Low–Medium Temperature-Selective Catalytic Reduction of NO with NH₃ over a Mn/Co-MOF-74 Catalyst

Zhonghao Sun, Xue Mi, Yichen Luo, Siyuan Wang, Bo Yuan, Runlong Hao, and Yi Zhao *

ABSTRACT: To realize the selective catalytic reduction of NO at low–medium temperatures and avoid secondary pollution, a highly active catalyst Mn/Co-MOF-74 was synthesized. X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller method, and scanning electron microscopy were employed to analyze the physicochemical properties of catalysts with different Mn/Co molar ratios and conjecture about the difference in the catalytic activity. Meanwhile, the effects of the molar ratio of Mn/Co, catalyst dosage, catalyst synthesis conditions, GHSV, and temperature on the NO conversion efficiencies were investigated and found that an optimal NO conversion efficiency of 93.5% was obtained at 200 °C. In the end, the stability of Mn/Co-MOF-74 was investigated and found that the catalyst has better sulfur and water resistances, and the NO conversion mechanism was speculated on the basis of characterization and literature data.

1. INTRODUCTION

As one of the main pollutants released by the burning of fossil fuels, nitrogen oxide (NO) is the main target of flue gas treatment in coal-fired power plants. If its emissions cannot be effectively controlled, it will exacerbate a series of air pollution problems such as acid rain and photochemical smog, thereby threatening the ecosystem and human health. By now, NH₃-selective catalytic reduction (NH₃-SCR) is not only the most widely used NOₓ control technology in coal-fired power plants but also in other industries such as glass, steel, cement, and so forth. 5-12 However, this technology has exposed many troubles in practical applications: the wear, blockage, poisoning, and deactivation of the catalyst occur frequently because the catalyst is usually placed in high sulfur and dusty areas to maintain the reaction temperature; meanwhile, when the power plant is at a low load, the lower flue gas temperature (200–250 °C) can hardly meet the temperature required by SCR, unless an external heat source is introduced. 11,12 Hence, it is of practical significance and commercial value to develop medium- and low-temperature SCR catalysts, which can not only arrange the SCR catalyst backward to reduce the hazards of dust and sulfur dioxide but also expand the reaction temperature and application range of NH₃-SCR.

Liu et al. 14 synthesized mesoporous Ce₀.₈W₀.₂Oₓ by the mechanochemical self-assembly strategy, and a removal efficiency of 100% and a N₂ selectivity of 97% in a wide temperature range of 225–400 °C were achieved, better than those of Ce₀.₈W₀.₂Oₓ prepared by the sol–gel method. Meanwhile, mesoporous Ce₀.₈W₀.₂Oₓ also has excellent sulfur and water resistances. Although the removal efficiency is reduced by 15% after the addition of SO₂ + H₂O, it can quickly return to 95% after stopping the flow. In recent years, metal–organic framework (MOF) materials have been widely used in the field of environmental protection due to their large specific surface area, high porosity, controllable pore size, and modifiability. 15-18 In terms of NH₃-SCR over MOF materials, researchers had done a lot of work: Sun et al. prepared the Cu−BTC (BTC = benzene-1, 3, 5-tricarboxylate) catalyst and found that it had better selective adsorption of NOₓ in multicomponent flue gas, which is essential for the occurrence of the SCR reaction; 19 Wang et al. synthesized the MIL-100(Fe) (iron(III) 1,3,5-benzenetricarboxylate hydrate) catalyst by the hydrothermal method and utilized it to perform the SCR experiments at 200–300 °C, in which more than 80% removal efficiency was achieved, and the highest removal efficiency 99% was obtained at 275 °C. Further research adopted MIL-100(Fe) and CeO₂ as the carrier and active ingredient to prepare 0.08IM-CeO₂/MIL-100(Fe) catalysts, and the characterization results proved that the presence of CeO₂ successfully improved the oxygen absorption capacity of...
the composite catalyst, which is why the effective range of the catalytic temperature can be expanded to 175–300 °C. Sun et al.22 prepared a Ni-MOF catalyst that can maintain the effective crystal structure below 440 °C using the hydrothermal synthesis method, which successfully improved the service life of the MOF catalyst. In particular, more than 90% NO removal efficiency was achieved in a wide temperature range of 275–400 °C. Overall, although the MOF catalyst has many advantages, its sulfur resistance and water resistance need to be improved.

