Remarks on the nonvanishing of cohomology groups for perverse sheaves on abelian varieties

Rainer Weissauer

Let \(X \) be an abelian variety over an algebraically closed field \(k \) of dimension \(g \) and let \(K \) be an irreducible perverse sheaf in \(D_b^b(X, \Lambda) \) for \(\Lambda = \mathbb{Q}_\ell \). If the base field \(k \) has positive characteristic, we assume that \(K \) is defined over a field that is finitely generated over its prime field with \(\ell \) different from the characteristic. Suppose that not all cohomology groups \(H^\nu(X, K) \) are zero and let denote \(d(K) = \max\{ \nu \mid H^\nu(X, K) \neq 0 \} \). Notice \(d(K) \geq 0 \), by the Hard Lefschetz Theorem.

Theorem. For \(d = d(K) > 0 \) we have

\[
\dim_\Lambda(H^{d-1}(X, K)) > 2d/(d + g) \cdot \dim_\Lambda(H^d(X, K)).
\]

If furthermore \(X \) is a simple abelian variety, then \(\dim_\Lambda(H^{d-1}(X, K)) > d \cdot \dim_\Lambda(H^d(X, K)) \).

Remark. By the Hard Lefschetz Theorem an immediate consequence of this theorem is the assertion: \(H^\nu(X, K) \neq 0 \) if and only if \(\nu \in [-d(K), d(K)] \). So for character twists \(K_\chi \) [KrW] the sets \(V_i(K) = \{ \chi \mid H^i(X, K_\chi) \neq 0 \} \) satisfy \(V_{i+1}(K) \subseteq V_i(K) \) for all \(i \geq 0 \). For an arbitrary projective smooth variety \(Y \) over \(k \) with Albanese morphism \(f : Y \to X \) and a perverse sheaf \(L \) on \(Y \) the decomposition theorem gives \(R^nf_*(L) \cong \bigoplus i \in \mathbb{Z} H^i(R^nf_*(L))[-i] \) and \(H^\nu(Y, L) \cong \bigoplus j+i=\nu H^j(Y, \mathbb{Q} \cdot R^nf_*(L)) \).

From the relative Hard Lefschetz Theorem and the theorem above applied to the irreducible constituents \(K \) of the semisimple perverse cohomology sheaves \(\mathbb{Q} \cdot R^nf_*(L) \) we therefore obtain

Corollary 1. Let \(L \) be an irreducible perverse sheaf \(L \) on a smooth projective variety \(Y \) with \(d = d(K) > 0 \). Suppose the Albanese morphism \(f : Y \to X \) is not trivial and suppose \(H^d(Y, L) \neq H^0(Y, \mathbb{Q} \cdot R^nf_*(L)) \) (e.g. this is the case if the fibers of \(f \) have dimension \(< d \)). Then \(H^\nu(Y, L) \neq 0 \) if and only if \(\nu \in [-d, d] \).

Proof of the theorem. First suppose that \(K \) is negligible, i.e. of the form \(K \cong \pi^*(\mathbb{Q})[q] \) for a perverse sheaf \(Q \) on a quotient abelian variety \(\pi : X \to X/A \) defined by an abelian subvariety \(A \subseteq X \) of dimension \(q > 0 \). Then \(d = d(K) = d(Q) + q \) since \(H^\nu(X, K) \cong \bigoplus_{i=0}^{2q} H^\nu(X/A, Q[i + q]) \).

Hence \(H^d(X, K) \cong H^{d(Q)}(X/A, Q) \) and \(H^{d-1}(X, K) \cong 2q \cdot H^{d(Q)}(X/A, Q) \). Since \(2q > 2d/(d + g) \), our claim follows in this case; similarly \(2q = 2g > d \) in the case where \(X = A \) is simple. Therefore we now make the

Assumption. Suppose \(K \) is irreducible, but not negligible. Furthermore suppose \(d > 0 \).

For the perverse sheaf \(K \) on \(X \) consider the Laurent polynomial \(h_\nu(X, K) = \sum a_\nu t^\nu \) defined by \(a_\nu = \dim_\Lambda(H^\nu(X, K)) \). Then \(d = d(K) \) is the largest integer \(\nu \) such that \(a_\nu \neq 0 \).

Choose an integer \(r \) minimal such that \(r \cdot d > g \). Hence \(r > 1 \) and \(r \cdot d < g + d \). The \(r \)-th convolution power of \(K \) is a direct sum of a perverse sheaf \(K_r \) on \(X \) and a finite direct sum of complexes \(L_\mu[n_\mu] \) with negligible perverse sheaves \(L_\mu \) on \(X \) of the form:
• \(L_\mu = \pi^*_\mu(Q_\mu)[g_\mu] \) for irreducible not negligible perverse sheaves \(Q_\mu \) on \(X/A_\mu \)
• \(\pi_\mu : X \to X/A_\mu \) is the quotient by an abelian subvariety \(A_\mu \) of \(X \) of dimension \(g_\mu > 0 \).

