Figure S1 Sp1 Knockdown efficiency in the lentivirus-infected ovary. (A-C) Ovaries at 15.5 dpc were infected with Sp1-shRNA lentivirus (Lenti-Sp1-sh) or scrambled shRNA lentivirus (SCR-sh) and cultured for 5 days in vitro. (A) Upper lane: strong green fluorescence of the infected ovaries was observed by detecting GFP-excited fluorescence; lower lane: most oocytes and somatic cells in infected ovaries expressed GFP (green) were evidenced by co-localization with Hoechst (blue). Control: untreated ovaries; scale bar: 40 μm. (B) Quantitative real-time PCR analysis of the oocyte-specific gene Ddx4 and the OSC-specific gene Foxl2 in isolated oocytes and OSCs in cultured fetal ovaries. The data are presented as the mean ± SEM. Asterisks (*) indicate significant differences; ***, ***, ***, P < 0.001 (t-test). (C) The SP1 protein levels were decreased dramatically in both oocytes and OSCs in Sp1 knockdown ovaries. (D) Sp1 knockdown efficiency was examined using an immunostaining assay. Oocytes were stained for DDX4 (red), and nuclei were dyed with Hoechst (blue). Scale bar: 40 μm.
Figure S2 The developmental dynamics of oocytes during PF formation. (A) Quantification of total oocytes in ovaries during PF formation in vivo. (B) Ovaries at 15.5 dpc were infected with Sp1-shRNA lentivirus (Lenti-Sp1-sh) or scrambled shRNA lentivirus (SCR-sh), and total oocytes in ovaries were quantified after 5 and 8 days of in vitro culture. The data are presented as the mean ± SEM. Asterisks (*) indicate significant differences; **P < 0.01 and ***P < 0.001 (t-test).
Figure S3 Inhibition of SP1 disrupts nest breakdown and PF formation. (A) Ovaries at 16.5 dpc were cultured with or without the SP1 inhibitor MIT for 7 days in vitro, and DDX4 (green) immunostaining and propidium iodide (PI, red) staining showed that nest breakdown and PF formation were arrested in MIT-treated ovaries. Scale bar: 40 μm. (B) The graph showing the number of PFs, total oocytes, and oocytes in nests per ovary. The data are presented as the mean ± SEM. Asterisks (*) indicate significant differences between control versus MIT-treated ovaries; ***P < 0.001 (t-test).
Figure S4 *Sp1* knockdown has no obvious effect on oocyte development in perinatal ovaries. (A) Representative examples of the phases of meiosis prophase I in mouse oocytes. Nuclear spreads were immunolabeled for SYCP3 (green) and stained with the nuclear marker Hoechst (blue). The prophase stages were defined as follows: pachytene, maximal shortening and thickening of the paired homologous chromosomes; diplotene, separation of homologous chromosomes; dictyate, two to four nucleoli clearly observed and the presence of decondensed and diffuse chromosomes. Scale bar: 10 μm. (B) Ovaries at 15.5 dpc were infected with *Sp1*-shRNA lentivirus (Lenti-*Sp1*-sh) or scrambled shRNA lentivirus (SCR-sh), and no obvious difference in meiotic development was
observed between control and Sp1 knockdown ovaries. (C) MSY2 immunostaining (green) showing that all the oocytes completely entered the meiotic diplotene stage in both control and Sp1 knockdown ovaries after 5 days of in vitro culture. Oocytes were labeled for DDX4 (red), and nuclei were dyed with Hoechst (blue). Scale bar: 40 μm. (D-E) GM130 immunofluorescence (green) showing that a similar number of B-body-containing oocytes between Sp1 knockdown and control ovaries after 8 days of in vitro culture. (D) Oocytes were labeled for DDX4 (red), and nuclei were dyed with Hoechst (blue); arrows: B-body; scale bar: 20 μm. (E) The number of oocytes with a B-body. (F) The levels of PF formation-related genes specifically expressed in oocytes were detected by quantitative real-time PCR after Sp1 knockdown for 5 days. The data are presented as the mean ± SEM. Asterisks (*) indicate significant differences; **P < 0.01 (t-test).
Figure S5 The relationship between NOTCH2 signaling and SP1 in PF formation. (A) NOTCH2 was expressed in somatic cells from 16.5 dpc to 3 dpp. Ovaries were immunostained with NOTCH2 (green) and the oocyte marker DDX4 (red); Hoechst (blue) was used to identify nuclear DNA. Scale bar: 40 μm. (B) The protein levels of NOTCH2 from 16.5 dpc to 3 dpp were assayed by Western blot analysis. (C-D) A more severe nest breakdown failure in ovaries with Sp1 knockdown than in ovaries with NOTCH2 inhibition. (C) Immunostaining against DDX4 (green) and (D) follicle number counting analysis of the ovarian phenotypes of inhibition of NOTCH2 alone by DAPT, knockdown of Sp1 alone and knockdown of Sp1 plus inhibition of NOTCH2, respectively. Nuclei were dyed with propidium iodide (PI, red). Scale bar: 40 μm. The data are presented as the mean ± SEM; different letters (a–c) indicate significant differences between groups (ANOVA and Holm–Šidák test).
Figure S6 Inhibition of SP1 decreased NOTCH2 expression. (A) Inhibition of NOTCH signaling had no effect on Sp1 expression. Ovaries at 16.5 dpc were cultured with or without DAPT for 4 days, and the mRNA levels of Sp1 were analyzed by quantitative real-time PCR. $P > 0.05$ (t-test), control versus DAPT-treated ovaries. (B-C) Inhibition of SP1 clearly suppressed NOTCH2 expression. Ovaries at 16.5 dpc were cultured with or without MIT for 4 days, the protein levels of NOTCH2 were analyzed by Western blot analysis (B) and the mRNA levels of Notch2 and Hey2 were examined by quantitative real-time PCR (C). The data are presented as the mean ± SEM; Asterisks (*) indicate significant differences; ***$P < 0.001$ (t-test).
Figure S7 The information of the pSicoR and pLVX-IRES-ZsGreen1 vectors.
Supplementary Tables

