Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents

Nusrat Ahsan¹ and Masafumi Shimizu²*

¹ The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
² Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan

ABSTRACT

The use of synthetic chemicals has increased drastically due to industrialization and urbanization. However, the long-term and indiscriminate use of these chemicals has a negative impact on environment and human health; thus, public concerns about the hazardous effects of such synthetic chemicals are increasing day by day. To solve these problems, the exploitation of potential alternatives has become a major challenge, and the admiration of beneficial microbes is increasing due to their safe and environment-friendly nature. Microbes can mitigate the hazardous effects of synthetic chemicals by reducing their use and toxicity. Lysinibacillus species are gram-positive, spore-forming, motile bacteria. This genus was previously designated as Bacillus spp. under the family Bacillaceae of the phylum Firmicutes. For a long period of time, Lysinibacillus is well-known for its insecticidal activity against various insects, including mosquitoes, which are the vector of several human diseases. In addition, some Lysinibacillus species have a potential for heavy metal remediation. In recent years, Lysinibacillus spp. are attracting the researchers’ attention as plant growth-promoting and disease control agents, which would be used as alternatives to agrochemicals. This study gives an overview of the entomopathogenic, bioremediation, plant growth-promoting, and biological disease control abilities of the genus Lysinibacillus.

Keywords

biocontrol, bioremediation, entomopathogen, lysinibacillus, plant growth promotion

1. Introduction

Industrialization and urbanization considerably increased the living standard of the people. However, due to several industrial developments, huge quantities of industrial wastes are produced. Many kinds of pollutants are also discharged to the environment. For example, mining operations are conducted to collect several metals which are used in metal industries. However, during the operations, the surrounding environment gets contaminated with heavy metals. In agricultural industries, chemical fertilizers and pesticides are widely used to enhance food production and meet the global food demand. However, the indiscriminate use of agricultural chemicals deteriorates the soil quality and pollute the air, water, and soil. On the other hand, due to urbanization, the cities become overcrowded, which provides suitable conditions for the vectors to transmit infectious diseases, causing several health problems. Various chemical insecticides are used to control these insect vectors and they also pollute the environment. In recent years, public concerns about the long-term effects of synthetic chemicals on the environment and human health are increasing. Therefore, the reduction of synthetic chemical use and pollutants becomes a major challenge. There are certain types of microbes that can be used to mitigate the hazardous effects of synthetic chemicals. Due to their safe and environment-friendly nature, the admiration for microbes is increasing day by day. Microbes can be found in any part of the biosphere, and their ecological functions are still widely used to control various diseases and vectors.
largely unknown [1]. *Bacillus thuringiensis*, a well-known entomopathogenic bacterium, can control a wide range of insect vectors which transmit infectious diseases in humans [2]. *Bacillus* and some other bacteria have the ability to remediate heavy metal-contaminated sites [3]. Nowadays, *Bacillus, Pseudomonas*, and *Rhizobium*-based commercial products to improve crop production are available in the market. Moreover, a wide range of microbes, such as *Agrobacterium, Bacillus, Pseudomonas*, and *Trichoderma*, are used for the formulation of biocontrol products which can efficiently suppress different types of plant pathogens [4]. Among these bacteria, the genus *Bacillus* is the common active ingredient of most microbe-based products, because it produces endospores which are highly resistant, specialized structures that can withstand different environmental conditions and make commercial formulation easier [5]. Thus, *Bacillus*-based products have gained the trust of the growers. To increase the repertory of microbe-based products, researchers have been searching for such type of promising agents. *Lysinibacillus*, a new genus which was recently reclassified from *Bacillus*, have been reported to have the potential to control pests, remediate heavy metal-contaminated environments, and increase crop yields. Because *Lysinibacillus* has the ability to produce endospores, it can be considered as a suitable agent for microbial products. This review gives an overview of the entomopathogenic, bioremediation, plant growth-promoting, and biological disease control abilities of the genus *Lysinibacillus* based on the information collected from previous studies.

2. Taxonomy

Lysinibacillus species were previously classified as members of the genus *Bacillus*. Along with a novel species (*Lysinibacillus boronitolerans*), two previously classified species, *Bacillus sphaericus* and *Bacillus fusiformis*, were reclassified to the new genus *Lysinibacillus* based on their unique peptidoglycan composition, physiology, and molecular phylogenetic position based on 16S rRNA gene sequences [6]. In cell wall peptidoglycan, lysine and aspartic acid are present as the diagnostic amino acids, representing the A4a (Lys-Asp) type of cell wall peptidoglycan [7, 8]. Due to the presence of the Lys-Asp type of peptidoglycan in the cell wall, it was named *Lysinibacillus*. Diphosphatidylglycerol, phosphatidylglycerol, and ninhydrin-positive phosphoglycolipid are the major polar lipids, and menaquinone MK-7 is the dominant respiratory lipoquinone system of the genus. Iso-C15:0 is the major cellular fatty acid. The G+C content is 35–38 mol%. They are positive for oxidase and catalase tests, and negative for indole and H2S production, nitrate reduction, and β-galactosidase (ONPG) tests. The cells are motile, rod-shaped, and produce spherical or ellipsoidal endospores [9].

Another 26 species were identified as new members of *Lysinibacillus*, which are enlisted in LPSN-bacterio-net (http://www.bacterio.net/lysinibacillus.html) and NCBI (http://www.ncbi.nlm.nih.gov/) (Table 1).

