Endophytic fungi associated with cacao branch and their potential for biocontrol vascular streak dieback disease on cacao seedling

A Asman, N Amin, A Rosmana and T Abdullah

Department of Plant Pests and Diseases, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar, 90245, South Sulawesi, Indonesia.

E-mail: asman_adi81@yahoo.com, asman@agri.unhas.ac.id

Abstract. Endophytic fungi are one of the agents to control phytopathogen both bacterial or fungi including dieback disease on cacao such as Vascular Streak Dieback (VSD). Ten fungal isolates that associated with a healthy branch of VSD resistant clone was applied to cacao seedling, the fungi were a Curvularia-like colony, a Fusarium-like colony, a Geotrichum-like colony, an Aspergillus-like colony, a Gliocladium-like colony, a Colletotrichum-like colony and four isolates indicates as mycelia sterilia fungi. Those fungi were applied at 2.5-old months cacao seedling of moderate to susceptible clone against VSD, and 30 days after inoculation of those fungi, the seedling was applied with a bunch of mycelia emerged from infected branch that mix with water using mixer appliance and then the seedling was exposed at open area surrounded by infested cacao tree. The disease incidence was recorded started at 30 and then 60, 90 and 120 days after inoculation of the pathogen and exposed. The result of study shows that the disease appeared increasing gradually and 120 days fungus Curvularia-like colony exhibited lower incidence followed by Copper fungicide, Mycelia sterilia 1, Gliocladium-like colony, Fusarium-like colony, Geotrichum-like colony, Mycelia sterilia 3, Colletotrichum-like colony, Aspergillus-like colony, control (no application), Mycelia sterilia 2, Mycelia sterilia 4 with percentage of 3.0, 8.3, 9.5, 11.3, 15.8, 18.0, 19.0, 19.3, 21.3, 26.5, 30.5, respectively. The result indicates that some fungi associated with VSD resistant clone were able to prevent VSD to develop and causing symptoms.

1. Introduction

Vascular streak dieback (VSD) is an important disease affecting Southeast Asian cocoa production, including Indonesia. Indonesia is the world’s third largest producer of cacao [1], where mostly produced in Sulawesi Island. Estimates of production losses due to VSD is about 774 million US $ [2]. The disease has devastated some of the cacao plantations and then threaten cacao sustainability, particularly plants belong to smallholder farmer. The disease caused by the basidiomycete fungus Ceratobasidium theobromae (formerly Oncobasidium theobromae) [3, 4].

The disease has been spread out dramatically at cacao plantation area and seems difficult to control. The pathogen is wind-borne, leaf-penetrating, and xylem-infecting [5]. Basidiospores of the pathogen occurs mainly after midnight into the early morning [3]. Basidiospores germinate and hyphae penetrate unhardened leaves at branch termini by growing directly through the cuticle, above leaf veins [6]. Infected leaves do not show symptoms for 3 to 5 months, by which time the pathogen has ramified...
through the xylem in the adjacent stem [3]. Due to its systemic infection characteristic, the VSD disease is difficult to control. Control tools that needed are able to protect young leaves from germination of basidiospores and capable to ramify through the xylem vessel. Even though few fungicides had high fungitoxic activity against the pathogen under experimental condition such as the triazole compounds triadimefon, triadimenol, and propiconazole [7]. However, these fungicides only a few applied by farmers due to its high cost. Currently, cultural practices including regular pruning, fertilizing, and pruning of diseased plant material still remain the most prevalent applied in the diseased tree.

Biocontrol is an option to encounter losses caused by VSD. Endophytic fungi is a good alternative to suppress the disease, they proved to be effective against cacao pathogen such as black pod rot, frosty pod rot, witches' broom, and vascular streak dieback [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Endophytic fungi can colonize their host without causing disease symptoms [18], and could isolated both stem and leaves [15, 8, 18, 11, 12, 19]. In the present study, we used endophytic fungi from stems of VSD resistant cacao plants to further identify possible biocontrol agent for vascular streak dieback disease and the possibilities of preventing VSD to develop and penetrate on young leaves using endophytic fungi.

