A Post-Mortem Stereological Study of Striatal Cell Number in Human Obesity

Christopher M. Weise1,2, Peter R. Mouton3, Jennifer Eschbacher4, Stephen W. Coons4, and Jonathan Krakoff4

Objective: Neuroimaging studies have revealed abnormalities in brain structure, including the striatum, in obese people. In this study, the cellular and parenchymal basis for these findings in post-mortem brain tissue was investigated.

Methods: Design-based (unbiased) stereology combined with histochemical and immunocytochemical staining was used to quantify total number of neurons and astrocytes in post-mortem striatal brain samples from nine obese (BMI 40.2 ± 6.1 kg/m²) and eight lean (BMI 24.4 ± 1.0 kg/m²) donors. Total numbers of Nissl-stained neurons and glial fibrillary acidic protein-immunopositive astrocytes were counted in 10 systematic-random sections starting from the frontal pole of the striatum.

Results: There were no differences in mean total numbers of neurons (obese: 7.60 ± 0.72; lean: 7.85 ± 0.39; lean: 1.15, SD 0.37; P < 0.72) with an overall striatal neuron/glia ratio of 1.11 (SD 0.37) across the entire study population (n = 17).

Conclusions: No difference was found in the average numbers of neurons and astrocytes in the anterior striatum between lean and obese people. The morphological basis for structural brain changes in obesity requires further investigation.

Introduction

Recent studies indicate that the prevalence of obesity in the United States exceeds 35% in the adult population (1). Consequently, there has been increasing interest in the neurological basis for the behaviors that promote obesity. Dysfunction of the brain’s reward system including dopaminergic mesolimbic and mesocortical pathways may play a role by promoting unhealthy food choices and causing compensatory overconsumption (2). Human neuroimaging studies have repeatedly shown an important role for the striatum in reward-related behavior and obesity (3-6). In healthy humans, striatal volume was positively associated with inhibitory control and negatively associated with reward sensitivity (7); on the other hand, lower striatal gray matter volume has been reported in obese subjects (8). Similar observations have been made on a functional level with reduced striatal dopamine D2 receptor (DRD2) (9) and dopamine transporter (DAT) (10) in obese subjects compared to normal weight subjects.

In addition, lower striatal DRD2 density in obese subjects might be involved in reduced inhibitory control and salience attribution (11). In humans it is not known whether these abnormalities precede obesity, and therefore represent neural markers of increased propensity to gaining weight, or occur as a consequence of chronic obesity, even though rodent studies suggest a progressive decline of striatal dopaminergic function with increasing obesity (12).

Since all previous reports on structural brain alterations in obese humans are based on in vivo imaging techniques, the underlying histological causes remain unknown. This seems particularly important, as a potentially reduced number of neurons (inherent or acquired) in reward-related brain regions such as the striatum could provide additional explanations for known difficulties in losing weight or maintaining a stable body weight after weight loss (13). Hence, new approaches are required to enhance our understanding of the...
neurobiology of obesity. Based on the above delineated results from in vivo studies, we hypothesized that post-mortem striatal samples of obese donors would exhibit lower density of neurons and glial cells (i.e., astrocytes) than lean donors. Brain samples were analyzed using computerized stereology as previously detailed for applications to human brains (14-21).

Methods
Tissue samples
Brains were acquired in compliance with requirements of the institutional review committee of the Harvard Brain Tissue Resource Center (www.brainbank.mclean.org). Brains were fixed in 10% formalin and coronally dissected in a standardized procedure by the donating institution. Inclusion criteria for this study included no evidence of psychiatric or neurological diseases. Groups were divided based on body mass index (BMI) calculated as pre-mortem body weight divided by pre-mortem height squared (lean: mean BMI = 24.4 ± 1.0 kg/m²; obese: 40.2 ± 6.1 kg/m²). Brain samples for obese and lean subjects were matched using predefined inclusion criteria (age, post-mortem interval, time in formalin fixation) and screened for evidence of neuropathology. Based on matching criteria and availability of tissue and anthropometric data, striatal samples were obtained from a total of n = 18 cases. A single case in the obese group was excluded from the statistical analysis on the basis of atypical histological appearance expected for striatum (Figure 1), leaving a total of n = 17 cases (9 obese and 8 lean).

