Endogenous Peptide Discovery of the Rat Circadian Clock

A FOCUSED STUDY OF THE SUPRACHIASMATIC NUCLEUS BY ULTRAHIGH PERFORMANCE TANDEM MASS SPECTROMETRY*§

Ji Eun Lee‡§, Norman Atkins, Jr.¶, Nathan G. Hatcher||, Leonid Zamdborg‡§, Martha U. Gillette¶¶**, Jonathan V. Sweedler‡§¶¶, and Neil L. Kelleher‡§¶¶

Understanding how a small brain region, the suprachiasmatic nucleus (SCN), can synchronize the body’s circadian rhythms is an ongoing research area. This important time-keeping system requires a complex suite of peptide hormones and transmitters that remain incompletely characterized. Here, capillary liquid chromatography and FTMS have been coupled with tailored software for the analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, peptide extraction, identification, and characterization from tandem FTMS data with <5-ppm mass accuracy produced a hyperconfident list of 102 endogenous peptides, including 33 previously unidentified peptides, and 12 peptides that were post-translationally modified with amidation, phosphorylation, pyroglutamylation, or acetylation. This characterization of endogenous peptides from the SCN will aid in understanding the molecular mechanisms that mediate rhythmic behaviors in mammals. Molecular & Cellular Proteomics 9:285–297, 2010.

Central nervous system neuropeptides function in cell-to-cell signaling and are involved in many physiological processes such as circadian rhythms, pain, hunger, feeding, and body weight regulation (1–4). Neuropeptides are produced from larger protein precursors by the selective action of endopeptidases, which cleave at mono- or dibasic sites and then remove the C-terminal basic residues (1, 2). Some neuropeptides undergo functionally important post-translational modifications (PTMs),1 including amidation, phosphorylation, pyroglutamylation, or acetylation. These aspects of peptide synthesis impact the properties of neuropeptides, further expanding their diverse physiological implications. Therefore, unveiling new peptides and unreported peptide properties is critical to advancing our understanding of nervous system function.

Historically, the analysis of neuropeptides was performed by Edman degradation in which the N-terminal amino acid is sequentially removed. However, analysis by this method is slow and does not allow for sequencing of the peptides containing N-terminal PTMs (5). Immunological techniques, such as radioimmunoassay and immunohistochemistry, are used for measuring relative peptide levels and spatial localization, but these methods only detect peptide sequences with known structure (6). More direct, high throughput methods of analyzing brain regions can be used.

Mass spectrometry, a rapid and sensitive method that has been used for the analysis of complex biological samples, can detect and identify the precise forms of neuropeptides without prior knowledge of peptide identity, with these approaches making up the field of peptidomics (7–12). The direct tissue and single neuron analysis by MALDI MS has enabled the discovery of hundreds of neuropeptides in the last decade, and the neuronal homogenate analysis by fractionation and subsequent ESI or MALDI MS has yielded an equivalent number of new brain peptides (5). Several recent peptidome studies, including the work by Dowell et al. (10), have used the specificity of FTMS for peptide discovery (10, 13–15). Here, we combine the ability to fragment ions at ultrahigh mass accuracy (16) with a software pipeline designed for neuropeptide discovery. We use nanocapillary reversed-phase LC coupled to 12 Tesla FTMS for the analysis of peptides present in the suprachiasmatic nucleus (SCN) of rat brain.

A relatively small, paired brain nucleus located at the base of the hypothalamus directly above the optic chiasm, the SCN contains a biological clock that generates circadian rhythms in behaviors and homeostatic functions (17, 18). The SCN comprises ~10,000 cellular clocks that are integrated as a tissue level clock which, in turn, orchestrates circadian rhythms throughout the brain and body. It is sensitive to incoming signals from the light-sensing retina and other brain regions, which cause temporal adjustments that align the

From the Departments of §Chemistry and **Cell and Developmental Biology, ¶Institute for Genomic Biology, §Institute for Neuroscience Program, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Received, August 6, 2009, and in revised form, November 3, 2009

Published, MCP Papers in Press, November 10, 2009, DOI 10.1074/mcp.M900362-MCP200

1 The abbreviations used are: PTM, post-translational modification; SCN, suprachiasmatic nucleus; ZT, Zeitgeber time; puf, ProSight upload file; GRP, gastrin-releasing peptide; VIP, vasoactive intestinal peptide; PACAP, pituitary adenylate cyclase-activating polypeptide; AVP, arginine-vasopressin; GABA, γ-aminobutyric acid; CART, cocaine- and amphetamine-regulated transcript protein; DRP, dithydropyrimidinase-related protein; LTQ, linear trap quadrupole; AA, amino acids.

© 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

Molecular & Cellular Proteomics 9.2 285
SCN appropriately with changes in environmental or behavioral state. Previous physiological studies have implicated peptides as critical synchronizers of normal SCN function as well as mediators of SCN inputs, internal signal processing, and outputs; however, only a small number of peptides have been identified and explored in the SCN, leaving unresolved many circadian mechanisms that may involve peptide function.

Most peptide expression in the SCN has only been studied through indirect antibody-based techniques (19–29), although we recently used MS approaches to characterize several peptides detected in SCN releases (30). Previous studies indicate that the SCN expresses a rich diversity of peptides relative to other brain regions studied with the same techniques. Previously used immunohistochemical approaches are not only inadequate for comprehensively evaluating PTMs and alternate isoforms of known peptides but are also incapable of exhaustively examining the full peptide complement of this complex biological network of peptidergic inputs and intrinsic components. A comprehensive study of SCN peptidomics is required that utilizes high resolution strategies for directly analyzing the peptide content of the neuronal networks comprising the SCN.

In our study, the SCN was obtained from ex vivo coronal brain slices via tissue punch and subjected to multistage peptide extraction. The SCN tissue extract was analyzed by FTMS/MS, and the high resolution MS and MS/MS data were processed using ProSightPC 2.0 (16), which allows the identification and characterization of peptides or proteins from high mass accuracy MS/MS data. In addition, the Sequence Gazer included in ProSightPC was used for manually determining PTMs (31, 32). As a result, a total of 102 endogenous peptides were identified, including 33 that were previously unidentified, and 12 PTMs (including amidation, phosphorylation, pyroglutamylation, and acetylation) were found. The present study is the first comprehensive peptidomics study for identifying peptides present within the mammalian SCN. In fact, this is one of the first peptidome studies to work with discrete brain nuclei as opposed to larger brain structures and follows up on our recent report using LC-ion trap for analysis of the peptides in the supraoptic nucleus (33); here, the use of FTMS allows a greater range of PTMs to be confirmed and allows higher confidence in the peptide assignments. This information on the peptides in the SCN will serve as a basis to more exhaustively explore the extent that previously unreported SCN neuropeptides may function in SCN regulation of mammalian circadian physiology.

EXPERIMENTAL PROCEDURES

Materials—All reagents were obtained from Sigma-Aldrich unless otherwise noted. Silicic acid microcentrifuge tubes (1.5 ml) were purchased from Thermo Fisher Scientific (San Jose, CA). Microcon YM-10 centrifugal filter devices were purchased from Millipore (Billerica, MA).

