New exact fronts for the nonlinear diffusion equation with quintic nonlinearities

R. D. Benguria and M. C. Depassier

Facultad de Física
P. Universidad Católica de Chile
Casilla 306, Santiago 22, Chile
(November 21, 2018)

We consider travelling wave solutions of the reaction diffusion equation with quintic nonlinearities

\[u_t = u_{xx} + f(u) \]

where \(f(0) = 0, f(1) = 0, f'(0) > 0 \) and \(f > 0 \) in \((0,1) \). Given these conditions on \(f \) then there exist fronts that connect the unstable fixed point \(u = 0 \) to the stable fixed point \(u = 1 \). Travelling wave fronts \(u(x - ct) \) satisfy the ordinary differential equation

\[u_{xx} + cu_x + f(u) = 0 \]

\[\lim_{z \to -\infty} u = 1, \quad \lim_{z \to -\infty} u = 0, \quad (1) \]

where \(z = x - ct \) and we assume that \(c \) is positive. A front joining the stable fixed point 1 to the unstable point 0 is monotonic if in addition its derivative \(du/dz \) does not change sign. If we search for monotonic fronts it is convenient to consider the dependence of \(z \) as a function of \(u \), or rather the dependence of \(v(u) = -(dz/du)^{-1} \) as a function of
For a monotonic solution of equation (1), \(u(z) \) decreases monotonically as \(z \) goes from \(-\infty\) to \(\infty \), therefore the function \(v(u) \) is well defined and is positive between 1 and 0 and vanishes at the fixed points. One readily finds that the equation for \(v(u) \) is

\[
v(u) \frac{dv}{du} - cv(u) + f(u) = 0,
\]

with

\[
v(0) = v(1) = 0, \quad \text{with } v > 0.
\]

Since the endpoints are singular we must determine the behavior near them analytically. If we consider functions \(f \) analytic around 0 and with \(f'(0) > 0 \), then near \(u = 0 \) we find

\[
v(u) = a_1 u + a_{3/2} u^{3/2} + a_2 u^2 + a_{5/2} u^{5/2} + a_3 u^3 + \ldots
\]

where the first terms are given by

\[
a_1^2 - ca_1 + f'(0) = 0
\]

(3a)

\[
a_{3/2}(\frac{5}{2}a_1 - c) = 0
\]

(3b)

\[
a_2(3a_1 - c) + \frac{1}{2} f''(0) = 0
\]

(3c)

\[
a_{5/2}(c - \frac{7}{2} a_1) - \frac{7}{2} a_{3/2} a_2 = 0
\]

(3d)

and so on. That the leading term in the expansion of \(v \) near zero is linear in \(u \) is due to the fact that the front in the original coordinates \(u(z) \) approaches the fixed points exponentially. Since \(v \) must be positive between 0 and 1, \(a_1 \) must be real and positive. The two roots for \(a_1 \) are given by \(a_{1P} = (c + \sqrt{c^2 - 4f'(0)})/2 \) and \(a_{1M} = (c - \sqrt{c^2 - 4f'(0)})/2 \). The minimum speed \(c \) for which there may be a monotonic front is the linear marginal speed value \(c_L = 2\sqrt{f'(0)} \) value at which the roots coincide \(a_{1P} = a_{1M} = a_{1L} \). For speeds greater than this value \(a_{1M} < a_{1L} < a_{1P} \). Strong heteroclinic solutions or special nonlinear front profiles are those associated with \(a_{1P} \). From the expansion at the origin it follows from \((3a) \) that either \(c = 5a_{1/2} \) or \(a_{3/2} = 2 \). In the first case we find that \(c = 5\sqrt{f'(0)/6} \) and \(a_1 = \sqrt{2f'(0)/3} = a_{1M} \). As it is known, these solutions are not a preferred asymptotic state. Strong heteroclinic connections can be achieved only if \(a_{3/2} = 0 \), all half integer coefficients vanish then and \(v(u) = a_1 u + a_2 u^2 + \ldots \).

Near \(u = 1 \), assuming \(f'(1) < 0 \),

\[
v(1 - u) = b_1 (1 - u) + b_2 (1 - u)^2 + b_3 (1 - u)^3 + \ldots
\]

where \(b_1 \) is the positive solution of

\[
b_1^2 + cb_1 + f'(1) = 0.
\]

There is only one positive solution for \(b_1 \), the rest of the coefficients follow easily.

It is convenient to introduce a new parameter \(\lambda \) defined by \(c = \lambda a_1 \). It is not difficult to realize that whenever \(1 < \lambda < 2 \) then the solution for \(v \) is strongly heteroclinic, that is, associated with \(a_{1P} \) and when \(\lambda > 2 \) it becomes associated with \(a_{1M} \); hence for \(\lambda > 2 \) the linear marginal speed is selected. If \(c = \lambda a_1 \) then

\[
c = \lambda \sqrt{f'(0) \over \lambda - 1} \quad a_1 = \sqrt{f'(0) \over \lambda - 1}.
\]

(4)

At \(\lambda = 2 \), the speed attains its linear value \(c_L = 2\sqrt{f'(0)} \). The problem then is to determine the value of \(\lambda \). This transition value \(\lambda = 2 \) is not associated with any specific nonlinearity, it is valid for any \(f \) which satisfies the conditions given above.

