Redox medicine in viral infections: focus on AIDS and COVID-19

Cristina Mas-Bargues, Consuelo Borrás and José Viña

Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain

Correspondence should be addressed to José Viña: jose.vina@uv.es

Abstract

Despite the great progress and advancements in scientific knowledge, technology, and medicine, viral infections continue to put human health in trouble. Both acquired immunodeficiency syndrome (AIDS) and coronavirus disease 2019 (COVID-19), caused by human immunodeficiency virus and severe acute respiratory syndrome coronavirus 2, two RNA viruses responsible for global pandemics, respectively, have poor outcomes associated with increased oxidative stress, systemic inflammation, and immunopathology. Here, we have collected the current knowledge linking both viral infections, focusing on the role of oxidative stress and the redox balance. Furthermore, we provide information on some redox-active compounds, such as vitamins, thiol-based agents, and polyphenols, and their possible beneficial effects on both diseases. Thus, in this review, we aim to highlight the importance and impact of nutritional strategies to strengthen our immune system, especially to increase the effectiveness of pharmacological treatments, or when there are no effective treatments.

Oxidative stress-related mechanisms in HIV infection and treatment

A brief introduction to HIV and oxidative stress

Human immunodeficiency virus (HIV) is a virus that attaches to the CD4 molecules and CCR5 (a chemokine co-receptor); then the virus surface and the cell membrane fuse (Negi et al. 2022) enabling the virus entry into a T-helper lymphocyte (Justiz Vaillant & Gulick, 2022). Thus, HIV targets the immune cells and weakens their ability to fight everyday infections and diseases. If left untreated, it can lead to acquired immune deficiency syndrome (AIDS) which is characterized, as its name indicates, by a deficiency of the immune system, which predisposes the patients to the development of certain cancers, infections, or other severe long-term clinical manifestations.

HIV first appeared in Central Africa during the first half of the 20th century. The global spread of the virus began in the late 1970s, and AIDS was first recognized in 1981 (World Health Organization 2022). Since then, HIV infection continues to be a major global public health issue. Fortunately, effective prevention, early diagnosis, and highly active antiretroviral treatment can make it a manageable chronic health condition (World Health Organization 2022).

The mechanisms by which this virus spreads inside our immune system have been extensively described (Moir et al. 2011, Waymack & Sundareshan 2022). In the following lines, we will focus on the relationship between HIV and oxidative stress. It has been generally acknowledged that HIV infection triggers massive reactive oxygen species (ROS) production, which in turn promotes HIV replication (Ivanov et al. 2016).
The HIV TAT (Trans-Activator of Transcription) gene is known to inhibit the expression of cellular superoxide dismutase (SOD). Reduced levels of this antioxidant enzyme cause a rapid depletion of sulphydryl (SH) groups (also called thiol groups) and an increase in ROS levels which in turn activate the NF-xB signaling pathway involved in the transcription of HIV genome (Miesel et al. 1995). Finally, these redox alterations drive HIV pathogenicity, which includes exhaustion of CD4/CD8 T cells, organ cytotoxicity, and some side effects of antiretroviral therapy.

Azidothymidine treatment potentiates HIV-derived oxidative stress

Azidothymidine (zidovudine, AZT) was the first antiretroviral drug approved for the treatment of AIDS and, despite its numerous side effects, it remains one of the chemotherapeutic agents of choice approved by the Food and Drug Administration (Kemnic & Gulick 2022). AZT is a nucleoside analog that inhibits by competition the viral reverse transcriptase that HIV uses for its replication.

AZT has many side effects, including mitochondrial damage and toxicity, which could potentiate the already existing oxidative stress in HIV-infected patients. Indeed, a study analyzed the effects of AZT treatment in wild-type (control) mice and HIV-1 tat (transgenic) mice. The authors reported that AZT-treated control mice showed a 60% inhibition of the Mn-SOD activity, and AZT-treated transgenic mice displayed an 85% inhibition of the enzyme’s activity. In both cases, the reduction of Mn-SOD activity was followed by increased protein carbonylation and reduced sulphydryl groups, thereby suggesting that AZT treatment is an inducer of oxidative stress (Prakash et al. 1997). The mitochondrial toxicity of AZT is due to mitochondrial DNA (mtDNA) damage caused by increased ROS (Premanathan et al. 1997). An in-depth analysis performed by Butanda-Ochoa and colleagues demonstrated that AZT-mediated toxicity impairs mitochondrial function leading to increased ROS levels and oxidative stress in muscles and especially in the liver (Butanda-Ochoa et al. 2021). More recently, a study performed metabolic profiling of the sera of HIV-infected patients with an AZT-based antiretroviral treatment. The authors identified significant differences in metabolic features related to glutamine/glutamate metabolism; since glutamine is a precursor of glutathione, this finding suggests persistent oxidative stress in these patients (Sitone et al. 2022).

Antioxidant approaches to HIV infection

The control of imbalanced redox status by antioxidants might be beneficial for the quality of life of HIV patients. In the following paragraphs, we report data on some antioxidants (vitamins, NAC, and polyphenols) used as a therapeutic strategy for oxidative-stress-associated disorders in HIV infection.

Vitamins

In vivo studies reported that AZT affected skeletal muscle, heart, liver, and neurons causing myopathy, cardiomyopathy, hepatotoxicity, and neurotoxicity, respectively. A very promising solution to solve these side effects was the use of vitamins. This idea appeared when a study revealed that deficiencies in some vitamins were associated with an accelerated progression of HIV infection to AIDS (Tang & Smit 1998). In particular, low cell/tissue amounts of vitamins A, B12, and especially vitamin E were related to increased levels of oxidative stress in HIV patients.

Indeed, it was demonstrated that vitamin E analogs could prevent NF-xB activation in an in vitro system (Staal et al. 1990), thereby hampering HIV transcription. Similarly, several studies revealed that mice infected with HIV had reduced levels of vitamin E in serum, which was accompanied by a dysregulated cytokine release and an altered immune system (Wang et al. 1994, 1995a,b, Liang et al. 1996). Moreover, a longitudinal study and a randomized clinical trial in humans reported the same results (Allard et al. 1997, Tang et al. 1997). Interestingly, in both mice and humans, dietary intake of vitamin E was correlated with a slower progression of HIV infection.

