Algebra in superextensions of groups, II: cancelativity and centers

Taras Banakh and Volodymyr Gavrylkiv

Communicated by M. Ya. Komarnytskyi

ABSTRACT. Given a countable group X we study the algebraic structure of its superextension $\lambda(X)$. This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation

$$A \circ B = \{C \subset X : \{x \in X : x^{-1}C \in B\} \in A\}$$

that extends the group operation of X. We show that the subsemigroup $\lambda^0(X)$ of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of $\lambda(X)$ coincides with the subsemigroup $\lambda^*(X)$ of all maximal linked systems with finite support. This result is applied to show that the algebraic center of $\lambda(X)$ coincides with the algebraic center of X provided X is countably infinite. On the other hand, for finite groups X of order $3 \leq |X| \leq 5$ the algebraic center of $\lambda(X)$ is strictly larger than the algebraic center of X.

Introduction

After the topological proof (see [HS, p.102], [H2]) of Hindman theorem [H1], topological methods become a standard tool in the modern combinatorics of numbers, see [HS], [P]. The crucial point is that any semigroup operation $*$ defined on any discrete space X can be extended to

2000 Mathematics Subject Classification: 20M99, 54B20.

Key words and phrases: Superextension, right-topological semigroup, cancelable element, topological center, algebraic center.
a right-topological semigroup operation on $\beta(X)$, the Stone-Čech compactification of X. The extension of the operation from X to $\beta(X)$ can be defined by the simple formula:

$$U \ast V = \left\{ \bigcup_{x \in U} x V_x : U \in \mathcal{U}, \{V_x\}_{x \in U} \subset \mathcal{V} \right\}, \quad (1)$$

where U, V are ultrafilters on X. Endowed with the so-extended operation, the Stone-Čech compactification $\beta(X)$ becomes a compact right-topological semigroup. The algebraic properties of this semigroup (for example, the existence of idempotents or minimal left ideals) have important consequences in combinatorics of numbers, see [HS], [P].

The Stone-Čech compactification $\beta(X)$ of X is the subspace of the double power-set $\mathcal{P}(\mathcal{P}(X))$, which is a complete lattice with respect to the operations of union and intersection. In $[G_2]$ it was observed that the semigroup operation extends not only to $\beta(X)$ but also to the complete sublattice $G(X)$ of $\mathcal{P}(\mathcal{P}(X))$ generated by $\beta(X)$. This complete sublattice consists of all inclusion hyperspaces over X.

By definition, a family \mathcal{F} of non-empty subsets of a discrete space X is called an inclusion hyperspace if \mathcal{F} is monotone in the sense that a subset $A \subset X$ belongs to \mathcal{F} provided A contains some set $B \in \mathcal{F}$. On the set $G(X)$ there is an important transversality operation assigning to each inclusion hyperspace $\mathcal{F} \in G(X)$ the inclusion hyperspace

$$\mathcal{F}^\perp = \{A \subset X : \forall F \in \mathcal{F} (A \cap F \neq \emptyset)\}.$$

This operation is involutive in the sense that $(\mathcal{F}^\perp)^\perp = \mathcal{F}$.

It is known that the family $G(X)$ of inclusion hyperspaces on X is closed in the double power-set $\mathcal{P}(\mathcal{P}(X)) = \{0, 1\}^{\mathcal{P}(X)}$ endowed with the natural product topology.

The extension of a binary operation $*$ from X to $G(X)$ can be defined in the same way as for ultrafilters, i.e., by the formula (1) applied to any two inclusion hyperspaces $\mathcal{U}, \mathcal{V} \in G(X)$. In $[G_2]$ it was shown that for an associative binary operation $*$ on X the space $G(X)$ endowed with the extended operation becomes a compact right-topological semigroup. Besides the Stone-Čech extension, the semigroup $G(X)$ contains many important spaces as closed subsemigroups. In particular, the space

$$\lambda(X) = \{\mathcal{F} \in G(X) : \mathcal{F} = \mathcal{F}^\perp\}$$

of maximal linked systems on X is a closed subsemigroup of $G(X)$. The space $\lambda(X)$ is well-known in General and Categorial Topology as the superextension of X, see [vM], [TZ]. Endowed with the extended binary
operation, the superextension $\lambda(X)$ of a semigroup X is a supercompact right-topological semigroup containing $\beta(X)$ as a subsemigroup.

The thorough study of algebraic properties of the superextensions of groups was started in \cite{BGN} where we described right and left zeros in $\lambda(X)$ and detected all groups X with commutative superextension $\lambda(X)$ (those are groups of cardinality $|X| \leq 4$). In \cite{BGN} we also described the structure of the semigroups $\lambda(X)$ for all finite groups X of cardinality $|X| \leq 5$. In \cite{BG3} we shall describe the structure of minimal left ideals of the superextensions of groups. In this paper we concentrate at cancellativity and centers (topological and algebraic) in the superextensions $\lambda(X)$ of groups X. Since $\lambda(X)$ is an intermediate subsemigroup between $\beta(X)$ and $G(X)$ the obtained results for $\lambda(X)$ in a sense are intermediate between those for $\beta(X)$ and $G(X)$.

