A simple construction of Grassmannian polylogarithms

A.B. Goncharov

To Andrey Suslin for his 60th birthday

Contents

1 Introduction and main definitions 1

1.1 The Grassmannian polylogarithms and their properties 2

1.2 The history and ramifications of the problem 4

2 Properties of the Grassmannian polylogarithms

2.1 Motivic avatar of the form Ω 7

2.2 Proof of Theorems 1.1 and 1.3 9

3 Tate iterated integrals and variations of mixed Tate motives 11

4 Tate iterated integral for the Grassmannian polylogarithm 15

1 Introduction and main definitions

Abstract. The classical n-logarithm is a multivalued analytic function defined by induction as

$$\text{Li}_n(z) := \int_0^z \text{Li}_{n-1}(t)d\log t, \quad \text{Li}_1(z) = -\log(1-z).$$

In this paper we give a simple explicit construction of the Grassmannian n-logarithm, which is a multivalued analytic function on the quotient of the Grassmannian of n-dimensional subspaces in \mathbb{C}^{2n} in generic position to the coordinate hyperplanes by the natural action of the torus $(\mathbb{C}^*)^{2n}$. The classical n-logarithm appears at certain one dimensional boundary stratum.

We introduce and study Tate iterated integrals, which are homotopy invariant integrals of 1-forms $d\log f_i$ where f_i are rational functions. We give a simple explicit formula for the Tate iterated integral related to the Grassmannian n-logarithm.

Another example is the Tate iterated integrals for the multiple polylogarithms on the moduli spaces $\mathcal{M}_{0,n}$, calculated in Section 4.4 of [G2] using the combinatorics of plane trivalent trees decorated by the arguments of the multiple polylogarithms.

It is a pleasure to contribute this paper to the volume dedicated to Andrey Suslin, whose works [Su] and [Su2] played an essential role in the development of the story.
1.1 The Grassmannian polylogarithms and their properies

Configurations and Grassmannians. A configurations of m points of a G-set X are the orbits of the group G on X^m. Recall the classical dictionary relating configurations of points in projective/vector spaces to Grassmannians.

1. If $X = V_n$ is an n-dimensional complex vector space and $G = GL_n(\mathbb{C})$ we have configurations of vectors in V_n. Configurations of vectors in isomorphic vector spaces are canonically identified. Such a configuration is generic if any $k \leq n$ vectors are linearly independent.

Denote by G_n the moduli space of generic configurations of $2n$ vectors in an n-dimensional vector space. Its complex points are identified with the points of the open part of the Grassmmanian of n-dimensional subspaces in the coordinate space \mathbb{C}^{2n} parametrising the subspaces which are in generic position to the coordinate planes. Namely, such a subspace $H \subset \mathbb{C}^{2n}$ provides a configuration of $2n$ vectors in H^* given by the restriction of the coordinate functions.

2. If $X = \mathbb{C}P^{n-1}$ and $G = PGL_n(\mathbb{C})$ we have configurations of points in $\mathbb{C}P^{n-1}$. Such a configuration is generic if any $k \leq n$ of the points generate a $(k-1)$-plane in $\mathbb{C}P^{n-1}$.

Denote by PG_n the moduli space of generic configurations of $2n$ points in \mathbb{P}^{n-1}. Its complex points are identified with the orbits of the torus $(\mathbb{C}^*)^{2n}$ on the Grassmannian $G_n^0(\mathbb{C})$. Namely, an n-dimensional subspace $H \subset \mathbb{C}^{2n}$ provides a configuration of $2n$ hyperplanes in the projectivisation of H given by intersection with the coordinate hyperplanes. By the projective duality this is the same as a generic configuration of $2n$ points in $\mathbb{C}P^{n-1}$.

Construction of the Grassmannian polylogarithms. The Grassmannian n-logarithm is a multivalued analytic function L_n^G on $PG_n(\mathbb{C})$, which we define as the integral of an explicit closed 1-form Ω on $PG_n(\mathbb{C})$. The 1-form Ω is defined by using the Aomoto $(n-1)$-logarithms $[\mathcal{A}]$, whose definition we recall now.

The Aomoto n-logarithm. A simplex in $\mathbb{C}P^n$ is a collection of $n+1$ hyperplanes $(L_0,...,L_n)$. In particular, a collection of $n+1$ points in generic position determines a simplex with the vertices at these points. A pair of simplices $(L;M)$ in $\mathbb{C}P^n$ is admissible if L and M have no common faces of the same dimension. There is a canonical n-form ω_L in $\mathbb{C}P^n$ with logarithmic poles at the hyperplanes L_i. If $z_i = 0$ are homogeneous equations of L_i then

$$\omega_L = d \log(z_1/z_0) \wedge ... \wedge d \log(z_n/z_0).$$

Let Δ_M be a topological n-cycle representing a generator of $H_n(\mathbb{C}P^n,M)$. The Aomoto n-logarithm is a multivalued analytic function on configurations of admissible pairs of simplices $(L;M)$ in $\mathbb{C}P^n$ given by

$$\mathcal{A}_n(L;M) := \int_{\Delta_M} \omega_L.$$

Examples. 1. Let (l_1,l_2) and (m_1,m_2) be two pairs of distinct points in $\mathbb{C}P^1$. Then

$$\mathcal{A}_1(l_1,l_2;m_1,m_2) := \int_{m_1}^{m_2} d \log \frac{z-l_2}{z-l_1} = \log r(l_1,l_2,m_1,m_2).$$

where $r(x_1,x_2,x_3,x_4)$ is the cross-ratio of four points on the projective line:

$$r(x_1,x_2,x_3,x_4) := \frac{(x_3-x_1)(x_4-x_2)}{(x_3-x_2)(x_4-x_1)}.$$
2. The classical \(n \)-logarithm \(\text{Li}_n(z) \) is given by an \(n \)-dimensional integral

\[
\text{Li}_n(z) = \int_{0 \leq t_1 \leq t_2 \leq \ldots \leq t_n} \frac{dt_1}{t_1} \wedge \ldots \wedge \frac{dt_n}{t_n}.
\]

Below we always use the following convention about the integration cycles \(\Delta_M \). Given a generic configuration of points \((x_1, \ldots, x_m) \) in \(\mathbb{CP}^{n-1} \), a compatible system of cycles is the following data. For every two points \((x, y) \) of the configuration we choose a generic path \(\varphi(x, y) \) connecting them, for every three points \((x, y, z) \) we choose a generic topological triangle \(\varphi(x, y, z) \) which bounds \(\varphi(x, y) + \varphi(y, z) + \varphi(z, x) \), and so on, so that for every subconfiguration \((x_i, \ldots, x_k) \), \(k \leq n \) we choose a generic topological simplex \(\varphi(x_i, \ldots, x_k) \), and these choices are compatible with the boundaries. In the definition of the Aomoto polylogarithms we always choose a \(\varphi \)-symplex as the chain \(\Delta_M \).

Let \(V_n \) be an \(n \)-dimensional complex vector space. Choose a volume form \(\omega_n \in \det V_n^* \). Given vectors \(l_1, \ldots, l_n \) in \(V_n \), set

\[
\Delta(l_1, \ldots, l_n) := (l_1 \wedge \ldots \wedge l_n, \omega_n).
\]

Notice that a simplex in a projective space \(\mathbb{P}(V) \) can be defined as either a collection of hyperplanes, or vertices. Below we employ the second point of view, and use vectors \(l_i \in V \) to determine the vertices as the lines spanned by the vectors.

