Partition of spaces based algorithm for reduction of real power loss

Kanagasabai Lenin
Department of Electrical and Electronics Engineering, Prasad V. Potluri Siddhartha Institute of Technology, India

Article Info

Article history:
Received Jan 10, 2018
Revised Feb 16, 2018
Accepted Feb 19, 2020

Keywords:
Algorithm
Optimal reactive power
transmission loss
Partition of spaces

ABSTRACT
In this work partition of spaces algorithm is proposed to solve optimal reactive power problem. In this algorithm, for finding the finest outcome based on the concentration of elevated quality and capable points in specific area is considered. State space area are identified and divided into subspaces iteratively and search has been made more comprehensively. Performance of the proposed partition of spaces algorithm is evaluated in standard IEEE 118,300 bus systems and simulated outcome gives better results. Real power loss has been considerably reduced.

This is an open access article under the CC BY-SA license.

Corresponding Author:
Kanagasabai Lenin,
Department of Electrical and Electronics Engineering,
Prasad V. Potluri Siddhartha Institute of Technology,
Kanuru, Vijayawada, Andhra Pradesh -520007, India.
Email: gklenin@gmail.com

1. INTRODUCTION
Optimal reactive power problem has been key problem in power system, since it plays major role in secure and economic operation of the power system. Many conventional methods [1-6] have been applied for solving optimal reactive power problem. But many drawbacks have been found in the conventional methods and mainly difficulty in handling the inequality constraints. Last two decades many evolutionary algorithms [7-18] continuously applied to solve the problem. In this paper, partition of spaces algorithm is proposed to solve the reactive power problem. In this approach, elevated quality and capable points of the area is taken. State space are identified and divided into subspaces iteratively and search has been made more comprehensively. Performance of the proposed algorithm is evaluated in standard IEEE 118,300 bus systems simulation results shows the better performance of the proposed algorithm in reduction of real power loss.

2. PROBLEM FORMULATION
The key objective of the reactive power problem is to minimize the system real power loss and given,

\[P_{loss} = \sum_{k=1}^{n} g_k(V_i^2 + V_j^2 - 2V_i V_j \cos \theta_{ij}) \]

(1)

Voltage deviation magnitudes (VD) is stated as follows:

Journal homepage: http://ijape.iaescore.com
Minimize $V_D = \sum_{k=1}^{nl} |V_k - 1.0|$ \hspace{1cm} (2)

Load flow equality constraints:

$P_{Gi} - P_{Di} - V_{\Sigma j=1}^{nb} V_j \left[\begin{array}{c} G_{ij} \\ + B_{ij} \end{array} \right] \cos \theta_{ij} = 0, i = 1, 2, \ldots, nb \hspace{1cm} (3)$

$Q_{Gi} - Q_{Di} - V_{\Sigma j=1}^{nb} V_j \left[\begin{array}{c} G_{ij} \\ + B_{ij} \end{array} \right] \sin \theta_{ij} = 0, i = 1, 2, \ldots, nb \hspace{1cm} (4)$

Inequality constraints are:

$V_{Gi}^{\min} \leq V_{Gi} \leq V_{Gi}^{\max}, i \in ng \hspace{1cm} (5)$

$V_{Li}^{\min} \leq V_{Li} \leq V_{Li}^{\max}, i \in nl \hspace{1cm} (6)$

$Q_{Ci}^{\min} \leq Q_{Ci} \leq Q_{Ci}^{\max}, i \in nc \hspace{1cm} (7)$

$Q_{Gi}^{\min} \leq Q_{Gi} \leq Q_{Gi}^{\max}, i \in ng \hspace{1cm} (8)$

$T_i^{\min} \leq T_i \leq T_i^{\max}, i \in nt \hspace{1cm} (9)$

$S_{Li}^{\min} \leq S_{Li} \leq S_{Li}^{\max}, i \in nl \hspace{1cm} (10)$

3. PARTITION OF SPACES ALGORITHM

In this algorithm, for finding the optimal solution based on the concentration of elevated quality and capable points in specific area is considered. With equal sizes the state space are alienated into some subspaces. In the state space uniformly, points are generated arbitrary mode and target function value is calculated. Promising points are chosen with each subspace is determined. Always the chances of finding the optimal solution are higher when promising points are considered as the promising subspaces. The details of the proposed algorithm are as follows:

a. Initially whole state space is measured as the capable area.

