Type 2 diabetes

Type 2 diabetes is a disorder characterized by abnormally high blood sugar levels. In this form of diabetes, the body stops using and making insulin properly. Insulin is a hormone produced in the pancreas that helps regulate blood sugar levels. Specifically, insulin controls how much glucose (a type of sugar) is passed from the blood into cells, where it is used as an energy source. When blood sugar levels are high (such as after a meal), the pancreas releases insulin to move the excess glucose into cells, which reduces the amount of glucose in the blood.

Most people who develop type 2 diabetes first have insulin resistance, a condition in which the body's cells use insulin less efficiently than normal. As insulin resistance develops, more and more insulin is needed to keep blood sugar levels in the normal range. To keep up with the increasing need, insulin-producing cells in the pancreas (called beta cells) make larger amounts of insulin. Over time, the beta cells become less able to respond to blood sugar changes, leading to an insulin shortage that prevents the body from reducing blood sugar levels effectively. Most people have some insulin resistance as they age, but inadequate exercise and excessive weight gain make it worse, greatly increasing the likelihood of developing type 2 diabetes.

Type 2 diabetes can occur at any age, but it most commonly begins in middle age or later. Signs and symptoms develop slowly over years. They include frequent urination (polyuria), excessive thirst (polydipsia), fatigue, blurred vision, tingling or loss of feeling in the hands and feet (diabetic neuropathy), sores that do not heal well, and weight loss. If blood sugar levels are not controlled through medication or diet, type 2 diabetes can cause long-lasting (chronic) health problems including heart disease and stroke; nerve damage; and damage to the kidneys, eyes, and other parts of the body.

Frequency

Type 2 diabetes is the most common type of diabetes, accounting for 90 to 95 percent of all cases. In 2015, more than 23 million people in the United States had diagnosed diabetes and an additional 7 million people likely had undiagnosed diabetes. The prevalence of diabetes increases with age, and the disease currently affects more than 20 percent of Americans over age 65. It is the seventh leading cause of death in the United States.

The risk of diabetes varies by ethnic and geographic background. In the United States, the disease is most common in Native Americans and Alaska Natives. It also has a higher prevalence among people of African American or Hispanic ancestry than those of non-Hispanic white or Asian ancestry. Geographically, diabetes is most prevalent in the southern and Appalachian regions of the United States.
The prevalence of diabetes is rapidly increasing worldwide. Due to an increase in inactive (sedentary) lifestyles, obesity, and other risk factors, the frequency of this disease has more than quadrupled in the past 35 years.

Causes

The causes of type 2 diabetes are complex. This condition results from a combination of genetic and lifestyle factors, some of which have not been identified.

Studies have identified at least 150 DNA variations that are associated with the risk of developing type 2 diabetes. Most of these changes are common and are present both in people with diabetes and in those without. Each person has some variations that increase risk and others that reduce risk. It is the combination of these changes that helps determine a person's likelihood of developing the disease.

The majority of genetic variations associated with type 2 diabetes are thought to act by subtly changing the amount, timing, and location of gene activity (expression). These changes in expression affect genes involved in many aspects of type 2 diabetes, including the development and function of beta cells in the pancreas, the release and processing of insulin, and cells' sensitivity to the effects of insulin. However, for many of the variations that have been associated with type 2 diabetes, the mechanism by which they contribute to disease risk is unknown.

Genetic variations likely act together with health and lifestyle factors to influence an individual's overall risk of type 2 diabetes. All of these factors are related, directly or indirectly, to the body's ability to produce and respond to insulin. Health conditions that predispose to the disease include overweight or obesity, insulin resistance, prediabetes (higher-than-normal blood sugar levels that do not reach the cutoff for diabetes), and a form of diabetes called gestational diabetes that occurs during pregnancy. Lifestyle factors including smoking, a poor diet, and physical inactivity also increase the risk of type 2 diabetes.

