Compositional analysis of malanga (Xanthosoma sagittifolium), chinese potato (Colocasia esculenta) and potato (Solanum tuberosum) for the utilization in the snack’s elaboration by conventional fried.

Romero, Alisson 1; Herrera, Byron A.1; Moposita, Diego D.1; Palacios, Dayana S.1; Núñez, Darwin A.2; Ramón, Rivelino E.2; Altuna José.2; Bayas, Favián I.2.

Abstract: The objective of the present study was to compare the compositional analyze of three types of tubers, like traditional potatoes (Solanum tuberosum) and two of them that come from untraditional like Malanga (Xanthosoma sagittifolium) and papa china (Colocasia esculenta), crops that in Ecuador aren’t used for the snacks making. The evaluated components in the primordial matter and finished material were: protein content, grease, ashes, humidity, fiber, and carbohydrates, all of them were evaluated by official methods of analyze. The experiment was realized three times for each prove. It was used a program SPSS version 23, applying a variance followed by a Tukey test (p<0.05) with the objective of determinate some meaning statistics for deviation of tubers ways of Malanga that has a significant content of protein and carbohydrates and energetic adds were higher in comparison of the traditional snacks, these results are an alternative for the consumer and the development of new products for the food industries.

Key words: Malanga, chemise potato, potato, compositional analyze, snacks.

Introduction

The actual tendencies in the agricultural are oriented towards the search crop species that contribute at low cost to the food supply, protection of the natural resources, fairness, and diminution of the poverty. The crop species with reserves roots and stems fulfills in its majority with these requirements. Within the group of reserves stems foods of agricultural importance are the genus Xanthosoma Colocasia of the Araceas family1. The significance of the Araceas foods has been recognized by FAO2, organization that has published several documents on the importance of some tubercles and their contribution to the food safety of the developing countries.

 Exists brings back to consciousness generalized of which the crop by roots and tubercles contribute energy components in high amount and that the little protein that produces is of smaller quality to the one of origin animal. However, are an important energy source in the form of starch and represent, at least, 40% of the weight of the diet3.

Within the Araceas foods the ocumo criollo, blanco o malanga (Xanthosoma sagittifolium L. Schott), is a plant worked perennial grass in many tropical and subtropical countries since their tubercles are an easily digestible starch source; also, they contain proteins and vitamins like thiamin, riboflavin, iron, phosphorus, vitamins B6 and C, niacin, potassium, receives, manganese, stop dietetic fiber degree and starch. Also it is a proven useful food by its humid product protein content from 1.7 to 2.5%.4

Potato (Solanum tuberosum, sp. Tuberosum) is a crop that has gained a space in the use of its tubercles like raw material in the food industry5. Although the potatoes have relatively few nutrients, they contain many carbohydrates, thus are an excellent energy source. Potatoe has the protein content more elevated (around 2.1% of the weight of the product in fresh) of the family of cultures by roots and tubercles, and protein of good quality, with amino acids adapted to the human needs. Also they have high vitamin C content: one medium-size potato contains almost half of the recommended daily ingestion6. At present, the sector of fried has undergone significant growth, especially the consumption of snacks, chips, maize tortillas, other product derivatives of vegetal origin, and the denominates fast foods meal7,8.

The frying is one of the methods of more widespread and thermal essential food processing anywhere in the world9,10,11. It can be defined as a particular type of baking by immersion in oil or fat food to a temperature superior to the boiling point of the water12.

In developed countries, the tendency to the rise of the consumption of snacks is turned out from the recommendation to make it decrease the caloric ingestion in the three main meals, habit that also allows controlling the appetite13.

The limited bibliographical information about the compositional nontraditional tubercle parameters has originated a lack of advantage in the agro-industrial product elaboration.

The objective of the present research was to realize a compositional analysis of the raw material and the product generated of three types of tubercles, one traditional like the potatoes and two nontraditional ones like malanga and Chinese potatoes for the elaboration of snacks.

Materials and methods

The present research was carried out in the quality and process control laboratories of the Agroindustrial Engineering career, the National University of Chimborazo (Riobamba-Ecuador).

