Coronavirus Disease 2019 (COVID-19), a life-threatening viral disease, was discovered first in China and quickly spread throughout the world. According to the data from WHO, as of May 2020, more than 6 million people in the world were affected by COVID19, out of these, around 0.35 million people died. Most of the COVID-19 affected cases are asymptomatic, so it is worthy of consideration, to study the transmission of SARS-CoV, MERS-CoV, and SARS-CoV-2 and also the understanding of the pathogen inactivation methods on coronaviruses is very important [6-10]. The infected patients have severe acute respiratory syndrome by SARS CoV-2 and other symptoms including dry cough, fever, headache, dyspnea and pneumonia with an estimated mortality rate.

Coronavirus Disease 2019 (COVID-19), a life-threatening viral disease, was discovered first in Wuhan, China and quickly spread throughout the world [1-5]. According to the data from WHO, as of May 2020, more than 6 million people in the world were affected by COVID19, out of these, around 0.35 million people died. Most of the COVID-19 affected cases are asymptomatic, so it is worthy of consideration, to study the transmission of SARS-CoV, MERS-CoV, and SARS-CoV-2 and also the understanding of the pathogen inactivation methods on coronaviruses is very important [6-10]. SARS-CoV-2 is a positive-sense single-stranded RNA virus belonging to the β genus of the Coronaviridae family. The SARS-CoV-2 virion consists of at least four (4) structural proteins: Spike (S) protein, membrane (M) protein, envelope (E) protein. The target Main protease (Mpro) is responsible for cleavage of the viral poly-peptide into functional units; and RNA-dependent RNA polyme-rase (RdRp).

Currently, there is no confirmed treatment or vaccine prevention strategy against COVID-19. Due to the urgency of the situation, drug repurposing and identification of novel drugs are widely accepted as the fastest way to identify possible effective therapeutic options. Highly pathogenic coronavirus (SARS CoV-2) and its rapid international spread of disease will become a serious public health emergency [10-16]. The infected patients have severe acute respiratory syndrome by SARS CoV-2 and other symptoms including dry cough, fever, headache, dyspnea and pneumonia with an estimated mortality rate.

Acridine derivatives are mainly reported for various pharmacological activities like anticancer [17-22], antimicrobial [23-24], antioxidant [25-26], antimalarial [27], analgesic [28], antileishmanial [29], antinociceptive [30], acetyl cholinesterase inhibitors [31], antitherpes [32], etc. Anthracene, CK0402, and CK0403 belong to 9-anilinoacridine derivatives, which are DNA-intercalating agents. The modification of 9-anilinoacridines with various heterocyclic sub-
stitutions is permitted for the development of Structure Activity Relationship to afford molecular interactions at the receptor level [33-34]. Similarly, chalcone derivatives also reported for various biological activities [35-38] like antimicrobial, anti-cancer, larvicidal, etc. A previous study by our group reported [39-49] for the synthesis of a series of 9-anilinoacridine derivatives, we have designed some chalcone substituted 9-anilinoacridine analogues by docking studies with Schrödinger suite-2019. The research reveals that the recently designed 9-anilinoacridines (1a-z) showed significant hindrance with COVID19 against coronavirus disease.

2. MATERIALS AND METHODS

2.1. Protein Preparation

The 3D crystal structure of the COVID-19 protein called SARS-CoV-2 main protease receptor co-crystallized with 6-(ethylamino) pyridine-3-carbonitrile (PDB ID: 5R82, Resolution: 1.31 Å) was retrieved from the RSCB protein data bank. The epic module of Schrödinger suite 2019-4 was used to prepare the protein with protein preparation wizard. The protein structure is a monomer with similar binding sites and prepared by removing water, refining bond orders and the addition of hydrogens. Missing chain atoms are included by using the Prime module of Schrödinger suite 2019-4. Protein energy minimization was performed using OPLS3 (Optimized Potentials for Liquid Simulations) molecular force field with RMSD of crystallographic heavy atoms kept at 0.30 Å. A grid box was generated to define the centroid of the active site [50].

