Sensitivity of the Jet Quenching Observables to
the Temperature Dependence of the Energy Loss

Scardina Francesco1,2,∗ Massimo Di Toro2,3, and Vincenzo Greco2,3†
1Department of Physics, University of Messina, I-98166 - Messina.
2Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania.
3INFN- Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania.
(Dated: September 8, 2010)

The quenching of minijet (particles with \(p_T \gg T, \Lambda_{QCD} \)) in ultra-relativistic heavy-ion collisions has been one of the main prediction and discovery at RHIC. We analyze the correlation between different observables like the nuclear modification factor \(R_{AA}(p_T) \), the elliptic flow and the ratio of quark to gluon suppressions. We show that the temperature (or entropy density) dependence of the in-medium energy loss strongly affects the relation among these observables. In particular the large elliptic flow and the nearly equal \(R_{AA}(p_T) \) of quarks and gluons can be accounted for only if the energy loss occurs mainly around \(T_\star \) and the \(q \leftrightarrow g \) conversion is significant. The use of an equation of state fitted to lattice QCD calculations, slowing down the cooling as \(T \to T_\star \), seems to contribute to both the enhancement of \(v_2 \) and the efficiency of the conversion mechanism.

PACS numbers: 12.38.Mh , 25.75 -q , 25.75 Ld

The experiments at the Relativistic Heavy Ion Collider (RHIC) are dedicated to study the properties of the matter at exceedingly high density and temperature. At such extreme conditions the matter was expected to undergo a deconfinement and chiral phase transition and have quark and gluons as degrees of freedom. The theoretical and experimental efforts have shown that indeed a new form of matter has been created [1]. Such a matter appears as a nearly perfect fluid with very low viscosity to entropy density [2, 3]. It develops strong collective modes with quarks as degrees of freedom and hadronizes in a modified way respect to pp collisions, at least in the intermediate \(2 \leq p_T \leq 5 \) GeV region [4, 5]. One way to probe the created matter is to exploit the high energy jets \((p_T \gg T, \Lambda_{QCD}) \) produced by the hard collisions at the initial stage. They are internal probes propagating through the fireball and interacting with the medium, hence carrying information on its properties as proposed long ago in Refs [6–8]. It has indeed been shown that the matter has a very high opacity respect to high \(p_T \) partons that traverse the hot medium in agreement with the expectations about the energy loss in QCD medium [8–10]. This energy loss can be quantified by the suppression of observed hadron spectra at high transverse momenta \(p_T \), as well as in the suppression of back-to-back di-hadron correlations with a high-\(p_T \) trigger, when compared with pp or d-A collisions [1, 11]. Both these phenomena related to the “jet quenching” have been observed and represent one of the major discoveries of the RHIC experimental program [1].

However even if the observation of the jet suppression cannot be questioned there are several fundamental questions that still remain open. There are indeed several models that depend in a different way on temperature \(T \) [12, 13], or that do not depend explicitly on \(T \) but on the \(\hat{q} \) transport coefficient[14, 15], some others are based on perturbative approach other on higher twist expansion [16, 17].

Despite differences all the approaches seems to be able to describe the amount of suppression \(R_{AA}(p_T) \) observed experimentally. It is patent that one needs to go one or two steps further and fortunately experimentally there is already the availability of other observables related to the jet quenching phenomena. Interestingly the present models does not seem to be able to account for all of them simultaneously. In this paper we will focus on two observables beyond the \(R_{AA}(p_T) \). One is the elliptic flow \(v_2(p_T) \) and the other is the flavor dependence of the suppression that we will mainly discuss in terms of \(R_{AA}(q)/R_{AA}(g) \). The latter can be experimentally inferred by a systematic comparison of the different suppression for \(\pi, \rho, K, p, \bar{p} \) that are differently related to quark and gluon suppression.

The purpose of the present paper is to show that the jet-quenching mechanism carries much more information than what can be inferred from only the nuclear modification factor \(R_{AA}(p_T) \) and even the jet-triggered angular information. We suggest that the study of the correlation between the elliptic flow \(v_2(p_T) \) and the flavor dependence of the quenching \(R_{AA}(q)/R_{AA}(g) \) is rich of information on the temperature dependence of the quenching and on the mechanism of parton flavor conversion.

We point out that a correlation between \(v_2(p_T) \) and \(R_{AA}(q)/R_{AA}(g) \) is sensitive to the temperature (or entropy density \(s \)) dependence of \(\Delta E_{\text{loss}} \) and on the density profile of the bulk. The latter becomes unexpectedly dramatic if an extreme \(T, \rho \) or \(s \) dependence is considered as in the recent works of E. Shuryak and J. Liao [18] or of V.S. Pantuev [19]. This shows in general that once one goes beyond the \(R_{AA}(p_T) \) a more careful treatment of the time evolution of the fireball becomes manda-

∗Electronic address: scardina@lns.infn.it
†Electronic address: greco@lns.infn.it
tory, but also the simultaneous description of $R_{AA}(p_T)$, $v_2(p_T)$, and $R_{AA}(q)/R_{AA}(g)$ (or the ratio of the $R_{AA}(p_T)$ between different hadrons) is non trivial and more rich of information. In particular we find that an energy loss that increase as $T \rightarrow T_c$, the $q \leftrightarrow g$ in-medium conversion and the expansion-cooling of the fireball according to a lattice QCD EoS all go in the direction of improving the agreement with the three observables.

The paper is organized in five Sections. In Section I the main ingredients of the model are presented. In Section II the model is applied to calculate the $R_{AA}(p_T)$ as a function of momentum and centrality. In Section III the elliptic flow and the ratio of quark to gluon as function of momentum and centrality. In Section IV the impact of a realistic equation of state is presented. In the last Section we summarize the conclusions from the present study.

I. MODELLING THE JET QUENCHING

Our modelling of the jet energy loss is based on the very widely used adiabatic-like approximation for which the jet loses energy in a bulk medium that is independently expanding and cooling. Therefore the jet energy loss is considered as a small perturbation of the bulk dynamics. This is essentially the main assumption in the model till now developed, even if the higher energy at LHC should make this assumption inadequate due to the significant amount of energy that is contained in the high energy jets.

The main ingredients of our model can be easily sketched in the following way.

Initial Conditions – The parton distributions are calculated in the NLO pQCD scheme: They are parametrized by power law functions as:

$$\frac{dN_f}{d^2 p_T} = \frac{A_f}{(1 + p_T/B_f)^{n_f}}$$

with $f = q, \bar{q}, g$. The transverse momentum p_T is in unit of GeV and the value of the parameters A_f, B_f, n_f is given in Table I and are taken from Ref.[20]. Such a choice is driven mainly by the intention to make a direct contact and comparison with the several works discussing jet quenching with the flavor conversion [20–24].

