Multi-Party Quantum Private Comparison Based on Entanglement Swapping of Bell Entangled States within d-Level Quantum System

Tian-Yu Ye 1 · Jia-Li Hu 1

Received: 31 December 2020 / Accepted: 1 March 2021 / Published online: 17 March 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In this paper, a multi-party quantum private comparison (MQPC) scheme is suggested based on entanglement swapping of Bell entangled states within d-level quantum system, which can accomplish the equality comparison of secret binary sequences from n users via one execution of scheme. Detailed security analysis shows that both the outside attack and the participant attack are ineffective. The suggested scheme needn’t establish a private key among n users beforehand through the quantum key distribution (QKD) method to encrypt the secret binary sequences. Compared with previous MQPC scheme based on d-level Cat states and d-level Bell entangled states, the suggested scheme has distinct advantages on quantum resource, quantum measurement of third party (TP) and qubit efficiency.

Keywords Multi-party quantum private comparison, d-level quantum system · Bell entangled state · Entanglement swapping

PACS 03.67.Dd; 03.67.Hk; 03.67.Pp

1 Introduction

In the year of 1982, Yao [1] put forward the millionaires’ problem, i.e., two millionaires want to know who is richer without leaking out their actual properties. Afterward, Boudot et al. [2] designed a scheme to judge whether two millionaires are equally rich or not. The problems both Yao [1] and Boudot et al. [2] focused on belong to classical private comparison. In the year of 2009, Yang et al. [3] put forward the concept of quantum private comparison (QPC) for

1 College of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, People’s Republic of China

* Tian-Yu Ye
 happyty@aliyun.com
the first time by combining quantum mechanics and classical private comparison. From then on, QPC has entered into the eyes of researchers so that lots of two-party QPC schemes [4–13] have been gradually designed.

However, the two-party QPC scheme always has a drawback, i.e., if it is used to accomplish the equality comparison of private inputs from \(n \) parties, it has to be implemented for \((n-1) \sim n(n-1)/2 \) times. In order to accomplish this task within one execution of protocol, Chang et al. [14] constructed the first multi-party quantum private comparison (MQPC) scheme by using \(n \)-particle GHZ class states in the year of 2013. From then on, the MQPC which accomplishes the equality comparison of different secrets has gained rapid developments [15–21]. In the year of 2014, Liu et al. [15] suggested a MQPC scheme based on \(d \)-level \(n \)-particle entangled states; Wang et al. [16] designed two MQPC schemes based on \(n \)-level entangled states. In the year of 2017, Hung et al. [17] constructed a MQPC scheme for strangers with almost dishonest third parties (TP). We successively put forward the MQPC schemes based on the entanglement swapping of Bell entangled states [18], the entanglement swapping between \(d \)-level Cat states and \(d \)-level Bell states [19], scattered preparation and one-way convergent transmission of quantum states [20], and \(n \)-level single-particle states [21].

Based on the above analysis, this paper concentrates on constructing a MQPC scheme based on entanglement swapping of Bell entangled states within \(d \)-level quantum system, which can also accomplish the equality comparison of secret binary sequences from \(n \) users via one execution of scheme. The proposed scheme takes great advantages over the scheme of Ref. [19] on the aspects of quantum resource, quantum measurement of TP and qubit efficiency.

2 The Entanglement Swapping of Bell Entangled States within \(d \)-Level Quantum System

Bell entangled state within \(d \)-level quantum system is defined as

\[
|\phi(u, v)\rangle = \frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \zeta^{ju} |j, j\oplus v\rangle,
\]

where \(u, v \in \{0, 1, \ldots, d-1\} \), \(\oplus \) is the modulo \(d \) addition and \(\zeta = e^{2\pi i/d} \). \(|\phi(u, v)\rangle \) can be generated by performing \(U_{(u,v)} \) on \(|\phi(0, 0)\rangle \), i.e.,

\[
(I \otimes U_{(u,v)}) |\phi(0, 0)\rangle = |\phi(u, v)\rangle,
\]

where

\[
U_{(u,v)} = \sum_{j=0}^{d-1} \zeta^{ju} |j\oplus v\rangle \langle j|.
\]

