Molecular dynamics simulations of oxide memory resistors (memristors)

S E Savel’ev¹, A S Alexandrov¹,², A M Bratkovsky² and R Stanley Williams²

¹ Department of Physics, Loughborough University, Loughborough LE11 3TU, UK
² Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

Received 25 October 2010, in final form 16 November 2010
Published 16 May 2011
Online at stacks.iop.org/Nano/22/254011

Abstract
Reversible bipolar nanoswitches that can be set and read electronically in a solid-state two-terminal device are very promising for applications. We have performed molecular dynamics simulations that mimic systems with oxygen vacancies interacting via realistic potentials and driven by an external bias voltage. The competing short- and long-range interactions among charged mobile vacancies lead to density fluctuations and short-range ordering, while illustrating some aspects of observed experimental behavior, such as memristor polarity inversion. The simulations show that the ‘localized conductive filaments’ and ‘uniform push/pull’ models for memristive switching are actually two extremes of the one stochastic mechanism.

1. Introduction
Nanoscale metal/oxide/metal two-terminal nonlinear circuit elements and switches would be extremely attractive for dense memory, logic, neurocomputing, etc, if they could scale well in size, power and driving voltage, and can perform without much fatigue in a repeatable and uniform (across, for example, the memory matrix) manner. Some of these issues are not well understood although the hysteretic behavior of such materials, especially thin films of transition metal oxides (TMO) like Ta₂O₅, Nb₂O₅, TiO₂, NiO, Cu₂O and group III and IV oxides (Al₂O₃, SiOₓ), in metal–insulator–metal (MIM) vertical devices have been studied for decades [1–8]. The diverse semiconductor [9–11], polymer [12, 13] and correlated oxide systems [10, 14–17] exhibited switching under electric pulsing. In recent years, interest in various oxide-based systems switchable by an electric pulse has grown quite dramatically, leading to important breakthroughs and exposing various fundamental problems related to mechanisms of bipolar (driven by alternating positive and negative biasing to close the I–V hysteresis loop) and unipolar (driven by the bias of one polarity) switching behavior [18–20]. In particular, it was realized that bipolar switches are analogous to the ‘memristor’, a fourth passive circuit element originally postulated by Leon Chua in 1971 [18].

There are challenges in understanding and controlling the coupled electronic and ionic kinetic phenomena that dominate the behavior of oxide switching devices like Pt/TiO₂/Pt, which is an exemplar memristor (resistor with memory) [19]. It has been demonstrated unambiguously that bipolar switching involves changes to the electronic barrier at the Pt/TiO₂ interface due to the drift of positively charged oxygen vacancies under an applied electric field [19]. Various direct measurements revealed the formation of localized conducting channels in TiO₂: pressure-modulated conductance microscopy [21, 22], conducting atomic force microscopy (AFM) [23], scanning transmission x-ray microscopy [24, 25] and in situ transmission electron microscopy [26]. On the basis of these measurements, it became quite clear that the vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier and switch the device ON [19]. The drift of vacancies away from the interface breaks such channels, recovering the electronic barrier and switch the device OFF. More recently, Kwon et al [26] have performed the direct cross-sectional TEM studies of the unipolar resistive switching of TiO₂, revealing the presence of nanoscale Magneli phase Ti₄O₇ conductive channels following device turn-on and imaging the filament region in TEM. A Ti₄O₇ phase was confirmed from the temperature dependence of the conductance. Concurrently, Strachan et al [24, 25] have investigated the bipolar mode of TiO₂ switching, using non-destructive spatially resolved x-ray absorption and electron diffraction that allows nanometer scale studies of the associated chemical and structural changes of...
a functioning memristive device. They have observed that electroforming of the device is accompanied by forming an ordered Magneli-phase conducting channel within the initially deposited (amorphous) TiO$_2$ matrix.

The observation of a Magneli crystallite in a titanium dioxide memristive matrix shows that electroforming a Pt/TiO$_2$/Pt memristive system is related to a localized partial reduction of titanium dioxide and crystallization of a metallic conducting channel Ti$_3$O$_7$.

