Nanomaterials for skin antifungal therapy: An updated review

Manju Nagpal*, Malkiet Kaur
Chitkara College of Pharmacy, Chitkara University, Punjab, India.

ARTICLE INFO
Received on: 14/01/2020
Accepted on: 29/09/2020
Available online: 25/02/2021

Key words:
Nanoparticles, nanotubes, Candidiasis, fungal, topical formulation, skin permeation.

ABSTRACT
Topical diseases are treated with oral and conventional topical formulations till date. Both oral and topical routes face many challenges such as poor absorption, high metabolism, toxicity, and drug-drug interactions. Conventional topical dosage forms like creams, lotions, and gels have failed to show controlled drug release. Literature reports indicated that more than 1.5 lakh (approximate) people lost their lives due to fungal infections and several lakhs of the population are affected. Even then, it is a neglected subject by public health authorities, and while most of the deaths from fungal diseases can be stopped. Globally, it is estimated that over 30 lakh cases of pulmonary Aspergillosis, 7 lakh cases of Candidiasis, 2.5 lakh cases of Aspergillosis, 5 lakh cases of Pneumocystis jirovecii pneumonia, and many more occur annually. Nanomedicines play a key role in reducing the number of patients coming up with fungal infections. A small-sized drug can easily penetrate the micropores of the skin and show desirable results. Nanomedicines rely on various nanomaterials (lipidic carriers, metal nanoparticles, carbon nanotubes, quantum dots, etc.) for their therapeutic efficacy. Nanomaterials can facilitate efficient topical drug delivery by increased penetration, enhanced safety and efficacy, and sustained and targeted release of drugs. The review summarizes the basics of nanomedicine with respect to topical delivery and various nanomaterials for better therapeutics of the fungal infections of the skin.

INTRODUCTION
Nanomedicine is an area of science and nanotechnology that is used in prognosis, medication, and prevention of diseases and injuries (Patil et al., 2008). Generally, nanomedicine may be defined as an application of nanotechnology in devices and products, prepared with the aim to repair and cure damaged tissues (such as muscle, bone, and nerves). The purpose of nanomedicine is to utilize nanotherapeutic and nanodiagnostic products for patient benefits (Ventola, 2012). For example, Verigene is a nanodiagnostic product that can rapidly identify various irresistible pathogens (Dodémont et al., 2014; Verigene System, 2018). Nanotechnology has revealed its potential to fight against different skin disorders such as atopic dermatitis and psoriasis (De Jong and Borm, 2008; Hafner et al., 2014).

Generally, the success in the cure of skin fungal infections is limited using conventional treatment strategies. Nanotechnology has shown significantly improved therapeutic efficacy in the treatment of these fungal infections. Globally, 2 lakh cases of Cryptococcal meningitis complicating HIV/AIDS, 30 lakh cases of chronic pulmonary Aspergillosis, 7 lakh cases of invasive Candidiasis, 2.5 lakh of invasive Aspergillosis, 5 lakh cases of Pneumocystis jirovecii pneumonia, 1 lakh case reports of disseminated Histoplasmosis, over 100 lakh case reports of fungal asthma, and around 10 lakh case reports of fungal Keratitis occur annually (Bongomin et al., 2017).

Nanomedicine has solved several problems associated with medical research having poor solubility and lack of target specificity intended for therapeutic compounds (Poirot-Mazères, 2011). Nanotechnology has improved the efficacy and safety of conventional therapeutics; for example, it targets directly on specific the site having a drug with low bioavailability (Bawa, 2011). Micelles, lipid nano particles (NPs), microemulsions, vesicular delivery systems, nanoemulsions, polymeric NPs, carbon nanotubes, and fullerenes and dendrimers are various nanomaterials that have attracted attention toward theranostics and nanovectors in nanomedicine (Kralj and Pavelic, 2003). Nanomedicine broadly focuses on three areas: Nanoinstruments and nanomaterials, which can be utilized as biosensors, help in the treatment and act as drug transporter, the awareness of molecular medication in the fields of proteomics and microorganisms (modified or synthetically...
produced), and the application of nanotechnology is intended for the repair of genetic material, cell surgery, and the betterment of natural physiological functions. Nanomedicines based on various nanomaterials with a specific application in skin fungal infections are incorporated in this review.

Topical delivery of nanocarriers through skin barrier

Pharmaceutics and drug delivery are still facing a lot of problems in the topical administration of drugs such as absorption of drugs in different skin layers before getting to the targeted site. Successful topical drug delivery system has been limited because of the penetration barrier provided by skin (Brown et al., 2006). The two main layers that affect the penetration of skin are “epidermis and dermis.” The epidermis is the outmost layer of the skin. It is further differentiated into five layers, i.e., stratum corneum (SC), stratum granulosum, stratum spinosum, stratum lucidium, and stratum basale. It protects the skin from micron-sized particulates, pathogens, hydrophilic chemicals, and water retention (Palmer and DeLouise, 2016). SC and stratum granulosum form a water-tight junction which enables to permeate hydrophilic antifungal drugs or drug molecules having a molecular weight of more than 500 kDa, such as amphotericin B (Uchechi et al., 2014). The hydrophilic nature of the drug results in reducing effectiveness against pathogens; thus, the topically drug applied must be lipophilic in nature as it forms a reservoir on SC, and the drug permeates slowly in the epidermis and the dermis. The release rate of the lipophilic drug is controlled by nanocarriers/nanotechnology to achieve greater bioavailability and prolonged pharmacological effect (Kaur and Kakkar, 2010). Multiple drug resistance in antifungals has turned out to be the most significant global drawback, resulting in adverse health effects and reduced life quality (Nigam, 2015). Biofilms have a vital role in the development of yeast infections (Sanglard, 2016). Antifungal resistance due to biofilms increases its metabolic activity, reflecting a maturation of biofilms, which shows the emergence in antifungals drug resistance (Baillie and Doblas, 2000; Chandra et al., 2001; Wnorowska et al., 2015).