2. Materials and methods

2.1. Endophytic fungi application
Isolates of endophytic fungi were isolated from VSD resistant clone [19]. The seedling was developed from VSD susceptible to moderate clone. The seedling was 2.5 months old, and before the seedling was treated, it maintained in a nursery building with UV plastic as roof and the seedling growth assisted with fertilizer. Twelve plants for each isolate and the controls were used. The treatments are no application (Control), Copper fungicide, Curvularia-like colony, Fusarium-like colony, Geotrichum-like colony, Aspergillus-like colony, Gliocladium-like colony, Colletotrichum-like colony, Mycelia Sterilia Isolate 1, Mycelia Sterilia Isolate 2, Mycelia Sterilia Isolate 3, Mycelia Sterilia Isolate 4.

The fungi were formulated in powder form use rice medium, after colony of fungi was well distributed throughly in rice medium, the medium grinded until turn to powder form. Two grams of fungi powder applied to each seedling that already sprayed with 0.7% CMC before. Application of fungi powder to seedling using hand sprayer and the seedling was wounded on stem use needle. For Copper fungicide is using Cuprous Oxide fungicide with concentrae 0.2 g/100 ml.

During 30 days after application of endophyte fungi powder, the seedling was kept under a nursery building with UV plastic as roof, after 30 days the seedling was applied with the disease inoculum and placed at open area surrounded by older high infested cacao tree, seedling placed near infested older cacao.

2.2. Evaluation of Endophytism status
This activity conducted through isolation of treated seedling before and after the seedling applied by Disease inoculum and placed at the open area. the isolation was carried out 30 days after inoculation (DAI) and 150 DAI. Part of seedling that isolated were leaf, stem, and root.

Initially, samples of leaf, stem, and root were rinsed with tap water, and then surface sterilized with NaOCl solution (2.5%) for three minutes and Ethanol (70%) for two minutes and sterilized water for one minute. and then the samples were dried above sterilized filter paper. Approximately 4 mm diameter pieces of plant materials were placed on Potato-Dextrose Agar (PDA) supplemented with Chloramphenicol and incubated at 25 °C.

2.3. Disease Record and Statistical Analysis
The incidence of the disease was recorded visually on leaf of the seedling. The data regarding the incidence of the VSD was collected 30, 60, 90, 120 after the last application. Aggressivity of fungi was determined using analysis of variance (ANOVA) and standard error. When significant difference detected, means were separated using Duncan test at 5% probability level.
3. Results and Discussion

3.1. Results

3.1.1. Incidence of Vascular Streak Dieback. Evaluation of ten different fungal isolates on seedling under field condition on VSD incidence are presented in table 1 and figure 1. The result of the effect of ten different fungal isolate and controls on 60 DAI observation, where *Curvularia*-like colony, Mycelia Sterilia Isolate 1, *Geotrichum*-like colony, Copper fungicide, *Fusarium*-like colony, *Aspergillus*-like colony, *Colletotrichum*-like colony, Mycelia Sterilia Isolate 3 shows the best result in suppressing the VSD incidence and significantly different with control. Meanwhile, on 90 DAI recording incidence of the disease was lower on *Curvularia*-like colony, Mycelia Sterilia Isolate 1, *Geotrichum*-like colony, Copper fungicide, *Aspergillus*-like colony, those treatments shows significantly different with control.

Table 1. Incidence of Vascular Streak Dieback on 60 and 90 days after inoculation and exposed on cacao seedling.

