Methods and Algorithms of Turbojet Engines Thrust Parameters Control Unerroric

A Yu Burova

1Moscow Aviation Institute (National Research University)
Moscow, Russia

E-mail: frambe@mail.ru

Abstract. This report shows a real way for solving the problem of turbojet engine thrust parameters control in flight. The purpose of the research is the formalization of the digital methods and its algorithms for turbojet engines thrust parameters control unerroric. The methods of deductive digital signal processing and combined method of system analysis and approximate synthesis are used for such research. It is described the digital algorithms of unerroric methods which are based on rotor speed control for turbojet engines of twin-engine airliner by its power plant control system. There are given the calculation formulas for those algorithms.

1. Introduction
The turbojet engines thrust parameters control unerroric is the best way to solve a problem of flight safety for airliner with two turbojet engines [1].

The concept of "unerroric" (from the Latin "errare") means the combined application of methods and procedures to reduce the error of methods and algorithms for processing information [2].

The unerroric for turbojet engines thrust parameters control is the combination of software and hardware for reducing the margin of such control in the conditions of turbojet engines mass production and during operation turbojet engines in the power plant of twin-engine airliner.

Possible solutions to this problem are reflected in a number of scientific reports and articles [1,3-4].

The proposed methods and algorithms can be successfully implemented on the basis of the element base of modern microelectronics [5-10].

2. Purpose and methods of research
The purpose of the research is the formalization of the digital methods and its algorithms for turbojet engines thrust parameters control unerroric.

The methods of deductive digital signal processing and combined method of system analysis and approximate synthesis are used for such research.

3. Theoretical fundament
The theoretical fundament for any methods and algorithms of turbojet engines thrust parameters control unerroric is a software for system analyzing of turbojet engines thrust parameters [1].

This system analyzing is based on the digital methods of the turbojet engines thrust parameters deep testing in the conditions of turbojet engines mass production [3].
That approximate synthesing software is based on the recurrent algorithms for the deductive digital signal processing of the control signals from the turbojet engines rotors speed sensors [11-15].

4. Research result

The research results prove the possibility of using twin-engine airliner turbojet engines thrust parameters control unerroric methods and algorithms for solving some problems of the safety for twin-engine airliner flight with thrust asymmetry of airliner turbojet engines.

Its thrust asymmetry can be minimized or compensated by digital methods and algorithms of step-by-step system analysis and approximate synthesis for the control values of two turbojet engines thrust parameters in flight [1].

These methods and algorithms are realized by formulas (1) - (4) on every i-th step if $i=1,2,3\ldots I_{\text{max}}-1$ and such parameters are the digital signals from the airliner turbojet engine rotor speed sensors [1,4]:

\[
(n_{1}^{LE})_{i+1} = \begin{cases}
(n_{1}^{LE})_{i} & \text{if } 0 < n_{1}^{MIN} < (n_{1}^{LE})_{i} + C_{1}^{LE} \left(\frac{dn_{1}^{RE}}{dt} \right)_{i} \leq n_{1}^{MAX}; \\
(n_{1}^{LE})_{i} + \left[(n_{1}^{RE})_{i} - (n_{1}^{LE})_{i} + C_{1}^{LE} \left(\frac{dn_{1}^{RE}}{dt} \right)_{i} \right] & \text{if } 0 < n_{1}^{MIN} < (n_{1}^{LE})_{i} + C_{1}^{LE} \left(\frac{dn_{1}^{RE}}{dt} \right)_{i} \leq (n_{1}^{RE})_{i} \leq n_{1}^{MAX}; \\
(n_{1}^{LE})_{i} + \left[n_{1}^{MIN} - (n_{1}^{RE})_{i} + C_{1}^{RE} \left(\frac{dn_{1}^{RE}}{dt} \right)_{i} \right] & \text{if } 0 < (n_{1}^{RE})_{i} + C_{1}^{RE} \left(\frac{dn_{1}^{RE}}{dt} \right)_{i} \leq n_{1}^{MIN} < (n_{1}^{LE})_{i} + C_{1}^{RE} \left(\frac{dn_{1}^{RE}}{dt} \right)_{i} \leq n_{1}^{MAX};
\end{cases}
\]