In section 2 we describe cancelable elements of $\lambda(X)$. In particular, we show that for a finite group X all left or right cancelable elements of $\lambda(X)$ are principal ultrafilters. On the other hand, if a group X is countable, then the set of right cancelable elements has open dense intersection with the subsemigroup $\lambda^0(X) \subset \lambda(X)$ of free maximal linked systems, see Theorem 2.4. This resembles the situation with the semigroup $\beta(X) \setminus X$ which contains a dense open subset of right cancelable elements (see \cite[8.10]{HS}), and also with the semigroup $G(X)$ whose right cancelable elements form a subset having open dense intersection with the set $G^\circ(X)$ of free inclusion hyperspaces, see \cite{G2}.

The section 3 is devoted to describing the topological center of $\lambda(X)$. By definition, the topological center of a right-topological semigroup S is the set $\Lambda(S)$ of all elements $a \in S$ such that the left shift $l_a : S \to S$, $l_a : x \mapsto a \ast x$, is continuous. By \cite{HS}, for every group X the topological center of the semigroup $\beta(X)$ coincides with X. On the other hand, the topological center of the semigroup $G(X)$ coincides with the subspace $G^\bullet(X)$ of $G(X)$ consisting of inclusion hyperspaces with finite support, see \cite[7.1]{G2}. A similar results holds also for the semigroup $\lambda(X)$: for any at most countable group X the topological center of $\lambda(X)$ coincides with $\lambda^\bullet(X)$, see Theorem 3.4.

The final section 4 is devoted to describing the algebraic center of $\lambda(X)$. We recall that the algebraic center of a semigroup S consists of all elements $s \in S$ that commute with all other elements of S. In Theorem 4.2 we shall prove that for any countable infinite group X the algebraic center of $\lambda(X)$ coincides with the algebraic center of X. It is interesting to note that for any group X the algebraic centers of the semigroups $\beta(X)$ and $G(X)$ also coincide with the center of the group X, see \cite[6.54]{HS} and \cite[6.2]{G2}. In contrast, for finite groups X of cardinality $3 \leq |X| \leq 5$ the algebraic center of $\lambda(X)$ is strictly larger than the
algebraic center of X, see Remark 4.4.

1. Inclusion hyperspaces and superextensions

In this section we recall the necessary definitions and facts.

A family \mathcal{L} of subsets of a set X is called a linked system if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{L}$. Such a linked system \mathcal{L} is maximal linked if \mathcal{L} coincides with any linked system \mathcal{L}' on X that contains \mathcal{L}. Each (ultra)filter on X is a (maximal) linked system. By $\lambda(X)$ we denote the family of all maximal linked systems on X. Since each ultrafilter on X is a maximal linked system, $\lambda(X)$ contains the Stone-Čech extension $\beta(X)$ of X. It is easy to see that each maximal linked system on X is an inclusion hyperspace on X and hence $\lambda(X) \subset G(X)$. Moreover, it can be shown that $\lambda(X) = \{ \mathcal{A} \in G(X) : \mathcal{A} = \mathcal{A}^\perp \}$, see $[G_1]$.

By $[G_1]$ the subspace $\lambda(X)$ is closed in the space $G(X)$ endowed with the topology generated by the sub-base consisting of the sets

$$U^+ = \{ \mathcal{A} \in G(X) : U \in \mathcal{A} \} \text{ and } U^- = \{ \mathcal{A} \in G(X) : U \in \mathcal{A}^\perp \}$$

where U runs over subsets of X. By $[G_1]$ and $[vM]$ the spaces $G(X)$ and $\lambda(X)$ are supercompact in the sense that any their cover by the sub-basic sets contains a two-element subcover. Observe that $U^+ \cap \lambda(X) = U^- \cap \lambda(X)$ and hence the topology on $\lambda(X)$ is generated by the sub-basis consisting of the sets

$$U^\pm = \{ \mathcal{A} \in \lambda(X) : U \in \mathcal{A} \}, \ U \subset X.$$

We say that an inclusion hyperspace $\mathcal{A} \in G(X)$

- has finite support if there is a finite family $\mathcal{F} \subset \mathcal{A}$ of finite subsets of X such that each set $A \in \mathcal{A}$ contains a set $F \in \mathcal{F}$;

- is free if for each $A \in \mathcal{A}$ and each finite subset $F \subset X$ the complement $A \setminus F$ belongs to \mathcal{A}.