All exact front solutions given in the literature, \[4,10,3,6,7 \] correspond to functions \(f \) for which an exact solution for \(v \) is of the form
\[v_n(u) = a_1 u (1 - u^{n-1}) \]

which is an exact solution of equation (2) for
\[
f_n(u) = f'(0) \left(u + \frac{(1 + n - \lambda)}{\lambda - 1} u^n - \frac{n}{\lambda - 1} u^{2n-1} \right)
\]

We observe that for \(\lambda = n + 1 \) we recover the solutions of Kaliappan [9]; since \(n > 1 \), \(\lambda \) is greater than 2, so none of them are strongly heteroclinic. The front corresponding to \(v_n \) is given implicitly by
\[
z = -\int \frac{du}{v_n(u)}.
\]

and explicitly by [10, 11]
\[
u_n(z) = \frac{e^{-za_1}}{(1 + e^{-(n-1)za_1})^{\frac{1}{n-1}}}
\]

The criterion for the existence of strongly heteroclinic fronts together with their exact expression has been given [12] for functions \(f \) of the form \(f(u) = \mu u + u^n - u^{2n-1} \). The critical value for \(\mu \) given in [12] for the transition from a strong heteroclinic connection to a simple nongeneric connection (a solution associated with \(a_{1M} \)) is equivalent to the value \(\lambda = 2 \) after suitable rescaling. It is perhaps convenient to see it in the example given by Van Saarloos [6]
\[
\phi_t = \phi_{xx} + \phi + d\phi^3 - \phi^5
\]

which has a strongly heteroclinic connection for \(d > 2/\sqrt{3} \), of speed
\[
v^\dagger = \frac{-2 + 2\sqrt{4 + d^2}}{\sqrt{3}}.
\]

To identify the value of \(\lambda \) from equation (4) we must scale the equation for \(\phi \) so that the stable point is at 1. To do so we let \(u = K\phi \), \(u \) satisfies \(u_t = u_{xx} + u + K^2 du^3 - K^4 u^5 \) and the stable state is \(u = 1 \) if
\[
K^2 = \frac{d + \sqrt{4 + d^2}}{2}
\]

where the positive sign is chosen to obtain a real \(K \). Now we compare with equation (4) with \(n = 3 \). We see that \(f'(0) = 1 \) and that
\[
\lambda = 4 - \frac{3d}{K^2}
\]
or, in terms of \(d \),
\[
\lambda = \frac{4\sqrt{4 + d^2} - 2d}{d + \sqrt{4 + d^2}}.
\]

It is straightforward to see that the critical value \(d = 2/\sqrt{3} \) is exactly \(\lambda = 2 \) and that the speed
\[
c = \frac{\lambda}{\sqrt{\lambda - 1}} = v^\dagger.
\]

III. NEW SOLUTIONS

Now consider fronts for \(f \) being a quintic polynomial in \(u \). This problem was considered in [10] but no explicit solutions were found and no attempt to examine the conditions for the transition from the linear to the nonlinear regime were made. Here we show under which conditions a closed form can be obtained, together with some examples and the condition for strong heteroclinicity \(\lambda < 2 \) in terms of the parameters of the function \(f \). Evidently the value
of the parameter λ can be determined analytically only if an exact solution for v is known. The most general form of a quintic polynomial that vanishes at 0 and 1 is

$$f(x) = \mu x(1-x)(1+\alpha x + \beta x^2 + \gamma x^3)$$

(7)

where μ, α, β and γ are four arbitrary parameters whose only restriction is given by the requirement $f'(0) > 0$ and $f > 0$ in $(0,1)$. On the other hand, the most general closed form solution for v given a quintic f is given by

$$v(u) = a_1 u(1-u)(1+bu)$$

(8)

where $b > -1$. Introducing again the parameter λ given above, so that a_1 and c are given by equation (4), equation (8) is the exact solution of equation (2) with $f(u) = f'(0)u(1-u)(1+(2+\lambda b - 3b)\lambda - 1(u + \frac{b(5-2b)\lambda - 1}{\lambda - 1}u^2 + \frac{3b^2\lambda - 1}{\lambda - 1}u^4))$.

(9)

In the solution for v we have three adjustable parameters, $\lambda, b, f'(0)$ whereas in the most general form for f, four adjustable parameters exist. Hence, an exact solution for v can be found choosing three parameters of f arbitrarily and the fourth one in terms of them. Choosing μ, β and γ arbitrarily, we identify

$$f'(0) = \mu$$

$$\lambda = 1 + \frac{75\gamma}{(3\beta + 2\gamma)^2}$$

and

$$b = \frac{5\gamma}{3\beta + 2\gamma}$$

and the exact solution exists if

$$\alpha = \frac{(2 + \lambda b - 3b)}{\lambda - 1}$$

For any other value of α a closed form solution does not exist and we cannot determine the value of λ. The criterion for the solution to be strongly heteroclinic $1 < \lambda < 2$ is expressed now in terms of the free parameters β and γ.

