Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds

Luigi Ambrosio * Nicola Gigli † Giuseppe Savaré ‡

January 9, 2014

Abstract

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds.

We start from a strongly local Dirichlet form \mathcal{E} admitting a Carré du champ Γ in a Polish measure space (X, \mathfrak{m}) and a canonical distance $d_\mathcal{E}$ that induces the original topology of X. We first characterize the distinguished class of Riemannian Energy measure spaces, where \mathcal{E} coincides with the Cheeger energy induced by $d_\mathcal{E}$ and where every function f with $\Gamma(f) \leq 1$ admits a continuous representative.

In such a class we show that if \mathcal{E} satisfies a suitable weak form of the Bakry-Émery curvature dimension condition $\text{BE}(K, \infty)$ then the metric measure space (X, d, \mathfrak{m}) satisfies the Riemannian Ricci curvature bound $\text{RCD}(K, \infty)$ according to [5], thus showing the equivalence of the two notions.

Two applications are then proved: the tensorization property for Riemannian Energy spaces satisfying the Bakry-Émery condition $\text{BE}(K, N)$ (and thus the corresponding one for $\text{RCD}(K, \infty)$ spaces without assuming nonbranching) and the stability of $\text{BE}(K, N)$ with respect to Sturm-Gromov-Hausdorff convergence.

Contents

1 Introduction

2 Dirichlet forms, Markov semigroups, Γ-calculus
 2.1 Dirichlet forms and Γ-calculus 10
 2.2 On the functional Bakry-Émery condition 14

*Scuola Normale Superiore, Pisa. email: l.ambrosio@sns.it. Supported by ERC ADG GeMeThNES
†Université Pierre et Marie Curie - Paris 6. email: giglin@math.jussieu.fr
‡Università di Pavia. email: giuseppe.savare@unipv.it. Partially supported by PRIN08 grant from MIUR for the project Optimal transport theory, geometric and functional inequalities, and applications.
1 Introduction

Besides its obvious geometric relevance, spaces with Ricci curvature bounded from below play an important role in many probabilistic and analytic investigations, that reveal various deep connections between different fields.

Starting from the celebrated paper by Bakry-Émery [12], the curvature-dimension condition based on the Γ_2-criterium in Dirichlet spaces provides crucial tools for proving refined estimates on Markov semigroups and many functional inequalities, of Poincaré, Log-Sobolev, Talagrand, and concentration type (see, e.g. [36, 37, 38, 11, 8, 13]).

This general functional-analytic approach is also well suited to deal with genuinely infinite dimensional settings with applications to Wiener measure on the paths of Brownian motion with values in a Riemannian manifold, as in e.g. [14]. In fact Ricci curvature also arises in Bismut type formula [30] and its applications to gradient estimates [10, 9], and to the construction of couplings between Brownian motions [32, 35].

The importance of curvature bounds in the framework of optimal transport has been deeply analyzed in [45, 21, 56]. These and other important results led Sturm [54, 53] and Lott-Villani [41] to introduce a new synthetic notion of the curvature-dimension condition, in the general framework of metric-measure spaces.

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. In order to make this statement more precise, let us briefly review the main points of both settings.
The Bakry-Émery condition $\text{BE}(K,N)$: Dirichlet forms and Γ-calculus

The first approach is based on the functional Γ-calculus developed by Bakry-Émery since [12], see [11, 15].

A possible starting point is a local and symmetric Dirichlet form E on the measure space (X, \mathcal{B}, m) with dense domain $D(E) \subset L^2(X, m)$, and the associated Markov semigroup $(P_t)_{t \geq 0}$ on $L^2(X, m)$ with generator Δ_E (general references are [25, 42, 18]). In a suitable algebra A of functions dense in the domain $D(\Delta_E)$ of Δ_E one introduces the Carré du champ

$$\Gamma(f,g) := \frac{1}{2} \left(\Delta_E(fg) - f \Delta_E g - g \Delta_E f \right), \quad f, g \in A,$$

related to E by the local representation formula

$$E(f,g) = \int_X \Gamma(f,g) \, dm \quad \text{for every } f, g \in A.$$

One also assumes that Δ_E is a diffusion operator, i.e., with the notation $\Gamma(f) := \Gamma(f,f)$, it holds

$$\Delta_E \phi(f) = \phi'(f) \Delta_E f + \phi''(f) \Gamma(f)$$

for every $f \in A$, $\phi \in C^2(\mathbb{R})$ with bounded derivatives.

The model example is provided by a smooth Riemannian manifold (M^d, g) endowed with the measure $m := e^{-V} \text{Vol}_g$ for a given smooth potential $V : M^d \to \mathbb{R}$. In this case one typically chooses $A = C^\infty_c(M^d)$ and

$$E(f,g) = \int_{M^d} \langle \nabla f, \nabla g \rangle_g \, dm, \quad \text{so that}$$

$$\Gamma(f) = |\nabla f|^2_g \quad \text{and} \quad \Delta_E = \Delta_g - \langle \nabla V, \nabla \cdot \rangle_g,$$

where Δ_g is the usual Laplace-Beltrami operator on M. This fundamental example shows that Γ carries the metric information of M^d, since one can recover the Riemannian distance d_g in M^d by the formula

$$d_g(x, y) = \sup \left\{ \psi(y) - \psi(x) : \psi \in A, \ \Gamma(\psi) \leq 1 \right\} \quad x, y \in M^d. \quad (1.1)$$

A further iteration yields the Γ_2 operator, defined by

$$2\Gamma_2(f) = \Delta_E \Gamma(f) - 2\Gamma(f, \Delta_E f) \quad f \in A. \quad (1.2)$$

In the above example Bochner’s formula yields

$$\Gamma_2(f) = \|\text{Hess}_g f\|_g^2 + (\text{Ric}_g + \text{Hess}_g V)(\nabla f, \nabla f),$$
and one obtains the fundamental inequality
\[\Gamma_2(f) \geq K \Gamma(f) + \frac{1}{N}(\Delta f)^2 \quad \text{for every } f \in \mathcal{A}, \] (1.3)
if the quadratic form associated to the tensor \(\text{Ric}_g + \text{Hess}_g V \) is bounded from below by
\[K g + \frac{1}{N-d} \nabla V \otimes \nabla V \] for some \(K \in \mathbb{R} \) and \(N > d \). When \(V \equiv 0 \) it is possible to show that
\((\mathbb{M}^d, g)\) has Ricci curvature bounded from below by \(K \) iff (1.3) is satisfied for \(N \geq d \).

It is then natural to use (1.3) as a definition of curvature-dimension bounds even in the abstract setting: it is the so-called Bakry-Émery curvature-dimension condition, that we denote here by \(\text{BE}(K, N) \).

One of the most remarkable applications of (1.3) is provided by pointwise gradient estimates for the Markov semigroup (see e.g. [11, 15] for relevant and deep applications). Considering here only the case \(N = \infty \), (1.3) yields
\[\Gamma(P_t f) \leq e^{-2Kt} P_t(\Gamma(f)) \quad \text{for every } f \in \mathcal{A}, \] (1.4)
a property that is essentially equivalent to \(\text{BE}(K, \infty) \) (we refer to [57] for other formulations of \(\text{BE}(K, N) \) for Riemannian manifolds, see also the next Section 2.2) and involves only first order “differential” operators.

Up to the choice of an appropriate functional setting (in particular the algebra \(\mathcal{A} \) and the distance \(d \) associated to \(\Gamma \) as in (1.1) play a crucial role), \(\Gamma \)-calculus and curvature-dimension inequalities provide a very powerful tool to establish many functional inequalities and geometric properties, often in sharp form.

Lower Ricci curvature bounds by optimal transport: the CD(\(K, \infty \)) condition

A completely different approach to lower Ricci bounds has been recently proposed by Sturm [54, 53] and Lott-Villani [41]: here the abstract setting is provided by metric measure spaces \((X, d, m)\), where \((X, d)\) is a separable, complete and length metric space and \(m \) is a nonnegative \(\sigma \)-finite Borel measure. Just for simplicity, in this Introduction we also assume \(m(X) < \infty \), but the theory covers the case of a measure satisfying the exponential growth condition \(m(B_r(x)) \leq M \exp(cr^2) \) for some constants \(M, c \geq 0 \).

The Lott-Sturm-Villani theory (LSV in the following) is based on the notion of displacement interpolation [43], a powerful tool of optimal transportation that allows one to extend the notion of geodesic interpolation from the state space \(X \) to the space of Borel probability measures \(\mathcal{P}_2(X) \) with finite quadratic moment. Considering here only the case \(N = \infty \), a metric measure space \((X, d, m)\) satisfies the LSV lower Ricci curvature bound \(\text{CD}(K, \infty) \) if the relative entropy functional
\[\text{Ent}_m(\mu) := \int_X f \log f \, dm, \quad \mu = f m, \] (1.5)
is displacement K-convex in the Wasserstein space $(\mathcal{P}_2(X), W_2)$ (see §5.3 and §3.1 below). This definition is consistent with the Riemannian case [56] and thus equivalent to $\text{BE}(K, \infty)$ in such a smooth framework.

Differently from the Bakry-Émery’s approach, the LSV theory does not originally involve energy functionals or Markov semigroups but it is intimately connected to the metric d (through the notion of displacement interpolation) and to the measure m (through the entropy functional (1.5)). Besides many useful geometric and functional applications of this notion [40, 48, 26], one of its strongest features is its stability under measured Gromov-Hausdorff convergence [24], also in the weaker transport-formulation proposed by STURM [54].

Starting from the $\text{CD}(K, \infty)$ assumption, one can then construct an evolution semigroup $(H_t)_{t \geq 0}$ on the convex subset of $\mathcal{P}_2(X)$ given by probability measures with finite entropy [26]: it is the metric gradient flow of the entropy functional in $\mathcal{P}_2(X)$ [3]. Since also Finsler geometries (as in the flat case of \mathbb{R}^d endowed with a non-euclidean norm) can satisfy the CD(K, ∞) condition, one cannot hope in such a general setting that H_t are linear operators. Still, $(H_t)_{t \geq 0}$ can be extended to a continuous semigroup of contractions in $L^2(X, m)$-space, which can also be characterized as the $L^2(X, m)$-gradient flow $(P_t)_{t \geq 0}$ of a convex and 2-homogeneous functional, the Cheeger energy [20], [4, §4.1, Rem. 4.7]

\[\text{Ch}(f) := \inf \left\{ \liminf_{n \to \infty} \frac{1}{2} \int_X |Df_n|^2 \, dm : f_n \in \text{Lip}_b(X), \quad f_n \to f \text{ in } L^2(X, m) \right\} \quad (1.6) \]

(here $\text{Lip}_b(X)$ denotes the space of Lipschitz and bounded real functions defined in X and $|Df|$ is the local Lipschitz constant, or slope, of the Lipschitz function f, see §3.1).

The remarkable identification between $(H_t)_{t \geq 0}$ and $(P_t)_{t \geq 0}$ has been firstly proposed and proved in Euclidean spaces by a seminal paper of JORDAN-KINDERLEHER-OTTO [31] and then extended to Riemannian manifolds [31, 55], Hilbert spaces [7], Finsler spaces [44], Alexandrov spaces [28] and eventually to CD(K, ∞) metric measure spaces [4].

Spaces with Riemannian Ricci curvature bounded from below: the RCD(K, ∞) condition

Having the energy functional (1.6) and the contraction semigroup $(P_t)_{t \geq 0}$ at our disposal, it is then natural to investigate when LSV spaces satisfy $\text{BE}(K, \infty)$. In order to attack this question, one has of course to clarify when the Cheeger energy (1.6) is a Dirichlet (thus quadratic) form on $L^2(X, m)$ (or, equivalently, when $(P_t)_{t \geq 0}$ is a semigroup of linear operators) and when this property is also stable under Sturm-Gromov-Hausdorff convergence.

One of the most important results of [5] (see also [2] for general σ-finite measures) is that CD(K, ∞) spaces with a quadratic Cheeger energy can be equivalently characterized as those metric measure spaces where there exists the Wasserstein gradient flow $(H_t)_{t \geq 0}$ of the entropy functional (1.5) in the EVI$_K$-sense. This condition means that for all initial data $\mu \in \mathcal{P}_2(X)$ with $\text{supp} \mu \subset \text{supp} m$ there exists a locally Lipschitz curve $t \mapsto H_t \mu \in \mathcal{P}_2(X)$
satisfying the Evolution Variational Inequality

\[
\frac{d}{dt} W^2_2(H_t \mu, \nu) + \frac{K}{2} W^2_2(H_t \mu, \nu) + \text{Ent}_m(H_t \mu) \leq \text{Ent}_m(\nu) \quad \text{for a.e. } t \in (0, \infty) \tag{1.7}
\]

for all \(\nu \in \mathcal{P}_2(X) \) with \(\text{Ent}_m(\nu) < \infty \).

Such a condition is denoted by \(\text{RCD}(K, \infty) \) and it is stronger than \(\text{CD}(K, \infty) \), since the existence of an EVI\(_K \) flow solving (1.7) yields both the geodesic \(K \)-convexity of the entropy functional \(\text{Ent}_m \) \([22]\) and the linearity of \((H_t)_{t \geq 0} \) \([5, \text{Thm. 5.1}] \), but it is still stable under Sturm-Gromov-Hausdorff convergence. When it is satisfied, the metric measure space \((X, d, m)\) is called in \([5]\) a space with Riemannian Ricci curvature bounded from below by \(K \).

In \(\text{RCD}(K, \infty) \)-spaces the Cheeger energy is associated to a strongly local Dirichlet form \(\mathcal{E}_{\text{Ch}}(f, f) := 2\text{Ch}(f) \) admitting a Carré du champ \(\Gamma \). With the calculus tools developed in \([5]\), it can be proved that \(\Gamma \) has a further equivalent representation \(\Gamma(f) = |Df|^2_w \) in terms of the minimal weak gradient \(|Df|_w \) of \(f \). The latter is the element of minimal \(L^2 \)-norm among all the possible weak limits of \(|Df_n| \) in the definition (1.6).

It follows that \(\mathcal{E}_{\text{Ch}} \) can also be expressed by \(\mathcal{E}_{\text{Ch}}(f, f) = \int_X |Df|^2_w \, dm \) and the set of Lipschitz functions \(f \) with \(\int_X |Df|^2 \, dm < \infty \) is strongly dense in the domain of \(\mathcal{E}_{\text{Ch}} \). In fact, the Dirichlet form \(\mathcal{E}_{\text{Ch}} \) enjoys a further upper-regularity property, common to every Cheeger energy \([6, \text{§8.3}] \):

\((a) \) for every \(f \in D(\mathcal{E}) \) there exist \(f_n \in D(\mathcal{E}) \cap C_b(X) \) and upper semicontinuous bounded functions \(g_n : X \to \mathbb{R} \) such that

\[
\Gamma(f_n) \leq g_n^2, \quad f_n \to f \text{ in } L^2(X, m), \quad \limsup_{n \to \infty} \int_X g_n^2 \, dm \leq \mathcal{E}(f, f).
\]

Here and in the following, \(C_b(X) \) denotes the space of continuous and bounded real functions defined on \(X \).

From \(\text{RCD}(K, \infty) \) to \(\text{BE}(K, \infty) \)

The previous properties of the Cheeger energy show that the investigation of Bakry-Émery curvature bounds makes perfectly sense in \(\text{RCD}(K, \infty) \) spaces. One of the main results of \([5]\) connecting these two approaches shows in fact that \(\text{RCD}(K, \infty) \) yields \(\text{BE}(K, \infty) \) in the gradient formulation (1.4) for every \(f \in D(\mathcal{E}_{\text{Ch}}) \).

In fact, an even more refined result holds \([5, \text{Thm. 6.2}] \), since it is possible to control the slope of \(P_t f \) in terms of the minimal weak gradient of \(f \)

\[
|DP_t f|^2 \leq e^{-2Kt} P_t (|Df|^2_w) \quad \text{whenever } f \in D(\mathcal{E}_{\text{Ch}}), \ |Df|_w \in L^\infty(X, m),
\]

an estimate that has two useful geometric-analytic consequences:
(b) \(d \) coincides with the intrinsic distance associated to the Dirichlet form \(\mathcal{E}_{\text{Ch}} \) (introduced in Biroli-Mosco [16], see also [51, 52] and [50]), namely

\[
d(x, y) = \sup \left\{ \psi(y) - \psi(x) : \psi \in D(\mathcal{E}_{\text{Ch}}) \cap C_b(X), \ \Gamma(\psi) \leq 1 \right\} \quad x, y \in X.
\]

(c) Every function \(\psi \in D(\mathcal{E}_{\text{Ch}}) \) with \(\Gamma(\psi) \leq 1 \) \(m \)-a.e. admits a continuous (in fact 1-Lipschitz) representative \(\tilde{\psi} \).

From BE\((K, \infty)\) to RCD\((K, \infty)\)

In the present paper we provide necessary and sufficient conditions for the validity of the converse implication, i.e. \(\text{BE}(K, \infty) \Rightarrow \text{RCD}(K, \infty) \).

In order to state this result in a precise way, one has first to clarify how the metric structure should be related to the Dirichlet one. Notice that this problem is much easier from the point of view of the metric measure setting, since one has the canonical way (1.6) to construct the Cheeger energy.

Since we tried to avoid any local compactness assumptions on \(X \) as well as doubling or Poincaré conditions on \(m \), we used the previous structural properties (a,b,c) as a guide to find a reasonable set of assumptions for our theory; notice that they are in any case necessary conditions to get a RCD\((K, \infty)\) space.

We thus start from a strongly local and symmetric Dirichlet form \(\mathcal{E} \) on a Polish topological space \((X, \tau)\) endowed with its Borel \(\sigma \)-algebra and a finite (for the scope of this introduction) Borel measure \(m \). In the algebra \(\mathbb{V}_\infty := D(\mathcal{E}) \cap L^\infty(X, m) \) we consider the subspace \(\mathcal{G}_\infty \) of functions \(f \) admitting a Carré du champ \(\Gamma(f) \in L^1(X, m) \): they are characterized by the identity

\[
\mathcal{E}(f, f \varphi) - \frac{1}{2} \mathcal{E}(f^2, \varphi) = \int_X \Gamma(f) \varphi \, dm \quad \text{for every } \varphi \in \mathbb{V}_\infty.
\]

(1.8)

We can therefore introduce the intrinsic distance \(d_\mathcal{E} \) as in (b)

\[
d_\mathcal{E}(x, y) := \sup \left\{ \psi(y) - \psi(x) : \psi \in \mathcal{G}_\infty \cap C(X), \ \Gamma(\psi) \leq 1 \right\} \quad x, y \in X,
\]

(1.9)

and, following the standard approach, we will assume that \(d_\mathcal{E} \) is a complete distance on \(X \) and the topology induced by \(d_\mathcal{E} \) coincides with \(\tau \).

In this way we end up with *Energy measure spaces* \((X, \tau, m, \mathcal{E})\) and in this setting we prove in Theorem 3.12 that \(\mathcal{E} \leq \mathcal{E}_{\text{Ch}} \), where \(\mathcal{E}_{\text{Ch}} \) is the Cheeger energy associated to \(d_\mathcal{E} \); moreover, Theorem 3.14 shows that \(\mathcal{E} = \mathcal{E}_{\text{Ch}} \) if and only if (a) holds (see [33] §5) for a similar result in the case of doubling spaces satisfying a local Poincaré condition and for interesting examples where \(\mathcal{E}_{\text{Ch}} \) is not quadratic and \(\mathcal{E} \neq \mathcal{E}_{\text{Ch}} \).

It is also worth mentioning (Theorem 3.10) that for this class of spaces \((X, d_\mathcal{E})\) is always a length metric space, a result previously known in a locally compact framework [52, 50].

The Bakry-Émery condition BE\((K, \infty)\) can then be stated in a weak integral form (strongly inspired by [11, 15, 57]) just involving the Markov semigroup \((P_t)_{t \geq 0}\) (see [23])
of Corollary 2.3 and (2.23), (2.24) for relevant definitions) by asking that the differential inequality
\[\frac{\partial^2}{\partial s^2} \int_X (P_{t-s}f)^2 \varphi \, dm \geq 2K \frac{\partial}{\partial s} \int_X (P_{t-s}f)^2 \varphi \, dm, \quad 0 < s < t, \]
is fulfilled for any \(f \in L^2(X, m) \) and any nonnegative \(\varphi \in L^2 \cap L^\infty(X, m) \). Notice that in the case \(K = 0 \) (1.10) is equivalent to the convexity in \((0, t)\) of the map \(s \mapsto \int_X (P_{t-s}f)^2 \varphi \, dm \).

If we also assume that \(\text{BE}(K, \infty) \) holds, it turns out that (c) is in fact equivalent to a weak-Feller condition on the semigroup \((P_t)_{t \geq 0}\), namely \(P_t \) maps \(\text{Lip}_b(X) \) in \(\text{C}_b(X) \). Moreover, (c) implies the upper-regularity (a) of \(\mathcal{E} \) and the fact that every \(f \in D(\mathcal{E}) \cap L^\infty(X, m) \) admits a Carré du champ \(\Gamma \) satisfying (1.8).

Independently of \(\text{BE}(K, \infty) \), when properties (a) and (c) are satisfied, we call \((X, \tau, m, \mathcal{E})\) a \emph{Riemannian Energy measure space}, since these spaces seem appropriate non-smooth versions of Riemannian manifolds. It is also worth mentioning that in this class of spaces \(\text{BE}(K, \infty) \) is equivalent to an (exponential) contraction property for the semigroup \((H_t)_{t \geq 0}\) with respect to the Wasserstein distance \(W_2 \) (see Corollary 3.18), in analogy with [34].

Our main equivalence result, Theorem 4.17, shows that a \(\text{BE}(K, \infty) \) Riemannian Energy measure space satisfies the \(\text{RCD}(K, \infty) \) condition: thus, in view of the converse implication proved in [5], \(\text{BE}(K, \infty) \) is essentially equivalent to \(\text{RCD}(K, \infty) \). A more precise formulation of our result, in the simplified case when the measure \(m \) is finite, is:

Theorem 1.1 (Main result). Let \((X, \tau)\) be a Polish space and let \(m \) be a finite Borel measure in \(X \). Let \(\mathcal{E} : L^2(X, m) \to [0, \infty] \) be a strongly local, symmetric Dirichlet form generating a mass preserving Markov semigroup \((P_t)_{t \geq 0}\) in \(L^2(X, m) \), let \(d_\mathcal{E} \) be the intrinsic distance defined by (1.9) and assume that:

(i) \(d_\mathcal{E} \) is a complete distance on \(X \) inducing the topology \(\tau \) and any function \(f \in G_\infty \) with \(\Gamma(f) \leq 1 \) admits a continuous representative;

(ii) the Bakry-Émery \(\text{BE}(K, \infty) \) condition (1.10) is fulfilled by \((P_t)_{t \geq 0}\).

Then \((X, d_\mathcal{E}, m)\) is a \(\text{RCD}(K, \infty) \) space.

We believe that this equivalence result, between the “Eulerian” formalism of the Bakry-Émery \(\text{BE}(K, \infty) \) theory and the “Lagrangian” formalism of the \(\text{CD}(K, \infty) \) theory, is conceptually important and that it could be a first step for a better understanding of curvature conditions in metric measure spaces. Also, this equivalence is technically useful. Indeed, in the last section of this paper we prove the tensorization of \(\text{BE}(K, N) \) spaces. Then, in the case \(N = \infty \), we can use the implication from \(\text{BE}(K, \infty) \) to \(\text{RCD}(K, \infty) \) to read this property in terms of tensorization of \(\text{RCD}(K, \infty) \) spaces: this was previously known, see [5], only under an apriori nonbranching assumption on the base spaces (notice that the \(\text{CD}(K, N) \) theory, even with \(N = \infty \), suffers at this moment the same limitation). On the other hand, we use the implication from \(\text{RCD}(K, \infty) \) to \(\text{BE}(K, \infty) \), (1.11) below and the strong stability properties which follow by the EVI\(K\) formulation to provide stability of the \(\text{BE}(K, N) \) condition under a very weak convergence, the Sturm-Gromov-Hausdorff convergence.
Plan of the paper

Section 2 collects notation and preliminary results on Dirichlet forms, Markov semigroups and functional Γ-calculus, following the presentation of [18], which avoids any topological assumption. A particular attention is devoted to various formulations of the BE(K, N) condition: they are discussed in §2.2, trying to present an intrinsic approach that does not rely on the introduction of a distinguished algebra of functions \mathcal{A} and extra assumptions on the Dirichlet form \mathcal{E}, besides locality. In its weak formulation (see (2.33) of Corollary 2.3 and (2.23), (2.24))

$$
\frac{1}{4} \frac{\partial^2}{\partial s^2} \int_X (P_{t-s}f)^2 P_s \varphi \, dm \geq \frac{K}{2} \frac{\partial}{\partial s} \int_X (P_{t-s}f)^2 P_s \varphi \, dm + \frac{1}{N} \int_X (\Delta \epsilon P_{t-s}f)^2 P_s \varphi \, dm,
$$

which is well suited to study stability issues, BE(K, N) does not even need a densely defined Carré du Champ Γ, because only the semigroup $(P_t)_{t \geq 0}$ is involved.

Section 3 is devoted to study the interaction between energy and metric structures. A few metric concepts are recalled in §3.1 whereas §3.2 shows how to construct a dual semigroup $(H_t)_{t \geq 0}$ in the space of probability measures $\mathcal{P}(X)$ under suitable Lipschitz estimates on $(P_t)_{t \geq 0}$. By using refined properties of the Hopf-Lax semigroup, we also extend some of the duality results proved by KUWADA [34] to general complete and separable metric measure spaces, avoiding any doubling or Poincaré condition.

§3.3 presents a careful analysis of the intrinsic distance $d_\mathcal{E}$ (1.9) associated to a Dirichlet form and of Energy measure structures $(X, \tau, \mathcal{M}, \mathcal{E})$. We will thoroughly discuss the relations between the Dirichlet form \mathcal{E} and the Cheeger energy Ch induced by a distance d, possibly different from the intrinsic distance $d_\mathcal{E}$ and we will obtain a precise characterization of the distinguished case when $d = d_\mathcal{E}$ and $\mathcal{E} = 2\text{Ch}$: here conditions (a), (b) play a crucial role.

A further investigation when BE(K, ∞) is also assumed is carried out in §3.4, leading to the class of Riemannian Energy measure spaces.

Section 4 contains the proof of the main equivalence result, Theorem 1.1, between BE(K, ∞) and RCD(K, ∞). Apart the basic estimates of §4.1, the argument is split into two main steps: §4.2 proves a first LlogL regularization estimate for the semigroup $(H_t)_{t \geq 0}$, starting from arbitrary measures in $\mathcal{P}_2(X)$ (here we follow the approach of [57]). §4.3 contains the crucial action estimates to prove the EVI$_K$ inequality (1.7). Even if the strategy of the proof has been partly inspired by the geometric heuristics discussed in [22] (where the Eulerian approach of [49] to contractivity of gradient flows has been extended to cover also convexity and evolutions in the EVI$_K$ sense) this part is completely new and it uses in a subtle way all the refined technical issues discussed in the previous sections of the paper.

In the last Section 5 we discuss the above mentioned applications of the equivalence between BE(K, ∞) and RCD(K, ∞).
Acknowledgements

We would like to thank Michel Ledoux for useful discussions on various aspects of the theory of Dirichlet forms and Γ-calculus. The first author acknowledges the support of the ERC ADG GeMeThNES. The first and the third author have been partially supported by PRIN10-11 grant from MIUR for the project Calculus of Variations.

2 Dirichlet forms, Markov semigroups, Γ-calculus

2.1 Dirichlet forms and Γ-calculus

Let (X, \mathcal{B}) be a measurable space, let $m : \mathcal{B} \to [0, \infty]$ σ-additive and let $L^p(X, m)$ be the Lebesgue spaces (for notational simplicity we omit the dependence on \mathcal{B}). Possibly enlarging \mathcal{B} and extending m we assume that \mathcal{B} is m-complete. In the next sections 3 we will typically consider the case when \mathcal{B} is the m-completion of the Borel σ-algebra generated by a Polish topology τ on X.

In all this paper we will assume that $E : L^2(X, m) \to [0, \infty]$ is a strongly local, symmetric Dirichlet form generating a Markov semigroup $(P_t)_{t \geq 0}$ in $L^2(X, m)$; (2.1)

Let us briefly recall the precise meaning of this statement.
A symmetric Dirichlet form E is a $L^2(X, m)$-lower semicontinuous quadratic form satisfying the Markov property

$$E(\eta \circ f) \leq E(f) \quad \text{for every normal contraction } \eta : \mathbb{R} \to \mathbb{R},$$ (2.2)
i.e. a 1-Lipschitz map satisfying $\eta(0) = 0$. We refer to [18, 25] for equivalent formulations of (2.2). We also define

$$\mathbb{V} := D(E) = \{ f \in L^2(X, m) : E(f) < \infty \}, \quad \mathbb{V}_\infty := D(E) \cap L^\infty(X, m).$$

We also assume that \mathbb{V} is dense in $L^2(X, m)$.