According to literature, manganese-based materials are the most widely used medium- and low-temperature SCR catalysts. Kapteijn et al.23 used manganese oxides with different valence states to conduct a series of NOx removal experiments, and the results indicated that the valence of Mn has a great influence on the catalytic activity. Meanwhile, researchers also found that the catalytic activity of Mn-based catalysts decreases in the order of Mn⁴⁺ > Mn³⁺ > Mn²⁺ at 177 °C. In addition, Tian et al.24 used different methods to prepare MnO₂ in the state of nanoparticles, nanorods, and nanotubes and studied the effects of different morphologies on the denitration efficiency and found that the removal efficiency of all catalysts at GHSV of 36 000 h⁻¹ increased with the rising of the reaction temperature, among which the denitration efficiency of nanorod MnO was the highest, reaching more than 90% at 250–300 °C and close to 100% at 300 °C. It must be pointed out that the shortcomings of the MNOx catalyst are also obvious; the sulfur resistance of the catalyst is not strong and irreversible, and the N₂ selectivity decreases with the increase of the reaction temperature.25 Fortunately, these defects can be overcome by doping with other elements to form binary or even ternary composite catalysts.

At present, several related studies have shown that doping Co can improve the physicochemical properties of Mn-based catalysts.26 Boningari et al.27 investigated the NO removal efficiency using the MnCo/TiO₂ catalyst and found that the addition of Co indeed improved the NO removal efficiency. Shi et al.28 explored the sulfur resistance of Mn–Co nanorods and found that the addition of Co significantly enhanced the sulfur resistance; when 100 ppm of SO₂ was added into the reactor, the NO removal efficiency only dropped by 9%. The goal of this paper is to combine the advantages of Mn, Co, and MOF and propose a novel low-medium temperature NO removal method to avoid the above drawbacks. In detail, we will synthesize a novel Mn/Co-MOF-74 catalyst by the microwave method, and the formation and crystallization only take 4 h. Meanwhile, the influence of synthesis conditions and reaction factors on the NO removal efficiency will be investigated; the sulfur and water resistances of the catalyst and N₂ selectivity would also be evaluated. Finally, the NO removal mechanism will be speculated based on the serial characterization of reaction products and catalysts.

2. EXPERIMENTAL SECTION

2.1. Chemicals. All the chemicals were of analytical grade and purchased from Kermel Reagent Manufactories (Tianjin, China). MnCl₂·4H₂O (99%), Co(NO₃)₂·6H₂O (99%), and 2,5-dihydroxyterephthalic acid (DHTP, 99%) were used for preparing the catalyst. Deionized water, anhydrous ethanol, and methanol were used for dissolving and washing.

2.2. Synthesis of Catalysts. The MOF-74 catalyst loaded with manganese and cobalt oxides (named as Mn/Co-MOF-74) was prepared by the microwave hydrothermal method. In detail, MnCl₂·4H₂O and Co(NO₃)₂·6H₂O were mixed with DHTP (0.1333 g), DMF (53 mL), CH₃CH₂OH (8.5 mL), and H₂O (8.5 mL); then, the resulting solution was put into a Teflon-lined autoclave and heated at 130 °C in a microwave hydrothermal apparatus (XH-800S) for 4 h. After cooling to room temperature, the mother liquor was filtrated out, and the products were washed and soaked in methanol for 1 h. Then, the methanol solvent was decanted and replaced every 1 h during the next 6 h, until the supernatant was transparent. The sediment was removed from the bottom and dried in an air-drying oven at 80 °C for 12 h.

2.3. Characterization. Characterizations of the catalysts were performed by various methods: X-ray diffraction (XRD, Bruker D8 Advance) in the range of 10–90° with a scanning speed of 4/min was carried out to determine the composition of the catalyst. Thermogravimetric analysis (TGA, TA7000) was adopted to analyze the thermal stability of the catalyst. A scanning electron microscope equipped with a Hitachi S-4800 (Japan) system was used to observe the microstructure of the catalyst, and X-ray photoelectron spectroscopy (XPS, PHI X-ray) calibrated by the C 1s peak at 284.6 eV was conducted to
investigate the surface chemical composition and elemental speciation. Besides, nitrogen adsorption and desorption isotherms obtained using the Brunauer–Emmett–Teller (BET) method (Quantachrome SI) were employed to analyze the surface area of the catalyst.

2.4. Experimental Procedures. As illustrated in Figure 1, the experimental system mainly consists of simulated flue gas generation, catalytic reduction, and tail gas detection system. The core part is the catalytic reduction device, in which the selective catalytic reduction experiments of NO with NH3 were conducted in a fixed-bed quartz reactor with approximately 0.2 g of catalyst. Before the start of the experiment, the catalysts were pretreated in nitrogen at 250 °C for 3 h, whose purpose was to remove the residual organic solvents on the surface of the catalyst. N2, NO, NH3, and SO2 cylinder gases (1−4, 99.99%, North Special Gas Co., Ltd., China) controlled by mass controllers (7) were employed to simulate the flue gas, and water vapor was generated by using N2 as the carrier gas to purge the liquid water heated by the electrical heater (6). The total flue gas flow rate of the fixed-bed quartz reactor with an inner diameter of 10 mm (10) was 300 mL/min, and the typical composition of the reactant gas was as follows: 500 ppm NO, 500 ppm NH3, 6% O2, 500 ppm SO2 (only when used), and 5% H2O (only when used). After the reaction was completed, the gas passed through the absorption bottle (11) and drying tower (12), and the concentrations of NOx, SO2, and O2 were measured using a multifunctional flue gas analyzer (13) (detection limit of 1 ppm/m3, ECOM-J2KN, German RBR company). In this paper, the NO removal efficiency (η) and N2 selectivity were obtained from the following equation:

\[ \eta = \frac{NO_{in} - NO_{out}}{NO_{in}} \times 100\% \]

\[ N_2 \text{ selectivity} = \frac{(NO_{in} + NH_3) - (NO_{out} + NH_3)}{(NO_{in} + NH_3) - (NO_{out} + NH_3)} \times 100\% \]