2.2. Ligand Preparation

The designed ligands (1a-z) were prepared by using the LigPrep module of Schrodinger suite 2019-4. The structures of designed ligands (1a-z) are shown in Fig. (1). 2D structures were converted to 3D structures, as well as energy minimization and optimized for their geometry, desalted and corrected for their chirality. The ionization and tautomeric states were generated between a pH of 6.8 to 7.2 by using the Epik module. The ligands 1a-z were minimized using Optimized Potentials for Liquid Simulations-3(OPLS-3) force field in Schrodinger suite 2019-4 until an RMSD of 2.0Å was achieved. A single low energy ring confirmation per ligand was generated and the optimized ligands were used for docking analysis.

2.3. MOLECULAR DOCKING STUDIES

All the compounds were docked into the catalytic pocket of COVID-19 by using the Glide module of Schrödinger suite 2019-4 in the XP (Extra precision) mode. The binding modes with significant glide G scores were selected [51-52]. The docking results were analysed by the XP visualizer mode of the Glide module. To predict the free energy of binding for the set of ligands in complex with receptor, post docking energy minimization studies were performed using Prime Molecular Mechanics-Generalized Born Surface Area (MM-GB/SA) of Schrödinger 2019-4. The energy for minimized XP docked pose of ligand receptor complex was calculated using the OPLS3 force field and generalized-Born/surface area (GB/SA) continuum VSGB 2.0 solvent model [53-54].

Fig. (1). Structures of Chalcone substituted 9-Anilinoacridines (1a-z).
3. RESULTS AND DISCUSSION

The results are summarized in Table 1. The best affinity modes of all the docked compounds with COVID-19 (PDB id: 5R82) are shown in Fig. (2). Almost all the compounds are docked in the same binding pocket.

The docking results of the compounds exhibited a similar mode of interactions with COVID-19 and the binding pocket of the residues between THR25 and GLN189. The 2D-ligand interaction diagrams of compounds 1x,a,r,s with COVID-19 (pdb id : 5R82) are shown in Figs. (3a-d). From (Fig. 3a), the amino acid residues THR25, THR26, SER46, HIE41, ASN142, HIE164, GLN189 are making polar region and the amino acids LEU27, MET49, MET169 are making hydrophobic interaction with the ligand. The amino acid HIE 41 is making Pi-Pi staking interaction with acridine moiety. The hydroxyl group is interacted by Hydrogen bonding with the water molecule. The Glide scores are mainly increased due to the lipophilic evidence of the aromatic moiety.

Table 1. Docking studies for Chalcone substituted 9-anilinoacridines with COVID-19 (5R82).

Cpd	Glide Score	Lipo Philic EvdW	H Bond	XP Electro	Low MW	XP Penal	Rot. Penalties
1x	-5.94	-4.98	-1.06	-0.38	0	0	0.18
1a	-5.73	-5.86	0	-0.06	0	0	0.15
1r	-5.63	-4.6	0	-2	-0.06	0	0.23
1s	-5.6	-6.08	-0.67	-0.21	-0.01	0	0.22
1t	-5.44	-4.65	-1.14	-0.37	0	0	0.18
1h	-5.31	-6.05	-0.48	-0.17	-0.07	0	0.23
1l	-5.22	-5.33	-0.7	-0.38	-0.02	0	0.22
1e	-5.03	-4.98	-0.41	-0.1	-0.12	0	0.25
1m	-4.97	-4.98	-0.39	-0.04	-0.11	0	0.24
1z	-4.91	-5.71	-0.13	-0.1	0	0	0.18
1f	-4.89	-4.98	-0.39	-0.06	-0.12	0	0.25
1d	-4.87	-4.93	-0.33	-0.09	-0.12	0	0.25
1w	-4.84	-4.92	-0.58	-0.11	0	0	0.2
1q	-4.75	-5.04	-0.22	-0.07	0	0	0.16
1g	-4.72	-5.17	-0.39	-0.1	-0.07	0	0.23
1k	-4.7	-4.83	-0.27	-0.07	-0.11	0	0.19
1y	-4.66	-4.9	-0.24	-0.1	0	0	0.21
1u	-4.65	-5.71	-0.14	-0.17	0	0	0.18
1v	-4.49	-5.49	-0.74	-0.45	0	1	0.18
1i	-4.39	-5.75	-0.17	-0.11	-0.07	0	0.23
1o	-4.35	-5.55	0	0.01	-0.02	0	0.26
1n	-4.32	-5.58	-0.12	-0.07	-0.07	0	0.23
1j	-4.09	-4.51	0	-0.06	-0.11	0	0.19
1p	-3.7	-4.59	-0.35	-0.08	-0.02	0	0.26
Hydroxy chloroquine(Std)	-5.47	-3.15	-1.75	-0.69	-0.38	0.5	0
Fig. (2). Docked poses of all compounds 1a-z with COVID-19 (5R82).