We still denote by $E(\cdot, \cdot) : \mathbb{V} \to \mathbb{R}$ the associated continuous and symmetric bilinear form

$$E(f, g) := \frac{1}{4} \left(E(f + g) - E(f) - E(g) \right).$$

We will assume strong locality of E, namely

$$\forall f, g \in \mathbb{V} : \quad E(f, g) = 0 \quad \text{if } (f + a)g = 0 \text{ m-a.e. in } X \text{ for some } a \in \mathbb{R}.$$ It is possible to prove (see for instance [18, Prop. 2.3.2]) that \mathbb{V}_∞ is an algebra with respect to pointwise multiplication, so that for every $f \in \mathbb{V}_\infty$ the linear form on \mathbb{V}_∞

$$\Gamma[f; \varphi] := E(f, f \varphi) - \frac{1}{2} E(f^2, \varphi), \quad \varphi \in \mathbb{V}_\infty,$$ (2.3)
is well defined and for every normal contraction \(\eta : \mathbb{R} \to \mathbb{R} \) it satisfies [18, Prop. 2.3.3]

\[
0 \leq \Gamma[\eta \circ f; \varphi] \leq \Gamma[f; \varphi] \leq \|\varphi\|_{\infty} \mathcal{E}(f) \quad \text{for every } f, \varphi \in \mathbb{V}_\infty, \ \varphi \geq 0. \tag{2.4}
\]

(2.4) shows that for every nonnegative \(\varphi \in \mathbb{V}_\infty \) \(f \mapsto \Gamma[f; \varphi] \) is a quadratic form in \(\mathbb{V}_\infty \) which satisfies the Markov property and can be extended by continuity to \(\mathbb{V} \). We call \(\mathcal{G} \) the set of functions \(f \in \mathbb{V} \) such that the linear form \(\varphi \mapsto \Gamma[f; \varphi] \) can be represented by an absolutely continuous measure w.r.t. \(m \) with density \(\Gamma(f) \in L_1^1(X, m) \):

\[
f \in \mathcal{G} \iff \Gamma[f; \varphi] = \int_X \Gamma(f) \varphi \, dm \quad \text{for every } \varphi \in \mathbb{V}_\infty. \tag{2.5}
\]

Since \(\mathcal{E} \) is strongly local, [18, Thm. 6.1.1] yields the representation formula

\[
\mathcal{E}(f, f) = \int_X \Gamma(f) \, dm \quad \text{for every } f \in \mathcal{G}. \tag{2.6}
\]

It is not difficult to check that \(\mathcal{G} \) is a closed vector subspace of \(\mathbb{V} \), the restriction of \(\mathcal{E} \) to \(\mathcal{G} \) is still a strongly local Dirichlet form admitting the *Carré du champ* \(\Gamma \) defined by (2.5) (see e.g. [18, Def. 4.1.2]): \(\Gamma \) is a quadratic continuous map defined in \(\mathcal{G} \) with values in \(L_1^1(X, m) \). We will see in the next Section 2.2 that if \(\mathcal{E} \) satisfies the BE\((K, \infty)\) condition then \(\mathcal{G} \) coincides with \(\mathbb{V} \) and \(\mathcal{E} \) admits a functional \(\Gamma \)-calculus on the whole space \(\mathbb{V} \).

Since we are going to use \(\Gamma \)-calculus techniques, we use the \(\Gamma \) notation also for the symmetric, bilinear and continuous map

\[
\Gamma(f, g) := \frac{1}{4} \left(\Gamma(f + g) - \Gamma(f - g) \right) \in L^1(X, m) \quad f, g \in \mathcal{G},
\]

which, thanks to (2.6), represents the bilinear form \(\mathcal{E} \) by the formula

\[
\mathcal{E}(f, g) = \int_X \Gamma(f, g) \, dm \quad \text{for every } f, g \in \mathcal{G}.
\]

Because of Markovianity and locality \(\Gamma(\cdot, \cdot) \) satisfies the chain rule [18, Cor. 7.1.2]

\[
\Gamma(\eta f, g) = \eta'(f) \Gamma(f, g) \quad \text{for every } f, g \in \mathcal{G}, \ \eta \in \text{Lip}(\mathbb{R}), \ \eta(0) = 0, \tag{2.7}
\]

and the Leibniz rule:

\[
\Gamma(fg, h) = f \Gamma(g, h) + g \Gamma(f, h) \quad \text{for every } f, g, h \in \mathcal{G}_\infty := \mathcal{G} \cap L^\infty(X, m).
\]

Notice that by [18, Theorem 7.1.1] (2.7) is well defined since for every Borel set \(N \subset \mathbb{R} \) (as the set where \(\phi \) is not differentiable)

\[
\mathcal{L}^1(N) = 0 \quad \Rightarrow \quad \Gamma(f) = 0 \quad m\text{-a.e. on } f^{-1}(N). \tag{2.8}
\]

Among the most useful consequences of (2.8) and (2.7) that we will repeatedly use in the sequel, we recall that for every \(f, g \in \mathcal{G} \)

\[
\Gamma(f - g) = 0 \quad m\text{-a.e. on } \{f = g\},
\]
and the following identities hold \(m \)-a.e.:
\[
\Gamma(f \wedge g) = \begin{cases}
\Gamma(f) & \text{on } \{ f \leq g \}, \\
\Gamma(g) & \text{on } \{ f \geq g \},
\end{cases}
\]
\[
\Gamma(f \vee g) = \begin{cases}
\Gamma(f) & \text{on } \{ f \geq g \}, \\
\Gamma(g) & \text{on } \{ f \leq g \}.
\end{cases}
\]
(2.9)

We conclude this section by stating the following lower semicontinuity result along a sequence \((f_n) \subset G \) converging to \(f \in G \):
\[
f_n \rightharpoonup f, \quad \sqrt{\Gamma(f_n)} \rightharpoonup G \text{ in } L^2(X, m) \quad \Rightarrow \quad \Gamma(f) \leq G^2 \text{ m-a.e. in } X.
\]
(2.10)

It can be easily proved by using Mazur’s Lemma and the \(m \)-a.e. convexity of \(f \mapsto \sqrt{\Gamma(f)} \), namely
\[
\sqrt{\Gamma((1-t)f + tg)} \leq (1-t)\sqrt{\Gamma(f)} + t\sqrt{\Gamma(g)} \quad m\text{-a.e. in } X, \text{ for all } t \in [0, 1],
\]
which follows since \(\Gamma \) is quadratic and nonnegative.

The Markov semigroup and its generator

The Dirichlet form \(\mathcal{E} \) induces a densely defined selfadjoint operator \(\Delta_\varepsilon : D(\Delta_\varepsilon) \subset \mathbb{V} \to L^2(X, m) \) defined by the integration by parts formula \(\mathcal{E}(f, g) = -\int_X g \Delta_\varepsilon f \, dm \) for all \(g \in \mathbb{V} \).

When \(G = \mathbb{V} \) the operator \(\Delta_\varepsilon \) is of “diffusion” type, since it satisfies the following chain rule for every \(\eta \in C^2(\mathbb{R}) \) with \(\eta(0) = 0 \) and bounded first and second derivatives (see [18, Corollary 6.1.4] and the next (2.16)): if \(f \in D(\Delta_\varepsilon) \) with \(\Gamma(f) \in L^2(X, m) \) then \(\eta(f) \in D(\Delta_\varepsilon) \) with
\[
\Delta_\varepsilon \eta(f) = \eta'(f) \Delta_\varepsilon f + \eta''(f) \Gamma(f).
\]
(2.11)

The heat flow \(P_t \) associated to \(\mathcal{E} \) is well defined starting from any initial condition \(f \in L^2(X, m) \). Recall that in this framework the heat flow \((P_t)_{t \geq 0} \) is an analytic Markov semigroup and \(f_t = P_t f \) can be characterized as the unique \(C^1 \) map \(f : (0, \infty) \to L^2(X, m) \), with values in \(D(\Delta_\varepsilon) \), satisfying
\[
\begin{cases}
\frac{d}{dt} f_t = \Delta_\varepsilon f_t & \text{for } t \in (0, \infty), \\
\lim_{t \downarrow 0} f_t = f & \text{in } L^2(X, m).
\end{cases}
\]

Because of this, \(\Delta_\varepsilon \) can equivalently be characterized in terms of the strong convergence \((P_t f - f)/t \to \Delta_\varepsilon f \) in \(L^2(X, m) \) as \(t \downarrow 0 \).

One useful consequence of the Markov property is the \(L^p \) contraction of \((P_t)_{t \geq 0} \) from \(L^p \cap L^2 \) to \(L^p \cap L^2 \). Because of the density of \(L^p \cap L^2 \) in \(L^p \) when \(p \in [1, \infty) \), this allows to extend uniquely \(P_t \) to a strongly continuous semigroup of linear contractions in \(L^p(X, m) \), \(p \in [1, \infty) \), for which we retain the same notation. Furthermore, \((P_t)_{t \geq 0} \) is sub-Markovian (cf. [18, Prop. 3.2.1]), since it preserves one-sided essential bounds, namely \(f \leq C \) (resp.
\(f \geq C \) \(m \)-a.e. in \(X \) for some \(C \geq 0 \) (resp. \(C \leq 0 \)) implies \(P_t f \leq C \) (resp. \(P_t f \geq C \)) \(m \)-a.e. in \(X \) for all \(t \geq 0 \).

We will mainly be concerned with the mass-preserving case i.e.

\[
\int_X P_t f \, dm = \int_X f \, dm \quad \text{for every } f \in L^1(X, m),
\]

(2.12)
a property which is equivalent to \(1 \in D(\mathcal{E}) \) when \(m(X) < \infty \). In the next session (see Theorem 3.14) we will discuss a metric framework, which will imply (2.12).

The semigroup \((P_t)_{t \geq 0} \) can also be extended by duality to a weakly*-continuous semigroup of contractions in \(L^\infty(X, m) \), so that

\[
\int_X P_t f \varphi \, dm = \int_X f P_t \varphi \, dm \quad \text{for every } f \in L^\infty(X, m), \varphi \in L^1(X, m).
\]

It is easy to show that if \(f_n \in L^\infty(X, m) \) weakly* converge to \(f \) in \(L^\infty(X, m) \) then \(P_t f_n \rightharpoonup P_t f \) in \(L^\infty(X, m) \).

The generator of the semigroup in \(L^1(X, m) \)

Sometimes it will also be useful to consider the generator \(\Delta^{(1)}_\varepsilon : D(\Delta^{(1)}_\varepsilon) \subset L^1(X, m) \rightarrow L^1(X, m) \) of \((P_t)_{t \geq 0} \) in \(L^1(X, m) \) [17, §1.1]:

\[
f \in D(\Delta^{(1)}_\varepsilon), \Delta^{(1)}_\varepsilon f = g \quad \Leftrightarrow \quad \lim_{t \downarrow 0} \frac{1}{t} (P_t f - f) = g \quad \text{strongly in } L^1(X, m).
\]

(2.13)

Thanks to (2.13) and \(L^1 \) contractivity it is easy to check that

\[
f \in D(\Delta^{(1)}_\varepsilon) \quad \Rightarrow \quad P_t \Delta^{(1)}_\varepsilon f = \Delta^{(1)}_\varepsilon P_t f \quad \text{for all } t \geq 0,
\]

(2.14)

and, when (2.12) holds,

\[
\int_X \Delta^{(1)}_\varepsilon f \, dm = 0 \quad \text{for every } f \in D(\Delta^{(1)}_\varepsilon).
\]

The operator \(\Delta^{(1)}_\varepsilon \) is \(m \)-accretive and coincides with the smallest closed extension of \(\Delta_\varepsilon \) to \(L^1(X, m) \): [18, Prop. 2.4.2]

\[
g = \Delta^{(1)}_\varepsilon f \quad \Leftrightarrow \quad \begin{cases}
\exists f_n \in D(\Delta_\varepsilon) \cap L^1(X, m) \text{ with } g_n = \Delta_\varepsilon f_n \in L^1(X, m): \\
\begin{array}{l}
\; f_n \rightarrow f, \\
\; g_n \rightarrow g
\end{array}
\text{ strongly in } L^1(X, m).
\end{cases}
\]

(2.15)

Whenever \(f \in D(\Delta^{(1)}_\varepsilon) \cap L^2(X, m) \) and \(\Delta^{(1)}_\varepsilon f \in L^2(X, m) \) one can recover \(f \in D(\Delta_\varepsilon) \) by (2.14), the integral formula \(P_t f - f = \int_0^t P_r \Delta^{(1)}_\varepsilon f \, dr \) and the contraction property of \((P_t)_{t \geq 0} \) in every \(L^p(X, m) \), thus obtaining

\[
f \in D(\Delta^{(1)}_\varepsilon) \cap L^2(X, m), \Delta^{(1)}_\varepsilon f \in L^2(X, m) \quad \Rightarrow \quad f \in D(\Delta_\varepsilon), \Delta_\varepsilon f = \Delta^{(1)}_\varepsilon f.
\]

(2.16)
Semigroup mollification

A useful tool to prove the above formula is given by the mollified semigroup: we fix a nonnegative kernel \(\kappa \in C_c^\infty(0, \infty) \) with \(\int_0^\infty \kappa(r) \, dr = 1 \), (2.17)

and for every \(f \in L^p(X, m) \), \(p \in [1, \infty] \), we set

\[
h_\varepsilon \Gamma f := \frac{1}{\varepsilon} \int_0^\infty \mathcal{P}_r f \kappa(r/\varepsilon) \, dr, \quad \varepsilon > 0,
\]

where the integral should be intended in the Bochner sense whenever \(p < \infty \) and by taking the duality with arbitrary \(\varphi \in L^1(X, m) \) when \(p = \infty \).

Since \(\Delta_\varepsilon \) is the generator of \((\mathcal{P}_t)_{t \geq 0} \) in \(L^2(X, m) \) it is not difficult to check [47, Proof of Thm. 2.7] that if \(f \in L^2 \cap L^p(X, m) \) for some \(p \in [1, \infty] \) then

\[
-\Delta_\varepsilon (h_\varepsilon \Gamma f) = \frac{1}{\varepsilon^2} \int_0^\infty \mathcal{P}_r f \kappa'(r/\varepsilon) \, dr \in L^2 \cap L^p(X, m).
\]

Since \(\Delta_\varepsilon^{(1)} \) is the generator of \((\mathcal{P}_t)_{t \geq 0} \) in \(L^1(X, m) \), the same property holds for \(\Delta_\varepsilon^{(1)} \) if \(f \in L^1(X, m) \):

\[
-\Delta_\varepsilon^{(1)} (h_\varepsilon \Gamma f) = \frac{1}{\varepsilon^2} \int_0^\infty \mathcal{P}_r f \kappa'(r/\varepsilon) \, dr \in L^1(X, m). \tag{2.19}
\]

2.2 On the functional Bakry-Émery condition

We will collect in this section various equivalent characterizations of the Bakry-Émery condition \(\text{BE}(K,N) \) given in (1.3) for the \(\Gamma_2 \) operator operator (1.2). We have been strongly inspired by [11, 15, 57]: even if the essential estimates are well known, here we will take a particular care in establishing all the results in a weak form, under the minimal regularity assumptions on the functions involved. We consider here the case of finite dimension as well, despite the fact that the next sections 3 and 4 will be essentially confined to the case \(N = \infty \). Applications of \(\text{BE}(K,N) \) with \(N < \infty \) will be considered in the last Section 5.

Let us denote by \(\Gamma : (V_\infty)^3 \to \mathbb{R} \) the multilinear map

\[
\Gamma[f, g; \varphi] := \frac{1}{2} \left(\mathcal{E}(f, g \varphi) + \mathcal{E}(g, f \varphi) - \mathcal{E}(fg, \varphi) \right), \quad \Gamma[f; \varphi] = \Gamma[f, f; \varphi];
\]

Recalling (2.4), one can easily prove the uniform continuity property

\[
\forall \varphi_n \to \varphi, \quad \sup_n \| \varphi_n \|_\infty < \infty \quad \Rightarrow \quad \exists \lim_{n \to \infty} \Gamma[f_n; \varphi_n] \in \mathbb{R}, \tag{2.20}
\]

which allows to extend \(\Gamma \) to a real multilinear map defined in \(\mathbb{V} \times \mathbb{V} \times \mathbb{V}_\infty \), for which we retain the same notation. The extension \(\Gamma \) satisfies

\[
\Gamma[f, g; \varphi] = \int_X \Gamma(f, g) \varphi \, dm \quad \text{if } f, g \in G. \tag{2.21}
\]
We also set
\[\Gamma_2[f; \varphi] := \frac{1}{2} \Gamma[f; \Delta \varphi] - \Gamma[f, \Delta \varphi; \varphi], \quad (f, \varphi) \in D(\Gamma_2) \] (2.22)
where
\[D(\Gamma_2) := \{(f, \varphi) \in D(\Delta) \times D(\Delta) : \Delta f \in V, \ \varphi, \Delta \varphi \in L^\infty(X, m)\}. \]

As for (2.21), we have
\[\Gamma_2[f; \varphi] = \int_X \left(\frac{1}{2} \Gamma(f) \Delta \varphi - \Gamma(f, \Delta \varphi; \varphi) \right) dm \quad \text{if} \ (f, \varphi) \in D(\Gamma_2), \ f, \Delta \varphi \in G. \]

Since \((P_t)_{t \geq 0}\) is an analytic semigroup in \(L^2(X, m)\), for a given \(f \in L^2(X, m)\) and \(\varphi \in L^2 \cap L^\infty(X, m)\), we can consider the functions
\[
A_t[f; \varphi](s) := \frac{1}{2} \int_X (P_{t-s} f)^2 P_s \varphi \, dm \quad t > 0, \ s \in [0, t], \quad (2.23)
\]
\[
A_t^\Delta[f; \varphi](s) := \frac{1}{2} \int_X (\Delta P_{t-s} f)^2 P_s \varphi \, dm \quad t > 0, \ s \in [0, t), \quad (2.24)
\]
\[
B_t[f; \varphi](s) := \Gamma[P_{t-s} f; P_s \varphi] \quad t > 0, \ s \in [0, t),
\]
and, whenever \(\Delta \varphi \in L^2 \cap L^\infty(X, m)\),
\[
C_t[f; \varphi](s) := \Gamma_2[P_{t-s} f; P_s \varphi], \quad t > 0, \ s \in [0, t).
\]

Notice that whenever \(\Delta \varphi \in L^2(X, m)\)
\[
A_t^\Delta[f; \varphi](s) = A_t[\Delta \varphi; f; \varphi](s) \quad t > 0, \ s \in [0, t).
\]

Lemma 2.1. For every \(f \in L^2(X, m), \varphi \in L^2 \cap L^\infty(X, m)\) and every \(t > 0\), we have:

(i) the function \(s \mapsto A_t[f; \varphi](s)\) belongs to \(C^0([0, t]) \cap C^1((0, t))\);

(ii) the function \(s \mapsto A_t^\Delta[f; \varphi](s)\) belongs to \(C^1([0, t])\);

(iii) the function \(s \mapsto B_t[f; \varphi](s)\) belongs to \(C^0((0, t)) \cap L^\infty(0, t)\) and
\[
\frac{\partial}{\partial s} A_t[f; \varphi](s) = B_t[f; \varphi](s) \quad \text{for every} \ s \in (0, t). \quad (2.25)
\]

Equation (2.25) and the regularity of \(A\) and \(B\) extend to \(s = t\) if \(f \in V\) and to \(s = 0\)
if \(\varphi \in V_\infty\).

(iv) If \(\varphi\) is nonnegative, \(s \mapsto A_t[f; \varphi](s)\) and \(s \mapsto A_t^\Delta[f; \varphi](s)\) are nondecreasing.
(v) If $\Delta_\varepsilon \varphi \in L^2 \cap L^\infty(X, \mathfrak{m})$ then C belongs to $C^0([0, t))$, B belongs to $C^1([0, t))$, and
\begin{equation}
\frac{\partial}{\partial s} B_t[f; \varphi](s) = 2C_t[f; \varphi](s) \quad \text{for every } s \in [0, t).
\end{equation}

In particular $A \in C^2([0, t)).$

Proof. The continuity of A is easy to check, since $s \mapsto (P_{t-s} f)^2$ is strongly continuous with values in $L^1(X, \mathfrak{m})$ and $s \mapsto P_s \varphi$ is weakly* continuous in $L^\infty(X, \mathfrak{m})$. Analogously, the continuity of B follows from the fact that $s \mapsto P_{t-s} f$ is a continuous curve in \mathbb{V} whenever $s \in [0, t)$ thanks to the regularizing effect of the heat flow and (2.20). The continuity of C follows by a similar argument, recalling the definition (2.22) and the fact that the curves $s \mapsto \Delta_\varepsilon P_{t-s} f$ and $s \mapsto \Delta_\varepsilon P_s \varphi$ are continuous with values in \mathbb{V} in the interval $[0, t)$.

In order to prove (2.25) and (2.26), let us first assume that $\varphi \in D(\Delta_\varepsilon)$ with $\Delta_\varepsilon \varphi \in L^\infty(X, \mathfrak{m})$ and $f \in L^2 \cap L^\infty(X, \mathfrak{m})$. Since
\begin{align*}
\lim_{h \to 0} \frac{P_{t-(s+h)} f - P_{t-s} f}{h} &= -\Delta_\varepsilon P_{t-s} f \quad \text{strongly in } \mathbb{V} \text{ for } s \in [0, t), \\
\lim_{h \to 0} \frac{P_{s+h} \varphi - P_s \varphi}{h} &= \Delta_\varepsilon P_s \varphi \quad \text{weakly* in } L^\infty(X, \mathfrak{m}) \text{ for } s \in [0, t),
\end{align*}
we easily get
\begin{align*}
\frac{\partial}{\partial s} A_t[f; \varphi](s) &= \int_X \left(-P_{t-s} f \Delta_\varepsilon P_{t-s} f P_s \varphi + \frac{1}{2} (P_{t-s} f)^2 \Delta_\varepsilon P_s \varphi \right) d\mathfrak{m} \\
&= \mathcal{E}(P_{t-s} f, P_{t-s} f P_s \varphi) - \frac{1}{2} \mathcal{E}((P_{t-s} f)^2, P_s \varphi) = B_t[f; \varphi](s),
\end{align*}
by the very definition (2.23) of \mathcal{I}, since $P_{t-s} f$ is essentially bounded and therefore $(P_{t-s} f)^2 \in \mathbb{V}_\infty$. A similar computation yields (2.22).

In order to extend the validity of (2.25) and (2.26) to general $f \in L^2(X, \mathfrak{m})$ we approximate f by truncation, setting $f_n := -n \vee f \wedge n$, $n \in \mathbb{N}$, and we pass to the limit in the integrated form
\begin{align*}
A_t[f_n; \varphi](s_2) - A_t[f_n; \varphi](s_1) &= \int_{s_1}^{s_2} B_t[f_n; \varphi](s) \, ds \quad \text{for every } 0 \leq s_1 < s_2 < t,
\end{align*}
observing that $P_{t-s} f_n$ converge strongly to $P_{t-s} f$ in \mathbb{V} as $n \to \infty$ for every $s \in [0, t)$, so that (2.20) yields the pointwise convergence of the integrands in the previous identity. A similar argument holds for (2.26), since $\Delta_\varepsilon P_{t-s} f_n$ converges strongly to $\Delta_\varepsilon P_{t-s} f$ in \mathbb{V}.

Eventually we extend (2.25) to arbitrary $\varphi \in L^2 \cap L^\infty(X, \mathfrak{m})$ by approximating φ with $h^\varepsilon \varphi$ given by (2.15), (2.17). It is not difficult to check that $P_s(h^\varepsilon \varphi) \to P_s \varphi$ in \mathbb{V} as $\varepsilon \downarrow 0$ with uniform L^∞ bound if $s > 0$ (and also when $s = 0$ if $\varphi \in \mathbb{V}_\infty$).

\textbf{Lemma 2.2.} Let us consider functions $a \in C^1([0, t))$, $g \in C^0([0, t))$ and a parameter $\nu \geq 0$. The following properties are equivalent:
(i) \(a, g \) satisfy the differential inequality
\[
a'' \geq 2K a' + \nu g \quad \text{in} \quad \mathcal{D}'(0,t),
\]
and pointwise in \([0,t]\), whenever \(a \in C^2([0,t]) \).

(ii) \(a', g \) satisfy the differential inequality
\[
\frac{d}{ds}\left(e^{-2Ks}a'(s)\right) \geq \nu e^{-2Ks}g(s) \quad \text{in} \quad \mathcal{D}'(0,t).
\]

(iii) For every \(0 \leq s_1 < s_2 < t \) and every test function \(\zeta \in C^2([s_1,s_2]) \) we have
\[
\int_{s_1}^{s_2} a(\zeta'' + 2K\zeta')ds + \left[a'(\zeta)\right]_{s_1}^{s_2} - \left[a(\zeta' + 2K\zeta)\right]_{s_1}^{s_2} \geq \nu \int_{s_1}^{s_2} g \zeta ds. \tag{2.27}
\]

(iv) For every \(0 \leq s_1 < s_2 \) we have
\[
e^{-2K(s_2-s_1)}a'(s_2) \geq a'(s_1) + \nu \int_{s_1}^{s_2} e^{-2K(s-s_1)}g(s)ds. \tag{2.28}
\]

The proof is straightforward; we only notice that (2.27) holds also for \(s_1 = 0 \) since \(a \in C^1([0,t]) \).

The inequality (2.27) has two useful consequences, that we make explicit in terms of the functions \(I_K \) and \(I_{K,2} \) defined by
\[
I_K(t) = \int_0^t e^{Ks}ds = \frac{e^{Kt} - 1}{K}, \quad I_{K,2}(t) = \int_0^t I_K(s)ds = \frac{e^{Kt} - Kt - 1}{K^2}, \tag{2.29}
\]
with the obvious definition for \(K = 0 \): \(I_0(t) = t \), \(I_{0,2}(t) = t^2/2 \).

Choosing \(s_1 = 0, \ s_2 = \tau \) and
\[
\zeta(s) := I_{2K}(\tau - s) = \frac{e^{2K(\tau-s)} - 1}{2K}, \quad \text{so that} \quad \zeta' + 2K\zeta = -1, \quad \zeta(\tau) = 0,
\]
we obtain
\[
I_{2K}(\tau) a'(0) + \nu \int_0^\tau I_{2K}(\tau - s)g(s)ds \leq a(\tau) - a(0) \quad \text{for every} \ \tau \in [0,t]. \tag{2.30}
\]

Choosing
\[
\zeta(s) := I_{-2K}(s) = \frac{1 - e^{-2Ks}}{2K}, \quad \text{so that} \quad \zeta' + 2K\zeta = 1, \quad \zeta(0) = 0,
\]
we obtain
\[
a(\tau) - a(0) + \nu \int_0^\tau I_{-2K}(s)g(s)ds \leq a'(\tau) I_{-2K}(\tau) \quad \text{for every} \ \tau \in [0,t]. \tag{2.31}
\]
Corollary 2.3. Let \mathcal{E} be a Dirichlet form in $L^2(X, \mathbf{m})$ as in \textcolor{blue}{[2.1]}, and let $K \in \mathbb{R}$ and $\nu \geq 0$. The following conditions are equivalent:

(i) For every $(f, \varphi) \in D(\Gamma_2)$, with $\varphi \geq 0$, we have

$$\Gamma_2[f; \varphi] \geq K \Gamma[f; \varphi] + \nu \int_X (\Delta_\varepsilon f)^2 \varphi \, d\mathbf{m}.$$

(ii) For every $f \in L^2(X, \mathbf{m})$ and every nonnegative $\varphi \in D(\Delta_\varepsilon) \cap L^\infty(X, \mathbf{m})$ with $\Delta_\varepsilon \varphi \in L^\infty(X, \mathbf{m})$ we have

$$C_t[f; \varphi](s) \geq K B_t[f; \varphi](s) + 2 \nu A^\Delta_t[f; \varphi](s) \quad \text{for every } 0 \leq s < t. \tag{2.32}$$

(iii) For every $f \in L^2(X, \mathbf{m})$, every nonnegative $\varphi \in L^2 \cap L^\infty(X, \mathbf{m})$, and $t > 0$

$$\frac{\partial^2}{\partial s^2} A_t[f; \varphi](s) \geq 2K \frac{\partial}{\partial s} A_t[f; \varphi](s) + 4\nu A^\Delta_t[f; \varphi](s) \tag{2.33}$$

in the sense of distribution of $\mathcal{D}'(0,t)$ (or, equivalently, the inequality \textcolor{blue}{[2.33]} holds pointwise in $[0, t)$ for every nonnegative $\varphi \in L^2 \cap L^\infty(X, \mathbf{m})$ with $\Delta_\varepsilon \varphi \in L^2 \cap L^\infty(X, \mathbf{m})$.)

