Bipolaris sorokiniana on barley seed in Finland

AARNE KURPPA

Department of Plant Pathology, University of Helsinki, SF-00710 HELSINKI 71, Finland

Abstract. Bipolaris sorokiniana is reported as a common fungus in commercially grown barley seed in Finland with possible economic importance. In 1974, when 200 samples of barley seed were surveyed the fungus was identified in 60 per cent of samples. The three following years the incidence was 19, 29 and 38%. The mean per cent seeds infected was 3.8, 1.3, 1.2 and 1.9 respectively. The highest recorded individual % was 92. The most severely infected cultivar was Paavo each year. In most cases only the seed cover was invaded by the fungus but also infection in the embryo and the cell layers surrounding it was observed. Such severely infected seeds did not germinate or the seedlings were readily infected after germination. B. sorokiniana was less frequent in the western parts of the country. Field experiments in 1972—1979 confirmed the same varietal susceptibility which was found by the survey of commercial samples of barley seed. High rainfall and relative humidity in July and August were the main factors associated with increased seed infection incidence.

Introduction

Bipolaris sorokiniana (Sacc. ex Sorok.) Shoem. (syn. Helminthosporium sativum Pamm., King & Bakke), perfect state Cochliobolus sativus (Ito & Kurib.) Dastur has a cosmopolitan distribution on many grasses and cereals and causes serious disease and economic losses in spring barley and wheat particularly in warm temperate areas (Sprague 1950, Anderson & Banttari 1976). In recent years the fungus has become more frequent in North Western Europe (Jørgensen 1974, Mäkelä 1975, Whittle 1977). The susceptible crop is readily infected by the fungus which is able to overwinter in the soil even in cool climate and because many wild grasses act as an inoculum reservoir (Jørgensen 1974, Whittle 1977). The diseases the fungus causes are a seedling blight, a foot and root rot, foliar disease, headblight and kernel blight (Anderson & Banttari 1976). Up to 15 % of yield losses have been recently reported (Whittle & Richardson 1978). There is no earlier information as to when the fungus became common in Finland, but in North Western Europe it happened during the 1950s and 1960s (de Tempe 1964, Jørgen.

Index words: Bipolaris sorokiniana, Helminthosporium sativum, Cochliobolus sativus, common root rot; barley, seed infection
SEN 1969, HEWETT 1975). A later report of KURPPA (1982) assumes the fungus gaining still increasing importance as a pathogen of spring barley in Finland.

Materials and methods

During the years 1972 to 1979, 11—19 spring barley cultivars grown in field experiments at the University Farm at Viikki were examined each year for the presense of Bipolaris sorokiniana. Experimental seed samples from North Savo Experimental Station, Maaninka were examined during 1972 and 1973. 649 commercial samples of spring barley, including those most commonly sown were taken from those seed lots received annually at the State Seed Testing Institute, Helsinki for testing for purity and germination.

Representative sub-samples of 100 seeds were placed in petri dishes (diameter 14 cm), 50 each on wet filter paper and cotton filter. The dishes were incubated at 20—22°C for six days and then examined for fungal growth. B. sorokiniana could be readily identified with a stereo microscope at the magnification of 12 to 50 times if it was present in germinating seeds.

The fungi belonging to the other genera were also recorded. The seed lots with high incidence of seed infection were further examined for possible embryo infection. The seeds were cut into two halves and one half was placed in a petri dish as described above and the other half was discarded. One hundred seeds were examined per a sample. The seed halves were observed after three days of incubation for the localization of the site of infection. During the short incubation time no growth from the seed cover could reach the embryo area, but any fungal growth within the embryo could be easily seen.

Preliminary tests of seed infection incidence included a treatment with 1 % Na-hypochloride solution. Comparison of test results with and without this treatment showed no significant differences and the treatment was discontinued.

The weather conditions during the research period:

The growing seasons 1972—1975 were warmer and seasons 1976—1978 cooler than average. The temperature during the 1979 season was near average. Summers in 1973 and 1975 were very dry and 1976, 1977 and 1979 were abnormally rainy. The precipitation during late summer 1974 was also high (ANON 1972—1979).

Results

The incidences of Bipolaris sorokiniana in spring barley seed varied marketly during the
research period 1972—1979. In certain years the fungus was widespread occurring with high levels in susceptible cultivars. Overall figures for seed infection show the fungus was common but associating with certain cultivars. In the seed samples from field experiments at University Farm, Helsinki Viikki, the fungus was very common in 1972 and 1974 but did not occur at all in 1973 and 1975. From low to moderate incidences were recorded in the following years (Table 1). During dry seasons the infection status of the sowing seed did not have any effect on the infection incidence of new grain yield, but during moist seasons the crop grown from infected seed served as an important source for spore liberation for secondary infection.

