Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
What Is the Effect of COVID-19 Social Distancing on Oral and Maxillofacial Trauma Related to Domestic Violence?

Andrew D. Marchant, BS,* Sterling Gray, BS,* David C. Ludwig, DDS, MD,† and Jasjit Dillon, DDS, MBBS‡

Purpose: To understand the impact of social distancing policies on the incidence and severity of oral and maxillofacial trauma (OMT) secondary to interpersonal violence (IPV) and domestic violence (DV).

Methods: The authors designed a retrospective cohort study enrolling subjects who presented to an urban Level 1 trauma center in Seattle, WA, for the evaluation and management of OMT between January 1 and December 31 in the years 2018 through 2020. The primary predictor variable was evaluation of OMT during periods with (2020: investigational group) or without (2018 or 2019: control group) social distancing policies in place. The primary outcome variables were the mechanism and severity of injury, defined as IPV, DV or neither, the abbreviated injury scale (AIS) and the injury severity score (ISS). Descriptive, univariate and bivariate analyses were performed with statistical significance at \(P < .05 \).

Results: Eight hundred twenty-eight subjects; 737 (89%) IPV and 91 (11%) IPV due to DV. The incidence of OMT secondary to IPV or DV was unchanged \((P = .81, P = .57 \) respectively). There was a nonsignificant increase in ISS for IPV \((P = .07)\) and no change for DV \((P = .46)\). AIS scores were unchanged for IPV \((P = .36)\). For DV, AIS scores were lower in 2020 when compared to 2019 \((P = .04)\) but unchanged from 2018 \((P = .58)\).

At least half of the DV victims were male \((50\% \text{ in } 2018, 59\% \text{ in } 2019, \text{ and } 53\% \text{ in } 2020)\). Of these, 65\% were under 18, and represented the pediatric majority \((62\%)\). A nonsignificant increase in non-white subjects presenting with DV in 2020 \((P = .15)\) was seen.

Conclusions: The COVID-19 pandemic did not change the number or severity of OMT cases secondary to IPV or DV in this region of Washington. Pediatric males were more likely to be victims of DV.

© 2021 The American Association of Oral and Maxillofacial Surgeons.

J Oral Maxillofac Surg 79:2319.e1–2319.e8, 2021

*Dental Student.
†Oral and Maxillofacial Surgery Resident.
‡Associate Professor and Program Director, Department of Oral and Maxillofacial Surgery.

Funding: This project was supported in part by the University of Washington Dr Douglass L. Morell Dentistry Research Fund.

Conflict of Interest Disclosures: Dr Dillon is the recipient of an Oral and Maxillofacial Surgery Foundation Grant and an Osteo-science Foundation Grant. There are no conflicts of interest for this study.

Address correspondence and reprint requests to Dr Dillon: Department of Oral & Maxillofacial Surgery, 1959 NE Pacific St, Health Sciences Building B-241, Seattle, WA 98195; e-mail: dillonj5@uw.edu

Received May 24, 2021
Accepted July 19, 2021.

© 2021 The American Association of Oral and Maxillofacial Surgeons.
0278-2391
https://doi.org/10.1016/j.joms.2021.07.020

2319.e1
Communities around the world have experienced an unprecedented crisis in the COVID-19 pandemic. In the United States, policies have been enacted to mitigate the transmission of the disease, but these policies have varied by jurisdiction (eg, city, county, state). In Washington State, for example, during the early stages of the pandemic social distancing policies such as a stay-at-home order (3/23/2020) were enacted. Since then, these policies have gone through numerous iterations; having been adjusted based on disease spread and the availability of healthcare resources. While these measures have been effective in slowing the spread of COVID-19, there is evidence of adverse psychological impact. Individuals under social distancing policies have been found to experience higher levels of stress, confusion and anger.

In the setting of widespread mandatory lockdown during the COVID-19 pandemic, domestic violence (DV) has increased significantly. DV is a broad term that includes partner violence, child and elder abuse. An increase in household stress can increase the likelihood of DV. Social distancing policies can also disrupt the social and protective networks of DV victims, making them more susceptible victims. Furthermore, the American Psychological Association has reported other factors that have led to increased stress not directly related to the COVID-19 pandemic such as social movements and political uncertainty and unrest.

