INTRODUCTION

The use of synthetic insecticides becomes an integral of an agricultural production system to control insect pests attack in many economically important crops up to this moment. The application of broad spectrum synthetic insecticides has induce several undesired side effects, such as soil and water pollutions and also the destruction of non-targeted (Biondi, Desneux, Siscaro, & Zappalà, 2012; Martinou, Seraphides, & Stavrinides, 2014). The alternative insecticides that are relatively safer to the environment were urgent to be investigated through the Integrated Pest Management Program scheme. One promising alternatives is that using plant materials that have insecticidal activity or botanical insecticides (Amoabeng, Johnson, & Gurr, 2019; Dubey, Shukla, Kumar, Singh, & Prakash, 2010; Khater, 2012; Miresmailli & Isman, 2014; Pretty et al., 2018).

The use of botanical insecticides in pest control has several advantages. Botanical insecticides are easily decomposed in nature so they less pollute the environment. They were also considered safe for humans and non-targeted animals (Arnason, Sims, & Scott, 2012). Botanical insecticides have a broad spectrum of the the insects activity. In addition to have a lethal effect, botanical insecticides also have other simultaneous impacts such as the anti feedant effects (Arivoli & Tennyson, 2013; Koul, 2008; Nawrot & Harmatha, 2012; Paul & Sohkhlet, 2012; Syahputra, Prijono, Dadang, Manuwoto, & Darusman, 2006; Zapata, Budia, Viñuela, & Medina, 2009).

Several plant species have been reported to have insecticidal activities, especially those under the families of Asteraceae, Fabaceae, Lamiaceae, Meliaceae and Annonaceae (Amoabeng, Johnson, & Gurr, 2019). Other plants from the family of Lecythidaceae have also been observed to exhibit...
similar feature (Syahputra, 2013). Most likely, many potential species of plants still yet unexplored. With the high diversity of flora in Indonesia’s forests, the opportunity to find a plant species that has the insecticidal properties is widely possible.

Castanopsis megacarpa is a potential plant species that has been observed to have insecticidal properties. Our preliminary observation revealed that bark extract of *C. megacarpa* (Fagaceae) possess an insecticidal activity against the larvae of *Crocidolomia pavonana*. To elucidate deeper potential of the plants, then this research was conducted to evaluate the lethal effects and antifeedant activity of *C. megacarpa* leaf and seed extracts on *C. pavonana* larvae.

MATERIALS AND METHODS

Plant Material and Extraction

The leaves and seeds of *C. megacarpa* (Fagaceae) used in the study were taken from forests in Sajingan Besar District (Sambas, West Kalimantan) on February 2015. The extraction process was carried out through the following procedures. The seeds and leaves of *C. megacarpa* were cut into pieces and dried under direct sunlight for several days. After drying the cut leaves and seeds were then blended separately and filtered with 0.5 mm gauge sieve. 100 g of fine powder from the sieve dissolved with 1 L of 99.9% ethanol and then shaken using a magnetic stirrer for 24 hours. The filtered solution was then evaporated with a rotary evaporator to separate the extract from the solvent. The extract (crude) produced is stored in a refrigerator (± 4 °C) until used.

Test of Lethal Effects and Longevity of Development of *C. pavonana* Larvae

Lethal effect testing was carried out using the residual method on leaves. The test was conducted in Pesticides Laboratory, Agriculture Faculty, University of Tanjungpura. The evaluation was dedicated to find the rate of insect death from 0–100% in response to the concentration of the extract solutions. Leaf and seed extracts were tested at concentration of 0.05%; 0.1%; 0.2%; 0.3%; 0.5% and 0.025%; 0.05%; 0.1%; 0.2%; 0.4%, respectively.

The extracts were dissolved with acetone: methanol (1:1, v/v) at various concentrations that have been determined. The extract solution was applied evenly to each surface of 3 cm diameter broccoli leaf-disc using 25 µl per surface. After the solvent evaporated, two leaf-disc of treatment were placed on a 9 cm diameter petridish with a tissue paper at the base. Subsequently, 15 larvae instar II were placed in each petridish. Control larvae were fed with leaves which were only smeared with acetone: methanol (1:1, v/v) 25 µl per surface. Each level of extract treatments and control were repeated 5 times. After 48 hours, all the larvae were maintained by feeding the leaves without any extract treatments until they reached instar IV stages. The number of death larvae and the longevity development of the survived larvae were recorded. Data on larval mortality was processed by probit analysis using the SAS program (SAS Institute, 2008). Longevity development data are expressed as mean ± standard deviation.