The entanglement swapping of two Bell entangled states within \(d \)-level quantum system can be represented by.

\[
|\phi(u_1, u_2)\rangle_{12} |\phi(v_1, v_2)\rangle_{34} = \frac{1}{d} \sum_{k,l=0}^{d-1} \zeta^{kl} |\phi(u_1 \oplus k, v_2 \oplus l)\rangle_{14} |\phi(v_1 \oplus (-k), u_2 \oplus (-l))\rangle_{32}.
\]
just as shown in Fig. 1, where each solid circle or each hollow circle denotes one particle, and two particles connected by one solid line form one Bell entangled state within d-level quantum system.

3 The Proposed Scheme

3.1 Scheme Description

Suppose that the ith user, P_i, has a secret binary sequence K_i of length N, i.e., $K_i = (k_1^i, k_2^i, \ldots, k_N^i)$, where $k_t^i \in \{0, 1\}$, $i = 1, 2, \ldots, n$ and $t = 1, 2, \ldots, N$. n users want to accomplish the equality comparison of their secret binary sequences with the help of a semi-honest TP, P_0. Here, the term ‘semi-honest’ means that TP tries her best to obtain K_i when implementing the scheme but cannot be allowed to conspire with others [8]. In the proposed scheme, it is assumed that $d = n$.

Step 1: P_0 and P_1 mutually transmit particle sequences and swap entanglement

1. P_0 and P_1 mutually transmit particle sequences

P_0 generates Nd-level Bell entangled states $|\varphi(0, 0)\rangle$. P_0 picks out all of the first and the second particles of these Bell entangled states to form two ordered sequences, $S_0^1 = \{u_0, u_0^2, \ldots, u_N^0\}$ and $S_0^2 = \{v_0, v_0^2, \ldots, v_N^0\}$, respectively. P_0 generates one group of decoy photons [22, 23] according to $V_1 = \{r\}^{d-1}_{r=0}$ and $V_2 = \{F(r)\}^{d-1}_{r=0}$, where $r \in \{0, 1, \ldots, d-1\}$ and F is the dth order discrete quantum Fourier transform, and randomly inserts them into S_0^2 to form a new sequence S_0^2'. Finally, P_0 transmits S_0^2' to P_1.

P_1 generates Nd-level Bell entangled states $|\varphi(0, 0)\rangle$. Then, in order to encode k_1^1, P_1 imposes $I \otimes U_{(0,k_1^1)}^{(t)}$ on the tth $(t = 1, 2, \ldots, N)$ Bell entangled states to produce $|\varphi(0,k_1^1)\rangle$. P_1 picks out all of the first and the second particles of these encoded Bell entangled states to form two ordered sequences, $S_1^1 = \{u_1^1, u_1^2, \ldots, u_N^1\}$ and $S_1^2 = \{v_1^1, v_1^2, \ldots, v_N^1\}$, respectively. P_1 generates one group of decoy photons according to V_1 and V_2, and randomly inserts them into S_1^1 to form a new sequence S_1^1'. Finally, P_1 transmits S_1^1' to P_0.

2. P_0 and P_1 implement eavesdropping check

P_0 and P_1 utilize the corresponding decoy photons to check the transmission security of S_0^2' and S_1^1', respectively.

![Fig. 1 The entanglement swapping of two Bell entangled states within d-level quantum system](image)
After P_1 receives $S_0^{2'}$, P_1 and P_0 check the transmission security of $S_0^{2'}$. P_0 tells P_1 the positions and the preparation basis of decoy photons in $S_0^{2'}$. P_1 uses the preparation basis of P_0 to measure the decoy photons in $S_0^{2'}$ and tells P_0 their measurement results. Then, P_0 judges whether an eavesdropper is on line during the transmission of $S_0^{2'}$ by comparing the prepared initial states of decoy photons in $S_0^{2'}$ with their measurement results of P_1. If there is no eavesdropper, they will continue the communication; otherwise, the communication will be terminated.

