Early red nucleus atrophy in relapse-onset multiple sclerosis

Monica Margoni1,2 | Davide Poggiali2,3 | Sofia Zywicki1 | Martina Rubin1 |
Andrea Lazzarotto4 | Silvia Franciotta1 | Maria Giulia Anglani4 | Francesco Causin4 |
Francesco Rinaldi1 | Francesca Rinaldi1 | Paola Perini1 | Massimo Filippi5,6,7,8 |
Paolo Gallo1,9

1Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
2Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy
3Department of Mathematics, University of Padua, Padua, Italy
4Neuroradiology Unit, University Hospital of Padua, Padua, Italy
5Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
6Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
7Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
8Vita-Salute San Raffaele University, Milan, Italy
9Department of Neurosciences, Medical School, University of Padua, Padua, Italy

Correspondence
Monica Margoni, Multiple Sclerosis Centre of the Veneto Region, Padua Neuroscience Centre, University of Padua, Via Giustiniani 2, 35128 Padova, Italy.
Email: monica.margoni@studenti.unipd.it

Abstract
No study has investigated red nucleus (RN) atrophy in multiple sclerosis (MS) despite cerebellum and its connections are elective sites of MS-related pathology. In this study, we explore RN atrophy in early MS phases and its association with cerebellar damage (focal lesions and atrophy) and physical disability. Thirty-seven relapse-onset MS (RMS) patients having mean age of 35.6 ± 8.5 (18–56) years and mean disease duration of 1.1 ± 1.5 (0–5) years, and 36 age- and sex-matched healthy controls (HC) were studied. Cerebellar and RN lesions and volumes were analyzed on 3 T-MRI images. RMS did not differ from HC in cerebellar lobe volumes but significantly differed in both right (107.84 ± 13.95 mm3 vs. 99.37 ± 11.53 mm3, p = .019) and left (109.71 ± 14.94 mm3 vs. 100.47 ± 15.78 mm3, p = .020) RN volumes. Cerebellar white matter lesion volume (WMLV) inversely correlated with both right and left RN volumes (r = −.333, p = .004 and r = −.298, p = .010, respectively), while no correlation was detected between RN volumes and mean cortical thickness, cerebellar gray matter lesion volume, and supratentorial WMLV (right RN: r = −.147, p = .216; left RN: r = −.153, p = .196). Right, but not left, RN volume inversely correlated with midbrain WMLV (r = −.310, p = .008), while no correlation was observed between whole brainstem WMLV and either RN volumes (right RN: r = −.164, p = .164; left RN: r = −.64, p = .588). Finally, left RN volume correlated with vermis VIIb (r = .297, p = .011) and right interposed nucleus (r = .249, p = .034) volumes. We observed RN atrophy in early RMS, likely resulting from anterograde axonal degeneration starting in cerebellar and midbrain WML. RN atrophy seems a promising marker of neurodegeneration and/or cerebellar damage in RMS.

KEYWORDS
cerebellum, MRI, red nucleus
1 | INTRODUCTION

The red nucleus (RN), a large neuronal structure located in the most rostral part of ventral midbrain, owes its name to its high iron content, which makes it clearly identifiable both in fresh tissue sections and in T2-weighted magnetic resonance imaging (MRI) sequences. According to its cytoarchitecture, the RN is divided in a rostral parvocellular part (pRN), accounting for up to 80% of the nucleus volume and receiving inputs primarily from the nucleus dentatus, and a caudal magnocellular part (mRN, 20%) receiving inputs primarily from nucleus interpositus and nucleus emboliform (Massion, 1988; Onodera & Hicks, 2009; ten Donkelaar, 1988).

mRN and pRN have different functional roles. While mRN is involved in intra- and inter-limb coordination (Lavoie & Drew, 2002) and probably plays a role in compensating lesions of the corticospinal tract (Belhaj-Saif & Cheney, 2000; Siegel, Fink, Strittmatter, & Cafferty, 2015), pRN has been suggested to be involved in more complex functional networks, including those integrating cognitive-motor functions such as motor learning, error encoding, timing, and control of the ongoing movement (Habas, Guillevin, & Abanou, 2010; Lang et al., 2017; Reid et al., 2009). These observations further point out the association of specific cerebellar lobules with cognitive and affective functions (Koziol et al., 2014; Lazzarotto et al., 2020; Schmahmann & Sherman, 1997). Finally, worth of interest is also the possible role of cerebellar and RN damage in the early development of disabling multiple sclerosis (MS) symptoms such as fatigue and depression (Lazzarotto et al., 2020).

