MOBILITY DETERMINATION OF LEAD ISOTOPES IN GLASS FOR RETROSPECTIVE RADON MEASUREMENTS

Mikko Laitinen*, Iiro Riihimäki, Jörgen Ekman, A. R. Ananda Sagari, Lennart Karlsson, Somjai Sangvyenuyongpipat, Sergey Gordick, Heikki Kettunen, Heikki Penttilä, Ragnar Hellborg, Timo Sajavaara, Johan Helgesson, Harry J. Whitlow

*Department of Physics, University of Jyväskylä (JYLF), P.O. Box 35, FIN-40014 Jyväskylä, Finland. School of Technology and Society, Malmö University, SE-205 06 Malmö, Sweden. Department of Physics, Lund University, P.O. Box 119, SE-22100 Lund, Sweden.

Received on 2007, revised on 2007, accepted on 2007

In retrospective radon measurements the 22 year half life of ^{210}Pb is used as an advantage. The ^{210}Pb is often considered to be relatively immobile in the glass after alpha recoil implanted by ^{222}Rn progenies. The diffusion of ^{210}Pb could however lead to uncertain wrong retrospective radon exposure estimations if ^{210}Pb is mobile and can escape from glass, or lost as a result of cleaning, induced surface modification. This diffusion was studied by radiotracer technique where ^{209}Pb was used as a tracer in a glass matrix for which the elemental composition is known. Using the IGISOL technique the ^{209}Pb atoms were implanted into the glass with an energy of 39 keV. The diffusion profiles and the diffusion coefficients were determined after annealing at 470 – 620 °C and serial sectioning by ion sputtering. In addition the effect of surface cleaning on diffusion was tested. From the Arrhenius fit the activation enthalpy was determined to be $\Delta H = (5.2 \pm 0.2) \text{eV}$ and the pre-exponential factor Θ_0 in the order of $20 \text{m}^2\text{s}^{-1}$. This result confirms the assumption that over time period of 50 years the ^{209}Pb (and ^{210}Pb) is effectively immobile in the glass. The boundary condition obtained from the measurements had characteristic of a sink implying loss of ^{209}Pb in the very surface at high temperatures.

INTRODUCTION

It is estimated that radon in dwellings accounts up to 2% of all deaths from cancer in Europe [1]. This number is higher in the areas where higher concentrations of the natural uranium exists in the bedrock. To make accurate conclusions of radon induced fatalities it is important to have reliable method for measuring radon concentrations for a sufficient long time period. Starting from the ^{228}U the radium decay series acts as a constant source of radioactive decay products. The half life of $t_{1/2} = 3.8$ d of the radon(222) gas allows ^{222}Rn to diffuse out from the ground and to the dwellings. It is however not the radon itself that causes most of the exposure but the short lived alpha-emitting solid progenies of the inhaled radon [1].

Epidemiological surveys where radon retrospective measurements are used are based on surface traps such as glass [2, 3, 4, 5, 6] for determining the alpha recoil implanted radon progenies. Also substrates like CR-39 or other polymers is widely used for retrospective radon measurements, progeny detection and in epidemiological studies; see [7, 8, 9, 10] for example.

When ^{222}Rn the radium decay series quickly evolves but builds up after about an hour to in ^{210}Pb. The long half life of $t_{1/2} = 22$ a of the ^{210}Pb is what enables the retrospective radon measurements when the implanted ^{210}Pb (or it’s progenies) concentrations into the glass can be determined reliably. Most of the retrospective radon measurements based on the surface trap method does not however take into account the possibility of the diffusion of the ^{210}Pb. Implantation depth of ^{210}Po from alpha decays of ^{218}Po and ^{214}Po is very shallow and <100 nm at the maximum [11, 12]. This can lead to erroneous results if the ^{210}Pb is mobile and diffuses out from the glass. This is because most of the implanted ^{210}Pb is concentrated very close to the surface [11, 12].

In retrospective radon measurements alpha activities of $\sim 2 \text{Bq m}^{-2}$ of ^{210}Po can be measured [3]. Calculated from decay constants this polonium activity corresponds to about $4 \times 10^{7} \text{Po at. cm}^{-2}$. The diffusion processes where only very small concentration (10^{-7} - $10^{15} \text{at. cm}^{-2}$) of implanted atoms exists can only be studied by the radiotracer technique [13]. To measure the diffusion of ^{210}Po we used ^{209}Pb as a radiotracer to mimic ^{210}Pb as from the diffusion perspective they only differ by their mass which can be safely disregarded. This study further investigates the surface escape of the Pb and expands the reliability of the initial study [14] of the low concentration diffusion of Pb in glass.