Our group published some years ago a series of studies to determine the beneficial and protective effect of supranutritional doses of antioxidant vitamins (C and E) on skeletal muscle, liver, and heart from AZT-treated control mice. In our first study, we reported that AZT treatment caused an increase in peroxide production by skeletal muscle mitochondria, which was accompanied by ultrastructural damage to mitochondria, increased mitochondrial lipid peroxidation, and oxidative damage to mtDNA, as demonstrated by high levels of 8-oxo-dG in urine. We found that antioxidant supplementation reverts this oxidative damage and the ultrastructural changes of muscle mitochondria caused by AZT (de la Asuncion et al. 1998).

Our next study focused on AZT-derived damage to liver mitochondria. We found similar results: increased...
peroxide production (over 240%) and oxidized mtDNA (40% more) in liver mitochondria from AZT-treated mice compared to untreated mice. This oxidative damage was also prevented by the dietary administration of vitamins C and E (de la Asuncion et al. 1999). Similarly, another study reported that 2 months of treatment with AZT significantly increased liver weights, plasma triglycerides, and total cholesterol. These effects, as well as oxidative stress and apoptosis, were mitigated by vitamin E administration compared to untreated rats (Adebiyi et al. 2015).

In another study, we aimed to test whether AZT treatment causes oxidative damage to heart mitochondria. As expected, we found increased mitochondrial lipid peroxidation and oxidation of mitochondrial GSH, as well as over 120% more 8-oxo-dG in the mtDNA of AZT-treated mice. Dietary supplementation with supranutritional doses of the antioxidant vitamins C and E protected against these signs of mitochondrial oxidative stress (de la Asuncion et al. 2004). Another study on rats investigated whether AZT treatment’s effect could impair cardiac function by affecting intercellular junctions. Rats were treated for 8 months with AZT, vitamin C, or a combination of both. Their results proved that AZT treatment induced ROS-mediated damage to cardiac intercalated discs that was prevented by vitamin C (Belloni et al. 2009).

Taken together, vitamin supplementation seems to prevent AZT-derived myopathy, hepatotoxicity, and cardiomyopathy (Fig. 1).

Lastly, we also investigated the effect of vitamins on another common side effect of AZT: leukopenia. Our results demonstrated that AZT-derived leukopenia in control mice was abrogated by the administration of vitamins C and E. These vitamins diminished peroxide levels in myeloid precursors in the bone marrow and oxidized glutathione levels in blood (Garcia-de-la-Asuncion et al. 2007).

Thiol-based agents: N-acetyl-l-cysteine and GSH
As mentioned earlier, another characteristic of HIV-infected patients is that they exhibit low levels of cysteine and reduced GSH in plasma. Glutathione is synthesized from cysteine, glutamate, and glycine by a series of reactions catalyzed by the action of γ-glutamylcysteine synthase and glutathione synthase. Thus, cysteine is required for the synthesis of GSH and is the rate-limiting factor.

The liver transforms methionine into cysteine through the transsulfuration pathway, which is mediated by γ-cystathionase. We reported that liver samples obtained from AIDS patients displayed reduced levels and activity of this enzyme, thereby resulting in low levels of both cysteine and GSH (Martin et al. 2001).
parameters related to premature aging (Kumar et al. 2020). Similarly, GlyNAC has proven to rapidly improve health-related quality of life and lower the perception of fatigue in HIV-infected patients (Sekhar 2021).

NAC treatment for 8 weeks replenished GSH levels in the plasma of HIV patients (De Rosa et al. 2000). But, it has also been reported that the intracellular GSH levels in lymphocytes from HIV-infected patients treated with NAC are not significantly higher than placebo (Nakamura et al. 2002). A phase II randomized clinical trial (RIPENACTB) analyzed NAC treatment concomitantly administered with anti-tuberculosis treatment in patients with tuberculosis and HIV coinfection since tuberculosis causes significant mortality in HIV-infected patients. The authors reported that NAC co-administration was safe and entailed a significant increase in GSH levels and total antioxidant status (Safe et al. 2020).

Polyphenols

Polyphenols have also antioxidant properties, and therefore, they could also be suitable candidates for HIV treatment.

Indeed, a study analyzed the effects of tannic acid on AZT-derived hepatotoxicity in HIV-infected mice. AZT treatment increased the plasma levels of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase, thereby supporting its hepatotoxic activity. Treatment with tannic acid lowered AZT-derived hepatotoxicity thus restoring the levels of ALT, AST, and alkaline phosphatase. Moreover, tannic acid also promoted an increase in GSH levels and a decrease in malondialdehyde levels in AZT-treated mice, thereby decreasing oxidative stress and damage (Tikoo et al. 2008).

Another study using primary human cardiomyocytes evaluated the effects of pretreatment with resveratrol before AZT treatment on mitochondrial ROS generation. The authors reported that resveratrol attenuated AZT-induced cardiomyocyte death through modulation of caspase-3 and -7 activity and poly (ADP-ribose) polymerase activation. AZT also increased mitochondrial ROS generation in a concentration-dependent manner, which was prevented by resveratrol pretreatment (Gao et al. 2011). Another in vitro study using established HIV-1 transcription and latent cell models assayed the mechanism by which resveratrol stimulates HIV-1 gene transcription. They reported that resveratrol promoted HIV TAT protein levels, which were dependent on AKT/FOXO1 signaling (Feng et al. 2021). Similarly, pretreatment with resveratrol increased intracellular NAD+ levels and sirtuin 1 (SIRT1) protein expression after Tat plasmid transfection and attenuated Tat-induced HIV-1 transactivation in an in vitro cellular model (Zhang et al. 2009). Thus, resveratrol could be a promising cotreatment to eradicate HIV-1 reservoirs. Lastly, it has also been suggested that HIV-1 decreases nuclear factor erythroid-derived 2 (Nrf2) activity and inhibits the antioxidant response element (ARE) leading to immune dysfunction in individuals with HIV infections (Staitieh et al. 2017). Since resveratrol is a well-known activator of Nrf2/ARE (Farkhondeh et al. 2020), it would be of utmost importance to test its efficacy against HIV infection.

