X-Shooter characterization of very wide companion candidates to young stars with planets and disks

Fatemeh Zahra Majidi
INAF-Padova, University of Padova, Italy
Contents

- Motivation behind studying the wide companion candidates
- Introducing the capabilities of X-Shooter
- Introducing the targets
- Criteria for determining a new wide companion candidate
- Results of the characterization
- Final remarks
Wide companions (1000au-1pc) are important
- Benchmarks for studying stellar/planet evolution (multiplicity statistics, dynamical environment of stars w/wo planets, w/wo disks)
- Constraining the age of the associated stellar system

Selected based on their similar kinematic properties to the central star (Gaia DR2) that is already a member of a stellar association

Characterizing unknown objects belonging to a stellar association is important
- New members will be identified
- We can constrain the age of the association more accurately
- Disk fraction of the association can be studied
X-Shooter

- The first 2nd generation instrument of the ESO Very Large Telescope (VLT)
- Very efficient
- Single-target
- Intermediate-resolution spectrograph (R \sim 4000–17,000, depending on wavelength and slit width)
- In a single exposure, covers the spectral range from 300 to 2500 nm

Characteristic	Specification
Wavelength range	300-2500 nm split over 3 arms
UV-Blue arm	Range: 300-550 nm in 11 orders
Resolution:	4500 (1" slit)
Detector:	4k x 2k E2V CCD
Visual-red arm	Range: 550-1000 nm in 14 orders
Resolution:	7000 (1" slit)
Detector:	4k x 2k MIT/LL CCD
Near-IR arm	Range: 1000-2500 nm in 16 orders
Resolution:	4500 (1" slit)
Detector:	2k x 1k Hawaii 2RG
Slit length	12"
Beam separation	Two high efficiency dichroics
Atmospheric dispersion compensation	In the UV-Blue and Visual-red arms
Integral field unit	1.8" x 4" reformatted into 0.6" x 12"
X-Shooter Characterization of New Wide Companions

Name	Distance a (pc)	Association	SpT	T_{eff} (K)	A_v (mag)	Wide companion	Separation ($''$)	Separation (au)
V4046Sgr	72.4	β-Pictoris MG	K5/K7	4370/4100	0 b	2MASS J1815-3249	901	65232
HIP 74865	123.53	Sco-Cen (UCL)	F3V	6720	0	2MASS J1517-3028	90	11118
HIP 65426	109.21	Sco-Cen (LCC)	A2V	8840	0	2MASS J1324-5129	142	15508
HIP 73145	133.65	Sco-Cen (UCL)	A2IV	8840	0	2MASS J1457-3543	280	37422
GQ Lup	151.82	Sco-Cen (Lupus I)	K7V	4070	0.7 c	2MASS J1549-3539	16	2429

a Distances are calculated based on the objects’ parallax reported in Gaia DR2 catalog.

b (Stempels & Gahm 2004)

Majidi et al. 2020 (A&A)

- Upper Centaurus-Lupus (UCL) – 15±3 Myr (Pecaut & Mamajek 2016)
- Lower Centaurus-Crux (LCC) – 16.0±2.2 Myr (Pecaut & Mamajek 2016)
- Upper Scorpius (US) – 11±2 Myr (Pecaut et al. 2011)
X-Shooter Characterization of New Wide Companions

Criteria

Name	Consistent kinematic properties with the stellar system (yes/no)	Age	Active (yes/no)	Contains Li T (yes/no)	Conclusion
2MASS J1815-3249	no	MS	no	no	field object
2MASS J1517-3028	yes	PMS	yes	yes	UCL member + HIP 74865 probable wide companion
2MASS J1324-5129	yes	PMS	yes	yes	ambiguous
2MASS J1457-3543	no	PMS	yes	ambiguous	Lupus I new member + GQ Lup probable wide companion
2MASS J1549-3539	yes	PMS	yes	yes	

Pecaut & Mamajek (2016)

