Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Respiratory Viral Infections in Solid Organ and Hematopoietic Stem Cell Transplantation

Grant C. Paulsen, MD*, Lara Danziger-Isakov, MD, MPH

INTRODUCTION

Common respiratory viral infections (RVIs) are an important cause of morbidity and mortality following solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT). RVIs are typically caused by respiratory syncytial virus (RSV), influenza, parainfluenza, rhinovirus, adenovirus, and human metapneumovirus (hMPV). There is also increasing recognition of human coronaviruses and human bocavirus in these populations. In addition, in SOT and HSCT patients, respiratory infections can be caused by viruses less commonly associated with the respiratory tract, such as cytomegalovirus (CMV), human herpesviruses (herpes simplex virus [HSV] 1, HSV2), and varicella zoster virus (VZV). This article focuses on the epidemiology, outcomes, and specific prevention and treatment options for RVIs in SOT and HSCT patients.

GENERAL EPIDEMIOLOGY AND RISK FACTORS

RVIs are a well-recognized cause of morbidity and mortality following SOT, especially within the thoracic transplant population. Recent prospective surveillance of 98 lung transplant recipients in Spain found an overall rate of respiratory viruses, asymptomatic and symptomatic, of 0.76 per patient-year and a significantly higher rate of 2.1 RVIs per patient-year in symptomatic patients. Nasopharyngeal swabs collected from asymptomatic patients were positive 11.5% of the time compared with 55.4% positive in symptomatic patients. Nasopharyngeal swabs collected from asymptomatic patients were positive 11.5% of the time compared with 55.4% positive in symptomatic patients. The most frequently detected RVIs in symptomatic patients were picornaviruses, such as rhinovirus and enterovirus, at 43%, followed by coronavirus (16.7%) and influenza (16.7%). Symptomatic RVI detection progressed to lower respiratory tract infection (LRTI).
in 40% of patients.3 A prospective Swiss study reported similar results with an RVI incidence of 0.83 per patient-year, detection of respiratory viruses in 14% of those screened and 34% of symptomatic patients, and rhinovirus/enterovirus as the most common RVI.4 Human bocavirus, identified in 2005, has been reported to cause upper respiratory infection (URI), fevers, wheezing, LRTI, and diarrhea in normal hosts, and plays an unclear role in SOT recipients.5 Parainfluenza, RSV, hMPV, and influenza were the most frequently found viruses in LRTI and were associated with higher rates of hospitalization. Analyses of RVI in lung transplant recipients have reported a rate of infection from 1.4% to 60%, with detection 5 times more frequent if symptoms were present (Table 1).6,7 Reported risks for RVI in lung transplant patients include increased calcineurin inhibitor levels, age less than 15 years, and underlying cause for transplant other than cystic fibrosis.4,8

As noted for SOT patients, RVIs in HSCT recipients have been well-characterized causes of significant morbidity and mortality. Reported incidences of RVI in HSCT recipients vary between 4% in earlier reports using antigen detection and culture9 and 20% to 40% using polymerase chain reaction (PCR) testing (see Table 1).2,10–12 Bocavirus, as mentioned earlier, also plays an unclear role in the HSCT population, with 1 report of disseminated bocavirus in a pediatric HSCT recipient.13 Risk factors for progression to LRTI include age greater than 65 years, lymphopenia, neutropenia, alternative/nongenoidentical sibling donor, and chronic graft-versus-host disease (GVHD).10,14

### GENERAL OUTCOMES AND COMPLICATIONS

Several publications have attempted to delineate morbidity and mortality following RVI in thoracic transplant recipients, specifically with respect to acute rejection and chronic lung allograft dysfunction (CLAD)/bronchiolitis obliterans syndrome (BOS). In the study from Spain mentioned earlier, LRTI was associated with significant change in lung function (forced expiratory volume in 1 second [FEV1]) at 1 and 3 months following infection and nested case-control analysis reported a significant association between RVI within 3 months and acute rejection (hazard ratio [HR], 6.54; confidence interval [CI], 1.47–29.08; P = .01).3 Alternatively, the Swiss study with similar incidence rates found no such association.4 CLAD compromises long-term survival following lung transplant and although an association with previous viral infection has been explored in published literature, a definitive link remains unclear. Pooled incidence rates for CLAD in the meta-analysis mentioned earlier for virus-positive cases were 18% (9 out of 50 cases) compared with 11.6% (37 out of 319) in virus-negative cases, but because of limited number of overall events a link could not be confirmed.6 However, there are published epidemiologic links between RVI and CLAD as well as data on biologically plausible mechanisms underlying a causal relationship.5,15–17 In addition, a recent large retrospective cohort (n = 250) of lung transplant recipients found an independent association between RVI and development of CLAD within 3 the next months (HR, 4.8; CI, 1.9–11.6; P<.01).18

---

**Table 1**

| Respiratory Virus Family | Type of Nucleic Acid | Distribution of RVIs (%) | Seasonality |
|--------------------------|----------------------|--------------------------|-------------|
| Rhinovirus/Enterovirus   | Picornaviridae, RNA  | 21–62, 22–34            | Spring, summer, fall |
| Coronavirus              | Coronaviridae, RNA   | 13–29, 3–11             | Spring, winter |
| RSV                     | Paramyxoviridae, RNA | 6–20, 19–31             | Spring, fall, winter |
| Adenovirus               | Adenoviridae, DNA    | 1–25, 2–6               | Spring      |
| Parainfluenza            | Paramyxoviridae, RNA | 3–18, 19–27             | Summer      |
| Influenza                | Orthomyxoviridae, RNA | 2–16, 13–33            | Spring, winter |
| Human metapneumovirus    | Paramyxoviridae, RNA | 4–7, 4–11               | Spring, winter |
| Bocavirus                | Parvoviridae, DNA    | 1                        | —           |

Data from Refs.2–4,7,8,11,12,14,38,161
Published attributable mortality caused by LRTI in HSCT from a respiratory virus varies, up to 28% to 30% in some reports, most commonly involving influenza, RSV, adenovirus, and hMPV.10,19 Important risk factors for mortality in the HSCT population include lymphopenia, corticosteroids (>1 mg/kg), and viral or bacterial coinfection.31 BOS following allogeneic stem cell transplant is also associated with significant morbidity and mortality. The most recognized risk factor for BOS following HSCT is GVHD, but there is some evidence that RVIs may play a role as well.20,21

**DIAGNOSIS**

The array of diagnostic tools for RVIs in immunocompromised patients has greatly increased over the last few years, providing increased sensitivity as well as decreased processing times.22 In general, testing for RVIs has moved away from viral antigen and culture methods and now relies heavily on molecular methods. Real-time quantitative and qualitative reverse transcription PCR testing is a well-established method for identifying viral infection and is now incorporated into many of the guidelines in use.23 Multiplex platforms that test for multiple viruses simultaneously from a single sample are now common.

As the sensitivity of molecular diagnostic tools has improved, the issues of asymptomatic viral shedding and sampling methods have become more relevant than ever. As noted earlier, asymptomatic viral shedding is seen frequently, including reports of asymptomatic RSV shedding in HSCT recipients for 35 to 80 days and persistent rhinovirus detection for 8 to 15 months in lung transplant recipients.3,18,24,25 The ability of current molecular testing methods to detect virus in samples with few viral copies combined with prolonged viral shedding in SOT and HSCT recipients can create a challenge for clinicians trying to determine whether a positive molecular test indicates a true pathogen.26 The source or sampling method used is an important consideration. Respiratory samples are routinely obtained from aspirates/washes or swabs from the nasopharynx (NP) or oropharynx (OP) as well as more invasive collection methods such as bronchoalveolar lavage (BAL). However, the choice of upper respiratory sample collection methodology for optimal viral recovery is uncertain. In children hospitalized because of respiratory infections, sensitivity of RVI detection with NP aspirates of 86% to 100% have been reported versus nasal swab sensitivity of 67% to 95%.27 A similar comparison of NP swabs with or without OP swabs in immunocompetent children found a higher sensitivity of NP swabs for RVI of 91% to 100%, which was greater than or equal to OP swabs (83%–98%), with combined testing increasing detection by 2% to 9%, depending on the virus.28 Investigation in adults reported higher sensitivity with NP washes (85%) than NP swabs (73%) or OP swabs (54%), and noted that maximal sensitivity was achieved through a combination of all 3 methods.29

**GENERAL PREVENTION**

RVI prevention is a key component to minimize infections and subsequent complications. Interventions can be patient specific, such as antiviral prophylaxis following transplant and immunization both before and following transplant. For the most common RVIs, immunization is only available for influenza, as discussed later. Vaccines for many of the other RVIs are still under development and not commercially available. In addition, interventions at the level of the health care system decrease the incidence of RVI, including the appropriate use of respiratory or contact precautions, screening of visitors, and immunization of health care staff.30,31 These interventions are included in the general US Centers for Disease Control and Prevention (CDC) recommendations to reduce health care–associated pneumonia.32 Prevention of RVI in HSCT recipients is also addressed in the joint CDC, Infectious Diseases Society of American (IDSA), and American Society for Blood and Marrow Transplantation guidelines as well (http://asheducationbook.hematologylibrary.org/content/2001/1/392.long).33 Other interventions, such as universal mask use for all health care staff and visitors on an HSCT unit, strict isolation of all patients, mandatory hand washing, and visitor restriction for children less than 12 years of age, have been shown to significantly reduce the incidence of RVIs and are used at some centers.34–36

**VIRUS-SPECIFIC OUTCOMES, PREVENTION, AND TREATMENT**

**Respiratory Syncytial Virus**

**Epidemiology, risk, and attributable mortality**

RSV has long been recognized as a concerning pathogen in immunocompromised hosts, with increased mortality if the infection involves the lower respiratory tract.19

In the solid organ population, lung transplant recipients are at increased risk for RSV-related mortality and morbidity compared with the other organs.37,38 Incidence of RSV in lung transplant recipients is variable and accounts for roughly 6% to 12% of RVI infections.4 Risk factors for morbidity and mortality are not clearly defined, with reports
of young age (<2 years), recent transplant, preexisting lung disorder, recent rejection, and multivisceral transplant as risk factors. Risks younder (<2 years) and older (>60 years) age, 1 month posttransplant (preengraftment), both HSCT, risk factors for RSV include less than 100 to 200 cells/mm³. In contrast, an absolute lymphocyte count (ALC) greater than 1000 cells/mm³ was protective against progression to LRTI.

Attributable mortality in RSV infection has been reported in several publications; with mortality approaching 80% in untreated HSCT patients and decreased to 6% to 25% with prompt supportive care and/or treatment. More recent assessment of adult hospitalized patients reported 5% to 16% mortality in HSCT and 10% to 13% in SOT recipients in the setting of ribavirin treatment. Age greater than 60 years and lymphopenia were risk factors for mortality and compared with nontransplant patients. A recent report in pediatric HSCT recipients also showed better outcomes than historical reports, with only 19% progression to LRTI and no mortality, with a primary treatment modality of intravenous immunoglobulin (IVIG) supplementation. Although transplant patients are likely at increased risk for morbidity and mortality, especially those with LRTI, pediatric patients presenting in clinic with upper respiratory tract infection (URTI) symptoms have also been managed with good outcomes in the outpatient setting. Therefore, although RSV infection in SOT and HSCT populations is associated with increased morbidity and mortality, precise determination of its impact remains elusive, but overall outcomes seem to be improving over time.

