Experimental Evolution of the Megaplasmid pMPPla107 in Pseudomonas stutzeri Enables Identification of Genes Contributing to Sensitivity to an Inhibitory Agent

Brian A. Smith¹, Kevin Dougherty¹, Meara Clark¹, and David A. Baltrus¹,³*

¹School of Plant Sciences, University of Arizona, Tucson, AZ, USA
³School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA

*corresponding author
baltrus@email.arizona.edu
ABSTRACT

Horizontally transferred elements such as plasmids can, at times, burden host cells with various metabolic and fitness costs. Our previous work demonstrated that acquisition of the *Pseudomonas syringae* megaplasmid pMPPla107 causes sensitivity to a growth inhibiting substance that is produced in cultures during growth under standard laboratory conditions. After 500 generations of laboratory passage of *P. stutzeri* lines containing pMPPla107, two out of six independent lines displayed resistance to this inhibitory agent. We therefore sequenced the genomes of isolates from each independent evolutionary line to identify the genetic basis of this resistance phenotype through comparative genomics. Our analysis demonstrates that two different compensatory mutations on the megaplasmid ameliorate the sensitivity phenotype: 1) a large deletion of approximately 368kb in pMPPla107 and 2) a SNP in the gene we name *skaA* for Supernatant Killing Activity. These results provide further evidence that costs associated with horizontal gene transfer can be compensated through single mutational events and emphasize the power of experimental evolution and resequencing to better understand the genetic basis of evolved phenotypes.
INTRODUCTION

Plasmids are secondary replicons that can rapidly move across bacterial genomes increasing genomic plasticity through a process known as horizontal gene transfer (HGT). Thousands of genes can be transferred via HGT in an instance allowing for the colonization of new niches by the acquisition of genes encoding for metabolism, antibiotic resistance, virulence factors, and symbiosis thus enabling colonization of new niches (1-6). While plasmids could provide advantages for a bacterial cell in a given environment, horizontal gene transfer also brings many costs that may be manifested in phenotypic changes rather than lowered fitness alone (7-11). Outside of a handful of examples, relatively little is known about general trends underlying the mechanistic basis of such costs (8, 9, 12, 13).

We have previously shown that acquisition of the *Pseudomonas syringae* megaplasmid pMPPla107 by *Pseudomonas stutzeri* sensitizes this strain background to the presence of an inhibitory agent that has bacteriostatic properties (9, 10, 14). Sensitivity is found in pMPPla107's native strain *P. syringae pv. lachrymans* 107 and can be transferred to various *Pseudomonas spp.* upon their acquisition of pMPPla107; thus, indicating the phenotype is linked to pMPPla107. Furthermore, production of the inhibitory agent is conserved across *Pseudomonas spp.* appears linked to Pseudomonas metabolism, and may be associated with an essential gene (14).
Although acquisition of plasmids by new host backgrounds often creates metabolic, physiological, and fitness costs, previous research has shown that various types of compensatory mutations occur rapidly on either the chromosome or plasmid and that such amelioration of costs enables the persistence of plasmids (15-19). Evolutionary experiments of *P. fluorescens* with the mercury resistant pQBR103 start with fitness costs in *P. fluorescens*. However, after hundreds of generations compensatory mutations in *gacA/gacS* occur in strains with and without selection using mercury, suggesting that a plasmid can exhibit parasitic behaviors influencing chromosomal mutations without any selective benefit to establish stable cohabitation (15). Furthermore, mutations in two helicases and an RNA polymerase subunit resulted in host dependence on the plasmid RP4 while also increasing the uptake of additional plasmids (16). Therefore, compensatory mutations may not only explain plasmid persistence mechanisms, but also increased plasmid promiscuity. For these reasons and to better understand the genetic basis of previously described phenotypic costs associated with pMPPla107 (9), we carried out experimental evolution of *P. stutzeri* under conditions that selected for maintenance of pMPPla107. Our goal with these passage experiments was to identify strain backgrounds that have ameliorated known costs of pMPPla107 carriage with the hope that identification of compensatory mutations would provide better understanding of the genetic basis of these costs (14).

Here we resequence genomes from single colony isolates sampled from six independently evolving lines of *P. stutzeri* containing pMPPla107 after 500
generations of passage. Two of these lines evolved resistance to a well characterized, but currently unknown, inhibitory agent produced by Pseudomonas species. We further find that two different compensatory mutations provide resistance to this inhibitory agent and that both changes were found on the megaplasmid itself. Although one of these mutations was a large deletion that eliminated many different genes, the other was a single non-synonymous nucleotide polymorphism (SNP) that occurred in a gene with no known function. Our work provides insights into the genetic basis of mutations that ameliorate fitness costs associated with plasmid acquisition but also more specifically inform our understanding of the genetic basis of sensitization of Pseudomonas strains to a currently unidentified inhibitory agent associated with maintenance of pMPPla107.

METHODS

Long Term Evolution Experiment

Six single colonies of *P. stutzeri* strain DBL408 were picked after growth on Salt Water LB (SWLB) agar (20), into independent 2mL cultures of SWLB liquid containing rifampicin (50ng/µL) and tetracycline (10ng/µL) within 5mL polypropylene tubes with caps. These cultures were grown within shaking (220rpm) at 27°C for two days at which point a subset of this culture was frozen in 40% glycerol at -80°C and labeled as “passage 0” while a 1:1000 (cells:media) dilution was also made into fresh 2mL of SW-LB. Each passage, cells were plated to SW-LB agar plates containing rifampicin (50ng/µL) and tetracycline (10ng/µL) to observe colony morphology in case of contamination. Tetracycline in the media
selected for maintenance of the megaplasmid in strain DBL408. Every 10 passages, a 750µL sample of the culture was mixed with 40% final concentration of glycerol and stored at -80°C. This process was repeated for approximately 500 generations of growth (Log2 of 1000=9.96 divisions per passage; 50 passages total).

