EPSILON FACTOR FOR $\text{GL}_l \times \text{GL}_{l'}$; $l \neq l'$ PRIMES

TETSUYA TAKAHASHI

Abstract. Let F be a non-Archimedean local field with finite residual field of characteristic p. In this article we calculate the ε-factor of pairs for $\text{GL}_l(F) \times \text{GL}_{l'}(F)$ where l and l' are distinct primes including the case $l = p$. For this calculation, we use the local Langlands correspondence and non-Galois base change lift. This method leads to the explicit conjecture of the ε-factor of the representations of $\text{GL}_m \times \text{GL}_n$ when n is relatively prime to m and p.

1. Introduction

Let F be a non-Archimedean local field with finite residual field of characteristic p and the \mathcal{W}_F the absolute Weil group of F. For an integer $n \geq 1$, we denote by $\mathcal{A}_n(F)$ the set of equivalent classes of irreducible supercuspidal representations of $\text{GL}_n(F)$ and by $\mathcal{G}_n(F)$ the set of equivalent classes of irreducible continuous complex representations of \mathcal{W}_F of dimension n. The local Langlands conjecture tells us that there exists a unique bijection Λ^F_n from $\mathcal{G}_n(F)$ to $\mathcal{A}_n(F)$ which satisfies the following conditions:

1. For $\chi \in \hat{F}^\times$ and $\sigma \in \mathcal{G}_n(F)$,
 $$\Lambda^F_n(\chi \sigma) = \chi \Lambda^F_n(\sigma)$$
 (By the reciprocity map of local class field theory, we identify $\hat{F}^\times = \mathcal{A}_1(F)$ with $W_F^{ab} = \mathcal{G}_1(F)$. By this identification, Λ_1 is the identity map.)

2. For $\sigma \in \mathcal{G}_n(F)$,
 $$\Lambda^F_n(\check{\sigma}) = \Lambda^F_n(\sigma)^\vee.$$

3. Let ω_π denote the central quasi-character of $\pi \in \mathcal{A}_n(F)$. For $\sigma \in \mathcal{G}_n(F)$,
 $$\omega_{\Lambda^F_n(\sigma)} = \det \sigma.$$

4. Let ψ_F be a non-trivial character of F. For $\sigma \in \mathcal{G}_n(F)$,
 $$\varepsilon(\Lambda^F_n(\sigma), s, \psi_F) = \varepsilon(\sigma, s, \psi_F).$$

1991 Mathematics Subject Classification. Primary 22E50, Secondary 11F70.
Key words and phrases. ε-factor of pairs, supercuspidal representation, local Langlands correspondence.
where the left hand side is the Godement-Jacquet local constant [13] and the right hand side is the Langlands-Deligne local constant [11]. (In fact, this condition is contained in the following condition (5).)

(5) For \(\sigma \in G_n(F) \) and \(\sigma' \in G_{n'}(F) \),

\[
(1.5) \quad \varepsilon (\Lambda^F_\sigma(s), \Lambda^F_{\sigma'}(s), s, \psi_F) = \varepsilon (\sigma \otimes \sigma', s, \psi_F)
\]

where the \(\varepsilon \)-factor of pairs of the left hand side is in the sense of [19], [25].

This conjecture has been proved in [23] when \(\text{ch } F = p \) and in [14], [17] when \(\text{ch } F = 0 \). But their proof relies on the global tool and say nothing explicit about the local Langlands correspondence.

On the other hand, there are some explicit correspondences in the following cases:

1. When \((n, p) = 1 \), Howe-Moy [15],[22] gives an explicit bijection between \(G_n(F) \) and \(A_n(F) \) when \((n, p) = 1 \). (See also [24]).

2. When \(n = p \), Kutzko-Moy [20] gives an explicit bijection between \(G_n(F) \) and \(A_n(F) \). (See also [16]).

3. When \(n = p^m \), Bushnell-Henniart [3] gives an explicit bijection between \(G_{p^m}(F) \) and \(A_{p^m}(F) \). (For the definition of \(G_{p^m}(F) \) and \(A_{p^m}(F) \), see below Remark 3.2.)

All three bijections satisfy the condition (1)–(4) of the local Langlands correspondence. Thus the main obstacle to get the explicit local Langlands correspondence is \(\varepsilon \)-factor of pairs. We know very few about the explicit calculation of \(\varepsilon (\pi_1 \times \pi_2, s, \psi_F) \) for \(\pi_1 \in A_{n_1}(F) \) and \(\pi_2 \in A_{n_2}(F) \): The known cases are (i) \(n_1 = n_2 \) ([21]) and \(\pi_2 = \pi_1 \) ([5]), (ii) \(\pi_1 \in A_{p_{p_1}}(F) \) and \(\pi_2 \in A_{p_{p_2}}(F) \) ([6]).

In this paper we consider the case \(n_1 \neq n_2 \) are primes. Set \(n_1 = l \) and \(n_2 = l' \). We admit the case \(l = p \). Since \(l \neq l' \), we may assume \(l' \neq p \). We get the relation of \(\varepsilon \)-factor of \(\text{GL}_l(F) \times \text{GL}_{l'}(F) \) with \(\varepsilon \)-factor of \(\text{GL}_l(E) \) where \(E \) is an extension of \(F \) associated with \(\pi_2 \). (See Theorem 4.1.)

Let us summarize the contents of this paper, indicating its organization:

Section 1 reviews the construction of irreducible supercuspidal representations \(\pi \) of \(\text{GL}_l(F) \) and the explicit formula of \(\varepsilon (\pi, s, \psi_F) \). All of this section is well-known. Section 2 is devoted to review some explicit correspondences and the tame lifting. When \(l \neq p \), \(G_l(F) \) consists of the representations in the form \(\text{Ind}_{W_E}^{W_F} \theta \); \(E/F \) is an extension of degree \(l \) and \(\theta \) is a quasi-character of \(E^\times \). By way of such \(\theta \), there is very explicit Howe-Moy correspondence between \(G_l(F) \) and \(A_l(F) \). But when \(l = p \), there exists non-monomial representations in \(G_p(F) \); so we need the tame base change lift to get the correspondence. (See [20],[3].) Let \(\pi \in A_{p^m}(F) \) and \(K/F \) a tamely ramified extension. After the definition
of [2], we give the tame base change lift \(l_K(\pi) \) explicitly (Theorem 3.5) and show \(l_K \) is compatible with the local Langlands correspondence (Proposition 3.7). We also define the tame base change lift \(l^\prime_\varepsilon \) of [2], we give the tame base change lift \(l^\prime_\varepsilon \) explicitly (Theorem 3.5). These are essential tool to calculate the \(\varepsilon \)-factor of pairs. Section 3 calculates the \(\varepsilon \)-factor of \(\text{GL}_n(F) \times \text{GL}_d(F) \). By the result of Bushnell-Henniart [7], the Howe-Moy correspondence coincides with the Local Langlands correspondence for \(\text{GL}_d(F) \). Thus we calculate the \(\varepsilon \)-factor in the Galois side and then transfer it to the automorphic side using the results in section 2.

