Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish (*Sepia esculenta*) based on transcriptome profiling

Xiaokai Bao¹, Weijun Wang¹, Xipan Chen¹, Yanwei Feng¹, Xiaohui Xu¹, Guohua Sun¹, Bin Li², Xiumei Liu², Zan Li¹* and Jianmin Yang¹*

¹School of Agriculture, Ludong University, Yantai, China, ²College of Life Sciences, Yantai University, Yantai, China

*Correspondence
Zan Li
lizanlxm@163.com
Jianmin Yang
ladderup@126.com

SPECIALTY SECTION
This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

CITATION
Bao X, Wang W, Chen X, Feng Y, Xu X, Sun G, Li B, Liu X, Li Z and Yang J (2022) Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish (*Sepia esculenta*) based on transcriptome profiling. *Front. Immunol.* 13:963931. doi: 10.3389/fimmu.2022.963931

COPYRIGHT
© 2022 Bao, Wang, Chen, Feng, Xu, Sun, Li, Liu, Li and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of *S. esculenta*, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile *S. esculenta*. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile *S. esculenta*. Fifteen key genes that might regulate the immunity of *S. esculenta* are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed *S. esculenta* juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.

KEYWORDS
Cd and Cu co-exposure, heavy metals, immunity, protein-protein interaction network, *Sepia esculenta*, transcriptome
1 Introduction

Heavy metals were metallic elements which were difficult to be degraded and easy to accumulate in organisms (1, 2). Due to high toxicity, strong persistence, wide sources, and strong destructive of heavy metals, heavy metal pollution, especially in the ocean, has attracted attention of various countries (3, 4). In recent years, more and more effluent and waste were discharged into oceans with the rapid development of petrochemical industry, fishery, medical industry, and agriculture, resulting in the continuous increase of heavy metal content, especially Cu and Cd, in nearshore oceans, inducing a large amount of heavy metals to accumulate in marine organisms, whether they are caught or cultured, and ultimately have a certain impact on human health (5–8). Organisms living in oceans with heavy metals would accumulate large amounts of heavy metals, which significantly affected the growth, immunity, metabolism, and other processes (4, 9–11). For instance, Sfakianakis et al. found that heavy metal accumulation would induce fish deformities, which had a devastating impact on the growth and survival of fish (12). And Ivanina et al. indicated that heavy metal exposure significantly affected the immune, inflammation, metabolic, and oxidation processes of oyster (13). Cadmium (Cd) and copper (Cu) were toxic heavy metals found in the world’s oceans. They could accumulate in aquatic organisms and could significantly affect the growth, development, movement, and reproduction of them after certain accumulation levels (12, 14–19). For cephalopods, previous studies have shown that Cu can induce octopus tissue peroxidation to induce oxidative damage (20); and Cd was found to accumulate abundantly in digestive glands and induce toxic responses (21). Meanwhile, the immune responses of organisms exposed to Cd or Cu alone were significantly affected. Xie and Wen et al. found that Cd exposure suppressed expressions of immune-related genes in fish, thereby inhibiting the immune response processes (22, 23). And Sheir et al. indicated that Cd could inhibit the innate immune response of shellfish (24). Meanwhile, Cu has been reported in previous research to significantly inhibit the functions of immune cells, and inhibit lysozyme activity and phagocytosis, resulting in immune system disorders (25–27). Hitherto, the effects of Cd and Cu co-exposure on immune response mechanisms have been rarely studied in marine organisms and have not been studied in cephalopods.

Golden cuttlefish (Sepia esculenta) was an important economic cephalopod in the world, mainly distributed in the surrounding waters of eastern China, South Korea and the Philippines (28–31). It was loved by people because of its rich nutrition and valuable medicinal value (31, 32). Because of overfishing and harsh ocean conditions, the number of S. esculenta wild stocks has declined sharply, and it would even become an endangered species in recent years (33, 34). Under natural conditions, juvenile S. esculenta was spawned and hatched in the shallow water near the coast. Juveniles were vulnerable to heavy metal stress, which significantly affected their biological processes and reduced their hatchability and survival rates (35). Therefore, in order to ensure that wild resources would not be exhausted, it was urgent to study the effects of heavy metals on S. esculenta juvenile biological processes. Previous studies have shown that Cd and Cu inhibited the growth and development of mollusks and affected their immune response processes (24–26). However, immune response mechanisms of co-exposure on S. esculenta have not been widely studied and needed to be further explored.

High-throughput RNA-sequencing (RNA-Seq) was a significant technique for exploring differences between samples at the molecular level. And it was used to study the molecular functions of organisms exposed to heavy metals in recent years. For instance, Zhou et al. found that the processes of endoplasmic reticulum stress, protein modification and apoptosis of Pocillopora damicornis changed significantly after Cd exposure through transcriptome (36). And Zhao et al. indicated that Cu exposure induced the oxidative stress in the testis of Procambarus clarkii (37). Similarly, it could also be used to explore how Cd and Cu affected the immune response processes of S. esculenta at the molecular level.

In our research, we carried out transcriptome sequencing of primary hatching juvenile S. esculenta with 24 h Cd and Cu co-exposure. GO, KEGG, and protein-protein interaction (PPI) network analyses based on DEGs were used to explore key genes and pathways affecting juvenile biological functions. We first studied S. esculenta juvenile immune response mechanisms after co-exposure based on comprehensive analysis of KEGG and PPI network. Our results laid a function for exploring the effects of heavy metal pollution on biological processes of cephalopods, and further deepen researchers’ understanding of changes in immune response processes of mollusks after environmental stress.

