Minimum Degree up to Local Complementation:
Bounds, Parameterized Complexity,
and Exact Algorithms

David Cattanéo¹, Simon Perdrix²

¹ LIG, University of Grenoble, France
² CNRS, Inria project team Carte, LORIA, Nancy, France

Abstract. The local minimum degree of a graph is the minimum degree that can be reached by means of local complementation. For any \(n \), there exist graphs of order \(n \) which have a local minimum degree at least \(\frac{1}{2}n \) \(+ o(n) \) and at least \(\frac{1}{4}n \) \(+ o(n) \) when restricted to bipartite graphs. Regarding the upper bound, we show that for any graph of order \(n \), its local minimum degree is at most \(\frac{3}{8}n + o(n) \) and \(\frac{n}{4} + o(n) \) for bipartite graphs, improving the known \(n^2 \) upper bound. We also prove that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term).

The local minimum degree problem is NP-Complete and hard to approximate. We show that this problem, even when restricted to bipartite graphs, is in W[2] and FPT-equivalent to the EvenSet problem, which \(\text{W}[1] \)-hardness is a long standing open question. Finally, we show that the local minimum degree is computed by a \(O^*(1.938^n) \)-algorithm, and a \(O^*(1.466^n) \)-algorithm for the bipartite graphs.

1 Introduction

Notations. Given a graph \(G = (V, E) \), \(\sim_G \) denotes the neighbourhood relation of \(G \) i.e., \(\forall u, v \in V, u \sim_G v \iff (u, v) \in E \). We consider simple (\(\forall u \in V, u \neq u \)), undirected (\(u \sim v \iff v \sim u \)) graphs. The set \(N_G(u) = \{ v \mid u \sim_G v \} \) is the neighbourhood of \(u \) and its size \(\delta_G(u) = |N_G(u)| \) is the degree of \(u \). \(\delta(G) = \min_{u \in V} \delta_G(u) \) is the minimum degree of \(G \) and \(\tau(G) \) is the vertex cover number i.e., the size of the smallest set \(S \) such that \(\forall (u, v) \in E, u \in S \) or \(v \in S \). For any \(D \subseteq V \), \(\text{Odd}_G(D) = \Delta_{u \in D} N_G(u) = \{ v \in V \mid |N_G(v) \cap D| = 1 \mod 2 \} \) is the odd-neighbourhood of \(D \), where \(\Delta \) denotes the symmetric difference.

Local complementation. Local complementation of a graph with respect to one of its vertex consists in complementing the neighbourhood of this vertex:

Definition 1. The local complementation of a graph \(G \) with respect to one of its vertex \(u \) is the graph \(G^*u \) such that \(v \sim_{G^*u} w \iff (v \sim_G w) \oplus (u \sim_G v \land u \sim_G w) \).
The local complementation is an involution \((G \star u \star u = G)\). The transitive closure of a graph with respect to the local complementation forms an equivalent class: \(G \equiv_{LC} H \iff \exists u_0, \ldots, u_k, G \star u_0 \cdots \star u_k = H\).

Local complementation has been introduced by Kotzig [20]. The study of this quantity is motivated by several applications: Bouchet [4, 5] and de Fraysseix [9] used local complementation to give a characterization of circle graphs, and Oum [22] links the notion of vertex minor of a graph to LC-equivalence. A noticeable property of local complementation proved by Bouchet [2] is that LC-equivalence of graphs can be decided in time polynomial in the order of the graphs.

Cut rank. Local complementation is related to the cut-rank function\(^3\) [2, 22]: given a graph \(G\) and a cut \((A, V\setminus A)\) of \(G\), \(\text{cutrk}_G(A)\) is the rank of the linear map \(L_A : 2^A \to 2^{V\setminus A} = X \mapsto \text{Odd}_G(X) \cap (V\setminus A)\). \(L_A\) is linear with respect to the symmetric difference: \(L_A(X \Delta Y) = L_A(X) \Delta L_A(Y)\). The cut-rank can equivalently be defined as the rank of the cut-matrix, a sub-matrix of the adjacency matrix.

LC-equivalent graphs have the same cutrank \((\text{cutrk}_G(\cdot) = \text{cutrk}_{G\star u}(\cdot))\) [3], however the opposite which was conjectured in [2], has been disproved by Fon der Flaass [13]: the counter example involves two copies of the Petersen graph which have the same cut-rank but which are not LC-equivalent.

