Evaluation of a wetland classification system devised for management in a region with a high cover of peatlands: an example from the Cook Inlet Basin, Alaska

Michael Gracz · Paul H. Glaser

Received: 1 March 2016 / Accepted: 2 August 2016 / Published online: 19 October 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Several wetland classification schemes are now commonly used to describe wetlands in the contiguous United States to meet local, regional, and national regulatory requirements. However, these established systems have proven to be insufficient to meet the needs of land managers in Alaska. The wetlands of this northern region are predominantly peatlands, which are not adequately treated by the nationally-used systems, which have few, if any, peatland classes. A new system was therefore devised to classify wetlands in the rapidly urbanizing Cook Inlet Basin of southcentral Alaska, USA. The Cook Inlet Classification (CIC) is based on seven geomorphic and six hydrologic components that incorporate the environmental gradients responsible for the primary sources of variation in peatland ecosystems. The geomorphic and hydrologic components have the added advantage of being detectable on remote sensing imagery, which facilitates regional mapping across large tracts of inaccessible terrain. Three different quantitative measures were used to evaluate the robustness and performance of the CIC classes relative to that of other commonly used systems in the contiguous United States. The high within-group similarity of the classes identified by the CIC was clearly superior to that of the other systems, demonstrating the need for improved wetland classification systems specifically devised for regions with a high cover of peatlands.

Keywords Wetland classification · Boreal peatlands · Hydrogeomorphic · Southcentral Alaska · Cook Inlet · Wetland functions · Multi-response permutation procedure

Introduction

Peatlands cover approximately 20 % of all boreal landscapes (Vitt 2006) including the lowlands of the Cook Inlet Basin (CIB) in southcentral Alaska. This 102,000 km² basin, at the northern reaches of Pacific Ocean, contains a mosaic of relatively pristine uplands and wetlands including spawning habitat for healthy populations of all five species of Pacific salmon. Peatlands within the CIB lowlands contribute to stream flows and thereby help to maintain fluvial habitats required for the survival of healthy salmon stocks (Gracz et al. 2015). These peatlands also
provide a variety of other ecosystem services that affect human population centers such as flood regulation, recreational opportunities, and water purification (Millennium Ecosystem Assessment 2005). As the population of CIB and Alaska continues to grow so has the need to implement a classification system for use in wetland assessment that emphasizes the linkages between the hydrogeologic settings of oligotrophic peatlands and their functions and services.

Land managers need a classification system that can be used to classify oligotrophic peatlands, which have been generally differentiated into discrete types based on landform patterns or hydrochemical properties (Gore 1983; Zoltai et al. 1988; Charman 2002; Weider et al. 2006; Rydin and Jeglum 2006). In practice however, the classification and mapping of peatlands is constrained by site access limitations. In regions where wetlands cover large areas and the road network is sparse, remote sensing provides the best means to scale up local field measurements to the level of the regional landscape. Although a classification system could be devised based on the hydrochemical factors that determine the potential directions of peatland development in such regions, this type of classification system would require an impractical degree of field sampling to implement. For example, the calcium concentration and pH of surface waters have been linked to the different types of peatlands in boreal regions (e.g. Weber 1902; Sjörs 1950; Glaser et al. 1981; Rydin and Jeglum 2006; Wieder et al. 2006; Ye et al. 2012). However, unless these hydrochemical indicators can be inferred from proxy evidence that is visible on remote sensing imagery they will have limited value for mapping peatland types across any broad region.

Alternatively, the geomorphic setting and hydrology of a wetland can be used in conjunction with remote sensing imagery to establish an effective wetland classification scheme for remote regions with limited road access. Geomorphic and hydrologic factors have been recognized as fundamental variables that are intrinsically related to wetland functions (Brinson 1993). The geomorphic setting of a peatland imposes physical constraints on hydrologic flow systems and also provides sources for the dissolved mineral solutes that have long been recognized as the fundamental factor responsible for the different types of peatlands (Weber 1902; Du Rietz 1949; Kulczyński 1949; Sjörs 1950; Glaser et al. 1990). Striking landform patterns on peatlands have been successfully used to define the most important types of bog and fen on remote-sensing imagery (e.g. Sjörs 1963; Glaser et al. 1981; Glaser et al. 2004; Siegel and Glaser 1987).

A fundamental hydrologic factor controlling the patterning of peatland vegetation is the average elevation of the water table (Sjörs 1950b; Malmer 1986; Foster et al. 1988; Waddington and Roulet 2000). For example, in northern Minnesota and in the Hudson Bay Lowlands, indirect gradient analyses first aligned vegetation samples according to the elevation of the water table, with the inundated flark plots, at one end of the ordination and the better-drained forested plots at the other (Glaser 1992; Glaser et al. 2004). Even though the importance of these two fundamental factors of hydrology and water chemistry are widely recognized in the peatland literature, they have not been explicitly incorporated into wetland classification systems currently in use in the U.S.A.

Two classification systems are widely used across the U.S.A.: the National Wetlands Inventory (NWI) and the HGM classification system (Brinson 1993; Smith et al. 1995). NWI (Cowardin et al. 1979) does not differentiate among peatland classes because peatlands are uncommon except in a few northern states such as Alaska (Kivinen and Pakarinen 1981). The classification system of the hydrogeomorphic model (HGM) of wetland functional assessment uses hydrologic and geomorphologic factors to distinguish among wetlands, but this system only has a single class exclusively for peatlands (Smith et al. 1995). Further, when local managers attempted to classify peatlands in the CIB to develop an HGM guidebook for a representative class, they recognized that the seven national-level classes of the HGM system did not adequately represent the common peatlands in this region. The HGM class *Organic Soil Flat*, for example, is described as bogs with predominantly vertical hydrodynamics, whereas the broad class *Slope wetlands* includes fens defined as having horizontal hydrodynamics (Smith et al. 1995). However, peatlands frequently comprise a mosaic of bogs and fens exhibiting complex interacting hydrodynamics along both horizontal and vertical flow vectors (Ingram 1983; Siegel and Glaser 1987; Siegel et al. 1995; Reeve et al. 2001; Glaser et al. 2004; Spence et al. 2011). As a compromise, (Hall et al. 2002) hybridized the two classes into a Slope/Flat type while developing the guidebook. However, a single class is insufficient
to distinguish important functional differences among
the diverse peatland complexes in CIB that have
important implications for wetland assessment and
management.

Objectives

Here we describe the development of the Cook Inlet
Classification (CIC) system, which was specifically
designed to distinguish the principal types of oligotrophic peatlands in the CIB, and then use a multivariate analysis to evaluate the within-group similarity of the classes of the CIC. Because multivariate analysis has a limited capacity for statistical inference, standards of comparison are needed to compare the relative robustness of the classes. For this comparison, the within-group similarity of the classes distinguished by the CIC system is compared to the within-group similarity produced by three other wetland classification systems: (1) NWI (Cowardin et al. 1979), (2) the Landscape position, Landform, Water flow path, and Waterbody system (LLWW), which was developed in the glaciated northeastern region of the USA for use with NWI (Tiner 2011), and (3) NWI + LLWW, a combination of 1 and 2 above (Brooks et al. 2011). If the CIC system produces a within-group similarity surpassing that of the other systems, then it should provide a useful foundation for managers in the region while also providing insights on the relationship between the fundamental factors controlling ecosystem function and the hydrogeologic setting of oligotrophic peatlands.

