Aberrations of the $p14^{ARF}$ and $p16^{INK4a}$ Genes in Renal Cell Carcinomas

Yoichi Kawada, Mitsutoshi Nakamura, Eiwa Ishida, Keiji Shimada, Egbert Oosterwijk, Hirotsugu Uemura, Yoshihiko Hirao, Kim Sung Chul and Noboru Konishi

The $INK4a/ARF$ locus on chromosome 9p21, which encodes two distinct genes, $p14^{ARF}$ and $p16^{INK4a}$, is frequently altered in human neoplasms. To investigate the potential roles of $p14^{ARF}$ and $p16^{INK4a}$ genes in human renal cell carcinomas (RCCs), we analyzed 6 human RCC cell lines and 91 primary RCCs for homozygous deletion, promoter hypermethylation and expression of the $p14^{ARF}$ and $p16^{INK4a}$ gene products using differential PCR, methylation-specific PCR, and immunohistochemistry, respectively. Five cell lines showed homozygous co-deletion of both genes and one demonstrated promoter hypermethylation of the $p16^{INK4a}$ gene only. Eight of 91 RCCs showed aberrations of $p14^{ARF}$ or $p16^{INK4a}$ status and six of these featured gross extension into the renal vein. The results suggest that $p14^{ARF}$ and $p16^{INK4a}$ aberrations may play roles in the relatively late stage of renal tumorigenesis associated with tumor progression.

Key words: $p14^{ARF}$ — $p16^{INK4a}$ — Methylation — Homozygous deletion — Renal cell carcinoma

Renal cell carcinoma (RCC), the most common malignancy of the adult kidney, occurs in sporadic and hereditary forms. Recent studies characterizing genetic aberrations have implicated a number of chromosomal loci in cancer development and progression, with inactivation of tumor suppressor genes as one of the most important steps. Chromosome 3p deletions constitute the most common genetic event in primary RCCs and aberration of the VHL gene at 3p25 is known to occur early in the genesis of clear cell lesions. However, chromosome 3p is not cytogenetically aberrant in papillary RCCs and adult rather than in childhood tumors, even among individuals who inherit a mutated VHL gene. The RCC is also characterized by an accumulation of complex chromosomal alterations during tumor progression with loss of heterozygosity (LOH) relatively frequently observed for chromosomes 6q, 8p, 9p, 13q and 17p.3,4

Loss of the short arm of chromosome 9, in particular 9p21–22, is common in many human neoplasms, for example melanomas,5 bladder tumors,6 and leukemia.7 Furthermore, the $p16^{INK4a}$ gene isolated from 9p21 has been found to be homozygously deleted in many types of tumor cell lines, including examples derived from RCCs.8 In human neoplasms, loss of $p16^{INK4a}$ expression is mainly due to homozygous deletion or to hypermethylation of CpG islands in the promoter region, while mutational inactivation is rare.9 In primary RCCs, LOH on chromosome 9p has been detected in 20–30% of cases,10,11 but inactivation of $p16^{INK4a}$ by homozygous deletion or point mutation is rare.12–14 Recently, the $p14^{ARF}$ gene was isolated as a second alternative reading frame gene of $p16^{INK4a}$ of the $INK4a$ locus and the human $p14^{ARF}$ promoter has been cloned and shown to contain a CpG island.15 The $INK4a/ARF$ locus features two unique first exons, designated α and β, which are spliced into common exons 2 and 3.16 Exons 1α, 2 and 3 encode $p16^{INK4a}$ which induces cell cycle arrest by inhibiting phosphorylation of the RB protein.17 The product of exons β, 2 and 3 is termed $p14^{ARF}$, which acts by binding directly to MDM2, resulting in the stabilization of both p53 and MDM2.18,19 Despite the potential importance of $p14^{ARF}$ and $p16^{INK4a}$ in tumorigenesis, there have been few studies of inactivation by homozygous deletions or altered methylation in primary RCCs.

To investigate whether the $INK4a/ARF$ locus on chromosome 9 is involved in renal cell tumorogenesis, we screened 91 primary RCCs and 6 cell lines for homozygous deletion, promoter hypermethylation of the $p14^{ARF}$ and $p16^{INK4a}$ genes and expression of the gene products.

MATERIALS AND METHODS

Cell lines Six human RCC cell lines (SKRC-12, -14, -17, -29, -52, and -59) were cultured in RPMI 1640 (Gibco, Gaithersburg, MD) supplemented with 10% fetal calf serum.20 Genomic DNA was extracted from each cell line as described previously.21 Adherent cells were harvested by trypsinization, collected by centrifugation for 5 min at 1500 rpm and pellets of cells were fixed in 10% buffered formalin and embedded in paraffin.