Consider the following multivalued analytic \(1 \)-form on the Grassmannian \(G_n(\mathbb{C}) \):

\[
\Omega(l_1, ..., l_{2n}) := \text{Alt}_{2n}(A_{n-1}(l_1, ..., l_n; l_{n+1}, ..., l_{2n}) \, d \log \Delta(l_{n+1}, ..., l_{2n})). \tag{1}
\]

It does not depend on the choice of the form \(\omega_n \).

Theorem 1.1 The \(1 \)-form \(\Omega(l_1, ..., l_{2n}) \) is closed. It depends only on the configuration of points in \(\mathbb{CP}^{n-1} \) obtained by projection of the vectors \(l_i \).

Definition 1.2 The Grassmannian \(n \)-logarithm \(L_n^G(l_1, ..., l_{2n}) \) is the skewsymmetrization under the permutations of the vectors \(l_1, ..., l_{2n} \) of the primitive of the \(1 \)-form (1).

A primitive of the \(1 \)-form (1) is a multivalued analytic function defined up to a scalar. The scalar vanishes under the skewsymmetrization. So the Grassmannian \(n \)-logarithm is a well defined multivalued analytic function. Thanks to the last claim of Theorem 1.1 we can consider it as a function \(L_n^G(x_1, ..., x_{2n}) \) on configurations of \(2n \) points in \(\mathbb{CP}^{n-1} \).

Properties of the Grassmannian \(n \)-logarithm. Given a configuration of \(m + 1 \) vectors \((l_0, ..., l_m) \) in \(V_n \), denote by \((l_0 | l_1, ..., l_m) \) a configuration of vectors obtained by projection of the vectors \(l_1, ..., l_m \) to the quotient of \(V_n \) along the subspace generated by \(l_0 \). We employ a projective version of this construction. Given a configuration of \(m + 1 \) points \((y_0, y_1, ..., y_m) \) in \(\mathbb{CP}^{n-1} \), denote by \((y_0 | y_1, ..., y_m) \) a configuration of \(m \) points in \(\mathbb{CP}^{n-2} \) obtained by projection of the points \(y_i \) with the center at the point \(y_0 \).

Theorem 1.3 The function \(L_n^G(x_1, ..., x_{2n}) \) enjoys the following properties.

1. The \((2n + 1) \)-term equation. For a generic configuration of \(2n + 1 \) points \((x_1, ..., x_{2n+1}) \) in \(\mathbb{CP}^{n-1} \) one has

\[
\sum_{i=1}^{2n+1} (-1)^i L_n^G(x_1, ..., \hat{x}_i, ..., x_{2n+1}) = \text{a constant}.
\]
2. Dual \((2n + 1)\)-term equation. For a generic configuration of points \((y_1, \ldots, y_{2n+1})\) in \(\mathbb{CP}^n\)

\[
\sum_{j=1}^{2n+1} (-1)^j L^G_n(y_j | y_1, \ldots, \tilde{y}_j, \ldots, y_{2n+1}) = \text{a constant.}
\]

Here we assumed that compatible systems of cycles for the configurations of points \((x_1, \ldots, x_{2n+1})\)
and \((y_1, \ldots, y_{2n+1})\) were chosen.

Example. For \(n = 2\) we get the Rogers version of the dilogarithm:

\[
L^G_2(x_1, x_2, x_3) = L_2(r(x_1, x_2, x_3)), \quad \text{where } L_2(z) := \text{Li}_2(z) + \frac{1}{2} \log(1 - z) \log(z).
\]

![Figure 1: Special configuration of 8 points in \(\mathbb{P}^3\).](image)

A configuration \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) of points in \(\mathbb{P}^{n-1}\) is called a *special configuration* if \((x_1, \ldots, x_n)\)
form a generic configuration, and for every \(i\) the point \(y_i\) lies on the line \(x_i x_{i+1}\). See an example on
Fig 1. Special configurations are parametrised by one parameter, denoted by \(r(x_1, \ldots, x_n, y_1, \ldots, y_n)\),
see [G4], Section 4.4. For \(n = 2\) it is the cross-ratio. One can show that the restriction of the
function \(L^G_n\) to the special configuration is expressed via the classical \(n\)-logarithm function:

The Grassmannian \(n\)-logarithm is a period of a variation of framed mixed \(\mathbb{Q}\)-Hodge-Tate structures of geometric origin on \(PG_n(\mathbb{C})\). We call it the Grassmannian variation of mixed Tate motives.
We calculate the Tate iterated integral related to the Grassmannian polylogarithm function.

1.2 The history and ramifications of the problem.

There are three incarnations of the dilogarithm function:

i) The real valued Rogers dilogarithm \(L_2(x)\) defined on \(\mathbb{RP}^1 - \{0, 1, \infty\}\) by the condition:

\[
dL_2(x) = \frac{1}{2} \left(- \log |1 - x| d \log |x| + \log |x| d \log |1 - x| \right), \quad L_2(-1) = L_2(1/2) = L_2(2) = 0. \quad (2)
\]

Notice that \(\mathbb{RP}^1 - \{0, 1, \infty\}\) is the moduli space of generic configuration of 4 points in \(\mathbb{RP}^1\). The function \(L_2(r(l_1, \ldots, l_4))\) is the unique solution of the differential equation (2) which is skew symmetric under the permutations of the vectors \(l_i\). Its restriction to the interval \((0, 1)\) is given by

\[
L_2(x) = \text{Li}_2(x) + \frac{1}{2} \log(1 - x) \log x, \quad x \in (0, 1).
\]

It satisfies the 5-term relation

\[
\sum_{i=1}^{5} (-1)^k L_2(l_0, \ldots, \hat{l}_k, \ldots, l_4) = -\varepsilon \frac{\pi^2}{6}, \quad \varepsilon = \frac{1}{2} \prod_{0 \leq i < j \leq 4} \text{sgn} \Delta(l_i, l_j).
\]
ii) The multivalued complex analytic dilogarithm function $L_i(z)$, whose properties are best described by the corresponding variation of framed mixed \mathbb{Q}-Hodge structures.

iii) The single valued Bloch-Wigner function, defined on \mathbb{CP}^1 by

$$L_2(z) := \text{Im} \left(Li_2(z) + \log(1 - z) \log |z| \right).$$

It satisfies the 5-term relation

$$\sum_{i=1}^{5} (-1)^k L_2(l_0, \ldots, \hat{l}_k, \ldots, l_4) = 0.$$

The Bloch-Wigner function is nothing else but the real period of the variation which appears in ii). The motivic nature of the dilogarithm is described by the Bloch-Suslin complex and its relations to the algebraic K-theory, see [Su2].

In accordance to this, there are three directions for a generalization of the dilogarithm function:

i) Gelfand and MacPherson [GM] defined a real valued Grassmannian $2n$-logarithm function on $PG_{2n}(\mathbb{R})$ by constructing its differential. Notice that our construction of the Grassmannian n-logarithm also starts from a closed 1-form Ω on $G_n(\mathbb{C})$. The relationship between these two functions is not clear. It should reflect the relationship between the Chern and Pontryagin classes.

ii) The construction of Hanamura and MacPherson [HM1], [HM2] provides a Grassmannian n-logarithm function. The construction is geometric but rather complicated. I do not know how to relate it to the function L_n^G. An explicit motivic construction of Grassmannian n-logarithm function was given for $n = 3$ in [G] and for $n = 4$ in [G3].

iii) In [G1], see also [G4], we defined a single-valued Grassmannian n-logarithm function L_n^G. Precise relationship between this function and the multivalued analytic function L_n^G is not known.