Fig. (3). a. Ligand Interaction of compound 1x with COVID-19 (5R82). b. Ligand Interaction of compound 1a with COVID-19 (5R82). c. Ligand Interaction of compound 1r with COVID-19 (5R82). d. Ligand Interaction of compound 1s with COVID-19 (5R82).
Fig. (4). Best affinity mode of docked compounds with COVID-19 (5R82).
From the docking study, it was revealed that some of the ligands have shown significant G score values from -5.3 Kcal/mol (compound 1h) to -5.94 Kcal/mol (compound 1x). From the binding modes obtained, it was illustrated that the ligands 1x,a,r,s,t,h showed good hydrophobic, hydrogen bonding and other interactions with different residues THR24 to GLN189 with the active pocket which is shown in Fig. (4). The G-score of the significantly active compounds is mainly due to the polar substitutions in the ortho position of the phenyl ring of chalcone. The compounds which contain a hydroxyl group mainly produce hydrogen bonding with amino acids and water molecules present in the receptor. For example, the ligand 1x exhibited hydrogen bonding interaction with water molecule 1407 and 1171 (H-Bond length 5.71 Å), as shown in Fig. (5). The lipophilic factors are mainly contributed towards G-score, (Fig. 6), because of the aromatic features of acridine rings and substituted phenyl ring of chalcone. The G-Score of the compounds 1a-z is diminished due to the rotational penalties and other penalties.

The ADMET properties for the chalcone substituted 9-anilinoacridines 1a-z can be determined through the in-silico method by using the qikprop module of Schrödinger suite 2016-2. The molecular weight of 1a-z is between 414 and 490 g.mol\(^{-1}\). Estimated no. of hydrogen bond donors of the compounds is in the range of 1-3. Estimated no. of hydrogen bonds acceptors of the compounds is in the range of 3.5-5.75. No. of likely metabolites of the compounds is in the range of 1-5. Prediction of binding to human serum albumin for the compounds is in the range of 0.78 - 1.5. No. of violations of Lipinski’s rule of five is 0-1. % Human oral absorption of the compounds is in the range of 92-100%. Thus,
Table 2. *In-silico* ADMET screening for the proposed compounds (1a-z).

Compounds	Mol. Wt.	Dipole	Donor HB	Acceptor HB	QPlog HERG	# metab	QPlog Khsa	Rule of Five	% Human Oral Absorption
1a	479.375	2.234	1	3.5	-8.037	2	1.353	1	100
1b	479.375	2.162	1	3.5	-8.1	1	1.372	1	100
1c	479.375	1.656	1	3.5	-8.059	1	1.371	1	100
1d	414.506	0.418	1	3.5	-7.984	3	1.367	1	100
1e	414.506	0.862	1	3.5	-8.029	3	1.39	1	100
1f	414.506	1.232	1	3.5	-8.035	3	1.391	1	100
1g	430.505	1.917	1	4.25	-8.096	3	1.247	1	100
1h	430.505	1.453	1	4.25	-8.025	2	1.231	1	100
1i	430.505	1.989	1	4.25	-8.032	3	1.235	1	100
1j	418.469	2.728	1	3.5	-8.034	2	1.258	1	100
1k	418.469	2.003	1	3.5	-8.007	1	1.269	1	100
1l	445.476	6.759	1	4.5	-8.097	2	1.166	1	92.83
1m	416.478	1.523	2	4.25	-7.998	2	1.005	1	100
1n	428.532	1.196	1	3.5	-8.109	3	1.511	1	100
1o	444.532	1.889	1	4.25	-8.276	3	1.392	1	100
1p	444.532	2.132	1	4.25	-8.328	3	1.391	1	100
1q	469.369	2.916	1	3.5	-7.87	2	1.454	1	100
1r	432.478	2.39	3	5	-7.863	4	0.78	0	100
1s	446.504	3.43	2	5	-7.904	4	1.021	1	100
1t	495.374	3.394	2	4.25	-7.908	3	1.122	1	100
1u	495.374	0.265	2	4.25	-7.923	3	1.137	1	100
1v	495.374	1.752	2	4.25	-7.922	3	1.137	1	100
1w	460.531	0.66	1	5	-7.989	4	1.252	1	100
1x	485.368	2.231	2	4.25	-7.824	3	1.226	1	100
1y	448.951	2.011	1	3.5	-7.88	3	1.489	1	100
1z	490.557	4.052	1	5.75	-7.779	5	1.214	1	100