1Second Department of Pathology and 2Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, 3Nara Prefectural Hospital, 1-30-1 Hiramatsu, Nara 631-0846, 4Department of Urology, University Hospital Nijimengen, St. Radboud, 6500HB, Nijimengen, Netherlands

E-mail: nkonishi@naramed-u.ac.jp
Tumor samples and DNA extraction Ninety-one primary tumor specimens were obtained from patients who had undergone nephrectomy between 1995 and 2000 in the Department of Urology, Nara Medical University Hospital and Nara Prefectural Hospital. Tumors were fixed in 10% buffered formalin, embedded in paraffin and sectioned at 3 μm. The sections were stained with hematoxylin and eosin for histological diagnosis. Pathological evaluation and grading were according to the classification by the UICC and the AJCC.22, 23)

Under a light microscopy, tumor lesions were marked and scraped off. Genomic DNA was extracted from each section as described previously.24) Differential PCR assay for p14ARF and p16INK4a To assess homozygous deletions in the p14ARF gene, we carried out differential PCR with primers for exon 1β, using the GAPDH gene as an internal control. The primer sequences and PCR conditions were as described previously25) and the lengths of PCR products for p14ARF and GAPDH were 149 bp and 160 bp, respectively.

Differential PCR for homozygous deletions of p16INK4a (exon 1) was carried out using the β-actin gene as an internal control. The primer sequences and PCR conditions were as previously described.25, 26) The lengths of PCR products for p16INK4a and β-actin were 204 bp and 187 bp, respectively. They were loaded onto 8% acrylamide gels and signal intensity was measured with Kodak Digital Science ID Image Analysis Software Version 3.0 (Kodak, NY). Values less than 0.2 for the target gene/internal control ratio were considered to represent homozygous deletion.25–28)

Methylation-specific PCR Promoter hypermethylation of the p14ARF and p16INK4a genes was determined by methylation-specific PCR (MSP),29) which distinguishes unmethylated from methylated alleles based on sequence changes produced after bisulfite conversion of unmethylated (but not methylated) cytosines to uracil, and subsequent PCR using primers designed for either methylated or unmethylated DNA. Sodium bisulfite modification was performed using a "CpGenome" DNA Modification Kit (Intergen, Oxford, UK) according to the manufacturer’s protocol with minor modifications.25, 30)

Table I. Summary of Data for the p14ARF, p16INK4a Genetic Status of Renal Cell Carcinoma Cell Lines

Cell Line	p14del	p14met	p14IHC	p16del	p16met	p16IHC
SKRC12	−	−	+	−	+	−
SKRC14	+	−	−	+	−	−
SKRC17	+	−	−	+	−	−
SKRC29	+	−	−	+	−	−
SKRC52	+	−	−	+	−	−
SKRC59	+	−	−	+	−	−

del, homozygous deletion; met, hypermethylation; IHC, immunohistochemistry.

(A)

![GAPDH p14ARF](https://via.placeholder.com/150)

(B)

![GAPDH p16INK4a β-actin](https://via.placeholder.com/150)

Fig. 1. Differential PCR for p14ARF and p16INK4a homozygous deletion. (A) SK-RCs 14, 17, 29, 52 and 59 show deletion of both p14ARF and p16INK4a, the bands for p14ARF and p16INK4a PCR products being completely lacking. (B) RCCs 5, 10 and 79 display loss or very low levels (<20% ratio) PCR products of both p14ARF and p16INK4a genes. M, 25 bp ladder of DNA size markers; NC, normal control (DNA from a normal blood sample).
INK4a/ARF Aberration in RCCs

After deparaffinization, sections were heated for 5 min at 120°C in an autoclave in 10 mM sodium citrate buffer (pH 6.0). For p14ARF immunohistochemistry, the sections were incubated overnight at 4°C with rabbit polyclonal antibody 14ARF (SC-8348, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) at 1:400 dilution. For p16INK4a immunohistochemistry, sections were incubated for 1 h at room temperature with a mouse monoclonal antibody (SC1661, Santa Cruz Biotechnology, Inc.) at 1:500 dilution. The reactions were visualized using a Histofine SAB-PO Kit (Nichirei Corp., Tokyo) and diaminobenzidine, and sections were counterstained with hematoxylin. The percentage of neoplastic cells with nuclear immunoreactivity was recorded as negative (−) when only occasional (<10%) tumor cells were stained and positive (+) when over 10% of the tumor cells were stained.25)

RESULTS

Cell lines Table I summarizes data for the homozygous deletion and methylation status of the 6 human RCC cell lines. Homozygous co-deletion of the p14ARF and p16INK4a locus was detected in 5 of the 6 (83.3%) cell lines (Fig. 1), and one (16.7%) showed promoter hypermethylation of the p16INK4a gene. There was no case with hypermethylation of the p14ARF gene promoter (Fig. 2).