NANOMEDICINE IN SKIN FUNGAL INFECTIONS

Fungal infection

Fungi are the most infectious organisms affecting the skin and the mucosal layer of internal organs (Kim, 2016). It is reportable that the human population of approximately 20%–25% shows the incidence of skin fungal infections (Gupta et al., 2005). Fungal skin infections are highly contagious, which generally spread through infected bathroom floor and usage of contaminated towels, clothing, and other household items. The identification of fungal infection can be done simply by visual symptoms of skin changes like cracking, redness, peeling, and itching. Yeast infection, ringworm infection, jock’s itch, athlete’s foot, and so on are the various common fungal infections (Bseiso et al., 2015). There are three types of fungal infections such as subcutaneous, superficial, and cutaneous. The microorganism causing disease and their examples are shown in Figure 1.

Poor skin penetration and the high dose of hydrophilic antifungal medication diminish their productivity against contagious skin pathogens (Akhtar et al., 2015). The antifungal drugs should be lipophilic in nature for effective topical drug delivery as lipophilic medications demonstrate excellent skin penetration to the skin layer (Kircik, 2016; Kyle and Dahl, 2004).

Nanocarriers build their approach merely toward hair follicles and tend to accumulate among corneocytes and lipids present within the skin (Firooz et al., 2015). Nanocarriers possess the potential to prolong the release of drugs and thereby reduce the dose of antifungals and dose-related side effects (Kaur and Kakkar, 2010). Multiple drug resistance in antifungals has turned out to be the most significant global drawback, resulting in adverse health effects and reduced life quality (Nigam, 2015). Biofilms have a vital role in the development of yeast infections (Sanglard, 2016). Antifungal resistance due to biofilms increases its metabolic activity, reflecting a maturation of biofilms, which shows the emergence in antifungals drug resistance (Baillie and Doblas, 2000; Chandra et al., 2001; Wnorowska et al., 2015).

Figure 1. Types of skin fungal infections.
Significant antifungal activity against dermatophytes has been shown by metal NPs [e.g., gold (Au) and silver (Ag)] and metal oxide NPs like zinc oxide (ZnO), titanium dioxide (TiO\(_2\)), iron oxides (Fe), and copper oxide (CuO). Silver compounds are familiar with their antimicrobial activity since history. The smaller the dimensions, the stronger will be the antimicrobial activity of the NPs (Higa et al., 2013). AgNPs aid in the treatment of fungal infection as antimicrobial agents. The AgNPs penetrate into the plasma membrane of fungi by disrupting and binding to the sulfur-containing protein moieties of the plasma membrane (Lara et al., 2015). AgNPs exhibited antifungal activity against various fungi causing skin infections, such as Microsporum canis, Trichophyton mentagrophytes, Candida albicans, Trichophyton rubrum, Candida tropicalis, Candida glabrata, and Malassezia furfur, and also used in numerous cosmetics that facilitate in preventing skin infections (Aghamoosa and Sabokbar, 2014; Gupta et al., 2013; Kim et al., 2008; Mohamed et al., 2014).

Nanomaterials used in fungal infections

Most nanomaterials are used in fungal infections are in nanoscale, i.e., from 1 to 1,000 nm. The nanomaterials acquire some unique characteristics such as increased strength and hardness, superparamagnetism, strong surface adsorption capacity, quantum properties, and chemical reactivity. These are specially considered to facilitate the delivery of diagnostic or therapeutic agents acting through the biologic barriers, which is primarily aimed to (i) ease out the administration to molecules; (ii) regulate molecular-interactions; and (iii) perceive molecular changes in a sensitive manner. Nanomaterials have a variety of different size, shape, chemical composition, and surface characteristics such as solid or hollow structures (Doll et al., 2013; Fröhlich, 2012; Xia et al., 2009; You et al., 2012) and are capable of adjoining into new drug-delivery vehicles, diagnostic devices, and contrast agents (Peer et al., 2007). For UV protection, zinc oxide (ZnO) and titanium dioxide (TiO\(_2\)) NPs are commonly used on cellulosic fabrics (El-Hady et al., 2013; Farouk et al., 2013). In addition, TiO\(_2\), and ZnO NPs are usually used in sunscreen cosmetic products (Nohynek et al., 2008; Schmid and Riediker, 2008) collectively with nanosilver, nanogold, and other inorganic nanostructured materials to achieve the desired antibacterial activity (Hebeish et al., 2013; Selvam et al., 2012). Recent studies suggest that the application of nanotechnology in medicine enhances the stability, solubility, biocompatibility, permeability, targeting, and sustained release of drugs as well as vaccines (Sanglard, 2016). Several nanocarriers are discussed further in this review that has been investigated by researchers to permeate antifungal drugs for topical application (Dastjerdi and Montazer, 2010).

