Initial value problem of fractional order

A. Guezane-Lakoud

Abstract: In this work, we discuss the existence of positive solutions for a class of fractional initial value problems. For this, we rewrite the posed problem as a Volterra integral equation, then, using Guo–Krasnoselskii theorem, positivity of solutions is established under some conditions. An example is given to illustrate the obtained results.

Subjects: Science; Mathematics & Statistics; Applied Mathematics

Keywords: initial value problem; fixed point theorem; positivity of solution

Mathematics Subject classifications: 05C38; 15A15; 15A18; 34B10; 26A33; 34B15

1. Introduction

This work is devoted to the study of positive solutions for the following fractional differential equation with initial conditions

\[
\begin{aligned}
(D^q_0 u)(t) &= f(t, u(t), u'(t)), \quad 0 < t \leq 1, \\
(\gamma u)'(0) &= u'(0) = u''(0) = 0.
\end{aligned}
\]

Where \( f: [0, 1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is a given function, \( 2 < q < 3 \), \( D^q_0 \) denotes the Riemann's fractional derivative. We note that few papers dealing with fractional differential equations, considered the nonlinearity \( f \) in \( (P) \) depending on the derivative of \( u \), due to this fact we need more assumptions on \( f \) and the problem becomes more complicated.

Fractional initial value problems have been studied recently by many authors. In the paper of Yoruk, Gnana Bhaskar, and Agarwal (2013), Krasnoselskii-Krein, Nagumo’s type uniqueness result and successive approximations have been extended to differential equations of fractional order \( 0 < q < 1 \). Some results in literature are given for boundary value problems for ordinary differential equation, by Webb (2009) and Graef, Kong, and Wang (2008) in the case where the Green function associated to the posed problem is vanishing on a set of zero measure. By means of Guo–Krasnoselskii fixed point theorem the existence of nontrivial positive solution is proved.

ABOUT THE AUTHOR

A. Guezane-Lakoud is a professor in Mathematics at Badji Mokhtar Annaba University, Algeria. She received her PhD degree of Science in Mathematics from this University. Her research interests are on partial differential equations, ordinary and fractional differential equations and inequalities. For more information, please see http://fbedergi.sdu.edu.tr/docs/GuezaneLakoud.pdf

PUBLIC INTEREST STATEMENT

Under suitable conditions on the nonlinearity term, we prove the existence of positive solutions for an initial fractional value problem. The proofs are based on a fixed point theorem.
Existence and positivity of solutions for boundary value problems have been studied by using different methods, such as fixed point theory, topological degree methods, upper and lower solutions... (see Agarwal, O’Regan, & Stanek, 2010; Ahmad & Nieto, 2009; Cabada & Infante, 2013; Graef et al., 2008; Guezane-Lakoud & Khaldi, 2012a; 2012b; 2012c; Guo & Lakshmikantham, 1988; Henderson & Thompson, 2000; Infante & Webb, 2002; Lakshmikantham & Vatsala, 2008; Ntouyas, Wang, & Zhang, 2011; Webb, 2009; 2001; Webb & Infante, 2008).

In this work, we discuss the existence of positive solutions for the problem (P). To prove our results, we assume some conditions on the nonlinear term f, then we use a cone fixed point theorem due to Guo–Krasnoselskii.

2. Preliminaries
We present some definitions from fractional calculus theory which will be needed later (see Kilbas, Srivastava, & Trujillo, 2006; Podlubny, 1999).

Definition 2.1 The Riemann–Liouville fractional integral of order $\alpha > 0$ of a function $g$ is defined by

$$I^\alpha_0 g(t) = \frac{1}{\Gamma (\alpha)} \int_0^t \frac{g(s)}{(t-s)^{\alpha-1}}ds.$$

Definition 2.2 The Riemann fractional derivative of order $q$ of $g$ is defined by

$$D^q_0 g(t) = \frac{1}{\Gamma (n-q)} \left( \frac{d}{dt} \right)^n \int_0^t \frac{g(s)}{(t-s)^{n+1}}ds,$$

where $n = [q] + 1$. ([q] is the integer part of q).

