Inflammatory pseudotumor-like follicular dendritic cell sarcoma: A brief report of two cases

Bi-Xi Zhang, Zhi-Hong Chen, Yu Liu, Yuan-Jun Zeng, Yan-Chun Li

BACKGROUND
Follicular dendritic cell (FDC) sarcoma/tumor is a rare malignant tumor of follicular dendritic cells, which is considered a low-grade sarcoma that can involve lymph nodes or extranodal sites. Conventional FDC sarcomas are negative for Epstein-Barr virus (EBV), whereas the inflammatory pseudotumor-like variant consistently shows EBV in the neoplastic cells.

CASE SUMMARY
We report two cases of inflammatory pseudotumor-like FDC sarcoma in the liver that received 3D laparoscopic right hepatectomy and open right hepatectomy separately.

CONCLUSION
EBV probe-based in situ hybridization and detection of immunohistochemical markers of FDC play an important role in the diagnosis and differential diagnosis of inflammatory pseudotumor-like FDC sarcoma. Complete surgical excision combined with regional lymphadenectomy may be effective in reducing the postoperative recurrence and metastasis and improving long-term survival rates.

Key words: Inflammatory pseudotumor-like follicular dendritic cell sarcoma; Epstein-Barr virus; Liver; Spleen; Case report

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: There have been 48 previously reported cases of inflammatory pseudotumor-like follicular dendritic cell (FDC) sarcoma, which occurs almost exclusively in the liver and spleen. Here we report two cases of inflammatory pseudotumor-like FDC sarcoma in the liver that were treated by 3D laparoscopic right hepatectomy and open right hepatectomy separately.
INTRODUCTION

Follicular dendritic cell (FDC) sarcoma/tumor is a rare malignant tumor of follicular dendritic cells, which are mesenchymal cells in the lymphoid follicles with antigen presenting ability. It is considered a low-grade sarcoma that can involve lymph nodes or extranodal sites[1-5]. In 1996, Shek et al[6] reported the first case of primary FDC sarcoma in the liver. The histology was similar to an inflammatory pseudotumor and it was related to Epstein-Barr virus (EBV)-related clonal proliferation[1]. Inflammatory pseudotumor-like FDC sarcoma was first described as a distinctive variant of FDC sarcoma and associated with EBV in 2001[7]. There have been 48 previously reported cases of inflammatory pseudotumor-like FDC sarcoma, which occurs almost exclusively in the liver and spleen (Table 1). Ancillary tests, including detection of immunohistochemical markers of FDC such as CD21, CD23, or CD35 and EBV probe-based in situ hybridization, are required for this diagnosis. Here we report two cases of inflammatory pseudotumor-like FDC sarcoma in the liver that were treated by 3D laparoscopic right hepatectomy and open right hepatectomy separately.

CASE PRESENTATION

Chief complaints
Case 1: A 31-year-old woman was admitted to hospital for evaluation of a four-week history of anorexia.
Case 2: A 48-year-old man stumbled across a liver mass through a routine ultrasound examination.

History of present illness
Unremarkable.

History of past illness
Case 1: Her past medical history was chronic hepatitis B for more than 10 years without antiviral treatment.
Case 2: Unremarkable.

Personal and family history
Unremarkable.

Physical examination upon admission
Case 1: Physical examination revealed mild tenderness to palpation in the right upper quadrant.
Case 2: Physical examination was unremarkable.

Laboratory examinations
Case 1: Laboratory tests showed seropositivity for HBsAg, HBeAb, and HBCab. Furthermore, serum level of hepatitis B virus-DNA was lower than detection limit.
Case 2: Laboratory tests were unremarkable.

Imaging examinations
Case 1: Abdominal magnetic resonance imaging revealed two well-circumscribed masses in the right posterior lobe of the liver (Figure 1).
Case 2: An abdominal computed tomography examination revealed an ill-defined 10 cm mass in the right lobe of the liver accompanied with enlargement of hepatic portal lymph nodes (Figure 2).
Table 1 Review of inflammatory pseudotumor-like follicular dendritic cell tumor/sarcoma