The bi-Grassmannian n-logarithm cocycles. We denote by G_p^n the Grassmannian of q-dimensional subspaces in a coordinate vector space of dimension $p+q$, transversal to the coordinate hyperplanes. The weight n bi-Grassmannian $\mathbb{G}(n)^\bullet$ is given by a collection of Grassmannians G_p^n, $p \geq n$, arranged in a form of a truncated bisimplicial variety:

$$\cdots \rightarrow \cdots \rightarrow G_{n+1}^2 \rightarrow G_{n+1}^3 \rightarrow \cdots$$

Here a horisontal arrow stands for a collection of maps given by the intersection of the subspaces with the coordinate hyperplanes, and the vertical one for projection along the coordinate axes, see [G5]. The bottom line is the semisimplicial weight n Grassmannian G_n^\bullet introduced in [BMS].

The weight n bi-Grassmannian $\mathbb{G}(n)^\bullet$ and the related polylogarithms play a key role in the explicit combinatorial construction of Chern classes suggested in [G5].

Points of the bi-Grassmannian $\mathbb{G}(3)$ with values in a field F form a truncated bisimplicial set. Applying to it the “free abelian group” functor $S \rightarrow \mathbb{Z}[S]$ we get a bi-Grassmannian complex. Its bottom line is the Grassmannian complex, whose homology were studied by Suslin in the fundamental paper [Su].
Each of the three versions of the Grassmannian n-logarithm functions should appear as a component of the corresponding bi-Grassmannian n-logarithm cocycle, which is a cocycle in the complex calculating cohomology of the bi-Grassmannian with coefficients in certain complex of sheaves. These complexes are:

i) A real analog of the weight $2n$ Deligne complex on $G(n)^\bullet(\mathbb{R})$.

ii) The multivalued analytic weight n Deligne complex on $G(n)^\bullet(\mathbb{C})$ considered in [BMS].

iii) The real weight n Deligne complex on $G(n)^\bullet(\mathbb{C})$ — see, for example, [G1].

Here is what is known about the corresponding cocycles.

i) The real bi-Grassmannian $2n$-logarithm cocycle is the crucial building block in the Gabrielov, Gelfand and Losik [GGL] approach to a combinatorial formula for the n-th Pontryagin class. However such a cocycle is available only when $2n = 2$ [GGL], and, mostly, when $2n = 4$ [Yu], [G3].

ii) The existence of a multivalued analytic Grassmannian n-logarithm cocycle was conjectured by Beilinson, MacPherson and Schechtman [BMS]. An explicit geometric construction was found in [HM1], [HM2]. A weaker existence theorem was proved in [H]. There is an explicit motivic construction of the bi-Grassmannian n-logarithm cocycle for $n = 3$ [G] and $n = 4$ [G3].

iii) A single-valued bi-Grassmannian n-logarithm cocycle was defined in [G1], see also [G4]. It has a rather peculiar property: its components assigned to the Grassmannians $G_n^p(\mathbb{C}), m > n$ (i.e. above the bottom row in (3)) are identically zero. This is not expected to hold for the motivic/multivalued analytic bi-Grassmannian n-logarithm cocycles for $n > 3$.

The structure of the paper. In Section 2 we recall the scissor congruence groups $A_n(F)$, whose properies reflect the ones of the Aomoto n-logarithm. The functional equations of the Grassmannian n-logarithm stated in Theorem 1.3 follow immediately from basic properties of the Aomoto $(n − 1)$-logarithm. However Theorem 1.1, and therefore the existence of the function L^G_n, is less obvious. It is proved in Section 2.

In Section 3 we introduce Tate iterated integrals. Tate iterated integrals on a complex algebraic variety X are certain (conjecturally all) homotopy invariant iterated integrals of 1-forms $d\log f_i$, where f_i are rational functions on X. Denote by $\mathbb{C}(X)$ the field of rational functions on X. The length n Tate iterated integrals are uniquely determined by their \otimes^n-invariants, given by elements

$$I \in \bigotimes^n \mathbb{C}(X)^* \quad (4)$$

satisfying certain integrability condition of algebraic nature. For $n = 2$ the integrability condition just means that the image of the element I in $K_2(\mathbb{C}(X))$ modulo $K_2(\mathbb{C})$ is zero.

We give a simple definition of geometric variations of mixed \mathbb{Q}-Hodge-Tate structures — it does not rely on the theory of motives. We show that Tate iterated integrals are periods of variations of mixed Tate motives, understood as geometric variations of mixed \mathbb{Q}-Hodge-Tate structures. Precisely, any geometric variation of framed mixed \mathbb{Q}-Hodge-Tate structures on X determines an element (4). We show that the elements obtained this way are exactly the integrable ones.

In Section 4 we define explicitly a Tate iterated integral on the Grassmannian $G_n(\mathbb{C})$ by exibiting its \otimes^n-invariant I_n. We prove that I_n coincides with a \otimes^n-invariant for the form Ω.

Acknowledgments. I was supported by the NSF grant DMS-0653721. This paper was written at the IHES (Bures sur Yvette) during the Summer of 2009. I am grateful to IHES for the support. I am very grateful to the referee for the excellent job.
2 Properties of the Grasmannian polylogarithms

2.1 Motivic avatar of the form Ω

The scissors congruence groups $A_n(F)$. They were defined in [BMS], [BGSV]. We use slightly modified groups, adding one more relation – the dual additivity relation.

Let F be a field. The group $A_n(F)$ is generated by the elements

$$\langle l_0, \ldots, l_n; m_0, \ldots, m_n \rangle_{A_n}$$

corresponding to generic configurations of $2(n+1)$ points $(l_0, \ldots, l_n; m_0, \ldots, m_n)$ in $\mathbb{P}^n(F)$. We use a notation $\langle L; M \rangle_{A_n}$ where $L = (l_0, \ldots, l_n)$ and $M = (m_0, \ldots, m_n)$. The relations, which reflect properties of the Aomoto polylogarithms, are the following:

1. **Nondegeneracy.** $\langle L; M \rangle_{A_n} = 0$ if (l_0, \ldots, l_n) or (m_0, \ldots, m_n) belong to a hyperplane.

2. **Skew symmetry.** $\langle \sigma L; M \rangle_{A_n} = (-1)^{|\sigma|} \langle L; \sigma M \rangle_{A_n}$ for any $\sigma \in S_{n+1}$.

3. **Additivity.** For any configuration (l_0, \ldots, l_{n+1})

$$\sum_{i=0}^{n+1} (-1)^i \langle l_0, \ldots, \hat{l}_i, \ldots, l_{n+1}; m_0, \ldots, m_n \rangle_{A_n} = 0,$$

and a similar condition for (m_0, \ldots, m_{n+1}).

4. **Dual additivity.** For any configuration (l_0, \ldots, l_{n+1})

$$\sum_{i=0}^{n+1} (-1)^i \langle l_i|l_0, \ldots, \hat{l}_i, \ldots, l_{n+1}; m_0, \ldots, m_n \rangle_{A_n} = 0,$$

and a similar condition for (m_0, \ldots, m_{n+1}).

4. **Projective invariance.** $\langle gL; gM \rangle = \langle L; M \rangle_{A_n}$ for any $g \in PGL_{n+1}(F)$.

The cross-ratio provides a canonical isomorphism

$$a_1 : A_1(F) \to F^*, \quad a_1 : \langle l_0, l_1; m_0, m_1 \rangle_{A_1} \mapsto r(l_0, l_1, m_0, m_1).$$

Lemma 2.1 The Aomoto polylogarithm function satisfies all the above properties 1)-4).

Proof. Follows straight from the definitions. Notice that it is essential to use the coherent system of topological simplices φ as representatives of the relative cycles Δ_M.