After P_0 receives $S_0^{1'}$, P_0 and P_1 also use the above eavesdropping check method to check the transmission security of $S_0^{1'}$. If there is no eavesdropper, they will continue the communication; otherwise, the communication will be terminated.

(3). P_0 and P_1 swap entanglement for particle sequences

P_0 discards the decoy photons in $S_0^{1'}$ to restore $S_0^{2'}$. P_1 discards the decoy photons in $S_0^{2'}$ to restore $S_0^{1'}$. P_1 performs d-level Bell entangled state measurement on particles u_1^t and v_0^t to obtain the value of $-l_1^t$.

Step 2: P_0 and P_j ($j = 2, 3, \ldots, n$) mutually transmit particle sequences and swap entanglement

(1). P_0 and P_j mutually transmit particle sequences

P_j generates Nd-level Bell entangled states $|\varphi(0, 0)>$. Then, in order to encode k_j^t, P_j imposes $I \otimes U_{(0,k_j^t)}$ on the tth ($t = 1, 2, \ldots, N$) Bell entangled states to produce $|\varphi(0,k_j^t)>$. P_j picks out all of the first and the second particles of these encoded Bell entangled states to form two ordered sequences, $S_j^1 = \{u_1^j, u_2^j, \ldots, u_N^j\}$ and $S_j^2 = \{v_1^j, v_2^j, \ldots, v_N^j\}$, respectively. P_j generates one group of decoy photons according to V_1 and V_2, and randomly inserts them into S_j^2 to form a new sequence $S_j^{2'}$. Finally, P_j transmits $S_j^{2'}$ to P_0.

P_0 generates one group of decoy photons according to V_1 and V_2, and randomly inserts them into $S_j^{2'}$ to form a new sequence $S_j^{2''}$. Finally, P_0 transmits $S_j^{2''}$ to P_j.

(2). P_0 and P_j implement eavesdropping check

P_0 and P_j utilize the corresponding decoy photons to check the transmission security of $S_j^{2'}$ and $S_j^{2''}$, respectively.

After P_0 receives $S_j^{2'}$, P_0 and P_j uses the eavesdropping check method same to that of Step 1 to check the transmission security of $S_j^{2'}$. If there is no eavesdropper, they will continue the communication; otherwise, the communication will be terminated.
After P_j receives S_{j-1}^2, P_j and P_0 use the eavesdropping check method same to that of Step 1 to check the transmission security of S_{j-1}^2. If there is no eavesdropper, they will continue the communication; otherwise, the communication will be terminated.

(3). P_0 and P_j swap entanglement for particle sequences

P_0 discards the decoy photons in S_j^2 to restore S_j^2. P_j discards the decoy photons in S_{j-1}^2 to restore S_{j-1}^2. P_j performs d-level Bell entangled state measurement on particles u_j^t and v_{j-1}^t to obtain the value of $k_{j-1}^t \oplus l_{j-1}^t \oplus -l_n^t/C_{16}/C_{17}$. P_0 performs d-level Bell entangled state measurement on particles u_0^t and v_n^t to obtain the value of $k_n^t \oplus l_n^t$.

Step 3: Equality comparsion

P_0, P_1, ..., P_n privately cooperate to compute.

$$sum_i^t = (-l_1^t \oplus (k_1^t \oplus l_1^t \oplus (-l_2^t)) \oplus (k_2^t \oplus l_2^t \oplus (-l_3^t)) \oplus ... \oplus (k_{n-1}^t \oplus l_{n-1}^t \oplus (-l_n^t)) = k_1^t \oplus k_2^t \oplus ... \oplus k_{n-1}^t \oplus (-l_n^t),$$

and informs P_0 of the value of sum_i^t via a public channel. Then, P_0 calculates Eq.(6) and obtains the value of $k_1^t \oplus k_2^t \oplus ... \oplus k_{n-1}^t \oplus k_n^t$.

