Incidence, clinical presentation, and antimicrobial resistance trends in *Salmonella* and *Shigella* infections from children in Yucatan, Mexico

Mussareet B. Zaidi1,2*, Teresa Estrada-García1, Freddy D. Campos1, Rodolfo Chim1, Francisco Arjona1, Magda Leon1, Alba Michell1 and Damien Chaussabel4

1 Microbiology Research Laboratory, Hospital General O’Horan, Mérida, Yucatan, Mexico
2 Infectious Diseases Research Unit, Hospital Regional de Alta Especialidad de la Península de Yucatan, Mérida, Yucatan, Mexico
3 Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
4 Benaroya Research Institute, Seattle, WA, USA

*Correspondence: Mussareet B. Zaidi, Departamento de Investigación, Hospital General O’Horan, Av. Itzaes x Jacinto Canek, Merida, Yucatan, C.P. 97000, Mexico. E-mail: mizaidi@prodigy.net.mx

Results: Among 2344 children with acute gastroenteritis, salmonellosis decreased from 17.7% in 2005 to 11.2% in 2011 (p < 0.001). In contrast, shigellosis increased from 8.3% in 2010 to 12.1% in 2011. Compared to children with *Salmonella*, those with *Shigella* had significantly more bloody stools (59 vs 36%, p < 0.001), dehydration (27 vs 15%, p = 0.031), and seizures (11 vs 3%, p = 0.03). In *Salmonella* (n = 365), there was a significant decrease in resistance to ampicillin (43 to 16%, p < 0.001), trimethoprim–sulfamethoxazole (44 to 26%, p = 0.014), and extended-spectrum cephalosporins (27 to 10%, p = 0.009). Reduced susceptibility to ciprofloxacin in *Salmonella* rose from 30 to 41% (p < 0.001). All ceftriaxone-resistant isolates harbored the *bla*CMY-2 gene. *qnr* genes were found in 42 (36%) of the 117 *Salmonella* isolates with a ciprofloxacin MIC ≥ 0.125 μg/ml. Four were *qnr*A1 and 38 were *qnr*B19. Resistance to ampicillin (45%) and trimethoprim–sulfamethoxazole (58%) was common in *Shigella* (n = 218), but isolates remained fully susceptible to ceftriaxone and ciprofloxacin.

Conclusion: Illness from *Salmonella* has decreased while severe *Shigella* infections have increased among children with gastroenteritis in the Yucatan Peninsula. While *Shigella* resistance to clinically important antibiotics remained unchanged, resistance to most of these, except ciprofloxacin, declined in *Salmonella* *bla*CMY-2 and *qnr* genes are common in *Salmonella* isolates.

Keywords: *Salmonella*, *Shigella*, incidence, antimicrobial resistance, beta-lactamase genes, *bla*CMY-2, *qnr* genes, Mexico

ORIGINAL RESEARCH ARTICLE

doi: 10.3389/fmicb.2013.00288

Published: 01 October 2013

www.frontiernan.org

October 2013 | Volume 4 | Article 288 | 1

fmicb-04-00288 — 2013/9/27 — 21:08 — page 1 — #1

Background: *Salmonella* and *Shigella* cause significant morbidity and mortality among children worldwide. Increased antimicrobial resistance results in greater burden of disease.

Materials and Methods: From 2005 to 2011, *Salmonella* and *Shigella* isolates collected from ill children at a major hospital in Yucatan, Mexico, were subjected to serotyping and antimicrobial susceptibility testing by disk diffusion and agar dilution. The identification of *bla*CTX, *bla*CMY, *bla*SHV, and *bla*TEM, and *qnr* resistance genes was conducted by PCR and sequencing.

INTRODUCTION

Salmonella and *Shigella* are associated with a high burden of illness among children in the developing world (Niyogi, 2005; Wese-Colburn and Bobal, 2009; Sokoloff et al., 2013). In Mexico, the disease patterns of these pathogens have undergone significant changes in the last decades. During the early 1970s, *Shigella dysenteriae* type 1 and *Salmonella* Typhi caused severe outbreaks among the local population. The epidemic strains of *S. Typhi* and *S. dysenteriae* were both multidrug resistant (MDR) to chloramphenicol, tetracycline, streptomycin, and sulfonamides, harbored on different plasmids (Datta and Olarte, 1974). Subsequently, *S. dysenteriae* infections decreased, while *Shigella flexneri* became the predominant species isolated from endemic infections. *S. dysenteriae*, nonetheless, was still prevalent among visitors to the Yucatan Peninsula during the late 1980s (Centers for Disease Control [CDC], 1988). Typhoid fever also sharply declined, while non-typhoidal *Salmonella*, extremely prevalent along the food chain, was identified as one of the main causes of gastroenteritis in hospitalized children. *Salmonella* Typhimurium, commonly carrying resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline, was the most common serotype encountered in Yucatan (Zaidi et al., 2006). Extended-spectrum cephalosporin (ESC)-resistant S. Typhimurium isolates first emerged in 2002, and rapidly spread throughout the state causing severe diarrhoea and fatal systemic infections in infants (Zaidi et al., 2007).

Incidence, clinical presentation, and antimicrobial resistance trends in *Salmonella* and *Shigella* infections from children in Yucatan, Mexico

Mussareet B. Zaidi1,2*, Teresa Estrada-García1, Freddy D. Campos1, Rodolfo Chim1, Francisco Arjona1, Magda Leon1, Alba Michell1 and Damien Chaussabel4

1 Microbiology Research Laboratory, Hospital General O’Horan, Mérida, Yucatan, Mexico
2 Infectious Diseases Research Unit, Hospital Regional de Alta Especialidad de la Península de Yucatan, Mérida, Yucatan, Mexico
3 Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
4 Benaroya Research Institute, Seattle, WA, USA

*Correspondence: Mussareet B. Zaidi, Departamento de Investigación, Hospital General O’Horan, Av. Itzaes x Jacinto Canek, Merida, Yucatan, C.P. 97000, Mexico. E-mail: mizaidi@prodigy.net.mx

Results: Among 2344 children with acute gastroenteritis, salmonellosis decreased from 17.7% in 2005 to 11.2% in 2011 (p < 0.001). In contrast, shigellosis increased from 8.3% in 2010 to 12.1% in 2011. Compared to children with *Salmonella*, those with *Shigella* had significantly more bloody stools (59 vs 36%, p < 0.001), dehydration (27 vs 15%, p = 0.031), and seizures (11 vs 3%, p = 0.03). In *Salmonella* (n = 365), there was a significant decrease in resistance to ampicillin (43 to 16%, p < 0.001), trimethoprim–sulfamethoxazole (44 to 26%, p = 0.014), and extended-spectrum cephalosporins (27 to 10%, p = 0.009). Reduced susceptibility to ciprofloxacin in *Salmonella* rose from 30 to 41% (p < 0.001). All ceftriaxone-resistant isolates harbored the *bla*CMY-2 gene. *qnr* genes were found in 42 (36%) of the 117 *Salmonella* isolates with a ciprofloxacin MIC ≥ 0.125 μg/ml. Four were *qnr*A1 and 38 were *qnr*B19. Resistance to ampicillin (45%) and trimethoprim–sulfamethoxazole (58%) was common in *Shigella* (n = 218), but isolates remained fully susceptible to ceftriaxone and ciprofloxacin.