The coalgebra $A_\bullet(F)$. Set $A_0(F) = \mathbb{Z}$. There is a graded coassociative coalgebra structure on $A_\bullet(F) := \oplus_{n \geq 0} A_n(F)$ with a coproduct ν, see [BMS], [BGSV]. We need only one component of the coproduct:

$$\nu_{n-1,1} : A_n(F) \to A_{n-1}(F) \otimes F^*.$$

1The coproduct ν is defined by the same formula as in loc. cit.. The combinatorial formula for the coproduct used in loc. cit. in the Hodge or l-adic realizations coincides with (and was motivated by) the general formula for the coproduct of framed objects in mixed categories, [G2], Appendix. Derivation of the former from the latter is a good exercise. A detailed solution of a similar problem for a different kind of scissor congruence groups is given in Theorem 4.8 in [G6]. See Section 4 there for further details.
We employ a formula for $\nu_{n-1,1}$ derived in Proposition 2.3 of [G3], which is much more convenient than the original one for computations and makes the skew-symmetry obvious. Namely, using the notation $\text{Alt}_{3,3}$ for the skewsymmetrization of (l_0, l_1, l_2) as well as (m_0, m_1, m_2), we have\footnote{I am grateful to the referee who pointed out that according to Proposition 2.3 in [G3] the coefficient below is $-1/8$ rather then $1/4$. This leads, up to a sign, to a coefficient $(n!)^2$ in Comparison Theorem 4.2 rather than $2(n!)^2$.}

\begin{equation}
\nu_{1,1}(l_0, l_1, l_2; m_0, m_1, m_2)_{A_2} = \end{equation}

\begin{equation}
-\frac{1}{8} \text{Alt}_{3,3} \left(\Delta(m_0, l_1, l_2) \otimes \langle m_0 | l_1, l_2; m_1, m_2 \rangle_{A_1} + \langle l_0 | l_1, l_2; m_1, m_2 \rangle_{A_1} \otimes \Delta(l_0, m_1, m_2) \right).
\end{equation}

For $n > 2$:

\begin{equation}
\nu_{n-1,1}(l_0, \ldots, l_n; m_0, \ldots, m_n)_{A_{n-1}} =
\end{equation}

\begin{equation}
- \sum_{i,j=0}^{n} (-1)^{i+j} \langle l_i | l_0, \ldots, \hat{l}_i, \ldots, l_n; m_0, \ldots, \hat{m}_j, \ldots, m_n \rangle_{A_{n-1}} \otimes \Delta(l_i, m_0, \ldots, \hat{m}_j, \ldots, m_n).
\end{equation}

It is straightforward to prove that $\nu_{n-1,1}$ is well defined, i.e. kills the relations.

The map $\nu_{n-1,1}$ and the differential of the Aomoto polylogarithm. Let \mathbb{A}_n be the field of rational functions on the space of pairs of simplices in $\mathbb{C}P^n$. There is a natural map

$$A_n \otimes d \log : A_n(\mathbb{A}_n) \otimes A_n^* \longrightarrow \Omega^1_{\text{mv}},$$

$$\langle L, M \rangle \otimes F \longmapsto A_n(L, M) \ d \log(F).$$

where Ω^1_{mv} is the space of multivalued analytic 1-forms on the space of pairs of simplices in $\mathbb{C}P^n$.

Lemma 2.2. One has

$$dA_n(l_0, \ldots, l_n; m_0, \ldots, m_n) = A_{n-1} \otimes d \log \circ \nu_{n-1,1}(l_0, \ldots, l_n; m_0, \ldots, m_n)_{A_{n-1}}.$$

Proof. This is a very special case of the general formula for the differential of the period of a variation of Hodge-Tate structures, see Lemma 3.6 formula (20).

One can easily prove it directly as follows. We can assume that the vectors l_0, \ldots, l_n form a standard basis. Let us consider a small deformation $m_i(t)$ of the vectors m_i, where $0 \leq t \leq \varepsilon$. By the Stokes formula, to calculate the differential of the function $A_n(l_0, \ldots, l_n; m_0(t), \ldots, m_n(t))$ we have to calculate the linear in ε term of $\sum (-1)^j \int_{M_j(\varepsilon)} \Omega_L$, where $M_j(\varepsilon)$ is the n-dimensional body obtained by moving the j-th face $(m_0(t), \ldots, \hat{m}_j(t), \ldots, m_n(t))$. One can easily see that this match the j-th term in (6). The lemma is proved.

Motivic avatar of the form Ω. Recall the notation $\mathbb{Q}(X)$ for the field of rational functions on a variety X over \mathbb{Q}. Consider the following element of

$$\Lambda_{n-1,1}(l_1, \ldots, l_{2n}) \in A_{n-1}(\mathbb{Q}(G_n)) \otimes \mathbb{Q}(G_n)^*.$$ \hspace{1cm} (7)

$$\Lambda_{n-1,1}(l_1, \ldots, l_{2n}) := \text{Alt}_{2n}(l_1, \ldots, l_n; l_{n+1}, \ldots, l_{2n})_{A_n} \otimes \Delta(l_{n+1}, \ldots, l_{2n}).$$ \hspace{1cm} (8)

Lemma 2.3. For any $2n+1$ vectors (l_1, \ldots, l_{2n+1}) in generic position in V_n one has

$$\sum_{i=1}^{2n+1} (-1)^i \Lambda_{n-1,1}(l_1, \ldots, \hat{l}_i, \ldots, l_{2n+1}) = 0.$$

For any \(2n+1\) vectors \((m_1, ..., m_{2n+1})\) in generic position in \(V_{n+1}\) one has
\[
\sum_{j=1}^{2n+1} (-1)^j \Lambda_{n-1,1}(m_j | m_1, ..., \hat{m}_j, ..., m_{2n+1}) = 0.
\]

Proof. The first formula reduces to the statement that
\[
\sum_{i=1}^{n+1} (-1)^i (l_1, ..., \hat{l}_i, ..., l_{n+1}; l_{n+2}, ..., l_{2n+1})_A \otimes \Delta(l_{n+2}, ..., l_{2n+1}) = 0
\]
which follows from the additivity. The second reduces to the dual additivity. The lemma is proved.

2.2 Proof of Theorems 1.1 and 1.3
Below we always work modulo 2-torsion.

We start from the following observations. Let \(A\) be a coassociative coalgebra with the coproduct \(\nu\), and \(A_+\) the kernel of the counit. Let
\[
\tilde{\nu} := \nu - (\text{Id} \otimes 1 + 1 \otimes \text{Id}) : A_+ \longrightarrow A_+^{\otimes 2}
\]
be the restricted coproduct. Then there is a map \(\nu[k] : A_+ \longrightarrow \otimes^k A_+\) given by a composition
\[
A_+ \xrightarrow{\tilde{\nu}} A_+ \otimes A_+ \xrightarrow{\tilde{\nu} \otimes \text{Id}} A_+ \otimes A_+ \otimes A_+ \xrightarrow{\tilde{\nu} \otimes \text{Id}} ... \xrightarrow{\tilde{\nu} \otimes \text{Id}} A_+^{\otimes k}.
\]
The coassociativity of \(A\) implies that one can replace anywhere here \(\tilde{\nu} \otimes \text{Id}\) by \(\text{Id} \otimes \tilde{\nu}\).