Properties of nanomaterials

Nanomaterials primarily consist of nonmetal and metal atoms or their combinations, and these are named as organic, metallic, semiconducting particles, respectively. For the improvement of biocompatibility and direct targeting of biologic molecules, nanomaterials are generally encapsulated with polymers and bio-recognition molecules. However, the size and shape of the nanomaterials are based on the salt and surfactant. Several conditions should be maintained during the synthesis of nanomaterials, such as reaction temperatures, reactant concentrations, and solvent conditions (Niemierowicz et al., 2017a). Factors for a nano-based delivery system are as follows:

1. **Particle size, zeta potential, and size distribution:** molecular shape and size of systems are affected by their physical stability, drug release, and cellular uptake of nanoparticulates. Particle size distribution is influenced by the rate of stirring, type and amount of the dispersing agent, temperature, and viscosity. Zeta potential is important for measuring the surface charge of dispersion to maintain its stability.

2. **Surface properties:** Surface charge of the molecule affects the binding of NPs to the cell membrane. The surfaces of nanomaterials can be modified to make them less harmful to health.

Types of nanomaterials

The nanocarriers which are utilized commonly for the treatment of fungal infections are discussed below:

Vesicular delivery systems

Liposomes

Liposomes are phospholipid vesicles, consisting of one or more lipid bilayers in water with a hydrophilic head and a lipophilic tail. They possess hydrophilic compartments between the membranes and lipophilic compartments within bilayer membranes (Grath and Uitto, 2008). Liposomal drug delivery system encapsulating antibiotics can resist the microbial activity against drug-resistant strains as liposome protects the drug from degrading enzyme via isolation process and also promotes diffusion across bacterial envelope (Elzainy et al., 2003; Foldvari et al., 1990). Liposomes are biodegradable and biocompatible in nature. Liposomes are absorbed on the skin surface via lipid-rich channels after that they form occlusive films, increasing drug penetration and skin hydration into SC (Bseiso et al., 2015).

Ethosomes

Ethosomes are nanocarriers having a high concentration of ethanol, water, and phospholipids content in them and are used for transdermal delivery of the drug. It may contain 2%–5% phospholipids and 20%–40% ethanol (Grath and Uitto, 2008). Drug penetration through the skin is higher in the case of ethosomes as compared to liposomes due to the ability of ethanol to fluidize the membrane lipids of SC (Akhtar et al., 2016; Blume et al., 1993; Romero and Morilla, 2013). The addition of ethanol increases the particle size of ethosomes, and a decrease in size was observed by maintaining a constant concentration of phospholipid (Campani et al., 2016). The ethanol presence in ethosomes additionally offers a negative charge on its surface, thereby increasing its colloidal stability (Mbah et al., 2014). Ethosomes infuse through the SC barrier and increase the transdermal flux. The combination of phospholipids and high alcohol content in nanocarrier results in deeper distribution and penetration into the skin (Uchechi et al., 2014). Researchers studied the voriconazole-loaded ethosomes to increase their deposition in the skin. The developed ethosomal formulation exhibited enhanced permeation of drug.
in the rat abdominal skin in comparison to voriconazole in the hydroethanolic solution (Faisal et al., 2016).

Transferosomes

Transferosomes are ultra-flexible vesicles with a bilayer structure and penetrate into the skin easily by passing intracellularly through the lipidic membrane of the SC. It mobilizes from the dehydrated SC to a deep-sited hydrated SC layer via an osmotic gradient. The surfactant present in the transferosomes helps to solubilize the lipid present in SC and allows the higher permeation of the drug through vesicles (Qushawy et al., 2018). They showed enhanced skin penetration in comparison to conventional liposomes because of their increased deformability (Hussain et al., 2017). These are more hydrophilic than other conventional lipid vesicles bilayer and swell more so that they can easily pass from the skin membrane.

Topical antifungal transferosomal formulations loaded with miconazole nitrate showed reduced toxicity along with enhanced antifungal activity in comparison to liposomal formulations and free drug solutions (Pandit et al., 2014). Recently, researchers developed transferosomes loaded with amphotericin B with enhanced antibacterial activity (40-fold) as compared to a marketed liposome formulation of amphotericin B (AmBisome) (Verma and Utreja, 2018).

Transethosomes

Transethosomes are vesicular nanocarriers and possess the merits of both transferosomes as well as ethosomes. Their structure is the same as that of the ethosomes including a penetration enhancer (Kumar et al., 2016). One of the studies developed voriconazole-loaded transethosomes with enhanced *in vivo* skin deposition of voriconazole within a viable layer. These proved to be better than other nanocarriers like conventional liposomes, deformable liposomes, ethosomes, and polyethylene glycol drug solution (Song et al., 2012).