More recently, silibinin, another polyphenol obtained from Silybum marianum, also proved to be an efficient treatment against AZT-derived oxidative stress. In the following studies, the authors evaluated the alleviating properties of silibinin against AZT-induced hepatotoxicity and oxidative stress in rats. AZT treatment increased ALT, AST, and alkaline phosphatase levels in serum, thus suggesting that the oral dosage was effectively hepatotoxic. In parallel, oxidative stress was observed by increased lipid peroxidation and total carbonyl content, as well as reduced SOD and catalase activities, and protein thiol levels in liver homogenates. Simultaneous treatment of silibinin prevented liver hepatotoxicity and oxidative stress induced by AZT (Raghu et al. 2015, Raghu & Karthikeyan 2016).

Lastly, coffee consumption, which has anti-inflammatory and hepatoprotective properties, has also been evaluated on patients co-infected with HIV and hepatitis C virus. This study proved that 3 cups of coffee a day for 5 years was associated with a 50% reduced risk of all-cause mortality in these patients (Carrieri et al. 2017).

Oxidative stress-related mechanisms in SARS-CoV-2 infections

Role of oxidative stress in SARS-CoV-2 infection

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Although the pathogenesis of this viral infection is still poorly understood, the main signs and symptoms include respiratory and cardiovascular problems, which can progress to severe organ failure and death.

Oxidative stress is related to all the main changes observed in other similar infectious diseases and has therefore been investigated as one of the links that connect all these events during SARS-CoV-2 infection.
Experimental animal models showed increased ROS levels and an altered antioxidant defense during SARS-CoV-2 infection (Huang et al. 2020). These observations have been validated in human samples from infected patients. A study reported significantly higher levels of superoxide anion radicals and lower levels of nitric oxide in severe cases of SARS-CoV-2 compared to healthy individuals (Cekerevac et al. 2021). Similarly, other studies found reduced antioxidant defenses (SOD, CAT, GPx) that were correlated with the disease severity in hospitalized patients with COVID-19 (Karkhanei et al. 2021). Moreover, the antioxidant defenses collapse was also confirmed by the evidence of very low levels of vitamin C, GSH, protein thiols, α-tocopherol, and β-carotene in blood samples obtained from critically ill COVID-19 patients (Pinçemai et al. 2021). Also, serum-free thiol concentrations have been analyzed and correlated with the disease severity: hospitalized subjects had significantly lower levels of serum-free thiols compared to non-hospitalized subjects and healthy controls (van Eijk et al. 2021). Lastly, oxidative damage to lipids has also been detected in plasma samples from patients at admission (Zendelovska et al. 2021). Indeed, physiological serum levels of 7-ketocholesterol and 7β-hydroxycholesterol in SARS-CoV-2 positive subjects were significantly increased compared to healthy subjects (Marcelló et al. 2020). Taken together, there is enough evidence suggesting that excessive ROS levels and a limited antioxidant system play a central role in SARS-CoV-2 infection, progression, and severity of the disease (Delgado-Roche & Mesta 2020).

According to the current knowledge, the underlying mechanism seems to be as follows: SARS-CoV-2 virus uses the angiotensin-converting enzyme 2 (ACE2) receptor as the entry site into human respiratory epithelial cells (Hamming et al. 2004). ACE2 receptor is a metallopeptidase located in the cell membrane that promotes the conversion of angiotensin II (potent vasoconstrictor and ROS producer) into angiotensin 1–7 (potent vasodilator and ROS inhibitor) (Suhail et al. 2020). Importantly, once the virus has entered to cell, ACE2 expression is downregulated (Hoffmann et al. 2020). As a consequence, angiotensin II accumulates and activates NADPH oxidases (through AT1-TLR4), leading to ROS overproduction and increased release of inflammatory molecules (Wieczfinska et al. 2022). After the virus enters the airways, the immune innate response begins with the activation of monocytes and macrophages that release IL-1, IL-6, IL-8, and TNF (Kozlov et al. 2021). In their turn, neutrophils release ROS to promote the cell death of infected cells. Moreover, SARS-CoV-2 infection has been associated with the inhibition of the Nrf2 signaling pathway and the activation of the NF-kB signaling pathway, leading to inflammation and oxidative damage (Cecchini & Cecchini 2020 Delgado-Roche & Mesta 2020).

Taken together, COVID-19 is characterized not only by a cytokine storm but also by an oxidative stress storm with all the derived deleterious effects, such as oxidative damage to lipids, proteins, and DNA leading to hyalineization of pulmonary alveolar membranes (Xu et al. 2020) with lethal respiratory distress (Ntyonga-Pono 2020). The severity and mortality risk of this disease has been associated with age, as aging is associated with increased oxidative stress and inflammation, which is exacerbated by the SARS-CoV-2 infection.

Antioxidant approaches in SARS-CoV-2 infection

Oxidative stress appears to be a promising target to fight some of the effects of COVID-19 infection. Indeed, some of the antioxidant agents that have been used are NAC and GSH, vitamins, and polyphenols. However, more research is still needed in this area.

Vitamins

Several studies have reported low levels of vitamins C and D in SARS-CoV-2 infection (Arvinte et al. 2020, Kalyanaraman 2020), and a strong correlation has been established between these vitamin levels in the organism and COVID-19 severity and mortality rate (Daneshkhah et al. 2020, Rhodes et al. 2021).

Vitamin D deficiency was suggested as a predictor of poor prognosis (Carpagnano et al. 2021). Vitamin D at low levels promotes the over-activation of the renin–angiotensin–aldosterone system (RAAS), leading to increased levels of angiotensin II, and vice versa (Ferder et al. 2013). On the other hand, vitamin D increases the expression of antioxidant enzymes, such as glutathione reductase. Hence, vitamin D supplementation might ameliorate COVID-19 disease symptoms by exerting an antioxidant effect, but also through RAAS inhibition (de Las Heras et al. 2020). Indeed, bolus vitamin D supplementation in COVID-19 patients was correlated to less severe disease progression and enhanced survival rate (Annweiler et al. 2020). Therefore, vitamin D supplementation has been recommended for COVID-19 patients (Albergamo et al. 2022); however, the existing clinical trials analyze heterogenous patient populations and different vitamin D dosages and administration routes, which make it difficult to establish a proper treatment (Abdrabbo et al. 2021).
Moreover, it should be considered that vitamin D also enhances ACE2 expression, which in turn could result in enhanced SARS-CoV-2 binding and an aberrant immune response (Cereda et al. 2021) (Fig. 2).

