Typical l_1-recovery limit of sparse vectors represented by concatenations of random orthogonal matrices

Yoshiyuki Kabashima1, Mikko Vehkaperä2,3 and Saikat Chatterjee2

1 Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan
2 KTH Royal Institute of Technology and the ACCESS Linnaeus Center, SE-10044, Stockholm, Sweden
3 School of Electrical Engineering, Aalto University, PO Box 13000, FI-00076 Aalto, Finland
E-mail: kaba@dis.titech.ac.jp, mikko.vehkaper@aalto.fi and sach@kth.se

Received 23 August 2012
Accepted 12 November 2012
Published 6 December 2012

Abstract. We consider the problem of recovering an N-dimensional sparse vector x from its linear transformation $y = Dx$ of $M (<N)$ dimensions. Minimization of the l_1-norm of x under the constraint $y = Dx$ is a standard approach for the recovery problem, and earlier studies report that the critical condition for typically successful l_1-recovery is universal over a variety of randomly constructed matrices D. To examine the extent of the universality, we focus on the case in which D is provided by concatenating $T = N/M$ matrices O_1, O_2, \ldots, O_T drawn uniformly according to the Haar measure on the $M \times M$ orthogonal matrices. By using the replica method in conjunction with the development of an integral formula to handle the random orthogonal matrices, we show that the concatenated matrices can result in better recovery performance than that predicted by the universality when the density of non-zero signals is not uniform among the T matrix modules. The universal condition is reproduced for the special case of uniform non-zero signal densities. Extensive numerical experiments support the theoretical predictions.

Keywords: source and channel coding, error correcting codes, statistical inference
1. Introduction

The problem of recovery of sparse vectors from a linear underdetermined set of equations has recently attracted attention in various fields of science and technology due to its many applications, for example, in linear regression [1], communication [2]–[4], multimedia [5]–[7] and compressive sampling (CS) [8, 9]. In such a sparse representation problem, we have the following underdetermined set of linear equations:

$$y = Dx,$$

where $y \in \mathbb{R}^M$ is a vector of interest, $D \in \mathbb{R}^{M \times N}$ is the dictionary (sparsity inducing basis), $x \in \mathbb{R}^N$ is the sparse expression of y and $M < N$. Another way of writing (1) is that a large dimensional sparse vector x is coded/compressed into a small dimensional vector y.

In a simple setup of CS, D is handled as a sensing matrix that can be designed. Recent studies show that the signal (vector) recovery performance can be improved significantly by optimizing the design of D in conjunction with the use of an approximate Bayesian inference scheme [10, 11]. However, an appropriate dictionary that induces sparse expressions is generally determined by the nature of the signal of interest, and, therefore, cannot be designed freely. The purpose of this paper is to investigate a sparsity inducing property of such a predetermined dictionary when the widely used l_1-recovery scheme is employed.

doi:10.1088/1742-5468/2012/12/P12003

2. Problem setting

3. Statistical mechanics approach

3.1. Statistical mechanical formulation

3.2. Integral formula for handling random orthogonal matrices

3.3. Replica method

3.3.1. Energetic part

3.3.2. Entropic part

3.3.3. Free energy and saddle point equations

3.4. Critical condition for l_1-recovery

3.5. Validity of RS evaluation

4. Case studies

4.1. Uniform and localized densities

4.2. Numerical justification

5. Summary

Acknowledgments

Appendix. Derivation of (10)

References
Typical l_1-recovery limit of sparse vectors represented by concatenations of random orthogonal matrices

and the task will be to find the x from y with the full knowledge of D. For this problem, the optimum solution is the sparsest vector satisfying equation (1). Finding the sparsest vector is, however, NP-hard; thus, a variety of practical algorithms have been developed. Among the most prominent is the convex relaxation approach in which the objective is to find the minimum l_1-norm solution to (1). For the l_1-norm minimization, if x is K-sparse, which indicates that the number of non-zero entries of x is at most K, the minimum K that satisfies (1) gives the limit up to which the signal can be compressed for a given dictionary D. An interesting question then arises: how does the choice of the dictionary D affect the typical compression ratio that can be achieved using the l_1-recovery?

Recent results in the parallel problem of CS, where D acts as a sensing matrix, reveal that the typical conditions for perfect l_1-recovery are universal for all random sensing matrices that belong to the rotationally invariant matrix ensembles [12]. The standard setup, where the entries of the sensing matrix are independent standard Gaussian, is an example that belongs to this ensemble. It is also known that the conditions required for perfect recovery do not in general depend on the details of the marginal distribution related to the non-zero elements. On the other hand, we know that correlations in the sensing matrix can degrade the performance of l_1-recovery [13]. This suggests intuitively that the use of a sample matrix of the rotationally invariant ensembles as D is preferred in the recovery problem when we expect to encounter a variety of dense signals y. However, the set of matrix ensembles whose l_1-recovery performances are known is still limited, and further investigation is needed to assess whether the choice of D is indeed so straightforward.

The purpose of this study is to fulfil this demand. Specifically, we examine the typical l_1-recovery performance of matrices constructed by concatenating several randomly chosen orthonormal bases. Such a construction has attracted considerable attention due to ease of implementation and theoretical elegance [14]–[16] for designing sparsity inducing over-complete dictionaries for natural signals [17]. For a practical engineering scheme, audio coding (music source coding) [18] uses a dictionary formed by concatenating several modified discrete cosine transforms with different parameters.

By using the replica method in conjunction with the development of an integral formula to handle random orthogonal matrices, we show that the dictionary consisting of concatenated orthogonal matrices is also preferred in terms of the performance of l_1-recovery. More precisely, the matrices can result in better l_1-recovery performance than that of the rotationally invariant matrices when the density of non-zero entries of x is not uniform among the orthogonal matrix modules, while the performance is the same between the two types of matrices for the uniform densities. This surprising result further promotes the use of the concatenated orthogonal matrices in practical applications.

This paper is organized as follows. In section 2, we explain the problem setting that we investigated. In section 3, which is the main part of this paper, we discuss the development of a methodology for evaluating the recovery performance of the concatenated orthogonal matrices on the basis of the replica method and an integral formula concerning the random orthogonal matrices. In section 4, we explain the significance of the methodology through application to two distinctive examples, the validity of which is also justified by extensive numerical experiments. Section 5 is devoted to a summary.
2. Problem setting

We assume that N is a multiple of M; namely, $T = N/M = 2, 3, \ldots \in \mathbb{N}$. Suppose a situation in which an $M \times N$ dictionary matrix D is constructed by concatenating T module matrices O_1, O_2, \ldots, O_T, which are drawn uniformly and independently from the Haar measure on $M \times M$ orthogonal matrices, as

$$D = [O_1 \ O_2 \ \cdots \ O_T].$$

(2)

Using this, we compress a sparse vector $x^0 \in \mathbb{R}^N$ to $y \in \mathbb{R}^M$ following the manner of (1).

