Review

Understanding the roadmaps to induced pluripotency

K Liu1,2,4, Y Song1,4, H Yu1,3,4 and T Zhao*1

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of transcription factors Oct4, Sox2, Klf4 and cMyc. Recent advancements have shown that small-molecule compounds can induce pluripotency, indicating that cell fate can be regulated by direct manipulation of intrinsic cell signaling pathways, thereby innovating our current understanding of reprogramming. The fact that lineage specifiers can induce pluripotency suggests that the pluripotent state is a fine balance between competing differentiation forces. Dissection of pluripotent roadmaps indicates that reprogramming is a process of reverse development, involving a series of complicated and distinct reprogramming stages. Evidence from mouse iPSC transplantation studies demonstrated that some certain but not all cells derived from iPSCs are immunogenic. These studies provide new ways to minimize reprogramming-induced abnormalities and maximize reprogramming efficiency to facilitate clinical development and use of iPSCs.

Cell Death and Disease (2014) 5, e1232; doi:10.1038/cddis.2014.205; published online 15 May 2014

Subject Category: Immunity

Facts

- Reprogramming is not only a simple process of reverse development but also a very complicated procedure with different reprogramming stages.
- Binding of both facilitators and inhibitors by reprogramming factors simultaneously at early stage directly contributes to low reprogramming efficiency.
- The fact that lineage specifiers can induce iPSC production suggests that pluripotency is a balance between competing differentiation forces.
- Induced pluripotency by small-molecule compounds indicates that cell fate decision is regulated by intracellular signaling pathways.
- Evidence from different research groups supports that some certain but not all cells derived from iPSCs are immunogenic.

Open Questions

- What are the critical molecular events involved in reprogramming of somatic cells to iPSCs?
- How do reprogramming factors orchestrate such a complicated de-differentiation process?
- Are there any ways to selectively activate facilitator genes without co-activation of inhibitory genes during initiation of reprogramming?
- How do the complicated signal transduction networks inside a cell control its fate?

The concept of totipotent differentiated vertebrate cells was first proposed by the German embryologist Spemann in 1938, who reported that the nucleus from an embryo retained the ability to develop into a salamander after undergoing four divisions.1 In 1952, Briggs and King2 successfully generated tadpoles by transferring a cell nucleus derived from an embryo in the blastocyst stage into an enucleated oocyte using a technique called somatic cell nuclei transfer (SCNT; Figure 1). Using this breakthrough technology, Briggs and King3 tried to determine whether aging cells are still totipotent and found that as cells develop they become more difficult to clone. Gurdon extended these experiments by using nuclei from matured intestinal and keratinized skin cells of frogs as donors.4–6 His research indicated that differentiated and even matured cells do indeed retain the genetic information needed to develop into a life, and the cytoplasm of oocytes contains certain factors that can reprogram mature nuclei into pluripotency.

By fusion of mouse pluripotent embryonic carcinoma cells with thymocytes, Miller and Ruddle7 generated hybrids that form carcinomas after transplantation into nude mice, indicating that the differentiated thymocytes were reprogrammed into a pluripotent state. Two further reports showed that fusion of embryonic stem cells (ESCs) with somatic cells resulted in the formation of pluripotent hybrids, with

1State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; 2Graduate University of Chinese Academy of Sciences, Beijing, China and 3Department of Biology, Yulin University, Yulin, China
*Corresponding author: T Zhao, State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Tel: + 86 10 64806307; Fax: + 86 10 64806307; E-mail: tbzhao@ioz.ac.cn
4These authors contributed equally to this work.