White & Basri (2003)
GQ Lup’s new wide companion candidate, GQ Lup C

- a wide (projected separation ~16".0, or 2400 AU) companion of the GQ Lup A-B system
- a bonafide low-mass (~0.15 M_{\odot}) young stellar object (YSO) with stellar and accretion/ejection properties typical of Lupus YSOs of similar mass
- with kinematics consistent with that of the GQ Lup A-B system
- the disk of the target was resolved on the HST images (Lazzoni et al. 2020)
- (roughly aligned with the disk of the GQ Lup)
 ** Both of them are roughly aligned with the Lupus I dust filament containing GQ Lup.
- Not-conclusive: a possible scenario for the formation of the triple system is that GQ Lup A and C formed by fragmentation of a turbulent core in the Lup I filament, while GQ Lup B (BD companion of GQ Lup A at 0".7), formed in-situ by the fragmentation of the circumpprimary disc
 -- The recent discoveries that stars form along cloud filaments would favor the scenario of turbulent fragmentation for the formation of GQ Lup A and C.

Alcala’, Majidi, Desidera, et al. 2020 (A&A)
X-Shooter Characterization of New Wide Companions

IRAF + Pecaut & Mamajek 2016 + Baraffe et al. 2015 isochrones

Name	SpT	T_{eff} (K)	A_V (mag)	RV (km/s)	L_* (L_\odot)	R_* (R_\odot)	M_* (M_\odot)	Age (Myr)	log g
2MASS J1517-3028	M4.5±0.5	3100	0	1.2±6.9	0.018	0.47	0.11	7.9	4.13

ROTFIT

Name	T_{eff} (K)	log g	RV (km/s)	$v \sin i$ (km/s)	Age (Myr)
2MASS J1517-3028	3077±22	4.49±0.21	1.4±2.4	26±6	7.4±0.5

BANYAN Σ

(Gagné et al. 2018)
UCL membership (> 98%)

UCL sub-association’s age (15±3 Myr)

Name	parallax (mas)	μ_α (mas/yr)	μ_δ (mas/yr)	RV (km/s)
2MASS J1517-3028	8.16±0.11	-21.67±0.21	-28.31±0.18	1.4±2.4
HIP 74865	8.09±0.061	-21.07±0.11	-28.42±0.10	2.0±0.3

Hosts a BD

Name	EW_{Li} (nm)	$EW_{H\alpha}$ (nm)	$EW_{H\beta}$ (nm)	$EW_{H\gamma}$ (nm)
2MASS J1815-3249	< 0.0036	0.012±0.001	-0.034±0.003	-0.013±0.005
2MASS J1517-3028	0.038±0.008	-1.083±0.055	-1.019±0.067	-1.126±0.201
2MASS J1324-5129	0.070±0.020	-1.068±0.142	-0.659±0.149	-0.723±0.129
2MASS J1457-3543	< 0.039	-0.983±0.090	-0.789±0.166	-0.886±0.135

Asensio-Torres et al. (2019), Feiden (2016)
X-Shooter Characterization of New Wide Companions

IRAF + Pecaut & Mamajek 2016 + Baraffe et al. 2015 isochrones

Name	SpT	T_{eff} (K)	A_U (mag)	RV (km/s)	L_\star (L_\odot)	R_\star (R_\odot)	M_\star (M_\odot)	Age (Myr)	log g
2MASS J1324-5129	M6.5±0.5	2710	0	15.3±5.8	0.0024	0.22	0.04	18.2	4.35

ROTFIT

Name	T_{eff} (K)	log g	RV (km/s)	$v \sin i$ (km/s)	Age (Myr)
2MASS J1324-5129	2646±50	4.0±0.1	17.9±3.0	< 8.0	16±2.2

Hosts a planet

Name	parallax (mas)	μ_α (mas/yr)	μ_δ (mas/yr)	RV (km/s)
2MASS J1324-5129	8.01±0.35	-31.85±0.53	-17.07±0.44	15.29±5.75
HIP 65426	9.16±0.62	-34.25±0.10	-18.81±0.093	12.2±0.3