The cerebellum and the brainstem are major sites of pathology in MS and their involvement, although frequently asymptomatic, is known to be associated with a more severe prognosis (Damasceno, Von Glehn, Brandao, Damasceno, & Cendes, 2013; Tintore et al., 2010). Lesions damaging RN structure and connections may cause severe clinical picture, such as the rubral tremor (Koch, Mostert, Heersema, & De Keyser, 2007). Due to its major connections with the cerebellum, RN atrophy can result from trans-synaptic degeneration following cerebellar damage. Indeed, in a preclinical study in mutant mice, the loss of Purkinje cells was followed by the progressive atrophy of deep cerebellar nuclei due to anterograde trans-synaptic degeneration (Triarhou, Norton, & Ghetti, 1987).

Given these premises, we aimed to explore whether RN atrophy can be detected in the early disease phases, and whether this is associated with cerebral or cerebellar MRI metrics of white matter (WM) or gray matter (GM) damage, and early physical disability in relapse-onset MS (RMS) patients.

2 | MATERIALS AND METHODS

2.1 | Patients

Thirty-seven relapsing–remitting (RRMS) patients (mean age: 35.6 ± 8.5 years; range: 18–56 years; F/M: 25/12) who met the 2010 and 2017 diagnostic criteria (Polman et al., 2011; Thompson et al., 2018) were enrolled in this retrospective study. Thirty-six sex- and age-matched healthy controls (HC) (mean age: 33.8 ± 9.9 years; range: 23–63 years; F/M = 24/12) constituted the reference population.

All patients that were diagnosed to have MS in the period March 2014 to August 2018, were selected according to the following criteria: (a) age range, 18–65 years; (b) clinical disease duration <5 years; (c) no history/evidence of neurologic or psychiatric disorders other than MS; (d) no history of alcohol or drug abuse; (e) good quality of MRI (i.e., we excluded those with movement artifacts).

Each participant gave written informed consent and the study was approved by the local Ethics Committee, according to the IV revision of Declaration of Helsinki.

2.2 | Clinical assessment

All patients underwent a neurological examination, including Expanded Disability Status Scale (EDSS) (Kurtzke, 1983) within 1 week from the MRI acquisition.

2.3 | MRI data acquisition

MRI was obtained on a 3.0 T scanner (Ingenia, Philips Medical Systems, Best, The Netherlands) with 33 mT/m power gradient and a 32-channel head coil. No major hardware upgrades occurred during the study, and bimonthly quality assurance sessions assured measurement stability. The MRI protocol included the following sequences: (a) three-dimensional (3D) T1 TFE: repetition time (RT) = 7,2, echo time (ET) = 3,3, TFE factor = 218; 165 contiguous axial slices with the off-center positioned on zero with thickness of 1.0 mm; flip angle = 9; matrix size = 220 × 218; FOV = 240 × 240 × 181.5 mm; (b) 3D-FLAIR: RT = 4,600 ms, ET = 293 ms, inversion time (IT) = 1,650 ms; 331 contiguous axial slices with thickness of 1.0 mm; matrix size = 220 × 217; and FOV = 240 × 240 × 182 mm; (c) 3D-DIR: RT = 5,500 ms, ET = 294 ms, inversion time (IT) = 2,550 ms; 281 contiguous axial slices with thickness of 1.0 mm; matrix size = 208 × 209; and FOV = 250 × 250 × 168 mm.

2.4 | MRI data processing

Quantification of both WM lesion volume (WMLV) on FLAIR images and GM lesion volume (GMLV) on DIR images was performed in each patient by two experienced observers (SZ, MR), unaware of subject identity, employing a semiautomated segmentation technique (ITKSNAP).

Mean cortical thickness and intracranial volume (ICV) were obtained by applying the Freesurfer software on lesion-filled 3D-T1 weighted images (Fischl & Dale, 2000).

Cerebellar volumes were calculated on lesion-filled 3DT1-weighted images using the spatially unbiased infratentorial toolbox (SUIT) version 3.2, implemented in statistical parametric mapping 12 (SPM 12) (software: http://www.fil.ion. ucl.ac.uk/spm).

