Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from *Mycobacterium tuberculosis*

Involved in Bioreductive Activation of PA-824

Susan E. Cellitti, Jennifer Shaffer, David H. Jones, Tathagata Mukherjee, Meera Gurumurthy, Badry Bursulaya, Helena I. Boshoff, Inhee Choi, Amit Nayyar, Yong Sok Lee, Joseph Cherian, Pornwaratt Niyomrattanakit, Thomas Dick, Ujjini H. Manjunatha, Clifton E. Barry III, Glen Spraggon, and Bernhard H. Geierstanger

Inventory of Supplemental Information

Supplementary Table S1, Related to Table 1
Constructs for Ddn and homologous proteins used in this study

Supplementary Figure S1, Related to Figure 2
Characterization of WT and truncated Ddn

Supplementary Figure S2, Related to Figure 2
Predicted N-terminal helix of Ddn

Supplementary Figure S3, Related to Figure 2
Comparison of NΔ30 and helix mutants

Supplementary Table S2, Related to Figure 3
Partial NMR chemical shift assignments for NΔ30 with and without F_420

Supplementary Figure S4, Related to Figure 5
NMR characterization of nfa33440

Supplementary Figure S5, Related to Table 2
NMR characterization of nfa33440 mutants

Supplementary Table S3, Related to Table 2
Half-height linewidth\(^1\) of the 0.45 ppm methyl peak of nfa33440 mutants at different protein to F_420 coenzyme ratios

Supplementary Table S4, Related to Table 2
PA-824 chemical shift difference and T1ρ intensity loss in the presence of nfa33440 mutants

Supplementary Figure S6, Related to Table 2
PA-824 titration of nfa33440 S72V

Supplementary Figure S7, Related to Table 2
Cartoon models of Ddn (Holo-1) and nfa33440 showing positions of residues mutated for functional studies

Supplementary Figure S8, Related to Figure 7
Circular dichroism of the wild type DDn, maltose binding protein, F16A-F17A-W20A-Ddn and F16A-F17A-Ddn is represented as a plot of g-factor vs. wavelength

Supplementary Table S5, Related to Figure 7
Relative percentage of secondary structure components as derived from circular dichroism measurements of the wild type DDn, maltose binding protein, F16A-F17A-W20A-Ddn and F16A-F17A-Ddn
Figure S1. Characterization of WT and truncated Ddn

(A) Preparative size exclusion chromatography illustrates the difference in behavior of full-length (red/top) and truncated (blue/middle) Ddn. While the full-length protein elutes near the void volume as a soluble aggregate, the NΔ30 truncation mutant elutes as expected for a monomeric protein. BioRad standards (black) are included for comparison. Both proteins were expressed from SpeedET. NΔ30 and standards were run in PBS; full-length was run in 25 mM citrate pH 6.5, 150 mM NaCl.

(B) NMR spectra of NΔ30 with and without coenzyme F$_{420}$. Dispersed peaks in these 1H-15N-HSQC spectra suggest a well folded protein with a distinct three dimensional structure. Shifted peaks upon addition of coenzyme indicate tight binding. The apo spectrum (blue) includes 113 of an expected 114 peaks (including N-terminal Gly from TEV site). The oxidized (red) and reduced (green) coenzyme spectra contain 100 and 84 peaks respectively. Partial assignments for the apo- and oxidized F$_{420}$ spectra are presented in Supplementary Table 2.
Cellitti et al.
Structure of Ddn, the Deazaflavin-dependent nitroreductase from *Mycobacterium tuberculosis*
involved in bioreductive activation of PA-824

Supplementary Figure S2, Related to Figure 2

![Figure S2](image)

Figure S2. Predicted N-terminal helix of Ddn

Residues 13-28 are predicted to form a helix with a strongly hydrophobic face, as shown in this projection(Armstrong and Zidovetzki). This may be the cause of the aggregation of the full-length protein. It is unclear if Ddn is membrane-associated *in vivo*, but it has been identified in detergent extractions of *M. tuberculosis* as described in the main text(Sinha et al., 2002; Sinha et al., 2005). The N-termini of Ddn and similar predicted split barrel-like proteins vary greatly and may be important for their native functions.
Figure S3. Comparison of NΔ30 and helix mutants

Initially, mutations were made to the predicted N-terminal helix in order to remodel the hydrophobic face and prevent aggregation. Like the N-terminal truncations, these mutants behaved as monomeric proteins as determined by analytical size exclusion chromatography (see Table S1).

