GROWTH PERFORMANCE, NUTRIENTS DIGESTIBILITY AND CARCASS MEASUREMENTS OF GROWING RABBITS FED DIETS INCORPORATED WITH LENTIL OR CHICKPEA SCREENING BY-PRODUCTS.

Marwa A. Suliman, Fawzia A. Hassan, Hoda El-Gabbry and Lamiaa F. Abdel-Mawla.

Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.
Corresponding author: fawzia.amer@yahoo.com

(Received 7/5/2019, accepted 27/6/2019)

SUMMARY

This work aimed to study the influence of replacement 15 or 30% of soybean meal protein by either lentil screening by-products protein (LSBP) or chickpea screening by-products protein (CSBP) on performance, nutrients digestibility, plasma parameters, carcass measurements and economic profitability of growing rabbits. Sixty New Zealand White (NZW) growing rabbits, six weeks of age, were divided to five experimental groups. Each group included four replicates (three rabbits each) as follow: control group fed basal diet without LSBP or CSBP; the 2nd, 3rd, 4th and 5th groups of rabbits fed 15% LSBP, 30% LSBP, 15% CSBP and 30% CSBP diets, respectively. Results showed that LSBP has lower DM, OM and EE contents than CSBP. Meanwhile, LSBP has higher CP, CF, ash% and GE (kcal/kg) contents compared to CSBP. LSBP was higher in arginine, threonine, isoleucine, and lysine. Meantime, CSBP had higher contents in leucine, methionine and phenylalanine as predominant essential amino acids. Inclusion of LSBP and CSBP insignificantly improved FBW, BWG and FCR. However, average daily feed intake of rabbits fed 15% CSBP was higher (P<0.05) than those fed 30% CSBP. No significant differences were observed in all nutrients digestibility (DM, OM, CP, EE and NFE) and nutritive values expressed as DCP%, TDN% and DE Kcal/kg between groups of rabbits fed LSBP and CSBP diets and those fed the control diet. Meanwhile, group of rabbits fed 30% LSBP had higher (P<0.05) CP digestibility. Conversely, group of rabbits fed 30% CSBP recorded the lowest (P<0.05) CP digestibility. Significant higher (P<0.05) values of plasma total protein and albumin concentrations were recorded for rabbits fed diets contained 30% LSBP, 15 or 30% CSBP than the control group. Moreover, there were insignificant differences in globulin and uric acid among all the experimental groups. Regarding liver functions (AST and ALT), there was a significant decrease (P<0.05) in AST levels with rabbits fed 30% LSBP and 15 or 30% CSBP compared to the control group. No significant differences in most carcass measurements were found between rabbits fed different levels of LSBP and CSBP diets and those fed the control diet except heart, kidneys weights and total edible parts %. The inclusion of LSBP at a level of 15% significantly decreased (P<0.05) total edible parts % compared with the inclusion of 30% CSBP and the control group. The net revenue improved by 4.16, 7.75, 3.43 and 9.52% for 15% LSBP, 30% LSBP, 15% CSBP and 30% CSBP, respectively. The best net revenue and economical efficiency were recorded by 30% LSBP diet followed by 30% LSBP, 15% LSBP, 15% CSBP diets and the lowest one was the control group. In conclusion, lentil or chickpea screening by-products protein could be used up to 30% substitution level for soybean meal protein without any detrimental effects on performance, nutrient digestibility, plasma parameters and carcass measurements of growing rabbits.

Keywords: growing rabbits, chickpea screenings, lentil screenings, performance and digestibility, profitability.

INTRODUCTION

The use of lentil and chickpea screening by-products might reduce the costs of feed production and reduce the environmental impact. The rising prices of feed ingredients frequently used in animal feeding has led to the evaluation of alternative and less costly ingredients, as feeds which can be accounted for up to 70% of the total costs of rabbit production (Gidenne et al., 2017). Therefore, it could be argued that feed costs could be minimized by using cheaper, non-traditional feed ingredients (de Blas et al., 2018 and Uhlířová et al., 2018). The chickpea (Cicer arietinum L.) and lentil (Lens culinaris L.) are cultivated for their edible seeds, they are the major legumes in the Mediterranean Basin. Among the 17 pulses identified as food sources by FAO, the four most widely produced are common bean, chickpea, dry pea, and lentil. Pulses are concentrated sources of protein and dietary fiber and have very low-fat content (FAO, 2017).

The majority of chickpea wastes are culled chickpea (cracked, broken, fine, deformed and impurities) and chickpea processing wastes including chickpea hulls, broken and ground peas and foreign materials...
Suliman et al.

(Lousiana State University, 2007). Lentil screenings are the by-products of cleaning lentil seeds. They may consist of whole and broken lentils, cereal grains, weed seeds, chaff and dust. If lentils suffered from quality problems, these by-products become occasionally available to the animal feed industry (Stanford et al., 1999 and Çabuk et al. 2014). Lentil seeds are a good source of protein and energy, but low in sulphur amino acids. Amino acid supplementation is recommended when lentil seeds are used in poultry diets, therefore lentil screenings can be included up to 20% in broiler diets (Sherasia et al., 2017).

Lentil and chickpea seeds have relatively high crude protein content (24.6-30 % and 18.2-26.5%), respectively (Feedipedia, 2016) and low digestive inhibitors (Görgülü, 2010). Mustafa et al. (2000) reported that chickpea and other pulse crops can be used as protein and energy source in animal diets. However, the major anti-nutritional factor in lentils is protease inhibitor, it has excessive content of polyphenols, especially tannins, but this is not present in sufficient quantities to depress animal performance (Mavromichalis, 2013).

The current study aims to investigate the effect of lentil (LSBP) and chickpea (CSBP) screening by-products proteins substitution for soybean meal protein on growth performance, nutrients digestibility, carcass measurements and plasma parameters of growing rabbits besides, economical efficiency of experimental diets.

