Sharpening the predictions of big-bang nucleosynthesis

Scott Burles, Kenneth M. Nollett, James N. Truran, and Michael S. Turner

Department of Astronomy & Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637-1433
Department of Physics, The University of Chicago, Chicago, IL 60637-1433
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500

Motivated by the recent measurement of the primeval abundance of deuterium, we re-examine the nuclear inputs to big-bang nucleosynthesis (BBN). Using Monte-Carlo realization of the nuclear cross-section data to directly estimate the theoretical uncertainties for the yields of D, 3He and 7Li, we show that previous estimates were a factor of 2 too large. We sharpen the BBN determination of the baryon density based upon deuterium, $\rho_B = (3.6 \pm 0.4) \times 10^{-31}$ g cm$^{-3}$ ($\Omega_B h^2 = 0.019 \pm 0.0024$), which leads to a predicted 4He abundance, $Y_P = 0.246 \pm 0.0014$ and a stringent limit to the equivalent number of light neutrino species: $N_\nu < 3.20$ (all at 95% cl). The predicted 7Li abundance, $(^7\text{Li}/\text{H})_P = 3.5^{+1.1}_{-0.9} \times 10^{-10}$, is higher than that observed in pop II stars, $1.7 \pm 0.3 \times 10^{-10}$ (both, 95% cl). We identify key reactions and the energies where further work is needed.

26.35.+c, 98.80.Ft
I. MOTIVATION

Big-bang nucleosynthesis is an observational cornerstone of the hot big-bang cosmology. For more than two decades the predicted abundances of the light elements D, ³He, ⁴He and ⁷Li have been used to test the consistency of the hot big-bang model at very early times (t ~ 0.01 – 200 sec). The state of affairs in 1995 was summarized by a concordance interval for the baryon density, $\Omega_B h^2 = 0.007 – 0.024$, for which the predicted abundances for all four light elements were consistent with the observational data. In addition to testing the standard cosmology, BBN also gave the best determination of the baryon density and was the linchpin in the case for nonbaryonic dark matter.

The big-bang abundance of deuterium is most sensitive to the baryon density, making it the “baryometer.” However, deuterium is fragile and is destroyed by stars even before they reach the main sequence. Thus, local measurements of its abundance, where about 50% of the material has been through stars, do not directly reflect its primeval abundance. Recently, the situation has changed dramatically, ushering in a new, precision era for BBN. Burles and Tytler measured the deuterium abundance in high-redshift ($z > 3$) hydrogen clouds where almost none of the material has been processed through stars, and they have made a strong case for a primeval deuterium abundance, $(D/H)_P = (3.4 \pm 0.25) \times 10^{-5}$.

From this 10% measurement of $(D/H)_P$, the baryon density can be inferred to around 10%, $\Omega_B h^2 = 0.019 \pm 0.002$, or in terms of baryon-to-photon ratio, $\eta = (5.1 \pm 0.5) \times 10^{-10}$. With the baryon density in hand, one can predict the abundances of the other three light elements. Then, ⁴He and ⁷Li can test the consistency of BBN; D and ³He can probe stellar processing since BBN; and ⁷Li can test stellar models. Furthermore, a precise determination of the baryon density can make BBN an even sharper probe of particle physics (e.g., the limit to the number of light particle species).

To take full advantage of BBN in the precision era requires accurate predictions. The uncertainty in the deuterium-inferred baryon density comes in almost equal parts from the (D/H) measurement and theoretical error in predicting the deuterium abundance. The BBN yields depend upon the neutron lifetime and eleven nuclear cross sections (see Table I). In 1993, Smith, Kawano and Malaney (SKM) estimated the theoretical uncertainties by using a conservative approach. While their work has set the standard for the past five years, it was not without its shortcomings: experiments were not weighted strictly by their precision; treatment of systematic effects was neither uniform nor explicit; fits used theoretical rules of thumb. In addition, there have been new measurements.

After a careful analysis and updating of the microphysics for small but important effects, the theoretical uncertainty in the predicted ⁴He abundance has been reduced to that in the neutron lifetime, $\Delta \tau_n = \pm 0.001$ (95% cl). Motivated by the primeval deuterium measurement, we decided to refine the error estimates for the other light elements, using the nuclear data themselves and Monte-Carlo realization to make our error estimates. This method also allowed us to identify where improvements in the nuclear data would be most useful.