(iv) For every $f \in L^2(X, \mathbf{m})$ and $t > 0$ we have $P_t f \in \mathbb{G}$ and

$$I_{2K}(t) \Gamma(P_t f) + 2\nu I_{2K,2}(t)(\Delta_\varepsilon P_t f)^2 \leq \frac{1}{2} P_t(f^2) - \frac{1}{2}(P_t f)^2 \quad \text{m-a.e. in } X. \tag{2.34}$$

(v) $\mathbb{G} = \mathbb{V}$ and for every $f \in \mathbb{V}$

$$\frac{1}{2} P_t(f^2) - \frac{1}{2}(P_t f)^2 + 2\nu I_{-2K,2}(t)(\Delta_\varepsilon P_t f)^2 \leq I_{-2K,2}(t) P_t \Gamma(f) \quad \text{m-a.e. in } X.$$

(vi) \mathbb{G} is dense in $L^2(X, \mathbf{m})$ and for every $f \in \mathbb{G}$ and $t > 0$ $P_t f$ belongs to \mathbb{G} with

$$\Gamma(P_t f) + 2\nu I_{-2K}(t)(\Delta_\varepsilon P_t f)^2 \leq e^{-2Kt} P_t \Gamma(f) \quad \text{m-a.e. in } X. \tag{2.35}$$

If one of these equivalent properties holds, then $\mathbb{G} = \mathbb{V}$ (i.e. \mathcal{E} admits the Carré du Champ Γ in \mathbb{V}).

Proof. The implication (i)\Rightarrow(ii) is obvious, choosing $s = 0$. The converse implication is also true under the regularity assumption of (i): it is sufficient to pass to the limit in \textcolor{blue}{(2.32)} as $s \uparrow t$ and then as $t \downarrow 0$.

(ii)\Rightarrow(iii) follows by \textcolor{blue}{(2.26)} when $\Delta_\varepsilon \varphi \in L^2 \cap L^\infty(X, \mathbf{m})$; the general case follows by approximation by the same argument we used in the proof of Lemma \textcolor{blue}{2.1}.

18
(iii)⇒(iv): by applying (2.30) (with obvious notation) we get
\[I_{2K}^\varepsilon(t, \Gamma|P_t; \varphi| + 2\nu I_{2K,2}(t) \int_X \left(\Delta \varphi \right)^2 \varphi \, dm \leq \frac{1}{2} \int_X \left((P_t(f^2) - (P_t f)^2) \varphi \right) \, dm \]
for every nonnegative \(\varphi \in \mathcal{V}_\infty \). Thus, setting \(h := P_t(f^2) - (P_t f)^2 \in L_+^1(X, \mathcal{P}) \), the linear functional \(\ell \) on \(\mathcal{V}_\infty \) defined by \(\ell(\varphi) := I_{2K}^\varepsilon(t, \Gamma|P_t; \varphi| \) satisfies
\[0 \leq \ell(\varphi) \leq \int_X h \varphi \, dm \quad \text{for every} \quad \varphi \in \mathcal{V}_\infty, \quad \varphi \geq 0. \quad (2.36) \]
Since \(\mathcal{V}_\infty \) is a lattice of functions generating \(\mathcal{B} \) (because \(\mathcal{B} \) is complete and \(\mathcal{V}_\infty \) is dense in \(L^2(X, \mathcal{M}) \)) satisfying the Stone property \(\varphi \in \mathcal{V}_\infty \Rightarrow \varphi \wedge 1 \in \mathcal{V}_\infty \) and clearly (2.30) yields \(\ell(\varphi_n) \to 0 \) whenever \((\varphi_n)_{n \geq 0} \subset \mathcal{V}_\infty \) is a sequence of functions pointwise decreasing to \(0 \), Daniell construction \([7, \text{Thm. 7.8.7}]\) and Radon-Nikodym Theorem yields \(\Gamma|P_t f; \varphi| = \int_X g \varphi \, dm \) for some \(g \in L_+^1(X, \mathcal{M}) \), so that \(P_t f \in \mathcal{G} \) and (2.31) holds.

This argument also shows that \(\mathcal{G} \) is invariant under the action of \((P_t)_{t \geq 0} \) and dense in \(L^2(X, \mathcal{M}) \). A standard approximation argument yields the density of \(\mathcal{V} \) (see, e.g. \([5, \text{Lemma 4.9}]\)) and therefore \(\mathcal{G} = \mathcal{V} \) (since \(\mathcal{G} \) is closed in \(\mathcal{V} \); see also \([10, \text{Prop. 4.1.3}]\)).

Analogously, (iii)⇒(v) follows by (2.31), while (iii)⇒(vi) follows by (2.28).

Let us now show that (vi)⇒(iii). Since \(\mathcal{G} \) is dense in \(L^2(X, \mathcal{M}) \) and invariant with respect to \((P_t)_{t \geq 0} \), we already observed that \(\mathcal{G} = \mathcal{V} \). Let us now write (2.33) with \(h > 0 \) instead of \(t \) and with \(f := P_{t-s} v \) for some \(0 < h < s < t \). Multiplying by \(P_{s-h} \varphi \) and integrating with respect to \(\mathcal{M} \), we obtain
\[\mathcal{B}_t[v; \varphi](s-h) + 4\nu I_{-2K}(h)A_t^\Delta[v; \varphi](s-h) \leq e^{-2Kh}B_t[v; \varphi](s). \]

It is not restrictive to assume \(\Delta \varphi \in L^2 \cap L^\infty(X, \mathcal{M}) \), so that \(\mathcal{B} \) is of class \(C^1 \) in \((0, t)\). We subtract \(\mathcal{B}_t[v; \varphi](s) \) from both sides of the inequality, we divide by \(h > 0 \) and let \(h \downarrow 0 \) obtaining
\[\frac{\partial}{\partial s} \mathcal{B}_t[v; \varphi](s) - 2K \mathcal{B}_t[v; \varphi](s) \geq 4\nu A_t^\Delta[v; \varphi](s) \]
i.e. (2.33).

To show that (iv)⇒(iii) we first write (2.31) at \(t = h > 0 \) in the form
\[I_{2K,2}(h) \left(K \Gamma(P_h f) + 2\nu \left(\Delta \varphi \right)^2 \right) \leq \frac{1}{2} P_h(f^2) - \frac{1}{2} (P_h f)^2 - h \Gamma(P_h f), \]

obtaining by subtracting \(h \Gamma(P_h f) \) from both sides of the inequality. Then we choose \(f = P_{t-s-h} v \) and we multiply the inequality by \(P_{s} \), with \(\varphi \in L^2 \cap L^\infty(X, \mathcal{M}) \) nonnegative and \(\Delta \varphi \in L^2 \cap L^\infty(X, \mathcal{M}) \). We obtain
\[I_{2K,2}(h) \left(2K \mathcal{B}_t[v; \varphi](s) + 4\nu A_t^\Delta[v; \varphi](s) \right) \leq A_t[v; \varphi](s+h) - A_t[v; \varphi](s) - h \mathcal{B}_t[v; \varphi](s). \]
Since \(A \) is of class \(C^2 \) and \(A' = B \), dividing by \(h^2 > 0 \) and passing to the limit as \(h \downarrow 0 \) a simple Taylor expansion yields
\[
\frac{1}{2} \frac{\partial^2}{\partial s^2} A_t[v; \varphi](s) \geq \frac{1}{2} \left(2K B_t[v; \varphi](s) + 4\nu A_t^2[v; \varphi](s) \right).
\]
A similar argument shows the last implication (v) \(\Rightarrow \) (iii). \(\square \)

Definition 2.4 (The condition \(\text{BE}(K, N) \)). Let \(K \in \mathbb{R} \) and \(\nu \geq 0 \). We say that a Dirichlet form \(E \) in \(L^2(X, m) \) as in (2.1) satisfies a functional \(\text{BE}(K, N) \) condition if one of the equivalent properties in Corollary 2.3 holds with \(N := 1/\nu \).

Notice that \(\text{BE}(K, N) \Rightarrow \text{BE}(K', N') \) for every \(K' \leq K, N' \geq N \), in particular \(\text{BE}(K, N) \Rightarrow \text{BE}(K, \infty) \).

Remark 2.5 (Carré du Champ in the case \(N = \infty \)). If a strongly local Dirichlet form \(E \) satisfies \(\text{BE}(K, \infty) \) for some \(K \in \mathbb{R} \), then it admits a Carré du Champ \(\Gamma \) on \(V \), i.e. \(G = V \), by (v) of Corollary 2.3. Moreover, the spaces
\[
\begin{align*}
V^1_\infty := \{ \varphi \in V_\infty : \Gamma(\varphi) \in L^\infty(X, m) \}, \\
V^2_\infty := \{ \varphi \in V^1_\infty : \Delta \varphi \in L^\infty(X, m) \},
\end{align*}
\]
are dense in \(V \): in fact (2.36) shows that they are invariant under the action of \((P_t)_{t \geq 0} \) and combined with (2.34) (and possibly combined with a further mollification as in (2.18) in the case of \(V^2_\infty \)) it also shows that any element of \(L^2 \cap L^\infty(X, m) \) belongs to their closure w.r.t. the \(L^2(X, m) \) norm. The invariance and the standard approximation argument of, e.g., [5, Lemma 4.9], yield the density in \(V \).

3 Energy metric measure structures

In this section, besides the standing assumptions we made on \(E \), we shall study the relation between the measure/energetic structure of \(X \) and an additional metric structure. Our main object will be the canonical distance \(d_\varepsilon \) associated to the Dirichlet form \(E \), that we will introduce and study in the next Section 3.3. Before doing that, we will recall the metric notions that will be useful in the following. Since many properties will just depend of a few general compatibility conditions between the metric and the energetic structure, we will try to enucleate such a conditions and state the related theorems in full generality.

Our first condition just refers to the measure \(m \) and a distance \(d \) and it does not involve the Dirichlet form \(E \):

Condition \(\text{(MD): Measure-Distance interaction).} \) \(d \) is a distance on \(X \) such that:
- \(\text{(MD.a)} \) \((X, d) \) is a complete and separable metric space, \(B \) coincides with the completion of the Borel \(\sigma \)-algebra of \((X, d) \) with respect to \(m \), and \(\text{supp}(m) = X \);
- \(\text{(MD.b)} \) \(m(B_r(x)) < \infty \) for every \(x \in X, r > 0 \).
Besides the finiteness condition \((\text{MD.b})\), we will often assume a further exponential growth condition on the measures of the balls of \((X,d)\), namely that there exist \(x_0 \in X\), \(M > 0\) and \(c \geq 0\) such that
\[
m(B_r(x_0)) \leq M \exp(cr^2) \quad \text{for every } r \geq 0.
\]
In this case we will collectively refer to the above conditions \((\text{MD})\) and \((\text{MD.exp})\) as \((\text{MD+exp})\).

3.1 Metric notions

In this section we recall a few basic definitions and results which are related to a metric measure space \((X,d,m)\) satisfying \((\text{MD})\).

Absolutely continuous curves, Lipschitz functions and slopes

\(AC^p([a,b];X), 1 \leq p \leq \infty\), is the collection of all the absolutely continuous curves \(\gamma : [a,b] \to X\) with finite \(p\)-energy: \(\gamma \in AC^p([a,b];X)\) if there exists \(v \in L^p(a,b)\) such that
\[
d(\gamma(s), \gamma(t)) \leq \int_s^t v(r) \, dr \quad \text{for every } a \leq s \leq t \leq b.
\]

The metric velocity of \(\gamma\), defined by
\[
|\dot{\gamma}|(r) := \lim_{h \to 0} \frac{d(\gamma(r+h), \gamma(r))}{|h|},
\]
exists for \(L^1\)-a.e. \(r \in (a,b)\), belongs to \(L^p(a,b)\), and provides the minimal function \(v\), up to \(L^1\)-negligible sets, such that \((3.1)\) holds. The length of an absolutely continuous curve \(\gamma\) is then defined by \(\int_a^b |\dot{\gamma}|(r) \, dr\).

We say that \((X, d)\) is a **length space** if for every \(x_0, x_1 \in X\)
\[
d(x_0, x_1) = \inf \left\{ \int_0^1 |\dot{\gamma}|(r) \, dr : \gamma \in AC([0,1];X), \; \gamma(i) = x_i \right\}.
\]

We denote by \(\text{Lip}(X)\) the space of all Lipschitz functions \(\varphi : X \to \mathbb{R}\), by \(\text{Lip}_b(X)\) the subspace of bounded functions and by \(\text{Lip}^1(X)\) the subspace of functions with Lipschitz constant less than 1.

Every Lipschitz function \(\varphi\) is absolutely continuous along any absolutely continuous curve; we say that a bounded Borel function \(g : X \to [0,\infty)\) is an **upper gradient** of \(\varphi \in \text{Lip}(X)\) if for any curve \(\gamma \in AC([a,b];X)\) the absolutely continuous map \(\varphi \circ \gamma\) satisfies
\[
\left| \frac{d}{dt} \varphi(\gamma(t)) \right| \leq g(\gamma(t)) |\dot{\gamma}|(t) \quad \text{for } L^1\text{-a.e. } t \in (a,b).
\]
Among the upper gradients of a function $\varphi \in \text{Lip}(X)$ its slopes and its local Lipschitz constant play a crucial role: they are defined by

$$|D^\pm \varphi|(x) := \limsup_{y \to x} \frac{(\varphi(y) - \varphi(x))^\pm}{d(y, x)}, \quad |D\varphi|(x) := \limsup_{y \to x} \frac{\varphi(y) - \varphi(x)}{d(y, x)},$$

$$|D^* \varphi|(x) := \limsup_{y, z \to x, y \neq z} \frac{|\varphi(y) - \varphi(z)|}{d(y, z)},$$

and, whenever (X, d) is a length space

$$|D^* \varphi|(x) = \limsup_{y \to x} |D\varphi|(y), \quad \text{Lip}(\varphi) = \sup_{x \in X} |D\varphi(x)| = \sup_{x \in X} |D^* \varphi(x)|. \quad (3.4)$$

In fact, (3.3) written for $g := |D\varphi|$ and the length condition (3.2) easily yield

$$|\varphi(y) - \varphi(z)| \leq d(y, z) \sup_{B_{2r}(x)} |D\varphi| \text{ if } y, z \in B_r(x)$$

and provide the inequality $|D^* \varphi| \leq \limsup_{y \to x} |D\varphi|(y)$. The proof of the converse inequality is trivial and a similar argument shows the last identity in (3.4).

The Hopf-Lax evolution formula

Let us suppose that (X, d) is a metric space; the Hopf-Lax evolution map $Q_t : C_b(X) \to C_b(X), t \geq 0$, is defined by

$$Q_t f(x) := \inf_{y \in X} f(y) + \frac{d^2(y, x)}{2t}, \quad Q_0 f(x) = f(x). \quad (3.5)$$

We introduce as in [4, §3] the maps

$$D^+(x, s) := \sup_{(y_n)} \limsup_n d(x, y_n), \quad D^-(x, s) := \inf_{(y_n)} \liminf_n d(x, y_n),$$

where the supremum and the infimum run among minimizing sequences for (3.4). We recall that D^+ and D^- are respectively upper and lower semicontinuous, nondecreasing w.r.t. s, and that $D^+(x, r) \leq D^-(x, s) \leq D^+(x, s)$ whenever $0 < r < s$. These properties imply $D^-(x, s) = \sup_{r < s} D^+(x, r)$. We shall need the inequality

$$Q_{s'} f(x) - Q_s f(x) \leq \frac{(D^+(x, s))^2}{2} (\frac{1}{s'} - \frac{1}{s}) \quad s' > s, \quad (3.6)$$

as well as the pointwise properties

$$-\frac{d^\pm}{ds} Q_s f(x) = \frac{(D^\pm(x, s))^2}{2s^2}, \quad |DQ_s f(x)| \leq \frac{D^+(x, s)}{s}, \quad (3.7)$$

22
(these are proved in Proposition 3.3 and Proposition 3.4 of [4]). Since
\[d(y, x) > 2s \operatorname{Lip}(f) \Rightarrow f(y) + \frac{d^2(x, y)}{2s} > f(x) \geq Q_s f(x),\]
we immediately find \(D^+(x, s) \leq 2s \operatorname{Lip}(f)\).

Since by (3.6) the map \(s \mapsto Q_s f(x)\) is locally Lipschitz in \((0, \infty)\), integrating the first identity of (3.7) in the interval \((\varepsilon, t)\), \(\varepsilon > 0\), and then letting \(\varepsilon \downarrow 0\) we get
\[f(x) - Q_t f(x) = \int_0^t \frac{(D^+(x, s))^2}{2s^2} ds = \frac{t}{2} \int_0^1 \left(\frac{D^+(x, tr)}{tr}\right)^2 dr.\]

Combining the above identity with the formula expressing the descending slope (see [3, Lemma 3.1.5])
\[|D^- f|^2(x) = 2 \limsup_{t \downarrow 0} \frac{f(x) - Q_t f(x)}{t},\]
we end up with
\[|Df|^2(x) \geq |D^- f|^2(x) = \limsup_{t \downarrow 0} \int_0^1 \left(\frac{D^+(x, tr)}{tr}\right)^2 dr. \tag{3.8}\]

When \((X, d)\) is a length space \((Q_t)_{t \geq 0}\) is a semigroup and we have the refined identity [4, Thm. 3.6]
\[\frac{d^+}{ds} Q_s f(x) = -\frac{1}{2} |DQ_s f|^2(x) = - \frac{(D^+(x, s))^2}{2s^2}. \tag{3.9}\]

In addition, (3.7) and the length property of \(X\) yield the a priori bounds
\[\operatorname{Lip}(Q_s f) \leq 2 \operatorname{Lip}(f), \quad \operatorname{Lip}(Q.f(x)) \leq 2 \left[\operatorname{Lip}(f)\right]^2. \tag{3.10}\]

The Cheeger energy

The Cheeger energy of a function \(f \in L^2(X, m)\) is defined as
\[\operatorname{Ch}(f) := \inf \left\{ \liminf_{n \to \infty} \frac{1}{2} \int_X |Df_n|^2 \, dm : f_n \in \operatorname{Lip}_b(X), \ f_n \to f \text{ in } L^2(X, m) \right\}.\]

If \(f \in L^2(X, m)\) with \(\operatorname{Ch}(f) < \infty\), then there exists a unique function \(|Df|_w \in L^2(X, m)\), called *minimal weak gradient of* \(f\), satisfying the two conditions
\[\operatorname{Lip}_b(X) \cap L^2(X, m) \ni f_n \to f, \ |Df_n| \to G \text{ in } L^2(X, m) \Rightarrow |Df|_w \leq G \]
\[\operatorname{Ch}(f) = \frac{1}{2} \int_X |Df|_w^2 \, dm. \]

In the next section 3.3 we will also use a more refined approximation result, replacing \(|Df_n|\) with \(|D^* f_n|\) in the approximation, proved in [3] §8.3 (see also [1] for a more detailed proof): for every \(f \in L^2(X, m)\) with \(\operatorname{Ch}(f) < \infty\) there exist \(f_n \in \operatorname{Lip}_b(X) \cap L^2(X, m)\) such that
\[f_n \to f, \ |D^* f_n| \to |Df|_w \text{ strongly in } L^2(X, m). \tag{3.11}\]
Wasserstein distances

The metric structure allows us to introduce the corresponding spaces $\mathcal{P}(X)$ of Borel probability measures and $\mathcal{P}_p(X)$ of Borel probability measures with finite p-th moment, namely $\mu \in \mathcal{P}_p(X)$ if

$$\int_X d^p(x, x_0) d\mu(x) < \infty, \text{ for some, and then for all, } x_0 \in X.$$

The L^p-Wasserstein transport (extended) distance W_p on $\mathcal{P}(X)$ is defined by

$$W_p(\mu_1, \mu_2) := \inf \left\{ \int_{X \times X} d^p(x_1, x_2) d\mu(x_1, x_2) : \mu \in \mathcal{P}(X \times X), \pi^i_* \mu = \mu_i \right\}, \quad (3.12)$$

where $\pi^i : X \times X \ni (x_1, x_2) \to x_i$ is the coordinate map and for a Borel measure $\mu \in \mathcal{P}(Y)$ on a metric space Y and every Borel map $r : Y \to X$, the push-forward measure $r_*^i \mu \in \mathcal{P}(X)$ is defined by

$$r_*^i \mu(B) := \mu(r^{-1}(B)) \quad \text{for every Borel set } B \subset X.$$

In particular, the competing measures $\mu \in \mathcal{P}(X \times X)$ in (3.12) have marginals μ_1 and μ_2 respectively.

We also introduce a family of bounded distances on $\mathcal{P}(X)$ associated to a continuous, concave and bounded modulus of continuity $\beta : [0, \infty) \to [0, \infty)$, with $0 = \beta(0) < \beta(r)$ for every $r > 0$.

As in (3.12) we set

$$W_\beta(\mu_1, \mu_2) := \inf \left\{ \int_{X \times X} \beta(d(x_1, x_2)) d\mu(x_1, x_2) : \mu \in \mathcal{P}(X \times X), \pi^i_* \mu = \mu_i \right\}.$$

W_β is thus the L^1-Wasserstein distance induced by the bounded distance $d_\beta(x_1, x_2) := \beta(d(x_1, x_2))$. $(\mathcal{P}(X), W_\beta)$ is then a complete and separable metric space, whose topology coincides with the topology of weak convergence of probability measures.

Entropy and RCD(K, ∞) spaces

In the following we will fix $x_0 \in X$, $z > 0$, $c \geq 0$ such that

$$\bar{m} = \frac{1}{z} e^{-V^2} m \in \mathcal{P}(X), \quad \text{with } V(x) := \sqrt{c} d(x, x_0). \quad (3.13)$$

Notice that in the case $m(X) < \infty$ we can always take $V \equiv c = 0$ with $z = m(X)$. When $m(X) = \infty$, the possibility to choose $x_0 \in X$, $z > 0$, $c \geq 0$ satisfying (3.13) follows from (MD.exp) (possibly with a different constant c; it is in fact equivalent to (MD.exp)).
If \(\mathcal{B} \to [0, \infty] \) is \(\sigma \)-additive, the \textit{relative entropy} \(\text{Ent}_n(\rho) \) of a probability measure \(\rho : \mathcal{B} \to [0, 1] \) with respect to \(n \) is defined by

\[
\text{Ent}_n(\rho) := \begin{cases}
\int_X f \log f \, dn & \text{if } \rho = fn; \\
+\infty & \text{otherwise}.
\end{cases}
\]

The expression makes sense if \(n \) is a probability measure, and thanks to Jensen’s inequality defines a nonnegative functional. More generally we recall (see [4, Lemma 7.2] for the simple proof) that, when \(n = m \) and (3.13) holds, the formula above makes sense on measures \(\rho = fm \in \mathcal{P}_2(X) \) thanks to the fact that the negative part of \(f \log f \) is \(m \)-integrable. Precisely, defining \(\tilde{m} \in \mathcal{P}(X) \) as in (3.13) above, the following formula for the change of reference measure will be useful to estimate the negative part of \(\text{Ent}_m(\rho) \):

\[
\text{Ent}_m(\rho) = \text{Ent}_{\tilde{m}}(\rho) - \int_X V^2(x) \, d\rho(x) - \log z.
\]

\textbf{Definition 3.1 (RCD(}K, \infty\text{) spaces).} Let \((X, d, m)\) be a metric measure space satisfying \((\text{MD}+\exp)\) and the length property (3.2). We say that \((X, d, m)\) has \textit{Riemannian curvature bounded from below} by \(K \in \mathbb{R} \) if for all \(\rho \in \mathcal{P}_2(X) \) there exists a solution \((H_t \rho)_{t \geq 0} \subset \mathcal{P}_2(X)\) of the \textit{EVI} \(K \)-differential inequality starting from \(\rho \), namely \(H_t \rho \to \rho \) as \(t \downarrow 0 \) and (denoting by \(\frac{d^+}{dt} \) the upper right derivative)

\[
\frac{d^+}{dt} W^2_2(H_t \rho, \nu) \leq \frac{K}{2} W^2_2(H_t \rho, \nu) + \text{Ent}_m(H_t \rho) \leq \text{Ent}_m(\nu) \quad \text{for every } t \in (0, \infty) \quad (3.14)
\]

for all \(\nu \in \mathcal{P}_2(X) \) with \(\text{Ent}_m(\nu) < \infty \).

As we already quoted in the Introduction, among the properties of \textit{RCD}(K, \infty) spaces proved in [3] we recall that the Cheeger energy \(\text{Ch} \) is quadratic, i.e. \(\text{Ch}(f) = \frac{1}{2} \mathcal{E}_\text{Ch}(f) \) for a Dirichlet form \(\mathcal{E}_\text{Ch} \) as in (2.1), (QCh)

with \(|Df|^2_w = \Gamma(f) \) for every \(f \in D(\text{Ch}) = \mathbb{V} \),

(in particular \(\mathcal{G} = \mathbb{V} \) and \(\mathcal{E}_\text{Ch} \) admits the Carré du Champ \(\Gamma \) in \(\mathbb{V} \)) and \(\mathcal{E}_\text{Ch} \) satisfies the \textit{BE}(K, \infty) condition. A further crucial property will be recalled in Section 3.3 below, see Condition (ED) and Remark 3.8.

\textbf{3.2 The dual semigroup and its contractivity properties}

In this section we study the contractivity property of the dual semigroup of \((P_t)_{t \geq 0}\) in the spaces of Borel probability measures.

Thus \(\mathcal{E} \) is a strongly local Dirichlet form as in (2.1), \((P_t)_{t \geq 0}\) satisfies the mass-preserving property (2.12) and \(d \) is a distance on \(X \) satisfying condition (MD) (assumption (MD.exp) is not needed here).
We see how, under the mild contractivity property

\[P_t f \in \text{Lip}_b(X) \text{ and } \text{Lip}(P_t f) \leq C(t)\text{Lip}(f) \text{ for all } f \in \text{Lip}_b(X) \cap L^2(X, m), \quad (3.15) \]

with \(C \) bounded on all intervals \([0, T], T > 0\), a dual semigroup \(H_t \) in \(\mathcal{P}(X) \) can be defined, satisfying the contractivity property (3.19) below w.r.t. \(W_{(\beta)} \) and to \(W_1 \). This yields also the fact that \(P_t \) has a (unique) pointwise defined version \(\tilde{P}_t \), canonically defined also on bounded Borel functions, and mapping \(C_b(X) \) to \(C_b(X) \) (we will always identify \(P_t f \) with \(\tilde{P}_t f \) whenever \(f \in C_b(X) \)). Then we shall prove, following the lines of [34], that in length metric spaces the pointwise Bakry-Émery-like assumption

\[|D \tilde{P}_t f|^2(x) \leq C^2(t) \tilde{P}_t |D f|^2(x) \quad \text{for all } x \in X, \ f \in \text{Lip}_b(X) \cap L^2(X, m), \quad (3.16) \]

with \(C \) bounded on all intervals \([0, T], T > 0\), provides contractivity of \(H_t \) even w.r.t. \(W_2 \). Notice that formally (3.16) implies (3.15), but one has to take into account that (3.16) involves a pointwise defined version of the semigroup, which might depend on (3.15).

A crucial point here is that we want to avoid doubling or local Poincaré assumptions on the metric measure space. For the aim of this section we introduce the following notation:

\[Z \text{ is the collection of probability densities } f \in L^1_+(X, m), \]

\[\mathcal{K} \text{ is the set of nonnegative bounded Borel functions} \]

\[f : X \to \mathbb{R} \text{ with bounded support.} \]

Proposition 3.2. Let \(\mathcal{E} \) and \((P_t)_{t \geq 0}\) be as in (2.11) and (2.12) and let \(d \) be a distance on \(X \) satisfying the condition (MD). If (3.15) holds then

(i) The mapping \(H_t(fm) := (P_t f)m, \ f \in Z, \) uniquely extends to a \(W_{(\beta)} \)-Lipschitz map \(H_t : \mathcal{P}(X) \to \mathcal{P}(X) \) satisfying for every \(\mu, \nu \in \mathcal{P}(X) \)

\[W_{(\beta)}(H_t \mu, H_t \nu) \leq (C(t) \lor 1) W_{(\beta)}(\mu, \nu), \quad (3.18) \]

\[W_1(H_t \mu, H_t \nu) \leq C(t)W_1(\mu, \nu), \quad (3.19) \]

with \(C(t) \) given by (3.15).