Cerebellum and brainstem were identified and isolated automatically, and a mask was automatically generated by calculating the
maximum of the probability of each voxel belonging to one of these structures. Each obtained mask was visually inspected. Next, the isolated cerebellum was aligned to the SUIT atlas template via an affine transformation (for the linear part of the normalization) and a nonlinear transformation using the diffeomorphic anatomical registration using Exponentiated Lie algebra (Avants et al., 2011). The individual cerebellum was therefore resliced in the atlas space, modulating in order to grant volume preservation (D’Ambrosio et al., 2017). Finally, by applying an inverse transformation matrix derived from the previous co-registration step, the SUIT atlas was aligned to the native subject space, and lobular volumes were calculated.

RN volumes were obtained from FLAIR images using a FLAIR template in MNI152 space, derived from a sex and age-matched healthy population. Priors probability images of RN, manually labeled on high resolution MRIs of a healthy population \((n = 44, F/M = 21/23, \text{mean age: 32.9, range: 18–60})\), were also employed (Winkler, Kochunov, & Glahn, n.d.; Ashburner & Friston, 2005; Keuken et al., 2014; Keuken et al., 2017; Kochunov et al., 2006). FLAIR images were nonlinearly registered to the FLAIR template by means of ANT's registration tool (Avants, Epstein, Grossman, & Gee, 2008), and the inverse warp was applied to priors. From the so-obtained priors in patient’s space, the posteriors probability images were computed by means of Atropos (Wang & Yushkevich, 2013) (Figure 1).

Two experienced investigators (MM, DP), blinded to clinical data, visually inspected all RN. Only in three cases the pipeline was re-run due to inconsistent segmentation.

3 | STATISTICAL ANALYSIS

Statistical analysis was performed using SPSS Statistics 23 (SPSS Chicago, Illinois). A Shaprio-Wilk test and visual analysis of histograms were used to test the normality of the data.

Student’s t test was used to test group differences in term of age, \(\chi^2\) test was used to test possible differences in terms of sex.

Group differences in terms of cerebellar and RN volumes were tested via multivariate Generalized Linear Model (GLM), including ICV as a covariate of no interest to account for head size. Correlations between MRI metrics and clinical disability were explored with Spearman’s rank correlation coefficient.

All \(p\) values were two-sided and considered statistically significant when \(p < .05\). Since our study is exploratory, we did not adjust for multiple comparisons.

4 | RESULTS

4.1 | Clinical and MRI findings in RRMS and HC

RRMS and HC did not differ in age \((p = .42)\) and sex \((p = 1.0)\). At MRI scan, the patients had mean disease duration of 1.1 ± 1.5 years \((\text{range 0–5})\) and median EDSS score of 2.0 \((\text{interquartile range [IQR]: 1.5–2.0}, \text{range: 1.0–6.0})\). The median cerebellar, brainstem and pyramidal functional system (FS) scores were 0.0 \((\text{IQR 0.0–0.0; range: 0.0–2.0})\), 0.0 \((\text{IQR 0.0–0.0: range: 0.0–2.0})\) and 1.0 \((\text{IQR 1.0–1.0; range: 0.0–3.0})\), respectively.

RRMS had a mean supratentorial white matter lesion volume \((\text{WMLV})\) of 341.02 ± 1,172.80 mm\(^3\), cerebellar \(\text{WMLV}\) of 123.13 ± 163.43 mm\(^3\), brainstem \(\text{WMLV}\) of 85.08 ± 147.0 mm\(^3\), midbrain \(\text{WMLV}\) of 25.13 ± 56.45 mm\(^3\) and cortical gray matter lesion volume \((\text{GMLV})\) of 59.65 ± 214.43 mm\(^3\). Mean cortical thickness did not differ between RRMS and HC \((5.78 ± 0.27 \text{ mm vs. 5.87 ± 0.38 mm, } p = .371)\).

Table 1 summarizes the main demographic, clinical and MRI characteristics of the groups.

4.2 | RN volume is decreased in RRMS compared with HC

Anterior and posterior cerebellar lobe volumes did not differ between MS patients and HC. Despite the very short disease duration, MS

FIGURE 1 A schematic illustration of the processing pipeline to evaluate red nucleus volume (see Material and Methods for explanations)
patients had a significant reduction of both right \(p = .019; 107.84 \pm 13.95 \text{ mm}^3 \text{ vs. } 99.37 \pm 11.53 \text{ mm}^3 \) and left RN \(p = .020; 109.71 \pm 14.94 \text{ mm}^3 \text{ vs. } 100.47 \pm 15.78 \text{ mm}^3 \) volume compared with HC (Table 1). A complete list of the cerebellar volumetric analysis, with the respective \(p \) values, is reported in Table 2.

