Rhode Island Red (RIR) chicken germplasm was brought from the USA in 1980 and subjected to genetic improvement through selective breeding at ICAR-Central Avian Research Institute (CARI, Izatnagar), India (Das et al. 2015a). The population got well adopted, acclimatized and genetically improved over last 33 years covering 29 generations of selection and is being maintained as selected line along with a random bred control population (Das et al. 2015b). Selection was practiced based on 40-weeks part-period egg production along with an independent culling level for egg weight at 28th weeks of age (Das et al. 2015b) and consequently changed the genetic properties of the population since the selected and control populations demonstrated significant differences in the production performances (Anonymous 2011). It was postulated that faster genetic progress in the population could be possible using genomics data (Albers and Van Sambeek 2002), which may impact on layer breeding in the future. Chicken genome scanning extensively uses microsatellites in assessing genetic diversity (Tadano et al. 2007), marker-assisted selection (Ramadan et al. 2014) and quantitative trait loci (QTL) analysis (Wardecka et al. 2003). The present study was carried out to investigate genetic heterogeneity using a set of microsatellite markers after long term selection for egg production in RIR chicken and could be useful in the study of population dynamics under selection pressure.

MATERIALS AND METHODS

Twenty four birds randomly chosen from the selected and control line of RIR chicken maintained at experimental farm of ICAR-Central Avian Research Institute (CARI, Izatnagar) were investigated. Genomic DNA was extracted using whole blood sample through phenol:chloroform extraction procedure, followed by quality and purity checking (Das et al. 2015ab). The samples showing intact DNA band and OD 260/280 nm between 1.7 and 1.9 were used. PCR-ready-DNA samples were prepared at a concentration of 50 ng/µl. FAO-recommended primers of 24 microsatellite markers (Table 1) were using genomics data (Albers and Van Sambeek 2002), which may impact on layer breeding in the future. Chicken genome scanning extensively uses microsatellites in assessing genetic diversity (Tadano et al. 2007), marker-assisted selection (Ramadan et al. 2014) and quantitative trait loci (QTL) analysis (Wardecka et al. 2003). The present study was carried out to investigate genetic heterogeneity using microsatellite markers after long term selection for egg production in RIR chicken and could be useful in the study of population dynamics under selection pressure.

ABSTRACT

Genetic heterogeneity was investigated using 24 microsatellite markers and genomic DNA of 24 randomly selected birds from the selected and control lines of RIR chicken maintained at ICAR-Central Avian Research Institute, Izatnagar. The microsatellite alleles were determined on urea-PAGE, recorded using GelDoc system and the samples were genotyped. The complete genotypic data set was analyzed using POPGENE software. The observed heterozygosity (H_o) means were 0.6306±0.3901 and 0.6528±0.4345 in the selected and control line, respectively. Explicitly the control line contained more H_o mean and thus the more diverse than the selected population. The expected heterozygosity (H_e) ranged from 0.5053 (MCW0059) to 0.8421 (MCW0004) with mean of 0.7066±0.020 in the selected line, and from 0.2899 (MCW0059) to 0.9130 (ADL0136) with mean of 0.7095±0.030 in the control line. The H_e mean was less than the H_o mean in each population; the Chi square and G-square tests revealed significant deviations of almost all the loci from the Hardy-Weinberg equilibrium. The selected and control line populations had the corresponding genetic identity and genetic distance of 0.5264 and 0.6418 as original measures, and 0.5528 and 0.5928 as unbiased measures. The phylogenetic analysis revealed their moderate genetic diversity reflecting 29.64 to 32.09% common inheritance. This present investigation thus estimated genetic heterogeneity using a set of microsatellite markers after long term selection for egg production in RIR chicken and could be useful in the study of population dynamics under selection pressure.
synthesized (Custom Oligos, 0.01 mM) from M/s Genetics Biotech Asia Pvt. Ltd., New Delhi and optimized for annealing temperature (T_a) (Table 1) using gradient PCR.

