A BOOTSTRAPPING APPROACH TO JUMP INEQUALITIES
AND THEIR APPLICATIONS

MARIUSZ MIREK, ELIAS M. STEIN, AND PAVEL ZORIN-KRANICH

Abstract. The aim of this paper is to present an abstract and general approach to jump inequalities in harmonic analysis. Our principal conclusion is the refinement of r-variational estimates, previously known for $r > 2$, to end-point results for the jump quasi-seminorm corresponding to $r = 2$. This will be applied to the dimension-free results in [Bou+18a] and [Bou+18b] and operators of Radon type treated in [JSW08].

1. Introduction

Variational and jump inequalities in harmonic analysis, probability, and ergodic theory have been studied extensively since [Bou89], where a variational version of the Hardy–Littlewood maximal function was introduced. The purpose of this paper is to formulate general sufficient conditions that allow us to deal with variational and jump inequalities for a wide class of operators. Our approach will be based on certain bootstrap arguments. As an application we extend the known L^p estimates for $r > 2$ (see definition (1.2)) to end-point assertions for the jump quasi-seminorm J^p_2 (see definition (1.3)), which corresponds to $r = 2$. In this way our results will extend previously recently obtained assertions in [Bou+18a] and [Bou+18b] for dimension-free estimates given for $r > 2$, as well as a number of results in [JSW08] for operators of Radon type.

We recall the notation for jump quasi-seminorms from [MSZ18a]. For any $\lambda > 0$ and $I \subset \mathbb{R}$ the λ-jump counting function of a function $f : I \to \mathbb{C}$ is defined by

$$N_\lambda(f) := N_\lambda(f(t) : t \in I) = \sup \{ J \in \mathbb{N} | \exists t_0 < \cdots < t_J : \min_{t_j \in I} | f(t_j) - f(t_{j-1}) | \geq \lambda \},$$

and the r-variation seminorm by

$$V^r(f) := V^r(f(t) : t \in I) = \left\{ \begin{array}{ll}
\sup_{J \in \mathbb{N}} \sup_{t_0 < \cdots < t_J} \left(\sum_{j=1}^{J} | f(t_j) - f(t_{j-1}) |^r \right)^{1/r}, & 0 < r < \infty,
\sup_{t_0 < t_1} | f(t_1) - f(t_0) |, & r = \infty,
\end{array} \right.$$ (1.2)

where the former supremum is taken over all finite increasing sequences in I.

Throughout the article (X, B, m) denotes a σ-finite measure space. For a function $f : X \times I \to \mathbb{C}$ the jump quasi-seminorm on $L^p(X)$ for $1 < p < \infty$ is defined by

$$J^p_2(f) := J^p_2(f : X \times I \to \mathbb{C}) := J^p_2((f(\cdot, t))_{t \in I}) := J^p_2((f(\cdot, t))_{t \in I} : X \to \mathbb{C}) = \sup_{\lambda > 0} \| \lambda N_\lambda(f(\cdot, t) : t \in I) \|^{1/2}_{L^p(X)},$$

(1.3)

In this connection by [MSZ18a, Lemma 2.12] we note that

$$\| V^r(f) \|_{L^{p,\infty}(X)} \lesssim_{p, r} J^p_2(f) \leq \| V^2(f) \|_{L^p(X)}$$

(1.4)

for $r > 2$, and the first inequality fails for $r = 2$.

We now briefly list our main results.

Mariusz Mirek was partially supported by the Schmidt Fellowship and the IAS Found for Math. and by the National Science Center, NCN grant DEC-2015/19/B/ST1/01149. Elias M. Stein was partially supported by NSF grant DMS-1265524. Pavel Zorin-Kranich was partially supported by the Hausdorff Center for Mathematics and DFG SFB-1060.
(1) The extension to the jump quasi-seminorm \(J_2^p \) of dimension-free estimates for maximal averages over convex sets, as given by Theorem 1.9, Theorem 1.11 and Theorem 1.14 below.

(2) The corresponding extension to \(J_2^p \) of the previous dimension-free estimates for cubes in the discrete setting, see Theorem 1.18.

(3) The general \(J_2^p \) results for operators of Radon type (both averages and singular integrals) in Theorem 1.22 and Theorem 1.30, related to the previous results in [JSW08].

Underlying the proofs of all these results will be the basic facts about the jump quantity \(J_2^p \) obtained in our recent paper [MSZ18a], and the bootstrap arguments in Section 2 of the present paper. The reader might compare the methods in Section 2 with related arguments in [Bou+18a, Section 2.2] as well as [NSW78], [DR86], [Car86], and Christ’s observation included in [Car88]. The techniques in Section 2 will be carried out in the following framework. We assume that we are given a measure space \((X,B,m) \) which is endowed with a sequence of linear operators \((S_j)_{j \in \mathbb{Z}} \) acting on \(L^1(X)+L^\infty(X) \) that play the role of the Littlewood–Paley operators. Namely, the following conditions are satisfied:

(1) The family \((S_j)_{j \in \mathbb{Z}} \) is a resolution of the identity on \(L^2(X) \), i.e. the identity

\[
\sum_{j \in \mathbb{Z}} S_j = \text{Id}
\]

holds in the strong operator topology on \(L^2(X) \).

(2) For every \(1 < p < \infty \) we have

\[
\left\| \left(\sum_{j \in \mathbb{Z}} |S_j f|^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}, \quad f \in L^p(X).
\]

Suppose now we have a family of linear operators \((T_t)_{t \in \mathbb{I}} \) acting on \(L^1(X)+L^\infty(X) \), where the index set \(\mathbb{I} \) is a countable subset of \((0,\infty) \). We assume that \(\mathbb{I} \subset (0,\infty) \) to make our exposition consistent with the results in the literature. One of our aims is to understand what kind of conditions have to be imposed on the family \((T_t)_{t \in \mathbb{I}} \), in terms of its interactions with the Littlewood–Paley operators \((S_j)_{j \in \mathbb{Z}} \) to obtain the inequality

\[
J_2^p((T_t f)_{t \in \mathbb{I}} : X \to \mathbb{C}) \lesssim \|f\|_{L^p}
\]

in some range of \(p \)'s. We accomplish this task in Section 2 by proving Theorem 2.14 and Theorem 2.39 for positive operators\(^1\) by certain bootstrap arguments, and Theorem 2.28 for general operators. Our approach will be based on extension of ideas from [DR86] and [Bou+18a] to a more abstract setting.

As mentioned above it has been very well known since Bourgain’s article [Bou89] that \(r \)-variational estimates (and consequently maximal estimates, see (1.2)) can be deduced from jump inequalities. Namely, a priori jump estimates (1.7) in an open range of \(p \in (1,\infty) \) imply

\[
\|V^r(T_t f : t \in \mathbb{I})\|_{L^p} \lesssim_{p,r} \|f\|_{L^p}
\]

in the same range of \(p \)'s and for all \(r \in (2,\infty) \). This follows from (1.4) and interpolation. Therefore, it is natural to say that the jump inequality in (2.2) is an endpoint for \(r \)-variations at \(r = 2 \). On the other hand, we also know that the range of \(r \in (2,\infty) \) in \(r \)-variational estimates, for many operators in harmonic analysis, is sharp due to the sharp estimates in Lépingle’s inequality for martingales, see [MSZ18a] and the references therein.

Here and later we write \(a \lesssim b \) if \(a \leq Cb \), where the constant \(0 < C < \infty \) is allowed to depend on \(p \), but not on the underlying abstract measure space \(X \) or function \(f \). If \(C \) is allowed to depend on some additional parameters this will be indicated by adding a subscript to the symbol \(\lesssim \).

\(^1\)A linear operator \(T \) is positive if \(T f \geq 0 \) for every \(f \geq 0 \).
1.1. Applications to dimension-free estimates. An important application of the results from Section 2 will be bounds independent of the dimension in jump inequalities associated with the Hardy–Littlewood averaging operators. Let \(G \subset \mathbb{R}^d \) be a symmetric convex body, that is, a non-empty symmetric convex open bounded subset of \(\mathbb{R}^d \). Define for \(t > 0 \) and \(x \in \mathbb{R}^d \) the averaging operator

\[
(1.8) \quad A_G^t f(x) := |G|^{-1} \int_G f(x - ty) dy, \quad f \in L^1_{loc}(\mathbb{R}^d).
\]

It follows from the spherical maximal theorem that in the case that \(G \) is the Euclidean ball the maximal operator \(A_G^t f := \sup_{t > 0} |A_G^t f| \) corresponding to (1.8) is bounded on \(L^p(\mathbb{R}^d) \) for all \(p > 1 \), uniformly in \(d \in \mathbb{N} \) [Ste82]. This result was extended to arbitrary symmetric convex bodies \(G \subset \mathbb{R}^d \) in \([Bou86a]\) (for \(p = 2 \)) and \([Bou86b; Car86]\) (for \(p > 3/2 \)). For unit balls \(G = B^q \) induced by \(\ell^q \) norms in \(\mathbb{R}^d \) the full range \(p > 1 \) of dimension-free estimates was established in \([Müll90]\) (for \(1 \leq q < \infty \)) and \([Bou14]\) (for cubes \(q = \infty \)) with constants depending on \(q \). In the latter case the product structure of the cubes is important; this result was recently extended to products of Euclidean balls of arbitrary dimensions [Som17].

Variational versions of most of the aforementioned dimension-free estimates were obtained in \([Bou+18a]\) for \(r > 2 \). In this article we give a shorter and more self-contained proof of the main results of \([Bou+18a]\) and extend them to the endpoint \(r = 2 \) by appealing to Theorem 2.14 and Theorem 2.39. A notable simplification is that we do not use the maximal estimates as a black box. In particular, we reprove all dimension-free estimates for the maximal function \(A_G^t \).

In view of (1.4) and by real interpolation, Theorem 1.9 below extends \([Bou+18a, Theorem 1.2]\).

Theorem 1.9. Let \(d \in \mathbb{N} \) and \(G \subset \mathbb{R}^d \) be a symmetric convex body. Then for every \(1 < p < \infty \) and \(f \in L^p(\mathbb{R}^d) \) we have

\[
(1.10) \quad J^p_B((A^G_{2^k} f)_{k \in \mathbb{Z}} : \mathbb{R}^d \to \mathbb{C}) \lesssim \|f\|_{L^p(\mathbb{R}^d)},
\]

where the implicit constant is independent of \(d \) and \(G \).

As a consequence of Theorem 1.9 and the decomposition into long and short jumps, see (2.2), Theorems 1.11 and 1.14 below extend \([Bou+18a, Theorem 1.1]\) and \([Bou+18a, Theorem 1.3]\), respectively. Hence Theorem 1.9 can be thought of as the main result of this paper, since inequalities (1.12) and (1.15) were obtained in \([Bou+18a]\). However, we shall present a different approach to establish the estimates in (1.12) and (1.15).

Theorem 1.11. Let \(G \) be as in Theorem 1.9. Then for every \(3/2 < p < 4 \) and \(f \in L^p(\mathbb{R}^d) \) we have

\[
(1.12) \quad \left\| \left(\sum_{k \in \mathbb{Z}} (V^2(\mathcal{A}^G_{\ell^q} f : t \in [2^k, 2^{k+1}]))^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mathbb{R}^d)}.
\]

In particular,

\[
(1.13) \quad J^p_B((\mathcal{A}^G_{\ell^q} f)_{t > 0} : \mathbb{R}^d \to \mathbb{C}) \lesssim \|f\|_{L^p(\mathbb{R}^d)},
\]

where the implicit constants in (1.12) and (1.13) are independent of \(d \) and \(G \).

Theorem 1.14. Let \(d \in \mathbb{N} \) and \(G \subset \mathbb{R}^d \) be the unit ball induced by the \(\ell^q \) norm in \(\mathbb{R}^d \) for some \(1 \leq q \leq \infty \). Then for every \(1 < p < \infty \) and \(f \in L^p(\mathbb{R}^d) \) we have

\[
(1.15) \quad \left\| \left(\sum_{k \in \mathbb{Z}} (V^2(\mathcal{A}^G_{\ell^q} f : t \in [2^k, 2^{k+1}]))^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^d)} \lesssim_q \|f\|_{L^p(\mathbb{R}^d)}.
\]

In particular

\[
(1.16) \quad J^p_B((\mathcal{A}^G_{\ell^q} f)_{t > 0} : \mathbb{R}^d \to \mathbb{C}) \lesssim_q \|f\|_{L^p(\mathbb{R}^d)},
\]

where the implicit constants in (1.15) and (1.16) are independent of \(d \).

JUMP INEQUALITIES 3
The method of the present paper also allows us to provide estimates independent of the dimension in jump inequalities associated with the discrete averaging operator along cubes in \(Z^d \). For every \(x \in Z^d \) and \(N \in \mathbb{N} \) let
\[
A_N f(x) := \frac{1}{|Q_N \cap Z^d|} \sum_{y \in Q_N \cap Z^d} f(x - y), \quad f \in \ell^1(Z^d),
\]
be the discrete Hardy–Littlewood averaging operator, where \(Q_N = [-N, N]^d \).

Theorem 1.18. For every \(3/2 < p < 4 \) and \(f \in \ell^p(Z^d) \) we have
\[
J^p_2((A_N f)_{N \in \mathbb{N}} : Z^d \to \mathbb{C}) \lesssim \|f\|_{\ell^p(Z^d)}.
\]
Moreover, if we consider only lacunary parameters, then (1.19) remains true for all \(1 < p < \infty \) and we have
\[
J^p_2((A_{2^k} f)_{k \geq 0} : Z^d \to \mathbb{C}) \lesssim \|f\|_{\ell^p(Z^d)},
\]
where the implicit constants in (1.19) and (1.20) are independent of \(d \).