Inside a titanium dioxide matrix, the Magneli phases are thermodynamically favored over a high concentration of randomly distributed vacancies, and thus they can act as a source or sink of vacancies in the matrix material depending on the electrochemical potential within the device [27]. The application of an electrical bias can control vacancy motion in and out of this sub-oxide phase, modulating a transport barrier and leading to a dramatic conductivity change. It is worth noting that hysteretic switching in some perovskite oxides monitored by TEM did not show any indication of conducting channel formation [28]. Therefore, two types of models are usually considered: (i) in-plane homogeneous and (ii) in-plane inhomogeneous changes accompanying switching in the material [7]. We shall study the kinetics of oxygen vacancies in a generic situation like TiO$_2$ by way of molecular dynamics to visualize processes taking place at the atomic scale that are reminiscent of actual device behavior and whose origin is in competing vacancy–vacancy interactions.

Another important aspect is that the forming step for the channel formation in systems like TiO$_2$, NiO and VO$_2$ is accompanied by local heating that is witnessed by local emergence of high-temperature phases and observed by thermal microscopy. It is worth noting that bipolar switching is apparently field driven and is very different from unipolar switching that is power driven. As a result, the bipolar switches may consume much less power than the unipolar switches. At the same time, local heating does accompany and seems to be important in both processes. Thus, fresh TiO$_2$ samples have an amorphous layer of titanium dioxide. To make the device switch in a repeatable manner, a forming step of a rather large voltage pulse is usually required to create a vacancy-rich region (forming is not required if, for example, a vacancy-rich layer is provided intentionally by fabrication). During this process, the TiO$_2$ anatase phase forms near the conducting channel, which nominally requires temperatures over 350°C [25].

Studying local thermal effects during switching in TiO$_2$ provides strong evidence for local heating [29]. Unambiguous evidence for local heating accompanying conducting channel formation comes from third harmonic generation [30]: low resistance states (LRSs) in NiO showing unipolar switching were strongly nonlinear with variations in the resistance R as large as 60%, which was most likely caused by the Joule heating of conducting channels inside the films. One can note at this point that, since the unipolar switching is power driven, it may be problematic to use it in practice because of power requirements.

Given the above, the microscopic understanding of the atomic-scale mechanism and identification of the material changes within an insulating barrier appears to be invaluable for controlling and improving the memristor performance. Within the volume $10 \times 10 \times 2$ nm3 of perspective nanomemristors, the number of oxygen vacancies could be as small as a thousand, so that the conventional statistical approach for dealing with many-particle systems might fail. Many important phenomena such as dynamic phase transitions, as well as competition between thermal fluctuations and particle–particle interactions in stochastic transport, can be investigated using the molecular dynamics (MD) simulations of the Langevin equations describing the thermal diffusion and drift of individual interacting particles [31]. Here we present some preliminary results of such simulations for a model memristor.

2. Modeling a memristor

In a semiconducting titanium dioxide, oxygen vacancies play an important role in the electrical conduction. A stoichiometric TiO$_2$ crystal is a colorless and transparent insulator. However, heated in vacuum, it loses a part of its oxygen, or is reduced, and becomes dark blue in color and electrically conductive. At high temperatures about 1000°C ionic conduction becomes observable originating from oxygen and titanium vacancies [32] while at ambient and lower temperatures small polarons carry the current [33]. The reduced rutile shows an anomalous electrical property under a DC electric field of several tens of V cm$^{-1}$ [32]. When a DC electric field was applied to the bulk sample of reduced TiO$_2$, a single pulse of electric current was observed together with a constant background current. This pulsed current has been attributed to migration of oxygen vacancies in reduced TiO$_2$ under a DC electric field. The oxygen migration is visually observable under a DC electric field. Namely, when a DC electric field was applied to the sample after repeated change of its polarity, the color of the sample around the negative electrode changed into dark blue due to the higher density of oxygen vacancies, while the region around the positive electrode lost color [32]. In order to explain these features, Miyaoa et al [32] have proposed that the oxygen vacancies form clusters under a voltage, which may create crystalline phases different from rutile, namely Magneli phases, as recently observed in nanoscale probes [25, 26].