Notation

Let \(F \) be a non-archimedean local field. We denote by \(\mathcal{O}_F, P_F, \varpi_F, k_F \) and \(v_F \) the maximal order of \(F \), the maximal ideal of \(\mathcal{O}_F \), a prime element of \(P_F \), the residue field of \(F \) and the valuation of \(F \) normalized by \(v_F(\varpi_F) = 1 \). We set \(q = q_F \) to be the number of elements in \(k_F \). Let \(W_F \) be the absolute Weil group of \(F \). Hereafter we fix an additive character \(\psi \) of \(F \) whose conductor is \(P_F \), i.e., \(\psi \) is trivial on \(P_F \) and not trivial on \(\mathcal{O}_F \). For an extension \(E \) over \(F \), we denote by \(\text{tr}_E, N_E \) the trace and norm to \(F \) respectively. We set \(\psi_E = \psi \circ \text{tr}_E \) and \(\chi_E = \chi \circ N_E \) for a quasi-character \(\chi \) of \(F^\times \). Let \(\theta \) be a quasi-character of \(E^\times \). We denote by \(f(\theta) \) an integer such that \(1 + P^{n+1}_E \not\subset \text{Ker}\, \theta \) and \(1 + P^n_E \subset \text{Ker}\, \theta \). The Gauss sum \(G(\theta, \psi_E) \) is defined by

\[
G(\theta, \psi_E) = \begin{cases}
q^{-1/2}E \sum_{x \in k_E^n} \theta^{-1}(x) \psi_\varepsilon(x) & \text{if } f(\theta) = 1 \\
q^{-1/2}E \theta^{-1}(1 + \varpi_E\varepsilon x) \psi_\varepsilon(\varpi_E\varepsilon x) & \text{if } f(\theta) = 2m + 1.
\end{cases}
\]

The \(\lambda \)-factor \(\lambda_E \) of \(E/F \) is defined by

\[
\lambda_E = \frac{\varepsilon(\text{Ind}_{W_F}^{W_E} 1_{W_K}, \psi_E)}{\varepsilon(1_{W_K}, \psi_E)}.
\]

It is well-known that

\[
\varepsilon(\text{Ind}_{W_F}^{W_E} \sigma, \psi_F) = \lambda_E^{\dim \sigma} \varepsilon(\sigma, \psi_E)
\]

for any representation \(\sigma \) of \(W_E \). The trace of matrix is denoted by \(\text{Tr} \). For an irreducible admissible representation \(\pi \) of \(\text{GL}_d(F) \), the conductorial exponent of \(\pi \) is defined to be the integer \(f(\pi) \) such that the local constant \(\varepsilon(s, \pi, \psi) \) of Godement-Jacquet [13] is the form \(aq^{-s(f(\pi)-1)} \).

Let \(G \) be a totally disconnected, locally compact group. We denote by \(\widehat{G} \) the set of (equivalence classes of) irreducible admissible representations of \(G \). For a closed subgroup \(H \) of \(G \) and a representation \(\rho \) of \(H \), we denote by \(\text{Ind}_H^G \rho \) (resp. \(\text{ind}_H^G \rho \)) the induced representation (resp. compactly induced representation) of \(\rho \) to \(G \). For a representation \(\pi \) of \(G \), we denote by \(\pi|_H \) the restriction of \(\pi \) to \(H \).
2. Construction of the representation \(\text{GL}_l(F) \)

Let \(l \) be an arbitrary prime number (we allow the case \(l = p \)). We set \(V_F = F^l \) so that \(M_l(F) = \text{End}_F(V_F) \) and \(\text{GL}_l(F) = \text{Aut}_F(V_F) \). Throughout this paper, we write \(G = G_F = \text{GL}_l(F) \) and \(G_K = \text{GL}_l(K) \)

In this section, we review the construction of the supercuspidal representation of \(\text{GL}_l(F) \) and its lift to \(\text{GL}_l(K) \) where \(K/F \) is a tamely ramified extension. Most of the contents of this section are well-known (See [8],[22] and [3].)

Definition 2.1. Let \(\mathcal{L} = \{ L_i \}_{i \in \mathbb{Z}} \) be the set of \(O_F \)-lattices in \(V_F \). \(\mathcal{L} \) is said to be a uniform lattice chain of period \(e = e(\mathcal{L}) \) if the following conditions hold for all \(i \in \mathbb{Z} \):

1. \(L_{i+1} \subset L_i \),
2. \(P_F L_i = L_{i+e} \),
3. \(\dim_{k_F}(L_i/L_{i+1}) = l/e \).

Since we assume \(l \) is a prime, the period \(e(\mathcal{L}) \) is either \(l \) or 1.

Definition 2.2. For a uniform lattice chain \(\mathcal{L} = \{ L_i \}_{i \in \mathbb{Z}} \) of period \(e \), we set

\[
\mathfrak{A}(\mathcal{L}) = \left\{ f \in M_l(F) \mid f(L_i) \subset L_i \text{ for all } i \right\},
\]

Then \(\mathfrak{A}(\mathcal{L}) \) is a principal order in \(M_l(F) \) and its Jacobson radical \(\mathfrak{P}(\mathcal{L}) \) is

\[
\{ f \in M_l(F) \mid f(L_i) \subset L_{i+1} \text{ for all } i \}.
\]

We also set the period \(e(\mathfrak{A}) \) of \(\mathfrak{A} \) is the period of \(\mathcal{L} \). Put \(U(\mathfrak{A}) = \mathfrak{A}^\times \), \(U(\mathfrak{A})^n = 1 + \mathfrak{P}^n \) for any positive integer \(n \) and

\[
\mathfrak{A}(\mathcal{L}) = \text{Aut}(\mathcal{L}) = \{ x \in \text{GL}_l(F) \mid x^{-1} \mathfrak{A} x = \mathfrak{A} \}.
\]

