Revisiting the application of classical formulas to estimate Bali cattle’s body weight based on body measurement variables

N Widyas*, L A Pradista1, R Setiaji1, R D Hapsari2 and S Prastowo1

1Animal Science Department, Universitas Sebelas Maret Surakarta, Indonesia
2Bali cattle Breeding Center Pulukan, Indonesia

Corresponding author: nuzul.widyas@staff.uns.ac.id

Abstract. Predicting cattle’s body weight is a common practice considering various reasons. This paper revisits four classical formulas commonly found in papers published by Indonesian researchers in predicting cattle’s body weight based on their body measurements namely Schoorl, Winter, Smith and Lambourne models. Data on body weight (BW) and body measurements (Chest Girth=CG and Body Length=BL) of 118 male and 106 female Bali cattle (2-3 yo) were collected from Bali cattle Breeding Center. The estimates from the prediction formulas were compared to the actual body weight. We run 10-folds cross validation procedure to obtain the predictive ability parameters. The mean BW, CG and BL for male cattle were 199.19±51.51 Kg; 144.55±13.43 cm and 107.86±9.30 cm; whereas for females were 161.34±34.35 Kg; 134.25±10.26 cm and 101.48±3.60 cm respectively. All four formulas have the accuracy between 84.90 to maximum of 89.68% in both male and female cattle groups. RMSE were considerably high in both male group (17.64 – 45.31) and female group (11.52 – 26.61). Although the correlations between actual and predicted BW are high, further study need to be done to determine whether the utilization of these predicted values as a response variable will introduce enough bias to affect the results of a research.

1. Introduction
Bali cattle (Bos javanicus) is an Indonesian native cattle species. It is originated from wild Banteng (Bos javanicus) which was first domesticated in the isle of Bali [1-3]. This cattle are well known for their robustness towards tropical environment and low quality feedstuffs [4-7]. Most of Bali cattle were reared in semi-intensive farming system, where during morning and daytime cattle were stationed and allowed to graze freely in a grazing area while in the night time they were put inside the farmer’s paddocks [7]. Cattle were owned by smallholder farmers with low number of animals per farmers [8]. From behavioral point of view, Bali cattle are considered as having less favorable temperament for cattle handling and hence, placing them on the weighing scale require substantial labor. Considering these conditions, using body measurements as productivity indicator is preferable whether in the commercial practice and/or in researches when Bali cattle body weight is required as a variable [9,10]. It is thus the ability to predict cattle’s weight based on the body measurements become an important point.

Predicting cattle’s weight based on their body measurements is a common practice in livestock industry. The reason is mainly for the sake of ease of practice, especially when the cattle are reared in free range or when access to weighing scale is limited. Studies revealed that employing linear regression model to predict body weight based on their chest girth yielded good model fit, indicated by...
the coefficients of determination value of more than 60% in crossbred dairy cattle in Kenya [11], brown-swiss cattle in Turkey [12] and also in Ethiopian oxen [13]. In Indonesia, however, the most common practices to predict cattle’s body weight based on Body measurements are by using classical formulas such as from Schoorl, Winter, Smith and Lambourne [9,10,14–17]. When the inferences of a research were based on the predicted values as a response variable, the predictive ability of these formulas is the main factor determining the quality of the particular research. This paper concerned in estimating and studying the accuracy of Bali cattle’s body weight prediction using the aforementioned formulas.

2. Materials and methods

This research utilized records obtained from Balai Pembibitan Ternak Unggul dan Hijauan Pakan Ternak Pulukan (Bali cattle Breeding Centre), Indonesia. In total there were 224 mature Bali cattle (118 males and 106 females) above the age of 2 years were weighed and measured. The records including variables of Body Weight (BW), Chest Girth (CG) and Body Length (BL). We estimate the predicted body weight based on the following formulas [14]:

\[
\text{Schoorl} \quad BW = \frac{(CG+22)^2}{100}
\]

\[
\text{Winter} \quad BW = \frac{(WH \times BL)}{300}
\]

\[
\text{Smith} \quad BW = \frac{(CG+18)^2}{100}
\]

\[
\text{Lambourne} \quad BW = \frac{(BL \times CG)^2}{11050}
\]

The prediction with Schoorl formula was done in imperial/US units which were lbs for weight and inch for length; whereas body weight predictions with the other formulas were using standard International System of Units (SI) with Kg for weights and cm for lengths.