Genome Sequencing and Annotation

Single colonies of each generation 500 line were picked and grown overnight in 2mL of SW-LB with rifampicin (50ng/µL) and tetracycline (10ng/µL). DNA samples were extracted from these cultures using a Promega Wizard kit. *P. stutzeri* lines 1B, 4B, 5B, and 6B were sequenced using 100bp paired end reads on an Illumina HiSeq (SRA in progress). *P. stutzeri* lines 2B and 3B were sequenced using 250bp paired end reads on an Illumina MiSeq by MicrobesNg (SRA in progress). We used Prokka(21) gene annotations of pMPPla107 from a previous publication(5) and the annotations from the *P. stutzeri* 28a24 reference sequence (Accession: CP007441.1).

Mapping Reads and Calling Variants

Illumina reads from all six evolved lines were mapped to the *P. stutzeri* 23a24 and pMPPla107 references (Accession No.: CP007441 and NZ_CP031226.1 respectively) using the Geneious11.1.3 (https://www.geneious.com/) mapper. Parameters used for the mapping step were: do not trim, gaps allowed, maximum gap per read = 10%, word length = 18, ignore words repeated more than 12 times, maximum mismatches per read = 20%, maximum gap size = 15, index word length = 13, maximum ambiguity = 4, accurately map reads with errors to repeat regions.
Additionally the sensitivity parameter was set at medium-low sensitivity with up to 5 iterations. We found that mapping at higher sensitivities did not change our outputs and therefore chose this setting. After mapping, variants were called inside and outside of coding regions with a conservative frequency filter of 0.90. Variant maximum P-values were set at 10^{-6} and a minimum strand-bias P-value of 10^{-5} was also used. Since we were interested in gene mutations only in 5B responsible for resistance to the inhibitory agent we filtered for unique SNPs by removing redundant SNPs that occurred in > 1 evolved lines. This gave us a set of candidate genes to then conduct genetic analyses, allowing us to confirm a causative gene for the sensitivity phenotype. In cases where genes appeared to have higher rates of variance, we pruned our SNP data by removing variant calls in high variance regions with less than 30x coverage.

Synteny Plots

SynMap is a web-based software found at genomeevolution.org used to build synteny plots of sequence data(22). We used SynMap2 with the LAST algorithm and default parameters to compare the sequences of ancestral pMPPla107 and pMPPla107-4B(22). DAGChainer Options were: nucleotide distance, -D = 20, and -A = 5. Tandem duplication distance was set to 10 and the C-score was set to 0.

Inhibitory Agent Sensitivity Test

We followed previous protocols to test the inhibitory agent against the six evolved lines, as described elsewhere(9, 14). Briefly, overlays were prepared by mixing cells
grown for four hours with 0.4% molten agar and plated on to KB plates. Overlays were allowed to solidify for approximately 15 min. The inhibitory agent was collected by growing P. stutzeri for 24-48 hrs, centrifuging cells at 10,000 × g for 5 min, and sterilizing supernatants through a 0.22µm filter. After sterilization 10µL of supernatants were spotted onto the overlay plate and allowed to dry. Overlay plates were grown at 27°C for approximately 24 hrs at which point, zones of inhibition were observed.

Conjugation of Evolved Megaplasmids into Ancestral P. stutzeri

Ancestral P. stutzeri (DBL386) was used with either evolved lines 4B or 5B to conduct a biparental conjugation by mixing 1:1 mixture of overnight cultures. Mixed cells were centrifuged at 3000 × g for 3 min and supernatants were removed without disturbing the pellet. Pellets were washed and resuspended in 1 mL of 10 mM MgCl₂. Centrifugation and washing steps were repeated once more. 10µL and 100µL of resuspended cells were spread and for 24-48 hr at 27°C on KB plates with rifampicin (50 ng/µL) and tetracycline (10 ng/µL). Resistant colonies underwent diagnostic PCR for presence of pMPPla107 using primers from Baltrus et al. 2011(23).

Gene function prediction with Phyre2 and blastx

We attempted to predict functional characteristics of skaA using the Phyre2 web server. The amino acid for skaA was used as input and the intensive setting was selected(24). We also used the nucleotide sequence of skaA as input into the NCBI
non-redundant protein sequences BLAST database using blastx using the BLOSUM62 matrix, expect threshold = 10, word size = 6, and max target sequences = 100. (date of search last search: January 21st 2019)(25).

RESULTS

Genome Sequencing Reveals 2 of 6 Evolved Lines Gain Resistance to a Previously Described Inhibitory Agent

Given our interest in a phenotype involving sensitization of Pseudomonas strains to an unknown inhibitory agent after acquisition of pMPPla107(9), we screened for the presence of inhibition in these evolved lines. Single colony isolates from two out of six lines (referred to from here on as DBL408-4BGen500 and DBL408-5BGen500) revert to the non-pMPPla107 phenotype and demonstrate resistance to this inhibitory agent (Figure 1).

In previous evolutionary studies focusing on plasmids, the burden of plasmid acquisition resulted in compensatory mutations present on host chromosomes(15, 16, 26, 27). To identify where the resistance mutations occurred, we analyzed the genomes of six laboratory passage strains of P. stutzeri after 500 generations under conditions that selected for maintenance of megaplasmid pMPPla107. Sequencing of the chromosome and pMPPla107 revealed variants across all six evolved lines (Tables 1 and 2 DOIs: doi.org/10.6084/m9.figshare.7393415 and doi.org/10.6084/m9.figshare.7393493 respectively), the majority of which (209/219) occur on the chromosome. All six evolved P. stutzeri lines also have a SNP on pMPPla107 at 731,508bp in qseF indicating this was a mutation either
occurred prior to the start of the evolutionary experiment or is a sequencing error in the reference sequence.

