Occurrence of Toxoplasmosis in Baquba City, Diyala, Iraq
Mayada Nazar Jabbar AL-Khafaji, Sarra Raid Muhamed, Shaemaa Farhan Abd-Kareem
Department of Biology, College of Science, Diyala University, Diyala, Iraq
DOI: http://dx.doi.org/10.25130/tjps.25.2020.007

A R T I C L E I N F O.
Article history:
-Received: 11/9/2019
-Accepted: 10/11/2019
-Available online: / / 2019

Keywords: Toxoplasmosis, Baquba, spread

Corresponding Author:
Name: Mayada Nazar Jabbar
E-mail: Mannazar83@gmail.com

ABSTRACT

The current study was conducted to determine the occurrence of toxoplasmosis in patients presented to Emergency Department, General, Educational Baquba Hospital, and Al-Batool Hospital in Baquba City, Diyala Province, Iraq, on the dependence of Serological Examinations from November 2018 to February 2019.

Blood samples were collected from, 30 young females, 218 adult women, 49 young males and 203 adult men, Total, 500, suffered from different disease conditions (pregnancy troubles, hormonal disturbances, diabetes, healthy etc.). Latex Agglutination Test (LAT), Enzyme Linked Immunosorbent Assay (ELISA), were used to evaluate the presence of anti-Toxoplasma antibodies.

The results showed that, the percentage of positive reactors recorded by LAT test were 205 /500; 41 %, of which, 99 /500; 19.8% in adult women, 7/500; 1.4% in young women, 81/500; 16.2% in adult men and 18/500; 3.6% in young men. While in ELISA, 22 /100; 22%. Titer level of anti-Toxoplasma gondii antibodies ranged between (1/2 to 1/128). The infections were higher in adult women and men than young persons. The infections were higher in women than men.

In conclusion, titer levels referred that the patient suffer from chronic or carrier state.

Introduction

Toxoplasmosis is result from infection with, Toxoplasma gondii, a ubiquitous obligate intracellular pathogenic protozoan, widely prevalent in humans and animals [1- 4]. An important zoonotic parasitic disease that affects millions of people, has a worldwide distribution in human populations infecting up to one third of the global population and a wide range of mammalian and avian species [5- 7]. Present in hot, humid countries, able to develop in a wide variety of vertebrate hosts. Cats and other members of Felidae are definitive hosts, while human and wide range of animals, birds and rodents act as intermediate hosts [8].

In immune competent individuals, preferentially infects tissues of central nervous system, be a contributing factor to certain psychiatric disorders [9, 10].

The Seroprevalence of Toxoplasmosis estimated for human population varies greatly among, different countries, different geographical areas, within one country, even within a same city [11,12]. The various prevalence of the disease may be associated with the geographical location and type of serological tests used, as these serological tests vary in their sensitivity and specificity to toxoplasma antibodies [13].

Diagnosis of Toxoplasmosis infection is seldom made by recovery of the parasite, usually done by serological tests [14] or histocytologic examination, but serologic test such as Latex Agglutination Test(LAT), and Enzyme Linked Immunosorbent Assay (ELISA) for antibodies detection has been more full and adequate tool to diagnose toxoplasma infection in both human and animals [15,16].

A variety of serological tests for T. gondii antibodies have been used as an aid in diagnosis of acute infection and to assess previous exposure to the organism. Use of serological tests to show specific antibodies to T. gondii is the primary method of diagnosis. The problem with serologic diagnosis is that antibodies to T. gondii is present in relatively high numbers of individuals in most populations. These antibodies titers may persists at high levels for years in healthy people [17].
The aims of present study was, determine the prevalence of toxoplasma infection, according to sex, age through examination of anti – toxoplasma antibodies in serum of peoples in Baquba City, Province of Diyala, Iraq.

Materials and Methods
The study was conducted from November 2018 till February 2019. Blood samples were collected from patients presented to Emergency Department, General, Educational Baquba Hospital and Al- Batool Hospital in Baquba City, Province Diyala, Iraq.

Five hundred 500 serum samples were collected, represented 218 adult women suffered from hormonal and pregnancy disturbances; 30 young women, 49 young men, and 203 mature men healthy or suffered from general disease conditions, or accidental cases. The sera were submitted for LAT and ELISA tests (Table 1).

LAT test in which, Antigen coated polystyrene latex particles were used, suitable for screening large numbers of samples [18- 20]. In ELISA, soluble antigen is coated to micro titer plates and serum is added to form an antigen- antibody complex (if specific antibodies are present) a secondary enzyme – linked antibody specific to the host species is added to detect antigen- antibody complex** [21].

