethyl 3,4,5-trichlorophenyl ester	53,322.00	
29	3.46	C_{6}H_{10}O	Glycolaldehyde dimer Pentaose	11,108.50	
30	14.96	C_{15}H_{24}O	Ledene oxide-(II) Sesquiterpenoid	335,514.67	
Table 16. Cont.

RT (min)	Observed Ion m/z	MF	Name	MC	FC	
31.	14.61	263.9254	C_{11}H_{22}O_{6}	Methyl 2-hydroxy-octadeca-9,12,15-trienoate	Fatty acid	365,830.00
32.	2.97	32.0260	CH_{3}O	Methyl Alcohol	Alcohol	3178,893.00
33.	16.72	221.1896	C_{19}H_{38}O_{3}	Neophytadiene	Diterpenoid	260,778.86
34.	18.26	256.1901	C_{16}H_{32}O_{2}	n-Hexadecanoic acid	Fatty acid	5461,473.67
35.	20.34	156.0941	C_{20}H_{38}NO	Nonanamide	Amide	370,402.80
36.	12.24	206.1660	C_{14}H_{32}O	Phenol, 2,6-bis(1,1-dimethylethyl)-	Sesquiterpenoid	60,234.00
37.	18.16	278.1520	C_{20}H_{40}O_{4}	Phthalic acid, heptyl pentyl ester	Ester	7217,745.00
38.	19.61	278.2960	C_{20}H_{40}O	Phytol	Diterpenoid	507,674.67
39.	7.29	130.9626	C_{13}H_{30}NO_{2}	Pyrrolidin-1-propionic acid	Proline	87,679.50
40.	7.28	133.1012	C_{6}H_{12}ClN	Pyrrolidine, 1-(2-chloromethyl)-	Haloalkyl	88,402.00
41.	28.60	412.3717	C_{29}H_{50}O	Stigmasterol	Steroid	585,313.00
42.	20.16	227.2011	C_{14}H_{28}O_{2}	Tetradecanoic acid	Fatty acid	200,040.00
43.	14.81	219.9886	C_{15}H_{30}O	trans-Z-α-Bisabolene epoxide	Sesquiterpenoid	242,292.25
44.	27.60	430.3830	C_{29}H_{50}O	Vitamin E	Resorcinol	309,983.50
45.	25.67	421.3605	C_{29}H_{50}O_{4}	α-Tocosphoro A	Steroid	220,431.00
46.	29.01	414.3884	C_{29}H_{50}O_{4}	β-Sitostanol	Triterpenoid	1141,657.00

3. Discussion

Most of the botanical extracts tested for their insecticidal activities proved to be effective repellents, feeding deterrents, and contact toxic against the *S. frugiperda* and *P. xylostella* larvae. Repellence, feeding deterrence, and contact toxicity of *E. capensis*, *T. dregeana*, *Turraea floribunda*, and *T. obtusifolia* extracts are recorded for the first time in this study. *Melia azedarach* was used as a positive control in this study as it is a well-known insecticidal plant in the Meliaceae family. The species has been proven to be an excellent insecticide against *S. frugiperda* [24–31]. In addition, *M. azedarach* extracts were found to be an effective botanical insecticide against *P. xylostella* in studies by Charleston et al. [32], Charleston et al. [12], Chen et al. [33], Chen et al. [34], Defagó et al. [35], Dilawari et al. [36], Dilawaxi et al. [37], Kumar et al. [38], Patil and Goud [39], Qiu et al. [40], Rani et al. [41], Sharma et al. [42], and Singh et al. [43].

Plant extracts with repellent activities are those with compounds that have irritating effects, causing insects to move away from them [44]. All plant extracts evaluated had repellence against the *S. frugiperda* and *P. xylostella* larvae, except for the ethanolic extracts of *T. floribunda* that had attractancy against the two tested larvae. However, there were interspecific differences as the botanical extracts were more susceptible as repellents to the *P. xylostella* larvae than to the *S. frugiperda* larvae (Tables 1 and 2). Accordingly, seven extracts displayed repellency against *P. xylostella* larvae as follows: one in class V, three in IV, and five in III. In comparison, extracts displayed repellency against *S. frugiperda* according to the following level of activity: one in class V, two in IV, and one in III. It is not surprising that *M. azedarach* extracts were found to have the highest repellent activity against both *S. frugiperda* and *P. xylostella* larvae in this study, as this plant is known to have excellent repellent and insecticidal properties against several insect pests in several studies. Interestingly, *T. dregeana* recorded the same repellence activity as *M. azedarach* against both
S. frugiperda and P. xylostella larvae. Against S. frugiperda, acetone extracts repelled 71% of the larvae (Table 1); meanwhile, against P. xylostella, acetone and ethanol extracts repelled 65% of the larvae (Table 2). Trichilia dregeana extracts in the study by Adinew [45] were found to have a highly positive protectant ability against Sitophilus zeami Motschulsky (Maize weevil), which is also a major pest of maize similar to S. frugiperda. Extracts of T. floribunda moderately repelled the S. frugiperda larvae, while E. capensis and T. obtusifolia extracts recorded the lowest repellence activity.