MATERIALS AND METHODS

The experiment was conducted at Borg El-Arab experimental station, Animal Production Research Institute (APRI), Agricultural Research Center, Egypt. The laboratories works were carried out at Laboratories of Utilization of By-Products Research Department, APRI, Giza, Egypt. The LSBP and CSBP were obtained from Egyptian holding company for silos & storage, El Nobaria, El-Bahera governorate. Feed mixing and pelleting processes were carried out at El Nobaria manufactory, El Nobaria Station, APRI, Agricultural Research Center, Egypt.

Experimental animals, diets and design

Sixty New Zealand White (NZW) growing rabbits, 6 weeks age with live body weight ranging from 579.44 to 580.56g were divided into five experimental groups, 12 rabbits in each. Five experimental diets were formulated as follow; the control diet without LSBP and CSBP, the other experimental diets were formulated by replacing two levels (15 and 30%) of soybean meal protein by protein of LSBP and CSBP. The diets and fresh water were supplied ad libitum. The experimental period lasted for 7 weeks from 6 to 13 weeks of age. All experimental diets (Table 1) were formulated to be isonitrogenous and isocaloric, to meet all the essential nutrient requirements of growing rabbits in accordance with De Blas and Mateos (1998).

Management and growth performance

All rabbits were kept under the same management, hygienic conditions and housed in metal battery cages supplied with separated feeders. All rabbits were vaccinated against diseases and kept under veterinary control. Feed intake (FI, g/rabbit/day) and body weight gain (BWG, g/rabbit/day) were recorded weekly, accordingly, feed conversion ratio (FCR) was calculated as g feed / g gain over an experimental period.

Digestion trial and chemical analyses

Digestion trial was conducted according to Perez et al. (1995). Fifteen rabbits were used individually to digestion trial and divided to 5 groups of three per treatment. Rabbits were housed in individual metabolism cages diets for a period of 7 days (preliminary period) for adaptation then faeces were collected every 24 hours for 5 consecutive days (collection period). Samples of LSBP and CSBP, diets and feces were prepared to determine moisture, ash, crude protein, ether extract and crude fiber according to A.O.A.C. (2000). Amino acids were determined using Beckman Amino Acid Analyzer (model 6300; Beckman Coulter Inc., Fullerton, Calif., USA). Acid hydrolysis was carried out according to the method of A.O.A.C. (2012). Data of feed intake and dried feces were used as chemical composition data of feed and dried feces were used to calculate the nutrient digestion coefficients and nutritive values for each dietary treatment, as described by Fekete (1985). Digestible energy (DE, Kcal/Kg diet) was calculated as follow: DE=TDN × 44.3 according to Schneider and Flatt (1975).

Slaughter traits

At the end of the growing period (13 week of age), three rabbits were taken randomly from each treatment, fasted about 16 hours before slaughtering and individually weighed as pre-slaughtering weight. Animals were slaughtered according to the Islamic religion instructions with a sharp knife. The empty carcass was weighted without head and giblets. The giblets (liver, heart and kidneys) were separated and weighed. The edible giblets percentage, total edible parts and dressing percentage were calculated according to Blasco et al. (1993).
Table (1). Ingredients and chemical composition of experimental diets.

Ingredient	Control diet	Substitution level of legumes screenings by-products protein			
		15% LSBP	30% LSBP	15% CSBP	30% CSBP
Soybean meal (44% CP)	20.0	17.00	14.00	17.00	14.00
Legume screenings by-products	0.00	5.44	10.86	5.90	11.77
Yellow corn	12.80	12.80	12.80	12.80	12.80
Barley	15.00	15.00	15.00	15.00	15.00
Wheat bran	12.15	12.15	12.15	12.15	12.15
Clover hay	34.00	31.56	29.14	31.10	28.43
DL-methionine	0.20	0.20	0.20	0.20	0.20
Di calcium phosphate	2.00	2.00	2.00	2.00	2.00
Sodium chloride (NaCl)	0.35	0.35	0.35	0.35	0.35
Vitamin and mineral primix¹	0.30	0.30	0.30	0.30	0.30
Anti coccidia and fungi	0.20	0.20	0.20	0.20	0.20
Molasses	3.00	3.00	3.00	3.00	3.00
Total	100	100	100	100	100
Chemical composition (DM basis)					
DM%	82.94	83.00	83.05	83.06	83.19
OM%	94.92	94.94	94.97	95.06	95.19
CP%	17.48	17.36	17.05	17.31	17.03
CF%	13.87	13.60	13.44	13.27	13.2
EE%	2.01	2.06	2.11	2.12	2.23
NFE%	61.56	61.92	62.37	62.36	62.73
Ash%	5.08	5.06	5.03	4.94	4.81
DE kcal/kg²	2680	2693	2701	2708	2712

¹ Each kg of vitamins and minerals mixture contains: Vit. A 2,000,000 IU, Vit.B₁ 0.33g, Vit.B₂ 1.0g, Vit.D₃ 150,000 IU, Vit E 8.33g, Vit. K 0.33 g, Pantothenic acid 3.33g; Nicotinic acid, 30.00g; Vit. B₆ 2.00g; Vit. B₁₂ 1.7 mg, Folic acid 0.83g, Biotin 33 mg, Cu 0.5g, Choline chloride 200mg, Mn 5.0 g, Fe 12.5 g, Mg 66.7 mg, Co 1.33 mg, Se 16.6 mg, Zn 11.7 g, Iodine 16.6 mg and Anti-oxidant 10.0 g.

²LSBP = Lentil screening by-product; CSBP = Chickpea screening by-product.

