UNIFORM DISTRIBUTION OF SADDLE CONNECTION LENGTHS

JON CHAIKA AND DONALD ROBERTSON
(WITH AN APPENDIX BY DANIEL EL-BAZ AND BINGRONG HUANG)
(Communicated by Giovanni Forni)

ABSTRACT. For any SL(2, R) invariant and ergodic probability measure on any stratum of flat surfaces, almost every flat surface has the property that its non-decreasing sequence of saddle connection lengths is uniformly distributed mod one.

1. INTRODUCTION

By a flat surface we mean a pair \((X, \omega)\) where \(X\) is a closed, compact Riemann surface of genus \(g \geq 2\) and \(\omega\) is a non-zero holomorphic one form on \(X\). Every non-zero holomorphic one form on \(X\) has \(2g - 2\) zeros, where \(g\) is the genus of \(X\). Fixing the genus of \(X\), the set \(\{(X, \omega) : \omega \neq 0\}\) is partitioned into strata according to the possible partitions of \(2g - 2\). Each connected component of a stratum carries a natural volume measure that is invariant under the action of SL(2, R) on pairs \((X, \omega)\). The SL(2, R) action preserves the area of \((X, \omega)\).

Masur [12] and Veech [17] showed independently that the natural volume on a connected component induces on its subset \(\mathcal{H}\) of unit-area flat surfaces a probability measure \(M\), since called the Masur–Veech measure, that is ergodic for the SL(2, R) actions.

Fix a flat surface \((X, \omega)\). Every non-zero holomorphic one form gives, away from its finite set \(\Sigma\) of zeroes, an atlas of charts to \(\mathbb{R}^2\) whose transition maps are translations in \(\mathbb{R}^2\). For every \(0 \leq \theta < \pi\) we can use such an atlas to induce a foliation on \(X \sim \Sigma\) given locally by the lines in \(\mathbb{R}^2\) making an angle of \(\theta\) with the horizontal axis. We can also use such an atlas to measure lengths of curves on \(X\). In particular we can calculate the lengths of the leaves in the above foliations. A saddle connection of \((X, \omega)\) is any leaf of any of these foliations that starts and ends at a point of \(\Sigma\). The holonomy of a saddle connection \(v\) is the vector

\[
h(v) = \left(\int_v \text{Re}(\omega), \int_v \text{Im}(\omega)\right)
\]

in \(\mathbb{R}^2\).

In this paper we are interested in the uniform distribution of saddle connection lengths. Recall that a sequence \(n \mapsto x_n\) in \(\mathbb{R}\) is uniformly distributed mod 1.
when

$$\lim_{N \to \infty} \frac{|\{1 \leq n \leq N : a \leq x_n \text{ mod } 1 < b\}|}{N} = b - a$$

for all intervals \([a, b) \subset [0, 1)\). The well-known Weyl criterion is that uniform distribution of \(n \to x_n\) is equivalent to

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(2\pi i px_n) = 0$$

for all \(p \in \mathbb{Z} \setminus \{0\}\), and one can use this to prove, for example, that \(n \to na\) is uniformly distributed for all irrational \(a\).

Returning to flat surfaces (and suppressing \(X\) from our notation) we write \(\Lambda(\omega)\) for the set of saddle connections of \(\omega\). For each \(R > 0\) write \(\Lambda(\omega; R, S)\) for the set of saddle connections whose holonomy vectors lie within the ellipse \((Ry)^2 + (Sx)^2 = (RS)^2\). Denote by \(|\Lambda(\omega; R)|\) and \(|\Lambda(\omega; R, S)|\) the cardinalities of \(\Lambda(\omega; R)\) and \(\Lambda(\omega; R, S)\), respectively.

It follows from minor modifications to work of Vorobets [20, Theorem 1.9] that the projection of \(\Lambda(\omega; R)\) to the unit circle along rays through the origin is uniformly distributed as \(R \to \infty\) for almost every \(\omega\). Specifically, by [20, Proposition 4.5] it suffices to show that the set of saddle connection holonomies satisfy axioms (0), (A), (B), (C), and (E) therein. That saddle connections do satisfy these axioms follows from the definitions and results in [6] just as it does for the sets Vorobets considers.

Our main result is that lengths of saddle connection holonomy vectors are also almost always uniformly distributed mod 1. To make sense of this we fix, for each flat surface \(\omega\), an enumeration \(n \to v_n\) of \(\Lambda(\omega)\) such that \(n \to ||h(v_n)||\) is non-decreasing.

Theorem 1. For any \(\text{SL}(2, \mathbb{R})\) invariant and ergodic probability measure \(m\) on \(\mathcal{H}\) and \(m\) almost every flat surface \(\omega\) the sequence \(n \to ||h(v_n)||\) is uniformly distributed mod one.

Masur [13, 14] proved that for every surface \(\omega\) there exists \(c_1, c_2\) (depending on \(\omega\)) so that for all large \(R\) we have

$$c_1R^2 \leq |\Lambda(\omega; R)| < c_2R^2$$

(see also Vorobets [19]). Veech [18] introduced what is now called the Siegel–Veech transform to show that there exists \(c\) depending only on \(v\) and \(R_n \to \infty\) so that

$$\lim_{i \to \infty} \frac{|\Lambda(\omega; R_i)|}{R_i^2} = c$$

for \(M\) almost every \(\omega\). He also showed the limit exists for all surfaces in certain suborbifolds of \(\mathcal{H}\). Building on Veech’s approach, Eskin–Masur [6] proved that for every \(\text{SL}(2, \mathbb{R})\) invariant and \(\text{SL}(2, \mathbb{R})\) ergodic probability measure \(m\) there
exists c so that we have

$$\lim_{R \to \infty} \frac{|\Lambda(\omega; R)|}{R^2} = c$$

for m almost every ω. Dozier [5] proved analogues of these results for saddle connections with holonomies in certain sectors of directions. Forni [9] has proved for every flat surface ω that the convergence (2) holds in density: there is a set $Z \subset \mathbb{R}$ of zero upper-density such that

$$\lim_{t \to \infty} \frac{|\Lambda(\omega; e^t)|}{e^{2t}} = c$$

which gives (2) for every flat surface as $R \to \infty$ outside a zero upper logarithmic density set of radii that depends on the flat surface.