Theorem 1.18 provides the endpoint estimate at \(r = 2 \) for the recent dimension-free estimates [Bou+18b] for \(r \)-variations corresponding to operator (1.17).

The dimension-free results are proved in Section 3.1 by combining the results from Section 2 (Theorem 2.14 and Theorem 2.39) with the jump estimates for the Poisson semigroup from [MSZ18a] and Fourier multiplier estimates from [Bou86a] and [Müll90; Bou14].

1.2. **Applications to operators of Radon type.** Another important class of operators which was extensively studied in [JSW08] in the context of jump inequalities are operators of Radon type modeled on polynomial mappings.

Let \(P = (P_1, \ldots, P_d) : \mathbb{R}^k \to \mathbb{R}^d \) be a polynomial mapping, where each component \(P_j : \mathbb{R}^k \to \mathbb{R} \) is a polynomial with \(k \) variables and real coefficients. We fix \(\Omega \subset \mathbb{R}^k \) a convex open bounded set containing the origin (not necessarily symmetric), and for every \(x \in \mathbb{R}^d \) and \(t > 0 \) we define the Radon averaging operators
\[
M^P_t f(x) := \frac{1}{|\Omega_t|} \int_{\Omega_t} f(x - P(y))dy,
\]
where \(\Omega_t = \{x \in \mathbb{R}^k : t^{-1}x \in \Omega\} \). Using Theorem 2.14 and Theorem 2.39 we easily deduce Theorem 1.22, see Section 3.3.

Theorem 1.22. For every \(1 < p < \infty \) and \(f \in L^p(\mathbb{R}^d) \) we have
\[
J^p_2((M^P_t f)_{t > 0} : \mathbb{R}^d \to \mathbb{C}) \lesssim_{d,p} \|f\|_{L^p(\mathbb{R}^d)},
\]
where the implicit constant is independent of the coefficients of \(P \).

Before we formulate a corresponding result for truncated singular integrals we need to fix some definitions and notation. A **modulus of continuity** is a function \(\omega : [0, \infty) \to [0, \infty) \) with \(\omega(0) = 0 \) that is subadditive in the sense that
\[
u \leq t + s \implies \omega(\nu) \leq \omega(t) + \omega(s).
\]
Substituting \(s = 0 \) one sees that \(\omega(\nu) \leq \omega(t) \) for all \(0 \leq \nu \leq t \). The basic example is \(\omega(t) = t^\theta \), with \(\theta \in (0, 1) \). Note that the composition and sum of two moduli of continuity is again a modulus of continuity. In particular, if \(\omega(t) \) is a modulus of continuity and \(\theta \in (0, 1) \), then \(\omega(t)\theta \) and \(\omega(t^\theta) \) are also moduli of continuity.

The **Dini norm** and the **log-Dini norm** of a modulus of continuity are defined respectively by setting
\[
\|\omega\|_{\text{Dini}} := \int_0^1 \omega(t) \frac{dt}{t}, \quad \text{and} \quad \|\omega\|_{\text{log Dini}} := \int_0^1 \omega(t) \frac{\log t \, dt}{t}.
\]
For any \(c > 0 \) the integral can be equivalently (up to a \(c \)-dependent multiplicative constant) replaced by the sum over \(2^{-j/c} \) with \(j \in \mathbb{N} \).
Finally, for every $x \in \mathbb{R}^d$ and $t > 0$ we will consider the truncated singular Radon transform
\begin{equation}
\mathcal{H}_t^P f(x) := \int_{\mathbb{R}^k \setminus \Omega_t} f(x - P(y)) K(y) dy,
\end{equation}
defined for every Schwartz function f in \mathbb{R}^d, where $K: \mathbb{R}^k \setminus \{0\} \to \mathbb{C}$ is a kernel satisfying the following conditions:

1. the size condition, i.e. there exists a constant $C_K > 0$ such that
\begin{equation}
|K(x)| \leq C_K |x|^{-k}, \quad \text{for all } x \in \mathbb{R}^k;
\end{equation}
2. the cancellation condition
\begin{equation}
\int_{\Omega_R \setminus \Omega_t} K(y) dy = 0, \quad \text{for } 0 < r < R < \infty;
\end{equation}
3. the smoothness condition
\begin{equation}
\sup_{R > 0} \sup_{|y| \leq rt/2} \int_{R \leq |x| \leq 2R} |K(x) - K(x + y)| dx \leq \omega_K(t),
\end{equation}
for every $t \in (0, 1)$ with some modulus of continuity ω_K.

In many applications it is easy to verify the somewhat stronger pointwise version of the smoothness estimate from (1.28). Namely,
\begin{equation}
|K(x) - K(x + y)| \leq \omega_K(|y|/|x|)|x|^{-k}, \quad \text{provided that } |y| \leq |x|/2,
\end{equation}
for some modulus of continuity ω_K. One can immediately see that condition (1.29) implies condition (1.28). Our next result establishes an analogue of the inequality (1.23) for the operators in (1.25).

Theorem 1.30. Suppose that $\|\omega^\theta\|_{\log \text{Dini}} + \|\omega^{\theta/2}\|_{\text{Dini}} < \infty$ for some $\theta \in (0, 1]$. Then for every $p \in \{1 + \theta, (1 + \theta)'\}$ and $f \in L^p(\mathbb{R}^d)$ we have
\begin{equation}
J^P_{\theta}((\mathcal{H}_t^P f)_{t > 0} : \mathbb{R}^d \to \mathbb{C}) \lesssim_{d,p} \|f\|_{L^p(\mathbb{R}^d)},
\end{equation}
where the implicit constant is independent of the coefficients of P. More precisely,

1. if $\|\omega^\theta\|_{\log \text{Dini}} < \infty$, then
\begin{equation}
J^P_{\theta}((\mathcal{H}_{2^k} f)_{k \in \mathbb{Z}} : \mathbb{R}^d \to \mathbb{C}) \lesssim \|f\|_{L^p};
\end{equation}
2. if $\|\omega^{\theta/2}\|_{\text{Dini}} < \infty$, then
\begin{equation}
\left\| \left(\sum_{k \in \mathbb{Z}} V^2(\mathcal{H}_t f : t \in [2^k, 2^{k+1}]^2) \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}.
\end{equation}

The inequality (1.23) was proved in [JSW08] for the averages \mathcal{M}_t^P over Euclidean balls. The inequality (1.31) was proved in [JSW08] for monomial curves, i.e. in the case $k = 1, d = 2$, $K(y) = y^{-1}$ and $P(x) = (x, x^a)$, where $a > 1$. General polynomials were considered in [MST15] (although jump estimates are not explicitly stated in that article they can also be obtained with minor modifications of the proofs). Multi-dimensional variants of \mathcal{H}_t^P were also studied in [MST15] under stronger regularity conditions imposed on the kernel K. Inequalities (1.23) and (1.31) will be used to establish jump inequalities for the discrete analogues of (1.21) and (1.25) in [MSZ18b].

Finally we provide van der Corput integral estimates in Lemma B.1 and Proposition B.2, which have the feature that permit to handle the oscillatory integrals with non-smooth amplitudes. Its broader scope will be needed in the proof of Theorem 1.30.
2. An abstract approach to jump inequalities

2.1. Preliminaries. Let (X, \mathcal{B}, μ) be a σ-finite measure space endowed with a sequence of linear Littlewood–Paley operators $(S_j)_{j \in \mathbb{Z}}$ satisfying (1.5), (1.6). Assume that $(T_t)_{t \in \mathbb{I}}$ is a family of linear operators acting on $L^1(X) + L^\infty(X)$, where the index set \mathbb{I} is a subset of $(0, \infty)$. Under suitable conditions imposed on the family $(T_t)_{t \in \mathbb{I}}$ in terms of its interactions with the Littlewood–Paley operators $(S_j)_{j \in \mathbb{Z}}$ as in the introduction, we will study strong uniform jump inequalities

\begin{equation}
J^p_k((T_t f)_{t \in \mathbb{I}} : X \to \mathbb{C}) \lesssim \|f\|_{L^p}
\end{equation}

in various ranges of p’s, see Theorem 2.14, Theorem 2.28 and Theorem 2.39.

To avoid further problems with measurability we will always assume that \mathbb{I} is countable. Usually $\mathbb{I} = \mathbb{D} := \{2^n : n \in \mathbb{Z}\}$ the set of all dyadic numbers or $\mathbb{I} = \mathbb{U} := \bigcup_{n \in \mathbb{Z}} \mathbb{N}/2^n$ the set of non-negative rational numbers whose denominators in reduced form are powers of 2. In practice, the countability assumption may be removed if for every $f \in L^1(X) + L^\infty(X)$ the function $\mathbb{I} \ni t \mapsto T_t f(x)$ is continuous for μ-almost every $x \in X$. In our applications this will be always our case.

We recall the decomposition into long and short jumps from [JSW08, Lemma 1.3], which tells that for every $\lambda > 0$ we have

\begin{equation}
\lambda N_\lambda(T_t f(x) : t \in \mathbb{I})^{1/2} \lesssim \lambda N_\lambda/3(T_t f(x) : t \in \mathbb{D})^{1/2} + \left(\sum_{k \in \mathbb{Z}} \lambda N_\lambda(T_t f(x) : t \in [2^k, 2^{k+1}) \cap \mathbb{I})^{1/2} \right)^{1/2}.
\end{equation}

In other words the λ-jump counting function can be dominated by the long jumps (the first term in (2.2) with $t \in \mathbb{D}$) and the short jumps (the square function in (2.2)). Similar inequalities hold for the maximal function and for r-variations.

We deal with L^p bounds for the long jump counting function corresponding to T_t with $t \in \mathbb{D}$ in two ways, similarly to [DR86]. The first approach is to find an approximating family of operators (see the family $(P_k)_{k \in \mathbb{Z}}$ in Theorem 2.14) for which the bound in question is known and control a square function that dominates the error term, see (2.15) in Theorem 2.14. In our case this method works for positive operators with martingales or related operators as the approximating family. The second approach is to express T_{2^k} as a telescoping sum

\begin{equation}
T_{2^k} f = \sum_{j \geq k} T_{2^j} f - T_{2^{j+1}} f = \sum_{j \geq m} B_j f
\end{equation}

and try to deduce bounds in question from the behavior of $B_j = T_{2^j} - T_{2^{j+1}}$. This approach is needed if T_t is a truncated singular integral type operator, see Theorem 2.28. Similar strategies also yield L^p bounds for maximal functions $\sup_{k \in \mathbb{Z}} |T_{2^k} f(x)|$ or r-variations $V^r(T_{2^k} f(x) : k \in \mathbb{Z})$.

In order to deal with short jumps we note that the square function on the right-hand side of (2.2) is dominated by the square function associated with 2-variations, which in turn is controlled by a series of square functions

\begin{equation}
\left(\sum_{k \in \mathbb{Z}} \left(V^2(T_t f(x) : t \in [2^k, 2^{k+1}) \cap \mathbb{I}) \right)^{1/2} \right)^{1/2}
\end{equation}

\begin{equation}
\leq \sqrt{2} \sum_{l \geq 0} \left(\sum_{k \in \mathbb{Z}} \sum_{m=0}^{l-1} |(T_{2^k+2^k-l(m+1)} - T_{2^k+2^k-lm}) f(x)|^2 \right)^{1/2}.
\end{equation}

The square function on the right-hand side of (2.4) gives rise to assumption (2.40). Inequality (2.4) follows from the next lemma with $g(t) = T_{2^k+l} f(x)$ and $r = 2$.

Lemma 2.5. Let $r \in [1, \infty)$, $k \in \mathbb{Z}$, and a function $g : [0, 2^k] \cap \mathbb{U} \to \mathbb{C}$ be given. Then

\begin{equation}
V^r(g(t) : t \in [0, 2^k] \cap \mathbb{U}) \leq 2^{k-1} \sum_{l \geq 0} \left(\sum_{m=0}^{l-1} |g(2^k-l(m+1)) - g(2^k-lm)|^r \right)^{1/r}.
\end{equation}
The variation norm on the left-hand side of (2.6) can be extended to all \(t \in [0, 2^k] \) if \(g : [0, 2^k] \to \mathbb{C} \) is continuous. Lemma 2.5 originates in the paper of Lewko and Lewko [LL12], where it was observed that the 2-variation norm of a sequence of length \(N \) can be controlled by the sum of \(\log N \) square functions and this observation was used to obtain a variational version of the Rademacher–Menshov theorem. Inequality (2.6), essentially in this form, was independently proved by the first author and Trojan in [MT16] and used to estimate \(r \)-variations for discrete Radon transforms. Lemma 2.5 has been used in several recent articles on \(r \)-variations, including [Bon+18a]. For completeness we include a proof, which is shorter than the previous proofs.