Conclusion: Illness from *Salmonella* has decreased while severe *Shigella* infections have increased among children with gastroenteritis in the Yucatan Peninsula. While *Shigella* resistance to clinically important antibiotics remained unchanged, resistance to most of these, except ciprofloxacin, declined in *Salmonella* *bla*CMY-2 and *qnr* genes are common in *Salmonella* isolates.

Keywords: *Salmonella*, *Shigella*, incidence, antimicrobial resistance, beta-lactamase genes, *bla*CMY-2, *qnr* genes, Mexico

Philosophy in MICROBIOLOGY

Published: 21 October 2013

doi: 10.3389/fmicb.2013.00288

www.frontiernan.org

October 2013 | Volume 4 | Article 288 | 1

"fmicb-04-00288" — 2013/9/27 — 21:08 — page 1 — #1

fmicb-04-00288 — 2013/9/27 — 21:08 — page 1 — #1
In the past 25 years, the combination of the widespread use of oral rehydration solutions, rising antimicrobial resistance, and regional socioeconomic changes has modified the epidemiology and the impact of these enteric pathogens (von Seidlein et al., 2006; Parry and Thrall, 2008). There is a clear need to update relevant epidemiologic data (Sansometti, 2006) as there are few studies from Latin America. Monitoring for ESC and fluoroquinolone resistance is particularly important because these compounds are among the few therapeutic options available for severe Salmonella and Shigella infections. In this study, the main objectives were (1) to analyze trends in incidence and antimicrobial resistance of Salmonella and Shigella infections in children with gastroenteritis and/or systemic infections who sought medical attention at a major hospital in the Yucatan Peninsula, (2) to compare the clinical presentations of the ill children, and (3) determine the prevalence of extended-spectrum beta-lactamases, CMY-2 and Qnr in Salmonella and Shigella isolates.

MATERIALS AND METHODS

The Hospital General O’Horan is a tertiary-care public hospital that receives patients from throughout the state of Yucatan and neighboring states in southeast Mexico. The Pediatrics Emergency Department has an active surveillance program for diarrheal pathogens, current since 2000, which includes children with mild to severe gastroenteritis as well as those with systemic infections. Stool cultures are systematically collected from children with diarrheaea. Blood cultures are also routinely collected from children who appear septic or develop hematological, neurological, or other extraintestinal complications.

CLINICAL AND EPIDEMIOLOGICAL DATA

A trained nurse administered standardized questionnaires to collect demographic and clinical information on the children’s diarrheal episodes.

MICROBIOLOGY

Stool samples were collected in sterile containers containing Cary-Blair media. Samples were inoculated onto XLD, Hektoen Enteric, and brilliant green agars as well as tetrathionate and Rappaport broths and incubated at 35°C for 18–24 h. Broths were subcultured to XLD and brilliant green agar plates and incubated for another 18–24 h. Identification of Salmonella and Shigella isolates were performed with conventional biochemical tests. Salmonella isolates were serotyped by the Kauffmann–White scheme using commercial antisera (Recton Dickinson, Franklin Lakes, NJ, USA). All Shigella isolates were serogrouped; serotyping was performed on S. dysenteriae isolates only. Antimicrobial susceptibility testing was routinely performed for ampicillin, chloramphenicol, gentamicin, nalidixic acid, trimethoprim–sulfamethoxazole, ciprofloxacin, ceftriaxone, ceftazidime, and tetracycline by disk diffusion (CLSI, 2012a). Minimum inhibitory concentrations (MICs) for ciprofloxacin, azithromycin, ceftriaxone, nalidixic acid, and furazolidone were determined by agar dilution (CLSI, 2012b). Susceptibility and resistance breakpoints used for azithromycin were 16 and 32 μg/ml, respectively (Sjöland-Karlsson et al., 2011) and 2 μg/ml and 8 μg/ml for furazolidone (Rampling et al., 1990). Ceftriaxone and/or cefotaxime non-susceptible isolates were tested on a secondary panel of beta-lactam antimicrobials that included cefepime, ceftaxime, cefotaxim, imipenem, meropenem, amoxicillin–clavulanic acid, and piperacillin–tazobactam. According to resistance phenotypes, these isolates were also screened for AmpC beta-lactamase production with a combination disk method using cefotaxim (30 μg) and cefoxitin with boronic acid (30 μg + 300 μg; Jacoby et al., 2006).

GENETIC CHARACTERIZATION OF bla and qnr GENES

All ceftriaxone-resistant isolates (MIC ≥ 4) were tested for the presence of beta-lactamase genes. A multiplex PCR was used for the detection of genes encoding the CTX, SHV, TEM, and OXA enzymes according to previously published methods (Britha et al., 2002; Edelstein et al., 2003). Detection of the bla_{TEM} gene was performed using a previously described assay (Zhao et al., 2001). Salmonella isolates with ciprofloxacin MICs ≥ 0.125 μg/ml were tested for qnrA, qnrB, and qnrS genes following published methods (Robicsek et al., 2006).

Specific group primers used for the study are listed in **Table 1**. Control strains were kindly provided by Patrick McDermott (U.S. Food and Drug Administration) and Jesus Silva-Sanchez (Instituto Nacional de Salud Publica, Mexico).