Inheritance Pattern

Type 2 diabetes does not have a clear pattern of inheritance, although many affected individuals have at least one close family member, such as a parent or sibling, with the disease. The risk of developing type 2 diabetes increases with the number of affected family members. The increased risk is likely due in part to shared genetic factors, but it is also related to lifestyle influences (such as eating and exercise habits) that are shared by members of a family.

Other Names for This Condition

- adult-onset diabetes
- adult-onset diabetes mellitus
- AODM
- diabetes mellitus, adult-onset
Diagnosis & Management

Formal Diagnostic Criteria

- U.S. Preventive Services Task Force: Abnormal Blood Glucose and Type 2 Diabetes Mellitus: Screening
  https://www.uspreventiveservicestaskforce.org/uspstf/document/RecommendationStatementFinal/screening-for-abnormal-blood-glucose-and-type-2-diabetes

Formal Treatment/Management Guidelines

- Joslin Diabetes Center: Clinical Guidelines
  https://www.joslin.org/professional-educationclinical-guidelines

Genetic Testing Information

- What is genetic testing?
  https://primer/testing/genetictesting

- Genetic Testing Registry: Diabetes mellitus type 2
  https://www.ncbi.nlm.nih.gov/gtr/conditions/C0011860/

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
  https://clinicaltrials.gov/ct2/results?cond=%22type+2+diabetes%22

Other Diagnosis and Management Resources

- American Diabetes Association: Diagnosis
  https://www.diabetes.org/a1c/diagnosis

- American Diabetes Association: Treatment & Care
  https://www.diabetes.org/diabetes/treatment-care
MedlinePlus Encyclopedia: Diabetes and Exercise
https://medlineplus.gov/ency/patientinstructions/000083.htm

MedlinePlus Encyclopedia: Diabetes Type 2: Meal-Planning
https://medlineplus.gov/ency/article/007429.htm

MedlinePlus Encyclopedia: Type 2 Diabetes: Self-Care
https://medlineplus.gov/ency/patientinstructions/000328.htm

MedlinePlus Encyclopedia: Type 2 Diabetes: What To Ask Your Doctor
https://medlineplus.gov/ency/patientinstructions/000217.htm

MedlinePlus Medical Tests: Blood Glucose Test
https://medlineplus.gov/lab-tests/blood-glucose-test/

MedlinePlus Medical Tests: Insulin in Blood
https://medlineplus.gov/lab-tests/insulin-in-blood/

National Institute of Diabetes and Digestive and Kidney Diseases: Diabetes Tests & Diagnosis
https://www.niddk.nih.gov/health-information/diabetes/overview/tests-diagnosis

National Institute of Diabetes and Digestive and Kidney Diseases: Managing Diabetes
https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes

Additional Information & Resources

Health Information from MedlinePlus

Encyclopedia: Diabetes and Exercise
https://medlineplus.gov/ency/patientinstructions/000083.htm

Encyclopedia: Diabetes Type 2: Meal-Planning
https://medlineplus.gov/ency/article/007429.htm

Encyclopedia: Type 2 Diabetes
https://medlineplus.gov/ency/article/000313.htm

Encyclopedia: Type 2 Diabetes: Self-Care
https://medlineplus.gov/ency/patientinstructions/000328.htm

Encyclopedia: Type 2 Diabetes: What To Ask Your Doctor
https://medlineplus.gov/ency/patientinstructions/000217.htm

Health Topic: Diabetes Type 2
https://medlineplus.gov/diabetestype2.html

Medical Tests: Blood Glucose Test
https://medlineplus.gov/lab-tests/blood-glucose-test/

Medical Tests: Insulin in Blood
https://medlineplus.gov/lab-tests/insulin-in-blood/
Additional NIH Resources
• National Institute of Diabetes and Digestive and Kidney Diseases: Prediabetes & Insulin Resistance
  https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/prediabetes-insulin-resistance
• National Institute of Diabetes and Digestive and Kidney Diseases: Type 2 Diabetes
  https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-2-diabetes

