Pseudomonas aeruginosa genomic structure and diversity

Jens Klockgether, **Nina Cramer**, **Lutz Wiehlmann**, **Colin F. Davenport** and **Burkhard Tümmler**

Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Klinische Forschergruppe, Hannover, Germany

Correspondence:

Jens Klockgether, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
e-mail: klockgether.jens@mh-hannover.de

The **Pseudomonas aeruginosa** genome (G + C content 65–67%, size 5.5–7 Mbp) is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators, and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among **P. aeruginosa** strains and exhibits an interclonal sequence diversity of 0.5–0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNA^Lys_ or tRNA^Gly_ genes represent hotspots of inter- and intragenomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of **P. aeruginosa**, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. One hundred ninety-eight of the 231 single nucleotide substitutions (SNPs) were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport, and secretion. In summary, **P. aeruginosa** is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer.

Keywords: **Pseudomonas aeruginosa**, genome, genomic island, core genome, accessory genome, clonal complex, oligonucleotide signature

INTRODUCTION

The genetic repertoire of **Pseudomonas aeruginosa** reflects the lifestyle of this ubiquitous bacterial species. **P. aeruginosa** strains are found in various environmental habitats as well as in animal and human hosts, where they can act as opportunistic pathogens. The colonization of this broad spectrum of habitats goes along with the ability to exploit many different nutrition sources and a high potential for adaptation to new (or changing) environmental conditions (Ramos, 2004).

The metabolic versatility is provided by genes encoding not only the enzymes participating in metabolic pathways, but also by a very high number of transcriptional regulators and two-component regulatory systems. More than 500 regulatory genes were identified in the genome of strain PAO1 (Stover et al., 2000). The genomes of **P. aeruginosa** strains are larger than those of most sequenced bacteria. Within the species, the genome size varies between 5.5 and 7 Mbp (Schmidt et al., 1996; Lee et al., 2006).

The divergence in genome size is caused by the so-called accessory genome. The major part of the genome, the core genome, is found in all **P. aeruginosa** strains with the respective DNA generally collinearly arranged (Römling et al., 1995). The core genome, with few exceptions of loci subject to diversifying selection, is highly conserved among clonal complexes and shows sequence diversities of 0.5–0.7% (Spencer et al., 2003; Lee et al., 2006; Cramer et al., 2011). The accessory genome consists of extrachromosomal elements like plasmids and of blocks of DNA inserted into the chromosome at various loci. The elements of the accessory genome can be present in subgroups of the **P. aeruginosa** population but may also occur only in single strains (Klockgether et al., 2007; Wiehlmann et al., 2007). The individual composition of the accessory genome accounts for most intra- and interclonal genome diversity in **P. aeruginosa**. The elements of the accessory genome were apparently acquired by horizontal gene transfer from different sources including other species or genera. Upon integration into the host chromosome they appear as “foreign” blocks in the core genome. Therefore, a **P. aeruginosa** chromosome is often described as a mosaic structure of conserved core genome frequently interrupted by the inserted parts of the accessory genome.

The individual mosaics also show remarkable plasticity. Ongoing acquisition of new foreign DNA as well as larger or smaller deletion events, mutations of single nucleotides and even chromosomal inversions (Römling et al., 1997; Ernst et al., 2003; Kresse et al., 2003; Smith et al., 2006; Klockgether et al., 2010; Cramer et al., 2011) – all of them potentially affecting parts of the core and/or the accessory genome – continuously modify the genome.
modulate the *P. aeruginosa* strain’s phenotype and differentiate it from others.

Genome diversity of *P. aeruginosa* was initially analyzed by low-resolution physical mapping techniques (Schmidt et al., 1996; Römling et al., 1997). Thanks to progress in DNA sequencing technologies *P. aeruginosa* genomes can nowadays be compared by the base (Kung et al., 2010; Silby et al., 2011).

GENOME SEQUENCES

Pseudomonas aeruginosa is ubiquitous in aquatic habitats and colonizes animate surfaces of humans, animals and plants. Complete genome sequences, however, are so far only available for *P. aeruginosa* isolates from human infections (Table 1).

The first complete genome sequencing was performed for strain PAO1 (Stover et al., 2000), derived from an Australian wound isolate from the 1950s. The PAO1 strain has been and is still the major reference for genetic and functional studies on *P. aeruginosa*. The PAO1 genome consists of a 6.264-Mbp circular chromosome encoding 5,570 predicted protein coding sequences. Sequence and annotation are deposited at the National Center for Biotechnology Information (NCBI) genome database (Refseq. no. NC_002516) and in the *Pseudomonas* Genomes Database (Winsor et al., 2009), which also documents ongoing annotation updates. Thanks to the recently developed deep cDNA sequencing more and more non-coding RNAs are currently being identified in bacterial genomes, and thus we can expect a large number of non-coding genes to be added to the annotation of *P. aeruginosa* genomes as has been executed for Helicobacter pylori and *Pseudomonas putida* (Sharma et al., 2010; Frank et al., 2011).

The second *P. aeruginosa* genome sequence was published for the ExoU-positive strain PA14 (NC_008463, Lee et al., 2006), a clinical isolate displaying higher virulence than PAO1. Fifty-four PAO1 regions of at least one open reading frames (ORFs) are absent in the PA14 genome, and 58 PA14 regions are absent in PAO1 including the PA14 pathogenicity islands PAPI-1 and PAPI-2 (He et al., 2004).

LESB58, a so-called “Liverpool epidemic strain,” was found to be highly transmissible among CF-patients and displayed the potential to cause severe infections even in non-CF human hosts (Cheng et al., 1996; McCallum et al., 2002). The LEB58 genome (NC_011770) contains previously unknown accessory genome elements (Winstanley et al., 2009).

PA7 is a clinical isolate from Argentina with a notably unusual antimicrobial resistance pattern. Strain PA7 (NC_009656) shares only 93.5% nucleotide identity in the core genome with the other sequenced strains confirming the previous assignment of strain PA7 as a taxonomic outlier within the species *P. aeruginosa* (Roy et al., 2010).

Almost complete genome sequences are also available for strains 2192 (NZ_AAKV000000), C3719 (NZ_AAKV000000), PACS2 (NZ_AAQW000000; Mathee et al., 2008), and 39016 (AEEX000000; Stewart et al., 2011). Eight additional *P. aeruginosa* genome sequences are listed at NCBI as “In Progress” (last checked on February 23rd, 2011) and numerous *P. aeruginosa* projects are deposited in the European Nucleotide Archive (ENA) hosted by EMBL-EBI. With decreasing costs and increasing speed of sequencing we can expect an avalanche of novel *P. aeruginosa* sequence data. Published examples are the comparative sequencing of PAO1 sublines of divergent metabolic and virulence phenotypes (Klockgether et al., 2010), the identification of *de novo* mutations conferring antimicrobial resistance (Moya et al., 2009), the analysis of genomic gradients of sequence diversity in a pool of clinical isolates (Dotsch et al., 2010), and the intraclnal microevolution in the cystic fibrosis lung (Cramer et al., 2011).

THE ACCESSORY GENOME

The accessory genome consists of DNA elements from within the range of a few hundred bases to more than 200 kbp. The minimum size of an accessory element was defined as a block of at least four contiguous ORFs that are not conserved in all *P. aeruginosa* (Mathee et al., 2008). Thirty-eight to 53 accessory elements were identified in the completely sequenced *P. aeruginosa* genomes (Table 2). The PAO1 genome only contains inserts of 14 kbp or smaller (Mathee et al., 2008), whereas the LEB58 genome harbors five genomic islands and five inserted prophages of 14–111 kbp in size (Winstanley et al., 2009). Table 3 lists the subset of genomic islands that were analyzed in detail in silico and/or in wet lab experiments.

Within the chromosomally integrated islands, very often phages, transposons, or IS-elements are found indicating that the majority of the accessory genome originates from mobile DNA elements which have been acquired and kept by the host strain. Many elements were irreversibly fixed by secondary mutation or deletions, but a few others have retained their mobility and can still leave the chromosomal insertion site and be transferred elsewhere, as shown for the elements PAPI-1 (Qiu et al., 2006) and pKLC102 (Klockgether et al., 2007). For a detailed description of the different types of accessory elements [integrative and conjugative elements (ICEs), prophages, transposons, etc.], the reader is referred to the recently published review by Kung et al. (2010).