\[
(n_{2}^{LE})_{i+1} = \begin{cases}
(n_{2}^{LE})_{i} & \text{if } 0 < n_{2}^{MIN} < (n_{2}^{LE})_{i} + C_{2}^{LE} \left(\frac{dn_{2}^{RE}}{dt} \right)_{i} \leq n_{2}^{MAX}; \\
(n_{2}^{LE})_{i} + \left[(n_{2}^{RE})_{i} - (n_{2}^{LE})_{i} + C_{2}^{LE} \left(\frac{dn_{2}^{RE}}{dt} \right)_{i} \right] & \text{if } 0 < n_{2}^{MIN} < (n_{2}^{LE})_{i} + C_{2}^{LE} \left(\frac{dn_{2}^{RE}}{dt} \right)_{i} \leq (n_{2}^{RE})_{i} \leq n_{2}^{MAX}; \\
(n_{2}^{LE})_{i} + \left[n_{2}^{MIN} - (n_{2}^{RE})_{i} + C_{2}^{RE} \left(\frac{dn_{2}^{RE}}{dt} \right)_{i} \right] & \text{if } 0 < (n_{2}^{RE})_{i} + C_{2}^{RE} \left(\frac{dn_{2}^{RE}}{dt} \right)_{i} \leq n_{2}^{MIN} < (n_{2}^{LE})_{i} + C_{2}^{RE} \left(\frac{dn_{2}^{RE}}{dt} \right)_{i} \leq n_{2}^{MAX};
\end{cases}
\]
The values \((n_{1}^{LE})_{i+1}\) and \((n_{2}^{LE})_{i+1}\) are the control values for the low-pressure compressor rotor speed and the high-pressure compressor rotor speed of the left turbojet engine in power plant of twin-engine airliner for every \((i+1)\)-th step of the step-by-step analyzing and synthesing, \(i=1,2,3\ldots I_{\text{max}}-1\).

These methods and algorithms are realized by formulas (1) - (4) the values \((n_{1}^{RE})_{i+1}\) and \((n_{2}^{RE})_{i+1}\) are the control values for the low-pressure compressor rotor speed and the high-pressure compressor rotor speed of the right turbojet engine in power plant of twin-engine airliner for every \((i+1)\)-th step of the step-by-step analyzing and synthesing, \(i=1,2,3\ldots I_{\text{max}}-1\).

The values of their first derivatives are calculated by the hardware and the software of the control system such power plant. The values of the coefficients \(C_{1}^{LE}\) and \(C_{1}^{RE}\) for the left turbojet engine rotors and \(C_{2}^{RE}\) for the right turbojet engine rotors are set depending on the dynamic properties of these rotors. The specified values \(n_{1 \text{min}}^{min}\) and \(n_{2 \text{min}}^{min}\) are the minimum allowed values of the low-pressure compressor rotor speed and the high-pressure compressor rotor speed of the left turbojet engine and the right turbojet engine.

The specified values \(n_{1 \text{max}}^{max}\) and \(n_{2 \text{max}}^{max}\) are the maximum allowed values of the low-pressure compressor rotor speed and the high-pressure compressor rotor speed of the left turbojet engine and the right turbojet engine.

The reliability of the research results is confirmed by their compliance with the results of known developments [4,16-17].
5. Conclusions
The digital methods and algorithms of turbojet engines thrust parameters control unerroric allow to solve some problems of the safety for the twin-engine airliner flight with thrust asymmetry of two airliner turbojet engines.

The novelty of those methods and algorithms consists in using the turbojet engine thrust parameters for controlling and minimizing or compensating the thrust asymmetry of two airliner turbojet engines in flight.

