Subelliptic Spin_C Dirac Operators, IV
Proof of the Relative Index Conjecture

Charles L. Epstein*
Department of Mathematics
University of Pennsylvania

Date: February 29, 2012

Abstract
We prove the relative index conjecture, which in turn implies that the set of embeddable deformations of a strictly pseudoconvex CR-structure on a compact 3-manifold is closed in the C^∞-topology.

1 Proof of the Relative Index Conjecture

In this short paper, which continues the analysis presented in [3], we show how the formula for the relative index between two Szegö projectors S_0, S_1, defined by two embeddable CR-structures on a contact 3-manifold (Y, H), gives a proof of the relative index conjecture:

Theorem 1. Let (Y, H) be a compact 3-dimensional co-oriented, contact manifold, and let S_0 be the Szegö projector defined by an embeddable CR-structure with underlying plane field H. There is an M such that for the Szegö projector S_1 defined by any embeddable deformation of the reference structure with the same underlying plane field, we have the upper bound:

$$\text{R-Ind}(S_0, S_1) \leq M.$$ (1)

*Keywords: strictly pseudoconvex surface, contact manifold, embeddable CR-structure, Stein filling, index formula, relative index conjecture, Stipsicz conjecture. Research partially supported by NSF grants DMS02-03795, DMS06-03973, and the Thomas A. Scott chair. E-mail: cle@math.upenn.edu
Recall that the deformations of a reference CR-structure, $T^0_0 Y$, on (Y,H) are parameterized by

$$\text{Def}(Y,H,S_0) = \{ \Phi \in C^\infty(Y; \text{Hom}(T^0_0 Y, T^1_0 Y)) : \| \Phi \|_{L^\infty} < 1 \},$$

via the prescription:

$$\Phi T^0_0 Y = \{ Z_y + \Phi_y(Z_y) : Z_y \in T^0_0 Y \}.$$ \hfill (3)

Here and in the sequel we often use the Szegő projector to label a CR-structure. Let $E \subset \text{Def}(Y,H,S_0)$ consist of the embeddable deformations, that is, CR-structures arising as pseudoconvex boundaries of complex surfaces. In [2] we showed that if S_0 is Szegő projector defined by the reference CR-structure and S_1 that defined by an embeddable deformation, then the map

$$S_1 : \text{Im } S_0 \rightarrow \text{Im } S_1$$

is a Fredholm operator. $R\text{-Ind}(S_0, S_1)$ denotes its Fredholm index, which we call the relative index. In the proof of Theorem E in [2] we showed that, for each $m \in \mathbb{N} \cup \{0\}$ and any $\delta > 0$, the subsets of $\text{Def}(Y,H,S_0)$ given by

$$\mathcal{E}^\delta_m = \{ S_1 \in \text{Def}(Y,H,S_0) : -\infty < R\text{-Ind}(S_0, S_1) \leq m \} \text{ and } \| \Phi \|_{L^\infty}^2 \leq \frac{1}{2} - \delta,$$

are closed in the C^∞-topology. In fact, we show that there is an integer k_0, so that this conclusion holds for a sequence $< \Phi_n >$ converging to Φ in the C^{k_0}-norm.

Combining (1) with Theorem E of [2] we prove:

Corollary 1. Under the hypotheses of Theorem 1, the set of embeddable deformations of the CR-structure on Y is closed in the C^∞-topology.

Proof of the Corollary. Suppose that $< \Phi_n >$ is a sequence of embeddable deformations in $\mathcal{E} \subset \text{Def}(Y,H,S_0)$ converging to $\Phi \in \text{Def}(Y,H,S_0)$, in the C^∞-topology. We first observe that $\| \Phi \|_{L^\infty} < 1$.

