Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD

Jian Liang,†,1 Wei Sun,† Ying Chen,1,2 Wei-Feng Chiu,†, Ming Gong,1,2 Chuan Liu,3 Yu-Bin Liu,† Zhaofeng Liu,†,2 Jian-Ping Ma,† and Jian-Bo Zhang 6
1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 2 Theoretical Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China 3 School of Physics, Peking University, Beijing 100871, China 4 School of Physics, Nankai University, Tianjin 300071, China 5 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China 6 Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China

The Ω baryons with $J^P = 3/2^\pm, 1/2^\pm$ are studied on the lattice in the quenched approximation. Their mass levels are ordered as $M_{3/2^+} < M_{3/2^-} \approx M_{1/2^-} < M_{1/2^+}$. On the other hand, for the (56, 2_1^+) and (70, 0_1^+) multiplets, since they belong to the different SU(6) representations, their spatial wave functions can be different and can serve as a criterion to distinguish them from each other.

However, the quark model is not an ab-initio method and can only give qualitative results, so studies from first principles are desired, such as lattice QCD method. Early lattice QCD works can be found in [3, 4]. The most recent systematic study with unquenched configurations was carried out in work [5] where the authors find 11 strangeness -3 states with energies near or below 2.5 GeV using sophisticated smearing schemes for operators and variational method for the extraction of energy levels, but have difficulties to distinguish the single Ω states from possible scattering states. In this work, we explore the excited states of Ω baryons in the quenched approximation, whose advantage in this topic is that the excited states are free from the contamination of scattering states. We focus on the several lowest-lying Ω states with $J^P = 1^\pm, 3^\pm$. In addition to their spectrum, we also investigate the Bethe-Salpeter amplitudes of these states through spatially extended operators, which may shed lights on the internal structure of these Ω states.

This paper is organized as follows: Sec. II contains our calculation method including the operator constructions, fermion contractions and wave function definitions. The numerical results of the spectrum and the wave functions are presented in Sec. III. The conclusions and a summary can be found in Sec. IV.
II. OPERATORS AND CORRELATION FUNCTIONS

A. Interpolating Operators for \(\Omega \) Baryons

The interpolating operator for \(\Omega \) baryons can be expressed as

\[
O^\mu = e^{abc}(s^T \gamma^\mu s_b)s_c,
\]

where \(\gamma^\mu \) is the C-parity operator, \(a, b, c \) are color indices, and \(s^T \) means the transpose of the Dirac spinor of the strange quark field \(s \). However, \(O^\mu \) has no definite spin and can couple to the \(J = 3/2 \) and \(J = 1/2 \) states [6]. The \(J = 3/2 \) and \(J = 1/2 \) components of \(O^\mu \) can be disentangled by introducing the following projectors [4]

\[
P'^{\mu\nu}_{3/2} = \delta^{\mu\nu} - \frac{1}{3} \gamma^\nu \gamma^\mu - \frac{1}{3 \rho s} (p^\mu \gamma^\nu + p^\nu \gamma^\mu \bar{p}),
\]

\[
P'^{\mu\nu}_{1/2} = \delta^{\mu\nu} - \delta^{\mu\nu} P^\mu_{3/2}.
\]

Thus the spin projected operators with the definite spin quantum number can be obtained as

\[
O^\mu_{3/2} = \sum_j P'^{ij}_{3/2} O^\mu_i,
\]

\[
O^\mu_{1/2} = \sum_j P'^{ij}_{1/2} O^\mu_i. \tag{4}
\]

Furthermore, one can also use the parity projectors \(P^\pm = \pm (1 \mp \gamma_4) \) to ensure the definite parities of baryons states.

It should be noted that for now all the operators are considered in the continuum case. On a finite lattice, the spatial symmetry group \(SO(3) \) breaks down to the octahedral point group \(O \), whose irreducible representations corresponding to \(J = 1/2 \) and \(J = 3/2 \) are the two-dimensional \(G_1 \) representation and the four-dimensional \(H \) representation, respectively. Generally, there exist subduction matrices to project the continuum operators to octahedral point group operators [7], say,

\[
O(J, \Lambda)_c = \sum_m S(J, \Lambda)^m_m O(J)_m, \tag{5}
\]

where \(O(J)_m \) is the continuum operator with total spin \(J \) and the third component of spin \(m \), \(O(J, \Lambda)_c \) is the \(r \)-th component of the octahedral point group operator under irreducible representation \(\Lambda \), \(S(J, \Lambda)^m_m \) is the subduction matrices. In our case, \(S(\frac{3}{2}, G_1) \) and \(S(\frac{5}{2}, H) \) are both unit matrices, so that the operators in Eq. 4, which are actually used in this study, are already the irreducible representations of the lattice symmetry group \(O \).