3. RESULTS AND DISCUSSION

3.1. Characterization of Catalysts. In order to analyze the crystalline phase composition of the synthesized catalyst, XRD was performed, and the results are shown in Figure 2. Four characteristic peaks at 2θ = 6.7, 11.7, 24.4, and 25.7° were all observed in the spectra of the catalysts with different Mn and Co ratios, consistent with the literature data, indicating that the synthesis of Mn/Co-MOF-74 was successful. Besides, the strength of the characteristic peak appeared to show more obvious difference with the change of the ratio of Mn and Co, proving that Mn and Co elements had been loaded successfully. It is worth noting that when the Mn/Co ratios are 3:1 and 2:1, respectively, a group of strong peaks appeared to show more obvious difference with the change of the ratio of Mn and Co, indicating that the synthesis of Mn/Co-MOF-74 was successful. Besides, the strength of the characteristic peak appeared to show more obvious difference with the change of the ratio of Mn and Co, proving that Mn and Co elements had been loaded successfully. It is worth noting that when the Mn/Co ratios are 3:1 and 2:1, respectively, a group of strong peaks appeared to show more obvious difference with the change of the ratio of Mn and Co, indicating that the synthesis of Mn/Co-MOF-74 was successful.

Overall, it can be concluded that the molar ratio of Mn/Co is a key synthesis factor, and oxides will be formed on the surface of the catalyst and affect the NO removal efficiency when the content of Mn or Co is too high. XPS was also used to explore the surface elemental composition and valence of the Mn/Co-MOF-74 catalyst. As depicted in Figure 3a, it can be found that the Co element presents four characteristic peaks within 770−815 eV, and the height of the characteristic peak changes with the content of Co in the catalyst. According to literature reports, for Co 2p, the two main peaks at 781.7 and 797.6 eV are attributed to Co3+ and Co2+, respectively, and the peaks at about 803.2 and 786.5 eV are attributed to the satellite peaks. This shows that the Co element exists on the surface of the catalyst in two valences: Co3+ and Co2+. As shown in Table 1, the relative atomic percentage concentration of Co3+/Co is higher than that of Co2+/Co. Generally, Co3+ is much more reactive than Co2+ because of its stronger redox ability. The Mn 2p spectra of five catalysts are presented in Figure 3b, which are mainly divided into two categories: the peak centers at 654.3 and 643.1 eV can be explained as Mn4+, and the peak at 641.7 eV is assigned to Mn3+. As shown in Figure 3c, the types of O on the catalyst surface are mainly divided into two types: the peak centers at 531.9 and 532.6 eV are explained as O in CO−OH, and another oxygen peak at 531.7−531.9 eV is assigned to CO−O. Overall, it can be concluded that the main surface active substances of Mn/Co-MOF-74 are Co3+ and Mn4+. The MnCO-MOF-74 catalyst, which is considered to be one of the factors for increasing the catalytic activity.

To determine the structural change and thermal stability of the prepared Mn/Co-MOF-74 catalyst, TG experiments were performed, and the results are shown in Figure 4. The mass loss of Mn/Co-MOF-74 catalysts with different ratios is roughly similar. For the catalyst with Mn/Co = 1:1, three significant stages of mass loss were observed during the experiment: in the first stage, at 30−150 °C, the catalyst mass...
loss was 16.5%, mainly due to H₂O and methanol on the catalyst surface; in the 150–316 °C stage, the mass loss of the catalyst was about 13.1%, mainly due to the solvent DMF on the surface of the catalyst. The final stage is at 316–576 °C, in which the structure of the catalyst begins to collapse, and it is completely destroyed at 576 °C. The above results indicate that the activation of the catalyst at 200 °C before the experiment can effectively remove the residual solvent on the surface of the catalyst, exposing more active sites of the catalyst, which is beneficial to the SCR reaction.

The textural properties of Mn/Co-MOF-74 catalysts were measured at −196 °C and summarized in Table 2. It can be found that with the change of the molar ratio, the catalyst with Mn/Co = 1:1 has the largest BET surface area and pore volume and the smallest pore size, which are 212.84 m²/g, 0.24 cm³, and 3.94 nm, respectively.

