Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery

Catherine Venien-Bryan, Zhuolun Li, Laurent Vuillard and Jean Albert Boutin
Table S1 Extraction from the Protein Data Bank of the objects (>500 kDa) resolved at less than 10 Å since 2010, assuming that most of them were obtained by cryo-electron microscopy

Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	Reference
5ftj	2016	Translational endoplasmic reticulum ATPase	Banerjee et al.	2.3 Å Resolution Cryo-Em Structure of Human P97 and Mechanism of Allosteric Inhibition	EMD-3295	2.3	(Banerjee et al., 2016)
3jcs	2016	26S alpha ribosomal RNA	Shalev-Benami et al.	2.8- Å Cryo-EM Structure of the Large Ribosomal Subunit from the Eukaryotic Parasite Leishmania.	EMD-6583	2.8	(Shalev-Benami et al., 2016)
5iqr	2016	70S ribosome-ReLA complex	Brown et al.	Ribosome-dependent activation of stringent control.	EMD-8107	3.0	(Brown et al., 2016)
3jct	2016	Pre60S ribosome	Wu et al.	Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes	EMD-6616	3.1	(Wu et al., 2016)
3izx	2011	Structural protein VP3	Yu et al.	Atomic Model of CPV Reveals the Mechanism Used by This Single-Shelled Virus to Economically Carry Out Functions Conserved in Multishelled Reoviruses.	EMD-5256	3.1	(Yu et al., 2011)
3j6b	2014	Large ribosomal subunit	Amunts et al.	Structure of the yeast mitochondrial large ribosomal subunit.	EMD-2566	3.2	(Amunts et al., 2014)
3j79	2014	80S ribosome	Wong et al.	Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine.	EMD-2661	3.2	(Wong et al., 2014)
3jcu	2016	Photosystem II	Wei et al.	Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution	EMD-6617	3.2	(Wei et al., 2016)
3ji9	2015	20S proteasome	Li et al.	Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM.	EMD-5623	3.3	(Li et al., 2013b)
3jak	2015	Microtubules	Zhang et al.	Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.	EMD-6348	3.3	(Zhang et al., 2015)
5an9	2015	60S Ribosome	Weis et al.	Mechanism of Eif6 Release from the Nascent 60S Ribosomal Subunit	EMD-3147	3.3	(Weis et al., 2015)
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	
-------	--------------	--	---------------------	--	----------------	---------------	
3j7q	2014	Sec61-ribosome complex	Voorhees et al.	Structure of the Mammalian ribosome-sec61 complex to 3.4 Å resolution.	EMD-2650	3.4	
3j7y	2014	Large ribosome	Brown et al.	Structure of the large ribosomal subunit from human mitochondria.	EMD-2762	3.4	
4v19	2014	Mitoribosome	Greber et al.	The Complete Structure of the Large Subunit of the Mammalian Mitochondrial Ribosome	EMD-2787	3.4	
5flm	2015	Pol II elongation complex	Bernecky et al.	Structure of Transcribing Mammalian RNA Polymerase II	EMD-3218	3.4	
5lkh	2016	TcdA1	Gatsogiannis et al.	Membrane insertion of a Tc toxin in near-atomic detail.	EMD-4068	3.5	
3j26	2012	Virophage	Zhang et al.	Structure of Sputnik, a virophage, at 3.5- Å resolution.	EMD-5495	3.5	
3j9g	2015	VipA	Kudryashev et al.	Structure of the Type VI Secretion System Contractile Sheath.	EMD-2699	3.5	
5a0q	2015	20S Proteasome	Da Fonseca et al.	Cryo-Em Reveals the Conformation of a Substrate Analogue in the Human 20S Proteasome Core.	EMD-2981	3.5	
5aj0	2015	Native polysomes	Behrmann et al.	Structural Snapshots of Actively Translating Human Ribosomes	EMD-2875	3.5	
5gjr	2016	26S proteasome	Huang et al.	An atomic structure of the human 26S proteasome	EMD-9511	3.5	
3iyn	2010	Adenovirus type 5	Liu et al.	Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks	EMD-5172	3.6	
3j92	2014	Ribosome quality control complex	Shao et al.	Structure and Assembly Pathway of the Ribosome Quality Control Complex.	EMD-2832	3.6	
3ja1	2015	70S-P-tRNA-E-tRNA complex	Li et al.	Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G.	EMD-6315	3.6	
3ja7	2015	Portal protein gp20	Sun et al.	Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution.	EMD-6324	3.6	
3jb9	2015	Spliceosome	Yan et al.	Structure of a yeast spliceosome at 3.6- Å resolution	EMD-6413	3.6	
4ui9	2015	Anaphase-promoting complex subunit 1	Chang et al.	Atomic Structure of the Apc and its Mechanism of Protein Ubiquitination	EMD-2924	3.6	
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	Authors/Reference
-------	--------------	---	------------------	---	----------------	----------------	--
5aj3	2015	28S mitoribosome	Greber et al.	Ribosome. The Complete Structure of the 55S Mammalian Mitochondrial Ribosome.	EMD-2913	3.6	(Greber et al., 2015)
5fmg	2015	20S proteasome	Li et al.	Structure and Function Based Design of Plasmodium-Selective Proteasome Inhibitors	EMD-3231	3.6	(Li et al., 2016)
5kcr	2016	70S ribosome	Arenz et al.	Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome.	EMD-8237	3.6	(Arenz et al., 2016)
3jai	2015	80S ribosome-nascent chain complex	Brown et al.	Structural basis for stop codon recognition in eukaryotes.	EMD-3040	3.7	(Brown et al., 2015)
5gad	2015	Ribosome-nascent chain complex	Jomaa et al.	Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon.	EMD-8000	3.7	(Jomaa et al., 2016)
5gan	2015	Spliceosome	Nguyen et al.	Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution.	EMD-8012	3.7	(Nguyen et al., 2016)
3j8h	2014	Ryanodine receptor 1	Yan et al.	Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.	EMD-2807	3.8	(Yan et al., 2015b)
3ja8	2015	Minichromosome maintenance complex2	Li et al.	Structure of the eukaryotic MCM complex at 3.8 Å	EMD-6338	3.8	(Li et al., 2015a)
3jcm	2015	Spliceosome	Wan et al.	The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis	EMD-6561	3.8	(Wan et al., 2016)
4v7q	2010	Rotavirus particle	Settembre et al.	Atomic model of an infectious rotavirus particle.	EMD-5199	3.8	(Settembre et al., 2011)
5imq	2016	Ribosome-eF4 complex	Kumar et al.	Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome	EMD-6584	3.8	(Kumar et al., 2016)
5ipk	2016	Adeno-associated virus-2	Drouin et al.	Cryo-electron microscopy reconstruction and stability studies of Wild-Type and R432A Variant of AAV2 Reveals Capsid Structural Stability is a Major Factor in Genome Packaging.	EMD-8100	3.7	(Drouin et al., 2016)
3j9q	2015	Pyocin	Ge et al.	Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states.	EMD-6270	3.5	(Ge et al., 2015)
3j9w	2015	MitM-ribosome complex	Sohmen et al.	Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling.	EMD-6306	3.9	(Sohmen et al., 2015)
5fj8	2015	RNA polymerase III elongation complex	Hoffmann et al.	Molecular Structures of Unbound and Transcribing RNA Polymerase III.	EMD-3178	3.9	(Hoffmann et al., 2015)
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	
-------	--------------	---	------------------------	--	----------------	----------------	