We also consider the spatially extended interpolation operators by splitting \(O^\mu \) into two parts with spatial separations. The explicitly expressions are written as

\[
O^\mu_1(r) = \sum_{|\bar{r}|} e^{abc}[s^T_a(x + r)\gamma^\mu s_b(x)]s_c(x),
\]

\[
O^\mu_2(r) = \sum_{|\bar{r}|} e^{abc}[s^T_a(x)\gamma^\mu s_b(x + \bar{r})]s_c(x),
\]

\[
O^\mu_3(r) = \sum_{|\bar{r}|} e^{abc}[s^T_a(x)\gamma^\mu s_b(x + r)]s_c(x + r). \tag{6}
\]

where the summations are over \(\bar{r} \)'s with the same \(r = |\bar{r}| \) in order to guarantee the same quantum number as case of \(r = 0 \). These three splitting procedures have been verified to be numerically equivalent, so we make use of the third type, \(O^\mu_3(r) \), in the practical study. These operators are obviously gauge variant, so we carry out the lattice calculation by fixing all the gauge configurations to the Coulomb gauge first.

The general form of the two-point function of a baryon of quantum number \(J^P \) with \(P = \pm \) is

\[
C^J_{J^P}(r, t) = \text{Tr} \left[(1 \pm \gamma_4) \sum_{\bar{x}, j} \langle P^{ij}\Omega^\mu_j(r, x)\bar{O}^\mu_{3/2}(0)P^\mu_{3/2} \rangle \right]. \tag{7}
\]

The summation on \(\bar{x} \) ensures a zero momentum. For \(\Omega \) baryons, there exist six different Wick contractions as shown in the following figure Fig. 1.

FIG. 1: Six ways of contraction, we use color indices to label the three \(s \) quarks. Solid line means contraction.

B. Source technique

In principle, all states with the same quantum number \(J^P \) contribute to the two-point functions \(C^J_{J^P}(r, t) \) for baryons, it is known that the the signal-to-noise ratio of the two-points damps very quickly since the noise decreases as \(\sim e^{-3/2Mtr} \) in \(t \), which is much slower than the decay of the signal \(e^{-Mtr} \), where \(M_B \) is the baryon mass. Therefore, in order to obtain clear and reliable signals of the ground state from two-point functions in the available early time range, some source techniques
are implemented by replacing the local operator $O^3(0,0)$ by some versions of spatially extended source operators $O^3(s) (0)$ which enhance the contribution of the ground state and suppress that from excited states. The extended source operator $O^3(s)$ is usually realized by calculating the quark propagators through a source vector with a spatial distribution $\phi(x)$,

$$M(x; y) S^s_F(y; t_0) = \sum_z \delta(x - z) \delta(t - t_0) \phi(z), \quad (8)$$

thus the effective propagator $S^s_F(y; t = 0)$ relates to the normal point source propagator $S_F(y; z, t_0)$ as

$$S^s_F(y; t_0) = \sum_z \phi(z) S_F(y; z, t_0). \quad (9)$$

When one calculates a baryon two-point function using the same Wick contraction by replacing the point-source propagators with the effective propagators, it is equivalent to using the spatially extended source operator

$$O^s(t_0) = \sum_{z, w, v} \phi(z) \phi(w) \phi(v) \psi(z, t_0) \psi(w, t_0) \psi(v, t_0), \quad (10)$$

where $\psi \psi \psi$ stands for the original baryon operator (the color indices and corresponding γ matrices are omitted for simplicity. Note that gauge links should be considered if one requires the gauge invariance of spatially extended operators). The matrix element of O^s between the vacuum and the baryon state $|B\rangle$, which manifests the coupling of this operator to the state, can be expressed as,

$$\langle 0 | O^s | B \rangle = \sum_{z, w, v} \phi(z) \phi(w) \phi(v) \Phi_B(z, w, v) \zeta_B, \quad (11)$$

where ζ_B is the spinor reflecting the spin of $|B\rangle$, and $\Phi_B(z, w, v)$ is its Bethe-Salpeter amplitude, which is defined as the corresponding matrix element of the original operator,

$$\langle 0 | \psi(z) \psi(w) \psi(v) | B \rangle \equiv \Phi_B(z, w, v) \zeta_B, \quad (12)$$