New member of LCC (16±2 Myr)

BANYAN Σ (Gagné et al. 2018) LCC membership (∼94%)
X-Shooter Characterization of New Wide Companions

Name	SpT	T_{eff} (K)	A_V (mag)	RV (km/s)	L_* (L_{\odot})	R_* (R_{\odot})	M_* (M_{\odot})	Age (Myr)	log g
2MASS J1324-5129	M6.5±0.5	2710	0	15.3±5.8	0.0024	0.22	0.04	18.2	4.35

ROTFIT

Name	T_{eff} (K)	log g	RV (km/s)	v sin i (km/s)	Age (Myr)
2MASS J1324-5129	2646±50	4.0±0.1	17.9±3.0	< 8.0	16±2.2

Andrews et al. (2017)

$$\Delta v_{\text{max}} = 2.11\sqrt{1000\alpha u/s (km/s)}$$

$$\Delta v = \sqrt{(v_{t1, pmra} - v_{t2, pmra})^2 + (v_{t1, pmdec} - v_{t2, pmdec})^2 + (RV1 - RV2)^2},$$

BANYAN Σ (Gagné et al. 2018)

LCC membership (\sim94%)
X-Shooter Characterization of New Wide Companions

Conclusion

Name	Consistent kinematic properties with the stellar system (yes/no)	Age	Active (yes/no)	Contains Li I (yes/no)	Conclusion
2MASS J1815-3249	no	MS	no	no	field object
2MASS J1517-3028	yes	PMS	yes	yes	UCL member + HIP 74865 probable wide companion
2MASS J1324-5129	yes	PMS	yes	yes	LCC new member
2MASS J1457-3543	no	PMS	yes	ambiguous	ambiguous
2MASS J1549-3539	yes	PMS	yes	yes	Lupus I new member + GQ Lup probable wide companion

Pecaut & Mamajek (2016)

White & Basri (2003)
X-Shooter Characterization of New Wide Companions

Conclusions

Two (three?) probable triple systems

- 2MASS J1517-3028 as the wide companion of HIP 74865 and HIP 74865 B (Majidi et al. 2020, A&A)
 (no disk, not accreting matter)
- GQ Lup C as the wide companion of GQ Lup and GQ Lup B (Alcala’, Majidi, Desidera et al. 2020, A&A)
 (disk, accreting matter)

- HD 284149 ABb triple system configuration (Bonavita et al. 2017) – substellar companion (HD 284149 b) has a larger separation from the central star compared to the low-mass stellar companion (HD 284149 B).

- Different formation mechanisms
- Hinting at larger multiple systems
 1) Multiple systems are three times more likely to have a distant companion within 10 kau
 2) Ultra-wide companions are biased towards high multiplicity at shorter separations (Joncour et al. 2017)
 3) Cascade fragmentation scenario of the natal molecular core (Joncour et al. 2017)
Thank You!
X-Shooter Characterization of New Wide Companions

Name	SpT	T_{eff} (K)	A_v (mag)	RV (km/s)	L_* (L_\odot)	R_* (R_\odot)	M_* (M_\odot)	Age (Myr)	log g
2MASS J1815-3249	M3±0.5	3410	0	−17.7±2.4	0.03	0.5	0.3	> 150	4.95

** ROTFIT **

Name	T_{eff} (K)	log g	RV (km/s)	ν sin i (km/s)	Age (Myr)
2MASS J1815-3249	3562±30	4.68±0.14	−20.1±2.0	< 8.0	> 150

** Age of β-Pictoris MG 25 ± 3 Myr (Messina et al. 2016c)**

Name	parallax (mas)	μ_α (mas/yr)	μ_δ (mas/yr)	RV (km/s)
2MASS J1815-3249	13.12±0.054	1.07±0.095	−52.74±0.078	−20.1±2.0
V4046Sgr	13.81±0.064	3.49±0.11	−52.75±0.087	−6.94±0.16
GSC 7396-00759	13.99±0.052	3.08±0.10	−52.64±0.08	−6.10±0.5