Ref.	Sex/age	Location	Maximum diameter (cm)	Symptom	Treatment	Follow-up (mo)	Outcome
Li et al [13]	F/64	Spleen	7.2	Upper abdominal pain	Laparoscopic splenectomy	8	NED
M/61	Spleen	6.2	Asymptomatic	Laparoscopic splenectomy	16	NED	
F/42	Spleen	4	Left-sided flank pain	Laparoscopic splenectomy	9	NED	
F/57	Spleen	13.3	Upper abdominal pain	Laparoscopic splenectomy	4	LWD, pulmonary metastasis	
M/52	Spleen	2 masses: 3.7, 2.9	Back pain	Laparoscopic splenectomy	5	LWD, bone metastasis	
Hang et al [14]	M/57	Spleen	2.7	Asymptomatic	Laparoscopic partial splenectomy	9	NED
Ge et al [15]	F/54	Spleen	3.5	Left-sided flank pain	Splenectomy	10	NED
Pan et al [16]	M/79	Spleen	6	Asymptomatic	Splenectomy	18	NED
F/78	Colon	3.9	Abdominal discomfort, bloody stool	Polypectomy	5	NED	
Choe et al [17]	F/64	Spleen	5.5	Asymptomatic	Splenectomy	78	NED
F/72	Spleen	7.2	Asymptomatic	Splenectomy	18	NED	
F/53	Spleen	3.2	Asymptomatic	Splenectomy	13	NED	
M/76	Spleen	3.2	Asymptomatic	Splenectomy	8	NED	
M/72	Spleen	6	Asymptomatic	Splenectomy	18	NED	
M/75	Spleen	3.5	Abdominal pain	Splenectomy	30	NED	
Granados et al [18]	F/57	Liver	13	Abdominal pain, vomiting	Partial hepatectomy	24	NED
Cheuk et al [19]	F/19	Liver	12	Right upper quadrant pain, abdominal mass, weight loss	Partial hepatectomy	40	NED
F/56	Liver	15	Abdominal discomfort	Partial hepatectomy	56	LWD, recurrence in liver	
F/40	Liver	12.5	Upper abdominal pain, weight loss	Partial hepatectomy	108	LWD, intraabdominal recurrence	
F/49	Liver	4.2	Asymptomatic	Partial hepatectomy	9	NED	
M/37	Liver	15	Abdominal mass, weight loss	Partial hepatectomy	42	NED	
F/35	Liver	20	Abdominal discomfort, fever, weight loss	Partial hepatectomy	95	DOD, disseminated in liver and peritoneum	
F/31	Liver	15	Abdominal distension, weight loss	Partial hepatectomy	60	NED	
F/58	Spleen	22	Abdominal mass	Splenectomy	4	NED	
F/39	Spleen	7.5	Weight loss, fever	Splenectomy	2	LWD, persistent fever	
F/61	Spleen	3.5	Asymptomatic	Splenectomy	NA	NA	
F/49	Peri-pancreas	15	Abdominal distension	Whipple’s operation	NA	NA	
Li et al [19]	F/49	Spleen	4.7	Asymptomatic	Splenectomy	NA	NA
F/56	Spleen	8	Abdominal pain	Splenectomy	17	NED	
M/38	Liver	8.5	Anorexia	Partial hepatectomy	11	NED	
F/42	Liver	2 masses: 2, 1.7	Abdominal pain	Partial hepatectomy	36	NED	
Gender	Age	Location	Diagnostic Findings	Treatment	Outcome		
--------	-----	----------	---------------------	-----------	---------		
M/50	50	Spleen and liver	Spleen: 10, Liver: 3	Abdominal bloating	Splenectomy and partial hepatectomy	17	NED
F/39	39	Liver	9	Asymptomatic	Partial hepatectomy	84	NED
Chen et al[20]							
F/28	28	Liver	6	Abdominal pain, fatigue, anorexia	Partial hepatectomy	48	LWD, recurrence in liver
M/39	39	Spleen	7.4	Asymptomatic	Splenectomy	40	NED
M/48	48	Liver	23.3	Abdominal pain, fever, fatigue	Partial hepatectomy	23	NED
M/65	65	Spleen and liver	Spleen: 22.3, Liver: 5.8 (multi masses)	Abdominal pain, fever, fatigue, anorexia, weight loss	Splenectomy	2	DOD
F/51	51	Spleen	8.5	Weight loss	Splenectomy	19	NED
F/52	52	Spleen	0.9	Asymptomatic	Splenectomy	12	NED
Kitamura et al[21]							
F/74	74	Spleen	3.6	Asymptomatic	Splenectomy	24	NED
F/50	50	Spleen	6	Abdominal pain	Splenectomy	NA	NA
Bui et al[22]							
M/61	61	Spleen	10	Abdominal pain	Splenectomy	12	NED
Vardas et al[23]							
M/76	76	Spleen	3.2	Asymptomatic	Splenectomy	NA	NA
Kim et al[24]							
F/77	77	Spleen	8.5	Abdominal pain	Splenectomy	36	NED
Horiguchi et al[25]							
Present case							
F/31	31	Liver	2 masses: 3.5, 2.5	Anorexia	3D laparoscopic right hepatectomy	10	NED
M/48	48	Liver and hepatoduodenal ligament lymph node	Liver: 10 lymph node: 3.5	Asymptomatic	Open right hepatectomy, lymph node excision	2	NED