To obtain the snacks, malanga and Chinese potato, previously obtained from the city of Santo Domingo, were used as

1Facultad de Ingeniería, Universidad Nacional de Chimborazo, Escuela de Ingeniería Agroindustrial, 080110 Riobamba, Ecuador.
2Facultad de Ciencias Agropecuarias Recursos Naturales y del Ambiente, Universidad Estatal de Bolívar, 020150, Guaranda - Ecuador.

Corresponding author: fbayas@ueb.edu.ec

DOI. 10.21931/RB/2019.04.04.7
Results and Discussion

Table 1 shows the compositional analysis of the three types of tubers, in which the amounts of moisture (M%), protein (PC%), crude fiber (CF%), fat (F%), ether extract (EE%), ashes (A%) and carbohydrates of the malanga, Chinese potato, and potato present significant differences in the moisture parameter as shown in table 1; these results are similar to those reported by Bradbury et al.14, which found values in malanga 67.1% and Chinese potato 69.1%.

The content of ash and fiber of malanga and Chinese potato did not present significant differences concerning the potato, Muñoz et al.15, reported content of 1.94% (ash), and 0.07% (fat) for Chinese potato.

On the other hand, the fat content of malanga and potato present significant differences in comparison with the Chinese potato. These results of ash and fat content differ from those obtained in this investigation. Collazos et al.17, performed a chemical analysis of the raw material (pituca corms), finding a: 73.7% (moisture), 1% (ash), 0.5% (fat), 0.8% (fiber) and 23.2% of total carbohydrates.

The protein content of the Chinese potato and potato have lower values for malanga. These results contrast with the costs for malanga of 6.80% and chinese potato 3.80% reported by Devendra18.

For the carbohydrate content, it was observed that the Chinese potato and potato do not present significant differences concerning malanga. These results differ with the value of 19.31% present in other varieties of potatoes reported by Prada19.

On the other hand, the value found in the Chinese potato is in the range of the values reported by Pajar20 with an amount of 22.10% of carbohydrates. Devendra20 observed 25.02% in the malanga tuber.

The values obtained in the compositional analysis of the Chinese potato, malanga, and potato in fresh state present significant differences in some parameters, the results can be affected by several factors. Barrera et al.21, mentions that the proximal composition of the tubers varies from place to place depending on the climate, geographic regions, cultivation variety, soils, among others.

Table 2 shows the parameters of moisture (M%), protein (PC%), crude fiber (CF%), ether extract (EE%), ash (A%), and carbohydrates present in snacks.

Lucas et al.22 determined an excess of moisture in potato chips of 4.77% at a temperature of 190°C of 2.5-3.5 min. These results are related to the values obtained from the Chinese potato and potato snacks.

On the other hand, lower moisture content was observed in the malanga snack, showing significant differences for the Chinese potato and potato. Among the meals of malanga and Chinese potato do not present significant differences with respect to the fat content, but if there is a difference with the potato snacks, this corresponds to the values reported by the Profeco Laboratory in 200823, in which profits were found statistically (p<0.05).

Tubérculos	Determinations (g)	Malanga	Chinese potato	Potato
Moisture	66.060 ± 0.009	a	69.987 ± 0.005	b
Ashes	2.030 ± 0.000	b	2.371 ± 0.005	a
Protein	7.121 ± 0.001	a	4.699 ± 0.231	b
Fat	0.230 ± 0.000	c	0.380 ± 0.000	b
Fiber	2.982 ± 0.002	a	2.511 ± 0.000	b
Carbohydrates	24.557 ± 0.377	b	22.622 ± 0.448	b

Tubérculos	Determinations (g)	Malanga	Chinese potato	Potato
Moisture	1.570 ± 0.016	a	3.561 ± 0.203	b
Ash	1.244 ± 0.029	a	3.158 ± 0.074	b
Protein	6.610 ± 0.141	a	4.002 ± 0.041	b
Fat	30.420 ± 0.199	a	31.132 ± 0.113	a
Fiber	2.611 ± 0.184	a	2.394 ± 0.070	a
Carbohydrates	60.154 ± 0.152	b	58.144 ± 0.213	b

On the other hand, the fat content of malanga, Chinese potato, and potato tubers. Results expressed as means ± standard deviation. Means in the same row with different superscripts represent the groups for which their values differ statistically (p<0.05).
means of 30.4 to 38.9g / 100g of fat in some commercial brands of chips potato consumed in our environment (Pringles, Lay’s, and Ruffles).