Study area

Cook Inlet Basin (CIB), Alaska is centered at 151° W
longitude between 59°N and 63°N latitude and drains
to Cook Inlet, a large marine embayment formed in a
rapidly subsiding fore-arc basin (Hartman et al. 1971).
The 101,635 km² basin is surrounded by numerous
glaciated mountainous terranes of diverse lithology
(Silberling et al. 1994), including the highest point in
North America (Fig. 1). The lowland portion of the
Basin is composed of sediments of Paleogene to
Neogene age (65.5–2.6 mya) up to 8700 m thick
(Hartman et al. 1971) derived from the surrounding
diverse lithologies of the mountainous terranes includ-
ing: sandstone, arkose, argillite, greywacke, slate,
granodiorite, breccia, and intermediate-to-felsic
volcanic rocks (Beikman 1994). Pleistocene epoch
(11.7 ka–2.65 ma) alpine glaciations originating in
the diverse mountain lithologies mantled the sedi-
mentary rocks with deposits up to 2800 m thick
(Freethey and Scully 1980), producing a geomorpho-
logically complex landscape. The complexity of this
landscape was further increased for at least the past
10.5 ma by active volcanos along the western margin
of CIB that have blanketed the entire basin with
volcanic ash of diverse composition, including calc-
alkaline dacite and basaltic andesite (Fournelle et al.
1994; Riehle 1985).

The physiography of the CIB basin supports a
strong but complex maritime-to-continental climatic
gradient. Winter temperatures always fall below
−40 °C in the interior, while at coastal stations they
rarely reach −20 °C (Fig. 1). Annual precipitation
ranges from 300 to 1000 mm in the lowlands, and can
be as high as 9000 mm at glaciated mountain passes
(PRISM Climate Group 2011; Online Resource).
Nearly half of the annual precipitation falls from
September–December, whereas less than 20 % falls
from April through July (Utah Climate Center 2013).
Evapotranspiration can exceed precipitation in a small
area of rain shadow formed by the surrounding
mountains. Wetlands still occur in this pocket of
moisture deficit because recharge in the surrounding
mountains, where precipitation far exceeds evapo-
transpiration, is rapidly transmitted to the lowlands
through permeable bedrock and glaciofluvial deposits
(Jokela et al. 1991; Kikuchi 2013). Over most of the
lowlands, however, precipitation is sufficient to
maintain waterlogged soils in a range of physiographic
settings (e.g. depressions, watershed divides, and
seepages at the slope breaks) and approximately
20 % of the lowland surface is covered by peatlands.

Methods

Cook Inlet Classification system

The Cook Inlet Classification (CIC) system has been
used to map 1508 km² of peatlands over an area of
7589 km² (Online Resource). The system is com-
prised of geomorphic and hydrologic classes that are
readily detectable on stereo-paired aerial photographs
or in combination with shaded-relief images of digital
elevation models derived from high-resolution light
detection and ranging (LiDAR) data. Wetlands underlain by mineral substrates are also described in the CIC, such as tidal and floodplain wetlands. A complete guide to all the wetland types mapped in the CIB is presented in a digital file, which contains a detailed map, legend, idealized cross-sectional diagrams of plant associations, and graphical summaries of climatic, water chemistry, and plant prevalence index data (Online Resource).

The CIC uses seven Geomorphic Components and six Hydrologic Components to distinguish the different classes describing oligotrophic peatlands. The Geomorphic Components of the CIC system were developed using an iterative approach guided by the regional geologic literature, soil maps, field observations, and discussions with regional experts. These components were designed to capture the principal hydrogeologic settings of wetlands within the Cook Inlet Basin that impose geomorphic constraints on hydrology and water chemistry. To identify which geomorphic features best defined distinct peatland classes, the peatlands in two small pilot areas were mapped and then sampled in the field to determine their hydrology (i.e. water table elevations), water chemistry, and vegetation assemblages. Different names for the Geomorphic Components were applied and adjusted until an adequate set of names were identified that separated peatland types with discrete hydrological, chemical, and botanical characteristics. After the pilot areas had been satisfactorily classified, new Geomorphic Components were added to the classification system as the mapping area expanded during subsequent years. Plant cover and water chemistry data were evaluated along with data from instrumented wells and piezometers to refine the names or support new designations.

This iterative approach was modified to account for the practical needs of regulatory jurisdiction and management. For example, kettle depressions are common features in many areas of the CIB. However, these kettles can be further characterized as: (1) closed basin, which is an important jurisdictional criterion for wetland permitting, (2) closed basin, but strongly connected to groundwater flow within a zone of moisture deficit, and (3) open basin, i.e. connected by surface water to a navigable water body. Although these three types of landforms could all be classified as kettles, they clearly lie in different hydrogeologic settings, some of which may not be subject to regulatory authority. Therefore, different Geomorphic Component names were assigned to each of them: (1) **Depressions** are kettles in closed basins (Neuendorf et al. 2005) lacking a strong hydrologic connection to groundwater discharge, (2) **Spring fens** are closed basins strongly connected to groundwater flow (Zoltai et al. 1988) in a zone of moisture deficit, or (3) **Kettles** are open basins (Table 1).

In the CIC, the Hydrologic Components are represented as numbered values describing the seasonal variability of water levels. Lower values represent wetlands with water levels at or above the land surface throughout the growing season, whereas higher values represent wetlands with more variable water levels that on average are deeper below the surface. Seasonal water-level variation was used to define Hydrologic Components because a large number of vegetation studies in a variety of settings, including peatlands, relate the first ordination axis of plant presence and abundance data to a moisture gradient (Bray and Curtis 1957; Curtis 1959; Whittaker 1970; Peet 1980; Kormárková 1980; Foster et al. 1988; Dunham 1989; Glaser 1992; Pinder and Rosso 1998; Glaser et al. 2004; Zelnik and Čarni 2008).

This study distinguished wetlands from uplands based on the criteria adopted by the Alaska Regional Supplement (USACE 2007) to the United States Army Core of Engineers delineation manual (Environmental Laboratory 1987). In general, these manuals define wetlands according to the relative persistence of the water table near the ground surface as a proportion of the growing season length. Because of the short growing season, CIB sites generally satisfy the wetland criteria in these manuals if they maintain water levels within 30 cm of the ground surface for approximately 2 weeks during the growing season (US Department of Agriculture 2011). However, the peatlands described here often support such elevated water levels throughout the growing season.
CIC: class assignment

Wetland class assignments in the Cook Inlet Classification were initially made in the lab, guided by a variety of resources including geologic maps, soil maps, NWI mapping, and stereo-paired aerial photographs. Once made, a representative sample of the class assignments was subsequently corrected during site visits. Corrected CIC class names were matched (cross-walked) to LLWW class names in 2005 by R. Tiner, the developer of the LLWW, using descriptions written for the CIC (Gracz 2015). The five Landform classes of LLWW that matched CIC classes were: Terrane Slope, Basin, and Headwaters; and Lentic and Lotic Fringe. Landform classes were combined with three water flow-path classes: Throughflow, Inflow, and Outflow and were further refined by the modifiers Groundwater, Headwaters, and Lotic Fringe. Although much more complex names are possible in the LLWW system, we limited the names so that similar levels of classification could be compared across the systems. The limit further allowed us to evaluate the ability of a simple dichotomous naming system to create high within-group similarity based on relevant ecological measures.

