Rejuvenation in the Random Energy Model

Marta Sales1,2, Jean-Philippe Bouchaud2

1 Dept. de Física Fonamental, Diagonal 647. Pta. 3a.
08028 Barcelona, Spain
2 Service de Physique de l’État Condensé, Centre d’études de Saclay,
Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France

Abstract

We show that the Random Energy Model has interesting rejuvenation properties in its frozen phase. Different ‘susceptibilities’ to temperature changes, for the free-energy and for other (‘magnetic’) observables, can be computed exactly. These susceptibilities diverge at the transition temperature, as $(1 - T/T_c)^{-3}$ for the free-energy.

A small temperature change in the low temperature phase of spin-glasses is able to ‘rejuvenate’ an already aged system [4, 5, 6]. More precisely, the a.c. susceptibility of a system aged for a very long time at $T_1 < T_c$ (where T_c is the spin-glass phase transition temperature) and then suddenly cooled at $T_1 - \Delta T$ is, provided ΔT is not too small, very close the the susceptibility of a young system directly cooled from high temperatures to $T_1 - \Delta T$. This ‘fragility’ to temperature changes has been interpreted early on as a signature of ‘temperature chaos’, that is the fact that the equilibrium states of a disordered system are very different for different temperatures: beyond a certain
length scale $\ell_{\Delta T}$ (which diverges for small ΔT), the thermodynamical states become uncorrelated and the overlap between them tends to zero for large system sizes. Such an effect was conjectured in the context of the droplet model of spin-glasses, based on scaling arguments [4, 5], and supported by Migdal-Kadanoff renormalisation group calculations [6]. A similar effect is also predicted for pinned interfaces [7], and has recently been checked in careful large scale simulations and analytical arguments in the case of the $1+1$ directed polymer in random media [11]. However, temperature chaos has been recently disproven in the mean-field SK model [8], and not been found either in numerical simulations of the 3D Edwards-Anderson spin-glass model [9, 10]. This might be due to the fact that the length scale $\ell_{\Delta T}$ (if it exists) involves a large numerical prefactor and is therefore larger than numerically accessible sizes. It could also be that although the length scale $\ell_{\Delta T}$ plays a relevant role in the overlap between the states at T_1 and $T_1 - \Delta T$, this overlap does tend very slowly to zero for large sizes, as in [11]. Finally, the ‘temperature chaos’ interpretation of the rejuvenation effect has to be compatible with the simultaneous memory that one observes experimentally. A scenario for this was recently proposed in [12].

Another line of thought to explain rejuvenation and memory in spin-glasses is based on ‘hierarchical’ energy landscape pictures [13, 14]. Lower temperatures reveal finer details (rejuvenation) while large scale jumps are frozen out (memory) [15, 2, 3]. Numerical simulations of the dynamics on Parisi’s tree [16] or in the Sinai potential [17] indeed confirm that these effects exist in the absence of ‘true’ chaos. Even a simple two-level system does actually lead to some rejuvenation when the temperature is of the order of the energy difference between the levels – simply because the relative Boltzmann weight changes when the temperature is changed. In this paper, we want to study in details the temperature rejuvenation effect in the glassy phase of the Random Energy Model (REM), for which a number of exact results are known [18]. This low temperature phase is described, in the replica language, by a ‘one-step’ replica symmetry breaking scheme [19]. This model is expected to be in the same universality class (with possibly minor corrections) as a large number of other models [20], such as the p-spin models (advocated to be good models for glasses), the Bernasconi model, the directed polymer (or random manifold) in high dimensions [21, 22], the unbinding transition of heteropolymers [23] and the problem of a single particle in a logarithmically correlated random potential [24]. Interestingly, a dynamical version of the
REM naturally leads to aging dynamics [13, 25, 26].