The PCR reactions were carried out in 25 µl reaction mix prepared by gently mixing 2.5 µl of 10x Taq buffer with MgCl₂, 2.5 mM of each dNTP, 0.8 µM of each primer, 0.75 U of Taq DNA polymerase and 50 ng of template DNA into nuclease-free water. The PCR amplification was carried out in a programmable thermal cycler (PTC 200, MJ Research, USA) following the thermal cycles of initial denaturing at 94°C for 5 min, followed by 30 cycles of denaturation at 94°C for 1 min, annealing at optimized

Table 1. Panel of microsatellite markers with map position and optimized annealing temperature (T_a)

Microsatellite Loci	FP/RP	Primer sequence (5′-3′)#	Chromosomal map position	T_a (°C)
MCW 0041	FP	5′CCCAATGTTGCTTAATACCTTGGG3′	(2, locus 5)a, C3b	57.0
	RP	5′CCAGATTCTCAATACAAATGGCAG3′		
MCW 0043	FP	5′TGACTACTCTTGTGACGATGAGA3′	E1¹	52.0
	RP	5′CAACTTGGTCACTGGAAAGTGACG C³		
MCW 0044	FP	5′AGTCCAGGCTCTGCTCGCCTCATA3′	C12⁸	63.0
	RP	5′ACAGGAGGAGCGACCGCACCTCTT³		
MCW 0048	FP	5′CGTGATGAGGTGAGGAGGAGGAGGA3′	(C6, E1)j³	63.0
	RP	5′TCCCAACCCGGGAGAGCCGCTAT³		
MCW 0050	FP	5′GGTTGTCGCGACCCCGGAGCTCTT³	-	58.5
	RP	5′GCAGATCCGCCGCAAGCCGCGGAT³		
MCW 0051	FP	5′GGAAACAGCCTTCTTTTCTCCGG³	(2, locus 3)a	50.5
	RP	5′TCACTAGGAGGCTGTGACAAAC3⁴		
MCW 0059	FP	5′AAGTGGCCTTGTGATCTGATGG³	(C1, E2)ij²	50.5
	RP	5′AACTTCTTGTTGCTCGCTAT³		
MCW 0071	FP	5′TATTTACACCCAGGGGAGAATAC³	²⁸	58.5
	RP	5′AGGTTGCTGAGAGTGGCAATTC³		
MCW 0075	FP	5′GCAGATCCGCCGCAAGCCGCGGAT³	-	63.0
	RP	5′ATTGCAACAGAGTTGAGTCCTG³		
MCW 0001	FP	5′ACTGAGATCAGTGTTGCTGCAAT³	E3³	55.0
	RP	5′ACAGCCTCTGTGTAATGGCTG³		
MCW 0000	FP	5′GCAACTTGTTGCTGCAACAT³	E2⁸, 3⁸⁴	57.0
	RP	5′AAACGGGAATTGAGTGGGATG³		
MCW 0004	FP	5′GGATACAGCCACCTGAAAGCCACT³		57.0
	RP	5′ACACTCTGTGCGAATAATTG³		
MCW 0005	FP	5′ACCTCTTGCTGGCAAATAATTTG³	⁴¹, C11b, E5i	55.0
	RP	5′TCACTTTAGCTCCATCGGAATTT³		
MCW 0014	FP	5′AAAATGTGCTCTAAGAACTGTC³	⁶⁵, E11d	60.0
	RP	5′ACCCGGAAATGAGTGAGACTG³		
MCW 0016	FP	5′ATGGCAAGAAGAGCCAAAGGAT³	E2⁵	57.0
	RP	5′TGGCTCTTCTAGGACGCTGAT³		
ADL 0102	FP	5′TTCACCCCTTTTTTTTTAT³	C3⁰(²⁵i), E2⁹i	46.5
	RP	5′GCTCCACCTCCTCTTAAACC³		
ADL 0136	FP	5′TGTCAAGGCACATGCATCAC³	⁴⁶, C6b, (C10E5)⁵	52.0
	RP	5′CACCTCTCCTCCTCTTTT³		
ADL 0158	FP	5′TGCATGTTGGAGGAGAATACA³	(C50E29)⁶, (E29C)⁵	52.0
	RP	5′TACAGTGGTGAGAGTGGCAATTC³		
ADL 0171	FP	5′ACAGGATTTCTGAGATTTT³	E43⁵	46.5
	RP	5′GGTCTTACGATGTTTGT³		
ADL 0172	FP	5′CCTAAACAAAGAGACGATG³	E8⁸	46.5
	RP	5′CTATGGGAATAAATTGCAAT³		
ADL 0176	FP	5′TTCCTTGCTACGCTCTGAG³	C2¹, E6²	55.0
	RP	5′GGTCTCCGTAACACTGTGATG³		
ADL 0210	FP	5′ACAGGAGGATAGTCAACAT³	E3⁰, 1¹²	52.0
	RP	5′GGCCAAAAGAGTGAAGTGA³		
ADL 0267	FP	5′AACCTGCTAGGAGAAGCAT³	(C3E6)⁷	55.0
	RP	5′GGTATTTCAAAGCCCGACACC³		

