Developing a Water Quality Index (WQI) for River Resources Management in Kien Giang Province, Vietnam

Q B Tran¹ and A D Pham²

¹Kien Giang Environmental Protection Agency, Department of Natural Resources and Environment, Kien Giang Province, Vietnam
²Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract. The objective of this study was to develop a water quality index (WQI) for the surface water management of about 6,299 Km² in Kien Giang Province. The water quality index (WQI) methodology, which recommended by the Delphi method and Liou et al. (2004) was used. Seven parameters were selected to derive the WQI for the estimation of water quality in Kien Giang including pH, dissolved oxygen (DO), Biochemical Oxygen Demand (BOD₅), total solid suspended (TSS), chloride (Cl⁻), ammonia (NH₄⁺), and coliform. Total 48 samples were taken in March and September of 2014, 2015, 2016, 2017, and 2018. Through the result of WQI calculation for each monitoring time and seasonal differences in WQI were noted. The WQI was categorized from 51 to 85 in March 2018; and from 48 to 77 in September 2018. The water quality at the 48 sites in the study area was divided into three levels: (1) use for domestic purposes but need appropriate handling measures; (2) use for irrigation purposes; and, (3) use for other appropriate purposes. The WQI was established to assess the rivers and streams’ quality in Kien Giang as a tool to evaluate the river and canal water’s total quality. This WQI contributes to control of water quality effectively in order to provide informations to protect water resources as well as to serve people's lives.

1. Introduction
Kien Giang is a province at the end of the freshwater source of the Hau river branch, and affected by the salt water from the Thailand Gulf, so it faces the difficulties in freshwater resources. The main surface water source of Kien Giang is provided by rain water and Hau river [1, 2]. The canal systems have the different ecological characteristics and socioeconomic impacts following the regions such as seasonal changes, flood, flood drainage channel, agricultural activities and human impacts.

At present, there were some authors who have established the WQI for water quality assessment in Vietnam, including the WQI suggested by the Vietnam Environment Protection Agency for the whole Vietnam [3]; the WQI developed by Ton That Lang for Dong Nai river system [4]; or, as the WQI proposed by Le Trinh for Ho Chi Minh City [5], and Nguyen Le Tu Quynh for Thai Nguyen Province [6]. However, these WQI are not suitable for water quality assessment of rivers and canals with typical ecological characteristics in Kien Giang.

In order to contribute the water resources management and improve the water quality monitoring for the canal systems in Kien Giang, besides the specific assessment of each physicochemical parameter, the WQI has been developed to assess the general water quality and provide the useful information to managers and local peoples as well. The objectives of this study were to develop the WQI for river resources management in Kien Giang as follows: (1) Developing the WQI for Kien Giang; (2) Applying
the WQI in order to assess the water quality of river systems in Kien Giang; and (3) Disseminating the information on water quality to managers and local people.

2. Methods

2.1. Study sites and sample collection
Data were used the area of 6.299 km² Kien Giang Province, a province the Mekong Delta region of Southern Vietnam. Water samples for analysis in the field were collected according to the UN Water Programme (1992) [7, 8]. Total 48 samples were taken in March and August of 2014, 2015, 2016, 2017, and 2018 [9, 10, 11, 12]. Sample locations at each site were taken in the middle part of the river (Figure 1) [13, 14, 15].

Figure 1. Map of sampling sites.

2.2. Laboratory analysis
The aquatic environmental parameters and their analysis methods were briefly presented in Table 1.

Table 1. Parameters and methods of water quality analysis

No.	Parameters	Unit	Methods
1	Temperature	°C	SMEWW 2550B:2012
2	pH		TCVN 6492:2011
3	Salinity	‰	SMEWW 2520B:2012
4	EC	mS/cm	SMEWW 2510B:2012
5	Turbidity	NTU	SMEWW 2130B:2005
6	DO	mg/l	TCVN 7325:2016
7	TSS	mg/l	SMEWW 6625:2000
8	BOD₅	mg/l	TCVN 6001-2:2008
9	COD	mg/l	SMEWW 5220C:2012
10	NH₄⁺	mg/l	SMEWW 4500-NH₄ B&F:2012
11	PO₄³⁻	mg/l	SMEWW 4500 -P.E:2012
12	Fe	mg/l	SMEWW 3120B:2012
13	Cl⁻	mg/l	TCVN 6194:1996
14	Coliform	MPN/100mL	TCVN 6187-2:1996
2.3. Developing the water quality index (WQI)