2 Materials and methods

2.1 S. esculenta breeding and sample collection

Sepia esculenta parents in spawning period were caught in the Yellow Sea in mid-July. After a short transport, S. esculenta were temporarily reared in a breeding pond with temperature of 21 ± 1°C and salinity of 30.6 ± 0.2 to adapt to the environment. In the meantime, frozen shrimps were used to feed S. esculenta three times a day. Sepia esculenta laid eggs after a week. These eggs were collected and temporarily reared in perforated plastic pots (dissolved oxygen: 5.6 mg/L) that floated on the surface of flowing water (pH: 8.2; temperature: 20.7 ± 0.6°C; salinity: 30.5 ± 0.2) until hatching. The eggs hatched after 29 days. Two hundred
primary hatching juvenile S. esculenta (38) were collected equally in two 100 L breeding barrels, respectively. Among these, one hundred juveniles were grown in suitable seawater for 24 h (C), and another 100 juveniles were exposed for 24 h to seawater with both Cd and Cu concentrations of 50 ug/L (CuCd). Finally, these juveniles were collected at 0, 4, and 24 h, respectively, and stored at -80°C.

2.2 RNA preparation, library construction, and RNA-Seq

In each group, nine juveniles at each time points were randomly selected, and their RNA were extracted using TRIzol method: normal growth for 0 h (C_0h), normal growth for 4 h (C_4h), normal growth for 24 h (C_24h), Cd and Cu co-exposure for 4 h (CuCd_4h), and Cd and Cu co-exposure for 24 h (CuCd_24h). At each time points, equal molar mass of RNA from three juveniles were pooled as the first replicate for RNA-Seq library construction; and another six juveniles were pooled as the second and the third replicates. The remaining juvenile RNA was used for quantitative RT-PCR (qRT-PCR) verification.

In our research, we constructed library using NEBNext Ultra™ RNA Library Prep Kit for Illumina®. First, we purified mRNA from total RNA using poly-T oligo-attached magnetic beads. Secondly, mRNA broke at high temperatures, and first-strand cDNA was synthesized using the M-MuLV Reverse Transcriptase (RNase H-) based on a template of fragment mRNA and primers of random oligonucleotides. Then, second-strand cDNA was synthesized from dNTPs using DNA polymerase I and RNase H. After purification, double-stranded cDNA was end joining repaired, spliced with poly-A, and connected to the sequencing adaptor. cDNA fragments of preferentially 250–300 bp in length were selected using AMPure XP system (Beckman Coulter, Beverly, USA), and PCR was used to amplified these fragments. In the end, PCR products were purified (AMPure XP system), and the library quality was assessed on the Agilent Bioanalyzer 2100 system. Juvenile S. esculenta were sequenced by Illumina NovaSeq 6000 (Illumina, USA).

2.3 Data quality control, mapping, and differential expression analysis

First, some raw reads were removed including adapter reads, reads containing more than 10% of undetermined bases, and low-quality reads. Then, HISAT2 software (39) was used to map clean reads to reference S. esculenta genome (unpublished). And these mapped reads were compared to the NR, NT, SwissProt, KO, KOG, and Pfam databases to find their functions and used for functional enrichment analyses. FPKM was used to analyze expression level and abundance of genes. Finally, DESeq2 was used to identify differentially expressed genes (DEGs) with the criteria p-value ≤ 0.05 and fold change ≥ 1.5 (40). And the union of DEGs at each time points was used for functional analyses.

2.4 Enrichment analyses and PPI network analyses

DAVID v6.8 was used to enrich DEGs into the GO terms and KEGG signaling pathways (41). All annotated genes were used as the background gene set, and DEGs were used as a validation set to analyze the functional differences between the control and exposed groups. Then, DEGs were enriched into KEGG pathways and GO terms of biological process, molecular function, and cellular component. Finally, significantly enriched terms and pathways were identified to explore S. esculenta juvenile immune response mechanisms after co-exposure. And STRING v11.5 with default parameters was used to construct protein-protein interaction networks using DEGs enriched in the screened significant KEGG signaling pathways (42).

2.5 Quantitative RT-PCR assay

Gene-specific primers were designed using Primer Premier 5.0 (Table 1) (43). Three reference genes were identified the stability in S. esculenta tissues and embryo development stages. And β-actin was selected based on its more stable expression level. The specific method of qRT-PCR was described by Li et al. (44).

3 Results

3.1 Transcriptome sequencing and mapping

Healthy and Cd and Cu co-exposed juvenile S. esculenta was sequenced using RNA-Seq method. A total of 669,380,246 raw reads were generated from juvenile S. esculenta, and 660,384,274 (98.66%) clean reads were identified after removing reads that contained adapters, low quality reads, and reads with more than 10% uncertain bases (Table 2). On average, the Q20 of clean reads was 97.42%, the Q30 of clean reads was 92.99%, and the GC of clean reads was 39.63%. An average of 87.73% clean reads were identified as the background gene set, and DEGs were used as a validation set to analyze the functional differences between the control and exposed groups. Then, DEGs were enriched into KEGG pathways and GO terms of biological process, molecular function, and cellular component. Finally, significantly enriched terms and pathways were identified to explore S. esculenta juvenile immune response mechanisms after co-exposure. And STRING v11.5 with default parameters was used to construct protein-protein interaction networks using DEGs enriched in the screened significant KEGG signaling pathways (42).