Species	References
Lysinibacillus acetophenoni	Azmatunnisa et al., 2015 [10]
Lysinibacillus alkaliphilus	Zhao et al., 2015 [11]
Lysinibacillus alkalisoli	Sun et al., 2017 [12]
Lysinibacillus antri Narsing	Rao et al., 2019 [13]
Lysinibacillus boronitolerans	Ahmed et al., 2007 [9]
Lysinibacillus capsici	Burkett-Cadena et al., 2019 [14]

(Continued)
Table 1: List of validly published species of *Lysinibacillus* (Continued)

Species	References
Lysinibacillus chungkukjangi	Kim et al., 2013 [15]
Lysinibacillus composti	Hayat et al., 2014 [16]
Lysinibacillus contaminans	Kämpfer et al., 2013 [17]
Lysinibacillus cresolivorans	Ren et al., 2015 [18]
Lysinibacillus endophyticus	Yu et al., 2016 [19]
Lysinibacillus fusiformis	Ahmed et al., 2007 [9]
Lysinibacillus halotolerans	Kong et al., 2014 [20]
Lysinibacillus louembei	Ouoba et al., 2015 [21]
Lysinibacillus macroides	Coorevits et al., 2012 [22]
Lysinibacillus manganicus	Liu et al., 2013 [23]
Lysinibacillus mangiferihumi corrig.	Yang et al., 2012 [24]
Lysinibacillus massiliensis	Jung et al., 2012 [25]
Lysinibacillus meyeri	Seiler et al., 2013 [26]
Lysinibacillus odysseyi	Jung et al., 2012 [25]
Lysinibacillus pakistanensis	Ahmed et al., 2014 [6]
Lysinibacillus parviboronicapiens	Miwa et al., 2009 [27]
Lysinibacillus sinduriensis	Jung et al., 2012 [25]
Lysinibacillus sphaericus	Ahmed et al., 2007 [9]
Lysinibacillus tabacioli	Duan et al., 2013 [28]
Lysinibacillus telephonicus	Rahi et al., 2017 [29]
Lysinibacillus varians	Zhu et al., 2014 [7]
Lysinibacillus xylanilyticus	Lee et al., 2010 [30]
Lysinibacillus yapensis	Yu et al., 2019 [31]

3. Beneficial effect as bioinsecticide

Insect pests and vectors of important human diseases are controlled primarily through the use of chemical pesticides. However, the indiscriminate use of chemicals to kill the pests will also kill beneficial insects, such as honeybee, hover flies, and parasitic wasps [32]. Moreover, the overuse and misuse of insecticides result in the development of high resistance of insect pests to various insecticides [33]. These problems drive the demand for alternative methods of pest control. Recently, microbial insecticides are acquiring the admiration of researchers due to their safe and ecofriendly nature. Various entomopathogenic microbes are used as active ingredients of microbial insecticides.

L. sphaericus is well-known for its entomopathogenic activity [34]. This bacterium was first reported as a pathogen of mosquito in 1965 [35]. Since then, an intensive isolation and screening program was organized by
WHO [36, 37]. *L. sphaericus* strain 1593, which exhibited a strong larvicidal activity against mosquito, was isolated from dead mosquito larvae in Indonesia [37]. Since *L. sphaericus* is a potential agent for controlling malaria vector mosquito, it became a matter of interest for researchers. Today, various *L. sphaericus*-based vector control products, such as GRISELESF® (LABIOFAM, Habana, Cuba), Sphaerus SC (Bthek Ltda, Santa Maria, Brazil), VextoLex FG (Valent Biosciences, Illinois, USA), and Spherimos (Novo Nordisk, Bagsværd, Denmark) [38], are commercially available worldwide. Regis et al. [39] reported that the application of Spherimos controlled the southern house mosquitoes (*Culex quinquefasciatus*), which is the vector of filariasis. After the application of Spherimos, the population density of mosquitoes was significantly lowered for at least five months, and infective bites were reduced by approximately 60%. Another commercial formulation of *L. sphaericus*, Vectolex CG®, was effective in controlling Saint Louis encephalitis vector mosquitoes (*Aedes triseriatus, Culex pipiens*, and *Culex restuans*) and malaria vector (*Anopheles gambiae sensu lato*) [40, 41]. The formulation provided 100% larval mortality against Giles mosquitoes within 24 h of application, and its effectiveness lasted for up to 11 days [40].

L. sphaericus is pathogenic not only against mosquitoes, but also to other insect pests, such as German cockroach (*Blattella germanica*), common cutworm (*Spodoptera litura*), and nematodes [38, 42], which indicates that *L. sphaericus* may be useful for controlling a wide range of insect and animal pests. Entomopathogenic *L. sphaericus* produces various insecticidal toxins, such as sphaericolysin, mosquitocidal toxins, binary (Bin) toxin, Cry48/Cry49 toxin, and S-layer protein [38]. The pathogenicity of the bacterium against insects is attributed primarily to Bin toxin, which is produced in the final stages of sporulation [43]. Bin toxin-producing strains of *L. sphaericus* display a strong insecticidal activity against mosquitoes [44].

4. Potential as a metal bioremediation agent

In the past few decades, the world is facing the problem of various environmental pollution due to the increasing human activities [45]. Soil and water pollution with heavy metals, fuels, synthetic compounds, and petroleum industry products are the serious ecological threats we face today. Heavy metals are commonly used in agriculture and industries to manufacture pesticides, alloy, and electric and electronic products. On the other hand, toxic heavy metals discharged from those products, industrial effluents, and mining operations often pollute the environment [46].

For the treatment of industrial effluents, precipitation, ion exchange, electrochemical processes, and membrane processes are commonly used. However, due to technical or economic constraints, the application of these processes is sometimes incompetent [47]. Bioremediation offers efficient, cost effective, and ecofriendly techniques over traditional methods [48]. Bioremediation is a technique which uses microbes to clean up the contaminants in the environment. It is an important tool for environmental remediation of non-biodegradable heavy metals.