The development of WQI for water bodies in Kien Giang was based on research by Liou et al. (2004) [16] and Delphi method [17]. The selection of typical parameters for aquatic ecosystems and water environment was consulted by experts on water quality and environmental management in Kien Giang. The steps to build water quality indicators were detailed below:

- Step 1: Identifying the impact groups based on parameters for developing the WQI
- Step 2: Selecting the parameters for developing the WQI
- Step 3: Identifying the weight for each parameter and changing the scale of variables to 0 – 100
- Step 4: Calculating the WQI values for each site
- Step 5: Mapping the WQI values by colours.

3. Results

3.1. Identifying the impact groups for WQI

Based on the results of water quality monitoring from 2014 to 2018 in Kien Giang Province, 14 indicators for impact groups were classified according to the characteristics as follows: physical factors (temperature, pH, EC); suspended solids (turbidity, TSS); dissolved oxygen (DO); saline intrusion (salinity, Cl\(^-\)); organic pollution (NH\(_4^+\), PO\(_4^{3-}\), BOD\(_5\), COD); health aspects (Fe, coliform).

3.2. Selecting the parameters, changing the scale, and identifying the weight for WQI calculation

Based on the results of water quality monitoring from 2014 to 2018, 20 knowledgeable and indigenous experts working in environmental monitoring and related fields have selected seven parameters following the score of each indicator, the representatives of impact groups, and the assessment weight for the WQI development at Kien Giang. Seven parameters were selected to derive the WQI for the estimation of water quality in Kien Giang (Table 2).

No.	Parameters	Weight
1	pH	0.19
2	DO	0.17
3	TSS	0.16
4	BOD\(_5\)	0.14
5	NH\(_4^+\)	0.14
6	Cl\(^-\)	0.11
7	Coliform	0.09

3.3. Calculating the WQI values for each site

Typical parameters for aquatic ecosystems and water environment in Kien Giang were selected to build the WQI as follows:

\[
I = \sum_{i=1}^{n} q_i w_i
\]

Notes: I is the last value; \(q_i\) is the secondary index for parameters; \(w_i\) is the weight; \(n\) is the number of indicators included in the calculation.

3.4. Mapping the WQI values by colors

After calculating WQI values, these results were shown on the map by colours (Table 3).
Table 3. Showing the WQI values on the map by color.

WQI Values	Water Quality Assessment	Color
91 – 100	Good use for drinking water purposes	Blue
71 – 90	Use for domestic purposes but need appropriate handling measures	Green
51 – 70	Use for irrigation purposes	Yellow
26 – 50	Use for other appropriate purposes	Orange
1 – 25	Heavy pollution water	Brown

The results of WQI calculation for assessment of river water quality at Kien Giang during the March and September in 2018 were shown in Table 4. The water quality at the 48 sites in the study area was divided into three levels: (1) use for domestic purposes but need appropriate handling measures; (2) use for irrigation purposes; and (3) use for other appropriate purposes (Table 4).

Table 4. The WQI values in March and September 2018.

Sites	WQI Values 03/2018	Water Quality Assessment	Sites	WQI Values 09/2018	Water Quality Assessment
001Q	55	Yellow	025Q	61	Yellow
002Q	53	Yellow	026Q	64	Yellow
003Q	59	Green	027Q	64	Yellow
004Q	61	Green	028Q	63	Yellow
005Q	72	Yellow	029Q	61	Yellow
006Q	67	Yellow	030Q	66	Yellow
007Q	62	Yellow	031Q	69	Yellow
008Q	72	Yellow	032Q	69	Yellow
009Q	69	Yellow	033Q	71	Yellow
010Q	61	Yellow	034Q	64	Yellow
011Q	63	Yellow	035Q	64	Yellow
012Q	71	Yellow	036Q	58	Yellow
013Q	79	Yellow	037Q	63	Yellow
014Q	52	Yellow	038Q	56	Yellow
015Q	64	Yellow	039Q	55	Yellow
016Q	63	Yellow	040Q	70	Yellow
017Q	51	Yellow	041Q	51	Yellow
018Q	65	Yellow	042Q	60	Yellow
019Q	67	Yellow	043Q	63	Yellow
020Q	67	Yellow	044Q	54	Yellow
021Q	50	Yellow	045Q	69	Yellow
022Q	50	Yellow	046Q	69	Yellow
023Q	51	Yellow	047Q	85	Yellow
024Q	58	Yellow	048Q	53	Yellow