The Palustrine System of NWI was assigned to each plot along with one of the three NWI plant physiognomic classes: emergent (PEM), shrub-scrub (PSS),

CIC geomorphic component	LLWW synonyms	Landform	Diagnostic characteristics in CIC
Depression	Terrene basin inflow	Closed basin ice-block depression	Surrounded by upland, Precipitation > Evapotranspiration
	Terrene basin inflow lotic fringe		
Kettle	Terrene basin outflow	Open basin ice-block depression	Connected to navigable water by surface water or wetland
	Terrene basin throughflow		
	Terrene basin headwaters		
	Lotic fringe throughflow		
Spring fen	Terrene basin throughflow groundwater	Closed basin ice-block depression	Surrounded by upland, P ≤ ET, in depressions fed by strong groundwater discharge
	Lotic fringe		
Headwater fen	Terrene basin outflow headwaters	Cirque	Headwater peatland of a first-order stream near or above treeline
	Terrene basin throughflow headwaters		
Relict glacial drainageway	Terrene slope headwaters	Abandoned or underfit stream valleys	Broadly linear features filled with peat, with or without modern stream channels
	Terrene slope throughflow		
	Lentic slope fringe		
Relict glacial lakebed	Terrene slope throughflow	Extensive peatlands over proglacial lake deposits	Large, low-gradient peatlands
VLD trough	Lotic fringe throughflow	Valleys between “Very Large Dunes”a	Poorly understood ripple-like features in the Meadow Lakes area of the Matanuska Valley
	Terrene slope throughflow		

* All three of the NWI classes of PEM, PSS and PFO occur in all of the CIC classes

a As described by Wiedmer et al. (2010) in a paper proposing the genesis of the dunes by a late-Pleistocene megaflood
and forested (PFO), using NWI maps (USFWS 2010). Brooks et al. (2011) suggest that combining a hydrogeomorphic model (HGM) classification system with the NWI system would produce a system emphasizing fundamental hydrogeomorphic characteristics built on existing NWI terminology. To compare CIC to such a classification scheme, we combined the NWI classes with LLWW names for each plot. Because the developers of each classification essentially made the class assignments, errors of misclassification are negligible. Although mapping errors are possible in NWI (Dvorett et al. 2012), we assigned classes based on the conditions found on the field visit.

Field measurements

In the field we measured: plant cover by species, water level, specific conductance (SC), and pH in 222 plots within representative stands of vegetation that were stratified across the CIC peatland classes in proportion to their occurrence. Percent cover class was estimated for each plant taxon. All vascular taxa covering 1 % or more were identified at least to the species level. Cover classes were in 10 % categories, except between 1 and 7 % where one percent classes were used. Cover less than 0.5 % was tabulated as 0.1 %. Measurements of SC and pH were taken in surface water where available or in a shallow pit excavated no more than 30 cm deep. Measurements were made using a YSI 63 m, which was two-point calibrated for pH between each measurement and cleaned daily. Estimates were made of the depth of the water table below the surface at 957 plots sampled as part of this study and during the Western Kenai Soil Survey (VanPatten 2005) to calibrate a proxy for water-level variation.

Plant prevalence index and detrended correspondence analysis

Two separate procedures were used to evaluate the within-group similarity produced by the CIC and the other common classification schemes. The first procedure used SC, pH, and plant prevalence index. Specific conductance should be strongly correlated with calcium concentration because calcium is typically the most abundant cation in natural surface waters. The calcium concentration and pH of peatland porewaters are the two chemical factors most closely related to plant distribution and other processes in oligotrophic peatlands (Weber 1902; Kuczyński 1949; Sjörs 1950; Glaser et al. 1981, 1990; Foster et al. 1988; Ye et al. 2012). Porewater chemistry reflects the relative influence of groundwater versus precipitation on peatland water supply in areas with similar underlying geology (Siegel and Glaser 1987; Hill and Siegel 1991; Siegel et al. 1995; Glaser et al. 2004). Moreover, SC and pH measurements can be collected efficiently over a broad area.

Plant prevalence index (PI) was used as a proxy for the seasonal variability of water levels in place of the single water depth measurement made at each site. A single measurement may not be a reliable indicator of water levels because such measurements may be biased by antecedent conditions without equilibrating to the seasonal average value. Further, reliable measurements of water levels throughout the season and over multiple years requires an impractical intensity of data collection in large regions with limited site access. The PI calculation uses the wetland indicator status of each plant in a plot as a criterion for the wetland definition in the Alaska Regional Supplement to the Delineation manual (USACE 2007) and in other regions (De Steven 2015). Wetland indicator status was assigned using the values in the PLANTS database (USDA 2010). The suitability of PI as a proxy for water level variability was examined by comparing PI to measurements of water table depth at 957 plots.
The second procedure evaluated the within-group similarity produced by each classification system using the axis scores from a detrended correspondence analysis (DCA) of plant cover data (Hill 1979; McCune and Mefford 1999). DCA is a modified reciprocal averaging technique that produces multiple axis scores for samples based on the presence and abundance of entities. It is appropriate for matrices with many zeros, such as found with plant cover data. The modification is the forced removal of the arch and higher-order polynomial relationships produced in the second and subsequent axes by reciprocal averaging (McCune and Mefford 1999). The scores for the first three axes of the DCA were used as explanatory variables.

Multi-response permutation procedure

Multi-response permutation procedure (MRPP) was used in PC-ORD to assess within-group similarity (McCune and Mefford 1999). MRPP is a non-parametric procedure that produces a P value describing whether or not class assignments differ from random. With a large sample size, such as the CIB samples, P values are often statistically significant, and the challenge becomes the interpretation of the ecological significance of the non-random groupings. To assist with this ecological interpretation, MRPP produces an A value, the chance-corrected within-group agreement, which ranges from zero to one. When $A = 1$ all plots in each group are identical to each other. Values for $A \geq 0.1$ can be ecologically meaningful, and $A = 0.3$ is “fairly high” according to McCune and Mefford (1999). In the procedure using PI, pH, and SC, the measurements were made commensurate by normalization (Mielke et al. 1981). This procedure was run with the CIC first using only its Hydrologic Components; second, using only its Geomorphic Components; and finally, with the complete classes, so that the relative contribution of each component could be evaluated separately.