Animals and Circadian Time—An inbred strain of 8–10-week-old female Long-Evans rats, LE-BluGill, demonstrated to be genetically homogeneous by high density genome scan (34) were used for these studies. Animals were fed ad libitum and were housed under constant temperature and humidity conditions in a 12:12 h light/dark cycle environment. Animals were entrained to this lighting schedule for at least 10 days prior to tissue collection. All collections of ex vivo SCN tissue samples were conducted during mid-subjective daytime—6–7 h following onset of normal lights-on conditions, referred to as Zeitgeber time (ZT) 6–7. All vertebrate animal procedures were carried out with protocols approved by the University of Illinois at Urbana-Champaign Institutional Animal Care and Use Committee and in full compliance with National Institutes of Health guidelines for humane animal care.

Preparation of SCN Brain Punch Samples—Animal subjects were decapitated, and the brain was immediately removed from the skull. The hypothalamus was blocked, and using a mechanical tissue chopper, coronal brain sections (500–500 μm thickness) were prepared. A brain section containing the mid-SCN was retained. A 2-mm-diameter sample corer was used to excise the paired SCN from the surrounding hypothalamus, aligning the top edge of the corer with the dorsal SCN border (see supplemental Fig. S1). This punch technique results in minimal harvest of extra-SCN hypothalamic tissue. Optic nerve tissue at the level of the optic chiasm is contained within the SCN-containing punch. Peptideome analysis of rat optic nerve tissue produces a peptidomic profile distinct from our SCN peptidomics data (unpublished data). The SCN punch preparation was performed in glucose/bicarbonate/gentamicin-supplemented Earle’s balanced salt solution (Invitrogen) perfused with 95% O2, 5% CO2. SCN-containing punches were immediately transferred to a siliconized microcentrifuge tube that remained submerged in powered dry ice until the time of peptide extraction.

Peptide Extraction from SCN Punches—Either 12 or 24 SCN punches were pooled and subjected to multistage peptide extraction as described in the recent work by Bora et al. (33). First, 150 or 300 μl of deionized water, preheated to 90 °C, was added to the SCN punches. The sample was boiled for 10 min and centrifuged at 14,000 × g for 10 min. The resulting tissue pellet was subjected to the second stage of extraction, whereas the supernatant was retained in a new microcentrifuge tube. After addition of 150 or 300 μl of ice-cold acidified acetone (40:6:1 acetone/water/HCl), the sample was homogenized with ultrasonic cleaner FS30 (Thermo Fisher Scientific) for 30 s, vortexed for 1 min, and kept on ice for 1 h. The sample was vortexed again for 1 min and centrifuged at 14,000 × g for 20 min at 4 °C, and the supernatant was saved. Then, a third extraction was performed by adding 150 or 300 μl of ice-cold 0.25% acetic acid to the tissue pellet and incubating on ice for 1 h. The acidified acetone extract was neutralized by 1 ml NaOH and dried to 10–20 μl to remove the acetone. All of the extracts were combined and filtered through a Microcon centrifugal filter device (10-kDa-molecular mass cutoff). Finally, the filtered extract was concentrated using a SpeedVac and used for nanocapillary FTMS/MS injection.

Mass Spectral Analysis (LC-FTMS/MS)—The extracted peptides from the SCN punches were analyzed using a 12 Tesla LTQ-FT Ultra (Thermo Fisher Scientific) interfaced with a 1D NanoLC pump from Eksigent Technologies (Dublin, CA). The sample was loaded with helium bomb pressure (500 p.s.i.) to a trap column (75-μm inner diameter), 5 cm of which was fitted with LiChrosorb (EM Separations, Gibbstown, NJ) and packed with a C18 solid phase (10 μm; YMC Co., Ltd., Allentown, PA). The analytical column was used PropoPep™ II medium (C18, 300 Å, 5 μm) and was purchased from New Objective (Woburn, MA). The operating flow rate was 300 nl/min with the following gradient conditions: 0–20 min, 0–15%; B: 20–90 min, 15–35%; B: 90–180 min, 35–60%; B: 180–220 min, 60–80%; B: 220–240 min, 80–100%; B: 240–250 min, 100%; B and 250–260 min, 0–5% B. Data acquisition on the LTQ-FTMS instrument consisted of a full scan.
event (290–2000 m/z; resolving power, m/Δm_{90%} = 90,000 in which Δm_{90%} is the mass spectral peak full width at half-maximum peak height) and data-dependent CID MS/MS scans (40,000 resolving power) of the five most abundant peaks from the previous full scan. MS/MS settings were as follows: isolation width, m/z 5; minimum signal threshold, 1000 counts; normalized collision energy, 35%; activation Q, 0.4; and activation time, 50 ms. Dynamic exclusion was enabled with a repeat count of 4, an exclusion duration of 180 s, and a repeat duration of 30 s.

Data Analysis—Resulting LC-FTMS/MS files (.raw) were analyzed using ProSightPC 2.0 (Thermo Fisher Scientific) (16), which has several software component algorithms including cRAWler 2.0, which interprets resolved isotopic distributions based on the Xtract or thorough high resolution analysis of spectra by Horn (THRASH) algorithms. The cRAWler program first determines all precursor mass values according to user-specified tolerances such as ranges of m/z and retention time or signal-to-noise ratio and fitting parameters. The precursor and fragmentation scans corresponding to these precursors are then separately averaged and interpreted to provide a list of monoisotopic masses. This information is compiled into a ProSight upload file (.puf). In multiplexing mode, the cRAWler can capture multiple precursor masses within the isolation range as multiple precursors based on an intensity cutoff (set at 10% here) relative to the base peak of the analysis window. This allows for cases where multiple precursors are fragmented together (see below).

Database Searching—Each .puf file, which typically contained hundreds of experiments from a single nano-LC-MS/MS run, was first searched in absolute mass mode (MS1 and MS2 tolerances of ±10 ppm) against a database of predicted rat neuropeptides (with and without predicted modifications) generated by taking the set of known rat prohormones processed in silico via the NeuroPred algorithm (35–37). For the searches that did not identify a peptide below an E-value cutoff of 10^{−4}, a search in "neuropeptide" mode was initiated against an intact rat database (UniProt 15.0, 4,318,021 protein forms) with ±100-Da intact mass and ±10-ppm fragment tolerance. Neuropeptide mode scans across sequences to find candidate subsequences whose masses are within tolerance of a precursor mass (no protease specificity); experimentally fragmented mass traces are then matched with theoretical fragment masses from these candidate subsequences. Neuropeptide searches along with the other mode described in this work are available through neuroProSight over the internet. A Sequence Gazer tool in neuroProSight software was used for manually determining PTMs on the peptides. The peptides identified from multiplexing mode were manually validated.