Data Analysis

Amplified products were separated by gel electrophoresis on 2% agarose and stained with ethidium bromide. Sequencing was performed using both forward and reverse PCR primers on a ABI Prism 3130 XL Genetic Analyzer (Applied Biosystems). Sequences were analyzed using the National Center for Biotechnology Information’s BLAST network service (http://www.ncbi.nlm.nih.gov/BLAST/). Sequences were compared to the original gene sequences reported in the GenBank database of accession numbers K01749, X91846, AY070225, EU432277, FJ460235 (Sutcliffe, 1979; Bauernfeind et al., 1996; Jacoby et al., 2006; Weiner et al., 2009). Sequences for qnrA and qnrB19 were submitted under accession numbers KF517418 and KP917417, respectively.

Table 1	Description

ETHICS

The data was obtained from two different studies that were approved by the Hospital General O’Horan Research and Ethics Committee; written informed consent was obtained from the children’s guardians to collect stool samples and use the data for scientific purposes. For this analysis, clinical and microbiological data were entered on new databases; a unique numerical code was assigned to each patient and personal identifiers were removed to ensure anonymity.
RESULTS

EPIDEMIOLOGY

From January 2005 to December 2011, 2344 children under 10 years of age who were admitted to the hospital for acute gastroenteritis were included in the study. One child with fever and malaise without gastroenteritis, whose blood culture was positive for S. Typhi, was also included. Children came from 94 localities within the state of Yucatan and from 35 other cities or towns in the neighboring states. Eight hundred ninety-one (38%) were under 1 year of age, 1176 (54%) were between 1 and 4 years of age, and 186 (8%) were between 5 and 9 years of age. Salmonella gastroenteritis decreased from 17.7% of all cases in 2005 to 11.2% in 2011, but there was a precipitous rise from 8.3% in 2010 to 12.1% in 2011, although the difference was not significant (p < 0.001). Shigella infections increased during this period, with a precipitous rise from 8.3% in 2010 to 12.1% in 2011, but the difference was not statistically significant (Figure 1A). A total of 365 Salmonella and 218 Shigella isolates were collected. The five most commonly isolated Salmonella serovars from ill children remained constant; S. Typhimurium was consistently the top serovar (19–21%) followed by S. Agona (9%), S. Muenchen (6–7%), S. Muenster (6–11%), and S. Enteritidis (5–7%). The S. Typhi isolate was susceptible to all tested antibiotics. Similarly, there was no change in the distribution of Shigella species; S. flexneri was predominant (68–76%), followed by S. sonnei (16–17%), S. boydii (5–12%), and S. dysenteriae (2%). S. dysenteriae strains belonged to type 3 (two isolates) and type 2 (two isolates).

CLINICAL PRESENTATION

Prospectively obtained clinical data was available for 112 patients with Shigella and 118 patients with Salmonella. Compared to children with Salmonella, those with Shigella had more fever ≥38.5°C (36 vs 37%, p = 0.001, OR = 2.7, 95% CI = 1.4–5.3), bloody stools (59 vs 36%, p < 0.001, OR = 2.6, 95% CI = 1.5–4.6), dehydration (27 vs 15%, p = 0.031, OR = 2.0, 95% CI = 1.0–4.1), and almost four times as many seizures (11 vs 3%, p = 0.03, OR = 3.4, 95% CI = 0.98–13.0, Figure 1B).

ANTIMICROBIAL RESISTANCE

Ampicillin resistance in Salmonella decreased from 63% in 2005 to 16% in 2011 (p < 0.001), while trimethoprim–sulfamethoxazole resistance decreased from 44% to 26% (p = 0.014). Likewise, resistance to ceftriaxone and other ESC, most commonly observed in S. Typhimurium, decreased from 27% to 10% (p = 0.009). Trends for the different time periods throughout the study are shown on Table 2 and Figures 2A–C. MIC50 and MIC90 values for the whole study period were, respectively, 0.83 and 0.5 μg/ml for ciprofloxacin, 0.125 and 64 μg/ml for ceftriaxone, and 8 and 16 μg/ml for azithromycin.

Reduced susceptibility to ciprofloxacin (MIC ≥0.12 and ≤1 μg/ml) was found in 113 Salmonella isolates evenly distributed throughout the study period. 77 of these (68%) were resistant to nalidixic acid, and was most commonly seen in S. Typhimurium (34%), S. Enteritidis (16%), S. Albany (9%), S. Muenster (6%), S. Muenchen (5%), and S. Reading (5%).

The percentage of isolates with reduced susceptibility to ciprofloxacin rose from 30% in 2005 to 41% in 2011 (p < 0.001). The number of isolates with MIC ≥1 μg/ml, however, peaked during 2007–2009 (14%) and then decreased in 2010–2011 (7%), although the difference was not significant (Figure 2A). Isolates with ciprofloxacin MIC = 2 μg/ml were first detected in 2007 in S. Enteritidis strain (2008 and 2011), and one S. Enteritidis strain (2009).

Sixty-one ceftriaxone and ceftazidime resistant isolates were uniformly resistant to cefotaxime, cefotaxin, aztreonam,

PCR name	Primer name	Sequence (5’–3’)	Length (bp)	Amplicon size (pb)
Multiplex TEM, SHV, CTX, OXA	tem-F	TCTTGGAAAGCAGAAGG 20	1150	1150
	tem-R	ACGTCAGTCAGAAGG 20	1150	1150
	shv-F	GATCCAAAGGATATGTTG 19	702	702
	shv-R	TTAGGGTGCCATGCTCCTG 19	702	702
	ctx-F	TTTCTGATGTCAGTCACAA 23	544	544
	ctx-R	CGATATCGTTGGTGCCAATA 22	1000	1000
CMY	cmy-F	GACAGCCTCTTTCTCCACA 19	1000	1000
	cmy-R	TGGAGGAAGGCTACGTA 18	1000	1000
Multiplex qnrA, qnrB and qnrS	qnrA-F	ATTTCTACGCGGATGTTG 20	516	516
	qnrA-R	GATCGGAAAGGATAGTCTA 20	516	516
	qnrB-F	GATCGGAAAGGATAGTCTA 20	469	469
	qnrB-R	GATCGGAAAGGATAGTCTA 20	469	469
	qnrS-F	ATCTTTCCCCAACCCTGAA 20	417	417
	qnrS-R	TAAATTTCGACCATGTTG 20	417	417

Table 1 Specific group primers used for PCR assays for beta-lactamase and qnr genes.
and amoxicillin/clavulanic acid; 52% were resistant to piperacillin/tazobactam. All isolates were susceptible to cefepime, and amoxicillin/clavulanic acid; 52% were resistant to trimethoprim–sulfamethoxazole.

