Laser Assisted Drug and Cosmeceutical Delivery System of the Skin

Lasers have been used to enhance the delivery of topical agents. In laser assisted delivery, fractional technology is used in maintaining a mainstream laser method. Targeting cutaneous lesions requires precise parameters for achievement of both efficacy and safety. Facilitating systemic absorption through the skin requires deeper penetration by lasers and the retention of the agents is also an important factor. Optimization with matching the agents and proper laser channels are another ongoing challenge.

Key words

Laser; Laser-assisted delivery; Skin
INTRODUCTION

Skin is an originally protective organ of human body from external environment and delivering topical agent through skin needs specified conditioning. The epidermis is the major barrier to entry. Stratum corneum is composed of hydrophilic keratinocytes or corneocytes, and keratin derived from these cells. Other hydrophobic lipids including ceramics, cholesterol and free fatty acids consist extracellular matrix of the stratum corneum, resulting in unique ‘brick-and-mortar’ structure. This findings are most important in the barrier function of the skin or the epidermis. Bypassing this layer is the rate-limiting step of absorption when a agent is topically applied. Because there are lacunae-like aqueous channels can exist in these layers, transport system is available for hydrophilic agents nevertheless the bioavailability is extremely low in lower layer of the skin.1,2,3

When transepidermal transport is achievable, upper dermal structures have lower resistance to simple diffusion. Extracellular space is more larger in size, and systemic absorption happens through vascular and lymphatic plexus. Some agents (e.g. triamcinolone) can diffuse and remain in the adipose tissue.3

To enhance penetration in the epidermal layers, simple removing of stratum corneum is a way of barrier destruction. As an example tape stripping is a simple, efficient, and controllable method to remove stratum corneum for preclinical experiments,3,4 nonetheless it is not clinically available for most of the cases because of irritation and difficulty in recovering. Iontophoresis, sonophoresis and transfollicular positive-pressure delivery are other enhancing methods by facilitating the function of existing channels. Laser-assisted delivery (LAD) has its own property that the user can directly adjust the character of the channels, with predictable and controllable manner.

LASER’S

Wavelengths

The Absorption rate to the water and lipid determines the basic property of the channels created by laser. In laser-assisted delivery, wavelengths have been commonly used were 2,940 nm and 10,600 nm.4 These wavelengths make ablative or sub-ablative channels from the stratum corneum. Erbium:yttrium-aluminum-garnet (Er:YAG) laser has 2,940 nm wavelength highly absorbed in the water, which enables precise ablation and minimized heat generation into the surrounding tissues. Carbon dioxide (CO2) laser has 10,600 nm wavelength with high absorption rate of the water and the adipose tissues. With other parameters controlled, the difference of the absorption rate determines the shape and the composition of channel walls.4 Recently 1,927 nm Thulium was introduced with unique histologic changes, with ablation of the epidermis with higher water concentration and coagulation formed under ablated space.5

Fractionation

Fractional photothermolysis is a tissue remodeling mechanism by making multiple vertical columns. For rejuvenation and other indications, fractional photothermolysis is eventually used to make debulking abnormal or aged tissues, and remodeling by remaining tissues.4,5,6 Meanwhile, in LAD, fractionated laser channels enables controllable delivery, by making microscopic necrotic columns (MNC). Compared to other resurfacing lasers exploiting stratum corneum or epidermis, laser fractionation can make the LAD procedure more quantitatively controllable, which is critical in clinical application.6

Channel size

By the difference in absorption efficiency, each wavelength makes tissue interactions resulting in different shape of the channel.4,5,6 With same fluence irritated, Er:YAG shows minimal penetration depth and heat diffusion. CO2 laser makes more consistent and greater heat generation to the target and adjacent tissue. Er:YAG laser and Thulium lasers can make proportional ablation on upper layer of treatment area, meanwhile the amount of ablation is not increasing proportionally by the increase of fluences.7 In the MNC’s by Thulium lasers underlying coagulation increases more in size by increased irradiation. Stacking pulses is another method to increase penetration depth for Er:YAG Lasers, which is not efficiently working in CO2 and Thulium lasers because the coagulation formed from initial pulses is lack of the chromophores (water and lipid) and heat dispersion is more greater, making low efficiency to make ablative channels. It also causing unwanted tissue damage to the adjacent skin.6,7,8

