ab initio MOLECULAR DYNAMICS DESCRIPTION OF PROTON TRANSFER AT WATER-TRICALCICUM SILICATE INTERFACE

Preprint, compiled November 7, 2019

Jérôme Claverie¹,², Fabrice Bernard¹, João Manuel Marques Cordeiro³, and Siham Kamali-Bernard¹,*

¹Laboratory of Civil Engineering and Mechanical Engineering (LGCGM), INSA Rennes, Rennes, France
²Department of Physics and Chemistry, School of Natural Sciences and Engineering, São Paulo State University (UNESP), 15385-000 Ilha Solteira, São Paulo, Brazil
*Corresponding Author: siham.kamali-bernard@insa-rennes.fr

Abstract

The early hydration of tricalcium silicate (C_3S) is a very relevant topic towards a better understanding of a more sustainable design of Portland Cement. Atomistic simulation methods have shown a good capabilities in predicting the reactivity of mineral surfaces and the behavior of solid/liquid interfaces. For the first time, an *ab initio* molecular dynamics simulation was performed to describe the C_3S/water interface. The simulation shows that oxides with favorable environment are protonated at first, creating very stable hydroxide groups. Proton transfers occur between water and silicates, and water and hydroxides formed upon water dissociation on the surface. These transfers are investigated in terms of energy and frequency.

Keywords Tricalcium silicate. Hydration. *ab initio* Molecular Dynamics. Proton transfer. Interface.

1 INTRODUCTION

Although the use of low clinker ratio cements is increasing, the development of new clinker types remains a reliable strategy to reduce greenhouse gas emissions and improve the properties of cement for concrete structures applications. In a context of durable design, considerable efforts are being made for a better understanding of original Portland cement (OPC) hydration. However, considering the hydration of all clinker phases together would turn the study highly complex. Most of the time, the tricalcium silicate (C_3S) received a particular attention, due to its predominance in OPC clinker (about 50% to 70% by mass). C_3S is the main phase responsible for OPC setting and strength development. The hydration itself encompasses several processes such as dissolution, phase growth, diffusion and complexation [1]. Towards a better understanding of the mechanisms responsible for these processes, atomistic simulations are increasingly used [2]. At the molecular scale, the systems commonly investigated can be divided in three parts: bulk systems, surface systems, interface systems. Molecular dynamics (MD) and density functional theory (DFT), have already been used to compute surface energies and determine Wulff shapes for monoclinic M_3C_3S [3–5].

In recent studies, molecular and dissociative adsorption of single water molecule were investigated on multiple surface planes of M_3C_3S polymorph [6–8]. Zhang et al. have shown that the adsorption energy decreases with increasing adsorbed molecules. Reactive MD studies indicates that after approximately 0.3 ns, the structural properties of the surface are lost, making further hydration process independent from the surface plane, and driven by proton hopping mechanisms towards the bulk [8] [9]. No correlation was found between water adsorption energy and surface energy, when using static computational methods [3]. However, the proton diffusion after the initial stage of hydration was related to the location of the valence band maximum (VBM), which is mainly constituted of oxygen 2p orbitals [9, 10]. Previous DFT studies reveal that the local density of state of the VBM is closed to the oxygen in silicates for C_3S, and closed to oxygen in silicates for C_2S [11]. The highest reactivity of C_3S when compared to C_2S is explained by the difference in their electronic structure, arising from the presence of oxygen anions in C_3S. Calculations of a single water molecule sorption on a (100) surface of T_1C_3S, shown that chemisorption occurred only in regions close to oxide ions. This behaviour was associated to the higher degree of freedom of oxide ions when compared to oxygen in silicate [9].