Proof of Lemma 2.5. Due to monotonicity of \(r \)-variations it suffices to prove (2.6) with \(U_N = \{ u/2^N : u \in \mathbb{N} \text{ and } 0 \leq u \leq 2^{k+N} \} \) in place of \([0, 2^k] \cap U\). Observe that

\[
V^r(g(t) : t \in U_N) = V^r(g(t/2^N) : t \in [0, 2^{k+N}] \cap \mathbb{Z}).
\]

The proof will be completed if we show that

\[
(2.7) \quad V^r(g(t) : t \in [0, 2^n] \cap \mathbb{Z}) \leq 2^{1-1/r} \sum_{l=0}^{n} \left(\sum_{m=0}^{2^n-l} |g(2^j(m+1)) - g(2^jm)|^r \right)^{1/r}.
\]

Once (2.7) is established we apply it with \(g(t/2^N) \) in place of \(g(t) \) and \(n = k + N \) and obtain (2.6). We prove (2.7) by induction on \(n \). The case \(n = 0 \) is easy to verify. Let \(n \geq 1 \) and suppose that the claim is known for \(n-1 \). Let \(0 \leq t_0 < \cdots < t_J < 2^n \) be an increasing sequence of integers. For \(j \in \{0, \ldots, J\} \) let \(s_j \leq t_j \leq u_j \) be the closest smaller and larger even integer, respectively. Then

\[
\left(\sum_{j=1}^{J} |g(t_j) - g(t_{j-1})|^r \right)^{1/r} = \left(\sum_{j=1}^{J} |(g(t_j) - g(s_j)) + (g(s_j) - g(u_{j-1})) + (g(u_{j-1}) - g(t_{j-1}))|^r \right)^{1/r}
\]

\[
\leq \left(\sum_{j=1}^{J} |g(s_j) - g(u_{j-1})|^r \right)^{1/r} + \left(\sum_{j=1}^{J} |(g(t_j) - g(s_j)) + (g(u_{j-1}) - g(t_{j-1}))|^r \right)^{1/r}.
\]

In the first term we notice that the sequence \(u_0 \leq s_1 \leq u_1 \leq \cdots \) is monotonically increasing and takes values in \(2\mathbb{N} \), so we can apply the induction hypothesis to the function \(g(2^j) \). In the second term we use the elementary inequality \((a+b)^r \leq 2^{r-1}(a^r+b^r) \) and observe \(|t_j - s_j| \leq 1, |t_{j-1} - u_{j-1}| \leq 1, \) and \(s_j \geq u_{j-1} \), so that this is bounded by the \(l = 0 \) summand in (2.7). \(\square \)

2.2. Preparatory estimates.

We recall Lemma 2.8 that deduces a vector-valued inequality from a maximal one. Then we apply it to obtain Lemma 2.9.

Lemma 2.8 (cf. [DR86, p. 544]). Suppose that \((X, \mathcal{B}, m)\) is a \(\sigma \)-finite measure space and \((M_k)_{k \in \mathbb{Z}}\) is a sequence of linear operators on \(L^1(X) + L^\infty(X) \) indexed by a countable set \(\mathbb{J} \). The corresponding maximal operator is defined by

\[
M_{*,\mathbb{J}} f := \sup_{k \in \mathbb{J}} \sup_{|g| \leq |f|} |M_k g|,
\]

where the supremum is taken in the lattice sense. Let \(q_0, q_1 \in [1, \infty] \) and \(0 \leq \theta \leq 1 \). Let \(q_0 \in [q_0, q_1] \) be given by

\[
\frac{1}{2} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1} \quad \text{with} \quad \frac{1}{q_0} = \frac{1}{q_0} - \frac{\theta}{q_1} = \frac{1}{2} + \frac{1-q_0/2}{q_1}.
\]

Then

\[
\left\| \left(\sum_{k \in \mathbb{J}} |M_k g_k|^2 \right)^{1/2} \right\|_{L^{q_0}} \leq (\sup_{k \in \mathbb{J}} \|M_k\|_{L^{q_0} \to L^{q_0}})^{1-\theta} \|M_{*,\mathbb{J}}\|_{L^{q_1} \to L^{q_1}} \left\| \left(\sum_{k \in \mathbb{J}} |g_k|^2 \right)^{1/2} \right\|_{L^{q_0}}.
\]
Proof. Consider the operator $\hat{M}g := (M_k g_k)_{k \in \mathbb{J}}$ acting on sequences of functions $g = (g_k)_{k \in \mathbb{J}}$ in $L^1(X) + L^\infty(X)$. By Fubini’s theorem

$$\|\hat{M}g\|_{L^q(\ell^q)} = \|\sup_{k \in \mathbb{J}} |M_k g_k|\|_{\ell^q} \leq (\sup_{k \in \mathbb{J}} \|M_k\|_{L^q \to L^q}) \|g\|_{L^q(\ell^q)} = (\sup_{k \in \mathbb{J}} \|M_k\|_{L^q \to L^q}) \|g\|_{L^q(\ell^q)}.$$

By definition of the maximal operator

$$\|\hat{M}g\|_{L^{q_1}(\ell^{q_1})} = \|\sup_{k \in \mathbb{J}} |M_k g_k|\|_{L^{q_1}} \leq \|M_{*,\mathbb{J}}(\sup_{k \in \mathbb{J}} |g_k|)\|_{L^{q_1}} \leq \|M_{*,\mathbb{J}}\|_{L^{q_1} \to L^{q_1}} \|\sup_{k \in \mathbb{J}} |g_k|\|_{L^{q_1}} = \|M_{*,\mathbb{J}}\|_{L^{q_1} \to L^{q_1}} \|g\|_{L^{q_1}(\ell^{q_1})}.$$

The claim for $q_\theta \in [q_0, q_1]$ follows by complex interpolation between $L^{q_0}(X; \ell^{q_0}(\mathbb{J}))$ and $L^{q_1}(X; \ell^{q_1}(\mathbb{J}))$.\]

Lemma 2.9. Suppose that (X, \mathcal{B}, μ) is a σ-finite measure space with a sequence of operators $(S_k)_{k \in \mathbb{Z}}$ that satisfy the Littlewood–Paley inequality (1.6). Let $1 \leq q_0 \leq q_1 \leq 2$ and $L \in \mathbb{N}$ be a positive integer and let $\forall L = \{(k, l) \in \mathbb{Z}^2 : 0 \leq l \leq L - 1\}$. Let $(M_{k,l})_{(k,l) \in \mathbb{V}_L}$ be a sequence of operators bounded on $L^{q_1}(X)$ such that

$$\left(\sum_{k \in \mathbb{Z}} \sum_{l=0}^{L-1} |M_{k,l} S_{k+j} f|^2 \right)^{1/2} \leq a_j \|f\|_{L^2}, \quad f \in L^2(X) \tag{2.10}$$

for some positive numbers $(a_j)_{j \in \mathbb{Z}}$. Then for $p = q_1$ and for all $f \in L^p(X)$ we have

$$\left(\sum_{k \in \mathbb{Z}} \sum_{l=0}^{L-1} |M_{k,l} S_{k+j} f|^2 \right)^{1/2} \leq \left(L^{2-q_0/q_1} \left(\sum_{(k,l) \in \mathbb{V}_L} \|M_{k,l}\|_{L^{q_0} \to L^{q_1}}\right)^{2-q_0/q_1} \|M_{*,\mathbb{V}_L}\|_{L^{q_1} \to L^{q_1}}\right)^{2-q_0/q_1} \|f\|_{L^p} \tag{2.11}$$

If M_k are convolution operators on an abelian group \mathbb{G}, then (2.11) also holds for $q_1 \leq p \leq q_1$. The implicit constants in the conclusion do not depend on the qualitative bounds that we assume for the operators $M_{k,l}$ on $L^{q_1}(X)$.

Proof. First we show (2.11). In the case $q_1 = 2$ this is identical to the hypothesis (2.10), so suppose $q_1 < 2$. Let θ and $q_0 \in [q_0, q_1]$ be as in Lemma 2.8, then by that lemma and Littlewood–Paley inequality (1.6) we obtain

$$\left(\sum_{k \in \mathbb{Z}} \sum_{l=0}^{L-1} |M_{k,l} S_{k+j} f|^2 \right)^{1/2} \leq \left(\sup_{(k,l) \in \mathbb{V}_L} \|M_{k,l}\|_{L^{q_0} \to L^{q_1}}\right) \|M_{*,\mathbb{V}_L}\|_{L^{q_1} \to L^{q_1}} \left(\sum_{k \in \mathbb{Z}} \sum_{l=0}^{L-1} |S_{k+j} f|^2 \right)^{1/2} \|f\|_{L^{q_0}} \tag{2.12}$$

Since $q_0 \leq q_1 < 2$, there is a unique $\nu \in (0, 1)$ such that $\frac{1}{q_1} = \frac{\nu}{q_0} + \frac{1-\nu}{2}$. Substituting the definition of q_0 we obtain $\frac{1}{q_1} = \frac{\nu q_0}{q_0} + \frac{1}{2}$. It follows that

$$1 - \theta = \frac{q_0}{2}, \quad \theta = \frac{2 - q_0}{2}, \quad \nu \theta = \frac{2 - q_1}{2}, \quad \nu = \frac{2 - q_1}{2 - q_0}$$

Interpolating (2.12) with the hypothesis (2.10) gives the claim (2.11) for $p = q_1$.

If M_k are convolution operators, then by duality the first inequality in (2.12) also holds with q_0 replaced by q'_0. Also, \(\frac{1}{q'_1} = \frac{1}{q_0} + \frac{1}{2} \), so the same argument as before also works for \(p = q'_1 \). The conclusion for \(q_1 < p < q'_1 \) follows by complex interpolation. \(\square \)

2.3. Long jumps for positive operators. Suppose now we have a sequence of positive linear operators \((A_k)_{k \in \mathbb{Z}}\) and an approximating family of linear operators \((P_k)_{k \in \mathbb{Z}}\) both acting on \(L^1(X) + L^\infty(X) \) such that for every \(1 < p < \infty \) the maximal lattice operator

\[
P_* f := \sup_{k \in \mathbb{Z}} \sup_{|g| \leq |f|} |P_k g|,
\]
satisfies the maximal estimate

\[
(2.13) \quad \|P_*\|_{L^p \to L^p} \lesssim 1.
\]

Theorem 2.14 will be based on a variant of bootstrap argument discussed in the context of differentiation in lacunary directions in [NSW78]. These ideas were also used to provide \(L^p \) bounds for maximal Radon transforms in [DR86]. It was observed by Christ that the argument from [NSW78] can be formulated as an abstract principle, which was useful in many situations [Car88] and also in the context of dimension-free estimates [Car86].

Theorem 2.14. Assume that \((X, \mathcal{B}, \mu)\) is a \(\sigma \)-finite measure space endowed with a sequence of linear operators \((S_j)_{j \in \mathbb{Z}}\) satisfying (1.5) and (1.6). Given parameters \(1 \leq q_0 < q_1 \leq 2 \), let \((A_k)_{k \in \mathbb{Z}}\) be a sequence of non-negative linear operators such that \(\sup_{k \in \mathbb{Z}} \|A_k\|_{L^{q_0} \to L^{q_0}} \lesssim 1 \). Suppose that the maximal function \(P_* \) satisfies (2.13) with \(p = q_1 \) and

\[
(2.15) \quad \left\| \left(\sum_{k \in \mathbb{Z}} |(A_k - P_k)S_{k+j}f|^2 \right)^{1/2} \right\|_{L^2} \leq a_j \|f\|_{L^2}, \quad f \in L^2(X)
\]

for some positive numbers \((a_j)_{j \in \mathbb{Z}}\) satisfying \(\sum_{j \in \mathbb{Z}} a_j^{2/q_0 - 1} < \infty \).

Then for all \(f \in L^p(X) \) with \(p = q_1 \) we have

\[
(2.16) \quad \left\| \left(\sum_{k \in \mathbb{Z}} |(A_k - P_k)f|^2 \right)^{1/2} \right\|_{L^p} \lesssim (1 + a^{2/q_1}) \|f\|_{L^p}.
\]

In particular

\[
(2.17) \quad \|A_*\|_{L^p \to L^p} \lesssim 1 + a^{2/q_1}.
\]

If in addition we have the jump inequality

\[
(2.18) \quad J^p_2((P_k f)_{k \in \mathbb{Z}} : X \to \mathbb{C}) \lesssim \|f\|_{L^p},
\]

then also

\[
(2.19) \quad J^p_2((A_k f)_{k \in \mathbb{Z}} : X \to \mathbb{C}) \lesssim (1 + a^{2/q_1}) \|f\|_{L^p}.
\]

In the case of convolution operators on an abelian group \(\mathbb{G} \) all these implications also hold for \(q_1 \leq p < q'_1 \), and we have the vector-valued estimate

\[
(2.20) \quad \left\| \left(\sum_{k \in \mathbb{Z}} |A_k f_k|^r \right)^{1/r} \right\|_{L^p} \lesssim \left\| \left(\sum_{k \in \mathbb{Z}} |f_k|^r \right)^{1/r} \right\|_{L^p}
\]

in the same range \(q_1 \leq p < q'_1 \) for all \(1 \leq r \leq \infty \).

A few remarks concerning the assumptions in Theorem 2.14 are in order. In applications it is usually not difficult to verify the assumption (2.15). For general operators the most reasonable and efficient way is to apply \(TT^* \) methods. However, for convolution operators on \(\mathbb{G} \) assumption (2.15) can be verified using Fourier transform methods, which may be simpler than \(TT^* \) methods. Let us explain the second approach more precisely when \(\mathbb{G} = \mathbb{R}^d \). We first have to fix some terminology.

Let \(A \) be a \(d \times d \) real matrix whose eigenvalues have positive real part. We set

\[
(2.21) \quad t^A := \exp(A \log t), \quad \text{for} \quad t > 0.
\]
Let \mathbf{q} be a smooth A-homogeneous quasi-norm on \mathbb{R}^d, that is, $\mathbf{q} : \mathbb{R}^d \to [0, \infty)$ is a continuous function, smooth on $\mathbb{R}^d \setminus \{0\}$, and such that

1. $\mathbf{q}(x) = 0 \iff x = 0$;
2. there is $C \geq 1$ such that for all $x, y \in \mathbb{R}^d$ we have $\mathbf{q}(x + y) \leq C(\mathbf{q}(x) + \mathbf{q}(y))$;
3. $\mathbf{q}(tA^x) = t\mathbf{q}(x)$ for all $t > 0$ and $x \in \mathbb{R}^d$.