Channel shape

Wide, shallow channel and Narrow, deep channel can make same amount of diffusion area theoretically. Increased penetration by MNC’s total area can be understood using Fick’s first law7

\[J = K_m \cdot D_m \cdot \Delta C / L \]

(J, the degree of flux of molecule. Km, a reflection of the number of molecules in diffusion across a barrier. Dm,
a reflection of the inherent diffusibility of a molecule. ΔC, concentration difference of that molecule on either side of that barrier. L, the path length in the membrane or the wall).

In laser-treated skin, the increased permeability by ablative lasers increase K_m, therefore increasing overall flux of the molecule. As molecular size of the agent increases, there is greater frictional resistance and D_m decreases, decreasing overall flux.7 Heat generation by laser also has the influence on K_m and D_m. L can be different on the thickness of the coagulation surrounding wall.9

Wide, shallow channel and narrow, deep channel can make same amount of diffusion area theoretically. The target depth can be adjusted with a same diffusion rate, to a certain depth of the layer.

Channel numbers

The density or the rate of the spots in treatment area can determine the areas of permeation for fractional lasers. More density can make more diffusion by increased permeation area. This increase is not permanently proportional, because the maximal tissue concentration can be limited.10,11,12 Clinically the density of the spots is closely related to the risk of complication and the optimization for proper amount of delivery is very important.

Channel wall character

Coagulation and ablation are two main laser-tissue interactions in LAD. Many debates have been issued how the coagulative wall in MNC’s act as a barrier to the diffusion or not. By simple heat generation, the extracellular space can be widened and the export channel can be altered. Dense coagulation is believed to be an obstacle for most of the agents in diffusion by making compact, degenerated protein wall. Longer pulse duration for CO2 lasers can make char, additional barrier for LAD.6

OTHER FACTORS

Because ablation is believed to be a main tissue reaction in making channels for LAD, other derivatives from laser-tissue interaction can influence the efficacy. Kositratna et al.13 reported Fibrin clots formed in the ablative channels by fractionated CO2 lasers, resulting in blocking the passage. This change showed time-dependent manner making more than 90% of coverage of the channels in 90 minutes after laser irradiation. This result suggests the clinical protocol requires a consideration of different laser-tissue interactions can influence the efficiency in LAD. Exudate from the tissue can make negative result by diluting and washing out the agents out of the skin. Fresh ‘Wet’ channel by micro needling or time-elapsed channels by the laser or other energy delivery devices cannot be free from this issue.

Additional devices can be used simultaneously with LAD. Iontophoresis, sonophoresis and positive pressure injection devices has been used clinically but lack of comparison studies. Erlendsson et al reported an enhancement of LAD by combining altered application of pressure and vacuum suction. Addition of this steps induced rapid filling of the agent in the columns, enabling faster and uniform uptake.14

AGENTS

Topical steroids

Topical steroids are commonly used agents for inflammatory skin lesion and the scars. Especially body parts with thicker skin (e.g. palm and sole) and thickened lesions by lichenification makes the drug penetration difficult. Triamcinolone acetonide is a long-acting steroid can be used as a controlled releasing agents with minimal mineralocorticoid action. Because triamcinolone is only emulsified temporarily to the water, usually it is delivered by the painful intra-lesional injection.