As regards the parton distribution in space coordinates, it scales with the number of binary nucleon collision N_{coll} according to the standard Glauber model [25, 26]. The initial conditions for the bulk medium are described by the density profile $\rho(\vec{r}, \tau)$ that in the longitudinal direction evolves according to the Bjorken expansion at the velocity of light. The initial transverse density profile is instead proportional to the standard Glauber model participant distribution:

$$\rho_{\text{part}}(\vec{b}, \vec{r}) = t_A(\vec{r}) \left[1 - e^{-\sigma_{NN} t_A(\vec{b} - \vec{r})} \right] + t_B(\vec{b} - \vec{r}) \left[1 - e^{-\sigma_{NN} t_A(\vec{r})} \right]$$

with $\sigma_{NN} = 42\text{mb}$, \vec{b} the impact parameter vector and t_A the nuclear thickness function normalized to the number of nucleons and given by:

$$t_A(\vec{r}) = \int_{-\infty}^{+\infty} dz \rho_A(\vec{r}, z)$$

where $\rho_A(\vec{r})$ is the nuclear density that we have taken to be a Wood-Saxon (WS) with radius $R = 6.38\text{fm}$ and thickness $a = 0.535\text{fm}$. The total number of participants is therefore

$$N_{\text{part}}(b) = \int d^2 r \rho_{\text{part}}(b, \vec{r})$$

Beyond the Glauber density profile we have also considered a simplified sharp elliptic (SE) shape with the x and y axis adjusted to reproduce the same eccentricity of the Glauber model at each impact parameter. The SE has been used for the description of the bulk in several jet quenching modeling [20–22, 27].

Bulk Density Evolution – For the sharp elliptic shape the density space-time evolution is given by:

$$\rho(x, y, \tau) = \frac{1}{\tau A_T(\tau)} \frac{dN}{dy_z} \Theta \left(1 - \frac{x^2}{R_x^2(\tau)} - \frac{y^2}{R_y^2(\tau)} \right)$$

where $A_T = \pi R_x^2 R_y^2$ is the transverse area of the evolving fireball and R_x, R_y is the length of the two axes of the ellipse. These can in general evolve according to an expansion at constant acceleration or constant velocity:

$$R_x(\tau) = R_{x0} + v_T \tau + \frac{1}{2} (a_T + \epsilon_a) \tau^2$$

$$R_y(\tau) = R_{y0} + v_T \tau + \frac{1}{2} (a_T - \epsilon_a) \tau^2$$

with v_T the transverse velocity, $a_T \pm \epsilon_a$ the acceleration that through ϵ_a can be taken to be different between the x and y direction in order to simulate the anisotropic azimuthal expansion that reduces the eccentricity with time. We have used a typical value of $a_T = 0.08\text{fm}^{-1}$ that generates a final radial flow $\beta = 0.4$ with $v_T = 0$, $\epsilon_a = 0.04\text{fm}^{-1}$ with a slight dependence on the impact.
parameter of the collision. However the sensitivity of the jet quenching on these parameters is quite limited.

For the case with the Glauber profile the evolution of the local density is similarly given by

\[\rho(x, y, \tau) = \frac{1}{\tau A_T(\tau)} \frac{dN}{dy} P_{\text{eff}}(x, y, \tau) \]

(7)

where respect to Eq.(5) the theta function is substituted by the profile function \(P_{\text{eff}}(x, y, \tau) \) and \(A_T \) is now the effective area given by the space integral of the profile function:

\[P_{\text{eff}}(x, y, \tau) = \frac{N_{\text{part}}(x, y, \tau)}{N_{\text{part}}(0, 0, \tau)} \]

(8)

where \(N_{\text{part}}(x, y, \tau_0) \) is given by the Glauber model while the time dependence is determined by the expansion in the \((x,y)\) plane according to Eq.(6).

Energy Loss – The aim of our work is to explore the consequences of different \(T \) dependences of energy loss on the observables, hence we employ various schemes for the energy loss. However to make a connection to the large amount of effort to evaluate gluon radiation in a pQCD frame we will use also the GLV formula at first order in the \((x,y)\) plane according to Eq.(6).

The aim of our work is to explore the consequences of different \(T \) dependences of energy loss on the observables, hence we employ various schemes for the energy loss. However to make a connection to the large amount of effort to evaluate gluon radiation in a pQCD frame we will use also the GLV formula at first order in the \((x,y)\) plane according to Eq.(6).

\[\Delta E(\rho, \tau, \mu) = \frac{9\pi}{4} C\rho \cdot R \cdot \tau \log \left(\frac{2E}{\mu^2\tau} \right) \]

(9)

where \(C_R \) is the Casimir factor equal to 4/3 for quarks and 3 for gluons, \(\mu = gT \) is the screening mass with \(g = 3 \) in agreement with IQCD results [28] and \(\tau \) is the time minus the initial time \(\tau_0 = 0.2 \) fm. Furthermore considering massless partons at midrapidity \(E = p_T \). There are corrections to Eq.(9) coming from higher order that can be approximately accounted for by a rescaling \(Z \) factor of the energy loss. However this not really relevant for the objectives of the present work because we will renormalize the energy loss in order to have the observed amount of suppression \(R_{AA}(p_T) \) for central collisions, see next Section. In fact our purpose is to study how other variables can change once \(R_{AA}(p_T) \) has been fixed to experimental data for central collisions.

Usually in the GLV, as well as in other approaches, the temperature evolution of the strong coupling \(\alpha_s \) is discarded. We will consider the impact of such a dependence to understand the amount of \(T \) dependence that can come simply from the asymptotic freedom in a pQCD approach. The scale dependence of the strong coupling can be written as:

\[\alpha_s(Q^2) = \frac{4\pi}{\beta_0 \ln(-Q^2/\Lambda_{QCD}^2)} \]

(10)

where \(\beta_0 = 11 - \frac{2}{3} N_f \) and the thermal scale \(Q^2 = (2\pi T)^2 \) which allows to get a correct behavior of the screening mass \(\mu \) on the energy scale [28].

In Fig. 1 we show by dot-dashed and dashed lines the temperature dependence of the energy loss for the GLV with a dependence of the coupling according to Eq.(10) (GLV-\(\alpha_s(T) \)) and with a constant coupling \(\alpha_s = 0.27 \) (GLVc). In itself the effect of the asymptotic freedom that reduces \(\alpha_s \) at increasing energy scale, significantly modifies the temperature dependence of the energy loss. However we will see that such effect is not very large once the coupling itself is readjusted to produce the correct amount of suppression.

In Fig.1 we have also shown two other opposite cases for \(\Delta E/\Delta \tau \): the thick line that shifts the energy loss to lower temperature (hence low density \(\rho \) or entropy density \(s \)) as suggested in [18, 19] and the other (thin line) that gives a dominance of quenching at high \(T \), considered here just for comparison respect to the opposite case. If both \(E_{\text{loss}} \) we have a standard dependence on the transverse momentum, \(\Delta E(p_T) \sim p_T^\gamma \) with \(\gamma = 0.6 \).