In particular, if \(A = \oplus A_n\) is graded by positive integers then we have a map (G2 or G3, p. 26):
\[
\nu[n] : A_n \longrightarrow \otimes^n A_1.
\]

Proof of Theorem 1.1. The proof below works equally well for \(\nu_1, 1\). One has
\[
(\nu_{n-2, 1} \otimes \text{Id}) \circ \Lambda_{n-1,1}(l_1, ..., l_n; m_1, ..., m_n) =
\]
\[
(\nu_{n-2, 1} \otimes \text{Id}) \text{Alt}_2n \left((l_1, ..., l_n; m_1, ..., m_n)_A \otimes \Delta(m_1, ..., m_n) \right) =
\]
\[
-n^2 \cdot \text{Alt}_2n \left((l_1 | l_2, ..., l_n; m_2, ..., m_n)_A \otimes \Delta(l_1, m_2, ..., m_n) \otimes \Delta(m_1, ..., m_n) \right).
\]
So thanks to Lemma 2.2 we need to prove that
\[
\text{Alt}_2n \left(A_{n-2}(l_1 | l_2, l_3, ..., l_n; m_2, m_3, ..., m_n) d \log \Delta(l_1, m_2, ..., m_n) \wedge d \log \Delta(m_1, ..., m_n) \right) = 0. \quad (10)
\]
We will deduce this from the following Lemma

Lemma 2.4
\[
\text{Alt}_2n \left(dA_{n-2}(l_1 | l_2, l_3, ..., l_n; m_2, m_3, ..., m_n) \otimes d \log \Delta(l_1, m_2, ..., m_n) \wedge d \log \Delta(m_1, ..., m_n) \right) = 0.
\]
Lemma 2.4 implies the first claim of Theorem 1.1 by the following argument: Integrating each of the 1-forms \(dA_{n-2}(l_1, l_2, \ldots, l_n; m_2, m_3, \ldots, m_n) \) we recover (10) plus a sum
\[
\sum C_{\alpha_1, \alpha_2} d \log \Delta_{\alpha_1} \wedge d \log \Delta_{\alpha_2},
\]
where \(\alpha_1 = \{l_1, m_2, \ldots, m_n\} \), \(\alpha_2 = \{m_1, \ldots, m_n\} \), and \(C_{\alpha_1, \alpha_2} \) are the integration constants. It is zero since we alternate an expression symmetric in \((m_{n-1}, m_n) \).

Proof of Lemma 2.4 Using (9), one has
\[
\langle n, m \rangle = 1 \quad \text{if} \quad n = m, \quad \text{and} \quad 0 \quad \text{otherwise},
\]

(11) is equal to
\[
\text{Alt}_2(n) \left(l_1, l_2 | l_3, \ldots, l_n; m_3, \ldots, m_n \right) \Delta(n, m) \Delta(1, m_2, \ldots, m_n). \tag{12}
\]

We use the following formula (G, Lemma 2.6), valid only modulo 2-torsion \(^3\).
\[
\delta\{r(v_1, v_2, v_3, v_4)\} = \frac{1}{2} \text{Alt}_4 \left(\Delta(v_1, v_2) \wedge \Delta(v_1, v_3) \right). \tag{13}
\]

We say that a single term in formula (13), say \(\Delta(v_1, v_2) \wedge \Delta(v_1, v_3) \), is obtained by choosing \(v_1 \) and forgetting \(v_4 \).

So the product of the last two factors in the expression under the alternation sign in (11) is obtained by choosing \(m_2 \) and forgetting \(l_2 \) in
\[
\delta\{r(m_3, \ldots, m_n | l_1, l_2, m_1, m_2)\}. \tag{14}
\]

1. Due to skewsymmetry, the term obtained by choosing \(m_i \) and forgetting \(l_j \), where \(i = 1, 2 \) and \(j = 1, 2 \), also appears. We use a similar argument in 2-4 below.

2. The term obtained by choosing \(m_2 \) and forgetting \(m_1 \) vanishes. This follows by applying the additivity relation to the configuration
\[
(l_1, l_2 | m_1, l_3, \ldots, l_n; m_3, \ldots, m_n).
\]

Indeed, none of the vectors \(m_1, l_3, \ldots, l_n \) enters to the last three factors (the second row below) of the expression
\[
\text{Alt}_2(n) \left(l_1, l_2 | l_3, \ldots, l_n; m_3, \ldots, m_n \right) \Delta(n, m) \wedge \Delta(l_1, m_2, m_3, \ldots, m_n) \wedge \Delta(l_2, m_2, m_3, \ldots, m_n).
\]

3. The term obtained by choosing \(l_1 \) and forgetting \(l_2 \) vanishes. This follows by applying the dual additivity relation to the configuration
\[
(l_1 | l_3, \ldots, l_n; l_2, m_3, \ldots, m_n).
\]

\(^3\)recall that we work modulo 2-torsion throughout the paper.
Indeed, the dual additivity relation provides us the first of the following two equalities:

\[\text{Alt}_{2n}(l_1, l_2 | l_3, ..., l_n; m_3, ..., m_n)_{A_{n-2}} \otimes \]
\[\Delta(l_1, l_2, m_3, ..., m_n) \otimes \Delta(l_1, m_1, m_3, ..., m_n) \land \Delta(l_1, m_2, m_3, ..., m_n) = \]
\[-\sum_{k=3}^{n} (-1)^k \text{Alt}_{2n}(l_1, m_k | l_3, ..., l_n; l_2, m_3, ..., m_k, ..., m_n)_{A_{n-2}} \otimes \]
\[\Delta(l_1, l_2, m_3, ..., m_n) \otimes \Delta(l_1, m_1, m_3, ..., m_n) \land \Delta(l_1, m_2, m_3, ..., m_n) = 0. \]

To prove the second equality, notice that the pair \((l_1, m_k), \) where \(k \geq 3,\) enters to every four factors of the last expression symmetrically, and thus the sum vanishes after the alternation.

4. The term obtained by choosing \(l_1\) and forgetting \(m_1\) vanishes. This follows by applying the additivity relation for the configuration

\((l_1, l_2 | m_1, l_3, ..., l_n; m_3, ..., m_n).\)

Indeed, none of the vectors \(m_1, l_3, ..., l_n\) enters to the last three factors (the second row below) of the expression

\[\text{Alt}_{2n}(l_1, l_2 | l_3, ..., l_n; m_3, ..., m_n)_{A_{n-2}} \otimes \]
\[\Delta(l_1, l_2, m_3, ..., m_n) \otimes \Delta(l_1, l_2, m_3, ..., m_n) \land \Delta(l_1, m_2, m_3, ..., m_n) \]

Lemma 2.5 and hence Lemma 2.4 and the first claim of Theorem 1.1 are proved.

The form \(\Omega\) does not change if we multiply the vector \(l_{2n}\) by a constant \(a \in \mathbb{C}^*:\)

\[\Omega(l_1, ..., a l_{2n}) - \Omega(l_1, ..., l_{2n}) = \text{Alt}_{2n-1}(A_{n-1}(l_1, ..., l_n; l_{n+1}, ..., l_{2n})) \otimes d \log a = 0. \]

Indeed, it is easy to prove using Lemma 2.2 that \(\text{Alt}_{2n}(d A_{n-1}(l_1, ..., l_n; m_1, ..., m_n)) = 0.\) This implies the claim, just as above. Theorem 1.1 is proved.

Conjecture 2.6 \(A_{n-1,1}(l_1, ..., l_{2n})\) does not change if one of the vectors \(l_i\) is multiplied by \(\lambda \in F^*.\) So it depends only on the configurations of \(2n\) points in \(\mathbb{P}^{n-1}\) defined by the vectors \(l_i.\)

Proof of Theorem 1.3 Applying the map \(A_{n-1} \otimes d \log\) to the element (7) we get the form \(\Omega.\) Therefore the proof follows from Lemma 2.3.