Proton transfer (PT) frequency strongly depends on hydrogen bonds (HB) fluctuation due to thermal motion [12], and thus cannot be analyzed by a 0K, DFT investigation. Furthermore, such a phenomenon cannot be captured considering single water adsorption. A previous computational study found structural changes, as well as a huge increase in PT rate from a solid/water monolayer interface to a thicker water film. Towards a better understanding of the C_3S/water interface, we performed an *ab initio* MD (AIMD) simulation, considering a water film thick enough to account for fluctuation of the HB network. AIMD is a powerful tool that has been used extensively to investigate the structural and dynamical behavior of water/oxide interfaces at the DFT level of theory [12] [13]. However, only few AIMD studies were conducted on cimentitious materials [20] [22]. As far as we know, this is the first time that
the very early hydration stage of C₃S is investigated using AIMD. In particular, the structure of water and the PT dynamics are analysed and quantified, and the results are compared with reactive molecular dynamics calculations, performed for that purpose.

2 Computational Methods

A simulation of the C₃S/water interface was performed on the symmetric, Ca-rich, (040) plane. The M₃ C₃S model employed was refined from XRD analysis by Mumme et al. [23]. The M₃ unit cell of 54 atoms was optimized, at the DFT level with the Quantum Espresso code, using the PBE exchange-correlation functional with a Grimme D2 correction for van der Waals interactions. The kinetic energy cutoffs for wave functions and charge density were 45 Ry and 405 Ry, respectively. The Monkhorst-Pack method was used for the integration of the first Brillouin zone, with a \(3 \times 3 \times 3\) k-point mesh. During the optimization process, the atoms were allowed to relax. In order to build a surface model, the optimized unit cell was converted to an orthorhombic supercell of 162 atoms, with lattice parameters \(a = 12.28\ \text{Å}, \ b = 7.09\ \text{Å}\) and \(c = 25.59\ \text{Å}\). The optimized monoclinic cell and corresponding orthorhombic supercell are represented in Fig. 1.

The surface model was created from three orthorhombic supercells, with a 20 Å thick vacuum layer, thus resulting in a \(12.28\ \text{Å} \times 25.59\ \text{Å} \times 21.28\ \text{Å}\) structure. The relaxation of the surface and the AIMD simulation were performed with the CP2K code, using a PBE functional, and a combination of Gaussian and plane wave basis functions (GPW), with Grimme D2 correction. A 400 Ry planewave cutoff was adopted, and the reciprocal space was sampled only at the \(\gamma\) point. To relax the surface, the periodicity was applied for in-plane directions, and removed in the direction of the vacuum. The atoms of the surface were allowed to relax at the DFT level, ensuring that almost no change occurs within the middle of the slab. The interface model was created adding a 15 Å thick layer of water (157 molecules), with a 15 Å vacuum region. The structure of the C₃S(040)/water interface is depicted in Fig. 2.

While the atoms of the mineral surface were kept fixed, the water molecules were allowed to relax on the surface during a 2 ns classical MD run in NVT ensemble at 300 K, using the INTERFACE FF parameters for the C₃S [5] and a SPC model for water. In order to minimize the computational time, the bottom layer was removed so that the remaining slab was composed of two orthorhombic supercells (~14 Å thick) and during the AIMD run, the lower supercell, considered as the bulk, was fixed. Afterwards, a 12 ps AIMD run was performed within the Born-Oppenheimer approximation, in the canonical ensemble, with a Nose-Hoover thermostat, integrating the equation of motion with a 0.5 fs timestep. The equilibration of the system was performed on the first 2 ps simulation, and
the remaining simulation time was used for analysis. A slightly higher temperature of 360 K (compared to standard conditions) was used to balance the low diffusivity of water using the PBE functional. Deuterium masses were used for protons to minimize the vibrational frequency of nuclei, allowing to keep a good energy conservation [24]. A reactive molecular dynamics simulation was performed using the ReaxFF, with the current optimized set of parameters for Ca/O/H/Si elements [25–27]. The simulation method and parameters, as well as the system size, are in accordance with previously reported calculations [3].

3 Results

3.1 Water structure

In this article, Oi refers to oxygen anions, Os refers to oxygens in silicates, and Odw refers to oxygens in resulting from the dissociation of water molecules. At the very first steps of the simulation, three oxide ions Oi from equivalent sites are protonated. The hydration model for C₃S proposed by Pustovgar et al. considers that protonation of oxide ions occurs before protonation of silicates [28]. Although hydroxides are more stable than silanol groups, our simulation indicates that on the considered (040) Ca-rich surface, protonation of Oi only occurs on sites closed to silicates. The other superficial oxide ions are shielded by four calcium cations, hindering any protonation reaction. The negatively charged region allows water molecules to form hydrogen bonds between oxide ions and oxygens in silicates, thus leading to protonation of Oi (see Fig. 3).