FP/RP: Forward/Reverse Primer. ¹⁴ Available at http://poultry.mph.msu.edu. ¹⁵ Wardecka et al. (2002), ¹⁶ Cheng et al. (1995), ¹⁷ Wimmers et al. (1999), ¹⁸ van Marle-Koster and Nel (2000), ¹⁹ Hillel et al. (2003), ²⁰ Romanov and Weigend (2001), ²¹ Jing-Ting et al. (2007), ²² Babar et al. (2012), ²³ Pandey et al. (2002), ²⁴ Chatterjee et al. (2010).
annealing temperature for each primer pair for 45 sec and extension at 72°C for 45 sec, followed by a final extension at 72°C for 5 min and then 4°C forever.

The probable molecular sizes of the PCR-amplified products were determined through 1.4% horizontal agarose gel electrophoresis. Approximate 10 µl of the PCR product was loaded along with 5 µl of 100 bp DNA ladder (Bangalore Genei, India), and run at 2–5 volts/cm for 60 min. The products onto the gel were then examined/photographed under UV-transillumination. The microsatellite alleles were identified according to their molecular sizes determined using Quantity One software on GelDoc 2000 (BioRad, USA). All the samples were then genotyped. The complete genotypic data were then analyzed using POPGENE software version 1.32 (Yeh et al. 1999).

RESULTS AND DISCUSSION

The estimated observed (H_o) and expected (H_e) heterozygosities, the goodness of fit (Chi-square) statistics evaluating overall discordance of genotype frequencies and the likelihood ratio (G-square) statistics contrasting the observed and expected genotype frequencies at each microsatellite locus are presented in Table 2. The H_o represents the number of individuals heterozygous per locus. The estimated H_o demonstrated the optimum range in the selected and control line populations in conformity to the earlier reported range (0.00 to 0.91) across nine microsatellite markers in eight chicken lines (Vanhala et al. 1998). Out of 24 microsatellite loci, four loci (MCW0041, MCW0049, MCW0059, MCW0071) across the lines and one locus (MCW0041) in the control line demonstrated H_o of zero indicating that no individual was heterozygous on these loci. Four loci (MCW0041, MCW0050, ADL0176, ADL0210) in the selected line and three loci (MCW0050, MCW0051, ADL0176) in the control line demonstrated H_o > 0.5 > 0, indicating that individuals less than 50% were heterozygous at these loci, which might be due to the isolation with the subsequent loss of unexploited genetic potential. Another

Microsatellite locus	Selected line	Control line
MCW0041	0.3333	0.0000
MCW0043	0.8000	0.8333
MCW0044	1.0000	1.0000
MCW0048	1.0000	1.0000
MCW0049	0.0000	0.0000
MCW0050	0.3333	0.2000
MCW0051	0.6667	0.1667
MCW0059	0.0000	0.0000
MCW0071	0.0000	0.0000
MCW0075	1.0000	1.0000
MCW0001	1.0000	1.0000
MCW0002	1.0000	1.0000
MCW0004	1.0000	1.0000
MCW0005	0.8333	0.8800
MCW0014	0.0000	0.0000
MCW0016	1.0000	1.0000
ADL0102	0.8000	1.0000
ADL0136	1.0000	1.0000
ADL0158	0.6667	0.8333
ADL0171	0.6667	1.0000
ADL0172	1.0000	1.0000
ADL0176	0.2000	0.1667
ADL0210	0.1667	0.6667
ADL0267	0.6667	1.0000
Mean±SE	0.6306±	0.652±

