Heartburn and effective herbal remedies: A systematic review study in Iranian ethnobotanical documents

Gholam Basati1, Pardis Ghanadi2, Pegah Shakib3, Majid Hamidi4*, Peyman Amanolahi Baharvand5

1Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
2Medical Student, Lorestan University of Medical Sciences, Khorramabad, Iran
3Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
4Department of Pediatrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
5Department of English, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

*Corresponding author: Majid Hamidi, Email: majid.hamidi@yahoo.com

ABSTRACT

Every year, millions of people worldwide get sick with gastrointestinal diseases such as heartburn. Certain herbs contribute to the alleviation of heartburn, nausea, and improvement of digestion. Moreover, these herbs do not have as many side effects as synthetic drugs. As a health problem and one of the challenging issues in medical sciences, heartburn is common in children and adults worldwide. Hence, in the present study, we tried to report medicinal plants used in cultures and traditions of different regions of Iran to treat heartburn in children and adults. In this review study, articles of Iranian ethnobotanical sources were searched with the keywords of ethnobotanics, heartburn, children, adult, medicinal plants, and Iran. Journal articles published from 2010 to 2019 in several Iranian and International databases, including ISI Web of Science, PubMed, Scopus, ISC, and Magiran, were searched to find relevant articles and information. Anethum graveolens L., Punica granatum L., Mentha pulegium, Thymus kotschyanus Boiss. & Hohen., Achillea millefolium, Ocimum basilicum, Nigella sativa, etc., are the plants used in different parts of Iran to treat heartburn. Hence, these medicinal plants might be considered as a natural source for preparation of new drugs to treat heartburn.

Implication for health policy/practice/research/medical education:
This review provides a detailed insight into the medicinal plants effective on heartburn and shows that Iranian ethnobotanical sciences provide a list of natural treatments for heartburn, which can be used as a reliable source for preparation of new drugs for children and adult.

Please cite this paper as: Basati GH, Ghanadi P, Shakib P, Hamidi M, Amanolahi-Baharvand P. Heartburn and effective herbal remedies: A systematic review study in Iranian ethnobotanical documents. J Herbmed Pharmacol. 2021;10(2):149-155. doi: 10.34172/jhp.2021.16.
upset the baby (10-12).
Herbs are used to treat common side effects of various diseases, and heartburn is one of the most common gastrointestinal side effects from which many people suffer (13). Medicinal plants are ethnomedical and ethnomedical sources for the treatment of diseases. Studies have indicated the active ingredients and medicinal as well as antioxidant compounds of medicinal plants enable them not only to have beneficial effects on human health but also to have therapeutic effects on various organs of the body and various diseases (14-20). Some herbs contribute to the alleviation of heartburn, nausea, and improvement of digestion. Furthermore, although these herbs do not have as many side effects as chemicals, they should not be taken without a prescription from a traditional healer. Useful herbs are found in nature and could be used to treat stomach ailments and disorders. Some studies have shown that many of these plants cure diseases even better than chemical drugs. These plants also have no side effects unlike chemical drugs. Heartburn is common in both children and adults worldwide and is one of the health problems and challenges of medical science. Hence, in this study, we tried to report medicinal plants used in cultures and traditions of different regions of Iran to treat heartburn in children and adults.

Methods
In this review study, the articles of Iranian ethnomedical sources were searched with the keywords of ethnobotanics, heartburn and Iran. We searched for articles and information published from 2010 to 2019 in databases inside and outside Iran, including ISI Web of Science, PubMed, Scopus, ISC, and Magiran. In the present study, 48 articles were searched. There were two duplicate articles that were omitted. Three articles also lacked full text. Out of the 43 remained articles, only 15 articles contained ethnomedical information on heartburn in children and adults in Iran. The flowchart of the search strategy and the criteria for entering and leaving the articles is specified in Figure 1.

Results
Anethum graveolens L., Punica granatum L., Mentha pulegium, Thymus kotschyanus Boiss. & Hohen., Achillea millefolium, Ocimum basilicum, Nigella sativa, etc., are the plants used in different parts of Iran to treat heartburn. Additional information on the medicinal plants, scientific name, plant family name, the area used and the organs used have been listed in Table 1. The chemical composition of each herbal plant can exert a variety of medicinal properties, including therapeutic properties, on gastrointestinal disorders and syndromes. In this study, the main chemical compounds of each herb were also reviewed and extracted. The main chemical compounds and formulas of each medicinal plant have been listed in Table 1.