Treatments	Days After Inoculation (DAI) and Exposes	
	60	90
Control	15.00 a	17.50ab
Copper fungicide	2.00 cd	8.25bcd
Curvularia-like colony	0.00 d	0.00d
Fusarium-like colony	1.50 cd	14.75abc
Geotrichum-like colony	0.00 d	8.25bcd
Aspergillus-like colony	5.00 bcd	9.75bcd
Gliocladium-like colony	6.50 bc	10.50abc
Colletotrichum-like colony	4.50 bcd	18.25ab
Mycelia Sterilia Isolate 1	0.00 d	6.50 cd
Mycelia Sterilia Isolate 2	15.75 a	21.00a
Mycelia Sterilia Isolate 3	10.50 bcd	18.00ab
Mycelia Sterilia Isolate 4	0.41 ab	18.75ab

Numbers in same column followed by same letters are not significantly different (P=0.05, Duncan test).

Incidence of Vascular Streak Dieback on 120 DAI (figure 1) was consistently suppressed by a number of fungal viz *Curvularia*-like colony, Copper fungicide, *Gliocladium*-like colony, Mycelia Sterilia Isolate 1 with significantly different with control.

3.1.2. Endophytism status of fungi isolated. Evaluation of endophyte fungi presence on seedling are presented in table 2, the result shows that fungi were reisolated only on the leaf, whereas on stem and root were not found. All fungi except *Colletotrichum*-like colony was found only on 30 DAI while on 150 DAI was not found.

3.2. Discussion

Two months after exposes and inoculation of disease inoculum of cocoa seedling a number of endophytic fungi viz *Curvularia*-like colony, Mycelia Sterilia Isolate 1, *Geotrichum*-like colony, Copper fungicide, *Fusarium*-like colony, *Aspergillus*-like colony, *Colletotrichum*-like colony, Mycelia Sterilia Isolate 3 able to inhibit VSD to develop, but after three months number of fungi were reduced remained four fungi including *Curvularia*-like colony, Mycelia Sterilia Isolate 1, *Geotrichum*-like colony,
Aspergillus-like colony as effective fungi. However, after four months only three fungi were effective that was Curvularia-like colony, Gliocladium-like colony, Mycelia Sterilia Isolate 1.

![Graph showing incidence of Vascular Streak Dieback](image)

Figure 1. The incidence of Vascular Streak Dieback on 120 days after inoculation and exposed on cacao seedling. Numbers in the same color bar followed by same letters are not significantly different (P=0.05, Duncan test).

Table 2. Re-isolation of fungi from treated seedling on 30 DAI and 150 DAI.

Treatments	Leaf	Stem	Root							
	30 DAI	150 DAI	30 DAI	150 DAI	30 DAI	150 DAI	30 DAI	150 DAI	30 DAI	150 DAI
Curvularia-like colony	+	-	-	-	-	-	-	-	-	-
Fusarium-like colony	+	-	-	-	-	-	-	-	-	-
Geotrichum-like colony	+	-	-	-	-	-	-	-	-	-
Aspergillus-like colony	+	-	-	-	-	-	-	-	-	-
Gliocladium-like colony	+	-	-	-	-	-	-	-	-	-
Colletotrichum-like colony	-	-	-	-	-	-	-	-	-	-
Mycelia Sterilia Isolate 1	+	-	-	-	-	-	-	-	-	-
Mycelia Sterilia Isolate 2	+	-	-	-	-	-	-	-	-	-
Mycelia Sterilia Isolate 3	+	-	-	-	-	-	-	-	-	-
Mycelia Sterilia Isolate 4	+	-	-	-	-	-	-	-	-	-

* (+) : Found; (-) : Not Found;

These findings revealed that fungi associated with healthy tissue of cacao provide a potential role in suppressing VSD disease and could be used as biocontrol agents. The result supported by previously studies regarding endophytic fungi were used for helping tree from the infestation of pathogen in cacao [8, 12, 15, 16, 13, 14].
Curvularia-like colony and mycelia Sterilia Isolate 1 appeared consistently has low incidence of the disease. The fungi were able to protect seedling from VSD infestation. Obviously, the fungi should not be considered risk-free because some strains of the fungi found as pathogen at other crops [20, 21, 22]. Some of the fungi were used in this study found as pathogen at cacao viz *Fusarium* [23]), *Colletotrichum* [24, 25]. Further, even though they did not induce disease symptom we should be careful when we decide to use them as biocontrol agents.