Among victims of DV, trauma to the oral and maxillofacial region is 1 of the most common injury patterns. Up to 50% of victims who present for evaluation of injuries secondary to DV have trauma to the oral and maxillofacial region. Given the reported increase in DV during the COVID-19 pandemic and the propensity for oral and maxillofacial trauma (OMT) in these victims, the investigators sought to investigate this subject focusing on their geographical region. The purpose of this study was to understand the impact of social distancing policies on the incidence of OMT secondary to DV and interpersonal violence (IPV). The authors hypothesized that the frequency and severity of OMT secondary to DV or IPV would increase as a result of social distancing policies. The specific aims were to 1) measure and compare the incidence of OMT secondary to DV and IPV during a period with social distancing policies in place versus without, and 2) estimate and compare the severity of OMT during periods with or without social distancing policies in place.

Methods

STUDY DESIGN AND SAMPLE

To answer the research question, the authors designed a retrospective cohort study. The study sample was composed of subjects who presented to Harborview Medical Center (HMC), an urban Level 1 trauma center in Seattle, WA, for the evaluation and management of OMT and were enrolled in the Institutional Trauma Registry. This study was approved by the University of Washington Institutional Review Board (UW IRB: STUDY00011831).

Inclusion criteria were: 1) subjects who presented between January 1 and December 31 in the years 2018, 2019, or 2020 with OMT and 2) subjects who presented with OMT coded as S00 through S09 as defined by the International Classification of Disease, 10th Edition (ICD-10) (Table 1) during this time period. Exclusion criteria were: cause of OMT not documented or inadequate/unclear documentation otherwise.

Among those who met the inclusion criteria for the study, those who were victims of DV or IPV were then identified:

IPV Group: Subjects who presented with OMT secondary to assault were categorized into the IPV group. OMT was identified by the presence of ICD-10 codes S00 through S09 and was identified by the presence of ICD-10 codes X92 through X99 or Y00 through Y09 (Table 1). Subjects meeting both criteria (1. oral and maxillofacial trauma, 2. assault as the mechanism) were therefore categorized in the IPV group.

DV Group: Subjects who presented with OMT secondary to DV were categorized into the DV group. DV subjects were identified from within the IPV group if, in addition, they were also coded as Y07.0 through Y07.5 (Table 1), or by identifying evidence of DV in the injury details provided by the trauma registry or clinical documentation.

The incidence of OMT secondary to DV and IPV was compared to the incidence secondary to other mechanisms for each year.

STUDY VARIABLES

Predictor Variables

The primary predictor variable was the date of evaluation of OMT. The control group included those who presented between January 1 and December 31 in the years 2018 and 2019. The investigational group included those who presented between January 1, 2020 and December 31, 2020. The entirety of the year 2020 was selected as the investigational group because the senior author and literature noted social behavioral changes earlier on in the year as uncertainties around the disease intensified. Social distancing policies officially began March 23, 2020 in Washington State.
To address the first aim, the primary outcome variable was the mechanism of injury. The mechanism of injury was defined in our study as IPV, DV, or neither. IPV and DV are defined above. “Neither” includes those subjects who sustained OMT injuries not secondary to DV or IPV.

To address the second aim, the primary outcome variables were the severity of trauma quantified through the abbreviated injury scale (AIS) and the injury severity score (ISS). The AIS and ISS are internationally validated trauma scores and they have been used to outline epidemiology of craniofacial trauma as explained in prior literature.18-20 The AIS and ISS values were taken directly from the trauma registry.

OTHER STUDY VARIABLES

Demographic variables included age at injury (pediatric was defined as younger than 18 years of age), sex, and race/ethnicity. Race was categorized in the trauma registry as Black or African American, Asian, White, Native American, Native Hawaiian/Pacific Islander, Other or Not Documented. Ethnicity was reported as Hispanic, Non-Hispanic, or Not Documented.