By taking an appropriate \(O_F \)-basis of \(L_0 \), we express the principal orders by the following matrix form. If \(e(\mathcal{L}) = l \), \(\mathfrak{A} \) (resp. \(\mathfrak{P}(\mathcal{L}) \)) is \(G \)-conjugate to \(M_l(O_F) \) (resp. \(M_l(P_F) \)). When \(e(\mathcal{L}) = 1 \), up to \(G \)-conjugacy,

\[
\mathfrak{A}(\mathcal{L}) = \begin{pmatrix}
O_F & O_F & \cdots & O_F \\
O_F & O_F & \cdots & O_F \\
\cdots & \cdots & \cdots & \cdots \\
P_F & P_F & \cdots & O_F
\end{pmatrix}
\]

and

\[
\mathfrak{P}(\mathcal{L}) = \begin{pmatrix}
P_F & O_F & \cdots & O_F \\
P_F & P_F & \cdots & O_F \\
\cdots & \cdots & \cdots & \cdots \\
P_F & P_F & \cdots & P_F
\end{pmatrix}.
\]

Let \(r, n \) be integers satisfying

\[
n > r \geq \left\lfloor \frac{n}{2} \right\rfloor \geq 0,
\]
where \([x]\) denote the greatest integer \(\leq x\). For \(\beta \in M_l(F)\), we define a function \(\psi_\beta\) on \(U(\mathfrak{A})^n\) by

\[
(2.1) \quad \psi_\beta(1 + x) = \psi(\text{Tr } \beta x).
\]

Then the map \(u \mapsto \psi_\beta\) induces an isomorphism between \(\mathfrak{P}^{-r+1}/\mathfrak{P}^{-n+1}\) and the complex dual, \((U(\mathfrak{A})^r / U(\mathfrak{A})^n)^\vee\), of \(U(\mathfrak{A})^r / U(\mathfrak{A})^n\).

Definition 2.3. Let \(E/F\) be a field extension in \(M_l(F)\). An element \(\beta \in E\) is said to be \(E/F\)-minimal if the following conditions hold:

1. \((v_E(\beta), e(E/F)) = 1.\)
2. \(k_F(\varphi^{v_E(\beta)} e(E/F) \mod P_E) = k_E.\)

When \(E \subset M_L(F)\) and \(E \neq F\), \(E/F\) is an extension of degree \(l\) since \(l\) is a prime. Thus we can identify \(E\) with \(V_F\). By this identification, \(\{P_E^n\}_{n \in \mathbb{Z}}\) becomes a uniform lattice chain of period \(e(E/F)\). We put \(\mathfrak{A}(E) = \mathfrak{A}(P_E^n)\).

Proposition 2.4. Suppose \(\beta\) is \(E/F\)-minimal and \(E \neq F\). For \(\mathfrak{A} = \mathfrak{A}(E)\), we have:

1. \(\mathfrak{K}(\mathfrak{A}) = E \times (\mathfrak{A}^\times U(\mathfrak{A}))\) and \(E \times U(\mathfrak{A}) = \mathcal{O}_E^\times.\)
2. \(E \cap \mathfrak{P}^m = P^n_E\) for all integers \(m\) and \(E \times U(\mathfrak{A})^m = 1 + P^n_E\) for all integers \(m \geq 1.\)
3. Let \(x \in \mathfrak{P}^l\). If \(\beta x - x \beta \in \mathfrak{P}^{m+l+1}\), then \(x \in E + \mathfrak{P}^{l+1}\).

Proof. The last assertion of the above proposition is due to Carayol (see [8]). The rest is obvious. \(\square\)

We shall construct the irreducible supercuspidal representations of \(\text{GL}_d(F)\) from \(E/F\)-minimal elements. Let \(E/F\) be a field extension of degree \(l\), \(\beta\) an \(E/F\)-minimal element and \(\mathfrak{A} = \mathfrak{A}(E)\). Put \(v_E(\beta) = 1 - n < 0\) and \(m = \lfloor n/2 \rfloor\). Then \(\psi_\beta\) is a quasi-character of \(U(\mathfrak{A})^m\) whose kernel contains \(U(\mathfrak{A})^m\). Put \(H = E \times U(\mathfrak{A})^m\) and define a quasi-character \(\rho_{\beta, \theta}\) of \(H\) by

\[
(2.2) \quad \rho_{\beta, \theta}(h \cdot g) = \theta(h) \psi_\beta(g) \quad \text{for} \quad h \in E \times, \ g \in U(\mathfrak{A})^m
\]

where \(\theta\) is a quasi-character of \(E \times\) such that \(\theta|_{E \times U(\mathfrak{A})^m} = \psi_\beta|_{E \times U(\mathfrak{A})^m}.\)

We note \(f(\theta) = 1 - v_E(\beta) = n\) where \(f(\theta)\) is the exponent of the conductor of \(\theta\) i.e. the minimum integer such that \(\text{Ker } \theta \subset 1 + P^n_E\).

Put \(J\) be the normalizer of \(\psi_\beta\) in \(\mathfrak{K}(\mathfrak{A})\) i.e.

\[
J = \{ a \in \mathfrak{K}(\mathfrak{A}) \mid \psi_\beta^a = \psi_\beta \}
\]

where \(\psi_\beta^a(x) = \psi_\beta(a^{-1}xa)\) for \(x \in U(\mathfrak{A})^m\). Then \(J = E \times U(\mathfrak{A})^m\) where \(m' = \lfloor n/2 \rfloor\) by virtue of Proposition 2.4. Put \(\eta_{\beta, \theta} = \text{Ind}_{H}^{\mathfrak{K}(\mathfrak{A})} \rho_{\beta, \theta}\).

When \(n\) is even, i.e. \(n = 2m\), then \(J = H = E \times U(\mathfrak{A})^m\). By the Clifford theory, \(\eta_{\beta, \theta}\) is an irreducible representation of \(\mathfrak{K}(\mathfrak{A})\). We put

\[
(2.3) \quad \kappa_{\beta, \theta} = \eta_{\beta, \theta}.
\]
When \(n \) is odd, i.e. \(n = 2m - 1 \), then \(J = E^{\times} U(A)^{m-1} \). Thus \(\eta_{\beta, \theta} \) is not an irreducible representation of \(\mathfrak{R}(A) \). Even in this case, we can describe the irreducible component of \(\eta_{\beta, \theta} \) by \(\beta \) and \(\theta \). If \(E/F \) is unramified, we put
\[
(2.4) \quad \kappa_{\beta, \theta} = \frac{(-1)^l (q^{l(l-1)/2} - (-1)^{(l-1)} q - 1)}{q^{l(l-1)/2} (q^l - 1)} \sum_{\chi \in (E^{\times}/F^{\times}(1+P_E))} \eta_{\beta, \theta} \otimes \chi + (-1)^{l-1} \eta_{\beta, \theta}.
\]

Now we assume we treat the case \(E/F \) is ramified. If \(l \neq p \), we put
\[
(2.5) \quad \kappa_{\beta, \theta} = 1 - \left(\frac{q}{l} \right) \frac{q^{l(l-1)/2}}{l^q (l-1)/2} \sum_{\chi \in (E^{\times}/F^{\times}(1+P_E))} \eta_{\beta, \theta} \otimes \chi + \left(\frac{q}{l} \right) \eta_{\beta, \theta}
\]
where \(\left(\frac{q}{l} \right) \) is the Legendre symbol. By Lemma 3.5.30 and Lemma 3.5.33 in [22], the virtual representation \(\kappa_{\beta, \theta} \) is an irreducible component of \(\eta_{\theta} \).