Results

CIC classes

Each Geomorphic Component of the CIC supports a somewhat different combination of pH, specific conductance, and seasonal variation in water levels.
(Fig. 2). For the Hydrologic Components, the numeric values assigned ranged from 1 to 6. Most Geomorphic Components had Hydrologic Components similar in character to those of Kettles, which were assigned Hydrologic Component values ranging from 1 to 4 (Fig. 3). These values are reflected in the vegetation found within this wetland type. For example, sites classified as the Geomorphic Component Kettle \((K)\), with a Hydrologic Component \(= 1\) (i.e. mapped as \(K1\)), support open ponded water with emergent plants such as yellow water-lily \((Nuphar lutea (L.) Sm.)\) and water horsetail \((Equisetum fluviatile L.)\). In contrast, sites classified as \(K4\) are in Kettles that frequently support a forest of black spruce \((Picea mariana (Mill.) Britton, Sterns and Poggenb.)\) over an understory of Labrador tea \((Rhododendron tomentosum Harmaja)\) (Fig. 3; Online Resource). The two extra hydrologic classes \((5 \& 6)\) were required in the Geomorphic Components Drainageways and Lakebeds because peatlands form more extensive complexes on these landforms. One of the extra Hydrologic Components represents bogs, which often occur as small recharge mounds within a larger expanse of fen vegetation, or as forested margins on relict glacial drainageway features \((LB3 \text{ in Lakebeds } \& \text{ DW5 in Drainageways})\). The bog class is supported because a fundamental dichotomy between bogs and fens has long been recognized in peatland classification \((Du \text{ Rietz 1949; Sjörs 1950; Glaser et al. 1990; Keimowitz et al. 2013})\). The other Hydrologic Component unique to Lakebeds and Drainageways \((LB5 \text{ on Lakebeds } \& \text{ DW4 in Drainageways})\) (Figs. 4, 5) represents zones dominated by bluejoint reedgrass \((Calamagrostis canadensis Michx. P. Beauv.,)\), a common grass reported to be a keystone species in wetland-stream interactions in the CIB \((Whigham et al. 2012)\). Both of these additional components can be distinctive over extensive areas on these larger peatland complexes.

For mapping purposes, within any Geomorphic Component the values for the Hydrologic Component can be combined to name a mapping unit. For example, the mapping unit \(K32\) indicates a polygon mapped in a Kettle peatland with a mixture of Hydrologic Components 3 and 2 at a scale too fine to be delineated separately at the nominal mapping scale. The first-named Hydrologic Component covers a greater area of the polygon. Polygons, rather than wetlands, were classified because several different peatland types have frequently coalesced into extensive complexes covering thousands of hectares (Online Resource).

Fig. 4 An idealized landscape cross-section showing the Hydrologic Components and common plant taxa found on the Lakebed Geomorphic Component of the Cook Inlet Classification system.
Plant prevalence index

Sites characterized by low PI values are more likely to support water levels that remain close to the land surface, whereas sites with higher PI values are associated with deeper and more variable water levels (Fig. 6). Plots with a PI between 1 and 2 are those supporting a predominance of wetland obligate plants (occur in wetlands > 99% of the time) and plants that occur in wetlands more than 67% of the time (taxa classified as Facultative-Wet). The median water level in these plots is close to the surface (2 cm), and they typically exhibit a lower variability in water levels throughout the year (s.d. = 20.6 cm) than plots scoring between 2 and 3 (5 ± 30.1 cm). Plots with a PI value of greater than three typically have a water level that is even deeper below the surface (median = 17 cm) and exhibits greater variability (s.d. = 36.0 cm) (Fig. 6).

MRPP

All four classification schemes produce non-random groups of plots according to the MRPP (all with \(P < 0.001 \)). The LLWW system by itself produced the lowest chance-corrected within-group agreement (\(A \)) in both procedures (\(A < 0.05 \)). The Hydrologic

Fig. 5 An idealized landscape cross-section showing the Hydrologic Components and common plant taxa found on the Drainageway Geomorphic Component of the Cook Inlet Classification system.

Fig. 6 Plant prevalence index (PI) compared to estimates of the depth to the water table at 957 plots across CIB. Negative values indicate water above the surface. Numbers along the top are the median and standard deviation (cm) of the water table estimates for each corresponding range of PI values.

Components of the CIC alone produced a relatively low \(A \) (0.06); as did the Geomorphic Components alone (\(A = 0.05 \)). NWI and NWI + LLWW do not produce a within-group agreement greater than 0.1 in the procedure using PI, pH, and SC. However, the NWI system produces relatively high within-group similarity in the procedure using DCA axis scores (\(A = 0.13 \)), as does NWI + LLWW (\(A = 0.18 \)). In contrast the combined Hydrologic and Geomorphic Components of the CIC system produces the highest within-group agreement in both the procedure using PI, pH, and SC (\(A = 0.12 \)), and the procedure using DCA scores from plant cover data (\(A = 0.21 \)) (Table 2).
The CIC plots are distributed evenly among the three NWI classes. These three classes (Palustrine emergent (PEM), shrub-scrub (PSS), and forested (PFO)) produce groups of plots characterized by similar values for PI, but plots within these groups exhibit a wide range of values for pH and SC (Fig. 7). In the LLWW system, most plots fall into five of the twelve classes (Fig. 7). Two of the classes, Lentic Slope Fringe and Inflow Lotic Fringe, separate two groups of peatlands: one with high values for pH and SC and the other with lower values. The hydrologic factor Throughflow differentiates some plots based on water chemistry because Throughflow peatlands in the landform classes Terrene Slope and Terrene Basin both contain plots with the highest values for SC (Fig. 7). However, these classes do not separate plots with different ranges in values for PI or pH, and patterns in PI, pH, and SC are similar between Throughflow peatlands in both the Terrene Slope and Terrene Basin classes (Fig. 7). Flow path classes do not appear to strongly differentiate plots based on PI, pH, and SC within any single geomorphic class. For example, the three flow-path sub-classes (Inflow, Throughflow Groundwater, and Throughflow) within the Terrene Basin class all exhibit a wide range of values for at least two of the variables (Fig. 7).

Peatland plots are evenly distributed among the 21 CIC classes, each of which broadly exhibits similar values for PI, pH, and SC. Although substantial overlap is evident, plots classified within the same Hydrologic Component have similar PI values across Geomorphic Components (columns in Fig. 7), whereas plots within the same Geomorphic Component generally exhibit similar patterns in pH and SC (rows in Fig. 7). For example, values of PI are similar between K2 & D2, or K4 & D4, whereas pH and SC are lower on shrubby Lakebeds (LB4) than in shrubby Drainageways (DW3) (Fig. 7). Plots with higher values for both pH and SC tend to occur in Drainageways and those with lower values occur in Depressions, with those in Kettles showing intermediate values overall. An exception is bogs on Lakebeds (LB5) which exhibit a relatively wide range in values for PI (Fig. 7).

Table 2 MRPP A scores for the four classification schemes in the two procedures

Classification system	MRPP DCA	PI, pH, SC
NWI	0.13	0.07
LLWW	0.03	0.04
NWI+LLWW	0.18	0.10
CICHydro	–	0.06
CICGeo	–	0.05
CIC	0.21	0.12

MRPP is the MRPP using the first three axis scores from a Detrended Correspondence Analysis of plant cover data. PI, pH, SC is the procedure using physical and chemical variables where PI is Prevalence Index, and SC is specific conductance. CICHydro uses only the hydrologic classes of the CIC, and CICGeo uses only the geomorphic classes.

In the LLWW system, most plots fall into five of the twelve classes (Fig. 7). Two of the classes, Lentic Slope Fringe and Inflow Lotic Fringe, separate two groups of peatlands: one with high values for pH and SC and the other with lower values. The hydrologic factor Throughflow differentiates some plots based on water chemistry because Throughflow peatlands in the landform classes Terrene Slope and Terrene Basin both contain plots with the highest values for SC (Fig. 7).

