Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia

Wen-Qiang Xin, Wei Wei, Yong-Li Pan, Bao-Long Cui, Xin-Yu Yang, Mathias Bähr, Thorsten R Doeppner

Abstract

Inflammation plays an important role in the pathological process of ischemic stroke, and systemic inflammation affects patient prognosis. As resident immune cells in the brain, microglia are significantly involved in immune defense and tissue repair under various pathological conditions, including cerebral ischemia. Although the differentiation of M1 and M2 microglia is certainly oversimplified, changing the activation state of microglia appears to be an intriguing therapeutic strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflammation and modify tissue repair under preclinical stroke conditions. However, the precise mechanisms of these signaling pathways, especially in the context of the mutual interaction between MSCs or MSC-derived EVs and resident microglia, have not been sufficiently unveiled. Hence, this review summarizes the state-of-the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial activity under ischemic stroke conditions with respect to various signaling pathways, including cytokines, neurotrophic factors, transcription factors, and microRNAs.

Key Words: Extracellular vesicles; Mesenchymal stem cells; Microglial activation; M2 polarization; Ischemic stroke

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Upon stroke induction, M1 microglia participate in the proinflammatory tissue response, whereas M2 microglia promote brain repair by secreting anti-inflam-
INTRODUCTION

Inflammation plays an important role in the pathophysiology of ischemic stroke, and systemic inflammation worsens the outcome of stroke patients[1-3]. Preclinical models of focal cerebral ischemia are associated with the activation of inflammatory cells, including neutrophils, T cells, and resident microglia. The latter cells contribute to both immune defense and brain tissue repair[4]. Under physiological conditions, microglia are resting and maintain a balance with regard to the inflammatory status of the brain[5]. Ischemic stroke immediately activates microglia, prompting an inflammatory response in brain tissue[5]. Consequently, microglia migrate toward the location of the lesion and exacerbate brain damage by secreting inflammatory cytokines. On the other hand, microglia can remove debris and secrete anti-inflammatory cytokines, supporting endogenous brain repair[4,6]. These opposing roles of microglia under ischemic conditions correlate with distinct phenotypes, as indicated by the proinflammatory M1 type and the anti-inflammatory M2 type[7,8]. M1-type microglia exacerbate brain damage by secreting interleukin (IL)-6, IL-1β, nitric oxide (NO), tumor necrosis factor (TNF)-α, and other factors, whereas M2-type microglia promote brain repair by secreting IL-4, IL-10, and transforming growth factor (TGF)-β[9,10]. Changing the activation state of microglia might therefore be an intriguing approach for stroke therapy.

Regulating poststroke immune responses offers novel therapeutic strategies even for patients who qualify for neither systemic thrombolysis nor endovascular thrombectomy[11,12]. Hence, modulating poststroke immune responses and stimulating endogenous repair mechanisms through the transplantation of adult stem cells, such as mesenchymal stem cells (MSCs), has gained increasing interest in recent years. In fact, preclinical work, as well as clinical trials, revealed the efficacy and tolerance of grafted MSCs in stroke settings[13-15]. However, MSCs do not typically integrate into residing neural networks within the ischemic hemisphere but rather act indirectly. Such paracrine effects are mediated, at least in part, by extracellular vesicles (EVs). EVs are small vesicles in the range of 30 nm to 1000 nm that are secreted by virtually all eukaryotic cells and contain a plethora of proteins, noncoding RNAs, and DNA[16,17]. MSCs and MSC-EVs affect a great number of intracellular and extracellular signaling pathways, among which are immunoregulatory cascades.

Despite the aforementioned data on the effects of MSCs and EVs on poststroke inflammation, the precise mechanisms underlying such a therapeutic approach are unknown. Although some evidence suggests that bone marrow-derived MSCs and MSC-EVs may inhibit microglial activation and improve neurological function under pathological conditions, including stroke[18-21], data on the interaction between MSCs or MSC-EVs and microglia are limited. In this review, we summarize the therapeutic effects of MSCs and MSC-derived EVs both in preclinical studies and in clinical stroke trials. We also summarize the mutual interactions between MSCs or MSC-EVs and activated microglia under such stroke conditions.
THE ROLE OF MICROGLIA IN ISCHEMIC STROKE

Microglial activation in ischemic stroke
Under physiological conditions, microglia display a ramified structure characterized by a small soma and fine processes to maintain homeostasis within the extracellular milieu\cite{22,23}. Stroke results in microglial activation, which represents the first step in an inflammatory response that is followed by the activation of other immune cells, such as T cells, neutrophils, and natural killer cells\cite{24,25}. When activated after stroke, microglial cells undergo four distinct phenotypes: ramified, intermediate, amoeboid, and round\cite{26}. Ramified microglia indicate the resting state, whereas intermediate microglia have larger cell bodies and shorter bumps. The amoeboid microglial cell body, on the contrary, is larger and displays shorter bumps or even no bumps at all, similar to round microglia, which are found in the lesion center\cite{26}. Based on these morphological characteristics and their secretion patterns, microglia are characterized as M1 or M2.

Correlation between morphological phenotypes and microglial function in cerebral ischemia
Modifying microglial morphology changes cellular functions such as the production of cytokines\cite{27}. The immediate activation of microglia due to cerebral ischemia results in a change in cell size, as well as in different migration and secretory properties\cite{28}. Classic (M1 type) and alternatively (M2 type) activated microglia are most commonly reported after ischemic insult\cite{28}. M1 microglia participate in the proinflammatory tissue response and are able to present antigens, whereas M2 microglia remove necrotic tissue and stimulate tissue repair, thus maintaining homeostasis by producing anti-inflammatory substances. Phenotypic shifts between the M1 and M2 types, therefore, has practical implications, and promoting an M2 phenotype would assist tissue repair by decreasing inflammatory factors.

Phenotypic shifts between M1 and M2 microglia involve a plethora of characteristics for which not only the aforementioned phenotype but also the secretion patterns of these cells are important. Hence, proinflammatory M1 microglia typically secrete factors such as IL-1β, interferon (IFN)-α, IL-6, cyclooxygenase-2 (COX-2), motif chemokine ligand (CXCL10), and inducible NO synthase (iNOS)\cite{29-32}. In contrast, anti-inflammatory M2 microglia have the capacity to produce and secrete IL-10, IL-13, IL-4, insulin-like growth factor (IGF)-1, and IFN-γ\cite{33,34}. Of note, based on the current knowledge on M2-polarized microglia in the central nervous system, the M2 phenotype is further categorized as M2a, M2b, or M2c based on cellular function\cite{35,36}. M2a microglia are strongly associated with IL-13 and IL-4 and exert strong anti-inflammatory effects. These cells also produce significant amounts of arginase-1, Ym-1, CD206, and Fizz1\cite{36}, while the M2b phenotype does not have the capacity to produce the latter\cite{35,37}. The M2c phenotype, also known as deactivated microglia, is associated with promoting tissue regeneration at a later stage of disease when inflammation is declining\cite{38,39}.

Mechanisms and role of M2 microglial activation in ischemic stroke
A large number of studies have been performed to identify the main pathways and mediators that modulate M2 microglial activation. Two primary transcription factors, c-AMP response element-binding protein (CREB) and nuclear factor-κB (NF-κB), are strongly associated with signaling pathways for M2 microglial polarization. Activated microglia, for instance, display reduced expression of COX-2 by suppressing the activation of NF-κB\cite{40,41}. In addition to the aforementioned signaling cascades, other pathways, such as Toll-like receptor 4 (TLR4)\cite{30}, CD8\cite{42}, and mitogen-activated protein kinase (MAPK), are also involved in promoting the polarization of the M2 phenotype, as indicated by preclinical stroke studies\cite{43}. Typically, the pathways and mediators responsible for M2 microglial activation interact with each other to some extent, and they tend to work synergistically rather than independently to achieve the maximum anti-inflammatory effect. Some of the signaling pathways associated with the polarization of the M2 phenotype are summarized in Figure 1.

Blood-brain barrier (BBB) disruption is significantly involved in the pathology of ischemic stroke\cite{44,45}. BBB disruption allows extracerebral substances to reach the brain parenchyma in an unregulated way, worsening brain tissue damage and inducing brain edema. The early stage of BBB disruption occurs at 12-24 h after stroke exposure, followed by a second delayed phase at approximately 48-72 h poststroke, during which microglia are activated, which, in turn, also affects BBB integrity. Microglia initially protect BBB integrity by promoting the levels of the tight junction
Figure 1 Signaling pathways describing the process of polarization of the M2 phenotype. Damaged neurons induced by ischemic stroke activate resting microglia by producing damage-associated molecular pattern molecules. M1 phenotype microglia participate in the proinflammatory tissue response, whereas M2 microglia produce antiinflammatory substances. DAMPs: Damage-associated molecular pattern molecules; PPAR: Peroxisome proliferator-activated receptor; CREB: c-AMP response element binding protein; NF-κB: Nuclear factor-κB; YM1: Chitinase-3 Like protein; CD: Cluster of differentiation; STAT: Signal transducer and activator of transcription; ROS: Reactive oxygen species; Arg-1: Arginase-1; TNF: Tumor necrosis factor; iNOS: Inducible nitric oxide synthase; TLR: Toll-like receptor; IGF-1: Insulin-like growth factor-1; IL: Interleukin; IFN: Interferon; FIZZI: Found in inflammatory zone 1; TGF: Transforming growth factors; MAPK: Mitogen-activated protein kinase.

Protein claudin-5. During sustained inflammation, however, activated M1 microglia are able to phagocytose astrocytic end-feet and destroy BBB integrity by secreting various vascular proteins[30,46]. Of note, M1 microglia induce endothelial necroptosis and impair BBB integrity by expressing TNF-α as a primary mediator of these effects [47].

