ON GEOMETRY OF SYMPLECTIC INVOLUTIONS

MARK PANKOV

Abstract. Let V be a $2n$-dimensional vector space over a field F and Ω be a non-degenerate symplectic form on V. Denote by $H_k(\Omega)$ the set of all $2k$-dimensional subspaces $U \subset V$ such that the restriction $\Omega|_U$ is non-degenerate. Our main result (Theorem 1) says that if $n \neq 2k$ and $\max(k, n-k) \geq 5$ then any bijective transformation of $H_k(\Omega)$ preserving the class of base subsets is induced by a semi-simplectic automorphism of V. For the case when $n \neq 2k$ this fails, but we have a weak version of this result (Theorem 2). If the characteristic of F is not equal to 2 then there is a one-to-one correspondence between elements of $H_k(\Omega)$ and symplectic $(2k, 2n-2k)$-involutions and Theorem 1 can be formulated as follows: for the case when $n \neq 2k$ and $\max(k, n-k) \geq 5$ any commutativity preserving bijective transformation of the set of symplectic $(2k, 2n-2k)$-involutions can be extended to an automorphism of the symplectic group.

1. Introduction

Let W be an n-dimensional vector space over a division ring R and $n \geq 3$. We put $G_k(W)$ for the Grassmannian of k-dimensional subspaces of W. The projective space associated with W will be denoted by $P(W)$.

Let us consider the set $G_k(W) \times G_{n-k}(W)$, where $S+U = W$. If B is a base for $P(W)$ then the base subset of $G_k(W)$ associated with the base B consists of all (S, U) such that S and U are spanned by elements of B. If $n \neq 2k$ then any bijective transformation of $G_k(W)$ preserving the class of base subsets is induced by a semi-linear isomorphism of W to itself or to the dual space W^* (for $n = 2k$ this fails, but some weak version of this result holds true). Using Mackey’s ideas [7], J. Dieudonné [2] and C. E. Rickart [9] have proved this statement for $k = 1, n-1$. For the case when $1 < k < n-1$ it was established by author [8]. Note that adjacency preserving transformations of $G_k(W)$ were studied in [6].

Now suppose that the characteristic of R is not equal to 2 and consider an involution $u \in \text{GL}(W)$. There exist two subspaces $S_+(u)$ and $S_-(u)$ such that

$$u(x) = x \text{ if } x \in S_+(u), \quad u(x) = -x \text{ if } x \in S_-(u)$$

and

$$W = S_+(u) + S_-(u).$$

We say that u is a $(k, n-k)$-involution if the dimensions of $S_+(u)$ and $S_-(u)$ are equal to k and $n-k$, respectively. The set of $(k, n-k)$-involutions will be denoted by $I_k(W)$. There is the natural one-to-one correspondence between elements of $I_k(W)$

\[2000 \text{ Mathematics Subject Classification. } 51N30, 51A50.\]
\[\text{Key words and phrases.} \ \text{hyperbolic symplectic geometry, symplectic group, Grassmannian.}\]
and $\mathfrak{S}_k(W)$ such that each base subsets of $\mathfrak{S}_k(W)$ corresponds to a maximal set of mutually permutable $(k, n - k)$-involutions. Thus any commutativity preserving transformation of $\mathfrak{S}_k(W)$ can be considered as a transformation of $\mathfrak{S}_k(W)$ preserving the class of base subsets, and our statement shows that if $n \neq 2k$ then any commutativity preserving bijective transformation of $\mathfrak{S}_k(W)$ can be extended to an automorphism of $\text{GL}(W)$.

In the present paper we give symplectic analogues of these results.

2. Results

2.1. Let V be a $2n$-dimensional vector space over a field F and $\Omega : V \times V \to F$ be a non-degenerate symplectic form. The form Ω defines on the set of subspaces of V the orthogonal relation which will be denoted by \perp. For any subspace $S \subset V$ we put S^\perp for the orthogonal complement to S. A subspace $S \subset V$ is said to be non-degenerate if the restriction $\Omega|_S$ is non-degenerate; for this case S is even-dimensional and $S + S^\perp = V$. We put $\mathfrak{S}_k(\Omega)$ for the set of non-degenerate $2k$-dimensional subspaces. Any element of $\mathfrak{S}(\Omega)$ can be presented as the sum of k mutually orthogonal elements of $\mathfrak{S}_1(\Omega)$.

Let us consider the projective space $\mathcal{P}(V)$ associated with V. The points of this space are 1-dimensional subspaces of V, and each line consists of all 1-dimensional subspaces contained in a certain 2-dimensional subspace. A line of $\mathcal{P}(V)$ is called hyperbolic if the corresponding 2-dimensional subspace belongs to $\mathfrak{S}_1(\Omega)$; otherwise, the line is said to be isotropic. Points of $\mathcal{P}(V)$ together with the family of isotropic lines form the well-known polar space. Some results related with the hyperbolic symplectic geometry (spanned by points of $\mathcal{P}(V)$ and hyperbolic lines) can be found in [1], [2], [3].