Edible efficiency was calculated as a ratio between the return of weight gain and the cost of consumed feed. The economical efficiency was calculated according to the following equation:

Economical efficiency = (Net revenue/ total feed cost). Whereas, Net revenue = Selling price/rabbit- total feed cost/rabbit. The price of ingredients and selling of one kg live weight of rabbits was calculated according to the price in the local market at the time of experiment during January, 2019. The price of one kg live body weight was 50.00 LE.

Statistical analysis

The data obtained herein were analyzed by using the GLM (General Linear Model) procedure of SAS (2004) using the following model: \(Y_{ij} = \mu + T_i + e_{ij} \), Where, \(Y_{ij} \) = An observation; \(\mu \) = Overall mean; \(T_i \) = Effect of treatment groups; \(e_{ij} \) = experimental random error. Duncan’s multiple range test (Duncan, 1955) was performed to detect significant differences between treatment means. Significance is acceptable at (p≤0.05).
RESULTS AND DISCUSSION

Chemical composition of LSBP and CSBP

Chemical composition of LSBP and CSBP is shown in Table (2). The results indicated that LSBP had lower DM, OM and EE contents than CSBP. While, LSBP has higher CP, CF, ash% and GE (kcal/kg) contents compared to CSBP. The chemical composition of CSBP exhibited 22.43% CP content, which is close to the content of CP (22.50%) in Kabuli chickpea type reported by Mustafa et al. (2000). Higher CP content (23.56 %) and higher fat content (5.18%) of chickpea have been reported by Silva-Cristobal et al. (2010). Furthermore, Ladjal Ettoumi and Chibane (2015) reported that chickpea contained (24.41%) CP and (5.57%) crude fat. On the other hand, Maheri-Sis et al. (2007) analyzed the chemical composition of culled chickpea and chickpea dehulling by-products and found that DM, OM, CP and EE% were 89.78, 96.90, 19.70 and 7.80% for culled chickpea and 90.17, 92.20, 21.80 and 3.10%, respectively for chickpea dehulling by-products. Moreover, Brenes et al. (2008) observed that chickpea contained 20% CP, 6.4% CF, 13.5% EE and 6.4% ash. Algam et al. (2012) found that the chickpea seeds contained 24.31% CP, 13.37%CF and 3.78% EE.

Concerning to the chemical composition of LSBP, Woyengo et al. (2014) found that lentil contained lower contents of DM (88.70%), EE (1.63%), and CF (4.10%), and higher content of CP (27.40%). In addition, Hefnawy (2011) stated that lentil contained 26.6%CP, 3.40 % Ash, 1.0% fat, 6.30% CF and 8.51% moisture. Likewise, Ladjal Ettoumi and Chibane (2015) stated that lentil had higher CP content (26.34 g/100 g dry basis) and lower fat content (1.25 g/100 g dry basis). The present values of LSBP nutrients are within the range of protein (20.6-31.4%), fat (0.7-4.3%), carbohydrates (43.4-69.9%) reported by Urbano et al., (2007). As demonstrated by Brummer et al. (2015), lentil is richer in total soluble fiber than peas and chickpeas. Also, like most legumes, lentil is a rich source of protein.

Table (2). Chemical composition of lentil and chickpea screenings by-products (DM basis)

Item	DM%	OM%	CP%	CF%	EE%	Ash%	NFE%	GE Kcal/kg*
LSBP	89.20	93.80	24.30	12.40	2.20	6.20	54.90	4400
CSBP	90.19	95.69	22.43	3.04	3.18	4.31	67.04	4120

^{GE (kcal/kg) = Gross Energy}

LSBP= Lentil screening by-product; CSBP= Chickpea screening by-product.

The amino acids profile of chickpea and lentil screenings by-products protein is summarized in Table (3). The present study shows that the limiting amino acids were methionine and cysteine for LSBP and CSBP. Similar results were reported by Chavan et al., (1989) who found that methionine and cysteine are the limiting amino acids in chickpeas. Pulses were very low sources of essential sulfur amino acids (Cysteine and Methionine) as mentioned by Margier et al., (2018). Besides, Lentil contains low percentages of sulphur-amino acids (Jarpa-Parra 2018). It is clear to note that LSBP had higher in contents of arginine, threonine, isoleucine and lysine while, CSBP had higher contents of leucine, methionine and phenylealanine as predominant essential amino acids.

Regarding the non-essential amino acids, LSBP had higher concentrations of alanine, aspartic acid, glutamic, glycine, proline and tyrosine. On the other hand, CSBP had higher concentration of cystine content than LSBP. The amino acids contents of LSBP and CSBP are mostly in agreement with values reported by Nestares et al. (1996); Hawthorne (2006); Lizarazo et al., (2014) and Margier et al., (2018). Therefore, lentil can be added to the range of feeds (Lizarazo et al., 2014). In general, the present results of the amino acids composition confirm that LSBP and CSBP could supply enough essential amino acids to cover the growing rabbit’s nutritional requirements. High quantities of these proteins and essential amino acids in LSBP and CSBP offer an important dietary protein sources for growing rabbits.

Growth performance

Data of Table (4) revealed insignificant differences between the dietary treatments of LSBP and CSBP compared with the rabbits fed the control diet. Average daily feed intake of rabbits fed 15% CSBP was higher (P<0.05) than those fed 30% CSBP. Rabbits fed the control diet recorded higher (P<0.05) average daily feed intake than rabbits fed 30% LSBP and those fed 30% CSBP. It is clearly to note that feed intake was linearly reduced with the increase of dietary inclusion of either LSBP or CSBP. These results were similar with the findings reported by Ciurescu et al. (2017) who demonstrated that broiler groups
fed 20 and 40% lentil seeds replacement levels of soybean meal had an insignificant difference in DWG, FI and FCR. On the contrary, Şögüt et al. (2018) reported that there were insignificant differences in feed intake of turkey groups fed lentil by-products up to 30% and found also that body weight gain did not affect when turkey group fed lentil by-products up to 15%. While, the best of FCR was recorded by turkey group fed lentil by-products up to 30% and found also that body weight gain did not affect when turkey group fed lentil by-products up to 15%. Additionally, Hassan et al. (2016) stated that rabbits fed 25% and 50% chickpea screenings by-products achieved significantly (P<0.05) better average daily gain by 10.56% and 12.52%, respectively and better FCR (3.65 and 3.74 vs. 4.16 g feed/g gain) than the control group.