Table 2 | Antimicrobial susceptibility in Salmonella isolates from ill children in Yucatan, Mexico, 2005–2011. Percentage of resistance*

Year of isolation	AMP*	CRO*	CAZ*	AZT	CIP	NAL	CHL	FZD	GEN	STX*	TET
2005–2006 (n = 147)	33.3	19.7	19.7	4.8	0	29.2	33.4	30.8	12.2	38.1	52.4
2007–2008 (n = 138)	25.4	18.1	18.1	3.6	2.2	37.7	31.9	28.4	9.4	34.1	45.7
2010–2011 (n = 80)	20.0	8.8	8.8	5.0	1.2	31.3	33.8	28.7	7.5	28.8	42.5

*Includes resistant and intermediate strains.

Discussion

Illness from Salmonella has decreased in the Yucatan Peninsula while severe Shigella infections have increased among children with gastroenteritis requiring hospitalization. There is a high frequency of resistance to ampicillin and trimethoprim–sulfamethoxazole in Shigella isolates, but these remain uniformly susceptible to ESC, ciprofloxacin, and azithromycin. While Shigella resistance to clinically important antibiotics over the last 7 years remained basically unchanged, resistance to most of these, with
the exception of ciprofloxacin, declined in Salmonella. Resistance to ESC continues to be prevalent among Salmonella isolates, and is mediated by the blaCTX-M-2 gene. qnr genes are widely distributed among our Salmonella population, but their overall frequency appears to be decreasing in recent years.

The increase in shigellosis in our pediatric population is a major public health concern, as a high proportion of our patients presented bloody diarrhea, high fever, and dehydration. The frequency of seizures (11%), moreover, is much higher than that reported in a recent study in Asia (3%; von Seidlein et al., 2006). This could be explained by the higher proportion of S. flexneri infections at our center and by the fact that our study was confined to children with diarrhea sufficiently severe to seek medical care at a hospital emergency room.

Our Shigella strains were frequently resistant to trimethoprim–sulfamethoxazole and ampicillin, the first line empirical therapy for bloody diarrhea at our public hospitals. Although all strains were susceptible to azithromycin, ESCs, and ciprofloxacin, none of these antimicrobials are provided in oral form by our government healthcare system, which services 70% of the population. Consequently, patients with therapeutic failure ultimately required hospitalization with parental ceftriaxone or out-of-pocket purchase of oral azithromycin or cefixime, escalating costs for both the public health sector and families.

Although the increase in Shigella gastroenteritis was not statistically significant, we believe, nonetheless, that our findings are epidemiologically and clinically significant, as the prevalence of Shigella gastroenteritis had never, during the last decade, reached 12%. It has remained at this level during 2012 and 2013—a worrisome trend that warrants close scrutiny by public health authorities.

Our results concur with those of other investigators who challenge the widely accepted notion of a worldwide decline in shigellosis. Recent studies using active or passive surveillance have detected high incidence rates of shigellosis in Peru, Thailand, and China (Chompook et al., 2005; Kosek et al., 2008; Xia et al., 2011). Unlike Southeast Asia (von Seidlein et al., 2006; Vith et al., 2009), where the dominant species has shifted from S. flexneri to S. sonnei, the former continues to be the major culprit of severe shigellosis in Yucatan, as is the case in Peru and China.

The troubling recent rise in shigellosis could well be linked to the current economy. Between 2008 and 2010, the number of people below the poverty line in Yucatan increased by 35,000 to the current economy. Between 2008 and 2010, the number of people below the poverty line in Yucatan increased by 35,000.

Salmonella isolates were distributed into two distinct populations, one which was susceptible and the other resistant to ceftriaxone. CLSI breakpoints for susceptibility and resistance in isolates from stools are 1 and 4 μg/ml, respectively. Breakpoints for susceptibility and resistance in isolates from systemic infections are 0.06 and 1 μg/ml, respectively.

Salmonella isolates from ill children at a state referral hospital in Yucatan, Mexico, 2005–2011. Thin black lines indicate breakpoints for resistance. Number of isolates for each period was as follows: 2005–2006, n = 147; 2007–2008, n = 136, and 2009–2011, n = 85. (A) Ceftriaxone MICs. Reduced susceptibility to ceftriaxone in Salmonella rose from 28% in 2005–2006 to 33% in 2009–2010. Non-susceptibility (MIC ⩾ 2) first emerged in 2007 in a S. Anatum isolate and later appeared in S. Typhimurium multidrug-resistant, cefalosporin-resistant isolates. Black line is resistance breakpoint for isolates from stools; red line is breakpoint for systemic infections. CLSI breakpoints for susceptibility and resistance in isolates from stools are 1 and 4 μg/ml, respectively. Breakpoints for susceptibility and resistance in isolates from systemic infections are 0.06 and 1 μg/ml, respectively. (B) Ceftriaxone MICs. Resistance to ceftriaxone and other extended-spectrum cephalosporins significantly decreased from 19.7% during 2005–2006 to 8.8% in 2010–2011. Salmonella isolates were distributed into two distinct populations, one which was susceptible and the other resistant to ceftriaxone. CLSI breakpoints for susceptibility and resistance are 1 and 4 μg/ml, respectively. (C) Azithromycin MICs. No significant changes in azithromycin MICs were noted. Suggested breakpoints for susceptibility and resistance are 16 and 64 μg/ml, respectively.

FIGURE 2 | Minimum inhibitory concentrations to ciprofloxacin, ceftriaxone, and azithromycin in Salmonella isolates from ill children at a state referral hospital in Yucatan, Mexico, 2005–2011. Thin black lines indicate breakpoints for resistance. Number of isolates for each period was as follows: 2005–2006, n = 147; 2007–2008, n = 136, and 2009–2011, n = 85. (A) Ceftriaxone MICs. Reduced susceptibility to ceftriaxone in Salmonella rose from 28% in 2005–2006 to 33% in 2009–2010. Non-susceptibility (MIC ⩾ 2) first emerged in 2007 in a S. Anatum isolate and later appeared in S. Typhimurium multidrug-resistant, cefalosporin-resistant isolates. Black line is resistance breakpoint for isolates from stools; red line is breakpoint for systemic infections. CLSI breakpoints for susceptibility and resistance in isolates from stools are 1 and 4 μg/ml, respectively. (B) Ceftriaxone MICs. Resistance to ceftriaxone and other extended-spectrum cephalosporins significantly decreased from 19.7% during 2005–2006 to 8.8% in 2010–2011. Salmonella isolates were distributed into two distinct populations, one which was susceptible and the other resistant to ceftriaxone. CLSI breakpoints for susceptibility and resistance are 1 and 4 μg/ml, respectively. (C) Azithromycin MICs. No significant changes in azithromycin MICs were noted. Suggested breakpoints for susceptibility and resistance are 16 and 64 μg/ml, respectively.
Table 3 | Antimicrobial susceptibility in Shigella isolates from ill children in Yucatan, Mexico, 2005–2011. Percentage of resistance*.