* [Haansberg, Netherlands, Saluscea, Toxo LATEX KIT]
**Chekit-Toxo Test-Switzerland

Data analysis
Data were analyzed Chi-square and P<0.05 was considered to be significant [22].

Results
Latex Agglutination Test (LAT):
Total positive samples for T. gondii antibodies were 205; 500; 41%, from which 7\500; 1.4% represented young women, 99\500;19.8% adult women, 81\500; 16.2% adult men, and 18\500; 3.6% young men (Table 1).

Table (1) represent results of LAT test:

Sex	Numbers positive	%	
Adult women	218	99BC	45.4
young women	30	7A	23.33
adult men	203	81BC	39.9
young men	49	18B	36.7
Total numbers	500	205	41

A,B,C, significantly different in comparison between groups (age, Sex) at P<0.05 level

ELISA test
The result of current study showed that among a total of 100 samples, 22 samples were react positively to ELISA, from which 2\100; 2% represent young women, 12\100; 12% adult women, 1\100; 1% young men, and 7\100; 7% adult men (Table 3).

Table (2) represent results of ELISA test:

Age\sex	AL-Batool Hospital	Emerg. Depart. Gener. Hospital	Both hospitals						
	Total No.	+ve	%	Total No.	+ve	%	Total No.	+ve	%
Adult women	108	49BC	45.4B	110	50BC	45.5B	218	99BC	45.4B
Young women	15	4A	26.7A	15	3A	20A	30	7A	23.3A
Adult men	27	12B	52.2B	176	69BC	39.2B	203	81BC	39.9
Young men	23	7A	25.9A	26	11B	42.3B	49	18B	36.7A
Total	173	72a	41.6	327	117a	35.8	500	205b	41

A,B,C, significantly different in comparison between groups (age, sex), a, b, between (hospital) at P<0.05 level

Table (3) represent results of ELISA test:

Patient	Age	No. of +ve	% of +ve	No. of -ve
Women	Young	2	2 A	12
	Adult	12	12 BC	43
Men	Young	1	1 A	2
	Adult	7	7 B	21
Total	22	22	78	

Level (Titer) of Anti T. gondii antibodies :
In LAT test the serum dilution which gave positive reaction to T. gondii ranged between 1/2 to 1/128 . Level 1/2 were highest in number 113;205; 55.1%, Highest was in adult women 59; 205; 28.8%, the lowest was 3;205; 1.5% in young women, while in adult men were 41;205; 20%, and 10;205; 4.9% in young men. Followed by 1/4 as it was 40; 205; 19.5%, then 1/8 ; 22;205 ;120.7%, while 1/16 was 14;2305; 6.8% , meanwhile 1/32 was 8;205; 3.9% , each of 1/64 and 1/128 was 4;205; 1.95% (Table 4).

Table (4) represent results of ELISA test:

Age\sex	Total Titer							
	1/2	1/4	1/8	1/16	1/32	1/64	1/128	
Adult women	99	59BC	20B	7B	6B	3B	2A	2A
Young women	7	3A	2A	1A	1A			
Adult men	81	41BC	15B	10BC	7B	4B	2A	2A
Young men	18	10B	3A	4B		1A		
Total	205	113bcd	40bc	22bc	14b	8b	4a	4a

A,B,C, significantly different in comparison between groups (age, sex), a, b, c, d between level of titer at P<0.05 level
Relationship between age groups and percentage of infection:

Results revealed that the highest figure in positive reactions were in age group (16-20), 55/205; 26.8%, followed by (31-35) 42/ 205; 20.5%, and the lowest numbers were in age groups (56-70) 2/205; 0.97% (Table -5).

| Table (5) relationships between age groups and percentage of infections |
|-----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Age groups | 1-12 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-70 |
| Total No. | 248 | 30 | 59 | 28 | 24 | 36 | 24 | 19 | 7 | 14 | 7 |
| Total +ve | 104 | 5A | 24A | 1A | 12A | 24A | 12B | 2B | 7A | 2A | 3A | 1 |

Time of Positive Reaction in LAT Test

Results of study revealed that the highest numbers of positive reactions were within (2 and 3) minutes post mixing Ag and Ab, and the lowest were within (5) minutes of mixing Ag with Ab. (Table 6).