Table (3). Amino acids profile of LSBP and CSBP (g kg⁻¹ dry matter).

Item	Essential amino acids	Non-essential amino acids			
	LSBP	CSBP	LSBP	CSBP	
Arginine	21.3	18.5	Alanine	10.98	9.30
Threonine	9.90	8.01	Aspartic acid	29.0	22.3
Histidine	9.2	9.20	Glutamic acid	40.2	40.10
Isoleucine	10.60	9.80	Glycine	10.2	9.50
Leucine	19.01	21.03	Proline	10.5	9.90
Lysine	17.6	14.3	Serine	13.0	10.01
Methionine	2.2	3.40	Cystine	2.10	4.01
Phenyllealalanine	12.98	13.87	Tyrosine	7.80	7.20
Tryptophan*	-	-	-	-	-
Valine	10.98	14.50	-	-	-
Total	115.97	114.19	Total	123.78	112.32

*Not determined
LSBP= Lentil screening by-product; CSBP= Chickpea screening by-product.

Table (4). Growth performance of growing rabbits fed on experimental diets

Substitution level of legume screenings by-products protein	Control	15% LSBP	30% LSBP	15% CSBP	30% CSBP	P-value
Initial live body weight, (IBW)(g)	580.56	580.56	579.44	580.56	580.56	1.00
±26.88	±24.43	±26.23	±24.88	±23.46		
Final live body weight, (FBW)(g)	2011.67	2013.89	2016.67	2013.33	2015.56	1.00
±70.98	±50.91	±47.28	±45.13	±34.93		
Daily weight gain (DWG) (g/rabbit/day)	29.21	29.25	29.33	29.24	29.28	1.00
±1.48	±1.09	±1.25	±1.12	±0.65		
Average daily feed intake (ADFI) (g/rabbit/day)	113.20	108.07abc	106.46bc	109.44ab	102.94c	0.003
±1.83	±2.42	±1.88	±0.96	±1.02		
FCR (g feed/g gain)	3.87	3.69	3.63	3.74	3.52	0.44
±0.22	±0.13	±0.19	±0.14	±0.08		

a, b and c means within the same row with common letter are not significantly different (p>0.05).

In the present study, although rabbits did not have a significant improvement in growth performance, no deterioration in growth performance was observed during the growth experimental period. This may be due to that lentil and chickpeas screening by-products are rich sources of energy and protein and also could supply enough essential amino acids as presented in Tables (2 and 3) to cover the growing rabbit’s nutritional requirements. Additionally, chickpeas and lentils are low in anti-nutritional factors. However, trypsin inhibitor limits the inclusion of chickpeas at high levels and excessive amounts may cause
digestive problems (Hawthorne, 2006). In this respect, Hassan et al. (2016) mentioned that the chickpea screenings by-products seem to be satisfactory an energy source for the weaned rabbit and it could be used at 25 and 50% in replacement of barley as a non-conventional feedstuff without any detrimental effects on the growth performance. In the same concern, lentil screenings had tannin concentrations of 14% (expressed as catechin equivalents) (Stanford et al. 1999), but this is not present in sufficient quantities to depress animal performance (Mavromichalis, 2013). Furthermore, Chickpea screenings by-products contained 4.57 g/100g DM phytic acid; 0.90 g/kg saponins and 1.44g/kg tannins (Hassan et al., 2016), so there are some constraints to the inclusion levels of chickpea and lentil screenings by-products in rabbit diets. It is worth to note that bioactive compounds like polyphenol and high nutritional compositions of chickpea and lentil screening by-products are highly associated with improving the rabbit's health. Therefore, chickpeas and lentils screenings by-products are useful as protein and energy sources for rabbits diets.

Nutrients digestibility and nutritive values

Nutrients digestibility and nutritive values of rabbits fed experimental diets are summarized in Table (5). The results indicated that no significant changes were noticed in all nutrients digestibility of DM, OM, CP, CF, EE and NFE between groups of rabbits fed LSBP and CSBP diets and those fed the control diet. Meanwhile, a group of rabbits fed 30% LSBP had the highest (P<0.05) of CP digestibility. Conversely, a group of rabbits fed 30% CSBP recorded the lowest (P<0.05) CP digestibility. In regard to

Item	Control diet	15% LSBP	30% LSBP	15% CSBP	30% CSBP	P-value
Nutrient digestibility (%)						
Dry matter (DM)	84.86	78.63	81.34	77.07	81.76	0.48
	±3.57	±3.53	±2.85	±1.52	±3.59	
Organic matter (OM)	86.27	80.49	82.85	78.98	83.64	0.43
	±3.12	±3.09	±2.82	±1.34	±3.08	
Crude protein (CP)	±0.54	±1.16	±0.94	±0.09	±0.91	0.02
	45.71	42.18	38.40	26.81	33.11	
Crude fiber (CF)	±4.23	±3.84	±5.82	±2.03	±5.83	0.09
	77.61	73.29	72.05	70.44	81.78	
Ether extract (EE)	±1.17	±2.08	±6.28	±5.66	±1.09	0.31
Nitrogen free extract (NFE)	±2.60	±3.62	±1.73	±0.98	±2.39	0.41