(ii) Defining \(\tilde{P}_t f(x) := \int_X f \, dH_t \delta_x \) on bounded or nonnegative Borel functions, \(\tilde{P}_t \) is everywhere defined and maps \(C_b(X) \) to \(C_b(X) \). Moreover \(\tilde{P}_t \) is a version of \(P_t \) for all Borel functions \(f \) with \(\int_X |f| \, dm < \infty \), namely \(\tilde{P}_t f(x) \) is defined and \(P_t f(x) = \tilde{P}_t f(x) \) for \(m \)-a.e. \(x \in X \). In particular \(\tilde{P}_t f \) is \(m \)-a.e. defined for every Borel function semi-integrable w.r.t. \(m \).

(iii) \(H_t \) is dual to \(\tilde{P}_t \) in the following sense:

\[\int_X f \, dH_t \mu = \int_X \tilde{P}_t f \, d\mu \quad (3.20) \]

for all \(f : X \to \mathbb{R} \) bounded Borel, \(\mu \in \mathcal{P}(X) \).
Furthermore, if \(\varphi \) and the fact that a function \(\varphi \) is bounded, then \(R_\ell \varphi \) is bounded and satisfies
\[
\inf_{x} \varphi \leq R_\ell \varphi (x) \leq \varphi (x) \quad \text{for every } x \in X, \quad \ell \geq 0.
\]

(iv) For every \(f \in C_b(X) \) and \(x \in X \) we have \(\lim_{\ell \downarrow 0} P_\ell f(x) = f(x) \). In particular, for every \(\mu \in \mathcal{P}(X) \) the map \(t \mapsto H_t \mu \) is weakly continuous in \(\mathcal{P}(X) \).

Proof. The concavity of \(\beta \) yields that \(\beta \) is subadditive, so that \(d_\beta \) is a distance. Let us first prove that \(P_\ell \) maps \(d_\beta \)-Lipschitz functions in \(d_\beta \)-Lipschitz functions.

We use the envelope representation
\[
\beta(r) = \inf_{(a,b) \in B} a + br, \quad B = \{(a,b) \in [0, \infty)^2 : \beta(s) \leq a + bs \text{ for every } s \geq 0\},
\]
and the fact that a function \(\varphi : X \to \mathbb{R} \) is \(\ell \)-Lipschitz with respect to a distance \(d \) on \(X \) if and only if
\[
\varphi(x) \leq R_\ell \varphi(x) := \inf_{y \in X} \varphi(y) + \ell d(x,y) \quad \text{for every } x \in X.
\]
It is easy to check that if \(\varphi \) is bounded, then \(R_\ell \varphi \) is bounded and satisfies
\[
\inf_{x} \varphi \leq R_\ell \varphi (x) \leq \varphi (x) \quad \text{for every } x \in X, \quad \ell \geq 0.
\]

Furthermore, if \(\varphi \) has also bounded support then \(R_\ell \varphi \) has bounded support as well, so that \(R_\ell \) maps \(K \) in \(K \). The contractivity property \((3.15) \) then yields for every \(\varphi \in \text{Lip}_b(X) \cap L^2(X,m) \) with \(\text{Lip}(\varphi) \leq b \)
\[
P_\ell \varphi \leq R_{C(t)b}(P_\ell \varphi).
\]

Let us now suppose that \(\varphi \in K \) is \(d_\beta \)-Lipschitz, with Lipschitz constant less than 1, so that for every \((a,b) \in B \)
\[
\varphi(x) \leq \inf_{y \in X} \varphi(y) + \beta(d(x,y)) \leq \inf_{y \in X} \varphi(y) + a + b d(x,y) = a + R_b \varphi(x).
\]

Since \((P_\ell)_{\ell \geq 0} \) is order preserving, we get for \(\varphi \in K \)
\[
P_\ell \varphi \leq a + P_\ell (R_b \varphi) \leq a + R_{C(t)b} (P_\ell (R_b \varphi)) \leq a + R_{C(t)b} (P_\ell \varphi),
\]
where we used the right inequality of \((3.21) \) and the fact that \(\text{Lip}(R_b \varphi) \leq b \). It follows that for every \(x, y \in X \) and every \((a,b) \in B \)
\[
P_\ell \varphi(x) \leq P_\ell \varphi(y) + a + C(t)b d(x,y), \quad \text{i.e.} \quad P_\ell \varphi(x) - P_\ell \varphi(y) \leq \beta(C(t)d(x,y)).
\]

By Kantorovich duality, for \(f, g \in Z \) we get
\[
W_{(\beta)}(P_\ell f \, m, P_\ell g \, m) = \sup \left\{ \int_X \varphi \left(P_\ell f - P_\ell g \right) \, dm : \varphi \in K, \text{ Lip}_{d_\beta}(\varphi) \leq 1 \right\}
\]
\[
= \sup \left\{ \int_X P_\ell \varphi \left(f - g \right) \, dm : \varphi \in K, \text{ Lip}_{d_\beta}(\varphi) \leq 1 \right\}
\]
\[
\leq (C(t) \lor 1) W_{(\beta)}(f \, m, g \, m).
\]

Hence, \((3.18) \) holds when \(\mu = f \, m, \nu = g \, m \). By the density of \(\{f \, m : f \in Z\} \) in \(\mathcal{P}(X) \) w.r.t. \(W_{(\beta)} \) we get \((3.18) \) for arbitrary \(\mu, \nu \in \mathcal{P}(X) \). A similar argument yields \((3.19) \).
(ii) Continuity of \(x \mapsto \tilde{P}_tf(x) \) when \(f \in C_b(X) \) follows directly by the continuity of \(x \mapsto H_t \delta_x \). The fact that \(\tilde{P}_f \) is a version of \(P_t \) when \(f \) is Borel and \(m \)-integrable is a simple consequence of the fact that \(P_t \) is selfadjoint, see [5] for details.

(iii) When \(f, g \in C_b(X) \cap L^2(X, m) \) and \(\mu = g m \), the identity (3.20) reduces to the fact that \(\tilde{P}_t \) is a version of \(P_t \) when \(f \) is Borel and \(m \)-integrable is a simple consequence of the fact that \(P_t \) is selfadjoint, see [5] for details.

(iv) In the case of \(\varphi \in \text{Lip}_b(X) \cap L^2(X, m) \) it is easy to prove that \(\tilde{P}_t \varphi(x) \to \varphi(x) \) for all \(x \in X \) as \(t \downarrow 0 \), since \(\tilde{P}_t \varphi(x) \) are equi-Lipschitz, converge in \(L^2(X, m) \) to \(\varphi \) and \(\text{supp } m = X \).

By (3.20) it follows that
\[
\lim_{t \downarrow 0} \int_X \varphi \, dH_t \mu = \lim_{t \downarrow 0} \int_X \tilde{P}_t \varphi \, d\mu = \int_X \varphi \, d\mu \quad \text{for every } \varphi \in \text{Lip}_b(X) \cap L^2(X, m).
\]

By a density argument we obtain that the same holds on \(\text{Lip}_b(X) \), so that \(t \mapsto H_t \mu \) is weakly continuous. Since \(\tilde{P}_t f(x) = \int_X f \, dH_t \delta_x \), we conclude that \(\tilde{P}_t f(x) \to f(x) \) for arbitrary \(f \in C_b(X) \).

Writing \(\mu = \int_X \delta_x \, d\mu(x) \) and recalling the definition of \(\tilde{P}_t \), we can also write (3.20) in the form
\[
H_t \mu = \int_X H_t \delta_x \, d\mu(x) \quad \forall \mu \in \mathcal{P}(X). \tag{3.22}
\]

In order to prove that (3.16) yields the contractivity property
\[
W_2(H_t \mu, H_t \nu) \leq C(t) W_2(\mu, \nu) \quad \text{for every } \mu, \nu \in \mathcal{P}(X), \; t \geq 0, \tag{W_2-cont}
\]
we need the following auxiliary results.

Lemma 3.3. Assume that \((\mu_n) \subset \mathcal{P}(X) \) weakly converges to \(\mu \in \mathcal{P}(X) \), and that \(f_n \) are equibounded Borel functions satisfying
\[
\limsup_{n \to \infty} f_n(x_n) \leq f(x) \quad \text{whenever } x_n \to x
\]
for some Borel function \(f \). Then \(\limsup_n \int_X f_n \, d\mu_n \leq \int_X f \, d\mu \).

Proof. Possibly adding a constant, we can assume that all functions \(f_n \) are nonnegative. For all integers \(k \) and \(t > 0 \) it holds
\[
\mu\left(\bigcup_{m=k}^{\infty} \{ f_m > t \} \right) \geq \limsup_{n \to \infty} \mu_n\left(\bigcup_{m=k}^{\infty} \{ f_m > t \} \right) \geq \limsup_{n \to \infty} \mu_n(\{f_n > t\}).
\]
Taking the intersection of the sets in the left hand side and noticing that it is contained, by assumption, in \(\{ f \geq t \} \), we get \(\limsup_n \mu_n(\{f_n > t\}) \leq \mu(\{ f \geq t \}) \). By Cavalieri's formula and Fatou's lemma we conclude. \qed
Lemma 3.4. Assume (3.15), (3.16) and the length property (3.2). For all \(f \in \text{Lip}_0(X) \) nonnegative and with bounded support, \(Q_t f \) is Lipschitz, nonnegative with bounded support and it holds

\[
|P_t Q_t f(x) - P_t f(y)| \leq \frac{1}{2} C^2(t) d^2(x, y) \quad \text{for every } t \geq 0, \ x, y \in X.
\]

Proof. It is immediate to check that \(Q_s f(x) = 0 \) if \(f(x) = 0 \), so that the support of all functions \(Q_s f, s \in [0, 1] \), are contained in a given ball and \(Q_s f \) are also equi-bounded.

The stated inequality is trivial for \(t = 0 \), so assume \(t > 0 \). By (3.9) for every \(s > 0 \), setting \(r_k := s - 1/k \uparrow s \), the sequence \(r_k^2|DQ_{r_k}f|^2(x) \) monotonically converges to the function \(D^- (x, s) \); we can thus pass to the limit in the upper gradient inequality (which is a consequence of (3.16))

\[
|P_t Q_{r_k} f(\gamma_1) - P_t Q_{r_k} f(\gamma_0)| \leq C(t) \int_0^1 \sqrt{\tilde{P}_t|DQ_{r_k}f|^2(\gamma_s)|\dot{\gamma}_s|} \, ds
\]

to get that the function \(C(t)G_s \), with \(G_s(x) := s^{-1}\sqrt{\tilde{P}_t(D^- (x, s)^2)} \), is an upper gradient for \(P_t(Q_s f) \). Moreover, combining (3.10) and (3.5) we obtain

\[
\limsup_{h \downarrow 0} \frac{Q_{s+h} f(x_h) - Q_s f(x_h)}{h} \leq \frac{1}{2s^2} \limsup_{h \downarrow 0} - (D^+(x_h, s))^2 \leq -\frac{1}{2s^2} (D^- (x, s))^2
\]

(3.23)

along an arbitrary sequence \(x_h \to x \).

Let \(\gamma \) be a Lipschitz curve with \(\gamma_1 = x \) and \(\gamma_0 = y \). We interpolate with a parameter \(s \in [0, 1] \), setting \(g(s) := P_tQ_s f(\gamma_s) \). Using (3.10) and (3.15) we obtain that \(g \) is absolutely continuous in \([0, 1]\), so that we need only to estimate \(g'(s) \). For \(h > 0 \), we write

\[
g(s + h) - g(s) = \int_X \frac{Q_{s+h} f - Q_s f}{h} dH_t \delta_{\gamma_{s+h}} + \frac{P_t Q_s f(\gamma_{s+h}) - P_t Q_s f(\gamma_s)}{h}
\]

and estimate the two terms separately. The first term can be estimated as follows:

\[
\limsup_{h \downarrow 0} \int_X \frac{Q_{s+h} f - Q_s f}{h} dH_t \delta_{\gamma_{s+h}} \leq -\frac{1}{2s^2} \int_X D^- (\cdot, s)^2 dH_t \delta_{\gamma_s} = -\frac{1}{2} G^2_s(\gamma_s).
\]

(3.24)

Here we applied Lemma 3.3 with \(f_h(x) = (Q_{s+h} f(x) - Q_s f(x))/h \), \(\mu_h = H_t \delta_{\gamma_{s+h}} \) and \(\mu = H_t \delta_{\gamma_s} \), taking (3.23) into account.

The second term can be estimated as follows. By the upper gradient property of \(C(t)G_s \) for \(P_t(Q_s f) \) we get

\[
\limsup_{h \downarrow 0} \left| \frac{P_t Q_s f(\gamma_{s+h}) - P_t Q_s f(\gamma_s)}{h} \right| \leq G_s(\gamma_s) C(t) |\dot{\gamma}_s|
\]

(3.25)

for a.e. \(s \in (0, 1) \), more precisely at any Lebesgue point of \(|\dot{\gamma}| \) and of \(s \mapsto G_s(\gamma_s) \). Combining (3.24) and (3.25) and using the Young inequality we get \(|P_t Q_1 f(x) - P_t f(y)| \leq C^2(t) \frac{1}{2} \int_0^1 |\dot{\gamma}_s|^2 \, ds \). Minimizing with respect to \(\gamma \) gives the result. \(\square \)
Theorem 3.5. Let \mathcal{E} and $(P_t)_{t \geq 0}$ be as in (2.1) and (2.12), and let d be a distance on X under the assumptions (MD) and (3.2). Then (3.15) and (3.16) are satisfied by $(P_t)_{t \geq 0}$ if and only if $W_{2\text{-cont}}$ holds.

Proof. We only prove the W_2 contraction assuming that (3.15) and (3.16) hold, since the converse implication have been already proved in [34] (see also [5, Theorem 6.2]) and it does not play any role in this paper.

We first notice that Kantorovich duality provides the identity
\[\frac{1}{2} W_2^2(H_t \delta_x, H_t \delta_y) = \sup \left| P_t Q_1 f(x) - P_t f(y) \right| \]
where the supremum runs in the class of bounded, nonnegative Lipschitz functions f with bounded support. Therefore, Lemma 3.4 gives
\[W_2^2(H_t \delta_x, H_t \delta_y) \leq C^2(t) d^2(x, y). \] (3.26)

Now, given $\mu, \nu \in \mathcal{P}(X)$ with $W_2(\mu, \nu) < \infty$ and a corresponding optimal plan γ, we may use a measurable selection theorem (see for instance [17, Theorem 6.9.2]) to select in a γ-measurable way optimal plans γ_{xy} from $H_t \delta_x$ to $H_t \delta_y$. Then, we define
\[\gamma_0 := \int_{X \times X} \gamma_{xy} \, d\gamma(x, y). \]
and notice that, because of (3.22), γ_0 is an admissible plan from $H_t \mu$ to $H_t \nu$. Since (3.26) provides the inequality $\int d^2 \, d\gamma_0 \leq C^2(t) \int d^2 \, d\gamma$ we conclude. \qed

3.3 Energy measure spaces

In this section we want to study more carefully the interaction between the energy and the metric structures, particularly in the case when the initial structure is not provided by a distance, but rather by a Dirichlet form \mathcal{E}.

Given a Dirichlet form \mathcal{E} in $L^2(X, \mathcal{B})$ as in (2.1), assume that \mathcal{B} is the \mathcal{m}-completion of the Borel σ-algebra of (X, τ), where τ is a given topology in X. Then, under these structural assumptions, we define a first set of “locally 1-Lipschitz” functions as follows:
\[\mathcal{L} := \left\{ \psi \in \mathcal{G} : \Gamma(\psi) \leq 1 \text{ m-a.e. in } X \right\}, \quad \mathcal{L}_C := \mathcal{L} \cap C(X). \]

With this notion at hand we can generate canonically the intrinsic (possibly infinite) pseudo-distance $[16]$:
\[d_\mathcal{E}(x_1, x_2) := \sup_{\psi \in \mathcal{L}_C} |\psi(x_2) - \psi(x_1)| \quad \text{for every } x_1, x_2 \in X. \]

We also introduce 1-Lipschitz truncation functions $S_k \in C^1(\mathbb{R})$, $k > 0$, defined by
\[S_k(r) := k S(r/k) \quad \text{with} \quad S(r) = \begin{cases} 1 & \text{if } |r| \leq 1, \\ 0 & \text{if } |r| \geq 3, \\ |S'(r)| & \text{else}. \end{cases} \] (3.27)

We have now all the ingredients to define the following structure.

30
Definition 3.6 (Energy measure space). Let \((X, \tau)\) be a Polish space, let \(\mathfrak{m}\) be a Borel measure with full support, let \(\mathcal{B}\) be the \(\mathfrak{m}\)-completion of the Borel \(\sigma\)-algebra and let \(\mathcal{E}\) be a Dirichlet form in \(L^2(X, \mathfrak{m})\) satisfying (2.1) of Section 2.1. We say that \((X, \tau, \mathfrak{m}, \mathcal{E})\) is an Energy measure space if

(a) There exists a function \(\theta \in C(X), \theta \geq 0\), such that \(\theta_k := S_k \circ \theta\) belongs to \(\mathcal{L}\) for every \(k > 0\). (3.28)

(b) \(d_\mathcal{E}\) is a finite distance in \(X\) which induces the topology \(\tau\) and \((X, d_\mathcal{E})\) is complete.

Notice that if \(\mathfrak{m}(X) < \infty\) and \(1 \in D(\mathcal{E})\) then (a) is always satisfied by choosing \(\theta \equiv 0\).

In the general case condition (a) is strictly related to the finiteness property of the measure of balls \((\text{MD}.b)\). In fact, we shall see in Theorem 3.9 that \((X, d_\mathcal{E}, \mathfrak{m})\) satisfies the measure distance condition \((\text{MD})\).

Remark 3.7 (Completeness and length property). Whenever \(d_\mathcal{E}\) induces the topology \(\tau\) (and thus \((X, d_\mathcal{E})\) is a separable space), completeness is not a restrictive assumption, since it can always be obtained by taking the abstract completion \(\bar{X}\) of \(X\) with respect to \(d_\mathcal{E}\).

Since \((X, \tau)\) is a Polish space, \(X\) can be identified with a Borel subset of \(\bar{X}\) [17, Thm. 6.8.6] and \(\mathfrak{m}\) can be easily extended to a Borel measure \(\bar{\mathfrak{m}}\) on \(\bar{X}\) by setting \(\bar{\mathfrak{m}}(B) := \mathfrak{m}(B \cap X)\); in particular \(\bar{\mathfrak{m}}(X)\) is \(\bar{\mathfrak{m}}\)-negligible and \(\mathcal{E}\) can be considered as a Dirichlet form on \(L^2(\bar{X}, \bar{\mathfrak{m}})\) as well. Finally, once completeness is assumed, the length property is a consequence of the definition of the intrinsic distance \(d_\mathcal{E}\), see \([52, 50]\) in the locally compact case and the next Corollary 3.10 in the general case.

In many cases \(\tau\) is already induced by a distance \(d\) satisfying the compatibility condition \((\text{MD})\), so that we are actually dealing with a structure \((X, d, \mathfrak{m}, \mathcal{E})\). In this situation it is natural to investigate under which assumptions the identity \(d = d_\mathcal{E}\) holds: this in particular guarantees that \((X, \tau, \mathfrak{m}, \mathcal{E})\) is an Energy measure space according to Definition 3.6. In the following remark we examine the case when \(\mathcal{E}\) is canonically generated starting from \(d\) and \(\mathfrak{m}\), and then we investigate possibly more general situations.

Remark 3.8 (The case of a quadratic Cheeger energy). Let \((X, d, \mathfrak{m})\) be a metric measure space satisfying \((\text{MD})\) and let us assume that the Cheeger energy is quadratic (i.e. \((X, d, \mathfrak{m})\) is infinitesimally Hilbertian according to [27]), \(\mathcal{E}_{\text{Ch}} := 2 \text{Ch}\). Then it is clear that any \(1\)-Lipschitz function \(f \in L^2(X, \mathfrak{m})\) belongs to \(\mathcal{L}_C\), hence \(d_\mathcal{E} \geq d\). It follows that \(d = d_\mathcal{E}\) if and only if every continuous function \(f \in D(\text{Ch})\) with \(|Df|_w \leq 1\) \(\mathfrak{m}\)-a.e. in \(X\) is \(1\)-Lipschitz w.r.t. \(d\). In particular this is the case of RCD\((K, \infty)\) spaces.

If \(X = [0, 1]\) endowed with the Lebesgue measure and the Euclidean distance, and if \(\mathfrak{m} = \sum_n 2^{-n} \delta_{q_n}\), where \((q_n)\) is an enumeration of \(\mathbb{Q} \cap [0, 1]\), then it is easy to check that \(\text{Ch} \equiv 0\) (see [4] for details), hence \(d_\mathcal{E}(x, y) = \infty\) whenever \(x \neq y\).

If \(d\) is a distance on \(X\) satisfying \((\text{MD})\), in order to provide links between the Dirichlet form \(\mathcal{E}\) and the distance \(d\) we introduce the following condition:
Condition (ED: Energy-Distance interaction). \(d \) is a distance on \(X \) such that:

(ED.a) every function \(\psi \in \mathcal{L}_C \) is 1-Lipschitz with respect to \(d \);

(ED.b) every function \(\psi \in \text{Lip}(X, d) \) with \(|D\psi| \leq 1\) and bounded support belongs to \(\mathcal{L}_C \).

Theorem 3.9. If \((X, \tau, m, \mathcal{E})\) is an Energy measure space according to Definition 3.6 then the canonical distance \(d_\mathcal{E} \) satisfies conditions (MD, ED).

Conversely, if \(\mathcal{E} \) is a Dirichlet form as in (2.1) and \(d \) is a distance on \(X \times X \) inducing the topology \(\tau \) and satisfying conditions (MD, ED), then \((X, \tau, m, \mathcal{E})\) is an Energy measure space and

\[
d(x_1, x_2) = d_\mathcal{E}(x_1, x_2) \quad \text{for every } x_1, x_2 \in X. \quad (3.29)
\]

Proof. Let us first assume that \((X, \tau, m, \mathcal{E})\) is an Energy measure space. (MD.a) is immediate since \(d_\mathcal{E} \) is complete by assumption and \(\tau \) is separable. (ED.a) is also a direct consequence of the definition of \(\mathcal{E} \), since

\[
|\psi(x_2) - \psi(x_1)| \leq d_\mathcal{E}(x_1, x_2) \quad \text{for every } \psi \in \mathcal{L}_C, \ x_1, x_2 \in X. \quad (3.30)
\]

Let us now prove (MD.b) and (ED.b).

We first observe that the function \(\theta \) of (3.28) is bounded on each ball \(B_r(y), \ y \in X \) and \(r > 0 \), otherwise we could find a sequence of points \(y_k \in B_r(y), \ k \in \mathbb{N} \), such that \(\theta(y_k) \geq 3k \) and therefore \(\theta_k(y_k) - \theta_k(y) \geq k \) whenever \(\theta(y) \leq k \). This contradicts the fact that \(\theta_k \) is 1-Lipschitz by (3.30). As a consequence, for every \(y \in X \) and \(r > 0 \) there exists \(k_{y,r} \in \mathbb{N} \) such that

\[
\theta_k(x) \equiv k \quad \text{for every } x \in B_r(y), \ k \geq k_{y,r}.
\]

In particular, since \(\theta_k \in L^2(X, m) \), we get that all the sets \(B_r(y) \) with \(y \in X \) and \(r > 0 \) have finite measure, so that (MD.b) holds.

We observe that by the separability of \(X \times X \) we can find a countable family \((\psi_n) \subset \mathcal{L}_C \) such that

\[
d_\mathcal{E}(x_1, x_2) = \sup_n |\psi_n(x_2) - \psi_n(x_1)| \quad \text{for every } x_1, x_2 \in X.
\]

We set

\[
d_{k,N}(x_1, x_2) := \left(\sup_{n \leq N} |\psi_n(x_2) - \psi_n(x_1)| \right) \wedge \theta_k(x_2),
\]

observing that for every \(y \in X \) the map \(x \mapsto d_{k,N}(y, x) \) belongs to \(\mathcal{L}_C \). Passing to the limit as \(N \to \infty \), it is easy to check that \(d_{k,N}(y, \cdot) \to d_k(y, \cdot) = d(y, \cdot) \wedge \theta_k \) pointwise in \(X \) and therefore in \(L^2(X, m) \), since \(\theta_k \in L^2(X, m) \). We deduce that \(d_k(y, \cdot) \in \mathcal{L} \) for every \(y \in X \) and \(k \in \mathbb{N} \).

Let us now prove that every map \(f \in \text{Lip}(X, d) \) with \(|Df| \leq 1\) and bounded support belongs to \(\mathcal{L} \); it is not restrictive to assume \(f \) nonnegative. Since \(f \) is 1-Lipschitz it is easy to check that, setting \(f_k = f \wedge \theta_k \), it holds

\[
f_k(x) = \left(\inf_{z \in X} (f(z) + d_\mathcal{E}(z, x)) \right) \wedge \theta_k(x) = \inf_{z \in X} \left((f_k(z) + d_\mathcal{E}(z, x)) \wedge \theta_k(x) \right)
\]

\[
= \left(\inf_{z \in X} (f_k(z) + d_k(z, x) \wedge \theta_k(x)) \right) \wedge \theta_k(x)
\]

\[
= \left(\inf_{z \in X} (f_k(z) + d_k(z, x)) \right) \wedge \theta_k(x).
\]
Let \((z_i)\) be a countable dense set of \(X\). The functions
\[
f_{k,n}(x) := \left(\min_{1 \leq i \leq n} f_k(z_i) + d_k(z_i, x) \right) \wedge \theta_k(x)
\]
belong to \(\mathcal{L}\), are nonincreasing with respect to \(n\), and satisfy \(0 \leq f_{k,n} \leq \theta_k\). Since
\[
\{ x \in X : \theta_k(x) > 0 \} \subset \{ x \in X : \theta_{3k}(x) = 3k \},
\]
we easily see that \(m(\text{supp}(\theta_k)) < \infty\). Passing to the limit as \(n \uparrow \infty\), since \(z \mapsto d_k(z, x)\) is continuous, they converge monotonically to
\[
\left(\inf_{z \in X} (f_k(z) + d_k(z, x)) \right) \wedge \theta_k(x) = f_k(x),
\]
and their energy is uniformly bounded by \(m(\text{supp}(\theta_k))\). This shows that \(f_k \in \mathcal{L}\). Eventually, letting \(k \uparrow \infty\) and recalling that \(\text{supp}(f_k) \subset \text{supp}(f)\) and \(m(\text{supp}(f)) < \infty\) by (MD.a), we obtain \(f \in \mathcal{L}\).

The converse implication is easier: it is immediate to check that (ED.a) is equivalent to
\[
d(x_1, x_2) \geq d_\varepsilon(x_1, x_2) \quad \text{for every } x_1, x_2 \in X;
\]
if (ED.b) holds and balls have finite measure according to (MD.b), we have \(x \mapsto T_k(d(y, x)) \in \mathcal{L}\) for every \(y \in X\), where \(T_k(r) := r \wedge S_k(r)\). Since
\[
d(x_1, x_2) = T_k(d(x_1, x_2)) - T_k(d(x_2, x_2)) \quad \text{whenever } k > d(x_1, x_2),
\]
we easily get the converse inequality to (3.31), and therefore (3.29) and property (b) of Definition (3.10). In order to get also (a) it is sufficient to take \(\theta(x) := d(x, x_0)\) for an arbitrary \(x_0 \in X\). \(\square\)

Theorem 3.10 (Length property of \(d_\varepsilon\)). If \((X, \tau, m, \mathcal{E})\) is an Energy measure space then \((X, d_\varepsilon)\) is a length metric space, i.e. it also satisfies (3.2).