| Table (6) numbers of samples react positively with time of appearance of reaction |
|-----------------------------|---------------------|---------------------|---------------------|---------------------|
| Age \ Sex | Times : minutes | No. of samples |
| | 1 | 2 | 3 | 4 | 5 |
| Adult women | 27B | 66B | 65B | 55BC | 5A |
| Young women | 1A | 2A | 2A | 1A |
| Adult men | 16B | 74B | 74B | 37BC | 10B |
| Young men | 1A | 2A | 2A | 3B |
| Total | 45B | 144bc | 143bc | 96bc | 15a |

Discussion

LAT test:

Out of total 500 serum samples in this study, 205 showed a seropositive reaction for toxoplasmosis, giving an incidence rate of 41%. *T. gondii* infection in humans is widespread throughout the world. Approximately half billion humans have antibodies to *T. gondii*. The incidence of infection in humans and animals may vary in different parts of a country. The cause of these variations may be due to environmental conditions, cultural habits, and animal species are among factors that may determine the degree of natural spread of *T. gondii*. Approximately one-third of all humanity has been exposed to this parasite, but the seroprevalence varies considerably between countries and population group [12]. Socioeconomic and environmental factors have been associated with transmission and consequently, a higher prevalence of *T. gondii*, for example, intake of raw or undercooked meat containing tissue cysts, contact with oocysts- contaminated food, water, and soil, and mother to offspring transmission, are some factors involved in the epidemiology of this disease [24-30]. Humans may remain infected for life and will stay asymptomatic unless immunosuppression occurs [31]. Since people in Iraq do not have the habit of consuming raw meat, it is highly probable that accidental ingestion of oocysts is the primary route of transmission in Iraq.

In Iraq, Ehsan, [32] referred that of pregnant women (suspected cases) LAT test showed infection rate of 32.43%. [33] found that 57.68 ; 83.82% of women were react positively to LAT test in Baquba City, Diyala, Iraq.

In many Iraqi Provinces, similar studies were done, [34] reported low rate of (8.6%) positively from eight Governorates in Iraq. While [35], reported a prevalence rate of (20.4%) toxoplasmosis among Iraqi women. Study by [36] showed a rate of 18.5% of toxoplasmosis antibodies in Basarah population. Meanwhile [37] found the infection in Baghdad women to be 19.17%, while [38] recorded 26.8% in Al-Najaf Province., [39] 22% in blood donors. [40] recorded 29.25% in Baghdad. [41] 46.65% in
found that the prevalence of toxoplasmosis antibodies among women in Baghdad was 39%. Yacoob et al.,[44] found that the prevalence of toxoplasmosis in Basrah had been shown to be 41.1 to 52.1%. [45] showed the presence of infection around 49.95% in Tikrit.

Razzak et al., [46] found that from 187 of the examined women by LAT test, 55 gave positive reaction. High seropositive has, however, been reported in this region of Iraq. [47] studied 320 persons in Duhok Province and found that 134 were positive by LAT. [48] reported a seropositive of 39.33% by LAT in Mosul.

Globally the incidence of toxoplasmosis varies in different countries. In Czech Republic the rate of toxoplasmosis in blood donors tested scored 34.1 and 27.1% in men and women respectively [49].

Relationship of occurrence with age and sex
In current study, there was a significant relationships of age and sex with occurrence of toxoplasmosis in Baquba, as the infection was of the highest level in adult women and men in comparison with young women and men. As the infection rate in adult women were 99:500; 19.8%, followed by adult men 81:500, 16.2%, and young men 18:500, 3.6% and the lowest was in young women 7:500; 1.4%.

Mohanad et al., [50] showed that, a decreasing seroprevalence was observed in pregnant women, recorded that from 91 couples examined for antibodies of T. gondii using ELISA in Ramadi City, the overall anti T. gondii IgM and IgG in both couples were 38.4%. The seroprevalence in wives was only 30.7%, while in husbands was 13.1%. Abortive women and abnormal pregnancy had the highest percentage rates 35.7 versus 57.14% of toxoplasmosis among those of (25 to 30) years old and the lowest was among those who have the average of age (35 to 40) years old.

Al-Musaway,[51] referred that out of 319; 111 males and 208 females of (18-42) years old in Thi-Qar using ELISA test 21.94% were react positively, and there were significant differences between male and females 7.52% in males and 14.42% in females who carried the anti toxoplasma antibodies.

The results of the current study revealed that the highest figure in positive reactions were in age group (16-20) 55/205; 26.8% , followed by (31-35) , 42/205; 20.5%, and the lowest figures was in age groups (56-70) 2/205; 0.97%. This can attributed to the numbers of peoples examined.