3.2 DEGs expression

Compared with the control group (C), 276 (188 up-regulated and 88 down-regulated) and 876 (441 up-regulated and 435
down-regulated) DEGs were identified at 4 and 24 h, respectively, after co-exposure (Figure 1). Venn diagram showed that a total of 1,088 DEGs were differentially expressed, of which 64 DEGs were differentially expressed at both 4 and 24 h (Figure 2). And DEGs clustering distribution were visualized in a heatmap (Figure 3).

3.3 Functional enrichment analyses of DEGs

DEG functions were analyzed using GO and KEGG enrichment analyses. A total of 137 GO terms (p-value ≤ 0.05) containing three clusters (biological process, cellular components, and molecular function) were significantly enriched in our study. And the top 10 terms in each cluster are shown in Figure 4. Among these GO terms, response to interleukin-1, leukocyte migration, and cell adhesion terms in biological process cluster suggested that Cd and Cu co-exposure might induce a series of immune defense processes. The KEGG enrichment analysis results indicated that multiple DEGs were enriched to immune-related level-2 KEGG signaling pathways, including immune system, infectious diseases, and immune disease (Figure 5). And nine immune-related KEGG signaling pathways were significantly enriched (Table 3). Among them, the enrichment of immune-related pathways such as PI3K-Akt

Table 2 Sequencing quality and mapping results.

Samples	Raw reads	Clean reads	Q20 (%)	Q30 (%)	GC (%)	Mapping rate (%)
C_0h_1	44,822,088	44,401,358	97.42	93.02	39.89	87.71
C_0h_2	46,604,268	46,067,346	97.39	92.97	38.64	87.25
C_0h_3	42,199,716	41,745,596	97.08	92.31	38.92	86.13
C_4h_1	42,594,570	42,050,900	97.56	93.35	39.79	88.28
C_4h_2	45,122,216	44,583,624	97.37	92.89	40.01	87.80
C_4h_3	43,910,186	43,339,204	97.44	93.00	39.72	87.67
CuCd_4h_1	44,653,518	44,229,734	97.28	92.63	39.89	87.90
CuCd_4h_2	45,007,770	44,566,312	97.65	93.41	39.23	87.93
CuCd_4h_3	45,431,358	44,607,378	97.58	93.30	39.99	88.12
C_24h_1	45,374,672	44,918,056	97.51	93.17	39.82	88.32
C_24h_2	40,894,638	40,402,580	97.59	93.30	38.92	88.10
C_24h_3	42,664,646	42,060,564	97.65	93.45	38.74	88.88
CuCd_24h_1	45,072,002	44,522,418	97.31	92.83	39.85	88.85
CuCd_24h_2	45,068,272	44,699,502	97.54	93.25	38.75	87.31
CuCd_24h_3	44,425,324	43,758,176	97.21	92.48	39.71	87.75
signaling pathway and MAPK signaling pathway suggested that multiple immune cells were activated, and key immune-related genes might be highly expressed after co-exposure.

3.4 Screening and validation of key and hub DEGs

A total of 38 DEGs enriched in KEGG signaling pathways in Table 3 were used to construct a PPI network (Figure 6). And the network parameters are shown in Table 4. Above genes have significant interactions, and the average node degree was 4.55. The network clustering coefficient was 0.547, and the p-value was ≤ 8.44E-4. Fifteen DEGs with higher interaction numbers or higher KEGG signaling pathway participation numbers were identified and listed in Table 5. Among these genes, NOTCH3, PRKAA1, and ITGA4 interacted with more genes, which were identified as hub genes; and other 12 DEGs with high interaction numbers were defined as key genes. Previous research had shown that these genes were involved in the activation of immune cells and immune signaling pathways and regulated expressions of immune genes. Analysis of above gene functions in juvenile *S. esculenta* would help to further understand immune response mechanisms of *S. esculenta*.
The qRT-PCR was used to verify the accuracy of above gene expressions. The results showed that all DEGs measured were single products. And compared to gene expression profiles of RNA-Seq results, qRT-PCR results showed the same trend, suggesting that the qRT-PCR results were accurate (Figure 7).

4 Discussion

4.1 Cd and Cu-induced immune response in mollusk

As common and high concentrations of heavy metals in the ocean, Cd and Cu could easily accumulate in mollusks and induce immune response processes (24, 45, 46). The effects of Cd and Cu exposure on immunity of shellfish have been studied extensively in the past 10 years. For instance, Cd could suppress immune responses in Tegillarca granosa by regulating Ca2+ transport and Ca2+-related apoptosis processes (47). Meanwhile, it could induce immune cell damage in Perna canaliculus and destroy the immune system, thereby reducing disease resistance (48). Cu could inhibit the apoptosis, phagocytosis, and adhesion functions of hemocytes, thereby reducing the immune resistance of Crassostrea rivularis and Crassostrea virginica (49, 50). In addition, Cu exposure has been reported in previous research to inhibit expressions of TLRs and NLRs and inhibit innate immune responses in Mizuhopecten yessoensis (51). Cd and Cu-induced immune responses have not been widely studied in cephalopods. This study was designed to preliminarily explore immune response mechanisms of juvenile S. esculenta after co-exposure at the molecular level, and laid a foundation for further study cephalopod immunity.

4.2 Analyses of DEGs expression

DEGs expression analyses indicated that multiple genes were differentially expressed after Cd and Cu co-exposure. The volcano plot results implied that more immune-related genes might be differentially up-regulated with increasing co-exposed time. The Venn diagram analysis revealed that 64 DEGs containing PDCD4, ETV7, and ARG2 were significantly differentially expressed at both 4 and 24 h. These genes have been reported...
in previous studies to regulate the activation of immune cells and induce multiple immune response processes including inflammatory responses (52–55). We speculated that these might be key genes regulating juvenile immunity after co-exposure, and their specific immune functions in *S. esculenta* needed to be further studied. The results of the heatmap indicated that gene expressions were significantly different after co-exposure and might severely affect *S. esculenta* juvenile immune response processes.