Prevention
In addition to the general preventive measures reviewed earlier, the only US Food and Drug Administration (FDA)–approved agent for the prevention of severe RSV infection is palivizumab. Palivizumab is a humanized monoclonal antibody targeting the F glycoprotein of RSV, and is approved for prevention of RSV in high-risk patients less than 2 years of age. Recommendations were published in 2014 by the American Academy of Pediatrics for palivizumab prophylaxis for infants and children less than 24 months of age with specific predisposing conditions.

With respect to immunocompromised children, no specific recommendations were made, aside from considering prophylaxis in profoundly immunocompromised patients younger than 24 months of age. A more recent multidisciplinary consensus conference in Italy, referencing the lack of adequate clinical trials and statistical power, recommended against palivizumab for children with primary or acquired immunodeficiencies. In practice, the use of palivizumab for RSV prophylaxis in immunocompromised patients varies widely. Approximately 50% of surveyed pediatric SOT centers used palivizumab for prophylaxis, in both candidates and recipients, with 93% of those targeting infants 0 to 12 months old and 79% extending use to 0 to 24 months. Only 10% provided palivizumab for patients 2 to 4 years old and 7% gave palivizumab for patients more than 4 years of age. This variability in practice is likely caused by the limited data on the efficacy of palivizumab prophylaxis in immunocompromised patients. In a retrospective pediatric HSCT cohort from Memorial Sloan Kettering Cancer Center (n = 275), nearly half of the high-risk patients received intravenous (IV) palivizumab. In the palivizumab treatment group, 30% developed RSV compared with only 4% of those who did not receive prophylaxis. Similarly, an approach limiting palivizumab only to those HSCT pediatric patients younger than 12 months with either a chronic oxygen requirement or severe combined immunodeficiency, pretransplant to 100 days posttransplant, found no increase in the incidence of RSV or patient outcomes compared with historical controls with wider use of palivizumab.

If time allows, delaying HSCT has also been reported to be an effective strategy to prevent serious RSV infection in HSCT candidates with RSV URTI before conditioning. One reported strategy delayed transplant until symptom resolution and negative repeat RSV testing, resulting in a significant reduction in RSV pneumonia following transplant and improved mortality compared with those patients whose transplants were not delayed. Careful thought must be given to the underlying disease process, risk of progression, as well as type of transplant before making the decision to delay HSCT.
**Treatment**

Several management options for RSV have been considered and reported in the literature, and although there are reports of improved outcomes, no placebo-controlled trial has clearly delineated the indication for and efficacy of treatment. The only randomized controlled trial accrued 14 HSCT patients over 5 years and reported that aerosolized ribavirin decreased RSV viral load compared with supportive care but did not significantly improve outcomes.\(^5\)\(^6\) Ribavirin is a broad-spectrum nucleoside analogue with activity against DNA and RNA viruses. Reported toxicities of inhaled ribavirin include bronchospasm, cough, nausea, rash, and decreased pulmonary function. IV ribavirin adverse effects include hemolysis, hyperbilirubinemia, and leukopenia, whereas oral ribavirin can cause anemia and rash.\(^5\)\(^6\) At present, aerosolized ribavirin remains the only FDA-approved drug for the treatment of severe RSV infection, and it is only approved for use in children.\(^5\)\(^7\) Immunomodulators that have also been investigated include IVIG and anti-RSV monoclonal antibody (palivizumab).

Because of the lack of clear evidence of efficacy, wide variation in management of RSV exists.\(^5\)\(^8\) Recommendations and guidelines have been published for HSCT and SOT patients, and although based on the best available data, they are not strong recommendations in many cases. For example, the SOT recommendations for RSV LRTI are for consideration of aerosolized ribavirin in combination with RSV IVIG or palivizumab.\(^5\)\(^9\) Because of the increased mortality in HSCT patients, recommendations for treatment within this population are stronger.

Based on published reports as well as self-reported treatment strategies in surveys from SOT centers, lung and heart-lung recipients are often treated for URTI or LRTI with RSV; LRTIs may be treated in non–lung transplant SOT recipients, although this is inconsistent.\(^5\)\(^8\) Retrospective and prospective studies report improved outcomes in symptomatic lung transplant patients treated with IV ribavirin plus corticosteroids\(^6\)\(^0\); oral ribavirin plus corticosteroids\(^6\)\(^1\); oral or IV ribavirin\(^6\)\(^2\)\(^,6\)\(^3\); and inhaled ribavirin plus corticosteroids, IVIG, and palivizumab,\(^6\)\(^4\) highlighting the lack of consensus on treatment strategies in this population.

Recommendations for HSCT patients from the Infectious Diseases Working Party of the German Society for Haematology and Medical Oncology recommend IVIG in general and ribavirin in particular for RSV in patients with cancer, largely based on data in HSCT recipients.\(^5\)\(^5\) Guidelines from the United Kingdom recommend inhaled ribavirin and IVIG for allogeneic HSCT recipients with either LRTI or URTI and risk factors for progression to LRTI; they also suggest oral ribavirin if the inhaled form is not available.\(^6\)\(^6\) Outside of guidelines and recommendations, several prospective and retrospective studies have been published on the treatment of RSV in HSCT patients, and, despite the available literature, there is no commonly accepted approach. Reports of improved outcomes in the treatment of RSV in HSCT patients can be found for inhaled, oral, or IV ribavirin,\(^5\)\(^6\)\(^,6\)\(^7\)\(^,6\)\(^8\) as well as combinations of ribavirin with IVIG, palivizumab, and/or RSV–specific IVIG\(^5\)\(^6\); most support treatment at the URTI stage, before progression to LRTI. A systematic review of the available retrospective studies in 2011 reported that any form of ribavirin, alone or in combination with an immunomodulatory agent, was effective in preventing progression of URTI to LRTI, with a trend toward better outcomes with inhaled ribavirin plus an immunomodulator.\(^5\)\(^6\) Although negative studies are potentially less likely to achieve publication, there are data available suggesting that adjunctive corticosteroid use and palivizumab alone do not improve outcomes.\(^6\)\(^9\),\(^7\)\(^0\)

Complicating the assessment of RSV treatments in SOT and HSCT patients are recent reports of good outcomes with minimal intervention, such as the 54 immunocompromised pediatric patients diagnosed with symptomatic RSV without any mortality despite only 8 (15%) receiving directed therapy.\(^6\)\(^7\) Another analysis of 32 pediatric HSCT recipients with RSV reported no attributable mortality with no ribavirin therapy; all patients were managed either with supportive care alone or immunoglobulin therapy.\(^4\)\(^2\)

**Investigational respiratory syncytial virus therapies**

Although it is unclear which, if any, RSV–specific treatment is the most effective intervention, there are potentially effective investigational drugs being developed. Treatment with aerosolized ALN-RSV01 (Alnylam Pharmaceuticals, Cambridge, MA), a small interfering RNA that targets the RSV nucleocapsid messenger RNA, has shown some early promise in potentially preventing BOS in lung transplant recipients with RSV.\(^7\)\(^1\) Another agent, RI-001 (ADMA Biologics, Inc, Ramsey, NJ) contains standardized levels of high-titer anti-RSV neutralizing antibody. In a report of compassionate use in 15 patients with RSV LRTI already receiving treatment with ribavirin, RI-001 was well tolerated and showed at least a 4-fold increase in geometric mean titer of RSV antibodies.\(^7\)\(^2\) RI-002 (ADMA Biologics, Inc, Ramsey, NJ) is a new immunoglobulin formulation that...
was developed using plasma collected from individuals tested to have high-titer anti-RSV antibodies, and in early trials showed a significant increase in anti-RSV neutralizing antibodies when administered to primary immunodeficient patients. In addition, there are several other small molecule therapies in various stages of development, including early clinical trials. One such molecule, GS-5806, an oral RSV entry inhibitor, was reported to have significantly lower viral load, total mucus weight, and total symptom score versus placebo in a healthy adult challenge. Phase 2b trials with the same novel small molecule in lung transplant recipients and bone marrow transplant (BMT) patients have completed enrollment, with results pending (NCT02534350, NCT02254421).

**Influenza**

**Epidemiology, risk, and attributable mortality**

The impact of influenza infection in SOT patients can be particularly severe, especially in lung transplant recipients. Rates of severe influenza in lung transplant patients have been reported in 16% to 20% of those infected, with an attributable mortality of 4% to 8%; even higher mortalities of 21% caused by the 2009 H1N1 infection in lung transplant recipients with preexisting BOS grade 3 were reported. A report of Australian lung transplant recipients with H1N1 influenza noted a 16% FEV1 decline at presentation and 39% of patients had prolonged allograft dysfunction. Reports of the most severe infections are largely based on outcomes following the 2009 H1N1 pandemic; however, a recent retrospective cohort study of Brazilian renal transplant recipients with influenza A between 2009 and 2014 reported a 14% incidence of both intensive care unit (ICU) admission and mortality, which is higher than expected.

Similar to solid organ recipients, influenza infection in HSCT patients causes significant morbidity and mortality. Progression from URTI to LRTI varies widely depending on the report, but has been found in 23% to 30% of adult HSCT patients or patients with hematologic malignancy, with overall mortality of 4% to 12%. Risk factors for either presentation with LRTI or progression to LRTI include an ALC less than 100 to 200 cells/mL, lack of influenza-directed therapy, increased creatinine level, and delay in seeking care. There is a significant survival benefit if treated with influenza-directed therapy, with 9% mortality in treated patients versus 27% mortality in untreated patients.

**Prevention**

Vaccination remains the primary focus and most strongly recommended method of influenza prevention. Seasonal influenza vaccines cover either 3 or 4 strains of influenza based on antigenic characterization of the previous year’s circulating strains. In general, quadrivalent vaccines cover an additional influenza B strain compared with the trivalent vaccines without interfering with vaccine response. Influenza vaccines are available in inactivated (intramuscular or intradermal administration) and live, attenuated (intranasal) formulations. The live, attenuated vaccine is not recommended for immunocompromised recipients, and the inactivated vaccine is preferred for household contacts. Overall influenza vaccine response in SOT and HSCT patients remains variable based on the population.