Here, we want to compute exactly the ‘rejuvenation susceptibility’ of different observables to small temperature changes. Even if the model is not ‘chaotic’, it reveals a number of interesting features that may be relevant to the present discussion. For example, the ‘susceptibility’ to temperature changes diverges when the temperature tends to the glass temperature of the model. Experimental consequences are discussed in the conclusion.

It is well known that the low temperature phase of the REM is equivalent to that of the ‘trap’ model [27, 28], where \(M \) energy states \(\epsilon_i, \ i = 1, \ldots M \) are chosen with an exponential probability distribution:

\[
P(\epsilon) = \frac{1}{T_c} \exp\left(-\frac{|\epsilon|}{T_c}\right).
\]

(1)

Note that \(\epsilon \) is chosen to be negative. The partition function for this model is simply \(Z(T) = \sum_{i=1}^{M} z_i \) with \(z_i = \exp(|\epsilon_i|/T) \). This model undergoes a phase transition at \(T = T_c \), where the partition function ‘localizes’ on a few states. More precisely, in the limit \(M \to \infty \), the Boltzmann weights of a finite number of states add up to a finite fraction of the partition function for \(T < T_c \) [27, 28]. Aging is the dynamical counterpart of this localization effect: most of the elapsed time is spent by the system in the deepest available well [13].

As a first definition of the susceptibility to temperature changes, we study, following Fisher and Huse [7], the correlation of the free-energy fluctuations for two different temperatures. More precisely, we write:

\[
C_F(T_1, T_2) = \frac{(\ell_1 - \overline{\ell_1})(\ell_2 - \overline{\ell_2})}{(\overline{(\ell_1 - \overline{\ell_1})}^2 \overline{(\ell_2 - \overline{\ell_2})}^2)^{1/2}}.
\]

(2)

where \(\ell_1 \) stands for \(\log Z(T_1) \) and the overline means that we average over the distribution of the energies \(\epsilon \). When \(T_1 = T_2(1 + \varepsilon) \) we expect that:

\[
C_F(T_1, T_2) = 1 - \kappa_F \varepsilon^2, \quad (\varepsilon \to 0),
\]

(3)

where \(\kappa_F \) defines the susceptibility to temperature changes. The calculation of this quantity starts with Derrida’s representation of \(\log Z \) [18]:

\[
\log Z = \int_0^\infty dt \frac{\exp(-t) - \exp(-tZ)}{t} = \lim_{b \to 0^+} \int_0^\infty dt \ t^{b-1} \ (\exp(-t) - \exp(-tZ))
\]

(4)
where \(b \) has been introduced to ensure convergence of intermediate calculation steps. The average over \(\epsilon \) then involves:

\[
\exp -tZ = (\exp -tz)^M = (1 - (1 - \exp -tz))^M \tag{5}
\]

For large \(M \), only the vicinity of \(t = 0 \) will therefore be of importance. Using the fact that the random variables \(z \) are distributed with a power law-tail \(\mu z^{-\mu} \) with \(\mu = T/T_c \), one finds that:

\[
1 - \exp -tz \sim \Gamma(1 - \mu) t^\mu. \tag{6}
\]

Using the last result in the previous two equations finally leads to the following result for the free-energy (in units of \(T_c \)):

\[
-\mu \log Z = -\log M - \gamma(1 - \mu) - \log \Gamma(1 - \mu), \tag{7}
\]

where \(\gamma \) is Euler’s constant. The first term comes from the fact that when \(M \) is large, the smallest energy drawn from an exponential distribution behaves as \(-T_c \log M\), plus order one (random) corrections. Therefore, all the fluctuations involved in the calculation of \(C_F \) will be of order 1. The calculation of the average of the product of \(\log Z \) for two different temperatures is a little more involved. At an intermediate level of the computation, one finds, to order \(b^0 \):

