Verrucous leukoplakia of the red border caused by the use of IQOS heated tobacco product (a case report)

H. I. Makurina, A. I. Makarchuk, O. I. Makarchuk, I. P. Dmytrenko, A. V. Holovkin, I. A. Sokolovska, A. S. Chornenka

Zaporozhye State Medical University, Ukraine

Aim. To analyze possibility of development and describe the clinical case of the red border verrucous leukoplakia caused by the use of IQOS heated tobacco product and HEETS sticks and propose personalized clinical, diagnostic and therapeutic algorithm of a patient management.

Materials and methods. Based on own observation, this article describes a clinical case of verrucous leukoplakia of the red border arising in a patient who used IQOS heated tobacco product and HEETS sticks. Clinical, laboratory, instrumental examination and treatment were performed on the basis of the Department of Dermatovenereology and Cosmetology with the course of Dermatovenereology and Aesthetic Medicine of the Postgraduate Education Faculty of Zaporizhzhia State Medical University.

Results. The plaque-type verrucous leukoplakia of the red border was diagnosed based on clinical examination of the patient and diagnosis verification by means of laboratory examination and dermatoscopy. Considering the possible traumatic lesion, a high probability of the disease recurrence, patient’s refusal of surgical treatment methods, the topical therapy for affected area with the use of combined drug containing glucocorticosteroid, antibacterial and antimycotic components was prescribed for 1 month followed by long-term therapy using 1 % pimecrolimus cream.

Conclusions. Based on the literature analysis, it was found out that IQOS heated tobacco product and HEETS sticks can promote the development of such manifestations of oxidative stress and endothelial dysfunction as inflammation, infection, fibrosis, oncologic pathology and become one of initiating agents for the occurrence of red border verrucous leukoplakia. The use of topical glucocorticosteroids combined with topical inhibitors of calcineurin can be proposed as an alternative to surgical methods of treatment for leukoplakia and it requires more detailed study.
In recent years, Heat-Not-Burn tobacco products are actively used as an alternative to traditional tobacco smoking. IQOS (I Quit Ordinary Smoking) is a new heating system of purified tobacco. It was developed by the manufacturer (PMI) in 2014. As declared by the manufacturer, IQOS heats tobacco mixture below 350 °C such that an aerosol is produced instead of burning it with no fire and less smoke. This heated tobacco product works with three main components: tobacco stick (called HEETS or a HeatStick), IQOS holder and a charger. A user inserts the tobacco stick into the holder and the tobacco is heated with an electronic heating blade [1,2].

Using IQOS tobacco heating system (THS) gives no fire and less smoke as declared by the manufacturer, eliminating the undesirable effects of traditional tobacco products by reducing the levels of toxic chemicals. However, the heating temperature is sufficient for occurrence of pyrolytic reactions in aerosol, which is produced during the product use. Toxic substances (thermal decomposition products of propylene glycol, glycerin etc.), namely formaldehyde, acrolein, phenol, acetaldehyde, diacetyl, acetal (propionic aldehyde), furfural etc. are included in the aerosol. Concentration of these substances correlates with an increase in the product heating temperature (a study was conducted at the temperature of 180 °C, 200 °C, 220 °C) [3].

Using HEETS and IQOS, the mainstream aerosol contains higher concentrations of propylene glycol (240–850 µg/stick), acetal (140–260 µg/stick), glycerin (360 µg/stick) and acetaldehyde (210 µg/stick) as compared to traditional cigarettes: 11–28 µg/cigarette, 50–110 µg/cigarette, 18 µg/cigarette and 25–45 µg/cigarette, respectively. However, nicotine level generated by THS is different, and ranges from 1200 µg/stick to 1400 µg/stick, and it is 1900 µg/cigarette in a traditional cigarette [4].

Besides, after the use of purified tobacco, carbonization is occurred through pyrolysis. Following the recommendations and instructions of the manufacturer as to the product, charring of the tobacco plug as well as melting of the polymer-film filter are increased. Release of formaldehyde, cyanhydrin compounds (for example acetocyanhydrin) was observed at 90 °C, which is substantially lower than the maximum temperature reached in usual products usage, and that is the problem because these substances are toxic in small concentrations [5].

