INTRODUCTION

Temporary or prolonged vascular spasm can be appreciated during flap elevation, resulting in momentary decrease of pulsation.1 Unless reversed, it can result in flap failure.1 Intraoperative topical application of papaverine hydrochloride and/or warm water is usually sufficient to restore physiologic blood flow.1 Nevertheless, conventional assessment methods (eg, macroscopic observation, loupe, or palpation) are inadequate to accurately evaluate spasm of perforators’ small peripheral branches and determine resolution of spasm.

We have achieved real-time flap monitoring by directly visualizing flap skin capillary microcirculation in previous studies.2–4 The purpose of this study was to use the new generation video-capillaroscopy to evaluate the incidence of vasospasm in less than 1 mm–diameter perforators. The type of perforator spasm after flap elevation was divided into six types according to the video-capillaroscopy findings: type A, no spasm/decreased pulsation (S/DP); type B, S/DP with recovery within 5 minutes; type C, S/DP requiring papaverine hydrochloride spraying and hot water treatment (PHS+HWT) resulting in recovery within 5 minutes; type D, S/DP requiring PHS+HWT resulting in recovery within 10 minutes; type E, S/DP requiring PHS+HWT resulting in recovery within 15 minutes; and type F, S/DP with no recovery of pulsation even after PHS+HWT. Twenty-five perforators were evaluated, 3.57 perforators (range, 3–4) per flap. Using our classification for perforator vessel spasms on video-capillaroscopy, observations of five perforating branches were classified as type A, seven as type B, six as type C, five as type D, and two as type E. No type F spasm was observed. With video-capillaroscopy it is possible to confirm if blood flow deterioration occurs even in areas that are difficult to determine macroscopically. Video-capillaroscopy, a noninvasive imaging modality, is a useful alternative for the intraoperative evaluation of perforator flow and spasm. (Plast Reconstr Surg Glob Open 2022;10:e4613; doi: 10.1097/GOX.0000000000004613; Published online 3 November 2022.)
and February 2022, seven free flaps harvested for head and neck reconstruction were evaluated with video-capillaroscopy (Bscan-ZD, GOKO Imaging Devices Co., Ltd., Japan). We excluded patients with previous diagnosis of coagulopathy or medical history of vascular malformations. We extracted data on the patients’ demographics and medical history, location of primary lesion, oncologic staging, number and size of perforators, and type of vasospasm. Perforators were evaluated with video-capillaroscopy at a skin temperature of greater than 36°C after flap harvest, before transecting the pedicle. (See figure, Supplemental Digital Content, which shows the observation point of vessels was the adipose tissue of flaps, adjacent to the flap’s fascia. http://links.lww.com/PRSGO/C205.) The observation point of vessels was the adipose tissue of flaps, adjacent to the flap’s fascia (See Video [online], which demonstrates our classification to categorize spasm into types A, B, C, D, E, and F, as reported in the article and video-capillaroscopy findings before and after resolution of spasm). Spasm/decreased pulsation (S/DP) was defined as transient/permanent cessation of pulse when compared with the pedicle vessels or as lack of observable sinus rhythm pulsation.

The visual field of video-capillaroscopy was about 175× and 620×, 1.2 million pixels, and 1 mm in depth from the surface. S/DP of perforators was classified as follows: No S/DP (type A); S/DP with recovery within 5 minutes (type B); S/DP requiring papaverine hydrochloride spraying (4 mg/ml) and hot water treatment (PHS+HWT) resulting in recovery within 5 minutes (type C); S/DP requiring PHS+HWT resulting in recovery within 10 minutes (type D); S/DP requiring PHS+HWT resulting in recovery within 15 minutes (type E); and S/DP with no recovery of pulsation even after PHS+HWT (type F). Fluid warming systems were used to maintain the saline solution at 42°C, while 0.5 ml of PHS was applied when S/DP was identified.