METHOD

To measure diffusion by radiotracers at low concentrations the implanted isotopes need to have a half life between ~ 30 min and few tens of hours so that enough statistics from β -decays can be collected in short period...
of time. At Jyväskylä a primary energetic beam from the K-130 cyclotron is guided to a solid target at the ion guide isotope separator on-line (IGISOL) [15, 16, 17] where the radioactive products are isotope separated and accelerated to a maximum energy of 40 keV for implantation. After the implantation the sample is thermally annealed in vacuum to induce diffusion. Subsequently, the concentration profile of implanted 209Pb was serially sectioned onto thin mylar foils by a sputtering method [18].

After sputtering the activity on each section was measured and the total crater depth of the sputtered sample determined. For different temperatures the diffusion profiles are determined from the crater depth, number of foils and from the measured activity on each foil.

The mathematical form of the diffusion profiles can be deduced from Fick’s law [19, 20, 21] (see Eq. 1). Prior to fitting, the measured profiles were corrected for radioactive decay during the measurement. Diffusion equation

\[
C_{Pb}(x, t) = N \int_0^\infty \exp \left(-\frac{(x-x)^2}{4\lambda^2} \right) \]

relates the evolution of the concentration profile \(C_{Pb}(x, t) \) with depth \(x \) and time \(t \) to the initial, as-implanted profile \(C_{Pb}(x, t = 0) \). \(\lambda \) is the diffusion length.

In eq. (1) the shallow implantation depth from the surface has been taken account by \(R (-1 \leq R \leq 1) \) which describes the surface boundary condition. \(R = -1 \) for a perfect sink while \(R = +1 \) corresponds to a perfectly reflecting boundary \[21\]. The as-implanted profile \(C_{Pb}(x,t=0) \) was taken to have a Gaussian form where \(x_0 \) is the centroid of the as-implanted profile. Fig. 3 shows this to be a good approximation to our experimental data. When Eq. (1) is integrated it can be represented in the form:

\[
C_{Pb}(x, t) = N \left[\text{erfc} \left(-\frac{x_0 + x}{2\nu + 4\lambda^2} \right) + R \cdot \text{erfc} \left(\frac{x-x_0}{2\nu + 4\lambda^2} \right) + B, \right.
\]

where \(\nu \) and \(x_0 \) are taken from the as-implanted Gaussian and \(N, \lambda, R \) and \(B \) are free parameters.

EXPERIMENT

The elemental composition of the soda-lime glass used in the experiment was measured using time of flight-elastic recoil detection (ToF-ERD) [22] analysis to be Ca 3%, Si 26%, Mg 3%, Na 8%, and O 60% respectively. The glass samples used were taken from the same batch (Menzel-Gläser 76×26×1 mm³ sized microscope slides, article number 011101) as our preliminary study [14].

To test influence on cleaning on diffusion and loss of Pb from the glass surface two sets of samples were cleaned in different ways. One set of samples were treated in 99.5% acetic acid for >24 h prior to diffusion while another set was treated with a commercial window cleaner (Ajax Tm) and rubbed with cotton wool on
sticks for 20 minutes between implantation and thermal treatment.

The $^{208}\text{Pb}(d,p)^{209}\text{Pb}$ reaction was used to produce β^- active ^{209}Pb [23] with $t_{1/2} = 3.253$ h. The 14 MeV deuterium beam was produced by the Jyväskylä cyclotron. Thin enriched ^{208}Pb was used as a primary target material in IGISOL (Fig. 1). The $^{209}\text{Pb}^+$ ions were implanted in the glass samples with an energy of 39 keV. According to SRIM-2006 [24] the lateral implantation depth was 23.0 nm with stragling (square root of variance) of 4.3 nm when elemental composition was as measured with ToF-ERDA and density of 2.5 g cm$^{-3}$ was used in the simulation.

After the implantation the activity in the sample was checked using a scintillation monitor to be sufficiently large to give a measurable activity over the whole measurement cycle (\sim4 h).

The samples were heat-treated in a quartz vacuum tube at 1-5 x 10^{-5} Pa mounted in a tube furnace (Gero GmbH, type F) between 470 - 670 °C. The annealing time was 1 h except for the lowest temperature where this was extended to 4 h to improve measurement accuracy.