Caret package in R programming language were used to conduct 10-fold cross validation procedures. Further, predictive ability parameters of accuracy and Mean Squared Errors (MSE) were estimated. After the analyses were completed; we convert all units using SI system for the report’s consistency.

3. Results and discussion

Body weight and body measurement variables including CG and BL were observed. The summary statistics is presented in table 1

Sex	n^1	Mean±sd^2		
		BW^3 (Kg)	CG^4 (cm)	BL^5 (cm)
Male	118	199.19±51.51	144.55±13.43	107.86±9.30
Female	106	161.34±34.35	134.25±10.26	101.48±6.30

Notes: ^1sample size; ^2mean and standard deviation; ^3Body Weight; ^4Wither Height; ^5Body Length

Bali cattle is considerably smaller breed when compared to the cattle from both Bos indicus and Bos taurus [18–21]. The mature weight of Bali cattle in this study were considerably lower compared to other studies. The mature weight of Bali cattle regardless sex and rearing environment were between 271.17 to 338.00 [18,19,22–27]. The difference in cattle body weight phenotype of the same
breed could be caused by the environmental difference [28,29]. Different environment contained differences in resources and micro-climate conditions which can contribute to the observed phenotypes.

Table 2. Parameter estimates of the predicted body weight

Models	\hat{BW}^1	BW2	Accuracy (%)	RMSE3
Male				
Schoorl	279.18	199.19	85.97	18.13
Winter	470.22	199.19	88.83	45.31
Smith	266.02	199.19	85.46	17.64
Lambourne	208.72	199.19	90.09	20.27
Female				
Schoorl	245.20	161.34	84.54	11.94
Winter	377.23	161.34	88.50	26.61
Smith	232.86	161.34	88.38	11.52
Lambourne	167.45	161.34	88.90	12.03

Notes: 1Predicted body weight; 2Observed body weight; 3Mean Squared Error

The average values of predicted body weight estimated with the classical formulas were presented in Table 2. We also estimated the predictive ability of the formulas with 10-fold cross validation method which included the parameters of accuracy of predictions and the RMSE. The accuracies of the prediction formulas were ranged between 84.90 to maximum of 89.68% in both male and female cattle groups. RMSE were considerably high in both male group (17.64 – 45.31) and female group (11.52 – 26.61). The predicting performance of Schoorl, Smith and Lambourne formulas were considerably similar. However, we don’t recommend to use Winter formula to predict Bali cattle BW based on their body measurement variables due to the strikingly high RMSE.

4. Conclusion
Although the correlations between actual and predicted BW are high, further study need to be done to determine whether the utilization of these predicted values as a response variable will introduce enough bias to affect the results of a research. Or, alternative methods to predict BW with higher accuracy need to be explored.