By $G^\bullet(X)$ we denote the subspace of $G(X)$ consisting of inclusion hyperspaces with finite support and $G^\circ(X)$ stands for the subset of free inclusion hyperspaces on X. Those two sets induce the subsets

$$\lambda^\bullet(X) = G^\bullet(X) \cap \lambda(X) \text{ and } \lambda^\circ(X) = G^\circ(X) \cap \lambda(X)$$

in the superextension $\lambda(X)$ of X. By $[G_1]$, $\lambda^\bullet(X)$ is an open dense subset of $\lambda(X)$ while $\lambda^\circ(X)$ is closed and nowhere dense in $\lambda(X)$.
Given any semigroup operation \(* : X \times X \to X \) on a set \(X \) we can extend this operation to \(G(X) \) letting

\[
U \ast V = \left\{ \bigcup_{x \in U} x \ast V_x : U, \{V_x\}_{x \in U} \subset V \right\}
\]

for inclusion hyperspaces \(U, V \in G(X) \). Equivalently, the product \(U \ast V \) can be defined as

\[
U \ast V = \{ A \subset X : \{ x \in X : x^{-1}A \in V \} \in U \} \tag{2}
\]

where \(x^{-1}A = \{ z \in X : x \ast z \in A \} \). By \([G_2]\) the so-extended operation turns \(G(X) \) into a right-topological semigroup. The structure of this semigroup was studied in details in \([G_2]\). In this paper we shall concentrate at the study of the algebraic structure of the semigroup \(\lambda(X) \) for a group \(X \).

The formula (2) implies that the product \(U \ast V \) of two maximal linked systems \(U \) and \(V \) is a principal ultrafilter if and only if both \(U \) and \(V \) are principal ultrafilters. So we get the following

Proposition 1.1. For any group \(X \) the set \(\lambda(X) \setminus X \) is a two-sided ideal in \(\lambda(X) \).

2. Cancelable elements of \(\lambda(X) \)

In this section, given a group \(X \) we shall detect cancelable elements of \(\lambda(X) \).

We recall that an element \(x \) of a semigroup \(S \) is right (resp. left) cancelable if for every \(a, b \in X \) the equation \(x \ast a = b \) (resp. \(a \ast x = b \)) has at most one solution \(x \in S \). This is equivalent to saying that the right (resp. left) shift \(r_a : S \to S, r_a : x \mapsto x \ast a, \) (resp. \(l_a : S \to S, l_a : x \mapsto a \ast x \)) is injective.

Proposition 2.1. Let \(G \) be a finite group. If \(C \in \lambda(G) \) is left or right cancelable, then \(C \) is a principal ultrafilter.

Proof. Assume that some maximal linked system \(a \in \lambda(G) \setminus G \) is left cancelable. This means that the left shift \(l_a : \lambda(G) \to \lambda(G), l_a : x \mapsto a \circ x, \) is injective. By Proposition 1.1, the set \(\lambda(G) \setminus G \) is an ideal in \(\lambda(G) \). Consequently, \(l_a(\lambda(G)) = a \ast \lambda(G) \subset \lambda(G) \setminus G \). Since \(\lambda(G) \) is finite, \(l_a \) cannot be injective. \(\square \)

Thus the semigroups \(\lambda(X) \) can have non-trivial cancelable elements only for infinite groups \(X \). According to [HS, 8.11] an ultrafilter \(U \in \beta(X) \)
is right cancelable if and only if the orbit \(\{xU : x \in X\} \) is discrete in \(\beta(X) \) if and only if for every \(x \in X \) there is a set \(U_x \in \mathcal{U} \) such that the indexed family \(\{x \ast U_x : x \in X\} \) is disjoint.

This characterization admits a partial generalization to the semigroup \(G(X) \). According to [G2] if an inclusion hyperspace \(A \in G(X) \) is right cancelable in \(G(X) \), then its orbit \(\{x \ast A : x \in X\} \) is discrete in \(G(X) \).

On the other hand, \(\mathcal{A} \) is cancelable provided for every \(x \in X \) there is a set \(A_x \in \mathcal{A} \cap \mathcal{A}^\perp \) such that the indexed family \(\{x \ast A_x : x \in X\} \) is disjoint. The latter means that \(x \ast A_x \cap y \ast A_y = \emptyset \) for any distinct points \(x, y \in X \). This result on right cancelable elements in \(G(X) \) will help us to prove a similar result on the right cancelable elements in the semigroup \(\lambda(X) \).

Theorem 2.2. Let \(X \) be a group and \(\mathcal{L} \in \lambda(X) \) be a maximal linked system on \(X \).

1. If \(\mathcal{L} \) is right cancelable in \(\lambda(X) \), then the orbit \(\{x \mathcal{L} : x \in X\} \) is discrete in \(\lambda(X) \) and \(x \mathcal{L} \neq y \mathcal{L} \) for all \(x, y \in X \).

2. \(\mathcal{L} \) is right cancelable in \(\lambda(X) \) provided for every \(x \in X \) there is a set \(S_x \in \mathcal{L} \) such that the family \(\{x \ast S_x : x \in X\} \) is disjoint.

