COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model

Patrick Mellacher
Research question

How does the pandemic and (actually used or potential) containment policies shape outcomes in the following interconnected dimensions:

- Public health
- Economy
- Care work
- Leisure

→ Model-based approach to explain and project
Simple ABMs / SIR models

Predominant models (especially in the beginning): simple ABMs, SIR models

Easy to set up and understand, but RL-interactions are not random and other RL-characteristics hard to incorporate → possibly biased results
Complex ABMs

A recent generation of ABMs addresses these weaknesses:
E.g. Aleta et al. (2020), Bicher et al. (2020), Kerr et al. (2020)
Use statistical data to model households and work networks, (random) leisure interactions
Method and model

Integrated economic-epidemiological agent-based model (ABM)

→ A virtual economy called COVID-Town populated by virtual people and firms, aka „agents“

→ Agents differ wrt economic and epidemiological characteristics (social class, age, employment and family status)

→ Are connected in a social network and act according to boundedly rational rules (→ activity model)

→ Calibrated with empirical data (time use, demography, firm demography, household composition, wages, employment etc.)

→ Exposed to a COVID-19 outbreak and various policy scenarios
Epidemiological ABMs with economic part

• Vermeulen et al. (2020): impact on labor supply
• Silva et al. (2020): economic-epidemiological ABM resembling Brazil
• Dignum et al. (2020): Combines epidemiological, microeconomic, macroeconomic, cultural, transport, epistemic model
• Basurto et al. (2020): combines extended SIR-type epidemiological and agent-based macroeconomic models
• Delli Gatti and Reissl (2020): combines epidemiological ABM with the CATS macroeconomic ABM
Main differences to the ASSOCC model

- Higher number of agents (baseline calibration 82000 human agents) → allowing for (limited) replication of the empirical tendencies
- More/different agent heterogeneity (especially wrt workers)
- More focused towards the economy and heterogeneity in virus transmission
- Tried to calibrate as many parameters as possible empirically
- Less submodels (e.g. no cultural, needs model)
- Agents do not react endogenously to viral spread, endogenous reaction towards containment policies limited to economic sphere
The Model

• The model is discrete-time 1 day = 3 phases, week from Monday until Sunday
• People move to *explicitly modeled places* (e.g. workplace, hospital, school, home, leisure facility) and may become infected
• Model is developed specifically for COVID-19 → Stylized facts which are important in this pandemic are modeled explicitly (e.g. presence of *intergenerational households, retirement homes, leisure facilities* etc.)
Economic Model

Households

- Children
- Teachers
- Service Workers
- Firm owners

- Pensioners
- Blue-Collar Workers
- White-Collar Workers
- Health Care Workers

Schools

Government

Factories

Consumption goods market

Offices

Commercial Leisure Facilities

Hospitals
Economic Model

Leisure market:
Fully disaggregated, heterogeneous (wrt to attractiveness) firms engage in price competition

Consumption goods market:
Aggregated, human agents and government consume, two types of homogenous (wrt productivity) firms produce and are price takers

Three types of segregated labor markets
Activity model I

Home
- fm 3
- family member 1
- fm 2

Work / School
- colleague 1
- colleague 1
- customer

Leisure
- friend 1
- friend 2
- stranger
Activity Model II

Which phase?

- **Phase 1**
 - Agents go home
 - Care giver is updated
 - Shift 1 workers go to their workplace
 - Agents who did not do a nightshift and do not work make and try to execute leisure plans
 - Workers produce

- **Phase 2**
 - Agents go home
 - Shift 2 workers go to their workplace
 - Agents who do not work make and try to execute leisure plans
 - Agents receive income
 - Agents consume
 - Infections are processed
 - Disease progresses
 - Statistics are updated
 - Policies are updated

- **Night**
 - Agents go home
 - Night shift workers go to their workplace
 - Commercial leisure facilities set their prices in response to their visits in the last week
 - Firms hire or fire in response to their rate of profit in the last week

Start new day

(Only Sun)

(Only Mon-Fri)

Start new phase
Leisure behavior

Stay at home ? Meet a friend

Visit non-commercial leisure facility Visit commercial leisure facility

Heterogeneous preferences based on age-specific time use data
Epidemiological Model

Standard model from the literature (LMIC report of the Imperial College)
Infectiousness, detection rate are calibrated to match empirical data
Initial calibration

- Demography, household composition, observed leisure behavior (time use, number of friends), wages, wage replacement, employment, hospital capacities, retirement homes, company profits, taxes from German (mainly statistical) data

- Income of firm owners, consumption and government spending calibrated for a closed economy in circular flow with balanced budget (at least in t=0)

- Age-specific medical characteristics according to Imperial College (2020)

- 1 agent represents 1k real-world Germans
Epidemiological calibration

Challenge: several unknowns!

Known: reported infections and deaths
Reported infections are lagging and miss the dark figure
Deaths may be underreported (excess mortality!)

Approach: Assume that reported deaths equal actual deaths
(excess mortality in Germany during the first wave equals approximately the COVID-deaths)
Assume that RKI nowcasting eliminates the time lag problem and that the dark figure with respect to RKI nowcasting is constant
→ Find a dark figure for which simulated deaths fit to reported deaths and simulated infections fit to estimated infections
→ Model’s detection parameter has to reflect the dark figure
Validation

- COVID-Town loess
- COVID-Town quantile reg.
- Empirical

- COVID-Town quantile regression
- RKI Nowcast (estimated empirical) x 3

Day

Total dead in thousand

New daily infections in thousand
Let’s take a look at the model
Main results (first paper)

• Early introduction of containment measures key to control the virus

• German timing of lockdown measures minimized economic losses, but infections and deaths could have been lower, if the measures were introduced earlier.

• Anticyclical fiscal policy key to mitigate the economic fallout: keep employment up in lower risk sectors. Does not come at the cost of additional deaths
The Future

• Longer term scenarios: what if Germany had adopted another containment strategy?

• Inequality in economic and health outcomes

... possibly more
The End

More details and results: WP (MPRA, arxiv)
If you want to
• Stay in touch / collaborate → patrick.mellacher@uni-graz.at
• Follow updates → @Patrick_M_Econ
The End II

Thank you for your attention!

Looking forward to your comments and questions!
Epidemiological scenarios

Date	Baseline scenario	Rapid action	Delayed Action
02.03.2020 (day 0)	Increased sanitary standards at hospitals, isolation, family isolation, workplace isolation		
09.03.2020 (day 7)	-	schools, comm. leisure fac., SD	
16.03.2020 (day 14)	schools, comm. leisure fac., SD	contact ban, teleworking mandatory	
23.03.2020 (day 21)	contact ban, teleworking mandatory	-	schools, comm. leisure fac., SD
30.03.2020 (day 28)	-	-	contact ban, teleworking mandatory

Sources: Bundesregierung (2020a, 2020b), Welt (2020), Description: schools = schools closure, comm. Leisure fac. = commercial leisure facilities close, SD = social distancing
Results

	baseline	rapid action	delayed action
Dead in thousand	9 (5.656)	3.493 (2.661)	25.825 (14.034)
Consumption goods output lost in %	3.42 (0.17)	3.48 (0.09)	3.49 (0.41)
Fiscal policy scenarios

Zero-deficit: government purchases restricted to government savings
Fixed government purchase: constant throughout the simulation