TABLE 1 Demographic and clinical features of the groups included in the study

	HC (n = 36)	RRMS (n = 37)	\(p^* \)
Sex, F/M	24/12	25/12	1.0
Age at MRI scan, mean \(\pm \text{ SD} \) (years)	33.8 \(\pm \) 9.9	35.6 \(\pm \) 8.5	.42
Disease duration, mean \(\pm \text{ SD} \) (years)	-	1.1 \(\pm \) 1.5	-
EDSS, median (IQR)	-	2.0 (1.5–2.0)	-
Right RN, mean \(\pm \text{ SD} \) (mm\(^3\))	107.84 \(\pm \) 13.95	99.37 \(\pm \) 11.53	.019 *
Left RN, mean \(\pm \text{ SD} \) (mm\(^3\))	109.71 \(\pm \) 14.94	100.47 \(\pm \) 15.78	.020 *
Mean cortical thickness (mm)	5.87 \(\pm \) 0.38	5.78 \(\pm \) 0.27	.371
Cerebellar WMLV, mean \(\pm \text{ SD} \) (mm\(^3\))	-	123.13 \(\pm \) 163.43	-
Supratentorial WMLV, mean \(\pm \text{ SD} \) (mm\(^3\))	-	341.02 \(\pm \) 1,172.80	-
Brainstem WMLV, mean \(\pm \text{ SD} \) (mm\(^3\))	-	85.08 \(\pm \) 147.0	-
Midbrain WMVL, mean \(\pm \text{ SD} \) (mm\(^3\))	-	25.13 \(\pm \) 56.45	-
Cortical GMLV, mean \(\pm \text{ SD} \) (mm\(^3\))	-	59.65 \(\pm \) 214.43	-

Abbreviations: EDSS, expanded disability status scale; GMLV, gray matter lesion volume; HC, healthy controls; IQR, interquartile range; RN, red nucleus; RRMS, relapsing-remitting multiple sclerosis; SD, standard deviation; WMLV, white matter lesion volume.

\(^* p < .05 \).

4.3 RN volume correlates with cerebellar and midbrain WM lesions

A significant inverse correlation was found between cerebellar WMLV and both RN volumes (right: \(r = -.333, p = .004 \), and left: \(r = -.298, p = .010 \), respectively), while no correlation could be detected between RN volumes and mean cortical thickness (left RN: \(r = .155, p = .190 \); right RN: \(r = .177, p = .134 \)). cerebellar GMLV (left RN: \(r = -.125, p = .291 \); right RN: \(r = -.227, p = .053 \)) and supratentorial WMLV (right RN: \(r = -.147, p = .216 \); left RN: \(r = -.153, p = .196 \), respectively). Right, but not left, RN volume inversely correlated with midbrain WMLV (\(r = -.310, p = .008 \)), while no correlation was observed between brainstem WMLV and either RN volumes (right RN: \(r = -.164, p = .164 \); left RN: \(r = -.64, p = .588 \)).

4.4 RN atrophy associates with cerebellar lobule atrophy and cerebellar function

Some low/moderate, but significant, correlations emerged between the volume of RN volume and that of some cerebellar lobules. Namely, the left RN volume correlated with vermis VIIb (\(r = .297, p = .011 \)) and right interposed nucleus (\(r = .249, p = .034 \)) volumes. Moreover, the right RN volume correlated with cerebellar FS score of EDSS \(r = -.360, p = .029 \).

No correlation was found between RN volumes and disease duration (right RN: \(r = -.318, p = .055 \); left RN: \(r = -.274, p = .101 \)) or EDSS score (right RN: \(r = -.168, p = .444 \); left RN: \(r = -.09, p = .679 \)).

5 DISCUSSION

Looking for early markers of neurodegeneration in RMS, we explored RN changes in a very early disease phase. Since the cerebellum and its connections are major sites of MS-related pathology (Parmar et al., 2018) and a pre-clinical study in Purkinje cell degeneration mutant mice disclosed trans-synaptic degeneration of deep cerebellar nuclei (Triarhou et al., 1987), our working hypothesis was that early RN atrophy could be the result of trans-synaptic anterograde axonal neurodegeneration starting in cerebellum WM and GM lesions.

We observed that RN volume in RMS, having very short disease duration \((1.1 \pm 1.5 \text{ years}) \), was significantly lower compared with matched HC and correlated with cerebellar and midbrain WMLV, but not with supratentorial WMLV. Moreover, RN volume directly associated with the volume of some cerebellar lobules, but not with cerebellar GMLV. These observations suggest that RN atrophy could, at least partly, result from an axonal degeneration starting in cerebellum and midbrain WM lesions.