We have plotted in Fig.1 the \(\Delta E_{\text{loss}} \) as a function of the temperature, however under the hypothesis of local equilibrium for the bulk this is equivalent to a density or an entropy-density dependence used by other authors. In the model implemented we generally employ the free gas approximation to relate density, temperature and time. As well known one has:

\[\rho = \frac{3(3)}{\pi^2} \left(\frac{3}{4} d_{q,q} + d_g \right) T^3 \sim 4.2 T^3 \]

(11)

where the last expression is obtained with \(d_{q,q} = 24, d_g = 16 \). From Eq. (11) with an initial temperature \(T_0 = 340 \) MeV at \(\tau_0 = 0.6 \) fm and a transverse area \(A_T \sim 90 \) fm\(^2\) one has \(dN/d\tau \sim 1000 \) for \(b = 3fm \) corresponding to \(0 \sim 10\% \) in agreement with standard estimates. Eq.(11) allows one to evaluate the local temperature from the local density given by Eq.(5) for the SE profile and by Eq.(7) for the Glauber WS profile. For a 1D Bjorken expansion and the SE profile Eq.(11) gives a direct correlation between density \(\rho \), temperature \(T \) and time \(\tau \):
with T_0, ρ_0, τ_0 the values at same initial time. By mean of Eq. (12) we can relate the $\Delta E/\Delta \tau$ represented by the thick solid line in Fig. 1 to the delayed energy loss employed by Pantuev [19]. In particular with our parameters from Eq. (12) our thick solid line corresponds to a delay of about 1.8 fm close and even less extreme than the one in Ref. [19]. One can also notice that for some observables already the less extreme GLV α_s can give results similar to the low T energy loss, see Fig. 5 and 8.

Hadronization – The final step of the model is the hadronization by independent fragmentation. The parton distribution after the jet quenching are employed to evaluate the hadron spectrum by independent jet fragmentation using the AKK fragmentation functions $D^{fH}_2(x, Q^2)$ which give the probability that a hadron H is formed from a parton of flavor f. The final hadronic spectrum is obtained from

$$\frac{dN_H}{d^2p_T} = \int_0^1 dx \sum_f \frac{dN_f}{d^2p_T} D^{fH}_2(x, Q^2)$$

where $x = p_T^H/p_T^f$ is the fraction of the f parton carried by the hadron H and $Q = p_T^f/2$ is the energy scale. At RHIC there have been several evidence that while hadronization by independent fragmentation is able to describe proton-proton spectra at $p_T \geq 2$ GeV, in Au+Au collision there are non-perturbative effects like quark coalescence that modify hadronization at least up to $p_T \sim 5 – 6$ GeV [4, 5]. We do not include any hadronization by coalescence with the present work therefore all of the following results have to be considered reliable only for $p_T \geq 5$ GeV.

II. APPLICATION OF THE MODEL TO EVALUATE $R_{AA}(p_T)$

The amount of quenching is quantified by comparison of the inclusive spectra $d^2N^{AA}/dp_Td\eta$ in ion-ion(AA) collision to a nucleon-nucleon(pp) reference $d^2\sigma^{NN}/dp_Td\eta$ via the Nuclear Modification Factor $R_{AA}(p_T)$:

$$R_{AA}(p_T) \equiv \frac{d^2N^{AA}/dp_Td\eta}{T_{AA} \cdot d^2\sigma^{NN}/dp_Td\eta}$$

with T_{AA} the nuclear overlap function which scales up single NN cross section to AA according to expected number of binary NN collisions without modification. Thus a R_{AA} smaller(larger) than unity means suppression(enhancement) due to medium effect. At RHIC this ratio at large $p_T > 6 GeV$ has been measured to be nearly constant around avalue of 0.2 for the most central AuAu collisions, see Fig. 2 (upper). In our model the $R_{AA}(p_T)$ can be calculated simply from the ratio of the spectra before and after quenching.

We have applied our modelling of the jet quenching for Au+Au collisions at 200 AGeV. We use standard initial conditions that for the most central collision bin, $b = 3 fm$, are given by a $dN/dy = 1000$ and a maximum temperature of the bulk $T_0 = 340$ MeV at $\tau_0 = 0.6 fm$, as usually done to describe the bulk in hydrodynamics and transport approaches [29, 30]. The results are shown in Fig. 2 and are performed for the two geometries described above: Wood-Saxon profile (WS) and Sharp Elliptic shape (SE). The GLV formula, Eq. (9), is used with a coupling $\alpha_s = 0.27$ but rescaled by a $Z = 0.45$ factor [31] that accounts for higher order effect. Here it has been chosen to reproduce the data at $p_T = 6$ GeV for the most central selection $0 – 5\%$. From the WS profile to the SE one has to decrease by about 15% the Z normalization factor due to lack of surface where the quenching is smaller. However both values are well inside the uncertainty in the α_s strength of the in-medium gluon radiation due to the uncertainty in the perturbative expansion and in the validity of the expansion itself. However as said in the introduction our purpose is not to constrain the total amount of quenching due to gluon radiation. Our methodology is to fit the $R_{AA}(p_T)$ in order to fix the correct amount of total quenching with the aim of exploring the effect of different geometries and especially different temperatures (ρ or s) dependences of the energy loss on other observables.

In Fig. 2 we can see that once the amount of quenching is fixed for the most central collisions both the dependence on p_T and on centrality are correctly predicted with a GLV formula for quenching. Of course such a result has been obtained with other models of gluon radiation like BDMPS, ASW, AMY, DLGV [12–15]. Our purpose here was simply to show that our model is also able to reproduce the $R_{AA}(p_T)$ which can be considered as the minimum requirement. However our result shows also that at the level of $R_{AA}(p_T)$ both a realistic density profile like the WS or the Sharp Ellipse profile can describe the data reasonably well. We have seen that the main reason behind the similar final result between the two different geometries, WS and SE, relies on the compensation between two effects. In fact for SE one has a non realistic uniform density but on the other hand the minijet are also distributed uniformly. So the uniform density profile from one hand overestimates the amount of quenching close to the surface but from the other underestimates the one in the core of the fireball. In addition in such a modelling the fact that minijets are uniformly distributed overestimates the amount of minijets leaving the fireball nearly unquenched. Even if one could suspect that a balance among these effect should not apriori hold at all centralities our results show that the breaking of such a cancellation effects is small. In fact regard the $R_{AA}(p_T)$ a simplified model with the SE cannot be discarded. The same conclusion can be drawn looking also...
at the R_{AA} at $p_T > 6$ GeV as a function of centrality shown in Fig. 3. However, as expected, we see that surface effects leading to less suppression for a WS geometry are more important for a smaller N_{part}.

