Forecasting Risk Measures Using Intraday Data in a Generalized Autoregressive Score (GAS) Framework∗

Emese Lazar† Xiaohan Xue‡

The first version: January 21, 2019
This version: July 26, 2019

Abstract

A new framework for the joint estimation and forecasting of dynamic Value-at-Risk (VaR) and Expected Shortfall (ES) is proposed by incorporating intraday information into a generalized autoregressive score (GAS) model, introduced by Patton, Ziegel and Chen (2019) to estimate risk measures in a quantile regression setup. We consider four intraday measures: the realized volatility at 5-min and 10-min sampling frequencies, and the overnight return incorporated into these two realized volatilities. In a forecasting study, the set of newly proposed semiparametric models is applied to 4 international stock market indices: the S&P 500, the Dow Jones Industrial Average, the NIKKEI 225 and the FTSE 100, and is compared with a range of parametric, nonparametric and semiparametric models including historical simulations, GARCH and the original GAS models. VaR and ES forecasts are backtested individually, and the joint loss function is used for comparisons. Our results show that GAS models, enhanced with the realized volatility measures, outperform the benchmark models consistently across all indices and various probability levels.

Keywords: Value-at-Risk, Expected Shortfall, Generalized Autoregressive Score (GAS) Dynamics, Realized Measures, Intraday Data, Risk Forecasting.

JEL Classification: C14, C32, C58, G17, G32

∗For insightful and constructive comments, we thank Tim Bollerslev, Isabel Casas, Mike Clements, Zhong-hao Fu, Xiaochun Meng, James Taylor, Shixuan Wang, Cheng Yan, and seminar participants at 12th Annual SoFiE Conference Shanghai, 2019 Asian Meeting of the Econometrics Society (AMES) Xiamen.
†Corresponding author: ICMA Centre, Henley Business School, University of Reading, Reading, RG6 6BA, UK. Email: e.lazar@icmacentre.ac.uk.
‡ICMA Centre, Henley Business School, University of Reading, Reading, RG6 6BA, UK. Email: x.xue@pgr.reading.ac.uk
1. Introduction

From the perspective of financial risk managers, a risk measure can be considered a map from the space of probability distributions to real numbers. Risk measures can provide banks and financial institutions with specific values of potential losses so that risk managers can adjust their capital reserves against the downside risk. Value-at-Risk (VaR) and Expected Shortfall (ES) are two prevailing measures of financial risk that dominate contemporary financial regulation. VaR provides banks and investment institutions with a loss level that occurs in the worst situation at a given confidence level, and it can be defined as:

$$\text{VaR}^\alpha_t \equiv \inf \{ y_t \in \mathbb{R} | F_{Y|F_{t-1}}(y_t | F_{t-1}) \geq \alpha \} ,$$

where $F_Y(\cdot)$ is the cumulative distribution function of asset returns y_t over a horizon given the information set \mathcal{F}_{t-1}, and $\alpha \in (0, 1)$ is a given significance level. As a quantile, VaR can be expressed directly in terms of the inverse cumulative distribution function: $\text{VaR}^\alpha_t = F_Y^{-1}(\alpha | \mathcal{F}_{t-1})$, and as a risk measure, it has the advantage of being intuitive and easily understood.

However, VaR has inherent deficiencies as it ignores the shape and structure of the tail and is not a coherent risk measure in the sense of Artzner et al. (1999). Thus, after the financial crisis of 2007-08, the Basel Committee on Banking Supervision has proposed a transition from VaR with a confidence level of 99% to ES with a confidence level of 97.5% (Basel Committee on Banking Supervision, 2013). ES is the expectation of returns, conditional on its realization lying below VaR, and it can be defined as:

$$\text{ES}^\alpha_t \equiv \mathbb{E}[y_t | y_t \leq \text{VaR}^\alpha_t , \mathcal{F}_{t-1}] .$$

ES is a coherent risk measure (Roccioletti, 2015), and it can be considered a perfect substitute for VaR in risk management applications.

Normally, ES is estimated via a two-stage approach based on VaR estimation. Whilst ES is itself not elicitable, Fissler, Ziegel and Gneiting (2016) have shown that the pair $(\text{VaR}^\alpha_t, \text{ES}^\alpha_t)$ is elicitable; see also Acerbi and Székely (2014). This means that ES can be estimated jointly with VaR by minimizing a loss function (Ziegel, 2016; and Fissler and Ziegel, 2016).

Following the classification of Engle and Manganelli (2004), the current literature on estimating and forecasting risk measures can be divided into three main categories: parametric, nonparametric and semiparametric models. Previous studies using parametric models to predict VaR and ES assume that financial returns follow a certain distribution, such as
the standard normal (Gaussian) distribution. In reality, however, it is hardly reasonable to make such strong assumptions. Nonparametric models do not make assumptions about the distribution of financial returns, and have the advantage of being model free. While it is not necessary for such models to make a distributional assumption, an inherent problem is the difficulty in finding the optimal size of the estimation window (Engle and Manganelli, 2004). Semiparametric models impose a parametric structure on the dynamics of VaR and ES through their relationship with lagged information, but require no assumptions on the conditional distribution of financial returns (Patton, Ziegel and Chen, 2019).

Quantile regression, as an approach for estimating risk measures, has only recently been considered: Engle and Manganelli (2004) extend the basic quantile regression model to conditional autoregressive value at risk (CAViaR) models; these models focus solely on the estimation of VaR, and it is not obvious how they can be used for ES estimation. In order to estimate ES jointly with VaR in a semiparametric framework, Taylor (2008) proposes conditional autoregressive expectile (CARE) models, based on a simple function of expectiles.\(^1\) Following this, Taylor (2019) synthesizes the quantile regression with the maximum likelihood estimation based on an Asymmetric Laplace density proposed by Koenker and Machado (1999), and estimates VaR and ES jointly. A growing literature documents a significant improvement in VaR and ES estimation in a quantile regression framework (Halbleib and Pohlmeier, 2012; Žíkeš and Baruník, 2014; Wang and Zhao, 2016; and Bayer, 2018).

Following the results of Fissler and Ziegel (2016), Patton, Ziegel and Chen (2019) present several novel dynamic models for the joint estimation of VaR and ES. Specifically, they propose four dynamic semiparametric models for VaR and ES, based on the generalized autoregressive score (GAS) framework introduced by Creal, Koopman and Lucas (2013). This model has been successfully applied in risk measures estimation (Patton, Ziegel and Chen, 2019); CDS spread modelling (Lange et al., n.d.; and Oh and Patton, 2018); systemic risk modelling (Cerrato et al., 2017; Eckernkemper, 2017; and Bernardi and Catania, 2019); and high-frequency data modelling (Gorgi et al., 2018; and Lucas and Opschoor, 2018).\(^2\) However, no studies on risk measures incorporating realized volatilities into the GAS framework have been considered so far.\(^3\) This prompted the research question of this paper, namely whether adding intraday measures of volatility into the GAS framework improves the accuracy of joint VaR and ES forecasts.

The question whether intraday data can improve the predictive accuracy of risk mea-

\(^1\)The connection between quantiles, expectiles and ES is originally found in Aigner, Amemiya and Poirier (1976), and considered further by Newey and Powell (1987).

\(^2\)More studies related to the GAS model can be found on: http://www.gasmodel.com/

\(^3\)Salvatierra and Patton (2015) use measures of realized covariance to build forecasts for copula models.
ures has already been addressed by academics.4 Several studies extend quantile regression methods and other semiparametric models by using information variables generated from high-frequency data.5 Many realized volatility measures have been confirmed to perform efficiently. The realized volatility proposed by Andersen and Bollerslev (1998) and Alizadeh \textit{et al.} (2002) is one of the most widely used intraday volatility measures. Inspired by Engle and Manganelli (2004), Fuertes and Olmo (2013) propose a conditional quantile forecast method combining an effective device to deal with the inter-daily/intra-daily information. Meng and Taylor (2018) extend the CAViaR model and the Quantile Regression HAR model with realized volatility, overnight return and intraday range. In terms of ES estimation, the CARE models of Taylor (2008) have been extended to allow intraday measures as explanatory variables (Gerlach and Chen, 2014; Gerlach and Wang, 2016a; Gerlach and Chen, 2017; and Wang \textit{et al.}, 2018).

While the improvement from adding intraday variables into a semiparametric framework has been widely documented, evidence on using the score-driven model as the framework to estimate risk measures still remains hard to come by. Therefore, in our study motivated by Salvatierra and Patton (2015), the first contribution is that we extend the set of semiparametric GAS models of Patton, Ziegel and Chen (2019): the two-factor GAS model, the one-factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH model, to investigate whether realized measures can improve the predictive accuracy of GAS models. This study is the first one to estimate and forecast VaR and ES jointly by using intraday data in a GAS framework. We shed light on the potential improvement in risk forecasting from adding intraday information in the GAS framework for four stock indices using a long forecasting period (that includes the financial crisis period). Then we perform a thorough analysis to compare our forecasts with those generated from prevailing benchmarks in the current literature. Our results show that incorporating intraday data into the GAS framework outperform other (VaR, ES) forecasts in most cases.

Thus, our second contribution to the literature is that we provide empirical evidence that semiparametric models enhanced with realized volatility measures outperform other benchmark models via various backtesting methods. Our proposed models, especially the GAS-2F model, extended with realized volatilities dominate other benchmarks consistently. Thirdly, we compare four different types of realized measures with regard to their forecasting ability for risk measures, when added to GAS models.

\footnotetext{4}{Both parametric - see Giot and Laurent (2004), Hansen, Huang and Shek (2012), and Louzis, Xanthopoulos-Sisinis and Refenes (2014) - and semiparametric models - see Clements, Galvão and Kim (2008), Fuertes and Olmo (2013), Žíkeš and Baruník (2014), and Gerlach and Wang (2016b).}
\footnotetext{5}{See Clements, Galvão and Kim (2008); Fuertes and Olmo (2013); Žíkeš and Baruník (2014); Gerlach and Chen (2014); Gerlach and Wang (2016a), and Gerlach and Chen (2017).}
The paper is structured as follows: Section 2 briefly introduces the new GAS models that incorporate intraday information; the data used in our empirical study and the in-sample estimation results are presented in Section 3; Section 4 presents the forecasting study and backtesting results; and finally, Section 5 concludes the paper.