Now we show that an explicit solution for the front in the original coordinates exists only if an additional condition on b, hence a relation between the free parameters β and γ is satisfied. Proceeding as above in equation (6) we find that $u(z)$ is the solution of

$$e^{-(b+1)a_1 z} = \frac{u^{1+b}}{(1-u)(1+bu)^b}.$$

(10)

Writing $b = n/p$ the equation for u is

$$e^{-(n+p)a_1 z} = \frac{u^{n+p}}{(1-u)^p(1+bu)^n}.$$

(11)

This can be inverted to obtain the explicit solution for $u(z)$ if $n+p = 2, 3, 4$. The detailed inversion of all the solvable cases is not instructive, here we give one example. Choose $n = 2, p = 1$, then $b = 2$, and the front is a solution of the cubic equation

$$u^3(1 + 4e^{-3a_1 z}) - 3ue^{-3a_1 z} - e^{-3a_1 z} = 0.$$

(12)

This cubic has two complex roots and a single real positive root which is the desired front, given by

$$u(z) = \frac{2^{\frac{3}{2}}}{\sqrt{4 + e^{3a_1 z}}} \left(\frac{e^{3a_1 z} - \sqrt{4 + e^{3a_1 z}}}{2^{\frac{3}{2}} \sqrt{4 + e^{3a_1 z}}} + \frac{e^{3a_1 z} + \sqrt{4 + e^{3a_1 z}}}{2^{\frac{3}{2}} \sqrt{4 + e^{3a_1 z}}} \right)^{\frac{1}{3}}$$

(13)
Again this is an exact front for \(f \) of the form given by equation (7). It corresponds to a strongly heteroclinic connection for \(\lambda < 2 \). If one chooses the case \(n + p = 4 \) the quartic equation that arises has a pair of complex conjugate solutions, a negative solution and a positive solution which is the desired front. For values of \(b \) which do not allow the obtention of the explicit form of the front \(u(z) \) we still have the speed selection criteria in terms of the free parameters of the polynomial.

Closed form solutions \(v(u) \) for polynomial \(f \)'s can be obtained only if \(f \) is an odd polynomial. In general, if \(f \) is a polynomial of degree \(2k + 1 \) that vanishes at 0 and 1, there are \(2k \) free parameters (restricted only by the requirement of positivity of \(f \)), whereas the corresponding closed form solution for \(v \) has \(k + 1 \) parameters, which implies that a closed form for \(v \), and an explicit expression for \(\lambda \) is possible if \(k - 1 \) parameters of \(f \) are chosen adequately in terms of the \(k + 1 \) remaining free parameters.

IV. CONCLUSION

We have studied the existence of exact strongly heteroclinic fronts for the reaction diffusion with quintic nonlinearities. We find that the use of phase space enables one to characterize the transition from strongly heteroclinic to simple nongeneric fronts in terms of a single parameter \(\lambda \) which is the ratio between the speed and the rate of decay at infinity. The introduction of this parameter gives a unified way in which to describe the type of solutions which is independent of the nature of the nonlinearities. The exact value of this parameter cannot be determined analytically when the highest nonlinearity is even, if the highest derivatives are odd it can be determined for special choices of parameters. In the case studied here, quintic nonlinearities, the value of \(\lambda \) can be determined exactly if a special relation between the parameters of the equation is satisfied. It is not necessary to know the exact solution \(u(x - ct) \) in order to determine whether a strong heteroclinic connection exists. If an additional restriction on the parameters is imposed, new exact solutions can be found. We have illustrated this situation for one particular choice, a whole family of exact solutions can be constructed. The use of phase space is not only useful as an aid to find exact solutions, it can be used to obtain a lower bound on the speed, valid for all \(f \), which allows one to determine the range of parameters for which strongly heteroclinic connections exist.

V. ACKNOWLEDGMENTS

This work has been partially supported by Fondecyt project 1930559.

[1] D. G. Aronson and H. F. Weinberger, Adv. Math. 30, 33 (1978).
[2] A. Kolmogorov, I. Petrovsky and N. Piscounov, Bull. Univ. Moscow, Ser. Int. A 1, 1 (1937).
[3] G. Dee and J. S. Langer, Phys. Rev. Lett., 50, 383 (1983).
[4] E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J. S. Langer, Physica D 14, 348 (1985).
[5] W. van Saarloos, Phys. Rev. A 37, 211 (1988).
[6] W. van Saarloos, Phys. Rev. A 39, 6367 (1989).
[7] J. Powell and M. Tabor, J. Phys. A 25, 3773 (1992).
[8] G. C. Paquette, L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. Lett. 72, 76 (1994).
[9] P. Kaliappan, Physica D 11, 368 (1992).
[10] M. Otwinowski, P. Paul, and W. G. Laidlaw, Phys. Lett. A 128, 483 (1988).
[11] J. J. E. Herrera, A. Minzoni, and R. Ondarza, Physica D 57, 249 (1992).
[12] R. D. Benguria and M. C. Depassier, preprint (1994).