LU-equivalence. More recently, local complementation has emerged as a key property in the field of quantum information theory. The graph state formalism consists in representing a quantum state using a graph (see [15] for details). This powerful formalism provides a graphical representation of the quantum entanglement which is a correlation – stronger than any classical correlation – between the qubits of the state i.e., the vertices of the graph. Intuitively, since entanglement is a non local property, the strength of the entanglement can only decrease when local operations are applied on the quantum state, and as a consequence the entanglement is invariant by local reversible operations. In the field of quantum information theory this intuition is captured by the LU-equivalence of quantum states: two quantum states have the same entanglement if and only if there are LU-equivalent i.e., there is a local unitary operation transforming one state into the other. LU-equivalence of quantum states can be naturally lifted to graphs as follows: two graphs are LU-equivalent if and only if the corresponding quantum states are LU-equivalent. Van den Nest [26] proved that LC-equivalent graphs are LU-equivalent. Moreover Hein et al. [15] proved that LU-equivalent graphs have the same cutrank. Thus the LU-equivalence is in-between the LC-equivalence and the cut-rank equivalence. Using Fon der Flaas counter example based on the Petersen graph, one can show that there exist pairs of graphs which are not LU-equivalent but which have the same cutrank [15]. LC- and LU-equivalences was conjectured to coincide [12]. Indeed, LC-

\(^3\) It was used by Bouchet [2] and others under the name connectivity function, and coined the cut-rank by Oum [22].
and LU-equivalence coincide actually coincide several families of graphs \cite{24,27}, however a counter example of order 27 has been discovered using computer assisted methods \cite{19}.

Local minimum degree. In this paper we will focus on the minimum degree up to local complementation called local minimum degree:

Definition 2. Given a graph G, the *local minimum degree* of G is

$$\delta_{\text{loc}}(G) = \min_{H \equiv_{LC}^G} \delta(H)$$

The local minimum degree has been used to bound the rate of some quantum codes obtained by graph concatenation \cite{1}. This quantity has also been used to characterise the complexity of preparation of graph states \cite{16} which are used as a resource in measurement-based quantum computation \cite{24} (a model of quantum computation which is very promising in terms of physical implementation), as well as blind quantum computation \cite{6} for instance. The local minimum degree is also used to bound the optimal threshold that can be achieved by graph-based quantum secret sharing \cite{21,14}.

The local minimum degree is related to the cut-rank function and the smallest set of the form $D \cup \text{Odd}(G(D))$:

Property 1 \cite{16}. Given a graph $G = (V, E)$,

$$\delta_{\text{loc}}(G) + 1 = \min_{\emptyset \subseteq D \subseteq V} \{|D \cup \text{Odd}(G(D))|\} = \min_{A \subseteq V} \{|A| \text{ s.t. cutrk}(A) < |A|\}$$

The second equation provides a cut-rank characterisation of the local minimum degree which implies that two graphs which have the same cut-rank have the same local minimum degree. As a consequence, LU-equivalent graphs which have the same cut-rank function, have the same local minimum degree too. Thus the local minimum degree is invariant for the three closely related, albeit distinct, classes of equivalence based respectively on local complementation, local unitary, and cut-rank functions.

Bounds on the local minimum degree. The local minimum degree has been studied for several families of graphs: the local minimum degree of the hypercube is at least logarithmic in the order of the hypercube \cite{16}; the local minimum degree of a Paley graph P_n of order n is at least \sqrt{n}. There is no known specific upper bound on the local minimum degree of Paley graphs except that not all Paley graphs can have a linear local minimum degree (i.e., $\delta_{\text{loc}}(P_n) = \Theta(n)$), and the existence of an infinite number of Paley graphs with a linear local minimum degree would imply the Bazzi-Mitter conjecture on elliptic curves \cite{17,18}.

There is no known construction which leads to a local minimum degree greater than the square root of the order of the graph, however using probabilistic methods, it has been proven that there exist graphs of order n which have a local minimum degree larger than $0.189n$ \cite{18}. There are even bipartite
graphs with a linear local minimum degree: for any \(n \) there exists a bipartite graph of order \(n \) and local minimum degree at least 0.110\(n \) \[18\].

In section 2, we provide upper-bounds on the local minimum degree of a graph. It was known that the local minimum degree is smaller than half of the order of the graph – basic observation based on (i) the cut-rank characterisation of the local minimum degree provided by Property \[11\] and (ii) any set larger than half of the vertices cannot have a full cut-rank. We improve this upper bound, proving that for any graph of order \(n \), its local minimum degree is at most \(\frac{n}{3} + o(n) \), and \(\frac{n}{4} + o(n) \) for bipartite graphs. We also prove that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term).