Information as to IQOS influence on health is rather limited. However, Noel J. Leigh et al. found out that metabolic activity and vitality of H292 bronchus epithelium cells were decreased during IQOS use in the same way as with the use of traditional cigarettes (in comparison with air control) [6]. Moreover, Sukhwinder Singh Sohal et al. have shown that the use of IQOS as well as traditional cigarettes is toxic for human bronchial epithelial cells (Beas-2B) and smooth muscle cells of respiratory tract. IQOS exposure induces release of interleukin-8, which is one of the main pro-inflammatory chemokines. There was a presence of mitochondrial dysfunction, which induces or worsens inflammatory process in lung tissue. IQOS provokes type 1 collagen and fibronectin induction by above-mentioned cells, enabling epithelial-mesenchymal transition that in its turn causes remodeling of lung tissue and pulmonary fibrosis. Considering this information, IQOS has potential for occurrence and increase in manifestations of oxidative stress and inflammation, infections, COPD, asthma as well as provocation of lung tissue fibrosis and cancer [7].

By studying on rats, Pooneh Nabavizadeh, Jiangtao Liu et al. revealed that in case of traditional cigarettes use as well as IQOS, the endothelial function of vessels is disturbed, that is the risk factor for cardio-vascular diseases occurrence, which are at the first place in mortality rate among adults in the world according to the World Health Organization data. Levels of nicotine and cotinine in the blood serum were considerably higher in rats exposed to IQOS in comparison with the traditional cigarette-exposed group [8].

In the same way as traditional cigarettes, IQOS heated tobacco products release significant levels of carcinogenic tobacco-specific nitrosamines (TSNA) such as nitrosamine-ketone, N-nitrosornornicotine, N-nitrosoanatabine and N-nitrosoanabasine. Although IQOS tobacco heated products release less concentrations of TSNA than traditional cigarettes, their quantity is considerably higher in comparison to the electronic cigarettes [9]. Above-mentioned nitrosamines are the most carcinogenic of the known tobacco-specific nitrosamines. Substantial evidence underlines the role of TSNA as the important causative factors for cancer of the lung, pancreas, esophagus, and oral cavity in individuals who use tobacco products [10].

Samuel James Brake et al. concluded that smoking (both traditional cigarettes and IQOS or electronic cigarettes) activates angiotensin-converting enzyme-2 (ACE2)
The ACE2 receptor enables a human S protein cell-binding site for SARS-coronavirus (SARS-CoV) that contributes to easier person-to-person spread of the virus, prolonged persistence in an organism, protection against immunological surveillance mechanisms, thus making smokers vulnerable to Covid-19 and increasing an incidence of complicated course and mortality rate regardless of chosen smoking product [11].

Taking into account the multi-component chemical content of sticks and presence of toxic chemical substances in aerosol, a certain probability of skin pathology occurrence can be assumed due to IQOS heated tobacco products contact. Absence of observations described in the literature regarding this trend prompted us to focus attention on this problem and present a clinical case of verrucous leukoplakia of the red border (lower lip) development in an IQOS smoker.

Aim

To analyze possibility of development and describe the clinical case of the red border verrucous leukoplakia caused by the use of IQOS heated tobacco product and HEETS sticks and propose personalized clinical, diagnostic and therapeutic algorithm of a patient management.

Materials and methods

Based on own observation, this article describes the clinical case of verrucous leukoplakia of the red border arising in a patient who used IQOS heated tobacco product and HEETS sticks. Examination and treatment were performed on the basis of the Department of Dermatovenereology and Cosmetology with the course of Dermatovenereology and Aesthetic Medicine of Postgraduate Education Faculty of Zaporizhzhia State Medical University and Municipal Institution ‘Zaporizhzhia Regional Dermatovenereological Clinical Dispensary’ of Zaporizhzhia Municipal Council. Clinical, laboratory (general, biochemical) methods of examination and dermatoscopy were used to diagnose and follow-up.

Case report

The patient L, born in 1956, visited dermatovenereologist of Zaporizhzhia Regional Dermatovenereological Clinical Dispensary with the complaint of lesion area appearance on the lower lip accompanied by burning pain and insignificant itching. Past medical history revealed no relevant findings. On personal history, the patient reported of smoking since last 26 years and not being able to quit smoking. She had bronchial asthma attacks due to traditional tobacco smoking. On the advice of a doctor, she started to use HEETS sticks (Turquoise, Yellow, Amber) and IQOS heated tobacco product in order to change the traditional method of tobacco smoking since 01.12.2018, that caused stabilization of respiratory system condition, but in her opinion, it became the trigger for changes of the red border skin. After 4–5 months of every day use of IQOS, the affected area appeared on the lower lip. The lesion area increased in size gradually and started to disturb her.