Four *Lysinibacillus* species (*L. sphaericus, L. fusiformis, L. xylanilyticus*, and *L. macrolides*) were reported to have bioremediation potential [49, 50]. Generally, two mechanisms are involved in the bioremediation process of *Lysinibacillus*. The first one is an enzymatic reduction by which toxic heavy metals are converted into non-toxic forms. Gupta et al. [51] reported that the mercury-tolerant strain of *L. fusiformis* can transform the toxic HgCl₂ to HgCl through enzymatic reduction. Similarly, two *Lysinibacillus* strains (*L. xylanilyticus* and *L. marcoide*) showed promising results in reducing toxic Se oxyanions into elemental Se nanoparticles [52]. In addition, Bafana et al. [53] reported that *L. sphaericus* can detoxify Cr and Hg by reducing them. The second mechanism is biosorption, which is the binding of metal ions with metal-binding proteins present on the bacterial cell wall. Some *Lysinibacillus* spp. accumulate or remove toxic metals through biosorption process [54, 55, 56, 57, 58, 59].
structural components of the cell wall of *Lysinibacillus* spp., such as hydroxyl, carbonyl, carboxyl, amide, imidazole, phosphate, phosphodiester groups, and paracrystalline surface layer (S-layer) protein play a vital role in biosorption [50, 60, 61, 62]. The metal ions get attached to the functional groups or protein layer, followed by binding of metal ions to the reactive groups present on bacterial cell wall; the internalization of metal ions occurs inside the cell [63].

5. Emerging research in the field of crop production

In the last few decades, plant-beneficial bacteria have drawn special attention from the scientific communities and agriculture industries due to their potential to enhance crop productivity in an environment-friendly manner. Hence, there is an ongoing search for beneficial microbes. The rhizospheric and endophytic strains of *Lysinibacillus* have been increasingly investigated for their beneficial effects on plants. While the studies are still minimal, many reports have highlighted the possible contribution of *Lysinibacillus* spp. to plant growth and health.

5.1 Plant growth promotion by *Lysinibacillus* spp.

It is well-known that certain plant-associated bacteria can enhance plant growth. These beneficial bacteria are generally known as plant growth-promoting rhizobacteria (PGPR) or plant growth-promoting bacteria (PGPB). Genera such as *Pseudomonas*, *Bacillus*, *Azospirillum*, *Azotobacter*, and *Rhizobium* are some of the most prominent PGPR or PGPB. PGPR/PGPB can directly and indirectly stimulate plant growth through various mechanisms, such as mineral solubilization, nitrogen fixation, phytohormone production, and so on [64].

Table 2: *Lysinibacillus* species with different plant growth-promoting traits

(Expected) effects	Species	Origin	Traits	References
Increase in plant biomass	*L. sphaericus* Epiphytic bacteria	Spinach	P solubilization, IAA production, NH₃ production	Sharma and Shaharan, 2015 [65]
Endophytic bacteria	*L. fusiformis*	Ginseng	P solubilization, IAA production, siderophore production	Vendan *et al.*, 2010 [66]
	L. fusiformis	Citrus	P solubilization, IAA production, N fixation, siderophore production, ACC deaminase production	Trivedi *et al.*, 2011 [67]
	Lysinibacillus sp.	Banana	P solubilization	Andrade *et al.*, 2014 [68]
	L. xylanilyticus	Rice	P solubilization, IAA production, N fixation, K solubilization	Tan *et al.*, 2015 [69]
	L. fusiformis, L. changkukjangi	Corn	IAA production	Yu *et al.*, 2016 [70]
	L. sphaericus	Rice	Nitrogenase activity, IAA production, GA production, CK production, ACC deaminase production	Shabanamol *et al.*, 2018 [71]
	Lysinibacillus sp.	Undescribed	P solubilization, IAA production	Sahu *et al.*, 2018 [72]
	Lysinibacillus sp.	Tea	P solubilization, IAA production, siderophore production, ACC deaminase production	Borah *et al.*, 2019 [73]
	L. fusiformis	Apple	IAA production, siderophore production	Passera *et al.*, 2020 [74]

(Continued)
Table 2: *Lysinibacillus* species with different plant growth-promoting traits (continued)

(Expected) effects	Species	Origin	Traits	References
Increase in plant biomass	Rhizobacteria			
	L. fusiformis	Soybean, rice	Nitrogenase activity, IAA production	Park *et al*., 2005 [75]
	Lysinibacillus sp.	Rice	IAA production, ACC deaminase production, SA production	Islam *et al*., 2013 [76]
	L. xylanilyticus	Wheat	NH₃ production, ACC deaminase production, Zn solubilization	Verma *et al*., 2014 [77]
	L. sphaericus	Wheat	N fixation, IAA production, P solubilization, K solubilization, Zn solubilization	Verma *et al*., 2016 [78]
	Lysinibacillus sp.	Maize	P solubilization, IAA production	Abiala *et al*., 2015 [79]
	L. sphaericus	Undescribed	N fixation	Labuschagne *et al*., 2015 [80]
	L. fusiformis	Tomato	No data	Rahmoune *et al*., 2017 [81]
	L. sphaericus	Maize	IAA production, siderophore production, P solubilization, K solubilization, Si solubilization	Naureen *et al*., 2017 [82]
	L. sphaericus	Pumpkin	P solubilization	Sule *et al*., 2020 [83]
	L. fusiformis	Wheat	IAA production	Akinrinlola, 2018 [84]
Others	*L. fusiformis, L.	Forest	P solubilization, IAA production	De Mandal *et al*., 2018 [85]
	xylanilyticus			
Growth promotion under salt stress conditions	Endophytic bacteria			
	L. fusiformis	Argentine screwbean	N fixation, IAA production, GA production, ABA production	Sgroy *et al*., 2009 [86]
	Lysinibacillus spp.	Various plants	P solubilization, IAA production, extracellular enzymes production	Kumar *et al*., 2017 [87]
Others	*Lysinibacillus* sp.	Compost	Increase in chlorophyll contents of plants, enhancement of antioxidant enzymes in plants	Duo *et al*., 2018 [88]
Growth promotion under metal stress conditions	Rhizobacteria			
	L. varians	Waste contaminated soil	Cd and Pb bioaccumulation, NH₃ production, IAA production, P solubilization, siderophore production	Pal and Sengupta, 2019 [89]
	Lysinibacillus sp.	Giant bulrush	Pb tolerance, NH₃ production, IAA production	Kamaruzzaman *et al*., 2020 [90]
Others	*L. sphaericus*	Culture collection	N fixation, nitrification, IAA production	Martinez and Dussán, 2018 [91]
	*L. fusiformis, L.	Soil	IAA production, K solubilization, siderophore production	Jinal *et al*., 2019 [92]
	mangiferithumi			
	Lysinibacillus spp.	Zn polluted soil	Zn tolerance, K solubilization, IAA production, siderophore production	Jinal *et al*., 2020 [93]
In recent studies, it was demonstrated that *Lysinibacillus* spp. (e.g., *L. sphaericus*, *L. fusiformis*, *L. chungkukjangi*, and *L. xylanilyticus*) also possess diverse beneficial traits related to plant growth promotion (Table 2). Phosphorus, one of the three macromolecules essential for plant growth, is required in various metabolic pathways [94]. Many *Lysinibacillus* spp. were reported to exhibit the capacity to solubilize fixed inorganic phosphorus compounds into soluble P form that can be easily assimilated by plants. Moreover, several *Lysinibacillus* strains can solubilize other important insoluble minerals, such as potassium, iron, zinc, and silicate [66, 78, 82]. The secretion of organic acids, hydrolytic enzymes, and metal chelator compounds from these *Lysinibacillus* spp. was reported to facilitate the conversion of insoluble minerals into bioavailable forms [67, 82].