2. Models

2.1. GAS models for VaR and ES

Several extensions of the GAS models introduced by Creal, Koopman and Lucas (2013) are proposed in Patton, Ziegel and Chen (2019), which can be estimated by minimizing the loss function of Fissler and Ziegel (2016) called FZ0:

\[
L_{FZ0}(Y, v, e; \alpha) = -\frac{1}{\alpha e} 1\{Y \leq v\}(v - Y) + \frac{v}{e} + \log(-e) - 1,
\]

where \(Y \) denotes the daily return, \(v \) and \(e \) represent the values of VaR and ES, respectively, and \(1 \) is an indicator function which returns 1 when \(Y \leq v \) (i.e., the VaR is exceeded), otherwise it returns zero. Patton, Ziegel and Chen (2019) propose four models: the two-factor GAS model, the one-factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH model, to estimate VaR and ES jointly by minimizing the loss function FZ0. The key novelty in their framework is the use of the scaled score (that can be computed as the first order derivative of the objective function) to drive the time variation in the target parameter. Patton, Ziegel and Chen (2019) present a “news impact curve” to show the impact of past observations on current forecasts of VaR and ES through the score variable. When \(Y > v \), the realized returns do not affect the estimation. But when \(Y \leq v \), forecasts of ES and VaR react to realized returns through the score variable. The GAS-FZ models are specified as below:

(1.A) One-factor GAS model (GAS-1F):

\[
\begin{align*}
\nu_t &= a \exp\{\kappa_t\}, \\
e_t &= b \exp\{\kappa_t\}, \quad b < a < 0, \\
\kappa_t &= \omega + \beta \kappa_{t-1} + \gamma H_{t-1} s_{t-1},
\end{align*}
\]

\(^6\)Normally, the objective function is a probability density function, but here the loss function FZ0 acts as the objective.
where the score variable \(s_t \) is defined as:

\[
s_t \equiv \frac{\partial L_{FZ0}(Y_t, a \exp\{\kappa_t\}, b \exp\{\kappa_t\}; \alpha)}{\partial \kappa} = -\frac{1}{e_t} \left(\frac{1}{\alpha} 1\{Y_t \leq v_t\} Y_t - e_t \right),
\]

and the Hessian factor \(H_t \) is set to one for simplicity;

(1.B) Two-factor GAS model (GAS-2F):

\[
\begin{bmatrix} v_t \\ e_t \end{bmatrix} = w + B \begin{bmatrix} v_{t-1} \\ e_{t-1} \end{bmatrix} + A \begin{bmatrix} \lambda_{v,t-1} \\ \lambda_{e,t-1} \end{bmatrix},
\]

where \(w \) is a \((2 \times 1)\) vector, \(A \) is a \((2 \times 2)\) matrix, and \(B \) is defined as a diagonal matrix for parsimony, and

\[
\lambda_{v,t} \equiv -v_t(1\{Y_t \leq v_t\} - \alpha),
\]

\[
\lambda_{e,t} \equiv \frac{1}{\alpha} 1\{Y_t \leq v_t\} Y_t - e_t;
\]

(1.C) GARCH-FZ model (GARCH-FZ):

\[
\begin{align*}
v_t & = a \cdot \sigma_t, \\
e_t & = b \cdot \sigma_t, \quad b < a < 0, \\
\sigma_t^2 & = \omega + \beta \sigma_{t-1}^2 + \gamma Y_{t-1}^2, \quad (7)
\end{align*}
\]

where \(\sigma_t^2 \) is the conditional variance and is assumed to follow a GARCH(1,1) process. The parameters of this model are estimated by minimizing the loss function \(FZ0 \) in (1), instead of using (Q)MLE.

(1.D) A hybrid GAS/GARCH model (Hybrid):

\[
\begin{align*}
v_t & = a \exp\{\kappa_t\}, \\
e_t & = b \exp\{\kappa_t\}, \quad b < a < 0, \\
\kappa_t & = \omega + \beta \kappa_{t-1} + \gamma \left(-\frac{1}{e_{t-1}} \left(\frac{1}{\alpha} 1\{Y_t \leq v_t\} Y_{t-1} - e_{t-1} \right) \right) + \delta \log|Y_{t-1}|,
\end{align*}
\]

where the variable \(\kappa_t \) is the log-volatility, described by the one-day lagged log-volatility, score factor and the logarithm of absolute return.
2.2. Realized measures

This section provides a brief introduction to various intraday realized measures (RM) used in this study. The most popular measure is the realized volatility (RV), defined as:

\[
RV_{\Delta,t} = \sqrt{\sum_{i=1}^{M} (P_{t,i,\Delta} - P_{t,(i-1)\cdot\Delta})^2},
\]

where \(RV_t \) denotes the realized volatility calculated from the sum of \(M \) intraday squared returns, at frequency \(\Delta \), within day \(t \). Here, the intraday frequency \(\Delta \) divides the whole span of market opening hours \(S \) into \(M \) equal intervals, and \(P_{t,i,\Delta} \) denotes the log price at time \(i \cdot \Delta \) of day \(t \). However, the realized volatility ignores the information from the market overnight return, which is defined as:

\[
overnight_t = \log(P_{t,0}) - \log(P_{t-1,S}),
\]

where \(P_{t,0} \) and \(P_{t-1,S} \) denote the opening price on day \(t \) and the closing price on the previous day, respectively. Several studies have proven that incorporating the overnight return can lead to a more accurate realized measure. In this paper, we consider the approach of incorporating the overnight return in the realized volatility of Blair, Poon and Taylor (2001), Hua and Manzan (2013) and Meng and Taylor (2018) as follows:

\[
RN_{\Delta,t} = \sqrt{RV_{\Delta,t}^2 + (overnight_t)^2}.
\]

In the following, we will use frequencies of 5 and 10 minutes, and use the following notations for simplicity:

\[
RV5_{t} = \sqrt{\sum_{i=1}^{M} (P_{t,i,5} - P_{t,(i-1)\cdot5})^2},
\]

\[
RV10_{t} = \sqrt{\sum_{i=1}^{M} (P_{t,i,10} - P_{t,(i-1)\cdot10})^2},
\]

\[
RN5_{t} = \sqrt{RV5_{t}^2 + (overnight_t)^2},
\]

\[
RN10_{t} = \sqrt{RV10_{t}^2 + (overnight_t)^2}.
\]
In the next section, \(RM \) can signify any of these four realized measures of volatility.

2.3. GAS models for VaR and ES with realized measures

Salvatierra and Patton (2015) propose a GAS model enhanced with high frequency measures to obtain a GRAS model, which has the equation for the dependence parameter, similar to the last row of (2), replaced with:

\[
\kappa_t = \omega + \beta \kappa_{t-1} + \gamma H_{t-1}^{-1} s_{t-1} + c \log(RM_{t-1}).
\]

They use the realized covariance as \(RM_t \), computed from the intraday prices \(P_{t,i} \cdot \Delta \) of a set of assets. The authors find that the inclusion of 5-minute realized covariance significantly improves the in-sample fit and out-of-sample forecasts of the copula models.

Motivated by the set of GAS models and the GRAS model, our new models are proposed as:

(2.A) One-factor GAS model with realized measures (GAS-1F-Re):

\[
\begin{align*}
v_t &= a \exp\{\kappa_t\} \\
e_t &= b \exp\{\kappa_t\}, \quad b < a < 0,
\end{align*}
\]

where \(\kappa_t \) is defined in (13), and the score variable \(s_t \) is defined in (3). Here, the Hessian factor \(H_t \) is set to one for simplicity; \(\log(RM_t) \) is the logarithm of a realized measure which can be: the realized volatility at 5-min and 10-min sampling frequencies (\(RV_5 \) and \(RV_{10} \)), and these two realized volatilities with the overnight return incorporated into them (\(RN_5 \) and \(RN_{10} \)), as defined in (12).

(2.B) Two-factor GAS model with realized measures (GAS-2F-Re):

\[
\begin{bmatrix} v_t \\ e_t \end{bmatrix} = \begin{bmatrix} w \\ B \end{bmatrix} \begin{bmatrix} v_{t-1} \\ e_{t-1} \end{bmatrix} + A \begin{bmatrix} \lambda_{v,t-1} \\ \lambda_{e,t-1} \end{bmatrix} + C RM_{t-1},
\]

where \(w \) and \(C \) are (2×1) vectors, \(A \), and \(B \) are both (2×2) matrices, \(B \) is defined as a diagonal matrix to simplify computation. Following Patton, Ziegel and Chen (2019), we also define the forcing variables \(\lambda_{v,t} \) and \(\lambda_{e,t} \) as the partial derivatives of the given loss function \(L_{FZ0} \) with respect to \(v_t \) and \(e_t \), as in (5) and (6).

Hansen, Huang and Shek (2012) and Hansen, Lunde and Voev (2014) introduce a new framework, Realized (Beta) GARCH, where the variance follows a GARCH(1,1) process, with the squared returns replaced with a realized measure of volatility. Following this model, we propose a GARCH-FZ-Realized model:
(2.C) GARCH-FZ model with realized measures (GARCH-FZ-Re):
\[v_t = a \cdot \sigma_t, \]
\[e_t = b \cdot \sigma_t, \quad b < a < 0, \]
\[\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + cRM_{t-1}^2, \]
where the daily return \(Y_{t-1} \) in the GARCH(1,1) variance equation in (7) is replaced with the realized measure \(RM_{t-1} \). This model is estimated by minimizing the FZ0 loss function.

(2.D) A hybrid GAS/GARCH model with realized measures (Hybrid-Re):
\[v_t = a \exp\{\kappa_t\}, \]
\[e_t = b \exp\{\kappa_t\}, \quad b < a < 0, \]
\[\kappa_t = \omega + \beta \kappa_{t-1} + \gamma(-\frac{1}{e_{t-1}}(\frac{1}{\alpha}1\{Y_t \leq v_t\}Y_{t-1} - e_{t-1})) + \delta \log|Y_{t-1}| + c \log(RM_{t-1}), \]
where the log-volatility \(\kappa_t \) follows the hybrid GARCH model with one-day lagged log-volatility, score factor, realized measures and absolute daily return.