Photodynamic therapy (PDT) agents

5-aminolevulinic acid (ALA) and methylaminolevulinic acid (MAL) are two most widely used agents. Because thickened and large actinic keratosis (AK) and basal cell carcinoma (BCC) needs enough tissue concentration, LAD has been tried from early times. Other thickened

Table 1. Summary of the laser-assisted topical steroid delivery studies

Study by	Laser	Agent	Remarkable findings	Reference
Issa et al.	Fractional CO2	Triamcinolone acetonide	Scars in the face and the knee were nearly resolved in one to four sessions.	[15]
Waibel et al.	Fractional CO2	Triamcinolone acetonide	Average clinical improvement: 2.73/3.0	[16]
Yu et al.	Fractional Er:YAG	Prednisone	Significantly increased delivery dependent on the channel depth and numbers	[17]
Cavalie et al.	Fractional Er:YAG	Betamethasone	50% of median improvement of keloid lesions in 3 to 18 months	[18]
Warty lesions can be treated with same manner. Other photodynamic agents like indocyanine green is still lack of previous reports.

Living cells
Living allogenic stem cells has been introduced for radiation induced immunosuppressed mice skin. Allogenic fibroblast with minimal antigenicity is believed to be next subject in the trial for the defective congenital skin diseases. There are still huddles for laser-assisted cell transfer, in bypassing recipient immune system and in securing cell survival in the target tissue.

Vaccines
Vaccines were tried in early years. Needle patches and other formulations are rapidly replacing device-driven delivery. LAD for vaccines requires deeper penetration depth by lasers to induce sufficient immune reaction in the tissue. Subepidermal diffusion is essential.

Topical anesthetics
Laser-assisted anesthetics delivery has been reported to have several advantages compared to the topical application or injection. Rapid absorption can facilitated preparation time for the procedure. Avoiding multiple site injection with needles is another benefit. Saving the amount of dosage is to be considered to avoid overt systemic absorption and its complication.

Chemotherapeutic agents
Topically applied chemotherapeutic agents are used to treat precancerous, cancerous, proliferative and infectious lesions. Thickening and hyperkeratosis are common secondary changes in those lesions to abbreviate the absorption of topically applied agents. Lee et al and Gomez et al reported an universal improvement of the absorption by different, non-ablative wavelengths such as Q-switched Nd:YAG or Ruby lasers, suggesting simple mechanical or physical alteration of stratum corneum can make permeation changes, for a certain agents like 5-fluorouracil (5-FU).

Table 2. Summary of laser-assisted PDT agent delivery studies

Study by	Laser	Agent	Remarkable findings	Reference
Foster et al.	Fractional Er:YAG	ALA	13.8-fold increase in penetration	[19]
Lee et al.	Fractional Er:YAG	ALA	3- to 260-fold increase in penetration	[20]
Haedersdal et al.	Fractional CO₂	MAL	Significantly increased permeation in whole skin layers	[21,22]
Togsvard-Bo et al.	Fractional CO₂	MAL	Lesion response was 20% and 29% higher in grade I and grade II-III AK’s at 3 months compared to the non-LAD PDT group	[23]
Foster et al.	Conventional Er:YAG	ALA	7.3-fold increase in the penetration	[19]
Lee et al.	Fractional Er:YAG	ALA	27- to 124-fold increase in penetration	[20]
Helsing et al.	Fractional CO₂	MAL	Lesion clearance was 42% greater compared to the non-LAD PDT group	[24]
Yoo et al.	Fractional CO₂	MAL	100% of clearance in 90% of periongual warts	[25]
Song et al.	Fractional CO₂	MAL	LAD reduced the incubation time for the AK’s	[26]
Kim et al.	Fractional CO₂	MAL	LAD reduced the incubation time for the Bowen’s disease lesions	[27]
Lippert et al.	Fractional CO₂	ALA	Response rate of BCC was superior by 12.5% compared to the non-LAD PDT group	[28]
Haak et al.	Fractional CO₂	MAL	LAD reduced the incubation time for various depths	[29]

Table 3. Summary of laser-assisted cell delivery studies

Study by	Laser	Remarkable findings	Reference
Waibel et al.	Fractional CO₂	28.5% of engrafted cells survived after 3 weeks.	[4]

Table 4. Summary of laser-assisted vaccine delivery studies

Study by	Laser	Agent	Remarkable finding	Reference
Lee et al.	Conventional Er:YAG	Lysozyme vaccine	3-fold increase in serum antibody production	[30]
Chen et al.	Fractional CO₂	Ovalbumin vaccine	28- to 538-fold increase in serum antibody production	[31]
Current systemic agents have limitation in topical formulation. Technically, laser irradiation in the hair-bearing scalp needs special attention even with sparse hairs.

