L^4- Norms of Hecke Newforms of Large Level

JACK BUTTCANE AND RIZWANUR KHAN

Abstract. We prove a new upper bound for the L^4-norm of a holomorphic Hecke newform of large fixed weight and prime level $q \to \infty$. This is achieved by proving a sharp mean value estimate for a related L-function on $GL(6)$.

1. Introduction

Modular forms, particularly cusp forms, are very special functions on the upper half complex plane which arise almost everywhere in mathematics. A natural way to understand a cusp form is to study its L^p-norms, for in principle a function can be recovered from the knowledge of its moments. In recent years, this has been an exciting topic for which even a 2010 Fields Medal was awarded, to Lindenstrauss. Settling an important case of the Quantum Unique Ergodicity conjecture, Lindenstrauss [15] and Soundararaman [21] showed that the L^2-norm of a Hecke Maass cusp form of large laplacian eigenvalue restricted to a finite region of the complex upper half plane depends only on the area of the region. In other words, the L^2-mass is equidistributed. The analogous problem for holomorphic Hecke cusp forms of large weight, the Rudnick-Sarnak conjecture, was solved by Holowinsky and Soundararaman [9]. Nelson [19] proved that a holomorphic Hecke newform of large square-free level has equidistributed L^2-mass. This version of the QUE conjecture in the level aspect was posed by Kowalski, Michel, and VanderKam.

What can be said about higher L^p-norms in the level aspect? Let $B^\text{new}_k(q)$ denote the set of L^2-normalized holomorphic Hecke newforms of level q, weight k, and trivial nebentypus, and let $f \in B^\text{new}_k(q)$. Blomer and Holowinsky [3] were the first to establish a non-trivial upper bound for the L^∞-norm. This was later improved by Harcos and Templier [7], who showed that

$$\|f\|_\infty \ll q^{-1/6+\epsilon}$$

for any $\epsilon > 0$, where the implied constant depends on ϵ and k. (We adopt this convention throughout the paper, and also that ϵ may not be the same arbitrarily small positive constant from one occurrence to the next.) As a consequence we have that

$$\|f\|_4 \ll q^{-1/3+\epsilon},$$

which is an improvement over the “trivial” bound

$$\|f\|_4 \ll q^\epsilon.$$

A more direct way to get a handle on the L^4-norm is through L-functions. Blomer [2, sec. 1] commented that “it seems to be very hard to improve” in this way, but nevertheless Liu, Masri, and Young [16] succeeded in the case that q is prime and achieved the bound

$$\|f\|_4 \ll q^{-1/2+\epsilon}.$$

In this paper, we give a further improvement. Let q denote a prime throughout the rest of the paper.

1These authors actually proved their results for Hecke Maass forms, but very similar arguments would work for holomorphic Hecke newforms as well.
Theorem 1.1. Let \(\epsilon > 0 \). There exists \(k_\epsilon > 0 \) such that for even \(k > k_\epsilon \) the following result holds. Let \(q \) be prime and \(f \in \mathcal{B}^{new}_k(q) \). Suppose that the subconvexity bound

\[
L\left(\frac{1}{2}, g\right) \ll_{k, \epsilon} q^{1/4 - \delta + \epsilon}
\]

holds for all \(g \in \mathcal{B}^{new}_{2k}(q) \), where \(L(s, g) \) is defined in (2.9) and \(\delta > 0 \). Then we have that

\[
\|f\|_4^4 \ll_{k, \epsilon} q^{-3/4 - \delta + \epsilon}.
\]

We have concentrated only on arriving at a new bound in the level aspect, and have not tried to optimize \(k_\epsilon \). The best known subconvexity bound, due to Duke, Friedlander, and Iwaniec [5], is given by \(\delta = 1/192 \). It is conjectured of course that we can take \(\delta = 1/4 \); this would yield the best expected bound for \(\|f\|_4 \).

The proof of Theorem 1.1 rests on a new mean value estimate for an \(L \)-function on \(GL(6) \), which is of interest in its own right.

Theorem 1.2. Let \(\epsilon > 0 \). There exists \(k_\epsilon > 0 \) such that for even \(k > k_\epsilon \), \(q \) prime, and \(f \in \mathcal{B}^{new}_k(q) \), we have that

\[
\sum_{g \in \mathcal{B}^{new}_{2k}(q)} L\left(\frac{1}{2}, \text{sym}^2 f \times g\right) L\left(1, \text{sym}^2 g\right) \ll_{k, \epsilon} q^{1+\epsilon}.
\]

After noting (2.13), we see that the estimate above is consistent with the Lindelöf hypothesis. Further, using Lapid’s [13] result that

\[
L\left(\frac{1}{2}, \text{sym}^2 f \times g\right) \geq 0,
\]

dropping all but one term recovers the convexity bound for these central values.

The novelty of our paper which facilitates the proof of Theorem 1.2 is a type of \(GL(3) \) Voronoi summation formula for non-trivial level. The \(GL(3) \) Voronoi summation formula for level one, due to Miller and Schmid [18], is a valuable tool in analytic number theory which has been used extensively in the subject. Although Ichino and Templier [10] have established a more general formula, it does not cover the case of interest to us. We will need to analyze a sum of the type

\[
\sum_{n < N} A_f(n, 1) e\left(\frac{nh}{cq}\right)
\]

where \(A_f(n, 1) \) are the coefficients of \(L(s, \text{sym}^2 f) \) as given in (2.11), \(c \) is an integer less than \(q' \), and \(h \) is an integer coprime to \(cq \). It would be very desirable to obtain a practical formula for the above sum for general values of \(c \), but this seems to be a challenging task. Our idea to get around this problem in the current situation is to realize that it is enough to develop a formula for the telling case \(c = 1 \) but to not fully work out the contribution coming from \(c > 1 \). Since \(c < q' \), this approach is good enough.