3. Data and empirical study

3.1. Data description

To evaluate the forecasting performance of the new models and to compare them with benchmark models, we collected daily opening and closing prices of four international stock market indices: the S&P 500 (US); Dow Jones Industrial Average; NIKKEI 225 (Japan) and FTSE 100 (UK), from January 2000 to June 2019, from DataStream. To ensure the applicability of every model, we remove market-specific non-trading days and exactly zero returns from each index series. Panel A in Table 1 presents the summary statistics on the four daily equity return series over the full sample period. From the top panel, average annualized returns range from 0.544% for the NIKKEI 225 to 4.377% for the DJIA, and the annualized standard deviation ranges from 18% for the DJIA to about 24% for the NIKKEI 225. All daily return series exhibit substantial kurtosis at around 10. The second and third panels of this table show the sample VaR and ES for four different \(\alpha \) levels: 1%, 2.5%, 5% and 10%. The NIKKEI 225 index proves to be different from the rest since its quantile and ES are lower than the sample risk measures of the other three indices.

Panel B presents the estimated parameters of the ARMA(\(p, q \)) models where the lags \((p, q) \) are optimally selected via the BIC method. The ARMA models for the indices only include a constant except for the S&P 500, which contains an MA term with one lag. Panel C shows
the estimated parameters of the GARCH(1,1) model, where the residuals are assumed to follow the skew-t distribution. Panel D presents the parameters of the degree of freedom and skewness in the skew-t distribution.

The percentage log overnight returns are generated as in (10). For the realized volatility, the data is obtained at 5-min and 10-min sampling frequencies from the Oxford-Man Institute’s realized library\footnote{This realized library can be accessed by: https://realized.oxford-man.ox.ac.uk/} (see Heber, Lunde and Shephard, 2009). To generate the new realized measure incorporating the overnight return in realized volatility, we use (12).

The full data period is divided into an in-sample period for estimation and an out-of-sample period to backtest the estimated results. We employ a rolling window approach, where each model is re-estimated every five trading days using a rolling window of 2000 observations. Then the rest of the period until June 2019 of approximately 2900 days, is the out-of-sample period to evaluate one-day ahead VaR and ES estimates.

3.2. Forecasting models

VaR and ES are predicted via the score forecast for one trading day ahead in the out-of-sample period for each series, using the proposed GAS-Realized models and the FZ-GARCH-Realized model, as well as nonparametric models and parametric models as benchmarks. For nonparametric models, historical simulations are widely used because of their advantages of being model free and easy to implement. In our study, we select three commonly used rolling window sizes to forecast VaR and ES: 125, 250 and 500 days. Two popular GARCH models are employed in this study, including the Gaussian (GARCH-G) and Skew-t (GARCH-Skt) models as parametric model benchmarks. We also consider other established models that use high-frequency data, considered to be well-suited to forecast VaR and ES: the HAR model of Corsi, Mittnik, Pigorsch and Pigorsch (2008), and the HEAVY model of Shephard and Sheppard (2010). In each model, we estimate VaR and ES with Gaussian and Skew-t distributions of the errors in the second step, after the conditional volatility estimation. We also take the semiparametric approach of Taylor (2019) based on the asymmetric Laplace distribution, into our benchmark set.

To evaluate the performance of the GAS models enhanced with realized measures, we also implement the four models proposed by Patton, Ziegel and Chen (2019) as benchmarks. Differently from Patton, Ziegel and Chen (2019) who used certain parameters estimated from a fixed in-sample period, we use a rolling window approach, where each model is re-estimated every five trading days using a window of size 2000 trading days. In this study, we consider
four sets of GAS models extended with different realized measures: RV5, RV10, RN5 and RN10 defined in (12). In the following sections we compare the forecasting performance of these four sets of extended models, which gives a total of 16 models, with the 13 benchmark models enlisted above.

3.3. *In-sample estimation*

The parameters of the GAS models and the proposed four sets of GAS-Realized models are estimated by minimizing the loss function in (1). We estimate these models by using a quasi-Newton method and the functions *fminsearch* and *fminunc* as optimization algorithms, which are similar routines to the one used by Engle and Manganelli (2004). It is hard to estimate these models using a non-smooth objective function, and this algorithm is sensitive to the starting values used in the search. For each model, we first generate 10^5 vectors of parameters from a uniform random number generator for the parameters of the GAS models. For the parameters used to generate VaR and ES, we set the individual values between -2 and -3, and -3 and -4, respectively, to ensure that ES is always less than VaR. We computed the average loss value for each vector, then select 10 vectors that generated the lowest average loss as initial values for the optimization routine. The vector producing the lowest loss value was selected as the final initial value of the search algorithm for all windows in order to shorten computational time.

Table 2 presents the estimated parameters of the GAS models for the S&P 500, estimated using an estimation period of 2000 days from the beginning of January 2000 for $\alpha = 5\%$. The parameters of the three two-factor GAS models (GAS-2F, GAS-2F-RV5, and GAS-2F-RN5) are presented in the first panel of Table 2; we separate the parameters of VaR and ES. It is clear that the b parameters are statistically significant for both VaR and ES, which can be explained by the volatility clustering effect. The four columns on the right side of this panel show the parameters of GAS-2F extended with the 5-minute realized measures. Due to adding 5-min realized measures, the degree of clustering decreases for VaR and ES. Also, the parameters of score a_v and a_e experience a significant decrease after adding the realized measures. The parameters of the one-day lagged realized measures RM_{t-1}, c, are statistically significantly negative for both VaR and ES, indicating that larger values of these realized variables will result in a lower estimated quantile or ES, which is intuitive. The average loss generated by the GAS-2F model is 0.756, which is larger than the loss of the GAS-2F models extended with realized measures (0.735 and 0.734).

The second panel in Table 2 shows the estimated parameters of the other GAS models extended with the 5-minute realized measures using an estimation period of 2000 days from
the beginning of January 2000 for the S&P 500, for $\alpha = 5\%$. Similarly to the b parameters of the GAS-2F model, the β parameters of the other models are also statistically significant, which means that the current estimated risk measures rely heavily on the previous estimation. Also, we find that the parameters of realized measures (c for the GAS-1F model, the GARCH-FZ model, and the Hybrid model) are all statistically significantly positive. Intuitively, a large realized volatility will lead to a low quantile through the score variable in these models. We obtain that the inclusion of realized measures in the updating models results in smaller coefficients of the GAS shocks (γ), which is intuitive. Later, we will see the role that the score variable plays in forecasting VaR and ES.

[INSERT TABLE 2 ABOUT HERE]

4. Out-of sample forecasting and backtesting

We evaluate one day-ahead VaR and ES forecasts for the four international stock indices, and for the following four probability levels: 1%, 2.5%, 5% and 10%. One-day ahead VaR and ES forecasts are made with parameter values estimated every 5 days, for each model and probability level, using rolling windows of size 2000 (except for historical simulations). The forecasting sample period for each index is approximately 2900 days. In this section, we backtest the VaR and ES forecasts of the proposed models and compare their performance with that of benchmark models. Firstly, we backtest VaR and ES individually via the Dynamic Quantile (DQ) regression and the Dynamic Expected Shortfall (DES). Following these tests, we employ a method based on the FZ0 loss function to backtest VaR and ES jointly.

4.1. Backtesting VaR

The most popular procedures evaluating the performance of VaR forecasts are mainly based on VaR failures, i.e.,

$$I_t = 1\{Y_t \leq VaR_t^\alpha\}.$$

The commonly used VaR backtesting method, known as the unconditional coverage (UC) test, is proposed by Kupiec (1995), and uses the proportion of failures as its main tool. In this test, the hit percentage is defined as the proportion of the returns below the estimated VaR, then the difference between the hit percentage and its theoretical value of α is examined. Thus, the VaR model is rejected or not according to the null hypothesis of the UC test below,
based on which the Likelihood Ratio (LR) test is performed:

$$H_{UC}^{VaR} : E_{t-1}[I_t] = \alpha.$$

Table 3 presents the number of model rejections of the above null hypothesis for four daily equity return series, over the out-of-sample period, for the 29 different forecasting models, at 1% and 5% significance levels, respectively, and for different probability levels. To obtain these columns, we perform the unconditional backtest above for all indices, and count the number of rejections for each model.

The third and fourth columns of Table 3 show that the proposed new GAS models extended with realized measures generally tend to have a lower number of UC test rejections as compared to the number of rejections of the GAS-FZ models of Patton, Ziegel and Chen (2019), for $\alpha = 1\%$. The GARCH model and HEAVY model with a skew-t distribution also tend to have a lower number of rejections at 1% significance level. At 5% significance level, several GAS-FZ models with overnight returns incorporated in the realized volatility have zero rejections of the UC test. In general, adding realized measures into GAS models for predicting VaR achieves a lower number of test rejections, based on our results on the hit percentage test.

However, the UC test is statistically weak for small sample size, and is criticized by several studies (see Nieto and Ruiz, 2016) that it ignores the clustering of failures. To address these drawbacks, the conditional coverage (CC) test is considered, in which the null hypothesis is:

$$H_{CC}^{VaR} : E_{t-1}[I_t|I_{t-1}] = \alpha.$$

We employ the dynamic quantile (DQ) test proposed by Engle and Manganelli (2004) to implement the CC test. The DQ test has power against the misspecification of ignoring conditionally correlated probabilities and can be extended to examine other explanatory variables. The DQ test examines whether the hit variable defined as $Hit_{v,t} = 1\{Y_t \leq VaR_t\} - \alpha$, follows an i.i.d. Bernoulli distribution with probability level α and whether it is independent of the VaR estimator; the expected value of $Hit_{v,t}$ is 0. Furthermore, from the definition of the quantile function, the conditional expectation of VaR_t given any information known at $t-1$ must also be 0, which means that the hit function cannot be correlated with other lagged variables. Also, the $Hit_{v,t}$ must not be autocorrelated. If $Hit_{v,t}$ satisfies the conditions stated above, then there will be no autocorrelation in the hits, and no measurement error. In this study, we include one lag of $Hit_{v,t}$ in the regression of the
test. Consider the following DQ regression:

\[\text{Hit}_{v,t} = a_0 + a_1 \text{Hit}_{v,t-1} + a_2 \text{VaR}_{t-1} + u_{v,t}, \]

(18)

where \(\mathbf{a} = [a_0, a_1, a_2] \) is the set of parameters of the regression. Based on the null hypothesis, we test whether all parameters in the set \(\mathbf{a} \) are zero. Performing this DQ test gives a test statistic, which is distributed \(\chi^2(3) \) asymptotically.

