DNA Fragments Assembly Based on Nicking Enzyme System

Rui-Yan Wang¹, Zhen-Yu Shi³, Ying-Ying Guo¹, Jin-Chun Chen¹, Guo-Qiang Chen¹,²*,

¹ MOE Key Lab of Bioinformatics and Systems Biology, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China, ² Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China, ³ Synthenome.com, Dingley Village, Victoria, Australia

Abstract

A couple of DNA ligation-independent cloning (LIC) methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss) DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases) for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3’-end or 5’-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC) and Uracil-Specific Excision Reagent (USER) was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC) was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB).

Introduction

The assembly of pathways, controllable systems and whole genomic level manipulation are important in synthetic biology and for certain applications including microbial productions of antibiotics, biofuels, biomaterials and the creation of minimal free living cells [1,2,3,4]. As a result, the need for efficient manipulation of many genes and large DNA fragments has become an important issue [5,6,7]. Although some traditional cloning methods are widely used and or are modified to fit this need [8], the restriction endonucleases digestion and DNA ligase ligation based methods do not permit seamlessly assembling multiple DNA fragments at the same time [9].

A number of new cloning technologies have been developed [10]. Among them, methods of ligation-independent cloning (LIC) such as LIC based on exonuclease [9,11], sequence and ligation independent cloning (SLIC) [12], improved SLIC (i.e. the one-step thermo-cycled assembly method) [13], and uracil excision-based cloning [14-18], have become popular. All these LIC methods are based on the annealing of complementary single-stranded (ss) DNA [9]. DNA exonucleases such as T4 DNA polymerase or lambda exonuclease, have been used to produce single-stranded overlaps as described in most of the above methods except the uracil excision-based cloning one [19].

However, the chew-back with DNA exonuclease led to the formation of uncontrollable lengths of ss DNA overlaps [11,12]. Generally, the length of the generated ss overlap could be roughly estimated from the duration of DNA exonuclease treatment [19]. It was reported that a 5 min chew-back using DNA exonuclease was sufficient to generate ss DNA overhangs less than 80 bp, while the detailed length distribution was still unknown [13]. Uracil excision-based cloning is a method producing a controllable length of the single-stranded overlap [14,20]. It adopts uracil-DNA glycosylase (UDG) to treat the uracil bases incorporated into the DNA strand by using uracil containing PCR primers.

These new methods have enabled the seamless cloning of DNA, further allowed the synthesis of large genomic DNA fragments and eventually the bacterial genome [13]. However, in cases of manipulating large DNA fragment systems, cost and efficiency are sometimes more important than the seamlessness. The uncontrollable length distribution of overlapping DNA sequence in SLIC can possibly decrease the efficiency of multiple DNA fragments assembly. There are also some limitations for the USER-LIC method (Uracil-Specific Excision Reagent-LIC): first, it can only be applied to PCR products; second, only 3’-end single-stranded overhangs can be produced due to the single deoxyuridine (dU) placed in the 5’-end of the fragment; third, the synthesis of the dU containing DNA fragment is at high-cost, only specific polymerases which incorporate a deoxyadenine opposite to a dU can be used for DNA amplification [14].

Nicking endonucleases (NEases) have been known for a long time [21,22]. Similar to restriction endonucleases, they recognize short specific DNA sequence and digest DNA at a defined sequence position related to the recognition sequences [21].
However, many nicking endonucleases were suggested to be naturally mutated restriction endonucleases without the ability to dimerize [23,24]. Thus, NEases cleave only one predetermined DNA strand of a double-stranded (ds) DNA [21]. NEases were reported to digest target DNA sequentially for engineering single-stranded DNA suitable for fluorescent labeling through end-filling [25,26], for internal modification of single-molecules [25], construction of novel ligation-independent cloning methods [27], annealing of complementary DNA sequences [28] and for generating long overhangs [29].

In order to develop a low-cost strategy to generate controllable ss DNA overlaps from all types of DNA substrates, a NEases based LIC (NE-LIC) method that can generate controllable overhangs was developed from this study.

**Results**

**NEases based LIC (NE-LIC) Coupled with in vivo Circularization**

Single-stranded overlaps annealing generated via nicking enzymes digestion was performed as described in Figure 1A. First, target DNA fragments were amplified with a pair of specific primers. The primers consist of an overlapping sequence, a NEase site and a homologous sequence of the target DNA fragments. Because the long non-homologous sequence was placed in the primer, two cycles of PCR were performed as described in Materials and Methods. Following PCR amplification and DNA purification, all fragments were digested by nicking endonucleases to produce a nick at one single strand of the double-stranded DNA fragments, followed by incubating the digested fragments in a thermo-cycler for formation of single-stranded DNA overlaps via denaturing the double strands DNA at 90°C for 5 min. The concentrations of all the fragments were tested by Nano Drop Spectrophotometer ND-2000 after the incubation. Equal molar DNA fragments containing single-stranded overlaps were mixed together and incubated at 37°C for one hour to anneal all single-stranded overlaps together. During the in vitro annealing process, different buffers such as Fast-pfu polymerase buffer, T4 DNA polymerase and T4 DNA ligase buffers were screened. The T4 DNA ligase buffer presented the highest efficiency for all ss DNA annealing during the incubation (data not shown).