Year of isolation	AMP	CRO	AZT	CIP	NAL	CHL	FZD	STX	TET
2005–2006 (n = 79)	39.8	0	0	0	0	16.4	57.5	57.5	83.6
2007–2008 (n = 79)	44.3	0	0	0	1.3	24.1	26.4	59.5	50.4
2010–2011 (n = 66)	34.8	0	0	0	12.1	25.8	59.0	59.0	59.9

*AMP: ampicillin; AZT: azithromycin; CIP: ciprofloxacin; CRO: ceftriaxone; FZD: fosfomycin; NAL: nalidixic acid; STX: streptomycin; TET: tetracycline.

†††Difference from 2005 to 2011: \(p < 0.001 \).

population of USA and Mexico strongly contrasts with reports from Europe and Asia. Recent studies from Spain (de Toro et al., 2011; Perez-Moreno et al., 2013) found an assortment of bls genes in human Salmonella isolates, including \(\text{bla}_{\text{TEM}} - 1 \), \(\text{bla}_{\text{MPC}} \), \(\text{bla}_{\text{CTX-M}} \), \(\text{bla}_{\text{SHV}} \), \(\text{bla}_{\text{PER}} \), \(\text{bla}_{\text{OXA-1}} \), and \(\text{bla}_{\text{OXA-23}} \), among which \(\text{bla}_{\text{CTX-M}} \), \(\text{bla}_{\text{TEM}} \), and \(\text{bla}_{\text{SHV}} \) were more frequently found in poultry isolates from the Netherlands (Dierikx et al., 2010). Likewise, \(\text{bla}_{\text{TEM}} \), \(\text{bla}_{\text{SHV}} \), \(\text{bla}_{\text{PER}} \), \(\text{bla}_{\text{OXA-1}} \), and \(\text{bla}_{\text{OXA-23}} \) are common in non-typhoidal salmonellae from humans and food-animals in India, China, and Korea (Menezes et al., 2010; Tamang et al., 2011a; Yu et al., 2011a). Diversification of beta-lactamase genes depends on a myriad of factors which include, among others, selective pressures in the environment as well as enzyme efficiency (Galán et al., 2013). Unraveling the complexity of the evolutionary processes that lead to the development of resistance and transfer of resistance genes may allow us to better explain their different distributions around the world.

Reduced susceptibility to ciprofloxacin and the presence of \(qnr \) genes was frequent in our Salmonella isolates, 32% presented MICs between 0.125 and 2 \(\mu \)g/ml, and 12% harbored a \(qnrA \) or \(qnrB \) gene. These findings are comparable with those of other reports from Latin America in which \(qnrB19 \) was the predominant variant. It has been detected in Salmonella isolates from food in Colombia (Karczmarczyk et al., 2010), and was highly prevalent in commensal enterobacteria isolated from healthy children in Peru and Bolivia (Pallecchi et al., 2009). Notably, it was also found in 32% of screened individuals living in a remote village in the Amazonas (Pallecchi et al., 2011). In contrast, a recent study conducted on Salmonella isolates from humans, retail meat and animals in the USA detected \(qnr \) genes in only 0.3% of human isolates, and none from animal sources (Sjolund-Karlsson et al., 2010). \(qnr \) genes are also reportedly low in China, Korea, and India (on the order of 5–3%), where \(\\text{aac(6’)-Ib-cr} \) is more commonly present (Menezes et al., 2010; Tamang et al., 2011b; Yu et al., 2011b; Chen et al., 2012; Kim et al., 2013). The origin and the mechanisms for widespread dissemination of \(qrnB \) genes is currently unfolding. Recent evidence points to the chromosome of Citrobacter spp. as the likely origin of plasmid-mediated \(qrnB \) (Jacoby et al., 2011). The presence of \(qrnB19 \) genes on small colE-type plasmids (Karczmarczyk et al., 2010; Pallecchi et al., 2010), as well as their insertion on transposons located on larger plasmids (Cattoir et al., 2008; Dionisi et al., 2009) are believed to contribute to their dissemination and persistence, even in the absence of selective pressure. This could explain its ubiquity in commensal fecal flora and horizontal transfer and spread among unrelated species.
Table 4 | Serotype distribution and antimicrobial susceptibility of Salmonella isolates positive for the qnr gene, Yucatan, Mexico, 2005–2011.