Lemma 1.3. Let \(A_f(n, 1) \) be the coefficients of \(L(s, \text{sym}^2 f) \) as given in (2.11). Let \(\phi(x) \) be a smooth function compactly supported on the positive real numbers. For \((h, q) = 1 \), we have that

\[
\sum_{n \geq 1 \atop (n, q) = 1} A_f(n, 1) e\left(\frac{nh}{q}\right) \phi(n) = \frac{q}{2} \sum_{\alpha = \pm 1} i^{\alpha + 1} \sum_{n \geq 1 \atop (n, q) = 1} A_f(n, 1) \left(S(-n\overline{\tau}, 1; q) + \alpha S(n\overline{\tau}, 1; q) \right) \Phi_{\alpha}\left(\frac{n}{q^2}\right)
\]

\[
- \sum_{n \geq 1 \atop (n, q) = 1} A_f(n, 1) \left(\phi(n) + \frac{iq}{n} \Phi_1\left(\frac{n}{q^2}\right) \right),
\]

where \(\Phi_1(x) = \frac{\Phi(x)}{1 - x} \).
where \overline{h} is the multiplicative inverse of h modulo q and for $\tilde{\phi}(s)$ the Mellin transform of ϕ and $H_\alpha(s)$ as in (5.13), we define

$$\Phi_\alpha(x) = \frac{1}{2\pi i} \int_{(\sigma)} x^{-s} H_\alpha(1-s) - \overline{H_\alpha} \tilde{\phi}(s) \, ds$$

for any $x, \sigma > 0$.

It would be interesting to prove an analogue of Theorem 1.2 for Hecke Maass cusp forms of level q, and we expect that very similar arguments would work. This would lead to a new bound for the L^4-norm of Maass forms and an improvement of the subconvexity bound [13, Corollary 1.2]. That a result like Theorem 1.2 would improve their subconvexity bound was noted by Liu, Masri, and Young in [16, section 6].

1.1. Sketch. We now give a rough outline of the proof of Theorem 1.2.

By the method of approximate functional equations, we write

$$L(\frac{1}{2}, \text{sym}^2 f \times g) \approx \sum_{n<q^{2+\epsilon}} A_f(n,1) \lambda_g(n) / n^{1/2},$$

where $\lambda_g(n)$ are the coefficients of $L(s, g)$ as given in (2.9). Thus,

$$\sum_{g \in B_{2k}^\infty(q)} L(\frac{1}{2}, \text{sym}^2 f \times g) L(1, \text{sym}^2 g) \approx \sum_{n<q^{2+\epsilon}} A_f(n,1) / n^{1/2} \sum_{g \in B_{2k}^\infty(q)} \lambda_g(n) / L(1, \text{sym}^2 g).$$

By the Petersson trace formula, this is roughly

$$q \left(1 + \sum_{n<q^{2+\epsilon}} A_f(n,1) / n^{1/2} \sum_{c \geq 1} J_{2k-1}(4\pi \sqrt{n/cq}) S(n, 1; cq) / cq \right).$$

Now for large enough k, the J-Bessel function $J_{2k-1}(x)$ decays very quickly as $x \to 0$. Therefore it suffices to consider only $n > q^{2-\epsilon}$ and $c < q^{\epsilon}$. To fix ideas, we restrict ourselves in this sketch to the case $q^2 < n < 2q^2$ and $c = 1$. In these ranges, $n^{1/2} \approx q$ and the J-Bessel function is roughly constant. We therefore have to show that

$$\sum_{q^2 < n < 2q^2} A_f(n,1) S(n, 1; q) \ll q^{2+\epsilon}.$$

Opening the Kloosterman sum, we have to show that

$$\sum_{h \mod q} e\left(\frac{h}{q}\right) \sum_{q^2 < n < 2q^2} A_f(n,1) e\left(\frac{nh}{q}\right) \ll q^{2+\epsilon},$$

where * restricts the sum to primitive residue classes. We develop a Voronoi summation formula with the following shape:

$$\sum_{q^2 < n < 2q^2} A_f(n,1) e\left(\frac{nh}{q}\right) \approx q \sum_{m<q^{1+\epsilon}} A_f(m,1) / m S(m, \overline{h}; q).$$

Inserting this into (1.16), we have to show that

$$\sum_{m<q^{1+\epsilon}} A_f(m,1) / m \sum_{h \mod q} e\left(\frac{h}{q}\right) S(m, \overline{h}; q) \ll q^{1+\epsilon}.$$

Evaluating the h-sum, we must show that

$$\sum_{m<q^{1+\epsilon}} A_f(m,1) / m \ll q^\epsilon.$$
The required bound now follows by estimating trivially. Proving any further cancelation in the sum above seems like a very difficult problem, as the length of the sum is the square root of the conductor of \(L(s, \text{sym}^2 f) \).

