Dietary *Camellia sinensis* Influences the Broilers: A Review

A.A. Khaskheli¹, M.I. Khaskheli², A.J. Khaskheli³, A.A. Khaskheli⁴

ABSTRACT

This study was conducted in order to understand the impact of using dietary *Camellia sinensis* in broilers. In this regards several studies were explored and obtained findings were found to be much interesting and useful. In summary it has been reported by researchers that *Camellia sinensis* supports the feed intake (4480 g/b), water intake (8960 ml/b), live body weight (2356.8 g/b), weekly weight gain (2322.8 g/b), carcass weight (1381.8 g/b) and feed conversion ratio (1.92). Further, it was stated that *Camellia sinensis* reduces the relative weight of heart, liver, spleen, proventriculus, intestine and fat pad by 13.53, 61.1, 2.26, 58.13, 10.2 and 81.41%, respectively compared to their normal weights. *Camellia sinensis* enhances the immunity of broilers that results lower infection rate and mortality rate. Concerning digestibility it was indicated by researchers that digestibility of crude protein improves by 80.33%, ether extract by 76%, crude fiber 33.83% and metabolizable energy by 79.66%. In conclusion, *Camellia sinensis* has been proved an important dietary supplement for the broilers. It supports birds’ immunity, production and performance.

Key words: Broiler, Diet, Immunity, Performance, Production.

Camellia sinensis is a rich source of polyphenolic compounds known as flavonoids. The predominant flavonoids in *Camellia sinensis* are catechins. These components are known to have diverse beneficial effects such as anti-mutagenic, antioxidant, anticancer and antiosteoporotic properties as well as antibacterial, antitoxin, antiviral and antifungal effects in vivo or in vitro (Sommer et al., 2010). *Camellia sinensis* has been used for centuries by Korean, Japanese and Chinese people as an anti-aging herb. The *Camellia sinensis* is commonly used in Chinese herbalism, where it is considered to be one of the 50 fundamental herbs (Kaneko et al., 2001).

Modern research has shown that there are many health benefits to drinking *Camellia sinensis*, including its ability to protect the drinker from certain heart diseases. It has also been shown that drinking *Camellia sinensis* can protect the teeth from decay, because of the fluoride naturally occurring in this plant (Shen et al., 2009). For dietary use, the leaves of *Camellia sinensis* are dried that contain polyphenols. These phenolics are antioxidants and help to protect the body against heart diseases, stroke and cancer (Maron et al., 2003). Catechins differ slightly in chemical structure from other flavonoids, but share their chemoprotective properties. The most common catechins are gallic esters, named epicatechin (EC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG). All are found in *Camellia sinensis* and are thought to be responsible for the protective benefits of this beverage (Henning et al., 2004).

The European Union has banned the use of several antibiotics in animal feeds, because of the fear of development of “cross-resistance” in bacteria that is resistance-genes may be exchanged between bacteria (Friedman, 2007). Thus, antibiotic supplementations have been limited in poultry diets nowadays. The development of antibiotic free diets is a major problem in poultry production. Recently, green *Camellia sinensis* has attracted attention as a natural product that is non-toxic (Krul et al., 2001). There have been several reports that *Camellia sinensis* provides several functional activities related to free radicals and reduction in the incidence of cancer, blood cholesterol and to blood pressure. Also, *Camellia sinensis* has anti-tumor and anti-diabetes effects in the human body (Mukhtar and Ahmad, 1999). Keeping in view these facts current study was planned in order to investigate whether *Camellia sinensis* have any influence on broiler chicks.

Dietary use of *Camellia sinensis*

Medicinal plants are frequently used in the animal nutrition as possible natural alternatives for antibiotic growth promoters (Hazzit et al., 2006; Cross et al., 2007). In particular, the biological, physiological and pharmaceutical effects of *Camellia sinensis* have been widely studied in the past decade (Ishihara et al., 2001; Kondo et al., 2004; Zanchi et al., 2008). *Camellia sinensis* components have been found to maintain micro flora balance and exert antimicrobial effects.
against pathogenic bacteria without affecting lactic acid bacteria (Hara-kudo et al., 2005). Administration of Camellia sinensis with probiotics was found to have no negative effect on weight gain, feed efficiency, carcass composition or reduction of the values of thiobarbituric acid-reactive substances (TBARS), but influenced humoral and cell-mediated immunity of pigs (Ko and Yang, 2008). In addition, treatment with Camellia sinensis does not alter the blood components of beef cattle or calves (Lee 2005; Sarker et al., 2010). The ability of Camellia sinensis polyphenols to increase lactobacilli populations and decrease bacteroidaceae in chicken cecal contents (Terada et al., 1993), porcine faeces (Hara et al., 1995) and ruminants (Bureenok et al., 2007) has already been reported.