Based on current studies, M2 microglia may attenuate BBB disruption by producing progranulin, which is helpful in preventing brain edema [48]. To date, studies revealing a direct interaction between microglial activation and BBB disruption have been scarce. In this context, the stroke-associated release of reactive oxygen species (ROS) also activates microglia, which further worsens the integrity of the BBB [49]. Likewise, the postischemic upregulation of NF-κB in microglia stimulates these cells to secrete matrix metalloproteinases, which play key roles in the disruption of the BBB [50].

MSCS AND EVS FOR THE TREATMENT OF ISCHEMIC STROKE

The biological concept of MSCs and EVs

In the 1960s and 1970s, Friedenstein et al[51] first revealed that ectopic transplantation of rodent bone marrow cells into the kidney capsule has osteogenic effects. It was not until 1991, however, when Caplan et al recommended the term “mesenchymal stem cells” due to the capacity of these cells to differentiate into various cell lineages [52]. Interestingly, researchers were able to establish other tissue sources of MSCs, including adipose tissue [53,54]. In 2006, the International Society for Cellular Therapy proposed specific MSC criteria due to some controversy about the characteristics of MSCs [55]. These criteria include adhesion to the substrate in question, the ability to express the surface antigens CD73, CD90, and CD105, the absence of proteins such as CD14, CD34, CD79a, CD11b, CD45, and human leukocyte antigen-11 and the potential to differentiate into adipocytes, osteoblasts, and chondroblasts [55,56]. To date, MSCs have been widely studied in various preclinical models and clinical settings alike, and these studies have focused on cell migration patterns and immunosuppressive
MSCs, however, act in an indirect way, which is supported by the fact that transplanted MSCs rarely reach the ischemic lesion site after intracerebral injection and even less so after systemic transplantation[63,64]. Rather, the majority of MSCs are trapped in peripheral organs such as the lung after systemic transplantation. In addition, neural differentiation, synaptogenesis, and reconstruction of neural network systems are time-consuming processes, but MSC transplantation is known to also yield quick therapeutic results within days[65]. Current evidence suggests that grafted MSCs are not integrated into residing neural networks but act in an indirect paracrine way, including the secretion of trophic factors such as brain-derived neurotrophic factor (BDNF), IGF, and vascular endothelial growth factor (VEGF)[66]. In addition to these soluble factors, however, recent evidence suggests that EVs secreted from MSCs might significantly contribute to exerting their biological effects in vitro and in vivo.

EVs are secreted by virtually all cells into the extracellular matrix, which is regarded as a novel mechanism of intercellular communication. EVs are a heterogeneous group of vesicular structures ranging in size from approximately 40 nm to 1000 nm, among which are endosome-derived exosomes[16,67]. EVs carry highly active biological cargo such as transmembrane proteins, RNA, and various lipids[68]. This mix of cargo is thought to mediate the biological properties of EVs and indirectly of MSCs under both physiological and pathological conditions.

Application of MSCs or MSC-EVs results in tissue regeneration upon the induction of ischemic stroke

Although the focus of the present review is on poststroke inflammation and the mutual interaction between MSCs/MSC-EVs and microglia, it stands to reason that both MSCs and MSC-EVs increase neurological recovery though mechanisms that are partly independent of MSCs. In this context, the modulation of poststroke neurogenesis, angiogenesis, and axonal plasticity is of importance.

MSCs are able to improve neurological function by promoting astrocyte-derived IGF-1, epidermal growth factor (EGF), VEGF, and basic fibroblast growth factor (bFGF)[69]. Indeed, many preclinical stroke studies have demonstrated the positive effects of MSCs on both neurogenesis and angiogenesis[19,70]. Increased tissue regeneration after MSC transplantation is at least partially a consequence of secreted factors such as VEGF and Ang-1[69,71]. Under conditions of hypoxia, neurons that synthesize γ-secretase increase the production of Hes-1 and activate the Notch-1 signaling pathway after MSC administration, which in turn may promote the production of hypoxia inducible factor (HIF)-1α and VEGF[69]. Hes-1 can further stimulate this effect by inducing a positive feedback loop with VEGF by reducing phosphatase and tension homolog levels[72]. Consistent with this, Ang-1 helps stabilize new vessels induced by VEGF expression[71].

Not only neurons but also oligodendrocytes are responsive to MSC treatment. Oligodendrocytes are also sensitive to ischemic cell injury and play an important role in the neural network. However, these cells have long been a neglected target in current stroke research[73]. Some data, however, indicate that stimulating the production of myelin sheaths by mature oligodendrocytes through MSC transplantation may result in increased axonal plasticity after stroke[74]. These neurorestorative effects are mediated by inhibiting the production of both reticulin and neurocan. The aforementioned mechanisms and signaling pathways associated with poststroke tissue regeneration have to be regarded as prominent examples only. Other factors, such as hepatocyte growth factor, platelet-derived growth factor, BDNF, IGF-1, fibroblast growth factor-2, and neutrophil-activating protein 2 (NAP-2), are also involved[75,76]. An overview of how MSCs promote neurogenesis and neurological recovery is shown in Figure 2.

As previously described, stem cell-derived EVs (MSC-EVs) and other factors induce tissue regeneration after ischemia in various organs, including the heart, kidney, and brain. Under such conditions, EVs not only reduce cell injury but also promote angiogenesis and neurogenesis. Some of these observations are related to regulating inflammation[77-79]. In fact, previous work from our group suggests that EVs from different stem cell sources, such as MSCs and neural progenitor cells, are not inferior to their host cells with regard to their therapeutic potential in a mouse stroke model [80,81]. Various preclinical stroke studies report positive effects of MSC-derived EVs on infarct volume and tissue recovery. To date, a series of preclinical studies[20,21,80,82-103] have assessed the effect of MSC-derived EVs on treating cerebral ischemia. The characteristics and primary outcomes of some of these studies are summarized in Table 1 and demonstrate that MSC-EVs are immunologically active and promote
tissue repair and neurogenesis[104-107].

MSCs and MSC-EVs suppress microglial activation and promote M2 microglial polarization in cerebral ischemia

PubMed, the Cochrane Library (last searched in November 2020), and relevant websites, such as Web of Science and EMBASE (1990 to November 2020), were searched to identify all studies on the effect of MSCs and MSC-derived EVs, including MSC-derived exosomes, on microglial activation in the treatment of brain ischemia.

Table 1 Therapeutic application of mesenchymal stem cell-derived extracellular vesicles in preclinical disease models associated with cerebral ischemia

Ref.	Country	Species	Ischemia model	Cell source	Key outcomes
Geng et al[84]. 2019	China	Rats	MCAO	Adipose	Improve tissue recovery, neurogenesis, angiogenesis; Reduce inflammation
Xin et al[95], 2013	America	Rats	MCAO	Adipose	Improve brain recovery, angiogenesis; Reduce infarct volume, inflammation
Chen et al[82]. 2016	Taiwan	Rats	MCAO	BM	Improve tissue recovery, neurogenesis, angiogenesis, neuronal plasticity
Tian et al[91], 2018	China	Mice	MCAO	BM	Inhibit inflammatory response and apoptosis
Xin et al[92]. 2017	America	Rats	MCAO	BM	Improve tissue recovery, neurogenesis, neuronal and neurite plasticity
Jiang et al[85], 2018	China	Rats	MCAO	Adipose	Reduce infarct volume and inflammation
Yang et al[94]. 2018	China	Mice	Photothrombosis	BM	Promote angiogenesis
Zhang et al[95]. 2019	China	Mice	MCAO	BM	Promote angiogenesis
Liu et al[87]. 2019	China	Rat	MCAO	BM	Improved brain neuron density and neurological score
Deng et al[83], 2019	China	Mice	MCAO	BM	Reduce infarct volume and inflammation
Nalamolu et al[88], 2019	America	Rats	MCAO	UC	Improve brain recovery; Reduce infarct volume
Nalamolu et al[89], 2019	America	Rats	MCAO	UC	Improve brain recovery; Reduce infarct volume
Li et al[86], 2020	China	Mice	MCAO	UC	Reduce infarct volume; Inhibit inflammatory response and apoptosis
Zhao et al[20]. 2020	China	Rats	MCAO	BM	Reduce infarct volume and inflammation; Improve neurological deficits
Zhao et al[21]. 2020	China	Rats	MCAO	BM	Improve motor, learning and memory abilities; Reduce inflammation
Safakheil and Safakheil[98]. 2020	Iran	Rats	MCAO	BM	Improve functional recovery; Reduce infarct volume and inflammation
Otero-Ortega et al[100]. 2020	Spain	Rats	Endothelin-1	Adipose	Improve functional recovery and cells proliferation, Reduce infarct volume
Otero-Ortega et al[103]. 2017	Spain	Rats	Endothelin-1	Adipose	Improve functional recovery and neurogenesis, Reduce infarct volume
Moon et al[101]. 2019	South Korea	Rats	MCAO	Cord blood	Promote angiogenesis and neurogenesis
Doepnner et al[80]. 2015	Germany	Mice	MCAO	BM	Improve tissue recovery, neurogenesis, and angiogenesis
Dabrowska et al[99]. 2019	Poland	Rats	Ouabain	BM	Reduce inflammation
Haupt et al[96]. 2021	Germany	Mice	MCAO	BM	Increased neurological recovery and neurogenesis
Xia et al[97]. 2020	China	Rats	MCAO	BM	Reduce infarct volume neurological deficits, Enhance angiogenesis
Wang et al[102]. 2020	Germany	Mice	Stroke	BM	Immunosuppression and neuroprotection
Kuang et al[96]. 2020	Germany	Mice	MCAO	Adipose	Reduced neuronal death and infarct size, Increased neurological recovery

BM: Bone Marrow; UC: Umbilical cord; MCAO: Middle cerebral artery occlusion; MSCs: Mesenchymal stem cells.
Mesenchymal stem cells (MSCs) are isolated and identified from various tissue sources. These MSCs produce different angiogenic and neurotrophic factors by paracrine mechanisms in order to act on astrocytes, microglia, oligodendrocytes, and angiogenesis, promoting neurological recovery and neurogenesis. IGF-1: Insulin-like growth factor 1; BDNF: Brain-derived neurotrophic factors; VEGF: Vascular endothelial growth factors; HGF: Hepatocyte growth factor; NAP-2: Neutrophil activating protein 2; PDGF: Platelet-derived growth factor; Ang-1: Angiopoietin-1; MSC: Mesenchymal stem cell.