The content of fiber in the products of taro and Chinese potatoes did not show significant differences in comparison to the potato, these values are not very representative, since according to the Argentine Food Code “Código Alimentario Argentino” (CAA) a food can be declared as a source of fiber if it contains at least 3g / 100g, and it is declared high in texture when it presents a minimum contribution of 6g / 100g²⁴.

Bravo et al.⁵, observed 0.62% crude fiber and 23.54% fat in Chinese potato chips that were made at 180 °C for 3 min with 1 mm thickness, while Carbolln et al.²⁶, reported in their study that snacks of chips, present 3.8% protein, 34% fat and 51% carbohydrates.

According to INCAP²⁷, simple papillín snacks contain 66.90% carbohydrates.

On the other hand, Argudo²⁸, presented a 71.98% carbohydrate for fried malanga and Bravo et al.²⁵, obtained 62.91% of carbs for Chinese potato chips. The results found in the three types of snacks presented significant differences, being the snack of malanga, the one that showed higher values.

Conclusions

It is concluded that the content of nutrients in the tuber of the taro has higher values in parameters such as protein, carbohydrates, and fiber, on the other hand, the snacks of taro and potato have higher content in proteins and carbohydrates compared to the traditional meal. This research provides relevant information for the development of new products in the food industry, in addition to presenting an alternative for the consumers’ daily diet.