Chemical composition of Camellia sinensis

The chemical composition and other properties of Camellia sinensis are complex. Abdo et al. (2010) found that air-dried Camellia sinensis leaves contained 7.80% moisture, 92.20% dry matter, 82.40% organic matter, 18.15% crude protein, 8.72% ether extract, 19.32% crude fibre, 9.80% ash, 36.21% nitrogen free extract and 3002 kcal/kg calculated metabolizable energy (ME). Camellia sinensis has over 200 bioactive compounds and contains over 300 different substances (Labdar, 2010). The chemical composition of Camellia sinensis is multifaceted, consisting of polyphenols (catechins and flavanoids), alkaloids (caffeine, theobromine and theophylline), volatile oils, polysaccharides, amino acids, lipids, vitamin C, minerals and other uncharacterized compounds (Karori et al., 2007).

Camellia sinensis contains many amino acids, but L-theanine, specific to the tea plant, is the most abundant, accounting for 50% of the total amino acids. This form of theanine acts as an antioxidant, protecting cells from free radical damage and also helping to induce relaxation and prevent anxiety by increasing serotonin and dopamine levels accounting for 50% of the total amino acids. This form of theanine is known to prevent anxiety by increasing serotonin and dopamine levels (Abdo et al., 2007). Camellia sinensis contains many amino acids, but L-theanine, specific to the tea plant, is the most abundant, accounting for 50% of the total amino acids. This form of theanine acts as an antioxidant, protecting cells from free radical damage and also helping to induce relaxation and prevent anxiety by increasing serotonin and dopamine levels accounting for 50% of the total amino acids. This form of theanine is known to prevent anxiety by increasing serotonin and dopamine levels (Abdo et al., 2007).

Influence of Camellia sinensis on broilers

Only limited information is available for response of avian species, particularly in broiler chickens, to supplemental dietary Camellia sinensis powder. In our previous study on Camellia sinensis leaves, as opposed to 8% to 20% of oolong and 3% to 10% of black tea (Biswas et al., 2000), Camellia sinensis extract contains six primary catechins, namely epicatechin (EC), epicatechin gallate (EGC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG), Kajiya et al. (2004). Epigallocatechin-3-gallate is the most important and well-studied tea catechin owing to its high content (50%) in tea. It also has the most potent physiological properties in comparison to other components (Taylor et al., 2005). Ester-type catechins ECG and EGCG are more bitter and astringent than EC and EGC and these flavanoids have a greater synergistic action than individual tea components (Fujiki, 1999). Uuganbayar et al., (2006) reported that total catechin contents were 15.73% for Korean Camellia sinensis, 15.60% for Japanese Camellia sinensis and 14.04% for Chinese Camellia sinensis. Of the total catechin components, EGC was predominant, accounting for 67.50% (Korean Camellia sinensis), 67.90% (Japanese Camellia sinensis) and 63.80% (Chinese Camellia sinensis) of the total catechin contents. In another study, Camellia sinensis leaves contained active constituents of 1.01% total phenols, 105 mg/kg caffeine, 50 mg/kg catechin, 35 mg/kg EC, 185 mg/kg EGC and 17.5 mg/kg ascorbic acid (Abdo et al., 2010). The catechin content showed considerable variability in one study. The levels of EGCG ranged from 117 mg/L – 442 mg/L, EGC from 203 mg/L – 471 mg/L, ECG from 16.9 mg/L – 150.0 mg/L, EC from 25 mg/L – 81 mg/L and catechin from 9.03 mg/L – 115.00 mg/L. Moreover, caffeine contents in the Camellia sinensis infusions studied were between 141 mg/L and 338 mg/L (Reto et al., 2007).