Peatlands form autochthonously though the accumulation of organic matter, and as a result they likely exhibit different responses to environmental factors than that of non-peat forming wetlands in which the vascular plants are directly rooted in mineral soil. The accumulation of dead organic matter within raised bogs, for example, forms peat mounds that create a new set of hydrological flow conditions that did not previously exist at a site (Glaser and Janssens 1986; Siegel et al. 1995; Glaser et al. 1997). The CIC therefore produced greater within-group agreement because the hydrogeologic factors of the CIC system are more directly related to the fundamental ecological controls of oligotrophic peatlands than the more generalized factors used by the NWI, LLWW, or NWI – LLWW systems. The hydrologic factor of water level variation appears to be the most important control, similar to the findings of Foster et al. (1988), who discovered that surface patterns and peat accumulation rates in patterned fens in eastern Canada were primarily controlled by water table elevations. In northern Minnesota, moisture tolerance controlled the arrangement of plots in a gradient analysis (Glaser 1992). In in northern Sweden, (Waddington and Roulet 2000) found that methane production and carbon cycling were related to topographic position, which in turn is related to soil moisture. Glaser et al. (2004a) found that species richness of both vascular plants and bryophytes declined in a nearly linear relationship with increasing water level on the Hudson.
Wetlands Inventory (NWI), and LLWW. The size of the circles shows sizes corresponding to three important values of PI. CIC and NWI classes are arranged left-to-right from wetter to drier so that similar hydrologic classes are arranged in columns.

Bay Lowland, the most extensive peatland complex on Earth.

In the CIB, water-level variation may be even more important in creating different peatland types because patterns of variation may be enhanced by an uneven distribution of seasonal precipitation. In contrast to continental regions, where summer convective storms provide an equitable distribution of precipitation throughout the growing season, peatlands in the CIB begin the season with a high water table following the flush of spring snowmelt and then must adjust to falling water levels during the driest months, which immediately follow. The wet season does not begin until late summer and early fall with the deepening of the Aleutian Low pressure system (climate diagrams in Fig. 1; Online Resource). The long lag between the Aleutian Low pressure system (climate diagrams until late summer and early fall with the deepening of the Aleutian Low pressure system (climate diagrams in Fig. 1; Online Resource). The long lag between the onset of fall rains regularly allows for a period of water level drawdown during the short growing season in CIB.

The classes identified by the CIC system are characterized by high within-group similarity in PI, a proxy for water level variation. Similarly, the three plant life-form classes used in the NWI system are likely related to water level variations, and it is not surprising that this classification system produces the next best within-group agreement. In contrast, the hydrologic classes of LLWW, which are defined by inferred water flow-path, produce low within-group similarity. The low similarity produced by the LLWW system agrees with findings of other investigations (cf. Shaffer et al. 1999). Although Cole et al. (1997, 2002) found similarities in hydrological conditions among flow-path classes within the state of Pennsylvania (USA), within-class similarity was low when the classes were extended across a wider region (Cole et al. 2008), or applied across the continent in the state of Oregon (Cole and Brooks 2000). Morrice et al. (2008) found that a similar classification system using flow path as a hydrologic factor did not define hydrologically distinct groups of Great Lakes coastal wetlands. These classification systems based on flow-path did not produce distinct groups in some regions likely because groundwater flow paths can vary, or even reverse, over time within the same wetland (Siegel and Glaser 1987; Siegel et al. 1995; Spence et al. 2011). Although shallow flow paths in peatlands can be assigned using the presence or absence of inlet and outlet streams, these relatively small streams may have little effect on the overall hydrodynamics in a peatland (Spence et al. 2011).

The seven specific landform names of the CIC system produce greater within-group agreement than the geomorphic factors employed in NWI, LLWW, or NWI + LLWW. Geomorphology should be related to water chemistry as long as the hydrogeologic setting is understood (Weber 1902; Glaser et al. 1997, 2004). However, the NWI uses only a single geomorphic factor to classify freshwater peatlands (Palustrine) and the physiognomic classes produce low within-group similarity based on the chemistry variables. These limitations are serious because different species within each life-form class can exhibit wide ecological tolerances with respect to pH and calcium concentration (Sjörs 1950; Glaser 1992). For example, whereas the shrub sweetgale (Myrica gale L.) will occur only on minerotrophic fens and not on ombrotrophic bogs, the shrub Labrador tea (Rhododendron tomentosum Harmaja) is found on both bogs and fens (Glaser 1992).

When applied to peatlands in the CIB, the LLWW system uses five landform types with respect to geomorphology, and these types have moderately similar ranges in water chemistry. However, the classes of the LLWW exhibited low within-group similarity overall, a result that agrees with findings of other investigations. For example, the LLWW did not produce groups of wetlands with similar ranges of water chemistry in the state of New York, USA (Azzolina et al. 2007). In addition, a classification system employing similar geomorphic classes also produced low within-group similarity with respect to the water chemistry of coastal wetlands in the Great Lakes region of North America (Morrice et al. 2008). Used alone, the Geomorphic Components of the CIC system produce greater within-group agreement than the combined geomorphic and hydrologic classes of the LLWW. Interestingly, the NWI system produces higher within-group agreement than the Hydrologic Components of the CIC system when the later are used alone in the analysis employing the variables PI, pH,
and SC. This higher agreement is perhaps due to the fewer groupings of the NWI and the overriding ecological importance of water level variations (as indicated by PI) over chemistry (specifically pH & SC). The physiognomic classes of the NWI system are related to water level variation, but the Geomorphic Components of the CIC system require combination with its Hydrologic Components (which are related to water level variation) to achieve high within-group similarity.

The importance of water level variation in producing within-group similarity is further demonstrated by the results of the MRPP using the combined NWI + LLWW classification system. In the procedure using PI, pH, and SC, the increase in within-group agreement of NWI + LLWW is small over either the NWI or LLWW systems by themselves. By itself, the LLWW system produces the lowest within-group agreement. The higher within-group agreement produced by the NWI system by itself is likely due to the strong relationship between water-level variation and its physiognomic classes. When the NWI and LLWW systems are combined, the small increase in within-group agreement suggests that the physiognomic classes of NWI are the primary driver of the increase, probably because the weak relationship between water-level variation and the LLWW classes imposes a limit on any potential increase in within-group agreement. By contrast, combining the Hydrologic and Geomorphic Components of the CIC produces a synergistic increase in within-group agreement. A system based on a combination of similar components may produce equally high within-group similarity across the region of boreal peatlands.

The relatively high within-group agreement produced by the combined Hydrologic and Geomorphic Components of the CIC shows that classes detectable on remotely-sensed imagery can better separate wetlands based on their response to fundamental drivers of ecosystem function. National-scale classification systems, in contrast, probably lack the resolution necessary to match the within-group agreement captured by any regionalized system. Morrice et al. (2008), for example, determined that a classification system devised for coastal wetlands around the North American Great Lakes performed better than a standard classification system that relies upon flow paths and broad landforms. Their system, which was based on a ratio between seiche and tributary hydrodynamics, was a better predictor of chloride concentration and variability than were the classes of the national system, which were based on flow path and landform. Chloride is an indicator of source water and of human disturbance, both fundamental controls on the ecological function of those Great Lakes wetlands. To the best of our knowledge, this study is the only other investigation that evaluated the performance of a regional wetland classification relative to that of a national system. Regardless of the factors, a regionally-specific system that produces high within-group similarity based on important ecological variables should be a useful tool for managers responsible for the maintenance of wetland ecosystem services.