A base $B = \{P_1, \ldots, P_{2n}\}$ of $\mathcal{P}(V)$ is called symplectic if for any $i \in \{1, \ldots, 2n\}$ there is unique $\sigma(i) \in \{1, \ldots, 2n\}$ such that $P_i \neq P_{\sigma(i)}$. Then the set \mathfrak{S}_1 consisting of all

$$S_i := P_i + P_{\sigma(i)}$$

is said to be the base subset of $\mathfrak{S}_1(\Omega)$ associated with the base B. For any $k \in \{2, \ldots, n - 1\}$ the set \mathfrak{S}_k consisting of all $S_{i_1} + \cdots + S_{i_k}$ (i_1, \ldots, i_k are different) will be called the base subset of $\mathfrak{S}_k(\Omega)$ associated with \mathfrak{S}_1 (or defined by \mathfrak{S}_1).

Now suppose that the characteristic of F is not equal to 2. An involution $u \in \text{GL}(V)$ is symplectic (belongs to the group $\text{Sp}(\Omega)$) if and only if $S_+(u)$ and $S_-(u)$ are non-degenerate and $S_-(u) = (S_+(u))^\perp$. We denote by $\mathcal{I}_k(\Omega)$ the set of symplectic $(2k, 2n - 2k)$-involutions. There is the natural bijection

$$i_k : \mathcal{I}_k(\Omega) \to \mathfrak{S}_k(\Omega), \quad u \to S_+(u).$$

We say that $\mathcal{X} \subset \mathcal{I}_k(\Omega)$ is a MC-subset if any two elements of \mathcal{X} commute and for any $u \in \mathcal{I}_k(\Omega) \setminus \mathcal{X}$ there exists $s \in \mathcal{X}$ such that $su \neq us$ (in other words, \mathcal{X} is a maximal set of mutually permutable elements of $\mathcal{I}_k(\Omega)$).

Fact 1. [2], [3] \mathcal{X} is a MC-subset of $\mathcal{I}_k(\Omega)$ if and only if $i_k(\mathcal{X})$ is a base subset of $\mathfrak{S}_k(\Omega)$. For any two commutative elements of $\mathcal{I}_k(\Omega)$ there is a MC-subset containing them.

Fact 1 shows that a bijective transformation f of $\mathfrak{S}_k(\Omega)$ preserves the class of base subsets if and only if $f^{-1}i_k$ is commutativity preserving.
2.2. If \(l \) is an element of \(\Gamma \text{Sp}(\Omega) \) (the group of semi-linear automorphisms preserving \(\Omega \)) then for each number \(k \in \{1, \ldots, n-1\} \) we have the bijective transformation

\[
(l)_k : \mathfrak{H}_k(\Omega) \to \mathfrak{H}_k(\Omega), \quad U \to l(U)
\]

which preserves the class of base subsets. The bijection

\[
p_k : \mathfrak{H}_k(\Omega) \to \mathfrak{H}_{n-k}(\Omega), \quad U \to U^\perp
\]

sends base subsets to base subsets. We will need the following trivial fact.

Fact 2. Let \(f \) be a bijective transformation of \(\mathfrak{H}_k(\Omega) \) preserving the class of base subsets. Then the same holds for the transformation \(p_k f p_{n-k} \). Moreover, if \(f = (l)_k \) for certain \(l \in \Gamma \text{Sp}(\Omega) \) then \(p_k f p_{n-k} = (l)_{n-k} \).

Two distinct elements of \(\mathfrak{H}_1(\Omega) \) are orthogonal if and only if there exists a base subset containing them, thus for any bijective transformation \(f \) of \(\mathfrak{H}_1(\Omega) \) the following condition are equivalent:

— \(f \) preserves the relation \(\perp \),
— \(f \) preserves the class of base subsets.

It is not difficult to prove (see [2], p. 26-27 or [9], p. 711-712) that if one of these conditions holds then \(f \) is induced by an element of \(\Gamma \text{Sp}(\Omega) \). Fact 2 guarantees that the same is fulfilled for bijective transformations of \(\mathfrak{H}_{n-1}(\Omega) \) preserving the class of base subsets. This result was exploited by J. Dieudonné [2] and C. E. Rickart [9] to determining automorphisms of the group \(\text{Sp}(\Omega) \).

Theorem 1. If \(n \neq 2k \) and \(\max(k, n-k) \geq 5 \) then any bijective transformation of \(\mathfrak{H}_k(\Omega) \) preserving the class of base subsets is induced by an element of \(\Gamma \text{Sp}(\Omega) \).

Corollary 1. Suppose that the characteristic of \(F \) is not equal to 2. If \(n \neq 2k \) and \(\max(k, n-k) \geq 5 \) then any commutativity preserving bijective transformation \(f \) of \(\mathfrak{H}_k(\Omega) \) can be extended to an automorphism of \(\text{Sp}(\Omega) \).

