21-cm observations and warm dark matter models

A. Boyarsky,1 D. Iakubovskyi,2,3 O. Ruchayskiy,2 A. Rudakovskiy,3 and W. Valkenburg4

1 Loretz Institute, Leiden University, Niels Bohrweg 2, Leiden, NL-2333 CA, The Netherlands
2 Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK 2100, Copenhagen, Denmark
3 Bogolyubov Institute of Theoretical Physics, Metrologichna 14-b, 03143, Kyiv, Ukraine
4 Institute of Physics, Laboratory for Particle Physics and Cosmology (LPPC), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of the “Dark Ages” and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the formation of small-size dark matter halos. However, the connection between the formation of structures and the 21-cm signal requires knowledge of a stellar to total mass relation, an escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular, in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-α forest method and other structure formation bounds. In particular, we show that a resonantly produced 7-keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modeling of the WDM universe holds great potential and may, in the future, make 21-cm data our main tool to learn about DM clustering properties.

The hyperfine splitting of the lowest energy level of the neutral hydrogen atom leads to a cosmic 21-cm signal thanks to the abundance of primordial hydrogen. The 21-cm signal from the post-reionization Universe has been studied by a number of experiments (e.g., LOFAR [1, 2], GMRT [3], PAPER [4] (see however [5]), MWA [6]), but the only tentative detection of the 21-cm signal in absorption against the CMB background at $z \sim 16 - 19$ has recently been claimed by the EDGES experiment [7]. It is clear that the forthcoming experiments, such as the staged HERA [10] or future SKA [11, 12] will offer detailed information about the distribution of the 21-cm signal, thus allowing for the full 3D tomography of the signal, offering an unprecedented reach into the early Universe. This makes the study of the 21-cm signal a promising tool to learn not only about cosmological parameters (see, e.g., [13] [15]) but also about different properties of dark matter, including its decays and annihilations [16–21], dark matter-baryon interactions [22–27], and the formation of gravitationally bound structures [28–33].

In this work we focus on the global (sky-averaged) 21-cm absorption signal that appears when the spin temperature (logarithm of the ratio of population of two levels of the hydrogen’s $1S$ state) becomes smaller than the CMB temperature (for a review see, e.g., [29, 32, 34]). The standard explanation for this difference of temperatures is the presence of a bath of Ly-α photons which induce transitions between $1S_1$ and $1S_0$ levels: Ly-α pumping. Therefore, a detection of the global 21-cm absorption signal at some redshift z_0 implies that sources of radiation have already been active at that epoch.

With our current knowledge of baryonic physics, we can robustly state that such radiation sources can only form inside dark matter overdensities. Hence, to predict the 21-cm signal one has to follow several steps:

a) Start from the description of bound gravitational structures at a given redshift z.

b) Continue with the description of how baryons collapse into these structures (which depends both on the size of the structures, on redshift and on cosmology).

c) Assuming a particular type of radiation sources (as they cannot be modeled from first principles), estimate the number of produced photons and model them (usually through a combination of semianalytical and numerical methods) how radiation escapes from the bound structures and heats the ambient medium;

d) Given the resulting function of radiation density $d\rho_{\text{rad}}/dz$ one can then use available codes (such as ARES [35] or 21CMFAST [36]) to predict the 21-cm signal.

Uncertainties as well as differences in predictions, between DM models are introduced at every step in this process.

(a) Bound DM structures. Historically, the first warm dark matter models were those of sufficiently massive Standard Model neutrinos (see, e.g., [37]). Such particles were in thermal equilibrium in the early Universe and froze out while still being relativistic. They remained relativistic for some period in the radiation dominated epoch and homogenized primordial density perturbations on scales below the free-streaming horizon, λ_{fs} (for a proper definition see, e.g., [38, 39]). The number density of such WDM thermal relics is uniquely determined by the temperature of freeze-out or, equivalently, by their mass, m_{TH}. This mass of the thermal relic is the most typi-
The two models lead to an almost identical shape of the matter power spectrum and therefore their masses are related to one another in a nonlinear way; see [38, 41] for details. In this work we always indicate what definition of mass we are using.

2 An alternative parametrization is given by the mass of nonresonantly sterile neutrinos [30]. The two models lead to an almost identical shape of the matter power spectrum and therefore their masses are related to one another in a nonlinear way; see [38, 41] for details. In this work we always indicate what definition of mass we are using.

FIG. 1. Halo mass functions of models of our interest at redshifts 17 (left) and 20 (right). The masses that correspond to \(T_{\text{vir}} = 10^3 \) K (molecular cooling) and \(T_{\text{vir}} = 10^4 \) K (atomic cooling) are marked as green dashed vertical lines. At both redshifts the molecular cooling threshold has little effect on the collapsed fraction (1) in WDM and sterile neutrino models, while for CDM the impact of molecular cooling is substantial, as Fig. 5 illustrates.
form stars.