In order to enhance the coupling $\langle 0 | O^s | B \rangle$ and suppress the related coupling of excited states, the essence is to tune the parameters in $\phi(x)$ such that $\phi(z) \phi(w) \phi(v)$ resembles $\Phi_B(z, w, v)$ as closely as possible and the overlap integration in Eq. (11) (actually summations over the spatial lattice sites) can be maximized. If the BS amplitudes can be approximately interpreted to be the spatial wave function of a state, the coupling of this operator to excited states can be minimized subsequently according to the orthogonality of the wave functions. The commonly used source techniques include the Gaussian smeared source [8,9] and the wall source in a fixed gauge. The Gaussian smeared source corresponds to the function $\phi(x) \sim e^{-\sigma^2 |x|^2}$ with σ^2 a tunable parameter, while the wall source in a fixed gauge is the extreme situation of the Gaussian smeared source when $\sigma \rightarrow \infty$. The Gaussian smeared source usually works well for states whose BS amplitude has no radial nodes. This is similar to the case in the quantum mechanics where a Gaussian-like function serves as a good trial wave function of the ground state in solving a bound state problem using the variational method with σ the variational parameter.

For the case of this work, we try first the Gaussian smeared source for Ω baryons and find it work surely good for $\Omega_{\frac{3}{2}^+}$. It is not surprising since the $\Omega_{\frac{3}{2}^+}$ is the ground state whose spatial wave functions is $|(1s)\rangle (1s)\rangle (1s)\rangle$ in the standard quark model with a harmonic oscillator potential. However for other states, especially for $\Omega_{\frac{5}{2}^+}$, we cannot get a good effective mass plateau before the signals are underained by noise. Similar phenomena are also observed by previous works (see Ref. [4] for example). Inspired by the quark model description that the $J^P = \frac{3}{2}^+$ decuplet baryons belong to the higher excitation energy bands, we conjecture that the BS amplitude of $\Omega_{\frac{5}{2}^+}$ has radial node(s), and thereby propose a new type of source which reflects some node structure, say,

$$\phi(x) = (1 - A |x|^2) e^{-\sigma^2 |x|^2}, \quad (13)$$

where σ and A are parameters to be tuned to give a good effective mass plateau in the early time range. The effects of the extended source operator on the effective masses of different states are illustrated in Fig. (3). For $J^P = \frac{3}{2}^+$, $\frac{1}{2}^-$ states, we use the Gaussian smeared sources which improve the qualities of the effective mass plateaus as expected. For the $J^P = \frac{5}{2}^+$ state, the new type of the source operators with the nodal structure makes the effective mass plateaus fairly satisfactory in contrast to the case of point source. We advocate that this new type of source operators can be potentially applied to other studies on radial excited states of hadrons.

III. NUMERICAL DETAILS AND SIMULATION RESULTS

The gauge configurations used in this work are generated on two anistropic ensembles with the tadpole-
TABLE I: The input parameters for the calculation. Values of the coupling \(\beta \), anisotropy \(\xi \), the lattice size, and the number of measurements are listed. \(a_s/r_0 \) is determined by the static potential, the first error of \(a_s \) is the statistical error and the second one comes from the uncertainty of the scale parameter \(r_0^{-1} = 410(20) \text{ MeV} \).