II. METHOD AND RESULTS

The details of our method are described in a longer paper; here we outline the salient points. The nuclear inputs come in the form of measurements of cross sections, $\sigma(E)$, or equivalently, the astrophysical S-factor, $S(E) = E \sigma(E)e^{2\pi\xi}$, where $e^{-2\pi\xi}$ is the Coulomb-barrier tunneling probability. From these, the needed thermally-averaged reaction rates per particle follow

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu (kT)^3}} \int \sigma(E) E e^{-E/kT} dE,$$

where μ is the reduced mass.

We use Monte-Carlo realizations of all the experimental data sets to determine thermal reaction rates and final yields. For each realization, we proceed as follows. For every data point from every data set we draw a value from a Gaussian distribution whose mean is the central value and whose variance is the standard error reported for that point. We account for correlated normalization error in a data set by similarly drawing a value for the overall normalization. For each reaction, a smooth representation of $S(E)$ is obtained by fitting a piecewise spline to the data, with individual points weighted by their standard errors in the usual way. Using the spline fits, we evolve light-element abundances with a standard BBN code. From

| TABLE I. For each reaction and nuclide, the energies (in keV, center-of-mass) at which the sensitivity functions for D and ⁷Li attain half their maximum value; these intervals indicate the energies relevant for BBN ($\Omega_B h^2 = 0.019$). |
|---|---|---|
| Reaction | D | ⁷Li |
| $p(n,\gamma)d$ | 25–200 | 17–153 |
| $d(p,\gamma)³He$ | 53–252 | 65–270 |
| $d(d,p)³He$ | 55–242 | 134–348 |
| $d(d,n)³He$ | 62–258 | 79–282 |
| $³He(α,γ)⁷Be$ | no effect | 157–376 |
| $³He(p,n)⁴He$ | 187–325 | 107–283 |
| $³He(n,p)⁴He$ | 52–228 | 24–188 |
| $⁷Li(p,α)⁴He$ | no effect | 57–208 |
| $⁷Li(p,n)⁷Be$ | no effect | 1649–1690 |
| $⁷Li(α,γ)⁷Be$ | no effect | 62–162 |
| $⁷H(d,n)⁷Li$ | 176–338 | 167–285 |
25,000 such realizations, we produce distributions of the light-element yields and compute means and 95% confidence intervals. Our results, as a function of the baryon density, are shown in Fig. 1.

Data points and uncertainties were extracted from a comprehensive review of the experimental literature from approximately 1945 onward, beginning with a careful reading of the original sources. We excluded a small number of data sets for which insufficient information for our technique was provided.

As always, there is the sticky problem of systematic error, especially for cross sections represented by only a few measurements. A case in point is the reaction \(\text{He}(\alpha, \gamma)^{7}\text{Be} \), which produces nearly all of the \(^7\text{Li}\) for \(\eta = 5.1 \times 10^{-10} \). Activation measurements\(^ {12, 14} \) show an apparent disagreement with prompt-photon measurements (see Fig. 2 and Ref. \[13\]). Because these measurements are not in the energy range of relevance for BBN, they have little influence on our results. (SKM omitted activation measurements from their analysis altogether.) We take them into account by performing a second Monte Carlo, where the prompt-photon measurements are renormalized by the weighted mean (and uncertainty) of the three activation measurements. This shifts the \(^7\text{Li}/\text{H} 95\% \text{ cl interval upward by } 11\% \) (see Fig. 4).

Our method breaks down completely for the process \(p + n \rightarrow d + \gamma \). This is because of a near-complete lack of data at the energies relevant for BBN. The approach used for this reaction is a constrained theoretical model that is normalized to high-precision thermal neutron capture cross-section measurements. In particular, we use the most recent evaluation, from ENDF-B/VI \[16\]. This evaluation was performed around 1970 (with a minor update in 1989), and it fitted a capture model to data of similar vintage for the neutron-proton system. No documentation survives, and the uncertainty is difficult to quantify — especially in light of known systematic problems with the likely input data \[17\]. (Efforts are underway to construct a new model for this reaction, based upon more modern nuclear models and data \[18\].) For consistency, we follow SKM and assign a 5% 1σ uncertainty in the overall normalization (also consistent with an estimate from the evaluation’s authors \[17\]), and we use this value for our Monte-Carlo calculations.