Proof. We follow the same argument as in [52, 50]. Since \((X, d)\) is complete, it is well known (see e.g. [19, Thm. 2.4.16]) that the length condition is equivalent to show that for every couple of points \(x_0, x_1 \in X\) and \(\varepsilon \in (0, r)\) with \(r := d_\varepsilon(x_0, x_1)\) there exists an \(\varepsilon\)-midpoint \(y \in X\) such that
\[
d_\varepsilon(y, x_i) < \frac{r}{2} + \varepsilon, \quad i = 0, 1.
\]
We argue by contradiction assuming that \(B_{r/2+\varepsilon}(x_0) \cap B_{r/2+\varepsilon}(x_1) = \emptyset\) for some \(\varepsilon \in (0, r)\) and we introduce the function
\[
\psi(x) := \left(\frac{1}{2}(r + \varepsilon) - d_\varepsilon(x, x_0) \right)_+ - \left(\frac{1}{2}(r + \varepsilon) - d_\varepsilon(x, x_1) \right)_+.
\]
\(\psi\) is Lipschitz, has bounded support and it is easy to check that \(|D\psi|(x) \leq 1\) for every \(x \in X\), since \(B_{r/2+\varepsilon}(x_0)\) and \(B_{r/2+\varepsilon}(x_1)\) are disjoint. It turns out that it is 1-Lipschitz by (ED). On the other hand, \(\psi(x_0) - \psi(x_1) = r + \varepsilon > d_\varepsilon(x_0, x_1)\). \(\square\)
We now examine some additional properties of Energy measure spaces.

Proposition 3.11. Let \((X, \tau, m, \mathcal{E})\) be an Energy measure space. Let \(f \in \mathcal{G} \cap C_b(X)\) and let \(\zeta : X \to [0, \infty)\) be a bounded upper semicontinuous function such that \(\Gamma(f) \leq \zeta^2\) \(m\text{-a.e.}\) in \(X\). Then \(f\) is Lipschitz (with respect to the induced distance \(d_\mathcal{E}\)) and \(|D^*f| \leq \zeta\). In particular \(\zeta\) is an upper gradient of \(f\).

Proof. We know that \((\text{ED})\) holds with \(d = d_\mathcal{E}\), by the previous theorem. Since \(\zeta\) is bounded, \(f\) is Lipschitz by \((\text{ED.a})\). We fix \(x \in X\) and for every \(\varepsilon > 0\) we set \(G_\varepsilon := \sup_{B_{3\varepsilon}(x)} \zeta\). The Lipschitz function

\[
\psi_\varepsilon(y) := \left[|f(y) - f(x)| \vee (G_\varepsilon d(y, x))\right] \land (G_\varepsilon S_\varepsilon(d(x, y)))
\]

belongs to \(\mathcal{V}_\infty\) and \(\sqrt{\Gamma(\psi)} \leq \max\{\zeta, G_\varepsilon\}\), since \(|S_\varepsilon'| \leq 1\); moreover \(\psi_\varepsilon(y) = 0\) if \(d(y, x) \geq 3\varepsilon\), so that \(\sqrt{\Gamma(\psi_\varepsilon)} \leq G_\varepsilon\) \(m\text{-a.e.}\) in \(X\). It follows that \(\psi_\varepsilon\) is \(G_\varepsilon\)-Lipschitz and \(\psi_\varepsilon(y) \leq G_\varepsilon d(y, x)\) for every \(y \in X\) since \(\psi_\varepsilon(x) = 0\), so that \(G_\varepsilon S_\varepsilon(d(x, y)) = G_\varepsilon\varepsilon\) for \(d(y, x) < \varepsilon\) gives

\[
|Df(x)| \leq \limsup_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)} \leq \limsup_{y \to x} \frac{\psi_\varepsilon(y)}{d(y, x)} \leq G_\varepsilon.
\]

Since \(\varepsilon > 0\) is arbitrary and \(\lim_{\varepsilon \to 0} G_\varepsilon = \zeta(x)\) we obtain \(|Df(x)| \leq \zeta(x)\). Since \(\zeta\) is upper semicontinuous and \(X\) is a length space, we also get \(|D^*f| \leq \zeta\). \(\square\)

The following result provides a first inequality between \(\mathcal{E}\) and \(\text{Ch}\), in the case when a priori the distances \(d\) and \(d_\mathcal{E}\) are different, and we assume only \((\text{ED.b})\).

Theorem 3.12. \(\mathcal{E}\) be a Dirichlet form in \(L^2(X, m)\) satisfying (2.1) of Section 2.7 and let \(d\) be a distance on \(X\) satisfying condition (MD). Then condition (ED.b) is satisfied if and only if for every function \(f \in \text{Lip}(X)\) with bounded support we have

\[
f \in \mathcal{G}, \ |Df|^2 \geq \Gamma(f) \ \ m\text{-a.e. in } X. \tag{3.32}
\]

In addition, if (MD) and (ED.b) hold, we have

\[
2\text{Ch}(g) \geq \mathcal{E}(g) \quad \text{for every } g \in L^2(X, m), \tag{3.33}
\]

\[
D(\text{Ch}) \subset \mathcal{G} \subset \mathcal{V}, \ |Dg|^2 \geq \Gamma(g) \quad \text{for every } g \in D(\text{Ch}). \tag{3.34}
\]

Proof. The implication (3.32) \(\Rightarrow\) (ED.b) is trivial; let us consider the converse one.

Since the statement is local, possibly replacing \(f\) with \(0 \vee (f + c) \land S_k(d(x_0, \cdot))\) with \(c = 0 \vee \sup_{B_{3k}(x_0)} (-f)\) (notice that \(f\) is bounded) and \(k\) large enough, we can assume that \(f\) is nonnegative and \(f \leq S_k(d(x_0, \cdot))\).

Recall the Hopf-Lax formula (3.35) for the map \(Q_t;\) if \((z_i)\) is a countable dense subset of \(X\) we define

\[
Q^n f(x) = \left(\min_{1 \leq i \leq n} f(z_i) + \frac{1}{2t} d^2(z_i, x)\right), \quad Q^{n,k} f(x) = Q^n f(x) \land 2S_k(d(x_0, x)), \tag{3.35}
\]
and we set \(I_n(x) = \{ i \in \{1, \ldots, n\} : z_i \text{ minimizes } (3.35) \} \). By the density of \((z_n)\), it is clear that \(Q^{n,k}_t f - Q_tf = Q^k_t (d(x_0, \cdot)) = Q_t f \), because \(Q_t f \leq f \leq S_k (d(x_0, \cdot)) \). Therefore, if \(z_n(x) \in I_n(x) \), it turns out that \((z_n(x))\) is a minimizing sequence for \(Q_t f(x) \), namely

\[
\frac{1}{2t} d^2(x, z_n(x)) + f(z_n(x)) \to Q_t f(x) \quad \text{as } n \to \infty.
\]

The very definition of \(D^+(t,x) \) then gives

\[
\limsup_{n \to \infty} \frac{1}{t} d(x, z_n(x)) \leq D^+(t,x).
\]

(3.36)

The locality property, the fact that \((f(z_i) + d^2(z_i, \cdot)/2t) \wedge S_k(d(x_0, \cdot)) \in V \) and the obvious bound

\[
d^2(z_i, x) \leq 4kt \quad \text{if } i \in I_n(x), \quad x \in \{ Q^n_t f \leq 2S_k(d(x_0, \cdot)) \},
\]

yield

\[
\sqrt{\Gamma(Q^{n,k}_t f)(x)} \leq \frac{1}{t} \max_{i \in I_n(x)} d(x, z_i) \leq 2\sqrt{\frac{k}{t}}
\]

for \(m \)-a.e. \(x \in \{ Q^n_t f \leq 2S_k(d(x_0, \cdot)) \} \). If we define \(z_n(x) \) as a value \(z_j \) that realizes the maximum for \(d(z_i, x) \) as \(i \in I_n(x) \), the previous formula yields

\[
\sqrt{\Gamma(Q^{n,k}_t f)(x)} \leq \frac{1}{t} d(x, z_n(x)) \leq 2\sqrt{\frac{k}{t}} \quad \text{for } m \text{-a.e. } x \in \{ Q^n_t f \leq 2S_k(d(x_0, \cdot)) \},
\]

(3.37)

so that

\[
\Gamma(Q^{n,k}_t f) \leq 4(1 + \sqrt{\frac{k}{t}}) \quad m \text{-a.e. in } X, \quad \Gamma(Q^{n,k}_t f) = 0 \quad m \text{-a.e. in } X \setminus B_{3k}(x_0).
\]

Since \(Q^{n,k}_t f \) and \(\Gamma(Q^{n,k}_t f) \) are uniformly bounded and supported in a bounded set, and \(Q^n_t f \) pointwise converges to \(Q_t f \), considering any weak limit point \(G \) of \(\sqrt{\Gamma(Q^{n,k}_t f)} \) in \(L^2(X, m) \) we obtain by (2.10), (3.36) and (3.37)

\[
\Gamma(Q_t f)(x) \leq G^2(x) \leq \frac{(D^+(x,t))^2}{t^2} \quad \text{for } m \text{-a.e. } x \in \{ Q_t f < 2S_k(d(x_0, \cdot)) \}.
\]

(3.38)

Since, by the inequalities \(Q_t f \leq f \leq S_k(d(x_0, \cdot)) \), \(Q_t f \) vanishes on \(\{ Q_t f \geq 2S_k(d(x_0, \cdot)) \} \), the inequality above holds \(m \)-a.e. in \(X \).

Since \(f \) is Lipschitz, it follows that \(D^+(x,t)/t \) is uniformly bounded. Integrating (3.8)
on an arbitrary bounded Borel set A and applying Fatou’s Lemma, from (3.38) we get
\[
\int_A |Df|^2 \, dm \geq \int_A \limsup_{t \downarrow 0} \int_0^1 \left(\frac{D^+(x, tr)}{tr} \right)^2 \, dm(x) \, dr \\
\geq \limsup_{t \downarrow 0} \int_0^1 \int_A \left(\frac{D^+(x, tr)}{tr} \right)^2 \, dm(x) \, dr \\
\geq \limsup_{t \downarrow 0} \int_0^1 \int_A \Gamma(Q_{tr} f)(x) \, dm(x) \, dr \\
\geq \int_0^1 \liminf_{t \downarrow 0} \left(\int_A \Gamma(Q_{tr} f) \, dm \right) \, dr \geq \int_A \Gamma(f) \, dm,
\]
where in the last inequality we applied (2.10) once more. Since A is arbitrary we conclude.

In order to prove (3.33) it is not restrictive to assume $\text{Ch}(g) < \infty$. By the very definition of the Cheeger energy, we can then find a sequence of functions $f_n \in \text{Lip}_b(X) \cap L^2(X, m)$ converging to g in $L^2(X, m)$ with $\lim_{n \to \infty} \int_X |Df_n|^2 \, dm = 2\text{Ch}(g)$.

By replacing f_n with $g_n(x) = f_n(x) S_1(d(x, x_0)/n)$ we can even obtain a sequence of Lipschitz functions with bounded support. (3.32) and the lower semicontinuity of \mathcal{E} then provide (3.33) and (3.34).

In order to conclude our analysis of the relations between \mathcal{E} and Ch for Energy measure spaces $(X, \tau, m, \mathcal{E})$, we introduce a further property.

Definition 3.13 (Upper regularity). Let $(X, \tau, m, \mathcal{E})$ be an Energy measure space. We say that the Dirichlet form \mathcal{E} is upper-regular if for every f in a dense subset of V there exist $f_n \in G \cap C_b(X)$ converging strongly to f in $L^2(X, m)$ and $g_n : X \to \mathbb{R}$ bounded and upper semicontinuous such that
\[
\sqrt{\Gamma(f_n)} \leq g_n \text{ m-a.e.}, \quad \limsup_{n \to \infty} \int_X g_n^2 \, dm \leq \mathcal{E}(f). \tag{3.39}
\]

Theorem 3.14. Let $(X, \tau, m, \mathcal{E})$ be an Energy measure space. Then the Cheeger energy associated to $(X, d_\mathcal{E}, m)$ coincides with \mathcal{E}, i.e.
\[
\mathcal{E}(f) = 2\text{Ch}(f) \quad \text{for every } f \in L^2(X, m), \tag{3.40}
\]
if and only if \mathcal{E} is upper-regular. In this case $\mathcal{G} = V$, \mathcal{E} admits a Carré du Champ Γ and
\[
\Gamma(f) = |Df|^2_w \text{ m-a.e. in } X \text{ for every } f \in V. \tag{3.41}
\]

In particular, the space $V \cap \text{Lip}_b(X)$ is dense in V. If moreover (MD.exp) holds, then $(P_t)_{t \geq 0}$ satisfies the mass preserving property (2.12).

Proof. Since Ch is always upper-regular by (3.11), the condition is clearly necessary. In order to prove its sufficiency, by (3.33) of Theorem 3.12 we have just to prove that every $f \in$
\(V \) satisfies the inequality \(2 \text{Ch}(f) \leq \mathcal{E}(f) \). If \(f_n, g_n \) are sequences as in (3.39), Proposition 3.11 yields that \(f_n \) are Lipschitz and

\[
|Df_n| \leq g_n, \quad \text{Ch}(f_n) \leq \frac{1}{2} \int_X |Df_n|^2 \, dm \leq \frac{1}{2} \int_X g_n^2 \, dm.
\]

Passing to the limit as \(n \to \infty \) we obtain the desired inequality thanks to the lower-semicontinuity of \(\text{Ch} \) in \(L^2(X, \nu) \). The last statement of the Theorem follows by [4, Thm. 4.20].

\section{Riemannian Energy measure spaces and the BE\((K, \infty)\) condition}

In this section we will discuss various consequences of the Energy measure space axiomatization in combination with BE\((K, \infty)\).

Taking into account the previous section, the Bakry-Émery condition BE\((K, N)\) as stated in Definition 2.4 makes perfectly sense for a Energy measure space \((X, \tau, m, \mathcal{E})\). In the next result we will show that under a weak-Feller property on the semigroup \((P_t)_{t \geq 0}\) we gain upper-regularity of \(\mathcal{E} \), the identifications \(\mathcal{E} = 2 \text{Ch} \) of Theorem 3.14 and \(\mathcal{L} = \mathcal{L}_C \).

\textbf{Theorem 3.15.} Let \((X, \tau, m, \mathcal{E})\) be a Energy measure space satisfying the BE\((K, \infty)\) condition. Then, its Markov semigroup \((P_t)_{t \geq 0}\) satisfies the weak-Feller property

\[
f \in \text{Lip}_b(X, d) \text{ with bounded support, } |Df| \leq 1 \quad \Rightarrow \quad P_t f \in C_b(X) \ \forall t \geq 0 \quad \text{(w-Feller)}
\]

if and only if

\[
\mathcal{L} = \mathcal{L}_C, \quad (3.42)
\]

i.e. if every function \(f \in \mathcal{L} \) admits a continuous representative. In this case \(\mathcal{E} \) is upper-regular and, as a consequence, (3.40), (3.41) hold.

\textbf{Proof.} The implication (3.42) \Rightarrow \text{(w-Feller)} is easy, since for any \(f \in \text{Lip}_b(X, d) \) with \(|Df| \leq 1 \) and bounded support, the Bakry-Émery condition BE\((K, \infty)\) (i.e. (2.35) with \(\nu = 0 \)) and the bound \(\Gamma(f) \leq 1 \) given by (ED.b) yields \(e^{Kt}P_tf \in \mathcal{L} = \mathcal{L}_C \).

Now we prove the converse implication, from \text{(w-Feller)} to (3.42). The Bakry-Émery condition BE\((K, \infty)\) in conjunction with (ED.b) and \text{(w-Feller)} yield \(e^{Kt}P_tf \in \mathcal{L}_C \) for every \(f \in \text{Lip}_b(X, d) \) with \(|Df| \leq 1 \) and bounded support and \(t > 0 \), thus in particular \(e^{Kt}P_tf \) is 1-Lipschitz by (ED.a). Let us now fix \(f \in \mathcal{L} \cap L^\infty(X, m) \) and let us consider a sequence of uniformly bounded functions \(f_n \in \text{Lip}_b(X) \cap L^2(X, m) \) with bounded support converging to \(f \) in \(L^2(X, m) \). By the previous step we know that \(P_t f_n \in \text{Lip}_b(X) \) and the estimate (2.34) shows that \(\Gamma(P_t f_n) \leq C/t \) for a constant \(C \) independent of \(n \). (ED) then shows that \(\text{Lip}(P_t f_n) \leq C/t \); passing to the limit as \(n \to \infty \), we can find a subsequence \(n_k \to \infty \) such that \(\lim_{k} P_t f_{n_k}(x) = P_t f(x) \) for every \(x \in X \setminus N \), with \(m(N) = 0 \). Since \(P_t f_n \) are uniformly Lipschitz functions, also \(P_t f \) is Lipschitz in \(X \setminus N \) so that it admits a Lipschitz representative \(\bar{f}_t \) in \(X \).
On the other hand, $\text{BE}(K, \infty)$ and (ED.a) show that $\text{Lip}(f_t) \leq e^{-Kt}$. Passing to the limit along a suitable sequence $t_n \downarrow 0$ and repeating the previous argument we obtain that f admits a Lipschitz representative.

Let us prove now that \mathcal{E} is upper regular, by checking (3.39) for every f in the space V_1^∞ of (2.37), which is dense in \mathbb{V}. Observe that the estimate (2.34), (3.42) and (ED.a) yield that, for every $t > 0$ and every $g \in L^2 \cap L^\infty(X, m)$, the function $P_t g$ admits a Lipschitz, thus continuous, and bounded representative g_t. Choosing in particular $g := \sqrt{\Gamma(f)}$ we obtain by (2.35)

$$\Gamma(P_t f) \leq e^{-2Kt}g_t^2, \quad P_t f \to f \text{ in } L^2(X, m),$$

$$\lim_{t \downarrow 0} \int_X e^{-2Kt}g_t^2 \, dm = \int_X g^2 \, dm = \mathcal{E}(f).$$

According to the previous Theorem we introduce the natural, and smaller, class of Energy measure spaces $(X, \tau, m, \mathcal{E})$, still with no curvature bound, but well adapted to the Bakry-Émery condition. In such a class, that we call Riemannian Energy measure spaces, the Dirichlet form \mathcal{E} coincides with the Cheeger energy Ch associated to the intrinsic distance $d_\mathcal{E}$ and every function in \mathcal{L} admits a continuous (thus 1-Lipschitz, by the Energy measure space axiomatization) representative.

Definition 3.16 (Riemannian Energy measure spaces). $(X, \tau, m, \mathcal{E})$ is a Riemannian Energy measure space if the following properties hold:

(a) $(X, \tau, m, \mathcal{E})$ is a Energy measure space;

(b) \mathcal{E} is upper regular according to Definition 3.13

(c) every function in \mathcal{L} admits a continuous representative.

The next Theorem presents various equivalent characterizations of Riemannian Energy measure spaces in connection with $\text{BE}(K, \infty)$.

Theorem 3.17. The following conditions are equivalent:

(i) $(X, \tau, m, \mathcal{E})$ is a Riemannian Energy measure space satisfying $\text{BE}(K, \infty)$.

(ii) $(X, \tau, m, \mathcal{E})$ is a Energy measure space satisfying [w-Feller] and $\text{BE}(K, \infty)$.

(iii) $(X, \tau, m, \mathcal{E})$ is a Energy measure space satisfying $\mathcal{L} = \mathcal{L}_C$ and $\text{BE}(K, \infty)$.

(iv) $(X, \tau, m, \mathcal{E})$ is a Energy measure space with \mathcal{E} upper regular, and for every function $f \in L^2(X, m) \cap \text{Lip}_b(X)$ with $|Df| \in L^2(X, m)$

$$P_t f \in \text{Lip}(X), \quad |DP_t f|^2 \leq e^{-2Kt}P_t(\|Df\|^2) \quad m\text{-a.e. in } X.$$
(v) \mathcal{E} is a Dirichlet form in $L^2(X,\mu)$ as in (2.1), d is a distance on X inducing the topology τ and satisfying conditions (MD), (ED.b), and for every $f \in \mathcal{L}_C \cap L^\infty(X)$ and $t > 0$

$$P_t f \in \text{Lip}_b(X), \quad |D\tilde{P}_t|^2 \leq e^{-2Kt}P_t \Gamma(f) \quad \mu\text{-a.e. in } X. \quad (3.44)$$

If one of the above equivalent conditions holds with μ, then (3.15) holds with $C(t) = e^{-Kt}$, the semigroups $(\tilde{P}_t)_{t \geq 0}$ and $(H_t)_{t \geq 0}$ are well defined according to Proposition 2.2. $H_t(\mu) \ll \mu$ for every $t > 0$ and $\mu \in \mathcal{P}(X)$, and the strong Feller property

$$\tilde{P}_t \text{ maps } L^2 \cap L^\infty(X,\mu) \text{ into } \text{Lip}_b(X)$$

holds with

$$|D\tilde{P}_t|^2 = \Gamma(P_t f) \quad \mu\text{-a.e. in } X \text{ for every } t > 0, \quad f \in L^2 \cap L^\infty(X,\mu). \quad (3.45)$$

Eventually, defining $I_{2K}(t)$ as in (2.29), there holds

$$2I_{2K}(t)|D\tilde{P}_t|^2 \leq \tilde{P}_t f^2 \quad \text{for every } t \in (0,\infty), \quad f \in L^\infty(X,\mu), \quad (3.46)$$

and in particular

$$\sqrt{2I_{2K}(t)} \text{Lip}(P_t f) \leq \|f\|_{L^\infty(X,\mu)} \quad \text{for every } t \in (0,\infty). \quad (3.47)$$

Proof. The equivalence (ii) \iff (iii) is just the statement of Theorem 3.15.

(iii) \Rightarrow (ii) and (ii) \Rightarrow (iv). Thanks to (ED.b) we immediately get (w-Feller). (3.44) also yields the density of V_∞ in V and, thanks to (3.32), condition (2.35) for $BE(K,\infty)$.

Since $(P_t)_{t \geq 0}$ is order preserving, (3.32) and (ii) yield (ED.a): if $f \in \mathcal{L}_C$ then (3.44) yields $P_t f$ Lipschitz with constant less than e^{-Kt}. Since along a suitable vanishing sequence $t_n \downarrow 0$ $P_{t_n} f \to f$ m-a.e. as $n \to \infty$, arguing as in the proof of Theorem 3.15 it is easy to check that f is 1-Lipschitz. We can thus apply Theorem 3.17 to get that (X,τ,μ,\mathcal{E}) is an Energy measure space with $d \equiv d_\mathcal{E}$. Since (iii) in particular shows that \mathcal{E} is upper-regular, we proved that (iv) \Rightarrow (iv) as well.

(iv) \Rightarrow (iii). By the density of $V \cap \text{Lip}_b(X)$ in $D(Ch) = V$ stated in Theorem 3.14 and the upper bound (3.32) we get (2.35) which is one of the equivalent characterizations of $BE(K,\infty)$. Moreover, (3.43) clearly yields (w-Feller).

(iii) \Rightarrow (iv) and (3.46). Let us observe that the estimate (2.34) and the property $\mathcal{L} \subset \text{Lip}(X)$ yield that for every $t > 0$ and every function $f \in L^2 \cap L^\infty(X,\mu)$ $P_t f$ admits a Lipschitz representative satisfying (3.17). Moreover, if f is also Lipschitz, (2.33) yields the estimate (3.15) with $C(t) := e^{-Kt}$. We can then apply proposition 3.2 and conclude that when $f \in C_b(X) \cap L^2(X,\mu)$ the Lipschitz representative of $P_t f$ coincides with $\tilde{P}_t f$. Since by definition

$$\tilde{P}_t f(x) = \int_X f \, dH_t \delta_x \quad \text{for all Borel } f \text{ bounded from below}$$

we can use a monotone class argument to prove the identification of \tilde{P}_t with the continuous version of P_t in the general case of bounded, Borel and square integrable functions. Notice
that we use (3.47) to convert monotone equibounded convergence of f_n into pointwise convergence on X of (the continuous representative of) P_tf_n, $t > 0$.

Another immediate application of (3.47) is the absolute continuity of $H_t\mu$ w.r.t. m for all $\mu \in \mathcal{P}(X)$ and $t > 0$. Indeed, if A is a Borel and m-negligible set, then $\bar{P}_t\chi_A$ is identically null (being equal to $P_t\chi_A$, hence continuous, and null m-a.e. in X), hence (3.20) gives $H_t\mu(A) = 0$. As a consequence, we can also compute $\bar{P}_t f(x)$ for m-measurable functions f, provided f is semi-integrable with respect to $H_t\delta_x$. If now $f \in \mathcal{L}$, (2.35) then yields $\Gamma(P_tf) \leq e^{-2Kt}\bar{P}_t \Gamma(f)$ m-a.e. in X.

Let us eventually prove (3.45). Since the inequality \geq is true by assumption, let us see why (3.44) provides the converse one: we start from

$$|D\bar{P}_t f|^2 \leq e^{-2K\varepsilon}\bar{P}_\varepsilon \Gamma(P_{t-\varepsilon}f)$$

for every $\varepsilon \in (0, t)$.

Recalling that $\Gamma(P_{t-\varepsilon}f)$ converges strongly in $L^2(X,m)$ to $\Gamma(P_tf)$ as $\varepsilon \downarrow 0$, we get (3.45).

Recalling Theorem 3.17, Theorem 3.5, the characterization (3.43), and the notation (3.17), we immediately have

Corollary 3.18. Let (X,τ, m, \mathcal{E}) be a Energy measure space satisfying the upper-regularity property (3.39) (in particular a Riemannian one) and (MD.exp). Then BE(K,∞) holds if and only if the semigroup $(P_t)_{t \geq 0}$ satisfies the contraction property

$$W_2((P_tf)m, (P_tg)m) \leq e^{-Kt}W_2(fm, gm)$$

for every probability densities $f, g \in L^1_+(X,m)$.

4 Proof of the equivalence result

In this section we assume that (X,τ, m, \mathcal{E}) is a Riemannian Energy measure space satisfying (MD.exp) (relative to $d_\mathcal{E}$) and the BE(K,∞) condition, as discussed in Section 3.4. In particular all results of the previous sections on existence of the dual semigroup $(H_t)_{t \geq 0}$, its W_2-contractivity and regularizing properties of $(P_t)_{t \geq 0}$ are applicable. Furthermore, by Theorem 3.14 the Dirichlet form setup described in Section 2 and the metric setup described in Section 3.1 are completely equivalent. In particular, we can apply the results of [4].
4.1 Entropy, Fisher information, and moment estimates

Let us first recall that the Fisher information functional $F: L^1_+(X, m) \rightarrow [0, \infty]$ is defined by

$$
F(f) := 4 \mathcal{E}(\sqrt{f}) \quad \sqrt{f} \in \mathcal{V},
$$

set equal to $+\infty$ if $\sqrt{f} \in L^2(X, m) \setminus \mathcal{V}$. Since $f_n \rightarrow f$ in $L^1_+(X, m)$ implies $\sqrt{f_n} \rightarrow \sqrt{f}$ in $L^2(X, m)$, F is L^1-lower semicontinuous.

Proposition 4.1. Let $f \in L^1_+(X, m)$. Then $\sqrt{f} \in \mathcal{V}$ if and only if $f_N := \min\{f, N\} \in \mathcal{V}$ for all N and $\int_{\{f>0\}} \frac{\Gamma(f)}{f} \, dm < \infty$. If this is the case,

$$
F(f) = \int_{\{f>0\}} \frac{\Gamma(f)}{f} \, dm.
$$

In addition F is convex in $L^1_+(X, m)$.

We refer to [4, Lemma 4.10] for the proof, observing only that $\Gamma(f)$ is well defined m-a.e. in the class of functions satisfying $f_N := \min\{f, N\} \in \mathcal{V}$ for all N thanks to the locality property (2.9). By applying the results of [4] we can prove that $(H_t)_{t \geq 0}$ is a continuous semigroup in $\mathcal{P}_2(X)$ and we can calculate the dissipation rate of the entropy functional along it. Some of the results below are very simple in the case $m(X) < \infty$, where the function V in (3.13) reduces to a constant.

Lemma 4.2 (Estimates on moments, Fisher information, Entropy, metric derivative). If $f \in L^2(X, m)$ is a probability density, for $\mu_t = P_t f m$ it holds

$$
|\dot{\mu}_t|^2 \leq F(P_t f) \quad \text{for } L^1\text{-a.e. } t > 0. \quad (4.1)
$$

If $f \in L^1(X, m)$ is a probability density, for every $T > 0$ there exists $C_T > 0$ such that

$$
\int_0^T F(P_s f) \, ds + \int_0^T \int_X V^2 P_s f \, dm \, ds \leq C_T \left(\Ent_m(f m) + \int_X V^2 f \, dm \right), \quad (4.2)
$$

$$
\Ent_m(P_t f) \leq \Ent_m(f m) \quad \forall t \geq 0. \quad (4.3)
$$

Finally, for every $\bar{\mu} \in \mathcal{P}_2(X)$ the map $t \mapsto \mu_t := H_t \bar{\mu}$ is a continuous curve in $\mathcal{P}_2(X)$ with respect to W_2.