$$sum_t = k_1^t \oplus k_2^t \oplus ... \oplus k_{n-1}^t \oplus (-l_n^t) = k_1^t \oplus k_2^t \oplus ... \oplus k_{n-1}^t \oplus k_n^t.$$ \hspace{1cm} (6)

If $sum_t = 0$, it will have $k_1^t = k_2^t = ... = k_n^t = 0$ or $k_1^t = k_2^t = ... = k_n^t = 1$, which means that $k_1^t, k_2^t, ..., k_n^t$ are all equal; otherwise, $k_1^t, k_2^t, ..., k_n^t$ are not all equal. If $sum_t = 0$ for $t = 1, 2, ..., N$, P_0 will announce that $K_1, K_2, ..., K_n$ are all equal; otherwise, P_0 will announce that $K_1, K_2, ..., K_n$ are not all equal.

3.2 Security Analysis

3.2.1 Outside Attack

In the proposed scheme, P_0 and P_i ($i = 1, 2, ..., n$) mutually transmit quantum state sequences, and use the d-level decoy photons randomly chosen from V_1 and V_2 to detect the existence of an outside eavesdropper. The decoy photon technology [22, 23] has been extensively used to guarantee the security of quantum cryptography scheme. It can be regarded as a variant of the eavesdropping check method of BB84 quantum key distribution (QKD) scheme [24], which has been proven to have unconditional security [25]. Thus, the proposed scheme is immune to the active attacks from an outside eavesdropper.

In Step 3, P_0 announces the comparison result of $K_1, K_2, ..., K_n$. Fortunately, an outside eavesdropper cannot deduce K_i just from the comparison result of $K_1, K_2, ..., K_n$.

International Journal of Theoretical Physics (2021) 60:1471–1480

© Springer
3.2.2 Participant Attack

The attack from a dishonest participant is always more powerful, since she joins in the implementation of scheme. Thus, this kind of attack should be paid more attention to [26]. In the following, three kinds of participant attack are analyzed in detail.

The Attack from One Dishonest User In the proposed scheme, each user takes the following actions: generating quantum state sequence and encoding her binary sequence on it, mutually transmitting quantum state sequence and implementing eavesdropping check processes together with P_0, swapping entanglement for quantum state sequences without decoy photons together with P_0, and cooperating with other users to calculate Eq.(5) privately. It is easy to find out that, the role of each user is similar. Suppose that P_i ($i \in \{1, 2, \ldots, n\}$) is a dishonest user. P_i may launch her active attacks on particles of S^j_v ($v = 1, 2, \ldots, n$ and $v \neq i$) and S^j_w ($u = 1, 2, \ldots, n-1$ and $u \neq i$). In this case, P_i actually acts as an outside eavesdropper. As a result, her attacks inevitably leave trace on decoy photons so that they are detected by the eavesdropping check processes undoubtedly.

On the other hand, in Step 3, P_0 announces the comparison result of K_1, K_2, \ldots, K_n. However, P_i cannot deduce K_v just from the comparison result of K_1, K_2, \ldots, K_n.

The Collusion Attack from Two or more Dishonest Users Here, we consider the most extreme situation, i.e., $n-1$ users collude to obtain the secret binary sequence of the left user. Without loss of generality, assume that $n-1$ dishonest users are P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n ($r \in \{2, 3, \ldots, n-1\}$).

On one hand, when P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n launch active attacks on particles of S^j_v and S^j_w, they actually act as an outside eavesdropper. As a result, their attacks inevitably leave trace on decoy photons so that they are detected by the eavesdropping check processes undoubtedly.