After the assembly of all DNA fragments in vitro, the in vivo circularization was performed (Fig. 1B). Two separate fragments were designed as the essential vector skeleton containing an attL site with a R6K origin (R6K ori) of replication and an attR site with a kanamycin gene (Fig. 1B). Each of these two fragments was amplified with one end containing a NEase site and an overlapping DNA (Fig. 1B), which was used to anneal with the other DNA fragments. The attL and attR sites of the essential vector skeleton can achieve site-specific recombination with the expression of integrase (Int) and excisionase (Xis). Therefore, the linear system (Fig. 1A) of the assembled fragments was circularized through attL/attR site-specific recombination. The circulation process was used in *E. coli* EC100D *pJr-116* competent cells harboring plasmid pH893CI for Int/Xis expression (Fig. 1B and Table 1). All the primers used for polymerase chain reaction (PCR) are listed in Table 2.

**Competing Primers Do Not Increase Denaturation Efficiency**

In order to increase denaturation efficiency, competing primers which are identical to the ss DNA overhang were added to a denaturation mixture to function as the competitor for the removal of the complementary strands. However, there was no positive effect observed. In order to remove the competing primers and complementary strands, gel electrophoresis was also employed without positive effect observed either.

**Optimization of the Overhang Lengths**

With the USER™ cloning method, the dU is excised from the PCR products only at 5’-end of the fragments as dU is designed in each PCR primer [14]. After the USER enzyme digestion, PCR products are flanked by 3’-end ss DNA extensions. Nicking enzymes digestion was conducted either at 3’-end or 5’-end to produce either 5’-end ss DNA or 3’-end ss DNA overlaps (Fig. 2). The Nt.BbvCI cassette (see Materials and Methods) was designed for 5’-end digestion to form 3’-end ss DNA overlaps, while the Nt.BspQI cassette was designed for 3’-end digestion to generate 5’-end ss DNA overlaps (Fig. 2B). The annealing results showed that 3’-end ss DNA overlaps annealed better with other fragments than the 5’-end ss DNA overlaps did, which was attributed to dephosphorylation of the first base at the 5’-end of the primers.

In order to determine the optimal overhang lengths, 5 bp, 10 bp, 15 bp, 20 bp and 25 bp ss overlaps were studied for both 3’-end and 5’-end ss DNA overlaps annealing, respectively. Results of both electrophoresis and chemical transformation showed that the overhangs of 10 bp/15 bp were able to produce the highest cloning efficiency (Fig. 2B and Table 3).

**T4 DNA Ligase Enhances Efficiency**

T4 DNA ligase was added in order to investigate how it affected the annealing efficiency. When added to an annealing mixture, ligation can be achieved at the annealed single-stranded DNA ends. Since our fragments were prepared by PCR amplification, the 5’-end of the PCR product lacked the phosphate and only 5’-recessed substrate has the phosphate group for ligation. Therefore, when comparing the effect of T4 DNA ligase on 5 bp, 10 bp, 15 bp, 20 bp or 25 bp ss DNA overlaps for 5’-end annealing (5’-end digestion), both results of electrophoresis and transformation revealed that the 5 bp and 10 bp were the best in the presence of T4 DNA ligase. However, in the absence of T4 DNA ligase, 10 bp and 15 bp were found to be optimal both for 3’-end and 5’-end annealing (Fig. 2B). This demonstrated that T4 DNA ligase improved the ligation for short length DNA fragments as T4 DNA ligase favors to link short sticky ends digested by Type II restriction enzymes [8]. For longer single-stranded DNA extensions, the homologous annealing was preferred compared with short single-stranded DNA extension, and both 3’-end as well as the 5’-end ss DNA overlaps annealing results demonstrated the length of a homologous tail of 10 bp and 15 bp had the highest efficiency (Fig. 2B).

**Seamless Annealing Enhanced the Assembly Efficiency**

Most of the LIC methods rely on the single-stranded overlaps annealing [9]. Since the length distribution of ss DNA overlapping tails generated by T4 DNA polymerase (in the absence of dNTP) treatment were unknown [11,12], and the accurate length of the ss DNA overlaps can be produced using NEases, the comparison of treatments using T4 DNA polymerase and NEases on ss DNA overlaps annealing efficiency was performed (Fig. 3). To study whether gaps generated by an uncontrollable digestion of T4 DNA polymerase (in the absence of dNTP) can result in a decreased efficiency, three groups of assembling studies were conducted (Fig. 3). The first group used T4 DNA polymerase to generate ss DNA overlapping tails; the second one employed nicking endonuclease to form ss DNA overlaps consisting of a two base pairs non-overlap (2 bp gaps); the third one adopted a nicking endonuclease to generate a seamless ss DNA overlaps (Fig. 3). The
homologous overlaps from each group were designed with lengths of 5 bp, 10 bp, 15 bp, 20 bp, and 25 bp, respectively. After the T4 DNA polymerase or NEases treatments and further incubation at 37°C, electrophoresis of all mixtures was performed to study the annealing effects (Figs. 3A, 3B and 3C). Results of the chemical transformation showed that the lowest efficiency (Figs. 3A and 3D and Table 4) was from T4 DNA polymerase treatment, which might produce non-complementary ss DNA inside of the ss tail besides the homologous ss overlap, while better results were observed from nicking enzyme treatment with 2 bp gaps (Figs. 3B and 3D and Table 4). On the other hand, NE-LIC without gaps produced the highest efficiency results (Figs. 3C and 3D and Table 4). All phenomena demonstrated that a controllable overhang length enabled higher assembly efficiency.