Regarding vitamin C, unsuccessful results have been reported in a randomized clinical trial with COVID-19 patients, where the authors reported no significant improvements when patients were administered vitamin C (Thomas et al. 2021).

Taken together, more research is needed to determine whether vitamins C or D could exert therapeutic effects on SARS-CoV-2 infection.

Thiol-based agents: NAC and GSH
It has been reported that GSH deficiency is correlated with increased susceptibility to SARS-CoV-2 infection in the elderly and patients with pre-existing medical conditions, such as diabetes (Polonikov 2020). Based on the ability of GSH to alleviate oxidative stress, reduce interleukins circulating levels, and modulate viral load, it has been proposed that glutathione supplementation could be a therapeutic agent for COVID-19 patients (Guloyan et al. 2020). Indeed, increased levels of GSH lower viral load and viral infection, reduce oxidative stress and pro-inflammatory cytokines release, and boost immune function (Kalyanaraman 2020).

Drugs with a functional thiol group (‘thiol drugs’) might cleave cystines to hamper SARS-CoV-2 entry into the cell. To test this hypothesis, Khanna and colleagues analyzed the effects of cysteamine delivered intraperitoneally to SARS-CoV-2-infected hamsters. Although the reached concentrations of cysteamine in the lung were not sufficient for antiviral effects, they were sufficient for anti-inflammatory effects (Khanna et al. 2022). Accordingly, several in vitro and in vivo studies have suggested that NAC, which reduces the disulfide bonds (-S-S) to sulfhydryl groups (-SH) thus increasing intracellular GSH levels, improves T cell response, inhibits the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway, and inhibits viral replication (Poe & Corn 2020). However, a double-blind randomized clinical trial using high doses of NAC in SARS-CoV-2-infected patients did not show any significant beneficial effect when compared to patients that received a placebo (de Alencar et al. 2021). More studies are needed to determine if NAC treatment could offer a benefit for COVID-19 patients (Forcados et al. 2021).

Figure 2
Dual role of vitamin D supplementation to prevent COVID-19 disease. ACE: angiotensin-converting enzyme; RONS, reactive oxygen and nitrogen species; SRAA: system renin–angiotensin–aldosterone.
Polyphenols

Resveratrol is a polyphenol with demonstrated antiviral and anti-inflammatory properties that might mitigate the signs and symptoms of COVID-19 disease. Indeed, it has been shown that resveratrol hampers the entry of the virus inside the cell; it disrupts the spike protein-ACE2 complex, through SIRT1-dependent mechanisms (Horne & Vohl 2020). There is a clinical trial reporting that resveratrol-treated patients have a lower incidence of hospitalization, COVID-related ER visits, and pneumonia, compared to the placebo group (McCreary et al. 2022). Unfortunately, no parameters related to oxidative stress, inflammation, or virus load were measured. Another study performed a computational approach and discovered that resveratrol could inhibit the RNA-dependent RNA polymerase of SARS-CoV-2 since the estimated binding affinity was better than control compounds such as remdesivir (Wu et al. 2021).

Similarly, curcumin has been assayed as a possible treatment for COVID-19. An *in silico* study established that curcumin could inhibit Omicron Spike protein and Omicron S-hACE2 complex (Nag et al. 2022). Several clinical trials administer curcumin to COVID-19 patients to determine possible therapeutic effects regarding inflammatory mediators, disease progression, and severity (Miryan et al. 2020, Valizadeh et al. 2020, Ahmadi et al. 2021, Pawar et al. 2021, Saber-Moghaddam et al. 2021, Tahmasebi et al. 2021a,b). The main conclusion of these clinical trials is that curcumin supplementation reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines, thus restoring the balance and leading to a significant decrease in common symptoms, hospitalization, and deaths (Vahedian-Azimi et al. 2022).

Oxysterols

Other ‘redox molecules’ named oxysterols, are known to have antiviral properties (Lembo et al. 2016). These molecules are cholesterol oxidation products that can be formed enzyme-dependent or -independent. The formers, 24-, 25- and 27-hydroxycholesterol (HC), are good ligands of several cell membrane receptors, thus modulating downstream signaling pathways (Poli et al. 2022). Indeed, oxysterols have recently been suggested to substantially inhibit SARS-CoV-2 viral replication and propagation in cultured cells (Ohashi et al. 2021).

It is known that enveloped viruses use cholesterol-rich regions of the cell membrane to enter the host cell through a variety of mechanisms including membrane curvature formation, receptor clustering, and binding to viral fusion proteins (Foo et al. 2022). Indeed, 25HC and 27HC have proven to efficiently inhibit SARS-CoV-2 entry and replication (Marcello et al. 2020, Yuan et al. 2020) inside target cells using *in vitro* models.

The exact mechanism to hamper the virus entry relies on the fact that oxysterols alter the membrane fusion process through the modification of lipid membrane properties. Indeed, *in vitro* studies have suggested that oxysterols drive a cholesterol remodeling of the cellular plasma membrane upon infection through Acyl-CoA cholesterol acetyltransferase activation (Wang et al. 2020, Zang et al. 2020, Zuaet al. 2020). Other described mechanisms suggest that 25HC and 27HC reduce the expression of the cation-independent mannose-6-phosphate receptor and junctional adhesion molecule A, both molecules needed for the virus entry (Civra et al. 2020). Moreover, 27HC has been shown to inhibit SARS-CoV-2 replication by reducing the formation of double lipidic membrane vesicles (Ohashi et al. 2021).

Also interestingly, 27HC, but not 25HC, was found at lower levels in serum samples of SARS-CoV-2-infected patients when compared to control healthy subjects (Marcello et al. 2020).

Concluding remarks and future perspectives

HIV and SARS-CoV-2 are both enveloped, RNA viruses, and their entry into the cell is a two-step process involving virion binding to cell-surface receptors and fusion of the viral envelope with cell membranes. Fenouillet et al. described in detail how both viruses require a specific thiol content to trigger their entry (Fenouillet et al. 2007). Thus, one can conclude that the thiol-disulfide balance is of utmost importance for the viral entry inside the cell.