Al-Saad, [52] found that among men in Baghdad of (18-25) years old by using LAT and ELISA tests in searching for IgM and IgG, 136; 400 (34% react positively to LAT and (121); 400; 30.25% react positively to IgG in ELSA. and only 10 men showed positive reaction to IgM in ELISA. There were significant differences between age groups as (18-25) and (26-32) year the highest percentage and (50-57) was the lowest. However, [53] showed that males more susceptible than female to many seropositive parasites.

Al-Ghezy [54] referred that the highest infection rate has scored in age group (36-40) years 30.5%. In the examining of 400 serum samples of aborted women by using ELISA test, 92 samples 23% and the highest infection rate has scored in age group (36-40) years 30.5%.

In a study of prevalence of toxoplasmosis in pregnant women in Al-Muthana Province – Iraq, [55] found that there was significant effect of age on proportion rate which increase directly with age, highest infection rates were in (35-39) age group, while lowest at (15-19) age group. The increase in the level of toxoplasmosis infection with increasing age was also confirmed by other studies.

Jassam, [56] recorded that the age group of (20-29) years had the lowest rate 28.6% and the age group of (30-39 ; 40-49) and (50) with the highest rates 48.6%, 44% and 58.1% respectively.

Several results of different regions that indicated the percentage of anti T. gondii antibodies was increased with age (57), with only a few studiers failing to identify such an association (58-60).

The overall seroprevalence of toxoplasmosis in South Africa was 18.15%, while among males was 16.7% and females 18.6%. The serologic evidence of toxoplasmosis in Ethiopia was found in 60% of them. The overall anti T. gondii IgG prevalence in China was 12.3% [10].

Williams et al., [61] pointed that the incidence increases with age but to a peak of 34 years. In Iran [62] showed that the seroprevalence of toxoplasmosis was 48.8% in men and 55.2% in women. Other results showed no significant difference with age factor but the highest infection rate occurred in age group (31-35) years [63].

High prevalence values of infection with T. gondii were found in adult women, this probably happened due to more frequent exposure to toxoplasma through cat’s contact, soil exposure [64]. The difference of results between studies can attributed to the differences in the specificity and sensitivity of methods used for examining the response against the parasite [65].

This rising trend with age, reflects the continuity of risk infection throughout adult life and arises from the accumulative risk of exposure and infection with age in an environment where transmission is encouraged by the high density of feral cats [66].

Level of titer of anti toxoplasma antibodies
In current study, the titer level of anti toxoplasmosis antibodies ranged between 1/2 to 1/128, with a significant differences at (P> 0.05) in relation with different age groups. Higher number were in 1/2 titer level; 113/205; 55.1%, followed by 1/4; 40/205; 19.5% then 1/8; 22/205; 10.7%), 1/16; 14/205; 6.8% , 1/32; 8/205; 3.9% and each of 1/64 and 1/128; 4/205; 1.95%.
Most of the samples examined by LAT had low titration 1/10-1/40 in both married and none married women [67]. [11] showed that the results of antibodies titer by LAT was 1/128 which is reported in 25.64%.

Ehsan [32] showed that titer was ranged between 1/4 to 1/32 which indicated chronic infection. It had been concluded that toxoplasmosis were important infectious diseases affected both women and animals in Ninevah Province.

In City Santaren in the State of Para between (1977-1999) recorded a distribution of 72.72% of toxoplasmosis in 601 of human: 41 of them was pregnant women , and the prevalence was 82.9% of antibodies [68].

These variables results can attribute to the differences in the samples used in each study and their variables conditions and data of studies, the geographical