M: Male; F: Female; NED: No evidence of disease; DOD: Dead of disease; LWD: Live with disease; NA: Not available.

FINAL DIAGNOSIS

Case 1
EBV-positive inflammatory pseudotumor-like FDC sarcoma in the liver (Figure 3).

Case 2
EBV-positive inflammatory pseudotumor-like FDC sarcoma in the liver with hepatoduodenal ligament lymph node involvement (Figure 4).

TREATMENT

Case 1
3D laparoscopic right hepatectomy.

Case 2
Open right hepatectomy combined with regional lymphadenectomy.

OUTCOME AND FOLLOW-UP

Case 1
Follow-up for 10 mo showed no recurrence or metastasis.

Case 2
Follow-up for 2 mo showed no recurrence or metastasis.
DISCUSSION

FDC sarcoma is a neoplastic proliferation of spindled to ovoid cells exhibiting morphological and immunophenotypic features of FDCs. Histologically, FDC sarcomas are classified into two types: (A) Conventional FDC sarcoma consisting of spindled to ovoid cells forming fascicles, storiform arrays, whorls, diffuse sheets, or vague nodules with an array of small lymphocytes; and (B) Inflammatory pseudotumor-like FDC sarcoma composed of neoplastic spindled cells that are dispersed within a prominent lymphoplasmacytic infiltrate. To date, 48 cases of inflammatory pseudotumor-like FDC sarcoma have been reported in the English-language literature, located in the liver (16/48), spleen (32/48), colon (1/48), and peri-pancreas (1/48), respectively. These cases included 19 males and 29 females (male/female ratio of 1:1.5), with a mean age of 55 years (range, 19-79 years). Clinical manifestations include abdominal pain, abdominal bloating, abdominal mass, weight loss, fever, fatigue, and anorexia, but most cases are asymptomatic.

The origin of FDC sarcoma remains controversial. Phenotypic marker studies and in vitro experiments with fibroblast-like cell lines have developed FDCs from fibroblast-like cells. The neoplastic cells are often positive for FDC markers, such as CD21, CD23, and CD35, with the staining ranging from extensive to very local. FDCs appear to be closely related to bone marrow stromal progenitors, with several myofibroblast features. Two studies examining the transcriptional profile of FDC sarcoma have revealed: (A) A peculiar immunological microenvironment enriched in follicular helper T cells and Treg populations, with special relevance to the inhibitory immune receptor programmed cell death protein 1 and its ligands, programmed cell death-Ligand 1 and programmed cell death-Ligand 2; and (B) The highly specific expression of the genes encoding for FDC secreted peptide and serglycin.

Conventional FDC sarcomas are negative for EBV, whereas the inflammatory pseudotumor-like variant consistently shows EBV in the neoplastic cells. EBV-encoded small RNA was detected in both of the present cases by in situ hybridization. EBV-encoded latent membrane protein 1, which has been found to have an oncogenic role, has been identified in 74% (26/35) cases of inflammatory pseudotumor-like FDC sarcomas by immunohistochemical staining. Recently, Takeuchi et al. reported increased numbers of EBV-infected cells in IgG4-related lymphadenopathy, compared with other reactive lymphadenopathy or extranodal IgG4-related disease, which suggests that there may be a relationship between IgG4-related disease and EBV. Interestingly, Choe et al. reported that significant numbers of IgG4-positive plasma cells were found in six cases of EBV-positive inflammatory pseudotumor-like FDC sarcoma of the spleen, suggesting that EBV plays a critical role in inflammatory pseudotumor-like FDC sarcoma and IgG4-related sclerosing disease. Generally, the pathogenic mechanism of EBV in inflammatory pseudotumor-like FDC sarcoma remains unclear and further investigation is required.

