Pretreatment of Lignocellulosic Biomass Based on Improving Enzymatic Hydrolysis

Meysam Madadi1,2*, Yuanyuan Tu1,2 and Aqleem Abbas2

1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
*Corresponding author’s email: m.madadi@webmail.hzau.edu.cn / madadi2002@gmail.com

Abstract
Lignocellulosic materials among the alternative energy resources are the most desirable resources that can be employed to produce cellulosic ethanol, but this materials due to physical and chemical structure arrange strong native recalcitrance and results in low yield of ethanol. Then, a proper pre-treatment method is required to overcome this challenge. Until now, different pre-treatment technologies have been established to enhance lignocellulosic digestibility. This paper widely describes the structure of lignocellulosic biomass and effective parameters in pre-treatment of lignocelluloses, such as cellulose crystallinity, accessible surface area, and protection by lignin and hemicellulose. In addition, an overview about the most important pre-treatment processes include physical, chemical, and biological are provided. Finally, we described about the inhibitors enzymes which produced from sugar degradation during pre-treatment process and the ways to control this inhibitors.

Keywords: Lignocellulosic Biomass, Crystallinity, Pre-treatment Technologies

Introduction
Bioethanol derived from biomass is regarded as a most promising alternatives to fossil fuels due to its higher octane, clean burning, higher flame speeds and higher heats of vaporizations than gasoline, which can be blended with gasoline or used sprightly as clean alcohol in dedicated vehicles (Choi et al., 2015). Anyway, in the first generation bioethanol production, expensive starch and sugar derived from sugar cane and maize are involved as feed stocks but in the second generation process, lignocellulosic materials are used, because it’s cheap, abundant and renewable (Dias et al., 2013). Lignocellulosic biomass is mainly composed of cellulose (38-50%), hemicelluloses (23–32%) and lignin (15–25%), in a complex structure, which the recalcitrancy of these compositions is very high. One of the best methods to convert such biomass into soluble sugars is enzymatic hydrolysis because of its low energy demand; despite, the main problem is the low cellulose accessibility due to strong linkage of cellulose with lignin (Gupta et al., 2011). This leads to difficulties within the conversion process; therefore an appropriate pre-treatment technology (Fig. 1) is needed to overcome this recalcitrance and makes polysaccharides comfortably feasible for enzymatic hydrolysis (Gupta et al., 2011; Singh et al., 2015; Wang et al., 2016). In other words, pre-treatment is the crucial and expensive unit process in converting lignocellulosic biomass into ethanol (Kim et al., 2016).

Fig. 1: Schematic pre-treatment of lignocellulosic biomass
A suitable pre-treatment method involves (1) breaking hydrogen bonds in crystalline cellulose (CrI), (2) breaking down across-linked matrix of hemicelluloses and lignin, and (3) improving cellulose accessible surface for following enzymatic hydrolysis (Huang et al., 2015; Si et al., 2015). Until now, various pre-treatment methods have been developed, which can be extensively categorized into physical (chipping, grinding, irradiation, steam explosion and hot water), chemical (alkaline, acid and ionic liquid),
physico-chemical and biological process (Si et al., 2015; Wang et al., 2016). On the other side, regardless of the pre-treatment method used, during the process many inhibitory compounds are produced, which have negative impact on microbial activity in the hydrolysis step. Generally, inhibitors are classified into three main group: (1) weak acids like levulinic, acetic and formic acids, (2) furan derivatives like 5-hydroxy-2-methylfurfural (HMF), and furfural, and (3) phenolic compounds as well (Behera et al., 2014; Kim et al., 2016). This review first present the structure of lignocellulose and effective factors in pre-treatment lignocelluloses, then describes the most commonly used pre-treatment methods in improving the digestibility of lignocellulosic biomass and finally briefly review inhibitors enzymes and efficient techniques to remove components that inhibit microbial growth and enzymatic hydrolysis of lignocellulose.

Structure of Lignocellulose and Its Major Components

Cellulose

In nature, the major abundant polysaccharide is cellulose and mostly serves as the main scaffolding constituent for plant cell wall. Cellulose is composed of linear chain of D-glucose connected by β-(1,4)-glycosidic bonds together. The Cellulose strain are associated to each other to make cellulose fibril. Cellulose fibers are connected by a number of intra- and intermolecular hydrogen bonds (Li et al., 2010). Then, cellulose is insoluble in water and most organic solvents (Swatloski et al., 2002).