RESULTS

Two-millimeter-diameter punches of ventral hypothalamic tissue (500-μm thickness) containing the bilaterally paired SCN were excised from rat coronal brain slices. At least six SCN punches, which contained ~360 μg of total protein amount based on BCA assay, were needed for a high content nanocapillary FTMS/MS run. From a total of 10 LC-MS/MS runs for the SCN peptidome analysis, 102 endogenous peptides derived from 27 precursor proteins were identified along with 12 PTMs (amidation, phosphorylation, pyroglutamylataion, and acetylation) (see Table 1). The average E-value for identification was 4 × 10^{−21}, 17 orders of magnitude below the conservative threshold of 10^{−4} used here. This remarkable certainty of identification arises from the use of fragmentation scans with high mass accuracy and a scoring/software system that converts these data into peptide identifications with high fidelity. Thirty-three peptides (Table I, denoted with Footnote o) were not previously identified in either mouse or rat brain studies. The references for the identified peptides found in the prior studies of brain as well as SCN are included in a column of Table I. For example, the peptides derived from the prohormones gastrin-releasing peptide (GRP) and vasoactive intestinal peptide (VIP) are intrinsic SCN peptides that have received considerable attention (17, 22, 23, 25, 28, 38–55). Surprisingly, peptides from 12 precursor proteins found in our SCN peptidome study, including cocaine- and amphetamine-regulated transcript protein (CART), cerebellin-1, and proenkephalin B, were not reported in prior SCN studies. Finally, information from mRNA expression data from the mouse SCN reported in the Allen Brain Atlas (56) is included in Table I and highlights localization of prohormone synthesis for the prohormones identified from our present study. In addition to the endogenous peptides derived from prohormones, 66 peptide fragments from proteins like hemoglobin subunit β-1 and myelin basic protein S were also identified (supplemental Table 1). Although peptides that are protein fragments could result from post-mortem degradation during sample preparation, they may be the products of prohormone processing that are physiologically relevant. For example, small peptides formed from hemoglobin, the hemopressins, have known bioactivity and are likely enzymatically produced and are not formed during post-mortem degradation (57–59).

Fig. 1 depicts the examples of FTMS and MS/MS spectra for prohormone-derived peptide forms of VIP and pituitary adenylate cyclase-activating polypeptide (PACAP) identified with E-values of 9 × 10^{−16} and 2 × 10^{−27}, respectively. Although the sequence of VIP is HSDAVFTDNYTRLKOMAVKKYLNSI (AA 125–152), another peptide from the VIP prohormone was identified in this study: HSDAVFTDNYTRL (AA 125–137). Because the observed peptide sequence results from cleavage of the prohormone at a dibasic cleavage site (RK), it appears to be a bona fide intracellular processing product from the VIP prohormone and is not expected to arise from extracellular degradation/processing. This shortened peptide has been reported in SwePep. The observed peptide derived from the PACAP prohormone was GMGENLAAAADV-DRAPLT (AA 111–128), whereas the previously confirmed bioactive PACAP-derived peptides are PACAP-27 (AA 131–157) and PACAP-38 (AA 131–168). Because there are dibasic residues (KR) between the observed peptide and the PACAP-27 and -38, again we assume that the observed peptide was produced from the intracellular processing of the PACAP prohormone.

Fig. 2 represents the FTMS and MS/MS spectra for cerebellin (AA 57–72) and a one-amino acid-truncated form (AA 57–71), which are derived from the cerebellin-1 precursor. The two peptides co-eluted, as seen in Fig. 2A, and were identified by the data-dependent top five MS/MS acquisition strategy as seen in Fig. 2B. These two cerebellin forms were previously identified from mouse hypothalamus studies (8); however,
Precursor	Peptide name	Sequence	Observed mass	Mass difference	E-value	UniProt accession number	Refs. of brain studies	Refs. of SCN studies	Allen Brain Atlas mRNA expression data
CART (AA 37–55)	Neuropeptide-glutamic acid								
iso-leucine	NIVDEDVVRTRFMKMGAFKEDTAE								
EDEISSKVRFRKSFCC									
BEGGAVEKAFMETRKENHETKFK									
EGQAVKADAVKACDVR	2803.32								
2400.32									
2390.26									
2359.22	-1.3								
-0.5									
-0.85									
-1.2	10^-10								
10^-11									
10^-11									
10^-11	P14200								
P14200									
P14200									
P14200	P07808								
P07808									
P07808									
P07808	10								
10									
10									
10	mouse.brain-map.org.brain/								
genome/72077479.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/11511862.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74511882.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74881286.html?ispopup=1									
Pro-MCH (AA 22–59)	Neuropeptide Y	SSSPETLISDLLMRESTENAPRTRLEDPS							
CFLACV									
APGAVLQIEALQEVLKKL									
CART (AA 37–55)	1675.87								
1464.70									
2134.28									
1919.15	4.6								
2.8									
3.4									
3.6	10^-7								
10^-10									
10^-10									
10^-6	P24393								
P07808									
P49192									
P49192	7								
13									
102									
102	mouse.brain-map.org.brain/								
genome/11511862.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/72077479.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74511882.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74881286.html?ispopup=1									
Pro-MCH (AA 131–143)	Neurosecretory protein VGF								
(CFON)	KNLAPPPVPPRAAP								
APPGRSDVYPPPLGSEHNGQVAEDAVS									
APVYPPRAAP									
MSIVNLKPIEHTQGEOVSSPKTHGSLT									
YCPPPV									
YCPPPV									
KLLHGVMEQL									
YSPRTFDRSEDDQRLHLLGMEQL	2170.21								
2145.95									
2014.02									
2939.51	3.6								
3.9									
3.0									
5.3	10^-3								
10^-4									
10^-10									
10^-11	P2156								
P2156									
P2156									
P13589	4								
20									
102									
6	mouse.brain-map.org.brain/								
genome/11511862.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/72077479.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74511882.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74881286.html?ispopup=1									
Neuropeptide Y (AA 149–156)	Neurosecretory protein VGF								
(AA 24–63)	APPGRSDVYPPPLGSEHNGQVAEDAVS								
EDEISSKVRFRKSFCC									
BEGGAVEKAFMETRKENHETKFK									
EGQAVKADAVKACDVR	3274.32								
2400.32									
2390.26									
2359.22	6.9								
-0.5									
-0.85									
-1.2	10^-7								
10^-11									
10^-11									
10^-11	P07808								
P14200									
P14200									
P14200	12								
10									
10									
10	mouse.brain-map.org.brain/								
genome/11511862.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/72077479.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74511882.html?ispopup=1									
mouse.brain-map.org.brain/									
genome/74881286.html?ispopup=1									
Precursor Peptide name	Sequence	Observed mass (Da)	Mass difference (ppm)	E-value	UniProt accession number	Refs. of brain studies	Refs. of SION studies	Allen Brain Atlas mRNA expression data	
-----------------------------	---------------------------	--------------------	-----------------------	---------	------------------------	-----------------------	-----------------------	--------------------------------------	
Pro-SAAS (AA 34–40)	KEP	ARPVKEP	795.46	0.6	Q00X9	124	30	mouse brain map.org/brain/gene/777?hl=en&fstype=1	
Pro-SAAS (AA 34–49)	Big SAAS	ARPVKEP	2448.34	3.5	Q00X9	8	30		
Pro-SAAS (AA 42–57)	Little SAAS	SUSASAALTESSLTPLL	1514.79	3.3	Q00X9	33			
Pro-SAAS (AA 44–59)	Big SAAS	SUSASAALTESSLTPLL	1783.98	4.0	Q00X9	30, 33			
Pro-SAAS (AA 68–75)		1257.72	3.5	4 x 10^-32	Q00X9			3	
Pro-SAAS (AA 62–120)		1365.72	4.3	8 x 10^-27	Q00X9	10, 33			
Pro-SAAS (AA 62–143)		2954.57	2.1	8 x 10^-20	Q00X9	8			
Pro-SAAS (AA 113–143)		6385.36	5.1	1 x 10^-14	Q00X9				
Pro-SAAS (AA 121–143)		8720.54	2.2	1 x 10^-23	Q00X9				
Pro-SAAS (AA 221–240)	PEN-20	AVDQDLSPPNLGAL	3209.62	1.0	6 x 10^-9	Q00X9			
Pro-SAAS (AA 221–242)	PEN	AVDQDLSPPYLGALL	2045.08	1.0	1 x 10^-12	Q00X9			
Pro-SAAS (AA 221–242)		AVDQDLSPPNLGALL	2201.18	3.7	1 x 10^-17	Q00X9			
Pro-SAAS (AA 221–242)		AVDQDLSPPNLGALL	2300.25	3.5	6 x 10^-32	Q00X9	30, 33		
Pro-SAAS (AA 245–269)	Big LBN	LEIPAAGEEAVGTLPOPLEQNHVPRP	2757.40	5.0	9 x 10^-22	P01150	8	125, 126	
Prothryctein (AA 25–50)		EEEEKDIAEGERDDLGGEAGGAW	2347.02	4.6	7 x 10^-5	P01150			
Prothryctein (AA 83–103)									
Prothryctein (AA 178–199)									
Secretogranin 1 (AA 372–380)									
Secretogranin 1 (AA 416–432)									
Secretogranin 1 (AA 513–532)									
Secretogranin 1 (AA 585–694)									
Secretogranin 1 (AA 597–611)									
Secretogranin 1 (AA 618–181)									
Secretogranin 1 (AA 619–189)									
Secretogranin 1 (AA 184–216)									
Secretogranin 1 (AA 186–215)									
Secretogranin 1 (AA 205–215)									
Secretogranin 2 (AA 297–316)									
Secretogranin 2 (AA 495–517)									
Secretogranin 2 (AA 529–660)									
Secretogranin 2 (AA 529–688)	Manserin								
Secretogranin 2 (AA 529–688)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
Secretogranin 2 (AA 571–683)	Manserin								
TABLE I—continued