On the other hand, P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n know the values of $-l_1^t$, $l_1^t \oplus l_1^t \oplus (-l_2^t)$, $l_2^t \oplus l_2^t \oplus (-l_3^t)$, \ldots, $l_{r-2}^t \oplus l_{r-2}^t \oplus (-l_{r-1}^t)$, $l_{r-1}^t \oplus l_{r-1}^t \oplus (-l_{r-1}^t)$, where $t = 1$, 2, \ldots, N, and can use k_1^t, k_2^t, \ldots, k_{r-2}^t to decode out the value of l_{r-1}^t from this information. When P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n privately calculate Eq.(5) together with P_r, P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n can know the value of $k_{r-1}^t \oplus l_{r-1}^t \oplus (-l_1^t)$, thus they can further decode out the value of l_1^t, according to k_{r-1}^t and l_{r-1}^t. However, due to lack of the value of l_{r-2}^t, P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n still cannot decode out k_1^t from $k_1^t \oplus l_1^t \oplus (-l_{r+1}^t)$.

Finally, in Step 3, P_0 announces the comparison result of K_1, K_2, \ldots, K_n. However, P_1, \ldots, P_{r-1}, P_{r+1}, \ldots, P_n cannot deduce K_r just from the comparison result of K_1, K_2, \ldots, K_n.

The Attack from TP In order to obtain k_1^t, k_2^t, \ldots, k_n^t, P_0 may launch the d-level Bell entangled state measurement attack as follows: when P_0 and P_i ($i = 1$, 2, \ldots, n) swap entanglement for particle sequences, P_0 performs d-level Bell entangled state measurement on particles u_i^t and v_i^t to obtain the value of $k_1^t \oplus l_1^t$, $k_2^t \oplus l_2^t$, \ldots, $k_n^t \oplus l_n^t$. Due to lack of the value of l_1^t, l_2^t, \ldots, l_n^t, P_0 cannot decode out k_1^t, k_2^t, \ldots, k_n^t according to the value of $k_1^t \oplus l_1^t$, $k_2^t \oplus l_2^t$, \ldots, $k_n^t \oplus l_n^t$. In this case, P_0 actually acts as an outside eavesdropper. As a result, her attacks inevitably leave trace on decoy photons so that they are detected by the eavesdropping check processes undoubtedly.
Quantum resource	Quantum measurement of TP	Quantum measurement of users	Unitary operation of TP	Unitary operation of users	Quantum memory	Qubit efficiency	Times of protocol execution	Quantum technology		
Ref. [14]	n-particle GHZ class state	No	single-particle measurement	No	No	No	1/n	1 (whether the jth group bits from any two parties are equal or not equal)		
Ref. [15]	d-level n-particle entangled states	d-level single-particle measurement	No	No	Yes	No	1/n	1 (whether the jth group bits from n parties are all equal or not all equal)		
The first scheme of Ref. [16]	n-level n-particle entangled state and n-level two-particle entangled state	n-level single-particle measurement	n-level	single-particle measurement	No	Yes	1/3n (whether the jth group bits from n parties are all equal or not all equal)			
Yes	1/3n	1 (whether the jth group bits from n parties are all equal or not all equal)	Quantum fourier transform	No	No	No	1/2 (without considering the quantum resource consumed by a QKD scheme)			
The second scheme of Ref. [16]	n-level two-particle entangled state	n-level two-particle collective measurement	No	No	Yes	Yes	1/2 (without considering the quantum resource consumed by a QKD scheme)			
Ref. [17]	n-particle GHZ state	No	single-particle measurement	No	No	No	1/n	1 (whether the jth group bits from any two parties are equal or not equal)		
								The entanglement correlation among different particles from one quantum entangled state		
Table 1 (continued)	Quantum resource	Quantum measurement of TP	Quantum measurement of users	Unitary operation of TP	Unitary operation of users	Quantum memory	Qubit efficiency	Times of protocol execution	Quantum technology	
----------------------	------------------	--------------------------	----------------------------	------------------------	--------------------------	----------------	-----------------	-----------------------------	-------------------	
Ref. [18]	Bell entangled state	Bell basis measurement	Bell basis measurement	No	No	Yes	1/(n + 1)	1 (whether the jth group bits from any two parties are equal or not equal)	Quantum entanglement swapping	
Ref. [19]	d-level n + 1-particle Cat state and d-level two-particle Bell entangled state	d-level n + 1-particle Cat state measurement	d-level two-particle Bell entangled state measurement	No	Yes	Yes	1/(3n + 1)	1 (whether the jth group bits from n parties are all equal or not all equal)	Quantum entanglement swapping and unitary operation within d-level quantum system	
Ref. [20]	Bell entangled state	single-particle measurement	single-particle measurement	No	No	Yes	1/2n (without considering the quantum resource consumed by a QKD scheme)	1 (whether the jth group bits from any two parties are equal or not equal)	The entanglement correlation among different particles from one quantum entangled state	Unitary operation and quantum fourier transform
Ref. [21]	n-level single-particle state	n-level single-particle state measurement	No	No	Yes	No	1/2 (without considering the quantum resource consumed by a QKD scheme)	1 (whether the jth group bits from n parties are all equal or not all equal)	Unitary operation and quantum fourier transform	
This paper	d-level two-particle Bell entangled state	d-level two-particle Bell entangled state measurement	d-level two-particle Bell entangled state measurement	No	Yes	Yes	1/(2n + 2)	1 (whether the jth group bits from n parties are all equal or not all equal)	Quantum entanglement swapping and unitary operation within d-level quantum system	