We denote x^0 for the concatenation of T sub-vectors of M dimensions as

$$x^0 = \begin{pmatrix} x_{1}^0 \\ x_{2}^0 \\ \vdots \\ x_{T}^0 \end{pmatrix},$$

(3)

yielding the expression

$$y = D x^0 = O_1 x_1^0 + O_2 x_2^0 + \cdots + O_T x_T^0.$$

(4)

With full knowledge of O_t ($t = 1, 2, \ldots, T$) and y, the l_1-recovery is performed by solving the constrained minimization problem

$$
\min_{x_1, x_2, \ldots, x_T} \left\{ \sum_{t=1}^{T} \|x_t\|_1 \right\} \quad \text{subj. to} \quad y = \sum_{t=1}^{T} O_t x_t,
$$

(5)

where $\|x\|_1 = \sum_{i=1}^{N} |x_i|$ for $\forall \ x = (x_i) \in \mathbb{R}^N$ and $\min_X \{f(X)\}$ generally denotes the minimization of $f(X)$ with respect to X and $x_t \in \mathbb{R}^M$ ($t = 1, 2, \ldots, T$). At the minimum condition, $\{x_t\}$ constitutes the recovered vector \hat{x} in the manner of (3).

To theoretically evaluate the l_1-recovery performance, we assume that the entries of x_i^0, x_m^0 are distributed independently according to a block-dependent sparse distribution

$$p_t(x) = (1 - \rho_t) \delta(x) + \rho_t f_t(x),$$

(6)

where $0 \leq \rho_t \leq 1$ means the density of the non-zero entries of the tth block of the same size M in x^0 and $f_t(x)$ is a distribution whose second moment about the origin is finite, which is assumed as unity for simplicity. Intuitively, as the compression rate $\alpha = M/N = T^{-1}$ decreases, the overall density $\rho = T^{-1}\sum_{t=1}^{T} \rho_t$ up to which (5) can successfully recover a typical sample of the original vector x^0 becomes smaller. However, the precise performance may depend on the profile of ρ_t. The above setting allows us to quantitatively examine how such block dependence of the non-zero density affects the critical relation between α and ρ for typically successful l_1-recovery of x^0.

3. Statistical mechanics approach

3.1. Statistical mechanical formulation

Expressing the solution of (5) as

$$\hat{x} = \lim_{\beta \to \infty} \int \text{d}x \ P_\beta(x | y, \{O_t\}) \ e,$$

(7)

doi:10.1088/1742-5468/2012/12/P12003

4
where
\[
P_\beta(x|y, \{O_t\}) = Z^{-1}(\beta; \{x_t^0\}, \{O_t\}) \delta \left(y - \sum_{t=1}^T O_t x_t \right) \exp \left(-\beta \sum_{t=1}^T \|x_t\|_1 \right)
\]
\[
= Z^{-1}(\beta; \{x_t^0\}, \{O_t\}) \delta \left(\sum_{t=1}^T O_t (x_t^0 - x_t) \right) \exp \left(-\beta \sum_{t=1}^T \|x_t\|_1 \right)
\]
and \(Z^{-1}(\beta; \{x_t^0\}, \{O_t\}) \equiv \int \prod_{t=1}^T \delta(x_t^0 - x_t) \exp(-\beta \sum_{t=1}^T \|x_t\|_1) \), constitutes the basis of our analysis. Equations (7) and (8) mean that \(\bar{x} \) can be identified with the average of the state variable \(x \) for the Gibbs–Boltzmann distribution (8) in the vanishing temperature limit \(\beta \to \infty \). However, as (8) depends on \(\{x_t^0\} \) and \(\{O_t\} \), further averaging with respect to the generation of these external random variables is necessary for evaluation of the typical properties of the \(l_1 \)-recovery. Evaluation of such ‘double averages’ can be carried out systematically using the replica method [19].

3.2. Integral formula for handling random orthogonal matrices

In the replica method, we need to evaluate the average of \(Z^n(\beta; \{x_t^0\}, \{O_t\}) \) for \(n \in \mathbb{N} \) with respect to \(O_1, O_2, \ldots, O_T \) over the uniform distributions of \(M \times M \) orthogonal matrices. However, this is rather laborious and can easily yield notational confusion. To reduce such technical obstacles, we introduce a formula that is convenient for accomplishing this task before going into detailed manipulation. Similar formulae have been introduced to handle random eigenbases of symmetric matrices [12], [20]–[23] and random left and right eigenbases of rectangular matrices [24, 25].

Let us assume that the \(M \)-dimensional vectors \(u_t = x_t^0 - x_t \ (t = 1, 2, \ldots, T) \) are characterized by their norms as \(v_1 = M^{-1}|u_1|^2, \ v_2 = M^{-1}|u_2|^2, \ldots, v_T = M^{-1}|u_T|^2 \), where \(|u| \) denotes the standard Euclidean norm of the vector \(u \). For these vectors, we define the function
\[
F(\{v_t\}) = \lim_{M \to \infty} \frac{1}{M} \ln \left(\delta \left(\sum_{t=1}^T O_t u_t \right) \right)
\]
\[
= \lim_{M \to \infty} \frac{1}{M} \ln \left(\frac{\int \prod_{t=1}^T \delta(u_t) \delta \left(\sum_{t=1}^T O_t u_t \right)}{\int \prod_{t=1}^T \delta(u_t)} \right),
\]
where \([f(X)]_X \) generally denotes the average of \(f(X) \) with respect to \(X \), and \(\mathcal{D}O \) denotes the Haar measure of the \(M \times M \) orthogonal matrices. Our claim is that by explicitly using \(v_1, v_2, \ldots, v_T \), (9) can be expressed as
\[
F(\{v_t\}) = \extr_{\Lambda_1, \Lambda_2, \ldots, \Lambda_T} \left\{ -\frac{1}{2} \ln \left(\sum_{t=1}^T \Lambda_t^{-1} \right) - \frac{1}{2} \sum_{t=1}^T \ln(\Lambda_t) + \frac{1}{2} \sum_{t=1}^T \Lambda_t v_t \right\}
\]
\[
- \frac{1}{2} \sum_{t=1}^T \ln(v_t) - \frac{T}{2},
\]
where \(\extr_X \{f(X)\} \) generally denotes the extremization of function \(f(X) \) with respect to \(X \). Expression (10) is derived from the fact that for fixed \(u_t, O_t u_t \) moves uniformly on the
surface of the M-dimensional hypersphere of radius $\sqrt{Mv_t}$ when O_t varies according to the uniform distribution of the orthogonal matrices; therefore, $D O_t$ in (9) can be replaced by a spherical measure of the M-dimensional vector $d\mathbf{u}_t \delta(|\mathbf{u}_t|^2 - Mv_t)$. For details, see the appendix.

The function $F(\{v_t\})$ physically represents a characteristic exponent of the probability that the M-dimensional vectors \mathbf{u}_t ($t = 1, 2, \ldots, T$) form a closed loop satisfying $\sum_{t=1}^T \mathbf{u}_t = \mathbf{0}$ when they are independently and isotropically sampled under the norm constraints of $|\mathbf{u}_t|^2 = Mv_t$. For small T, the loop condition strongly restricts the region of $\{v_t\}$ in which $F(\{v_t\})$ is well defined. In concrete terms, $F(\{v_t\})$ diverges to minus infinity unless an equality

$$v_1 = v_2$$

and the triangular inequalities

$$v_1 < v_2 + v_3, \quad v_2 < v_1 + v_3, \quad v_3 < v_1 + v_2$$

are satisfied for $T = 2$ and 3, respectively. In particular, the constraint of (11) requires us to deal with the system of $T = 2$ in a manner different from that of $T \geq 3$ except for the case of $\rho_1 = \rho_2$, as discussed in the analysis of section 3.4.