Keywords: induced pluripotent stem cells (iPSC); see-saw model; mesenchymal-to-epithelial transition (MET); epithelial-to-mesenchymal transition (EMT); small molecules; immunogenicity

Abbreviations: iPSC, induced pluripotent stem cell; ESC, embryonic stem cell; MET, mesenchymal-to-epithelial transition; EMT, epithelial-to-mesenchymal transition; SCNT, somatic cell nuclei transfer; GSK3, glycogen synthase kinase-3; OSKM, Oct4, Sox2, Klf4 and cMyc

Received 17.1.14; revised 24.3.14; accepted 04.4.14; Edited by M Agostini
New advancements in induced pluripotent stem cells
K Liu et al

characteristics similar to parental ESCs (Figure 1). These proof-of-concept experiments together with successful nuclear reprogramming by SCNT indicate the presence of reprogramming factors in the ESCs and/or oocytes. In 2006, by screening a panel of genes specifically expressed in ESCs, Takahashi and Yamanaka showed that Oct4, Sox2, Klf4 and cMyc could reprogram mouse somatic cells into pluripotency, called induced pluripotent stem cells (iPSCs; Figure 1). This same molecular cocktail can successfully reprogram human somatic cells to iPSCs.8,9 Using a similar strategy, Thomson’s group found that Oct4, Sox2, Lin28 and Nanog were able to reprogram human SCs to iPSCs.8,9 These iPSCs are generated by forced overexpression of transcription factors in targeted somatic cells, followed by multiple divisions that execute reprogramming, represents significant progress in the understanding of mechanisms of induced pluripotency. However, how reprogramming factors orchestrate epigenetic remodeling is still largely unknown.

Figure 1 Different strategies to induce pluripotency. (a) Somatic cell (SC) nuclei transfer (SCNT). Pluripotency can be achieved by transfer of somatic nuclei to enucleated oocytes. (b) Cell fusion. Fusion of ESCs with SCs generates pluripotent fusion hybrids. (c) Transcription factor induction. Ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and cMyc) in SCs can reverse them to an ESC-like state; these cells are called iPSCs. (d) Small-molecule treatment. SC treatment with a combination of small molecules (Valproic acid, Tranylcypromine, 616452, CHIR, Forskolin, TTNPB, DZNep) can reprogram differentiated cells into iPSCs.

Induced pluripotency was traditionally achieved by SCNT and cell fusion before the discovery of iPSC. It is now widely accepted that different cells have distinct transcriptional repertoires correlated with their own epigenetic signatures. The identification of master transcription factors, which execute reprogramming, represents significant progress in the understanding of mechanisms of induced pluripotency. However, how reprogramming factors orchestrate epigenetic remodeling is still largely unknown.

Facilitators and inhibitors of efficient reprogramming. iPSCs are generated by forced overexpression of transcription factors in targeted somatic cells, followed by multiple divisions over a long period of time during the reprogramming process. However, SCNT and cell fusion can induce pluripotency in a shorter time by using natural proteins inside the cytoplasm of eggs or ESCs. This process is similar to mammalian fertilization: soon after entering the egg, sperm chromatin rapidly switch their conformation and coordinately undergo mitosis together with the chromosomes of eggs, suggesting that the cytosolic proteins of eggs can efficiently change the epigenetic state of sperm. After introduction of a sizeable amount of reprogramming factors (Oct4, Sox2, Klf4 and cMyc; that is, OSKM), somatic cell chromosomes are forced to bind these foreign factors in either ESC physiologically relevant or irrelevant regions. The extensive regionally irrelevant binding of OSKM to targeted somatic cell chromatin during initial stages impedes successful reprogramming and might be a major cause of low reprogramming efficiency. Although Oct4, Sox2 and Klf4 (that is, OSK) bind targeted chromatin, cMyc enhances chromatin binding by OSK. This feedback loop is thought to facilitate successful reprogramming. On the other hand, a large scale of chromatin domains spanned by H3K9me3 that inhibit OSKM binding are known to hinder efficient reprogramming.