Pore size distribution (Figure S) has shown that the Mn/Co-MOF-74 catalyst is a mesoporous material, and the pore size is mainly distributed in the range 3–6 nm. The pore volume of Mn/Co = 1:1 is larger than the other ratio catalysts. Combined with the XRD results, there are some oxides like MnO₂ and Mn₂O₃ or Co₃O₄ on the surface of Mn/Co-MOF-74 catalysts with other molar ratios; this may be the reason for the reduction of the specific surface area. When Mn/Co = 1:1,

Table 1. Relative Atomic Percentages of Different Valence Elements

| catalysts   | Mn⁴⁺ | Mn³⁺ | Co³⁺ | Co²⁺ | Mn⁴⁺/Mn³⁺ | Co³⁺/Co²⁺ |
|-------------|------|------|------|------|-----------|-----------|
| Mn/Co = 3:1 | 76.47| 23.53| 65.72| 34.28| 3.25      | 1.92      |
| Mn/Co = 2:1 | 72.59| 27.41| 65.13| 34.87| 2.65      | 1.87      |
| Mn/Co = 1:1 | 62.49| 37.51| 65.81| 34.19| 2.65      | 1.92      |
| Mn/Co = 1:2 | 72.18| 27.82| 66.51| 33.49| 2.59      | 1.99      |
| Mn/Co = 1:3 | 72.85| 27.15| 67.48| 32.52| 2.68      | 2.08      |

Figure 3. XPS spectra of Co (a), Mn (b), and O (c).
the two metal elements exist in a coordinated form in the catalyst; the mesoporous structure of the oxide covering the catalyst is not formed on the catalyst surface, so the specific surface area of Mn/Co = 1:1 is the largest. The unique mesoporous structure with a large BET surface area helps to improve the gas adsorption capacity of the catalyst and enhance the mass-transfer rate between the active sites and NH₃ or NO, thereby improving the NO removal efficiency.

The morphology of Mn/Co-MOF-74 catalysts with different molar ratios was observed by scanning electron microscopy (SEM), and the results with different magnifications are shown in Figure 6. The catalyst with a molar ratio of Mn/Co = 3:1 has a layered lumpy morphology, and the overall particle size of the catalyst is relatively large. Combined with the XRD results, it is speculated that the generated MnO₂ and Mn₂O₃ cover the surface and make the particles bigger. When the Co content gradually increases to Mn/Co = 1:1, the particles of the catalyst change from large into small. In addition, it can be seen from Figure 5c that the surface of the catalyst has obvious edges, corners, and a regular shape, which can improve the catalytic activity. However, as the Co content further increased, the particle size of the catalyst became larger again, and some deposits appeared on the surface. XRD characterization results suggest that the deposit is Co₃O₄, which can cover the active sites on the catalyst surface, being unconducive to the catalytic reduction of NO.

3.2. Effect of Synthesis Conditions. In order to study the effect of catalyst synthesis conditions and experimental conditions on the NO removal efficiency and facilitate the subsequent industrial applications, a series of experiments were designed and carried out. It is generally believed that the synthesis conditions, especially the temperature and time, have greater impacts on the catalytic removal experiments. The effects of synthesis temperature and time on the NO removal efficiency of the Mn/Co-MOF-74 catalyst were first investigated.

It can be seen from Figure 7a that the Mn/Co-MOF-74 catalyst synthesized by the microwave method exhibits a NO removal efficiency of more than 80% at 175–250 °C. The catalyst with a synthesis temperature of 130 °C has the highest NO removal efficiency, 93.5%, at 200 °C. The effect of synthesis time on NO removal is illustrated in Figure 7b; it is not difficult to find that the catalyst synthesized in 4 h has the highest removal efficiency at each temperature, followed by 2 and 6 h. With the increasing synthesis time, the metal oxides gradually form and crystallize. Once the synthesis time is insufficient, the synthesis of oxides is incomplete; however, the
oxides will form on the surface of the catalyst if the synthesis time is too long, which would reduce the catalytic activity of the catalyst. Therefore, in this paper, the optimal synthesis time is selected as 4 h.

3.3. Effect of Molar Ratio of Mn/Co. According to the results of XRD, SEM, and BET, the catalyst with a molar ratio of Mn/Co = 1:1 has an optimal catalyst structure. To verify this result, the effect of different Mn/Co molar ratios on the...