Let also \mathbf{q}_* be a smooth (away from 0) A^*-homogeneous quasi-norm, where A^* is the adjoint matrix to A. We only have to find a sequence of Littlewood–Paley projections associated with the quasi-norm \mathbf{q}_*. For this purpose let $\phi_0 : [0, \infty) \to [0, \infty)$ be a smooth function such that $0 \leq \phi_0 \leq 1_{[1/2, 2]}$ and its dilates $\phi_j(x) := \phi_0(2^j x)$ satisfy

$$
\sum_{j \in \mathbb{Z}} \phi_j^2 = 1_{(0, \infty)}.
$$

(2.22)

For each $j \in \mathbb{Z}$ we define the Littlewood–Paley operator \tilde{S}_j such that $\tilde{S}_j f = \psi_j \hat{f}$ corresponds to a smooth function $\psi_j(\xi) := \phi_j(\mathbf{q}_*(\xi))$ on \mathbb{R}^d. By (2.22) we see that (1.5) holds for $S_j = \tilde{S}_j^2$. Moreover, by [Riv71, Theorem II.1.5] we obtain the Littlewood–Paley inequality (1.6) for the operators S_j and \tilde{S}_j.

If $(\Phi_t : t > 0)$ is a family of Schwartz functions such that $\tilde{\Phi}_t(\xi) = \tilde{\Phi}(t \mathbf{q}_*(\xi))$, where $\tilde{\Phi}$ is a non-negative Schwartz function on \mathbb{R}^d with integral one, then by [JSW08, Theorem 1.1] we know that for every $1 < p < \infty$ we have

$$
J_p^p((\Phi_{2^k} * f)_{k \in \mathbb{Z}} : \mathbb{R}^d \to \mathbb{C}) \lesssim \|f\|_{L^p}, \quad f \in L^p(\mathbb{R}^d).
$$

(2.23)

The maximal version of inequality (2.23) has been known for a long time and follows from the Hardy–Littlewood maximal theorem [Ste93].

Suppose now we have a family $(A_k)_{k \in \mathbb{Z}}$ of convolution operators $A_k f = \mu_{2^k} * f$ corresponding to a family of probability measures $(\mu_k : t > 0)$ on \mathbb{R}^d such that

$$
|\hat{\mu}_t(\xi) - \hat{\mu}_t(0)| \leq \omega(t \mathbf{q}_*(\xi)) \quad \text{if } t \mathbf{q}_*(\xi) \leq 1,
$$

(2.24)

$$
|\hat{\mu}_t(\xi)| \leq \omega((t \mathbf{q}_*(\xi))^{-1}) \quad \text{if } t \mathbf{q}_*(\xi) \geq 1,
$$

(2.25)

for some modulus of continuity ω.

Theorem 2.14, taking into account all the facts mentioned above, yields

$$
J_p^p((\mu_{2^k} * f)_{k \in \mathbb{Z}} : \mathbb{R}^d \to \mathbb{C}) \lesssim \|f\|_{L^p}, \quad f \in L^p(\mathbb{R}^d)
$$

(2.26)

for $p = q_1$ and $q_0 = 1$ as long as $\mathbf{a} = \sum_{j \in \mathbb{Z}} \omega(2^{-|j|})^{q_1 - q_0} < \infty$, since (2.15) can be easily verified with $a_j = \omega(2^{-|j|})$ using (2.24), (2.25) and the properties of S_j and Φ.

Proof of Theorem 2.14. We begin with the proof of (2.16). If $q_1 = 2$ then we use (1.5) and (2.15) and we are done. Now we assume that $q_1 < 2$. By the monotone convergence theorem it suffices to consider only finitely many $M_k := A_k - P_k$'s in (2.16), let us say those with $|k| \leq K$. Restrict all summations and suprema to $|k| \leq K$ and let B be the smallest implicit constant for which (2.16) holds with $p = q_1$. In view of the qualitative boundedness hypothesis we obtain $B < \infty$, but the bound may depend on K. Our aim is to show that $B \leq 1 + a^{2/q_1}$. There is nothing to do if $B \lesssim 1$. Therefore, we will assume that $B \gtrsim 1$, so by (1.5), (1.23) and (2.11) with $L = 1$ and $M_{K,0} := M_k$, we obtain

$$
\left\| \left(\sum_{|k| \leq K} |M_k f|^2 \right)^{1/2} \right\|_{L^p} \leq \sum_{j \in \mathbb{Z}} \left\| \left(\sum_{|k| \leq K} |M_k S_{k+j} f|^2 \right)^{1/2} \right\|_{L^p} \lesssim \left(1 + \|M_*\|_{L^p \to L^p}^2 \right)^{1/2} \|f\|_{L^p}.
$$

By positivity we have $|A_* f| \leq \sup_{|k| \leq K} A_k |f|$ and consequently, we obtain

$$
|A_* f| \leq \sup_{|k| \leq K} A_k |f| \leq \sup_{|k| \leq K} P_k |f| + \left(\sum_{|k| \leq K} |M_k f|^2 \right)^{1/2}.
$$

(2.27)

By (2.27) and (2.13) we get

$$
\|M_*\|_{L^p \to L^p} \leq \|P_*\|_{L^p \to L^p} + \|A_*\|_{L^p \to L^p} \leq 2 \|P_*\|_{L^p \to L^p} + B \lesssim 1 + B.
$$

(2.28)
Taking into account these inequalities we have
\[
\left\| \left(\sum_{|k| \leq K} |(A_k - P_k)f|^2 \right)^{1/2} \right\|_{L^p} = \left\| \left(\sum_{|k| \leq K} |M_k f|^2 \right)^{1/2} \right\|_{L^p} \lesssim (1 + a(1 + B)^{2-q_1}) \|f\|_{L^p}.
\]
Taking the supremum over \(f \) gives
\[
B \lesssim 1 + a(1 + B)^{2-q_1} \lesssim (1 + a)B^{2-q_1},
\]
since we have assumed \(B \geq 1 \), and the conclusion (2.16) follows.

Once (2.16) is proven then in view of (2.27) we immediately obtain (2.17). In a similar way, if (2.18) holds, we deduce (2.19) from (2.16). Indeed,
\[
J_2^p((A_k f)_{k \in \mathbb{Z}}) \lesssim J_2^p((P_k f)_{k \in \mathbb{Z}}) + J_2^p((M_k f)_{k \in \mathbb{Z}})
\]
\[
\lesssim \|f\|_{L^p} + \|V^2(M_k f : k \in \mathbb{Z})\|_{L^p}
\]
\[
\lesssim \|f\|_{L^p} + \left(\sum_{k \in \mathbb{Z}} |M_k f|^2 \right)^{1/2} \|f\|_{L^p}.
\]

In the case of convolution operators by duality and interpolation we extend (2.16) to \(L^p(G) \) for \(q_1 \leq p \leq q_1' \), and all other inequalities follow as before. Finally, the vector-valued estimate (2.20) with \(r = \infty \) is equivalent to the maximal estimate by positivity, with \(r = 1 \) it follows by duality, and with \(1 < r < \infty \) by complex interpolation. \(\square \)

2.4. Long jumps for non-positive operators

We now drop the positivity assumption and we will be working with general operators \((B_k)_{k \in \mathbb{Z}}\) acting on \(L^1(X) + L^\infty(X) \). This will require some knowledge about the maximal lattice operator \(B_* \) defined in (2.29) and about the sum of \(B_k \)'s over \(k \in \mathbb{Z} \). No bootstrap argument seems to be available for non-positive operators and therefore additional assumptions like (2.30) and (2.32) will be indispensable. The proof of Theorem 2.28 is based on the ideas from [DR86].

Theorem 2.28. Assume that \((X, \mathcal{B}, \mu)\) is a \(\sigma \)-finite measure space endowed with a sequence of linear operators \((S_j)_{j \in \mathbb{Z}}\) satisfying (1.5) and (1.6). Let \(1 \leq q_0 < q_1 \leq 2 \) and let \((B_k)_{k \in \mathbb{Z}}\) be a sequence of linear operators commuting with the sequence \((S_j)_{j \in \mathbb{Z}}\) such that \(\sup_{k \in \mathbb{Z}} \|B_k\|_{L^{q_0} \to L^{q_0}} \lesssim 1 \). Suppose that the maximal lattice operator
\[
B_* f := \sup_{k \in \mathbb{Z}} \sup_{|g| \leq |f|} |B_k g|,
\]
satisfies
\[
\|B_*\|_{L^{q_1} \to L^{q_1}} \lesssim 1.
\]
We also assume
\[
\left\| \left(\sum_{k \in \mathbb{Z}} |B_k S_{k+j} f|^2 \right)^{1/2} \right\|_{L^2} \leq a_j \|f\|_{L^2}, \quad f \in L^2(X)
\]
for some positive numbers \((a_j)_{j \in \mathbb{Z}}\).

(1) Suppose that \((B_k)_{k \in \mathbb{Z}}\) additionally satisfies
\[
\left\| \sum_{k \in \mathbb{Z}} B_k \right\|_{L^{q_1} \to L^{q_1}} \lesssim 1.
\]
Let \(P_k := \sum_{j > k} S_j \) and assume that the jump inequality (2.18) holds for the sequence \((P_k)_{k \in \mathbb{Z}}\) with \(p = q_1 \). Then for every \(f \in L^p(X) \) with \(p = q_1 \) we have
\[
J_2^p\left(\left(\sum_{j \geq k} B_j f : X \to \mathbb{C} \right) \right)
\]
\[
\lesssim \left(\left\| \sum_{k \in \mathbb{Z}} B_k \right\|_{L^{q_1} \to L^{q_1}} + \left(\sup_{k \in \mathbb{Z}} \|B_k\|_{L^{q_0} \to L^{q_0}} \right) \|B_*\|_{L^{q_1} \to L^{q_1}} \right) \|f\|_{L^p},
\]
where \(\mathbf{a} := \sum_{j \in \mathbb{Z}} a_j^{q_0/q_1} < \infty. \)
(2) Suppose that there is a sequence of self-adjoint linear operators \((S_j)_{j \in \mathbb{Z}} \) such that \(S_j = \hat{S}_j^2 \) for every \(j \in \mathbb{Z} \) and satisfying (1.6) and (2.31) with \(\hat{S}_{k+j} \) in place of \(S_{k+j} \). Then for every sequence \((\varepsilon_k)_{k \in \mathbb{Z}}\) bounded by 1 and for all \(f \in L^p(X) \) with \(p = q_1 \) we have

\[
(2.34) \quad \left\| \sum_{k \in \mathbb{Z}} \varepsilon_k B_k f \right\|_{L^p} \lesssim \left(\sup_{k \in \mathbb{Z}} \left\| B_k \right\|_{L^{q_1,0} \to L^{q_1,0}} \right) \left\| B_* \right\|_{L^{q_1,0} \to L^{q_1}} \| a \|_{L^p},
\]

where \(a \) is as in Theorem 2.14.

In the case of convolution operators on an abelian group \(G \) all these implications also hold for \(q_1 \leq p \leq q_1' \).

In applications in harmonic analysis we will take \(B_k = T_{2^k} - T_{2^{k+1}} \) for \(k \in \mathbb{Z} \), where \(T_1 \) is a truncated singular integral operator of convolution type, see (2.3). This class of operators motivates, to a large extent, the assumptions in Theorem 2.28. In many cases they can be verified if we manage to find positive operators \(A_k \) such that \(\| B_k f \| \lesssim A_k \| f \| \) for every \(k \in \mathbb{Z} \) and \(f \in L^1(X) + L^\infty(X) \). In practice, \(A_k \) is an averaging operator. We shall illustrate this more precisely by appealing to the discussion after Theorem 2.14.

Suppose that \((B_k)_{k \in \mathbb{Z}} \) is a family of convolution operators \(B_k f = \sigma_{2^k} f \) corresponding to a family of finite measures \((\sigma_t : t > 0) \) on \(\mathbb{R}^d \) such that \(\sup_{t>0} \| \sigma_t \| < \infty \) and for every \(k \in \mathbb{Z} \) and \(t \in [2^k, 2^{k+1}] \) we have

\[
(2.35) \quad |\tilde{\sigma}_t(\xi)| \leq \omega(2^k q_*(\xi)) \quad \text{if} \quad 2^k q_*(\xi) \leq 1,
\]

\[
(2.36) \quad |\tilde{\sigma}_t(\xi)| \leq \omega((2^k q_*(\xi))^{-1}) \quad \text{if} \quad 2^k q_*(\xi) \geq 1,
\]

for some modulus of continuity \(\omega \). Additionally, we assume that \(|\sigma_{2^k}| \lesssim \mu_{2^k} \) for some family of finite positive measures \((\mu_t : t > 0) \) on \(\mathbb{R}^d \) such that \(\sup_{t>0} \| \mu_t \| < \infty \) and satisfying (2.24) and (2.25). In view of these assumptions and Theorem 2.14 we see that condition (2.30) holds, since \(|B_k f| \lesssim A_k \| f \| \), where \(A_k f = \mu_{2^k} f \). Therefore,

\[
\left\| \sum_{k \in \mathbb{Z}} B_k f \right\|_{L^p} \lesssim \| a \|_{L^p},
\]

implies (2.32) with \(p = q_1 \) and \(q_0 = 1 \), provided that \(a = \sum_{j \in \mathbb{Z}} \omega(2^{-|j|}) \frac{q_1 - q_0}{2^{-|j|}} < \infty \), since (2.31) can be verified with \(a_j = \omega(2^{-|j|}) \) using (2.35), (2.36) and the properties of \(\hat{S}_j \) associated with (2.22). Having proven (2.30) and (2.32) we see that (2.33) holds for the operators \(B_k f = \sigma_{2^k} f \) with \(p = q_1 \) and \(q_0 = 1 \) as long as \(\tilde{a} = \sum_{j \in \mathbb{Z}} j \omega(2^{-|j|}) \frac{q_1 - q_0}{2^{-|j|}} < \infty \).