The middle panel of Table 4 shows the p-values of the DQ test of VaR forecasts for \(\alpha = 1\% \), for the four stock indices. P-values that are greater than 5\% indicate no evidence against the optimality at 5\% significance level (in bold), and values between 1\% and 5\% are in italics. For the S&P 500, all of our newly proposed models pass the DQ test at 1\% significance level. When we consider the NIKKEI 225 and FTSE 100 index, we see significant improvements after adding realized measures in the GAS models. For the DJIA index, using realized measures we obtain that fewer models fail the DQ test, while the historical simulations pass the test and the GARCH model with the skew-t distribution performs well. But for this index, all of the GAS-1F models extended with realized measures are able to pass the DQ test for all four indices. Overall, adding realized measures enables GAS-FZ models to reduce the number of rejections of the DQ test for \(\alpha = 1\% \).

[INSERT TABLES 4-6 ABOUT HERE]

For \(\alpha = 2.5\% \) (see Table 5), we obtain similar results, namely that adding realized measures generally reduces the number of rejections of the DQ test. For the DJIA index, the two-factor GAS model can pass the test after adding realized measures RN5 and RN10. For \(\alpha = 5\% \), in Table 6, we can see that all original GAS-FZ models can pass the DQ test across the four indices except the Hybrid model for the S&P 500 index. After adding realized measures in the GAS models, it can be seen that the p-values increase and the DQ test is generally passed. Table 7 presents the number of model rejections at 1\% and 5\% significance levels for quantile regression VaR backtests across the four markets, for different probability levels. It can be concluded that the set of GAS models extended with realized measures tend to have a lower number of rejections than the original GAS models and several other benchmarks. It should be noted that the four GAS-1F model extended with different realized measures have the least number of rejections of the DQ test, especially for low values of \(\alpha \).

[INSERT TABLE 7 ABOUT HERE]
4.2. Backtesting ES

All models that we consider produce both VaR and ES forecasts. From an economic point of view, for example, when we compare the 2.5% ES forecasts of the GAS-1F-RV5 and the 2.5% ES forecasts of the GAS-1F, the first one has, on average, an ES forecast lower with 13.29% (S&P 500), 17.49% (DJIA), 8.40% (NIKKEI), and 5.31% (FTSE 100). The results indicates that ignoring realized measures overestimates risk on average. Looking at the significance of these values, we follow the backtesting method of Patton, Ziegel and Chen (2019) to evaluate the ES estimates individually, using a dynamic ES (DES) regression test:

\[
\lambda_{e,t}^s = b_0 + b_1 \lambda_{e,t-1}^s + b_2 ES_{t-1} + u_{e,t},
\]

where \(\lambda_{e,t}^s\) is the standardized version of \(\lambda_{e,t}\) defined in (6) \(\lambda_{e,t}^s = \frac{\lambda_{e,t}}{\epsilon_t} = \frac{1}{\alpha} \{ Y_t \leq VaR_t \} \frac{Y_t}{\epsilon_t} - 1\), and \(b = [b_0, b_1, b_2]\) is the set of parameters of the regression. Based on the null hypothesis, we test whether all parameters in set \(b\) are zero.

The right panel of Table 4 shows the p-values from the DES test of the ES forecasts for \(\alpha = 1\%\), for the four stock indices. Similarly to the result of the DQ test, incorporating the realized measure RN10 in GAS models seems to reduce the number of backtest rejections for the NIKKEI 225 and the FTSE 100 indices. GAS-1F models with realized measures can pass the DES test at 5% significance level for all indices, which is consistent with the result of the DQ test. The two-factor GAS model, after adding the risk measure RN10, passes the DES test for all indices. Almost all of our new models pass the DES test across the four indices for \(\alpha = 2.5\%\), except the GAS-2F for the NIKKEI 225, as can be seen in the right panel of Table 5. Table 6 presents similar results across four indices using an \(\alpha\) of 5\%, whilst some benchmarks also have p-values higher than 5\%, for example, the HEAVY model with a skew-t distribution. Table 7 summarizes the total number of model rejections at 1\% and 5\% significance levels for the Dynamic ES regression backtests, across the four markets, for different probability levels. The GAS-1F models enhanced with realized measures have the smallest number of backtest rejections.

4.3. Joint backtesting of the (VaR, ES) risk measures

In order to compare jointly the VaR and ES forecasts generated by different models, in this section, a loss function proposed in Fissler and Ziegel (2016) is employed. The authors discuss how VaR and ES are jointly elicitable and present a group of loss functions for risk measure estimation and backtesting. We follow the choice of Patton, Ziegel and Chen (2019) for the loss function FZ0, as defined in (1). To compare the performance of each model using
the FZ0 loss function, we calculate the average loss value \(L_{FZ0} = \frac{1}{T} \sum_{t=1}^{T} L_{FZ0,t} \) for different \(\alpha \) values across the four indices.

The left panel of Table 4 presents the average losses for the four equity return series, over the out-of-sample period, for 13 different benchmark forecasting models and 16 newly proposed models that use the 5-min and 10-min realized measures. The lowest average loss in each column is highlighted in bold, whilst the second lowest is highlighted in italics. For \(\alpha = 1\% \), the GAS-FZ models enhanced with the realized volatility using overnight returns and the HEAVY-Skt model perform well, overall.

For \(\alpha = 2.5\% \) (see Table 5), the GAS-2F model employing the 10-min realized volatility and overnight returns (GAS-2F-RN10) outperforms the other models, with lower loss than most other models for most series and being consistently ranked well, being the best model for the DJIA and FTSE 100 index. In Table 6 (\(\alpha = 5\% \)), the GAS-2F-RN5 and GAS-2F-RN10 models outperform the other models with the lowest loss for the DJIA and the FTSE 100 index, respectively. The HEAVY-Skt model has the lowest loss value for the S&P 500.

Table 8 presents the rankings (with the best performing model ranked 1 and the worst ranked 29) based on average losses using the FZ0 loss function, for the four index return series, over the out-of-sample period, for the 29 different forecasting models. The last two columns in each panel represent the average rank across the four series and the rank of the average, respectively. For \(\alpha = 1\% \), the best-performing model is the GAS-1F model with the 5-min realized volatility and overnight returns, followed by the GAS-1F models extended with the other two realized measures. Considering \(\alpha = 2.5\% \), the GAS-2F-RN10, GARCH-FZ-RV5, and GAS-1F-RN10 are the three models having the lowest average loss values. For \(\alpha = 5\% \) and \(\alpha = 10\% \), our proposed models have a relatively higher rank than the benchmarks, except the HEAVY model with a skew-t distribution, which is ranked second for \(\alpha = 5\% \).

Another observation here is that the losses generated from the GAS-FZ models with realized measures are generally lower than the loss generated from most benchmark approaches. However, the HEAVY-Skt is always one of best 5 models considered in the overall ranking for all four probability levels. This suggests that the variables extracted from intraday data provide useful information for risk measure forecasting.

[INSERT TABLE 8 ABOUT HERE]

In order to analyse the relative performance of each model, we employ the Diebold-Mariano (DM) test to compare any two models using differences in average losses. In this study, t-statistics from the DM test compare the average losses, using the FZ0 loss function, for four indices, and for different probability levels, over the out-of-sample period. A negative t-statistic indicates that the row model outperforms the column model with a significant loss.
difference. The absolute values greater than 1.96 (2.575 or 1.64) indicate that the average loss difference is significantly different from zero at 95% (99% or 90%) confidence level. In Figure 1, we present the results for the S&P 500 with the null hypothesis that the row model and the column model have equal values for the loss function. The numbering of the models used in the figure is given in the first column of Table 3. Positive test statistics corresponding to darker colors mean that the row model has larger losses than the column model. The white blocks mean that the row model dominates the column model in loss comparison at 95% significance level; the light green (below white in the color bar) blocks mean that the row model has lower average loss than the column model, but not significantly so; and the dark red blocks mean that the row model has higher loss than the column model at 95% significance level. In Figure 1, the rows for Model 8 (HEAVY-Skt-RV5), Model 23 (GAS-1F-RN5), and Model 27 (GAS-1F-RN10) have lighter blocks compared to other rows. Therefore, these are the three best performing models for the S&P 500 index.

Following Wang, Gerlach and Chen (2018) and Taylor (2019), we use the model confidence set (MCS) test introduced by Hansen, Lunde and Nason (2011) to compare the forecasting models via the FZ0 loss function. This approach builds model confidence sets using one-sided elimination based on the Diebold-Mariano test. In this study, we consider the 75% confidence level and employ two methods: the R method using sums of absolute values for calculating the test statistic for MCS; and the SQ method uses the summed squares. Table 9 presents the number of models within the MCS test using the block bootstrap with the block length of 12 and 10,000 replications, based on the losses generated from the FZ0 loss function. The GAS-2F-RN10 is the best performing model, overall, and the GAS models extended with realized measures perform better than most of the benchmark models. The main finding generated from the MCS test echo the results from the other backtesting methods. The result that some GAS models enhanced with realized measures end up more often in the MCS than HAR and HEAVY models highlights the usefulness of the score function that the GAS models build on, and we also show evidence that the use of realized measures enhances the risk forecasts of GAS models.

Table 9 presents

8The 95% confidence level was considered as well with similar results (results available on request).
9Details can be found on page 465 of Hansen, Lunde and Nason (2011); and the Matlab code for MCS testing can be downloaded from www.kevinsheppard.com/MFE Toolbox.
5. Conclusions

Patton, Ziegel and Chen (2019) proposed a set of semiparametric models (GAS-FZ) in a generalized autoregressive score (GAS) framework to estimate risk measures. This study provides an extension of this, using exogenous information from high frequency data, in order to improve on the prediction of VaR and ES. This provides a new semiparametric framework named GAS-FZ-Realized, proposed for estimating and forecasting VaR and ES jointly. Through incorporating four realized measures (5-min and 10-min realized volatility with or without the overnight return) into the GAS-FZ models, we observe an improvement in forecasting risk measures over the in-sample and out-of-sample periods.