5jzh	2016	Aerolysin	Iacovache et al.	Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process.	EMD-8185	3.9	
N/A	2016	26S proteasome	Schweitzer et al.	Structure of the human 26S proteasome at a resolution of 3.9 Å	EMD-4002	3.9	[10]
3jan	2015	SRP-ribosome complex	Voorhees & Hegde	Structures of the scanning and engaged states of the mammalian SRP-ribosome complex.	EMD-3045	3.9	
3j81	2014	48S preinitiation complex	Hussain et al.	Structural changes enable start codon recognition by the eukaryotic translation initiation complex.	EMD-2763	4.0	
3jc1	2015	IST1NTD-CHMP1B assembly	McCullough et al.	Structure and membrane remodeling activity of ESCRT-III helical polymers.	EMD-6461	4.0	(McCullough et al., 2014)
5kyh	2016	Iho670 filament	Braun et al.	Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain.	EMD-8298	4.0	(Braun et al., 2016)
5iv5	2016	T4 baseplate-tail tube complex	Taylor et al.	Atomic structure of bacteriophage T4 baseplate and its function in triggering sheath contraction.	EMD-3374	4.1	(Taylor et al., 2016)
3j94	2015	SNARE complex	Zhao et al.	Mechanistic insights into the recycling machine of the SNARE complex.	EMD-6204	4.2	(Zhao et al., 2015b)
4v8y	2013	80S-eIF5B-Met-tnRNAMet eukaryotic translation complex	Fernandez et al.	Molecular architecture of the 80S-eIF5B-Met-tnRNAMet Eukaryotic Translation Initiation Complex.	EMD-2421	4.3	(Fernandez et al., 2013)
5gaf	2015	SRP-ribosome nascent chain complex	Jomaa et al.	Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon.	EMD-8002	4.3	(Jomaa et al., 2016)
5fwy	2016	Pol II transcription initiation complex	Plaschka et al.	Transcription Initiation Complex Structures Elucidate DNA Opening.	EMD-3378	4.4	(Plaschka et al., 2016)
4btg	2013	Bacteriophage phi6 P1247 procapsid	Nemecek et al.	Subunit Folds and Maturation Pathway of dsRNA Virus Capsid.	EMD-2364	4.4	(Nemecek et al., 2013)
3j31	2013	Sulfolobus Turreted Virus	Veesler et al.	Atomic structure of the 75 mDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography.	EMD-5584	4.5	(Veesler et al., 2013)
3j32	2013	Hemocyanin isoform 1	Zhang et al.	Cryo-EM structure of a molluscan hemocyanin suggests its allosteric mechanism.	EMD-5586	4.5	(Zhang et al., 2013b)
3zif	2013	Adenovirus type 3	Cheng et al.	Cryo-Em Structures of Two Bovine Adenovirus Type 3 Intermediates.	EMD-2273	4.5	(Cheng et al., 2014)
3jcn	2015	70S ribosomes-IF2 complex	Sprink et al.	Structures of ribosome bound initiation factor 2 reveal the mechanism of subunit association.	EMD-3285	4.6	(Sprink et al., 2016)
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	Reference
-------	--------------	---	-----------------------	---	----------------	----------------	------------------------
4bml	2013	Syn5 marine virus	Gipson *et al.*	Proruding Knob-Like Proteins Violate Local Symmetries in an Icosahedral Marine Virus.	EMD-5954	4.7	(Gipson *et al.*, 2014)
3jav	2015	Inositol 1,4,5-trisphosphate receptor type 1	Fan *et al.*	Gating machinery of InsP3R channels revealed by electron cryomicroscopy.	EMD-6369	4.7	(Fan *et al.*, 2015)
3jc7	2015	CMG complex	Yuan *et al.*	Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation.	EMD-6536	4.8	(Yuan *et al.*, 2016)
3j03	2011	Group II chaperonin	Zhang *et al.*	Mechanism of folding chamber closure in a group II chaperonin.	EMD-5138	4.8	(Zhang *et al.*, 2010a)
3j8e	2014	Ryanodine receptor 1-calstabin complex	Zalk *et al.*	Structure of a mammalian ryanodine receptor.	EMD-6106	4.8	(Zalk *et al.*, 2015)
3jac	2015	Piezo-type mechanosensitive ion channel component 1	Ge *et al.*	Architecture of the mammalian mechanosensitive Piezo1 channel	EMD-6343	4.8	(Efremov *et al.*, 2015)
3jco	2016	26S proteasome	Luan *et al.*	Structure of an endogenous yeast 26S proteasome reveals two major conformational states.	EMD-6574	4.8	(Luan *et al.*, 2016)
5g5l	2016	RNA polymerase I-Rrn3 complex	Engel *et al.*	RNA Polymerase I-Rrn3 Complex at 4.8 Å Resolution	EMD-3439	4.8	(Engel *et al.*, 2013)
3j1b	2012	rATcpn-alpha	Zhang *et al.*	Flexible interwoven termini determine the thermal stability of thermosomes.	EMD-5391	4.9	(Zhang *et al.*, 2013a)
4ce4	2013	Mitochondrial ribosome 39S large subunit	Greber *et al.*	Architecture of the Large Subunit of the Mammalian Mitochondrial Ribosome.	EMD-2490	4.9	(Greber *et al.*, 2014b)
4uq8	2014	NADH ubiquinone oxidoreductase	Vinothkumar *et al.*	Architecture of mammalian respiratory complex I.	EMD-2676	5.0	(Vinothkumar *et al.*, 2014)
3j8G	2014	EngA-50S subunit complex	Zhang *et al.*	Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly	EMD-6149	5.0	(Zhang *et al.*, 2014)
4v7e	2013	80S ribosome	Armache *et al.*	Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome.	EMD-1780	5.5	(Armache *et al.*, 2010)
4v8m	2012	80S ribosome	Hashem *et al.*	High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome.	EMD-2239	5.6	(Hashem *et al.*, 2013)
5kne	2016	Heat shock protein 104	Yokom *et al.*	Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation.	EMD-8267	5.6	(Yokom *et al.*, 2016)
5k0y	2016	m48S late-stage initiation complex	Simonetti *et al.*	eIF3 peripheral subunits rearrangement after mRNA binding and start-codon recognition.	EMD-8190	5.8	(Simonetti *et al.*, 2016)
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	Reference
-------	--------------	----------------------	--------------------------	---	----------------	----------------	--
5flc	2015	mTOR complex I	Aylett et al.	Architecture of human mTor complex 1	EMD-3213	5.9	(Aylett et al., 2016)
4aod	2012	Acetylcholine binding protein	Saur et al.	Acetylcholine-binding protein in the hemolymph of the planorbid snail Biomphalaria glabrata is a pentagonal dodecahedron (60 subunits)	EMD-2055	6.0	(Saur et al., 2012)
4cct	2012	Dengue virus	Kostyuchenko et al.	Immature and mature Dengue serotype 1 virus structures provide insight into the maturation process.	EMD-2142	6.0	(Kostyuchenko et al., 2013)
4c2i	2013	Dengue virus with Fab fragment	Fibriansah et al.	A potent anti-Dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface.	EMD-2442	6.0	(Fibriansah et al., 2014)
5a5t	2015	eIF3 octamer core	Des Georges et al.	Structure of mammalian Eif3 in the context of the 43S preinitiation complex.	EMD-3056	6.0	(des Georges A. et al., 2015)
3j6y	2014	80S ribosome	Koh et al.	Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center.	EMD-5943	6.1	(Koh et al., 2014)
5fvm	2016	Tor1-Lst8 complex	Baretic et al.	Tor Forms a Dimer Through an N-Terminal Helical Solenoid with a Complex Topology	EMD-3329	6.1	(Baretic et al., 2016)
3z1l	2010	Group II chaperonin	Douglas et al.	Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber.	EMD-5248	6.2	(Douglas et al., 2011)