H_o, H_e and df denote observed heterozygosity, expected heterozygosity and degree of freedom, respectively. *P<0.05; **P<0.01; ***P<0.001.
four loci (MCW0051, ADL0158, ADL0171, ADL0267) in the selected line and one locus (ADL0210) in the control line demonstrated $H_e > 0.75 > 0.5$. Most of the loci (MCW0001, MCW0002, MCW0004, MCW0016, MCW0043, MCW0044, MCW0048, MCW0075, ADL0102, ADL0136, ADL0172) across the lines; and few (ADL0158, ADL0171, ADL0267) in the control line demonstrated $H_e > 0.75$. As of most of the loci demonstrated higher H_e probably due to the existence of large number of heterozygous alleles, the results could indicate low level of inbreeding and were quite comparable to the estimates reported for MCW0005, MCW0014, MCW0016 in RI chicken (Vanhal et al. 1998). The H_e estimates genetic diversity and represents the frequency of heterozygotes expected for a population to be in Hardy-Weinberg equilibrium. The present H_e ranged from 0.5055 (MCW0059) to 0.8421 (MCW0044) in the selected line, and 0.2899 (MCW0059) to 0.9130 (ADL0136) in the control line; the ranges might be compared to the available reports (Chatterjee et al. 2010, Vanhal et al. 1998). Only MCW0059 locus demonstrated expected heterozygosities less than 50% in the control line. Loci MCW0014, MCW0016, MCW0041, MCW0048, MCW0050, MCW0051, MCW0071, ADL0176 across the populations; MCW0043, MCW0059, ADL0136, ADL0158, ADL0171 in the selected line and MCW0004, MCW0049, ADL0172, ADL0210 in the control line demonstrated $H_e > 0.75 > 0.5$. Loci MCW0044, MCW0075, MCW0001, MCW0002, MCW0005, ADL0102, ADL0126 across the lines; MCW0049, MCW0004, ADL0172, ADL0210 in the selected line and MCW0043, ADL0136, ADL0158, ADL0171 in the control line demonstrated $H_e > 0.75$. Most of the loci demonstrated higher H_e probably due to the existence of large number of heterozygous alleles indicating low level of inbreeding. The present estimates were quite comparable to the estimates reported for MCW0005, MCW0014, MCW0016 in RIR chicken (Vanhal et al. 1998). The estimated means of the H_e and H_c in the selected and control line might be compared to the reports in different chicken populations (Hillel et al. 2003, Pirany et al. 2007, Rajkumar et al. 2008, Chatterjee et al. 2010). The differences attributed in different studies might be due to their different genetic base or differences in breed/line/strain and also different loci studied. Among the present populations, the control line had more average H_c and thus was more diverse than the selected line, which could be due to the reasons that the control line was not subjected to any selection. The present populations demonstrated that the H_c mean was less than the H_e mean indicating that both of the populations were not in Hardy-Weinberg equilibrium but under the influence of some forces like selection for some economic traits which might be associated with microsatellite loci. Notably, the selected population was under the selection for egg production for 29 generations. Though, the loci MCW0001, MCW0002, MCW0004, MCW0005, MCW0016, MCW0044, MCW0048, MCW0075, ADL0102, ADL0136, ADL0172 across the populations; MCW0043, MCW0051, ADL0158 in the selected line; and ADL0171, ADL0267 in the control line demonstrated $H_e > H_c$ apparently. The tests of Chi-square and G-square in both of the populations revealed significant differences between the observed and expected frequencies for almost all the loci except MCW0041, MCW0043, MCW0051, ADL0158, ADL0171 in the selected line, and ADL0136, ADL0210 in the control line, thereby revealed significant deviations from Hardy-Weinberg equilibrium for these loci, which might be due to the influence of some extraneous forces as the control population was small and selected line was under selective mating for the last 29 generations. Besides, a variety of other causes including population subdivision and genetic drift (Lawson and Kofron 1989), presence of null alleles and wrong genotyping (Vanhal et al. 1998) etc. might play a residual role into the deviations from Hardy-Weinberg equilibrium.