The acquisition of the elements of the accessory genome from other taxa is not only evident from the gene contents with its overrepresentation of mobile DNA elements, but also from global

Table 1 | Features of sequenced *P. aeruginosa* strains.

Strain	PAO1	PA14	PA7	LEB58	PACS2	2192	C3719	39016
Source	Wound	Clinical	Clinical	CF-patient	Clinical	CF-patient	CF-patient	Keratitis
Genome size (Mbp)	6.264	6.538	6.588	6.602	6.492	6.905	6.222	6.667
GC-content (%)	66.6	66.3	66.5	66.5	66	66.2	66.5	66
No. of protein coding ORFs	5570	5892	6286	5925	5676	6191	5578	6401

1 http://www.ebi.ac.uk/ena/
Table 2 | Regions of genome plasticity (RGP) in seven sequenced *P. aeruginosa* genomes.

RGP	Insertion Site	Flanking loci	Strain						
	In PAO1	In PA14	PAO1	PA14	LESB58	PA7	2192	C3719	PACS2
RGP1	0201/0208	02530/02550	*	i	*	*			
RGP2	0256/0264	03160/03420	*	i	*	*			
RGP3	0611/0629	07960/08160	*	i	j	*	*		
RGP4	0641/0648	08300/08330	*	i	j	*	*		
RGP5	tRNA^{Arg}	0714/0730	55100/54830	i	i	i	i		
RGP6	tRNA^{Glu}	0819/0827	53880/53560	i	i	i	i		
RGP7	tRNA^{His}	09760/0988	51670/51510	i	i	i	i		
RGP8	tRNA^{Thr}	1013/1014	51240/51220	i	i	i	i		
RGP9³	1087/1092	50340/50290	*	*	i	i	i		
RGP10	1191/1192	49040/48870	i	i	i	i			
RGP11	1222/1225	48520/48440	*	i	*	i	*		
RGP12	1243/1244	48160/48150	i	i	i	i			
RGP13	1367/1373	46630/46490	i	i	i	i			
RGP14	1375/1376	46470/46540	i	i	i	i			
RGP15	1377/1394	46440/46390	i	i	i	i			
RGP16	1530/1531	44650/44640	i	i	i	i			
RGP17	tRNA^{His}	1796/1797	41350/41280	i	i	i	i		
RGP18	1964/1965	39130/39110	i	i	i	i			
RGP19	2024/2070	38340/37730	i	*	*	i	i		
RGP20	2099/2107	37360/37350	*	*	*	*	*		
RGP21	2181/2187	36370/36360	*	*	i	*	*		
RGP22	2217/2235	36050/35690	i	i	i	i	i		
RGP23	2422/2423	33370/33290	i	i	i	i			
RGP24	2455/2464	32860/32770	i	i	i	i	i		
RGP25	2570/2571	31290/30840	i	i	i	i			
RGP26	tRNA^{Leu}	2583/2584	30700/30670	i	i	i	i		
RGP27	tRNA^{Glu}	2772/7373	28895/28730	i	i	i	i		
RGP28	tRNA^{Phe}	2817/2820	27710/27590	i	i	i	i		
RGP29	tRNA^{Glu}	2950/2951	25900/25880	i	i	i	i		
RGP30	3141/3160	23470/23360	i	i	i	i			
RGP31⁶	3222/2223	22560/22490	i	i	i	i			
RGP32	3323/3240	22290/22075	i	i	i	i			
RGP33	3496/3515	18870/18860	i	i	i	i			
RGP34	3538/3537	18620/18610	i	i	i	i			
RGP35	3788/3789	15670/15340	i	i	i	i			
RGP36	3865/3870	13990/13860	*	i	i	i			
RGP37	4162/4163	10130/10040	*	i	i	i			
RGP38	4190/4196	09700/09690	*	*	i	*			
RGP39	tRNA^{His}	4541/4542	58900/60190	i	i	i	i		
RGP40	tRNA^{Met}	4673/4674	61820/61840	i	i	i	i		
RGP41	2770/2773	28280/28220	*	i	i	*	*		
RGP42	4100/4108	10850/10820	*	i	i	*	*		
RGP43	0041/0042	00510/00530	i	i	i	i			
RGP44	1149/1153	49630/49500	i	i	i	i			
RGP45	1238/1242	48240/48170	*	i	i	i			
RGP46	1655/1656	43110/43050	i	i	i	i			
RGP47	1934/1940	39500/39460	i	i	i	i			
RGP48	2332/2337	34450/34440	*	i	i	*	*		
RGP49	2793/2795	28000/27980	*	i	i	*	*		
RGP50	3368/3368	20660/20490	*	i	i	i	i		
RGP51	tRNA^{Arg}	4524/4526	58700/58750	i	*	i	*	*	

(Continued)
Table 2 | Continued

RGP	Insertion Site	Strain In PAO1	Strain In PA14	Strain PAO1	Strain PA14	Strain LESB58	Strain PA7	Strain 2192	Strain C3719	Strain PACS2	
RGP62	tRNA^{Phe}	5149/5150	68000/68040	i							
RGP63	0069¹¹	00810¹¹	i								
RGP64	0278¹¹	03620¹¹	i								
RGP65	0377/0378	04940/04960	i								
RGP66	tRNA^{Met}	0574/0575	07450/07500	i	i						
RGP67	3858/3859	14080/14100	i								
RGP68¹²	3840/3844	14290/14340	*	i	*	i	*	i	*	i	
RGP69	3714/3715	16340/16350	i								
RGP70	tRNA^{Pro}	3031/3032	24860/24880	i							
RGP71	2650/2651	29820/29830	*	i	*	*	*	*	*	*	
RGP72	tRNA^{Cys}	2581/2582	30710/30730	i							
RGP73¹³	2397/2403	33600/33690	*	*	i	+	i	+	+	+	
RGP74	2201/2202	36230/36250	i								
RGP75	1579/1580	44070/44080	i								
RGP76	1425/1428	45980/46010	*	*	*	i	*	*	*	*	
RGP77	1397/1398	46330/46350	*	*	*	*	*	*	*	*	
RGP78	4466/4467	57980/57990	i								
RGP79	5290/5291	69840/69850	i								
RGP80	5454/5460	72000/72060	*	*	*	i	*	*	*	*	
RGP81	4138/4139	10420/10380	i								
RGP82	3663/3664	16980/16970	i								
RGP83	3463/3464	19330/19320	i¹⁴	i	i¹⁴	i¹⁴		i¹⁴		i¹⁴	
RGP84	tRNA^{Psr}	2603/2604	30430/30410	i	i¹⁶						
RGP85	2593/2594	30550/30560	i	i¹⁶							
RGP86	0831/0832	53610/53520	i								
RGP87	tRNA^{Ser}	5160/5161	68140/68170	i							
RGP88	3961¹⁶	12630¹⁶	i								
RGP89	3834/3836	14440/14390	*	i	*	+	i	*	+	+	

Differentiation of accessory elements in the RGPs: i, strain-specific accessory element; *or +, identical accessory elements in two or more strains. RGPs 1–62 were defined by Mathee et al. (2008) and RGPs 63–80 by Roy et al. (2010). The novel RGPs 81–89 were extracted from the sequences of genomic islands in strain LESB58 (RGP 81–86, Winstanley et al., 2009) and strain PSE9 (RGP 87–89, Battle et al., 2009).

¹Insertions are designated by the numbers of the flanking loci in the PAO1 and PA14 genomes (e.g., 0201 is PA0201, 02530 is PA14_02530).

²Insertion LESPP-1 between PA0612 and PA0648 homologs comprises RGP3 and RGP4.

³Region containing flagellin glycosylation genes (replacement island).

⁴Partial duplication of sequence of the core genome (between RGP27 and RGP28).

⁵No annotated ORF in this insertion.

⁶Region contains O-antigen gene cluster (replacement island).

⁷No annotation in PAO1 reference sequence but in variants PAO1-DSM and MPAO1 (Klockgether et al., 2010).

⁸Identical sequence with discordant ORF annotation for the different strains.