Niosomes

Niosomes are bilayer vesicular systems composed of single alkyl chain nonionic surfactants (Hamishekar et al., 2013). Structurally, the hydrophilic heads of the surfactant oriented toward the exterior and interior of the bilayer, whereas the hydrophobic tail orients inside the bilayer (Handjani-Vila et al., 1979). Therefore, both hydrophilic and hydrophobic drug molecules can be encapsulated in niosomes. Various surfactants employed in the niosome formulation are Spans, Tweens, polyglycerol alkyl ethers, polyoxyethylene alkyl ethers, and so on (Thakkar and Brijesh, 2016). Later on, Alomrani et al. (2015) formulated the niosomal formulations of itraconazole using nonionic surfactants for improved transdermal delivery of drugs.

Spanlastics

Spanlastics are vesicular carrier systems, named as “modified niosomes” because it contains spans along with edge activators like Tweens. Kakkar and Kaur (2011) reported ketoconazole spanlastics vesicles using Span 60 and Tween 80 for its ocular delivery. Farghaly et al. (2017) reported the topical delivery of fenoprofen calcium via nanovesicular spanlastics. Elsherif et al. (2017) estimated spanlastics incorporating terbinafine hydrochloride for treatment of nail fungal infection specifically onychomycosis.

Oleic acid vesicles

Oleic acid is the most-used penetration enhancer for the delivery of different bioactive molecules through the skin. Oleic acid enhances skin penetration via subcutaneous lipid fluidization and phase separation. It is revealed that these fatty acids, e.g., oleic acid and linoleic acid tend to form vesicular structures in the aqueous environment (Verma et al., 2014).

Fatty acids consist of a carbon atom chain having polar and nonpolar parts. Zakir et al. (2010) formulated oleic acid vesicles incorporating fluconazole with efficient drug delivery through SC. Verma and Utreja (2018) investigated clotrimazole oleic acid vesicles for cutaneous *Candidiasis* treatment in guinea pigs. The oleic acid vesicles showed higher skin permeation and skin retention in animal skin. *In vivo* study revealed the capability of drug-loaded with oleic acid vesicles to give sustain release of the drug. Therefore, vesicular nanocarriers minimize the drawbacks of antifungal drugs due to their unique properties like high biocompatibility, ease of surface modification, and their small size. These vesicular nanocarriers proved effective in treating skin fungal infections associated with immunosuppressive diseases like AIDS, as these exhibited controlled drug release behavior which does not activate the immune system of the patient. Above all, these vesicular nanocarriers lead to improve the stability of antifungal drugs within infected tissues, thereby enhancing the antifungal efficacy (Verma et al., 2014).

Lipid NPs

Solid lipid nanoparticles (SLNs)

“SLNs” provide a solid lipid core matrix that helps to solubilize lipophilic molecules, and the lipid core is stabilized with surfactants. Examples of lipids are monoglycerides, diglycerides, triglycerides, steroids, fatty acids, and waxes. SLNs provide physical stability, excellent tolerability to drug molecules, and can be used for controlling the drug release (Votlan et al., 2016).

Nanostructured lipid carriers

Nanostructured lipid carriers are the second generation of lipid NPs and possess a mixture of solid lipids and liquid lipids (Bseiso et al., 2015). Both solid lipid NPs and nanostructured lipid carriers are the best choice for the treatment of topical skin infections, mainly for antifungals as they are lipophilic in nature. These nanostructured lipidic carriers are associated with a low risk of toxicity. The small size of nanocarriers ensures its close contact with SC and enhances the dermal penetration of the drug (Votlan et al., 2016).

Nanoparticles (NPs)

NPs are nanoparticulate dispersions having a particle size of 10−1,000 nm. Active moiety is entrapped, attached, dissolved, or encapsulated into a matrix. Researchers reported NPs as a good choice for an antifungal drug because ampicillin encapsulated with chitosan showed antifungal activity against *C. albicans*. In addition, amphotericin B entrapped into Poly lactic-co-glycolicacid (PLGA) NPs showed increased bioavailability and
decreased side effects in systemic amphotericin B therapy (Gratieri et al., 2010). A study reported the fungicidal activity of MgO NPs against soilborne Phytophthora nicotianae and Thielaviopsis basicola. The NPs inhibited fungal growth, spore germination, and impede sporangium development more efficiently (Chen et al., 2020).

Polymeric NPs

Polymeric NPs are colloidal systems in which a drug is entrapped, dissolved, coated, encapsulated, or dissolved having a diameter of less than 1 μm. Polymeric NPs are categorized as nanocapsules and nanospheres. Nanocapsules are vesicular systems in which the drug is entrapped inside an aqueous or oily cavity surrounded by a polymeric membrane, whereas nanospheres are the matrix systems in which the drug is physically and uniformly dispersed in the matrix. They possess cytotoxicity of a polymer as a problem is raised by the use of organic solvents in the production of polymeric NPs. Thus, the development of solid dosage forms of NPs is of potential interest in research to overcome side effects (Jijie et al., 2017).

Micelles

Micelles are spherical in shape and aggregates of surfactant molecules dispersed in a liquid colloidal system. These aggregates are prepared in an aqueous solution due to the hydrophilic head of surfactant monomers towards the outer surface and hydrophobic tail sequestering toward the center of the micelle (Kumar et al., 2014). Abd-Elsalam (2018) formulated polymeric mixed micelles incorporating terconazole and enriched with cremophor EL. These micelles are of promising potential for topical drug delivery and result in the successful local treatment of skin fungal infections. The efficacy and specificity of micelle-based drug delivery are improved by the use of thermosensitive, ultrasound-sensitive, light-sensitive, and pH-sensitive polymers or block copolymers/or attachment of targeting moieties/ligands to micelles.