Immunomodulators

Topical immunomodulators have multiple actions on the various skin lesions. Unlike chemotherapeutic agents, immunomodulators induce host immune reaction targeting agent-bearing skin lesion, resulting in destructive changes including apoptosis.

Cosmeceuticals

Hydrophilic vitamins and other formulas have been tried. 1,927 nm thulium laser was used for precise epidermal penetration and retention.

Laser-assisted cosmeceutical delivery is differentiated with laser-assisted drug delivery. Although the procedure is performed and supervised by the doctor, the
Cosmeceuticals have different quality control standards compared to drugs. Cosmeceuticals usually have less limitation in ingredients, which is used for healthy skin. Mostly the cosmeceuticals have additional ingredients to the effective molecules and side effects when large amounts of ingredients are transferred into the skin. Any laser treatment used for the cosmeceutical delivery should have precisely controllable parameter adjustment function for epidermal permeability alteration. The quality of the cosmeceuticals should be strictly controlled.

Micellaneous

Analgesics were tried for LAD to deliver the drug systemically through the skin, avoiding multiple injections and other side effects from long-term use. Botulinum toxin for intradermal administration was also tried to avoid multiple injections.

Future formulation

Most of the previous studies have similar designs comparing the delivery efficiency of a topical agent is tested before and after using LAD. Since optimized or specially designed agents are being introduced, such as nanosized molecules and liposomal agents enables more efficient delivery not only to the untreated skin, but also to the laser-treated skin, reaching to deeper skin structures and systemic absorption can be facilitated.53

Complication and Limitation

Pain on laser treatment is most common complain as a side effect. Superficial ablation at low fluences usually enables painless treatment. For deeper ablation, local anesthesia is necessary. Anesthesia by air-cooling can significantly decrease patient discomfort.52 Irritation and erythema are most common complications. Prolonged swelling and dyspigmentation are following. Laser treatment can make these as a single modality, while the combination of the agents can make unexpected degrees of the skin reaction. Other serious complications include scarring and general laser surgery complications. Increased permeability achieved by LAD can make larger accumulation of drug than expected. Topical immunomodulators and chemotherapeutic agents can make serious cutaneous side effects when accumulated, and resulting in increased side effects.54 Increased absorption of topical agent can lead to systemic toxicity, as reported with lidocaine,54 as well as in transdermal systemic drug delivery. Similarly to systemic administration, regular checking serum level is necessary.

Study by	Laser Agent	Remarkable finding	Reference
Trelles et al	Fractional CO2	69% improvement in overall cosmetic outcome. Additional 10% improvement in acoustic pressure ultrasound combination Tx group.	[46]
Hsiao et al	Fractional CO2 Vitamin C	Fractional CO2 laser showed same permeation and less side effect than conventional CO2 resurfacing	[47]
Waibel et al	Fractional CO2 Vitamin C, E, Ferulic Acid	Faster healing after fractional CO2 laser resurfacing	[48]
Waibel et al	Fractional CO2 Vitamin C, E, Ferulic Acid	Decreased side effect by fractional CO2 laser resurfacing, increased basic fibroblast growth factor (bFGF)	[49]

Application	Regulatory issues	Laser-assisted drug delivery	Laser-assisted cosmeceutical delivery
For damaged or diseased skin / For systemic absorption enhancement	Positive listing of ingredients, only for the designated indications	For normal skin: Acceptable for damaged or diseased skin	Negative listing, to generally normal skin condition