Table S1 List of primers used for knockdown and overexpression lentivirus production.

Genes	Primer sequence (5’ to 3’)	Length (bp)
Lenti-SP1-sh1-F	TGGGTCTGTATTCTCTGAAACATCTCAAGAGATGTTACAGA GAATCAGCACCTTTTTTC	55
Lenti-SP1-sh1-R	TCGAGAAAAAAGGTCATCTCTCTCTGAACATCTCTTTG AATGTTCAAGAAATCACAGACCA	59
Lenti-SP1-sh2-F	TGTGTAATTGGTCATATTGTTCATTTCTCAAGAAACAATA TGA CCAATTACACTTTTTTC	55
Lenti-SP1-sh2-R	TCGAGAAAAAGTGGTAATTGGTCATATTGTTCATTTCTCTTTGA AACAATATGACAAATTACACA	59
Scramble-sh-F	TGAACCTCAAGACCGATATTCAAGAGATAATATCGG TGTTGAGTTCTTTTTTC	55
Scramble-sh-R	TCGAGAAAAAAGAATCAAGACCGATATTCAAGAGATAATATCGG AATAATATCGGTCTTGAAGTTCA	59
Lenti-SP1-F	GGCGAATTCATGAGCAGCAAGACACTC	29
Lenti-SP1-R	CCCCTCTAGATTTGAAACCATTGCCTGACTGA	30
Lenti-NICD2-F	GATGAATTCCATGGCCCAAGCGGAAGCGCAAGCAT	33
Lenti-NICD2-R	GATGGATCTCTCATGCATAACCTCGTGTGCTGTGTG	38
Table S2 List of primary antibodies used for immune detection.

Antibody	Catalog Code	Source	Host	Dilution IF/IHC	Dilution WB
SP1	PA5-29165	Thermo Scientific	Rabbit	1:100	1:1000
SYCP3	SC-20845	Santa Cruz	Rabbit	1:100	
MSY2	SC-21316	Santa Cruz	goat	1:100	
GM130	610822	BD biosciences	Mouse	1:100	
FOXL2	IMG-3228	Novus Biologicals	Goat	1:300	1:500
BrdU	G3G4	DSHB	Mouse	1:300	
EGFP	Ab13970	Abcam	Chicken	1:300	
NOTCH2	D76A6	Cell Signaling Technology	Rabbit	1:100	1:500
DDX4	Ab13840	Abcam	Rabbit	1:300	
DDX4	Ab27491	Abcam	Mouse	1:300	
β-actin	A5441	Sigma-Aldrich	Mouse	1:5000	
Table S3 List of primers used for quantitative real-time PCR.