Tissue preparation
Blocks of formalin-fixed post-mortem human brain containing the most anterior 5 mm of the striatum (“striatal cap,” caudate, and putamen) were dehydrated through graded ethanol and xylenes, and then embedded in paraffin. Paraffin blocks were serially sectioned in the coronal plane at an instrument setting of 25 μm. With a random start in the first series of six sections (interval: 150 μm), the 1st and 2nd sections in each series of six serial sections were mounted separately on 50 mm x 75 mm Superfrost Plus microscope slides (1 section per slide, 10 slides per set, 2 sets per brain) and stained with cresyl violet and glial fibrillary acidic protein (GFAP) immunocytochemistry, respectively (for details see Supporting Information).

Stereology
Trained personnel blind to group used a computerized stereology system (Stereologer, Stereology Resource Center, Tampa, FL, for specifications see Supporting Information) to quantify total numbers of neurons and astrocytes in n = 10 sections sampled in a systematic-random manner through the striatal cap. Specifically, these studies used the optical fractionator method (22), as previously applied by our group to human brains (17,23) (for recent stereology reviews, see refs. 19-21). Briefly, the striatum was outlined at low power (×4) on each section, followed by counting neurons and astrocytes on thin focal plane scanning at high magnification (×60, 1.4 na) in the z-axis. Neuronal somas of all sizes were included in the count if they met the inclusion criteria: well-formed nucleus, nucleolus, and nuclear membrane with evidence of some cytoplasm (Figure 2B). Cells immunopositive for GFAP were counted as astrocytes (Figure 2C). Neurons and astrocytes were counted if they fell within the 3-D disector or intersected the inclusion planes without touching the exclusion planes on the unbiased counting frame. This unbiased counting method was repeated at 100 to 200 systematic-random locations across all n = 10 sections for each case to achieve a high stringency level, as evidenced by a coefficient of error less than 10% (CE < 0.10) for both lean and obese groups (for more details see Supporting Information).

Statistical analyses
SAS Software (SAS Institute Inc, version 9.2, Cary, NC) was used for all statistical analyses. Two-sample t-test and table analyses were applied for group comparisons using either pooled or Satterthwaite 95% intervals whenever appropriate and Levene’s test for equality was used for additional analyses of variance. Pearson or Spearman correlation was used for correlational analyses whenever appropriate.

Results
Sample
Table 1 summarizes clinical data on brain donors and donated tissue. All brains were from male donors with the exception of a single female (case no. 10) in the obese group. As shown in Table 2, the only significant difference between lean and obese subjects is BMI (P < 0.0001). Additional analyses excluding the three subjects with...
BMI > 25 and the female subject did not significantly change the results as described below.

Microscopic appearance

Striatal samples showed the typical patch matrix mosaic of the striatum at low power (Figure 2A). The microscopic appearance of Nissl-stained cell bodies at high power ($\times 60$ oil immersion) covered a range of soma sizes (small, medium, large) with a predominance of medium-sized cell bodies (Figure 2B).

Stereology counts of neurons

For the total of 17 cases in this study, the overall mean total number ($\text{Total } N$) of cresyl violet-stained neurons in the anterior striatum was 7.72×10^6 (SD 1.85×10^6). Statistical analysis revealed no differences in mean total N of Nissl-stained neurons for the lean (7.85×10^6; SD 8.26×10^5) and obese (7.60×10^6; SD 2.50×10^6) groups ($P = 0.78$; Satterthwaite approximation for unequal variances) in the anterior striatum (Figure 3A). However, the Levene’s test for equality showed significantly larger variation in neuronal cell counts for the obese group ($P = 0.007$).

Stereology counts of astrocytes

Statistical analyses of astrocyte findings showed a mean total N of 7.42×10^6 (SD 2.31×10^6) GFAP-positive astrocytes in anterior striatum. As shown in Figure 3B, there was no difference ($P = 0.99$) in mean total N of astrocytes in anterior striatum for the lean group.