N/A	2014	Microtubule	Alushin et al.	High-resolution microtubule structures reveal the structural transitions in alpha beta-tubulin upon GTP hydrolysis.	EMD-5899	6.3	(Alushin et al., 2014)
2y9j	2011	Needle complex	Schraidt & Marlovits	Three-Dimensional Model of Salmonella’S Needle Complex at Subnanometer Resolution.	EMD-1874	6.4	(Schraidt & Marlovits2011)
4uer	2014	40S-eIF1-eIF1A-eIF3J initiation complex	Aylett et al.	Structure of a Yeast 40S-Eif1-Eif1A-Eif3J Initiation Complex	EMD-2845	6.5	(Aylett et al., 2015)
5jyg	2016	Magnetosome-associated MamK filament	Bergeron et al.	Structure of the Magnetosome-associated actin-like MamK filament at sub-nanometer resolution.	EMD-8180	6.5	(Bergeron et al., 2016)
3j15	2012	70S ribosome	Becker et al.	Structural basis of highly conserved ribosome recycling in eukaryotes and archaea.	EMD-2009	6.6	(Becker et al., 2012)
5fmw	2015	C9	Dudkina et al.	Structure of the Poly-C9 Component of the Complement Membrane Attack Complex	EMD-3235	6.7	(Dudkina et al., 2016)
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	
------	--------------	----------------------	---------	-------------------	----------------	---------------	
4v4l	2010	Apoptosome	Yuan et al.	Structure of the Drosophila apoptosome at 6.9 Å resolution	EMD-5235	6.9 (Yuan et al., 2011)	
511m	2016	V ATPase	Schep et al.	Unpublished	EMD-8070	-	
3iyk	2010	Bluetongue virus	Zhang et al.	Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins.	EMD-5147	7.0 (Zhang et al., 2010b)	
3jcr	2016	U4/U6.U5 tri-snRNP	Agafonov et al.	Molecular architecture of the human U4/U6.U5 tri-snRNP.	EMD-6581	7.0 (Agafonov et al., 2016)	
4v6m	2011	SecYEG complex	Frauenfeld et al.	Cryo-EM structure of the ribosome-SecYE complex in the membrane environment.	EMD-1858	7.1 (Frauenfeld et al., 2011)	
5jpq	2016	Ribo-nucleoprotein complex	Kornprobst et al.	Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome.	EMD-8143	7.3 (Kornprobst et al., 2016)	
5kk2	2016	GluA2 AMPA receptor - TARP complex	Zhao et al.	Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM.	EMD-8256	7.3 (Zhao et al., 2016)	
4v8l	2012	Fatty acid synthase 1	Boehringer et al.	7.5- A Cryo-Em Structure of the Mycobacterial Fatty Acid Synthase.	EMD-2238	7.5 (Boehringer et al., 2013)	
4cr2	2014	26S Proteasome	Unverdorben et al.	Deep Classification of a Large Cryo-Em Dataset Defines the Conformational Landscape of the 26S Proteasome.	EMD-2594	7.7 (Unverdorben et al., 2014)	
5a9e	2015	Rous-Sarcoma Virus Gag particles	Schur et al.	The Structure of Immature-Like Rous Sarcoma Virus Gag Particles Reveals a Structural Role for the P10 Domain in Assembly.	EMD-3101	7.7 (Schur et al., 2015)	
4v1n	2014	cITC	Plaschka et al.	Architecture of the RNA Polymerase II-Mediator Core Initiation Complex.	EMD-2785	7.8 (Plaschka et al., 2015)	
3j02	2011	group II chaperonin	Zhang et al.	Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure.	EMD-5258	8.0 (Zhang et al., 2011)	
4v8t	2012	60S ribosomal subunit-Arx1 and Rei1complex	Greber et al.	Cryo-Em Structures of Arx1 and Maturation Factors Rei1 and Jji1 Bound to the 60S Ribosomal Subunit	EMD-2169	8.1 (Greber et al., 2012)	
4v93	2014	Hemoglobin	Chen et al.	Structural Basis for Cooperative Oxygen Binding and Bracelet-Assisted Assembly of Lumbricus Terrestris Hemoglobin.	EMD-2627	8.1 (Chen et al., 2015)	
4bip	2013	Coxsackievirus	Seitsonen et al.	Structural analysis of coxsackievirus A7 reveals conformational changes associated with uncoating.	EMD-2028	8.2 (Seitsonen et al., 2012)	
3j9v	2015	V-ATPase	Zhao et al.	Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.	EMD-6286	8.3 (Zhao et al., 2015a)	
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	Reference
--------	--------------	-------------------------------	--------------------------	---	----------------	----------------	--
4v6k	2011	70S-TC complex	Agirrezabala et al.	Structural insights into cognate versus near-cognate discrimination during decoding.	EMD-1849	8.3	(Agirrezabala et al., 2011)
3j1e	2012	rATcpn-beta	Zhang et al.	Flexible interwoven termini determine the thermal stability of thermosomes.	EMD-5395	8.3	(Zhang et al., 2013a)
2ynj	2012	GroEL	Bartesaghi et al.	Protein Secondary Structure Determination by Constrained Single-Particle Cryo-Electron Tomography	EMD-2221	8.4	(Bartesaghi et al., 2012)
3zbi	2012	traN/traO/traF complex	Rivera-Calzada et al.	Structure of a Bacterial Type Iv Secretion Core Complex at Subnanometre Resolution.	EMD-2233	8.5	(Rivera-Calzada et al., 2013)
5fur	2016	TFIID-TFIIA complex	Louder et al.	Structure of Promoter-Bound TFIID and Model of Human Pre-Initiation Complex Assembly.	EMD-3305	8.7	(Louder et al., 2016)
3j34	2013	HIV-1 capsid	Zhao et al.	Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics.	EMD-5582	8.6	(Zhao et al., 2013)
4v7f	2013	5S ribonucleoprotein particle	Leidig et al.	60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle.	EMD-2528	8.7	(Leidig et al., 2014)
4v6i	2010	80S ribosome- Ssh1 complex	Becker et al.	Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome.	EMD-1669	8.8	(Becker et al., 2009)
3j0s	2011	Actin, cytoplasmic 1	Galkin et al.	Remodeling of actin filaments by ADF/cofilin proteins.	EMD-5354	9.0	(Galkin et al., 2011)
4bed	2013	Hemocyanin KLH1	Gatsogiannis & Markl	Keyhole Limpet Hemocyanin: 9-A Cryoem Structure and Molecular Model of the Klh1 Didecamer Reveal the Interfaces and Intricate Topology of the 160 Functional Units.	EMD-1569	9.1	(Gatsogiannis & Markl2009)
4d67	2014	80S ribosome termination complex	Muhs et al.	Cryo-Em Structures of Ribosomal 80S Complexes with Termination Factors and Cricket Paralysis Virus Ires Reveal the Ires in the Translocated State	EMD-2813	8.9	(Muhs et al., 2015)
4v4n	2013	70S ribosome-SecYEbeta complex	Park et al.	Structure of the SecY channel during initiation of protein translocation.	EMD-5691	9.0	(Park et al., 2014)
3j3r	2013	MecA-ClpC	Liu et al.	Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine	EMD-5610	9.4	(Liu et al., 2013)
3j2t	2012	Apoptosome	Yuan et al.	Structure of an apoptosome-procaspase-9 CARD complex	EMD-5186	9.5	(Yuan et al., 2010)
5fl8	2015	Pre-60S ribosomal particle	Barrio-Garcia et al.	Architecture of the Rix1-Real checkpoint machinery during pre-60S-ribosome remodeling.	EMD-3199	9.5	(Barrio-Garcia et al., 2016)
Code	Deposit date	Protein/substructure	Authors	Publication Title	Main EMD entry	Resolution (Å)	
------	--------------	----------------------	---------	-------------------	----------------	----------------	
4v6v	2013	70S-Tet(O)	Li et al.	Mechanism of tetracycline resistance by ribosomal protection protein Tet(O).	EMD-5562	9.8	(Li et al., 2013a)
References