b. Subspaces are created from the state space. Until finally a grid containing $g_1 \times g_2 \times \ldots \times g_n$ subsections in d^{th} dimension ($1 \leq d \leq n$) and is divided into as many as g_d equivalent subintervals. Then, Size of each subinterval,

$$\text{Size of each subinterval in } d^{th} \text{ dimension} = \frac{U_d - L_d}{g_d} \hspace{1cm} (11)$$

c. Preliminary population are created arbitrarily and that population is considered as the existing population.

d. For every point of the existing population of function “f” is computed.

e. Q1 - % of points; existing population are regarded as capable points, with the lowest values of function f.

f. In each of the subspaces the numbers of capable points are determined and indicate the degree of capable points in the subspace.

Capable ranks = Number of capable points in “s” \hspace{1cm} (12)

Q_2 subspaces are searched more accurately and comprehensively.

1) Extra specific search in the capable subspaces: smaller subspaces are made from the capable subspaces.

2) To search subspaces expansively the number of points generated in each subspace is a linear function and found by \cite{19}:

$$\text{number of points generated in s} = \left(\frac{\text{capable ranks}}{\sum_{\text{all subspaces}} \text{capable ranks} \times \text{population size}} \right) \hspace{1cm} (13)$$
h. For each point in the new population the value of function f is calculated.
i. Based on the truncation selection new population are replace the current population.
j. Q3 percent of the points are arbitrarily selected in new population and customized by adding a Gaussian noise to them it’s alike to mutation operation in genetic algorithm.
k. Evaluation of the stop condition.
l. The output of algorithm is the most excellent solution generated so far. Trade-off between exploration and exploitation is controlled by the values of parameters Q1, Q2, and Q3.

Partition of spaces based algorithm for solving reactive power problem:

```
Exploration Space, f
{Inputs:
  With boundaries the n-dimensional space - State Space
  Function target denoted by “f”
  Pop Size, Q1, Q2, Q3, gd for 1 ≤ d ≤ n are initialized
  When Pop0 = the initial population; i = 0; points are generated.
  Whole exploration space as the skilled area at the commencement; competent Subspaces= State Space; 1 ≤ d ≤ n for any dimension d
  State Space is Partition into gd parts;
  When end condition not satisfied
  }

Values of Good Points; Quality [1, ... Pop Size] = the quality of all the points in Pop
Q1 points with the uppermost superiority = [1, ... Pop Size]
Number of superior points in each subspace Count = [1, ... Number of Subspaces]
count [1, number of sub spaces] = capable rank [1, ... number of sub spaces]
Q2 percent of the subspaces with highest capable rank = Capable Sub spaces
Dimension d : 1 ≤ d ≤ n for any proficient subspaces “s” ; Promising subspace “s” is partitioned into gd parts;
Fresh generated subspaces = pop[i] [1 ... pop size]
Most excellent points of Popi = pop[i] [1 ... pop size];
Gaussian noise is added to Q3 arbitrarily and chosen Popi+1 ; i = i +1;
Superior solution found so far will be the output
Revert to Solution
```

4. **SIMULATION RESULTS**

Performance of partition of spaces algorithm evaluated in standard IEEE 118-bus test system [20]. Limitations on reactive power source are listed in Table 1. Table 2 clearly shows better performance of the proposed algorithm. In IEEE 300 bus system, partition of spaces algorithm is verified [20]. Table 3 shows the values of comparison. Figure 1 gives real power loss comparison for IEEE 118 bus test system and Figure 2 shows the active power loss comparison for IEEE 300 bus test system.

Table 1. Reactive power sources limits

BUS NO	QC MAX	QC MIN
5	0.00	-40.
34	14.00	0.00
37	10.00	0.00
44	10.00	0.00
45	15.00	0.00
46	12.00	0.00
48	20.00	0.00
74	20.00	0.00
79	10.00	0.00
82	20.00	0.00
83	10.00	0.00
105	6.00	6.00
107	6.00	6.00
110	6.00	6.00

Table 2. Real power loss comparison results

Active power loss (p.u) Method- BBO [21] Method-ILSBBO/strategy1 [21] Method-ILSBBO/strategy2 [21] Partition of spaces algorithm	Minimum	Maximum	Average value
Projected algorithm	128.770	132.640	130.210
Minimum	128.770	126.980	132.390
Maximum	132.640	137.340	129.220
Average value	130.210	130.370	129.560