To investigate the role of each reaction independently, we ran the BBN code using the SKM rates for all but one reaction, studying that reaction alone with our Monte-Carlo method. This produced, for each of the eleven key reactions, a best fit to the cross-section data, 95% confidence intervals for the cross sections (Fig. 3), and 95% confidence intervals for \(^D\) and \(^7\text{Li}\) yields for each reaction (see Fig. 4).
where precise cross section measurements are required. Fig. 2 and Table I). The sensitivity functions quantify change in cross section at a given reaction energy (see the fractional changes in yield caused by a delta-function footing. Our "most probable" yields also differ slightly theoretical error estimate, but we have also put it on a firmer footing. Our full Monte Carlo, and individual reactions, compared with the Burles & Tytler measurement. The uncertainties due to reactions not shown are not important.

Our most important result is apparent: the uncertainty estimate from our method is a factor of two smaller than the SKM estimate. Not only have we reduced the theoretical uncertainty by a factor of two, though a small systematic uncertainty remains. Using our full Monte Carlo with the deuterium observations, we predict \(Y_P = 0.244 \pm 0.002 \) (all 95% cl). This is consistent with the deuterium prediction. A less homogeneous sample excludes some of the tainted systems, indicates a lower value, \(Y_P = 0.234 \pm 0.002 \), which is not consistent with the deuterium prediction.

Additional light particle species present around the time of BBN lead to increased \(^4\text{He} \) production, and an upper limit to the primeval \(^4\text{He} \) abundance can be used to constrain their existence. Using \(Y_P = 0.244 \pm 0.002 \), the deuterium-determined baryon density, and the prior \(N_e \geq 3.0 \), we derive the 95% cl limit, \(N_\nu < 3.20 \). One should be mindful that systematic error in \(Y_P \) could change the limit, and that it will become more secure with better \(^4\text{He} \) measurements.

Finally, we turn to \(^7\text{Li} \), the light element for which the uncertainty in the predicted abundance is largest. Our analysis has reduced the theoretical uncertainty by a factor of two, though a small systematic uncertainty remains. Using our full Monte Carlo with the deuterium observations, we predict \(Y_LH) = [3.5 \pm 0.4 \text{ (sys)}] \times 10^{-10} \). The abundance derived from old, pop II halo stars is \(Y_LH)_{\text{pop II}} = [1.73 \pm 0.1 \text{ (stat)} \pm 0.2 \text{ (sys)}] \times 10^{-10} = (1.73 \pm 0.3) \times 10^{-10} \) (all at 95% cl). The discrepancy could represent a real inconsistency or merely a depletion of \(^7\text{Li} \) by a factor of around two.

III. DISCUSSION AND CONCLUSIONS

We have reduced the theoretical error estimate for BBN deuterium production by a factor of two, so that the deuterium abundance itself dominates the uncertainty in baryon density. The deuterium determination of the baryon density is thus sharpened, from 8% to 6% (at 1\(\sigma \)), or \(\Omega_B h^2 = 0.019 \pm 0.0024 \) (95% cl). In the next five years, the precision of the primeval deuterium measurement should improve significantly, because the Sloan Digital Sky Survey will increase the number of QSOs with measured redshifts by a factor of almost 100, with a similar increase in the number of deuterium systems expected. Further improvement in the theoretical prediction is possible; the key reactions in this regard are: \(d(p,\gamma)^3\text{He} \); \(d(d,p)^3\text{He} \) above 100\,keV; \(d(d,n)^3\text{He} \) above 100\,keV; and \(p(n,\gamma)d \) at 30–130\,keV (see Fig. 3). Turning the deuterium determination of the baryon density into a few percent measurement will make possible a beautiful consistency test: comparison with a similarly accurate measurement of the baryon density from CBR anisotropy.

The deuterium-inferred baryon density leads to a prediction for the big-bang \(^4\text{He} \) abundance: \(Y_P = 0.246 \pm 0.001 \text{ (D/H)} \pm 0.001 \text{ (}\tau_a\text{)} = 0.246 \pm 0.0014 \) (all 95% cl). When the primeval \(^4\text{He} \) abundance is determined to three significant figures, this will be a powerful consistency test. At the moment, systematic effects dominate the error budget; in particular, underlying stellar absorption in the most metal-poor \(\text{HII} \) regions. Izotov and Thuan’s sample excludes the tainted or suspected-to-be tainted systems, and they find \(Y_P = 0.244 \pm 0.002 \). This is consistent with the deuterium prediction. A less homogeneous sample excludes some of the tainted systems, indicates a lower value, \(Y_P = 0.234 \pm 0.002 \), which is not consistent with the deuterium prediction.