4.3 Immune-related functional enrichment analyses

GO enrichment analysis results showed that most of top 10 GO terms of biological processes cluster were significantly related to immune response. The enrichment of response to interleukin-1 term indicated that co-exposure might affect the innate immune response of *S. esculenta* by regulating the expression of IL-1 to regulate TLRs and Toll-like receptor signaling pathways. This result was consistent with previous studies in *Biomphalaria glabrata* and *Mytilus coruscus* (56, 57). The enrichment of cell adhesion term suggested that co-exposure might inhibit *S. esculenta* immune cell adhesion and reduce immune cell activity (58, 59). According to the results of GO enrichment analysis, we preliminarily speculated that immune response of co-exposed juvenile *S. esculenta* might be significantly affected.

Nine immune-related KEGG pathways were significantly enriched in our study. These have been reported to regulate the activation, proliferation, and differentiation of immune cells and immune signal transduction in previous studies, indicating that co-exposure might significantly affect the immune response processes of *S. esculenta* (60–62). Among them, three KEGG signaling pathways identified by previous research as most likely to significantly affect the immune response after co-exposure such as pathways in cancer signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway were screened, identified, and analyzed to further explore *S. esculenta* immune response mechanisms after co-exposure.

4.3.1 Pathways in cancer signaling pathway analysis

Cancer was the deadliest disease in recent decades, and there were few cures (63, 64). After being infected with cancer, some cells grew uncontrollably and proliferated malignantly to form tumor cells (65). And tissue bleeding, decreased vitality, loss of appetite, and other adverse phenomena have also appeared one after another (66, 67). At the same time, immune cells such as T cells and NK cells were activated to suppress and destroy tumor...
Previous studies have shown that pathways in cancer signaling pathway activated WNT signaling pathway, toll-like receptor signaling pathway, and other signaling pathways during cancer and expressed HSPs to regulate immune responses (70–72). Based on our results, it was speculated that co-exposure might induce malignant proliferation of some cells and activated immune signals to promote the processes of S. esculenta juvenile immune response. However, cancer has only been initially studied in fish and has not been explored in other aquatic organisms, especially mollusks (73–75). Therefore, the exact immune response mechanisms of juvenile S. esculenta in response to cancer were unclear and required further study.

4.3.2 MAPK signaling pathway analysis

MAPK signaling pathway was an important immune regulatory signaling pathway for organisms to induce immune defense responses after biotic and abiotic stresses and played a significant role in the innate immunity of mollusks (76, 77). Previous studies have shown that it was involved in various cellular processes such as proliferation, differentiation, and migration of intestinal immune cells and promoted innate immunity.
immune responses by activating phagocytic immune responses (78–80). Meanwhile, MAPK signaling pathway has also been found to regulate the production of pro-inflammatory factors such as IL-1β, TNF-α, and TGF-β to promote inflammatory responses (79, 81, 82). In this study, MAPK signaling pathway was significantly enriched after Cd and Cu co-exposure, indicating that co-exposure might induce the proliferation and differentiation of S. esculenta immune cells and promoted inflammatory and innate immune response processes. Three key DEGs, including TRAF6, DUSP1, and DUSP7 were enriched in this pathway, and their expression levels were significantly up-regulated after co-exposure. These have been reported to involved in and regulate MAPK, PI3K, NF-kB, and other signaling pathways to regulate immune responses (83–85), suggesting that juvenile S. esculenta might defend against heavy metal stress by regulating innate immune signaling pathways.

4.3.3 PI3K-Akt signaling pathway analysis

As everyone knows that the PI3K-Akt signaling pathway is the core pathway that regulates the immune response and plays a significant part in the proliferation, differentiation, and migration of immune cells (86, 87). It regulates the activation of multiple immune signals such as TLR and NF-kB to promote immune response. At the same time, it can promote inflammatory response by regulating the release of inflammatory factors (88–90). In mollusks, the PI3K-Akt signaling pathway involved in and regulated many physiological and pathological processes of innate immunity (91, 92). For instance, it could regulate phagocytosis to promote innate immune response processes (93). And it can regulate and promote the apoptosis and growth of immune cells and induce immune defense responses after environmental stress (94, 95). In our study, multiple immune-related DEGs such as ATF6B

TABLE 3 Summary of significantly enriched immune-related KEGG pathways after co-exposure.

KEGG pathways	Number of DEGs
Chemical carcinogenesis - DNA adducts	3
Chemical carcinogenesis - receptor activation	8
Herpes simplex virus 1 infection	12
Human papillomavirus infection	9
MAPK signaling pathway	5
MicroRNAs in cancer	3
Natural killer cell mediated cytotoxicity	2
Pathways in cancer	4
PI3K-Akt signaling pathway	11

TABLE 4 Summary of significantly enriched immune-related KEGG pathways after co-exposure.

KEGG pathways	Number of DEGs
Chemical carcinogenesis - DNA adducts	3
Chemical carcinogenesis - receptor activation	8
Herpes simplex virus 1 infection	12
Human papillomavirus infection	9
MAPK signaling pathway	5
MicroRNAs in cancer	3
Natural killer cell mediated cytotoxicity	2
Pathways in cancer	4
PI3K-Akt signaling pathway	11

TABLE 5 Summary of immune-related key DEGs.