⁹Identical sequence with discordant annotation for PACS2 versus LESB58 and 2192.

¹⁰Region contains pilA gene (replacement island).

¹¹Homologous ORF in PA7 disrupted by the insertion.

¹²Insertion contains exoS gene in PAO1, LESB58, 2192, C3719, and PACS2.

¹³Region contains pyoverdine synthesis gene cluster (replacement island).

¹⁴<1 kb insertion in PAO1, 2192, C3719, and PACS2 with no predicted ORF.

¹⁵Insertion in PA7 comprises RGP84 and RGP85.

¹⁶Homologous ORF in strain PSE9 disrupted by PAGI-7.

Parameters like the oligonucleotide signature. The segments of the core genome share the same oligonucleotide usage, whereas the constituents of the accessory genome exhibit a divergent G+C content and oligonucleotide usage (Reva and Tümmler, 2004, 2005). In the genome atlas of *P. aeruginosa* LESB58 (Figure 1), the regions with an anomalous tetranucleotide composition and an underrepresentation of common octa- to tetradecanucleotides coincide with the segments of the accessory genome. Figure 2
shows the genome distribution of the most abundant 8- to 14mers in P. aeruginosa LESB58 (Davenport et al., 2009). Regions that lack these strain- or taxon-specific words represent those parts of the accessory genome that is most foreign from the core.

REGIONS OF GENOME PLASTICITY

Elements of the accessory genome are located in all sections of the P. aeruginosa chromosome, not concentrated in some regions. Nevertheless, the uptake of accessory DNA apparently did not occur completely at random but at specific genomic loci that are prone to integration of special mobile elements.

A comprehensive comparison of the genomes of strains PAO1, PA14, 2192, C3719, and PACS2 (Mathee et al., 2008) led to the definition of so-called “regions of genome plasticity” (RGPs). Mathee and co-workers searched for segments of DNA not conserved in all five genomes and designated any region containing a block of four or more contiguous ORFs that is missing in at least one of the genomes as an RGP. For each of these RGPs they defined the DNA contained in the accessory blocks and the ORFs annotated within. Also the RGP flanking ORFs conserved in all five strains were listed, referred to as “anchors,” which describe the genomic site used for the integration of the foreign DNA.

The approach by Mathee et al. (2008) appears reasonable to describe accessory and core genome of P. aeruginosa strains, although small insertions are ignored and deletions affecting the core genome in some, but not all, compared strains will misassign the respective segment to the accessory genome. A secondary check of the oligonucleotide usage will correct these false positives. Mathee et al. (2008) initially defined 52 RGPs (no. 1–62 in Table 2). With the advent of the PA7 genome sequence, a further 18 elements were identified (RGPs 63–80; Roy et al., 2010). Table 2 moreover lists the novel RGPs 81–89 that comprise yet unknown RGPs from strains LESB58 (Winstanley et al., 2009) and PSE9 (Battle et al., 2009).

On average each sequenced P. aeruginosa strain carries about 40 RGPs with insertions. The outlier was strain PA7 with 53 occupied RGPs. tRNA genes serve as integration sites for 20 RGPs. The 3′ end of tRNA genes and the subsequent nucleotides are known to serve as integration sites for ICEs and phage-like elements (Dobrindt et al., 2004). In the majority of RGPs, however, other target sequences had been utilized for the insertion corresponding with the diverse type and origin of the elements of the accessory genome of P. aeruginosa (Kung et al., 2010). Most target sequences are located in intergenic regions, but in three RGPs a single ORF was disrupted (RGPs 63, 64, and 88; Table 2). Interestingly, insertions in each of these three RGPs were only detected for a single strain so far, while in all other tested genomes the non-fragmented anchor-ORF was present.

Table 3 | Genomic islands in P. aeruginosa strains described in literature.

Genomic island	Host strain	Size (kb)	RGP locus	Reference
PAPI-1	PA14	108	41	He et al. (2004)
PAPI-2	PA14	10.8	7	He et al. (2004)
LES-prophage 1	LESB58	14.8	3 and 4	Winstanley et al. (2009)
LES-prophage 2	LESB58	42.1	81	Winstanley et al. (2009)
LES-prophage 3	LESB58	42.8	82	Winstanley et al. (2009)
LES-prophage 4	LESB58	26.8	83	Winstanley et al. (2009)
LES-prophage 5	LESB58	39.9	84	Winstanley et al. (2009)
LES-prophage 6	LESB58	7.6	10	Winstanley et al. (2009)
LESGI-1	LESB58	46.4	28	Winstanley et al. (2009)
LESGI-2	LESB58	31.7	85	Winstanley et al. (2009)
LESGI-3	LESB58	110.6	27	Winstanley et al. (2009)
LESGI-4	LESB58	39.4	23	Winstanley et al. (2009)
LESGI-5	LESB58	29.4	86	Winstanley et al. (2009)
LESGI-6	LESB58	7.6	10	Winstanley et al. (2009)
LESGI-7	LESB58	46.4	28	Winstanley et al. (2009)
LESGI-8	LESB58	31.7	85	Winstanley et al. (2009)
LESGI-9	LESB58	110.6	27	Winstanley et al. (2009)
LESGI-10	LESB58	39.4	23	Winstanley et al. (2009)
LESGI-11	LESB58	29.4	86	Winstanley et al. (2009)
LESGI-12	LESB58	7.6	10	Winstanley et al. (2009)
pKLC102	C, SG17M	103.5	41	Klockgether et al. (2004)
PAGI-1	X24509	48.9	23	Liang et al. (2001)
PAGI-2	C	105	29	Larbig et al. (2002)
PAGI-3	SG17M	103.3	29	Larbig et al. (2002)
PAGI-4	C	23.4	7	Klockgether et al. (2004)
PAGI-5	PSE9	99.3	7	Battle et al. (2008)
PAGI-6	PSE9	44.4	87	Battle et al. (2009)
PAGI-7	PSE9	22.5	88	Battle et al. (2009)
PAGI-8	PSE9	16.2	62	Battle et al. (2009)
PAGI-9	PSE9	6.6	89	Battle et al. (2009)
PAGI-10	PSE9	2.2	25	Battle et al. (2009)
PAGI-11	PSE9	2	52	Battle et al. (2009)
ExoU-A	6077	81.2	7	Kulasekara et al. (2006)
ExoU-B	19660	29.8	7	Kulasekara et al. (2006)
ExoU-C	X13273	3.7	7	Kulasekara et al. (2006)
Three regions show an unusual local genome structure. Strains LESB58 and PA7 each carry hybrids of two adjacent RGPs. Moreover, in strain LESB58 a 137-kbp segment of the core genome 3′ to RGB15 was transposed upstream by 83 genes (84.3 kbp; Figure 3). No repeats flanking the segment or mobility-related genes such as transposase- or integrase-coding genes were identified so that the underlying mechanism of the transposition remains elusive.

THE pKLC102/PAGI-2 ICE FAMILY

Among the genomic islands of the P. aeruginosa accessory genome, members of the pKLC102/PAGI-2 family are highly prevalent. They represent a special group of ICEs that can be described as semi-conserved elements, as they generally consist of individual DNA blocks and sets of genes common to all members (Klockgether et al., 2008; Kung et al., 2010). pKLC102/PAGI-2 family islands have been detected in various bacterial species and genera, mainly in β- and γ-proteobacteria. The fact that a set of genes is conserved among all family members indicates a common origin from an ancient ancestor (Mohd-Zain et al., 2004). This conserved gene set accounts for structural and mobility-related features and conjugal transfer. Individual genes within the islands can encode a broad spectrum of different functions, among them catabolic pathways as well as virulence effectors. Existence of free episomal forms and/or transfer to other strains, even across species barriers, have been monitored for several pKLC102/PAGI-2-like islands, thus confirming their role for (ongoing) evolution of bacterial genomes and, due to the different “cargo” provided by these elements to the host strains, for the genome diversification within bacterial species and emergence of subgroup- or strain-specific phenotypes. For a detailed summary of the role of the common “backbone” genes for integration, mobilization and transfer of pKLC102/PAGI-2-like elements, the reader is referred to the recent review by Kung et al. (2010).