\(\beta \)	\(\xi \)	\(a_s/r_0 \)	\(a_s \text{(fm)} \)	\(L a_s \text{(fm)} \)	\(L^3 \times T \)	\(N_{\text{conf}} \)
2.4	5	0.461(4)	0.222(2)(11)	\(\sim 3.55 \)	\(16^3 \times 96 \)	1000
2.8	5	0.288(2)	0.138(1)(7)	\(\sim 3.31 \)	\(24^3 \times 144 \)	1000

As mentioned before, the spatially extended operators we use for \(\Omega \) baryons are not gauge invariant, so we calculate the corresponding two-point functions in the Coulomb gauge by first carrying out the gauge fixing to the gauge configurations. By the use of the source vectors with properly tuned operators, we generate the quark propagators in this gauge, from which the two-point functions in different channels are obtained. Since we focus on the ground states in each channel, the related two-point functions are analyzed with the single-exponential function form in properly chosen time windows,

\[
C^J_{2J}(r, t) \to N^J \Phi^J(r)e^{-m^J t},
\]

where \(J \) denotes different quantum numbers, \(N^J \) stands for an irrelevant normalization constant, \(\Phi^J(r) \) is the BS amplitude and \(m^J \) is the mass. In order to take care of the possible correlation, we fit \(C^J_{2J}(r, t) \) with different \(r \) simultaneously through a correlated minimal-\(\chi^2 \) fit procedure, where the covariance matrix are calculated by the bootstrap method. As such, in addition to the masses \(m_J \), we can also obtain the \(r \)-dependence of the the BS amplitudes \(\Phi^J(r) \). Figure (4) shows the effective mass plateaus for \(C^J_{2J}(r = 0, t) \) and the fit range. We quote the bootstrap errors as the statistical ones for masses and BS amplitudes.

FIG. 3: Smear source \(\Omega \) spectrum. For \(J^P = \frac{3}{2}^+ \) and \(J^P = \frac{1}{2}^- \), we use common Gaussian smeared source, for \(J^P = \frac{1}{2}^+ \), we use a novel “smeared source” with a radial node.

FIG. 4: Effective mass plots of the \(\Omega \) system. The two ensembles are both included. The points with errorbars are lattice data, while the colored bands are fit results indicating both the fit range and the fit error.

The masses for different \(\Omega \) states on the two lattice are listed in Tab. (II), where the mass values are expressed in the physical units using the lattice spacings in Tab. I. The masses of these states are insensitive to the lattice spacings which implies that the discretization uncertainty is small for these states. It is seen that the mass of the \(J^P = \frac{3}{2}^+ \) \(\Omega \) we obtain is consistent with the physical mass of \(\Omega(1672) \), the masses of \(J^P = \frac{1}{2}^- \) and \(\frac{1}{2}^- \) are almost degenerate, as expected from the quark model, but lower than the experimental states \(\Omega(2250) \) and \(\Omega(2380) \). For the \(J^P = \frac{1}{2}^+ \) state, we get a mass of 2.464(26) GeV on the coarse lattice while 2.492(14) GeV on the fine lattice, which is in agreement with the mass of \(\Omega(2470) \).

The BS amplitudes for the \(\frac{1}{2}^- \) and \(\frac{3}{2}^+ \) states are plotted in Fig. (5) (normalized as \(\Phi^J(r = 0) = 1 \)). In order to compare the results from different lattices, we plot the

improved gauge action [10]. The anisotropy \(\xi = a_s/a_t = 5 \) and the lattice sizes are \(L^3 \times T = 16^3 \times 96 \) and \(24^3 \times 144 \), respectively. The relevant input parameters are listed in Tab. I, where the \(a_s \) values are determined through the static potential with the scale parameter \(r_0^{-1} = 410(20) \text{ MeV} \). The spatial extensions of the two lattices are larger than 3 fm, which are expected to be large enough for \(\Omega \) baryons such that the finite volume effects can be neglected. We use the tadpole improved Wilson clover action [11] to calculate the quark propagators with the bare strange quark mass parameter being tuned to reproduce the physical \(\phi \) meson mass value. We use a modified version of a GPU inverter [12] to calculate all the inversions in this work.
The errors of masses are all statistical. We do not include the error owing to the uncertainty of $r_0^{-1} = 410(2)$ MeV here.

TABLE II: The spectrum of the Ω baryons on the two lattices.

β	$m_{\Omega}^{1/2+}$ (GeV)	$m_{\Omega}^{1/2-}$ (GeV)	$m_{\Omega}^{3/2-}$ (GeV)	$m_{\Omega}^{3/2+}$ (GeV)
2.4	1.685(9)	2.176(26)	2.189(13)	2.464(26)
2.8	1.695(4)	2.153(5)	2.125(14)	2.492(14)

$x-$axis in physical units. From the figure one can see that the discretization artifacts are also small for BS amplitudes. We do observe a radial node in the BS amplitude of Ω_3^-. We do not include the error owing to the uncertainty of $r_0^{-1} = 410(2)$ MeV here.