Furthermore if we consider a GLV formalism with a running coupling constant $\alpha_s(T)$, GLV–$\alpha_s(T)$, the $R_{AA}(p_T)$ is well reproduced at same level of quality. Hence looking at $R_{AA}(p_T)$ one is not able to clearly discriminate neither the geometry nor the temperature dependence of the quenching even if one looks at the evolution with centrality. Therefore in agreement with Ref.s [32, 33], we find that $R_{AA}(p_T)$ carries only a weak information on the jet quenching process, apart of course the total amount of quenching, which in itself is of fundamental importance and has lead to a first estimate of the average initial gluon density.

In the next Section we will investigate both the elliptic flow at high p_t and the flavor dependence of the quenching. In fact both observables are still hardly accounted for quantitatively by the present models.

III. ANGULAR AND FLAVOR DEPENDENCE OF THE QUENCHING

The first analysis of jet suppression has shown that it is very difficult to have an agreement between models and experiments for the dependence of the R_{AA} on the azimuthal angle ϕ respect to the reaction plane in non central collisions [33]. Such a dependence arise from the “almond” (elliptic) shape of the overlap region of two colliding nuclei. In particular for large $p_t > 6$ GeV where hard processes dominate [11], partons penetrating the fireball in different directions lose different amount of energy according to their varying paths that on average are larger in the out of plane direction. A measure of this effect is provided by the second Fourier coefficient of the distribution, namely the elliptic flow:

$$v_2(p_T) \equiv \frac{\int_0^{2\pi} d\phi \cos(2\phi) [d^2N/dp_t d\phi]}{\int_0^{2\pi} d\phi [d^2N/dp_t d\phi]}$$

(15)

Unexpectedly, measured $v_2(p_T)$ happened to be considerably larger than what jet quenching models predicted. It was noted in Ref.[34] that for very strong quenching only jets emitted from the surface of the “almond shape” can be observed and the data for $v_2(p_T)$
are very close to such a limiting case. However generally three other assumptions are made, namely: (i) quenching is proportional to matter density; (ii) colliding nuclei were approximated by homogeneous sharp-edge spheres. (iii) Only the net rate of energy loss is considered discarding the emission-absorption processes that generally can lead to an enhancement of the collective flows [13]. Studies by Drees, et al [35] relaxed the second assumption, with realistic nuclear shapes, which only made contradiction with data even stronger. A result that is confirmed also by the present work.

We will mainly explore the effect of the first assumption by exploring the four different kinds of energy loss shown in Fig. 1. In Fig. 4, we show the resulting $v_2(p_T)$ for pions in $Au + Au$ at $\sqrt{s_{NN}} = 200$ GeV and an impact parameter $b = 7.5$ fm corresponding to a minimum bias condition for which the experimental value of elliptic flow is around 0.11 as shown in Fig.10. We can see that even if the amount of total quenching has been fixed to the experimental value of $R_{AA}(p_T)$ the amount of elliptic flow is still strongly dependent on the temperature dependence of the ΔE_{loss}. Specifically from thin to thick solid line, we see that v_2 increases if the E_{loss} is stronger as $T \to T_c$ (thick solid line of Fig.1) which means later in the evolution of the QGP, except for the surface. In Fig.5 the same quantity is plotted for the case of a bulk density given by the Sharp Ellipse. Again we find that in agreement with other calculations [18, 19], the elliptic flow is significantly larger if most of the energy loss take place closer to T_c (thick black line). If instead the energy loss take place mainly at high temperature/density (thin black line) the $v_2(p_T)$ is essentially vanishing. The dashed line is the result with the GLVc that represent a case in which the energy loss is essentially proportional to the density. The dot dashed line is the GLV-$\alpha_s(T)$ that reweights the temperature dependence through the coupling $\alpha_s(T)$ giving an estimate of the effect of asymptotic freedom. Such an effect is not negligible and for the SE geometry it seems to give already a $v_2(p_T)$ very close to the much more extreme case represented by the thick solid line, i.e. quenching dominated by the close to T_c region.

The correlation between the temperature dependence of ΔE and the amount of elliptic flow developed is clear. In fact at variance with $R_{AA}(p_T)$ the $v_2(p_T)$ has a longer formation time because the minijets have to explore the shape of the fireball. For example if one consider the extreme case of a very strong quenching that takes place on distances much lower than the fireball size then there would be no elliptic flow (like in the E_{loss} at high T case).

It seems to be quite likely that experiments are telling us that quenching is likely to be not proportional to the matter entropy density or temperature, but a decreasing function of it. This is what is essentially discussed in Ref.s [18, 19] where however it was implicitly assumed that the amount of quenching of quarks and gluons are equal among them and to the hadronic one. Here we relax such assumptions showing that the temperature (or entropy density) dependence of ΔE_{loss} modifies not only the $v_2(p_T)$ but also the relative amount of quenching of quarks and gluons. This does not want to be just a more detailed calculation but is indeed related to another puzzle of the jet quenching phenomena observed more recently from the experimental study of the chemistry of the minijet suppression [36, 37]. We discuss it in the next subsection.

A. Quark to Gluon Modification Factor

The QCD due to its SU(3) Lie algebra gives a factor $C_R = 9/4$ larger for the energy loss of gluons respect to that of quarks. For this reason sometimes it is implicitly assumed that the ratio between the suppression of the gluons $R_{AA}(g)$ and the suppression of quarks $R_{AA}(q)$ is such that $R_{AA}(q)/R_{AA}(g) = 9/4$. From this expectation one would think that the (anti-)protons are more suppressed respect to pions because they come more from
gluon fragmentation than from quarks fragmentation respect to pions. The data at RHIC however has shown that also for such an observable there is no agreement with the data. In fact even outside the region where coalescence should be dominant [4, 5] the protons and the antiprotons appear to be less suppressed than the pions and p^0 [36, 37]. Again we can see that going beyond the simple amount of quenching given by $R_{AA}(pt)$ neither the azimuthal dependence nor the flavor dependence of the quenching appear to be in agreement with the data. We call this open issues the "azimuthal" and the "flavor" puzzle respectively. We will show that even if R_{AA} for central collisions is fixed to be ~ 0.2 also the $R_{AA}(q)/R_{AA}(g)$ is affected by the temperature dependence of ΔE_{loss}

In Fig.6 we show the ratio of the $R_{AA}(q)/R_{AA}(g)$ for the WS geometry and the four different temperature dependences of the energy loss ΔE_{loss} as in Fig.1. We can see that the standard GLVc energy loss does not give the expected ratio 9/4 for $R_{AA}(q)/R_{AA}(g)$ but a lower value around 1.8 which represents already a non negligible deviation from 2.25. We can however see that if the energy loss would be strongly T dependent and dominated by the $T \gtrsim T_c$ region $R_{AA}(q)/R_{AA}(g)$ can increase up to about 2.3 while oppositely if it is dominated by the high temperature region (thin solid line) the $R_{AA}(q)/R_{AA}(g)$ can become as small as 1.5. On the other hand our study of the elliptic flow, as well as previous studies, show that an energy loss that increase with T would generate a tiny $v_2(pt)$ very far from the observations. Such an effect is totally discarded in ref.s [18, 19] that neglect the different quenching of quarks and gluons. In other words while the indication of a $\Delta E(T)$ increasing as $T \rightarrow T_c$ is confirmed also by our model in order to reproduce experimental data for v_2, we have spot that this would lead to a larger $R_{AA}(q)/R_{AA}(g)$ ratio increasing the disagreement with the $R_{AA}(pt)$ observed for the various hadrons like p, \bar{p}, π that show the R_{AA} of baryons less suppressed respect to the pionic one.

