PHASE CALIBRATION SOURCES IN THE NORTHERN SKY AT GALACTIC LATITUDES $|b| < 2.5$

J. M. Wrobel and G. B. Taylor
National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801; jwrobel@nrao.edu, gtaylor@nrao.edu

AND

P. C. Gregory
Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; gregory@physics.ubc.ca

Received 2001 May 3; accepted 2001 May 18

ABSTRACT

The Jodrell Bank–VLA Astrometric Survey (JVAS) of flat-spectrum sources yielded a catalog of 2118 compact radio sources in the northern sky. Those sources are being used as phase calibrators for many synthesis arrays. JVAS suffers from a zone of avoidance because Galactic confusion prevented selection of flat-spectrum sources at $|b| < 2.5$. This confusion problem was overcome by selecting variable sources from the GB6 Catalog in the JVAS zone of avoidance. A subset of these sources were observed at 8.5 GHz with the NRAO VLA in the JVAS style, leading to 29 compact radio sources in the zone of avoidance whose positions have been measured to an rms accuracy of about 10 mas or less. This extension of the JVAS lists to lower Galactic latitudes (1) improves the prospects for VLBA phase-referencing of Galactic targets and (2) strengthens the lists’ usefulness for studies of the Galactic interstellar medium.

Key words: astrometry — catalogs — radio continuum — techniques: interferometric

1. MOTIVATION

The Jodrell Bank–VLA Astrometric Survey (JVAS) of flat-spectrum sources yielded a catalog of 2118 compact radio sources (Patnaik et al. 1992; Browne et al. 1998; Wilkinson et al. 1998). Each compact source (1) has a peak flux density at 8.4 GHz of ≥ 50 mJy at a resolution of 200 milli-arcseconds (mas), (2) contains 80% or more of the total source flux density, and (3) has a position known to an rms accuracy of 12–55 mas. The 2118 sources are uniformly distributed in the northern sky at Galactic latitudes $|b| \geq 2.5$ (Fig. 1). Although these sources are primarily intended for use as phase calibrators for the Jodrell Bank MERLIN, they are also suitable as phase calibrators for the NRAO Very Large Array and can be considered as candidate phase calibrators for the NRAO Very Long Baseline Array (VLBA) and for millimeter arrays (Holdaway, Owen, & Rupen 1994; Peck & Beasley 1998).

JVAS suffers from a zone of avoidance because Galactic confusion prevented selection of flat-spectrum sources at $|b| < 2.5$. Fortunately, there is another way of selecting potential phase calibrators that is less susceptible to Galactic confusion: seek sources that vary with time and must, therefore, have significant contributions from compact components. A seven-beam receiver was used on the former NRAO 91 m telescope, during 1986 November and 1987 October, to repeatedly survey the declination band $0^\circ \leq \delta \leq +75^\circ$ (B1950.0) at 4.85 GHz with a resolution of 3:5 (Condon et al. 1994). Gregory et al. (2001) used this database to extract variability information for sources in the GB6 Catalog (Gregory et al. 1996), the large unbiased sample of 75,162 sources derived from the combined survey images. GB6 sources were selected with $S \geq 25$ mJy and with a flux density variation $\Delta S > 2.5 \sigma$ between 1986 and 1987. The sky distribution of these long-term GB6 variables was dominantly isotropic, implying an extragalactic population. Imposing a further constraint of $|b| < 2.5$ on these GB6 variables leads to 97 potential phase calibrators in the JVAS zone of avoidance. New VLA observations in the JVAS style of these GB6 variables would help supplement the JVAS lists, thereby improving the prospects for VLBA phase-referencing of Galactic targets and strengthening the lists’ usefulness for studies of the Galactic interstellar medium.

2. OBSERVATIONS AND IMAGING

The VLA (Thompson et al. 1980) was used 1999 June 18 UT in its A (36 km) configuration to observe 53 of the 97 GB6 variables. Some additional sources initially suspected of variability were also observed (Gregory, Scott, & Poller 1998). Data were acquired in dual circular polarizations with bandwidths of 25 MHz and at center frequencies of 4.5351, 4.8851, 8.1149, and 8.4851 GHz. Observations were made assuming a coordinate equinox of 2000. Phase calibration sources were selected from the International Celestial Reference Frame as realized by VLBI (Ma et al. 1998), with positions from the reference frame update of 1998-6 in the VLBA correlator database (T. M. Ebanks 1998, private communication). The switching time between phase calibrator observations was 6 minutes. Additional astrometric check sources, also selected from Ma et al. (1998), were included to quantify the observed astrometric accuracy. Table 1 lists all phase calibrators and check sources used.