Our findings are particularly interesting on the light of previous observations in other neurological diseases. Indeed, RN volume was increased in patients with Parkinson’s disease and significantly correlated with disease duration and severity, suggesting a compensatory activation of this nucleus (Colpan & Slavin, 2010), probably aimed at compensating the impaired function of the extra-pyramidal network. Moreover, in nonhuman primates (Philippens, Wubben, Franke, Hofman, & Langermans, 2019) larger RN volume inversely associated with the severity of extra-pyramidal symptoms. Finally, a damaged striato-thalamo-cortical pathway was found to result in a compensatory increase in RN activation (Philippens et al., 2019). All these observations suggest a compensatory function of RN in the presence of an extra-pyramidal disorder.

The RN seems to play a compensatory role even in patients with severe corticospinal tract injury following ischaemic stroke. Indeed, elevated levels of neuronal activity were observed in the RN of the affected hemisphere, especially in the early phases following stroke,
suggesting that RN could work as a compensatory structure to support the residual motor functions (Yeo & Jang, 2010). Microstructural RN changes, reflecting plastic and functional remodeling and associated with better motor function recovery, have been confirmed in other studies (Takenobu et al., 2014).

The above-summarized findings in Parkinson’s disease and stroke strongly differ from our observations. Indeed, while direct pyramidal and extra-pyramidal damages are followed by a compensatory reaction of the RN, cerebellar damage associates with its atrophy. Thus, the initial RN atrophy observed in early RMS phases, may be considered a potential MRI marker of neurodegeneration following cerebellar damage and merits to be further investigated as negative prognostic factor. Indeed, the early NR atrophy might impair its potential functional compensatory role in case of corticospinal damage, that is, one of the major determinants of disability in MS.

Our data are in line with the increasing evidence of atrophy of deep gray matter nuclei in early RMS stages (Eshaghi et al., 2018), which indicates that this MRI metric may have a prognostic value since it associates with an increased risk of EDSS progression (Eshaghi et al., 2018) and cognitive decline in a relative shorter time (Riccitelli et al., 2011; Schoonheim et al., 2015). Interestingly, we also found an inverse association between RN atrophy and the cerebellar FS score of EDSS, suggesting that NR atrophy may be a specific marker of cerebellar damage rather than a generic marker of diffuse neurodegeneration.

The initial and significant, although slight correlations between RN atrophy and some cerebellar lobule atrophy indicates that the loss of volumes of these structures may proceed in parallel, probably as a

TABLE 2	Mean cerebellar volumes (mm³) and SD of RRMS and healthy controls (HC)					
	HC (n = 36)	RRMS (n = 37)				
	Mean	SD	Mean	SD	Mean	SD
Left I-IV	0.002301502	0.000670027	0.002376645	0.000561846	.614	
Right I-IV	0.002590352	0.000842328	0.002791260	0.000681491	.311	
Left V	0.002919112	0.000872980	0.003009530	0.000723322	.628	
Right V	0.002740069	0.000927967	0.002935002	0.000692913	.298	
Left VI	0.006317410	0.002007192	0.006480943	0.001637477	.724	
Vermis VI	0.001424024	0.000449293	0.001430352	0.000349973	.973	
Right VI	0.005369853	0.001606742	0.005707507	0.001348242	.747	
Left crus I	0.009709009	0.002741510	0.009378255	0.002320982	.512	
Vermis crus I	1.06528E-05	5.61335E-06	1.10246E-05	6.81924E-06	1.000	
Right crus I	0.008383129	0.002303089	0.008636830	0.001948583	.705	
Left crus II	0.006719993	0.002055345	0.006905223	0.001895466	.769	
Vermis crus II	0.000351424	0.000101609	0.000338894	8.20934E-05	.595	
Right crus II	0.006144499	0.001827956	0.006507936	0.001707451	.487	
Left VIIb	0.003326942	0.001027895	0.003502277	0.000866804	.455	
Vermis VIIb	0.000160291	5.13925E-05	0.000150075	4.06692E-05	.480	
Right VIIb	0.003379965	0.001037441	0.003513652	0.000856862	.564	
Left Villa	0.003382879	0.001072485	0.003625168	0.000891045	.327	
Vermis Villa	0.000891382	0.00258704	0.000861586	0.000186131	.558	
Right Villa	0.003322524	0.001090567	0.003514819	0.000879843	.440	
Left VIIb	0.002637954	0.000846047	0.002854016	0.000777884	.274	
Vermis VIIb	0.000443174	0.000128391	0.000455487	9.50461E-05	.685	
Right VIIb	0.002931313	0.000941996	0.003119420	0.000791151	.390	
Left IX	0.002375767	0.000705225	0.002399400	0.00059463	.771	
Vermis IX	0.000560461	0.000139537	0.000567502	0.000113259	.773	
Right IX	0.002854704	0.000838599	0.002868548	0.000646645	.878	
Left X	0.000363149	0.000127645	0.000389401	0.000138833	.305	
Vermis X	0.000275069	6.7564E-05	0.000292240	6.6236E-05	.211	
Right X	0.000431827	0.000139280	0.000466224	0.000120889	.242	
Left dentate	0.000568435	0.000125495	0.00057703	0.000115679	.660	
Right dentate	0.000546634	0.000147238	0.000538615	0.000106714	.910	
Left interposed	9.126E-06	3.7176E-06	8.17138E-06	3.23017E-06	.200	
Right interposed	5.60918E-06	2.51593E-06	5.56481E-06	2.32856E-06	1.000	