Discussion
Ethno-botany focuses on using plants by a particular ethnic group in an area of plants and is useful for extracting indigenous knowledge of medicinal plants used to treat various diseases. Different regions of Iran

![Figure 1](http://www.herbmedpharmacol.com)
Table 1. Anti-heartburn plants based on Iranian ethnobotanical sources

Scientific name	Herbal family	Persian name	Used organ	Region	Main compound	Chemical formula
Foeniculum vulgare Mill.	Apiaceae	Razianeh	Fruit, branches and leaves	East Khuzestan (21)	Trans-Anethole	C₈H₁₂O
Heracleum persicum Desf. ex Fisch., C.A.Mey. & Avé-Lall.	Apiaceae	Golpar	Fruits and leaves	East Khuzestan (21)	1-Octanol	C₈H₁₈O
Achillea millefolium L.	Asteraceae	Boomadaran	Flowering branch	East Khuzestan (21)	Borneol	C₈H₁₈O
Anthemis cotula L.	Asteraceae	Babouneh bahareh	Flowering branch	East Khuzestan (21)	N-Nonadecane	C₉H₁₈O
Biebersteinia multifida DC.	*Biebersteiniae*	Bahmanpish	Fruits	East Khuzestan (21)	Vasicinone	C₈H₈N₃O₃
Phlomis olivieri Benth.	Lamiaceae	Balegoush	Flower	East Khuzestan (21)	Germacrene D	C₈H₈O
Fritillaria imperialis L.	Liliaceae	Laleh vazhgoun	Fruits and Bulb	East Khuzestan (21)	3-Methyl-2-buten-1-thiol	C₈H₁₈O
Trifolium pratense L.	Papilionaceae	Babouneh bahareh	Flower, leaves	East Khuzestan (21)	Scopoletin	C₈H₈O
Plantago lanceolata L.	Plantaginaceae	Kardeh	Leaves	East Khuzestan (21)	Acteoside	C₈H₈O
Eremostachys laciniata (L.) Bunge	Lamiaceae	Chele daghi	Root	Ahar and Arasbaran (22)	Dodecanol	C₈H₁₈O
Thymus kotschyanus Boiss. & Hohen.	Lamiaceae	Avishan	Flowering branch	Abadeh Fars (23)	Thymol	C₈H₁₈O
Nigella sativa L.	Caryophyllaceae	Siah daneh	Seeds	Behbahan (24)	Trans-Anethole oxide	C₈H₁₈O
Astragalus adsendens Boiss. & Hausskn.	Fabaceae.	Gavan	Root	Behbahan (24)	Phenol	C₈H₁₈O
Rabus anatolicus Focke	Rosaceae	Tamesk derakhtí	Aerial organs	Behbahan (24)	Phenol	C₈H₁₈O
Achillea eriophora DC.	Asteraceae	Boumadaran	Aerial organs	Chaharbagh Golestan (26)	Cineole	C₈H₁₈O
Plantago lanceolata L.	Plantaginaceae	Barhang sarneyzei	Seed and leaves	Chaharbagh Golestan (26)	Cineole	C₈H₁₈O
Mentha longifolia	Lamiaceae	Poutinek	Aerial organs, root	Chaharbagh Golestan (26)	Cineole	C₈H₁₈O
Rosa canina L.	Rosaceae	Noghtebandi	Fruit, flower and root	Zanjan (27)	Linoleic acid	C₈H₁₈O
Ziziphora tenuior L.	Lamiaceae	Gavehzang	Root	Zanjan (27)	Phenol	C₈H₁₈O
Achillea millefolium L.	Asteraceae	Boumadaran	Flowering branch	Sajasrood (28)	Borneol	C₈H₁₈O
Ziziphora clinopodioides L.	Lamiaceae	kakouti	Aerial organs	Sajasrood (28)	Pulgon	C₈H₁₈O
Anethum graveolens L.	Apiaceae	Shevid	Seeds	Sirjan Kerman (29)	Alpha-Phellandrene	C₈H₁₈O
Coriandrum sativum L.	Apiaceae	Geshniz	Stem, leaves and seeds	East Persian Gulf (30)	Alpha-Pinene	C₈H₁₈O
Artemisia scoparia Waldst. & Kit.	Asteraceae	Dermane sharghi	Leaves	East Persian Gulf (30)	Absinthin	C₈H₁₈O
Punica granatum L.	Punicaceae	Anar	Fruits	East Persian Gulf (30)	3,3′-Di-O-Methyllellagic acid	C₈H₁₈O
Foeniculum vulgare Miller.	Apiaceae	Razianeh	Fruits, branch and leaves	North Khuzestan (31)	Phenol	C₈H₁₈O
Heracleum persicum Desf. ex Fischer.	Apiaceae	Golpar	Fruits, Leaves	North Khuzestan (31)	Octyl acetate	C₈H₁₈O
Scientific name	Herbal family	Persian name	Used organ	Region	Main compound	Chemical formula
------------------------------------	---------------	--------------------	-------------------	-------------------------------	--------------------------------	-------------------
Prangus ferulacea	Apiaceae	Jashir	Flower, Leaves	North Khuzestan (31)	Alpha-Pinene	C_{10}H_{16}O
Achillea millefolium L.	Asteraceae	Berenjasef	Flowering branch	North Khuzestan (31)	Borneol	C_{10}H_{16}O_2
Anthemis cotula L.	Asteraceae	Babouneh bahareh	Flowering branch	North Khuzestan (31)	N-Nonadecane	C_{10}H_{16}O_2
Biebersteinia multifida DC.	Biebersteiniaceae	Boumadou	Leaves	North Khuzestan (31)	Alpha-Pinene	C_{10}H_{16}O_2
Achillea wilhelmsii C. Koch	Asteraceae	Shabdar	Flowers, Seeds	North Khuzestan (31)	Pulegone	C_{7}H_{11}O_3
Anethum graveolens L.	Apiaceae	Shevid	Leaves, seeds	Marivan (34)	Alpha-Phellandrene	C_{10}H_{16}O_2
Hypericum perforatum L.	Fumariaceae	Shifaringhi	Aerial organs	Marivan (34)	Hypericin	C_{10}H_{16}O_2
Merhitina longifolia L.	Lamiaceae	Shifaringhi	Flowering branch	Marivan (34)	Pulegone	C_{7}H_{11}O_3
Achillea wilhelmsii C. Koch	Asteraceae:	Shifaringhi	Aerial organs	Natanz Kashan (35)	Camphor	C_{10}H_{16}O_2
Lounacca acanthodes (Boiss.) O Kuntze, Revis.	Asteraceae	Shifaringhi	Flowers, Leaves	Natanz Kashan (35)	Dodecanal	C_{10}H_{16}O_2
Ajuga chamecistus Ging, Ex Benth.	Lamiaceae	Shifaringhi	Flowers, Leaves	Natanz Kashan (35)	Geraniol	C_{10}H_{16}O_2
Galionia bruguieri A. Rich.	Rubiaceae	Shifaringhi	Flowers, Leaves	Natanz Kashan (35)	Artemetin	C_{10}H_{16}O_2
are characterized by a richness of various medicinal plants and native flora species due to suitable physiographic and continental conditions. These plants have been used by Iranians for thousands of years. Overall, ethnobotanical knowledge about medicinal plants in Iran has a remarkable impact on the study and documentation of important information about them.

