Short Communication

Association of Peripheral Lymphocyte Subsets with Cognitive Decline and Dementia: The Cardiovascular Health Study

Alison E. Fohnera,b,*, Colleen M. Sitlania, Petra Buzkovac, Margaret F. Doyled, Xiaojuan Liue, Joshua C. Bisa, Annette Fitzpatricka,f,g, Susan R. Heckbertb, Sally A. Hubera, Lewis Kullerh, William T. Longstretha,i, Matthew J. Feinsteinl, Matthew Freibergk, Nels C. Olsond, Sudha Seshadrii,m,n, Oscar Lopezo, Michelle C. Oddene, Russell P. Tracyb,d, Bruce M. Psatya,b,q,r, Joseph A. Delaneya,s and James S. Floyda,b,q

aCardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
bDepartment of Epidemiology, University of Washington, Seattle, WA, USA
cDepartment of Biostatistics, University of Washington, Seattle, WA, USA
dDepartment of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
eDepartment of Family Medicine, University of Washington, Seattle, WA, USA
fDepartment of Global Health, University of Washington, Seattle, WA, USA
gDepartment of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
hDepartment of Neurology, University of Washington, Seattle, WA, USA
iDepartments of Medicine, Preventive Medicine and Pathology, Northwestern University, Evanston, IL, USA
jDepartment of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
kGlenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, TX, USA
lDepartment of Neurology, Boston University School of Medicine, Boston, MA, USA
mFramingham Heart Study, Framingham, MA, USA
nDepartments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
oDepartment of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
pDepartment of Medicine, University of Washington, Seattle, WA, USA
qDepartment of Health Systems and Population Health, University of Washington, Seattle, WA, USA
rCollege of Pharmacy, University of Manitoba, Winnipeg, MB, Canada

Accepted 11 April 2022
Pre-press 6 May 2022
Abstract. Inflammatory biomarkers in plasma are associated with dementia. Thus, we examined the association of 18 types of peripheral immune cells, measured as proportions of their immune cell type, with cross-sectional measures of cognitive function, change in cognitive function over seven years, prevalent dementia, and time to death from dementia in 1,928 participants of the Cardiovascular Health Study, with mean age 80 years and 62% female. We did not identify any associations after accounting for multiple comparisons, though we identified marginal associations of peripheral regulatory T cells with cognitive decline and dementia.

Keywords: Alzheimer’s disease, B cells, benton visual retention test, cognitive impairment, immune, natural killer cells, neuroinflammation, T cells

INTRODUCTION

Neuroinflammation is implicated in rapid progression of Alzheimer’s disease (AD) and in altered learning and memory [1, 2]. Large scale genomic studies support the role of the immune system in dementia [3–10]. Immune cells have been identified in brain tissue and cerebrospinal fluid of people with AD, and the levels of immune cells in blood may be associated with dementias, perhaps reflecting premature immunosenescent and chronic inflammation [11–18]. For example, higher circulating proportions of natural killer (NK) cells were apparent before AD onset and the depletion of NK cells improved cognitive function in mice [19]. In humans, high NK cell activity was associated with worse cognitive performance of AD patients [14, 20, 21]. Increased numbers of CD8+ T effector memory CD45RA+(CD8 TEMRA) cells and of CD4+ T effector memory CD45RA+(CD4 TEMRA) cells were identified in the blood of patients with AD [12, 22, 23]. Prior studies report both decreased and increased proportions of regulatory T cells (Treg) in blood of patients with AD [22–27]. Immunosenecence of T cells may promote AD by decreasing anti-amyloid antibodies, which could result in less clearance of amyloid plaques [28], or by producing high levels of pro-inflammatory cytokines and oxidative stress, which could damage neurons [29, 30]. However, many of the associations between peripheral immune cells and cognitive outcomes are based on small, cross-sectional studies. Clarifying the association of the peripheral adaptive and innate immune system with risk for cognitive decline and dementia in a large, population-based setting may illuminate underlying biological processes and lead to the development of better therapeutics.