TABLE 1 Clinical characteristics of study population

Group	Case	Age (years)	Sex	BMI (kg m^{-2})	Cause of death	Time in formalin (days)	Post-mortem interval (h)	Comorbidities
Lean	1	63	M	22.4	CPA	1,499	17.9	HLP
	2	56	M	24.4	CPA	2,033	28.8	HLP, HTN
	3	68	M	24.4	AMI	1,616	24.2	Kidney stones
	4	65	M	24.3	CPA	1,420	26.2	None reported
	5	60	M	23.8	AMI	2,187	22.1	None reported
	6	56	M	25.1	AMI	2,049	26.0	CAD
	7	57	M	25.4	RA	1,372	21.8	CHF, DM2, COPD
	8	65	M	25.4	AMI	1,563	22.9	CAD, HLP, HTN
Obese	9	55	M	31.5	CPA	1,198	23.9	HTN, gastric ulcer
	10	63	F	33.1	CPA	1,612	26.8	HTN, psoriasis
	11	47	M	38.1	AMI	804	26.8	HTN, HU, sleep apnea
	12	68	M	37.3	CPA	1,142	16.8	AP
	13	57	M	39.1	CPA	808	25.0	HTN, AF,
	14	62	M	44.1	CPA	2,272	21.7	Varicosis
	15	56	M	42.0	AMI	1,786	26.2	DM2, HLP
	16	62	M	46.2	CPA	2,302	25.6	DM2, CRF, pHT
	17	65	M	50.5	AMI	1,644	23.2	HTN, COPD, Prostate-Ca

Abbreviations: CPA, cardiopulmonary arrest; AMI, acute myocardial infarction; RA respiratory arrest; HLP, hyperlipoproteinemia; HTN, arterial hypertension; CAD, coronary artery disease; CHF, chronic heart failure; DM2, type 2 diabetes mellitus; COPD, chronic obstructive pulmonary disease; HU, hyperuricemia; AP, angina pectoris; AF, atrial fibrillation; CRF, chronic renal failure, and pHT, pulmonary hypertension.
Correlational analyses and neuron/glia ratio

Using the Pearson product moment statistic, there were no significant correlations between total N for neurons and astrocytes for both groups analyzed together (\(P = 0.12\); \(r = 0.40\)); or within lean (\(P = 0.16\); \(r = 0.55\)) and obese (\(P = 0.26\); \(r = 0.43\)) groups analyzed separately. Correlational analyses of BMI with neuron or astrocyte counts were also not significant (data not shown). No differences were found for neuron/glia ratios (i.e., quotient of mean neuronal and glial cell counts) between the groups [entire sample 1.11 (SD 0.37); lean 1.15 (SD 0.37); obese 1.07 (0.39); \(P = 0.70\)].

Discussion

This is the first study in post-mortem human brains to assess a possible histological basis for obesity-related brain abnormalities. It has been hypothesized that reduced functioning of the brain reward system might facilitate the development of obesity, with cumulative evidence pointing to an important role of the striatum in reward and reward-related behavior (3-6). Despite previous neuroimaging reports suggesting morphological and functional differences in the striatum of obese people, we found no histological differences in numbers of either neurons or astrocytes in striatum from lean and obese people. The only significant finding was a redundant higher variance for counts of neurons but not astrocytes in striatum of obese compared to lean people.

Previous neuroimaging findings differ with regard to specific locations and even the directionality of the respective alterations in obesity. Pannaciulli et al. 2006 reported reduced striatal gray matter volume but increased striatal white matter volume in obese subjects (8). A second group of investigators reported similar white matter increases in the dorsal striatum of obese people (24). An imaging study by Schäfer et al. 2010 reported a negative relationship between BMI and volume of dorsal and ventral striatal gray matter (25). Conversely, ventral and dorsal striatal gray matter was positively associated with BMI in a sample of 122 comparably young lean, overweight, and obese adults (26).