Table 3 Comparison of loss

Parameter	Method CSA [22]	Method EGA [23]	Method EEA [23]	Partition of spaces
PLOSS (MW)	635.8942	646.2998	650.6027	629.5431
5. CONCLUSION

Partition of spaces algorithm has been efficiently applied for solving reactive power problem. In this approach, elevated quality and capable points of the area is taken. State space are identified and divided into subspaces iteratively and search has been made more comprehensively. Efficiency of the proposed algorithm is evaluated in standard IEEE 118,300 bus systems and simulated outcome gives better results when compared to other reported standard algorithms.

REFERENCES

[1] O. Alsac and B. Stott, "Optimal Load Flow with Steady-State Security," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 745-751, May 1974.
[2] K. Y. Lee, Y. M. Park and J. L. Ortiz, "A United Approach to Optimal Real and Reactive Power Dispatch," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1147-1153, May 1985.
[3] A. Monticelli, M. V. F. Pereira and S. Granville, "Security-Constrained Optimal Power Flow with Post-Contingency Corrective Rescheduling," in IEEE Transactions on Power Systems, vol. 2, no. 1, pp. 175-180, Feb. 1987.
[4] N. Deeb and S. M. Shahidehpour, "Linear reactive power optimization in a large power network using the decomposition approach," in IEEE Transactions on Power Systems, vol. 5, no. 2, pp. 428-438, May 1990.
[5] E. Hcbson, "Network Constrained Reactive Power Control Using Linear Programming," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 3, pp. 868-877, May 1980.
[6] K. Y. Lee, Y. M. Park and J. L. Ortiz, "Fuel-cost minimisation for both real-and reactive-power dispatches," in IEE Proceedings C- Generation, Transmission and Distribution, vol. 131, no. 3, pp. 85-93, May 1984.
[7] M. K. Mangoli, K. Y. Lee and Y. M. Park, "Optimal real and reactive power control using linear programming," Electric Power Systems Research, vol. 26, no. 2, pp. 1-10, January 1993.
[8] S. R. Paranjothi and K. Anburaja, "Optimal power flow using refined genetic algorithm," Electr.Power Compon. Syst., vol. 30, no. 10, pp. 1055-1063, 2002.
[9] A. Berizzi, C. Bovo, M. Merlo and M. Delfanti, "A GA approach to compare ORPF objective functions including secondary voltage regulation," Electric Power Systems Research, vol. 84, no. 1, pp. 187-194, 2012.
[10] Chien-Feng Yang, G. G. Lai, Chia-Hau Lee, Ching-Tzong Su and G. W. Chang, "Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement," International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50-57, 2012.
[11] P. K. Roy, S. P.Ghoshal and S. S.Thakur, "Optimal VAR control for improvements in voltage profiles and for real power loss minimization using Biogeography Based Optimization," International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830-838, 2012.
[12] B. Venkatesh, G. Sadasivam and M. A. Khan, "A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique," in IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844-851, May 2000.
[13] Wei Yan, Shuai Lu and D. C. Yu, "A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique," in IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913-918, 2004.
[14] Wei Yan, Fang Liu, C. Y. Chung and K. P. Wong, "A hybrid genetic algorithm-interior point method for optimal reactive power flow," in IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163-1169, Aug. 2006.
[15] J. Yu, W. Yan, W. Li, C. Y. Chung and K. P. Wong, "An Unfixed Piecewise-Optimal Reactive Power-Flow Model and its Algorithm for AC-DC Systems," in IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170-176, 2008.
[16] F. Capitanescu, "Assessing Reactive Power Reserves With Respect to Operating Constraints and Voltage Stability," in IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2224-2234, Nov. 2011.
[17] Zehun Hu, Xifan Wang and Gareth Taylor, "Stochastic optimal reactive power dispatch: Formulation and solution method," International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615-621, 2010.
Partition of spaces based algorithm for reduction of real power loss (Kanagasabai Lenin)

BIOGRAPHY OF AUTHOR

Kanagasabai Lenin has received his B.E., degree, electrical and electronics engineering from University of Madras, M.E., degree in power systems from Annamalai University and completed PhD in electrical engineering from Jawaharlal Nehru Technological University Hyderabad, India. He published more than 275 international journal research papers and presently working as Professor in Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007.