3 Tate iterated integrals and variations of mixed Tate motives

Iterated integrals of smooth 1-forms. Let \(M\) be a manifold. Let \(\omega_1, ..., \omega_n\) be smooth 1-forms on \(M.\) Then given a path \(\gamma : [0, 1] \rightarrow M\) there is an iterated integral

\[\int_{\gamma} \omega_1 \circ ... \circ \omega_n := \int_{0 \leq t_1 \leq ... \leq t_n \leq 1} \gamma^* \omega_1(t_1) \land ... \land \gamma^* \omega_n(t_n). \quad (15) \]

Let \((A^*(M), d)\) be the commutative DG algebra of smooth forms on \(M.\) By linearity an element

\[I \in \bigotimes^n (A^1(M)[1]) := A^1(M)[1] \otimes ... \otimes A^1(M)[1] \]

give rise to an iterated integral \(\int_{\gamma} (I).\)
Homotopy invariant iterated integrals. Denote by \(T(A) \) the tensor algebra of the graded vector space \(A \). The bar complex of the commutative DG algebra \(A^*(M) \) is defined as \(T(A^*(M)[1]) \) equipped with a differential

\[
D : T(A^*(M)[1]) \rightarrow T(A^*(M)[1]).
\]

The differential is the sum of the de Rham differential \(d \) and the maps given by the products of the consecutive factors in the tensor product. A theorem of K.T. Chen \([Ch]\) tells that an iterated integral \(\int_\gamma(I) \) is homotopy invariant, i.e. invariant under deformations of the path \(\gamma \) preserving its endpoints, if and only if \(D(I) = 0 \).

In particular, a collection of closed 1-forms \(\omega_1^{(s)} \) such that for every \(1 \leq k \leq n-1 \) one has

\[
\sum_s \int_\gamma \omega_1^{(s)} \otimes \ldots \otimes \omega_k^{(s)} \otimes \omega_{k+1}^{(s)} \otimes \ldots \otimes \omega_n^{(s)} = 0 \tag{16}
\]
gives rise to a homotopy invariant integrated integral \(\sum_s \int_\gamma \omega_1^{(s)} \otimes \ldots \otimes \omega_n^{(s)} \).

Tate iterated integrals. Now let \(X \) be a complex algebraic variety. Recall that \(\mathbb{C}(X) \) is the field of rational functions on \(X \). Our goal is to study iterated integrals of 1-forms \(d \log f_i \) where \(f_i \) are rational functions on \(X \). There is a map

\[
d \log : \bigotimes^n \mathbb{C}(X)^* \longrightarrow \Omega^n_{\log}(X), \quad f_1 \otimes \ldots \otimes f_n \longmapsto d \log f_1 \wedge \ldots \wedge d \log f_n.
\]

So given a path \(\gamma : [0,1] \rightarrow X(\mathbb{C}) \) in \(X(\mathbb{C}) \) and

\[
I = f_1(x) \otimes \ldots \otimes f_n(x) \in \bigotimes^n \mathbb{C}(X)^*
\]

there is an iterated integral

\[
\int_\gamma d \log(I) = \int_\gamma d \log f_1 \circ d \log f_2 \circ \ldots \circ d \log f_n.
\]

The forms \(d \log f \) are closed. So condition \([16]\) implies the homotopy invariance of the corresponding iterated integral. There is an algebraic condition on the functions \(f_i \) which implies condition \([16]\), and which is hypothetically equivalent to it. The key point is this. The map \(d \log \) annihilates the Steinberg element \((1 - f) \otimes f \). Conjecturally the ideal generated by the Steinberg elements and constants is the kernel of the map \(d \log \).

This leads to the following definitions. Let \(F \) be a field. There is a natural projection

\[
\pi : F^* \otimes F^* \longrightarrow K_2(F), \quad a \otimes b \longmapsto \{a, b\}.
\]

For \(1 \leq k \leq n-1 \) let \(\pi_{k,n} \) be a map obtained by applying \(\pi \) to the \(k \)-th factor \(\otimes^k F^* \) in \(\otimes^n F^* \):

\[
\pi_{k,n} : \bigotimes F^* \longrightarrow \bigotimes F^* \otimes K_2(F) \otimes \bigotimes F^*, \quad \pi_k = \text{Id} \otimes \pi \otimes \text{Id}.
\]

Definition 3.1 An element \(I \) of \(\otimes^n F^* \) is integrable if \(\pi_{k,n}(I) = 0 \) for every \(1 \leq k \leq n-1 \).
Definition 3.2 A Tate iterated integral is an iterated integral provided by an integrable element

\[I \in \bigotimes^n C(X)^*. \]

(17)

Chen’s theorem immediately implies the following Lemma.

Lemma 3.3 A Tate iterated integral is homotopy invariant.

Let \(\text{div}(I) \subset X \) be the union of divisors of the factors \(f_i \) of an element \(E \). Then the iterated integral provided by (17) is an iterated integral on \(X(\mathbb{C}) - \text{div}(I) \).

Tate iterated integrals and periods of geometric variations of Hodge-Tate structures. Below we use the notion of variations framed Hodge-Tate structures. The key point is that it is a mixed Tate category, so one can use the formalism, see Appendix in [G2]. We also need the notion of the period of a variation of framed Hodge-Tate structures, see Section 4 of [G6].

A variation \(V \) of Hodge-Tate structure has a weight filtration \(W^i \) whose subquotients \(\text{gr}^W_{-2m+1} V = 0 \). A \((\mathbb{Q}(m-1)_X, \mathbb{Q}(m)_X) \)-framing on \(V \) consists of choosing non-zero maps

\[\mathbb{Q}(m-1)_X \rightarrow \text{gr}^W_{-2m+2} V, \quad \text{gr}^W_{-2m} V \rightarrow \mathbb{Q}(m)_X. \]

So it gives rise to an element of \(\text{Ext}^1_{\mathbb{Q}^{-\text{MHS}}}(\mathbb{Q}(0)_X, \mathbb{Q}(1)_X) \). There is a natural map

\[O(X)_\mathbb{Q}^* \rightarrow \text{Ext}^1_{\mathbb{Q}^{-\text{MHS}}}(\mathbb{Q}(0)_X, \mathbb{Q}(1)_X) \]

(18)

where the Ext group is in the category of variations of \(\mathbb{Q} \)-Hodge-Tate structures on \(X(\mathbb{C}) \).

Definition 3.4 A variation of framed \(\mathbb{Q} \)-Hodge-Tate structures on \(X(\mathbb{C}) \) is geometric if the Ext\(^1\) defined by any \((\mathbb{Q}(m-1)_X, \mathbb{Q}(m)_X) \)-framing is in the image of map (18).

Theorem 3.5 a) The period of a geometric\(^4\) variation of framed \(\mathbb{Q} \)-Hodge-Tate structures on \(X(\mathbb{C}) \) is given by a Tate iterated integral.

b) Assume that \(X \) is a rational variety. Then a Tate iterated integral on \(X \) is a period of a motivic, that is realized in cohomology of algebraic varieties, variation of framed \(\mathbb{Q} \)-Hodge-Tate structures.

Proof. a) The Tannakian Hopf algebra of the category of geometric variations of framed \(\mathbb{Q} \)-Hodge-Tate structures at the generic point of \(X \) is commutative graded Hopf algebra \(\mathcal{H}_\bullet(\mathbb{C}(X)) \), graded by the non-negative integers. One has (Appendix in [G2])

\[\mathcal{H}_0(\mathbb{C}(X)) = \mathbb{Q}, \quad \mathcal{H}_1(\mathbb{C}(X)) = \mathbb{C}(X)_{\mathbb{Q}}^*. \]

So there is a map

\[\nu_{[n]} : \mathcal{H}_n(\mathbb{C}(X)) \rightarrow \otimes^n \mathbb{C}(X)^*. \]

Recall (loc. cit.) that a geometric variation of \((\mathbb{Q}(0), \mathbb{Q}(n)) \)-framed mixed \(\mathbb{Q} \)-Hodge-Tate structures at the generic point of \(X \) provides us an element

\[I \in \mathcal{H}_n(\mathbb{C}(X)). \]

(19)

\(^4\)in the sense of Definition 3.4
Different variations may lead to the same element. Let \(p(\mathcal{V}) \) be the multivalued analytic function at the generic point of \(X(\mathbb{C}) \) given by the period of a framed variation \(\mathcal{V} \). The period functions assigned to variations with the same invariant \(19 \) are the same.