Educational Resources
• American Diabetes Association: Genetics of Diabetes
  https://www.diabetes.org/diabetes/genetics-diabetes
• Hormone Health Network
  https://www.hormone.org/diseases-and-conditions/diabetes/type-2-diabetes
• Joslin Diabetes Center: Genetics & Diabetes: Genetics & Epidemiology
  https://www.joslin.org/research/research-sections/genetics-epidemiology
• KidsHealth from Nemours
  https://kidshealth.org/en/kids/type2.html
• The Genetic Landscape of Diabetes (2004)
  https://www.ncbi.nlm.nih.gov/books/NBK1667/

Patient Support and Advocacy Resources
• American Diabetes Association
  https://www.diabetes.org/diabetes/type-2
• Diabetes Research Institute
  https://www.diabetesresearch.org/
• The diaTribe Foundation
  https://diatribe.org/foundation/

Scientific Articles on PubMed
• PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28Diabetes+Mellitus,+Type+2%5BMAJR%5D%29+AND+%28genetic*%5BTI%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+360+days%22+AND+360+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• DIABETES MELLITUS, NONINSULIN-DEPENDENT
  http://omim.org/entry/125853
Medical Genetics Database from MedGen

- Diabetes mellitus type 2
  https://www.ncbi.nlm.nih.gov/medgen/41523

Sources for This Summary

- Andersen MK, Pedersen CE, Moltke I, Hansen T, Albrechtsen A, Grarup N. Genetics of Type 2 Diabetes: the Power of Isolated Populations. Curr Diab Rep. 2016 Jul;16(7):65. doi: 10.1007/s11892-016-0757-z. Review.
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27189761

- Centers for Disease Control and Prevention: National Diabetes Statistics Report, 2017
  https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf

- Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017 Jun 3;389(10085):2239-2251. doi: 10.1016/S0140-6736(17)30058-2. Epub 2017 Feb 10. Review.
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28190580
The page contains information about the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) Consortium, and lists many contributors. It also mentions a study titled "Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility" published in Nature Genetics in 2014. The citation is provided along with links to the article on PubMed and PubMed Central.