Let Ψ_1 and Ψ_2 be deformations of the reference structure, with local representations

$$\Psi_j = \psi_j Z \otimes \bar{\omega}.$$ \hfill (6)

The local representation of Ψ_2 as a deformation of Ψ_1 is given by

$$\psi_{21} = \frac{\psi_2 - \psi_1}{1 - \psi_1 \psi_2},$$

see equation (5.5) in [2][II]. We can represent Φ as a deformation of any of the structures in the sequence. From equation (7) it is clear that there an integer N so
that, as deformations of Φ_N, a tail of the sequence and its limit lie in the L^∞-ball in $\text{Def}(Y, H, S_N)$, centered at 0, of radius $\frac{1}{2}$. Theorem 1 shows that there is an M so that

$$\text{R-Ind}(S_N, S_n) \leq M, \text{ for all } n \in \mathbb{N}. \quad (8)$$

Theorem E from [2] then implies that the limiting structure Φ is also embeddable, completing the proof of the corollary. \square

Before proving Theorem 1 we recall the formula for the relative index proved in [3]:

Theorem 2. Let (Y, H) be a compact 3-dimensional co-oriented, contact manifold, and let S_0, S_1 be Szegő projectors for embeddable CR-structures with underlying plane field H. Suppose that $(X_0, J_0), (X_1, J_1)$ are strictly pseudoconvex complex manifolds with boundaries $(Y, H, S_0), (Y, H, S_1)$, respectively, then

$$\text{R-Ind}(S_0, S_1) = \dim H^{0,1}(X_0, J_0) - \dim H^{0,1}(X_1, J_1) + \frac{\text{sig}[X_0] - \text{sig}[X_1] + \chi[X_0] - \chi[X_1]}{4}. \quad (9)$$

Here $\text{sig}[X]$ is the signature of the non-degenerate quadratic form,

$$([\alpha], [\beta]) \mapsto \int_X \alpha \wedge \beta, \quad (10)$$

defined for $[\alpha], [\beta] \in \tilde{H}^2(X)$, the image of $H^2(X, bX)$ in $H^2(X)$, and $\chi[X]$ is the topological Euler characteristic:

$$\chi[X] = \sum_{j=0}^{4} b_j(X) (-1)^j, \text{ where } b_j(X) = \dim H_j(X; \mathbb{Q}). \quad (11)$$

Proof of Theorem 1. Let X_1 be a minimal resolution of the normal Stein space with boundary (Y, H, S_1). It follows from a theorem of Bogomolov and De Oliveira that there is a small perturbation of the complex structure on X_1 making it into a Stein manifold, see [1]. Hence it follows that X_1, with a deformed complex structure, has a strictly plurisubharmonic exhaustion function, and therefore X_1 has the homotopy type of a 2-dimensional CW-complex. Thus expanding the formula in (9) gives:

$$\text{R-Ind}(S_0, S_1) = C_0 - \dim H^{0,1}(X_1, J_1) - \frac{\text{sig}[X_1] + 1 - b_1(X_1) + b_2(X_1)}{4}, \quad (12)$$
where C_0 denotes the contribution of the terms from the reference structure:

$$C_0 = H^{0,1}(X_0, J_0) + \frac{\text{sig}[X_0] + \chi(X_0)}{4}. \quad (13)$$

The fact that X_1 is homotopic to a 2-complex implies that $b_1(X_1) \leq b_1(Y)$, see [5]. As $\text{sig}[X_1]$ is the signature of the cup product pairing on $\check{H}^2(X_1)$, it is evident that

$$|\text{sig}[X_1]| \leq \dim \check{H}^2(X_1) \leq \dim H^2(X_1, bX_1) = b_2(X_1). \quad (14)$$

The last equality is a consequence of the Lefschetz duality theorem. Hence

$$0 \leq b_2(X_1) + \text{sig}[X_1],$$

and therefore

$$\text{R-Ind}(\mathcal{S}_0, \mathcal{S}_1) \leq C_0 + \frac{b_1(Y) - 1}{4}. \quad (15)$$

This completes the proof of the theorem. \hfill \Box

Remarks on the Ozbagci-Stipsicz Conjecture: Note that

$$\text{sig}[X_1] + b_2(X_2) = 2b_2^+(X_1) + b_0^0(X_1),$$

where $b_2^+(X_1)$ is the dimension of the space on which the pairing in (10) is positive and $b_0^0(X_1)$ is the dimension of the kernel of the map $H^2(X_1, bX_1) \to \check{H}^2(X_1)$. A global bound on $|\text{R-Ind}(\mathcal{S}_0, \mathcal{S}_1)|$, among all Szegő projectors \mathcal{S}_1 defined by elements of \mathcal{E}, is therefore equivalent to an upper bound for $b_2^+(X_1) + b_0^0(X_1) + \dim H^{0,1}(X_1)$, among all Stein spaces, X_1 filling (Y, H). The existence of an upper bound on $b_2^+(X_1) + b_0^0(X_1)$ was conjectured by Ozbagci and Stipsicz, and proved in some special cases, see [5].