FDC sarcoma is usually treated by complete surgical excision, with or without adjuvant radiotherapy or chemotherapy. A pooled analysis of the literature revealed local recurrence and distant metastasis rates of 28% and 27%, respectively. Large tumor size (≥ 6 cm), coagulative necrosis, high mitotic count (≥ 5 mitoses per 10 high-power fields), and significant cytological atypia are associated with a worse prognosis. Regarding the prognosis of patients with inflammatory pseudotumor-like FDC sarcoma, based on the literature reports of inflammatory pseudotumor-like FDC sarcoma with a median follow-up period of 17 mo, 35 patients had no evidence of disease. Five patients exhibited distant metastasis and two had local recurrence, with traits similar to large tumors and multiple masses. One of the current cases presented with liver and hepatoduodenal ligament lymph node involvement.
suggestions that inflammatory pseudotumor-like FDC sarcoma presents an increased risk of lymph node metastasis. Complete surgical excision combined with regional lymphadenectomy may be effective in reducing the postoperative recurrence and metastasis and improving the long-term survival rates.

CONCLUSION

In conclusion, there is little specificity in the clinical manifestations of inflammatory pseudotumor-like FDC sarcoma. EBV probe-based in situ hybridization and detection of immunohistochemical markers of FDC play important roles in the diagnosis and differential diagnosis of inflammatory pseudotumor-like FDC sarcoma. Radical surgical resection is the main therapeutic intervention for inflammatory pseudotumor-like FDC sarcoma, especially for cases with lymph node involvement, and patients require long-term post-surgical follow-up.
Figure 3 Epstein-Barr virus-positive inflammatory pseudotumor-like follicular dendritic cell sarcoma in the liver. A: Gross picture of an inflammatory pseudotumor-like follicular dendritic cell sarcoma of the liver. A well-circumscribed solid nodule was found in the liver. Note the grayish-white colored and soft cut surface with focal hemorrhage (arrow); B: Haematoxylin and eosin stained image showing that the tumor tissue had a meshwork-like architecture (× 200); C: On high-power field, the tumor was composed of oval to spindle cells with vesicular chromatin and distinct nucleoli. There was less degree of atypia. The background showed abundant lymphocytes and plasma cells (× 400); D: CD21 was detected on the membrane of almost all of tumor cells by immunohistochemistry (× 100); E: Smooth muscle actin was detected in the cytoplasm of a part of tumor cells by immunohistochemistry (× 100); F: Epstein-Barr virus-encoded small RNA-based in situ hybridization demonstrated positive nuclei of the neoplastic dendritic cells (× 200); G: Ki-67 was detected in the nuclei of almost all of tumor cells by immunohistochemistry (30%; × 100).
Figure 4 Epstein-Barr virus positive inflammatory pseudotumor-like follicular dendritic cell sarcoma in the liver with hepatoduodenal ligament lymph node involvement. A: Gross picture of an inflammatory pseudotumor-like follicular dendritic cell sarcoma of the liver. A large and multinodular confluent tumor was found in the liver (arrow); B: Histologic sections of follicular dendritic cell sarcoma showing an unencapsulated tumor (left) with a sharp margin from the adjacent liver parenchyma (right). The tumor tissue was arranged in whorls (× 40); C: On high-power field, the tumor was composed of oval to spindle cells with vesicular chromatin and distinct nucleoli. There was less degree of atypia. The background showed abundant lymphocytes and plasma cells (× 400); D: In the hepatoduodenal ligament lymph node, lymphoid follicles were pushed aside by tumor tissue (× 100); E: CD21 was detected on the membrane of almost all of tumor cells by immunohistochemistry (× 100); F: S100 was detected in the membrane and cytoplasm of almost all of tumor cells by immunohistochemistry (× 100); G: Epstein-Barr virus-encoded small RNA in situ hybridization demonstrated positive nuclei of the neoplastic dendritic cells (× 100); H: Ki-67 was detected in the nuclei of almost all of tumor cells (20%; × 100).