Understanding the Mechanisms of Reprogramming

Advancements in Reprogramming Methods

Since the discovery of iPSCs, reprogramming technology has developed rapidly. To date, they are three generation of iPSCs in general. First, iPSCs can be generated by overexpression of transcription factors in target cells infected by retrovirus or lentivirus. However, viral integration into the host genome poses serious cancer risks, which significantly hinders the clinical development of this type of iPSC technology.10,11,17

To resolve potential cancer risks associated with viral integration, integration-free iPSC production techniques were widely developed as the secondary generation of reprogramming approaches. So far, iPSCs without exogenous DNA integration have been generated using different strategies, including piggyBac transposition, episomal vectors, and microRNA, which were initially demonstrated to enhance reprogramming efficiency and later used to generate iPSCs. Furthermore, by delivering reprogramming proteins directly, mouse and human somatic cells were shown to be successfully reprogrammed but with extremely low efficiency. All of these reprogramming methods avoid using viral delivery of transcriptional factors, thereby significantly improving their safety and use in clinical settings. Most recently, a third method to generate iPSCs was successfully developed, by addition of small-molecule compounds into mouse fibroblast cultures, raising hopes of generating human iPSC for therapeutics without tedious genetic manipulations (Figure 1).31

[Image 54x450 to 289x714]
Moreover, the tumor suppressor p53 is proposed to prevent induced pluripotency, as p53 knockouts have been shown to significantly increase reprogramming efficiency.34–38 p53 has also been shown to bind the Nanog promoter and regulate its expression.39 Suppressing Nanog expression leads to differentiation of ESCs. Most interestingly, knockout of p53 downstream effectors Puma and/or p21 can significantly increase iPSC production efficiency, indicating that apoptosis and/or cell-cycle arrest function of p53 significantly inhibits efficient reprogramming.40

Reprogramming roadmaps. It has been shown that a mesenchymal-to-epithelial transition (MET) is required for reprogramming41,42 and Vitamin C can enhance reprogramming efficiency through H3K36 demethylation.43 A recent study identified an unexpected sequential epithelial-to-mesenchymal (EMT)–MET transition during the initiation of reprogramming,44 while another suggested that reprogramming is not simply a process of reversed development.45 By analysis of the expression of novel cell-surface markers CD44 and ICAM1, Malley et al.46 defined four stages of reprogramming: (1) mesenchymal, characterized by CD44+/ICAM1+ and high expression of N-Cadherin, Snail, Slug, Zeb1 and 2; (2) epidermal, characterized by CD44+/ICAM− and high expression of Krt6a, Krt17, Ehf, Ngfr, Sfn and Evp1; (3) early pluripotent, characterized by CD44−/ICAM1− and expression of Oct4, Sall1, Sall4, Zip296, Tcfcp211 and Etv5; and (4) late pluripotent, characterized by CD44−/ICAM− and high expression of Nanog, Dppa4, Dppa5a, Sox2, Esrrb and Klf2.

More and more studies aimed to embody reprogramming roadmaps. Using genome-wide analysis, Polo et al.47 defined an intermediate cell population poised to become iPSCs and showed that two transcriptional waves were elicited by reprogramming factors; the first wave was driven by cMyc/Klf4 and the second by Oct4/Sox2/Klf4. Cells experiencing the first transcriptional wave were refractory to reprogramming and could be rescued by elevated expression of all four OSKM factors (Figure 2).48 Meanwhile, low efficiency reprogramming (normally <3% cells expressing OSKM give rise to iPSCs) complicates the dissection of its molecular mechanisms. Furthermore, a study profiling the expression of 48 pluripotent genes at the single-cell level during the reprogramming process revealed an early stochastic and a late deterministic phase.49 Intriguingly, a recent study proposed that cellular reprogramming is a deterministic process, as nearly 100% reprogramming efficiency was achieved when using Mbd3 knockout cells as the initiating somatic cells.48