This follows from [KrW], [W], and for this assertion we have to assume that the perverse sheaf \(K \) is defined over a finitely generated field over the prime field in the case of positive characteristic [W].

Then \(h_t(X, L_\mu[n_\mu]) = \sum \dim(H'^\nu(X, L_\mu[n_\mu]) \cdot t'^\nu = \sum_{\nu < d_\mu} b_{\mu\nu} t'^\nu \) for integers \(b_{\mu\nu} \geq 0 \), and we may assume \(b_\mu = b_{\mu d_\mu} \geq 1 \) since we can ignore cohomologically trivial summands in the following. Let \(T \) denote the set of all indices \(\mu \) such that \(d_\mu + g_\mu = r \cdot d \) holds. By well known cohomological bounds [BBD], the cohomology of an irreducible perverse sheaf on \(X \) vanishes in degrees \(g \) unless it is negligible. Since \(r \cdot d \geq g \), the Künneth formula in the form \(H^*(X, K^{r\nu}) \cong H^*(X, K)^{\otimes r} \) and a comparison of coefficients at \(t^{rd} \) implies

\[
(a_d)^r = \sum_{\mu \in T} b_\mu .
\]

Similarly, now using \(r \cdot d \geq g + 1 \), by comparing coefficients at \(t^{rd-1} \) we obtain

\[
r \cdot a_{d-1}(a_d)^{r-1} \geq \sum_{\mu \in T} 2g_\mu b_\mu \geq 2 \cdot \min \{g_\mu\} \cdot (a_d)^r .
\]

Indeed, the second equality follows from the formula \(\sum_{\mu \in T} b_\mu = (a_d)^r \) above. For the first inequality we exploited the fact that all coefficients \(b_{\mu\nu} \) in \(h_t(X, L_\mu[n_\mu]) = (t+2+t^{-1})^{g_\mu} \cdot h_t(X/A_\mu, Q_\mu[n_\mu]) = (t^{g_\nu} + 2g_\mu t^{g_\nu-1} + \cdots)(b_\mu t^{d_\mu} + \cdots) \) are nonnegative. We conclude

\[
a_{d-1} \geq \frac{2 \min \{g_\mu\}}{r} \cdot a_d \geq \frac{2}{r} \cdot a_d \geq \frac{2d}{g + d} \cdot a_d .
\]

where the last inequality follows from \(r \cdot d < g + d \). If \(X \) is simple, then \(\min \{g_\mu\} = g \) and hence \(a_{d-1} \geq \frac{2}{d} a_d \). Now \(r \cdot d < g + d < 2g \) implies \(a_{d-1} > d \cdot a_d \). QED

Remark. \(d(K) \) for the intersection cohomology sheaf \(K \) of an irreducible subvariety \(Y \) of \(X \) is the dimension of \(Y \). In this case there exist stronger geometric estimates than those from the theorem above. However, already when \(Y \) is a variety of maximal Albanese dimension and \(K \) is an arbitrary irreducible constituent of the direct image of the intersection cohomology perverse sheaf on \(Y \) under the Albanese morphism \(f: Y \to X = \text{Alb}(Y) \) I am not aware of estimates of the above form in the literature.

Next, consider a finite Galois morphism

\[
\pi : \tilde{Y} \to Y
\]

between smooth complex varieties of dimension \(n \) with Galois group \(\Gamma \), where we view \(\Gamma \) to act on \(\tilde{Y} \) from the right. For every isomorphism class \(\phi \) of irreducible representations \(V_\phi \) of \(\Gamma \) let \(m_\phi(\phi) \) denote the multiplicity of the irreducible representation \(\phi \) of \(\Gamma \) on \(H^{\nu+n}(\tilde{Y}, \mathbb{C}) \).

For simplicity, from now on suppose that \(Y \) is projective and \(f : Y \to \text{Alb}(Y) = X \) is a closed embedding. Then the theorem above implies