Based on the observations of oxygen vacancy migration and clustering in bulk [32] and nanoscale [25, 26] samples of TiO$_2$ induced by an electric field, we model a memristor as shown in figure 1. In our model, there is a reduced rutile thin layer TiO$_{2-x}$ near one of the metallic electrodes stabilized by the Coulomb mirror potential. Vacancies from this layer can drift towards the opposite electrode in an electric field.

The simplest approach to the vacancy diffusion is using a drift–diffusion equation for the density of vacancies $n(x, t)$:

$$\frac{\partial n(x, t)}{\partial t} = D \left[\frac{\partial^2 n(x, t)}{\partial x^2} - \frac{F(t) \partial n(x, t)}{k_B T \partial x} \right],$$

which neglects the particle–particle interaction. Here D is the diffusion coefficient, T is the temperature and $F(t)$ is the
electric field. The diffusion equation (1) can be mapped onto a simple Langevin equation:

$$\frac{dx^\alpha}{dt} = F^\alpha(t) + \sqrt{2D^\alpha} \xi^\alpha(t),$$

where $\alpha = x, y, z$ are Cartesian components, ξ is a stochastic force of zero mean and δ-correlated in time, and we accounted for anisotropic diffusion (in TiO$_2$ rutile diffusion along the c axis is much faster than in the ab plane, for instance).

With the use of the standard Euler method [31], we have simulated one thousand vacancies ($i = 1, \ldots, 1000$). The result is shown in figure 2 for a rectangular electric pulse, $F(t)$. There is no clustering in this simple diffusion approximation, but rather uniform propagation of the reduced layer accompanied by its widening in the propagation direction, which is the same as the analytical result in this case.

3. Molecular dynamics of interacting vacancies

Now, let us simulate the stochastic transport of vacancies fully taking into account their interaction and boundary conditions. We consider an open system of N point-like Brownian vacancies interacting with each other via the pairwise potential W, with a possible inclusion of the background matrix through some periodic and/or random potentials U, and with internal and external fields corresponding to the time-dependent deterministic force F. The environment exerts an independent Gaussian random force, $\vec{\xi}$, on each particle with zero mean and intensity controlled by the local temperature. In the present overdamped regime (where inertia is negligible compared to the viscous damping), the Langevin equation describing the drift–diffusion of the ith particle is [31]

$$\eta \frac{dx^\alpha_i}{dt} = F^\alpha_i(x_i, t) - \sum_{j \neq i} \frac{\partial W(x_i - x_j)}{\partial x^\alpha_i} + \sqrt{2k_B T \eta} \xi^\alpha_i(t).$$

The unit of ξ_i is $s^{-1/2}$. The physical unit of length is the thickness of the memristor, L (about or less than 5 nm). Then the physical unit of time is L^2/D, where $D = k_B T / \eta$. (We take the largest D for anisotropic TiO$_2$.) The diffusion coefficient D should be taken at a local temperature, but we have assumed some net temperature across the active area in order to simplify matters in the present simulation. Using the dimensionless time $\tau = tD/L^2$ and coordinates $r_i = x_i/L$,
Figure 3. Two successive runs (upper and lower panels, respectively) of the toy-model simulations with periodic boundary conditions. Panels (a1) and (b1) correspond to initial random distribution of vacancies before any applied pulses. Panels (a2) and (b2) represent distribution of particles just after a pulse was applied. This distribution is very unstable and quickly evolves into a much more stable distribution (a3) and (b3) corresponding to one of many metastable states of the system. Distributions (a3) and (b3) have been obtained after a time that was five times longer than the pulse duration. Those distributions then remained stable for as long as the simulations were run, up until the application of the second pulse. Distributions (a4) and (b4) have been obtained after the second pulse was applied (with an opposite polarity in case (a4) and the same polarity for (b4)). In both cases, vacancies have condensed either at the top (b4) or the bottom (a4) of our simulated sample, indicating switching the memristors off. In other words, the bottom panel illustrates the ‘polarity inversion’ of the vacancies from bottom to top electrode during successive pulsing. Analogous behavior has been observed experimentally in [36].