Feeding Test

The test was conducted in choice and no-choice arrangements, using broccoli leaf-disc treated with extract suspension and exposed to third instar larvae of *C. pavonana*. The application of the extracts and the test procedures were similar with those in lethal effect experiment. Concentrations of the extract tested in this experiment were equivalent to LC$_{25}$, LC$_{50}$, and LC$_{75}$ of mortality test. In choice test, two treated and two untreated (control) leaf-discs were arranged alternately around the edge of the dish (9 cm diameter) lined with moisten towel paper. Five third instar larvae (three hours old) were released to feed for 12 hours. A total of 25 larvae (5 larvae per dish) were used in each treatment. The dry weight of the remaining leaf-disc of the treatment and control that were fed by the larvae were recorded. Data were analyzed using a paired t-test on 5% significance level. Data on the choice test was processed by probit analysis using the SAS program (SAS Institute, 2008).

In no-choice test, treated and untreated leaf discs were placed in separate dishes. As in choice test, 5 larvae were placed into each dish and allow to feed for 12 hours. Each treatment was replicated 5 times and all the experiment units were arranged in a completely randomized design. The amount of leaf disc consumed by the larvae was measured after 12 hours and the data was analyzed statistically using Analysis of Variance to compare the effect of extract concentration on leaf consumption. Tukey’s range test was applied to see the means difference between concentrations using the SAS program (SAS Institute, 2008).
Percentage of antifeedant activity (AA) was calculated by the formula:

\[AA(\%) = \left(\frac{C - T}{C} \right) \times 100\% \] for choice test

\[AA(\%) = \left(1 - \frac{T}{C} \right) \times 100\% \] for no-choice test

Where: \(T \) = average dry weight of the treated fed by larvae, \(C \) = average dry weight of controls fed by larvae

RESULTS AND DISCUSSION

Effects on Mortality and Longevity of Development of *C. pavonana* Larvae

The results showed leaf and seed extracts of *C. megacarpa* were toxic to *C. pavonana* larvae. From probit analysis, the \(LC_{50} \) leaf and seed extracts were 0.18%, and 0.12% respectively (Table 1). Both \(LC_{50} \) values were not significantly different; indicated by the slope \((b) \) of the regression line of both extracts that were overlapped. The small \(LC_{50} \) value of leaf and seed extracts indicating both extracts possess a strong insecticidal activity against *C. pavonana*; slightly stronger than \(LC_{50} \) of *Azadirachta indica* seed extract in our previous study (Syahputra, 2013).

The potential of seed and leaf of *C. megacarpa* as source of botanical insecticides against *C. pavonana* opens a wide possibility to be deeply and widely explored, including the range of targeted insects pests and investigation on the chemical properties. This finding also provides a new information on the variety of plant or plant parts that contain insecticidal properties against *C. pavonana*. Previously, several plant extracts have been known to pose a lethal effect against this larvae, including *Barringtonia sarcostachys* (Lecythidaceae) and *Piper retrofractum* (Piperaceae). The bark extract of *B. sarcostachys* possessed a strong lethal effect against *C. pavonana* larvae with \(LC_{50} \) measured at 0.14%. Mixture formulation between extract of *Piper aduncum* and *Tephrosia vogelii* in form of emulsifiable concentrate had strong insecticidal activity against *C. pavonana* with \(LC_{50} \) formulation of 0.15% (Lina, Syahbirin, & Dadang, 2017; Syahputra, 2013). The methanol extract of *Castanopsis costata* stems bark showed activity against *Artemia salina* shrimp larvae with \(LC_{50} \) of 71.2 ppm. These plant materials contained in flavonoid that have antimicrobial activity against *Staphylococcus aerens*, *Bacillus* sp. and *Serratia marcescens* (Nurtjahja et al., 2013; Sitepu & Bahar, 2019).