3.3. Replica method

Now, we are ready to apply the replica method to analyse the typical property of the l_1-recovery (7). For this, we evaluate the nth moment of the partition function using the identity

$$Z^n(\beta; \{x_t^0\}, \{O_t\}) = \int \left(\prod_{a=1}^n \prod_{t=1}^T d\mathbf{x}_t^a \right) \left(\prod_{a=1}^n \delta \left(\sum_{t=1}^T O_t (x_t^0 - x_t^a) \right) \right) \times \exp \left(-\beta \sum_{a=1}^n \sum_{t=1}^T \|\mathbf{x}_t^a\|_1 \right),$$

which is only valid for $n \in \mathbb{N}$. In the large system limit $M \to \infty$, the rescaled logarithm of the moment, $M^{-1} \ln [Z^n(\beta; \{x_t^0\}, \{O_t\})_{\{O_t\}}]$, can be accurately evaluated for all $n \in \mathbb{N}$ by using the saddle point method with respect to the macroscopic variables $Q_t^a = M^{-1}|x_t^a|^2$, $q_t^{ab} = M^{-1}x_t^a \cdot x_t^b$ and $m_t^a = M^{-1}x_t^0 \cdot x_t^a$, where $a, b = 1, 2, \ldots, n$ and $t = 1, 2, \ldots, T$. The intrinsic permutation symmetry concerning the replica indices $a = 1, 2, \ldots, n$ in (13) guarantees that there exists a saddle point of the form $Q_t^a = Q$, $q_t^{ab} = q_t$ and $m_t^a = m_t$, which is often termed the replica symmetric (RS) solution. As a simple and plausible candidate, we adopt this solution as the relevant saddle point for describing the typical property of the l_1-recovery, the validity of which will be checked in section 3.5. The detailed computation is carried out as follows.

3.3.1. Energetic part

Let us consider averaging (13) with respect to $\{O_t\}$ and define for each fixed set of $\{x_t^a\}$

$$I(\{u_t^a\}) = \left[\prod_{a=1}^n \delta \left(\sum_{t=1}^T O_t u_t^a \right) \right]_{\{O_t\}},$$

do:10.1088/1742-5468/2012/12/P12003 6
where \(\mathbf{u}_t^a = \mathbf{x}_t^0 - \mathbf{x}_t^a \). When \(\{ \mathbf{x}_t^a \} \) is placed in the configuration of the RS solution, the expression

\[
[u_t^1 \ u_t^2 \ \cdots \ u_t^n]^T \times [u_t^1 \ u_t^2 \ \cdots \ u_t^n] = \begin{pmatrix}
MR_t & Mr_t & \cdots & Mr_t \\
Mr_t & MR_t & \cdots & Mr_t \\
\vdots & \vdots & \ddots & \vdots \\
Mr_t & Mr_t & \cdots & MR_t
\end{pmatrix}
\]

\[
= E \times \begin{pmatrix}
(M(R_t - r_t + nr_t) & 0 & \cdots & 0 \\
0 & M(R_t - r_t) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & M(R_t - r_t)
\end{pmatrix} \times E^T
\]

(15)

holds for each \(t \), where \(T \) stands for matrix transpose, \(R_t = Q_t - 2m_t + \rho_t \) and \(r_t = q_t - 2m_t + \rho_t \). \(E = [e_1 \ e_2 \ \cdots \ e_n] \) denotes an \(n \times n \) orthogonal matrix composed of the vector \(e_1 = (n^{-1/2}, n^{-1/2}, \ldots, n^{-1/2})^T \) and an orthonormal set of \(n-1 \) vectors \(e_2, e_3, \ldots, e_n \) that are orthogonal to \(e_1 \). This indicates that \([u_t^1 \ u_t^2 \ \cdots \ u_t^n] \) may be expressed as

\[
[u_t^1 \ u_t^2 \ \cdots \ u_t^n] = [\tilde{u}_t^1 \ \tilde{u}_t^2 \ \cdots \ \tilde{u}_t^n] \times E^T
\]

(16)

by using a set of \(n \) orthogonal vectors \(\{\tilde{u}_t^a\} \), whose norms are given as \(|\tilde{u}_t^a|^2 = M(R_t - r_t + nr_t) = M(Q_t - q_t + n(q_t - 2m_t + \rho_t)) \) and \(|\tilde{u}_t^a|^2 = M(R_t - r_t) = M(Q_t - q_t) \) for \(a = 2, 3, \ldots, n \), along with an \(n \times n \) orthogonal matrix \(E \) that does not depend on \(t \). This guarantees the equality \(\mathcal{I}(\{u_t^a\}) = \mathcal{I}(\{\tilde{u}_t^a\}) \). Furthermore, the condition \(n \ll M \) and the orthogonality of \(\{\tilde{u}_t^a\} \) among the replica indices \(a = 1, 2, \ldots, n \) allows us to evaluate the average concerning \(\{O_t\} \) independently for each index \(a \) when computing \(\mathcal{I}(\{\tilde{u}_t^a\}) \). This, in conjunction with (9), provides each set \(\{\mathbf{x}_t^a\} \) of the RS configuration with an expression of (14) as

\[
\frac{1}{M} \ln \mathcal{I}(\{u_t^a\}) = F(Q_t - q_t + n(q_t - 2m_t + \rho_t)) + (n - 1)F(Q_t - q_t).
\]

(17)

The right-hand side of (17) is likely to hold for \(n \in \mathbb{R} \) as well, although (14) is defined originally only for \(n \in \mathbb{N} \).

3.3.2. Entropic part. On the other hand, inserting the identities \(1 = \int M \, dQ_t \delta(|\mathbf{x}_t^a|^2 - MQ_t) \), \(1 = \int M \, dq_t \delta(\mathbf{x}_t^a \cdot \mathbf{x}_t^b - MQ_t) \) and \(1 = \int M \, dm_t \delta(\mathbf{x}_t^a \cdot \mathbf{x}_t^a - Mm_t) \) \((a, b = 1, 2, \ldots, n; t = 1, 2, \ldots, T) \) into (13) and taking an average concerning \(\{\mathbf{x}_t^a\} \), in conjunction with integration with respect to dynamical variables \(\{\mathbf{x}_t^a\} \), results in the expression

\[
\mathcal{V}(\{Q_t, q_t, m_t\}) = \int \left(\prod_{t=1}^T \prod_{a=1}^n \frac{1}{\beta} \delta(|\mathbf{x}_t^a|) \right) \times \left(\prod_{t=1}^T \prod_{a=1}^n \delta(|\mathbf{x}_t^a|^2 - MQ_t) \right)
\times \left(\prod_{t=1}^T \prod_{a>b} \delta(\mathbf{x}_t^a \cdot \mathbf{x}_t^b - MQ_t) \right) \times \left(\prod_{t=1}^T \prod_{a=1}^n \delta(\mathbf{x}_t^0 \cdot \mathbf{x}_t^a - Mm_t) \right)
\times \int \frac{dQ}{\mathcal{Q}} \exp \left(M(A(\{Q_t, q_t, m_t\}, \{\tilde{Q}_t^a, \tilde{q}_t^a, \tilde{m}_t^a\}) + B(\{\tilde{Q}_t^a, \tilde{q}_t^a, \tilde{m}_t^a\}) \right),
\]

