Clinical Features and Outcomes of Bloodstream Infections Caused by New Delhi Metallo-β-Lactamase–Producing Enterobacterales During a Regional Outbreak

Marco Falcone,1 Giuse Tiseo,1 Alberto Antonelli,2,3 Cesia Giordano,1 Vincenzo Di Pilato,2 Piero Bertolucci,2 Eva Maria Parisio,1 Alessandro Leonardi,4 Noemi Aiezza,2 Ilaria Baccani,2 Enrico Tagliaferri,6 Lorenzo Righi,7 Silvia Forini,1 Spartaco Sani,7 Maria Teresa Mecchi,2 Filippo Pieralli,1 Simona Barnini,2 Gian Maria Rossolini,2,11 and Francesco Menichetti1

1Infectious Disease Unit, Azienda Ospedaliera Universitaria Pisana, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; 3Microbiology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy; 4Faculty of Medicine, University of Pisa, Pisa, Italy; 5Operative Unit of Chemical-Clinical and Microbiological Analysis, San Luca Hospital, Lucca, Italy; 6Infectious Diseases Unit, Azienda Ospedaliera Universitaria di Pisa, Arco, Italy; 7Quality of Care and Clinical Networks, Tuscany Region, Italy; 8Agenzia Regionale di Sanità della Toscana, Florence, Italy; 9Infectious Disease Unit, Livorno Hospital, Livorno, Italy; 10Intermediate Care Unit, Florence Careggi University Hospital, Florence, Italy; and 11Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy

Limited data about New Delhi metallo-β-lactamase (NDM) bacteremia are available. Blood isolates from 40 patients with NDM bacteremia were studied for antibiotic susceptibility and whole-genome sequencing. NDM bacteremia has high 30-day mortality. In most cases, aztreonam-avibactam is active in vitro. Ceftazidime-avibactam plus aztreonam may represent a feasible therapeutic option.

Keywords. bacteremia; carbapenem-resistant; New Delhi metallo-β-lactamases.

An outbreak of New Delhi metallo-β-lactamase (NDM)-producing Enterobacterales was recently documented in the northwestern area of Tuscany [1]. From November 2018 to May 2019, colonization or infection by NDM-producing Enterobacterales was documented in 350 patients from 9 different hospitals [1]. We retrospectively reviewed the clinical and microbiological characteristics of 40 patients with documented bloodstream infection (BSI).

METHODS

Cases of NDM-producing BSI were identified by reviewing records from the microbiology laboratories of all 9 institutions. Demographics, clinical and laboratory findings, comorbid conditions, source of infection, source control data, treatment regimens, and 30-day mortality rates were collected from clinical charts. Source of infection and source control were defined as previously described [2]. Septic shock was defined according to the Sepsis-3 definition [3]. The study was approved by the local ethical committee.

Blood isolate identification and susceptibility testing were performed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-ToF MS; Vitek MS, bioMérieux; or MALDI Biotyper, Bruker Daltonics). Carbapenemase determinants were evaluated by either the Allplex Entero-DR Assay (Seegene) or RESIST-3 O.K.N. ICT immunocromatographic assay (Coris BioConcept, Gembloux, Belgium) and confirmed by real-time polymerase chain reaction as previously described [4]. Antimicrobial susceptibility testing was carried out with reference broth microdilution, except agar dilution for fosfomycin, according to the ISO 20776-1:2006 guidelines [5], and interpreted according to the EUCAST clinical breakpoints (v.9.0 2019; http://www.eucast.org/clinical_breakpoints/).

Isolates were subjected to whole-genome sequencing (WGS) with an Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) and a paired-end approach (2 × 300 bp). Raw sequences were assembled using SPAdes software [6]. In silico analyses using draft-assembled genomes were performed by dedicated tools available at http://www.genomicepidemiology.org/ (eg, MLST v.2.0) and by the BLAST suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Continuous variables were reported as medians and interquartile ranges (IQRs). The Mann-Whitney U test was used to analyze non-normally distributed data. Categorical data were expressed as frequency distributions, and the chi-square test or Fisher exact test was used to determine if differences existed between groups. Factors influencing 30-day survival were examined by univariate analysis. All significant variables at univariate analyses (P < .05) were considered for the multivariate model. Hazard ratios (HRs) and 95% confidence intervals (95% CI) were calculated. Statistical significance was established at P ≤ .05.

