Is there still a place for vinorelbine in advanced metastatic castration resistant prostate cancer?

Giangiandomenico Roviello, MDA∗, Silvia Paola Corona, MDB, Raffaele Conca, MD, Roberto Petrioli, MDC, Pietro Rosellini, MDD, Alberto Bonetta, MDe, Michele Aieta, MDa

Abstract

The aim of this paper was to evaluate the activity and tolerability of oral vinorelbine in patients with advanced castration resistant prostate cancer (CRPC) who progressed after a minimum of three lines including: abiraterone acetate, docetaxel, cabazitaxel, and enzalutamide.

Treatment consisted of weekly oral vinorelbine 60mg/m². Chemotherapy was administered until disease progression or unacceptable toxicity.

Twenty-six patients received vinorelbine: their median age was 74 years (range 58–84 years). Twenty-four (92.3%) patients had bone metastases. A decrease in PSA levels ≥50% was observed in 2 patients (7.7%). Among the subjects who were symptomatic at baseline, pain was reduced in 3 patients (13.6%) with a significant decrease in analgesic use. Median progression-free survival was 9 weeks (95% CI: 7 to 11) and median overall survival was 17 weeks (95% CI: 12 to 22). Treatment was well tolerated, and no grade 4 toxicities were observed.

Our findings do not suggest the use of oral vinorelbine on a weekly schedule, in CRPC heavily pre-treated.

Abbreviations: CRPC = castration resistant prostate cancer, OS = overall survival, PCWG2 = Prostate Cancer Working Group 2, PFS = progression-free survival, PSA = prostate specific antigen.

Keywords: chemotherapy, prostate cancer, vinorelbine

1. Introduction

Prostate cancer is the most common cancer among occidental men.[1] Castration resistant prostate cancer (CRPC) is defined as the progression of disease after or during medical and/or surgical castration. In the setting of CRPC, several new agents with different mechanisms of action have been approved;[2] these include older or novel taxanes, novel oral anti-androgen drugs such as enzalutamide or abiraterone acetate, immunotherapy (sipuleucel-T) and bone targeted agent (radium-223).[3] All these drugs have shown to improve survival; however, most patients will progress developing resistance, underlying a medical need for this subgroup of patients. In this setting, various alternative options for heavily pre-treated patients have been proposed including: estramustine phosphate, docetaxel rechallenge and carboplatin plus etoposide, which were based on small clinical.[1–5]

Among other chemotherapeutic agents, Vinorelbine, a semi-synthetic vinca alkaloid that is a mitotic inhibitor with better therapeutic index and lower neurotoxicity with respect to other vinca alkaloids has showed certain efficacy and safety in the treatment of patients with metastatic CRPC.[6–7] In particular, the oral administration of vinorelbine that is an easy route of administration compared with intravenous, achieved results and good safety profile also in elderly patients,[8] which are ideally comparable to an heavily pre-treated population of patients.

Based on these studies, we performed a phase II study to evaluate efficacy and safety of oral vinorelbine in patients with advanced CRPC who have been heavily pre-treated.

2. Materials and methods

2.1. Inclusion criteria

Patients were enrolled if had a histologically confirmed metastatic CRPC. Patients must progress after previous lines of therapies including abiraterone acetate, docetaxel, cabazitaxel, and enzalutamide (with a minimum of 3 lines of therapies for patient), as defined by Prostate Cancer Working Group 2 (PCWG2) criteria.[9,10]
2.2. Treatment plan and assessments

Treatment consisted of weekly oral vinorelbine 60mg/m². Cycles were administered if patients had adequate renal (serum creatinine ≤2.0mg/dL), hepatic function (serum bilirubin ≤2.0mg/dL) and hematological (leukocytes ≥3000/mm³; hemoglobin ≥10g/dL, platelets ≥100,000/mm³). Patients continued to take analgesic medications to provide optimal pain control. All patients with bone metastases received bone-targeted agent if clinically indicated. Vinorelbine was administered until disease progression or unacceptable toxicity. An antiemetic pre-medication with ondansetron 8mg per os was administered if clinically indicated.

