BPS States, Torus Links and Wild Character Varieties

Duiliu-Emanuel Diaconescu1, Ron Donagi2, Tony Pantev2

1 NHETC, Rutgers University, 126 Frelinghuysen Road, Piscataway, NJ 08854, USA.
E-mail: duiliu@physics.rutgers.edu

2 David Rittenhouse Laboratory, Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA.
E-mail: donagi@math.upenn.edu; tpantev@math.upenn.edu

Received: 3 May 2017 / Accepted: 18 December 2017
Published online: 8 February 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: A string theoretic framework is constructed relating the cohomology of wild character varieties to refined stable pair theory and torus link invariants. Explicit conjectural formulas are derived for wild character varieties with a unique irregular point on the projective line. For this case, this leads to a conjectural colored generalization of existing results of Hausel, Mereb and Wong as well as Shende, Treumann and Zaslow.

Contents

1. Introduction 1028
 1.1 Wild character varieties 1029
 1.2 The conjecture of Hausel, Mereb and Wong 1031
 1.3 The formula of Shende, Treumann and Zaslow 1032
 1.4 Spectral correspondence and a Calabi–Yau threefold 1033
 1.5 Refined stable pair theory via torus links 1035
 1.6 The main conjectures 1036

2. Irregular Parabolic Higgs Bundles on Curves 1038
 2.1 Setup and moduli spaces 1038
 2.2 Deformation theory 1040
 2.3 Wild non-abelian Hodge correspondence 1041

3. Spectral Construction 1044
 3.1 The holomorphic symplectic surface 1044
 3.2 Irregular parabolic Higgs bundles from torsion sheaves 1046
 3.3 The inverse construction 1049
 3.4 Isomorphism of moduli stacks 1051
 3.5 The Calabi–Yau threefold 1052

4. Refined Stable Pairs and Torus Links 1052
 4.1 Torus action and invariant curves 1052
 4.2 Stable pair theory and localization 1054
1. Introduction

The main goal of this paper is to develop a string theoretic framework for the cohomology of wild character varieties. Previous such constructions [14–16] have been carried out for regular and tamely ramified character varieties, leading to a physical derivation of the main conjectures of Hausel and Rodriguez-Villegas [40], respectively Hausel, Letellier and Rodriguez-Villegas [38]. Very briefly, using the \(P = W \) conjecture of de Cataldo, Hausel and Migliorini [17], the string theoretic approach places these conjectures in the framework of motivic Donaldson–Thomas theory developed by Kontsevich and Soibelman [52]. The conjectural formulas of [38,40] are then identified in [14,16] with refined Gopakumar–Vafa expansions for certain Calabi–Yau threefolds. An important part of this program, namely the refined stable pair formula for local curves without marked points, has been recently proven by Maulik [58].

The main outcome of the present work is a conjectural generalization of recent results of Hausel, Mereb and Wong [39] as well as Shende, Treumann and Zaslow [73] in the context of wild character varieties with one singular point on the projective line. The string theoretic construction employed in the process provides compelling evidence for the wild variant of the \(P = W \) conjecture of de Cataldo, Hausel, and Migliorini [17].

For completeness, note that topological and motivic invariants of moduli spaces of Higgs bundles and flat connections have been intensively studied in the recent mathematical literature employing different approaches. Arithmetic methods have been used [10,11,26,54,62,70], leading to complete results for Poincaré polynomials of Higgs bundle moduli spaces. Moreover, the motives of the moduli stacks of irregular Higgs bundles, as well as irregular connections over arbitrary fields have been recently computed in [29]. An alternative approach based on wallcrossing for moduli spaces of linear chains on curves was developed in [32], and used in [31] to compute the Hirzebruch genus of moduli spaces of \(PGL(r, \mathbb{C}) \) Higgs bundles. Finally, a different class of character varieties defined using Zariski closures of conjugacy classes at the marked points was studied in [55]. It is not clear at the moment if there is any conceptual relation between these results and the physical approach developed here. This remains an important open question for future research.