Figure 6. SEM images of Mn/Co-MOF-74 catalysts: (a,b) Mn/Co = 3:1; (c,d) Mn/Co = 2:1; (e,f) Mn/Co = 1:1; (g,h) Mn/Co = 1:2; and (i,j) Mn/Co = 1:3.
removal efficiency of NO was performed. It can be seen from Figure 8 that when the temperature is in the range of 125−200 °C, for the catalysts with molar ratios Mn/Co = 3:1, Mn/Co = 2:1, and Mn/Co = 1:1, the NO removal efficiency increases as the temperature rises. When the temperature is between 200 and 225 °C, the NO removal efficiency reaches the highest level and then drops. In contrast, the NO removal efficiency using catalysts with molar ratios of Mn/Co = 1:2 and Mn/Co = 1:3 does not show obvious change. In particular, the highest efficiency occurred when the Mn/Co ratio was 1:1 and the reaction temperature was 200 °C, which is consistent with the analysis result of the above characterizations: the catalyst with a molar ratio of Mn/Co = 1:1 has the optimal structure and higher NO removal efficiency.

3.4. Effect of Catalyst Dosage and GHSV. It is generally considered that the catalyst dosage has a greater effect on the removal efficiency; therefore, the effect of catalyst dosage on the NO removal efficiency is investigated in this work, and the results are shown in Figure 9. It can be found that as the dosage increases from 0.1 to 0.2 g, the NO removal efficiency increases significantly from 77.6 to 93.5%. When the catalyst dosage increases from 0.2 to 0.3 g, the NO removal efficiency does not change so much. This indicates that with the increase of the catalyst dosage, the NO removal efficiency is improved, although this improvement is limited. Considering the economics of the experiment, the optimal dosage of the catalyst is chosen as 0.2 g.

The effect of GHSV on removal efficiency is also shown in Figure 9. It can be found that the removal efficiency is the highest when GHSV is 45859.9 h⁻¹. The increase of GHSV would reduce the contact time between NO/NH₃ and Mn/Co-MOF-74. When GHSV was too fast, the flue gas could not fully contact the catalyst, and the catalytic reaction was not completed, resulting in the decrease of removal efficiency.
Therefore, the optimal GHSV in the experiment is 45859.9 h\(^{-1}\).

3.5. N\(_2\) Selectivity of Mn/Co-MOF-74. N\(_2\)O and NO\(_2\) are the byproducts of the SCR reaction. It is meaningful to test the amount of N\(_2\)O and NO\(_2\) produced by the Mn/Co-MOF-74 catalyst at different temperatures and calculate the N\(_2\) selectivity. It can be seen from Figure 10 that almost no NO\(_2\) was generated during the entire experiment, no N\(_2\)O was generated at 125–225 °C, and a small amount of N\(_2\)O is released at 250 °C; currently, the N\(_2\) selectivity is 94.7%. In general, the catalyst could maintain the high N\(_2\) selectivity and NO removal efficiency.

3.6. Stability of Mn/Co-MOF-74. Stability and sulfur and water resistances are important indicators for the long-term use of low-temperature denitration catalysts. As shown in Figure 11, the NO removal efficiency was stabilized at 90% in 16 h without SO\(_2\) and H\(_2\)O, but when SO\(_2\) and H\(_2\)O were added, the NO removal efficiency dropped rapidly to 66.7% and then stabilized, partly due to the competitive adsorption of SO\(_2\) and H\(_2\)O with the reactants, which affected the active sites on the catalyst surface. Another reason was that SO\(_2\), H\(_2\)O, and NH\(_3\) would generate sulfites on the surface of the catalyst, covering the catalyst active sites and decreasing the NO removal efficiency. Fortunately, after cutting off the supplements of SO\(_2\) and H\(_2\)O, the NO removal efficiency gradually recovered to 74%, proving that the Mn/Co-MOF-74 catalyst has good sulfur and water resistances.
Figure 12. Fresh and spent catalysts: (a) XRD patterns and (b–d) Co XPS (b), Mn XPS (c), and O XPS (d) spectra.
3.7. Conversion Mechanism. Figure 12 compares the XRD and XPS characterizations of the fresh and spent (reacting at 200 °C for 10 h) catalysts. It can be found from Figure 12a that although some impurity peaks appeared on the catalyst after the reaction, the characteristic peaks of the catalyst at 2θ = 6.7, 11.7, 24.4, and 25.7° did not change significantly, indicating that the structure of the catalyst was not destroyed. Figure 12b–d indicates that the element types and valence states on the catalyst surface before and after the reaction did not change, but the results in Table 3 showed that the ratio of Mn⁴⁺/Mn³⁺ and Co³⁺/Co²⁺ in the catalyst decreased after the reaction, indicating that Mn⁴⁺ and Co³⁺ in NH₃-SCR play a leading role.