The number of H-Os groups formed on silicates tends to stabilize after ~1 ps whereas the number of H-Odw groups stabilize after ~0.25 ps (see Fig. 4). Both hydroxyl groups fluctuate during the whole simulation due to proton transfer. Conversely, the hydroxides H-Oi formed on oxygen anions Oi are very stable and no backward PT occurs. From our simulation using the ReaxFF, within the timescale of 12 ps, a steady state is reached very quickly as in the AIMD simulation. However, no PT dynamics is observed, meaning that with the hydroxyl groups formed in the ReaxFF simulation are very stable, and that ReaxFF cannot account for proton transfer between water and Oi/Os atoms. The hydroxyl coverage of each hydroxyl type is closed to the result of the AIMD simulation. So within the timescale of the simulation, the ReaxFF is representing the protonation state of the (040) surface in good agreement with the AIMD simulation. The average total hydroxyl coverage at the steady state is \(5.0 \pm 0.4\) HO/nm\(^2\) for the AIMD simulation, and \(5.13 \pm 0.07\) HO/nm\(^2\) for the ReaxFF simulation. These values are also in agreement with previous investigation on C₃S hydration, using the ReaxFF [3, 9]. The atomic density profile of water oxygen and hydrogen atom, along the axis perpendicular to the surface, is reported in Fig. 5. The layered structure of the interfacial water results from the effect of excluded volume, electrostatic force field, and hydrogen bonding network. Previous investigations based on classical MD simulations showed that this layering is lost with protonation of the surface [29]. The closest hydrogen’s peak from the surface, is at the average position of oxygen in silicates Os \((z = 0)\), and corresponds to chemisorbed H. The length of the layered region is approximately the same as in our previous classical MD investigation: \(5–6\) Å [29].

The radial distribution functions (RDF) of H-Oi, H-Os and Ow-Ca pairs are plotted in Fig. 6. For H-Oi and Ow-Ca pairs, a sharp first coordination peak raises at 0.97 Å and 2.50 Å respectively, but no second coordination shell
Figure 5: Atomic density profile of water molecules along the z axis for AIMD. The origin adopted is the average coordinate of the uppermost oxygen silicate layer. The layering observed results from the hydrogen bond network created between the strong interaction between the water molecules and the ionic surface.

Figure 6: Radial distribution function H-Oi, H-Os, and Ow-Ca pairs for AIMD and ReaxFF simulations.

is noticed. As for the H-Os pairs, the first and second coordination peaks stand at 1.08 Å and 1.58 Å, respectively. The RDF obtained in the ReaxFF simulation are very similar, the differences being that only the first coordination shell H-Oi and H-Os pair is observed, and the first coordination peak for Ow-Ca pairs is split in two, traducing dissociation and solvation of Ca.

The orientation of water molecules in contact with the surface is a characteristic of the hydrophilic/hydrophobic behavior of the surface. The probability distribution of the angle θ between the water dipole moment and the z axis is depicted in Fig. 7.

Figure 7: (a) Probability distribution of the angle θ between the water dipole moment and the z axis, perpendicular to the surface. Lighter regions correspond to higher probabilities (b) Density mapping of θ for water molecules within 3 Å from the surface. Color code: Ca in green, Os and Oi in red, Si in yellow, H in hydroxide H-Oi in white.

Within the contact layer, most of the water molecules have $\theta \sim 22-47^\circ$ or $\theta \sim 115-170^\circ$, meaning that their dipole moments point preferentially towards or against the surface. This feature is characteristic of hydrophilic surfaces. The
water molecules of the contact layer orientate according to the charge of the ionic species from the surface. Thus, two regions can be distinguished: one where the water dipole is oriented upward and H coordinate with Os, and a second where the water dipole is oriented downward and Odw coordinate with Ca. These regions are mapped on the surface in Fig. 7 by collecting θ and the x and y coordinates of water molecules within 3 Å from the surface, during the whole simulation. The effect of the topology of C$_3$S surfaces on the structure of water molecules has already been reported in a previous molecular dynamics investigation [30].