Genes	Forwards (5' to 3')	Reverses (5' to 3')
Sp1	GACTCGTCGGGAAGCATGTA	CGGAGATGTGAGGTCTTGCC
Jagged1	TGGATTTCAAGTGTTGTGTCG	GGAAGGCAATCACAGTAGTAC
Gdf9	CCTCTACAAATCCGCTCCGC	CACCAGGTCCAGGTTAAACA
Bmp15	ACACAGTAAGCCCTCCAGA	TAAGTGCTTGTCGCCGCATT
Nobox	ACAACGCATGAGATTTCC	AACAGGCAAGATTCTAGGT
Figa	ACAGAGCACAGGAGCCAAGA	TGGGTAGCATTCCCAAGAG
Sohlh1	TCTCAGCCATACACAGAGG	GGGGACGCGAGTTATACA
Lhx8	CAGTTCCGTACGAGCAACAA	CCTGCAATTGTCAACCCACA
Notch2	GCTGTCAATAATGGGTGAGCC	TTGGCCGCTTACTAATCC
Hey2	CTCCAGGCCTACAGGGGTTAA	AGATGAGAGACAAAGCGC
Ddx4	AGCAAGGAGATTCCAGCA	CATCCTTGGTGAGAGG
Foxl2	CTGCGAGGACATGTCGAGA	GAACCCGATTGCAGGTACT
β-actin	CTGTCAGGTCCTCTGGTG	CCTTCTGACCCATCCCAAC
Genes	Forwards (5’ to 3’)	Reverses (5’ to 3’)
---------	-----------------------------------	-----------------------------------
pCMV-SP1	CGAATTCGGATGAGCGACCAAGAT CACTC	CGCGGTACCTTAGAAACCATTGCCA CTGA
Notch2-p	GGTACCTCCCTCATTCTCTAAACCA GC	AAGCTTGAGCAGCACCCCGTACTCC
Supplementary materials and methods

Lentivirus production and ovary infection

RNA interference (RNAi) and overexpression assays in fetal ovaries were performed as described previously (Niu et al., 2016). Briefly, lentivirus was produced in 293T cells via cotransfection with 5 μg of pMD2.G, 10 μg of psPAX2, and 15 μg of transfer vector. Sp1-shRNA lentivirus (Lenti-Sp1-sh) was constructed by cloning Sp1 shRNA (Supplementary Table S1) into a pSicoR vector driven by the U6 promoter (Supplementary Figure S7A) according to the instructions at http://web.mit.edu/jacks-lab/protocols/pSico.html. SP1-overexpressing lentivirus (Lenti-SP1) and NICD2-overexpressing lentivirus (Lenti-NICD2) were constructed by cloning the open reading frames of Sp1 and Nicd2 (Supplementary Table S1) into pLVX-IRES-ZsGreen1 vectors (Supplementary Figure S7B). Vectors carrying Sp1 shRNA driven by the Foxl2 promoter (F-Sp1-sh) and scrambled control vectors (F-SCR-sh) were purchased from Sigma-Aldrich (USA); these vectors were modified from pLVX-IRES-ZsGreen1 vectors (Supplementary Figure S7B) by replacing the CMV promoter with the Foxl2 promoter. Cloning of the F-Sp1-sh construct was performed as described previously (Chung et al., 2006). The transfection was performed with Lipofectamine 3000 (Invitrogen, Life Technologies, USA), and the transfection medium was replaced 6 h post transfection. The viral supernatants were harvested at 36 and 72 h with a 0.22-μm membrane and centrifuged at 45000 rpm at 4 °C for 2 h. Ovaries at 15.5 dpc were injected with 0.5 μl of lentivirus using a thin glass needle with a mouthpiece and cultured in 6-well dishes. Total mRNA and
protein were extracted from the ovaries 5 days after injection to determine the effects of Sp1 RNAi and overexpression. The knockdown phenotype was analyzed after 5 and 8 days of in vitro culture by examining immunofluorescence. The lentiviral constructs pMD2.G and psPAX2 were generously donated by Professor Sheng Cui (China Agricultural University). The lentiviral constructs pSicoR and pLVX-IREX-ZsGreen1 were provided by Professor Haibin Wang (Medical College of Xiamen University).