We employ the newly proposed models to estimate the VaR and ES of four international stock indices empirically, over the period 2000 to 2019. The parameters of the models are estimated by minimizing the FZ loss function of Fissler and Ziegel (2016). Then VaR and ES forecasts are built and individually backtested using the unconditional coverage test and the dynamic quantile (and ES) regression tests, as well as the joint loss function is computed. The main finding is that forecasts generated from the GAS-FZ-Realized models outperform forecasts based on GARCH models or historical simulations, even those based on the original GAS-FZ models. The only exception is the HEAVY-Skt-RV5 which we found is difficult to beat.

To conclude, the GAS-FZ-Realized models, especially the GAS-2F combined with the 10-min realized volatility and the overnight return, can provide more accurate risk measures for risk management across different stock indices and probability levels when compared to other models. This work could be potentially extended by improving the ES component, as the dynamics of VaR may not change simultaneously with ES, for example, by modelling an AR relationship between VaR and ES or by assuming a dynamic Omega ratio to describe the relationship between the two measures (Taylor, 2019). Moreover, this study can be extended by using realized volatility at different frequencies or via other proposed realized measures, for example those found in Meng and Taylor (2018).
References

Acerbi, C. and Székely, B. (2014), ‘Back-testing expected shortfall’, Risk 27, 76–81.
Aigner, D. J., Amemiya, T. and Poirier, D. J. (1976), ‘On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function’, International Economic Review 17(2), 377–396.
Alizadeh, S., Brandt, M. W. and Diebold, F. X. (2002), ‘Range-based estimation of stochastic volatility models’, The Journal of Finance 57(3), 1047–1091.
Andersen, T. G. and Bollerslev, T. (1998), ‘Answering the skeptics: Yes, standard volatility models do provide accurate forecasts’, International Economic Review 39(4), 885–905.
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999), ‘Coherent measures of risk’, Mathematical Finance 9(3), 203–228.
Basel Committee on Banking Supervision (2013), ‘Fundamental review of the trading book: A revised market risk framework’, Basel Committee on Banking Supervision, Basel.
Bayer, S. (2018), ‘Combining value-at-risk forecasts using penalized quantile regressions’, Econometrics and statistics 8, 56–77.
Bernardi, M. and Catania, L. (2019), ‘Switching generalized autoregressive score copula models with application to systemic risk’, Journal of Applied Econometrics 34(1), 43–65.
Blair, B. J., Poon, S.-H. and Taylor, S. J. (2001), ‘Forecasting s&p 100 volatility: the incremental information content of implied volatilities and high-frequency index returns’, Journal of Econometrics 105(1), 5–26.
Cerrato, M., Crosby, J., Kim, M. and Zhao, Y. (2017), ‘The joint credit risk of uk global-systemically important banks’, Journal of Futures Markets 37(10), 964–988.
Clements, M. P., Galvão, A. B. and Kim, J. H. (2008), ‘Quantile forecasts of daily exchange rate returns from forecasts of realized volatility’, Journal of Empirical Finance 15(4), 729–750.
Corsi, F., Mittnik, S., Pigorsch, C. and Pigorsch, U. (2008), ‘The volatility of realized volatility’, Econometric Reviews 27(1-3), 46–78.
Creal, D., Koopman, S. J. and Lucas, A. (2013), ‘Generalized autoregressive score models with applications’, Journal of Applied Econometrics 28(5), 777–795.
Eckernkemper, T. (2017), ‘Modeling systemic risk: time-varying tail dependence when forecasting marginal expected shortfall’, Journal of Financial Econometrics 16(1), 63–117.
Engle, R. F. and Manganelli, S. (2004), ‘Caviar: Conditional autoregressive value at risk by regression quantiles’, Journal of Business & Economic Statistics 22(4), 367–381.
Fissler, T. and Ziegel, J. F. (2016), ‘Higher order elicitability and osband’s principle’, The Annals of Statistics 44(4), 1680–1707.
Fissler, T., Ziegel, J. F. and Gneiting, T. (2016), ‘Expected shortfall is jointly elicitable with value at risk-implications for backtesting’, Risk 29(1), 58—61.

Fuertes, A.-M. and Olmo, J. (2013), ‘Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction’, International Journal of Forecasting 29(1), 28–42.

Gerlach, R. and Chen, C. W. (2014), ‘Bayesian expected shortfall forecasting incorporating the intraday range’, Journal of Financial Econometrics 14(1), 128–158.

Gerlach, R. and Chen, C. W. (2017), ‘Semi-parametric expected shortfall forecasting in financial markets’, Journal of Statistical Computation and Simulation 87(6), 1084–1106.

Gerlach, R. and Wang, C. (2016a), ‘Bayesian semi-parametric realized-care models for tail risk forecasting incorporating realized measures’, arXiv preprint arXiv:1612.08488 .

Gerlach, R. and Wang, C. (2016b), ‘Forecasting risk via realized garch, incorporating the realized range’, Quantitative Finance 16(4), 501–511.

Giot, P. and Laurent, S. (2004), ‘Modelling daily value-at-risk using realized volatility and arch type models’, Journal of Empirical Finance 11(3), 379–398.

Gorgi, P., Hansen, P., Janus, P. and Koopman, S. (2018), ‘Realized wishart-garch: a score-driven multi-asset volatility model’, Journal of Financial Econometrics 17(1), 1–32.

Halbleib, R. and Pohlmeier, W. (2012), ‘Improving the value at risk forecasts: Theory and evidence from the financial crisis’, Journal of Economic Dynamics and Control 36(8), 1212–1228.

Hansen, P. R., Huang, Z. and Shek, H. H. (2012), ‘Realized garch: a joint model for returns and realized measures of volatility’, Journal of Applied Econometrics 27(6), 877–906.

Hansen, P. R., Lunde, A. and Nason, J. M. (2011), ‘The model confidence set’, Econometrica 79(2), 453–497.

Hansen, P. R., Lunde, A. and Voev, V. (2014), ‘Realized beta garch: A multivariate garch model with realized measures of volatility’, Journal of Applied Econometrics 29(5), 774–799.

Heber, G., Lunde, A. and Shephard, N. (2009), ‘Oxford-mann institute’s realized library version 0.1’.

Hua, J. and Manzan, S. (2013), ‘Forecasting the return distribution using high-frequency volatility measures’, Journal of Banking & Finance 37(11), 4381–4403.

Koenker, R. and Machado, J. A. (1999), ‘Goodness of fit and related inference processes for quantile regression’, Journal of the American Statistical Association 94(448), 1296–1310.

Kupiec, P. H. (1995), ‘Techniques for verifying the accuracy of risk measurement models’, The Journal of Derivatives 3(2), 73–84.

Lange, R.-J., Lucas, A. and Siegmann, A. (n.d.), ‘Score-driven systemic risk signaling for european sovereign bond yields and cds spreads’, Systemic Risk Tomography (2017), 129–
Louzis, D. P., Xanthopoulos-Sisinis, S. and Refenes, A. P. (2014), ‘Realized volatility models and alternative value-at-risk prediction strategies’, *Economic Modelling* **40**, 101–116.

Lucas, A. and Opschoor, A. (2018), ‘Fractional integration and fat tails for realized covariance kernels’, *Journal of Financial Econometrics* **17**(1), 66–90.

Meng, X. and Taylor, J. W. (2018), ‘An approximate long-memory range-based approach for value at risk estimation’, *International Journal of Forecasting* **34**(3), 377–388.

Newey, W. K. and Powell, J. L. (1987), ‘Asymmetric least squares estimation and testing’, *Econometrica* **55**(4), 819–847.

Nieto, M. R. and Ruiz, E. (2016), ‘Frontiers in var forecasting and backtesting’, *International Journal of Forecasting* **32**(2), 475–501.

Oh, D. H. and Patton, A. J. (2018), ‘Time-varying systemic risk: Evidence from a dynamic copula model of cds spreads’, *Journal of Business & Economic Statistics* **36**(2), 181–195.

Patton, A. J., Ziegel, J. F. and Chen, R. (2019), ‘Dynamic semiparametric models for expected shortfall (and value-at-risk)’, *Journal of Econometrics* **211**(2), 388–413.

Roccioletti, S. (2015), *Backtesting Value at Risk and Expected Shortfall*, Springer.

Salvatierra, I. D. L. and Patton, A. J. (2015), ‘Dynamic copula models and high frequency data’, *Journal of Empirical Finance* **30**, 120–135.

Shephard, N. and Sheppard, K. (2010), ‘Realising the future: forecasting with high-frequency-based volatility (heavy) models’, *Journal of Applied Econometrics* **25**(2), 197–231.

Taylor, J. W. (2008), ‘Estimating value at risk and expected shortfall using expectiles’, *Journal of Financial Econometrics* **6**(2), 231–252.

Taylor, J. W. (2019), ‘Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric laplace distribution’, *Journal of Business & Economic Statistics* **37**(1), 121–133.

Wang, C., Gerlach, R. and Chen, Q. (2018), ‘A semi-parametric realized joint value-at-risk and expected shortfall regression framework’, *arXiv preprint arXiv:1807.02422* .

Wang, C.-S. and Zhao, Z. (2016), ‘Conditional value-at-risk: Semiparametric estimation and inference’, *Journal of Econometrics* **195**(1), 86–103.

Ziegel, J. F. (2016), ‘Coherence and elicitation’, *Mathematical Finance* **26**(4), 901–918.