Lemma 2.3 The homogenous fractional differential equation $D^q_0 g(t) = 0$ has a solution

$$g(t) = c_1 t^{q-1} + c_2 t^{q-2} + \cdots + c_n t^{q-n}$$

where $c_i \in \mathbb{R}$, $i = 1, \ldots, n$ and $n = [q] + 1$.

Lemma 2.4 Let $p, q \geq 0$, $f \in L_1([a,b])$. Then $I^p_0 I^q_0 f(t) = I^{p+q}_0 f(t) = I^q_0 I^p_0 f(t)$ (properties of semigroups) and $D^q_0 I^p_0 f(t) = f(t)$, for all $t \in [a,b]$.

We start by solving an auxiliary problem which allows us to get the expression of the solution, let us consider the following linear problem ($P_0$):

$$D^q_0 u(t) = y(t), \quad 0 < t \leq 1,$$

$$u(0) = u'(0) = u''(0) = 0. \quad (2.1)$$

Lemma 2.5 Assume that $y \in C([0,1], \mathbb{R})$, then the problem ($P_0$) has a unique solution given by:

$$u(t) = \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1}y(s)ds. \quad (2.2)$$

Proof Using Lemmas 2.3 and 2.4, we get:

$$u(t) = I^q_0 y(t) + at^{q-1} + bt^{q-2} + ct^{q-3}. \quad (2.3)$$
The condition \( u(0) = 0 \) implies that \( c = 0 \). Differentiating both sides of (2.5) and using the initial condition \( u'(0) = 0 \), it yields \( b = 0 \). The condition \( u''(0) = 0 \) implies \( a = 0 \). Substituting \( a, b \) and \( c \) by their values in (2.5), we obtain

\[
u(t) = \int_0^t y(s) ds = \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} y(s) ds.
\]

Let \( E \) be the Banach space of all functions \( u \in C^1([0,1]) \) into \( \mathbb{R} \) with the norm \( ||u|| = ||u||_{\infty} + ||u'||_{\infty} \) where \( ||u||_{\infty} = \max_{t \in [0,1]} |u(t)| \). Define the operator \( T : E \rightarrow E \) as follows:

\[
Tu(t) = \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} f(s,u(s),u'(s)) ds.
\]

**Lemma 2.6** The function \( u \in E \) is solution of the initial value problem (P) if and only if \( Tu(t) = u(t) \), for all \( t \in [0,1] \).

**3. Main results**

First, we state the assumptions that will be used to prove the existence of positive solutions:

\( (H_1) \) There exist two positive constants \( g_1 \) and \( g_2 \) such that \( 0 < g_1 \leq g(t) \leq g_2 \) for all \( t \in [0,1] \).

The operator \( T : E \rightarrow E \) becomes

\[
Tu(t) = \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} g(s) f_1(s,u(s),u'(s)) ds.
\]

Let us introduce the following notations

\[
A_0 = \lim_{(u,v) \rightarrow 0} \frac{f_1(u,v)}{u+v}, \quad (\delta = 0^* \text{ or } +\infty).
\]

Let \( K \) be the classical cone

\[
K = \{ u \in E, u(t) \geq 0, u'(t) \geq 0, \text{ for all } t \in [0,1] \}.
\]

Recall the definition of a positive solution:

**Definition 3.1** A function \( u \) is called positive solution of problem (P) if \( u(t) \geq 0 \), \( \forall t \in [0,1] \) and it satisfies the differential equation and the initial conditions in (P).