Nutritive value	Substitution level of legume screenings by-products protein					
Digestible crude protein (DCP%)	±0.10	±0.22	±0.18	±0.02	±0.17	0.04
Total digestible of nutrients (TDN%)	±2.58	±2.88	±2.30	±1.18	±2.52	0.41
Digestible energy (DE Kcal/kg)	3450.10	3240.80	3281.20	3146.30	3285.90	0.41

* a, b and c means within the same row with common letter are not significantly different (P>0.05).

nutritive values expressed as DCP%, TDN% and DE Kcal/kg. Data showed significant (P<0.05) differences in DCP% between the group of rabbits fed 30% LSBP and groups of rabbits fed 15 or 30% CSBP. However, it is clearly noticed insignificant differences in DCP%, TDN% and DE Kcal/kg among the control group and the other tested groups. On the contrary, Hassan et al., (2016) demonstrated that rabbits group fed 25 or 50% chickpea screenings by-products recorded significantly (P<0.05) higher digestibilities of DM, OM, CP, CF, EE and NFE compared with the other tested levels of 0, 75 and 100% chickpea screenings by-products. As well the digestibility and biological value of chickpea nutrients are high for poultry (Brenes et al., 2008 and Nalle, 2009). However, due to the presence of anti-nutritional factors, it could have contributed to decrease nutrients digestibility of DM, OM, CF, EE and NFE. Besides, Stanford et al. (1999) found that lentil screenings have poor OM digestibility. Furthermore,
chickpea contains a number of secondary compounds that can impair nutrient absorption from the gastro-intestinal tract such as variable amounts of trypsin and chymotrypsin inhibitors that may decrease the feeding value for poultry (Bampidis and Christodoulou, 2011). At the same time, Johnson et al., (2013) stated that lentils are known to be a good source of prebiotics and have nutritionally important quantities of prebiotic carbohydrates (12.3–14.1 g/100 g of dry lentils) that help to keep up the gut microbial environment and prevent gut-associated diseases. So, those prebiotic carbohydrates promote the growth of beneficial bacteria in the gut. Lentil and chickpea are rich in prebiotic carbohydrates (Siva et al., 2019). This could explain the significant increase in CP digestibility for a group of rabbits fed 30% LSBP compared to those fed 15 or 30% CSBP because LSBP promotes gut motility and increasing retention in the gut of rabbits.

Blood plasma parameters

Results of Table (6) illustrated significant higher (P<0.05) values of plasma total protein and albumin concentrations for rabbits fed diets contained 30% LSBP and 15 or 30% CSBP than the control group. While, no significant differences in plasma total protein and albumin values were observed between the rabbits fed 15% LSBP and those fed the control diet. Moreover, the inclusion of LSBP and CSBP did not significantly affect globulin and uric acid among all the experimental groups. Regarding liver functions (AST and ALT), there were significant decreases (P<0.05) in AST levels with rabbits fed 30% LSBP and 15 or 30% CSBP compared with a those fed 15% LSBP and the control group. On the other hand, the inclusion of LSBP and CSBP at tested levels of 15 and 30% decreased (P<0.05) the blood plasma ALT levels. Rabbits fed the control diet recorded the highest (P<0.05) ALT level compared with the other groups. In regard to kidneys function, rabbits fed diets included 30% LSBP and 15 or 30% CSBP had a significant decrease (P<0.05) in creatinine levels compared with 15% LSBP and the control group.

Table (6). Plasma parameters of growing rabbits fed on different levels of LSBP and CSBP.

Item	Control diet	15%LSBP	30%LSBP	15%CSBP	30%CSBP	P-value
Plasma proteins						
Total Protein (mg/dl)	6.79^b	7.05^b	7.92^a	7.81^a	7.88^a	0.03
±0.49	±0.13	±0.06	±0.23	±0.15		
Albumin (mg/dl)	3.87^c	4.06^c	4.63^b	4.88^b	4.98^a	<.0001
±0.03	±0.13	±0.13	±0.09	±0.08		
Globulin (mg/dl)	2.92	2.99	3.29	2.93	2.90	0.79
±0.49	±0.17	±0.14	±1.14	±1.21		
Liver functions						
AST (U/ml)	45.27^a	43.04^a	38.62^b	37.33^b	32.05^c	<.0001
±1.03	±0.89	±1.14	±0.77	±1.21		
ALT(U/ml)	40.28^a	36.61^b	35.39^b	31.17^c	24.58^d	<.0001
±0.92	±0.42	±1.16	±1.01	±1.64		
Kidneys functions						
Creatinine (mg/dl)	1.18^a	1.12^a	1.02^b	0.96^b	0.96^b	0.0002
±0.02	±0.02	±0.03	±0.02	±0.02		
Uric acid (mg/dl)	3.36	4.80	6.00	5.84	6.00	0.0531
±0.14	±0.73	±0.96	±0.35	±0.55		

^{a, b, c and d} means within the same row with common letter are not significantly different (P>0.05).

Similar results were observed by Hassan et al. (2016) who reported insignificant differences in globulin between rabbits fed diets contained chickpea screenings by-products at levels of 25, 50, 75 and 100% of barley compared to the control group, while rabbits fed 50% chickpea screenings by-product had higher (P<0.05) plasma total protein concentration than the control group. The present results disagreed with findings reported by Algam et al. (2012) who demonstrated that 10% chickpea had no significant effect on plasma total protein of broiler chicks. Also, Algam et al., (2011) found that plasma total protein did not affect in broiler fed 10% chickpea seed replaced by either groundnuts meal or sesame meal. The significant higher contents of plasma total protein and albumin for rabbits may be attributed to that LSBP and CSBP have high quality amino acids profile (Table 3). Furthermore,
lentil protein contains all the essential amino acids however, like other legumes, it is limiting in sulphur amino acids, tryptophan and threonine (Joshi et al., 2017). Moreover, the predominant proteins in lentils are globulin (47% of the total seed proteins) and an adequate quantity of albumin (Lombardi-Boccia et al. 2013). In the present study, all values of plasma constituents were within the physiological ranges according to Harcourt-Brown (2002).