(18)

doi:10.1088/1742-5468/2012/12/P12003
3.3.3 Free energy and saddle point equations. The replica method uses the delta function as \(\delta(|x|^2 - MQ) = (4\pi \sqrt{-1})^{-1} \int_{-\infty}^{\infty} d\hat{Q}^2 \exp(-\hat{Q}^2/2(|x|^2 - MQ)), \)

for a fixed set of \(\{Q_t, q_t, m_t\} \). The conjugate variable \(\hat{Q}_t^a \) is introduced to express a delta function as \(\delta(|x|^2 - MQ) = \int_{\mathbb{R}^d} d\hat{Q}_t^a \exp(-\hat{Q}_t^a/2(|x|^2 - MQ)) \)

and similarly for \(\hat{q}_t^{ab} \) and \(\hat{m}_t^a \). The notation \(d\hat{Q} \) stands for an integral measure \(\prod_{t=1} N_{\alpha=1} d\hat{Q}_t^a \prod_{a>b} d\hat{q}_t^{ab} \prod_{a=1} d\hat{m}_t^a \), and the functions on the right-hand side are defined as

\[
A(\{Q, q, m\}, \{\hat{Q}_t, \hat{q}_t^{ab}, \hat{m}_t^a\}) = \sum_{t=1}^T \left(\sum_{a=1}^n \frac{\hat{Q}_t^a Q_t}{2} - \sum_{a>b} \hat{q}_t^{ab} q_t - \sum_{a=1}^n \hat{m}_t^a m_t \right)
\]

and

\[
B(\{\hat{Q}_t^a, \hat{q}_t^{ab}, \hat{m}_t^a\}) = \sum_{t=1}^T \ln \left(\int \left(\prod_{a=1}^n dx_t^a \right) \exp \left(-\sum_{a=1}^n \frac{\hat{Q}_t^a (x_t^a)^2}{2} + \sum_{a>b} \hat{q}_t^{ab} x_t^a x_t^b + \sum_{a=1}^n \hat{m}_t^a x_t^a - \sum_{a=1}^n \beta |x_t^a| \right) \right),
\]

where the average for \(x_0^a \) is taken according to \((6) \). The expression of \((18) \) indicates that its rescaled logarithm is accurately evaluated using the saddle point method with respect to the conjugate variables in the large system limit \(M \to \infty \). In addition, the replica symmetry guarantees that the relevant saddle point is of the RS form as \(\hat{Q}_t^a = \hat{Q}_t, \hat{q}_t^{ab} = \hat{q}_t \) and \(\hat{m}_t^a = \hat{m}_t \). As a consequence, the evaluation yields

\[
\frac{1}{M} \ln \mathcal{V}(\{Q_t, q_t, m_t\}) = \sum_{t=1}^T \text{extr}_{\hat{Q}_t, \hat{q}_t, \hat{m}_t} \left\{ \frac{n\hat{Q}_t Q_t}{2} - \frac{n(n-1)\hat{q}_t q_t}{2} - n\hat{m}_t m_t \right. \\
+ \left. \ln \left(\int Dz \left(\int dx \exp \left(-\frac{(\hat{Q}_t + \hat{q}_t) x^2}{2} + (\sqrt{\hat{q}_t} z + \hat{m}_t x_0^a)x - \beta |x| \right) \right) \right) \right\},
\]

where \(Dz = dz \exp(-z^2/2) / \sqrt{2\pi} \) denotes the Gaussian measure. This is also likely to hold for \(n \in \mathbb{R} \), although \((18) \) is originally defined only for \(n \in \mathbb{N} \).

3.3.3 Free energy and saddle point equations. The replica method uses the identity \(-(\beta M)^{-1} \ln Z(\beta; \{x^n\}, \{O\}) = -\lim_{n \to 0} \partial/\partial n) M^{-1} \ln (Z^n(\beta; \{x^n\}, \{O\}) \) to evaluate the typical free energy density. The above argument indicates that \(M^{-1} \ln (Z^n(\beta; \{x^n\}, \{O\}) \) can be computed by extremizing the sum of \((17) \) and \((21) \) with respect to \{Q_t, q_t, m_t\}. Furthermore, the obtained expression is likely to hold for \(n \in \mathbb{R} \), although the calculations are based on \((13) \), which is only valid for \(n \in \mathbb{N} \). We, therefore, take the limit of \(n \to 0 \) utilizing the expressions of \((17) \) and \((21) \) for \(n \in [0,1] \) as well. In particular, in the limit of \(\beta \to \infty \), which is relevant in the current problem,
the expression of the free energy of the vanishing temperature is expressed as

\[\lim_{\beta \to \infty} \frac{1}{\beta M} \left[\ln Z(\beta; \{x_i^0\}, \{O_i\}) \right]_{\{x_i^0\},\{O_i\}} = -\text{extr} \left\{ \sum_{t=1}^{T} \left(\frac{\partial F(\{\chi_t\})}{\partial \chi_t} (Q_t - 2m_t + \rho_t) + \frac{\hat{Q}_t Q_t}{2} - \frac{\hat{\chi}_t \chi_t}{2} + \hat{m}_t m_t \right) \right\} - \int Dz \left[\phi \left(\sqrt{\hat{\chi}_t z} + \hat{m}_t x^0_t; \hat{Q}_t \right) \right]_{x^0_t},\]

where

\[\phi \left(\sqrt{\hat{\chi}_t z} + \hat{m}_t x^0_t; \hat{Q}_t \right) = \min_x \left\{ \frac{\hat{Q}_t}{2} x^2 - \left(\sqrt{\hat{\chi}_t z} + \hat{m}_t x^0_t \right) x + |x| \right\},\]

and rescaled variables are introduced as \(\beta(Q_t - q_t) \to \chi_t, \hat{q}_t/\beta^2 \to \hat{\chi}_t, (\hat{Q}_t + \hat{q}_t)/\beta \to \hat{Q}_t\) and \(\hat{m}_t/\beta \to \hat{m}_t\) to properly describe the relevant solution in the limit of \(\beta \to \infty\). Extremization is to be performed with respect to \(\{Q_t, \chi_t, m_t, \hat{Q}_t, \hat{\chi}_t, \hat{m}_t\}\).

Similarly to earlier studies, at the extremum characterized by a set of the saddle point equations

\[\hat{Q}_t = -2 \frac{\partial F(\{\chi_t\})}{\partial \chi_t} = R_t / \chi_t,\]

\[\hat{\chi}_t = 2 \sum_{s=1}^{T} \frac{\partial^2 F(\{\chi_t\})}{\partial \chi_t \partial \chi_s} (Q_s - 2m_s + \rho_s),\]

\[\hat{m}_t = -2 \frac{\partial F(\{\chi_t\})}{\partial \chi_t} = R_t / \chi_t,\]

\[Q_t = \int Dz \left[X^2(\sqrt{\hat{\chi}_t z} + \hat{m}_t x^0_t; \hat{Q}_t) \right]_{x^0_t},\]

\[\chi_t = \int Dz \left[\frac{\partial X^2(\sqrt{\hat{\chi}_t z} + \hat{m}_t x^0_t; \hat{Q}_t)}{\partial (\sqrt{\hat{\chi}_t z})} \right]_{x^0_t},\]

\[m_t = \int Dz \left[x^0_t X(\sqrt{\hat{\chi}_t z} + \hat{m}_t x^0_t; \hat{Q}_t) \right]_{x^0_t},\]