Table 3. Relative Atomic Percentages of Different Valence Elements

| catalysts | percent of valence state % (binding energy, eV) |
|-----------|-----------------------------------------------|
| fresh     | Mn⁴⁺ 60.38, Mn³⁺ 39.62, Co³⁺ 66.99, Co²⁺ 33.01, Mn⁴⁺/Mn³⁺ 1.52, Co³⁺/Co²⁺ 2.03 |
| spent     | Mn⁴⁺ 55.54, Mn³⁺ 44.46, Co³⁺ 65.41, Co²⁺ 34.59, Mn⁴⁺/Mn³⁺ 1.25, Co³⁺/Co²⁺ 1.89 |

Figure 13 shows the NH₃-TPD curves of Mn/Co-MOF-74 (Mn/Co = 1:1) at 100–350 °C. There is a clear NH₃ desorption peak on the surface of the Mn/Co-MOF-74 catalyst. The peaks can be divided into three peaks at 171.4 °C (831.1 μmol/g), 236.7 °C (381.0 μmol/g), and 296.9 °C (763.4 μmol/g) (Table 4), indicating that there are three types of acidic centers in Mn/Co-MOF-74 and that Mn/Co-MOF-74 has a strong NH₃ adsorption capacity.

Based on the characterization results and related literature, the mechanism of selective catalytic reduction of NO at a low-medium temperature over the Mn/Co-MOF-74 catalyst is speculated as follows: (1) first, gaseous NH₃(g) in the flue gas is adsorbed and converted to adsorbed NH₃(a) by the active sites on the catalyst surface, as depicted in eq 1, which is the prerequisite and key to the catalytic reaction; (2) then, the adsorbed NH₃(a) reacts with the active sites on the catalyst surface containing Co³⁺ and Mn⁴⁺ to form the intermediates NH²(a) and H radicals, by which the reduced Co²⁺ and Mn³⁺ ions are generated, as depicted in eqs 2 and 3. It is worth noting that, according to the relevant reports on the Eley–Rideal (E–R) mechanism, NH₂(a) is an important intermediate in the selective catalytic reduction of NO.

(3) Finally, as depicted in eqs 4 and 7, the removal products N₂ and H₂O are produced via the reaction between the intermediate NH₂(a) and gaseous NO; meanwhile, the reduced Co²⁺ and Mn³⁺ ions would also be oxidized to Co³⁺ and Mn⁴⁺ by oxygen in the flue gas (eqs 5 and 6), thereby ensuring the continuation of the selective catalytic reduction of NO.

\[ \text{NH}_3(g) \rightarrow \text{NH}_3(a) \]  
\[ \text{NH}_3(a) + \text{Mn}^{4+} \rightarrow \text{NH}_2(a) + \text{Mn}^{3+} + \text{H} \]  
\[ \text{NH}_3(a) + \text{Co}^{3+} \rightarrow \text{NH}_2(a) + \text{Co}^{2+} + \text{H} \]  
\[ \text{NH}_2(a) + \text{NO(g)} \rightarrow \text{N}_2 + \text{H}_2\text{O} \]  
\[ \text{Co}^{2+} + \text{O}_2 \rightarrow \text{Co}^{3+} + \text{O} \]  
\[ \text{Mn}^{3+} + \text{O}_2 \rightarrow \text{Mn}^{4+} + \text{O} \]  
\[ \text{H} + \text{O} \rightarrow \text{H}_2\text{O} \]  

4. CONCLUSIONS

A series of bimetallic Mn/Co-MOF-74 catalysts were successfully synthesized via the microwave hydrothermal method, and the experimental results showed that Mn/Co-MOF-74 with a molar ratio of Mn/Co = 1:1 exhibited the optimal catalytic performance; a 93.5% NO removal efficiency was obtained at 200–225 °C, with a catalyst dosage of 0.2 g, a synthesis temperature of 130 °C, and a synthesis time of 4 h. The abovementioned excellent characteristics could be attributed to the smooth mesoporous structure and the atomic ratios of Mn⁴⁺/Mn³⁺ and Co³⁺/Co²⁺ on the catalyst surface, which played important roles in improving the NO removal efficiency at a low temperature. Furthermore, the Mn/Co-MOF-74 catalyst also exhibited excellent sulfur and water resistances, confirming the feasibility of using bimetal MOF as a new catalyst for the SCR reaction.

■ AUTHOR INFORMATION

Corresponding Author
Yi Zhao – School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China; orcid.org/0000-0001-9974-0348; Email: zhaoyi9515@163.com

Authors
Zhonghao Sun – School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China
Xue Mi – School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China

Table 4. Amount of Desorption of NH₃ in TPD of Catalysts

| peak number | temperature (°C) | quantity (μmol/g) |
|-------------|-----------------|------------------|
| 1           | 171.4           | 813.1            |
| 2           | 236.7           | 381.0            |
| 3           | 296.9           | 763.4            |
Yichen Luo — School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China
Siyuan Wang — School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China
Bo Yuan — School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China
Runlong Hao — School of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c04077

Notes
The authors declare no competing financial interest.

Acknowledgments
The authors appreciate the financial support by grants from the Key Project of the National Major Research and Development Program of China (2016YFC0203701) and the Fundamental Research Funds for the Central Universities (2019QN091).