Agafonov, D. E., Kastner, B., Dybkov, O., Hofele, R. V., Liu, W. T., Urlaub, H., Luhrmann, R. & Stark, H. (2016). Molecular architecture of the human U4/U6/U5 tri-snRNP. Science, 351, 1416-1420.

Agirrezabala, X., Schreiner, E., Trabuco, L. G., Lei, J., Ortiz-Meoz, R. F., Schulten, K., Green, R. & Frank, J. (2011). Structural insights into cognate versus near-cognate discrimination during decoding. EMBO J., 30, 1497-1507.

Alushin, G. M., Lander, G. C., Kellogg, E. H., Zhang, R., Baker, D. & Nogales, E. (2014). High-resolution microtubule structures reveal the structural transitions in alphabeta-tubulin upon GTP hydrolysis. Cell, 157, 1117-1129.

Amunts, A., Brown, A., Bai, X. C., Llacer, J. L., Hussain, T., Emsley, P., Long, F., Murshudov, G., Scheres, S. H. & Ramakrishnan, V. (2014). Structure of the yeast mitochondrial large ribosomal subunit. Science, 343, 1485-1489.

Arenz, S., Juette, M. F., Graf, M., Nguyen, F., Huter, P., Polikanov, Y. S., Blanchard, S. C. & Wilson, D. N. (2016). Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. Proc. Natl. Acad. Sci. U. S. A, 113, 7527-7532.

Armache, J. P., Jarasch, A., Anger, A. M., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Soding, J., Westhof, E., Wilson, D. N. & Beckmann, R. (2010). Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl. Acad. Sci. U. S. A, 107, 19754-19759.

Aylett, C. H., Boehringer, D., Erzberger, J. P., Schaefer, T. & Ban, N. (2015). Structure of a yeast 40S-eIF1-eIF3-eIF3j initiation complex. Nat. Struct. Mol. Biol., 22, 269-271.

