Zmiany patologiczne ręki w badaniu ultrasonograficznym

Sonography of pathological changes in the hand

Anna Dębek¹, Zbigniew Czynny², Paweł Nowicki³

¹ Indywidualna Specjalistyczna Praktyka Lekarska, Warszawa, Polska
² Praktyka Prywatna, Warszawa, Polska
³ Klinika MediQ, Legionowo, Polska
Adres do korespondencji: Dr Anna Dębek, ul. Syta 111/3, 02-987 Warszawa, e-mail: debek.anna@gmail.com

Abstract

Everyday medical practice shows that most common problems within the hand result from overload, injuries and degeneration. Dorsal side pathologies such as de Quervain’s and Wartenberg’s disease, intersection syndrome or degenerative lesions of carpometacarpal joint of the thumb discussed in the paper can be accurately diagnosed and differentiated by means of ultrasound examination. Ultrasound is similarly powerful in detection and grading of traumatic lesions involving extensor tendons and their sagittal bands or the flexor tendons and their pulleys. In the case of carpal tunnel syndrome one can not only visualize the median nerve but also other structures of the tunnel that may cause compression. Similarly ulnar nerve compression within the Guyon’s canal can be well evaluated. In cases of nerve trauma one can precisely define the level, and in cases of nerve discontinuity, the distance between stumps can be measured which is

Słowa kluczowe

rąka, ultrasonografia, choroba de Quervaina, palce, ścieżka, zespół cieśni kanału nadgarstka

Key words

hand, ultrasound imaging, de Quervain’s disease, fingers, tendons, carpal tunnel syndrome
Sonography of pathological changes in the hand

Wstęp

Najczęstsze patologie dłoni, klinicznie manifestujące się bólem, drętwieniem lub upośledzeniem ich funkcji, w większości mają charakter pourazowy, przeciążeniowy lub degeneracyjny. Choroby reumatyczne, mimo że wykazują predykcję do stawów rąk, są rzadko stwierdzane w codziennej praktyce w ośrodkach nerewmatycznych. Ultrasonografia (USG) jest doskonałą metodą służącą do rozpoznawania patologii dłoni, co wpływa na wybór właściwej metody leczenia. Badanie jest wykonywane aparatem USG tzw. wysokiej klasy, z odpowiednim oprogramowaniem oraz z głowicami liniowymi o częstotliwości powyżej 12 MHz. Poniżej przedstawiono spektrum najczęściej występujących niepewniowych zmian dłoni, widocznych od strony grzbietowej i dłoniowej.

Patologie strony grzbietowej nadgarstka

Choroba de Quervaina

Choroba de Quervaina wynika z konfliktu pomiędzy troczkiem pierwszego przedziału prostowników a ścięgnami tego przedziału, tj. ścięgnem odwodziciela długiego kciuka (abductor pollicis longus, APL) i prostownika krótkiego kciuka (extensor pollicis brevis, EPB). Częścię występuje w przypadku obecności przegrody dzielącej pierwszy przedział prostowników, a z mięśniem i rąk w sposób częstości zrównany EPB(3). Czynnikiem inicjującym chorobę jest przeciążenie ścięgnienia/ścięgnięcia pierwszego przedziału prostowników (np. często u matek noszących małe dzieci na ręce – baby wrist) wywołujące podrażnienie i w dalszej konsekwencji zapalenie pochewkowe, a nawet pochewkowo-ścięgienne. Wtórnie dochodzi do odczynu zapalno-narządzania troczka pierwszego przedziału prostowników, z tym, kwietną jego włożeniem i pogrubieniem. Troczek w procesie chorobowym może być wielokrotnie częściowo uszkadzany i naprawiany, co w efekcie prowadzi do powstania zdegenerowanej bliny. Przeróżnieni, zwłókiach troczek zmniejsza przestrzeń dla obu ścięgien lub jednego z nich, może powodować blokowanie ruchu ścięgien. Przyczyną przejścia zapalenia pochewki ścięgien pierwszego przedziału prostowników na troczek nie jest znana i nie każdy przypadek zapalenia pochewki/poszczególnych ścięgien pierwszego przedziału wiłka się zapaleniem troczka. Problem może zarówno dotyczyć pacjentów reumatycznych, jak i mieć podłoże przeciążeniowe. Choroba występuje u 0,5% pracujących mężczyzn i u 1,3% pracujących kobiet, częściej w wieku menopausalnym oraz kobiet w ciąży i po porodzie. Nie musi dotyczyć ręki dominującej(4) (ryc. 1).

Introduction

Most common hand conditions causing pain, numbness or malfunction are postraumatic, overload-derived or degenerative. Rheumatic diseases, despite their predilection to joints of the hand, are rare in everyday non-rheumatological practice(6). Ultrasonography (US) is a superb method for diagnosing hand pathology and is useful for treatment planning and follow-up. US hand examinations should be performed using a high-end machine equipped with a broadband transducer of higher than 12 MHz frequency.

Dorsal side pathologies of the wrist

De Quervain’s disease

De Quervain’s disease results from overload and conflict between tendons of the first extensor compartment (abductor pollicis longus – APL, extensor pollicis brevis – EPB) and their pulley at the level of radial physis. It is more common in patients who have a septum between tendons(2). In such cases EPB is more often affected(3).

The initiating factor is first compartment tendon overload (frequently in mothers carrying babies – baby wrist) which results in tissue irritation and further inflammatory process within the tendinous sheath – tendovaginitis. As a consequence of overuse an inflammatory-fibrous process is initiated within the pulley. Thickening and constriction of the pulley is a sequel of that process. A cycle of microtears and repair results in pulley degeneration. Hypertrophy of the pulley restricts the tendon which may result in decreased tendon glide. Not every case of tendovaginitis of the first extensor compartment results in pulley thickening and constriction. The disease may occur in rheumatoid patients. Up to 0.5% working men and 1.3% working women are affected. In women, menopausal age, pregnancy and early motherhood are predisposing factors. The disease is unrelated to hand dominance(4) (fig. 1).

Patients complain of pain at the level of the styloid process of the radius during pronation or supination, grip, clenching fist and compression. Pain is generated in the retinaculum, which is compressed or stretched. The tendons are thickened above and below the retinaculum. Patients may continue to function normally with chronic microtearing and repairing of the retinaculum. In normal conditions tendons glide stretching the pulley evenly. Hypertrophy and stiffening of the pulley constricts the
Pacjenci skarżą się na ból na poziomie wyrostka rycicowatego kości promieniowej podczas obracania, chwyty, zaciśkania pięści oraz przy ucisku. Bolesność wywoływana jest przez napinający się pod naporom ściegię przesieńtą i zwłokiłały troczek przy ruchu wyprostu lub zgęcia nadgarstka. Pacjenci z podwyższonym progiem bólowym przez wiele miesięcy mogą dobrze funkcjonować z prze-wlekłe uszkadzając, często niebolesnym w umiarkowanym rysie i napawianym troczkiem. W normalnych warunkach ściegna ślizgają się pod troczkiem i napinają go na całej długości równomiernie. W fazie przestoru, zaciśkania się na ściegna w szybowaniu i skrzydła troczka ściegna na jego poziomie w pozycji społecznej nadgarstka i palców legają przewężenie. Toteż każdy ruch normalnie wywo-wujący śliż ściegna pod troczkiem napina go, ponieważ strefa powyżej i poniżej przewężenia nie mieści się pod troczkiem lub mieści się z trudem. Moment klikania przy forswonym ruchu oznacza przedostanie się grubszej częś-ći ściegna przez troczek. Jest to zawsze niezwykle bolesne i najpewniej każdy taki epizod jest próbą wytrzymałości struktury troczka i mikrourazem również chorego ściegna.

