Supplemental Material for “Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction.”

GREGORY J. RETALLACK1, ANDRÉ MARCONATO2, JEFFERY T. OSTERHOUT1 KATHRYN E. WATTS3, & ILYA N. BINDEMAN1

1Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403-1272

2Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP 05508-080, Brazil

3U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025

Fig. S1. Measured sections of palaeosols in the Bonney Sandstone, and Wonoka and Bunyeroo Formations, showing position and development of palaeosols, calcareousness, and Munsell hue. Scales of degree of development and calcareousness are from Retallack (1997).
Fig. S2. Field observations, interpreted soil horizons, grain size and mineral content by point counting, and molecular weathering ratios from XRF chemical analysis of Vulda and Arru pedotypes in upper Wonoka Formation in Brachina Gorge, and Inga, Muru and Yaldati pedotypes of the Bonney Sandstone in Brachina Gorge.
Fig. S3. Field observations, interpreted soil horizons, grain size and mineral content by point counting, and molecular weathering ratios from XRF chemical analysis of Vulda and Arru pedotypes in Bunyeroo Formation at Acraman impact breccia in Bunyeroo Gorge, and the Vidla pedotype of the Wonoka Formation atop palaeo-canyon breccia northeast of Umberatana Station, compared with graded beds of the Ulupa Siltstone northwest of Umberatana Station.
Fig. S4. Depth functions of elemental mass transfer with respect to an element assumed stable (Ti, following Brimhall et al. 1992) for Ediacaran palaeosols of South Australia.

Table S1. Calcic horizon metrics of Flinders Ranges palaeosols.