The fraction \(f_{\text{coll}}(z) \) is derived from the halo mass function of a model as

\[
f_{\text{coll}}(z) = \frac{1}{\rho_m} \int_{M_{\text{min}}}^{\infty} \frac{dM}{d\ln M} \frac{dn}{d\ln M},
\]

with a cutoff for halos below mass \(M_{\text{min}} \) which are expected not to be able to form stars. This cutoff is set by the halo’s virial temperature \(T_{\text{vir}} \), the temperature which the gas reaches during the virialization of the halo [45]:

\[
M_{\text{min}} = 1.0 \times 10^8 \left(\frac{1+z}{10} \right)^{-3/2} \left(\frac{\mu}{0.6} \right)^{-3/2} \left(\frac{T_{\text{vir}}}{1.98 \times 10^5 \text{ K}} \right)^{3/2} \left(\frac{\Omega_m}{\Omega_m^*} \right) \left(\frac{\Delta_c}{18\pi^2} \right)^{-1/2} \frac{\text{M}_\odot}{h},
\]

where \(z \) is the halo redshift, \(\mu = 0.60 \) is the mean molecular weight, \(\Omega_m^* = 1 - \Omega_\Lambda / (\Omega_m^0 (1+z)^3 + \Omega_\Lambda) \) and \(\Delta_c = 18\pi^2 / 82(\Omega_m^0 - 1) - 39(\Omega_m^0 - 1)^2 \) [67]. Depending on which mechanism is responsible for cooling, this cutoff may vary: atomic cooling is associated with a cutoff \(T_{\text{vir}} \sim 10^8 \text{ K} \), while molecular cooling leads to a cutoff \(T_{\text{vir}} \sim 10^5 \text{ K} \), see, e.g., Fig. 12 of [45]. The consequences of this parameter are discussed later, and visualized in Fig. 1.

Galaxies or galaxy candidates have been observed for \(z \lesssim 10 \) [65], and we can only extrapolate the aforementioned ansatz for the redshifts of interest. The star-formation efficiency in halos can be estimated from the observed ultraviolet luminosity function (UV LF) (see, e.g., [60, 63]). The dependency \(f_s(M, z) \) on halo mass and redshift depends on the model of star formation, and possible values of \(f_s \) vary in a wide range. For example, in CDM halos \(f_s \) may reach 0.3 at \(z = 5 - 8 \) for \(10^{11} - 10^{12} \text{ M}_\odot /h \) halos, increase with redshifts, and be close to unity during the Dark Ages [70]. In addition the observational estimates of star-formation efficiency depend on assumed cosmology and \(f_s \) in low-mass galaxies may be higher in WDM compared to CDM (see, e.g., [47, 64]).

Apart from observations, \(f_s \) can be predicted in CDM by use of detailed numerical simulations of the Universe during redshifts \(z \sim 6 - 15 \) [71, 77, 81]. However, there is a three-orders-of-magnitude scatter among the values of \(f_s \) in individual simulated galaxies. As Figs 15 and 16 of [78] demonstrate, a few galaxies with \(f_s \sim 0.3 \) produce an amount of starlight which is several times larger than that of the bulk of galaxies with \(f_s \sim 0.01 \). As a result, it is currently impossible to derive a robust constraint on \(\dot{\rho}_s(z \approx 17) \).

An escape fraction of ionizing photons in galaxies during the reionization and Dark Ages has not been determined directly and is still uncertain (see, e.g., Sec. 7.1 in [32]). However, varying the ionizing photon escape fraction in a wide range does not change the redshift of the \(21 \)-cm absorption signal significantly. The escape fraction of photons in the band 10.2 – 13.6 eV is usually assumed to be close to unity (see Sec. 3.5 of [71] and references therein).

\(\text{(d) Predicting the 21-cm signal}\) The above-mentioned uncertainty on \(f_s \), translates into a strong systematic uncertainty on WDM parameters that can be probed with a 21-cm absorption signal. In order to demonstrate this, we computed the 21-cm absorption signal using the ARES code for three models: CDM, thermal relics with a mass \(m_{\text{TR}} = 6 \text{ keV} \) (claimed to be excluded in [43, 50]) and the resonantly produced sterile neutrino, with particle mass of \(7 \text{ keV} \) and lepton asymmetry \(L_9 = 10^2 \). This sterile neutrino model is consistent with all astrophysical and cosmological bounds: x-ray bounds on decaying DM [39, 58, 62], suppression of the power spectrum as inferred from the Lyman-\(\alpha \) forest [33, 65], cosmic reionization [61, 96, 97], and Milky Way satellite and galaxy counts [50, 61].

The results are shown in Fig. 2. The results strongly depend on the range of assumed values of \(f_s \). From the discussion above we see that it should be at least from \(f_s \sim 0.01 \) to \(f_s \sim 0.3 \) (see, e.g., [78]). We see that for \(f_s = 0.09 \) in both 7-keV sterile neutrinos and thermal relics with \(m_{\text{TR}} = 6 \text{ keV} \), the minimum of \(\delta T_\text{res} \) happens around \(z = 17 \), in agreement with the EDGES results. On the contrary, taking \(f_s = 0.03 \) (as done in [43]) would make CDM consistent with the EDGES data, while the two WDM models would have an insufficient number of Lyman-\(\alpha \) photons at the redshifts of interest.