Note: p values were calculated with Generalized Linear Model; significance level was set at p < .05.
consequence of retrograde and trans-synaptic anterograde axonal
degenerations starting in cerebellar WM lesions (Figure 2). Conse-
quently, we may argue that RN atrophy could also reflect cerebellar
pathology in normal appearing cerebellar white and gray matter, not
detectable by conventional MRI sequences.

We are aware of the major limitation of our explorative study,
namely, the relative low number of patients analyzed. However, we
would like to further point out the single center and blind setting of
our study, that make our data homogeneous and reliable. Moreover,
we are also aware that only longitudinal studies may help to draw
conclusions on the clinical prognostic value of RN. Thus, we intend to
follow our cohort of patients in order to verify this hypothesis.

Concluding, we found evidence of RN atrophy in very early stages
of RMS and its association with cerebellar and midbrain WMLV and
selective cerebellar lobule atrophy. RN atrophy is worthy of consider-
ation as a promising marker of subclinical cerebellar damage and neu-
rodegeneration in RMS. The prognostic value of RN atrophy merits to
be explored given the relative simplicity with which this nucleus can
be visualized and measured on routinely available MRI sequences.

DISCLOSURE OF INTERESTS

Monica Margoni reports grants from Genzyme Sanofi, Merck Ser-
ono, Biogen Idec, grants and personal fees from Novartis, during the
conduct of the study. Sofia Zywicki, Davide Poggiali, Martina Rubin
have nothing to disclose. Alice Riccardi reports personal fees from
Mylan, Biogen Idec, Genzyme Sanofi. Francesca Rinaldi reports
grants and personal fees from Genzyme Sanofi, Merck Serono,
Biogen Idec, Genzyme Sanofi, grants from Novartis, grants from
University of Padua, Department of Neurosciences DNS, grants from
Veneto Region of Italy, grants from Italian Association for Multiple Sclerosis (AISM), grants from Italian Ministry of Public
Health, during the conduct of the study.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

ORCID

Monica Margoni https://orcid.org/0000-0002-9232-8964

Massimo Filippi https://orcid.org/0000-0002-5485-0479

REFERENCES

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage,
26(3), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric
diffeomorphic image registration with cross-correlation: Evaluating
automated labeling of elderly and neurodegenerative brain. Medical
Image Analysis, 12(1), 26–41. https://doi.org/10.1016/j.medimg.2007.
06.004

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C.
(2011). A reproducible evaluation of ANTs similarity metric perfor-
mance in brain image registration. NeuroImage, 54(3), 2033–2044.
https://doi.org/10.1016/j.neuroimage.2010.09.025

Belhaj-Saif, A., & Cheney, P. D. (2000). Plasticity in the distribution of the
red nucleus output to forearm muscles after unilateral lesions of the
pyramidal tract. Journal of Neurophysiology, 83(5), 3147–3153. https://
doi.org/10.1152/jn.2000.83.5.3147

Colpan, M. E., & Slavin, K. V. (2010). Subthalamic and red nucleus volumes
in patients with Parkinson’s disease: Do they change with disease pro-
gression? Parkinsonism & Related Disorders, 16(6), 398–403. https://
doi.org/10.1016/j.parkreldis.2010.03.008

Damasco, A., Von Glehn, F., Brandao, C. O., Damasco, B. P., & Cendes, F. (2013).
Prognostic indicators for long-term disability in