Now, we give the main result of this paper

**Theorem 3.2** Under the assumptions \((H_1)\) and \((H_2)\) and if \( f_1 \) is convex and decreasing to each variable \( \text{i.e. for } u \text{ fix, } f_1(u,\cdot) \text{ is decreasing according to the second variable and for } v \text{ fix the function } f_1(\cdot,v) \text{ is decreasing according to the first variable) , then the problem (P) has at least one nontrivial positive solution in the cone } K \text{, in the case } A_0 = +\infty \text{ and } A_{\infty} = 0. \)

Recall that a function \( F : \Delta = [a,b] \times [c,d] \rightarrow \mathbb{R} \) is convex on \( \Delta \) if

\[
F(\lambda x + (1-\lambda)z, \lambda y + (1-\lambda)w) \leq \lambda F(x,y) + (1-\lambda)F(z,w)
\]
holds for all \((x, y), (z, w) \in \Delta \) and \(\lambda \in [0, 1]\).

Jensen’s inequality for a convex function is given by:

**Theorem 3.3** (Zabandan & Kiliçman, 2012) Let \(p \) be a non-negative continuous function on \([a, b]\) such that \(\int_a^b p(x)dx > 0\). If \(g \) and \(h \) are real-valued continuous functions on \([a, b] \) and \(m_1 \leq g(x) \leq M_1 \)
\(m_2 \leq h(x) \leq M_2 \) for all \(x \in [a, b]\) and \(F \) is convex on \(\Delta = [m_1, M_1] \times [m_2, M_2]\) then

\[
F\left(\frac{\int_a^b g(t)p(t)dt}{\int_a^b p(t)dt}, \frac{\int_a^b h(t)p(t)dt}{\int_a^b p(t)dt}\right) \leq \frac{\int_a^b F\left(g(t), h(t)\right)p(t)dt}{\int_a^b p(t)dt}.
\]

The inequalities hold in reversed order if \(f \) is concave on \(\Delta\).

For the proof of Theorem 3.2, we need the following results:

**Lemma 3.4** (Wang, 2003) If \(f_t\) is continuous then \(A^*_0 = A_0\) and \(A^*_\infty = A_{\infty}\) where \(A^* : \mathbb{R}_+ \to \mathbb{R}_+\), \(A^* (r) = \max \{f_1 (u, v) , 0 \leq u + v \leq r\}\) and

\[
A^*_r = \lim_{r \to r^+} \frac{\lambda (r)}{r}, (\delta = 0^+ or + \infty).
\]

For the proof of Theorem 3.2, we use the following version of Guo–Krasnoselskii fixed point theorem by Guo and Lakshmikantham (1988):

**Theorem 3.5** Let \(E\) be a Banach space, and let \(K \subset E\) be a cone. Assume \(\Omega_1\) and \(\Omega_2\) are open-bounded subsets of \(E\) with \(0 \in \Omega_2 \setminus \overline{\Omega_1} \subset \Omega_2\) and let \(A : K \cap (\overline{\Omega_2 \setminus \Omega_1}) \to K\) be a completely continuous operator such that

(i) \(||Au|| \leq ||u||, u \in K \cap \partial \Omega_1\) and ||Au|| \(\geq ||u||, u \in K \cap \partial \Omega_2\); or

(ii) \(||Au|| \geq ||u||, u \in K \cap \partial \Omega_1\) and ||Au|| \(\leq ||u||, u \in K \cap \partial \Omega_2\).

Then \(A\) has a fixed point in \(K \cap (\overline{\Omega_2 \setminus \Omega_1})\).

**Proof** of Theorem 3.2. Using Ascoli Arzela Theorem, we prove that \(T\) is a completely continuous operator. From \(A_0 = +\infty\), we deduce that for \(M \geq \frac{\Gamma (q+2)}{g_1} \), there exists \(r_1 > 0\), such that if \(0 < u + v \leq r_1\) then \(f_1 (u, v) \geq M (u + v)\). Let \(\Omega_1 = \{u \in E, ||u|| < r_1\}\), we should prove the first statement of Theorem 3.5. Assume that \(u_\gamma \in K \cap \partial \Omega_1\), then the mean value theorem implies

\[
||Tu_\gamma|| = ||Tu_\gamma|| \leq \int_0^1 Tu_\gamma(t)dt
\]