We found several variants to be unique in line 5B when compared to the remaining five evolved lines after 500 generations of evolution had occurred. Therefore, we were able to back track through frozen stocks to test generations 100, 200, 300, 400, and 500 of line 5B and determined that the transition from sensitivity to resistance of the inhibitory agent occurs between generations 300 and 400 (Figure 2). Sequencing of the populations at generations 300 and 400 then allowed us to narrow the scope of candidate SNPs occurring between these time points.

Conjugation of pMPPla107 from Lines 4B and 5B Results in Resistance to the Inhibitory Agent

The large deletion found in the 4B megaplasmid could alter how the plasmid interacts with its host in a variety of ways including the inhibitory phenotype. Therefore, we hypothesized conjugation of the evolved megaplasmids would transfer resistance to an ancestral strain. Conjugation of evolved pMPPla107 from lines 4B and 5B into a *P. stutzeri* strain containing the ancestral chromosome resulted in resistance to the inhibitory agent while conjugation of ancestral pMPPla107 resulted in sensitivity (Figure 3). Furthermore conjugation of the 5B evolved megaplasmid into *P. syringae* also caused resistance to the inhibitory agent (Supplemental Figure 1). Together these data not only suggest mutations found on pMPPla107 can transfer resistance of the inhibitory agent between *Pseudomonas*
spp., but that the underlying mechanism for sensitivity and resistance is shared by Pseudomonads.

A 368kb Deletion Occurs in pMPPla107 Evolved Line 4B

Analysis of the genome from isolate DBL408-4BGen500 had the lowest number of variants (20) occurring on the chromosome, while a large deletion of approximately 368kb occurred within pMPPla107 between 131-499kb (Figure 4). This deletion region includes 440 predicted genes without any known homologue and 27 genes with predicted functions (Table 3). Interestingly, there are no repetitive or overlapping sites at the ends of the deletion site suggesting it was not a single deletion event that occurred (https://genomevolution.org/r/uboj). Analysis of previous generations that gave rise to this line against the inhibitory agent indicated that this mutation occurred within the first colony selected for 4B (generation zero) indicating rapid evolutionary changes to pMPPla107 (Figure 5). Although these results indicate that the deletion in line 4B is responsible for resistance to the inhibitory agent, the large size of the deletion and the density of genes within this region make it difficult to discern which gene(s) are responsible for the resistance phenotype in this region.

A SNP in Line 5B pMPPla107 Causes Resistance to the Inhibitory Agent

Our results indicated that conjugation of pMPPla107 from the evolved 5B line does transfer resistance against the inhibitory agent. Therefore, the variant again, occurs on pMPPla107 (Figure 3). Additionally stated above, we were able to back track
through generations of frozen 5B isolates and identified that the resistance phenotype switches from sensitive to resistant between generations 300 and 400 (Figure 2). When comparing SNPs from all six megaplasmids the only unique SNP occurring on pMPPla107 from line 5B between generations 300 and 400 is at 57,137bp and causes a non-synonymous mutation changing a glutamate to a lysine (395 E>K) in an uncharacterized protein. Furthermore, Sanger sequencing of line 5B pMPPla107 in its evolved strain and conjugated to the ancestral P. stutzeri strain both confirm the presence of the SNP (DOI: doi.org/10.6084/m9.figshare.7268531). These data suggest that this SNP eliminates the sensitivity phenotype seen by strains that have acquired pMPPla107, thus we name this gene skaA for Supernatant Killing Activity. Given that the 5B pMPPla107 SNP occurs outside the deletion region found in the 4B megaplasmid, we also confirm that two separate compensatory strategies exist within pMPPla107 that cause resistance to the inhibitory agent.

DISCUSSION

We used experimental evolution to identify mutations that are associated with compensation to a unique cost associated with acquisition of megaplasmid pMPPla107. Strains of *P. stutzeri* containing pMPPla107 are sensitized to the presence of a currently unidentified inhibitory agent produced by a variety of Pseudomonas strains under normal growth conditions, and isolates from two of six experimental lines evolve resistance to this inhibition after approximately 500 generations of passage. Numerous studies have found that compensatory mutations
to plasmid carriage often occur on the chromosome, but we found that both mutations providing resistance (in lines 4B-500 and 5B-400/5B-500) occur on the megaplasmid. (15-17, 19).

Sequencing of line 4B-500 demonstrated that this line contains a 368kb deletion. This deletion occurs within the same genomic loci of a previously described region of high sequence dissimilarity between the two related plasmids pMPPla107 and pBASL58(5). This suggests a potential cargo region where genes may experience higher mutation and recombination rates resulting in genes that are expendable and provide benefits in certain environments rather than necessary genes for maintenance or transmission. Some of the genes found within this region include efflux pumps, antitoxins, and multidrug resistance proteins all of which may cause resistance to the inhibitory agent (Table 3). It is unclear which of the hundreds of genes in this region is responsible for increased sensitivity to the pseudomonas inhibitory agent, but we identify a specific region, responsible for the sensitivity phenotype.

Conjugating the evolved 5B megaplasmid into an ancestral P. stutzeri strain and P. syringae demonstrated resistance to the inhibitory agent indicating that the SNP present on pMPPla107-5B was the compensatory mutation and can be transferred across Pseudomonas spp. It is still unclear how skaA interacts with inhibitory agent or how the 395 E>K SNP changes these interactions. Protein structure and amino acid alignments using Phyre2 and blastx with the NCBI database provided results
with low confidence when attempting to identify a function for skaA (data not shown)(24, 25).