The estimated Nei’s original (Nei 1972) measures of genetic identity and genetic distance between the two populations were 0.5264 and 0.6418, respectively. The corresponding estimates of Nei’s unbiased (Nei 1978) genetic identity and genetic distance were 0.5528 and 0.5928. Nei’s genetic distances among different chicken genotypes were reported and estimated using most of the markers of the present panel (Chatterjee et al. 2010, Rajkumar et al. 2008). The genetic distance gives the extent of gene differences between the populations (Ojanga et al. 2011). The high degree of genetic distance between the selected and control line populations might be due to the fact that the selected line has undergone 29 generations of selection for egg production and might have resulted in accumulation of some microsatellite alleles and loss of some others over generations. The high genetic identity observed between the two lines might be due to reason that both the lines had been developed from same genetic base.

In animal diversity studies, hierarchical procedures are called phylogenetic analysis for which measures of the genetic distances are used to construct a dendrogram, also called phylogenetic tree (Ojange et al. 2011). A phylogenetic tree constructed based on the Nei’s original and unbiased measures of genetic distance (D_{λ}) using unweighted pair group method (UPGMA) modified from NEIGHBOR procedure of PHYLIP Version 3.5 showed moderate genetic diversity between the two populations, thus summarized their evolutionary relationships and categorized them into two distinct genetic groups. The UPGMA cluster analysis revealed one node which was further diverged into the selected and control line populations. The branch length between these populations was moderate, and was indicative of their divergence period. The data was simulated with 1000 permutations using bootstrapping to generate a confidence of 95%, however, none of the bootstraps replicates produced tree containing ties. Bootstrapping was done to provide confidence statements about grouping of the lines as revealed by the dendrogram and hence tested the validity of the clusters obtained. Higher percentage bootstrap value obtained in the present study revealed higher confidence in the grouping
Based on the findings, it is concluded that the RIR-control line chicken was more diverse than the selected line. These chicken lines were not in Hardy-Weinberg equilibrium but were under the influences of some forces like selection favouring some production traits. These chicken lines had high genetic identity due to common genetic base and genetic distances resulted due to selection, and were separated a few generations back from a common genetic base. Investigation using present set of microsatellite markers could be useful in the study of population dynamics under selection pressure.

ACKNOWLEDGEMENT

The authors sincerely acknowledge ICAR-Indian Veterinary Research Institute, Izatnagar for providing the institute fellowship to the first author, and the Director, Central Avian Research Institute, Izatnagar for providing the necessary facilities for this work.

REFERENCES

Albers G A A and van Sambeek F M J P. 2002. Breeding strategies for layers in view of new technologies. Abstracts Proceedings of 11th European Poultry Conference p. 31.

Anonymous 2011. CARI Annual Report, 2010–11. ICAR-Central Avian Research Institute, Bareilly, India. pp. 32–33.

Babar M E, Nadeem A, Hussain T, Wajid A, Shah S A, Iqbal A, Sarfraz Z and Akram M. 2012. Microsatellite markers based genetic diversity among four varieties of Pakistani Aseel chicken. Pakistan Veterinary Journal 32: 237–41.

Beidler J L, Hilliard P R and Rill R L. 1982. Ultraviolet sensitive staining of nucleic acids with silver. Analytical Biochemistry 126: 374–80.

Chatterjee R N, Niranjan M, Sharma R P, Dange M and Bhattacharya T K. 2010. Estimation of genetic heterogeneity of chicken germplasm being used for development of rural varieties utilizing DNA markers. Journal of Genetics 89: e33–e37.

Cheng H H, Levin R L, Vallejo H, Khatib J B, Dodgson L B, Crittenden and Hillel J. 1995. Development of a genetic map of the chicken with markers of high utility. Poultry Science 74: 1855–74.

Das A K, Kumar S and Rahim A. 2015a. Estimating microsatellite based genetic diversity in Rhode Island Red chicken. Iranian Journal of Veterinary Research 16: 274–77.