One of the strengths of the CIC is its reliance on simplified proxies for the fundamental drivers of ecosystem function of wetlands in the CIB. In oligotrophic peatlands, specific conductance is strongly related to calcium concentration, which is generally the major cation balancing charge in most surface waters and has also been related to differences in vegetation (Vitt and Chee 1990). Fen indicator species cannot tolerate the low calcium concentrations found in ombrotrophic bog waters, whereas at high concentration calcium can be toxic to the normal development of the protonemata of Sphagnum papillosum, an ecologically important peatland moss (Boatman and Lark 1971; Clymo and Hayward 1982). Other solutes, especially nitrogen and phosphorus, may also limit Sphagnum growth at elevated concentrations (Bridgham et al. 1996). If limiting or toxic solutes are important, specific conductance alone may not be a reliable proxy. Although water level variability appears to be an overriding controlling factor in peatlands, the fundamental dichotomy of classifying peat landforms as either ombrotrophic bogs or minerotrophic fens is controlled by the general direction of the groundwater gradient: downward in bogs and upward or laterally in fens. The gradient is reflected by the chemistry of peatland pore waters, with ombrotrophic bogs having dilute acidic surface waters solely derived from precipitation and acidified by the production of organic acids from decaying Sphagnum, whereas waters from minerotrophic fens have higher cation concentrations and alkalinity due to groundwater inputs (e.g. Clymo 1983 Gorham et al. 1985; Siegel et al. 2006). The CIC includes hydrologic classes for bogs (e.g. DW5 in Drainageways and LB3 on Lakebeds). However, bogs may exhibit wide
variations in water levels, because they can include a range of microtopographic variation including sedge-dominated lawns or low areas, intermediate shrubby hummocks or ridges, and higher forested crests (Sjörs 1948, 1963; Glaser and Janssens 1986). This variation within the bog classes, especially the common LB3 class of the CIC, may partly explain why the hydrologic classes of the CIC examined alone produced slightly lower within-group agreement using PI, pH, and SC than did NWI by itself, which groups wetlands only according to life form. Although the fundamental division of peat landforms into bogs and fens can be identified using water chemistry and plant indicators (Sjörs 1950; Glaser 1992), peatland classes based on differences in water level variation appear to form more distinct groups, at least where precipitation maintains a low diversity of bog landforms, as it likely does in the CIB.

Research, management, and wetland assessment

The Cook Inlet Classification has been used in several investigations to stratify field sampling designed to relate stream ecosystem functions to the surrounding wetlands and landscape. The classes of the CIC guided the categorization of streams by geomorphic factors in the CIB, that could then be correlated to various indices of stream function. For example, Whigham et al. (2012) found that coarser-scale wetland classes did not explain the distribution of plant species along headwater streams as well as finer, reach-scale factors. They also found that *Calamagrostis canadensis* was potentially a keystone species in interactions between wetlands and headwater streams, reinforcing the use of this species to separate wetland classes within the Lakebed and Drainageway classes of the CIC. Although Walker et al. (2012) found that stream chemistry and temperature were strongly related to flow-weighted slope and not to differences in wetland class, King et al. (2012) reported that differences in wetland class were important drivers of stream condition, modulated by flow-weighted slope, which is comparable to the more widely used topographic wetness index (Sørensen et al. 2006). These factors explained the additional variance in both fish and macroinvertebrate community structure. In addition, Callahan et al. (2015) found significantly higher temperatures in salmon-bearing streams flowing through Drainageways compared to streams flowing through Discharge Slopes, two of the hydrogeologic classes defined by the CIC.

Local managers in the CIB are currently using the distinct Hydrologic and Geomorphic Components of the CIC to guide wetland functional assessment. The Hydrologic Components are used to assign principle hydrologic functions to peatlands by relating contrasts among different Components to categories of storage, recharge, and discharge. For example, peatlands with stable high water tables (Hydrologic Component less than 3) are rated as principally transmitting discharge. Geomorphic Components are used to rate peatlands based on contrasts in degree of hydrologic isolation and the transmissivity of underlying sediments. For example, isolated peatlands underlain with impermeable sediments (Depressions) are principally performing the hydrologic function of storage (Borough 2014).

In other hydrogeologic settings these contrasts among peatlands may differ. A mosaic of different bog and fen types, for example can develop over carbonate and silicaceous terrain depending on the local hydrogeologic setting, whereas in regions with much higher precipitation the development of raised bogs and patterned fens may be linked to the distance between the bounding rivers and rapid rates of glacial isostatic uplift (Glaser and Janssens 1986; Glaser et al. 2004). However, since water level variation and chemistry are primary sources of ecological variation among peatlands worldwide, a classification system based on these factors is likely to be useful to managers and scientists everywhere.

Acknowledgments Mapping was supported by grants from United States Environmental Protection Agency (EPA), Fish & Wildlife Service, and the Army Corps of Engineers. EPA agreement 83482601 and a Summer Fellowship from the Conservation Biology Program at the University of Minnesota supported additional data collection and the analysis. Additional funding was provided by the U.S. National Science Foundation (Award No. 0628647). Frankie Barker, John DeLapp, Valerie Hansen, Matt LaCroix, Mary Moffett, Phil North, Karyn Noyes, Mary Price, Lisa Rabbe, Dick Reger, Bill Rice, Robert Ruffner, Robert Shavelson, Scott Stewart, Gerald Tande, and Doug VanPatten provided technical assistance and support. We also thank Ned Euliss and two anonymous reviewers for their comments on an earlier version of this manuscript.

Funding U.S. Environmental Protection Agency (Award #83482601), U.S. Fish and Wildlife Service, U.S. Army Corps of Engineers, U.S. National Science Foundation (Award #0628647), University of Minnesota Conservation Biology Program Summer Fellowship.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Azzolina NA, Siegel DI, Brower JC, Samson SD, Otz MH, Otz I (2007) Can the HGM classification of small, non-peat forming wetlands distinguish wetlands from surface water geochemistry? Wetlands 27:884–893

Beitman HM (1994) Geologic map of Alaska. In: Plaker G, Berg EC (eds) The geology of Alaska. The Geological Society of America, Boulder

Boatman DJ, Lark PM (1971) Inorganic nutrition of the protonemata of Sphagnum papillosum Lind., S. magellanicum Brid. and S. cuspidatum Ehrh. New Phytol 70:1053–1059

Borough MS (2014) Matanuska-Susitna wetland functions and values landscape-level assessment methodology and mapping. Matanuska-Susitna Borough, Palmer. http://cookinletwetlands.info/downloads/matsu/MSB_Wetland_Functional_Assessment_1stEdition.pdf. Accessed Oct 2014

Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349

Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ (1996) Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65

Brinson D (1993) A hydrogeomorphic classification for wetlands, Technical Report WRP-DE-4 Vicksburg, MS

Brooks R, Brinson M, Havens K, Hershner C, Rheinhardt R, Wardrop D, Whigham D, Jacobs A, Rubbo J (2011) Proposed hydrogeomorphic classification for wetlands of the Mid-Atlantic region, USA. Wetlands 31:207–219