Other variables included hospital admission status (outpatient, inpatient, intensive care unit), intensive care unit (ICU) length of stay (defined as # of days), total length of hospitalization (defined as # of days), alcohol level (positive, negative, or not tested), toxicology screen (positive for substance, negative, or not tested), reimbursement/payment source (Medicaid, Medicare, charity, commercial, healthcare service corporation (HCSC)), referral to Seattle Children’s Safe Child and Adolescent Network (SCAN) (yes, no, not recorded), abuse reported (yes or no), and abuse investigated (yes or no). SCAN is a program through Seattle Children’s Hospital to assure children who are suspected of having been abused receive care and protection.21

DATA COLLECTION AND ANALYSIS

Data was retrieved directly from HMC’s Institutional Trauma Registry. Any other or missing variables were abstracted from the subject’s medical record. All data was de-identified and kept in a secure spreadsheet accessible only by members of the research team. Classification and organization of data was accomplished independently by 2 members of the research team (A.M., S.G.). At the conclusion of data organization each member re-reviewed patient charts for classification and inclusion accuracy. If discrepancies were noted between data collectors, then they were resolved by the senior author for final decision. Descriptive statistics (mean, frequency, range, standard deviations) were computed for each study variable. Univariate and bivariate analyses were computed to measure the association between the variables of interest. Statistical significance was set at $P \leq .05$.

Table 1. DETAILS OF INTERNATIONAL CLASSIFICATION OF DISEASES (ICD) 10 CODES
Diagnosis Codes
S00
S01
S02
S03
S04
S05
S06
S07
S08
S09
X92
X93
X94
X95
X96
X97
X98
X99
Y00
Y01
Y02
Y03
Y04
Y07
Y07.0
Y07.1
Y07.4
Y07.5
Y08
Y09

Injuries to the head.

Interpersonal violence (assault).
Domestic violence.

Marchant et al. What Is the Effect of Covid-19 Social Distancing. J Oral Maxillofac Surg 2021.

Primary Outcome Variables

To address the first aim, the primary outcome variable was the mechanism of injury. The mechanism of injury was defined in our study as IPV, DV, or neither. IPV and DV are defined above. “Neither” includes those subjects who sustained OMT injuries not secondary to DV or IPV.
OVERVIEW

Eight thousand two hundred sixty-three subjects presented to HMC for the evaluation and management of OMT from January 1 to December 31 in the years 2018 through 2020. From this group, 828 subjects met the inclusion criteria with assault representing 10% of all OMT. Of these 828, 737 (89%) presented with IPV alone, and 91 (11%) presented with IPV secondary to DV.

STUDY DEMOGRAPHICS

Table 2 describes the subjects' demographics. Most victims of IPV were male (84% in 2018, 86% in 2019, and 90% in 2020) while individuals subject to DV had a more even male to female ratio. At least half the victims of DV were male (50% in 2018, 59% in 2019, and 53% in 2020). Of these male DV victims, 65% were under 18, and represented the pediatric majority (62%). Most victims of IPV were between the age of 18 and 65 (89% in 2018, 90% in 2019, and 89% in 2020) while those of DV were predominantly <18 years of age (46% in 2018, 62% in 2019, and 62% in 2020).

The majority of IPV (57%) and DV (70%) victims were white. While not significant, there was a decrease in the percentage of white victims of DV in 2020 (82%, 72%, and 59% in 2018, 2019, and 2020, respectively) and an increase in non-white victims of DV in 2020 (P = .15). Most subjects had Medicaid (IPV = 57% and DV = 70%).

Of the IPV victims 35.6% (n = 195/548) and 12.8% of DV victims (n = 5/39) recorded a positive blood alcohol level, among those tested, and there was no significant difference between the investigational and control groups for either (P = .86 and P = .82, respectively).

Of the IPV victims 68.9% (n = 235/341) and 31.6% of DV victims (n = 6/19) recorded a positive toxicology screening, among those tested, and there was no significant difference between the investigational and control groups for either (P = .25 and P = .98, respectively).

TRAUMA CHARACTERISTICS

Table 3 describes the subjects' trauma characteristics. Most victims of IPV (67%) and DV (82%) presented with blunt trauma. Most victims of IPV (66%) and DV (79%) were admitted to the hospital. Interestingly, a higher percentage of subjects in the 2020 cohort (88%) in the DV group were admitted to the hospital.
Table 3. TRAUMA CHARACTERISTICS