The optimal timing of vaccination following SOT has not been precisely determined, with guidelines from the American Society of Transplantation Infectious Diseases Community of Practice and the IDSA recommending vaccination between 2 and 6 months after transplant. Reports of immunogenic response to influenza vaccine in SOT show a wide variation depending on the organ transplanted and the year assessed, with historical ranges between 15% and 93% protection. Reports of the most severe infections are largely based on outcomes following the 2009 H1N1 pandemic; however, a recent retrospective cohort study of Brazilian renal transplant recipients with influenza A between 2009 and 2014 reported a 14% incidence of both intensive care unit (ICU) admission and mortality, which is higher than expected.92

There are several likely explanations behind the reported variability in response, including the organ transplanted, duration of time from transplant, and degree of immunosuppression. The impact of immunosuppression on immunogenicity shows mycophenolate mofetil as most consistently associated with a decrease in response, whereas sirolimus has been associated with an increase in vaccine responsiveness.93

Because of concerns about the potential development of human leukocyte antigen alloantibodies following the adjuvanted pandemic H1N1 influenza vaccine, evaluations of acute rejection following influenza immunization have been conducted. A subsequent postauthorization safety study following the 2009/2010 pH1N1 vaccine found no increased risk of acute rejection associated with vaccination. Further, seasonal influenza immunization from 2006 to 2009 also found no increased risk of acute rejection.
Similar to SOT patients, influenza immunization is recommended for HSCT recipients and is less effective compared with healthy controls. Again, response rates to influenza in HSCT vary based on time from transplant, influenza season/year studied, and degree of immunosuppression. Rates of seroconversion of 30% to 40% are typical. In addition, there are encouraging reports of increased immunogenicity with high-dose inactivated influenza vaccine compared with standard dose.

Although inactivated influenza vaccination is strongly recommended for SOT and HSCT recipients, other approaches have been suggested to prevent infection. In addition to use for treatment of influenza, oseltamivir and zanamivir are also approved for influenza chemoprophylaxis. A prospective study, predominantly in adult SOT recipients, found that daily oseltamivir for 12 weeks during seasonal influenza circulation significantly reduced the incidence of laboratory-confirmed influenza as determined by reverse transcription PCR. Oseltamivir, given for 7 to 10 days, has also been reported to be effective in prevention of influenza infection in a hematology/HSCT inpatient unit during a nosocomial H1N1 outbreak.

**Treatment**

Early treatment with antiviral drugs has been shown to improve outcomes and reduce hospital admissions and mechanical ventilation use. The mainstay of treatment of influenza are the neuraminidase inhibitors (NAIs), oseltamivir, peramivir, and zanamivir. The influenza A M2 protein inhibitors amantadine and rimantadine are active against influenza A only, but are no longer recommended because of significant resistance in circulating influenza strains. Literature on the treatment of influenza in SOT and HSCT are reliably reproducible with maximum benefit seen earlier in the course that virus-specific therapy is initiated. During the 2009 pandemic H1N1 season, SOT recipients treated with antiviral agents within 48 hours of symptom onset were significantly less likely (8%) than those treated with antiviral agents within 48 hours of symptom onset were significantly less likely (8%) than those treated within 24 to 48 hours of symptom onset. Most experts therefore endorse influenza-specific antiviral treatment of SOT and HSCT patients with influenza at any point in their illness.

Oseltamivir is an oral NAI indicated for the treatment of influenza A and B in adults and children more than 2 weeks of age. Recommended duration of treatment is 5 days in immunocompetent children and adults. In general, treatment recommendations and practice in SOT patients with influenza are for 5 days of oseltamivir as well. Although 5 days of oseltamivir is the typical treatment duration, there are reports of treatment for 10 days or longer in patients with persistent symptoms. A clinical trial also investigated conventional-dose versus double-dose oseltamivir for 10 days in immunocompromised patients, with no results yet released (clinicaltrials.gov, NCT00545532). Zanamivir is an inhaled NAI approved for treatment of influenza A and B in adults and children 7 years of age and older. Zanamivir is used less frequently than oral oseltamivir, likely because of the delivery route and rare reports of inhaled zanamivir failure.

Peramivir is active against influenza A and B and currently is the only IV NAI approved for clinical use in patients aged 18 years and older. IV formulations of both zanamivir and oseltamivir are under investigation in clinical trials. There is generally less experience with peramivir compared with oral oseltamivir, but published reports of clinical effectiveness and reduction in viral load are encouraging. Peramivir is a viable treatment option, especially in those patients in whom oral or inhaled antivirals are not the optimal route.

The pandemic 2009 H1N1 influenza strain was also notable for an increased frequency of NAI resistance in up to 14% of strains. However, NAI resistance is currently uncommon, with an overall incidence of 0.5% to 1.9% of isolates, but does remain an area of growing concern. The most frequent neuraminidase mutation is the H275Y substitution, which results in high-level oseltamivir resistance, reduced peramivir susceptibility, and generally preserved zanamivir activity. Options for oseltamivir-resistant influenza are limited. Inhaled zanamivir may have activity in many, but not all, cases. Peramivir has been reported to be effective in patients with oseltamivir-resistant influenza and has shown encouraging results in preventing lethality in mouse models of NAI-resistant H5N1/avian influenza models. (Ansun BioPharma, San Diego, CA) is a recombinant fusion protein that removes the sialic acid receptor for influenza binding and entry into the cell, potentially inhibiting influenza and parainfluenza infection. DAS181 has shown promising in vitro results of activity against oseltamivir-resistant influenza strains, and additional testing versus several NAI-resistant strains is ongoing.

Aside from advances in supportive care, no specific adjunctive therapies are routinely recommended. Corticosteroids have been shown to decrease the need for mechanical ventilation and progression to LRTI but at the cost of prolonged viral shedding. Therefore, although corticosteroids are not routinely recommended, if corticosteroids are...
indicated for another reason, such as rejection or GVHD, worsening infection with influenza is not clear reason to withhold steroids.

**Adenovirus**

**Epidemiology, risk, and attributable mortality**

Adenovirus is a double-stranded DNA virus made up of 52 immunologically distinct types, with serotypes 1 and 2 most commonly associated with pneumonia. In nonimmunocompromised patients, adenovirus typically causes self-limited disease, such as URI, conjunctivitis, and/or gastroenteritis. Adenovirus infection in immunocompromised patients can range from asymptomatic viremia to significant localized or disseminated disease. In contrast with many of the other community-acquired respiratory viruses, adenoviral infection can occur from primary acquisition or through reactivation of virus. In 1 study, viral reactivation was linked to the timing of immune reconstitution and CD4+ T-cell counts. Depending on patient factors, clinical disease in immunocompromised patients can include pneumonia, hepatitis, colitis, hemorrhagic cystitis, and encephalitis. In a 1993 to 2006 retrospective cohort of RVIs in pediatric SOT, HSCT, and oncology patients, adenoviral infection was associated with the greatest length of stay, and was the only specific virus that increased the risk of morbidity and mortality related to RVI (odds ratio, 3.7; CI, 1.1–12.6; \( P = .03 \)).

Adenoviral infections have been reported in renal, liver, small bowel, lung, and heart transplant recipients, and although most are asymptomatic, they can be associated with severe disease. Although adenoviral infection in HSCT is more likely to cause severe disease than in SOT, there are reports of graft infection and rejection with adenovirus in essentially all SOT populations. Infection in lung recipients is common (up to 22% in 1 series) and there are multiple reports of severe infection, including graft loss, progression to BOS, and death.

Infection in HSCT recipients can be severe and associated with significant mortality. In 14 adult HSCT recipients with adenovirus viremia, most of whom were treated with antivirals, almost 50% developed invasive adenoviral disease and 23% died of the infection. Adenoviral LRTI and disseminated disease generally carry the greatest mortality in pediatric and HSCT patients (up to 80% in some reports).

**Treatment**

Treatment options for adenoviral infection or disease are limited because there are currently no approved antiviral agents for treatment. Reports of recovery with reduced immune suppression alone make the need for therapy and optimal timing for intervention uncertain. As for most viral infections in SOT and HSCT patients, immunosuppression reduction is recommended if possible. Cidofovir, approved for treatment of CMV retinitis in patients with acquired immunodeficiency syndrome, has been the most common antiviral used for treatment. Cidofovir is a nucleotide analogue that inhibits viral DNA polymerase with broad antiviral activity against DNA viruses, such as herpesviruses and adenovirus. Although cidofovir has in vitro activity against adenovirus and is generally accepted as the standard of care, cidofovir treatment efficacy is controversial.

Dosing of cidofovir is generally 5 mg/kg IV once every 7 days, or 1 mg/kg IV 3 times per week, often in conjunction with probenecid and hydration. Cidofovir nephrotoxicity, which is not dose dependent, is the most common reason for discontinuation of therapy. Alternative therapies, including ribavirin and combination cidofovir plus IVIG, have been reported with limited data, and these are not routinely recommended for use.

**Investigational adenovirus therapies**

Because of new antiviral development and alternative treatment modalities, there may be additional options in the future. Brincidofovir is an orally bioavailable lipid conjugate of cidofovir that has potent in vitro activity against adenovirus, and has shown promising results for both treatment of serious invasive adenovirus infections and asymptomatic viremia. Recognizing the vital role of T-cell immunity in control of viral infections and the loss of this immunity during HSCT and SOT, the use of adoptive T-cell immunity is promising as well. Adoptive T-cell immunity uses donor virus-specific T-cells to treat infection, and has been reported to be safe and effective when performed early in the course of the infection. Adoptive T-cell transfer has generally been limited to a few centers and predominantly in HSCT recipients, because of both the time and the expertise needed for cell preparation, but more recent methods may allow shorter generation time and more access to this therapy.

**Parainfluenza**

**Epidemiology, risk factors, and attributable mortality**

Parainfluenza virus (PIV) is a single-stranded, enveloped RNA virus with 4 distinct serotypes (types 1–4). Serotypes vary in seasonality and disease, with PIV3 associated with pneumonia and bronchiolitis, and year-round activity that peaks in spring...
and summer. PIV1 and PIV2 are commonly causes of pediatric laryngotracheobronchitis (croup) and typically peak in fall and winter. PIV4 infection is rarely associated with disease.

A retrospective analysis of RVI in pediatric immunocompromised patients reported that 26% of RVIs in SOT patients were caused by PIV. Parainfluenza infections presented more commonly as URTI with or without LRTI symptoms, and less frequently as LRTI alone. Although there are previous reports of significant mortality in SOT recipients caused by PIV (up to 15% in 1 series), more recent publications in lung and other organ recipients report decreased mortality.

Retrospective reports place the incidence of PIV infection following HSCT between 2% and 7%, with greater incidence in children than in adults. LRTI after HSCT is associated with high morbidity and mortality. Risk factors for LRTI caused by PIV are lymphopenia (<300 cells/mm³), neutropenia (<500 cells/µL), APACHE (Acute Physiology and Chronic Health Evaluation) II score greater than 15, myeloablative conditioning, high-dose corticosteroids for GVHD, and coinfection. Reported risk factors for mortality in HSCT include LRTI, early infection, mismatched related donor, APACHE II score greater than 15, new oxygen requirement at diagnosis, low monocyte counts (<100 cell/µL), and high-dose steroid use (>2 mg/kg/d). In a series of 28 HSCT patients with PIV LRTI, mechanical ventilation was necessary in 29% and attributable mortality was 46%. Other recent publications report 17% to 37% mortality in HSCT recipients with probable or proven parainfluenza LRTI.

**Treatment**

There are no currently FDA-approved antiviral treatments for parainfluenza disease. Treatment is supportive and includes reduction in immunosuppression. Ribavirin and/or IVIG have been used, off label, in parainfluenza infections with variable results and no definitive evidence of efficacy.