Plants with antifeeding activities have compounds that, once consumed, cause the insects to stop feeding and eventually die due to starvation [44]. A study by Farag et al. [46] suggested that the plant extracts with feeding deterrence activity act as a stomach poison when ingested by insects. These feeding deterrent compounds could help reduce crop damage [18]. Melia azedarach aqueous extracts, followed by T. obtusifolia (aqueous and ethanol) and T. floribunda aqueous extracts, recorded the highest feeding deterrence activity against the S. frugiperda larvae. It does not come as a surprise that Turraea species recorded high feeding deterrence activity as in the study by Chimbe and Galley [47], another species of the genus, Turraea nitolica Kotschy & Peyr., was found to be effective against Sitophilus oryzae (rice weevil) larvae. Several studies also evaluated other species of the genus Trichilia for antifeedant properties. Trichilia elegans A.Juss. [48], T. pallens C.DC. [49], T. pallida Sw. [49], and T. roka (Forskk.) Chiov. [50] were found to have antifeedant activities against S. frugiperda larvae. Surprisingly, all T. dregeana extracts used in this study inhibited more P. xylostella larval feeding than M. azedarach extracts. This is contrary to the studies by Charleston et al. [52] and Dilawari et al. [36], where M. azedarach extracts recorded the highest antifeedant properties against the P. xylostella larvae. In this study, aqueous extracts of T. obtusifolia and ethanolic extracts of E. capensis also recorded high feeding deterrence activity against the P. xylostella larvae, with feeding deterrence coefficients of 86.74 and 85.79, respectively. The repellence activity of E. capensis coincides with that in the study by Champagne [51], in which the extracts acted as growth inhibitors and were toxic to Peridroma saucia Hübner (variegated cutworm) larvae. Trichilia silvatica C.DC. extracts were reported as good antifeedants against P. xylostella larvae [52].

Aqueous extracts of E. capensis and T. floribunda caused the highest S. frugiperda larval mortality, with recorded LC50 values of 0.14 mg/kg and 0.56 mg/kg, respectively. In the current study, all extracts of M. azedarach were less toxic to the S. frugiperda larvae (with an LC50 of 707.95 mg/kg). These results are contrary to the results obtained in the study by Bullangpoti et al. [26], where M. azedarach ethanolic extracts caused high mortality against the S. frugiperda with a recorded a lower LC50 value of 1.4 g L−1. Ekebergia capensis and T. dregeana extracts caused the least mortality to the larvae. However, in the study by Rioba and Stevenson [53], two members of the genus Trichilia, T. pallens C.DC., and T. pallida Sw., were found to cause high larval mortality against the S. frugiperda larvae. Trichilia trijuga Vell. extracts were found to be toxic to the Crocidolomia binotalis (cabbage cluster caterpillar) larvae [54] and T. americana (Sessé & Moc.) T.D.Penn. was toxic to the Trichoplusia ni (cabbage looper) and Pseudaelia unipuncta (armyworm moth) larvae [10]. On the other hand, all three extracts of M. azedarach and aqueous extracts of T. obtusifolia were more lethal to the P. xylostella larvae, with LC50 values of 0.14 mg/kg and 1.78 mg/kg, respectively. Ekebergia capensis, T. dregeana, and T. floribunda extracts caused insignificant toxicity against the P. xylostella larvae. This is contrary to this present study, as higher levels (LC50 value of 691.83 and 707.95 mg/kg) of the extracts of T. dregeana were needed to kill 50% of the larvae. Trichilia emetica methanol extracts resulted in high P. xylostella larval mortality with a recorded LC50 value of 0.94 mg.m−1 in the study by Munyemana and Alberto [55]. There may be a relationship between the toxicity against the P. xylostella of Turraea species screened in this study with the study of Essoung et al. [36] and Essoung et al. [57], where T. floribunda and other Turraea species T. abyssinica Hochst., T. nitolica Kotschy & Peyr., and T. wakefieldii Oliv. extracts were toxic to Tuta absoluta (tomato leafminer) larvae. Growth inhibitory and toxicity activity of eight Trichilia species T. americana (Sesse & Mocino) Pennington, T. connaroides (Wright & Am.), T. glabra L., T. havanensis Jacq., T. hirta L., T. martiana C.DC, T.
pleeana (A. Juss.) C.DC, and *T. quadrijuga* subsp. *cinerascens* (C.DC) Pennington extracts were evaluated on *Peridroma saucia* (variegated cutworm) and *Spodoptera litura* (cotton leafworm).