Qnr variant	ID number	Serotype	Year of isolation	Resistance phenotypes to non-quinolone antibiotics	Ciprofloxacin MIC (μg/ml)	Nalidixic acid MIC (μg/ml)
A1	yuhs03-35	Enteritidis	2010	Nal, Fzd	1	128
	yuhs05-13	Havana	2005	Amp, Sxt, Tet	0.5	32
	yuhs05-87	Havana	2005	Amp, Sxt, Tet, Nal	0.5	16
	yuhs05-106	Havana	2005	Amp, Sxt, Tet, CRO	0.5	16
B19	yuhs07-5	Adelaide	2007	Nal, Fzd	0.12	32
	yuhs07-44	Adelaide	2007	Nal	0.5	64
	yuhs07-71	Adelaide	2007	Nal	1	64
	yuhs08-31	Adelaide	2008	Nal	1	64
	yuhs07-40	Agona	2007	Nal	0.5	32
	yuhs08-34	Agona	2008	Nal	1	64
	yuhs07-38	Anatum	2007	Amp, Sxt, Tet, Nal, Cro	1	64
	yuhs07-53	Anatum	2007	Amp, Sxt, Tet, Nal	2	128
	yuhs05-10	Derby	2009	Tet, Nal	0.5	64
	yuhs07-61	Enteritidis	2007	Nal, Fzd	1	64
	yuhs06-57	Enteritidis	2008	Nal, Fzd	1	64
	yuhs08-59	Enteritidis	2008	Nal, Fzd	1	64
	yuhs09-1	Enteritidis	2009	Nal, Fzd	2	64
	yuhs09-7	Enteritidis	2009	Nal, Fzd	1	64
	yuhs11-43	Enteritidis	2011	Nal, Fzd	1	64
	yuhs07-46	Havana	2007	Sxt, Tet, Chi	0.5	16
	yuhs07-28	Muenchen	2007	Nal	1	32
B19	yuhs07-41	Muenchen	2007	Nal	1	32
	yuhs08-1	Muenchen	2008	Nal	0.5	32
	yuhs06-10	Muenchen	2008	Sxt, Nal	0.5	32
	yuhs06-30-2	Muenchen	2008	Nal	0.5	32
	yuhs11-33	Muenchen	2011	Nal	0.5	32
	yuhs05-97	Muenster	2005	Amp, Sxt, Tet, Nal, Chi, Fzd	0.12	32
	yuhs07-74-2	Muenster	2007	Sxt, Tet, Nal, Chi	1	32
	yuhs07-75	Muenster	2007	Sxt, Tet, Nal, Chi	1	32
	yuhs10-7	Muenster	2010	Sxt, Tet, Chi, Nal	1	32
	yuhs11-10	Muenster	2011	Sxt, Tet, Chi, Nal	1	32
	yuhs06-59	Reading	2006	Tet, Nal	1	32
	yuhs06-60	Reading	2006	Tet, Nal	1	32
	yuhs06-65	Reading	2006	Tet, Nal	1	32
	yuhs07-78	Typhimurium	2007	Amp, Tet, Nal, Cro, Chi	1	32
	yuhs03-79	Typhimurium	2007	Amp, Tet, Nal, Cro, Chi	1	32
	yuhs07-9	Typhimurium	2007	Amp, Sxt, Tet, Nal, Cro, Chi	1	32
	yuhs08-60	Typhimurium	2008	Amp, Sxt, Tet, Nal, Cro, Chi, Fzd, Gen	2	64
	yuhs10-16	Typhimurium	2010	Amp, Sxt, Tet, Nal, Cro, Chi	0.25	32
	yuhs11-28	Typhimurium	2011	Amp, Sxt, Tet, Nal, Cro, Chi	2	64
	yuhs11-47	Typhimurium	2011	Tet, Chi, Nal	1	32
	yuhs07-20	Untypable	2007	Nal	1	32

AMP, ampicillin; CHL, chloramphenicol; CRO, ceftriaxone; FZD, furazolidone; GEN, gentamicin; NAL, nalidixic acid; STX, trimethoprim-sulfamethoxazole; TET, tetracycline.
It is likely that many of our isolates with decreased susceptibility to ciprofloxacin have mutations in the quinolone resistance determining region, which was not assessed in this study. Furthermore, several of our nalidixic acid-susceptible isolates with reduced susceptibility to ciprofloxacin are likely to harbor other resistance genes such as aac(6’)-Ib-cr, qnr, aac(6’)-Ib-cr, and qnr that have been reported by other investigators. A more thorough search for plasmid-mediated genes, nucleotide mutations in the DNA gyrase and topoisomerase IV genes, as well as plasmid characterization will be conducted in the future.

It is noteworthy that the prevalence of
\(\text{bla}_{CMY-2} \) and qnr genes decreased during the study period, possibly due to a reduced selective pressure in the regional Salmonella population. Although detected in several other serovars, the
\(\text{bla}_{CMY-2} \) gene is mainly confined to our S. Typhimurium isolates for which the strain is the major reservoir (Zaidi et al., 2007). Our qnr genes, on the other hand, have dispersed more widely in the Yucatan Peninsula, all of the serovars harboring qnr genes are mainly associated with swine except for S. Enteritidis, which is poultry-associated, and S. Muenchen, which is more prevalent in cattle.

The encouraging decline in both the incidence and the antimicrobial resistance of Salmonella is likely due to interventions at the farm level. During recent years, swine producers in Yucatan have decreased the overall usage of antimicrobial compounds by the implementation of stricter biosecurity measures, greater use of vaccines, and stringent hygienic measures. Licensed veterinarians are solely responsible for determining the antibiotic regimens on farms (Jose Cervera, Asociacion Ganadera Local de Porcicultores de Merida, personal communication). Our previous molecular studies have shown that Salmonella strains in humans closely reflect those of locally produced food-animals, particularly swine (Zaidi et al., 2007). Improved farm management practices would thus have a direct impact on zoonotic pathogens such as Salmonella, but would be unlikely to have any effect on strictly human pathogens such as Shigella, an assumption supported by our study results. A comprehensive study in Denmark (World Health Organization [WHO], 2003) showed that an overall reduction in usage of antimicrobial compounds in food-animals was associated with decreased resistance in foodborne pathogens.

The epidemiology of Salmonella and Shigella in the Yucatan Peninsula, as in other regions of the world, is evolving. Typhoid fever and Shigella dysentery type infections, the major scourges four decades ago, are now rare. The new challenges, as evidenced from this study, are MDR, ESC-resistant Salmonella with rising resistance to ciprofloxacin and severe S. flexneri gastroenteritis. Our findings underscore the need to preserve critically important antibiotic classes such as ESC and fluoroquinolones. The agricultural sector in Mexico has taken important steps to reduce the burden of salmonellosis. Comparable action to ameliorate the impact of shigellosis is urgently required. If worsening socioeconomic conditions are a major determinant of this increase, action by health authorities alone will not suffice. Policy makers must take account of the full consequences of social inequality and act accordingly (Stiglitz, 2012).

ACKNOWLEDGMENTS

We thank Jose Cervera, President of the Swine Producer Association for the State of Yucatan (Asociacion Ganadera Local de Porcicultores de Merida) for providing information on farm management practices during the study period. This study was supported by NIH grant U01/A008210, grant no. FD-U-001934 and funding from Fundacion Mexicana para la Salud, Capitulo Peninsular.

REFERENCES

Admoni, O., Yagupsky, P., Golon, A., Kenes, Y., Shiferis, G., and Hinojosa, J. (1996). Epidemiological, clinical and microbiological features of shigellosis among hospitalized children in Northern Israel. Saudi J. Infect. Dis. 27, 139–144. doi: 10.1016/0970-0384(96)90194-0

Anderson, J. (2012). Ohio-San-Jacinto in Shigella Genos. Available at: http://www.foodsafetynews.com/2012/11/ohio-san-jacinto-spike-in-shigella-cases/(accessed November 20, 2012).