Table 1. Parameters of concentration-mortality relationship of *C. megacarpa* extract against *C. pavonana* larvae

Extracts	\(a \pm SE \)	\(b \pm SE \)	\(LC_{50} \) (CI 95%) (%)
Leaves	1.91 ± 0.19	2.59 ± 0.24	0.18 (0.16 - 0.21)
Seed	1.89 ± 0.55	2.10 ± 0.52	0.12 (0.05 - 0.57)

Remarks: \(a = \) interception; \(b = \) slope; \(y = ax + b \); SE = standard error; CI = confidence interval

Table 2. Longevity of development of *C. pavonana* larvae treated *C. megacarpa* extract

Extracts	Concentrations (%)	Instar II	Instar II - III	Instar II - IV
Leaf	Control	2.14 ± 0.36	2.19 ± 0.46	4.07 ± 0.30
	0.05	2.36 ± 0.50	2.15 ± 0.49	4.11 ± 0.32
	0.1	2.29 ± 0.49	2.09 ± 0.37	4.77 ± 1.01
	0.2	2.26 ± 0.44	2.41 ± 0.73	4.44 ± 0.74
	0.3	2.39 ± 0.56	2.43 ± 0.78	5.00 ± 1.14
	0.5	2.15 ± 0.43	2.44 ± 0.58	4.82 ± 0.91
Seed	Control	2.05 ± 0.23	2.25 ± 0.47	4.48 ± 0.64
	0.025	2.16 ± 0.47	2.32 ± 0.58	4.67 ± 0.77
	0.05	2.06 ± 0.23	2.46 ± 0.57	4.78 ± 0.67
	0.1	2.11 ± 0.32	2.64 ± 0.61	4.44 ± 0.74
	0.2	2.11 ± 0.32	2.87 ± 0.50	5.20 ± 0.78
	0.4	2.33 ± 0.52	3.67 ± 0.58	7.50 ± 2.12

Remarks: SD = standard deviation; N = the number of larvae that were survived in the intended developmental period
Leaf and seed extracts of *C. megacarpa*, in general, did not prolong the development longevity of the survived larvae (Table 2). Both extracts tested in 48 hours showed larval mortality (Fig. 1 and Fig. 2) and continued to increase in subsequent observation. Based on the pattern of larval development and mortality, where the mortality of larvae was high at the beginning of the observation and relatively constant in subsequent observations, the results indicates that the active compound of the extracts have fast work in causing larval mortality.
Effect on Feeding

The results showed that leaf and seed extracts in all concentration tested in choice test suppressed the larvae feeding activity with has antifeedant activity of 34.4%-89.4%; 49.8%-76.1%, respectively (Table 3). In this test, the larvae consumed untreated leaves more than leaves treated with the extract. This result showed the presence of active substances on leaf-disc surface that can be detected and deterred larvae *C. pavonana* to feed. Yet, further studies are required to explore these active substances that act as feeding deterrent. Inhibitory compounds contained in the extract of *C. megacarpa* seem to disrupt feeding stimulation signals or to be able to cover. Similar results occur in the no-choice test. In the no-choice tested both of extract suppressed the larvae feeding with antifeedant activity of 15.5%-53.7%; 53.8%-82.7%, respectively (Table 4).

The data from choice-test and no-choice test complement each other in demonstrating antifeedant activity of *C. megacarpa* leaf and seed extracts. This implies that in the field, *C. pavonana* larvae able to distinguish between the treated and untreated crops. Indirectly, the *C. pavonana* larvae might die due to starvation. Some other *C. pavonana* still exist for a certain period due to low feeding, before finally they died. In this experiment, at concentrations tested, the inhibitor component in the leaf and the seed extract of *C. megacarpa* seemed adequate to deter larval feeding. For both extracts, their feeding mechanisms should be examined more deeply after the pure component has been identified.

Feeding mechanisms are known for some active compounds. Various extracts and active components reported that work as feeding inhibitors (Paul & Sohkhlet, 2012; Szczepanik, Grudniewska, Zawitowska, & Wawrzeńczyk, 2014), such as flavonoids isolated from cabbage was reported to act as feeding stimulants for *Plutella xylostella* (Lepidoptera: Xponomeutidae) (van Loon, Wang, Nielsen, Gols, & Qiu, 2002). For IPM, utilization of pest control materials contained antifeedant properties was considered safer for beneficial insects and non-target organisms, as these properties usually exhibit high selectivity (Nawrot & Harmatha, 2012). In the field, these compounds can be used for pest control and applied in combination with other control measures within integrated pest management (IPM) framework (Koul, 2008).