Hemicellulose

Hemicelluloses, mainly located in secondary cell walls, are heterogeneous branched biopolymers containing pentoses, hexoses, and uronic acids (Girio et al., 2010). They are relatively easy to hydrolyse due to their amorphus, branched structure, and their lower molecular weight as well (M. F. Li et al., 2010). In order to increase the cellulose digestibility, large amounts of hemicelluloses need to be removed as they cover cellulose fibrils limiting their accessibility for the enzymatic hydrolysis (Agbor et al., 2011). Hemicelluloses are somewhat sensitive to operation condition, hence, factors like retention time and temperature need to be regulated to avoid the formation of by-products like furfurals and hydroxymethyl furfurals that later inhibit the yeast fermentation process (Palmqvist and Hahn-Hägerdal, 2000).

Lignin

Lignin is a heterogeneous three-dimensional network macromolecule generally formulated from the oxidative combination of monolignols, in particular p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) (Ralph et al., 2004). Besides the three main monolignols other products such as traces of hydroxyl cinnamyl aldehydes, acetates, p-coumarates, p-hydroxybenzoates, and tyramineferulate were also observed (Boerjan et al., 2003). In various plat species, plant tissues and cell wall layers these monolignols present different abundance. In addition, there are many possible linkages among these monolignols, like b-O-4, b-5, b-1, b-b, 5-5, and 4-O-5 (Sette et al., 2011). The actual structure of the lignin macromolecule is completely complicated because of the variety of monolignols and the ‘‘randomness’’ of linkages among these monolignols (Ralph et al., 2004).

Lignin content is one of the most prominent limiting parameters for making lignocellullose impressionable to microbial attack. Studies have proved that lignin reduce facilitates hydrolysis of cellulose. The mechanism by which lignin hinder cellulose hydrolysis is still not entirely known. Although, two explanations have been recommended that could be the lead to this phenomenon. Firstly, lignin is a structural polysaccharide that by covalent linking to hemicellulose imparts strength to the plant cell wall (Yuan et al., 2013). The covalent bonding between lignin and cellulose prevents the carbohydrate to be exposed for enzymatic hydrolysis. Secondly, woody plants (woody biomass) as compare with herbaceous crops (grass biomass) is harder to treat. A comparison of lignin structures in both substrates present that the extent of cross-linking and the phenyl content lignin found in wood is far more complex than that of grassy substrates (Khalil et al., 2014; Ververis et al., 2004).

Effective parameters in pre-treatment lignocelluloses

The intrinsic features of native lignocellulosic biomass make them resistant to enzymatic attack. The purpose of pre-treatment is to change these features in order to make the materials ready for enzymatic degradation. Since lignocellulosic materials are extremely complex, their pre-treatment is very complicated either. The best procedure and conditions of pre-treatment rely entirely on the type of lignocelluloses (Huang et al., 2015; Wang et al., 2016). The cellulose crystallinity (Crl), degree of cellulose polymerization (DP), accessible surface area, and lignin and hemicellulose protection are the major parameters regarded as influencing the rate of lignocelluloses degradation by the enzymes. These parameters will be discussed briefly below.

Cellulose Cristallinity (Cristallinity Index, Crl)

Cellulose Crl exists in various polymorphs and is seen in microfibrils in plant cell wall. They are formed by hydrogen bonds by long chains of (1,4) β-D glucan bonded to each other. The existence of hydrogen bonds between chains with stand microbial and enzymatic attack while breaking them increase depolymerisation (Chundawat et al., 2010). Researches have exhibited that during hydrolysis digestion of amorphous cellulose takes place before Cellulose Crl (Zhao and Chen, 2013). Cellulose Crl is a key feature of cell walls that not only accounts for the amorphous and
crystalline regions of native cellulose but also reflects cellulose interactions with other wall polymers. Using X-ray diffraction, the crystalline index (CrI) has been applied to detect cellulose CrI in various biomass materials (Bansal et al., 2010). It has been presented that lignocellulosics pre-treatment enhance sits hydrolysability although in many cases improves the cellulose CrI fraction. This fact has been recommend to be because of the elimination or decreasing of more simply accessible amorphous cellulose after pre-treatments (Hu et al., 2014; Meng and Ragauskas, 2014). In contrast, in many cases high pH pre-treatments have been displayed to have less influence and even decrease biomass crystallinity (Kumar and Wyman, 2009)

Degree of Polymerisation (DP)
The degree of polymerization (DP) is mainly related to other substrate features, such as crystallinity and it is highly variable among different plant species. Although the function of glucan chain length is not absolutely known, it is believed to influence cellulose hydrolysis (Puri, 1984). Cellulose DP is an noticeable factor in determining biomass digestibility. Pre-treatment of lignocellulose as well as enzymatic hydrolysis is a depolymerisation process of cellulose (Meng and Ragauskas, 2014). The influence of various pre-treatments on cellulose chain length has been studied presenting decreased DP in solids prepared by different pre-treatments recommended that xylan reduction had a more rigorous effect on cellulose chain length than lignin removal (Kumar and Wyman, 2009).