Proof of Corollary. By Fact 1, \(i_k f i_k^{-1} \) preserves the class of base subsets. Theorem 1 implies that \(i_k f i_k^{-1} \) is induced by \(l \in \Gamma \text{Sp}(\Omega) \). The automorphism \(u \to lul^{-1} \) is as required. \(\square \)

2.3. For the case when \(n = 2k \) Theorem 1 fails.

Example 1. Suppose that \(n = 2k \) and \(X \) is a subset of \(\mathfrak{H}_k(\Omega) \) such that for any \(U \in X \) we have \(U^\perp \in X \). Consider the transformation of \(\mathfrak{H}_k(\Omega) \) which sends each \(U \in X \) to \(U^\perp \) and leaves fixed all other elements. This transformation preserves the class of base subsets (any base subset of \(\mathfrak{H}_k(\Omega) \) contains \(U \) together with \(U^\perp \)), but it is not induced by a semilinear automorphism if \(X \neq \emptyset \).

If \(n = 2k \) then we denote by \(\overline{\mathfrak{H}}_k(\Omega) \) the set of all subsets \(\{U, U^\perp\} \subset \mathfrak{H}_k(\Omega) \).

Then every \(l \in \Gamma \text{Sp}(\Omega) \) induces the bijection

\[
(l)^_k : \overline{\mathfrak{H}}_k(\Omega) \to \overline{\mathfrak{H}}_k(\Omega), \quad \{U, U^\perp\} \to \{l(U), l(U^\perp) = l(U)^\perp\}.
\]

The transformation from Example 1 gives the identical transformation of \(\overline{\mathfrak{H}}_k(\Omega) \).

Theorem 2. Let \(n = 2k \geq 14 \) and \(f \) be a bijective transformation of \(\mathfrak{H}_k(\Omega) \) preserving the class of base subsets. Then \(f \) preserves the relation \(\perp \) and induces a bijective transformation of \(\overline{\mathfrak{H}}_k(\Omega) \). The latter mapping is induced by an element of \(\Gamma \text{Sp}(\Omega) \).
Corollary 2. Let \(n = 2k \geq 14 \) and \(f \) be a commutativity preserving bijective transformation of \(\mathcal{I}_k(\Omega) \). Suppose also that the characteristic of \(F \) is not equal to 2. Then there exists an automorphism \(g \) of the group \(\operatorname{Sp}(\Omega) \) such that \(f(u) = \pm g(u) \) for any \(u \in \mathcal{I}_k(\Omega) \).

3. Inexact subsets

In this section we suppose that \(n \geq 4 \) and \(1 < k < n - 1 \).

3.1. Inexact subsets of \(\mathcal{G}_k(W) \). Let \(B = \{P_1, \ldots, P_n\} \) be a base of \(\mathcal{P}(W) \). For any \(m \in \{1, \ldots, n-1\} \) we denote by \(\mathcal{B}_m \) the base subset of \(\mathcal{G}_m(W) \) associated with \(B \) (the definition was given in section 1).

If \(\alpha = (M, N) \in \mathcal{B}_m \) then we put \(\mathcal{B}_k(\alpha) \) for the set of all \((S, U) \in \mathcal{B}_k \) where \(S \) is incident to \(M \) or \(N \) (then \(U \) is incident to \(N \) or \(M \), respectively), the set of all \((S, U) \in \mathcal{B}_k \) such that \(S \) is incident to \(M \) will be denoted by \(\mathcal{B}_k^+ (\alpha) \).

A subset \(\mathcal{X} \subset \mathcal{B}_k \) is called exact if there is only one base subset of \(\mathcal{G}_k(W) \) containing \(\mathcal{X} \); otherwise, \(\mathcal{X} \) is said to be inexact. If \(\alpha \in \mathcal{B}_2 \) then \(\mathcal{B}_k(\alpha) \) is a maximal inexact subset of \(\mathcal{B}_k \) (Example 1 in \([S]\)). Conversely, we have the following.

Lemma 1 (Lemma 2 of \([S]\)). If \(\mathcal{X} \) is a maximal inexact subset of \(\mathcal{B}_k \) then there exists \(\alpha \in \mathcal{B}_2 \) such that \(\mathcal{X} = \mathcal{B}_k(\alpha) \).

Lemma 2 (Lemmas 5 and 8 of \([S]\)). Let \(g \) be a bijective transformation of \(\mathcal{B}_k \) preserving the class of maximal inexact subsets. Then for any \(\alpha \in \mathcal{B}_{k-1} \) there exists \(\beta \in \mathcal{B}_{k-1} \) such that

\[
g(\mathcal{B}_k(\alpha)) = \mathcal{B}_k(\beta);
\]

moreover, we have

\[
g(\mathcal{B}_k^+(\alpha)) = \mathcal{B}_k^+(\beta)
\]

if \(n \neq 2k \).

3.2. Inexact subsets of \(\mathcal{H}_k(\Omega) \). Let \(\mathcal{S}_1 = \{S_1, \ldots, S_n\} \) be a base subsets of \(\mathcal{H}_1(\Omega) \).

For each number \(m \in \{2, \ldots, n-1\} \) we denote by \(\mathcal{S}_m \) the base subset of \(\mathcal{H}_m(\Omega) \) associated with \(\mathcal{S}_1 \).

Let \(M \in \mathcal{S}_m \). Then \(M^\perp \in \mathcal{S}_{n-m} \). We put \(\mathcal{S}_k(M) \) for the set of all elements of \(\mathcal{G}_k \) incident to \(M \) or \(M^\perp \). The set of all elements of \(\mathcal{G}_k \) incident to \(M \) will be denoted by \(\mathcal{G}_k^+(M) \).