Timing was started when sample was slid in the oven and stopped when taking out. Temperature saturation was slowest for the lowest temperatures but the gradients at the beginning and in the end of the annealing were expected to cancel each other out to some degree. Next the samples were taken to the serial sectioning [18]. The ion source for the sputtering system was ECR plasma source “OSPrey” from Oxford Scientific. Gas feedstock for the ion gun was air and the acceleration voltage of 1 kV was used for the ion beam (Fig. 2). When the serial sectioning by sputtering to the mylar foil was completed the foil was taken out for activity measurement.

Activity of each foil section was measured with two large silicon detectors. Both detectors facing each other had an active area of 30 x 30 mm2 and a thickness of 500 µm. Distance between the detectors was about 4-5 mm. Each detector was segmented to four quadrants. Since the sputtered fluence in the foil had diameter of \approx30 mm, detectors formed effectively 4r detection angle. β-decay counts from 209Pb were collected for 200 s for each foil section. Maximum count rate was less than 25 counts/second. Counting electronics had veto pulses to discriminate signals too close each other (\sim1 µs). By this veto double/multiple counts caused by electron scattering from quadrant to quadrant were rejected.

The depth of the crater formed during the sputtering was measured from 4-10 positions around the implantation spot with P-15 stylus profiler from KLA-Tencor. The vertical resolution of the profiler is better than 2 nm.

ANALYSIS AND DISCUSSION

The implantation depth x_0 measured from the Gaussian fit is 22.6 ± 0.2 nm which is close to SRIM simulation result. Figure 4 presents an Arrhenius plot of the diffusion coefficient $D = \lambda^2/t$. λ is obtained from the Eq. (2) and t is the annealing time.

The temperature dependence of D follows the Arrhenius equation:

$$D = D_0 \exp \left(-\frac{H}{kT}\right),$$

(3)

here D_0 is the so-called pre-exponential factor, H is the activation enthalpy, k is Boltzmann’s constant and T is temperature in Kelvin.

The fitted activation enthalpy was 3.2 ± 0.2 eV and D_0 in the order of 20 m2s$^{-1}$. The largest uncertainty factor in the measurements was the background in the foil activity measurement. Background deviation of a few percent in the measurements cause noticeable changes to the diffusion length and this is the main cause of the scatter from a straight line in Fig. 4. Error bars for the T^{-1} and D in Fig. 4 correspond to the delay in temperature 1 stabilization in the annealing and

1 Temperature is the mean of the measured values 40 minutes before the end of annealing and the error-bars represent standard deviation of these values.
Diffusion coefficients of 209Pb in glass were measured over the temperature range of 470 – 620 °C. The activation enthalpy was determined to be 3.2 ± 0.2 eV and the pre-exponential factor D_0 in the order of $20 \text{ m}^2 \text{s}^{-1}$. Extrapolation of these diffusion parameters to room temperature shows that Pb is completely immobile in the glass over a time scale of 50 years. We also did not find differences in diffusion coefficients between the untreated samples, and the samples subjected to cleaning treatment by soaking in acid or a combination of commercial window cleaner and abrasion. For retrospective radon measurements where long decay time of 210Pb is used it can be confirmed that implanted 210Pb concentration does not alter due to diffusion mechanism. Over the temperature range of the measurements the surface behaved as a near-perfect sink, indicative of evaporation of the implanted Pb that diffuses to the very surface.

ACKNOWLEDGEMENT
This work was supported by the Academy of Finland under the Finnish Center of Excellence Programme 2006-2011 (Project 213503).

REFERENCES
1. S. Darby, D. Hill, A. Auvinen, J.M. Barros-Dios, H. Baysson, F. Bochicchio, H. Deo, R. Falk, F. Forastiere, M. Hakama, I. Heid, L. Kreienbrock, M. Kreuzer, F. Lagarde, I. Mäkeläinen, C. Muirhead, W. Oberaigner, G. Pershagen, A. Ruano-Ravina, E. Ruosteenoja, A. Schaffrath Rosario, M. Tirmarche, L. Tomásek, E. Whitley, H-E. Wichmann, R. Doll, Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, *British Medical Journal*, 330, 223 (2005).
2. R.S. Lively, E.P. Ney, Surface radioactivity from the deposition of Ra-222 daughter products, Health Physics, 52, 411-415 (1987).