Accessible Specific Surface Area
The accessible specific surface area is a critical parameter that influence the enzymatic hydrolysis of lignocellulosic materials. The particle size and porosity or pore volume present an important effect on the accessible specific surface area of lignocellulosic materials. A high enzymatic hydrolysis rate and glucose yield can be obtained with the decreasing of the lignocellulose particle size (Chen et al., 2011; Yeh et al., 2010). As lignocellulosic biomass are dispersed into nanoscale, the accessible specific surface area of lignocellulose will improve remarkable. Almost the cellulose digestibility complete in a short time because more cellulose is exposed to the enzymes (Martin-Sampedro et al., 2012). The lignocellulose digestion can be noticeable improved when the pores of the substrate are large enough to assist both large and small enzyme constituents to maintain the synergistic action of the cellulase enzyme system.

Hemicelluloses and Lignin
Hemicellulose and lignin are closely connected to cellulose through non-covalent and covalent linkages, the content and distribution of hemicellulose and lignin also show obvious influence on the lignocellulose enzymatic hydrolysis (Alvira et al., 2010; Wang et al., 2016). The presence of hemicelluloses and lignin greatly obstructs the contact of enzymes with cellulose, leading to a very low enzymatic hydrolysis rate of raw materials. Moreover, the non-productive binding of enzymes to lignin obstructs cellulose hydrolysis as well (Jönsson and Martín, 2016; Pan et al., 2005). Lignin and hemicelluloses reduction may improve the pore size and accessible surface of the lignocellulosic materials and reduce the non-productive adsorption of enzymes to lignin. Therefore, the removal of hemicelluloses and lignin can significantly improve the digestibility of lignocellulosic materials (Mussatto et al., 2008; Puro et al., 2016; Wang et al., 2016). Many pre-treatment processes are purposed to improve the digestibility of lignocellulose materials by hemicelluloses and/or lignin reduction.

Pre-Treatment Technologies for Lignocellulose Biomass
During the last decades, different pre-treatment technologies to enhance various lignocellulosic biomass enzymatic digestion have been reported and investigated. Table 1 shows the percentage of biomass digestibility by different pre-treatments in various plant species. All these pre-treatment methods are presented to decrease lignocellulose recalcitrance to enzymes mostly by decreasing the level of hemicelluloses and lignin, improving accessible surface area, cellulose CrI reduction, improving pore volume, or changing lignin structure (Wang et al., 2016). The past two decades have observed an enormous amount of study being done in the area of pre-treatments. The main features of different pre-treatment methods on the compositions of lignocellulosic biomass and their limitation summarized in Table 2. Various methods have been occupied to examine the productivity as a pre-treatment estimate. The synergistic influences on efficient lignin reduction have also been investigated on a large scale. Pre-treatment methods possibly categorized in different ways. For example it can be classified into two groups: acidic and alkaline according to the pH that is maintained during the pre-treatments process (Singh et al., 2015; Wu et al., 2014). Therefore, pre-treatment technologies can be broadly categorised into physical, chemical, physico-chemical and biological. In this section, we described the most used pre-treatment in the last decades.
Table 1. The percentage of lignocellulosic biomass digestibility by different pre-treatments in various plant species