Another section mentions Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat Rev Genet. 2016 Sep;17(9):535-49. doi: 10.1038/nrg.2016.56. Epub 2016 Jul 11. Review. The citation is provided along with a link to the article on PubMed.
Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, Ma C, Fontanillas P, Moutsianas L, McCarthy DJ, Rivais MA, Perry JR, Sim X, Blackwell TW, Robertson NR, Rayner NW, Cingolani P, Locke AE, Tajes JF, Highland HM, Dupuis J, Chines PS, Lindgren CM, Hartl C, Jackson AU, Chen H, Huyghe JR, van de Bunt M, Pearson RD, Kumar A, Müller-Nurasyid M, Grarup N, Stringham HM, Gamazon ER, Lee J, Chen Y, Scott RA, Below JE, Chen P, Huang J, Go MJ, Stitzel ML, Pasko D, Parker SCJ, Varga TV, Green T, Beer NL, Day-Williams AG, Ferreira T, Fingerlin T, Horikoshi M, Hu C, Huh I, Ikrak BM, Kim BJ, Kim Y, Kim YJ, Kwon MS, Lee J, Lee S, Lin KH, Maxwell TJ, Nagai Y, Wang X, Welch RP, Yoon J, Zhang W, Barzilai N, Voight BF, Han BG, Jenkinson CP, Kuulasmaa T, Kuusisto J, Manning A, Ng MCY, Palmer ND, Balkau B, Stancáková A, Abboud HE, Boeing H, Giedraitis V, Prabhakaran D, Gottesman O, Scott J, Carey J, Kwan P, Grant G, Smith JD, Neale BM, Purcell S, Butterworth AS, Howson JMM, Lee HM, Lu Y, Kwak SH, Zhao W, Danesh J, Lam VKL, Park KS, Saleheen D, So WY, Tam CH, Afzal U, Aguilar D, Arya R, Aung T, Chan E, Navarro C, Cheng CY, Palli D, Correa A, Curran JE, Rybin D, Farook VS, Fowler SP, Freedman BI, Griswold M, Hale DE, Hicks PJ, Khor CC, Kumar S, Lehe B, Thuillier D, Lim WY, Liu J, van der Schouw YT, Loh M, Musani SK, Puppala S, Scott WR, Yengo L, Tan ST, Taylor HA Jr, Thameem F, Wilson G Sr, Wong TY, Njolstad PR, Levy JC, Mangino M, Bonnycastle LL, Schwarzmayr T, Fadista J, Surdulescu GL, Herder C, Groves CJ, Wieland T, Bork-Jensen J, Brandslund I, Christensen C, Koistinen HA, Doney ASF, Kinnunen L, Esko T, Farmer AJ, Hakaste L, Hodgkiss D, Kravic J, Lyssenko V, Hellensten J, Jorgensen ME, Jorgensen T, Ladenvall C, Justesen JM, Käärämäki A, Kriebel J, Rathmann W, Lannfelt L, Lauritzen T, Narisu N, Linneberg A, Melander O, Milani L, Neville M, Orho-Melander M, Qi L, Qi Q, Roden M, Rolandsso O, Swift A, Rosengren AH, Stirrups K, Wood AR, Mihailov E, Blanchar C, Carneiro MO, Maguire J, Polpin R, Shakir K, Fennell T, DePristo M, de Angelis MH, Deloukas P, Gjesing AP, Jun G, Nilsson P, Murphy J, Onofrio R, Thorand B, Hansen T, Meisinger C, Hu FB, Isomaa B, Karpe F, Liang L, Peters A, Huth C, O'Reilly SP, Palmer CNA, Pedersen O, Rauramaa R, Tuomilehto J, Salomaa V, Watanabe RM, Syvänen AC, Bergman RN, Bharadwaj D, Bottinger EP, Cho YS, Chandak GR, Chan JCN, Chia KS, Daly MJ, Ebrahim SB, Langenberg C, Elliott P, Jablonski KA, Lehman DM, Jia W, Ma RCW, Pollin TI, Sandhu M, Tandon N, Froguel P, Barroso I, Teo YY, Zeggini E, Loos RJF, Small KS, Ried JS, DeFronzo RA, Grallert H, Glaser B, Metopoulou A, Wareham NJ, Walker M, Banks E, Gieger C, Ingelsson E, Im HK, Illig T, Franks PW, Buck G, Trakalo J, Duck D, Prokopenko I, Mägi R, Lind L, Farjoun Y, Owen KR, Glyn AL, Strauch K, Tuomi T, Kooser JS, Lee JY, Park T, Donnelly P, Morris AD, Hattersley AT, Bowden DW, Collins FS, Atzmon G, Chambers JC, Spector TD, Laakso M, Strom TM, Bell GI, Blangero J, Duggirala R, Tai ES, McVean G, Hanis CL, Wilson JG, Seielstad M, Frayling TM, Meigs JB, Cox NJ, Sladek R, Lander ES, Gabriel S, Burtt NP, Mohlke KL, Meitinger T, Groop L, Abecasis G, Florez JC, Scott LJ, Morris AP, Kang HM, Boehnke M, Altshuler D, McCarthy MI. The genetic architecture of type 2 diabetes. Nature. 2016 Aug 4;536(7614):41-47. doi: 10.1038/nature18642. Epub 2016 Jul 11.