Locality	Formation	Level (m)	Burial (km)	Age (Ma)	Pedotype	Bk depth (cm)	Bk thickness (cm)	Nodule size (cm)
Ten Mile Creek	Grindstone Range Sst.	5598.7	3.501	483.87	Adla	29	10	2.0
Ten Mile Creek	Grindstone Range Sst.	5593.1	3.507	483.94	Adla	23	8	2.0
Ten Mile Creek	Grindstone Range Sst.	5592.8	3.507	483.94	Adla	24	10	3.0
Ten Mile Creek	Grindstone Range Sst.	5584.9	3.515	484.04	Adla	30	7	1.2
Ten Mile Creek	Grindstone Range Sst.	5578.2	3.522	484.12	Adla	29	10	0.9
Ten Mile Creek	Grindstone Range Sst.	5572.0	3.528	484.20	Adla	24	6	0.8
Ten Mile Creek	Grindstone Range Sst.	5568.4	3.532	484.24	Adla	27	9	2.0
Balcoracana Creek	Grindstone Range Sst.	5580.8	3.519	484.51	Adla	31	15	3.0
Balcoracana Creek	Grindstone Range Sst.	5575.0	3.525	484.58	Adla	25	8	0.9
Balcoracana Creek	Grindstone Range Sst.	5571.4	3.529	484.62	Adla	23	5	0.7
Balcoracana Creek	Grindstone Range Sst.	5570.0	3.530	484.64	Adla	36	15	0.8
Balcoracana Creek	Grindstone Range Sst.	5568.5	3.532	484.66	Adla	33	12	1.2
Balcoracana Creek	Grindstone Range Sst.	5563.0	3.537	484.73	Adla	25	6	0.8
Balcoracana Creek	Grindstone Range Sst.	5560.4	3.540	484.76	Adla	29	8	1.1
Balcoracana Creek	Grindstone Range Sst.	5556.2	3.544	484.81	Adla	36	11	0.8
Balcoracana Creek	Grindstone Range Sst.	5550.3	3.550	484.89	Adla	33	12	1.0
Ten Mile Creek	Grindstone Range Sst.	5500.0	3.600	485.09	Natala	52	13	1.0
Balcoracana Creek	Pantapinna Sandstone	5494.0	3.606	485.58	Viparri	55	18	2.0
Ten Mile Creek	Pantapinna Sandstone	5303.0	3.797	487.53	Adla	31	7	4.0
Ten Mile Creek	Pantapinna Sandstone	5303.0	3.797	487.53	Adla	29	8	2.0
Ten Mile Creek	Pantapinna Sandstone	5302.0	3.798	487.55	Adla	32	10	3.0
Ten Mile Creek	Pantapinna Sandstone	5042.1	4.058	490.77	Adla	26	9	0.8
Ten Mile Creek	Pantapinna Sandstone	5041.4	4.059	490.78	Adla	25	8	0.9
Ten Mile Creek	Pantapinna Sandstone	5040.4	4.060	490.79	Adla	30	12	1.2
Ten Mile Creek	Pantapinna Sandstone	5034.5	4.065	490.86	Adla	31	15	2.4
Ten Mile Creek	Pantapinna Sandstone	5033.6	4.066	490.87	Adla	26	10	0.4
Ten Mile Creek	Pantapinna Sandstone	5030.3	4.070	490.91	Adla	32	12	1.3
Creek	Formation	Depth (m)	Age (Ma)	Location	Coordinates	Fossils		
--------------------------------------	-------------------------	-----------	----------	----------	-------------	---------		
Ten Mile Creek	Pantapinna Sandstone	5027.5	4.073	Adla	5075.5	24		
Ten Mile Creek	Pantapinna Sandstone	5024.0	4.076	Adla	5075.5	32		
Ten Mile Creek	Pantapinna Sandstone	5022.0	4.078	Adla	5075.5	31		
Ten Mile Creek	Pantapinna Sandstone	5021.1	4.079	Adla	5075.5	26		
Ten Mile Creek	Pantapinna Sandstone	5020.5	4.080	Adla	5075.5	25		
Ten Mile Creek	Pantapinna Sandstone	5019.4	4.081	Adla	5075.5	30		
Ten Mile Creek	Pantapinna Sandstone	5016.8	4.083	Adla	5075.5	36		
Ten Mile Creek	Pantapinna Sandstone	5013.3	4.087	Adla	5075.5	27		
Ten Mile Creek	Pantapinna Sandstone	5012.9	4.087	Adla	5075.5	26		
Ten Mile Creek	Pantapinna Sandstone	5012.2	4.088	Adla	5075.5	32		
Ten Mile Creek	Pantapinna Sandstone	5008.9	4.091	Adla	5075.5	29		
Ten Mile Creek	Pantapinna Sandstone	5008.0	4.092	Adla	5075.5	27		
Ten Mile Creek	Pantapinna Sandstone	5007.0	4.093	Adla	5075.5	24		
Ten Mile Creek	Pantapinna Sandstone	5005.6	4.094	Adla	5075.5	30		
Ten Mile Creek	Pantapinna Sandstone	5004.5	4.095	Adla	5075.5	29		
Ten Mile Creek	Pantapinna Sandstone	4928.1	4.172	Adla	5075.5	32		
Ten Mile Creek	Pantapinna Sandstone	4904.7	4.195	Adla	5075.5	28		
Ten Mile Creek	Pantapinna Sandstone	4902.4	4.198	Adla	5075.5	32		
Ten Mile Creek	Pantapinna Sandstone	4901.4	4.199	Adla	5075.5	29		
Ten Mile Creek	Pantapinna Sandstone	4750.0	4.350	Adla	5075.5	32		
Ten Mile Creek	Pantapinna Sandstone	4689.3	4.411	Adla	5075.5	24		
Ten Mile Creek	Pantapinna Sandstone	4688.7	4.411	Adla	5075.5	21		
Ten Mile Creek	Pantapinna Sandstone	4687.6	4.412	Adla	5075.5	32		
Ten Mile Creek	Pantapinna Sandstone	4672.7	4.427	Adla	5075.5	21		
Ten Mile Creek	Pantapinna Sandstone	4670.8	4.429	Adla	5075.5	23		
Ten Mile Creek	Pantapinna Sandstone	4670.2	4.430	Adla	5075.5	31		
Ten Mile Creek	Pantapinna Sandstone	4646.6	4.453	Adla	5075.5	30		
Ten Mile Creek	Pantapinna Sandstone	4643.5	4.456	Adla	5075.5	27		
Ten Mile Creek	Pantapinna Sandstone	4641.4	4.459	Adla	5075.5	31		
Ten Mile Creek	Pantapinna Sandstone	4627.8	4.472	Adla	5075.5	29		
Ten Mile Creek	Pantapinna Sandstone	4616.8	4.483	Adla	5075.5	33		
Ten Mile Creek	Pantapinna Sandstone	4300.0	4.800	Adla	5075.5	39		
Ten Mile Creek	Pantapinna Sandstone	4068.6	5.031	Adla	4999.9	29		
Ten Mile Creek	Pantapinna Sandstone	4063.4	5.037	Adla	4999.9	26		
Ten Mile Creek	Pantapinna Sandstone	4062.9	5.037	Adla	4999.9	33		
Ten Mile Creek	Pantapinna Sandstone	4061.5	5.039	Adla	4999.9	28		
Ten Mile Creek	Pantapinna Sandstone	4056.8	5.043	Adla	4999.9	32		
Ten Mile Creek	Pantapinna Sandstone	4039.6	5.060	Adla	4999.9	29		
Ten Mile Creek	Pantapinna Sandstone	4036.1	5.064	Adla	4999.9	27		
Ten Mile Creek	Pantapinna Sandstone	4033.7	5.066	Adla	4999.9	26		
Ten Mile Creek	Pantapinna Sandstone	4032.6	5.067	Adla	4999.9	32		
Ten Mile Creek	Pantapinna Sandstone	4026.8	5.073	Adla	4999.9	27		
Ten Mile Creek	Pantapinna Sandstone	4026.0	5.074	Adla	4999.9	32		
Ten Mile Creek	Pantapinna Sandstone	4024.5	5.076	Adla	4999.9	29		
Ten Mile Creek	Pantapinna Sandstone	4023.7	5.076	Adla	4999.9	25		
Ten Mile Creek	Pantapinna Sandstone	4017.9	5.082	Adla	4999.9	31		
Ten Mile Creek	Pantapinna Sandstone	4003.5	5.096	Adla	4999.9	30		
Ten Mile Creek	Pantapinna Sandstone	4001.2	5.099	Natala	4999.9	52		
Ten Mile Creek	Pantapinna Sandstone	3895.0	5.205	Warru	4999.9	37		
Balcoracana Creek	Pantapinna Sandstone	3908.4	5.192	Natala	5052.5	54		
Location	Type	Longitude	Latitude	Water Temperature	Temperature	Depth (cm)	Age (Ma)	
---------------------------	---------------------	-----------	----------	------------------	-------------	------------	----------	
Balcoracana Creek	Balcoracana Form.	3889.6	5.210	505.48	24	10	0.8	
Balcoracana Creek	Balcoracana Form.	3888.4	5.212	505.49	25	8	0.6	
Balcoracana Creek	Balcoracana Form.	3883.9	5.216	505.55	29	11	0.4	
Balcoracana Creek	Balcoracana Form.	3879.4	5.221	505.61	31	11	0.7	
Balcoracana Creek	Balcoracana Form.	3876.2	5.224	505.65	24	9	0.6	
Balcoracana Creek	Balcoracana Form.	3874.9	5.225	505.66	26	10	0.5	
Balcoracana Creek	Balcoracana Form.	3869.0	5.231	505.73	32	15	2.0	
Balcoracana Creek	Balcoracana Form.	3845.6	5.254	506.02	51	32	1.1	
Balcoracana Creek	Balcoracana Form.	3844.0	5.256	506.04	33	15	0.9	
Balcoracana Creek	Balcoracana Form.	3754.7	5.345	507.15	24	10	0.6	
Balcoracana Creek	Balcoracana Form.	3751.0	5.349	507.20	31	15	0.7	
Balcoracana Creek	Balcoracana Form.	3747.7	5.352	507.24	29	8	0.6	
Balcoracana Creek	Balcoracana Form.	3747.1	5.353	507.25	34	16	1.0	
Balcoracana Creek	Balcoracana Form.	3739.6	5.360	507.34	42	23	0.9	
Balcoracana Creek	Balcoracana Form.	3736.1	5.364	507.38	46	27	1.0	
Balcoracana Creek	Balcoracana Form.	3731.9	5.368	507.43	51	26	1.0	
Balcoracana Creek	Balcoracana Form.	3719.0	5.382	507.61	49	33	1.0	
Balcoracana Creek	Balcoracana Form.	3695.5	5.404	507.89	51	36	2.0	
Ten Mile Creek	Balcoracana Form.	3630.5	5.470	508.27	32	18	3.0	
Ten Mile Creek	Balcoracana Form.	3624.4	5.476	508.35	52	50	2.0	
Ten Mile Creek	Balcoracana Form.	3623.5	5.477	508.36	48	40	1.0	
Ten Mile Creek	Balcoracana Form.	3622.0	5.478	508.38	36	20	2.0	
Ten Mile Creek	Balcoracana Form.	3621.7	5.478	508.38	39	35	4.0	
Ten Mile Creek	Balcoracana Form.	3621.1	5.479	508.39	41	30	3.0	
Ten Mile Creek	Balcoracana Form.	3615.5	5.485	508.46	32	15	1.5	
Ten Mile Creek	Balcoracana Form.	3612.2	5.488	508.50	36	20	0.7	
Ten Mile Creek	Balcoracana Form.	3612.0	5.488	508.50	37	22	0.8	
Ten Mile Creek	Moodlatana Formation	3602.3	5.498	508.62	39	20	0.4	
Ten Mile Creek	Moodlatana Formation	3602.2	5.498	508.62	39	23	0.4	
Ten Mile Creek	Moodlatana Formation	3601.8	5.498	508.63	41	22	0.5	
Ten Mile Creek	Moodlatana Formation	3601.2	5.499	508.64	49	40	3.0	
Ten Mile Creek	Moodlatana Formation	3600.3	5.500	508.65	50	35	2.0	
Ten Mile Creek	Moodlatana Formation	3556.1	5.544	509.19	29	12	0.7	
Ten Mile Creek	Moodlatana Formation	3554.8	5.545	509.21	26	7	0.4	
Ten Mile Creek	Moodlatana Formation	3550.0	5.550	509.27	23	8	2.4	
Ten Mile Creek	Moodlatana Formation	3549.2	5.551	509.28	24	9	3.5	
Ten Mile Creek	Moodlatana Formation	3544.1	5.556	509.34	28	13	0.8	
Ten Mile Creek	Moodlatana Formation	3542.6	5.557	509.36	33	15	2.0	
Ten Mile Creek	Moodlatana Formation	3543.6	5.565	509.46	35	10	0.5	
Ten Mile Creek	Moodlatana Formation	3534.1	5.566	509.47	56	38	1.8	
Ten Mile Creek	Moodlatana Formation	3533.1	5.567	509.48	32	15	0.8	
Ten Mile Creek	Moodlatana Formation	3532.3	5.568	509.49	38	12	1.5	
Ten Mile Creek	Moodlatana Formation	3531.9	5.568	509.49	57	42	1.3	
Ten Mile Creek	Moodlatana Formation	3530.2	5.570	509.52	27	16	2.4	
Ten Mile Creek	Moodlatana Formation	3529.9	5.570	509.52	25	11	2.0	
Ten Mile Creek	Moodlatana Formation	3529.2	5.571	509.53	26	10	1.0	
Ten Mile Creek	Moodlatana Formation	3528.3	5.572	509.54	24	12	3.0	
Ten Mile Creek	Moodlatana Formation	3525.6	5.574	509.57	28	5	5.0	
Formation	Sample Code	Age (Ma)	Depth (m)	Location	Age Error (Ma)			
---------------------------	-------------	----------	----------	----------	----------------			
Ten Mile Creek Moodlatana	3525.4	5.575	509.57	Warru	29	15	1.3	
Ten Mile Creek Moodlatana	3524.8	5.575	509.58	Warru	24	6	6.0	
Ten Mile Creek Moodlatana	3516.4	5.584	509.69	Warru	38	12	2.0	
Ten Mile Creek Moodlatana	3515.5	5.585	509.70	Warru	27	9	1.0	
Ten Mile Creek Moodlatana	3482.4	5.618	510.11	Warru	28	13	4.0	
Ten Mile Creek Moodlatana	3478.6	5.621	510.16	Warru	29	10	2.0	
Ten Mile Creek Moodlatana	3477.8	5.622	510.16	Warru	35	12	3.0	
Ten Mile Creek Moodlatana	3476.3	5.624	510.18	Warru	36	10	2.0	
Ten Mile Creek Moodlatana	3473.6	5.626	510.22	Warru	30	15	2.0	
Ten Mile Creek Moodlatana	3469.7	5.630	510.27	Warru	31	14	2.0	
Ten Mile Creek Moodlatana	3464.1	5.636	510.34	Warru	29	10	3.0	
Ten Mile Creek Moodlatana	3461.2	5.639	510.37	Warru	38	10	2.0	
Ten Mile Creek Moodlatana	3458.4	5.642	510.41	Warru	36	12	2.0	
Ten Mile Creek Moodlatana	3381.2	5.719	511.36	Warru	24	14	0.8	
Ten Mile Creek Moodlatana	3373.2	5.727	511.46	Warru	28	11	1.0	
Ten Mile Creek Moodlatana	3362.9	5.737	511.59	Warru	32	12	2.0	
Ten Mile Creek Moodlatana	3360.7	5.739	511.62	Warru	32	15	0.6	
Ten Mile Creek Moodlatana	3359.9	5.740	511.63	Warru	26	8	0.7	
Ten Mile Creek Moodlatana	3355.4	5.745	511.68	Warru	23	10	0.6	
Ten Mile Creek Moodlatana	3349.8	5.750	511.75	Warru	24	12	0.8	
Ten Mile Creek Moodlatana	3347.0	5.753	511.79	Warru	34	14	1.1	
Ten Mile Creek Moodlatana	3344.8	5.755	511.81	Warru	32	13	0.8	
Ten Mile Creek Moodlatana	3342.4	5.758	511.84	Warru	21	8	0.6	
Ten Mile Creek Moodlatana	3341.6	5.758	511.85	Warru	31	12	0.8	
Ten Mile Creek Moodlatana	3336.2	5.764	511.92	Warru	21	10	0.7	
Ten Mile Creek Moodlatana	3329.5	5.770	512.00	Warru	29	12	0.8	
Ten Mile Creek Moodlatana	3325.2	5.775	512.06	Warru	29	12	0.3	
Ten Mile Creek Moodlatana	3323.1	5.777	512.08	Warru	31	17	0.9	
Ten Mile Creek Moodlatana	3317.4	5.783	512.15	Warru	32	15	0.8	
Ten Mile Creek Moodlatana	3313.6	5.786	512.20	Warru	25	12	1.2	
Ten Mile Creek Moodlatana	3309.7	5.790	512.25	Warru	26	8	0.7	
Ten Mile Creek Moodlatana	3306.7	5.793	512.29	Warru	31	11	0.6	
Ten Mile Creek Moodlatana	3305.4	5.795	512.30	Warru	36	10	0.5	
Ten Mile Creek Moodlatana	3302.0	5.798	512.35	Warru	23	6	0.3	
Ten Mile Creek Moodlatana	3298.0	5.802	512.40	Warru	26	8	0.3	
Ten Mile Creek Moodlatana	3297.3	5.803	512.40	Warru	24	6	0.3	
Ten Mile Creek Moodlatana	3294.6	5.805	512.44	Warru	23	5	0.4	
Ten Mile Creek Moodlatana	3289.3	5.811	512.50	Warru	27	8	0.5	
Ten Mile Creek Moodlatana	3287.9	5.812	512.52	Warru	37	11	0.4	
Ten Mile Creek Moodlatana	3284.7	5.815	512.56	Warru	32	10	0.3	
Ten Mile Creek Moodlatana	3280.5	5.819	512.61	Warru	28	8	0.5	
Ten Mile Creek Moodlatana	3280.1	5.820	512.62	Warru	34	12	1.0	
Ten Mile Creek Moodlatana	3278.5	5.821	512.64	Viparri	58	47	2.0	
Ten Mile Creek Moodlatana	3272.8	5.827	512.71	Warru	31	18	1.0	
Ten Mile Creek Moodlatana	3271.9	5.828	512.72	Warru	34	12	1.0	
Ten Mile Creek Moodlatana	3269.9	5.830	512.74	Viparri	41	22	2.0	
Ten Mile Creek Moodlatana	3261.1	5.839	512.85	Viparri	56	41	2.0	
Ten Mile Creek Moodlatana	3243.6	5.856	513.07	Warru	25	18	1.0	
Ten Mile Creek Moodlatana	3242.3	5.858	513.09	Warru	29	12	1.0	
Ten Mile Creek Moodlatana	3241.6	5.858	513.09	Warru	41	21	21.0	
Formation	X	Y	Z	Depth	Width	Depth	Width	
---------------------------	-----	-----	-----	-------	-------	-------	-------	
Ten Mile Creek	3239.1	5.861	513.13	Warru	30	15	0.8	
Ten Mile Creek	3236.2	5.864	513.16	Warru	22	7	0.5	
Ten Mile Creek	3235.7	5.864	513.17	Warru	23	8	0.5	
Ten Mile Creek	3232.9	5.867	513.20	Warru	32	15	1.3	
Ten Mile Creek	3231.0	5.869	513.23	Warru	22	7	0.3	
Ten Mile Creek	3230.2	5.870	513.24	Warru	26	10	0.4	
Ten Mile Creek	3226.9	5.873	513.28	Warru	36	18	0.5	
Ten Mile Creek	3222.8	5.877	513.33	Warru	25	13	0.7	
Ten Mile Creek	3221.5	5.879	513.34	Warru	33	19	0.8	
Ten Mile Creek	3216.9	5.883	513.40	Warru	22	8	0.4	
Ten Mile Creek	3216.3	5.884	513.41	Warru	23	7	0.4	
Ten Mile Creek	3214.2	5.886	513.43	Warru	34	19	0.3	
Ten Mile Creek	3212.6	5.887	513.45	Warru	23	10	0.9	
Ten Mile Creek	3211.6	5.888	513.47	Warru	25	12	0.8	
Ten Mile Creek	3210.2	5.890	513.48	Warru	37	18	0.4	
Ten Mile Creek	3207.3	5.893	513.52	Warru	27	10	0.5	
Ten Mile Creek	3205.5	5.894	513.54	Warru	29	12	1.0	
Ten Mile Creek	3204.0	5.896	513.56	Warru	27	18	2.0	
Ten Mile Creek	3202.0	5.898	513.59	Warru	23	15	1.0	
Ten Mile Creek	3201.2	5.899	513.60	Warru	22	12	1.0	
Ten Mile Creek	3201.3	5.900	513.61	Warru	24	8	2.0	
Ten Mile Creek	3184.2	5.916	513.81	Warru	48	17	1.2	
Ten Mile Creek	3178.4	5.922	513.88	Warru	34	10	1.5	
Ten Mile Creek	3176.8	5.923	513.90	Warru	51	18	1.2	
Ten Mile Creek	3175.8	5.924	513.91	Warru	34	8	0.5	
Ten Mile Creek	3167.7	5.932	514.01	Warru	36	10	0.4	
Ten Mile Creek	3163.0	5.937	514.07	Warru	51	16	0.5	
Ten Mile Creek	2895.2	6.205	517.39	Warru	26	8	0.7	
Ten Mile Creek	2874.3	6.226	517.65	Warru	25	9	0.4	
Ten Mile Creek	2852.9	6.247	517.91	Warru	23	8	0.8	
Ten Mile Creek	2852.3	6.248	517.92	Warru	22	5	0.7	
Ten Mile Creek	2850.9	6.249	517.94	Warru	27	15	2.3	
Ten Mile Creek	2845.0	6.255	518.01	Warru	23	8	0.9	
Ten Mile Creek	2838.8	6.261	518.09	Warru	32	13	0.8	
Ten Mile Creek	2830.6	6.269	518.19	Warru	22	7	0.4	
Ten Mile Creek	2830.2	6.270	518.20	Warru	31	15	0.7	
Ten Mile Creek	2812.9	6.287	518.41	Warru	21	7	0.4	
Ten Mile Creek	2805.7	6.294	518.50	Warru	24	9	0.9	
Ten Mile Creek	2804.7	6.295	518.51	Warru	31	17	0.8	
Ten Mile Creek	2803.7	6.296	518.52	Warru	25	15	0.6	
Ten Mile Creek	2403.6	6.696	523.49	Warru	34	24	2.0	
Ten Mile Creek	2403.1	6.697	523.49	Warru	26	18	1.0	
Ten Mile Creek	2402.7	6.697	523.50	Warru	24	16	3.0	
Ten Mile Creek	2402.4	6.698	523.50	Warru	32	24	2.1	
Ten Mile Creek	2401.6	6.698	523.51	Warru	23	21	1.1	
Ten Mile Creek	2401.2	6.699	523.52	Warru	22	20	1.3	
Wilkatana 1 core	1053.2	8.047	536.98	Watuna	38	11	0.6	
Wilkatana 1 core	1052.6	8.047	536.99	Watuna	36	9	0.6	
Wilkatana 1 core	1052.0	8.048	536.99	Watuna	24	13	0.6	
Parachilna Gorge	1086.3	8.014	539.82	Arrari	22	10	5.1	
Location	Formation	Depth (m)	Age (Ma)	Location	Depth (m)	Age (Ma)		
-------------------	--------------------	-----------	----------	--------------	-----------	----------		
Parachilna Gorge	Parachilna Formation	1085.0	8.015	Arrari	539.84	25		
Parachilna Gorge	Parachilna Formation	1084.4	8.016	Arrari	539.84	23		
Parachilna Gorge	Parachilna Formation	1083.5	8.017	Watuna	539.85	25		
Brachina Gorge	Parachilna Formation	1082.4	8.018	Mata	539.87	32		
Brachina Gorge	Parachilna Formation	1081.4	8.019	Mata	539.88	31		
Parachilna Gorge	Parachilna Formation	1080.7	8.019	Mata	539.89	35		
Parachilna Gorge	Parachilna Formation	1080.4	8.020	Watuna	539.91	27		
Brachina Gorge	Parachilna Formation	1079.4	8.021	Watuna	539.91	59		
Parachilna Gorge	Parachilna Formation	1078.8	8.021	Watuna	539.91	24		
Parachilna Gorge	Parachilna Formation	1078.7	8.021	Watuna	539.91	28		
Parachilna Gorge	Parachilna Formation	1078.2	8.022	Mata	539.92	54		
Parachilna Gorge	Parachilna Formation	1078.0	8.022	Vidnapa	539.95	29		
Parachilna Gorge	Parachilna Formation	1076.2	8.024	Vidnapa	539.95	37		
Parachilna Gorge	Parachilna Formation	1075.6	8.024	Vidnapa	539.95	28		
Parachilna Gorge	Parachilna Formation	1074.4	8.026	Watuna	539.97	31		
Parachilna Gorge	Parachilna Formation	1072.9	8.027	Watuna	539.99	32		
Parachilna Gorge	Parachilna Formation	1072.3	8.028	Watuna	539.99	25		
Parachilna Gorge	Parachilna Formation	1071.4	8.029	Watuna	540.00	26		
Parachilna Gorge	Parachilna Formation	1070.4	8.030	Watuna	540.02	31		
Parachilna Gorge	Parachilna Formation	1069.8	8.030	Watuna	540.02	27		
Parachilna Gorge	Parachilna Formation	1068.9	8.031	Watuna	540.04	29		
Parachilna Gorge	Parachilna Formation	1067.8	8.032	Watuna	540.05	33		
Parachilna Gorge	Parachilna Formation	1066.1	8.034	Watuna	540.07	25		
Parachilna Gorge	Parachilna Formation	1065.2	8.035	Watuna	540.08	35		
Parachilna Gorge	Parachilna Formation	1064.7	8.035	Watuna	540.09	30		
Parachilna Gorge	Parachilna Formation	1062.2	8.038	Watuna	540.12	22		
Parachilna Gorge	Parachilna Formation	1061.1	8.039	Arrari	540.13	19		
Parachilna Gorge	Parachilna Formation	1059.7	8.040	Arrari	540.15	25		
Parachilna Gorge	Parachilna Formation	1055.5	8.045	Arrari	540.20	21		
Parachilna Gorge	Parachilna Formation	1054.7	8.045	Arrari	540.21	27		
Parachilna Gorge	Parachilna Formation	1053.5	8.047	Arrari	540.23	22		
Parachilna Gorge	Parachilna Formation	1053.0	8.047	Arrari	540.23	26		
Parachilna Gorge	Parachilna Formation	1052.0	8.048	Arrari	540.25	33		
Brachina Gorge	Rawnsley Quartzite	5034.8	4.065	Mura	541.42	26		
Brachina Gorge	Rawnsley Quartzite	5025.6	4.074	Mura	541.69	22		
Brachina Gorge	Rawnsley Quartzite	5023.7	4.076	Mura	541.75	25		
Brachina Gorge	Rawnsley Quartzite	5023.2	4.077	Mura	541.76	28		
Brachina Gorge	Rawnsley Quartzite	4958.5	4.142	Mura	543.68	21		
Brachina Gorge	Rawnsley Quartzite	4953.2	4.147	Mura	543.83	26		
Brachina Gorge	Rawnsley Quartzite	4948.7	4.151	Mura	543.97	24		
Brachina Gorge	Rawnsley Quartzite	4947.5	4.152	Mura	544.00	26		
Brachina Gorge	Ediacara Member	4765.5	3.978	Mura	549.39	22		
Brachina Gorge	Ediacara Member	4764.8	3.979	Mura	549.41	25		
Brachina Gorge	Ediacara Member	4764.4	3.979	Mura	549.42	29		
Brachina Gorge	Ediacara Member	4764.3	3.979	Warrutu	549.43	49		
Brachina Gorge	Ediacara Member	4764.2	3.979	Mura	549.43	25		
Brachina Gorge	Ediacara Member	4761.0	3.983	Yaldati	549.52	24		
Brachina Gorge	Ediacara Member	4754.3	3.989	Yaldati	549.72	32		
Brachina Gorge	Ediacara Member	4753.8	3.990	Yaldati	549.74	28		
Brachina Gorge	Ediacara Member	4753.4	3.990	Yaldati	549.75	26		
Location	Member	Depth (m)	Age (Ma)	Location	Depth (m)	Age (Ma)		
----------------------------------	-----------------	-----------	----------	------------	-----------	----------		
Brachina Gorge	Ediacara Member	4746.3	3.997	Yaldati	27	15	0.7	
Brachina Gorge	Ediacara Member	4740.0	4.004	Yaldati	25	18	0.4	
Brachina Gorge	Ediacara Member	4735.8	4.008	Yaldati	24	17	0.3	
Brachina Gorge	Breakfast Time Creek	4723.2	4.377	Yaldati	23	18	0.9	
Brachina Gorge	Breakfast Time Creek	4721.9	4.378	Yaldati	29	21	1.1	
Brachina Gorge	Breakfast Time Creek	4720.1	4.380	Yaldati	28	18	0.8	
Brachina Gorge	Breakfast Time Creek	4704.6	4.395	Yaldati	28	19	0.8	
Brachina Gorge	Breakfast Time Creek	4695.0	4.405	Yaldati	24	18	1.2	
Brachina Gorge	Breakfast Time Creek	4693.1	4.407	Yaldati	28	21	1.1	
Brachina Gorge	Breakfast Time Creek	4688.3	4.412	Yaldati	25	19	2.1	
Brachina Gorge	Breakfast Time Creek	4683.6	4.416	Yaldati	29	21	1.1	
Brachina Gorge	Breakfast Time Creek	4667.8	4.432	Yaldati	22	12	0.8	
Brachina Gorge	Breakfast Time Creek	4662.0	4.438	Yaldati	24	13	0.9	
Brachina Gorge	Breakfast Time Creek	4660.7	4.439	Yaldati	27	18	1.1	
Brachina Gorge	Breakfast Time Creek	4649.6	4.450	Yaldati	25	19	2.1	
Brachina Gorge	Breakfast Time Creek	4649.2	4.451	Yaldati	24	18	2.2	
Brachina Gorge	Breakfast Time Creek	4648.8	4.451	Yaldati	29	15	3.2	
Brachina Gorge	Breakfast Time Creek	4648.1	4.452	Yaldati	22	16	0.6	
Brachina Gorge	Breakfast Time Creek	4646.8	4.453	Yaldati	24	18	0.3	
Brachina Gorge	Chace Quartzite	4632.5	4.467	Yaldati	22	17	0.4	
Brachina Gorge	Chace Quartzite	4620.3	4.480	Yaldati	25	16	0.8	
Brachina Gorge	Chace Quartzite	4613.4	4.487	Yaldati	24	18	0.9	
Brachina Gorge	Chace Quartzite	4608.1	4.492	Yaldati	22	16	1.1	
Brachina Gorge	Chace Quartzite	4606.8	4.493	Yaldati	24	16	0.1	
Brachina Gorge	Chace Quartzite	4583.0	4.517	Yaldati	28	17	1.1	
Brachina Gorge	Bonney Sandstone	4504.0	4.596	Yaldati	34	23	1.2	
Brachina Gorge	Bonney Sandstone	4500.5	4.600	Yaldati	29	19	3.2	
Brachina Gorge	Bonney Sandstone	4499.0	4.601	Yaldati	25	21	1.2	
Brachina Gorge	Bonney Sandstone	4498.0	4.602	Yaldati	28	23	3.2	
Brachina Gorge	Bonney Sandstone	4496.5	4.604	Yaldati	21	16	1.1	
Brachina Gorge	Bonney Sandstone	4495.8	4.604	Yaldati	29	25	1.8	
Brachina Gorge	Bonney Sandstone	4494.8	4.605	Yaldati	23	18	1.0	
Brachina Gorge	Bonney Sandstone	4471.8	4.628	Yaldati	27	18	1.0	
Brachina Gorge	Bonney Sandstone	4368.8	4.731	Yaldati	31	18	1.2	
Brachina Gorge	Bonney Sandstone	4363.6	4.736	Yaldati	23	18	0.4	
Brachina Gorge	Bonney Sandstone	4359.1	4.741	Vulda	24	19	0.3	
Brachina Gorge	Bonney Sandstone	4351.8	4.748	Vulda	30	21	0.2	
Brachina Gorge	Bonney Sandstone	4351.2	4.749	Vulda	31	22	0.3	
Brachina Gorge	Bonney Sandstone	4346.1	4.754	Vulda	29	21	0.4	
Brachina Gorge	Bonney Sandstone	4343.4	4.757	Vulda	23	17	0.7	
Brachina Gorge	Bonney Sandstone	4337.6	4.762	Vulda	22	18	0.4	
Brachina Gorge	Bonney Sandstone	4327.6	4.772	Vulda	19	13	0.3	
Brachina Gorge	Bonney Sandstone	4323.1	4.777	Vulda	22	14	0.6	
Brachina Gorge	Bonney Sandstone	4321.7	4.778	Vulda	19	12	0.2	
Brachina Gorge	Bonney Sandstone	4306.0	4.794	Vulda	22	17	0.3	
Brachina Gorge	Bonney Sandstone	4304.7	4.795	Vulda	24	16	0.5	
Brachina Gorge	Bonney Sandstone	4304.1	4.796	Vulda	21	18	0.4	
Brachina Gorge	Bonney Sandstone	4269.7	4.830	Yaldati	29	21	2.2	
Brachina Gorge	Bonney Sandstone	4261.1	4.839	Yaldati	22	17	1.6	
Formation	Depth	Age (Ma)	Location	Latitude	Longitude			
---------------------------	-----------	----------	----------	----------	-----------			
Brachina Gorge Bonney Sandstone	4260.7	564.33	Yaldati	19	12			
Brachina Gorge Bonney Sandstone	4260.3	564.34	Vulda	21	10			
Brachina Gorge Bonney Sandstone	4252.7	564.57	Yaldati	19	4			
Brachina Gorge Bonney Sandstone	4243.6	564.84	Vulda	19	16			
Brachina Gorge Bonney Sandstone	4243.2	564.85	Vulda	22	17			
Brachina Gorge Bonney Sandstone	4208.1	565.89	Vulda	19	18			
Brachina Gorge Bonney Sandstone	4196.6	566.23	Vulda	29	17			
Brachina Gorge Bonney Sandstone	4195.6	566.26	Vulda	31	18			
Brachina Gorge Bonney Sandstone	4180.4	566.71	Vulda	19	15			
Brachina Gorge Bonney Sandstone	4179.7	566.73	Vulda	18	12			
Brachina Gorge Bonney Sandstone	4176.9	566.82	Vulda	29	10			
Brachina Gorge Bonney Sandstone	4176.3	566.83	Vulda	20	11			
Brachina Gorge Bonney Sandstone	4175.8	566.85	Vulda	22	15			
Brachina Gorge Bonney Sandstone	4174.5	566.88	Vulda	25	13			
Brachina Gorge Bonney Sandstone	4173.9	566.90	Vulda	19	12			
Brachina Gorge Bonney Sandstone	4173.3	566.92	Vulda	22	15			
Brachina Gorge Bonney Sandstone	4141.5	567.86	Vulda	30	20			
Brachina Gorge Bonney Sandstone	4140.7	567.89	Vulda	24	18			
Brachina Gorge Bonney Sandstone	4136.7	568.00	Vulda	18	10			
Brachina Gorge Bonney Sandstone	4136.2	568.02	Vulda	19	12			
Brachina Gorge Bonney Sandstone	4134.5	568.07	Vulda	31	19			
Brachina Gorge Bonney Sandstone	4133.9	568.09	Vulda	24	18			
Brachina Gorge Bonney Sandstone	4133.4	568.10	Vulda	19	12			
Brachina Gorge Bonney Sandstone	4133.0	568.11	Vulda	21	13			
Bunyeroo Gorge Wonoka Formation	3965.7	573.07	Yaldati	16	8			
Bunyeroo Gorge Wonoka Formation	3965.5	573.07	Yaldati	15	7			
Bunyeroo Gorge Wonoka Formation	3958.3	573.28	Vulda	16	11			
Bunyeroo Gorge Wonoka Formation	3957.8	573.30	Yaldati	15	8			
Bunyeroo Gorge Wonoka Formation	3957.7	573.30	Vulda	17	10			
Bunyeroo Gorge Wonoka Formation	3929.7	574.13	Vulda	18	12			
Bunyeroo Gorge Wonoka Formation	3897.4	575.09	Vulda	16	11			
Bunyeroo Gorge Wonoka Formation	3896.4	575.12	Vulda	15	11			
Bunyeroo Gorge Wonoka Formation	3896.1	575.12	Vulda	16	13			
Bunyeroo Gorge Wonoka Formation	3895.3	575.15	Vulda	18	10			
Bunyeroo Gorge Wonoka Formation	3895.0	575.16	Vulda	19	12			
Bunyeroo Gorge Wonoka Formation	3894.7	575.17	Vulda	18	11			
Bunyeroo Gorge Wonoka Formation	3894.3	575.18	Vulda	22	12			
Bunyeroo Gorge Wonoka Formation	3893.7	575.20	Yaldati	19	10			
Bunyeroo Gorge Wonoka Formation	3860.9	575.39	Vulda	17	12			
Bunyeroo Gorge Wonoka Formation	3857.9	576.26	Vulda	16	10			
Bunyeroo Gorge Wonoka Formation	3856.7	576.29	Vulda	17	11			
Bunyeroo Gorge Wonoka Formation	3856.4	576.30	Vulda	17	9			
Bunyeroo Gorge Wonoka Formation	3855.3	576.33	Vulda	18	10			
Bunyeroo Gorge Wonoka Formation	3854.8	576.35	Vulda	18	9			
Bunyeroo Gorge Wonoka Formation	3851.6	576.44	Vulda	20	10			
Bunyeroo Gorge Wonoka Formation	3851.0	576.46	Vulda	21	11			
Bunyeroo Gorge Wonoka Formation	3850.0	576.49	Vulda	19	13			
Bunyeroo Gorge Wonoka Formation	3849.5	576.50	Vulda	18	12			
Bunyeroo Gorge Wonoka Formation	3849.0	576.52	Vulda	16	10			
Bunyeroo Gorge Wonoka Formation	3843.8	576.67	Vulda	21	14			
Location	Formation	Depth	Age (Ma)	Sample	Type	Age (Ma)		
------------------------	-------------------------	---------	------------	--------	------	----------		
Bunyeroo Gorge	Bunyeroo Formation	3841.8	576.73	Vulda	19	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3840.8	576.76	Vulda	25	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3840.4	576.77	Vulda	21	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3839.1	576.81	Vulda	19	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3837.6	576.86	Vulda	21	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3835.8	576.91	Vulda	22	0.8		
Bunyeroo Gorge	Bunyeroo Formation	3835.6	576.92	Vulda	24	0.5		
Bunyeroo Gorge	Bunyeroo Formation	3368.2	590.75	Vulda	30	0.5		
Bunyeroo Gorge	Bunyeroo Formation	3367.5	590.77	Vulda	23	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3367.2	590.78	Vulda	19	0.4		
Brachina Creek	Bunyeroo Formation	3366.3	590.81	Vulda	24	0.6		
Bunyeroo Gorge	Bunyeroo Formation	3366.0	590.82	Vulda	27	0.4		
Brachina Creek	Bunyeroo Formation	3365.9	590.82	Vulda	29	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3365.4	590.83	Vulda	32	0.5		
Brachina Creek	Bunyeroo Formation	3365.1	590.84	Vulda	25	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3364.7	590.86	Vulda	24	0.3		
Brachina Creek	Bunyeroo Formation	3364.6	590.86	Vulda	26	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3364.1	590.87	Vulda	25	0.4		
Brachina Creek	Bunyeroo Formation	3363.7	590.88	Vulda	23	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3363.2	590.90	Vulda	32	0.6		
Bunyeroo Gorge	Bunyeroo Formation	3362.5	590.92	Vulda	18	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3362.2	590.93	Vulda	23	0.5		
Bunyeroo Gorge	Bunyeroo Formation	3361.5	590.95	Vulda	24	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3361.2	590.96	Vulda	36	0.5		
Bunyeroo Gorge	Bunyeroo Formation	3360.5	590.98	Vulda	24	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3360.0	590.99	Vulda	23	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3359.5	591.01	Vulda	25	0.5		
Bunyeroo Gorge	Bunyeroo Formation	3358.7	591.03	Vulda	35	0.4		
Bunyeroo Gorge	Bunyeroo Formation	3358.2	591.05	Vulda	26	0.9		
Bunyeroo Gorge	Bunyeroo Formation	3357.6	591.07	Vulda	23	0.2		
Bunyeroo Gorge	Bunyeroo Formation	3357.1	591.08	Vulda	25	0.3		
Bunyeroo Gorge	Bunyeroo Formation	3356.5	591.10	Vulda	34	0.5		
Blinman	Bunyeroo Formation	3300.5	592.76	Vulda	29	2.5		
Blinman	Bunyeroo Formation	3300.0	592.77	Vulda	33	2.0		
Wilkatana 1 core	Bunyeroo Formation	3217.2	595.22	Vulda	29	0.5		
Wilkatana 1 core	Bunyeroo Formation	3216.3	595.25	Vulda	27	0.6		
Wilkatana 1 core	Bunyeroo Formation	3215.2	595.28	Vulda	33	0.5		
Wilkatana 1 core	Bunyeroo Formation	3214.5	595.30	Vulda	23	0.4		
Wilkatana 1 core	Bunyeroo Formation	3214.1	595.31	Vulda	27	0.3		
Wilkatana 1 core	Bunyeroo Formation	3212.9	595.35	Vulda	31	0.3		
Wilkatana 1 core	Bunyeroo Formation	3212.4	595.36	Vulda	24	0.5		
Wilkatana 1 core	Bunyeroo Formation	3211.7	595.38	Vulda	18	0.3		
Wilkatana 1 core	Bunyeroo Formation	3141.2	597.47	Vulda	29	0.6		
Wilkatana 1 core	Bunyeroo Formation	3125.2	597.94	Vulda	33	0.8		
Enorama Creek	Brachina Formation	2720.8	609.91	Alpa	23	0.4		
Enorama Creek	Brachina Formation	2707.1	610.32	Yaldati	18	0.3		
Enorama Creek	Nuccaleena Formation	1894.4	634.38	Alpa	27	0.8		
Enorama Creek	Nuccaleena Formation	1893.8	634.39	Alpa	23	0.7		
Enorama Creek	Nuccaleena Formation	1893.3	634.41	Alpa	24	0.7		
Enorama Creek	Nuccaleena Formation	1892.5	634.43	Alpa	29	0.8		
Table S2. Petrographic textures (volume %) of selected Ediacaran palaeosols.