Equation (3) can be rewritten as

\[
\frac{\partial r_\alpha^i}{\partial \tau} = -\frac{\partial [V(r_i, \tau) + U(r_i)]/(k_B T)}{\partial r_\alpha^i} + \sum_{j \neq i} \frac{\partial W(r_i - r_j)/(k_B T)}{\partial r_\alpha^i} + \sqrt{2\xi_\alpha^i(\tau)},
\]

where \(V(r_i, \tau)\) is the electric field potential and the components of the (dimensionless) random force, \(\xi_\alpha^i\) (\(\alpha = x, y, z\)), satisfy the fluctuation–dissipation relation \(\langle \xi_\alpha^i(0)\xi_\beta^j(\tau) \rangle = \delta(\tau)\delta_{\alpha,\beta}\delta_{i,j}\). Note that the moving charged vacancies generate quite inhomogeneous electric fields in our sample. We have assumed in the present paper that the diffusion coefficient is homogeneous in the simulated region. This corresponds to a homogeneous temperature distribution in our sample that can be reached by efficient cooling of memristors. In future simulations, the model will take into account local overheating in our sample. Diffusion in TiO\(_2\) is strongly anisotropic; thus the diffusion along the \(c\) axis and in-plane will be described by two equations with different diffusion coefficients in more accurate simulations.

Note that the height of the simulation cells is 5 nm, with lateral periodic boundary conditions for figures 3 and 4. The rutile lattice parameter is \(c \approx 0.3\) nm, which corresponds to about 17 unit cells for the total length of the drift region. Here, we consider the continuous model for vacancy motion as a first reasonable approximation. However, the discreteness can be easily modeled by introducing a lattice potential \(U(x, y, z)\) for the oxygen vacancies. We believe that the discreteness cannot change our results other than effectively rescaling the diffusion constant.

The set of equations (4) is equivalent to an infinite Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy of equations for multi-particle distribution functions. With no particle–particle interaction, it reduces to the drift–diffusion equation (1). Also, in a mean-field approximation, one obtains an additional drift term in the diffusion equation, which, however, does not lead to clustering.
The O^{2-} vacancy–vacancy interaction potential, which is crucial for their clustering and phase transformations, can be modeled as

$$W(R) = A \exp(-R/a) - B/R^6 + e^2/(\pi \varepsilon_0 \varepsilon R),$$

where the short-range repulsive and attractive parts are represented with $A = 22764.0$ eV, $a = 0.01490$ nm and $B = 27.88 \times 10^{-6}$ eV nm $[34]$, and the long-range Coulomb repulsion is the last term. More generally, the interaction parameters A, B, a vary from one oxide to another and the dielectric constant ε may also vary from sample to sample.

To estimate the diffusion coefficient, one can use an empirical equation of $[35]$

$$D = (1.03 \times 10^{-3}) \exp(-E_v/k_BT) \text{ cm}^2 \text{ s}^{-1},$$

where the activation energy for oxygen vacancy diffusion has a poorly known value, with estimates ranging from 0.5 to about 1.1 eV. The lower boundary, $E_v = 0.5$ eV, corresponds to $D \approx 3.44 \times 10^{-12}$ cm2 s$^{-1}$ at room temperature. For higher activation energies, the vacancies would be immobile, as they are known to be at room temperature. We do know, however, that they move during switching. In this regard, it is worth noting that (i) another important parameter is the local temperature during switching and (ii) strong local electric field concentration at the tips of conducting channels/filaments.

Some estimates indicate that the local temperature may reach values well over 350 $^\circ$C, in which case the diffusion coefficient would be much larger, obviously. The local field concentration near tips of conducting channels/filaments is another variable that will very strongly facilitate the growth of the channel and needs to be simulated self-consistently along with local heating.

Given the uncertainties with ionic diffusion in memristors, at this stage we would restrict ourselves to qualitative and semi-quantitative analysis. The following parameters are chosen at this stage more for computational convenience than to model actual devices. In actual devices the voltage drop across the active region may be moderate, of the order of 1 V, and the pulse duration for switching may be just a few microseconds. With $L = 5$ nm and such a diffusion coefficient the time unit is $L^2/D \approx 73$ ms. The electric pulse rising time 100 ns would correspond to $\tau_p = 1.4 \times 10^{-6}$ and a pulse length 10 μs corresponds to $\tau_p = 1.4 \times 10^{-4}$.

