During last decades a considerable attempt has been made to prevent cardiovascular disease (CVD). Nevertheless, CVD remains a leading cause of death worldwide [1]. The guidelines of medical scientific societies for primary and secondary prevention of CVD are directed towards established CVD risk factors (dyslipidemia, diabetes mellitus, hypertension, obesity, smoking and others). As far as dyslipidemia is concerned, the first priority, according to the guidelines [2], is to achieve optimal low density lipoprotein cholesterol (LDL-C) levels. Many clinical trials have shown that hypolipidemic treatment besides lowering LDL-C also significantly reduces CVD-related morbidity and mortality [3, 4]. Nevertheless, a considerable number of treated subjects still have CVD events. Thus, the need for additional therapeutic treatment such as increasing high density lipoprotein cholesterol (HDL-C) levels and decreasing levels of triglycerides (TG) has been suggested [5]. In this context, torcetrapib, an inhibitor of cholesteryl ester transport protein (CETP), increased HDL-C levels and decreased LDL-C levels [6-8]. However, the drug was withdrawn due to side effects.

Another potential target to reduce CVD risk is postprandial hypertriglyceridemia [9, 10]. In 1979, Zilversmit [11] proposed that TG are involved in development of atherosclerosis. Since then, many research teams, including ours, [12-19] have examined the association between CETP and postprandial hypertriglyceridemia in transgenic mice [27]. They performed functional studies to show that plasma CETP activity modifies postprandial response of TG-rich lipoproteins. They assessed the TG response to fat load in rats with introduced human CETP gene (mice and rats are naturally CETP deficient). They found that elevated levels of CETP were associated with fat intolerance.

Genetically, engineered mice have proven to be valid models for the study of CETP function and its relation with atherosclerosis. Introduction of the human CETP gene into mice results in a dose-related reduction of HDL-C levels and, as a consequence, these animals have significantly more early atherosclerotic lesions in the proximal aorta than control mice [28]. CETP variants have a strong impact on CETP activity and thus on HDL-C levels [29]. Several polymorphisms have been identified in the coding sequence of the CETP gene including I405V [30]. The I405V polymorphism has been associated with reduced CETP mass, increased HDL-C levels and increased CVD risk [31, 32]. Another widely studied CETP polymorphism is TaqIB which seems to influence HDL-C levels [33]. In normolipidemic subjects, the absence of the TaqIB restriction site (B2 allele) is associated with increased CETP activity, increased HDL-C levels and reduced risk of CVD in males compared with B1 subjects [34]. The CETP TaqIB polymorphism has been found to account for 5.8% of the variance in HDL-C, which is important since the 1 mg/dl increase of HDL-C leads to 2% decrease in CVD risk [35, 36]. Subjects with the B2 allele usually have lower levels of CETP, higher levels of HDL-C and reduced risk of CHD compared with B1 subjects [33]. Our group also analyzed the association between TaqIB polymorphism and fasting as well as postprandial TG levels in heterozygote familial hypercholesterolemia (hFH) patients [35]. The B1 allele carriers with exaggerate TG response to fat loading had higher fasting and postprandial TGs compared with B2 allele carriers. Also, patients with the B1/B2 genotype had significantly higher HDL-C levels compared with the B1/B1 genotype. Noone et al. found that B1 allele carriers had increased mass and activity of CETP at 6 h after fat loading compared with B2 allele carriers [36]. This finding is similar to our results (higher TG 6 and 8 h after fat loading in B1 allele carriers compared with B2;
Furthermore, Hogue et al. found a 1.1–1.7-fold increase in CETP in response to a 135-g fat meal [37]. It has been shown by others [38, 39] and by us that carriers of the B1 allele have a more atherogenic fasting and non fasting lipid profile (low HDL-C, increased TGs, exaggerated and delayed clearance of TGs postprandially) than carriers of the B2 allele, which should lead to increased cardiovascular risk. Furthermore, Hogue et al. reported that a high plasma CETP concentration was associated with higher risk of having small-diameter particles of LDL in hFH patients, suggesting that CETP-induced remodeling of LDL is dependent on the number of TG-rich lipoproteins [40]. Also, in a previous study of ours [41] a significant gender association between TG response after oral fat loading and TaqIB polymorphism of the CETP gene in subjects with an exaggerate response was found. Specifically, men carrying the B2 allele of the TaqIB polymorphism showed a higher postprandial TG peak and a delayed return to baseline values compared with women carrying the B2 allele. The mechanisms of this observation were explained by Salerno et al. [27]. They reported that CETP expression in transgenic mice delays plasma clearance and liver uptake of TG-rich lipoproteins firstly, by transferring TGs to HDLs and increasing cholesteryl ester concentration of the remnant particles, and secondly by decreasing lipoprotein lipase (LPL) expression. Similarly, Zhou et al. [42] also found that adipocytes from adipose tissue of transgenic mice (CETP expressing) presented reduced LPL expression. The mechanisms underlying the differential lipemic responses confirmed in CETP expressing and non-expressing transgenic animals could also be applicable for humans expressing high or low CETP activities. Thus, the human studies performed by our group presented similar positive associations between CETP and TG levels [35]. Two other studies have also shown similar results [43, 44].

A new aspect linked to the effects of CETP expression contribute to a better understanding of the influence of a precise gene on lipids and lipoproteins responsiveness to nutritional fat. This research carried out in either humans or transgenic animals may have clinical implications in the near future. The understanding of postprandial lipemia is important, since postprandial hypertriglyceridemia is involved in endothelial dysfunction, oxidative stress, small dense LDL and small dense HDL particles [45].

REFERENCES

[1] de Grooth GJ, Klerkx AH, Stroes ES, Stalenhoef AF, Kastelein JJ, Kuivenhoven JA. A review of CETP and its relation to atherosclerosis. J Lipid Res 2004; 45: 1967-74.