By combining comparative genomics, microbial genetics and evolutionary methodologies we identified two genetic causes for pMPPla107’s ability to sensitize recipients to a commonly produced inhibitory agent(14). Mutations occurring on the megaplasmid of separately evolved lines indicate that acquisition of pMPPla107 may create conflicts in pseudomonas cellular networks causing a once nontoxic molecule to result in toxicity, but that these mutations alleviate damaged networks. We identify a region on pMPPla107 and a SNP in the gene we now call skaA that are responsible for resistance to the pseudomonas inhibitory agent. Our data presented here is the framework on which to begin future work identifying the mechanism behind skaA and designing directed deletions within the 4B deletion that will be critical to identifying the other component regarding the inhibitory agent sensitivity phenotype associated with acquisition of pMPPla107.
Figures:

![Evolved Overlay Strain](image)

Figure 1: Testing inhibitory agent on all six evolved lines reveals two resistant lines. Six lines carrying pMPPla107 were evolved for 500 generations and tested for sensitivity against inhibitory agent found in *Pseudomonas spp.* supernatants. Lines 4B and 5B revert to a non-pMPPla107 phenotype where a zone of inhibition is not present indicating resistance to the inhibitory agent. All overlays were plated after 4 hours of growth in KB and spotted with 10µL of *P. stutzeri* filter sterilized supernatants. The number (1, 2, 3...) indicates the individual lines and B indicates the second of two isolates taken at Generation 500. All images are representative of three biological replicates.
Figure 2: The switch from sensitivity to resistance occurs between generations 300 and 400 in line 5B. We tested generations frozen at various time points of the evolution experiment and found that between generations 300 and 400 line 5B regains resistance to the inhibitory agent produced by *Pseudomonas* spp. A zone of inhibition can be seen when treated with IA (inhibitory agent) at generation 300, and this zone is no longer present at generation 400. Likewise, the negative control (KB media) demonstrates no zones of inhibition as expected. All overlays were plated after 4 hours of growth in KB and spotted with 10µL of *P. stutzeri* filter sterilized supernatants. All images are represented of three biological replicates.
Figure 3: Conjugating evolved pMPPla107 from Lines 4 and 5 into ancestral chromosomal background transfers resistance to the inhibitory agent. Given that Lines 4 and 5 were known to have resistance against the inhibitory agent and chromosomal SNPs did not appear to have any effect we conjugated evolved pMPPla107 into the ancestral chromosomal background (*P. stutzeri* DBL386). We conjugated and used the 3B megaplasmid as a sensitive (positive) control as we knew this evolved strain was still sensitive. When evolved megaplasmids were conjugated into the ancestral background 3B demonstrated sensitivity to the inhibitory agent as expected while 4B and 5B showed resistance. EV = evolved for 500 generations, pMP = pMPPla107. All overlays were plated after 4 hours of growth n KB and spotted with 10µL of *P. stutzeri* filter sterilized supernatants. All images are represented of three biological replicates.
Figure 4: A 368kb occurs in the evolved line 4B megaplasmid. SynMap dotplot visualizes the large deletion occurring from 131-499kb in the evolved 4B pMPPla107 as a large shift across the x-axis. The remaining portions of the sequences maintain perfect synteny indicating a clean deletion occurred. The x-axis is ancestral pMPPla107 gene order where $x_{1...N} = gene_{1...N}$ and the y-axis is the line 4B evolved pMPPla107 gene order where $y_{1...N} = gene_{1...N}$.
Figure 5: The large deletion in line 4B occurred within the first passage of *P. stutzeri* with pMPPla107. To determine when the deletion occurred we tested frozen generations for sensitivity to the inhibitory agent and found that the deletion was present in the first passage of the evolved line at generation zero. This deletion is maintained in generation 100 (shown) through generation 500 and is the only unique mutation in pMPPla107 other than a synonymous SNP (See Table 2). All overlays were plated after 4 hours of growth n KB and spotted with 10µL of *P. stutzeri* filter sterilized supernatants. All images are represented of three biological replicates.
Table 1: Variants present in the chromosomes of *P. stutzeri* evolved lines 1-6 after 500 generations of evolution. The table can be found at Figshare (DOI: doi.org/10.6084/m9.figshare.7393415)
Table 2: Variants present on pMPPla107 in *P stutzeri* evolved lines 1-6 after 500 generations of evolution. The table can be found on Figshare (DOI: doi.org/10.6084/m9.figshare.7393493)
Name	Type	Minimum	Maximum	Length	Direction
CDS	CDS	130243	131439	1197	reverse
CDS	CDS	131589	132254	666	reverse
CDS	CDS	132320	132703	384	reverse
CDS	CDS	133286	133642	357	reverse
CDS	CDS	133741	135102	1362	reverse
CDS	CDS	135202	136674	1473	reverse
CDS	CDS	136674	137732	1059	reverse
CDS	CDS	137832	138527	696	reverse
CDS	CDS	138541	138840	300	reverse
CDS	CDS	139401	139859	459	reverse
dsbA	CDS	139852	140547	696	reverse
CDS	CDS	140571	141056	486	reverse
CDS	CDS	141346	141708	363	forward
CDS	CDS	141698	142231	534	forward
nrbB	CDS	142392	143558	1167	forward
CDS	CDS	143616	144122	507	reverse
CDS	CDS	144218	145108	891	reverse
CDS	CDS	145159	145689	531	reverse
CDS	CDS	145837	146367	531	reverse
CDS	CDS	146497	146670	174	reverse
CDS	CDS	146798	147337	540	reverse
CDS	CDS	147420	147860	441	forward
CDS	CDS	147871	148110	240	forward
CDS	CDS	148117	148422	306	forward
CDS	CDS	148444	148680	237	forward
CDS	CDS	148682	148918	237	forward
dns	CDS	149053	149961	909	forward
rtcB	CDS	149987	151210	1224	forward
CDS	CDS	151295	151477	183	forward
CDS	CDS	151474	151821	348	forward
CDS	CDS	151811	152374	564	forward
CDS	CDS	152401	152748	348	reverse
CDS	CDS	152996	153736	741	forward
CDS	CDS	153778	154545	768	reverse
CDS	CDS	154820	155503	684	forward
CDS	CDS	155663	156148	486	forward
CDS	CDS	156227	156604	378	forward
CDS	CDS	156830	157216	387	forward
CDS	CDS	157295	157480	186	forward
CDS	CDS	157702	158103	402	forward
CDS	CDS	158353	158742	390	forward
CDS	CDS	158832	159416	585	forward
CDS	CDS	Start Base	End Base	Length	Orientation
-----	-----	------------	----------	--------	-------------
		159735	159986	252	forward
		160023	160295	273	forward
		160601	160750	150	forward
		160868	161353	486	forward
		161350	161484	135	forward
		161484	162068	585	forward
		162068	162529	462	forward
		162687	162827	141	forward
tRNA	tRNA	162927	163003	77	forward
		163027	163431	405	forward
		163574	164611	1038	forward
		164684	165424	741	forward
		165504	165890	387	reverse
		166010	166447	438	forward
		166715	168022	1308	reverse
		168296	169561	1266	forward
		169572	170141	570	reverse
		170289	173108	2820	forward
		173419	174288	870	forward
		174362	175588	1227	reverse
		175620	176885	1266	reverse
		176958	178229	1272	reverse
		178291	179547	1257	reverse
		179644	180141	498	reverse
		180131	180466	336	reverse
		180470	182548	2079	reverse
		182578	182919	342	reverse
		183043	183255	213	reverse
		183361	184566	1206	reverse
		184737	185102	366	forward
		185106	185834	729	forward
		185861	186391	531	reverse
		186505	186951	447	reverse
		186941	188131	1191	reverse
		188251	189444	1194	reverse
		189528	190739	1212	reverse
		190978	192180	1203	forward
		192219	193448	1230	reverse
		193616	194422	807	reverse
		194642	195829	1188	reverse
		195911	197113	1203	reverse
		197140	198348	1209	reverse
		198506	199702	1197	reverse