Table 11. Summary of laser-assisted miscellaneous agents studies reported

Study by	Laser Agent	Remarkable finding	Reference
Lee et al.	Conventional Er:YAG Morphine, nalbuphine, buprenorphine	10- to 35-fold increased influx	[50]
Mahmoud et al	Fractional CO2 Botulinum toxin A	Significantly reduced wrinkles in Crow’s feet	[4]
Bachlav et al	Fractional Er:YAG Diclofenac	13-fold increased influx	[51]
CONCLUSION

LAD is a powerful and useful method to enhance less-permeable agents including the drugs and the cosmeceuticals. Ablative lasers have superiority in efficiency. Controlling the side effect and the complications remains as the issues need clinical attention.

REFERENCES

1. Elias PM, Menon GK. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 1991;24:1-26.
2. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev 1971;51:702-47.
3. Nino M, Calabrò G, Santoianni P. Topical delivery of active principles: the field of dermatological research. Dermatol Online J 2010;16:4.
4. Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM. Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med 2014;46:249-62.
5. Trelles MA, Leclère FM, Martínez-Carpio PA. Fractional carbon dioxide laser and acoustic-pressure ultrasound for transepidermal delivery of cosmeceuticals: a novel method of facial rejuvenation. Aesthetic Plast Surg 2013;37:965-72.
6. Paasch U, Haedersdal M. Laser systems for ablative fractional resurfacing. Expert Rev Med Devices 2011;8:67-83.
7. Brisson P. Percutaneous absorption. Can Med Assoc J 1974;110:1182-5.
8. Ali FR, Al-Niaimi F. Laser-assisted drug delivery in dermatology: from animal models to clinical practice. Lasers Med Sci. In press 2015.
9. Brauer JA, Krakowski AC, Bloom BS, Nguyen TA, Geronemus RG. Convergence of anatomy, technology, and therapeutics: a review of laser-assisted drug delivery. Semin Cutan Med Surg 2014;33:176-81.
10. Haedersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Fractional CO(2) laser-assisted drug delivery. Lasers Surg Med 2010;42:113-22.
11. Bachhav YG, Summer S, Heinrich A, Bragagna T, Böhler C, et al. Using controlled laser-microporation to increase transdermal delivery of prednisone. J Control Release 2010;145:71-81.
12. Lee WR, Chae SC, Pai MH, Yang HH, Yuan CY, Fang JY. Fractional laser as a tool to enhance the skin permeation of 5-aminolevulinic acid with minimal skin disruption: a comparison with conventional erbium:YAG laser. Lasers Surg Med 2010;42:113-22.
13. Helsing P, Togsverd-Bo K, Haak CS, Thaysen-Peterensen D, Wulf HC, Anderson RR, Haedersdal M. Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser treatment. Lasers Surg Med 2011;43:804-13.
14. Erlendsson AM, Doukas AG, Farinelli WA, Bhayana B, Anderson RR, Haedersdal M. Fractional laser-assisted drug delivery: Active filling of laser channels with pressure and vacuum alteration. Lasers Surg Med. In press 2015.
15. Issa MC, Kassuga LE, Chevrand NS, Pires MT. Topical delivery of triamcinolone via skin pretreated with ablative radiofrequency: a new method in hypertrophic scar treatment. Int J Dermatol 2013;52:367-70.
16. Waibel JS, Wulkan AJ, Shumaker PR. Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery. Lasers Surg Med 2013;45:33-40.
17. Yu J, Bachhav YG, Summer S, Heinrich A, Bragagna T, Böhler C, et al. Using controlled laser-microporation to increase transdermal delivery of prednisone. J Control Release 2010;148:e71-3.
18. Cavalié M, Sillard L, Montaudié H, Bahadoran P, Lacour JP, Passeron T. Treatment of keloids with laser-assisted topical steroid delivery: a retrospective study of 23 cases. Dermatol Ther 2015;28:74-8.