Proof of Theorem 2.28. In order to prove inequality (2.33) we employ the following decomposition

\[
(2.37) \quad \sum_{j \geq k} B_j = P_k \sum_{j \in \mathbb{Z}} B_j - \sum_{l>0} \sum_{j<0} S_{k+l} B_{k+j} + \sum_{l \leq 0} \sum_{j \geq 0} S_{k+l} B_{k+j}
\]

(cf. [DR86, p. 548]). The jump inequality corresponding to the first term on the right-hand side in (2.37) is bounded on \(L^p(X) \) with \(p = q_1 \), due to (2.18), and (2.32), which ensures boundedness of the operator \(\sum_{j \in \mathbb{Z}} B_j \).
The estimates for the second and the third term are similar and we only consider the last term. We take the ℓ^2 norm with respect to the parameter k and estimate

$$J_2^p\left((\sum_{l \leq 0} \sum_{j \geq 0} B_{k+j}S_{k+l}f)_{k \in \mathbb{Z}} : X \to \mathbb{C}\right)$$

$$\leq \left\| \left(\sum_{k \in \mathbb{Z}} \sum_{l \leq 0} \sum_{j \geq 0} |B_{k+j}S_{k+l}f|^2\right)^{1/2}\right\|_{L^p}$$

$$= \left\| \left(\sum_{k \in \mathbb{Z}} \sum_{m \geq 0} \sum_{n=k-m}^k |B_{n+m}S_nf|^2\right)^{1/2}\right\|_{L^p}$$

$$\leq \sum_{m \geq 0} \left\| \left(\sum_{k \in \mathbb{Z}} \sum_{n=k-m}^k |B_{n+m}S_nf|^2\right)^{1/2}\right\|_{L^p}$$

by triangle inequality

$$\leq \sum_{m \geq 1} m^{1/2} \left\| \left(\sum_{k \in \mathbb{Z}} \sum_{n=k-m}^k |B_{n+m}S_nf|^2\right)^{1/2}\right\|_{L^p}$$

by Hölder’s inequality

$$= \sum_{m \geq 1} m \left\| \left(\sum_{n \in \mathbb{Z}} |B_{n+m}S_nf|^2\right)^{1/2}\right\|_{L^p}.$$

By (2.11), with $L = 1$ and $M_{k,0} := B_k$, we obtain

$$\sum_{j \in \mathbb{Z}} \left\| \left(\sum_{k \in \mathbb{Z}} |B_kS_{k+j}f|^2\right)^{1/2}\right\|_{L^p} \lesssim \left(\sup_{k \in \mathbb{Z}} \left\| B_k \right\|_{L^{2q_0} \to L^{2q_0}}\right) \left\| B_+ \right\|_{L^{2q_1} \to L^{2q_1}} \|a\|_{L^p}.$$

To prove the second part observe that for a sequence of functions $(f_j)_{j \in \mathbb{Z}}$ in $L^p(\mathbb{X}; \ell^2(\mathbb{Z}))$ we have the following inequality

$$(2.38) \quad \left\| \sum_{j \in \mathbb{Z}} \tilde{S}_jf_j \right\|_{L^p} \lesssim \left\| \left(\sum_{j \in \mathbb{Z}} |f_j|^2\right)^{1/2}\right\|_{L^p},$$

which is the dual version of inequality (1.6) for the sequence $(\tilde{S}_j)_{j \in \mathbb{Z}}$. To prove (2.34) we will use (1.5) and (2.38). Indeed,

$$\left\| \sum_{k \in \mathbb{Z}} \varepsilon_k B_kf \right\|_{L^p} \leq \sum_{j \in \mathbb{Z}} \left\| \sum_{k \in \mathbb{Z}} \varepsilon_k B_k S_{k+j}f \right\|_{L^p}$$

by (1.5)

$$= \sum_{j \in \mathbb{Z}} \left\| \sum_{k \in \mathbb{Z}} \tilde{S}_{k+j}(\varepsilon_k B_k \tilde{S}_{k+j}f) \right\|_{L^p}$$

since $S_j = \tilde{S}_j^2$

$$\lesssim \sum_{j \in \mathbb{Z}} \left\| \left(\sum_{k \in \mathbb{Z}} |B_k \tilde{S}_{k+j}f|^2\right)^{1/2}\right\|_{L^p}$$

by (2.38)

$$\lesssim \left(\sup_{k \in \mathbb{Z}} \left\| B_k \right\|_{L^{2q_1} \to L^{2q_1}}\right) \left\| B_+ \right\|_{L^{2q_1} \to L^{2q_1}} \|a\|_{L^p},$$

where in the last step we have used Lemma 2.9, with $L = 1$ and $M_{k,0} := B_k$. \qed

2.5. **Short variations.** We will work with a sequence of linear operators $(A_k)_{k \in \mathbb{Z}}$ (not necessarily positive) acting on $L^1(\mathbb{X}) + L^\infty(\mathbb{X})$. However, positive operators will be distinguished in our proof and in this case we can also proceed as before using some bootstrap arguments.

For every $k \in \mathbb{Z}$ and $t \in [2^k, 2^{k+1}]$ we will use the following notation

$$\Delta((A_t)_{s \in \mathbb{Z}})_t f := \Delta(A_t) f := A_t f - A_{2k} f.$$

Theorem 2.39. Assume that $(\mathbb{X}, \mathcal{B}, \mu)$ is a σ-finite measure space endowed with a sequence of linear operators $(S_j)_{j \in \mathbb{Z}}$ satisfying (1.5) and (1.6). Let $(A_t)_{t \in U}$ be a family of linear operators such that the square function estimate

$$(2.40) \quad \left\| \left(\sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^j-1} \left(A_{2^k+2^{k-l}(m+1)} - A_{2^k+2^{k-l}m} \right) S_j+k f \right|_{L^2} \right\|_{L^2} \leq 2^{-t/2} a_{j+t} ||f||_{L^2},$$

\[\text{JUMP INEQUALITIES 13}\]
holds for all \(j \in \mathbb{Z} \) and \(l \in \mathbb{N} \) with some numbers \(a_{j,l} \geq 0 \) such that for every \(0 < \varepsilon < \rho \) we have

\[
\sum_{l \geq 0} \sum_{j \in \mathbb{Z}} 2^{-cl} a_{j,l}^p < \infty.
\]

(1) Let \(1 < q_0 < 2 \) and \(4 < \infty < q_\infty \), and suppose that for each \(q_0 < p < q_\infty \) the vector-valued estimate

\[
\left\| \left(\sum_{k \in \mathbb{Z}} |A_{2^k(1+t)} f_k|^2 \right)^{1/2} \right\|_{L^p} \lesssim \left\| \left(\sum_{k \in \mathbb{Z}} |f_k|^2 \right)^{1/2} \right\|_{L^p}
\]

holds uniformly in \(t \in \mathbb{U} \cap [0,1] \). Then for each \(\frac{3}{1+1/q_0} < p < \frac{4}{1+2/q_\infty} \) we have

\[
\left\| \left(\sum_{k \in \mathbb{Z}} V^2(A_t : t \in [2^k, 2^{k+1}] \cap \mathbb{U})^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p},
\]

and for each \(4 \leq p < q_\infty \) and \(r > \frac{p q_\infty - 2}{q_\infty - p} \) we have

\[
\left\| \left(\sum_{k \in \mathbb{Z}} V^r(A_t : t \in [2^k, 2^{k+1}] \cap \mathbb{U})^r \right)^{1/r} \right\|_{L^p} \lesssim \|f\|_{L^p}
\]

for all \(f \in L^p(X) \).

(2) Let \(q_0 \in [1,2] \) and \(\alpha \in [0,1] \) be such that \(\alpha q_0 \leq 1 \). Suppose that we have the operator norm Hölder type condition

\[
\|A_{t+h} - A_t\|_{L^{q_0} \rightarrow L^{q_0}} \lesssim \left(\frac{h}{t} \right)^\alpha, \quad h, t \in \mathbb{U}, \text{ and } h \in (0,1].
\]

Then for every exponent \(q_1 \) satisfying

\[
q_0 \leq 2 - \frac{2 - q_0}{2 - \alpha q_0} < q_1 \leq 2,
\]

and such that

\[
\|\Delta((A_s)_{s \in \mathbb{U}})_\ast, u\|_{L^{q_1} \rightarrow L^{q_1}} \lesssim 1
\]

we have for all \(f \in L^p(X) \) with \(p = q_1 \) that the estimate (2.43) holds with the implicit constant which is a constant multiple of

\[
a := \sum_{l \geq 0} \sum_{j \in \mathbb{Z}} 2^{-c(\alpha \frac{2-q_0}{2-q_0} + \frac{1}{2} \frac{q_0 - q_1 - 2}{2-q_0} \frac{2-q_1}{2-q_0} \frac{q_1 - q_0}{2-q_0} a_{j,l}^q) \frac{q_1 - q_0}{2-q_0} < \infty.
\]

(3) Moreover, if \((A_t)_{t \in \mathbb{U}} \) is a family of positive linear operators, then the condition (2.47) may be replaced by a weaker condition

\[
\|A_{\ast, p}\|_{L^{q_1} \rightarrow L^{q_1}} \lesssim 1
\]

and the estimate (2.43) holds as well with the implicit constant which is a constant multiple of \(1 + a^{2/q_1} \).

In the case of convolution operators on an abelian group \(\mathbb{G} \) the implication from (2.48) to (2.43) also holds with \(p \) replaced by \(p' \).

Theorem 2.39 combined with the results formulated in the previous two paragraphs for dyadic scales will allow us to control, in view of (2.2), the cases for general scales. The first part of Theorem 2.39 gives (2.43) in a restricted range of \(p \)'s. If one asks for a larger range, a smoothness condition like in (2.45) must be assumed. Inequality (2.45) combined with maximal estimate (2.47) gives larger range of \(p \)'s in (2.43). If we work with a family of positive operators the condition (2.47) may be relaxed to (2.48) by some bootstrap argument. In the context of discussion after Theorem 2.14 and Theorem 2.28 let us look at a particular situation of (2) and prove (2.43).

Suppose that \((A_t)_{t \geq 0} \) is a family of convolution operators \(A_t f = \sigma_t \ast f \) corresponding to a family of finite measures \((\sigma_t : t > 0) \) on \(\mathbb{R}^d \) such that \(\sup_{t > 0} \|\sigma_t\| < \infty \) and satisfying (2.35) and (2.36). We assume that \(|\sigma_t| \leq \mu_t \) for some family of finite positive measures \((\mu_t : t > 0) \) on \(\mathbb{R}^d \) such that \(\sup_{t > 0} \|\mu_t\| < \infty \) and satisfying (2.24) and (2.25) to make sure that condition (2.47) holds. Additionally, let us assume that
For $\alpha = 1$ and $q_0 = 1, 2$. By Plancherel’s theorem, (2.35) and (2.36) we obtain

\[(2.49) \quad \| (A_{2k+2^{k-l}}(m+1) - A_{2k+2^{k-l}}(m)) S_{j+k} f \|_{L^2} \lesssim \omega(2^{-|j|}) \| S_{j+k} f \|_{L^2}.
\]

Thus (2.45) with $q_0 = 2, t = 2^k + 2^{k-l}m, h = 2^{k-l}$ combined with (2.49) imply

\[(2.50) \quad \| (A_{2k+2^{k-l}}(m+1) - A_{2k+2^{k-l}}(m)) S_{j+k} f \|_{L^2} \lesssim \min(2^{-t}, \omega(2^{-|j|})) \| S_{j+k} f \|_{L^2}.
\]

Consequently (2.40) holds with $a_{j,l} = \min\{1, 2^l \omega(2^{-|j|})\}$ and Theorem 2.39 gives the desired conclusion as long as $a = \sum_{l \geq 0} \sum_{j \in \mathbb{Z}} 2^{-l(q_0-1)\frac{1}{q_0}} (\min\{1, 2^l \omega(2^{-|j|})\})^{q_0-1} < \infty$.