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
CDS	CDS	Start	End	Length	Direction
199738	200943	1206	reverse		
200975	202225	1251	reverse		
202247	203494	1248	reverse		
203965	205173	1209	reverse		
205262	208562	1230	forward		
206350	207243	894	forward		
207366	208565	1200	forward		
208562	209887	1326	forward		
209962	211191	1230	forward		
211264	212496	1233	forward		
212569	213807	1239	forward		
213980	215764	780	reverse		
214222	216527	306	reverse		
216789	219734	2946	forward		
220194	221039	846	reverse		
221363	222097	735	reverse		
222422	223198	777	reverse		
223316	224041	726	reverse		
224048	224287	240	reverse		
224484	224738	255	reverse		
224754	225293	540	reverse		
225408	226187	780	reverse		
226273	226719	447	reverse		
226824	227030	207	forward		
227208	227495	288	reverse		
227502	227957	456	reverse		
227981	228340	360	reverse		
228385	228606	222	reverse		
228614	228805	192	reverse		
228820	229128	309	reverse		
229118	229327	210	reverse		
229346	229918	573	reverse		
229915	230247	333	reverse		
230244	230681	438	reverse		
230819	231289	471	reverse		
231356	231796	441	reverse		
231838	232377	540	reverse		
232488	232922	435	reverse		
232919	233605	687	reverse		
233671	233949	279	reverse		
234029	234247	219	reverse		
CDS	CDS	Start	End	Length	Orientation
-----	-----	--------	-------	--------	-------------
CDS	CDS	234244	234498	255	reverse
CDS	CDS	234495	234719	225	reverse
CDS	CDS	234716	235495	780	reverse
CDS	CDS	235553	235843	291	reverse
CDS	CDS	235866	236060	195	reverse
CDS	CDS	236063	236779	717	reverse
CDS	CDS	236783	237502	720	reverse
CDS	CDS	237755	238744	990	reverse
CDS	CDS	238923	239786	864	forward
CDS	CDS	239898	240428	531	forward
CDS	CDS	240512	241015	504	forward
CDS	CDS	241031	241657	627	reverse
CDS	CDS	241737	242537	801	reverse
CDS	CDS	242947	243948	1011	forward
CDS	CDS	244514	246097	1584	forward
CDS	CDS	246097	246201	105	forward
CDS	CDS	246164	247747	1584	forward
CDS	CDS	247758	248222	465	forward
CDS	CDS	248409	249053	645	forward
CDS	CDS	249099	250118	1020	reverse
CDS	CDS	250312	251355	1044	forward
CDS	CDS	251412	251744	333	forward
CDS	CDS	251806	253131	1326	reverse
CDS	CDS	253201	254529	1329	reverse
CDS	CDS	254601	255965	1365	reverse
CDS	CDS	256050	257399	1350	reverse
CDS	CDS	257533	257742	210	forward
CDS	CDS	257838	259172	1335	reverse
CDS	CDS	259333	260640	1308	forward
CDS	CDS	260830	262212	1383	reverse
CDS	CDS	262325	263539	1215	reverse
CDS	CDS	263593	263838	246	reverse
CDS	CDS	263835	264032	198	reverse
CDS	CDS	264044	264280	237	reverse
CDS	CDS	264289	264612	324	reverse
CDS	CDS	264622	264993	372	reverse
CDS	CDS	265033	265557	525	reverse
CDS	CDS	265587	266216	630	reverse
CDS	CDS	266719	267924	1206	reverse
CDS	CDS	267953	269122	1170	reverse
---	---	---	---	---	
CDS	CDS	269304	269519	216 forward	
CDS	CDS	269566	270537	972 forward	
CDS	CDS	270716	272461	1746 forward	
CDS	CDS	272554	273768	1215 forward	
fabH	CDS	273913	275001	1089 forward	
CDS	CDS	274998	275414	417 forward	
CDS	CDS	275411	276382	972 forward	
CDS	CDS	276375	277217	843 forward	
CDS	CDS	277214	277798	585 forward	
CDS	CDS	277813	278277	465 forward	
CDS	CDS	278308	279537	1230 reverse	
CDS	CDS	279617	280825	1209 reverse	
CDS	CDS	280890	282149	1260 reverse	
tRNA	tRNA	282629	282713	85 forward	
CDS	CDS	282798	283166	369 forward	
CDS	CDS	283196	283462	267 forward	
CDS	CDS	283525	283722	198 forward	
CDS	CDS	283753	284139	387 forward	
hipB	CDS	284257	284511	255 forward	
CDS	CDS	284528	284839	312 forward	
CDS	CDS	284869	285198	330 forward	
CDS	CDS	285376	285927	552 forward	
CDS	CDS	285988	286584	597 forward	
CDS	CDS	286682	287764	1083 reverse	
CDS	CDS	287876	288199	324 forward	
CDS	CDS	288202	288801	600 forward	
CDS	CDS	288804	289397	594 forward	
CDS	CDS	289430	290050	621 forward	
CDS	CDS	290088	290642	555 forward	
CDS	CDS	290688	291260	573 forward	
CDS	CDS	291332	291718	387 reverse	
CDS	CDS	291843	292373	531 reverse	
CDS	CDS	292503	293810	1308 forward	
CDS	CDS	293862	294389	528 forward	
CDS	CDS	294542	294733	192 forward	
CDS	CDS	294730	296100	1371 forward	
CDS	CDS	296093	296755	663 forward	
CDS	CDS	296755	297102	348 forward	
CDS	CDS	297102	297524	423 forward	
CDS	CDS	297519	298157	639 reverse	
CDS	CDS	298190	298504	315 reverse	
CDS	CDS	298616	299653	1038 reverse	
CDS	CDS	299946	300050	105 forward	
CDS CDS 300025 300390 366 reverse					
CDS CDS 300539 300877 339 forward					
CDS CDS 300971 302272 1302 reverse					