The following keywords in combination with Boolean logic were used: “mesenchymal stem cell”, “extracellular vehicles” or “exosomes” together with “ischemia”, “stroke”, “microglia”, “middle cerebral artery occlusion”, or “MCAO”. Beyond this, the reference list was manually checked to determine other potentially qualified trials. The process was iterated until no more publications were obtained. A total of 25 publications were found in this section from the United Kingdom, Japan, China, United States, France, Germany, Poland, and South Korea, which were performed between 2013 and 2020 [19-21,84-87,91,99,102,108-122]. The most common species and animal model used were rats and the middle cerebral artery occlusion model, respectively. The most common source of cells and administration route were bone marrow and intravenous delivery, respectively. Cunningham et al [109] was the only group that used subcutaneous injection. Concerning the dose and delivery time, the studies used heterogeneous experimental paradigms to meet their own applied study purposes. Additional details are shown in Table 2.

The immediate activation of brain-resident immune cells, mainly microglia, is the primary characteristic of inflammatory reactions after ischemic stroke [4,23]. Activated microglia produce neurotoxic substances that accelerate acute brain damage, and some of these neurotoxic substances reciprocally promote further microglial activation. Attenuating microglial activation with MSCs or MSC-EVs offers great therapeutic potential. The transplantation of MSCs (2 × 10^6) into rats 3 h after focal cerebral ischemia, for instance, yielded a significant reduction in macrophages at day 3 after treatment [119]. Likewise, the expression of OX-42 or Iba-1 microglia was significantly reduced after the administration of MSCs during the acute and subacute stages of the disease [19]. Increased neurological recovery after stroke induction due to MSC transplantation, which had repeatedly been observed before, — is partly a consequence of an increase in the ratio of M2/M1 microglia [121]. This finding is consistent with similar reports on MSC-EVs, in which tissue restoration was enhanced due to the suppression of M1 microglial polarization after MSC-EV treatment [20,21,85,86]. Of note, the aforementioned effects of MSCs or MSC-EVs are not always sustained; the positive effects of treatment are sometimes only observed during the acute or subacute phase of the disease [109,115]. Thus, the ability of MSCs to suppress microglial
Table 2 Preclinical stroke studies assessing the effect of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles on the activation of microglia

Ref.	Country	Species	Cell type	Dosage	Route	Cell Source	Delivery Timing	Microglia Marker	Microglia Activation	Signal Pathway	Ischemic Model
Cunningham et al[109], 2020	United Kingdom	Mice	MSCs	1.4 × 10⁶	Sub	BM	1 h and 24 h	Iba1	No effect	IL-1α	MCAO
Narantuya et al[115], 2010	Japan	Rats	MSCs	NA	IV	BM	NA	ED1/Iba1	Inhibit	NA	BCAO
Ishizaka et al[111], 2013	Japan	Rats	MSCs	1 × 10⁶	IA	NA	1, 4 or 7 d	ED1	Inhibit	NA	MCAO
Yamaguchi et al[126], 2018	Japan	Rats	MSCs	1 × 10⁶	IA	Blood	24 h	Iba1	Inhibit	NA	MCAO
Wang et al[119], 2014	China	Rats	MSCs	2 × 10⁶	IV	BM	3 h	CD45/CD11b	Inhibit	NA	dMCAO
Wei et al[19], 2012	America	Rats	MSCs	1 × 10⁶	IV	BM	24 h	Iba1/OX-42	Inhibit	NA	MCAO
Nakajima et al[114], 2017	Japan	Rats	MSCs	1 × 10⁶	IV	BM	0 or 3 h	Iba1/TNF-α /IL6/IL-1β	Inhibit	IL-10	MCAO
McGuckin et al[113], 2013	France	Rats	MSCs	NA	Stereotaxis	UC	NA	ED1/Iba1	Inhibit	CD200/STAT3	Ouabain injection
Li et al[112], 2018	China	Rats	MSCs	1 × 10⁶	IV	BM	1 h	CD68/Iba1	Inhibit	IGF-1/BDNF	dMCAO
Lv et al[108], 2016	China	Cells	MSCs	NA	NA	BM	NA	TNF-α/IL6/IL-1β	Inhibit	TNF-α /MSCs/GDNF	OGD
Wang et al[112], 2020	Germany	Mice	EVs	2 × 10⁶	IV	BM	Immediately	CD45/CD11b	Inhibit	NA	MCAO
Dabrowska et al[99], 2019	Poland	Rats	EVs	5 × 10³	IA	BM	48 h	ED1	Inhibit	NA	Ouabain injection
Geng et al[84], 2019	China	Rats	EVs	NA	NA	Adipose	NA	Iba1, TNF-α, IL-1β	Inhibit	miRNA-126	MCAO
Liu et al[67], 2019	China	Rats	EVs	5 × 10³	IV	BM	2 h	Iba1	Inhibit	NA	MCAO
Tian et al[91], 2018	China	Mice	EVs	NA	IV	BM	12 h	Iba1	Inhibit	NA	MCAO
Sheikh et al[117], 2019	Japan	Rats	MSCs	3 × 10⁶	IV	BM	24 h	ED1/Iba1	Inhibit	IL-1β/HIF-1α and VEGF	MCAO
Wang et al[118], 2013	Japan	Rats	MSCs	3 × 10⁶	IV	BM	24 h	ED1/Iba1/IL-1β/TNF-α/IL-6/IL-10	Inhibit	TLR2/CD40/NF-κB	MCAO
Yoo et al[122], 2013	South Korea	Rats	MSCs	5 × 10⁵	Stereotaxis	BM	3 days	CD68/Iba1/MCP-1	Inhibit	TGF-β1/MCP-1	MCAO
Sheikh et al[116], 2011	Japan	Rats	MSCs	3 × 10⁶	IV	BM	24 h	Iba1/IL-6/IL-10	Inhibit	IL-6 and Fractalkine	MCAO
Feng et al[110], 2020	China	Mice	MSCs	1 × 10⁶ /20 g	IV	UC	2 weeks	M1: CD16/32/Iba1; M2: CD206	Polarization	H3 methylation	LPS
Yang et al[121], 2020	China	Rats	MSCs	1 × 10⁶	IV	BM	24 h before	M1: iNOS/Iba1; M2: Arg 1	Polarization	miR-30a*	MCAO
Jiang et al[85], 2018	China	Rats	EVs	NA	IV	Adipose	NA	M1: TNF-α/IL-6/IL-10	Polarization	miR-30d-5p	MCAO
Li et al[86], 2020	China	Mice	EVs	NA	IV	UC	NA	M1: iNOS/CD38/IL-6/TNF-α /CCL-2; M2: Arg 1/CD206	Polarization	miR-26b-5p	MCAO
The role of neurotrophic factors and cytokines in regulating microglial activity after MSC or MSC-EV treatment in ischemic stroke

Systemic or intrathecal injection of growth factors such as BDNF and IGF-1 promotes angiogenesis and reduces infarct volume in ischemic stroke\[123\]. However, these proteins do not cross the BBB and are prone to rapid degradation, preventing long-term effects in the ischemic milieu. MSC transplantation might therefore overcome some of these limitations. Indeed, rats that received MSC transplantation displayed increased levels of IGF-1 and BDNF in the ischemic cortex\[112\]. Increased secretion of these factors is likely to be a consequence of microglial activity, which was found to be increased in the ischemic core site. Likewise, ischemic stroke itself increases the expression of monocyte chemoattractant protein-1 (MCP-1) and activates CD68-positive microglia to cross the damaged BBB. Consistent with this finding, Yoo et al\[122\] observed that TGF-β is key to the ability of MSCs to effectively reduce the infiltration of CD68-positive microglia into the ischemic zone by downregulating MCP-1.

The amount of cytokines and growth factors that are secreted directly by MSCs or that are modulated in microglia due to stem cell transplantation is vast and cannot be discussed in full detail here. Thus, other evidence provides insights into MSC production of neurotrophic cytokines such as IL-5 and fractalkine, which in turn suppress the production of proinflammatory factors, including iNOS and TNF-α\[116\]. In a mutual interaction between MSCs and activated microglia, the latter secrete TNF-α to stimulate the production of glial cell-derived neurotrophic factor in MSCs, which in turn prevents neuronal damage and contributes to tissue repair\[108\]. Changes in the extracellular milieu due to MSC transplantation are well known and suggest increases in HIF-1α, VEGF, IL-1β, and TGFβ protein levels, all of which are highly expressed in microglia\[108,114\]. Thus, MSC transplantation also promotes poststroke angiogenesis by regulating HIF-1α and VEGF secretion by microglia, and IL-1β might play an important role\[117\].

IL-1, IL-6, and TGF-β are proinflammatory factors associated with the immune response after ischemic stroke. It has been reported that the levels of IL-1β are increased within a few hours after ischemic damage. Increased IL-1β levels, in turn, stimulate the secretion of other cytokines, chemokines, and cell adhesion molecules that contribute to the disruption of the BBB\[124\]. Recent literature indicates that the transplantation of MSC-EVs reduces IL-1 secretion by microglia due to direct inhibition and modification of T helper cells, which drive microglia into an anti-inflammatory state\[99,125\].