Carcass measurements

The results of Table (7) revealed that insignificant differences in most carcass measurements were found between groups of rabbits fed different levels of LSBP and CSBP diets and those control diet except heart, kidneys weights and total edible parts %. At the same time, rabbits fed 30% CSBP were lower (P<0.05) in heart weight than the rabbits fed LSBP at levels of 15 or 30% and the control group. However, the rabbits fed 15% CSBP had lower (P<0.05) kidneys weight than those fed the control diet. The inclusion of LSBP at a level of 15% significantly decreased (P<0.05) total edible parts % compared with the inclusion of 30% CSBP and the control group. Similarly, Ciurescu et al. (2017) did not observe any effect on both carcass weight and dressing percentage of broiler fed two cultivars of lentil seeds up to 40% replacement of soybean meal. In contrast, Hassan et al., (2016) demonstrated significant increase (P<0.05) in hot carcass weight of rabbits group fed 50% chickpea screening by-products compared to the control group. They found also that 100% CSB recorded the lowest (P<0.05) hot carcass weight, dressing %, Heart% and total edible parts. The present results are in disagreement with those reported by Ndalwise (2013) who reported that hot carcass weight was decreased (P>0.05) with increased levels (32 and 47%) of chickpea seed wastes in rabbit diets compared with the control group. The differences of carcass measurements might be due to the slaughter age, breeding, weaning age and feeding conditions (Fernandez and Fraga, 1996 and Yalcin et al., 2006).

Table (7). Carcass measurements of growing rabbits fed on the experimental diets.

Item	Substitution level of legume screenings by-products protein					
	Control diet	15% LSBP	30% LSBP	15% CSBP	30% CSBP	P-value
Pre-slaughter weight (g)						
±0.0	2110.00	2046.67	2123.33	2055.00	2108.33	0.88
Carcass weight (g)	1189.61	1094.96	1187.57	1128.81	1188.25	0.41
±3.19	±46.67	±33.46	±29.63	±59.32		
Dressing (%)	56.38	53.50	55.93	54.93	56.36	0.15
±1.37	±0.12	±1.08	±0.56	±0.34		
Head (g)	111.667	108.333	108.333	111.667	110.00	0.93
±1.66	±4.41	±4.40	±1.67	±5.00		
Liver (g)	80.58	73.86	80.10	85.80	73.67	0.61
±3.71	±6.60	±6.35	±7.71	±5.52		
Heart (g)	±0.61	±0.50	±0.07	±0.80	±0.35	0.02
±0.32	±0.04	±0.25	±0.12			
Spleen (g)	1.42	1.62	1.22	1.08	1.23	0.72
±0.27	±0.32	±0.40	±0.25	±0.12		
Kidneys (g)	20.17ab	17.13ab	16.00ab	15.40ab	16.07ab	0.01
±1.43	±0.27	±1.51	±0.62	±1.97		
Edible giblets (%)¹	±0.24	±0.44	±0.24	±0.33	±0.23	0.56
±0.44	±0.24	±0.33	±0.23			
Total edible parts (%)²	±1.37	±0.12	±1.08	±0.56	±0.34	0.01
±0.88	±1.15	±0.66	±1.45	±0.66		0.80
Cecum length (cm)	165.00	184.00	187.66	199.66	187.67	0.43
±2.00	±13.07	±10.71	±14.72	±16.04		

*abcd means within the same row with common letter are not significantly different (p>0.05).
1) Edible Giblets % = (liver+ kidney + heart) / Pre-slaughter weight (g)*100
2) Total edible parts (%) = (carcass wt+ Edible Giblets)/ Pre-slaughter weight (g)*100
Economical efficiency

The present results of Table (8) show that the best economical efficiency and net revenue were recorded by 30% CSBP diet followed by 30%LSBP, 15%LSBP, 15% CSBP diets and the lowest values were found for the control group. This may be related to the decreasing of total feed cost per rabbit with groups fed diets contained LS BP and CSBP because of the low prices of chickpea and lentil screenings by-products. Moreover, no impairment of growth performance was observed with groups of rabbits fed diets contained LS BP and CSBP. This is in accordance to the other results reported by Hassan et al., (2016) who stated that the inclusion of chickpea screening by-products at 25, 50, 75 and 100% in rabbit diets had an improvement in economic efficiency and net revenue compared with the control group. Therefore, lentil and chickpeas screenings by-products are useful protein sources with good quality and energy-rich feed because of their competitive price (Lardy and Anderson, 2009 and Hassan et al. 2016). It is well known that feed costs could be minimized by using cheaper and non-traditional feed ingredients. Furthermore, possible effects on animal growth performance must also be evaluated (De Blas et al., 2018 and Uhlírová et al., 2018). Effective utilization of available feed resources is the key to economical livestock rearing (Beigh et al., 2017 and Mudgal et al., 2018). So the present study confirms that LSBP and CSBP could be used as alternative protein sources with competitive prices compared with the traditional protein sources in growing rabbits.