References
[1] Dodds, E. M. (2006). Toxoplasmosis. Curr. Opin. Ophthalmol., 17 (6): 557-561.
[2] Weiss, L.M. and Kim, K. (2007). Toxoplasma gondii. The model apicomplexan: perspectives and problems. London: Academic Press.
[3] Dubey, J. P.; Felix, T.A. and Kwok, O. C. H. (2010). Serological and Parasitological Prevalence of T. gondii in Wild Birds from Colorado. J. Parasitol, 96 (5): 937-939.
[4] Steven, E.; Schmitt, B.; Golovko, A.; Mehdi, E. and Santanu, K. (2008). Toxoplasmosis. Chapter 2, 9, 10 in: Barry, O. N. (edn. WB. Saunders Company, USA.:161175pp.
[5] Smith, J. E. and Reduck, N. R. (2000). T. gondii strain variation and pathogenicity. In: Cary, J. W., Linz, Bhatnagar, B. CEDs, Microbial food borne diseases: Mechanisms of pathogenesis and toxin synthesis. Technomic publishing, Lancaster, PA, 405-431.
[6] Miller, N. L.; Frenkel, J. K. and Dubey, J. P. (1972). Oral infections with Toxoplasma cysts and oocysts in feline, other mammals, and in birds. J. Parasitol, 58: 928-937.
[7] Sukthana, Y. (2006). Toxoplasmosis: Beyond animals to humans. Trends in Parasitology, 22: 137-142.
[8] Roberts, L. S. and Janovy, J. (2005). Foundation of parasitology. 7th Edn. Mc Graw- Hill Higher Education, Boston, New York: 135-137pp
[9] Reischl, U.; Bretagne, S.; Kruger, D.; Ernault, P. and Costa, J. M. (2003). Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis, 3:7.
[10] Xiao, Y.; Yin, J.; Jaing, N.; Xiang, M.; Hao, L.; Lu, H.; Sang, H.; Liu, X.; Xu, H.; Ankarklev, J.; Lindh, J. and Chen, Q. (2010). Seroepidemiology of human T. gondii infection in China. BMC Infectious Diseases, 10(4): 2-5.
[11] Tenter, A. M.; Heckeroth, A. R. and Weiss, L. M. (2000). T. gondii: from animals to humans. Inter. J. Parasitol, 30: 1217–1258.
[12] Rosso, F.; Les, J. T. and Agudelo, A. (2008). Prevalence of infection with T. gondii among pregnant women in Cali, Colombia, South America. Am. J. Trop. Med. Hyg, 78: 504-508.
[13] Karatepe, M.; Kilic, S.; Karatepe, B. and Babu, B. (2011). Prevalence of T. gondii antibodies in domestic (Columba livia domestica) and wild (Columba livia livia) Pigeon in Nigde region, Turkey. Turkey Parasitol Derg, 35: 23-26.
[14] Markell, E. K.; John, D. V. and Krostoski, W. A. (1999). Markell and Vogue’s Medical parasitology, 8th edn. WB. Saunders Company, USA.:161-175pp.
[15] Hollowman, R.E.(1995). Congenital Toxoplasmosis prevention, screening and treatment. J. Hosp. Infect, 30: 179 - 190.
[16] Yacoub, A.; A-H Bakr, S.; Hameed, A-M. Al-Thamery, A-A. and Fartoci, M.J. (2005). Seroepidemiology of selected zoonotic infections in Basra region of Iraq. J. Eastern Mediter. Heal, 1 (1-2): 112 - 118.
[17] Willson, M.; Remington, J. S.; Clavet, C.; Varney, G.; Press, C.and Ware, D. (1997). Evaluation of six commercial kits for detection of human immunoglobulin M antibodies to T. gondii. The FDA Toxoplasmosis Ad Hoc Working Group. J. Clin. Microbiol, 35 (12): 3112-3115.
[18] Denmark, I. and Chessum, B. (1978). Standardization of Enzyme-Linked Immunosorbent Assay (ELISA) and the detection of Toxoplasma antibody. Med. Lab. Sci., 35: 227-232.
[19] Meirles, L. R. (2005). Standardization and use of IgG antibodies avidity assay in the laboratorial diagnosis of animal Toxoplasmosis. Rev. Inst. Med. Trop, 47 (4): 202-203.
[20] Oie. (2008). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Toxoplasmosis, 6 (2): 1284-1293.
[21] Dubey, J. P. and Beattie, C. P. (1988). General Biology In Toxoplasmosis of animals and man. Florida, USA, CRC Press. Bocca Raton: 1-40pp.
[22] Steel, R. G. D.; Torrie, G. H. and Dickey, D. A. (1997). Principles and procedures of statistics, 3rd edn. McGraw- Hill. New York: 1746-1762pp.
[23] Dubey, J. P. (2016). Toxoplasmosis of animals and humans. CRC, Press. Bocca Raton, Florida.
[24] Cook, A. J.; Gilbert, R. E.; Buffolano, W.; Zufferey, J.; Petersen, E.; Jenum, P. A.; Foulon, W.; Semprini, A. E. and Dunn, D. T. (2000). Sources of Toxoplasma infection in pregnant women: European multicenter case-control study. European Research Network on Congenital Toxoplasmosis. British Med. J. **321**: 142–147.
[25] Jones, J. L.; Kruszon- Moran, D.; Wilson, M.; McQuillan, G., Navin, T. and McAuley, J. B. (2001). *T. gondii* infection in the United States: Seroprevalence and risk factors. *Am. J. Epid.*, **154**: 357-365.
[26] Nimri, L.; Pelloux, H. and Elkhatib, L. (2004). Detection of *T. gondii* DNA and specific antibodies in high-risk pregnant women. *Am. J. Tropical Med. and Hyg.*, **71**: 831–835.