Oocyte/OSC isolation and in vitro reconstruction of follicle-like structures

The in vitro reconstruction procedure was modified from methods described previously (Teng et al., 2015). In brief, fetal ovaries at 16.5 dpc were cultured for 4 days, and groups of 15 ovaries were harvested, washed in 200 μl of 0.25% trypsin (AMRESCO, USA) to rinse off the medium and then incubated in 150 μl of trypsin solution at 37 °C for 15-20 min. The digestion reaction was terminated by adding an equal volume of 10% fetal bovine serum (FBS) (HyClone, USA)/PBS solution until no obvious lumps were observed. The cell suspension was centrifuged at 4 °C and 1500 × g for 5 min. The precipitate was resuspended in 1 ml of PBS and filtered through a 50-μm-diameter cytoscreener. The filtered cells were collected by centrifugation and resuspended in 60 μl of DMEM/F12 with modified insulin-transferrin-sodium selenite (ITS) supplement, which contained 3 mg/ml bovine serum albumin (BSA) (A1933), 2 mM glutamine (G3126), 5 μg/ml insulin (91077C), 5 μg/ml transferrin (T3309), 30 nM sodium selenite (S1382) and 0.25
mg/ml fetuin (F6131) and was purchased from Sigma-Aldrich (USA). Then, 1.5×10^5 ovarian cells (measured with a hemocytometer) suspended in DMEM/F12/ITS were added to a well in a 1.5% agarose gel dissolved in normal saline. Cell mass reconstruction was observed, and the masses were collected after 48 h for follicle-like structure detection using immunofluorescence.

To identify which cell type employed SP1 to accomplish the in vitro reconstruction, oocytes and OSCs were separated from ovaries pretreated with or without MIT and subjected to culture. Briefly, ovarian cells suspended in DMEM/F12/ITS (supplemented with 4% FBS) were cultured in 24-well plates for 12 h. Then, the oocytes were recovered from the suspension medium, while the OSCs adhered to the culture plates were recovered by digestion. The two different types of cells were then suspended in DMEM/F12/ITS for reconstruction of follicle-like structures.

Analysis of chromosome spreads

We used a SYCP3 antibody (Supplementary Table S2) to identify the chromosomal axial elements at meiosis prophase I, as described previously (Mu et al., 2013). The stages of meiotic prophase I were evaluated based on the appearance of axial elements according to the methods in previous studies (Hartung et al., 1979; Prieto et al., 2004). In total, 300 oocytes from two ovaries were counted on each slide, and this process was repeated for three animals.

Immunofluorescence
Ovaries were fixed in 4% PFA overnight at 4 °C and processed to obtain 5-μm-thick paraffin sections. After dewaxing, rehydration, and high-temperature (95-98 °C) antigen retrieval with 0.01% sodium citrate buffer (pH 6.0), the sections were blocked with 10% normal donkey serum in PBS for 1 h at room temperature and incubated with primary antibodies overnight at 4 °C. The primary antibodies and dilutions used are presented in Supplementary Table S2. After thorough washing with PBS, the slides were incubated with Alexa Fluor 350-, Alexa Fluor 488- or Alexa Fluor 555-conjugated donkey secondary antibody (1:100; Invitrogen, Life Technologies, USA) at 37 °C for 1 h, rinsed with PBS and stained with Hoechst 33342 (B2261; Sigma-Aldrich, USA) or propidium iodide (421301, BioLegend, USA) as a nuclear counterstain. Finally, antifade mounting medium (Applygen, China) was applied to each slide, and a coverslip was sealed in place. A Nikon 80i digital fluorescence microscope was used for imaging of the immunofluorescent sections. The images were merged to analyze double-labeled cells. The number of oocytes in entire ovaries that contained a B-body was determined, and ten sections in the middle of the band were selected for FOXL2+ cell and LGR5+ BrdU+ cell counting.