**Multiple-fragments Assembly Using NE-LIC**

Fragments of the attL-R6k, attR-kan, and cat encoding chloromycin, respectively, were assembled using 15 bp single-stranded DNA Fragments Assembly Using Nicking Enzyme System

---

**Figure 1. Assembly of multiple DNA fragments based on NE-LIC coupled with *in vivo* circularization.** The single-stranded overlaps generated by NEases digestion were annealed *in vitro* and circularized *in vivo* based on att/attR recombination. (A) The procedure of multiple overlapping DNA fragments assembled into a linear form based on nicking enzyme system *in vitro*. (B) The linear DNA circularization procedure *in vivo*.

doi:10.1371/journal.pone.0057943.g001
overlaps (Fig. 4). The gel electrophoresis displayed successful assembly of the three fragments. The reaction was plated on Kan\(^{R}\)+Cm\(^{R}\) Petri disks. 248 colonies that were results of the successful 3'-end ss DNA overlaps annealing, were observed on Kan\(^{R}\)+Cm\(^{R}\) Petri disks. In comparison, for 5'-end ss overlaps annealing, 476 colonies were grown on Kan\(^{R}\)+Cm\(^{R}\) Petri disks. All of the colonies on Kan\(^{R}\)+Cm\(^{R}\) Petri disks contained the cat selection marker. The colonies were verified via DNA sequencing, all indicated a correct assembly. In order to investigate the assembly efficiency, the reaction mixture was plated on Kan\(^{R}\) Petri disks at the same time. 287 and 532 colonies were found for the 3'- and 5'-end ss overlaps annealing, respectively.

**PHB Synthesis by the Assembled phaCAB Operon**

Poly-3-hydroxybutyrate (PHB) synthesis pathway cloned from *Ralstonia eutropha* was assembled using 15 bp single-stranded overlaps annealing (Fig. 5). Six DNA fragments including attL-R6K fragment, attR-kan fragment, *R. eutropha* native promoter (Re promoter), genes of beta-ketothiolase (\(\text{phhA}\)), acetoadetyl-CoA reductase (\(\text{phhB}\)) and PHA synthase (\(\text{phhC}\)), were amplified with specific primers containing 15 bp intervals. The fragments were digested either by the Nt.BbvCI (3'-end ss DNA overlaps) or by the Nt.BspQI (5'-end ss DNA overlaps). After the denaturation process, the incubation led to formation of the ds linear DNA fragment assembled by the above six fragments. They were transformed into *E. coli* EC 100D pir-116 harboring pAH83Cl.

When assembled all six fragments together in one reaction at 37\(^{\circ}\)C, no colony containing the correct assembled fragments was found. Thus, a different approach was adopted for first incubating two fragments from the six fragments together, such as fragments of the attL-R6K and Re promoter, fragments of genes of of PHB synthase (\(\text{phhC}\)) and beta-ketothiolase (\(\text{phhA}\)), and fragments of attR-kan and gene of acetoadetyl-CoA reductase (\(\text{phhB}\)) (Fig. 5A). Consequently, the three fragment groups each containing two fragments were mixed together and incubated at 37\(^{\circ}\)C for another half an hour. The expected assembly was transformed into the *E. coli*. Several colonies were observed on the Petri dishes after 24 h. PCR verification based on primers phaBRtest/rcFest confirmed all the three randomly picked colonies to have the correct assembly of the six fragments mentioned above (Table 2). As a result, PHB accumulation was detected in the three positive recombinants (Table 5). The three recombinants grew to over 13 g/L cell dry weight (CDW) containing over 40% PHB in their CDW in 48 h of growth, demonstrating the success of the multiple-fragments assembly using NE-LIC.

**Discussion**

Although NEases have been used to generate ss DNA overlaps for cloning DNA fragments into plasmids [27], this study is the first one using NEases in ligation-independent cloning (LIC) for constructing a pathway consisting of multiple genes. The assembly of multiple overlapping DNA fragments into a linear form was made by NEases generated single-stranded overlaps annealing *in vitro*, the subsequent circularization of the linear DNA by attL/attR recombination *in vivo* led to the successful expression of the assembled genes (Fig. 1).