The best known results for asymptotic counting that hold on all surfaces are Eskin, Mirzakhani, and Mohammadi’s result [8, Theorem 2.12] that every surface has an asymptotic growth of saddle connections on average, and Dozier’s result [4] building on techniques in [7] that the constants c_1, c_2 in (1) can be chosen to depend only on the connected component of the stratum in question. The best almost everywhere counting result is the following theorem of Nevo, Rühr, and Weiss.

Theorem 2 ([15, Theorem 1.1]). For every $SL(2, \mathbb{R})$ invariant and ergodic probability measure m on \mathcal{H} there are constants $c, \kappa > 0$ such that m almost every flat surface ω satisfies

$$|\Lambda(\omega; R)| = cR^2 + O_\omega(R^{2(1-\kappa)})$$

for all $R > 0$.

The gaps of saddle connection directions has also been studied by Athreya, the first named author, Lelievre, Uyanik, and Work [1, 2, 16]. Recently, Athreya, Cheung, and Masur [3] have begun investigating the L^2 properties of the Siegel–Veech transform.

Most of these papers to a greater or lesser extent adhere to the philosophy of renormalization dynamics, using the $SL(2, \mathbb{R})$ action and especially the geodesic flow

$$g^t = \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix}$$

to translate questions about long saddle connections to moderate saddle connections on different surfaces. Our approach is a little different: we still use the $SL(2, \mathbb{R})$ action, but only as a means to perturb. Namely, we do not apply the geodesic flow g^t long enough to make a saddle connection $O(1)$ in length. Instead, writing also

$$r^\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

we prove that for almost every ω and for almost every θ, t the lengths of saddle connections on $g^t r^\theta \omega$ are uniformly distributed mod 1. However, we emphasize that we do use Theorem 2, which does use renormalization dynamics.
We remark that even if the conclusion of [15, Theorem 1.1] were known for every flat surface, our methods would not give uniform distribution of saddle connection lengths for every flat surface. Therefore, the following question is in general open.

QUESTION 3. Is the sequence \(n \to \|h(v_n)\| \) uniformly distributed mod one for every flat surface?

However, in the presence a very strong error term for the saddle connection counting function \(R \to |\Lambda(\omega; R)| \) one can obtain uniform distribution of saddle connection lengths everywhere with a much simpler proof. Daniel El-Baz and Bingrong Huang’s appendix uses Huxley and Nowak’s bound [10] on the counting function for primitive lattice points to prove that the conclusion of Theorem 1 holds for every torus.

2. Proof of Theorem 1

In this section we prove Theorem 1. Let \(\mathcal{H} \) be the set of unit-area flat surfaces in the connected component of a stratum, and let \(m \) by any \(\text{SL}(2, \mathbb{R}) \) invariant and ergodic probability measure on \(\mathcal{H} \). Let \(c > 0 \) and \(\kappa > 0 \) be as in Theorem 2. Our proof of Theorem 1 has the following four ingredients.

1. The Weyl criterion.
2. An exhaustion by compact sets.
3. A relation with orbit averages.
4. A linear approximation to handle exponential sums.

These steps are covered in the following four subsections. In Subsection 2.5 we combine the steps to prove Theorem 1.

2.1. The Weyl criterion.

By the Weyl criterion for uniform distribution the following result implies Theorem 1. Recall that \(n \to h(v_n) \) is an enumeration of \(\Lambda(\omega) \) such that \(n \to \|h(v_n)\| \) is non-decreasing.

THEOREM 4. For \(m \) almost every \(\omega \) we have

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(2\pi i p \|h(v_n)\|) = 0
\]

for every \(p \in \mathbb{N} \).

Fix \(p \in \mathbb{N} \) and write \(\chi_p(x) = \exp(2\pi i px) \) for any \(x \in \mathbb{R} \). To prove that (4) holds almost surely, we use the following theorem.

LEMMA 5. Fix a flat surface \(\omega \). If there is a sequence \(\tau_1 > \tau_2 > \tau_3 > \cdots \to 1 \) such that

\[
\lim_{J \to \infty} \frac{1}{[\tau_1^J]} \sum_{n=1}^{[\tau_1^J]} \chi_p(\|h(v_n)\|) = 0
\]

for all \(i \in \mathbb{N} \) then (4) holds.
Proof. This is a fact about Cesàro convergence. Fix a sequence \(\tau_1 > \tau_2 > \tau_3 > \cdots \to 1 \). Suppose that a bounded sequence \(n \to b_n \) has the property that

\[
\lim_{J \to \infty} \frac{1}{[\tau_J']} \sum_{n=1}^{[\tau_J']} b_n = \beta
\]

for all \(i \in \mathbb{N} \). We verify that \(n \to b_n \) Cesàro converges to \(\beta \). Indeed, fix \(\epsilon > 0 \) and \(i \in \mathbb{N} \) such that

\[
1 < \tau_i < 1 + \frac{\epsilon}{4\|b\|_{\infty}}
\]