[2] Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486-97.

[3] Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383-9.

[4] Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial Investigators. N Engl J Med 1996; 335: 1001-9.

[5] Gotto AM Jr. Low high-density lipoprotein cholesterol as a risk factor in coronary heart disease: a working group report. Circulation 2001; 103: 2213-8.

[6] de Grooth GJ, Kuivenhoven JA, Stalenhoef AF, et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized phase II dose-response study. Circulation 2002; 105: 2159-65.

[7] Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350: 1505-15.

[8] Clark RW, Sutfin TA, Ruggeri RB, Willauer AT, et al. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler Thromb Vasc Biol 2004; 24: 490-7.

[9] Alipour A, Elle JW, van Zaanen HC, Rietveld AP, Castro Cabezas M. Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl 2008; 9: 39-44.

[10] Kapoor JR. Postprandial triglyceride levels and cardiovascular risk. Am Fam Physician 2008; 77: 1504.

[11] Zilversmit DB. Atherosclerosis: a postprandial phenomenon. Circulation 1979; 60: 473-5.

[12] Kolovou GD, Daskalova DCh, Irakliano SA, et al. Postprandial lipemia in hypertension. J Am Coll Nutr 2003; 22: 80-7.

[13] Kolovou G, Daskalova D, Anagnostopoulos K, et al. Postprandial hypertriglyceridemia in patients with Tangier disease. J Clin Pathol 2003; 56: 937-41.

[14] Kolovou GD, Anagnostopoulos KK, Pilatis ND, et al. Heterozygote men with familial hypercholesterolemia may have an abnormal triglyceride response post-prandially. Evidence for another predictor of vascular risk in familial hypercholesterolemia. Int J Clin Pract 2005; 59: 311-7.

[15] Kolovou GD, Anagnostopoulos KK, Pavlidis AN, et al. Postprandial lipemia in men with metabolic syndrome, hypertensives and healthy subjects. Lipids Health Dis 2005; 4: 21.

[16] Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Non-fasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298: 299-308.

[17] Granér M, Kahri J, Nakano T, et al. Impact of postprandial lipemia on low-density lipoprotein (LDL) size and oxidized LDL in patients with coronary artery disease. Eur J Clin Invest 2006; 36: 764-70.

[18] Kolovou GD, Anagnostopoulos KK, Daskalopoulou SS, Mikhailidis DP, Cokkinos DV. Clinical relevance of postprandial lipaemia. Curr Med Chem 2005; 12: 1931-45.

[19] Ordovas JM, Cupples LA, Corella D, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol 2000; 20: 1323-9.

[20] Li TY, Zhang C, Asselbergs FW, et al. Interaction between dietary fat intake and the cholesterol ester transfer protein TaqIB polymorphism in relation to HDL-cholesterol concentrations among US diabetic men. Am J Clin Nutr 2007; 86: 1524-9.

[21] Volcik K, Ballantyne CM, Pownall HJ, Sharrett AR, Boerwinkle E. Interaction effects of high-density lipoprotein metabolism gene variation and alcohol consumption on coronary heart disease risk: the atherosclerosis risk in communities study. J Stud Alcohol Drugs 2007; 68: 485-92.

[22] Goldenberg I, Moss AJ, Block R, et al. Polymorphism in the cholesteryl ester transfer protein gene and the risk of early onset myocardial infarction among cigarette smokers. Ann Noninvasive Electrocardiol 2007; 12: 364-74.

[23] Alcssena M, Dekker JM, Kuivenhoven JA, et al. Elevated cholesteryl ester transfer protein concentration is associated with an increased risk for cardiovascular disease in women, but not in men, with Type 2 diabetes: the Hoorn Study. Diabet Med 2007; 24: 117-23.

[24] Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008; 299: 1777-88.

[25] Tsai MY, Johnson C, Kao WH, et al. Cholesteryl ester transfer protein genetic polymorphisms, HDL cholesterol, and subclinical cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2008; 200: 359-67.

[26] Kolovou GD, Anagnostopoulos KK, Karyofyllis P, et al. Cholesteryl ester transfer protein gene polymorphisms and severity of coronary stenosis. Clin Invest Med 2006; 29: 14-9.
Salerno A, Patricio P, Berti J, Oliveira H. Cholesteryl ester transfer protein (CETP) increases postprandial triglyceridemia and delays triglyceride plasma clearance in transgenic mice. Biochem J 2009; 419: 629-34.

Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 1993; 364: 73-5.

Gudnason V, Kakko S, Nicaud V, et al. Cholesteryl ester transfer protein gene effect on CETP activity and plasma high-density lipoprotein in European populations. The EARS Group. Eur J Clin Invest 1999; 29: 116-28.

Agellon LB, Quinet EM, Gillette TG, Drayna DT, Brown ML, Tall AR. Organization of the human cholesteryl ester transfer protein gene. Biochemistry 1990; 2: 1372-6.

Kuivenhoven JA, de Knijff P, Boer JM, et al. Heterogeneity at the CETP gene locus. Influence on plasma CETP concentrations and HDL cholesterol levels. Arterioscler Thromb Vasc Biol 1997; 17: 560-8.

Corella D, Sáiz C, Guillén M, et al. Association of TaqIB polymorphism in the cholesteryl ester transfer protein gene with plasma lipid levels in a healthy Spanish population. Atherosclerosis 2000; 152: 367-76.

Kolovou G, Anagnostopoulou K, Kostakou P, et al. Association between the TaqIB polymorphism in the cholesteryl ester transfer protein gene locus and postprandial plasma lipoprotein levels in heterozygotes for familial hypercholesterolemia. Clin Chem Lab Med 2007; 45: 1190-8.