Anethole is a monomethoxybenzene, which is methoxybenzene substituted in which it has a role as a plant metabolite (36). Borneol is a natural insect repellent (37). It has been shown that vasicinone has an anti-anaphylactic action (38). Thymol can be used as a disinfectant (39). Camphor is used to make moth-proofing products, pharmaceuticals, and flavorings (36). Eucalyptol (cineol) is an ingredient in commercial mouthwashes, and has been used in traditional medicine as a cough suppressant, an insecticide, and an insect repellent (40). α-Pinene is an anti-inflammatory agent acting via PGE1. Moreover, it is an antimicrobial agent and a positive modulator of GABA receptors (41-43). Absinthin shows biological activity and has proved to be a promising anti-inflammatory agent (44). Carvacrol has antimicrobial activity against different bacteria (45). Linalool is used as a flea, fruit fly, and cockroach insecticide (46). Furthermore, it is used in some mosquito-repellent products (47). Hypericin is an antioxidant and antimicrobial compound (48). Geraniol is used as an insect repellent, particularly for mosquitoes (49). Phenols are versatile precursors to an extensive collection of drugs, most notably aspirin, though it is also a precursor to many herbicides and pharmaceutical drugs (50). It is worth noting that antioxidants vary widely in their free-radical quenching effects, and each might be individually attracted to specific cell sites (51). The herbs in this study contain phenolic and antioxidant compounds with extensive medicinal properties such as antimicrobial, anti-parasitic, anti-inflammatory, and analgesic activities. They can treat many disorders and diseases, including digestive problems such as heartburn, or treat their side effects.