Nitrogen is the most limiting primary element for plant growth and productivity. Plants absorb nitrogen from the soil through their roots, but the amount of bioavailable nitrogen is limited in the rhizosphere. Although nitrogen gas makes up about 80% of the earth’s atmosphere, plants are not able to use it in that form [95]. Some *Lysinibacillus* can fix nitrogen as ammonia [65, 69, 96]. Nitrogen fixation by bacteria is accomplished through the catalytic action of complex enzyme system known as nitrogenase encoded by *Nif* genes. Studies showed that *Lysinibacillus* spp. harbor the *Nif* genes and produce nitrogenases [71, 75, 91].

Phytohormones play important roles in plant growth and development as well as various biotic and abiotic stress tolerance [97]. The ability to synthesize indole-3-acetic acid (IAA), gibberellin, and cytokinin is associated with plant growth promotion by PGPR/PGPB [98, 99]. Some *Lysinibacillus* spp. also produce these hormones [70, 71, 88, 100].

Remarkable improvement in crop growth and yield in response to *Lysinibacillus* inoculation was reported by several research groups. Sule *et al.* [83] recently reported that soil drenching with phosphate-solubilizing *L. sphaericus* strain isolated from the pumpkin rhizosphere significantly improved the shoot growth of maize plants. Similarly, root inoculation with endophytic IAA-producing strains of *L. fusiformis* and *L. chungkukjangi* increased the root and shoot biomass of soybean and wheat plants [70]. Moreover, root inoculation with IAA- and siderophore-producing strain of *L. fusiformis* enhanced the shoot growth of various crop plants, including sweet pepper, hot pepper, chicory, green bean, and leak, and significantly increased the fruit weight of Zucchini under commercial greenhouse conditions [74].

Abiotic stress has had a persistent negative impact on the plant growth, leading to significant crop losses in agriculture. *Lysinibacillus* spp. were also reported to enhance plant tolerance to different abiotic stresses and improve plant growth under adverse stress conditions [86, 87, 92]. Salinity is one of the major problems affecting crop production worldwide [101]. Kumar *et al.* [87] reported that seed bacterization with salt-tolerant *Lysinibacillus* sp. effectively enhanced the growth of rice seedlings under salinity stress. Moreover, the contamination of agricultural lands with trace metals, such as Al, Mn, Cu, Pb, and Zn, negatively affects plant growth and causes crop yield reduction [102]. *Lysinibacillus* spp. can promote plant growth under metal stress condition [91, 92, 93]. For example, the growth of jack bean in Pb-contaminated soil was significantly improved by soil inoculation with Pb-tolerant *L. sphaericus* strains [91]. Zn-tolerant *Lysinibacillus* spp. were also reported to show growth-promoting effect on maize planted in Zn-contaminated soil [93]. Although the detailed mechanisms of plant growth promotion by *Lysinibacillus* are not fully understood, the accumulation of antioxidant molecules (proline, phenol, and ascorbic acid) and enzymes (peroxidase, superoxide dismutase, and catalase) in the plant may play a vital role in plant growth improvement under different stress conditions [83, 85].
5.2 Biocontrol potential of *Lysinibacillus*

Plant diseases caused by pathogenic microbes pose significant and persistent threat to agricultural production [103]. The estimated potential yield loss due to plant disease is up to 16% globally [104]. Chemical pesticides are widely used to control of plant diseases. However, the long-term and indiscriminate use of chemical pesticides frequently resulted in the development of resistant pathogens. Moreover, it has also been causing several negative effects in the environment and natural ecology. Therefore, the application of beneficial microbes is suggested as an alternative to chemical pesticides for an effective environment-friendly approach to control the plant diseases [105].