Fungal growth in individual seeds was mostly superficial and the fungal hyphae had

![Map of Finland](image)

Fig. 3. The regional distribution of the seed samples. See Table 3.

Table 1. The occurrence of *Bipolaris sorokiniana* in grain yield of different spring barley cultivars from field experiments at University Farm, Viikki during 1972—1979.

Year	Cultivar	1972	1973	1974	1975	1976	1977	1978	1979
1972	Aapo	16	16	3	14	8	12	7	12
1973	Arvo	20	0	0	3	1	0	0	2
1974	Birgitta	2	1	0	0	0	0	0	0
1975	Eva	2	0	0	0	0	0	0	0
1976	Gunilla	2	0	0	0	0	0	0	0
1977	Ingrid	2	0	0	0	0	0	0	0
1978	Kajsa	2	0	0	0	0	0	0	0
1979	Karri	2	0	0	0	0	0	0	0
1972	Pomo	16	12	8	14	2	0	0	1
1973	Suvi	0	0	0	0	0	0	0	0
1974	Tammi	0	0	0	0	0	0	0	0
1975	Teemu	0	0	0	0	0	0	0	0
1976	Hja-673	0	0	0	0	0	0	0	0
1977	Eva—Gunilla	0	0	0	0	0	0	0	0
1978	Pomo	0	0	0	0	0	0	0	0
1979	Suvi	0	0	0	0	0	0	0	0
1972	Tammi	0	0	0	0	0	0	0	0
1973	Teemu	0	0	0	0	0	0	0	0
1974	Hja-673	0	0	0	0	0	0	0	0
1975	Eva—Gunilla	0	0	0	0	0	0	0	0
1976	Pomo	0	0	0	0	0	0	0	0
1977	Suvi	0	0	0	0	0	0	0	0
1978	Tammi	0	0	0	0	0	0	0	0
1979	Teemu	0	0	0	0	0	0	0	0

- = cultivar not in experiments.

Yearly mean: 18.6 4.8 0.0 0.4 1.5 5.3 3.7
only invaded the seed coat. In 1972 severe infection of embryos or the surrounding layers was detected in many cultivars, particularly cvs Paavo, Mari and Birgitta. The highest individual percentage of embryo infection was recorded with cv. Paavo at 32%. The other common fungus species recorded each year with the survey were *Alternaria* sp., *Cephalosporium* sp., *Cladosporium* sp. and *Ulocladium* sp.. Also *Fusarium* species were common after rainy late growing seasons like 1972 and 1974. A survey of spring barley cultivars at North Savo Experimental Station, Maaninka 1972 revealed the following incidence of *B. sorokiniana* in seed samples (%): Balder 10, Etu 13, Karri 9, Lise 0, Mari 10, Paavo 8, Pirkka 0, Pomo 31, Olli 0, Otra 6 and Vigdis 19. Severe infection of the embryo was detected with the cvs Pomo and Vigdis with an incidence of 10%. The following summer the mean percent infected seeds of cv. Vigdis was 60.0.

According to surveys of commercial samples of spring barley in 1974—1977 *B. sorokiniana* was a common and widespread fungus throughout the country, wherever barley is grown (Table 2). In 1974, when the fungus was exceptionally common, several samples with high incidence of seed infection were recorded. Differences in the incidence were also found between the cultivars. Each year the highest levels occurred in cv. Paavo. All these samples with high *B. sorokiniana* incidence were also severely infected in the embryos.

Clear differences in incidence between geographic areas could not be found, but it seems obvious that fungus is less frequent in Western and South Western parts of the country (Turku and Pori and Vaasa counties) (table 3).

Discussion

These surveys and other earlier observations of *Bipolaris sorokiniana* occuring in barley crop by Mäkelä (1971, 1972, 1975) and barley seed by Kurppa (1975) show decisively the incidence of the fungus in barley in Finland.

The infection incidence was clearly associated with certain cultivars as also reported by de Tempe (1964), Kietreiber (1973, 1974) and Whittle (1977). The true susceptibility to seed borne infection is related to the invasion to the seed by the fungus as reported by Anderson and Banttari (1976). Superficial invasion is effectively controlled by the use of mercurial seed treatment but infection in the embryo or the surrounding cell layers is not controlled.

Differences in the disease incidence and fungal incidence have also been reported between areas and years by Jörgensen (1969) and Kietreiber (1973, 1974) and these are strongly related to the weather conditions as shown by Couture and Sutton (1977). The higher incidence in central part of the country rather than in the coast area is associated to higher relative humidity and afternoon showers which are more frequent outside the coast area during the critical period of seed ripening.