Bibliographic references

1. Vilchez J, et al. Multiplicación en sistemas de inmersión tem- poral y enraizamiento ex vitro de ocumo blanco (Xanthosoma sagittifolium) L. Schott. Rev Col Biol. 2011; 13 (1): 1-8. Available at http://www.scielo.org.co/scielo.php?script=sci_arttext &pid=S0123-347520110001000013
2. Food and Agriculture Organization of the United Nations, FAO (1998). Storage and Processing of Roots and Tubers in Tropics. Available at http://www.fao.org/ag/esp/revista/0611sp1.htm.
3. Montaldo A. Cultivo de raíces y tuberculos tropicales. Instituto Interamericano de Ciencias Agrícolas de la OEA, 1991, 284 páginas.
4. Niba L. Processing effects on susceptibility of starch to digestion in some dietary starch sources. International J Food Sci Nutr. 2003; 54:97-109.
5. López M, Vásquez E, López R. Raíces y tubérculos. La Habana: Pueblo y Educación; 1995: 2:312.
6. Zalamea L. Proceso para la obtención de una pasta alimenta- ria tipo compota de alto nivel nutricional a partir de la Coloca- sia Esculenta, Guayaquil: Facultad de Ingeniería, Universidad de Guayaquil. 2013. Available http://repositorio.uog.edu.ec/bitstream/ redug/3664/1/11112.pdf
7. González H. Producción de patatas: consideraciones sobre su cul- tivo y conservación. Revista Patatas 2000; 5:70.
8. Food and Agriculture Organization of the United Nations, (2008). Tesoros enterrado: la papa. Quito: Universidad de las Américas 2011. Available at http://repository.iniap.gob.ec/handle/41000/3261
9. Lucas A, et al. Experimental estimation of the quality of the re- fractory starch obtained from the potatoes. Scientia Et Technica. 2011; 16(48):299-304. Available at https://www.redalyc.org/articulo.oa?id=8492262053
10. Yuksel F, Kayacier A. Utilization of stale bread in fried wheat breads: Response surface methodology study for the characteri- zation of textural, morphologic, sensory, some physicochemical and chemical properties of wheat chips. LWT Food Sci Technol. 2016; 67:89-98.
11. Calleja Pinedo and Valenzuela. La tortilla como identidad culinaria y producto de consumo global. Región y Sociedad. 2018; 68: 181-194.
12. Tirado D, Acededo D, Guzmán L. Freído por inmersión de los ali- mentos. R Recitea. 2012; 12: 69-82.
13. Bouchon P. Understanding oil absorption during deep-fat frying. Adv Food Nutr Res. 2009; (57): 209-234. Available at https://www.ncbi.nlm.nih.gov/pubmed/19595388
14. Romero I, Diaz V, Aguirre A. Fortalecimiento de la cadena de valor de los snacks nutritivos con base en fruta deshidratada en El Salva- dor. LI/MEX/ORG-46/05. 2016. Available at http://www.profeco.gob.mx/revista/pdf/est_08/56-63%20papas.pdf.
15. Bradbury J, Holloway W. Chemistry of tropical root crops. Austral- lia Centre for International, Agricultural Reach [internet]. 1988; (6):101-119. Available at file:///C:/Users/Usuario/AppData/Local/Temp/mb57_pdf_18359.pdf
16. Muñoz A, Ramos F, Alvarado C. Evaluación del contenido de nu- trición de algunos alimentos consumidos por los pobladores de la región Selva, Rev Horizonte Méd. 5(2):75-79. Available at https://www.redalyc.org/articulo.oa?id=3171639765009
17. Collazos CH, Alivistur C, Vásquez J. Tablas Peruanas de Composición de Alimentos. Vol. 8a ed. Ministerio de Salud, Instituto Nacional de Salud, Centro Nacional de Alimentación y Nutrición; 2009.
18. Devendra C, Malaysian feedingstuffs. Malaysian Agricultural Re- search and Development Institute (MARDI), Serdang 1979. 145.
19. Prada R. Alternativa de aprovechamiento eficiente de residuos biodegradable: el caso del almidón residual derivado de la indu- strialización de la papa. Revista EAN a. 2008; 72 (1): 1-10. Available at http://www.scielo.org.co/pdf/eem/n72/n72a12.pdf
20. Pajar M. Elaboración de hojuelas de pita (Colocasia esculenta (L. Schott). Tesis de Grado, Facultad de Ciencias Agrarias, Universidad Nacional del Centro del Perú, [Internet]. Satipo: Universidad Nacional del Centro, 2016; 8. Available at https://repository.ucpef.uncp.edu.pe/bitstream/handle/UNCP/2633/Pajar%20Mu%C3%B1oz.pdf?sequence=1&isAllowed=y
21. Barrera V, Espinosa P, Tapia C, Monteros A, Valverde, F. Caracteri- zación de las raíces y los tubérculos andinos en la ecoregión an- dina del Ecuador, Ec: INIAP/DIP/COSUDE. 2004; (1): 3-30. Available at http://repository.iniap.gob.ec/handle/41000/3261
22. Lucas A, et al. Experimental estimation of the quality of the re- fractory starch obtained from the potatoes. Scientia Et Technica. 2011; 16(48):299-304. Available at https://www.redalyc.org/articulo. oa?id=8492262053
23. Laboratorio Profero Reporta. (2008). Papas fritas envasadas. Re- vista en línea. Consultado en: agosto 2019; http://www.profero. gob.mx/revista/pdf/est_08/56-63%20papas.pdf.
24. Código Alimentario Argentino. Normas para la rotulación y Pub- licidad de los Alimentos. Vol 8a ed. Ministerio de Salud, Instituto Nacional de Alimentación y Nutrición; 2009.
25. Bravo H, Ramírez E, Delgado E, Paz E. Estudio de la impregnación de aceite durante la elaboración de frituras tipo chips de Malanga (Colocasia esculenta) bajas en grasa. Jornadas Científicas de Bio- medicina y Biotecnología Molecular. 2008; (5):6.
26. Carbonell J, Esteve M, Frigola A. Snacks de patatas fritas y productos derivados, estudio del mercado. Aceptación en una alimentación saludable. Rev Esp Nutr Comun. 2014; (3):99- 108. Available at http://www.renc.es/imagenes/auxiliar/files/ Web%20RENC%202014%20-3%20art%20104.pdf
27. Instituto de Nutrición de Centro América y Panam. (2007). Tabla de composición de alimentos de Centroamérica. INCAP. 8:72-128
28. Argudo J. Diseño de una planta procesadora de Chips Empaca- dos obtenidos de la Malanga (Xanthosoma Sagittifolium (L.) Schott), Quito: Universidad de las Américas 2011. Available at http:// dspace.udla.edu.ec/handle/33000/2160

Received: 10 October 2019
Accepted: 1 November 2019

Compositional analysis of malanga (Xanthosoma sagittifolium), chinese potato (Colocasia esculenta) and potato (Solanum tuberosum) for the utilization in the snack's elaboration by conventional fried.