Proof of Theorem 2.39: case (1). By Minkowski’s inequality for $2 \leq s \leq q_\infty < \infty$ we have

\[
\left\| \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^l-1} \left| (A_{2k+2^{k-l}(m+1)} - A_{2k+2^{k-l}}(m)) S_{j+k} f \right|^s \right\|_{L^q}^{1/s} \lesssim \left\| \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^l-1} \left| (A_{2k+2^{k-l}(m+1)} - A_{2k+2^{k-l}}(m)) f_k \right|^s \right\|_{L^{q_\infty}}^{1/s}.
\]

for all $2 \leq s \leq q_\infty < \infty$. By interpolation with (2.40) we obtain

\[(2.51) \quad \left\| \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^l-1} \left| (A_{2k+2^{k-l}(m+1)} - A_{2k+2^{k-l}}(m)) S_{j+k} f \right|^r \right\|_{L^p}^{1/r} \lesssim 2^{-q_\infty \frac{|1-\theta|}{s} a_{j,l}} \| f \|_{L^p},
\]

where $0 < \theta \leq 1$ and $\frac{1}{r} = \frac{\theta}{2} + \frac{1-\theta}{s}$ and $\frac{1}{p} = \frac{\theta}{2} + \frac{1-\theta}{q_\infty}$, so $\theta = \frac{2 q_\infty - p}{p q_\infty - 2}$. By Lemma 2.5 or more precisely by an analogue of inequality (2.4) with ℓ^r norm in place of ℓ^2 norm and by (2.51) we obtain

\[(2.52) \quad \left\| \sum_{k \in \mathbb{Z}} V^r(A_t f : t \in [2^k, 2^{k+1}] \cap \mathbb{N}) \right\|_{L^p}^{1/r} \lesssim 2^{-\frac{q_\infty (1-\theta)}{s} a_{j,l}} \| f \|_{L^p}.
\]

In view of (2.41) with $\varepsilon = \frac{\theta}{2} - \frac{(1-\theta)}{s}$ and $\rho = \theta$ this estimate is summable in l and j, provided that $-\theta/2 + (1-\theta)/s < 0$. In particular, for $2 \leq p < \frac{4}{1+2/q_\infty}$ we use $s = 2$. For $4 \leq p < q_\infty$ we use $s > \frac{q_\infty (p-2)}{q_\infty - p}$ and then $r > \frac{p}{2} \frac{q_\infty - 2}{q_\infty - p}.$
For $q_0 \in (1, 2)$ by Minkowski’s inequality we have

$$
\left\| \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^l-1} \left| (A_{2^k+2^k-l}(m+1) - A_{2^k+2^k-l}m) f_k \right|^2 \right\|_{L^{q_0}}^{1/2} \\
\leq \sum_{k \in \mathbb{Z}} \left\| \sum_{m=0}^{2^l-1} \left| (A_{2^k+2^k-l}(m+1) - A_{2^k+2^k-l}m) f_k \right|^2 \right\|_{L^{q_0}}^{1/2} \\
\leq 2^{l+1} \sup_{0 \leq m \leq 2^l} \left\| \sum_{k \in \mathbb{Z}} \left| A_{2^k+2^k-l}m f_k \right|^2 \right\|_{L^{q_0}}^{1/2} \\
\lesssim 2^l \left\| \sum_{k \in \mathbb{Z}} \left| f_k \right|^2 \right\|_{L^{q_0}}^{1/2}.
$$

Substituting $f_k = S_{j+k}f$, applying (1.6), and interpolating with (2.40) we obtain

(2.53)

$$
\left\| \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^l-1} \left| (A_{2^k+2^k-l}(m+1) - A_{2^k+2^k-l}m) S_{j+k}f \right|^2 \right\|_{L^p}^{1/2} \lesssim 2^{-\frac{q_0}{2}l + (1-\theta)\alpha q_0} \| f \|_{L^p},
$$

with $\frac{1}{p} = \frac{\theta}{2} + \frac{1-\theta}{q_0}$, for $0 < \theta < 1$. Hence $\theta = \frac{2}{p} - \frac{q_0}{2}$ and in view of (2.41) with $\varepsilon = \frac{\theta}{2} - (1 - \theta)$ and $\rho = \theta$ this estimate is summable in l and j, provided that $-\theta/2 + (1 - \theta) < 0$. The conclusion again follows from Lemma 2.5 and (2.53) like in (2.52) with $\frac{3}{1+1/q_0} < p \leq 2$. \hfill\square

Proof of Theorem 2.39: case (2) and case (3). By the monotone convergence theorem we may restrict k in (2.43) to $|k| \leq K_0$ and t to $\mathbb{U}_{L_0}^2 : u \in \mathbb{N}$ and $2k + L_0 \leq u \leq 2k + L_{0+1}$ for some $K_0 \in \mathbb{N}$ and $L_0 \in \mathbb{Z}$ as long as we obtain estimates independent of K_0 and L_0. Fix K_0, L_0 and let $\mathbb{I} : = \bigcup_{|k| \leq K_0} \mathbb{U}_{L_0}^k$. Let q_1 satisfy (2.46) then invoking (1.5) and (2.11), with $L = 2^l$, we obtain

$$
\left\| \left(\sum_{|k| \leq K_0} \sum_{m=0}^{2^l-1} \left| (A_{2^k+2^k-l}(m+1) - A_{2^k+2^k-l}m) f \right|^2 \right) \right\|_{L^p}^{1/2} \\
\lesssim 2^{\frac{2-q_1}{q_0} l} \left(\sup_{|k| \leq K_0, 0 \leq m \leq 2^l} \left(\sum_{j \in \mathbb{Z}} \left(2^{-l} a_{j,l} \right) \right) \right) \| f \|_{L^p} \\
\lesssim 2^{\frac{2-q_1}{q_0} l} \left(2^{-l} \alpha q_0 \right) \left(\left(2^{-l} \alpha q_0 \right) \right) \| f \|_{L^p}.\n$$

In order for the right-hand side to be summable in l we need

$$
\frac{2 - q_1}{2 - q_0} \frac{1}{2} - \alpha \frac{2 - q_1 q_0}{2 - q_0} - \frac{1}{2} q_1 - q_0 < 0
$$

$$
\iff (2 - q_1) - \alpha(2 - q_1)q_0 - (q_1 - q_0) < 0.
$$

It suffices to ensure

$$
(2 - q_1)(1 - \alpha q_0) - (q_1 - q_0) < 0
$$

$$
\iff q_1 > \frac{2(1 - \alpha q_0) + q_0}{2 - \alpha q_0} = 2 - \frac{2 - q_0}{2 - \alpha q_0},
$$
and this is our hypothesis (2.46). Hence under this condition by Lemma 2.5 we conclude for general operators that
\[
\left(\sum_{k \in \mathbb{Z}} V^2 (A_t f : t \in \mathbb{I})^2\right)^{1/2} \lesssim \sum_{l \geq 0} \left(\sum_{|k| \leq K_0} \sum_{m=0}^{2^l-1} \left| (A_{2^k+2^k-l(m+1)} - A_{2^k+2^k-lm}) f \right|^2 \right)^{1/2} \lesssim \| \Delta((A_s)_{s \in \mathbb{U}}) \|_{L^q_{\mathbb{I}} \to L^p_{\mathbb{I}}}^2 \| f \|_{L^p}.
\]

For positive operators crude estimates and interpolation show that
\[
B := \| A_{s_t} \|_{L^p \to L^p} < \infty
\]
with \(p = q_1 \). Note that
\[
\sup_{t \in \mathbb{I}} |A_t f(x)| \leq \sup_{t \in \mathbb{I}} |A_t f(x)| + \left(\sum_{k \in \mathbb{Z}} \sum_{t \in [2^k, 2^{k+1})} |(A_t - A_{2^k}) f(x)|^2 \right)^{1/2}
\]
Therefore, appealing to (2.55), (2.48) and (2.54) we obtain by a bootstrap argument that \(B \lesssim 1 + B^{2-q_1/a} \), since
\[
\| \Delta((A_s)_{s \in \mathbb{U}}) \|_{L^p_{\mathbb{I}} \to L^p_{\mathbb{I}}} \lesssim B^{2-q_1/a}.
\]
Hence, \(B \lesssim 1 + a^{2/q_1} \). In particular, the estimate (2.54) becomes uniform in \(\mathbb{I} \subset \mathbb{U} \), and this simultaneously implies (2.43).

In the case of convolution operators we may replace \(p = q_1 \) by \(p = q'_1 \) in Lemma 2.9 and all subsequent arguments. \(\Box \)

3. Applications

3.1. Dimension-free estimates for jumps in the continuous setting. We begin by providing dimension-free endpoint estimates, for \(r = 2 \), in the main results of [Bou+18a]. Let \(G \subset \mathbb{R}^d \) be a symmetric convex body. By definition of the averaging operator (1.8) we have \(A_t^G U = \tilde{U} A_t^{U(G)} \), where \(\tilde{U} f := f \circ U \) is the composition operator with an invertible linear map \(U : \mathbb{R}^d \to \mathbb{R}^d \). It follows that all estimates in Section 1 are not affected if \(G \) is replaced by \(U(G) \).

By [Bou86a], after replacing \(G \) by its image under a suitable invertible linear transformation, we may assume that the normalized characteristic function \(\mu := |G|^{-1} 1_G \) satisfies
\[
|\hat{\mu}(\xi)| \leq C|\xi|^{-1},
\]
\[
|\hat{\mu}(\xi) - 1| \leq C|\xi|,
\]
\[
|\xi, \nabla \hat{\mu}(\xi)| \leq C
\]
with the constant \(C \) independent of the dimension. In [Bou86a] these estimates were proved with \(|L(G)|\xi| \) in place of \(|\xi| \) on the right-hand side, where \(L(G) \) is the isotropic constant corresponding to \(G \). The above form is obtained by rescaling.

Then \(A_t := A_t^G \) is the convolution operator with \(\mu_t \) and \(\hat{\mu}_t(\xi) = \hat{\mu}(t\xi) \). The Poisson semigroup is defined by
\[
\hat{P}_t f(\xi) := p_t(\xi) \hat{f}(\xi), \quad \text{where} \quad p_t(\xi) := e^{-2\pi t |\xi|}.
\]
The associated Littlewood–Paley operators are given by \(S_k := P_{2^k} - P_{2^{k+1}} \). Their Fourier symbols satisfy
\[
|\hat{S}_k(\xi)| \lesssim \min\{2^k|\xi|, 2^{-k}|\xi|^{-1}\},
\]
where \(\hat{S}_k(\xi) \) is the multiplier associated with the operator \(S_k \), i.e. \(\hat{S}_k f(\xi) = \hat{S}_k(\xi) \hat{f}(\xi) \). From now on, for simplicity of notation, we will use this convention. The symbols associated with the Poisson semigroup \(P_k := P_{2^k} \) satisfy
\[
|\hat{P}_k(\xi)| - 1 \lesssim 2^k |\xi|, \quad \text{and} \quad |\hat{P}_k(\xi)| \lesssim 2^{-k}|\xi|^{-1}.
\]
Proof of Theorem 1.9. We verify that the sequence \((A_k)_{k \in \mathbb{Z}}\), where \(A_k := \mathcal{A}_{2^k}\) satisfies the hypotheses of Theorem 2.14 for every \(1 = q_0 < q_1 \leq 2\).

The maximal inequality (2.13) and the Littlewood–Paley inequality (1.6) for the Poisson semigroup with constants independent of the dimension are well-known [Ste70]. The jump estimate (2.18) was recently established in [MSZ18a, Theorem 1.5].

It remains to verify condition (2.15) for the operators \(M_k := A_k - P_k\). In view of (3.1), (3.2) and (3.5), we have

\[|M_k(\xi)| \lesssim \min\{|2^k\xi|^{-1}, |2^k\xi|\}. \]

For \(\xi \in \mathbb{R}^d \setminus \{0\}\) let \(k_0 \in \mathbb{Z}\) be such that \(\tilde{\xi} = 2^{k_0} \xi\) satisfies \(|\tilde{\xi}| \simeq 1\). By (3.5) it follows that

\[
\sum_{k \in \mathbb{Z}} |\hat{M}_k(\xi)\hat{S}_{k+j}(\xi)|^2 \lesssim \sum_{k \in \mathbb{Z}} \min\{|2^k\xi|^{-1}, |2^k\xi|\}^2 \min\{|2^{k+j}\xi|^{-1}, |2^{k+j}\xi|\}^2
\]

\[
= \sum_{k \in \mathbb{Z}} \min\{|2^k\tilde{\xi}|^{-1}, |2^k\tilde{\xi}|\}^2 \min\{|2^{k+j}\tilde{\xi}|^{-1}, |2^{k+j}\tilde{\xi}|\}^2
\]

\[
\lesssim \sum_{k \in \mathbb{Z}} \min\{2^{-k}, 2^{k}\}^2 \min\{(2^{k+j})^{-1}, 2^{k+j}\}^2
\]

\[
\lesssim 2^{-\delta j|j|}
\]

for \(\delta > 0\) with the implicit constant independent of the dimension. By Plancherel’s theorem this shows that (2.15) holds with \(a_j \lesssim 2^{-\delta j/2}\).