Pedotype	Horizon	Sample	Gravel	Sand	Silt	Clay	Soil fabric	Soil texture
Muru	A	R3245	0	76.5	12.2	11.4	Granular silasepic	Sandy loam
Muru	A	R3246	0	88.8	4.8	6.4	Granular silasepic	sand
Muru	A	R3247	0	91.0	2.8	6.2	Granular silasepic	sand
Muru	By	R3248	0	92.8	3.0	4.2	Granular silasepic	sand
Muru	By	R3249	0.2	92.4	2.0	5.4	Granular silasepic	sand
none	above	R3233	0	80.2	2.8	17.2	Granular silasepic	Loamy sand
Inga	A	R3234	0	75.8	1.0	23.2	Granular silasepic	Sandy clay loam
Inga	By	R3235	0.4	75.4	3.2	21.0	Granular silasepic	Sandy clay loam
Inga	C	R3236	0.4	28.4	3.4	17.8	Granular silasepic	Sandy loam
Yaldati	A	R3237	0	80.2	3.8	16.0	Granular silasepic	Sandy loam
Yaldati	A	R3238	0	79.2	6.6	14.2	Granular silasepic	Sandy loam
Yaldati	Bk	R3240	0.2	80.8	5.6	13.4	Granular silasepic	Sandy loam
Yaldati	Bk	R3241	0	79.8	8.2	12.0	Granular silasepic	Sandy loam

Note: Stratigraphic levels are for a composite section from Mawson (1939a, b).
Table S3. Petrographic composition (volume %) of selected Ediacaran palaeosols.

Pedotype	Horizon	Sample	quartz	feldspar	clay	opaque	mica	rock fragments	sparry calcite	micritic						
Muru A	R3245	63.0	22.4	9.0	0	0.4	4.4	0.8	0	0						
Muru A	R3246	83.6	12.8	7.6	0.2	0	2.8	0	0	0						
Muru A	R3247	77.8	13.8	5.0	1.2	0	2.2	0	0	0						
Muru By	R3248	81.6	12.0	3.4	0	0	2.0	0.2	0	0						
Muru By	R3249	79.4	14.0	6.2	0.2	0	0.2	0	0	0						
Muru By	R3250	76.4	17.4	4.6	1.6	0	0	0	0	0						
none above R3233	68.0	16.8	14.4	0	0	0	0.8	0	0	0						
Inga A	R3234	64.2	15.6	18.0	1.8	0	0	0	0	0.4						
Inga By	R3235	63.8	19.4	14.4	0.8	0.2	1.4	0	0	0						
Inga C	R3236	62.4	19.2	16.8	1.2	0.2	0.2	0	0	0						
Yaldati A	R3237	68.4	15.4	7.4	8.4	0	0.4	0	0	0						
Yaldati A	R3238	71.2	13.2	4.4	11.0	0.2	0	0	0	0						
Yaldati Bk R3240	69.6	19.8	11.4	3.4	0	0.8	0	0	0	0						
Yaldati Bk R3241	60.8	17.6	11.4	7.4	0.2	0.6	0	2.0	0	0						
Yaldati Bk R3242	65.6	21.6	6.2	5.4	0	1.2	0	0	0	0						
none above R3474	69.2	17.4	5.0	8.2	0.2	0	0	0	0	0						
Valda A	R3475	53.0	12.2	24.2	9.8	0.6	0.2	0	0	0						
Valda A	R3476	49.4	18.0	19.4	13.6	0	0	0	0	0						
Valda Bk R3477	50.4	13.8	25.6	9.6	0.6	0	0	0	0	0						
Valda C	R3478	64.6	24.6	5.2	5.0	0.4	0	0	0	0.2						
Pedotype	Sample	SiO₂	Al₂O₃	Fe₂O₃	FeO	CaO	MgO	Na₂O	K₂O	TiO₂	MnO	P₂O₅	SrO	BaO	LOI	Total Density g cm⁻³
----------	--------	------	-------	-------	-----	-----	-----	------	-----	------	-----	------	-----	-----	-----	-------------------
Inga R3234	87.47	5.57	1.06	0.51	0.06	0.44	0.14	3.08	0.19	0.01	0.03	0.01	0.07	0.95	99.10	2.46
Inga R3235	87.96	5.02	1.07	0.44	0.09	0.39	0.14	2.84	0.09	0.01	0.02	0.01	0.07	1.01	98.74	2.42
Yaldati R3236	86.51	5.77	1.55	0.38	0.06	0.45	0.15	3.14	0.27	0.01	0.03	0.01	0.07	1.00	99.40	2.41
Yaldati R3237	85.12	6.20	1.70	0.51	0.14	0.49	0.16	3.27	0.20	0.01	0.06	0.01	0.08	0.94	98.98	2.51
Yaldati R3239	86.97	5.37	1.41	0.25	0.13	0.40	0.14	2.96	0.13	0.01	0.03	0.01	0.14	1.05	98.76	2.47
Yaldati R3240	85.77	5.90	1.23	0.64	0.07	0.46	0.15	3.20	0.14	0.01	0.03	0.01	0.08	1.18	98.28	2.46
Yaldati R3241	86.41	5.94	1.49	0.10	0.46	0.17	3.20	0.22	0.01	0.03	0.01	0.09	1.21	98.37	2.46	
Yaldati R3242	85.67	5.89	1.06	0.32	0.09	0.44	0.14	3.21	0.17	0.01	0.05	0.01	0.09	1.30	98.13	2.48
Muru R3245	91.78	4.25	0.74	0.51	0.24	0.17	0.01	1.31	0.05	0.01	0.01	0.04	1.35	99.97	2.58	
Muru R3246	93.22	3.03	0.70	0.45	0.25	0.09	0.02	1.60	0.05	0.01	0.02	0.01	0.04	0.72	99.76	2.59
Muru R3247	95.11	2.58	0.79	0.58	0.13	0.01	0.01	0.53	0.05	0.01	0.01	0.02	0.81	100.00	2.59	
Muru R3249	95.69	2.10	0.64	0.58	0.06	0.01	0.01	1.18	0.03	0.01	0.01	0.03	0.26	100.00	2.60	
Muru R3250	92.21	3.80	0.70	0.51	0.16	0.06	0.05	1.80	0.06	0.01	0.02	0.01	0.05	1.06	99.98	2.48
Vida R3475	72.15	11.92	5.19	1.74	0.25	1.60	0.62	4.49	0.47	0.02	0.09	0.01	0.06	2.68	99.56	2.64
Vida R3476	76.90	10.47	3.45	1.29	0.23	1.40	0.88	4.09	0.31	0.02	0.08	0.01	0.06	2.09	99.99	2.64
Vida R3477	76.00	10.80	3.86	1.16	0.19	1.40	0.64	4.34	0.34	0.02	0.06	0.01	0.06	2.33	100.05	2.62
Vida R3478	84.39	6.88	1.95	0.64	0.39	0.50	0.73	3.08	0.24	0.02	0.05	0.01	0.06	1.46	99.76	2.62
Vida R3653	14.80	2.57	1.80	0.10	0.10	0.04	0.46	0.12	0.13	0.05	0.02	0.03	35.10	98.55	2.69	
Vida R3654	26.75	5.86	2.14	1.55	31.39	2.45	1.04	1.15	0.28	0.13	0.09	0.01	0.08	27.00	98.37	2.68
Vida R3655	23.61	5.31	1.92	1.48	34.02	1.94	1.09	1.06	0.27	0.12	0.11	0.01	0.04	28.60	98.11	2.75
Vida R3656	17.82	3.53	1.19	1.10	39.41	1.36	0.77	0.61	0.18	0.13	0.06	0.02	0.03	33.10	98.21	2.75
Vida R3657	58.60	14.97	7.73	5.78	5.80	5.56	1.47	3.90	0.72	0.08	0.18	0.01	0.13	4.75	99.92	2.80
Vida R3658	13.89	2.78	1.40	1.29	43.12	1.09	0.43	0.57	0.13	0.14	0.04	0.01	0.04	35.00	98.65	2.80
siltstone R3660	61.42	16.73	8.57	5.75	0.79	2.32	1.09	4.41	1.13	0.05	0.16	0.01	0.25	2.55	99.50	2.84
siltstone R3660U	60.72	16.56	9.29	6.49	0.91	2.54	1.12	4.35	1.14	0.06	0.17	0.01	0.24	2.62	99.74	2.81

Note: All samples are shown on Figs. 6-7. Volumes are from counting 500 points in petrographic thin sections cut perpendicular to bedding using a Swift automated stage and counter. Error is ±2% for common (>10%) components (Murphy, 1983).