**Investigational parainfluenza virus therapies**

DAS181, as discussed previously for NAI-resistant influenza, can potentially inhibit PIV binding to respiratory epithelial cells. DAS181 is an inhaled treatment typically administered via a dry powder inhaler for 5 to 10 days, and has been used under compassionate use and clinical trial protocols in HSCT and SOT recipients, including 2 lung transplant patients. In published reports, DAS181 has shown encouraging results, including reduction in PIV quantitative viral load and overall outcomes. In addition, there are intriguing studies examining the impact of cholesterol reducing agents such as gemfibrozil and lovastatin on disrupting viral assembly in PIV, RSV, and influenza. Reports of parainfluenza-specific T-cell generation from healthy donors may also ultimately lead to effective adoptive T-cell therapy for PIV.

**Human Metapneumovirus**

**Epidemiology, risk factors, and attributable mortality**

Human metapneumovirus (hMPV) is an RNA virus identified in 2001, in the same paramyxovirus family as RSV and parainfluenza, that typically causes a self-limited URTI in immunocompetent persons. hMPV is found worldwide and occurs predominantly in the late winter and spring months, often following the RSV season. As with many of the other community-acquired RVIs in SOT and HSCT patients, progression from the upper respiratory tract to the lower respiratory tract is associated with increased morbidity and mortality.

hMPV has been a well-documented cause of symptomatic and asymptomatic infection in lung transplant recipients. In a retrospective population of 49 symptomatic adult lung transplant recipients, 25% were hMPV positive via nasopharyngeal aspirate or BAL. As with most RVIs, up to 20% can be asymptomatic, whereas others develop severe pneumonia or acute graft dysfunction. Rhinorrhea, cough, and sputum production are the most frequently reported symptoms, with mortality caused by acute respiratory distress syndrome and graft rejection also reported. Identification of replicating hMPV in respiratory samples has been seen with simultaneous biopsy-proven graft rejection, suggesting a potential association between hMPV and acute rejection.

Infection in HSCT patients is variable as well, with recent reviews reporting an overall incidence of 5% to 7%. The same analysis found that LRTI occurred in 34% of hMPV infections in HSCT recipients, with a mortality of 6%, greatest in those with LRTI. Mortalities caused by hMPV infection have been reported to be as high as 39%. Progression from URTI to LRTI is seen in up to 60% of HSCT recipients and has been associated with steroid use (>1 mg/kg), low lymphocyte count (<300 cells/mm³), and onset of infection less than 30 days from HSCT.

**Treatment**

There are no currently approved antivirals for the prevention or treatment of hMPV. As with RSV, ribavirin has reported in vitro activity against hMPV. The efficacy of ribavirin for hMPV
infection has not been reliably shown. There are reports in lung transplant recipients of oral ribavirin resulting in quicker return to baseline and decreased incidence of subsequent BOS, and case reports of survival with IV and inhaled ribavirin. However, most reports are from small single-center studies and do not include a control population. In addition, other studies have not been able identify a similar beneficial effect of ribavirin for hMPV treatment.

Investigational human metapneumovirus therapies
Adoptive T-cell transfer has not yet been achieved, but hMPV-specific T cells have been generated, with further work ongoing. There are also reports in vitro and in mouse models of a human monoclonal antibody for prophylactic and therapeutic hMPV infections.

Cytomegalovirus

Epidemiology, risk factors, and attributable mortality
Cytomegalovirus (CMV) is a β-herpesvirus well recognized as a significant pathogen in immunocompromised patients. CMV has been reported to affect from 12% to 80% of heart and lung transplant recipients and 50% of HSCT patients. Although CMV can cause a wide array of infections, from asymptomatic to tissue-invasive disease, CMV pneumonitis/pneumonia is of particular concern for thoracic transplant recipients. The diagnosis of proven CMV pneumonitis is based on compatible clinical signs and/or symptoms and documented CMV in lung tissue. Traditionally, tissue-invasive CMV is based on histopathologic or immunohistochemical (IHC) findings consistent with tissue invasion on biopsy. CMV cultures or quantitative nucleic acid amplification testing of tissue samples are difficult to interpret because a positive finding could indicate tissue-invasive disease, shedding in the setting of active viremia, or both. Recent updates to the definition of CMV pneumonia now include proven, probable, and possible CMV pneumonia. Proven disease still relies on identification of viral antigens or inclusion bodies via immunohistochemistry in biopsy material, but probable CMV pneumonia is defined as compatible symptoms plus CMV detection via viral isolation, culture, or quantitation of CMV DNA in BAL fluid. There is no definitive cutoff for CMV DNA load in the setting of CMV pneumonia; however, some reports suggest greater than 500 to 5500 IU/mL as a possible cutoff. Possible CMV pneumonia has been suggested based on positive quantitative PCR performed on biopsy tissue.

Risk factors for CMV disease have been reported as advanced age and reduced-dose valganciclovir. Delayed-onset CMV pneumonitis (>100 days posttransplant), donor with positive CMV serology, asymptomatic CMV infection, and CMV disease at any time have been associated with increased mortality in lung transplant recipients.

CMV in HSCT patients can also cause a wide array of clinical manifestations, with CMV pneumonia being the most serious, resulting in a mortality of approximately 30%. CMV reactivation alone is associated with lower overall mortality following HSCT. Incidence of CMV pneumonia is unclear, largely because of the difficulties with definitive diagnosis, but an autopsy study of 999 patients with cancer and HSCT reported an incidence of CMV pneumonia of 3%. Risk factors associated with CMV-attributable mortality include female sex, lymphopenia, and mechanical ventilation at onset. Diagnostic classification of CMV pneumonia/pneumonitis is the same as discussed earlier for SOT.

Prevention
IV ganciclovir (GCV) and oral valganciclovir, with or without CMV immunoglobulin (CMVIg), are the agents recommended for prophylaxis of CMV infection in SOT recipients. The most common strategies used are universal prophylaxis versus preemptive therapy, with consensus recommendations favoring universal prophylaxis for high-risk heart and lung recipients. Risk stratification in organ transplant recipients relies heavily on donor and recipient CMV serologic results before transplant. Donors who are CMV immunoglobulin (Ig) G positive (D+) paired with recipients who are IgG negative (R−) are considered the highest risk group. Recipients who are CMV D−/R+ are generally considered low risk, although community-acquired infection can occur posttransplant, and R+ patients are variably classified as intermediate-risk or high-risk, often center dependent. Recommended duration of prophylaxis varies based on organ system and risk stratification. For D+/R− heart transplant recipients, the recommended minimum duration of CMV prophylaxis is between 3 and 6 months. For D+/R− lung transplant recipients the minimum recommended duration is between 6 and 12 months, with some advocates for longer, even indefinite, prophylaxis. Centers using indefinite prophylaxis for lung transplant recipients report low incidence of CMV infection, which must be balanced against reports of association between GCV-resistant CMV and prolonged CMV prophylaxis, with an
incidence of 10% to 50% GCV-resistant infection in some cases.\textsuperscript{177,189,190} For R+ recipients the minimum duration in lung is 6 months, and 3 months in heart recipients. In D−/R− populations the routine use of CMV prophylaxis is not generally recommended.\textsuperscript{178} There are several published reports of potential benefit to the addition or sole use of CMV Ig for prophylaxis, but, because of the limited data to support routine use, the addition of CMV Ig is not routinely recommended.\textsuperscript{178,191} The most recent consensus guidelines note that some experts add CMV Ig for intermediate and higher-risk recipients, but there are no randomized studies indicating that CMV Ig is any better than GCV or valganciclovir alone.

As opposed to SOT recipients, HSCT patients with positive CMV serology (R+) before transplant are at higher risk for reactivation and non-relapse-related mortality.\textsuperscript{182} Preventive strategies following HSCT are similar and generally consist of either universal prophylaxis for at least 100 days following HSCT or a preemptive approach, with the latter as the more commonly reported practice.\textsuperscript{182,193} There are also reports that suggest immunosuppression choice alters CMV infection risk. Lower incidences of CMV infection are reported in patients treated with regimens including a mammalian target of rapamycin (mTOR) inhibitor.\textsuperscript{194–197} Although these results are not consistently reproducible, some experts recommend considering the use of mTOR inhibitors in the presence of clinically relevant, recurrent, or GCV-resistant CMV infection.\textsuperscript{198–200} Further, CMV vaccination is under evaluation with several candidate vaccines assessed in clinical trials, including live attenuated; recombinant glycoprotein B (gB); DNA plasmid; and virus-like particle systems.\textsuperscript{201} Investigations in immunocompromised patients have reported on the safety of a CMV DNA vaccine candidate (ASPO113) and a chimeric peptide vaccine (PF03512676) in HSCT, with some early evidence of potential clinical benefit as well.\textsuperscript{202,203} Similarly, a phase 2 trial of an adjuvanted gB vaccine versus placebo in pre-transplant liver and kidney patients showed reduced CMV viremia and days of GCV therapy following transplant, with the greatest effect seen in CMV seronegative patients.\textsuperscript{204} Therefore, although the current CMV vaccine candidates are not yet ready for clinical use, the available data plus the number of clinical trials either planned or ongoing in immunocompromised patients are very encouraging.

**Treatment**

IV GCV and oral valganciclovir are the most commonly used treatments for CMV infection or disease.\textsuperscript{178,205} Foscarnet and cidofovir are active agents as well, but are generally reserved for GCV-resistant infection or those HSCT recipients with concern for potential bone marrow suppression caused by of GCV, such as during the pre-engraftment period.\textsuperscript{178,185} CMV Ig has been reported to be effective in several publications and may have a role in certain settings.\textsuperscript{198,206} CMV Ig is often used for CMV pneumonia in HSCT recipients, although a recent analysis failed to find significant improvement with adjunctive IV Ig or CMV Ig administration in that population.\textsuperscript{185} The consensus guidelines on CMV treatment in SOT recipients recommend consideration of adjunctive IV Ig or CMV Ig for recurrent CMV disease in thoracic organ recipients as adjunctive therapy in cases of hypogammaglobulinemia.\textsuperscript{178}

**Investigational cytomegalovirus therapies**

Investigational drugs and therapies for CMV prevention and treatment are currently being developed and/or tested in clinical trials. Letemovir interacts with UL56, a component of viral DNA cleavage and packaging, and has been reported to be effective in reducing CMV infection in HSCT recipients and reducing viral load in SOT patients.\textsuperscript{207,208} Maribavir is a competitive inhibitor of UL97 that failed to show noninferiority of CMV prevention in liver transplant patients and HSCT recipients, but is currently under investigation for use in CMV infections that are refractory to GCV, valganciclovir, foscarnet, or cidofovir (clinicaltrials.gov, NCT02931539).\textsuperscript{209,210} Brincidofovir, referenced earlier for adenovirus, has been shown to reduce CMV events compared with placebo in HSCT recipients.\textsuperscript{211} In addition, adoptive T-cell therapy for CMV disease has been reported to be effective in a lung transplant recipient and as well as in several HSCT recipients.\textsuperscript{212–214}