In different parts of Iran, various medicinal plants are used to treat gastrointestinal diseases that cause heartburn symptoms and nausea. Kerman's traditional knowledge confirms the use of L. cyminum to treat bloating and colitis (25). In the Arasbaran region of Iran, Berberis vulgaris is used for gastrointestinal problems, Origanum vulgare as a stomach tonic, and Heracleum persicum for digestive problems (22). In Sistan's ethnic botany, Cumin (Cuminum cyminum L.) is used as a painkiller and stomach tonic (37). Traditional knowledge of Shiraz approves the use of Althea aucteri Boiss to treat digestive disorders (33). In Kazerun, Anethum graveolens L. and Anthemis austro-iranica are used to overcome cold symptoms. Moreover, Cichorium intybus is used to strengthen the stomach, and the use of Mentha longifolia is recommended to reduce bloating and stomach acid. Finally, Teucrium polium L. is used to eliminate bloating, and Alcea aucteri is considered a laxative (33). In Mobarakeh, Isfahan, Chamomilla recutita L., Cumin (Cuminum cyminum L.) and Mentha pulegium L. are used to treat diarrhea and strengthen the stomach. Cichorium intybus L. is used to treat constipation (53). In the traditional knowledge of Ilam, Anthemis altissima is used as a food digester, and Cichorium intybus L. is utilized as both a laxative and a reliever of stomach pain (54).

Ethnobotanical studies identify medicinal plants' use as a valuable way to identify efficient medicinal plants (55). Medicinal plants have nutritional and health value, and their useful compounds can be beneficial sources of medicine for the treatment of various disorders (56,57). It has been indicated that some of the herbs whose beneficial effects on heartburn were reported in this study or previous studies are efficient against diarrhea, stomach pain, and indigestion. Moreover, they have common therapeutic effects with our reported ethnobotanical effects.

Over the past few decades, the study of indigenous pharmacopoeia's knowledge or the traditional use of herbal medicines with the prospect of producing new medication has been on the agenda of many national and international organizations. The positive approach of scientists and the increasing tendency of governments to cooperate in ethnobotanical projects indicate the growing value of the information obtained from these studies. The medicinal plants mentioned above have been traditionally used to treat heartburn.

Conclusion
Many plants reported in this study contain bioactive compounds, including flavonoids tannins and anthocyanins with antioxidant activities, which are effective in heartburn. Therefore, the results of this study can be highly significant and pave the way for the preparation of natural medicines effective on heartburn.

Authors' contributions
GHB, PGH, MH reviewed and contributed to data collection and preparation of the manuscript. The first draft was prepared by PGH, MH, PAB. All authors read the final version and confirmed it for publication.

Conflict of interests
The authors declared no competing interests.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication and etc.) have been completely observed by the authors.

Funding/Support
This study received no funding or grant.

References
1. Delavari A, Moradi G, Birjandi F, Elahi E, Saberifiroozi M.
The prevalence of gastroesophageal reflux disease (GERD) in the Islamic Republic of Iran: a systematic review. Middle East J Dig Dis. 2012;4(1):5-15.

2. Aziz K, Bonnet D. Hepatogastroenterology. Paris, France: Edition Masson; 2008. p. 322-3.

3. Rosen R, Vandenplas Y, Singendonk M, Cabana M, DiLorenzo C, Gottrand F, et al. Pediatric gastroesophageal reflux clinical practice guidelines: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). J Pediatr Gastroenterol Nutr. 2018;66(3):516-54. doi: 10.1097/mpg.0000000000001889.

4. Vandenplas Y, Rudolph CD, Di Lorenzo C, Hassall E, Liptak G, Mazur L, et al. Pediatric gastroesophageal reflux clinical practice guidelines: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). J Pediatr Gastroenterol Nutr. 2009;49(4):498-547. doi: 10.1097/MPG.0b013e3181b7f563.

5. Brouwers MC, Kho ME, Browne GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting, and evaluation in health care. Prev Med. 2010;51(5):421-4. doi: 10.1016/j.ypmed.2010.08.005.

6. Prather CM. Pregnancy-related constipation. Curr Gastroenterol Rep. 2004;6(5):402-4. doi: 10.1007/s11894-004-0057-7.

7. Audu BM, Mustapha SK. Prevalence of gastrointestinal symptoms in pregnancy. Niger J Clin Pract. 2006;9(1):1-6.

8. Clark B, McKendrick M. A review of viral gastroenteritis. Curr Opin Infect Dis. 2004;17(5):461-9. doi: 10.1097/00001432-200401000-00011.

9. Richter JE. Gastroesophageal reflux disease during pregnancy. Gastroenterol Clin North Am. 2003;32(1):235-61. doi: 10.1016/s0889-8553(02)00065-1.

10. Nkw NPN. Perceptions and treatment of diarrhoeal diseases in Cameroon. J diarrhoeal Dis Res. 1994;12(1):35-41.

11. Briggs GG, Freeman RK, Yafee S. Drugs in Pregnancy and Lactation: A Reference Guide to Fetal and Neonatal Risk. Baltimore, USA: Lippincott Williams & Wilkins; 2002. p. 23-65.