\[
\ell_1 \ell_2 = \Gamma^2(b) - \Gamma(b) \left[\frac{\Gamma(b/\mu_1)}{M^{b/\mu_1} \mu_1 \Gamma^{b/\mu_1}(1 - \mu_1)} + 1 \rightarrow 2 \right] \\
+ \frac{\Gamma(b/\mu_1)}{\mu_1 b M^{b/\mu_1}} \left[1 - b^2 \beta \mathcal{F}(\mu_1, \alpha) \frac{1 - b^2 \beta \mathcal{F}(\mu_2, 1/\alpha)}{\Gamma^{b/\mu_1}(1 - \mu_1)} + \frac{\alpha}{\Gamma^{b/\mu_1}(1 - \mu_2)} \right] \tag{8}
\]

with \(\alpha = 1 + \varepsilon, \beta = (1 + \alpha)/\mu_1 \) and

\[
\mathcal{F}(\mu, \alpha) = \int_0^1 \frac{dv}{v} \log \left[1 + \frac{\mu}{\Gamma(1 - \mu)} \int_0^\infty \frac{\exp(-u) - \exp(-u^\alpha v)}{u^{1+\mu}} \right] \tag{9}
\]

Expanding the previous result to order \(\varepsilon^2 \) and rearranging the terms finally leads to \(\kappa_F(\mu_1) \), which is too long to write explicitly here. Its dependence on \(\mu_1 \) is given in Fig. 1. Of main interest is its behaviour for small temperatures and close to the transition point. For \(\mu_1 \rightarrow 0 \), one finds that \(\kappa_F \) goes to zero as:

\[
\kappa_F(\mu_1) \sim 0.905558...\mu_1^2. \tag{10}
\]
Figure 1: Plot of the rejuvenation susceptibilities κ_O (plain line) and κ_F (dotted line) in semi-log scale, as a function of $\mu = T/T_c$. Note that both quantities vanish at $T = 0$ and diverge at $T = T_c$, with different exponents.

For small temperatures, only the ground state contributes to the free-energy both for T_1 and T_2. Hence, one indeed expects the sample to sample fluctuations to be strongly correlated. For $\mu_1 \to 1$, on the contrary, one finds that κ_F diverges:

$$\kappa_F(\mu_1) \sim \frac{3(4 \log 2 - 1)}{\pi^2 (1 - \mu_1)^3} \sim \frac{0.538802...}{(1 - \mu_1)^3}$$

indicating that close to the ‘delocalisation’ transition, the system tends to occupy rather different states when the temperature is slightly changed. Finally, the correlation of free-energy fluctuations between $T_1 > T_c$ and $T_2 < T_c$ vanish as the size of the system tend to infinity.

Therefore, except right at the transition, there is no ‘strong chaos’ in the
REM, which would imply that the susceptibility \(\kappa_F \) diverges with the size of the system. However, small temperature changes do lead to noticeable changes in the physical observables. A perhaps more direct way to see this is to assign to each state \(i \) a certain observable \(\mathcal{O}_i \), independent the energy of this state. This can be for example, the position of the state in space if the model describes (for example) the metastable states of a pinned interface, or the magnetisation of a state for spin system. We will assume for simplicity that \(\sum_i \mathcal{O}_i = 0 \). For a given set of random energies \(\epsilon_i \), the thermodynamical value of the observable is:

\[
\langle \mathcal{O} \rangle = \frac{1}{Z} \sum_{i=1}^{M} z_i \mathcal{O}_i
\]

(12)

The average over disorder of this quantity is always zero. However, a fundamental difference arises between the case \(T > T_c \) and \(T < T_c \). In the former case and for large systems, \(\langle \mathcal{O} \rangle \) tends to zero. This is related to the fact that the partition function is more or less evenly spread out on all states. On the contrary, for \(T < T_c \), \(\langle \mathcal{O} \rangle \) for a given system is a finite random quantity. Its variance is (for large \(M \)) given by:

\[
\langle \mathcal{O} \rangle^2 = (1 - \mu) \sum_i \mathcal{O}_i^2 \quad \mu = \frac{T}{T_c}
\]

(13)

Take for example the case where the observable \(\mathcal{O}_i = x_i \) is the position of a particle in a box of size \(2L \), \(x_i = L(1 - 2i/M) \). In this case, the typical average position of the particle is \(\langle x \rangle \sim \sqrt{1 - \mu}L \) which scales with the total size of the system, compared to \(\langle x \rangle \sim L^\zeta \) with \(\zeta < 1 \) for \(T > T_c \). Quenching the temperature from above \(T_c \) therefore induces a complete rearrangement of the equilibrium properties of the system which occurs in a slow, aging way.