Minerals comprise about 4% – 9% of the inorganic matter of tea (Chaturvedula and Prakash, 2011). Abdo et al., (2010) assayed the mineral content profile in Camellia sinensis leaves as 4.66% calcium, 1.62% total phosphorus, 965.1 mg/kg manganese, 146.3 mg/kg zinc and 858.1 mg/kg selenium. Similarly, Reto et al., (2007) evaluated some minerals in Camellia sinensis samples and reported that potassium was found in larger amounts (92 mg/L – 151 mg/L), whereas the content of sodium, calcium, fluoride, aluminium, manganese and iron were 35 mg/L – 69 mg/L, 1.9 mg/L – 3.5 mg/L, 0.8 mg/L – 2.0 mg/L, 1.0 mg/L – 2.2 mg/L, 0.52 mg/L – 1.90 mg/L, 0.020 mg/L – 0.128 mg/L, respectively. Costa et al. (2002) observed large variations in the mineral content (aluminium, calcium, magnesium and manganese) in Camellia sinensis from different origins. Shu et al., (2003) observed marked variations amongst different tea varieties in accumulating fluoride and aluminium. Xu et al. (2003) reported that the content of selenium in Camellia sinensis was greatly increased by foliar application of selenium-enriched fertilizers; moreover, the selenium-enriched Camellia sinensis exhibited significantly higher antioxidant activity than regular Camellia sinensis.
laying chicken in long term, supplemental Camellia sinensis powder (0.6%) caused decrease in body weight gain and also observed significant reduction of total fat in egg yolk either expressed as an absolute or relative weight (Biswas et al., 2000). It is basically consistent with present observation in broiler chickens that Camellia sinensis powder markedly reduced absolute weight, percentage of abdominal fat, cholesterol levels of liver and blood serum. Significant increase of thigh percentage with Camellia sinensis powder feeding is not clearly explainable, though this may enhance behavioral activity of the broilers (Biswas and Wakita, 2001). Camellia sinensis containing high catechin may have an inhibitory effect on intestinal absorption of lipid (Ikeda et al., 1992). This may prevent an excessive accumulation of lipid in the liver and other tissues. The reduction in tissue cholesterol may also be explained by a negative effect of tea catechin on formation of micell that mediates reabsorption of bile acid (Muramatsu et al., 1986). Such increase of unabsorbable bile acids may also lead to reduction in liver cholesterol and blood serum cholesterol of Camellia sinensis powder feed broilers. The possible explanation is on tea fiber that there is a great deal of evidence that dietary fiber could reduce the level of cholesterol in animals (Evans et al., 1992) through adsorbing bile acids and various lipids on it. In addition, the phenolic compound in tannic acid plays an important role in the catabolism of liver cholesterol (Yugarani et al., 1992). Conversion of cholesterol to bile acids occurs exclusively in the liver and represents the major pathway for the elimination of cholesterol from the body. This may also explain the reduced cholesterol levels. Furthermore, it has been suggested that Camellia sinensis has thermogenic properties and promotes fat oxidation beyond that explained by its caffeine (Dulloo et al., 2000).