**Herpes Simplex Virus and Varicella Zoster Virus**

HSV1 and HSV2 are \(\alpha\)-herpesviruses and common causes of infection in immunocompetent and immunocompromised persons. In immunocompromised patients, HSV can cause a wide variety of clinical infection from asymptomatic oropharyngeal shedding to mucocutaneous and disseminated disease, including pneumonitis. HSV pneumonitis is uncommon in the era of antiviral prophylaxis, but thoracic transplant and HSCT recipients are reportedly at greatest risk.\textsuperscript{215–217} Similar to CMV pneumonitis, the recommended diagnostic test for HSV pneumonitis is tissue histopathology with IHC for HSV. Positive BAL PCR testing for HSV may represent contamination or oropharyngeal shedding.\textsuperscript{218} IV acyclovir is the...
treatment of choice for severe, disseminated HSV, including pneumonitis. It is recommended to continue IV acyclovir until resolution, or 14 days, at which time oral medication may be given.²¹⁸

VZV, another herpesvirus, can also cause significant disease in SOT and HSCT recipients. The most common manifestations of VZV are primary varicella, or chickenpox, in susceptible seronegative patients or herpes zoster, or shingles, in those with previous VZV infection or vaccination.²¹⁹ Visceral dissemination is more common in HSCT and less common in SOT. Disseminated disease includes infection of lung tissue resulting in VZV pneumonia with significant morbidity and mortality.²²⁰,²²¹ Risk of dissemination is increased in acute and chronic GVHD, as well as increased immunosuppression.²¹⁹,²²² IV acyclovir is also the recommended treatment of disseminated or invasive VZV for at least 7 days, and potentially longer in patients with extensive involvement.²¹⁹

SUMMARY

RVIs are common in SOT and HSCT recipients and cause a broad array of infections, ranging from asymptomatic to significant virus-associated mortality. Although there are some potential new and/or novel therapeutic options under evaluation, current treatment options remain limited in immunocompromised patients and generally consist of supportive care; reduction of immunosuppression; and, if available, antiviral medications. Preventive measures with infection control and appropriate immunization remain vital.

REFERENCES

1. Lo MS, Lee GM, Gunawardane N, et al. The impact of RSV, adenovirus, influenza, and parainfluenza infection in pediatric patients receiving stem cell transplant, solid organ transplant, or cancer chemotherapy. Pediatr Transplant 2013;17(2):133–43.
2. Wolfromm A, Porcher R, Legoff J, et al. Viral respiratory infections diagnosed by multiplex PCR after allogeneic hematopoietic stem cell transplantation: long-term incidence and outcome. Biol Blood Marrow Transplant 2014;20(8):1238–41.
3. Peghin M, Hirsch HH, Len O, et al. Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: a 5-year prospective study. Am J Transplant 2017;17(5):1304–12.
4. Bridevaux PO, Aubert JD, Soccal PM, et al. Incidence and outcomes of respiratory viral infections in lung transplant recipients: a prospective study. Thorax 2014;69(1):32–8.
5. Weigt SS, Gregson AL, Deng JC, et al. Respiratory viral infections in hematopoietic stem cell and solid organ transplant recipients. Semin Respir Crit Care Med 2011;32(4):471–93.
6. Vu DL, Bridevaux PO, Aubert JD, et al. Respiratory viruses in lung transplant recipients: a critical review and pooled analysis of clinical studies. Am J Transplant 2011;11(5):1071–8.
7. Gottlieb J, Schulz TF, Welte T, et al. Community-acquired respiratory viral infections in lung transplant recipients: a single season cohort study. Transplantation 2009;87(10):1530–7.
8. Liu M, Worley S, Arrigain S, et al. Respiratory viral infections within one year after pediatric lung transplant. Transpl Infect Dis 2009;11(4):304–12.
9. Hassan IA, Chopra R, Swindell R, et al. Respiratory viral infections after bone marrow/peripheral stem cell transplantation: the Christie hospital experience. Bone Marrow Transplant 2003;32(1):73–7.
10. Martino R, Porras RP, Rabella N, et al. Prospective study of the incidence, clinical features, and outcome of symptomatic upper and lower respiratory tract infections by respiratory viruses in adult recipients of hematopoietic stem cell transplants for hematologic malignancies. Biol Blood Marrow Transplant 2005;11(10):781–96.
11. D’Angelo CR, Kocherginsky M, Pisano J, et al. Incidence and predictors of respiratory viral infections by multiplex PCR in allogeneic hematopoietic cell transplant recipients 50 years and older including geriatric assessment. Leuk Lymphoma 2016;57(8):1807–13.
12. Milano F, Campbell AP, Guthrie KA, et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplant recipients. Pediatr Transplant 2011;15(5):660–6.
13. Schenk T, Strahm B, Kontry U, et al. Disseminated bocavirus infection after stem cell transplant. Emerg Infect Dis 2007;13(9):1425–7.
14. Chemaly RF, Ghosh S, Bodey GP, et al. Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients: a retrospective study at a major cancer center. Medicine 2006;85(5):278–87.
15. Billings JL, Hertz MI, Savik K, et al. Respiratory viruses and chronic rejection in lung transplant recipients. J Heart Lung Transplant 2002;21(5):559–66.
16. Khalilah AP, Hachem RR, Chakinala MM, et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004;170(2):181–7.
17. Kumar D, Husain S, Chen MH, et al. A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients. Transplantation 2010;89(8):1028–33.
18. Fisher CE, Preiksaitis CM, Lease ED, et al. Symptomatic respiratory virus infection and chronic lung allograft dysfunction. Clin Infect Dis 2016;62(3):313–9.

19. Ljungman P, Ward KN, Crooks BN, et al. Respiratory virus infections after stem cell transplantation: a prospective study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2001;28(5):479–84.

20. Gassas A, Krueger J, Zaidman I, et al. Infections and neutrophils in the pathogenesis of bronchiolitis obliterans syndrome in children after allogeneic stem cell transplantation. Pediatr Transplant 2016;20(2):303–6.

21. Versluis AB, Rossen JW, van Ewijk B, et al. Strong association between respiratory viral infection early after hematopoietic stem cell transplantation and the development of life-threatening acute and chronic alloimmune lung syndromes. Biol Blood Marrow Transplant 2010;16(6):782–91.

22. McCulloh RJ, Andrea S, Reinert S, et al. Potential utility of multiplex amplification respiratory viral panel testing in the management of acute respiratory infection in children: a retrospective analysis. J Pediatr Infect Dis Soc 2014;3(2):146–53.

23. Husain S, Mooney ML, Danziger-Isakov L, et al. A 2010 working formulation for the standardization of definitions of infections in cardiothoracic transplant recipients. J Heart Lung Transplant 2011;30(4):361–74.

24. Lehners N, Tabataibi J, Prifert C, et al. Long-term shedding of influenza virus, parainfluenza virus, respiratory syncytial virus and nosocomial epidemiology in patients with hematological disorders. PLoS One 2016;11(2):e0148258.

25. Richardson L, Brite J, Del Castillo M, et al. Comparison of respiratory virus shedding by conventional and molecular testing methods in patients with haematological malignancy. Clin Microbiol Infect 2016;22(4):380.e1–7.

26. Kuyper J, Campbell AP, Cent A, et al. Comparison of conventional and molecular detection of respiratory viruses in hematopoietic cell transplant recipients. Transpl Infect Dis 2009;11(4):298–303.

27. Sung RY, Chan PK, Choi KC, et al. Comparative study of nasopharyngeal aspirate and nasal swab specimens for diagnosis of acute viral respiratory infection. J Clin Microbiol 2008;46(9):3073–6.

28. Dawood FS, Jara J, Estripeaut D, et al. What is the added benefit of oropharyngeal swabs compared to nasal swabs alone for respiratory virus detection in hospitalized children aged <10 years? J Infect Dis 2015;212(10):1600–3.

29. Lieberman D, Lieberman D, Shimon I, et al. Identification of respiratory viruses in adults: nasopharyngeal versus oropharyngeal sampling. J Clin Microbiol 2009;47(11):3439–43.

30. Garcia R, Raad I, Abi-Said D, et al. Nosocomial respiratory syncytial virus infections: prevention and control in bone marrow transplant patients. Infect Control Hosp Epidemiol 1997;18(6):412–6.

31. Kassis C, Champlin RE, Hachem RY, et al. Detection and control of a nosocomial respiratory syncytial virus outbreak in a stem cell transplantation unit: the role of palivizumab. Biol Blood Marrow Transplant 2010;16(9):1265–71.

32. Tablan OC, Anderson LJ, Besser R, et al. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 2004;53(Rr-3):1–36.

33. Sullivan KM, Dykewicz CA, Longworth DL, et al. Preventing opportunistic infections after hematopoietic stem cell transplantation: the Centers for Disease Control and Prevention, Infectious Diseases Society of America, and American Society for Blood and Marrow Transplantation Practice Guidelines and beyond. Hematol Am Soc Hematol Educ Program 2001;392–421.

34. Lavergne V, Ghannoum M, Weiss K, et al. Successful prevention of respiratory syncytial virus nosocomial transmission following an enhanced seasonal infection control program. Bone Marrow Transplant 2011;46(1):137–42.

35. Sokol KA, De la Vega-Diaz I, Edmondson-Martin K, et al. Masks for prevention of respiratory viruses on the BMT unit: results of a quality initiative. Transpl Infect Dis 2016;18(6):965–7.

36. Sung AD, Sung JA, Thomas S, et al. Universal mask usage for reduction of respiratory viral infections after stem cell transplant: a prospective trial. Clin Infect Dis 2016;63(8):999–1006.

37. Chakinala MM, Walter MJ. Community acquired respiratory viral infections after lung transplantation: clinical features and long-term consequences. Semin Thorac Cardiovasc Surg 2004;16(4):342–9.

38. Milstone AP, Brumble LM, Barnes J, et al. A single-season prospective study of respiratory viral infections in lung transplant recipients. Eur Respir J 2006;28(1):131–7.

39. Anderson NW, Binninger MJ, Harris DM, et al. Morbidity and mortality among patients with respiratory syncytial virus infection: a 2-year retrospective review. Diagn Microbiol Infect Dis 2016;85(3):367–71.

40. Kim YJ, Boecht M, Englund JA. Community respiratory virus infections in immunocompromised patients: hematopoietic stem cell and solid organ transplant recipients, and individuals with human immunodeficiency virus infection. Semin Respir Crit Care Med 2007;28(2):222–42.

41. Small TN, Casson A, Malak SF, et al. Respiratory syncytial virus infection following hematopoietic
stem cell transplantation. Bone Marrow Transplant 2002;29(4):321–7.

42. El-Bietar J, Nelson A, Wallace G, et al. RSV infection without ribavirin treatment in pediatric hematopoietic stem cell transplantation. Bone Marrow Transplant 2016;51(10):1382–4.

43. Waghmare A, Campbell AP, Xie H, et al. Respiratory syncytial virus lower respiratory disease in hematopoietic cell transplant recipients: viral RNA detection in blood, antiviral treatment, and clinical outcomes. Clin Infect Dis 2013;57(12):1731–41.