Seesaw model for reprogramming. The fact that cell fate is controlled by a series of master transcription factors (OSKM) overwhelms demonstration of reprogramming mechanisms.11 Most interestingly, a recent study showed that mesendodermal (GATA3, GATA6, SOX7, PAX1, GATA4, CEBPa, HNF4a, GRB2) and ectodermal specifiers (Sox1, Sox3, RCOR2, GMNN) can replace Oct4 and Sox2 to induce pluripotency, respectively.49 Most Oct4 substitutes are not enriched in ESCs and normally function in the early stages of mesendodermal differentiation. Oct4 and its substitutes can inhibit the upregulation of a group of ectodermal genes, such as the ectodermal lineage-specifier Dlx3, triggered by SKM during reprogramming. Conversely, Sox2 and its substitutes can attenuate expression of mesendodermal genes induced by OKM. The competition between mesendodermal and ectodermal specifiers promotes successful reprogramming without the two most critical reprogramming factors Oct4 and Sox2. These innovative findings have resulted in a completely new way in which to explain reprogramming, called the ‘see-saw’ model wherein cell fate is dependent on the balance between pluripotency factors and/or counteracting lineage specifiers.49,50

Pluripotency by modification of intracellular signaling. Small-molecule compounds were originally shown to enhance reprogramming efficiency, introducing the possibility of generating iPSCs using only these compounds.51,52 Inhibition of both mitogen-activated protein kinase and glycogen synthase kinase-3 (GSK3) signaling pathways have been shown to promote ground pluripotent reprogramming.53,54 Furthermore, the concept of pluripotency being a balance between competing differentiation forces also suggests that it is possible to achieve pluripotency by modulating signaling networks. Most recently, by adding seven small-molecules (CHIR, 616452, Forskolin, DZNep, Valproic acid, Tranylcypromine, TTNPB) into mouse somatic cells, Hou et al.31 successfully generated completely compound-derived iPSCs. The small-molecule compounds used for reprogramming target GSK3,55–57 transforming growth factor-beta, cAMP, S-adenosylhomocysteine hydrolase, histone deacetylase, lysine-specific demethylase 1 and retinoic acid signaling (Figure 3, Table 1). This finding not only provides a new approach to induce pluripotency, avoiding tedious genetic manipulation, but also revolutionizes our understanding of molecular mechanisms of reprogramming, raising the possibility to modulating cell fate by simply modifying intrinsic cell signaling pathways alone. In support of this hypothesis, a recent report claimed a transient low-pH stress treatment could induce pluripotency in CD45+ cells.58 However, how small-molecule compounds and
external stimuli like low pH activate and integrate intracellular signal transduction pathways to form completely new regulatory networks is still largely unknown.

Immunogenicity of iPSC Derivatives

A major reason for the wide-spread increase in iPSC studies is their clinical application, providing potentially unlimited autologous cells for regenerative medicine. Patient-specific iPSCs can conceivably provide autologous cells that do not induce an immune response underlying rejection in human body. Unexpectedly, a previous report using a teratoma transplantation model showed that some certain iPSC-derived cells can elicit immune rejection responses. However, as opposed to allografts, only some certain but not all iPSC-derived cells caused immune rejection responses, due to the differential presentation of abnormalities induced by reprogramming.

For example, Abe’s group recently found that iPSC-derived cardiomyocytes, but not skin cells, can induce significant immune rejection responses. Although, compared with allogeneic iPSC derivatives, rejection responses induced by syngeneic iPSC-derived cells are significantly lower, endodermal cells differentiated from syngeneic iPSCs can induce immune rejection, whereas cells derived from syngeneic ESCs do not. Thus, these data suggest that only certain cell types differentiated from iPSCs are immunogenic (Figure 4).

