Could inhibition of metalloproteinases be used to block the process of metastasis?

Jesús Alba1 | Ramiro Barcia2 | Javier Gutiérrez-Berzal1 | Juan I. Ramos-Martínez3

1Histobiomol, Hospital POLUSA, Lugo, Spain
2Faculty of Sciences, University of Santiago de Compostela, Lugo, Spain
3Department of Biochemistry and Molecular Biology, School of Veterinary, University of Santiago de Compostela, Lugo, Spain

Correspondence
Juan I. Ramos-Martínez, Department of Biochemistry and Molecular Biology, School of Veterinary, University of Santiago de Compostela, Lugo, Spain.
Email: juanignacio.ramos@usc.es

Abstract
Metastasis is a multisequential process that allows tumor cells to migrate to tissues distant from the primary tumor. Only a small number of cells escape from the primary tumor; however, the metastases generated are responsible for more than 90% of cancer deaths. Many metastatic processes initially require the total or partial start-up of a program for the transformation of tumor epithelial cells into mesenchymal cells (EMT). The launching of the EMT program is stimulated by cytokines and other elements produced by the diverse types of cells composing the tumor stroma. In parallel, a process of destabilization of the extracellular matrix (ECM) takes place by means of the synthesis of proteases of the matrix metalloproteinases (MMPs) family. EMC degradation allows the exportation of some tumor cells as mesenchymal cells to the circulatory system and their subsequent implantation in a tissue distant from the primary tumor. The blocking of these both processes appears as a hypothetical stop point in the metastatic mechanism. The present review deals with the different options to achieve the inhibition of MMPs, focusing on MMP7 as a target given its involvement in the metastatic processes of a wide variety of tumors.

KEYWORDS
cancer, epithelial–mesenchymal transition (EMT), extracellular matrix (ECM), matrix metalloproteinases (MMPs), metastasis

1 | INTRODUCTION

Cancer comprises more than 180 different diseases which are the result of a wide variety of complex molecular interactions. The systematization of common features started in 2000 with the publication of “Hallmarks of Cancer”1 allowed to identify the six characteristic features of a malignant tumor, among which the capacity to invade tissues and create metastasis stands out. In 2011, the same authors performed an update2 which included two new features.

Although the use of innovative technologies has led to an increased knowledge of the biological mechanisms that result in the formation of a primary tumor; however, the knowledge of the invasion-metastasis mechanism is limited by the lack of specific technologies able to differentiate each of the different stages of the process.3

The capacity to invade the surrounding tissues and the spread of tumor cells to other organs, their settlement in those new tissues, and the formation of secondary tumor masses or metastasis is a multisequential process.3–5 All the properties gained initially by
tumor cells combine to furnish capacities that enable them to abandon the primary tumor and settle in another tissue. In this sense, it can be said that seven of the eight features acquired serve to provide tumor cells with the properties that will enable their evasion and the subsequent formation of metastasis.\(^2\)\(^1\)\(^2\) Regardless of the way in which tumor cells evade, individually or forming clusters, only a reduced number of cells will be able to complete the process and settle on tissues away from the primary tumor. This process is rather ineffective\(^7\); however, metastasizing of a tumor worsens notably the prognosis from the clinical point of view\(^6\); it is known that the metastasis process is responsible for 90% of deaths by cancer.\(^7\)

The beginning of a metastatic process involves the activation of two apparently simultaneous mechanisms that have been the subject of study and interest. One of them refers to the transformation of tumor epithelial cells into a mesenchymal phenotype by the implantation of the molecular program termed epithelial–mesenchymal transition (EMT).\(^6\)

Many authors suggest that the EMT program is a prerequisite within the metastatic mechanism.\(^9\)\(^10\) The other process is the degradation of the tissue adjacent to the tumor by the destruction of the extracellular matrix (ECM), which enables the evasion of the tumor cells to the lymphatic system in search of the metastasizing spread.