The pulse amplitude of 5 V would then yield the dimensionless force $F = eV/(k_BT) \approx 200$ at room temperature. The characteristic particle speed is $v = eV/L\eta$, so that the dimensionless collision time is $\tau_{col} = a/LF \approx 1.5 \times 10^{-5}$ and the number of computing steps is $1/\tau_{col} \approx 70000$, presenting a challenge for MD simulations. The characteristic collision distance R_c, where the collision force changes its sign from attraction to repulsion, is in fact several times larger than a, which makes the number of MD steps manageable. Also, decreasing the electric pulse amplitude makes the number of MD steps smaller. We will present simulations for more realistic parameters elsewhere, with the inclusion of local thermal effects directly into simulations.

4. MD simulation of a toy memristor: clustering of vacancies

In view of the above uncertainties with parameters of actual memristors, we present here the MD simulations of a toy memristor with a relatively small number of vacancies, $N = 75$ (figure 3) and 150 (figure 4), leaving simulations of real devices for future studies. Initially, we have randomly placed all the vacancies near the bottom of a toy sample (see figure 3 for initial distribution panels) and then let these vacancies evolve according to equation (4) inside a rectangular box, which mimics either a part (figures 3 and 4) or the entire (figure 5) sample. We use the 2D simulation area with aspect ratio $L_y/L_x = 2$ (figures 3 and 4) and 4/3 (figure 5) and either periodic boundary conditions (BC) (figures 3 and 4) or impenetrable boundaries (figure 5) along the x direction. Note that periodic BC allow us to simulate quite a large sample using a rather small number of particles, while the impenetrable BC can elucidate the role of boundaries or 1D defects in a real finite size sample. To simulate periodic BC, we include periodic images of vacancies with respect to vertical boundaries of the simulation box. We also incorporate opposite polarity charges by adding mirror images of vacancies with respect to the top and the bottom of the sample. Since we simulate a limited number of vacancies, one can refer to each particle in our simulations as a cluster of vacancies, where a cluster–cluster interaction is described by the combination of the Lennard-Jones and Coulomb potentials acting with the force

$$F(r) = \frac{1}{r^2} \{12E_{LJ}[(r_{min}/r)^{12} - (r_{min}/r)^6] + E_cr_{min}/r\},$$

Figure 4. The same as in figure 3 showing a trend towards formation of a percolation path along the chains of oxygen vacancies. Note that the different distributions obtained in figures 3(a3) and (b3) and in this figure indicate that the system has very many metastable states. Thus, application of the same pulse can result in rather different final distributions of vacancies. Note also that in the present simulation we have used the force cutoff distance, which is one-fifth of the distance to the minimum r_{min} of the potential well.
the relative strength of the Coulomb potential $E_C/E_{IJ} = 2$ and the potential well is about $30k_BT$. This results in the position of the potential maxima $r_{\text{max}} \approx 2r_{\text{min}}$ and the height of the potential barrier of the order of the depth of the potential well. The pulse strength is taken to be about ten times stronger than the maximum attracting force between vacancy clusters.

In figure 3, we present two independent simulations, with the different columns referring to different moments in time: (i) before the pulse, (ii) during the pulse, (iii) a considerable time after the pulse and (iv) after applying the second pulse with the same or different polarity. We normalize all energy scales by k_BT, i.e. the temperature $T = 1$ was used in our simulations.

The most interesting results are shown in columns (iii) and (iv). Concerning the third column, we numerically obtained the distributions after a time that was five times longer than the pulse duration τ_p. Those distributions were then stable for as long as the simulations were run, up to the application of the second pulse. In this standby mode (no pulse applied), the vacancies move mainly because of the Coulomb forces acting between them and the mirror images in the electrodes. Because of these interactions, they can freeze out in one of the many local minima of the free energy of the system, and the system may rarely migrate from one minimum to another because of thermal activation. This migration is so slow that most of the distributions we obtained were stable during the timescale of the simulations. The last column (iv) in figure 3 corresponds to the vacancy distributions after an additional pulse of the same duration and magnitude but with the opposite (top row) or the same (bottom row) polarity. Thus, one can see that the second pulse can destroy percolation paths formed by vacancies and thus to switch off memristors. In other words, one can controllably switch on and off this type of memristor if the appropriate pulse (in the sense of both amplitude and duration) is applied.

