The connected components of the space of Alexandrov surfaces

Joël Rouyer Costin Vîlcu

November 1, 2013

Abstract

Denote by $\mathcal{A}(\kappa)$ the set of all compact Alexandrov surfaces with curvature bounded below by κ without boundary, endowed with the topology induced by the Gromov-Hausdorff metric. We determine the connected components of $\mathcal{A}(\kappa)$ and of its closure.

Math. Subj. Classification (2010): 53C45

Key words and phrases: space of Alexandrov surfaces

1 Introduction and results

In this note, by an Alexandrov surface we understand a compact 2-dimensional Alexandrov space with curvature bounded below by κ, without boundary. Roughly speaking, an Alexandrov surface is a closed topological surface endowed with an intrinsic geodesic distance satisfying Toponogov’s angle comparison condition. See [5] or [11] for definitions and basic facts about such spaces.

Denote by $\mathcal{A}(\kappa)$ the set of all Alexandrov surfaces. Endowed with the Gromov-Hausdorff metric d_{GH}, $\mathcal{A}(\kappa)$ becomes a Baire space in which Riemannian surfaces form a dense subset [6].

Perelman’s stability theorem (see [7], [9]) states, in our case, that close Alexandrov surfaces are homeomorphic, so Alexandrov surfaces with different topology are in different connected components of $\mathcal{A}(\kappa)$. Here we show that homeomorphic Alexandrov surfaces are in the same component of $\mathcal{A}(\kappa)$.

1
Let \(\mathcal{A}(\kappa, \chi, o) \) denote the set of all surfaces in \(\mathcal{A}(\kappa) \) of Euler-Poincaré characteristic \(\chi \) and orientability \(o \), where \(o = 1 \) if the surface is orientable and \(o = -1 \) otherwise.

Theorem 1. If non-empty, \(\mathcal{A}(\kappa, \chi, o) \) is a connected component of \(\mathcal{A}(\kappa) \), for \(\kappa \in \mathbb{R}, \chi \leq 2 \) and \(o = \pm 1 \).

A special motivation for this result comes from the study of most (in the sense of Baire category) Alexandrov surfaces. For example, we prove in [10] that most Alexandrov surfaces have either infinitely many simple closed geodesics, or no such geodesic, depending on the value of \(\kappa \) and the connected component of \(\mathcal{A}(\kappa) \) to which they belong. Moreover, for descriptions of most Alexandrov surfaces given in [1] and [6], one has to exclude from the whole space \(\mathcal{A}(0) \) its components consisting of flat surfaces.

Denote by \(\bar{\mathcal{A}}(\kappa) \) (respectively \(\bar{\mathcal{A}}(\kappa, \chi, o) \)) the closure with respect to \(d_{GH} \) of \(\mathcal{A}(\kappa) \) (respectively \(\mathcal{A}(\kappa, \chi, o) \)) in the space of all compact metric spaces. Using Theorem 1, we can also give the connected components of \(\bar{\mathcal{A}}(\kappa) \).

Theorem 2. If \(\kappa \geq 0 \), \(\bar{\mathcal{A}}(\kappa) \) is connected. If \(\kappa < 0 \), the connected components of \(\bar{\mathcal{A}}(\kappa) \) are \(\bigcup_{\chi \geq 0, o = \pm 1} \bar{\mathcal{A}}(\kappa, \chi, o) \) and \(\mathcal{A}(\kappa, \chi, o) \) (\(\chi = -1, -2, \ldots, o = \pm 1 \)).

2 Proofs

Perelman’s stability theorem can be found, for example, in [9] or [7]; we only need a particular form of it.

Lemma 1. Each Alexandrov surface \(A \) has a neighbourhood in \(\mathcal{A}(\kappa) \) whose elements are all homeomorphic to \(A \).

Let \(\mathbb{M}_\kappa^d \) stand for the simply-connected and complete Riemannian manifold of dimension \(d \) and constant curvature \(\kappa \).

Denote by \(\mathcal{R}(\kappa) \) the set of all closed Riemannian surfaces with Gauss curvature at least \(\kappa \), and by \(\mathcal{P}(\kappa) \) the set of all \(\kappa \)-polyhedra. Recall that a \(\kappa \)-polyhedron is an Alexandrov surface obtained by naturally gluing finitely many geodesic polygons from \(\mathbb{M}_\kappa^2 \).