Both NE-LIC [DNA ligation-independent cloning (LIC) based on Nicking Endonucleases (NEases)] and USER-LIC [LIC based on Uracil-Specific Excision Reagent] adopt nicking strategy to produce ss DNA overlaps [15,27], it is thus important to study the ss DNA generated processes. Since the nicking enzymes display a nicking activity but no cutting activity of an endonuclease, a strand-specific nick can be generated after the digestion using nicking enzymes, while the phosphodiester backbone still leaves intact with a nick at the digested site [21]. During a denaturation process under a high temperature, the double-stranded DNA was unwound and separated into single-stranded DNA. As a result, one fragment was split into two fragments with single-stranded tails from the nick. In order to test the temperature dependence of splitting the DNA fragment, a fragment from plasmid pUC19 harboring two Nt.BstEI sites with 22 bp interval length was used (See Materials and Methods). Various denaturation temperatures from 70\(^{\circ}\)C to 95\(^{\circ}\)C were used to test the melting effect on generating single-stranded DNA overlaps. The double-stranded DNA fragments were not separated completely at the temperatures below 90\(^{\circ}\)C. Nevertheless, a temperature of 95\(^{\circ}\)C showed a negative effect on the degradation of the double-stranded DNA. The 22 bp DNA gap of two NEase sites could split 90% of the fragment into two ds DNA with ss DNA tails just after the digestion at 37\(^{\circ}\)C, further denaturation at 90\(^{\circ}\)C for 5 min enhanced the split close to 100%. Therefore, a denaturation process at 90\(^{\circ}\)C for 5 min after digestion was recommended as a denaturation optimum. Since the NEase digestion could happen at the NEase sites existed inside the target fragments that could generate disrupted DNA fragments, these NEase sites should be avoided in the design of the primers used for the multiple DNA assembly.

The optimal overlapping length for NEases based LIC (NE-LIC) without T4 DNA ligase was between 10 bp and 15 bp (Fig. 2B and Table 3). This is possible due to the incomplete denaturation of longer ss DNA overlaps and less secondary structures formed from shorter ss DNA overlaps. However, the optimal overlapping length shifted to between 5 bp to 10 bp when

**Table 1. Bacterial strains and plasmids used in this study.**

| Stains/plasmids | Description | Reference |
|-----------------|-------------|-----------|
| E. coli EC 100D pir-116 | F-\text{mcIA(mr-hsdRMS-mcrBC)\text{-}\text{ð}80dlocZ\text{\text{M}15 \Delta llocX74recA1 endA1 araD139 \Delta lara, leu7}697galU galK \lambda \text{Y rpsL}} | [31] |
| pUC19 | Cloning vector, Amp\(^{R}\) | TaKaRa Bio Inc |
| pKD3 | Template plasmid with Amp\(^{R}\) and Cat\(^{R}\) genes and FLP recognition target | [32] |
| pBHR68 | phaCAB expression plasmid, Amp\(^{R}\) | [33] |
| pUKG | Rökyori, attL/attR harboring, Kan\(^{R}\) | This study |
| pAH83Cl | Helper plasmid expressing phage HK022int/Xis,Amp\(^{R}\) | [34] |
| pUKG68 | Rökyori, Re-phaCAB harboring, Kan\(^{R}\) | This study |

DOI:10.1371/journal.pone.0057943.t001
| Primers         | Sequence                                                                 |
|----------------|---------------------------------------------------------------------------|
| Nb.BbvCl-3'    | 5'-CTCGAGGCAAGATCCGCAAGTTCAACCTG                                         |
| R6KFhomo5      | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| KANRhomo5      | 5'-CAGATCGATCGTCAAGAAGGCCGATA                                            |
| R6KFhomo10     | 5'-CCGGACGTCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                             |
| KANRhomo10     | 5'-CGATCCGGAGATCGTCAAGAAGGCCGATA                                         |
| R6KFhomo15     | 5'-GCGGTCCGACGCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                          |
| KANRhomo15     | 5'-CGATCCGGACGCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                          |
| R6KFhomo20     | 5'-CGATCCGGACGCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                          |
| KANRhomo20     | 5'-CGATCCGGACGCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                          |
| R6KFhomo25     | 5'-CGATCCGGACGCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                          |
| KANRhomo25     | 5'-CGATCCGGACGCTAGGATTAGAAGAATCGTCAAGAAGGCCGATA                          |
| 3 fragments Nb.BbvCl-3' | 5'-AGTCCGGAGGCAAGATCCGCAAGTTCAACCTG                                 |
| R6KFhomo15     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| KANRhomo15     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| catR6K15nb     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| catKAN15nb     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| 3 fragments Nt.BspQI-5' | 5'-CTCGAGGCAAGATCCGCAAGTTCAACCTG                                 |
| R6KFhomo15     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| KANRhomo15     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| catR6K15nt     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| catKAN15nt     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| 6 fragments Nb.BbvCl-3' | 5'-AGTCCGGAGGCAAGATCCGCAAGTTCAACCTG                                 |
| R6KFhomo15     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| KANRhomo15     | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| Bref           | 5'-GCCGATCGATCGTCAAGAAGGCCGATA                                           |
| Brer           | 5'-GCCGATCGATCGTCAAGAAGGCCGATA                                           |
| BphaAf         | 5'-GCTATCAAGGTGACGCTAGTCAAGAAGGCCGATA                                     |
| BphaBr         | 5'-GCCACACGACCTAGTCAAGAAGGCCGATA                                         |
| BphaAf         | 5'-GCCACACGACCTAGTCAAGAAGGCCGATA                                         |
| 6 fragments Nt.BspQI-5' | 5'-AGTCCGGAGGCAAGATCCGCAAGTTCAACCTG                                 |
| TR6KFhomo15    | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| TKNRhom15      | 5'-CGAAGATTAGAAGAATCGTCAAGAAGGCCGATA                                      |
| Tref           | 5'-GCCGATCGATCGTCAAGAAGGCCGATA                                           |
Table 2. Cont.