2 | THE EMT PROGRAM

The EMT program is not only involved in the initial stages of metastatic processes where, apparently, it could be a prerequisite for intravasation.\(^9\) Post EMT is also involved in embryogenesis, wound healing, fibrosis, and so on.\(^9\)\(^15\)

EMT is a process that leads neoplastic or normal epithelial cells to lose apico-basal polarity, breaking the cell junctions (tight junctions, gap-junction, and adherence-junctioins).\(^13\) EMT implementation is promoted by the action of peptides and molecular signals synthesized in an autocrine way and by the different cell elements present in the tumor stroma.\(^14\)\(^17\) Environmental hypoxia coupled with the presence of cytokines and growth factors\(^13\)\(^18\) induces the expression of different and specific transcription factors (EMT-TFs; Twist, Snail, ZEB1 and ZEB2, and others) that provoke a progressive loss of expression of the epithelial phenotype markers, such as E-cadherin, claudins, occludins, cytokeratins α6β4, integrins, and others.\(^19\)\(^20\) Simultaneously, EMT-TFs also induce the increase of the expression of mesenchymal markers, like N-cadherin, vimentin, fibronectin, or β1 and β3 integrins (Figure 1).\(^10\)\(^13\)

In “in vitro” cultures, epithelial cells advance throughout the implementation of the EMT program turning progressively into a mesenchymal phenotype, losing the expression of E-cadherin, main marker of the epithelial character.\(^21\) However, the cells subjected “in vivo” to an EMT program seldom finish the program with a full conversion into mesenchymal cells. In most cases, the program proceeds through cells with mixed phenotypes that keep part of the epithelial character and of the structure typical of the mesenchymal cells. This is called partial EMT state.\(^21\)\(^22\) These cells adopt a migratory phenotype characterized by its capacity to resist immunosuppression and drugs\(^23\)\(^25\) and the evasion from apoptosis.\(^26\) It was also observed to favor the inflammation associated with cancer progression and fibrosis. In this sense, some evidence suggests that some cells under the EMT program acquire properties of tumor stem cells (GSC).\(^27\)\(^28\) The fact that some epithelial characters are preserved permits the reversible process (mesenchymal–epithelial transformation) (MET) that starts after the tumor cell has settled, enabling metastasis formation and the gain of effectiveness.\(^15\)\(^29\)

3 | CONSEQUENCES OF THE IMPLEMENTATION OF THE EMT PROGRAM

The EMT-program implementation may induce the synthesis of different endo proteases that provoke ECM destabilization.\(^17\)\(^30\)\(^31\) In this sense epithelial tumor cells partially converted into mesenchymal cells contribute to ECM destruction. Also, secrete vascularization factors that favor the synthesis of capillaries that may serve as an escape way for metastatic cells.\(^32\) Angiogenesis is parallel to the development of the EMT program. It is a comprehensive program, because the production of vascular endothelial growth factor (VEGF) and EGF-receptor (EGFR) is associated with the Twist2 pathway and to the reduction of the E-cadherin expression.\(^33\)\(^34\) Also, the hypoxia and acidity of the tumor environment produced by the accumulation of lactic acid (Warburg effect) adds up to ECM destabilization.\(^35\)\(^36\)

ECM and basal membrane degradations are critical for invasion and metastasis and account for a poor prognosis in many types of cancer.\(^37\) Simultaneously to the implementation of the EMT program, migration of the tumor cells occurs, favored by the production, secretion, and activation of the matrix metalloproteinases (MMPs).\(^38\)\(^39\)

4 | MATRIX METALLOPROTEINASES

Excellent reviews have been published last years dealing with the structure and enzymatic activity of the different MMPs, which permitted their classification, and the knowledge of their specific cell location and substrates, an aspect that generates its own classification system.\(^40\)\(^41\)

In a basal situation, the presence and production of the different MMPs must be perfectly regulated, because the excess activity may cause cellular chaos.\(^30\)\(^42\) In a natural way, the presence of the different MMPs is strictly regulated at various levels; in this sense, MMPs synthesis is modulated at transcription and transduction levels and by post-transduccional modifications.\(^43\) Like nearly other peptidases, MMPs are synthesized as inactive pro-enzymes and are activated by proteolysis when losing the peptidic element in the amino-terminal end.\(^43\) In their active center, MMPs have a highly preserved sequence next to the C-terminal called “cysteine switch,” where cysteine residues bind in the catalytic site through Zn\(^2+\), transforming MMP into a latent protein. The rupture of the linkage means the pro-domain loss and MMPs activation.\(^44\) Full activation is achieved through autocatalysis or by the mutual and specific intervention of other MMPs.\(^30\)\(^45\)
MMPs proteolytic activity is controlled by four types of MMPs inhibiting proteins (TIMPs) that bind the catalytic site in a specific and reversible mode.46–48 Other peptides like \(\alpha_2 \)-macroglobulin or thrombopodin1 can also inhibit the MMPs, but less effectively.49