Microemulsions and nanoemulsions

Microemulsions are thermodynamically stable, a mixture of oil and water which is stabilized by the use of surfactants and cosurfactants. They are used widely as they enhance the solubility of the drug, thermodynamically stable, ease of permeation, and low cost. The oil and surfactant used in microemulsion act as a penetration enhancer for SC (Palmer and DeLouise, 2016). Nanoemulsions are stable dispersions composed of two immiscible phases, i.e., continuous and dispersed phase. It is characterized by its stability and clarity. These can be incorporated in different dosage forms: creams, gels, foams, sprays, and liquids. They show a broad-spectrum activity against fungi and bacteria. These nanocarriers are the best choice of antifungal agents due to their lipophilicity (Güngör et al., 2013).

Quantum dots (QDs)

QDs refer to semiconductor nanocrystals which consist of 10–50 atoms and have size ranging from 2 to 10 nm. From the last 20 years, QDs are used in optics and electronics, but now they are of special interest in nanomedical research. The application of QDs in nanomedical research includes QDs containing cadmium telluride (CdTe), cadmium selenide (CdSe), indium arsenide (InAs), and indium phosphide (InP). They possess unique electronic, optical, remarkable photostability, and surface properties. These properties make QDs to be useful as luminescent probes, fluorescent which emits light over a broad range, and for optical imaging (Jha et al., 2018; Taylor and Webster, 2011). They have molar extinction coefficients, i.e., 10–50 times higher than organic dyes, which made them brighter and increased blood circulation times during in vivo studies (Sajja et al., 2009; Zambom et al., 2019). QDs have a larger surface area for binding of chemical agents, and due to small size, it is used in the diagnosis of cancer, targeting at neoplastic sites. QDs are used for targeted drug delivery, tissue engineering, and in-vivo imaging (including angiogenic vessel mapping, lymph node, and cell subtype isolation). Other uses of QDs are light-activated therapies, image-guided surgery, and diagnostic tests. Surface coatings facilitate to enhance the fluorescent yield and surface fine-tunability QDs. It also decreases the adverse effects such as hepatotoxicity that may be induced by QDs containing selenium (Se), cadmium (Cd), and arsenic (As). Presently, the research of QDs is prohibited to animal studies due to the toxicity caused by these heavy metals (Veloso et al., 2018).

Diagrammatic representation of various nanocarriers is shown in Figure 2. Various nanocarriers studied for the treatment of skin fungal infections have been summarized in Table 1.

PATENT LITERATURE

Various antifungal compositions based on nanocarriers containing different antifungal agents and other excipients have been investigated against different strains of fungi. A summarized relevant patent literature is depicted in Table 2.

FUTURE PERSPECTIVE

The current era has witnessed extraordinary growth in research in the area of nanomedicine. The use of nanocarrier’s concept in these topical preparations offers various advantages as compared to conventional topical preparations. The use of nanomaterials for skin cancer, tissue replacement, and faster recovery of skin diseases is the future of skin healthcare. In recent studies, nanomaterials have proved to be much effective in skin tissue engineering. The benefits of using nanomedicine-based preparations include high therapeutic effects because of better skin penetration, targeted and controlled drug delivery. The treatment of various topical infections like psoriasis, acne, eczema, impetigo, pustular acne, and dermatitis is still the most challenging field for researchers because of the lack of efficacy and effectiveness of different conventional anti-infective treatments. The emergence of new drug-resistant microorganisms like Methicillin-resistant Staphylococcus aureus and penicillin-resistant Pseudomonas aeruginosa further increases the challenges in the skin-related treatment. The use of nanotechnology in anti-infective skin treatments can act as a major driving force to enhance the efficacy and effectiveness of the treatment. Though the regulation and safety of nanomedicines are debatable, this area of research will continue to evolve with the advances in nanomedicine technologies.
Table 1. Various research reports on nanocarriers along with antifungal drug, target microorganism, and their use.