The probability distribution of hydroxyl groups H-Os and H-Odw is plotted in Fig. 8. H-Odw groups are principally located on Ca-rich, positively charged regions, but also close to protonated silicates.

The frequency of PT between water molecules and Os-H and Odw-H groups are reported in Fig. 9. The frequency of PT between water molecules and Odw-H groups are reported in Fig. 8. In the case of PT between Ow and Os, the molecular configuration of water forming an H-bond with Os is more stable than the dissociative configuration. The free energy profile of PT between Ow and Odw suggests that the molecular adsorption of water on the surface is more stable than the dissociated form. This observation is contrary to previous DFT and reactive MD calculations on a single water molecule, where dissociative adsorption energies were generally larger than molecular adsorption energies, resulting in more stable configurations [3, 6–8]. This consolidates the idea that static calculations on single water molecule cannot describe accurately the properties of a solid/water interface. Tocci and Michaelides also reported considerable differences in PT rate between a monolayer and an thicker water film [12]. These differences arise from the decrease of the free energy barrier of proton transfers induced by H-bond fluctuations. The free energy barrier of PT is ~ 2.3 k$_B$T from Ow to Os and ~ 1.2 k$_B$T from Os to Ow. The barrier is ~ 2.7 k$_B$T for transfer from Ow to Odw and ~ 3.2 k$_B$T for the reverse reaction. Therefore, hydroxides formed by water dissociation are more stable than silanol groups (energy barrier ~ 2.6 time larger).

Electron density difference analysis allows to map the distribution of electrons involved in PT, and more generally in the adsorption. This analysis was realized performing static DFT calculation on the total system, as well as C$_3$S, and water independently on the system configuration at 5 ps. The electron density difference $\Delta \rho$ was calculated as follow:

$$\Delta \rho = \rho_{C_3S/H_2O} - \rho_{C_3S} - \rho_{H_2O}$$

where ρ_{C_3S/H_2O} corresponds to the electron density of the interface system, ρ_{C_3S} and ρ_{H_2O} are the electron density of the C$_3$S and water alone, respectively. A positive value of $\Delta \rho$ indicates a high electron density, while a negative value points out an electron depletion region.

The proton transfers occurring at the surface create an electron delocalization, and thus high and low electron density regions. Water molecules act as charge carrier and...
Figure 10: Free energy contour plot of PT between Ow and Os as a function of the distance d_{Oa-Ob} between oxygen atoms, and of $\delta_{a-b} = d_{Oa-H} - d_{Ob-H}$. The red circles shows the local free energy minima, corresponding to the most stable configurations before and after the proton jump. The red square is the saddle point, where the proton is equidistant from both oxygen atoms.

Figure 11: Snapshots of the isosurface of electron density difference. Golden and cyan isosurface represent positive and negative $\Delta \rho$, respectively. a) A water molecule between a silicate and a silanol group. b1) Electron density delocalization during a proton exchange from a molecular water and a hydroxide. b2) Electron abundance and depletion regions around an hydroxide created upon water dissociation.
the electron depletion or gain highly depends on the location of the molecule (see Fig. 11 a and b1). High electron density is observed around the silicate oxygen closed to the water molecule, creating a depletion region on the silicon atom. A large depletion region is observed around the silanol group (Fig. 11 a). Charge depletion regions are observed around H of hydroxyl groups. Their magnitude increase in this order: H-Oi < H-OW < H-Os. In other words, the magnitude of the depletion regions on H decreases as a function of the stability of the hydroxyl group. A large depletion region indicates a greater charge separation, and a more ionic bond, while a small depletion region reveals a more covalent bond.