Characteristic	2018 Cohort, n (%)	2019 Cohort, n (%)	2020 Cohort, n (%)
Trauma type			
Blunt	178 (71)	22 (79)	2,379 (92)
Penetrating	69 (28)	4 (14)	124 (5)
Other	2 (1)	2 (7)	70 (3)
Admission status			
Admitted	169 (68)	19 (68)	2,103 (82)
ICU	91 (37)	16 (56)	1,326 (52)
Outpatient	80 (32)	9 (32)	470 (18)
Length of hospitalization			
Total LOS	mean = 7.53 ± 2.47	Mean = 6.16 ± 1.57	Mean = 9.49 ± 1.18
ICU LOS	Mean = 3.20 ± 5.44	Mean = 4.13 ± 6.67	Mean = 4.98 ± 9.65
Alcohol level	Negative	112 (45)	9 (32)
	Positive	69 (28)	2 (7)
	N/A	68 (27)	17 (61)
Toxicology screen	Negative	37 (15)	1 (4)
	Positive	72 (29)	2 (7)
	N/A	140 (56)	25 (89)
Payment source	Charity	2 (1)	1 (4)
	Commercial insurance	0 (0)	1 (4)
	Healthcare service	31 (12)	4 (14)
	Corporation		
	Labor and industries	12 (5)	0 (0)
	Medicaid	148 (59)	18 (64)
	Medicare	54 (14)	5 (11)
	Other (other, other government)	10 (4)	0 (0)
	Self-pay	8 (3)	1 (4)
	Unknown	4 (2)	0 (0)
Referral to Seattle Children's Network			
Yes	0 (0)	9 (32)	1 (43)
No	10 (4)	14 (50)	12 (48)
N/A	239 (96)	15 (54)	2,328 (91)
Abuse reported			
Yes	0 (0)	14 (50)	16 (55)
No	249 (100)	14 (50)	2,575 (100)
Abuse investigated			
Yes	0 (0)	13 (46)	16 (55)
No	249 (100)	15 (54)	2,575 (100)

Marchant et al. What Is the Effect of Covid-19 Social Distancing. J Oral Maxillofac Surg 2021.
hospital compared to 2018 (68%) and 2019 (79%), although this was not statistically significant \((P = .14)\). The average total length of stay and intensive care unit (ICU) length of stay did not change for either the IPV or DV groups.

There was no significant difference in the amount of abuse reported in the DV group (50% in 2018, 55% in 2019, 62% in 2020, \(P = .64\)) or referral to Seattle Children’s Adolescent Network (32% in 2018, 55% in 2019, 41% in 2020, \(P = .21\)). Abuse investigated likewise did not change significantly in the DV group between the investigational years (46% in 2018, 55% in 2019, 59% in 2020, \(P = .61\)).

Aim 1 Results

Table 4 describes the incidence of OMT secondary to DV and IPV. The number of subjects presenting with OMT secondary to IPV in the 2020 cohort \((n = 246)\) was unchanged compared to the number in the 2018 and 2019 cohorts \((n = 249 \text{ and } 242 \text{ respectively, } P = .81)\). The number of subjects presenting with OMT secondary to DV in the 2020 cohort \((n = 34)\) was unchanged compared to the number in the 2018 and 2019 cohorts \((n = 28 \text{ and } 29 \text{ respectively, } P = .57)\).

Aim 2 Results

Table 5 describes the mean AIS of OMT secondary to DV and IPV. A difference in severity of OMT in the DV group was shown between the groups: mean AIS \(=1.6 \pm 1.5, 2.6 \pm 1.5, \text{ and } 1.8 \pm 1.7 \text{ in } 2018, 2019, \text{ and } 2020, \text{ respectively } (P = .04)\). Those who presented in 2020 with DV had a significant decrease in severity of OMT compared to the 2019 \((P = .04)\) and no difference with 2018 \((P = .58)\). There was no significant difference in mean AIS score comparing the 2018, 2019 and 2020 cohorts in the IPV group \((P = .36)\).

Table 6 describes the mean ISS of OMT secondary to DV and IPV. No difference presented in the overall

Table 4. INCIDENCE OF ORAL AND MAXILLOFACIAL TRAUMA

Mechanism	2018 Cohort: n (%)	2019 Cohort: n (%)	2020 Cohort: n (%)	\(P\) Value
Domestic violence	28 (1.0)	29 (1.1)	34 (1.3)	.57
Interpersonal violence	249 (8.7)	242 (8.8)	246 (9.2)	.81
Neither	2,573 (90.3)	2,470 (90.1)	2,392 (89.5)	.62
Total	2,850	2,741	2,672	