Dabrowska et al\[99\] revealed that the transplantation of MSC-EVs significantly reduced the levels of IL-6 and TGF-β in the focally injured rat brain through the inhibitory effect of EVs on local immunologically effective cells, such as microglia and macrophages. Other work describes that CH25H, a hydroxylation enzyme that alters cholesterol into its 25-hydroxycholesterol form, is activated by proinflammatory cytokines such as IL-1β, TNF-α, and IL-6\[126\]. CH25H, in turn, exacerbates cerebral inflammation and significantly activates Iba1-positive microglia\[127\]. MSC-EVs might therefore contribute to suppressing microglial activation by inhibiting IL-1β, TNF-α, and IL-6, further reducing CH25H activation. Information regarding this phenomenon, however, is scarce.
The role of transcription factors, ligands and surface receptors in regulating microglial activity after MSC or MSC-EV treatment in ischemic stroke

The effects of TLR4 on worsening ischemic injury have been discussed for over a decade[128]. Reduced TLR4 inhibit the NF-xB signaling pathway and decrease the expression of iNOS and COX-2[129]. NF-xB is known to promote various proinflammatory mediators, and the inhibition of NF-xB signaling has beneficial effects on cerebral ischemia[130]. Wang et al[118] showed that MSC transplantation suppressed the NF-xB signaling pathway in microglia during stroke due to soluble factors such as TNF-a and prostaglandin E2 produced by MSCs. In addition, TLR2 and CD40 have important roles in modulating NF-kB pathways activation, and the expression levels of these factors are lower after MSC treatment, as described in the same scientific report. Previously, it was reported that spontaneous microglial activation occurs in mice with CD200 knockout[113]. Neurons have been shown to produce CD200, which in turn suppresses the activity of microglia that produce CD200R. McGuckin et al[113] found that IL-4 induced MSCs to produce CD200 when cocultured with activated glia, which suppressed the expression of IL-6 and IL-1β in glial cells. Furthermore, the ability to modulate CD200 expression was successfully reversed by anti-IL-4 and anti-CD200 antibodies. Inflammation in ischemic stroke is also related to STAT3 signaling pathway activation in microglia, which is affected by MSCs in cerebral ischemia[113].

With regard to the administration of MSC-EVs significantly inhibits stroke-induced inflammation and M1 microglial polarization, increases the expression of anti-inflammatory factors and enhances the polarization of M2 microglia. Finally, MSC-EVs regulate the expression of phosphorylated ERK 1/2 and CysLT2R, which were downregulated in vitro and in vivo[20].

MicroRNAs are key players in regulating microglial activity

MicroRNAs (miRNAs), a family of noncoding RNAs containing 20-25 nucleotides, play key roles in the remodeling process under stroke conditions[131]. Current evidence has revealed that miRNAs are effective treatment candidates due to their capacity to promote angiogenesis and neuronal recovery in ischemic diseases. Studies have demonstrated the anti-inflammatory effects of specific miRNAs that are highly expressed in MSCs and MSC-EVs.

MSCs carrying miR-30a and EVs carrying miRNA-126, miR-30d-5p, miR-26b-5p, or miR-223-3p modulate microglial activation and anti-inflammatory abilities[21,84-86,121]. EVs exert a regulatory effect by delivering prewrapped miRNAs to recipient cells. As discussed previously, CysLT2R is involved in the regulation of microglial activation. EV-derived miR-223-3p increases functional recovery after cerebral ischemia by promoting microglial M2 polarization because of its inhibitory effect on CysLT2R[21]. Similarly, miR-26b-5p promotes microglial M2 polarization by regulating CH25H to repress the TLR pathway and reduce tissue injury[86]. Both stroke patients and rats exhibited significantly reduced levels of miRNA-126, and EVs containing miRNA-126 could suppress microglial activation and increase neurogenesis and angiogenesis[84]. In addition, some EVs that carry miR-30d-5p have increased potential to suppress neuronal damage by inhibiting autophagy-mediated M1 microglial polarization[85]. Similarly, miR-30a* (known as miR-30a-3p) also participates in several pathways to drive M2 polarization[121]. Hence, a plethora of miRNAs are found in MSCs and their corresponding EVs, but the precise signaling cascades that are regulated under stroke conditions are not yet fully known.

MSCs and MSC-EVs in clinical stroke trials

Taking into account the numerous preclinical reports on MSCs and stroke, as well as the easy access to these cells via the bone marrow or adipose tissue[132-134], MSCs are important in the novel adjuvant treatment paradigm against stroke. In fact, MSC transplantation is considered to be safe. Apart from transient febrile reactions, no research has reported signs of intoxication, thrombogenesis, central nervous system deterioration, or increased mortality after MSC transplantation in humans[135,136].

Rigorous evaluation of the literature available on the effects of MSCs on stroke patients published in electronic databases (PubMed, Cochrane Library, and EMBASE) until January 31, 2021 yielded a total of 18 studies including 631 participants[14,137-153]. Of these 631 patients with ischemic stroke, 323 patients were treated with MSCs, and 308 were assigned to the control group. Prasad et al[144] organized a clinical stroke trial on MSCs with the primary endpoint as the modified Rankin scale (mRS) and Barthel Index (BI) score that includes the highest number of patients enrolled to date: a total of 120 patients with ischemic stroke were equally assigned to either the MSC group (n = 60) or the control group (n = 60)[144]. MSCs were intravenously...
Ref.	Country	Design	Type	Route	MSCs source	Sample size (cases)	Dose (Mean)	How long (Mean)	Follow-up (Mean)
Savitz et al[137], 2011	America	Non-RCT	Acute	IV	BM/Auto	10	50 × 10⁶	1-3 d	0.5 yr
Lee et al[138], 2010	South Korea	RCT	Acute	IV	PIC/Auto	16, 36	50 × 10⁶	1 wk	5 yr
Bhasin et al[151], 2011	India	Non-RCT	Chronic	IV	BM/Auto	4, 5	50-60 × 10⁶	8 wk	24 wk
Bhasin et al[139], 2012	India	Non-RCT	Chronic	IV	PIC/Auto	12, 12	50-60 × 10⁶	3-24 mo	0.5 yr
Bhasin et al[140], 2016	India	Non-RCT	Chronic	IV	PIC/Auto	20, 20	50-60 × 10⁶	3-24 mo	0.5 yr
Chen et al[141], 2014	China	RCT	Chronic	Stereotactic	PB/Auto	15, 15	3-8 × 10⁶	0.5-5 yr	1 yr
Jiang et al[149], 2013	China	Non-RCT	NA	Catheterization	UC/Allo	3, NA	20 × 10⁶	11-22 d	0.5 yr
Laskowitz et al[14], 2018	America	RCT	Acute	IV	UC/Allo	10, 10	3-4 × 10⁶	3-9 d	1 yr
Levy et al[142], 2019	America	Non-RCT	Chronic	IV	NA/Allo	15 and 20	NA	NA	1 yr
Moniche et al[143], 2012	Spain	RCT	Subacute	IA	PIC/Auto	10, 10	159 × 10⁶	5-9 d	0.5 yr
Prasad et al[144], 2014	India	RCT	Subacute	IV	PIC/Auto	60, 60	280.5 × 10⁶	1-4 mo	0.5 yr
Suárez-Monteagudo et al[150], 2009	Cuba	Non-RCT	NA	IV	BM/Auto	3, NA	NA	NA	3 M
Vahidy et al[145], 2019	America	RCT	Acute	IV	BM/Auto	25, 30	NA	1-3 d	2 yr
Zhang et al[146], 2019	China	Non-RCT	Stereotactic	FSC/Allo	9, NA	NA	494 d	2 yr	
Diez-Tejedor et al[148], 2014	Spain	RCT	Acute	Adipose/Allo	20, 20	NA	0.5 mo	2 yr	
Feng et al[147], 2014	China	NA	Subacute	Stereotactic	UC/Allo	50, 50	100 × 10⁶	0.5-1 mo	0.25 yr
Jaillard et al[153], 2020	France	RCT	Subacute	IV	BM/Allo	16, 15	100-300 × 10⁶	3 wk	24 mo
De Keyser[152], 2005	South Korea	Non-RCT	Acute	IV	BM/Allo	5, 25	50 × 10⁶	4-9 wk	12 mo

NA: Not available; MSCs: Mesenchymal stem cells; Auto: Autologous; Allo: Allogenic; PIC: Posterior iliac crest; IV: Intravenous; IA: Intraarterial; RCT: Randomized controlled trial; UC: Umbilical cord; BM: Bone marrow; FSC: Fetal spinal cord; PB: Peripheral blood.

administered at a dose of 280.5×10⁶ cells at a median of 18.5 d after stroke onset. Patients who received MSC treatment displayed better outcomes according to the BI and the National Institute of Health Stroke Scale (NIHSS) score at a one-year follow-up. Similarly, Savitz et al[137] found that intravenous autologous transplantation of bone marrow mononuclear cells (8.5 × 10⁵) significantly improved the BI, mRS, and NIHSS scores without any side effects. Although long-term observations are still rare, some data indicate that MSC treatment is associated with a lower rate of mortality compared to that of the control group during a 5-year observation period[144]. The data showed that MSC treatment can increase neurological recovery in stroke patients, even though additional data are urgently needed. Table 3 summarizes recent clinical trials on stroke and MSC transplantation. Although MSC-EVs have been shown to be as effective as MSCs in improving functional outcomes in preclinical stroke studies.
neurotrophic factors, transcription factors, and miRNAs. MSC-EVs appears to inhibit microglial activation and promote M2 polarization, which repair by decreasing inflammatory factors. Currently, the application of MSCs and treatment, and inflammation is an excellent target. The differentiation of M1 and M2 The application of MSCs and MSC-EVs offers a great opportunity for adjuvant stroke Therefore, more evidence-based information is needed in this respect.

[154], to date, no article has reported the use of EVs under clinical stroke conditions. Therefore, more evidence-based information is needed in this respect.

CONCLUSION

The application of MSCs and MSC-EVs offers a great opportunity for adjuvant stroke treatment, and inflammation is an excellent target. The differentiation of M1 and M2 microglia has practical implications, and promoting the M2 phenotype enhances tissue repair by decreasing inflammatory factors. Currently, the application of MSCs and MSC-EVs appears to inhibit microglial activation and promote M2 polarization, which results in the modification of various signaling pathways, such as cytokines, neurotrophic factors, transcription factors, and miRNAs.