3. C. Samuelson, Retrospective determination of radon in houses, Nature, 334, 338-340 (1988).

4. C. Samuelson, Radon retrospective measurements, International Congress Series, 1276, 66-71 (2005).

5. R. Falka, K. Almérén, I. Östergren, Experience from retrospective radon exposure estimations for individuals in a radon epidemiological study using solid-state nuclear track detectors, The Science of The Total Environment, 272, 61-66 (2001).

6. F. Lagarde, R. Falk, K. Almérén, F. Nyberg, H. Svensson, G. Pershagen, Glass-based radon-exposure assessment and lung cancer risk, Journal of Exposure Analysis and Environmental Epidemiology, 12, 344-354 (2002).

7. J.A. Mahaffey, M.A. Parkhurst, A.C. James, F.T. Cross, M.C.R. Alavanja, J.D. Boice, S. Ezrine, P. Henderson, R.C. Browson, Estimating past exposure to indoor radon from household glass, Health physics, 64, 381-391 (1993).

8. M.C.R. Alavanja, J.H. Lubin, J.A. Mahaffey, R. Browson, Residential radon exposure and risk of lung cancer in Missouri, American Journal of Public Health, 89, 1042-1048 (1999).

9. J.A. Mahaffey, M.C.R. Alavanja, M.A. Parkurst, E. Berger, R.C. Browson, Estimation of past exposure history for analysis of a residential epidemiological study, Radiation Protection Dosimetry, 83(3), 239-247 (1999).

10. D.J. Steck, R.W. Field, The use of track registration detectors to reconstruct contemporary and historical airborne radon (222Rn) and radon progeny concentrations for radon-lung cancer study, Radiation measurement, 31, 401-406 (1999).

11. B. Roos, C. Samuelson, Experimental methods of determining the activity depth distribution of implanted 210Pb in glass, Journal of Environmental Radioactivity, 334, 135-151 (2002).

12. B. Roos, Studies on the Alpha-Recoil Implantation of 214Pb and 210Pb in Glass Surfaces, PhD Thesis, University of Lund (2002).

13. P. Laitinen, I. Riihimäki, J. Huikari, J. Räsänen, Versatile use of ion beams for diffusion studies by the modified radiotracer technique, Nuclear Instruments and Methods in Physics Research B, 219-220, 530-533 (2004).

14. J. Ekman, J. Hedegård, M. Budg不限空, L. Budg不限空, I. Riihimäki, V. Toublad, P. Jalkanen, A. Virtanen, H. Kettunen, J. Huikari, A. Nieminen, L. Moosere, H. Peasini, K. Arstila, J. Åystö, J. Räsänen, H. J. Whitlow, Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 249, 544-547 (2006).

15. J. Årje, J. Åystö, H. Hyvönien, P. Taskinen, V. Koponen, J. Honkanen, K. Valli, A. Hautojärvi, K. Virenen The ion guide isotope separator online, IGISOL, Nuclear Instruments and Methods in Physics Research A, 247, 431-437 (1986).

16. P. Dendooven, The development and status of the IGISOL technique, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 126, 182-189 (1996).

17. J. Åystö, Development and applications of the IGISOL technique, Nuclear Physics A, 693, 477-494 (2001).

18. P. Laitinen, M. Nevala, A. Pirojenko, K. Ranttila, R. Seppälä, I. Riihimäki, J. Räsänen, A. Virtanen, Utilisation of a sputtering device for target and diffusion studies, Nuclear Instruments and Methods in Physics Research B, 226, 441-446 (2004).

19. B. I. Boltaks, Diffusion in semiconductors, Infossearch Limited, London, 93-128 (1963).

20. C. Zaring, P. Gas, B.G. Svensson, M. Öhling, H.J. Whitlow, Boron diffusion in bulk cobalt disilicide Thin Solid Films, 193-194, 244 (1990).

21. M. Salamon, Diffusion in Molybdenum disilicide and in intermetallic phases of the systems Einsi-Aluminium, PhD Thesis, University of Munster, 59 (2003).

22. J. Jokinen, J. Keinonen, P. Tikkanen, A. Kuronen, T. Ahlgren, K. Nordlund, Comparison of TOF-ERDA and nuclear resonance reaction techniques for range profile measurements of keV energy implants, Nuclear Instruments and Methods in Physics Research B, 199, 532-542 (1996).

23. W. J. Ramler, J. Wing, D. J. Huizenga, Excitation Functions of Bismuth and Lead, Physical Review, 114, 154-162 (1959).

24. SRIM-2006.02, SRIM-2003 simulations, www.srim.org.