In Fig. 3, we plot the range of \(f_s \)'s that have the minimum of the absorption trough for \(15.8 \leq z \leq 18.7 \). We see that starting from \(m_{\text{TR}} \lesssim 4 \text{ keV} \), \(f_s \) can be as large as 100% and that for masses of this order or above. Given several orders of magnitude uncertainties in \(f_s \) (as discussed above), the only robust bound can be obtained if one chooses \(f_s = 1 \); at most all baryons enter star formation.

In this case, for example, thermal WDM masses as light as \(m_{\text{TR}} \gtrsim 2 \text{ keV} \) cannot be excluded (see Fig. 4). This puts the sensitivity of the EDGES signal in line with a number of previous bounds on WDM parameters (see, e.g., the Lyman-\(\alpha \) constraints [63], taking into account proper marginalizations over possible thermal histories; bounds [98] from counting of high-z galaxies; bounds [29, 108] from strong gravitational lensing; bounds [101, 102] from the Milky Way satellite counts, etc.). As [103] demonstrates, future measurements of star-formation efficiency at high redshifts, as well as the \(21 \)-cm power spectrum, are required to improve the sensitivity for WDM particles.

In this paper we have concentrated on the redshift position of minimum of \(\delta T_\text{res}(z) \) as an indicator of star-forming processes at high-redshifts. However, both the depth of the \(21 \)-cm absorption trough and its width carry important information about the underlying physics.

Much like the position, the width of the obtained profile also depends on the cosmology. When using \(T_{\text{vir}} = 10^3 \text{ K} \) (molecular cooling) and ignoring possible suppression due to the Lyman-Werner radiation"
FIG. 2. δT_b as a function of redshift z for three models of interest: CDM, thermal-relic WDM with mass $m_{TH} = 6$ keV, and resonantly produced sterile-neutrino DM with mass 7 keV and lepton asymmetry $L_6 = 10$. For all models the minimal virial temperature of halos is fixed at $T_{vir} = 10^4$ K, corresponding to atomic hydrogen cooling; see, e.g., Fig. 12 and Eq. (26) of [45]. The stellar formation efficiency f_* is chosen to be 0.09. Due to higher star-formation efficiency as compared to e.g., [43, 66], the position of the 21-cm absorption trough becomes consistent with EDGES observations (indicated by the grey vertical lines) for all three models of our interest. The green horizontal line denotes half of the absorption depth; it is plotted in order to illustrate the full width at half maximum of the absorption troughs in the models of our interest.

FIG. 3. The range of values of f_* for which the minimum of the absorption trough lies in the redshift range $15.8 \leq z \leq 18.7$, consistent with EDGES observations. For all models the minimal virial temperature of halos is fixed at $T_{vir} = 10^4$ K, corresponding to atomic hydrogen cooling background (see, e.g., [103]), we see that CDM predicts an absorption-trough width which is larger than the one observed by the EDGES experiment, Fig. 5. For the WDM and νMSM profiles the molecular cooling brings little to no effect due to the lack of substructures of the mass $\sim M_{\text{min}}$.

The depth of the observed trough is much greater than what any of the models discussed in this paper predict. To date, only additional nongravitational baryon-DM interactions can accommodate such a strong spin-temperature cooling, which is beyond the scope of this paper [22–24, 105].

To summarize, we discussed the large uncertainty in star formation at very high redshifts ($z \sim 17$), which are probed by recent EDGES observations of the global 21-cm signal. As a consequence, using only this signal it is impossible to robustly constrain the parameters of dark matter models, such as the mass of the warm dark matter particle. Conversely, various DM models need distinct star-formation scenarios to fit the signal. Detailed future studies of star formation at very high redshifts ($z \gtrsim 10$), together with detailed modeling of structure assembly and early star formation, will reduce the existing uncertainties. Ongoing and future studies of the 21-cm signal remain promising tools for inferring the key dark matter parameters.

Acknowledgements. We thank Tom Theuns for valuable comments on an earlier version of this paper and the authors of [45] for sharing with us results of their work before publication. The work of D.I. and O.R. was supported by the Carlsberg Foundation. The work of A.R. was partially supported by grant for Young Scientists Research Laboratories of the National Academy of Sciences of Ukraine. A.R. also acknowledges the grant from the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (GA 694896).

[1] A. H. Patil et al., “Upper limits on the 21-cm Epoch of Reionization power spectrum from one night with LOFAR,” Astrophys. J. 838, 65 (2017)
FIG. 4. The same as in Figure 2 but for $f_*=1.0$. As we see, even the thermal WDM model with particle mass $m_{TH}=2$ keV is consistent with observations.