[27] Jumaian, N. F. F. (2005). Seroprevalence and risk factors for Toxoplasma infection in pregnant women in Jordan. *Eastern Mediterranean Health J*, **11**: 45-51.
[28] Nash, J. Q. Q.; Chissel, S.; Jones, J.; Warburton, F. and Verlander, N. Q. Q. (2005). Risk factors for Toxoplasmosis in pregnant women in Kent, United Kingdom. *Epidemiol. and Infection*, **133**: 475–483.
[29] Jones, J. L.; Muccioli, C.; Belfort, R.; Holland, G. N.; Roberts, J. M. and Silveria, C. (2006). Recently acquired *T. gondii* infection, Brasil. *Emerg. Infect. Dis.*, **12**: 582-587.
[30] Rodrigues, J. Y.; Almeida, Ado B. P. F.; de Boa Sorte, E. C.; Gasparretto, N. D.; Cruz F. A. C. S. and da Sousa, V. R. F. (2016). Seroprevalence of *T. gondii* in dogs of riverside communities of Mato Grosso Pantanal, Brazil. *Revista Brasileira de Parasitologia Veterinaria*, **25**: 531–535.
[31] Herrmann, D.C.; Pantechev, N. and Vrhovec. M. G. (2010). A typical *T. gondii* genotypes identified in oocysts shed by cats in Germany. *Int. J. Parasitology*, **40 (3)** : 285-292.
[32] Ehsan, G.Z. (2013). Comparative study of hematological changes and therapeutic effect of Toxoplasmosis in Nineveh’s women and small ruminants. *Bas. J. Vet. Res.*, **12(1)**:1-12.
[33] Al-Dulaimi Z. S. Z. (2018). Prevalence of Toxoplasmosis among human Being and Animal in Baqubah City. M. Sc. thesis, College of Veterinary Medicine, University of Diyala, Iraq.
[34] Niazi, A. D.; Nasif, W. H.; Abbass, S. A. and Gzar, S. F. (1992). Prevalence of Toxoplasma antibodies in Iraqi population. *J. Fac. Med. Baghdad*, **34(3)**: 355-361.
[35] Mohammed, N. R. and Al-Nasiry, S. A. (1996). Toxoplasmosis among Iraqi women with a history of abortion. Serological study. *J. Comm. Med.*, **9**: 207-214.
[36] Al-Hamdani, M. M. and Mahdi, N. K. (1997). Toxoplasmosis among women with habitual abortion. *Med. East J.*, **3**: 310-315.
[37] Juna A.S. and Salman S. (2011). Correlation between apoptosis and Toxoplasma in abortion induction: Relevance of caspase 8. *Int. J. Med. Sc.*, **3 (6)**: 181-192.
[38] Dargham, M. B. (2011). Prevalence of Toxoplasmosis and laboratory serological diagnosis and some hematological and biochemical tests infected women in AL-Najaf province. M. Sc. Thesis, College of Health and Medical Technology, Iraq:106pp.
[39] Al-Kaysi, A. M. and Ali, N. M. (2012). Serological and biochemical study of HB, HC, HIV and Toxoplasmosis infection among blood donors in Iraq. *Egypt J. Comp. Path. and Clinic. Path.*, **23 (1)**: 1-9.
[40] Al-Dalawi, N. K. E. (2007). Hormonal disturbances in suddenly and previously aborted women affected with Toxoplasmosis in Baghdad province. M. Sc. thesis. College of Health and Medical Technology. Technical Foundation, Iraq: 125pp.
[41] Al-Ramahi, H. M.; Aajiz, N.N. and Abdhladi, H. (2005). Prevalence of Toxoplasmosis in different professional categories in Diwania Province. *J. Vet. Med.*, **4 (1)** : 30-33.
[42] AL-Mayahi, J. R. C. (2011). Epidemiological study on *T. gondii* in aborted women in Kut City. M. Sc. Thesis, College of Science, University of Baghdad, Baghdad, Iraq: 125pp.
[43] Niazi, A. D.; Omer, A. R.; Al-Hadithi, T. S. and Aswad, A. (1988). Prevalence of Toxoplasma antibodies in Iraqi pregnant women in Baghdad. *J. Fac. Med. Baghdad*, **30 (3)** : 323-329.
[44] Yacoob, S.; Bakr, A.; Hameed, M.; Al-Thamery, M. and Fartocil, J. (2006). Seroepidemiology of selected zoonotic infections in Basra region of Iraq. *Eastern Mediterranean Health J*, **12 (1)**: 82-85.
[45] Al-Door, M. A. (2010). Epidemiological study of *T. gondii* between couples in Tikrit city and experimental trial about possibility of sexual transmission of infection in mice. M. Sc. thesis, College of Education, University of Tikrit, Tikrit, Iraq.
[46] Razzak, A. H.; Wais, S. A. and Saeid, A. Y. (2005). Toxoplasmosis: the innocent suspect of pregnancy wastage in Duhok, Iraq. *Eastern Mediterranean Health J*, **11(4)**: 625-632.
[47] Al-Doski, B. D. (2000). Seroepidemiological study of Toxoplasmosis among different groups of populations in Duhok city by using Latex Agglutination Test and Indirect Hemagglutination Test. M. Sc. thesis, College of Medicine, Duhok University, Duhock, Iraq.
[48] Al-Sim'ani, R. G. (2000). A serological study to diagnose Toxoplasmosis in sheep and human in
Ninevah governorate , M.Sc. Thesis. University of Mosul, Mosul, Iraq.