Table S4. Chemical analyses (wt%) and bulk density (g cm⁻³) of Ediacaran palaeosols.
location	Formation	level (m)	Ma	δ¹³Ccarb %‰	δ¹⁸Ocarb %‰	author
Ten Mile Creek Moodlatana Formation	7668.6	507.70	-0.31	-8.66	Retallack 2008	
Ten Mile Creek Moodlatana Formation	7668.6	507.70	-0.31	-8.77	Retallack 2008	
Ten Mile Creek Wirrealpa Limestone	7231.0	513.08	-1.79	-10.08	Retallack 2008	
Ten Mile Creek Wirrealpa Limestone	7231.0	513.08	-1.80	-10.13	Retallack 2008	
Ten Mile Creek Wilkawillina Limestone	6641.5	533.25	0.28	-9.82	Singh 1986	
Wirrealpa Hill Wilkawillina Limestone	6641.5	533.25	-0.39	-11.84	Singh 1986	
Wirrealpa Hill Wilkawillina Limestone	6641.5	533.25	3.03	-6.85	Singh 1986	
Ten Mile Creek Edewoe Limestone	6391.0	523.41	2.58	-10.34	Retallack 2008	
Ten Mile Creek Edewoe Limestone	6391.0	523.41	2.56	-10.30	Retallack 2008	
Mt Scott Range Ajax Limestone	5874.7	516.56	0.72	-8.56	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	516.56	0.76	-8.69	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	516.56	0.47	-9.55	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	516.56	0.72	-9.02	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	516.56	0.76	-8.35	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	516.56	0.72	-6.46	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.63	-7.73	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.65	-7.59	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.61	-7.72	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.48	-7.58	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.53	-7.59	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.27	-8.42	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.34	-8.27	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.44	-9.52	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.66	-14.54	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.93	-11.27	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.79	-7.20	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.83	-7.14	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.45	-8.79	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.64	-7.81	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.60	-8.91	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.64	-9.35	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.64	-9.25	Surge 1996	
Mt Scott Range Ajax Limestone	5874.7	517.36	0.69	-9.12	Surge 1996	
Mt Scott Range Ajax Limestone	5847.673	517.36	0.63	-9.19	Surge 1996	
Mt Scott Range Ajax Limestone	5847.673	517.36	0.62	-8.70	Surge 1996	
Mt Scott Range Ajax Limestone	5847.673	517.36	0.64	-8.75	Surge 1996	
Mt Scott Range Ajax Limestone	5847.673	517.36	0.50	-7.92	Surge 1996	
Mt Scott Range Ajax Limestone	5847.673	517.36	0.58	-9.18	Surge 1996	
Mt Scott Range Ajax Limestone	5847.673	517.36	0.53	-8.48	Surge 1996	