After the first occurrence of a grade III haematologic toxicity the treatment was delayed and administered at the same dose after complete recovery. If there was grade IV toxicity, the treatment was interrupted, and after a maximum of 3 weeks for recovery, the patients restarted subsequent administrations to 30mg. If there was another episode of grade IV toxicity, the treatment was interrupted. Anamnestic and physical evaluation was performed at baseline in all patients. Every 3 weeks, we performed blood tests including prostate specific antigen (PSA) and every 2 months we performed radiological assessments, including computed tomography scans of the thorax, abdomen, and pelvis. Follow-up data were available for all patients.

2.3. Outcome measures

PSA response was defined by ≥50% decline from baseline, while a ≥25% PSA increase, confirmed with a second PSA reading after a minimum of 3 weeks, was used to determine PSA progression and response duration. RECIST 1.1 criteria were used to assess measurable disease.[11] Median overall survival (OS) was measured from the start of vinorelbine to death or censoring. Kaplan–Meier estimates by the STATA/IC version 12 software were used to determine progression-free survival (PFS), defined as time from start of chemotherapy to time of PSA progression, symptomatic progression and/or radiographic progression. Pain symptomatology was measured at baseline and then every 3 weeks by the McGill Melzack Pain Questionnaire.[12] National Cancer Institute Common Terminology Criteria for adverse events (version 3.0 were adopted to grade the adverse events[13]).

2.4. Statistical analysis

PSA response was the primary endpoint. In accordance with Simon minimax design a sample size of 25 patients was planned, assuming a response rate of approximately 10% for other fourth-line chemotherapies, and a target level of interest of 30%, with an α of 0.05 and a β of 0.90. Overall survival, PFS, and pain response were secondary endpoints.

3. Results

From March 2016 to December 2017, a total of 26 patients were enrolled. Table 1 reported the baseline and clinical characteristics of the included patients. Their median age was 74 years (range 58–84 years). Bone metastases were present in 24 (92.3%) men. Median PSA level at baseline was 140ng/mL (range 0.8–9820ng/mL). All patients were treated with almost three lines of therapies for CRPC, all patients performed prior docetaxel and abiraterone acetate while 18 and 9 patients were treated with prior enzalutamide and cabazitaxel respectively.

Median duration of treatment with vinorelbine was 7 weeks. A decrease in PSA levels ≥30% was observed in 5 patients (19.2%) (Table 2). Out of the 9 patients previously exposed to cabazitaxel, one (11.1%) achieved a PSA response. In the subgroup of patients who received previous enzalutamide, 4 (22.2%) out of 18 patients achieved a PSA response.

After a median follow-up of 13 weeks, the median PFS was 9 weeks (95% CI: 7 to 11) and median OS was 17 weeks (95%
The results of this study suggest that low weekly vinorelbine has a predictive of PSA (13 vs 15 weeks, P = .4), however although a trend has been observed suggesting that basal values of PSA is prognostic and predictive of efficacy, the absence of a statistical significance does not allow definitive conclusions. Among symptomatic patients, pain was reduced in 3 (13.6%) with a decrease in analgesic use. The median duration of palliative response was 7 weeks.

The regimen was generally well tolerated, and no unexpected toxic effect was observed (Table 3). No grade 4 toxicity was observed.

The most frequent side effects were neutropenia in 7 (26.9%) patients and nausea/vomiting in 3 (11.5%) which were grade 1 or 2 in most cases. Grade 3 neutropenia and thrombocytopenia occurred in 1 patient respectively. A dose reduction of vinorelbine (30 mg) was needed for these 2 patients. At the time of the analysis, 4 patients (15.4%) were still alive.

4. Discussion

The results of this study suggest that low weekly vinorelbine has a poor efficacy in heavily pre-treated CRPC suggesting no further role for this agent in this setting of disease.