In another study it was stated that the Camellia sinensis extract may play a role in the control of body composition via sympathetic activation of thermogenesis, fat oxidation, or both in humans (Dulloo et al., 1999). This may be also one of the reasons. However, the reduction of carcass fat would have been caused by the suppressive effect of Camellia sinensis powder on feed intake, which in turn reduce hepatic lipogenesis a major site of hypogenesis in poultry and fat accumulation in adipose tissue and muscles (Saadoun and Leclercq, 1983). Therefore, to make conclusion clear on fat and cholesterol reduction, further experiment with restricted feeding should be carried out. However, the dietary Camellia sinensis powder could be employed to reduce the undesirable carcass fat without altering general performance on carcass in broiler chickens. There was a tendency that Camellia sinensis powder feeding improves feed conversion ratio. This has also been observed in other feeding experiments using layers (Biswas et al., 2000; Yamane et al., 1999). All the results point out the decreased feed intake by Camellia sinensis powder supplementation without change of body weight gain or egg production. Even though the mechanisms involved in these improvements are not precisely understood, Camellia sinensis powder could be a potent feed additive for broilers as well as layers (Biswas and Wakita, 2001). Further, it has been reported that Camellia sinensis inclusion in broiler diets had positive effects on growth performance and lean meat production of the broilers. Biswas and Wakita, (2001) added four levels of Camellia sinensis powder (0.5%, 0.75%, 1% and 1.5%) to broiler starter and finisher diets. Supplemental Camellia sinensis powder tended to decrease feed intake and body weight gain at a higher dose, but tended to improve FCR. Dressing percentage was not affected by Camellia sinensis, although proportions of some parts of the carcass were influenced. The proportion of thigh meat was increased by the 1.50% level feed while that of wing meat was decreased in all treatment groups. The quantity and percentage of abdominal fat were decreased significantly with supplementation. Yang et al., (2003) and Guray et al., (2011) reported that when the Camellia sinensis by-product level was increased, the percentage of abdominal fat reduced in broilers. Kaneko et al., (2001) reported that 1%, 2.50% and 5% of Camellia sinensis in broiler diets linearly reduced body weight gain of the chicks. Similarly, Uuganbayar (2004) also reported that 1% to 1.5% Camellia sinensis supplement in broiler diet had the effect of reducing body weight gain of the chicks. Yang et al., (2003) determined the optimum level of Camellia sinensis by-product (0.5%, 1% and 2%) in diets without antibiotics and evaluated its effect on broiler performances. They observed non-significant differences in feed intake and feed efficiency amongst treatments. Cao et al., (2005) indicated that body weight gain, feed intake and feed efficiency from 28 days to 42 days of age were not improved; however, mortality was significantly reduced by supplementation with Camellia sinensis by-products. Recently, Shomali et al., (2012) investigated the effects of high levels of Camellia sinensis powder (1%, 2%, or 4%) on broiler growth performance for two weeks. Differences in body weight, feed intake and FCR were insignificant as well. In contrast to the above studies, Sarkar et al., (2010) observed significantly increased weight gain (1210.61 g/bird) in broilers during the finishing period at the 0.5% level compared to the 1% (1033.36 g/bird) level of Camellia sinensis. Guray et al., (2011) supplemented a liquid hydroalcoholic extract of fresh Camellia sinensis (0.1 g/kg or 0.2 g/kg) in broiler diets. The dietary Camellia sinensis extract increased the body weight, feed efficiency, carcass weight and dressing percentage. The broilers in Camellia sinensis supplemented groups consumed more feed than the control birds throughout the entire experimental period. The relative gut length of broilers in the high level of Camellia sinensis group tended to be lower than those in the control group. The dietary Camellia sinensis extract increased redness (1) and yellowness (2) values of the breast meat. Thus, the Camellia sinensis extract appeared to have a measurable impact on CIE colour values of the breast meat in broilers. The authors concluded that the improved
production results in the broilers with added *Camellia sinensis* extract are directly associated with physiological mechanisms such as the regulation of the caecal microflora. The production sources of *Camellia sinensis* used in all of the above studies were different, for example: Japanese *Camellia sinensis* powder (Biswas and Wakita, 2001; Kaneko et al., 2001); Japanese and Chinese *Camellia sinensis* or their polyphenols (Cao et al., 2005); Korean *Camellia sinensis* powder (Sarker et al., 2010; Yang et al., 2003) and eastern black sea coast of Turkey tea powder. All of these *Camellia sinensis* sources had different compositions. The inconsistency amongst the studies may be explained by the differences in total catechin content and its major components such as epicatechin, epigallocatechin, epicatechin gallocate, epigallocatechin gallocate, of the *Camellia sinensis* and *Camellia sinensis* extract used in these studies (Guray et al., 2011).

CONCLUSION AND SUGGESTIONS

Present study concludes that *Camellia sinensis* significantly supports the broilers production as well as overall performance. It has negative effect on visceral organs, whereby least weight of heart, liver, spleen, proventriculus, intestine, fat pad are noticed among the birds having *Camellia sinensis* in the diet. However, feed intake, water intake, live body weight, weight gain, carcass weight, nutrients digestibility and feed conversion ratio (FCR) are considerably favored with the use dietary *Camellia sinensis* in broilers. *Camellia sinensis* also supports the immune system and that results minimum mortality.

Moreover, it is recommended that *Camellia sinensis* should be incorporated in broilers’ rations for obtaining maximum digestibility, production and overall birds’ performance. Further studies should be conducted on the effect of supplementation of *Camellia sinensis* on blood biochemistry and genotype of all poultry birds. Histopathological studies on the effect of *Camellia sinensis* supplementation are also required be carried out in broilers as well as other poultry birds.