Pre-treatment method	Plant species	Wall polymer alteration	Pre-treatment	Lignocellulosic biomass digestion (%)	References
Chemical and Physico-chemical pre-treatments	Miscanthus stem	Cellulose, Hemicellulose level	NaOH, H₂SO₄	100	Vancov et al., 2012
	Miscanthus stem	lignin level	NaOH	93-100	Ming Li et al., 2014
	Miscanthus stem	Hemicellulose, lignin level	NaOH, H₂SO₄	99	Xu et al., 2012
	Wheat and rice straw	Cellulose, lignin, Hemicellulose level	NaOH	60-93	Wu et al., 2013
	Maize straw	Cellulose, lignin level	NaOH, H₂SO₄	98	Jia et al., 2014
	Sweet sorghum bagasse	Cellulose, lignin level	NaOH, H₂SO₄	40-100	Meng Li et al., 2014
	Rice straw	Cellulose level	(NH₄)₂CO₃	72	Kim et al., 2014
	Miscanthus stem	Cellulose level	NaOH, H₂SO₄	26-86	Zhang et al., 2013
	Miscanthus stem	lignin level	NaOH, H₂SO₄	100	Si et al., 2015
	Switchgrass stem	Cellulose level	Ionic liquid	80	Sathitsuksanoh et al., 2015
	Sugarcane bagasse	Cellulose level	Ionic liquid	98	Gao et al., 2013
	Poplar wood	Cellulose level	Ionic liquid	97	Wu et al., 2014
	Rice straw	lignin level	Microwave, alkali	70	Ma et al., 2009
	Sugarcane bagasse	Hemicellulose level	Hot water, NaOH, HCl	72-77	Vanholme, 2014; Yu et al., 2013
	Cotton stalk	Cellulose level	Steam explosion, NaOH	78	Huang et al., 2015
	Mustard stalk	Cellulose level	Steam explosion, alkali, dilute acid	81	Kapoor et al., 2015
Physical Pre-treatments	Poplar wood	lignin level	Hot water	91	Studer et al., 2016
	Oilseed rape straw	Pectin level	Steam explosion	86	Wood et al., 2014
	Wheat bran	Hemicellulose level	Irradiation microwave	91	Aguedo et al., 2015
Biological Pre-treatments	Rice straw	lignin level	Trichoderma viride	56	Ghorbani et al., 2015
	Poplar wood	lignin level	White rot fungi	85	Wang et al., 2013
	Wheat straw	lignin level	Pleurotus ostreatus	35	Hatakka, 1983
Table 2. Effect of different pre-treatment methods on the compositions lignocellulosic biomass and their limitation

Pre-treatment method	Lignin removal	Hemicellulose removal	Cellulose de-crystanilization	Increase accessible area	Disadvantages	References
Alkaline	H\(^a\)	H	ND	H	High pollution and high chemical recovery cost	Ming Li et al., 2014
Acid	M\(^a\)	H	ND	H	Chemical recovery problem	Kim et al., 2014
Ionic liquid	M	L\(^a\)	H	H	High cost of ionic liquid	Gao et al., 2013
Steam explosion	L	H	L	H	High equipment cost and generation of inhibitors	Huang et al., 2015
Microwave irradiation	L	M	H	H	High equipment cost	Aguedo et al., 2015
Hot water	H	H	ND	M	High equipment cost and generation of inhibitors	Studer et al., 2016
Biological	H	M	ND	H	Low hydrolysis rate, large space requirement, watchful control condition of microorganism growth	Ghorbani et al., 2015

\(^a\) H: high effect; M: medium effect; L: low effect ; ND: not determined.
Physical Pre-Treatments

The main purpose of physical pre-treatments is to improve the accessible specific surface area of lignocellulosic materials to enzymes by decreasing their particle size or disturbing their structural regularity. Different types of physical processes, such as mechanical comminution (chipping and grinding), irradiation (gamma rays and microwave), hot water have been used to enhance the lignocellulosic materials digestion (Puro et al., 2016; Wang et al., 2016). Steam explosion, hot water and irradiation microwave have been applied as powerful physical pre-treatments in different biomass materials (Table 1) (Aguedo et al., 2015; Studer et al., 2016; Wood et al., 2014).

Chipping and grinding among the mechanical comminution processes, is preferred to disperse immense lignocellulosic materials into small pieces and promote the following pre-treatment procedures. Milling can remarkably decrease the particle size and cellulose CrI, and as a result by extending the milling time enhance their enzymatic hydrolysis. Nevertheless, the energy utilization of mechanical comminution is closely related to the final particle size of lignocellulosic materials. Then, to obtain a high enzymatic hydrolysis value and fermentable sugar yield a high energy input is demanded. This makes milling technology not economically valuable (Martin-Sampedro et al., 2012; Yeh et al., 2010). Other physical pre-treatment technologies have been applied to enhance enzymatic hydrolysis of lignocellulosic biomass such as irradiation and steam explosion. In recent years generally physical pre-treatment used as assistance to chemical pre-treatment method because, physical cannot remove hemicelluloses or lignin from the lignocellulosic biomass or reduce their particle size. It was reported that by many researchers that physical pre-treatment assisted to chemical pre-treatments are more effective in lignocellulose biomass digestion than the conventional heating chemical pre-treatments (Huang et al., 2015; Kapoor et al., 2015; Ma et al., 2009; Vanholme, 2014; Wei et al., 2016).