Proof of Theorem 1.11. We will apply Theorem 2.39 with \(A_t := \mathcal{A}_t := \mathcal{A}^G_t\). By a simple scaling we have \(\mathcal{A}_{2^k(1+t)} = \mathcal{A}^G_{2^k(1+t)}\). Hence Theorem 2.14, with \(A_k = \mathcal{A}^G_{2^k}\), applies and we obtain the vector-valued inequality (2.20) for all \(1 < p < \infty\) and \(r = 2\), which consequently guarantees (2.42). It remains to verify the hypothesis (2.40) of Theorem 2.39. We repeat the estimate [Bou+18a, (4.23)]. By (3.3) for \(t > 0\) and \(h > 0\) we have

\[
|\tilde{\mu}((t + h)\xi) - \tilde{\mu}(t\xi)| \leq \int_t^{t+h} ||\xi, \nabla \tilde{\mu}(u\xi)||\,du \lesssim \int_t^{t+h} \frac{du}{u} \lesssim \frac{h}{t}.
\]

By the Plancherel theorem this implies

\[
\|A_{t+h} - A_t\|_{L^2 \rightarrow L^2} \lesssim \frac{h}{t}.
\]

This allows us to estimate the square of the left-hand side of (2.40) by

\[
LHS(2.40)^2 = \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^{l-1}} \|\mathcal{A}_{2^k+2^{k-l}(m+1)} - \mathcal{A}_{2^k+2^{k-l}m}\|_{L^2}^2
\]

\[
\lesssim \sum_{k \in \mathbb{Z}} \sum_{m=0}^{2^{l-1}} 2^{-2l} \|S_{j+k}f\|_{L^2}^2
\]

\[
= 2^{-l} \sum_{k \in \mathbb{Z}} \|S_{j+k}f\|_{L^2}^2
\]

\[
\lesssim 2^{-l}\|f\|_{L^2}^2.
\]

Secondly, by (3.1) and (3.2) for every \(0 \leq m < 2^l\) we have

\[
|\tilde{\mu}((2^k+2^{k-l}(m+1))\xi) - \tilde{\mu}((2^k+2^{k-l}m)\xi)| \lesssim \min\{|2^k\xi|, |2^k\xi|^{-1}\}.
\]

Arguing similarly to (3.6) we obtain

\[
LHS(2.40)^2 \lesssim 2^{l}2^{-\delta j|j|}\|f\|_{L^2}^2.
\]

Hence (2.40) holds with \(a_{j,l} = \min\{1, 2^{2-\delta j/2}\}\).
Proof of Theorem 1.14. By Theorem 1.9 we have the hypothesis (2.48) of Theorem 2.39. The hypothesis (2.40) was verified in the proof of Theorem 1.11. The remaining hypothesis (2.45) is given by [Bou+18a, Lemma 4.2], but we give a more direct proof.

Recall that B^α is the unit ball induced by ℓ^q norm in \mathbb{R}^d. From [Müi90] (for $1 \leq q < \infty$), and [Bou14] (for $q = \infty$) we use the multiplier norm estimate

$$
\|\tilde{m}\|_{M^p} \lesssim_{p,q,\alpha} 1, \quad \tilde{m} = (\xi \cdot \nabla)^\alpha \mu
$$

for $\alpha \in (0,1)$ and $p \in (1,\infty)$ with implicit constant independent of the dimension. For a Lipschitz function $h : (1/2, \infty) \to \mathbb{R}$ such that $|h(t)| \lesssim |t|^{-1}$ and $|h'(t)| \lesssim |t|^{-1}$ fractional differentiation can be inverted by fractional integration:

$$
h(t) = \frac{1}{\Gamma(\alpha)} \int_t^{+\infty} (u-t)^{\alpha-1} D^\alpha h(u)du, \quad t > 1/2,
$$

see [DGM16, Lemma 6.9]. In particular, for $t > 1$ we obtain

$$
h(t) - h(1) = \frac{1}{\Gamma(\alpha)} \int_1^{+\infty} ((u-t)^{\alpha-1} - (u-1)^{\alpha-1}) D^\alpha h(u)du,
$$

where $u_+ := \max(u,0)$ denotes the positive part. In view of (3.1) and (3.3) this result can be applied to the function $h(t) = \hat{\mu}(t\xi)$ for any $\xi \in \mathbb{R}^d \setminus \{0\}$. Observing $D^\alpha h(u) = u^{-\alpha}\hat{m}(u\xi)$ we obtain

$$
\hat{\mu}(t\xi) - \hat{\mu}(\xi) = \frac{1}{\Gamma(\alpha)} \int_1^{+\infty} ((u-t)^{\alpha-1} - (u-1)^{\alpha-1}) u^{-\alpha}\hat{m}(u\xi)du.
$$

On the other hand we have

$$
\int_1^{+\infty} |(u-t)^{\alpha-1} - (u-1)^{\alpha-1}|u^{-\alpha}du \lesssim_\alpha (t-1)^\alpha,
$$

and for a Schwartz function $f \in \mathcal{S}(\mathbb{R}^d)$ this implies

$$
\|F^{-1}_\xi((\hat{\mu}(t\xi) - \hat{\mu}(\xi))\hat{f}(\xi))\|_{L^p}
\leq \int_1^{+\infty} |(u-t)^{\alpha-1} - (u-1)^{\alpha-1}|u^{-\alpha} \cdot \|F^{-1}_\xi(((u\xi \cdot \nabla)^\alpha \hat{\mu})(\xi))\hat{f}(\xi))\|_{L^p} du
\lesssim_\alpha (t-1)^\alpha \sup_{u>0} \|F^{-1}_\xi(((u\xi \cdot \nabla)^\alpha \hat{\mu})(u\xi))\hat{f}(\xi))\|_{L^p}
\lesssim_\alpha (t-1)^\alpha \|((\xi \cdot \nabla)^\alpha \hat{\mu})(\xi)\|_{M^p} \|f\|_{L^p},
$$

where we have used the Fourier inversion formula and Fubini’s theorem in the first step and scale invariance of the multiplier norm in the last step. Since the multiplier $\hat{\mu}(t\xi) - \hat{\mu}(\xi)$ is (qualitatively) bounded on L^p with norm ≤ 2, by density of Schwartz functions this implies

$$
\|\hat{\mu}(t\cdot) - \hat{\mu}\|_{M^p} \lesssim_\alpha (t-1)^\alpha,
$$

which by scaling implies the hypothesis (2.45). □

Finally we emphasize that once Theorem 1.9 is proved, alternative proofs of Theorem 1.11 an Theorem 1.14 follow by appealing to the short variational estimates given in [Bou+18a].

3.2. Dimension-free estimates for jumps in the discrete setting

We briefly outline the proof of Theorem 1.18. The strategy is much the same as for the proof of Theorem 1.9 and Theorem 1.11. Let

$$
\mathbf{m}_N(\xi) = \frac{1}{(2N+1)^d} \sum_{m \in \mathbb{Z}^d} e^{2\pi im \cdot \xi}, \quad \text{for} \quad \xi \in \mathbb{T}^d
$$

be the multiplier corresponding to the operators A_N defined in (1.17). Here we remind the reader of the following estimates for \mathbf{m}_N established recently in [Bou+18b].
Namely there is a constant $0 < C < \infty$ independent of the dimension such the for every $N, N_1, N_2 \in \mathbb{N}$ and for every $\xi \in \mathbb{T}^d$ we have

$$\left| m_N(\xi) \right| \leq C(N|\xi|)^{-1},$$

(3.9) $$\left| m_N(\xi) - 1 \right| \leq C N|\xi|,$$

where $|\cdot|$ denotes the Euclidean norm restricted to \mathbb{T}^d.

The discrete Poisson semigroup is defined by

$$\widehat{P}_t f(\xi) := p_t(\xi) \hat{f}(\xi), \quad \text{where} \quad p_t(\xi) := e^{-2\pi t|\xi|_{\text{sin}}},$$

for every $\xi \in \mathbb{T}^d$ and

$$|\xi|_{\text{sin}} := \left(\sum_{j=1}^{d} (\sin(\pi \xi_j))^2 \right)^{1/2}.$$

We set $P_k := P_{2^k}$ and the associated Littlewood–Paley operators are given by $S_k := P_{2^k} - P_{2^{k+1}}$. The maximal inequality (2.13) and the Littlewood–Paley inequality (1.6) for the discrete Poisson semigroup with constants independent of the dimension follow from [Ste70]. The jump estimate (2.18) for discrete Poisson semigroup was recently proved in [MSZ18a, Theorem 1.5]. Moreover, using $|\xi| \leq |\xi|_{\text{sin}} \leq \pi|\xi|$ for $\xi \in \mathbb{T}^d$, we see that the corresponding Fourier symbols $\widehat{S}_k(\xi)$ and $\widehat{P}_k(\xi)$ satisfy estimates (3.4) and (3.5) as well.

In order to prove (1.20) we have to verify that the sequence $(A_k)_{k \in \mathbb{N}}$, where $A_k := A_{2^k}$ satisfies the hypotheses of Theorem 2.14 for every $1 = q_0 < q_1 \leq 2$. Taking into account (3.9), (3.4) and (3.5) (associated with the discrete Poisson semigroup) it suffices to proceed as in the proof of Theorem 1.9. To prove (1.19) we argue as in the proof of Theorem 1.11.

3.3. Jump inequalities for the operators of Radon type

In this section we prove Theorem 1.22 and Theorem 1.30. By the lifting procedure for the Radon transforms described in [Ste93, Chapter 11, Section 2.4] we can assume without loss of generality that our polynomial mapping $P(x) := (x)^\Gamma$ is the canonical polynomial mapping for some $\Gamma \subset \mathbb{N}_0^k \setminus \{0\}$ with lexicographical order, given by

$$\mathbb{R}^k \ni x = (x_1, \ldots, x_k) \mapsto (x)^\Gamma := (x_1^{\gamma_1} \cdots x_k^{\gamma_k} : \gamma \in \Gamma) \in \mathbb{R}^\Gamma,$$

where $\mathbb{R}^\Gamma := [\mathbb{R}]^{|\Gamma|}$ is identified with the space of all vectors whose coordinates are labeled by multi-indices $\gamma = (\gamma_1, \ldots, \gamma_k) \in \Gamma$.

Throughout what follows A is the diagonal $|\Gamma| \times |\Gamma|$ matrix such that $(A x)_\gamma = |\gamma| x_\gamma$ for every $x \in \mathbb{R}^\Gamma$ and let q_* be the quasi-norm associated with $A^* = A$, given by

$$q_*(\xi) = \max_{\gamma \in \Gamma} \left(\frac{1}{|\gamma|} |\gamma| \right), \quad \text{for} \quad \xi \in \mathbb{R}^\Gamma.$$

We shall later freely appeal, without explicit mention, to the discussions after Theorem 2.14, Theorem 2.28 and Theorem 2.39 with $d = |\Gamma|, A$ and q_* as above.

Proof of Theorem 1.22. Let $\mathcal{M}_t := \mathcal{M}_t^\Gamma$, where $P(x) = (x)^\Gamma$. Observe that \mathcal{M}_t is a convolution operator with a probability measure μ_t, whose Fourier transform is defined by

$$\widehat{\mu}_t(\xi) := \frac{1}{|\Omega_t|} \int_{\Omega_t} e^{-2\pi i \xi \cdot y} dy, \quad \text{for} \quad \xi \in \mathbb{R}^\Gamma.$$

Condition (2.25) with $\omega(t) = t^{1/d}$ follows from Proposition B.2 and Lemma A.1. It is not difficult to see that (2.24) also holds.

In order to prove (1.23) it suffices, in view of (2.2), to show inequality (2.19) with $A_k := \mathcal{M}_{2^k}$ and inequality (2.43) with $A_t := \mathcal{M}_t$ for every $1 = q_0 < q_1 \leq 2$. We have already seen that (2.26) holds, hence (2.19) holds and we are done. We now show (2.43). For this purpose note that (2.45) holds for all $1 \leq q_0 < \infty$. This combined with (2.24) and (2.25) permits us to prove (2.49) and (2.50), which imply (2.40) and Theorem 2.39 yields the conclusion. \qed
Proof of Theorem 1.30. Let \(\mathcal{H}_t := \mathcal{H}^P_t \), where \(P(x) = (x)^\Gamma \). Denote the Fourier multiplier corresponding to the truncated singular Radon transform by
\[
(3.10) \quad \Psi_t(\xi) := \int_{\mathbb{R}^k \setminus \Omega_t} e^{-2\pi i \xi \cdot y} K(y)dy, \quad \text{for} \quad \xi \in \mathbb{R}^\Gamma.
\]

For a fixed \(\kappa \in (0, 1) \) we claim
\[
(3.11) \quad |\Psi_t(\xi) - \Psi_s(\xi)| \lesssim_\kappa |t^\Lambda \xi|^{-1/d} + \omega_K(t^\Lambda |\xi|^{-1/d}) \lesssim (tq_*(\xi))^{-1/d} + \omega_K((tq_*(\xi))^{-1/d}), \quad \text{if} \quad tq_*(\xi) \geq 1,
\]
for all \(s, t \in (0, \infty) \) such that \(\kappa t \leq s \leq t \). Indeed, by Proposition B.2 we obtain
\[
|\Psi_t(\xi) - \Psi_s(\xi)| = \left| \int_{\Omega_t \setminus \Omega_s} e^{-2\pi i \xi \cdot y} K(y)dy \right| \lesssim \sup_{y \in \mathbb{R}^k: |y| \leq t^\Lambda^{-1/d}} \int |(1_{\Omega_t \setminus \Omega_s} K)(y) - (1_{\Omega_t \setminus \Omega_s} K)(y - v)|dy
\]
with \(\Lambda = \sum_{\gamma \in \Gamma} t^\gamma |\xi| \gamma |. \) The claim (3.11) clearly holds for \(\Lambda \leq 1 \). If \(\Lambda \geq 1 \), then for a fixed \(v \) we use (1.28) and the fact that \(\Omega_t \setminus \Omega_s \subseteq B(0, t) \setminus B(0, c_d \kappa t) \) to estimate the contribution of \(y \) such that \(y, y - v \in \Omega_t \setminus \Omega_s \). On the set of \(y \) such that exactly one of \(y, y - v \) is contained in \(\Omega_t \setminus \Omega_s \) we use (1.26); the measure of this set is bounded by a multiple of \(t^{k-1}|v| \) due to Lemma A.1. This finishes the proof of (3.11).

Additionally, we have
\[
(3.12) \quad |\Psi_t(\xi) - \Psi_0(\xi)| \lesssim |t^\Lambda \xi|^{-1/d} \lesssim (tq_*(\xi))^{-1/d} + \omega_K((tq_*(\xi))^{-1/d}), \quad \text{if} \quad tq_*(\xi) \leq 1
\]
due to the cancellation condition (1.27) and (1.26).