\(Q_t\) and \(m_t\) \((t = 1, 2, \ldots, T)\) physically denote the macroscopic averages of the recovered vector \(\tilde{x}_t\) as \(M^{-1} [||\tilde{x}_t||^2]_{\{x^0_t\},\{O_i\}}\) and \(M^{-1} [\tilde{x}_t \cdot \tilde{x}_t]_{\{x^0_t\},\{O_i\}}\), respectively. Here, \(R_t = \Lambda_t^{-1}/(\sum_{t=1}^{T} \Lambda_t^{-1})\) is provided by the extremum solution of (10) for \(\{v_t\} = \{\chi_t\}\), and

\[X(h; \hat{Q}) = -\partial \phi(h; \hat{Q}) / \partial h = \begin{cases} (h - 1)/\hat{Q}, & h > 1, \\ 0, & |h| \leq 1, \\ (h + 1)/\hat{Q}, & h < -1. \end{cases}\]

For \(T = 2\), a Lagrange multiplier should be exceptionally introduced in (25) to enforce \(\chi_1 = \chi_2\).
3.4. Critical condition for l_1-recovery

The success of the l_1-recovery is characterized by the condition in which $Q_t = m_t = \rho_t$ is satisfied at the extremum for $\forall t = 1, 2, \ldots, T$. Therefore, one can evaluate the critical relation between $\alpha = 1/T$ and $\rho = T^{-1}\sum_{t=1}^{T}\rho_t$ by examining the thermodynamic stability of the success solution $Q_t = m_t = \rho_t$ ($t = 1, 2, \ldots, T$) for the saddle point equations (24)–(29).

We assume $T \geq 3$ for a while, since an exceptional treatment is required for $T = 2$. To obtain the success solution, it is necessary that $\chi_t = 0$ and $Q_t = \hat{m}_t = +\infty$ hold. Expanding (27)–(29) under the assumption of $\hat{Q}_t = \hat{m}_t \gg 1$ yields

$$Q_t \simeq \rho_t - \frac{4\rho_t}{\sqrt{2\pi} \hat{Q}_t} + \frac{1}{\hat{Q}_t^2} (2(1 - \rho_t)G(\hat{x}_t) + \rho_t(\hat{x}_t + 1)) + O(\hat{Q}_t^{-3}),$$

$$m_t \simeq \rho_t - \frac{2\rho_t}{\sqrt{2\pi} \hat{Q}_t} + O(\hat{Q}_t^{-3}),$$

$$\chi_t \simeq \frac{2(1 - \rho_t)Q(\hat{x}_t/2) + \rho_t}{\hat{Q}_t},$$

where $Q(x) = \int_{x}^{\infty} Dz$,

$$G(x) = (x + 1)Q(x^{-1/2}) - x^{1/2}e^{-1/(2x)} \sqrt{2\pi},$$

and we used $[(x_t^{-1})^2]_t = \rho_t$, which is derived from assumption (6). These result in the expression

$$Q_t - 2m_t + \rho_t \simeq \frac{2(1 - \rho_t)G(\hat{x}_t) + \rho_t(\hat{x}_t + 1)}{\hat{Q}_t^2} + O(\hat{Q}_t^{-3}).$$

In addition, (10) indicates that

$$\frac{\partial^2 F\{\chi_k\}}{\partial \chi_t \partial \chi_s} = \frac{1}{2} \frac{\partial \Lambda_s}{\partial \chi_t} + \frac{1}{2 \chi_t} \delta_{ts} = \frac{1}{2} \left(\frac{\partial \chi_m}{\partial \Lambda_n} \right)^{-1} \delta_{ts} + \frac{1}{2 \chi_t} \delta_{ts},$$

holds, where $\{\Lambda_t\}$ is the solution of T coupled equations

$$\chi_t = \frac{1}{\Lambda_t} \left(1 - \frac{\Lambda_t^{-1}}{\sum_{t=1}^{T} \Lambda_t^{-1}} \right) = \frac{1}{\Lambda_t} (1 - R_t).$$

Differentiating this yields

$$\frac{\partial \chi_m}{\partial \Lambda_n} = -\frac{(1 - 2R_m)}{\Lambda_m} \delta_{mn} - \frac{R_m R_n}{\Lambda_m \Lambda_n} \equiv -(J_{mn} + K_{mn}),$$

where we denote $J = (J_{mn}) = ((1 - 2R_m)\Lambda_m^{-2}\delta_{mn})$ and $K = (K_{mn}) = ((R_m R_n)(\Lambda_m \Lambda_n)^{-1})$.

This expression makes it possible to evaluate $(\partial \Lambda_m/\partial \chi_n) = (\partial \chi_m/\partial \Lambda_n)^{-1}$ as

$$\left(\frac{\partial \chi_m}{\partial \Lambda_n} \right)^{-1} = -(J (I + J^{-1} K))^{-1} = -(I + J^{-1} K)^{-1} J^{-1}$$

$$= -\sum_{p=0}^{\infty} (-1)^p (J^{-1} K)^p J^{-1} = -T (I + M)^{-1} T,$$

doi:10.1088/1742-5468/2012/12/P12003
where \(I = (\delta_{mn}) \), \(T = (\Lambda_m(1-2R_m)^{-1/2}\delta_{mn}) \) and \(M = (R_m R_n(1-2R_m)^{-1/2}(1-2R_n)^{-1/2}) \). Insertion of (35), (36) and (39) into (25) yields a set of equations to determine \(\{\hat{\chi}_t\} \) for a given set of non-zero densities \(\{\rho_t\} \),
\[
\hat{\chi}_t = \frac{2(1-\rho_t)G(\hat{\chi}_t) + \rho_t(\hat{\chi}_t + 1)}{R_t^2} - \sum_{s=1}^{T} (S(I + M)^{-1}S)_{ts}(1-R_s)^2 (2(1-\rho_s)G(\hat{\chi}_s) + \rho_s(\hat{\chi}_s + 1)),
\]
where we set \(S = (\delta_{mn}/(R_m\sqrt{1-2R_m})) \) and used the relation \(T/\hat{Q}_t = (1-R_t)S \), which is obtained from (24) and (37).

Equations (25) and (33) indicate that the critical condition for making \(\chi_t = 0 \) stable is expressed as
\[
R_t = 2(1-\rho_t)Q(\hat{\chi}_t^{-1/2}) + \rho_t.
\]
Furthermore, the condition
\[
\sum_{t=1}^{T} R_t = 1
\]
must hold by the definition of \(R_t \).

To characterize the critical condition for the success of the \(l_1 \)-recovery, let us suppose that the set of non-zero densities \(\{\rho_t\} \) is provided as a function of a single parameter \(\mu \) as \(\{\rho_t(\mu)\} \). For \(T \geq 3 \), the critical situation is specified by an appropriate set of \(2T + 1 \) variables of \(\mu \), \(\{\hat{\chi}_t\} \) and \(\{R_t\} \). These are provided by \(2T + 1 \) conditions of (40)–(42).