The one of the 6 cell lines without deletion or hypermethylation of p14ARF showed p14ARF immunoreactivity, while all 6 exhibited loss of p16INK4a expression.

Primary renal cell carcinomas Table II shows the clinicopathologic characteristics of the 91 cases (64 males, 27 females; mean age, 62.5 years; range, 27–88 years).

Table II. Clinicopathological Features of the Primary RCC Cases

	Clear	Chromophobe	Cystic	Granular	Papillary	Spindle	Total
T1	46	3	7	4	2	1	63
T2	6	0	0	0	1	0	6
T3	13	3	0	0	2	2	20
T4	0	0	0	0	1	1	2
Total	65	6	7	4	5	4	91
V(−)	56	3	7	4	2	1	73
V(+)	9	3	0	0	3	3	18
Total	65	6	7	4	5	4	91

a) Gross extension into the renal vein.
Homozygous deletion of both p14ARF and p16INK4a was detected in three of 91 (3.3%) samples (Fig. 1), and another three samples (3.3%) showed hypermethylation of p14ARF and/or p16INK4a gene promoters (Fig. 2).

Nuclear immunoreactivity for p14ARF and p16INK4a was observed in almost all tumor cells. Five of 91 (5.5%) samples showed loss of both p14ARF and p16INK4a expression and two samples showed loss of p16INK4a expression only (Table III). Three samples with homozygous deletion showed defective immunoreactivity, although one sample with promoter hypermethylation showed expression of p14ARF and p16INK4a (Fig. 3). Aberrations of p14ARF or p16INK4a were detected in eight of 91 (8.8%) samples by one or more of the three methods. There was no significant correlation with histological findings, tumor size or grading. However, six of the 8 cases featured gross extension into the renal vein (Table III).

DISCUSSION

The chromosome 9p21 region harbors two genes: p14ARF and p16INK4a, whose products have growth-suppressive activity. Two primary mechanisms have been postulated for inactivation of potential tumor suppressor genes on 9p21: homozygous deletion and promoter hypermethylation, with intragenic mutations occurring in only a small proportion of tumors and cell lines. The present results showed aberration of p14ARF and p16INK4a due to homozygous deletion and promoter hypermethylation to be more frequent in RCC cell lines than in primary RCCs, suggesting that the alterations might provide some advantage associated with acquisition of immortality and selective cell growth.

Homozygous deletion of the p16INK4a gene has been demonstrated frequently in cell lines derived from a variety of different tumors, and therefore, p16INK4a is widely regarded as a major target with 9p21 deletion. A previous study showed inactivation of p16INK4a by homozygous deletion to be relatively rare in RCCs and the type alteration of p14ARF and p16INK4a was detected in only three of 91 (3.3%) primary RCCs in our study. To assess the sensitivity of differential PCR for p14ARF and p16INK4a deletion, we previously carried out a titration experiment with various ratios of normal DNA and DNA from A172...
glioma cells with homozygous co-deletion of the p14ARF and p16INK4a genes.25 The results indicated that the ratios of p14ARF/GAPDH and p16INK4a/β-actin meaning hemizygous deletion are ~0.42 and ~0.35, respectively. In this study, 11 (12%) primary tumors showed decreased density (0.35–0.5) of the p14ARF and p16INK4a genes (data not shown), suggesting that these might show LOH of 9p21 at the INK4a/ARF locus, although many tumors have positive immunoreactivity to both genes.

p14ARF plays a major role in the p53 pathway by binding to MDM2, and p16INK4a affects the RB pathway by inhibiting phosphorylation of the RB protein. Involvement of p14ARF and p16INK4a in malignant transformation is supported by studies on mice lacking ARF and INK4a genes.26, 27 In mice, malignant transformation is induced by the p14ARF and INK4a genes, and the p16INK4a and p14ARF genes are frequently co-deleted in several human neoplasms28, 29 with inactivation of both having a cooperative negative effect on tumor progression.30–32 Co-deletion of p14ARF and p16INK4a was here found in five RCC cell lines and three primary RCCs. Because of the dual encoding capacity of the p14ARF and p16INK4a locus, a deletion occurring in p16INK4a exons 2 or 3 could also disrupt p14ARF. The unique genomic structure and compact organization of these genes which have common reading frames may be essential for maintaining a balanced Rb and p53 pathway function.