| Primers       | Sequence                      |
|---------------|-------------------------------|
| Trr           | 5’-GCCGCTGCCATGC TGAAGAGGGAATTTGATTGTCCTCTTCGCGTAC |
| TphacF        | 5’-GCCACGCTCATGCC TGAAGAGGCTGGCGCTTTTGGACTATCGAGCCCA |
| TphacR        | 5’-GCCATAGGCGTGGCC TGAAGAGGCTGGCGCTTTTGGACTATCGAGCCCA |
| TphabF        | 5’-GCCGTACGGCTGCC TGAAGAGGCTGGCGCTTTTGGACTATCGAGCCCA |
| TphabR        | 5’-GCCGTACGGCTGCC TGAAGAGGCTGGCGCTTTTGGACTATCGAGCCCA |
| TphacF        | 5’-GCCGCTGCCATGC TGAAGAGGGAATTTGATTGTCCTCTTCGCGTAC |
| Nb.BbvCl with 2 bp non-complementary |                      |
| R6KFhomo5     | 5’-TCCGG GCTGAGGGCAAGATCCGAGTTCAACCTG |
| KANhomo5      | 5’-CCGGAGCTGAGGGTAAAATCTTGGCTCAAGAAGCCGATA |
| R6KFhomo10    | 5’-TCCGGAACCC GCTGAGGGCAAGATCCGAGTTCAACCTG |
| KANhomo10     | 5’-GGTTCCGAGA GCTGAGGATTAGAAGACTCGTGCAAAGAAGCCGATA |
| R6KFhomo15    | 5’-TCCGGAACCCGAGCCGAGCTGAGGGCAAGATCCGAGTTCAACCTG |
| KANhomo15     | 5’-GGTTCCGAGA GCTGAGGATTAGAAGACTCGTGCAAAGAAGCCGATA |
| R6KFhomo20    | 5’-TCCGGAACCCGAGCCGAGCTGAGGGCAAGATCCGAGTTCAACCTG |
| KANhomo20     | 5’-ATCCAGTCCCGGTCCGAGCTGAGGGATTAGAAGACTCGTGCAAAGAAGCCGATA |
| R6KFhomo25    | 5’-AAAGTCCGGAACCCGAGCCGAGTTCAAGAAGCCGATA |
| KANhomo25     | 5’-ATCCAGTCCCGGTCCGAGCTGAGGGATTAGAAGACTCGTGCAAAGAAGCCGATA |
| attL/attR reaction primer |                      |
| attLR         | 5’-CCACATCTTTTCGTTATCGGCCAC |
| attRF         | 5’-CAGTATGAACTTCTTCGCGTGGG |
| Colony PCR primer |                      |
| r6kgamma      | 5’-GCCCTCTAAAGCAATATTTCAGT |
| tesR          | 5’TGCCAGATATGCCGAGAACAG |
| r6ktest       | 5’-ACGTAGCCTAGGAGAGCTTAC |
| k2            | 5’-CGGTTGCGTGAATGAACGTC |
| phabRtest     | 5’-ACCAACGAGAAAGCCATCTTT |
| refTest       | 5’TGCAGTACCCCTTACGAAAG |
| Primers for cloning fragments used in optimizing denaturing temperature |                      |
| BtsIf         | 5’-CGAGTGGGTTTACATCGAAGC |
| BtsIr         | 5’TGCAGCAGAACCCGCGTTC |

All oligonucleotides were synthesized by Invitrogen (Life technologies, USA). Restriction endonuclease digestion sites are bold italic. Homology sequences are underlined.

doi:10.1371/journal.pone.0057943.t002

T4 DNA ligase was added (Fig. 2B), indicating that the ligation process was more efficient than the annealing one. It is important to emphasize that the annealing of 10 bp/15 bp does not necessarily require T4 DNA ligase (Fig. 2B). Considering the cloning efficiency, the presence of T4 DNA ligase to the NE-LIC system is still recommended.