In this respect we spot also another potential problem that can arise for simplified fireball modelling when extreme $\Delta E(T)$ are considered and more exclusive observables are investigated. More explicitly we refer to the Sharp Ellipse (SE) fireball that neglects the surface of the fireball. In Fig. 7 we show that the results have an opposite pattern for the SE geometry respect to the realistic WS one. The standard GLV energy loss gives approximately the expected ratio of 9/4 for $R_{AA}(q)/R_{AA}(g)$; This probably led to associate the 9/4 factor on E_{loss} to that on $R_{AA}(q)/R_{AA}(g)$. However this ratio is more sensitive to the temperature dependence of the energy loss, in a way that is exactly opposed to that we have seen for the WS geometry. For this kind of geometry (SE) if the energy loss is stronger at high temperatures, the $R_{AA}(g)/R_{AA}(g)$ can result to be almost 5 (thin solid line) on the other hand, if the energy loss is stronger closer to T_c the R_{AA} would be just slightly above 1 (thick solid line). This means that the ratio tends to decrease from 5 to 1 if the energy loss is dominated by the high temperatures ($T \sim 2T_c$) or by the low ones ($T \sim T_c$).

It is instructive to explain the origin of such a strong effect of the density profile, but before we note that such an unexpected strong effect shows up only when extreme $\Delta E(T)$ are considered. In fact the standard GLVc E_{loss} is modified by about a 15% moving from a WS-Glauber to a simple SE profile.

In order to understand the mechanism behind the determination of the ratio $R_{AA}(q)/R_{AA}(g)$ we discuss an oversimplified case in which all quarks lose the same amount of energy and all gluons lose their energy according to $\Delta E_g = 9/4 E_g$. For such a simple case the spectra after quenching are shifted by a quantity equal to the lost energy. Quarks that finally emerge with an energy $E_f = p_T$ are those which before quenching had an energy $E_i = p_T + \Delta E$. So R_{AA} for quarks is equal to the ratio between the parton distributions in momenta space without quenching $f(p_T)$ and the quenched one given by $f(p_T + \eta \Delta E)$ where $f(p_T) = dN/d^2p_T dy$ is given by Eq.
\(\Delta E_q = 9/4 \Delta E_q \)

FIG. 8: Ratio of quark to gluon \(R_{AA} \) as a function of the quark energy loss \(\Delta E_q = 4/9 \Delta E_q \) for different models of the jet quenching, see text for details.

\(1 \), \(\eta = 1 \) for quarks and \(\eta = 9/4 \) for gluons. Therefore the \(R_{AA} \) is

\[
R_{AA}(p_T) = \frac{f(p_T + \eta \Delta E)}{f(p_T)}
\]

and the ratio between quark and gluon nuclear modification factors is

\[
\frac{R_{AA}(q)}{R_{AA}(g)} = \frac{f_g(p_T + \Delta E)}{f_g(p_T)} \frac{f_q(p_T)}{f_q(p_T + (9/4) \Delta E)}
\]

of course there is no reason why this ratio must be 9/4 and we can also see that even without the 9/4 factor there can be a \(R_{AA}(q)/R_{AA}(g) \) that is not one. In Fig. 8 is shown the dependence of the ratio on \(\Delta E \) for partons with \(p_T = 10 \text{ GeV} \) and we can see that \(R_{AA}(q)/R_{AA}(g) \) quickly increase with \(\Delta E \) even if the ratio between the quark to gluon energy loss is 9/4. The ratio is about 4 for a \(\Delta E \sim 2 \text{ GeV/fm} \). We will see that this observation is fundamental to understand the relation between \(\Delta E_{loss} \) and the ratio \(R_{AA}(q)/R_{AA}(g) \). In this very simplified model the \(R_{AA}(q)/R_{AA}(g) \) would be very large for an average energy loss \(\Delta E_q \geq 4 \text{ GeV} \) typical of central collisions where \(R_{AA}(p_T) \sim 0.2 \). From Fig. 8 we can see that this would give a \(R_{AA}(q)/R_{AA}(g) \sim 8 \).

One can move toward a minimal realistic model distinguishing among partons two classes of particles: those that undergo a large quenching and those that lose no energy or better a small amount of energy, usually associated with the minijets generated at the surface. Let’s consider a case in which 50\% partons lose an energy \(\Delta E_q = 1 \text{ GeV} = 4/9 \Delta E_q \) while the other 50\% lose the energy \(\Delta E_q \) indicated in Fig. 8. In such a case the evolution of \(R_{AA}(q)/R_{AA}(g) \) is very different respect to the first case as shown by the much milder increase of the dashed line that reaches a maximum of about 2.6 and even decrease for a \(\Delta E_q > 2 \text{ GeV} \).

This clearly indicates that because of the rapidly falling distribution with \(p_T \), the determination of the ratio is dominated by those partons that suffer less energy loss. If one for example suppose that 50\% of the particles do not lose energy then whatever is the energy loss of the other partons the \(R_{AA}(q)/R_{AA}(g) \) will be equal to one. This is shown by the thin solid line in Fig. 8. Indeed already if only a 10\% of partons do not lose energy the ratio stays below 9/4 whatever is the \(E_{loss} \) of the other 90\% of particles and even decrease if those particle lose a large amount of energy bringing the value again closer to one. This is shown by the dot dashed line in Fig 8 where one can realize the huge impact of the particles that do not lose energy comparing thick solid and dot-dashed lines which differ only by the fact that a 10\% particles do not lose energy. Finally with the dot line in Fig. 8, we show a system in which most of the particles undergo a quenching with \(\Delta E_q = 2.5 \text{ GeV} = 4/9 \Delta E_q \). This is closer to a case in which most of the particles undergo a similar strong quenching. In summary we can say that the \(R_{AA}(q)/R_{AA}(g) \) is not really directly linked to the relative amount of quark and gluon energy loss because it is largely affected by the way the energy loss is distributed among partons. In particular once there are minijets that do not suffer energy loss the ratio \(R_{AA}(q)/R_{AA}(g) \) gets closer to one, because it is more affected by these minijets. Hence also a careful treatment of the corona effect would much likely give a significant contribution to the determination of the \(R_{AA}(q)/R_{AA}(g) \).