Precursor Peptide name	Sequence	Observed mass	Mass difference	E-value	UniProt accession number	Refs. of brain studies	Refs. of SCN studies	Allen Brain Atlas mRNA expression data
Secretogranin 2 (AA 571-611)	IPAGSLKNEETNPQOYLEDMLILK VLEYNQGQAEQGRHEL	4796.38	3.0	1×10^{-71}	P10362			
Secretogranin 2 (AA 571-612)	IPAGSLKNEETNPQOYLEDMLILK KVEYLNQGQAEQGRHEL	4867.43	1.4	2×10^{-76}	P10362			
Secretogranin 2 (AA 595-611)	VLEYNQGQAEQGRHEL	2055.0	2.6	5×10^{-24}	P10362			
Secretogranin 3 (AA 23-36)	FPKRDQSDKSLHN	1582.78	2.4	3×10^{-14}	P47868			
Somatostatin (AA 25–87)	APSDPRGRDFKLGLAAATGQKDIELK AKYLAELLESQSNQNTENDALE PEDUPQARDE2EMLEQ	7093.62	7.4	6×10^{-10}	P60042	17, 20, 27, 129–131		mouse.brain-map.org/brain/genes?ispopup=1
Tachykinin 3 (AA 95–115)	NSQPDTPADDWEEENTPSGFLV	2215.04	4.4	9×10^{-40}	P08435			
Provasopressin (AA 24–32)	Arginine-vasopressin	1083.44	0.0	8×10^{-10}	P01186	30, 33, 61	132	mouse.brain-map.org/brain/genes?ispopup=1
Provasopressin (AA 26–32)	819.38	1.6	4×10^{-16}	P01186				
Provasopressin (AA 151–165)	VQLGQTDPSDSAKPR	1528.77	-1.3	3×10^{-17}	P01186			102
Provasopressin (AA 151–168)	VQLGQTDPSDSAKPRV	1684.88	1.3	1×10^{-27}	P01186			133
Provasopressin (AA 151–166)	VQLGQTDPSDSAKPRVY	1783.95	4.2	6×10^{-27}	P01186			33
Provasopressin (AA 151–168)	VQLGQTDPSDSAKPRVY	1947.01	1.8	5×10^{-38}	P01186	30, 63, 102		
Provasopressin (AA 152–168)	VQLGQTDPSDSAKPRVY	1847.94	3.4	8×10^{-30}	P01186			
Provasopressin (AA 153–168)	VQLGQTDPSDSAKPRVY	1719.88	2.3	9×10^{-32}	P01186			33
Provasopressin (AA 154–164)	VQLGQTDPSDSAKPRVY	1608.8	0.5	2×10^{-31}	P01186			33
Provasopressin (AA 155–168)	VQLGQTDPSDSAKPRVY	1535.76	1.6	4×10^{-33}	P01186			33
VIP peptides (AA 125–137)	HSQAATIDNYTRL	1537.72	4.2	1×10^{-15}	P01283			25, 28, 48–55
Acyl-CoA-binding protein (AA 2-67)	9902.13	1.1	3×10^{-43}	P10300	134, 135			
Brain-specific polypeptide PEP-19 (AA 2-62)	6714.25	-1.9	7×10^{-13}	P63055		136		
PEBP-1 (AA 9–21)	1799.92	5.8	3×10^{-22}	P30144	10			
PEBP-1 (AA 11–20)	1671.85	0.4	3×10^{-18}	P30144	10			
PEBP-1 (AA 28–46)	1990.03	2.8	6×10^{-29}	P30144	10			
PEBP-1 (AA 50–66)	1847.93	1.6	2×10^{-5}	P30144	137			
PEBP-1 (AA 174–187)	1521.78	3.5	2×10^{-7}	P30144	10			
GABA(A) receptor subunit alpha-6 (AA 38–55)	1947.01	8.0	5×10^{-7}	P30191	87	mouse.brain-map.org/brain/genes?ispopup=1		

a E-values above 1×10^{-4} were manually validated.

b References found in SCN studies were for the prohormones, which were previously reported in the studies.

c Novel peptides.

d Cys-Cys bonds.
there was no report localizing these peptides to the SCN. Interestingly, our previous work on peptide release from the rat SCN demonstrated that an unknown peak at \(m/z \) 1495.75 (MH\(^+\)/H\(_{11001}\)) changed in abundance with circadian rhythmicity over a 24-h period (30). Here, we confirm that this released peptide corresponds to a shortened form of cerebellin identified here with a 1/10 E-value.

Of the 102 SCN peptides identified, 12 harbored PTMs. One example is depicted in Fig. 3, showing FTMS and MS/MS spectra for two forms of manserin, which is derived from secretogranin 2 precursor. Manserin and phosphorylated manserin were identified with E-values of 6/10 and 4/10, respectively, and the integrated intensity values of the peptides were similar at 5/106 and 1/106, respectively.