Table 5. ABBREVIATED INJURY SCALE (AIS) OF ORAL AND MAXILLOFACIAL TRAUMA

Mechanism	2018 Cohort	2019 Cohort	2020 Cohort	\(P\) Value
Domestic violence	1.64 (1.49)	2.62 (1.49)	1.76 (1.72)	.04
Interpersonal violence	1.92 (1.46)	1.92 (1.52)	2.09 (1.52)	.36
Neither	2.03 (1.65)	2.02 (1.61)	2.07 (1.63)	.80

Table 6. INJURY SEVERITY SCALE (ISS) OF ORAL AND MAXILLOFACIAL TRAUMA

Mechanism	2018 Cohort	2019 Cohort	2020 Cohort	\(P\) Value
Domestic violence	9.67 (6.91)	12.64 (7.96)	11.15 (10.87)	.46
Interpersonal violence	10.66 (8.31)	11.77 (10.19)	12.69 (10.62)	.07
Neither	16.04 (12.53)	15.95 (12.07)	16.15 (12.79)	.83
ISS between the cohorts in the DV group \((P = .46) \). The mean ISS in the IPV group was shown to be increased in the 2020 cohort compared to the 2018 and 2019 cohorts, but not significantly (10.66 in 2018, 11.77 in 2019, and 12.69 in 2020 \(P = .07 \)).

Discussion

The purpose of this study was to understand the impact of social distancing policies on the incidence of OMT secondary to IPV and DV. The authors hypothesized that the frequency and severity of OMT secondary to IPV and DV would increase as a result of social distancing policies.

Contrary to our hypothesis, our study found that OMT from IPV during the COVID-19 pandemic did not change \((P = .81) \) and that while there was a small increase in DV, it was not significant \((P = .57) \). This was unexpected, as prior literature indicates a dramatic increase in the susceptibility of IPV and DV victims during COVID-19 and other disasters or emergencies.\(^6,7,22-25\) Several factors may explain this finding. Our sample was limited to an urban level 1 trauma center, which treats the most severe trauma cases and as such may not be indicative of the general population of IPV and DV victims. These victims may present at lower level trauma centers, to other health care providers, or chose not to seek medical care.\(^26,27\) Additionally, DV is well known to be underreported by victims and is often underdiagnosed by providers.\(^8,28\)

Irrespective of the year, the percentage of males with OMT secondary to DV was higher than expected (50% in 2018, 59% in 2019, and 53% in 2020). This was surprising, as the literature on DV in adult populations describes victims as predominantly female.\(^8,13-15\) However, our study included pediatric patients (younger than 18 years of age). Of the males presenting, the majority (65%) were pediatric and represented the pediatric gender majority (62%). Literature examining DV in pediatric victims suggest pediatric males are more likely to present for DV, coinciding with our observation.\(^12\) The higher percentage of pediatric males presenting with OMT secondary to DV suggests this group to be particularly vulnerable.

There was no change in abuse reported among DV patients \((P = .64) \) or in abuse investigated by authorities \((P = .61) \). This correlates with the non-significant increase in DV in our study. The proportion of subjects referred to SCAN increased slightly but not significantly \((P = .21) \). Given the high rate of pediatric victims in all years (57%) presenting with OMT as a result of DV, communities should continue to provide resources to both recognize and protect pediatric victims of DV.

IPV subjects were predominantly male (87%), as expected.\(^29\) While the majority of DV patients were white (70%), there was a non-significant increase in the proportion of non-white patients during social distancing; (18, 28, and 41% in 2018, 2019, and 2020, respectively \(P = .15 \)). This increase in presentation of non-white subjects may reflect socioeconomic variations in the impact of the pandemic, as minorities were disproportionately out of work for longer periods of time.\(^30\) Furthermore, this demographic may also suffer from more crowded living conditions, contributing to stress and risk of infection.\(^31\) This change was not seen in IPV patients where the proportion of white subjects went unchanged (57, 60, and 55% in 2018, 2019, and 2020, respectively \(P = .64 \)). The difference in proportion of white subjects presenting for either IPV or DV could potentially be explained by the small sample size, or a higher likelihood of white DV victims to seek care at a level 1 trauma center versus other ethnic groups. When 2018, 2019, and 2020 counts of white DV victims are averaged (mean = 70%), it closely represents the proportion of white individuals living in Seattle as of July 1, 2019 (67.5%).\(^12\)