Based on the values of WQI, the water quality assessment was classified in Figure 2. This information dissemination is very effective and intuitive after each monitoring phase. Posting through the Water Resource Newsletter on the Department's website is a new form because water quality reports were too long and the environmental experts understand it only. So this is a very effective form of information dissemination to alert for local communities and managers.
Figure 2. Maps of water quality classification for main rivers and canals in Kien Giang in 2018.

4. Conclusion
Based on the monitoring data of water quality in March and September 2014, 2015, 2016, 2017 and 2018, seven parameters were selected to derive the WQI for the estimation of water quality at typical water bodies in Kien Giang Province including pH, DO, TSS, NH$_4^+$, BOD$_5$, Cl$^-$, and Coliform. The water quality at the 48 sites in the studied area was divided into three levels: (1) use for domestic purposes but need appropriate handling measures; (2) use for irrigation purposes; and (3) use for other appropriate purposes.

The WQI was established as a technical tool to evaluate the water quality for river system in Kien Giang. The results of the periodic assessment were officially disseminated on the Department's website also. This research contributed the new WQI for the water resources protection as well as people's live serving purposes effectively.

References
[1] Kien Giang People’s Committee 2018 Report on Economic in Kien Giang Province, Kien Giang People’s Committee, Vietnam
[2] Kien Giang People’s Committee 2012 Building the Environmental Monitoring Network in Kien Giang Province by 2020, Kien Giang People’s Committee, Vietnam
[3] Vietnam Environmental Protection Agency 2011 Handbook for Calculation of Water Quality Index, Ministry of Natural Resources and Environment, Hanoi pp 8
[4] Lang T T et al. 2009 Building GIS Database Combining Mathematical Model and Water Quality Index for Water Quality Control of Downstream of Dong Nai River System, HCMC Department of Science and Technology, Vietnam
[5] Trinh L et al. 2009 Study on Water Quality Zonation for Rivers and Canals in Ho Chi Minh City according to WQI and Proposing Protection Measures, HCMC Department of Science and Technology, Vietnam
[6] Nguyen L T Q 2016 Study on Water Quality Index for River Zonation in Thai Nguyen Province Doctor Dissertation (Vietnam: Hanoi University of Science)
[7] Allardm M et al. 1992 GEMS/WATER operational guide (Geneva: World Health Organization) pp 121
[8] Carranzo I V 2012 Standard Methods for examination of water and wastewater *Anales De Hidrología Médica* 5 (2) 185
[9] Environmental Protection Agency 2016 Report on Environmental Status in Kien Giang Province 2011 – 2015 Kien Giang Department of Natural Resources and Environment, Vietnam
[10] Environmental Monitoring Center 2016, Report on Environmental Monitoring of Kien Giang Province in 2018, Kien Giang Department of Natural Resources and Environment, Vietnam
[11] Giang K Department of Science and Technology 2017 Science and technology Program on conservation and development of natural resources, environmental protection associated with climate change response to 2020 Kien Giang Province, Kien Giang Department of Science and Technology, Vietnam
[12] Giang K Statistic Agency 2018 Statistical Yearbook of Kien Giang Province in 2017, The Youth Publisher, Vietnam
[13] Pham A D and Nguyen T M L 2015 Environmental Quality Monitoring, The Construction Publisher, Vietnam
[14] Ministry of Natural Resource and Environment. 2011, Circular 29/2011/TB-BTNMT on 01/08/2011 on Technical Regulation of Environmental Monitoring Process in Land Surface Water, Ministry of Natural Resource and Environment, Vietnam
[15] Ministry of Natural Resource and Environment. 2015, National Technical Regulation on Surface Water Quality QCVN 08-MT:2015/BTNMT, Ministry of Natural Resource and Environment, Vietnam
[16] Shiow-Mey L, Shang-Lien L and Shan-Hsien W 2004 *Environ. Monit. Assess.* 96 (1-3) 35-52
[17] US Sanitation Fund 1978 Water Quality Index of National Sanitary Fund, NSF, United State