TUNEL

For the TUNEL assay, ovaries were collected after 5 days of in vitro culture following lentivirus injection and fixed in cold 4% PFA for 1 h. The tissues were embedded in paraffin wax and serially sectioned at 5 μm. Detection of apoptotic cells was carried out using a TUNEL apoptosis detection kit (Invitrogen, Life Technologies,
USA) with costaining using an anti-DDX4 antibody. The number of TUNEL⁺ oocytes was analyzed in each section.

Immunoblotting

Western blot analyses were conducted as described previously (Wang et al., 2015). Ovaries were collected and extracted in Western blot immunoprecipitation cell lysis buffer (WIP, CellChip Beijing Biotechnology, China) according to the manufacturer’s protocol. Then, 50 μg of total protein per sample was separated by 10% SDS-PAGE and transferred to polyvinylidene fluoride membranes (IPVH00010, Millipore, USA). The membranes were incubated overnight at 4 °C with primary antibodies. After thorough rinsing with TBST (TBS plus 0.5% TWEEN 20; ZSGB-BIO, China), the membranes were incubated for 1 h at room temperature with secondary antibodies (ZB-2301, ZB-2305 and ZB-2306 from ZSGB-BIO, China) diluted 1:5000 in TBST. Finally, the membranes were visualized using a SuperSignal chemiluminescence detection system (34080; Thermo Scientific, USA). The β-actin level was used as an internal control. The primary antibodies and dilutions used are listed in Supplementary Table S2.

Quantitative real-time PCR

RNA was extracted from ten ovaries for each sample using TRIzol reagent (Invitrogen, Life Technologies, USA) according to the manufacturer’s protocol. The quantity and quality of total RNA were assessed using a NanoDrop spectrophotometer
Reverse transcription (Promega Reverse Transcription System) was performed using 1 μg of total RNA per sample. Quantitative PCR was conducted and the data analyzed on an ABI 7500 Sequence Detection System (Applied Biosystems, USA). Gene expression changes were analyzed using the \(2^{\Delta\Delta Ct}\) method, as reported previously (Livak and Schmittgen, 2001), and the expression levels were normalized to \(\beta\)-actin expression. The primers used for gene expression analysis are listed in Supplementary Table S3.

ChIP

The binding of SP1 to the *Notch2* promoter was assessed according to the instructions provided with the ChIP assay kit (Millipore, USA). Briefly, ovarian cells at 16.5 dpc and 1 dpp were digested and crosslinked with formaldehyde at a final concentration of 1%. Then, 10× glycine was added to quench the unreacted formaldehyde. The cell pellets were washed twice with cold PBS and lysed in SDS lysis buffer containing a protease inhibitor. Crosslinked DNA was sheared by sonication into 200- to 1000-bp fragments, as evaluated by 1% agarose gel electrophoresis. A volume of 900 μl of dilution buffer was added to each tube containing 100 μl of chromatin, and 60 μl of Protein G agarose beads was then added. One percent of the chromatin fragments was saved at 4 °C for later use as nonprecipitated total chromatin (input). The remaining chromatin fragments were incubated with 4 μg of anti-SP1 antibody (17-601; Millipore, USA) overnight at 4 °C. Normal rabbit IgG (Santa Cruz, USA) was used as a negative control for nonspecific
immunoprecipitation. The chromatin-antibody complexes were incubated with Protein G agarose beads for 1 h at 4 °C. The antibody/DNA complexes on the agarose beads were collected by centrifugation. The beads were washed in a series of cold buffers in the following order: low-salt immune complex buffer, high-salt immune complex buffer, LiCl immune complex buffer, and TE buffer. The beads were suspended in elution buffer, and the precipitated protein/DNA complexes were eluted from the antibodies/beads. The crosslinking of the protein/DNA complexes was reversed to free the DNA by addition of 0.2 M NaCl and incubation of the mixture at 65 °C overnight followed by incubation with 10 mM EDTA, 40 mM Tris-HCl, and 40 μg/ml proteinase K at 45 °C for 1-2 h. Finally, the DNA was purified with spin columns. The enriched DNA was quantified using standard endpoint PCR and real-time PCR with the primers 5’-TCCCTCATTCCTCTAACCAGC-3’ (forward) and 5’-GAGCAGACCCCGTACTCC-3’ (reverse).