The semisynthetic vinca alkaloid with cytotoxic effect “vinorelbine”, a microtubule-binding agent, is currently available as an oral formulation has produce interesting results, both as a monotherapy or in combination for several solid tumors including breast cancer and small cell lung cancer.[14–16]

In regard of prostate cancer, the use of vinorelbine as a monotherapy has been shown to be effective demonstrating a clinical response rate and pain control.[6,7,17,18] Specifically, clinical response was reported to range between 20% and 40% with 20% reduction of PSA levels.[6,7,17,18] In addition, the oral route of administration has suggested as a valid option the use of a metronomic oral vinorelbine.[19]

Over the past years, the new agents abiraterone acetate, enzalutamide, and cabazitaxel were approved for the treatment of advanced CRPC. However, the optimal sequencing of these new drugs remains unclear.[20–23] Unfortunately, there is a shortage of data on the efficacy of a further line of treatment in heavily pre-treated CRPC. In 2014, Buonerba et al investigated in a small study the combination chemotherapy with carboplatin plus etoposide in a population of patients who progressed after several therapeutic drugs for CRPC: 2 out of 7 patients with measurable disease had a partial response, median PFS was 11 weeks (range: 8–18), and median OS was 18 weeks (range: 12–26).[23] In addition, another small study suggested that low dose Estramustine phosphate with concomitant low dose acetylsalicylic acid is a safe treatment option with some activity for patients with advanced CRPC who have been heavily pretreated. Thirty-one patients were enrolled. A total of 9 patients (29.0%) gained a PSA response. Median PFS was 3.6 months and median OS 7.6 months.[44] Finally, another small study reported a decrease in PSA levels ≥50% in 7 patients (26.9%); a median PFS of 4.4 months and median OS of 10.7 months for the combination of weekly docetaxel combined with weekly epirubicin in patients with advanced CRPC previously exposed to docetaxel and abiraterone acetate.[5]

In contest, there is an advantage of an oral route of administration offered by oral vinorelbine in a group of frail CRPC patients such as those heavily pre-treated of the our study, unfortunately we have demonstrated a very poor efficacy of vinorelbine with a decrease in PSA levels ≥50% observed in 2 patients (7.7%); a median PFS of 9 weeks and median OS of 17 weeks. However, we have to report that this study has enrolled a very poor prognostic group of patients compared with the aforementioned (Table 4). One of the most interesting data is that in 9 patients previously exposed to cabazitaxel, only one (11.1%) achieved a PSA response but in the subgroup of patients who received previous enzalutamide, 4 (22.2%) out of 18 patients achieved a PSA response. Although the small number of involved patients do not allow definitive conclusions this last data may require further investigation and seems reflect the trend of successful use of chemotherapy in heavily pre-treated patients not exposed to previous cabazitaxel.[5] Finally, as expected, we observed a good safety profile with no grade 4 toxicity or discontinuation of therapy. However, it is noteworthy that there are several limitations in our study: first, the small numbers of patients precluding possible definitive conclusions. Second, the PFS is a mixed endpoint that includes PSA progression, clinical progression and disease progression and caution therefore may be taken before drawing firm conclusions and finally the absence of a comparison or placebo.

In conclusion, as we all await additional studies which may clarify the optimal sequencing of the new available agents in advanced CRPC, the present analysis seems to not suggest the use of oral vinorelbine on a weekly schedule, in CRPC heavily pre-treated.

Table 3

Number of patients experiencing the most frequent treatment-related adverse events.	Grade 2	Grade 3
Neutropenia	7 (26.9%)	1 (3.8%)
Anemia	2 (7.7%)	0
Thrombocytopenia	2 (7.7%)	1 (3.8%)
Nausea/vomiting	3 (11.5%)	0
Abdominal pain	1 (3.8%)	0
Diarrhea	1 (3.8%)	0
Table 4
Previous studies with chemotherapy in heavily pretreated CRPC.

Study	Agent	Number of patients	Previous Systemic Therapies For CRPC (%)	50% PSA Response (%)/Pain Response (%)	Median PFS (months)/ Median OS (months)
Buonerba et al [3]	Carboplatin+ etoposide	15	Docetaxel: 100	6.7/33.3	2.75/4.5
			Abiraterone acetate: 86.7		
			Enzalutamide: 13.3		
			Cabazitaxel: 100		
			Other: 0		
Petrioli et al [4]	Estramustine phosphate	31	Docetaxel:100	29/38.7	3.6/7.4
			Abiraterone acetate: 100		
			Enzalutamide: 0		
			Cabazitaxel: 51.6		
			Other: 48.4		
Petrioli et al [5]	Docetaxel+Epirubicin	26	Docetaxel:100	26.9/38.1	4.4/10.7
			Abiraterone acetate: 100		
			Enzalutamide: 0		
			Cabazitaxel: 15.4		
			Other: 0		
Roviello et al	Vinorelbine x os	26	Docetaxel:100	7.7/13.6	2.25/4.25
			Abiraterone acetate: 100		
			Enzalutamide: 60.2		
			Cabazitaxel: 34.6		
			Other: 50		

* Reported as weeks.