In figure 4, one can clearly see a formation of percolation paths. Comparing with figure 3, we can conclude that the system has a lot of possible configurations or metastable states. Statistical studies of these configurations are quite critical for memristor operations and we plan to do it in future. The results in figure 5 with impenetrable boundaries seem to suggest that boundaries (or any other extended pinning centers) can accumulate vacancies. This suggests yet another mechanism of switching memristors on and off via short-circuiting paths along the edges, at least in some cases.

In summary, the results of our toy modeling look very promising. We see that pulsing in opposite directions initially pushes the vacancies towards the top electrode and then back, figure 3. Pulsing twice in the forward direction moves the vacancies from the bottom to the top electrode, thus inverting the vacancy distribution in close analogy to what has been done experimentally [36]. We observe a complex kinetics of the oxygen vacancies in all present simulations. In particular, we have observed fragmentation of vacancy distribution and formation of the short vacancy chains for both the periodic and impenetrable boundary conditions. One can envisage that in certain conditions those chains may form percolation paths (figure 4), facilitated by, for example, pinning centers and/or boundaries of the sample. Further studies would elucidate the conditions under which a conducting channel may emerge in the sample driven by an E field, thus gaining more insight into the switching of memristors.

5. Conclusions

We have proposed a model for the kinetic behavior of oxide memristors and simulated its toy analog using the molecular
dynamics Langevin equations. Our MD simulations reveal a significant departure of the vacancy distributions across the device from that expected within a standard drift–diffusion approximation, driven by interactions among the mobile ionic species (oxygen vacancies in TiO$_2$, as a generic example). A realistic vacancy–vacancy interaction incorporating short- and long-range repulsions along with a medium-range attraction leads to clustering of vacancies into chains. This may shed new light onto conducting channel formation in memristors. We have found a significant effect of boundaries on the clustering patterns. MD experiments (before averaging over configurations) have the potential to simulate conditions that are hard or even impossible to incorporate in the standard drift–diffusion models, such as the vacancy annihilation or generation (from the environment), different shapes of boundaries, vacancy pinning (either periodic or random) and an inhomogeneous external field (due to edge effects, etc.). One can also calculate not only the density distribution but binary distributions, velocity distributions, etc, providing any desired statistical analysis of the distributions. Another important step would be to include thermal effects via local changes in the anisotropic diffusion coefficient. Competing interactions between mobile ionic species are seen as a robust mechanism for vacancy concentration fluctuations and clustering, which shows that switching in real devices is a statistical or stochastic process.

The present simulations show that there is really no difference between two competing models of switching: ‘localized conductive filaments’ and ‘uniform push/pull’ of the oxygen front near an interface. There are fluctuations and local ordering of the vacancies that in some simulations look like filamentary conduction and in others more like a uniform front. That is the point of showing figure 4 and contrasting it with figure 3. Both extremes are possible, but the usual case is somewhere in between.