The Cardiovascular Health Study (CHS) is a population-based, prospective cohort study that included serial cognitive evaluations, dementia adjudication, and assessment of 18 types of peripheral innate and adaptive immune cell subsets. Importantly, CHS allows evaluation of the association of circulating immune cells with both cross-sectional and longitudinal cognitive and dementia outcomes. We hypothesized a priori that high proportions of NK, and both CD4+ and CD8+ TEMRA cells would be associated with worse prospective cross-sectional global cognition, worse cognitive decline, prevalent dementia, and shorter time to death from dementia. We hypothesized that higher proportions of Treg protect against these adverse cognitive outcomes. We investigated all other available immune cell subsets as exploratory hypotheses to broadly characterize the relationship of the peripheral immune system with cognitive decline and dementia.

METHODS AND MATERIALS

Study design and approval

The CHS is a population-based, longitudinal cohort of 5,888 men and women aged 65 years or older at enrollment in 1989–93 [31]. Analytic baseline for this analysis was defined as the 1998–1999 CHS exam because this study leverages immune cell phenotype data obtained [32] from the 1998–1999 exams. Institutional review boards at the University of Washington and at each study site approved the study. All CHS participants provided written informed consent.

Immune cell measurement

Detailed methods for immune cell phenotyping and flow cytometry gating strategies have been published [32, 33]. Briefly, as part of the 1998–1999 exam, peripheral blood mononuclear cells (PBMCs) were cryopreserved. Flow cytometry was used to differentiate cell types based on surface marker expression. Cell phenotypes were expressed as proportions of larger “parent” populations, as indicated
in Table 2. Poor sample quality and technical assay errors resulted in missing data, which appear to be missing at random. IgG antibodies to cytomegalovirus (CMV) were measured in serum by enzyme immunoassay (Diamedix Corp., Miami Lakes, FL); the inter-assay coefficients of variation of CMV titer were 5.1%–6.8%.

Cognition and dementia adjudication

Global cognitive performance was assessed with the 100-point Modified Mini Mental State Exam (3MSE) for participants in 1998–1999 and was repeated among participants remaining in the study in 2005–2006. Participants who did not attend an in-person exam were contacted via telephone to complete a Telephone Interview for Cognitive Status (TICS) exam. The TICS score explains 67% of variability in 3MSE in CHS and can be used to estimate 3MSE score with a correlation of 0.82 between actual and TICS-estimated 3MSE [34, 35]. We used TICS score to estimate the 3MSE score when 3MSE was missing. TICS was used to estimate one score at the 1998–1999 exam and 194 scores at the 2005–2006 exam.

A committee of neurologists and psychiatrists used Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria to adjudicate dementia prior to 1998–1999 [36–38]. Death from dementia was ascertained on all participants through 2015 with evidence of advanced dementia prior to death without evidence of another cause [39].

Statistical analysis

For main analyses we used multiple imputation with chained equations (40 imputations) to impute all missing data, including any missing covariates, cell phenotypes, and cognitive outcomes. We imputed 20 cross-sectional cognitive scores, 996 changes in cognitive score, 402 statuses of prevalent dementia, and 19 times to death with dementia. Data were imputed in blocks of immune cells, covariates, and cognitive outcomes. Additional covariates associated with aging-related outcomes in CHS were included in the imputation process to improve estimates [40–44]. In the main imputed analyses, all participants were included in all analyses.

Due to co-linearity, we analyzed each cell phenotype separately, per standard deviation (SD) higher value. Associations between immune cell proportion per 1-SD and both cross-sectional 3MSE score and change in 3MSE between 1998–1999 and 2005–2006 were assessed using linear regression. We used Poisson regression to determine relative risk of prevalent dementia per 1-SD higher immune cell proportion. We used Cox proportional hazards regression to determine hazard ratio of death from dementia per 1-SD higher immune cell proportion. Censoring occurred at death without noted dementia or in 2015. All analyses were adjusted for age, sex, Black race, systolic blood pressure, smoking status, statin use, education, prevalent diabetes, APOE4 allele carrier status, body mass index (BMI), CMV antibody titer, assay batch, and study site.