REFERENCES

1. **Emsley HC**, Hopkins SJ. Acute ischaemic stroke and infection: recent and emerging concepts. *Lancet Neurol* 2008; 7: 341-353 [PMID: 18339349 DOI: 10.1016/S1474-4422(08)70061-9]

2. **McColl BW**, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. *Neuroscience* 2009; 158: 1049-1061 [PMID: 18789376 DOI: 10.1016/j.neuroscience.2008.08.019]

3. **McColl BW**, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. *J Neurosci* 2007; 27: 4403-4412 [PMID: 17442825 DOI: 10.1523/JNEUROSCI.5376-06.2007]

4. **Ma Y**, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. *Prog Neurobiol* 2017; 157: 247-272 [PMID: 26851161 DOI: 10.1016/j.pneurobio.2016.01.005]

5. **Hu X**, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J. Microglial and macrophage polarization—new prospects for brain repair. *Nat Rev Neurol* 2015; 11: 56-64 [PMID: 25385337 DOI: 10.1038/nrneurol.2014.207]

6. **Wen YD**, Zhang HL, Qin ZH. Inflammatory mechanism in ischemic neuronal injury. *Neurosci Bull* 2006; 22: 171-182 [PMID: 17704846]

7. **Tang Y**, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. *Mol Neurobiol* 2016; 53: 1181-1194 [PMID: 25598354 DOI: 10.1007/s12035-014-9707-5]

8. **Cheng Q**, Shen Y, Cheng Z, Shao Q, Wang C, Sun H, Zhang Q. Achyranthes bidentata polysaccharide k suppresses neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. *Ann Transl Med* 2019; 7: 575 [PMID: 31807556 DOI: 10.21037/atm.2019.09.07]

9. **Zhang L**, Zhang J, You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. *Front Cell Neurosci* 2018; 12: 306 [PMID: 30459555 DOI: 10.3389/fncel.2018.00306]

10. **Ma L**, Niu W, Lv J, Liu J, Zhu M, Yang S. PGC-1α-Mediated Mitochondrial Biogenesis is Involved in Cannabinoid Receptor 2 Agonist AM1241-Induced Microglial Phenotype Amelioration. *Cell Mol Neurobiol* 2018; 38: 1529-1537 [PMID: 30315387 DOI: 10.1007/s10571-018-0628-z]

11. **Campbell BCV**, De Silva DA, Macleod MR, Coutts SB, Schwann LL, Davis SM, Donnan GA. Ischaemic stroke. *Nat Rev Dis Primers* 2019; 5: 70 [PMID: 31601801 DOI: 10.1038/s41572-019-0118-8]

12. **Ganesh A**, Goyal M. Thrombectomy for Acute Ischemic Stroke: Recent Insights and Future Directions. *Curr Neurol Neurosci Rep* 2018; 18: 59 [PMID: 30033493 DOI: 10.1007/s11910-018-0869-8]

13. **Borlongan CV**. Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet? *Stem Cells Transl Med* 2019; 8: 983-988 [PMID: 31099181 DOI: 10.1002/sctm.19-0076]

14. **Laskowitz DT**, Bennett ER, Durham RJ, Volpi JJ, Wiese JR, Frankel M, Shpall E, Wilson JM, Troy J, Kurtzberg J. Allogeneic Mesenchymal Stem Cells Transplantation of Allogeneic Mesenchymal Stem Cells Mounts Neuroprotective Effects in a Transient Ischemic Stroke Model in Rats: Analyses of Therapeutic Time Window and Its Mechanisms. *PLoS One* 2015; 10: e0127302 [PMID: 26075177 DOI: 10.1371/journal.pone.0127302]

15. **Toyoshima A**, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, Sasaki T, Sasada S, Shirako A, Wakamori T, Okazaki M, Kondo A, Agari T, Borlongan CV, Date I. Intrar-Arterial Transplantation of Allogeneic Mesenchymal Stem Cells Mounts Neuroprotective Effects in a Transient Ischemic Stroke Model in Rats: Analyses of Therapeutic Time Window and Its Mechanisms. *PLoS One* 2015; 10: e0127302 [PMID: 26075177 DOI: 10.1371/journal.pone.0127302]

16. **Bang OY**, Kim EH. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. *Front Neurol* 2019; 10: 211 [PMID: 30915025 DOI: 10.3389/fneur.2019.00211]

17. **Kim H**, Lee MJ, Bae EH, Ryu JS, Kaur G, Kim HJ, Kim YJ, Barreda H, Jung SY, Choi JM, Shigemoto-Kuroda T, Oh JY, Lee RH. Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. *Mol Ther* 2020; 28: 1628-1644 [PMID:
Xin WQ et al. Modulation of poststroke inflammation

33280062 DOI: 10.1016/j.yjmhe.2020.04.020

18 Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF. Activated microglia in cortex of mouse models of mucopoly saccharidosis I and IIIB. Proc Natl Acad Sci USA 2003; 100: 1902-1907 [PMID: 12576554 DOI: 10.1073/pnas.252784893]

19 Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 2012; 46: 635-645 [PMID: 22426463 DOI: 10.1016/j.nbd.2012.03.002]

20 Zhao Y, Gan Y, Xu G, Yin G, Liu D. MSCs-Derived Exosomes Attenuate Acute Brain Injury and Inhibit Microglial Inflammation by Reversing CysLT2R-ERK1/2 Mediated Microglia M1 Polarization. Neurochem Res 2020; 45: 1180-1190 [PMID: 32112178 DOI: 10.1007/s11064-020-02998-0]

21 Zhao Y, Gan Y, Xu G, Hua K, Liu D. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci 2020; 260: 118403 [PMID: 32926923 DOI: 10.1016/j.lfs.2020.118403]

22 Guruswamy R, ELAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci 2017; 18 [PMID: 28245599 DOI: 10.3390/ijms18030496]

23 Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, Bosco DB, Wu LJ, Tian DS. Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35: 921-933 [PMID: 31062335 DOI: 10.1007/s12070-019-04388-3]

24 Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17: 796-808 [PMID: 21738161 DOI: 10.1038/nm.2339]

25 Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87: 779-789 [PMID: 20302191 DOI: 10.1189/jlb.1109766]

26 Lehrmann E, Christensen T, Zimmer J, Diemer NH, Fleiss B. Characterization of phenotype markers and reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion. J Comp Neurol 1997; 386: 461-476 [PMID: 9303429]

27 Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11: 294 [PMID: 32174916 DOI: 10.3389/fimmu.2020.00294]

28 Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin 2017; 38: 445-458 [PMID: 28260801 DOI: 10.1038/aps.2016.162]

29 Yenari MA, Kaupinnen TM, Swanson RA. Microglial activation in stroke: therapeutic targets. Neurotherapeutics 2010; 7: 378-391 [PMID: 20880502 DOI: 10.1016/j.nurt.2010.07.005]

30 Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018; 105: 518-525 [PMID: 29883947 DOI: 10.1016/j.biopha.2018.05.143]

31 Li L, Gan H, Jin H, Fang Y, Yang Y, Zhang J, Hu X, Chu L. Atragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol 2021; 92: 107335 [PMID: 33429332 DOI: 10.1016/j.intimp.2020.107335]

32 Shu ZM, Shu XD, Li HQ, Sun Y, Shan H, Sun XY, Du RH, Lu M, Xiao M, Ding JH, Hu G. Ginkgolide B Protects Against Ischemic Stroke Via Modulating Microglia Polarization in Mice. CNS Neurosci Ther 2016; 22: 729-739 [PMID: 27306494 DOI: 10.1111/cns.12577]

33 Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L, Huang Z, Pang T. A Dual AMPK/Nrf2 Activator Reduces Brain Inflammation After Stroke by Enhancing Microglia M2 Polarization. Antioxid Redox Signal 2018; 28: 141-163 [PMID: 28747068 DOI: 10.1089/ars.2017.7003]

34 Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol 2016; 142: 23-44 [PMID: 27168859 DOI: 10.1016/j.pneurobi.2016.05.001]

35 Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Jossand J, Degos V, Jacotot E, Hagberg H, Sávman K, Ma XT, Xu H, Wu LJ, Tian DS. Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35: 921-933 [PMID: 31062335 DOI: 10.1007/s12070-019-04388-3]

36 Latta CH, Sudduth TL, Weekman EM, Brothers HM, Abner EL, Popa GJ, Mendenhall MD, Gonzalez-Oregon F, Braun K, Wilcock DM. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-β using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 2015; 12: 41 [PMID: 24585602 DOI: 10.1186/s12974-015-0243-6]

37 Mecha M, Felici A, Carrillo-Salinas FJ, Rueda-Zubiaurre A, Ortega-Gutiérrez S, de Sola RG, Guaza C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun 2015; 49: 233-245 [PMID: 26086345 DOI: 10.1016/j.bbi.2015.06.002]

38 Fumagalli S, Perego C, Pischitta F, Zanier ER, De Simoni MG. The ischemic environment drives microglia and macrophage function. Front Neuronal 2015; 6: 81 [PMID: 25904895 DOI: 10.3389/fneur.2015.00081]

39 Kim E, Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics 2016; 13: 702-718 [PMID: 27485238 DOI: 10.1007/13311-016-0463-1]

40 Hsia CH, Jayakumar T, Sheu JR, Hsia CW, Huang WC, Velusamy M, Lien LM. Synthetic Ruthenium Complex TQ-6 Potently Recovers Cerebral Ischemic Stroke: Attenuation of Microglia...
and Platelet Activation. J Clin Med 2020; 9 [PMID: 32252398 DOI: 10.3390/jcm90400996]

41 Lu D, Shen L, Mai H, Zang J, Liu Y, Tsang CK, Li K, Xu A. HMG-CoA Reductase Inhibitors Attenuate Neuronal Damage by Suppressing Oxygen Glucose Deprivation-Induced Activated Microglial Cells. *Neural Plast* 2019; 2019: 7675496 [PMID: 30911291 DOI: 10.1155/2019/7675496]