Hypermethylation of p14ARF is often observed in colon cancer cell lines, with hypermethylation of p16INK4a.15 Recently, Esteller \textit{et al.} showed promoter hypermethylation incidences of 23% for p16INK4a and 13% for p14ARF in primary RCCs.30 In our study, the respective figures were 3.3% and 2.2%, respectively. Two showed promoter hypermethylation of both p14ARF and p16INK4a genes, and one sample showed hypermethylation of the p16INK4a gene only. We consider that this discrepancy is due to race or sampling (for example T1 samples accounted for 72% of all tumors). Considering the results for expression of p14ARF and p16INK4a obtained by immunohistochemical staining, we conclude that inactivation of p14ARF and p16INK4a genes by promoter hypermethylation is a rare event in primary Japanese RCCs.

The present study in fact revealed a close correlation between immunohistochemical results and alteration by homozygous deletion/hypermethylation of p14ARF and p16INK4a genes. All 5 cell lines and 3 primary RCCs with homozygous co-deletion showed loss of both p14ARF and p16INK4a expression. While one of 3 primary RCCs with hypermethylation was immunoreactive for both p14ARF and p16INK4a, it showed extensive areas with loss of expression. In this case, both unmethylated and methylated signals for p16INK4a were seen by MSP. This may be explained by incomplete gene silencing due to histological heterogeneity. In contrast, the unmethylated signal for p14ARF was very faint in the tumor, possibly due to insufficient density and/or partial extent of DNA methylation. One primary RCC showed loss of p14ARF expression without alteration, and two primary RCCs showed loss of p16INK4a expression without p16INK4a alteration. This may have been due to disruption of translational mechanisms in the inactivation of p14ARF and p16INK4a or mutations in exons 2 or 3 of the p16INK4a gene.

Previous studies showed LOH at 9p to be associated with stage, grade and recurrence, suggesting a contribution to tumor progression. Recent studies showed that loss of chromosome 9p13 is associated with progression in papillary RCCs, so that a tumor suppressor gene on chromosome 9p13 may play a role.44, 45 In our study, eight cases (8.8%) demonstrated p14ARF and p16INK4a aberration. Although there was no significant correlation between aberration and histological types, tumor size, or grading, six of these cases (75%) showed gross extension into the renal vein (Table III). Therefore, aberrations such as deletion, methylation and loss of expression of p14ARF and p16INK4a may be associated with tumor extension into the renal vein. Venous invasion is characterized by local destruction of the endothelium by tumors. In a cohort study of RCC, patients with venous invasion were found to have a worse prognosis.

In summary, aberrations of p14ARF and p16INK4a such as homozygous deletions and hypermethylation were detected in a small subset of primary RCCs. Although a relatively rare event, such alteration appeared to be associated with tumor extension into the renal vein. Our results thus suggest the p14ARF and p16INK4a genes to be important with regard to 9p deletion, having a possible role in primary RCC progression.

\textbf{ACKNOWLEDGMENTS}

We thank Dr. Syoji Samma, Department of Urology, Nara Prefectural Hospital, for primary RCC samples.

(Received July 30, 2001/Revised September 25, 2001/Accepted October 3, 2001)

\textbf{REFERENCES}

1) Zbar, B., Brauch, H., Talmadge, C. and Linehan, M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. \textit{Nature}, 327, 721–724 (1987).
2) Gnarra, J. R., Tory, K., Weng, Y., Schmidt, L., Wei, M. H., Li, H., Latif, F., Liu, S., Chen, F. and Duh, F. M. Mutations of the VHL tumour suppressor gene in renal carcinoma. \textit{Nat. Genet.}, 7, 85–90 (1994).
3) Jiang, F., Desper, R., Papadimitriou, C. H., Schaffer, A. A.,
Kallioniemi, O. P., Richter, J., Schraml, P., Sauter, G., Mihatsch, M. J. and Moch, H. Construction of evolutionary tree models for renal cell carcinoma from comparative genomic hybridization data. Cancer Res., 60, 6503–6509 (2000).