RESULTS

Overall, during the study period, 47 patients with BSI caused by NDM-producing strains were initially identified in 9 hospitals in the northwestern area of Tuscany (Italy). Of these, 44 patients...
had a confirmed BSI caused by an NDM-producing strain, whereas 3 patients had an infection caused by strains with a different mechanism of carbapenem resistance (these cases were excluded from further analysis); the data of 4 patients were unavailable. Thus, the final cohort included 40 patients, while 35 strains were available for full microbiological and molecular characterization.

The isolates from bacteremia were identified as *Klebsiella pneumoniae* (31 patients) and *Escherichia coli* (4 patients). Preliminary characterization by WGS revealed that most *K. pneumoniae* isolates belonged to the same clonal lineage, namely sequence type (ST) 147 (n = 30, 96.8%), with a singleton of ST307. The *E. coli* isolates belonged to 2 different clonal lineages, ST8 (n = 2) and ST2 (n = 2). Among the *K. pneumoniae* isolates, all those of ST147 carried the *bla*_{NDM-1} gene, whereas those of ST307 carried *bla*_{NDM-5} (as did the 4 *E. coli* isolates). All *K. pneumoniae* isolates and the 2 ST8 *E. coli* additionally carried the *bla_{CTX-M-15}* extended-spectrum β-lactamase (ESBL) gene. A clonal analysis, based on single nucleotide polymorphisms (SNPs) evaluated on the core genome, revealed that all the ST147 isolates were closely related to each other (SNP range, 0–25), strongly suggesting that the outbreak was due to clonal expansion of a single NDM-1-producing *K. pneumoniae* strain.

Susceptibility patterns determined in vitro for the 35 characterized isolates are detailed in Table 1. All *K. pneumoniae* strains (n = 31) were resistant to expanded-spectrum cephalosporins, carbapenems, and β-lactamase inhibitor combinations, while they were susceptible to aztreonam (ATM)-avibactam (AVI; MIC ≤ 1 mg/L). The *E. coli* isolates (n = 4) showed a similar broad spectrum of β-lactam resistance, but they were more frequently resistant to ATM-AVI, with some differences between the ST8 (n = 2) and ST2 (n = 2) isolates: Whereas the former showed high-level resistance to ATM (MIC > 32 mg/L) and were resistant to ATM-AVI (MIC, 8 mg/L), the latter showed a lower resistance level to aztreonam (MICs, 2 and 8 mg/L) and were not frankly resistant to the AZT-AVI combination (MICs, 2 and 4 mg/L, respectively). Beyond AZT-AVI, the most active antibiotics were colistin and fosfomycin (susceptibility rate of 91.4% and 80.6%, respectively). Almost all strains (97.2%) were resistant to aminoglycosides.

The clinical characteristics of the patient population and comparison between survivors and nonsurvivors are illustrated in Table 2. Half of the bacteremic patients were cared for in medical wards, and 47.5% had malignancy. The majority of patients (67.5%) had previous documented rectal NDM colonization. The overall 30-day mortality rate was 42.5%. Septic shock occurred in 32.5% of patients. The median age and Charlson comorbidity index score were significantly higher in nonsurviving patients than in those who survived. At the same time, primary bacteremia (unknown focus) was more common among patients who died, whereas central venous catheter (CVC)–related bacteremia was more common among survivors.

DISCUSSION

This is the first European report on a relatively large group of patients with bacteremia caused by NDM-producing Enterobacteriales. A preliminary genomic characterization of isolates revealed that the majority of episodes of BSI were caused by an NDM-1-producing strain of *K. pneumoniae* belonging to ST147. Clonal expansion, therefore, appears to be the major mechanism underlying the large outbreak of NDM-producing strains ongoing in this area, although further characterization of other isolates will be necessary to confirm the contribution of this clone and the diversity of circulating strains.