Let \(\mathcal{X} \) be a subset of \(\mathcal{G}_k \). We say that \(\mathcal{X} \) is exact if it is contained only in one base subset of \(\mathcal{H}_k(\Omega) \); otherwise, \(\mathcal{X} \) will be called inexact. For any \(i \in \{1, \ldots, n\} \) we denote by \(\mathcal{X}_i \) the set of all elements of \(\mathcal{X} \) containing \(S_i \). If \(\mathcal{X}_i \) is not empty then we define

\[
U_i(\mathcal{X}) := \bigcap_{U \in \mathcal{X}_i} U,
\]

and \(U_i(\mathcal{X}) := \emptyset \) if \(\mathcal{X}_i \) is empty. It is trivial that our subset is exact if \(U_i(\mathcal{X}) = S_i \) for each \(i \).

Lemma 3. \(\mathcal{X} \) is exact if \(U_i(\mathcal{X}) \neq S_i \) only for one \(i \).

Proof. Let \(\mathcal{G}_1' \) be a base subset of \(\mathcal{H}_1(\Omega) \) which defines a base subset of \(\mathcal{H}_k(\Omega) \) containing \(\mathcal{X} \). If \(j \neq i \) then \(U_j(\mathcal{X}) = S_j \) implies that \(S_j \) belongs to \(\mathcal{G}_1' \). Let us take \(S' \in \mathcal{G}_1' \) which does not coincide with any \(S_j, j \neq i \). Since \(S' \) is orthogonal to all such \(S_j \), we have \(S' = S_i \) and \(\mathcal{G}_1' = \mathcal{G}_1 \). \(\square \)
Example 2. Let $M \in S_2$. Then $M = S_i + S_j$ for some i, j. We choose orthogonal $S'_i, S'_j \in S_1(\Omega)$ such that $S'_i + S'_j = M$ and $\{S_i, S_j\} \neq \{S'_i, S'_j\}$. Then

$$(S_1 \setminus \{S_i, S_j\}) \cup \{S'_i, S'_j\}$$

is a base subset of $S_1(\Omega)$ which defines another base subset of $S_k(\Omega)$ containing $S_k(M)$. Therefore, $S_k(M)$ is inexact. Any $U \in S_k \setminus S_k(M)$ intersects M by S_i or S_j and

$$U_p(S_k(M) \cup \{U\}) = S_p$$

if $p = i$ or j; the same holds for all $p \neq i, j$. By Lemma 3, $S_k(M) \cup \{U\}$ is exact for any $U \in S_k \setminus S_k(M)$ Thus the inexact subset $S_k(M)$ is maximal.

Lemma 4. Let X be a maximal inexact subset of S_k. Then $X = S_k(M)$ for certain $M \in S_2$.

Proof. By the definition, there exists another base subset of $S_1(\Omega)$ containing X; the associated base subset of $S_1(\Omega)$ will be denoted by S'_1. Since our inexact subset is maximal, we need to prove the existence of $M \in S_2$ such that $X \subset S_k(M)$.

Let us consider $i \in \{1, \ldots, n\}$ such that U_i is not empty (from this moment we write U_i in place of $U_i(\Omega)$). We say that the number i is of first type if the inclusion $U_j \subset U_i$, $j \neq i$ implies that $U_j = \emptyset$ or $U_j = U_i$. If i is not of first type and the inclusion $U_j \subset U_i$, $j \neq i$ holds only for the case when $U_j = \emptyset$ or j is of first type then i is said to be of second type. Similarly, other types of numbers can be defined.

Suppose that there exists a number j of first type such that dim $U_j \geq 4$. Then U_j contains certain $M \in S_2$. Since j is of first type, for any $U \in X$ one of the following possibilities is realized:

- $U \in X_j$ then $M \subset U_j \subset U$,
- $U \in X \setminus X_j$ then $U \subset U_j^{\perp} \subset M^{\perp}$.

This means that M is as required.

Now suppose that $U_j = S_j$ for all j of first type, so $S_j \in S'_1$ if j is of first type. Consider any number i of second type. If $U_i \in S_m$ then $m \geq 2$ and there are exactly $m - 1$ distinct j of first type such that $S_j = U_j$ is contained in U_i; since all such S_j belong to S'_1 and U_i is spanned by elements of S'_1, we have $S_i \in S'_1$. Step by step we establish the same for other types. Thus $S_i \in S'_1$ if U_i is not empty. Since X is inexact, Lemma 3 implies the the existence of two distinct numbers i and j such that $U_i = U_j = \emptyset$. We define $M := S_i + S_j$. Then any element of X is contained in M^{\perp} and we get the claim.

Let S'_1 be another base subset of $S_1(\Omega)$ and S'_m, $m \in \{2, \ldots, n - 1\}$ be the base subset of $S_m(\Omega)$ defined by S'_1.