The role of pKLC102/PAGI-2-like islands within the P. aeruginosa accessory genome, and thus their contribution to genome
diversity, is illustrated by the abundance of many different islands of this family within the population. Hybridization results have indicated the presence of such islands in a majority of strains isolated from different habitats (Klockgether et al., 2007; Wiehlmann et al., 2007). Similarly, searching the available P. aeruginosa genome sequences for the typically conserved genes revealed their presence in all strains but PAO1.

Six of the islands listed in Table 3 are members of that family: pKLC102, PAPI-1, PAGI-5, PAGI-2, PAGI-3, and LESGI-3. All of them are between 99 and 110 kbp in size. Clusters of typically conserved backbone genes were also detected in smaller islands like PAGI-4 or ExoU-A. As significant parts of the backbone, however, were missing, it was hypothesized that PAGI-4 and ExoU-A represent remaining fragments of formerly complete PAGI-2/pKLC102-like islands that underwent recombination and deletion events resulting in the loss of smaller (ExoU-A) or bigger parts (PAGI-4) of the original elements (Klockgether et al., 2004; Kulasekara et al., 2006).

The mentioned P. aeruginosa islands split up into two subtypes: PAGI-2-like islands (PAGI-2, PAGI-3, and LESGI-3) contain a phage P4-related integrase gene and are inserted at tRNA_Gly genes in RGP 27 or 29. The well described clc element providing
FIGURE 3 | Transposition of core genome DNA in LESB58. The genomic region with different core genome architecture is shown for strains PAO1 and LESB58. One hundred thirty-seven kbp of DNA (green) are located upstream of other core genome DNA blocks (gray) in LESB58 while occurring downstream of them in PAO1 (and other genomes). Surrounding core genome DNA arranged collinearly in both strains is shown in black, strain-specific insertions are represented by white areas. Genome coordinates of the borders of the core genome DNA blocks and numbers of the ORFs within are given for both strains. Accessory DNA blocks are described by the RGP number (see Table 2).

features for metabolizing chlorinated aromatic compounds could be assigned to that subtype as well. Present in other Pseudomonas species as well as in Ralstonia and Burkholderia strains, transfer of clec to P. aeruginosa PAO1 by conjugation was shown in vitro (Gaillard et al., 2008). Upon transfer, genomic integration occurred at the usual tRNA\textsubscript{Gly} genes in RGP27 or RGP29.

The pKLC102-subtype islands (pKLC102, PAPI-1, PAGI-5) are endowed with a XerC/XerD-like integrase gene, and the two copies of a tRNA\textsubscript{Lys} gene in RGP7 and RGP41 can be used as insertion sites. Transfer of pKLC102-like elements from one RGP to the other has been demonstrated (Kiewitz et al., 2000; Qiu et al., 2006). The “fragmentary” pKLC102-like islands PAGI-4 and ExoU-A are also located in RGP7. The tRNA\textsubscript{Lys} gene in RP7 is also the insertion site for islands carrying the virulence-associated exoU gene and its cognate chaperone spcU gene, ExoU-B, ExoU-C, and PAPI-2. Although DNA typical for pKLC102-like islands is scarce in these exoU-positive islands, the common insertion site and a few motifs within their sequence indicate a descent from a pKLC102-like element as hypothesized for ExoU-A (Kulasekara et al., 2006).

Kung et al. (2010) described the two subtypes as two families of P. aeruginosa ICEs. Due to the conserved function and synteny of the backbone genes, however, we prefer to consider them as members of one family with common ancestry (Klockgether et al., 2007, 2008). The pKLC102/PAGI-2-like islands share 35 conserved orthologs with a variable degree of amino acid identity between 35 and 100%.

Divergent evolution from the ancestor might have caused the early formation of the two pKLC102- and PAGI-2 subtypes that exhibit higher average identity values among the conserved backbone genes and each carry a subfamily-specific set of genes (Figure 4). Eleven genes were specific for the PAGI-2-subtype and 39 genes specific for the pKLC102- subtype including a cluster of conjugative type IV sex pilin genes (Klockgether et al., 2004; Carter et al., 2010). Thus, pKLC102-/PAGI-2-family islands appear as mosaic pieces in P. aeruginosa genomes while they are small mosaics themselves, composed of conserved backbone, subtype-specific, and individual cargo genes.

Due to their size, islands of this family can represent a major portion of the accessory genome. Strains with one or two large pKLC102/PAGI-2-family elements are common, but higher numbers per genome are possible. P. aeruginosa strain C harbors PAGI-2 and pKLC102, but two more sets of backbone ORFs have been identified in the chromosome indicating four related elements in total, with an overall DNA sequence length of more than 360 kbp (own unpublished data). Of the seven genomes presented in Table 2, six contain large pKLC102/PAGI-2-family islands. Strains PA14, C3719, and PA7 each harbor one pKLC102-like island in RGP41 or, in case of PA7, in RGP7. LESB58 also contains one island, but of the PAGI-2 subtype (LESGI-3 in RGP27). Two islands each are located in the 2192- and the PACS2 genomes. Both strains also harbor a pKLC102-like insertion in RGP41 and a PAGI-2-related island, which is in RGP29 for strain 2192 and in RGP27 in PACS2.

The island in 2192 inserted at RGP29 is a nearly identical copy of PAGI-2 itself but is interestingly accompanied by another island of comparable size, the so-called Dit-island which is distinct from the...
Klockgether et al. | P aeruginosa genome diversity

FIGURE 4 | Conserved genes in pKLC102-/PAGI-2-like genomic islands. PAGI-2 (Larbig et al., 2002) and pKLC102 (Klockgether et al., 2004) were chosen as representatives for the respective subtypes among the pKLC102-/PAGI-2 family. The annotated ORFs are labeled according to their conservation. ORFs appearing in all *P. aeruginosa* islands of this family (“backbone genes”) are shown in black. ORFs conserved within one of the subtypes are colored in gray. White blocks represent ORFs specific for the single islands (“individual cargo”). Intergenic regions (igr) marked with an asterisk indicate loci with no ORF annotated for pKLC102 but for the highly homologous sequences in other islands from this subtype. Please note that ORF C105 of PAGI-2 is homologous to DNA in pKLC102 described as a part of the replication origin oriV of this element. The other part of oriV containing 16 57 bp repeats (Klockgether et al., 2004) is not conserved among the island family, not even in other islands from the pKLC102 subtype.

pKLC102/PAGI-2 family (Mathee et al., 2008). Thus an extremely large insertion of about 220 kbp is present in RGP29, which probably resulted from successive acquisition of two elements using the same chromosomal integration site. The RGP41-insertion in strain PA7 also provides hints for a combination of genome islands. Next to the pKLC102-like island with all typically conserved genes a DNA block with a second copy of some of the backbone genes is located, resembling a fragment of a second pKLC102-like element linked to the first one (Klockgether et al., 2008; Roy et al., 2010).

REPLACEMENT ISLANDS

Table 2 also lists the loci in the core genome that are under diversifying selection, the so-called replacement islands: RGP9 (flagellin glycosylation genes), RGP31 (O-antigen biosynthesis genes), RGP60 (pilin gene), and RGP73 (pyoverdine gene cluster). The RGP9s only encompass those genes that fulfill the definition of less than 70% nucleotide sequence identity between homologs and thus do not necessarily comprise the complete functional units (Mathee et al., 2008).

The types of each replacement island were identified by comparative sequencing of the respective gene clusters in *P. aeruginosa* strain collections. The 20 known O-antigen serotypes, for example, were assigned to 11 groups according to the criterion of more than 98% sequence identity in the major O-antigen biosynthesis gene cluster (Raymond et al., 2002).

RGP60, containing the *pilA* gene that encodes the major subunit for type IV attachment pili, was classified into groups I–V (Kus et al., 2004). This “major pilin” region adjacent to a tRNA

Thr gene contains, besides *pilA* for all groups but group II, several *tfp* genes that are involved in type IV pilus assembly and modification. More *tfp* genes are located downstream in the “minor pilin” region. Each of the five major pilin regions is associated with a specific set of minor pilins, and unrelated strains with the same major pilin type have identical minor pilin genes (Giltner et al., 2011). The absolute linkage disequilibrium between major and minor pilin groups provides evidence that both regions were derived from one large island. Consistent with this interpretation more pilin assembly genes are located between the major and minor pilin groups. These genes, however, were not subject of diversifying selection. Moreover a tRNA gene cluster is located between the major and the minor pilin region that serves as a hotspot for integration of large pKLC102-like islands (RGP41). Thus, the genome distance between major and minor pilin gene clusters varies between 136 kbp in strain PA14 and only 29 kbp in PAO1.