Proof. The estimate (4.1) follows by [4, Lemma 6.1], which can be applied here since the Dirichlet form \mathcal{E} coincides with the Cheeger energy (Theorem 3.14). The estimate (4.2) follows [4, Thm. 4.20], thanks to the integrability condition (3.13), when $f \in L^2(X, m)$. In the general case it can be recovered by a truncation argument, using the lower semicontinuity of F. The estimate (4.3) can be obtained by a similar approximation argument from the detailed energy dissipation computation made in [4, Theorem 4.16(b)] (the more general underlying fact is that, independently of curvature assumptions, L^2 gradient flows...
are contained in W_2 gradient flows of the Entropy in the sense (weaker than EVI) of energy dissipation.

Concerning the continuity of the map $t \mapsto H_t \bar{\mu}$ with respect to W_2 for every $\bar{\mu} \in \mathcal{P}_2(X)$, it is a standard consequence of contractivity and existence of a dense set of initial conditions (namely, thanks to (1.1) and (1.2), the set $D(\text{Ent}_m) := \{\nu \in \mathcal{P}_2(X) : \text{Ent}_m(\nu) < \infty\}$) for which continuity holds up to $t = 0$. □

Integration by parts for probability densities

We shall see now that assuming the Bakry-Émery BE(K, ∞) condition, integration by parts formulae for the $\Delta^{(1)}$ operator can be extended to probability densities with finite Fisher information, provided that the set of test functions φ is restricted to the spaces V_∞^1, V_∞^2 defined in (2.37). Recall that V_∞^1, V_∞^2 are dense in V w.r.t. the strong topology and that

$$\Gamma(\varphi_\varepsilon - \varphi) \rightharpoonup 0 \text{ in } L^\infty(X, m) \text{ as } \varepsilon \downarrow 0 \text{ for every } \varphi \in V_\infty^1,$$

where φ_ε are defined as in (2.18), since $\Gamma(\varphi_\varepsilon - \varphi)$ is uniformly bounded and converges to 0 in $L^1(X, m)$ (by the strong convergence of φ_ε to φ in V).

In the sequel we introduce an extension of the bilinear form $\Gamma(f, \varphi)$, denoted $\tilde{\Gamma}(f, \varphi)$, which is particularly appropriate to deal with probability densities f with finite Fisher information and test functions $\varphi \in V_\infty^1$.

Definition 4.3 (Extension of $\Gamma(f, \varphi)$). Let $f = g^2 \in L_+^1(X, m)$ with $F(f) = 4E(g) < \infty$ and $g \geq 0$. For all $\varphi \in V_\infty^1$ we define

$$\tilde{\Gamma}(f, \varphi) := 2g \Gamma(g, \varphi). \quad (4.4)$$

The definition is well posed, consistent with the case when $f \in V$, and it holds

$$\tilde{\Gamma}(f, \varphi) = \lim_{N \to \infty} \Gamma(f_N, \varphi) \text{ in } L^1(X, m). \quad (4.5)$$

Indeed, thanks to (2.7) and to the fact that if $F(f) < \infty$ then $f_N = (g_N)^2 \in V$, where $g_N := g \wedge \sqrt{N}$; it follows that $\Gamma(f_N, \varphi) = 2g \chi_N \Gamma(g, \varphi)$, χ_N being the characteristic function of the set $\{f < N\}$ and

$$\int_X |\tilde{\Gamma}(f, \varphi) - \Gamma(f_N, \varphi)| \, dm = 2\int_X |1 - \chi_N| g \Gamma(g, \varphi) \, dm$$

$$\leq \left(\|\Gamma(\varphi)\|_F \int_{\{f \geq N\}} f \, dm \right)^{1/2}$$

thus proving the limit in (4.5). The same argument provides the estimate

$$\int_X \psi|\tilde{\Gamma}(f, \varphi)| \, dm \leq \sqrt{F(f)} \left(\int_X \psi^2 \Gamma(\varphi) f \, dm \right)^{1/2}, \quad \varphi \in V_\infty^1, \psi \geq 0. \quad (4.6)$$
Theorem 4.4 (Integration by parts of $\Delta^{(1)}_\epsilon$). If $\text{BE}(K, \infty)$ holds, then for every $f \in L^1_+(X, \mu)$ with $F(f) < \infty$ we have

$$\int_X \tilde{\Gamma}(f, \varphi) \, d\mu = - \int_X f \Delta_\epsilon \varphi \, d\mu \quad \text{for every} \quad \varphi \in \mathbb{V}_\infty^2.$$ \hfill (4.7)

In addition, if $f \in D(\Delta^{(1)}_\epsilon)$ it holds

$$\int_X \tilde{\Gamma}(f, \varphi) \, d\mu = - \int_X \varphi \Delta^{(1)}_\epsilon f \, d\mu \quad \forall \varphi \in \mathbb{V}_\infty^1. \hfill (4.8)$$

Proof. Formula (4.7) follows by the limit formula in (4.5) simply integrating by parts before passing to the limit as $N \to \infty$. Assuming now $f \in D(\Delta^{(1)}_\epsilon)$ we have

$$- \int_X \Delta^{(1)}_\epsilon f \, d\mu = \lim_{t \downarrow 0} \frac{1}{t} \int_0^t \int_X (f - P_t f) \varphi \, d\mu \, ds = \lim_{t \downarrow 0} \frac{1}{t} \int_X (f - P_t f) \varphi \, d\mu \leq \frac{1}{t} \int_0^t \int_X \tilde{\Gamma}(f, P_s \varphi) \, d\mu \, ds = \int_X \tilde{\Gamma}(f, \varphi),$$

where the last limit follows by (4.6) and the fact that

$$\Gamma\left(\frac{1}{t} \int_0^t P_s \varphi \, ds - \varphi\right) \leq \frac{1}{t} \int_0^t \Gamma(\varphi - P_s \varphi) \, ds \overset{\Delta}{\to} 0 \quad \text{in} \quad L^\infty(X, \mu) \quad \text{as} \quad t \downarrow 0. \quad \Box$$

4.2 Log-Harnack and LlogL estimates

Lemma 4.5. Let $\omega : [0, \infty) \to \mathbb{R}$ be a function of class C^2, let $f \in \text{Lip}_b(X) \cap \mathbb{V}$ and let $\mu \in \mathcal{P}(X)$. The function

$$G(s) := \int_X \omega(P_{t-s} f) \, dH_s \mu \quad s \in [0, t],$$

belongs to $C^0([0, t]) \cap C^1(0, t)$ and for every $s \in (0, t)$ it holds

$$G'(s) = \int_X \omega''(P_{t-s} f) \Gamma(P_{t-s} f) \, dH_s \mu. \hfill (4.9)$$

Proof. Since $H_s \mu$ are all probability measures is not restrictive to assume $\omega(0) = 0$. Continuity of G is obvious, since $P_{t-s} f$ are equi-Lipschitz, equi-bounded and the semigroup H_t is weakly-continuous. Let us first consider the case $\mu = \zeta m$ with $\zeta \in L^1 \cap L^\infty(X, \mu)$ (in particular $\zeta \in L^2(X, \mu)$). Setting $f_{t-s} := P_{t-s} f$ and $\zeta_s := P_s \zeta$, we observe that a.e. in the open interval $(0, t)$ the following properties hold:

- $s \mapsto \zeta_s$ is differentiable in $L^2(X, m)$;
- $s \mapsto \omega(f_{t-s})$ is differentiable in $L^2(X, m)$, with derivative $-\omega'(f_{t-s}) \Delta_\varepsilon f_{t-s}$.

Therefore the chain rule (2.11) gives

$$G'(s) = -\int_X \omega'(f_{t-s}) \Delta_\varepsilon f_{t-s} \, dm + \int_X \omega'(f_{t-s}) \Delta_\varepsilon \zeta_s \, dm$$

$$= \int_X \left(\Gamma(\omega'(f_{t-s}) \zeta_s, f_{t-s}) - \Gamma(\omega(f_{t-s}), \zeta_s) \right) \, dm$$

$$= \int_X \omega''(f_{t-s}) \Gamma(f_{t-s}) \zeta_s \, dm$$

for \mathcal{L}^1-a.e. $s \in (0, t)$. But, since the right hand side is continuous, the formula holds pointwise in $(0, t)$. The formula for arbitrary measures $\mu = \zeta \cdot m \in \mathcal{P}(X)$ then follows by monotone approximation (i.e. considering $\zeta_n = \min\{\zeta, n\} / c_n$ with $c_n \uparrow 1$ normalizing constants), by using the uniform L^∞ bound on $\omega''(f_{t-s})$ and on $\Gamma(f_{t-s})$; the formula (4.9) for G' still provides a continuous function since $H_s \mu = \zeta_s \mu$ and $\zeta_s = P_t \zeta$ is strongly continuous in $L^1(X, m)$. Finally, if $\mu \in \mathcal{P}(X)$, for every $\varepsilon > 0$ and $s \in (\varepsilon, t - \varepsilon)$, setting $\mu_\varepsilon = H_s \mu$ we have

$$G(s) = \tilde{G}_\varepsilon (s - \varepsilon), \quad \text{where} \quad \tilde{G}_\varepsilon (s) := \int_X \omega(P_{(t-\varepsilon)-s} f) \, dH_s \mu_\varepsilon.$$

Since \tilde{G}_ε is a C^1 function in $(\varepsilon, t - \varepsilon)$ by the previous considerations and $\varepsilon > 0$ is arbitrary, we conclude that $G \in C^1(0, t)$ and for every $s \in (\varepsilon, t - \varepsilon)$ its derivative coincides with

$$\tilde{G}_\varepsilon'(s - \varepsilon) = \int_X \omega''(P_{(t-\varepsilon)-(s-\varepsilon)} f) \Gamma(P_{(t-\varepsilon)-(s-\varepsilon)} f) \, dH_{s-\varepsilon} \mu_\varepsilon$$

$$= \int_X \omega''(P_{t-s} f) \Gamma(P_{t-s} f) \, dH_{s} \mu. \quad \Box$$

In order to prove the $L\log L$ regularization we use the next lemma, which follows by a careful adaptation to our more abstract context of a result by Wang [57, Theorem 1.1(6)].

Lemma 4.6 (Log-Harnack inequality). For every nonnegative $f \in L^1(X, m) + L^\infty(X, m)$, $t > 0$, $\varepsilon \in [0, 1]$, and $x, y \in X$ we have $\log(1 + f) \in L^1(X, H_t \delta_y)$ with

$$\tilde{P}_t(\log(f + \varepsilon))(y) \leq \log(\tilde{P}_t f(x) + \varepsilon) + \frac{d^2(x, y)}{4I_{2K}(t)}. \quad (4.10)$$

Proof. In the following we set $\omega_r(r) := \log(r + \varepsilon)$, for $r \geq 0$ and $\varepsilon \in (0, 1]$. Let us first assume in addition that $f \in \text{Lip}_0(X) \cap L^1(X, m) \cap \mathcal{V}$, let $\gamma : [0, 1] \to X$ be a Lipschitz curve connecting x to y in X, and, recalling the definition (2.29) of I_K, let

$$\tilde{\gamma}_r = \gamma_{\theta(r)}, \quad \text{with} \quad \theta(r) = \frac{I_{2K}(r)}{I_{2K}(t)}, \quad r \in [0, t].$$
We set \(f_{t-s} := P_{s-t}f \) and, for \(r \in [0, t] \) and \(s \in (0, t) \), we consider the functions

\[
G(r, s) := \int_X \omega_\varepsilon(f_{t-s}) \, dH_s \delta_{\tilde{\gamma}_r} = F_s(\tilde{\gamma}_r) \quad \text{with} \quad F_s(x) := \tilde{P}_s(\omega_\varepsilon(f_{t-s}))(x).
\]

Notice that Lemma 4.4 with \(\mu = \delta_{\tilde{\gamma}_r} \) ensures that for every \(r \in [0, t] \) the function \(s \mapsto G(r, s) \) is Lipschitz in \([0, t]\), with

\[
\frac{\partial}{\partial s} G(r, s) = \int_X \omega_\varepsilon''(f_{t-s}) \Gamma(f_{t-s}) \, dH_s \delta_{\tilde{\gamma}_r} \quad \text{for every} \ s \in (0, t).
\]

This gives immediately that \(G(r, \cdot) \) are uniformly Lipschitz in \([0, t]\) for \(r \in [0, t] \). On the other hand, since \(\tilde{\gamma} \) is Lipschitz, the map \(r \mapsto P_s \tilde{\gamma}_r \) is Lipschitz in \([0, t]\) with respect to the \(L^1 \)-Wasserstein distance \(W_1 \) uniformly w.r.t \(s \in [0, t] \). Hence, taking also the fact that \(\omega(f_{t-s}) \) are equi-Lipschitz into account, it follows that also the maps \(G(\cdot, s) \) are Lipschitz in \([0, t]\), with Lipschitz constant uniform w.r.t. \(s \in [0, t] \). These properties imply that the map \(s \mapsto G(s, s) \) is Lipschitz in \([0, t]\).

Since the chain rule and (3.44) (which can be applied since we can subtract the constant \(\omega_\varepsilon(0) \) from \(F_s \) without affecting the calculation of its slope) give

\[
|DF_s|^2 \leq e^{-2Ks} P_s \left((\omega_\varepsilon(f_{t-s}))^2 \Gamma(f_{t-s}) \right),
\]

we can use \(\theta'(r) = e^{2Kr}/I_{2K}(t) \) to get the pointwise estimate

\[
e^K(s-r) \lim_{h \downarrow 0} \frac{|G(r + h, s) - G(r, s)|}{h} \leq \sqrt{\theta''(r)} \frac{\hat{\gamma}(r)}{\sqrt{I_{2K}(t)}} e^{Ks} |DF_s(\tilde{\gamma}_r)|
\]

\[
\leq \theta'(r) \frac{\hat{\gamma}(r)}{4I_{2K}(t)} + \int_X (\omega_\varepsilon''(f_{t-s}))^2 \Gamma(f_{t-s}) \, dP_s \delta_{\tilde{\gamma}_r}.
\]

Applying the calculus lemma [3, Lemma 4.3.4] and using the identity \(\omega''_\varepsilon = - (\omega'_\varepsilon)^2 \), the previous inequality with \(r = s \) in combination with (4.11) gives

\[
\frac{d}{ds} G(s, s) \leq \lim_{h \downarrow 0} \frac{G(s, s - h) - G(s, s)}{h} + \lim_{h \downarrow 0} \frac{|G(s + h, s) - G(s, s)|}{h}
\]

\[
\leq \theta'(s) \frac{\hat{\gamma}(s)}{4I_{2K}(t)} \quad \text{for} \ \mathcal{L}^1 \text{-a.e.} \ s \in (0, t).
\]

An integration in \((0, t)\) and a minimization w.r.t. \(\gamma \) yield

\[
\int_X \omega_\varepsilon(f) \, dH_t \delta_y \leq \omega_\varepsilon(f_t)(x) + \frac{d^2(x, y)}{4I_{2K}(t)}.
\]

If \(f \in L^\infty(X, m) \) we consider a uniformly bounded sequence \((f_n)\) contained in \(\text{Lip}_b(X, m) \cap L^1(X, m) \cap V \) converging to \(f \) pointwise \(m \)-a.e. Since \(\omega_\varepsilon \geq \log(\varepsilon) \) and \(\tilde{P}_t f_n \) converges to \(\tilde{P}_t f \) pointwise, Fatou’s Lemma yields (4.12) also in this case. Finally, a truncation argument
extends the validity of (4.12) and (4.10) to arbitrary nonnegative $f \in L^1(X, m) + L^\infty(X, m)$. Passing to the limit as $\varepsilon \downarrow 0$ we get (4.10) also in the case $\varepsilon = 0$.

Finally, notice that (4.12) for $\varepsilon = 1$ and the fact that $\tilde{P}_t f(x)$ is finite for m-a.e. x yield the integrability of $\log(1 + f)$ w.r.t. $H_t \delta_y$. □

In the sequel we set

$$H_t \delta_y = u_t[y] m,$$

so that $\tilde{P}_t f(y) = \int_X f u_t[y] \, dm$

for every m-measurable and m-semi-integrable function f.

Corollary 4.7. For every $t > 0$ and $y \in X$ we have

$$\int_X u_t[y] \log(u_t[y]) \, dm \leq \log(u_{2t}[y](x)) + \frac{d^2(x, y)}{4I_2K(t)} \quad \text{for } m\text{-a.e. } x \in X. \quad (4.13)$$

In particular, when m is a probability measure,

$$u_{2t}[y](x) \geq \exp \left(- \frac{d^2(x, y)}{4I_2K(t)} \right) \quad \text{for } m\text{-a.e. } x \in X.$$

Proof. Simply take $f = u_{t}[y]$ in (4.10) and notice that $\tilde{P}_t f(x) = u_{2t}[y](x)$ for m-a.e. $x \in X$ by the semigroup property. □

In the next crucial result, we will show that (4.13) yields $\text{Ent}_m(H_t \mu) < \infty$ for every measure $\mu \in \mathcal{P}_2(X)$.

Theorem 4.8 (L logL regularization). Let $\mu \in \mathcal{P}_2(X)$ and let $f_t \in L^1(X, m)$, $t > 0$, be the densities of $H_t \mu \in \mathcal{P}_2(X)$. Then

$$\int_X f_t \log f_t \, dm \leq \frac{1}{2I_2K(t)} \left(r^2 + \int_X d^2(x, x_0) \, d\mu(x) \right) - \log \left(m(B_r(x_0)) \right) \quad (4.14)$$

for every $x_0 \in X$ and $r, t > 0$.

Proof. By approximation, it suffices to consider the case when $\mu = f m$ with $f \in L^2(X, m)$. Let us fix $x_0 \in X$ and $r > 0$, set $z = m(B_r(x_0))$ and $\nu = z^{-1} m L B_r(x_0)$. Notice first that we have the pointwise inequality

$$\tilde{P}_t f(z) \log(\tilde{P}_t f(z)) = \left(\int_X u_t[z] \, d\mu \right) \log \left(\int_X u_t[z] \, d\mu \right) \leq \int_X u_t[z](y) \log \left(u_t[z](y) \right) \, d\mu(y).$$

46
Since $\tilde{P}tf = f_t$ m.a.e. in X, integrating with respect to m and using the symmetry property of u_t, (4.13), and Jensen's inequality, we get

$$\int_X f_t \log f_t \, dm \leq \int_X \left(\int_X u_t[y](z) \log u_t[y](z) \, dm(z) \right) \, d\mu(y)$$

$$= \int_{X \times X} \left(\int_X u_t[y](z) \log u_t[y](z) \, dm(z) \right) \, d\nu(x) \, d\mu(y)$$

$$\leq \int_{X \times X} \left(\log (u_{2t}[y](x)) + \frac{d^2(x,y)}{4I_{2K}(t)} \right) \, d\nu(x) \, d\mu(y)$$

$$\leq \log \frac{1}{z} + \frac{1}{2I_{2K}(t)} \left(r^2 + \int_X d^2(x,x_0) \, d\mu(x) \right),$$

where we used the inequality

$$\int_X u_{2t}[y](x) \, d\nu(x) = \frac{1}{z} \int_{B_r(x_0)} u_{2t}[y](x) \, dm(x) \leq \frac{1}{z} \text{ for every } y \in X. \quad \square$$

We conclude with a further regularization and an integration by parts formula for $\Delta^{(1)}_\varepsilon$ in a special case. Notice that thanks to the regularizing effect of H_t we can extend the mollification h^ε of the semigroup in (2.18) to measures $\mu \in \mathcal{P}_2(X)$, i.e. we set

$$h^\varepsilon \mu := \frac{1}{\varepsilon} \int_0^\infty f_r \kappa(r/\varepsilon) \, dr, \quad f_r \mu = H_r \mu \quad \text{for } r > 0, \quad (4.15)$$

with κ as in (2.17), obtaining a map $h^\varepsilon : \mathcal{P}_2(X) \to D(\Delta^{(1)}_\varepsilon)$ still satisfying (2.19) (via an elementary approximation based on the characterization (2.15) of $D(\Delta^{(1)}_\varepsilon)$).

Lemma 4.9. Let $\tilde{\mu} \in \mathcal{P}_2(X)$ and let $f = h^\varepsilon \tilde{\mu}$ as in (4.15). Then for every $\varepsilon, T > 0$ there exists a constant $C(\varepsilon, T)$ such that

$$F(P_{t}f) \leq C(\varepsilon, T) \left(1 + \int_X V^2 \, d\mu \right) \quad (4.16)$$

and, writing $\mu_t = P_{t}f \mu$,

$$|\dot{\mu}_t|^2 \leq C(\varepsilon, T) \left(1 + \int_X V^2 \, d\mu \right) \text{ for } L^1\text{-a.e. } t \in [0,T]. \quad (4.17)$$

Moreover, for every bounded and nondecreasing Lipschitz function $\omega : [0, \infty) \to \mathbb{R}$ such that $\sup_r r \omega'(r) < \infty$, we have

$$\int_X \omega(f) \Delta^{(1)}_\varepsilon f \, dm + 4 \int_X f \omega'(f) \Gamma(\sqrt{f}) \, dm \leq 0. \quad (4.18)$$
Furthermore, we can build μ.

Proposition 4.11 (Approximation by regular curves). There exist regular curves ρ if:

1. $\rho \in AC^2([0, 1]; (\mathcal{P}_2(X), W_2))$;
2. $\text{Ent}_m(\rho) < \infty$;
3. $f \in C^1([0, 1]; L^1(X, m))$;
4. There exists $\eta > 0$ such that for all $s \in [0, 1]$ the function f_s is representable in the form $\exp^\eta f_s$.

In particular, if $\rho_s = f_s m$ is a regular curve, for every $T > 0$ there exist positive constants M_T, E_T, F_T such that

$$\int_X V^2 \, dH_t \rho_s \leq M_T, \quad \text{Ent}_m(P_t \rho_s) \leq E_T, \quad F(P_t f_s) \leq F_T \quad s \in [0, 1], \ t \in [0, T].$$

Proposition 4.11 (Approximation by regular curves). For all $\rho \in AC^2([0, 1]; (\mathcal{P}_2(X), W_2))$ there exist regular curves ρ^n such that $\rho^n \to \rho$ in $\mathcal{P}_2(X)$ for all $s \in [0, 1]$ and

$$\limsup_n \int_0^1 |\dot{\rho}_n|^2 \, ds \leq \int_0^1 |\dot{\rho}_s|^2 \, ds. \quad (4.20)$$

Furthermore, we can build ρ^n in such a way that $\text{Ent}_m(\rho^n_0) \leq \text{Ent}_m(\rho_0)$.

Definition 4.10 (Regular curve). Let $\rho_s = f_s m \in \mathcal{P}(X), \ s \in [0, 1]$. We say that ρ is regular if:

(a) $\rho \in AC^2([0, 1]; (\mathcal{P}_2(X), W_2))$;

(b) $\text{Ent}_m(\rho) < \infty$;

(c) $f \in C^1([0, 1]; L^1(X, m))$;

(d) There exists $\eta > 0$ such that for all $s \in [0, 1]$ the function f_s is representable in the form $\exp^\eta f_s$ for some $f_s \in L^1(X, m)$; in addition $\Delta_{\varepsilon}^{(1)} f \in C([0, 1]; L^1(X, m))$ and

$$\sup \{F(P_t f_s) \mid s \in [0, 1], \ t \in [0, T]\} < \infty \quad \forall T > 0. \quad (4.19)$$

Motivated by the regularity assumptions needed in the next section, we give the following definition.
Proof. First we extend \(\rho \) by continuity and with constant values in \((-\infty, 0) \cup (1, \infty) \). Then, we define \(\rho^{n,1}_s := H_{\tau_{s'}} \rho_{s'} \), with \(\tau_{s'}^{-1} \in [n, 2n] \). By the continuity and contractivity properties of \(H_t \), we see that \(\rho^{n,1}_s \) fulfills (a) and (b) of the definition of regularity, the convergence requirement of the Lemma and (4.20). Indeed, obviously condition (a) is fulfilled, while we gain \(\rho^{n,1}_s \ll \mathfrak{m} \) and \(\sup_s \text{Ent}_m(\rho^{n,1}_s) < \infty \) by Theorem 4.8. In addition, (4.13) shows that \(\text{Ent}_m(\rho^{n,1}_0) \leq \text{Ent}_m(\rho_0) \).

In order to achieve condition (c) we do a second regularization, by averaging w.r.t. the \(s \) variable: precisely, denoting by \(f^{n,1}_s \) the densities of \(\rho^{n,1}_s \), we set \(\rho^{n,2}_s := f^{n,2}_s \mathfrak{m} \), where

\[
f^{n,2}_s := \int_\mathbb{R} f^{n,1}_{s-s'} \chi_n(s') \, ds'
\]

and \(\chi_n \in C^\infty(\mathbb{R}) \) are standard convolution kernels with support in \((0, \infty) \) convergent to the identity. By the convexity properties of squared Wasserstein distance and entropy we see that the properties (a), (b) are retained and that the action in (4.20) does not increase. In addition, we clearly gain property (c) and, since \(\rho^{n,1} \) is constant in \((-\infty, 0] \), this regularization does not increase the entropy at time 0.

In the last step we mollify using the heat semigroup, setting \(\rho^n_s := f^n_s \mathfrak{m} \), where \(f^n_s = \mathfrak{h}^n f^{n,2}_s \) and \(\varepsilon_n \downarrow 0 \). By the same reasons used for \(\rho^{n,2}_s \), property (a) is retained by \(\rho^n_s \) and the action in (4.20), as well as the Entropy at any time \(s \), do not increase (because the support of the kernel \(\kappa \) is contained in \((0, \infty) \)). In addition, (c) is retained as well since \(\mathfrak{h}^n \) is a continuous linear map from \(L^1(X, \mathfrak{m}) \) to \(L^1(X, \mathfrak{m}) \). With this mollification we gain property (d) from (2.19) and from (4.16), which provides the sup bound (4.19) on Fisher information. \(\square \)

4.3 Action estimates

This section contains the core of the arguments leading to the equivalence Theorem 4.17. We refer to [22] for the underlying geometric ideas in a smooth Riemannian context and the role of the Bochner identity. Here we had to circumvent many technical difficulties related to regularity issues, to the lack of ultracontractivity properties of the semigroup \((\mathcal{P}_t)_{t \geq 0} \) (i.e. regularization from \(L^1 \) to \(L^\infty \)), and to the weak formulation of the Bakry-Émery condition.

Since we shall often consider regular curves \(\rho \in AC^2([0, 1]; (\mathcal{P}_2(X), W_2)) \) of measures representable in the form \(\rho = f \mathfrak{m} \) with \(f \in C^1([0, 1]; L^1(X, \mathfrak{m})) \), we shall denote by \(\tilde{f} \in C([0, 1]; L^1(X, \mathfrak{m})) \) the functional derivative in \(L^1(X, \mathfrak{m}) \), retaining the notation \(|\dot{\rho}_t| \) for the metric derivative w.r.t. \(W_2 \).

We begin with a simple estimate of the oscillation of \(s \mapsto \int_X \varphi \, d\rho_s \) along absolutely continuous or \(C^1 \) curves.

Lemma 4.12. For all \(\rho \in AC^2([0, 1]; (\mathcal{P}_2(X), W_2)) \) it holds

\[
\left| \int_X \varphi \, d\rho_1 - \int_X \varphi \, d\rho_0 \right| \leq \int_0^1 |\dot{\rho}_s| \left(\int_X |D\varphi|^2 \, d\rho_s \right)^{1/2} \, ds \quad \text{for every } \varphi \in \mathcal{V}_1. \tag{4.21}
\]
If moreover \(\rho = f m \) with \(f \in C^1([0, 1]; L^1(X, m)) \), for all \(\varphi \in \mathcal{V}^1_\infty \) it holds

\[
\left| \int_X \hat{f}_s \varphi \, dm \right| \leq |\hat{\rho}_s| \left(\int_X |D\varphi|^2 \, d\rho_s \right)^{1/2} \text{ for } \mathcal{L}^1\text{-a.e. } s \in (0, 1).
\]

(4.22)

Proof. It is easy to check that (4.21) can be obtained using the representation of \(\rho_s \) given by Lisini's theorem \([39]\) (see \([4, \text{Lemma 5.15}]\)).