FIG. 5. Left panel: The same as in Fig. 2 but with minimal halo temperature $T_{\text{vir}}=10^3$ K, which corresponds to molecular hydrogen cooling; see, e.g., [109] and Fig. 12 of [45] for details. By comparing with Fig. 2 we see that the decrease of T_{vir} from 10^4 K to 10^3 K essentially does not change absorption profiles for 6-keV WDM and L6 = 10 νMSM models. In contrast, in the CDM model, predictions change dramatically both in profile width and position of the minimum (here, the black solid curve denotes $T_{\text{vir}}=10^3$ K while black dashed curve denotes $T_{\text{vir}}=10^4$ K), owing to a significant number of small mass halos (cf. [48]).

Right panel: The same profiles as in the left panel but with values of f_* adjusted to match the best-fit position of the EDGES absorption trough.
[9] Richard F. Bradley, Keith Tauscher, David Rapetti, and Jack O. Burns, “A Ground Plane Artifact that Induces an Absorption Profile in Averaged Spectra from Global 21-cm Measurements - with Possible Application to EDGES,” Astrophys. J. 874, 153 (2019) [arXiv:1810.09015 [astro-ph.IM]].

[10] David R. DeBoer et al., “Hydrogen Epoch of Reionization Array (HERA),” [Publ. Astron. Soc. Pac. 129, 045001 (2017) arXiv:1606.07473 [astro-ph.IM]].

[11] L. V. E. Koopmans et al., “The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array,” Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14): Giardini Nazios, Italy, June 9–13, 2014, PoS AASKA14, 001 (2015) [arXiv:1505.07658 [astro-ph.CO]].

[12] P. Bull et al., “Fundamental Physics with the Square Kilometre Array,” (2018) [arXiv:1801.02680 [astro-ph.CO]].

[13] Matthew McQuinn, Oliver Zahn, Matias Zaldarriaga, Lars Hernquist, and Steven R. Furlanetto, “Cosmological parameter estimation using 21 cm radiation from the epoch of reionization,” [Astrophys. J. 653, 815–830 (2006) arXiv:astro-ph/0512263 [astro-ph]].

[14] Yi Mao, Max Tegmark, Matthew McQuinn, Matias Zaldarriaga, and Oliver Zahn, “How accurately can 21 cm tomography constrain cosmology?” Phys. Rev. D78, 023529 (2008) arXiv:0802.1710 [astro-ph].

[15] Yoshihiko Oyama, Kazunori Kohri, and Masashi Hazumi, “Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations,” [JCAP 1602, 008 (2016) arXiv:1510.03806 [astro-ph.CO]].

[16] Guido D’Amico, Paolo Fanci, and Alessandro Strumia, “Bounds on Dark Matter annihilations from 21 cm data,” Phys. Rev. Lett. 121, 011103 (2018) arXiv:1803.03629 [astro-ph.CO].

[17] Yupeng Yang, “Contributions of dark matter annihilation to the global 21 cm spectrum observed by the EDGES experiment,” Phys. Rev. D98, 103503 (2018) arXiv:1803.05680 [astro-ph.CO].

[18] Steven Clark, Bhaskar Dutta, Yu Gao, Yin-Zhe Ma, and Louis E. Strigari, “21 cm limits on decaying dark matter and primordial black holes,” Phys. Rev. D98, 043506 (2018) arXiv:1803.09390 [astro-ph.HE].

[19] Hongwan Liu and Tracy R. Slatyer, “Implications of a 21 cm signal for dark matter annihilation and decay,” Phys. Rev. D98, 023501 (2018) arXiv:1803.09739 [astro-ph.CO].

[20] Kingman Cheung, Jui-Lin Kuo, Kin-Wang Ng, and Yue-Lin Sming Tsai, “The impact of EDGES 21 cm data on dark matter interactions,” Phys. Lett. B789, 137–144 (2019) arXiv:1803.09398 [astro-ph.CO].

[21] Andrea Mitridate and Alessandro Podo, “Bounds on Dark Matter decay from 21 cm line,” [JCAP 1805, 069 (2018) arXiv:1803.11160 [hep-ph]].

[22] Rennan Barkana, “Possible interaction between baryons and dark-matter particles revealed by the first stars,” [Nature 555, 71–74 (2018) arXiv:1803.06698 [astro-ph.CO]].

[23] Anastasia Fialkov, Rennan Barkana, and Aviad Cohen, “Constraining Baryon–Dark Matter Scattering with the Cosmic Dawn 21 cm Signal,” Phys. Rev. Lett. 121, 011101 (2018) arXiv:1802.10577 [astro-ph.CO].

[24] Asher Berlin, Dan Hooper, Gordan Knjaic, and Samuel D. McDermott, “Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly,” Phys. Rev. Lett. 121, 011102 (2018) arXiv:1803.02804 [hep-ph].