[49] Skalova, A.; Novatan, M. and Kolbekova, P. (2005). Decreased level of novelty seeking in blood donors infected with Toxoplasma. Neuro. *Endocrinol. Lett.*, 26 (5): 480-486.
[50] Mohanad, M.; Shelah, A. and Abudalla, H. (2013). Seroprevalence of *T. gondii* between couples in Ramadi city using Enzyme Linked Immunosorbert Assay (ELISA). *Inter. J. of Med. and Medical Sc.,* 5 (6): 295-299.
[51] Al-Musawy, R.A. Sh.(2014). Diagnosis and epidemiological study of *T. gondii* for students of Thi-Qar University by using ELISA and polymerize chain reaction of true time. M.Sc. thesis, College of Science, University of Thi-Qar, Thi-Qar, Iraq.
[52] Al- Saady, S. H.M.(2013). The effect of Toxoplasmosis on the level of some male sex hormones in samples from National blood center, Baghdad. M.Sc. thesis, College of Science, University of Baghdad, Baghdad, Iraq.
[53] Klien, S.L.(2004). Hormonal and immunological mechanisms mediating sex differences in parasite infection parasite immuno. *J. Parasitol,* 26: 247-264.
[54] Al-Ghezy, S.J. Kh.(2012). Diagnostic study of *T. gondii* and Cytomegalovirus in pregnant and aborted women with some epidemiological and immunity parameter in Thi-Qar Province – Iraq. A thesis of M. Sc. Parasitology, Thi-Qar University, Thi-Qar, Iraq.
[55] Al- Se'adawy, M.A.H.(2010). Prevalence of Toxoplasmosis in pregnant women in Al- Muthna Province- Iraq. *Kufa J. for Vet. Med. Sc.,* 1 (1): 166-173.
[56] Jassam, F. S. (2010). Relationship between Toxoplasmosis and testosterone hormone among schizophrenic patients in Baghdad. M. Sc. Thesis, College Council of Health and Medical Technology, Baghdad, Iraq: 81pp.
[57] Kolbekova, P.; Kourbatova, E.; Novatan, M. and Flegr, J. (2007). New and old risk factors for *T. gondii* infection prospective cross - sectional study among military personnel in the Czech Republic. *Clin. Microbial. Infect.,* 13 (10): 1012-1017.
[58] Smith, K. L.; Wilson, M. and A.W.(1996). Prevalence of *T. gondii* antibodies in US military recruits in 1989. *Clin. Infect. Dis.,* 23: 1182-1183.
[59] Kortbeek, L. M.; Melker, H. E.; Veldhuizen, I. K. and Spaendonch, C. V. (2004). Population based Toxoplasma seroprevalence study in the Netherlands. *Epidemiol. Infect.,* 132: 839-845.
[60] Ertug, S.; Okyay, P.; Turkmen, M. and Yuksel, H. (2005). Seroprevalence and risk factor for Toxoplasma infection among pregnant women in Aydin province. Turkey BCM public Health.; 5: 66-8. Ferguson, T. R. (2002). Apicomplexa. *J. Parasitol,* 18: 355-357.
[61] Williams, R. H.; Morley, E. K.; Hughes, J. M.; Duncanson, P.; Terry, R. S.; Smith, J.E. and Hide, G. (2005). High levels of congenital transmission of *Toxoplasma gondii* in longitudinal and cross-sectional studies on sheep farms provides evidence of vertical transmission in ovine hosts. *Parasitol,* 130:301-307.
[62] Mohraz, M.; Farhad, M.; Sara, J.; Seyed-Ahmed, S; Linaghi, A.; Duman, S.; Fatemeh, F.; Hossain, J.and Mahboubeh, H.(2011). Seroprevalence of Toxoplasmosis in HIV \ AIDS patient in Iran. *Acta Medica Iranica,* 49(4):213-218.
[63] Fernands, S. S. J. (2010). Studies on the influence of toxoplasmosis on some hematological and histologic criteria of infected pregnant and health women. M. Sc. Thesis, College of Sciences, University of Al- Mustansiriyah< Baghdad, Iraq: 95pp.
[64] Spalding, S. M.; Amendfoeira, M. R. R. Klein, C. H. and Ribeiro, L. C. (2005). Serological screening and toxoplasmosis exposure factors among pregnant women in south of Brazil. *Rev. Soc. Bras. Med. Trop,* 38: 173-177.
[65] Suzuki, Y.; and John, K. (1994). Effect of the strain of *T. gondii* on the development of toxoplasmosis encephalitis in mice treated with antibody by interfereron- gamma. *Parasitol. Res.,* 80: 125-130.
[66] Abu- Madi, M. A.; Al- Molawi, N. and Behnker, J. M.(2008). Seroprevalence and epidemiological correlates of *T. gondii* infections among patients referred for hospital – based serological testing in Doha, Qatar. *Parasit. Vectors,* 1: 39.
[67] Hiro, M.O.(2014). Serological and microscopical detection of *T. gondii* in Kirkuk- city -Iraq. *Diyala J. for Pure Sc.,* 10(4): 46-55.
[68] Montoya, J. G. and Remington, J. S. (2000). *T. gondii*. In: Mandel GL.; Bennett J.E.; Dolin R.; eds, Mandell, Douglas, and Bennets’ Principles and Practice of Infectious Diseases, 5th Edn. Philadelphia: Churchill Livingstone: 2858-2881.
العنوان
حوثية داء المقوسات في مدينة بعقوبة / ديالى / العراق