Phosphorylated manserin exhibited the fragment ion generated by neutral loss of H\(_3\)PO\(_4\) as the most prominent signal along with a few fragment ions of low abundance generated by fragmentation of the peptide backbone, which is a typical fragmentation pattern of Ser(P)/Thr(P) phosphopeptides.

Finally, Fig. 4 represents a search result using multiplexed MS/MS, which resulted from use of high resolution MS/MS data and our tailored software. In Fig. 4A, the isolation of a 5 \(m/z \) region for \(m/z \) 875.79 in the FTMS scan generates two isotopic distributions, which are 1744.964 and 2623.345 Da. In the data processing of ProSightPC, the two masses were searched independently using the entire fragment ion list derived from the Fig. 4B MS/MS scan and produced the identifications of two peptides that were derived from Rhombex-40 and pro-SAAS precursors, respectively, as seen in Fig. 4C. Rhombex-40 is known as a surface adhesion
protein located at the ventral medullary surface (60); there is as yet no report of its expression in hypothalamus. The peptide big LEN, which is derived from pro-SAAS, was identified in our previous SCN studies (30).

DISCUSSION

Given that the SCN contains endogenous cellular oscillators that control the circadian rhythms of mammals, studying the peptides contained within the SCN is expected to increase our understanding of the circadian mechanisms. With solid-phase extraction collection strategies, we have recently analyzed the secreted peptides from the site of the SCN over a 24-h period and the released peptides from the SCN stimulated via the optic tract (30). We were able to identify several peptides previously reported by indirect studies to be present in the SCN. Furthermore, we discovered four new peptides, three of which are derived from pro-SAAS. One of the pro-SAAS-derived peptides, known as little SAAS, caused phase delays of SCN circadian rhythms in vitro.

However, there have not yet been any comprehensive peptidome studies of the SCN region using MS. Here, we performed the peptidome analysis of the rat hypothalamic SCN, and we report two major findings: the identification of several novel peptides and the discovery of a new bioactive peptide, manserin, which is a potential regulator of SCN circadian rhythms.

Fig. 3. Identification of manserin with E-value of 6×10^{-50} (A) and phosphorylated manserin with E-value of 4×10^{-23} (B) by tailored software, ProSightPC. The FTMS/MS spectrum of phosphorylated manserin exhibited the fragment ion generated by neutral loss of H$_3$PO$_4$ as the most prominent signal, which is a typical fragmentation pattern of Ser(P)/Thr(P) phosphopeptides by CID.

Fig. 4. Multiplexed identification from high resolution FTMS/MS mass spectrum. The two isotopic distributions corresponding to 1744.964 and 2623.345 Da (A) are seen in the isolation window for m/z 875.79 and generate the chimeric FTMS/MS spectrum (B). The tailored software, ProSightPC, produces the two peptides derived from Rhombex-40 and pro-SAAS precursors, respectively (C).
which was prepared during daytime (at ZT 6), and identified 102 endogenous peptides by FTMS/MS, including 33 novel peptides. Although most of the peptides, including the novel peptides, are produced from the cleavage of classical dibasic or monobasic neuropeptide processing sites, a number of peptides have cleavage sites at Leu-Ala or Leu-Leu, which could be products of Leu-X-specific enzyme (61). There were also several peptides with unconventional cleavage sites among the newly identified peptides, for example N-terminal or C-terminal side cleavage of aspartic acid (10, 61) of the peptides from pro-SAAS and C-terminal side cleavage of tryptophan of the peptide derived from neuropeptide Y. These cleavages could occur intracellularly during prohormone processing. Alternatively, these may be occurring during extracellular processing, either endogenously or perhaps during the preparation of tissue extracts. Physiological assessments, such as we have done for little SAAS (30), are necessary to determine the functional role(s) for our novel discovery products.

Many of the identified peptides in the present study were derived from known precursors expressed in the SCN. VIP (AA 125–152), GRP (AA 24–52), and somatostatin (AA 103–116) have been identified immunologically in neurons of the SCN core region. VIP and GRP have established roles in synchronization of the multitude of cell-based clocks in the SCN and also in relay of light information within the SCN to generate phase resetting of SCN tissue (25, 38–41, 48–50). In the present study, we observed shorter peptides derived from the VIP prohormone (AA 125–137) and GRP (AA 24–41) and the other peptide fragment of somatostatin (AA 25–87). The shortened forms of VIP and GRP have been observed in mice and reported in SwePep, whereas somatostatin (AA 103–116) has not been reported. As we stated above, these shortened forms may be from processing within the vesicle or may be from extracellular peptide processing; however, the possibility of degradation during our sample processing cannot be excluded. The reasons for not detecting several expected full-length peptides may be due to short peptide lifetimes, rapid degradation, or detection limits of FTMS/MS. Of course, the prior studies involving the localization of these peptides have used immunohistochemistry and so would not distinguish the full-length and shorter peptide forms. Thus, the unusual shortened forms of these well known peptides appear to be interesting targets for follow-up functional studies. Additionally, arginine-vasopressin (AVP), well known to be phosphorylated between the two Ser sites denoted as (*) from their phosphorylated manserin (VPSPGS*(phosphorylation)SEDDLOEEQLEQAKEHLGQG-SQEMEKLAVS) derived from secretogranin 2 precursor was identified along with unmodified manserin. Secretogranin 2 is highly expressed in the SCN of mouse (94); however, no endogenous peptides derived from secretogranin 2 have been reported in SCN studies. Recently, Beranova-Giorgianni et al. (95) performed a phosphoproteomics analysis of the human pituitary sample with trypsin digestion followed by IMAC to enrich the phosphopeptides. They observed the phosphorylation of SPGS(*)S(*)EDDLQEEEQLEQA; however, they were unable to determine which Ser site was phosphorylated between the two Ser sites denoted as (*) from their study. We also detected C-terminal amidation forms of neurotensin-glutamic acid-isoleucine, neurosecretory protein VGF precursor (LEGSLFGGPEALERLQGLAQVEA-NH2), melanotropin α, substance P, AVP, and provasopressin (FQNCPRG-NH2; truncated form of AVP). Specifically, the truncated form of AVP appears not to have been reported in prior studies. An AVP fragment produced from proteolysis in the brain has been reported to be a highly potent neuropeptide (96). In addition, we identified a pyroglutamylated form of secretogranin 1 precursor (Q(pyroglutamylation)YDDGVAELDQLLHY). Al-
though there is no report of this form of peptide in prior SCN studies, the homologous peptide was identified in bovine tissue adrenomedullary chromaffin vesicles (97).

In addition to peptides derived from prohormones, several peptides from non-prohormone-related proteins were detected, specifically four N-terminal acetylated forms of acyl-CoA-binding protein, brain-specific polypeptide PEP-19, thymosin β-4, and thymosin β-10. Many of these protein fragments have been reported in prior peptidome studies, and several, such as the thymosins, have been detected in SCN releasates (30), indicating that these proteins are endogenously processed into these shortened forms and may have some functional significance. Of course, others may represent sample preparation artifacts as the proteins may be degraded during tissue homogenization.