To obtain the Voronoi formula, we write the exponential in terms of Dirichlet characters to get

\[
\sum_{n \geq 1} A_f(n, 1) e\left(\frac{nh}{q}\right) \phi\left(\frac{n}{q^2}\right) \approx \frac{1}{q} \sum_{\chi \mod q, \chi \neq 1} \tau(\chi) \sum_{n \geq 1} A_f(n, 1) \overline{\chi(nh)} \phi\left(\frac{n}{q^2}\right),
\]

where \(\phi(x) \) is a smooth bump function supported on \(1 < x < 2 \) and \(\tau(\chi) \) is the Gauss sum. In terms of \(L \)-functions, this equals

\[
\frac{1}{q} \sum_{\chi \mod q, \chi \neq 1} \tau(\chi) \overline{\chi(h)} \frac{1}{2\pi i} \int_{2-\infty}^{2+i\infty} L(s, \text{sym}^2 f \times \overline{\chi}) q^{2s} \tilde{\phi}(s) ds,
\]

where \(\tilde{\phi} \) is the Mellin transform of \(\phi \). The summation formula comes from an application of the functional equation of \(L(s, \text{sym}^2 f \times \chi) \), which is available from the work of Li [14].

2. Background

2.1. Cusp forms. Let \(\mathbb{H} \) denote the upper half complex plane and \(\Gamma_0(q) \) the usual congruence subgroup of \(SL_2(\mathbb{Z}) \). Let \(S_k(q) \) denote the space of cusp forms of weight \(k \) and trivial nebentypus for \(\Gamma_0(q) \). This space is equipped with the inner product

\[
\langle f_1, f_2 \rangle = \int_{\Gamma_0(q) \backslash \mathbb{H}} y^{k/2} f_1(z) y^{k/2} f_2(z) \frac{dx dy}{y^2}
\]

and the \(L^p \)-norms

\[
\|f\|_p = \left(\int_{\Gamma_0(q) \backslash \mathbb{H}} |y^{k/2} f(z)|^p \frac{dx dy}{y^2} \right)^{1/p},
\]

\[
\|f\|_{\infty} = \sup\{|y^{k/2} f(z)| : z \in \Gamma_0(q) \backslash \mathbb{H}\}.
\]

By [12 Proposition 2.6] and [2 sec. 2], there exists an orthonormal basis \(B_{k}^{\text{new}}(q) \cup B_{k}^{\text{old}}(q) \) for \(S_k(q) \), where every \(f \in B_{k}^{\text{old}}(q) \) is an oldform with

\[
\|f\|_{\infty} \ll q^{-1/2}.
\]

We have that

\[
\dim S_k(q) \sim |B_{k}^{\text{new}}(q)| \sim \frac{q(k-1)}{12}
\]

as \(q \to \infty \).

2.2. \(L \)-functions. Every \(f \in B_{k}^{\text{new}}(q) \) is an eigenfunction of the Hecke operators \(T_n \). Say

\[
T_n f = n^{k/2} \lambda_f(n) f
\]

for some real numbers \(\lambda_f(n) \) satisfying

\[
\lambda_f(q) \ll q^{-1/2},
\]

Deligne’s bound \(\lambda_f(n) \ll n^{\epsilon} \), and the multiplicative relation

\[
\lambda_f(n) \lambda(m) = \sum_{d | (n,m), (d,q) = 1} \lambda_f\left(\frac{nm}{d^2}\right).
\]
The L-function associated to f equals

\[(2.9) \quad L(s, f) = \sum_{n \geq 1} \frac{\lambda_f(n)}{n^s} \]

for $\Re(s) > 1$ with analytical continuation to the rest of the complex plane. By the work of Guo \[6\], we know that the central value is non-negative:

\[(2.10) \quad L(\frac{1}{2}, f) \geq 0.\]

We will also need to work with $GL(1)$ and $GL(2)$ twists of the symmetric-square L-function, given for $\Re(s) > 1$ by

\[(2.11) \quad L(s, \text{sym}^2 f) = \left(1 - \frac{1}{q^{s+1}}\right)^{-1} \sum_{n \geq 1} \frac{A_f(n, 1)}{n^s},\]

where

\[(2.12) \quad A_f(n, 1) = \sum_{d \mid (d_1, d_2, n)} \mu(d) \frac{A_f(d_1)}{d_1} \frac{A_f(d_2)}{d_2}\]

for $(n, q) = 1$. At the edge of the critical strip have the bounds

\[(2.13) \quad C \epsilon q^{-\epsilon} < L(1, \text{sym}^2 f) \ll q^\epsilon,\]

where C_ϵ is some positive constant depending on ϵ. The lower bound is due to Goldfeld, Hoffstein, and Lieman \[8\]. The constant C_ϵ is ineffective if f is dihedral, but in this case even better bounds for the L^4-norm may be available by arguments such as in \[17\].

We will consider for $(c, q) = 1$ and χ a primitive Dirichlet character of modulus cq, the twist

\[(2.14) \quad L(s, \text{sym}^2 f \times \chi) = \sum_{n \geq 1} \frac{A_f(n, 1) \chi(n)}{n^s}\]

for $\Re(s) > 1$. Its functional equation is given in section \[5.2\].