Therefore there is a map \(p \otimes d \log \) from \(\mathcal{H}_{n-1}(\mathbb{C}(X)) \otimes \mathbb{C}(X)_Q^* \) to multivalued analytic 1-forms at the generic point of \(X(\mathbb{C}) \). Consider the \((n-1,1)\)-component of the coproduct

\[
\nu_{n-1,1} : \mathcal{H}_n(\mathbb{C}(X)) \to \mathcal{H}_{n-1}(\mathbb{C}(X)) \otimes \mathbb{C}(X)_Q^*.
\]

Lemma 3.6 The differential of the period \(p(I) \) of a framed Hodge-Tate variation \(I \) is given by

\[
dp(I) = p \otimes d \log \left(\nu_{n-1,1}(I) \right).
\]

The iterated integral for the period \(p(I) \) is described by the integrable element

\[
\nu_{[n]}(I) \in \bigotimes^n \mathbb{C}(X)_Q^*.
\]

Proof. The first claim is Lemma 4.6a) in [G6].
To see the integrability of element \(20 \) we present the map \(\nu_{[n]} \) as a composition:

\[
\mathcal{H}_n \to \cdots \to \bigotimes^{n-k-1} \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \bigotimes^n \mathcal{H}_1.
\]

Now we use the following argument. The composition below is zero:

\[
\mathcal{H}_2 \to \mathcal{H}_1 \otimes \mathcal{H}_1 = \mathbb{C}_Q^* \otimes \mathbb{C}_Q^* \to K_2(\mathbb{C}).
\]

Then there is a commutative diagram, where the \(\mathbb{Z}[\mathbb{C}] \)-component of the left vertical map is provided by the framed Hodge-Tate structure corresponding to the dilogarithm iterated integral:

\[
\begin{array}{ccc}
\mathcal{H}_2 & \to & \mathcal{H}_1 \otimes \mathcal{H}_1 = \mathbb{C}_Q^* \otimes \mathbb{C}_Q^* \\
\downarrow & & \downarrow \\
\mathcal{H}_2 & \to & \mathbb{C}_Q^* \otimes \mathbb{C}_Q^*
\end{array}
\]

Here the top differential is given by \(\delta \) on \(\mathbb{Z}[\mathbb{C}] \), and by \(a \cdot b \mapsto a \otimes b + b \otimes a \) on \(\mathbb{S}_2 \mathbb{C}_Q^* \). The left arrow is supposed to be surjective, but we do not use it. The claim follows from this.

b) A Tate iterated integral \(\int_\gamma d \log(I) \) assigned to an integrable element \(17 \) is a period of the framed mixed Hodge structure provided by Beilinson’s construction, see [DG]. Namely, take the mixed Hodge structure \(\mathcal{P}(X; x, y) \) on the pronilpotent torsor of path between the base points \(x, y \). The framing is given by the cohomology class \(d \log(I) \) and the relative homology class provided by a homotopy class of a path \(\gamma \) between \(x \) and \(y \). By the very construction, \(\int_\gamma d \log(I) \) is the period of a variation of framed mixed Hodge structures realized in cohomology of algebraic varieties. Finally, it is Hodge-Tate since \(X \) is rational, and hence its cohomology are of type \((p, p)\).

The theorem is proved.

Remark. We do not prove that the variation corresponding to a Tate iterated integral is geometric in the sense of Definition 3.4.

If \(X \) is not rational, in general the variation will not be a variation of Hodge-Tate structures. However we conjecture that the framed variation is equivalent to a framed Hodge-Tate variation:

\footnote{It is enough to work with \(\mathbb{C} \) rather then \(\mathbb{C}(X) \); or just use \(\mathbb{C}(X) \) below.}
Conjecture 3.7 The Tate iterated integral \(\int d\log(1) \) given by \([17]\) is the period of a variation of framed mixed \(\mathbb{Q} \)-Hodge-Tate structures on \((X - \text{div}(I))^2\).

Notice that for the length one and two iterated integrals (i.e. \(n = 1, 2 \) in \([17]\)) this is obvious. So \(n = 3 \) is the first non-trivial case.

4 Tate iterated integral for the Grassmannian polylogarithm

Definition 4.1 An element \(I_n(l_1, \ldots, l_{2n}) \in \bigotimes^n \mathcal{O}(G_n)^* \) is given by the formula

\[
I_n(l_1, \ldots, l_{2n}) := \text{Alt}_{2n} \left(\Delta(l_1, \ldots, l_{n-1}, l_n) \otimes \Delta(l_2, \ldots, l_{n+1}) \otimes \cdots \otimes \Delta(l_n, \ldots, l_{2n-1}) \right). \tag{21}
\]

Comparison Theorem. It relates \(\Lambda_{n-1,1} \) and \(I_n \). Observe that it is sufficient to know \(\nu_{n-1,1} \) in order to compute \(\nu_{[n]} \).

Theorem 4.2 One has

\[
(\nu_{[n-1]} \otimes \text{Id}) \circ \Lambda_{n-1,1}(l_1, \ldots, l_n, m_1, \ldots, m_n) = (-1)^n (n!)^2 I_n(l_1, \ldots, l_n; m_1, \ldots, m_n). \]

Proof. Using (8) and (11), and continuing the same line, we come to the expression

\[
(-1)^{n-3} n^2 \cdot \ldots \cdot 4^2 \cdot \text{Alt}_{2n} \left(\langle l_1, \ldots, l_{n-3}, l_{n-2}, l_{n-1}, l_n; m_{n-2}, m_{n-1}, m_n \rangle A_1 \right) \otimes \\
\text{Alt}_{2n} \left(\langle l_1, \ldots, l_{n-3}, l_{n-2}, l_{n-1}, l_n; m_{n-2}, m_{n-1}, m_n \rangle A_2 \right) \otimes \\
\Delta(l_1, \ldots, l_{n-3}, m_{n-2}, m_{n-1}, m_n) \otimes \cdots \otimes \Delta(m_1, \ldots, m_n).
\]

Taking into account formula (5) for \(\nu_{1,1} \), we get

\[
(-1)^{n-2} n^2 \cdot \ldots \cdot 4^2 \cdot \frac{3^2}{2} \text{Alt}_{2n} \left(\Delta(l_1, \ldots, l_{n-3}, m_{n-2}, l_{n-1}, l_n) \otimes \langle l_1, \ldots, l_{n-3}, m_{n-2} l_{n-1}, l_n; m_{n-1}, m_n \rangle A_1 \right) \otimes \\
\Delta(l_1, \ldots, l_{n-3}, m_{n-2}, m_{n-1}, m_n) \otimes \cdots \otimes \Delta(m_1, m_2, \ldots, m_n) + \\
\langle l_1, \ldots, l_{n-2} l_{n-1}, l_n; m_{n-1}, m_n \rangle A_1 \otimes \Delta(l_1, \ldots, l_{n-2}, m_{n-1}, m_n) \otimes \cdots \otimes \Delta(m_1, m_2, \ldots, m_n). \tag{23}
\]