The severity of injury of OMT during the COVID-19 pandemic did not change and trended toward a decrease for DV. The mean AIS score was found to be significant \((P = .04) \) when comparing all years together and when comparing the 2020 and 2019 cohorts alone \((P = .04) \); mean AIS =1.6 ± 1.5, 2.6 ± 1.5, 1.8 ± 1.7 in 2018, 2019, 2020, respectively. However, there was no difference comparing 2020 and 2018 cohorts alone \((P = .58) \). The overall injury severity (ISS) was unchanged in the DV group \((P = .46) \). While there was no change in the severity of injury, a higher proportion of DV patients were admitted during the period with COVID-19 social distancing policies in place, although this was non-significant \((P = .14) \). There was no significant difference in mean AIS score among the IPV cohorts \((P = .36) \), while there was a noticeable, but non-significant increase in ISS \((P = .07) \). This finding may be related to social distancing policies and the public turmoil/riots (from the ‘Black Lives Matter’ movement) during the year of 2020, leading to more severe injuries for those involved in IPV.

There are some limitations to the study. The trauma registry will only capture patients who are admitted or transferred from another facility. It is unclear if there were patients who met our criteria for OMT and DV but were not entered into the trauma registry. Additionally, as with any level I trauma center, transfer to a higher acuity center may not have occurred in this patient population so we would not be capturing all the data for our region. Subsequent studies, with the inclusion of lower level-of-care facilities, are
warranted to avoid potential sampling bias in the current study.

The entirety of the year 2020 was selected as the investigational group as the senior author and subsequent literature noted social behavioral changes earlier on in the year as uncertainties around the disease intensified. However, to ensure accuracy, this data was closely studied; there was no difference in the presentation of OMT secondary to DV or IPV between January, February or March of 2020 compared to the rest of 2020 (P = .79, P = .19 respectively).

In conclusion, the COVID-19 pandemic did not change the number or severity of OMT cases secondary to IPV or DV in this region of Washington. Pediatric males were more likely to be victims of DV. Further collaborative studies are recommended.

At the time of writing, there had been 427,494 COVID-19 cases and 5,702 deaths secondary to COVID-19 in Washington State, 33.1 million cases and 589,891 deaths in the United States, and 167 million cases and 3.4 million deaths worldwide.33,34

Acknowledgments

The authors would like to thank Shauna L. Carson, Program Support Supervisor, Harborview Medical Center – Trauma Program, for helping us obtain the data from Institutional Trauma Registry