Lemma 5. Let h be a bijection of S_k to S'_k such that h and h^{-1} send maximal inexact subsets to maximal inexact subsets. Then for any $M \in S_k$ there exists $M' \in S'_k$ such that

$$h(S_k(M)) = S'_k(M')$$

moreover, we have

$$h(S_k^+(M)) = S'_k^+(M')$$

if $n \neq 2k$.

Proof. Let \mathcal{B}_m, $m \in \{1, \ldots, n-1\}$ be as in subsection 3.1. For each m there is the natural bijection $b_m : \mathcal{B}_m \rightarrow \mathfrak{S}_m$ sending $(S, U) \in \mathcal{B}_m$, $S = P_{i_1} + \cdots + P_{i_m}$ to $S_{i_1} + \cdots + S_{i_m}$. For any $M \in \mathfrak{S}_m$ we have

$$\mathfrak{S}_k(M) = b_k(\mathcal{B}_k(b_m^{-1}(M))) \quad \text{and} \quad \mathfrak{S}_k^+(M) = b_k(\mathcal{B}_k^+(b_m^{-1}(M))).$$

Let b'_m be the similar bijection of \mathcal{B}_m to \mathfrak{S}'_m. Then $(b'_k)^{-1}hb_k$ is a bijective transformation of \mathcal{B}_k preserving the class of base subsets and our statement follows from Lemma 2.

4. Proof of Theorems 1 and 2

By Fact 2, we need to prove Theorem 1 only for $k < n - k$. Throughout the section we suppose that $1 < k \leq n - k$ and $n - k \geq 5$; for the case when $n = 2k$ we require that $n \geq 14$.

4.1. Let f be a bijective transformation of $\mathcal{H}_k(\Omega)$ preserving the class of base subsets. The restriction of f to any base subset satisfies the condition of Lemma 5.

For any subspace $T \subset V$ we denote by $\mathcal{H}_k(T)$ the set of all elements of $\mathcal{H}_k(\Omega)$ incident to T or T^\perp, the set of all elements of $\mathcal{H}_k(\Omega)$ incident to T will be denoted by $\mathcal{H}_k^+(T)$.

In this subsection we show that Theorems 1 and 2 are simple consequences of the following lemma.

Lemma 6. There exists a bijective transformation g of $\mathcal{H}_{k-1}(\Omega)$ such that

$$g(\mathcal{H}_k^+(T)) = \mathcal{H}_k^+(g(T)) \quad \forall T \in \mathcal{H}_{k-1}(\Omega)$$

if $n \neq 2k$, and

$$g(\mathcal{H}_k(T)) = \mathcal{H}_k(g(T)) \quad \forall T \in \mathcal{H}_{k-1}(\Omega)$$

for the case when $n = 2k$.

Let \mathfrak{S}_{k-1} be a base subset of $\mathcal{H}_{k-1}(\Omega)$ and \mathfrak{S}_k be the associated base subset of $\mathcal{H}_k(\Omega)$ (these base subsets are defined by the same base subset of $\mathcal{H}_1(\Omega)$). By our hypothesis, $f(\mathfrak{S}_k)$ is a base subset of $\mathcal{H}_k(\Omega)$; we denote by \mathfrak{S}'_k the associated base subset of $\mathcal{H}_k(\Omega)$. It is easy to see that $g(\mathfrak{S}_{k-1}) = \mathfrak{S}'_k$, so g maps base subsets to base subsets. Since f^{-1} preserves the class of base subset, the same holds for g^{-1}. Thus g preserves the class of base subsets.

Now suppose that $g = (l)_{k-1}$ for certain $l \in \Gamma\text{Sp}(\Omega)$. Let U be an element of $\mathcal{H}_k(\Omega)$. We take $M, N \in \mathcal{H}_{k-1}(\Omega)$ such that $U = M + N$. If $n \neq 2k$ then

$$\{U\} = \mathfrak{S}_k^-(M) \cap \mathfrak{S}_k^+(N) \quad \text{and} \quad \{f(U)\} = \mathfrak{S}_k^+(l(M)) \cap \mathfrak{S}_k^+(l(N)),$$

so $f(U) = l(M) + l(N) = l(U)$, and we get $f = (l)_{k}$. For the case when $n = 2k$ we have

$$\{U, U^\perp\} = \mathfrak{S}_k(M) \cap \mathfrak{S}_k(N) \quad \text{and} \quad \{f(U), f(U)^\perp\} = \mathfrak{S}_k(l(M)) \cap \mathfrak{S}_k(l(N));$$

since $l(M) + l(N) = l(U)$ and $l(M)^\perp \cap l(N)^\perp = l(U)^\perp = l(U)$,

$$\{f(U), f(U)^\perp\} = \{l(U), l(U)^\perp\};$$

the latter means that $f = (l)_{k}$. Therefore, Theorem 1 can be proved by induction and Theorem 2 follows from Theorem 1.

To prove Lemma 6 we use the following.

Lemma 7. Let $M \in \mathcal{H}_m(\Omega)$ and N be a subspace contained in M. Then the following assertion are fulfilled:
(1) If $\dim N > m$ then N contains an element of $\mathfrak{H}_1(\Omega)$.

(2) If $\dim N > m + 2$ then N contains two orthogonal elements of $\mathfrak{H}_1(\Omega)$.