12. Witter FR, King TM, Blake DA. The effects of chronic gastrointestinal medication on the fetus and neonate. Obstet Gynecol. 1981;58(5 Suppl):79S-84S.

13. Nyinoh IW, Atu BO, Oluma HOA. The use of medicinal plants as alternatives for typhoid fever and bacterial gastroenteritis therapy in Abwa-Mbagen, Nigeria. European J Med Plants. 2018;24(2):1-12. doi: 10.9734/ ejmp/2018/42248.

14. Valadi A, Nasri S, Abbasi N, Amin G. Antinociceptive and anti-inflammatory effects of hydroalcoholic extract of Anethum graveolens L. seed. Journal of Medicinal Plants. 2010;9(34):124-30. [Persian].

15. Moayeri A, Azimi M, Karimi E, Aidy A, Abbasi N. Attenuation of morphine withdrawal syndrome by Prosopis farcta extract and its bioactive component luteolin in comparison with clonidine in rats. Med Sci Monit Basic Res. 2018;24:151-8. doi: 10.12659/msmb.909930.

16. Bahmani M, Taherikalani M, Khaksarian M, Rafieian-Kopaei M, Ashrafi B, Nazer M, et al. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci OA. 2019;5(3):FSO371. doi: 10.4155/fsa-2018-0096.

17. Abbasi N, Khoosravi A, Aidy A, Shafiei M. Biphasic response to luteolin in MG-63 osteoblast-like cells under high glucose-induced oxidative stress. Iran J Med Sci. 2016;41(2):118-25.

18. Alizadeh M, Safarzadeh A, Bahmani M, Beyranvand F, Mohammadi M, Azarbaijani K, et al. Brucellosis: pathophysiology and new promising treatments with medicinal plants and natural antioxidants. Asian Pac J Trop Med. 2016;11(11):597-608. doi: 10.4103/1995-7645.246336.

19. Zangeneh MM, Ghaneialvah A, Akbari Bazm M, Ghanimatdan M, Abbasi N, Goorani S, et al. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B. 2019;197:111556. doi: 10.1016/j.jphotochem.2019.111556.

20. Mahdavi D, Sanei S, Qorbani M, Zaleh M, Zangeneh A, Zangeneh MM, et al. Ziziphora clinopodioides Lam leaves aqueous extract mediated synthesis of zinc nanoparticles and their antibacterial, antifungal, cytotoxicity, antioxidant, and cutaneous wound healing properties under in vitro and in vivo conditions. Appl Organomet Chem. 2019;33(11):e5164. doi: 10.1002/omc.5164.

21. Khodayari H, Amani SH, Amir H. Ethnobotanical study of medicinal plants in different regions of Khuzestan province. Eco-phytochemical Journal of Medicinal Plants. 2015;8(2):12-6. [Persian].

22. Ethnobotanical study of medicinal plants used in Ahar- Arasbaran (protected area in East Azerbaijan province of Iran). Mediterr Botany. 2019;40(3):209-14. doi: 10.5209/ jphotobiol.2019.111556.

23. Razmjou D, Zarei Z, Abari M. Ethnobotanical study of some medicinal plants of Abadeh city located in Fars province. J Crop Ecol. 2014; 7(3): 222-234.

24. Razmjou D, Zarei Z, Armand R. Ethnobotanical study (identification, medical properties and how to use) of some medicinal plants of Behbehani city of Khuzestan province, Iran. Journal of Medicinal Plants. 2017;16(46):33-50. [Persian].

25. SHarififar F, Moharam Khani MR, Moattar F, Babakhanloo P, KHodami M. Ethnobotanical study of medicinal plants of Joopar mountains of Kerman province, Iran. Journal of Kerman University of Medical Sciences. 2014;20(1):37-51. [Persian].

26. Forouzeh MR, Mirdalimi SZ. Study of native herbal medicine and business prioritization related to medicinal plants in Chaharbagh rangelands of Golestan province. J Rangeland Res. 2018;12(4):493-506.

27. Moghanloo L, Ghahremaninejad F, Vafadar M. Ethnobotanical study of medicinal plants in the central district of the Zanjan county, Zanjan province, Iran. J Herb Drugs. 2019;9(3):121-31.

28. Saadatpour M, Barani H, Abedi Sarvestani A, Forouzeh MR. Ethnobotanical study of Sojasrood medicinal plants
α-Pinene, a major constituent of pine tree oils, enhances...