Recommended values: 130-725 1 - 12.5 0 - 6 2-20 -2-6.5 0-1.5 max 4 >80% is high <25% is poor.

Abbreviations: MW- Molecular weight of the molecule, Dipole - Dipole moment, donorHB - Estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution, acceptHB - Estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution, QPlogPo/w - Predicted octanol/water partition coefficient, #metab- Number of likely metabolic reactions, QPlogKhsa- Prediction of binding to human serum albumin, Rule Of Five Number of violations of Lipinski’s rule of five, % Human Oral absorption- Predicted human oral absorption on 0 to 100% scale.

Almost all the ADMET properties of the compounds are within the recommended values. The results of the ADMET properties for the compounds 1a-z are shown in Table 2.

Molecular docking was additionally assessed with MM-GBSA free restricting vitality, which is identified with the post scoring approach for COVID-19 (PDB ID: 5R82) target and the values are shown in Table 3. From the results of MM-GB/SA studies, the dG bind values were observed in the range of -27.21 (1m) to -51.73 Kcal/mol (1s) and also dG Coulomb, dG vdw values, dG lipophilic values and the energies were positively contributing towards total binding energy. The accuracy of docking was confirmed by examining the lowest energy poses predicted by the scoring function. The Glide score and MM-GBSA free energy were obtained by the docking of ligands into the coupling pocket were more stable.

CONCLUSION

From the results of the docking study, the chalcone substituted 9-anilinoacridines like 1x,a,r,s demonstrated better arrangement at a dynamic site of the COVID-19 protein. The in-silico structuring strategy embraced in the present investigation helped for recognizing some lead molecules such as 1x,a,r,s and furthermore, may somewhat clarify their useful impact for further determinations like *in vitro* and *in vivo* assessments. Results from the in-silico study revealed that...
Coronaviruses, 2020, Vol. 1, No. 1

Table 3. Binding free energy calculation using the Prime/MM-GBSA approach.

Compd	MMGBSA_dG_Bind	MMGBSA_dG_Bind_Coulomb	MMGBSA_dG_Bind_Covalent	MMGBSA_dG_Bind_Hbond	MMGBSA_dG_Bind_Lipo	MMGBSA_dG_Bind_vdW
1x	-41.7118	-19.8012	14.7544	-1.7465	-13.4021	-36.9959
1a	-46.1948	-1.9833	0.8683	0.2607	-17.0654	-48.8353
1r	-37.7339	-37.9524	17.2256	-1.2058	-10.8127	-35.1776
1s	-51.7347	-37.1426	16.7489	-0.6954	-15.8816	-40.3132
1t	-44.2135	-6.5753	11.0821	0.9335	-17.6131	-48.5997
1h	-34.1986	13.06704	-2.0889	2.3342	-18.1744	-44.5451
1l	-44.3474	-4.8198	8.8167	0.8790	-15.6018	-50.0159
1e	-50.088	9.3217	5.2962	1.1282	-18.5420	-47.8738
1m	-27.2082	-5.2366	-5.4233	0.9976	-9.1627	-32.9882
1z	-54.7570	-14.8355	-0.2392	0.4727	-16.6383	-43.9280
1f	-29.5722	-15.2603	2.72677	0.8809	-9.5453	-33.9117
1d	-30.4468	-3.1099	-3.5493	1.4691	-8.7914	-34.2431
1w	-45.3033	-34.3787	7.7789	0.1408	-12.1577	-34.8301
1q	-40.9959	-16.57348	13.203	0.8163	-16.8225	-45.2267
1g	-41.9792	-7.8755	3.7845	1.0351	-15.6967	-45.0998
1k	-40.5187	2.2724	3.1117	-0.0513	-11.5765	-35.3478
1y	-37.2317	-10.5121	2.2761	-0.8012	-9.3400	-33.9486
1u	-48.3246	-25.7633	10.7455	0.8694	-14.5589	-45.8813
1v	-48.8581	3.4566	2.7829	1.357	-15.8008	-53.5403
1i	-39.0579	-6.8311	6.9959	2.0103	-16.4265	-46.2939
1o	-36.6079	-0.2583	-2.1928	2.48533	-15.7793	-41.6399
1n	-50.4160	-20.5983	16.0928	-0.7659	-18.7972	-44.9817
1j	-30.4440	2.7013	1.6967	1.6586	-12.9087	-38.8273
1p	-42.7862	-3.67424	8.3296	0.9366	-17.5742	-47.1647
Hydroxy Chloroquine (std)	-26.9975	-4.9621	2.1824	0.0011	-9.2894	-33.0622