CONCLUSIONS

For identification and characterization of neuropeptides, the overall work flow described here represents a new route to discovery. Using MS/MS data with <10-ppm mass accuracy and neuroProSight software, higher quality identification is achieved. This information allows unusual PTMs to be confirmed. The overall sensitivity of the work flow allows such assays to be made on the small nuclei in the brain. Of course, additional developments will streamline this peptide discovery process.

From a neuroscience perspective, what is particularly exciting is combining peptide discovery with approaches optimized to measure peptide release (30, 98–101). The latter approaches provide a functional context for the peptide diversity determined here by allowing the subset of SCN peptides that are released at a particular time of day or under specific stimulation protocols to be uncovered. It is through the combination of peptide discovery and release assays that the functional implications on the complex interplay of a surprising range of peptides can be understood within the SCN.

Although we focused on analyzing the endogenous peptides present in SCN prepared at ZT 6 in the current study, the peptidome study at different ZTs can be considered as an important next step for better understanding how the SCN orchestrates circadian rhythms over a 24-h period. The SCN peptidome study at different ZTs including quantitative analysis of peptide expression is currently in progress.

Acknowledgments—We thank Dr. Andrew J. Forbes and Adrianna Bora for helpful discussions on data analysis and the sample processing protocol, respectively.

* This work was supported, in whole or in part, by National Institutes of Health Grant GM 067193-07 (to the laboratory of N. L. K.), Award DE018866 from the NIDCR and the Office of the Director (to J. V. S.), Grant HL092571 from the NHLBI (to M. U. G.), and Award DA018310 from the National Institute on Drug Abuse. This work was also supported by the Packard Foundation and the Sloan Foundation (to the laboratory of N. L. K.).

[5] The on-line version of this article (available at http://www.mcponline.org) contains supplemental Fig. S1 and Table 1.

†† To whom correspondence should be addressed. E-mail: kelleher@scs.uiuc.edu.

REFERENCES

1. Strand, F. L. (1999) Neuropeptides: Regulators of Physiological Processes, The MIT Press, Cambridge, MA
2. Kandel E. R., Schwartz, J. H., and Jessell, T. M. (2000) Principles of Neural Science, 4th Ed., McGraw-Hill, New York
3. Burbach, J. P. H., and de Wied, D. (eds) (1993) Brain Functions of Neuropeptides: a Current View, Informa HealthCare, London
4. Hökfelt, T., Broberger, C., Xu, Z. Q., Sergeyev, V., Ubink, R., and Diez, M. (2000) Neuropeptides—an overview. Neuropharmacology 39, 1337–1356
5. Hummon, A. B., Amare, A., and Sweekdler, J. V. (2006) Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom. Rev. 25, 77–98
6. Rossbach, U., Nilsson, A., Fälth, M., Kultima, K., Zhou, Q., Hallberg, M., Goroh, T., Andren, P. E., and Nyberg, F. (2009) A quantitative peptidomic analysis of peptides related to the endogenous opioid and tachykinin systems in nucleus accumbens of rats following naloxone-precipitated morphine withdrawal. J. Proteome Res. 8, 1091–1098
7. Li, L., and Sweekdler, J. V. (2008) Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu. Rev. Anal. Chem. 1, 451–483
8. Che, F. Y., Zhang, X., Berezniuk, I., Callaway, M., Lim, J., and Fricker, L. D. (2007) Optimization of peptide extraction from the mouse hypothalamus. J. Proteome Res. 6, 4667–4676
9. Fricker, L. D., Lim, J., Pan, H., and Che, F. Y. (2006) Peptidomics: Identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom. Rev. 25, 327–344
10. Dowell, J. A., Heyden, W. V., and Li, L. (2006) Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J. Proteome Res. 5, 3368–3375
11. Fälth, M., Sköld, K., Svensson, M., Nilsson, A., Fenyö, D., and Andren, P. E. (2007) Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides. Mol. Cell. Proteomics 6, 1188–1197
12. Svensson, M., Sköld, K., Svenningsson, P., and Andren, P. E. (2003) Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2, 213–219
13. Taylor, S. W., Andon, N. L., Bilakovic, J. M., Lowe, C., Hanley, M. R., Pittner, R., and Ghosh, S. S. (2005) Efficient high-throughput discovery of large peptide hormones and biomarkers. J. Proteome Res. 5, 1776–1784
14. Ramström, M., Hagman, C., Tsybin, Y. O., Markides, K. E., Håkansson, P., Salehi, A., Lundquist, I., Håkansson, R., and Bergquist, J. (2003) A novel mass spectrometric approach to the analysis of hormonal peptides in extracts of mouse pancreatic islets. Eur. J. Biochem. 270, 3146–3152
15. Wang, J., Ma, M., Chen, R., and Li, L. (2008) Enhanced neuropeptide profiling via capillary electrophoresis off-line coupled with MALDI FTMS. Anal. Chem. 80, 6166–6177
16. Bayne, M. T., Garcia, B. A., Li, M., Zamdborg, L., Wenger, C. D., Babai, S., and Kelleher, N. L. (2009) Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval. J. Proteome Res. 8, 374–379
17. Abrahamson, E. E., and Moore, R. Y. (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191
18. Gillette, M. U., and Mitchell, J. W. (2002) Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res. 309, 89–107
19. Leak, R. K., and Moore, R. Y. (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J. Comp. Neurol. 433, 312–334
20. Moore, R. Y., Speh, J. C., and Leak, R. K. (2002) Suprachiasmatic nucleus organization. Cell Tissue Res. 309, 89–98
21. Morin, L. P., Shivvers, K. Y., Blanchard, J. H., and Muscat, L. (2006) Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137, 1285–1297
Peptidomics of the Rat Suprachiasmatic Nucleus by FTMS

22. van den Pol, A. N., and Tsujimoto, K. L. (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus immunocytochemical analysis of 25 neuronal antigens. *Neuroscience* 15, 1049–1086

23. Karatsoreos, I. N., Yan, L., LeSauter, J., and Silver, R. (2004) Phenotype matters: Identification of light-responsive cells in the mouse suprachiasmatic nucleus. *J. Neurosci.* 24, 69–75

24. van den Pol, A. N., Decavel, C., Levi, A., and Paterson, B. (1989) Hypothalamic expression of a novel gene product VGF immunocytochemical analysis. *J. Neurosci.* 9, 4122–4137

25. van den Pol, A. N., and Gorcs, T. (1986) Synaptic relationships between neurons containing vasopressin gastrin-releasing peptide vasoactive intestinal polypeptide and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus dual ultrastructural immunocytochemistry with gold-substituted silver peroxidase. *J. Comp. Neurol.* 252, 507–521

26. Yan, L., Karatsoreos, I., Lesauter, J., Welsh, D. K., Kay, S., Foley, D., and Silver, R. (2007) Exploring spatiotemporal organization of SCN circuits. *Cold Spring Harb. Symp. Quant. Biol.* 72, 527–541

27. Card, J. P., and Moore, R. Y. (1984) The suprachiasmatic nucleus of the golden-hamster: immunohistochemical analysis of cell and fiber distribution. *Neuroscience* 13, 415–431