Table 3. The antifeedant activity of extract of *C. megacarpa* by choice test

Extracts	Concentrations (%)	Average weight of leaves fed (mg) ± SD	Antifeedant Activity (%)
	Treatment	Control	
Leaf	0.09 (LC₂₅)	1.2 ± 0.8 a	34.4
	0.18 (LC₅₀)	0.6 ± 0.3 b	69.7
	0.33 (LC₇₅)	0.2 ± 0.3 b	89.4
Seed	0.06 (LC₂₅)	1.4 ± 0.1 b	49.8
	0.12 (LC₅₀)	0.8 ± 0.6 b	76.1
	0.26 (LC₇₅)	0.6 ± 0.3 b	73.9

Remarks: *SD = standard deviation; The average followed by the same letter for each concentration is not significantly different by paired t - test (α = 0.05)*

Table 4. The antifeedant activity of extract of *C. megacarpa* by no-choice test

Extracts	Concentration (%)	Average weight of leaves fed (mg) ± SD	Antifeedant Activity (%)
Leaf	Control	0.8 ± 0.4 a	
	0.09 (LC₂₅)	0.7 ± 0.2 ab	15.5
	0.18 (LC₅₀)	0.5 ± 0.1 bc	40.1
	0.33 (LC₇₅)	0.4 ± 0.3 c	53.7
Seed	Control	2.1 ± 0.7 a	
	0.06 (LC₂₅)	1.0 ± 0.5 b	53.8
	0.12 (LC₅₀)	0.6 ± 0.3 c	74.4
	0.26 (LC₇₅)	0.4 ± 0.3 c	82.7

Remarks: SD = standard deviation; The average followed by the same letter for concentration in the same extract is not significantly different by Tukey’s range test (α = 0.05)
CONCLUSION AND SUGGESTION

Leaf and seed extracts of *C. megacarpa* possessed a strong insecticidal activity against *C. pavonana* larvae that are categorized as toxic with antifeedant properties to *C. pavonana* larvae. The efficacy of these extracts needs to be evaluated in the field.

REFERENCES

Amoabeng, B. W., Johnson, A. C., & Gurr, G. M. (2019). Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. *Applied Entomology and Zoology, 54*(1), 1–19. https://doi.org/10.1007/s13355-018-00602-0

Arivoli, S., & Tennyson, S. (2013). Antifeedant activity, development indices and morphogenetic variation of plant extracts against *Spodoptera litura* (Fab.) (Lepidoptera: Noctuidae). *Journal of Entomology and Zoology Studies, 1*(4), 87–96. Retrieved from http://www.entomoljournal.com/vol1issue4/issue_aug_2013/25.1.pdf

Arnason, J. T., Sims, S. R., & Scott, I. M. (2012). Natural products from plants as insecticides. In *Encyclopedia of Life Support Systems (EOLSS)* (pp. 1–8). Retrieved from http://www.eolss.net/sample-chapters/c06/e6-151-13.pdf

Biondi, A., Desneux, N., Siscaro, G., & Zappalà, L. (2012). Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator *Orius laevigatus*. *Chemosphere, 87*(7), 803–812. https://doi.org/10.1016/j.chemosphere.2011.12.082

Dubey, N. K., Shukla, R., Kumar, A., Singh, P., & Prakash, B. (2010). Prospects of botanical pesticides in sustainable agriculture. *Current Science, 98*(4), 479–480. Retrieved from http://www. environmentportal.in/files/Prospects_of_botanical_pesticides_in_sustainable_agriculture.pdf

Khater, H. F. (2012). Prospects of botanical biopesticides in insect pest management. *Pharmacologia, 3*(12), 641–656. https://doi.org/10.55671/pharmacologia.2012.64.1656

Koul, O. (2008). Phytochemicals and insect control: An antifeedant approach. *Critical Reviews in Plant Sciences, 27*(1), 1–24. https://doi.org/10.1080/07352680802053908

Lina, E. C., Syahahirin, G., & Dadang, D. (2017). Mixed extracts formulation of *Tephrosia vogelii* and *Piper aduncum*. In 2017 The Asia-Pacific Conference on Life Sciences and Biological Engineering (p. APLSBE-812). Nagoya, Japan. Retrieved from https://www.researchgate.net/publication/316285629_Mixed_Extracts_Formulation_of_Tephrosia_vogelii_and_Piper_aduncum

