POLARIZATION OF AN INEQUALITY

IVO KLEMEŠ

Abstract. We generalize a previous inequality related to a sharp version of the Littlewood conjecture on the minimal L_1-norm of N-term exponential sums f on the unit circle. The new result concerns replacing the expression $\log(1 + t|f|^2)$ with $\log\left(\sum_{k=1}^{K} t_k|f_k|^2\right)$. The proof occurs on the level of finite Toeplitz matrices, where it reduces to an inequality between their polarized determinants (or “mixed discriminants”).

Mathematics subject classification (2010): 42A32 (15A42).
Keywords and phrases: Littlewood polynomial, exponential sum, 1-norm, inequality, Toeplitz matrix, (0,1) matrix, determinant, mixed discriminant.

REFERENCES

[1] R. B. BAPAT, Mixed discriminants of positive semidefinite matrices, Linear Algebra Appl., 126 (1989), 107–124.
[2] D. BUMP AND P. DIACONIS, Toeplitz Minors, Jour. Combin. Th. A., 97 (2002), 252–271.
[3] P. BORWEIN, Computational excursions in analysis and number theory, CMS Books in Mathematics, 10. Springer-Verlag, New York, 2002.
[4] D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs, Pacific J. Math., 15 (1965), 835–856.
[5] R. M. GABRIEL, The rearrangement of positive Fourier coefficients, Proc. London Math. Soc. (2), 33 (1932), 32–51.
[6] I. C. Gohberg and M. G. Kreın, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein, Transl. of Math. Monographs, Vol. 18, American Math. Soc., Providence, R.I., 1969.
[7] U. GRENDANDER AND G. SZEGÖ, Toeplitz forms and their applications, Univ. California Press, Berkeley-Los Angeles, 1958.
[8] L. GURVITS, The van der Waerden conjecture for mixed discriminants, Adv. Math., 200, 2 (2006), 435–454.
[9] G. H. HARDY AND J. E. LITTLEWOOD, Notes on the theory of series (VIII): An inequality, J. London Math. Soc., 3 (1928), 105–110.
[10] I. KLEMEŠ, Finite Toeplitz matrices and sharp Littlewood conjectures (English), Algebra i Analiz, 13, 1 (2001), 39–59; translation in St. Petersburg Math. J., 13, 1 (2002), 27–40.
[11] I. KLEMEŠ, On Two Families of Schur-Concave Symmetric Polynomials (Preliminary Report), American Math. Soc. Sectional Mtg., Montréal, May 2002. For abstract see: Abstracts of Papers Presented to the A.M.S., 23, 3 (2002), Issue 129, p. 426, Abs. No. 976-41-38.
[12] I. KLEMEŠ, Alexandrov’s inequality and conjectures on some Toeplitz matrices, Linear Algebra Appl., 422, 1 (2007), 164–185.
[13] I. KLEMEŠ, Symmetric polynomials and L^p inequalities for certain intervals of p, Houston J. of Math., 37, 1 (2011), 285–295.
[14] S. V. KONYAGIN, On the Littlewood problem (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 45, 2 (1981), 243–265, 463.
[15] V. MATSAEV AND M. SODIN, Entire functions and compact operators with S_p-imaginary component, Entire functions in modern analysis (Tel-Aviv, 1997), 243–260, Israel Math. Conf. Proc., 15, Bar-Ilan Univ., Ramat Gan, 2001.
[16] O. C. McGehee, L. Pigno and B. Smith, *Hardy’s inequality and the L^1 norm of exponential sums*, Ann. of Math. (2), 113, 3 (1981), 613–618.