[25] Rennan Barkana, Nadav Joseph Outmezguine, Diego Redigolo, and Tomer Volansky, “Strong constraints on light dark matter interpretation of the EDGES signal,” [Phys. Rev. D98, 103005 (2018) arXiv:1803.03091 [hep-ph]].

[26] Sean Fraser et al., “The EDGES 21 cm Anomaly and Properties of Dark Matter,” Phys. Lett. B785, 159–164 (2018) [arXiv:1803.03245 [astro-ph]].

[27] Tracy R. Slatyer and Chih-Liang Wu, “Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal,” Phys. Rev. D98, 023013 (2018) arXiv:1803.09734 [astro-ph.CO].

[28] Piero Madau, Avery Meiksin, and Martin J. Rees, “21-CM tomography of the intergalactic medium at high redshift,” [Astrophys. J. 475, 429 (1997) arXiv:astro-ph/9608010 [astro-ph]].

[29] Steven Furlanetto, S. Peng Oh, and Frank Briggs, “Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe,” Phys. Rept. 433, 181–301 (2006) arXiv:astro-ph/0608032 [astro-ph].

[30] Matias Zaldarriaga, Steven R. Furlanetto, and Lars Hernquist, “21 Centimeter fluctuations from cosmic gas at high redshifts,” [Astrophys. J. 608, 622–635 (2004) arXiv:astro-ph/0311514 [astro-ph]].

[31] Benedetta Ciardi and Andrea Ferrara, “The First cosmic structures and their effects,” [Space Sci. Rev. 116, 625–705 (2005) arXiv:astro-ph/0409018 [astro-ph]].

[32] Jonathan R. Pritchard and Abraham Loeb, “21-cm cosmology,” [Rept. Prog. Phys. 75, 086901 (2012) arXiv:1109.6012 [astro-ph.CO]].

[33] Rennan Barkana, “The Rise of the First Stars: Supersonic Streaming, Radiative Feedback, and 21-cm Cosmology,” Phys. Rept. 645, 1–59 (2016) arXiv:1605.04357 [astro-ph.CO].

[34] Jonathan R. Pritchard and Abraham Loeb, “Evolution of the 21 cm signal throughout cosmic history,” Phys. Rev. D78, 103511 (2008) arXiv:0802.2102 [astro-ph].

[35] Jordan Mirocha, “Decoding the X-ray Properties of Pre-Reionization Era Sources,” [Mon. Not. Roy. Astron. Soc. 443, 1211–1223 (2014) arXiv:1406.4120 [astro-ph.GA]].

[36] Andrei Mesinger, Steven Furlanetto, and Renyue Cen, “21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal,” [Mon. Not. Roy. Astron. Soc. 411, 955 (2011) arXiv:1003.3878 [astro-ph.CO]].

[37] J. R. Bond, G. Efstathiou, and J. Silk, “Massive Neutrinos and the Large Scale Structure of the Universe,” [Phys. Rev. Lett. 45, 1980–1984 (1980)].

[38] Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, and Matteo Viel, “Lyman-alpha constraints on warm and on warm-plus-cold dark matter models,” [JCAP 0905, 012 (2009) arXiv:0812.0010 [astro-ph]].

[39] A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, “Sterile Neutrino Dark Matter,” [Prog. Part. Nucl. Phys. 104, 1–45 (2019) arXiv:1807.07938 [hep-ph]].

[40] Scott Dodelson and Lawrence M. Widrow, “Sterile-neutrinos as dark matter,” Phys.Rev.Lett. 72, 17–20 (1994).
Constraining noncold dark matter models with the global 21-cm signal. Phys. Rev. D98, 063021 (2018) arXiv:1805.00021 [astro-ph.CO].

Zoltan Haiman, Tom Abel, and Martin J. Rees, “The radiative feedback of the first cosmological objects.” Astrophys. J. 534, 11–24 (2000) arXiv:astro-ph/9903363 [astro-ph].

Remo Barkana and Abraham Loeb, “In the beginning: The First sources of light and the reionization of the Universe.” Phys. Rept. 349, 125–238 (2001) arXiv:astro-ph/0010468 [astro-ph].

Liang Gao and Tom Theuns, “Lighting the Universe with filaments.” Science 317, 1527 (2007) arXiv:0709.2165 [astro-ph]

Simziana Paduroiu, Yves Revaz, and Daniel Pfenninger, “Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down.” (2015) arXiv:1506.03789 [astro-ph.CO].

Matteo Leo, Tom Theuns, Carlton M. Baugh, Baojiu Li, and Silvia Pascoli, “Constraining structure formation using EDGES,” (2019) arXiv:1909.04641 [astro-ph.CO].

Atriode Chatterjee, Pratika Dayal, Tirthankar Roy Choudhury, and Anne Hutter, “Ruling out 3 keV warm dark matter using 21 cm EDGES data.” Mon. Not. Roy. Astron. Soc. 487, 3560–3567 (2019) arXiv:1902.09562 [astro-ph.CO].