Table (8). Economical efficiency of experimental diets included LSBP and CSBP

Item	Control diet	15%LSBP	30%LSBP	15%CSBP	30%CSBP
Total body weight gain (kg)	1.431	1.433	1.437	1.432	1.435
Price of 1 kg body weight (L.E.)	50	50	50	50	50
Selling price/rabbit (L.E.) (A)	71.56	71.67	71.86	71.64	71.75
Total feed intake (kg)	5.55	5.30	5.22	5.36	5.04
Price of 1 kg feed (LE)	4.97	4.88	4.69	4.88	4.68
Total feed cost/rabbit (LE) (B)	27.58	25.86	24.48	26.16	23.59
Net revenue (LE)	43.97	45.80	47.38	45.48	48.16
Economic efficiency	1.59	1.77	1.94	1.74	2.04

\[\text{Net revenue} = \text{A} \cdot \frac{\text{B}}{1} \]

\[\text{Economical efficiency} = \frac{\text{Net revenue}}{\text{B}} \]

CONCLUSION

According to the previous results, it may be concluded that the substitution of LSBP and CSBP protein for soybean meal protein up to 30% level did not cause any adverse effects on growth performance, nutrients digestibility, plasma parameters and carcass measurements. Additionally, LSBP and CSBP diets had the best profitability. The LSBP and CSBP could be used as unconventional protein sources in growing rabbit diets.

REFERENCES

Algam, T.A.; Kh.A. Abdel Atti; B.M. Dousa; S.M. Elawad and B.A. Atta Elmanan (2011). Effect of dietary raw chickpea (cicer aritinum l.) seeds replacement groundnut meal, sesame meal on broiler performance and blood constituents. Online Journal of Animal and Feed Research, 3(2): 91-95.

Algam, T.A.; K.A. Abdel Atti; B.M. Dousa; S.M. Elawad and A.M. Fadel Elseed (2012). Effect of dietary raw chick pea (Cicer artinum L.) seeds on broiler performance and blood constituents. International Journal of Poultry Science, 11(4):294-297.

AOAC (2000). Association of official Analytical chemists. Official Methods of Analysis, 14th Ed. Published by the A. O. A. C. Washington, D.C., USA.

AOAC (2012). Association of Official Analytical Chemist, Official Methods of Analysis, 19th Ed., AOAC international, Suite 500, 481 North Frederick Avenue, Gaithersburg, Maryland 20877-2417, USA.
Suliman et al.

Bampidis, V.A. and V. Christodoulou (2011). Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Animal Feed Science and Technology, 168: 1–20.

Beigh, Y.A.; A.M. Ganai and H.A. Ahmad (2017). Prospects of complete feed system in ruminant feeding: a review. Vet World, 10(4):424-437.

Blasco, A.; J. Ouahyoun and G. Masoero (1993). Harmonization of criteria and terminology in rabbit meat research. World rabbit science, 1(1):3-10.

Brenes, A.; A.Viveros; C. Centeno; I. Arija, and F. Marzo (2008). Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens. Spanish Journal of Agricultural Research. 6(4): 537-545.

Brunner, Y.; M. Kaviani and S.M. Tosh (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117–125.

Çabuk, M.; S. Eratak and H.B. Malayoğlu (2014). Effects of dietary inclusion of lentil by-product on performance and oxidative stability of eggs in laying quail. Scientific World Journal, 2014:1-5. http://dx.doi.org/10.1155/2014/742987

Chavan, J. K.; S. S. Kadam and D. K. Salunkhe (1989). Chickpea. In Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology, and Utilization; Salunkhe, D. K., Kadam, S. S., Eds.; CRC Press: Boca Raton, FL, Vol.I, pp 247-288.

Ciurescu, G.; A.Vasiliachi; M. Habeau and C. Dragomir (2017). Effects of dietary lentil seeds inclusion on performance, carcass characteristics and cecal pH of broiler chickens. Indian Journal of Animal Sciences, 87 (9): 1130–1134.

De Blas, J.C. and G.G. Mateos (1998). Feed formulation. In: De Blas, J.C., Wiseman J., (Ed). The nutrition of rabbit. Ed CABI publishing, UK. pp. 241-254.

De Blas, J.C.; P. Ferrer; C.A. Rodríguez; A. Cerisuelo; P. García-Rebollar; S. Calvet and C. Farias (2018). Nutritive value of citrus co-products in rabbit feeding. World Rabbit Sci., 26: 7-14.

Doumas, B.T. and W. Waston (1971). Albumin standards and measurement of plasma albumin with bromocresol green. Clin. Chem. Acta., 31,87.

Duncan, D. B. (1955). Multiple Range and Multiple F-Test. Biometrics, 11,1-42.

Feedipedia (2016). Animal feed resources information system. INRA/CIRAD/AFZ/FAO Available at: http://www.feedipedia.org/

Fekete, S. (1985). Rabbit feeds and feeding with special regard to tropical condition. Journal of Applied Rabbit Research, 8(4): 167-173.

Fernandez, C. and M. J. Fraga (1996). The effect of dietary fat inclusion on growth, carcass characteristics, and chemical composition of rabbits. J. Anim. Sci. 74:2088-2094.

Food and Agriculture Organization, FAO (2017). Definition and Classification of Commodities: Pulses and Derived Products. Available online: http://www.fao.org/es/faodef/fdef04e.htm (accessed on 20 January 2017).

Gidenne, T.; H. Garreau; L. Drouilhet; C. Aubert and L. Maertens (2017). Improving feed efficiency in rabbit production, a review on nutritional, techno-economic, genetic and environmental aspects. Anim. Feed Sci. Technol., 225: 109- 122.

Gğrgülü, M. (2010). Ingrediet of nutrients. Available from: http://www.muratgorgulu.com.tr/alterekran.asp?id=79.

Gornall, A. G.; C. J. Bardawill and M. Divid (1949). Determination of plasma protein by means of the biuret reaction. J. Biol.Chem.,177, 751.

Harcourt-Brown, F. (2002). Biochemistry, in: Textbook of rabbit medicine. Oxford, UK,Elsevier, pp.148.