In the Tuscany cluster, BSIs caused by NDM-producing strains involved patients frequently cared for in medical wards, with multiple comorbidities and severe underlying diseases (such as cancer), and were associated with a high 30-day mortality rate. Mortality was greatly influenced by advanced age and by comorbid conditions, calculated by the Charlson comorbidity index. Moreover, mortality was significantly higher among patients not receiving an in vitro active antibiotic therapy. This latter finding underlines the importance of early detection of the molecular mechanism underlying the carbapenem resistance phenotype; it is noteworthy that some patients who died, according to previous local epidemiological data showing a predominance of KPC-producing strains, were empirically treated with CAZ-AVI alone or in combination with aminoglycosides [7].
Data about treatment of BSI caused by NDM-producing *Enterobacterales* are very limited [8, 9]. Treatment regimens used in previous reports include colistin alone or in combination with aminoglycosides or meropenem, and the association of fosfomycin with meropenem [10–13]. In our series, all strains were in vitro resistant to ATM, while full susceptibility was restored when combination ATM + AVI was used. The efficacy of this combination relies on the activity that the monobactam ATM typically retains against MBLs but not against ESBLs (ie, all strains in our study produced CTX-M-15). In vitro studies demonstrated a synergistic effect of the combination of CAZ-AVI plus AZT against NDM-producing isolates [14, 15], and a clinical study including 5 patients with bacteremia caused by NDM-producing *Enterobacterales* showed that combination therapy with CAZ-AVI plus AZT is an effective therapeutic option [16]. Of interest, compared with other regimens, in our study surviving patients were more frequently treated with the combination of CAZ-AVI plus AZT. Although this finding was not statistically significant at Cox regression analysis, this is a potentially interesting finding that should be confirmed in larger, multicentric cohorts.

Table 1. In Vitro Susceptibilities of 35 NDM-Producing Isolates Collected From Patients With BSI Admitted to 9 Hospitals Across Tuscany in 2018–2019

Bacterial Species (Isolate No.) and Antimicrobial Agent Tested	MIC, mg/L	Susceptibility Rates, %		
	Range	S	I	R
Klebsiella pneumoniae (n = 31)				
Ceftriaxone	>4	-	-	100
Cefazidime	>64	-	-	100
Cefepime	>16	-	-	100
PIP-TAZ	>128/4	-	-	100
Ciprofloxacin	>1	-	-	100
Levofloxacin	>8	-	-	100
Amikacin	>32	-	-	100
Gentamicin	≤0.5 to >8	3.2	-	96.8
Meropenem	4 to 64	-	3.2	96.8
Ertapenem	1 to >2	-	-	100
TMP-SMX	≤1/19 to >8/152	3.2	-	96.8
Tigecycline	≤0.25 to >4	80.6	-	19.4
Colistin	≤0.5 to >8	90.3	-	9.7
Aztreonam	>32	-	-	100
Fosfomycin*	4 to 64	80.6	-	19.4
CLZ-TAZ	>64/4	-	-	100
CAZ-AVI	>32	-	-	100
MER-VAB	4 to >64	3.2	-	96.8
AZT-AVI	≤0.25 to 1	100	-	-
Escherichia coli (N = 4)				
Ceftriaxone	>4	-	-	100
Cefazidime	>64	-	-	100
Cefepime	>16	-	-	100
PIP-TAZ	>128/4	-	-	100
Ciprofloxacin	>1	-	-	100
Levofloxacin	>8	-	-	100
Amikacin	>32	-	-	100
Gentamicin	>8	-	-	100
Meropenem	64 to >64	-	-	100
Ertapenem	>2	-	-	100
TMP-SMX	>8/152	-	-	100
Tigecycline	≤0.25 to 1	75	-	25
Colistin	≤0.5 to 1	100	-	-
Aztreonam	2 to 32	-	25	75
Fosfomycin*	≤8 to 64	75	-	25
CLZ-TAZ	>64/4	-	-	100
CAZ-AVI	>32	-	-	100
MER-VAB	64 to >64	-	-	100
AZT-AVI	2 to 8	-	50	50