Using the formula

\[
\langle l_1, \ldots, l_{n-2} l_{n-1}, l_n; m_{n-1}, m_n \rangle A_1 = \frac{\Delta(l_1, \ldots, l_{n-2}, l_{n-1}, m_{n-1}) \Delta(l_1, \ldots, l_{n-2}, l_n; m_{n-2}, m_{n-1}, m_n)}{\Delta(l_1, \ldots, l_{n-2}, l_{n-1}, m_{n}) \Delta(l_1, \ldots, l_{n-2}, l_n; m_{n-1})} \tag{24}
\]

we write the term (22) as follows

\[
(-1)^{n} \frac{1}{2} (n!)^2 \text{Alt}_{2n} \left(\Delta(l_1, \ldots, l_{n-3}, m_{n-2}, l_{n-1}, l_n) \otimes \Delta(l_1, \ldots, l_{n-3}, m_{n-2}, l_{n-1}, l_n) \right) \otimes \\
\Delta(l_1, \ldots, l_{n-3}, m_{n-2}, m_{n-1}, m_n) \otimes \cdots \otimes \Delta(m_1, m_2, \ldots, m_n) = \\
(-1)^{n} \frac{1}{2} (n!)^2 \text{Alt}_{2n} \left(\Delta(l_1, \ldots, l_{n-1}, m_n) \otimes \cdots \otimes \Delta(m_1, m_2, \ldots, m_n) \right). \tag{25}
\]

In the last step we use the fact that each of the permutations \((l_{n-2}, l_{n-1}, l_n) \rightarrow (l_n, l_{n-2}, l_{n-1})\) and \((m_{n-2}, m_{n-1}, m_n) \rightarrow (m_n, m_{n-2}, m_{n-1})\) are even.

It is easy to see using (24) that (23) also equals (25). The theorem is proved.
Theorem 4.3 a) The element I_n is integrable.

b) It leaves on PG_n, and satisfies two $(2n+1)$-term relations:
1) For a generic configuration of $2n+1$ vectors $(l_1, ..., l_{2n+1})$ in V_n one has

$$\sum_{i=1}^{2n+1} (-1)^i I_n(l_1, ..., \hat{l}_i, ..., l_{2n+1}) = 0.$$ \hfill (26)

2) For a generic configuration of vectors $(m_1, ..., m_{2n+1})$ in V_{n+1} one has

$$\sum_{j=1}^{2n+1} (-1)^i I_n(m_j|m_1, ..., \hat{m}_j, ..., m_{2n+1}) = 0.$$ \hfill (27)

Proof. a) Follows easily from Lemma 2.5 by using Comparison Theorem 4.2.

b) Changing the vector l_1 to al_1 we get

$$I_n(al_1, ... l_{2n}) - I_n(l_1, ... l_{2n}) = \text{Alt}_{2n}(a \otimes \Delta(l_2, ..., l_{n+1}) \otimes \cdots \otimes \Delta(l_n, ..., l_{2n-1})) = 0.$$

Indeed, we skewsymmetrize an expression which does not contain the pair of vectors (l_1, l_{2n}).

The two relations follow immediately from Comparison Theorem 4.2 and Lemma 2.3.

Conclusion. The iterated integral assigned to the element I_n is a multivalued analytic function on $G_n(\mathbb{C}) \times G_n(\mathbb{C})$. By Theorem 4.3 it is the period of a motivic variation of framed Hodge-Tate structures on $G_n(\mathbb{C}) \times G_n(\mathbb{C})$.

References

[A] Aomoto K.: *Addition theorem of Abel type for hyper-logarithms*. Nagoya Math. J. 88 (1982), 55–71.

[BMS] Beilinson A.A., MacPherson R., Schechtman, V.V: *Notes on motivic cohomology*, Duke Math. J. 54 (1987), 679–710. MR0899412 (88f:14021).

[BGSV] Beilinson A.A., Goncharov A.B., Schechtman, V.V, Varchenko A.N.: *Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane*. The Grothendieck Festschrift, Vol. I, 135–172, Progr. Math., 86, Birkhuser Boston, Boston, MA, 1990.

[Ch] Chen K-T.: *Algebras of iterated path integrals and fundamental groups*. Trans. Amer. Math. Soc. 156(1971), 359–379.

[DG] Deligne P., Goncharov A.B.: *Groupes fondamentaux motiviques de Tate mixte*. Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 1–56.

[GGL] Gabrielov A., Gelfand I.M., Losik M.: *Combinatorial computation of characteristic classes I, II*, Funkt. Anal. i ego pril. 9 (1975) 12-28, ibid 9 (1975) 5-26. MR0410758 (53 14504a).

[GM] Gelfand I.M., MacPherson R: *Geometry in Grassmannians and a generalisation of the dilogarithm*, Adv. in Math., 44 (1982) 279–312. MR0658730 (84b:57014).

16
[G] Goncharov A.B.: *Geometry of configurations, polylogarithms, and motivic cohomology*. Adv. Math. 114 (1995), no. 2, 197-318.

[G1] Goncharov A.B.: *Chow polylogarithms and regulators*. Math. Res. Letters, 2, (1995), 99-114. MR1312980 (96b:19007).

[G2] Goncharov A.B.: *Galois symmetries of fundamental groupoids and noncommutative geometry*. Duke Math. J. 128 (2005), no. 2, 209-284.

[G3] Goncharov, A. B. *Geometry of the trilogarithm and the motivic Lie algebra of a field*. Regulators in analysis, geometry and number theory, 127–165, Progr. Math., 171, Birkhäuser Boston, Boston, MA, 2000.

[G4] Goncharov, A. B. *Polylogarithms, regulators and Arakelov motivic complexes*. J. Amer. Math. Soc. 18 (2005), no. 1, 1–60. [arXiv:math/0207036].

[G5] Goncharov, A. B. *Explicit construction of characteristic classes*. Advances in Soviet Mathematics, 16, v. 1, Special volume dedicated to I.M. Gelfand’s 80th birthday, 169 - 210, 1993.

[G6] Goncharov, A. B. *Volumes of hyperbolic manifolds and mixed Tate motives*. JAMS vol. 12, N2, (1999), 569-618. [arXiv:alg-geom/9601021]

[HM] Hain R, MacPherson R: *Higher Logarithms*, Ill. J. of Math., vol. 34, (1990) N2, 392–475. MR1046570 (92c:14016).

[H] Hain R: *The existence of higher logarithms*. Compositio Math. 100 (1996) N3, 247-276. MR1387666 (97g:19008).

[HY] Hain, R. Yang, J.: *Real Grassmann polylogarithms and Chern classes*. Math. Ann. 304 (1996), no. 1, 157–201.

[HM1] Hanamura M, MacPherson R: *Geometric construction of polylogarithms*, Duke Math. J. 70 (1993)481-516. MR1224097 (94h:19005).

[HM2] Hanamura M, MacPherson R.: *Geometric construction of polylogarithms, II*, Progress in Math. vol. 132 (1996) 215-282. MR1389020 (97g:19007).

[M] MacPherson R.: *Gabrielov, Gelfand, Losic combinatorial formula for the first Pontryagin class Seminar Bourbaki 1976*. MR0521763 (81a:57022).

[Su] Suslin A.A: *Homology of GL_n, characteristic classes and Milnor’s K-theory*. Trudy Mat. Inst. Steklov, 165 (1984), 188-204;

[Su2] Suslin A.A: *K-theory of a field and the Bloch group*. Proc. Steklov Inst. Math. 4 (1991) 217-239.

[Yu] Yusin, Boris V.: *Sur les formes Sp,q apparaissant dans le calcul combinatoire de la deuxième classe de Pontriaguine par la méthode de Gabrielov, Gelfand et Losik*. (French) C. R. Acad. Sci. Paris Sr. I Math. 292 (1981), no. 13, 641–644. 57R20