Effect of basicity and chromium oxide on the viscosity of boron-containing slags

A A Babenko1, R R Shartdinov1,2, A G Upolovnikova1, A N Smetannikov1 and L Yu Mikhailova1

1 Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, 101, Amundsen street, Yekaterinburg, 620016, Russia

E-mail: 2rr.shartdinov@gmail.com

Abstract. The main diluent for chromium-containing slags is CaF2. However, fluor spar disadvantages make it necessary to search for a replacement. As a substitute, boron oxide allows to improve slag physical properties and environmental situation. The paper presents the experimental study results of the chemical composition and temperature influence on viscosity of slags of CaO–SiO2–Cr2O3 system containing 8% MgO, 3% Al2O3 and 6% B2O3. It was found that a slag free of chromium oxide with basicity of 1.0 has a sufficiently high fluidity of 0.2–0.6 Pa·s in a wide temperature range of 1200–1350°C, due to high concentration of low-melting phases, reaching 22%, and only 11% high-melting. A slag with 18% Cr2O3 and the same basicity retains a low viscosity of 0.1–1.0 Pa·s but at higher temperature of 1450–1570 °C due to increase in high-melting compound content to 27%. The viscosity of a slag with basicity of 2.5 without chromium oxide is 0.07–1.0 Pa·s in a narrow temperature range of 1650–1700°C and 0.14–1.0 Pa·s for a ‘shorter’ slag with 18% Cr2O3 and same basicity in even narrower range of 1650–1670°C. These slags have the highest high-melting phase content of about 50%.

1. Introduction
Currently the main method for the production of low-carbon stainless steel in the world is argon oxygen decarburization (AOD), which consists of 2 periods: oxidation and reduction. The purpose of the reduction period of smelting at AOD units is both the reduction of chromium from slag to metal and desulfurization of steel, but due to the fact that during the oxidation period a significant part of chromium is oxidized and passes into slag in the form of Cr2O3, the slag viscosity increases significantly [1] and the refining ability decreases [2]. The authors [2–4] note that low viscosity slags are in a narrow range of compositions, therefore the possibility of reducing the viscosity of these slags with the addition of fluor spar was studied [5, 6]. However fluor spar has many disadvantages. Aggressive effect on the lining, inconstancy of influence on the properties of slag due to the formation of volatile fluorides, which are environmentally harmful [7–10]. Boron oxide may become an alternative. B2O3 has a low melting point and also forms low-melting eutectics with the main components of the slag, for example, MgO • B2O3 (melting point 988°C), CaO • B2O3 (melting point 1100 °C) and others. This oxide is actively used in blast furnace production, ladle metallurgy and in continuous casting of steel [11–16]. Nevertheless the number of studies studying the effect of B2O3 on the physicochemical properties of chromium-containing slag [17] is extremely limited.
Slags of this process are a complex multicomponent system, the physicochemical characteristics of which determine the course of smelting, separation of metal and slag, etc. [2,18], ultimately determining the quality of steel. Therefore, the aim of the work is to study the viscosity of slags of the 

\[ \text{CaO} - \text{SiO}_2 - \text{Cr}_2\text{O}_3 - \text{MgO} - \text{Al}_2\text{O}_3 - \text{B}_2\text{O}_3 \]

system with a basicity of 1.0–2.5, containing 0–18% \( \text{Cr}_2\text{O}_3 \), 8% MgO, 3% Al\(_2\)O\(_3\) and 6% B\(_2\)O\(_3\) (in this expression and hereinafter indicated by mass %).

2. Materials and methods

Synthetic slags, the compositions of which are shown in Table 1, were smelted in a resistance furnace in molybdenum crucibles from reagent grade oxides, previously calcined for 2–3 hours at a temperature of 800°C (B\(_2\)O\(_3\) at a temperature of 100°C). The viscosity of the slag test samples was measured on an electrovibration viscometer in molybdenum crucibles in a stream of purified argon. The temperature of the slag was measured using a tungsten-rhenium thermocouple.

Thermodynamic modeling of the phase composition of the prototypes was carried out using the HSC Chemistry 8.03 software package, which allows one to calculate the equilibrium compositions and quantities of the products formed according to the Gibbs energy minimization algorithm based on the concepts of metallurgical melts as ideal associated solutions [19].