Aylett, C. H., Sauer, E., Imseng, S., Boehringer, D., Hall, M. N., Ban, N. & Maier, T. (2016). Architecture of human mTOR complex 1. Science, 351, 48-52.

Banerjee, S., Bartesaghi, A., Merk, A., Rao, P., Bulfer, S. L., Yan, Y., Green, N., Mroczkowski, B., Neitz, R. J., Wipf, P., Falconieri, V., Deshaies, R. J., Milne, J. L., Huryn, D., Arkin, M. & Subramaniam, S. (2016). 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science, 351, 871-875.

Baretic, D., Berndt, A., Ohashi, Y., Johnson, C. M. & Williams, R. L. (2016). Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat. Commun., 7, 11016-.

Barrio-Garcia, C., Thoms, M., Flemming, D., Kater, L., Berninghausen, O., Bassler, J., Beckmann, R. & Hurt, E. (2016). Architecture of the Rix1-Real checkpoint machinery during pre-60S-ribosome remodeling. Nat. Struct. Mol. Biol., 23, 37-44.

Bartesaghi, A., Lecumberry, F., Sapiro, G. & Subramaniam, S. (2012). Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure., 20, 2003-2013.
Becker, T., Bhushan, S., Jarasch, A., Armache, J. P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., Westhof, E., Gilmore, R., Mandon, E. C. & Beckmann, R. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science, 326, 1369-1373.

Becker, T., Franckenberg, S., Wickles, S., Shoemaker, C. J., Anger, A. M., Armache, J. P., Sieber, H., Ungewickell, C., Berninghausen, O., Daberkow, I., Karcher, A., Thomm, M., Hopfner, K. P., Green, R. & Beckmann, R. (2012). Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature, 482, 501-506.

Behrmann, E., Loerke, J., Budkevich, T. V., Yamamoto, K., Schmidt, A., Penczek, P. A., Vos, M. R., Burger, J., Mielke, T., Scheerer, P. & Spahn, C. M. (2015). Structural snapshots of actively translating human ribosomes. Cell, 161, 845-857.

Bergeron, J. R., Hutto, R., Ozyamak, E., Hom, N., Hansen, J., Draper, O., Byrne, M. E., Keyhani, S., Komeili, A. & Kollman, J. M. (2016). Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci.,

Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. (2016). Structure of transcribing mammalian RNA polymerase II. Nature, 529, 551-554.

Boehringer, D., Ban, N. & Leibundgut, M. (2013). 7.5-A cryo-em structure of the mycobacterial fatty acid synthase. J. Mol. Biol., 425, 841-849.

Braun, T., Vos, M. R., Kalisman, N., Sherman, N. E., Rachel, R., Wirth, R., Schroder, G. F. & Egelman, E. H. (2016). Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain. Proc. Natl. Acad. Sci. U. S. A, 113, 10352-10357.

Brown, A., Amunts, A., Bai, X. C., Sugimoto, Y., Edwards, P. C., Murshudov, G., Scheres, S. H. & Ramakrishnan, V. (2014). Structure of the large ribosomal subunit from human mitochondria. Science, 346, 718-722.

Brown, A., Fernandez, I. S., Gordiyenko, Y. & Ramakrishnan, V. (2016). Ribosome-dependent activation of stringent control. Nature, 534, 277-280.

Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. (2015). Structural basis for stop codon recognition in eukaryotes. Nature, 524, 493-496.

Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H. & Barford, D. (2015). Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature, 522, 450-454.

Chen, W. T., Chen, Y. C., Liou, H. H. & Chao, C. Y. (2015). Structural basis for cooperative oxygen binding and bracelet-assisted assembly of Lumbricus terrestris hemoglobin. Sci. Rep., 5, 9494-

Cheng, L., Huang, X., Li, X., Xiong, W., Sun, W., Yang, C., Zhang, K., Wang, Y., Liu, H., Huang, X., Ji, G., Sun, F., Zheng, C. & Zhu, P. (2014). Cryo-EM structures of two bovine adenovirus type 3 intermediates. Virology, 450-451, 174-181.

da Fonseca, P. C. & Morris, E. P. (2015). Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core. Nat. Commun., 6, 7573-

des Georges A., Dhote, V., Kuhn, L., Hellen, C. U., Pestova, T. V., Frank, J. & Hashem, Y. (2015). Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature, 525, 491-495.
Douglas, N. R., Reissmann, S., Zhang, J., Chen, B., Jakana, J., Kumar, R., Chiu, W. & Frydman, J. (2011). *Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber.* Cell, 144, 240-252.

Drouin, L. M., Lins, B., Janssen, M., Bennett, A., Chipman, P., McKenna, R., Chen, W., Muzychka, N., Cardone, G., Baker, T. S. & Agbandje-McKenna, M. (2016). *Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.* J. Virol., 90, 8542-8551.

Dudkina, N. V., Spicer, B. A., Reboul, C. F., Conroy, P. J., Lukoyanova, N., Emllund, H., Law, R. H., Ekkel, S. M., Kondos, S. C., Goode, R. J., Ramm, G., Whisstock, J. C., Saibil, H. R. & Dunstone, M. A. (2016). *Structure of the poly-C9 component of the complement membrane attack complex.* Nat. Commun., 7, 10588-.

Efremov, R. G., Leitner, A., Aebersold, R. & Raunser, S. (2015). *Architecture and conformational switch mechanism of the ryanodine receptor.* Nature, 517, 39-43.

Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D. & Cramer, P. (2013). *RNA polymerase I structure and transcription regulation.* Nature, 502, 650-655.

Fan, G., Baker, M. L., Wang, Z., Baker, M. R., Sinyagovskiy, P. A., Chiu, W., Ludkte, S. J. & Serysheva, I. I. (2015). *Gating machinery of InsP3R channels revealed by electron cryomicroscopy.* Nature, 527, 336-341.

Fernandez, I. S., Bai, X. C., Hussain, T., Kelley, A. C., Lorsch, J. R., Ramakrishnan, V. & Scheres, S. H. (2013). *Molecular architecture of a eukaryotic translational initiation complex.* Science, 342, 1240585-.