CDS CDS 302307 303518 1212 reverse					
CDS CDS 303520 304737 1218 reverse					
CDS CDS 304934 305476 543 forward					
CDS CDS 305517 306764 1248 reverse					
CDS CDS 306899 307255 357 forward					
CDS CDS 307342 308259 918 forward					
CDS CDS 308441 309052 615 forward					
CDS CDS 309062 309592 531 reverse					
CDS CDS 310460 311263 804 reverse					
CDS CDS 311319 312125 807 reverse					
ttgC CDS 312173 313537 1365 reverse					
CDS CDS 313760 315067 1308 forward					
CDS CDS 315094 315534 441 forward					
CDS CDS 315513 316037 525 reverse					
CDS CDS 316058 316573 516 reverse					
CDS CDS 316826 317344 519 reverse					
CDS CDS 317492 317845 354 reverse					
CDS CDS 317925 318233 309 forward					
CDS CDS 318252 318563 312 forward					
CDS CDS 318556 319140 585 forward					
CDS CDS 319219 319530 312 forward					
CDS CDS 319798 320346 549 forward					
CDS CDS 320454 320834 381 forward					
CDS CDS 320886 321659 774 reverse					
CDS CDS 321954 322724 771 forward					
CDS CDS 322699 322950 252 reverse					
CDS CDS 323096 323401 306 forward					
CDS CDS 323438 324460 1023 reverse					
CDS CDS 324614 324892 279 forward					
CDS CDS 324955 325800 846 forward					
CDS CDS 325846 326271 426 reverse					
CDS CDS 326393 326689 297 reverse					
CDS CDS 326884 327282 399 forward					
CDS CDS 327279 327638 360 forward					
CDS CDS 327715 328134 420 forward					
parE CDS 328197 330101 1905 forward					
CDS CDS 330098 330379 282 forward					
CDS CDS 330387 330545 159 forward					
CDS CDS 330591 330887 297 forward					
Gene	Start Position	End Position	Length	Strand	
------	----------------	--------------	--------	--------	
parC	330900	333152	2253	forward	
CDS	333202	333522	321	forward	
CDS	333561	333896	336	forward	
CDS	333924	334235	312	reverse	
CDS	334362	334547	186	reverse	
CDS	334761	335630	870	reverse	
CDS	335703	335954	252	forward	
CDS	335955	336419	465	reverse	
CDS	336567	337994	1428	forward	
CDS	338158	339000	843	forward	
CDS	339011	340855	1845	forward	
CDS	340867	342075	1209	forward	
CDS	342159	342839	681	reverse	
CDS	342895	343218	324	reverse	
CDS	343582	343863	282	reverse	
CDS	344110	344715	606	forward	
CDS	345001	345387	387	reverse	
CDS	345416	345796	381	reverse	
CDS	345903	346604	702	reverse	
CDS	346793	346963	171	forward	
CDS	347025	347645	621	forward	
CDS	347645	348913	1269	forward	
CDS	348994	350577	1584	forward	
CDS	350632	351204	573	reverse	
CDS	351207	351830	624	reverse	
CDS	351827	352141	315	reverse	
CDS	352270	353301	1032	forward	
CDS	353360	353944	585	reverse	
CDS	354123	354566	444	reverse	
CDS	354607	355089	483	reverse	
CDS	355140	355478	339	reverse	
CDS	355541	356005	465	forward	
CDS	356031	356447	417	reverse	
CDS	356685	356936	252	reverse	
CDS	357007	358215	1209	reverse	
CDS	358704	359468	765	forward	
CDS	359452	359700	249	forward	
CDS	359702	359953	252	forward	
CDS	359957	360364	408	forward	
CDS	360361	361239	879	forward	
CDS	361244	361747	504	reverse	
CDS	361737	362117	381	reverse	
CDS	362148	362543	396	reverse	
Start Base	End Base	Length	Orientation		
------------	----------	--------	-------------		
362530	362769	240	reverse		
362766	363083	318	reverse		
363092	363286	195	reverse		
363280	363792	513	reverse		
363802	364878	1077	reverse		
364912	365415	504	reverse		
365430	365963	534	reverse		
366029	366613	585	reverse		
366942	367082	141	reverse		
367082	367516	435	reverse		
367569	368159	591	reverse		
368277	368594	318	reverse		
368728	370662	1935	reverse		
370844	371395	552	reverse		
371699	372124	426	forward		
372348	372581	234	forward		
373295	374560	1266	reverse		
375046	375759	714	forward		
375872	376132	261	forward		
376242	376409	168	reverse		
376520	377086	567	forward		
377009	377185	177	reverse		
377210	377620	411	forward		
377721	378359	639	forward		
378522	379406	885	forward		
379865	380323	459	reverse		
380409	380891	483	reverse		
380954	381412	459	reverse		
381565	382674	1110	forward		
382748	383311	564	reverse		
383456	384043	588	forward		
384058	384492	435	forward		
384507	385454	948	reverse		
385954	386391	438	reverse		
386541	386786	246	reverse		
386789	387235	447	reverse		
387252	387701	450	reverse		
387705	388100	396	reverse		
388110	388442	333	reverse		
388439	388642	204	reverse		
388639	389058	420	reverse		
389240	389596	357	reverse		
389698	391275	1578	reverse		
CDS CDS 391362 392561 1200 reverse					
CDS CDS 392612 393799 1188 reverse					
CDS CDS 393871 394482 612 reverse					