Chemical Pretreatments

Alkaline pretreatment

The most commonly used method for hemicelluloses and lignin removal in the lignocellulosic biomass is alkali pre-treatment and it disperses bulk lignocellulosic materials into lignocellulosic fibers. The ester linkages in hemicelluloses and lignin comfortably broken down under alkaline conditions. At the relatively high temperature, the ether linkages in hemicelluloses and lignin can also be destroyed. The cleavages of these linkages considerably encourage the solubilisation of hemicelluloses and lignin, hence, enhancing the porosity of biomass. Different alkaline reagents, such as sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)₂), potassium hydroxide (KOH), and aqueous ammonia, have been used to pretreat many lignocellulosic materials. Among these alkaline reagents, NaOH and Ca(OH)₂ are the most commonly used (Hendriks and Zeehan, 2009; Wang et al., 2016). Alkali pre-treatment at relatively low temperatures could lead to much higher biomass enzymatic digestibility and does not demand complicated reactors, which are appealing to be employed on-farm. Anyway, the main drawbacks are long residence time (from hours to days) and the need for neutralization of the pretreated slurry (Jia et al., 2014; Wang et al., 2015; Wu et al., 2013; Xu et al., 2012). Combination of NaOH and Ca(OH)₂ were used to increase the cost productivity of alkaline pre-treatment in switch grass. The raw material was first pretreated by NaOH, and then biomass was pretreated by Ca(OH)₂ which led to glucose and xylose yields of 59.4% and 57.3%, respectively (Xu and Cheng, 2011). Moreover, Li et al. (2014) reported that mild alkali pre-treatment effectively extracts G-rich lignin for high biomass digestibility in Miscanthus.

Acid and dilute-acid pre-treatments

Acid pre-treatment especially by using sulfuric acid (H₂SO₄) are the most used chemical pre-treatment for lignocellulosic materials where polysaccharides are hydrolysed to monosaccharides leading to high cellulose approachability to enzymatic hydrolysis. Acid pre-treatment can be presented either under low acid concentration and high temperature or under higher acid concentration and lower temperature (Chen et al., 2017). Anyway, the concentrated acid pre-treatments are lead to cause severe cellulose and monosaccharides reduction i.e. glucose, production of inhibitors (like HMF and 2-furfuraldehyde) and oxidation of equipment, then the concentrated acids are less attractive. On the other hand, diluted acid because of lower generation of inhibitors is more desirable (C. Li et al., 2010; Xu et al., 2012; Zheng et al., 2009). There are many different diluted reagents acids, like H₂SO₄, HCl, H₃PO₄, and HNO₃ which have been applied to pre-treat different lignocellulosic biomass (Wang et al., 2016). The influence of dilute sulphuric acid pre-treatment conditions on the recovery of xylose and glucose during the pre-treatment and following enzymatic hydrolysis procedures was examined by many researches (Chen et al., 2017; Hsu et al., 2010). In different investigations reported that for enhancing biomass digestibility and enzymatic hydrolysis two-step acid and alkaline pre-treatments are more effective (Table 1) (Jia et al., 2014; Si et al., 2015; Xu et al., 2012). For instance, lately, Si et al. (2015) have reported pre-treatments with 2% NaOH and 1% H₂SO₄ increasing biomass digestibility (100%) in hemicelluloses-rich samples via the efficient co-extraction of hemicelluloses and lignin. Additionally, Jia et al. (2014) have shown that two-step 2% NaOH and 1% H₂SO₄ improving biomass digestibility (98%) in maize straw with reduction of cellulose and lignin.

Commonly, lignin reduction by mineral acid pre-treatment is not highly advantageous. It was reported by many studies...
that after pre-treated with mineral acids, lignocellulosic residues were mainly contain high contents of lignin. A subsequent delignification procedure is always demanded to further enhance lignocellulosic residues digestibility (Xu et al., 2012; Zhang et al., 2012).

