BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjpaedsopen.bmj.com).

If you have any questions on BMJ Paediatrics Open’s open peer review process please email info.bmjpo@bmj.com
Effectiveness and Safety of Available Preventive Tuberculosis Treatment Regimens for Children and Adolescents: Protocol for a Systematic Review and Network Meta-analysis.

Journal	BMJ Paediatrics Open
Manuscript ID	bmjpo-2022-001551
Article Type	Protocol
Date Submitted by the Author	18-May-2022
Complete List of Authors	Sabella-Jiménez, Vanessa; Universidad del Norte, Department of Public Health; Corporación Universitaria Remington, Facultad Ciencias de la Salud
 Hoyos Mendez, Yenifer ; Universidad CES Facultad de Medicina, Departamento de Medicina
 Benjumea-Bedoya, Dione; Corporación Universitaria Remington, Facultad Ciencias de la Salud; Universidad de Antioquia, Facultad de Medicina Pública
 Estupiñán-Bohorquez, Andrés; Universidad del Norte, Department of Public Health; Corporación Universitaria Remington, Facultad Ciencias de la Salud
 Acosta-Reyes, Jorge; Universidad del Norte, Department of Public Health; Florez, Ivan; Universidad de Antioquia, Department of Pediatrics; McMaster University, School of Rehabilitation Science |
| Keywords | Epidemiology, Therapeutics |
I, the Submitting Author, have the right to grant and do grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Dear Dr. Choonara,

We wish to submit a protocol for a systematic review and network meta-analysis entitled *Effectiveness and Safety of Available Preventive Tuberculosis Treatment Regimens for Children and Adolescents: Protocol for a Systematic Review and Network Meta-analysis* for consideration by BMJ Paediatrics Open. The present protocol followed the Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement checklist.

Through our systematic review, we aim to determine the effectiveness and safety of all the different regimens available for the treatment of latent tuberculosis infection for children and adolescents less than 18 years of age, contacts of drug-susceptible tuberculosis, without human immunodeficiency virus infection. To date, there is not a systematic review that had synthesized all the available evidence from randomized controlled trials comparing all the available prophylaxis regimes in children to determine whether there are differences among them. To our knowledge, this would be the first systematic review and network meta-analysis aiming to evaluate the effectiveness and safety of the different regimens available for the treatment of latent tuberculosis infection in children less than 18 years of age by performing a meta-analysis of randomized controlled trials.

The results of the review will be disseminated by the publication of the manuscript in a peer-reviewed journal focusing on infectious diseases and pediatrics for publication. The results of the research will also be part of an updated national clinical practice guideline for the evaluation, treatment and follow-up of children, and contacts of patients with pulmonary tuberculosis, in Colombia.

We confirm that the present manuscript has not been previously submitted to BMJ Paediatrics Open, is not published elsewhere, nor is currently under consideration for publication in any other journal.

We thank you for your time and consideration.

Kind regards,

Ivan D. Florez, MD, MSc, PhD, On behalf of the authors

Department of Pediatrics, University of Antioquia, Medellin, Colombia
Effectiveness and Safety of Available Preventive Tuberculosis Treatment Regimens for Children and Adolescents: Protocol for a Systematic Review and Network Meta-analysis.

Vanessa Sabella-Jiménez1,2, Yenifer Hoyos Mendez3, Dione Benjumea-Bedoya4,5,6, Andrés Felipe Estupiñán-Bohorquez1,2, Jorge Acosta-Reyes1, Ivan D. Florez7,8,9.

Corresponding author:
Ivan D. Florez; Department of Pediatrics University of Antioquia, Calle 67 No. 53 – 108; Medellin, Colombia. Phone number: +57 4 219 2480. Email: ivan.florez@udea.edu.co

Author Affiliations:
1 Department of Public Health, Universidad del Norte, Barranquilla, Colombia.
2 Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
3 Universidad CES, Medellín, Colombia.
4 Grupo de Investigación en Salud Familiar y Comunitaria, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
5 Grupo de Epidemiología, Facultad de Salud Pública, Universidad de Antioquia, Medellín, Colombia.
6 Unidad de Bacteriología y Micobacterias, Corporación para Investigaciones Biológicas CIB, Medellín, Colombia.
7 Department of Pediatrics, University of Antioquia, Medellín, Colombia.
8 School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.
9 Clínica Las Américas-AUNA, Medellín, Colombia.

Email and ORCID ID:
Vanessa Sabella-Jiménez: vsabella@uninorte.edu.co, 0000-0003-2946-8996
Yenifer Hoyos Mendez: ychmendez@gmail.com, 0000-0002-1991-5820
Dione Benjumea-Bedoya: dione.benjumea@uniremington.edu.co, 0000-0002-4004-2219
Andrés Felipe Estupiñán-Bohorquez: andresestupinan@uninorte.edu.co, 0000-0003-3872-0428
Jorge Acosta-Reyes: acostajl@uninorte.edu.co, 0000-0003-4303-3243
Ivan D. Florez: ivan.florez@udea.edu.co, 0000-0002-0751-8932
ABSTRACT

Introduction: Approximately 5-10% of individuals with untreated latent tuberculosis infection (LTBI) will progress to active tuberculosis (TB). Children are at a higher risk for progression to TB disease than adults. Isoniazid prophylaxis treatment period is long and can cause liver damage. Alternatives to isoniazid, such as rifamycin containing regimens, should be considered for prophylaxis. Previous systematic reviews, with different study designs and data combining results on children and adults, have evaluated the comparative efficacy and harms of LTBI treatment regimens. We aim to determine the effectiveness and safety of all the different regimens available for the treatment of LTBI for children and adolescents less than 18 years of age, contacts of drug-susceptible TB, without human immunodeficiency virus (HIV) infection.

Methods and analysis: MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials will be systematically searched for randomized controlled trials without any language or publication date restriction. Screening and extraction will be performed in duplicate. Risk of bias will be performed in duplicate with Cochrane Risk of Bias tool version 2. Pairwise meta-analysis of direct comparisons and network meta-analyses (NMA) will be performed. Heterogeneity will be assessed using I^2 and Cochrane thresholds. Direct and indirect estimates in a NMA will be combined if justifiable. Subgroups analyses will be performed in different mean age and year of publication groups. Sensitivity analysis based on the risk of bias will be conducted. Publication bias will be investigated using funnel plots and Egger’s regression test. GRADE criteria will assess certainty of the evidence for the direct comparisons. GRADE approach for NMA will assess the quality of the evidence from the indirect and NMA.

Ethics and Dissemination: Ethical approval is not required as no primary data is collected. This systematic review will be disseminated in a peer-reviewed journal.

PROSPERO registration number CRD42021271512.
KEY MESSAGES

What is already known on this topic?

- Children have a higher risk for progression to tuberculosis disease than adults, due to vaccination, nutritional and immune status, and age.
- Isoniazid prophylaxis non-compliance can be due to long treatment duration, hepatotoxicity, adverse events and forgetting to take or administer the tablets by caregivers.
- Short-term regimens should also be considered in children.

What this study hopes to add?