Plasmid construction and dual-luciferase reporter assays

A cDNA-derived mouse Sp1 sequence was generated with PCR and cloned into the EcoRI and KpnI sites of a pCMV-Myc-N vector (pCMV-SP1). The Notch2 promoter (in the region from -340 to -156) was amplified and cloned into the KpnI and HindIII sites of a pGL3-Basic luciferase reporter vector (E1910; Promega, USA) (Notch2-p). Specific GC-rich sequences from the Sp1 binding region of the Notch2 promoter (S1, S2, S3, S4, S5, S6, S1-S3 and S4-S6) were synthesized (Invitrogen, Life Technologies, USA) and cloned into a pGL3-Basic vector. The constructs were verified by
sequencing. The PCR primer sequences are listed in Supplementary Table S4. For the luciferase assay, 293T cells were cultured in DMEM containing 10% FBS in an atmosphere of 5% CO$_2$ and 95% air at 37 °C. Cells at approximately 80% confluence on plates were transfected with plasmid DNA using Lipofectamine 3000 (Invitrogen, Life Technologies, USA) according to the manufacturer’s instructions. The cells were cotransfected with pRL-TK, an internal control plasmid encoding Renilla luciferase (Promega, USA), to normalize the firefly luciferase activity of the reporter plasmids. The cells were harvested 36 h after transfection, and luciferase activity was measured using a Dual-Luciferase Reporter Assay System (Promega, USA) on a Modulus™ microplate luminometer (Turner Biosystems, USA).

Renal capsule transplantation

Transplantation of $Sp1$ knockdown ovaries and Foxl2-driven $Sp1$-knockdown ovaries under the renal capsules of mice was performed with a method described previously (Chen et al., 2017; Cunha and Baskin, 2016). Briefly, ovaries were injected with lentivirus at 15.5 dpc and cultured for 5 days. Then, the infected ovaries were grafted under the renal capsules of 6-week-old female wild-type mice. The mice were anesthetized with Avertin at a dose of 0.15 ml/10 g body weight. The skin was sterilized with 75% alcohol, and the mice were ovariectomized (OVX). Ten-millimeter incisions were created in the mouse abdomen to expose the kidneys. The kidney capsules were opened, and the control and $Sp1$ knockdown ovaries were then transplanted under the left and right kidney capsules, respectively, of the same
host. According to our preliminary experimental trials, three grafts could be placed under each kidney capsule with no apparent ill effect on the mouse. The grafts were spaced as far apart as possible to prevent them from growing together into a common mass. When grafting was completed, the kidneys were gently eased back into the body cavity. Two weeks after implantation, the ovaries were harvested, and the phenotype was analyzed via hematoxylin staining and immunofluorescence analysis.

References

Chen, Z., Niu, M., Sun, M., et al. (2017). Transdifferentiation of human male germline stem cells to hepatocytes in vivo via the transplantation under renal capsules. Oncotarget 8, 14576-14592.

Chung, K.H., Hart, C.C., Al-Bassam, S., et al. (2006). Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34, e53.

Cunha, G.R., and Baskin, L. (2016). Use of sub-renal capsule transplantation in developmental biology. Differentiation 91, 4-9.

Hartung, M., Mirre, C., and Stahl, A. (1979). Nucleolar organizers in human oocytes at meiotic prophase I, studied by the silver-NOR method and electron microscopy. Hum. Genet. 52, 295-308.

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 25, 402-408.
Mu, X., Wen, J., Guo, M., et al. (2013). Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells. J. Cell. Physiol. 228, 627-639.

Niu, W., Wang, Y., Wang, Z., et al. (2016). JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice. Development 143, 1778-1787.

Prieto, I., Tease, C., Pezzi, N., et al. (2004). Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res. 12, 197-213.

Teng, Z., Wang, C., Wang, Y., et al. (2015). S100A8, An Oocyte-Specific Chemokine, Directs the Migration of Ovarian Somatic Cells During Mouse Primordial Follicle Assembly. J. Cell. Physiol. 230, 2998-3008.

Wang, Y., Teng, Z., Li, G., et al. (2015). Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Development 142, 343-351.