Let $g \in B_{2k}^{\text{new}}(q)$ and

\[(2.15) \quad A_f(n, m) = \sum_{d \mid (n, m)} \mu(d) A_f\left(\frac{n}{d}, 1\right) A_f\left(\frac{m}{d}, 1\right)\]

for $(nm, q) = 1$. By \[22\] section 3.1, the $GL(2)$ twist

\[(2.16) \quad L(s, \text{sym}^2 f \times g) = \left(1 - \frac{\lambda_g(q)}{q^s}\right)^{-1} \left(1 - \frac{\lambda_g(q)}{q^{s+1}}\right)^{-1} \sum_{n,m \geq 1} \frac{A_f(n, m) \lambda_g(n)}{n^s m^{2s}}\]

for $\Re(s) > 1$ continues to an entire function and has the functional equation

\[(2.17) \quad q^{2s} G(s) L(s, \text{sym}^2 f \times g) = q^{2(1-s)} G(1-s) L(1-s, \text{sym}^2 f \times g),\]

where

\[(2.18) \quad G(s) = \pi^{-3s} \Gamma(s + 3) \Gamma(s + k - \frac{3}{2}) \Gamma(s + k - \frac{1}{2}) \Gamma(s + \frac{3}{2}).\]

We will use an approximate functional equation to get a handle on the central values.

Lemma 2.1. We have

\[(2.19) \quad L(\frac{1}{2}, \text{sym}^2 f \times g) = 2 \sum_{n,m \geq 1} \frac{A_f(n, m) \lambda_g(n)}{n^{1/2} m^{1/2}} \sum_{r_1, r_2 \geq 0} \left(\frac{\lambda_g(n)}{q^{1/2}}\right)^{r_1} \left(\frac{\lambda_g(q)}{q^{3/2}}\right)^{r_2} V\left(\frac{nm^2}{q^{2-r_1-r_2}}\right),\]
where
\[V(x) = \frac{1}{2\pi i} \int_{(\sigma)} x^{-s} \frac{G(\frac{1}{2} + s)}{G(\frac{1}{2})} ds \]
satisfies
\[V^{(\ell)}(x) \ll \epsilon x^{-\ell-\sigma} \]
for \(x, \ell, \sigma > 0 \). Thus the sum in (2.19) is essentially supported on \(nm^2 < q^{2-r_1-r_2+\epsilon} \).

\[\text{Proof.} \] By Cauchy’s theorem, we have that
\[L(\frac{1}{2}, \text{sym}^2 f \times g) = \frac{1}{2\pi i} \int_{(\frac{1}{4})} L(\frac{1}{2} + s, \text{sym}^2 f \times g) q^{2s} \frac{G(\frac{1}{2} + s)}{G(\frac{1}{2})} ds. \]

Applying the functional equation to the integrand in the second line of (2.22), we get that
\[L(\frac{1}{2}, \text{sym}^2 f \times g) = \frac{1}{\pi i} \int_{(\frac{1}{4})} L(\frac{1}{2} + s, \text{sym}^2 f \times g) q^{2s} \frac{G(\frac{1}{2} + s)}{G(\frac{1}{2})} ds. \]

On this line of integration we may use (2.16) and the Taylor expansion of the Euler factors at \(\sigma > 0 \).
Doing so, we arrive at (2.19) with \(\sigma = 3/4 \). Now the line of integration may be moved to any \(\sigma > 0 \). \(\square \)

2.3. Trace formula. We will need the following trace formula over newforms, implied by [12, Propositions 2.1 and 2.8]. For \((n, q) = 1 \), we have that
\[\frac{12\zeta(2)}{q(k-1)} \sum_{f \in B_{2k}^{\text{new}}(q)} \frac{\lambda_f(n)}{L(1, \text{sym}^2 f)} = \delta(n) + 2\pi i^k \sum_{c \geq 1} \frac{S(n, 1; cq)}{cq} J_{k-1}\left(4\pi \sqrt{n} \frac{1}{cq}\right) + O\left(\frac{n^c}{q}\right), \]
where \(\delta(n) = 1 \) if \(n = 1 \) and \(\delta(n) = 0 \) otherwise, \(S(n, 1; cq) \) is a Kloosterman sum, and \(J_{k-1}(x) \) is the \(J \)-Bessel function, which satisfies
\[J_{k-1}(x) \ll \min\{x^{k-1}, x^{-1/2}\} \]
for \(x > 0 \). We have the very basic uniform bound
\[J_{k-1}^{(\ell)}(x) \leq 1 \]
for all \(x > 0 \) and \(\ell \geq 0 \).

3. Reduction of Theorem 1.1

The goal of this section is to relate the \(L^4 \)-norm to \(L \)-functions and reduce Theorem 1.1 to Theorem 1.2. Note that if \(f \in B_{2k}^{\text{new}}(q) \) then \(f^2 \in S_{2k}(q) \). Thus by Parseval’s theorem and (2.4,2.5), we have
\[\|f\|^4 = ||f^2||^2 = \sum_{g \in B_{2k}^{\text{new}}(q) \cup B_{2k}^{\text{old}}(q)} |\langle f^2, g \rangle|^2 = \sum_{g \in B_{2k}^{\text{new}}(q)} |\langle f^2, g \rangle|^2 + O(q^{-1}). \]

By Watson’s formula [22, section 4.1] (see also [2, sec. 5]) for \(|\langle f^2, g \rangle|^2 \), we have that
\[\|f\|^4 \ll \frac{1}{q^2} \sum_{g \in B_{2k}^{\text{new}}(q)} \frac{L(\frac{1}{2}, f \times f \times g)}{L(1, \text{sym}^2 f)^2 L(1, \text{sym}^2 g)} + O(q^{-1}), \]
where
\[L(s, f \times f \times g) = L(s, g)L(s, \text{sym}^2 f \times g) \]
is a triple product L-function (the complex conjugation can be dropped because $\lambda_q(n) \in \mathbb{R}$). Now by \((1.3)\), we have that

\[
\|f\|_4^4 \ll q^{-7/4-\delta+\epsilon} \sum_{g \in \mathcal{B}_{2\pi}((q))} \frac{L(\frac{1}{2}, \text{sym}^2 f \times g)}{L(1, \text{sym}^2 g)} + O(q^{-1}).
\]

Thus Theorem 1.1 follows from Theorem 1.2. The same strategy was used in [4] to study the L^4-norm in terms of the weight k. Notice how this differs from the approach in [16]: there, the Cauchy-Schwarz inequality is applied to \((3.2)\) and the problem is reduced to studying the second power moments of $L(\frac{1}{2}, g)$ and $L(\frac{1}{2}, \text{sym}^2 f \times g)$, for Maass forms.