Species	Origin	Target pathogens/disease	Traits	References
L. fusiformis	Apple	*Aspergillus niger*, *Botrytis cinerea*, *Phomopsis viticola*, and *Rhizoctonia solani*	Production of antifungal compounds	Passera et al., 2020 [74]
L. sphaericus	Rice	*Rhizoctonia solani*	Mycolytic activity	Shabanamol et al., 2018 [71]
L. sphaericus	Rice	Rice sheath blight (*Rhizoctonia solani*)	Induction of systemic resistance, production of antifungal volatile compounds, biosurfactant, HCN, and siderophore	Shabanamol et al., 2017 [96]
L. fusiformis	Citrus	*Candidatus Liberibacter asiaticus*	Production of salicylic acid and chitinase	Trivedi et al., 2011 [67]
L. sphaericus	Maize	*Alternaria alternata*, *Curvularia lunata*, *Aspergillus sp.*, *Sclerotinia sp.*, *Bipolaris spicifera*, and *Trichophyton sp.*	Production of antifungal metabolites, hydrolytic enzymes, and siderophore	Naureen et al., 2017 [82]
Lysinibacillus sp.	Maize	*Fusarium verticillioides*	Chitinase production	Abiala et al., 2015 [79]
L. fusiformis	Chickpea	*Fusarium oxyzorum*, *Fusarium solani*, and *Macrophomina phaseolina*	Production of chitinase, protease, and β-endoglucanase	Singh et al., 2013 [106]
L. sphaericus	Culture collection	*Meloidogyne incognita*	Chitinase production	Abdel-Salam et al., 2018 [107]

Lysinibacillus species were reported to have a biocontrol potential against a wide range of plant pathogens (Table 3). Among the 28 species of *Lysinibacillus*, only two species, *L. sphaericus* and *L. fusiformis*, were reported as potential agents that control several plant diseases. Different types of antimicrobial compounds are produced by *Lysinibacillus* spp., which may be associated with disease control activity. *Bacillus* spp., which have a biocontrol ability against plant diseases, were reported to produce a wide variety of antimicrobial compounds, such as...
hydrogen cyanide, chitinase, volatile compounds, and biosurfactants [108]. *Lysinibacillus* spp. also produce some of these antimicrobial compounds. The production of cell wall-degrading enzymes, such as chitinase, glucanase, and protease, are well-known mechanisms for biocontrol. Cell wall-degrading enzyme-producing *Lysinibacillus* can suppress the hyphal growth of fungi. These antimicrobial *Lysinibacillus* strains effectively control the diseases caused by fungi and nematodes [74, 79, 107]. Additionally, the inoculation of *Lysinibacillus* can suppress viral diseases [74]. In this case, disease suppression is attributed to plant immunity activated by *Lysinibacillus*. The plant immunity enhanced by *Lysinibacillus* is also effective against fungal disease caused by *Rhizoctonia solani* in rice plants [96].

6. Conclusions

Industrialization and urbanization have promoted the economic growth and improved the quality of our lives. However, numerous chemical pollutants have also been discharged into the environment, leading to various problems, such as environmental degradation, ecological disturbance, and health consequences. Therefore, the challenge that we face is to maintain the benefits of industrialization and urbanization while minimizing their negative impacts.

Several strategies are used to reduce the pollutant load generated by human activities and chemical pollutants concentrated in the environments. One of the strategies is the use of beneficial microbes residing in natural ecosystem. Microbes can mitigate the hazardous effect of synthetic chemicals by reducing their use and toxicity. As reviewed in this paper, *Lysinibacillus* have multifarious abilities, such as entomopathogenic, bioremediation, plant growth-promoting, and biocontrol abilities; thus, it was thought to be a good source of biopesticide, plant biostimulant, and bioremediation agent. In the future, *Lysinibacillus* based microbial products could be promising to mitigate the hazardous effect of chemical pollutants.

REFERENCES

[1] Vibha B and Neelam G (2012) Importance of exploration of microbial biodiversity. Int. Res. J. Biological Sci., 1(3): 78–83.
[2] Bravo A, Likitvivatanavong S, Gill SS and Soberón M (2011) *Bacillus thuringiensis*: a story of a successful bioinsecticide. Biochem. Mol. Biol., 41(7): 423–431.
[3] Verma S and Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ. Technol. Innov., 14: 100369.
[4] Junaid JM, Dar NA, Bhat TA, Bhat AH and Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int. J. Mod. Plant Anim., 1(2): 39–57.
[5] Nicholson WL (2002) Roles of *Bacillus* endospores in the environment. Cell. Mol., 59(3): 410–416.
[6] Ahmed I, Sin Y, Paek J, Elhsan M, Hayat R, Iqbal M and Hyo Y (2014) Description of *Lysinibacillus pakistanensis*. Int. J. Agric. Biol., 16: 447–450.
[7] Zhu C, Sun G, Chen X, Guo J and Xu M (2014) *Lysinibacillus varians* sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle. Int. J. Syst. Evol. Microbiol., 64(11): 3644–3649.
[8] Zhu C, Sun G, Zhao G, Zheng H and Xu M (2015) Complete genome sequence of *Lysinibacillus varians* GY32, a bacterium with filament-to-rod cell cycle. FEMS Microbiol. Lett., 362: 1–3.
[9] Ahmed I, Yokota A, Yamazoe A and Fujiwara T (2007) Proposal of *Lysinibacillus boronitolerans* gen. nov. sp. nov., and transfer of *Bacillus fusiformis* to *Lysinibacillus fusiformis* comb. nov. and *Bacillus sphaericus* to *Lysinibacillus sphaericus* comb. Nov. Int. J. Syst. Evol. Microbiol., 57(5): 1117–1125.
[10] Azmatunnisa M, Rahul K, Lakshmi KV, Sasikala Ch and Ramana ChV (2015) *Lysinibacillus acetophenonii* sp. nov., a solvent-tolerant bacterium isolated from acetophenone. Int. J. Syst. Evol. Microbiol., 65: 1741–1748.
[11] Zhao F, Feng Y, Chen R, Zhang J and Lin X (2015) *Lysinibacillus alkaliophilus* sp. nov., an extremely alkaliphilic bacterium, and emended description of genus *Lysinibacillus*. Int. J. Syst. Evol. Microbiol., 65: 2426–2431.
[12] Sun JQ, Xu L and Wu XL (2017) Lysinibacillus alkalisolisi sp. nov., isolated from saline-alkaline soil. Int. J. Syst. Evol. Microbiol., 67: 67–71.

[13] Rao MPN, Dong ZY, Niu XK, Zhang K, Kang YQ, Dhuillaume A, Xiao M and Li WJ (2019) Lysinibacillus antri sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol., 70: 3295–3299.