REFERENCES

1. Monda L, Warnke R, Rosai J. A primary lymph node malignancy with features suggestive of dendritic reticulum cell differentiation. A report of 4 cases. *Am J Pathol* 1986; 122: 562-572 [PMID: 2420185]
2. Chan JK, Fletcher CD, Naylor SJ, Cooper K. Follicular dendritic cell sarcoma. Clinicopathologic analysis of 17 cases suggesting a malignant potential higher than currently recognized. *Cancer* 1997; 79: 294-313 [PMID: 9010103 DOI: 10.1002/(sici)1097-0142(19970115)79:2<294::aid-cncr13>3.0.co;2-w]
3. Steven HS, Elias C, Nancy LH, Elaine SJ, Stefano AP, Harald S, Jurgen T, Daniel AA, Robert PH, Michelle MLB, Attilio O, Reiner S. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC press 2017; 476-479
4. Duan GJ, Wu F, Zhu J, Guo DY, Zhang R, Shen LL, Wang SH, Li Q, Xiao HL, Mou JH, Yan XC. Extranodal follicular dendritic cell sarcoma of the pharyngeal region: a potential diagnostic pitfall, with literature review. *Am J Clin Pathol* 2010; 133: 49-58 [PMID: 20632358 DOI: 10.1309/AECP7U5YVISD1AY5NW]
5. Saygin C, Uzunsalan D, Ozgurolgu M, Senocak M, Tuzumer N. Dendritic cell sarcoma: a pooled analysis including 462 cases with presentation of our case series. *Crit Rev Oncol Hematol* 2013; 88: 253-271 [PMID: 23755890 DOI: 10.1016/j.critrevonc.2013.05.006]
6. Cheuk W, Ho FC, Ng JO, Chan AC, Ma L, Srivastava G. Follicular dendritic cell tumor of the liver. Evidence for an Epstein-Barr virus-related clonal proliferation of follicular dendritic cells. *Am J Surg Pathol* 1996; 20: 313-324 [PMID: 8772785 DOI: 10.1097/00000478-199603000-00008]
7. Cheuk W, Chan JK, Chek TW, Chang JH, Tsou MH, Yuen NW, Ng WF, Chan AC, Prat J. Inflammatory pseudotumor-like follicular dendritic cell tumor: a distinctive low-grade malignant intra-abdominal neoplasm with consistent Epstein-Barr virus association. *Am J Surg Pathol* 2001; 25: 721-731 [PMID: 11395459 DOI: 10.1097/00000478-200106000-00003]
8. van Nierop K, de Groot C. Human follicular dendritic cells: function, origin and development. *Semin Immunol* 2002; 14: 251-257 [PMID: 12163300 DOI: 10.1016/s1044-5323(02)00057-x]
9. Muñoz-Fernández R, Blanco FJ, Frecha C, Martín F, Kimatrai M, Abadía-Molina AC, García-Pacheco
Zhang BX et al. Inflammatory pseudotumor-like follicular dendritic cell sarcoma

JM, Olivares EG. Follicular dendritic cells are related to bone marrow stromal cell progenitors and to myofibroblasts. *J Immunol* 2006; 177: 280-289 [PMID: 16785523 DOI: 10.4049/jimmunol.177.1.280]

Hu QZ, Zhao WH. Critical role of PD-1/PD-L1 pathway in generation and function of follicular regulatory T cells. *Cell Mol Immunol* 2013; 10: 286-288 [PMID: 24705309 DOI: 10.1038/cmi.2013.15]

Lorenzi L, Döring C, Rausch T, Benes V, Lonardi S, Bugatti M, Campo E, Cabeças J, Simonitsch-Klapp I, Bargas A, Mehta J, Agostinelli C, Pileri SA, Facchetti F, Hansmann ML, Hartmann S. Identification of novel follicular dendritic cell sarcoma markers, FDCSP and SRGN, by whole transcriptome sequencing. *Oncotarget* 2017; 8: 16463-16472 [PMID: 28145886 DOI: 10.18632/oncotarget.14864]

Takeuchi M, Sato Y, Yasui H, Oyazawa H, Ohno K, Takata K, Gion Y, Orita Y, Tachibana T, Isot T, Asano N, Nakamura S, Swardh SL, Yoshino T. Epstein-Barr virus-infected cells in IgG4-related lymphadenopathy with comparison with extranodal IgG4-related disease. *Am J Surg Pathol* 2014; 38: 946-955 [PMID: 24705309 DOI: 10.1097/PAS.0000000000000206]

Li X, Shi Z, You R, Li Y, Cao D, Lin R, Huang X. Inflammatory Pseudotumor-Like Follicular Dendritic Cell Sarcoma of the Spleen: Computed Tomography Imaging Characteristics in 5 Patients. *J Comput Assist Tomogr* 2018; 42: 399-404 [PMID: 29287022 DOI: 10.1097/RCT.0000000000000710]