Proof. 1. First note that the right cancelativity of a maximal linked system \(\mathcal{L} \in \lambda(X) \) is equivalent to the injectivity of the map \(\mu_X \circ \lambda \bar{R}_\mathcal{L} : \lambda(X) \to \lambda(X) \), see [G2]. We recall that \(\mu_X : \lambda^2(X) \to \lambda(X) \) is the multiplication of the monad \(\lambda = (\lambda, \mu, \eta) \) while \(\bar{R}_\mathcal{L} : \beta(X) \to \lambda(X) \) is the Stone-Čech extension of the right shift \(R_\mathcal{L} : X \to \lambda(X) \), \(R_\mathcal{L} : x \mapsto x \ast \mathcal{L} \). The map \(\bar{R}_\mathcal{L} \) certainly is not injective if \(R_\mathcal{L} \) is not an embedding, which is equivalent to the discreteness of the indexed set \(\{x \ast \mathcal{L} : x \in X\} \) in \(\lambda(X) \).

2. Assume that \(\{S_x\}_{x \in X} \subset \mathcal{L} \) is a family such that \(\{x \ast S_x : x \in X\} \) is disjoint. To prove that \(\mathcal{L} \) is right cancelable, take two maximal linked systems \(\mathcal{A}, \mathcal{B} \in \lambda(X) \) with \(\mathcal{A} \circ \mathcal{L} = \mathcal{B} \circ \mathcal{L} \). It is sufficient to show that \(\mathcal{A} \subset \mathcal{B} \). Take any set \(A \in \mathcal{A} \) and observe that the set \(\bigcup_{a \in A} aS_a \) belongs to \(\mathcal{A} \circ \mathcal{L} = \mathcal{B} \circ \mathcal{L} \). Consequently, there is a set \(B \in \mathcal{B} \) and a family of sets \(\{L_b\}_{b \in B} \subset \mathcal{L} \) such that

\[
\bigcup_{b \in B} bL_b \subset \bigcup_{a \in A} aS_a.
\]

It follows from \(S_b \in \mathcal{L} \) that \(L_b \cap S_b \) is not empty for every \(b \in B \).

Since the sets \(aS_a \) and \(bS_b \) are disjoint for different \(a, b \in X \), the inclusion

\[
\bigcup_{b \in B} b(L_b \cap S_b) \subset \bigcup_{b \in B} bL_b \subset \bigcup_{a \in A} aS_a
\]

implies \(B \subset A \) and hence \(A \in \mathcal{B} \).

\(\square \)
It is interesting to remark that the first item gives a necessary but not sufficient condition of the right cancelability in $\lambda(X)$ (in contrast to the situation in $\beta(X)$).

Example 2.3. By [BGN, 6.3], the superextension $\lambda(C_4)$ of the 4-element cyclic group C_4 is isomorphic to the direct product $C_4 \times C_1^1$, where $C_1^1 = C_2 \cup \{e\}$ is the 2-element cyclic group with attached external unit e (the latter means that $ex = xe = x$ for all $x \in C_2^1$). Consequently, each element of the ideal $\lambda(C_4) \setminus C_4$ is not cancelative but has the discrete 4-element orbit $\{xL : x \in C_4\}$. In fact all the (left or right) cancelable elements of $\lambda(C_4)$ are principal ultrafilters, see Proposition 2.1.

According to [HS, 8.10], for each infinite group the semigroup $\beta(X)$ contains many right cancelable elements. In fact, the set of right cancelable elements contains an open dense subset of $\beta(X) \setminus X$. A similar result holds also for the semigroup $G(X)$ over a countable group X: the set of right cancelable elements of $G(X)$ contains an open dense subset of the subsemigroup $G^0(X)$. Theorem 2.2 will help us to prove a similar result for the semigroup $\lambda(X)$.

Theorem 2.4. For each countable group X the subsemigroup $\lambda^0(X)$ of free maximal linked systems contains an open dense subset consisting of right cancelable elements in the semigroup $\lambda(X)$.

Proof. Let $X = \{x_n : n \in \omega\}$ be an injective enumeration of the countable group X. Given a free maximal linked system $\mathcal{L} \in \lambda^0(X)$ and a neighborhood $O(\mathcal{L})$ of \mathcal{L} in $\lambda^0(X)$, we should find a non-empty open subset of right cancelable elements in $O(\mathcal{L})$. Without loss of generality, the neighborhood $O(\mathcal{L})$ is of basic form:

$$O(\mathcal{L}) = \lambda^0(X) \cap U_0^+ \cap \cdots \cap U_{n-1}^+$$

for some sets U_1, \ldots, U_{n-1} of X. Those sets are infinite because \mathcal{L} is free. We are going to construct an infinite set $C = \{c_n : n \in \omega\} \subset X$ that has infinite intersection with the sets U_i, $i < n$, and such that for any distinct $x, y \in X$ the intersection $xC \cap yC$ is finite. The points c_k, $k \in \omega$, composing the set C will be chosen by induction to satisfy the following conditions:

- $c_k \in U_j$ where $j = k \mod n$;
- c_k does not belong to the finite set

$$F_k = \{z \in X : \exists i, j \leq k \exists l < k \ (x_iz = x_je_l)\}.$$
It is clear that the so-constructed set $C = \{c_k : k \in \omega\}$ has infinite intersection with each set $U_i, i < n$. The choice of the points c_k for $k > j$ implies that $x_i C \cap x_j C \subset \{x_i c_m : m \leq j\}$ is finite.