Note: Specimen locations are shown in Figs. 6-7. Analyses are by XR on glass disc, with FeO by Pratt titration and C by Leco analyzer from ALS Chemex of Vancouver, BC, Canada, using Canadian Certified Reference Materials Project standard SY-4 (diorite gneiss from near Bancroft, Ontario). Errors (2σ) are from 89 replicate analyses of the standard in the same laboratory.
Mt Scott Range Ajax Limestone	5847.673	517.36	0.57	-8.00	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.60	-7.54	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.63	-7.67	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.60	-7.75	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.65	-7.47	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.51	-8.65	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.44	-8.74	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.46	-8.89	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.51	-8.17	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.51	-9.19	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.52	-9.23	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.59	-7.81	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.36	-7.78	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.35	-8.00	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.48	-8.16	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.72	-7.52	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.55	-7.61	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.62	-7.45	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.59	-7.77	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.45	-7.81	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.40	-7.79	Surge 1996
Mt Scott Range Ajax Limestone	5847.673	517.36	0.49	-7.18	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.57	-8.41	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.77	-7.75	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.58	-8.04	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.63	-8.31	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.43	-7.37	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.40	-7.18	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.44	-7.28	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	1.03	-12.87	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.68	-7.81	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.60	-8.11	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.51	-7.05	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.45	-7.04	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.85	-10.02	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.86	-10.08	Surge 1996
Mt Scott Range Ajax Limestone	5845.673	517.42	0.64	-8.04	Surge 1996
Mt Scott Range Ajax Limestone	5819.673	518.19	0.21	-7.88	Surge 1996
Mt Scott Range Ajax Limestone	5819.673	518.19	-0.01	-8.99	Surge 1996
Mt Scott Range Ajax Limestone	5819.673	518.19	0.18	-8.79	Surge 1996
Mt Scott Range Ajax Limestone	5819.673	518.19	0.21	-8.59	Surge 1996
Mt Scott Range Ajax Limestone	5819.673	518.19	0.30	-9.42	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.04	-8.26	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.12	-7.89	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.07	-7.64	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.58	-14.84	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.96	-14.03	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.06	-8.28	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.06	-8.76	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.14	-7.78	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.01	-8.50	Surge 1996
Mt Scott Range Ajax Limestone	5794.673	518.93	0.09	-7.99	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.05	-8.07	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.08	-7.89	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.06	-8.45	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.09	-7.81	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.26	-7.34	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.24	-7.00	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.22	-7.18	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.23	-7.42	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.04	-13.98	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.25	-8.71	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.04	-7.70	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.03	-7.80	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.06	-8.15	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.08	-6.82	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.11	-8.38	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.15	-8.47	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.04	-9.15	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.03	-9.54	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.17	-7.19	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.18	-7.14	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	-0.08	-7.44	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.37	-8.61	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.37	-8.25	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.29	-8.94	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.28	-8.82	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.30	-8.98	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.30	-8.84	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.33	-8.76	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.17	-8.29	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.21	-7.81	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.49	-14.52	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.18	-8.26	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.92	-14.41	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.85	-14.09	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.96	-14.18	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.94	-13.48	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.49	-14.87	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.45	-15.18	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.77	-14.11	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.08	-7.29	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.16	-8.28	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.28	-6.39	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.01	-8.08	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.09	-8.29	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.06	-15.19	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.00	-13.46	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.30	-6.99	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.24	-6.89	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	0.16	-7.05	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	1.22	-14.39	Surge 1996
Mt Scott Range	Ajax Limestone	5794.673	518.93	1.34	-14.34	Surge 1996
Location	Formation	Longitude	Latitude	Elevation	Age	
--------------------------------	----------------------	-----------	----------	-----------	---------	
Mt Scott Range	Ajax Limestone	5794.673	518.93	-15.89	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.29	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.45	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.50	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.17	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.68	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.52	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.55	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.85	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.39	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.92	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.10	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.02	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.66	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.51	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.33	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.40	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.52	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.50	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.87	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.75	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.58	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.27	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.21	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.50	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.27	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.84	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-9.41	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.30	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.01	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.69	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.97	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.44	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.42	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-14.89	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.18	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-8.68	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.55	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-6.91	Surge 1996	
Mt Scott Range	Ajax Limestone	5771.673	519.61	-7.48	Surge 1996	
Wilkawillina Gorge	Wilkawillina Limestone	5709.67	521.44	-8.30	Tucker 1991	
Wilkawillina Gorge	Wilkawillina Limestone	5688.67	522.07	-11.10	Tucker 1991	
Wilkawillina Gorge	Wilkawillina Limestone	5681.67	522.27	-10.80	Tucker 1991	
Wilkawillina Gorge	Wilkawillina Limestone	5677.67	522.39	-12.90	Tucker 1991	
Back Range	Wonoka Formation	4207.079	565.92	-11.52	Urwin 1992	
First Hill	Wonoka Formation	4203.528	566.03	-7.43	Calver 2000	
First Hill	Wonoka Formation	4203.528	566.03	-7.43	Calver 2000	
Brachina Gorge	Wonoka Formation	4202	566.07	-8.04	herein	
Brachina Gorge	Wonoka Formation	4202	566.07	-8.04	herein	
Brachina Gorge	Mayo Limestone	4200	566.13	-10.50	Singh 1986	
Brachina Gorge	Mayo Limestone	4200	566.13	-7.15	Singh 1986	
Bunyeroo Gorge	Mayo Limestone	4200	566.13	-8.19	Singh 1986	
Location	Formation	Age (Ma)	Depth (m)	Latitude	Longitude	Reference
----------------------------------	--------------------------	----------	-----------	-----------	-----------	--------------------
Bunyeroo Gorge	Mayo Limestone	4200	566.13	-11.55	Singh 1986	
Bunyeroo Gorge	Mayo Limestone	4200	566.13	-7.57	Singh 1986	
Brachina Gorge	Bonney Formation	4199.379	566.15	-3.50	Calver 2000	
Back Range	Wonoka Formation	4192.079	566.36	-11.86	Urwin 1992	
Brachina Gorge	Wonoka Formation	4158.579	567.36	-6.95	Calver 2000	
Brachina Gorge	Wonoka Formation	4151.579	567.56	-5.49	Calver 2000	
Brachina Gorge	Wonoka Formation	4147.079	567.70	-5.89	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4146.623	567.71	-8.34	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4145.736	567.74	-4.47	Calver 2000	
Brachina Gorge	Wonoka Formation	4158.579	567.36	-3.50	Calver 2000	
Brachina Gorge	Wonoka Formation	4151.579	567.56	-5.49	Calver 2000	
Brachina Gorge	Wonoka Formation	4147.079	567.70	-5.89	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4146.623	567.71	-8.34	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4145.736	567.74	-4.47	Calver 2000	
Brachina Gorge	Wonoka Formation	4143.079	567.81	-12.35	Urwin 1992	
Bunyeroo Gorge	Wonoka Formation	4135.534	568.04	-9.73	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4132.252	568.14	-11.20	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4131.099	568.17	-12.28	Calver 2000	
Old Station Creek	Wonoka canyon fill	4116	568.62	-14.85	Calver 2000	
Old Station Creek	Wonoka canyon fill	4116	568.62	-14.85	Calver 2000	
Umberatana	Wonoka Formation	4116	568.62	-13.7	Eickoff et al. 1988	
Umberatana	Wonoka Formation	4116	568.62	-11.8	Eickoff et al. 1988	
Umberatana	Wonoka Formation	4116	568.62	-8.40	Eickoff et al. 1988	
Umberatana	Wonoka Formation	4116	568.62	-1.40	Eickoff et al. 1988	
Bunyeroo Gorge	Wonoka Formation	4106.26	568.90	-12.50	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4100.937	569.06	-11.80	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4083.195	569.59	-11.23	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4076.986	569.77	-11.39	Calver 2000	
Bunyeroo Gorge	Wonoka Formation	4076.986	569.77	-11.68	Calver 2000	
Back Range	Wonoka Formation	4076.079	569.77	-13.22	Urwin 1992	
Back Range	Wonoka Formation	4053.079	570.48	-13.36	Urwin 1992	
Back Range	Wonoka Formation	4029.079	571.19	-14.30	Urwin 1992	
Wearing Gorge	Bunyeroo Formation	3452.679	588.25	-1.23	Young 1995	
Wearing Gorge	Bunyeroo Formation	3439.079	588.65	-7.27	Young 1995	
Wearing Gorge	Bunyeroo Formation	3421.079	589.19	-8.70	Young 1995	
Mallee Water	Enorama Shale	1385.5	649.44	-3.40	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1384.5	649.47	-3.20	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1383.5	649.50	-8.60	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1382.5	649.53	-4.70	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1381.5	649.56	-1.00	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1380.5	649.59	-2.60	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1379.5	649.62	-2.60	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1378.5	649.65	-4.20	McKirdy et al. 2001	
Mallee Water	Enorama Shale	1377.5	649.68	-4.50	McKirdy et al. 2001	
Dedman's bore	Enorama Shale	1376.5	649.71	-11.80	McKirdy et al. 2001	
Dedman's bore	Enorama Shale	1375.5	649.74	-9.70	McKirdy et al. 2001	
Dedman's bore	Enorama Shale	1363.5	650.09	-5.90	McKirdy et al. 2001	
Gum Creek	Wundowie Limestone	1123.6	657.19	-12.70	McKirdy et al. 2001	
Gum Creek	Wundowie Limestone	1123.6	657.19	-12.50	McKirdy et al. 2001	
Gum Creek	Wundowie Limestone	1123.6	657.19	-12.60	McKirdy et al. 2001	
Location	Formation	Depth	Temperature	Nitrate	Reference	
-----------------------------------	------------------	---------	-------------	---------	-----------------------------	
Dedman's bore	Wundowie Limestone	1123.6	657.19	6.50	-11.00 M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	938.6	658.93	9.40	-8.20 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	929.6	662.93	5.90	-13.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	928.1	662.98	6.10	-13.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	927.1	663.01	6.00	-12.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	926.0	663.04	6.50	-12.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	925.3	663.06	7.20	-13.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	924.2	663.09	7.50	-12.60 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	923.3	663.12	7.80	-12.80 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	922.3	663.15	7.90	-12.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	912.8	663.43	7.70	-11.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	911.8	663.46	8.10	-12.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	910.7	663.49	7.90	-11.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	908.3	663.56	8.10	-14.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	907.2	663.60	7.40	-12.80 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	905.6	659.90	8.80	-9.00 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	905.2	663.66	8.30	-12.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	904.1	663.39	8.40	-12.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	903.1	663.72	8.10	-12.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	900.6	663.79	7.90	-10.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	899.7	663.82	8.70	-11.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	898.7	663.85	8.90	-11.10 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	897.5	663.88	9.00	-11.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	896.2	663.92	9.10	-11.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	895.1	663.96	8.70	-11.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	894.1	663.98	9.00	-11.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	893.0	664.02	8.70	-11.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	892.0	664.05	8.70	-12.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	891.0	664.08	8.70	-12.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	888.8	664.14	7.10	-12.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	887.7	664.17	6.50	-11.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	886.5	664.21	5.10	-10.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	882.6	660.58	7.90	-10.80 M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	858.6	661.29	9.50	-10.70 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	856.0	665.11	9.30	-11.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	855.0	665.14	9.20	-11.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	853.9	665.17	8.90	-10.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	852.9	665.20	9.30	-10.50 Swanson-Hysell et al. 2010	
Pope's Paddock	Etina Formation	851.6	661.50	8.90	-10.30 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	851.5	665.25	9.40	-11.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	850.5	665.28	9.40	-11.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	849.5	665.30	9.10	-11.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	837.7	665.65	7.90	-11.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	837.6	665.67	7.80	-11.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	835.6	665.71	7.20	-9.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	834.7	665.74	6.90	-9.90 Swanson-Hysell et al. 2010	
Pope's Paddock	Etina Formation	827.6	662.21	6.90	-11.10 M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	825.6	662.27	4.20	-9.50 M'Kirdy et al. 2001	
Location	Formation	Depth (m)	Age (Ma)	SW	SWHysell et al. 2010	
---------------------	-------------------	-----------	----------	----	----------------------	
Enorama Creek	Etina Formation	790.1	6.60	-11.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	789.1	7.10	-11.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	788.1	7.30	-10.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	787.1	7.80	-11.20	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	784.9	8.30	-11.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	783.9	8.20	-10.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	782.9	7.60	-9.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	781.6	4.40	-9.20	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	780.6	9.00	-10.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	779.4	9.10	-9.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	778.1	8.10	-9.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	777.2	2.30	-9.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	776.5	5.30	-9.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	775.5	8.50	-12.10	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	774.5	8.40	-12.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	773.3	9.20	-11.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	772.2	9.00	-10.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	771.6	0.70	-7.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	770.4	9.90	-9.20	Swanson-Hysell et al. 2010	
Pope's Paddock	Etina Formation	768.6	3.00	-8.40	M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	768.6	3.00	-8.40	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	768.1	9.10	-9.40	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	767.2	8.50	-12.10	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	766.2	9.20	-11.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	765.1	5.30	-9.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	758.5	1.10	-8.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	757.7	9.20	-12.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	755.6	8.50	-12.10	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	754.6	8.40	-12.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	752.6	9.00	-7.60	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	750.6	9.60	-8.30	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	727.6	9.30	-8.50	M'Kirdy et al. 2001	
First Spring	Etina Formation	701.6	9.40	-6.70	M'Kirdy et al. 2001	
First Spring	Etina Formation	696.6	7.70	-13.30	M'Kirdy et al. 2001	
First Spring	Etina Formation	682.6	9.20	-8.10	M'Kirdy et al. 2001	
First Spring	Etina Formation	681.6	9.80	-9.50	M'Kirdy et al. 2001	
First Spring	Etina Formation	664.6	8.90	-7.90	M'Kirdy et al. 2001	
First Spring	Etina Formation	653.6	9.00	-8.30	M'Kirdy et al. 2001	
First Spring	Etina Formation	652.6	10.30	-10.00	M'Kirdy et al. 2001	
First Spring	Etina Formation	636.6	8.60	-8.40	M'Kirdy et al. 2001	
First Spring	Etina Formation	630.6	4.90	-12.10	M'Kirdy et al. 2001	
First Spring	Etina Formation	585.6	8.30	-12.00	M'Kirdy et al. 2001	
First Spring	Etina Formation	585.6	9.40	-7.40	M'Kirdy et al. 2001	
First Spring	Etina Formation	581.6	9.80	-10.00	M'Kirdy et al. 2001	
First Spring	Etina Formation	561.6	7.80	-11.40	M'Kirdy et al. 2001	
First Spring	Etina Formation	559.6	3.20	-7.00	M'Kirdy et al. 2001	
First Spring	Etina Formation	529.6	8.40	-9.70	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	526.9	6.70	-12.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	525.9	7.90	-11.90	Swanson-Hysell et al. 2010	
Location	Formation	Depth	Temperature	Oxygen	Source	
-------------------	-----------------	--------	-------------	--------	-------------------------------	
Enorama Creek	Etina Formation	524.9	674.91	7.50	-12.10 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	523.8	674.95	8.00	-11.90 Swanson-Hysell et al. 2010	
First Spring	Etina Formation	523.6	674.95	9.60	-9.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	522.8	674.98	8.10	-11.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	521.8	675.00	8.00	-11.10 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	520.8	675.03	8.40	-11.60 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	519.4	675.08	8.10	-10.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	518.6	675.10	8.70	-12.10 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	517.6	675.13	8.50	-11.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	515.9	675.18	8.50	-11.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	514	675.24	8.40	-11.10 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	513	675.27	8.10	-10.80 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	512	675.29	8.90	-11.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	511.7	675.30	9.10	-9.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	510.2	675.35	9.10	-10.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	509.3	675.37	6.90	-10.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	508.5	675.40	9.20	-9.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	507.5	675.43	8.90	-10.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	506.5	675.46	8.40	-9.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	505.5	675.49	7.70	-10.00 Swanson-Hysell et al. 2010	
Pope's Paddock	Etina Formation	503.6	671.80	4.60	-10.70 M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	503.6	671.80	4.80	-11.40 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	501.6	675.60	6.80	-9.30 Swanson-Hysell et al. 2010	
First Spring	Etina Formation	499.6	675.66	8.40	-10.90 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	498.9	675.68	9.20	-10.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	497.9	675.71	8.80	-9.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	497.3	675.73	8.70	-10.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	496.3	675.76	9.30	-9.80 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	495	675.80	8.90	-8.60 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	494	675.83	9.70	-8.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	493.9	675.83	8.40	-7.60 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	493.1	675.85	8.60	-7.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	492.2	675.88	7.70	-7.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	491.2	675.91	6.80	-6.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	490.1	675.94	8.90	-8.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	489.3	675.97	8.70	-8.60 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	488.3	676.00	8.80	-8.60 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	487.2	676.03	6.90	-8.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	486.3	676.06	7.20	-8.40 Swanson-Hysell et al. 2010	
First Spring	Etina Formation	485.6	676.08	8.80	-10.50 M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	485.3	676.09	7.80	-7.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	483.9	676.13	7.90	-7.70 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	483.1	676.15	9.00	-8.50 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	480.1	676.24	8.90	-8.00 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	479	676.27	8.10	-8.30 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	478	676.30	9.20	-8.40 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	477.5	676.32	8.90	-7.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	476.5	676.35	8.80	-8.20 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	475.5	676.38	8.40	-7.90 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	474.7	676.40	9.10	-7.80 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	472.7	676.46	9.50	-7.80 Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	471.7	676.49	9.80	-8.10 Swanson-Hysell et al. 2010	
Location	Formation	Depth (m)	Age (Ma)	Thickness (m)	Reference	
-------------------	------------------	-----------	----------	---------------	------------------------------------	
First Spring	Etina Formation	471.6	7.80	-12.40	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	470.7	9.80	-8.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	467.2	8.60	-6.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	465.6	8.50	-7.20	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	464.5	8.60	-8.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	462.9	9.30	-8.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	461.9	8.70	-8.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	461	9.00	-8.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	460	9.30	-8.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	459.8	8.90	-7.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	457	9.70	-8.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	455.6	9.80	-9.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	454.6	9.80	-9.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	453.6	9.40	-9.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	452.2	9.40	-9.70	Swanson-Hysell et al. 2010	
Pope's Paddock	Etina Formation	451.6	8.40	-10.50	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	450.6	8.30	-10.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	449.8	7.70	-11.80	Swanson-Hysell et al. 2010	
Pope's Paddock	Etina Formation	430.6	8.80	-8.60	M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	401.6	9.20	-10.30	M'Kirdy et al. 2001	
First Spring	Etina Formation	388.6	2.70	-11.20	M'Kirdy et al. 2001	
Pope's Paddock	Etina Formation	388.6	9.40	-10.50	M'Kirdy et al. 2001	
Enorama Creek	Etina Formation	388.6	6.10	-11.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	387.6	8.30	-9.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	386.5	8.40	-8.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	385.1	8.30	-8.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	383.7	1.30	-11.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	382.4	8.90	-8.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	381.4	8.70	-7.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	380.4	9.60	-8.10	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	379.2	9.90	-7.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	378.5	9.60	-7.20	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	377.7	9.70	-6.20	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	376.9	9.60	-6.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	374.8	9.70	-6.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	373.8	6.30	-6.40	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	372.5	9.20	-5.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	371.5	9.40	-5.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	370.4	9.30	-5.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	369.4	9.50	-5.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	368.1	9.20	-5.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	367.1	9.10	-4.70	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	366	9.10	-4.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	364.9	9.40	-4.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	363.8	9.20	-5.00	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	362.6	9.10	-4.80	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	361.2	8.60	-4.90	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	360.2	4.40	-5.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	359.2	8.80	-4.50	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	355.8	9.00	-6.60	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	354.8	8.40	-7.30	Swanson-Hysell et al. 2010	
Enorama Creek	Etina Formation	353	1.30	-6.10	Swanson-Hysell et al. 2010	
Location	Formation	Metric	Latitude	Longitude	Depth	Swanson-Hysell et al. 2010
------------------------	-----------	--------	----------	-----------	-------	-----------------------------
Enorama Creek	Etina Formation	351.8	680.04	5.30	-4.40	Swanson-Hysell et al. 2010
First Spring	Etina Formation	348.6	680.13	2.00	-9.30	McKirdy et al. 2001
Enorama Creek	Etina Formation	346.2	680.20	8.30	-3.20	Swanson-Hysell et al. 2010
First Spring	Etina Formation	343.8	680.27	8.70	-4.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	343.6	680.28	6.30	-11.80	McKirdy et al. 2001
Enorama Creek	Etina Formation	342.7	680.31	8.40	-3.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	338.6	680.43	8.60	-3.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	337.5	680.46	9.10	-3.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	336.5	680.49	8.70	-3.90	Swanson-Hysell et al. 2010
First Spring	Etina Formation	335.6	680.52	6.60	-11.70	McKirdy et al. 2001
Enorama Creek	Etina Formation	335.5	680.52	8.50	-5.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	334.5	680.55	8.30	-5.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	333.4	680.58	9.00	-6.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	332.3	680.61	9.40	-5.30	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	332.1	680.62	9.30	-5.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	331.5	680.64	8.50	-5.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	330.5	680.67	9.00	-6.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	329.6	680.69	9.50	-6.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	328.6	680.72	8.40	-6.30	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	328.4	680.73	7.90	-6.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	327.4	680.76	8.00	-5.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	326	680.80	9.50	-6.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	324.9	680.83	7.50	-6.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	324	680.86	7.50	-6.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	323.6	680.87	5.30	-11.40	McKirdy et al. 2001
Enorama Creek	Etina Formation	322.8	680.90	7.10	-6.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	321.8	680.92	7.00	-6.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	320.7	680.96	8.30	-5.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	319.7	680.99	9.20	-6.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	318.7	681.02	5.60	-6.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	317.7	681.05	7.30	-7.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	316.5	681.08	9.00	-6.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	315.7	681.11	8.10	-6.30	Swanson-Hysell et al. 2010
Pope's Paddock	Etina Formation	314.6	677.40	7.80	-12.30	McKirdy et al. 2001
Enorama Creek	Etina Formation	314.2	681.15	8.20	-5.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	312.8	681.19	9.00	-6.70	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	312	681.21	8.60	-6.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	310.9	681.25	9.50	-7.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	309.9	681.28	8.70	-6.30	Swanson-Hysell et al. 2010
First Spring	Etina Formation	308.6	681.32	3.30	-11.80	McKirdy et al. 2001
Enorama Creek	Etina Formation	307.4	681.35	8.80	-6.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	306.1	681.39	9.30	-7.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	305.1	681.42	9.00	-6.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	303.9	681.45	9.30	-7.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	302.7	681.49	9.20	-6.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	301.8	681.52	8.80	-6.70	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	300.9	681.54	9.00	-6.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	299.6	681.58	7.80	-4.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	294.5	681.73	8.60	-6.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	293.6	681.76	8.80	-6.20	Swanson-Hysell et al. 2010
Pope's Paddock	Etina Formation	292.6	678.05	5.70	-11.6	McKirdy et al. 2001
Enorama Creek	Etina Formation	292.3	681.80	7.60	-5.10	Swanson-Hysell et al. 2010
Location	Formation	Depth	Height	Temperature	Other Information	
---------------------------	----------------	--------	--------	-------------	-------------------	
Enorama Creek	Etina Formation	291.2	681.83	8.30	-5.10	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	290.2	681.86	8.10	-5.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	289.1	681.89	9.00	-4.70	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	288.1	681.92	9.00	-4.70	Swanson-Hysell et al. 2010
First Spring	Etina Formation	287.6	681.94	6.80	-10.3	McKirdy et al. 2001
Enorama Creek	Etina Formation	287.1	681.95	8.40	-4.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	286.3	681.98	8.90	-4.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	285.1	682.01	8.30	-5.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	284.3	682.03	4.50	-6.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	283.3	682.06	9.00	-3.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	282.3	682.09	8.60	-3.70	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	281.2	682.13	8.90	-4.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	280.0	682.16	8.10	-5.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	278.7	682.20	8.90	-4.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	277.5	682.24	8.30	-4.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	276.3	682.27	8.90	-3.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	275.3	682.30	5.60	-5.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	274.0	682.34	6.10	-5.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	272.6	682.38	8.20	-6.70	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	271.2	682.42	8.60	-6.40	Swanson-Hysell et al. 2010
First Spring	Etina Formation	270.6	682.44	3.60	-9.50	McKirdy et al. 2001
Enorama Creek	Etina Formation	269.5	682.47	8.20	-6.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	268.5	682.50	7.00	-7.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	267.7	682.53	8.20	-7.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	266.4	682.56	0.40	-9.20	Swanson-Hysell et al. 2010
Mt Emily	Etina Formation	264.6	682.62	8.10	-12.60	McKirdy et al. 2001
Enorama Creek	Etina Formation	261.8	682.70	5.40	-10.70	Swanson-Hysell et al. 2010
First Spring	Etina Formation	221.6	683.89	9.10	-8.80	McKirdy et al. 2001
Enorama Creek	Etina Formation	207.4	684.31	3.50	-5.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	203.7	684.42	8.30	-9.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	203.2	684.44	7.90	-9.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	201.2	684.49	8.00	-9.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	200.2	684.52	0.20	-7.30	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	199.9	684.53	6.60	-8.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	198.8	684.57	8.50	-6.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	197.8	684.60	8.60	-7.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	196.6	684.63	8.30	-8.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	195.8	684.65	8.40	-8.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	195.0	684.68	7.50	-7.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	193.4	684.73	7.80	-5.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	192.0	684.77	9.00	-5.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	190.9	684.80	9.00	-4.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	189.9	684.83	9.00	-4.70	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	189.4	684.84	8.90	-5.60	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	188.4	684.87	9.10	-5.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	187.3	684.91	9.10	-3.30	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	186.4	684.93	8.40	-7.20	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	185.4	684.96	8.20	-6.90	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	184.4	684.99	8.20	-5.50	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	183.7	685.01	8.70	-4.80	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	182.7	685.04	9.40	-4.40	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	181.7	685.07	9.50	-5.00	Swanson-Hysell et al. 2010
Enorama Creek	Etina Formation	Depth (m)	Age (Ma)	Error (Ma)	Reference	
--------------	----------------	----------	----------	-----------	-----------	
180.8	685.10	9.50	-4.10	Swanson-Hysell et al. 2010		
179.8	685.13	9.60	-3.80	Swanson-Hysell et al. 2010		
178.6	685.16	9.60	-4.20	Swanson-Hysell et al. 2010		
177.5	685.20	9.50	-4.20	Swanson-Hysell et al. 2010		
176.5	685.23	9.00	-4.50	Swanson-Hysell et al. 2010		
175.5	685.26	9.40	-4.40	Swanson-Hysell et al. 2010		
174.5	685.28	9.20	-6.20	Swanson-Hysell et al. 2010		
173.2	685.32	9.30	-6.70	Swanson-Hysell et al. 2010		
172.2	685.35	9.30	-6.20	Swanson-Hysell et al. 2010		
171.0	685.39	9.20	-6.60	Swanson-Hysell et al. 2010		
169.8	685.42	8.70	-6.70	Swanson-Hysell et al. 2010		
168.8	685.45	9.40	-5.60	Swanson-Hysell et al. 2010		
167.4	685.49	9.60	-4.90	Swanson-Hysell et al. 2010		
166.1	685.53	9.50	-4.90	Swanson-Hysell et al. 2010		
165.7	685.55	9.50	-4.60	Swanson-Hysell et al. 2010		
163.6	685.61	9.50	-4.30	Swanson-Hysell et al. 2010		
163.5	685.61	9.70	-4.30	Swanson-Hysell et al. 2010		
164.3	685.64	9.60	-4.10	Swanson-Hysell et al. 2010		
161.4	685.67	9.70	-4.00	Swanson-Hysell et al. 2010		
160.0	685.71	9.80	-4.90	Swanson-Hysell et al. 2010		
158.7	685.75	9.90	-4.50	Swanson-Hysell et al. 2010		
157.6	685.79	8.70	-6.00	Swanson-Hysell et al. 2010		
156.6	685.81	8.10	-6.10	Swanson-Hysell et al. 2010		
155.5	685.85	7.90	-6.80	Swanson-Hysell et al. 2010		
154.6	685.87	9.20	-9.40	Swanson-Hysell et al. 2010		
153.4	685.91	8.90	-9.20	Swanson-Hysell et al. 2010		
152.4	685.94	8.80	-10.20	Swanson-Hysell et al. 2010		
151.5	685.97	8.60	-10.40	Swanson-Hysell et al. 2010		
149.5	686.02	8.60	-10.40	Swanson-Hysell et al. 2010		
147.1	686.10	8.30	-10.30	Swanson-Hysell et al. 2010		
146.3	686.12	9.60	-10.40	Swanson-Hysell et al. 2010		
145.1	686.16	9.90	-9.10	Swanson-Hysell et al. 2010		
143.9	686.19	9.70	-8.20	Swanson-Hysell et al. 2010		
142.7	686.23	9.80	-6.60	Swanson-Hysell et al. 2010		
141.3	686.27	9.40	-8.40	Swanson-Hysell et al. 2010		
140.0	686.31	9.80	-8.30	Swanson-Hysell et al. 2010		
138.8	686.34	6.00	-9.70	Swanson-Hysell et al. 2010		
131.2	686.57	7.30	-11.00	Swanson-Hysell et al. 2010		
130.8	686.58	7.80	-10.80	Swanson-Hysell et al. 2010		
116.4	687.00	5.80	-11.00	Swanson-Hysell et al. 2010		
115.2	687.04	7.30	-11.10	Swanson-Hysell et al. 2010		
114.3	687.07	5.50	-10.70	Swanson-Hysell et al. 2010		
112.3	687.13	6.90	-9.00	Swanson-Hysell et al. 2010		
111.4	687.15	6.20	-10.60	Swanson-Hysell et al. 2010		
109.7	687.20	5.90	-8.00	Swanson-Hysell et al. 2010		
108.7	687.23	6.70	-11.60	Swanson-Hysell et al. 2010		
107.7	687.26	6.30	-10.30	Swanson-Hysell et al. 2010		
106.0	687.31	6.80	-10.90	Swanson-Hysell et al. 2010		
105.0	687.34	8.20	-10.60	Swanson-Hysell et al. 2010		
103.9	687.37	8.50	-10.60	Swanson-Hysell et al. 2010		
103.6	687.38	5.90	-14.10	McKirdy et al. 2001		
102.2	687.42	8.50	-10.60	Swanson-Hysell et al. 2010		
Location	Formation	Level (m)	Ma	δ^{13}C$_{\text{carb}}$ ‰	δ^{18}O$_{\text{carb}}$ ‰	Reference
--------------------------	--------------------	-----------	-----	---------------------------------	---------------------------------	-----------------------------
Parachilna Gorge	Woodendina Dolomite	5716.0	516.72	-3.48	-5.70	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5712.0	516.84	-3.35	-7.10	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5684.0	517.68	-1.62	-6.00	Tucker 1991

Note: Levels are in combined section of Mawson (1939a, 1939b). New analyses are by Jim Palandri of University of Oregon laboratory of Ilya Bindeman. All analyses are to the Vienna Peedee Belemnite standard NGS 19. Errors (2σ) are from 10 replicate analyses of the sample.