Complexity of the local minimum degree. One motivation for studying the complexity of computing the local minimum degree comes from the problem of producing graphs with a ‘large’ local minimum degree. Indeed, there is no known construction of graphs with a local minimum degree linear in the order of the graph, but a random graph has such a ‘large’ local minimum degree with high probability. So to produce a graph with a large local minimum degree, one can pick a graph at random and then double check that the local minimum degree is actually ‘large’. However, computing the local minimum degree is hard, even for bipartite graphs: the associated decision problem is NP-Complete \[18\] and hard to approximate \[18\].

In section 3, we investigate the parameterized complexity of the local minimum degree problem and its restriction to bipartite graphs. We show that both problems are FPT-equivalent to the so-called EvenSet problem, implying their W[2]-membership. However, it does not imply any hardness result since the W[1]-hardness of EvenSet is long standing open question \[11\].

In section 4, we introduce exponential algorithms for computing the local minimum degree, mainly based on the improved upper bounds. We show that the local minimum degree of any graph of order \(n \) can be computed in time \(O^*(1.938^n) \) and more interestingly that the local minimum degree of bipartite graphs can be computed in time \(O^*(1.466^n) \).

2 Upperbounds on the local minimum degree.

For improving the known bounds on the minimum degree up to local complementation, we use as a routine the fact that in any bipartite graph \(G = (V_1, V_2, E) \), there exists a non empty subset of \(V_1 \) which oddly dominates at most

\[
\frac{|V_2|}{2(1-2^{-|V_1|})}
\]

so roughly speaking as long as \(V_1 \) is not too small with respect to \(V_2 \) there is a non empty subset of \(V_1 \) which oddly dominates at most half of the vertices of \(V_2 \). This fact is a direct consequence of the so called Plotkin bound \[23\] on linear codes.
Lemma 1. For any bipartite graph \(G = (V_1, V_2, E) \), there exists a non empty set \(D \subseteq V_1 \) s.t.
\[
|Odd_G(D)| \leq \frac{|V_2|}{2(1 - 2^{-|V_1|})}
\]

Proof. \(C := \{Odd(D), D \subseteq V_1\} \) is a linear binary code of length \(n = |V_2| \) and rank \(k = |V_1| \). According to the Plotkin bound \([23]\), the minimum distance \(d \) of \(C \) is at most \(n/(2(1 - 2^{-k})) \), thus there exists a non empty set \(D \subseteq V_1 \) such that
\[
|Odd(D)| \leq |V_2|/(2(1 - 2^{-|V_1|})).
\]

The local minimum degree can be bounded by the vertex cover number as follows:

Lemma 2. Given a graph \(G \) of order \(n \) and vertex cover number \(\tau(G) > 0 \),
\[
2\delta_{loc}(G) \leq \tau(G) + \log_2(\tau(G)) + 1
\]

Proof. Let \(G = (V, E) \) be a graph of order \(n \), and let \(S \) be an independent set of size \(\alpha = n - \tau(G) \), and \(R \) a subset of size \(k \) to be fixed later. Let \(G' = (R, (V \setminus S) \cup R) \) be a bipartite graph s.t. for any \(u \in R, N_{G'}(u) = \{u\} \cup N_G(u) \). Notice that there are two copies of \(R \) in \(G' \), one on each side of the bipartite graph: there is a matching between these two copies of \(R \), the other edges of \(G' \) are those of \(G \) between \(R \) and \(V \setminus S \). According to lemma \([1]\) there exists \(D \subseteq R' \) s.t
\[
|Odd_{G'}(D)| \leq \frac{|V| - |S| + |R|}{2(1 - 2^{-|R|})} = \frac{\tau(G) + k}{2(1 - 2^{-k})}
\]
The odd-neighbourhood of \(D \) in \(G' \) is related to the odd-neighbourhood of \(D \) in \(G \) as follows: \(Odd_{G'}(D) = \Delta_{u \in D} N_{G'}(u) = \Delta_{u \in D} (\{u\} \cup N_G(u)) = D \Delta Odd_G(D) \). Thus \(|Odd_{G'}(D)| = |D \cup Odd_G(D)| \). As a consequence, \(\delta_{loc}(G) + 1 \leq \frac{\tau(G) + k}{2(1 - 2^{-k})} \).