- There is no evidence synthesis on the best preventive tuberculosis regimens for children and adolescents.
- This project aims to provide a summary of the best available evidence on the effectiveness and safety of the available preventive treatment
- If the assumptions of homogeneity, coherence and transitivity are judged to be justifiable, we will determine the relative effectiveness among regimes to highlight the best and the worst ones for our outcomes of interest.
INTRODUCTION

Latent tuberculosis infection (LTBI) is a state of persistent bacterial viability, immune control, and no evidence of clinically manifested active tuberculosis (1), constituting a public health problem requiring effective interventions. Since up to 2014, nearly 1.7 billion individuals were reported as latently infected with Mycobacterium tuberculosis (M. tuberculosis) (2).

Most infected individuals are asymptomatic and do not develop active tuberculosis (TB). Nevertheless, if untreated, approximately 5-10% of persons with LTBI will progress to active TB or TB disease (3-5). Moreover, children are at a higher risk for progression to TB disease than adults (6). Several factors appear to influence the balance of risk between LTBI or progression to active disease, including age and nutritional, vaccination and immune status.(7) For instance, in the absence of preventive measures, approximately 50% of infants, even those delivered at term, develop active TB after infection (8). Children under 4 years of age have the highest risk of progression with development of severe forms of TB, such as miliary or disseminated and meningeval or central nervous system TB (9). Safe and effective preventive treatment strategies as part of global TB control (10) should be targeted to those population groups at highest risk for progression to active disease.

Among first-line antituberculous medication, isoniazid is also used as a single drug to prevent M. tuberculosis infection and progression from latent infection to active TB.(11) Isoniazid prophylaxis has traditionally been used for decades, it has showed high efficacy and proved risk reduction for TB among children (12). However, the treatment period with isoniazid is long, can cause liver damage and only approximately 50% of patients complete the treatment.(10) Compliance to isoniazid regimen can be a challenge, especially in high-risk populations. Non-compliance has been reported due to forgetting to take or administer the tablets by caregivers, adverse events, migration or traveling, among others (13).

Alternatives to isoniazid, such as rifamycin containing regimes (rifampicin, rifapentine) should be considered for prophylaxis. Trials comparing short-term rifampicin alone with long regimes of isoniazid, mostly in adults, have not shown higher rates of active TB, and compliance is probably higher and adverse events rates may be lower.(10) Furthermore, a combination of rifapentine and isoniazid supervised weekly for three months has demonstrated to be as effective in preventing TB as self-administered isoniazid for nine months, increased treatment completion, and caused less liver toxicity, though treatment-limiting adverse events were more frequent.(10)

Previous systematic reviews and network meta-analyses have evaluated the comparative efficacy and harms of LTBI treatment regimens. However, these studies have combined data from both, adults and children, to estimate the comparative effectiveness of several regimes (14). Other previous reviews have included different study types, such as non-randomized studies and trials, to answer one structured clinical question about LTBI treatment options in children (15). Moreover, a meta-analysis of randomized controlled trials (RCTs), has exclusively evaluated the efficacy of isoniazid, compared to placebo or no prophylaxis, in the prevention of TB morbidity and mortality in children (12). As a result, to date, there is not a systematic review that had synthesized all the available evidence from RCTs comparing all the available prophylaxis regimes in children to determine whether there are differences among them. We aim to determine the effectiveness and safety of all the different regimes available for the treatment of LTBI for children and adolescents less than 18 years of age, contacts of drug-susceptible TB, without human immunodeficiency virus (HIV) infection. To our knowledge this would be the first systematic review and network meta-analysis (NMA) aiming to determinate the previously stated by performing a meta-analysis of RCTs.
METHODS AND ANALYSIS

Study design
The protocol of this systematic review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines (16). The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (Registration No. CRD42021271512) on the 2nd of August of 2021. The final report of this review will follow the recommendations of the PRISMA extension statement for systematic reviews incorporating network meta-analyses (NMA) (17).

Participants
We are interested in RCT studies including children and/or adolescents under 18 years of age, with LTBI, who were contacts of individuals with drug-susceptible TB, regardless of the definition the authors used for LTBI. We will exclude studies with combined results for adults and children/adolescents, from which the information on children could not be extracted, and studies with HIV infected children/adolescents.

Interventions and Comparators
The interventions of interest are listed in Table 1. Studies must compare at least one drug regimen listed in Table 1 with another drug regimen and/or placebo and/or no treatment.

We will not include pyrazinamide regimens due to the known risk of severe hepatotoxicity as recommended by the Centers for Disease Control and Prevention (CDC) and the American Thoracic Society, since 2003 (18). On the basis of multiple reports and investigations from 2000 to 2002, the entities recommended in 2003 that rifampin and pyrazinamide regimens should generally not be offered to persons with LTBI for either HIV-negative or HIV-infected persons, which is also endorsed by the Infectious Diseases Society of America (IDSA) (18). Clinicians are advised to use the preferred or alternative regimens for treatment of LTBI, and only can be considered in carefully selected patients (18). We will include studies that compared all the mentioned regimens among them, or with placebo.

Outcomes
The primary outcomes are incidence of active TB at 2-years of follow-up and treatment compliance/adherence. We defined active TB as the disease caused by being infected with M. tuberculosis (19). Treatment adherence/compliance is obtained when a patient was administered and took at least 80% of the doses of the corresponding drug within the period defined by the protocol (10). Regardless of the definition of treatment adherence/compliance, this outcome is included as described by the study authors.

Our secondary outcomes are incidence of active TB at 1-year and 5-years of follow-up, bacteriological confirmation of TB within the first 2 years after exposure, adverse reactions, hepatotoxicity, discontinuation of treatment due to adverse event and mortality at 5-years of follow-up. Bacteriological confirmation is obtained when TB is diagnosed in a biological specimen by smear microscopy, culture or molecular test (such as Xpert MTB/RIF) (19).

Adverse events, as defined by the study authors, include all signs and symptoms that can be expressions of organic or physiological alteration in the child/adolescent, as a result of the administration of the medication at indicated doses. These events can be detected during questioning of the children and/or their caregivers, during medical evaluations (clinically) or through laboratory test, and can lead to treatment discontinuation according to the seriousness of the
event. Serious adverse events can result in death, are life threatening, require or prolong hospitalization, result in persistent or significant disability or incapacity, or result in a congenital anomaly.(20) While unexpected adverse events are previously unobserved or undocumented, expected events typically do not require expedited reporting to the regulatory authorities.(20) Related adverse events indicate a reasonable possibility of an event being related to exposure to the product, based on biological plausibility, prior experience, temporal relationship between product exposure and onset of the event, as well as dechallenge and rechallenge.(20) Even though there is no standard nomenclature to describe the degree of causality, terms such as certainly, definitely, probably, possibly, or likely related or not related have been used.(20)

Information sources and search strategy
We will search MEDLINE via Ovid, EMBASE via Ovid, and the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library - current) without any language or publication date restriction, and limited to human studies. The MEDLINE strategy was developed with input from the project team. To build the search strategy, MEDLINE and Embase via Ovid were used to identify an extensive list of keywords and MeSH terms related to “latent tuberculosis”, “children”, and “isoniazid” or “rifampin” or “rifamycins”. The search strategy was revised and approved by all authors. A draft MEDLINE search strategy is available in Appendix 1. The MEDLINE strategy will be adapted to the syntax and subject subheadings of the other databases. PROSPERO database was also searched for ongoing or recently completed systematic reviews. The search will be updated toward the end of the review, after being validated to ensure that the MEDLINE strategy retrieves a high proportion of eligible studies found through any means but indexed in MEDLINE.

