Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro

Yu Li, Peng Shang, Ai-Rong Qian, Li Wang, Yong Yang, Zhi-Nan Chen

AIM: To study the inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma (HCC) cells in vitro.

METHODS: Antisense RNA of HAb18G/CD147 vector PCI-asHAb18G was constructed by reversely inserting HAb18G/CD147 cDNA to eukaryotic expression vector PCI-neo. The HCC cell line HHCC was transfected by PCI-asHAb18G via cation liposome. Expression of HAb18G/CD147 of transfected cells selected by G418 (geneticin) was observed by immunohistochemical SP staining and FACS (fluorescence activated cell sorting). Gelatin zymography was used to determine the effect of PCI-asHAb18G on reducing secretions of MMP-2 and MMP-9 of the transfected cells. Boyden chamber was employed to test the invasion of HCC cells in vitro.

RESULTS: The construction of antisense RNA vector PCI-asHAb18G was verified correct by partial nucleotide sequencing and restricted endonuclease digestion. The expression of HAb18G/CD147 in transfected HHCC was inhibited by PCI-asHAb18G. Secretions of MMP-2 and MMP-9 of transfected HHCC were reduced and the invasion of transfected HHCC was inhibited compared to HHCC, respectively.

CONCLUSION: Invasion of HCC cells can be inhibited by antisense RNA of HAb18G/CD147. HAb18G/CD147 may be used as a potential target of drugs for anti-invasion and metastasis of HCC.

Li Y, Shang P, Qian AR, Wang L, Yang Y, Chen ZN. Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro. World J Gastroenterol 2003; 9(10): 2174-2177. http://www.wjgnet.com/1007-9327/9/2174.asp

INTRODUCTION

Invasion and metastasis are malignant characteristics of HCC and the main mortal reason for patients. In the invasive and metastatic process of malignant tumor, molecules existing in extracellular matrix (ECM) and receptors or ligands existing on the surfaces of tumor cells play critical roles. HAb18G is such a molecule obtained by screening cDNA library.
Briefly, mAb HAb18 was used as primary antibody and the goat anti-mouse mAb coupled with biotin as secondary antibody followed by indirect immunohistochemical staining with the mixture of streptomyacin-avidin peroxidase and its substrate DAB. HHCC/neo served as the control.

FACS analysis

HHCC/asHAb18G suspension was prepared by adding primary antibody and secondary antibody coupled with fluorescein into 10^8 cells per liter. Then the cells were fixed and analyzed by flow cytometer.

Gelatin zymography

Five experimental groups of cells were HHCC, fb, HHCC/neo+fb, HHCC/asHb18G +fb and HHCC+fb, which were plated into 100 mL culture flasks respectively. The ratio of HCC cells/fb cells was 1:1. After cultured in completed DMEM medium for 24 hours, all the groups of cells were washed three times with serum free DMEM and cultured for 2-3 days in DMEM with 20 mL/L bovine serum. Subsequently, the supernatants were collected and centrifuged to remove the cell debris. Proteins were precipitated with 800 g/L saturated (NH4)2SO4. Precipitations were dissolved in 10 mmol/L Tris-HCl, pH 7.5 and dialyzed. Dialyzed samples were determined with SDS-PAGE that was modified in four points. Gelatin (Sigma) was added into the separating gel with 1.0 g/L, concentration of the stacking gel was 5 %, samples were not boiled and sample buffers did not contain DTT. After electrophoresis, the gel was washed with 0.1 mol/L NaCl and incubated for 24 hours at 37 °C. Finally, the gel was dyed and decolorized.

Reconstituted basement membrane invasion detection

Matrigel (main component was type IV collagen, purchased from Cell-biology Department of Pecking University) was added onto the inner surface of Boyden chambers (Millipore) to form the reconstituted basement membrane. Three groups of cells were HHCC+fb, HHCC/asHAb18G+fb, HHCC/neo+fb (the ratio of HCC cells/fb cells was 1:1), which were added on the reconstituted basement membrane respectively. Then the chambers were put in the 24-well plates and cultured overnight. Cells infiltrated through the reconstituted basement membrane and appeared on the outer surfaces of the membrane were stained with HE. The numbers of the cells were counted under high-power microscope.

RESULTS

Construction and identification of PCI-asHAb18G

Two fragments were obtained by digesting HAb18G/CD147 antisense vector with XhoI and XbaI, one was human HAb18G/CD147 cDNA fragment about 1.7 kb and the other was 5.5 kb fragment. Two fragments of 1.1 kb and 6.1 kb were also obtained with Smal digestion (both MCS of vector and 1.1 kb site of HAb18G/CD147 cDNA respectively have a Smal site). The construction of the vector was verified correct by endonuclease digestion (Figure 1) and nucleotide sequencing. The vector was named as PCI-asHAb18G.

Immunohistochemical staining and FACS

HHCC/as HAb18G was negative, HHCC/neo and HHCC groups were positive (Figures 2-4). Average value of the fluorescence intensities of HHCC/asHAb18G cells was 5, and that of HHCC/neo cells was 500 (Figure 5).