In the present work, ethanol extracts yielded the highest number of chemical compounds except for *T. floribunda*, where acetone extracts yielded 60 compounds, whereas ethanol yielded 30 compounds. This coincides with the antifeedant results, as ethanol extracts had better repellence, feeding deterrence, and contact toxicity than acetone extracts. Four chemical compounds were present in acetone and ethanol extracts of all five Meliaceae species studied: methyl alcohol, neophytadiene, phytol, and β-sitosterol. The tridecanoic acid methyl ester was present in all plant extracts except in ethanolic extracts of *T. dregena*. The terpene derivatives phytol (present in all plant extracts in the current study) have been reported to have insecticidal [58] and pesticidal activities [59]. After all the chemical compounds identified in GC-MS analysis of plant extracts were classified, it was found that eight classes were common in all ethanol extracts. These were alcohols, diterpenoids, esters, fatty acids, fatty aldehydes, methyl esters, steroids, and triterpenoids. The five species’ most common classes in acetone extracts were alcohol, alkane, diterpenoid, ester, non-metal compound, organosilicon, and triterpenoid. All five plant species evaluated (either aqueous, acetone, or ethanol extracts) had repellence, feeding deterrence, and contact toxicity activity against *S. frugiperda* and *P. xylostella* larvae to some extent. The GC-MS analysis results strongly support these results as the two most well-known groups, phenols, and terpenes, known to have insecticidal and antifeedant properties, were present in all the plant extracts. *Trichilia dregena* extracts exhibited excellent repellence activity and feeding deterrence against the two test larvae as the positive control, *M. azedarach* extracts. GC-MS analysis revealed that ethanol extracts of *T. dregena* contained a high number of chemical classes that are terpenes (i.e., diterpenoid, sesquiterpenoid, triterpenoid, and steroid) and phenols (i.e., gingerdione). In acetone extracts of *T. dregena*, four terpenes were identified (i.e., diterpenoid, sesquiterpenoid, triterpenoid, and steroid), as well as four phenols (i.e., 7-hydroxycoumarin, alkylbenzene, gingerdione, and resorcinol). Chemical compound phenol, 2,2′-methylenebis[6-(1,1-dimethylethyl)-4-methyl- identified in ethanolic extracts of *T. dregena* was reported to have repellent, larvicidal, adulticidal, and oviposition deterrence activities against insects in a study by Chen et al. [60]. In studies by Curcino-Vieira et al. [61] and Tan and Luo [62], chemical compounds such as coumarins, diterpenes, flavonoids, glycosylated lignans, limonoids, monoterpenes, sesquiterpenes, steroids, and triterpenes isolated from the genus *Trichilia* were found to have insect feeding activities [63–65], and they may be toxic to insects [66,67]. *Ekebergia capensis* extracts exhibited good repellence, feeding deterrence, and contact toxicity against the test insects. GC-MS analysis revealed that ethanol extracts of *E. capensis* contained 50 compounds, of which 16 are terpenes belonging to diterpenoid, ergosterol, sesquiterpenoid, and steroid chemical classes. Conversely, acetone extracts identified thirty-three compounds, of which nine are terpenes (belonging to classes diterpenoid, sesquiterpenoid, and triterpenoid), and one is a phenol (cholesterol). The two members of the genus *Turraea, T. floribunda,* and *T. obtusifolia*, recorded minor activities in the antifeedant testing against the test insects. The presence of different chemical classes of compounds such as diterpenoids, flavonoids, limonoids, and terpenoids in some *Turraea* spp. have been associated with insecticidal activities in previous studies by Essoung et al. [56]; Ndung’u et al. [68]; Udenigwe et al. [69]; Yuan et al. [70]; Xu et al. [71]; and Zanin et al. [72]. Chemical groups other than phenols and terpenes, which have been recorded to have insecticidal, antifeedant, and insect repellent activities, have also been identified in the current study. For example, 9,12-octadecadienoic acid (Z,Z)- present in all *T. obtusifolia* extracts was reported to have insect-repellent properties in the study by Paulpriya et al. [59].
4. Materials and Methods

4.1. Antifeedant and Insecticidal Analysis

4.1.1. Sample Preparations

Leaves were dried under shade at room temperature (25 °C), then ground into a fine powder using an electric grinder. Extraction was carried out according to the procedures of Warthen et al. [73], with some slight modifications. Ten grams of each powdered sample were extracted in 100 mL of water, acetone, and ethanol separately for 72 h at room temperature. After extraction, the solutions were filtered through Whatman No.40 filter paper, and the solvents were removed using a rotary evaporator. Methanol was used to dissolve the organic residues, where 0.5% and 1.0% solutions were prepared for each sample.

4.1.2. Insects Selection and Rearing

S. frugiperda and *P. xylostella* second instar larvae strains (between 3 to 7 days old) were obtained from the Agricultural Research Council- Vegetable and Ornamental Plants (ARC- VOPI) in Pretoria, where they were reared, and the information on their age was also obtained.

4.1.3. Repellence Bioassay

The repellence bioassay of the plant samples was assessed using Standard Method Number 3, described by McDonald et al. [74], with some modifications. Repellence tests were conducted using Whatman No.40 filter papers as opposed to the strips of aluminum foil laminated to 40 lb. kaft paper, as described in the study by McDonald et al. [74]. The substrata were prepared by cutting a filter paper in half and placing it in 0.5% and 1.0% solutions of the plant extracts for 1 min, and then allowing it to air dry at room temperature overnight. Each half of the treated disk was attached lengthwise, edge to edge, to an untreated half-disk of the filter paper with cellulose tape and placed in a petri dish (Figure 1A,B). To avoid cannibalism in a petri dish, five larvae of each insect were placed in the middle of each filter paper circle and covered. For five hours, at hourly intervals, individuals that settled on each half of the filter paper disk were counted, and the experimental design was run once. The average of the counts was converted to express the percentage repulsion (PR) as follows:

\[
PR = 2 \times (C - 50)
\]

where \(C \) is the percentage of insects on the untreated half of the disk. Positive percentage repulsion values expressed repellence, and negative percentage repulsion values expressed attractancy. The averages of the percentage repulsion were then assigned different classes using the scale as follows [75] (Table 17):

Class	Percentage Repulsion
0	>0.01 to <0.1
I	0.1–20
II	20.1–40
III	40.1–60
IV	60.1–80
V	80.1–100

Table 17. Scale used to assign different classes of percentage repulsion values [75].
4.1.4. Feeding Deterrence Test

The potency of the feeding deterrence effect of plant leaf extracts against *S. frugiperda* and *P. xylostella* was determined by using the leaf disk bioassay. Maize and cabbage leaves were used as the test food for *S. frugiperda* and *P. xylostella*, respectively. The leaves were soaked in either water only (control leaf disks K) or in a 1% plant extract solution of aqueous, acetone, and ethanol separately (treated leaf disks E). The leaf disks (Figure 2A,B) were allowed to air dry at room temperature for about 30 min and weighed before they were presented to the larvae in petri dishes for 24 h, during which they were serving as the sole food source. The feeding behaviour of the larvae was recorded under three different conditions: (1) pure food, which comprised two control leaves (KK) (control test); (2) food with one control leaf (K) and one treated leaf (E) (choice test); and (3) food with two treated leaves (EE) (no choice test). After 24 h, the remaining leaves were reweighed, and mean percentages of feeding deterrence (FD) were calculated for each plant extract based on the weight of leaves before and after the tests. FD was calculated as follows:

\[
FD = \frac{(C - T)}{C + T} \times 100
\]

(2)

\(C = \text{weight of control leaves; } T = \text{weight of treated leaves.}\)

After the FD values were calculated, three coefficients for the feeding deterrent activity from all three tests for each plant extract were calculated as follows [75]:

1. Absolute deterrence coefficient

\[
A = \frac{(KK - EE)}{KK + EE} \times 100
\]

(3)

2. Relative deterrence coefficient

\[
R = \frac{(K - E)}{K + E} \times 100
\]

(4)

3. Total deterrence coefficient

\[
T = A + R
\]

(5)

Values of the total deterrence coefficient (A) served as an index of the feeding deterrence activity which was expressed on a scale between 0 and 200. Plant extracts with a total deterrence coefficient of between 150–200 were marked ++++; 100–150, +++; 50–100, ++, and 0–50 + [75].