4) Morita, R., Ishikawa, J., Tsutsumi, M., Hikiji, K., Tsukada, Y., Kamidono, S., Maeda, S. and Nakamura, Y. Allelotype of renal cell carcinoma. Cancer Res., 51, 820–823 (1991).

5) Fountain, J. W., Karayiorgou, M., Ernstoff, M. S., Kirkwood, J. M., Vlock, D. R., Titus-Ernstoff, L., Bouchard, B., Vijayasaradihi, S., Houghton, A. N. and Lahiti, J. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc. Natl. Acad. Sci. USA, 89, 10557–10561 (1992).

6) Ruppert, J. M., Tokino, K. and Sidransky, D. Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res., 53, 5093–5095 (1993).

7) Diaz, M. O., Ziemin, S., Le Beau, M. M., Pitha, P., Smith, S. D., Chilcote, R. R. and Rowley, J. D. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. USA, 85, 5259–5263 (1988).

8) Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V., Stockert, E., Day, R. S., 3rd, Johnson, B. E. and Skolnick, M. H. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 264, 436–440 (1994).

9) Spruck, C. H., 3rd, Gonzalez-Zulueta, M., Shibata, A., Simoneau, A. R., Lin, M. F., Gonzales, F., Tsai, Y. C. and Jones, P. A. p16 gene in uncultured tumours. Nature, 370, 183–184 (1994).

10) Moch, H., Presti, J. C., Sauter, G., Buchholz, N., Jordan, P., Mihatsch, M. J. and Waldman, F. M. Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res., 56, 27–30 (1996).

11) Schullerus, D., Herbers, J., Chudek, J., Kanamr, H. and Kovacs, G. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J. Pathol., 183, 151–155 (1997).

12) Cairns, P., Tokino, K., Eby, Y. and Sidransky, D. Localization of tumor suppressor loci on chromosome 9 in primary human renal cell carcinomas. Cancer Res., 55, 224–227 (1995).

13) Kinoshita, H., Yamada, H., Ogawa, O., Kakehi, Y., Osaka, M., Nakamura, E., Mishina, M., Habuchi, T., Takahashi, R., Sugiyama, T. and Yoshida, O. Contribution of chromosome 9p22-22 deletion to the progression of human renal cell carcinoma. Jpn. J. Cancer Res., 86, 795–799 (1995).

14) Clifford, S. C., Prowse, A. H., Affara, N. A., Buys, C. H. and Maher, E. R. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosom. Cancer, 22, 200–209 (1998).

15) Robertson, K. D. and Jones, P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol., 18, 6457–6473 (1998).

16) Quelle, D. E., Zindy, F., Ashmun, R. A. and Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell, 83, 993–1000 (1995).

17) Sherr, C. J. Cancer cell cycles. Science, 274, 1672–1677 (1996).

18) Zhang, Y., Xiong, Y. and Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell, 92, 725–734 (1998).

19) Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., Cordon-Cardo, C. and DePinho, R. A. The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell, 92, 713–723 (1998).

20) Ebert, T., Bander, N. H., Finstad, C. L., Ramsawak, R. D. and Old, L. J. Establishment and characterization of human renal cancer and normal kidney cell lines. Cancer Res., 50, 5531–5536 (1990).

21) Konishi, N., Tao, M., Nakamura, M., Kitahori, Y., Hiaza, Y. and Nagai, H. Genomic alterations in human prostate carcinoma cell lines by two-dimensional gel analysis. Mol. Cell. Biol., 42, 1129–1135 (1996).

22) Storkel, S., Ebbe, J. N., Adlakha, K., Amin, M., Blute, M. L., Bostwick, D. G., Darson, M., Delahunt, B. and Iczkowski, K. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer, 80, 987–989 (1997).

23) Guinan, P., Sobin, L. H., Alagha, F., Badellino, F., Kameyama, S., MacLenan, G. and Novick, A. TNM staging of renal cell carcinoma: Workgroup No. 3. Union International Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer, 80, 992–993 (1997).

24) Konishi, N., Hiaza, Y., Hayashi, I., Matsuda, H., Tsuzuki, T., Ming, T., Kitahori, Y., Shiraishi, T., Yatani, R. and Shimazaki, J. p53 mutations occur in clinical, but not latent, human prostate carcinoma. Jpn. J. Cancer Res., 86, 57–63 (1995).

25) Nakamura, M., Watanabe, T., Klangby, U., Asker, C., Wiman, K., Yonekawa, Y., Kleihues, P. and Ohgaki, H. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol., 11, 159–168 (2001).