Abbreviations: AZT-AVI, aztreonam-avibactam; CAZ-AVI, ceftazidime-avibactam; CLZ-TAZ, ceftolozane-tazobactam; MER-VAB, meropenem-vaborbactam; PIP-TAZ, piperacillin-tazobactam; TMP-SMX, trimethoprim-sulfamethoxazole.

MIC for fosfomycin determined by agar dilution.
We used CAZ-AVI at a dosage of 2.5 g every 8 hours and ATM at a dosage of 2 g every 8 hours in all cases (with dose adjustment according to renal function). Recently, therapeutic drug monitoring of CAZ-AVI and ATM performed in a child with BSI caused by KPC and NDM-producing Enterobacter spp. showed adequate serum concentrations of the combination CAZ-AVI plus ATM, both used at a dosage of 50 mg/kg every 8 hours [17]. If we translated this dosage in adult patients, the dose would have to be increased to 3–3.5 g every 8 hours for both ATM and CAZ-AVI. Overall, we observed a good clinical response of this combination therapy at standard dosages. Further pharmacokinetic studies are needed to assess the optimal dosage of ATM and CAZ-AVI in patients with BSI due to NDM-producing strains.

After the identification of the outbreak, several rapid actions were implemented to contain the spread of NDM-producing strains across health care facilities in the northwestern area of Tuscany. The measures included (i) mandatory screening by rapid molecular tests on admission and during hospitalization for all at-risk patients in medical wards and for all patients in ICU, oncology, oncohematology, transplant unit, cardiac surgery, infectious diseases, acute rehabilitation; (ii) adoption of contact precautions in all cases; (iii) collection of data in a regional database and obligatory notification of all cases to a centralized laboratory; (iv) development of practical guidelines for the clinical management of NDM + cases; (v) dedicated medical and nursing staff and, in the tertiary hospital, identification of a dedicated ward for patients with colonization/infection by

Table 2. NDM-Producing Enterobacterales BSI: Comparison Between Survivors and Nonsurvivors (Tuscany, Italy, 2018–2019)

	All Patients (n = 40)	Survivors (n = 23)	Nonsurvivors (n = 17)	P
Age, median (IQR), y	70.5 (55.25–77.75)	63 (48–76)	74 (67–82.5)	.018
Male sex	28 (70)	17 (73.9)	11 (64.7)	.530
Ward of hospitalization				
Medical wards	20 (50)	12 (52.2)	8 (47.1)	.687
ICU wards	13 (32.5)	8 (34.8)	5 (29.4)	
Surgery	7 (17.5)	3 (13)	4 (23.5)	
Comorbidities				
Cardiovascular disease	20 (50)	9 (39.1)	11 (64.7)	.110
Malignancy	19 (47.5)	9 (39.1)	10 (58.8)	.218
COPD	12 (30)	5 (21.7)	7 (41.2)	.186
Diabetes	12 (30)	8 (34.8)	4 (23.5)	.443
Chronic renal diseases	7 (17.5)	4 (17.4)	3 (17.6)	.983
Charlson comorbidity index, median (IQR)	4 (2–7)	3 (0–5)	6 (3–8.5)	.010
Immunosuppressive therapy,a previous 30 d	15 (37.5)	7 (30.4)	8 (47.1)	.283
Source of infection				
Unknown	10 (25)	3 (13)	7 (41.2)	.067
Urinary tract	10 (25)	7 (30.4)	3 (17.6)	
Intravascular device	9 (22.5)	8 (34.8)	1 (5.9)	
ABSSSI	6 (15)	3 (13)	3 (17.6)	
Respiratory tract	3 (7.5)	2 (8.7)	1 (5.9)	
Intra-abdominal	2 (5)	0	2 (11.8)	
NDM-producing strain rectal colonization	27 (67.5)	17 (89.5)	10 (62.5)	.058
Source control	20 (50)	12 (52.2)	8 (47.1)	.749
SOFA score, median (IQR)	4 (2–6)	4 (2–6)	5 (3–6.5)	.229
Length of hospital stay, median (IQR), d	23 (13–38)	26.5 (17.25–41.75)	19 (10–33)	.187
Septic shock	13 (32.5)	7 (30.4)	6 (35.3)	.746
Antibiotic regimens				
No in vitro active antibiotic therapy	14 (35)	5 (21.7)	9 (52.9)	.054
CAZ-AVI + ATM	12 (30)	10 (43.5)	2 (11.8)	
Colistin-based regimenb	9 (22.5)	4 (17.4)	5 (29.4)	
Othersc	5 (12.5)	4 (17.4)	1 (5.9)	