Next we treat the case \(l = p \). If \(f \) is odd, we put
\[
(2.6) \quad \kappa_{\theta} = \sum_{i=0}^{p-1} \left(\frac{1}{pq^{(l-1)/2}} + \left(\frac{i}{p} \right) \frac{p^{(f-1)/2}}{G_0 G(\beta)} \eta_{\theta} \otimes \chi^i
\]
where \(\chi \) is a generator of \((E^{\times}/F^{\times}(1+P_E))^{\times}\) determined by \(\chi(x) = \exp(2\pi \sqrt{-1}/p) \) and \(G_0, G(\beta) \) are Gauss sums defined by
\[
(2.7) \quad G(\beta) = \frac{1}{\sqrt{q}} \sum_{x \in k_E} \psi(\text{tr}_{k_E/k_F} \frac{1}{2} \beta x^2) \omega_E^{2m-1} (-1)^{(p+1)/2} x^2)
\]
\[
(2.8) \quad G_0 = \frac{1}{\sqrt{p}} \sum_{a=1}^{l} \left(\frac{a}{p} \right) \exp(2\pi \sqrt{-1}a/p).
\]

When \(f \) is even, we put
\[
(2.9) \quad \kappa_{\theta} = \sum_{\chi \in (E^{\times}/F^{\times}(1+P_E))} \frac{q^{1/2} G(\beta) - q^{(p-1)/2} \eta_{\theta} \otimes \chi + \frac{1}{q^{1/2} G(\beta)}}{G(\beta) p q^{p/2}} \eta_{\theta} \otimes \chi + \frac{1}{q^{1/2} G(\beta)} \eta_{\chi}.
\]

By Proposition 3.4 in [27], \(\kappa_{\theta} \) is an irreducible component of \(\eta_{\theta} \).

Finally we consider the level 1 supercuspidal representation. Let \(E/F \) be an unramified extension of degree \(l \), \(\theta \) a quasi-character of \(E^{\times} \) which is trivial on \(1 + P_E \) and \(A = A(E) \). Then there is an irreducible representation \(\kappa_{\theta} \) of \(U(A) \) which is trivial on \(U(A)^1 \) and its tensor product with the pull-back of the Steinberg representation of \(U(A)/U(A)^1 \cong \text{GL}_l(k_F) \) is the representation induced by the one-dimensional representation \(tx \mapsto \theta(t), \; t \in O_E^{\times}, \; x \in U(A)^1 \), of the subgroup \(O_E^{\times} U(A)^1 \). We denote by \(\kappa_{\theta} \) the representation \(tx \mapsto \theta(t) \kappa_{\theta}(x), \; t \in F^{\times}, \; x \in U(A) \), of \(\mathfrak{R}(A) \).
The notation be as above. Then \(\kappa_{\beta, \theta} \) and \(\kappa_{\theta} \) are irreducible representations of \(\mathcal{R}(A) \). Put \(\pi_F(\beta, \theta) = \text{ind}^{G}_{\mathcal{R}(\mathbb{A})} \kappa_{\beta, \theta} \) and \(\pi_F(\theta) = \text{ind}^{G}_{\mathcal{R}(\mathbb{A})} \kappa_{\theta} \). Then \(\pi_F(\beta, \theta) \) and \(\pi_F(\theta) \) are irreducible supercuspidal representations of \(G = \text{GL}_l(F) \) with \(f(\pi_F(u, \theta)) = f(E/F)(f(\theta) - 1) + l \) and \(f(\pi_F(\theta)) = lf(\theta) \). Every irreducible supercuspidal representation of \(G \) can be written in the form \(\chi_{\pi_F(\beta, \theta)} \) or \(\chi_{\pi_F(\theta)} \) for some \(E/F \)-minimal element \(\beta, \theta \in \tilde{F} \) and \(\chi \in \tilde{F}^\times \).

The \(\varepsilon \)-factors of all supercuspidal representations of \(G \) have been calculated completely. (See [22],[20]).

Theorem 2.6. Let \(\pi_F(\beta, \theta) \) and \(\pi_F(\theta) \) be as above. Put \(n = f(\theta) \). For \(\chi \in \tilde{F}^\times \), we pick an element \(c_\chi \in F \) such that \(\chi(1 + x) = \psi_F(c_\chi x) \) for \(x \in \mathbb{P}_E^{[f(\chi) + 1]/2} \). (If \(f(\chi) \leq 1 \), we take \(c_\chi = 0 \).) Put \(n(\chi) = \max(n, e(E/F)(f(\chi) - 1) + 1) \) and \(\beta_\chi = \beta + c_\chi \).

1. If \(n(\chi) \) is even,
 \[
 \varepsilon(\chi_{\pi_F(\beta, \theta)}, s, \psi) = \psi_E(\beta_\chi)(\chi_E \theta)(\beta_\chi^{-1})|\beta_\chi|_E^s.
 \]

2. If \(n(\chi) = n = 1 \),
 \[
 \varepsilon(\chi_{\pi_F(\theta)}, s, \psi) = (-1)^{l-1}\varepsilon(\chi_E \theta, s, \psi_E).
 \]

3. If \(n(\chi) \neq 1 \) is odd,
 \[
 \varepsilon(\chi_{\pi_F(\beta, \theta)}, s, \psi) = \psi_E(\beta_\chi)(\chi_E \theta)(\beta_\chi^{-1})|\beta_\chi|_E^s G
 \]

where the Gauss sum \(G \) is defined by

\[
G = \begin{cases}
G(\theta, \psi_E) & \text{if } n = n(\chi) \text{ and } E/F \text{ is tamely ramified} \\
G(\beta) & \text{if } n = n(\chi) \text{ and } E/F \text{ is wildly ramified} \\
\lambda_E G(\chi, \psi_F)^l & \text{if } n > n(\chi)
\end{cases}
\]

where \(\lambda_E \) is defined in (1.7).

3. Explicit correspondences and tame base change lift

Now we consider some correspondences between \(A_F(l) \) and \(G_F(l) \) which satisfy the conditions (i)-(iv) of the local Langlands correspondence. When \(l \neq p \) or \(l = p \) and \(E/F \) is unramified, this is a special case of Howe-Moy correspondence.