Now, let us how this observable changes when the temperature is slightly changed \textit{within} the glass phase. The calculation proceeds much as above, or as in [27]. For small temperature shifts \(\varepsilon \to 0 \), we find:

\[
\overline{(\langle \mathcal{O} \rangle_1 - \langle \mathcal{O} \rangle_2)^2} = \kappa_O(\mu_1)\varepsilon^2 \left(\sum_i \mathcal{O}_i^2 \right),
\]

(14)

where the rejuvenation susceptibility is given by a very lengthy expression. This quantity is plotted in Fig. 1. Its small temperature behaviour is given
by:
\[\kappa_O(\mu_1) \sim \frac{12 + \pi^2}{18} \mu_1 = 1.21497802...\mu_1, \]
where its divergence for \(\mu_1 \to 1 \) is given by:
\[\kappa_O(\mu_1) \sim \frac{1}{3(1 - \mu_1)}. \]

Therefore, we again find a divergence of the rejuvenation susceptibility near \(T_c \). For \(T > T_c \), we find that \(\kappa_O \) vanishes as a (\(T \) dependent) power of \(M \).

We then find a very interesting situation: Eq. (14) tells us that when the temperature is slightly changed, the mean position of the particle (say) has to evolve by an amount of order \(\sqrt{\kappa \varepsilon L} \) that is proportional to the size of the system (and with a diverging amplitude when \(T \to T_c \)). In this sense, rejuvenation is strong since a small temperature change will induce a rather large response of the system. However, since the number of states occupied by the particle remains finite in the whole glassy phase \(T < T_c \), the probability to find the system in the same state at \(T_1 \) and \(T_2 \) remains finite in the limit of large systems \([29] \). This probability is directly related to \(\kappa_O \), and reads:
\[P_{12} = 1 - \frac{\mu_1 + \mu_2}{2} - \kappa_O \varepsilon^2. \]
(Note that \(P_{11} = 1 - \mu_1 \) as it should \([27, 28]\)). In the p-spin glass model where two states are generically orthogonal, the resulting two temperature overlap function is therefore given by:
\[\overline{P(q, T_1, T_2)} = (1 - P_{12})\delta(q) + P_{12} \delta(q - q(T_1, T_2)). \]

In summary, we have shown that the Random Energy Model has interesting rejuvenation properties in its frozen phase. Different ‘susceptibilities’ to temperature changes, for the free-energy and for other (magnetic) observables, can be computed exactly. These susceptibilities diverge at the transition temperature with different exponents. Since the REM seems to be relevant to many physical situations, the mechanism found here is probably of broad interest. However, the coexistence of rejuvenation and memory seen in the spin-glass experiments cannot be accounted for by the simplest version of the REM, because the evolution at \(T_2 \) will have a significant influence on the properties measured at \(T_1 \) after reheating. One can generalize the REM
along the lines of [30] by allowing a hierarchy of phase transitions $T_{c,n}$. As argued in [15] and numerically demonstrated in [16], each crossing of a phase transition $T_{c,n}$ induces a strong rejuvenation signal (much as calculated here) with a slow aging dynamics for $T < T_{c,n}$ and a fast return to equilibrium for $T > T_{c,n}$, accounting for the memory effect.