RESULTS

Four male and three female patients underwent microvascular reconstruction of head and neck defects. The average age of patients was 66.57 ± 9.16 years. Two rectus abdominis myocutaneous (28.6%) and five anterolateral-vastus lateralis (ALT) flaps (71.4%) were evaluated with video-capillaroscopy. No major complications occurred. Data on the location of the primary lesion, oncologic management, and medical history are reported in Table 1. Twenty-five perforators were evaluated, 3.57 perforators per flap (range, 3–4). Using our classification for S/DP on video-capillaroscopy, observations of five perforating branches were classified as type A, seven as type B, six as type C, five as type D, and two as type E. No type F S/DP was observed. Direct visualization of transient S/DP was seen in 92.85% of perforator vessels with a diameter of 1 mm or less, while S/DP was seen in 63.6% of perforators with a diameter greater than 1 mm (P = 0.07).

Real-time movement of red blood cells in adipose tissue and pulsation could be observed in the perforator’s branches with a minimum diameter of 0.01 mm (Fig. 1A). The absence/presence of pulsation made it possible to determine the alignment of the artery and vein. Enhancement of sinus rhythm pulsation was observed after resolution of S/DP in vessels with type B, type C, and type E video-capillaroscopy observations (Fig. 1B).

DISCUSSION

The incidence of vasospasm during microvascular reconstruction has been reported to be between 5% and 10%. Intraoperative vasospasm is unpredictable; nonetheless, papaverine has been shown to provide some degree of prevention against it and to improve micro-anastomosis patency. Previous studies have shown the utility of flowmeter, indocyanine green-angiography, spectrophotometry, and laser-Doppler flowmetry to depict fluctuations of blood flow. Nevertheless, these modalities provide indirect measurements of perfusion and vessel caliber such as flow, contrast intensity, and oxygen saturation. Furthermore, these methods have the limitation that they cannot accurately evaluate the degree of vasospasm of very small vessels (<0.5 mm). Contrariwise, video-capillaroscopy allows direct real-time assessment of blood flow through vessels of 0.01 mm or larger, extending its application to the most peripheral branches of perforators.

Video-capillaroscopy allows evaluation of red blood cell flow and pulse of thin perforators in a selective way, offering the possibility of assessing the microcirculation proximally, where the perforator pierces the fascia, or distally along the whole extension of the skin paddle. This feature is of special consideration in cases of subclinical vasospasm. Therefore, flap areas recalcitrant to intraoperative antispasmodic therapy can be selectively excised, anticipating future wound-related complications.

With video-capillaroscopy, we intraoperatively evaluated that all selected perforators for the skin paddle had resolution of spasm. Otherwise, these zones could be particularly affected during warm ischemia, and suboptimal blood flow after reperfusion secondary to unidentified persistent spasm could further affect survival of these flap segments. Additionally, with video-capillaroscopy, we can selectively clamp perforators and assess the microcirculation of flaps to identify main tributaries for optimal...
Table 1. Demographic, Medical, and Oncologic Information of Patients in Whom Flap Transfer and Video-capillaroscopy Was Performed

Patient	Age (y)	Cancer	TNM Stage	Surgery	Neoadjuvant Therapy	Comorbidities	Medical History	Flap Type	Perforators Evaluated	c<0.5 mm [Size mm]	0.5–1.0 mm [Size mm]	>1.0 mm [Size mm]	MPD-RBC									
1	F	70	R/ Buccal mucosa	cT4aN1M0	IVA	Left buccal skin and mucosa resection + R/ mRND -> ALT for fistula closure		CCRT X2 66Gy radiation		DM	PS0 KPS100	ALT	4	0	1 [0.7]	3 [1.2, 1.5, 1.4]	0.02					
2	M	54	Oropharynx + tongue	cT3N0M0	III					Smoking: 20 × 36 years, wine 300 ml × 34 years		ALT	4	1 [0.4]	2 [0.8, 0.9]	1 [1.5]	0.001					
3	M	75	R/ Tongue	cT4aN0M0	IVA	R/ Hemiglossectomy + R/ SND	N/A			CVA				3	0	1 [0.8]	2 [1.3, 1.6]	0.005				
4	M	76	R/ Tongue	cT3N0M0	III	R/ Hemiglossectomy + R/ SND	N/A							4	1 [0.3]	0 [0.9, 0.8, 0.8]	0	0.05				
5	M	62	Oropharynx + tongue	cTa2N0M0	IVA	Total Glossectomy + B/L mRND (R/ I-III; L/ I-V)		DCF x2 CBDCA x3 RT 66Gy		N/A												
6	F	56	L/ Tongue	cT2N0M0	II	L/ Hemiglossectomy + L/ SND	N/A		no history	ALTR	3	0	0	3 [1.2, 1.5, 1.8]	0.02							
7	F	73	L/ Tongue	cT3N0M0	III	L/ Hemiglossectomy + L/ SND	N/A		DM, HTN, AF		PSI KPS80	ALT	4	0	2 [0.6, 0.7]	2 [1.4, 1.8]	0.004					