Data are presented as No. (%), unless otherwise indicated. P values < .05 (indicating statistical significance) were reported in bold.

Abbreviations: ABSSSI, acute bacterial skin and skin structures infection; ATM, aztreonam; CAZ-AVI, ceftazidime-avibactam; COPD, chronic obstructive pulmonary disease; CVC, central venous catheter; ICU, intensive care unit; IQR, interquartile range.

aIncluding steroidal and nonsteroidal immunosuppressive therapy.

bColistin was used in combination with meropenem (4 cases), fosfomycin (3 cases), tigecycline (1 case), AZT + piperacillin-tazobactam (1 case).

cOther therapies include: 1 patient treated with fosfomycin + tigecycline + amikacin (death); 1 patient treated with meropenem + tigecycline + fosfomycin; 1 patient treated with fosfomycin alone; 1 patient treated with tigecycline + meropenem; 1 patient treated with tigecycline alone.
NDM-producing Enterobacterales; (vi) educational meetings for all the professionals involved [18].

Our study has some limitations: (i) the number of BSIs is limited, but it is the largest cohort described in Europe; (ii) the multivariate analysis might be affected by the low number of cases; (iii) a high proportion of patients did not receive any active antibiotic therapy, which may have influenced the mortality rate. Nevertheless, this finding reflects clinical practice and the difficulties associated with early identification and appropriate treatment of infections caused by carbapenem-resistant Enterobacterales with multiple mechanisms of resistance.

In conclusion, the epidemiology of carbapenemase-producing Enterobacterales strains is changing over time, and new clones carrying new molecular mechanisms of resistance are emerging in some countries such as Italy. Bacteremia mediated by NDM-producing Enterobacterales is a highly lethal condition and requires prompt recognition and treatment. Although the combination of CAZ-AVI plus AZT appears to be a good therapeutic option in patients with NDM-producing bacteremia, the optimal regimen for the treatment of this infection is not defined and further studies are needed.

Acknowledgments
The authors are grateful to Sauro Luchi (Lucca Hospital, Italy), Giovanna Morelli (Lucca Hospital, Italy), Chiara Vettori (Lucca Hospital, Italy), Elisabetta Andreoli (Pontedera Hospital, Italy), Benedetta Longo (Ponente Hospital, Italy), Marco Cei (Cecina Hospital, Italy), Francesca Cecchi (Don Gnocchi Rehabilitation Center, Fivizzano, Italy), Antonella Vincenti (Massa, Italy), Giovanni Grazi (Volterra Hospital, Italy), and Patrizia Petricci (Livorno Hospital) for their assistance in the collection of bacterial isolates and microbiological and clinical data.

Financial support. No funding.