As the guardian of genome, p53 has an important role in maintaining genomic stability in somatic cells and ESCs. If inhibition of p53 pathway is required for successful reprogramming, this raises concerns regarding the genomic stability of iPSCs and their derivatives. Recent studies have shown that reprogramming itself can induce both genetic and epigenetic abnormalities, fostering additional concerns regarding the safety of iPSCs in clinical use. Two minor antigens were identified to be abnormally expressed in the teratomas derived by syngeneic iPSCs, but not ESCs, leading to immune rejection, suggesting that reprogramming-induced epigenetic abnormalities can be passed to their progeny. To facilitate clinical application of iPSCs, it is important to develop new techniques that expedite clinical production of iPSCs. Furthermore, immunogenic evaluation of therapeutically valuable cells for improved patient tolerance is of utmost importance.

Conclusions and Perspectives

Long induction periods and only small initiating populations of reprogrammable cells are two major hurdles in understanding the detailed molecular mechanisms of reprogramming. New reports of lineage specifiers and small-molecule compounds that can induce pluripotency have begun to transform our comprehension of reprogramming mechanisms. However, the most critical molecular events are still unclear. In addition, considering suppression of Mbd3 has been shown to significantly increase reprogramming efficiency to almost 100%, manipulation of this gene/protein in future provides a very promising system to dissect reprogramming mechanisms. Meanwhile, with the quick development on single-cell profiling techniques and omics, our understanding of reprogramming will significantly expand. Furthermore, given the urgent clinical need, reprogramming techniques need to be optimized to

![Figure 3](image-url)
Table 1 Molecular structures and functional mechanisms of small-molecule compounds in reprogramming

Chemicals	Molecular structures/Functional mechanisms
CHIR99021	Glycogen synthase kinase 3 (GSK-3) inhibitor/blocks the activity of GSK-3β, inhibits β-Catenin degradation and enables the ESC self-renewal and pluripotency
616452	Transforming growth factor-beta (TGF-β) inhibitor/inhibits the TGF-β signaling pathway and induces nanog expression
Forskolin	Adenylyl cyclase agonist/activates cAMP/PKA signal pathway, which acts as a negative regulator of the hedgehog signaling pathway

DZNep: S-adenosylhomocysteine hydrolase (SAH) inhibitor/also a Lysine methyltransferase inhibitor, inhibits trimethylation of lysine 27 on histone H3 and regulates cell-cycle arrest and apoptosis

Valproic acid: Histone deacetylase inhibitor (HDAC)/looses chromatin and activates gene expression

Tranylcypromine: Lysine-specific demethylase 1 (LSD1) inhibitor/ inhibits LSD1 activity and makes the ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation

TTNPB: Retinoic acid receptor ligand/bind to RA receptor competitively with RA and inhibits differentiation

Figure 4 Different fates of cells derived from iPSCs after transplantation. (a) Most cells derived from iPSCs are not immunogenic and can survive after transplantation. (b) Some cells differentiated from iPSCs with minor immunogenicity can be tolerated by the host. (c) Some abnormal iPSC progenies with immunogenicity will be rejected

minimize potential reprogramming-induced abnormalities in iPSCs.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. This work was supported by grants from the China National Basic Research Program 2012CB866901, the Strategic Priority Research Program of the Chinese Academy of Sciences XDA01040108, the National Natural Science Foundation of China Program 31271592 and the National Thousand Young Talents Program to TZ.