Badanie USG jest podstawową metodą obrazowania choroby de Quervaina. W projekcji podłużnej i poprzecznej ocenia się strukturę troczka i ściegna, obraz pochewek pierwszego przedziału, pod kątem obecności ewentualnej przegrody pomiędzy EB i APL. Na przekrojach podłużnych w badaniu dynamicznym obserwuje się napinanie troczka przez ściegna, które poza przewężeniem są relatywnie zbyt grube, żeby zbędnie ślizgać się pod troczk-kiem, aż do zablokowania śliżu obrzegkniętym (później zwłokiłałych) ściegów względem troczka podczas prosto-wania i odwodzenia kciuka (ryc. 2).

Zespół skrzyżowania

Zespół skrzyżowania występuje rzadziej niż choroba de Quervaina. Wynika z konfliktu (wzmoczonego tarcia) tendons and results in stretching of the pulley produc-ting microtears and pain. When the thickened part of the tendon passes through the pulley the patient may report a click. Recurrent microtrauma and a disorganized repair process results in tissue degeneration of both the retinac-ulum and tendons.

US is the method of choice in the diagnosis of de Quervain’s disease. In longitudinal and transverse scans thickening of the pulley is observed. Usually there is no synovial effu-sion and synovial thickening. Pain may result in limita-tion of normal hand movements. US can determine if the whole retinaculum or only one compartment (in the case of a septum) is ill. On longitudinal scans stretching of pul-ley by narrowed and thickened ill tendon (tendons) can be observed in dynamic examination (fig. 2).

Intersection syndrome

Intersection syndrome is less frequent than de Quervain’s disease. It derives from impingement between tendons of the 1st extensor compartment (APL and EPB) and tendons of the 2nd extensors compartment (extensor carpi radialis longus – ECRL and brevis – ECRB) at the level of their crossing and that is approximately 3.5–4.8 cm proximal to the dorsal tuberculum of radius(5). Tendovaginitis of both compartments may originally be caused by tendon-vaginitis within only one compartment. It is typically encountered in rowers, heavy weight lifters, skiers, and persons who repeatedly flex and extend their wrists(6). Patients with intersection syndrome complain of mild edema and pain of the distal forearm in the radial-dor-sal region and crepitations during flexion and extension of the wrist (fig. 3). With chronicity tendons and their sheaths undergo diffuse fibrosis and microtearing/partial tearing. US is very accurate in delineating this. It is important to define whether the tendon or tendons are partially torn or fibrozed. In partial tears steroid

Ryc. 2. Pogrubiały troczek pierwszego przedziału prostowników na przekroju poprzecznym i podłużnym. Występek i pogrubienie błony maziowej pochewki oraz obrzeg APL w płaszczyźnie podłużnej i poprzecznej

Fig. 2. A thickened/hypertrophied pulley of the 1st extensor compartment on transverse and longitudinal scan. Effusion, syno-vial thickening of the tendon sheath with edema/fibrosis of the APL tendon

Ryc. 1. Schematyczne oznaczenie strefy bólu w zespole de Quervain

Fig. 1. The painful zone in de Quervain’s disease
między ścięgnami pierwszego przedziału prostowników APL i EPB a ścięgnami drugiego przedziału (prostownikiem promieniowym długim i krótkim nadgarstka) w miejscu ich skrzyżowania, tj. w odległości 3,5–4,8 cm proksymalnie od guzka grzbietowego kości promieniowej⁶⁰. Zajęcie procesem zapalnym pochewek obu przedziałów może też pierwotnie wynikać z zapalenia pochewki jednego z przedziałów. Dotyczy wioślarzy, ciężarowców, narcjarzy oraz osób wykonujących powtarzające się ruchy zgięcia i prostopadłości nadgarstka podczas wykonywanej pracy zawodowej⁶⁰. Osoby z zespołem skrzyżowania skarżą się na lekki obrzęk, ból dalszego odcinka przedramienia po stronie grzbietowo-promieniowej oraz trzeszczenie podczas zgięcia i prostopadłości nadgarstka⁶⁰. Obecnie w obrazie ultrasonograficznym stwierdza się wysięk i pogrubienie blony mażowej pochewek krzyżujących się ścięgien i następowego włóknienia ścięgien w bardziej zaawansowanym stadium albo z przewlekłego uszkadzania się ścięgien – w różnicowaniu tych patologii najlepsze wydaje się badanie USG. W częściowym przerwaniu ścięgna należy unikać podawania zastrzyków sterydowych, ponieważ osłabiają proces naprawczy. Leczeniem z wyboru w takim przypadku jest unieruchomienie. Niewłaściwe leczenie lub jego brak może prowadzić do masowego włóknienia konfliktujących pochewek i ścięgien lub całkowitego przerwania chorych ścięgien.

On US the tendon sheaths of the intersecting tendons demonstrate fluid with thickening of the synovial membrane. With chronic intersection syndrome there are microtears with fibrosis resulting in scarring with alteration of the fibrillar tendon structure.

The presence of anechoic zones within the tendon without internal vascularity indicates mucoid degeneration and therefore increased risk of rupture. Degenerative scars removed from patients’ tendons histologically demonstrate the presence of low cellularity and glass-like degeneration with tissue decomposition. In severe cases necrosis may be seen. Increased vascularity on Doppler indicates the presence of rebuilding and hyperactive tissue, i.e. a healing process, rather than an inflammatory process. Corticosteroid injections may inhibit the healing process and create even more degeneration. So even if the patient experiences less pain after steroid injection it may be that the severity of disease has increased.

Wartenberg’s disease

The disease results from the irritation of the superficial branch of the radial nerve. The problem may occur as a sequelae of radial vein inflammation at the level it pierces the fascia, i.e. 60 mm proximally of the radial styloid process tip, as well as a iatrogenic injury or postsurgical scarring or instrumentation after fracture stabilization.

Patients with Wartenberg’s disease complain of pain, numbness and paresthesia of the distal radial-side of the forearm as well as wrist and thumb (fig. 4).

![Fig. 3. Scheme of the painful zone at the 1st/2nd extensor compartment crossing](image)

![Fig. 4. The innervation zone of the superficial radial branch](image)
oraz szkliwienia i rozpadu, włącznie z obszarami martwicy. Blizny wykazujące w badaniu USG cechy unacznienia to tkanki w czasie przebudowy – proces gojenia/naprawczy, nie zapalny. Do czasu ukończenia przebudowy struktura blizny może ulegać zmianie w zależności od wielu czynników. Iniekcje sterydowe mogą hamować proces naprawczy, a nawet wzmagać degenerację tkanki. Nawet jeśli pacjent odchodzi mniejszy ból po miejscowym podaniu sterydów, może się zdarzyć, że zmiany strukturalne ulegną nasileniu.

Choroba Wartenberga

Schorzenie wynika z podrażnienia lub uszkodzenia gałązki powierzchownej nerwu promieniowego, do którego może dojść w następstwie zapalenia żyły odprzemienniowej na odcinku sąsiadującym z nerwem (od poziomu przebiecia powięzi, tj. około 60 mm powyżej szpary stawu promieniowo-nadgarstkowego do poziomu końca wyrostka ryczowatego kości promieniowej), uciśku gałązki powierzchownej w miejscu przejścia przez powięź przedramienia, a także jej przecięcia lub uwięźnięcia w bliznie powstałej w następstwie syzcia skóry i ścieżki lub wprowadzenia drutów stabilizujących w złamaniu typu Collesa.