Fibriansah, G., Tan, J. L., Smith, S. A., de Alwis, A. R., Ng, T. S., Kostyuchenko, V. A., Ibarra, K. D., Wang, J., Harris, E., de, S. A., Crowe, J. E., Jr. & Lok, S. M. (2014). *A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface.* EMBO Mol. Med., 6, 358-371.

Frauenfeld, J., Gumbart, J., Sluis, E. O., Funes, S., Gartmann, M., Beatrix, B., Mielke, T., Berninghausen, O., Becker, T., Schulten, K. & Beckmann, R. (2011). *Cryo-EM structure of the ribosome-SecYE complex in the membrane environment.* Nat. Struct. Mol. Biol., 18, 614-621.

Galkin, V. E., Orlova, A., Kudryashov, D. S., Solodukhin, A., Reisler, E., Schroder, G. F. & Egelman, E. H. (2011). *Remodeling of actin filaments by ADF/cofilin proteins.* Proc. Natl. Acad. Sci. U. S. A, 108, 20568-20572.

Gatsogiannis, C. & Markl, J. (2009). *Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units.* J. Mol. Biol., 385, 963-983.

Gatsogiannis, C., Merino, F., Prumbaum, D., Roderer, D., Leidreiter, F., Meusch, D. & Raunser, S. (2016). *Membrane insertion of a Tc toxin in near-atomic detail.* Nat. Struct. Mol. Biol.,

Ge, P., Scholl, D., Leiman, P. G., Yu, X., Miller, J. F. & Zhou, Z. H. (2015). *Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states.* Nat. Struct. Mol. Biol., 22, 377-382.
Gipson, P., Baker, M. L., Raytcheva, D., Haase-Pettingell, C., Piret, J., King, J. A. & Chiu, W. (2014). Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. Nat. Commun., 5, 4278.

Greber, B. J., Bieri, P., Leibundgut, M., Leitner, A., Aebersold, R., Boehringer, D. & Ban, N. (2015). Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science, 348, 303-308.

Greber, B. J., Boehringer, D., Leibundgut, M., Bieri, P., Leitner, A., Schmitz, N., Aebersold, R. & Ban, N. (2014a). The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature, 515, 283-286.

Greber, B. J., Boehringer, D., Leitner, A., Bieri, P., Voigts-Hoffmann, F., Erzberger, J. P., Leibundgut, M., Aebersold, R. & Ban, N. (2014b). Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature, 505, 515-519.

Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. (2012). Cryo-EM structures of Arxl and maturation factors ReiI and JjjI bound to the 60S ribosomal subunit. Nat. Struct. Mol. Biol., 19, 1228-1233.

Hashem, Y., des, G. A., Fu, J., Buss, S. N., Jossinet, F., Jobe, A., Zhang, Q., Liao, H. Y., Grassucci, R. A., Bajaj, C., Westhof, E., Madison-Antenucci, S. & Frank, J. (2013). High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature, 494, 385-389.

Hoffmann, N. A., Jakobi, A. J., Moreno-Morcillo, M., Glatt, S., Kosinski, J., Hagen, W. J., Sachse, C. & Muller, C. W. (2015). Molecular structures of unbound and transcribing RNA polymerase III. Nature, 528, 231-236.

Huang, X., Luan, B., Wu, J. & Shi, Y. (2016). An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol., 23, 778-785.

Hussain, T., Llacer, J. L., Fernandez, I. S., Munoz, A., Martin-Marcos, P., Savva, C. G., Lorsch, J. R., Hinnebusch, A. G. & Ramakrishnan, V. (2014). Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell, 159, 597-607.

Iacovache, I., De, C. S., Cirauqui, N., Dal, P. M., van der Goot, F. G. & Zuber, B. (2016). Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat. Commun., 7, 12062.

Jomaa, A., Boehringer, D., Leibundgut, M. & Ban, N. (2016). Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat. Commun., 7, 10471.

Koh, C. S., Brilot, A. F., Grigorieff, N. & Korostylev, A. A. (2014). Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proc. Natl. Acad. Sci. U. S. A, 111, 9139-9144.

Kornprobst, M., Turk, M., Kellner, N., Cheng, J., Flemming, D., Kos-Braun, I., Kos, M., Thoms, M., Berndinghausen, O., Beckmann, R. & Hurt, E. (2016). Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell, 166, 380-393.

Kostyuchenko, V. A., Zhang, Q., Tan, J. L., Ng, T. S. & Lok, S. M. (2013). Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J. Virol., 87, 7700-7707.
Kudryashev, M., Wang, R. Y., Brackmann, M., Scherer, S., Maier, T., Baker, D., DiMaio, F., Stahlberg, H., Egelman, E. H. & Basler, M. (2015). Structure of the type VI secretion system contractile sheath. Cell, 160, 952-962.

Kumar, V., Ero, R., Ahmed, T., Goh, K. J., Zhan, Y., Bhushan, S. & Gao, Y. G. (2016). Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome. J. Biol. Chem, 291, 12943-12950.

Leidig, C., Thoms, M., Holdermann, I., Bradatsch, B., Berninghausen, O., Bange, G., Sinning, I., Hurt, E. & Beckmann, R. (2014). 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun., 5, 3491.

Li, H., O’Donoghue, A. J., van der Linden, W. A., Xie, S. C., Yoo, E., Foe, I. T., Tilley, L., Craik, C. S., da Fonseca, P. C. & Bogoy, M. (2016). Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature, 530, 233-236.

Li, N., Zhai, Y., Zhang, Y., Li, W., Yang, M., Lei, J., Tye, B. K. & Gao, N. (2015a). Structure of the eukaryotic MCM complex at 3.8 A. Nature, 524, 186-191.

Li, W., Atkinson, G. C., Thakor, N. S., Allas, U., Lu, C. C., Chan, K. Y., Tenson, T., Schulten, K., Wilson, K. S., Hauryliuk, V. & Frank, J. (2013a). Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun., 4, 1477.

Li, W., Liu, Z., Koripella, R. K., Langlois, R., Sanyal, S. & Frank, J. (2015b). Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G. Sci. Adv., 1.

Li, X., Mooney, P., Zheng, S., Booth, C. R., Braunfeld, M. B., Gubbens, S., Agard, D. A. & Cheng, Y. (2013b). Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods, 10, 584-590.

Liu, H., Jin, L., Koh, S. B., Atanasov, I., Schein, S., Wu, L. & Zhou, Z. H. (2010). Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science, 329, 1038-1043.