Table S6. Stable isotopic analyses (%) of palaeokarst carbonate, Flinders Ranges.
Location	Formation	Depth (m)	Age (Ma)	Reference	
Parachilna Gorge	Woodendina Dolomite	5678.0	517.85	-2.72	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5671.0	518.06	-3.79	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5664.0	518.27	-5.05	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5657.0	518.48	-5.88	Tucker 1991
Fountain Spring	Woodendina Dolomite	5653.0	519.19	-1.12	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5633.0	519.37	-3.08	Tucker 1991
Fountain Spring	Woodendina Dolomite	5627.0	519.49	-1.37	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5623.0	519.69	-4.72	Tucker 1991
Fountain Spring	Woodendina Dolomite	5613.0	519.78	-1.72	Tucker 1991
Fountain Spring	Woodendina Dolomite	5604.0	520.05	-2.08	Tucker 1991
Fountain Spring	Woodendina Dolomite	5603.0	520.08	-3.07	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5599.0	520.26	-3.33	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5596.0	520.29	-4.21	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5594.0	520.35	-3.97	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5591.0	520.44	-3.98	Tucker 1991
Wirrealpa Hill	Wilkawilla Limestone	5583.0	520.67	-2.44	Singh 1986
Wirrealpa Hill	Wilkawilla Limestone	5583.0	520.67	-5.05	Singh 1986
Wirrealpa Hill	Wilkawilla Limestone	5583.0	520.67	-4.14	Singh 1986
Wirrealpa Hill	Wilkawilla Limestone	5583.0	520.67	-3.82	Singh 1986
Wirrealpa Hill	Wilkawilla Limestone	5583.0	520.67	-2.36	Singh 1986
Wirrealpa Hill	Wilkawilla Limestone	5583.0	520.67	-7.35	Singh 1986
Parachilna Gorge	Woodendina Dolomite	5582.0	520.70	-4.22	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5580.0	520.76	-4.98	Tucker 1991
Parachilna Gorge	Woodendina Dolomite	5560.0	521.36	-4.81	Tucker 1991
Parachilna Gorge	Parachilna Formation	5556.0	521.48	-4.76	Tucker 1991
Parachilna Gorge	Parachilna Formation	5545.0	521.80	-3.16	Tucker 1991
Parachilna Gorge	Parachilna Formation	5541.0	521.92	-1.47	Tucker 1991
Parachilna Gorge	Parachilna Formation	5530.0	522.25	-2.85	Tucker 1991
Parachilna Gorge	Parachilna Formation	5526.0	522.37	-2.01	Tucker 1991
First Hill	Wonoka Formation	4162.7	562.86	-3.04	Calver 2000
First Hill	Wonoka Formation	4144.2	563.41	-4.18	Calver 2000
North Mt Goddard	Wonoka Formation	4133.1	563.74	-4.81	Urlwin 1992
First Hill	Wonoka Formation	4123.8	564.01	-4.68	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-6.74	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.18	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.33	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.32	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-1.99	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.52	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.05	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-6.77	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.85	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.43	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-8.18	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-7.85	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-6.80	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-9.00	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-6.74	Calver 2000
Umberatana	Wonoka palaeocanyon	4116.0	564.24	-4.40	Eickoff et al. 1988

The table lists various geological formations and their depths and ages, along with references to the original works.
Location	Formation	Longitude	Latitude	Elevation	Reference			
Umberatana	Wonoka palaeocanyon	41.16	56.24	-2.10	Eickoff et al. 1988			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.76	Ayliffe 1992			
Richmond Valley	Wonoka palaeocanyon	41.16	56.24	-7.45	Ayliffe 1992			
Waukarie Creek	Wonoka palaeocanyon	41.16	56.24	-7.89	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-9.90	Ayliffe 1992			
Richmond Valley	Wonoka palaeocanyon	41.16	56.24	-7.37	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.36	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.48	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.53	Ayliffe 1992			
Waukarie Creek	Wonoka palaeocanyon	41.16	56.24	-7.77	Ayliffe 1992			
Bunyeroo Gorge	Wonoka palaeocanyon	41.16	56.24	-8.09	Ayliffe 1992			
Richmond Valley	Wonoka palaeocanyon	41.16	56.24	-7.55	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-8.03	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.64	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.92	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-8.02	Ayliffe 1992			
Richmond Valley	Wonoka palaeocanyon	41.16	56.24	-7.98	Ayliffe 1992			
Waukarie Creek	Wonoka palaeocanyon	41.16	56.24	-8.41	Ayliffe 1992			
Pichi Richi Pass	Wonoka palaeocanyon	41.16	56.24	-7.80	Ayliffe 1992			
North Mt Goddard	Wonoka Formation	40.83	56.22	-5.16	Urlwin 1992			
Bunyeroo Gorge	Wonoka Formation	40.66	56.72	-4.00	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	40.60	56.90	-5.25	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	40.44	56.38	-6.03	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	40.33	56.69	-5.74	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	40.20	56.09	-6.27	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	40.06	56.48	-6.87	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	39.99	56.70	-6.36	Calver 2000			
North Mt Goddard	Wonoka Formation	39.96	56.75	-6.04	Urlwin 1992			
Bunyeroo Gorge	Wonoka Formation	39.87	56.06	-6.82	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	39.80	56.28	-6.77	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	39.78	56.33	-7.08	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	39.53	56.07	-7.36	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	39.52	56.09	-7.74	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	39.27	56.86	-6.51	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	39.20	57.04	-7.77	Calver 2000			
Black Range Springs	Wonoka Formation	39.20	57.06	-4.91	Urlwin 1992			
North Mt Goddard	Wonoka Formation	39.18	57.12	-6.43	Urlwin 1992			
Bunyeroo Gorge	Wonoka Formation	39.03	57.57	-7.45	Calver 2000			
Black Range Springs	Wonoka Formation	39.01	57.63	-6.30	Urlwin 1992			
Bunyeroo Gorge	Wonoka Formation	39.00	57.65	-7.62	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	38.85	57.09	-7.67	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	38.73	57.44	-8.62	Jansyn 1990			
Black Range Springs	Wonoka Formation	38.69	57.58	-6.14	Urlwin 1992			
Bunyeroo Gorge	Wonoka Formation	38.53	57.04	-7.72	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	38.47	57.23	-7.79	Jansyn 1990			
North Mt Goddard	Wonoka Formation	38.28	57.80	-7.54	Urlwin 1992			
Devils Peak	Wonoka Formation	38.21	57.30	-1.82	Ayliffe 1992			
Devils Peak	Wonoka Formation	38.21	57.00	-0.89	Ayliffe 1992			
Bunyeroo Gorge	Wonoka Formation	38.20	57.02	-7.41	Jansyn 1990			
Bunyeroo Gorge	Wonoka Formation	38.14	57.20	-7.45	Calver 2000			
Bunyeroo Gorge	Wonoka Formation	37.97	57.70	-7.49	Calver 2000			
Location	Formation	X	Y	Z	W	Year	Author	
---------------------------	-------------------	-----	-----	------	------	------	----------	
Bunyeroo Gorge	Wonoka Formation	3794.0	573.81	-7.64	-12.48	Jansyn 1990		
Devils Peak	Wonoka Formation	3784.2	574.10	-1.17	-12.13	Ayliffe 1992		
Bunyeroo Gorge	Wonoka Formation	3767.4	574.60	-7.62	-12.71	Calver 2000		
Devils Peak	Wonoka Formation	3759.1	574.85	-2.49	-11.56	Ayliffe 1992		
Devils Peak	Wonoka Formation	3759.1	574.85	-2.50	-11.39	Ayliffe 1992		
Black Range Springs	Wonoka Formation	3753.1	575.02	-6.94	-14.15	Uilwin 1992		
Bunyeroo Gorge	Wonoka Formation	3740.8	575.39	-7.56	-12.79	Jansyn 1990		
Bunyeroo Gorge	Wonoka Formation	3738.6	575.45	-7.51	-13.12	Calver 2000		
Devils Peak	Wonoka Formation	3717.1	576.09	-0.81	-7.51	Ayliffe 1992		
Devils Peak	Wonoka Formation	3717.1	576.09	-1.37	-10.45	Ayliffe 1992		
Bunyeroo Gorge	Wonoka Formation	3714.2	576.18	-7.42	-12.84	Jansyn 1990		
Bunyeroo Gorge	Wonoka Formation	3708.8	576.34	-8.00	-13.19	Calver 2000		
Devils Peak	Wonoka Formation	3702.6	576.52	-1.12	-12.56	Ayliffe 1992		
Bunyeroo Gorge	Wonoka Formation	3696.4	576.71	-7.59	-12.89	Jansyn 1990		
Bunyeroo Gorge	Wonoka Formation	3687.5	576.97	-7.66	-12.64	Jansyn 1990		
Bunyeroo Gorge	Wonoka Formation	3686.7	577.00	-8.10	-13.70	Calver 2000		
Bunyeroo Gorge	Wonoka Formation	3686.7	577.00	-8.00	-13.53	Calver 2000		
Bunyeroo Gorge	Wonoka Formation	3686.7	577.00	-7.98	-13.54	Calver 2000		
Bunyeroo Gorge	Wonoka Formation	3675.1	577.34	-8.26	-13.89	Calver 2000		
First Hill	Wonoka Formation	3663.7	577.68	-7.71	-13.24	Calver 2000		
Bunyeroo Gorge	Wonoka Formation	3660.9	577.76	-7.52	-12.89	Jansyn 1990		
Bunyeroo Gorge	Wonoka Formation	3660.0	577.79	-8.52	-13.89	Calver 2000		
Black Range Springs	Wonoka Formation	3655.1	577.93	-6.30	-14.20	Uilwin 1992		
Devils Peak	Wonoka Formation	3655.1	577.93	-3.91	-10.89	Ayliffe 1992		
Bunyeroo Gorge	Wonoka Formation	3636.1	578.50	-9.13	-14.21	Calver 2000		
Bunyeroo Gorge	Wonoka Formation	3634.3	578.55	-7.92	-13.97	Jansyn 1990		
Devils Peak	Wonoka Formation	3631.1	578.65	-3.87	-12.02	Ayliffe 1992		
First Hill	Wonoka Formation	3625.6	578.81	-7.95	-12.88	Calver 2000		
Bunyeroo Gorge	Wonoka Formation	3625.5	578.81	-9.47	-14.52	Calver 2000		
Devils Peak	Wonoka Formation	3615.1	579.12	-4.19	-11.02	Ayliffe 1992		
Mayo Hut	Wonoka Formation	3613.1	579.18	-2.16	-6.69	Dixon 1999		
Mayo Hut	Wonoka Formation	3613.1	579.18	-7.27	-10.86	Dixon 1999		
Mayo Hut	Wonoka Formation	3613.1	579.18	-2.60	-7.07	Dixon 1999		
Bunyeroo Gorge	Wonoka Formation	3613.0	579.18	-10.07	-14.62	Calver 2000		
Devils Peak	Wonoka Formation	3600.5	579.56	-5.80	-12.73	Ayliffe 1992		
Bunyeroo Gorge	Wonoka Formation	3598.8	579.60	-11.19	-14.98	Calver 2000		
Black Range Springs	Wonoka Formation	3583.1	580.07	-7.55	-14.89	Uilwin 1992		
First Hill	Wonoka Formation	3571.8	580.41	-8.85	-13.83	Calver 2000		
Mayo Hut	Wonoka Formation	3564.1	580.64	-1.46	-7.44	Dixon 1999		
Mayo Hut	Wonoka Formation	3564.1	580.64	-7.73	-6.62	Dixon 1999		
Mayo Hut	Wonoka Formation	3564.1	580.64	-2.01	-7.56	Dixon 1999		
Devils Peak	Wonoka Formation	3560.9	580.73	-7.45	-14.11	Ayliffe 1992		
SCYW1a core	Wonoka Formation	3551.4	581.01	-1.93	-7.93	Calver 2000		
SCYW1a core	Wonoka Formation	3551.4	581.01	-1.95	-7.60	Calver 2000		
First Hill	Wonoka Formation	3529.2	581.67	-10.46	-14.25	Calver 2000		
Mayo Hut	Wonoka Formation	3529.2	581.67	-9.77	-13.35	Calver 2000		
Mayo Hut	Wonoka Formation	3526.1	581.77	-3.88	-8.88	Dixon 1999		
Mayo Hut	Wonoka Formation	3526.1	581.77	-6.74	-13.56	Dixon 1999		
Mayo Hut	Wonoka Formation	3526.1	581.77	-4.00	-9.17	Dixon 1999		
Bunyeroo Gorge	Wonoka Formation	3519.5	581.96	-3.46	-7.90	Calver 2000		
Pichi Richi Pass	Wonoka Formation	3518.1	582.00	-3.41	-8.27	Dixon 1999		
Location	Formation	Depth (m)	Age (Ma)	Error (Ma)	Reference			
-----------------------	--------------------	-----------	----------	------------	------------			
Pichi Richi Pass	Wonoka Formation	3518.1	582.00	-6.76	Dixon 1999			
Pamatta Pass	Wonoka Formation	3513.1	582.15	-9.86	Higgins 1997			
Pamatta Pass	Wonoka Formation	3513.1	582.15	-7.46	Higgins 1997			
Pamatta Pass	Wonoka Formation	3513.1	582.15	-7.45	Higgins 1997			
Pamatta Pass	Wonoka Formation	3513.1	582.15	-8.05	Higgins 1997			
Pamatta Pass	Wonoka Formation	3513.1	582.15	-8.31	Higgins 1997			
Pamatta Pass	Wonoka Formation	3513.1	582.15	-7.66	Higgins 1997			
First Hill	Wonoka Formation	3511.5	582.20	-10.93	Calver 2000			
First Hill	Wonoka Formation	3511.5	582.20	-11.33	Calver 2000			
Devils Peak	Wonoka Formation	3508.2	582.30	-7.35	Ayliffe 1992			
Mayo Hut	Wonoka Formation	3466.1	583.55	-6.00	Dixon 1999			
First Hill	Wonoka Formation	3453.2	583.93	-2.90	Calver 2000			
Bunyeroo Gorge	Bunyeroo Formation	3430.3	584.61	-2.43	Jansyn 1990			
BWM1a-1 core	Nuccaleena Formation	1887.1	630.44	-2.85	Calver 2000			
BWM1a-1 core	Nuccaleena Formation	1887.0	630.45	-2.51	Calver 2000			
SCYW1a core	Nuccaleena Formation	1882.7	630.57	-3.06	Calver 2000			
SCYW1a core	Nuccaleena Formation	1882.7	630.57	-3.06	Calver 2000			
Umberatana	Nuccaleena Formation	1882.2	630.59	-3.75	Calver 2000			
Parachilna Gorge	Nuccaleena Formation	1882.0	630.59	-2.02	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1880.7	630.63	-1.99	Smith 2001			
BWM1a-1 core	Nuccaleena Formation	1879.5	630.67	-1.92	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1879.0	630.68	-2.19	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1879.0	630.68	-2.38	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1878.6	630.70	-1.83	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1878.2	630.71	-1.98	Smith 2001			
Enorama Creek GSSP	Nuccaleena Formation	1877.4	630.73	-3.30	Knoll et al. 2006			
Enorama Creek GSSP	Nuccaleena Formation	1877.4	630.73	-3.50	Knoll et al. 2006			
Parachilna Gorge	Nuccaleena Formation	1877.3	630.73	-2.12	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1876.8	630.75	-1.83	Smith 2001			
Umberatana	Nuccaleena Formation	1876.2	630.77	-2.59	Calver 2000			
Parachilna Gorge	Nuccaleena Formation	1876.0	630.77	-1.48	Smith 2001			
Enorama Creek GSSP	Nuccaleena Formation	1875.5	630.79	-2.80	Knoll et al. 2006			
BWM1a-1 core	Nuccaleena Formation	1875.4	630.79	-1.43	Calver 2000			
Enorama Creek GSSP	Nuccaleena Formation	1875.0	630.80	-2.70	Knoll et al. 2006			
Enorama Creek GSSP	Nuccaleena Formation	1874.9	630.81	-2.60	Knoll et al. 2006			
Parachilna Gorge	Nuccaleena Formation	1874.4	630.82	-1.65	Smith 2001			
Enorama Creek GSSP	Nuccaleena Formation	1874.0	630.83	-2.60	Knoll et al. 2006			
Parachilna Gorge	Nuccaleena Formation	1873.7	630.84	-1.58	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1873.5	630.85	-1.54	Smith 2001			
Parachilna Gorge	Nuccaleena Formation	1873.5	630.85	-1.31	Smith 2001			
Enorama Creek GSSP	Nuccaleena Formation	1873.3	630.85	-2.60	Knoll et al. 2006			
Parachilna Gorge	Nuccaleena Formation	1873.2	630.86	-1.06	Smith 2001			
Enorama Creek GSSP	Nuccaleena Formation	1873.1	630.86	-2.40	Knoll et al. 2006			
Parachilna Gorge	Nuccaleena Formation	1872.5	630.88	-1.65	White 2001			
Enorama Creek GSSP	Nuccaleena Formation	1872.3	630.88	-2.50	Knoll et al. 2006			
Parachilna Gorge	Nuccaleena Formation	1872.3	630.88	-1.74	Smith 2001			
Umberatana	Nuccaleena Formation	1872.2	630.89	-2.24	Calver 2000			
BWM1a-1 core	Nuccaleena Formation	1871.7	630.90	-1.27	Calver 2000			
Parachilna Gorge	Nuccaleena Formation	1871.4	630.91	-1.45	Smith 2001			
Location	Formation	Depth (m)	Thickness (m)	Juxtaposition	Author(s)			
----------------------	----------------	------------	---------------	---------------	--------------------------			
Parachilna Gorge	Nuccaleena	1871.2	-2.20	n/a	Knoll et al. 2006			
UB17 core	Nuccaleena	1870.4	-1.28	-8.18	Calver 2000			
UB17 core	Nuccaleena	1862.9	-2.78	-8.62	Calver 2000			
Bunyeroo Gorge	Nuccaleena	1862.3	-3.49	-8.24	Calver 2000			
Bunyeroo Gorge	Nuccaleena	1861.2	-3.07	-8.28	Calver 2000			
Bunyeroo Gorge	Nuccaleena	1859.7	-2.76	-7.76	Calver 2000			
Bunyeroo Gorge	Nuccaleena	1857.0	-2.44	-8.37	Calver 2000			
Bunyeroo Gorge	Nuccaleena	1856.1	-2.25	-8.23	Calver 2000			
Bunyeroo Gorge	Nuccaleena	1855.2	-1.97	-7.84	Calver 2000			
Bulls Gap	Trezona	1846.0	-2.70	-11.03	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1846.0	-2.81	-11.26	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1846.0	-2.90	-13.89	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1846.0	-4.01	-10.81	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1814.0	-3.89	-10.67	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1814.0	-3.52	-11.10	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1814.0	-3.12	-8.50	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1814.0	-3.96	-14.74	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1814.0	-3.84	-9.85	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1814.0	-3.00	-13.25	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1757.0	5.00	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1752.0	-6.45	-12.64	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1728.6	-3.50	-12.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1728.4	-3.40	-12.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1727.4	-3.40	-12.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1726.4	-3.80	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1725.9	-3.60	-11.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1725.4	-3.40	-11.00	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1724.3	-3.30	-10.90	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1723.8	-3.30	-10.90	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1723.5	-3.30	-10.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1723.2	-3.30	-10.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1722.2	-3.20	-10.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1721.4	-3.40	-10.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1720.6	-3.50	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1719.7	-3.10	-10.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1718.7	-2.90	-10.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1718.0	-3.50	-10.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1716.6	-3.30	-10.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1715.4	-3.10	-10.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1714.5	-3.30	-10.00	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1713.7	-3.10	-10.40	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1712.6	-3.40	-10.40	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1712.0	-4.30	-10.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1711.0	-3.70	-10.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1709.9	-3.60	-10.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1708.9	-3.60	-10.40	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1707.9	-3.40	-9.30	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1706.9	-3.90	-9.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona	1706.0	-7.30	-11.02	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona	1706.0	-7.11	-12.01	Singh 1986; McKirdy et al. 2001			
Location	Formation	Depth (m)	Latitude	Longitude	Reference			
------------------	--------------------	-----------	----------	-----------	---			
Enorama Creek	Trezona Formation	1706.0	635.82	-7.23	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona Formation	1706.0	635.82	-7.35	Singh 1986; McKirdy et al. 2001			
Werta	Trezona Formation	1706.0	635.82	-7.84	Singh 1986; McKirdy et al. 2001			
Enorama Creek	Trezona Formation	1705.9	635.82	-3.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1704.9	635.85	-3.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1704.2	635.88	-3.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1703.0	635.91	-3.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1702.0	635.94	-3.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1701.0	635.97	-3.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1699.3	636.02	-3.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1698.1	636.06	-3.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1696.7	636.10	-3.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1695.5	636.13	-3.90	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1694.5	636.16	-4.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1693.5	636.19	-4.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1692.2	636.23	-4.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1691.5	636.25	-4.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1691.0	636.27	-4.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1690.3	636.29	-4.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1689.1	636.32	-4.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1688.1	636.35	-4.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1686.3	636.41	-4.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1685.8	636.42	-4.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1685.1	636.44	-4.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1683.9	636.48	-4.90	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1681.9	636.54	-4.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1681.7	636.54	-4.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1681.4	636.55	-5.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1680.5	636.58	-4.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1679.5	636.61	-4.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1678.1	636.65	-4.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1676.8	636.69	-4.90	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1674.9	636.75	-5.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1673.9	636.75	-5.30	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1673.1	636.80	-5.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1672.1	636.83	-4.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1671.2	636.86	-5.30	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1670.5	636.88	-4.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1669.8	636.90	-4.80	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1669.1	636.92	-5.00	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1668.1	636.95	-4.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1666.6	636.99	-3.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1665.5	637.02	-3.40	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1664.5	637.05	-3.40	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1663.7	637.08	-5.10	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1663.6	637.08	-6.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1662.1	637.13	-5.60	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1661.1	637.16	-5.70	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1660.1	637.19	-5.20	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1658.9	637.22	-5.50	Swanson-Hysell et al. 2010			
Enorama Creek	Trezona Formation	1658.7	637.23	-5.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1657.8	637.25	-5.50	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1656.7	637.29	-5.40	-8.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1655.8	637.31	-5.50	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1654.6	637.35	-5.50	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1654.1	637.36	-5.50	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1653.8	637.37	-5.90	-9.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1652.1	637.42	-5.70	-8.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1651.1	637.45	-5.70	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1650.3	637.48	-5.90	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1650.0	637.49	-5.90	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1649.5	637.50	-5.80	-9.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1648.7	637.52	-5.60	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1647.6	637.56	-5.50	-9.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1646.7	637.58	-5.70	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1645.4	637.62	-5.90	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1644.0	637.66	-6.10	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1643.3	637.68	-6.10	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1642.3	637.71	-6.20	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1641.6	637.73	-6.20	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1640.6	637.76	-5.80	-8.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1639.4	637.80	-5.90	-8.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1638.2	637.84	-5.70	-8.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1638.0	637.84	-5.90	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1637.6	637.85	-5.90	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1636.0	637.90	-5.80	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1634.8	637.94	-6.00	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1633.5	637.98	-6.00	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1632.4	638.01	-6.20	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1632.3	638.01	-6.00	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1632.1	638.02	-6.30	-9.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1631.1	638.05	-6.10	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1630.1	638.08	-6.10	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1629.4	638.10	-6.10	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1628.4	638.13	-6.40	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1627.5	638.15	-6.40	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1626.8	638.17	-6.40	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1625.4	638.22	-6.90	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1624.6	638.24	-6.30	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1624.3	638.25	-6.40	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1623.4	638.28	-6.50	-9.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1622.7	638.30	-6.50	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1619.9	638.38	-6.20	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1619.3	638.40	-6.40	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1618.0	638.44	-6.70	-9.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1617.5	638.45	-6.60	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1616.9	638.47	-6.60	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1615.5	638.51	-6.70	-9.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1614.7	638.53	-6.70	-9.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1614.2	638.55	-6.80	-9.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1613.7	638.56	-6.80	-9.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1613.4	638.57	-7.30	-9.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1612.7	638.59	-7.40	-7.60	Swanson-Hysell et al. 2010			
Formation	Depth	Age	-Dw	-Sw	Author			
------------------	--------	-------	-----	------	----------------------------			
Enorama Creek Trezona Formation	1612.0	638.61	-7.30	-8.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1610.8	638.65	-7.40	-8.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1609.2	638.70	-7.70	-8.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1607.2	638.76	-7.90	-8.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1605.3	638.81	-8.60	-10.00	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1599.7	638.98	-9.00	-11.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1596.6	639.07	-9.20	-11.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1595.6	639.10	-9.40	-11.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1595.1	639.12	-9.60	-11.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1594.0	639.15	-9.80	-11.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1593.8	639.15	-10.00	-11.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1593.0	639.18	-10.20	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1592.2	639.20	-10.40	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1591.2	639.23	-10.60	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1590.1	639.26	-10.80	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1589.5	639.28	-11.00	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1588.6	639.31	-11.20	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1587.8	639.33	-11.40	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1586.8	639.36	-11.60	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1586.0	639.39	-11.80	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1585.6	639.40	-12.00	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1584.8	639.42	-12.20	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1584.0	639.45	-12.40	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1583.6	639.46	-12.60	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1582.8	639.48	-12.80	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1581.8	639.51	-13.00	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1580.1	639.53	-13.20	-11.70	Swanson-Hysell et al. 2010			
Brachina Road Trezona Formation	1579.4	639.58	-13.40	-11.70	Swanson-Hysell et al. 2010			
Bulls Gap Trezona Formation	1577.0	639.65	-13.60	-11.70	Swanson-Hysell et al. 2010			
Bulls Gap Trezona Formation	1576.0	639.68	-13.80	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1575.4	639.70	-14.00	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1575.0	639.71	-14.20	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1574.8	639.72	-14.40	-11.70	Swanson-Hysell et al. 2010			
Bulls Gap Trezona Formation	1574.0	639.74	-14.60	-11.70	Swanson-Hysell et al. 2010			
Bulls Gap Trezona Formation	1573.0	639.77	-14.80	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1566.0	639.88	-15.00	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1565.3	640.00	-15.20	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1564.4	640.03	-15.40	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1563.5	640.05	-15.60	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1560.8	640.13	-15.80	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1558.4	640.21	-16.00	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1557.7	640.23	-16.20	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1557.1	640.24	-16.40	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1556.2	640.27	-16.60	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1555.2	640.30	-16.80	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1554.0	640.34	-8.60	-11.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1551.6	640.41	-8.70	-11.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1550.7	640.43	-8.70	-11.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1548.5	640.50	-8.60	-11.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1546.4	640.56	-8.90	-11.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1544.3	640.62	-8.30	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1539.6	640.76	-9.40	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1539.3	640.77	-8.90	-12.00	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1538.5	640.80	-8.80	-11.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1538.2	640.81	-8.90	-10.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1537.5	640.83	-8.30	-11.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1534.9	640.92	-8.50	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1534.0	640.93	-8.30	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1533.5	640.95	-8.20	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1532.3	640.98	-8.10	-11.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1531.5	641.00	-8.50	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1530.3	641.04	-8.30	-12.00	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1529.9	641.05	-8.70	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1528.9	641.08	-8.10	-11.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1525.6	641.18	-8.80	-11.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1524.9	641.20	-8.50	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1524.1	641.22	-8.60	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1521.9	641.29	-9.50	-11.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1520.8	641.32	-8.80	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1520.4	641.33	-9.70	-12.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1518.7	641.38	-8.60	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1516.4	641.45	-9.00	-11.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1514.7	641.50	-8.30	-12.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1513.3	641.54	-8.80	-12.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1513.2	641.55	-8.80	-11.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1513.2	641.55	-8.30	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1512.9	641.56	-8.60	-12.20	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1511.8	641.59	-8.40	-11.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1505.3	641.78	-8.80	-12.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1504.7	641.80	-8.70	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1503.5	641.84	-8.50	-12.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1495.3	642.08	-9.50	-12.10	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1493.4	642.14	-8.70	-12.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1493.1	642.14	-8.60	-11.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1491.8	642.18	-8.10	-12.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1491.5	642.19	-8.20	-12.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1491.1	642.20	-8.20	-12.60	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1484.4	642.40	-8.60	-12.40	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1482.0	642.47	-8.60	-12.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1474.1	642.71	-8.60	-12.90	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1473.2	642.74	-8.40	-12.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1472.5	642.76	-8.50	-12.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1471.9	642.77	-8.60	-12.30	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1471.9	642.77	-8.50	-12.80	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1470.9	642.80	-8.70	-11.70	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1469.3	642.85	-8.80	-12.50	Swanson-Hysell et al. 2010			
Enorama Creek Trezona Formation	1457.5	643.20	-8.60	-12.60	Swanson-Hysell et al. 2010			
Location	Formation	Pedotype	R# rock	Level (m)	Ma	δ¹³C_carb ‰	δ¹⁸O_carb ‰	author
---------------------	-----------	----------	---------	-----------	--------	------------	------------	---------------
Ten Mile Creek	Pantapinna	Warru	R3347	8062.2	503	-3.88	-6.45	Retallack 2008
Ten Mile Creek	Pantapinna	Warru	R3347	8062.2	503	-2.88	-5.51	Retallack 2008
Ten Mile Creek	Balcoracana	Warru	R3341	7673.0	508	-5.05	-5.40	Retallack 2008
Ten Mile Creek	Balcoracana	Warru	R3341	7673.0	508	-4.95	-5.29	Retallack 2008
Ten Mile Creek	Moodlatana	Natala	R3555	7662.8	508	-10.15	-6.42	Retallack 2008
Ten Mile Creek	Moodlatana	Natala	R3555	7662.8	508	-10.00	-6.47	Retallack 2008
Ten Mile Creek	Moodlatana	Viparri	R3556	7662.2	508	-7.21	-6.71	Retallack 2008
Ten Mile Creek	Moodlatana	Viparri	R3556	7662.2	508	-7.11	-6.64	Retallack 2008
Ten Mile Creek	Moodlatana	Warru	R3571	7590.8	509	-9.14	-5.76	Retallack 2008
Ten Mile Creek	Moodlatana	Warru	R3571	7590.8	509	-9.13	-5.71	Retallack 2008
Ten Mile Creek	Moodlatana	Warru	R3381	7585.8	509	-8.70	-5.30	Retallack 2008
Ten Mile Creek	Moodlatana	Warru	R3381	7585.8	509	-8.77	-5.35	Retallack 2008
Ten Mile Creek	Moodlatana	Natala	R3569	7322.1	512	-0.64	-15.84	Retallack 2008
Ten Mile Creek	Moodlatana	Natala	R3569	7322.1	512	-0.59	-15.85	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3567	7245.2	513	-2.82	-16.55	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3567	7245.2	513	-2.90	-16.39	Retallack 2008
Ten Mile Creek	Billy Creek	Irkii	R3568	7228.0	513	-2.56	-17.11	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3563	6935.3	517	-7.63	-5.69	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3563	6935.3	517	-7.68	-5.74	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3561	6464.6	523	-4.28	-5.35	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3561	6464.6	523	-4.22	-5.35	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3376	6464.6	523	-1.72	-6.16	Retallack 2008
Ten Mile Creek	Billy Creek	Warru	R3376	6464.6	523	-1.26	-5.99	Retallack 2008
Parachilna Gorge	Parachilina	Mata	R3288	5176.7	537	-7.15	-7.11	Retallack 2008
Parachilna Gorge	Parachilina	Watuna	R3301	5169.8	537	-2.82	-2.82	Retallack 2008
Parachilna Gorge	Parachilina	Watuna	R3301	5169.8	537	-2.60	-2.26	Retallack 2008
Parachilna Gorge	Parachilina	Mata	R3277	5160.2	538	-6.33	-4.72	Retallack 2008
Parachilna Gorge	Parachilina	Mata	R3277	5160.2	538	-6.54	-4.85	Retallack 2008
Hookapunna Well	Uratanna	Valkarra	R3529	4975.0	543	-5.80	-6.13	herein
Hookapunna Well	Uratanna	Valkarra	R3529	4975.0	543	-5.76	-5.93	herein
Brachina Gorge	Rawsley	Yaldati	R3274	4916.1	545	-8.66	-4.80	herein
Brachina Gorge	Rawsley	Yaldati	R3274	4916.1	545	-8.84	-4.79	herein
Ediacara #3 bore	Ediacara	Yaldati	#1553475	4760.9	550	-5.75	-6.20	Retallack 2012, 2013
Ediacara #3 bore	Ediacara	Yaldati	#1553475	4760.9	550	-5.89	-6.18	Retallack 2012, 2013
Hookapunna Well	Ediacara	Yaldati	R3526	4757.4	550	-2.74	-5.58	Retallack 2012, 2013
Hookapunna Well	Ediacara	Yaldati	R3526	4757.4	550	-1.62	-6.14	Retallack 2012, 2013
Ediacara Hills	Ediacara	Yaldati	R3522	4735.7	550	-4.12	-4.44	Retallack 2012, 2013
Ediacara Hills	Ediacara	Yaldati	R3522	4735.7	550	-3.86	-4.14	Retallack 2012, 2013
Brachina Gorge	Bonney	Yaldati	R3269	4564.9	555	-5.00	-1.66	herein
Brachina Gorge	Bonney	Yaldati	R3269	4564.9	555	-5.17	-1.84	herein
Brachina Gorge	Bonney	Yaldati	R3267	4530.1	556	-9.89	-6.27	herein
Brachina Gorge	Bonney	Yaldati	R3267	4530.1	556	-8.82	-6.30	herein
Brachina Gorge	Bonney	Yaldati	R3471	4471.8	558	-3.97	-14.5	herein
Brachina Gorge	Bonney	Yaldati	R3471	4471.8	558	-4.01	-13.92	herein
Table S7. Stable isotopic analyses (‰) of organic carbon, Flinders Ranges