Das A K, Kumar S and Rahim A. 2015b. Microsatellite analysis after long term selection for egg production in Rhode Island Red chicken. Indian Journal of Animal Sciences 85: 1220–24.

Hillel J, Groenen M A M, Tixier-Boichard M, Korol A B, David L, Kirzhner V M, Burke T, Barre-Dirie A, Crooijmans R P M A, Elo K, Feldman M W, Freidlin P J, Maki-Tanila A, Oortwijn M, Thomson P, Vignal A, Wimmers K and Weigend S. 2003. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genetics Selection Evolution 35: 533–57.

Jing-Ting S, Wen-Bin B, Jin-Hua C and Guo-Hong C. 2007. Study on correlation between microsatellite markers and meat quality traits in chicken, Research Journal of Animal Science 1: 107–10.

Lawson R and Kofron C P. 1989. Alloenzyme variation in natural populations of Nile crocodile. Integrative and Comparative Biology 29: 863–71.

Nei M. 1972. Genetic distance between populations. American Naturalist 106: 283–92.

Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–90.

Ojango J M, Mp Ofu N, Marshall K and Andersson-Eklund L. 2011. Module 4: Quantitative methods to improve the understanding and utilization of animal genetic resources. (Eds) Ojango J M, Malmfors B and Okeyo A M. Animal Genetics Training Resources. Version 3 (Edn.). International Livestock Research Institute, Nairobi, Kenya, and Swedish University of Agricultural Sciences, Uppsala, Sweden.

Pandey A K, Tantia M S, Kumar D, Mishra B, Chaudhary P and Vijh R K. 2002. Microsatellite analysis of three poultry breeds of India. Asian Australasian Journal of Animal Science 15: 1536–42.

Pirany N, Romonov N M, Ganpule P S, Devegowda G and Prasad T D. 2007. Microsatellite analysis of genetic diversity in Indian chicken populations. Journal of Poultry Science 44: 19–28.

Rajkumar U, Gupta R B and Reddy R A. 2008. Genomic heterogeneity of chicken populations in India. Asian Australasian Journal of Animal Sciences 21: 1710–20.

Ramadan G S, Moghaieb R E, El-Ghamry A A, El-Komy E M, Nassar F S, Ghaly M M and Stino F K R. 2014. Microsatellite markers assisted selection for high body weight in local broiler breeders. International Journal of Advanced Research 2: 901–10.

Romanov M N and Weigend S. 2001. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poultry Science 80: 1057–63.

Tadano R, Nishibori M, Nagasaka N and Tsuzuki M. 2007. Assessing genetic diversity and population structure for commercial chicken lines based on forty microsatellite analyses. Poultry Science 86: 2301–08.

van Marle-Koster E and Nel I H. 2000. Genetic characterization of native southern African chicken populations: evaluation and selection of polymorphic microsatellite markers. South African Journal of Animal Science 30: 1–6.

Vanhala T, Tuiskala-Haavisto M, Elo K, Vilikki J and Maki-Tanila A. 1998. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poultry Science 77: 783–90.

Wardecka B, Olszewski R, Jaszczak K, Zieba G and Pierzchala M. 2003. Preliminary mapping of QTLs affecting egg quality on chromosomes 1–5 in chickens. Czech Journal of Animal Science 48: 97–105.

Wardecka B, Olszewski R, Jaszczak K, Zieba G, Pierzchala M and Wicinska K. 2002. Relationship between microsatellite marker alleles on chromosomes 1–5 originating from the Rhode Island Red and Greenlegged Partrigenous breeds and egg production and quality traits in F(2) mapping population. Journal of Applied Genetics 43: 319–29.

Wimmers K, Ponsuksili S, Schmoll F, Hardge T, Sonaiya E B, Schellander K and Horst P. 1999. Application of microsatellite analysis to group chicken according to their genetic similarity. Archives Animal Breeding 42: 629–39.

Yeh F C, Yang R and Boyle T. 1999. User manual for POPGENE Version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis. A joint Project Development by Francis C Yeh and Rong-Cai Yang, University of Alberta and Tim Boyle, Centre for International Forestry Research; August 1999.