Martinou, A. F., Seraphides, N., & Stavrinides, M. C. (2014). Lethal and behavioral effects of pesticides on the insect predator *Macrolopthus pygmaeus*. *Chemosphere, 96*, 167–173. https://doi.org/10.1016/j.chemosphere.2013.10.024

Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant-herbivore chemical interactions. *Trends in Plant Science, 19*(1), 29–35. https://doi.org/10.1016/j.tplants.2013.10.002

Nawrot, J., & Harmatha, J. (2012). Phytochemical feeding deterrents for stored product insect pests. *Phytochemistry Reviews, 11*(4), 543–566. https://doi.org/10.1007/s11101-013-9273-9

Nurtjahja, K., Kelana, T. B., Suryanto, D., Priyani, N., Rio, G., Putra, D. P., & Arbain, D. (2013). Antimicrobial activity of endemic herbs from Tangkahan Conservation Forest North Sumatera to bacteria and yeast. *HAYATI Journal of Biosciences, 20*(4), 177–181. https://doi.org/10.4308/hjb.20.4.177

Paul, D., & Sohkhlet, M. D. (2012). Anti-feedant, repellent and growth regulatory effects of four plant extracts on *Pieris brassicaceae* larvae (Lepidoptera: Pieridae). *Open Access Scientific Reports, 1*(10), 485. Retrieved from https://www.omicsonline.org/scientific-reports/2155-6202-SR-485.pdf

Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., ... Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. *Nature Sustainability, 1*, 441–446. https://doi.org/10.1038/s41893-018-0114-0

SAS Institute. (2008). Introduction to statistical modeling with SAS/STAT software (Book Excerpt). SAS/STAT 9.3 User’s Guide. Cary, NC: SAS Institute Inc. Retrieved from http://support.sas.com/documentation/cdl/en/statugstatmodel/61751/ PDF/default/statugstatmodel.pdf

Sitepu, N., & Bahar, R. (2019). Uji toksisitas ekstrak etanol kulit batang cepcepan (*Castanopsis costata* BL) dengan metode *Brine Shrimp Lethality Test* (BSLT). *Borneo Journal of Pharmascience*, 3*(1), 20–27. Retrieved from https://jurnalstikesborneolestari.ac.id/index.php/borneo/article/view/204

Syahputra, E. (2013). Insecticidal activities of *Barringtonia sarcostachys* bark extract against cabbage head larvae. *Brine Shrimp Lethal Test* (BSLT). *Pharmacologia*.
Edy Syahputra et al: Effect of C. megacarpa Extract on Mortality of C. pavonana

caterpillar *Crocidolomia pavonana* (F.). *Journal of the International Society for Southeast Asian Agricultural Sciences*, 19(2), 8–17. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.662.8405&rep=rep1&type=pdf

Syahputra, E., Prijono, D., Dadang, Manuwoto, S., & Darusman, L. K. (2006). Respons fisiologi *Crocidolomia pavonana* terhadap fraksi aktif *Calophyllum soulattri*. *HAYATI Journal of Biosciences*, 13(1), 7–12. https://doi.org/10.1016/S1978-3019(16)30372-2

Szczepanik, M., Grudniewska, A., Zawitowska, B., & Wawrzeńczyk, C. (2014). Structure-related antifeedant activity of halolactones with a p-menthane system against the lesser mealworm, *Alphitobius diaperinus* Panzer. *Pest Management Science*, 70(6), 953–958. https://doi.org/10.1002/ps.3634

van Loon, J. J. A., Wang, C. Z., Nielsen, J. K., Gols, R., & Qiu, Y. T. (2002). Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. *Entomologia Experimentalis et Applicata*, 104(1), 27–34. https://doi.org/10.1046/j.1570-7458.2002.00987.x

Zapata, N., Budia, F., Viñuela, E., & Medina, P. (2009). Antifeedant and growth inhibitory effects of extracts and drimanes of *Drimys winteri* stem bark against *Spodoptera littoralis* (Lep., Noctuidae). *Industrial Crops and Products*, 30(1), 119–125. https://doi.org/10.1016/j.indcrop.2009.02.009