TABLE III: Fit results of the BS amplitudes for Ω_2^+ and Ω_4^+.

J^P	β	r_0 (fm)	κ	b
$\frac{3}{2}^+$	2.4	0.504(3)	1.49(2)	
$\frac{3}{2}^-$	2.8	0.494(4)	1.55(2)	
$\frac{1}{2}^+$	2.4	0.568(5)	1.74(3)	3.7(1)
$\frac{1}{2}^-$	2.8	0.529(8)	1.73(4)	4.5(2)

![FIG. 5: The BS amplitudes of Ω_2^+ and Ω_4^+. The dots are lattice results while the lines are the fitting functions in Eq. (15). A radial node of the BS amplitude of the Ω_4^+ is observed.](image)

Now we resort to the non-relativistic quark model to understand the radial behavior of the BS amplitude of $J^P = 1/2^+ \Omega$. In the non-relativistic approximation, the relativistic quark field ψ can be expressed in terms of its non-relativistic components through the Foldi-Wouthuysen-Tani transformation

$$\psi = \exp \left(\frac{\gamma \cdot D}{2m_s} \right) \left(\chi \eta \right),$$

(16)

where the Pauli spinor χ annihilates a quark and η creates an anti-quark, and D is the covariant derivative operator. η and χ satisfy the conditions

$$\chi|0\rangle = 0, \quad \langle 0|\chi \rangle = 0, \quad \eta|0\rangle = 0, \quad \langle 0|\eta \rangle = 0.$$

(17)

With this expansion, the operator \mathcal{O}^T_Ω can be expressed as

$$\mathcal{O}^T_\Omega \sim \epsilon^{abc} \left[\chi^T a \left(1 + \frac{\sigma \cdot D}{4m_s^2} \right) \right] \sigma_2 \sigma_i \left(1 + \frac{\sigma \cdot D}{4m_s^2} \right) \chi^b \left(1 + \frac{\sigma \cdot D}{4m_s^2} \right) \chi^c.$$

(18)

We would like to caution that this expansion is not justified rigorously for the strange quark since its relativistic effect in the hadron might be important. However, the non-relativistic quark model are usually used to given reasonable descriptions of hadron spectrum, so we tentatively follow this direction to make the following discussion. The non-relativistic wave function for a baryon state in its rest frame is defined in principle as

$$\Psi_J(x_1, x_2, x_3) \zeta \sim \langle 0|\epsilon^{abc} \chi^T a \chi^b \chi^c | \Omega_J \rangle,$$

(19)

where ζ stands for the spin wave function for Ω_J. If we introduce the Jacobi’s coordinates,

$$R = \frac{1}{3} (x_1 + x_2 + x_3),$$

$$\rho = \frac{1}{\sqrt{2}} (x_1 - x_2),$$

$$\lambda = \frac{1}{\sqrt{6}} (x_1 + x_2 - 2x_3),$$

(20)

as is usually done in the non-relativistic quark model study of baryons, in the rest frame of $\Omega_{1/2^+}$ ($R = 0$), the matrix element of $\mathcal{O}^T_\Omega(x_1, x_2, x_3)$ between the vacuum and the Ω state can be written qualitatively as

$$\langle 0|\mathcal{O}^T_\Omega(x_1, x_2, x_3)| \Omega_J \rangle \sim \left(D^i - A^i \frac{\partial^2}{\partial \rho^2} + B^i \frac{\partial^2}{\partial \rho \partial \lambda} + C^i \frac{\partial^2}{\partial \lambda^2} \right) \Psi_J(\rho, \lambda) \zeta.$$

(21)

where we approximate the covariant derivative D by the spatial derivative ∇.