Microorganism	Drug	Drug carrier	Use	Reference
C. albicans	Histatin 5	Liposome	Oral Candidiasis	Zamboom et al., 2019
C. albicans	voriconazole	Liposome	Fungal infection	Veloso et al., 2018
Aspergillus	Amphotericin B + Dectin 1	Liposome	Fungal infection	Ambati et al., 2019
C. albicans	ketoconazole	Liposome	Fungal infection	Guo et al., 2015
Penicillium expansum, Aspergillus niger, Penicillium herquei, Fusarium graminearum, Aspergillus flavus	Garlic extract	Liposome	Antifungal	Pinilla et al., 2019
Aspergillus	Amphotericin B	Liposome	Burn patients	Laurent et al., 2019
C. albicans	Oxiconazole nitrate	Ethosomal gel	Contagious diseases	Khan et al., 2019
A. flavus	Voriconazole	Ethosomes	Topical fungal infections	Faisal et al., 2016
A. niger	Fluconazole	Ethosomal + liposomal gel	Fungal skin disorders	Rathore et al., 2015
C. albicans	fluconazole	Niosomal gel	Corneal fungal infections	Fetih, 2016
C. albicans	oxiconazole	Niosomal gel	Fungal treatment	Rasheed et al., 2018
Candida species	Miconazole nitrate	Spanlastics	Ocular fungal infections	Mohanta et al., 2017
C. albicans	Itraconazole	Spanlastics	Ocular fungal infections	ElMeshad and Mohsen, 2016
C. albicans	Clotrimazole	Oleic acid vesicles	Antifungal agent	Verma et al., 2014
C. albicans	Terbinafine hydrochloride	Nanoparticle lipid carriers	fungal infections	Gaba et al., 2015
C. albicans	Terbinafine hydrochloride	Solid lipid NPs	Onychomycosis	Tiwari et al., 2014
C. albicans	Bifonazole	Solid lipid NPs	Antifungal agent	Garse et al., 2015
A. niger	Gold	NPs	Antifungal agent	Sojinrin et al., 2017
A. niger + Penicillium	Zinc	NPs	Antifungal agent	Aldosari et al., 2019

(Continued)
Table 2. Patent literature on various antifungal compositions.

Patent no.	Title	Description	References
US 2014/0364440 Al	Topical oil composition for the treatment of fungal infections	Invention discloses the antifungal compositions having antifungal compounds, oil, and excipients. High fatty acids or esters are included in the current composition.	Bapat et al., 2014
AU2014252157B2	Composition and formulation of antimicrobial agents, processes thereof, and methods for treating microbial infection	Current invention comprises antimicrobial compounds and other excipients. The composition includes at least one fatty acid or ester with a carbon chain less than C11, and wherein the fatty acids or esters of more than 10 carbons are not included. These compositions are nanocomposites with a nano-sized particle.	Prasad et al., 2016
BR102014029027A2	Use of nanof ormulations containing 2-aminothiophene derivatives as antifungal agents	Current disclosure investigated the nanoformulations containing thiophene derivatives as antifungal agents, which has been confirmed by evaluating antifungal efficacy in vitro against Candida and Cryptococcus yeast species.	Rabelo et al., 2016
CA309485A1	Antifungal dry powders	It relates to dry powder formulations containing homogeneous particles of a triazole antifungal agent (itraconazole) in crystalline form, stabilizer, and one or more excipients.	Perry et al., 2018
WO 2015/035102 A3	Compositions and methods for the treatment of fungal infections	Relates to compositions to treat fungal infections using compounds containing a lipopeptide moiety and a formyl peptide receptor ligand in the treatment of fungal infections caused by Aspergillus or Candida.	Forrest et al., 2016
WO 2016/205009 A1	Treating infection by a platelet-targeting microbe using NPs	It discloses the methods, combinations, and pharmaceutical compositions for prevention or treatment of infection by a platelet-targeting microbe in a subject, using an effective amount of a nanoparticle comprising a non-cellular material, with an outer coat comprising a cellular membrane derived from a platelet, and an agent for preventing, treating, diagnosing, and prognosing the said infection.	Zhang et al., 2018
WO 2018/136778 A1	Telodendrimers with riboflavin moieties and nanocarriers and methods of making and using same.	It relates to compositions and nanocarriers comprising of linear dendritic TD containing riboflavin. The nanocarriers’ compositions showed desirable loading properties with stability and are used for efficient in vivo delivery.	Luo et al., 2015

CONCLUSION

The most attractive and acceptable strategy for the treatment of skin disorders is topical treatment by applying creams/gels directly on the impacted part. This resulted in the highest patient compliance and therapeutic outcomes. The use of nanomedicine for the treatment of skin disorders is a growing area in research to promote the medical and scientific aspects of nanomaterials in skin health and disease. The nano-medicines act by interacting at a sub-atomic level in the skin tissues. Different types of nanocarriers like liposomes, silver NPs, lipidic NPs, dendrimers, and QDs can act as the most promising drug delivery treatments. All of them have different significance and mechanisms of interactions at barrier membrane interfaces. This uniqueness of interaction at a sub-atomic level in tissues increases the distinctiveness of different niosomal preparations and hence they can be used as per the requirement. In this review, we have discussed all the emerging topical preparations by using nanomedicine based drug delivery systems. We have discussed different challenges, formulation considerations, mechanisms of their action, and their results with some important examples of research articles. The use of nanomaterials for skin cancer, tissue replacement, and faster recovery of skin diseases is the future of...
skin healthcare. The use of nanomedicine-based drug delivery system as topical skin infection treatments is more effective as compared to the conventional dosage forms but the results are not to the mark of complete satisfaction and hence a right direction is needed in which efforts and studies need to be performed to win the battle against this global challenge.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Madhu Chitkara, Vice-Chancellor, Chitkara University; Dr. Ashok Chitkara, Chancellor, Chitkara University; and Dr. Sandeep Arora, Director, Chitkara College of Pharmacy for providing necessary facilities and support.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

FUNDING

There is no funding to report.

CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS

This study does not involve the use of animals or human subjects.

PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv, 2018; 25(1):484–92.