Callahan M, Rains M, Bellino J, Walker C, Baird S, Whigham D, King R (2015) Controls on temperature in salmid-bearing headwater streams in two common hydrogeologic settings, Kenai Peninsula, Alaska. JAWRA J Am Water Resour Assoc 51:84–98

Charman D (2002) Peatlands and environmental change. Wiley, New York

Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world 4A: mires: swamp, bog, fen and moor, general studies. Elsevier, Amsterdam

Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith A JE (ed) Bryophyte ecology. Chapman and Hall, London, pp 229–289

Cole CA, Brooks RP (2000) Patterns of wetland hydrology in the ridge and valley Province, Pennsylvania, USA. Wetlands 20:438–447

Cole C, Brooks R, Wardrop D (1997) Wetland hydrology as a function of hydrogeomorphic (HGM) subclass. Wetlands 17:456–467

Cole CA, Brooks RP, Shaffer PW, Kentula ME (2002) Comparison of hydrology of wetlands in Pennsylvania and Oregon (USA) as an indicator of transferability of hydrogeomorphic (HGM) functional models between regions. Environ Manag 30:265–278

Cole C, Cirino M, Wardrop D, Brooks R, Peterson-Smith J (2008) Transferability of an HGM wetland classification scheme to a longitudinal gradient of the central Appalachian Mountains: initial hydrological results. Wetlands 28:439–449

Cowardin LM, Carter V, Golet FC, LaRue ET (1979) Classification of the wetlands and deepwater habitats of the United States. US Fish & Wildlife Service, Washington, DC

Curtis JT (1959) Vegetation of Wisconsin. University of Wisconsin Press, Madison

De Steven D (2015) Metrics for determining hydrophytic vegetation in wetland delineation: a clarification on the prevalence index. Wetl Sci Pract 3:24–26

Du Rietz GE (1949) Huvudenmeter och huvudgranser i svensk myrvegetation. Svensk Botanik Tidskrift 43:279–309

Dunham KM (1989) Vegetation-environment relations of a middle Zambezi floodplain. Vegetatio 82:13–24

Dvoret D, Bidwell J, Davis C, DuBois C (2012) Developing a hydrogeomorphic wetland inventory: reclassifying national wetlands inventory polygons in geographic information systems. Wetlands 32:83–93

Environmental Laboratory (1987) Corps of engineers wetland delineation manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg

Foster DR, King GA, Santelmann MV (1988) Patterned fens of western Labrador and adjacent Quebec: phytosociology, water chemistry, landform features, and dynamics of surface patterns. Can J Bot 66:2402–2418

Fournelle JH, Marsh BD, Meyers JD (1994) Age, character, and significance of Aleutian arc volcanism. In: Plaker G, Berg HC (eds) The geology of Alaska. The Geological Society of America, Boulder

Freethey GW, Scully DR (1980) Water resources of the Cook Inlet Basin: sheet 1 geography. US Geological Survey Hydrologic Investigation Atlas HA 620, Washington, DC

Glaser PH (1992) Vegetation and water chemistry. In: Coffin BA, Aaseng NE (eds) Wright HE. The Patterned Peatlands of Minnesota. University of Minnesota Press, Minneapolis, pp 15–26

Glaser PH, Janssens JA (1986) Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can J Bot 64:395–415

Glaser PH, Wheeler GA, Gorham E, Wright HE Jr (1981) The patterned mires of the Red Lake peatland, northern Minnesota: vegetation, water chemistry and landforms. J Ecol 69:575–599

Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to hydrological and chemical gradients in the Lost River Peatland, northern Minnesota. J Ecol 78:1021–1048

Glaser PH, Siegel DI, Romanowicz EA, Shen YP (1997) Regional linkages between raised bogs and the climate, groundwater, and landscape of north-western Minnesota. J Ecol 85:3–16

Glaser PH, Siegel DI, Reese AS, Janssens JA, Janecky DR (2004a) Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay Lowlands. J Ecol 92:1054–1070

Springer
Glaser PH, Hansen BCS, Siegel DI, Reeve AS, Morin PJ (2004b) Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands northern Ontario, Canada. J Ecol 92:1036–1053

Gore AJP (1983) Introduction. In: Gore AJP (ed) Ecosystems of the world 4A: mires: swamp, bog, fen and moor, general studies. Elsevier, Amsterdam

Gorham E, Eisenreich SJ, Ford J, Sandelmann MV (1985) The chemistry of bog waters. In: Stumm W (ed) The chemistry of bog waters. In: Stumm W (ed) The chemistry of bog waters. Wiley, New York

Gracz MB (2015) Cook Inlet Wetlands. http://cookinletwetlands.info. Accessed 8 Nov 2015

Gracz MB, Moffett MF, Siegel DI, Glaser PH (2015) Analyzing peatland discharge to streams in an Alaskan watershed: an integration of end-member mixing analysis and a water balance approach. J Hydrol 530:667–676. doi:10.1016/j.jhydrol.2015.09.072

Hall J, Powell J, Carrick S, Rockwell T, Hollands G, Walter T, White J (2002) Operational draft guidebook for assessing the functions of Slope/Flat wetland complexes in the lower Kenai River drainage basin using the HGM approach. Department of Environmental Conservation/US Army Corps of Engineers Waterways Experiment Station Technical Report WRP-DE-__Juneau, AK and Vicksburg

Hartman DC, Pessl GH, McGee DL (1971) Preliminary report on stratigraphy of Kenai Group, Upper Cook Inlet, Alaska. Special Report No. 5, Alaska Division of Geologic Survey, Fairbanks

Hill MO (1979) DECORANA—a FORTRAN program for detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

Hill BM, Siegel DI (1991) Groundwater flow and the metal content of peat. J Hydrol 123:221–224

Ingram HAP (1983) Hydrology. In: Gore AJP (ed) Ecosystems of the world 4A: mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 67–158

Jokela JB, Munter JA, Evans JG (1991) Ground-water resources of the palmer-big lake area, Alaska: a conceptual model. Report of Investigations 90-4, State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys, Anchorage

Keinomowitz A, Parisio S, Adams M, Interlichia K, Halton C, Kroenke S, Hubert A (2013) Identification of ombrotrophic bogs in the Catskill Mountains, NY by geochemical and physical Surveys, Anchorage

Kikuchi CP (2013) Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow. U.S. Geological Survey Scientific Investigations Report 2013–5049, Anchorage

King R, Walker C, Whigham D, Baird S, Back J (2012) Catchment topography and wetland geomorphology drive macroinvertebrate community structure and juvenile salmonid distributions in south-central Alaska headwater streams. Freshw Sci 31:341–364

Kivinen E, Pakarinen P (1981) Geographical distribution of peat resources and major peatland complex types in the world. Ann Acad Sci Fenn 30:1–29

Kormarčková V (1980) Classification and ordination in the Indian Peaks Area, Colorado Rocky Mountains. Vegetatio 42:149–163

Kučzyński S (1949) Peat bogs of Polesie. Mémoires de L’Académie Polonaise des Sciences et des Lettres, B15, Cracovie, Poland

Malmer N (1986) Vegetational gradients in relation to environmental conditions in northwestern European mires. Can J Bot 64:375–383. doi:10.1139/b86-054

McCune B, Mefford MJ (1999) PC-ORD: multivariate analysis of ecological data. MJM Software Design, Gleneden Beach