REFERENCES

Abdo, Z.M.A., Hassan, R.A., Amal, A.E. and Shahhizam, A.H. (2010). Effect of adding *Camellia sinensis* and its aqueous extract as natural antioxidants to laying hen diet on productive, reproductive performance and egg quality during storage and its content of cholesterol. Egyptian Poultry Science Journal. 30: 1121-1149.

Balentine, D.A. (1997). Introduction: Tea and health. Critical Reviews in Food Science and Nutrition. 8: 691-669.

Biswas, A.H. and Wakita, M. (2001). Comparison of two dietary factors, *Camellia sinensis* powder feeding and feed restriction, influencing laying performance and egg quality in hens. Journal of Poultry Science. 25: 55-61.

Biswas, M.A.H. and Wakita, M. (2001). Effect of dietary Japanese *Camellia sinensis* powder supplementation on feed utilization and carcass profiles in broilers. Journal of Poultry Science. 38: 50-57.

Biswas, M.A.H., Miyazaki, Y., Nomura, K. and Wakita, M. (2000). Influences of long-term feeding of Japanese *Camellia sinensis* powder on laying performance and egg quality in hens. Asian-Australasian Journal of Animal Sciences. 13: 980-985.

Bureenok, S., Tamaki, M., Kawamoto, Y. and Nakada, T. (2007). Additive effects of *Camellia sinensis* on fermented juice of epiphytic lactic acid bacteria (FJLB) and the fermentative quality of rhodograsil sialage. Asian-Aust. Journal of Animal Science. 20: 920-924.

Cao, B.H., Karasawa Y. and Guo, Y.M. (2005). Effects of *Camellia sinensis* polyphenols and fructo-oligosaccharides in semi-purified diets on broiler performance and caecal microflora and their metabolites. Asian-Australasian Journal of Animal Sciences. 18: 85-89.

Chaturvedula, V.S.P. and Prakash, I. (2011). The aroma, taste, color and bioactive constituents of tea. Journal of Medicinal Plants Research. 5: 2110-2124.

Costa, L.M., Gouveia, S.T. and Nobrega, J.A. (2002). Comparison of heating extraction procedures for Al, Ca, Mg and Mn in tea samples. Journal of Analytical Sciences. 18: 313-318.

Cross, D.E., McDevitt, R.M., Hillman, K. and Acamovic, T. (2007). The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. British Poultry Science. 48: 496-506.

Dulloo, A.G., Duret, C., Rohrer, D., Girardier, L., Mensi, N., Fathi, M., Chantre, P. and Vandermander, J. (1999). Efficacy of a *Camellia sinensis* extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. American Journal of Clinical Nutrition. 70: 1040-1045.

Dulloo, A.G., Seydoux, L., Girardier, P. and Vandermander, J. (2000). *Camellia sinensis* and thermo genesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. International Journal of Poultry Science. 24: 252-258.

Evans, A.J., Hood, R.L., Oakenfull, D.G. and Sidhu, G.S. (1992). Relationship between structure and function of dietary fiber: a comparative study of the effects of three galactomannana on cholesterol metabolism in the rat. British Journal of Nutrition. 68: 217-229.

Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral and antilugal activities of tea flavonoids and teas. Molecular Nutrition and Food Research. 51: 116-134.

Fujiki, H. (1999). Two stages of cancer prevention with *Camellia sinensis*. Journal of Cancer Research and Clinical Oncology. 12: 589-597.

Guray, E., Oacak, N., Altop, A., Cankaya, S., Aksoy, A.H. and Ozturk, E. (2011). Growth performance, meat quality and caecal coliform bacteria count of broiler chicks fed diet with *Camellia sinensis* extract. Australasian Journal of Animal Sciences. 24: 1128-1136.

Hara, H., Orita, N., Hatano, S., Ichikawa, H., Hara, Y., Matsumoto, N., Kimura, Y., Terada, A. and Mitsuoka, T. (1995). Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. Journal of Veterinary Medical Science. 57: 145-149.