The pyoverdine gene clusters I, II, and III encode the three pyoverdine types and their specific receptor. Intratype divergence driven by recombination, positive selection, and horizontal gene transfer have enhanced the diversity of this genomic region (Smith et al., 2005). The two flagellins a and b differ in their primary amino acid sequence and their glycosylation from each other (Spangenberg et al., 1996). b-type flagellins are conserved in sequence and glycosylation (Verma et al., 2006). In contrast, six *fliC* single nucleotide substitutions (SNPs) haplotypes (Spangenberg et al., 1996) and
differential glycosylation patterns lead to a large diversity of a-type flagellins (Arora et al., 2004). The variability of the a-type glyco-
sylation gene cluster (RGP9) is high, even within the subtypes A1
and A2 that were defined by phylogenetic relatedness of amino
acid sequences.

THE P. AERUGINOSA Pangenome

The pangenome represents the complete gene pool of a bacte-
rial species. Thus the description of a pangenome depends on the
amount of sequence data available. For species with an extended
accessory genome like P. aeruginosa, the addition of each new
genome sequence will enlarge the overall pool of genes. The size
of the core genome that is present in all strains will decrease
concurrently.

To define the core genome and pangenome, the genomes are
sequentially screened for orthologs by searching for reciprocal best
BLAST hits. Genes that lack an ortholog in the already investigated
gene pool are added to the pangenome.

We used the tool “Comparative Genome Search” provided by
the Pseudomonas Genome Database2 to define the number of
orthologs representing reciprocal best blast hits in the four fully
sequenced genomes of PAO1, PA14, LESB58, and PA7 (BLASTP
comparisons, E-value cutoff: 1 × 10^{-4}). The tool also allows the
determination of individual genes per genome, so the number of
genes contributing to the pangenome could be counted with par-
alogs excluded. The results are shown in Figure 5. Please note that
the PAO1 gene pool is lower than the overall number of ORFs in
this genome (5520 compared to 5570) due to this exclusion of par-
alogs. As expected the core genome decreases and the pangenome
increases each by a few hundred genes with the addition of a new
genome. Although the analysis of just four genomes is insuffi-
cient for the extrapolation of the gene pool of core genome and
pangenome of P. aeruginosa, we can assume that the pangenome
does not approach a saturation value. Each novel genome sequence
will contribute a yet unknown gene set to the pangenome. The large
genomic islands of the pKCI102/PAGI-2 family contribute a
broad variety of cargo to the species. Each strain possesses an indi-
vidual set of islands that is acquired by horizontal gene transfer
preferentially from beta- and gamma-proteobacteria (Klockgether
et al., 2008). In other words, P. aeruginosa has wide, but not
unrestricted access to the gene pool of prokaryotes.

INTRACLUSIONAL GENOME DIVERSITY

The comparison of published genome sequences of clonally unre-
lated strains uncovered an interclonal sequence diversity of the
P. aeruginosa core genome of 0.5–0.7% (Spencer et al., 2003;
Cramer et al., 2011). The intraclassal diversity of members of
the same clonal complex, however, is yet unknown. Of the strains
with completely sequenced genomes, only strain PA14 belongs
to a common clonal complex in the P. aeruginosa population
(Wiehlmann et al., 2007). Hence we decided to sequence another
strain of the PA14 clonal complex by Illumina sequencing-by-
synthesis technology [study accession number ERP000390 at the
Nucleotide Read Archive (ENA) of the EBI]. This strain RN3 was
isolated from the first P. aeruginosa-positive airway specimen of
an individual with cystic fibrosis who was living in North–West
Germany. Strain PA14 is a clinical isolate from California. Thus
the two strains are of unrelated geographic origin.

The strain PA14 and strain RN3 genomes match in genome
size and differ in 231 SNPs from each other (Table 4) which corre-
sponds to a sequence diversity of 3.5 × 10^{-5}. Transitions (n = 148)
ocurred significantly more frequently than the expected ratio of
transitions to transversions of 55: 176 of a random distribution
(χ^2 = 206.3; P < 0.001). The number of SNPs in inter- and intra-
genic regions roughly corresponded with their proportions in the
genome. Within the coding regions synonymous SNPs were sig-
nificantly overrepresented (χ^2 = 23.2; P < 0.001) indicating that
de novo amino acid substitutions had been subject to purifying
selection.

Of the 231 SNPs, only 33 SNPs followed the statistics of a ran-
don distribution in the genome (Figure 6). In other words, 198
SNPs were non-randomly distributed in the genome implying that
the affected loci had been subject to diversifying selection.

The major hotspot is the phage P1-like gene cluster (PA14_48890–PA14_49000) with 87 SNPs, i.e., 38% of all SNPs. Thus phage P1 seems to be the most rapidly evolving part of the
PA14 genome consistent with the view that phages span a high
degree of genetic diversity and are prone to frequent horizontal
transfer (Hatfull, 2008).

Non-synonymous SNPs were mainly found in the functional
categories of transcriptional regulators, membranes, cellular
appendages, transport, and secretion (Table 4). Hotspots of
sequence diversity in single genes between the PA14 and RN3
genomes are ftsZ, armB (mexH), and cynS with six, five, and
four SNPs, respectively. FtsZ is the major tubulin-like cytoskele-
tal protein in the bacterial cytokinesis machine (Erickson et al.,
2010) and hence we noted with surprise that the FtsZ proteins
of strains PA14 and RN3 differ at five positions in their amino
acid sequence. The substitutions P-L, M-L, G-D, T-N, and P-T
are located within a stretch of 35 amino acids of the 394 aa

2http://www.pseudomonas.com/geneSearch.jsp
Table 4 | Single nucleotide substitutions in RN3 sequence (compared to PA14 reference).