The obtained temperature dependences of slag viscosity are presented graphically in Figure 1. Table 2 contains the results of the calculation of the phase composition.

**Table 1.** The chemical composition of the experimental slag.

| No | CaO  | SiO\(_2\) | Cr\(_2\)O\(_3\) | MgO  | Al\(_2\)O\(_3\) | B\(_2\)O\(_3\) | \( B = (\text{CaO})/\text{SiO}_2 \) |
|----|------|----------|----------------|------|----------------|--------------|---------------------|
| 1  | 41.50| 41.50    | 0              | 8    | 3              | 6            | 1.0                 |
| 2  | 59.29| 23.71    | 0              | 8    | 3              | 6            | 2.5                 |
| 3  | 46.43| 18.57    | 18             | 8    | 3              | 6            | 2.5                 |
| 4  | 32.50| 32.50    | 18             | 8    | 3              | 6            | 1.0                 |

3. Results and discussion

As it can be seen from Figure 1, most of the studied slags (No. 1, 2, 3) are the so-called ‘short’ slags with a pronounced inflection point. This is explained by the phase composition of the studied oxide system, namely, the content of a large number of such high-temperature compounds as \( 2\text{CaO} \cdot \text{SiO}_2 \) and \( \text{CaO} \cdot \text{Cr}_2\text{O}_3 \) (Table 2).

The first slag (slag No. 1), not containing \( \text{Cr}_2\text{O}_3 \), having a basicity of 1.0 and containing 6.0% B\(_2\)O\(_3\), is characterized by a significant concentration of low-melting phases \( \text{CaO} \cdot \text{B}_2\text{O}_3 \), \( 2\text{CaO} \cdot \text{B}_2\text{O}_3 \) and \( \text{CaO} \cdot \text{MgO} \cdot 2\text{SiO}_2 \) (up to 22% in total) with only 11% of high-melting phases \( 2\text{CaO} \cdot \text{SiO}_2 \), \( \text{CaO}, \text{MgO} \), and has a viscosity of 0.2–0.6 Pa·s in the range of 1200–1350°C. Moreover, the overwhelming number of phases \( \text{CaO} \cdot \text{SiO}_2 \), \( \text{CaO} \cdot \text{MgO} \cdot \text{SiO}_2 \), etc. accounts for the second interval (62%), which ensures a rapid speed of crystallization despite the low basicity.

An increase in the basicity of slag without \( \text{Cr}_2\text{O}_3 \) (slag No. 2), containing 6.0% boron oxide, to 2.5 is accompanied by a decrease to 5% in the fraction of low-melting phases \( (2\text{CaO} \cdot \text{B}_2\text{O}_3) \) and an increase in the fraction of medium- and high-melting compounds to 43 and 50% respectively, which
Table 2. Slag phase composition.

| Phases, %      | $t_{\text{melting}}, ^\circ \text{C}$ | Slags          |
|----------------|---------------------------------------|----------------|
|                |                                       | 1  | 2 | 3 | 4 |
| Low-melting phases |                                        |    |   |   |   |
| CaO·B$_2$O$_3$   | 1130                                  | 4  | 0.1 | 0.4 | 4.5 |
| 2CaO·B$_2$O$_3$  | 1280                                  | 9  | 5  | 9  | 8  |
| CaO·MgO·2SiO$_2$ | 1391                                  | 9  | 0.03 | 0.2 | 8  |
| Medium-melting phases |                                    |    |   |   |   |
| 2CaO·MgO·2SiO$_2$| 1454                                  | 4  | 0.4 | 1  | 3  |
| 3CaO·B$_2$O$_3$  | 1460                                  | 1  | 14 | 9  | 1  |
| 3CaO·2SiO$_2$    | 1460                                  | 13 | 8  | 7  | 6  |
| CaO·MgO·SiO$_2$  | 1503                                  | 8  | 5  | 8  | 7  |
| CaO·SiO$_2$      | 1540                                  | 23 | 3  | 5  | 22 |
| MgO·SiO$_2$      | 1557                                  | 5  | 0.1 | 0.5 | 5  |
| 3CaO·MgO·2SiO$_2$| 1575                                  | 2  | 6  | 5  | 1  |
| SiO$_2$         | 1710                                  | 6  | 0.03 | 0.1 | 5  |
| High-melting phases |                                        |    |   |   |   |
| 2CaO·SiO$_2$    | 2130                                  | 10 | 40 | 21 | 6  |
| CaO·Cr$_2$O$_3$  | 2170                                  | 0  | 0  | 20.5 | 7  |
| MgO·Cr$_2$O$_3$  | 2350                                  | 0  | 0  | 0.004 | 0.005 |
| Cr$_2$O$_3$     | 2435                                  | 0  | 0  | 3  | 13 |
| CaO             | 2570                                  | 0.2 | 6 | 2  | 0.2 |
| MgO             | 2852                                  | 1  | 4  | 4  | 1  |

Figure 1. Temperature dependence of slag viscosity. 1–4 – slag numbers.