Choosing now a Lebesgue point \(\bar{s} \) both for \(s \mapsto |\hat{\rho}_s|^2 \) and \(\int_X |D\varphi|^2 \, d\rho_s \), for all \(a > 0 \) we can pass to the limit as \(h \downarrow 0 \) in the inequality

\[
\frac{1}{h} \int_X \varphi \, d\rho_{s+h} - \int_X \varphi \, d\rho_s \leq \frac{1}{2h} \int_{\bar{s}}^{\bar{s}+h} \left(a|\hat{\rho}_s|^2 + \frac{1}{a} \int_X |D\varphi|^2 \, d\rho_s \right) \, ds
\]

and then minimize w.r.t. \(a \), obtaining (4.22). \(\square \)

Lemma 4.13. Let \(\rho = f m \in AC^2([0, 1]; (\mathcal{P}_2(X), W_2)) \) be a regular curve according to Definition \([4,10]\) and let \(\vartheta : [0, 1] \rightarrow [0, 1] \) be a \(C^1 \) function with \(\vartheta(i) = \vartheta^i = i \), \(i = 0, 1 \). Define

\[
\rho_{s,t} := \mathcal{H}_{st} \rho_{\vartheta(s)} = f_{s,t} m, \quad s \in [0, t], \ t \geq 0.
\]

Then, for every \(t \geq 0 \) the curve \(s \mapsto \rho_{s,t} \) belongs to \(AC^2([0, 1]; (\mathcal{P}_2(X), W_2)) \) and \(\mathcal{F}(f_{s,t}) \) is uniformly bounded. Moreover, for any \(\varphi \in \text{Lip}_b(X) \) with bounded support, setting \(\varphi_s := Q_s \varphi \), the map \(s \mapsto \int_X \varphi_s \, d\rho_{s,t} \) is absolutely continuous in \([0, 1]\) and

\[
\frac{d}{ds} \int_X \varphi_s \, d\rho_{s,t} = \dot{\vartheta}(s)\int_X \hat{f}_{\vartheta(s)} \mathcal{P}_{st} \varphi_s \, dm - \frac{1}{2} \int_X |D\varphi_s|^2 \, d\rho_{s,t} - t \int_X \tilde{\Gamma}(f_{s,t}, \varphi_s) \, dm \quad (4.23)
\]

for \(\mathcal{L}^1\text{-a.e. } s \in (0, 1) \).

Proof. We only consider the case \(t > 0 \) and we set \(\tilde{\rho}_s := \rho_{\vartheta(s)} = \hat{f}_s m \). Notice that \(f_{s,t} = \mathcal{P}_{st} \hat{f}_s \) and \(\tilde{\rho}_s \) satisfies the same assumptions than \(\rho_s \). Since \(\mathcal{H}_t \) is a Wasserstein \(K \)-contraction

\[
W_2(\rho_{s_0,t}, \rho_{s_1,t}) \leq e^{-Ks_0t}W_2(\tilde{\rho}_{s_0}, H_{(s_1-s_0)t}\tilde{\rho}_{s_1})
\]

\[
\leq e^{-Ks_0t} \left(W_2(\tilde{\rho}_{s_0}, \tilde{\rho}_{s_1}) + W_2(\tilde{\rho}_{s_1}, H_{(s_1-s_0)t}\tilde{\rho}_{s_1}) \right),
\]

and (4.17) and the regularity of \(\rho \) give

\[
W_2(\tilde{\rho}_{s_1}, H_{(s_1-s_0)t}\tilde{\rho}_{s_1}) \leq C(\rho, T)(s_1 - s_0) t \quad \text{whenever } (s_1 - s_0)t \leq T.
\]

We conclude that \(s \mapsto \rho_{s,t} \) belongs to \(AC^2([0, 1]; (\mathcal{P}_2(X), W_2)) \). Moreover, using the splitting

\[
\int_X \varphi_{s_1} \, d\rho_{s_1,t} - \int_X \varphi_{s_0} \, d\rho_{s_0,t}
\]

\[
= \int_X \varphi_{s_1} \, d\rho_{s_1,t} - \int_X \varphi_{s_0} \, d\rho_{s_1,t} + \int_X \varphi_{s_0} \, d\rho_{s_1,t} - \int_X \varphi_{s_0} \, d\rho_{s_0,t}
\]

\[
\leq \||\varphi_{s_1} - \varphi_{s_0}||_\infty + \text{Lip}(\varphi_{s_0})W_2(\tilde{\rho}_{s_1}, \tilde{\rho}_{s_0})
\]

50
we immediately see that also \(s \mapsto \int_X \varphi_s \, d\rho_{s,t} \) is absolutely continuous. In order to compute its derivative we write
\[
\int \varphi_{s+h} \, d\rho_{s+h,t} - \int_X \varphi_s \, d\rho_{s,t} = \int \varphi_{s+h} \, d\rho_{s+h,t} - \int_X \varphi_s \, d\rho_{s+h,t} \\
+ \int P_{(s+h)t} \varphi_s \, d(\tilde{\rho}_{s+h} - \tilde{\rho}_s) \\
+ \int (P_{ht} \varphi_s - \varphi_s) \, dH_{st} \tilde{\rho}_s.
\]

Now, the Hopf-Lax formula \([3.9]\) and the strong convergence of \(f_{s+h,t} \) to \(f_{s,t} \) in \(L^1(X, \mathfrak{m}) \) yield
\[
\lim_{h \downarrow 0} \frac{1}{h} \left(\int \varphi_{s+h} \, d\rho_{s+h,t} - \int_X \varphi_s \, d\rho_{s+h,t} \right) = -\frac{1}{2} \int_X |D\varphi_s|^2 \, d\rho_{s,t}.
\]
The differentiability of \(\rho_s \) in \(L^1(X, \mathfrak{m}) \) yields
\[
h^{-1} \int P_{(s+h)t} \varphi \, d(\tilde{\rho}_{s+h} - \tilde{\rho}_s) \to \dot{\vartheta}(s) \int_X P_{st} \varphi \, d\vartheta(s) \, d\mathfrak{m}.
\]
Finally, the next lemma yields
\[
h^{-1} \int (P_{ht} \varphi_s - \varphi_s) \, dP_{st} \rho_s \to -t \int_X \tilde{\Gamma}(f_{s,t}, \varphi_s) \, d\mathfrak{m}.
\]

Lemma 4.14. For all \(\varphi \in \mathbb{V}_1 \) and all \(\rho = f \mathfrak{m} \in \mathscr{P}(X) \) with \(F(f) < \infty \) it holds
\[
\lim_{h \downarrow 0} \int_X \frac{P_h \varphi - \varphi}{h} \, f \, d\mathfrak{m} = -\int_X \tilde{\Gamma}(f, \varphi) \, d\mathfrak{m}.
\]

Proof. We argue as in \([3\text{ Lemma 4.2}]\), proving first that
\[
\int_X \frac{P_h \varphi - \varphi}{h} \, f \, d\mathfrak{m} = -\int_0^1 \int_X \tilde{\Gamma}(f, P_{rh} \varphi) \, d\mathfrak{m} \, dr. \tag{4.24}
\]
Notice first that, possibly approximating \(\varphi \) with the functions \(\varphi^\varepsilon := \mathfrak{h}^\varepsilon \varphi \) whose laplacian is in \(L^\infty(X, \mathfrak{m}) \), in the proof of \((4.24)\) we can assume with no loss of generality that \(\Delta \varepsilon \varphi \in L^\infty(X, \mathfrak{m}) \). Indeed, \((4.6)\) and the strong convergence in \(\Gamma \) norm of \(P_{rh} \varphi^\varepsilon \) to \(P_{rh} \varphi \) ensure the dominated convergence of the integrals in the right hand sides, while the convergence of the left hand sides is obvious.

Assuming \(\Delta \varepsilon \varphi \in L^\infty(X, \mathfrak{m}) \), since
\[
\int_X \frac{P_h \varphi - \varphi}{h} \, g \, d\mathfrak{m} = \int_0^1 \int_X g \Delta \varepsilon P_{rh} \varphi \, d\mathfrak{m} \, dr
\]
for all \(g \in L^2(X, \mathfrak{m}) \) we can consider the truncated functions \(g_N = \min\{g, N\} \) and pass to the limit as \(N \to \infty \) to get that \(f \) satisfies the same identity. Since \(\Delta \varepsilon P_{rh} \varphi = P_{rh} \Delta \varepsilon \varphi \in L^\infty(X, \mathfrak{m}) \) we can use \((4.7)\) to obtain \((4.24)\).

Having established \((4.24)\), the statement follows using once more \((4.6)\) and the strong convergence of \(P_{rh} \varphi \) to \(\varphi \) in \(\mathbb{V} \).
\[\square \]
Under the same assumptions of Lemma 4.13, the same computation leading to (4.23) (actually with a simplification, due to the fact that \(\varphi \) is independent on \(s \)) and (4.8) give

\[
\frac{d}{ds} \int_{X} \varphi \, d\rho_{s,t} = \int_{X} (\dot{\varphi}(s)\rho_{st}(\varphi) + t\rho_{st}\Delta^{(1)}_{\epsilon}f_{\varphi}(s)) \varphi \, dm.
\]

for \(\mathcal{L}^1 \)-a.e. \(s \in (0,1) \) and all \(\varphi \in \mathbb{V}^1_\infty \). Here we used the fact that \(\Delta^{(1)}_{\epsilon}(P_{s}g) = P_{s}\Delta^{(1)}_{\epsilon}g \) whenever \(g \in D(\Delta^{(1)}_{\epsilon}) \). Since \(\Delta^{(1)}_{\epsilon}f \in C([0,1]; L^1(X, m)) \), the right hand side is a continuous function of \(s \), hence

\[
\frac{d}{ds} \int_{X} \varphi \, d\rho_{s,t} = \int_{X} (\dot{\varphi}(s)\rho_{st}(\varphi) + t\rho_{st}\Delta^{(1)}_{\epsilon}f_{\varphi}(s)) \varphi \, dm \quad \text{for every } s \in (0,1). \tag{4.25}
\]

For \(\epsilon > 0 \), let us now consider the regularized entropy functionals

\[
E_{\epsilon}(\rho) := \int_{X} e_{\epsilon}(f) \, dm, \quad \text{where } e_{\epsilon}'(r) := \log(\epsilon + r^2) \in \text{Lip}([0,\infty)), \quad e_{\epsilon}(0) = 0.
\]

Since we will mainly consider functions \(f \) with finite Fisher information, we will also introduce the function

\[
p_{\epsilon}(r) := e_{\epsilon}'(r^2) - \log \epsilon = \log(\epsilon + r^2 \wedge \epsilon^{-1}) - \log \epsilon.
\]

Since \(p_{\epsilon} \) is also Lipschitz and \(p_{\epsilon}(0) = 0 \), we have

\[
f \in L^1_{+}(X, m), \quad F(f) < \infty \quad \Rightarrow \quad e_{\epsilon}'(f) - \log \epsilon = p_{\epsilon}(\sqrt{f}) \in \mathbb{V}.
\]

Lemma 4.15 (Derivative of \(E_{\epsilon} \)). With the same notation of Lemma 4.13, if \(\rho \) is regular and \(t > 0 \) we have for \(g_{s,t}^{\epsilon} := p_{\epsilon}(\sqrt{f_{s,t}}) \)

\[
E_{\epsilon}(\rho_{1,t}) - E_{\epsilon}(\rho_{0,t}) \leq \int_{0}^{1} \left(-t \int_{X} f_{s,t} \Gamma(g_{s,t}^{\epsilon}) \, dm + \dot{\varphi} \int_{X} \rho_{st}(g_{s,t}^{\epsilon}) \dot{f}_{\varphi}(s) \, dm \right) ds. \tag{4.26}
\]

Proof. The weak differentiability of \(s \mapsto f_{s,t} \) (namely, in duality with functions in \(\mathbb{V}^1_\infty \)) given in (4.23) can, thanks to the continuity assumption made on \(\Delta^{(1)}_{\epsilon}f_{s} \), turned into strong \(L^1(X, m) \) differentiability, so that

\[
\frac{d}{ds} f_{s,t} = \dot{\varphi}_{s} \rho_{st}(\varphi) + t \rho_{st}(\Delta^{(1)}_{\epsilon}f_{\varphi}(s)) \quad \text{in } L^1(X, m), \quad \text{for all } s \in (0,1). \tag{4.27}
\]

Since \(e_{\epsilon} \) is of class \(C^{1,1} \), it is easy to check that this implies the absolute continuity of \(s \mapsto E_{\epsilon}(\rho_{s,t}) \). In addition, the mean value theorem gives

\[
\frac{d}{ds} E_{\epsilon}(\rho_{s,t}) = \lim_{h \to 0} \int_{X} e_{\epsilon}'(f_{s,t}) \frac{f_{s+h,t} - f_{s,t}}{h} \, dm \quad \forall s \in (0,1).
\]

52
Notice also that Lemma 4.9 with \(f = f_{s,t} \) and \(\omega = e'_\varepsilon - \log \varepsilon \) gives (since \(e'_\varepsilon(f_{s,t}) - \log \varepsilon = p_\varepsilon(\sqrt{f_{s,t}}) \) is nonnegative and integrable and \(P_{st}(\Delta^{(1)}_\varepsilon f_{\theta(s)}) = \Delta^{(1)}_\varepsilon (P_{st}f_{\theta(s)}) \) has null mean)

\[
\int_X P_{st}(\Delta^{(1)}_\varepsilon f_{\theta(s)}) e'_\varepsilon(f_{s,t}) \, dm \leq -4 \int_X f_{s,t} e''_\varepsilon(f_{s,t}) \Gamma(\sqrt{f_{s,t}}) \, dm. \tag{4.28}
\]

Now we use (4.27), (4.28) and conclude

\[
\frac{d}{ds} E_e(\rho_{s,t}) \leq -t \int_X 4 f_{s,t} e''_\varepsilon(f_{s,t}) \Gamma(\sqrt{f_{s,t}}) \, dm + \dot{\varepsilon}_s \int_X (e'_\varepsilon(f_{s,t}) - \log \varepsilon) P_{s,t} \dot{f}_{\theta(s)} \, dm.
\]

On the other hand, since \(4r e''_\varepsilon(r) \geq 4r^2 (e''_\varepsilon(r))^2 = r (p'_\varepsilon(\sqrt{r}))^2 \), we get

\[
-4 f_{s,t} e''_\varepsilon(f_{s,t}) \Gamma(\sqrt{f_{s,t}}) \leq -f_{s,t} (p'_\varepsilon(\sqrt{f_{s,t}}))^2 \Gamma(\sqrt{f_{s,t}}) = -f_{s,t} \Gamma(p_\varepsilon(\sqrt{f_{s,t}}))
\]

and an integration with respect to \(s \) and the definition of \(g_{s,t}^\varepsilon \) yield (4.28). \(\square \)

Theorem 4.16 (Action and entropy estimate on regular curves). Let \(\rho_s = f_{s} \mu \) be a regular curve. Then, setting \(\rho_{1,t} = H_t \rho_1 \), it holds

\[
W_2^2(\rho_0, \rho_{1,t}) + 2t \text{Ent}_m(\rho_{1,t}) \leq R_K^2(t) \int_0^1 \rho_s^2 \, ds + 2t \text{Ent}_m(\rho_0). \tag{4.29}
\]

where

\[
R_K(t) := \frac{t}{1_K(t)} = \frac{Kt}{e^{Kt} - 1} \quad \text{if } K \neq 0, \quad R_0(t) \equiv 1.
\]

Proof. Set \(\rho_{s,t}, f_{s,t} \) as in Lemma 4.13, \(p_\varepsilon(r) = e'_\varepsilon(r^2) - \log \varepsilon \), \(g_{s,t}^\varepsilon := p_\varepsilon(\sqrt{f_{s,t}}) \) as in Lemma 4.15, \(q_\varepsilon(r) := \sqrt{2 - \sqrt{r} p'_\varepsilon(\sqrt{r})} \), and \(\varphi_s := Q_s \varphi \) for a Lipschitz function \(\varphi \) with bounded support.

Notice that by (4.4)

\[
\dot{\Gamma}(f_{s,t}, \varphi_s) = 2 \sqrt{f_{s,t}} \Gamma(\sqrt{f_{s,t}}, \varphi_s) = f_{s,t} \Gamma(g_{s,t}^\varepsilon, \varphi_s) + q_\varepsilon(f_{s,t}) \Gamma(\sqrt{f_{s,t}}, \varphi_s).
\]

Applying (4.23), (4.26) in the weaker form

\[
tE_\varepsilon(\rho_{1,t}) - tE_\varepsilon(\rho_{0,t}) \leq \int_0^1 \left(t \dot{\varepsilon}_s \int_X P_{st}(g_{s,t}^\varepsilon(\dot{f}_{\theta(s)}) \, dm - \frac{t^2}{2} \int_X f_{s,t} \Gamma(g_{s,t}^\varepsilon) \, dm \right) \, ds
\]

and eventually the Young inequality \(2xy \leq ax^2 + y^2 / a \) in (4.22) with \(a := \dot{\varepsilon}_s e^{-2Kst} \), we
Eventually we take the supremum with respect to φ.

Conversely, if (X, d, m) is a RCD(K, ∞) space then, denoting by τ the topology induced by d and by $E = 2\text{Ch}$ the Cheeger energy, (X, τ, m, E) is a Riemannian Energy measure space satisfying $d_\varphi = d$, [MD.exp], and BE(K, ∞).
Proof. We have to show that \((3.14)\) holds with \(H_t\rho\) precisely given by the dual semigroup. By a standard density argument (see [5, Proposition 2.21]) suffices to show this property for all \(\rho \in \mathcal{P}_2(X)\) with finite entropy. By the semigroup property and \((4.3)\), it is sufficient to prove \((3.14)\) at \(t = 0\) for all \(\nu \in \mathcal{P}_2(X)\) with finite entropy. For any \(\rho \in AC^2([0,1];(\mathcal{P}_2(X),W_2))\) joining \(\rho_0 := \nu\) to \(\rho_1 := \rho\) we find regular curves \(\rho^n\) as in Proposition \(4.11\) with \(\text{Ent}_m(\rho^n_0) \leq \text{Ent}_m(\rho_0)\) and apply the action estimate \((4.29)\) to the curves \(\rho^n_{s,t} = H_{s,t}\rho^n\) to obtain

\[
W_2^2(H_t\rho^n_1, \rho^n_0) + 2\text{Ent}_m(H_t\rho^n_1) \leq R^2_K(t) \int_0^1 |\dot{\rho}^n_s|^2 \, ds + 2t\text{Ent}_m(\rho^n).
\]

We pass to the limit as \(n \to \infty\) and use the lower semicontinuity of \(W_2\) and of the entropy, to get

\[
W_2^2(H_t\rho, \nu) + 2\text{Ent}_m(\rho_t) \leq R^2_K(t) \int_0^1 |\dot{\rho}_s|^2 \, ds + 2t\text{Ent}_m(\nu).
\]

We can now minimize w.r.t. \(\rho\) and use the fact that \((\mathcal{P}_2(X),W_2)\) is a length space because \((X,d)\) is (this can be obtained starting from an optimal Kantorovich plan \(\pi\), choosing in a \(\pi\)-measurable way an \(\varepsilon\)-optimal geodesic with constant speed as in the proof of Theorem \(3.5\)), getting

\[
W_2^2(H_t\rho, \nu) + 2\text{Ent}_m(\rho_t) \leq R^2_K(t)W^2_2(\rho, \nu) + 2t\text{Ent}_m(\nu).
\]

After dividing by \(t > 0\), letting \(t \downarrow 0\) and using \(R_K(t) = 1 - \frac{K}{2}t + o(t)\) we obtain \((3.14)\).

The converse implication, from \(\text{RCD}(K,\infty)\) to \(\text{BE}(K,\infty)\) has been proved in [5, Section 6].

We conclude with an immediate application of the previous result to metric measure spaces: it follows by Theorem \(3.17\) and Corollary \(3.18\). Notice that for the Cheeger energy condition \((\text{ED.b})\) and upper-regularity are always true.

Corollary 4.18. Let \((X,d,m)\) be a metric measure space satisfying \((\text{MD} + \exp)\) with a quadratic Cheeger energy \(\text{Ch}\) defining the Dirichlet form \(\mathcal{E} = 2\text{Ch}\) as in \((\text{QCh})\). \((X,d,m)\) is a \(\text{RCD}(K,\infty)\)-space if (and only if) at least one of the following properties hold:

(i) \((P_t)_{t \geq 0}\) satisfies property \((3.44)\), i.e. for every function \(f \in D(\text{Ch})\) with \(|Df|_w \leq 1\) and every \(t > 0\),

\[
P_tf \in \text{Lip}_b(X), \quad |\text{D}P_tf|^2 \leq e^{-2Kt}P_t(|Df|_w^2) \quad m\text{-a.e. in } X.
\]

(ii) Conditions \((\text{ED.a})\), \((w\text{-Feller})\) (or \(\mathcal{L} = \mathcal{L}_C\)), and \(\text{BE}(K,\infty)\) hold.

(iii) Condition \((\text{ED.a})\) holds and \((H_t)_{t \geq 0}\) satisfies the contraction property \((3.48)\) (or \((P_t)_{t \geq 0}\) satisfies the Lipschitz bound \((3.43)\)).
5 Applications of the equivalence result

In this section we present two applications of our equivalence result: in one direction we can use it to prove that the \(\text{RCD}(K, \infty) \) condition is stable under tensorization, a property proved in [5] only under a non branching assumption on the base spaces. We will also prove the same property for Riemannian Energy measure spaces satisfying the \(\text{BE}(K, N) \) condition, obtaining in particular the natural bound on the dimension of the product.

In the other direction, we shall prove a stability result for Riemannian Energy measure spaces satisfying a uniform \(\text{BE}(K, N) \) condition under Sturm-Gromov-Hausdorff convergence.

5.1 Tensorization

Let \((X, d_X, m_X), (Y, d_Y, m_Y)\) be \(\text{RCD}(K, \infty) \) metric measure spaces.

We may define a product space \((Z, d, m)\) by

\[
Z := X \times Y, \quad d((x, y), (x', y')) := \sqrt{d_X^2(x, x') + d_Y^2(y, y')}, \quad m := m_X \times m_Y. \tag{5.1}
\]

Notice that also \((Z, d, m)\) satisfies the quantitative \(\sigma\)-finiteness condition \([\text{MD.exp}]\).

Denoting by \(E_X, E_Y\) the Dirichlet forms associated to the respective (quadratic) Cheeger energies with domains \(V_X, V_Y\), we consider the cartesian Dirichlet form

\[
E(f) := \int_Y E_X(f^y) \, dm_Y(y) + \int_X E_X(f^x) \, dm_X(x), \quad f \in L^2(Z, m), \tag{5.2}
\]

where for every \(f \in L^2(Z, m)\) and \(z = (x, y) \in Z\) we set \(f^x = f(x, \cdot), f^y(\cdot) = f(\cdot, y)\). By [5] Thm. 6.18 the proper domain \(\mathcal{V}\) of \(E\) in \(L^2(Z, m)\) is the Hilbert space

\[
\mathcal{V} := \left\{ f \in L^2(Z, m) : f^x \in \mathcal{V}_X \text{ for } m_X\text{-a.e. } x \in X, \quad f^y \in \mathcal{V}_Y \text{ for } m_Y\text{-a.e. } y \in Y, \quad |Df^x|_w(y), \quad |Df^y|_w(x) \in L^2(Z, m) \right\}.
\]

Furthermore, \(\frac{1}{2}E\) coincides with the Cheeger energy \(\text{Ch}\) in \((Z, d, m)\), and

\[
|Df|_w^2(x, y) = \Gamma(f)(x, y) = |Df^x|_w^2(y) + |Df^y|_w^2(x) \quad \text{for } m\text{-a.e. } (x, y) \in Z. \tag{5.3}
\]

Even though the result in [5] is stated for metric measure spaces with finite measure, the proof extends with no difficulty to the \(\sigma\)-finite case. Also, it is worthwhile to mention that the curvature assumption on the base spaces plays almost no role in the proof, it is only used to build, via the product semigroup, an operator with good regularization properties (specifically from \(L^\infty\) to \(C_b\)), see [5] Lemma 6.13.

It will be convenient, as in [5] and in the previous sections, to work with a pointwise defined version of the semigroups in the base spaces, namely

\[
P_t^X u(x) := \int u(x') \, dH_t^X \delta_x(x'), \quad P_t^Y v(y) := \int v(y') \, dH_t^Y \delta_y(y')
\]
for $u : X \to \mathbb{R}$ and $v : Y \to \mathbb{R}$ bounded Borel, where $(H^X_t)_{t \geq 0}$ and $(H^Y_t)_{t \geq 0}$ denote the Wasserstein semigroups on the base spaces. These pointwise defined semigroups also provide the continuous versions of [S-Feller] for the base spaces, see [5, Theorem 6.1(iii)].

Since the heat flows are linear, the tensorization (5.3) implies a corresponding tensorization of the heat flows, namely for all $g : Z \to \mathbb{R}$ bounded and Borel, for m-a.e. $(x, y) \in Z$ the following identities hold:

$$P_t g(z) = \int_X P^X_t g(x', y) \, dH^X_t \delta_x(x'), \quad P_t g(z) = \int_Y P^X_t g(x, y') \, dH^Y_t \delta_y(y'). \quad (5.4)$$

With these ingredients at hand, we can now prove the main tensorization properties.

Theorem 5.1. With the above notation, if (X, d_X, m_X) and (Y, d_Y, m_Y) are RCD(K, ∞) spaces then the space (Z, d, m) is RCD(K, ∞) as well.

Proof. According to the characterization of RCD(K, ∞) given in point (i) of Corollary 4.18, since the Cheeger energy in Z satisfies (QCh) by the above mentioned result of [5], it suffices to show that the length space property and (4.30) are stable under tensorization.

Stability of the length space property. This is simple to check, one obtains an almost minimizing geodesic $\gamma : [0, 1] \to Z$ combining almost minimizing geodesics on the base spaces with constant speed and parameterized on $[0, 1]$.

Stability of (4.30). Let us first notice that P_t maps bounded and Borel functions into continuous ones, thanks of any of the two identities in (5.4) and [S-Feller].

Let $f \in \text{Lip}_b(Z) \cap L^2(Z, m)$. Keeping y initially fixed, the second identity in (5.4) tells us that $x \mapsto P_t f(x, y) = (P_t f)^y(x)$ is the mean w.r.t. y', weighted with $H^Y_t \delta_y$, of the functions $P^X_t f^y(x)$. Hence, the convexity of the slope gives

$$|D(P_t f)^y|(x) \leq \int_Y |D P^X_t f^y|(x) \, dH^Y_t \delta_y(y'),$$

where gradients are understood with respect to the first variable. We can thus use the Hölder inequality to get

$$|D(P_t f)^y|^2(x) \leq \int_Y |D P^X_t f^y|^2(x) \, dH^Y_t \delta_y(y'). \quad (5.5)$$

Now, for m_Y-a.e. $y' \in Y$ we apply (4.30) in the space X to the functions f^y and use Fubini’s theorem to get

$$|D P^X_t f^y|^2(x) \leq e^{-2Kt} P^X_t |D f^y|^2_w(x) \quad \text{for } m_Y \text{-a.e. } y' \in Y. \quad (5.6)$$

Combining (5.5) and (5.6) and using once more (5.4) with $g(x, y) = |D f^y|^2_w(x)$ we get

$$|D(P_t f)^y|^2(x) \leq e^{-2Kt} \int_Y P^X_t |D f|^2_w(x) \, dH_t \delta_y(y') = e^{-2Kt} P_t |D f|^2_w(x).$$
Repeating a similar argument with the first identity in (5.4) and adding the two inequalities we obtain
\[|D(P_t f)^y|_w^2(x) + |D(P_t f)^x|_w^2(y) \leq e^{-2Kt} P_t |Df|^2(x, y). \]
We conclude that (5.30) holds in \((Z, d, m)\) using the calculus lemma [3 Lemma 6.2], which provides the information that the square root of \(|D(P_t f)^y|_w^2(x) + |D(P_t f)^x|_w^2(y)\) is an upper gradient of \(P_t f\). It follows that \(e^{-Kt} \sqrt{P_t |Df|^2_w}\) is an upper gradient as well; being continuous, it provides a pointwise upper bound for the slope.

Let us now consider the corresponding version of the tensorization theorem for Riemannian Energy measure spaces with a finite upper bound on the dimension.

Theorem 5.2. Let \((X, \tau_X, E^X, \mathbf{m}_X), (Y, \tau_Y, E^Y, \mathbf{m}_Y)\) be Riemannian Energy measure spaces satisfying the Bakry-Émery conditions \(BE(K, N_X)\) and \(BE(K, N_Y)\) respectively, and let us consider the cartesian Dirichlet form \(E\) defined by (5.2) on \(Z = X \times Y\) endowed with the product topology \(\tau = \tau_X \otimes \tau_Y\) and the product measure \(\mathbf{m}\) as in (5.1).