CDS CDS 394486 395811 1326 reverse					
CDS CDS 395901 396041 141 reverse					
CDS CDS 396079 396471 393 reverse					
CDS CDS 396619 397377 759 reverse					
CDS CDS 397 398066 288 forward					
CDS CDS 398102 399460 1359 reverse					
CDS CDS 399457 400764 1308 reverse					
CDS CDS 400767 402110 1344 reverse					
CDS CDS 402241 403656 1410 forward					
CDS CDS 403681 405477 1797 forward					
CDS CDS 405552 406880 1329 reverse					
CDS CDS 406959 407210 252 reverse					
CDS CDS 407207 408373 1167 reverse					
CDS CDS 408576 409007 432 forward					
CDS CDS 409428 410651 1224 forward					
CDS CDS 410907 411344 438 reverse					
CDS CDS 411439 412797 1359 reverse					
CDS CDS 412763 414067 1305 reverse					
CDS CDS 414281 415690 1410 forward					
CDS CDS 415714 416247 534 forward					
CDS CDS 416959 417165 207 forward					
CDS CDS 417162 418361 1200 reverse					
CDS CDS 418358 419710 1353 reverse					
CDS CDS 419712 420980 1269 reverse					
CDS CDS 421156 421947 792 forward					
CDS CDS 422090 422686 597 reverse					
CDS CDS 422894 423568 675 reverse					
CDS CDS 423568 423894 327 reverse					
CDS CDS 424029 424790 762 forward					
CDS CDS 424874 425152 279 forward					
CDS CDS 425300 425968 669 reverse					
CDS CDS 425965 426633 669 reverse					
CDS CDS 426630 427856 1227 reverse					
CDS CDS 427921 429219 1299 reverse					
CDS CDS 429273 429872 600 reverse					
CDS CDS 429883 430479 597 reverse					
CDS CDS 430549 431145 597 reverse					
CDS CDS 431223 432578 1356 reverse					
CDS CDS 432807 433238 432 forward					
CDS CDS 433226 434356 1131 reverse					
Gene	CDS	Start	End	Length	Orientation
------	-----	-------	-------	--------	-------------
CDS	CDS	434460	435155	696	forward
CDS	CDS	435229	435954	726	forward
CDS	CDS	435941	436195	255	forward
CDS	CDS	436550	437497	948	forward
CDS	CDS	437619	439064	1446	reverse
CDS	CDS	439118	440578	1461	reverse
recX	CDS	441216	44169	5	forward
CDS	CDS	441729	442802	1074	reverse
CDS	CDS	442955	443662	708	forward
CDS	CDS	443674	444744	1071	reverse
gltA	CDS	444888	446483	1596	reverse
CDS	CDS	446762	447022	261	forward
CDS	CDS	447085	447279	195	reverse
CDS	CDS	447276	447629	354	reverse
CDS	CDS	447672	448202	531	reverse
CDS	CDS	448397	448729	333	forward
CDS	CDS	448809	449360	552	reverse
CDS	CDS	449427	449975	549	reverse
trpS	CDS	450046	451407	1362	reverse
CDS	CDS	451621	452031	411	forward
CDS	CDS	452134	452475	342	forward
CDS	CDS	452760	456818	4059	forward
CDS	CDS	456850	457173	324	reverse
CDS	CDS	457427	457759	333	forward
CDS	CDS	457888	459423	1536	reverse
CDS	CDS	459482	459799	318	reverse
CDS	CDS	459811	460053	243	reverse
CDS	CDS	460215	461711	1497	reverse
CDS	CDS	461746	462339	594	reverse
CDS	CDS	462339	464006	1668	reverse
CDS	CDS	464009	464293	285	reverse
CDS	CDS	464507	464881	375	forward
CDS	CDS	464896	465156	261	reverse
CDS	CDS	465185	465322	138	forward
CDS	CDS	465376	466332	957	forward
CDS	CDS	466405	467592	1188	reverse
CDS	CDS	467807	468211	405	forward
CDS	CDS	468304	468615	312	reverse
CDS	CDS	468612	469550	939	reverse
CDS	CDS	469659	470201	543	reverse
CDS	CDS	470211	470642	432	reverse
CDS	CDS	470705	472204	1500	reverse
Gene	CDS	Start	End	Length	Orientation
------	-------	--------	--------	--------	-------------
	CDS	472323	473720	1398	reverse
	CDS	473955	474710	756	reverse
	CDS	474886	475155	270	reverse
bepE	CDS	475218	478319	3102	reverse
mdtE	CDS	478326	479429	1104	reverse
	CDS	479618	480385	768	forward
	CDS	480389	480847	459	forward
	CDS	480944	481756	813	forward
	CDS	481847	482416	570	forward
	CDS	482463	482978	516	forward
	CDS	483040	483612	573	forward
	CDS	483637	483996	360	forward
	CDS	484103	484336	234	forward
	CDS	484347	484649	303	forward
	CDS	484638	485081	444	reverse
	CDS	485175	486176	1002	forward
	CDS	486196	486399	204	reverse
	CDS	486670	486930	261	reverse
rdgB	CDS	487114	487686	573	forward
	CDS	487834	488244	411	forward
	CDS	488336	488689	354	reverse
	CDS	488819	489085	267	forward
yedY	CDS	489082	489852	771	forward
	CDS	490007	490567	561	forward
	CDS	490713	492845	2133	forward
	CDS	493011	493460	450	forward
	CDS	493512	494291	780	reverse
	CDS	494352	495422	1071	reverse
	CDS	495743	496135	393	forward
	CDS	496135	496548	414	forward
	CDS	496671	497045	375	forward
	CDS	497048	497662	615	forward
	CDS	497693	498157	465	forward
	CDS	498138	498380	243	reverse
	CDS	498595	498849	255	forward
	CDS	498981	499583	603	forward
	CDS	499635	500537	903	reverse