[14] Burkett-Cadena M, Sastrowidjaja L, Cadena J and Dunlap CA (2019) Lysinibacillus capsici sp. nov., isolated from the rhizosphere of a pepper plant. Anton. Leeuw. Int. J. G., 112: 1161–1167.

[15] Kim SJ, Jang YH, Hamada M, Ahn JH, Weon HY, Suzuki K, Whang KS and Kwon SW (2013) Lysinibacillus chungkukjangi sp. nov., isolated from Chukkukjang, Korean fermented soybean food. J. Microbiol., 51: 400–404.

[16] Hayat R, Ahmed I, Paek J, Sin Y, Ehsan M, Iqbal M, Yokota A and Chang YH (2014) Lysinibacillus composti sp. nov., isolated from compost. Ann. Microbiol., 64: 1081–1088.

[17] Kämpfer P, Martin K and Glaeser SP (2013) Lysinibacillus contaminans sp. nov., isolated from surface water. Int. J. Syst. Evol. Microbiol., 63: 3148–3153.

[18] Ren Y, Chen SY, Yao HY and Deng LJ (2015) Lysinibacillus cresolivorans sp. nov., an m-cresol-degrading bacterium isolated from coking wastewater treatment aerobic sludge. Int. J. Syst. Evol. Microbiol., 65: 4250–4255.

[19] Yu J, Guan X, Liu C, Xiang W, Yu Z, Liu X and Wang G (2016) Lysinibacillus endophytics sp. nov., an indole-3-acetic acid producing endophytic bacterium isolated from corn root (Zea mays cv. Xinken-5). Anton. Leeuw. Int. J. G., 109: 1337–1344.

[20] Kong D, Wang Y, Zhao B, Li Y, Song J, Zhai Y, Zhang C, Wang H, Chen X, Zhao B et al. (2014) Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil. Int. J. Syst. Evol. Microbiol., 64: 2593–2598.

[21] Ouoba LL, Voudribo Mbozo AB, Thorsen L, Anyogu A, Nielsen DS, Kobawila SC and Sutherland JP (2015) Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mboodi, alkaline fermented leaves of cassava from the Republic of the Congo. Int. J. Syst. Evol. Microbiol., 65: 4256–4262.

[22] Coorevits A, Dinsdale AE, Heyrman J, Schumann P, Van Landschoot A, Logan NA and De Vos P (2012) Lysinibacillus macroides sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol., 62: 1121–1127.

[23] Liu H, Song Y, Chen F, Zheng S and Wang G (2013) Lysinibacillus manganicus sp. nov., isolated from manganese mining soil. Int. J. Syst. Evol. Microbiol., 63: 3568–3573.

[24] Yang LL, Huang Y, Liu J, Ma L, Mo MH, Li WJ and Yang FX (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Anton. Leeuw. Int. J. G., 102: 53–59.

[25] Jung MY, Kim JS, Paek WK, Styrak I, Park IS, Sin Y, Paek J, Park KA, Kim H, Kim HL et al. (2012) Description of Lysinibacillus sinduriansis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. Int. J. Syst. Evol. Microbiol., 62: 2347–2355.

[26] Seiler H, Scherer S and Wenning M (2013) Lysinibacillus meyeri sp. nov., isolated from a medical practice. Int. J. Syst. Evol. Microbiol., 63: 1512–1518.

[27] Miwa H, Ahmed I, Yokota A and Fujiwara T (2009) Lysinibacillus parviboronicapensi sp. nov., a low-boron-containing bacterium isolated from soil. Int. J. Syst. Evol. Microbiol., 59: 1427–1432.

[28] Duan YQ, He ST, Li QQ, Wang MF, Wang WY, Zhe W, Cao YH, Mo MH, Zhai YL and Li WJ (2013) Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J. Microbiol., 51: 289–294.

[29] Rahi P, Kurli R, Khairnar M, Jagtap S, Pansare AN, Dastager SG and Shouche YS (2017) Description of Lysinibacillus telephonicsis sp. nov., isolated from the screen of a cellular phone. Int. J. Syst. Evol. Microbiol., 67: 2289–2295.

[30] Lee CS, Jung YT, Park S, Oh TK and Yoon JH (2010) Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int. J. Syst. Evol. Microbiol., 60: 281–286.

[31] Yu L, Tang X, Wei S, Qiu Y, Xu X, Xu G, Wang Q and Yang Q (2019) Isolation and characterization of a novel piezotolerant bacterium Lysinibacillus yapensis sp. nov., from deep-sea sediment of the Yap Trench, Pacific Ocean. J. Microbiol., 57: 562–568.

[32] Ndakidemi B, Mtei K and Ndakidemi PA (2016) Impacts of synthetic and botanical pesticides on beneficial insects. J. Agric. Sci., 7(6): 364.

[33] Devine GJ and Furlong MJ (2007) Insecticide use: Contexts and ecological consequences. Agr. Hum. Val., 24(3): 281–306.

[34] Baumann P, Clark MA, Baumann L and Broadwell AH (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol. Mol. Biol. Rev., 55(3): 425–436.
[35] Kellen WR, Clark TB, Lindegren JE, Ho BC, Rogoff MH and Singer S (1965) *Bacillus sphaericus* Neide as a pathogen of mosquitoes. J. Invertebr. Pathol., 7(4): 442–448.

[36] Priest FG (1992) Biological control of mosquitoes and other biting flies by *Bacillus sphaericus* and *Bacillus thuringiensis*. J. Appl. Microbiol., 72(5): 357–369.

[37] Charles JF, Nielsen-LeRoux C and Delkcluse A (1996) *Bacillus sphaericus*. Annu. Rev. Entomol., 41: 451–472.

[38] Berry C (2012) The bacterium, *Lysinibacillus sphaericus*, as an insect pathogen. J. Invertebr. Pathol., 109(1): 1–10.