- If \([\log_2(\tau(G) + 1)] \leq n - \tau(G) \), then we fix \(k = [\log_2(\tau(G) + 1)] \):
\[
\delta_{loc}(G) + 1 \leq \frac{\tau(G) + [\log_2(\tau(G) + 1)]}{2(1 - 2^{-[\log_2(\tau(G) + 1)]})} < \frac{1}{2}(\tau(G) + \log_2(\tau(G))) + 1
\]

To prove the second inequality, let \(\tau(G) = 2^r + y \) with \(y < 2^r \). Notice that \([\log_2(\tau(G) + 1)] = r + 1 \), thus
\[
\delta_{loc}(G) + 1 \leq \frac{2^r + y + r + 1}{2(1 - 2^{-r - 1})}
\]
Moreover, standard calculation show that \(\frac{2^r + y + r + 1}{2(1 - 2^{-r - 1})} < 2^r + y + \log_2(2^r + y) + 2 \) when \(r > 0 \). Thus \(2\delta_{loc}(G) + 2 < \tau(G) + \log_2(\tau(G)) + 2 \). When \(r = 0 \), \(\tau(G) = 1 \), thus \(G \) is a star (and possibly some isolated vertices), so \(2\delta_{loc}(G) \leq 2 = \tau(G) + \log_2(\tau(G)) + 1 \).

- If \([\log_2(\tau(G) + 1)] > n - \tau(G) \), then it is enough to prove that \(2\delta_{loc}(G) \leq n \) since \(\tau(G) + \log_2(\tau(G)) + 1 \geq \tau(G) + [\log_2(\tau(G) + 1)] > n \). For any set \(S \) of \(\frac{n}{2^r} + 1 \), cutrk_2(S) < |S| since \(|V \setminus S| < |S| \), thus according to property \([1]\) \(\delta_{loc}(G) < \frac{n}{2^r} + 1 \leq n/2 \).
Remark 1. In Lemma 2, the condition $\tau(G) > 0$ only excludes the empty graph and is used to guarantee that the logarithm is well defined. The bound is tight for star graphs: $\delta_{loc}(S_n) = 1$ and $\tau(S_n) = 1$. This is the only tight case and when $\tau(G) > 1$, the proof can be modified to prove the following statement where the constant factor is removed: if $\tau(G) > 1$, $2\delta_{loc}(G) \leq \tau(G) + \log_2(\tau(G))$.

The vertex cover number-based bound on the local minimal degree leads to an improved general upper bound for bipartite graphs:

Theorem 1. For any bipartite graph G of order $n > 0$, $$\delta_{loc}(G) < \frac{n}{4} + \log_2 n$$

Proof. If $n \leq 2$, the property is satisfied. Otherwise, since G is bipartite $\tau(G) \leq \lfloor n/2 \rfloor$, so according to Lemma 2,
$$\delta_{loc}(G) \leq \frac{1}{2}(\tau(G) + \log_2(\tau(G)) + 1) \leq \frac{n}{4} + \frac{1}{2}\log_2(n/2) + \frac{1}{2} \leq \frac{n}{4} + \frac{1}{2}\log_2 n \leq \frac{n}{4} + \log_2 n$$

Contrary to the bipartite case, the bound involving the vertex cover number does not lead to an improved upper bound for non-bipartite graphs. However, we prove that the local minimum degree of a graph of order n is at most $\frac{3}{8}n + o(n)$ exploiting the structure of the kernels of the linear maps associated with the cuts of the graph:

Theorem 2. For any graph G of order $n > 0$,
$$\delta_{loc}(G) < \frac{3}{8}n + \log_2 n$$

Proof. For any integer $0 < k < n/2$, let S be a subset of $\lfloor n/2 \rfloor + k$ vertices. Let $L : S \rightarrow V \setminus S$ be the map $D \mapsto Odd_G(D)|\setminus S$ which is linear for the symmetric difference, i.e. $L(D_1 \Delta D_2) = L(D_1) \Delta L(D_2)$. Notice that for any $D \in Ker(L)$, $D \cup Odd(D) \subseteq S$. According to the rank nullity theorem, $\dim(Ker(L)) \geq 2k - 1$. Let $R \subseteq S$ be a basis for $Ker(L)$. Let $G' = (R, S \times \{1, 2, 3\}, E')$ be a bipartite graph s.t. for any $D \in R$, $N_{G'}(D) = D \times \{1\} \cup Odd_G(D) \times \{2\} \cup (Odd_G(D) \Delta D) \times \{3\}$: the neighbourhood of D in G' is the disjoint union of D, $Odd_G(D)$ and $D \Delta Odd_G(D)$. Notice that $|R| \geq 2k - 1$ and $|S \times \{1, 2, 3\}| = 3(\lfloor n/2 \rfloor + k)$, so according to lemma there exists a non empty $R_0 \subseteq R$ such that
$$|Odd_G'(R_0)| \leq \left\lfloor \frac{3}{2} \frac{\lfloor n/2 \rfloor + k}{2 - 2k + 1} \right\rfloor$$
Let $F := \Delta_{R_0} D$. Since R is a basis and $R_0 \neq \emptyset$, $F \neq \emptyset$. Moreover \(Odd_G'(R_0) = \Delta_{R_0} N_G(D) = \Delta_{R_0} (D \times \{1\} \cup Odd_G(D) \times \{2\} \cup (Odd_G(D) \Delta D) \times \{3\}) = F \times \{1\} \cup Odd_G(F) \times \{2\} \cup (F \Delta Odd_G(F)) \times \{3\} \). Thus \(|Odd_G'(R_0)| = |F| + |Odd_G(F)| + |F \Delta Odd_G(F)| = 2|F \cup Odd_G(F)|\. As a consequence,