Locality	Formation	Pedotype	Sample	Level (m)	Ma	δ¹³C ave	δ¹³C stdev	%C ave	Reference
Ten Mile Creek	Moodlatana	Natala	R3555	7662.8	463.63	-23.10	0.09	0.060	herein
Ten Mile Creek	Moodlatana	Viparri	R3556	7662.2	463.65	-23.10	0.09	0.060	herein
Ten Mile Creek	Moodlatana	Viparri	R3556	7662.2	463.65	-23.10	0.09	0.060	herein
Ten Mile Creek	Moodlatana	Warru	R3571	7590.8	465.76	-26.36	0.05	0.070	herein
Ten Mile Creek	Moodlatana	Warru	R3571	7590.8	465.76	-26.36	0.05	0.070	herein
Ten Mile Creek	Billy Creek	Warra	R3563	6935.3	485.17	-24.77	0.21	0.030	herein
Ten Mile Creek	Billy Creek	Warra	R3563	6935.3	485.17	-24.77	0.21	0.030	herein
Ten Mile Creek	Billy Creek	Warra	R3561	6464.6	499.10	-23.71	0.12	0.050	herein
Hookapunna Well	Uratanna	Valbarra	R3529	5103.0	539.40	-28.50	0.19	0.070	herein
Hookapunna Well	Uratanna	Valbarra	R3529	5103.0	539.40	-28.50	0.19	0.070	herein
Hookapunna Well	Uratanna	Valbarra	R3529	4975.0	538.79	-28.50	n/a	0.070	herein
Hookapunna Well	Uratanna	Valbarra	R3529	4975.0	538.79	-28.50	n/a	0.070	herein
Ediacara bore E3	Ediacara	Yaldati	#1553475	4760.9	549.53	-26.49	0.36	0.010	herein
Ediacara bore E3	Ediacara	Yaldati	#1553475	4760.9	549.53	-26.49	0.36	0.010	herein
Hookapunna Well	Ediacara	Yaldati	R3526	4757.4	549.63	-26.49	0.36	0.010	herein
Hookapunna Well	Ediacara	Yaldati	R3526	4757.4	549.63	-26.49	0.36	0.010	herein
Brachina Gorge	Bonney	Yaldati	R3472	4471.8	558.08	-26.49	0.36	0.010	herein
Brachina Gorge	Bonney	Yaldati	R3472	4471.8	558.08	-26.49	0.36	0.010	herein
Brachina Gorge	Bonney	Yaldati	R3472	4471.8	558.08	-26.49	0.36	0.010	herein
Brachina Gorge	Bonney	Yaldati	R3472	4471.8	558.08	-26.49	0.36	0.010	herein