(3) If $\dim N > m + 4$ then N contains three distinct mutually orthogonal elements of $\mathfrak{H}_1(\Omega)$.

Proof. The form $\Omega|_M$ is non-degenerate. If $\dim N > m$ then the restriction of $\Omega|_M$ to N is non-zero. This implies the existence of $S \in \mathfrak{H}_1(\Omega)$ contained in N. We have

$$\dim N \cap S^\perp \geq \dim N - 2,$$

and for the case when $\dim N > m + 2$ there is an element of $\mathfrak{H}_1(\Omega)$ contained in $N \cap S^\perp$. Similarly, (3) follows from (2).

4.2. **Proof of Lemma 6 for** $k < n - k$. Let $T \in \mathfrak{H}_k-1(\Omega)$ and $\mathfrak{S}_1 = \{S_1, \ldots, S_n\}$ be a base subset of $\mathfrak{H}_1(\Omega)$ such that

$$T^\perp = S_1 + \cdots + S_{n-k+1} \quad \text{and} \quad T = S_{n-k+2} + \cdots + S_n.$$ We put \mathfrak{S}_k for the base subset of $\mathfrak{H}_k(\Omega)$ associated with \mathfrak{S}_1. Then $\mathfrak{S}_k^+(T)$ consists of all

$$U_i := T + S_i,$$

where $i \in \{1, \ldots, n - k + 1\}$. By Lemma 5, there exists $T' \in \mathfrak{H}_{k-1}(\Omega)$ such that

$$f(\mathfrak{S}_k^+(T)) \subset \mathfrak{S}_k^+(T').$$ We need to show that $f(\mathfrak{S}_k^+(T))$ coincides with $\mathfrak{S}_k^+(T')$.

Lemma 8. Let $U \in \mathfrak{S}_k^+(T)$. Suppose that there exist two distinct $M, N \in \mathfrak{S}_k^+(T)$ such that $f(M), f(N)$ belong to $\mathfrak{S}_k^+(T')$ and there is a base subset of $\mathfrak{H}_k(\Omega)$ containing M, N and U. Then $f(U)$ is an element of $\mathfrak{S}_k^+(T')$.

Proof. If there exists a base subset of $\mathfrak{H}_k(\Omega)$ containing M, N and U then T belongs to the associated base subset of $\mathfrak{H}_{k-1}(\Omega)$ and Lemma 5 implies the existence of $T'' \in \mathfrak{H}_{k-1}(\Omega)$ such that $f(M), f(N)$ and $f(U)$ belong to $\mathfrak{S}_k^+(T'')$. On the other hand, $f(M)$ and $f(N)$ are different elements of $\mathfrak{S}_k^+(T')$ and $f(M) \cap f(N)$ coincides with T'. Hence $T' = T''$. □

For any $U \in \mathfrak{S}_k^+(T)$ we denote by $S(U)$ the intersection of U and T^\perp, it is clear that $S(U)$ is an element of $\mathfrak{H}_1(\Omega)$.

If $S(U)$ is contained in $S_1 + \cdots + S_{n-k-1}$ then $S(U), S_{n-k}, S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_k(\Omega)$ containing U, U_{n-k}, U_{n-k+1}. All $f(U_i)$ belong to $\mathfrak{S}_k^+(T')$ and Lemma 8 shows that $f(U) \in \mathfrak{S}_k^+(T')$.

Let U be an element of $\mathfrak{S}_k^+(T)$ such that $S(U)$ is contained in $S_1 + \cdots + S_{n-k}$. We have

$$\dim(S_1 + \cdots + S_{n-k-1}) \cap S(U)^\perp \geq 2(n-k-2) > n-k-1$$

(the latter inequality follows from the condition $n-k \geq 5$) and Lemma 7 implies the existence of $S' \in \mathfrak{H}_1(\Omega)$ contained in

$$(S_1 + \cdots + S_{n-k-1}) \cap S(U)^\perp.$$ Then $S(U), S', S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_k(\Omega)$ containing $U, T + S', U_{n-k+1}$. It was proved above that $f(T + S')$ belongs to $\mathfrak{S}_k^+(T')$. Since $f(U_i) \in \mathfrak{S}_k^+(T')$ for each i, Lemma 8 guarantees that $f(U)$ is an element of $\mathfrak{S}_k^+(T').$
Now suppose that \(S(U) \) is not contained in \(S_1 + \cdots + S_{n-k} \). Since \(n - k \geq 5 \),
\[
\dim(S_1 + \cdots + S_{n-k}) \cap S(U) \geq 2(n - k - 1) > n - k + 2.
\]
By Lemma 7, there exist two orthogonal \(S', S'' \in \mathcal{H}_1(\Omega) \) contained in
\[
(S_1 + \cdots + S_{n-k}) \cap S(U) \perp.
\]
Then \(S', S'', S(U) \) are mutually orthogonal and there exists a base subset of \(\mathcal{H}_k(\Omega) \)
containing \(S' + T, S'' + T \) and \(U \). We have shown above that \(f(S' + T), f(S'' + T) \)
belong to \(\mathcal{H}_k^+(T') \) and Lemma 8 shows that the same holds for \(f(U) \).
So \(f(\mathcal{H}_k^+(T)) \subset \mathcal{H}_k^+(T') \). Since \(f^{-1} \) preserves the class of base subsets, the
inverse inclusion holds true. We define \(g : \mathcal{H}_{k-1}(\Omega) \rightarrow \mathcal{H}_{k-1}(\Omega) \) by \(g(T) := T' \).
This transformation is bijective (otherwise, \(f \) is not bijective).