In exploratory analyses, we repeated all analyses stratified by sex. In sensitivity analyses, we excluded 135 participants who had experienced a stroke prior to the 1998–1999 exam. To identify potential influence of imputed missing data, we performed complete case analysis for associations between immune cell proportion and three outcomes: cross-sectional cognitive function, prevalent dementia, and time-to-death from dementia. We weighted individuals with 2005–2006 data by the inverse probability of the likelihood of having cognitive scores in 2005–2006 to perform a sensitivity analysis of the association of immune cell proportions and seven-year change in cognitive function [45].

For main endpoints, a p-value less than 0.0125 was considered significant to account for the four primary cell types assessed. All other analyses were exploratory and a p-value of 0.05 was considered significant. We conducted all analyses in RStudio (R version 3.6.3). The data that support the findings of this study are available upon reasonable request through the CHS Coordinating Center (CHS-NHLBI.org).

RESULTS

Our analysis included 1928 CHS participants with at least one peripheral immune subset measured. Table 1 presents their characteristics at analytic baseline. Cognitive evaluations were performed seven years later in a subset of 932 (48%) participants and scores declined a mean of 6.5 points (standard deviation = 9.7). Over 16 years of follow up, 272 (14%) participants died from dementia. Table 2 presents immune cells as proportions of their parent population.

Table 3 presents associations between each immune cell proportion and both cross-sectional
Table 1
Characteristics of CHS subjects with immune cell data \((n = 1928)\) at analytic baseline

Variable	Mean or number	Standard deviation (SD) or %
Age, y (mean, SD)	79.7	4.4
Male \((n, \%)\)	732	38.0%
Black \((n, \%)\)	339	17.6%
Study site \((n, \%)\)		
North Carolina	536	27.8%
California	521	27.0%
Maryland	410	21.3%
Pittsburgh	461	23.9%
Education past grade 12 \((n, \%)\)	940	48.8%
Systolic blood pressure, mmHg (mean, SD)	135.2	20.5
Smoking status \((n, \%)\)		
Current	151	6.6%
Never	938	44.1%
Former	839	49.3%
At least one \(APOE4\) allele \((n, \%)\)	534	29.0%
BMI, kg/m\(^2\) (mean, SD)	26.6	4.4
Prior Stroke \((n, \%)\)	135	7.0%
Diabetes \((n, \%)\)	372	19.4%
Statin user \((n, \%)\)	307	15.9%
CMV antibody titer, EU/mL (mean, SD)	190.3	183.6
Prevalent dementia \((n, \%)\)	563	36.9%
3MSE (mean, SD)	90.4	11.6

* percentages based on number of participants with data for that variable. No data were missing for age, sex, race, study site, presence of prior stroke, or statin use. The number of missing observations for the other variables are as follows: 3 for level of education, 1 for blood pressure, 25 for smoking status, 84 for \(APOE4\) genotype, 143 for BMI, 10 for prevalent diabetes, 189 for CMV antibody titer, 402 for prevalent dementia, and 1 for 3MSE cognitive score.

Table 2
Cellular phenotypes with their molecular description, parent population, number of samples with data \((N)\), means and standard deviations \((SD)\)

Cellular phenotype	Molecular description	Parent population	N	Mean	SD
Natural killer	CD3-CD56 + CD16+	% Lymphocytes	1,556	5.1	4.8
Treg	CD4 + CD25 + CD127–	CD4+	1,545	6.6	4.6
CD4 + TEMRA	CD4 + CD45RA + CD28-CDS7+	CD4+	1,670	6.9	5.9
CD8 + TEMRA	CD8 + CD45RA + CD28-CDS7+	CD8+	1,675	23.6	14.1