Definition 3.1. A quasi-character \(\theta \) of \(E^\times \) is called generic if \(f(\theta) \neq 1 \mod l \). For a generic character \(\theta \) of \(E^\times \), \(\beta_{\theta} \in \mathbb{P}_E^{1-f(\theta)} - \mathbb{P}_E^{2-f(\theta)} \) is defined by

\[
(3.1) \quad \theta(1 + x) = \psi_E(\beta_{\theta} x) \quad \text{for} \quad x \in \mathbb{P}_E^{[f(\theta) + 1]/2}.
\]

Then \(\beta \) is \(E/F \)-minimal. We denote by \(E^\times_{\text{gen}} \) the set of generic quasi-characters of \(E^\times \).
Remark 3.2. When E/F is tamely ramified, the generic quasi-character θ determines uniquely $\pi_F(\beta, \theta)$. (See [22]). In this case we simply denote $\pi_F(\beta, \theta)$ by $\pi_F(\theta)$. When $l = p$, we need β to determine the representation $\pi_F(\beta, \theta)$.

To separate the wildly ramified case, we introduce some notations. Let $\mathcal{A}_l^{ur}(F)$ denote the set $\pi = \chi \pi_F(\beta, \theta) \in \mathcal{A}_l(F)$ with the property that $F(\beta)/F$ is wildly ramified. $\pi \in \mathcal{A}_l^{ur}(F)$ is equivalent to $l = p$ and $\pi \simeq \chi \pi$ for some unramified quasi-character $\chi \neq 1$ of F^\times. We put $\mathcal{A}_l(F) = \mathcal{A}_l(F) \setminus \mathcal{A}_l^{ur}(F)$. Similarly let $\mathcal{G}_l^{ur}(F)$ denote the set $\sigma \in \mathcal{G}_l(F)$ with the property that $\sigma \otimes \chi$ is equivalent to π for some unramified quasi-character $\chi \neq 1$ of F^\times and $l = p$. We also put $\mathcal{G}_l^{t}(F) = \mathcal{G}_l(F) \setminus \mathcal{G}_l^{ur}(F)$. If $p \neq l$, $\mathcal{A}_l(F) = \mathcal{A}_l^{t}(F)$ and $\mathcal{G}_l(F) = \mathcal{G}_l^{t}(F)$ The Howe-Moy correspondence gives a bijection between $\mathcal{G}_l^{t}(F) = \mathcal{A}_l^{t}(F)$. (See [22] and [12].)

If E/F is tamely ramified, λ_E is easily calculated.

Lemma 3.3. Let E/F is a tamely ramified extension of degree l. Then

$$
\lambda_E = \begin{cases}
(-1)^{l-1} & \text{if } e(E/F) = 1, \\
\left(\frac{q}{l}\right) & \text{if } e(E/F) = l = 2 \\
q^{-l/2} \sum_{x \in k_E} \text{sgn}_{E/F}(x) \psi_E(x) & \text{if } e(E/F) = 2
\end{cases}
$$

Proof. See (2.5.3), (2.5.5) and Proposition 2.5.11 of [22].

Theorem 3.4. Let E be a tamely ramified extension of F of degree l and θ be a generic quasi-character of E^\times. We define a quasi-character δ_E of E^\times as follows:

When $e(E/F) \neq 2$, $\delta_E(x) = \lambda_E^{\nu_E(x)}$.

When $e(E/F) = 2$, $\delta_E(x) = \begin{cases}
1 & \text{if } x \in 1 + P_E, \\
\text{sgn}_{E/F}(x) & \text{if } x \in F^\times, \\
\lambda_E & \text{if } x = \beta_\theta.
\end{cases}$

We set $\sigma_F(\theta) = \delta_E \text{Ind}_{W_E}^{W_F}$.

1. the representation $\sigma_F(\theta)$ belongs to $\mathcal{G}_l^{t}(F)$ and any element of $\mathcal{G}_l^{t}(F)$ can be written in the form $\chi \sigma_F(\theta)$ for an extension E/F of degree l, a generic character of E^\times and a quasi-character χ of F^\times.

2. Define the map Φ^F_l from $\mathcal{G}_l^{t}(F)$ to $\mathcal{A}_l^{t}(F)$ by

$$
\Phi^F_l(\chi \sigma_F(\theta)) = \chi \pi_F(\delta_E \theta).
$$

Then Φ^F_l is a bijection which satisfies the following conditions:

(a) For $\chi \in \hat{F}^\times$ and $\sigma \in \mathcal{G}_l^{t}(F)$,

$$
\Phi^F_l(\chi \sigma) = \chi \Phi^F_l(\sigma).
$$
(b) For \(\sigma \in \mathcal{G}_l^1(F) \),
\[
\Phi_l^F(\hat{\sigma}) = \Phi_l^F(\sigma)^\vee.
\]

(c) Let \(\omega_\pi \) denote the central quasi-character of \(\pi \in \mathcal{A}_l(F) \). For \(\sigma \in \mathcal{G}_l^1(F) \),
\[
\omega_{\Phi_l}(\sigma) = \det \sigma.
\]

(d) For \(\sigma \in \mathcal{G}_l^1(F) \),
\[
\varepsilon(\Phi_l^F(\sigma), s, \psi_F) = \varepsilon(\sigma, s, \psi_F).
\]

Since \(\mathcal{G}_p^\mathrm{wr}(F) \) contains non-monomial representations, the correspondence between \(\mathcal{G}_p^\mathrm{wr}(F) \) and \(\mathcal{A}_p^\mathrm{wr}(F) \) becomes more complicated. We use the tame lifting of Bushnell-Henniart [3]. For any tamely ramified extension \(K/F \), including the case \(K/F \) is non-Galois, the tame lifting map \(I_K \) from \(\mathcal{A}_p^\mathrm{wr}(F) \) to \(\mathcal{A}_p^\mathrm{wr}(K) \) is constructed by Bushnell-Henniart. Since we consider the case \(i = 1 \), this base change is easy to describe. Since \(K/F \) is tamely ramified, \(E \otimes_F K =EK \) is an extension of field of \(K \), \(G_K = G(K) \) can be identified with \(\text{Aut}_K(E \otimes_F K) \) and \(\beta = \beta \otimes 1 \) becomes an \(EK/K \)-minimal element in \(V_K = \text{End}_K(EK) \). Moreover if \(\theta \) is a quasi-character of \(E^\times \) such that \(\theta(1 + x) = \psi(\text{tr}_{E/F} \beta x) \) for \(x \in \mathcal{P}_E \), then \(\theta N_{EK/E}(1 + x) = \psi_K(\text{tr}_{EK/K} \beta x) \) for \(x \in \mathcal{P}_E \). Therefore we get an irreducible supercuspidal representation \(\pi_K(\beta, \theta) \in \mathcal{A}_p^\mathrm{wr}(K) \).