\[
= \frac{1}{\Gamma (Q)} \int_0^1 \left(\int_0^t (t-s)^{q-1}g(s)f_1(u_\gamma(s), u'_\gamma(s))ds\right)
\]

\[
= \frac{1}{\Gamma (Q + 1)} \int_0^1 (1-s)^q g(s)f_1(u_\gamma(s), u'_\gamma(s))ds.
\]
Now from the convexity of \( f_s \), then Jensen's inequality and the assumption \((H_2)\), it yields

\[
||Tu_1|| \geq \frac{1}{\Gamma(q+1)} \int_0^1 (1-s)^q g(s)f_u(u(s),u'(s))ds
\]

\[
\geq \frac{1}{\Gamma(q+1)} \left( \int_0^1 (1-s)^q g(s)ds \right) 
\times f_1 \left( \frac{\int_0^1 (1-s)^q g(s)u(s)ds}{\int_0^1 (1-s)^q g(s)ds}, \frac{\int_0^1 (1-s)^q g(s)u'(s)ds}{\int_0^1 (1-s)^q g(s)ds} \right)
\]

\[
\geq g_1 \frac{1}{\Gamma(q+2)} f_1 \left( \frac{\int_0^1 (1-s)^q g(s)u(s)ds}{\int_0^1 (1-s)^q g(s)ds}, \frac{\int_0^1 (1-s)^q g(s)u'(s)ds}{\int_0^1 (1-s)^q g(s)ds} \right),
\]

consequently

\[
||Tu_1|| \geq \frac{g_1}{\Gamma(q+2)} f_1 \left( \frac{\int_0^1 (1-s)^q g(s)u(s)ds}{\int_0^1 (1-s)^q g(s)ds}, \frac{\int_0^1 (1-s)^q g(s)u'(s)ds}{\int_0^1 (1-s)^q g(s)ds} \right). \quad (3.1)
\]

Since

\[
\int_0^1 (1-s)^q g(s)u(s)ds \leq ||u_1||_\infty \int_0^1 \left( 1-s \right)^q g(s)ds \leq ||u_1'||_\infty \text{ and } f_1 \text{ is decreasing in each variables, then (3.1) becomes}
\]

\[
||Tu_1|| \geq \frac{g_1}{\Gamma(q+2)} f_1 \left( ||u_1||_\infty, ||u_1'||_\infty \right) \geq \frac{g_1}{\Gamma(q+2)} M ||u_1|| \geq ||u_1||.
\]

Secondly, taking into account Lemma 3.4 and the fact that \( A_\infty < 0 \), it results that \( A_\infty^* < 0 \), so for \( 0 < \epsilon \leq \frac{\Gamma(q+1)}{(q+1)q!} \), there exists \( R > 0 \), such that if \( r \geq R \) then \( A^+(r) \leq \epsilon r \). Let \( r_2 < \max \left( r_1, R \right) \) and set \( \Omega_1 = \{ u \in E, ||u|| < r_2 \} \), it is easy to see that \( \Omega_1 \subset \Omega_2 \). Assume that \( u_2 \in K \cap \partial \Omega_2 \), then

\[
||Tu_2|| = \frac{1}{\Gamma(q)} \max_{t \in [0,1]} \int_0^1 \left( (t-s)^q + (q-1)(t-s)^{q-1} \right) g(s)q_u u(s)ds
\]

\[
\leq g_2 A^+(r_2) \frac{1}{\Gamma(q)} \max_{t \in [0,1]} \int_0^1 \left( (t-s)^q + (q-1)(t-s)^{q-1} \right) ds
\]

\[
\leq g_2 (q+1) r_2 \frac{1}{\Gamma(q+1)} \leq ||u||.
\]

then from the second statement of Theorem 3.5, \( I \) has a fixed point in \( K \cap \overline{\Omega_1} \).