Exploratory hypotheses

Cellular phenotype	Molecular description	Parent population	N	Mean	SD
\(\gamma\delta\) T cells	CD3+\(\gamma\delta\)+	CD3+	1,539	5.5	4.9
B cells	CD19+	% Lymphocytes	1,556	19.7	15.9
T helper cells	CD4+	% Lymphocytes	1,673	50.1	14.5
Cytotoxic T cells	CD8+	% Lymphocytes	1,691	17.3	9.7
Th1	CD4 + CD194-CXCR3 + CD196–	CD4+	1,326	20.2	8.0
Th2	CD4 + CD194-CXCR3-CDS196–	CD4+	1,326	4.7	3.8
Th17	CD4 + CD194-CXCR3-CDS196+	CD4+	1,326	3.2	2.6
Naive CD4 + cells	CD4 + CD45RA+	CD4+	1,690	25.8	12.6
Memory CD4 + cells	CD4 + CD45RO+	CD4+	1,690	49.7	15.5
Activated/mature CD4 + cells	CD4 + CD38+	CD4+	1,688	33.4	15.8
Naive CD8 + cells	CD8 + CD45RA+	CD8+	1,709	42.6	16.6
Memory CD8 + cells	CD8 + CD45RO+	CD8+	1,702	30.2	14.4
Activated/mature CD8 + cells	CD8 + CD38+	CD8+	1,707	34.3	18.5
Memory B cells	CD19 + CD27+	CD19+	1,557	26.4	19.8

Cognitive function and longitudinal change in cognitive function after seven years using imputed data where missing. No immune cell proportions were associated with any cognitive outcomes after accounting for multiple comparisons of the primary cell types. However, higher proportions of \(T_{\text{reg}}\) were
Table 3

Associations of lymphocyte subsets (per 1 SD) with cognitive outcomes. Analyses for cross-sectional 3MSE score and change in 3MSE score over seven years are based on multiple linear regression. Analysis of prevalent dementia is based on Poisson regression. Analysis of time to death from dementia is based on Cox proportional hazards regression. All analyses adjust for age, sex, Black race, systolic blood pressure, smoking, statin use, education, prevalent diabetes, APOE4 carrier status, BMI, CMV antibody titer, assay batch, and study site. Participants were censored at death without dementia or in 2015. All 1928 individuals are included in each analysis. Missing data were imputed, including covariates (see Table 1), immune cells (see Table 2), and outcomes. We imputed 20 cross-sectional cognitive scores, 996 changes in cognitive score, 402 statuses of prevalent dementia, and 19 times to death with dementia. Beta values that are negative indicate lower cognitive score and a greater decline in cognition over 7 years.

Cellular phenotype	Cross-sectional 3MSE score	Change over seven years	Cross-sectional dementia	Time to dementia death								
	Beta	95% CI	p	Beta	95% CI	p	Relative Risk	95% CI	p	Hazard Ratio	95% CI	p
Natural killer	0.06	-1.71, 2.74	0.94	-0.09	-3.89, 3.70	0.96	1.15	0.77, 1.70	0.50	1.16	0.80, 1.69	0.44
Treg	-0.52	-1.08, 0.03	0.065	-1.30	-2.36, -0.24	0.018	1.10	0.99, 1.22	0.086	1.13	0.78, 1.64	0.52
CD4+TEMRA	-0.12	-0.80, 0.55	0.72	0.47	-0.80, 1.73	0.47	0.98	0.83, 1.16	0.82	1.07	0.76, 1.52	0.68
CD8+TEMRA	0.05	-0.55, 0.65	0.86	0.24	-0.91, 1.39	0.68	1.03	0.91, 1.18	0.63	1.05	0.74, 1.49	0.79
γδ T cells	0.41	-1.21, 2.62	0.72	-0.93	-4.85, 2.99	0.64	1.00	0.66, 1.50	0.98	1.06	0.75, 1.50	0.76
B cells	0.26	-0.22, 0.73	0.29	0.08	-0.85, 1.01	0.86	0.97	0.87, 1.08	0.54	1.10	0.77, 1.57	0.60
T helper cells	-0.15	-0.33, 0.02	0.09	-0.03	-0.37, 0.31	0.86	1.01	0.97, 1.05	0.74	1.08	0.76, 1.53	0.67
Cytotoxic T cells	0.11	-0.02, 0.25	0.09	-0.07	-0.31, 0.17	0.56	1.01	0.98, 1.04	0.70	1.08	0.76, 1.54	0.67
Th1	0.14	-0.17, 0.46	0.38	-0.25	-0.87, 0.37	0.44	0.99	0.92, 1.06	0.79	1.08	0.76, 1.53	0.67
Th2	-0.12	-2.51, 2.28	0.92	1.59	-4.50, 7.68	0.61	0.99	0.92, 1.06	0.97	1.08	0.75, 1.55	0.68
Th17	0.34	-2.88, 3.56	0.84	1.51	-2.14, 5.16	0.42	0.99	0.93, 1.84	0.97	1.08	0.76, 1.53	0.68
Naive CD4+ cells	0.12	-0.42, 0.66	0.67	0.14	-0.86, 1.15	0.78	0.90	0.79, 1.03	0.14	1.00	0.70, 1.43	0.99
Memory CD4+ cells	-0.04	-0.39, 0.30	0.81	-0.13	-0.83, 0.56	0.71	1.06	0.97, 1.15	0.19	1.01	0.71, 1.44	0.97
Activated/mature CD4+ cells	0.10	-0.45, 0.64	0.73	0.24	-0.73, 1.20	0.63	0.95	0.84, 1.08	0.45	1.09	0.77, 1.55	0.62
Naive CD8+ cells	0.06	-0.06, 0.17	0.33	-0.13	-0.36, 0.09	0.24	0.99	0.96, 1.02	0.47	1.08	0.76, 1.53	0.66
Memory CD8+ cells	-0.25	-0.59, 0.10	0.16	0.21	-0.41, 0.82	0.51	1.04	0.96, 1.13	0.29	1.09	0.77, 1.54	0.64
Activated/mature CD8+ cells	0.10	-0.45, 0.64	0.73	0.34	-0.80, 1.48	0.56	0.97	0.85, 1.10	0.60	1.06	0.71, 1.57	0.79
Memory B cells	-0.15	-0.74, 0.45	0.63	-1.00	-2.29, 0.30	0.13	1.09	0.96, 1.23	0.21	1.16	0.81, 1.67	0.42