Theorem 3.5. Let \(K/F \) be an extension of degree prime to \(p \) and \(I_K \) the lifting from \(\mathcal{A}_p^\mathrm{wr}(F) \) to \(\mathcal{A}_p^\mathrm{wr}(K) \) defined by (5.3.3) in [3]. Put \(\Delta_K = \det \text{Ind}_{W_K}^{F \times} 1_{W_K} \in \hat{F}^\times \) and \(\tilde{\Delta} = \Delta_K \circ N_{E/F} \in \hat{E}^\times \). For \(\pi_F(\beta, \theta) \in \mathcal{A}_p^\mathrm{wr}(F) \) and \(\chi \in \hat{F}^\times \), we have:
\[
I_K(\chi \pi_F(\beta, \theta)) = \chi_K \pi_K(\beta, (\tilde{\Delta} e(E/F)-1) \circ N_{EK/E})
\]
\[
= \begin{cases}
\chi_K \pi_K(\beta, \theta \circ N_{EK/E}) & e(E/F) \neq 2 \\
\chi_K \pi_K(\beta, (\tilde{\Delta} \theta) \circ N_{EK/E}) & e(E/F) = 2.
\end{cases}
\]

Proof. Since two lifting maps are compatible with twist of quasi-character of \(F^\times \), we may assume \(\chi = 1 \). By Proposition 10.2 of [3], it suffices to say
\[
\varepsilon(I_K(\pi_F(\beta, \theta)), s, \psi_K) = \varepsilon(\pi_K(\beta, (\tilde{\Delta} e(E/F)-1) \circ N_{EK/E}), s, \psi_K).
\]
(Other conditions (a) and (b) in Proposition 10.2 of [3] are obvious in our case.) Theorem 1.6 of [3] tells us that
\[
\lambda_K^p \varepsilon(I_K(\pi_F(\beta, \theta)), s, \psi_K) = \Delta(N_{E/F}(\beta)) \varepsilon(\pi_F(\beta, \theta), s, \psi_F)^{[K:F]}.
\]
On the other hand, it follows from Proposition 2.2.11 of [20] that
\[
\lambda_K^p \varepsilon(\pi_K(\beta, \theta \circ N_{EK/E}), s, \psi_K) = \Delta(N_{E/F}(\beta)) \varepsilon(\pi_F(\beta, \theta), s, \psi_F)^{[K:F]}
\]
if \(p \neq 2 \). (Proposition 2.2.11 of [20] assumes \(K/F \) is Galois, but it holds including the case \(K/F \) is non-Galois since Proposition 2.5.16 of [22] holds for any tamely ramified extension \(K/F \).) Hence the assertion holds when \(p \neq 2 \). When \(p = 2 \), \(n(\pi_F(\beta, \theta)) = 1 - v_E(\beta) \) is even since \((v_E(\beta), p) = 1 \). Therefore Theorem 2.6 tells us

\[
\varepsilon(\pi_K(\beta, \theta \circ N_{E_K/E}), s, \psi_K) = \varepsilon(\pi_F(\beta, \theta), s, \psi_F)^{[K:F]}.
\]

Since \(\Delta_K \circ N_{K/F} \) is unramified and \(\Delta_K^{-1} = \Delta_K \),

\[
\varepsilon(\pi_K(\beta, (\tilde{\Delta}\theta)\circ N_{E_K/E}), s, \psi_K) = \Delta_K \circ N_{K/F}(\beta) \varepsilon(\pi_K(\beta, \theta \circ N_{E_K/E}), s, \psi_K).
\]

Hence our assertion holds. \(\Box \)

Remark 3.6. Two quasi-characters \(\Delta_K \) and \(\delta_K \) is closely related. If \(e(K/F) \) is odd, \(\Delta_K \circ N_{K/F} = \delta_K \). (See Corollary 2.5.5 of [22].)

Using the tame lifting map \(I_K \), Bushnell-Henniart ([3]) has constructed the correspondence \(\mathcal{G}^{wr}_p(F) \) to \(\mathcal{A}^{wr}_p(F) \). For \(i = 1 \), this map coincides with the local Langlands correspondence and is compatible with \(I_K \). This follows as a special case of Lemma 5.2 in [4].

Proposition 3.7. Let \(\Lambda^K_l \) be the local Langlands map. Then for any tamely ramified extension \(K/F \) and \(\sigma \in \mathcal{G}^{wr}_p(F) \), we have:

\[
I_K \Lambda^K_l(\sigma) = \Lambda^K_I(\sigma|_{W_K}).
\]

Proof. By Lemma 5.2 in [4], it suffices to say that the exponent \(f(\pi_{\beta, \theta}) \) of the conductor of \(\pi_{\beta, \theta} \in \mathcal{A}^{wr}_p(F) \) is prime to \(p \). It follows from the fact that \(f(\pi_{\beta, \theta}) \equiv -v_E(\beta) \mod p \). \(\Box \)

We define the lift \(I_K \) for \(\pi \in \mathcal{A}^l_I(F) \) as in the case \(\pi \in \mathcal{A}^{wr}_I(F) \).

Definition 3.8. Let \(E/F \) be an extension of degree \(l \), \(\theta \in \widetilde{E}^\infty_{gen} \) and \(\chi \in \hat{F}^\times \). Assume \(K \) is a tamely ramified extension of \(F \) such that \(([K : F], l) = 1 \). Then we define \(I_K(\chi \pi_F(\theta)) \) by

\[
I_K(\chi \pi_F(\beta, \theta)) = \chi_K(\Delta_K \circ N_{K/F})^{e(E/F)-1} \pi_K(\beta, \theta \circ N_{E_K/E}) \]

\[
= \begin{cases}
\chi_K \pi_K(\beta, \theta \circ N_{E_K/E}) & e(E/F) \neq 2 \\
\chi_K(\Delta_K \circ N_{K/F}) \pi_K(\beta, \theta \circ N_{E_K/E}) & e(E/F) = 2.
\end{cases}
\]

This lifting is compatible with \(\Phi_l \).