and choose \(J \in \mathbb{N} \) so large that

\[
\max \left\{ \left| \frac{1}{[\tau_J']} \sum_{n=1}^{[\tau_J']} b_n - \beta \right|, \frac{2\|b\|_{\infty}}{[\tau_J']} \right\} < \frac{\epsilon}{3}
\]

holds for all \(j \geq J \). Put \(N = [\tau_J'] \). Given \(M > N \) write \(M = [\tau_J'] + k \) with \(k \in \mathbb{N} \) and \(j \) maximal. Now

\[
\tau_j^i + k \leq [\tau_j^i] + k < \tau_j^{i+1} + 1 < \left(1 + \frac{\epsilon}{4\|b\|_{\infty}} \right) \tau_j^i + 1
\]

giving \(4k\|b\|_{\infty} \leq \epsilon\tau_j^i + 4\|b\|_{\infty} \). So

\[
\left| \frac{1}{[\tau_J']} \sum_{n=1}^{[\tau_J']} b_n - \frac{1}{[\tau_J']} \sum_{n=1}^{[\tau_J'] + k} b_n \right| \leq 2k\|b\|_{\infty} \leq \epsilon \left(\frac{\tau_j^i}{[\tau_j^i] + k} \right) + \frac{2\|b\|_{\infty}}{[\tau_j^i] + k} \leq \epsilon
\]

as desired.

We conclude this subsection by replacing (5) with an average over all saddle connections whose holonomy vectors have length at most \(\sqrt{[\tau_j^i]/c} \).

Lemma 6. If

\[
(7) \quad \lim_{J \to \infty} \frac{1}{c [\tau_J']} \sum_{v \in \Lambda(\omega; \sqrt{[\tau_j^i]/c})} \chi_p(\|h(v)\|) = 0
\]

for \(m \) almost every \(\omega \) then

\[
\lim_{J \to \infty} \frac{1}{[\tau_J']} \sum_{n=1}^{[\tau_J']} \chi_p(\|h(v_n)\|) = 0
\]

for \(m \) almost every \(\omega \).

Proof. For almost every \(\omega \) there is from Theorem 2 a constant \(C_\omega > 0 \) with

\[
\left| \sum_{n=1}^{[\tau_J']} \chi_p(\|h(v_n)\|) - \sum_{v \in \Lambda(\omega; \sqrt{\tau_j^i}/c)} \chi_p(\|h(v)\|) \right| \leq \frac{C_\omega}{c^{1-x}} [\tau_j^i]^{1-x}
\]

for all \(J \in \mathbb{N} \). Dividing by \([\tau_j^i] \) gives the desired result. \(\square \)
2.2. An exhaustion by compact sets. To relieve notation slightly we now consider the expression

\[
\frac{1}{R^2} \sum_{\nu \in \Lambda(\omega;R)} \chi_p(\|h(\nu)\|)
\]

for \(R > 0 \). Our goal is to estimate the size of this average. We do so on compact sets that exhaust a full-measure subset of \(\mathcal{H} \). To define our compact sets, write \(\ell(\omega) \) for the length of the shortest saddle connection of \(\omega \) and

\[
\xi(\omega) = \sup \left\{ \frac{|\Lambda(\omega;R) - cR^2|}{R^{2(1-\kappa)}} : R > 0 \right\}
\]

for the \(m \) almost-surely defined optimal constant in (3). Fix \(r > 0 \) small and \(\Xi > 0 \) large. Let \(K \) be a compact and SO(2) invariant subset of \(\ell^{-1}(r,\infty) \) on which both

\[
m(\ell^{-1}(r,\infty) \sim K) < r
\]

and

\[
\sup \{ \xi(\omega) : \omega \in K \} \leq \Xi
\]

hold. We can find such a compact set because \(\xi \) is measurable. As \(r \to 0 \) and \(\Xi \to \infty \) our compact set \(K \) exhausts \(\mathcal{H} \) up to a set of \(m \) measure zero.

To describe the behavior of (8) on \(K \), we introduce some constants. Fix \(0 < \eta < 1 \) and choose \(\rho \) such that

\[
1 > \rho > \max \left\{ \frac{1 + \eta}{2}, 1 - 2\kappa \right\}
\]

with \(\kappa \) coming from Theorem 2. There is \(\delta > 0 \) such that

\[
\left| \frac{\exp(2\pi i s) - 1}{2\pi i s} - 1 \right| < \epsilon
\]

whenever \(|s| < \delta \). We only consider below values of \(R \) large enough that

\[
R^{1+\eta} \geq \max \left\{ \frac{5\epsilon p^2}{42\delta^2}, \frac{\epsilon}{42} \right\}
\]

and fix the relationship

\[
S = \sqrt{\frac{\epsilon}{42R^{1+\eta}}}
\]

between \(S \) and \(R \). Note that (11) implies \(S \leq 1 \). Although \(S \) and \(R \) are related, we think of \(S \) as the small amount of time we will geodesic flow for and think of \(R \) as a large bound on the lengths of our saddle connections.
2.3. **A relation with orbit averages.** The main result of this section is a relation between (8) on K and its $\text{SL}(2, \mathbb{R})$ average over a small disc.

Theorem 7. We have

\[
\mathbb{m} \left(\left\{ \omega \in K : \left| \frac{1}{R^2} \sum_{v \in \Lambda(\omega; R)} \chi_p(\|h(v)\|) \right|^2 \geq \frac{1}{R^2} \right\} \right)^2
\]

(13)

\[
= O \left(R^d \int_{K} \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{1}{S} \int_{0}^{S} \frac{1}{R^2} \sum_{v \in \Lambda(g^t \omega; R)} \chi_p(\|h(v)\|) \right|^2 \, dt \, d\theta \, dm(\omega) \right)
\]

for all R satisfying (11) and all $\sigma > 0$.