42 Boddlaert J, Bielen K, ’s Jongers B, Manocha E, Yperzeele L, Cras P, Pirici D, Kumar-Singh S. CD8 signaling in microglia/macrophage M1 polarization in a rat model of cerebral ischemia. *PLoS One* 2018; 13: e0186903 [PMID: 29342151 DOI: 10.1371/journal.pone.0186903]

43 Gaire BP, Song MR, Choi JW. Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. *J Neuroinflammation* 2018; 15: 284 [PMID: 30305119 DOI: 10.1186/s12974-018-1323-1]

44 D’Souza A, Dave KM, Stetler RA, S Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. *Adv Drug Deliv Rev* 2021; 171: 332-351 [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015]

45 Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, Gao L. Dietary Fe,O_2 Nanozymes Prevent the Injury of Neurons and Blood-Brain Barrier Integrity from Cerebral Ischemic Stroke. *ACS Biomater Sci Eng* 2021; 7: 299-310 [PMID: 33346645 DOI: 10.1021/acsbiomaterials.0c01312]

46 Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorthu AJ, Nabekura J, Wake H. Dual microglia effects on blood-brain barrier permeability induced by systemic inflammation. *Nat Commun* 2019; 10: 5816 [PMID: 31262977 DOI: 10.1038/s41467-019-13812-z]

47 Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ, Li YN, You MF, Wang XX, Lei H, He QW, Hu B. Microglia-derived TNF-α mediates endothelial necrosis aggravating blood brain-barrier disruption after ischemic stroke. *Cell Death Dis* 2019; 10: 487 [PMID: 31221990 DOI: 10.1038/s41419-019-1716-9]

48 Kanazawa M, Kawamura K, Takahashi T, Miura M, Tanaka Y, Koyama M, Toriyabe Y, Igarashi H, Nakada T, Nishihara M, Nishizawa M, Shimohata T. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. *Brain* 2015; 138: 1932-1948 [PMID: 25838514 DOI: 10.1093/brain/awv079]

49 Kacimi R, Giffard RG, Yenari MA. Endotoxin-activated microglia injure brain endothelial cells via NF-kB, JAK-STAT and JNK stress kinase pathways. *J Inflamm (Lond)* 2011; 8: 7 [PMID: 21385378 DOI: 10.1186/1476-9255-8-7]

50 da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglial activation on blood-brain barrier in brain diseases. *Front Cell Neurosci* 2014; 8: 362 [PMID: 25404894 DOI: 10.3389/fncel.2014.00362]

51 Friedenstein AJ, Petrokava KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. *Transplantation* 1968; 6: 230-247 [PMID: 5654085]

52 Andrzejewska A, Lukomska B, Janowski M. Concise Review: Mesenchymal Stem Cells: From Roots to Boost. *Stem Cells* 2019; 37: 855-864 [PMID: 30977255 DOI: 10.1002/stem.3016]

53 Zak PA, Zhu M, Ashjian P, De Ugarte DA, Huang JL, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. *Adv Drug Deliv Rev* 2006; 58: 781-792 [PMID: 16223852 DOI: 10.1016/j.addr.2005.08.008]

54 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prokopk D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy* 2006; 8: 315-317 [PMID: 16923606 DOI: 10.1016/j.jcyt.2005.08.004]

55 Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A; International Society for Cellular Therapy. Clariification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. *Cytotherapy* 2005; 7: 393-395 [PMID: 16256628 DOI: 10.1016/j.jcyt.2005.03.022]

56 Chamberlain G, Fox J, Ashbon B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. *Stem Cells* 2007; 25: 2739-2749 [PMID: 17656645 DOI: 10.1634/stemcells.2007-0197]

57 De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M, Van Riet I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. *Haematologica* 2007; 92: 440-449 [PMID: 17488654 DOI: 10.3324/haematol.10475]

58 Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. *Stem Cells* 2004; 22: 415-427 [PMID: 15153618 DOI: 10.1634/stemcells.22-3-415]

59 Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. *Transplantation* 2003; 75: 389-397 [PMID: 12589164 DOI: 10.1097/01.TP.0000045055.63901.A9]
Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485-489 [PMID: 14660044 DOI: 10.1080/14653240310003611]

Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noël D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837-3844 [PMID: 12881305 DOI: 10.1182/blood-2003-04-1193]

Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999; 96: 10711-10716 [PMID: 10485591 DOI: 10.1073/pnas.96.19.10711]

Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stromal cells exhibit novel phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002; 174: 11-20 [PMID: 11869029 DOI: 10.1006/exnr.2001.7853]

Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16: 80-92 [PMID: 32788451 DOI: 10.4103/1673-3744.286955]

Asgari Taei A, Dargahi L, Nasoohi S, Hassanzadeh G, Kadivar M, Farahmandfar M. The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurologic deficits and improves synaptic recovery in experimental stroke. J Cell Physiol 2021; 236: 1967-1979 [PMID: 32730642 DOI: 10.1002/jcp.29981]

Zheng X, Bähr M, Doepnner TR. From Tumor Metastasis towards Cerebral Ischemia-Extracellular Vesicles as a General Concept of Intercellular Communication Processes. Int J Mol Sci 2019; 20 [PMID: 31795140 DOI: 10.3390/ijms20235995]

Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016; 164: 1226-1232 [PMID: 26967288 DOI: 10.1016/j.cell.2016.01.043]

Zhu J, Liu Q, Jiang Y, Wu L, Xu G, Liu X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroke model is Notch1 signaling associated. Neuroscience 2015; 290: 288-299 [PMID: 25637797 DOI: 10.1016/j.neuroscience.2015.01.038]

Cho SE, Kim YM, Jeong JS, Seo YK. The effect of ultrasound for increasing neural differentiation in hBMMSCs and inducing neurogenesis in ischemic stroke model. Life Sci 2016; 165: 35-42 [PMID: 27590610 DOI: 10.1016/j.lfs.2016.08.029]

Toyama K, Homnou O, Harada K, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits of angiogenic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol 2009; 216: 47-55 [PMID: 19994989 DOI: 10.1016/j.expneurol.2008.11.010]

Ma J, Sawai H, Ochi N, Matsuo Y, Xu D, Yasaada A, Takahashi H, Wakasugi T, Takeyama H. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem 2009; 331: 161-171 [PMID: 19437103 DOI: 10.1007/s11010-009-0154-x]

Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke 1996; 27: 1641-6; discussion 1647 [PMID: 8784142 DOI: 10.1161/01.str.27.9.1641]

Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, Gao Q, Shen LH, Zhang J, Lu M, Chopp M. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Mol Cell Biochem 2005; 290: 407-417 [PMID: 15540231 DOI: 10.1002/glia.20126]

Bronckaers A, Hilken P, Martens W, Gervois P, Ratajczak J, Struyts T, Lambrecht I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 2014; 143: 181-196 [PMID: 24594234 DOI: 10.1016/j.pharmthera.2014.02.013]

Wang F, Tang H, Zhu J, Zhang JH. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant 2018; 27: 1825-1834 [PMID: 30251504 DOI: 10.1177/0963689718795424]

Shi Y, Shi H, Nomi A, Lei-Lei Z, Zhang B, Qian H. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy 2019; 21: 497-508 [PMID: 31079806 DOI: 10.1016/j.jcyt.2018.11.012]

Massa M, Croce S, Campanelli R, Abbà C, Lenta E, Valsecchi C, Avanzini MA. Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics (Basel) 2020; 10 [PMID: 33255416 DOI: 10.3390/diagnostics10020990]

Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 2018; 9: 320 [PMID: 30463593 DOI: 10.1186/s12877-018-1069-9]

Doepnner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Inflammation Suppression. Stem Cells Transl Med 2015; 4: 1131-1143 [PMID: 26393096 DOI: 10.5966/scm.2015-0078]

Zheng X, Zhang L, Kuang Y, Venkataramani V, Jin F, Hein K, Zaferiou MP, Lenz C, Moebius W, Kilic E, Hermann DM, Weber MS, Urlaub H, Zimmermann WH, Bähr M, Doepnner TR. Extracellular Vesicles Derived from Neural Progenitor Cells—a Preclinical Evaluation for Stroke Treatment in Mice. Transl Stroke Res 2021; 12: 205-203 [PMID: 32361827 DOI: 10.1007/s12975-020-00814-z]

Chen KH, Chen CH, Wallace CG, Yuen CM, Kao GS, Chen YL, Shao PL, Chai HT, Lin KC, Liu CF, Chang HW, Lee MS, Yip HK. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct...
volume and preserved neurological function in rat after acute ischemic stroke. *Oncotarget* 2016; 7: 74537-74556 [PMID: 27793019 DOI: 10.18632/oncotarget.12902]

83 Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. *J Biol Eng* 2019; 13: 71 [PMID: 31485266 DOI: 10.1186/s13036-019-0193-0]

84 Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, Hong W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. *Am J Transl Res* 2019; 11: 780-792 [PMID: 30890379]

85 Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, Cai L, Hu R, Xu L, Li L. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. *Cell Physiol Biochem* 2018; 47: 864-878 [PMID: 29807362 DOI: 10.1007/s00228-018-5007-9]

86 Li G, Xiao L, Qin H, Zhuang Q, Zhang W, Liu L, Di C, Zhang Y. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion. *Cell Cycle* 2020; 19: 1022-1035 [PMID: 32208888 DOI: 10.1080/15384101.2020.1743912]

87 Liu Y, Fu N, Su J, Wang X, Li X. Rapid Enkephalin Delivery Using Exosomes to Promote Neurons Recovery in Ischemic Stroke by Inhibiting Neuronal p53/Caspase-3. *Biomed Res Int* 2019; 2019: 4273290 [PMID: 30949500 DOI: 10.1155/2019/4273290]

88 Nalamolu KR, Venkatesh I, Mohandass A, Klopfenstein JD, Pinson DM, Wang DZ, Veeravalli KK. Exosomes Treatment Mitigates Ischemic Brain Damage but Does Not Improve Post-Stroke Neurological Outcome. *Cell Physiol Biochem* 2019; 52: 1280-1291 [PMID: 31026391 DOI: 10.3820/mjbre.2019.00909]