الناشر
ميادة نزار جبار الخفاجي، سارة رعد محمد، شيماء فرحان عبد الكريم
قسم علوم الحياة، كلية العلوم، جامعة ديالى، ديالى، العراق

المختصر
انجزت الدراسة الحالية لتحديد انتشار الإصابة بطفيلي داء المقوسات في المرضى المراجعين لقسم الطوارئ - المستشفى العام، ومستشفى البتول لمولادة والاطفال، بعقوبة، محافظة ديالى، العراق، باعتماد الفحص المصمي من تشرين الأول 2018 إلى شباط 2019.

جمعت نماذج من الدم من 03 اثاث يفاع، 285 اثاث بالغة (248 اثاث) ، و49 ذكر يفاع، 203 ذكر بالغ (252 ذكر) ، ونيلك يكون العدد الكلي 500 نموذج دم. والذين كانوا يعانون من حالات مرضية مختلفة كاضطراب في الحمل، الاختلالSr. الهرموني، داء السكري، الخ.. اعتمد اختبار لاتكس التلازني (Latex agglutination test (LAT)، والأليزا (ELISA) لتقديم وجود اضداد المقوسات.

اشتارت النتائج إلى أن الفاعل الموجب الكلي المسجل في اختبار لاتكس 205 / 500، 41%، منها 99 / 500، 19.8% في الثياب البالغات، 17 / 500، 3.4% في الثياب البالغات، 81 / 500، 16.2% في الذكور البالغين، 18 / 500، 3.6% في الذكور اليافاعين، أما نتائج اختبار الأليزا فكانت 22 / 100، 22% . تراوح معيار اضداد المقوسات بين (1 / 2 إلى 1 / 128).

سجلت الدراسة أن الإصابة بداء المقوسات كانت أعلى في الاثاث والذكور البالغين، والأكثر في الاثاث مما في الذكور، ويشير مستوى الأضداد إلى أن الأشخاص في الدراسة اما حاملي الطفيلي أو مصابين بإصابة مزمنة.