$$|F \cup Odd_G(F)| \leq \left\lfloor \frac{3}{2} \left\lfloor \frac{n}{2} \right\rfloor + k \right\rfloor$$

We choose $k = \lfloor 4 \log_2 (n) \rfloor$ to guarantee $|F \cup Odd_G(F)| \leq \frac{3}{8} n + \log_2(n) + O(1)$. More precisely, notice that

$$|F \cup Odd_G(F)| \leq \frac{3}{8} n + 2 \left\lfloor \frac{4 \log_2(n) / 3}{2} \right\rfloor \leq \frac{3}{8} n + 8 \log_2(n) / 3$$

which is strictly smaller than $\frac{3}{8} n + \log_2(n) + 1$ when $n > 60$. For $2 < n \leq 61$, one can double check by direct calculation that the bound in equation 1 is actually strictly smaller than $\frac{3}{8} n + \log_2(n) + 1$. Thus for any $n > 2$, $|D \cup Odd_G(D)| < \frac{3}{8} n + \log_2 n + 1$, so $\delta_{loc}(G) < \frac{3}{8} n + \log_2 n$. Finally, it is easy to check that $\delta_{loc}(G) < \frac{3}{8} n + \log_2 n$ also holds for $n \leq 2$.

Remark 2. Choosing $k = \lfloor \log_2(n) / 2 \rfloor$ in the proof of theorem 2 gives an asymptotically slightly better bound: $\delta_{loc}(G) \leq 3/8n + 3/4 \log_2(n) + O(1)$.

3 Parameterized Complexity

The decision problem associated with the local minimum degree is known to be NP-complete and hard to approximate: there exists no k-approximation algorithm for this problem for any constant k unless $P=NP$ [18]. In this section we consider the parameterized complexity of this problem. Please refer to [10] for an introduction to parameterized complexity.

Local Minimum Degree:

Input: A graph G

Parameter: An integer k

Question: Is $\delta_{loc}(G) \leq k$?

We also consider its bipartite variant:

Bipartite Local Minimum Degree:

Input: A bipartite graph G

Parameter: An integer k

Question: Is $\delta_{loc}(G) \leq k$?

We show that both problems are FPT-equivalent to the EvenSet problem [11]:

EvenSet:
input: A bipartite graph \(G = (R, B, E) \)

parameter: An integer \(k \)

question: Is there a non empty \(D \subseteq R \), such that \(|D| \leq k \) and \(\text{Odd}_G(D) = \emptyset \) i.e., every vertex in \(B \) has an even number of neighbours in \(D \)?

To prove the FPT-equivalence of these three problems, first we prove that \text{EvenSet} is harder than \text{Local Minimum Degree}, and then that \text{Bipartite Local Minimum Degree} is harder than \text{EvenSet}.

Theorem 3. \text{EvenSet} is harder than \text{Local Minimum Degree} by an FPT-reduction.

Proof. Given an instance \((G, k)\) of \text{Local Minimum Degree}, let \((G', k')\) be an instance of \text{EvenSet} where:

\[
G' = (A_1 \cup A_2, \cup A_3, A_4 \cup A_5, E_1 \cup E_2 \cup E_3), \quad k' = 2k
\]

\[
\forall i \in \{1, 3\}, \quad A_i = \{a_{i,u}, \forall u \in V(G)\}
\]

\[
E_1 = \{(a_{1,u}, a_{4,u}), \forall u \in V(G)\},
\]

\[
E_2 = \{(a_{1,u}, a_{5,u}), \forall i \in \{2, 3\}, \forall u \in V(G)\}
\]

\[
E_3 = \{(a_{2,u}, a_{4,u}), \forall i \in \{4, 5\}, \forall (u, v) \in E(G)\}
\]

In other words, \(G' \) consists of 5 copies \(A_i \) of \(V(G) \), there is a matching between \(A_1 \) and \(A_4 \), and between \(A_3 \) and \(A_5 \). Moreover, the subgraph induced by \(A_2 \cup A_4 \) is the bipartite double of \(G \), whereas subgraph induced by \(A_2 \cup A_5 \) the bipartite double of \(G \) augmented with a matching.

