Neurofibromatosis Type 1 with Massive Ventricular Polyposis: First Report in the Medical Literature

Georgi Tchernev1,2, Anastasiya Atanasova Chokoeva1, Uwe Wollina3, Torello Lotti2, Georgi Konstantinov Maximov1, Ilia Lozev5

1"Onkoderma"- Policlinic for Dermatology and Dermatalogic Surgery, Sofia, Bulgaria; 2Medical Institute of Ministry of Interior (MVR-Sofia), Department of Dermatology, Venereology and Dermatalogic Surgery, General Skobelev 26, 1606 Sofia, Bulgaria; 3Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Friedrichstrasse 41, 01067 Dresden, Germany; 4Università di Ruolo, Dipartimento di Scienze Dermatologiche, Università degli Studi di Firenze, Facoltà di Medicina e Chirurgia - Chair of Dermatology, University of Rome, Rome, Italy; 5Medical Institute of Ministry of Interior, Department of General, Vascular and Abdominal Surgery, General Skobelev 79, 1606 Sofia, Bulgaria

Abstract

BACKGROUND: Neurofibromatosis type 1 (NF1) is a multisystemic disorder with genetic background, characterised by specific cutaneous findings, skeletal dysplasias, and growth of both benign and malignant nervous system tumours. NF1 is caused by mutations in the NF1 gene, situated in chromosome 17q11.2, with an autosomal dominant pattern of inheritance and clinical manifestation of neurofibromas, malignant peripheral nerve sheath tumour, optic and non-optic nerve gliomas, congenital heart disease, cardiovascular and cerebrovascular disease and orthopaedic disorders. The incidence of gastrointestinal manifestations of NF1 is relatively low, compared to neurological disorders, presenting approximately in 6 to 25% of the patient, but later in life.

CASE REPORT: We present a patient with NF1, ventricular polyposis and attentional disorders with cognitive phenotype, while both of her daughters also present with cutaneous manifestations of NF1.

CONCLUSION: To the best of our knowledge, this is the first reported case of NF1 with ventricular polyposis as a gastrointestinal manifestation in the mother and NF1 with no signs of inner organ involvement in both of her daughters.

Introduction

Neurofibromatosis type 1 (NF1) is a multisystemic disorder with genetic background, characterised by specific cutaneous findings, skeletal dysplasias, and growth of both benign and malignant nervous system tumours [1][2]. NF1 is caused by mutations in the NF1 gene, situated in chromosome 17q11.2, which provides instructions for making a protein called neurofibromin, produced in many cells, including nerve cells and specialised cells surrounding nerves (oligodendrocytes and Schwann cells) [3]. Neurofibromin acts as a tumour suppressor, and therefore, mutations in the NF1 gene lead to the production of a nonfunctional version of neurofibromin, incapable to regulate cell growth and division [3].

The clinical signs and symptoms vary widely among affected people, usually beginning in early childhood [1]. One of the most typical manifestations represents the so-called café-au-lait spots which can be single or multiple, gradually increasing in size [1][2]. Tumors like neurofibromas can arise along nerves throughout the body [2].

Clinical diagnosis of NF1 requires the presence of at least 2 of the following 7 criteria: 1) Six
Case report

A 78-year old female patient presented with complaints of malaise, and weakness. Attentional disorders with cognitive phenotype, depressive and suicide attentions (from 1985), spondyloarthritis, sub compensatory ocular peripheral syndrome, lumbar osteochondrosis, right-sided lumbosacral radicular syndrome, vertebral syndrome and gonarthrosis on the right (from 2003) were reported from the medical history as comorbidities with long-standing duration. Ulcus callosum gastric was also reported as accompanied disease and polyposis ventriculi, treated with resection ventriculi (Billroth II) in 2004. The patient had been hospitalised in 2007 with pain in the epigastrium and abdomen. Abdominal ultrasonography had established well circumscribed, heterogeneous solid tumour formation, measuring 4 cm, in the pylori-antral part of the stomach, resembling cholelithiasis, poly or a mesenchymal tumour. Further fibro gastroscopy had revealed three polyps, one measuring 15/10 mm, and the others 2/3 cm, with ulcerated surface and wide basis. The diagnosis of hyperplasiogenic polyposis ventriculi was made, based on the fibro gastroscopic findings and histological examination. The polyps had been removed on a later stage.