The NE-LIC demonstrated an improved cloning efficiency compared with other methods including SLIC and the incomplete PCR approach [10,12]. The unknown length distribution of ss DNA overlaps in SLIC method produced non-complementary gaps in the ss DNA tails, resulting in decreased annealing productivity (Fig. 3). The improved SLIC method using T5 polymerase that fill the DNA gaps helps increase the cloning efficiency [13]. A significant reduced annealing and cloning efficiency were observed when 2 bp gaps were designed in the overlapping DNA in our NE-LIC (Fig. 3 and Table 4). The reduced effect could be attributed to the unstable DNA conformation around the DNA gaps. Therefore, it is more important to generate controllable overlaps than to produce longer uncontrollable ones.

To investigate the effect of T4 DNA polymerase treatment on DNA assembly, a pUC19 plasmid digested with XbaI restriction endonuclease was treated with T4 DNA polymerase, followed by incubation at 37°C for an hour, and subsequently, the resulting DNA mixture was transformed into E. coli. Theoretically, the two ss DNA tails generated from T4 DNA polymerase treatment produced no complementary region; they could not anneal to form a circular plasmid. However, colonies contained the re-assembled plasmid pUC19 were observed, clearly demonstrating the occurrences of unspecific annealing in the ss DNA tails (data not shown).

As GC ratios in DNA fragments influence DNA melting temperature and affect the denaturation and annealing processes, all DNA overhangs used in this study were designed with GC ratios ranging from 35% to 65%. It was recommended that the study should design overhangs without extremely high GC ratios,
and/or adjust the lengths of overlaps to allow a melting temperature lower than 90°C in case very high GC ratios cannot be avoided.

In summary, a nicking endonuclease (NEase) based ligation independent cloning method (NE-LIC) was successfully developed. This method allows the simultaneous assembly of multiple DNA fragments with more freedoms than that of the traditional methods based on type II endonucleases. The NE-LIC could generate controllable ss DNA overlaps compared with any DNA exonucleases that could not do so, it also costs less than USER-LIC does.

Materials and Methods

Strains and DNA

E. coli strain EC100D pir-116 containing plasmid pAH83CI was used for all the DNA assemblies. Plasmid pUKG was used as a
template for attL-R6K and attR-kan fragments. Chloromycetin gene was cloned from pKD3 plasmid. Plasmid pBHR68 containing Ralstonia eutropha PHB synthesis operon was used as a template for cloning Re promoter, phbC, phbA, and phbB which encodes R. eutropha native promoter, PHA synthase, beta-ketothiolase, and acetoacetyl-CoA reductase, respectively. All strains and plasmids used in this study were listed in Table 1. Detailed primer information for fragments was listed in Table 2.

**Table 4. Comparison of cloning efficiencies of three methods producing different single-stranded overlaps.**

|                   | 5 bp | 10 bp | 15 bp | 20 bp | 25 bp |
|-------------------|------|-------|-------|-------|-------|
| T4 DNA polymerase | 50   | 350   | 450   | 50    | 50    |
| NEase (with 2nt gap in ss overlaps) | 0 | 3690 | 1470 | 2340 | 2070 |
| NEase (without gaps in ss overlaps) | 1170 | 8070 | 32000 | 3150 | 1350 |

Cloning efficiencies were given as colony forming units per micromole of each fragment. The homology regions were ranged from 5 bp to 25 bp.

doi:10.1371/journal.pone.0057943.t004

Figure 3. Effects of non-complementary nucleotides in the single-stranded DNA tails on assembly efficiency. Three groups of ss DNA overlaps generation methods: (A) Generation of ss DNA overlapping tails using T4 DNA polymerase led to uncontrollable lengths of the non-complementary nucleotides designed at the inside end as a small gap; (B) Nb.BbvCI based generation of ss DNA overlaps with two non-complementary nucleotides designed with lengths of 5 bp, 10 bp, 15 bp, 20 bp, and 25 bp, respectively. DNA gel electrophoresis of (A), (B) and (C) verified the assembly results. (D) The successful recombinants resulted from the three (A), (B) and (C) groups, respectively.
doi:10.1371/journal.pone.0057943.g003
After the amplification and purification processes, DNA fragments with designed overlaps were digested by 10 U of Nb.BbvCI or Nt.BspQI at 37°C for 1 h. Then the digested fragments were heated to 90°C for 5 min for denaturation, and then chilled to 4°C. The DNA concentrations were determined by Nano Drop Spectrophotometer ND2000 (Thermo Scientific, Wilmington, USA). For NE-LIC coupled with in vivo circularization, an equal molar ratio of the fragments was mixed to anneal at 37°C for 1 h into a linear form and then electroporated into competent cells of E. coli EC100D pir-116 harboring pAH83CI, to allow in vivo circularization. Following electroporation, cells were suspended in LB broth and incubated under the following conditions: 30°C for 30 min; 37°C for 30 min and finally another 30°C for 30 min. The cells were then spread onto 10 μg/mL kanamycin petri disk and incubated at 37°C for 16 h. The schematic diagrams are shown in Figures 1A and 1B. The constructs were verified by PCR and DNA sequencing. The buffer for this study was optimized among buffers of T4 DNA ligase, T4 DNA polymerase and Fast-pfu polymerase.
Optimization of Denaturation Temperature

A fragment with two Nb.BtsI sites of 22 bp separated length in the middle was amplified from plasmid pUC19 using primers BtsIf/BtsIr (Table 2), and further purified using DNA OMEGA E.Z.N.A. Gel Extraction kit (Omega Bio-Tek, USA). It was then digested by Nb.BtsI nicking enzyme, and denatured at 70°C, 75°C, 80°C, 85°C, 90°C or 95°C to test the optimal temperature for splitting into two fragments.