Pacjenci z zespołem Wartenberga odczuwają ból, drętwienie, parestezje dalszego odcinka scharno wej, wniką podskórnej na powierzchni grzbietowej dłoni, nadgarstka po stronie grzbietowo-promieniowej. Iniekcje sterydowe mogłyby mniejszy ból po miejscowym podaniu sterydów, precyzyjna ocena miejsca obrzęku zawsze jest kluczną diagnozą w przypadku ostrogardzieli. W badaniu USG wysokiej rozdzielczości stwierdza się, że powięź promieniowa jest bardzo dobrze widoczna na całej długości. W 1/3 dalszej przedramienia w odległości około 80 mm powyżej wyrostka ryczowatego kości promieniowej kieruje się bocznie i do tyłu od tętnicy promieniowej, wnika pod ścieżkę mięśnia ramienno-promieniowego, a następnie, pomiędzy ścieżkami mięśni ramienno-promieniowego i prostokątnika promieniowego długiego nadgarstka w okolicy skrzyżowania z brzegiem dalszym ścieżki prostokątnika krótkiego kciuka, przebiją powięź. Dalej biegnie w tkance podskórnej na powierzchni grzbietowej ścieżkę mięśni odwodniczka długiego kciuka i prostokątnika krótkiego kciuka w sąsiedztwie żyły odprzemienniowej, by podzieścić się na nerwy grzbietowe palców.

Nerw należy ocenić w przekrojach podłużnych i poprzecznych. Precyzyjna ocena miejsca obrzęku albo przecięcia nerwu, lokalizacji nerwika porzuconego oraz obrazu sąsiadujących struktur, których patologie mogą wpływać na działanie nerwu, mają kluczowe znaczenie dla dalszego postępowania leczniczego (ryc. 4). Elementy takie powinny znaleźć się w opisie badania.

Choroba zwyrodnieniowa (artroza) stawu nadgarstkowo-śródręcznego kciuka (rhizarthritis)

Choroba zwyrodnieniowa stawu czworoboczno-śródręcz nego kciuka występuje sześć razy częściej u kobiet niż u mężczyzn, najczystszej w okresie menopauzałnym.

On high-resolution US examination the superficial branch of the radial nerve is very well defined along nearly all its course, down to the metacarpal level. In the distal third of the forearm, 80 mm proximal to tip of the radial styloid process, the nerve lies laterally and posteriorly of the radial artery. Under the brachioradialis tendon, and between the brachioradialis and ECRL the nerve pierces the fascia at the margin of the EPB. Further down it lies in the subcutaneous fat on the surface of the APL and EPB near the radial vein. Distally the nerve divides into dorsal nerves of fingers.

The nerve should be assessed in longitudinal and transverse planes. Precise definition of the nerve lesion or the location of the stumps location is very important in the treatment planning process (fig. 5).

Osteoarthritis of the 1st carpometacarpal joint

Osteoarthritis of the 1st carpometacarpal joint occurs six times more often in women than in men, mostly in the post-menopausal age. Narrowing of the joint space, cartilage destruction, subchondral bone destruction and deformity of the thumb base may be observed.

It has been suggested that capsuloligamentous laxity in young and middle aged leads to joint subluxation and early osteoarthritis. Thumb trauma and rheumatoid arthritis (RA) may influence the course of the disease.

Patients complain of pain at the base of thumb radiating to metacarpophalangeal (MCP) joint, and weak grip during everyday activities such as holding large objects, twisting off caps and writing. Gradually the thumb grip weakens and thumb motion decreases.

US examination may detect synovial membrane inflammation (effusion, swelling, increased vascularity), erosions and cysts as well as proliferation of bone margins. US examination may allow differentiation between osteoarthritis and de Quervain’s disease (fig. 6).

Traumatic lesions in extensor tendons

Boutonniere deformity

Flexion deformation of the finger in the proximal interphalangeal joint (PIP) is the sequelae of a tear of the central band of the extensor digitorum/digitii minimi which attaches to the dorsal side of middle phalanx base. At the level of distal interphalangeal joint (DIP) the finger remains extended or hyperextended due to domination of the lateral bands of extensor anchoring to the base of a distal phalanx.

The boutonniere deformity is diagnosed mostly in RA patients with tears of the central band of the extensor tendon, caused by chronic friction against osteophytes. In other cases the central band may tear during a direct trauma of the dorsal side of finger.
W przebiegu choroby dochodzi do zwężenia szpary stawowej, niszczenia chrząstki powierzchni stawowych, w stadium zaawansowanym do zniekształcenia podstawy kciuka.

Sugerowaną przyczyną jest wiotkość aparatu torebkowo-wiązadłowego stawu w młodym i średnim wieku prowadząca do podwichnięcie, skutkujących tworzeniem się wczesnych zmian zwyrodnieniowych. Wpływ na powstawanie zmian zwyrodnieniowych mają przebyte urazy kciuka, a także reumatoidalne zapalenie stawów (RZS) [7].

Pacjent skarży się na ból u podstawy kciuka, promieniący do kłębu kciuka i stawu śródrożnico-paliczkowego I podczas codziennych czynności, takich jak chwytanie większych przedmiotów, odkrzywanie pokrywek, pisanie. Stopniowo następuje osłabienie chwytu szczypcowego, a w wyniku podwinięcie ograniczenie odwodzenia kciuka.

Badanie USG pozwala na ocenę zmian zapałowych w stawach i przewodzących pawie, w tym zmiany w zwężeniu i zniszczeniu glebokich (second) komórek stawu w RZS, u pacjentów z cukrzycą, w przypadkach ruchowych zwężenia stawu w RZS, w bezpośrednim wieku przedstawia którejś małżeństw (ryc. 5). USG pozwala na ocenę nieosiągnięcia kciuka, promieniującego w stawie śródrożnico-paliczkowym dalszym (swan neck deformity the finger flexes in the DIP when all other finger joints remain extended. This type of deformation may be present in the course of RA, less frequently in cerebral palsy or early congenital joint laxity. The cause of deformation is rupture of lateral extensor bands which anchor

Swan neck deformity

In normal conditions flexion in the DIP joint occurs together with flexion in the PIP joint. In swan neck finger deformity the finger flexes in the DIP when all other finger joints remain extended. This type of deformation may be present in the course of RA, less frequently in cerebral palsy or early congenital joint laxity. The cause of deformation is rupture of lateral extensor bands which anchor

Urazy ściegien prostowników palców

Deformacja palca typu butonierkowatego

Deformacja zgięciowa palca w stawie międzypaliczkowym bliższym (proximal interphalangeal, PIP) jest następstwem zerwania pasma centralnego ściegna prostownika palca, którego przyczep dalszy znajduje się u podstawy grzbietowej powierzchni palca. Na poziomie stawu międzypaliczkowego dalszego palec pozostaje w wyprostowaniu lub przeprostone ze względu na przeważanie pasów bocznych prostownika kotwiczących się u podstawy paliczka dalszego.

Zniekształcenie butonierkowate najczęściej występuje u osób z RZS, u których dochodzi do częściowych, a następnie całkowitych uszkodzeń ściegna w wyniku ich tarcia o nierówne, ostre krawędzie zmienionych nadżerkowo powierzchni stawowych. W pozostałych przypadkach do zerwania pasma centralnego może dochodzić w wyniku centralnego, grzbietowego uderzenia w zgięcie palec.

Klinicznie pacjent nie może wyprostować palca w stawie PIP oraz zgieć w stawie międzypaliczkowym dalszym (distal interphalangeal, DIP). Może odczuwać ból w okolicy grzbietowej na poziomie PIP. Staw PIP może być obrzęknięty.

Badanie USG dokładnie obrazuje ściegno prostownika oraz struktury stawowe badanego palca. W przypadku zerwania pasma centralnego prostownika z awulsyjnym złamaniem podstawy paliczka środkowego można określić wielkość odłamu kostnego i jego odległość od położenia anatomicznego. Wynik badania obrazowego pomaga podjąć decyzję co do sposobu leczenia.
Deformacja palca typu łabędzia szyja, znana także pod nazwą palca młotkowatego

W prawidłowych warunkach wraz ze zgięciem w stawie DIP występuje zgięcie w stawie PIP. W zniekształceniu palca typu łabędzia szyja występuje zgięcie w stawie DIP podczas gdy pozostałe stawy palca utrzymywane są w wyproście. Ten typ deformacji występuje w przebiegu RZS, rzadziej w porażeniu mózgowym albo we wrodzonej wiotkości stawów. Przyczyną zniekształcenia jest zerwanie pasm bocznych prostownika palca, które kotwiczą się na grzbietowej powierzchni podstawy paliczka dalszego. Nierzadko dochodzi do awulsyjnego złamania podstawy paliczka dalszego. W przypadku RZS do uszkodzenia, podobnie jak w przypadku palca butonierkowego, dochodzi w wyniku tarciu ścięgnia o zniekształcone powierzchnie stawowe (nadżerki, osteofity), które prowadzi do częściowych uszkodzeń, a następnie zerwania ścięgnia. Inną przyczyną jest bezpośredni uraz w wyniku uderzenia końcem palca przy maksymalnym jego wyproście, czemu najczęściej sprzyjają także dyscypliny sportowe, jak siatkówka i koszykówka.