p-value threshold for the primary endpoints is 0.0125. Bolded cells are primary hypotheses. CI, Confidence Interval.
associated with greater decline in cognitive function over seven years if not accounting for multiple comparisons. This association was supported by suggestive associations of higher proportions of Treg with both worse cross-sectional cognitive function and higher risk of prevalent dementia. Supplementary Table 1 presents sensitivity analyses using complete case analysis for cross-sectional cognitive function (no missing data were imputed) and inverse probability weighting for change in cognitive function. These analyses were similarly null.

Additionally, no immune cell proportions were associated with prevalent dementia or time to death from dementia (Table 3). Supplementary Table 1 presents sensitivity analyses, using complete case analysis for both prevalent dementia and time to death from dementia.

We did not observe associations between immune cell subsets and any of the outcomes in analyses stratified by sex, when excluding participants with stroke prior to blood collection, or when evaluating prevalent AD specifically rather than all-cause dementia.

Exploratory analysis using principal components of the immune cell distributions did not identify significant associations.

DISCUSSION

In a large, population-based, longitudinal cohort of older adults with well-defined outcomes, we did not identify associations of peripheral immune cells with either cross-sectional or longitudinal cognitive outcomes after accounting for multiple comparisons. However, there were marginally significant associations of T_{reg} with worse cognitive decline in both imputed and weighted probability models when not accounting for multiple comparisons, and this association was supported by suggestive associations of T_{reg} with both worse cross-sectional cognitive function and prevalent dementia. Higher proportions of Treg may reflect ongoing mobilization in response to inflammation.

The immune cell subsets that we measured at a single timepoint in blood may not reflect features of the immune system most important for cognitive decline, or dynamic temporal intrapersonal variability in cell levels. Overall numbers, activity, or location of immune cells may better reflect pathology than immune cell proportions in peripheral blood. For example, all B and CD4+ T cell count may be diminished in dementia, which may not be captured when evaluating proportions [13, 18]. T\textsubscript{reg} and NK cells from patients with AD are reported to have altered function [14, 20, 21, 46]. Neurodegeneration may be driven by proinflammatory cytokines and chemokines produced by the immune cells [47]. For example, IL-1β, IL-6, and TNFα are thought to induce neuronal death [47]. Additionally, we may not have evaluated all relevant immune cell subphenotypes. For example, specific T\textsubscript{reg} subtypes might be more associated with pathologies than proportions of T\textsubscript{reg} overall [26]. Furthermore, cells may act in concert to affect cognitive decline and AD [48–50], and we have evaluated each cell type independently.