Apart from structural differences in striatum, functional neuroimaging studies also indicate neurochemical and functional alterations in human obesity (3,27,28). In particular, striatal dopaminergic function appears to play a key role in promoting incentive salience, thus increasing the “wanting” aspect of food-related behavior (29). This concept is supported by findings from radiotracer studies showing reduced availabilities of striatal DRD2 dopamine receptors (9) and DAT in obese subjects (10). More recent results, however, do not support these earlier findings (30,31). The discrepancies with regard to alterations of reward-related brain functions in obesity, including striatal responses to food cues, has lead some authors to propose more complicated models of reward dysfunction. Burger and Stice suggested a dynamic vulnerability model in which hyper-responsivity to food leads to overconsumption, followed by downregulation of dopaminergic receptors (32). The result in this case would be striatal hyporesponsivity to food reward with compensatory increases in food intake. A dynamic model with varying degrees of dopaminergic function may explain the above inconsistencies in striatal findings in neuroimaging studies. This in combination with lack of information about duration of obesity might also provide a possible explanation for the here observed higher variance of striatal neurons in obese humans.

To date, few stereological studies exist that investigated neuronal and glial counts of the healthy human brain, and none prior have been carried out in any part of the striatum. Beside no differences in numbers of neurons and astrocytes for obese and lean groups, we report close to a 1:1 balance between the neurons (mean 7.72 ± 1.85

TABLE 2 Group comparison of lean and obese

	Obese	Lean	\(P\)
Sex (M/F)	8/1	8/0	n.s.
Age (years)	59.4 (±6.3)	61.2 (±4.7)	n.s.
BMI (kg m\(^{-2}\)	40.2 (±6.1)	24.4 (±1.0)	<0.0001
Post-mortem interval (hours)	1508 (±320)	1714 (±320)	n.s.
Time in formalin (days)	6/3	7/1	n.s.
Hemisphere (L/R)	3/6	3/7	n.s.

All results apart from **“** are presented as mean ± SD.
A few caveats need to be acknowledged. First, working with human brain tissue is challenging in numerous ways. Particularly, the limited availability of tissue and the resulting small sample sizes need to be acknowledged. Also, the only structure in the donor brains consistently available for unbiased systematic-random sampling was the anterior part of the striatum ("striatal cap"). Systematic-random sampling through the entire striatum could yield different findings than reported here. A second consideration is that besides basic anthropological data such as height and weight, no additional data was available with regard to onset, duration of obesity, and length of weight stability. Third, although our records search did not indicate any known addictive or psychiatric disorders, heterogeneity in causes of death and potential comorbidities could have influenced the results. Rather than BMI, recent studies indicate that variables other than the distribution of body mass index among US adults, 1999-2010. Prevalence of obesity and trends in causes of death and potential comorbidities could have influenced the results. Rather than BMI, recent studies indicate that variables such as free fat mass and waist circumference more closely correlate with changes in brain volumes (35-36).

Conclusion

To our knowledge, this is the first quantitative histological study of neurons and astrocytes from the brains of otherwise healthy obese and lean subjects. Using computerized stereology, we found no differences in mean neuronal and astrocyte density in the striatum but a significantly higher variance in striatal neuronal counts in obese subjects. We confirmed a neuron/glial ratio close to 1.0 for the striatum, in agreement with ratios reported for cerebral cortex. These results indicate a need to further explore the underlying biology and histology of neuroimaging findings.

Acknowledgments

Authors gratefully thank the Harvard Brain Tissue Resource Center (Boston, MA, USA) for providing the brain specimens and excellent support; and Dr. Fu Du of FD Neurotechnologies, Inc. (Ellicott City, MD, USA) for high-quality neurohistology services.