Ionic liquids (ILs) pre-treatment

Ionic liquids or salts are usually constituted of large organic cations and small inorganic anions. By modifying the compounds of anions and cations the influence of ILs can be different (Gao et al., 2013). This pre-treatment has high effects on lignin degradation, enhancing cellulose CrI, increasing accessible surface area. Some of the ILs recognised such as 1-allyl-3-methylimidazolium-chloride, 2-methylimidazolium-acetate, 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium diethyl phosphate have recently received much attention because of their capability in cellulose de-crystallinity (Wu et al., 2014). The main drawbacks of ILs method in the industrial scale are very costly, recycling of pure ILs is energy-intensive and, during pre-treatment, solution becomes viscous that makes it difficult to handle. Then, for enhancement of ionic liquids solubility for lignocellulosic biomass more research is required to increase the economics of ILs pre-treatments and construct effective IL recovery proses (Gao et al., 2013; Sathitsuksanoh et al., 2015). It has reported in sugarcane bagasse and poplar wood cellulose degradation by ionic liquids occurred around 98% and 97%, relatively (Gao et al., 2013; L. Wu et al., 2014).

Biological Pretreatment

Microorganisms or enzymes have also been applied to pre-treat various lignocellulosic biomasses before enzymatic hydrolysis. For the degradation of lignin and hemicelluloses many different microorganisms like brown-, white- and soft-rot fungi have been selected and used (Sánchez, 2009). Moreover, the most widely used fungi among these microorganisms is white-rot fungi. (Alvira et al., 2010). White-rot fungi has many various species like Phanerochaete cryosporium, Ceriporia lacerata, Cyathus steroletus, Ceriporiopsis subvermispora, Pycnoporus cinnabarinus and Pleurotus ostreatus which have been applied to pre-treat different lignocellulosic biomass (Hatakka, 1983). Furthermore, white-rot fungi produce lignin-modifying enzymes, such as laccase, ligninperoxidases, and manganese peroxidases, which present prominent influence on lignin reduction (Kumar and Wyman, 2009). It was reported by Ghorbani et al. (2015) in rice straw white rot fungi (Trichoderma viride) can remove lignin about 56% and also in poplar wood white rot fungi can effectively deconstruct lignin construction (85%), resulting in enhancement of biomass enzymatic saccharification (Wang et al., 2013). Hatakka (1983) has presented pre-treatment of wheat straw for five weeks by white rot fungi (Pleurotusostreatus) reduced lignin in the original wheat straw about 34%, but in the un-treated samples only 12% lignin reduction occurred.

Inhibitors Enzymes and Overcome of the Inhibitors

During the pre-treatment procedure of lignocellulose many compounds formed which can confirm prohibitory to microbial growth and metabolism. Capability inhibit chemicals that can be released from cellulose, hemicellulose and lignin when employing thermos chemical treatments are aliphatic acids like acetic, formic and levulinic acid, furaldehydes like furfural and 5-hydroxymethyl furfural (HMF) and, uronic acid, 4-hydroxybenzoic acid, vanillic acid, vanillin, phenol, cinnamaldehyde, and formaldehyde (Jönsson and Martin, 2016). By thermal breakdown of pentose and hexose sugars furan by-products are formed. The two furan derived illustrative, furfural and HMF arise from the dissolution of pentose and hexose sugars on treating lignocellulose with diluted H2SO4. By-products of furan are harmful to the activity of particularezymes that are engaged in microbial metabolism like hexokinase, aldolase, phosphofructokinase, triosephosphate dehydrogenase, and alcohol dehydrogenase (Behera et al., 2014; Kim et al., 2016).

On the fermentation procedure by several methods, we can control the influence of inhibitors (Jönsson and Martín, 2016; Rabemanolontsoa and Saka, 2016). Generally, to remove the negative impact of inhibitors, there can be four methods: (1) prevent the formation of inhibitors during pre-treatment and hydrolysis (2) detoxify the hydrolyzate prior to fermentation; (3) develop genetically modified microorganisms that can resist attack of inhibitors (4) conversion of toxic compounds into neutral products (Rabemanolontsoa and Saka, 2016). To prevent the formation of toxic compounds, a simple strategy would be the careful choice of lignocellulosic material and the application of mild pre-treatments. This may not agree with the industrial demand as a high cellulose and subsequent sugar yield is desired which can only be obtained by implementing harsh pre-treatment methods (Kim et al., 2016; Rabemanolontsoa and Saka, 2016). Addition of chemicals to the fermentation process is one way for detoxification (Behera et al., 2014; Duque et al., 2016).