Proof. Let

\[
\mathbb{N} = \left\{ \omega \in K : \left| \frac{1}{R^2} \sum_{v \in \Lambda(\omega; R)} \chi_p(\|h(v)\|) \right|^2 \geq \frac{1}{R^2} \right\}
\]

be the set whose measure we wish to bound. Write μ for Haar measure on $\text{SL}(2, \mathbb{R})$, which is left and right invariant because $\text{SL}(2, \mathbb{R})$ is unimodular. For each $s > 0$ write

\[
D(s) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}(2, \mathbb{R}) : d(i, \frac{a+b}{c+d}) < s \right\}
\]

where d is the hyperbolic distance on the upper half-plane determined by the metric of constant curvature -4. In this metric the area of a hyperbolic disc of radius r is $\pi(\sinh(r/2))^2$ so whenever $s < 1$ we have

(14)

\[
1 \leq \frac{\mu(D(2s))}{\mu(D(s))} = (2\cosh(s/2))^2 \leq 9
\]

using the hyperbolic double angle formula.

The defining property of \mathbb{N} gives

\[
\frac{1}{R^2} \int_{K} \frac{1}{\mu(D(S))} \int_{D(S)} 1\mathbb{N}(g\omega) \, d\mu(g) \, dm(\omega)
\]

\[
\leq \int_{K} \frac{1}{\mu(D(S))} \int_{D(S)} \left| \frac{1}{R^2} \sum_{v \in \Lambda(g^t \omega; R)} \chi_p(\|h(v)\|) \right|^2 \, d\mu(g) \, dm(\omega)
\]

\[
= \int_{K} \left(\sinh \left(\frac{S}{2} \right) \right)^2 \int_{0}^{2\pi} \int_{0}^{S} \sinh(t) \left| \frac{1}{R^2} \sum_{v \in \Lambda(g^t \omega; R)} \chi_p(\|h(v)\|) \right|^2 \, dt \, d\theta_1 \, d\theta_2 \, dm(\omega)
\]

after using the Cartan integral formula [11, Proposition 5.28] with μ normalized appropriately. We can eliminate the integral over θ_1 because the rotation t^{θ_1}
doesn't change the sum. Together with some simple estimates we arrive at

\[
\frac{1}{R^2} \int_{N} \frac{1}{\mu(D(S))} \int_{D(S)} 1_{N}(g\omega) \, d\mu(g) \, d\mu(\omega) \\
\leq C \int_{K} \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{S} \frac{1}{R^2} \sum_{v \in \Lambda(g'\omega; R)} |X_{\rho}(\|h(v)\|)|^2 \, dt \, d\theta \, d\mu(\omega),
\]

where \(C \) is some absolute positive constant because \(\sinh(S) \sim S \). It therefore suffices by (14) to prove that

\[
\int_{N} \frac{1}{\mu(D(S/4))} \int_{D(S)} 1_{N}(g\omega) \, d\mu(g) \, d\mu(\omega) \geq \frac{m(N)^2}{4}
\]

holds.

Given \(E \subset \mathcal{H} \) and \(\omega \in \mathcal{H} \), write \(E_{\omega^{-1}} = \{ g \in \text{SL}(2, \mathbb{R}) : g\omega \in E \} \). Put

\[
h(\omega) = \frac{\mu(N\omega^{-1} \cap D(S/4))}{\mu(D(S/4))}
\]

and note that

\[
m(N) = \frac{1}{\mu(D(S/4))} \int_{D(S/4)} \int_{\mathcal{H}} 1_{N}(\omega) \, d\mu(\omega) \, d\mu(g)
\]

\[
= \int_{\mathcal{H}} \frac{1}{\mu(D(S/4))} \int_{D(S/4)} 1_{N}(g\omega) \, d\mu(g) \, d\mu(\omega) = \int \mathcal{H} \, h \, d\mu
\]

by invariance of \(m \) and Fubini. Write

\[
U_{q} = \bigcup_{h(\omega) \geq q} D(S/2) \cdot \omega
\]

for any \(0 < q < 1 \). As in (16) we have

\[
m(N \cap U_{q}) = \int_{\mathcal{H}} \frac{1}{\mu(D(S/4))} \int_{D(S/4)} 1_{N \cap U_{q}}(g\omega) \, d\mu(g) \, d\mu(\omega)
\]

for every \(0 < q < 1 \) and it follows for every \(0 < q < 1 \) that

\[
m(N \cap U_{q}) \geq \int_{h^{-1}[q, 1]} \frac{\mu(N\omega^{-1} \cap U_{q}\omega^{-1} \cap D(S/4))}{\mu(D(S/4))} \, d\mu(\omega)
\]

\[
= \int_{h^{-1}[q, 1]} h(\omega) \, d\mu(\omega) \geq q \int_{h^{-1}[q, 1]} \mu(\omega)
\]

because \(U_{q}\omega^{-1} \supset D(S/2) \) whenever \(h(\omega) \geq q \).