1. Spemann H. Embryonic Development and Induction. Yale University Press: New Haven, CT, USA, 1938.
2. Briggs R, King TJ. Transplantation of living nuclei from blastulae cells into enucleated frog's eggs. Proc Natl Acad Sci USA 1952; 38: 455–463.
3. Briggs RK, Tj J Exp Embryol Morphol 1957; 100: 269–312.
4. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Exp Embryol Morphol 1962; 10: 822–840.
5. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1982; 84: 256–273.
6. Gurdon JB, Laskey RA, Reeves OR. The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J Embryol Exp Morphol 1975; 34: 93–112.
7. Miller RA, Ruddle FH. Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell 1978; 9: 45–55.
8. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001; 11: 1553–1558.
9. Cowan CA, Atienza J, Melton DA, Egger K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309: 1369–1473.
10. Zhao T, Xu Y. p53 and stem cells: new developments and new concerns. Trends Cell Biol 2010; 20: 170–175.
11. Takahashi K, Yanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.
12. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1912–1917.
13. Boland MJ, Hazen JL, Nazor KL, Reynolds AR, Martin G et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461: 91–94.
14. Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPSCs can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009; 5: 139–148.
15. Zhao XY, Li W, Lu Z, Liu L, Tong M, Hai T et al. iPSCs cells produce viable mice through tetraploid complementation. Nature 2009; 461: 86–90.
16. Park H, Zhao R, West JA, Yabuuchi A, Hoo H, Ince TA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: 141–146.
17. Okita K, Ishii S, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.
18. Kaji K, Norb K, Pasa A, Mileikovsky M, Hamalainen R et al. piggBac transposon reprogramming fibroblasts to induced pluripotent stem cells. Nature 2009; 458: 771–775.
19. Wolsten K, Michael IP, Mohseni R, Mileikovsky M, Hamalainen R et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2009; 3: 633–638.
20. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS et al. Human induced pluripotent stem cells produced via transgenic free reprogramming factors' initial engagement with the genome. Cell Stem Cell 2010; 7: 994–1012.
21. Wang Y, Chen J, Hu JL, Wei IX, Qin D, Gao J et al. Reprogramming of mouse and human somatic cells to high-performance engineered embryos. EMBO Rep 2011; 12: 373–378.
22. Zhao T, Zhang ZN, Rong Z, Xu Y, Immunogenicity of induced pluripotent stem cells. Nature 2011; 474: 212–215.
23. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y et al. Efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2009; 4: 472–487.
24. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y et al. Reprogramming of mouse and human cells to pluripotency using mature miRNAs. Cell Stem Cell 2009; 2: 633–638.
25. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009; 5: 386–395.
26. Oh JH, Lee CS, Kwon YW, Paek JS, Lee SH, Hur J et al. Inhibition of induced pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 2010; 116: 386–396.
27. Zhao T, Zhang ZN, Rong Z, Xu Y, Immunogenicity of induced pluripotent stem cells. Nature 2011; 474: 212–215.
28. Utikal J, Polo N, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. A more efficient method to generate integration-free human iPSCs. Nature 2009; 458: 771–775.
29. Zou J, Wang X, Wang J, Sun G, Liu H, An Y et al. High efficiency of human iPSC generation by the p53-p21 pathway. Nature 2009; 458: 780–784.
30. Saiki R, Stoffel S, Kissler MD, Urbanek M, Kuwana M et al. Development of a polymerase chain reaction for specific detection and characterization of plasmid and phage DNA. Science 1985; 230: 1350–1354.
31. Noonan J, Enesco G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012; 151: 994–1000.
32. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. Immunization eliminates a roadblock during cellular reprogramming into iPSCs. Nature 2009; 460: 1145–1148.
33. Jiang J, Pasque V, Halley-Stott RP, Miyamoto K, Gurdon JB. Mechanisms of nuclear reprogramming by eggs andocytes: a deterministic process? Nat Rev Mol Cell Biol 2011; 12: 453–459.
34. Souil A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012; 151: 994–1000.
35. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. Immunization eliminates a roadblock during cellular reprogramming into iPSCs. Nature 2009; 460: 1145–1148.
36. Li H, Collado M, Warawa A, Strak K, Otto G, Canamoto M et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 2009; 460: 1136–1139.
37. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al. RINGing the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009; 460: 1140–1144.
38. Hong H, Takahashi K, Ishii S, Ao T, Kanagawa O, Nakagawa M et al. Suppression of induced pluripotent stem cell generation by the p53–p19 pathway. Nature 2009; 460: 1132–1135.
39. Zhou H, Yu X, Qin H, Zhu F, Liu H, Yang W et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 2008; 3: 475–479.
40. Lin T, Chao C, Saito S, Mazur S, Murphy ME, Appella E et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 2011; 13: 165–171.
60. Lake BB, Fink J, Kiemetsuana L, Fu X, Jefferis JR, Zambetti GP et al. Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing Puma. Stem Cells 2012; 30: 888–897.