On the other hand, the critical condition for \(T = 2 \) is provided differently from (40)–(42) because the constraint of \(\chi_1 = \chi_2 \) to keep \(F(\chi_1, \chi_2) \) well defined requires \(R_1 = R_2 = 1/2 \) for any pair of \(\rho_1 \) and \(\rho_2 \). Explicitly, the condition is provided by the following four coupled equations:
\[
\hat{\chi}_1 = 4(1-\rho_1(\mu))G(\hat{\chi}_1) + 4\rho_1(\mu)(\hat{\chi}_1 + 1) + \eta,
\]
\[
\hat{\chi}_2 = 4(1-\rho_2(\mu))G(\hat{\chi}_2) + 4\rho_2(\mu)(\hat{\chi}_2 + 1) - \eta,
\]
\[
2(1-\rho_1(\mu))Q(\hat{\chi}_1^{-1/2}) + 2\rho_1(\mu) = \frac{1}{2},
\]
\[
2(1-\rho_2(\mu))Q(\hat{\chi}_2^{-1/2}) + 2\rho_2(\mu) = \frac{1}{2},
\]
where \(\eta \) is a Lagrange parameter to enforce \(\chi_1 = \chi_2 \). These determine the four variables \(\hat{\chi}_1, \hat{\chi}_2, \eta \) and \(\mu \) at the critical condition.

Equations (40)–(42) for \(T \geq 3 \) and (43)–(46) for \(T = 2 \) constitute the main results of this paper. For \(T = 2 \), an equivalent result can also be obtained in a slightly different manner [26].

3.5. Validity of RS evaluation

The above calculation can be generalized to arbitrary levels of replica symmetry breaking (RSB). For example, under the one-step RSB (1RSB) ansatz, where \(n \) replicas of each block \(t \) are classified into \(n/x \) groups of identical size \(x \) and their overlaps are assumed to be \(x_a^t \cdot x_b^t/M = q_{ab} \) if \(a \) and \(b \) belong to the same group and \(q_{ab} \leq q_{tt} \) otherwise, (17)
and (21) are modified as
\[
\frac{1}{M} \ln \mathcal{I}(\{u_t^n\}) = F(\{Q_t - q_{1t} + x(q_{1t} - q_{0t}) + n(q_{0t} - 2m_t + \rho_t)\})
+ \left(\frac{n}{x} - 1\right) F(\{Q_t - q_{1t} + x(q_{1t} - q_{0t})\}) + \left(n - \frac{n}{x}\right) F(\{Q_t - q_{1t}\})
\]
and
\[
\frac{1}{M} \ln \mathcal{V}(\{Q_t, q_{1t}, q_{0t}, m_t\}) = \sum_{t=1}^{T} \text{extr} \left\{ \frac{n\hat{Q}_t Q_t}{2} - \frac{n(x-1)(\hat{q}_{1t} q_{1t} - \hat{q}_{0t} q_{0t})}{2} - \frac{n(n-1)\hat{q}_{0t} q_{0t}}{2} - n\hat{m}_t m_t + \ln \left[\int Dz_0 \left(\int Dx \exp(\Phi) \right)^{n/x} \right] \right\},
\]
respectively, where \(\Phi = -(\hat{Q}_t + \hat{q}_{1t}) x^2/2 + (\sqrt{\hat{q}_{1t} - \hat{q}_{0t}} z_0 + \sqrt{\hat{q}_{0t}} z_0 + \hat{m}_t t_0) x - \beta|x|\).

In the 1RSB framework, the RS solution is regarded as a special solution of \(\Delta_t = q_{1t} - q_{0t} = 0\) and \(\hat{\Delta}_t = \hat{q}_{1t} - \hat{q}_{0t} = 0\) \((t = 1, 2, \ldots, T)\). In the limit of \(n \to 0\) and \(\beta \to \infty\) keeping \(\chi = \beta(Q_t - q_{1t}) \sim O(1)\), the critical condition that a solution of \(\Delta_t > 0\) and \(\hat{\Delta}_t > 0\) bifurcates from the RS solution, which corresponds to the de Almeida–Thouless (AT) condition \([27]\) of the current system, is expressed as
\[
\det \left(\mathbf{I} - \mathbf{H} \hat{\mathbf{H}} \right) = 0,
\]
where \(\mathbf{H} = (2(\partial^2/\partial \chi_t \partial \chi_s) F(\{\chi_t\}))\) and \(\hat{\mathbf{H}} = (\delta_{ts} \int Dz[(\partial X(\sqrt{\chi_t} z + \hat{m}_t x_0; \hat{Q}_t)/\partial(\sqrt{\chi_t} z)]^2]_{x_0})\).

For \(T \geq 3\),
\[
\mathbf{H} \hat{\mathbf{H}} = \left(\frac{1}{R_t} \delta_{ts} - \frac{(\mathbf{I} + \mathbf{M})_{ts}^{-1}(1 - R_s^2)}{R_t \sqrt{1 - 2R_t} \sqrt{1 - 2R_s}} \right)
\]
holds for the success solution at the critical condition of the \(l_1\)-recovery. Equation (50) yields an eigenvalue of unity whose eigenvector is given as \(v_t \propto (1 - R_t)^{-1}\), which makes (49) hold. Similarly, (49) is also satisfied at the critical condition of the \(l_1\)-recovery of \(T = 2\). These validate our RS evaluation in terms of the local stability analysis, although further justification with other schemes, such as comparison with numerical experiments, is necessary to examine possibilities that the RS solution becomes thermodynamically irrelevant due to discontinuous phase transitions.

4. Case studies

Let us examine the significance of the developed methodology by applying it to two representative examples.

4.1. Uniform and localized densities

We consider the uniform density case of \(\rho_t = \rho\) \((t = 1, 2, \ldots, T)\) as the first example, where the uniformity allows us to solve (24)–(29) setting all variables to be independent of \(t\) as \(\chi_t = \chi\). In particular, setting \(\Lambda_t = \Lambda\) simplifies the expressions of (24)–(26) providing
\[
doi:10.1088/1742-5468/2012/12/P12003
Typical l_1-recovery limit of sparse vectors represented by concatenations of random orthogonal matrices

T	2	3	4	5	6	7	8
Uniform	0.1928	0.1021	0.0668	0.0487	0.0378	0.0308	0.0257
Localized	0.2267	0.1190	0.0780	0.0566	0.0438	0.0354	0.0294

$R_t = 1/T$ and $2(\partial^2/\partial \chi_t \partial \chi_s)F(\{\chi_k\}) = \chi^{-2}$. This makes it unnecessary to deal with the saddle point problems of $T = 2$ in an exceptional manner. As a consequence, the critical condition of the l_1-recovery is expressed compactly by using a pair of equations as

$$\check{\chi} = T (2(1 - \rho)G(\check{\chi}) + \rho(\check{\chi} + 1)),$$

$$T^{-1} = 2(1 - \rho)Q(\check{\chi}^{-1/2}) + \rho,$$

for both $T \geq 3$ and $T = 2$. By setting $\alpha = 1/T$, these provide a critical condition identical to that obtained for the rotationally invariant matrix ensembles in earlier studies [12, 28, 29]. This indicates that for vectors of the uniform non-zero density, the l_1-recovery performance of the concatenated orthogonal matrices is identical to that of the standard setup provided by the matrix of independent standard Gaussian entries.