Claim. \(m(N \cap U_{q}) \leq m\left(\left\{ \omega \in N : \frac{\mu(N\omega^{-1} \cap D(S))}{\mu(D(S/4))} \geq q \right\} \right) \)
Proof. If $\omega \in N \cap U_\eta$ then there is $h(\eta) \geq q$ and $\omega \in D(S/2) \cdot \eta$. Fix $a \in D(S/2)$ with $a \cdot \eta = \omega$. We get
\[q \leq \frac{\mu((N\eta^{-1})a^{-1} \cap D(S/4)a^{-1})}{\mu(D(S/4))} = \frac{\mu(N\omega^{-1} \cap D(S/4)a^{-1})}{\mu(D(S/4))} \leq \frac{\mu(N\omega^{-1} \cap D(S))}{\mu(D(S/4))} \]
since μ is invariant on both sides and $D(S/4)a^{-1} \subset D(S)$. \hfill \square

The claim, combined with (17), gives
\[\int N \frac{1}{\mu(D(S/4))} \int_{D(S)} 1_N(g\omega) d\mu(g) \ dm(\omega) = \int_0^\infty m \left(\left\{ \omega \in N : \frac{\mu(N\omega^{-1} \cap D(S))}{\mu(D(S/4))} \geq q \right\} \right) dq \]
\[\geq \int \frac{1}{m(N)} q m(h^{-1}[q, 1]) dq \]
\[\geq \frac{m(N)}{2} \int \frac{1}{m(N)} m(h^{-1}[q, 1]) dq \geq \frac{m(N)^2}{4} \]
where the last inequality follows from
\[\int h \ dm = \int_0^{m(N)/2} m(h^{-1}[q, 1]) dq + \int_{m(N)/2}^1 m(h^{-1}[q, 1]) dq \leq \frac{m(N)}{2} + \int_{m(N)/2}^1 m(h^{-1}[q, 1]) dq \]
and (16). This establishes (15) as desired. \hfill \square

The following lemma, another application of Theorem 2, will allow us to move the action of $\text{SL}(2, \mathbb{R})$ from ω to the holonomy vectors in the summation.

Lemma 8. For every $\omega \in K$ we have
\[\left| 1 - \frac{1}{R^2} \sum_{v \in \Lambda(g^t \omega; R)} \chi_p(\|h(v)\|) \sum_{v \in \Lambda(e^{-t} R, e^t R)} \chi_p(\|g^t h(v)\|) \right| \leq \frac{8 \Xi}{R^2 \kappa} + 8c \sqrt{\frac{e}{42R^{1+\eta}}} \]
all $0 \leq t \leq S$.

Proof. Fix $R > 0$ and $\omega \in K$ and $t \geq 0$. First note that v belongs to $\Lambda(g^t \omega; R)$ if and only if $g^{-t}h(v)$ belongs to the ellipse of width $2e^{-t}R$ and height $2e^tR$. Thus
\[\sum_{v \in \Lambda(g^t \omega; R)} \chi_p(\|h(v)\|) = \sum_{v \in \Lambda(e^{-t} R, e^t R)} \chi_p(\|g^t h(v)\|) \]
holds for all $R > 0$. Next we estimate $|\Lambda(\omega; e^t R, e^{-t} R) \bigtriangleup \Lambda(\omega; R)|$. For every ω we have
\[|\Lambda(\omega; e^t R, e^{-t} R) \bigtriangleup \Lambda(\omega; R)| \leq |\Lambda(\omega; e^t R)| - |\Lambda(\omega; e^{-t} R)| \]
\[\leq (e^t R)^{2(1-\kappa)} \Xi + c(e^t R)^2 + (e^{-t} R)^{2(1-\kappa)} \Xi - c(e^{-t} R)^2 \]
\[\leq 2\Xi \cosh(2t(1-\kappa)) R^{2(1-\kappa)} + 2c \sinh(2t) R^2 \]
for all \(t \geq 0 \) using (9), as we may since \(\omega \in K \). It follows from the above that
\[
\left| \sum_{v \in \Lambda(g^{t \omega}; R)} \chi_{\rho}(\|h(v)\|) - \sum_{v \in \Lambda(\omega; R)} \chi_{\rho}(\|g^{t \omega}h(v)\|) \right| \leq 8\Xi R^{2(1-\kappa)} + 8cSR^2
\]
for all \(0 \leq t \leq S \). The conclusion follows from (12).

\[\square\]

Corollary 9. For every \(\omega \in K \) we have
\[
\left| \frac{1}{R^2} \sum_{v \in \Lambda(g^{t \omega}; R)} \chi_{\rho}(\|h(v)\|) - \frac{1}{R^2} \sum_{v \in \Lambda(\omega; R)} \chi_{\rho}(\|g^{t \omega}h(v)\|) \right| \leq \frac{8\Xi}{R^2} + 8c\sqrt{\frac{\epsilon}{42R^{1+\eta}}}
\]
for all \(0 \leq \theta < 2\pi \) and all \(0 \leq t \leq S \).

Proof. Apply the lemma with \(r^{\theta} \omega \) in place of \(\omega \). This is possible since \(K \) is SO(2) invariant. Then note that when \(t = 0 \) the two sums are equal. \(\square \)

2.4. A linear approximation.

In this section we estimate the right-hand side of (13), proving the following result.

Theorem 10. There is \(0 < \gamma < 1 \) such that
\[
\int_{K} \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{v \in \Lambda(\omega; R)} \sum_{w \in \Lambda(\omega; R)} \chi_{\rho}(\|g^{t \omega}h(v)\|) \chi_{\rho}(\|g^{t \omega}h(w)\|) \, dt \, d\theta \, dm(\omega) = O\left(\frac{1}{R^{\gamma}} \right)
\]
holds.

For the proof of Theorem 10 we will need several lemmas. Write
\[
\alpha(u) = \frac{u_1^2 - u_2^2}{\|u\|} \quad \text{and} \quad \beta(u) = \frac{2u_1 u_2}{\|u\|}
\]
for any \(u = (u_1, u_2) \) in \(\mathbb{R}^2 \). Certainly \(|\alpha(u)| \leq \|u\| \) and \(|\beta(u)| \leq \|u\| \) for all \(u \in \mathbb{R}^2 \).