On the base of the above discussion it is possible to understand the dependence of \(R_{AA}(q)/R_{AA}(g) \) on the temperature dependence \(\Delta E(T) \), see Fig. 6 and 7 and its opposite behavior between the WS and SE geometries for the density profile. In the case of energy loss at low temperature with a SE profile the quenching happens at the end of the lifetime of the fireball because there is a direct relation between time and temperature, see Eq. (12). Therefore in the case of the energy loss increasing as \(T \rightarrow T_c \) many particles escape without losing energy for SE profile. Only the particles in the inner part of the fireball are quenched. This means that we are closer to the schematic case described by the thin solid line for large \(\Delta E \) in Fig. 8, most particles do not lose energy the rest lose a large amount of energy, and in fact \(R_{AA}(q)/R_{AA}(g) \) is close to one, see Fig. 7.

Instead if the quenching is larger at high temperature all particles lose energy early, and except for those very close to the surface most of particles \(\Delta E \gtrsim 2.5 \text{ GeV} \). In this case there are essentially no particles that do not lose energy. So we are closer to the case described by the dotted line for which \(R_{AA}(q)/R_{AA}(g) \) is about 5 to be compared to thin solid line of Fig. 7.

In the case of WS geometry in general there is no direct relation between time and temperature because on the surface one will have already at early times a low temperature. Therefore in this case an energy loss dominated by high temperatures means that the quenching is large only on the inner part of the fireball while particles in the surface lose a small amount of energy. We are close to the case described by the dot dashed line in Fig. 8 and the \(R_{AA}(q)/R_{AA}(g) \) is in fact about 1.5. It is
difficult to reach one because due to the density profile anyway all the particles lose at least some finite energy. Instead if the quenching takes place mainly at low temperature \((T \sim T_c)\), this means that energy loss is strong in a layer on the surface of the fireball, and because all particles must go through this layer at some time, all of them lose a large amount of energy. We understand that this is very different, essentially the opposite, respect to SE case. In the latter case a \(\Delta E(T)\) with a maximum at \(T \sim T_c\) means that most of the particles escape due to the direct time-temperature relation that is not dependent on space. For WS-Glauber profile such a case means just the opposite, i.e. all the particles lose a similar amount of energy. This is essentially the reason underlying the opposite trend seen in Fig. 6 and 7. We finally notice that the importance of such details emerge only if extreme energy losses T-dependence are considered.

The conclusion of this study is twofold: i) If one tries to reproduce the large value of elliptic flow using a type of energy loss that increase with decreasing temperature there is a simultaneously increase of the \(R_{AA}(q)/R_{AA}(g)\) enhancing the discrepancy respect to the observed "flavor" dependence of the suppression that seems to prefer a ratio close or even smaller than one \([36]\).

ii) When peculiar energy dependences are considered the specific density-temperature profile can become very important for a quantitative evaluation of the observables.

These results bring us to make two important observations: 1) The SE profile is able to describe the observed \(R_{AA}(p_T)\), but it is inadequate to reproduce the ratio \(R_{AA}(q)/R_{AA}(g)\), and furthermore, it cannot be used even for a qualitative analysis of this ratio because it gives opposite results to the more realistic WS profile. 2) In Fig.s 4 and 5 we have shown that an enhancement of the energy loss near \(T_c\) increases the elliptic flow toward an agreement with the experimental data. On the other hand such a \(\Delta E(T)\) is associated to an enhancement of \(R_{AA}(q)/R_{AA}(g)\) in apparent disagreement with the data \([37]\).

IV. CORRELATION BETWEEN \(R_{AA}(q)/R_{AA}(g)\) AND ELLIPTIC FLOW

To solve what we have called the "flavor puzzle" inelastic collisions that cause a change of the flavor has been invoked \([20–23]\). Such a process would at the end produce a net conversion of quarks into gluons. Hence a decrease of gluon suppression respect to the direct suppression and an increase of the quark one. \([20]\). In Ref.[20] it has been calculated the conversion rate of a quark jet to a gluon jet and vice versa due to two-body scatterings. An enhancement factor \(K_c = 4 - 6\) that accounts for non-perturbative effect is needed to produce a nearly equal suppression of quarks and gluons. This is not an unreasonable enhancement factor considering that at our energy a \(K \sim 4\) is necessary also to have the right mini-

jet initial distributions in pp if one starts from a simple second order pQCD calculations. We have included the flavor conversion mechanism in our code in a fashion similar to Ref. [20]. In order to check our code and to have a direct link to the previous calculations of Fries, Ko and Liu we have used the same density profile (i.e. a SE profile), same conversion rate and \(\Delta E_{loss}\) derived by them at leading order in the pQCD expansion.

In Fig.9 we show \(R_{AA}(q)/R_{AA}(g)\) for different values of \(K_c\). Notice that with the \(\Delta E_{loss}\) of Ref.[20] the ratio \(R_{AA}(q)/R_{AA}(g)\) without conversion is again different and moreover quite larger than \(9/4\). However a \(K_c \sim 4 - 6\) is able to reduce that ratio by about a factor of three making it close to unity. After this test we have fixed \(K_c = 6\) and performed the calculation with the four different energy loss as shown in Fig.1. In Fig.10 we show directly the \((R_{AA}(q)/R_{AA}(g), v_2)\) plot. This plot manifest a clear but non-trivial correlation between \(R_{AA}(q)/R_{AA}(g)\) and the \(v_2(p_T)\). The upper symbols are the results without the jet flavor conversion and we can see that such a correlation drives the data far from the experimental observed values of a \(v_2 \sim 0.1\) and an \(R_{AA}(q)/R_{AA}(g) \leq 1\) (to account for the \(R_{AA}(p + \bar{p}) > R_{AA}(\pi^+ + \pi^-)\) with AKK fragmentation function). The lower symbols corresponds to the results including the rate of inelastic collisions and we can see that this process allows to get closer to the experimental region because they change the \(R_{AA}(q)/R_{AA}(g)\) without modifying the elliptic flow of pions. Fig. 10 essentially demonstrates that if one tries to reproduce simultaneously the \(R_{AA}(p_T)\) and \(v_2(p_T)\) and \(R_{AA}(q)/R_{AA}(g)\) a \(\Delta E(T)\) increasing as \(T \rightarrow T_c\) is needed but also that in such a case a flavor conversion process becomes even more necessary.