Now let C be a free maximal linked system on X enlarging the linked system generated by the sets C and U_0, \ldots, U_{n-1}. It is clear that $C \in O(\mathcal{L})$. Consider the open neighborhood $$O(C) = O(\mathcal{L}) \cap C^\pm$$ of C in $\lambda^o(X)$.

We claim that each maximal linked system $A \in O(C)$ is right cancelable in $\lambda(X)$. This will follow from Proposition 2.2 as soon as we construct a family of sets $\{A_i\}_{i \in \omega} \in A$ such that $x_i A_i \cap x_j A_j = \emptyset$ for any numbers $i < j$. Observe that the sets $$A_i = C \setminus \{x_i^{-1} x_k c_m : k, m \leq i\}, \quad i \in \omega,$$ have the required property. \hfill \Box

By [HS, 8.34], the semigroup $\beta(\mathbb{Z}) \setminus \mathbb{Z}$ contains an open dense subset consisting of free ultrafilters that are left cancelable in $\beta(\mathbb{Z})$. On the other hand, by [G2, 8.1], the only left cancelable elements of the semigroup $G(\mathbb{Z})$ are principal ultrafilters.

Problem 2.5. Is some free maximal linked system left cancelable in the semigroup $\lambda(\mathbb{Z})$?

3. The topological center of $\lambda(X)$

In this section we describe the topological center of the superextension $\lambda(X)$ of a group X. By definition, the **topological center** of a right-topological semigroup S is the set $\Lambda(S)$ of all elements $a \in S$ such that the left shift $l_a : S \to S$, $l_a : x \mapsto a \ast x$, is continuous.

By [HS, 4.24, 6.54], for every group X the topological center of the semigroup $\beta(X)$ coincides with X. On the other hand, the topological center of the semigroup $G(X)$ coincides with $G^\bullet(X)$, see [G2, 7.1]. A similar result holds also for the semigroup $\lambda(X)$: the topological center of $\lambda(X)$ coincides with $\lambda^\bullet(X)$ (at least for countable groups X).

To prove this result we shall use so-called detecting ultrafilters.

Definition 3.1. A free ultrafilter D on a group X is called **detecting** if there is an indexed family of sets $\{D_x : x \in X\} \subset D$ such that for any $A \subset X$
1. the set \(U_A = \bigcup_{x \in A} xD_x \) has the property: \(U_A \cup yU_A \neq X \) for all \(y \in X \);

2. for every \(D \in \mathcal{D} \) the set \(\{x \in X : xD \subset U_A\} \) is finite and lies in \(A \).

Lemma 3.2. On each countable group \(X \) there is a detecting ultrafilter.

Proof. Let \(X = \{x_n : n \in \omega\} \) be an injective enumeration of the group \(X \) such that \(x_0 \) is the neutral element of \(X \). For every \(n \in \omega \) let \(F_n = \{x_i, x_i^{-1} : i \leq n\} \). Let \(a_0 = x_0 \) and inductively, for every \(n \in \omega \) choose an element \(a_n \in X \) so that

\[
a_n \notin F_n^{-1}F_nA_{\leq n} \quad \text{where} \quad A_{\leq n} = \{a_i : i \leq n\}.
\]

For every \(n \in \omega \) let \(A_{\geq n} = \{a_i : i \geq n\} \). Let also \(D_0 = \{a_2i : i \in \omega\} \).

Let us show that for any distinct numbers \(n, m \) the intersection \(x_nA_{\geq n} \cap x_mA_{\geq m} \) is empty. Otherwise there would exist two numbers \(i \geq n \) and \(j \geq m \) such that \(x_na_i = x_m a_j \). It follows from \(x_n \neq x_m \) that \(i \neq j \). We lose no generality assuming that \(j > i \). Then \(x_n a_i = x_m a_j \) implies that

\[
a_j = x_m^{-1}x_n a_i \in F_j^{-1}F_j A_{< j},
\]

which contradicts the choice of \(a_j \).

Let \(\mathcal{D} \in \beta(X) \) be any free ultrafilter such that \(D_0 \in \mathcal{D} \) and \(\mathcal{D} \) is not a P-point. To get such an ultrafilter, take \(\mathcal{D} \) to be a cluster point of any countable subset of \(D_0^+ \cap \beta(X) \setminus X \). Using the fact that \(\mathcal{D} \) fails to be a P-point, we can take a decreasing sequence of sets \(\{V_n : n \in \omega\} \subset \mathcal{D} \) having no pseudointersection in \(\mathcal{D} \). The latter means that for every \(D \in \mathcal{D} \) the almost inclusion \(D \subset V_n \) (which means that \(D \setminus V_n \) is finite) holds only for finitely many numbers \(n \).

For every \(n \in \omega \) let \(D_n = V_n \cap A_{\geq n} \cap D_0 \). We claim that the ultrafilter \(\mathcal{D} \) and the family \((D_n)_{n \in \omega} \) satisfy the requirements of Definition 3.1.