Hung JF, Wang LC, Lai CR. Cytological features of inflammatory pseudotumor-like follicular dendritic cell sarcoma of spleen: A case report. *Diagn Cytopathol* 2017; 45: 230-234 [PMID: 27775241 DOI: 10.1002/dc.23626]

Ge R, Liu C, Yin X, Chen J, Zhou X, Huang C, Yu W, Shen X. Clinicopathologic characteristics of inflammatory pseudotumor-like follicular dendritic cell sarcoma. *Int J Clin Exp Pathol* 2014; 7: 2421-2429 [PMID: 24966952]

Pan ST, Cheng CY, Lee NS, Liang PL, Chuang SS. Follicular Dendritic Cell Sarcoma of the Inflammatory Pseudotumor-Like Variant Presenting as a Colonic Polyp. *Korean J Pathol* 2014; 48: 140-145 [PMID: 24868227 DOI: 10.4112/KoreanJPathol.2014.48.2.140]

Choe JY, Cho H, Jeon YK, Yun JY, Kim YA, Kim HJ, Huh J, Lee H, Shin DH, Kim JE. Inflammatory pseudotumor-like follicular dendritic cell sarcoma of the spleen: a report of six cases with increased IgG4-positive plasma cells. *Pathol Int* 2013; 63: 245-251 [PMID: 23712452 DOI: 10.1111/pin.2013.63.issue-3]

Granados R, Aramburu JA, Rodriguez JM, Nieto MA. Cytopathology of a primary follicular dendritic cell sarcoma of the liver of the inflammatory pseudotumor-like type. *Diagn Cytopathol* 2008; 36: 42-46 [PMID: 18064686 DOI: 10.1002/dc.20744]

Li XQ, Cheuk W, Lam PW, Wang Z, Loong F, Yeong ML, Browett P, McCall J, Chan JK. Inflammatory pseudotumor-like follicular dendritic cell tumor of liver and spleen: granulomatous and eosinophil-rich variants mimicking inflammatory or infective lesions. *Am J Surg Pathol* 2014; 38: 646-653 [PMID: 24503752 DOI: 10.1097/PAS.0000000000000170]

Chen Y, Shi H, Li H, Zhen T, Han A. Clinicopathological features of inflammatory pseudotumor-like follicular dendritic cell tumour of the abdomen. *Histopathology* 2016; 68: 858-865 [PMID: 26332157 DOI: 10.1111/his.12851]

Kitamura Y, Takayama Y, Nishie A, Asayama Y, Ushijima Y, Fujita N, Morita K, Baba S, Kubo Y, Shirabe K, Honda H. Inflammatory Pseudotumor-like Follicular Dendritic Cell Tumor of the Spleen: Case Report and Review of the Literature. *Magn Reson Med Sci* 2015; 14: 347-354 [PMID: 25740238 DOI: 10.2463/mrms.2014-0052]

Bui PL, Vicens RA, Westin JR, Jensen CT. Multimodality imaging of Epstein-Barr virus-associated inflammatory pseudotumor-like follicular dendritic cell tumor of the spleen: case report and literature review. *Clin Imaging* 2015; 39: 525-528 [PMID: 25725946 DOI: 10.1016/j.clinimag.2014.12.021]

Vardas K, Mandanas D, Papadimitriou G, Kalatzis V, Kyriakopoulos G, Chantziara M, Exarhos D, Drakopoulos S. Splenic inflammatory pseudotumor-like follicular dendritic cell tumor. *Case Rep Oncol* 2014; 7: 410-416 [PMID: 25076893 DOI: 10.1159/000365000]

Kim HJ, Kim JE, Kang GH, Kim JY, Park K. Inflammatory Pseudotumor-like Follicular Dendritic Cell Tumor of the Spleen with Extensive Histiocytic Granulomas and Necrosis: A Case Report and Literature Review. *Korean J Pathol* 2013; 47: 599-602 [PMID: 24421858 DOI: 10.4132/KoreanPathol.2013.47.6.599]

Hiriguchi H, Matsui-Hiriguchi M, Sakata H, Ichinose M, Yamamoto T, Fujiwara M, Ohse H. Inflammatory pseudotumor-like follicular dendritic cell tumor of the spleen. *Pathol Int* 2004; 54: 124-131 [PMID: 14720144 DOI: 10.1111/j.1440-1827.2004.01589.x]