89 Nalamolu KR, Venkatesh I, Mohandass A, Klopfenstein JD, Pinson DM, Wang DZ, Kunnamneni A, Veeravalli KK. Exosomes Secreted by the Cocultures of Normal and Oxygen-Glucose-Deprived Stem Cells Improve Post-stroke Outcome. *Neurovascular Med* 2019; 21: 529-539 [PMID: 31077335 DOI: 10.1186/s12017-019-08540-y]

90 Safakheil M, Safakheil H. The Effect of Exosomes Derived from Bone Marrow Stem Cells in Combination with Rosuvastatin on Functional Recovery and Neuroprotection in Rats After Ischemic Stroke. *J Mol Neurosci* 2020; 70: 724-737 [PMID: 31974756 DOI: 10.1007/s12031-020-01483-1]

91 Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. *Biomaterials* 2018; 150: 137-149 [PMID: 29040874 DOI: 10.1016/j.biomaterials.2017.10.012]

92 Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M. MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. *Stroke* 2017; 48: 747-753 [PMID: 28232590 DOI: 10.1161/STROKEAHA.116.015204]

93 Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. *J Cereb Blood Flow Metab* 2013; 33: 1711-1715 [PMID: 23963371 DOI: 10.1038/jcbfm.2013.152]

94 Yang Y, Cai Y, Zhang Y, Liu J, Xu Z. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis. *J Mol Neurosci* 2018; 65: 74-83 [PMID: 29705934 DOI: 10.1007/s12031-018-1071-9]

95 Zhang H, Wu J, Fan Q, Zhou J, Liu S, Zang J, Ye J, Xiao M, Tian T, Gao J. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. *J Nanobiotechnology* 2019; 17: 29 [PMID: 30782171 DOI: 10.1186/s12951-019-0461-7]

96 Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V, Kilic E, Hermann DM, Majid A, Bähr M, Doepnner TR. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. *J Extracellular Vesicles* 2020; 10: e12024 [PMID: 33304476 DOI: 10.1002/evj.12024]

97 Xia Y, Ling X, Hu G, Zhu Q, Zhang J, Li Q, Zhao B, Wang Y, Deng Z. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. *Stem Cell Res Ther* 2020; 11: 313 [PMID: 32698909 DOI: 10.1186/s12951-020-01834-0]

98 Haupt M, Zheng X, Kuang Y, Liesche S, Janssen L, Bosche B, Jin F, Hein K, Kilic E, Venkataramani V, Hermann DM, Bähr M, Doepnner TR. Lithium modulates miR-1906 Levels of mesenchymal stem cell-derived extracellular vesicles contributing to poststroke neuroprotection by toll-like receptor 4 regulation. *Stem Cells Transl Med* 2021; 10: 357-373 [PMID: 33146943 DOI: 10.1007/s12929-021-00886]

99 Dabrowska S, Andrezjewska A, Strzemiecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. *J Neuroinflammation* 2019; 16: 216 [PMID: 31722731 DOI: 10.1186/s12974-019-1602-5]

100 Otero-Ortega L, Laso-Garcia F, Frutos MCG, Diekhorst L, Martinez-Arroyo A, Alonso-López E, García-Bermejo ML, Rodríguez-Serrano M, Arrúe-Gonzalo M, Diez-Tejedor E, Fuentes B, Gutiérrez-Fernández M. Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. *Stem Cell Res Ther* 2020; 11: 70 [PMID: 32075692 DOI: 10.1007/s13287-020-01834-0]
Xin WQ et al. Modulation of poststroke inflammation

10.1186/s13287-020-01601-1

101 Moon GJ, Sung JH, Kim DH, Kim EH, Cho YH, Son JP, Cha JM, Bang OY. Application of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Stroke: Biodistribution and MicroRNA Study. *Transl Stroke Res* 2019; 10: 509-521 [PMID: 30341718 DOI: 10.1007/s12975-018-00668-1]

102 Wang C, Börgér V, Sardari M, Murke F, Skujec J, Pul R, Hagemann N, Dzyubenko E, Dittrich R, Gregorius J, Hasenberg M, Kleinschmitz C, Popa-Wagner A, Doeppper TR, Gunzer M, Giebel B, Herrmann DM. Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Induce Ischemic Neuroprotection by Modulating Leukocytes and Specifically Neutrophils. *Stroke* 2020; 51: 1825-1834 [PMID: 32352127 DOI: 10.1161/STROKEAHA.119.028012]

103 Otero-Ortega L, Laso-Garcia F, Gómez-de Frutos MD, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B, Diez-Tejedor E, Gutiérrez-Fernández M. White Matter Repair After Extracellular Vesicles Administration in an Experimental Animal Model of Subcortical Stroke. *Sci Rep* 2017; 7: 44433 [PMID: 28300134 DOI: 10.1038/srep44433]

104 Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. *Cells* 2019; 8 [PMID: 31109966 DOI: 10.3390/cells8050467]

105 Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. *Stem Cells Dev* 2014; 23: 1233-1249 [PMID: 24367916 DOI: 10.1089/scd.2013.0479]

106 Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CO, Wang Y, Deng ZF. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. *Stem Cell Res Ther* 2015; 6: 10 [PMID: 26268554 DOI: 10.1186/s13287-015-0147-3]

107 Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Yu JM, Matthey MA, Lee JW. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. *Stem Cells* 2014; 32: 116-125 [PMID: 23939814 DOI: 10.1002/stem.1504]

108Lv B, Li F, Fang J, Xu L, Sun C, Han J, Hua T, Zhang Z, Feng Z, Wang Q, Jiang X. Activated Microglia Induce Bone Marrow Mesenchymal Stem Cells to Produce Glial Cell-Derived Neurotrophic Factor and Protect Neurons Against Oxygen-Glucose Deprivation Injury. *Front Cell Neurosci* 2016; 10: 283 [PMID: 28018176 DOI: 10.3389/fncel.2016.00283]

109 Cunningham CJ, Wong R, Barrington J, Tamburrano S, Pinteaux E, Allan SM. Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. *Stem Cell Res Ther* 2020; 11: 32 [PMID: 31964413 DOI: 10.1186/s13287-020-1560-z]

110 Feng YW, Wu C, Liang F, Liu Q, Li Q, Qiu J, Yu HW, Duan Y, Li Q, Xu Z. hUCMSCs Mitigate LPS-Induced Trained Immunity in Ischemic Stroke. *Arch Biochem Biophys* 2018; 666: 90-97 [PMID: 30305509 DOI: 10.1016/j.abb.2017.02.001]

111 Ishizaka S, Horie N, Sato K, Fukuda Y, Nishida N, Nagata I. Intraperitoneal cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. *Stoke* 2013; 44: 720-726 [PMID: 23362081 DOI: 10.1177/0149035113496716]

112 Li X, Huang M, Zhao R, Zhao C, Liu J, Chen L, Guan Y, Zhang YA. Intravenously Delivered Allogeneic Mesenchymal Stem Cells Bidirectionally Regulate Inflammation and Induce Neurotrophic Effects in Distal Middle Cerebral Artery Occlusion Rats Within the First 7 Days After Stroke. *Cell Physiol Biochem* 2018; 46: 1951-1970 [PMID: 29719282 DOI: 10.1159/000489384]

113 McGuckin CP, Jurga M, Miller AM, Sarnowska A, Wiedner M, Boyle NT, Lynch MA, Jablonska A, Drela K, Lukomska B, Domanska-Janik K, Kenner L, Morrigl R, Degoul O, Pernuressa-Carrier C, Forraz N. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. *Arch Biochem Biophys* 2013; 534: 88-97 [PMID: 23466243 DOI: 10.1016/j.abb.2013.02.005]

114 Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, Nitahara-Kasahara Y, Imagawa K, Hirato T, Ueda M, Kimura K, Okada T. Mesenchymal Stem Cells Overexpressing Interleukin-10 Promote Neuroprotection in Experimental Acute Ischemic Stroke. *Mol Ther Methods Clin Dev* 2017; 6: 102-111 [PMID: 28725658 DOI: 10.1016/j.omtm.2017.06.005]

115 Narantuya D, Nagai A, Sheikh AM, Wakabayashi K, Shiota Y, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S. Microglia transplantation attenuates white matter injury in rat chronic ischemia model via matrix metalloproteinase-2 inhibition. *Brain Res* 2010; 1316: 145-152 [PMID: 20036218 DOI: 10.1016/j.brainres.2009.12.043]

116 Sheikh AM, Nagai A, Wakabayashi K, Narantuya D, Kobayashi S, Yamaguchi S, Kim SU. Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-1β. *Neurobiol Dis* 2011; 41: 717-724 [PMID: 21168500 DOI: 10.1016/j.nbd.2010.12.009]

117 Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A. A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. *Exp Neurol* 2019; 311: 182-193 [PMID: 30291853 DOI: 10.1016/j.expneurol.2018.10.001]

118 Wang H, Nagai A, Sheikh AM, Liang XY, Yano S, Mitaki S, Ishibashi Y, Kobayashi S, Kim SU, Yamaguchi S. Human mesenchymal stem cell transplantation changes proinflammatory gene expression through a nuclear factor-κB-dependent pathway in a rat focal cerebral ischemic model. *J Neurosci Res* 2013; 91: 1440-1449 [PMID: 23996632 DOI: 10.1002/jnr.23267]

119 Wang LQ, Lin ZZ, Zhang HX, Shao B, Xiao L, Jiang HG, Zhuge QC, Xie LK, Wang B, Su DM, Jin
KL. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther 2014; 20: 317-326 [PMID: 24393245 DOI: 10.1111/cns.12216]

Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H, Fukuda Y, Ishizaka S, Hiu T, Morofuji Y, Izumo T, Nishida N, Matsuo T. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J Cereb Blood Flow Metab 2018; 38: 1199-1212 [PMID: 28914133 DOI: 10.1038/jcbfm.2018.215]

Yang F, Li WB, Ou YW, Gao JX, Tang YS, Wang DJ, Pan YJ. Bone marrow mesenchymal stem cells induce M2 microglial polarization through PDGF-AA/MANF signaling. World J Stem Cells 2020; 12: 633-658 [PMID: 32843919 DOI: 10.4252/wjsc.v12.i7.633]

Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, Joe EH, Lee YD, Kim SS, Suh-Kim H. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis 2013; 58: 249-257 [PMID: 23759293 DOI: 10.1016/j.nbd.2013.06.001]

Shi Q, Zhang P, Zhang J, Chen X, Lu H, Tian Y, Parker TL, Liu Y. Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett 2009; 465: 220-225 [PMID: 19703519 DOI: 10.1016/j.neulet.2009.08.049]

Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-in-1 in Stroke: From Bench to Bedside. Stroke 2016; 47: 2160-2167 [PMID: 26931154 DOI: 10.1161/STROKEAHA.115.010001]

Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzion JM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M, Gelffer JR. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 2010; 5: e9252 [PMID: 20169081 DOI: 10.1371/journal.pone.009252]

Magoro T, Dandekar A, Jennelle CT, Bajaj R, Lipkowitz G, Angelucci AR, Bessong PO, Hahn YS. IL-1β/TNF-α/IL-6 inflammatory cytokines promote STAT1-dependent induction of CH25H in Zika virus-infected human macrophages. J Biol Chem 2019; 294: 14591-14602 [PMID: 31375561 DOI: 10.1074/jbc.RA119.007555]

Jang J, Park S, Jin Hur H, Cho HJ, Hwang I, Pyo Kang Y, Im I, Lee H, Lee E, Yang W, Kang HC, Won Kwon S, Yu JW, Kim DW. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat Commun 2016; 7: 13129 [PMID: 27771919 DOI: 10.1038/ncomms13129]

Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007; 115: 1599-1608 [PMID: 17372179 DOI: 10.1161/CIRCULATIONAHA.106.603431]

Yang MY, Yu QL, Huang YS, Yang G. Neuroprotective effects of andrographolide derivative CX-10 in transient focal ischemia in rat: Involvement of Nrf2/ARE and TLR/NF-κB signaling. Pharmacol Res 2019; 144: 227-234 [PMID: 31028905 DOI: 10.1016/j.phrs.2019.04.021]

Zha R, Ying M, Gu S, Yin W, Li Y, Yuan H, Fang S, Li M. Cysteinyl Leukotriene Receptor 2 is involved in Inflammation and Neuromal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience 2019; 422: 99-118 [PMID: 31726033 DOI: 10.1016/j.neuroscience.2019.10.048]

Liu XS, Chopp M, Zhang RL, Zhang ZG. MicroRNAs in cerebral ischemia-induced neurogenesis. J Neuropathol Exp Neurol 2013; 72: 718-722 [PMID: 23860031 DOI: 10.1097/NEN.0b013e31829e4963]

He H, Zeng Q, Huang G, Lin Y, Lin H, Liu W, Lu P. Bone marrow mesenchymal stem cell transplantation exerts neuroprotective effects following cerebral ischemia/reperfusion injury by inhibiting autophagy via the PI3K/Akt pathway. Brain Res 2019; 1707: 124-132 [PMID: 30448444 DOI: 10.1016/j.brainsci.2018.11.018]

Ryu B, Sekine H, Homma J, Kobayashi T, Kobayashi E, Kawamura T, Shimizu T. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J Neurosurg 2013; 119: 442-455 [PMID: 23079215 DOI: 10.3171/2013.8.JNS12331]

Lam PK, Wang KK, Chin DW, Tong CSW, Wang Y, Lo KKY, Lai PBS, Ma H, Zheng VZY, Poon WS, Wong KGC. Topically applied adipose-derived mesenchymal stem cell treatment in experimental focal cerebral ischemia. J Clin Neurosci 2020; 71: 226-233 [PMID: 31434102 DOI: 10.1016/j.jocn.2019.08.051]

Lala MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ; Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 2012; 7: e47559 [PMID: 23133515 DOI: 10.1371/journal.pone.0047559]

Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA, Mays RW. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int J Stroke 2014; 9: 381-386 [PMID: 23692637 DOI: 10.1111/ijs.12065]

Savitz SI, Misra V, Kasam M, Juneca H, Cox CS Jr, Alderman S, Aisiku I, Kar S, Gee A, Grotta JC. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 2011; 70: 59-69 [PMID: 21786299 DOI: 10.1002/ana.22458]

Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY; STARTING collaborators. A long-term clinical evaluation of MultiStem for the treatment of ischemic stroke.
follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. *Stem Cells* 2010; 28: 1099-1106 [PMID: 20506226 DOI: 10.1002/stem.430]

139 **Bhasin A**, Srivastava M, Bhatia R, Mohanty S, Kumarar S, Bose S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. *J Stem Cells Regen Med* 2012; 8: 181-189 [PMID: 24693196 DOI: 10.46582/jsrm.0803011]

140 **Bhasin A**, Srivastava MVP, Mohanty S, Vivekanandan S, Sharma S, Kumarar S, Bhatia R. Paracrine Mechanisms of Intravenous Bone Marrow-Derived Mononuclear Stem Cells in Chronic Ischemic Stroke. *Cerebrovasc Dis Extra* 2016; 6: 107-119 [PMID: 27846623 DOI: 10.1590/00446404]

141 **Chen DC**, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, Liu YJ, Tsai CH, Chen JC, Cho DY, Lee CC, Shyu WC. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. *Cell Transplant* 2014; 23: 1599-1612 [PMID: 24480430 DOI: 10.3727/096368914X678562]

142 **Levy ML**, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC. Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke. *Stroke* 2019; 50: 2835-2841 [PMID: 31495331 DOI: 10.1161/STROKEAHA.119.026318]

143 **Moniche F**, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Piñero P, Espigado I, Garcia-Solís D, Cayuela A, Montaner J, Boada C, Rosell A, Jimenez MD, Mayol A, Gil-Peralta A. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. *Stroke* 2012; 43: 2242-2244 [PMID: 22764211 DOI: 10.1161/STROKEAHA.112.659409]

144 **Prasad K**, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johni S, Singh KK, Nair V, Sarkar RS, Gorthi SP, Hassan KM, Prabhakar S, Marwaha N, Khandelwal N, Misra UK,Kalita J, Niyiyannd S; Invest Study Group. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. *Stem Cells Transl Med* 2019; 8: 999-1007 [PMID: 31241246 DOI: 10.1002/sctm.18-0220]

145 **Vahidy FS**, Faheque ME, Rahbar MH, Zhu H, Rowan P, Aisiku IP, Lee DA, Junesa HS, Alderman S, Barreto AD, Suarez JI, Bambholiya A, Hasan KM, Kassam MR, Aronowski J, Goo A, Cox CS JR, Grotta JC, Savitz SI. Intravenous Bone Marrow Mononuclear Cells for Acute Ischemic Stroke: Safety, Feasibility, and Effect Size from a Phase I Clinical Trial. *Stem Cells* 2019; 37: 1481-1491 [PMID: 31529663 DOI: 10.1002/stem.3080]

146 **Zhang G**, Li Y, Reuss JL, Liu N, Wu C, Li J, Xu S, Wang F, Hazel TG, Cunningham M, Zhang H, Dai Y, Hong P, Zhang P, He J, Feng H, Lu X, Ulmer JL, Johe KK, Xu R. Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke. *Stem Cells Transl Med* 2019; 8: 999-1007 [PMID: 31241246 DOI: 10.1002/sctm.18-0220]

147 **Feng Y**, Tian GP, Li L, Zhou J. Effect of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells in the Treatment of Cerebral Infarction. *Shiyong Xin Nao Fei Xueguan Bing Zhi* 2014; 22: 1

148 **Diez-Tejedor E**, Gutiérrez-Fernández M, Martínez-Sánchez P, Rodríguez-Frutos B, Ruiz-Ares G, Lara ML, Gimeno BF. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. *J Stroke Cerebrovasc Dis* 2014; 23: 2694-2700 [PMID: 25304723 DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.011]

149 **Jiang Y**, Zhu W, Zhu J, Wu L, Xu G, Liu X. Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. *Cell Transplant* 2013; 22: 2291-2298 [PMID: 23127560 DOI: 10.3727/096368912X658818]

150 **Suárez-Montagudo C**, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, Castillo-Díaz L, Bringas-Vega ML, Martínez-Aching G, Morales-Chacón LM, Báez-Martín MM, Sánchez-Catasús C, Carballo-Barreda M, Rodríguez-Rojas R, Gómez-Fernández L, Alberti-Amador E, Macías-Abraham C, Balea ED, Rosales LC, Del Valle Pérez L, Ferrer BB, González RM, Bergado JA. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. *Restor Neurol Neurosci* 2009; 27: 151-161 [PMID: 19531871 DOI: 10.3233/RNN-2009-0483]

151 **Bhasin A**, Srivastava MV, Kumarar SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A, Airan B. Autologous mesenchymal stem cells in chronic stroke. *Cerebrovasc Dis Extra* 2011; 1: 93-104 [PMID: 22566987 DOI: 10.1159/000333381]

152 **De Keyser J**. Autologous mesenchymal stem cell transplantation in stroke patients. *Ann Neurol* 2005; 58: 653-4; author reply 654 [PMID: 16178021 DOI: 10.1002/ana.20612]

153 **Jaillard A**, Hommel M, Moisan A, Zeffiro TA, Favre-Wiki IM, Barbier-Guillot M, Vadot W, Marcel S, Lamalle L, Grand S, Detante O; (for the ISIS-HERMES Study Group). Autologous Mesenchymal Stem Cells Improve Motor Recovery in Subacute Ischemic Stroke: a Randomized Clinical Trial. *Transl Stroke Res* 2020; 11: 910-923 [PMID: 32462427 DOI: 10.1007/s12975-020-00787-z]

154 **Lee JY**, Kim E, Choi SM, Kim DW, Kim KP, Lee I, Kim HS. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. *Sci Rep* 2016; 6: 33038 [PMID: 27690711 DOI: 10.1038/srep33038]