References

[1] Kreynina G S, Selivanov L N and Shumskaya T I 1960 Radio Eng. Electron. 5 219
[2] Kreynina G S 1962 Radio Eng. Electron. 7 1949
[3] Gibbons J F and Beadle W E 1964 Solid-State Electron. 7 785
[4] Chopra K L 1965 J. Appl. Phys. 36 184
[5] Argall F 1968 Solid-State Electron. 11 535
Schröder H and Jeong D S 2007 Microelectron. Eng. 84 1982
[6] Hickmott T W and Hiatt W R 1970 Solid-State Electron. 13 1033
[7] Dearnaley G, Stoneham A M and Morgan D V 1970 Rep. Prog. Phys. 33 1129
[8] Oxley D P 1977 Electrocompon. Sci. Technol. 3 217
[9] Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450
Ovshinsky S R and Fritzsch H 1973 IEEE Trans. Electron Devices 20 91
Burr G W et al 2010 J. Vac. Sci. Technol. B 28 223
[10] Blom P W M, Wolf R M, Cillessen J F M and Krijn M P C M 1994 Phys. Rev. Lett. 73 2107
[11] Akinaga H et al 2007 IEEE Trans. Electron. Electron Eng. 2 453
[12] Stafeev V I, Kusnetsova V V, Molchanov V P, Karakashian E I, Airapetyants S V and Gasanov L S 1968 Sov. Phys.—Semicond. 2 647
[13] Ballard W P and Christy R W 1975 J. Non-Cryst. Solids 17 81
[14] Thakoor S, Moopenn A, Daud T and Thakoor A P 1990 J. Appl. Phys. 67 3132
[15] Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y 1997 Nature 388 50
[16] Beck A, Bednorz J G, Gerber Ch, Rossel C and Widmer D 2000 Appl. Phys. Lett. 77 139
[17] Watanabe Y, Bednorz J G, Bietsch A, Gerber Ch, Widmer D, Beck A and Wind S J 2001 Appl. Phys. Lett. 78 3738
[18] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[19] Yang J J et al 2008 Nat. Nanotechnol. 3 429
[20] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[21] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
[22] Miao F, Yang J J, Strachan J P, Stewart D, Williams R S and Lau C N 2009 Appl. Phys. Lett. 95 113503
[23] Mustermann R, Yang J, Strachan J P, Medeiros-Ribeiro G, Dittmann R and Waser R 2009 Phys. Status Solidi (RRL) 4 16
[24] Strachan J P, Yang J J, Munstermann R, Scholl A, Medeiros-Ribeiro G, Stewart D R and Williams R S 2009 Nanotechnology 20 215201
[25] Strachan J P, Pickett M D, Yang J J, Aloni S, Kilcoyne A L D, Medeiros-Ribeiro G and Williams R S 2010 Adv. Mater. 22 3573
[26] Kwon D-H et al 2010 Nat. Nanotechnol. 5 148
[27] Liborio L, Mallia G and Harrison N 2009 Phys. Rev. B 79 245133
Liborio L and Harrison N 2008 Phys. Rev. B 77 104104
[28] Fujii T, Kaji H, Kondo H, Hamada K, Arita M and Takahashi Y 2010 IOP Conf. Ser.: Mater. Sci. Eng. 8 012033
[29] Borghetti J, Strukov D B, Pickett M D, Yang J, Stewart D R and Williams R S 2009 J. Appl. Phys. 106 124504
[30] Lee S B, Chae S C, Chang S H, Lee J S, Park S, Jo Y, Seo S, Kahng B and Noh T W 2008 Appl. Phys. Lett. 93 252102
[31] Savel’ev S, Marcheson F and Nori F 2004 Phys. Rev. E 70 061107 and references therein
[32] Miyao §, Hizutani G, Sano H, Omote M, Nakatsuji K and Komori F 2002 Solid State Commun. 123 399
Tsunoda K et al 2007 Appl. Phys. Lett. 90 113501
Kim K M et al 2007 Appl. Phys. Lett. 90 242906
Jameson J R et al 2007 Appl. Phys. Lett. 91 112101
Shima H et al 2009 Appl. Phys. Lett. 94 082905
Zhong Ni et al 2010 Appl. Phys. Lett. 96 042107 and references therein
[33] Alexandrov A S and Matt N F 1995 Polarons and Bipolarons (Singapore: World Scientific) p 156
Meis C and Fleche J L 1997 Solid State Ion. 101 333
Radecka M, Sobas P and Rekas M 1999 Solid State Ion. 119 55
Yang J J, Borghetti J, Murphy D, Stewart D R and Williams R S 2009 Adv. Mater. 21 3574
Strachan J P, Yang J J, Munstermann R, Scholl A, Medeiros-Ribeiro G, Stewart D R and Williams R S 2009 Nanotechnology 20 485701
Xia Q, Pickett M D, Yang J J, Zhang M, Borghetti J, Li X, Wu W, Medeiros-Ribeiro G and Williams R S 2010 Nanotechnology submitted