Figure 1. (A) Treated half and untreated half of filter paper with *S. frugiperda* larvae. (B) Treated half and untreated half of filter paper with *P. xylostella* larvae.
A

B

Figure 2. (A) Maize leaf disk for the feeding deterrence assay against S. frugiperda after 24 h. (B) Cabbage leaf disk for the feeding deterrence assay against P. xylostella after 24 h.

4.1.5. Topical Application Bioassay

The topical treatment assay tested the direct contact toxicity of the plant extracts, using Standard Method Number 1 described by McDonald et al. [74] with some modifications. Plant extract solutions of 0.5% and 1% were used for this test. Larvae were chilled for 10 min instead of being anesthetized with carbon dioxide in a Buchner funnel for about 5 min, as described in the study by McDonald et al. [74]. The immobilized larvae were picked up individually with forceps. Ten microliters of each plant extract solution were applied to the dorsum of each larva. Five larvae were treated at each dose and then transferred to a petri dish. After 24 h, the larvae were examined, and those that did not respond to gentle touch were considered dead. The number of dead larvae was recorded, and corrected mortality rates were calculated using the formula:

\[
\text{Percent larval mortality} = \left(\frac{\text{number of dead larvae}}{\text{total number of treated larvae}} \right) \times 100
\]

Probit analysis [76] was used to analyse concentration-mortality data.

4.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

GC-MS analysis was used to identify chemical compounds present in all five selected Meliaceae species. The patterns of the mass spectra fragmentation and their retention indices were compared with the ones stored in the computer library to identify the chemical components found in the plant extracts [77].

4.2.1. Sample Preparation

One gram of powdered samples was extracted in acetone and ethanol for 24 h at room temperature. The extracts were centrifuged at 13,000 \(\times g \) rpm for 10 min at 10 °C. Whatman No.1 filter paper was used to filter the solutions, and a rotary evaporator was used to evaporate or concentrate the solvents. One milliliter of methanol was used to dissolve the organic residues. The solutions were transferred into dark amber vials using syringe filters.

4.2.2. Gas Chromatography-High-Resolution-Time-of-Flight Mass Spectrometry (GC-HRTOF- MS) Analyses

The samples were analysed on the GC-HRTOF- MS system equipped with an Agilent 7890A gas chromatograph (Agilent Technologies, Inc., Wilmington, DE, USA). This system operates in high-resolution, equipped with a Gerstel MPS multipurpose autosampler (Gerstel Inc., Germany) and capillary column (Rxi- 5 ms- 30 m × 0.25 mm ID × 0.25 µm). For each plant extract, a volume of 1 µL was injected in a spitless mode. The program was started at 70 °C, held for 0.5 min, ramped at 10 °C/min to 150 °C, held for 2 min, ramped...
at 10 °C/min to 330 °C, and held for 3 min for the column to bake out. The samples were analysed at an MS data acquisition rate of 13 spectra/s, m/z range of 30–1000, electron ionization at 70 eV, ion source temperature was set at 250 °C, and the system extraction frequency was set at 1.25 kHz. Solvent blanks were also used to observe for contamination and impurities. Compounds were identified by matching the generated spectra with the NIST, Mainlib, and Feihn reference library databases on ChromaTOF-HRT® (LECO Corporation, St. Joseph, MI, USA). Subsequent retention time alignment, matched filtration, peak picking, detection, and matching were conducted on a data station equipped with the ChromaTOF-HRT® software (LECO Corporation, St. Joseph, MI, USA). Parameters adopted for processing included a signal-to-noise ratio (S/N) of 100, a similarity match above 70%, and data presented in Tables 7–16 representing only compounds occurring at least twice in triplicate injections. The collected GC-HRTOF-MS dataset was converted to mzML format using the LECO ChromaTOF-HRT software and then processed (peak picking and alignment) on the XCMS open-source tool.

5. Conclusions

Meliaceae species are abundant large tree species, so they would be suitable to supply very large-scale production of botanical insecticides; thus, their potential use in controlling insect pests is promising. This study provides potential evidence that further confirms the findings of many previous reports that Meliaceae members can be used as repellents, insecticides, and antifeedants to control S. frugiperda and P. xylostella insects, two of the most important agricultural pests that mostly attack crops which form part of the primary staple food. All extracts of the five evaluated species indicated repellence to the S. frugiperda and P. xylostella larvae, except for the ethanolic extracts of T. floribunda, which showed attraction to both the larvae. All extracts evaluated exhibited feeding deterrence to the S. frugiperda and P. xylostella larvae, except for the ethanol extracts of T. floribunda, which had inert antifeeding compounds. Aqueous extracts of E. capensis and T. floribunda were more toxic to the S. frugiperda larvae, and all extracts of M. azedarach were more toxic to the P. xylostella larvae. The GC-MS analysis results strongly support the insecticidal activities of the evaluated extracts as the two most well-known groups, phenols and terpenes, known to have insecticidal and antifeedant properties, were present in all the plant extracts. Therefore, this further corroborates the recorded traditional uses of these plants as insecticides and antifeedants. Plants that have indicated the most promising results are E. capensis, T. floribunda, and T. obtusifolia. These plants should be subjected to further quantitative phytochemical studies focusing on isolating and identifying active compounds rather than simply screening the plant extracts for insecticidal and antifeedant activity, as plant extracts may contain many compounds along with those that may cause negative side effects and toxicity. Further research should also be conducted regarding their safe use and non-target effects, and to determine if they can maintain yield at comparable levels to synthetic pesticides. Field trial evaluations of insecticidal and antifeedant plant extracts may also need to be undertaken to assess their impact on crop yield and damage and evaluate insect resistance issues in comparison to synthetic pesticides. This study’s results are significant as they will generate new and alternative natural products that can help improve biological effectiveness, lower residuals, increase nontoxic agricultural products, and decrease their presence in foods.