19. Forster B, Klein A, Szejnies RM, Maisch T. Penetration enhancement of two topical 5-aminolevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Exp Dermatol 2010;19:806-12.
20. Lee WR, Shen SC, Pai MH, Yang HH, Yuan CY, Fang JY. Fractional laser as a tool to enhance the skin permeation of 5-aminolevulinic acid with minimal skin disruption: a comparison with conventional erbium:YAG laser. Lasers Surg Med 2010;42:124-33.
21. Haedersdal M, Katsnelson J, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, et al. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment. Lasers Surg Med 2011;43:804-13.
22. Togsverd-Bo K, Haak CS, Thaysen-Peteresen D, Wulf HC, Anderson RR, Haedersdal M. Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial. Br J Dermatol 2012;166:1262-9.
23. Helsing P, Togsverd-Bo K, Veierød MB, Mark G, Haedersdal M. Intensified fractional CO2 laser-assisted photodynamic therapy vs. laser alone for organ transplant recipients with multiple actinic keratoses and wart-like lesions: a randomized half-side comparative trial on dorsal hands. Br J Dermatol 2013;169:1087-9.
24. Yoo KH, Kim BJ, Kim MN. Enhanced efficacy of photodynamic therapy with methyl 5-aminolevulinic acid in recalcitrant perianual warts after ablative carbon dioxide fractional laser: a pilot study. Dermatol Surg 2009;35:1927-32.
26. Song HS, Jung SE, Jang YH, Kang HY, Lee ES, Kim YC. Fractional carbon dioxide laser-assisted photodynamic therapy for patients with actinic keratosis. Photodermatol Photoimmunol Photomed 2015;31:296-301.
27. Kim SK, Park JY, Song HS, Kim YS, Kim YC. Photodynamic therapy with ablative carbon dioxide fractional laser for treating Bowen disease. Ann Dermatol 2013;25:335-9.
28. Lippert J, Smucler R, Vlk M. Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl S-aminolevulinate. Dermatol Surg 2013;39:1202-8.
29. Haak CS, Farinelli WA, Tam J, Doukas AG, Anderson RR, Haedersdal M. Fractional laser-assisted delivery of methyl aminolevulinate: Impact of laser channel depth and incubation time. Lasers Surg Med 2012;44:787-95.
30. Lee WR, Pan TL, Wang PW, Zhuo RZ, Huang CM, Fang JY. Erbium:YAG laser enhances transdermal peptide delivery and skin vaccination. J Control Release 2008;128:200-8.
31. Chen X, Shah D, Kosratna G, Manstein D, Anderson RR, Wu MX. Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J Control Release 2012;159:43-51.
32. Oni G, Brown SA, Kenkel JM. Can fractional lasers enhance transdermal absorption of topical lidocaine in an in vivo animal model? Lasers Surg Med 2012;44:16:74-74.
33. Koh JL, Harrison D, Swanson V, Norvell DC, Coomber DC. A comparison of laser-assisted drug delivery at two output energies for enhancing the delivery of topically applied LMX-4 cream prior to venipuncture. Anesth Analg 2007;104:847-9.
34. Yun PL, Tachihara R, Anderson RR. Efficacy of erbium:yttrium-aluminum-garnet laser-assisted delivery of topical anesthetic. J Am Acad Dermatol 2002;47:542-7.
35. Meesters AA, Bakker MM, de Rie MA, Wolkerstorfer A. Fractional CO2 laser assisted delivery of topical anesthetics: A randomized controlled pilot study. Lasers Surg Med. In press 2015.
36. Baron ED, Harris L, Redpath WS, Shapiro H, Hetzel F, Morley G, et al. Laser-assisted penetration of topical anesthetic in adults. Arch Dermatol 2003;139:1288-90.
37. Singer AJ, Weeks R, Regev R. Laser-assisted anesthesia reduces the pain of venous cannulation in children and adults: a randomized controlled trial. Acad Emerg Med 2006;13:623-8.