[39] Regis L, Oliveira CM, Silva-Filha MH, Silva SB, Maciel A and Furtado AF (2000) Efficacy of *Bacillus sphaericus* in control of the filariasis vector *Culex quinquefasciatus* in an urban area of Olinda, Brazil. Trans. R. Soc. Trop. Med. Hyg., 94(5): 488–492.

[40] Fillinger U, Knols BG and Becker N (2003) Efficacy and efficiency of new *Bacillus thuringiensis* var. *israelensis* and *Bacillus sphaericus* formulations against Afrotropical anophelines in Western Kenya. Trop. Med. Int. Health., 8(1): 37–47.

[41] Seigel JP and Novak RJ (1999) Duration of Activity of the Microbial Larvicide VectoLex CG® (*Bacillus sphaericus*) in Illinois catch basins and waste tires. J. Am. Mosq., 15(3): 366–370.

[42] Nishiwaki H, Nakashima K, Ishida C, Kawamura T and Matsuda K (2007) Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by *Bacillus sphaericus*. Appl. Environ. Microbio., 73(10): 3404–3411.

[43] Riaz MA, Adang MJ, Hua G, Rezende TMT, Rezende AM and Shen GM (2020) Identification of *Lysinibacillus sphaericus* Binary toxin binding proteins in a malarial mosquito cell line by proteomics: A novel approach towards improving mosquito control. J. Proteom., 227: 103918.

[44] Hu X, Fan W, Han B, Liu H, Zheng D, Li Q, Dong W, Yan J, Gao M, Berry C and Yuan Z (2008) Complete genome sequence of the mosquitocidal bacterium *Bacillus sphaericus* C3-41 and comparison with those of closely related *Bacillus* species. J. Bacteriol., 190(8): 2892–2902.

[45] Oldfield F and Dearing JA (2003) The role of human activities in past environmental change. In Paleoclimate, global change and the future. Springer, Berlin, Heidelberg., 143–162.

[46] Ayangbenro AS and Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health., 14(1): 94.

[47] Atkinson BW, Bux F and Kasan HC (1998) Considerations for application of biosorption technology to remediating metal-contaminated industrial effluents. Water S.A., 129–135.

[48] Puranik PR and Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization Studies. Biotechnol. Prog., 15(2): 228–237.

[49] Lozano LC and Dussán J (2013) Metal tolerance and larvicidal activity of *Lysinibacillus sphaericus*. World J. Microbiol. Biotechnol., 29(8):1383–1389.

[50] Velásquez L and Dussán J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of *Bacillus sphaericus*. J. Hazard. Mater., 167(1-3): 713–716.

[51] Gupta S, Goyal R, Nirwan J, Cameotra SS and Tejoprapaksh N (2012) Biosequestration, transformation, and volatilization of mercury by *Lysinibacillus fusiformis* isolated from industrial effluent. J. Microbiol. Biotechnol., 22(5): 684–689.

[52] Zhang J, Wang Y, Shao Z, Li J, Zan S, Zhou S and Yang R (2019) Two selenium tolerant *Lysinibacillus* sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J. Environ. Sci., 77: 238–249.

[53] Bafana A, Chakrabarti T and Krishnamurthi K (2015) Mercuric reductase activity of multiple heavy metal-resistant *Lysinibacillus sphaericus* G1. J. Basic Microbiol., 55(3): 285–292.

[54] Jibrin AM, Oyewole OA, Yakubu JG, Hussaini A and Egwim EC (2020) Heavy metals biosorption by urease producing *Lysinibacillus fusiformis* 5B. Eur. J. Biol. Res., 10(4): 326–335.

[55] Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B and Mandal A (2014) Isolation and characterization of a *Lysinibacillus* strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J. Environ. Sci. Health A., 49(12): 1349–1360.

[56] Saurabh G, Goyal R, Nirwan J, Cameotra SS and Tejoprapaksh N (2012) Biosequestration, transformation, and volatilization of mercury by *Lysinibacillus fusiformis* isolated from industrial effluent. J. Microbiol. Biotechnol., 22(5): 684–689.
[58] Pollmann K, Raff J, Merroun M, Fahmy K and Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv., 24(1): 58–68.

[59] Sleytr UB, Györvary E and Pum D (2003) Crystallization of S-layer protein lattices on surfaces and interfaces. Prog. Org. Coat., 47(3-4): 279–287.

[60] Mathivanan K, Rajaram R and Balasubramanian V (2016) Biosorption of Cd (II) and Cu (II) ions using Lysinibacillus fusiformis KMNTT-10: equilibrium and kinetic studies. Desalin. Water. Treat., 57(47): 22429–22440.

[61] Vargas JE and Dussán J (2016) Adsorption of toxic metals and control of mosquitos-borne disease by Lysinibacillus sphaericus: dual benefits for health and environment. Biomed. Environ. Sci., 29 (3): 187–196.

[62] Vijayaraghavan K and Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol. Adv., 26(3): 266–291.

[63] Abbas SH, Ismail IM, Mostafa TM and Sulaymon AH (2014) Biosorption of heavy metals: a review. J. Chem. Sci. Technol., 3(4): 74–102.

[64] Hayat R, Ali S, Amara U, Khalid R and Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 60(4): 579–598.

[65] Sharma N and Saharan BS (2015) Role of Lysinibacillus sphaericus SNCs 5 Bacterial Strain as Bio-inoculant for Agriculture Practice. Int. J. Curr. Microbiol. App. Sci., 4(12): 484–499.

[66] Vendan RT, Yu YJ, Lee SH and Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol., 48(5): 559–565.

[67] Trivedi P, Spann T and Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol., 62(2): 324–336.

[68] Andrade LF, de Souza GL, Nietsche S, Xavier AA, Costa MR, Cardoso AM, Pereira MC and Pereira DF (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J. Microbiol., 52(1): 27–34.