many of the chalcone substituted 9-anilinoacridines like 1x, a, r, s may be useful against COVID-19 and are probably going to be helpful after further refinement.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The author expresses his sincere gratitude to JSS Academy of Higher Education & Research, Mysuru, and also thank the principal Dr. S.P. Dhanabal, JSS College of Pharmacy, Ooty for the technical support.
REFERENCES

[1] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; http://dx.doi.org/10.1001/jama.2020.1585 PMID: 32031570

[2] Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 2020; http://dx.doi.org/10.1053/j.gastro.2020.02.054

[3] Holshue ML, DeBolt C, Lindquist S, et al. Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.

[4] To KK, Tsang OT, Chik-Yan Yip C, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020; http://dx.doi.org/10.1093/cid/ciaa149 PMID: 32047895

[5] Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.

[6] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.

[7] Huang Q, Herrmann A. Fast assessment of human receptor-binding capability of 2019 novel coronavirus (2019-nCoV). bioRxiv 2020; 930537.

[8] Zhang H, Kang ZJ, Gong HY, et al. The digestive system is a potential route of 2019-nCoV infection: a bioinformatics analysis based on single-cell transcriptomes. Preprint. Posted online January 30, 2020. bioRxiv 2020; 927806.

[9] Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev 2020; 34(2): 75-80.

[10] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-504.

[11] Lan J, Ge J, Yu J, et al. Clinical features of patients infected with 2019-nCoV. J Investig Med 2020; http://dx.doi.org/10.1177/0022176320126377 PMID: 32007145

[12] Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.

[13] Hoffmann M, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020; 2020.01.31.929042.

[14] Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit. Heal 2020; p. 7500.

[15] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20(5): 533-4.

[16] Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.

[17] Kapurina N, Kapurina K, Zhang X, et al. Synthesis and biological activity of stable and potent antitumor agents, aniline nitrogen mustards linked to 9-anilinoacridines via a urea linkage. Bioorg Med Chem 2008; 16(10): 5413-23.

[18] Wakelin LPG, Bu X, Eleutheriou A, Parmar A, Hayek C, Stewart BW. Bisintercalating threading diacridines: relationships between DNA binding, cytotoxicity, and cell cycle arrest. J Med Chem 2003; 46(26): 5790-802.

[19] Bacterikov VA, Chang JY, Lin YW, et al. Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem 2005; 13(23): 6513-20.

[20] Sun YW, Chen KY, Kwon CH, Chen KM. CK0403, a 9-anilinoacridine, is a potent anti-cancer agent in human breast cancer cells. Mol Med Rep 2016; 13(1): 933-8.

[21] Tabarnini O, Ceccherini V, Fravolini A, et al. Design and synthesis of modified quinolones as antitumoral acridones. J Med Chem 1999; 42(12): 2136-44.

[22] Antonini I, Polucci P, Jenkins TC, et al. 1-([9-(aminooalyl)amino]-4-[N-(ω-aminoalkyl)carbamoyl]-9-oxo-9,10-dihydroacridines as intercalating cytotoxic agents: synthesis, DNA binding, and biological evaluation. J Med Chem 1997; 40(23): 3749-55.