The fact, proved in [2], that $\text{R-Ind}(\mathcal{S}_0, \mathcal{S}_1) \geq 0$, for sufficiently small deformations shows that, for such deformations:

$$\dim H^{0,1}(X_1) + \frac{2b_2^+(X_1) + b_0^0(X_1)}{4} \leq \dim H^{0,1}(X_0) + \frac{2b_2^+(X_0) + b_0^0(X_0) + b_1(Y) - b_1(X_0)}{4}. \quad (16)$$

In [5] Stipsicz shows that for any Stein filling of (Y, H), we have the estimate $b_0^0(X_1) \leq b_1(Y)$, as well as the existence of a constant $K_{(Y,H)}$ so that

$$b_2^-(X_1) \leq 5b_2^+(X_1) + 2 - K_{(Y,H)} + 2b_1(Y). \quad (17)$$

These estimates, along with (16) prove a “germ” form of the Ozbagci–Stipsicz conjecture: among sufficiently small, embeddable deformations of the CR-structure on the boundary of a strictly pseudoconvex surface, the set of numbers

$$\{b_1(X_1), \sigma(X_1), \chi(X_1)\}$$
is finite. The notion of smallness here depends in a complicated way on the reference CR-structure.

Our results suggest a strategy for proving a lower bound on \(R\text{-Ind}(S_0, S_1) \), among deformations \(\Phi \) with \(\|\Phi\|_{L^\infty} < 1 - \epsilon \), for an \(\epsilon > 0 \). Suppose that no such bound exists, one could then choose a sequence \(\langle \Phi_n \rangle \subset \mathcal{E} \) for which \(R\text{-Ind}(S_0, S_n) \) tends to \(-\infty \). A contradiction would follow immediately if we could show that \(\langle \Phi_n \rangle \) is bounded in the \(C^{k_0+1} \)-norm.

While such an \textit{a priori} bound seems unlikely for the original sequence, it would suffice to replace the sequence \(\langle \Phi_n \rangle \) with a “wiggle-equivalent” sequence. Let \(M_n \) denote a projective surface containing \((Y, \Phi_n T^0_0 Y) \) as a separating hypersurface, see [4]. An equivalent sequence with better regularity might be obtained by wiggling the hypersurfaces defined by \((Y, \Phi_n T^0_0 Y) \) within \(M_n \), perhaps using some sort of heat-flow. After composing the resultant deformations with contact transformations, we might be able to obtain a sequence \(\langle \Phi_n' \rangle \) with \(R\text{-Ind}(S_0, S_n') = R\text{-Ind}(S_0, S_n) \) that does satisfy an \textit{a priori} \(C^{k_0+1} \)-bound. Such an argument would seem to require an improved understanding of the metric geometry of \(\text{Def}(Y, H, S_0) \), as well as the relationship of an abstract deformation to the local extrinsic geometry of \(Y \) as a hypersurface in \(M_n \).

Acknowledgment

I would like to thank Sylvain Cappell for helping me with some topological calculations, and the Courant Institute for their hospitality during the completion of this work.

References

[1] F. A. Bogomolov and B. de Oliveira, \textit{Stein small deformations of strictly pseudoconvex surfaces}, in Birational Algebraic Geometry (Baltimore, MD, 1996), vol. 207 of Contemp. Math., Providence, RI, 1997, Amer. Math. Soc., pp. 25–41.

[2] C. L. Epstein, \textit{A relative index on the space of embeddable CR-structures, I, II}, Annals of Math., 147 (1998), pp. 1–59, 61–91.

[3] ———, \textit{Subelliptic Spin\(_C\) Dirac operators, III}, Annals of Math., 167 (2008), pp. 1–67.

[4] L. Lempert, \textit{Algebraic approximation in analytic geometry}, Inv. Math., 121 (1995), pp. 335–354.

[5] A. I. Stipsicz, \textit{On the geography of Stein fillings of certain 3-manifolds}, Michigan Math. J., 51 (2003), pp. 327–337.