Hassan, F. A.; I M. R. M. ibrahim and M.M. Basony (2016). Effect of chickpea screenings by-products as untraditional energy source on growth performance and digestibility of growing rabbits. Egyptian J. Nutrition and Feeds, 19 (2): 201-212.

Hawthorne, W. (2006). Pulses nutritional value and their role in the feed industry. Published by Pulse Australia Pt Wayne Hawthorne, Pulse Australia.
Hefnawy, T.H. (2011). Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Annals of Agricultural Science, 56(2):57-61.

Henry, R.J. (1964). Clinical Chemistry, Principles and Technics. Harper row Publishers New York.

Jarpa-Parra, M. (2018). Review Lentil protein: a review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science and Technology, 53:892-903.

Johnson C.R.; G.F. Combs and P. Thavarajah (2013). Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Res. Int., 51:107–113. doi: 10.1016/j.foodres.2012.11.025.

Joshi, M.; Y. Timilsena and B. Adhikari (2017). Global production, processing and utilization of lentil: A review. Journal of Integrative Agriculture, 16(12):2898-2913.

Ladjal Ettoumi, Y. and M. Chibane (2015). Some physicochemical and functional properties of pea, chickpea and lentil whole flours. International Food Research Journal, 22(3): 987-996.

Lardy, G. and V. Anderson (2009), Alternative Feeds for Ruminants. NDSU. Extension Service, North Dakota State University Fargo, 20P.

Lebas F. and T. Gidenne (2000). Recent research advances in rabbit nutrition. Annual WRSA Chinese Branch Meeting, Ningbo (Chine) 22-23 December 2000, 17 pp.

Lizarazo, C. I.; A.M. Lampi; J. Liu; T. Sontag-Strohm; V. Piironenb and F.L. Stoddard (2014). Nutritive quality and protein production from grain legumes in a boreal climate. J Sci. Food Agric. (wileyonlinelibrary.com) DOI 10.1002/jsfa.6920.

Lombardi-Boccia, G.; S. Ruggeri; A. Aguzzi and M. Cappelloni (2013). Globulins enhance in vitro iron but not zinc dialysability: A study on six legume species. J. Trace Elem. Med. Biol.,17:1–5.

Maheri-Sis, N.; M. Chamani; A.A. Sadeghi; A. Mirza-Aghazadeh and A.A. Safaei (2007). Nutritional evaluation of chickpea wastes for ruminants using in vitro gas production technique. J. Anim. Vet. Adv., 6(12): 1453-1457.

Margier, M.; S. Georgé; N. Hafnaoui; D. Remond; M. Nowicki; L.D. Chaffaut; M.J. Amiot and E. Reboul (2018). Nutritional Composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients, 10, 1668-1680.

Mavromichalis, L. (2013). El papel de los antioxidantes en la nutrición porcina. Suis (102):6-8.

Mousavi, S. H. and A. Mira Aghaadeh (2007). Study on replacing cotton seed meal and barley by chickpea processed by-product on performance and carcass characteristics in Iranian Kizil and Makui male lambs. Proceeding of second Congress on Animal and Aquatic Sciences, Karaj, Iran, p.921-924.

Mudgal, V.; M. K. Mehta and A. S. Rane (2018). Lentil straw (Lens culinaris): An alternative and nutritious feed resource for kids. Animal Nutrition, 4: 417-421.

Mustafa, A. F.; P. A. Thacker; J.J. McKinnon; D. A. Christensen and V. J. Racz (2000). Nutritional value of feed grade chickpeas for ruminants and pigs. Journal of the Science of Food and Agriculture, 80:1581-1588.

Nalle, C.L. (2009). Nutritional evaluation of grain legumes for poultry. PhD Thesis, Massey University, Palmerston North, New Zealand.

Ndalwise, C.M. (2013). Determination of the optimal level of inclusion of chickpea (Cicer Arietinum L.) seed waste in the diets of growing rabbits. M.Sc. Thesis, sokoine university of agriculture, Morogoro, Tanzania. 144P.

Pérez, J.M.; T. Lebas; T. Gidenne; L. Mertens; G. Xiccato; R. Parigi-Bini; Z.A. Dalle; M.E. Cosssu; A. Carazzolo; M.J. Villamidse; R. Carabaño; M.J. Fraga; M.A. Ramos; C. Cervera; E. Blas; J. Fernandez; C.L. Falcancote; A. Bengala and J. Freire (1995). European reference method for In vivo determination of diet digestability in rabbits. World Rabbit Science, 3(1): 41-43.

SAS; (2004). User's guide. Statistic. SAS Inst. Cary, N.C. Relleigh.

Schneider, B.H. and W.P. Flatt (1975). The Evaluation of Feed Through Digestibility Experiments. University of Georgia Press Athens, Georgia, USA.
This study aimed to investigate the metabolic absorption and carcass characteristics of heavy white turkeys fed lentil screenings compared to soybean screenings in the second trimester of pregnancy. The experimental design comprised four groups: Group 1 was fed whole lentil, Group 2 was fed soybean screenings, and Groups 3 and 4 were fed lentil screenings mixed with whole lentil in a 30% and 15% replacement, respectively. The results showed that mixed lentil screenings significantly increased digestion of crude protein, crude fat, and crude fiber compared to soybean screenings. Furthermore, the mixed diet significantly increased performance parameters. However, no significant differences were observed in carcass and meat characteristics. In conclusion, lentil screenings can be used as a suitable replacement for soybean screenings in turkey diets, particularly in the second trimester of pregnancy.
يمكن استخدام بروتينات عينة الخشخاش بالمطبوخات حتى مستوى احتيال 30% من بروتين كبد فول الصويا بدون أي تأثيرات سلبية على اداء النمو وقياسات احصائية لحالات النمو والكبد واليومية لدى الأرانب النامية.