We remark that the Lindelöf bound for the triple product L-function above would imply the best expected bound $\|f\|_4 \ll q^{-1/4+\epsilon}$.

4. Proof of Theorem 1.2

By \((2.19)\), we have that

\[
(4.1) \quad \frac{1}{q} \sum_{g \in \mathcal{B}_{2\pi}((q))} \frac{L(\frac{1}{2}, \text{sym}^2 f \times g)}{L(1, \text{sym}^2 g)} = \frac{2}{q} \sum_{g \in \mathcal{B}_{2\pi}((q))} \sum_{n,m \geq 1} \frac{A_f(n,m)}{n^{1/2}m} \frac{\lambda_q(n)}{L(1, \text{sym}^2 g)} \sum_{r_1,r_2 \geq 0} \left(\frac{\lambda_q(q)}{q^{1/2}} \right)^{r_1} \left(\frac{\lambda_q(q)}{q^{1/2}} \right)^{r_2} V \left(\frac{nm^2}{q^{2-r_1-r_2}} \right).
\]

Now by \((2.19)\), this equals

\[
(4.2) \quad \frac{2}{q} \sum_{n,m \geq 1} \frac{A_f(n,m)}{n^{1/2}m} V \left(\frac{nm^2}{q^2} \right) \frac{1}{q} \sum_{g \in \mathcal{B}_{2\pi}((q))} \frac{\lambda_q(n)}{L(1, \text{sym}^2 g)} + O(q^\epsilon).
\]

Thus on applying \((2.24)\), we have that

\[
(4.3) \quad \frac{1}{q} \sum_{g \in \mathcal{B}_{2\pi}((q))} \frac{L(\frac{1}{2}, \text{sym}^2 f \times g)}{L(1, \text{sym}^2 g)} \ll \sum_{c \geq 1} \sum_{n,m \geq 1} \frac{A_f(n,m)}{n^{1/2}m} \frac{S(n,1; cq)}{cq} J_{2k-1} \left(\frac{4\pi \sqrt{n}}{cq} \right) V \left(\frac{nm^2}{q^2} \right) + O(q^\epsilon).
\]

We make the following observation: the contribution to \((4.3)\) of the terms not satisfying

\[
(4.4) \quad 1 \leq c, m \leq q^\epsilon \quad \text{and} \quad q^{2-\epsilon} \leq n \leq q^{2+\epsilon}
\]

is certainly less than q^ϵ. To see this, we may assume by \((2.21)\) that $n < q^{2+\epsilon}m^{-2}$. Now if \((4.4)\) is not satisfied then

\[
(4.5) \quad \frac{4\pi \sqrt{n}}{cq} < q^{-\epsilon},
\]

so that

\[
(4.6) \quad J_{2k-1} \left(\frac{4\pi \sqrt{n}}{cq} \right) \ll q^{10}
\]

by \((2.23)\) provided that k is large enough. This implies the claim. For the terms that do satisfy \((4.4)\), we analyze the right hand side of \((4.3)\) in dyadic intervals of n. To this end, let $U(x)$ be a smooth function, compactly supported on $1 \leq x \leq 2$. By \((2.13)\) and the observation above, we see that Theorem 1.2 follows from

Lemma 4.1. For any integers

\[
(4.7) \quad 1 \leq c, d, m \leq q^\epsilon, \quad q^{2-\epsilon} \leq N \leq q^{2+\epsilon},
\]
we have that

\[\sum_{n \geq 1 \atop (n,q)=1} A_f(n,1)S(nd, 1; cq)W\left(\frac{n}{N}\right) \ll q^{2+\epsilon}, \]

where

\[W(x) = J_{2k-1}\left(\frac{4\pi \sqrt{xdN}}{cq}\right)V\left(\frac{xd^3m^2}{q^2}\right)U(xd) \]

is supported on \(q^{-\epsilon} \leq x \leq q^{\epsilon} \) and satisfies

\[W(\ell x) \ll \ell q^{\ell \epsilon}. \]

5. Proofs of Lemmas 1.3 and 4.1

Writing \(d_1 = d/(d, c), \ c_1 = c/(d, c) \), and

\[S(nd, 1; cq) = \sum_{h \mod cq}^* e\left(\frac{ndh + \overline{h}}{cq}\right), \]

where * indicates that the sum is restricted to primitive residue classes, we have that (4.8) is equivalent to

\[\sum_{h \mod cq}^* e\left(\frac{\overline{h}}{cq}\right) \sum_{n \geq 1 \atop (n,q)=1} A_f(n,1)e\left(\frac{nd_1h}{c_1q}\right)W\left(\frac{n}{N}\right) \ll q^{2+\epsilon}. \]

We now concentrate our efforts on the inner \(n \)-sum. The proof of Lemma 1.3 can be gleaned from this analysis on taking \(d_1 = c_1 = 1 \). Right at the end, the outer \(h \)-sum will be executed to complete the proof of Lemma 4.1.