Gelatin zymography and cell invasion

The secretions of MMP-9 and MMP-2 in the transfected cells HHCC/asHAb18G co-cultured with fb were inhibited compared to those in the HHCC/neo and intact HHCC. The cells of HHCC/asHAb18G infiltrated through the reconstituted basement membrane were less than those of HHCC/neo and intact HHCC (Figure 7).
enhanced metastatic potentials of human hepatoma cells by only participated adhesion of cell-cell or cell-matrix but also and lowly expressed in normal tissues. HAb18G/CD147, not that HAb18G/CD147 was highly expressed in HCC tissues by our laboratory and might be a potential target for anti-themselves. CD147 enriched in HCC tissue was first reported showed that CD147 also acted in an autocrine fashion to increase productions of MMPs and invasiveness in tumor cells a counter- receptor [13]. Other studies[14] has not been identified [17].

DISCUSSION

Matrix metalloproteinases (MMPs) play an important part in tumor progression and tumor cell survival, with a positive correlation between MMP expression and the invasive and metastatic potential of malignant tumors, including colon, lung, head and neck, basal cell, breast, thyroid, prostate, ovarian, and gastric carcinomas. CD147 is a heavily glycosylated transmembrane glycoprotein containing two immunoglobulin superfamily domains, which induces MMPs production in the adjacent stromal cells. Some results implied that a CD147 counter-receptor might existed on the fb cell surface, but such a counter- receptor has not been identified[13]. Other studies[14] showed that CD147 also acted in an autocrine fashion to increase productions of MMPs and invasiveness in tumor cells themselves. CD147 enriched in HCC tissue was first reported by our laboratory and might be a potential target for anti-invasion and metastasis therapies. Our previous studies showed that HAb18G/CD147 was highly expressed in HCC tissues and lowly expressed in normal tissues. HAb18G/CD147, not only participated adhesion of cell-cell or cell-matrix but also enhanced metastatic potentials of human hepatoma cells by disrupting the regulation of store-operated Ca(2+) entry by NO/cGMP[15,16].

The principle of antisense technology is the sequence-specific binding of an antisense oligonucleotide to target mRNA, resulting in the prevention of gene translation. The specificity of hybridisation makes antisense treatment an attractive strategy selectively modulating the expression of genes involved in the pathogenesis of diseases. In 1998, the first antisense drug (fomiviren) was approved by the US Food and Drugs Administration (FDA) for the treatment of cytomegalovirus-induced retinitis in patients with AIDS[17]. Now, several antisense oligonucleotides have been under clinical trials, including oligonucleotides targeting the mRNA of Bcl-2[18,19], protein-kinase-C alpha[20,21], RAF kinase[22,23], H-ras[24,25], C-myb [26], DNA methyltransferase[27] and RI-alpha regulatory subunit of protein kinase A (PKA)[28,29]. Antisense oligonucleotides are well tolerated and might have therapeutic activities.

Our experimental findings showed that the expression of HAb18G/CD147 on HCC cells transfected by PCI-asHAb18G was decreased by analysis of immunohistochemical staining and FACS. Gelatin zymography demonstrated that secretions of MMP-2 and MMP-9 of HHCC/asHAb18G were lower than those of HHCC/neo and HHCC. Matrigel invasion assay indicated that invasion of HHCC/asHAb18G cells was inhibited significantly. All of the results confirm that antisense RNA targeting HAb18G/CD147 mRNA interfered with translation and expression of HAb18G/CD147, weakened the productions of MMPs, and inhibited the invasion of HCC cells through reconstituted basement membrane in vitro.

We suggest that HAb18G/CD147 be used as a novel target for anti-hepatoma metastatic therapy. Intervention in HAb18G/CD147 function by agents, such as antisense RNA, may have potential therapeutic value in the prevention of hepatoma invasion and metastasis.