In early May 2019, at the distance of approximately 1.0–1.5 cm from the left corner of the mouth, a rash appeared in a form of rough skin (according to the patient’s words) of 4–5 mm in diameter accompanied by burning and itching. The patient associated the rash occurrence with HEETS sticks and IQOS heated tobacco product as this zone was in a contact with the stick. Then the patient started to put the stick away from the affected left corner of the mouth to the right one, where the same rash appeared in several weeks. Within 3–4 weeks, the pathological process started to spread almost over the whole red border (lower lip). During further 3–4 months, the affected area started to be hardened.

During that time, the patient did not ask for professional medical aid and was not self-medicated. On examination, a milky-colored irregularly shaped plaque, 1–2 mm rising above the unchanged surface was found on the lower lip. The plaque was indurated with definite ruffled borders, clear limits, and rough surface (Fig. 1).

In order to verify the diagnosis, the following diagnostic methods were used. All the indicators of clinical blood and urine analyses, biochemical blood analysis were within normal physiological range. The culture from
Клинический случай

the affected area scraping revealed no fungal elements. Serologic tests for lupus erythematosus detected neither anti-double-stranded DNA (anti-dsDNA) antibodies nor antinuclear antibodies (ANA). Dermatoscopy revealed no manifestations of cutaneous squamous cell carcinoma. Oncopathology was ruled out after the patient consultation with an oncologist.

As the patient flatly refused the biopsy with further histo-
logical examination as well as the surgical treatment, the fol-
lowing diagnosis was made: verrucous leukoplakia of the red
border (lower lip), plaque type. Considering the possible trauma-
malization, a risk of the mentioned neoplasm degeneration, the
patient was prescribed topical therapy with combined drug
containing glucocorticosteroid, antibacterial and antymycotic
components and received a treatment regimen for a duration
of one month as follows: 2 times daily within 7 days, further
three weeks – 1 time per day (at bedtime).

Due to the fact that proposed therapy improved the pa-

tient’s subjective state, reduced the affected area and its
infiltration, the topical cream with 1 % pimecrolimus was
prescribed to the affected area 2 times daily for 3 months
with the purpose of the topical glucocorticosteroid drug dis-
continuation under continuing follow-up. The affected area
practically did not disturb the woman and became more flat
(Fig. 2). Dermatoscopic manifestations of oncopathology
formation were absent. Since the patient kept her smoking
and refused other methods of therapy, the clinical improve-
ment was mitigated. The prescribed therapy with the use of
1 % pimecrolimus cream was planned to continue as well
as further long-term clinical and dermatoscopic follow-up
to examine the skin state.

Discussion

In case with the present patient, the epithelial skin cancer can
be the most threatening diagnosis. Oral mucous membrane
cases are suspected of being precancerous as the tissue
structural changes progress to squamous cell carcinoma over
the years. One of the most common facultative precancerous
diseases with a high rate of malignant transformation is leuko-
plakia [12]. Almost in 50 % of patients, leukoplakia progress-
es to oral cancer. The worldwide prevalence of leukoplakia is
approximately 2 % among all oral mucous membrane and it
occurs in 13 % of the red border diseases [13].

Leukoplakia is defined as an epithelial disease with
hyperkeratosis of the oral mucous membrane and the red
border accompanied by inflammation of the adjacent con-
nective tissue and edema. The disease is a chronic gradu-
ally progressive condition, which develops under influence
of endogenous and exogenous factors [14]. Among factors
promoting the occurrence and development of leukoplakia,
the following can be determined: chronic mechanical injury
of the oral mucous membrane (dental prosthesis, tooth
cusp etc.), unhealthy habits (smoking, alcohol abuse,
putting small thing into the mouth – pencil, pen, nails etc.),
contact with chemical substances (phenol, formaldehyde,
iodine, bromine, gums, alkali), chronic stress, combined
vitamin (vitamin A) and microelement deficiency, sexually
transmitted diseases (syphilis), candidosis, HIV infection,
ultraviolet radiation, chronic diseases of the gastrointestinal
tract, neurodystrophic changes of mucous membranes,
anemia, endocrine disorders (diabetes mellitus) etc. [15].