28. Morin, L. P. (2007) SCN organization reconsidered. *J. Biol. Rhythms* 22, 3–13

29. van Leeuwen, F. W., Swaab, D. F., and de Raay, C. (1978) Immunoelectron microscopic localization of vasopressin in rat suprachiasmatic nucleus. *Cell Tissue Res.* 193, 1–10

30. Hatcher, N. G., Atkins, N. J., Annandagi, S. P., Forbes, A. J., Kelley, N. L., Gillette, M. U., and Sweedler, J. V. (2008) Mass spectrometry-based discovery of circadian peptides. *Proc. Natl. Acad. Sci. U.S.A.* 105, 12527–12532

31. Leduc, R. D., and Kelleher, N. L. (2007) Using ProSight PTM and related tools for targeted protein identification and characterization with high mass accuracy tandem MS data. *Curr. Protoc. Bioinformatics* Chapter 13, 13.6.1–13.6.28

32. Zamdborg, L., LeDuc, R. D., Glowacz, K. J., Kim, Y. B., Viswanathan, V., Spaulding, I. T., Early, B. P., Bluhm, E. J., Babai, S., and Kelleher, N. L. (2008) Mass spectrometry-based discovery of circadian peptides. *Comp. Endocrinol.* 35, W701–W706

33. Bora, A., Annandagi, S. P., Millet, L. J., Rubakhin, S. S., Forbes, A. J., Kelleher, N. L., Gillette, M. U., and Sweedler, J. V. (2008) Neuropeptidomics of the supraoptic rat nucleus. *J. Proteome Res.* 7, 4992–5003

34. Tischkau, S. A., Mitchell, J. W., Pace, L. A., Barnes, J. W., Barnes, J. A., and Gillette, M. U. (2004) Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. *Neuron* 43, 539–549

35. Southey, B. R., Amare, A., Zimmerman, T. A., Rodriguez-Zas, S. L., and Sweedler, J. V. (2008) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. *Nucleic Acids Res.* 34, W267–W272

36. Alberns, L., Hummy, M. L., Zimmermann, T. A., Rodriguez-Zas, S. L., and Sweedler, J. V. (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. *J. Proteome Res.* 5, 1162–1167

37. Tege, A. N., Southey, B. R., Sweedler, J. V., and Rodriguez-Zas, S. L. (2008) Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. *Mamm. Genome* 19, 106–120

38. Albers, H. E., Gillespie, C. F., Babagbemi, T. O., and Huhman, K. L. (1995) Cyclic AMP response element-binding protein kinase by gastrin-releasing peptide. *J. Biol. Chem.* 270, 507–521

39. Piggins, H. D., Goguen, D., and Rusak, B. (2005) Gastrin-releasing peptide induces c-Fos in the hamster suprachiasmatic nucleus. *Neurosci. Lett.* 385, 205–210

40. Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., and Herzog, E. D. (2005) Vasoactive intestinal polypeptide mediates circadian rhythmity and synchrony in mammalian clock neurons. *Nat. Neuroscience* 8, 476–483

41. Piggins, H. D., and Cutler, D. J. (2003) The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. *J. Endocrinol.* 177, 7–15

42. Colwell, C. S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Leleivie, V., Hu, Z., Liu, X., and Waschek, J. A. (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 285, R939–R949

43. Hannibal, J., and Fahrenkrug, J. (2003) Circadian rhythm regulation: a central role for the neuropeptide vasoactive intestinal polypeptide. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 285, R935–R936

44. Kawamoto, K., Nagano, M., Kanda, F., Chihara, K., Shigeyoshi, Y., and Okamura, H. (2003) Two types of VIP neuronal components in rat suprachiasmatic nucleus. *J. Neurosci.* 23, 850–857

45. Sims, K. B., Hoffman, D. L., Said, S. I., and Zimmerman, E. A. (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. *Brain Res.* 186, 165–183

46. Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A. F., Boguski, M. S., Brockway, K. S., Byrnes, E. J., Chen, L., Chen, L., Chen, T. M., Chin, M. C., Chong, J., Crooke, B. E., Czapinska, A., Degen, C. N., Dettke, M. D., Dep. E., Dolbeare, T. A., Dong, M. H., H., Dougherty, J. G., Duncan, B. J., Ebbert, A. J., Eichele, G., Estin, L. K., Faber, C., Facer, B. A., Fields, R., Fischer, S. R., Fliss, T. P., Frenslay, C., Gates, S. N., Glattfelder, K. J., Halverson, K. R., Hart, M. R., Hohmann, J. G., Howell, M. P., Jeung, D. P., Johnson, R. A., Karr, P. T., Kawal, R., Kidney, J. M., Knappik, R. H., Kuan, C. L., Lake, J. H., Laramee, A. R., Larsen, K. D., Lau, C., Lemon, T. A., Lian, A. J., Liu, Y., Luong, L. T., Michaels, J., Morgan, J. M., Morgad, M. T., Nettles, E. J., Ng, L. L., Ng, R., Orta, G. J., Overly, C. P., Pak, T. H., Parry, S. E., Pathak, S. D., Pearson, O. C., Puchalski, R. B., Riley, Z. L., Rockett, H. R., Rowland, S. A., Royall, J. J., Ruiz, M. J., Sano, N. R., Schaffit, K., Shapirovalov, N. V., Sivisay, S., Slaughterbeck, C. R., Smith, C. S., Smith, K. A., Smith, B. I., Sodt, A. J., Stewart, N. N., Stumpf, K. R., Sunlikin, S. M., Surat, M., Tam, A., Teemer, C. D., Thaller, C., Thompson, C. L., Varam, L. R., Vaisse, C., Whitek, P. M., Wohlhueter, B. M., Wolk, C. K., Wong, V. Y., Wood, M., Yang, L., Young, C. R., Youngstrom, B. L., Yuan, X. F., Zhang, B., Zwinger, T. A., and Jones, A. R. (2007) Genome-wide atlas of gene expression in the adult mouse brain. *Nature* 445, 168–176

47. Lippton, H., Lin, B., Gunmesel, B., Nitril, N., Wasserman, A., and Knight, M. (2006) Hemopressin, a hemoglobin fragment, dilates the rat systemic vascular bed through release of nitric oxide. *Peptides* 27, 2284–2288
Peptidomics of the Rat Suprachiasmatic Nucleus by FTMS

58. Heimann, A. S., Gomes, I., Dale, C. S., Pagano, R. L., Gupta, A., de Souza, L. L., Luches, A. D., Castro, L. M., Giorgi, R., Riolli, V., Ferro, E. S., and Devi, L. A. (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc. Natl. Acad. Sci. U.S.A. 104, 20588–20593

59. Nydahl, K. S., Pierson, J., Nyberg, F., Caproni, R. M., and André, P. E. (2003) In vivo processing of LVW-hemorphin-7 in rat brain and blood utilizing microdialysis combined with electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 17, 838–844

60. Shimokawa, N., Jing, H., Okada, J., and Miura, M. (2000) Molecular cloning of Rhombex-40 a transmembrane protein from the ventral medial-ular surface of the rat brain by differential display. Life Sci. 66, 2183–2191