REFERENCES

1. Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, Chen J, Gao DM, Bao WH. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 2001; 7: 630-636
2. Xiao CZ, Dai YM, Yu HY, Wang JJ, Ni CR. Relationship between expression of CD44v6 and nm23-H1 and tumor invasion and metastasis in hepatocellular carcinoma. World J Gastroenterol 1998; 4: 412-414
3. Liu LX, Jiang HC, Liu ZH, Zhou J, Zhang WH, Zhu AL, Wang XQ, Wu M. Integrin gene expression profiles of human hepatocellular carcinoma. World J Gastroenterol 2002; 8: 631-637
4. Su JM, Gui L, Zhou YP, Zha XL. Expression of focal adhesion kinase and alpha5 and beta2 integrins in carcinomas and its clinical significance. World J Gastroenterol 2002; 8: 613-618
5. Lou C, Chen ZN, Bian HJ, Li J, Zhou SB. Pharmacokinetics of radioimmunotherapeutic agent of direct labeling mAb 188Re-HAb18. World J Gastroenterol 2002; 8: 69-73
6. Yang LJ, Sai YF, Chen ZN. Preparation and activity of conjugate of monoclonal antibody HAb18 against hepatoma F(ab’)(1/2) fragment and staphylococcal enterotoxin A. World J Gastroenterol 2001; 7: 215-221
7. Bian HJ, Chen ZN, Deng JL. Direct technetium-99m labeling of anti-hepatoma monoclonal antibody fragment, a radioimmunoconjugate for hepatocellular carcinoma imaging. World J Gastroenterol 2000; 6: 348-352
8. Kanekura T, Chen X, Kanazaki T. Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer 2002; 99: 520-528
9. Bordador LC, Li X, Toole B, Chen B, Reggezi J, Zardi L, Hu Y, Ramos DM. Expression of emmprin by oral squamous cell carcinoma. Int J Cancer 2000; 85: 347-352
10. Hou L, Li Y, Jia YH, Wang B, Xin Y, Ling MY, Lu S. Molecular mechanism about lymphogenous metastasis of hepatocarcinoma...
cells in mice. World J Gastroenterol 2001; 7: 532-536
11 Roeb E, Schleinkofer K, Kernebeck T, Potsch S, Jansen B, Behrmann I, Matern S, Grotzinger J. The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist. J Biol Chem 2002; 277: 50326-50332
12 Wang TN, Albo D, Tuszyński GP. Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 2002; 132: 220-225
13 Guo HM, Li RS, Zucker S, Bryan P. Toolie EMMPRIN (CD147). an Inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Research 2000; 60: 888-891
14 Sun JX, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147 extracellular matrix metalloproteinase inducer interactions. Cancer Research 2001; 61: 2276-2281
15 Jiang JL, Yu MK, Chen ZN, Chan HC. cGMP-regulated store-operated calcium entry in human hepatoma cells. Cell Biol Int 2001; 25: 993-995
16 Jiang JL, Zhou Q, Yu MK, Ho LS, Chen ZN, Chan HC. The involvement of HAb18G/CD147 in regulation of store-operated calcium entry and metastasis of human hepatoma cells. J Biol Chem 2001; 276: 46870-46877
17 Vitranene Study Group. A randomized controlled clinical trial of intravitreal fornixin treatment for newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 2002; 133: 467-474
18 Waters JS, Webb A, Cunningham D, Clarke PA, Raynaud F, di Stefano F, Cotter FE. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000; 18: 1812-1823
19 Maruccu G, Byrd JC, Dal G, Krilovic Ml, Kourlas Pj, Young DC, Cataland SR, Fisher DB, Lucas D, Chan KK, Porcu P, Lin ZP, Farag SF, Frankel SR, Zweibel JA, Kraut EH, Balcerzak SP, Bloomfield CD, Grever MR, Caligiuri MA. Phase I and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 2003; 101: 425-432
20 Tolcher AW, Reino L, Venner PM, Ernst SD, Moore M, Geary RS, Chi K, Hall S, Walsh W, Dorr A, Eisenhauer EA. A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2002; 8: 2630-2635
21 Cripps MC, Figueiredo AT, Oza AM, Taylor MJ, Fields AL, Holmlund JT, McIntosh LW, Geary RS, Eisenhauer EA. Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 2002; 8: 2188-2192
22 McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JP, Langdon SP. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 2002; 85: 1753-1758
23 Coudert B, Antheboy A, Fiedler W, Droz JP, Dieras V, Borsen M, Smyth JF, Morant R, de Vries M, Roelvink M, Fumoleau P. European organization for research and treatment of cancer (EORTC). Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small-cell (NSCLC) lung cancer. Eur J Cancer 2001; 37: 2194-2198
24 Adjei AA, Dy GK, Erlichman C, Reid J, Sloan JA, Pitot HC, Alberts SR, Goldberg RM, Hanson LJ, Atherton P, Watanabe T, Geary RS, Holmlund J, Dorr FA. Phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. Clin Cancer Res 2003; 9: 115-123
25 Cunningham CC, Holmlund JT, Geary RS, Kwoh TJ, Dorr A, Johnston JF, Monia B, Nemunaitis J. A phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 2003; 92: 1265-1271
26 Luger SM, O’Brien SG, Ratajczak J, Ratajczak MZ, Mick R, Stadtmauer EA, Nowell PC, Goldman JM, Gewirtz AM. Oligodeoxyribonucleotide-mediated inhibition of cmyb gene expression in autografted bone marrow: a pilot study. Blood 2002; 99: 1150-1158
27 Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol 2002; 13: 1669-1716
28 Wang H, Hang J, Shi Z, Li M, Yu D, Kandimala ER, Agrawal S, Zhang R. Antisense oligonucleotide targeted to Ralphi subunit of cAMP-dependent protein kinase (GEM231) enhances therapeutic effectiveness of cancer chemotherapeutic agent irinotecan in nude mice bearing human cancer xenografts: in vivo synergistic activity, pharmacokinetics and host toxicity. Int J Oncol 2002; 21: 73-80
29 Agrawal S, Kandimala ER, Yu D, Ball R, Lombardi G, Lucas T, Dexter DL, Hollister BA, Chen SF. GEM 231, a second-generation antisense agent complementary to protein kinase A Ralphi subunit, potentiates antitumor activity of irinotecan in human colon, pancreas, prostate and lung cancer xenografts. Int J Oncol 2002; 21: 65-72

Edited by Zhu LH