The overexpression of the different MMPs is well documented for many types of tumors,50–52 with a positive correlation between tumor aggressiveness and protease expression.53 The diverse cells composing tumor stroma secrete specifically the different MMPs; however, many tumor cells express MMP7, apparently in parallel with the implementation of EMT program.54 The rest of cells present in the tumor stroma produce diverse MMPs that interact with each other in a complex net of proteolytic processes that seem to converge in the synthesis of MMP7, MMP2, and MMP9.45,53,55

MMP7 is the smallest matrix metalloproteinase with a molecular weight of 27 kDa in its latent form and 19 kDa in its active form. This suggests that it might be an end-protein that is the result of many of the MMPs-activating mechanisms. In this sense, MMP7 is the most specific of all MMPs with respect to target substrate, with a particularly mighty action on MMP2 and MMP9.45,56 MMP7, also known as Matrilysin, is a Zinc-dependent endopeptidase consisting of 267 amino acids (Figure 2A). Unlike other MMPs, MMP7 lacks the Hemopexin domain in the C-terminal, and MMP7 expression is regulated by the Wnt/\(\beta \)-catenin pathway and can be stimulated by TFG-\(\beta \).58,59 The implementation of EMT program by tumor cells and MMP7 synthesis share the Wnt/\(\beta \)-catenin pathway, as proved by the simultaneous inhibition of the phenotype transformation and the inhibition of MMP7 direct production by hydroxysteroid sulfotransferase 2B1b (SULT2B1b) or Thymoquine.60–62

The increase of MMP7 expression in diverse types of tumors has been shown in many studies. MMP7 can be considered a biomarker in tumors of the digestive tract like colon,63,64 pancreas,65,66 or gastric cancer.67 It also showed its utility in different tumors on breast cancer,68 urogenital cancer,69,70 small cell lung cancer,71 or melanoma.72 In all cases, MMP7 appeared as a necessary element in invasion and metastasis mechanisms and may be considered not only a diagnostic biomarker for a variety of tumors, but also a marker of

Figure 1 (A) Phases of the full or partial implementation of the EMT program. (B) Relationship of EMT program with MMPs synthesis and subsequent remodeling of the extracellular matrix (ECM). Stromal cells: Cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), and tumor-associated macrophages (TAMs) release different cytokines that induce EMT implementation.17 Both stromal and tumor cells generate micro RNAs (miRNAs) that get involved in MMPs synthesis too. EMT, epithelial–mesenchymal transition; MMP, matrix metalloproteinase.
poor prognosis. This last suggestion can extend to postsurgical situations.73

These results suggest that a setting capable of modulating the presence of MMP7 could be considered a therapeutic target, where the inhibition of the activity, the cancellation of the synthesis, or the expression of the protease could block metastasis process (Figure 2B).

5 | MMPs Inhibition Systems

As previously commented, MMPs activities are naturally modulated by the presence of a protein family known as tissue inhibitors of MMPs (TIMPs). In human tissues, four types of TIMPs with a wide MMPs inhibitory spectrum were detected.74 TIMP gets into the active center, blocking the catalytic Zn\(^{2+}\) and removing the water bound to the cation. It is a classic natural chelation mechanism that blocks the proteolytic action of the different MMPs.41,47,75,76

Other strategies consisting in the chelation of the Zn\(^{2+}\) atom present in MMPs active center served to design different chemicals that might inhibit different MMPs, such as molecules with hydroxamic acids, carboxylates, thiols, or phosphonic acids with the ability to block the endo protease activity. The highest inhibiting potential was obtained with agents containing hydroxamate and carboxylate-based groups (Marimastat, Batimastat, and Ilomastat); however, the inhibiting potential is little specific in the blocking of the different MMPs, as happens with TIMPs. The cause is the structural similarity of the active centers of the different endopeptidases. Implemented clinical trials, some reaching level III, have been abandoned due to their adverse musculoskeletal side effects and poor oral bioavailability, but not due to their inhibiting effectiveness.30,77

The use of anti-MMPs specific antibodies was proposed as an alternative to Zn\(^{2+}\)-chelating agents and the blocking of MMPs active center by TIMPs. The few studies performed so far confirm a reduced specificity of the monoclonal antibodies used against MMPs antigenic elements that show little variability.77,78