A formal proof for the following result can be found in [6].

Lemma 2. The sets \(\mathcal{R}(\kappa) \) and \(\mathcal{P}(\kappa) \) are dense in \(\mathcal{A}(\kappa) \).
A convex surface in \mathbb{M}_3^3 is the boundary of a compact convex subset of \mathbb{M}_3^3 with non-empty interior. Such a surface is endowed with the so-called intrinsic metric: the distance between two points is the length (measured with the metric of \mathbb{M}_3^3) of a shortest curve joining them and lying on the surface.

Lemma 3. [2] Every convex surface in \mathbb{M}_3^3 belongs to $\mathcal{A}(\kappa, 2, 1)$. Conversely, every surface $A \in \mathcal{A}(\kappa, 2, 1)$ is isometric to some convex surface in \mathbb{M}_3^3.

In order to settled the case of $\mathcal{A}(0, 0, o)$, we need the following lemma.

Lemma 4. $\mathcal{A}(0, 0, 1)$ contains only flat tori, and $\mathcal{A}(0, 0, -1)$ contains only flat Klein bottles.

Proof. Recall that geodesic triangulations with arbitrarily small triangle exist for any Alexandrov surface [2].

Consider $A \in \mathcal{A}(0, 0, 1)$ and a geodesic triangulation $T = \{\Delta_i\}$ of A. For each Δ_i, consider a comparison triangle $\tilde{\Delta}_i$ (i.e., a triangle with the same edge lengths) in \mathbb{M}_0^2. Glue together the triangles $\tilde{\Delta}_i$ to obtain a surface P, in the same way the triangles Δ_i are glued together to compose A. By the definition of Alexandrov surfaces, the angles of $\tilde{\Delta}_i$ are lower than or equal to the angles of Δ_i. It follows that the total angles $\theta_1, \ldots, \theta_n$ of P around its (combinatorial) vertices are at most 2π, hence P is a 0-polyhedron. By the Gauss-Bonnet formula for polyhedra,

$$0 = 2\pi \chi = \sum_{i=1}^{n} (2\pi - \theta_i),$$

whence $\theta_i = 2\pi$ and P is indeed a flat torus.

Now consider a sequence of finer and finer triangulations T_m of A and denote by P_m the corresponding flat tori ($m \in \mathbb{N}$). A result of Alexandrov and Zalgaller (Theorem 10 in [3, p. 90]) assures that P_m converges to A, which is therefore flat.

The same argument holds for $\mathcal{A}(0, 0, -1)$. □

Now we are in a position to prove Theorem 1.

Notice that, for $\kappa' > \kappa$, $\mathcal{A}(\kappa')$ is a nowhere dense subset of $\mathcal{A}(\kappa)$; indeed, $\mathcal{A}(\kappa')$ is closed and its complement contains the κ-polyhedra, which are dense in $\mathcal{A}(\kappa)$. Therefore, there is no direct relationship between the connected components of $\mathcal{A}(\kappa)$ and those of $\mathcal{A}(\kappa')$.

3
Proof of Theorem [1]. By Lemma [1] each set $A(\kappa, \chi, o)$ is open in $A(\kappa)$, so we just need to prove that it is connected.

Each Alexandrov surface A is in particular a metric space. Multiplying all distances in $A \in A(\kappa)$ with the same constant $\delta > 0$ provides another Alexandrov surface, denoted by δA, which belongs to $A(\frac{\kappa}{\delta^2})$. Moreover, it is easy to see that for any metric spaces M, N we have $d_{GH}(\delta M, \delta N) = \delta d(M, N)$. So there is a natural homothety between $A(\kappa)$ and $A(\kappa \delta^2)$, and therefore we may assume that

$$\kappa \in \{-1, 0, 1\}.$$

We consider several cases.

Case 1. The sets $A(-1, \chi, o)$ are connected in $A(1)$.

Choose $A_0, A_1 \in A(-1, \chi, o) \cap R(-1)$. There exist a differentiable surface S of Euler-Poincaré characteristic χ and orientability o, and Riemannian metrics g_0, g_1 on S such that A_i is isometric to $(S, g_i) (i = 0,1)$. For $\lambda \in [0, 1]$ we set

$$\tilde{g}_{\lambda} = \lambda g_1 + (1 - \lambda) g_0.$$

Denote by κ_{λ} the minimal value of the Gauss curvature of \tilde{g}_{λ}, and define the Riemannian metric g_{λ} on S by

$$g_{\lambda} = \left\{ \begin{array}{ll} \tilde{g}_{\lambda} & \text{if } \kappa_{\lambda} \geq -1, \\ \frac{\tilde{g}_{\lambda}}{\sqrt{-\kappa_{\lambda}}} & \text{if } \kappa_{\lambda} < -1. \end{array} \right.$$

A straightforward computation shows that the Gauss curvature K_{λ} of g_{λ} verifies $K_{\lambda} \geq -1$.