Clinical examination revealed multiple nodular and tumour-like formations, measuring from 1 to 5 cm, disseminated on the whole body and extremities, with a smooth surface and regular borders (Fig. 1a). The same clinical findings were observed in patient's daughters, both of them with long-standing duration and progressive behaviour for dissemination (Fig. 1b,c,d,e).

The conducted paraclinical blood tests revealed the decreased level of erythrocytes (3.18 10^12/l), haemoglobin (65.0 g/l), hematocrit (0.21 l/l) and increased plateled cells count (562.0 10^9/l). Abdominal ultrasonography did not reveal any abnormalities in structure or function of the inner organs. Irgoscopy established hypotonic and hypokinetic dyskinesia of colon ascendens. Fibrogastroscopy findings were indicative of chronic active gastritis.

The diagnosis of massive ventricular polyposis, associated with neurofibromatosis type I, affecting the patients and her daughters was made. All of the patients did not undergo genetic examination.

Figure 1: 1a,b – Clinical manifestation of a 78-year-old female patient with NF 1 and ventricular polyposis; 1c,d,e,f – Clinical manifestation of NF1 in both patient's daughters

Discussion

Neurofibromatoses refer to 3 genetically inherited disorders, which are clinically and genetically distinct diseases, including NF1, neurofibromatosis type 2 and Schwannomatosis.

NF1 also known as Von Recklinghausen's disease or peripheral neurofibromatosis, is the most common form of neurofibromatosis represents up to 90% of the cases [3]. It has an autosomal dominant pattern of inheritance, with one mutated copy of the NF1 gene in each cell, which is inherited from an affected parent in about half of the cases [2][3]. Sporadic new mutations are responsible for the other half of the cases, with no family history of the disorder [2]. In contrast to most of the autosomal dominant conditions, two copies of the NF1 gene must be altered to trigger tumour formation in neurofibromatosis type 1, as the mutation in the second copy of the NF1 gene occurs during a person's lifetime in cells surrounding nerves [1]. It is not clear enough how mutations in the NF1 gene lead
To the best of our knowledge, this is the first reported case of NF1 in a three-member family, with different clinical manifestation and associated symptoms, including ventricular polyposis in the mother and no signs of inner organ involvement in her daughters.

Although there is no general cure for NF1, surgery can be used to remove tumours that cause pain or a loss of function, press on vital structures, obstruct vision, or grow rapidly [1][2]. Annual examinations and screening are mandatory, as the patient's morbidity is a result of the associated complications [3].

References

1. Ferner RE. Neurofibromatosis 1. Eur J Hum Genet. 2007; 15:131-8. https://doi.org/10.1038/sj.ejhg.5201676 PMid:16957683
2. Maharjan S, Li X, Cui J, Liu Y, Lu L. Lady with wings: a case report of giant neurofibromatosis type I. Medicine (Baltimore). 2017; 96(29):e7523. https://doi.org/10.1097/MD.0000000000007523 PMid:28723766 PMCid:PMC5521906
3. Wang SY, Tan TJ. A Case of a Patient with Neurofibromatosis Type I Presenting with Abdominal Pain. Ann Acad Med Singapore. 2016; 45(11):524-526. PMid:27922148
4. Wiener L, Battles H, Bedoya SZ, Baldwin A, Widemann BC, Pao M. Identifying Symptoms of Distress in Youth Living with Neurofibromatosis Type 1 (NF1). J Genet Couns. 2017; 23:1-9. https://doi.org/10.1007/s10897-017-0128-1
5. Jonas RK, Roh E, Montejo CA, Pacheco LA, Rosser T, Silva AJ, Bearden CE. Risky Decision Making in Neurofibromatosis Type 1: An Exploratory Study. Biol Psychiatry Cogn Neuroimaging. 2017; 2(2):170-179. https://doi.org/10.1016/j.bpsc.2016.12.003 PMid:28736755