**Example 3.6** Let us consider the problem \((P)\) with \( q = \frac{2}{3}, f_1(u,v) = \frac{1}{4uv}, f_1(0,0) \neq 0, g(t) = 1 + t^4, g_1 = 1, g_2 = 2 \). We check easily that \( A_0 = +\infty \) and \( A_\infty = 0 \) and that the assumptions \((H_1) - (H_2)\) are satisfied. Theorem 3.2 implies that there exists at least one nontrivial positive solution in the cone \( K \).
Acknowledgements
The author would like to thank the anonymous referees for their valuable remarks.

Funding
This work is done under the research project CNEPRU Code B01120120002.

Author details
A. Guezane-Lakoud
E-mail: a.guezane@yahoo.fr
1 Faculty of Sciences, Department of Mathematics, Laboratory of Advanced Materials, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria.

Citation information
Cite this article as: Initial value problem of fractional order, A. Guezane-Lakoud, Cogent Mathematics (2015), 2: 1004797.

References
Agharwal, R. P., O'Regan, D., & Stanek, S. (2010). Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. Journal of Mathematical Analysis and Applications, 371, 57–68.

Ahmad, B., & Nieto, J. J. (2009). Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Computers & Mathematics with Applications, 58, 1838–1843.

Cabada, A., & Infante, G. (2013, July 29). Positive solutions of a nonlinear Caputo fractional BVP. arXiv 1307.7651 v1 [math.CA].

Graef, J. R., Kong, L., & Wang, H. (2008). A periodic boundary value problem with vanishing Green's function. Applied Mathematics Letters, 21, 176–180.

Guezane-Lakoud, A., & Khaldi, R. (2012a). Solvability of a two-point fractional boundary value problem. The Journal of Nonlinear Science and Applications, 5, 64–73.

Guezane-Lakoud, A., & Khaldi, R. (2012b). Positive solution to a higher order fractional boundary value problem with fractional integral condition. Romanian Journal of Mathematics and Computer Sciences, 2, 28–40.

Guezane-Lakoud, A., & Khaldi, R. (2012c). Solvability of a three-point fractional nonlinear boundary value problem. Differential Equations and Dynamical Systems, 20, 395–403.

Guo, D. J., & Lakshmikantham, V. (1988). Nonlinear problems in abstract cones. In Notes and reports in mathematics in science and engineering (Vol. 5). Boston, MA: Academic Press.

Henderson, J., & Thompson, H. B. (2000). Multiple symmetric positive solutions for a second order boundary value problem. Proceedings of the American Mathematical Society, 128, 2373–2379.

Infante, G., & Webb, J. R. L. (2002). Nonzero solutions of Hammerstein integral equations with discontinuous kernels. Journal of Mathematical Analysis and Applications, 272, 30–42.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: B. V. Elsevier.

Lakshmikantham, V., & Vatsala, A. S. (2008). Basic theory of fractional differential equations. Nonlinear Analysis, 69, 2677–2682.

Ntouyas, K., Wang, G., & Zhang, L. (2011). Positive solutions of arbitrary order nonlinear fractional differential equations with advanced arguments. Opuscula Mathematica, 31, 433–442.

Podlubny, I. (1999). Fractional differential equations mathematics in sciences and engineering. New York, NY: Academic Press.

Wang, H. (2003). On the numbers of positive solutions of a nonlinear systems. Journal of Mathematical Analysis and Applications, 281, 287–306.

Webb, J. R. L. (2001). Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear Analysis, 47, 4319–4332.

Webb, J. R. L. (2009). Boundary value problems with vanishing Green's function. Communications in Applied Analysis, 13, 587–596.

Webb, J. R. L., & Infante, G. (2008). Positive solutions of nonlinear boundary value problems involving integral conditions. Nonlinear Differential Equations and Applications NODEA, 15, 45–67.

Yoruk, F., Gnana Bhaskar, T., & Agarwal, R. P. (2013). New uniqueness results for fractional differential equations. Applicable Analysis, 92, 259–269.

Zabandan, G., & Kiliçman, A. (2012). A new version of Jensen's inequality and related results. Journal of Inequalities and Applications, 2012, p. 238.