Figs. 3 and 4).
in these stars (predicted by some models of stellar evolution [24,25]). A nuclear solution for the discrepancy is unlikely — a $\sim 25\%$ (or 5σ) change in the $p(n,\gamma)D$ rate would be required, and the unresolved systematics of $^3\text{He}(\alpha,\gamma)^7\text{Be}$ can only make the problem worse. There is still much room to improve the BBN ^7Li prediction; the key reactions are: $p(n,\gamma)d$; $^3\text{He}(\alpha,\gamma)^7\text{Be}$; $d(d,n)^3\text{He}$; and $d(p,\gamma)^3\text{He}$.

Perhaps the most rewarding result of this work is that we have verified what David Schramm many times proclaimed, “the predictions of BBN are very robust because the key cross section are measured at the energies where they are needed.” In particular, if all eleven critical cross sections were set to zero outside the intervals where they are measured, the final light-element abundances would change by less than 10% of their current theoretical uncertainty.

ACKNOWLEDGMENTS

This project was initiated and inspired by David N. Schramm, and we dedicate this paper to his memory.

[1] C. J. Copi, D. N. Schramm, and M. S. Turner, Science 267, 192 (1995). For a different point of view, see N. Hata et al., Phys. Rev. Lett 75, 3977 (1995).
[2] D. Schramm and M. Turner, Rev. Mod. Phys. 70, 303 (1998).
[3] H. Reeves, J. Audouze, W. Fowler, and D. N. Schramm, Astrophys. J. 179, 909 (1973).
[4] S. Burles and D. Tytler, Astrophys. J. 499, 699 (1998).
[5] S. Burles and D. Tytler, Astrophys. J. 507, 732 (1998).
[6] M. S. Smith, L. H. Kawano, and R. A. Malaney, Astrophys. J. Suppl. 85, 219 (1993).
[7] C. Brune, R. W. Kavanagh, and C. Rolfs, Phys. Rev. C 50, 2205 (1994).
[8] G. Schmid et al., Phys. Rev. C 56, 2565 (1997).
[9] L. Ma et al., Phys. Rev. C 55, 588 (1997).
[10] R. Lopez and M. Turner, Phys. Rev. D (1999), in press [astro-ph/9807279].
[11] K. Nollett and S. Burles, (1999), (in preparation).
[12] R. G. H. Robertson, P. Dyer, T. J. Bowles, C. J. Maggiore, and S. M. Austin, Phys. Rev. C 27, 11 (1983).
[13] J. Osborne, C. Barnes, R. Kavanagh, R. M. Kremer, G. Mathews, J. L. Zyskind, P. Parker, and A. Howard, Nucl. Phys. A419, 115 (1984).
[14] H. Volk, H. Kräwinkel, R. Santo, and L. Wallek, Z. Phys. A310, 91 (1983).
[15] E. G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998).
[16] G. M. Hale, D. Dodder, E. Siciliano, and W. Wilson, Los Alamos National Laboratory, ENDF/B-VI evaluation, Mat # 125, Rev. 2, Oct. 1997; retrieved from the ENDF database at the NNDC Online Data Service.
[17] G. Hale, private communication.
[18] K. Nollett et al., work in preparation (1999).
[19] Y. Izotov and T. Thuan, Astrophys. J. 500, 188 (1998), also see ibid 497, 227 (1998).
[20] Y. Izotov, T. Thuan, and V. Lipovetsky, Astrophys. J. Suppl. 108, 1 (1997).
[21] K. Olive, E. Skillman, and G. Steigman, Astrophys. J. 483, 788 (1998), also see K.A. Olive and G. Steigman, Astrophys. J. (Suppl.) 97, 490 (1995).
[22] G. Steigman, D. Schramm, and J. Gunn, Phys. Lett. B 66, 202 (1977).
[23] P. Bonifacio and P. Molaro, Mon. Not. R. astron. Soc. 285, 847 (1997).
[24] S. Vauclair and C. Charbonnel, Astron. Astrophys. 295, 715 (1995).
[25] M. H. Pinsoneault, V. K. Narayanan, G. Steigman, and T. P. Walker, ASP Conf. Ser. 154, 959 (1998).