Regarding the presented clinical case, it should be
specially emphasized that smokeless tobacco is consid-
ered as the reason of leukoplakia development in 8.4 %
of cases [16], but the literature does not cover the descrip-
tion of clinical manifestations in oral mucous membrane
diseases related to IQOS heated tobacco product and
HEETS sticks.

Anatomical and topographic factors increasing the risk
of malignant transformation of leukoplakia are the fol-
lowings: size more than 200 mm, non-uniform texture,
location on the tongue and/or the bottom of the oral cavity,
Candida Albicans colonization or epithelial dysplasia, female
sex, age more than 50 years, idiopathic leukoplakia, long
existing leukoplakia [17, 18]. Some of the listed factors
were observed in our patient (sex, age) indicating the need
for immediate prescription of therapy. The clinical forms
of leukoplakia are the followings: simple (flat), verrucous
(plaque and warty), erosive and ulcerous, hairy, candidal,
soft (white sponge Pashkov nevus), Tappeiner leukoplakia
[19]. The important clinical issue is the differential diagno-
tics between leukoplakia and hyperkeratotic form of lichen
acuminatus, Bowen’s disease, hyperplastic candidosis of
the oral mucous membrane [19].

In order to improve diagnostic measures in addition to
visual assessment of the affected area, the dermatoscopy,
optical coherence tomography [20], pathomorphological
examination giving an opportunity to choose both reason-
able and individual treatment regimen, can be used as
additional diagnostic methods.

Although leukoplakia does not have specific histological
pattern and its diagnosis is based on visual examination,
the biopsy is the gold standard for determination of epithelial
dysplasia and malignant transformation of the affected areas
providing a treatment strategy choice [13, 16]. Histological
examination reveals the following signs in specimens:
hyperkeratosis, parakeratosis or acanthosis with or without
epithelial dysplasia; thinning of basement membrane; pre-
sence of inflammatory area, edema and cellular infiltration
in the derma [17, 19].

In this case, based on the clinical examination and
dermatoscopy, patient’s flat refusal to perform the biopsy,
the diagnosis of verrucous leukoplakia, plaque type was
made.

The treatment strategy choice depends on the results
of diagnostics and assessment of the general patient’s
condition, presence of comorbid pathology. Thus, the first
line of a complex therapy is the correction of provoking
factors (oral cavity sanation, smoking cessation, eliminating
the influence of toxic and chemical substances, selection of
dental prosthesis according to shape, rational and correct
dental care). It is recommended to prescribe vitamins A and
E in form of applications and systemic use, correction of
comorbid pathology, topical and systemic anti-inflammatory
therapy, and sedative therapy [19].

If leukoplakia transforms into verrucous or erosive-ul-
cerous type, the first line therapy should be added with
surgical treatment in form of complete excision within
limits of normal tissues, electro- or cryodestruction with
obligatory pathohistological examination. CO2 laser ablation
is also used. However, a large area of the affected zone,
postoperative pain, edema and large scars often may be
reasons for not choosing these methods of treatment. It
was also the case for the patient’s refusal of any surgical procedures (biopsy, surgical removal) and incentive to seek therapeutic methods.

Today, topical and photodynamic therapy with photosensitizing agents (5-aminolevulinic acid, fotolon) are also the perspective trends owing to the minimum risk of complications, side reactions, absence of recurrence and lower treatment costs [21]. Laser, i.e. coherent light, is effectively used as radiation source. For such purposes, semiconducting laser (for example, diode laser with wave length of 600–950 nm, argon laser – 448.0–514.5 nm) or solid-state laser (Nd/YAG-lasers 1064 nm, 532 nm, 355 nm or 266 nm) are used. As less expensive alternative, the powerful LEDs (wave length of 350–1100 nm) are also available which are portable and relatively cheap [22,23]. In our case, there was a lack of both physical and economic ability to use the beam therapy.

Despite the complexity of diagnosing leukoplakia of the oral mucous membrane and the red border, its timely detection and pathomorphological verification are the basis for rational and reasonable choice of the treatment strategy. For our patient, based on refusing to undergo surgical diagnostic and treatment methods, the chosen regimen of topical corticosteroids and calcineurin inhibitor application was beneficial in stabilization of the affected skin area, demonstrating the positive treatment results.