- Bunyeroo Gorge
- Wonoka (marine) micrite: 4111.7, 555.28, -29.55, n/a, 0.500 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) oolitic: 4107.6, 555.35, -30.22, n/a, 0.200 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) limestone: 4106.8, 555.37, -28.52, n/a, 0.220 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4104.3, 555.42, -23.00, n/a, 0.100 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4098.9, 555.52, -26.05, n/a, 0.070 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) limestone: 4098.1, 555.54, -25.80, n/a, 0.270 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) limestone: 4096.4, 555.57, -24.77, n/a, 0.420 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4093.0, 555.63, -25.89, n/a, 0.140 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) mudstone: 4091.2, 555.67, -23.08, n/a, 0.540 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4089.0, 555.71, -25.63, n/a, 0.120 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) mudstone: 4087.5, 555.74, -22.56, n/a, 0.490 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4080.0, 555.88, -25.98, n/a, 0.280 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) limestone: 4078.0, 555.92, -22.20, n/a, 0.260 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4073.3, 556.01, -26.96, n/a, 0.280 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) limestone: 4073.0, 556.07, -23.48, n/a, 0.140 Calver 2000
- First Hill
- Wonoka (marine) limestone: 4063.6, 556.20, -25.80, n/a, 0.150 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4063.1, 556.20, -25.15, n/a, 0.140 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 4059.6, 556.27, -22.85, n/a, 0.090 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 4056.7, 556.33, -23.30, n/a, 0.260 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4052.7, 556.40, -25.69, n/a, 0.120 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 4048.3, 556.49, -22.20, n/a, 0.210 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4046.9, 556.52, -24.07, n/a, 0.180 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4040.4, 556.64, -22.72, n/a, 0.160 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 4032.2, 556.80, -22.86, n/a, 0.270 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 4016.1, 557.10, -22.70, n/a, 0.300 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 4016.1, 557.10, -22.68, n/a, 0.370 Calver 2000
- First Hill
- Wonoka (marine) micrite: 4004.9, 557.32, -22.20, n/a, 0.120 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) micrite: 3997.9, 557.45, -22.30, n/a, 0.110 Calver 2000
- First Hill
- Wonoka (marine) micrite: 3988.6, 557.63, -22.54, n/a, 0.140 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) gray shale: 3978.6, 557.82, -22.75, n/a, 0.340 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) dolostone: 3958.8, 558.20, -22.72, n/a, 0.390 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) green shale: 3946.1, 558.44, -22.80, n/a, 0.120 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) siltstone: 3918.1, 558.97, -23.47, n/a, 0.630 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) dolostone: 3907.5, 559.18, -23.84, n/a, 0.190 Calver 2000
- Bunyeroo Gorge
- Wonoka (marine) mudstone: 3846.1, 560.35, -23.78, n/a, 0.220 Calver 2000

Calver 2000
Location	Deposit	Formation	Depth (m)	Age (Ma)	Water Depth (m)	Bathymetry (m)	Slope (°)	Water Temperature (°C)	Reference
Bunyeroo Gorge	Bunyeroo (marine)	mudstone	3846.1	560.35	-23.38	n/a	0.220	Calver 2000	
Bunyeroo Gorge	Bunyeroo (marine)	mudstone	3718.9	562.78	-23.82	n/a	0.230	Calver 2000	
Bunyeroo Gorge	Bunyeroo (marine)	siltstone	3652.6	564.05	-24.05	n/a	0.290	Calver 2000	
Bunyeroo Gorge	Bunyeroo (marine)	siltstone	3493.5	567.08	-24.55	n/a	0.340	Calver 2000	
Bunyeroo Gorge	Bunyeroo (marine)	mudstone	3326.4	570.28	-25.52	n/a	0.210	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	green shale	3318.8	570.42	-24.48	n/a	0.730	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3295.0	570.88	-27.25	n/a	0.450	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	blue shale	3270.0	571.45	-29.35	n/a	0.520	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3265.1	571.72	-27.23	n/a	0.490	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3247.8	571.78	-23.13	n/a	0.630	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3236.3	570.88	-27.34	n/a	0.140	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3194.0	571.73	-24.55	n/a	0.510	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3180.0	573.07	-27.99	n/a	0.430	Calver 2000	
Brachina Gorge	Bunyeroo (marine)	mudstone	3144.0	573.76	-33.81	n/a	17.050	Calver 2000	
SCYW1a core	Bunyeroo (marine)	green shale	3075.7	575.04	-24.55	n/a	0.260	Calver 2000	
SCYW1a core	Bunyeroo (marine)	mudstone	3061.0	575.34	-22.12	n/a	0.290	Calver 2000	
SCYW1a core	Bunyeroo (marine)	mudstone	3036.1	575.82	-24.10	n/a	0.050	Calver 2000	
SCYW1a core	Bunyeroo (marine)	mudstone	3002.0	576.47	-24.47	n/a	0.130	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2975.0	576.99	-28.04	n/a	1.540	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2952.7	577.41	-26.00	n/a	0.630	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2932.5	577.80	-28.19	n/a	0.970	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2892.8	578.56	-28.84	n/a	1.690	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2852.8	579.32	-26.54	n/a	1.020	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2852.8	579.32	-28.24	n/a	1.020	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2840.5	579.56	-28.28	n/a	0.990	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2795.9	580.41	-28.90	n/a	1.700	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2752.1	581.04	-26.79	n/a	0.860	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2752.1	581.24	-26.79	n/a	0.860	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2752.1	581.24	-26.60	n/a	0.780	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2752.1	581.24	-25.49	n/a	0.500	Calver 2000	
SCYW1a core	ABC Range (marine)	gray shale	2752.1	581.24	-26.54	n/a	0.500	Calver 2000	
Bunyeroo Gorge	ABC Range (marine)	mudstone	2668.8	582.84	-24.72	n/a	0.520	Calver 2000	
Bunyeroo Gorge	ABC Range (marine)	mudstone	2638.3	583.42	-25.87	n/a	0.650	Calver 2000	
Bunyeroo Gorge	ABC Range (marine)	mudstone	2585.8	584.42	-24.33	n/a	0.420	Calver 2000	
Bunyeroo Gorge	ABC Range (marine)	mudstone	2542.6	585.25	-23.05	n/a	0.410	Calver 2000	
SCYW1a core	ABC Range (marine)	mudstone	2494.7	586.16	-26.19	n/a	0.800	Calver 2000	
Bunyeroo Gorge	ABC Range (marine)	mudstone	2432.9	587.34	-23.70	n/a	0.250	Calver 2000	
Location	Formation	Type	Depth	Age	Thickness	Author	Year		
------------------------------	----------------------------	---------------	--------	---------	-----------	----------	----------		
Bunyeroo Gorge	ABC Range (marine) mudstone	2432.9	587.34	-23.57	n/a	0.250	Calver 2000		
Bunyeroo Gorge	ABC Range (marine) mudstone	2432.9	587.34	-23.27	n/a	0.190	Calver 2000		
SCYW1a core	ABC Range (marine) gray shale	2413.6	587.71	-26.16	n/a	1.330	Calver 2000		
SCYW1a core	Brachina (marine) shale	2372.2	588.50	-26.67	n/a	0.820	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2345.4	589.01	-23.89	n/a	0.320	Calver 2000		
SCYW1a core	Brachina (marine) gray shale	2310.5	589.68	-26.54	n/a	1.070	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2273.8	590.38	-23.00	n/a	0.370	Calver 2000		
SCYW1a	Brachina (marine) gray shale	2263.8	590.57	-26.90	n/a	1.500	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2225.5	591.30	-23.17	n/a	0.450	Calver 2000		
SCYW1a	Brachina (marine) gray shale	2189.3	591.99	-27.05	n/a	1.340	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2174.3	592.28	-23.22	n/a	0.450	Calver 2000		
SCYW1a	Brachina (marine) gray shale	2133.7	593.06	-29.35	n/a	0.870	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2047.6	594.70	-23.65	n/a	0.350	Calver 2000		
SCYW1a	Brachina (marine) gray shale	2041.7	594.81	-29.61	n/a	0.760	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2021.0	595.21	-24.93	n/a	0.720	Calver 2000		
SCYW1a	Brachina (marine) gray shale	2021.0	595.21	-23.75	n/a	0.750	Calver 2000		
Bunyeroo Gorge	Brachina (marine) mudstone	2008.3	595.76	-23.27	n/a	0.610	Calver 2000		
BCYM1a	Brachina (marine) mudstone	1977.1	597.36	-23.35	n/a	0.560	Calver 2000		
SCYW1a	Brachina (marine) gray shale	1908.3	597.62	-23.35	n/a	0.890	Calver 2000		
BCYM1a-1	Brachina (marine) mudstone	1894.7	597.65	-24.89	n/a	2.500	Calver 2000		
BCYM1a	Brachina (marine) gray shale	1885.3	597.80	-32.19	n/a	2.210	Calver 2000		
BCYM1a-1	Brachina (marine) mudstone	1883.4	597.84	-32.28	n/a	2.340	Calver 2000		
BCYM1a	Brachina (marine) gray shale	1883.4	597.84	-32.28	n/a	2.340	Calver 2000		
BCYM1a-1	Brachina (marine) mudstone	1881.3	597.88	-32.72	n/a	2.340	Calver 2000		
BCYM1a	Brachina (marine) gray shale	1881.3	597.88	-26.00	n/a	0.660	Calver 2000		
BCYM1a-1	Brachina (marine) mudstone	1878.8	597.92	-28.35	n/a	1.380	Calver 2000		
BCYM1a	Brachina (marine) gray shale	1877.5	597.95	-24.55	n/a	0.680	Calver 2000		
BCYM1a-1	Brachina (marine) gray shale	1876.2	597.97	-24.54	n/a	0.600	Calver 2000		
BCYM1a	Brachina (marine) gray shale	1874.0	598.02	-24.56	n/a	0.640	Calver 2000		
BCYM1a-1	Nuccaleena (marine) gray shale	1871.9	598.06	-24.39	n/a	0.420	Calver 2000		
SCYW1a	Nuccaleena (marine) gray shale	1836.4	598.73	-24.53	n/a	0.100	Calver 2000		
Enorama Creek Trezona	Limestone	1757.0	600.25	-26.60	n/a	0.015	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1727.5	600.81	-24.80	n/a	0.018	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1723.2	600.90	-25.20	n/a	0.013	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1721.4	600.93	-25.70	n/a	0.017	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1716.6	601.02	-23.70	n/a	0.007	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1712.6	601.10	-23.50	n/a	0.008	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1711.0	601.13	-24.10	n/a	0.008	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1705.9	601.23	-24.50	n/a	0.009	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1700.9	601.32	-24.70	n/a	0.011	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1693.5	601.46	-24.90	n/a	0.008	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1688.1	601.57	-25.90	n/a	0.008	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1681.7	601.69	-25.60	n/a	0.005	Swanson-Hysell et al. 2010		
Enorama Creek Trezona	Limestone	1680.5	601.71	-24.00	n/a	0.006	Swanson-Hysell et al. 2010		
Enorama Creek	Trezona (marine)	limestone	1674.9	601.82	-23.50	n/a	0.011	Swanson-Hysell et al. 2010	
--------------	-----------------	-----------	--------	--------	--------	-----	--------	---------------------------	
Enorama Creek	Trezona (marine)	limestone	1671.2	601.89	-25.40	n/a	0.007	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1664.5	602.02	-25.70	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1663.7	602.03	-26.20	n/a	0.014	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1657.8	602.15	-24.80	n/a	0.007	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1653.8	602.22	-25.20	n/a	0.004	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1650.3	602.29	-25.20	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1645.4	602.38	-25.20	n/a	0.012	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1641.6	602.46	-23.70	n/a	0.013	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1632.4	602.63	-26.10	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1625.4	602.76	-26.50	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1622.7	602.82	-26.00	n/a	0.011	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1616.9	602.93	-24.80	n/a	0.008	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1612.0	603.02	-27.00	n/a	0.007	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1605.3	603.15	-30.10	n/a	0.014	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1596.6	603.31	-25.00	n/a	0.011	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1594.0	603.36	-24.90	n/a	0.006	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1584.1	603.55	-27.90	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1566.0	603.90	-24.30	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1558.4	604.04	-24.20	n/a	0.016	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1539.3	604.41	-27.50	n/a	0.012	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1536.5	604.46	-26.20	n/a	0.012	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1534.0	604.51	-26.40	n/a	0.007	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1528.9	604.61	-23.90	n/a	0.013	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1521.9	604.74	-23.20	n/a	0.013	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1495.3	605.25	-24.40	n/a	0.016	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1482.0	605.50	-26.40	n/a	0.005	Swanson-Hysell et al. 2010	
Enorama Creek	Trezona (marine)	limestone	1457.3	605.98	-23.90	n/a	0.011	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	925.3	616.14	-24.00	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	915.9	616.32	-23.70	n/a	0.015	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	904.1	616.54	-25.00	n/a	0.008	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	891.0	616.79	-24.60	n/a	0.010	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	852.9	623.86	-25.60	n/a	0.012	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	517.0	623.94	-22.70	n/a	0.013	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	512.0	624.03	-25.60	n/a	0.008	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	473.8	624.36	-22.50	n/a	0.009	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	465.6	624.92	-23.00	n/a	0.014	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	455.6	625.11	-21.30	n/a	0.023	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	386.5	626.43	-23.60	n/a	0.016	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	367.1	626.80	-22.20	n/a	0.012	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	355.8	627.01	-23.50	n/a	0.016	Swanson-Hysell et al. 2010	
Enorama Creek	Etina (marine)	limestone	329.6	627.51	-25.90	n/a	0.006	Swanson-Hysell et al. 2010	
Enorama Creek Etina (marine) limestone									
--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	
321.8	627.66	-23.40	n/a	0.011	Swanson-Hysell et al. 2010	315.7	627.78	-23.10	n/a

References cited

AYLIFFE, D. 1992. Geological setting of the late Proterozoic Wonoka Formation carbonate ramp and canyon sequence at Pichi Richi Pass, southern Flinders Ranges, South Australia: geochemical, stable isotope, and diagenetic analysis. Unpublished Honours thesis, University of Adelaide, Adelaide, 60 p.

CALVER, C.R. 2000. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. *Precambrian Research*, 100, 121-150.

DIXON, J. 1999. Forcing factors influencing deposition of the Wonoka Formation, Flinders Ranges, South Australia, and triggers for canyon development. Unpublished Honours thesis, University of Adelaide, Adelaide, 68 p.

EICKOFF, K.-H., VON DER BORCH, C.C., & GRADY, A.E. 1988. Proterozoic canyons of the Flinders Ranges (South Australia): submarine canyons or drowned river valleys? *Sedimentary Geology*, 58, 217-235.

HIGGINS, J. 1997. The Pamatta Pass Canyon Complex: Neoproterozoic Wonoka Formation, Flinders Ranges, South Australia. Unpublished Honours Thesis, University of Adelaide, Adelaide, 89 p.

JANSYN, J. 1990. Stratotectonic evolution of a large subsidence structure associated with the late Proterozoic Wonoka Formation at Wilpena Pound, central Flinders Ranges, South Australia. Unpublished Honours Thesis, University of Adelaide, Adelaide, 30 p.

KNOLL, A.H., WALTER, M.R., NARBONNE, G.M., & CHRISTIE-BLICK, N. 2006. The Ediacaran Period: a new addition to the geological time scale. *Lethaia*, 39, 13-30.

MCKIRDY, D.M., BURGESS, J.M., LEMON, N.M., YU, X.-K., COOPER, A.M., GOSTIN, V.A., JENKINS, R.J.F., & BOOTH, R.A. 2001. A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia. *Precambrian Research*, 106, 146-186.

PELL, S.D., MCKIRDY, D.M., JANSYN, J., & JENKINS, R.J.F. 1993. Ediacaran carbon isotope stratigraphy of South Australia - an initial study. *Royal Society of South Australia Transactions*, 117, 153-161.

RETALLACK, G.J. 2008. Cambrian palaeosols and landscapes of South Australia. *Australian Journal of Earth Sciences*, 55, 1083-1106.
RETALLACK, G.J. 2011. Neoproterozoic glacial loess and limits to snowball Earth. *Geological Society of London Journal*, **168**, 1-19.

RETALLACK, G.J. 2012. Were Ediacaran siliciclastics of South Australia coastal or deep marine? *Sedimentology*, **59**, 1208-1236.

RETALLACK, G.J. 2013. Ediacaran life on land. *Nature*, **493**, 89-92.

SINGH, U. 1986. Late Precambrian and Cambrian carbonates of the Adelaidean in the Flinders Ranges, South Australia: a petrographic, electron microprobe and stable isotopic study. Unpublished PhD thesis, University of Adelaide, 158 p.

SMITH, H.D. 2001. Early diagenetic origin of a Neoproterozoic cap carbonate: the Marinoan Nuccaleena Formation, SA. Unpublished Honours Thesis, University of Adelaide, Adelaide, 55 p.

SURGE, D.M. 1996. Geochemical and petrologic evidence for limited diagenesis in Lower Cambrian carbonates, South Australia: implications for photosynthesis and depth-related variations in primary productivity. Unpublished MSc thesis Department of Geological Sciences, Indiana University, Bloomington, 116 p.

SWANSON-HYESSELL, N.L., ROSE, C.V., CALMET, C.C., HALVERSON, G.P., HURTGEN, M.T. & MALOOF, A.C. 2010. Cryogenian glaciation and the onset of carbon isotope decoupling. *Science*, **328**, 608-611.

TUCKER, M.E. 1991. Carbon isotopes and Precambrian-Cambrian boundary geology, South Australia: ocean basin formation, seawater chemistry and organic evolution. *Terra Nova*, **1**, 573-582.

URLWIN, B. 1992. Carbon isotope stratigraphy of the late Proterozoic Wonoka Formation of the Adelaide Fold Belt: diagenetic assessment and interpretation of isotopic signature and correlations with previously measured isotopic curves. Unpublished Honours thesis, University of Adelaide, Adelaide, 36 p.

WILLIAMS, G.E. 1979. Sedimentology, stable-isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. *Geological Society of Australia Journal*, **26**, 377-386.

YOUNG, T. 1995. The Bunyeroo Formation and its possible cold-water marine setting. Unpublished Honours Thesis, University of Adelaide, Adelaide, 51 p.