In the standard non-relativistic quark model with harmonic oscillator potentials for baryons, baryons can be sorted into energy bands of the the two independent oscillators, the so-called ρ-oscillator and λ-oscillator, which
are depicted by the radial and orbital quantum numbers \((n_\lambda, l_\lambda)\) and \((n_\rho, l_\rho)\) [2]. For baryons made up of \(u, d, s\) quarks, these energy bands are labelled as \((D, L^P)\), where \(D\) is the irreducible representation of the flavor-spin \(SU(6)\) group, \(L = |l_\rho - l_\lambda|, |l_\rho - l_\lambda| + 1, \ldots, l_\rho + l_\lambda\) is the total orbital angular momentum, \(N = 2(n_\lambda + n_\rho) + (l_\rho + l_\lambda)\) is the total number of the excited quanta of the harmonic oscillators, and \(P\) is the parity of baryons. For the flavor symmetric \(\Omega\) baryons, the lowest \(J^P = \frac{3}{2}^+\) states can be found in the supermultiplets \((56, 2^+_2)\) and \((70, 0^+_2)\). \((56, 2^+_2)\) has the excitation mode \((n_\lambda, n_\rho) = (0, 0)\) and \((l_\lambda, l_\rho) = (2, 0)\) or \((0, 2)\) with the total spin \(S = \frac{3}{2}\), and gives the quantum number \(J^P = \frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+, \frac{7}{2}^+.\) \((70, 0^+_2)\) has the excitation mode \((n_\lambda, n_\rho) = (0, 0)\) and \((l_\lambda, l_\rho) = (1, 1)\) with \(S = \frac{1}{2}\), which corresponds to the quantum number \(J^P = \frac{1}{2}^+\). In this picture, the spatial wave function of the \((56, 2^+_2)\) multiplet can be written qualitatively (here we ignore the angular part) [13, 14]

\[
\Psi(\rho, \lambda) \sim (\rho^2 + \lambda^2)e^{-\alpha(\rho^2 + \lambda^2)},
\]

while the spatial wave function of the \((70, 0^+_2)\) multiplet is either

\[
\Psi(\rho, \lambda) \sim (\rho^2 - \lambda^2)e^{-\alpha(\rho^2 + \lambda^2)},
\]

or

\[
\Psi(\rho, \lambda) \sim \rho \lambda e^{-\alpha (\rho^2 + \lambda^2)},
\]

where the parameter \(\alpha\) depends on the constituent quark mass and the parameters in the potential. Obviously, the local operators correspond to \(\lambda = \rho = 0\), such that their coupling to the \(J^P = \frac{1}{2}^+\) state can be largely suppressed. Recalling that the interpolation operator we use for \(\Omega\) baryons is \(O_\lambda(r)\), which corresponds to \(\rho = 0\) and \(\lambda \propto r\). As such, we have the qualitatively radial behaviors of the Bethe-Salpeter amplitudes

\[
\langle 0|O_{3/2^+}^i(r)|\Omega_{3/2^+}\rangle \sim (A' + B'r^2 + C'r^4)e^{-\alpha r^2}\zeta_i^i,
\]

if we use the wave functions in Eq. (22) and Eq. (23), and

\[
0|O_{3/2^+}^i(r)|\Omega_{3/2^+}^i(70, 0^+_2)\rangle \sim (A'' + B''r^2)e^{-\alpha r^2}\zeta_i^i
\]

for the wave function form in Eq. (24). Obviously, the former may have two nodes in the \(r\) direction, while the later has only one. In this sense, the radial behaviors of the BS amplitudes in Fig. 5 may imply that the \(J^P = \frac{1}{2}^+\) \(\Omega\) baryon we have observed is possibly mainly the \((70, 0^+_2)\) state, whose spatial wave function may have the qualitative form in Eq. (24). It should be noted that these discussions are very tentative and the reality can be much more complicated. This can be seen in Table III where the parameters \(\kappa\) deviate substantially from \(\kappa = 2\) which corresponds to the harmonic oscillator potential.

IV. Summary

We carry out a lattice study of the spectrum and the Bethe-Salpeter amplitudes of \(\Omega\) baryons in the quenched approximation. In the Coulomb gauge, we propose a new type of source vectors for the calculation of quark propagators, which is similar in spirit to the conventionally used Gaussian smearing source technique, but is oriented to increase the coupling to the states whose Bethe-Salpeter amplitude may have more complicated nodal behavior than that of the ground state. As for an excited state, either an orbital excitation or a radial excitations, it is expected that their BS amplitude may have radial nodes, so we use source vectors with nodal structures, which resemble the node structure of its BS amplitude. This technique works in practice, since we can obtain fairly good effective mass plateaus for \(J^P = \frac{1}{2}^+\) at the early time slices.