Arslan, G., Barrette, T. J., Butaye, P., Clussiart, A., Malloy, M. R., and White, D. G. (2010). Salmonella resistant to extended-spectrum cephalosporins: emergence, prevalence and epidemiology. Microbes Infect. 8, 1945–1954. doi: 10.1016/j.micinf.2005.12.029

Bauernfeind, A., Stemplinger, I., Jungwirth, R., and Grauwerd, E. (1996). Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephaperazone (resistance). Antimicrob. Agents Chemother. 40, 221–224.

Briñas, L., Zarazaga, M., Sánchez, Y., Ruiz-Larrea, F., and Torro, G. (2002). Beta-lactamases in ampicillin-resistant Escherichia coli isolated from foods, humans, and domestic animals. Antimicrob. Agents Chemother. 46, 3516–3520. doi: 10.1128/AAC.46.10.3516-3520.2002

Cattivi, V., Nordmann, P., Silva-Sanchez, J., Espinal, P., and Petrel, J. (2008). IS264-element mediated transposition of qnr-like gene in Escherichia coli: antimicrobial. Agents Chemother. 52, 2929–2932. doi: 10.1128/AAC.00839-08

Chen, X., Zhang, W., Pan, W., Yin, J., Pan, Z., Gao, S., et al. (2012). Prevalence of various aac(6’)-Ib-cr, qnr, and qepA in Escherichia coli isolates from humans, animals, and the environment. Antimicrob. Agents Chemother. 56, 3425–3427. doi: 10.1128/AAC.00939-11

Chompook, P., Samosonsuk, S., von Seiger, C. (2002). Beta-lactamases in Escherichia coli isolated from foods, humans, and domestic animals. Antimicrob. Agents Chemother. 46, 3516–3520. doi: 10.1128/AAC.46.10.3516-3520.2002

Chow, P., Tienman, K., Smith, H., and Mevius, D. (2008). ISEcp-1-mediated transposition of qnr-like gene in Escherichia coli: antimicrobial. Agents Chemother. 52, 2929–2932. doi: 10.1128/AAC.00839-08

Datta, N., and Olario, J. (1974). B factors in strains of Salmonella typhi and Shigella dysenteriae 1 isolated during epidemics in Mexico: classification by compatibility. Antimicrob. Agents Chemother. 5, 310–317. doi: 10.1128/AAC.5.3.310

De la Torre, M., Sánchez, Y., Cerronado, E., Rojo-Bezares, B., García-Campello, M., et al. (2011). Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanic acid and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals. Int. Microbiol. 14, 175–184.

Donicks, C., van Essen-Zandbergen, A., Veldman, K., Smith, H., and Mevius, D. (2008). Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet. Microbiol. 26, 273–278. doi: 10.1016/j.vetmic.2008.03.018

Dossni, A. M., Lucarelli, C., Oschardt, S., Ianis, I., and Villa, L. (2009).

References/Contributions: From the executive summary of the Salva-

The epidemiology of salmonellosis in Thailand: 36-month population-based surveil-

lance study. Bull. World Health Organ. 83, 739–746.

Centers for Disease Control (CDC). (1998). Shigella dysenteriae type 1 in tourists to Cambodia, Mexico. AMDR Morb. Mortal. Wkly. Rep. 37, 485.

CLSI (2012a). Performance Standards for Antimicrobial Susceptibility Test-

ing: Twenty-second informational Supplement. CLSI Document M100-

S22. Wayne, PA: Clinical and Laboratory Standards Institute.

CLSI (2012b). Methods for Dilu-

tion Antimicrobial Susceptibility Tests for Bacteria That Grow Arobactically. Approved Standard, 9th Edn. CLSI Document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

CONIVEL. (2012). Medicación de la pobreza. Estudio Unidades Mexicanas, 2012. Evaluación de la pobreza y pobreza extrema nacional en entidades federativas, 2008–2012. Available at: http://unacion.gob.mx/MinSalud/
Characterization of the plasmidborne quinolone resistance gene qnrB19 in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother. 55, 4058–4061. doi: 10.1128/AAC.02924-09

Ehlefeldt, M., Penfold, M., Falgen, L., Ekdinun, I., and stretcham, L. (2005). Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 47, 3724–3726. doi: 10.1128/AAC.47.12.3724-3726.2003

Feleti, J. P., Poue, G., Stioua, A., Doval, B., Reiket, A., Reys, A., et al. (2012). Characterization of cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathog. Dis. 9, 636–645. doi: 10.1089/fpd.2012.1159

Galan, J. C., Gornalez-Canelos, E., Belin, J. M., and Cason, R. (2013). Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistance to generic plasticity in the β-lactamases world. Front. Microbiol. 4:68. doi: 10.3389/fmicb.2013.00009

Jacoby, G. A., Canton, V., Hooper, D., Martinez-Martinez, L., Nordmann, P., Pascal, A., et al. (2008). qnr gene prevalence in different Enterobacteriaceae species. J Clin. Microbiol. 46, 2257–2259. doi: 10.1128/JCM.01476-07

Jacoby, G. A., Griffin, C. M., and Hooper, D. C. (2011). Cur- rent knowledge of the use of qnr alleles. Antimicrob Agents Chemother. 55, 4079–4084. doi: 10.1128/AAC.01871-11

Jacoby, G. A., Waldh, K. E., and Webb, J. E. (2006). Impact of extended-spectrum, AmpC, and carbapenem-hydrolyzing β-lactamases in Escherichia coli and Klebsiella pneumoniae by disk tests. J. Clin. Microbiol. 44, 1791–1797. doi: 10.1128/JCM.02602-06

Karczewski, M., Martín, M., McCaiger, M., Matra, S., Amaro, L., Leonard, N., et al. (2010). Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars. FEMS Microbiol. Lett. 305, 19–24. doi: 10.1111/j.1574-6968.2009.01484.x

Kim, J. H., Cho, J. K., and Kim, K. S. (2015). Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian Pathol. 42, 221–229. doi: 10.1178/03079457.2015.73.9606

Kedhi, M., Veri, P. P., Pan, W. K., Olubasa, M. P., Gilmian, R. H., Perez, J., et al. (2008). Epidemiology of highly endemic multiple antibiotic-resistant shigellae in children in the Peruvian Amazon. Pediatr. Infect. Dis. J. 27, 541–549. doi: 10.1093/pidjsp/27.8.541