Conclusions

1. The literature review indicates that IQOS heated tobacco product and HEETS sticks are not less harmful in comparison with traditional tobacco products. The toxic substances content in aerosol can cause such signs of oxidative stress and endothelial dysfunction as inflammation, infections, fibrosis, and development of oncological pathology.

2. Use of IQOS heated tobacco product and HEETS sticks can be one of the provoking factors for occurrence of leukoplakia of the oral mucous membrane and the red border.

3. The use of topical glucocorticosteroids combined with topical calcineurin inhibitors can be proposed as an alternative to surgical methods of leukoplakia treatment and requires more detailed study.

Conflicts of interests: authors have no conflict of interest to declare.

Information about authors:
Makarchuk O. I., MD, PhD, DSc, Associate Professor of the Department of Dermatovenereology and Cosmetology with the Course of Aesthetic Medicine of Postgraduate Education Faculty, Zaporizhzhia State Medical University, Ukraine.
ORCID ID: 0000-0002-3293-2748

Holovkin A. V., MD, PhD, Associate Professor of the Department of Dermatovenereology and Cosmetology with the Course of Aesthetic Medicine of Postgraduate Education Faculty, Zaporizhzhia State Medical University, Ukraine.
ORCID ID: 0000-0002-7873-6910

Sokolovska I. A., MD, PhD, Associate Professor of the Department of General Hygiene and Ecology, Zaporizhzhia State Medical University, Ukraine.
ORCID ID: 0000-0002-5664-2392

Dmytrenko I. P., MD, PhD, Associate Professor of the Department of Dermatovenereology and Cosmetology with the Course of Aesthetic Medicine of Postgraduate Education Faculty, Zaporizhzhia State Medical University, Ukraine.
ORCID ID: 0000-0003-0248-9789

References
[1] Başaran, R., Güven, N. M., & Eke, B. C. (2019). An Overview of IQOS® as a New Heat-Not-Burn Tobacco Product and Its Potential Effects on Human Health and the Environment. Turkish Journal of Pharmaceutical Sciences, 16(3), 371-374. https://doi.org/10.4274/tips.oalenos.2018.70906
Клинический случай

[2] Glantz, S. A. (2018). Heated tobacco products: the example of IQOS. Tobacco Control, 27(Suppl. 1), s1-s6. https://doi.org/10.1136/tobaccocontrol-2018-054601

[3] Cancelada, L., Steiman, M., Tang, X., Russell, M. L., Montesinos, V. N., Litter, M. I., Gundel, L. A., & Destallatas, H. (2019). Heated Tobacco Products: Volatile Emissions and Their Predicted Impact on Indoor Air Quality. Environmental science & technology, 53(13), 7866-7876. https://doi.org/10.1021/acs.est.9b05244

[4] Uchiyama, S., Noguchi, M., Takagi, N., Hayashida, H., Inaba, Y., Ogiura, H., & Kunugita, N. (2018). Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products. Chemical Research in Toxicology, 31(7), 585-593. https://doi.org/10.1021/acs.chemrestox.8b00024

[5] Davis, B., Williams, M., & Tabot, P. (2019). IQOS: evidence of pyrolysis and release of a toxicant from plastic. Tobacco Control, 28(1), 34-41. https://doi.org/10.1136/tobaccocontrol-2017-054104

[6] Leigh, N. J., Tran, P. L., O’Connor, R. J., & Goniewicz, M. L. (2018). Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tobacco Control, 27(Suppl. 1), s26-s29. https://doi.org/10.1136/tobaccocontrol-2018-054317

[7] Sohal, S. S., Eapen, M. S., Naidu, V., & Sharma, P. (2019). IQOS exposure impairs human airway cell homeostasis: direct comparison with traditional cigarette and e-cigarette. ERI Open Research, 5(1), Article 00159-2018. https://doi.org/10.1183/23120541.00159-2018

[8] Nabavizadeh, P., Liu, J., Havel, C. M., Ibrahim, S., Derakhshandeh, R., Jacob III, P., & Springer, M. L. (2018). Vascular endothelial function is impaired by aerosol from a single IQOS HeatStick to the same extent as by cigarette smoke. Tobacco Control, 27(Suppl. 1), s13-s19. https://doi.org/10.1136/tobaccocontrol-2018-054325

[9] Leigh, N. J., Palumbo, M. N., Marino, A. M., O’Connor, R. J., & Goniewicz, M. L. (2018). Tobacco-specific nitrosamines (TSNA) in heated tobacco product IQOS. Tobacco Control, 27(Suppl. 1), s37-s38. https://doi.org/10.1136/tobaccocontrol-2018-054318