References

1. Flegal KM, Carroll MD, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012;307:491-497.
2. Berndt KC, Ho C-Y, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 2010;1350:43-64.
3. Balleine BW, Delgado MR, Hikosaka O. The role of the dorsal striatum in reward and decision-making. J Neurosci 2007;27:8161-8165.
4. Carrell S, Gibson C, Benson L, Ochner CN, Geliebert A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev 2012;13:43-56.
5. Hollmann M, Pfeger B, Villringer A, Horstmann A. Brain imaging in the context of food perception and eating. Curr Opin Lipidol 2013;24:18-24.
6. Tomasi D, Volkow ND. Striato-cortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Neurobiol 2013;48:1-19.
7. Barrios-Loscertales A, Meseguer V, Sanjuán A, et al. Striatum gray matter reduction in males with an overactive behavioral activation system. Eur J Neurosci 2006;24:2071-2074.
8. Panzaccioli N, Del Parigi A, Chen K, Le DSN, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage 2006;31:1419-1425.
9. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001;357:354-357.
10. Chen PS, Yang YK, Yeh TL, et al. Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers—a SPECT study. Neuroimage 2008;40:275-279.
11. Volkow ND, Wang G-J, Telang F, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008;42:1537-1543.
12. Johnson PM, Kenna PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010;13:635-641.
13. Ochner CN, Barrios DM, LEE CD, Pi-Sunyer FX. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol Behav 2013;120:106-113.
14. Mouton PR, Pakkenberg B, Gandersens HHG, Price DL. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat 1994;7:185-190.
15. Mouton PR, Martin LJ, Calhoun ME, Dal Forno G, Price DL. Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol Aging 1998;19:371-377.
16. Mouton PR. Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists. Baltimore, MD: Johns Hopkins University Press; 2002.
17. Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA J Am Med Assoc 2013;300:2001-2010.
18. Manaye KF, Mouton PR, Xu G, et al. Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. Age Dordr Neth 2013;35:139-147.
19. Mouton PR. Applications of unbiased stereology to neurodevelopmental toxicology. In: Wang C, Stikker W Jr (eds.). Developmental Neurotoxicology Research. Hoboken, NJ: Wiley; 2011. pp 53-75.
20. Mouton PR. Unbiased Stereology: A Concise Guide. Baltimore, MD: Johns Hopkins University Press; 2011.
21. Mouton PR, Gordon M. Stereological and image analysis techniques for quantitative assessment of neurotoxicology. In: Harry GJ, Tilson HA, eds. Target Organ Toxicology Series, 3rd ed. London and New York: Taylor & Francis Press; 2010. pp 243-267.
22. West MJ. New stereological methods for counting neurons. Neurobiol Aging 1993;14:275-285.
23. Manaye KF, Lei D-L, Tizabi Y, Du F. Azevedo FAC, Carvalho LRB, Grinberg LT, et al. Striatum gray matter reduction (mean 86.1 billion) and non-neuronal cells (mean 84.6 billion) (34).
24. Azevedo FAC, Carvalho LRB, Grinberg LT, et al. Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. Eur J Neurosci 2009;20:120:106-113.
25. Mouton PR, Martin LJ, Calhoun ME, Dal Forno G, Price DL. Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol Aging 1998;19:371-377.
26. Mouton PR. Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists. Baltimore, MD: Johns Hopkins University Press; 2002.
27. Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA J Am Med Assoc 2013;300:2001-2010.
28. Manaye KF, Lei D-L, Tizabi Y, Du F. Azevedo FAC, Carvalho LRB, Grinberg LT, et al. Striatum gray matter reduction (mean 86.1 billion) and non-neuronal cells (mean 84.6 billion) (34).
29. Azevedo FAC, Carvalho LRB, Grinberg LT, et al. Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. Eur J Neurosci 2009;20:120:106-113.
30. Mouton PR. Applications of unbiased stereology to neurodevelopmental toxicology. In: Wang C, Stikker W Jr (eds.). Developmental Neurotoxicology Research. Hoboken, NJ: Wiley; 2011. pp 53-75.
31. Mouton PR. Unbiased Stereology: A Concise Guide. Baltimore, MD: Johns Hopkins University Press; 2011.
32. Mouton PR, Gordon M. Stereological and image analysis techniques for quantitative assessment of neurotoxicology. In: Harry GJ, Tilson HA, eds. Target Organ Toxicology Series, 3rd ed. London and New York: Taylor & Francis Press; 2010. pp 243-267.
33. West MJ. New stereological methods for counting neurons. Neurobiol Aging 1993;14:275-285.
34. Azevedo FAC, Carvalho LRB, Grinberg LT, et al. Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. Eur J Neurosci 2009;20:120:106-113.
35. Kurth F, Levitt JG, Phillips OR, et al. Relationships between gray matter, body mass index, and waist circumference in healthy adults. Hum Brain Mapp 2006;31:185-190.
36. Weise CM, Thiyagaraju P, Reiman EM, Chen K, Krakoff J. Fat-free body mass but not fat mass is associated with reduced gray matter volume of cerebral cortical regions implicated in autonomic and homeostatic regulation. Neuroimage 2013;64:712-721.