> next surgery; AF, atrial fibrillation; ALT, anterolateral thigh; B/L, bilateral; CCRT, Concurrent chemoradiation; CBDCA, Carboplatin; CVA, cerebrovascular accident; DCF, Docetaxel, Cisplatin, and 5-fluorouracil; DM, diabetes mellitus; HT, hypothyroidism; HTN, hypertension; L/ left; KPS, Karnofsky Performance Status; mRND, modified radical node dissection; N/A, not applicable; PS, performance status; SND, selective lymph node dissection; RAMC, rectus abdominis myocutaneous; R/ right; RT, radiotherapy.

*MPD-RBC, minimal perforator diameter to assess red blood cell movement on video-capillaroscopy.
perfusion. This feature may aid in the decision-making to select which perforator is best as the main axis of fasciocutaneous components.

As a limitation, when video-capillaroscopy is performed in large vessels (>0.5 mm), the volume of RBCs passing through the lumen causes the entire area to appear red and the movement of the RBCs is difficult to detect. Additionally, the external validity of these outcomes is restricted, as spasm determination has a qualitative character and the appropriate utilization of this technology has a learning curve as it happens with other technologies.

CONCLUSIONS

Since more than half of the perforators showed signs of temporary S/DP to varying degrees, it is imperative that blood flow from perforating vessels is stable with resolution of S/DP before transecting the pedicle and subsequent anastomosis. Video-capillaroscopy, a noninvasive imaging modality, is a useful alternative for intraoperative evaluation of perforator flow and pulse for safe flap transfer.

ACKNOWLEDGMENT

All authors have completed the ICMJE uniform disclosure form.

REFERENCES

1. Vargas CR, Iorio ML, Lee BT. A systematic review of topical vasodilators for the treatment of intraoperative vasospasm in reconstructive microsurgery. Plast Reconstr Surg. 2015;136:411–422.
2. Matsui C, Lao WW, Tanaka T, et al. Real-time assessment of free flap capillary circulation using videocapillaroscopy. Plast Reconstr Surg. 2022;150:407–413.
3. Matsui C, Lao W, Tanaka T, et al. Dynamic changes on video-capillaroscopy and potential microsurgical application: The effect of temperature on skin surface readings. Plast Reconstr Surg Glob Open. 2022;10:e4265.
4. Hattori Y, Nakamura R, Niu A. Capillaroscopy for monitoring arterial perfusion in free flap surgery. J Reconstr Microsurg. 2020;36:e3–e4.
5. Hou SM, Scaber AV, Urbaniak JR. Relief of blood-induced arterial vasospasm by pharmacologic solutions. J Reconstr Microsurg. 1987;3:147–151.
6. Swartz WM, Brink RR, Buncke HJ Jr. Prevention of thrombosis in arterial and venous microanastomoses by using topical agents. Plast Reconstr Surg. 1976;58:478–487.
7. Müller T, Hapfemeier A, Schmidt LH, et al. A comparative analysis using flowmeter, laser-Doppler [spectrophotometry], and indocyanine green-videoangiography for detection of vascular stenosis in free flaps. Sci Rep. 2020;10:9399.
8. Kovacsova Z, Bale G, Tachtsidis I. Medical Utility of NIR Monitoring. In: Narayan RBF-E of BE, ed. *Encyclopedia of Biomedical Engineering*. Elsevier; 2019:415–431.
9. Valisiu P. 12-Optical methods for assessing skin flap survival. In: Meglinski IBF-B for MA, ed. *Publishing Series in Biomaterials*. Woodhead Publishing; 2015:331–346.
10. Jones NF. Intraoperative and postoperative monitoring of microsurgical free tissue transfers. Clin Plast Surg. 1992;19:783–797.