Kotha, K. L., Nataro, J. P., Black- wolder, W. C., Naris, F., Farag, T. H., Pachciakang, S., et al. (2012). burden and etiology of diarrheal disease in infants and young children in developing countries (the Global Enteric MultiCenter Study, GEMS): a prospective, case-control study. Lancet 380, 282–292. doi: 10.1016/S0140-6736(11)60844-2

Menegg, G. A., Khan, M. A., Har- bish, B. N., Paria, S. C., Gosens, W., Vredenboek, K., et al. (2010). Molecular characteriza- tion of antimicrobial resistance in non-typhoidal Salmonella associated with systemic manifesta- tions from India. J. Med. Microbiol. 59, 1477–1483. doi: 10.1128/JCM.02219-9

Nigsch, S. K. (2005). Shigellae. J. Infect. Dis. 192, 143–145.
Pallecchi, L., Riccobono, E., Man- tella, A., Bartalesi, F., Sambri, G., and de Rosa, M. (2008). High prevalence of qnr genes in commensal enterobacteria from healthy children in Foro and Bolivar, Antioquia. Salmonella Enterica, Escherichia coli, and Proteus mirabilis. J. Clin. Microbiol. 52, 2623–2635. doi: 10.1128/JCM.01880-08

Pallecchi, L., Riccobono, E., Man- tella, A., Fernandez, C., Bartalesi, F., Rodriguez, H., et al. (2011). Small qnr-barbearing Ceftiofli-like plasmids spread in a commensal enterobacteria from a remote Amazonas population expressing an antibiosis. J. Antimicrob. Chemother. 66, 1176–1179. doi: 10.1093/jac/dkr025

Pallecchi, L., Riccobono, E., Sen- nari, S., Mantella, A., Bartalesi, F., Vigoni, C., et al. (2010). Characteriza- tion of small Ceftiofli-like plasmids mediating widespread dissemination of the qnrB19 gene in commensal enterobacteria. Antimicrob Agents Chemother. 54, 628–632. doi: 10.1128/AAC.01169-10

Perry C. M., and Thrall, J. F. (2008). Antimicrobial resistance in typhoidal and non-typhoidal salmonella. Curr. Opin. Investig. Drugs. 21, 535–538. doi: 10.1097/RID.0b013e3282f9305a

Pinto-Moraes, M. G., Pires-Filho, E., de Tore, M., Grande-Armas, J., Quiles-Fortuny, V., Pons, M., et al. (2011). β-Lactamases, transfor- mable quinolone resistance determi- nants, and class 1 integron- mediated antimicrobial resistance in human clinical Salmonella enterica serovars. Int. J. Antimicrob. Agents 35, 25–31. doi: 10.1016/j.ijantimicag.2011.11.003

Rampling, A., Upson, R., and Brown, D. F. J. (1990). Nitrofurazone resis- tance in isolates of Salmonella enteri- ca 241-604-52, 2297–2299. doi: 10.1128/AAC.00147-08

Sansonetti, P. J. (2006). Shigellae: an old disease in new clothes? PLoS Med. 3:e354. doi: 10.1371/journal.pmed.0030354

Suryandari, K., Tan, W. J., Dent, A., Liu, W., and Yeh, P. D., et al. (2006). qnr gene study of Shigella dysenteriae in six Asian countries: disease burden, clinical manifestations, and micro- biology. PLoS Med. 3:e135. doi: 10.1371/journal.pmed.0030135

Vanderlinde, S., Kim, L. D., Arai, M., Lee, H. W., Wang, X. Y., Thien, V. D., et al. (2006). A multicen- tre study of Shigella diarrhea in six Asian countries: disease burden, clinical manifestations, and micro- biology. PLoS Med. 3:e355. doi: 10.1371/journal.pmed.0030155

Wassmer, M., Zaidi, M. B., Calra, E., Fernandez-Morens, M., Calra, J. I., and Silva, C. (2009). Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains. BMC Micro- biol. 9:131. doi: 10.1186/1471-2180-9-131

Witman, T. E., Rollin-Kopfke, D. F., and Erdman, M. M. (2012). Detection of Salmonella enterica serovar enterica isolates producing CTX-M cephalosporinase in U. S. livestock populations. Appl. Envi- ron. Microbiol. 78, 7487–7491. doi: 10.1128/AEM.00622-12

Woo-Cornburn, L., and Bohak, D. A. (2008). The expanding spect- rum of disease due to Salmonella: an international perspective. Curr. Opin. Investig. Drugs. 9, 120–134. doi: 10.1097/HOD.0b013e3282f0182-9

World Health Organization (WHO). (2010). Impact of Antimicrobial Resistance in the United States: The Impact of Antimicrobial Resistance on Healthcare Systems: A Report for the United States. WHO. (2002). Update: Pri- mary care guidelines on the treatment of enteric fever. London: World Health Organization (WHO). (2006). Detection of Salmonella enterica serovar Typhimurium strains. BMC Micro- biol. 5:23. doi: 10.1186/1471-2180-5-23

Zaidi et al. Salmonella and Shigella in Mexico
High prevalence of plasmid-mediated quinolone resistance determinant aac(6')-Ib-cr amongst Salmonella enterica serotype Typhimurium isolates from hospitalized paediatric patients with diarrhea in China. J Antimicrob. Agents 37, 152–155. doi: 10.1016/j.ijantimicag.2010.10.021

Zaidi, M. B., Leon, V., Canche, C., Peters, C., Zhao, S., Hubert, S. K., et al. (2007). Rapid and widespread dissemination of multidrug-resistant blaCMY-2 Salmonella Typhimurium in Mexico. J. Antimicrob. Chemother. 60, 398–401. doi: 10.1093/jac/dkm168

Zhao, S., Blickenstaff, K., Glenn, A., Ayers, L., Friedman, S. L., Abbott, J. W., et al. (2009). β-lactam resistance in Salmonella strains isolated from retail meats in the United States by the National Antimicrobial Resistance Monitoring System between 2002 and 2006. Appl. Environ. Microbiol. 75, 7624–7630. doi: 10.1128/AEM.01158-09

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 April 2013; accepted: 06 September 2013; published online: 01 October 2013.

Copyright © 2013 Zaidi, Estrada-Garcia, Campos, Gimeno, Leon, Michell and Chaussabel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.