61. Che, F. Y., Lim, J., Pan, H., Biswas, R., and Fricker, L. D. (2005) Quantitative neuropeptide expression in mouse brain and pituitary. Mol. Cell. Proteomics 4, 1391–1405

62. Gillette, M. U., and Reppert, S. M. (1987) The hypothalamic suprachiasmatic nucleus. Int. Rev. Cytol. 101, 221–273

63. Shimokawa, N., Jingu, H., Okada, J., and Miura, M. (2000) Molecular cloning of Rhombex-40 a transmembrane protein from the ventral medial-ular surface of the rat brain by differential display. Life Sci. 66, 2183–2191

64. Gillette, M. U., and Reppert, S. M. (1987) The hypothalamic suprachiasmatic nucleus. Int. Rev. Cytol. 101, 221–273

65. Chen, D., Buchanan, G. F., Ding, J. M., Hannibal, J., and Gillette, M. U. (1999) Pituitary adenylate cyclase-activating polypeptide modulates glutamatergic calcium signalling in suprachiasmatic nucleus neurons. J. Neurochem. 71, 960–968

66. Chen, D., Buchanan, G. F., Ding, J. M., Hannibal, J., and Gillette, M. U. (1999) Pituitary adenylate cyclase-activating polypeptide: a potential daytime regulator of the biological clock. J. Comp. Neurol. 394, 13468–13473

67. Hannibal, J., Hindersson, P., Ostergaard, J., Georg, B., Heegaard, S., and Andreén, P. (2006) SWEPEP, a database designed for neuropeptides and mass spectrometry. Mol. Cell. Proteomics 5, 998–1005

68. Hannibal, J. (2006) Roles of PACAP-containing retinal ganglion cells in regulating circadian rhythms in the suprachiasmatic nucleus. J. Neurosci. 26, 23157–23167

69. Hannibal, J., Hindersson, P., Ostergaard, J., Georg, B., Heegaard, S., and Andreén, P. (2006) SWEPEP, a database designed for neuropeptides and mass spectrometry. Mol. Cell. Proteomics 5, 998–1005

70. Hannibal, J., J. M., Chen, D., Fahrenkrug, J., Larsen, P. J., Gillette, M. U., and Mikkelsen, J. D. (1998) Pituitary adenylate cyclase activating peptide (PACAP) in the hypothalamus. J. Comp. Neurol. 394, 13468–13473

71. Hannibal, J., Hindersson, P., Ostergaard, J., Georg, B., Heegaard, S., and Andreén, P. (2006) SWEPEP, a database designed for neuropeptides and mass spectrometry. Mol. Cell. Proteomics 5, 998–1005

72. Hannibal, J., Hindersson, P., Ostergaard, J., Georg, B., Heegaard, S., and Andreén, P. (2006) SWEPEP, a database designed for neuropeptides and mass spectrometry. Mol. Cell. Proteomics 5, 998–1005

73. Hannibal, J., J. M., Chen, D., Fahrenkrug, J., Larsen, P. J., Gillette, M. U., and Mikkelsen, J. D. (1998) Pituitary adenylate cyclase activating peptide (PACAP) in the hypothalamus. J. Comp. Neurol. 394, 13468–13473

74. Kopp, M. D., Meisal, H., Dehghani, F., and Kor, H. W. (2001) The pituitary adenylate cyclase-activating polypeptide modulates glutamatergic calcium signalling: investigations on rat suprachiasmatic nucleus neurons. J. Neurochem. 79, 161–171

75. Kopp, M. D., Schomerus, C., Dehghani, F., Kor, H. W., and Meisal, H. (1999) Pituitary adenylate cyclase-activating polypeptide and melatonin in the suprachiasmatic nucleus: effects on the calcium signal transduction cascade. J. Neurochem. 79, 206–219

76. Minami, Y., Furuno, K., Akiyama, M., Moriya, T., and Shibata, S. (2002) Neuropeptide Y differentially suppresses per1 and per2 mRNA induced by light in the suprachiasmatic nuclei of the golden hamster. J. Biol. Rhythms 17, 28–39

77. Card, J. P., and Moore, R. Y. (1988) Neuropeptide Y localization in the rat suprachiasmatic nucleus and periventricular hypothalamus. Neurosci. Lett. 88, 241–246

78. Card, J. P., and Moore, R. Y. (1989) Organization of lateral geniculate-hypothalamic connections in the rat. J. Comp. Neurol. 294, 135–147

79. Bittman, E. L., Tosini, G., and Harrington, M. E. (1999) Melanopsin is expressed in retinal ganglion cells of the suprachiasmatic nucleus and other brain regions. Brain Res. Mol. Brain Res. 28, 239–250

80. Prosser, R. A. (1998) Neuropeptide Y blocks serotoninergic phase shifts of the suprachiasmatic circadian clock in vitro. Brain Res. 808, 31–41

81. van den Pol, A. N., O'Brianit, K., Chen, G., and Belousov, A. B. (1996) Neuropeptide Y-mediated long-term depression of excitatory activity in the suprachiasmatic nucleus. J. Neurosci. 16, 314–325

82. Weber, E. T., and Rea, M. A. (1997) Neuropeptide Y blocks light-induced phase advances but not delays of the circadian activity rhythm in hamsters. Neurosci. Lett. 231, 159–162

83. Yannielli, P. C., Brewer, J. M., and Harrington, M. E. (2004) Blockade of the NPY5R receptor potentiates circadian responses to light: complementarity in vivo and in vitro studies. Eur. J. Neurosci. 19, 891–897

84. Minturn, J. E., Fryer, H. J., Geschwind, D. H., and Hockfield, S. (1995) Toad-64, a gene expressed early in neuronal differentiation in the rat, is related to Unc-33, a C. elegans gene involved in axon outgrowth. J. Neurosci. 15, 6757–6766

85. Quinn, C. C., Chen, E., Kinjo, T. G., Kelly, G., Bell, A. W., Elliott, R. C., McPherson, P. S., and Hockfield, S. (2003) TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the developing neuron. J. Neurosci. 23, 3181–3192

86. Hong, H. K., Chong, J. L., Song, W. M., Song, E. J., Jyawook, A. A., Schook, A. C., Ko, C. H., and Takahashi, J. S. (2007) Inducible and reversible clock gene expression in brain using the iTA system for the study of circadian behavior. PLoS Genet. 3, 324–338

87. Beranova-Giorgianni, S., Zhao, Y., Desiderio, D. M., and Giorgianni, F. (2006) Phosphoproteomic analysis of the human pituitary. Pituitary 9, 109–120

88. Burghardt, J. P., Kovács, G. L., de Wilde, D., van Nispen, J. W., and Greven, H. M. (1983) A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221, 1310–1312

89. Flanagan, T., Taylor, L., Pouiler, L., Viveros, O. H., and Diberto, E. J., Jr. (1990) A novel 1745-dalton pyroglutamyl peptide derived from choromycin-B is in the bovine adenoremedulray choromatelin vesicle. Cell. Mol. Neurobiol. 10, 507–528

90. Lanni, J. M., Reid, S. M. Bhatia, N. G., and Sweedler, J. V. (2005) Monitoring activity-dependent peptide release from the CNS using single-bead solid-phase extraction and MALDI-TOF MS detection.