Selection process
Citations retrieved from the searches from all the databases will be merged using EndNote V.X9.1 software, and duplicate records will be removed. References will be then exported to a Microsoft Excel (version 14.1.0, Redmond, WA: Microsoft, 2011) spreadsheet to continue the selection process. Title and abstract screening will be performed in duplicate by two reviewers (VSJ, YHM). We will obtain full-text articles for all titles identified as potentially eligible, by at least one of the reviewers, which appear to meet the inclusion criteria or when there is any uncertainty.

The potentially eligible full-text articles will also be reviewed independently and in duplicate by two reviewers (VSJ and YHM) to determine their inclusion. We will seek additional information and contact the corresponding authors to resolve questions about eligibility when needed. Studies considered eligible by both reviewers will be included. Data extraction of included will also be performed independently and in duplicate (VSJ, YHM, AFEB). Disagreements in the full-text or the data extraction stages will be resolved by consensus discussion or by seeking adjudication from a third reviewer (JAR). Extracted data will include information on study design (title, author information, year of publication, recruitment stage, country in which the study was conducted, language, study design, sample size and funding), population characteristics (age, percentage of children less than 5 years-old, body weight/weight mass index, sex, case source identification, intrafamilial infection, TB incidence, endemicy, population type), trial characteristics (tuberculin skin testing (TST) cut-off point for inclusion, Interferon Gamma Release Assay (IGRA) result and type as inclusion criteria, number of patients per trial arms, allocation and information of interventions (dose, details, duration), risk of bias assessment, and outcome measurements (mean and standard deviation for continuous outcomes and number of events, per arms, for dichotomous outcomes).

Risk of bias in individual studies
The risk of bias (RoB) of each randomized control trial will be performed with the Cochrane Risk of Bias tool, version 2 (21). The following domains will be assessed: risk of bias in randomization
process, deviations from the intended intervention (effect of assignment and adhering to intervention), missing outcome data, measurement of the outcome, and selection of the reported result. Each domain will be assigned a risk of bias judgment of “low risk of bias”, “high risk of bias” or “some concerns”. The overall risk of bias domain will be classified as: “low risk of bias” when all domains are judged as low risk, “some concerns” when at least one domain is some concern but was not high risk for any domain, and “high risk” if at least one domain was high risk or if multiple domains were judged as some concerns (21). Two independent reviewers (VSJ, YHM and AFEB) will perform the RoB assessment. Possible discrepancies between the two reviewers regarding bias appraisal will be solved by consensus. Nevertheless, if consensus cannot be reached, a third reviewer will resolve it (IDF).

Statistical analysis
We will first describe the results narratively and using tables. If possible, we will conduct a pairwise meta-analysis of the available direct comparisons and network meta-analyses. Since we expect clinical and methodological heterogeneity among the studies, we plan to pool direct evidence for each treatment comparison using a frequentist random-effects (RE) model. Effect estimates along with 95% confidence intervals (95% CI) will be estimated using odds ratio (OR) for dichotomous outcomes, and mean difference for continuous outcomes, if they are reported using the same metrics or standardized mean difference (SMD) otherwise. Heterogeneity will be assessed using the I^2 statistic to quantify the percentage of variability that is due to true differences between studies rather than sampling error (22,23). The I^2 will be interpreted following the Cochrane thresholds (24).

Network meta-analysis synthesizes both direct and indirect evidence, estimates the relative effectiveness amongst pairs of interventions, even if specific interventions have never been compared directly in RCTs, and provides a ranking of interventions (25). When direct evidence for a given comparison is not available, an indirect comparison will provide an effect estimate. In the presence of direct evidence, the NMA will provide a combined estimate (i.e., the statistical combination of direct and indirect evidence) (26). We will combine direct and indirect estimates in a NMA if the coherence and transitivity assumptions across treatment comparisons are judged to be justifiable. By combining direct and indirect evidence we may obtain estimates with increased precision. We will present the network geometry and the results in probability statements as well as forest plots. We will calculate the surface under the cumulative ranking curve (SUCRA) values for each intervention, per outcome. The NMA will be performed in Statistical Software for Data Science (STATA) version 15.0.

We will conduct additional analyses to investigate potential reasons for heterogeneity. We plan to conduct subgroups analyses based on potential effect modifiers if sufficient data is available. We have identified the following potential effect modifiers: mean age and year of publication. We will also conduct a sensitivity analysis based on the risk of bias, excluding articles with high risk of bias to assess the robustness of results. Lastly, we will conduct network meta-regression to evaluate the potential impact of age on the effect estimates. Publication bias will be investigated using funnel plots, and Egger’s regression test will be applied to statistics when the funnel plots show asymmetry and there are five or more studies available (27).

Certainty of the evidence
The confidence in the estimates for each reported outcome will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group approach (28). We will assess the certainty of the evidence for the direct available comparisons following the traditional GRADE criteria: risk of bias, inconsistency, imprecision, indirectness and publication bias (29). The assessment of the quality of the evidence from the indirect and NMA, will be
performed using the specific GRADE approach for NMA. This approach considers, in addition to the traditional GRADE criteria, the assessment of intransitivity and incoherence criteria (30,31).
Lastly, to optimize the results interpretation, we will present a summary using a novel approach recommended by GRADE to draw conclusions from the NMA using a minimally contextualized framework (32).

PATIENT AND PUBLIC INVOLVEMENT

There was no patient or public involvement in the development of the systematic review protocol.

ETHICS AND DISSEMINATION

Ethical approval is not required for this study; this review is based on the analysis of published evidence. No personal data of patients were required. The results of the review will be disseminated by the publication of the manuscript in a peer-reviewed journal focusing on infectious diseases and pediatrics for publication.
REFERENCES

1. Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med 2015;372(22):2127-2135.

2. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 2016;13:e1002152.

3. Sutherland I. The ten-year incidence of clinical TB following conversion in 2,550 individuals aged 14 to 19 years. Tuberculosis Surveillance Research Unit Progress Report. The Hague, the Netherlands: The Royal Netherlands Tuberculosis Foundation; 1968.

4. Sutherland I. Recent studies in the epidemiology of tuberculosis, based on the risk of being infected with tubercle bacilli. Adv Tuberc Res 1976;19:1–63.

5. Kritski AL, Marques MJ, Rabahi MF, Vieira MA, Werneck-Barroso E, Carvalho CE, Andrade G de N, Bravo-de-Souza R, Andrade LM, Gontijo PP, RIley LW. Transmission of tuberculosis to close contacts of patients with multidrug-resistant tuberculosis. Am J Respir Crit Care Med 1996;153:331–335.