[10] Konstantinou, E., Fotopoulou, F., Drosos, A., Dimakopoulou, N., Zagorit, Z., Narchos, A., Makrynotis, D., Kouretas, D., Farsalinos, K., Lagounidzis, G., & Poulias, K. (2018). Tobacco-specific/nitrosamines: A literature review. Food and Chemical Toxicology, 118, 198-203. https://doi.org/10.1016/j.fct.2018.05.008

[11] Brake, S. J., Barsley, K., Lu, W., McLainden, K. D., Eapen, M. S., & Sohal, S. S. (2020). Smoking Uregulates Angiotensin-Converting Enzyme-2 Receptor: A Potential Adhesion Site for Novel Coronavirus SARS-CoV-2 (Covid-19). Journal of Clinical Medicine, 9(3), Article 841. https://doi.org/10.3390/jcm9030841

[12] Maia, H. C., Pinto, N. A., Pereira, J., de Medeiros, A. M., da Silveira, E. J., & Miguel, M. C. (2016). Potentially malignant oral lesions: clinicopathological correlations. Einstein, 14(1), 35-40. https://doi.org/10.1590/1679-45082016030387

[13] Boyarsenko, A., & Kolenko, J. (2017). Sovremennyi podkhod k diagnostike leikoplakii slyzovoi obolochki polosti rt [Modern approaches to diagnostics of oral leukoplakia]. Science yesterday, today, tomorrow: Proceedings of the XLIV International scientific-practical conference. (Issue 3, pp. 26-34). Izd. ANS «SibAK». [in Russian].

[14] Syomkin, V. A., Rabinovich, O. F., Babichenko, I. I., & Bezukrov, A. A. (2017). Leikoplakia: klinicheskii i patomorfologicheskii diagnoz [Leukoplakia: clinical and pathological diagnosis]. Stomatologiya, 1(1), 72-76. https://doi.org/10.17116/stomat201797137-39 [in Russian].

[15] Kolenko, Yu. (2016). Rol chynnykiv ryzyku v rozvytku peredrakovykh ochok [Role of risk factors for development of precancerous diseases of the oral mucosa]. Sovremennaya atomatologiya, 1(1), 53-56. [in Ukrainian].

[16] Irani, S. (2016). Pre-Cancerous Lesions in the Oral and Maxillofacial Region: A Literature Review with Special Focus on Etiopathogenesis. Iranian Journal of Pathology, 11(4), 303-322.

[17] Mohammad, F., & Farzoezhan, A. T. (2020). Oral Leukoplakia. StatPearls [Internet]. StatPearls Publishing.

[18] Speight, P. M., Khurram, A. S., & Kujan, O. (2018). Oral potentially malignant disorders: risk of progression to malignancy. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 126(6), 612-627. https://doi.org/10.1016/j.ijosr.2017.12.011

[19] Kostina, I. N., Epishova, A. A., Grigor’ev, S. S., Chernyshova, N. D., & Sorokoumova, D. V. (2019). Predrakovy zabolavannya slyzovoi obolochki polosti rt [Precancerous diseases of the mucous membrane of the oral cavity]. Zaporozh'ky medychny zhurnal. (13), 7866-7876. https://doi.org/10.1136/tobaccocontrol-2018-054601

[20] Syomkin, V. A., Rabinovich, O. F., Agapitova, L. P., Bezrukov, A. A., & Babichenko, I. I. (2018). Photodynamic therapy with photosensitizer fotolon for oral leukoplakia. Biomedical Photonics, 5(2), 13-20. https://doi.org/10.24931/2413-9432-2018.2.125528

[21] Chen, Q., Dan, H., Tang, F., Wang, J., Li, X., Cheng, J., Zhao, H., & Zeng, X. (2019). Photodynamic therapy guidelines for the management of oral leukoplaasia. International Journal of Oral Science, 1(2), Article 14. https://doi.org/10.1038/s41368-018-0047-0

[22] Bogomolov, A. Ye. (2018). Characteristic of nicotine delivery devices – electronic cigarettes – as a tool to fight against tobacco dependence. Zaporizhzhya medical journal. 29(2), 275-279. https://doi.org/10.14739/2310-1210.2018.2.125529