Each source, whether a GB6 variable, a phase calibrator, or an astrometric check source, was scheduled in 2 minute observations. Separate observations were needed to acquire 4.5351 and 4.8851 GHz simultaneously and 8.1149 and 8.4851 GHz simultaneously. Allowing for telescope drive and electronics settling time, this gives about 1–5 minutes of integration time per observation per source. Additional observations of J0137+3309 (3C 48), J0521+1638 (3C 138), J0542+4951 (3C 147), and J1331+3030 (3C 286) were used to set the flux density scale to an accuracy of 3% and to fix electric-vector position angles to an accuracy of 3°. Instrumental polarizations were determined to an accuracy of 0.1% through observations of

1 See http://pulsar.physics.ubc.ca/gregory/index.html.
plus 29 GB6 variable sources from this work (\(\Gamma\)IG\(\ J0547\ J0443\ J0423\ J0306\ J0228\ J0102\).

1. Sky plot for 2118 compact radio sources from JVAS (dots), plus 29 GB6 variable sources from this work (circles) in the JVAS zone of avoidance. The gray dotted line shows \(b = 0\)°.

Table 1

Name	Source	Name	Source
J0102 + 5824	Check	J0603 + 1742	Check
J0228 + 6721	Phase	J0725 - 0054	Phase
J0306 + 6243	Check	J1928 + 0848	Phase
J0359 + 5057	Phase	J1935 + 2031	Phase
J0423 + 4150	Phase	J1953 + 3537	Phase
J0443 + 3441	Phase	J1957 + 3338	Check
J0547 + 2721	Phase	J2007 + 4029	Phase
J0559 + 2353	Check	J2322 + 5057	Phase

Table 2

Name	\(b\) (deg)	\(l\) (deg)	\(\alpha\) (J2000.0)	\(\delta\) (J2000.0)	\(S_{\text{total}}\) (mJy)	\(S_{\text{peak}}\) (mJy beam\(^{-1}\))
J0008 + 6024	-2.0	117.6	00 08 19.0524	+60 25 01.254	52	44
J0223 + 6307	+2.1	133.1	02 23 29.6078	+63 07 17.298	106	98
J0414 + 4029	+3.2	146.9	04 10 46.9289	+54 05 38.771	50	53
J0436 + 4500	-0.5	146.9	04 46 34.5031	+54 00 59.100	449	443
J1250 + 5138	+2.4	146.1	12 50 05.0088	+51 38 38.721	118	117
J1438 + 4848	+1.3	156.4	14 38 59.1064	+48 48 46.628	335	306
J1540 + 4056	-2.2	163.7	15 40 43.6790	+40 56 13.986	367	376
J2002 + 3849	-1.8	166.8	20 02 32.4916	+38 49 54.937	212	199
J2002 + 4139	0.0	164.6	20 02 37.9876	+41 39 19.343	795	792
J2051 + 3301	+1.4	176.1	20 51 49.4341	+33 01 31.909	89	93
J1434 + 0137	+2.2	182.6	14 34 47.9362	+54 35 08.500	154	127
J1847 + 0154	-0.2	33.5	18 47 45.9672	00 35 32.348	972	872
J1851 + 0035	-0.2	33.5	18 51 46.7231	00 35 32.348	972	872
J1855 + 0250	-0.4	35.9	18 55 35.4366	02 51 19.548	202	189
J1856 + 0610	+1.7	39.0	18 56 31.8384	+60 10 16.757	311	303
J1931 + 2243	+1.9	57.6	19 31 24.9168	+22 43 31.259	406	398
J1934 + 1732	-1.3	53.4	19 34 50.2056	+17 32 14.154	121	103
J1936 + 2246	+0.9	58.2	19 36 29.3042	+22 46 25.859	119	111
J1946 + 2300	-0.9	59.5	19 46 06.2515	+23 00 04.415	201	191
J1949 + 2421	-0.9	61.1	19 49 33.1432	+24 21 18.252	116	124
J2003 + 3034	-0.3	68.0	20 03 30.2448	+30 34 30.779	387	380
J2028 + 3833	-0.2	77.5	20 28 54.0828	+38 32 48.144	42	49
J2102 + 4702	+0.3	87.9	21 02 17.0563	+47 02 16.254	170	159
J2114 + 4634	-1.5	89.0	21 14 32.8774	+46 34 39.296	78	74
J2254 + 6209	+2.3	109.7	22 54 25.2918	+62 09 38.727	86	76

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

\(^*\) Initial suspicion of long-term variability was not confirmed (Gregory et al. 2001).
density S_{total}, a peak flux density S_{peak}, and an rms noise level σ. The error in S_{peak} is the quadratic sum of a 3% amplitude error and σ. For one GB6 variable that passed the 40 mJy filter, the VLA pointing position was greater than 40'' from the derived position, and because it is then difficult to distinguish source structure from delay smearing, that source was abandoned for this study.