44. Kim YJ, Guthrie KA, Waghmare A, et al. Respiratory syncytial virus in hematopoietic cell transplant recipients: factors determining progression to lower respiratory tract disease. J Infect Dis 2014;209(8):1195–204.

45. Pilie P, Werbel WA, Riddell JT, et al. Adult patients with respiratory syncytial virus infection: impact of solid organ and hematopoietic stem cell transplantation on outcomes. Transpl Infect Dis 2015;17(4):551–7.

46. Shah DP, Ghanoto SS, Shah JN, et al. Impact of aerosolized ribavirin on mortality in 280 allogeneic hematopoietic stem cell transplant recipients with respiratory syncytial virus infections. J Antimicrob Chemother 2013;68(8):1872–80.

47. Chu HY, Chin J, Pollard J, et al. Clinical outcomes in outpatient respiratory syncytial virus infection in immunocompromised children. Influenza Other Respir Viruses 2016;10(3):205–10.

48. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014;134(2):415–20.

49. Pignotti MS, Carmela Leo M, Pugi A, et al. Consensus conference on the appropriateness of palivizumab prophylaxis in respiratory syncytial virus disease. Pediatr Pulmonol 2016;51(10):1088–96.

50. Michaels MG, Fonseca-Aten M, Green M, et al. Respiratory syncytial virus prophylaxis: a survey of pediatric solid organ transplant centers. Pediatr Transplant 2009;13(4):451–6.

51. Clark A, Porzotrago M, Mathew S, et al. Retrospective evaluation of palivizumab efficacy and safety for RSV prophylaxis in pediatric hematopoietic stem cell transplant patients: a single center experience. Biol Blood Marrow Transplant 2016;22:161.

52. Teusink-Cross A, Davies SM, Danziger-Isakov L, et al. Restrictive palivizumab use does not lead to increased morbidity and mortality in pediatric hematopoietic stem cell transplantation patients. Biol Blood Marrow Transplant 2016;22(10):1904–6.

53. Peck AJ, Corey L, Boeckh M. Pretransplantation respiratory syncytial virus infection: impact of a strategy to delay transplantation. Clin Infect Dis 2004;39(5):673–80.

54. Campbell AP, Guthrie KA, Englund JA, et al. Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant. Clin Infect Dis 2015;61(2):192–202.

55. Boeckh M, Englund J, Li Y, et al. Randomized controlled multicenter trial of aerosolized ribavirin for respiratory syncytial virus upper respiratory tract infection in hematopoietic cell transplant recipients. Clin Infect Dis 2007;44(2):245–9.

56. Shah JN, Chemaly RF. Management of RSV infections in adult recipients of hematopoietic stem cell transplantation. Blood 2011;117(10):2755–63.

57. Ribavirin aerosol approved for severe cases of RSV in infants and young children. FDA Drug Bull 1986;16(1):7.

58. Beard OE, Freifeld A, Ison MG, et al. Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: a survey of institutions in the Midwestern Respiratory Virus Collaborative. Transpl Infect Dis 2016;18(2):210–5.

59. Community-acquired respiratory viruses. Am J Transplant 2004;4(Suppl 10):105–9.

60. Glanville AR, Scott AI, Morton JM, et al. Intravenous ribavirin is a safe and cost-effective treatment for respiratory syncytial virus infection after lung transplantation. J Heart Lung Transplant 2005;24(12):2114–9.

61. Pelaez A, Lyon GM, Force SD, et al. Efficacy of oral ribavirin in lung transplant patients with respiratory syncytial virus lower respiratory tract infection. J Heart Lung Transplant 2009,28(1):67–71.

62. Burrows FS, Carlos LM, Benzimra M, et al. Oral ribavirin for respiratory syncytial virus infection after lung transplantation: efficacy and cost-efficiency. J Heart Lung Transplant 2015;34(7):958–62.

63. Li L, Avery R, Budev M, et al. Oral versus inhaled ribavirin therapy for respiratory syncytial virus infection after lung transplantation. J Heart Lung Transplant 2012;31(8):839–44.

64. Liu V, Dhillon GS, Weill D. A multi-drug regimen for respiratory syncytial virus and parainfluenza virus infections in adult lung and heart-lung transplant recipients. Transpl Infect Dis 2010;12(1):38–44.

65. von Lilienfeld-Toal M, Berger A, Christopeit M, et al. Community acquired respiratory virus infections in cancer patients—Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology. Eur J Cancer 2016;67:200–12.

66. Dignan FL, Clark A, Aitken C, et al. BCSH/BSBMT/UK Clinical Virology Network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016;173(3):380–93.
67. Gueller S, Tholoui E, Turner A, et al. Effective use of oral ribavirin for respiratory syncytial viral infections in allogeneic haematopoietic stem cell transplant recipients. J Hosp Infect 2017;95(2):214–7.

68. Gueller S, Duenzinger U, Wolf T, et al. Successful systemic high-dose ribavirin treatment of respiratory syncytial virus-induced infections occurring pre-engraftment in allogeneic hematopoietic stem cell transplant recipients. Transpl Infect Dis 2013;15(4):435–40.

69. Damaj M, Bartoo G, Cartin-Ceba R, et al. Corticosteroid use as adjunct therapy for respiratory syncytial virus infection in adult allogeneic stem cell transplant recipients. Transpl Infect Dis 2016;18(2):216–26.

70. de Fontbrune FS, Robin M, Porcher R, et al. Palivizumab treatment of respiratory syncytial virus infection after allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2007;45(8):1019–24.

71. Gottlieb J, Zamora MR, Hodges T, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant 2016;35(2):213–21.

72. Falsey AR, Koval C, DeVincenzo JP, et al. Compansionate use experience with high-titer respiratory syncytial virus (RSV) immunoglobulin in RSV-infected immunocompromised persons. Transpl Infect Dis 2017;19:e12657.

73. Wasserman RL, Lumry W, Harris J 3rd, et al. Efficacy, safety, and pharmacokinetics of a new 10 % liquid intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses in subjects with primary immunodeficiency disease. J Clin Immunol 2016;36(6):590–9.

74. Simoes EA, DeVincenzo JP, Boechk M, et al. Challenges and opportunities in developing respiratory syncytial virus therapeutics. J Infect Dis 2015;211(Suppl 1):S1–20.

75. DeVincenzo JP, Whitley RJ, Mackman RL, et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med 2014;371(8):711–22.

76. Manuel O, Estabrook M, AST Infectious Diseases Community of Practice. RNA respiratory viruses in solid organ transplantation. Am J Transplant 2013;13(Suppl 4):212–9.

77. Kumar D, Michaels MG, Morris MI, et al. Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: a multicentre cohort study. Lancet Infect Dis 2010;10(8):521–6.

78. Ng BJ, Glanville AR, Snell G, et al. The impact of pandemic influenza A H1N1 2009 on Australian lung transplant recipients. Am J Transplant 2011;11(3):568–74.

79. Odongo FC, Azevedo LS, Neto ED, et al. Clinical characteristics and outcomes of influenza A infection in kidney transplant recipients: a single-center experience. Transplant Proc 2016;48(7):2315–8.

80. Choi SM, Boudreau A, Xie H, et al. Differences in clinical outcomes after 2009 influenza A/H1N1 and seasonal influenza among hematopoietic cell transplant recipients. Blood 2011;117(19):5050–6.

81. Kmeid J, Vanichanan J, Shah DP, et al. Outcomes of influenza infections in hematopoietic cell transplant recipients: application of an immunodeficiency scoring index. Biol Blood Marrow Transplant 2016;22(3):542–8.

82. Kumar D, Blumberg EA, Danziger-Isakov L, et al. Influenza vaccination in the organ transplant recipient: review and summary recommendations. Am J Transplant 2011;11(10):2020–30.

83. Kieninger D, Sheldon E, Lin WY, et al. Immunogenicity, reactogenicity and safety of an inactivated quadrivalent influenza vaccine candidate versus inactivated trivalent influenza vaccine: a phase III, randomized trial in adults aged ≥18 years. BMC Infect Dis 2013;13:343.

84. Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58(3):e44–100.

85. Danziger-Isakov L, Kumar D, the AST Infectious Diseases Community of Practice. Vaccination in solid organ transplantation. Am J Transplant 2013;13(s4):311–7.

86. Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58(3):309–18.

87. Hayney MS, Welter DL, Francois M, et al. Influenza vaccine antibody responses in lung transplant recipients. Prog Transplant 2004;14(4):346–51.

88. Dopp JM, Wiegert NA, Moran JJ, et al. Effect of annual influenza immunization on antibody response in lung transplant patients. Prog Transplant 2009;19(2):153–9.

89. Mazzzone PJ, Mossad SB, Mawhorter SD, et al. The humoral immune response to influenza vaccination in lung transplant patients. Eur Respir J 2001;18(6):971–6.

90. Ott U, Sauerbrei A, Lange J, et al. Serological response to influenza A H1N1 vaccine (Pandemrix®) and seasonal influenza vaccine 2009/2010 in renal transplant recipients and in hemodialysis patients. Med Microbiol Immunol 2012;201(3):297–302.

91. Madan RP, Tan M, Fernandez-Sesma A, et al. A prospective, comparative study of the immune response to inactivated influenza vaccine in pediatric liver transplant recipients and their healthy siblings. Clin Infect Dis 2008;46(5):712–8.
92. GiaQuinta S, Michaels MG, McCullers JA, et al. Randomized, double-blind comparison of standard-dose vs. high-dose trivalent inactivated influenza vaccine in pediatric solid organ transplant patients. Pediatr Transplant 2015;19(2):219–28.

93. Karbasi-Afsahr R, Izadi M, Fazel M, et al. Response of transplant recipients to influenza vaccine based on type of immunosuppression: a meta-analysis. Saudi J Kidney Dis Transpl 2015;26(5):877–83.

94. Brakemeier S, Schweiger B, Lachmann N, et al. Immune response to an adjuvanted influenza A H1N1 vaccine (Pandemrix(R)) in renal transplant recipients. Nephrol Dial Transplant 2012;27(1):423–8.

95. Fairhead T, Hendren E, Tinckam K, et al. Poor seroprotection but allosensitization after adjuvanted pandemic influenza H1N1 vaccine in kidney transplant recipients. Transpl Infect Dis 2012;14(6):575–83.

96. Katerinis I, Hadaya K, Duquesnoy R, et al. Response of transplant recipients to influenza vaccine on the risk of rejection in solid organ transplant recipients. Am J Transplant 2011;11(8):1727–33.

97. Cohet C, Haguinet F, Dos Santos G, et al. Effect of the adjuvanted (AS03) A/H1N1 2009 pandemic influenza vaccine on the risk of rejection in solid organ transplant recipients in England: a self-controlled case series. BMJ Open 2016;6(1):e009264.

98. Dos Santos G, Haguinet F, Cohet C, et al. Risk of solid organ transplant rejection following vaccination with seasonal trivalent inactivated influenza vaccines in England: a self-controlled case-series. Vaccine 2016;34(31):3598–606.