Pacjent zgłasza się ze zniekształconym palcem, zgiętym w stawie DIP, którego nie może w sposób czynny wyprosić. W okolicy grzbietowej tego stawu mogą występować ból i obrzęk, chociaż wiele osób nie zgłasza takich objawów.

W badaniu ultrasonograficznym należy ocenić strukturę ścięgnia, miejsce jego przerzucenia, strefę entocy kostnej ścięgnia/pasma bocznych, a także struktury stawowe, głównie staw DIP. W badaniu dynamicznym można wykazać rozchodzenie się kikutów przerwanego ścięgnia lub oddalanie końca ścięgnia od anatomicznej entocy. Badanie wykonane wkrótce po urazie u osób, które nie chorują na zapalenie stawów, pozwala na szybkie podjęcie decyzji dotyczącej sposobu leczenia, z dużą szansą na skuteczne leczenie zachowawcze (ryc. 7).

Kostka bokserska

Schorzenie polega na podwinięciu ścięgnia prostownika palca podczas zgięcia w stawie śródręcza-palczowym (metacarpophalangeal, MCP). Jest spowodowane uszkodzeniem pasma strzałkowego – struktury wiązki rozpo- startej poprzecznie po stronie grzbietowej stawu MCP. Od strony promieniowej i łokciowej pasmo mocowane jest na brzegach płytki dłoniowej oraz do więzadla pobocznych, które bliższe przyczepy znajdują się na poniżej szczytowej stronie śródręczca. Ścięgno prostownika położone jest pomiędzy dwoma blaszkami pasma strzałkowego, z których grubsza, głęboka blaszka formuje rowek utrzymujący ścięgno w centralnym miejscu. Najczęstszą przyczyną uszkodzenia pasma strzałkowego jest uraz bezpośredni, obejmujący zazwyczaj stronę promieniową pasma. Podwinięcie ścięgna prostownika może ponadto wynikać ze zmian degeneracyjnych pasma strzałkowego, zmian zapalnych w przebiegu RZS, może mieć charakter wrodzony, co dotyczy głównie dzieci.

Pacjenci po urazach skarżą się na ból i obrzęk na poziomie stawu MCP oraz ograniczenie ruchu prostowania w stawie MCP.

at the dorsal side of distal phalanx. It is quite often to see avulsion fractures of distal phalanx base. In RA patients the tear results (as in the boutonniere deformity) from friction of tendons against osteophytes. Other cause may be a direct trauma against the tip of an extended finger (volleyball, basketball).

The patient presents a finger flexed in DIP joint and can not actively extend it. At the dorsal side of DIP joint there may be some pain and edema/thickening.

In US examination the structure of extensor tendon can be visualized. The site of a tear should be pointed out. If avulsion fracture is present the distance between bony fragment and its bed should be determined. All finger joints should be scanned to determine presence of erosions and osteophytes. Dynamic examination rarely shows retracting stump. More often an elongated scar. It is useful when a bony fragment is fractured from insertion. The exam in non-RA patients should be performed as soon after injury as possible to optimize the treatment with good chance to complete healing without operative intervention (fig. 7).

Sagittal band injuries (Boxer’s knuckle)

The disease is a subluxation of the extensor digitorum/digitii minimi tendon at the MCP joint due to a tear of the sagittal band or bands. Sagittal bands connect the extensor tendons to collateral ligaments and to the volar plates of the MCP joints. Most common reason for sagittal band tear is a direct injury, usually to the radial band. Subluxation may also result from degenerative changes of the sagittal band, inflammatory changes in the course of RA, may be congenital.

Patients complain of pain and edema at the MCP joint as well as range of motion decrease.

At US examination the extensor and sagittal band should be assessed in longitudinal and transverse scans. Torn sagittal band is thickened and hypoechoic. Hyperperfusion may be seen within repairing tissues. As a result of the band thickening and diffused fibrosis of tissues the tendon’s movement may be impaired (fig. 8). In cases of complete tear of the sagittal band the subluxation/luxation of extensor tendon is seen, especially during flexion of the MCP joint.

Ryc. 7. Awulsyjne oderwanie ścięgnia prostownika palca od podstawi- wy paliczka dalszego z fragmentem kostnym; obok zdjęcie strony zdrowej

Fig. 7. Extensor tendon tear at the level of the middle phalanx head. Normal extensor tendon on the right image
Podczas badania USG w projekcjach podłużnych i poprzecznych ocenia się strukturę pasma strzałkowego, pasma prostownika, struktury stawu śródręczno-paliczkowego. Uszkodzone, ale nie przerwane pasmo strzałkowe jest w badaniu pogrubiałe i hipoechogeniczne. W jego obrębie często obserwuje się obecność naczyń procesu początkowo zapalnego, następnie naprawczego. W wyniku pogrubienia pasma dochodzi do utrudnienia ślizgu ścięgna, które w efekcie ulega obrzęku i zwłóknieniu (ryc. 8). W przypadku całkowitego zerwania pasma badanie dynamiczne potwierdza zapalne, następnie okrągłe obrzękowe powiększenie stawu lub pochewki. Zmiany te spotykane są u osób między 2. a 4. dekadą życia, częściej u kobiet.

W większości przypadków gangliony są zmianami dobrze wyczuwalnymi, niebolesnymi. Niekiedy pojawiają się lub zwiększają wymiary bez powodu, intensywnych ruchach ręki i znikają albo ulegają zmniejszaniu przy braku aktywności. Gangliony wysokociśnienniowe najprawdopodobniej powstają w mechanizmie zastawkowego wypompowywania naczyń i guzów wokół stawu nadgarstka i jego uwieńczenia w ograniczonej przestrzeni poza jamą nadgarstka. Płyn stawowy wpłynął w takiej przestrzeni z czasem ulega odwodnieniu, dlatego gangliony mają często bardzo gęstą konsystencję.

Publikowane badania wykazują, że większość ganglionów ma strukturę wielokomórkową i nierówne zarysy, choć w praktyce własnej częściej obserwujemy zmiany jednokomórkowe, tzw. gangliony proste. Najczęściej występują po stronie grzbietowej nadgarstka, są rezultatem ostrego lub przewlekłego uszkodzenia więzadła łódkowatoksiężycowatego grzbietowego oraz torebki stawu promieniowo-nadgarstkowego. Ponadto gangliony grzbietowe nadgarstka powikłują się, wnikając pomiędzy ścięgna prostowników i do tkanki podskórnej (ryc. 9). Ze względu na niskie ciśnienie przedziału grzbietowego nadgarstka mogą osiągać znaczne rozmiary. Często dotyczą także pochewek ścięgien zginaczy palców.

Badanie USG pozwala na ocenę lokalizacji ganglionów, a w 25% przypadków na uwidoczniczenie szyi, która je łączy z jamą stawu albo ze światłem pochewki (8). Wzmocniony przepływ w ścianie ganglionu może występować po przebytym pęknięciu ganglionu i oznacza obecność zarięśni naprawczej. W różnicowaniu należy uwzględnić łagodny guz w pochewce ścięgna, jakim jest guz olbrzymiokomórkowy (patrz dalej).

