Ground-State Conditions Promote Robust Prdm14 Reactivation and Maintain an Active Dlk1-Dio3 Region during Reprogramming

Omer Habib1,2,6, Gizem Habib1,6, Sung-Hwan Moon1,6, Ki-Sung Hong2, Jeong Tae Do3, Youngsok Choi4, Sung Woon Chang5,*, and Hyung-Min Chung1,2,*

Induced pluripotent stem cells (iPSCs) are capable of unlimited self-renewal and can give rise to all three germ layers, thereby providing a new platform with which to study mammalian development and epigenetic reprogramming. However, iPSC generation may result in subtle epigenetic variations, such as the aberrant methylation of the Dlk1-Dio3 locus, among the clones, and this heterogeneity constitutes a major drawback to harnessing the full potential of iPSCs. Vitamin C has recently emerged as a safeguard to ensure the normal imprinting of the Dlk1-Dio3 locus during reprogramming. Here, we show that vitamin C exerts its effect in a manner that is independent of the reprogramming kinetics. Moreover, we demonstrate that reprogramming cells under 2i conditions leads to the early upregulation of Prdm14, which in turn results in a highly homogeneous population of authentic pluripotent colonies and prevents the abnormal silencing of the Dlk1-Dio3 locus.

INTRODUCTION

The unique properties of embryonic stem cells (ESCs) can be reestablished in differentiated cell types through nuclear reprogramming (Yamanaka and Blau, 2010). The ectopic expression of four transcription factors - Oct4 (O), Sox2 (S), Klf4 (K) and c-Myc (M) (Yamanaka factors) - can induce somatic cells to become ESC-like cells, which are referred to as induced pluripotent stem cells (iPSCs) (Yamanaka and Blau, 2010). The ability to reprogram somatic cells into iPSCs using defined factors holds tremendous potential for regenerative medicine due to its relative simplicity; additionally, iPSCs are not subject to the same ethical concerns associated with using human embryos for medical and scientific research (Saha and Jaenisch, 2009).

However, iPSC generation is a slow, inefficient process, and not all of the resulting iPSC clones are functionally equivalent. For example, the aberrant methylation of the Dlk1-Dio3 locus, an imprinted region on mouse chromosome 12qF, has been reported to be a common error in mouse iPSC generation, and the activation of this region is correlated with the degree of iPSC pluripotency (Stadtfeld et al., 2010).

It has been suggested that the extracellular environment regulates key rate-limiting events during reprogramming (Chen et al., 2013). In the present report, we focus on the relationship between the culture conditions and the quality of the resulting iPSCs. Here, we report that different culture environments can result in different reactivation and/or upregulation patterns for endogenous factors that are the primary determinants of obtaining authentic iPSCs.

MATERIALS AND METHODS

Cell culture

Mouse embryonic fibroblast cells (MEFs) carrying an Oct4-GFP reporter were derived from day 13.5 embryos of the OG2 transgenic mouse strain and were cultured in Fibro Gro Low Serum (F.Gro) medium (Millipore). iPSCs and mESCs were maintained in 2i medium (Leitch et al., 2013) on gelatin-coated plates or on a mitomycin C-inactivated MEF feeder (Millipore) layer in mESC medium, which consisted of 85% KnockOut Dulbecco’s Modified Eagle’s Medium (KO DMEM; Gibco), 15% FBS, 1 mM L-glutamine, 0.1 mM non-essential amino acids, 0.1 mM 2-mercaptoethanol and 1,000 U/ml ESGRO.

iPSC generation

The pMXs Oct4, pMXs Sox2, pMXs Klf4 and pMXs Nanog plasmids were obtained from Addgene. Dppa2, Sall4 and lin28 were amplified from a mESC cDNA library via PCR and were cloned into the pMXs vector, which resulted in the addition of...
an HA tag at the C terminus of the protein. Plat E cells were transfected with the pMXs vectors. The cells were then incubated overnight, and the medium was replaced with fresh medium. The virus-containing supernatants were collected 48 h after transfection and were concentrated using Retro-Concentrin (SBI). Low-passage MEFs (p 1-3) were seeded 12 h prior to infection. The infections were performed in F.Gro medium, without vitamin C, that was supplemented with 4 mg/ml polybrene (Millipore) and equal amounts of each viral concentrate. After overnight incubation, the cells were washed with PBS. According to the mES protocol, 3 ml of mESC medium was added. According to the LS/2i protocol, the infected cells were maintained in F.Gro medium without vitamin C, and the medium was replaced with 2i medium 3 days after treatment. The iPSC colonies were isolated based on the expression of Oct4-GFP and ESC morphology.