Gene name (abbreviation)	Gene name (official full name)	Number of protein-protein interactions	Number of KEGG signaling pathways
NOTCH3	notch receptor 3	12	2
PRKAA1	protein kinase AMP-activated catalytic subunit alpha 1	12	1
ITGA4	integrin subunit alpha 4	11	2
DUSP1	dual specificity phosphatase 1	10	1
TRAF6	TNF receptor associated factor 6	7	3
COL6A3	collagen type VI alpha 3 chain	7	2
PPP3CA	protein phosphatase 3 catalytic subunit alpha	7	2
TNXB	tenascin XB	7	2
COL6A6	collagen type VI alpha 6 chain	6	3
EIF4EBP1	eukaryotic translation initiation factor 4E binding protein 1	6	3
LAMC1	laminin subunit gamma 1	6	2
DUSP7	dual specificity phosphatase 7	6	1
COL6A4	collagen type VI alpha 3 chain4	5	2
ATF6B	activating transcription factor 6 beta	4	2
CACNA1D	calcium voltage-gated channel subunit alpha1 D	4	1
and EIF4EBP1 were enriched into PI3K-Akt signaling pathway, and their expression levels were significantly up-regulated after co-exposure. The above results suggested that the PI3K-Akt signaling pathway might play a crucial role in the immune response processes after co-exposure. The immune response mechanisms of the PI3K-Akt signaling pathway in cephalopods has not been studied. We preliminarily speculated that it might regulate the proliferation and differentiation of *S. esculenta* juvenile immune cells and promote the activation of inflammatory responses and immune signaling factors.

4.4 Hub genes functional analysis

In this research, a comprehensive analysis of PPI network and KEGG signaling pathway is used to explore immune functions of juvenile *S. esculenta* co-exposed to Cu and Cd. Three DEGs with highest number of protein interactions or highest KEGG signaling pathway participation numbers including NOTCH3, PRKAA1, and ITGA4 were identified as hub genes most likely to regulate juvenile immunity after Cu and Cd co-exposure. NOTCH3 was a key regulator of cellular function and played a significant role in immune and inflammatory responses (96, 97). Previous studies have shown that NOTCH3 involved in and regulated leukocyte migration and adhesion, tumorogenesis, M2 macrophage infiltration, antigen presentation, activation of cytokines and integrins, tissue inflammation, and multiple immune response processes (98–101). And multiple immune signaling pathways such as PI3K-Akt signaling pathway and rap1 signaling pathway were activated and regulated by NOTCH3 (97). AMPK was a key enzyme widely expressed in cells that regulated various physiological functions such as cell proliferation and autophagy, tumorigenesis, and energy homeostasis (102). And it played an important role in innate immune and inflammation responses (103). As a subunit of AMPK, PRKAA1 played a similar role as AMPK. It promoted the expression of immune genes such as TLR4 and TNF-α to regulate innate immune response (104, 105). Meanwhile, PRKAA1 activated TAK1 and NF-κB to induce inflammatory responses (106). Integrins were an important family of cellular receptors that regulated cell growth, survival, and migration (107, 108). They promoted immune responses primarily by mediating cell adhesion processes (109). ITGA4 was an important integrin subunit efficiently regulating leukocyte adhesion and migration in blood (110). And another function of ITGA4 was recently reported that regulated the infiltration of immune cells such as macrophages, dendritic cells, and neutrophils to induce immune...
responses (111, 112). In conclusion, we understood that these three genes were closely related to immune and inflammatory responses. However, these have not been studied in cephalopods up to now. An interesting result was that in addition to NOTCH3, which was slightly up-regulated and then down-regulated within 24 h co-exposure, the expression levels of other two genes were continuously down-regulated after co-exposure. Based on above results, we preliminarily speculated that the down-regulation of these genes might inhibit the malignant proliferation of cells to inhibit the generation of tumor cells and prevent excessive inflammatory responses.

4.5 Other key DEGs and pathways analyses

In addition to the above three hub genes and three signaling pathways, other identified genes and signaling pathways are also significantly related to immune responses. For instance, COL6A3 is involved in and regulates immune cell infiltration and inflammatory responses (113). And natural killer cell mediated cytotoxicity signaling pathway can regulate the proliferation and apoptosis of NK cells to promote the immune response processes (114, 115). These results further illustrate that co-exposure may significantly affect S. esculenta juvenile immunity. Immune response mechanisms of these genes and pathways in co-exposed juvenile S. esculenta are unclear until now, and needs to be further studied.

5 Conclusion

This study preliminarily explores immune response mechanisms of juvenile S. esculenta after Cd and Cu co-exposure using transcriptome analysis. A large number of DEGs suggest that co-exposure may affect juvenile molecular and physiological functions. The results of functional enrichment and PPI network analyses indicate that co-exposure may significantly promote the innate immune and inflammatory responses of S. esculenta. In conclusion, co-exposure may significantly affect cuttlefish juvenile immunity, and the results lay a foundation for further understanding of cephalopod immunity after heavy metal exposure.
Data availability statement

The data presented in the study are deposited in the NCBI repository, accession number SRR19578101, SRR19578102, SRR19578103, SRR19578104, SRR19578105, SRR19578106, SRR19578107, SRR19578113, SRR19578114, SRR20545806, SRR20545807, SRR20545808, SRR20545809, SRR20545814, SRR20545815 at the following link: https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA844162&to=library_name_%3Aa.