6. Sterling TR, Njie G, Zenner D, Cohn DL, Reves R, Ahmed A, Menzies D, Horsburgh CR Jr, Crane CM, Burgos M, LoBue P, Winston CA, Belknap R. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm Rep 2020;69(1):1-11.

7. Newton SM, Brent AJ, Anderson S, Whittaker E, Kampmann B. Paediatric tuberculosis. Lancet Infect Dis 2008;8(8):498-510.

8. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Starke JJ, Enarson DA, Donald PR, Beyers N. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. International Journal of Tuberculosis and Lung Disease 2004;8(4):392–402.

9. Cruz AT, Starke JR. Pediatric tuberculosis. Pediatr Rev. 2010;31(1):13-25. Erratum in: Pediatr Rev. 2010;31(3):126.

10. Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev 2013;2013(7):CD007545.

11. International Union Against Tuberculosis Committee on Prophylaxis. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ 1982;60:555–564.

12. Ayieko, J, Abuogi, L, Simchowitz, B, Bukusi EA, Smith AH, Reingold A. Efficacy of isoniazid prophylactic therapy in prevention of tuberculosis in children: a meta–analysis. BMC Infect Dis 2014;14:91.

13. Gomes VF, Wejse C, Oliveira I, Andersen A, Vieira FJ, Carlos LJ, Vieira CS, Aaby P, Gustafson P. Adherence to isoniazid preventive therapy in children exposed to tuberculosis: a prospective study from Guinea-Bissau. Int J Tuberc Lung Dis 2011;15(12):1637-1643.
14. Zenner D, Beer N, Harris RJ, Lipman MC, Stagg HR, van der Werf MJ. Treatment of Latent Tuberculosis Infection: An Updated Network Meta-analysis. Ann Intern Med 2017;167(4):248-255.

15. Gwee A, Coghlan B, Curtis N. Question 1: what are the options for treating latent TB infection in children? Arch Dis Child 2013;98(6):468-474.

16. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). Syst Rev 2015;4(1):1.

17. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162(11):777-784.

18. Centers for Disease Control and Prevention (CDC); American Thoracic Society. Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection— United States, 2003. MMWR Morb Mortal Wkly Rep 2003;52:735–739. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5231a4.htm

19. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management [Internet]. Geneva: World Health Organization; 2018.

20. Gliklich RE, Dreyer NA, Leavy MB. Chapter 12: Adverse Event Detection, Processing, and Reporting. In: Gliklich RE, Dreyer NA, Leavy MB (editors). Registries for Evaluating Patient Outcomes: A User's Guide. 2014. (3rd edition). Rockville (MD): Agency for Healthcare Research and Quality (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK208615/.

21. Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from http://www.training.cochrane.org/handbook.

22. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1539–1558.

23. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557–560.

24. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.

25. Al Khalifah R, Florez ID, Guyatt G, Thabane L. Network meta-analysis: users' guide for pediatricians. BMC Pediatr 2018;18(1):180.
26. Mills EJ, Thorlund K, Ioannidis JPA. Demystifying trial networks and network meta-analysis. BMJ 2013;346:f2914.

27. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315(7109):629-34.

28. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64(4):383–394.

29. Puhan MA, Schunemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, Kessels AG, Guyatt GH. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014;349:g5630.

30. Balshem H, Helfand M, Schünemann HJ, Meerpohl J, Norris S, Guyatt GH. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64(4):401–406.

31. Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, Hazlewood GS, Alhazzani W, Mustafa RA, Murad MH, Puhan MA, Schünemann HJ, Guyatt GH; GRADE Working Group. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol 2018;93:36–44.

32. Brignardello-Petersen R, Florez ID, Izcovich A, Santesso N, Hazlewood G, Alhazanni W, Yepes-Núñez JJ, Tomlinson G, Schünemann HJ, Guyatt GH; GRADE working group. GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ 2020;371:m3900.
AUTHORS' CONTRIBUTIONS

IDF, DBB and YHM conceptualized and designed the study; VSJ, AFEB and IDF developed the search strategy. VSJ wrote the manuscript under the supervision of DBB, JAR and IDF. VSJ, YHM, DBB, AFEB, JAR, and IDF critically reviewed the protocol and manuscript submitted. All authors provided substantive feedback on the manuscript and have read and approved the final version. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

FUNDING

This work was supported by Ministerio de Ciencia, Tecnología e Innovación (MinCiencias) with grants number 902-2019 and 088-2021.

COMPETING INTERESTS

Vanessa Sabella-Jiménez attended a Master Class on Reproductive and Evidenced-Based Medicine financed by Abbott Laboratories, a Medical Health Update Conference financed by Sanofi Aventis, and was a speaker for Virtual Training in Primary Healthcare financed by Lafrancol S.A.S. The other authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed.

AMENDMENTS

If we need to amend this protocol, we will give the date of each amendment, describe the change and give the rationale in this section. Changes will not be incorporated into the protocol.
TABLE 1. Interventions of interest.

Drug Regimen	dose	Duration
Rifampin	15 mg/kg/day (10-20 mg)	3 to 4 months
Isoniazid with Rifampin	10 mg/kg/day (7-15 mg)	3 to 4 months
Rifapentine with Isoniazid	Rifapentine weekly dose: 300 mg (10-14 kg) 450 mg (14.1-25 kg) 600 mg (25.1-32 kg) 750 mg (32.1-50 kg) 900 mg (>50 kg)	3 months
Isoniazid	Isoniazid weekly dose: 25 mg (2-11 years) 15 mg (>12 years)	
Isoniazid	10 mg/kg/day (7-15 mg)	6 months
Isoniazid	10 mg/kg/day (7-15 mg)	9 months
Isoniazid	10 mg/kg/day (7-15 mg)	12 months
Placebo		
No treatment		
APPENDIX 1. MEDLINE search – Ovid interface.

1. exp Latent Tuberculosis/
2. exp Tuberculosis/ or tuberculosis.mp.
3. exp Mycobacterium tuberculosis/ or mtb.mp.
4. (LTBI or latent).mp.
5. 1 or 2 or 3 or 4
6. exp Isoniazid/ or isoniazid.mp. or INH.mp.
7. exp Rifampin/ or rifamp$.mp. or RMP.mp. or RF.mp. or RIF.mp.
8. exp Rifamycins/ or rifapentin$.mp. or RPT.mp.
9. exp Antitubercular Agents/ or exp Chemoprevention/ or chemoprevention.tw. or chemoprophylaxis.tw. or prophylaxis.tw. or antitubercular.tw. or tuberculostatic.tw.
10. 6 or 7 or 8 or 9
11. (Infant$ or newborn$ or new-born$ or perinat$ or neonat$ or baby or baby$ or babies or toddler$ or minors or minors$ or boy or boys or boyfriend or boyhood or girl$ or kid or kids or child or children$ or schoolchild$ or schoolchild).mp. or schoolchild.tw. or schoolchild$.tw. or adolescence.mp. or juvenil$.mp. or youth$.mp. or teen$.mp. or under$.age$.mp. or pubescen$.mp. or exp Pediatrics/ or pediatric$.mp. or paediatric$.mp. or paediatric$.mp. or school.tw. or school$.tw. or preterm$.mp. or preterm$.mp. or (adolescen$ or teen$ or youth$ or young or juvenile? or minors or highschool$).ti,ab. or exp CHILD/ or (child$ or schoolchild$ or "school age" or "school aged" or preschool$ or toddler$ or kid? or kindergar$ or boy? or girl?).ti,ab. or exp INFANT/ or (infant$ or neonat$ or newborn$ or baby or babies).ti,ab. or exp PEDIATRICS/ or exp PUBERTY/ or (p?ediatric$ or puberty$ or prepubert$ or pubescen$ or prepubescent$).ti,ab. or ADOLESCENT/ or MINORS/
12. 5 and 10 and 11
13. limit 12 to humans
14. randomized controlled trial.pt. or randomized.mp. or placebo.mp. or blind$.tw. or random.tw.
15. 13 and 14
Effectiveness and Safety of Available Preventive Tuberculosis Treatment Regimens for Children and Adolescents: Protocol for a Systematic Review and Network Meta-analysis.