Guzy i zmiany guzopodobne

Gangliony

Gangliony są najczęstszymi zmianami guzowatymi ręki. Są to zmiany o charakterze płynowym lub galaretowatym, złokalizowane w okolicy stawów lub ścięgien. Przypuszcza się, że powstają w wyniku urazu bądź rozciągania struktur torebkowo-więzadłowych, co indukuje wytwarzanie mucyny, która rozwartującą włókna torebki, wydostaje się poza jamę stawu lub pochewki. Zmiany te spotykane są u osób między 2. a 4. dekadą życia, częściej u kobiet.

Gangliony są najczystszymi zmianami guzowatymi ręki. Są to zmiany o charakterze płynowym lub galaretowatym, złokalizowane w okolicy stawów lub ścięgien. Przypuszcza się, że powstają w wyniku urazu bądź rozciągania struktur torebkowo-więzadłowych, co indukuje wytwarzanie mucyny, która rozwartującą włókna torebki, wydostaje się poza jamę stawu lub pochewki. Zmiany te spotykane są u osób między 2. a 4. dekadą życia, częściej u kobiet.

Gangliony są najczystszymi zmianami guzowatymi ręki. Są to zmiany o charakterze płynowym lub galaretowatym, złokalizowane w okolicy stawów lub ścięgien. Przypuszcza się, że powstają w wyniku urazu bądź rozciągania struktur torebkowo-więzadłowych, co indukuje wytwarzanie mucyny, która rozwartującą włókna torebki, wydostaje się poza jamę stawu lub pochewki. Zmiany te spotykane są u osób między 2. a 4. dekadą życia, częściej u kobiet.

Gangliony są najczystszymi zmianami guzowatymi ręki. Są to zmiany o charakterze płynowym lub galaretowatym, złokalizowane w okolicy stawów lub ścięgien. Przypuszcza się, że powstają w wyniku urazu bądź rozciągania struktur torebkowo-więzadłowych, co indukuje wytwarzanie mucyny, która rozwartującą włókna torebki, wydostaje się poza jamę stawu lub pochewki. Zmiany te spotykane są u osób między 2. a 4. dekadą życia, częściej u kobiet.

Published data show that most ganglia are painless and well palpable. Some appear or grow bigger after an exercise and intensive hand use and disappear or become smaller during low activity periods. High-pressure ganglia are formed when a valve allows the fluid to get into a ganglion and prevents it from going back. Joint fluid entrapped in a ganglion is dehydrated in time and then it becomes dense, jelly-like.

Tumors and tumor-like lesions

Ganglia

Ganglia are most common tumor-like lesions of the hand. They are filled with fluid or jelly and localized near joints and tendons. It is suspected that they appear as sequelae of a trauma or overstretch of capsule-ligamentous structures, which induces mucine production breaking outside the joint or sheath. Ganglia are most common in women at the age of 20–40.

In most cases ganglia are painless and well palpable. Some appear or grow bigger after an exercise and intensive hand use and disappear or become smaller during low activity periods. High-pressure ganglia are formed when a valve allows the fluid to get into a ganglion and prevents it from going back. Joint fluid entrapped in a ganglion is dehydrated in time and then it becomes dense, jelly-like.

Published data show that most ganglia are lobulated with irregular margins. In our practice simple ganglia are more common. The most common site for them to appear is dorsal side of the wrist. Some may be a result of trauma.
Guzy

Zdecydowana większość guzów ręki ma charakter lądny. Poza wspomnianymi powyżej, najczęstszymi ganglionami należy wymienić: guza ołbrzymiomórkowego pochewki, tłuszczaka, pseudotętniaka, guza osłonki nerwowej, kłębczaka, naczymiaka/malformację naczymiową oraz przykurcz Dupuytrena(9).

Nowotwory złośliwe są rzadkie.

Pacjenci najczęściej zgłaszają się z powodu widocznego zgrubienia. W zależności od lokalizacji guzy mogą powodować ucisk na sąsiadujące struktury oraz ograniczenie ruchomości. Zlokalizowane w okolicy nerwów mogą wywoływać objawy neurologiczne. Kłębczak w typowej lokalizacji podpaznokciowej wywołuje silny ból w reakcji na zimno i ucisk.

Badanie USG pozwala na ocenę lokalizacji zmiany i jej stosunku do sąsiadujących struktur, jej echostruktury, zarysów i unaczyńienia, określa jej podatność na ucisk. Dokładny opis pozwala na podjęcie decyzji dotyczącej dalszego postępowania – rozszerzenia diagnostyki, obserwacji lub leczenia chirurgicznego.

Guz ołbrzymiomórkowy zwykle pochodzi z pochewki ścięgna. Jest dobrze odgraniczoną, litym zmianie lokalizującą się w okolicy ścięgna lub stawu, zwykle niewykazującą wzmożonego przepływu. Wyglädem przypomina zarządzającej występującego włókniaka, ale patognomoniczne jest jego związek z pochewką. Powiększając się, może powodować erozję kości i przemieszczenie ścięgna. Przed planowaną operacją należy określić stosunek guza do sąsiadujących naczyń i nerwów.

Tłuszczaki zwykle występują od strony dłoniowej, najczęściej na poziomie kłębu cikuła i kłębika(10). W badaniu są podatne na ucisk. W ich obrębie nie stwierdza się cech przepływu w badaniu dopplerem mocy, co wynika z obecności naczyń o bardzo małej średnicy (ryc. 10).

Pseudotętniaki mogą powstawać w wyniku urazu ścieżny bądź żyły. W badaniu USG mogą być wypelnione krwią lub skrzeliną.

Nerwiaki osłonkowe i nerwiakowłóknikai oraz kauzistyczne tłuszczakonerwianki to zwykle niezłośliwe nowotwory obwodowego układu nerwowego (ryc. 11, 12). Nerwiaki osłonkowe zwykle rosną ekscentrycznie, są widoczne jako okrągle albo owalne, dobrze odgraniczone i unaczyńione z wnikających hypoechogenicznych przylegających do nerwów, ze czchami wzmocnienia echa za tymi granicą. Nerwiakowłóknikai są zlokalizowane wewnątrz nerwów, powstają w wyniku uszkodzenia pęczków nerwowych oraz ich wlokien (bliznowacenia). Mogą występować wieloogniskowo lub naciekać cały przekrój nerwu. Kłębczaki wywołują się ze struktur nerwowo-ścianeckich i typowo lokalizują się pod płytką paznokciową. Występują zwykle w 4. i 5. dekadzie życia(10). W badaniu USG widoczna jest zmiana hypoechogeniczna, bogato unaczyjniona (ryc. 13).

Giant cell tumors usually originate from the tendon sheath. It is a well-defined solid mass close to the tendon or joint, which may show increased vascularity. It may appear like the less common fibroma. Connection of the tumor with the sheath is pathognomonic. Bony erosion and tendon subluxation may occur.

Lipomas usually appear on the volar side of the hand, most frequently around the thumb base and hypothenar eminence(10). They are compressible, and do not show increased vascularity (fig. 10).

Pseudoaneurysms may arise from trauma of arteries or veins. They may be filled with blood or clot.

Schwannomas and neurofibromas are benign tumors of the peripheral nervous system (figs. 11, 12). Schwannomas grow as round or oval, hyperperfused hypoechogenic lesions attached to the nerve. There is posterior acoustic enhancement. Traumatic neuromas are a result of microtearing of nerve fibers with subsequent fibrosis. They may be multifocal or diffuse. Glomus tumors arise from neuroarterial structures and typically grow in the nail bed. They usually occur in the 4th–5th decade of life(10) (fig. 13).
Sonography of pathological changes in the hand

Dorsal side pathologies

Carpal tunnel syndrome

Carpal tunnel syndrome results from median nerve compression at the level of transverse carpal ligament.