Liu, J., Mei, Z., Li, N., Qi, Y., Xu, Y., Shi, Y., Wang, F., Lei, J. & Gao, N. (2013). Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. J. Biol. Chem, 288, 17597-17608.

Louder, R. K., He, Y., Lopez-Blanco, J. R., Fang, J., Chacon, P. & Nogales, E. (2016). Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature, 531, 604-609.

Luan, B., Huang, X., Wu, J., Mei, Z., Wang, Y., Xue, X., Yan, C., Wang, J., Finley, D. J., Shi, Y. & Wang, F. (2016). Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc. Natl. Acad. Sci. U. S. A, 113, 2642-2647.

McCullough, J., Clippinger, A. K., Talledge, N., Skowyra, M. L., Saunders, M. G., Naismith, T. V., Colf, L. A., Afonine, P., Arthur, C., Sundquist, W. I., Hanson, P. I. & Frost, A. (2015). Structure and membrane remodeling activity of ESCRT-III helical polymers. Science, 350, 1548-1551.

Muhs, M., Hilal, T., Mielke, T., Skabkin, M. A., Sanbonmatsu, K. Y., Pestova, T. V. & Spahn, C. M. (2015). Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Mol. Cell, 57, 422-432.
Nemecek, D., Boura, E., Wu, W., Cheng, N., Plevka, P., Qiao, J., Mindich, L., Heymann, J. B., Hurley, J. H. & Steven, A. C. (2013). Subunit folds and maturation pathway of a dsRNA virus capsid. Structure, 21, 1374-1383.

Nguyen, T. H., Galej, W. P., Bai, X. C., Oubridge, C., Newman, A. J., Scheres, S. H. & Nagai, K. (2016). Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nature, 530, 298-302.

Park, E., Menetret, J. F., Gumbart, J. C., Ludtke, S. J., Li, W., Whynot, A., Rapoport, T. A. & Akey, C. W. (2014). Structure of the SecY channel during initiation of protein translocation. Nature, 506, 102-106.

Plaschka, C., Hantsche, M., Dienemann, C., Burzinski, C., Plitzko, J. & Cramer, P. (2016). Transcription initiation complex structures elucidate DNA opening. Nature, 533, 353-358.

Plaschka, C., Lariviere, L., Wenzeck, L., Seizl, M., Hemann, M., Tegunov, D., Petrochenko, E. V., Borchers, C. H., Baumeister, W., Herzog, F., Villa, E. & Cramer, P. (2015). Architecture of the RNA polymerase II-Mediator core initiation complex. Nature, 518, 376-380.

Rivera-Calzada, A., Fronzes, R., Savva, C. G., Chandran, V., Lian, P. W., Laeremans, T., Pardon, E., Steyaert, J., Remaut, H., Waksman, G. & Orlova, E. V. (2013). Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J., 32, 1195-1204.

Saur, M., Moeller, V., Kapetanopoulos, K., Braukmann, S., Gebauer, W., Tenzer, S. & Markl, J. (2012). Acetylcholine-binding protein in the hemolymph of the planorbid snail Biomphalaria glabrata is a pentagonal dodecahedron (60 subunits). PLoS. One., 7, e43685-

Schraidt, O. & Marlovits, T. C. (2011). Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science, 331, 1192-1195.

Schur, F. K., Dick, R. A., Hagen, W. J., Vogt, V. M. & Briggs, J. A. (2015). The Structure of Immature Virus-Like Rous Sarcoma Virus Gag Particles Reveals a Structural Role for the p10 Domain in Assembly. J. Virol., 89, 10294-10302.

Seitsonen, J. J., Shakeel, S., Susi, P., Pandurangan, A. P., Sinkovits, R. S., Hyvonen, H., Laurinmaki, P., Yla-Pelto, J., Topf, M., Hyypia, T. & Butcher, S. J. (2012). Structural analysis of coxsackievirus A7 reveals conformational changes associated with uncoating. J. Virol., 86, 7207-7215.

Settembre, E. C., Chen, J. Z., Dormitzer, P. R., Grigorieff, N. & Harrison, S. C. (2011). Atomic model of an infectious rotavirus particle. EMBO J., 30, 408-416.

Shalev-Benami, M., Zhang, Y., Matzov, D., Halfon, Y., Zackay, A., Rozenberg, H., Zimmerman, E., Bashan, A., Jaffe, C. L., Yonath, A. & Skiniotis, G. (2016). 2.8-A Cryo-EM Structure of the Large Ribosomal Subunit from the Eukaryotic Parasite Leishmania. Cell Rep., 16, 288-294.

Shao, S., Brown, A., Santhanam, B. & Hegde, R. S. (2015). Structure and assembly pathway of the ribosome quality control complex. Mol. Cell, 57, 433-444.

Simonetti, A., Brito, Q. J., Myasnikov, A. G., Mancera-Martinez, E., Renaud, A., Kuhn, L. & Hashem, Y. (2016). eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition. Mol. Cell, 63, 206-217.

Sohmen, D., Chiba, S., Shimokawa-Chiba, N., Innis, C. A., Berninghausen, O., Beckmann, R., Ito, K. & Wilson, D. N. (2015). Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat. Commun., 6, 6941-
Sprink, T., Ramrath, D. J., Yamamoto, H., Yamamoto, K., Loerke, J., Ismer, J., Hildebrand, P. W., Scheer, P., Burger, J., Mielke, T. & Spahn, C. M. (2016). Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci. Adv., 2, e1501502.

Sun, L., Zhang, X., Gao, S., Rao, P. A., Padilla-Sanchez, V., Chen, Z., Sun, S., Xiang, Y., Subramaniam, S., Rao, V. B. & Rossman, M. G. (2015). Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat. Commun., 6, 7548.

Taylor, N. M., Prokhorov, N. S., Guerrero-Ferreira, R. C., Shneider, M. M., Browning, C., Goldie, K. N., Stahlberg, H. & Leiman, P. G. (2016). Structure of the T4 baseplate and its function in triggering sheath contraction. Nature, 533, 346-352.

Unverdorben, P., Beck, F., Sledz, P., Schweitzer, A., Pfeifer, G., Plitzko, J. M., Baumeister, W. & Forster, F. (2014). Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc. Natl. Acad. Sci. U. S. A, 111, 5544-5549.