Table 2 gives the astrometric and photometric results for the 29 GB6 variables that survived the automatic script and its quality control. The code "nvss" in the notes for 25 GB6 variables means that the a priori observed position was from Condon et al. (1998) and the position in Table 2 was derived from the script prior to self-calibration. The code "icrf" in the notes for four GB6 variables means that the a priori observed position was from the VLBA correlator database and the position in Table 2 is from that database. For these four GB6 variables and the five astrometric check sources in Table 1, the positions derived with the script can be compared with those from the VLBA correlator database. This comparison leads to a standard deviation in right ascension of about 4 mas and in declination of about 9 mas, which, when combined in quadrature, give a two-dimensional astrometric error of about 10 mas. Only a few of the GB6 variables show interesting structure at 200 mas resolution (Fig. 2).

Each compact source in the JVAS lists has a peak flux density at 8.4 GHz of ≥ 50 mJy, contains 80% or more of the total source flux density, and has a position known to an rms accuracy of 12–55 mas (Patnaik et al. 1992; Browne et al. 1998; Wilkinson et al. 1998). Each GB6 variable in Table 2 has very similar properties: it is a compact source with a peak flux density at 8.5 GHz of ≥ 40 mJy, contains 80% or more of the total source flux density, and has a position now known to an rms accuracy of about 10 mas (25 sources) or less (four sources). These GB6 variables therefore effectively extend the JVAS lists of compact sources into the zone of avoidance at Galactic latitudes $|b| < 2.5$. These have two important consequences. First, these GB6 sources can be considered as candidate phase calibrators for the VLBA, thereby improving upon the script images described in Table 2. Top left, J1847 + 0154; top right, J1851 + 0035; bottom left, J1934 + 1732; bottom right, J1946 + 2300.
ing the prospects for VLBA phase-referencing of Galactic targets. Second, the addition of these GB6 sources to the JVAS lists strengthens the lists’ usefulness for studies of the Galactic interstellar medium, including scintillation (e.g., Cordes & Rickett 1998), angular broadening (e.g., Desai & Fey 2001), Faraday rotation (e.g., Wrobel 1993), and both molecular and atomic absorption (e.g., Liszt & Lucas 1998).

The authors thank C. Walker for comments on the manuscript and J. Condon for help seeking NVSS positions for the GB6 variables. NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

REFERENCES

Browne, I. W. A., Patnaik, A. R., Wilkinson, P. N., & Wrobel, J. M. 1998, MNRAS, 293, 257
Clarke, T. E. 2001, in preparation
Condon, J. J., Broderick, J. J., Seielstad, G. A., Douglas, K., & Gregory, P. C. 1994, AJ, 107, 1829
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693
Cordes, J. M., & Rickett, B. J. 1998, ApJ, 507, 846
Desai, K. M., & Fey, A. L. 2001, ApJS, 133, 395
Gregory, P. C., Capak, P. L., Gasson, D., & Scott, W. K. 2001, in IAU Symp. 205, Galaxies and Their Constituents at the Highest Angular Resolutions, ed. R. T. Schilizzi, S. N. Vogel, F. Paresce, & M. S. Elvis (San Francisco: ASP), 98
Gregory, P. C., Scott, W. K., & Condon, J. J. 1996, ApJS, 103, 427
Gregory, P. C., Scott, W. K., & Poller, B. 1998, in IAU Colloq. 164, Radio Emission from Galactic and Extragalactic Compact Sources, ed. J. A. Zensus, G. B. Taylor, & J. M. Wrobel (ASP Conf. Ser. 144) (San Francisco: ASP), 283
Holdaway, M. A., Owen, F. N., & Rupen, M. P. 1994, Source Counts at 90 GHz (Millimeter Array Memo. 123) (Tucson: NRAO)
Liszt, H. S., & Lucas, R. 1998, A&A, 339, 561
Ma, C., et al. 1998, AJ, 116, 516
Patnaik, A. R., Browne, I. W. A., Wilkinson, P. N., & Wrobel, J. M. 1992, MNRAS, 254, 655
Peck, A. B., & Beasley, A. J. 1998, in IAU Colloq. 164, Radio Emission from Galactic and Extragalactic Compact Sources, ed. J. A. Zensus, G. B. Taylor, & J. M. Wrobel (ASP Conf. Ser. 144) (San Francisco: ASP), 155
Thompson, A. R., Clark, B. G., Wade, C. M., Napier, P. J. 1980, ApJS, 44, 151
Wilkinson, P. N., Browne, I. W. A., Patnaik, A. R., Wrobel, J. M., & Sorathia, B. 1998, MNRAS, 300, 790
Wrobel, J. M. 1993, AJ, 106, 444