Enhanced Denaturation Efficiency Using Competing Primers

Competing primers that are complementary to the ss DNA released during the denaturation process was added to the denaturation system. Competing primers were designed with the same length of the ss DNA overlaps. The denatured products were purified by OMEGA E.Z.N.A. Gel Extraction kit (Omega Bio-Tek, USA).

Figure 5. Construction of PHB synthesis pathway via six DNA fragments assembly. (A) Schematic diagram of assembling the six DNA fragments. Each two fragments were assembled first; subsequently the three groups of two-fragments were mixed together. (B) Assembling results using 3'-end and 5'-end single-stranded DNA annealing. Gel electrophoresis of the initial assembly of two DNA fragments using 3'-end ss DNA annealing (5'-end digestion using Nb.BbvCI) was presented on left, and 5'-end ss DNA annealing (3'-end digestion using Nt.BspQI) on right. Middle gel picture corresponded to the six fragments assembly as indicated in the picture.

doi:10.1371/journal.pone.0057943.g005
Table 5. PHB production from E. coli strains constructed by six fragments NE-LIC.

| Recombinant strains CDW (g/L) | PHB (wt%) | PHB (g/L) |
|------------------------------|-----------|-----------|
| E. coli PHB1                 | 13.39 ± 0.38 | 49.35 ± 2.50 | 6.61 ± 0.45 |
| E. coli PHB2                 | 13.82 ± 0.19 | 42.74 ± 1.78 | 5.90 ± 0.17 |
| E. coli PHB3                 | 13.56 ± 0.22 | 47.34 ± 1.16 | 5.93 ± 0.20 |

The three randomly picked positive recombinants harboring pUKG68 were cultivated in Terrific Broth (TB) medium containing 20 g/L glucose at 37°C for 48 h as described in “Materials and Methods”. Data shown were the average and standard deviations of three parallel experiments. CDW, cell dry weight. doi:10.1371/journal.pone.0057943.t005

Optimization of the Overlapping Lengths

The 2-fragment NE-LIC coupled with \( ^{in\,vivo} \) circularization of the R\( \kappa \)y and Kan fragments was used for the optimization of overlapping lengths. The junction of the R\( \kappa \)y and Kan fragments was designed to generate different overlaps of 5 bp, 10 bp, 15 bp, 20 bp or 25 bp. Annealing with or without T4 DNA ligase was studied. Electrophoresis of annealing products was performed (Fig. 2).

Comparisons of Annealing with Gaps and Seamless Annealing

The anneals of R\( \kappa \)y and Kan fragments with 5 bp, 10 bp, 15 bp, 20 bp and 25 bp complementary overlaps were designed, respectively. For the group with uncontrollable gaps, all the assembled fragments were treated with T4 DNA polymerase at 37°C for 5 min, and then the reaction was terminated using 0.1 vol of 10 mM 2'-deoxycytidine 5'-triphosphate (dCTP). For the group with 2 bp designed gaps, the 2-fragment NE-LIC coupled with \( ^{in\,vivo} \) circularization of the R\( \kappa \)y and Kan fragments was used to study the effect. The 2 bp gaps were designed inside the complementary region close to the inner end. For the group without gap, the junction of the R\( \kappa \)y and Kan fragments was designed to generate overlaps that anneal seamlessly. Electrophoresis of annealing products was performed (Fig. 3).

PHB Production and Analysis

E. coli EC100D \( \pir \)-116 harboring the PHB synthesis operon \( phaCAB \) constructed by NE-LIC coupled with \( ^{in\,vivo} \) circularization was incubated at 37°C in LB medium containing (g/L) 5 yeast extract, 10 tryptone and 10 NaCl for 12 h at 200 rpm on a rotary shaker. The plates were inoculated into the shake flask placed on the rotary shaker at 200 rpm placed with 500 ml conical flasks containing 30 ml Terrific Broth (TB) medium containing (g/L) 12 tryptone, 24 yeast extract, 9.4 \( \t{K}_2\text{HPO}_4 \), 2.2 \( \t{K}_2\text{HPO}_4 \) and 4 mL/L glycerol supplemented with 20 g/L glucose for 48 h [30]. Additionally, 50 mg/L kanamycin was used for maintaining the stability of the plasmids. PHB analysis method was performed as described by Zhou et al [30].

Acknowledgments

We thank Professor Alexander Steinbuchel of the University of Münster in Germany for the generous donation of plasmid pBHHR68. We also thank Tian Xu and Cheng-Zhao He for preparing experiment materials.