Take any subset \(A \subset \omega \) and consider the set \(U_A = \bigcup_{n \in A} x_n D_n \).

First we verify that \(U_A \cup yU_A \neq X \) for each \(y \in X \). Find \(m \in \omega \) with \(y^{-1} = x_m \) and take any odd number \(k > m \). We claim that \(a_k \notin U_A \cup yU_A \). Otherwise, \(a_k \in x_mD_n \cup x_m^{-1}x_n D_n \) for some \(n \in A \). It follows that \(a_k = x_n a_i \) or \(a_k = x_m^{-1}x_n a_i \) for some even \(i \geq n \). If \(k > i \), then both the equalities are forbidden by the choice of \(a_k \notin F_k^{-1}F_k A_{\leq k} \supset \{x_n a_i, x_m^{-1}x_n a_i\} \). If \(k < i \), then those equalities are forbbiden by the choice of

\[
a_i \notin F_i^{-1}F_i A_{< i} \supset \{x_n^{-1}a_k, x_n^{-1}x_m^{-1}a_k\}.
\]

Therefore, \(U_A \cup yU_A \neq X \).

Next, given arbitrary \(D \in \mathcal{D} \) we show that the set \(S = \{n \in \omega : x_n D \subset U_A\} \) is finite and lies in \(A \). First we show that \(S \subset A \). Assuming
the converse, we could find \(n \in S \setminus A \). Then \(x_n(D \cap D_n) \subset x_nD \subset U_A = \bigcup_{m \in A} x_mD_m \), which is not possible because the set \(x_nD_n \) misses the union \(U_A \). Thus \(S \subset A \). Next, we show that \(S \) is finite. By the choice of the sequence \((V_n)\), the set \(F = \{ n \in \omega : D \cap D_0 \not\subseteq V_n \} \) is finite. We claim that \(S \subset F \). Indeed, take any \(m \in S \). It follows from \(x_mD \subset U_A = \bigcup_{n \in A} x_mD_n \) and \(x_mA_{\geq m} \cap \bigcap_{n \neq m} x_mD_n = \emptyset \) that

\[
x_m(D \cap D_0) \subset^* x_m(D \cap A_{\geq m}) \subset x_mD_m \subset x_mV_m
\]

and hence \(m \in F \). \(\square \)

Theorem 3.3. Let \(X \) be a group admitting a detecting ultrafilter \(D \). For a maximal linked system \(A \in \lambda(X) \) the following conditions are equivalent:

1. the left shift \(L_A : G(X) \to G(X) \), \(L_A : \mathcal{F} \mapsto A \circ \mathcal{F} \), is continuous;
2. the left shift \(l_A : \lambda(X) \to \lambda(X) \), \(l_A : \mathcal{L} \mapsto A \circ \mathcal{L} \), is continuous;
3. the left shift \(l_A : \lambda(X) \to \lambda(X) \) is continuous at the detecting ultrafilter \(D \);
4. \(A \in \lambda^*(X) \).

Proof. The implications \((1) \Rightarrow (2) \Rightarrow (3)\) are trivial while \((4) \Rightarrow (1)\) follows from Theorem 7.1 [G2] asserting that the topological center of the semigroup \(G(X) \) coincides with \(G^*(X) \). To prove that \((3) \Rightarrow (4)\), assume that the left shift \(l_A : \lambda(X) \to \lambda(X) \) is continuous at the detecting ultrafilter \(D \).

We need to show that \(A \in \lambda^*(G) \). By Theorem 8.1 of [G1], it suffices to check that each set \(A \in \mathcal{A} \) contains a finite set \(F \in \mathcal{A} \).

Since \(D \) is a detecting ultrafilter, there is a family of sets \(\{ D_x : x \in X \} \subset D \) such that for every \(D \in D \) the set \(\{ x \in X : xD \subset \bigcup_{x \in A} xD_x \} \) is finite and lies in \(A \).

Consider the set \(U_A = \bigcup_{x \in X} xD_x \) belonging to the product \(A \circ D \). The continuity of the left shift \(l_A : \lambda(X) \to \lambda(X) \) at \(D \) yields us a set \(D \in D \), such that \(l_A(D^\pm) \subset U_A^\pm \). This means that \(U_A \in A \circ \mathcal{L} \) for any maximal linked system \(\mathcal{L} \in \lambda(X) \) that contains \(D \).

The choice of \(D \) and \(\{ D_x \}_{x \in X} \) guarantees that

\[
S = \{ x \in X : xD \subset U_A \}
\]

is a finite subset lying in \(A \). We claim that there is a maximal linked system \(\tilde{\mathcal{L}} \in \lambda(X) \) such that \(D \in \tilde{\mathcal{L}} \) and \(x^{-1}U_A \notin \tilde{\mathcal{L}} \) for all \(x \notin S \). Such a system \(\tilde{\mathcal{L}} \) can be constructed as an enlargement of the linked system

\[
\mathcal{L} = \{ D, X \setminus x^{-1}U_A : x \in X \setminus S \}.
\]
The latter system is linked because of the definition of $S = \{ x \in X : D \subset x^{-1}U_A \}$ and the property (1) of the family $(D_x)_{x \in X}$ from Definition 3.1.