Laura Lopez-Honorez, Olga Mena, and Pablo Villanueva-Domingo, “Dark matter microphysics and 21 cm observations.” Phys. Rev. D99, 023522 (2019) arXiv:1811.02716 [astro-ph.CO].

Liang Gao, Tom Theuns, and Volker Springel, “Star formation in warm dark matter models,” Mon. Not. Roy. Astron. Soc. 450, 45–52 (2015) arXiv:1403.2475 [astro-ph.CO].

Jakob Herpich, Gregory S. Stinson, Andrea V. Macci, Chris Brook, James Wadsley, Hugh M. P. Couchman, and Tom Quinn, “MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation,” Mon. Not. Roy. Astron. Soc. 437, 293–304 (2014) arXiv:1308.1088 [astro-ph.CO].

Umberto Maio and Matteo Viel, “The First Billion Years of a Warm Dark Matter Universe,” Mon. Not. Roy. Astron. Soc. 446, 2760–2775 (2015) arXiv:1409.6718 [astro-ph.CO].

Pedro Colin, Vladimir Avila-Reese, Alejandro Gonzalez-Samaniego, and Hector Velazquez, “Simulations of galaxies formed in warm dark matter halos of masses at the filtering scale.” Astrophys. J. 803, 28 (2015) arXiv:1412.1100 [astro-ph.GA].

Chris Power and Aaron S. G. Robotham, “The Extended Stellar Component of Galaxies the Nature of Dark Matter,” Astrophys. J. 825, 31 (2016) arXiv:1603.07422 [astro-ph.GA].

Mark R. Lovell et al., “Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies.” Mon. Not. Roy. Astron. Soc. 468, 4285–4298 (2017) arXiv:1611.00010 [astro-ph.GA].

N. Menci, F. Fiore, and A. Lamastra, “Galaxy Formation in WDM Cosmology,” Mon. Not. Roy. Astron. Soc. 421, 2384 (2012) arXiv:1201.1617 [astro-ph.CO].

Xi Kang, Andrea V. Maccio, and Aaron A. Dutton, “The effect of Warm Dark Matter on galaxy properties: constraints from the stellar mass function and the Tully-Fisher relation.” Astrophys. J. 767, 22 (2013) arXiv:1208.0008 [astro-ph.CO].

N. Menci, F. Fiore, and A. Lamastra, “The Evolution of Active Galactic Nuclei in Warm Dark Matter Cosmology,” Astrophys. J. 766, 110 (2013) arXiv:1302.2000 [astro-ph.CO].

A. M. Nierenberg, T. Treu, N. Menci, Y. Lu, and W. Wang, “The Cosmic Evolution of Faint Satellite Galaxies as a Test of Galaxy Formation and the Nature of Dark Matter.” Astrophys. J. 772, 146 (2016) arXiv:1302.3243 [astro-ph.CO].

Mark R. Lovell, Sownak Bose, Alexey Boyarsky, Shaun Cole, Carlos S. Frenk, Violeta Gonzalez-Perez, Rachel Kennedy, Oleg Ruchayskiy, and Alex Smith, “Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter.” Mon. Not. Roy. Astron. Soc. 468, 4579–4591 (2017) arXiv:1612.04540 [astro-ph.GA].

Sownak Bose, Carlos S. Frenk, Jun Hou, Cedric G. Lacey, and Mark R. Lovell, “Reionization in sterile neutrino cosmologies,” Mon. Not. Roy. Astron. Soc. 465, 8548–8589 (2016) arXiv:1605.03179 [astro-ph.CO].

Hannah E. Ross, Keri L. Dixon, Raghunath Ghara, Ilian T. Iliev, and Garret Mellemma, “Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn,” Mon. Not. Roy. Astron. Soc. 487, 1101–1119 (2019) arXiv:1808.03287 [astro-ph.CO].

Mohammadaher Safarzadeh, Evan Scannapieco, and Arif Babul, “A limit on the warm dark matter particle mass from the redshifted 21 cm absorption line.” Astrophys. J. 859, L18 (2018) arXiv:1803.08039 [astro-ph.CO].

G. L. Bryan and M. L. Norman, “Statistical properties of x-ray clusters: Analytic and numerical comparisons,” Astrophys. J. 495, 80 (1998) arXiv:astro-ph/9710107 [astro-ph].

P. A. Oesch, R. J. Bouwens, G. D. Illingworth, I. Labbé, and M. Stefanon, “The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields – The Rapid Evolution of the Galaxy Population in the First 500 Myr.” ApJ 855, 105 (2018) arXiv:1710.11131.

Pratika Dayal, Andrea Ferrara, James S. Dunlop, and Fabio Pacucci, “Essential physics of early galaxy
formation,” Monthly Notices of the Royal Astronomical Society 445, 2545–2557 (2014) [arXiv:1405.4862 [astro-ph.GA]].

[70] G. Sun and S. R. Furlanetto, “Constraints on the star formation efficiency of galaxies during the epoch of reionization,” MNRAS 460, 417–433 (2016) [arXiv:1512.06219].