The fungi were able colonized of seedling leaves, then the pathogen could not penetrate the leaves tissue, this verified by re-isolation of the fungi. The endophytic fungi protect plants from pathogen through the mechanisms of competition, induced resistance, antagonisms, and mycoparasite [9, 12]. The result of re-isolation of the fungi indicates that the fungi only found in leaf at 30 days after inoculation of endophytic fungi, this result suggested that the fungi should be re-isolation for longer protection from VSD disease. Application frequency of antagonist fungi has significant role reduce cacao disease incidence [26].

Colonized and protecting of cacao leaves, especially young leaves were one of an important step to prevent VSD pathogen landed and germinate on leaf surface due to VSD pathogen. *Ceratobasidium theobromae*, where it basidiospores germinate and hyphae penetrate unhardened leaves [3].

Copper fungicide showing as one of the best treatment, cuprous oxide applied on leaf thoroughly. The fungicide is contact fungi and provides longer protection against fungal infection [27]. Copper-based treatments are effective against a wide spectrum of fungal pathogen. Their action is fungistatic and prevents spore germination [28]. However, application of this compound should be accurate since copper is toxic to plants, it must be used at low levels or in the insoluble form [27] and cuprous oxide is classified as FSC highly hazardous due to its acute toxicity to aquatic organisms.

4. Conclusion

Endophytic fungi was able to prevent VSD penetrating young leaves and slow down the pathogen to develop. However, some of endophytic fungi isolated found as pathogen at other crops. Therefore, those of endophytic fungi should not be considered risk-free. In addition, for longer protection, the endophytic fungi should be apply repetitive.

Acknowledgments

This study was supported by Hasanuddin University. The authors also would like to thank Bapak Arman Amir for providing his farm as research location and for assistance in managing the farm, Bapak Amiruddin for his technical support and providing research materials.

References

[1] International Cocoa O 2017 *ICCO Annual Report 2014/2015* (International Cocoa Organization (ICCO))

[2] Abdurrahman 2017 *Penerapan Budidaya Tanaman Sehat dalam Rangka Peningkatan Produksi Kakao di Sulawesi Selatan Pertem. Entomol. Indone. dan Fitopatol. Indonesia Sulawesi Selatan di Balitsereal Maros, 27 July 2017*

[3] Guest D and Keane P 2007 *Vascular-Streak Dieback: A new encounter disease of cacao in Papua New Guinea and southeast asia caused by the obligate basidiomycete oncobasidium theobromae. Phytopathology* 97 1654–7

[4] Samuels G J, Ismail A, Rosmana A, Junaid M, Guest D, McMahon P, Keane P, Purwantara A, Lambert S, Rodriguez-Carras M and Cubeta M A 2012 *Vascular Streak Dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy Fungal Biol.* 116 11–23

[5] Keane, J P 1992 *Diseases and Pests of cocoa : An overview* FAO - Cocoa pest and disease management in southeast Asia and Australasia ed J A. Keane, J. Philip ; Putter pp 1–11

[6] Prior C 1979 Resistance of cocoa to vascular-streak dieback disease *Ann. Appl. Biol.* 92 369–76

[7] Varghese G, Zainal Abidin, M A, Lam H C 1992 Prospects for chemical control of vascular-
streak dieback of cocoa FAO - Cocoa pest and disease management in southeast Asia and Australasia pp 185–9

[8] Arnold A E, Mejia L C, Kyllo D, Rojas E I, Maynard Z, Robbins N and Herre E A 2003 Fungal endophytes limit pathogen damage in a tropical tree Proc Nat Acad Sci. 100

[9] Bailey B A, Bae H, Strem M D, Crozier J, Thomas S E, Samuels G J, Vinyard B T and Holmes K A 2008 Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao Biol. Control 46 24–35

[10] Souza J T De, Bailey B A, Pomella A W V and Erbe E F 2008 Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance Biol. Control 46 36–45