Denote by γ the (obviously continuous) canonical map from the set of Riemannian structures on S to $A(-1, \chi, o)$, which maps g to (S, g). Then $A_{\lambda} \overset{\text{def}}{=} \gamma(g_{\lambda})$ defines a path from A_0 to A_1. Hence $A(-1, \chi, o) \cap R(-1)$ is connected and, by the density of $R(-1)$, so is $A(-1, \chi, o)$.

Next we treat the connected components of $A(0)$.

Case 2. The sets $A(0, 0, 1)$ and $A(0, 0, -1)$ are connected in $A(0)$.

By Lemma[4] the set $A(0, 0, 1)$ contains only flat tori, hence it is continuously parametrized by the parameters describing the fundamental domains. Similarly for $A(0, 0, -1)$, which consists of flat Klein bottles.

Case 3. The set $A(0, 2, 1)$ is connected in $A(0)$.
Denote by S the space of all convex surfaces in \mathbb{R}^3, endowed with the Pompeiu-Hausdorff metric. Lemma 3 shows that any surface $A \in A(0, 2, 1)$ can be realized as a convex surface in \mathbb{R}^3.

Given two convex surfaces S_0, S_1, define for $\lambda \in [0, 1]$

$$S_\lambda = \partial(\lambda \text{conv}(S_1) + (1 - \lambda)\text{conv}(S_0)),$$

where ∂C stands for the boundary of C, $\text{conv}(S)$ for the convex hull of S, and $+$ for the Minkowski sum. Then $S_\lambda \in S$ and we have a path in S joining S_0 to S_1. Since the canonical map σ from S to $A(0, 2, 1)$ is continuous [2, Theorem 1 in Chapter 4], we obtain a path in $A(0, 2, 1)$.

Case 4. The set $A(0, 1, -1)$ is connected in $A(0)$.

Consider surfaces A_0, A_1 in $A(0, 1, -1)$ as quotients of centrally-symmetric convex surfaces S_0, S_1 via antipodal identification, $A_i = \sigma(S_i)/\mathbb{Z}_2$ ($i = 0, 1$). Then the surface S_λ defined by (1) is also centrally-symmetric, and therefore $A_\lambda = \sigma(S_\lambda)/\mathbb{Z}_2$ defines a path in $A(0, 1, -1)$ from A_0 to A_1.

We finally treat the two connected components of $A(1)$.

Case 5. The set $A(1, 2, 1)$ is connected in $A(1)$.

Consider in \mathbb{R}^4 the subspace $\mathbb{R}^3 = \mathbb{R}^3 \times \{0\}$, and the open half-sphere H of center $c = (0, 0, 0, 1)$ and radius 1 included in $\mathbb{R}^3 \times [0, 1]$.

Let $q : \mathbb{R}^3 \to H$ be the homeomorphism associating to each $x \in \mathbb{R}^3$ the intersection point of the segment $[xc]$ with H. Clearly, q maps segments of \mathbb{R}^3 to geodesic segments of H, and thus it maps bijectively convex sets in \mathbb{R}^3 to convex sets in H. Denote S_H the set of convex surfaces in H. We can define $Q : S \to S_H$ by $Q(S) \overset{\text{def}}{=} q(S)$. Hence S_H is homeomorphic to S, which is connected by Case (4).

Consider now two surfaces $A_0, A_1 \in A(1, 2, 1)$ and choose

$$\mu < \min \left\{ \frac{\pi}{2 \text{diam}(A_0)}, \frac{\pi}{2 \text{diam}(A_1)}, 1 \right\}.$$

Obviously, A_i is path-connected to μA_i in $A(1, 2, 1)$, and the diameter of μA_i is less than $\pi/2$ ($i = 0, 1$). By Lemma 3, μA_i is isometric to a surface S_i in M_1^3; moreover, the smallness of μ easily implies that S_i is isometric to a surface in S_H, and S_H is connected.