Aghamooosa M, Sabokbar A. Antifungal activity of silver nanoparticles in different sizes against some pathogenic fungi. J Appl Chem Res, 2014; 8(4):115–22.

Akhtar N, Varma A, Pathak K. Ethosomes as vesicles for effective transdermal delivery: from bench to clinical implementation. Curr Clin Pharmacol, 2016; 11(3):168–90.

Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des, 2015; 21(20):2892–913.

Aldosari MA, Darwish SS, Adam MA, Elmarzugi NA, Ahmed SM. Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeol Anthropol Sci, 2019; 11(7):3407–22.

Alhowyani AA, Altamimi MA, Kalam MA, Khan AA, Badran M, Binkhalthun Z, Alkhilef M, Alshamsan A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: in vitro and ex vivo studies. J Microbiol Methods, 2019; 161:87–95.

Alomran AH, Al-Agamy MH, Badran MM. In vitro skin penetration and antimycotic activity of itraconazole loaded niosomes: various non-ionic surfactants. J Drug Deliv Sci Technol, 2015; 28:37–45.

Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, Lewis ZA, Meagher RB. Declin-1-targeted antifungal liposomes exhibit enhanced efficacy. mSphere, 2019; 4(1):e00025-19.

Bailie GS, Doublas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother, 2000; 46:397–403.

Bapat AS, Prasad S, Jain N, Arora N, Mahesh G, Mishra M, Mandal D. Topical oil composition for treatment of fungal infections. U.S. Patent Application No. 14/366,755, 2014.

Bawa R. Regulating nanomedicine-can the FDA handle it? Curr Drug Deliv, 2011; 8(3):227–34.

Blume A, Jansen M, Ghyzy M, Gareiss J. Interaction of phospholipid liposomes with lipid model mixtures for stratum corneum lipids. Int J Pharm, 1993; 99:219–28.

Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi, 2017; 3(4):57.

Bos JD, Meindari MM. The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol, 2000; 9(3):165–9.

Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv, 2006; 13(3):175–87.

Bseo EA, Nasr M, Sammour O, Abd El Gawad NA. Recent advances in topical formulation carriers of antifungal agents. Indian J Dermatol Venereol Leprol, 2015; 81(5):457–63.

Campani V, Biondini M, Mayol L, Cilurzo F, Franţé S, Pitaro M, De Rosa G. Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res, 2016; 33(4):893–908.

Chandra J, Kuhn DM, Mulherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol, 2001; 183:5385–94.

Chen J, Wu L, Lu M, Lu S, Li Z, Ding W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front Microbiol, 2020; 11:365.

Costa AF, Araujo DE, Cabral MS, Brito IT, de Menezes Leite LB, Pereira M, Amaral AC. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal Candidiasis. Med Mycol, 2019; 57(1):52–62.

Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces, 2010; 79:5–18.

De Castro Spadari C. Alginic nanoparticles as non-toxic delivery system for miltefosine in the treatment of Candidiasis and Cryptococcosis. Int J Nanomed, 2019; 14:5187.

De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed, 2008; 3(2):133.

Dodemont M, De Mendoza R, Nonhoff C, Roisin S, Denis O. Performance of the Verigene Gram-negative blood culture assay for rapid detection of bacteria and resistance determinants. J Clin Microbiol, 2014; 52(8):3085–7.

Doll TA, Raman S, Dey R, Burkhard P. Nanoscale assemblies and their biomedical applications. J R Soc Interface, 2013; 10:20120740.

El-Hady Hamdy, Farouk A, Sharaf S. Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym, 2013; 92:400–6.

ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv, 2016; 23(7):2115–23.

Elsherif NI, Shamma RN, Abdelbar G. Terbinfine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS PharmSciTech, 2017; 18(2):551–62.

Elzainy AA, Gu X, Simons FE, Simons KJ. Hydroxyzine from topical phospholipid liposomal formulations: evaluation of peripheral
antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSciTech, 2003; 5(4):41–8.

Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res, 2016; 1:8.

Farghaly DA, Abelewafa AA, Hamza MY, Mohamed MI. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: optimization using experimental design and in vivo evaluation. AAPS PharmSciTech, 2017; 18(8):2899–909.

Farouk A, Sharaf S, Abd El-Hady MM. Preparation of multifunctional cationized cotton fabric based on TiO2 nanomaterials. Int J Biol Macromol, 2013; 61C:230–7.

Fethi G. Flaxonazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J Drug Deliv Sci Technol, 2016; 35:8–15.

Filon FL, Mauro M, Adami G, Bovenzi M, Crosma R. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol, 2015; 72(2):310–22.

Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm, 2015; 495(1):599–607.

Foldvari M, Gesztes A, Mezei M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul, 1990; 7(4):479–89.

Forrest KM, Judice JK, Warren HS, Balkovec JM, Brady TP. Compositions and methods for treatment of fungal infections. U.S. Patent Application No. 14/916,414, 2016.

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed, 2012; 7:5577–91.

Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ, 2015; 53(2):147–59.

Garse H, Jagtap P, Kadam V. Solid lipid nanoparticles based gel for topical delivery of antifungal agent. Int J Pharm Sci, 2015; 68(8):3571.