Intragenic position	nt	Locus_tag	aa	Gene name	Encoded product
72440	T – C	PA14_00740	K – E	Putative lipoprotein	
96307	A – C	PA14_00970	syn.	Hypothetical protein	
273734	C – T	PA14_03110	D – N	Hypothetical protein	
47463	G – A	PA14_05410	syn.	chpC	putative chemotaxis protein
480880	T – C	PA14_05450	syn.	16S ribosomal RNA methyltransferase RsmE	
480915	T – C	PA14_05450	K – E	16S ribosomal RNA methyltransferase RsmE	
522777	G – T	PA14_05890	E – stop¹	putative stamin-like protein	
741080	G – A	PA14_08660	syn.	rRNA³⁴	
747764	G – A	PA14_08760	G – D	rpoB	DNA-directed RNA polymerase subunit beta
791890	A – G	PA14_09280	N – D	pchF	Pyochelin synthetase
888038²	C – T	PA14_10290	P – L	acoR	Transcriptional regulator AcoR
888039²	T – G	PA14_10290	P – L	acoR	Transcriptional regulator AcoR
927917	T – C	PA14_10770	I – T	Putative sensor/response regulator hybrid	
982940	A – G	PA14_11290	syn.	Putative permease	
1071133	G – C	PA14_12430³	ladS	Homolog to lost adherence sensor LadS	
1082959	A – G	PA14_12630	syn.	Putative ATP-dependent helicase	
1356548	G – C	PA14_15920	R – G	yhiE	Major facilitator transporter
144116	T – C	PA14_16820	syn.	Putative efflux transmembrane protein	
1468998	C – T	PA14_17130	syn.	dxr	I-deoxy-d-xylulose 5-phosphate reductoisomerase
1551664	G – A	PA14_18080	A – V	TetR family transcriptional regulator	
1558205	A – G	PA14_18150	syn.	acsL	Putative acetyl-CoA synthetase
1612742	A – G	PA14_18740	syn.	argG	Argininosuccinate synthase
1640196	G – T	PA14_18985	P – H	Putative protein	
1640394	A – G	PA14_18985	F – S	Hypothetical protein	
1880872	C – G	PA14_21690	A – G	lhr1	Putative ATP-dependent DNA helicase
1960256	C – A	PA14_22520	R – L	Hypothetical protein	
2027678	C – G	PA14_23360	P – R	wzz	O-antigen chain length regulator
2149425	T – C	PA14_24600	syn.	Putative carboxypeptidase	
2156146	C – A	PA14_24665	O – K	Hypothetical protein	
2209674	A – G	PA14_25250	K – E	gapA	Glyceraldehyde-3-phosphate dehydrogenase
2318606	A – G	PA14_26600	syn.	RNA polymerase sigma factor	
2407435	C – G	PA14_27755	syn.	yliJ	Glutathione S-transferase
2407463	A – G	PA14_27755	K – E	yliJ	Glutathione S-transferase
2510099	A – G	PA14_29030	T – A	Putative FMN oxidoreductase	
2545609	T – C	PA14_29390	syn.	Putative protein	
2545663	T – C	PA14_29390	syn.	Putative protein	
2553747	T – C	PA14_29440	D – G	LysR family transcriptional regulator	
2651339	T – C	PA14_30600	F – L	Putative permease	
2651365	A – G	PA14_30600	N – D	Putative permease	
2786206	A – G	PA14_31750	K – E	Putative acyltransferase	
2787777	C – G	PA14_32015³	czcA	Homolog to RND efflux transporter CzcA	
2878784	T – G	PA14_32015³	czcA	Homolog to RND efflux transporter CzcA	
2807266	G – C	PA14_32300	V – L	Putative kinase	
2885933	G – C	PA14_32985	syn.	gcvH2	Glycine cleavage system protein H
2965357	A – G	PA14_33600	syn.	Hypothetical protein	
2965433	A – G	PA14_33600	syn.	Hypothetical protein	
2965468	A – G	PA14_33600	syn.	Hypothetical protein	
2985345	A – G	PA14_33650	K – E	pvdD	Pyoverdine synthetase D
3198441	T – G	PA14_35940	syn.	Acyl-CoA synthetase	
3373667	G – C	PA14_37830	syn.	iscS	Putative pyridoxal-phosphate dependent enzyme
3374601	A – G	PA14_37830	F – S	iscS	Putative pyridoxal-phosphate dependent enzyme

(Continued)
Intragenic position	nt	Locus_tag	aa	Gene name	Encoded product
3387854	A – C	PA14_37965	Y – S	cynS	Cyanate hydratase
3387881	A – C	PA14_37965	M – L	cynS	Cyanate hydratase
3387884	T – C	PA14_37965	F – L	cynS	Cyanate hydratase
3387941	A – C	PA14_37965	M – L	cynS	Cyanate hydratase
3390498	A – C	PA14_38000	Stop – S⁴	Hypothetical protein	
3423281	A – G	PA14_38410	syn.	amrB/mexH	Multidrug efflux protein
3423414	C – G	PA14_38410	Q – E	amrB/mexH	Multidrug efflux protein
3424176	A – G	PA14_38410	T – A	amrB/mexH	Multidrug efflux protein
3424199	A – G	PA14_38410	syn.	amrB/mexH	Multidrug efflux protein
3425614	A – T	PA14_38410	H – S	amrB/mexH	Multidrug efflux protein
3442543	G – A	PA14_38580	G – D	Hypothetical protein	
3443292	C – G	PA14_38580	P – A	Hypothetical protein	
3541978	G – A	PA14_39750	syn.	Putative amino acid permease	
3543622	A – G	PA14_39770	T – A	Putative regulatory protein	
3568172	A – G	PA14_39910	F – L	phzE2	Phenazine biosynthesis protein PhzE
3569401	T – C	PA14_39925	K – E	phzD2	Phenazine biosynthesis protein PhzD
3566716	A – G	PA14_40020	Q – R	Hypothetical protein	
3566730	A – G	PA14_40020	K – E	Hypothetical protein	
3566749	A – G	PA14_40020	Q – R	Hypothetical protein	
3566751	A – G	PA14_40020	N – D	Hypothetical protein	
3566769	A – G	PA14_40020	K – E	Hypothetical protein	
3566788	A – G	PA14_40020	Q – R	Hypothetical protein	
3670384	A – G	PA14_41150	syn.	Putative permease of ABC transporter	
3711749	T – C	PA14_41563	syn.	cobA	Uroporphyrin-III C-methyltransferase
3711791	G – C	PA14_41563	V – L	cobA	Uroporphyrin-III C-methyltransferase
3764383	A – G	PA14_42220	I – M	Membrane sensor domain-containing protein	
3769180	C – G	PA14_42250	syn.	pscL	Type III secretion system protein
3879653	A – G	PA14_43570	F – L	Hypothetical protein	
3906774	G – C	PA14_43870	R – G	Hypothetical protein	
393352	C – G	PA14_44190	syn.	Putative sugar MFS transporter	
4346242	C – G	PA14_48890	syn.	Hypothetical protein	
4346254	G – A	PA14_48890	syn.	Hypothetical protein	
4346325	A – G	PA14_48890	syn.	Hypothetical protein	
4346332	G – A	PA14_48890	syn.	Hypothetical protein	
4346413	G – A	PA14_48890	syn.	Hypothetical protein	
4346434	G – A	PA14_48890	syn.	Hypothetical protein	
4346485	A – G	PA14_48890	syn.	Hypothetical protein	
4346497	G – A	PA14_48890	syn.	Hypothetical protein	
4346500	G – A	PA14_48890	syn.	Hypothetical protein	
4346665	C – T	PA14_48890	syn.	Hypothetical protein	
4346713	C – T	PA14_48890	syn.	Hypothetical protein	
4346731	T – C	PA14_48890	syn.	Hypothetical protein	
4346763	A – G	PA14_48890	syn.	Hypothetical protein	
4346845	A – G	PA14_48890	syn.	Hypothetical protein	
4346890	A – C	PA14_48890	syn.	Hypothetical protein	
4346926	G – A	PA14_48890	syn.	Hypothetical protein	
4346938	C – T	PA14_48890	syn.	Hypothetical protein	
4347034	C – T	PA14_48890	syn.	Hypothetical protein	
4347190	A – G	PA14_48890	syn.	Hypothetical protein	
4347211	G – A	PA14_48890	syn.	Hypothetical protein	
4347241	G – A	PA14_48890	syn.	Hypothetical protein	