Case 6. The set $A(1, 1, -1)$ is connected in $A(1)$.
This follows directly from the previous argument, because the universal covering of any surface \(\tilde{A} \in \mathcal{A}(1, 1, -1) \) is a surface \(A \in \mathcal{A}(1, 2, 1) \) endowed with an isometric involution without fixed points, \(\tilde{A} = A/\mathbb{Z}_2 \).

The proof of Theorem 1 is complete. \(\square \)

Recall that the 2-dimensional Hausdorff measure \(\mu(A) \) is always finite and positive for \(A \in \mathcal{A}(\kappa) \). The following result is Corollary 10.10.11 in [4, p. 401], stated in our framework.

Lemma 5. Let \(A_n \in \mathcal{A}(\kappa) \) converge to a compact space \(X \). Then \(\dim(X) < 2 \) if and only if \(\mu(A_n) \to 0 \).

Proof of Theorem 2. We may assume, as in the proof of Theorem 1, that \(\kappa \in \{-1, 0, 1\} \).

To prove that \(\bar{A}(\kappa) \) is connected for \(\kappa \geq 0 \), it suffices to show that the space consisting of a single point belongs to the closure of any connected component of \(\mathcal{A}(\kappa) \). This is indeed the case, because for any \(A \in \mathcal{A}(\kappa, \chi, o) \) and \(0 < \delta \leq 1 \) we have \(\delta A \in \mathcal{A}(\kappa, \chi, o) \), and \(\lim_{\delta \to 0} \delta A \) is a point.

This also implies that

\[
\bigcup_{\chi = 0, 1, 2} \bar{A}(-1, \chi, o)
\]

is connected.

Consider now \(A \in \mathcal{A}(-1, \chi, o) \) with \(\chi < 0 \). Let \(\omega \) be the curvature measure on \(A \) (see [3]). Y. Machigashira [8] proved that \(\omega \geq \kappa \mu \) holds for any Alexandrov surface of curvature bounded below by \(\kappa \). Therefore, by a variant of the Gauss-Bonnet theorem,

\[
2\pi\chi = \omega(A) \geq \kappa \mu(A) = -\mu(A),
\]

hence \(\mu(A) \geq 2\pi|\chi| \). Lemma 5 shows now that \(\mathcal{A}(-1, \chi, o) \) is closed in the space of all compact metric spaces \((o = \pm 1, \chi < 0) \). \(\square \)

Acknowledgement. The authors were supported by the grant PN-II-ID-PCE-2011-3-0533 of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI.
References

[1] K. Adiprasito and T. Zamfirescu, Few Alexandrov spaces are Riemannian, submitted, 2012

[2] A. D. Alexandrov, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955

[3] A.D. Aleksandrov and V.A. Zalgaller, Intrinsic geometry of surfaces, Transl. Math. Monographs, Providence, RI, Amer. Math. Soc., 1967.

[4] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Amer. Math. Soc., Providence, RI, 2001

[5] Yu. Burago, M. Gromov, and G. Perel’man, A. D. Alexandrov spaces with curvature bounded below., Russ. Math. Surv. 47 (1992), no. 2, 1–58 (English. Russian original)

[6] J. Itoh, J. Rouyer and C. Vălcu, Moderate smoothness of most Alexandrov surfaces, arXiv:1308.3862 [math.MG]

[7] V. Kapovitch, Perelman’s stability theorem, J. Cheeger et al. (eds.), Metric and comparison geometry. International Press. Surveys in Differential Geometry 11 (2007), 103-136

[8] Y. Machigashira, The Gaussian curvature of Alexandrov surfaces, J. Math. Soc. Japan 50 (1998), 859-878

[9] G. Perel’man, A.D. Alexandrov spaces with curvatures bounded from below II, preprint 1991

[10] J. Rouyer and C. Vălcu, Simple closed geodesics on most Alexandrov surfaces, manuscript

[11] K. Shiohama, An introduction to the geometry of Alexandrov spaces, Lecture Notes Serie, Seoul National University, 1992

Jöel Rouyer
Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
P.O. Box 1-764, Bucharest 70700, ROMANIA
Joel.Rouyer@ymail.com, Joel.Rouyer@imar.ro
Costin Vilcu
Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
P.O. Box 1-764, Bucharest 70700, ROMANIA
Costin.Vilcu@imar.ro