No regional differences in disease incidence could be found associated to sowing seed because commercially distributed seed is mainly used for sowing. Seed dressing to control the pathogen is increasingly important because it also helps to prevent the accumulation of the fungus as a destructive soil borne pathogen. This is particularly true after rainy growing seasons.

The most important factor in seed infection is the location of the fungus in the seed, either in the seed coat or in the embryo.

Acknowledgements. The State Seed Testing Institute is acknowledged for providing research material. Special thanks are due to professor Eeva Tapio and Dr. Kaiho Mäkelä for the support and good advice they have given me in my work. I also wish to thank Dr. Randall Kelley for linguistic revision of the English text.
Table 2. The occurrence of *Bipolaris sorokiniana* in commercial samples of spring barley examined yearly during 1974—1977.

Cultivar	Number of samples examined	Per cent samples infected	Per cent seeds infected	The highest recorded individual %												
	1974	1975	1976	1977		1974	1975	1976	1977		1974	1975	1976	1977		
Six-row cvs																
Eero	0	2	6	13	—	0.0	0.0	23.0	—	0.0	0.0	0.0	—	—	—	2
Etu	11	4	4	9	63.7	25.0	25.0	56.0	4.6	2.7	1.0	1.6	27	11	4	4
Hja-673	3	8	33	25	100.0	13.0	27.0	20.0	4.0	0.1	0.8	0.8	6	1	4	10
Otra	59	30	54	34	38.0	7.0	11.0	41.2	1.0	0.1	0.2	1.1	7	1	3	7
Paavo	5	8	6	5	100.0	88.0	67.0	100.0	47.4	11.8	12.8	17.4	92	45	35	58
Pirkka	23	14	16	9	48.0	21.4	37.5	55.6	1.1	0.4	1.2	1.7	9	3	6	4
Pomo	21	18	25	18	85.7	11.1	55.6	27.8	3.2	0.2	1.6	1.1	10	2	8	8
Suvi	18	10	5	4	100.0	20.0	60.0	75.0	4.4	0.3	1.2	2.7	9	2	2	6
Teemu	0	0	3	4	—	—	0.0	100.0	—	—	0.0	3.8	—	—	—	6
Two-row cvs																
Birgitta	2	0	0	0	100.0	—	—	—	34.0	—	—	—	63	—	—	—
Eva	0	4	9	10	—	50.0	44.4	50.0	—	0.8	0.8	3.0	—	2	3	21
Ingrid	18	6	4	4	66.7	16.7	0.0	25.0	2.1	0.2	0.0	0.8	11	1	0	3
Karri	37	19	7	9	70.0	15.8	28.6	33.3	2.6	0.9	0.7	1.5	12	12	4	9
Mari	3	1	0	0	66.7	0.0	—	—	9.7	0.0	—	—	22	0	—	—

Yearly number of samples examined: 200 126 173 150

Mean per cent of samples and seeds infected: 60.0 19.0 28.9 38.0 3.8 1.3 1.2 1.9
Table 3. The regional occurrence of *Bipolaris sorokiniana* in Finland during the growing seasons 1974—1977 as determined by a survey of commercial samples of spring barley.

County	Number of samples examined	Per cent samples infected						
	1974	1975	1976	1977	1974	1975	1976	1977
1 Turku and Pori	57	43	72	63	62.6	20.9	26.4	23.8
2 Uusimaa	31	24	31	15	62.5	16.7	45.2	46.7
3 Kymi	27	11	24	13	66.7	18.2	29.2	84.6
4 Häme	30	15	6	20	65.9	13.3	16.6	35.0
5 Mikkeli	11	1	1	2	71.4	(100.0)	(100.0)	(50.0)
6 Vaasa	22	20	27	26	43.5	10.0	11.1	34.6
7 Central Finland	6	0	5	8	83.3	—	60.0	62.5
8 Kuopio	13	5	5	3	76.9	20.0	40.0	66.7
9 Northern Karelia	2	0	0	0	(0.0)	—	—	—
10 Oulu	1	7	2	0	(100.0)	42.8	(50.0)	—

Total number of samples examined: 200 126 173 150
Mean per cent samples infected: 63.0 19.0 28.9 38.0

1 See fig. 3.

References

Anderson, W.H. & Banttari, E.E. 1976. The effect of *Bipolaris sorokiniana* on yield, kernel weight and kernel discoloration in six-row spring barleys. Pl. Dis. Rept, 60: 754—758.

Anon. 1972—1979. Kuukausikatsauksia Suomen sääoloihin. Touko-elokuu 1972—1979. Ilmatieteen laitos.

Couture, L. & Sutton, J.C. 1978. Relation of weather variables and host factors to incidence of airborne spores of *Bipolaris sorokiniana*. Can. J. Bot. 56: 2162—2170.