References
(1) Ding, J.; Zhong, Q.; Zhang, S.; Song, F.; Bu, Y. Simultaneous removal of NOx and SO2 from coal-fired flue gas by catalytic oxidation-reduction process with H2O2. Chem. Eng. J. 2014, 243, 176−182.
(2) Roy, S.; Hegde, M. S.; Madras, G. Catalysis for NOx abatement. Appl. Energy 2009, 86, 2283−2297.
(3) Wang, H.; Yuan, B.; Hao, R.; Zhao, Y.; Wang, X. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas. Chem. Eng. J. 2019, 378, 121155.
(4) Zhao, Y.; Hao, R.; Yuan, B.; Jiang, J. Simultaneous removal of SO2, NOx and Hg2+ through an integrative process utilizing a cost-effective complex oxidant. J. Hazard. Mater. 2016, 301, 74−83.
(5) Liu, J.; Wang, L.; Okejiri, F.; Luo, J.; Zhao, J.; Zhang, P.; Liu, M.; Yang, S.; Zhang, Z.; Song, W.; et al. Deep Understanding of Strong Metal Interface Confinement: A Journey of Pd/FeOx Catalysts. ACS Catal. 2020, 10, 8950−8959.
(6) Zhao, Y.; Yuan, B.; Hao, R.; Tz, Z. Low-Temperature Conversion of NO in Flue Gas by Vaporized H2O2 and Nanoscale Zerovalent Iron. Energy Fuels 2017, 31, 7282−7289.
(7) Yuan, B.; Mao, X.; Wang, Z.; Hao, R.; Zhao, Y. Radical-induced oxidation removal of multi-air-pollutant: A critical review. J. Hazard. Mater. 2020, 383, 121162.
(8) Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A Review on Selective Catalytic Reduction of NOx by NH3 over Mn-Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculation. Catal. 2017, 7, 199.
(9) Beale, A. M.; Gao, F.; Lezcano-Gonzalez, L.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371−7405.
(10) Ma, Z.; Yang, H.; Liu, F.; Zhang, X. Interaction between SO2 and Fe-Cu-Ox/CNTs-TiO2 catalyst and its influence on NO reduction with NH3. Appl. Catal. Gen. 2015, 467, 450−455.
(11) Shen, B.; Liu, T.; Zhao, N.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J. Environ. Sci. 2010, 22, 1447−1454.
(12) Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R. T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catal. Today 2011, 175, 147−156.
(13) Jiang, B.; Deng, B.; Zhang, Z.; Wu, Z.; Tang, X.; Yao, S.; Lu, H. Effect of Zr Addition on the Low-Temperature SCR Activity and SO2 Tolerance of Fe−Mn/Ti Catalysts. J. Phys. Chem. C 2014, 118, 14866−14875.
(14) Liu, J.; Cheng, H.; Tan, J.; Liu, B.; Zhang, Z.; Xu, H.; Zhao, M.; Zhu, W.; Liu, J.; Zhao, Z. Solvent-free rapid synthesis of porous CeWOx by mechanochemical self-assembly strategy for the abatement of NOx. J. Mater. Chem. A 2020, 8, 6717−6731.
(15) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Sci. 2013, 341, 974.
(16) Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T.; et al. Tuning the structure and function of metal−organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561−5593.
(17) Szeane, B.; Castellanos, S.; Dikhtarenko, A.; Kapteijn, F.; Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 2016, 307, 147−187.
(18) Nandasiri, M. I.; Jambovane, S. R.; Mcgrail, B. P.; Schaef, H. T.; Nune, S. K. Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coord. Chem. Rev. 2016, 311, 38−52.
(19) Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-organic frameworks as platforms for functional materials. Adv. Chem. Res. 2016, 49, 483−493.
(20) Sun, W.; Liu, L.-C.; Peng, X.; Smit, B. Computational Screening of Porous Metal-Organic Frameworks and Zeolites for the Removal of SO2 and NOx from Flue Gases. Aiche J. 2014, 60, 2314.
(21) Wang, P.; Sun, H.; Quan, X.; Chen, S. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature. J. Hazard. Mater. 2016, 301, 512−521.
(22) Sun, X.; Shi, Y.; Zhang, W.; Li, C.; Zhao, Q.; Gao, J.; Li, X. A new type Ni-MOF catalyst with high stability for selective catalytic reduction of NOx with NH3. Catal. Commun. 2018, 114, 104−108.
(23) Kapteijn, F.; Vanlangenaveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J. M.; Wachs, I. E. Alumina-supported manganese oxide catalysts: I. Characterization: Effect of precursor and loading. J. Catal. 1994, 150, 94−104.
(24) Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J. Hazard. Materials 2011, 188, 105−109.
(25) Peña, D. A.; Uphade, B. S.; Smirniotis, P. G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: Evaluation and characterization of first transition metals. J. Catal. 2004, 221, 421−431.
(26) Fang, J.; Wu, Y.; Lei, B.; Wang, L.; Kao, H. Preparation and catalytic performance of supported Mn-Co/TiO2 catalyst used for selective reduction of NO with NH3 at low temperatures. Acta Sci. Circumstantiae 2014, 34, 849−856.
(27) Boningari, T.; Smirniotis, P. G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce and Zr) on Mn-TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low temperatures. Appl. Catal. B 2011, 110, 195−206.
(28) Shi, Y.; Yang, X.; Yi, H.; Gao, F.; Zhao, S.; Wang, J.; Yang; K.; Zhang, R. Controlled Synthesis of Spinel-Type Mesoporous Mn–Co Rods for SCR of NOx with NH3 at Low Temperature. Ind. Eng. Chem. Res. 2019, 58, 3606−3617.
(29) Jiang, H.; Niu, Y.; Wang, Q.; Chen, Y.; Zhang, M. Single-phase SO2-resistant to poisoning Co/Mn-MOF-74 catalysts for NH3-SCR. Catal. Commun. 2018, 113, 46−50.
(30) Jiang, H.; Wang, C.; Wang, H.; Zhang, M. Synthesis of highly efficient MnOx catalyst for low-temperature NH3-SCR prepared from Mn-MOF-74 template. Mater. Lett. 2016, 168, 17−19.
(31) Xie, S.; Qin, Q.; Liu, Q.; Jin, L.; Wei, X.; Liu, J.; Liu, X.; Yao, Y.; Dong, L.; Li, B. MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH3-SCR and In Situ DRIFTS Study Reaction Mechanism. ACS Appl. Mater. Interfaces 2020, 12, 48476−48485.
(32) Botas, J. A.; Calleja, G.; Sánchez-Sánchez, M.; Gisela Orcajo, M. Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. Int. J. Hydrogen Energy 2011, 36, 10834–10844.