Potential conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed. M.F. reports personal fees from MSD, Shionogi, Angelini, Nordic Pharma. A.A. report personal fees from Accelerate diagnostics, Arrow diagnostics, Menarini, Seegene, SymCel. I.B. reports personal fees and non-financial support from Diverse-Diagnostica Senese S.p.A. G.M.R. reports grants, personal fees and non-financial support from Accelerate Diagnostics, Menarini, grants and personal fees from Angelini, bio-Mérieux, Biotest, Astra-Zeneca, Basilea, Elitech, Nordic Pharma, Zambon, personal fees from Becton-Dickinson, Cepheid, Merck, Novartis, Pfizer, Shionogi, Roche, Curetis, ThermoFisher, Qtqex, grants from Seegene, Arrow, Symcel, other from VeranorX, Hain Lifesciences, personal fees and non-financial support from Beckman Coulter, E.M. reports personal fees from MSD, Nordic Pharma, Astellas, Basilea, Pfizer. All reported conflicts of interest are outside this study. Other authors have no conflicts of interest to declare.

References
1. European Centre for Disease Control and Prevention. Regional outbreak of New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacteriaceae, Italy, 2018–2019. June 2019. Available at: https://ecdc.europa.eu/sites/portal/files/documents/04-Jun-2019-RR-Carbapenems%2C20 Enterobacteriaceae-Italy.pdf. Accessed 10 December 2019.
2. Falcone M, Russo A, Iacovelli A, et al. Predictors of outcome in ICU patients with septic shock caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin Microbiol Infect 2016; 22:444–50.
3. Singer M, Deuschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315:801–10.
4. Antonelli A, Arena F, Giani T, et al. Performance of the BD MAX instrument with Check-Direct CPE real-time PCR for the detection of carbapenemase genes from rectal swabs, in a setting with endemic dissemination of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2016; 86:30–4.
5. International Organization for Standardization. Clinical laboratory testing and in vitro diagnostic test systems. Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices—part 1: reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. ISO 20776-1:2019. Available at: https://www.iso.org/standard/70464.html. Accessed on 18 January 2020.
6. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–77.
7. Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR gram-negative infections. J Antimicrob Chemother 2016; 71:2713–22.
8. Snyder BM, Montague BT, Anandan S, et al. Risk factors and epidemiologic predictors of blood stream infections with New Delhi metallo-b-lactamase (NDM-1) producing Enterobacteriaceae. Epidemiol Infect 2019; 147:e137.
9. Wu W, Feng Y, Tang G, et al. NDM metallo-b-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev 2019; 32:e00115-18.
10. Stone NR, Woodford N, Livermore DM, et al. Breakthrough bacteremia due to tigecycline-resistant Escherichia coli with New Delhi metallo-β-lactamase (NDM)-1 successfully treated with colistin in a patient with calciphylaxis. J Antimicrob Chemother 2011; 66:2677–8.
11. Avolio M, Vignaroli C, Crapis M, et al. Co-production of NDM-1 and OXA-232 by ST16 Klebsiella pneumoniae. Italy, 2016. Future Microbiol 2017; 12:1119–22.
12. Petersen-Morfin S, Bocangrea-Ibarrias P, Morfin-Otero R, et al. New Delhi metallo-beta-lactamase (NDM-1)-producing Klebsiella pneumoniae isolated from a burn patient. Am J Case Rep 2017; 18:805–9.
13. Chien JM, Koh TH, Chan KS, et al. Successful treatment of NDM-1 Klebsiella pneumoniae bacteremia in a neutropenic patient. Scand J Infect Dis 2012; 44:312–4.
14. Marshall S, Hujer AM, Rojas LI, et al. Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017; 61:e2243–16.
15. Davido F, Fellous I, Lawrence C, et al. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017; 61:e01008-17.
16. Shaw E, Rombaux A, Tubau F, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1-NDM-4/A-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 2018; 73:1104–6.
17. Yasmin M, Fouts DE, Jacobo M, et al. Monitoring ceftazidime-avibactam (CAZ-AVI) and aztreonam (ATM) concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. carrying both KPC-4 and NDM-1 carbapenemases. Clin Infect Dis. In press.
18. Bollettino Ufficiale della Regione Toscana. Indicazioni regionali per il contrasto di New Delhi enterobacteriaceae-Italy.pdf. Available at: https://www.regione.toscana.it/bancadati/BURT/Contenuto.xml?id=36299. Accessed 20 December 2019.