Name	$E_{\text{W} \lambda_{11}}$ (nm)	$E_{\text{W} \lambda_{H\alpha}}$ (nm)	$E_{\text{W} \lambda_{H\beta}}$ (nm)	$E_{\text{W} \lambda_{H\gamma}}$ (nm)
2MASS J1815-3249	< 0.0036 a	0.012±0.001	−0.034±0.003	−0.013±0.005
2MASS J1517-3028	0.038±0.008	−1.083±0.055	−1.019±0.067	−1.126±0.201
2MASS J1324-5129	0.070±0.020	−1.068±0.142	−0.659±0.149	−0.723±0.129
2MASS J1457-3543	< 0.039 a	−0.983±0.090	−0.789±0.166	−0.886±0.135

a: Uncertainty in the EW measurement.
X-Shooter Characterization of New Wide Companions

IRAF + Pecaut & Mamajek 2016 + Baraffe et al. 2015 isochrones

Name	SpT	T_{eff} (K)	A_v (mag)	RV (km/s)	L_* (L_\odot)	R_* (R_\odot)	M_* (M_\odot)	Age (Myr)	log g
2MASS J1457-3543	M8±0.5	2500	0	4.0±8.9	0.002	0.24	0.02	14.09	4.00

ROTFIT

Name	T_{eff} (K)	log g	RV (km/s)	$v\sin i$ (km/s)	Age (Myr)
2MASS J1457-3543	2635±80	4.30±0.17	8.0±7.8	62.0±10.0	17.75±4.15

Name	parallax (mas)	μ_α (mas/yr)	μ_δ (mas/yr)	RV (km/s)
2MASS J1457-3543	9.86±0.42	−28.68±0.68	−27.3±0.65	8.0±7.8
HIP 73145	7.48±0.20	−23.35±0.26	−24.94±0.30	3.8±1.6

Name	$EW_{Li\text{I}}$ (nm)	$EW_{H\alpha}$ (nm)	$EW_{H\beta}$ (nm)	$EW_{H\gamma}$ (nm)
2MASS J1815-3249	< 0.0036 a	0.012±0.001	−0.034±0.003	−0.013±0.005
2MASS J1517-3028	0.038±0.008	−1.083±0.055	−1.019±0.067	−1.126±0.201
2MASS J1324-5129	0.070±0.020	−1.068±0.142	−0.659±0.149	−0.723±0.129
2MASS J1457-3543	< 0.039 a	−0.983±0.090	−0.789±0.166	−0.886±0.135

three-sigma upper limit on the flux of the Lithium line (Cayrel 1988)

\[
dEW = 3 \times 1.06 \sqrt{(FWHM) dx / SNR}
\]
Renormalized Unit Weight Error (RUWE)

- 68 out of 588 of them have RUWE > 1.4
- RUWE = 1.174 that is below RUWE \sim 1.4

597 out of 697 UCL members have a significant astrometric-excess-noise

SpT calculated based on G-mag (Kiman et al. 2019)

An age of 80-150 Myr
- compatible with the high activity level and fast rotation.
- alternatively, activity and rotation might be induced by a close companion through tidal locking
- astrometric-excess-noise = 0.99 mas, with a significant astrometric-excess-noise-sigma of 3.29
- however, a very close, tidally-locked binary is not expected to cause significant astrometric effects
- while the spectral lines are very broad, there are no indications of blending of additional components.

Majidi et al. 2020 (A&A)
We were hoping that finding a companion gravitationally bound to this star could provide us with hints on the formation of the multi-belt architecture of its disk. The lack of stellar and massive brown dwarf companions over the full range of separations suggests that these features in the disk are not linked to external objects.

Name	Parallax (mas)	μ_α (mas/yr)	μ_δ (mas/yr)	RV (km/s)
2MASS J1457-3543	9.86±0.42	-28.68±0.68	-27.3±0.65	8.0±7.8
HIP 73145	7.48±0.20	-23.35±0.26	-24.94±0.30	3.8±1.6