(33) Lian, Q.; Roy, A.; Kizilkaya, O.; Gang, D. D.; Holmes, W.; Zappi, M. E.; Yao, H. Uniform Mesoporous Amorphous Cobalt-Inherent Silicon Oxide as a Highly Active Heterogeneous Catalyst in the Activation of Peroxymonosulfate for Rapid Oxidation of 2,4-Dichlorophenol: The Important Role of Inherent Cobalt in the Catalytic Mechanism. ACS Appl. Mater. Interfaces 2020, 12, 57190–57206.

(34) Sun, K.; Liu, Z.; Song, S.; Liu, W.; Wang, P.; Zhang, T.; Xue, Y.; Wang, Y.; Tan, Y. Effect of Hydroxyl Groups on CuCoMg Nanosheets for Ethanol and Higher Alcohol Synthesis from Syngas. Ind. Eng. Chem. Res. 2021, 60, 2388–2399.

(35) Bui, N.-Q.; Geantet, C.; Berhault, G. Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3 hydrotreating catalysts. J. Catal. 2015, 330, 374–386.

(36) Shen, Q.; Zhang, L.; Sun, N.; Wang, H.; Zhong, L.; He, C.; Wei, W.; Sun, Y. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation. Chem. Eng. J. 2017, 322, 46–55.

(37) Sun, H.; Yu, X.; Ma, X.; Yang, X.; Lin, M.; Ge, M. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation. Catal. Today 2020, 355, 580–586.

(38) Kryuchkova, N. A.; Kostin, G. A.; Korotaev, E. V.; Kalinkin, A. V. XPS and quantum chemical investigation of electronic structure of Co complexes with calix[4] arenes modified by R2PO groups in upper or lower rim. J. Electron Spectrosc. Relat. Phenom. 2018, 229, 114–123.

(39) Alburquenque, D.; Troncoso, L.; Denardin, J. C.; Marco, J. F.; Gautier, J. L. Cation distribution and magnetic properties of NiMn1-xO4-delta (x=0.5, 0.75) synthesized by an ultrasound method. J. Phys. Chem. Solids 2019, 134, 89–96.

(40) Wu, Z.; Jin, R.; Liu, Y.; Wang, H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun. 2008, 9, 2217–2220.

(41) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

(42) Zhang, L.; Shi, L.; Huang, L.; Zhang, J.; Gao, R.; Zhang, D. Rational Design of High-Performance DeNOx Catalysts Based on MnCo2xOx Nanocages Derived from Metal−Organic Frameworks. ACS catal. 2014, 4, 1753–1763.

(43) Chuang, C.-M.; Huang, C.-W.; Teng, H.; Ting, J.-M. Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors. Energy Fuel 2010, 24, 6476–6482.

(44) Li, X.; He, C.; Zheng, J.; Wu, D.; Duan, Y.; Li, Y.; Rao, P.; Tang, B.; Rui, Y. Flocculent Cu Caused by the Jahn–Teller Effect Improved the Performance of Mg-MOF-74 as an Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 52864–52872.

(45) Jiang, H.; Wang, Q.; Wang, H.; Chen, Y.; Zhang, M. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2016, 8, 26817–26826.