Author Contributions: Conceptualization, A.N.M. and K.C.S.; writing—original draft preparation, K.C.S.; writing, review, and editing, A.N.M. and K.C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Research Foundation (NRF), grant number 114686.

Data Availability Statement: Not applicable.
Acknowledgments: The authors are grateful to the University of Johannesburg for the logistical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Shah, M.M. Insecticidal activity of plant-derived extracts against different economically important pest insects. *Phytopenia* 2017, 45, 113–124. [CrossRef]

2. Stevenson, P.C.; Isman, M.B.; Belmain, S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. *Ind. Crops Prod.* 2017, 110, 2–9. [CrossRef]

3. Kalpana, P.; Kaur, V.; Gabb, S.; Jangra, A.; Pradeep, A.; Rani, M.; Maken, S. Exploring the phytochemicals of Delphinium ajacis and their applications in biocontrol activity against some plant pathogens. *J. Chem. Pharm. Res.* 2016, 8, 11–18.

4. Kabdwal, B.C.; Sharma, R.; Tewari, R.; Tewari, A.K.; Singh, R.P.; Dandona, J.K. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). *Egypt. J. Biol. Pest Control.* 2019, 29, 1–10. [CrossRef]

5. Thapa, C.B. Survey of Integrated Pest Management (IPM) Practice in Vegetable Crops of Rupandehi District, Western Nepal. *Int. J. Appl. Sci. Biotechnol.* 2017, 5, 237–242. [CrossRef]

6. Karunamoorthi, K. Medicinal and Aromatic Plants: A Major Source of Green Pesticides/Risk-Reduced Pesticides. *Med. Aromat. Plants* 2012, 1, 2164-0412. [CrossRef]

7. Gunnell, D.; Eddleston, M.; Phillips, M.R.; Konradsen, F. The global distribution of fatal pesticide self-poisoning: Systematic review. *BMC Public Health* 2007, 7, 357. [CrossRef]

8. Rangiah, K.; Varalaxmi, B.A.; Gowda, M. UHPLC-MS/SRM method for quantification of neem metabolites from leaf extracts of Meliaceae family plants. *Anal. Methods* 2016, 8, 2020–2031. [CrossRef]

9. Isman, M.; Arnason, J.; Towers, G. Chemistry and Biological Activity of Ingredients of Other Species of Meliaceae. The Neem Tree: *Azadirachta indica* A. Juss and Other Meliaceous Plants: Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes; VCH: Weinheim, Germany, 1995; pp. 652–666.

10. Akhtar, Y.; Yeoung, Y.R.; Isman, M.B. Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaleia unipuncta. *Phytochem. Rev.* 2007, 7, 77–88. [CrossRef]

11. Senthil, N. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. *Front. Physiol.* 2013, 4, 359.

12. Charleston, D.S.; Kür, R.; Dicke, M.; Vet, L.E. Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: A field test of laboratory findings. *Biol. Control.* 2006, 39, 105–114. [CrossRef]

13. Rattan, R.S.; Sharma, A. Plant Secondary Metabolites in the Sustainable Diamondback Moth Plutella xylostella L. Management. *Indian J. Fundam. Appl. Life Sci.* 2011, 1, 959–309.

14. Amoabeng, B.W.; Gurr, G.M.; Gitau, C.W.; Nicol, H.I.; Munyakazi, L.; Stevenson, P.C. Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests. *PLoS ONE* 2013, 8, e78651. [CrossRef]

15. Machekano, H.; Mvumi, B.; Nyamukondwa, C. Diamondback Moth, *Plutella xylostella* (L.) in Southern Africa: Research Trends, Challenges and Insights on Sustainable Management Options. *Sustainability* 2017, 9, 91. [CrossRef]

16. Risco, G.V.S.; Idrogo, C.R.; Kato, M.J.; Diaz, J.S.; Armando, J.; Jr.; Faredes, G.E.D. Larvicidal activity of Piper tuberculatum on Spodoptera frugiperda (Lepidoptera: Noctuidae) under laboratory conditions. *Rev. Colomb. Entomol.* 2012, 38, 35–41. [CrossRef]

17. Sisay, B.; Tefera, T.; Wakgari, M.; Ayalew, G.; Mendesil, E. The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm Larvae (*Spodoptera frugiperda*), in Maize. *Insects* 2019, 10, 45. [CrossRef]

18. Phambala, K.; Tenbo, Y.; Kasambala, T.; Kabambe, V.H.; Stevenson, P.C.; Belmain, S.R. Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (*Spodoptera frugiperda*). *Plants* 2020, 9, 112. [CrossRef]

19. Overton, K.; Maino, J.L.; Day, R.; Umina, P.A.; Bett, B.; Carnovale, D.; Ekesi, S.; Meagher, R.; Reynolds, O.L. Global crop impacts, yield losses and action thresholds for fall armyworm (*Spodoptera frugiperda*): A review. *Crop Prot.* 2021, 145, 105641. [CrossRef]

20. Adeniyi, S.A.; Orjiakwe, C.I.; Ehiagbonare, J.E.; Arimah, B.D. Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (*Vernonia amygdalina*, *Sida acuta*, *Ocimum gratissimum* and *Telfaria occidentalis*) against beans weevil (*Acanthoscelides obtectus*). *Int. J. Phys. Sci.* 2010, 5, 753–762.