The simultaneity in the implementation of the EMT program and the synthesis of MMPs requires the activation of transcription factors that may be related or pass through common pathways. One strategy arises in the search or design of inhibitory molecules of one of the two programs that can also affect the other. It has been previously described that both situations share upstream the activation of the pathway Wnt/\(\beta\)-catenin.63 Inhibition of the same pathway by cinobufacine

FIGURE 2 (A) General structure of MMP family and MMP7. (B) Effect of MMP7 on ECM: MMP7 enhances the fibroblast isolation process through a direct action on the C-type lectin domain family 3 member A (CLEC3A) on the tumor surface, destabilizing the adhesive activity of the cells.57 ECM, extracellular matrix; MMP, matrix metalloproteinase.
The first miRNA clinical trial on human patients used MRX34, a liposome containing miRNA-34 for patients with advanced liver cancer. MRX34 is an RNA double helix identical to miRNA-34 encapsulated in a liposomal nanoparticle. In this sense, the recent advances developed with the vaccines against SARS-COV-2 have shed much light.

In the future, this technology can be assayed as the application of blockage processes in the implementation of metastasis.

6 | CONCLUSIONS

From the present review, it is concluded that the processes of starting the EMT program and the synthesis of MMPs are simultaneous in some types of cancer and are the necessary requirement at the beginning of the metastasis mechanism. In many types of tumors, both processes share common signaling pathways, so an inhibitory process could affect the parallel. The inhibition of the synthesis of MMP7 may be an objective that would make it possible to control the metastatic phase of the disease. The review provides data on different or probable strategies to be carried out.

AUTHOR CONTRIBUTIONS

All the authors have contributed in a similar way to the elaboration of the article. All authors have read and approved the final manuscript.

ACKNOWLEDGMENT

The authors wish to thank María Mosquera for excellent technical assistance.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

All data generated or analyzed during this study are included in the published article and references.

ORCID

Juan I. Ramos-Martínez https://orcid.org/0000-0001-8586-1288

REFERENCES

1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. doi:10.1016/s0092-8674(00)81683-9
2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
3. Massagué J, Obenauf AC. Metastatic colonization by circulating tumor cells. Nature. 2016;529(7586):298-306. doi:10.1038/nature17038
4. Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7-13. doi:10.1016/j.jceb.2016.06.002
5. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670-691. doi:10.1016/j.cell.2016.11.037
64. Bufu T, Dicker D, Fryba V, et al. Serum levels of TIMP-1 and MMP7 as potential biomarkers in patients with metastatic colorectal cancer. Int J Biol Markers. 2019;34(3):292-301. doi:10.1177/1724068X1966202

65. Voča M, Langer D, Fryba V, et al. Serum levels of TIMP-1 and MMP7 and their clinical relevance in urinary bladder cancer. Cancer Genomics Proteomics. 2021;18:18-27. doi:10.2151/gp.2021.056

66. Sarker H, Hardy EA, Haimour A, Maksymowych WP, Botto LD, et al. Intricate functions of matrix metalloproteinases and their clinical relevance in pancreatic cancer. J Proteomics. 2011;74:2190-2200. doi:10.1016/j.jprot.2011.04.025

67. Han B, Zhou B, Qu Y, et al. FOXC1 induces epithelial-mesenchymal transition through activation of the beta1 integrin-LFA1 axis. Cell Rep. 2016;17(12):3291-3301. doi:10.1016/j.celrep.2016.11.003

68. Edman K, Furber M, Hemsley P, et al. The discovery of MMP7 biomarkers in hepatocellular carcinoma. Biomark Med. 2020;14(2):291-300. doi:10.2217/bmm-2020-0038

69. Jiang J, Cai H, Liu Q, et al. CINobufacin inhibits colon cancer invasion and metastasis via suppressing Wnt/B-Catenin signaling pathway and EMT. Am J Chin Med. 2020;48(3):703-718. doi:10.1186/s12924-019-0229-6

70. Wang J, Cai H, Liu Q, et al. CINobufacin inhibits colon cancer invasion and metastasis via suppressing Wnt/B-Catenin signaling pathway and EMT. Am J Chin Med. 2020;48(3):703-718. doi:10.1186/s12924-019-0229-6

71. Kawasaki K, Kawakami T, Watabe H, Itoh F, Mizoguchi M, Soma Y. Expression of matrilysin (matrix metalloproteinase-7) in primary cutaneous and metastatic melanoma. Br J Dermatol. 2007;156(4):613-619. doi:10.1111/j.1365-2133.2006.07678.x