Immunofluorescence
miPSCs were fixed and permeabilized. The fixed samples were incubated for 24 h at 4°C with the anti-Nanog (Abcam) or anti-SSEA-1 (Millipore) primary antibodies. The samples were then washed and incubated in TRITC-conjugated secondary antibodies (Molecular Probes) for 2 h, and the nuclei were counterstained with DAPI (Vector Laboratories). Finally, the slides were photographed using an LSM 510 META confocal microscope (Carl Zeiss).

Alkaline phosphatase staining
Alkaline phosphatase staining was performed using the Alkaline Phosphatase Staining Kit II (Stemgent) according to the manufacturer’s instructions. The cells were photographed using a Nikon Eclipse Ti camera (Nikon).

Real-time PCR
Total RNA was extracted from the cells using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s instructions. cDNA synthesis was performed using the SuperScript® Vilo cDNA Synthesis Kit (Invitrogen). The qRT-PCR assays were performed in triplicate using SYBR Green I Master Mix (Roche). The primer sequences used in these assays are listed in Supplementary Table S1.

Whole-genome expression analysis
RNA samples for the microarray analysis were prepared using QIAGEN RNeasy columns and were analyzed by Macrogen Inc. using the MouseWG-6 v2 expression Bead-Chips (Illumina).

Teratoma formation and immunohistochemical analyses
iPSCs were injected into the testicular region of NOD/SCID mice (The Jackson Laboratory, USA), and the resulting teratomas were explanted 8 weeks later. The teratoma samples were histologically examined using hematoxylin and eosin (H&E) staining of the gut epithelium and using the following special stains: PAS for the secretory epithelium, Alcian blue for cartilage and Masson’s trichrome for muscle fibers. Images were obtained and analyzed using an inverted microscope (Nikon) (Moon et al., 2011).
RESULTS AND DISCUSSION

Adding vitamin C to the reprogramming medium helps maintain the normal imprinting of the Dlk1-Dio3 locus (Stadtfeld et al., 2012). Furthermore, vitamin C substantially reduces the reprogramming time during OSKM (4F)-mediated iPSC generation (Esteban et al., 2010). Reprogramming under chemically defined conditions revealed that vitamin C promotes iPSC growth and survival (Chen et al., 2011). Considering all of these observations, we generated iPSCs using a small number of reprogramming factors to test whether the presence of vitamin C can help maintain the normal gene expression of the Dlk1-Dio3 locus by accelerating iPSC formation. We introduced cDNAs encoding the transcription factors Oct4 and Klf4 (2F) into MEFs derived from day 13.5 OG2 transgenic strain embryos, which carry the GFP gene under the control of the Oct4 promoter (Oct4-GFP), using a retrovirus-mediated delivery system. After infection, the MEFs were cultured for 3 weeks in the presence of vitamin C, and the iPSCs were subsequently isolated and individually propagated based on Oct4-GFP expression and ESC morphology. We successfully established 6 2F iPSC lines. The 2F iPSCs were stably maintained over 20 passages and were indistinguishable from mESCs (Figs. 1A and 1B). To determine whether the 2F-iPSCs maintained normal Dlk1-Dio3 imprinting, qRT-PCR analysis was performed to detect the expression levels of the Gtl2 and Rian genes, which are located within this region. The expression levels of these genes in all of the tested clones were similar to the expression levels in ESCs, which suggests that the normal imprinting of the Dlk1-Dio3 locus was maintained (Fig. 1C). The reprogramming rate of the 2F-mediated iPSCs was much slower than the 4F system with vitamin C, in which the GFP-positive colonies were first detected approximately 6 to 8 days post-infection (data not shown). Many groups have reported that other factors can also reduce the reprogramming time under mESC conditions. Therefore, we tested whether including these factors in the reprogramming cocktail would yield a homogeneous population of iPSCs by accelerating the establishment of pluripotency. In these tests, OG2 MEFs were infected with OSK coupled with Nanog, Esrrb, Sall4 and lin28, which are factors that can reprogram somatic cells in the absence of the Yamanaka factors (Buganim et al., 2012) (Fig. 2A). The infected cells were cultured under standard mESC culture conditions, and the first GFP-positive colonies (designated 7F iPSCs) appeared within a time interval comparable to that of 4F iPSC generation in the presence of vitamin C. The 7F iPSC clones displayed ESC characteristics (Fig. 2B); however, these clones also exhibited variable Gtl2 and Rian expression patterns (Fig. 2C). These results suggest that vitamin C ensures the maintenance of normal imprinting through a mechanism that is independent of the reprogramming kinetics.