Development of such methods and algorithms by this report author is the practical realization of his idea for twin-engine airliner turbojet engines thrust asymmetry control unerroric in flight.

6. References
[1] Burova A Yu 2019 Minimisation of asymmetry of thrust of the dual-flow turbojet engines of the airliner in accordance with the results of the system analysis of the thrust parameters Asia Life Sciences Supplement 21(2) 629-643
[2] Burova A Yu, Kabakov V V 2020 «Unerroric» of multistage discrete Fourier transform of digital signal without arithmetic operations of multiplication Amazonia Investiga Vol 9 25 pp 429-437
[3] Burova A Yu 2017 Certification of aviation equipment (Moscow: Lenand) 296
[4] Novichkov V M, Burova A Y 2019 Algorithm of Two Turbojets Thrust Asymmetry Minimization for Digital Control System of Twin-Engine Jet Airliner 2019 International Multi-Conference on Industrial Engineering and Modern Technologies FarEastCon 8934285
[5] Steshenko V B 2000 PLD implementation by firm ALTERA: designing devices signal processing (Moscow: DODEKA) 128
[6] Vityazev V V, Vityazev S V 2007 Digital signal processing processors TMS320C67x of Texas Instruments (Ryazan: Ryazan State Radio Engineering University) 112
[7] Speransky V S 2008 Signal microprocessors and their application in telecommunication systems and electronics (Moscow: Hot Line – Telecom) 170
[8] Steshenko V B 2016 PLD implementation by firm ALTERA: element base, design system and hardware description languages (Moscow: DMK-Press) 576
[9] Burova A Yu, Ryapukhin A V & Muntyan A R 2020 Reduced hardware costs with software and hardware implementation of digital methods multistage discrete Fourier transform on programmable logic devices Amazonia Investiga 9(27) 227-233
[10] Speransky V S, Kosichkina T P 2021 Signal microprocessors and their application in communication systems and electronics (Moscow: Hot Line – Telecom) 400
[11] Burova A Yu 2020 Digital signal processing without performing arithmetic multiplication operations Amazonia Investiga Vol 9 25 pp 200-205
[12] Burova A Yu 2020 Reducing the Error of Digital Algorithms for Deductive Signal Processing Based on Their Multi-Stage Discrete Fourier Transform by the Difference Digital Filters 2020 22th International Conference on Digital Signal Processing and its Applications, DSPA 2020 9213275
[13] Burova A Yu, Usatenko T O 2020 Digital Algorithms for the Discrete Frequency Selection of Signals that Do Not Use Algorithmic Multiplication Operations TEM Journal Vol 9 Issue 2 pp 501-506 DOI: 10.18421/TEM92-11
[14] Burova A Y 2021 Concept of multistage discrete Fourier transform without performing multiplications Journal of Physics: Conference Series 1889(2) 022003
[15] Burova A Y, Usatenko T O 2021 Digital methods of discrete Fourier transform, allowing minimizing the number of algorithmic multiplication operations Journal of Physics: Conference Series 1889(3) 032035
[16] Novichkov V M, Filinov N I, Kalinina O I 2020 Assessment of the Technical Condition of the Aircraft Fuel System by Its Main Elements in Flight 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) (Vladivostok, Russia : Institute of Electrical and Electronics Engineers) pp 1—4 DOI: 10.1109/FarEastCon50210.2020.9271102
[17] Novichkov V M, Mishin Yu N 2018 Information-Measuring System for Endurance Test of Small Satellites Structural Elements BOOK OF ABSTRACTS 1st International Aerospace Symposium Silk Road 2018 (IASS "Silk Road" 2018) December 6-8 2018 Moscow Institute of Physics and Technology (MIPT, Russia) in Dolgoprudny (Russia, Moscow region) pp 65-66 Small Satellite pp 174-189 https://www.ias-silkroad.com/presentation 20.06.19