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27398621
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034897/

McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010 Dec 9;363(24):2339-50. doi: 10.1056/NEJMra0906948. Review.
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21142536

Mohlke KL, Boehnke M. Recent advances in understanding the genetic architecture of type 2 diabetes. Hum Mol Genet. 2015 Oct 15;24(R1):R85-92. doi: 10.1093/hmg/ddv264. Epub 2015 Jul 9. Review.
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26160912
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572004/
• Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A, Prokopenko I, Kang HM, Dina C, Esko T, Fraser RM, Kanoni S, Kumar A, Lagou V, Langenberg C, Luan J, Lindgren CM, Müller-Nurasyid M, Pechlivanis S, Rayner NW, Scott LJ, Wiltshire S, Yengo L, Kinnunen L, Rossin EJ, Raychaudhuri S, Johnson AD, Dimas AS, Loos RJ, Vedantam S, Chen H, Florez JC, Fox C, Liu CT, Rybin D, Couper DJ, Kao WH, Li M, Cornelis MC, Kraft P, Sun Q, van Dam RM, Stringham HM, Chines PS, Fischer K, Fontanillas P, Holmen OL, Hunt SE, Jackson AU, Kong A, Lawrence R, Meyer J, Perry JR, Platou CG, Potter S, Rehneberg E, Robertson N, Sivapalaratnam S, Stančáková A, Stirrups K, Thorleifsson G, Tikkanen E, Wood AR, Almgren P, Atalay M, Benediktsson R, Bonnycastle LL, Burtt N, Carey J, Charpentier G, Crenshaw AT, Doney AS, Dorkhan M, Edkins S, Emilsson V, Eury E, Forsen T, Giegisch N, Gigante B, Grant GB, Groves CJ, Guiducci C, Herder C, Hreidarsson AB, Hui J, James A, Jonsson A, Rathmann W, Kopp N, Kravic J, Kрюжков К, Langford C, Leander K, Lindholm E, Lobbens S, Männistö S, Mirza G, Mühleisen TW, Musk B, Parkin M, Rallidis L, Saramies J, Sennblad B, Shah S, Sigurdsson G, Silveira A, Steinbach G, Thorand B, Trakalo J, Veglia F, Wennauer R, Winckler W, Zabaneh D, Campbell H, van Duijn C, Uitterlinden AG, Hofman A, Sijbrands E, Abecasis GR, Owen KR, Zeggini E, Trip MD, Forouhi NG, Sövânen AC, Eriksson JG, Peltonen L, Nõthen MM, Balkau B, Palmer CN, Lyssenko V, Tuomilehto J, Isomaa B, Hunter DJ, Qi L; Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network--Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium, Shuldiner AR, Roden M, Barroso I, Wilsgaard T, Beilby J, Hovingh K, Price JF, Wilson JF, Rauramaa R, Lakka TA, Lind L, Dedoussis G, Njölstad I, Pedersen NL, Khaw KT, Wareham NJ, Keinanen-Kiukaanniemi SM, Saaristo TE, Korpi-Hyövärí E, Saltevo J, Laakso M, Kuusisto J, Metspalu A, Collins FS, Mohlke KL, Bergman RN, Tuomilehto J, Boehm BO, Gieger C, Hveem K, Cauchi S, Frooglob P, Baldassarre D, Tremoli E, Humphries SE, Saleheen D, Danesh J, Ingelsson E, Lipatti S, Salomaa V, Erbel R, Jöckel KH, Moebus S, Peters A, Illig T, de Faire U, Hamsten A, Morris AD, Donnelly PJ, Frayling TM, Hattersley AT, Boerwinkle E, Melander O, Kathiresan S, Nilsson PM, Deloukas P, Thorsteinsdottir U, Groop LC, Stefansson K, Hu F, Pankow JS, Dupuis J, Meigs JB, Alshuler D, Boehnke M, McCarthy MI; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012 Sep;44(9):981-90. doi: 10.1038/ng.2383. Epub 2012 Aug 12. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22885922 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442244/

• Pal A, McCarthy MI. The genetics of type 2 diabetes and its clinical relevance. Clin Genet. 2013 Apr;83(4):297-306. doi: 10.1111/cge.12055. Epub 2012 Dec 4. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23167659

Reprinted from Genetics Home Reference: https://ghr.nlm.nih.gov/condition/type-2-diabetes

Reviewed: November 2017
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services