Ethics statement

The animal study was reviewed and approved by the Institutional Animal Care and Use Committee of the Ludong University (protocol number LDU-IRB20210308NXY) and the China Government Principles for the Utilization and Care of Invertebrate Animals Used in Testing, Research, and Training (State Science and Technology Commission of the People’s Republic of China for No. 2, October 31, 1988.

Author contributions

ZL and JY designed and supervised the study. XB, YF, XX, GS and BL prepared the samples. XB and ZL wrote the manuscript. All authors have read and approved the final manuscript.

Funding

This research was supported by China Agriculture Research System of MOF and MARA, the National Natural Science Foundation of China (No. 42006077), and the Natural Science Foundation of Shandong Province (No. ZR2019BC052).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Rahman Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. *J Hazard Mater* (2020) 396:122682. doi: 10.1016/j.jhazmat.2020.122682
2. Tchounwou PB, Yedou CG, Padilla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl (2012) 101:113–64. doi: 10.1078/978-3-7643-8340-4_4_6
3. Rainbow PS, Lavoie SN. Metal toxicity, uptake and bioaccumulation in aquatic invertebrates—modeling zinc in crustaceans. *Aquat Toxicol* (2011) 105(3):455–65. doi: 10.1016/j.aquatox.2011.08.001
4. Wang SL, Xu XR, Sun YX, Liu JL, Li HB. Heavy metal pollution in coastal areas of south China: A review. *Mar pollut Bull* (2015) 76(1–2):7–15. doi: 10.1016/j.marpollbul.2013.08.025
5. Deng GP, Yang WQ, Zhou GY, Li Y, Liu SL. Heavy metals and polycyclic aromatic hydrocarbons in sediments from the shenzhen river, south China. *Environ Sci Pollut Res Int* (2014) 21(18):10594–600. doi: 10.1007/s11356-014-2995-4
6. Ekere N, Yakubu N, Bediako I. Ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in sediments of rivers Niger and benue confluence, lokoja, central Nigeria. *Environ Sci Pollut Res Int* (2017) 24(23):18966–78. doi: 10.1007/s11356-017-9511-6
7. Ceci A, Pinzari F, Russo F, Persiani AM, Gadd GM. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. *Appl Microbiol Biotechnol* (2019) 103(1):53–68. doi: 10.1007/s00253-018-9451-1
8. Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. *Environ Sci Pollut Res Int* (2020) 27(22):27563–81. doi: 10.1007/s11356-020-09893-0
9. Zhang WY, Zhu HY, Sun H. Effects of heavy metal pollution on fitness and swimming performance of *Bufo raddei* tadpole. *Bull Environ Contam Toxicol* (2020) 105(3):387–92. doi: 10.1007/s00128-020-02953-3
10. Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. *Environ Monit Assess.* (2019) 191(7):419. doi: 10.1007/s10661-019-7528-7
11. Zhang Y, Li ZY, Khodolkevich S, Sharov A, Feng YJ, Ren NQ, et al. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (*Procambarus clarkii*). *Sci Total Environ* (2019) 666:944–55. doi: 10.1016/j.scitotenv.2019.02.159
12. Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM. Effect of heavy metals on fish larval deformities: A review. *Environ Res* (2015) 137:246–55. doi: 10.1016/j.envres.2014.12.014
13. Ivmina AV, Hawkins C, Sokolova IM. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves *Crassostrea virginica* and *Mercenaria mercenaria*. *Fish Shellfish Immunol* (2014) 37(2):299–312. doi: 10.1016/j.fsi.2014.02.016
14. Zhang ZW, Zheng Z, Cai JZ, Liu Q, Yang J, Gong YF, et al. Effect of cadmium on oxidative stress and immune function of common carp (*Cyprinus carpio L.*) by transcriptome analysis. *Aquat Toxicol* (2017) 192:171–7. doi: 10.1016/j.aquatox.2017.09.022
15. Jin XW, Liu F, Wang YY, Zhang LS, Li Z, Wang ZL, et al. Probabilistic ecological risk assessment of copper in Chinese offshore marine environments from 2005 to 2012. *Mar pollut Bull* (2015) 94(1–2):96–102. doi: 10.1016/j.marpollbul.2015.03.005
16. Malhotra N, Ger T, Uapipatanakul B, Huang KC, Chen KH, Hsiao C. Review of copper and copper nanoparticle toxicity in fish. *Nanomaterials* (2020) 10(6):1126. doi: 10.3390/nano10061126
17. Ivmina AV, Hawkins C, Sokolova IM. Interactive effects of copper exposure and environmental hypercapnia on immune functions of marine bivalves *Crassostrea virginica* and *Mercenaria mercenaria*. *Fish Shellfish Immunol* (2016) 49:54–65. doi: 10.1016/j.fsi.2015.12.011
the reproductive period. Esculenta stxb201905090947 hierarchy on the behavioral phenotype and energy metabolism of 843x.2019.11.032 esculenta (j.fsi.2019.12.083). Pro virginica and bacteria stimulation. Bao et al. 10.3389/doi: 10.1007/s00244-010-9502-9 novo by lipopolysaccharide. Arch Environ Contam Toxicol 55:170 effects of microplastics and cadmium on the cadmium accumulation, antioxidant oxidative stress and non-specific immune defense in the intestine of the organs of Pocillopora damicornis. Aquat Toxicol (2019) 222:65. doi: 10.1016/j.fsi.2021.01.010. Combinatorial approach to sub-lethal impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, perna canaliculus. Aquat Toxicol (2013) 142:143(66):283–93. doi: 10.1016/j.aquatox.2013.09.002. Huang XZ, Jiang XY, Sun M, Dupont S, Huang W, Hu MH, et al. Effects on the embryonic development of Crassostrea virginica (Gmelin). Fish Shellfish Immunol (2011) 31(2):345–54. doi: 10.1016/j.fsi.2010.11.016. Gopi N, Vuyyakumar S, Thaya R, Govindarajan M, Alharibi NS, Kadakunnan S, et al. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: Effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. J Trace Elem Med Biol (2019) 55:170–9. doi: 10.1016/j.jtemb.2019.06.011. Lee H, Kim JH, Park HI, Kang JC. Toxic effects of dietary copper and ECCG on bioaccumulation, antioxidant enzyme and immune response of Korean bullhead. Pseudobagrus fulvidraco Fish Shellfish Immunol (2021) 111:119–26. doi: 10.1016/j.fsi.2021.01.010. Sheir SK, Handy RD. Tissue injury and cellular immune responses to cadmium exposure in the common oyster Crassostrea virginica (Gmelin). Fish Shellfish Immunol (2017) 67:643–54. doi: 10.1016/j.fsi.2017.06.053. Perez DG, Fontanetti CS. Hemocytic responses to environmental stress in a review. Environ Monit Assess. (2011) 177(1–4):437–47. doi: 10.1007/s10661-014-4657-9. Carballal MJ, Lopez C, Arezvedo C, Villalba A. Enzymes involved in defense functions of hemocytes of mussel Mytilus galloprovincialis. J Invertebr Pathol (1997) 70(2):96–105. doi: 10.1006/jiph.1997.4670. Shi W, Guan XF, Han Y, Guo C, Rong JH, Su WH, et al. Waterborne Cad weakened the immune response of blood clam through impacting Ca2+ signaling and Ca2+ related apoptosis pathways. Fish Shellfish Immunol (2018) 77:208–13. doi: 10.1016/j.fsi.2018.03.055. Chandurvelan R, Marsden ID, Gav S, Glover CN. Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, perna canaliculus. Aquat Toxicol (2013) 142–143(66):283–93. doi: 10.1016/j.aquatox.2013.09.002. Huang XZ, Jiang XY, Sun M, Dupont S, Huang W, Hu MH, et al. Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivarularis under low pH conditions. Aquat Toxicol (2018) 203:61–8. doi: 10.1016/j.aquatox.2018.08.003. Foster B, Grewal S, Graves O, Hughes FM, Sokolova IM. Copper exposure affects hemocyte apoptosis and Perkinus marinus infection in eastern oysters Crassostrea virginica (Gmelin). Fish Shellfish Immunol (2011) 32(1):341–9. doi: 10.1016/j.fsi.2011.05.024. Meng XL, Tian X, Nie GX, Wang JL, Liu M, Jiang XY, et al. The transcriptomic response to copper exposure in the digestive gland of Japanese scallops (Mizuhopecten yessoensis). Fish Shellfish Immunol (2015) 46(2):161–7. doi: 10.1016/j.fsi.2015.05.022. Yin YH, Pham TL, Shin J, Shin N, Kang DW, Lee SY, et al. Arginase 2 deficiency promotes neovascularization and pain behaviors following nerve injury in mice. J Clin Med (2020) 9(2):305. doi: 10.3390/jcm9020305. Qiu H, Zhao H, Zhang X, Liu Y, Li F, Sun YY, et al. Integrated analysis of the ETS family in melanoma reveals a regulatory role of ETV7 in the immune microenvironment. Front Immunol (2020) 11:612784. doi: 10.3389/fimmu.2020.612784. Tran TT, Rane CK, Zito CR, Weiss SA, Jessel S, Lucae L, et al. Clinical significance of PDCD4 in melanoma by subcellular expression and in tumor-associated immune cells. Cancer (2021) 135(5):1049. doi: 10.3398/cancer.13505049. Braun C, Kaltholnig K, Kaltenecker C, Linke M, Sukhbaatar N, Hengstschläger M, et al. p38 regulates the tumor suppressor PDCD4 via the TSC-mTORC1 pathway. Cell Stress. (2021) 5(12):176–82. doi: 10.15698/csst.2021.12.260. Liu SJ, Ge DL, Long ZH, Chi CF, Le VM, Liu HH. Molecular features of interleukin-1 receptor-associated kinase b and in Mytilus coruscus, regulating their function by infection of aquatic pathogens and the expression of their serine/ threonine protein kinase functional domains. Fish Shellfish Immunol (2020) 102:469–79. doi: 10.1016/j.fsi.2020.03.006. Granath WO, Connors VA, Tarleton RL. Interleukin 1 activity in haemolymph from strains of the snail biomphalaria glabrata varying in susceptibility to the human blood fluke, schistosoma mansoni: presence, differential expression, and biological function. Cytokine (1994) 6(3):21–7. doi: 10.1016/0967-9710(94)90005-5. and its underlying mechanisms. Aquat Toxicol (2018) 207:120–31. doi: 10.1016/j.aquatox.2018.12.006.
Bao et al. 10.3389/AdvMaterILC memory. and can it be harnessed by vaccination? vaccination strategies based on NK cell and pathway in development and cancer. pathogenic intestinal bacteria. s13567-020-0736-x chicken af via miR-200a-3p modulates immune response nri.2015.17 cshperspect.a029512 tissue necrosis and its role in cancer progression. (13):1903847. doi:10.1002/adma.201903847 cancer development, progression and immunotherapy. Nat Rev Immunol (2013) 13(9):49. doi:10.1038/nj.2013.147 hemocytes of the mussel anti-vibrio immune response through p38 MAPK and PKC activation in the simulator response of clam Meretrix petechialis to Vibrio challenge revealed by a time series of transcriptome analysis. Fish Shellfish Immunol (2016) 59:492–508. doi:10.1016/j.fsi.2016.11.011 Yang, W.H., Zhou, S.S., Liu, T.Y., Chen, M.Y., Zhang, X.M. De novo transcriptome analysis of stressed blood clam (Asanura brounii) and identification of genes associated with hemoglobin. Genes Genomics (2019) 42(2):189–202. doi:10.1007/s13258-019-08877-7 Yang, J., Wang, H.K., Yue, X., Liu, B.Z. Dynamic immune and metabolism response of clam Mercierx petechialis to Vibrio challenge revealed by a time series of transcriptome analysis. Fish Shellfish Immunol (2019) 94:17–26. doi:10.1016/j.fsi.2018.09.057 Cui, Y.H., Li, Q., Li, W., Wang, Y., Lv, F., Shi, X.Y., et al. NOTCH3 is a prognostic factor and is correlated with immune tolerance in gastric cancer. Front Oncol (2020) 10:574937. doi:10.3389/fonc.2020.574937 Xue, D.Y., Li, D., Dou, C., Li, J.S. A comprehensive bioinformatic analysis of NOTCH pathway involvement in stomach adenocarcinoma. Dis Markers (2021) 2021:978968. doi:10.1155/2021/978968 Wei, K., Korsunsky I., Marshall J., Lao A.Q., Watts G.M., Major T., et al. Notch signaling drives synovial fibroblast identity and arthritis pathology. Nature (2020) 582(7811):259–64. doi:10.1038/s41586-020-2222-z Brandi, S., Ballhaus TM., Bernhardt A., Becker A., Salara D., Le-Defège HM., et al. Fibrosis and immune cell infiltration are separate events regulated by cell-specific receptor Notch3 expression. J Am Soc Nephrol (2020) 31(11):2021289. doi:10.1681/ASN.2019121289 Yan, K.K., Wang, Y.T., Lu, Y.X., Yan, Y.Z. Coexpressed genes that promote the infiltration of M2 macrophages in melanoma can evaluate the prognosis and immunotherapy outcome. J Immunol Res (2021) 2021:6664791. doi:10.1155/2021/6664791. Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol (2014) 92(4):340–5. doi:10.1038/icb.2014.11 Yuan, J., Zhang, Y., Yan, F.T., Zheng, Z. Association of PRKAA1 gene polymorphisms with chronic hepatitis B virus infection in Han population. Braz J Infect Dis (2016) 20(6):564–8. doi:10.1016/j.bjid.2016.08.003
104. Yang ZG, Kahn BB, Shi H, Xue BZ. Macrophage e1 AMP-activated protein kinase (e1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. *J Biol Chem* (2010) 285(25):19051–9. doi: 10.1074/jbc.M110.123620