Corollary 2. If \(d = d(K_\phi) > 0 \), then \(m_{d-1}(\phi) > 2dm_\phi(\phi)/(d + g) > 0 \).
Proof. For every class \(\phi \) there exists an irreducible perverse sheaf \(K_\phi \) on \(Y \) and a \(\Gamma \)-equivariant isomorphism \(H^{*-n}(Y, C) \cong \bigoplus_{\phi} V_{\phi} \otimes_C H^*(Y, K_\phi) \), where \(\Gamma \) acts on \(V_{\phi} \) by \(\phi \) and trivially on \(H^*(Y, K_\phi) \). For unramified \(\pi \), this immediately follows from [KiW], remark 15.3 (d). Applying this remark for the restriction of \(\pi \) to \(\pi^{-1}(U) \), for the open dense subset \(U \subseteq Y \) obtained by removing the ramifications divisor of \(\pi \), by perverse analytic continuation in general it suffices to observe that for \(\delta_Y = C_Y[n] \) the semisimple perverse sheaf \(\pi_*(\delta_Y) \) on \(Y \) has irreducible perverse constituents \(K \) whose restriction to \(U \) are nontrivial. To show this notice that \(Hom(\pi_*(\delta_Y), K) = Hom(\delta_Y, \pi^!(K)) \) vanishes if \(K \) (and hence \(\pi^!(K) \)) is a perverse sheaf with support of dimension \(< \dim(Y) \). Indeed, since \(\delta_Y \) is an irreducible perverse sheaf with support of dimension \(\dim(Y) \), \(Hom(\delta_Y, \pi^!(K)) \) is zero. This being said, we obtain \(m_{\nu, \phi}(\phi) = \dim(H^p(Y, K_\phi)) \). Since \(f \) is a closed immersion, the direct images of \(K_\phi \) under the Albanese morphism again are irreducible perverse sheaves. So we can apply the theorem. QED

Still suppose \(\pi : \tilde{Y} \to Y \) is a Galois covering and \(f : Y \to Alb(Y) \) is a closed embedding. Since \(\chi(Y, K_\phi) = \sum_{\nu} (-1)^{\nu} \dim(H^\nu(Y, K_\phi)) \), for \(\gamma \in \Gamma \) the trace \(tr(\gamma) = \sum_{\nu} (-1)^{\nu} tr(\gamma; H^\nu(Y, \delta_Y)) \) can be written

\[
tr(\gamma) = \sum_{\phi} \chi(Y, K_\phi) \cdot tr(\gamma; V_{\phi}).
\]

\(K_\phi \) has rank \(\dim(V_{\phi}) \) on \(U \), thus generic rank \(\dim(V_{\phi}) \) on \(Y \). Hence the characteristic cycle of the D-module on \(Alb(Y) \) attached to \(f_\phi(K_\phi) \) is a sum of irreducible Lagrangians cycles containing the conormal Lagrangian cycle \(\Lambda_{f(Y)} \subset T^*(X) \) with multiplicity \(\dim(V_{\phi}) \). As shown in [FK], by the theorem of Dubson-Riemann-Roch this implies \(\chi(K_\phi) = \chi(f_\phi(K_\phi)) \geq \dim(V_{\phi}) \cdot deg(\Lambda_{f(Y)}) \).

Furthermore since \(f(Y) \cong Y \) is smooth, the characteristic variety of \(f(Y) \) is \(\Lambda_{f(Y)} \) and hence \(deg(\Lambda_{f(Y)}) \) is the Euler-Poincare characteristic \(\chi_Y \) of the variety \(Y \), again by [FK]. This implies

\[
tr(\gamma) = \sum_{\nu} (\dim(V_{\phi})\chi_Y + a_{\phi}) \cdot \phi(\gamma)
\]

for certain integers \(a_{\phi} \geq 0 \). Hence the virtual representation defined by \(tr(\gamma) \) is \(\chi_Y \) times the regular representation of \(\Gamma \) plus a true representation of \(\Gamma \). Notice that \(\chi_Y \geq 0 \) holds by [FK] and our assumptions on \(f \).

Remark. In the case of surfaces \(Y \), for a nontrivial irreducible representation \(\phi \) of \(\Gamma \) from this Chevalley-Weil type trace formula we obtain the estimate \(m_0(\phi) - 2m_1(\phi) = \dim(V_{\phi})\chi_Y + a_{\phi} \geq 0 \). So, for surfaces and nontrivial \(\phi \) under the assumptions before corollary 2, this improves the previous estimate \(m_0(\phi) \geq 2m_1(\phi)/(g + 1) \) of corollary 2.

References:

[BBD] Beilinson A., Bernstein J., Deligne P., Faisceaux pervers, Asterisque 100 (1982).

[FK] Franeciki J., Kapranov M., The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties, Duke Math. J. 104 no. 1 (2000) 171-180.

[KiW] Kiehl R., Weissauer R., Weil conjectures, Perverse Sheaves and l-adic Fourier Transform, Springer Verlag, Ergebnisse der Mathematik 42 (2001).

[KrW] Krämer Th., Weissauer R., Vanishing theorems for constructible sheaves on abelian varieties, J. Alg. Geom. 24 (2015), 531 - 568.

[W] Weissauer R., Vanishing theorems for constructible sheaves on abelian varieties over finite fields, To appear in Math. Annalen.

3