![Diagram](image)

- If \((G, k)\) is a positive instance of \text{Local Minimum Degree} with a non empty \(D \subseteq V(G) \) such that \(|D \cup \text{Odd}_G(D)| \leq k \). Let \(D' = \{a_{1,u} \mid u \in \text{Odd}_G(D)\} \cup \{a_{2,u} \mid u \in D\} \cup \{a_{3,u} \mid u \in \text{Odd}_G(D) \Delta D\} \), thus \(D' \) is composed of the copy of \(D \) in \(A_2 \), the copy of \(\text{Odd}_G(D) \) in \(A_1 \) and the copy of \(D \Delta \text{Odd}_G(D) \) in \(A_3 \). Notice that \(\text{Odd}_G(D') = \emptyset \), and \(D' \neq \emptyset \) since \(D \neq \emptyset \). Moreover \(|D'| = |\text{Odd}_G(D)| + |D| + |D \Delta \text{Odd}_G(D)| = 2|D \cup \text{Odd}_G(D)| \leq 2k = k' \). Thus \(D' \) makes \((G', k')\) a positive instance of \text{EvenSet}.

- If \((G', k')\) is a positive instance of \text{EvenSet} with a non empty \(D \subseteq A_1 \cup A_2 \cup A_3 \) of size at most \(k' \) such that \(\text{Odd}_{G'}(D) = \emptyset \). For \(i \in \{1, 3\} \), let \(D_i = \{u \in V(G) \mid a_{i,u} \in D\} \). Notice that \(D_1 = \text{Odd}_{G'}(D_2) \) and \(D_3 = \text{Odd}_{G'}(D_2) \Delta D_2 \). \(D \neq \emptyset \) implies \(D_2 \neq \emptyset \), moreover \(|D_2 \cup \text{Odd}_{G'}(D_2)| = \frac{k}{2}(|D_2| + |\text{Odd}_{G'}(D_2)| + \)
\[
|Odd_G(D_2) \Delta D_2| = \frac{1}{2}|D| \leq \frac{1}{2}k' = k,
\]
so \(D_2\) makes \((G,k)\) a positive instance of \textsc{Local Minimum Degree}. \qed

Corollary 1. \textsc{Local Minimum Degree} is in \(W[2]\).

\(W[2]\)-membership of \textsc{Local Minimum Degree} is not surprising in the sense that not only \textsc{EvenSet} but all similar problems of graph domination with parity conditions are known to be in \(W[2]\) [8]. We refine this \(W[2]\)-membership by proving that both \textsc{Local Minimum Degree} and \textsc{Bipartite Local Minimum Degree} are FPT-equivalent to \textsc{EvenSet}. They form a peculiar subclass of \(W[2]\) for which no hardness results are known: the \(W[1]\)-hardness of \textsc{EvenSet} is a long standing open question in parameterized complexity [11]. This contrasts with the subclass of problems FPT-equivalent to the \(W[1]\)-hard \textsc{OddSet} problem which contains problems like \textsc{Weak Odd Domination} and \textsc{Quantum Threshold} [7].

Theorem 4. \textsc{Bipartite Local Minimum Degree} is harder than \textsc{EvenSet} by an FPT-reduction.

Proof. If \((G=(R,B,E),k)\) is a positive instance of \textsc{EvenSet}, then it is also a positive instance of \textsc{Bipartite Local Minimum Degree}. But if \((G,k)\) is a positive instance of \textsc{Bipartite Local Minimum Degree}, it may fail to be a positive instance of \textsc{EvenSet} mainly for two reasons:

(i) A set \(D\) such that \(|D \cup Odd_G(D)| \leq k\) may not be a subset of \(R\).

(ii) For solving \textsc{EvenSet}, one wants to guarantee that \(Odd_G(D) = \emptyset\).

Regarding the first point, a gadget with a local minimum degree larger than \(k + 1\) is attached to each vertex in \(B\) to guarantee that no vertex of \(B\) can occur in a set \(D\) such that \(|D \cup Odd(D)| \leq k\). Concretely we can use a Paley graph which local minimum degree is at least square root of its order. However to keep the bipartiteness of the graph we use the bipartite double of a Paley graph rather than a Paley graph. Indeed, it is known that the local minimum degree of a bipartite double graph is as large as the local minimum degree of the original graph \(\delta_{loc}(G^{\otimes 2}) \geq \delta_{loc}(G) [17]\).

Regarding the second point, each vertex of \(B\) is duplicated \(k - 1\) times in such a way that for any \(D \subseteq R\) if a vertex \(v \in B\) is in the odd neighbourhood of \(D\) than its \(k - 1\) copies are also in the odd-neighbourhood which contradicts the fact that \(|D \cup Odd(D)|\) is at most \(k\).