5.1. Dirichlet characters. Grouping the left hand side of (5.2) by the value of \((n, c_1) \), say \(d_2 \), and writing \(c_2 = c_1/d_2 \), we have that it equals

\[\sum_{h \mod cq}^* e\left(\frac{\overline{h}}{cq}\right) \sum_{d_2|c_1} \sum_{n \geq 1 \atop (n,c_2q)=1} A_f(nd_2, 1)e\left(\frac{nd_1h}{c_2q}\right)W\left(\frac{nd_2}{N}\right). \]

Note that \((nd_1h, c_2q) = 1 \) so that the following identity holds:

\[e\left(\frac{nd_1h}{c_2q}\right) = \frac{1}{\varphi(c_2q)} \sum_{\chi \mod c_2q} \tau(\chi)\overline{\chi}(nd_1h), \]

where \(\varphi \) is Euler’s totient function. Writing the characters above in terms of the primitive characters which induce them and using \([11, \text{Lemma 3.1}] \), we have that

\[e\left(\frac{nd_1h}{c_2q}\right) = \frac{1}{\varphi(c_2q)} \sum_{\chi_3 \mod c_3q} \mu(c_2/c_3)\chi(c_2/c_3)\tau(\chi)\overline{\chi}(nd_1h) \]

and

\[+ \sum_{\chi_3 \mod c_3} \mu(c_2q/c_3)\chi(c_2q/c_3)\tau(\chi)\overline{\chi}(nd_1h) \].

Thus we have shown that to prove Lemma 4.1 it is enough to establish that

\[\sum_{h \mod cq}^* e\left(\frac{\overline{h}}{cq}\right) \sum_{\chi \mod c_3q}^{\star} \chi(\overline{nd_1h}/c_2/c_3)\tau(\chi) \sum_{n \geq 1 \atop (n,c_2/c_3)=1} A_f(nd_2, 1)\overline{\chi}(n)W\left(\frac{nd_2}{N}\right) \ll q^{3+\epsilon}, \]

where
9

where all the new parameters c_i and d_i are less than q'. We simplify this a little more. We write

$$h = h_1c + h_2q,$$

where h_1 varies over the primitive residue classes modulo q and h_2 varies over the primitive residue classes modulo c. We also write

$$\chi = \chi_1\chi_2$$

where χ_1 varies over the primitive characters modulo q and χ_2 varies over the primitive characters modulo c_3. Thus, using \[11\] (3.16),(12.20), it suffices to prove that

$$\sum_{h_1 \text{ mod } q}^* \epsilon\left(\frac{h_1c}{q}\right) \sum_{\chi_1 \text{ mod } q}^* \chi_1(h_1d_1c_2)\tau_1(\chi_1) \sum_{n \geq 1}^{d_2} A_f(nd_2, 1)\chi_1\chi_2(n)W\left(\frac{nd_2}{N}\right) \ll q^{3+\varepsilon}.$$

5.2. **Functional equations.** To analyze the innermost sum in (5.9), we need the functional equation of $L(s, \text{sym}^2 f \times \chi_1\chi_2)$.

Lemma 5.1. Let χ_1 and χ_2 be primitive characters mod q and mod c_3 respectively, for $c_3 < q'$. Let

$$\alpha = \chi_1\chi_2(-1).$$

For some complex number ε, depending on q and χ_2, and some some integers b_1 and b_2 satisfying

$$|\varepsilon| = 1, \quad 1 \leq b_1, b_2 < q',$$

we have that

$$H_\alpha(s)L(s, \text{sym}^2 f \times \chi_1\chi_2) = \frac{\varepsilon\Gamma(s + 1 - \frac{1 + \alpha}{2} + s)}{\prod_{p \mid q} (1 - \frac{1}{p})^2} \Gamma(s + k - 1)2^{-s-1}\pi^{-\frac{s}{2}}|b_2|^2,$$

where

$$H_\alpha(s) = \frac{\varepsilon}{\prod_{p \mid q} (1 - \frac{1}{p})^2} \Gamma(s + k - 1)2^{-s-1}\pi^{-\frac{s}{2}}|b_2|^2.$$

If $c_3 = 1$ (so that $\chi_2 = 1$), then $\varepsilon = b_1 = b_2 = 1$. The left hand side of (5.12) is an entire function.

Proof. The final statement of the lemma follows from the work of Shimura \[20\] Theorem 1, Theorem 2 and the following remarks. The functional equation is a result of the work of Li \[14\] and Atkin and Li \[11\]. Specifically, in \[14\] Theorem 2.2, we set

$$F_1 = \frac{f_{\chi_1\chi_2}}{\chi_1\chi_2},$$

(5.15)

and we read off the functional equation of

$$L_{F_1,F_2}(s) = L(2s, \chi_1\chi_2) \sum_{n \geq 1} \frac{\lambda_f(n)^2\chi_1\chi_2(n)}{n^s}.$$
By \cite[(0.4)]{20}, we have that
\begin{equation}
L(s, \text{sym}^2 f \times \chi_1 \chi_2^2) = \frac{L_{F_1, F_2}(s)}{L(s, \chi_1 \chi_2)}.
\end{equation}
Thus \eqref{5.12} follows from \eqref{5.10} and the functional equation of $L(s, \chi_1 \chi_2)$, which may be found in \cite[Theorem 4.15]{11} for example. \hfill \square