Acknowledgements M. S. thanks the Spanish Ministry of Education and Culture for a visit grant to Saclay. J.P. B. wants to thank D. S. Fisher and Harvard University for hospitality during the period this work was completed. We are indebted to D. S. Fisher, M. Mézard, F. Ritort, J. Sethna, R. da Silveira and L.H. Tang for interesting remarks and discussions.

References

[1] K. Jonason, E. Vincent, J. Hammann, J.-P. Bouchaud and P. Nordblad, Phys. Rev. Lett. 31, 3243 (1998)

[2] J-P. Bouchaud in Soft and Fragile Matter, ed.: M. E. Cates and M. R. Evans (Institute of Physics Publishing, Bristol and Philadelphia, 2000).

[3] J. P. Bouchaud, V. Dupuis, J. Hammann, E. Voncent, H. Yoshino, Separation of length scales and time scales in spin-glasses, in preparation.

[4] D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373 and 386 (1988)

[5] G. J. M. Koper and H. J. Hilhorst, J. Phys. France 49, 429 (1988).

[6] A.J. Bray and M.A. Moore, Phys. Rev. Lett. 58 (1987) 57.

[7] D. S. Fisher and D. A. Huse 1991, Phys. Rev. B 43 10728.

[8] T. Rizzo, e-print cond-mat/0103375

[9] A. Billoire, E. Marinari, J. Phys. A33 L265 (2000)

[10] M. Picco, F. Ricchi-Tersenghi and F. Ritort, cond-mat/0005541

[11] H. Yoshino, M. Sales, in preparation.

[12] H. Yoshino, A. Lemaitre, J.P. Bouchaud, cond-mat/0009152 to appear in EPJB.
[13] Ph. Refregier, E. Vincent, J. Hammann and M. Ocio, *J. Phys. France* **48**, 1533 (1987); E. Vincent, J.-P. Bouchaud, J. Hammann and F. Lefloch, *Phil. Mag. B* **71**, 489 (1995).

[14] F. Lefloch, J. Hammann, M. Ocio and E. Vincent, *Europhys. Lett.* **18**, 647 (1992).

[15] J.P. Bouchaud, D.S. Dean, J. Physique I (France) **5**, (1995) 265.

[16] M. Sasaki and K. Nemoto, *J. Proc. Soc. Jpn* 2283 (2000)

[17] M. Sales, J. P. Bouchaud, F. Ritort, in preparation.

[18] B. Derrida, *Phys. Rev. Lett.* **45**, 79 (1980), *Phys. Rev. B* **24**, 2613 (1981).

[19] D.J. Gross, M. Mézard, Nucl. Phys. **B240** 431 (1984).

[20] for a review, see J.P. Bouchaud, L. Cugliandolo, J. Kurchan, M. Mézard, *Out of Equilibrium dynamics in spin-glasses and other glassy systems*, in ‘Spin-glasses and Random Fields’, A.P. Young Editor (World Scientific) 1998, and references therein.

[21] B. Derrida, H. Spohn, J. Stat. Phys. **51** 817 (1988)

[22] M. Mézard, G. Parisi, J. Physique I **1** 809 (1991)

[23] L.H. Tang, H. Chate, Phys. Rev. Lett. **86** 830 (2001).

[24] D. Carpentier, P. Le Doussal, Phys. Rev. **E63** 026110 (2001)

[25] C. Monthus, J.P. Bouchaud, J. Phys. A **29** (1996) 3847.

[26] Ph. Maass, B. Rindt, J.P. Bouchaud, Phys. Rev. Lett. **84**, 5403 (2000)

[27] B. Derrida, *Non-Self averaging effects in sum of random variables*, in ‘On Three Levels’, Edited by Fannes et al, p. 125, Plenum Press, NY, 1994

[28] J.P. Bouchaud, M. Mézard, J. Phys. A. **30** (1997) 7997.

[29] A. Compte and J. P. Bouchaud, J. Phys. A **31**, 6113 (1998).

[30] B. Derrida, E. Gardner, J. Phys. C **19** 2253 (1986).