[71] J. Mirocha, S. R. Furlanetto, and G. Sun, “The global 21-cm signal in the context of the high-z galaxy luminosity function,” MNRAS 464, 1365–1379 (2017) [arXiv:1607.00386].

[72] Jordan Mirocha and Steven R. Furlanetto, “What does the first highly-redshifted 21-cm detection tell us about early galaxies?” Mon. Not. Roy. Astron. Soc. 483, 1980–1992 (2019) [arXiv:1803.03272 [astro-ph.GA]].

[73] Jaehong Park, Andrei Mesinger, Bradley Greig, and Nicolas Gillet, “Inferring the astrophysics of reionization and cosmic dawn from galaxy luminosity functions and the 21-cm signal,” Monthly Notices of the Royal Astronomical Society 494, 933–949 (2020) [arXiv:1909.08995 [astro-ph.GA]].

[74] Till Sawala et al., “Bent by baryons: the low mass galaxy-halo relation,” Mon. Not. Roy. Astron. Soc. 448, 2941–2947 (2015) [arXiv:1404.3724 [astro-ph.GA]].

[75] P. S. Corasaniti, S. Agrawal, D. J. E. Marsh, and S. Das, “Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts,” Phys. Rev. D 95, 083517 (2017) [arXiv:1611.05892 [astro-ph.CO]].

[76] N. Menci, A. Grazian, A. Lamastra, F. Calura, M. Castellano, and P. Santini, “Galaxy Formation in Sterile Neutrino Dark Matter Models,” Astrophys. J. 854, 1 (2018) [arXiv:1801.03697 [astro-ph.CO]].

[77] John H. Wise, Vasily G. Demchenko, Martin T. Halcke, Michael L. Norman, Matthew J. Turk, Tom Abel, and Britton D. Smith, “The birth of a galaxy III. Propelling reionization with the faintest galaxies,” Mon. Not. Roy. Astron. Soc. 442, 2560–2579 (2014) [arXiv:1403.6123 [astro-ph.CO]].

[78] H. Xu, J. H. Wise, M. L. Norman, K. Ahn, and B. W. O’Shea, “Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations,” ApJ. 833, 84 (2016) [arXiv:1604.05812].

[79] Xinlong Meng, Philip F. Hopkins, Shea Garrison-Kimmel, Claude-André Foucher-Giguère, Eliot Quataert, Michael Boylan-Kolchin, Christopher C. Hayward, Robert Feldmann, and Duan Kere, “Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions,” Mon. Not. Roy. Astron. Soc. 478, 1694–1715 (2018) [arXiv:1706.06605 [astro-ph.GA]].

[80] J. Rosdahl, H. Katz, J. Blaizot, T. Kimm, L. Michel-Dansac, T. Garel, M. Haehnelt, P. Ocvirk, and R. Teyssier, “The SPHINX cosmological simulations of the first billion years: the impact of binary stars on reionization.” MNRAS 479, 904–1016 (2018) [arXiv:1801.07259].

[81] Mahavir Sharma and Tom Theuns, “The Isco model of feedback-regulated galaxy formation,” (2019), arXiv:1906.10135 [astro-ph.GA].

[82] Pratika Dayal and Andrea Ferrara, “Early galaxy formation and its large-scale effects,” Phys. Rept. 780–782, 1–64 (2018) [arXiv:1809.09136 [astro-ph.GA]].

[83] M. Laine and M. Shaposhnikov, “Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry,” JCAP 0806, 031 (2008) [arXiv:0804.4543 [hep-ph]].

[84] Alexey Boyarsky, Oleg Ruchayskiy, and Mikhail Shaposhnikov, “The Role of sterile neutrinos in cosmology and astrophysics,” Ann. Rev. Nucl. Part. Sci. 59, 191–214 (2009) [arXiv:0901.0011 [hep-ph]].

[85] Esra Bulbul, Maxim Markevitch, Adam Foster, Randall K. Smith, Michael Loewenstein, and Scott W. Randall, “Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters,” Astrophys. J. 789, 13 (2014) [arXiv:1402.2301 [astro-ph.CO]].

[86] Alexey Boyarsky, Oleg Ruchayskiy, Dmytro Iakubovskyi, and Jeroen Franse, “Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster,” Phys. Rev. Lett. 113, 251301 (2014) [arXiv:1402.4119 [astro-ph.CO]].

[87] Alexey Boyarsky, Jeroen Franse, Dmytro Iakubovskyi, and Oleg Ruchayskiy, “Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center,” Phys. Rev. Lett. 115, 161301 (2015) [arXiv:1408.2503 [astro-ph.CO]].

[88] Dmytro Iakubovskyi, Esra Bulbul, Adam R. Foster, Denys Savchenko, and Valentyna Sadova, “Testing the origin of 3.55 keV line in individual galaxy clusters observed with XMM-Newton,” (2015), arXiv:1508.05186 [astro-ph.HE].