Hewett, P.D. 1975. A health survey of seed barley. Pl. Path. 24: 229—232.

Jørgensen, J. 1969. Species of *Fusarium* and *Helminthosporium* on seed of barley grown in Denmark during 1965—1967. Acta Agr. Scand. 19: 92—98.

—, 1974. Occurrence and importance of seed borne inoculum of *Cochliobolus sativus* on barley in Denmark. Acta Agr. Scand. 24: 49—54.

Kietreiber, M. 1973. TätBer 1972. Gesundheitszustand der Saatgutproben. Jb. 1972 Bundesanst. PflBau. Samenpruf. Wien, 59—73.

—, 1974. TätBer 1973. Gesundheitszustand der Saatgutproben. Jb. 1973 Bundesanst. PflBau. Samenpruf. Wien, 65—78.

Kurppa, A. 1975. Ohran tyvi- ja lehtilaikku — yleistä yli leveä piilevää kasvitauti. Käytännön Maamies 1975, 7: 20—21.

—, 1982. Sienituhoja siemenviljassa. Pellervo 1982, 8: 30—31.

Mäkelä, K. 1971. Some graminicolous species of *Helminthosporium* in Finland. Karstenia 12: 5—35.

—, 1972. Leaf spot fungi on barley in Finland. Acta Agr. Fenn. 124: 1—23.

—, 1975. Occurrence of *Helminthosporium* species on cereals in Finland in 1971—1973. J. Sci. Agric. Soc. Finl. 47: 181—217.

Sprague, R. 1950. Diseases of cereals and grasses in North America. 538 p. New York.

Tempe, J.de. 1964. *Helminthosporium* spp. in seeds of wheat, barley, oats and rye. Proc. Int. Seed Test. Assoc. 29: 117—140.

Whittle, A.M. 1977. *Cochliobolus sativus* on barley in Scotland. Pl. Path. 26: 67—74.

—, & Richardson, M.J. 1978. Yield losses caused by *Cochliobolus sativus* on Clermont barley. Phytopath. Z. 91: 238—256.

Ms received June 29, 1984
SELOSTUS

Bipolaris sorokiniana-sienen esiintyminen
ohran siementavarassa Suomessa

Aarne Kurppa

Helsingin yliopiston kasvipatologian laitos,
00710 Helsinki 71

Bipolaris sorokiniana (syn. *Helminthosporium sativum,* koteloaste *Cochliobolus sativus*) todettiin yleisesti ja potentiaalisesti haitallisesti sieneksi ohran siementavarassa vuosina 1972—1979 Helsingin yliopiston kasvipatologian laitoksella suoritetuissa tutkimuksissa. Vuosina 1974—1977 tutkittiin 649 siementavaraksi tarkoitettua ohraerää, joista sienen tartuttamiksi todettiin ai-kajärjestyksessä 60, 19, 29 ja 38 %. Infektoituneita jyvää oli vastaavasti keskimäärin 3.8, 1.3, 1.2 ja 1.9 % tutkiuista. Lajikkeiden välillä oli selviä alttiuseroja, Paavo oli infektoitunein kaiKKina vuosina ja yleisesti viljelty Otra tervein. Selviä eroja kaksi- ja monitahoisten lajikkeiden alttiudesta ei todettu. Sientä esiintyi maanlänsiosissa jonkin verran vähemmän kuin muualla.

B. sorokiniana esiintyi useimmiten rihmaston siemenkuoreessa, mutta monissa tapauksissa se oli infektoinut myös alkion ja sen läheiset solukerrokset, mikä aiheutti siemenen itämättömyyden tai oraan sairastumisen heti itämisen jälkeen.

Vuosina 1972—1979 tutkittujen kenttäkokeiden sato nytteiden tulokset tukivat otannalla saatuja tuloksia. Koska sieni infektoi jyväsadon sekundääräisesti tuulen mukana leviäväen kuromien välityksellä, sen runsaus siemenissä kytkeytyi erityisesti heinä- ja elokuun sade-määrin, suhteelliseen ilmankosteuteen ja myös kasvustojen lakoisuuteen. Erityisen kuivissa olosuhteissa sieni ei infektoinut kypsyvää jyväsatoa jääkaan.

Siemenin todellinen merkitys siemenlevintäisenä taudinaiheuttajana riippuu jyvien infektoituneisuusasteesta; onko sieni vain siemenkuoreessa, vaiko myös alkiossa. Pelkän siemenkuoritartunnan saanut kylvösiemen voi daan puhdistaa tehokkaasti taudinaiheuttajasta elohopeapitoisella valmistella peittämällä. Toimenpide rajoittaa osaltaan myös sienen lisääntyvää haitallisuutta maalevintäisenä taudinaiheuttajana.