72. Rong W, Zhang Y, Liu L, et al. Post-surgical resection prognostic value of combined OPN, MMP7, and P5G9 plasma biomarkers in hepatocellular carcinoma. Front Med. 2019;3(2):250-258. doi:10.3389/fmed.2019.00032-1

73. Eckfeld C, Häußler D, Schoeps B, Hermann D, Krüger A. Functional disparities within the TIMP family in cancer: hints from molecular divergence. Cancer Metastasis Rev. 2019;38(3):469-481. doi:10.1007/s10555-019-09812-6

74. Benjamini MM, R.A. Khalil RA. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Exp Suppl. 2012;103:209-279. doi:10.1007/978-3-0348-0364-9_7

75. Jakubowska K, Pruczynicz A, Iwanowicz P, et al. Matrix metalloproteinases (MMP-2, MMP-9, and MMP-7) and their inhibitors (TIMP-1, TIMP-2) in inflammatory bowel diseases. Gastroenterol Res Pract. 2016;2016:2456179. doi:10.1155/2016/2456179

76. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene. 2000;19(56):6642-6650. doi:10.1038/sj.onc.1204097

77. Edman K, Furber M, Hemsley P, et al. The discovery of MMP7 inhibitors exploiting a novel selectivity trigger. Chem Med Chem. 2011;6(5):769-773. doi:10.1002/cmdc.2010000550

78. Pruit JF, van Kooij Y, Fidgter CG, Willemze R, Fibbe WE. Murine hematopoietic progenitor cells with colony-forming or radio-protective capacity lack expression of the beta 2-integrin LFA-1. Blood. 1999;93(1):107-112. doi:10.1182/blood.v93.1.107

79. Martens E, Lammers A, Van Aelst I, et al. Monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim Biophys Acta. 2007;1770(2):178-186. doi:10.1016/j.bbamcr.2006.10.012

80. Levin M, Udi Y, Solomonov I, Sagri I. Next generation matrix metalloproteinase inhibitors – novel strategies bring new prospects. Biochim Biophys Acta. Mol Cell Res. 2017;1864(11P-A):1927-1939. doi:10.1016/j.bbamcr.2017.06.009

81. Sarker H, Hardy EA, Haimour A, Maksymowych WP, Botto LD, et al. Intricate functions of matrix metalloproteinases and their clinical relevance in pancreatic cancer. J Proteomics. 2011;74:2190-2200. doi:10.1016/j.jprot.2011.04.025

82. Han B, Zhou B, Qu Y, et al. FOXC1 induces epithelial-mesenchymal transition through activation of the beta1 integrin-LFA1 axis. Cell Rep. 2016;17(12):3291-3301. doi:10.1016/j.celrep.2016.11.003
82. Tao L, Gu Y, Zheng J, Yang J, Zhu Y. Weichang’an suppressed migration and invasion of HCT116 cells by inhibiting Wnt/β-catenin pathway while upregulating ARHGAP25. *Biotecnol Appl Biochem*. 2019;66(5):787-793. doi:10.1002/bab.1784

83. He X, Huang Z, Liu P, et al. Apatinib inhibits the invasion and metastasis of liver cancer cells by downregulating MMP-related proteins via regulation of the NF-kappaB signaling pathway. *BioMed Res Int*. 2020;9:321682. doi:10.1155/2020/3126182

84. Meltzer PS. Cancer genomics small RNAs with big impacts. *Trends Genet*. 2009;602:167-176. doi:10.1016/j.tig.2008.06.004

85. Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. *Nature*. 2005;435(7043):745-746. doi:10.1038/435745a

86. Lundstrom K. MicroRNA control of TGF-β1 and alpha-smooth muscle actin. *Int J Mol Sci*. 2020;21(7):1901. doi:10.3390/ijms21071901

87. Zhao G, Yin Y, Zhao B. miR-143 inhibits colorectal cancer proliferation by targeting MMP7. *Minerva Med*. 2017;108(1):13-19. doi:10.23736/S0026-4806.16.04651-6

88. Zhang Y, Wang Y, Wang J, et al. miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2020;28(3):1494-1503. doi:10.1038/s41394-019-0363-5

89. Liu G, Jiang C, Li D, Wang R, Wang W. miRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. *Tumour Biol*. 2014;35(10):9801-9806. doi:10.1007/s13277-014-2273-6