Take any maximal linked system \tilde{L} containing L and observe that $D \in L$ and

$$\{ x \in X : x^{-1}U_A \in \tilde{L} \} = \{ x \in X : x^{-1}U_A \in L \} = S \subset A.$$

Taking into account that $D \in L$, we conclude that $A \circ \mathcal{L} = l_A(\mathcal{L}) \in U_A^{\pm}$ and hence the set $S = \{ x \in X : x^{-1}U_A \in L \} \in \mathcal{A}$. This set S is the required finite subset of A belonging to \mathcal{A}. \qed

Combining Theorem 3.3 with Lemma 3.2 we obtain the main result of this section.

Corollary 3.4. For any countable group X the topological center of the semigroup $\lambda(X)$ coincides with $\lambda^*(X)$.

Question 3.5. Is Theorem 3.4 true for a group X of arbitrary cardinality?

4. The algebraic center of $\lambda(X)$

This section is devoted to studying the algebraic center of $\lambda(X)$. We recall that the *algebraic center* of a semigroup S consists of all elements $s \in S$ that commute with all other elements of S. Such elements s are called *central* in S.

Lemma 4.1. Let X be a group with the neutral element e. A maximal linked system $\mathcal{A} \in \lambda(X)$ is not central in $\lambda(X)$ provided there are sets $S, T \subset X$ such that

1. $|T| = 3$;
2. for each $A \in \mathcal{A}$ we get $A \cap S \in \mathcal{A}$ and $|A \cap S| \geq 2$;
3. there is a finite set $B \in \mathcal{A}$ such that $BS^{-1} \cap T^{-1}T \subset \{ e \}$.

Proof. We claim that \mathcal{A} does not commute with the maximal linked system $T = \{ A \subset X : |A \cap T| \geq 2 \}$. By (3), the maximal linked system \mathcal{A} contains a finite set $B \in \mathcal{A}$ such that $BS^{-1} \cap TT^{-1} \subset \{ e \}$. By (2), we can assume that $B \subset S$ and B is minimal in the sense that each $B' \subset B$ with $B' \in \mathcal{A}$ is equal to B. By (2), $|B| \geq 2$. Choose a family $\{ T_b \}_{b \in B}$ of 2-element subsets of T such that $\bigcup_{b \in B} T_b = T$. Such a choice is possible because $|B| \geq 2$. The union $\bigcup_{b \in B} bT_b$ belongs to $A \circ T = T \circ A$ and hence we can find a subset $D \in T$ and a family $\{ A_d \}_{d \in D} \subset A$ with...
\[\bigcup_{d \in D} dA_d \subset \bigcup_{b \in B} bT_b. \]
By (2), we can assume that each \(A_d \subset S \). Replacing \(D \) by a smaller set, if necessary, we can assume that \(D \subset T \) and \(|D| = 2 \). We claim that \(A_d = B \) for all \(d \in D \) and \(T_b = D \) for all \(b \in B \).

Indeed, take any \(d \in D \) and any \(a \in A_d \). Since \(da \in \bigcup_{x \in D} xA_x \subset \bigcup_{b \in B} bT_b \), there are \(b \in B \) and \(t \in T_b \) with \(da = bt \). Then \(T^{-1}T \ni t^{-1}d = ba^{-1} \in BA \cup \subset BS^{-1} \). Taking into account that \(T^{-1}T \cap BS^{-1} \subset \{e\} \), we conclude that \(t^{-1}d = ba^{-1} \) is the neutral element of \(X \). Consequently, \(a = b \in B \) and \(d = t \in T_b \). Since \(a \in A_d \) was arbitrary, we get \(A \ni A_d \subset B \). The minimality of \(B \in A \) implies that \(A_d = B \). It follows from \(d = t \in T_b \) for \(d \in D \) that \(D \subset T_b \). Since \(|D| = |T_b| = 2 \), we get \(D = T_b \) for every \(b \in B = A_d \). Consequently, \(D = \bigcup_{b \in B} T_b = T \) which contradictions (1). □

By [HS, 6.54], for every group \(X \) the algebraic center of the semigroups \(\beta(X) \) coincides with the center of the group \(X \). Consequently, the semigroup \(\beta(X) \setminus X \) contains no central elements. A similar result holds also for the semigroup \(\lambda(X) \).

Theorem 4.2. For any countable infinite group \(X \) the algebraic center of \(\lambda(X) \) coincides with the algebraic center of \(X \).

Proof. It is clear that all central elements of \(X \) are central in \(\lambda(X) \). Now assume that a maximal linked system \(C \in \lambda(X) \) is a central element of the semigroup \(\lambda(X) \). Observe that the left shift \(l_C : \lambda(X) \to \lambda(X) \), \(l_C : \mathcal{X} \mapsto C \circ \mathcal{X} \), is continuous because it coincides with the right shift \(r_C : \lambda(X) \to \lambda(X) \), \(r_C : \mathcal{X} \mapsto \mathcal{X} \circ C \). Consequently, \(C \) belongs to the topological center of \(\lambda(X) \). Applying Theorem 3.4, we conclude that \(C \in \lambda^\bullet(X) \). We claim that \(C \) is a principal ultrafilter.