Causes a shorter crystallization at higher temperature (slag No. 2). Despite the increase in the fraction of the low-melting phase 2CaO·B$_2$O$_3$ to 9% in slag No. 3, which has the same basicity but contains 18% Cr$_2$O$_3$, an increase in the fraction of high-melting phases 2CaO·SiO$_2$, CaO, CaO·Cr$_2$O$_3$, Cr$_2$O$_3$ and MgO to 53% provides it similar nature of the dependence of viscosity curve on temperature. In this case slag No. 2 and No. 3 have a viscosity of 0.07–1.0 Pa·s in the range of 1650–1700°C and
up to 1.0 Pa·s at a temperature of 1670°C, respectively.

An increase in the basicity of slag without Cr$_2$O$_3$ (slag No. 2), containing 6.0% boron oxide, to 2.5 is accompanied by a decrease to 5% in the fraction of low-melting phases (2CaO·B$_2$O$_3$) and an increase in the fraction of medium- and high-melting compounds to 43 and 50%, respectively, which causes a shorter crystallization at higher temperature (slag No. 2). Despite the increase in the fraction of the low-melting phase 2CaO·B$_2$O$_3$ to 9% in slag No. 3, which has the same basicity but contains 18% Cr$_2$O$_3$, an increase in the fraction of high-melting phases 2CaO·SiO$_2$, CaO, CaO·Cr$_2$O$_3$, Cr$_2$O$_3$ and MgO to 53% provides it similar nature of the dependence of viscosity curve on temperature. In this case slag No. 2 and No. 3 have a viscosity of 0.07–1.0 Pa·s in the range of 1650–1700°C and up to 1.0 Pa·s at a temperature of 1670°C, respectively.

Slag No. 4 is ‘long’ and doesn’t have a pronounced inflection point due to low basicity and a large number of glass-forming oxides SiO$_2$, B$_2$O$_3$. The presence in the slag of the studied oxide system of 18% chromium oxide, acting at a basicity of 1.0 or more as a network-former, increases the degree of slag polymerization [17]. With a slight decrease relative to slag No. 1, of the content of low-melting phases CaO·B$_2$O$_3$, 2CaO·B$_2$O$_3$, CaO·MgO·2SiO$_2$ up to 21%, the fraction of high-melting 2CaO·SiO$_2$, CaO, CaO·Cr$_2$O$_3$, Cr$_2$O$_3$ and MgO increases up to 27% at the expense of compounds with an medium melting point. That leads to heterogenization of the oxide system and viscosity up to 0.1–1.0 Pa·s at increased temperature of 1450–1570°C.

4. Conclusions

As a result of a study of the physical properties of the slags of the studied oxide system it was found that boron oxide provides the formation of low-melting phases and a sufficiently high fluidity of the slags of the CaO – SiO$_2$ – Al$_2$O$_3$ – MgO – B$_2$O$_3$ system even at a high content of chromium oxide. The addition of 18% chromium oxide, acting at a basicity of 1.0 or more as a complexing agent, increases the degree of slag polymerization and the fraction of high-temperature phases in the slags of the studied oxide system, accompanied by their heterogenization and viscosity increase.

Acknowledgments

The work was carried out according to the state assignment for IMET UB RAS.