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2022-001551.R1
Article Type:	Protocol
Date Submitted by Author:	23-Jun-2022
Complete List of Authors:	Sabella-Jiménez, Vanessa; Universidad del Norte, Department of Public Health; Corporación Universitaria Remington, Facultad Ciencias de la Salud Hoyos Mendez, Yenifer; Universidad CES Facultad de Medicina, Departamento de Medicina Benjumea-Bedoya, Dione; Corporación Universitaria Remington, Facultad Ciencias de la Salud; Universidad de Antioquia, Facultad de Salud Pública Estupiñán-Bohorquez, Andrés; Universidad del Norte, Department of Public Health; Corporación Universitaria Remington, Facultad Ciencias de la Salud Acosta-Reyes, Jorge; Universidad del Norte, Department of Public Health Florez, Ivan D; Universidad de Antioquia, Department of Pediatrics; McMaster University, School of Rehabilitation Science
Keywords:	Epidemiology, Therapeutics
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Effectiveness and Safety of Available Preventive Tuberculosis Treatment Regimens for Children and Adolescents: Protocol for a Systematic Review and Network Meta-analysis.

Vanessa Sabella-Jiménez¹,², Yenifer Hoyos Mendez³, Dione Benjumea-Bedoya⁴,⁵,⁶, Andrés Felipe Estupiñán-Bohorquez¹,², Jorge Acosta-Reyes¹, Ivan D. Florez⁷,⁸,⁹.

Corresponding author:
Ivan D. Florez; Department of Pediatrics University of Antioquia, Calle 67 No. 53 – 108; Medellín, Colombia. Phone number: +57 4 219 2480. Email: ivan.florez@udea.edu.co

Author Affiliations:
¹ Department of Public Health, Universidad del Norte, Barranquilla, Colombia.
² Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
³ Universidad CES, Medellín, Colombia.
⁴ Grupo de Investigación en Salud Familiar y Comunitaria, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
⁵ Grupo de Epidemiología, Facultad de Salud Pública, Universidad de Antioquia, Medellín, Colombia.
⁶ Unidad de Bacteriología y Micobacterias, Corporación para Investigaciones Biológicas CIB, Medellín, Colombia.
⁷ Department of Pediatrics, University of Antioquia, Medellín, Colombia.
⁸ School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada.
⁹ Clínica Las Américas-AUNA, Medellín, Colombia.

Email and ORCID ID:
Vanessa Sabella-Jiménez: vsabella@uninorte.edu.co, 0000-0003-2946-8996
Yenifer Hoyos Mendez: ychmendez@gmail.com, 0000-0002-1991-5820
Dione Benjumea-Bedoya: dione.benjumea@uniremington.edu.co, 0000-0002-4004-2219
Andrés Felipe Estupiñán-Bohorquez: andresestupinan@uninorte.edu.co, 0000-0003-3872-0428
Jorge Acosta-Reyes: acostajl@uninorte.edu.co, 0000-0003-4303-3243
Ivan D. Florez: ivan.florez@udea.edu.co, 0000-0002-0751-8932
ABSTRACT

Introduction: Approximately 5-10% of individuals with untreated latent tuberculosis infection (LTBI) will progress to active tuberculosis (TB). Children are at a higher risk for progression to TB disease than adults. Isoniazid prophylaxis treatment period is long and can cause liver damage. Alternatives to isoniazid, such as rifamycin containing regimens, should be considered for prophylaxis. Previous systematic reviews, with different study designs and data combining results on children and adults, have evaluated the comparative efficacy and harms of LTBI treatment regimens. We aim to determine the effectiveness and safety of all the different regimens available for the treatment of LTBI for children and adolescents less than 18 years of age, contacts of drug-susceptible TB, without human immunodeficiency virus (HIV) infection.

Methods and analysis: MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials will be systematically searched for randomized controlled trials without any language or publication date restriction. Screening and extraction will be performed in duplicate. Risk of bias will be performed in duplicate with Cochrane Risk of Bias tool version 2. Pairwise meta-analysis of direct comparisons and network meta-analyses (NMA) will be performed. Heterogeneity will be assessed using I^2 and Cochrane thresholds. Direct and indirect estimates in a NMA will be combined if justifiable. Subgroups analyses will be performed in different mean age and study year groups. Sensitivity analysis based on the risk of bias will be conducted. Publication bias will be investigated using funnel plots and Egger’s regression test. GRADE criteria will assess certainty of the evidence for the direct comparisons. GRADE approach for NMA will assess the quality of the evidence from the indirect and NMA.

Ethics and Dissemination: Ethical approval is not required as no primary data is collected. This systematic review will be disseminated in a peer-reviewed journal.

PROSPERO registration number CRD42021271512.
KEY MESSAGES

What is already known on this topic?

- Children have a higher risk for progression to tuberculosis disease than adults, due to vaccination, nutritional and immune status, and age.
- Isoniazid prophylaxis non-compliance can be due to long treatment duration, hepatotoxicity, adverse events and forgetting to take or administer the tablets by caregivers.
- Short-term regimens should also be considered in children.

What this study hopes to add?

- There is no evidence synthesis on the best preventive tuberculosis regimens for children and adolescents.
- This project aims to provide a summary of the best available evidence on the effectiveness and safety of the available preventive treatment
- If the assumptions of homogeneity, coherence and transitivity are judged to be justifiable, we will determine the relative effectiveness among regimes to highlight the best and the worst ones for our outcomes of interest.
INTRODUCTION

Latent tuberculosis infection (LTBI) is a state of persistent bacterial viability, immune control, and no evidence of clinically manifested active tuberculosis (1), constituting a public health problem requiring effective interventions. Since up to 2014, nearly 1.7 billion individuals were reported as latently infected with Mycobacterium tuberculosis (M. tuberculosis) (2).

Most infected individuals are asymptomatic and do not develop active tuberculosis (TB). Nevertheless, if untreated, approximately 5-10% of persons with LTBI will progress to active TB or TB disease (3-5). Moreover, children are at a higher risk for progression to TB disease than adults (6). Several factors appear to influence the balance of risk between LTBI or progression to active disease, including age and nutritional, vaccination and immune status.(7) For instance, in the absence of preventive measures, approximately 50% of infants, even those delivered at term, develop active TB after infection (8). Children under 4 years of age have the highest risk of progression with development of severe forms of TB, such as miliary or disseminated and meningeal or central nervous system TB (9). Safe and effective preventive treatment strategies as part of global TB control (10) should be targeted to those population groups at highest risk for progression to active disease.