Jha S, Mathur P, Ramteke S, Jain NK. Pharmaceutical potential of quantum dots. Artif Cells Nanomed Biotechnol, 2018; 46:57–65.

Grath JA, Uitto J. The filaggrin story. novel insights into skin barrier function and disease. Trends Mol Med, 2008; 14:20–7.

Gratieri T, Gelfuso GM, Lopez RF, Souto EB. Current efforts and the potential of nanomedicine in treating fungal Keratitis. Expert Rev Ophthalmo10, 2010; 5(3):365–84.

Güngör S, Erdal MS, Aksu B. New formulation strategies in topical antifungal therapy. J Cosmet Dermatol Sci, 2015; 3(01):56.

Gupta AK, Ryder JE, Chow M, Cooper EA. Dermatophytosis: the management of fungal infections. Skinnmed, 2005; 4(5):305–10.

Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomed, 2014; 9:1005.

Hamishhekar H, Rahimpour Y, Khoustoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv, 2013; 10(2):261–72.

Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghe G. Dispersion of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci, 1979; 1(3):303–14.

Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem, 2019; 275:113–22.

Hebeish AA, Abdelhady MM, Youssef AM. TiO2 nanowire and TiO2 nanorope doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydr Polym, 2013; 91:549–59.

Higa LH, Schillreff P, Perez AP, Morilla MJ, Romero EL. The intervention of nanotechnology against epithelial fungal infections. J Biomater Tissue Eng, 2013; 3(1):1–19.

Hsieh SH, Brunke S, Brock M. Encapsulation of antifungals in micelles protects Candida albicans during gall-bladder infection. Front Microbiol, 2017; 8:117.

Humisto A, Jokela J, Teigen K, Wahlsten M, Permi P, Sivonen K, Herfindal L. Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochem Biophys Acta Membr, 2019; 1861(8):1510–21.

Hussain A, Singh S, Sharma D, Webster TJ, Shafakat F, Furak A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed, 2017; 12:5087–108.

Jijie R, Barras A, Boukherrouch R, Szunerits S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B, 2017; 5(44):8653–75.

Kakkar S, Kaur IP. Spanosomes - a novel nanovesicular system for ocular delivery. Int J Pharm, 2011; 413(1–2):202–10.

Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv, 2010; 7(11):1303–27.

Kaur M, Singh K, Jain SK. Lucilonzon vecculase based gel formulations for its enhanced topical delivery. J Liposome Res, 2019; 30(4):1–43.

Khan WA, Sharma V, Maurya P, Bijauiliya RK. Development and characterization of oxiconazole nitrate loaded ethosomal gel for treating fungal infections. World J Pharmaco1 Res, 2019; 8(10):1341–56.

Kim YJ. Human fungal pathogens: why should we learn? J Microbiol, 2016; 54(3):145–8.

Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol, 2008; 18:1482–4.

Kircik LH. Advancements in topical antifungal vehicles. J Drugs Dermatol, 2016; 15(2):44–8.

Kralj M, Pavelic K. Medicine on a small scale: how molecular medicine can benefit from self-assembled and nanostructured materials. EMBO Rep, 2003; 4(11):1008–12.

Kumar L, Verma S, Bhardwaj A, Vaidya S, Vaidya B. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. Artif Cells Nanobiotechnol, 2014; 42(1):32–46.

Kumar L, Verma S, Singh K, Prasad DN, Jain AK. Ethanol based vesicular carriers in transdermal drug delivery: nanothosomes and transethosamines in focus. NanoWorld J, 2016; 2(3):41–51.

Kyle AA, Dahl MV. Topical therapy for fungal infections. Am J Clin Dermatol, 2004; 5(6):431–43.

Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnology, 2015; 13:91.

Laurent A, Pantet O, Laurent L, Hirt-Burri N, de Buys Roessingh R, Arafoul W, Laurent P, Monod M, Applegate LA. Potency and stability of liposomal amphotericin B formulated for topical management of Aspergillus spp. infections in burn patients. Burns Open, 2019; 4(3):110–6.

Li D, Yang M, Du K, Hou Y, Xie S, Dong Y, Du Y. Synergistic antifungal effect of amphotericin B-loaded PLGA nanoparticles based ultrasound against C. albicans biofilms. bioRxiv, 2018; 63(4):423723.

Luo, J, Huang, W, Shao, Y, Shi, C. Telodendrimers with riboflavin moieties and nanocarriers and methods of making and using same. U.S. Patent Application No. 13/972,539, 2015.

Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv, 2014;11(1):45–59.

Mohamed NH, Ismail MA, Abdel-Mageed WM, Mohamed Shoreit AA. Antimicrobial activity of latex silver nanoparticles using calotrops procer:a. Asian Pac J Trop Biomed, 2014; 4(11):876–83.
prolonged delivery of Histatin 5 to limit growth of *Candida albicans*. Front Microbiol, 2019; 10:1667.

Zhang L, Hu CMJ, Fang RH, Luk BT, Thamphiwatana SK. Treating infection by a platelet targeting microbe using nanoparticles. U.S. Patent Application No. 15/737,594, 2018.

How to cite this article:
Nagpal M, Kaur M. Nanomaterials for skin antifungal therapy: An updated review. J Appl Pharm Sci, 2021; 11 (Supp 1): 015–025.