Hara-Kudo, Y., Yamasaki, A., Sasaki, M., Okubo, T., Minai, Y., Haga,
Dietary *Camellia sinensis* Influences the Broilers: A Review

M., Kondo, K. and Konishi, Y.S. (2005). Antibacterial action on pathogenic bacterial spore by *Camellia sinensis* catechins. Journal of Science of Food and Agriculture. 85 (4): 2354-2361.

Hazzit, M., Baalouameer, A., Faleiro, M.L. and Miguel, M.G. (2006). Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. Journal of Agricultural and Food Chemistry. 54: 6314-6321.

Henning, S.M., Niu, Y., Lee, N.H., Thames, G.D., Minutti, R.R., Wang, H., Go, V.L. and Heber, D. (2004). Bioavailability and antioxidant activity of tea flavonoids after consumption of *Camellia sinensis*, black tea, or a *Camellia sinensis* extract supplement. The American Journal of Clinical Nutrition. 80: 1558-1564.

Ishihara, N., Chu, D.C., Akachiand, S. and Juneja, L.R. (2001). Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livestock Production Science. 86: 217-229.

Ikeda, I., Imasato, Y. and Sasaki, E. (1992). Tea catchins decrease micellar solubility and intestinal absorption of cholesterol in rats. Journal of Animal Science. 35: 1127-1141.

Kajiya, K., Hojo, H., Suzuki, M., Nanjo, F., Kumazawa, S. and Nakayama, T. (2004). Relationship between antibacterial activity of catechin derivatives and their interaction with a model membrane. Journal of Agricultural and Food Chemistry. 52: 1514-1519.

Kaneko, K., Yamasaki, T., Tagawa, Y., Tokunaga, M., Tobisa, M. and Furuse, M. (2001). Effects of dietary japanese *Camellia sinensis* on growth, meat ingredient and lipid accumulation in broilers. Journal of Poultry Science. 38: 77-85.

Karori, S.M., Wachira, F.N., Wanyoko, J.K. and Ngure, R.M. (2007). Relationship between dietary *Camellia sinensis* by-product and *Camellia sinensis* probiotics on the growth performance, meat quality and immune response of finishing pigs. Asian Journal of Animal Science. 21: 1486-1494.

Kondo, M., Szaczynski, K. and Hiro, Y.O. (2004). Entails or oven-dried green tea by-product as protein feedstuffs: Effects of tannin on nutritive value in goats. Asian-Australasian Journal of Animal Science. 20: 880-886.

Kril, C., Luiten-Schulte, A., Tenfelde, A., vanOmmen, B., Verhagen, H. and Havenaar, R. (2001). Antimitogenic activity of *Camellia sinensis* and black tea extracts studied in a dynamic in vitro gastrointestinal model. Mutation Research. 474: 71-85.

Labdar, M.R. (2010). *Camellia sinensis*-healthy or unhealthy?. viewed 06 April 2020, from http://www.articlesbase.com/nutrition-articles-green-tea-healthy-or-unhealthy-3813575. Html.

Lee, S.G. (2005). Effects of dietary *Camellia sinensis* by-product on productivity in Korea beef cattle and consulting, MS thesis, Sunchon National University. Chonnam, Korea.

Maron, D.J., Lu, G.P., Cai, N.S., Wu, Z.G., Li, Y.H., Chen, H., Zhu, J.Q., Jin, X.J., Watters, B.C. and Zhao, J. (2003). Cholesterol-lowering effect of a theaflavin-enriched *Camellia sinensis* extract: a randomized controlled trial. Archives of Internal Medicine. 163: 1448-1453.

Mukhtar, H. and Ahmad, N. (1999). Mechanism of cancer chemopreventive of *Camellia sinensis*. Proceedings of the Society for Experimental Biology and Medicine. 220: 234-238.

Muramatsu, K., Kukuyu, M. and Han, Y. (1996). Effect of *Camellia sinensis* catechins on plasma cholesterol level in cholesterol-fed rats. Journal of Nutritional Science. 32: 613-622.

Naidu, A.S. (2000). Natural food antimicrobial systems, in L.R. Juneja, T. Okubo and P. Hung (eds.), Catechins, CRC Press, Boca Raton, Florida.

Reto, M., Figueira, M.E., Filipe, H.M. and Almeida, C.M. (2007). Chemical composition of *Camellia sinensis* (*Camellia sinensis*) infusions commercialized in Portugal. Journal of Plant Foods for Animal Nutrition. 62: 139-144.