Author Contributions

contributed equally to this work: RYW ZYS. Conceived and designed the experiments: ZYS. Performed the experiments: RYW YYG JCC. Analyzed the data: RYW ZYS. Contributed reagents/materials/analysis tools: JCC GQC. Wrote the paper: ZYS RYW GQC.

References

1. Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2: 43.
2. Kishal AS, Colline JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11: 367–379.
3. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxyalkanoates) by beta-oxidation pathway inhibited Pandorana paule. Metab Eng 13: 11–17.
4. Shao Z, Luo Y, Zhao H (2012) DNA Assembler Method for Construction of Zeaaxanthin-Producing Strains of Saccharomyces cerevisiae. Methods Mol Biol 890: 251–262.
5. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3: 109–118.
6. Fu J, Bian X, Hu S, Wang H, Huang F, et al. (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30: 440–446.
7. Shao Z, Luo Y, Zhao H (2011) Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol Syst Biol 7: 1056–1059.
8. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70: 3240–3244.
9. Eschenfeldt WH, Luu S, Millard CS, Joachimiak A, Mark ID (2009) A family of LIC vectors for high-throughput cloning and purification of proteins. Methods Mol Biol 498: 105–113.
10. Tsvetanova B, Peng L, Liang X, Li K, Yang JP, et al. (2011) Genetic assembly tools for synthetic biology. Methods Enzymol 498: 327–348.
11. Tachibana A, Toghiuchi K, Urno T, Setogawa Y, Harada A, et al. (2009) Preparation of long sticky ends for universal ligation-independent cloning: sequential T4 DNA polymerase treatments. J Biosci Bioeng 107: 668–669.
12. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4: 251–256.
13. Gibson DG, Young L, Chuang KY, Venter JC, Hutchison CA, 3rd, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345.
14. Bitinaite J, Rubino M, Varma KH, Schäfl Kraut I, Vaisvila R, et al. (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35: 1992–2002.
15. Geu-Flores F, Nour-Eldin HH, Nielsen MT, Hakker BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35: e55.
16. Annalurit N, Muller H, Ramalingam S, Kandavelou K, London V, et al. (2012) Assembling DNA Fragments by USER Fusion. Methods Mol Biol 852: 77–95.
17. Nour-Eldin HH, Hansen BG, Norholm MH, Jensen JK, Hakker BA (2006) Advancing uracil-excision-based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34: e122.
18. Bitinaite J, Nichols NM (2009) DNA cloning and engineering by uracil excision.Curr Protoc Mol Biol Chapter 3: Unit 3.21.
19. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18: 6069–6074.
20. Nour-Eldin HH, Geu-Flores F, Hakker BA (2010) USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol Biol 643: 185–200.
21. Zheleznaya LA, Kalashova GS, Artysheh RI, Yunusova AK, Perevyazova TA, et al. (2009) Nicking endonucleases. Biochemistry (Moscow) 74: 1437–1466.
22. Xu SY, Zhu Z, Zhang P, Chau SH, Samuelson JC, et al. (2007) Discovery of natural nicking endonucleases Nh.BerDI and Nh.BerD and engineering of top-strand nicking variants from BerDI and Bsd. Nucleic Acids Res 35: 4606–4618.
23. Zhu Z, Samuelson JC, Zhou J, Dore A, Xu SY (2004) Engineering strand-specific DNA nicking enzymes from the type IIS restriction endonucleases Bsd, BsmBI, and BamAI. J Mol Biol 337: 573–583.
24. Higgins LS, Besnier C, Kong H (2001) The nicking endonuclease N.BstNI is closely related to type IIS restriction endonucleases MgtI and PstI. Nucleic Acids Res 29: 2492–2501.
25. Joneja A, Huang X (2011) Linear nicking endonuclease-mediated strand-displacement DNA amplification. Anal Biochem 414: 58–69.
26. Luzziuti N, Knappe S, Richter I, Seidel R (2012) Nicking enzyme-based internal labeling of DNA at multiple loci. Nat Protoc 7: 643–653.
27. Yang J, Zhang Z, Zhang XA, Luo Q (2010) A ligation-independent cloning method using nicking DNA endonuclease. BioTechniques 49: 817–821.
28. Luzzetti N, Brutzer H, Klaue D, Schwarz IW, Staroske W, et al. (2011) Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res 39: e13.

29. Too PH, Zhu Z, Chan SH, Xu SY (2010) Engineering Ni.BstCI and Nb.BstCI nicking enzymes and applications in generating long overhangs. Nucleic Acids Res 38: 1294–1303.

30. Zhou Q, Shi ZY, Meng DC, Wu Q, Chen JC, et al. (2011) Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab Eng 13: 777–785.

31. Metcalf WW, Jiang W, Wanner BL (1994) Use of the sop technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene 138: 1–7.

32. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645.

33. Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83: 939–947.

34. Shi ZY (2012) Parallel DNA Assembly by Recombination. PhD thesis: University of Melbourne.