[69] Tan KZ, Radziah O, Halimi MS, Khairuddin AR and Shamsuddin Z (2015) Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Aust. J. Crop Sci., 9(12): 1257.

[70] Yu J, Yu ZH, Fan GQ, Wang GH and Liu XB (2016) Isolation and characterization of indole acetic acid producing root endophytic bacteria and their potential for promoting crop growth. J. Agr. Sci. Tech., 18: 1381–1391.

[71] Shabanamol S, Divya K, George TK, Rishad KS, Sreekumar TS and Jisha MS (2018) Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol. Mol. Plant. Path., 102: 46–54.

[72] Sahu PK, Shivaprakash MK, Mallesha BC, Subbarayappa CT and Brahamaparaksh GP (2018) Effect of bacterial endophytes Lysinibacillus sp. on plant growth and fruit yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl. Sci., 7: 3399–3408.

[73] Borah A, Das R, Mazumdar R and Thakur D (2019) Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J. Microbiol., 127(3): 825–844.

[74] Passera A, Rossato M, Oliver JS, Battelli G, Cosentino E, Sage IM, Toffolatti SL, Lopatriello G, Davis JR, Kaiser MD and Delledonne M (2020) Characterization of Lysinibacillus fusiformis strain S4C11: in vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiol. Res., 126665.

[75] Park M, Kim C, Yang J, Lee H, Shin W, Kim S and Sa T (2005) Isolation and characterization of diazotrophic growing bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res., 160(2): 127–133.

[76] Islam MR, Sultana T, Joe MM, Yim W, Cho JC and Sa T (2013) Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and N2 fixation of rice plant. J. Basic Microbiol., 53(12): 1004–1015.

[77] Verma P, Yadav AN, Kazy SK, Saxena AK and Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int. J. Curr. Microbiol. Appl. Sci., 3(5): 432–447.

[78] Verma P, Yadav AN, Khammam KS, Kumar S, Saxena AK and Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J. Basic Microbiol., 56(1): 44–58.

[79] Abiala MA, Odebode AC, Hsu SF and Blackwood CB (2015) Phytobeneficial properties of bacteria isolated from the rhizosphere of maize in southwestern Nigerian soils. Appl. Environ. Microbiol., 81(4): 4736–4743.
[80] Labuschagne N, Hassen AI and Pretorius T (2015) Plant growth promoting rhizobacterial strains and their uses. WO2015114552 A1.
[81] Rahmoun B, Morsli A, Khelifi-Slaoui M, Khelifi L, Stuhec A, Erban A, Kopka J, Prell J and van Dongen JT (2017) Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. J. Plant Interact., 12(1): 1–6.
[82] Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Al Housni SK, Mabood F, Khan AL., Farooq S, Abbas G and Harrasi AA (2017) Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front. Microbiol., 8: 1477.
[83] Sule IO, Okonye TO and Hassan M (2020) Enhancement of growth of potted maize plants using Aspergillus niger and Lysinibacillus sphaericus. Annals. Food Sci. Tech., 21(1): 233–242.
[84] Akinrinlola RJ (2018) Evaluation of Bacillus strains for plant growth-promotion potentials on corn (Zea mays), wheat (Triticum aestivum), and soybean (Glycine max). Dissertation, University of Nebraska.
[85] De Mandal S, Singh SS and Kumar NS (2018) Analyzing plant growth promoting Bacillus sp. and related genera in Mizoram, Indo-Burma biodiversity Hotspot. Biocatal. Agric. Biotechnol., 15: 370–376.
[86] Sgrov V, Cazzán F, Masiarrelli O, De Papa MF, Lagares A and Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol., 85(2): 371–381.
[87] Kumar K, Amarean N and Madhuri K (2017) Alleviation of the adverse effect of salinity stress by inoculation of plant growth promoting rhizobacteria isolated from hot humid tropical climate. Ecol. Eng., 102: 361–366.
[88] Duo L, Hou X, Liu C and Zhao S (2018) Alleviation of salt stress in turfgrass by nano-compot with inoculation of microbial isolates from compost. Pak. J. Bot., 50(4): 1355–1359.
[89] Pal AK and Sengupta C (2019) Isolation of Cadmium and Lead Tolerant Plant Growth Promoting Rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian Agricultural Soil. Soil Sediment Contam., 28(7): 601–629.
[90] Kamaruzzaman MA, Abdullah SR, Hasan HA, Hassan M, Othman AR and Idris M (2020) Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatal. Agric. Biotechnol., 23: 101456.
[91] Martínez S A and Dussán J (2018) Lysinibacillus sphaericus plant growth promoter bacteria and lead phytoREMEDIATION enhancer with Canavalia ensiformis. Environ. Prog. Sustain. Energy., 37(1): 276–282.
[92] Jinal HN, Gopi K, Pritesh P, Kartik VP and Amarean N (2019) Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environ. Sci. Pollut. Res., 26(32): 32815–32823.
[93] Jinal HN, Gopi K, Kumar K and Amarean N (2020) Effect of zinc-resistant Lysinibacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.). Environ. Sci. Pollut. Res., 30: 1–9.
[94] Schachtman DP, Reid RJ and Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Soil., 116(2): 447–453.
[95] Bernhard A (2010) The nitrogen cycle: Processes. Players, and Human. Nat. Educ. Knowl., 3 (10): 25.
[96] Ashraf MA, Hussain H, Hussain J, Gilani SA, Al Housni SK, Mabood F, Khan AL., Farooq S, Abbas G and Harrasi AA (2017) Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front. Microbiol., 8: 1477.
[105] van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ and Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. Bio Control, 63(1): 39–59.

[106] Singh RK, Kumar DP, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashyap PL, Saxena AK, Singhal PK and Arora DK (2013) Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J. Basic Microbiol., 53(5): 451–460.

[107] Abdel-Salam MS, Ameen HH, Soliman GM, Elkelay NY and Asar AM (2018) Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egypt. J. Biol. Pest Co., 28(1): 31.

[108] Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C and Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol.,10:302.