(A) The 1H-15N-HSQC spectra of these mutants (F16A-F17D-W20D-I24A-W27D full-length Ddn shown here in blue) are very similar to that of NΔ30 (in red). This suggests that the N-termini of the mutants undergo conformational exchange.

(B) Constructs were made to introduce up to three salt bridges into the putative N-terminal helix in order to stabilize its structure. The 1H-15N-HSQC spectra of these full-length Ddn mutants (D15E-F16A-F17D-W20D-I24A-W27D shown here) are very similar to that of NΔ30, except that there are approximately 18 additional NH peaks (out of 25 possible). This suggests a change in the kinetics of the conformational exchange process. However, the lack of shifts (beyond error in linewidths) among the shared peaks suggests that the N-terminus is not interacting with the core of the protein in the mutants.
Table S2. Partial NMR chemical shift assignments for NΔ30 with and without F$_{420}$

Residue	Apo	with F$_{420}$1		Residue	Apo	with F$_{420}$1
N32	120.541	120.622	8.518	V73	122.177	8.745
G33	120.883	120.795	8.302	i74	131.897	8.29
G34	108.815	108.807	8.302	V75	117.375	9.056
E35	120.424	120.469	8.151	A76	121.683	8.069
G36	109.654	109.592	8.376	A77	119.301	8.016
L37	121.455	121.406	8.103	E83	118.509	7.981
G38	109.342	109.389	8.45	K84	121.756	8.046
G39	108.52	108.558	8.185	N85	117.474	8.563
T40	113.247	113.358	7.954	M87	122.169	8.699
F41	121.997	122.035	8.176	W88	115.119	7.603
Q42	121.455	121.892	8.103	Y89	122.769	5.667
K43	122.457	122.565	8.242	L90	117.212	7.318
I44	123.723	124.119	8.043	N91	117.542	8.607
V46	116.069	115.187	8.003	L92	119.53	7.719
A47	125.545	126.718	9.109	K93	120.47	7.552
L48	116.067	117.917	8.479	K94	120.391	6.951
L49	130.664	129.968	8.838	N95	114.945	7.808
T50	127.455	126.572	9.742	K97	119.204	7.487
T51	116.14	115.949	8.868	V98	119.101	8.645
T52	115.916	117.721	8.907	Q99	118.984	7.905
G53	114.885	116.594	8.554	V100	123.158	9.029
R54	126.677	126.004	7.911	Q101	127.278	8.859
K55	118.293	119.584	8.57	I102	128.32	8.462
T56	114.935	111.517	8.549	K103	126.059	9.124
G57	110.231	110.698	7.912	K104	121.281	8.256
Q58	119.208	118.856	7.723	E105	122.638	8.11
R60	124.768	125.501	9.239	V106	124.84	8.277
V61	124.334	126.222	8.484	L107	128.469	9.108
N62	124.984	124.763	8.977	D108	124.841	8.441
L64	127.398	123.939	9.27	L109	123.885	8.083
Y65	121.496	116.77	7.663	T110	116.92	9.203
F66	113.639	132.978	7.908	A111	132.901	9.82
L67	116.244	117.447	8.871	R112	117.976	8.941
R68	121.148	121.884	8.764	D113	120.002	8.8
D69	123.367	123.4	7.981	A114	123.756	8.558
G70	116.14	116.203	8.986	T115	117.226	9.805
G71	116.377	116.24	9.023	D116	122.009	9.174
R72	116.153	116.139	7.792	E117	119.693	8.6

1Samples were titrated with F$_{420}$ to full occupancy before data acquisition for assignments.
Cellitti et al.
Structure of Ddn, the Deazaflavin-dependent nitroreductase from *Mycobacterium tuberculosis*
involved in bioreductive activation of PA-824

Supplementary Table S2, Related to Figure 3

Table S2 (cont.)

Residue	Apo N (ppm)	Apo HN (ppm)	with F₄₂₀¹ N (ppm)	with F₄₂₀¹ HN (ppm)
Y122	115.978	8.595		
W123	121.243	8.805		
Q125	114.374	6.719		
L126	122.24	7.953		
Y136	119.599	7.76		
Q137	119.419	8.276		
S138	113.16	7.834		
D141	120.699	7.342		
R142	121.851	8.112		
T143	111.755	8.202		
I144	122.465	7.352		
I146	121.225	7.973		
V147	127.931	9.076		
V148	126.807	9.144		
C149	125.545	9.109	125.142	9.084
E150	123.352	8.981	123.03	8.947
Cellitti et al.
Structure of Ddn, the Deazaflavin-dependent nitroreductase from *Mycobacterium tuberculosis*
involved in bioreductive activation of PA-824
Supplementary Figure S4, Related to Figure 5