[11] Hanada R E, Pomella A W V., Costa H S, Bezerra J L, Loguerço L L and Pereira J O 2010 Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuacu) trees and their potential for growth promotion and biocontrol of black pod disease Fungal Biol. 114 901–10

[12] Mejía L C, Rojas E I, Maynard Z, Bael S Van, Arnold A E, Hebbap P, Samuels G J, Robbins N and Herre E A 2008 Endophytic fungi as biocontrol agents of Theobroma cacao pathogens Biol. Control 46 4–14

[13] Amin N, Salam M, Asman, Ryan, Darma M R 2015 Investigation of Endophytic Fungi Towards Vascular Streick Dieback Oncobasidium theobromae on Seedling of Cocoa Plant J. Appl. Biol. Sci. 9 86–9

[14] Rosmana A, Samuels G J, Ismaiel A, Ibrahim E S, Chaverri P, Herawati Y and Asman A 2015 Trichoderma asperellum: A Dominant Endophyte Species in Cacao Grown in Sulawesi with Potential for Controlling Vascular Streak Dieback Disease Trop. Plant Pathol. 40

[15] Rubini M R, Silva-ribeiro R T, Pomella A W V and Maki C S 2005 Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches Broom Disease Int. J. Biol. Sci. 24–33

[16] Tondje P R, Roberts D P, Bon M C, Widmer T, Samuels G J, Ismaiel A, Begoude A D, Tchana T, Nyemb-Tsomb E, Ndoumbe-Nkeng M, Bateman R, Fontem D and Hebbap K P 2007 Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon Biol. Control 43 202–12

[17] Backman P A and Sikora R A 2008 Endophytes: An emerging tool for biological control Biol. Control 46 1–3

[18] Carrol G 2013 Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont Ecology 69 2–9

[19] Amin N, Salam M, Junaid M and Baco M S 2014 Original Research Article Isolation and identification of endophytic fungi from cocoa plant resistant VSD M. 05 and cocoa plant Susceptible VSD M. 01 in South Sulawesi, Indonesia Int. J. Curr. Microbiol Appl. Sci. 3 459–67

[20] Brecht M O, Stiles C M and Datnoff L E 2007 Evaluation of Pathogenicity of Bipolaris and Curvularia spp. on Dwarf and Ultradwarf Bermudagrasses in Florida Plant Health Progress Plant Health Progress Plant Heal. Prog.

[21] Girach R D, Aminuddin and Khan S A 1992 Ethnomedicinal uses of Achyranthes aspera L. in Orissa, India Int. J. Pharmacogn. 30 113–5

[22] Kamaluddeen, Sobita, Simon and Abhilasha A L 2013 A new blight disease of rice caused by Curvularia lunata from Uttar Pradesh Int. J. Agric. Sci. Res. 3 13–6

[23] Rosmana A, Iren, P, Papalangi, Sepsiyanti, Kannapadang, Rahim M D, Asman, Nasaruddin N 2014 Cultural and pathogenic characterization of Fusarium fungi isolated from dieback branches of cacao Int. J. Curr. Res. Aca. Rev. 2 1–6

[24] Junianto J Y S-S 1992 Colletotrichum outbreak on cacao in east Java FAO - Cocoa pest and disease management in southeast Asia and Australasia ed C A J Keane, J. Philip; Putter pp 157–62
[25] Peter P K and Chandramohanan R 2011 Occurrence and distribution of cocoa (*Theobroma cocoa* L.) diseases in India *J. Res. ANGRAU* **39** 44–50
[26] Krauss U and Soberanis W 2002 Effect of fertilization and biocontrol application frequency on cocoa pod diseases *Biol. Control* **24** 82–9
[27] Waxman M F 1998 *The Agrochemical and Pesticides Safety Handbook* (Boca Raton: Lewis Publisher)
[28] Isaac S 1992 *Fungal-Plant Interactions* (London: Chapman and Hall)