Saadoun, A. and B. Leclercq. (1983). Comparison of in vivo fatty acid synthesis of the genetically lean and fat chickens. Journal of Veterinary Biochemistry and Physiology. 75: 641-644.

Sarker, M.S.K., Ko, S.Y., Lee, S.M., Kim, G.M., Choi, J.K. and Yang, C.J. (2010). Effect of different feed additives on growth performance and blood profiles of Korean Hanwoo calves. Asian-Australasian Journal of Animal Sciences. 23: 52-60.

Sarker, M.S.K., Yim, K.J., Ko, S.Y. Uuganbayar, D., Kim, G.M., Bae, H.I., Oh, J.J., Yee, S.T. and Yang, C.J. (2010). *Camellia sinensis* level on growth performance and meat quality in finishing pigs. Pakistan Journal of Nutrition. 9: 10-14.

Shen, C.L., Yeh, J.K., Cao, J.J. and Wang, J.S. (2009). *Camellia sinensis* and bone metabolism. Nutrition Research. 29: 437-456.

Shomali, T., Najmeh, M. and Saeed, N. (2012). Two weeks of dietary supplementation with *Camellia sinensis* powder does not affect performance, D-xylene absorption and selected serum parameters in broiler chickens. Journal of Poultry Pathology. 21: 1023-1027.

Shu, W.S., Zhang, Z.Q., Lan, C.Y. and Wong, M.H. (2003). Fluoride and aluminum concentrations of tea plants and tea products from Sichuan Province, China. Journal of Poultry Science. 52: 1475-1482.

Sommer, A.P., Zhu, D. and Scharnweber, T. (2010). Extraordinary anticancer effect of *Camellia sinensis* and red light. Photomedicine and Laser Surgery. 28: 429-430.

Taylor, P.W., Miller, H. and Stapleton, P.D. (2005). ‘Antimicrobial properties of *Camellia sinensis* catechins’. Journal of Food Science Technology. 2: 71-81.

Terada, A., Hara, H., Nakajyo, S., Ichikawa, H., Hara, Y., Fukai, K., Kobayashi, Y. and T. Mitsuoka. (1993). Effect of supplements of tea polyphenols on the caecal flora and caecal metabolites of chicks. Journal of Microbial Ecology. 6: 3-9.

Uuganbayar, D. (2004). A study on the utilization of *Camellia sinensis* for laying hens and broiler chicks. Dissertation for the degree of Doctor of Philosophy. Sunchon National University, Suncheon, Korea.

Uuganbayar, D., Shin, I.S. and Yang, C.J. (2006). Comparative performance of hens fed diets containing Korean, Japanese and Chinese *Camellia sinensis*. Asian-Australasian Journal of Animal Sciences. 19: 1190-1196.

Wang, H., Provan, G.H. and Hellwell, K. (2000). Tea flavonoids: Their functions, utilization and analysis. Journal of Food
Xu, J., Zhu, S.G., Yang, F.M., Cheg, L.C., Hu, Y., Pan, G.X. and Hu, Q.H. (2003). The influence of selenium on the antioxidant activity of *Camellia sinensis*. Journal of Science of Food and Agriculture. 83: 451-455.

Yamane, T., Goto, H., Takahashi, D., Takeda, H., Otowaki, K. and Tsuchida, T. (1999). Effects of hot water extracts of tea on performance of laying hens. Journal of Japanese Poultry Science. 36: 31-37.

Yang, C.J., Yang, I.Y., Oh, D.H., Bae, I.H., Cho, S.G., Kong, I.G., Uuganbayar, D., Nou, I.S. and Choi, K.S. (2003). Effect of *Camellia sinensis* by-product on performance and body composition in broiler chicks. Asian Journal of Animal Science. 16: 867-872.

Yilmaz, Y. (2006). Novel uses of catechins in foods. Journal of Food Science and Technology. 17: 164-171.

Yugarani, Y., Tan, B.K.H., Tech, M. and Das, N.P. (1992). Effects of polyphenolic natural products on the lipid profiles of rats fed high fat diet. Lipids. 27: 181-186.

Zanchi, R., E. Canzi, L. Molteni, M. Scozzoli. (2008). Effect of *Camellia sinensis* L. whole plant extract on piglet intestinal ecosystem. Annals of Microbiology. 58: 147-52.