61. Li R, Liang J, Ni S, Zhou T, Qings X, Li H et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2011; 7: 51–61.

62. Samavarchi-Tehrani P, Golpour A, David L, Sung HK, Beyer TA, Datti A et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010; 7: 64–77.

63. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010; 6: 71–79.

64. Liu X, Sun H, Qj J, Wang L, He S, Liu J et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 2013; 15: 829–838.

65. O’Malley J, Seykali S, Isabuchi KA, Chantzoura E, Ruetz T, Johnson A et al. High-resolution analysis with novel cell-surface markers identifies routes to IPS cells. Nature 2013; 499: 88–91.

66. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM et al. A molecular roadmap of reprogramming somatic cells into IPS cells. Cell 2012; 151: 1617–1632.

67. Buganim Y, Fadadu DA, Cheng AW, Itskovitch E, Markoulaki S, Ganz K et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchical phase. Cell 2012; 150: 1209–1222.

68. Rais Y, Zivran A, Geula S, Gafni O, Chomsky E, Viukov S et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013; 502: 65–70.

69. Shu J, Wu C, Wu Y, Li Z, Zhao S, Zhao W et al. Induction of pluripotency in mouse somatic cells with lineage specifications. Cell 2013; 153: 963–975.

70. Ben-David U, Nissenbaum J, Benvenisty N. New balance in pluripotency: reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2011; 9: e1001215.

71. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM et al. A molecular roadmap of reprogramming somatic cells into IPS cells. Cell 2012; 151: 1617–1632.

72. Ben-David U, Nissenbaum J, Benvenisty N. New balance in pluripotency: reprogramming with lineage specifications. Cell 2013; 153: 939–940.

73. Zhu S, Ma T, Li J, Ding S. Recent advancements in induced pluripotent stem cells. Cell Death Differ 2011; 18: 745–753.

74. Lu X, Zhao T. Clinical therapy using iPSCs: hopes and challenges. Genomics Proteomics Bioinformatics 2013; 11: 294–298.

75. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D et al. Vitamin C enhances the generation of induced pluripotent stem cells. Stem Cells 2010; 28: 641–647.

76. Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2013; 121: 2734–2743.

77. Bissinger EM, Heinke R, Sippl W, Jung M. Targeting epigenetic modifiers: inhibitors of histone methyltransferases. Med Cell Commun 2010; 1: 114–124.

78. Huang G, Mehn R, Guo W, Eijkelenboom A, Smit D, Chen AE et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 2008; 26: 795–797.

79. Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH et al. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-NRAS-ERK-p21Cip/WAF1 pathway. BMC Cell Biol 2008; 9: 66.

80. Yoon JY, Moon BS, Park JH, Kim JH, An Y, Lee SH et al. High-resolution analysis with novel cell-surface markers identifies routes to IPS cells. Nature 2013; 499: 88–91.

81. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D et al. A small-molecule inhibitor of tgf-beta signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 2009; 5: 491–503.

82. Tsutsui H, Valamehr B, Hindoyan A, Qiao R, Ding X, Guo S et al. An optimized small molecule cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun 2011; 2: 187.

83. Okotcha H, Wakiyama T, Sasai Y, Kojima K, Vacanti MP, Niwa H et al. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 2014; 505: 519–523.

84. Ichida JK, Bianchard J, Lam K, Son EY, Chung JE, Egli D et al. A small-molecule inhibitor of tgf-beta signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 2009; 5: 491–503.

85. Tolga H, Wakiyama T, Sasai Y, Kojima K, Vacanti MP, Niwa H et al. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 2014; 505: 519–523.