Then \((Z, \tau, \mathbf{m}, E)\) is a Riemannian Energy measure space, it satisfies the Bakry-Émery condition \(BE(K, N_X + N_Y)\) and the induced distance \(d_\mathbf{m}\) on \(Z\) coincides with the product distance defined in (5.1).

Proof. It is not restrictive to assume that \(N_X, N_Y < \infty\); by the previous Theorem we already know that \((Z, \tau, \mathbf{m}, E)\) is a Riemannian energy measure space satisfying \(BE(K, \infty)\), whose induced distance \(d_\mathbf{m}\) is given by (5.1); we want to prove that (2.35) holds with \(\nu_Z := \nu_X \nu_Y / (\nu_X + \nu_Y)\) where \(\nu_X := N_X^{-1}\) and \(\nu_Y := N_Y^{-1}\). We argue as in (5.6), observing that for \(\mathbf{m}_Y\)-a.e. \(y' \in Y\) (2.35) and (3.45) yield
\[|D(P_t f)^y|_w^2 + 2\nu_X I_{2K,2}(t) (\Delta_X P_t^X f')^2 \leq e^{-2Kt} P_t^X |Df'|_w^2 \quad \text{for } \mathbf{m}_X\text{-a.e. } x \in X. \]
Integrating w.r.t. the measure \(H^y_{\tau} \delta_y\) in \(y'\) and recalling (5.4) and (5.5), we get
\[|D(P_t f)^y|_w^2(x) + 2\nu_X I_{2K,2}(t) (\Delta_X (P_t f)^y)^2(x) \leq e^{-2Kt} P_t (|Df'|_w^2)(x) \]m-a.e. in \(Z\), where we also used the Hölder inequality
\[\int_Y (\Delta_X P_t^X f')^2(x) dH_t \delta_y(y') \geq \left(\int_Y \Delta_X P_t^X f'(x) dH_t \delta_y(y') \right)^2 = (\Delta_X P_t f)^2(x). \]
By repeating a similar argument inverting the role of \(X\) and \(Y\) we get
\[|D(P_t f)^x|_w^2(y) + 2\nu_Y I_{2K,2}(t) (\Delta_Y (P_t f)^x)^2(y) \leq e^{-2Kt} P_t (|Df'|_w^2)(y) \]m-a.e. in \(Z\). Adding (5.7) and (5.8), and recalling the elementary inequality
\[\nu_X a^2 + \nu_Y b^2 \geq \frac{\nu_X \nu_Y}{\nu_X + \nu_Y} (a + b)^2 \quad \text{for every } a, b \geq 0, \]
we conclude thanks to the next simple Lemma.

\[\square \]
Lemma 5.3. Assume that \(f \in \mathcal{V} \) satisfies
\[
(f^y, f^x) \in D(\Delta_X) \times D(\Delta_Y) \quad \text{for } m\text{-a.e. } (x,y) \in Z,
\]
\[
\Delta_X f^y, \Delta_Y f^x \in L^2(Z, m).
\]
(5.9)

Then \(f \in D(\Delta_Z) \) and \(\Delta_Z f(x,y) = \Delta_X f^y(x) + \Delta_Y f^x(y) \) for \(m\text{-a.e. } (x,y) \in Z \).

Proof. If (5.9) holds, Fubini’s theorem and the very definition of \(\Delta_X, \Delta_Y \) yield for every \(\varphi \in \mathcal{V} \)
\[
\mathcal{E}(f, \varphi) = \int_Y \mathcal{E}^X(f^y, \varphi^y) \, dm_Y(y) + \int_X \mathcal{E}^Y(f^x, \varphi^x) \, dm_X(x)
\]
\[
= -\int_Y \left(\int_X \Delta_X f^y \varphi^y \, dm_X \right) dm_Y - \int_X \left(\int_Y \Delta_Y f^x \varphi^x \, dm_Y \right) dm_X
\]
\[
= -\int_Z \left(\Delta_X f^y + \Delta_Y f^x \right) \varphi \, dm. \quad \square
\]

5.2 Sturm-Gromov-Hausdorff convergence and stability of the \(\text{BE}(K,N) \) condition

Preliminaries

Here and in the following we adopt the notation \(\bar{\mathbb{N}} := \mathbb{N} \cup \{\infty\} \).

Let us first recall an equivalent characterization of Sturm-Gromov-Hausdorff (SGH) convergence of a sequence \((X_n, d_n, m_n), n \in \bar{\mathbb{N}} \), of metric measure spaces that is very well adapted to our aims; for the sake of simplicity, we restrict here to the case when \(m_n \in \mathcal{P}_2(X_n) \). The general case of \(\sigma \)-finite measures satisfying (MD.exp) could be attacked by the techniques developed in [29], assuming that (MD.exp) holds uniformly along the sequence. We refer to [54, § 3.1], [51, § 2.3] for other definitions and important properties of SGH convergence.

Definition 5.4 (SGH-convergence). Let \((X_n, d_n, m_n), n \in \bar{\mathbb{N}} \), be complete and separable metric measure spaces with \(m_n \in \mathcal{P}_2(X_n) \) for every \(n \in \bar{\mathbb{N}} \). We say that \((X_n, d_n, m_n) \) SGH-converge to \((X_{\infty}, d_{\infty}, m_{\infty}) \) as \(n \to \infty \) if there exist a complete and separable metric space \((X, d) \) and isometries \(\iota_n : X_n \to X, n \in \bar{\mathbb{N}} \), such that \(W_2((\iota_n)_*m_n, (\iota_{\infty})_*m_{\infty}) \to 0 \) as \(n \to \infty \).

A more intrinsic approach would state SGH-convergence for the equivalence classes of metric-measure spaces induced by measure-preserving isometries: according to this point of view, two metric-measure spaces \((X_1, d_1, m_1) \) and \((X_2, d_2, m_2) \) are isomorphic if there exists an isometry \(\iota : \text{supp}(m_1) \to X_2 \) such that \(m_2 = \iota_*m_1 \).

Here we do not insist on this aspect, since owing to the Definition 5.4 we will always consider an effective realization of such a convergence provided by the space \((X, d) \) and
the system of isometries \((\iota_n), n \in \mathbb{N}\). Moreover, by identifying \(X_n\) with \(\iota_n(X_n)\) in \(X\), and \(m_n\) with \((\iota_n)^*m_n\) in \(\mathcal{P}_2(X)\), it will not restrictive to assume that

\[
m_n \in \mathcal{P}_2(X), \quad X_n \subset X, \quad d_n \equiv d \quad \text{for every} \quad n \in \mathbb{N},
\]

\(m_n\) are converging to \(m_\infty\) in \(\mathcal{P}_2(X)\) as \(n \to \infty\); \(\tag{5.10}\)

one has just to take care that in general \(m_n, \mathfrak{m}\) could be not fully supported.

Remark 5.5. It is important to notice that, by construction, the Cheeger energy is invariant by isometries: considering, e.g., the situation of Definition 5.4, if one has just to take care that in general \(m_n, \mathfrak{m}\) could be not fully supported.

Since the composition with \(\iota_\infty\) provides an order preserving isomorphism between \(L^2(X, \mathfrak{m}_\infty)\) and \(L^2(X_\infty, m_\infty)\), it is immediate to check that \((X_\infty, \tau_\infty, m_\infty, \check{E}_\infty)\) satisfies BE\((K, N)\) if and only if \((X, \tau, \mathfrak{m}_\infty, \check{E}_\infty)\) satisfies BE\((K, N)\) as well (here \(\tau\) is the topology induced by \(d\) in \(X\)).

We will also need a few results, strongly related to the theory of Young measures, concerning convergence for sequences of functions defined in \(L^2\)-spaces associated to different measures (see e.g. [3, §5.4]). We first make precise this notion of convergence.

Definition 5.6. Let \((X, d)\) be a complete and separable metric space, let \((m_n) \subset \mathcal{P}_2(X), n \in \mathbb{N}\), be converging in \(\mathcal{P}_2(X)\), and consider a sequence of vector valued functions \(f_n \in L^2(X, m_n; \mathbb{R}^k), n \in \mathbb{N}, k \in \mathbb{N}\). We say that \((f_n)\) converges to \(f_\infty\) as \(n \to \infty\) if

\[
(i \times f_n)_*m_n \to (i \times f_\infty)_*m_\infty \quad \text{in} \quad \mathcal{P}_2(X \times \mathbb{R}^k). \tag{5.11}
\]

We will use three properties, stated in the next Lemma:

Lemma 5.7. Let \((X, d), (f_n)\) and \((m_n) \subset \mathcal{P}_2(X), n \in \mathbb{N}\), as in Definition 5.6 above.

(i) \((5.11)\) is equivalent to the convergence of each component \(f_n^j, j = 1, \ldots, k\), to \(f^j\).

(ii) In the scalar case \(k = 1\), if \(f_n\) satisfy

\[
\lim_{n \to \infty} \int_X f_n \varphi \, dm_n = \int_X f \varphi \, dm \quad \text{for every} \quad \varphi \in C_b(X),
\]

\[
\lim_{n \to \infty} \int_X f_n^2 \, dm_n = \int_X f^2 \, dm,
\]

then \(f_n\) converges to \(f\) according to \((5.11)\). The same conclusion holds if \(f_n \in L^1(X, m_n) \cap L^\infty(X, m_n)\) are uniformly bounded probability densities satisfying

\[
f_n m_n \rightharpoonup fm \quad \text{in} \quad \mathcal{P}(X), \quad \lim_{n \to \infty} \int_X f_n \log f_n \, dm_n = \int_X f \log f \, dm.
\]
(iii) Finally, if \(r : \mathbb{R}^k \to \mathbb{R}^h \) is a continuous map with linear growth, and \(f_n \) converge to \(f \) according to (5.11) then \(r \circ f_n \) converge to \(r \circ f \).

Proof. (i) follows by disintegration and the fact that a probability measure in \(\mathbb{R}^k \) is a Dirac mass if and only if its coordinate projections are Dirac masses, see e.g. [3, Lemma 5.3.2].

Property (ii) is a consequence of the fact that, for strictly convex functions, equality holds in Jensen’s inequality only when the measure is a Dirac mass. A detailed argument is presented in [3, Thm. 5.4.4] (the fact that the base space \(X \) is a general metric space instead of an Hilbert space is not relevant here).

The proof of (iii) is straightforward. □

Stability of BE(\(K, N \)) under SGH-convergence

Theorem 5.8. Let \((X_n, \tau_n, \mathcal{E}_n, \mathcal{M}_n) \), \(n \in \mathbb{N} \), be Riemannian energy measure spaces satisfying BE(\(K, N \)) with \(\mathcal{M}_n \in \mathcal{P}_2(X_n) \) and let us suppose that, denoting by \(d_n \) the corresponding distances \(d_{\mathcal{E}_n} \), \((X_n, d_n, \mathcal{M}_n) \) converge to \((X_\infty, d_\infty, \mathcal{M}_\infty) \) in the Sturm-Gromov-Hausdorff sense of Definition [5.4]. If \(\frac{1}{2} \mathcal{E}_\infty \) is the Cheeger energy in the limit space and \(\tau_\infty \) the topology induced by \(d_\infty \), then \((X_\infty, \tau_\infty, \mathcal{M}_\infty, \mathcal{E}_\infty) \) is a Riemannian Energy measure space satisfying BE(\(K, N \)).

Proof. According to the Definition [5.4] of SGH-convergence and taking Remark [5.5] into account, it is not restrictive to assume that (5.10) holds, so that all the spaces \(X_n \) are subsets of a fixed complete and separable metric space \((X, d) \), \(d_n \) are the restrictions of \(d \) on \(X_n \), the isometries \(\iota_n \) are just the inclusions maps, \(\mathcal{M}_n \) can be identified with \((\iota_n)_\mathcal{M}_n \) and can be considered as measures in \(\mathcal{P}_2(X) \) converging to \(\mathcal{M}_\infty \), and the Cheeger energies \(\mathcal{E}_n \) are Dirichlet forms on \(L^2(X, \mathcal{M}_n) \) satisfying the BE(\(K, N \)) condition.

The case \(N = \infty \) follows by the identification Theorem [4.17] and [5, Thm. 6.10]. In particular, the limit Cheeger energy associated to \((X, d, \mathcal{M}_\infty)\) is a Dirichlet form that we call \(\frac{1}{2} \mathcal{E}_\infty \) and the limit space endowed with the Cheeger energy and the topology \(\tau \) induced by \(d \) is a Riemannian Energy measure space.

We can thus consider the case \(N < \infty \). In order to show that \((X, \tau, \mathcal{M}_\infty, \mathcal{E}_\infty)\) satisfies BE(\(K, N \)) we will prove that the distributional characterization (2.33) of BE(\(K, N \)) holds for every \(f \in L^2(X, \mathcal{M}_\infty) \) and nonnegative \(\varphi \in L^\infty(X, \mathcal{M}_\infty) \). By standard approximation, it is also not restrictive to assume \(f \in L^\infty(X, \mathcal{M}_\infty) \). Our argument consists in passing to the limit in the corresponding distributional inequality written for suitable approximating sequences in the spaces \((X, \tau, \mathcal{M}_n, \mathcal{E}_n)\).

Let us thus denote by \((\mathcal{P}_t^n)_{t \geq 0}\) the Markov semigroups in \(L^2(X, \mathcal{M}_n) \) with generators \(\Delta_n := \Delta_{\mathcal{E}_n} \), \(n \in \bar{\mathbb{N}} \). By [5, Lemma 6.12] and Lemma [5.7][11], for every \(f, \varphi \in L^\infty(X, \mathcal{M}) \), \(\varphi \) nonnegative, we can find sequences \(f_n, \varphi_n \in L^\infty(X, \mathcal{M}_n) \), \(\varphi_n \) nonnegative, converging to \(f, \varphi \) according to Definition [5.6]. We can also suppose that \(f_n, \varphi_n \) are uniformly bounded by some constant \(C > 0 \).

Applying Lemma [5.9] below, we get that for every \(t \geq 0 \) and \(s \in [0, t] \) \(\mathcal{P}^n_{t-s} f_n \) converge to \(\mathcal{P}^\infty_{t-s} f \) and \(\mathcal{P}^n_s \varphi_n \) converge to \(\mathcal{P}^\infty_s \varphi \) as \(n \to \infty \) according to Definition [5.6].
A similar argument yields

\[\lim_{n \to \infty} \int_X (P^n_{t-s}f_n)^2 P^n_s \varphi_n \, dm_n = \lim_{n \to \infty} \int \psi d(i \times f_n) \, m_n = \int \psi d(i \times f) \, m = \int_X (P^n_t f)^2 P^n_s \varphi \, dm. \]

A similar argument yields

\[\lim_{n \to \infty} \int_X (\Delta^n P^n_{t-s}f_n)^2 P^n_s \varphi_n \, dm_n = \int_X (\Delta^n P^n_{t-s}f)^2 P^n_s \varphi \, dm \]

for every \(t > 0, s \in [0, t] \). We can thus pass to the limit in the distributional inequality (2.33) written for \(f_n, \varphi_n \).

Lemma 5.9. Let \((X, d)\) be a complete and separable metric space, \(m_n \in \mathcal{P}_2(X), n \in \mathbb{N}\), be a converging sequence such that \((X, d, m_n)\) is a RCD\((K, \infty)\) space with Cheeger energy \(\frac{1}{2} \mathcal{E}_n\), and let us denote by \((P^n_t)_{t \geq 0}\) the Markov semigroups in \(L^2(X, m_n)\) with generators \(\Delta_n := \Delta_{\mathcal{E}_n}, n \in \mathbb{N}\).

If \(f_n \in L^\infty(X, m_n)\) converge to \(f_\infty \in L^\infty(X, m_\infty)\) according to Definition 5.7 with uniformly bounded \(L^\infty\) norm, then \(P^n_t f_n\) converge to \(P^\infty_t f_\infty\) for every \(t \geq 0\) and \(\Delta_n P^n_t f_n\) converge to \(\Delta^\infty P^\infty_t f_\infty\) as \(n \to \infty\) for every \(t > 0\).

Proof. When \(f_n\) are probability densities the convergence of \(P^n_t f_n\) follows by applying Lemma 5.7 and the convergence results of [5, Theorem 6.11] (which shows that \(P^n_t f_n m_n\) converge to \(P^\infty_t f_\infty m_\infty\) in \(\mathcal{P}_2(X)\)) and [29] (which yields the convergence of the entropies \(\text{Ent}(m_n, f_n m_n) \to \text{Ent}(m_\infty, f_\infty m_\infty)\)).

The case \(f_n \in L^1(X, m_n)\) can be easily reduced to the previous one by a rescaling, since \(\int_X f_n \, dm_n \to \int_X f \, dm\) by (5.11) and \((P^n_t)_{t \geq 0}\) is mass preserving.

The general case can be proved by decomposing each \(f_n\) into the difference \(f^n_+ - f^n_-\) of its positive and negative part, observing that \(f^n_+\) converge to \(f^\infty_+\) thanks to Lemma 5.7[iii]. Thus, by (i) it follows that \((P^n_t f^n_+, P^n_t f^n_-)\) converge to \((P^\infty_t f^\infty_+, P^\infty_t f^\infty_-)\) and a further application of (iii) yields the convergence result by the linearity of the semigroups.

In order to prove the convergence of \(\Delta_n P^n_t f_n\) we still apply (i) of Lemma 5.7[iii] recall that \(P^n_t\) are analytic semigroups in \(L^2(X, m_n)\), \(\Delta_n P^n_t f_n = \frac{d}{dt} P^n_t f_n\), and the uniform estimates (see e.g. [49, Page 75, step 2])

\[t^j \left\| \frac{d^j}{dt^j} P^n_t f_n \right\|_{L^2(X, m_n)} \leq A_j \| f_n \|_{L^2(X, m_n)} \quad \text{for every } t > 0, n \in \mathbb{N}\]

(5.12)

hold with universal constants \(A_j\) for every \(t > 0\). Since we just proved that for every \(\varphi \in C_b(X)\) the sequence of functions \(\zeta_n := \int_X P^n_t f_n \varphi \, dm_n\) converge pointwise to the corresponding \(\zeta\) as \(n \to \infty\), (5.12) yields that

\[\lim_{n \to \infty} \zeta_n(t) = \lim_{n \to \infty} \int_X \Delta_n P^n_t f_n \varphi \, dm_n = \zeta(t) = \int_X \Delta^\infty P^\infty_t f_\infty \varphi \, dm. \]

62
for every $t > 0$. The same argument holds for
\[
t \mapsto \int_X (\Delta_n P_t^n f_n)^2 \, dm_n = \frac{1}{4} \frac{d^2}{dt^2} \int_X (P_t^n f_n)^2 \, dm_n.
\]
\[\square\]

References

[1] L. Ambrosio, M. Colombo, and S. Di Marino, Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, To appear on Advanced Studies in Pure Mathematics, (2012). [arXiv:1212.3779]

[2] L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure, To appear on Trans. Amer. Math. Soc., (2012). [arXiv:1207.4924v2]

[3] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008.

[4] ———, Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, To appear on Inventiones Mathematicae, (2011), pp. 1–74. [arXiv:1106.2090]

[5] ———, Metric measure spaces with Riemannian Ricci curvature bounded from below, To appear on Duke Math. J., (2011), pp. 1–60. [arXiv:1109.0222]

[6] ———, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29 (2013), pp. 969–996. [doi:10.4171/RMI/746]

[7] L. Ambrosio, G. Savaré, and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure., Probab. Theory Relat. Fields, 145 (2009), pp. 517–564. [doi:10.1007/s00440-008-0177-3]

[8] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, vol. 10 of Panoramas et Synthèses [Panoramas and Syntheses], Société Mathématique de France, Paris, 2000. With a preface by Dominique Bakry and Michel Ledoux.

[9] M. Arnaudon, B. K. Driver, and A. Thalmaier, Gradient estimates for positive harmonic functions by stochastic analysis, Stochastic Process. Appl., 117 (2007), pp. 202–220. [doi:10.1016/j.spa.2006.07.002]

[10] M. Arnaudon, H. Plank, and A. Thalmaier, A Bismut type formula for the Hessian of heat semigroups, C. R. Math. Acad. Sci. Paris, 336 (2003), pp. 661–666. [doi:10.1016/S1631-073X(03)00123-7]
[11] D. Bakry, *Functional inequalities for Markov semigroups*, in Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006, pp. 91–147.

[12] D. Bakry and M. Émery, *Diffusions hypercontractives*, in Séminaire de probabilités, XIX, 1983/84, vol. 1123, Springer, Berlin, 1985, pp. 177–206.

[13] D. Bakry, I. Gentil, and M. Ledoux, *Analysis and Geometry of Markov Diffusion Operators*, vol. 348 of Grundlehren der mathematischen Wissenschaften, Springer, 2014.

[14] D. Bakry and M. Ledoux, *Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator*, Invent. Math., 123 (1996), pp. 259–281. doi:10.1007/s002220050026.

[15] D. Bakry and M. Ledoux, *A logarithmic Sobolev form of the Li-Yau parabolic inequality*, Rev. Mat. Iberoam., 22 (2006), pp. 683–702. doi:10.4171/RMI/470.

[16] M. Biroli and U. Mosco, *A Saint-Venant type principle for Dirichlet forms on discontinuous media*, Ann. Mat. Pura Appl. (4), 169 (1995), pp. 125–181. doi:10.1007/BF01759352.

[17] V. I. Bogachev, *Measure theory. Vol. I, II*, Springer-Verlag, Berlin, 2007.

[18] N. Bouleau and F. Hirsch, *Dirichlet forms and analysis on Wiener sapces*, vol. 14 of De Gruyter studies in Mathematics, De Gruyter, 1991.

[19] D. Burago, Y. Burago, and S. Ivanov, *A course in metric geometry*, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.

[20] J. Cheeger, *Differentiability of Lipschitz functions on metric measure spaces*, Geom. Funct. Anal., 9 (1999), pp. 428–517. doi:10.1007/s000390050094.

[21] D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger, *A Riemannian interpolation inequality à la Borell, Brascamp and Lieb*, Invent. Math., 146 (2001), pp. 219–257. doi:10.1007/s002220100160.

[22] S. Daneri and G. Savaré, *Eulerian calculus for the displacement convexity in the Wasserstein distance*, SIAM J. Math. Anal., 40 (2008), pp. 1104–1122. doi:10.1137/08071346X.

[23] M. Erbar, *The heat equation on manifolds as a gradient flow in the Wasserstein space*, Ann. Inst. Henri Poincaré Probab. Stat., 46 (2010), pp. 1–23. doi:10.1214/08-AIHP306.
[24] K. Fukaya, *Collapsing of Riemannian manifolds and eigenvalues of Laplace operator*, Invent. Math., 87 (1987), pp. 517–547. doi:10.1007/BF01389241

[25] M. Fukushima, Y. Oshima, and M. Takeda, *Dirichlet forms and symmetric Markov processes*, vol. 19 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, extended ed., 2011.

[26] N. Gigli, *On the heat flow on metric measure spaces: existence, uniqueness and stability*, Calc. Var. Partial Differential Equations, 39 (2010), pp. 101–120. doi:10.1007/s00526-009-0303-9

[27] ———, *On the differential structure of metric measure spaces and applications*, To appear on Memoirs of the AMS, (2012). arXiv:1205.6622

[28] N. Gigli, K. Kuwada, and S.-I. Ohta, *Heat flow on Alexandrov spaces*, Comm. Pure Appl. Math., 66 (2013), pp. 307–331. doi:10.1002/cpa.21431

[29] N. Gigli, A. Mondino, and G. Savaré, *Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows*, (2013). arXiv:1311.4907

[30] E. P. Hsu, *Stochastic analysis on manifolds*, vol. 38 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2002.

[31] R. Jordan, D. Kinderlehrer, and F. Otto, *The variational formulation of the Fokker-Planck equation*, SIAM J. Math. Anal., 29 (1998), pp. 1–17. doi:10.1137/S0036141096303359

[32] W. S. Kendall, *Nonnegative Ricci curvature and the Brownian coupling property*, Stochastics, 19 (1986), pp. 111–129. doi:10.1080/17442508608833419

[33] P. Koskela, N. Shanmugalingam, and Y. Zhou, *Geometry and analysis of Dirichlet forms (ii)*, Preprint, (2012).

[34] K. Kuwada, *Duality on gradient estimates and Wasserstein controls*, J. Funct. Anal., 258 (2010), pp. 3758–3774. doi:10.1016/j.jfa.2010.01.010

[35] K. Kuwada and K.-T. Sturm, *Monotonicity of Time-Dependent Transportation Costs and Coupling by Reflection*, Potential Anal., 39 (2013), pp. 231–263. doi:10.1007/s11118-012-9327-4

[36] M. Ledoux, *The concentration of measure phenomenon*, vol. 89 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2001.

[37] ———, *Spectral gap, logarithmic Sobolev constant, and geometric bounds*, in Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., IX, Int. Press, Somerville, MA, 2004, pp. 219–240.
[38] ———, *From concentration to isoperimetry: semigroup proofs*, in Concentration, functional inequalities and isoperimetry, vol. 545 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2011, pp. 155–166. doi:10.1090/conm/545/10770.

[39] S. Lisini, *Characterization of absolutely continuous curves in Wasserstein spaces*, Calc. Var. Partial Differential Equations, 28 (2007), pp. 85–120. doi:10.1007/s00526-006-0032-2.

[40] J. Lott and C. Villani, *Weak curvature conditions and functional inequalities*, J. Funct. Anal., 245 (2007), pp. 311–333. doi:10.1016/j.jfa.2006.10.018.

[41] ———, *Ricci curvature for metric-measure spaces via optimal transport*, Ann. of Math. (2), 169 (2009), pp. 903–991. doi:10.4007/annals.2009.169.903.

[42] Z.-M. Ma and M. Röckner, *Introduction to the Theory of (Non-symmetric) Dirichlet Forms*, Springer, New York, 1992.

[43] R. J. McCann, *A convexity principle for interacting gases*, Adv. Math., 128 (1997), pp. 153–179. doi:10.1006/aima.1997.1634.

[44] S.-I. Ohta and K.-T. Sturm, *Heat flow on Finsler manifolds*, Comm. Pure Appl. Math., 62 (2009), pp. 1386–1433. doi:10.1002/cpa.20273.

[45] F. Otto and C. Villani, *Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality*, J. Funct. Anal., 173 (2000), pp. 361–400. doi:10.1006/jfan.1999.3557.

[46] F. Otto and M. Westdickenberg, *Eulerian calculus for the contraction in the Wasserstein distance*, SIAM J. Math. Anal., 37 (2005), pp. 1227–1255 (electronic). doi:10.1137/050622420.

[47] A. Pazy, *Semigroups of linear operators and applications to partial differential equations*, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi:10.1007/978-1-4612-5561-1.

[48] T. Rajala, *Local Poincaré inequalities from stable curvature conditions on metric spaces*, Calc. Var. Partial Differential Equations, 44 (2012), pp. 477–494. doi:10.1007/s00526-011-0442-7.

[49] E. M. Stein, *Topics in harmonic analysis related to the Littlewood-Paley theory*, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J., 1970.

[50] P. Stollmann, *A dual characterization of length spaces with application to Dirichlet metric spaces*, Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 198 (2010), pp. 221–233.
[51] K.-T. Sturm, *Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations*, Osaka J. Math., 32 (1995), pp. 275–312. Available from: http://projecteuclid.org/getRecord?id=euclid.ojm/1200786053.

[52] ———, *The geometric aspect of Dirichlet forms*, in New directions in Dirichlet forms, vol. 8 of AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 1998, pp. 233–277.

[53] ———, *On the geometry of metric measure spaces. I*, Acta Math., 196 (2006), pp. 65–131. [doi:10.1007/s11511-006-0002-8](https://doi.org/10.1007/s11511-006-0002-8).

[54] ———, *On the geometry of metric measure spaces. II*, Acta Math., 196 (2006), pp. 133–177. [doi:10.1007/s11511-006-0003-7](https://doi.org/10.1007/s11511-006-0003-7).

[55] C. Villani, *Optimal transport. Old and new*, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.

[56] M.-K. von Renesse and K.-T. Sturm, *Transport inequalities, gradient estimates, entropy, and Ricci curvature*, Comm. Pure Appl. Math., 58 (2005), pp. 923–940. [doi:10.1002/cpa.20060](https://doi.org/10.1002/cpa.20060).

[57] F.-Y. Wang, *Equivalent semigroup properties for the curvature-dimension condition*, Bull. Sci. Math., 135 (2011), pp. 803–815. [doi:10.1016/j.bulsci.2011.07.005](https://doi.org/10.1016/j.bulsci.2011.07.005).