[89] Oleg Ruchayskiy, Alexey Boyarsky, Dmytro Iakubovskyi, Esra Bulbul, Dominique Eckert, Jeroen Franse, Denys Malyshnev, Maxim Markevitch, and Andrii Neronov, “Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal,” Mon. Not. Roy. Astron. Soc. 460, 1390–1398 (2016) [arXiv:1512.07217 [astro-ph.HE]].

[90] Jeroen Franse et al., “Radial Profile of the 3.55 keV line out to R_200 in the Perseus Cluster,” Astrophys. J. 829, 124 (2016) [arXiv:1604.01759 [astro-ph.CO]].

[91] M. Drewes et al., “A White Paper on keV Sterile Neutrino Dark Matter,” JCAP 1701, 025 (2017) [arXiv:1602.04816 [hep-ph]].

[92] Kevork N. Abazajian, “Sterile neutrinos in cosmology,” Phys. Rept. 711–712, 1–28 (2017) [arXiv:1705.01837 [hep-ph]].

[93] Antonella Garzilli, Alexey Boyarsky, and Oleg Ruchayskiy, “Cutoffs in the Lyman-alpha forest power spectrum: warm IGM or warm dark matter?” Phys. Lett. B773, 258–264 (2017) [arXiv:1510.07006 [astro-ph.CO]].

[94] Julien Baur, Nathalie Palanque-Delabrouille, Christophe Yeché, Alexey Boyarsky, Oleg Ruchayskiy, ric Armengaud, and Julien Lesgourgues, “Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos,” JCAP 1702, 013 (2017) [arXiv:1706.03118 [astro-ph.CO]].

[95] Antonella Garzilli, Andrii Magalich, Tom Theuns, Carlos S. Frenk, Christoph Weniger, Oleg Ruchayskiy, and Alexey Boyarsky, “The Lyman-α forest as a diagnostic of the nature of the dark matter,” Mon. Not. Roy. Astron. Soc. 489, 3456–3471 (2019) [arXiv:1809.06585 [astro-ph.CO]].

[96] Anton Rutakovskiy and Dmytro Iakubovskyi, “Influence of 7 keV sterile neutrino dark matter on the process of reionization,” JCAP 1604, 017 (2016) [arXiv:1604.01341 [astro-ph.CO]].

[97] Anton Rutakovskiy and Dmytro Iakubovskyi, “Dark matter model favoured by reionization data: 7 keV
sterile neutrino versus cold dark matter," [Mon. Not. Roy. Astron. Soc. 483, 4080–4084 (2019)] arXiv:1811.02799 [astro-ph.CO]

[98] N. Menci, A. Grazian, M. Castellano, and N. G. Sanchez, “A Stringent Limit on the Warm Dark Matter Particle Masses from the Abundance of $z=6$ Galaxies in the Hubble Frontier Fields,” [Astrophys. J. 825, L1 (2016)] arXiv:1606.02530 [astro-ph.CO]

[99] Simon Birrer, Adam Amara, and Alexandre Refregier, “Lensing substructure quantification in RXJ1131-1231: A 2 keV lower bound on dark matter thermal relic mass,” [JCAP 1705, 037 (2017)] arXiv:1702.00009 [astro-ph.CO]

[100] S. Vegetti, G. Despali, M. R. Lovell, and W. Enzi, “Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift $z > 0.2$,” [Mon. Not. Roy. Astron. Soc. 481, 3661–3669 (2018)] arXiv:1801.01505 [astro-ph.CO]

[101] Mark R. Lovell, Carlos S. Frenk, Vincent R. Eke, Adrian Jenkins, Liang Gao, and Tom Theuns, “The properties of warm dark matter haloes,” [Mon. Not. Roy. Astron. Soc. 439, 300–317 (2014)] arXiv:1308.1399 [astro-ph.CO]

[102] Rachel Kennedy, Carlos Frenk, Shaun Cole, and Andrew Benson, “Constraining the warm dark matter particle mass with Milky Way satellites,” [Mon. Not. Roy. Astron. Soc. 442, 2487–2495 (2014)] arXiv:1310.7739 [astro-ph.CO]

[103] Andrei Mesinger, Andrea Ferrara, and David S. Spiegel, “Signatures of X-rays in the early Universe,” [Mon. Not. Roy. Astron. Soc. 431, 621 (2013)] arXiv:1210.7319 [astro-ph.CO]

[104] Bin Yue and Xuelei Chen, “Reionization in the Warm Dark Matter Model,” [Astrophys. J. 747, 127 (2012)] arXiv:1201.3686 [astro-ph.CO]

[105] Julian B. Muoz and Abraham Loeb, “A small amount of mini-charged dark matter could cool the baryons in the early Universe,” [Nature 557, 684 (2018)] arXiv:1802.10094 [astro-ph.CO]

[106] Daniele Galli and Francesco Palla, “The Chemistry of the early universe,” [Astron. Astrophys. 335, 403–420 (1998)] arXiv:astro-ph/9803315 [astro-ph]