4.3. Proof of Lemma 6 for \(n = 2k \). We start with the following.

Lemma 9. If \(n = 2k \) then \(f(U^\perp) = f(U) \) for any \(U \in \mathcal{H}_k(\Omega) \).

Proof. We take a base subset \(\mathcal{G}_k \) containing \(U \). Then \(U^\perp \in \mathcal{G}_k \). Denote by \(\mathcal{G}_{k-1} \)
the base subset of \(\mathcal{H}_{k-1}(\Omega) \) associated with \(\mathcal{G}_k \). Let \(\mathcal{G}_k' \)
be the base subset of \(\mathcal{H}_{k-1}(\Omega) \) associated with \(\mathcal{G}_k' := f(\mathcal{G}_k) \). We choose \(M, N \in \mathcal{G}_{k-1} \)
such that \(U = M + N \). Then
\[
\{U, U^\perp\} = \mathcal{G}_k(M) \cap \mathcal{G}_k(N)
\]
and Lemma 5 guarantees that
\[
\{f(U), f(U^\perp)\} = \mathcal{G}_k'(M') \cap \mathcal{G}_k'(N')
\]
for some \(M', N' \in \mathcal{G}_k' \). The set \(\mathcal{G}_k'(M') \cap \mathcal{G}_k'(N') \) is not empty if one of the
following possibilities is realized:

- \(M' + N' \) and \(M'^\perp \cap N'^\perp \) are elements of \(\mathcal{H}_{k-1}(\Omega) \) and \(\mathcal{G}_k'(M') \cap \mathcal{G}_k'(N') \)
 consists of these two elements.
- \(M' \subset N'^\perp \) and \(N' \subset M'^\perp \), then \(\mathcal{G}_k'(M') \cap \mathcal{G}_k'(N') \) consists of 4 elements.

Thus
\[
\{f(U), f(U^\perp)\} = \{M' + N', M'^\perp \cap N'^\perp\}.
\]
Since \(M' + N' \) and \(M'^\perp \cap N'^\perp \) are orthogonal, we get the claim. \(\square \)

Let \(T \in \mathcal{H}_{k-1}(\Omega) \). As in the previous subsection we consider a base subset
\(\mathcal{G}_1 = \{S_1, \ldots, S_n\} \) of \(\mathcal{H}_1(\Omega) \) such that
\[
T^\perp = S_1 + \cdots + S_{n-k+1} \text{ and } T = S_{n-k+2} + \cdots + S_n.
\]
We denote by \(\mathcal{G}_k \) the base subset of \(\mathcal{H}_k(\Omega) \) associated with \(\mathcal{G}_1 \). Then \(\mathcal{G}_k(T) \)
consists of
\[
U_i := T + S_i, \quad i \in \{1, \ldots, n - k + 1\}
\]
and their orthogonal complements. Lemma 5 implies the existence of \(T' \in \mathcal{H}_{k-1}(\Omega) \)
such that
\[
f(\mathcal{G}_k(T)) \subset \mathcal{H}_k(T').
\]
We show that \(f(U) \) belongs to \(\mathcal{H}_k(T') \) for any \(U \in \mathcal{H}_k(T) \).

We need to establish this fact only for the case when \(U \) is an element of \(\mathcal{H}_k^+(T) \). Indeed, if \(U \in \mathcal{H}_k^+(T^\perp) \) then \(U^\perp \) is an element of \(\mathcal{H}_k^+(T) \) and \(f(U^\perp) \in \mathcal{H}_k(T') \)
implies that \(f(U) = f(U^\perp)^\perp \) belongs to \(\mathcal{H}_k(T') \).
Lemma 10. Let $U \in \mathcal{F}_k^+(T)$. Suppose that there exist distinct $M_i \in \mathcal{F}_k^+(T)$, $i = 1, 2, 3$ such that each $f(M_i)$ belongs to $\mathcal{F}_k(T')$ and there is a base subset of $\mathcal{F}_k(\Omega)$ containing M_1, M_2, M_3 and U. Then $f(U) \in \mathcal{F}_k(T')$.

Proof. By Lemma 5, there exists $T'' \in \mathcal{F}_{k-1}(\Omega)$ such that $f(U)$, all $f(M_i)$, and their orthogonal complements belong to $\mathcal{F}_k(T''')$. For any $i = 1, 2, 3$ one of the subspaces $f(M_i)$ or $f(M_i)^\perp$ is an element of $\mathcal{F}_k^+(T''')$; we denote this subspace by M_i'. Then

$$T'' = \bigcap_{i=1}^3 M_i'$$

and $T'' = M_i'^\perp + M_j'^\perp$, $i \neq j$;

note also that the intersection of any M_i' and $M_j'^\perp$ does not belong to $\mathcal{F}_{k-1}(\Omega)$. Since all M_i' and $M_j'^\perp$ belong to $\mathcal{F}_k(T')$, we have $T'' = T''$.