4 Conclusion

The very early hydration of the (040) surface of C₃S was investigated through a 12 ps AIMD simulation. As a first observation, only 1/3 of the oxide ions on the surface were protonated during the whole simulation. The hydroxides formed are highly stable and no proton exchange was observed. Although the oxide ion is very unstable in water, we found that its environment on the surface is an important factor for the creation of hydrogen bond with water molecules and for protonation to occur. Thus, the pKa of hydroxide and silicic acid in solution cannot predict accurately the protonation state of the surface during the very early hydration of C₃S. The structure of water at the interface, resulting from the hydrogen bond network, is very similar to that of our previous classical molecular dynamics study, with a length of layered region of approximately 5–6Å from the surface. The (040) surface is composed of Ca-rich regions (positively charged) and Si-rich regions (negatively charged). Water molecules in the contact layer orient their dipole moment in accordance with the surface charge, making either H-bonds in Si-rich regions, or creating strong Ca-Ow interactions in Ca-rich regions. Energy barrier analysis suggests that the molecular adsorption of water on the C₃S surface is more stable than dissociative adsorption. Based on proton transfer energy analysis, the hydroxyl groups formed were classified in order of stability as follow: H-Oi > H-OW > H-Os. From electron density difference, high electron density, and depletion regions were observed. These observations revealed that the magnitude of the electron depletion region upon adsorption is smaller for more stable hydroxyl groups.

Acknowledgments

The authors acknowledge Brazilian science agencies CAPES (PDSE process nº88881.188619/2018-01) and CNPq for financial support, as well as Hegoi Manzano and Gabriele Tocci for helpful discussions.

References

[1] J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas. Mechanisms of cement hydration. Cement and Concrete Research, 41(12):1208–1223, 2011.
[2] K. L. Scrivener, P. Juillard, and P. J. M. Monteiro. Advances in understanding hydration of Portland cement. Cement and Concrete Research, 78:38–56, 2015.
[3] H. Manzano, E. Durgun, I. López-Arbeloa, and J. C. Grossman. Insight on Tricalcium Silicate Hydration and Dissolution Mechanism from Molecular Simulations. ACS Applied Materials & Interfaces, 7(27):14726–14733, 2015.
[4] E. Durgun, H. Manzano, P. V. Kumar, and J. C. Grossman. The Characterization, Stability, and Reactivity of Synthetic Calcium Silicate Surfaces from First Principles. The Journal of Physical Chemistry C, 118(28):15214–15219, 2014.
[5] R. K. Mishra, R. J. Flatt, and H. Heinz. Force Field for Tricalcium Silicate and Insight into Nanoscale Properties: Cleavage, Initial Hydration, and Adsorption of Organic Molecules. The Journal of Physical Chemistry C, 117(20):10417–10432, 2013.
[6] Y. Zhang, X. Lu, D. Song, and S. Liu. The adsorption behavior of a single and multi-water molecules on tricalcium silicate (111) surface from DFT calculations. Journal of the American Ceramic Society, 2018.
[7] Y. Zhang, X. Lu, D. Song, and S. Liu. The adsorption of a single water molecule on low-index C₃S surfaces: A DFT approach. Applied Surface Science, 471:658–663, 2019.
[8] C. Qi, L. Liu, J. He, Q. Chen, L.-J. Yu, and P. Liu. Understanding Cement Hydration of Cemented Paste Backfill: DFT Study of Water Adsorption on Tricalcium Silicate (111) Surface. Minerals, 9(4):202, 2019.
[9] J. Huang, B. Wang, Y. Yu, L. Valenzano, M. Bauchy, and G. Sant. Electronic Origin of Doping-Induced Enhancements of Reactivity: Case Study of Tricalcium Silicate. The Journal of Physical Chemistry C, 119(46):25991–25999, 2015.
[10] J. Huang, L. Valenzano, T. V. Singh, R. Pandey, and G. Sant. Influence of (Al, Fe, Mg) Impurities on Tricl-
Preprint – *ab initio* molecular dynamics description of proton transfer at water-tricalcium silicate interface

14. B. F. Ngouana-Wakou, P. Cornette, M. C. Valero, D. Costa, and P. Raybaud. An Atomistic Description of the γ-Alumina/Water Interface Revealed by Ab Initio Molecular Dynamics. *The Journal of Physical Chemistry C*, 121(19):10351–10363, 2017.