Žikeš, F. and Barunik, J. (2014), ‘Semi-parametric conditional quantile models for financial returns and realized volatility’, *Journal of Financial Econometrics* **14**(1), 185–226.
Table 1: Summary statistics and marginal distribution estimates

	S&P 500	DJIA	NIKKEI	FTSE
Panel A: Summary statistics				
Mean (Annualized)	3.685	4.377	0.544	0.606
Std dev (Annualized)	18.900	17.821	23.748	18.105
Skewness	-0.208	-0.125	-0.429	-0.170
Kurtosis	11.176	10.980	9.341	9.487
VaR-0.01	-3.427	-3.294	-4.111	-3.264
VaR-0.025	-2.525	-2.361	-3.051	-2.409
VaR-0.05	-1.885	-1.777	-2.360	-1.788
VaR-0.10	-1.284	-1.182	-1.682	-1.233
ES-0.01	-4.849	-4.568	-6.021	-4.546
ES-0.025	-3.678	-3.453	-4.492	-3.457
ES-0.05	-2.922	-2.750	-3.576	-2.764
ES-0.10	-2.236	-2.096	-2.788	-2.120
Panel B: Conditional mean				
Constant	-0.001	0.007	-0.021	-0.003
AR(1)	-	-	-	-
MA(1)	-0.039	-	-	-
Panel C: Conditional variance				
Constant	0.010	0.010	0.025	0.014
ARCH	0.065	0.069	0.082	0.116
GARCH	0.926	0.922	0.910	0.874
Panel D: Skew t density				
DoF	9.020	8.130	12.204	22.177
Skewness	-0.092	-0.089	-0.089	-0.162

Note: This table presents the summary statistics of the four daily equity return series studied, over the full sample period from January 2000 to June 2019, and marginal distribution estimates over the in-sample period. Panel A reports the annualized mean, standard deviation of these returns in percentages, skewness, kurtosis, the sample VaR and ES estimates for four choices of α; Panel B presents the parameter estimates for AR(m) models of the conditional means of these returns; Panel C shows parameter estimates for GARCH-Skew t(1,1) models of the conditional variance; Panel D presents parameter estimates for the skew t density for the standardized residuals.
Table 2: The estimated parameters of the GAS models for the S&P 500 for $\alpha = 5\%$

	GAS-2F	GAS-2F-RV5	GAS-2F-RN5			
	VaR	ES	VaR	ES	VaR	ES
w	-0.009	-0.012	-0.009	-0.016	-0.011	-0.023
(s.e.)	(0.002)	(0.003)	(0.030)	(0.053)	(0.033)	(0.045)
b	0.995	0.995	0.833	0.810	0.814	0.849
(s.e.)	(0.105)	(0.108)	(0.084)	(0.092)	(0.098)	(0.072)
a_v	-0.129	-0.140	-0.125	-0.066	-0.114	-0.118
(s.e.)	(0.070)	(0.103)	(0.304)	(0.629)	(0.416)	(0.466)
a_e	0.002	0.003	0.002	0.001	0.001	0.001
(s.e.)	(0.003)	(0.004)	(0.011)	(0.024)	(0.015)	(0.017)
c	-	-	-0.323	-0.477	-0.353	-0.360
(s.e.)	-	-	(0.148)	(0.208)	(0.190)	(0.158)

	GAS-1F	GCH-FZ	Hybrid	GAS-1F	GCH-FZ	Hybrid
	5min RV	5min RN	5min RV	5min RN	5min RV	5min RN
β	0.993	0.922	0.993	0.857	0.857	0.857
(s.e.)	(0.002)	(0.088)	(0.002)	(0.116)	(0.081)	(0.072)
γ	0.008	0.032	0.008	0.004	-	0.004
(s.e.)	(0.001)	(0.007)	(0.001)	(0.009)	(0.007)	(0.013)
δ	-	-	4.393e-08	-	0.010	-
(s.e.)	-	-	(1.552e-09)	-	(0.016)	-
c	0.127	0.095	0.141	0.133	0.084	0.142
(s.e.)	(0.013)	(0.012)	(0.056)	(0.016)	(0.009)	(0.051)
a	-1.774	-2.269	-1.752	-1.973	-2.818	-2.150
(s.e.)	(4.451)	(0.393)	(5.726)	(2.529)	(0.410)	(2.160)
b	-2.401	-3.043	-2.355	-2.599	-3.610	-2.779
(s.e.)	(5.987)	(0.765)	(7.709)	(3.310)	(0.670)	(2.819)

Avg loss 0.756 0.735 0.733 0.753 0.734 0.722

Note: This table presents the parameter estimates and standard errors of the four GAS models proposed in Patton et al. (2019) and eight GAS models enhanced with 5-min realized volatility (and overnight returns), for VaR and ES, for the S&P 500 index using the first rolling window of 2000 days starting with January 2000. The top panel presents the estimated parameters of the two-factor GAS models. The bottom panel presents the parameters of the one-factor GAS model, the GARCH model, and the hybrid-factor GAS model, estimated using the FZ0 loss minimization. The bottom row of each panel presents the average (in-sample) losses from these models.
Number	Model	1% VaR 1%	5% VaR 1%	2.5% VaR 1%	5% VaR 1%	5% VaR 1%	10% VaR 1%	5% VaR 1%
1	RW-125	3	3	0	0	0	0	0
2	RW-250	1	2	0	1	0	0	0
3	RW-500	0	2	1	1	0	1	0
4	GARCH-G	4	4	3	3	1	1	0
5	GARCH-Skt	0	1	0	3	0	0	0
6	HAR-Skt-RV5	4	4	4	4	4	4	4
7	HEAVY-N-RV5	4	4	4	4	0	3	0
8	HEAVY-Skt-RV5	0	1	0	0	0	0	0
9	AL-CAViaR-Sym	2	3	1	3	0	0	0
10	GAS-2F	3	3	2	2	0	0	1
11	GAS-1F	0	3	0	0	0	0	1
12	GARCH-FZ	1	2	1	3	0	0	0
13	Hybrid	2	2	0	1	0	0	1
14	GAS-2F-RV5	0	1	1	1	1	1	1
15	GAS-1F-RV5	0	1	0	1	0	0	0
16	GARCH-FZ-RV5	0	1	0	1	0	0	0
17	Hybrid-RV5	2	3	0	1	0	0	0
18	GAS-2F-RV10	1	1	1	1	1	1	1
19	GAS-1F-RV10	0	2	1	1	0	1	0
20	GARCH-FZ-RV10	1	1	1	1	0	0	0
21	Hybrid-RV10	2	3	1	1	0	0	1
22	GAS-2F-RN5	2	3	0	1	0	0	0
23	GAS-1F-RN5	0	1	0	0	0	0	1
24	GARCH-FZ-RN5	0	0	0	0	0	0	0
25	Hybrid-RN5	0	0	0	0	0	0	0
26	GAS-2F-RN10	0	1	0	0	0	0	0
27	GAS-1F-RN10	0	0	0	0	0	0	1
28	GARCH-FZ-RN10	0	0	0	0	0	0	0
29	Hybrid-RN10	0	1	0	0	0	0	1

Note: This table presents the number of model rejections based on hit percentages of VaR forecasts (UC test) for the four daily equity return series, over the out-of-sample period, for 29 different forecasting models. The first three rows (Models 1-3) correspond to rolling window historical forecasts, the next two rows (Models 4 and 5) correspond to GARCH forecasts based on different distributions for the standardized residuals, the next four rows (Models 6-9) correspond to forecasts using high-frequency data and the CAViaR model based on the asymmetric Laplace distribution. The next four rows (Models 10-13) correspond to GAS models proposed by Patton et al. (2019). The last 16 rows (Models 14-29) correspond to the GAS models extended with the 5-min and 10-min realized measures, respectively.
	Average Loss	DQ test (VaR) p-values	DES test (ES) p-values									
	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE
RW-125	1.479	1.400	1.864	1.298	0.063	0.109	0.017	0.087	0.032	0.056	0.008	0.082
RW-250	1.522	1.473	1.928	1.377	0.350	0.302	0.042	0.043	0.255	0.204	0.024	0.075
RW-500	1.633	1.550	1.988	1.464	0.128	0.159	0.017	0.028	0.170	0.162	0.049	0.058
GARCH-G	1.380	1.246	1.636	1.190	0.001	0.004	0.031	0.000	0.000	0.001	0.012	0.000
GARCH-Skt	1.246	1.128	1.565	1.105	0.043	0.114	0.550	0.265	0.036	0.049	0.433	0.268
HAR-Skt-RV5	1.306	1.118	2.735	1.132	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001
HEAVY-N-RV5	1.233	1.164	1.609	1.137	0.000	0.000	0.003	0.000	0.000	0.000	0.001	0.000
HEAVY-Skt-RV5	1.117	1.047	1.507	1.065	0.063	0.021	0.414	0.145	0.053	0.028	0.310	0.166
AL-CAViaR-Sym	1.306	1.158	1.529	1.102	0.000	0.005	0.255	0.296	0.007	0.131	0.182	0.314
GAS-2F	1.244	1.260	1.670	1.217	0.035	0.075	0.493	0.001	0.059	0.044	0.409	0.011
GAS-1F	1.222	1.184	1.650	1.184	0.209	0.219	0.019	0.629	0.371	0.274	0.025	0.832
GARCH-FZ	1.241	1.147	1.521	1.088	0.044	0.230	0.260	0.000	0.055	0.331	0.288	0.000
Hybrid	1.242	1.140	1.533	1.180	0.457	0.146	0.235	0.087	0.367	0.360	0.206	0.098
GAS-2F-RV5	1.106	1.016	1.562	1.080	0.687	0.000	0.121	0.000	0.675	0.000	0.198	0.000
GAS-1F-RV5	1.109	1.008	1.521	1.060	0.304	0.252	0.403	0.706	0.242	0.283	0.328	0.610
GARCH-FZ-RV5	1.118	1.031	1.518	1.113	0.349	0.525	0.296	0.112	0.253	0.268	0.251	0.089
Hybrid-RV5	1.141	1.087	1.575	1.069	0.253	0.000	0.033	0.324	0.205	0.000	0.036	0.364
GAS-2F-RV10	1.121	1.015	1.610	1.066	0.685	0.000	0.000	0.067	0.812	0.000	0.005	0.720
GAS-1F-RV10	1.117	1.024	1.557	1.071	0.239	0.450	0.327	0.538	0.212	0.391	0.248	0.510
GARCH-FZ-RV10	1.116	1.052	1.534	1.104	0.496	0.830	0.140	0.078	0.391	0.692	0.137	0.064
Hybrid-RV10	1.131	1.097	1.617	1.054	0.126	0.000	0.000	0.868	0.129	0.000	0.001	0.836
GAS-2F-RN5	1.165	1.001	1.553	1.076	0.028	0.000	0.006	0.499	0.019	0.000	0.023	0.703
GAS-1F-RN5	1.109	0.995	1.518	1.063	0.295	0.429	0.164	0.243	0.262	0.445	0.190	0.223
GARCH-FZ-RN5	1.123	1.012	1.598	1.109	0.250	0.000	0.659	0.058	0.157	0.000	0.435	0.050
Hybrid-RN5	1.118	1.026	1.582	1.071	0.319	0.000	0.286	0.286	0.237	0.000	0.026	0.269
GAS-2F-RN10	1.133	1.005	1.565	1.065	0.193	0.502	0.258	0.377	0.225	0.555	0.308	0.486
GAS-1F-RN10	1.102	1.014	1.586	1.060	0.790	0.696	0.548	0.340	0.717	0.702	0.371	0.334
GARCH-FZ-RN10	1.123	1.021	1.620	1.113	0.697	0.000	0.192	0.115	0.570	0.000	0.093	0.080
Hybrid-RN10	1.118	1.031	1.549	1.062	0.261	0.000	0.382	0.818	0.274	0.000	0.354	0.784