Moreover, several studies have unraveled the strategy of these viruses to alter the redox balance of a cell to survive (Cecchini & Cecchini 2020). These findings confirm that oxidative stress is a key factor in the success or failure of the host’s response to viral infection. Hence, vitamins, thiol-based agents, and polyphenols have demonstrated promising results toward oxidative stress-related complications in AIDS and COVID-19 diseases.

Taken together, both AIDS and COVID-19 may offer new possibilities to improve the diagnosis and treatment of redox-related diseases.

Declaration of interest

Cristina Mas-Bargues is an author of this manuscript and a member of the editorial board. She has had no role in the peer review process of this manuscript.
Funding
This work was supported by the following grants: CB16/10/00435 (CIBERFES) from Instituto de Salud Carlos III, (PID2019-110906RB-I00/AEI / 10.13039/501100011033) and RED2018-102576-T from the Spanish Ministry of Innovation and Science. PROMETEO/2019/097 from ‘Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana’ and EU Funded H2020- DIABFRAL-LATAM (Ref: 825546), European Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ (JP HDHL) and of the ERA-NET Cofund ERA-HDHL (GA N° 696295 of the EU Horizon 2020 Research and Innovation Programme) and Fundación Ramón Areces y Fundación Soria Melguizo. to J.V. and Grant PID2020-118389RB-I00 funded by MCIN/AEI. 10.13039/501100011033, PCIN-2017-117 of the Ministry of Economy and Competitiveness, and the EU Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ (JP HDHL INTIMIC-085) to CB. Grant CIGE2021/134 from ‘Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana’ to CMB. Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014-2020).

Author contribution statement
CM-B was in charge of conceptualization, and writing-original draft preparation. CB and JV were in charge of writing and editing the review and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Acknowledgements
The authors thank Mrs Marilyn Noyes for her kind help in reviewing the English style of the manuscript.

References
Abdabibo M, Birch CM, Brandt M, Cicicoi KA, Coffey SJ, Dolan CC, Dvorak H, Gehrek AC, Gezerma AE, Hansen A, et al. 2021 Vitamin D and COVID-19: a review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection. Protein Science 30 2206–2220. [https://doi.org/10.1002/pro.4190]
Adebiyi OO, Adebiyi OA & Owira PM 2015 Naringin represses hepatocellular apoptosis and oxidative stress associated with HIV-1 nucleotide reverse transcriptase inhibitors-induced metabolic complications. Nutrients 7 10352–10368. [https://doi.org/10.3390/nu70410540]
Ahmadi R, Salari S, Sharifi MD, Reihani H, Kostamani MB, Behmadi M, Taherzadeh Z, Esfami S, Rezayat SM, Jaafar MR, et al. 2021 Oral nacetyl-cysteine formulation efficacy in the management of mild to moderate outpatient COVID-19: a randomized triple-blind placebo-controlled clinical trial. Food Science and Nutrition 9 4068–4075. [https://doi.org/10.1002/fsn3.2226]
Albergamo A, Apprato G & Silvagni F 2022 The role of vitamin D in supporting health in the COVID-19 era. International Journal of Molecular Sciences 23. [https://doi.org/10.3390/ijms23073621]
Allard JP, Kurian R, Aghassi E, Muggli R & Royal D 1997 Lipid peroxidation during n-3 fatty acid and vitamin E supplementation in humans. Lipo. 32 S35–S41. [https://doi.org/10.1016/S1747-9977(06)-0028-2]
Annweiler C, Hanotte B, Grandin De L'eprevier C, Sabatier JM, Lafaye L & Celarier T 2020 Vitamin D and survival in COVID-19 patients: a quasi-experimental study. Journal of Steroid Biochemistry and Molecular Biology 204 105771. [https://doi.org/10.1016/j.jsbmb.2020.105771]
Arvinte C, Singh M & Mairik PE. 2020 Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a North American community hospital intensive care unit in May 2020: a pilot study. Medicine in Drug Discovery 8 100064. [https://doi.org/10.1016/j.medidd.2020.100064]
Belloni AS, Petrelli L, Ruga E, Milanesi O, Ricato S, Cavalli M, Cargnelli G & Bova S 2009 AZT dilutes rat cardiac intercalated discs, and the effect is prevented by vitamin C. Environmental Toxicology and Pharmacology 28 425–429. [https://doi.org/10.1016/j.etap.2009.07.002]
Butanda-Ochoa A, Ayhillon-Osorio CA & Hernández-Muñoz R 2021 AZT oxidative damage in the liver. Toxicology. Amsterdam: Elsevier. [https://doi.org/10.1016/j.tox.2020.12.819902-0.00029-7]
Carpanzano NE, Di Lecce V, Quaranta VN, Zito A, Buonomico E, Capozza E, Palumbo A, Di Gioia G, Valerio VN & Resta O 2021 Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. Journal of Endocrinological Investigation 44 765–771. [https://doi.org/10.1007/s40520-020-01370-x]
Carrieri MP, Protopopescu C, Marcellin F, Rossellini S, Wittkop L, Esterle L, Zucman D, Rafii F, Rosenthal E, Poizot-Martlin I, et al. 2017 Protective effect of coffee consumption on all-cause mortality of French HIV-HCV co-infected patients. Journal of Hepatology 67 1157–1167. [https://doi.org/10.1016/j.jhep.2017.08.055]
Cecchini R & Cecchini AL 2020 SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical Hypotheses 143 110102. [https://doi.org/10.1016/j.mehy.2020.110102]
Cekerevac I, Turnic TN, Dragunic A, Andjic M, Zivkovic V, Simovic S, Rus S, Novkovic L, Mijajlovic Z, Andjeljkovic M, et al. 2021 Predicting severity and intrahospital mortality in COVID-19: the place and role of oxidative stress. Oxidative Medicine and Cellular Longevity 2021 6615787. [https://doi.org/10.1155/2021/6615787]
Cereda E, Bogliolo L, Lobasco F, Barichella M, Zecchinelli AL, Pezzoli G & Caccuria E 2021 Vitamin D supplementation and outcomes in coronavirus disease 2019 (COVID-19) patients from the outbreak area of Lombardy, Italy. Nutrition 82 110155. [https://doi.org/10.1016/j.nut.2020.110155]
Civra A, Colzani M, Cagno V, Francese R, Leoni V, Aldini G, Lembo D & Poli G 2020 Modulation of cell proteome by 25-hydroxycholesterol and 27-hydroxycholesterol: a link between cholesterol metabolism and antiviral defense. Free Radical Biology and Medicine 149 30–36. [https://doi.org/10.1016/j.freeradbiomed.2019.08.031]
Daneshkiah A, Agrawal V, Eshein A, Subramanian H, Roy HK & Backman V 2020 Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients. Aging Clinical and Experimental Research 32 2141–2158. [https://doi.org/10.1007/s40520-020-01677-y]
de Alencar JCG, Moreira CL, Muller AD, Chaves CE, Fukuhara MA, Da Silva EA, Miyamoto MFS, Pinto VB, Bueno CG, Lazar Neto E, et al. 2021 Double-blind, randomized, placebo-controlled trial with N-acetylcysteine for treatment of severe acute respiratory syndrome caused by coronavirus disease 2019 (COVID-19). Clinical Infectious Diseases 72 e736–e741. [https://doi.org/10.1093/cid/ciaa1443]
de la Asuncion JG, De Olmo ML, Gomez-Cambronero LG, Sastre J, Millan A, Pellin A, et al. 2021 AZT induces oxidative damage to cardiac mitochondria: protective effect of vitamins C and E. Life Sciences 76 47–56. [https://doi.org/10.1016/j.lfs.2004.06.020]
de la Asuncion JG, De Olmo ML, Sastre J, Millan A, Pellin A, Pallardo FV & Vina J 1998 AZT treatment induces oxidative damage to cardiac mitochondria: preventive effect of vitamin C and E. Life Sciences 63 721–727. Amsterdam: Elsevier. [https://doi.org/10.1016/S0362-3197(98)00151-3]
de la Asuncion JG, Del Olmo ML, Sastre J, Pallardo FV & Vina J 2004 AZT induces oxidative damage to cardiac mitochondria: preventive effect of vitamin C and E. Life Sciences 74 1431–1438. [https://doi.org/10.1016/S0362-3197(04)00148-4]
de la Asuncion JG, Del Olmo ML, Sastre J, Millan A, Pellin A, Pallardo FV & Vina J 1998 AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. Journal of Clinical Investigation 102 4–9. [https://doi.org/10.1172/JCI1418]
de la Asuncion JG, Del Olmo ML, Sastre J, Pallardo FV & Vina J 1999 Zidovudine (AZT) causes an oxidation of mitochondrial DNA in mouse liver. Hepatology 29 985–987. [https://doi.org/10.1002/hep.510290353]
de las Heras N, Martin Gimenez VM, Feder L, Manucha W & Lahera V 2020 Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of...
vitamin D. Antioxidants (Basel) 9. (https://doi.org/10.3390/antiox9009897)