99. Roll D, Ammer J, Holler B, et al. Vaccination against pandemic H1N1 (2009) in patients after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Infection 2012;40(2):153–61.

100. Yalcin SS, Kondoiot M, Albayrak N, et al. Serological response to influenza vaccine after hematopoietic stem cell transplantation. Ann Hematol 2010;89(9):913–8.

101. Halasa NB, Savani BN, Asokan I, et al. Randomized, double blind, study of the safety and immunogenicity of standard-dose trivalent inactivated influenza vaccine versus high-dose trivalent inactivated influenza vaccine in adult hematopoietic stem cell transplant patients. Biol Blood Marrow Transplant 2016;22(3):528–35.

102. Ison MG, Szakaly P, Shapira MY, et al. Efficacy and safety of oral oseltamivir for influenza prophylaxis in transplant recipients. Antivir Ther 2012;17(6):955–64.

103. Yue MC, Collins JT, Subramoniapillai E, et al. Successful use of oseltamivir prophylaxis in managing a nosocomial outbreak of influenza A in a hematopoietic and allogeneic stem cell transplant unit. Asia Pac J Clin Oncol 2017;13(1):37–43.

104. Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis 2014;59(5 Suppl):S344–51.

105. Paulsen & Danziger-Isakov LA, Husain S, Mooney ML, et al. The novel 2009 H1N1 influenza virus pandemic: unique considerations for programs in cardiothoracic transplantation. J Heart Lung Transplant 2009;28(12):1341–7.

106. Fox BD, Raviv Y, Rozengarten D, et al. Pandemic influenza (H1N1): impact on lung transplant recipients and candidates. J Heart Lung Transplant 2010;29(9):1034–8.

107. Ison MG, Sharma A, Shepard JA, et al. Outcome of influenza infection managed with oseltamivir in lung transplant recipients. J Heart Lung Transplant 2008;27(3):282–8.

108. Medeiros R, Rameix-Welki MA, Lorin V, et al. Failure of zanamivir therapy for pneumonia in a bone-marrow transplant recipient infected by a zanamivir-sensitive influenza A (H1N1) virus. Antivir Ther 2007;12(4):571–6.

109. Chan-Tack KM, Kim C, Moruf A, et al. Clinical experience with intravenous zanamivir under an emergency IND program in the United States (2011-2014). Antivir Ther 2015;20(5):561–4.

110. Marty FM, Vidal-Puigserver J, Clark C, et al. Intra-venous zanamivir or oral oseltamivir for hospitalised patients with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial. Lancet Respir Med 2017;5(2):135–46.

111. Hikita T, Kikita H, Kikita F, et al. Clinical effectiveness of peramivir in comparison with other neuraminidase inhibitors in pediatric influenza patients and candidates. J Heart Lung Transplant 2012;2012;21(3):E153–7.
117. Triana-Baltzer GB, Gubareva LV, Klímov AI, et al. Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein. PLoS One 2009;4(11):e7838.

118. Triana-Baltzer GB, Gubareva LV, Nichols JM, et al. Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein. PLoS One 2009;4(11):e7788.

119. Ison MG, Green MD. Adenovirus in solid organ transplant recipients. Am J Transplant 2009;9(Suppl 4):S161–5.

120. Admiraal R, de Koning CCH, Lindemans CA, et al. Association of adenovirus infection in adult lung transplant recipients. J Heart Lung Transplant 2006;25(12):1441–6.

121. Patil RR, Hodinka RL, Kajon AE, et al. A case of adenovirus viremia in a pediatric liver transplant recipient with neutropenia and lymphopenia: who and when should we treat? J Pediatr Infect Dis Soc 2015;4(1):e1–5.

122. Hubschman J, Fritsch S, Zoellner AK, et al. Occurrence, risk factors and outcome of adenovirus infection in adult recipients of allogeneic hematopoietic stem cell transplantation. J Clin Virol 2016;82:33–40.

123. Robin M, Marque-Juillet S, Sicieux C, et al. Disseminated adenovirus infections after allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcome. Haematologica 2007;92(9):1254–7.

124. Ljungman P, Ribaud P, Eyrich M, et al. Cidofovir for adenovirus infections in immunocompromised patients with sustained adenovirus viremia. Transpl Infect Dis 2010;12(5):465–9.

125. Humar A, Doucette K, Kumar D, et al. Assessment of adenovirus infection in adult lung transplant recipients using molecular surveillance. J Heart Lung Transplant 2006;25(12):1441–6.

126. Pinchoff RJ, Kaufman SS, Magid MS, et al. Adenovirus infection in pediatric small bowel transplant recipients. Transplantation 2003;76(1):183–9.

127. Nanmoku K, Ishikawa N, Kurosawa A, et al. Clinical characteristics and outcomes of adenovirus infection of the urinary tract after renal transplantation. Transpl Infect Dis 2016;18(5):756–60.

128. Shirali GS, Ni J, Chinnock RE, et al. Association of viral genome with graft loss in children after cardiac transplantation. N Engl J Med 2001;344(20):1498–503.

129. Doan ML, Mallory GB, Kaplan SL, et al. Treatment of adenovirus pneumonia with cidofovir in pediatric lung transplant recipients. J Heart Lung Transplant 2007;26(9):883–9.

130. Schultze-Florey RE, Tischer S, Schwerk N, et al. Monitoring of adenovirus (ADV)-specific T cells in a boy with ADV pneumonia and disseminated disease after lung transplantation. Transpl Infect Dis 2016;18(5):756–60.

131. Bridges ND, Spray TL, Collins MH, et al. Adenovirus infection in the lung results in graft failure after lung transplantation. J Thorac Cardiovasc Surg 1998;116(4):617–23.

132. Ohori NP, Michaels MG, Jaffe R, et al. Adenovirus pneumonia in lung transplant recipients. Hum Pathol 1995;26(10):1073–9.

133. Omar H, Yun Z, Lewensohn-Fuchs I, et al. Poor outcome of adenovirus infections in adult hematopoietic stem cell transplant patients with sustained adenovirus viremia. Transpl Infect Dis 2010;12(5):465–9.

134. Hubmann M, Fritsch S, Zoellner AK, et al. Monitoring of adenovirus (ADV)-specific T cells in children with neutropenia and lymphopenia: who and when should we treat? J Pediatr Infect Dis Soc 2015;4(1):e1–5.

135. Ljungman P, Ribaud P, Eyrich M, et al. Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation: a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2003;31(6):481–6.

136. Neofytos D, Ojha A, Mookerjee B, et al. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised children. Pediatrics 2002;110(1 Pt 1):e9.

137. Bridges ND, Spray TL, Collins MH, et al. Adenovirus infection in the lung results in graft failure after lung transplantation. J Thorac Cardiovasc Surg 1998;116(4):617–23.

138. Grimley MS, Chemaly RF, Englund JA, et al. Brincidofovir for asymptomatic adenovirus viremia in pediatric and adult allogeneic hematopoietic cell transplant recipients: a randomized placebo-controlled phase II trial. Biol Blood Marrow Transplant 2017;23(3):512–21.

139. Doan ML, Mallory GB, Kaplan SL, et al. Treatment of adenovirus pneumonia with cidofovir in pediatric lung transplant recipients. J Heart Lung Transplant 2007;26(9):883–9.

140. Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 2006;134(1):64–76.
143. Feucht J, Opherk K, Lang P, et al. Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood 2015;125(12):1986–94.

144. Moss P, Rickinson A. Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 2005;5(1):9–20.

145. Apalsch AM, Green M, Ledesma-Medina J, et al. Parainfluenza and influenza virus infections in pediatric organ transplant recipients. Clin Infect Dis 1995;20(2):394–9.

146. Helanterä I, Anttila VJ, Loginov R, et al. Parainfluenza 3 infections early after kidney or simultaneous pancreas-kidney transplantation. Am J Transplant 2017;17(3):809–12.

147. Nichols WG, Corey L, Gooley T, et al. Parainfluenza virus infections after hematopoietic stem cell transplantation: risk factors, response to antiviral therapy, and effect on transplant outcome. Blood 2001;98(3):573–8.

148. Wendt CH, Weisdorf DJ, Jordan MC, et al. Parainfluenza virus respiratory infection after bone marrow transplantation. N Engl J Med 1992;326(14):921–6.

149. Ustun C, Slaby J, Shanley RM, et al. Human parainfluenza virus type 3 infection after stem cell transplants. J Heart Lung Transplant 2005;24(11):1891–9.

150. Schiffer JT, Kirby K, Sandmaier B, et al. Timing and severity of community acquired respiratory virus infections after myeloablative versus nonmyeloablative hematopoietic stem cell transplantation. Haematologica 2009;94(8):1101–8.

151. Chemaly RF, Hanmod SS, Rathod DB, et al. The characteristics and outcomes of parainfluenza virus infections in 200 patients with leukemia or recipients of hematopoietic stem cell transplantation. Blood 2012;119(12):2738–45 [quiz: 2969].

152. Seo S, Xie H, Campbell AP, et al. Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplantation: viral detection in the lung predicts outcome. Clin Infect Dis 2014;58(10):1357–68.

153. Chakrabarti S, Collingham KE, Holder K, et al. Parainfluenza virus type 3 infections in hematopoietic stem cell transplant recipients: response to ribavirin therapy. Clin Infect Dis 2000;31(6):1516–8.

154. Elizaga J, Olavarria E, Apperley J, et al. Parainfluenza virus 3 infection after stem cell transplant: relevance to outcome of rapid diagnosis and ribavirin treatment. Clin Infect Dis 2001;32(3):413–8.

155. Park SY, Sung H, Park KT, et al. Parainfluenza virus 3 pneumonia in a kidney transplant recipient. Transpl Infect Dis 2009;11(4):333–6.

156. Drozd DR, Limaye AP, Moss RB, et al. DAS181 treatment of severe parainfluenza type 3 pneumonia in a lung transplant recipient. Transpl Infect Dis 2013;15(1):E28–32.

157. Guzman-Suarez BB, Buckley MW, Gilmore ET, et al. Clinical potential of DAS181 for treatment of parainfluenza-3 infections in transplant recipients. Transpl Infect Dis 2012;14(4):427–33.

158. Chen YB, Driscoll JP, McAfee SL, et al. Treatment of parainfluenza virus 3 infection with DAS181 in a patient after allogeneic stem cell transplantation. Clin Infect Dis 2011;53(7):e77–80.

159. Salvatore M, Satlin MJ, Jacobs SE, et al. DAS181 for treatment of parainfluenza virus infections in hematopoietic stem cell transplant recipients at a single center. Biol Blood Marrow Transplant 2016;22(5):965–70.

160. Bajimaya S, Hayashi T, Frankl T, et al. Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology 2017;501:127–35.

161. McLaughlin LP, Lang H, Williams E, et al. Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy 2016;18(12):1515–24.

162. Niggli F, Huber LC, Benden C, et al. Human metapneumovirus in lung transplant recipients: characteristics and outcomes. Infect Dis (London) 2016;48(11–12):852–6.