Note: The left panel of this table presents the average losses, using the FZ0 loss function, for the four daily equity return series, over the out-of-sample period for $\alpha=1\%$. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics. The middle and right panels of this table present p-values from dynamic regression tests for the VaR and ES forecasts respectively. Values that are greater than 0.05 (indicating no evidence against optimality at the 0.05 level) are in bold, and values between 0.01 and 0.05 are in italics.
	Average Loss	DQ test (VaR) p-values	DES test (ES) p-values									
	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE
RW-125	1.198	1.120	1.522	1.063	0.147	0.014	0.067	0.013	0.113	0.025	0.069	0.036
RW-250	1.238	1.167	1.550	1.128	0.025	0.059	0.024	0.030	0.145	0.212	0.054	0.110
RW-500	1.347	1.281	1.623	1.235	0.001	0.005	0.006	0.000	0.018	0.018	0.025	0.020
GARCH-G	1.080	0.982	1.341	0.989	0.026	0.028	0.305	0.000	0.003	0.005	0.086	0.000
GARCH-Skt	1.034	0.942	1.320	0.950	0.179	0.215	0.794	0.095	0.128	0.234	0.551	0.088
HAR-Skt-RV5	1.044	0.925	2.053	0.959	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.002
HEAVY-N-RV5	0.964	0.898	1.327	0.946	0.018	0.016	0.016	0.021	0.002	0.003	0.003	0.006
HEAVY-Skt-RV5	0.926	0.863	1.291	0.918	0.253	0.274	0.235	0.095	0.127	0.158	0.164	0.091
AL-CAViaR-Sym	1.064	0.957	1.311	0.945	0.075	0.172	0.530	0.067	0.035	0.235	0.434	0.072
GAS-2F	1.057	1.001	1.414	0.979	0.383	0.004	0.103	0.004	0.178	0.032	0.017	0.014
GAS-1F	1.041	0.971	1.356	0.970	0.765	0.316	0.073	0.873	0.654	0.284	0.083	0.899
GARCH-FZ	1.033	0.929	1.308	0.956	0.291	0.020	0.468	0.084	0.067	0.264	0.387	0.070
Hybrid	1.020	0.943	1.300	0.954	0.651	0.305	0.348	0.166	0.478	0.533	0.358	0.138
GAS-2F-RV5	0.947	0.851	1.331	0.909	0.378	0.356	0.001	0.886	0.740	0.360	0.000	0.977
GAS-1F-RV5	0.936	0.844	1.319	0.913	0.517	0.519	0.207	0.152	0.434	0.543	0.139	0.194
GARCH-FZ-RV5	0.924	0.855	1.297	0.919	0.785	0.642	0.185	0.193	0.605	0.407	0.123	0.185
Hybrid-RV5	0.950	0.871	1.315	0.912	0.419	0.338	0.185	0.862	0.367	0.343	0.147	0.896
GAS-2F-RV10	0.934	0.846	1.338	0.908	0.528	0.772	0.000	0.792	0.800	0.722	0.000	0.789
GAS-1F-RV10	0.934	0.869	1.305	0.914	0.174	0.491	0.154	0.733	0.237	0.489	0.101	0.621
GARCH-FZ-RV10	0.931	0.856	1.311	0.915	0.795	0.695	0.103	0.130	0.631	0.465	0.075	0.120
Hybrid-RV10	0.946	0.883	1.306	0.913	0.339	0.714	0.137	0.775	0.416	0.704	0.112	0.756
GAS-2F-RN5	0.942	0.845	1.311	0.910	0.085	0.362	0.411	0.751	0.206	0.353	0.171	0.787
GAS-1F-RN5	0.939	0.843	1.320	0.914	0.419	0.536	0.588	0.717	0.449	0.559	0.395	0.650
GARCH-FZ-RN5	0.925	0.844	1.330	0.917	0.816	0.876	0.738	0.224	0.696	0.659	0.516	0.220
Hybrid-RN5	0.942	0.870	1.305	0.912	0.229	0.679	0.571	0.814	0.306	0.654	0.406	0.804
GAS-2F-RN10	0.937	0.831	1.305	0.907	0.029	0.804	0.429	0.855	0.116	0.839	0.210	0.824
GAS-1F-RN10	0.929	0.845	1.318	0.911	0.391	0.493	0.730	0.233	0.402	0.508	0.506	0.245
GARCH-FZ-RN10	0.930	0.840	1.330	0.913	0.810	0.860	0.793	0.120	0.737	0.721	0.542	0.118
Hybrid-RN10	0.938	0.881	1.305	0.914	0.286	0.401	0.644	0.545	0.381	0.457	0.452	0.438

Note: The left panel of this table presents the average losses, using the FZ0 loss function, for the four daily equity return series, over the out-of-sample period for $\alpha=2.5\%$. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics. The middle and right panels of this table present p-values from dynamic regression tests for the VaR and ES forecasts respectively. Values that are greater than 0.05 (indicating no evidence against optimality at the 0.05 level) are in bold, and values between 0.01 and 0.05 are in italics.
Table 6: Out-of-sample average losses and dynamic regression tests ($\alpha=5\%$) for the (VaR,ES) forecasts

Average Loss	DQ test (VaR) p-values	DES test (ES) p-values										
	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE
RW-125	0.977	0.894	1.282	0.876	0.008	0.075	0.000	0.002	0.074	0.200	0.045	0.014
RW-250	1.011	0.950	1.288	0.931	0.008	0.065	0.072	0.001	0.093	0.213	0.113	0.007
RW-500	1.104	1.058	1.348	0.993	0.003	0.001	0.000	0.000	0.006	0.003	0.004	0.001
GARCH-G	0.849	0.775	1.142	0.808	0.715	0.840	0.949	0.24	0.243	0.273	0.448	0.004
GARCH-Skt	0.836	0.764	1.135	0.794	0.857	0.968	0.979	0.255	0.722	0.738	0.830	0.201
HAR-Skt-RV5	0.826	0.733	1.613	0.791	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.002
HEAVY-N-RV5	0.755	0.698	1.123	0.779	0.477	0.265	0.299	0.144	0.079	0.046	0.048	0.032
HEAVY-Skt-RV5	0.743	0.686	1.110	0.768	0.624	0.548	0.582	0.432	0.497	0.490	0.344	0.364
AL-CAViaR-Sym	0.854	0.770	1.133	0.794	0.573	0.452	0.959	0.125	0.221	0.367	0.692	0.090
GAS-2F	0.861	0.801	1.151	0.796	0.624	0.455	0.703	0.264	0.206	0.200	0.562	0.456
GAS-1F	0.848	0.782	1.140	0.786	0.059	0.280	0.131	0.560	0.028	0.159	0.121	0.659
GARCH-FZ	0.839	0.762	1.134	0.793	0.441	0.456	0.973	0.255	0.388	0.417	0.732	0.218
Hybrid	0.853	0.770	1.113	0.794	0.046	0.108	0.986	0.507	0.016	0.155	0.897	0.319
GAS-2F-RV5	0.748	0.679	1.120	0.764	0.237	0.503	0.002	0.782	0.136	0.580	0.000	0.934
GAS-1F-RV5	0.744	0.684	1.113	0.769	0.779	0.945	0.286	0.177	0.822	0.908	0.174	0.275
GARCH-FZ-RV5	0.746	0.689	1.109	0.771	0.931	0.914	0.617	0.538	0.957	0.718	0.322	0.417
Hybrid-RV5	0.765	0.693	1.118	0.767	0.677	0.801	0.424	0.474	0.937	0.784	0.258	0.577
GAS-2F-RV10	0.747	0.676	1.119	0.766	0.078	0.520	0.004	0.410	0.063	0.593	0.001	0.666
GAS-1F-RV10	0.751	0.683	1.109	0.774	0.589	0.909	0.230	0.374	0.786	0.863	0.156	0.314
GARCH-FZ-RV10	0.750	0.689	1.123	0.773	0.808	0.821	0.655	0.386	0.857	0.743	0.294	0.265
Hybrid-RV10	0.754	0.696	1.108	0.767	0.561	0.578	0.435	0.349	0.750	0.887	0.274	0.563
GAS-2F-RN5	0.749	0.671	1.116	0.767	0.317	0.755	0.921	0.648	0.221	0.770	0.660	0.573
GAS-1F-RN5	0.747	0.681	1.123	0.766	0.641	0.838	0.983	0.424	0.904	0.824	0.866	0.454
GARCH-FZ-RN5	0.745	0.679	1.137	0.770	0.788	0.779	0.972	0.492	0.887	0.822	0.780	0.394
Hybrid-RN5	0.753	0.702	1.117	0.771	0.668	0.820	0.998	0.445	0.923	0.813	0.815	0.599
GAS-2F-RN10	0.748	0.674	1.118	0.763	0.082	0.261	0.904	0.611	0.087	0.370	0.644	0.862
GAS-1F-RN10	0.751	0.682	1.115	0.769	0.596	0.775	0.856	0.384	0.923	0.830	0.966	0.379
GARCH-FZ-RN10	0.746	0.676	1.134	0.771	0.729	0.621	0.990	0.378	0.923	0.826	0.900	0.277
Hybrid-RN10	0.765	0.709	1.112	0.768	0.272	0.563	0.546	0.428	0.777	0.837	0.975	0.626