De Rosa SC, Zaretsky MD, Dubis JG, Roederer M, Anderson M, Green A, Mitra D, Watanabe N, Nakamura H, Tijoe I, et al. 2000 N-acetylcysteine replenishes glutathione in HIV infection. European Journal of Clinical Investigation 30 915–929. (https://doi.org/10.1046/j.1365-2362.2000.00736.x)

Delgado-Roche I & Mesta F 2020 Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of Medical Research 51 384–387. (https://doi.org/10.1016/j.arcmed.2020.04.019)

Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafzadeh M & Samarghandian S 2020 The therapeutic effect of resveratrol: focusing on the Nrf2 signaling pathway. Biomedicine and Pharmacotherapy 127 110234. (https://doi.org/10.1016/j.biopha.2020.110234)

Feng Z, Yang Z, Gao X, Xue Y & Wang X 2021 Resveratrol promotes HIV-1 tat accumulation via AKT/FoxO1 signaling axis and potentiates vornostat to antagonize HIV-1 latency. Current HIV Research 19 238–247. (https://doi.org/10.2174/1570762X19666210118151249)

Fenouillet E, Barbourche R & Jones IM 2007 Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxidants and Redox Signaling 9 1009–1034. (https://doi.org/10.1089/ars.2007.1639)

Ferdner M, Inserra F, Manucha W & Werder I 2013 The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. American Journal of Physiology: Cell Physiology 304 C1027–C1039. (https://doi.org/10.1152/ajpcell.00403.2011)

Foo CX, Bartlett S & Ronacher K 2022 Oxysterols in the immune response to bacterial and viral infections. Cells 11. (https://doi.org/10.3390/cells11020210)

Forcados GE, Muhammad A, Oladipo OO, Makama S & Meseko CA 2021 Metabolic implications of oxidative stress and inflammatory process in human cardiomyocytes. Molecular Medicine Reports 15 151–155. (https://doi.org/10.3892/mmr.2021.102020)

Gao RY, Mukhopadhyay P, Mohranaj R, Wang H, Horvath B, Yin S & Pacher P 2011 Resveratrol attenuates azidothymidine-induced cardiotoxicity by decreasing mitochondrial reactive oxygen species generation in human cardiomyocytes. Molecular Medicine Reports 4 151–155. (https://doi.org/10.3892/mmr.2010.390)

García-de-la-Asunción J, Gómez-Cambronero LG, Del Olmo ML, Forcados GE, Muhammad A, Oladipo OO, Makama S & Meseko CA 2021 Metabolic implications of oxidative stress and inflammatory process in human cardiomyocytes. Molecular Medicine Reports 15 151–155. (https://doi.org/10.3892/mmr.2021.102020)

Guloyan V, Ganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford E, Ting YS & Venketaraman V 2020 Glutathione supplementation as an adjunctive therapy in COVID-19. Antioxidants (Basel) 9. (https://doi.org/10.3390/antiox9009194)

Gupta SK, Kamendulis LM, Clauss MA & Liu Z 2016 A randomized, placebo-controlled pilot trial of N-acetylcysteine against the human immunodeficiency virus type 1. Antioxidants and Redox Signaling 9 1009–1034. (https://doi.org/10.1089/ars.2007.1639)

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. 2020 Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 497–506. (https://doi.org/10.1016/S0140-6736(20)30183-5)