However, this is not the case when the non-zero density is not uniform. As a distinctive example, we examined the case of localized density, which is characterized by setting $\rho_1 = T\rho$ and $\rho_t = 0$ for $t = 2, 3, \ldots, T$. Such an assumption is plausible in handling various kinds of real world signals at least as a first approximation; due to the intrinsic nature of real world signals, one can expect that the density of the sparsest expression is localized in a certain block when the concatenation of identity and randomly chosen Fourier/wavelet bases, which is a representative example of the T-concatenation of orthonormal bases, is employed. Table 1 and figure 1 show critical values of the total non-zero density $\rho = T^{-1}\sum_{t=1}^{T}\rho_t$ given the compression rate $\alpha = 1/T$ for the uniform and localized density cases. These show that the concatenated matrices always result in better l_1-recovery performance for vectors of the localized densities, and the significance increases as T becomes smaller, while matrices of rotationally invariant ensembles result in identical performance as long as T is unchanged. It is noteworthy that the performance gain is obtained without utilizing the knowledge of the profile of ρ_t in the recovery stage. This indicates that, in addition to their ease of implementation and theoretical elegance, the concatenated orthogonal matrices are preferred for practical use in terms of their high recovery performance for vectors of non-uniform non-zero densities.

4.2. Numerical justification

To justify our theoretical results, we conducted extensive numerical experiments on the l_1-reconstruction. Figures 2(a) and (b) depict the experimental assessment of the critical threshold for $T = 2$ and $T = 5$, respectively. The case of an i.i.d. standard Gaussian dictionary is also plotted for comparison. Given fixed values of T and N, a trial was started...
Figure 1. Critical values ρ_c of the total non-zero density versus the compression rate α. The circles and crosses correspond to the localized and uniform densities, respectively, for $\alpha = 1/2, 1/3, \ldots, 1/8$. The curve represents the relation between ρ_c and α for the rotationally invariant matrix ensembles. The crosses coincide with the curve for $\alpha = 1/T$ ($T = 2, 3, \ldots$).

Figure 2. Experimental assessment of the critical densities for l_1-reconstruction. The experimental data (see the main text) were fitted with a quadratic function of $1/N$ and plotted with solid lines, for the concatenated orthogonal ‘O’ and i.i.d. standard Gaussian ‘G’ bases under uniform and localized densities. The filled markers represent the predictions obtained through the replica analysis. Extrapolation for $N = TM \to \infty$ provides the estimates for the critical values ρ_c. (a) $T = 2$, where the markers correspond to simulated values $M = 8, 9, \ldots, 25$, and (b) $T = 5$, where the markers correspond to simulated values $M = 13, 14, \ldots, 30$.

with an empty vector x_0^0 and a concatenated orthogonal dictionary generated from a set of T standard i.i.d. $M \times M$ Gaussian matrices using QR-decomposition. Based on the relative densities $\{\rho_t\}$, one sub-vector x_t^0 was then randomly chosen and assigned a non-zero

\[\text{doi:10.1088/1742-5468/2012/12/P12003} \]
component drawn from the standard Gaussian ensemble. The Matlab algorithm ‘linprog’ from the Optimization Toolbox was used to solve the l_1-minimization problem and obtain the reconstruction \hat{x}. The reconstruction was deemed to be a success if $\|x^0 - \hat{x}\|_1 < 10^{-6}$ and a failure otherwise. Given a successful reconstruction, we again randomly chose one sub-vector x^0_t based on the densities $\{\rho_t\}$ and inserted a non-zero component drawn independently from the standard Gaussian ensemble into it. The process was continued until the original vectors $\{x^0_t\}$ had $\{K_t\}$ non-zero components and the reconstruction was deemed a failure, that is, $\|x^0 - \hat{x}\|_1 > 10^{-6}$. The critical value $K_c = \sum_t K_t - 1$ was recorded and the experiment was started again using a new independent dictionary and an empty vector x^0. For each value of T and N, we carried out 10^6 independent trials. The experimental critical density was defined as $\rho_c(T,N) = K_c/N$, where \cdots denotes the arithmetic average over the trials. For all system sizes, we also computed the experimental per-block densities $\{K_t/M\}$ and checked that they were close to the desired densities $\{\rho_t\}$ after the 10^6 trials. For fixed T, the experimental data points $\rho_c(T,N)$ were fitted with a quadratic function of $1/N$. Extrapolation for $N \to \infty$ provided the experimental estimates of the critical densities, as listed in table 2, in which the theoretical estimates from table 1 are also listed for comparison.

Comparison of the theoretical and experimental results confirms the accuracy of the replica analysis. From figure 2, we observe that for finite-sized systems, the T orthogonal dictionaries seem to always provide higher thresholds ρ_c than the Gaussian one, even for uniform densities.

5. Summary

In summary, we investigated the performance in recovery of a sparse vector $x \in \mathbb{R}^N$ from a linear underdetermined equation $y = Dx \in \mathbb{R}^M$ when D is provided as a concatenation of $T = N/M$ independent samples of $M \times M$ random orthogonal matrices and the l_1-recovery scheme is used. The performance was measured using a threshold value of the density ρ of the non-zero entries in the original vector x^0, below which the l_1-recovery is typically successful for a given compression rate $\alpha = M/N = T^{-1}$. To evaluate this, we used the replica method in conjunction with the development of an integral formula to handle the random orthogonal matrices. Our analysis indicated that the threshold is identical
to that of the standard setup for which the matrix entries are sampled independently from the same Gaussian distribution when the non-zero entries in \(\mathbf{x}^0 \) are distributed uniformly among \(T \) blocks of the concatenation. However, it was also shown that the concatenated orthogonal matrices generally provide higher threshold values than the standard setup when the non-zero entries are localized in a certain block. The results of extensive numerical experiments exhibited excellent agreement with the theoretical predictions. This means that, in addition to their ease of implementation and theoretical elegance, the concatenated orthogonal matrices are preferred for practical use in terms of their high recovery performance for vectors of non-uniform non-zero densities.

Promising future studies include performance evaluation in the case of noisy situations and the development of approximate recovery algorithms suitable for the concatenated orthogonal matrices [10, 11, 30].

Acknowledgments

The authors would like to thank Erik Aurell, Mikael Skoglund and Lars Rasmussen for their useful comments. We also thank the CSC—IT Center for Science Ltd for the allocation of computational resources. This work was partially supported by grants from the Japan Society for the Promotion of Science (KAKENHI Nos 22300003 and 22300098) (YK) and the Swedish Research Council under VR Grant 621-2011-1024 (MV).

Appendix. Derivation of (10)

When the \(\mathbf{O}_t \) are sampled independently and uniformly from the Haar measure of the \(M \times M \) orthogonal matrices, the \(\tilde{\mathbf{u}}_t = \mathbf{O}_t \mathbf{u}_t \) \((t = 1, 2, \ldots, T) \) are distributed independently and uniformly on the surfaces of the \(M \)-dimensional hyperspheres of radius \(\sqrt{M v_t} \) for a fixed set of \(M \)-dimensional vectors \(\mathbf{u}_t \) satisfying \(|\mathbf{u}_t|^2 = M v_t \). This means that the integral of (9) can be expressed as

\[
\frac{\int \left(\prod_{t=1}^{T} \mathcal{D} \mathbf{O}_t \right) \delta \left(\sum_{t=1}^{T} \mathbf{O}_t \mathbf{u}_t \right)}{\int \left(\prod_{t=1}^{T} \mathcal{D} \mathbf{O}_t \right)} = \frac{\int \left(\prod_{t=1}^{T} d\tilde{\mathbf{u}}_t \delta(|\tilde{\mathbf{u}}_t|^2 - M v_t) \right) \delta \left(\sum_{t=1}^{T} \tilde{\mathbf{u}}_t \right)}{\int \left(\prod_{t=1}^{T} d\tilde{\mathbf{u}}_t \delta(|\tilde{\mathbf{u}}_t|^2 - M v_t) \right)}.
\]