In many cases it is difficult to define a reason for the compression. Median neuropathy at the carpal tunnel level may be due to repetitive microtrauma of the transverse carpal ligament leading to fibrosis and thickening and therefore narrowing of the tunnel. Tunnel narrowing may be congenital, posttraumatic, inflammatory or due to presence of abnormal structures within. Diabetics, alcoholics and patients with amyloidosis are also prone to develop carpal tunnel syndrome. It has been observed that fluid retention during menopause, pregnancy and in hormonal disorders may trigger symptoms from the median nerve.

Patients complain of paresthesia in digits I–III and radial side of IV, pain in the wrist radiating proximally and distally, weakening of the muscles and inability to hold objects. There may be night pain which may or may not disappear after shaking the hand.

US assessment focuses on median nerve structure and size around and within the carpal tunnel. Nerve edema is seen.

Patologie strony dłoniowej

Zespół cieśni kanału nadgarstka

Zespół cieśni kanału nadgarstka to choroba wynikająca z patologii uciskowej nerwu pośrodkowego w miejscu jego przejścia przez kanał nadgarstka.

U wielu pacjentów nie można zidentyfikować przyczyny zespołu. Do neuropatii na poziomie kanału nadgarstka może dochodzić w wyniku urazów lub powtarzających się mikro-urazów struktur więzadłowych nadgarstka, prowadzących do jego zwężenia czy generalnie z powodu wrodzonego lub pourazowego zwężenia kanału nadgarstka, obecności nieprawidłowych struktur (kostnych, mięśniowych, guzów), zmian zapalnych stawów i pochewek, które zwiększają kostno-więdzadłową przestrzeń kanału nadgarstka. Osoby chorujące na cukrzycę, alkoholizm, choroby układowe (np. amyloidozę) są również bardziej podatne na wystąpienie zespołu cieśni kanału nadgarstka. Zaobserwowano ponadto, iż retencja płynów w czasie menopauzy, ciąży oraz w zaburzeniach hormonalnych (np. niedoczynności tarczycy) może także wpływać na występowanie ciasnoty w kanie nadgarstka.

Klinicznie pacjenccy skarżą się na mrowienie palców I–III i strony promieniowej palca IV, ból nadgarstka promieniujący na przedramię i w kierunku palców, osłabienie

Ryc. 10. Tuszczak w okolicy kłębu kciuka
Fig. 10. Lipoma around the thumb base

Ryc. 11 A. Osłoniak nerwu. B. Fragment prawidłowego nerwu
Fig. 11 A. Schwannoma. B. Nerve at the edge of schwannoma

Ryc. 12. Tuszczakonerwiak na poziomie śródręczca po stronie dłoniowej
Fig. 12. Hamartoma at the level of hand, volar side

Ryc. 13. Bogato unaczyniony kłębczak modelujący kości paliczka distalnego
Fig. 13. Glomus tumor modeling distal phalanx

J Ultrason 2014; 14: 74–88
siły mięśniowej i niemożność utrzymania przedmiotów w dłoni. W zaawansowanych przypadkach występuje nocny ból zakłócający sen, który pierwotnie mija, a w dalszym przebiegu choroby utrzymuje się, mimo potrząsania ręką.

 Rolą ultrasonografii jest dokładne zobrazowanie nerwu pośrodkowego i struktur kanału nadgarstka, które mogą prowadzić do zwężenia jego światła (zmiany zapalne w stawie śródnadgarstkowym i pochewkach zginaczy palców, gangliony oraz inne guzy, rzadziej występujące mięśnie dodatkowe czy pourazowe deformacje kostnej). Ocenie bólu zgodę na podobieństwo nerwu typowo jest obserwowany powyżej ciała (obiektowny powyżej garstki), ale przede wszystkim pole jego przekroju poprzecznego nadgarstka (proksymalnie w区内qd). Owoce podlegają echostrukturze nerwu, regularność budowy pęczkowej, ale przede wszystkim pole jego przekroju poprzecznego, zarysy i obecność ewentualnego przekrwiwienia. Obrzęk nerwu typowo jest obserwowany powyżej wejścia do kanału nadgarstka (proksymalnie w stosunku do troczka zginaczy). Kształt obrzękniętego nerwu w przekroju poprzecznym ulega zaokrągleniu, echogeniczność – obniżeniu, dochodzi do zatarcia włókienkowej, regularnej struktury nerwu, nierazko obserwuje się, cenne diagnostycznie, wzmóźone unaczynienie (ryc. 14), świadczące o obecności wzmózionej aktywności tkankowej nerwu, czyli o neuropatii uciskowej. W literaturze nie ma zgodności co do wartości granicznej wymiaru pola poprzecznego nerwu, nieradko obserwuje się, cenne diagnostyczne, wzmóźone unaczynienie (ryc. 14), świadczące o obecności wzmózionej aktywności tkankowej nerwu, czyli o neuropatii uciskowej. W literaturze nie ma zgodności co do wartości granicznej wymiaru pola poprzecznego nerwu, która miałaby być uznana za patologiczną. W praktyce własnej najczęściej stosujemy wartość 11–12 mm² przy ręcznym obrysowym śledztwie nerwu bez jego osłonki. Nie należy stosować pomiarów za pomocą predefiniowanej elipsy. Również z powodzeniem można stosować kryterium pogrubienia nerwu bezpośrednio powyżej troczka zginaczy w porównaniu z jego przekrojem na poziomie mięśnia nawrotnego czworobocznego. Różnica pomiędzy polami przekroju nerwu na tych poziomach nie powinna przekraczać 2 mm² w przypadku nerwu jednopniowego i 4 mm² w przypadku nerwu dwupniowego. Dodatkowym kryterium oceny obecności kompresji nerwu na poziomie kanału nadgarstka jest jego gwałtowne przewinienie w strefie troczka zginaczy. Jest to jednak kryterium jakościowe, podatne na błędy subiektywnej oceny. Istnieją jednak przypadki, w których ucisk nerwu występuje w dalszej, obwodowej części kanału nadgarstka (tzw. objaw odwróconego wcięcia) (ryc. 15). Dla operatora ważna będzie ponadto informacja o odmianie w postaci just proximal to the carpal transverse ligament. In cross-section the nerve becomes more rounded, with low echogenicity and loss of the fascicular structure of the nerve. In severe cases hypervascularity of the edematous part of the nerve is demonstrated (fig. 14). The threshold for pathological thickening of the nerve above the tunnel is not universally accepted. The range in published data is 10–15 mm². In our practice a value of 12 mm² after a manual delineation of the inner nerve (without the perineurium) seems a good criterion. Predefined ellipses should not be used for cross-sectional nerve assessment. Another good criterion of nerve thickening is a comparison of the cross-section at the pronator quadratus and proximal to the transverse ligament. The difference should not be greater than 2 mm² in a single bundle nerve, and 4 mm² in a double bundle. Narrowing of the nerve at the level of the transverse ligament is subjective and of less use than measuring nerve thickening. There are cases when the nerve is compressed in the distal part of tunnel (fig. 15). Hyperperfusion detected on Doppler examination of the nerve is not always present but pathognomonic for neuropathy. In normal conditions blood vessels are not present on Doppler. Information regarding anatomical variants are important to the surgeon. The presence of an artery along the nerve is not regarded as pathological. Thrombosis of the artery within the tunnel is a rare reason for presence of symptoms(11).

Trigger finger

Trigger finger is one of the most common conditions in hand surgery. It is diagnosed in up to 2.2% of population, usually in patients above 30 years old. It is seen in up to 10% of patients with type 1 diabetes(12). Normal movement of digital flexor tendons is supported by fibrous pulleys of the tendons sheath. In digits II–V there are five annular pulleys (A1–A5), and in the thumb there are three (A1–A3) (fig. 16).