Table 3: Predicted genes present in the large deletion of pMPPla107 in line 4B.
Supplemental Figures

Overlay Strain

Supplemental Figure 1: Resistance to the inhibitory agent on the 5B megaplasmid can be transferred to *P. syringae*. Various types of pMPPla107 were conjugated to *P. syringae* Pla YM8003 and then tested for sensitivity to the inhibitory agent on a bacterial overlay. Overlays above are pMP = ancestral pMPPla107, 3B-pMP = evolved line 3B pMPPla107, and 4B-pMP = evolved line 5B pMPPla107. Ancestral and line 3B megaplasmids both transfer sensitivity while line 4B’s megaplasmid transfers resistance to the inhibitory agent. Clearing is less contrasted in overlays with *P. syringae* when compared with *P. stutzeri* overlays due to growth differences (pigment, density) between species. All overlays were plated after 4 hours of growth n KB and spotted with 10µL of *P. stutzeri* filter sterilized supernatants.
References

1. **Kado CI.** 1998. Origin and evolution of plasmids. Antonie van Leeuwenhoek 73:117–126.

2. **Hülter N, Ilhan J, Wein T, Kadibalban AS, Hammerschmidt K, Dagan T.** 2017. An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 38:74–80.

3. **Okubo T, Piromyou P, Tittabutr P, Teaumroong N, Minamisawa K.** 2016. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium. Microbes Environ 31:260–267.

4. **Hynes MF, McGregor NF.** 1990. Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol 4:567–574.

5. **Smith BA, Leligdon C, Baltrus D.** 2018. Just the Two of Us? A Family of Pseudomonas Megaplasmids Offers a Rare Glimpse Into the Evolution of Large Mobile Elements. bioRxiv 385575.

6. **Johnson TJ, Nolan LK.** 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73:750–774.

7. **San Millan A, MacLean RC.** 2017. Fitness Costs of Plasmids: a Limit to Plasmid Transmission. Microbiol Spectr 5.

8. **Baltrus DA.** 2013. Exploring the costs of horizontal gene transfer. Trends in Ecology & Evolution 28:489–495.

9. **Dougherty K, Smith BA, Moore AF, Maitland S, Fanger C, Murillo R, Baltrus DA.** 2014. Multiple phenotypic changes associated with large-scale horizontal gene transfer. PLoS ONE 9:e102170.

10. **Romanchuk A, Jones CD, Karkare K, Moore A, Smith BA, Jones C, Dougherty K, Baltrus DA.** 2014. Bigger is not always better: transmission and fitness burden of ~1MB Pseudomonas syringae megaplasmid pMPPla107. Plasmid 73:16–25.

11. **Glick BR.** 1995. Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261.

12. **Sato T, Kuramitsu H.** 1998. Plasmid maintenance renders bacteria more susceptible to heat stress. Microbiol Immunol 42:467–469.

13. **Heuer H, Fox RE, Top EM.** 2007. Frequent conjugal transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas
putida host. FEMS Microbiology Ecology 59:738–748.

14. **Smith B, Feinstein Y, Clark M, Baltrus D.** 2019. A Moving Target: The Megaplasmid pMPPla107 Sensitizes Cells to an Inhibitory Agent Conserved Across Pseudomonas spp. bioRxiv 537589.

15. **Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA.** 2015. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol 25:2034–2039.

16. **Loftie Eaton W, Bashford K, Quinn H, Dong K, Millstein J, Hunter S, Thomason MK, Merrikh H, Ponciano JM, Top EM.** 2017. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat Ecol Evol 1:1354–1363.

17. **Yano H, Wegryn K, Loftie Eaton W, Johnson J, Deckert GE, Rogers LM, Konieczny I, Top EM.** 2016. Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol.

18. **Bouma JE, Lenski RE.** 1988. Evolution of a bacteria/plasmid association. Nature 335:351–352.

19. **Morton ER, Merritt PM, Bever JD, Fuqua C.** 2013. Large deletions in the pAtC58 megaplasmid of Agrobacterium tumefaciens can confer reduced carriage cost and increased expression of virulence genes. Genome Biol Evol 5:1353–1364.

20. **Sikorski J, Teschner N, Wackernagel W.** 2002. Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl Environ Microbiol 68:865–873.

21. **Seemann T.** 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069.

22. **Haug-Baltzell A, Stephens SA, Davey S, Scheidegger CE, Lyons E.** 2017. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33:2197–2198.

23. **Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL.** 2011. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates. PLOS Pathog 7:e1002132.

24. **Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ.** 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858.
25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403–410.

26. Carroll AC, Wong A. 2018. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol 64:293–304.

27. San Millan A, Peña-Miller R, Toll-Riera M, Halbert ZV, McLean AR, Cooper BS, MacLean RC. 2014. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nature Communications 5:5208.