References
[1] Copland J W 1996 Bali Cattle: Origins in Indonesia Jembrana Disease and the Bovine Lentiviruses ed G E Wilcox, S Soseharsono, D D M N. and J W Copland (Canberra: ICAR) pp 29–33
[2] Mohamad K, Olsson M, van Tol H T A, Mikko S, Vlamings B H, Andersson G, Rodríguez-Martínez H, Purwantara B, Paling R W, Colenbrander B and Lenstra J A 2009 PLoS One 4 1–6
[3] Sutarno and Setyawan A D 2015 Biodiversitas 16 327–54
[4] Lisson S, MacLeod N, McDonald C, Corfield J, Pengelly B, Wirajaswadi L, Rahman R, Bahar S, Padjung R, Razak N, Puspadi K, Dahlanuddin, Sutaryono Y, Saenong S, Panjaitan T, Hadiawati L, Ash A and Brennan L 2010 Agric. Syst. 103 486–97
[5] Gunawan A and Jakaria 2011 Media Peternak. 34 93–8
[6] Lindell I C 2013 Phenotyping of Bali cattle and interviewing farmers in Indonesia - a minor field study (Swedish: Swedish University of Agricultural Sciences Faculty)
[7] Sari D D K, Busono W and Nugroho H 2016 Res. Zool. 6 17–20
[8] Martojo H 2003 Relatsh. between Indig. Anim. Humans APEC Reg. 21–35
[9] Hasan M, Lubis U D M, Meutia N, Hambal M, Gani F A and Masyitha D 2020 E3S Web Conf. 151 1–4
[10] Budi Kusuma S and Ngadiyono N 2016 7th Int. Semin. Trop. Anim. Prod. 880–4
[11] Lukuyu M N, Gibson J P, Savage D B, Duncan A J, Mujibi F D N and Okeyo A M 2016 Springerplus 5 63
[12] Ozkaya S and Bozkurt Y 2009 Arch. Tierzucht 52 371–7
[13] Goe M R, Alldredge J R and Light D 2001 Livest. Prod. Sci. 69 187–95
[14] Williamson G and Payne W J A 1993 Pengantar Peternakan di Daerah Tropis (Yogyakarta: Gadjah Mada University Press)
[15] Badriyah N 2014 Kesesuaian Rumus Schoorl Terhadap Bobot Badan (Lamongan: Fak. Peternak. Univ. Islam Lamongan) 2 99–158
[16] Bobot P, Sapi B, Cross B, Aceh S, Samosir M H and Hakim A 2016 J. Peternak. Integr. 4 155–62
[17] Takandjandji M and Sawitri R 2015 Penelit. Hutan dan Konserv. Alam 12 59–73
[18] Entwistle K C T 2001 Bali Cattle Performance: Current Population Dynamics and Performance and Some Strategies for Improvement (a Preliminary Report) 31–9
[19] Warmadewi D A, Oka L, Sudyadnya P and Sudana L B 2014 J. Anim. Sci. Udayana Univ. 3 1-9
[20] Prastowo S, Widi T and Widyas N 2017 IOP Conf. Ser. Mater. Sci. Eng. 193 012028
[21] Widyas N, Nugroho T and Prastowo S 2017 IOP Conf. Ser. Mater. Sci. Eng. 193
[22] Talib C 2002 Wartazoa 12 100–7
[23] Prahani L 2004 Genetic Evaluation for Growth Traits, Reproductive Performance and Meat Tenderness in Beef Cattle (Florida: University of Florida)
[24] Bali B P S 2016 Populasi ternak Sapi Potong Menurut Kabupaten/Kota di Bali (Jakarta: Badan Pusat Statistik)
[25] Yusuf M, Syamsu J A, Rahim L and Ali H M 2010 Studi Uji Performans Ternak Sapi Bali di Kabupaten Barru, Sulawesi Selatan (Preliminary Study) Peningkatan Akses Pangan Hewani melalui Integrasi Pertanian-Peternakan Berkelanjutan Menghadapi Era ACFTA” (Jambi: Universitas Jambi) pp 1–10
[26] Sampurna I P 2103 Menentukan standar sapi bali berdasarkan pola pertumbuhan dan kedekatan hubungan dimensi tubuhnya (Denpasar)
[27] Lisson S, MacLeod N, McDonald C, Corfield J, Pengelly B, Wirajaswadi L, Rahman R, Bahar S, Padjung R, Razak N, Puspadi K, Dahlanuddin, Sutaryono Y, Saenong S, Panjaitan T, Hadiawati L, Ash A and Brennan L 2010 Agric. Syst. 103 486–97
[28] Bourdon R M 2014 Understanding Animal Breeding (Edinburgh: Pearson Education Limited)
[29] Falconer D S and Mackay T F C 1996 Introduction to Quantitative Genetics (Edinburgh: Prentice Hall)