Concretely, let \(q\) be a prime number such that \(q \geq k^2 + 1\) and \(q = 1\) mod 4, let \((G',k)\) be an instance of \textsc{Bipartite Local Minimum Degree} such that \(G' = (R \cup P', P, E_G \cup E_Paley)\), where \(P = \bigcup_{b \in B,i \in [1,k]} P_{b,i}, P' = \bigcup_{b \in B,i \in [1,k]} P'_{b,i}\)

\(P_{b,i} = \{p_{b,i,r}, \forall r \in [0,q-1]\}, P'_{b,i} = \{p'_{b,i,r}, \forall r \in [0,q-1]\}\) \(E_Paley = \bigcup_{b \in B,i \in [1,k]} E^{(b,i)}_{Paley}\) and \(E^{(b,i)}_{Paley} = \{(p_{b,i,r},p'_{b,i,r}), \forall r \in [0,q-1]\text{ s.t. } \exists \ell \in [0,q-1], \ell^2 = r - r \text{ mod } q\}\)

- If \((G,k)\) is a positive instance of \textsc{EvenSet} with \(D \subseteq E\) s.t. \(Odd_G(D) = \emptyset\), then \(Odd_G(D) = \emptyset\); so \((G',k)\) is a positive instance of \textsc{Bipartite Local Minimum Degree}.

Lemma 2, δ

We assume w.l.o.g. that Odd

Indeed, for any α = (G, V, E), the algorithm consists in enumerating all subsets of at most O(2 \log_2(n)) vertices and computing its cut-rank. The cut-rank can be computed in polynomial time, so the complexity of this algorithm is O*(2^{\log_2(n)}) where H(.) is the binary entropy function.

The local minimum degree of a bipartite graph of order n can be computed in time O*(1.755^n).

Proof. Thanks to Property 1 and Theorem 2

The algorithm consists in enumerating all subsets of at most 2n + \log_2(n) vertices and computing its cut-rank. The cut-rank can be computed in polynomial time, so the complexity of this algorithm is O*(2^{\log_2(n)}) where H(.) is the binary entropy function.

Regarding the bipartite case, enumerating all the subsets of size at most 2n + \log_2(n) leads to a O*(1.466^n) algorithm. This naive algorithm can be improved:

Theorem 5. The local minimum degree of a bipartite graph of order n can be computed in time O*(1.466^n).

Proof. We use the following property of bipartite graphs: given a bipartite graph G = (V_1, V_2, E),

\[\delta_{loc}(G) = \min_{\emptyset \subseteq D \subseteq V_1 \cup V_2} |D \cup Odd_G(D)| \]

Indeed, for any D \subseteq V_1 \cup V_2, both (D \cap V_1) \cup Odd_G(D \cap V_1) and (D \cap V_2) \cup Odd_G(D \cap V_2) are subsets of D \cup Odd_G(D). Let |V_1| = \alpha n and |V_2| = (1-\alpha)n. We assume w.l.o.g. that \alpha \leq 1/2. Since V_1 is a vertex cover set, according to Lemma 2, \delta_{loc}(G) \leq 2n + \log_2(\alpha n). Thus to compute the local minimum degree, it is enough to enumerate all sets D of size at most 2n + \log_2(\alpha n) in both V_1 and V_2 and to compute their odd neighbourhood – which can be done in time polynomial in n. There are \left(2^{2n + \log_2(\alpha n)}\right)^2 \text{ sets to enumerate.} \] Notice that \alpha \mapsto (1-\alpha)H\left(\frac{\alpha}{2(1-\alpha)}\right) is maximal for \alpha_0 = 0.3885, and 2^{(1-\alpha_0)H\left(\frac{\alpha_0}{2(1-\alpha_0)}\right)} = 1.46557.
5 Conclusion

After having shown that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term), we have improved the best known upper bound on the local minimum degree, proving that it is at most $\frac{3}{8}n + o(n)$ and $\frac{2}{3} + o(n)$ for bipartite graphs. Moreover, we have investigated the parametrized complexity of the problem, showing its W[2]-membership and its FPT-equivalence with the EVENSET problem, even when restricted to bipartite graphs. Finally, we have introduced a $O^*(1.938^n)$-algorithm – $O^*(1.466^n)$-algorithm for the bipartite graphs – for computing the local minimum degree.

This is noticeable that the bipartite case evolves quite similarly to the general case: same parameterized complexity, and upper bound and algorithm slightly better in the bipartite case. It would be interesting to investigate other families of graphs, in particular those defined by excluded vertex minors, in order to identify a family of graphs which local minimum is large but easy to compute or to approximate.