(A.1)

We insert the Fourier expressions of the \(\delta \)-function

\[
\delta(|\tilde{\mathbf{u}}_t|^2 - M v_t) = \frac{1}{4\pi \sqrt{-1}} \int_{-\sqrt{-1} \infty}^{+\sqrt{-1} \infty} \text{d}\Lambda_t \exp \left(-\frac{\Lambda_t}{2} |\tilde{\mathbf{u}}_t|^2 - M v_t \right)
\]

(A.2)

and

\[
\delta \left(\sum_{t=1}^{T} \tilde{\mathbf{u}}_t \right) = \frac{1}{(2\pi)^M} \int_{-\infty}^{+\infty} \text{d}\mathbf{k} \exp \left(\sqrt{-1} \mathbf{k} \cdot \left(\sum_{t=1}^{T} \tilde{\mathbf{u}}_t \right) \right)
\]

(A.3)

\[\text{doi:10.1088/1742-5468/2012/12/P12003}\]
into the numerator of (A.1), and carry out the integration with respect to \{\tilde{u}_t\}, where \(k = (k_1, k_2, \ldots, k_M)\). This yields the expression

\[
\int \left(\prod_{t=1}^{T} d\tilde{u}_t \delta(|\tilde{u}_t|^2 - Mv_t) \right) \delta \left(\sum_{t=1}^{T} \tilde{u}_t \right)
\]

\[
\propto \int \left(\prod_{t=1}^{T} d\Lambda_t \Lambda_t^{-M/2} \right) \exp \left(\sum_{t=1}^{T} \frac{M\Lambda_t v_t}{2} \right) \int d\kappa \exp \left(-\frac{\sum_{t=1}^{T} \Lambda_t^{-1}}{2} |\kappa|^2 \right)
\]

\[
\propto \int \left(\prod_{t=1}^{T} d\Lambda_t \Lambda_t^{-M/2} \right) \exp \left(\sum_{t=1}^{T} \frac{M\Lambda_t v_t}{2} \right) \left(\sum_{t=1}^{T} \Lambda_t^{-1} \right)^{-M/2}
\]

(A.4)

Evaluation of this by means of the saddle point method with respect to \(\Lambda_t (t = 1, 2, \ldots, T)\) results in

\[
\lim_{M \to \infty} \frac{1}{M} \ln \left(\int \left(\prod_{t=1}^{T} d\tilde{u}_t \delta(|\tilde{u}_t|^2 - Mv_t) \right) \delta \left(\sum_{t=1}^{T} \tilde{u}_t \right) \right)
\]

\[
= \text{extr}_{\Lambda_1, \Lambda_2, \ldots, \Lambda_T} \left\{ -\frac{1}{2} \ln \left(\sum_{t=1}^{T} \Lambda_t^{-1} \right) - \frac{1}{2} \sum_{t=1}^{T} \ln(\Lambda_t) + \frac{1}{2} \sum_{t=1}^{T} \Lambda_t v_t \right\}
\]

(A.5)

Similarly, the denominator of (A.1) is evaluated as

\[
\lim_{M \to \infty} \frac{1}{M} \ln \left(\int \left(\prod_{t=1}^{T} d\tilde{u}_t \delta(|\tilde{u}_t|^2 - Mv_t) \right) \right) = \frac{1}{2} \sum_{t=1}^{T} \ln(v_t) + \frac{T}{2}
\]

(A.6)

Substitution of (A.1), (A.5) and (A.6) into (9) leads to the expression of (10).

References

[1] Miller A, 2002 Subset Selection in Regression 2nd edn (Boca Raton, FL: Chapman and Hall/CRC)

[2] Fletcher A, Goyal V and Rangan S, 2009 Proc. IEEE Int. Symp. Inform. Theory 2009 pp 169–73

[3] Bajwa W, Haupt J, Sayeed A and Nowak R, 2010 Proc. IEEE 98 1058

[4] Yang A, Gastpar M, Bajcsy R and Sastry S, 2010 Proc. IEEE 98 1077

[5] Plumbley M, Blumensath T, Daundel L, Gribonval R and Davies M, 2010 Proc. IEEE 98 995

[6] Wright J, Yang A, Ganesh A, Sastry S and Yi M, 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 210

[7] Elad M, 2010 Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Berlin: Springer)

[8] Donoho D, 2006 IEEE Trans. Inform. Theory 52 1289

[9] Candès E and Wakin M, 2008 IEEE Signal Proc. Mag. 25 21

[10] Krzakala F, Mézard M, Sausset F, Sun Y F and Zdeborová L, 2012 Phys. Rev. X 2 021005

[11] Krzakala F, Mézard M, Sausset F, Sun Y F and Zdeborová L, 2012 J. Stat. Mech. P08009

[12] Kabashima Y, Wadayama T and Tanaka T, 2009 J. Stat. Mech. L09003

[13] Kabashima Y, Wadayama T and Tanaka T, 2012 J. Stat. Mech. E07001

[14] Takeda K and Kabashima Y, 2010 Proc. IEEE Int. Symp. Inform. Theory pp 1538–42

[15] Donoho D and Hua X, 2001 IEEE Trans. Inform. Theory 47 2845

[16] Elad M and Bruckstein A, 2002 IEEE Trans. Inform. Theory 48 2558

[17] Donoho D and Elad M, 2003 Proc. Natl Acad. Sci. 100 2197

[18] Rubinstein R, Bruckstein A and Elad M, 2010 Proc. IEEE 98 1045

[19] Dotsenko V, 2001 Introduction to the Replica Theory of Disordered Statistical Systems (Cambridge: Cambridge University Press)

doi:10.1088/1742-5468/2012/12/P12003 17
Typical l_1-recovery limit of sparse vectors represented by concatenations of random orthogonal matrices

[20] Itzykson C and Zuber J B, 1980 J. Math. Phys. 21 411
[21] Marinari E, Parisi G and Ritort F, 1994 J. Phys. A: Math. Gen. 27 7647
[22] Cherrier R, Dean D S and Lefèvre A, 2003 Phys. Rev. E 67 046112
[23] Takeda K, Uda S and Kabashima Y, 2006 Europhys. Lett. 76 1193
[24] Kabashima Y, 2008 J. Phys.: Conf. Ser. 95 012001
[25] Shinzato T and Kabashima Y, 2008 J. Phys. A: Math. Theor. 41 324013
[26] Vehkaperä M, Kabashima Y, Chatterjee S, Aurell E, Skoglund M and Rasmussen L, 2012 Proc. IEEE Inform. Theory Workshop 2012 pp 652–6
[27] de Almeida J R L and Thouless D J, 1978 J. Phys. A: Math. Gen. 11 983
[28] Donoho D L, 2006 Discrete Comput. Geom. 35 617
[29] Donoho D L and Tanner J, 2009 J. Am. Math. Soc. 22 1
[30] Vila J and Schniter P, 2011 Proc. Asilomar Conf. on Signals, Systems, and Computers (Pacific Grove, CA) pp 799–803

doi:10.1088/1742-5468/2012/12/P12003