4 Discussion and Conclusion

After ignoring the security check processes, the proposed scheme is compared with the MQPC schemes of Refs [14–21] in detail. The comparison results are summarized in Table 1. Here, the qubit efficiency is defined as

\[\eta = \frac{c}{q}, \]

where \(c \) and \(q \) represent the number of compared classical bits and the number of consumed qubits, respectively. Since both the proposed scheme and the scheme of Ref. [19] use the quantum entanglement swapping within \(d \)-level quantum system to achieve the private comparison, we particularly illustrate the advantages the proposed scheme takes over the scheme of Ref. [19] here. It is easy to find out from Table 1 that, as long as \(n \) is large enough, the qubit efficiency of the proposed scheme can be 1.5 times that of the scheme of Ref. [19]; and moreover, the proposed scheme exceeds the scheme of Ref. [19] in quantum resource and quantum measurement of TP, since the preparation and the quantum measurement of \(d \)-level two-particle Bell entangled states are easier than those of \(d \)-level \(n + 1 \)-particle Cat states.

To sum up, a MQPC scheme based on entanglement swapping of Bell entangled states within \(d \)-level quantum system is proposed in this paper, which can accomplish the equality comparison of secret binary sequences from \(n \) users via one execution of scheme. Detailed security analysis shows that both the outside attack and the participant attack are ineffective. The proposed scheme needn’t establish a private key among \(n \) users beforehand through QKD method to encrypt the secret binary sequences. Compared with previous MQPC scheme based on \(d \)-level Cat states and \(d \)-level Bell entangled states, the proposed scheme has distinct advantages on quantum resource, quantum measurement of TP and qubit efficiency.

Funding Funding by the National Natural Science Foundation of China (Grant No.62071430) and Zhejiang Gongshang University, Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (No. 2013E10012) is gratefully acknowledged.

Declarations

Conflict of Interest The authors declare that they have no conflicts of interest.

References

1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), p. 160, Washington, DC (1982)
2. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. (Special Issue on Coding and Cryptology). 111(1–2), 23–36 (2001)
3. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A : Math. Theor. 42, 055305 (2009)
4. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)
5. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10, 1250065 (2012)
6. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)
7. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11, 1350039 (2013)
8. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)
9. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1981–1990 (2013)
10. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2014)
11. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)
12. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)
13. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)
14. Chang, Y.T., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)
15. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085–1091 (2014)
16. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13, 2375–2389 (2014)
17. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multi-party quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)
18. Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280–290 (2016)
19. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)
20. Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys. Mech. Astron. 60(9), 090312 (2017)
21. Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)
22. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)
23. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896 (2006)
24. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)
25. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)
26. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.