Lemma 11. We have
\[
\left| \|u\| + \alpha(u) t - \|g^{t \omega}u\| \right| < \frac{\epsilon}{R^{\eta}}
\]
whenever \(0 \leq t \leq S \) and \(u \in \mathbb{R}^2 \) satisfies \(\|u\| \leq R \).

Proof. Fix \(u \in \mathbb{R}^2 \) with \(\|u\| \leq R \). Writing \(f_u(t) = \|g^{t \omega}u\| \) whenever \(0 \leq t \leq S \) note that
\[
e^{-t}\|u\| \leq f_u(t) \leq e^t\|u\|
\]
and
\[
f_u''(t) = 2f_u(t) - \frac{(e^{2t}u_1^2 - e^{-2t}u_2^2)^2}{f_u(t)^3} = f_u(t) + \frac{4u_1^2 u_2^2}{f_u(t)^3}
\]
for all \(t \). Fix \(\epsilon > 0 \). From (12) and (20) we have
\[
\left| \frac{f_u''(t)}{2} t^2 \right| \leq \frac{t^2}{2} (e^t + 4e^{3t}) \|u\| \leq 42t^2 \|u\| \leq 42S^2 R = \frac{\epsilon}{R^{\eta}}
\]
for all $0 < t < S$. Therefore (19) follows from the Lagrange form of the remainder in Taylor’s Theorem.

We now focus on

$$\int_{0}^{2\pi} \int_{0}^{S} \chi_{p}(\|r^\theta h(v)\| + t\alpha(r^\theta h(v))) \chi_{p}(\|r^\theta h(w)\| + t\alpha(r^\theta h(w))) \, dt \, d\theta$$

for fixed $v, w \in \Lambda(\omega; R)$. Note that

$$\int_{0}^{2\pi} \int_{0}^{S} \chi_{p}(\|r^\theta h(v)\|) \chi_{p}(\|r^\theta h(w)\|) \, dt \, d\theta$$

because $\| \cdot \|$ is r invariant.

Lemma 12. If $v, w \in \Lambda(\omega; R)$ satisfy

$$\|h(v)\| - \|h(w)\| \geq R^\rho$$

then

$$\int_{0}^{2\pi} \int_{0}^{S} \chi_{p}(\|r^\theta h(v)\|) \chi_{p}(\|r^\theta h(w)\|) \, dt \, d\theta \leq 4 \cdot \frac{\log R}{2\pi R} + \frac{4}{\pi^2} \sqrt{\frac{42R^\eta}{e}} \frac{1}{R^\rho} \left(\log R + \log \frac{\pi}{4}\right)$$

holds.

Proof. In absolute value (21) is equal to

$$\left| \int_{0}^{2\pi} \frac{\exp(2\pi i Sp(\alpha(r^\theta h(v)) - \alpha(r^\theta h(w)))) - 1}{2\pi i Sp(\alpha(r^\theta h(v)) - \alpha(r^\theta h(w)))} \, d\theta \right|$$

by using (22) and then integrating over t. First, by making a substitution, we can assume $h(w)$ is horizontal. We have $\beta(h(w)) = 0$ and $\alpha(h(w)) = \|h(w)\|$. So

$$\alpha(r^\theta h(v)) - \alpha(r^\theta h(w)) = \left(\alpha(h(v)) \cos(2\theta) - \beta(h(v)) \sin(2\theta)\right) - \left(\alpha(h(w)) \cos(2\theta) - \beta(h(w)) \sin(2\theta)\right)$$

$$= \left(\alpha(h(v)) - \|h(w)\|\right) \cos(2\theta) - \beta(h(v)) \sin(2\theta)$$

$$= A(v, w) \sin(\phi - 2\theta),$$

where $A(v, w)^2 = (\alpha(h(v)) - \|h(w)\|)^2 + \beta(h(v))^2$ and ϕ is chosen appropriately using the angle addition formula. We are therefore interested in

$$\int_{0}^{2\pi} \frac{\exp(2\pi i Sp A(v, w) \sin(\phi - 2\theta)) - 1}{2\pi i Sp A(v, w) \sin(\phi - 2\theta)} \, d\theta$$

and consider separately the integral over small intervals centered at zeros of $\sin(\phi - 2\theta)$ and what remains. Precisely, if I is an interval of radius $1/R$ centered at a zero of $\sin(\phi - 2\theta)$ then

$$\left| Sp A(v, w) \sin(\phi - 2\theta) \right| \leq \frac{1}{\sqrt{42}} \frac{\pi}{4} (1+\eta)^{1/2} \left| \sin(\phi - 2\theta) \right| \leq \frac{\sqrt{5\epsilon}}{42} \frac{1}{R^{1+\eta}} < \delta.$$
for all $\theta \in I$ by (11), giving

$$\left| \frac{\exp(2\pi i Sp A(v, w) \sin(\phi - 2\theta)) - 1}{2\pi i Sp A(v, w) \sin(\phi - 2\theta)} - 1 \right| \leq \epsilon$$

for every $\theta \in I$ by definition of δ (see (10)). There being four such intervals, we can estimate

$$\left| \frac{1}{2\pi} \int_0^{2\pi} \frac{\exp(2\pi i Sp A(v, w) \sin(\phi - 2\theta)) - 1}{2\pi i Sp A(v, w) \sin(\phi - 2\theta)} d\theta \right|$$