Ivanov AV, Value-Eliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B & Isagullants MG 2016 Oxidative stress during HIV infection: mechanisms and consequences. Oxidative Medicine and Cellular Longevity 2016 9910396. (https://doi.org/10.1155/2016/9910396)

Justiz Vaillant AA & Gulic PG 2022 HIV Disease Current Practice. Treasure Island (FL): StatPearls. Kalyanaraman B 2020 Do free radical NEtwork and oxidative stress disparities in African Americans enhance their vulnerability to SARS-CoV-2 infection and COVID-19 severity? Redox Biology 37 101721. (https://doi.org/10.1016/j.redox.2020.101721)

Karkhanie B, Talebi Ghaene E & Mehri F 2021 Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes and New Infectious 42 100897. (https://doi.org/10.1016/j.nnni.2021.100897)

Kemm NC & Gulic PG 2022 HIV Antiretroviral Therapy. Treasure Island (FL): StatPearls. Khanna K, Raymond WW, Jin J, Charbit AR, Giltin I, Tang M, Werts AD, Barrett EG, Cox JM, Birch SM, et al. 2022 Exploring antiviral and anti-inflammatory effects of thiol drugs in COVID-19. American Journal of Physiology: Lung Cellular and Molecular Physiology 323 1372–1389. (https://doi.org/10.1152/ajplung.00136.2022)

Kozlov EM, Ivanova E, Grechko AV, Wu W, Starodubova AV & Orekhov AN 2021 Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection. Diseases 9. (https://doi.org/10.3390/diseases9010007)

Kumar P, Liu C, Suliburk JW, Minard CG, Muthupillai R, Chacko S, Hsu JW, Jhooor F & Sekhar RV 2020 Supplementing glycine and N-acetylcysteine (GlyNAC) in aging HIV patients improves oxidative stress, mitochondrial dysfunction, inflammation, endothelial dysfunction, insulin resistance, genotoxicity, strength, and cognition: results of an open-label clinical trial. Biomedicines 8. (https://doi.org/10.3390/biomedicines8030390)

Lembo D, Cagnol V, Civra A & Poli G 2016 Oxysterols: an emerging class of broad-spectrum antiviral effectors. Molecular Aspects of Medicine 49 23–30. (https://doi.org/10.1016/j.mam.2016.04.003)

Liang R, Ardestani S, Chow HH, Eskelson C & Watson RR 1996 Vitamin E deficiency and immune function in retrovirus-infected C57BL/6 mice are prevented by T-cell receptor peptide treatment. Journal of Nutrition 126 1389–1397. (https://doi.org/10.1093/jn/126.5.1389)

Marcello A, Civra A, Milan Bonotto R, Nascimento Alves L, Rajasekharan S, Giacobone C, Cavalli R, Adami M, Girolomoni G, Cozzella GV, Del Olmo ML, Pallardo FV, Sastre J & Vina J 2007 Vitamins C and E prevent AZT-induced leukopenia and loss of cellularity in bone marrow. Studies in mice. Free Radical Research 41 330–334. (https://doi.org/10.1080/10715760600865837)

Mihm S, Ennen J, Pessara U, Kurth R & Droge W 1991 Inhibition of HIV-1 replication by a clinically proven protease inhibitor. AIDS 5 1020–1024. (https://doi.org/10.1097/00012662-199110000-00014)

Rajasekharan S, Giacobone C, Caccia C, Cavalli R, Adami M, Girolomoni G, Cozzella GV, Del Olmo ML, Pallardo FV, Sastre J & Vina J 2007 Vitamins C and E prevent AZT-induced leukopenia and loss of cellularity in bone marrow. Studies in mice. Free Radical Research 41 330–334. (https://doi.org/10.1080/10715760600865837)

Sharma RK & Desai P 2016 Vitamin D. Antioxidants (Basel) 9. (https://doi.org/10.3390/antiox9009087)

Sihag SK, Bhatia S, Unni AK & Reddy KS 2016 The Cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biology 36 101682. (https://doi.org/10.1016/j.redox.2020.101682)