Note: The left panel of this table presents the average losses, using the FZ0 loss function, for the four daily equity return series, over the out-of-sample period for $\alpha=5\%$. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics. The middle and right panels of this table present p-values from dynamic regression tests for the VaR and ES forecasts respectively. Values that are greater than 0.05 (indicating no evidence against optimality at the 0.05 level) are in bold, and values between 0.01 and 0.05 are in italics.
Table 7: Rejections at 1% and 5% significance levels for dynamic quantile and ES regression backtests across the four markets

	VaR		ES		VaR		ES		VaR		ES		VaR		ES		VaR		ES		VaR		ES		
	1%	5%		1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%
RW-125	0	1	1	2		0	2	0	2	3	3	0	2			3	4	1	2						
RW-250	0	2	0	1		0	3	0	0	2	2	1	1			1	3	1	2						
RW-500	0	2	0	1		4	4	0	4	4	4	4	4			3	4	4	4						
GARCH-G	3	4	3	4		1	3	3	3	0	1	1			0	2	0	0							
GARCH-Skt	0	1	0	1		0	0	0	0	0	0	0			0	1	0	0							
HAR-Skt-RV5	4	4	4	4		4	4	4	4	4	4	4	4			0	0	0	0						
HEAVY-N-RV5	4	4	4	4		0	4	4	4	0	0	0	3			0	0	0	0						
HEAVY-Skt-RV5	0	1	0	1		0	0	0	0	0	0	0			0	2	0	1							
AL-CAViaR-Sym	1	1	1	1		0	0	0	1	0	0	0			0	1	0	0							
GAS-2F	1	2	0	2		2	2	0	3	0	0	0			0	1	1	1							
GAS-1F	0	1	0	1		0	0	0	0	0	0	0	1			1	1	1	1						
GARCH-FZ	1	2	1	1		0	0	0	0	0	0	0	0		1	2	0	0							
Hybrid	0	0	0	0		0	0	0	0	0	0	0	1	1		2	2	0	1						
GAS-2F-RV5	2	2	2	2		1	1	1	1	1	1	1	1		2	3	1	3							
GAS-1F-RV5	0	0	0	0		0	0	0	0	0	0	0	0		0	1	0	1							
GARCH-FZ-RV5	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	1							
Hybrid-RV5	1	2	1	2		0	0	0	0	0	0	0	0		0	0	0	0							
GAS-2F-RV10	2	2	2	2		1	1	1	1	1	1	1	1		1	3	3	3							
GAS-1F-RV10	0	0	0	0		0	0	0	0	0	0	0	0		0	1	0	1							
GARCH-FZ-RV10	0	0	0	0		0	0	0	0	0	0	0	0		1	1	1	1							
Hybrid-RV10	2	2	2	2		0	0	0	0	0	0	0	0		0	0	0	0							
GAS-2F-RN5	2	3	1	3		0	0	0	0	0	0	0	0		2	2	0	2							
GAS-1F-RN5	0	0	0	0		0	0	0	0	0	0	0	0		1	1	0	1							
GARCH-FZ-RN5	1	1	1	2		0	0	0	0	0	0	0	0		0	0	0	1							
Hybrid-RN5	1	1	1	1		0	0	0	0	0	0	0	0		0	0	0	0							
GAS-2F-RN10	0	0	0	0		0	1	0	0	0	0	0	0		2	2	1	2							
GAS-1F-RN10	0	0	0	0		0	0	0	0	0	0	0	0		0	2	0	1							
GARCH-FZ-RN10	1	1	1	1		0	0	0	0	0	0	0	0		0	1	0	1							
Hybrid-RN10	1	1	1	1		0	0	0	0	0	0	0	0		0	1	0	0							

Note: This table presents the number of data series (out of 4) with model rejections at 1% and 5% significance levels for the DQ (VaR) and DES (ES) backtests across the four markets, for four probability levels. Smaller numbers of model rejections are preferable (values of 0 in bold).

α = 1%, α = 2.5%, α = 5%, α = 10%
Table 8: Out-of-sample performance rankings for various levels of α

	S&P	DJIA	NIK	FTSE	Avg	Rank
$\alpha = 1\%$						
RW-125	27	27	26	27	26.8	27
RW-250	28	28	27	27	27.8	28
RW-500	29	29	28	29	28.8	29
GARCH-G	26	25	23	25	24.8	25
GARCH-Skt	23	19	14	17	18.3	21
HAR-Skt-RV5	24	18	29	21	23.0	24
HEAVY-N-RV5	19	23	19	22	20.8	22
HEAVY-Skt-RV5	7	14	1	7	7.3	4
AL-CAViaR-Sym	25	22	6	15	17.0	19
GAS-2F	22	26	25	26	24.8	26
GAS-1F	18	24	24	24	22.5	23
GARCH-FZ	20	21	4	14	14.8	17
Hybrid	21	20	7	23	17.8	20
$\alpha = 2.5\%$						
RW-125	27	27	26	27	26.8	27
RW-250	28	28	27	28	27.8	28
RW-500	29	29	28	29	28.8	29
GARCH-G	26	25	23	25	25.0	25
GARCH-Skt	21	21	17	20	19.8	22
HAR-Skt-RV5	23	19	29	23	23.5	23
HEAVY-N-RV5	18	18	19	19	18.3	20
HEAVY-Skt-RV5	3	12	1	16	8.0	4
AL-CAViaR-Sym	25	23	11	18	19.3	21
GAS-2F	24	26	25	25	25.0	26
GAS-1F	22	24	24	24	23.5	24
GARCH-FZ	20	20	9	22	17.8	19
Hybrid	19	22	3	21	16.3	18
$\alpha = 5\%$						
RW-125	27	27	26	27	26.8	27
RW-250	28	28	27	28	27.8	28
RW-500	29	29	28	29	28.8	29
GARCH-G	26	25	23	25	25.0	25
GARCH-Skt	21	21	17	20	19.8	22
HAR-Skt-RV5	23	19	29	23	23.5	23
HEAVY-N-RV5	18	18	19	19	18.3	20
HEAVY-Skt-RV5	3	12	1	16	8.0	4
AL-CAViaR-Sym	25	23	11	18	19.3	21

(Continued on the next page)
(Continued) Out-of-sample performance rankings for various levels of α

	S&P	DJIA	NIK	FTSE	Avg	Rank
RW-125	27	27	26	27	26.8	27
RW-250	28	28	27	28	27.8	28
RW-500	29	29	28	29	28.8	29

	S&P	DJIA	NIK	FTSE	Avg	Rank
GARCH-G	23	24	24	26	24.3	25
GARCH-Skt	20	21	21	24	21.5	25
HAR-Skt-RV5	19	19	29	20	21.8	22
HEAVY-N-RV5	16	16	16	18	16.5	18
HEAVY-Skt-RV5	1	11	4	8	6.0	2
AL-CAViaR-Sym	25	23	18	22	22.0	23
GAS-2F	26	26	25	25	25.5	26
GAS-1F	22	25	19	23	22.3	24
GARCH-FZ	21	20	19	21	20.3	20
Hybrid	24	22	7	23	19.0	19

Note: This table presents the rankings (with the best performing model ranked 1 and the worst ranked 29) based on the average losses using the FZ0 loss function, for four daily equity return series, over the out-of-sample period, for 29 different forecasting models. The last column in each panel represents the average rank across the four equity return series.
Table 9: The 75% model confidence set for the R and SQ methods across the four stock indices

Method	Summed absolute values (R method)	Summed squares (SQ method)
	1% 2.5% 5% 10% TOTAL	1% 2.5% 5% 10% TOTAL
RW-125	0 0 0 0 0	0 0 0 0 0
RW-250	0 0 0 0 0	0 0 0 0 0
RW-500	0 0 0 0 0	0 0 0 0 0
GARCH-N	0 0 0 0 0	0 0 0 0 0
GARCH-Skt	0 0 0 0 0	1 0 0 0 1
HAR-Skt-RV5	0 0 0 0 0	0 0 0 0 0
HEAVY-N-RV5	0 0 0 0 0	1 2 1 4 4
HEAVY-Skt-RV5	1 3 3 2 11	3 3 3 2 11
AL-CAViaR-Sym	2 1 0 0 3	2 2 0 0 4
GAS-2F	0 0 0 0 0	0 0 0 0 0
GAS-1F	0 0 0 0 0	0 0 0 0 0
GARCH-FZ	2 1 0 0 3	2 1 0 0 3
Hybrid	1 1 1 0 3	1 1 1 0 3
GAS-2F-RV5	4 1 3 3 11	4 2 3 2 11
GAS-1F-RV5	4 2 3 2 11	4 3 3 2 12
GARCH-FZ-RV5	2 3 3 3 11	3 3 3 2 11
Hybrid-RV5	1 1 2 1 5	2 2 2 1 7
GAS-2F-RV10	3 2 4 2 11	3 2 4 2 11
GAS-1F-RV10	2 3 2 2 9	2 3 2 2 9
GARCH-FZ-RV10	2 2 1 1 6	3 3 3 1 10
Hybrid-RV10	2 2 2 1 7	2 2 3 1 8
GAS-2F-RN5	2 2 4 2 10	2 3 4 2 10
GAS-1F-RN5	4 2 2 0 8	4 3 3 1 11
GARCH-FZ-RN5	2 2 2 2 8	2 2 2 2 8
Hybrid-RN5	2 3 3 0 8	2 3 3 3 0 8
GAS-2F-RN10	2 4 4 2 12	3 4 4 2 13
GAS-1F-RN10	2 2 3 1 8	3 3 3 1 10
GARCH-FZ-RN10	1 2 3 1 7	2 2 3 2 9
Hybrid-RN10	3 3 2 0 8	3 3 2 0 8

Note: This table presents the number of indices for which each method is within the model confidence set (MCS) at the 75% confidence level based on the FZ0 loss function. The highest value (in bold) means that the model is the most favored one across four stock indices and for different probability levels.
Fig. 1. Color map based on the Diebold-Mariano (DM) test comparing the average losses using the FZ0 loss function over the out-of-sample period for 29 different models, for the S&P 500. White blocks mean that the row model has lower average loss than the column model at 5% significance level; light green (below white in the color bar) blocks mean that the row model has lower average loss than the column model, but not significantly different from it, and so on. Darker color blocks mean that the row model has higher average loss than the column model.