(24)

$$\leq 4 \cdot \frac{1 + \epsilon}{2\pi R} + \frac{4}{2\pi} \int_{\frac{\phi}{2} + \frac{1}{R}}^{\frac{\pi}{2} - \frac{1}{R}} \frac{2}{2\pi SA(v, w) \sin(\phi - 2\theta)} d\theta$$

by trivially estimating the numerator on the complement of the four intervals. So (after substituting away ϕ) we wish to make

$$1 - \frac{1}{2\pi} \int_{\frac{\phi}{2}}^{\frac{3\pi}{2}} \frac{1}{\sin(2\theta)} d\theta$$

small. Now $\frac{4}{\pi} \theta \leq \sin(2\theta)$ on $[0, \frac{\pi}{4}]$, so

$$\frac{4}{\pi} \int_{\frac{\phi}{2}}^{\frac{3\pi}{2}} \frac{1}{\sin(2\theta)} d\theta \leq \int_{\frac{\phi}{2}}^{\frac{3\pi}{2}} \frac{1}{\theta} d\theta = \log \left(\frac{\pi}{4} + \log R \right)$$

holds. With (12), the quantity (25) becomes

$$\frac{4}{\pi^2} \sqrt{\frac{42R^{1+\eta}}{\epsilon} \frac{1}{A(v, w)} \left(\log R + \log \frac{\pi}{4} \right)}$$

so we wish to determine when $A(v, w)$ not too small. So we estimate the size of $A(v, w)$, recalling that $h(w)$ is horizontal. Let $\theta_{v,w}$ be the angle between $h(v)$ and $h(w)$ so that $h(v) = \|h(v)\| (\cos \theta_{v,w}, \sin \theta_{v,w})$. Then

$$A(v, w)^2 = (\|h(v)\| \cos(2\theta_{v,w}) - \|h(w)\|)^2 + (\|h(v)\| \sin(2\theta_{v,w}))^2$$

$$= \|h(v)\|^2 + \|h(w)\|^2 - 2\|h(v)\| \|h(w)\| \cos(2\theta_{v,w})$$

$$\geq (\|h(v)\| - \|h(w)\|)^2,$$

and (23) concludes the proof. \[\square \]

Lemma 13. Fix $\omega \in K$. We have

$$\left| \left\{ u \in A(\omega; R) : \|h(v)\| - \|h(u)\| \leq R^\rho \right\} \right| \leq (4c + 8\Xi)R^{1+\rho}$$

for every $v \in A(\omega; R)$.
Proof. The cardinality of the set is the same as the number of saddle connections of \(\omega \) in the annulus \(S^1 \times [\|h(v)\| - R^\rho, \|h(v)\| + R^\rho] \). By Theorem 2 this cardinality is at most
\[
\left| \frac{c(\|h(v)\| + R^\rho)^2 - c(\|h(v)\| - R^\rho)^2}{\Xi(\|h(v)\| + R^\rho)^{2(1-\kappa)} + \Xi(\|h(v)\| - R^\rho)^{2(1-\kappa)}} \right| \\
\leq 4c(\|h(v)\| R^\rho + 2\Xi(\|h(v)\| + R^\rho)^{2(1-\kappa)}) \\
\leq 4cR^{1+\rho} + 8\Xi R^{2(1-\kappa)}
\]
by choice of \(\rho \).

We can now give the proof of Theorem 10.

Proof of Theorem 10. It suffices to prove that
\[
\int \frac{1}{R^4} \sum_{\alpha \in \Lambda(\omega; R)} \sum_{\omega \in \Lambda(\omega; R)} \frac{1}{2\pi} \int_0^{2\pi} \int_0^{S} \chi_p(t\alpha(H(v)) \chi_p(t\alpha(H(w))) d\theta dt dm(\omega) \\
= O\left(\frac{1}{R^\gamma} \right)
\]
for some \(0 < \gamma < 1 \) by Lemma 11. For each \(\omega \in K \) consider the inner sum over \(w \) above in two parts, according to whether \(w \) satisfies (23). By Lemma 13 and the trivial bound the sum over those \(w \) not satisfying (23) is \(O(R^{1+\rho}) \) which is good enough because \(\rho < 1 \). For \(w \) that do satisfy (23) we apply Lemma 12. In combination we obtain the estimate
\[
\left| \frac{1}{R^4} \sum_{\alpha \in \Lambda(\omega; R)} \sum_{\omega \in \Lambda(\omega; R)} \frac{1}{2\pi} \int_0^{2\pi} \int_0^{T} \chi_p(||r^\rho v||_2 + t\alpha(r^\rho v)) \chi_p(||r^\rho w||_2 + t\alpha(r^\rho w)) d\theta dt dm(\omega) \right| \\
\leq \frac{1}{R^4} (c_4 R^2)(c_3 R^{1+\rho}) + \frac{1}{R^4} (c_4 R^2)^2 \left(4 \cdot \frac{1+\epsilon}{2\pi R} + \frac{8}{\pi^2} \sqrt{\frac{6|p|}{\epsilon}} \left(\log R + \log \frac{\pi}{4} \right)^{\frac{1}{R^\rho}} \right)
\]
which gives the theorem because \(1 > \rho > \frac{1}{2} \). \(\square \)

2.5. Proof of Theorem 1. Here we combine the preceding subsections to prove Theorem 1.

Proof of Theorem 1. Fix a sequence \(\tau_1 > \tau_2 > \cdots \rightarrow 1 \). The compact sets \(K \) exhaust almost all of \(\mathcal{H}^c \) as \(\Xi \rightarrow \infty \) and \(r \rightarrow 0 \). It therefore suffices by Lemma 5 and Lemma 6 to prove for every \(i \in \mathbb{N} \) that (7) holds for \(m \) almost every \(\omega \in K \). Fix \(i \in \mathbb{N} \) and write \(\tau \) for \(\tau_i \). Let \(\gamma \) be as in Theorem 10. Taking \(\sigma \) small enough and \(R^2 = [\tau^1]/c \) in Theorem 7 and applying both Corollary 9 and Theorem 10 gives \(\gamma > 0 \) such that
\[
m \left(\left\{ \omega \in K : \left| \sum_{\alpha \in \Lambda(\omega; \sqrt{[\tau^1]}/c)} \chi_p(||h(v)||) \right|^2 \geq \left(\frac{c}{[\tau^1]} \right)^{\sigma/2} \right\} \right) = O\left(\frac{1}{[\tau^1]^{\gamma}} \right)
\]
for all $J \in \mathbb{N}$ large enough. Since the right-hand side is summable we conclude from the Borel–Cantelli Lemma that
\[
\lim_{J \to \infty} \frac{c}{\sqrt{J}} \sum_{v \in \Lambda(\omega, \sqrt{J}/c)} \chi_p(\|h(v)\|) = 0
\]
as desired. \hfill \square