Peripheral immune cells may not reflect immune cells in the brain and cerebrospinal fluid, which may be more important for cognitive decline and dementia. The role of the immune system may vary by type of dementia [13]. NK cells may be diminished in vascular dementia, but not in AD, and the distribution of naïve and memory T cells may be altered only in AD [13]. The majority of dementia in CHS was AD, but ~25% had vascular dementia and ~10% had mixed dementia based on adjudicated diagnoses. Our dementia endpoint included all dementia subtypes and limiting our analysis to adjudicated AD did not affect our findings.

Other limitations of the study include large amounts of missing data and that participants with cognitive data are known to be healthier than those without cognitive data or who did not survive to the 1998–1999 exam. Survival and participation bias is especially likely to affect longitudinal analysis of cognitive decline, where participants experiencing greater cognitive decline were less likely to be re-examined in follow-up. We attempted to account for missing data through multiple imputation with chained equations and with probability weighting based on likelihood of participation in the follow up exam, but selection bias remains a concern. Nonetheless, sensitivity analyses were also null. Other sources of bias include that death from dementia is specific, but not sensitive, and we likely underestimated the number of participants who died with dementia. Immune cells were measured at only one time point, several years after cohort development. Participants must have survived and been healthy enough to participate in a blood draw during the 1998–1999 exam. These older participants may already have experienced changes in their immune system that could affect cognitive function and decline.

The role of the immune system in dementia is likely complex. While neuroinflammation is well
established with respect to AD, anti-inflammatory therapy for AD has had poor results [51]. Our findings that peripheral immune cells, measured as proportions, are not associated with cross-sectional global cognition, cognitive decline, prevalent dementia, or time to death with dementia may reflect the complexity of both the immune system and its role in AD and related dementias. Further studies are needed to clarify associations between T\textsubscript{reg} and subsequent dementia and cognitive decline.

ACKNOWLEDGMENTS

This project was supported by grants HL120854 and HL135625 from the National Heart Lung and Blood Institute (NHLBI). The CHS cohort was supported by contracts HHSN268201200036C, HHSN 26820080007C, HHSN268201800001C, N01HC 55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006, and grants U01HL080295 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). Alison Fohner is supported by K01AG071689. A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authors’ disclosures available online (https://www.j-alz.com/manuscript-disclosures/22-0091r1).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: https://dx.doi.org/10.3233/JAD-220091.

REFERENCES

[1] Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M (2004) T cell deficiency leads to cognitive dysfunction: Implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A 101, 8180-8185.

[2] Lee S, Cho HJ, Ryu JH (2021) Innate immunity and cell death in Alzheimer’s disease. ASN Neur 13, 1759091421051908.

[3] Jun G, Naj AC, Beecham GW, Wang L-S, Buros J, Gallins PJ, Buxbaum JD, Ertekin-Taner N, Fallin MD, Friedland R, Inzelberg R, Kramer P, Rogaeva E, St. George-Hyslop P, Alzheimer’s Disease Genetics Consortium, Cantwell LB, Dombroski BA, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Lunetta KL, Martin ER, Montine TJ, Goate AM, Blacker D, Tsuang DW, Beekly D, Cupples LA, Hakonarson H, Kukull W, Foroud TM, Haines J, Mayeux R, Farrer LA, Pericak-Vance MA, Schellenberg GD (2010) Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67, 1473-1484.

[4] Lambert JC, Heath S, Even G, Campion D, Sleezers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Lenthalier L, Bettens K, Berr C, Pasquier F, Fioret N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi A, Annovi S, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gutz I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41, 1094-1099.