References
[1] Malvezzi M, Bertuccio P, Levi F, et al. European cancer mortality predictions for the year 2013. Ann Oncol 2013;24:792e800.
[2] Komura K, Sweeney CJ, Inamoto T, et al. Current treatment strategies for advanced prostate cancer. Int J Urol 2018;25:220e31.
[3] Buonerba C, Federico P, Bosso D, et al. Carboplatin plus etoposide in heavily pretreated castration-resistant prostate cancer patients. Future Oncol 2014;10:1335e60.
[4] Petrioli R, Roviello G, Fiaschi AL, et al. Low-dose estramustine phosphate and concomitant low-dose acetysalicylic acid in heavily pretreated patients with advanced castration-resistant prostate cancer. Clin Genitourin Cancer 2015;13:441e6.
[5] Petrioli R, Roviello G, Fiaschi AL, et al. Rechallenge of docetaxel combined with epirubicin given on a weekly schedule in advanced castration-resistant prostate cancer patients previously exposed to docetaxel and abiraterone acetate: a single-institution experience. Med Oncol 2015;32:52.
[6] Oudard S, Caty A, Humbler Y, et al. Phase II study of vinorelbine in patients with androgen-independent prostate cancer. Ann Oncol 2001;12:847e52.
[7] Macbeth F. Androgen deprivation and antagonism in the treatment of advanced prostate carcinoma: Vinorelbine: an update and review of activity. Clin Oncol 1997;9:197.
[8] Tralongo P, Bordonaro S, Di Mari A, et al. Chemotherapy in frail elderly patients with hormone-refractory prostate cancer: a “real world” experience. Prostate Int 2016;4:15e9.
[9] Bubley GJ, Carducci M, Dahut W, et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol 1999;17:3461e7.
[10] Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008;26:1148e59.
[11] Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228e47.
[12] Briasoulis E, Pappas P, Puozzo C, et al. Dose-ranging study of metronomic oral vinorelbine in patients with advanced refractory prostate cancer. Clin Cancer Res 2009;15:645e61.
[13] Saridaki Z, Malamos N, Kourakos P, et al. A phase I trial of oral metronomic vinorelbine plus capecitabine in patients with metastatic breast cancer. Cancer Chemother Pharmacol 2012;69:35e42.
[14] Petrioli R, Francini E, Fiaschi AL, et al. Switch maintenance treatment with oral vinorelbine and bevacizumab after induction chemotherapy with cisplatin, gemcitabine and bevacizumab in patients with advanced non-squamous non-small cell lung cancer: a phase II study. Med Oncol 2015;32:134.
[15] Fields-Jones S, Koletsky A, Wilding G, et al. Improvements in clinical benefit with vinorelbine in the treatment of hormone-refractory prostate cancer. A phase II trial Ann Oncol 1999;10:1307e10.
[16] Liu G, Fransen E, Fitch M, et al. Patients preference for oral versus intravenous palliative chemotherapy. J Clin Oncol 1997;15:110e5.
[19] Di Desidero T, Derosa L, Galli L, et al. Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase II study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients. Invest New Drugs 2016;34:760–70.

[20] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guideline). Prostate Cancer. Version 2. 2014. Available at: http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. [Accessed July 13, 2013].

[21] Horwich A, Hugosson J, de Reijke T, et al. Panel Members; European Society for Medical Oncology. Prostate cancer: ESMO Consensus Conference Guidelines 2012. Ann Oncol 2013;24:1141–62.

[22] Francini E, Petrioli R, Roviello G. No clear evidence of a clinical benefit of a sequential therapy regimen with abiraterone acetate and enzalutamide. Expert Rev Anticancer Ther 2014;14:1135–40.

[23] Petrioli R, Francini E, Roviello G. Is there still a place for docetaxel rechallenge in prostate cancer? World J Clin Oncol 2015;6:99–103.