105. Trillo-Tinoco J, Sierra RA, Mohamed E, Cao Y, Mingo-Pulido A, Gilvary DL, et al. AMPK alpha-1 intrinsically regulates the function and differentiation of tumor myeloid-derived suppressor cells. *Cancer Res* (2019) 79(19):5034–47. doi: 10.1158/0008-5472.CAN-19-0880

106. Kim SY, Jeong S, Jung E, Baik KH, Chang MH, Kim SA, et al. AMP-activated protein kinase-α1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals. *Cell Death Dis* (2012) 3(7):e357. doi: 10.1038/cddis.2012.95

107. Ginsberg MH. Integrin activation. *BMB Rep* (2004) 117(5):657–66. doi: 10.5483/bmbrep.2014.47.12.241

108. Nolte M, Margadant C. Controlling immunity and inflammation through integrin-dependent regulation of TGF-β. *Trends Cell Biol* (2020) 30(1):49–59. doi: 10.1016/j.tcb.2019.10.002

109. Giancotti FG, Ruoslahti E. Integrin signaling. *Science* (1999) 285(5430):1028–32. doi: 10.1126/science.285.5430.1028

110. Zhou Z, Ferdous F, Montagner P, Luchini DN, Corréa MN, Loor JJ. Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. *J Dairy Sci* (2018) 101(11):10374–82. doi: 10.3168/jds.2018-14972

111. Rojas K, Bariu-Piqué M, Manzano A, Saiz-Ladera C, García-Barberán V, Cimas FI, et al. In silico transcriptomic mapping of integrins and immune activation in basal-like and HER2+ breast cancer. *Cell Oncol* (2021) 44(3):369–80. doi: 10.1007/s13402-020-00343-9

112. Nurzat Y, Su WJ, Min P, Li K, Xu H, Zhang YX. Identification of therapeutic targets and prognostic biomarkers among integrin subunits in the skin cutaneous melanoma microenvironment. *Front Oncol* (2021) 11:751875. doi: 10.3389/fonc.2021.751875

113. Hu Y, Li JJ, Luo HF, Song WL, Yang JY. Differential expression of COL1A1, COL1A2, COL6A3, and SULF1 as prognostic biomarkers in gastric cancer. *Int J Gen Med* (2021) 14:5835–43. doi: 10.2147/IJGM.S321265

114. Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. *Med Cancer* (2020) 19(1):120. doi: 10.1186/s12943-020-02338-x

115. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. *Nat Rev Immunol* (2018) 18(11):671–88. doi: 10.1038/s41577-018-0061-z