Proposition 3.9. Let \(K/F \) be a finite, tamely ramified extension satisfying \(K \cap E = F \). For \(\sigma \in \mathcal{G}^l_I(F) \),

\[
I_K \Phi^K_l(\sigma) = \Phi^K_I(\sigma|_{W_K}).
\]

Proof. Since \(I_K \) and \(\Phi_l \) are compatible with quasi-character twist, we may assume \(\sigma = \sigma_F(\theta) \) for \(\theta \in \widetilde{E}^\infty_{gen} \). By the definition of \(I_K \) and \(\Phi_l \),

\[
(\Phi^K_l)^{-1}(I_K(\Lambda^K_l(\sigma_F(\theta)))) = \text{Ind}_{W_{E_K}}^{W_K} \delta_{E_K/K}((\tilde{\Delta}^{e(E/F)-1}\theta) \circ N_{E_K/K}).
\]
On the other hand, it follows from $W_E W_K = W_F$ and $W_E \cap W_K = W_{EK}$ that Mackey’s Theorem tells us

$$\sigma_F(\theta)|_{W_K} = \text{Ind}_{W_{EK}}^{W_K}(\delta_E \theta) \circ N_{EK/E}.$$

Thus it suffices to say that

(3.2) \[\delta_{EK/K}(\tilde{\Delta} \circ N_{EK/K}(x)) = \delta_{EK/K}(x) \Delta_{EK/F}(x^2) \]

since Δ_K has at most order 2. The right hand side of (3.2) becomes

$$\text{sgn}_{E/F}(N_{EK/E}(x)),$$

which equals to $\text{sgn}_{EK/K}(x)$ since $\left[K : F \right]$ is odd.

We compare the value of both sides of (3.2) at β. The left hand side is $\lambda_{EK/K} \lambda_{EK/F}$. After all, the equation $\lambda_{EK/E} \lambda_{EK/K} = 1$ gives the result. When $\left[K : F \right]$ is prime, it follows from Lemma 3.3. The composite case is obtained by the transitivity property of λ-factor.

We need to show that the Howe-Moy correspondence Φ_l coincides with the Local Langlands correspondence Λ_l.

Theorem 3.10. For any prime $l' \neq p$,

$$\Phi_{l'}^E = \Lambda_{l'}^E.$$

Proof. If $l' = 2$, it follows from Converse Theorem ([9]). We assume l' is an odd prime. Let $\pi \in \mathcal{A}_F(l')$. Then there exist an extension E/F of degree l', $\theta \in (E^\times)_{\text{gen}}$ and $\chi \in \widehat{F^\times}$ such that $\pi = \chi \pi_{\mathcal{F}}(\theta)$ as in Remark 3.2. When E/F is unramified, Theorem 9.2 ([26]) implies $\Phi_{l'}^E(\pi) = \chi \text{Ind}_{W_E}^{W_{EK}} \theta = \Lambda_{l'}^E(\pi)$. When E/F is ramified, the assertion follows from Theorem B in [7].

Remark 3.11. Theorem 9.2 ([26]) is proved under the assumption $p > l$, but this assumption is dispensable. The key point is to prove that

$$\Theta^\kappa_{\pi}(x) = \Theta_{\pi}(x) \quad \text{for } x \in E^\times \backslash F^\times (1 + P_E^F)$$

where Θ_{π} is a distribution character of π and Θ^κ_{π} is a κ-twisted distribution character of π for $\kappa \in (F^\times / n_{E/F}(E^\times))^\wedge$. This is proved in Theorem 6.1 ([26]) without using the assumption $p > l$.

By Proposition 3.7, Proposition 3.9 and Theorem 3.10, Φ_l is compatible with $\mathbf{1}$ for any prime l.

Corollary 3.12. Let K/F be a finite, tamely ramified extension satisfying $K \cap E = F$. For any prime l and $\sigma \in G_l(F)$,
\[I_K \Phi^F_l(\sigma) = \Phi^K_l(\sigma|_{W_K}). \]

4. ε-FACTOR OF PAIRS

In this section, we consider the ε-factor $\varepsilon(\pi_1 \times \pi_2, s, \psi_F)$. Let l' be a prime not equal to l and p. We treat the case $\pi_1 \in A_F(l)$ and $\pi_2 \in A_F(l')$. Since the local Langlands correspondence and the Bushnell-Henniart base change lift are compatible with quasi-character twists, we may assume π_1 and π_2 are minimal.

Theorem 4.1. Let $\pi_1 \in A_F(l)$ and $\pi_2 \in A_F(l')$ where l' is a prime not equal to l and p. Let E_2/F be an extension of degree l', $\theta_2 \in (F_{l')_{gen}}$ and $\chi_2 \in \tilde{F_{l')}$ such that $\pi_2 = (\chi_2)_{E_2} \pi_F(\theta_2)$ as in Remark 3.2. Then we have
\[(4.1) \quad \varepsilon(\pi_1 \times \pi_2, s, \psi_F) = \chi_2 \delta_{E_2} \theta_2 l_{E_2}(\pi_1), s, \psi_{E_2}). \]

Proof. It follows from $\Phi^F_l = \Lambda^F_l$ that
\[(\Lambda^F_l)^{-1}(\pi_F((\chi_2)_{E_2}(\theta_2))) = \text{Ind}_{W_{E_2}} W_{E_2}^F(\chi_2 \delta_{E_2} \theta_2). \]

Put $(\Lambda^F_l)^{-1}(\pi_1) = \sigma_1$. Then we have:
\[\varepsilon(\pi_1 \times \pi_2, s, \psi_F) = \varepsilon(\sigma_1 \otimes \text{Ind}_{W_{E_2}} W_{E_2}^F(\chi_2 \delta_{E_2} \theta_2), s, \psi_F). \]

Since
\[\text{Ind}_{W_{E_2}} W_{E_2}^F(\sigma_1) \otimes \chi_2 \delta_{E_2} \theta_2 = \text{Ind}_{W_{E_2}} W_{E_2}^F(\sigma_1|_{W_{E_2}}) \otimes \chi_2 \delta_{E_2} \theta_2 \]
and
\[\varepsilon(\text{Ind}_{W_{E_2}} W_{E_2}^F(\sigma, s, \psi_F) = \lambda_{E_2}^{\dim} \varepsilon(\sigma, s, \psi_{E_2}) \quad \text{for} \quad \sigma \in G_E(l'), \]
we obtain
\[\varepsilon(\pi_1 \times \pi_2, s, \psi_F) = \varepsilon(\sigma_1|_{W_{E_2}} \otimes \text{Ind}_{W_{E_2}} W_{E_2}^F(\chi_2 \delta_{E_2}, s, \psi_F) \]
\[= \lambda_{E_2} \varepsilon(\sigma_1|_{W_{E_2}} \otimes (\chi_2 \delta_{E_2} \theta_2), s, \psi_{E_1}). \]

Assume $l \neq p$, then π_1 can be written in the form $\chi_1 \pi_{\theta_1} \sigma_2 = \text{Ind}_{W_{E_1}} W_{E_2}^F(\chi_1 \delta_{E_1}, \theta_1)$. By the Mackey decomposition and $W_{E_1} W_{E_2} = W_F$, we have
\[(\text{Ind}_{W_{E_1}} W_{E_2}^F(\chi_1 \delta_{E_1}, \theta_1)|_{W_{E_2}} = \text{Ind}_{W_{E_1}} W_{E_2}^F(\chi_1 \delta_{E_1}, \theta_1) \circ N_{E_1/E_2}. \]