163. Larcher C, Geltner C, Fischer H, et al. Human metapneumovirus infection in lung transplant recipients: clinical presentation and epidemiology. J Heart Lung Transplant 2005;24(11):1891–901.

164. Shahda S, Carlos WG, Kiel PJ, et al. The human metapneumovirus: a case series and review of the literature. Transpl Infect Dis 2011;13(3):324–8.

165. Shah DA, Shah PK, Azzi JM, et al. Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: a systematic review. Cancer Lett 2016;379(1):100–6.

166. Oliveira R, Machado A, Tateno A, et al. Frequency of human metapneumovirus infection in hematopoietic SCT recipients during 3 consecutive years. Bone Marrow Transplant 2008;42(4):265–9.

167. Renaud C, Xie H, Seo S, et al. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol Blood Marrow Transplant 2013;19(8):1220–6.

168. Seo S, Gooley TA, Kuypers JM, et al. Human metapneumovirus infections following hematopoietic cell transplantation: factors associated with disease progression. Clin Infect Dis 2016;63(2):178–85.

169. Wyde PR, Chaty SN, Jewell AM, et al. Comparison of the inhibition of human metapneumovirus and respiratory syncytial virus by ribavirin and immune serum globulin in vitro. Antiviral Res 2003;60(1):51–9.
transplant recipients with paramyxovirus infections. Antivir Ther 2011;16(5):733–40.

171. Raza K, Ismailjee SB, Crespo M, et al. Successful outcome of human metapneumovirus (hMPV) pneumonia in a lung transplant recipient treated with intravenous ribavirin. J Heart Lung Transplant 2007;26(8):862–4.

172. Park SY, Baek S, Lee SO, et al. Efficacy of oral ribavirin in hematologic disease patients with paramyxovirus infection: analytic strategy using propensity scores. Antimicrob Agents Chemother 2013;57(2):983–9.

173. Tzannou INS, Misra A, Katari U, et al. Adoptive T-cell therapy to prevent and treat human metapneumovirus (hMPV) infections post hematopoietic stem cell transplant (HSCT). Biol Blood Marrow Transplant 2015;21(2):S170.

174. Hamelin ME, Gagnon C, Prince GA, et al. Prophylaxis and therapeutic benefits of a monoclonal antibody against the fusion protein of human metapneumovirus in a mouse model. Antiviral Res 2010;88(1):31–7.

175. Potena L, Holweg CT, Vana ML, et al. Frequent occult infection with cytomegalovirus in cardiac transplant recipients despite antiviral prophylaxis. J Clin Microbiol 2007;45(6):1804–10.

176. Torres HA, Aguiler A, Safdar A, et al. Fatal cytomegalovirus pneumonia in patients with haematological malignancies: an autopsy-based case-control study. Clin Microbiol Infect 2008;14(12):1160–6.

177. Beam E, Lesnick T, Kremers W, et al. Cytomegalovirus disease is associated with higher all-cause mortality after lung transplantation despite extended antiviral prophylaxis. Clin Transplant 2015;30(3):270–8.

178. Kotton CN, Kumar D, Caliendo AM, et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation 2013;96(4):333–60.

179. Mitsani D, Nguyen MH, Kwak EJ, et al. Cytomegalovirus disease among donor-positive/recipient-negative lung transplant recipients in the era of ganciclovir prophylaxis. J Heart Lung Transplant 2010;29(9):1014–20.

180. Ljungman P, Boeckh M, Hirsch HH, et al. Definitions of cytomegalovirus infection and disease in transplant patients for use in clinical trials. Clin Infect Dis 2017;64(1):87–91.

181. Boeckh M, Stevens-Ayers T, Travi G, et al. Cytomegalovirus (CMV) DNA quantitation in bronchoalveolar lavage fluid from hematopoietic stem cell transplant recipients with CMV pneumonia. J Infect Dis 2017;215(10):1514–22.

182. Santos CA, Brennan DC, Yusen RD, et al. Incidence, risk factors and outcomes of delayed-onset cytomegalovirus disease in a large retrospective cohort of lung transplant recipients. Transplantation 2015;99(8):1658–66.

183. Awori Hayanga JW, Aboagye JK, Shigemura N, et al. Airway complications after lung transplantation: contemporary survival and outcomes. J Heart Lung Transplant 2016;35(10):1206–11.

184. Johansson I, Martensson N, Nystrom U, et al. Lower incidence of CMV infection and acute rejections with valganciclovir prophylaxis in lung transplant recipients. BMC Infect Dis 2013;13:582.

185. Erard V, Guthrie KA, Seo S, et al. Reduced mortality of cytomegalovirus pneumonia after hematopoietic cell transplantation due to antiviral therapy and changes in transplantation practices. Clin Infect Dis 2015;61(1):31–9.

186. Konoplev S, Champlin RE, Giralt S, et al. Cytomegalovirus pneumonia in adult autologous blood and marrow transplant recipients. Bone Marrow Transplant 2001;27(8):877–81.

187. Teira P, Bagiwalla M, Ramanathan M, et al. Early cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: a CIBMTR analysis. Blood 2016;127(20):2427–38.

188. Alexander BT, Hladnik LM, Augustin KM, et al. Use of cytomegalovirus intravenous immune globulin for the adjunctive treatment of cytomegalovirus in hematopoietic stem cell transplant recipients. Pharmacotherapy 2010;30(6):554–61.

189. Limaye AP, Ragh G, Koelle DM, et al. High incidence of ganciclovir-resistant cytomegalovirus infection among lung transplant recipients receiving preemptive therapy. J Infect Dis 2002;185(1):20–7.

190. Wiita AP, Robinin N, Khan Y, et al. Cytomegalovirus disease and infection in lung transplant recipients in the setting of planned indefinite ganciclovir prophylaxis. Transpl Infect Dis 2012;14(3):248–58.

191. Lopez Garcia-Gallo C, Garcia Fadul C, Laporta R, et al. Cytomegalovirus immunoglobulin for prophylaxis and treatment of cytomegalovirus infection in the (Val)ganciclovir era: a single-center experience. Ann Transplant 2015;20:661–6.

192. Ariza-Heredia EJ, Neshor L, Chemaly RF. Cytomegalovirus diseases after hematopoietic stem cell transplantation: a mini-review. Cancer Lett 2014;342(1):1–8.

193. Ljungman P, Hakkii M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin North Am 2011;25(1):151–69.

194. Strueber M, Warnecke G, Fuge J, et al. Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant 2016;16(11):3171–80.

195. Ritta M, Costa C, Solodoro P, et al. Everolimus-based immunosuppressive regimens in lung transplant recipients: impact on CMV infection. Antiviral Res 2015;113:19–26.

196. Vigan M, Dengler T, Mattei MF, et al. Lower incidence of cytomegalovirus infection with everolimus.
versus mycophenolate mofetil in de novo cardiac transplant recipients: a randomized, multicenter study. Transpl Infect Dis 2010;12(1):23–30.

197. Kobashigawa J, Ross H, Bara C, et al. Everolimus is associated with a reduced incidence of cytomegalovirus infection following de novo cardiac transplantation. Transpl Infect Dis 2013;15(2):150–62.

198. Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006;6(1):169–77.

199. de Pablo A, Santos F, Sole A, et al. Recommendations on the use of everolimus in lung transplantation. Transplant Rev (Orlando) 2013;27(1):9–16.

200. Torre-Cisneros J, Aguado JM, Caston JJ, et al. Management of cytomegalovirus infection in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev (Orlando) 2016;30(3):119–43.

201. Schleiss MR. Cytomegalovirus vaccines under clinical development. J Virus Erad 2016;2(4):198–207.

202. Mori T, Kanda Y, Takenaka K, et al. Safety of ASP0113, a cytomegalovirus DNA vaccine, in recipients undergoing allogeneic hematopoietic cell transplantation: an open-label phase 2 trial. Int J Hematol 2017;105(2):206–12.

203. Nakamura R, La Rosa C, Longmate J, et al. Viralemia, immunogenicity, and survival outcomes of cytomegalovirus chimeric epitope vaccine supplemented with PF03512676 (CMVPepVax) in allogeneic haemopoietic stem-cell transplantation: randomised phase 1b trial. Int J Hematol 2016;105(2):e87–98.

204. Griffiths PD, Stanton A, McCarrell E, et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 2011;377(9773):1256–63.

205. Asberg A, Humar A, Rollag H, et al. Oral valganciclovir is noninferior to intravenous ganciclovir for the treatment of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant 2007;7(9):2106–13.

206. Schulz U, Solidoro P, Muller V, et al. CMV immunoglobulins for the treatment of CMV infections in thoracic transplant recipients. Transplantation 2016;100(Suppl 3):S5–10.

207. Chemaly RF, Ullmann AJ, Stoelben S, et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med 2014;370(19):1781–9.

208. Stoelben S, Arns W, Renders L, et al. Preemptive treatment of cytomegalovirus infection in kidney transplant recipients with letermovir: results of a phase 2a study. Transpl Int 2014;27(1):77–86.

209. Marty FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis 2011;11(4):284–92.

210. Winston DJ, Saliba F, Blumberg E, et al. Efficacy and safety of maribavir dosed at 100 mg orally twice daily for the prevention of cytomegalovirus disease in liver transplant recipients: a randomised, double-blind, multicenter controlled trial. Am J Transplant 2012;12(11):3021–30.

211. Marty FM, Winston DJ, Rowlsey SD, et al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med 2013;369(13):1227–36.

212. Brestrich G, Zwinger S, Fischer A, et al. Adaptive T-cell therapy of a lung transplanted patient with severe CMV disease and resistance to antiviral therapy. Am J Transplant 2009;9(7):1679–84.

213. Neuenhahn M, Albrecht J, Onderdel M, et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia 2017. [Epub ahead of print].

214. Leen AM, Bollard CM, Mendizabal AM, et al. Multi-center study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 2013;121(26):5113–23.

215. Smyth RL, Higenbottam TW, Scott JP, et al. Herpes simplex virus infection in heart-lung transplant recipients. Transplantation 1990;49(4):735–9.

216. Cunha BA, Eisenstein LE, Dillard T, et al. Herpes simplex virus (HSV) pneumonia in a heart transplant patient. Transpl Infect Dis 2011;13(Suppl 4):735–9.

217. Cunha BA, Eisenstein LE, Dillard T, et al. Herpes simplex virus (HSV) pneumonia in a heart transplant: diagnosis and therapy. Heart Lung 2007;36(1):72–8.

218. Frangou H, Wills M, Crossno C, et al. Acyclovir-resistant herpes simplex virus pneumonia post-unrelated stem cell transplantation: a word of caution. Pediatr Transplant 2007;11(8):942–4.

219. Wilck MB, Zuckerman RA. Herpes simplex virus in solid organ transplantation. Am J Transplant 2013;13(Suppl 4):121–7.

220. Pergam SA, Limaye AP. Varicella zoster virus in solid organ transplantation. Am J Transplant 2013;13(Suppl 4):138–46.

221. Arvin AM. Varicella-zoster virus: pathogenesis, immunity, and clinical management in hematopoietic cell transplant recipients. Biol Blood Marrow Transplant 2000;6(3):219–30.