Conclusion

In order to improve fermentable carbohydrate recovery, produce effective by-product, reduce inhibitors, low-cost bioethanol procedure, and increase ethanol production various effective pre-treatment technology have been identified for lignocellulosic materials. In general, pre-treatment methods are divided into four major groups i.e. physical, chemical, physic-chemical and biological. The main parameters to obtain an efficient hydrolysis are crystallinity of cellulose, its accessible surface area and
protection by lignin and hemicellulose. Despite most of the pre-treatment have many advantages, but one method could not be the best selection for all types of biomass. Therefore, basic understanding of various pre-treatment technologies, different composition of biomass feedstock and the relationship between composition of biomass feedstock and pre-treatment methods would considerably help in matching the best pre-treatment method for a specific biomass feedstock.

Acknowledgments
The assistance of our friends for their valuable technical and practical assistance is gratefully acknowledged.

References
Agbor VB, Cicek N, Sparling R, Berlin A and Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29: 675–685. DOI: 10.1016/j.biotechnad.2011.05.005

Aguedo M, Ruiz HA and Richel A (2015) Non-alkaline solubilization of arabinoxylans from destarched wheat bran using hydrothermal microwave processing and comparison with the hydrolysis by an endoxylanase. Chem Eng Process 96: 72-82. DOI: 10.1016/j.biotechnad.2011.05.005

Alvira P, Ballesteros M and Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol 101: 4851–4861. DOI: 10.1016/j.biotechnol.2010.01.088

ang Y, Huang J, Li Y, Xiong K, Wang Y and Li F (2015) Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulosic crystallinity in Miscanthus. Bioresource Technol 196: 391–398. DOI: 10.1016/j.biotechnol.2015.07.099

Bansal P, Hall M, Reallff MJ, Lee JH and Bommaraju AS (2010) Multivariate statistical analysis of X-ray data from cellulose: A new method to determine degree of crystallinity and predict hydrolysis rates. Bioresource Technol 101: 4461–4471. DOI: 10.1016/j.biotechnol.2010.01.068

Behera S, Arora R, Nandhagopal N and Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36: 91–106. DOI: 10.1016/j.rser.2014.04.047

Boerjan W, Ralph J and Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519–546. DOI: 10.1146/annurev.arplant.54.031902.134938

Chen B-Y, Zhao B-C, Li M-F, Liu Q-Y and Sun R-C (2017) Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. Bioresource Technol 225: 127–133. DOI: 10.1016/j.biortech.2016.11.062

Chen W-H, Tu Y-J and Sheen H-K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88: 2726–2734. DOI: 10.1016/j.apenergy.2011.02.027

Choi B, Jiang X, Kim YK, Jung G, Lee C, Choi I, et al (2015) Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine. Appl Energy 146: 20–28. DOI: 10.1016/j.apenergy.2015.02.061

Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, da Costa Sousa L, Chambilss CK, et al (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresource Technol 101: 8429–8438. DOI: 10.1016/j.biortech.2010.06.027

Dias MOS, Junqueira TL, Cavalett O, Pavanello LG, Cunha MP, Jesus CDF, et al (2013) Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl Energy 109: 72–78. DOI: 10.1016/j.apenergy.2013.03.081

Duque A, Manzanares P, Ballesteros I and Ballesteros M (2016) Steam Explosion as Lignocellulosic Biomass Pretreatment. Biomass Fractionation Technol. a Lignocellul. Feed Based Biorefinery 18: 349-368.

Gao Y, Xu J, Zhang Y, Yu Q, Yuan Z and Liu Y (2013) Bioresource Technology Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresource Technol 144: 396–400. DOI: 10.1016/j.biortech.2013.06.036

Ghorbani F, Karimi M, Biria D, Kariminia HR and Jeehaniapur A (2015) Enhancement of Fungal Delignification of Rice Straw by Trichoderma viride sp. to Improve Its Saccharification. J Biochem Engin DOI: 10.1016/j.ijbej.2015.05.005

Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S and Bogel-Lukasik R (2010) Hemichelluloses for fuel ethanol: a review. Bioresource Technol 101: 4775–4800. DOI: 10.1016/j.biortech.2010.01.088

Gupta R, Khasa VP and Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84: 1103–1109.DOI: 10.1016/j.carbpol.2010.12.074

Hatakka AI (1983) Pretreatment of wheat straw by white rot fungi for enzymic saccharification of cellulose. Appl Microbiol Biotechnol 18(6): 350-357. DOI: 10.1007/BF00504744