With the quark mass parameter tuned to be at the strange quark mass using the physical mass of the \(\phi\) meson, we calculate the spectrum of \(\Omega\) baryons with the quantun number \(J^P = \frac{3}{2}^+, \frac{1}{2}^+\) on two anisotropic lattices with the spatial lattice spacing set at \(a_s = 0.222\) fm and \(a_s = 0.138\) fm, respectively. On both lattices, the \(J^P = \frac{3}{2}^-\) and \(\frac{1}{2}^-\) \(\Omega\) baryons have almost degenerate mass in the range from 2100 MeV to 2200 MeV. This is compatible with the expectation of the non-relativistic quark model that they are in the same supermultiplet \((70, 1^-)\) with the same excitation mode, say, \((n_\lambda, n_\rho) = (0, 0)\) and \((l_\lambda, l_\rho) = (1, 0)\) or \((0, 1)\), and the same total quark spin \(S = \frac{1}{2}\). For the \(\frac{1}{2}^+\) \(\Omega\) baryon, we obtain its mass at roughly 2400-2500 MeV. Furthermore, we also calculate the BS amplitude of the \(\frac{1}{2}^-\) \(\Omega\) baryon in the Coulomb gauge and observe a radial node, which can be qualitatively understood as the reflection of the second order differential of the non-relativistic wave function of \((70, 0^+_2)\) baryons. Therefore it is preferable to assign the \(\frac{1}{2}^-\) \(\Omega\) baryon we observe to be a member of \((70, 0^+_2)\) supermultiplet instead of that of \((56, 2^+_2)\).

We notice that the latest \(N_f = 2 + 1\) full-QCD lattice calculation has obtained 11 energy levels of the \(\Omega\) spectrum around and below 2500 MeV, but has difficulties in the assignment of their status for the sake of no reliable criterion to distinguish single particle states from the would-be scattering states. Fortunately we are free of this kind of trouble with the quenched approximation, such that the masses we obtain can be taken as those of the bare \(\Omega\) baryon states before their hadronic decays are switch on. In comparison with the experiments, our predicted masses of \(J^P = \frac{3}{2}^-\) and \(\frac{1}{2}^-\) \(\Omega\) baryons are close to that of \(\Omega(2250)\), and the mass of \(J^P = \frac{1}{2}^+\) is consistent with \(\Omega(2470)\). This observation may be helpful in determining their \(J^P\) quantum numbers.
ACKNOWLEDGEMENTS

The numerical calculations are carried out on Tianhe-1A at the National Supercomputer Center (NSCC) in Tianjin. This work is supported in part by the National Science Foundation of China (NSFC) under Grants No. 11105153, No. 11335001, and 11405053. Z.L. is partially supported by the Youth Innovation Promotion Association of CAS. Y.C. and Z.L. also acknowledge the support of NSFC under No. 11261130311 (CRC 110 by DFG and NSFC).

[1] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014).
[2] E. Klempt and J. M. Richard, Rev. Mod. Phys. 82, 1095 (2010) [arXiv:0901.2055 [hep-ph]].
[3] T. W. Chiu and T. H. Hsieh, Nucl. Phys. A 755, 471 (2005) [hep-lat/0501021].
[4] C. Alexandrou et al. [European Twisted Mass Collaboration], Phys. Rev. D 78, 014509 (2008) [arXiv:0803.3190 [hep-lat]].
[5] J. Bulava, R. G. Edwards, E. Engelson, B. Joo, H. W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace, Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].
[6] S. Gusken, Nucl. Phys. Proc. Suppl. 17, 361 (1990).
[7] R. G. Edwards, J. J. Dudek, D. G. Richards and S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations”.
[8] E. Marinari, Nucl. Phys. Proc. Suppl. 9, 209 (1989).
[9] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 56, 4043 (1997) [hep-lat/9704011].
[10] C. Liu, J. h. Zhang, Y. Chen and J. P. Ma, Nucl. Phys. B 624, 360 (2002) [hep-lat/0109020].
[11] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181, 1517 (2010) [arXiv:0911.3191 [hep-lat]].
[12] G. Karl and E. Obryk, Nucl. Phys. B 8, 609 (1968).
[13] D. Faiman and A. W. Hendry, Phys. Rev. 173, 1720 (1968).