Zhu J, Liu Y, Qi S, Li N, Zhang J, Wang B, Li B, et al. 2020 PEGylation of remdesivir increases its efficacy and reduces the risk of lung injury in a rat model of COVID-19. Journal of Infectious Diseases 221 10–11. (https://doi.org/10.1093/infdis/jiaa085)
Polonikov A 2020 Endogenous deficiency of glutathione as the most likely
Poe FL & Corn J 2020 N-acetylcysteine: a potential therapeutic agent for
Pincemail J, Cavalier E, Charlier C, Cheramy-Bien JP, Brevers E, Courtois A,
Pawar KS, Mastud RN, Pawar SK, Bhoite RR, Bhoite RR,
Ntyonga-Pono MP 2020 COVID-19 infection and oxidative stress: an
Nakamura H, Masutani H & Yodoi J 2002 Redox imbalance and its control
Moir S, Chun TW & Fauci AS 2011 Pathogenic mechanisms of HIV disease.
Miryan M, Bagherniya M, Sahebkar A, Soleimani D, Rouhani MH, Iraj B &
Navashenaq JG, Valizadeh H, Sadeghi A, Aslani S, Yousefi M, Roshangar L, Varsoch M, Vaez A, Aslani S, Navashenaq JG,
Raghur & Karthikeyan S 2016 Zidovudine and isoniazid induced liver toxicity and oxidative stress: evaluation of mitigating properties of
Rhodes JM, Subramanian S, Laird E, Griffin G & Kenny RA 2021 Perspective: vitamin D deficiency and COVID-19 severity—plausibly
linking by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. *Journal of Internal Medicine* **289** 97–115. (https://doi.org/10.1111/joim.13149)
Saber-Moghaddam N, Salari S, Hejazi S, Amini M, Taherzadeh Z, Eslami S, Rezayat SM, Jaafari MR & Elyasi S 2021 Oral nano-currum
formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. *Phytotherapy Research*. (https://doi.org/10.1002/ptr.7004)
Safe IP, Amaral EF, Araujo-Pereira M, Lacerda MVG, Printes VS, Souza AB, Beraldi-Magalhaes F, Monteiro WM, Sampaio VS, Barreto-Duarte B,
et al. 2020 Adjunct N-acetylcysteine treatment in hospitalized patients with HIV-associated tuberculosis dampens the oxidative stress in peripheral blood: results from the RIPENACTB study trial. *Frontiers in Immunology* **11** 602589. (https://doi.org/10.3389/fimmu.2020.602589)
Sekhar RV 2021 Supplementing glycin and N-acetylcysteine (GlyNAC) rapidly improves health-related quality of life and lowers perception of
fatigue in patients with HIV. *AIDS* **35** 1522–1524. (https://doi.org/10.1097/QAD.0000000000002939)
Sitole L, Fortuin B & Tugizimana F 2022 Metabolic profiling of HIV infected individuals on an AZT-based antiretroviral treatment regimen reveals persistent oxidative stress. *Journal of Pharmaceutical and Biomedical Analysis* **220** 114986. (https://doi.org/10.1016/j.jpba.2022.114986)
Staal FJ, Roederer M, Herzenberg LA & Herzenberg LA 1990 Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. *Proceedings of the National Academy of Sciences of the United States of America* **87** 9943–9947. (https://doi.org/10.1073/pnas.87.24.9943)
Staal FJ, Roederer M, Raju PA, Anderson MT, Ela SW, Herzenberg LA & Herzenberg LA 1993 Antioxidants inhibit stimulation of HIV transcription. *AIDS Research and Human Retroviruses* **9** 299–306. (https://doi.org/10.1089/aid.1993.9.299)
Staitieh BS, Ding L, Neveu WA, Spearman P; Guidot DM & Fan X 2017 HIV-1 decreases Nrf2/ARE activity and phagocytic function in alveolar macrophages. *Journal of Leukocyte Biology* **102** 517–525. (https://doi.org/10.1124/jlba.2016-28288)
Suhail S, Zajac F, Fossum C, Lowater H, Mccracken C, Severson N,
Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, et al. 2020 Role of oxidative stress on SARS-CoV (SARS-CoV-2) and SARS-CoV-2 (COVID-19) infection: a review. *Protein Journal* **39** 644–656. (https://doi.org/10.1007/s12302-019-09935-8)
Szarpak L, Rafique Z, Gasecka A, Chirico F, Gaweł W, Hernik J,
Kaminska H, Filipiak KJ, Jaguszewski MJ & Szarpak L 2021 A systematic review and meta-analysis of effect of vitamin D levels on the incidence of COVID-19. *Cardiology Journal* **28** 647–654. (https://doi.org/10.5603/CJ.2021.6072)
Tahmasebi S, El-Esawi MA, Mahmoud ZH, Timoshin A, Valizadeh H,
Roshangar L, Varsoch M, Vaez A, Aslani S, Navashenaq JG, et al. 2021a Immunomodulatory effects of nanocurrum on Th17 cell responses in mild and severe COVID-19 patients. *Journal of Cellular Physiology* **236** 5325–5338. (https://doi.org/10.1002/jcp.30233)
Tahmasebi S, Saeed BQ, Temigbalaie E, Yumaseh AV, El-Esawi MA,
Navashenaq JG, Valizadeh H, Sadeghi A, Aslani S, Yousefi M, et al. 2021b Nanocurrum improves Treg cell responses in patients with mild and severe SARS-CoV2. *Life Sciences* **276** 119437. (https://doi.org/10.1016/j.lfs.2021.119437)
Tang AM, Graham NM, Sembra BD & Saah AJ 1997 Association between serum vitamin A and E levels and HIV-1 disease progression. *AIDS* **11** 683–620. (https://doi.org/10.1097/00002030-199705000-00009)
Tang AM & Smit E 1998 Selected vitamins in HIV infection: a review. AIDS Patient Care and STDS 12 263–273. (https://doi.org/10.1089/ apc.1998.12.263)

Thomas S, Patel D, Bittel B, Wolski K, Wang Q, Kumar A, Il’giovine ZJ, Mehra R, McWilliams C, Nissen SE, et al. 2021 Effect of high-dose zinc and ascorbic acid supplementation vs usual care on usual care length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA Network Open 4 e210369. (https://doi.org/10.1001/ jamanetworkopen.2021.0369)

Tikoo K, Tamta A, Ali Y, Gupta J & Gaikwad AB 2008 Tannic acid prevents azidothymidine (AZT) induced hepatotoxicity and genotoxicity along with change in expression of PARG and histone H3 acetylation. Toxicology Letters 177 90–96. (https://doi.org/10.1016/j.toxlet.2007.12.012)

Vahedian-Azimi M, Abbasiard M, Rahimi-Bashar F, Guest PC, Majeed M, Thomas S, Patel D, Bittel B, Wolski K, Wang Q, Kumar A, Il’giovine ZJ, Mehra R, McWilliams C, Nissen SE, et al. 2021 Effect of high-dose zinc and ascorbic acid supplementation vs usual care on usual care length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA Network Open 4 e210369. (https://doi.org/10.1001/ jamanetworkopen.2021.0369)

Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, et al. 2020 Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

van Eijk AF & Rana TM 2020 Cholesterol 25-hydroxylase inhibits murine retrovirus infection. EMBO Journal 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, et al. 2020 Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

van Eijk AF & Rana TM 2020 Cholesterol 25-hydroxylase inhibits murine retrovirus infection. EMBO Journal 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

Vahedian-Azimi M, Abbasiard M, Rahimi-Bashar F, Guest PC, Majeed M, Thomas S, Patel D, Bittel B, Wolski K, Wang Q, Kumar A, Il’giovine ZJ, Mehra R, McWilliams C, Nissen SE, et al. 2021 Effect of high-dose zinc and ascorbic acid supplementation vs usual care on usual care length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA Network Open 4 e210369. (https://doi.org/10.1001/ jamanetworkopen.2021.0369)

Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, et al. 2020 Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

van Eijk AF & Rana TM 2020 Cholesterol 25-hydroxylase inhibits murine retrovirus infection. EMBO Journal 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, et al. 2020 Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

van Eijk AF & Rana TM 2020 Cholesterol 25-hydroxylase inhibits murine retrovirus infection. EMBO Journal 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, et al. 2020 Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

van Eijk AF & Rana TM 2020 Cholesterol 25-hydroxylase inhibits murine retrovirus infection. EMBO Journal 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)

Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, et al. 2020 Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 107088. (https://doi.org/10.1016/j.intimp.2020.107088)