However at this point a quantitative study should be performed employing a more accurate dynamics for the bulk evolution given by hydrodynamics or partonic transport theory that include three-body radiative processes \([41, 42]\). In fact, especially if more peculiar energy loss dependence has to be investigated, it is important to have a quite realistic density and energy density profile as we
the inclusion of the

\begin{equation}
\beta(T) = \frac{1}{3} - a \left(\frac{T_v}{T} \right)^n, \quad T \geq T_c
\end{equation}

with \(a = 0.15 \) and \(n = 1.89 \) and of course for \(T >> T_c \) one gets \(\beta \sim 1/3 \). The parameters have been calculated from a fit to the lattice QCD data of Ref.[43] on the energy density and pressure. We see that close to \(T_c \) the \(\beta \) coefficient is quite small which means that even if the density goes down as \(\tau^{-1} \), the temperature stays nearly constant as one can expect in a first order or strong cross-over phase transition. This means that the system spends more time close to \(T_c \), respect to the simple picture given by Eq.(12) usually assumed.

In order to estimate the impact of this correction we have performed a simulation for the \(\Delta E_{\text{loss}}(T) \) behavior represented by the thick solid line in Fig.1 which is similar to the delayed energy loss proposed by Fantuev [19] as a solution for the observed large elliptic flow. We consider only this case because it is of course the one that is much more affected by the modification implied by Eq.(18).

Instead for the opposite case of an \(E_{\text{loss}} \) dominated by the high \(T \) the effect is vanishing. We have again taken care to regulate the total energy loss in order to have the correct amount of \(R_{AA}(p_T) \).

The results are given by open symbols in Fig.10. The open square is the result without the inclusion of the flavor conversion mechanism and shows a further increase of both \(v_2(p_T) \) and \(R_{AA}(q)/R_{AA}(g) \), in line with the previously seen correlation. The enhancement of the \(v_2(p_T) \) in itself is due to the fact that with a EoS the system spend more time close to \(T_c \), therefore in order to have the same amount of suppression most of the energy loss occurs later. However more interestingly the inclusion of the \(q \leftrightarrow g \) conversion results to be more efficient that in the previous case generating a strong decrease of \(R_{AA}(q)/R_{AA}(g) \) while keeping the same \(v_2(p_T) \). The stronger effect of flavor conversion is again due to the longer lifetime. The final result is a combination that move the final value of both \(v_2(p_T) \) and \(R_{AA}(q)/R_{AA}(g) \) much close to the experimental ones shown by the shaded area in Fig.10. We also notice that a \(R_{AA}(q)/R_{AA}(g) < 1 \) is obtained while generally it is believed that flavor conversion by inelastic collisions can give at most \(R_{AA}(q)/R_{AA}(g) = 1 \) [36].

This last result about the impact of a realistic EoS deserves a more careful treatment again employing a more realistic description of the bulk. Indeed a full description of the dynamics related to the cross-over region should include also the gradual change from a quark-gluon plasma to an hadronic gas. However this would be out of our aim for the present work.

V. IMPACT OF THE EQUATION OF STATE

As a last point, we explored the impact of the equation of state (EoS) on the observables and especially the correlation between \(R_{AA}(q)/R_{AA}(g) \) and \(v_2(p_T) \). This has to be taken as a first explorative study.

We notice that even if the free gas approximation is a quite reasonable approximation to describe the relation between density and temperature for most of the evolution of the expanding QGP it is not true close to \(T_c \) where the relation between temperature and density is strongly modified by the cross-over phase transition. One generally thinks that for the description of the high \(p_T \) particles this can be discarded in first approximation. However once it is opened the way to the possibility of a quenching that is not proportional to the density but is stronger close to the phase transition we will show that one should more carefully look into the problem. In fact if quenching would be dominated by the \(T \sim T_c \) region the time spent in this region by the fireball can be strongly modified if a realistic EoS is considered. In fact for a simple 1+1D expansion the relation between temperature and density is modified from Eq.(12) to:

\begin{equation}
\frac{T}{T_0} = \left(\frac{\rho}{\rho_0} \right)^{\beta(T)} = \left(\frac{T_0}{T} \right)^{\beta(T)} (18)
\end{equation}

where \(\beta(T) \) is a temperature dependent coefficient that can be obtained from a fit to lattice QCD data [43]. We have found:

\begin{equation}
\beta(T) = \frac{1}{3} - a \left(\frac{T_v}{T} \right)^n, \quad T \geq T_c
\end{equation}

have discussed above. Furthermore fluctuations in the energy loss [10, 38], the gain-loss processes [13] and the elatic energy loss [39, 40] should be included because they can give correction to both \(R_{AA}(p_T) \) and \(v_2(p_T) \).

VI. CONCLUSIONS

In the present work we have considered different temperature dependences of the energy loss tuning always
the parameters to reproduce the experimentally $R_{AA}(p_T)$ supressions of pions. We have shown that even if the $R_{AA}(p_T)$ is fixed, different $\Delta E(T)$ generate very different value for both the $v_2(p_T)$ and the $R_{AA}(q)/R_{AA}(g)$. Indeed both quantities are quite puzzling because standard jet quenching models are not able to reproduce none of them. We refered to this as the "azimuthal" and "flavour" puzzle. We have found however that there is a correlation between these two observables that is determined by the temperature (or density) dependence of the quenching. In agreement with Ref.[18, 19] we have found that if the quenching is dominant closer to T_c the $v_2(p_T)$ is enhanced getting closer to the data. However while in Ref.[18, 19] it is discarded a separate treatment of quark and gluons, their E_{loss} leads to a quite large ratio $R_{AA}(q)/R_{AA}(g)$ which would result incompatible with the observable systematics of $R_{AA}(p + \bar{p}) > R_{AA}(\pi^+ + \pi^-) \sim R_{AA}(\rho^0)$. It appears that while the $v_2(p_T)$ would suggest a $\Delta E(T)$ that increases towards T_c the $R_{AA}(q)/R_{AA}(g)$ would become too large even if we do not yet have a direct measurement of $R_{AA}(q)/R_{AA}(g)$ and we impinge on the uncertainties coming from the fragmentation functions.

In this context we have also spot an unexpected strong dependence on the density profile of the fireball that emerge for extreme choices of $\Delta E(T)$, while the dependence is milder but not negligible for standard energy loss like the GLV one. This puts a warning for further studies: once going beyond the simple $R_{AA}(p_T)$ factor one has to rely on a realistic dynamical evolution of the bulk matter like those supplied by hydrodynamics and/or parton cascades [41].

It seems that the only way to get closer to the observed values for $R_{AA}(p_T)$, $v_2(p_T)$ and $R_{AA}(q)/R_{AA}(g)$ solving both the "azimuthal" and "flavour" puzzles, is to have both $\Delta E(T)$ increasing close to T_c and a flavour conversion mechanism. Finally we point out that while generally the free gas approximation is quite reasonable to describe the expansion of the QGP fireball, this is no longer true if the energy loss occurs dominantly close to T_c. In such a case it has a significant impact to take into account the strong deviation from the free gas approximation occurring in the cross-over region and leading to a slowing down of the cooling close to T_c. This increase further the time spent around T_c which enhance both $v_2(p_T)$ and the efficiency of the $q \leftrightarrow g$ in medium conversion moving the values of $(R_{AA}(q)/R_{AA}(g), v_2(p_T))$ close to the observed ones.