As in the previous subsection for any $U \in \mathcal{F}_k^+(T)$ we denote by $S(U)$ the intersection of U and T^\perp, it is an element of $\mathcal{F}_1(\Omega)$.

If $S(U)$ is contained in $S_1 + \cdots + S_{n-k-2}$ then $S(U), S_{n-k-1}, S_{n-k}, S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathcal{F}_k(\Omega)$ containing $U, U_{n-k-1}, U_{n-k}, U_{n-k+1}$. Since $f(U_i) \in \mathcal{F}_k(T')$ for each i, Lemma 10 shows that $f(U)$ belongs to $\mathcal{F}_k(T')$.

Suppose that $S(U)$ is contained in $S_1 + \cdots + S_{n-k-1}$. We have

$$\dim(S_1 + \cdots + S_{n-k-2}) \cap S(U)^\perp \geq 2(n-k-3) > n-k-2$$

(since $k = n-k \geq 7$) and Lemma 7 implies the existence of $S' \in \mathcal{F}_1(\Omega)$ contained in

$$(S_1 + \cdots + S_{n-k-2}) \cap S(U)^\perp.$$

Then $S(U), S', S_{n-k}, S_{n-k+1}$ are mutually orthogonal, so $U, T + S', U_{n-k}, U_{n-k+1}$ are contained in a certain base subsets of $\mathcal{F}_k(\Omega)$. It was shown above that $f(T+S')$ is an element of $\mathcal{F}_k(T')$ and Lemma 10 guarantees that $f(U) \in \mathcal{F}_k(T')$ (recall that all $f(U_i)$ belong to $\mathcal{F}_k(T')$).

Consider the case when $S(U)$ is contained in $S_1 + \cdots + S_{n-k}$. We have

$$\dim(S_1 + \cdots + S_{n-k-1}) \cap S(U)^\perp \geq 2(n-k-2) > (n-k-1) + 2$$

(recall that $k = n-k \geq 7$) and there exist two orthogonal $S', S'' \in \mathcal{F}_1(\Omega)$ contained in

$$(S_1 + \cdots + S_{n-k-1}) \cap S(U)^\perp.$$

(Lemma 7). Then $S(U), S', S'', S_{n-k+1}$ are mutually orthogonal and there exists a base subsets of $\mathcal{F}_k(\Omega)$ containing $U, T+S', T+S'', U_{n-k+1}$. It follows from Lemma 10 that $f(U) \in \mathcal{F}_k(T')$ (since $f(T+S')$, $f(T+S'')$ and any $f(U_i)$ belong to $\mathcal{F}_k(T')$).

Let U be an element of $\mathcal{F}_k(T')$ such that $S(U)$ is not contained in $S_1 + \cdots + S_{n-k}$. Since $n = 2k \geq 14$,

$$\dim(S_1 + \cdots + S_{n-k}) \cap S(U)^\perp \geq 2(n-k-1) > n-k+4.$$

By Lemma 7, there exist mutually orthogonal $S', S'', S''' \in \mathcal{F}_1(\Omega)$ contained in

$$(S_1 + \cdots + S_{n-k}) \cap S(U)^\perp.$$

A base subsets of $\mathcal{F}_k(\Omega)$ containing $U, T+S', T+S'', T+S'''$ exists. It was shown above that $f(T+S')$, $f(T+S'')$ and $f(T+S''')$ belong to $\mathcal{F}_k(T')$ and Lemma 10 implies that the same holds for $f(U)$.

Thus $f(\mathfrak{H}_k(T)) \subset \mathfrak{H}_k(T')$. As in the previous subsection we have the inverse inclusion and define $g : \mathfrak{H}_{k-1}(\Omega) \rightarrow \mathfrak{H}_{k-1}(\Omega)$ by $g(T) := T'$.

References

[1] Cuypers H., Symplectic geometries, transvection groups and modules, J. Combin. Theory A 65(1994), 39-59.
[2] Dieudonné J., On the automorphisms of the classical groups, Memoirs Amer. Math. Soc. 2(1951) 1-95.
[3] Dieudonné J., La Géométrie des Groupes Classiques, Springer-Verlag, Berlin, 1971.
[4] Gramlich R., On the hyperbolic symplectic geometry, J. Combin. Theory A 105(2004) 97-110.
[5] Hall J. I., The hyperbolic lines of finite symplectic spaces, J. Combin. Theory A 47(1988), 284-298.
[6] H. Havlicek and M. Pankov, Transformations on the product of Grassmann spaces. Demonstratio Math. XXXVIII (2005), to appear.
[7] Mackey G. W., Isomorphisms of normed linear spaces, Ann. of Math. 43 (1942) 244-260.
[8] Pankov M., On geometry of linear involution, Adv. Geom. (to appear).
[9] Rickart C. E., Isomorphic groups of linear transformations I, II, Amer. J. Math. 72(1950) 451-464, 73(1951), 697-716.

Institute of Mathematics NASU, Kiev
E-mail address: pankov@imath.kiev.ua