26) Xing, E. P., Nie, Y., Song, Y., Yang, G. Y., Cai, Y. C., Wang, L. D. and Yang, C. S. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin. Cancer Res., 5, 2704–2713 (1999).

27) Nakamura, M., Sakaki, T., Hashimoto, H., Nakase, H., Ishida, E., Shimada, K. and Konishi, N. Frequent alterations of the p14ARF and p16INK4a genes in primary central
nervous system lymphomas. Cancer Res., 61, 6335–6339 (2001).

28) Ueki, K., Ono, Y., Henson, J. W., Efird, J. T., von Deimling, A. and Louis, D. N. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res., 56, 150–153 (1996).

29) Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. and Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA, 93, 9821–9826 (1996).

30) Nakamura, M., Yonekawa, Y., Kleihues, P. and Ohgaki, H. Promoter hypermethylation of the RB1 gene in glioblastomas. Lab. Invest., 81, 77–82 (2001).

31) Esteller, M., Tortola, S., Toyota, M., Capella, G., Peinado, M. A., Baylin, S. B. and Herman, J. G. Hypermethylation-associated inactivation of p14ARF is independent of p16INK4a methylation and p53 mutational status. Cancer Res., 60, 129–133 (2000).

32) Gazerri, S., Della Valle, V., Chaussade, L., Brambilla, C., Larsen, C. J. and Brambilla, E. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res., 58, 3926–3931 (1998).

33) Cairns, P., Mao, L., Merlo, A., Lee, D. J., Schwab, D., Eby, Y., Tokino, K., van der Riet, P., Blaugrund, J. E. and Sidransky, D. Rates of p16 (INK4a) mutations in primary tumors with 9p loss. Science, 265, 415–417 (1994).

34) Nobori, T., Miura, K., Wu, D. J., Lois, A., Takabayashi, K. and Carson, D. A. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature, 368, 753–756 (1994).

35) Liu, Q., Neuhausen, S., McClure, M., Frye, C., Weaver-Feldhaus, J., Grinis, N. A., Eddington, K., Allalunis-Turner, M. J., Skolnick, M. H. and Fujimura, F. K. CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. Oncogene, 10, 1061–1067 (1995).

36) Serrano, M., Lee, H., Chin, L., Cordon-Cardo, C., Beach, D. and DePinho, R. A. Role of the INK4a locus in tumor suppression and cell mortality. Cell, 85, 27–37 (1996).

37) Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G. and Sherr, C. J. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell, 91, 649–659 (1997).

38) Newcomb, E. W., Alonso, M., Sung, T. and Miller, D. C. Incidence of p14ARF gene deletions in high-grade adult and pediatric astrocytomas. Hum. Pathol., 31, 115–119 (2000).

39) Orlow, I., LaRue, H., Osman, I., Lacombe, L., Moore, L., Rabbani, F., Meyer, F., Fradet, Y. and Cordon-Cardo, C. Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am. J. Pathol., 155, 105–113 (1999).

40) Williams, B. O., Remington, L., Albert, D. M., Mukai, S., Bronson, R. T. and Jacks, T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat. Genet., 7, 480–484 (1994).

41) Cordon-Cardo, C., Zhang, Z. F., Dalbagni, G., Drobnjak, M., Charytonowicz, E., Hu, S. X., Xu, H. J., Reuter, V. E. and Benedict, W. F. Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Res., 57, 1217–1221 (1997).

42) Cote, R. J., Dunn, M. D., Chatterjee, S. J., Stein, J. P., Shi, S. R., Tran, Q. C., Hu, S. X., Xu, H. J., Groshen, S., Taylor, C. R., Skinner, D. G. and Benedict, W. F. Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res., 58, 1090–1094 (1998).

43) Esteller, M., Corn, P. G., Baylin, S. B. and Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res., 61, 3225–3229 (2001).

44) Schraml, P., Muller, D., Bednar, R., Gasser, T., Sauter, G., Mihatsch, M. J. and Moch, H. Allelic loss at the D9S171 locus on chromosome 9p13 is associated with progression of papillary renal cell carcinoma. J. Pathol., 190, 457–461 (2000).

45) Schraml, P., Struckmann, K., Bednar, R., Fu, W., Gasser, T., Wilber, K., Kononen, J., Sauter, G., Mihatsch, M. J. and Moch, H. CDKN2A mutation analysis, protein expression, and deletion mapping of chromosome 9p in conventional clear-cell renal carcinomas: evidence for a second tumor suppressor gene proximal to CDKN2A. Am. J. Pathol., 158, 593–601 (2001).