References

1. Salman Beigi, Isaac Chuang, Markus Grassl, Peter Shor, and Bei Zeng. Graph concatenation for quantum codes. Journal of Mathematical Physics, 52(2)(022201), 2011.
2. André Bouchet. Graphic presentations of isotropic systems. J. Comb. Theory Ser. A, 45:58–76, July 1987.
3. André Bouchet. Connectivity of isotropic systems. In New York Academy of Sciences, editor, Proceedings of the third international conference on Combinatorial mathematics, pages 81–93, 1989.
4. André Bouchet. κ-transformations, local complementations and switching. In NATO Adv. Res. Workshop, volume C, pages 41–50, 1990.
5. André Bouchet. Circle graph obstructions. J. Comb. Theory, Ser. B, 60(1):107–144, 1994.
6. Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum computation. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, 2009.
7. David Catané and Simon Perdrix. Parameterized complexity of weak odd domination problems. In Fundamentals of Computation Theory, pages 107–120. Springer, 2013.
8. David Catané and Simon Perdrix. Parameterized complexity of weak odd domination problems. In 19th International Symposium on Fundamentals of Computation Theory (FCT’13), volume 8070 of Lecture Notes in Computer Science, pages 107–120. Springer, 2013.
9. Hubert de Fraysseix. Local complementation and interlacement graphs. Discrete Mathematics, 33(1):29–35, 1981.
10. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
11. R.G. Downey, M.R. Fellows, A. Vardy, and G. Whittle. The parameterized complexity of some fundamental problems in coding theory. CDMTCS Research Report Series, 1997.
12. D. Schlingemann. Localequivalenceofgraphstates. In O. Krueger and R. F. Werner, editor, *SomeOpen Problems in Quantum Information Theory*, volume arXiv:quant-ph/0504166, 2005.

13. DG Fon-Der-Flaass. Local complementations of simple and directed graphs. In *Discrete analysis and operations research*, pages 15–34. Springer, 1996.

14. Sylvain Gravier, Jérôme Javelle, Mehdi Mhalla, and Simon Perdrix. Quantum secret sharing with graph states. In Antonín Kucera, Thomas A. Henzinger, Jaroslav Nesetril, Tomás Vojnar, and David Antos, editors, *MEMICS*, volume 7721 of *Lecture Notes in Computer Science*, pages 15–31. Springer, 2012.

15. M. Hein, J. Eisert, and H. J. Briegel. Multi-party entanglement in graph states. *Physical Review A*, 69:062311, 2004.

16. Peter Høyer, Mehdi Mhalla, and Simon Perdrix. Resources required for preparing graph states. In *Proceedings of ISAAC06, LNCS*, volume 4288, pages 638–649, 2006.

17. Jérôme Javelle. *Cryptographie Quantique, Protocoles et Graphes*. PhD thesis, Grenoble University, 2014.

18. Jerome Javelle, Mehdi Mhalla, and Simon Perdrix. On the minimum degree up to local complementation: Bounds and complexity. In Martin Charles Golumbic, Michal Stern, Avivit Levy, and Gila Morgenstern, editors, *Graph-Theoretic Concepts in Computer Science (WG)*, volume 7551 of *Lecture Notes in Computer Science*, pages 138–147. Springer Berlin Heidelberg, 2012.

19. Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The lu-lc conjecture is false, 2007.

20. Anton Kotzig. Eulerian lines in finite 4-valent graphs and their transformations. In *Colloquium on Graph Theory Tihany 1966*, pages 219–230. Academic Press, 1968.

21. Damian Markham and Barry C. Sanders. Graph states for quantum secret sharing. *Physical Review A*, 78:042309, 2008.

22. Sang-il Oum. Approximating rank-width and clique-width quickly. *ACM Transactions on Algorithms*, 5(1), 2008.

23. Morris Plotkin. Binary codes with specified minimum distance. *Information Theory, IRE Transactions on*, 6(4):445–450, 1960.

24. Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. *Phys. Rev. Lett.*, 86:5188–5191, 2001.

25. Maarten Van den Nest. *Local equivalence of stabilizer states and codes*. PhD thesis, Faculty of Engineering, K. U. Leuven, Belgium, May 2005.

26. Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical description of the action of local Clifford transformations on graph states. *Physical Review A*, 69:022316, 2004.

27. Bei Zeng, Hyeoyoun Chung, Andrew W Cross, and Isaac L Chuang. Local unitary versus local Clifford equivalence of stabilizer and graph states. *Physical Review A*, 75(3):032325, 2007.