It is of course important to study how the longer lifetime and higher temperatures reached at LHC energies affects the observed correlations. Furthermore in Ref.[24] it has been pointed out that a better probe of the flavor conversion mechanism is supplied by an high p_T strangeness enhancement. It remains to be studied if such an enhancement is affected by the T dependence of the energy loss.

In Summary we have pointed out the impact of peculiar T dependences of the E_{loss} on both $v_2(p_T)$ and $R_{AA}(q)/R_{AA}(g)$ and their correlation. Moreover we have spot the relevance that the EoS may have in case of E_{loss} dominated by the $T \sim T_c$ region. In any case our study, although already revealing several interesting indications, is mainly explorative. A more quantitative analysis should be performed with more sophisticated models that include the energy loss fluctuations, realistic gain and loss processes, elastic energy loss and a more accurate description of the bulk.

[1] J. Adams et al., Nucl. Phys. A 757, 102 (2005). K. Adcox et al., Nucl. Phys. A 757, 184 (2005).
[2] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99 (2007) 172301
[3] U. W. Heinz, J. S. Moreland and H. Song, Phys. Rev. C 80 (2009) 061901
[4] R. J. Fries, V. Greco and P. Sorensen, Ann. Rev. Nucl. Part. Sci. 58 (2008) 177
[5] V. Greco, Eur. Phys. J. ST 155 (2008) 45; V. Greco, C. M. Ko and P. Levai, Phys. Rev. Lett. 90 (2003) 202302; V. Greco, C. M. Ko and P. Levai, Phys. Rev. C 68 (2003) 034904
[6] J. D. Bjorken, FERMILAB-PUB-82-059-THY.
[7] D. A. Appel, Phys. Rev. D 33, 717 (1986); J. P. Blaizot and L. D. McLerran, Phys. Rev. D 34, 2739 (1986).
[8] M. Gyulassy and M. Phumer, Phys. Lett. B 243, 432 (1990); X. N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).
[9] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Nucl. Phys. B 484, 265 (1997).
[10] M. Gyulassy, I. Vitev, X. N. Wang and B. W. Zhang, arXiv:nucl-th/0302077; X. N. Wang, Nucl. Phys. A 750, 98 (2005); J. Casalderrey-Solana and C. A. Salgado, Acta Phys. Polon. B 38, 3731 (2007).
[11] S.S. Adler et al., [PHENIX Collaboration], Phys. Rev. C 76 (2007) 034904
[12] M. Djordjevic and M. Gyulassy, Nucl. Phys. A 733 (2004) 265.
[13] P. Arnold, G.D. Moore, and L.G. Yaffe, JHEP 0206 (2002) 030; S. Turbide, C. Gale, S. Jeon, G.D. Moore, Phys. Rev. C 72 (2005) 014906.
[14] R. Baier, Y.L. Dokshitzer, A.H. Muller, S. Peigne and D. Schiff Nucl. Phys. B 483 (1997) 291.
[15] N. Armesto, C. A. Salgado and U. A. Wiedmann Phys. Rev. D 69 (2004) 11403.
[16] X.F. Guo and X.N. Wang, Phys. Rev. Lett. 85, 3591 (2000)
[17] A. Majumder, E. Wang and X.N. Wang Phys. Rev. Lett. 99, 152301 (2007)
[18] J. Liao and E. Shuryak, Phys. Rev. Lett. 102, 202302 (2009).
[19] V. S. Pantuev, JETP Lett. 85, 104 (2007).
[20] W. Liu, C. M. Ko and B. W. Zhang, Phys. Rev. C 75 (2007) 051901
[21] W. Liu, C. M. Ko and B. W. Zhang, Int. J. Mod. Phys. E 16 (2007) 1930.
[22] W. Liu and R. J. Fries, Phys. Rev. C 77 (2008) 054902
[23] W. Liu and R. J. Fries, Phys. Rev. C 78 (2008) 037902
[24] R. J. Fries and W. Liu, Nucl. Phys. A 830 (2009) 693c
[25] M. L. Miller, K. Reygers, S. J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57:205-243 (2007)
[26] D. Kharzeev, M. Nardi, Phys. Lett. B 507 (2001) 121-128
[27] M. Gyulassy, I. Vitev and X. N. Wang, Phys. Rev. Lett. 86, 2537 (2001).
[28] A. Peshier, Journ. Phys. G 35, 044028 (2008).
[29] P. F. Kolb and U. W. Heinz, arXiv:nucl-th/0305084. Review for ‘Quark Gluon Plasma 3’. Editors: R.C. Hwa and X.N. Wang, World Scientific, Singapore; pag. 634-714.
[30] G. Ferini, M. Colonna, M. Di Toro and V. Greco, Phys. Lett. B 670 (2009) 325; S. Plumari, V. Baran, M. Di Toro, G. Ferini and V. Greco, Phys. Lett. B 689 (2010) 18
[31] M. Gyulaassy, P. Levai and I. Vitev, Phys. Lett. B 538, 282 (2002)
[32] T. Renk, Phys. Rev. C 77 (2008) 017901
[33] S. A. Bass, C. Gale, A. Majumder, C. Nonaka, G. Y. Qin, T. Renk and J. Ruppert, Phys. Rev. C 79 (2009) 024901
[34] E. V. Shuryak, Phys. Rev. C 66, 027902 (2002).
[35] A. Drees, H. Feng and J. Jia, Phys. Rev. C 71, 034909 (2005)
[36] A. Sickles, Nucl. Phys. A 830, 131c (2009).
[37] Y. Xu et al., Nucl. Phys. A 830, 701c-704c (2009); Y. Xu et al., SQM2009 proceedings, nucl-ex/1001.3108; L. Ruan et al., SQM2009 proceedings, nucl-ex/1001.3347;
[38] S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Nucl. Phys. A 784 (2007) 426
[39] G. Y. Qin, J. Ruppert, C. Gale, S. Jeon, G. D. Moore and M. G. Mustafa, Phys. Rev. Lett. 100 (2008) 072301
[40] J. Auvinen, K. J. Eskola and T. Renk, Phys. Rev. C 82 (2010) 024906
[41] O. Fochler, Z. Xu and C. Greiner, arXiv:1003.4380 [hep-ph].
[42] Z. Xu and C. Greiner, Phys. Rev. C 71 (2005) 064901
[43] Karsch F. et al., Nucl. Phys. A 698:199 (2002) Katz SD. et al., arXiv:hep-ph/0511166