Among first-line antituberculous medication, isoniazid is also used as a single drug to prevent M. tuberculosis infection and progression from latent infection to active TB.(11) Isoniazid prophylaxis has traditionally been used for decades, it has showed high efficacy and proved risk reduction for TB among children (12). However, the treatment period with isoniazid is long, can cause liver damage and only approximately 50% of patients complete the treatment.(10) Compliance to isoniazid regimen can be a challenge, especially in high-risk populations. Non-compliance has been reported due to forgetting to take or administer the tablets by caregivers, adverse events, migration or traveling, among others (13).

Alternatives to isoniazid, such as rifamycin containing regimens (rifampicin, rifapentine) should be considered for prophylaxis. Trials comparing short-term rifampicin alone with long regimes of isoniazid, mostly in adults, have not shown higher rates of active TB, and compliance is probably higher and adverse events rates may be lower.(10) Furthermore, a combination of rifapentine and isoniazid supervised weekly for three months has demonstrated to be as effective in preventing TB as self-administered isoniazid for nine months, increased treatment completion, and caused less liver toxicity, though treatment-limiting adverse events were more frequent.(10)

Previous systematic reviews and network meta-analyses have evaluated the comparative efficacy and harms of LTBI treatment regimens. However, these studies have combined data from both, adults and children, to estimate the comparative effectiveness of several regimes (14). Other previous reviews have included different study types, such as non-randomized studies and trials, to answer one structured clinical question about LTBI treatment options in children (15). Moreover, a meta-analysis of randomized controlled trials (RCTs), has exclusively evaluated the efficacy of isoniazid, compared to placebo or no prophylaxis, in the prevention of TB morbidity and mortality in children (12). As a result, to date, there is not a systematic review that had synthesized all the available evidence from RCTs comparing all the available prophylaxis regimes in children to determine whether there are differences among them. We aim to evaluate the effectiveness and safety of all the different regimes available for the treatment of LTBI for children and adolescents less than 18 years of age, contacts of drug-susceptible TB, without human immunodeficiency virus (HIV) infection.

METHODS AND ANALYSIS
Review Method

The protocol of this systematic review was developed based on PICO (Participants, Interventions, Comparators and Outcomes) components of the review method and prepared according to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines (16). The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (Registration No. CRD42021271512) on the 2nd of August of 2021. The final report of this review will follow the recommendations of the PRISMA extension statement for systematic reviews incorporating network meta-analyses (NMA) (17).

Eligibility Criteria

Participants

We are interested in RCT studies including children and/or adolescents under 18 years of age, with LTBI, who are contacts of individuals with drug-susceptible TB, regardless of the definition the authors used for LTBI. We will exclude studies with combined results for adults and children/adolescents, from which the information on children could not be extracted, and studies with HIV infected children/adolescents.

Interventions and Comparators

The interventions of interest are listed in Table 1. Studies must compare at least one drug regimen listed in Table 1 with another drug regimen and/or placebo and/or no treatment.

We will not include pyrazinamide regimens due to the known risk of severe hepatotoxicity as recommended by the Centers for Disease Control and Prevention (CDC) and the American Thoracic Society, since 2003 (18). On the basis of multiple reports and investigations from 2000 to 2002, the entities recommended in 2003 that rifampin and pyrazinamide regimens should generally not be offered to persons with LTBI for either HIV-negative or HIV-infected persons, which is also endorsed by the Infectious Diseases Society of America (IDSA) (18). Clinicians are advised to use the preferred or alternative regimens for treatment of LTBI, and only can be considered in carefully selected patients (18). We will include studies that compared all the mentioned regimens among them, or with placebo.

Outcomes

The primary outcomes are incidence of active TB at 2-years of follow-up and treatment compliance/adherence. We defined active TB as the disease caused by being infected with *M. tuberculosis* (19), confirmed bacteriologically or diagnosed clinically based on the TB diagnostic criteria of the American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines (20). Treatment adherence/compliance is included as used and reported by the authors of the primary studies.

Our secondary outcomes are incidence of active TB at 1-year and 5-years of follow-up, bacteriological confirmation of TB within the first 2 years after exposure, adverse reactions, hepatotoxicity, discontinuation of treatment due to adverse event and mortality at 5-years of follow-up. Bacteriological confirmation is obtained when TB is diagnosed in a biological specimen by smear microscopy, culture or molecular test (such as Xpert MTB/RIF) (19).

Adverse events, as defined by the study authors, include all signs and symptoms that can be expressions of organic or physiological alteration in the child/adolescent, as a result of the administration of the medication at indicated doses. These events can be detected during questioning of the children and/or their caregivers, during medical evaluations (clinically) or through laboratory test, and can lead to treatment discontinuation according to the seriousness of the
event. Serious adverse events can result in death, are life threatening, require or prolong hospitalization, result in persistent or significant disability or incapacity, or result in a congenital anomaly. While unexpected adverse events are previously unobserved or undocumented, expected events typically do not require expedited reporting to the regulatory authorities. Related adverse events indicate a reasonable possibility of an event being related to exposure to the product, based on biological plausibility, prior experience, temporal relationship between product exposure and onset of the event, as well as dechallenge and rechallenge. Even though there is no standard nomenclature to describe the degree of causality, terms such as certainly, definitely, probably, possibly, or likely related or not related have been used.

Information sources and search strategy

We will search MEDLINE via Ovid, EMBASE via Ovid, and the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library - current) without any language or publication date restriction, and limited to human studies. The MEDLINE strategy was developed with input from the project team. To build the search strategy, MEDLINE and Embase via Ovid were used to identify an extensive list of keywords and MeSH terms related to “latent tuberculosis”, “children”, and “isoniazid” or “rifampin” or “rifamycins”. The search strategy was revised and approved by all authors. A draft MEDLINE search strategy is available in Appendix 1. The MEDLINE strategy will be adapted to the syntax and subject subheadings of the other databases. PROSPERO database was also searched for ongoing or recently completed systematic reviews. The search will be updated toward the end of the review, after being validated to ensure that the MEDLINE strategy retrieves a high proportion of eligible studies found through any means but indexed in MEDLINE. The full search strategies and study selection process will be presented in a PRISMA flow diagram.

Selection process

Citations retrieved from the searches from all the databases will be merged using EndNote V.X9.1 software, and duplicate records will be removed. References will be then exported to a Microsoft Excel (version 14.1.0, Redmond, WA: Microsoft, 2011) spreadsheet to continue the selection process. Title and abstract screening will be performed in duplicate by two reviewers (VSJ, YHM). We will obtain full-text articles for all titles identified as potentially eligible, by at least one of the reviewers, which appear to meet the inclusion criteria or when there is any uncertainty.

The potentially eligible full-text articles will also be reviewed independently and in duplicate by two reviewers (VSJ and YHM) to determine their inclusion. We will seek additional information and contact the corresponding authors to resolve questions about eligibility when needed. Studies considered eligible by both reviewers will be included. Data extraction of included will also be performed independently and in duplicate (VSJ, YHM, AFEB). Disagreements in the full-text or the data extraction stages will be resolved by consensus discussion or by seeking adjudication from a third reviewer (JAR). Extracted data will include information on study design (title, author information, year of publication, recruitment stage, country in which the study was conducted, language, study design, sample size and funding), population characteristics (age, percentage of children less than 5 years-old, body weight/body mass index, sex, case source identification, intrafamilial infection, TB incidence, endemicity, population type), trial characteristics (tuberculin skin testing (TST) cut-off point for inclusion, Interferon Gamma Release Assay (IGRA) result and type as inclusion criteria, number of patients per trial arms, allocation and information of interventions (dose, details, duration), risk of bias assessment, and outcome measurements (number of events, per arms, for dichotomous outcomes).

Risk of bias in individual studies

The risk of bias (RoB) of each randomized control trial will be performed with the Cochrane Risk of Bias tool, version 2 (22). The following domains will be assessed per outcome (primary and
secondary outcomes): risk of bias in randomization process, deviations from the intended intervention (effect of assignment and adhering to intervention), missing outcome data, measurement of the outcome, and selection of the reported result. Each domain will be assigned a risk of bias judgment of “low risk of bias”, “high risk of bias” or “some concerns”. The overall risk of bias domain will be classified as: “low risk of bias” when all domains are judged as low risk, “some concerns” when at least one domain is some concern but was not high risk for any domain, and “high risk” if at least one domain was high risk or if multiple domains were judged as some concerns (22). Two independent reviewers (VSJ, YHM and AFEB) will perform the RoB assessment. Possible discrepancies between the two reviewers regarding bias appraisal will be solved by consensus. Nevertheless, if consensus cannot be reached, a third reviewer will resolve it (IDF).

Statistical analysis

We will first describe the results narratively and using tables. If possible, we will conduct a pairwise meta-analysis of the available direct comparisons and network meta-analyses. Since we expect clinical and methodological heterogeneity among the studies, we plan to pool direct evidence for each treatment comparison using a frequentist random-effects (RE) model, applying the Hartung-Knapp-Sidik-Jonkman method (23). Effect estimates along with 95% confidence intervals (95% CI) will be estimated using odds ratio (OR) for dichotomous outcomes. Heterogeneity will be assessed using the I^2 statistic to quantify the percentage of variability that is due to true differences between studies rather than sampling error (24,25). The I^2 will be interpreted following the Cochrane thresholds (26).

Network meta-analysis synthesizes both direct and indirect evidence, estimates the relative effectiveness amongst pairs of interventions, even if specific interventions have never been compared directly in RCTs, and provides a ranking of interventions (27). When direct evidence for a given comparison is not available, an indirect comparison will provide an effect estimate. In the presence of direct evidence, the NMA will provide a combined estimate (i.e., the statistical combination of direct and indirect evidence) (28). We will combine direct and indirect estimates in a NMA if the coherence and transitivity assumptions across treatment comparisons are judged to be justifiable. By combining direct and indirect evidence we may obtain estimates with increased precision. We will present the network geometry and the results in probability statements as well as forest plots. We will calculate the surface under the cumulative ranking curve (SUCRA) values for each intervention, per outcome. The NMA will be performed in Statistical Software for Data Science (STATA) version 15.0.

We will conduct additional analyses to investigate potential reasons for heterogeneity. We plan to conduct subgroups analyses based on potential effect modifiers if sufficient data is available. We have identified age as a potential effect modifier, as well as study year (the year the recruitment began), due to the likelihood of TB infection. We will also conduct a sensitivity analysis based on the risk of bias, excluding articles with high risk of bias to assess the robustness of results. Lastly, we will conduct network meta-regression to evaluate the potential impact of age on the effect estimates. Publication bias will be investigated using funnel plots, and Egger’s regression test will be applied to statistics when the funnel plots show asymmetry and there are five or more studies available (29).

Certainty of the evidence

The confidence in the estimates for each reported outcome will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group approach (30). We will assess the certainty of the evidence for the direct available comparisons following the traditional GRADE criteria: risk of bias, inconsistency, imprecision, indirectness and publication
bias (31). The assessment of the quality of the evidence from the indirect and NMA, will be performed using the specific GRADE approach for NMA. This approach considers, in addition to the traditional GRADE criteria, the assessment of intransitivity and incoherence criteria (32,33). Lastly, to optimize the results interpretation, we will present a summary using a novel approach recommended by GRADE to draw conclusions from the NMA using a minimally contextualized framework (34).

PATIENT AND PUBLIC INVOLVEMENT

There was no patient or public involvement in the development of the systematic review protocol.

ETHICS AND DISSEMINATION

Ethical approval is not required for this study; this review is based on the analysis of published evidence. No personal data of patients were required. The results of the review will be disseminated by the publication of the manuscript in a peer-reviewed journal focusing on infectious diseases and pediatrics for publication.
REFERENCES

1. Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med 2015;372(22):2127-2135.

2. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 2016;13:e1002152.

3. Sutherland I. The ten-year incidence of clinical TB following conversion in 2,550 individuals aged 14 to 19 years. Tuberculosis Surveillance Research Unit Progress Report. The Hague, the Netherlands: The Royal Netherlands Tuberculosis Foundation; 1968.

4. Sutherland I. Recent studies in the epidemiology of tuberculosis, based on the risk of being infected with tubercle bacilli. Adv Tuberc Res 1976;19:1–63.

5. Kritski AL, Marques MJ, Rabahi MF, Vieira MA, Werneck-Barroso E, Carvalho CE, Andrade G de N, Bravo-de-Souza R, Andrade LM, Gontijo PP, Riley LW. Transmission of tuberculosis to close contacts of patients with multidrug-resistant tuberculosis. Am J Respir Crit Care Med 1996;153:331–335.

6. Sterling TR, Njie G, Zenner D, Cohn DL, Reves R, Ahmed A, Menzies D, Horsburgh CR Jr, Crane CM, Burgos M, LoBue P, Winston CA, Belknap R. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm Rep 2020;69(1):1-11.

7. Newton SM, Brent AJ, Anderson S, Whittaker E, Kampmann B. Paediatric tuberculosis. Lancet Infect Dis 2008;8(8):498-510.

8. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Starke JJ, Enarson DA, Donald PR, Beyers N. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. International Journal of Tuberculosis and Lung Disease 2004;8(4):392–402.

9. Cruz AT, Starke JR. Pediatric tuberculosis. Pediatr Rev. 2010;31(1):13-25. Erratum in: Pediatr Rev. 2010;31(3):126.

10. Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev 2013;2013(7):CD007545.

11. International Union Against Tuberculosis Committee on Prophylaxis. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ 1982;60:555–564.

12. Ayieko, J, Abuogi, L, Simchowitz, B, Bukusi EA, Smith AH, Reingold A. Efficacy of isoniazid prophylactic therapy in prevention of tuberculosis in children: a meta-analysis. BMC Infect Dis 2014;14:91.

13. Gomes VF, Wejse C, Oliveira I, Andersen A, Vieira FJ, Carlos LJ, Vieira CS, Aaby P, Gustafson P. Adherence to isoniazid preventive therapy in children exposed to tuberculosis: a prospective study from Guinea-Bissau. Int J Tuberc Lung Dis 2011;15(12):1637-1643.
14. Zenner D, Beer N, Harris RJ, Lipman MC, Stagg HR, van der Werf MJ. Treatment of Latent Tuberculosis Infection: An Updated Network Meta-analysis. Ann Intern Med 2017;167(4):248-255.

15. Gwee A, Coghlan B, Curtis N. Question 1: what are the options for treating latent TB infection in children? Arch Dis Child 2013;98(6):468-474.

16. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). Syst Rev 2015;4(1):1.

17. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162(11):777-784.

18. Centers for Disease Control and Prevention (CDC); American Thoracic Society. Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection—United States, 2003. MMWR Morb Mortal Wkly Rep 2003;52:735–739. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5231a4.htm

19. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management [Internet]. Geneva: World Health Organization; 2018.

20. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. 2017;64(2):111-115.

21. Gliklich RE, Dreyer NA, Leavy MB. Chapter 12: Adverse Event Detection, Processing, and Reporting. In: Gliklich RE, Dreyer NA, Leavy MB (editors). Registries for Evaluating Patient Outcomes: A User's Guide. 2014. (3rd edition). Rockville (MD): Agency for Healthcare Research and Quality (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK208615/.

22. Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from http://www.training.cochrane.org/handbook.

23. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statistics in Medicine. 2001;20:3875–3889.

24. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1539–1558.

25. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557–560.

26. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 10: Analysing data and undertaking meta-
analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.

27. Al Khalifah R, Florez ID, Guyatt G, Thabane L. Network meta-analysis: users' guide for pediatricians. BMC Pediatr 2018;18(1):180.

28. Mills EJ, Thorlund K, Ioannidis JPA. Demystifying trial networks and network meta-analysis. BMJ 2013;346:f2914.

29. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315(7109):629-34.

30. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64(4):383–394.

31. Puhan MA, Schünemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, Kessels AG, Guyatt GH. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014;349:g5630.

32. Balshem H, Helfand M, Schünemann HJ, Meerpohl J, Norris S, Guyatt GH. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64(4):401–406.

33. Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, Hazlewood GS, Alhazimi W, Mustafa RA, Murad MH, Puhan MA, Schünemann HJ, Guyatt GH; GRADE Working Group. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol 2018;93:36–44.

34. Brignardello-Petersen R, Florez ID, Izcovich A, Santesso N, Hazlewood G, Alhazami W, Yepes-Nuñez JJ, Tomlinson G, Schünemann HJ, Guyatt GH; GRADE working group. GRADE working group. GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ 2020;371:m3900.
AUTHORS' CONTRIBUTIONS

IDF, DBB and YHM conceptualized and designed the study; VSJ, AFEB and IDF developed the search strategy. VSJ wrote the manuscript under the supervision of DBB, JAR and IDF. VSJ, YHM, DBB, AFEB, JAR, and IDF critically reviewed the protocol and manuscript submitted. All authors provided substantive feedback on the manuscript and have read and approved the final version. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

FUNDING

This work was supported by Ministerio de Ciencia, Tecnología e Innovación (MinCiencias) with grants number 902-2019 and 088-2021.

COMPETING INTERESTS

Vanessa Sabella-Jiménez attended a Master Class on Reproductive and Evidenced-Based Medicine financed by Abbott Laboratories, a Medical Health Update Conference financed by Sanofi Aventis, and was a speaker for Virtual Training in Primary Healthcare financed by Lafrancol S.A.S. The other authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed.

AMENDMENTS

If we need to amend this protocol, we will give the date of each amendment, describe the change and give the rationale in this section. Changes will not be incorporated into the protocol.
TABLE 1. Interventions of interest.

Drug Regimen	Dose	Duration
Rifampin	15 mg/kg/day (10-20 mg)	3 to 4 months
Isoniazid with	10 mg/kg/day (7-15 mg)	3 to 4 months
Rifampin	15 mg/kg/day (10-20 mg)	
Rifapentine with	Rifapentine weekly dose:	3 months
Isoniazid	300 mg (10-14 kg)	
	450 mg (14.1-25 kg)	
	600 mg (25.1-32 kg)	
	750 mg (32.1-50 kg)	
	900 mg (>50 kg)	
Isoniazid	Isoniazid weekly dose:	
	25 mg (2-11 years)	
	15 mg (≥ 12 years)	
Isoniazid	10 mg/kg/day (7-15 mg)	6 months
Isoniazid	10 mg/kg/day (7-15 mg)	9 months
Isoniazid	10 mg/kg/day (7-15 mg)	12 months
Placebo		
No treatment		
APPENDIX 1. MEDLINE search – Ovid interface.

1. exp Latent Tuberculosis/
2. exp Tuberculosis/ or tuberculosis.mp.
3. exp Mycobacterium tuberculosis/ or mtb.mp.
4. (LTBI or latent).mp.
5. 1 or 2 or 3 or 4
6. exp Isoniazid/ or isoniazid.mp. or INH.mp.
7. exp Rifampin/ or rifamp$.mp. or RMP.mp. or RF.mp. or RIF.mp.
8. exp Rifamycins/ or rifapentin$.mp. or RPT.mp.
9. exp Antitubercular Agents/ or exp Chemoprevention/ or chemoprevention.tw. or chemoprophylaxis.tw. or prophylaxis.tw. or antitubercular.tw. or tuberculostatic.tw.
10. 6 or 7 or 8 or 9
11. (Infan$ or newborn$ or new-born$ or perinat$ or neonat$ or baby or baby$ or babies or toddler$ or minors or minors$ or boy or boys or boyfriend or boyhood or girl$ or kid or kids or child or child$ or children$ or schoolchild$ or schoolchild).mp. or schoolchild.tw. or schoolchild$.tw. or adolescen$.mp. or juvenil$.mp. or youth$.mp. or teen$.mp. or under$.mp. or pubescent$.mp. or exp Pediatrics/ or pediatric$.mp. or paediatric$.mp. or peadiatric$.mp. or school.tw. or school$.tw. or prematur$.mp. or preterm$.mp. or (adolescen$ or teen$ or youth$ or young or juvenile? or minors or highschooll$).ti,ab. or exp CHILD/ or (child$ or schoolchild$ or "school age" or "school aged" or preschool$ or toddler$ or kid? or kindergar$ or boy? or girl?).ti,ab. or exp INFANT/ or (infan$ or neonat$ or newborn$ or baby or babies).ti,ab. or exp PEDIATRICS/ or exp PUBERTY/ or (p?ediatric$ or pubert$ or prepubert$.mp. or prepubescen$ or prepubescen$s).ti,ab. or ADOLESCENT/ or MINORS/
12. 5 and 10 and 11
13. limit 12 to humans
14. randomized controlled trial.pt. or randomized.mp. or placebo.mp. or blind$.tw. or random.tw.
15. 13 and 14