Veesler, D., Ng, T. S., Sendamarai, A. K., Eilers, B. J., Lawrence, C. M., Lok, S. M., Young, M. J., Johnson, J. E. & Fu, C. Y. (2015). Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc. Natl. Acad. Sci. U. S. A, 110, 5504-5509.

Vinthukumar, K. R., Zhu, J. & Hirst, J. (2014). Architecture of mammalian respiratory complex I. Nature, 515, 80-84.

Voorhees, R. M., Fernandez, I. S., Scheres, S. H. & Hegde, R. S. (2014). Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell, 157, 1632-1643.

Voorhees, R. M. & Hegde, R. S. (2015). Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. Elife., 4.

Wan, R., Yan, C., Bai, R., Wang, L., Huang, M., Wong, C. C. & Shi, Y. (2016). The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Science, 351, 466-475.

Wei, X., Su, X., Cao, P., Liu, X., Chang, W., Li, M., Zhang, X. & Liu, Z. (2016). Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature, 534, 69-74.

Weis, F., Giudice, E., Churcher, M., Jin, L., Hilcenko, C., Wong, C. C., Traynor, D., Kay, R. R. & Warren, A. J. (2015). Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol., 22, 914-919.

Wong, W., Bai, X. C., Brown, A., Fernandez, I. S., Hanssen, E., Condron, M., Tan, Y. H., Baum, J. & Scheres, S. H. (2014). Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. Elife., 3.

Wu, S., Tutuncuoglu, B., Yan, K., Brown, H., Zhang, Y., Tan, D., Gamalinda, M., Yuan, Y., Li, Z., Jakovljevic, J., Ma, C., Lei, J., Dong, M. Q., Woolford, J. L., Jr. & Gao, N. (2016). Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature, 534, 133-137.

Yan, C., Hang, J., Wan, R., Huang, M., Wong, C. C. & Shi, Y. (2015a). Structure of a yeast spliceosome at 3.6-angstrom resolution. Science, 349, 1182-1191.

Yan, Z., Bai, X. C., Yan, C., Wu, J., Li, Z., Xie, T., Peng, W., Yin, C. C., Li, X., Scheres, S. H., Shi, Y. & Yan, N. (2015b). Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 517, 50-55.
Yokom, A. L., Gates, S. N., Jackrel, M. E., Mack, K. L., Su, M., Shorter, J. & Southworth, D. R. (2016). Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Nat. Struct. Mol. Biol., 23, 830-837.

Yu, X., Ge, P., Jiang, J., Atanasov, I. & Zhou, Z. H. (2011). Atomic model of CPV reveals the mechanism used by this single-shelled virus to economically carry out functions conserved in multishelled reoviruses. Structure., 19, 652-661.

Yuan, S., Yu, X., Topf, M., Dorstyn, L., Kumar, S., Ludtke, S. J. & Akey, C. W. (2011). Structure of the Drosophila apoptosome at 6.9 a resolution. Structure., 19, 128-140.

Yuan, S., Yu, X., Topf, M., Ludtke, S. J., Wang, X. & Akey, C. W. (2010). Structure of an apoptosome-procaspase-9 CARD complex. Structure., 18, 571-583.

Yuan, Z., Bai, L., Sun, J., Georgescu, R., Liu, J., O'Donnell, M. E. & Li, H. (2016). Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat. Struct. Mol. Biol., 23, 217-224.

Zalk, R., Clarke, O. B., des, G. A., Grassucci, R. A., Reiken, S., Mancia, F., Hendrickson, W. A., Frank, J. & Marks, A. R. (2015). Structure of a mammalian ryanodine receptor. Nature, 517, 44-49.

Zhang, J., Baker, M. L., Schroder, G. F., Douglas, N. R., Reissmann, S., Jakana, J., Dougherty, M., Fu, C. J., Levitt, M., Ludtke, S. J., Frydman, J. & Chiu, W. (2010). Mechanism of folding chamber closure in a group II chaperonin. Nature, 463, 379-383.

Zhang, J., Ma, B., DiMaio, F., Douglas, N. R., Joachimiak, L. A., Baker, D., Frydman, J., Levitt, M. & Chiu, W. (2011). Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure., 19, 633-639.

Zhang, K., Wang, L., Liu, Y., Chan, K. Y., Pang, X., Schulten, K., Dong, Z. & Sun, F. (2013a). Flexible interwoven termini determine the thermal stability of thermosomes. Protein Cell, 4, 432-444.

Zhang, Q., Dai, X., Cong, Y., Zhang, J., Chen, D. H., Dougherty, M. T., Wang, J., Ludtke, S. J., Schmid, M. F. & Chiu, W. (2013b). Cryo-EM structure of a molluscan hemocyanin suggests its allosteric mechanism. Structure., 21, 604-613.

Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. (2015). Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell, 162, 849-859.

Zhang, X., Boyce, M., Bhattacharya, B., Zhang, X., Schein, S., Roy, P. & Zhou, Z. H. (2010b). Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins. Proc. Natl. Acad. Sci. U. S. A, 107, 6292-6297.

Zhang, X., Sun, S., Xiang, Y., Wong, J., Klose, T., Raoult, D. & Rossmann, M. G. (2012). Structure of Sputnik, a virophage, at 3.5 A resolution. Proc. Natl. Acad. Sci. U. S. A, 109, 18431-18436.

Zhang, X., Yan, K., Zhang, Y., Li, N., Ma, C., Li, Z., Zhang, Y., Feng, B., Liu, J., Sun, Y., Xu, Y., Lei, J. & Gao, N. (2014). Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Nucleic Acids Res., 42, 13430-13439.

Zhao, G., Perilla, J. R., Yufenyuy, E. L., Meng, X., Chen, B., Ning, J., Ahn, J., Gronenborn, A. M., Schulten, K., Aiken, C. & Zhang, P. (2013). Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature, 497, 643-646.
Zhao, J., Benlekbir, S. & Rubinstein, J. L. (2015a). *Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature, 521*, 241-245.

Zhao, M., Wu, S., Zhou, Q., Vivona, S., Cipriano, D. J., Cheng, Y. & Brunger, A. T. (2015b). *Mechanistic insights into the recycling machine of the SNARE complex. Nature, 518*, 61-67.

Zhao, Y., Chen, S., Yoshioka, C., Baconguis, I. & Gouaux, E. (2016). *Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM. Nature, 536*, 108-111.