[23] Nadaraj V, Selvi ST, Mohan S. Microwave-induced synthesis and anti-microbial activities of 7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Eur J Med Chem 2009; 44(3): 976-80.

[24] Kalirajan R, Muralidharan V, Selvaraj Jubie and Sankar S. Microwave assisted Synthesis, Characterization and Evaluation for their Antimicrobial Activities of Some Novel pyrazole substituted 9-Anilino Acridine Derivatives. Int J Health Allied Sci 2013; 2(2): 81-7.

[25] Kalirajan R, Raffic MH, Sankar S, Jubie S. Docking studies, synthesis, characterization and evaluation of their antioxidant and cytotoxic activities of some novel isoxazole-substituted 9-anilinoacridine derivatives. ScientificWorldJournal 2012; 2012165258.

[26] Anderson MO, Sherrill J, Madrid PB, et al. Parallel synthesis of 9-aminoacridines and their evaluation against chloroquine-resistant Plasmodium falciparum. Bioorg Med Chem 2006; 14(2): 334-43.

[27] 28Sondhi SM, Jhor M, Nirupama S, Sukla R, Rabhur A, Dasidat SG. Synthesis of surfha drug acidine derivatives and their evaluation for anti-anfllmatory, analgesic and anticanccer activity. Indian J Chem 2002; 41B: 2659-66.

[28] Di Giorgio C, Shimi K, Boyer G, Delmas F, Gly JP. Synthesis and antileishmanial activity of 6-mono-substituted and 3,6-di-substituted acridines obtained by acylation of proflavine. Eur J Med Chem 2007; 42(10): 1277-84.

[29] Llama EF, Cammo CD, Capo M, Aradon M. Synthesis and antineociceptive activity of 9-phenyl-oxo or 9-acetyl-oxo derivatives of xanthene, thioxanthene and acridine. Eur J Med Chem 1989; 24: 391-6.

[30] Recanatini M, Cavalli A, Belluti F, et al. SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J Med Chem 2000; 43(10): 2007-18.

[31] Goodell JR, Madhok AA, Hiasa H, Ferguson DM. Synthesis and evaluation of acridine- and acridine-based anti-herpes agents with toposomerase activity. Bioorg Med Chem 2006; 14(16): 5467-80.

[32] Rastogi K, Chatterjee P, Chakraborty MK, et al. Antitumor activity of some new acridine derivatives against human lung cancer cell lines. J Med Chem 2002; 45(20): 4485-93.

[33] http://dx.doi.org/10.1002/j.bmc.2000714 PMID: 12238927
Coronaviruses, 2020, Vol. 1, No. 1

[34] Harrison RJ, Cuesta J, Chessari G, et al. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J Med Chem 2003; 46(21): 4463-76. http://dx.doi.org/10.1021/jm0308693 PMID: 14521409

[35] Kalirajan R, Sivakumar SU, Jubie S, Gowramma B, Suresh B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int J Chem Sci 2009; 1(1): 27-34.

[36] Kalirajan R. Mohammed rafick MH, Sankar S, Gowramma B. Green synthesis of some novel chalcone and isoxazole substituted 9-anilinoacridine derivatives and evaluation of their antimicrobial and larvicial activities. Indian J Chem 2018; 57B: 583-90.

[37] Kalirajan R, Pandiselvi A, Sankar S, Gowramma B. Molecular Docking Studies and In silico ADMET Screening of Some Novel Chalcone Substituted 9-Anilinoacridines as Topoisomerase II Inhibitors. SF J Pharm Anal Chem 2018; 1(1): 1004-9.

[38] Kalirajan R, Jubie S, Gowramma B. Microwave Irradiated Synthesis, Characterization and Evaluation for their Antibacterial and Larvicial Activities of some Novel Chalcone and Isoxazole Substituted 9-Anilino Acrinides. Open J Chem 2015; 1(1): 001-007.

[39] Kalirajan R, Vivek kulshrestha, Sankar S, Jubie S. Docking studies, synthesis, characterization of some novel oxazine substituted 9-anilinoacridine derivatives and evaluation for their anti oxidant and anticancer activities as topo isomerase II inhibitors. Eur J Med Chem 2012; 56: 217-24. http://dx.doi.org/10.1016/j.ejmech.2012.08.025 PMID: 22982526

[40] Kalirajan R. Leela Rathore, Jubie S, Gowramma B, Gomathy S, Sankar S. Microwave assisted synthesis of some novel pyrazole substituted benzimidazoles and evaluation of their biological activities. Indian J Chem 2011; 50B: 1794-801.