Recent studies have revealed that the type of culture medium used during reprogramming is associated with key rate-limiting events. Pei and colleagues demonstrated that FBS has
Effects of Ground-State Conditions During Reprogramming
Omer Habib et al.

an inhibitory effect and prevents the activation of pluripotency markers during iPSC generation (Chen et al., 2013). Furthermore, it has been reported that chemically defined conditions supplemented with a mixture of two selective small-molecule inhibitors against GSK3\(\beta\) and MEK1/2 (the 2i or ground-state condition) promote global DNA hypomethylation, which is associated with the naïve state of pluripotency in mESCs. Whereas Prdm14 is upregulated under 2i conditions, Dnmt3a and Dnmt3b are downregulated, leading to DNA hypomethylation (Leitch et al., 2013). Dnmt3a and Dnmt3b are known to be responsible for the aberrant silencing of the Dlk1-Dio3 locus (Stadtfeld et al., 2012). Therefore, we investigated whether reprogramming under 2i conditions results in fully pluripotent iPSCs.

We infected OG2 MEFs with OSK and Nanog. Following infection, the MEFs were maintained under low-serum conditions, and the medium was replaced with 2i medium 3 days after infection (Fig. 3A, LS/2i method). ES-like colonies were picked approximately 8 days post-infection and were individually maintained (Fig. 3B). Consistent with the inhibitory effect of FBS (Chen et al., 2013), GFP-positive cells appeared as early as 3 days post-treatment under the low-serum conditions. However, infection with these factors did not result in GFP-positive cells 3 days post-infection under standard mESC conditions, including 15% FBS (data not shown). The resulting iPSC clones (named OSKN) exhibited stable growth and remained pluripotent in 2i medium (Fig. 3C). Immunocytochemical analysis showed that the OSKN iPSCs expressed the pluripotency markers Nanog and SSEA-1 (Supplementary Fig. S1A). To obtain a more global view of the molecular properties of the OSKN iPSCs, gene expression profiles were compared using pairwise scatter plots of the DNA microarray data. These plots revealed that the OSKN iPSCs were highly similar to mESCs, which were set to 1. (F) The results of the qRT-PCR analysis of Prdm14 and Dnmt3b expression in the OSKN-infected cells cultured according to the indicated methods are shown. (G) A proposed model displaying the effects of the different culture environments on reprogramming. Prdm14 is differentially reactivated under the different culture conditions. The 2i medium promotes the robust reactivation of endogenous Prdm14, which represses Dnmt3a/b expression and yields Gtll\(\text{on}\) iPSCs.
Note: Supplementary information is available on the Molecules and Cells website (www.molcells.org).

ACKNOWLEDGMENTS

This research was supported by a grant (2012-0006107) from the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government [The Ministry of Education, Science and Technology (MEST)].

REFERENCES

Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovitch, E., Markoulaki, S., Ganz, K., Klemm, S.L., van Oudenaarden, A., and Jaenisch, R. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209-1222.

Chen, G., Gulbranson, D.R., Hou, Z., Bolin, J.M., Ruotti, V., Probasco, M.D., Smuga-Otto, K., Howden, S.E., Diol, N.R., Propson, N.E., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424-429.

Chen, J., Liu, H., Liu, J., Qi, J., Bai, Y., Yang, J., Jiang, H., Chen, Y., Wu, Y., Guo, L., et al. (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45, 34-42.

Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71-79.

Leitch, H.G., McEwen, K.R., Turp, A., Encheva, V., Carroll, T., Grabole, N., Mansfield, W., Nashun, B., Knezevich, J.G., Smith, A., et al. (2013). Naïve pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311-316.

Liu, L., Luo, G.Z., Yang, W., Zhao, X., Zheng, Q., Lv, Z., Li, W., Wu, H.J., Wang, L., Wang, X.J., et al. (2010). Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J. Biol. Chem. 285, 19483-19490.

Moon, S.H., Kim, S.W., Kim, J.S., Park, S.J., Do, J.T., Lee, D.R., and Chung, H.M. (2011). Gene expression profiles in CHA3 and CHA4 human embryonic stem cells and embryoid bodies. Mol. Cells 31, 315-326.

Saha, K., and Jaenisch, R. (2009). Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5, 584-595.

Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., and Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12pF1 in mouse induced pluripotent stem cells. Nature 465, 175-181.

Stadtfeld, M., Apostolou, E., Ferrari, F., Choi, J., Walsh, R.M., Chen, T., Ooi, S.S., Kim, S.Y., Bestor, T.H., Shioda, T., et al. (2012). Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat. Genet. 44, 398-405, 5391-392.

Yamaji, M., Ueda, J., Hayashi, K., Ohta, H., Yabuta, Y., Kurimoto, K., Nakato, R., Yamada, Y., Shiraihige, K., and Saitou, M. (2013). PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368-382.

Yamanaka, S., and Blau, H.M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704-712.