Mielke PW, Berry KJ, Brier GW (1981) Application of multiple response permutation procedures for examining seasonal changes in monthly mean sea-level pressure patterns. Mon Weather Rev 109:120–126. doi:10.1175/1520-0499(1981)109<0120:aomrpp>2.0.co;2

Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC

Morrice JA, Danz N, Regal RR, Kelly JR, Reavie ED, Hollenhorst T, Axler RP, Trebitz AS, Cotter AM, Peterson GS (2008) Human influences on water quality in Great Lakes coastal wetlands. Environ Manag 41:347–357

Neuendorf KE, Mielke EW, Jackson JA (2005) Glossary of geology, 5th edn. American Geological Institute, Alexandria

Peet RK (1980) Ordination as a tool for analyzing complex data sets. Vegetatio 42:171–174

Pinder L, Rosso S (1998) Classification and ordination of plant formations in the Pantanal of Brazil. Plant Ecol 136:151–165

PRISM Climate Group (2011) Oregon State University, http://prism.oregonstate.edu. Accessed Oct 2011

Reeve AS, Siegel DI, Glaser PH (2001) Simulating dispersive mixing in large peatlands. J Hydrol 242:103–114

Riegle JR (1985) A reconnaissance of the major Holocene tephra deposits in the upper Cook Inlet region, Alaska. J Volcanol Geoth Res 26:37–74

Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

Shaffer P, Kentula M, Gwin S (1999) Characterization of wetland hydrology using hydrogeomorphic classification. Wetlands 19:490–504

Siegel DI, Glaser PH (1987) Groundwater flow in a bog-fen complex, Lost River peatland, northern Minnesota. J Ecol 75:743–754

Siegel DI, Reeve AS, Glaser PH, Romanowicz EA (1995) Climate-driven flushing of pore water in peatlands. Nature 374:531–533

Siegel DI, Glaser PH, So J, Janecky DR (2006) The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. J Hydrol 320:420–431

Silberling NJ, Jones DL, Monger JWH, Coney PJ, Berg HC, Pflaker G (1994) Lithotectonic terrane map of Alaska and adjacent parts of Canada. In: Pflaker G, Berg HC (eds) The geology of Alaska. The Geological Society of America, Boulder

Sjörs H (1948) Myrvegetation i Bergslagen. Acta Phytogeogr Suec 21:1–299

Sjörs H (1950a) On the relation between vegetation and electrolytes in north Swedish mire waters. Ökos 2:241–258

Sjörs H (1950b) Regional studies in North Swedish mire vegetation. Bot Not 103:173–222

Sjörs H (1963) Bogs and fens on Attawasipskait River northern Ontario. Mus Can Bull Contrib Bot 59:45–133

Smith RD, Amman A, Bartoldus C, Brinson MM (1995) An approach for assessing wetland functions using hydrogeomorphic classification, reference wetlands, and functional
indices. Wetlands Research Program Technical Report
WRP-DE-9. US Army Corps of Engineers Waterways
Experiment Station, Vicksburg

Sørensen R, Zinko U, Seibert J (2006) On the calculation of the
topographic wetness index: evaluation of different methods
based on field observations. Hydrol Earth Syst Sci
10:101–112. doi: 10.5194/hess-10-101-2006

Spence C, Guan X, Phillips R (2011) The hydrological functions
of a boreal wetland. Wetlands 31:75–85

Tiner R (2011) Dichotomous keys and mapping codes for
wetland landscape position, landform, water flow path and
waterbody type descriptors: Version 2.0. US Department of
the Interior, Fish and Wildlife Service, Hadley

US Army Corps of Engineers (2007) Regional supplement to the
corps of engineers wetland delineation Manual: Alaska
region (Version 2.0). In: Wakley JS, Lichvar RS, Noble CV
(eds) ERDC/EL TR-07024. Army Engineer Research and
Development Center, Vicksburg, pp 14–15

US Department of Agriculture (2010) Natural Resources Con-
servation Service, PLANTS database: http://plants.usda.
gov/java/ Accessed. Accessed October 2010

US Department of Agriculture (2011) Natural Resources Con-
servation Service, National Water and Climate Center
Climate Wetlands Information: http://www.wcc.nrcs.usda.
gov/ftpref/support/climate/wetlands/ak/02120.txt. Acces-
sed 13 Nov 2011

US Fish and Wildlife Service (2010) National Wetlands
Inventory http://www.fws.gov/wetlands/ Accessed. 30 Sept
2010

Utah Climate Center (2013) Utah MAPS-Utah Climate Center;
Utah State University. http://climate.usu.edu/mapGUI/
mapGUI.php. Accessed on 9 April 2013

VanPatten DJ (2005) Soil survey of the western Kenai Peninsula
area. Natural Resources Conservation Service, Homer

Vitt D (2006) Functional characteristics and indicators of boreal
peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland
ecosystems. Springer, Berlin, pp 9–24

Vitt DH, Chee W-L (1990) The relationships of vegetation to
surface water chemistry and peat chemistry in fens of
Alberta, Canada. Vegetatio 89:87–106

Waddington JM, Roulet NT (2000) Carbon balance of a boreal
patterned peatland. Glob Change Biol 6:87–97

Walker C, King R, Whigham D, Baird S (2012) Landscape and
wetland influences on headwater stream chemistry in the
Kenai Lowlands, Alaska. Wetlands 32:301–310. doi: 10.
1007/s11273-011-0260-x

Walter H, Lieth H (1960) Klimadiagramm-Weltatlas. G. Fischer,
Jena

Weber CA (1902) Vegetation and development of the raised bog
of Augustumal. In: Cowenberg J, Joosten H (eds) C.A.
Weber and the raised bog of augustumal. International
Mire Conservation Group, Tula, pp 52–270

Whigham D, Walker C, King R, Baird S (2012) Multiple scales
of influence on wetland vegetation associated with head-
water streams in Alaska, USA. Wetlands 32:411–422.
doi: 10.1007/s11273-012-0274-z

Whittaker RH (1970) Communities and ecosystems. Macmillan,
London

Wieder RK, Vitt DH, Bengscter BW (2006) Peatlands and the
boreal forest. In: Wieder RK, Vitt DH (eds) Boreal peat-
land ecosystems. Springer, Berlin, pp 1–8

Wiedmer M, Montgomery DR, Gillespie GR, Greenberg H
(2010) Late Quaternary megafloods from Glacial Lake
Atna, Southcentral Alaska, U.S.A. Quat Res 73:413–424

Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham
SD (2012) pH controls over anaerobic carbon mineraliza-
tion, the efficiency of methane production, and methane-
genic pathways in peatlands across an ombrotrophic-
inminerotrophic gradient. Soil Biol Biochem 54:36–47.
doi: 10.1016/j.soilbio.2012.05.015

Zelnik I, Čarni A (2008) Distribution of plant communities,
ecological strategy types and diversity along a moisture
gradient. Commun Ecol 9:1–9

Zoltai SC, Taylor S, Jeglum JK, Mills GF, Johnson JD (1988)
Wetlands of boreal Canada. In: Wetlands Working Group
& Canada committee on ecological land classification (ed)
Wetlands of Canada. Environment Canada & Polyscience
Publications, Inc., Montreal, pp 97–154