Figure S4. NMR characterization of nfa33440

(A) The 1H-15N-HSQC spectrum of apo-nfa33440 includes 107 of 135 expected peaks (blue). Although no assignments have been made, the number of peaks is suggestive of a structured protein core with the N-terminus undergoing conformational exchange in the intermediate time regime. Robust shifts upon addition of F_{420} confirm tight binding of the coenzyme. In the presence of F_{420} (red), there are approximately 90 peaks observed. This is similar to the case for Ddn NAΔ30 in which parts of the active site are no longer visible upon binding to coenzyme.

(B) Addition of PA-824 does not change the number of peaks observed (red), but there are chemical shift perturbations of some of the weaker peaks. This further supports the hypothesis that it is the active site residues that are undergoing exchange and that binding of the substrates of the enzyme affects these dynamic processes.
Figure S5. NMR characterization of nfa33440 mutants
Proton spectra of the indicated mutants are shown. All samples were acquired in PBS using excitation sculpting for water suppression (Hwang and Shaka, 1995). The appearance of the spectra for all the mutants is very similar to wild-type protein and confirms they are well-folded with similar structures. The peaks for M59A have the largest chemical shift changes compared to wild-type and suggest this mutation may have had the most significant impact on the structure. The mutants W16A and T126A are missing peaks at 10.13 and 6.05 ppm respectively, probably corresponding to the amino acid amide protons.
Cellitti et al.
Structure of Ddn, the Deazaflavin-dependent nitroreductase from *Mycobacterium tuberculosis*
involved in bioreductive activation of PA-824

Supplementary Table S3, Related to Table 2

Table S3. Half-height linewidth\(^1\) of the 0.45 ppm methyl peak of nfa33440 mutants at different protein to \(F_{420}\) coenzyme ratios

Sample	Apo	1.4:1 \(F_{420}\)	2:1 \(F_{420}\)	3:1 \(F_{420}\)
I138A	23	37	20	
R136Q	24	37	24	
F136A	21	40	25	
E129A	16	37	19	
T126V	16	46	22	
Q73A	15	18	15	
S72V	18	26		
M59A	17	117	85	39
F35A	18	50	39	
W16A	17	46	26	
WT	17	42	18	

\(^1\)The linewidth is sensitive to \(F_{420}\) occupancy and increases when the protein is a mixture of free and bound - presumably due to exchange between apo and complex. Consequently, the concentration of coenzyme required to achieve a linewidth comparable to apo protein is a useful indication of the concentration required for 100% occupancy and thus the affinity. The results indicate that the only mutant with compromised coenzyme binding is M59A.
Table S4. PA-824 chemical shift difference and T1p intensity loss in the presence of nfa33440 mutants

Sample	δ-δapo [Hz]	T1p intensity loss [%]								
	PA-824 Peak (ppm)	PA-824 Peak (ppm)								
	7.775	7.459	7.444	7.339	7.325	7.775	7.459	7.444	7.339	7.325
S72V	-2.7	-1.9	-1.9	-2.6	-1.7	no signals for PA-824 (DMSO peak only)				
M59A	-1.6	-0.4	-0.4	-1.3	-0.2	14	14	14	25	20
F35A	-2.2	-2.5	-2.5	-2.5	-2.3	13	20	18	18	25
I138A	-2.0	-2.0	-2.0	-2.6	-2.0	22	22	22	35	35
R136Q	-2.2	-2.5	-2.5	-2.5	-2.3	13	20	18	18	25
Q73A	-32.6	-4.0	-3.9	-4.1	-4.1	71	35	35	44	44
W16A	-37.3	2.3	2.2	3.8	-4.1	72	32	32	58	58
T126V	-21.1	-4.4	-4.4	-4.2	-3.8	71	23	23	56	56
E129A	-30.8	-3.1	-3.1	-2.7	-3.1	82	34	34	55	55
WT	-17.3	-3.6	-3.5	-3.0	-3.4	78	25	25	57	57