5.3. Summation

Let
\begin{equation}
\widetilde{W}(s) = \int_0^\infty W(x)x^{s-1} \, dx
\end{equation}
denote the Mellin transform of W, which satisfies
\begin{equation}
\widetilde{W}(s) \ll \Re(s) q^{\ell} (|s| + 1)^{-\ell}
\end{equation}
for any integer $\ell \geq 0$ by\cite[(4.16)]{10} and integration by parts ℓ times. For a prime p and integer $r \geq 0$, let
\begin{equation}
R_{p,r}(s) = \sum_{j=r}^{\infty} \frac{A_f(p^j, 1)\chi_1 \chi_2(p^j)}{p^{js}}
\end{equation}
and
\begin{equation}
R(s) = \prod_{p \mid c} R_{p,0}(s)^{-1} \prod_{p \nmid d_2} R_{p,0}(s)^{-1} R_{p,r}(s).
\end{equation}

Note that
\begin{equation}
\prod_{p \mid d_2} R_{p,0}(s)^{-1} R_{p,r}(s) = \prod_{p \mid d_2} R_{p,0}(s)^{-1} \left(R_{p,0}(s) - \sum_{j=0}^{r-1} \frac{A_f(p^j, 1)\chi_1 \chi_2(p^j)}{p^{js}} \right)
\end{equation}
and
\begin{equation}
R_{p,0}(s)^{-1} = 1 - \frac{A_f(p, 1)\chi_1 \chi_2(p)}{p^s} + \frac{A_f(p, 1)\chi_1 \chi_2(p^2)}{p^{2s}} - \frac{\chi_1 \chi_2(p^3)}{p^{3s}}
\end{equation}
by \cite[(0.2)]{20}.
We have that
\begin{equation}
\sum_{n \geq 1} A_f(nd_2, 1)\chi_1 \chi_2(n) W\left(\frac{nd_2}{N}\right) = \frac{1}{2\pi i} \int_{(2)} \sum_{n \geq 1} A_f(nd_2, 1)\chi_1 \chi_2(n) \left(\frac{N}{d_2} \right)^s \tilde{W}(s) \, ds
\end{equation}
\begin{equation}
= \frac{1}{2\pi i} \int_{(2)} R(s) L(s, \text{sym}^2 f \times \chi_1 \chi_2) \left(\frac{N}{d_2} \right)^s \tilde{W}(s) \, ds.
\end{equation}

By \cite[(4.28)]{3}, we have that the integral in \eqref{5.28} equals
\begin{equation}
\epsilon^{\frac{i\pi}{4} - \frac{1}{2} \frac{\chi(b_1)}{q^2}} \int_{(2)} R(s) L(1-s, \text{sym}^2 f \times \chi_1 \chi_2) (q^{\frac{1}{2}})^{1-2s} \left(\frac{N}{d_2} \right)^s \frac{H_\alpha(1-s)}{H_\alpha(s)} \tilde{W}(s) \, ds.
\end{equation}
Keeping in mind the last statement of Lemma \ref{5.12}, moving the line of integration to $\Re(s) = -\sigma$ for any $\sigma > 0$, and using \cite[(2.14)]{13}, we have that \eqref{5.28} equals
\begin{equation}
\epsilon^{\frac{i\pi}{4} - \frac{1}{2} \frac{\chi(b_1)}{q^2}} \int_{(\sigma)} \left(\frac{nN}{q^2d_2} \right)^s R(s) \frac{H_\alpha(1-s)}{H_\alpha(s)} \tilde{W}(s) \, ds.
\end{equation}
Now, expanding out $R(s)$ and using (5.36, 2.12, 5.25, 5.26), we have that (5.30) equals
\begin{equation}
\sum_{a_1, a_2} \pm \chi_1 \chi_2(a_1) \lambda_f(a_2) \varepsilon_i \sum_{n \geq 1} \frac{A_f(n, 1) \chi_1 \chi_2(n)}{n} W_\alpha \left(\frac{n}{q^3 N^{-1} a_1^{-1} d_2} \right)
\end{equation}
for a sum over some integers $a_1, a_2 < q^\epsilon$, where
\begin{equation}
W_\alpha(x) = \frac{1}{2\pi i} \int_{(\sigma)} x^{-s} \frac{H_\alpha(1 - s)}{H_\alpha(s)} \tilde{W}(s) \, ds
\end{equation}
is defined for any $x, \sigma > 0$ and satisfies
\begin{equation}
W_\alpha(x) \ll x^{-\sigma}.
\end{equation}
Thus the n-sum in (5.31) is essentially supported on $n < q^{1+\epsilon}$.