References

1. Cassidy B: Seattle’s coronavirus timeline, from toilet paper to mask laws. Seattle Met, 2020 https://www.seattlemet.com/health-and-wellness/2020/08/seattle-coronavirus-timeline-from-toilet-paper-to-mask-laws. Accessed May 23, 2021
2. Siedner MJ, Harling G, Reynolds Z, et al. Social distancing to slow the US COVID-19 epidemic: longitudinal pretest-posttest comparison group study. PLoS Med 17(8):e1003244, 2020
3. Brauner J, Mindermann S, Sharma M, et al. Inferring the effectiveness of government interventions against COVID-19. Science 371(6531), 2020
4. Xiong J, Lipsitz O, Nasri F, et al. Impact of COVID-19 pandemic on mental health in the general population: a systematic review. J Affect Disord 277:55-64, 2020
5. Brooks S, Webster R, Smith L, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 395(10227):913-920, 2020
6. Boxerup B, McKenny M, Elkhuli A: Alarming trends in US domestic violence during the COVID-19 pandemic. Am J Emerg Med 38:2753-2755, 2020
7. Gosang B, Park H, Thomas R, et al. Exacerbation of physical intimate partner violence during COVID-19 lockdown. Radiol 298:202866, 2020
8. Huecker MR, Smock W: Domestic violence [Updated 2020 Oct 15]. StatPearls. Treasure Island, FL, StatPearls Publishing, 2020. [Internet]Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499891/. Accessed May 23, 2021
9. Buller A, Peterman A, Ranganathan M, et al. A mixed-method review of cash transfers and intimate partner violence in low and middle-income countries. Innocenti Working Papers. 2018 no. 2018/02, UNICEF Office of Research - Innocenti, Florence.
10. Cooley C: The relationship between mothers’ social networks and severe domestic violence: a test of the social isolation hypothesis. Violence Victors 22(4):503-512, 2007
11. Stress in America™ 2020: a national mental health crisis. (n.d.). https://www.apa.org/news/press/releases/stress/2020/report-october. Accessed May 23, 2021.
12. Joseph B, Khalil M, Zanbari B, et al. Prevalence of domestic violence among trauma patients. JAMA Surg 150(12):1177-1183, 2015
13. Ochs HA, Neuenschwander MC, Dodson TB: Are neck, head and facial injuries markers of domestic violence? J Am Dent Assoc 127(6):757-761, 1996.
14. Porter A, Montgomery-Goff, Montgomery BE, et al. Intimate partner violence-related fractures in the United States: an 8 year review. J Fam Violence 34(7):601-609, 2019
15. Saddik N, Suhaime A, Daud R: Maxillofacial injuries associated with intimate partner violence in women. BMC Public Health 10:268, 2010
16. Holshue M, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 382:929-936, 2020
17. Brown A, Wanatabe B, Stevick E: Mariner high school closure related to coronavirus death. Herald Net, 2020 https://www. heraldnet.com/news/mariner-high-school-students-father-dead-of-coronavirus/. Accessed May 23, 2021
18. Hwang M, Dillon J, Dodson T: Helmets decrease risk of bicyclist-related maxillofacial injuries but not severity. J Oral Maxillofac Surg 77(10):2055-2065, 2019
19. Hwang M, Dodson T, Dillon J: Communities with bikeshare programs might have a lower risk of bicycle-related maxillofacial injuries: results from an early adopter of bikeshare programs. J Oral Maxillofac Surg 78(4):610.e1-610.e9, 2020
20. Ludwig D, Nelson J, Burke A, et al. What is the effect of COVID-19-related social distancing on oral and maxillofacial trauma? J Oral and Maxillofac Surg 79(5):1091-1097, 2021
21. Seattle Children’s Safe Child and Adolescent Network (SCAN). https://www.seattlechildrens.org/healthcare-professionals/ gateway/clinical-resources/scan/. Accessed July 17, 2021.
22. Anurudran A, Yared L, Conrie C, et al. Domestic violence amid COVID-19. Int J Gynecol Obstet 150(2):255-256, 2020
23. Parkinson D: Investigating the increase in domestic violence post disaster: an Australian case study. J Interpers Violence 34 (11):2333-2362, 2017
24. Harville E, Taylor C, Tesfai, et al., et al. Experience of Hurricane Katrina and reported intimate partner violence. J Interpers Violence 26(4):833-845, 2010
25. Samra S, Schneberk T, Hsieh D, et al. Interpersonal and structural violence in the wake of COVID-19. AJPH 110(11):1659-1661, 2020
26. Nelms A, Gutmann M, Solomon E, et al. What victims of domestic violence need from the dental profession. J Dent Educ 75:490-498, 2009
27. Hamburger L, Saunders D, Hovey M: Prevalence of domestic violence in community practice and rate of physician inquiry. Fam Med 24(4):283-287, 1992
28. Chamberlain L, Perham-Hester K: The impact of perceived barriers on primary care physicians’ screening practices for female partner abuse. Women Health 35(2-3):55-69, 2002
29. Sheikh S, Chokotho L, Mulwafu W, et al. Characteristics of interpersonal violence in adult victims at the Adult Emergency Trauma Centre (AETC) of Queen Elizabeth Central Hospital. Malawi Med J 32(6):268, 2010
30. Shekif S, Chokotho L, Mulwafu W, et al. Characteristics of interpersonal violence in adult victims at the Adult Emergency Trauma Centre (AETC) of Queen Elizabeth Central Hospital. Malawi Med J 32(1):24-30, 2020
31. Blundell R, Costa Dias M, Joyce R, et al. COVID-19 and Inequalities. Fiscal Stud 41(2):291-319, 2020
32. Hooper M, Nápoles A, Pérez-Stable E: COVID-19 and racial/ethnic disparities. JAMA 323(24):2466-2467, 2020
33. United States Census Bureau. QuickFacts Seattle city, Washington. https://www.census.gov/quickfacts/SeattleCitywa. Accessed May 23, 2021.
34. COVID-19 Map. Johns Hopkins Coronavirus Resource Center. 2020. https://coronavirus.jhu.edu/map.html. Accessed May 23, 2021.
35. Washington - COVID-19 Overview. Johns Hopkins University and Medicine - Coronavirus Resource Center. 2020. https://coronavirus.jhu.edu/region/us/washington. Accessed May 23, 2021.