[5] Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Well S, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vanderhasen BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan DL, Ruiz A, Biourge MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston DA, Evans D, Lovestuen S, Leutenur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleezers K, Goate AM, Fietvet N, Huettelman MW, Gill M, Brown K, Kamboh MI, Kelller R, Barberger-Gateau P, McGuinness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeava E, Gallercher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossù P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology; Moebus S, Mecocci P, Del Zompo M, Maier W, Hampil H, Pilott A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Laneefelt L, Hakonarson H, Pichler S, Carro Quillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Youkink SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Jr., Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltunen M, Martin ER, Schmidt R, Rajescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P (2013) Meta-analysis of 74,046 individuals identifies 11 new sus-
A.E. Fohner et al. / Immune Cells and Cognitive Decline

...variants involved in immune response and transcriptional regulation. *Mol Psychiatry* 25, 1859-1875.

[9] Gagliano SA, Pouget JG, Hardy J, Knight J, Barnes MR, Ryten M, Weale ME (2016) Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. *Ann Clin Transl Neurol* 3, 924-933.

[10] Gerring ZF, Gamazon ER, White A, Derks EM (2021) Integrative network-based analysis reveals gene networks and novel drug repositioning candidates for Alzheimer disease. *Neurol Genet* 7, e622.

[11] Busse S, Hoffmann J, Michler E, Hartig R, Frolid T, Busse M (2021) Dementia-associated changes of immune cell composition within the cerebrospinal fluid. *Brain Behav Immun Health* 14, 100218.

[12] Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, Chen K, Lehallier B, Chanmappa D, De Los Santos MB, McBride A, Pluvinage J, Elahi F, Tam GK, Kim Y, Greicius M, Wagner AD, Aigner L, Galasko DR, Davis MM, Wyss-Coray T (2020) Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. *Nature* 577, 399-404.

[13] Busse M, Michler E, von Hoff F, Dobrovolny H, Hartig R, Frolid T, Busse S (2017) Alterations in the peripheral immune system in dementia. *J Alzheimers Dis* 58, 1303-1313.

[14] Richrartz-Salzburger E, Batra A, Stransky E, Laske C, Köhler N, Bartels M, Buchkremer G, Schott K (2007) Altered lymphocyte distribution in Alzheimer’s disease. *J Psychiatr Res* 41, 174-178.

[15] Park JC, Han SH, Mook-Jung I (2020) Peripheral inflammatory biomarkers in Alzheimer’s disease: A brief review. *BMB Rep* 53, 10-19.

[16] Togo T, Aktyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuichiyaka K, Kosaoka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. *J Neuroimmunol* 124, 83-92.

[17] Cao W, Zheng H (2018) Peripheral immune system in aging and Alzheimer’s disease. *Mol Neurodegener* 13, 51.

[18] Joshi C, Sivapakasam K, Christley S, Ireland L, Sivas J, Zhang W, Sader D, Logan R, Lambracht-Washington D, Rosenberg R, Cullum M, Hitt B, Li QZ, Barber R, Greenberg B, Cowell L, Zhang R, Choue R, Hobley R, Kelley B, Monson N (2022) CSF-derived CD4(+) T-cell diversity is reduced in patients with Alzheimer clinical syndrome. *Neuroimmunol Neuroinflamm* 9, e1106.

[19] Zhang Y, Fung ITH, Sankar P, Chen X, Robison LS, Ye L, D’Souza SS, Salinero AE, Kuentzel ML, Chittur SV, Zhang W, Zuloaga KL, Yang Q (2020) Depletion of NK cells improves cognitive function in the Alzheimer disease mouse model. *J Immunol* 205, 502-510.

[20] Solana C, Tarazona R, Solana R (2018) Immunosenescence of natural killer cells, inflammation, and Alzheimer’s disease. *Int J Alzheimers Dis* 2018, 1328758.

[21] Araga S, Kagimoto H, Funamoto K, Takahashi K (1991) Reduced natural killer cell activity in patients with dementia of the Alzheimer type. *Acta Neurol Scand* 84, 259-263.

[22] Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, Rubino G, Iemolo F, Cappelone G, Caruso C, Caruso A, furthermore, in the brain of Alzheimer’s disease and other neurological diseases. *J Neuroimmunol* 143, 51.

[23] Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Pawelec G (2009) Dramatic shifts in circulating CD4+ but not CD8+ T cell subsets in mild Alzheimer’s disease. *J Alzheimers Dis* 17, 91-103.
