ECFA-Summary

Higgs, gamma-gamma and e-gamma physics

Maria Krawczyk
Institute of Theoretical Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland

Received: date / Revised version: date

Abstract. Recent results obtained within ECFA/DESY and ECFA Study by the Higgs and γγ/eγ physics working groups are presented.

PACS. 14.80.Bn – 14.80.Cp

1 Introduction

The recent results obtained within ECFA/DESY and ECFA Study for a Linear Collider (LC) for Higgs search in e⁺e⁻ mode and in γγ/eγ option (Photon Linear Collider - PLC) are presented. The extensive summary of the studies of Higgs physics in e⁺e⁻ collisions and on physics at PLC can be found in [1] and [2], respectively.

2 Higgs studies for an e⁺e⁻ Linear Collider

The Linear Collider is considered as a tool for precision Higgs measurements, as it was shown in TESLA TDR [3]. The further study was concentrated on more realistic simulations of essential processes, and studying of new theoretical ideas and LHC-LC synergy.

Higgs Quantum Numbers New ideas how to test the spin and CP-parity of Higgs bosons were presented recently. One bases on Higgs boson decay into ZZ [4] (results for PLC based on this idea are shown below). The other method uses the decay $H \to \tau\tau$, with further decay of tau’s into ρ, where the correlation of the decay products of τ's allows to establish the CP-parity of a Higgs boson. The study of the process $e^+e^- \to HZ \to \tau\tau X$ for CM energy equal to 350 GeV and luminosity 1 ab⁻¹ [5] shows that one can discriminate the scalar SM-Higgs with mass 120 GeV from the pseudoscalar one (with the same production rate as for H) at the 8 σ level, see Fig. 1 (Left).

Top Yukawa coupling New analysis [6] of the measurement of the Yukawa coupling of the SM Higgs particle h to top quarks is extended to higher masses, up to 200 GeV, with inclusion of the $h \to WW$, and with full 6-fermion background (BG). The results for expected relative precision for g_{tth} are presented in Fig. 1 (Right), for the energy of collision of 800 GeV, luminosity of 1 ab⁻¹ and various final states (for two different background normalizations). Combining channels the precision can reach 6 to 14 $\%$.

Supersymmetric Higgs Bosons The study of heavy Higgs bosons H and A has been performed for a particular MSSM scenario [7], in which the lightest Higgs boson h couples to gauge bosons with a full strength ($\sin(\beta - \alpha) = 1$). Then H, with couplings to gauge bosons proportional to $\cos(\beta - \alpha)$, is produced in e^+e^- collision predominantly in pair with A, with cross section $\propto \sin^2(\beta - \alpha)$. The decays of H and A are mainly to fermions b and τ's, and both H and A are nearly degenerate in masses. The reconstructed difference and sum of masses, for the $b\bar{b}$ final state, with $Br(H,A \to b\bar{b}) = 0.9$, presented in Fig. 2 for energy of e^+e^- collider of 500 GeV with luminosity of 500 fb⁻¹ correspond to a precision 0.2 to 2.8 GeV.

3 Higgs resonance at Photon Linear Collider

A resonant production of Higgs bosons(s), a unique feature of PLC, was studied in detail for Standard Model (SM), MSSM and Two Higgs Doublet Model (2HDM).

$b\bar{b}$ final state The realistic simulations of the production of SM Higgs boson with mass between 120 to 160 GeV decaying into $b\bar{b}$ were performed [8], including effect of overlaying events (OE) [9]. The accuracy of extraction of the $\Gamma_{\gamma\gamma} Br(H \to b\bar{b})$ is between 2 to 7 $\%$ (with OE) (Fig. 3). The realistic analysis [10] of production of heavy Higgs bosons H and A in MSSM, with parameters [11] corresponding to a case where only one SM-like Higgs particle h can be seen at LHC (“LHC wedge”), shows large potential of PLC in search of H/A (Fig. 4 (Left and Middle)).
sides the decay width that interference with background allows to measure be-

Results for production of the SM Higgs with mass 120 GeV in Fig. 3.

A precision of measurement of the cross section as a function of mass with and without OE included in analysis [8].

φ

φ

A detailed study of Higgs boson \(\phi \) with or without defined CP-parity, in processes \(\gamma \gamma \to \phi \to WW/ZZ \) is presented in [12]. It was found that interference with background allows to measure besides the decay width \(\Gamma_{\gamma\gamma} \) also the phase of amplitude \(\phi_{\gamma\gamma} \). This enlarges a discrimination power for various SM-like extensions (Fig. 4 (Right)), it is also useful to combine WW and ZZ channels. Parameters of CP-violation effects can be measured precisely: mixing angle \(\phi_{HA} \) in 2HDM and couplings \(\lambda_{A,H} \) for a generic case, shown in Fig. 5.

WW and ZZ final states A detailed study of Higgs boson \(\phi \), with or without defined CP-parity, in processes \(\gamma \gamma \to \phi \to WW/ZZ \) is presented in [12]. It was found that interference with background allows to measure besides the decay width \(\Gamma_{\gamma\gamma} \) also the phase of amplitude \(\phi_{\gamma\gamma} \). This enlarges a discrimination power for various SM-like extensions (Fig. 4 (Right)), it is also useful to combine WW and ZZ channels. Parameters of CP-violation effects can be measured precisely: mixing angle \(\phi_{HA} \) in 2HDM and couplings \(\lambda_{A,H} \) for a generic case, shown in Fig. 5.

4 Anomalous gauge coupling in \(e\gamma \) collision

A study of measuring trilinear gauge couplings, \(\kappa, \lambda_{\gamma} \), from the hadronic decay of W at an \(e\gamma \) - collider at energy 450 GeV was performed in [13]. An expected error are \(\sim 10^{-3} \) for \(\kappa \), and \(10^{-4} \) for \(\lambda_{\gamma} \) if fit includes the azimuthal angle \(\phi \) of final fermion (Fig. 6 (Left)). The contour plot for the deviation from SM for both couplings is given in Fig 6 (Right). It was found, that the uncertainty due to the variable photon beam polarizations is large for \(\kappa_{\gamma} \), while negligible for \(\lambda_{\gamma} \).
5 Outlook

A new ECFA Study continues precision theoretical and experimental studies of potential of LC for Higgs search and effects of new physics for e^+e^- and $\gamma\gamma$ and $e\gamma$ options.

Acknowledgment: I am grateful to K. Desch, P. Nie\-\[urawski, F. A. \[zarnecki, K. Moenig and J. Sekaric for valuable contributions to this summary.

References
1. K. Desch, [arXiv:hep-ph/0311092]
2. A. De Roeck, [arXiv:hep-ph/0311138]
3. J. A. Aguilar-Saavedra et al., [arXiv:hep-ph/0106315]
4. B. Badelek et al., [arXiv:hep-ex/0108012]
5. S. Y. Choi, et al., [Phys. Lett. B 553 (2003) 61]
6. A. Gay, talk at LC meeting, Amsterdam 2003
7. A. Raspereza, T. Klimkovich, T. Kuhl, K. Desch, in prep.
8. P. Nie\-\[urawski, [arXiv:hep-ph/0307183]
9. A. Rosca and K. Mönig, [arXiv:hep-ph/0310036]
10. M. M. Muhlleitner, et al., [Phys. Lett. B 508 (2001) 311]
11. P. Nie\-\[urawski, et al., [arXiv:hep-ph/0307180]
12. P. Nie\-\[urawski, et al., [arXiv:hep-ph/0307175]
13. K. Mönig, J. Sekaric LC-PHSM-2003-072