15. J. M. Rimsza, J. Yeon, A. C. T. van Duin, and J. Du. Water Interactions with Nanoporuous Silica: Comparison of ReaxFF and *ab Initio* based Molecular Dynamics Simulations. *The Journal of Physical Chemistry C*, 120(43):24803–24816, 2016.

16. Á. Cimas, F. Tielens, M. Sulpizi, M.-P. Gaigeot, and D. Costa. The amorphous silica–liquid water interface studied by *ab initio* molecular dynamics (AIMD): local organization in global disorder. *Journal of Physics: Condensed Matter*, 26(24):244106, 2014.

17. S. Laporte, F. Finocchi, L. Paulatto, M. Blanchard, E. Balan, F. Guyot, and A. M. Saitta. Strong electric fields at a prototypical oxide/water interface probed by *ab initio* molecular dynamics: MgO(001). *Physical Chemistry Chemical Physics*, 17(31):20382–20390, 2015.

18. M.-S. Lee, B. P. McGrail, R. Rousseau, and V.-A. Glezakou. Structure, dynamics and stability of water/scCO2/mineral interfaces from *ab initio* molecular dynamics simulations. *Scientific Reports*, 5(1), 2015.

19. L. Liu, M. Krack, and A. Michaelides. Density Oscillations in a Nanoscale Water Film on Salt: Insight from *Ab Initio* Molecular Dynamics. *Journal of the American Chemical Society*, 130(27):8572–8573, 2008.

20. S. V. Churakov. Structure of the interlayer in normal 11 Å tobermorite from an *ab initio* study. *European Journal of Mineralogy European Journal of Mineralogy*, 21(1):261–271, 2009.

21. S. V. Churakov. Structural position of H2O molecules and hydrogen bonding in anomalous 11 Å tobermorite. *American Mineralogist*, 94(1):156–165, 2009.

22. S. V. Churakov and C. Labbez. Thermodynamics and Molecular Mechanism of Al Incorporation in Calcium Silicate Hydrates. *The Journal of Physical Chemistry C*, 121(8):4412–4419, 2017.

23. W. G. Mumme. Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis. *Neues Jahrbuch fuer Mineralogie: Monatshefte*, 4:145–160, 1995.

24. K. Leung and S. B. Rempe. *Ab initio* rigid water: Effect on water structure, ion hydration, and thermodynamics. *Physical Chemistry Chemical Physics*, 8(18):2153, 2006.

25. J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit. A reactive molecular dynamics simulation of the silica-water interface. *The Journal of Chemical Physics*, 132(17):174704, 2010.

26. H. Manzano, R. J. M. Pellenq, F.-J. Ulm, M. J. Buehler, and A. C. T. van Duin. Hydration of Calcium Oxide Surface Predicted by Reactive Force Field Molecular Dynamics. *Langmuir*, 28(9):4187–4197, 2012.

27. H. Manzano, S. Moeini, F. Marinelli, A. C. T. van Duin, F.-J. Ulm, and R. J.-M. Pellenq. Confined Water Dissociation in Microporous Defective Silicates: Mechanism, Dipole Distribution, and Impact on Substrate Properties. *Journal of the American Chemical Society*, 134(4):2208–2215, 2012.

28. E. Pustovgar, R. K. Mishra, M. Palacios, J.-B. d’Éspinose de Lacaillerie, T. Matschei, A. S. Andreev, H. Heinz, R. Verel, and R. J. Flatt. Influence of aluminates on the hydration kinetics of tricalcium silicate. *Cement and Concrete Research*, 100:245–262, 2017.

29. J. Claverie, F. Bernard, J. M. M. Cordeiro, and S. Kamali-Bernard. Water’s behaviour on Ca-rich tricalcium silicate surfaces for various degrees of hydration: A molecular dynamics investigation. *Journal of Physics and Chemistry of Solids*, 2019.

30. A. Alex, A. K. Nagesh, and P. Ghosh. Surface dissimilarity affects critical distance of influence for confined water. *RSC Adv.*, 7(6):3573–3584, 2017.

31. S. Woutersen and H. J. Bakker. Ultrafast Vibrational and Structural Dynamics of the Proton in Liquid Water. *Physical Review Letters*, 96(13), 2006.