Acknowledgments. The research of J. Chaika was supported in part by NSF grants DMS-135500 and DMS-1452762, the Sloan foundation, a Poincaré chair, and a Warnock chair. J. Chaika thanks Alex Eskin for encouraging him to pursue this question. The research of D. Robertson was supported by NSF grant DMS-1703597. We are grateful to the anonymous referee for their comments.

Appendix. Equidistribution of the Lengths of the Primitive Vectors in Integer Lattices

(by Daniel El-Baz and Bingrong Huang)

For a real number x, let $\lfloor x \rfloor$ be the largest integer less than or equal to x, and let $\{x\} = x - \lfloor x \rfloor$ be its fractional part. Let $\| \cdot \|$ be the usual Euclidean norm in \mathbb{R}^2. Let $\mathbb{Z}^2_{\text{prim}} = \{(a, b) \in \mathbb{Z}^2 : \gcd(a, b) = 1\}$ and $\mathcal{S}_R = \{v \in \mathbb{Z}^2_{\text{prim}} : \|gv\| \leq R\}$.

Theorem 14. For every $g \in \text{GL}(2, \mathbb{R})$, the sequence $(\|gv\|)_{v \in \mathcal{S}_R}$ is uniformly distributed as $R \to \infty$.

Proof. We want to estimate, for every $\alpha \in (0, 1)$, the following quantity:
\[
N_R(\alpha) = \# \{v \in \mathcal{S}_R : \|gv\| \leq \alpha\}.
\]
We rewrite
\[
N_R(\alpha) = \sum_{d \leq R} \sum_{\substack{d \leq \|gv\| \leq d + \alpha \\ 1 \leq \|gv\| \leq R}} 1.
\]
Let $\mathcal{D}_R = \{x \in \mathbb{R}^2 : \|gx\| \leq 1\}$. By the prime number theorem estimate for the primitive lattice point problem for a compact convex domain with smooth boundary (which our elliptic domain \mathcal{D}_R certainly is) [10, Equation 1.6], we have
\[
P(y) := \# \{v \in \mathbb{Z}^2_{\text{prim}} : \|gv\| \leq y\} = \sum_{v \in \mathbb{Z}^2_{\text{prim}}} 1 = \frac{6}{\pi^2} \text{area}(\mathcal{D}_R) y^2 + o(y).
\]
Hence we obtain
\[
N_R(\alpha) = \sum_{d \leq [R]-1} (P(d + \alpha) - P(d)) + O(R)
\]
\[
= \sum_{d \leq [R]-1} \left(\frac{6}{\pi^2} \text{area}(\mathcal{D}_R) 2d \alpha + o(d) \right) + O(R)
\]
\[
= \frac{6}{\pi^2} \text{area}(\mathcal{D}_R) R^2 \alpha + o(R^2).
\]
This implies our claim. \hfill \square
UNIFORM DISTRIBUTION OF SADDLE CONNECTION LENGTHS

REFERENCES

[1] J. S. Athreya and J. Chaika, The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491–1516.

[2] J. S. Athreya, J. Chaika and S. Lelièvre, The gap distribution of slopes on the golden L, in Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015, 47–62.

[3] J. S. Athreya, Y. Cheung and H. Masur, Siegel-Veech transforms are in L^2. With an appendix by Jayadev S. Athreya and Rene Rühr, J. Mod. Dyn., 14 (2019), 1–19.

[4] B. Dozier, Convergence of Siegel–Veech constants, Geom. Dedicata, 198 (2019), 131–142.

[5] B. Dozier, Equidistribution of saddle connections on translation surfaces, J. Mod. Dyn., 14 (2019), 87–120.

[6] A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443–478.

[7] A. Eskin and M. Mirzakhani, Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71–105.

[8] A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $SL(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673–721.

[9] G. Forni, Limits of geodesic push-forwards of horocycle invariant measures, preprint, 2017.

[10] M. N. Huxley and W. G. Nowak, Primitive lattice points in convex planar domains, Acta Arith., 76 (1996), 271–283.

[11] A. W. Knapp, Representation Theory of Semisimple Groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001.

[12] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169–200.

[13] H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988, 215–228.

[14] H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151–176.

[15] A. Nevo, R. Rühr and B. Weiss, Effective counting on translation surfaces, Adv. Math., 360 (2020), 106890.

[16] C. Uyanik and G. Work, The distribution of gaps for saddle connections on the octagon, Int. Math. Res. Not. IMRN, (2016), 5569–5602.

[17] W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201–242.

[18] W. A. Veech, Siegel measures, Ann. of Math. (2), 148 (1998), 895–944.

[19] Y. Vorobets, Periodic geodesics on translation surfaces, preprint, arXiv:math/0307249, 2003.

[20] Y. Vorobets, Periodic geodesics on generic translation surfaces, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 205–258.

Jon Chaika <chaika@math.utah.edu>: Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Donald Robertson <robertso@math.utah.edu>: Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA