“Modeling the dynamic patterns of banking and non-banking financial intermediaries’ performance”

AUTHORS

A. Bukhtiarova
A. Semenog
Y. Mordan
V. Kremen
Y. Balatskyi

ARTICLE INFO

Alina Bukhtiarova, Andrii Semenog, Yevgeniya Mordan, Viktoriia Kremen and Yevgen Balatskyi (2022). Modeling the dynamic patterns of banking and non-banking financial intermediaries’ performance. Banks and Bank Systems, 17(1), 49-66. doi:10.21511/bbs.17(1).2022.05

DOI

http://dx.doi.org/10.21511/bbs.17(1).2022.05

RELEASED ON

Thursday, 10 February 2022

RECEIVED ON

Tuesday, 04 January 2022

ACCEPTED ON

Wednesday, 02 February 2022

LICENSE

This work is licensed under a Creative Commons Attribution 4.0 International License

JOURNAL

"Banks and Bank Systems"

ISSN PRINT

1816-7403

ISSN ONLINE

1991-7074

PUBLISHER

LLC “Consulting Publishing Company “Business Perspectives”

FOUNDER

LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES

21

NUMBER OF FIGURES

5

NUMBER OF TABLES

16

© The author(s) 2022. This publication is an open access article.
MODELING THE DYNAMIC PATTERNS OF BANKING AND NON-BANKING FINANCIAL INTERMEDIARIES’ PERFORMANCE

Abstract

Nowadays, there are many preconditions and circumstances for conducting shadow schemes in the financial market. Therefore, the level of risk of participation of bank and non-bank financial intermediaries in such schemes is assessed as high. The lack of a practical methodology for assessing the development trajectory of financial intermediaries raises the question of the need for preventive control and quality modeling of their growth dynamics. The study aims to identify and formalize the patterns of development paths of banking and non-banking financial intermediaries based on the Harrington desirability function, which will be used to identify risk patterns as indicative patterns of financial intermediaries’ participation in shadow schemes. The sample includes 13 banking institutions, 3 credit unions, 3 pawnshops, 3 insurance companies, and 3 financial companies. The obtained results showed the relationship between the financial intermediary risk level in terms of its participation in shadow schemes and the phases of the economic cycle as a catalyst for the economic dynamics of the formal and informal economy. Thus, in 2012–2015, most financial intermediaries were in the zone of most significant risk, especially banks, characterized by economic, social, and political instability. Today, banks are in the group with a controlled level of risk of participation in scheme operations. Over the years analyzed, a stable neutral level of risk of participation in shadow schemes was inherent in most non-bank financial institutions. They were less sensitive than banks to the phases of the economic cycle.

Keywords
- financial intermediaries, banks, cluster analysis, Harrington’s desirability function, shadow economy

JEL Classification
- G17, G21, G23, O17

INTRODUCTION

Long-term economic growth depends on the level of investment, which is due to the efficiency of the structure of financial intermediaries in the economic system. The development and improvement of intermediary activities in the financial system increase the efficiency of savings and investment processes, positively affecting economic growth.

The shadow economy and corruption are the main threats to sustainable economic development. Shadow schemes are implemented through the movement of illegal financial flows. Most illegal financial schemes are carried out with financial intermediaries, whose arsenal of technologies and financial capabilities is changing rapidly under the pressure of the development of fintech and digital financial services. Based on globalization, the development of digitalization, automation, high mobility of consumers of financial services, the emergence of a generation of digital people who are always on the Internet or social networks, new financial intermediaries have entered the financial services market (fintech companies, P2P aggregators, crowdfunding services).
platforms, digital wallets, robot advisors, ecosystems of digital e-commerce platforms). Without being bound by the classical norms of banking regulation and supervision, as well as an active focus on modern digital technologies, including cloud computing, APIs, cryptography, machine learning, biometrics, big data analytics, blockchain, artificial intelligence, and Internet things, allows banking and non-banking financial intermediaries actively increase the volume of financial activities. At the same time, they are significantly increasing the risks of their participation in shadow schemes and tax evasion.

There are many schemes of illegal financial flows in which banking and non-banking financial intermediaries participate. These schemes are carried out to legalize illegally obtained income, withdraw capital from the country, evade taxes, withdraw cash illegally through fictitious enterprises or pay for non-existent goods and services. Detecting “scheme” transactions are not easy, but it is possible because several factors indicate the ability of financial intermediaries to participate in shadow schemes.

Thus, modeling the activities of banking and non-banking financial intermediaries will identify existing trends and develop strategies for further development.

1. LITERATURE REVIEW

Financial intermediation has recently been perceived as an essential supporting mechanism for economic growth. Much attention in the scientific literature is paid to studying the role of banks, credit unions, insurance companies, and other financial institutions.

In general, scientists focus on studying the impact of local and global crumbs on the activities of individual financial intermediaries and the financial market. Therefore, Kozmenko et al. (2016) offer bank patterns evaluation based on Kohonen’s self-organizing maps to determine further directions of financial institution strategies advanced under the influence of a disaster within the economy. The study used some guidelines for modeling the activities of banking intermediaries developed by the authors. At the same time, Plastun et al. (2018) inspect competitiveness within the stock market at some point of the local crisis of 2013–2015. The consequences advocate that the contemporary degradation of the Ukrainian inventory market is closely associated with good-sized changes within the marketplace attention resulting from the local crisis.

Many scientists study the role of financial intermediaries in the shadow sector of the economy. For instance, Tiutiunyk and Humenna (2021) examine and establish the scientists’ work to evaluate the chance of economic intermediaries’ participation in shadow transactions. The consequences of evaluating clinical guides on these problems show diverse tactics for analyzing those issues. Significant variations within the functioning of different international locations’ monetary, banking, coverage, and funding markets have caused the need to develop and put into effect their methodologies for assessing the threat of participation of economic intermediaries in shadow transactions on the national stage. Moreover, Ozgur (2021) focuses on how shadow banking, known until recently as fringe and parallel banking, has emerged as a principal detail for the USA monetary system. Using current and new shadow banking indices, the author uses distinctive Markov switching models to discover the position of shadow banking on financial institution lending cycle dynamics in the USA.

It should be noted that some researchers focus on non-bank financial intermediaries, and others only on the banking sector. Thus, they share these markets without considering the shared banking and non-banking intermediation market. On the one hand, Aramonte et al. (2021) look at structural shifts in intermediation and how non-bank financial intermediaries have shaped the requirement and financial markets’ liquidity inventory. On the other hand, Santandrea et al. (2018) present the most effective enterprise version configuration for public intermediaries. Also, Martinez-Miera and Repullo (2019) analyze the effects of bank capital requirements on the structure and risk of a financial system where markets, regulated banks, and shadow banks coexist. Banks face moral hazard when screening entrepreneurs’ projects, and they could choose whether they need regulation. Oliynyk et al. (2017) profoundly investigated the activity of mixed life insurance intermediaries.
The following works are devoted to modeling the activities of financial intermediaries based on various quantitative and qualitative assessments of their activities. Thus, Boda and Zimkova (2018) offer a measure of monetary intermediation attainment that solves conditions, while the ability of economic intermediaries, from a macroeconomic perspective, can usually be decreased to taking deposits and imparting loans. Ghasemi et al. (2020) developed a quantitative monetary dynamic stochastic general equilibrium version with economical intermediaries and proposed endogenously determined stability sheet constraints. Also, Yang and Chang (2020) use the quantile regression approach to observe the uneven impact of middleman economic improvement on the monetary increase in low- and high-income countries. A three-zone neoclassical growth version contains a consultant circle of relatives, manufacturing, and middleman economic areas. The equilibrium answers decide the variables hired within the empirical version. This usually indicates that international locations should no longer expand economic intermediaries indiscriminately in pursuit of financial growth, especially for low-income countries. At the same time, Islam and Shah (2012) use cointegration and error correction mechanisms to test for causal relationship between the improvement in non-bank economic intermediaries and in line with per capita financial growth in Malaysia over the period 1974–2004.

The authors endorse that non-bank monetary intermediaries and financial growth are cointegrated. Financial growth is used as a structured variable, but no more, while the opposite variables are handled as fixed variables. The result also suggests a unique lengthy-run causal strolling from non-bank monetary intermediaries to per capita financial growth, rather than the other way around.

2. AIM, DATA, AND METHODOLOGY

The study aims to identify and formalize the patterns of development paths of banking and non-banking financial intermediaries based on the Harrington desirability function, which will be used to identify risk patterns as indicative patterns of financial intermediaries’ participation in shadow schemes, and to explore the possibilities of transition of financial intermediaries between patterns (risk, neutral, under control) and changes in the characteristics of the patterns themselves at different phases of the economic cycle and stages of the life cycle of a financial intermediary.

It is proposed to apply five stages of building a model to estimate the trajectories of financial intermediaries.

Stage 1. Defining the system of indicators based on which the cluster map is built. To build the model, 25 Ukrainian financial intermediaries were selected, which functioned during 2012–2020. To test the model, a sample of banks, credit unions, pawnshops, insurance companies, and financial companies was formed.

Table 1 presents the list of financial intermediaries included in the model.

No.	Banks	Credit unions	Pawnshops	Financial companies
1	Pivdennyi Bank	Vygoda Credit Union	FC Donkredit	Enterprise Development Fund FC NUF 2004
2	JSB Ukrgasbank	Kreditsous Credit Union	GP Loan Community Skarbnitsya-Lombard	FSC FCFSC 2009 FC, LLC
3	JSC A-Bank	Financial Support Credit Union	GP Lombard Svizha Kopyika	FSC Center of Financial Decisions FC, LLC
4	JSC Alfa-Bank	Insurance companies		
5	OTP Bank JSC			
6	JSC Oschadbank			
7	JSC FUIB			
8	Raiffeisen Bank JSC			
9	Tascombank JSC			
10	JSC Ukreximbank			
11	JSC Ukrsibbank			
12	JSC Universal Bank			
13	JSC CB PrivatBank			
14	Vygoda Credit Union			
15	Kreditsous Credit Union			
16	Financial Support Credit Union			
17	Insurance companies			
18	PJSC Grawe Ukraine Life insurance			
19	PJSC Metlife			
20	ICGUIG PJSC			
21	FC Donkredit			
22	GP Loan Community Skarbnitsya-Lombard			
23	Enterprise Development Fund FC NUF 2004			
24	FSC FCFSC 2009 FC, LLC			
25	FSC Center of Financial Decisions FC, LLC			
To ensure the formation of the input variables of the model, it is proposed to use:

- 8 indicators for banks;
- 7 indicators for credit unions;
- 7 indicators for pawnshops;
- 7 indicators for insurance companies; and
- 8 indicators for financial companies.

Among the selected indicators, there are both absolute and relative indicators that can characterize the effectiveness of financial intermediaries (Table 2).

Table 2. Description of input model variables

Variable	Indicator
Banks	
b_1	Return on assets (ROA), %
b_2	Return on equity (ROE), %
b_3	Total assets, UAH thousand
b_4	Equity, UAH thousand
b_5	Liabilities, UAH thousand
b_6	Loans and receivables, UAH thousand
b_7	Net financial result, UAH thousand
b_8	Net commission income, UAH thousand
Credit unions	
ks_1	Total assets, UAH thousand
ks_2	Equity, UAH thousand
ks_3	Liabilities, UAH thousand
ks_4	Loans granted, UAH thousand
ks_5	Retained earnings (uncovered loss), UAH thousand
ks_6	Financial result, UAH thousand
ks_7	Net financial result, UAH thousand
Insurance companies	
sk_1	Total assets, UAH thousand
sk_2	Equity, UAH thousand
sk_3	Liabilities, UAH thousand
sk_4	Insurance reserves, UAH thousand
sk_5	Net earned insurance premiums, UAH thousand
sk_6	Insurance payments and insurance indemnities, UAH thousand
sk_7	Net financial result (profit), UAH thousand
Pawnshops	
l_1	Total assets, UAH thousand
l_2	Equity, UAH thousand
l_3	Liabilities, UAH thousand
l_4	Other operating income, UAH thousand
l_5	Labor costs, UAH thousand
l_6	Financial result before tax (profit), UAH thousand
l_7	Net financial result (profit), UAH thousand
Financial companies	
fk_1	Total assets, UAH thousand
fk_2	Equity, UAH thousand
fk_3	Liabilities, UAH thousand
fk_4	Net income from sales of products, UAH thousand
fk_5	Other operating income, UAH thousand
fk_6	Other financial income, UAH thousand
fk_7	Financial result before tax (profit), UAH thousand
fk_8	Net financial result (profit), UAH thousand

Stage 2. Normalizing model input data.

The study proposes using the comparative approach to rationing indicators used in mathematical statistics.

It determines the maximum or minimum of the data using the MAX or MIN formulas in the MS Excel software and normalizes the next step. Accordingly, normalized values by formula were found out (6).

Stage 3. Optimizing input with the Harrington desirability feature. The convolution of the input based on the Harrington desirability function and the description of the intermediate variables are given in Table 3.

Thirty-seven model indicators form five groups:

- indicators describing the state of banks (Gb_3, Gb_2, Gb_1);
- indicators describing the state of credit unions (Gks_3, Gks_2, Gks_1);
- indicators describing the state of insurance companies (Gsk_3, Gsk_2, Gsk_1);
- indicators describing the state of pawnshops (Gl_3, Gl_2, Gl_1); and
- indicators describing the state of financial companies (Gfk_3, Gfk_2, Gfk_1).

The period 2012–2021 was chosen for the analysis. The calculation of indicators for Pivdennyi Bank as of January 1, 2020 is shown in Table 4.

Next, the weight of the indicators is considered and the convolution is performed.

The calculation of the synthesizing function G for each group of indicators as of January 1, 2003 is shown in Table 5.

Stage 4. Data processing using Viscovery SOMine software for the period 2012–2021.

Viscovery SOMine is based on the concept and algorithms of Kohonen’s self-organizing maps pack-
Table 3. Description of intermediate model variables

Group of indicators	Indicator	Variable	Partial function d	Synthesis function G
Banks				
$G_{b,k}$	Return on assets (ROA), %	b_1	$d_{a,1} \cdot \exp(- \exp(-b_1))$	$Gb_{1} = \sqrt[d_{a,2}]{d_{a,1}}$
	Return on equity (ROE), %	b_2	$d_{a,2} \cdot \exp(- \exp(-b_2))$	
$G_{b,j}$	Total assets, UAH thousand	b_3	$d_{a,3} \cdot \exp(- \exp(-b_3))$	$Gb_{2} = \sqrt[d_{a,4}]{d_{a,3}} \cdot d_{a,5}$
	Equity, UAH thousand	b_4	$d_{a,4} \cdot \exp(- \exp(-b_4))$	
	Liabilities, UAH thousand	b_5	$d_{a,5} \cdot \exp(- \exp(-b_5))$	
$G_{b,i}$	Loans and receivables, UAH thousand	b_6	$d_{a,6} \cdot \exp(- \exp(-b_6))$	
	Net financial result, UAH thousand	b_7	$d_{a,7} \cdot \exp(- \exp(-b_7))$	$Gb_{3} = \sqrt[d_{a,8}]{d_{a,7}} \cdot d_{a,9}$
	Net commission income, UAH thousand	b_8	$d_{a,8} \cdot \exp(- \exp(-b_8))$	
Credit unions				
$G_{k,s}$	Total assets, UAH thousand	$k_{s,1}$	$d_{a,1} \cdot \exp(- \exp(-k_{s,1}))$	$Gks_{1} = \sqrt[d_{a,2}]{d_{a,1}}$
	Equity, UAH thousand	$k_{s,2}$	$d_{a,2} \cdot \exp(- \exp(-k_{s,2}))$	
$G_{k,s}$	Liabilities, UAH thousand	$k_{s,3}$	$d_{a,3} \cdot \exp(- \exp(-k_{s,3}))$	$Gks_{2} = \sqrt[d_{a,4}]{d_{a,3}}$
	Loans granted, UAH thousand	$k_{s,4}$	$d_{a,4} \cdot \exp(- \exp(-k_{s,4}))$	
	Retained earnings (uncovered loss), UAH thousand	$k_{s,5}$	$d_{a,5} \cdot \exp(- \exp(-k_{s,5}))$	
$G_{k,s}$	Financial result, UAH thousand	$k_{s,6}$	$d_{a,6} \cdot \exp(- \exp(-k_{s,6}))$	$Gks_{3} = \sqrt[d_{a,7}]{d_{a,6}} \cdot d_{a,8}$
	Net financial result, UAH thousand	$k_{s,7}$	$d_{a,7} \cdot \exp(- \exp(-k_{s,7}))$	
Insurance companies				
$G_{s,k}$	Total assets, UAH thousand	sk_{1}	$d_{a,1} \cdot \exp(- \exp(-sk_{1}))$	$Gsk_{1} = \sqrt[d_{a,2}]{d_{a,1}} \cdot d_{a,3}$
	Equity, UAH thousand	sk_{2}	$d_{a,2} \cdot \exp(- \exp(-sk_{2}))$	
$G_{s,k}$	Liabilities, UAH thousand	sk_{3}	$d_{a,3} \cdot \exp(- \exp(-sk_{3}))$	$Gsk_{2} = \sqrt[d_{a,4}]{d_{a,3}} \cdot d_{a,5}$
	Insurance reserves, UAH thousand	sk_{4}	$d_{a,4} \cdot \exp(- \exp(-sk_{4}))$	
	Net earned insurance premiums, UAH thousand	sk_{5}	$d_{a,5} \cdot \exp(- \exp(-sk_{5}))$	
$G_{s,k}$	Insurance payments and insurance indemnities, UAH thousand	sk_{6}	$d_{a,6} \cdot \exp(- \exp(-sk_{6}))$	$Gsk_{3} = \sqrt[d_{a,7}]{d_{a,6}} \cdot d_{a,8}$
	Net financial result (profit), UAH thousand	sk_{7}	$d_{a,7} \cdot \exp(- \exp(-sk_{7}))$	
Pawnshops				
$G_{l,j}$	Total assets, UAH thousand	$l_{j,1}$	$d_{a,1} \cdot \exp(- \exp(-l_{j,1}))$	$Gl_{1} = \sqrt[d_{a,2}]{d_{a,1}} \cdot d_{a,3}$
	Equity, UAH thousand	$l_{j,2}$	$d_{a,2} \cdot \exp(- \exp(-l_{j,2}))$	$Gl_{2} = \sqrt[d_{a,4}]{d_{a,3}} \cdot d_{a,5}$
$G_{l,j}$	Liabilities, UAH thousand	$l_{j,3}$	$d_{a,3} \cdot \exp(- \exp(-l_{j,3}))$	$Gl_{3} = \sqrt[d_{a,5}]{d_{a,4}} \cdot d_{a,6}$
	Other operating income, UAH thousand	$l_{j,4}$	$d_{a,4} \cdot \exp(- \exp(-l_{j,4}))$	
	Labor costs, UAH thousand	$l_{j,5}$	$d_{a,5} \cdot \exp(- \exp(-l_{j,5}))$	
$G_{l,j}$	Financial result before tax (profit), UAH thousand	$l_{j,6}$	$d_{a,6} \cdot \exp(- \exp(-l_{j,6}))$	$Gl_{4} = \sqrt[d_{a,7}]{d_{a,6}} \cdot d_{a,8}$
	Net financial result (profit), UAH thousand	$l_{j,7}$	$d_{a,7} \cdot \exp(- \exp(-l_{j,7}))$	
Financial companies				
$G_{f,k}$	Total assets, UAH thousand	fk_{1}	$d_{a,1} \cdot \exp(- \exp(-f_{k,1}))$	$Gfk_{1} = \sqrt[d_{a,2}]{d_{a,1}} \cdot d_{a,3}$
	Equity, UAH thousand	fk_{2}	$d_{a,2} \cdot \exp(- \exp(-f_{k,2}))$	$Gfk_{2} = \sqrt[d_{a,4}]{d_{a,3}} \cdot d_{a,5}$
$G_{f,k}$	Liabilities, UAH thousand	fk_{3}	$d_{a,3} \cdot \exp(- \exp(-f_{k,3}))$	$Gfk_{3} = \sqrt[d_{a,5}]{d_{a,4}} \cdot d_{a,6}$
	Net income from sales of products, UAH thousand	fk_{4}	$d_{a,4} \cdot \exp(- \exp(-f_{k,4}))$	
	Other operating income, UAH thousand	fk_{5}	$d_{a,5} \cdot \exp(- \exp(-f_{k,5}))$	$Gfk_{4} = \sqrt[d_{a,6}]{d_{a,5}} \cdot d_{a,7}$
	Other financial income, UAH thousand	fk_{6}	$d_{a,6} \cdot \exp(- \exp(-f_{k,6}))$	
$G_{f,k}$	Financial result before tax (profit), UAH thousand	fk_{7}	$d_{a,7} \cdot \exp(- \exp(-f_{k,7}))$	$Gfk_{5} = \sqrt[d_{a,8}]{d_{a,7}} \cdot d_{a,9}$
	Net financial result (profit), UAH thousand	fk_{8}	$d_{a,8} \cdot \exp(- \exp(-f_{k,8}))$	
age, a modern and progressive version of self-learning neural networks. The software package allows solving several complex analytical problems, such as searching for data clusters, studying numerical information and statistical processing of clusters, tracking new data, assessing the relationship between variables, studying geometrical properties of data distribution, etc.

3. RESULTS

At the model’s output, a set of Kohonen maps was obtained for selected groups of indicators and the boundaries of division into clusters. Based on the colors of the representation, the distance between the elements of the samples can be described.
The model’s input data will be synthesizing functions \(G \) for 9 reporting dates.

Map scales can also be used to determine cell values, compare and analyze them (Figure 1).

It should be noted that eight clusters were obtained as a result of data processing. The general Kohonen map is shown in Figure 2.

The belonging of the studied financial intermediaries to the created patterns is presented on the example of cluster C1 (Table 6).

Thus, the trajectories of financial intermediaries during 2012–2020 were formed to elucidate the results.

The Harrington desirability function scale was used to analyze each cluster’s estimates (Table 7).

The formation of cluster ranks is presented in Table 8.

Based on the results obtained, the clusters were ranked (Table 9).

It is proposed to divide the clusters into groups (Table 10) conditionally to assess the effectiveness of each financial intermediary, which was assigned to a particular cluster.

Thus, among the 25 surveyed financial intermediaries that, as of January 1, 2020, operated in the financial market of Ukraine, the crisis in recent years could be observed in:

- Vygoda Credit Union (2014–2020);
- Kreditsous Credit Union (2013–2020);
- FC Donkredit (2013);
- GP Lombard Svizha Kopiyka (2015–2020);
- Pivdennyi Bank (2012–2013);
- JSC A-Bank (2015);
- OTP Bank JSC (2012–2013);
- JSC Oschadbank (2012–2013);
- JSC FUIB (2012–2014);
- Raiffeisen Bank JSC (2013);
Table 6. Financial intermediaries included in pattern C1

Attribute 1	Attribute 2	Attribute 3	Attribute 4
JSС Ukrsibbank 2016	0.2068	0.4318	0.3346
Pivdennyi Bank 2017	0.1427	0.5537	0.4504
JSC Ukreximbank 2017	0.5895	0.6200	0.0705
JSC Ukrsibbank 2017	0.6190	0.5371	0.1553
JSC CB PrivatBank 2017	0.2981	0.4523	0.1745
JSC CB PrivatBank 2018	0.5213	0.5649	0.3145
JSC Ukreximbank 2020	0.3264	0.5783	0.4609
Vygoda Credit Union 2012	0.3522	0.3506	0.1245
Kreditosous Credit Union 2012	0.3955	0.3590	0.1109
Vygoda Credit Union 2013	0.4253	0.3295	0.0849
FC Donkredit 2012	0.4363	0.3275	0.0975
FC Donkredit 2014	0.3999	0.2956	0.1375
FC Donkredit 2015	0.3668	0.3586	0.1058
ICUIG PISC 2012	0.2807	0.5388	0.0427
PJSC Metlife 2012	0.3403	0.4421	0.0666
PJSC Grawe Ukraine Life insurance 2012	0.3333	0.4203	0.0746
ICUIG PISC 2013	0.2948	0.5200	0.0459
PJSC Metlife 2013	0.3231	0.4443	0.0702
PJSC Grawe Ukraine Life insurance 2013	0.3225	0.4126	0.0801
PJSC Metlife 2014	0.3448	0.4283	0.0704
PJSC Grawe Ukraine Life insurance 2013	0.3073	0.3928	0.0914
ICUIG PISC 2015	0.2908	0.4890	0.0527
PJSC Metlife 2015	0.2578	0.3808	0.1919
PJSC Grawe Ukraine Life insurance 2015	0.2969	0.3933	0.0944
ICUIG PISC 2016	0.3364	0.4984	0.0414
PJSC Metlife 2016	0.2858	0.4871	0.0668
PJSC Grawe Ukraine Life insurance 2016	0.3008	0.3887	0.0949
ICUIG PISC 2017	0.3403	0.4922	0.0377
PJSC Metlife 2017	0.2829	0.4892	0.0668
PJSC Grawe Ukraine Life insurance 2017	0.3038	0.3905	0.0933
ICUIG PISC 2018	0.2922	0.5132	0.0398
PJSC Metlife 2018	0.2755	0.4916	0.0681
PJSC Grawe Ukraine Life insurance 2018	0.2997	0.3983	0.0915
ICUIG PISC 2019	0.3312	0.5102	0.0408
PJSC Metlife 2019	0.2575	0.4974	0.0727
PJSC Grawe Ukraine Life insurance 2019	0.2995	0.4039	0.0895
ICUIG PISC 2020	0.2719	0.4509	0.0795
PJSC Metlife 2020	0.2505	0.5116	0.0689
PJSC Grawe Ukraine Life insurance 2020	0.2970	0.4010	0.0915
FSC Center of Financial Decisions FC, LLC 2012	0.3582	0.4130	0.0760
FSC Center of Financial Decisions FC, LLC 2013	0.4267	0.3696	0.0742
FSC Center of Financial Decisions FC, LLC 2013	0.3059	0.5742	0.0387
FSC Center of Financial Decisions FC, LLC 2015	0.4272	0.3508	0.0921
FSC Center of Financial Decisions FC, LLC 2016	0.4329	0.3074	0.1098
FSC Center of Financial Decisions FC, LLC 2017	0.4019	0.3926	0.0720
FSC Center of Financial Decisions FC, LLC 2018	0.3754	0.4097	0.0728
FSC Center of Financial Decisions FC, LLC 2019	0.3958	0.4039	0.0712
FSC Center of Financial Decisions FC, LLC 2020	0.3808	0.4187	0.0702

Table 7. Distribution of points for cluster evaluation

Desirability	Score	Point
Very good	[0.80-1.00]	5
Good	[0.63-0.80)	4
Satisfactory	[0.37-0.63)	3
Bad	[0.20-0.37]	2
Very bad	[0.00-0.20)	1
Stage 5. Assessing the model adequacy. Two conditional financial intermediaries are introduced to the study population, with “good” and “bad” values of indicators to verify the adequacy of the model. The model’s reaction will conclude the correctness of the model’s reaction to diametrically different values of indicators.

Finally, a new Kohonen map was obtained (Figure 3).

As a result of the introduction of conditional financial intermediaries, eight clusters were obtained. The structure of indicator groups is shown in Figure 4.

The formation of cluster ranks of the studied financial intermediaries is presented in Table 11.

Thus, the cluster rating was made (Table 12).
Figure 3. New Kohonen map with conditional financial intermediaries

Figure 4. Obtained Kohonen maps by groups of indicators, considering conditional financial intermediaries

Table 11. Cluster rank formation

Cluster	Frequency	Synthesis function attribute	Point distribution	Rank				
		G1	G2	G3	G1	G1	G2	
C1	24.23%	0.4332	0.1191	0.2243	3	1	2	6
C2	15.86%	0.3351	0.0844	0.4604	2	1	3	7
C3	9.25%	0.5287	0.3240	0.2387	3	2	2	4
C4	18.50%	0.7445	0.1213	0.2100	4	1	2	5
C5	11.45%	0.0412	0.0942	0.1452	1	1	1	8
C6	4.85%	0.4156	0.5586	0.4818	3	3	3	3
C7	9.25%	0.5645	0.6889	0.8095	3	4	5	1
C8	6.61%	0.7119	0.6483	0.5867	4	4	3	2

Table 12. Cluster ranking

Ranking place	Cluster
1	C7
2	C8
3	C6
4	C3
5	C4
6	C1
7	C2
8	C5
To assess the effectiveness of an individual financial intermediary assigned to a particular cluster, the clusters were conditionally divided into groups (Table 13).

Table 13. Assessment of conditional financial intermediaries by new groups within clusters

Cluster	Financial intermediary evaluation	Group	Probability of participating in shadow operations
C7	5	Powerful	Controlled
C8	4	Stable	Neutral
C6	3	Problematic	Neutral
C3	2	Crisis	Risk
C1	1	Bankruptcy	

In the upper left corner there is cluster C7, the indicators of which show the best financial reporting data, and in the upper right corner there is cluster C5, on the contrary, the worst. The membership of a financial intermediary in these clusters is presented in Tables 14 and 15.

Table 14. Financial intermediaries of the newly formed pattern C7

Attribute 1	Attribute 2	Attribute 3	Attribute 4
JSC Universal Bank 2013	0.4968	0.7551	0.5677
JSC Oschadbank 2017	0.5097	0.7335	0.5738
JSC A-Bank 2019	0.5241	0.7795	0.6979
JSC Alfa-Bank 2019	0.4272	0.7133	0.6244
OTP Bank JSC 2019	0.6505	0.7447	0.7153
Raiffeisen Bank JSC 2019	0.6252	0.7795	0.6979
Tascombank JSC 2019	0.6597	0.7419	0.7985
JSC CB PrivatBank 2019	0.5763	0.7299	0.4043
Pivdennyi Bank 2020	0.6761	0.8531	0.7943
JSC A-Bank 2020	0.4682	0.8449	0.6847
JSC Alfa-Bank 2020	0.3979	0.8770	0.7532
OTP Bank JSC 2020	0.5592	0.8832	0.7892
JSC FIUB 2020	0.5106	0.8886	0.7345
Raiffeisen Bank JSC 2020	0.6515	0.8797	0.7910
Tascombank JSC 2020	0.5253	0.8359	0.7001
JSC Universal Bank 2020	0.4456	0.8380	0.7394
JSC CB PrivatBank 2020	0.5474	0.8252	0.5722
The best financial intermediary	0.8718	0.8886	0.8252

The added simulated financial intermediaries show an adequate model response to different input data values based on the obtained results.

The financial intermediary with underestimated indicators added to the study ends up in the worst pattern. The financial intermediary with inflated indicators gets into the best pattern, indicating the high quality of the proposed model for evaluating the pattern dynamics of financial intermediaries.

There is a clear relationship between the risk level of financial intermediaries and the probability of their participation in shadow schemes and the phase of the economic cycle of the economy. Thus, during the crisis period of 2012–2015, most bank financial intermediaries were in the zone of most significant risk. During the period of relative stabilization of the economy (2016–2017), bank financial intermediaries have stabilized their operations and since 2018 have been steadily in the controlled zone.
Thus, trajectories of financial intermediaries within individual patterns were formed (Table 16):

- Pivdennyi Bank C7→C7→C8→C8→C8→C1→C4→C4→C5;
- JSB Ukrgasbank C3→C3→C8→C2→C2→C4→C4→C5→C5;
- JSC A-Bank C8→C8→C7→C2→C4→C4→C5→C5;
- JSC Alfa-Bank C7→C7→C8→C8→C2→C4→C5→C5;
- OTP Bank JSC C7→C7→C8→C2→C4→C4→C5→C5;
- JSC Oschadbank C7→C7→C8→C8→C2→C4→C5→C5;
- JSC FUIB C7→C7→C8→C8→C2→C4→C5;
- Raiffeisen Bank JSC C8→C7→C8→C3→C4→C5→C5;
- Tascombank JSC C7→C7→C8→C8→C4→C4→C5→C5;
- JSC Ukreximbank C2→C2→C8→C8→C2→C4→C5→C5;
- JSC Ukrsibbank C7→C7→C8→C2→C1→C4→C4→C5;
- JSC Universal Bank C7→C5→C7→C8→C2→C2→C2→C4→C5;
- JSC CB PrivatBank C2→C2→C8→C1→C1→C5→C5;
- Vygod Credit Union C1→C1→C6→C6→C6→C6→C6→C6;
- Kreditsous Credit Union C1→C6→C6→C6→C6→C6→C6→C6;
- Financial Support Credit Union C3→C3→C3→C3→C3→C3→C3→C3;
- Enterprise Development Fund FC NUF 2004 C3→C3→C3→C3→C3→C3→C3→C3;
- PJSC Grawe Ukraine Life insurance C1→C1→C1→C1→C1→C1;
- PJSC Metlife C1→C1→C1→C1→C1→C1;
- ICUIG PJSC C1→C7→C1→C1→C1→C1;
- FC Donkredit C1→C6→C1→C1→C3→C3→C3→C3;
- GP Loan Community Skarbnitsya-Pawnshop C3→C3→C3→C3→C3→C3→C3→C3;
- GP Pawnshop Svizha Kopyiuka C3→C3→C3→C3→C3→C3→C3→C3;
- FSC FCFSC 2009 FC, LLC C1→C1→C1→C1→C1→C1→C1→C1.

Table 16. A set of development patterns of financial intermediaries’ trajectories according to the probability of participation in shadow operations

Financial intermediary	2012	2013	2014	2015	2016	2017	2018	2019	2020
Pivdennyi Bank	R	R	R	R	R	N	C	C	C
JSB Ukrgasbank	N	N	N	N	N	N	C	C	C
JSC A-Bank	R	R	R	R	R	R	N	C	C
JSC Alfa-Bank	R	R	R	R	R	R	N	C	C
OTP Bank JSC	R	R	R	R	R	R	N	N	C
JSC Oschadbank	R	R	R	R	R	R	E	C	C
JSC FUIB	R	R	R	R	R	N	C	C	C
Raiffeisen Bank JSC	R	R	R	R	R	R	C	C	C
Tascombank JSC	R	R	R	R	R	R	C	C	C
JSC Ukreximbank	N	N	N	N	N	N	C	C	N
JSC Ukrsibbank	R	R	R	R	R	R	N	N	C
JSC Universal Bank	R	R	R	R	R	R	N	N	C
JSC CB PrivatBank	N	N	N	N	N	N	N	N	N
Vygod Credit Union	N	N	R	R	R	R	N	R	R
Kreditsous Credit Union	N	N	R	R	R	R	R	R	R
Financial Support Credit Union	N	N	N	N	N	N	N	N	N
Enterprise Development Fund FC NUF 2004	N	N	N	N	N	N	N	N	N
PJSC Grawe Ukraine Life insurance	N	N	N	N	N	N	N	N	N
PJSC Metlife	N	N	N	N	N	N	N	N	N
ICUIG PJSC	N	N	N	N	N	N	N	N	N
FC Donkredit	N	R	N	N	N	N	N	N	N
GP Loan Community Skarbnitsya-Pawnshop	N	N	N	N	N	N	N	N	N
GP Pawnshop Svizha Kopyiuka	N	N	N	N	N	N	N	N	N
FSC FCFSC 2009 FC, LLC	N	N	N	N	N	N	N	N	N
FSC Center of Financial Decisions FC, LLC	N	N	N	N	N	N	N	N	N

Note: R – risk, N – neutral, C – controlled.
CONCLUSION

This paper proposes a methodological approach to build a model for estimating the development trajectories of banking and non-banking financial intermediaries based on a set of patterns. Constructed patterns determine the level of probability of financial intermediaries’ participation in illegal schemes based on Harrington’s desirability function and Kohonen’s self-organizing maps. The model uses 37 indicators that characterize the state of a particular group of 25 financial intermediaries. According to the model, the interaction trajectories of financial intermediaries were built into 8 patterns formed based on Kohonen’s self-organizing maps and cluster analysis. This approach allows tracking the transition of financial intermediaries between patterns (risk, neutral, controlled) and changes in the patterns’ characteristics at different stages of the economic cycle. During the analyzed period, the neutral level of participation risk in shadow schemes was inherent in most non-bank financial intermediaries (except for two credit unions and one pawnshop). It should be noted that non-bank financial intermediaries are less sensitive than banks to the phases of the economic cycle. According to the model, the riskiest patterns include pawnshops and credit unions.

The results obtained can further become the basis for de-shadowing tools that will take into account the microeconomic nature of business models of interaction between financial intermediaries and provide a significant positive macroeconomic and social effect.

AUTHOR CONTRIBUTIONS

Conceptualization: Alina Bukhtiarova, Yevgeniya Mordan.
Data curation: Andrii Semenog, Viktoriia Kremen.
Formal analysis: Alina Bukhtiarova, Viktoriia Kremen.
Methodology: Alina Bukhtiarova, Yevgeniya Mordan.
Project administration: Alina Bukhtiarova, Yevgen Balatskyi.
Supervision: Viktoriia Kremen, Yevgen Balatskyi.
Validation: Andrii Semenog, Yevgen Balatskyi.
Visualization: Andrii Semenog, Viktoriia Kremen.
Writing, original draft: Andrii Semenog, Yevgeniya Mordan.
Writing, reviewing & editing: Yevgeniya Mordan, Yevgen Balatskyi.

ACKNOWLEDGMENT

Alina Bukhtiarova and Yevgeniya Mordan gratefully acknowledge financial support from the Ministry of Education and Science of Ukraine (0120U100473, 0121U100469).

REFERENCES

1. Aramonte, S., Schrimpf, A., & Hyun Song Shin. (2021). Non-bank financial intermediaries and financial stability (BIS Working Papers No. 972). Bank for International Settlements. Retrieved from https://www.bis.org/publ/work972.pdf

2. Boda, M., & Zimkova, E. (2018). Measuring financial intermediation: a model and application to the Slovak banking sector. *EaM: Ekonomie a Management*, 21(3), 155-170. http://dx.doi.org/10.15240/tul/001/2018-3-010

3. Frolov S., & Shukairi, E. (2020). Bank-centric nature of the financial system of Ukraine: analysis of the current situation. *Banks and Bank Systems*, 15(3), 184-198. http://dx.doi.org/10.21511/bbs.15(3).2020.16

4. Ghasemi, A., Akbari M. B., & Tavakolian, H. (2020). A Study of the Financial Instability and Banking Intermediaries by Using a DSGE Modeling Approach. *Iranian Economic Review*, 24(4), 1025-1047. http://doi.org/10.22059/ier.2020.78834

5. Harrington, E. C. (1965). The Desirability Function. *Industrial Quality Control*, 21, 494-498.

6. Hughes, J. P., & Mester, L. J. (2018). The Performance of Financial Institutions: Model-
7. Islam, M., & Shah, J. S. A. (2012). An Empirical Analysis of Causality between Development of Non-Bank Financial Intermediaries and the Economic Growth in Malaysia. European Journal of Social Sciences, 30(4), 654-664.

8. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69. https://doi.org/10.1007/BF00337288

9. Kozmenko, S., Shkolnyk, I., & Bukhtiarova A. (2016). Dynamics patterns of banks evaluations on the basis of Kohonen self-organizing maps. Banks and Bank Systems, 11(4-1), 179-192. http://dx.doi.org/10.21511/bbs.11(4-1).2016.09

10. Martinez-Miera, D., & Repullo, R. (2019). Markets, Banks, and Shadow Banks (ECB Working Paper No. 2234). http://dx.doi.org/10.2139/ssrn.3328369

11. Miles, W. (2011). The Role of Non-Bank Financial Intermediaries in Propagating Korea's Financial Crisis. Review of Pacific Basin Financial Markets and Policies, 6(1), 45-64. http://dx.doi.org/10.1142/S0219091001001006

12. Oliynyk, V., Zhuravka, F., Bolgar, T., & Yevtushenko, O. (2017). Optimal control of continuous life insurance model. Investment Management and Financial Innovations, 14(4), 21-29. http://dx.doi.org/10.21511/imfi.14(4).2017.03

13. Ozgur, G. (2021). Shadow banking and financial intermediation. Metroeconomica, 72(4), 731-757. http://doi.org/10.1111/meca.12346

14. Pantielieieva, N., Rogova, N., Zaporozhets, S., & Tretiak, N. (2020). Transformation in the ecosystem of financial intermediaries in the context of digitalization. Scientific Bulletin of Poltava, 1, 49-59, http://doi.org/10.25140/2410-9576-2020-1(20)-49-59

15. Plastun, A., Makarenko, I., & Balatskyi, Ye. (2018). Competitiveness in the Ukrainian stock market and local crisis of 2013–2015. Investment Management and Financial Innovations, 15(2), 29-39. http://dx.doi.org/10.21511/imfi.15(2).2018.03

16. Reverchuk, S., Vovchak, O., Yavorska, T., Voytovych, L., & Irshak, O. (2020). Investment activities of banks, insurance companies, and non-government pension funds in Ukraine. Investment Management and Financial Innovations, 17(2), 353-363. http://dx.doi.org/10.21511/imfi.17.2020.27

17. Santandrea, M., Agasisti, T., Giorgino, M., & Patruco, A. S. (2018) Business models in the search for efficiency: the case of public financial intermediaries. Public Money & Management, 38(3), 234-243. http://doi.org/10.1080/09540962.2017.1406229

18. Shkolnyk, I., Frolov, S., Orlov, V., Dziuba, V., & Balatskyi, Ye. (2021). Influence of world stock markets on the development of the stock market in Ukraine. Investment Management and Financial Innovations, 18(4), 223-240. http://dx.doi.org/10.21511/imfi.18.4(2021.20

19. Shkolnyk, I., Kozmenko, O., Nowacki, R., & Mershchii, B. (2020). Dependence of the state of public finances on their transparency and the level of corruption in a country. Economics and Sociology, 13(4), 281-296. http://doi.org/10.14254/2071-789X.2020/13-4/18

20. Tiutiunyk, I., & Humenna, Yu. (2021). Role of Financial Intermediaries in Shadow Schemes: Risk-Based Approach. Financial Markets, Institutions and Risks, 5(3), 87-92. http://dx.doi.org/10.21272/fmir.5(3).87-92.2021

21. Yang, Chi-Chun, & Chang, Ya-Kai. (2020). Asymmetric Impact of Financial Intermediary Development in Low- and High-Income Countries. Sustainability, 12(15), 5960. https://doi.org/10.3390/su12155960

APPENDIX A

Figure A1. Development patterns of financial intermediaries’ trajectories
Figure A1 (cont.). Development patterns of financial intermediaries’ trajectories
Figure A1 (cont.). Development patterns of financial intermediaries’ trajectories
Figure A1 (cont.). Development patterns of financial intermediaries’ trajectories
Figure A1 (cont.). Development patterns of financial intermediaries’ trajectories