21. Pino, O.; Sánchez, Y.; Rojas, M.M. Plant secondary metabolites as an alternative in pest management. I: Background, research approaches and trends. *Rev. Protección Veg.* 2013, 28, 81.

22. Fischer, D.; Imholt, C.; Pelz, H.J.; Wink, M.; Prokop, A.; Jacob, J. The repelling effect of plant secondary metabolites on water voles, *Arvicola amphibius*. *Pest Manag. Sci.* 2013, 69, 437–443. [CrossRef] [PubMed]

23. Chaudhary, S.; Kanwar, R.K.; Sehgal, A.; Cahill, D.M.; Barrow, C.J.; Sehgal, R.; Kanwar, J.R. Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides. *Planta Med.* 2017, 83, 610. [CrossRef] [PubMed]

24. Berlitz, D.L.; Azambuja, A.O.D.; Sebben, A.; Oliveira, J.V.D.; Fiuza, L.M. Mortality of *Oryzophagus oryzae* (Costa Lima, 1936) (Coleoptera: Curculionidae) and *Spodoptera frugiperda* (J.E Smith, 1797) (Lepidoptera: Noctuidae) Larvae Exposed to Bacillus thuringiensis and Extracts of Melia azedarach. *Braz. Arch. Biol. Technol.* 2012, 55, 725–731. [CrossRef]
25. Breuer, M.; Schmidt, G. Studies on the effect of Melia azedarach extracts on Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). *Mitt. Disch. Ges. Allg. Angew. Entomol.* 1990, 7, 419–429.

26. Bullangpoti, V.; Wajnberg, E.; Audant, P.; Feyereisen, R. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. *Pest Manag. Sci.* 2012, 68, 1255–1264. [CrossRef]

27. Hernandez, C.; Vendramim, J. Bioactivity evaluation of aqueous extracts of Melliaceae to Spodoptera frugiperda (JE Smith). *Rev. Agric.* 1997, 72, 305–318.

28. Jiménez-Durán, A.; Barrera-Cortés, J.; Lina-García, L.P.; Santillán, R.; Soto-Hernández, R.M.; Ramos-Valdivia, A.C.; Ponce-Noyola, T.; Ries-Leal, E. Biological Activity of Phytochemicals from Agricultural Wastes and Weeds on Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). *Sustainability 2021*, 13, 13896. [CrossRef]

29. Maroneze, D.M.; Gallegos, D.M.N. Effect of Melia azedarach aqueous extract on the development of immature and reproductive stages of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae). *Semin. Ciências Agrárias* 2009, 30, 537–549.

30. Scapinello, J.; Oliveira, J.V.; Ribeiros, M.L.; Tomazelli, O., Jr.; Chiaradia, L.A.; Dal Magro, J. Effects of supercritical CO2 extracts of *Melia azedarach* L. on the control of fall armyworm (Spodoptera frugiperda). *J. Supercrit. Fluids* 2014, 93, 20–26. [CrossRef]

31. Scapinello, J.; Oliveira, J.V.D.; Chiaradia, L.A.; Tomazelli, O., Jr.; Niero, R.; Dal Magro, J. Insecticidal and growth inhibiting action of the supercritic extract of *Melia azedarach* on Spodoptera frugiperda. *Rev. Bras. Eng. Agricola Ambient.* 2014, 18, 866–872. [CrossRef]

32. Charleston, D.S.; Kfir, R.; Vet, L.E.M.; Dicke, M. Behavioural responses of diamondback moth *Plutella xylostella* (Lepidoptera: Plutellidae) to extracts derived from *Melia azedarach* and *Azadirachta indica*. *Bull. Entomol. Res.* 2005, 95, 457–465. [CrossRef] [PubMed]

33. Chen, C.; Chang, S.J.; Cheng, L.L.; Hou, R.F. Effects of chinaberry fruit extract on feeding, growth and fecundity of the diamondback moth, *Plutella xylostella* (Lep.; Yponomeutidae). *J. Appl. Entomol.* 1996, 120, 341–345. [CrossRef]

34. Chen, C.C.; Chang, S.J.; Hou, R.F.; Cheng, L.L. Detriment effect of the chinaberry extract on oviposition of the diamondback moth, *Plutella xylostella* (L.) (Lep.; Yponomeutidae). *J. Appl. Entomol.* 1996, 120, 165–169. [CrossRef]

35. Defagó, M.T.; Dumón, A.; Avalos, D.S.; Palacios, S.M.; Valladares, G. Effects of Melia azedarach extract on *Cotesia aeyerza*, parasitoid of the alfalfa defolator Collas leiasia. *Biol. Control.* 2011, 57, 75–78. [CrossRef]

36. Dilawari, V.; Singh, K.; Dhaliwal, G. Effects of Melia azedarach L. on oviposition and feeding of *Plutella xylostella* L. *Int. J. Trop. Insect Sci.* 1994, 15, 203–205. [CrossRef]

37. Dilawaxi, V.; Singh, K.; Dhaliwal, G. Sensitivity of Diamondback Moth, *Plutella xylostella* L. to *Melia azedarach* L. *Pestic. Res.* 1994, 6, 71–74.

38. Kumar, R.; Sharma, K.; Kumar, D. Studies on ovicidal effects of some plant extracts against the diamondback moth, *Plutella xylostella* (L.) infesting cauliflower cro. *Biol. Forum Int. J.* 2009, 1, 47–50.

39. Patil, R.S.; Goud, K.B. Efficacy of manethanol plant extracts as ovipositional repellents against diamondback moth, *Plutella xylostella* (L.). *J. Entomol. Res.* 2003, 27, 13–18.

40. Qiu, Y.-T.; Loon, J.J.A.; Roessingh, P. Chemoreception of oviposition inhibiting terpenoids in the diamondback moth *Plutaella xylostella*. *Entomol. Exp. Appl.* 1998, 87, 143–155. [CrossRef]

41. Rani, M.; Suhag, P.; Kumar, R.; Singh, R.; Kalidhar, S.B. Chemical components and biological efficacy of *Melia* azedarach Stems. *J. Med. Aromat. Plant Sci.* 1999, 21, 1043–1047.

42. Sharma, A.; Kaushal, P.; Sharma, K.C.; Kumar, R. Bioefficacy of some plant products against Diamond back moth *Plutella xylostella* L. (Lepidoptera; Yponomeutidae). *J. Entomol. Res.* 2006, 30, 213–217.

43. Singh, G.; Kaur, V.; Singh, D. Lethal and sublethal effects of different ecotypes of *Melia azedarach* L. against *Plutella xylostella* (Lepidoptera: Plutellidae). *Int. J. Trop. Insect Sci.* 2006, 26, 92–100. [CrossRef]

44. Castillo, L.E.; Jiménez, J.; Delgado, M. Secondary metabolites of the Annonaceae, Solanaceae and Melliaceae families used as biological control of insects. *Trop. Subtrop. Agroecosystems* 2010, 12, 445–462.

45. Adinew, B. Comparative Efficacy of Jatropha Curcas and Trichilia Dreggeana Seed Oil on Sitophilus Zeamais in Stored Maize Grain. *Elixir Entomol.* 2017, 111, 48802–48806.

46. Farag, M.; Ahmed, M.H.; Yousef, H.; Abdel-Rahman, A.H. Repellent and Insecticidal Activities of *Melia azedarach* L. against Cotton Leafworm, Spodoptera littoralis (Boisd.). *Z. Für Nat. C* 2011, 66, 129–135. [CrossRef] [PubMed]

47. Chimbe, C.; Galley, D. Evaluation of material from plants of medicinal importance in Malawi as protectants of stored grain against insects. *Crop Prot.* 1996, 15, 289–294. [CrossRef]

48. Longhini, R.; Lonni, A.A.; Sereia, A.L.; Krzyzaniak, L.M.; Lopes, G.C.; Mello, J.C.P. *Trichilia catigua*: Therapeutic and cosmetic values. *Rev. Bras. De Farmacogn.* 2017, 27, 254–271. [CrossRef]

49. Bogorni, P.C.; Vendramim, J.D. Sublethal effect of aqueous extracts of *Trichilia sp* on *Spodoptera frugiperda* (JE Smith)(Lepidoptera: Noctuidae) development on maize. *Neotrop. Entomol.* 2005, 34, 311–317. [CrossRef]

50. Kubo, I.; Klocke, J.D. An insect growth inhibitor from *Trichilia roka* (Melliaceae). *Experientia* 1982, 38, 639–640. [CrossRef]

51. Champagne, D.E.; Isman, M.B.; Downum, K.R.; Towers, G.H. Insecticidal and growth-reducing activity of foliar extracts from Melliaceae. *Chemoecology* 1993, 4, 165–173. [CrossRef]

52. Couto, I.F.; Fuchs, M.L.; Pereira, F.F.; Mauad, M.; Scalon, S.P.; Dresch, D.M.; Musurvy, R.M. Feeding preference of *Plutella xylostella* for leaves treated with plant extracts. *An. Acad. Bras. Ciências* 2016, 88, 1781–1789. [CrossRef] [PubMed]
53. Rioba, N.B.; Stevenson, P.C. Opportunities and scope for botanical extracts and products for the management of fall armyworm (spodoptera frugiperda) for smallholders in africa. *Plants 2020*, 9, 207. [CrossRef] [PubMed]

54. Prijojo, D. Insecticidal activity of meliaceous seed extracts against Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae). *Bul. HPT* 1998, 10, 1–7.

55. Munyemana, F.; Alberto, A.L. Evaluation of larvicidal activity of selected plant extracts against *Plutella xylostella* (Lepidoptera: Plutellidae) larvae on cabbage. *Adv. Med. Plant Res.* 2017, 5, 11–20. [CrossRef]

56. Essoung, F.; Chhabra, S.C.; Mba’ning, B.M.; Mohamed, S.A.; Lwande, W.; Lenta, B.N.; Ngouela, S.A.; Tsamo, E.; Hassanali, A. Larvicidal activities of limonoids from *Turracea abyssinica* (Meliaceae) on *Tuta absoluta* (Meyrick). *J. Appl. Entomol.* 2018, 142, 397–405. [CrossRef]

57. Essoung Ehawa, F.R.; Mohamed, S.A.; Hassanali, A.; Chhabra, S.C. Bioassay-Guided Isolation of Active Phytochemicals Against *Tuta absoluta* (Meyrick) from *Turracea floribunda* and *Caesalpinia welwitschiana*. In *Sustainable Management of Invasive Pests in Africa*; Springer: Berlin/Heidelberg, Germany, 2020; pp. 11–29.

58. Cruz-Estrada, A.; Gamboa-Angulo, M.; Borges-Argáez, R.; Ruiz-Sánchez, E. Insecticidal effects of plant extracts on immature whitefly Bemisia tabaci Genn.(Hemiptera: Aleyrodoidea). *Electron. J. Biotechnol.* 2013, 16, 6.