Since $(\chi_1 \delta_{E_1}, \theta_1) \circ N_{E_1/E_2/F}$ does not factor through N_{E_1/E_2},
\[\text{Ind}_{W_{E_1}} W_{E_2}^F((\chi_1 \delta_{E_1}, \theta_1) \circ N_{E_1/E_2/E_1} \in G_{E_2}(l)). \]

Therefore we have:
\[\varepsilon(\pi_1 \times \pi_2, s, \psi_F) = \lambda_{E_2} \varepsilon(\text{Ind}_{W_{E_1}} W_{E_2}^F(\chi_1 \delta_{E_1}, \theta_1) \otimes \chi_2 \delta_{E_2} \theta_2 \circ N_{E_1/E_2/E_1}, s, \psi_{E_1}) \]
\[= \lambda_{E_2} \varepsilon(\chi_2 \delta_{E_2} \theta_2 \otimes (\chi_1)_{E_1E_2} \pi_{E_2}((\theta_1 \circ N_{E_1/E_2/E_1}), s, \psi_{E_2}). \]
(The last equality follows from $\Lambda_{E_2}(\pi_1 \circ N_{E_1 E_2 / E_1}) = \text{Ind}^{W_{E_2}}_{W_{E_1 E_2 / E_1}} (\theta_1 \delta_{E_1}) \circ N_{E_1 E_2 / E_1}$.)

When $l = p$, it follows from Proposition 3.7 and Proposition 3.5 that

$$\Lambda_{E_2}(\sigma_1|_{W_{E_2}}) = 1_{E_2}(\pi_1) = (\chi_1)_{E_1 E_2} \pi_{E_2}(\beta_1, \theta_1 \circ N_{E_1 E_2 / E_1}).$$

Thus we have

$$\varepsilon(\pi_1 \times \pi_2, s, \psi_F) = \lambda_{E_2} \varepsilon(\chi_2 \delta_{E_2} \theta_2 \otimes (\chi_1)_{E_1 E_2} \pi_{E_2}(\beta_1, \theta_1 \circ N_{E_1 E_2 / E_1}), s, \psi_{E_2}).$$

□

By combining Theorem 2.6 and Theorem 4.1, we get the complete list of $\varepsilon(\pi_1 \times \pi_2, s, \psi_F)$ for $\pi_1 \in A_F(l)$ and $\pi_2 \in A_F(l')$ where l is any prime and l' is a prime $\neq l$.

Remark 4.2. By the result of [7], Theorem 4.1 may be extended to the case $\pi_1 \in A_F^l(m)$ and $\pi_2 \in A_F^l(n)$ where $(m, n) = 1$.

References

[1] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton Univ. Press, 1989.
[2] C. J. Bushnell and G. Henniart, Local Tame Lifting For GL(N) I: Simple characters, Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 105–233.
[3] C. J. Bushnell and G. Henniart, Local tame lifting for GL(n). II. Wildly ramified supercuspidals. Astérisque No. 254 (1999), vi+105 pp.
[4] C. J. Bushnell and G. Henniart, Davenport-Hasse relations and an explicit Langlands correspondence, J. Reine Angew. Math. (2000), 171–199.
[5] C. J. Bushnell and G. Henniart, Calculs de facteurs epsilon de paires sur un corps local. I., Bull. London Math. Soc. 31 (1999), 534–542.
[6] C. J. Bushnell and G. Henniart, Calculs de facteurs epsilon de paires sur un corps local. II., Compositio Math. 123 (2000), 89–115.
[7] C. J. Bushnell and G. Henniart, The essentially tame local Langlands correspondence, I, preprint.
[8] H. Carayol, Représentation cuspidales du groupe linéaire, Ann. Scient. Éc. Norm. Sup. 17 (1984), 191–226.
[9] J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GL(n), Publ. Math. IHES 79 (1994), 157–214.
[10] J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GL(n), II, J. Reine angew. Math. 507 (1999), 165–188.
[11] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: Lecture Notes in Math. vol. 349, Springer, Berlin, 1973, pp. 501–595.
[12] P. Gérardin, Cuspidal unramified series for central simple algebras over local fields in: Automorphic forms, representations and L-functions Part 1, 157–169, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.
[13] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math. 260, Springer, Berlin, 1972.
[14] H. Harris and R. Taylor, On the geometry and cohomology of some simple Shimura varieties, Annof Math Studies, 151, Princeton University Press, 2001.
[15] R. Howe, *Tamely ramified supercuspidal representations of GL_n(F)*, Pac. J. Math. **73**, (1977), 437–460.

[16] G. Henniart, *Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires*, Invent. Math. **113**, (1993), 339-350.

[17] G. Henniart, *Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique*, Invent. Math. **139**, (2000), 439–455.

[18] R. Howe, *Tamely ramified supercuspidal representations of GL_n(F)*, Pac. J. Math. **73** (1977), 437–460.

[19] H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, *Rankin-Selberg convolutions*, Amer. J. Math. **105** (1983), pp. 367–464.

[20] P. Kutzko and A. Moy, *On the local Langlands conjecture in prime dimension*, Ann. of Math. (2) **bf 121** (1985), no. 3, 495–517.

[21] W.-C. W. Li, *On the representations of GL(2). II. ε-factors of the representations of GL(2) × GL(2)*, J. Reine Angew. Math. **314** (1980), 3–20.

[22] A. Moy, *Local constant and the tame Langlands correspondence*, Amer. J. Math. **108** (1986), 863–930.

[23] G. Laumon, M. Rapoport, and U. Stuhler, *D-elliptic sheaves and the Langlands correspondence*, Invent. Math. **113** (1993), 217–338.

[24] H. Reimann, *Representations of tamely ramified p-adic division and matrix algebras*, J. Number Theory **38**(1991), 58–105.

[25] F. Shahidi, *Fourier transforms of intertwining operators and Plancherel measures for GL(n)*, Amer. J. Math. **bf 106** (1984), 67–111.

[26] L. Spice, *Supercuspidal characters of SL_ℓ over p-adic field, ℓ a prime*, preprint, to appear in Amer. J. Math.

[27] T. Takahashi, *On the irreducible very cuspidal representations II*, J. Math. Kyoto Univ. **36-4** (1996), 889–910.

Department of Mathematics and Information Science, College of Integrated Arts and Sciences, Osaka Prefecture University

E-mail address: takahasi@mi.cias.osakafu-u.ac.jp