(Continued)
Table 4 | Continued

Intragenic position	nt	Locus_tag	aa	Gene name	Encoded product
4347256	C – T	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347283	T – C	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347289	G – C	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347310	T – C	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347322	T – C	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347346	C – G	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347358	G – A	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347364	C – G	PA14_48890	syn.	PA14_48890	Hypothetical protein
4347419	T – A	PA14_48900	T – S	PA14_48900	Hypothetical protein
4347425	G – T	PA14_48910	P – T	PA14_48910	Hypothetical protein
4347701	C – A	PA14_48900	syn.	PA14_48900	Hypothetical protein
4347825	A – G	PA14_48910	P – S	PA14_48910	Hypothetical protein
4348221	G – A	PA14_48910	P – S	PA14_48910	Hypothetical protein
4348222	T – C	PA14_48910	T – A	PA14_48910	Hypothetical protein
4348308	G – A	PA14_48910	syn.	PA14_48910	Hypothetical protein
4348378	G – T	PA14_48910	syn.	PA14_48910	Hypothetical protein
4348644	T – C	PA14_48910	syn.	PA14_48910	Hypothetical protein
4348966	T – G	PA14_48910	syn.	PA14_48910	Hypothetical protein
4349128	A – C	PA14_48920	syn.	PA14_48920	Bacteriophage protein
4350200	A – T	PA14_48930	syn.	PA14_48930	Putative coat protein A of bacteriophage Pf1
4350213	G – C	PA14_48930	A – G	PA14_48930	Putative coat protein A of bacteriophage Pf1
4350484	T – C	PA14_48930	N – D	PA14_48930	Putative coat protein A of bacteriophage Pf1
4350502	T – C	PA14_48930	T – A	PA14_48930	Putative coat protein A of bacteriophage Pf1
4350656	G – A	PA14_48930	syn.	PA14_48930	Putative coat protein A of bacteriophage Pf1
4350684	A – G	PA14_48940	syn.	PA14_48940	Coat protein B of bacteriophage Pf1
4350911	G – C	PA14_48940	syn.	PA14_48940	Coat protein B of bacteriophage Pf1
4350917	A – G	PA14_48940	syn.	PA14_48940	Coat protein B of bacteriophage Pf1
4350941	A – G	PA14_48940	syn.	PA14_48940	Coat protein B of bacteriophage Pf1
4350959	T – C	PA14_48940	syn.	PA14_48940	Coat protein B of bacteriophage Pf1
4351186	C – T	PA14_48950	A – T	PA14_48950	Hypothetical protein
4351199	G – A	PA14_48960	syn.	PA14_48960	Hypothetical protein
4351316	A – G	PA14_48960	syn.	PA14_48960	Hypothetical protein
4351503	G – A	PA14_48970	syn.	PA14_48970	Helix destabilizing protein of bacteriophage Pf1
4351563	T – C	PA14_48970	syn.	PA14_48970	Helix destabilizing protein of bacteriophage Pf1
4351617	A – G	PA14_48970	syn.	PA14_48970	Helix destabilizing protein of bacteriophage Pf1
4351641	C – G	PA14_48970	syn.	PA14_48970	Helix destabilizing protein of bacteriophage Pf1
4351722	A – G	PA14_48970	syn.	PA14_48970	Helix destabilizing protein of bacteriophage Pf1
4351857	G – A	PA14_48970	syn.	PA14_48970	Helix destabilizing protein of bacteriophage Pf1
4352075	A – G	PA14_48980	syn.	PA14_48980	Hypothetical protein
4352106	T – C	PA14_48980	D – G	PA14_48980	Hypothetical protein
4352113	C – A	PA14_48980	D – Y	PA14_48980	Hypothetical protein
4352144	G – C	PA14_48980	S – R	PA14_48980	Hypothetical protein
4352234	G – A	PA14_48980	syn.	PA14_48980	Hypothetical protein
4352294	G – C	PA14_48980	syn.	PA14_48980	Hypothetical protein
4352384	C – T	PA14_48980	syn.	PA14_48980	Hypothetical protein
4352465	G – T	PA14_48990	syn.	PA14_48990	Hypothetical protein
4352471	G – A	PA14_48990	syn.	PA14_48990	Hypothetical protein
4352545	C – A	PA14_48990	A – S	PA14_48990	Hypothetical protein

(Continued)
Table 4 | Continued

Intragenic position	nt	Locus_tag	aa	Gene name	Encoded product
4352560	G	PA14_48990	P	Hypothetical protein	
4352594	C	PA14_48990	syn.	Hypothetical protein	
4352607	C	PA14_48990	R	Hypothetical protein	
4352676	G	PA14_48990	A	Hypothetical protein	
4352700	T	PA14_48990	H	Hypothetical protein	
4352821	T	PA14_49000	I	Hypothetical protein	
4352865	A	PA14_49000	I	Hypothetical protein	
4352866	T	PA14_49000	I	Hypothetical protein	
4352921	C	PA14_49000	M	Hypothetical protein	
4450619	T	PA14_50060	L	Hypothetical protein	
4565005	G	PA14_51360	G	PhnA, Haphtanilate synthase component I	
4565040	C	PA14_51360	syn.	PhnA, Haphtanilate synthase component I	
4565093	G	PA14_51360	G	PhnA, Haphtanilate synthase component I	
4707558	G	PA14_53110	L	Hypothetical protein	
4707778	G	PA14_53110	syn.	Oxidoreductase	
4760743	A	PA14_53670	L	Hypothetical protein	
4901696	A	PA14_55180	M	MigA, Glycopol transferase	
4912690	C	PA14_55330	D	Hypothetical protein	
4947683	A	PA14_55600	H	Hypothetical protein	
4997786	T	PA14_55980	K	Hypothetical protein	
5041775	A	PA14_56550	syn.	Hypothetical protein	
5103224	A	PA14_57275	P	FtsZ, Cell division protein	
5103225	G	PA14_57275	P	FtsZ, Cell division protein	
5103259	T	PA14_57275	M	FtsZ, Cell division protein	
5103291	C	PA14_57275	G	FtsZ, Cell division protein	
5103303	G	PA14_57275	T	FtsZ, Cell division protein	
5103322	G	PA14_57275	P	FtsZ, Cell division protein	
5236534	A	PA14_58760	syn.	PilC, Type 4 fimbrial biogenesis protein	
5404627	C	PA14_60630	L	Hypothetical protein	
5464577	C	PA14_61200	G	Hypothetical protein	
5530315	A	PA14_62200	F	HitA, Ferric iron-binding periplasmic protein	
5722900	A	PA14_64230	D	RetS, regulator of exopolysaccharide and type III Secretion	
5757525	G	PA14_64620	Q	Putative oxidoreductase	
5757527	G	PA14_64620	P	Putative oxidoreductase	
5809365	T	PA14_65190	K	YigH, TrmH family RNA methyltransferase, group 3	
5886730	T	PA14_65860	syn.	Putative two-component sensor	
5905079	A	PA14_66270	syn.	GlnE, Glutamine-synthetase adenylyltransferase	
5968025	C	PA14_66820	P	PhaC1, Poly(3-hydroxyalkanoic acid) synthase 1	
6070122	C	PA14_68020\(^3\)	syn.	Homolog to hypothetical protein PA5149	
6076066	G	PA14_68100	syn.	Hypothetical protein	
6412470	G	PA14_71930	R	WbpX, Glycosyltransferase	
6441338	T	PA14_72300	L	Hypothetical protein	

Intergenic position	nt	Intergenic region
151966	A	igrPA14_01680-01670
187759	G	igrPA14_02050-02060
208430	T	igrPA14_02310-02330
208433	G	igrPA14_02310-02330
888497	A	igrPA14_10290-10300
966217	T	igrPA14_11110-11120
1144646	C	igrPA14_13320-13330

(Continued)
Table 4 | Continued

Intergenic position	nt	Intergenic region
1375947	A–G	igrPA14_16150-16160
1725505	A–G	igrPA14_20020-20030
1768240	T–C	igrPA14_20290-20300
1923008	C–T	igrPA14_22080-22090
2354149	A–G	igrPA14_27090-27100
2362330	A–C	igrPA14_27180-27190
2362363	G–C	igrPA14_27180-27190
2589402	C–T	igrPA14_29890-29900
2840442	T–C	igrPA14_32700-32710
2840444	T–C	igrPA14_32700-32710
3281477	G–C	igrPA14_36810-36820
3356495	G–C	igrPA14_37680-37690
3515863	T–C	igrPA14_39480-39500
3662614	T–C	igrPA14_41070-41080
4347602	G–C	igrPA14_48890-48900
4351470	T–G	igrPA14_49890-49900
4352019	T–G	igrPA14_49890-49900
4362023	C–G	igrPA14_49890-49900
4352432	G–A	igrPA14_49890-49900
4352433	G–A	igrPA14_49890-49900
4407236	A–G	igrPA14_49540-49660
4659605	A–G	igrPA14_52530-52540
4708161	A–G	igrPA14_53110-53120
5198406	T–C	igrPA14_58360-58375
5200474	A–C	igrPA14_58380-58390
5565118	A–G	igrPA14_62380-62390
5648528	A–G	igrPA14_62380-62390
5648573	A–G	igrPA14_62380-62390
5792010	A–G	igrPA14_64980-64990

1 Protein length 180 aa instead of 264.
2 Two SNPs in one codon.
3 Annotated as probably inactive protein fragment/putative frameshift gene.
4 Next stop 18 codons downstream.