1. Samples were prepared with the listed mutant at a protein-to-F420 ratio of 1:1.4 to 1:2 and a protein-to-PA-824 ratio of 1:0.6.
2. The chemical shift changes in Hz were measured for five peaks of PA-824 by subtracting the chemical shift in the presence of protein from those measured in buffer alone. For a two state system undergoing fast exchange (k>>2πΔδ), the chemical shift should reflect the average of the two populations (Wuthrich, 1986). Assuming that the chemical shift of the bound form is similar for all mutants, a larger chemical shift change reflects a greater bound fraction and provides an estimate of the relative affinity.
3. T1p data were also acquired to provide additional confirmation. In this experiment, spectra were acquired using a CPMG sequence with a short (10 ms) and long (200 ms) mix time, and the percent intensity loss was determined (Intensity loss = 1-(Intensity200ms/Intensity10ms)). The intensity loss is related to the fraction bound (Dalvit, 2009).
4. The grey shaded mutants appear to have altered PA-824 binding affinity based on T1p and chemical shift difference data.
5. For S72V there is no indication of free compound peaks despite the appearance of a DMSO peak (compound was added from a DMSO stock). These data suggest that compound binding is in the intermediate exchange regime (k≈2πΔδ) resulting in significant line broadening. This is unlike all the other mutants and wild-type where PA-824 is clearly in a fast-exchange regime and suggests that this mutant may have increased affinity for the prodrug. This may be due to a change in the binding pose or a stronger hydrophobic interaction with the substrate but does not represent a more efficient orientation for reduction based on the activity measurements.
Figure S6. PA-824 titration of nfa33440 S72V

(A) Overlaid proton spectra of 50 μM S72V with 30, 60, and 90 μM PA-824 in green, red, and blue respectively.

(B) Overlaid spectra for 50 μM wild-type protein alone (red) and upon the addition of 30 μM PA-824 (blue). In each panel the spectrum for PA-824 is offset in order to readily identify compound peaks. Sharp peaks corresponding to PA-824 were observed for wild-type nfa33440 at a protein-to-drug ratio of 1:0.6. Compound peaks were not observed for the S72V mutant until much higher concentrations (a protein-to-drug ratio of 1:1.8) and were very broad. These data suggest that the S72V mutant has higher PA-824 affinity.
Supplementary Figure S7, Related to Table 2

Figure S7. Cartoon of Ddn (Holo-1) and nfa33440 showing positions of residues mutated for functional studies. Residues tested that are also present in the structure are shown as sticks and colored in groups related to the presentation in Table 2.
Structure of Ddn, the Deazaflavin-dependent nitroreductase from *Mycobacterium tuberculosis* involved in bioreductive activation of PA-824

Supplementary Figure S8, Related to Figure 7

Figure S8. Circular dichroism of the wild type Ddn (MPB-WT, black), maltose binding protein (MBP, red), F16A-F17A-W20A-Ddn (MBP-triple, green) and F16A-F17A-Ddn (MBP-double, blue) is represented as a plot of g-factor vs. wavelength
Structure of Ddn, the Deazaflavin-dependent nitroreductase from *Mycobacterium tuberculosis* involved in bioreductive activation of PA-824

Supplementary Table S5, Related to Figure 7

Table S5. Relative percentage of secondary structure components as derived from circular dichroism measurements of the wild type Ddn (MPB-WT, black), maltose binding protein (MBP, red), F16A-F17A-W20A-Ddn (MBP-triple, green) and F16A-F17A-Ddn (MBP-double, blue)

	MBP-WT	MBP	MBP-Triple	MBP-Double
helix	26+/-1.4%	33+/-2.5%	26+/-1.2%	28+/-1.4%
sheet	30+/-1.5	28+/-2.4	31+/-1.2	30+/-1.3
turn	11+/-1.1	12+/-1.9	11+/-1.0	12+/-1.1
rem.	33+/-1.1	28+/-1.9	31+/-0.9	30+/-1.1

REFERENCES

Armstrong, D., and Zidovetzki, R. http://rzlabucredu/scripts/wheel/wheelcgi.

Dalvit, C. (2009). NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14, 1051-1057.

Hwang, T.L., and Shaka, A.J. (1995). Water suppression that works - Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112, 275-279.

Sinha, S., Arora, S., Kosalai, K., Namane, A., Pym, A.S., and Cole, S.T. (2002). Proteome analysis of the plasma membrane of *Mycobacterium tuberculosis*. Comp Funct Genomics 3, 470-483.

Sinha, S., Kosalai, K., Arora, S., Namane, A., Sharma, P., Gaikwad, A.N., Brodin, P., and Cole, S.T. (2005). Immunogenic membrane-associated proteins of *Mycobacterium tuberculosis* revealed by proteomics. Microbiology 151, 2411-2419.

Wuthrich, K. (1986). NMR of proteins and nucleic acids (New York, NY, Wiley-Interscience).