59. Paulupriya, K.; Tresina, P.; Mohan, V. Assessment of bioactive constituents by GC-MS of Crotalaria longipes Wight & Arn.: An endemic plant. *Int. J. Pharmacogn. Phytochem. Res.* 2014, 15, 4.

60. Chen, Y.; Dai, G. Acaricidal, repellent, and oviposition-deterrent activities of 2, 4-di-tert-butylphenol and ethyl oleate against the carmine spider mite *Tetranychus cinnabarinus*. *J. Pest Sci.* 2015, 88, 645–655. [CrossRef]

61. Curcio Vieira, I.J.; da Silva Terra, W.; dos Santos Gonçalves, M.; Braz-Filho, R. Secondary Metabolites of the Genus Trichilia: Contribution to the Chemistry of Meliaceae Family. *Am. J. Anal. Chem.* 2014, 5, 91–121. [CrossRef]

62. Tan, Q.-G.; Luo, X.-D. Meliaceous limonoids: Chemistry and biological activities. *Chem. Rev.* 2011, 111, 7437–7522. [CrossRef]

63. Li, X. Recent studies on insecticidal activities of limonoids from meliaceous plants. *Insect Sci.* 1999, 6, 283–288. [CrossRef]

64. Ramírez, M.; Toscano, R.A.; Arnason, J.; Omar, S.; Cerda-García-Rojas, C.M.; Mata, R. Structure, conformation and absolute configuration of new antifeedant dolabellanes from *Trichilia trifolia*. *Tetrahedron* 2000, 56, 5085–5091. [CrossRef]

65. Simmonds, M.S.; Stevenson, P.C.; Porter, E.A.; Veitch, N.C. Insect Antifeedant Activity of Three New Tetranortriterpenoids from *Trichilia pallida*. *J. Nat. Prod.* 2001, 64, 1117–1120. [CrossRef] [PubMed]

66. Liu, S.-B.; Chen, H.Q.; Feng, G.; Guo, Z.K.; Cai, C.H.; Wang, J.; Mei, W.L.; Dai, H.F. A new insecticidal havanensin-type limonoid from the roots of *Trichilia sinensis* Bentv. *Nat. Prod. Res.* 2013, 27, 2977–2982. [CrossRef]

67. Matos, A.P.; Nebo, L.; Vieira, P.C.; Fernandes, J.; Silva, M.F.D.G.F.D.; Rodrigues, R.R. Constituents quimicos e atividade inseticida dos extratos de frutos de *Trichilia elegans* e *T. catigua* (Meliaceae). *Quimica Nova* 2009, 32, 1533–1556. [CrossRef]

68. Liu, S.; Wang, J.; Feng, G.; Li, L.; Yu, Y.; Zhang, Y.; Song, J.; Hu, M. Larvicidal activities of limonoids from meliaceous plants. *Fitoterapia* 2009, 80, 6. [CrossRef] [PubMed]

69. Udenigwe, C.C.; Howse, P.E. Deterrent and insecticidal effects of extracts of *pithraj,* *Trichilia sinensis* and *Melia azedarach* leaves using gas chromatography-mass spectrometry (GC-MS). *Afr. J. Biotechnol.* 2015, 14, 2812–2830.

70. Yuan, C.-M.; Tang, G.H.; Wang, X.Y.; Zhang, Y.; Cao, M.M.; Li, X.H.; Li, Y.; Di, Y.T.; He, H.P.; et al. New steroids and triterpenoids from *Turracea wakefieldii* and *Turracea floribunda*. *J. Agric. Food Chem.* 2004, 52, 5027–5031. [CrossRef]

71. Yuan, C.-M.; Tang, G.H.; Wang, X.Y.; Zhang, Y.; Cao, M.M.; Li, X.H.; Li, Y.; Li, S.L.; Di, Y.T.; He, H.P.; et al. New steroids and sesquiterpene from *Turracea pubescens*. *Fitoterapia* 2013, 90, 119–125. [CrossRef]

72. Xu, X.; Yuan, J.; Zhou, X.; Li, W.; Zhu, N.; Wu, H.; Li, P.; Sun, Z.; Yang, J.; Ma, G. Cassane diterpenes with oxygen bridge from the seeds of *Caesalpinia sappan*. *Fitoterapia* 2016, 112, 205–210. [CrossRef]

73. Zanin, J.L.B.; De Carvalho, B.A.; Salles Martineli, P.; Dos Santos, M.H.; Lago, J.H.G.; Sartorelli, P.; Viegas, C., Jr.; Soares, M.G. The genus *Caesalpinia* (Caesalpinioideae): Phytochemical and pharmacological characteristics. *Molecules* 2012, 17, 7887–7902. [CrossRef]

74. Warthen, J.D.; Stokes, J.B.; Jacobson, M.; Kozempel, M.F. Estimation of Azadirachtin Content in Neem Extracts and Formulations. *J. Liq. Chromatogr.* 1987, 10, 391–404. [CrossRef]

75. Talukder, F.A.; Howse, P.E. Deterrent and insecticidal effects of extracts of *pithraj,* *Aphanamixis polystachya* (Meliaceae), against *Tribolium castaneum* in storage. *J. Chem. Ecol.* 1999, 25, 327–334. [CrossRef] [PubMed]

76. Al-Marzoqi, A.H.; Hameed, I.H.; Idan, S.A. Analysis of bioactive chemical components of two medicinal plants (*Coriandrum sativum* and *Melia azedarach*) leaves using gas chromatography-mass spectrometry (GC-MS). *Afr. J. Biotechnol.* 2015, 14, 2812–2830.