Assuming the converse, consider the family \(C_0 \) of minimal finite subsets in \(C \). Since \(C \in \lambda^\bullet(X) \), the family \(C_0 \) is finite and hence has finite union \(S = \bigcup C_0 \). Take any set \(B \in C_0 \) and observe that \(|B| \geq 2 \) (because \(C \) is not a principal ultrafilter).

Since the group \(X \) is infinite, we can choose a 3-element subset \(T \subset X \) such that \(T^{-1}T \cap BS^{-1} \subset \{e\} \). Now we see that the maximal linked system \(C \) satisfies the conditions of Lemma 4.1 and hence is not central in \(\lambda(X) \), which is a contradiction. □

We do not know if Theorem 4.2 is true for any infinite group \(X \).

Question 4.3. Let \(X \) be an infinite group. Does the algebraic center of \(\lambda(X) \) coincides with the algebraic center of \(X \)?

Remark 4.4. Theorem 4.2 certainly is not true for finite groups. According to [BGN, §6], for any group \(X \) of cardinality \(3 \leq |X| \leq 5 \) the
semigroup $\lambda(X)$ contains a central element, which is not a principal ultrafilter.

Problem 4.5. Characterize (finite) abelian groups X whose superextensions $\lambda(X)$ have central elements distinct from principal ultrafilters. Have all such groups X cardinality $|X| \leq 5$?

It is interesting to remark that the semigroup $\lambda(X)$ contains many non-principal maximal linked systems that commute with all ultrafilters.

Proposition 4.6. Let X be a group and $Y, Z \subset X$ be non-empty subsets such that $yz = zy$ for all $y \in Y$, $z \in Z$. Then for any $\mathcal{L} \in \lambda^*(Y) \subset \lambda^*(X)$ and $\mathcal{U} \in \beta(Z) \subset \beta(X)$ we get $\mathcal{L} \circ \mathcal{U} = \mathcal{U} \circ \mathcal{L}$.

Proof. It is sufficient to prove that $\mathcal{L} \circ \mathcal{U} \subset \mathcal{U} \circ \mathcal{L}$. Let $\bigcup_{x \in L} x^* U_x \in \mathcal{L} \circ \mathcal{U}$. Without loss of generality we may assume that $L = \{x_1, \ldots, x_n\}$ is finite, $L \subset Y$ and $U_{x_i} \subset Z$. Denote $V = U_{x_1} \cap \ldots \cap U_{x_n} \in \mathcal{U}$. Then

$$\bigcup_{x \in L} x^* U_x = \bigcup_{x \in L} U_x^* x \supset V^* L \in \mathcal{U} \circ \mathcal{L}.$$

It follows that $\bigcup_{x \in L} x^* U_x \in \mathcal{U} \circ \mathcal{L}$ and the proof is complete. ~

References

[BGN] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, *Algebra in superextensions of groups, I: zeros and commutativity* // Algebra Discrete Math., Number 3 (2008), 1–29.

[BG3] T. Banakh, V. Gavrylkiv, *Algebra in the superxtensions of groups, III: minimal left ideals* // Mat. Stud. 31:2 (2009).

[G1] V. Gavrylkiv, *The spaces of inclusion hyperspaces over noncompact spaces* // Mat. Stud. 28:1 (2007), 92–110.

[G2] V. Gavrylkiv, *Right-topological semigroup operations on inclusion hyperspaces* // Mat. Stud. 29:1 (2008), 18–34.

[H1] N. Hindman, *Finite sums from sequences within cells of partition of \mathbb{N}* // J. Combin. Theory Ser. A 17 (1974), 1–11.

[H2] N. Hindman, *Ultrafilters and combinatorial number theory* // Lecture Notes in Math. 751 (1979), 49–184.

[HS] N. Hindman, D. Strauss, *Algebra in the Stone-Čech compactification*, de Gruyter, Berlin, New York, 1998.

[TZ] A. Teleiko, M. Zarichnyi. *Categorical Topology of Compact Hausdorff Spaces*, VNTL, Lviv, 1999.

[P] I. Protasov, *Combinatorics of Numbers*, VNTL, Lviv, 1997.

[vM] J. van Mill, *Supercompactness and Wallman spaces*, Math Centre Tracts. 85. Amsterdam, Math. Centrum., 1977.
CONTACT INFORMATION

T. Banakh
Ivan Franko National University of Lviv,
Universytetska 1, 79000, Ukraine
E-Mail: tbanakh@yahoo.com
URL: www.franko.lviv.ua/faculty/mechmat/
Departments/Topology/bancv.html

V. Gavrylkiv
Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
E-Mail: vgavrylkiv@yahoo.com

Received by the editors: 14.02.2008
and in final form 25.08.2008.