To prove (1.31) we fix \(\theta \in (0, 1) \) and \(p \in \{1 + \theta, (1 + \theta)^\prime\} \) and invoking (2.2) it suffices to prove inequalities (1.32) and (1.33). Inequality (1.32) will follow from (2.33) with \(q_0 = 1, q_1 = 1 + \theta \) and \(B_j := \mathcal{H}_j - \mathcal{H}_{j+1} \) upon expressing \(\mathcal{H}_{2k} \) as a telescoping series like in (2.3). Inequality (1.33) will be a consequence of (2.43) with \(q_0 = 1, q_1 = 1 + \theta \) and \(A_t := \mathcal{H}_t \). Let \((\sigma_t : t > 0) \) be a family of measures defined by
\[
(3.13) \quad \sigma_t \ast f(x) = \int_{\Omega_t \setminus \Omega_{2k}} f(x - (y)^\Gamma) K(y)dy, \quad \text{for every} \quad t \in [2^k, 2^{k+1}], \quad k \in \mathbb{Z}.
\]

Estimates (3.11) and (3.12) allow us to verify (2.35) and (2.36) respectively with \(\omega(t) := t^{1/d} + \omega_K(t^{1/d}) \). Moreover \(|\sigma_{2k}| \lesssim \mu_{2k} \), where \(\mu_t \) is the measure associated with the averaging operator \(M_t \). Hence the discussion after Theorem 2.28 guarantees that inequality (2.33) holds, since \(B_k f = \sigma_{2k+1} * f \). To prove (2.43) it suffices to note that (2.45) holds for all \(1 \leq q_0 < \infty \). Moreover inequalities (2.49) and (2.50) remain true for \(A_t = \mathcal{H}_t \). Then Theorem 2.39 completes the proof. \(\square \)

Appendix A. Neighborhoods of boundaries of convex sets

We will show how to control the measure of neighborhoods of the boundaries of convex sets. The proof of the lemma below is based on a simple Vitali covering argument.

Lemma A.1. Let \(\Omega \subset \mathbb{R}^k \) be a bounded and convex set and let \(0 < s \lesssim \text{diam}(\Omega) \). Then
\[
|\{x \in \mathbb{R}^k : \text{dist}(x, \partial \Omega) < s\}| \lesssim_k s \text{diam}(\Omega)^{k-1}.
\]
The implicit constant depends only on the dimension \(k \), but not on the convex set \(\Omega \).

Proof. Let \(r = \text{diam} \Omega \). By translation we may assume \(\Omega \subseteq B(0, r) \), where \(B(y, s) \) denotes an open ball centered at \(y \in \mathbb{R}^k \) with radius \(s > 0 \). Notice
\[
\{x \in \mathbb{R}^k : \text{dist}(x, \partial \Omega) < s\} \subseteq \bigcup_{y \in \partial \Omega} B(y, s).
\]
By the Vitali covering lemma there exists a finite subset \(Y \subset \partial \Omega \) such that the balls \(B(y,s) \) with \(y \in Y \), are pairwise disjoint and

\[
\left| \bigcup_{y \in \partial \Omega} B(y,s) \right| \lesssim \left| \bigcup_{y \in Y} B(y,s) \right|.
\]

Consider the nearest-point projection \(P : \mathbb{R}^k \rightarrow \text{cl} \Omega \), that is, \(P(x) = x' \), where \(x' \in \text{cl} \Omega \) is the unique point such that \(|x - x'| = \text{dist}(x, \text{cl} \Omega) \). It is well-known that \(P \) is well-defined and contractive with respect to the Euclidean metric. The restriction of \(P \) to the sphere \(\partial B(0,r) \) defines a surjection \(P_d : \partial B(0,r) \rightarrow \partial \Omega \). This follows from the fact that for every point \(x \in \partial \Omega \) there exists a linear functional \(\phi : \mathbb{R}^k \rightarrow \mathbb{R} \) such that \(\phi(y) \leq \phi(x) \) for every \(y \in \text{cl} \Omega \), see e.g. [Roc70, Corollary 11.6.1]). For each \(y \in Y \) we choose \(z(y) \in \partial B(0,r) \) such that \(P_d(z(y)) = y \). Then the balls \(B(z(y),s) \) are pairwise disjoint in view of the contractivity of \(P \) and contained in the set

\[
\{ x \in \mathbb{R}^k : r - s < |x| < r + s \}
\]

that has measure \(\lesssim s(r+s)^{k-1} \). But the union of the balls \(B(z(y),s) \) has the same measure as \(\bigcup_{y \in Y} B(y,s) \), and the conclusion follows.

\[\square \]

Appendix B. Estimates for oscillatory integrals

We present the following variant of van der Corput’s oscillatory integral lemma with a rough amplitude function.

Lemma B.1. Given an interval \((a,b) \subset \mathbb{R}\) suppose that \(\phi : (a,b) \rightarrow \mathbb{R} \) is a smooth function such that \(|\phi^{(k)}(x)| \gtrsim \lambda \) for every \(x \in (a,b) \) with some \(\lambda > 0 \). Assume additionally that

- either \(k \geq 2 \),
- or \(k = 1 \) and \(\phi' \) is monotonic.

Then for every locally integrable function \(\psi : \mathbb{R} \rightarrow \mathbb{C} \) we have

\[
\left| \int_a^b e^{i\phi(x)} \psi(x)dx \right| \lesssim_k \inf_{a \leq x \leq b} \int_{x-\lambda^{-1/k}}^{x+\lambda^{-1/k}} |\psi(y)|dy + \lambda^{1/k} \int_{-\lambda^{-1/k}}^{\lambda^{-1/k}} \int_a^b |\psi(x)-\psi(x-y)|dx dy.
\]

Proof. Let \(\eta \) be a smooth positive function with \(\text{supp} \eta \subset [-1,1] \) and \(\int_{\mathbb{R}} \eta(x)dx = 1 \). Let \(\rho(x) := \psi \ast \lambda^{1/k} \eta(\lambda^{1/k}x) \), and note that

\[
|\psi(x) - \rho(x)| \leq \lambda^{1/k} \int_{\mathbb{R}} |\psi(x) - \psi(x-y)||\eta(\lambda^{1/k}y)|dy.
\]

Then we may replace \(\psi \) by \(\rho \) on the left-hand side of the conclusion. For every \(x_0 \in (a,b) \) by partial integration and the van der Corput lemma, see for example [Ste93, Section VIII.1.2], we have

\[
\left| \int_a^b e^{i\phi(x)} \rho(x)dx \right| = \left| \rho(x_0) \int_a^{x_0} e^{i\phi(x)}dx + \int_a^{x_0} e^{i\phi(x)} \int_{x_0}^y \rho'(y)dy dx \right|
\]

\[
= \left| \rho(x_0) \int_a^{x_0} e^{i\phi(x)}dx + \int_{x_0}^y \rho'(y) \int_a^{x_0} e^{i\phi(x)}dx dy + \int_{x_0}^y \rho'(y) \int_y^b e^{i\phi(x)}dx dy \right|
\]

\[
\lesssim \lambda^{-1/k} \left(|\rho(x_0)| + \int_a^{b} |\rho'(x)|dx \right).
\]

The latter term is estimated using

\[
|\rho'(x)| = |(\psi(x) - \psi) \ast \lambda^{1/k} \eta(\lambda^{1/k} \cdot)'(x)| \lesssim \lambda^{2/k} \int_{\mathbb{R}} |\psi(x) - \psi(x-y)||\eta'(\lambda^{1/k}y)|dy,
\]

and the conclusion follows.

\[\square \]

We will also need a multidimensional version of Lemma B.1. As before \(B(y,s) \) denotes an open ball centered at \(y \in \mathbb{R}^k \) with radius \(s > 0 \).
Proposition B.2 ([Zor17]). Given $d,k \in \mathbb{N}$, let $P(x) = \sum_{1 \leq |\alpha| \leq d} \lambda_\alpha x^\alpha$ be a polynomial in k variables of degree at most d with real coefficients. Let $R > 0$ and let $\psi : \mathbb{R}^k \to \mathbb{C}$ be an integrable function supported in $B(0,R/2)$. Then
\[\left| \int_{\mathbb{R}^k} e^{iP(x)} \psi(x) dx \right| \lesssim_{d,k} \sup_{v \in \mathbb{R}^k : |v| \leq RA^{-1/d}} \int_{\mathbb{R}^k} |\psi(x) - \psi(x - v)| dx, \]
where $\Lambda := \sum_{1 \leq |\alpha| \leq d} R^{|\alpha|} |\lambda_\alpha|$. We include the proof for completeness.

Proof. Changing the variables we have $\left| \int_{\mathbb{R}^k} e^{iP(x)} \psi(x) dx \right| = R^k \left| \int_{\mathbb{R}^k} e^{iP_R(x)} \psi_R(x) dx \right|$, where $P_R(x) = \sum_{1 \leq |\alpha| \leq d} R^{|\alpha|} \lambda_\alpha x^\alpha$, $\psi_R(x) = \psi(Rx)$ and supp $\psi_R \subseteq B(0,1/2)$. Let us define
\[\beta = \sup_{v \in \mathbb{R}^k : |v| \leq A^{-1/d}} \int_{\mathbb{R}^k} |\psi_R(x) - \psi_R(x - v)| dx, \]
and observe that $\|\psi_R\|_{L^1} \lesssim \beta A^{1/d}$. So there is nothing to prove if $\Lambda \lesssim 1$. We assume that $\Lambda \gtrsim 1$. Let η be a non-negative smooth bump function with integral 1, which is supported in the ball $B(0,1/2)$. Then we define $\rho(x) = \Lambda^{k/d} \eta(\Lambda^{1/d} x)$ and $\phi(x) = \psi_R * \rho(x)$ and note
\[\int_{\mathbb{R}^k} |\psi_R(x) - \phi(x)| dx \leq \Lambda^{k/d} \int_{\mathbb{R}^k} \int_{\mathbb{R}^k} |\psi_R(x) - \psi_R(x - y)| dx dy (\Lambda^{1/d} y) dy \lesssim \beta. \]
The proof will be completed if we show that
\[\left(\int_{\mathbb{R}^k} e^{iP_R(x)} \phi(x) dx \right) \lesssim_{d,k} \beta. \]
Since ϕ is a smooth function supported in $B(0,1)$ we invoke [SW01, Lemma 2.2] to get the conclusion. Indeed, [SW01, Lemma 2.2] ensures that there exists a unit vector $\xi \in \mathbb{R}^k$ and an integer $m \in \mathbb{N}$ such that $|<\xi, \nabla>| P_R| > c_{k,d} \Lambda$ on the unit ball $B(0,1)$ for some $c_{k,d} > 0$. We may assume, without loss of generality, that $\xi = e_1 = (1,0,\ldots,0) \in \mathbb{R}^k$. Then by the van der Corput lemma, see for example [Ste93, Corollary p.334] we obtain
\[\left(\int_{\mathbb{R}^k} e^{iP_R(x)} \phi(x) dx \right) \lesssim \Lambda^{-1/d} \left(\int_{\mathbb{R}^{k-1} \cap B(0,1)} \left| \phi(1,x') \right| + \int_{-1}^{1} |\partial_{1} \phi(x_1,x')| dx_1 \right) dx' \lesssim \Lambda^{-1/d} \|\nabla \phi\|_{L^1}, \]
since supp $\phi \subseteq B(0,1)$ and $\phi(1,x') = 0$ for every $x' \in \mathbb{R}^{k-1} \cap B(0,1)$.

We now show that $\|\nabla \phi\|_{L^1} \lesssim \Lambda^{1/d} \beta$. Indeed, for every $j \in \mathbb{N}_k$ we have
\[\|\partial_j \phi\|_{L^1} = \int_{\mathbb{R}^k} \int_{\mathbb{R}^k} \psi_R(x - y) \partial_j \rho(y) dy \| dx = \int_{\mathbb{R}^k} \int_{\mathbb{R}^k} (\psi_R(x) - \psi_R(x - y)) \partial_j \rho(y) dy \| dx \lesssim \Lambda^{k/d+1/d} \int_{\mathbb{R}^k} \int_{\mathbb{R}^k} |\psi_R(x) - \psi_R(x - y)| (\partial_j \eta)(\Lambda^{1/d} y) dy dx \lesssim \Lambda^{1/d} \beta. \]

This proves (B.3) and completes the proof of Proposition B.2. \qed

References

[Bou86a] J. Bourgain. “On high-dimensional maximal functions associated to convex bodies”. In: Amer. J. Math. 108.6 (1986), pp. 1467–1476. MR: 868899 (cit. on pp. 3, 4, 17).

[Bou86b] J. Bourgain. “On the L^p-bounds for maximal functions associated to convex bodies in \mathbb{R}^m”. In: Israel J. Math. 54.3 (1986), pp. 257–265. MR: 853451 (cit. on p. 3).

[Bou89] J. Bourgain. “Pointwise ergodic theorems for arithmetic sets”. In: Inst. Hautes Études Sci. Publ. Math. 69 (1989). With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein, pp. 5–45. MR: 1019960 (90k:28030) (cit. on pp. 1, 2).
(Mariusz Mirek) Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA & Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, 50-384 Wrocław Poland
E-mail address: mirek@math.uni.wroc.pl

(Elias M. Stein) Department of Mathematics, Princeton University, Princeton, NJ 08544-100 USA
E-mail address: stein@math.princeton.edu

(Pavel Zorin-Kranich) Mathematical Institute, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
E-mail address: pzorin@math.uni-bonn.de