Trigger finger is a condition of the A1 pulley and is the finger equivalent of de Quervain’s disease. In some cases of tendovaginitis induced by overload the A1 pulley undergoes

Ryc. 14. Nerw pośrodkowy z czesciami obrzuku nad kanałem nadgarstka: przekrój poprzeczny (1), podłużny (2). Prawidłowy obrzut nerwu po stronie przeciwna (3, 4)

Fig. 14. Median nerve edematous proximally to the tunnel: transverse (1), longitudinal (2). Normal contralateral (3, 4)

Ryc. 15. Nerwika nerwu pośrodkowego distalnie od troczka zginaczy (objaw odwróconego wcięcia)

Fig. 15. Neurofibroma of the median nerve distally from the carpal transverse ligament
nerwu dwupniowego (zdarzają się kazuistyczne przypadki trzech pni) z ewentualną interponującą, przetwarzalą tętnicą pośrodkową i żyłami. Naczynia te mogą ułożyć się przy powierzchniach lub pomiędzy pniom nerwu. Chociaż obecność przetwarzalnej tętnicy pośrodkowej nie musi wiązać się z patologią, to jednak zdarzają się rzadkie przypadki zakrzepicy wywołującej objawy zespołu cieśni kanalu nadgarstka(11).

Palen trzaskający

Palen trzaskający należy do najczęstszych patologii w chirurgii ręki. Występuje u 2,2% osób powyżej 30. roku życia niechorujących na cukrzycę i u 10% osób z cukrzycą typu I(12). Płynny ruch zgięcia palca zapewniają pochewki ścieżek zginaczy oraz troczki, które wytwarzają kierunek ich ruchu. W palcach II–V występuje pięć troczków zginaczy (A1–A5), w obrębie kciuka – trzy troczki (A1–A3) (ryc. 16).

Palen trzaskający to patologia dotycząca zwykle poziomu troczka A1 i jest odpowiednikiem choroby de Quervain na poziomie śródręce/palce. Z powodu procesu zapalnego pochewkowo-ścieżkowego wynikającego z przeciążenia ścieżek zginaczy lub obecności czynników ogólnoustrojowych w niektórych przypadkach dochodzi do przeszkod w ruchu palca i wkrótce troczek napina troczek przy próbie zgięcia i/lub wyprostu. Każda ruchy wywołuj ból, prawdopodobnie prowadzi do kumulujących się mikroszkodzeń troczka, manifestujących się obecnością zmian degeneracyjnych stwierdzanych w obrębie przeciennego w trakcie zabiegu troczka.

Pacjenci skarżą się na zaburzenie płynnego zgięcia i prostopadłości palca z zabłoceniem oraz doświadczaniem bólu i niezdolności do normalnego ruchu. Kliknięcie/trzask jest momentem, w którym pobruja poza przewężeniem owboży odci- nek ścieżek zginaczy przeszkadzając pod troczkiem i może ulec zabłoceniu po jego drugiej stronie.

W badaniu USG widoczne jest pogrubienie troczka, często z jego wzmocnionym unaczyńnieniem z powodu toczącego się procesu zapalno-narządczego (ryc. 17). Ścieżne jest pogrubienie, może wykazywać cechy wzmocnionego unaczyńnienia diffuse fibrosis resulting in thickening and contracture on flexor tendon/tendons. Impingement between tendons and pulley cause pain(13). Like in de Quervain’s disease the tendon stretches the pulley when the finger flexes or extends. Microtears with inadequate repair leads to degeneration of the tissues.

Patients complain of pain during motion. When the resistance during flexion is overcome there is a painful click. This corresponds to the moment that the thickened tendon outside the pulley passes under the thickened pulley. The tendon may become entrapped and may require manipulation to reduce.

On US examination pulley thickening is seen. Frequently the pulley is hypervascular (fig. 17). The affected tendon may be thickened and hypervascular, and in later stages becomes fibrotic. There may be inflammatory changes in the tendinous sheath. On dynamic examination a pulley stretched by the tendon can be observed.

Disease of the flexor carpi ulnaris (FCU)

The distal tendon of the FCU does not have a sheath and may suffer from tendinopathy(14). FCU tendinopathy appears in 1–2% population, more frequently in 4th and 5th decade of life(15). There is pain at the pisiform insertion of tendon. Structural changes appear as result of overuse with recurrent microtears. Tissues undergoing repair have an increased level of fibroblasts and vessels, referred to as angiofibroblastic hyperplasia.
w wyniku zmian zapalnych, następnie ulega włóknieniu. W pochewce ściegna obserwuje się cechy zmian zapalnych (pogrubienie, przekrwienie błony maziowej, wysięk). W badaniu dynamicznym można obserwować blokowanie się ściegna na brzegu troczka, czemu towarzyszy ból.

Choroba ściegna zginacza nadgarstka łokciowego (flexor carpi ulnaris, FCU)

Ściegno obwodowe FCU nie posiada pochewki i choruje w sposób podobny do ściegna wspólnego prostowników w „lokciu tenisisty”\(^{(14)}\). Tendinopatia FCU występuje u 1–2% populacji, częściej w 4. i 5. dekadzie życia\(^{(15)}\).

Zmiany strukturalne ściegna pojawiają się w wyniku mikrouszkodzenia przy powtarzających się ruchach zgęcia i prostowania nadgarstka. Mikrouszkodzenia aktywują proces naprawczy, który toczy się jednak w warunkach niesprzyjających, tj. powtarzanych urazach. Oznacza to, że w gojących się po uszkodzeniu tkankach obecne są większe niż zwykle ilości naczyń oraz fibroblasty produkujące kolagen. Stąd używana w literaturze nazwa – hiperplazja angiofibroblastyczna, która w końcowej fazie może doprowadzić do angiofibroblastycznego zwyrodnienia ściegna (angiofibroblastic degeneration).

Choroba towarzyszy ostry lub przewlekły ból w okolicy przyczepu ściegna zginacza łokciowego nadgarstka do kości grochowatej.

W obrazach USG najczęściej stwierdza się obecność zmienności dośrednich rozwarstwie blizn w entezie grochowatej FCU. Ponadto ściegno może ulegać pogrubieniu, widoczne mogą być obszary śródściennistych roztworów, a także nierówności kostnej części entez (ryc. 18). W badaniu dopplerowskim można wykazać obecność naczyń procesu zapalno-naprawczego. Należy dodać, że ocena powierzchni dłoniowej kości grochowatej jest w badaniu USG dokładniejsza niż na radiogramach.

Ponadto można uwidocznić zmiany zapalne lub zwyrodnieniowe w stawie grochowato-trójkątnym oraz obecność dodatkowych struktur, np. ganglionów.

Zespół kanału Guyona

Różnego stopnia objawy neuropatii nerwu łokciowego mogą wynikać z jego ucisku na poziomie kanału Guyona (zespół kanału Guyona). Przyczyny zespołu kanału Guyona dzieli się na pierwotne (samoistne) i wtórne, spowodowane urazem, obecnością guzów (gangliony, tłuszczaki, guzy obłazmiokomórkowe), anomalii budowy anatomicznej (dodatkowy odwodniciel palca małego, dodatkowy mięsień dłoniowy długi), zmianami naczyńnimi (tętniak tętnicy łokciowej), zakrzepicą tętnicy łokciowej, neuropatiami oraz przedłużonym uciskiem wynikającym z uprawianego sportu, wykonywanej pracy lub podpierania się laski\(^{(16)}\) (ryc. 19).

Objawy kliniczne zależą od poziomu uszkodzenia i wywołują zaburzenia czucia, czuciowo-ruchowe lub wyłącznie

On US examination varying amounts of scar tissue may be present. Frequently there is enthesopathic change with mineralization (fig. 18). On Doppler increased vascularity may be present. The ultrasound assessment of FCU tendinosis is more precise than on X-rays.

Guyon’s canal syndrome

Ulnar neuropathy may result from its compression at the level of Guyon’s canal. Possible causes of the Guyon’s canal syndrome are primary nerve tumors within the canal (ganglia, lipomas, giant cell tumors), anatomical variants/anomalies (accessory abductor of the little finger, accessory palmaris longus muscle), aneurysms or thrombosis of the ulnar artery, and compression neuropathy resulting from sports or walking with a cane\(^{(16)}\) (fig. 19).