38. Lee WR, Shen SC, Wang KH, Hu CH, Fang JY. The effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil. J Pharm Sci 2002;91:1613-26.
39. Gómez C, Costela A, García-Moreno I, Llanes F, Teijón JM, Blanco D. Laser treatments on skin enhancing and controlling transdermal delivery of 5-fluorouracil. Lasers Surg Med 2008;40:6-12.
40. Taudorf EH, Lerche CM, Vissing AC, Philipsen PA, Hannibal J, D’Alvise J, et al. Topically applied methotrexate is rapidly delivered into skin by fractional laser ablation. Expert Opin Drug Deliv 2015;12:1059-69.
41. Lee WR, Shen SC, Fang CL, Zhuo RZ, Fang JY. Topical delivery of methotrexate via skin pretreated with physical enhancement techniques: low-fluence erbium:YAG laser and electroporation. Lasers Surg Med 2008;40:468-76.
42. Lee WR, Shen SC, Aljuffali IA, Li YC, Fang JY. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs. J Pharm Sci 2014;103:3542-52.
43. Goo BL, Madheswaran T, Baskaran R, Kim Y, Jo A, Yoo BK. Effect of laser treatment on skin permeation enhancement of finasteride and dutasteride using liquid crystalline nanoparticles as carrier. Proceedings of World Congress of Hair Research; 2014 Apr 16; Jeju, Korea. Seoul:INTERCOM LLC; 2014: p.36.
44. Lee WR, Shen SC, Al-Sweayeh SA, Yang HH, Yuan CY, Fang JY. Laser-assisted topical drug delivery by using a low-fluence fractional laser: imiquimod and macromolecules. J Control Release 2011;153:240-8.
45. Braun SA, Hevezi P, Homey B, Gerber PA. Laser-assisted drug delivery: enhanced response to ingenol mebutate after ablative fractional laser treatment. J Am Acad Dermatol 2015;72:364-5.
46. Trelles MA, Leclère FM, Martínez-Carpio PA. Fractional carbon dioxide laser and acoustic-pressure ultrasound for transdermal delivery of cosmeceuticals: a novel method of facial rejuvenation. Aesthetic Plast Surg 2013;37:955-72.
47. Hsiao CY, Huang CH, Hu S, Ko YS, Sung HC, Chen CC, et al. Fractional carbon dioxide laser treatment to enhance skin permeation of ascorbic acid 2-glucoside with minimal skin disruption. Dermatol Surg 2012;38:1284-93.
48. Waibel J, Wulkan A. Split face comparison of the effects of vitamin CE ferulic formula serum to decrease post-operative recovery and increase neocollagenosis in fractional ablative laser resurfacing for photodamage. Laser Surg Med 2013;45 (Suppl 25):1-93.
49. Waibel JS, Mi QS, Ozog D, Qu L, Zhou L, Rudnick A, et al. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression. Lasers Surg Med. In press 2015.
50. Lee WR, Shen SC, Fang CL, Liu CR, Fang JY. Skin pretreatment with an Er:YAG laser promotes the transdermal delivery of three narcotic analgesics. Lasers Med Sci 2007;22:271-8.
51. Bachhav YG, Heinrich A, Kalia YN. Using laser microporation to improve transdermal delivery of diclofenac: Increasing bioavailability and the range of therapeutic applications. Eur J Pharm Biopharm 2011;78:408-14.
52. Tierney EP, Hanke CW. The effect of cold-air anesthesia during Laser Medical Lasers; Engineering, Basic Research, and Clinical Application
and review of the literature. J Am Acad Dermatol 2012;67:436-45.

53. Lee WR, Shen SC, Aljuffali IA, Li YC, Fang JY. Impact of different vehicles for laser-assisted drug permeation via skin: full-surface versus fractional ablation. Pharm Res 2014;31:382-93.

54. Marra DE, Yip D, Fincher EF, Moy RL. Systemic toxicity from topically applied lidocaine in conjunction with fractional photothermolysis. Arch Dermatol 2006;142:1024-6.