Protein and are all not neutral (Table 4). MexH is a component of the MexGHI-OpmD efflux pump that is required for biofilm formation (Southey-Pillig et al., 2005), facilitates cell-to-cell communication and promotes virulence and growth in P. aeruginosa (Aendekerk et al., 2005). MexH of strains PA14 and RN3 differ by three amino acid substitutions (Q-E, T-A, and H-S) in three distant domains of the protein from each other. CynS encodes a cyanase (EC 4.2.1.104) that catalyzes the decomposition of cyanate into CO₂ and ammonium (Luque-Almagro et al., 2008). The intraclonal diversity of cyanase between RN3 and PA14 of four amino acid substitutions is similar in number and localization to that of the completely sequenced P. aeruginosa strains, i.e., 5–11 amino acid substitutions clustering in the N-terminal region of CynS.

Key genes were also affected by non-synonymous SNPs that may modulate the function of the gene products. The DNA-directed RNA polymerase RpoB of strain RN3 carries a substitution of a glycine by an aspartate, and the global regulator RetS of the sessile and planktonic lifestyle of P. aeruginosa, which is involved in the transition from acute to chronic infections (Goodman et al., 2004), harbors a substitution of an aspartate by an alanine.

Of the 34 observed amino acid substitution types, nine are classified by the Dayhoff (1978) matrix as uncommon and associated with an impact on protein function. In contrast, only 12 of the 20 most common neutral amino acid changes were seen. In summary, SNPs non-randomly targeted elements of the cell surface and uncommon non-neutral substitutions (e.g., K-E) were over-represented in the affected proteins. These facts suggest that in the investigated case the intraclonal diversity did not evolve by random drift, but was driven by selective forces.

Strain RN3 was isolated from the first P. aeruginosa-positive specimen taken from an individual with cystic fibrosis. Thus the portion of adaptive mutations that typically emerge during chronic colonization of cystic fibrosis airways (Smith et al., 2006) should be low. Nevertheless some sequence differences between RN3 and PA14 could provide RN3 with...
selective advantage to adapt and persist in cystic fibrosis airways. Obvious candidates are loci encoding efflux pumps (mexH), major transcriptional regulators (retS), and siderophore (pvdD), cyanide (cynS), or quinolone (phnA) biosynthesis, respectively.

The major take home message of our endeavor to compare the intraclonal genome diversity of strains of distant geographic origin was the unexpectedly low substitution rate. Statistical analysis provides strong evidence that nucleotide substitutions in coding regions were under purifying selection so that only a low number of substitutions was fixed. This versatile, ubiquitous and phylogenetically ancient organism apparently does not need many de novo mutations if it conquers a new habitat. The next step to understand the molecular evolution of intraclonal diversity would be the determination of the relative contributions of de novo mutation versus recombination. To accomplish this task, a larger collection of clone PA14 strains than just two isolates will have to be studied (see Spratt, 2004, for an appropriate study design).

PERSPECTIVES

Only four completely sequenced *P. aeruginosa* genomes are officially deposited as finished genomes in GenBank. Draft genomes exist for a five further genomes and several dozen *P. aeruginosa* projects are deposited in the ENA hosted by EMBL-EBI (see text footnote 1). Many of the projects were done for the purpose of (re)sequencing variants of already known strains. Thorough genome assemblies and functional annotations are probably intended only in a minority of cases. But nevertheless an immense increase in *P. aeruginosa* genome data is expected to become available in the near future due to the on-going revolution of sequencing technologies. In particular, the sequencing of strains from environmental habitats should provide us with an unbiased overview of the genetic repertoire of the *P. aeruginosa* population.

ACKNOWLEDGMENT

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 900: Chronic Infections: Microbial Persistence and its Control; project A2).

REFERENCES

Aendeker, S., Diggle, S. P., Song, Z., Høiby, N., Cornelis, P., Williams, P., and Cámara, M. (2005). The MexGH-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in *Pseudomonas aeruginosa* via 4-quinolone-dependent cell-to-cell communication. *Microbiology* 151(Pt 4), 1113–1125.

Arora, S. K., Wolfgang, M. C., Lory, S., and Ramphal, R. (2004). Sequence polymorphism in the glycosylation island and flagellins of *Pseudomonas aeruginosa*. *J. Bacteriol.* 186, 2113–2122.

Battle, S. E., Meyer, F., Rello, J., Kang, V. L., and Hauser, A. R. (2008). Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a *Pseudomonas aeruginosa* isolate in mammals. *J. Bacteriol.* 190, 7130–7140.

Battle, S. E., Rello, J., and Hauser, A. R. (2009). Genomic islands of *Pseudomonas aeruginosa*. *FEMS Microbiol. Lett.* 290, 70–78.

Carter, M. Q., Chen, J., and Lory, S. (2010). The *Pseudomonas aeruginosa* pathogenicity island PAPI-1 is transferred via a novel type IV pilus. *J. Bacteriol.* 192, 3249–3258.

Cheng, K., Smyth, R. L., Govan, J. R., Doherty, C., Winstanley, C., Denning, N., Heaf, D. P., van Saene, H., and Hart, C. A. (1996). Spread of beta-lactam-resistant *Pseudomonas aeruginosa* in a cystic fibrosis clinic. *Lancet* 348, 639–642.

Cramer, N., Klockgether, J., Wrasman, K., Schmidt, M., Davenport, C., and Tümmler, B. (2011). Microevolution of the major common...
Sharma, C. M., Hoffmann, S., Darfeul, F., Reigner, J., Findeiss, S., Stittka, A., Chabas, S., Reiche, K., Hackermüller, J., Reinhardt, R., Stadler, P. F., and Vogel, J. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255.

Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B., and Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35, 652–680.

Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D’Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P., Moskowitz, S. M., Burns, J. L., Kaul, R., and Olson, M. V. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. U.S.A. 103, 8487–8492.

Smith, E. E., Sims, E. H., Spencer, D. H., Kaul, R., and Olson, M. V. (2005). Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J. Bacteriol. 187, 2138–2147.

Southey-Pillig, C. J., Davies, D. G., and Sauer, K. (2005). Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187, 8114–8126.

Spangenberg, C., Heuer, T., Bücher, C., and Tümler, B. (1996). Genetic diversity of flagellins of Pseudomonas aeruginosa. FEMS Lett. 396, 213–217.

Spencer, D. H., Kas, A., Smith, E. E., Raymond, C. K., Sims, E. H., Hastings, M., Burns, J. L., Kaul, R., and Olson, M. V. (2003). Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J. Bacteriol. 185, 1316–1325.

Spratt, B. G. (2004). Exploring the concept of clonality in bacteria. Methods Mol. Biol. 266, 323–352.

Stewart, R. M., Wiehlmann, L., Ashelford, K. E., Preston, S. J., Frimmersdorf, E., Campbell, B. J., Neal, T. J., Hall, N., Tufi, S., Kaye, S. B., and Winstanley, C. (2011). Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J. Clin. Microbiol. 49, 1003–1007.

Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufton, W. O., Kowalk, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E., Lory, S., and Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.

Verma, A., Schirm, M., Arora, S. K., Thibault, P., Logan, S. M., and Ramphal, R. (2006). Glycosylation of β-type flagellin of Pseudomonas aeruginosa: structural and genetic basis. J. Bacteriol. 188, 4395–4403.

Wiehlmann, L., Wagner, G., Cramer, N., Siebert, B., Gudowius, P., Morales, G., Köhler, T., van Delden, C., Weinel, C., Stickes, P., and Tümler, B. (2007). Population structure of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 104, 8101–8106.

Winsor, G. L., Van Rossum, T., Lo, R., Khaira, R., Whiteside, M. D., Hancock, R. E., and Brinkman, F. S. (2009). Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res. 37, D483–D488.

Winstanley, C., Langille, M. G., Forthgill, I. L., Kukavica-Ibrulj, I., Paradis-Bleau, C., Sanschagrin, F., Thomson, N. R., Winsor, G. L., Quail, M. A., Lennard, N., Bignell, A., Clarke, L., Seeger, K., Saunders, D., Harris, D., Parkhill, J., Hancock, R. E., Brinkman, F. S., and Levesque, R. C. (2009). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res. 19, 12–23.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 March 2011; paper peudling published: 29 April 2011; accepted: 27 June 2011; published online: 13 July 2011. Citation: Klockgether J, Cramer N, Wiehlmann L, Davenport CF and Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front. Microbio. 2:150. doi: 10.3389/fmicb.2011.00150

This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology. Copyright © 2011 Klockgether, Cramer, Wiehlmann, Davenport and Tümmler. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.