5.4. **Character sums.** Putting (5.31), the evaluation of the left hand side of (5.27), back into (5.27) and exchanging the order of summation, we see that it is enough to prove that
\begin{equation}
\sum_\ast \sum_{\chi_1 \mod q} e\left(\frac{b_1 c_2}{q}\right) \sum_{n \geq 1} \frac{A_f(n, 1) \chi_2(n)}{n} W_\alpha \left(\frac{n}{q^3 N^{-1} a_1^{-1} d_2} \right) \sum_\ast \chi_1(b_1 d_1 a_1 b_2 n) \tau(\chi_1) \tau(\chi_2)^3
\end{equation}
for $\alpha = \pm 1$ and any $a_1, a_2 < q^\epsilon$. For $(n, q) = 1$, the innermost sum equals
\begin{equation}
\frac{q}{2} \sum_{\chi_1 \mod q} \chi_1(-h_1 d_1 a_1 b_2 n) \tau(\chi_1)^2 (\chi_1 \chi_2(-1) \alpha + 1)
\end{equation}
\begin{equation}
= \frac{q(q - 1)}{2} \left(S(-h_1 d_1 a_1 b_2 n, 1; q) + \alpha \chi_2(-1) S(h_1 d_1 a_1 b_2 n, 1; q) \right) - \frac{q(1 + \alpha \chi_2(-1))}{2},
\end{equation}
while it equals 0 if $q | n$. Thus, it remains to prove that
\begin{equation}
\sum_\ast \sum_{\chi_1 \mod q} e\left(\frac{b_1 c_2}{q}\right) \sum_{n \geq 1} \frac{A_f(n, 1) \chi_2(n)}{n} W_\alpha \left(\frac{n}{q^3 N^{-1} a_1^{-1} d_2} \right) S(\pm h_1 d_1 a_1 b_2 n, 1; q) \ll q^{1+\epsilon}.
\end{equation}
Exchanging summation again, it is easy to show that
\begin{equation}
\sum_\ast e\left(\frac{b_1 c_2}{q}\right) S(\pm h_1 d_1 a_1 b_2 n, 1; q) \ll q.
\end{equation}
Now (5.36) follows from the immediate bound
\begin{equation}
\sum_{n \geq 1} \left| \frac{A_f(n, 1) \chi_2(n)}{n} W_\alpha \left(\frac{n}{q^3 N^{-1} a_1^{-1} d_2} \right) \right| \ll q^\epsilon.
\end{equation}

References

1. A. O. L. Atkin and Wen Ch’ing Winnie Li, *Twists of newforms and pseudo-eigenvalues of W-operators*, Invent. Math. 48 (1987), no. 3, 221–243.
2. Valentin Blomer, *On the 4-norm of an automorphic form*, J. Eur. Math. Soc. (to appear).
3. Valentin Blomer and Roman Holowinsky, *Bounding sup-norms of cusp forms of large level*, Invent. Math. 179 (2010), no. 3, 645–681.
4. Valentin Blomer, Rizwanur Khan, and Matthew Young, *Mass distribution of holomorphic cusp forms*, Duke Math. J. (to appear).
5. W. Duke, J. B. Friedlander, and H. Iwaniec, *Bounds for automorphic L-functions. II*, Invent. Math. 115 (1994), no. 2, 219–239.
6. Jiandong Guo, *On the positivity of the central critical values of automorphic L-functions for GL(2)*, Duke Math. J. 83 (1996), no. 1, 157–190.
7. Gergely Harcos and Nicolas Templier, *On the sup-norm of maass cusp forms of large level, III*, preprint.
8. Jeffrey Hoffstein, Paul Lockhart, and Daniel Lieman, *An effective zero-free region*, Ann. of Math. (2) **140** (1994), no. 1, 177–181, Appendix to *Coefficients of Maass forms and the Siegel zero*.
9. Roman Holowinsky and Kannan Soundararajan, *Mass equidistribution for Hecke eigenforms*, Ann. of Math. (2) **172** (2010), no. 2, 1517–1528.
10. Atsushi Ichino and Nicolas Templier, *On the voronoi formula for GL(n)*, Amer. J. Math. **135** (2013), no. 1, 65–101.
11. Henryk Iwaniec and Emmanuel Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004.
12. Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, *Low lying zeros of families of L-functions*, Inst. Hautes Études Sci. Publ. Math. (2000), no. 91, 55–131 (2001).
13. Erez M. Lapid, *On the nonnegativity of Rankin-Selberg L-functions at the center of symmetry*, Int. Math. Res. Not. (2003), no. 2, 65–75.
14. Wen Ch'ing Winnie Li, *L-series of Rankin type and their functional equations*, Math. Ann. **244** (1979), no. 2, 135–166.
15. Elon Lindenstrauss, *Invariant measures and arithmetic quantum unique ergodicity*, Ann. of Math. (2) **163** (2006), no. 1, 165–219.
16. Sheng-Chi Liu, Riad Masri, and Matthew Young, *Subconvexity and equidistribution of Heegner points in the level aspect*, Compositio Math. (to appear).
17. Wenzhi Luo, *L^4-norms of the dihedral maass forms*, Int. Math. Res. Not. (to appear).
18. Stephen D. Miller and Wilfried Schmid, *Automorphic distributions, L-functions, and Voronoi summation for GL(3)*, Ann. of Math. (2) **164** (2006), no. 2, 423–488.
19. Paul D. Nelson, *Equidistribution of cusp forms in the level aspect*, Duke Math. J. **160** (2011), no. 3, 467–501.
20. Goro Shimura, *On the holomorphy of certain Dirichlet series*, Proc. London Math. Soc. (3) **31** (1975), no. 1, 79–98.
21. Kannan Soundararajan, *Quantum unique ergodicity for $SL_2(\mathbb{Z})\backslash \mathbb{H}$*, Ann. of Math. (2) **172** (2010), no. 2, 1529–1558.
22. Thomas Watson, *Rankin triple products and quantum chaos*, http://arxiv.org/abs/0810.0425.

Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstrasse 3-5, D-37073 Göttingen, Germany

E-mail address: buttcane@uni-math.gwdg.de, rrkhan@uni-math.gwdg.de