Clinically sensory or sensory-motor or motor symptoms depend on the level. In long-standing nerve damage muscle atrophy and grip-strength loss may occur.

US can delineate the structure of the ulnar nerve in and around Guyon’s canal, the level of the division of the nerve, the hook of the hamate (deep branch of the nerve). Hamate hook fractures should be identified on X-ray\(^{(17)}\). The ulnar artery should be assessed as well as walls of the Guyon’s canal.
ruchowe przy uszkodzeniu gałęzi głębokiej nerwu. W dłuższej trwającej trajektorii uszkodzeniu może dojść do zaniku miśni kłębika i miśni międzykożnych, z osłabieniem siły chwytu.

W badaniu USG ocenie podlegają echostruktura nerwu lokciowego w kanale Guyona, miejsce jego podziału i gałązka głęboka w sąsiedztwie haczyka kości haczykowatej oraz sam haczyk kości haczykowatej, którego złamanie jest łatwo identyfikowane w USG (w przeciwieństwie do badania rentgenowskiego)[17]. Należy ocenić drożność i średnicę tętnicy lokciowej oraz zarysy ścian kanału Guyona.

Urazy nerwów

Do uszkodzenia nerwów na poziomie dłoni najczęściej w wyniku urazu bezpośredniego, chociaż zdarzają się sporadyczne przypadki urazów jatrogennych (przejęcie, zmiażdżenie, długotrwały ucisk).

Objawy kliniczne zależą od stopnia uszkodzenia nerwu – początkowo od zaburzeń czucia do niedowładów mięśni dłoni w zakresie anatomicznego unerwienia, dystalnie od miejsca urazu.

Podczas badania USG należy ocenić ciągłość nerwu, jego zarysy, regularność struktury pęczkowej oraz sąsiadujące struktury. W przypadku uszkodzenia nerwu wymagającego interwencji chirurgicznej należy dokładnie zlokalizować miejsce uszkodzenia, zaś w sytuacji całkowitego przerywania ciągłości nerwu określić położenie odbudowy końcówek kikutów (ryc. 20)[18]. Od wyniku badania zależy sposób dalszego postępowania leczniczego.

Podsumowanie

Przedstawiony powyżej przegląd patologii dłoni potwierdza mnogość zmian, z jakimi w swojej codziennej praktyce może się spotkać osoba wykonująca badanie USG. Trafność diagnozy wzrasta wraz z liczbą widocznych nieprawidłowości, niemniej podstawą jest dokładna znajomość złożonej anatomii. Część zmian ma swój charakterystyczny obraz ultrasonograficzny, co pozwala na postawienie ostatecznej diagnozy i leczenie, na podstawie wyniku badania USG. W innych przypadkach badanie USG dopełnia obraz kliniczny lub wyniki badań czynnościowych, np. w zespole cieśniny kanału nadgarstka o ocenę stopnia modelowania nerwu przez przeróżnięte troczek, obecność patologii błony maziowej pochewek ściegiennej zginaczycy palców, co będzie wskazaniem do poszerzenia procedury operacyjnej o synowektomię. Ułatwia także planowanie postępowania chirurgicznego, lokalizując szypułkę gangliową nadgarstka, pozwalając określić optymalną lokalizację portów dla minisiewczyckiego usuwania gangliów drogą artroskopową czy oceniając stopień retrakcji uszkodzonych kikutów nerwu pod kątem zastosowania bezpośredniego szwu albo konieczności uzupełnienia przesoczcelem. Nie do przecenienia jest również możliwość monitorowania procesu gojenia po procedurach operacyjnych, oceny nawrotu gangliu czy wtórnej uleczenia po odbarczeniu kanału nadgarstka.

Nerve trauma

Nerve damage in the hand occurs most often due to direct trauma. Rarely the cause is iatrogenic – either by cutting or chronic compression.

Clinical symptoms depend on the degree of damage, ranging from sensory disturbance to serious neurological disorders distal from the damage zone.

It is important to report the level of the nerve damage, detailing the nerve integrity, and surrounding structures. In cases of nerve discontinuity the level of the stumps should be reported (fig. 20)[18]. US has a very important role in treatment planning.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.
Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Zaniewicz-Kaniewska K, Sudol-Szopińska I: Usefulness of sonography in the diagnosis of rheumatoid hand. J Ultrason 2013; 13: 329–336.
2. Maruyama M, Takahara M, Kikuchi N, Ito K, Watanabe T, Ogino T: De Quervain disease caused by abductor pollicis longus tenosynovitis: a report of three cases. Hand Surg 2009; 14: 43–47.
3. Alemohammad AM, Yazaki N, Morris RP, Buford WL, Vegas SE: Thumb interphalangeal joint extension by the extensor pollicis brevis: association with a subcompartment and de Quervain’s disease. J Hand Surg Am 2009; 34: 719–723.
4. Forget N, Pirotte F, Arsenault J, Harris P, Bourbonnais D: Bilateral thumb’s active range of motion and strength in de Quervain’s disease: comparison with a normal sample. J Hand Ther 2008; 21: 276–285.
5. De Maeseneer M, Marcelis S, Jager T, Girard C, Jamadar D: Spectrum of normal and pathologic findings in the region of the first extensor compartment of the wrist: sonographic findings and correlations with dissections. J Ultrasound Med 2009; 28: 779–786.
6. de Lima JE, Kim HJ, Albertotti F, Resnick D: Intersection syndrome: MR imaging with anatomic comparison of the distal forearm. Skeletal Radiol 2004; 33: 627–631.
7. Dias R, Chandrasenan J, Rajaratnam V, Burke FD: Basal thumb arthritis. Postgrad Med J 2007; 83: 40–43.
8. Teefey SA, Dahiya N, Middleton WD, Gelberman RH, Boyer MI: Ganglia of the hand and wrist: a sonographic analysis. AJR Am J Roentgenol 2008; 191: 716–720.
9. Teh J, Whiteley G: MRI of soft tissue masses of the hand and wrist. Br J Radiol 2007; 80: 47–63.
10. Teh J: Ultrasound of soft tissue masses of the hand. J Ultrason 2012; 12: 381–401.
11. Rzepecka Wejs L, Multan A, Konarzewska A: Thrombosis of the persistent median artery as a cause of carpal tunnel syndrome – case study. J Ultrason 2012; 12: 487–492.
12. Rojo-Manante JM, Soto VL, De las Heras Sánchez-Heredero J, Del Valle Soto M, Del Cerro-Gutiérrez M, Martín JV: Percutaneous intrasheath ultrasonographically guided first annular pulley release: anatomic study of a new technique. J Ultrasound Med 2010; 29: 1517–1529.
13. Rajeswaran G, Lee JC, Eckersley R, Katsarma E, Healy JC: Ultrasound-guided percutaneous release of the annular pulley in trigger digit. Eur Radiol 2009; 19: 2232–2237.
14. Dębek A, Nowicki P, Czyrny Z: Ultrasonographic diagnostics of pain in the lateral cubital compartment and proximal forearm. J Ultrason 2012; 12: 188–201.
15. Wick MC, Weiss RJ, Arora R, Gabl M, Gruber J, Jaschke W, Klausser AS: Enthesiopathy of the flexor carpi ulnaris at the pisiform: findings of high-frequency sonography. Eur J Radiol 2011; 77: 240–244.
16. Lal RA, Raj S: Guyons canal syndrome due to accessory palmaris longus muscle: aetiological classification: a case report. Cases J 2009; 2: 9146.
17. Kowalska B, Sudol-Szopińska I: Ultrasound assessment on selected peripheral nerve pathologies. Part I: Entrapment neuropathies of the upper limb – excluding carpal tunnel syndrome. J Ultrason 2012; 12: 307–318.
18. Kowalska B, Sudol-Szopińska I: Ultrasound assessment on selected peripheral nerve pathologies. Part III: Injuries and postoperative evaluation. J Ultrason 2013; 13: 82–92.