90. Yu B, Liu X, Chang H. MicroRNA-143 inhibits colorectal cancer cell proliferation by targeting MMP7. *Minerva Med*. 2017;108(1):13-19. doi:10.23736/S0026-4806.16.04651-6

91. Sandoval-Bórquez A, Polakovcova I, Carrasco-Véliz N, et al. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. *Clin Epigenetics*. 2017;9:114. doi:10.1186/s13148-017-0413-8

92. Zhao G, Yin Y, Zhao B. miR-143 inhibits colorectal cancer proliferation by targeting MMP7. *Minerva Med*. 2017;108(1):13-19. doi:10.23736/S0026-4806.16.04651-6

93. Liu G, Jiang C, Li D, Wang R, Wang W. miRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. *Tumour Biol*. 2014;35(10):9801-9806. doi:10.1007/s13277-014-2273-6

94. Selcuklu SD, Donoghue MT, Spillane C. miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2020;28(3):1494-1503. doi:10.1038/s41394-019-0363-5

95. Krichevsky AM, Gabriely G. miR-143 targets CTNND1 in breast cancer. *Oncol Res*. 2016;23:205-217. doi:10.3727/096504016X14549667334007

96. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. *Proc Natl Acad Sci USA*. 2004;101(9):2999-3004. doi:10.1073/pnas.0307323101

97. Cortez MA, Valdecanas D, Zhang X, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2014;22(8):1494-1503. doi:10.1038/mt.2014.79

98. Di Martino MT, Campani V, Misso G, et al. In vivo activity of miR-200c mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. *PLoS One*. 2014;9(2):e90005. doi:10.1371/journal.pone.0090005

99. Plantamura I, Cataldo A, Cosentino G, Iorio MV. miR-29a represses hepatocellular carcinoma progression by inhibiting CTNND1-mediated Wnt/β-catenin signaling. *Biomed Pharmacother*. 2018;106:483-490. doi:10.1016/j.biopha.2018.06.135

100. Xie Y, Deng H, Wei R, et al. Overexpression of miR-335 inhibits the migration and invasion of osteosarcoma by targeting SNP1. *Int J Biol Macromol*. 2019;133:137-147. doi:10.1016/j.ijbiomac.2019.04.016

101. Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2020;28(3):1494-1503. doi:10.1038/s41394-019-0363-5

102. Abba ML, Patil N, Leupold JH, Allgayer H. MicroRNA regulation of metastasis. *Cancer Lett*. 2009;602:167-176. doi:10.1016/j.canlet.2006.03.043

103. Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2020;28(3):1494-1503. doi:10.1038/s41394-019-0363-5

104. Cortez MA, Valdecanas D, Zhang X, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2014;22(8):1494-1503. doi:10.1038/mt.2014.79

105. Di Martino MT, Campani V, Misso G, et al. In vivo activity of miR-29a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. *PLoS One*. 2014;9(2):e90005. doi:10.1371/journal.pone.0090005

106. Liu G, Jiang C, Li D, Wang R, Wang W. miRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. *Tumour Biol*. 2014;35(10):9801-9806. doi:10.1007/s13277-014-2273-6

107. Zhao G, Yin Y, Zhao B. miR-140-5p is negatively correlated with proliferation, invasion, and tumorigenesis in malignant melanoma by targeting SOX4 via the Wnt/b-catenin and NF-kB cascades. *J Cell Physiol*. 2020;235(3):2161-2170. doi:10.1002/jcp.29122

108. Cortez MA, Valdecanas D, Zhang X, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. *Mol Ther*. 2014;22(8):1494-1503. doi:10.1038/mt.2014.79

109. Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-205: a potential biomarker for cancer therapy. *Cells*. 2020;9(5):1957. doi:10.3390/cells9051957

110. Plantamura I, Cataldo A, Cosentino G, Iorio MV. miR-205 in breast cancer: state of the art. *Int J Mol Sci*. 2020;21(2):17. doi:10.3390/ijms21020027

111. Tsunesiumi J, Higashi S, Miyazaki K. Matrilysin (MMP-7) cleaves C-type lectin domain family 3 member A (CLEC3A) on tumor cell surface and modulates its cell adhesion activity. *J Cell Biochem*. 2009;106(4):693-702. doi:10.1002/jcb.22062

How to cite this article: Alba J, Barcia R, Gutiérrez-Berzal J, Ramos-Martínez JI. Could inhibition of metalloproteinases be used to block the process of metastasis? *Cell Biochem Funct*. 2022;40:600-607. doi:10.1002/cbf.3730