Hendriks ATWM and Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 100: 10–18. DOI: 10.1016/j.biortech.2008.05.027

Hsu T-C, Guo G-L, Chen W-H and Hwang W-S (2010) Effect of dilute acid pretreatment of rice straw on structural
properties and enzymatic hydrolysis. Bioresource Technol 101: 4907–4913. DOI: 10.1016/j.biortech.2009.10.009

Hu J, Arantes V, Pribowo A, Gourlay K and Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulates during the enzymatic hydrolysis of biomass. Energy Environ Sci 7: 2308–2315. DOI: 10.1039/c4ee00891j

Huang Y, Wei X, Zhou S, Liu M, Tu Y and Li A (2015) Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technol 181: 224–230. DOI: 10.1016/j.biortech.2015.01.020

Im Kim J, Ciesielski PN, Donohoe BS, Chapelle C and Li X (2014) Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools. Plant physiol 164(2): 584–595. DOI: 10.1104/pp.113.229393

Jia J, Yu B, Wu L, Wang H, Wu Z, Li M, et al (2014) Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn. PLoS One 9: e108449. DOI: 10.1371/journal.pone.0108449

Jönsson LJ and Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technol 199: 103–112. DOI: 10.1016/j.biortech.2015.10.009

Kapoor M, Raj T, Vijayaraj M, Chopra A, Gupta RP, Tuli DK, et al (2014) Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr Polym 124: 265-273. DOI: 10.1016/j.carbpol.2015.02.044

Khalil HPSA, Davoudpour Y, Islam MN, Mustapha A, Sudes K, Dungani R, et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99: 649–665. DOI: 10.1016/j.carbpol.2013.08.069

Kim JS, Lee YY and Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technol 199: 42–48. DOI: 10.1016/j.biortech.2015.08.085

Kumar R and Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technol 100: 4203–4213. DOI: 10.1016/j.biortech.2008.11.057

Li C, Kneriem B, Manisieri C, Arora R, Scheller HV, Auer M, et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technol 101: 4900–4906. DOI: 10.1016/j.biortech.2009.10.066

Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing H, Li S and Peng L (2014a) Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technol 167: 14-23. DOI: 10.1016/j.biortech.2014.04.086

Li M, Si S, Hao B, Zha Y, Wan C, Hong S and Kang Y (2014b) Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource Technol 169: 447–454. DOI: 10.1016/j.biortech.2014.07.017

Li MF, Fan YM, Xu F, Sun RC and Zhang XL (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Ind Crops Prod 32: 551–559. DOI: 10.1016/j.indcrop.2010.07.004

Ma H, Liu W, Chen X, Wu Y and Yu Z (2009) Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technol 100: 1279–1284. DOI: 10.1016/j.biortech.2008.08.045

Martin-Sampedro R, Filipponen I, Hoeger IC, Zhu YJ, Laine J and Rojas OJ (2012) Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Lett 1: 1321–1325. DOI: 10.1021/mz300448b

Meng X and Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27: 150–158. DOI: 10.1016/j.copbio.2014.01.014

Mussatto SI, Fernandes M, Milagres AMF and Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43: 124–129. DOI: 10.1016/j.enzmictec.2007.11.006

Palmqvist E and Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25–33. DOI: 10.1016/S0960-8524(99)00161-3

Pan X, Xie D, Gilkes N, Gregg DJ and Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. In: Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. pp. 1069–1079. DOI: 10.1007/978-1-59259-991-2_90

Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26: 1219–1222. DOI: 10.1002/bit.260261010

Puro J, Soetaredjo F, Lin S, Ju Y and Ismadji S (2016) Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 6: 46834–46852. DOI: 10.1039/c6ra09851g

Rabemanolontsoa H and Saka S (2016) Various pretreatments of lignocellulosics. Bioresource Technol 199: 83–91. DOI: 10.1016/j.biortech.2015.08.029

Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, et al (2004) Lignins: natural polymers from oxidative coupling reactions. RSC Adv 4: 9309–9318. DOI: 10.1039/b410495e

This paper can be downloaded online at http://ijasbt.org & http://nepjol.info/index.php/IJASBT
Zhao J and Chen H (2013) Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. *Chem Eng Sci* **104**: 1036–1044. DOI: 10.1016/j.ces.2013.10.022

Zheng Y, Pan Z, Zhang R and Wang D (2009) Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. *Appl Energy* **86**: 2459–2465. DOI: 10.1016/j.apenergy.2009.03.012