References

[1] Atlas shlakov: spraw. izd. [Atlas of slag. Reference book] 1985 (Moscow: Metallurgija) [in Russian]
[2] Tokovoj O K 2015 Argonokislorodnoe rafinirovanie nerzhaveyushchej stali: monografiya [Argon oxygen decarburization: monography] (Chelyabinsk: Izdatel'skij centr YuUrGU) [in Russian]
[3] Wu T, Yuan F and Zhang Y 2018 Viscosity measurements of CaO-SiO$_2$-CrO Slag ISIJ International 58 (2) 367-9
[4] Liu Zh, Dekkers R, Blanpain B and Guo M 2019 Experimental Study on the Viscosity of Stainless Steelmaking Slags ISIJ International 59 (2) 404-11
[5] Magidson I A, Morozov A S, Sidorenko M F et al 1973 Vyazkost' hromistyh shlakov [The Viscosity of chromium-containing slags] Izvestiya. Ferrous Metallurgy 11 61-4 [In Russian]
[6] Kalicka Z, Kawecka-Cebula E and Pytel K 2009 Application of the Iida Model for Estimation of Slag Viscosity for Al$_2$O$_3$-Cr$_2$O$_3$-CaO-CaF$_2$ Systems Arch. Metall. Mater. 54 (1) 179-87
[7] Dyudkin D A and Kisilenko V V 2010 Vnepechnaya metallurgiya stali [Ladle metallurgy of steel] (Moscow: Tepltotekhnik) [In Russian]
[8] Akberdin A A, Kulikov I S, Kim V A et al 1987 Fizicheskie svojstva rasplavov sistemy CaO- 
Al$_2$O$_3$-SiO$_2$-MgO-CaF$_2$ [Physical properties of CaO-Al$_2$O$_3$-SiO$_2$-MgO-CaF$_2$ melt system] (Moscow: Metallurgija) [in Russian]
[9] Povolockij D Ya, Roshchin V E, Gribanov V P et al 1982 Vliyanie SiO$_2$ na letuchest' shlakov
Effect of SiO$_2$ on the volatility of slags of the Al$_2$O$_3$-Al$_2$O$_3$-CaF$_2$ system

[10] Zajcev A I, Mogutnov B M and Shahpazov E H 2008 Fizicheskaya himiya metallurgicheskikh shlakov [Physical chemistry of metallurgical slags] (Moscow: Interkontakt Nauka) [In Russian]

[11] Wang H, Zhang T, Zhu H, Li G, Yan Y and Wang J 2011 Effect of B$_2$O$_3$ on Melting Temperature, Viscosity and Desulfurization Capacity of CaO-based Refining Flux. ISIJ International 51 (5) 702–6

[12] Akberdin A A, Kireeva G M and Medvedkovskaya I A 1986 Vliyanie B$_2$O$_3$ na vyazkost' shlakov sistemy CaO-Al$_2$O$_3$-SiO$_2$ [The effect of B$_2$O$_3$ on the slag viscosity of the CaO-Al$_2$O$_3$-SiO$_2$ system] Izvestiya AN SSSR. Metally [Proceedings of the USSR Academy of Sciences. Metals] 3 55-6 [In Russian]

[13] Babenko A A, Istomin S A, Protopopov E V, Sychev A V and Ryabov V V 2014 Viscosity of CaO-SiO$_2$-Al$_2$O$_3$-MgO-B$_2$O$_3$ slags Steel in Transl. 44 (2) 110–2

[14] Wang H, Li G, Li B, Zhang X and Yan Y 2010 Effect of B$_2$O$_3$ on Melting temperature of CaO-Based Ladle Refining Slag ISIJ International 17 (10) 18-22

[15] Akberdin A A, Kireeva G M, Medvedkovskaya et al 1986 Atlas diagramm vyazkosti borsoderzhashchih shlakov [Atlas of viscosity diagrams of boron-containing slags] (Dep. in VINITI) [In Russian]

[16] Wang W, Cai D and Zhang L 2018 A Review of Fluorine-free Mold Flux Development ISIJ International 58 (11)1957–64

[17] Li Q, Yang Sh, Zhang Y, An Zh and Guo ZhCh 2017 Effects of MgO, Na$_2$O, and B$_2$O$_3$ on the viscosity and structure of Cr$_2$O$_3$-bearing CaO-SiO$_2$-Al$_2$O$_3$ slags ISIJ International 57 (4) 689-96

[18] Povolockij D Ya and Gudim Yu A 1988 Proizvodstvo nerzhaveyushchej stali [Stainless steel production] (Chelyabinsk: Izd-voYuUrGU) [In Russian]

[19] Vatolin N A, Moiseev G K and Trusov B G 1994 Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemah [Thermodynamic modeling in high temperature inorganic systems] (Moscow: Metallurgia) [In Russian]