[41] Kalirajan R, Sankar S, Jubie S, Gowramma B. Molecular Docking studies and in silico ADMET Screening of Some novel Oxazine Substituted 9-Anilino Acrinides as Topoisomerase II Inhibitors. Indian J Pharm Educ Res 2012; 5(1): 110-5. http://dx.doi.org/10.5530/jijper.51.1.15

[42] Kalirajan R, Gaurav K, Pandiselvi A, Gowramma B, Sankar S. Molecular Docking Studies and In silico ADMET Screening of Some Novel Heterocyclic Substituted 9-Anilinoacridines as Topoisomerase II Inhibitors. JSM Chem 2017; 5(1): 1039-44.

[43] Kalirajan R, Gaurav K, Pandiselvi A, Gowramma B, Sankar S. Novel Thiazine Substituted 9-Anilinoacridines: Synthesis, Antitumour Activity and Structure Activity Relationships. Anticancer Agents Med Chem 2019; 19(11): 1350-8. http://dx.doi.org/10.2174/1871520619666190408134224 PMID: 30961512

[44] Kalirajan R. Vivek kulshrestha, Sankar S. Synthesis, Characterization and Evaluation for Antitumour Activity of Some Novel Oxazine Substituted 9-Anilinoacridines and their 3D-QSAR Studies. Indian J Pharm Sci 2018; 80(5): 921-9. http://dx.doi.org/10.4172/ pharmaceutical-sciences.1000439

[45] Kalirajan R. Leela Rathore, Jubie S, Gowramma B, Gomathy S, Sankar S, Elango K. Microwave Assisted Synthesis and Biological Evaluation of Pyrazole Derivatives of Benzimidazoles, Indian J Pharm. Educ Res 2010; 44(4): 358-62.

[46] Kalirajan R. Chitra, Jubie S, Gowramma B. Synthesis and biological evaluation of Mannich bases of 2-substituted Benzimidazoles. Asian J Chem 2009; 21(7): 5207-11.

[47] Kalirajan R. Leela Rathore, Jubie S, Gowramma B, Gomathy, S. Sankar S. Microwave assisted synthesis of some novel pyrazole substituted benzimidazoles and evaluation of their biological activities. Indian J Chem 2011; 50B: 1794-801.

[48] Kalirajan R, Pandiselvi A, Gowramma B. In-silico Drug Design by Docking Studies, ADMET Screening, MM-GBSA Binding Free Energy of Some Chalcone Substituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer. Int J Comp Theo Chem 2019; 7(1): 6-13. http://dx.doi.org/10.11648/j.ijctc.20190701.12

[49] Kalirajan R, Pandiselvi A, Gowramma B, Balachandran P. In-silico design, ADMET screening, MM-GBSA binding free energy of some novel isoxazole substituted 9-anilinoacridines as HER2 inhibitors targeting breast cancer. Curr Drug Res Rev 2019; 11(2): 118-28. http://dx.doi.org/10.2174/2589977511666190912154817 PMID: 31513003

[50] Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002; 47(4): 409-43. http://dx.doi.org/10.1002/pro.1011 PMID: 12001221

[51] Naga Srinivas Tripuraneni,Mohammed.Afzal Azam. Pharmacophore modelling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors. J Theor Biol 2016; 394: 117-26. http://dx.doi.org/10.1016/j.jthb.2016.01.007 PMID: 26804643

[52] Lengaur T, Rarey M. Computational method for bio molecular docking: curr. Opin Strut Biol 1996; 6(3): 402-6. http://dx.doi.org/10.1006/S0959-440X(96)80061-3

[53] Reetu VK. Computer aided design of selective calcium channel blockers: using pharmacophore - based and docking simulations. Indian J Pharm Sci Res 2012; 3(3): 805-10. http://dx.doi.org/10.1016/j.pharm.2012.03.001

[54] Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins 2011; 79(10): 2794-812. http://dx.doi.org/10.1002/pro.23106 PMID: 21905107