Review of the existing maximum residue levels for fluxapyroxad according to Article 12 of Regulation (EC) No 396/2005

European Food Safety Authority (EFSA), Maria Anastassiadou, Giovanni Bernasconi, Alba Brancato, Luis Carrasco Cabrera, Luna Greco, Samira Jarrah, Aiya Kazocina, Renata Leuschner, Jose Oriol Maqrans, Ileana Miron, Stefanie Nave, Ragnor Pedersen, Hermine Reich, Alejandro Rojas, Angela Sacchi, Miguel Santos, Alois Stanek, Anne Theobald, Benedicte Vagenende and Alessia Verani

Abstract

According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance fluxapyroxad. To assess the occurrence of fluxapyroxad residues in plants, processed commodities, rotational crops and livestock, EFSA considered the conclusions derived in the framework of Commission Regulation (EU) No 188/2011, the MRLs established by the Codex Alimentarius Commission as well as the import tolerances and European authorisations reported by Member States (including the supporting residues data). Based on the assessment of the available data, MRL proposals were derived and a consumer risk assessment was carried out. Although no apparent risk to consumers was identified, some information required by the regulatory framework was missing. Hence, the consumer risk assessment is considered indicative only and some MRL proposals derived by EFSA still require further consideration by risk managers.

Keywords: fluxapyroxad, BAS 700 F, MRL review, Regulation (EC) No 396/2005, consumer risk assessment, fungicide

Requestor: European Commission
Question number: EFSA-Q-2012-00690
Correspondence: pesticides.mrl@efsa.europa.eu
Acknowledgement: EFSA wishes to thank the rapporteur Member State, France, for the preparatory work on this scientific output.

Acknowledgement: EFSA wishes to thank the following for the support provided to this scientific output: Silvia Ruocco, Laszlo Bura, Georgios Chatzisotiriou and Viktor Toth.

Suggested citation: EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020. Reasoned Opinion on the review of the existing maximum residue levels for fluxapyroxad according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(1):5984, 99 pp. https://doi.org/10.2903/j.efsa.2020.5984

ISSN: 1831-4732

© 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Summary

Fluxapyroxad was approved on 1 January 2013 by means of Commission Implementing Regulation (EU) No 589/2012 in the framework of Regulation (EC) No 1107/2009 as amended by Commission Implementing Regulations (EU) No 540/2011 and 541/2011.

As the active substance was approved after the entry into force of Regulation (EC) No 396/2005 on 2 September 2008, the European Food Safety Authority (EFSA) is required to provide a reasoned opinion on the review of the existing maximum residue levels (MRLs) for that active substance in compliance with Article 12(1) of the aforementioned regulation.

As the basis for the MRL review, on 15 June 2018, EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit by 16 July 2018 their national Good Agricultural Practices (GAPs) in a standardised way, in the format of specific GAP forms, allowing the designated rapporteur Member State (RMS), France, to identify the critical GAPs in the format of a specific GAP overview file. Subsequently, Member States were requested to provide residue data supporting the critical GAPs, within a period of 1 month, by 19 October 2018. On the basis of all the data submitted by Member States and by the EU Reference Laboratories for Pesticides Residues (EURLs), EFSA asked the RMS to complete the Pesticide Residues Overview File (PROFile) and to prepare a supporting evaluation report. The PROFile and evaluation report, together with Pesticide Residues Intake Model (PRIMO) calculations and an updated GAP overview file were provided by the RMS to EFSA on 19 December 2018. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Based on the information provided by the RMS, Member States and the EURLs, and taking into account the conclusions derived by EFSA in the framework of Commission Regulation (EU) No 188/2011 and the MRLs established by the Codex Alimentarius Commission, EFSA prepared in October 2019 a draft reasoned opinion, which was circulated to Member States for consultation via a written procedure. Comments received by 20 November 2019 were considered during the finalisation of this reasoned opinion. The following conclusions are derived.

The metabolism of fluxapyroxad in plant was investigated in primary and rotational crops. According to the results of the metabolism studies, the residue definition for enforcement and risk assessment can be proposed as fluxapyroxad. These residue definitions are also applicable to processed commodities. Fully validated analytical methods are available for the enforcement of the proposed residue definition in all four main plant matrices at the limit of quantification (LOQ) of 0.01 mg/kg. According to the EURLs, the LOQ of 0.01 mg/kg is achievable by using the QuEChERS method in routine analyses.

The available data on primary crops are considered sufficient to derive (tentative) MRL proposals as well as risk assessment values for all commodities under evaluation, except for garlic, onions and shallots where data were insufficient to derive MRLs.

MRLs and risk assessment values considering a worst-case scenario reflecting crop failure (PBI of 30 days) were also derived for rotational crops on a tentative basis. For garlic, onions and shallots, the (tentative) MRL and risk assessment values derived are based on the results of the rotational field trials on roots, since no residue trials on primary uses were available. For fruiting vegetables and pulses and oilseeds, the tentative MRLs are based on the primary uses only, since representative of these crop groups was not assessed in the rotational crop field studies.

Since the rotational crop field studies were underdosed compared to the total predicted environmental concentration in soil (PECsoil total) for the authorised uses in annual crops, the possible occurrence of residues of fluxapyroxad at levels higher than the derived (tentative) MRLs, following multiannual applications, cannot be excluded. Therefore, Member States granting an authorisation should request additional rotational crop field studies conducted with application rates that cover the plateau background concentrations for these crops. Pending the submission of these studies, Member States are recommended to implement appropriate mitigation measures in order to avoid exceedances of the derived MRLs.

Fluxapyroxad is authorised for use on crops that might be fed to livestock. Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance. The dietary burdens calculated for all groups of livestock were found to exceed the trigger value of 0.1 mg/kg dry matter (DM). Behaviour of residues was therefore assessed in all commodities of animal origin.
The metabolism of fluxapyroxad residues in livestock was investigated in lactating goats and laying hens at dose rate covering the maximum dietary burdens calculated in this review. According to the results of these studies, the residue definitions were proposed for enforcement as fluxapyroxad only, and for risk assessment as sum of fluxapyroxad and metabolite M700F008, expressed as parent equivalent. An analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all animal tissues and 0.001 mg/kg in milk and eggs is available. According to the EURLs screening data for commodities of animal origin show that fluxapyroxad can be monitored in meat with a screening detection limit (SDL) of 0.0025 mg/kg and in milk with an SDL of 0.005 mg/kg.

Livestock feeding studies on animal were used to derive (tentative) MRL and risk assessment values in milk, eggs and tissues of ruminants and poultry. Since extrapolation from ruminants to pigs is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the (tentative) MRL and risk assessment values in pigs.

Chronic and acute consumer exposure resulting from the authorised uses reported in the framework of this review was calculated using revision 3 of the EFSA PRIMO. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The highest chronic exposure was calculated for Dutch toddler, representing 44% of the acceptable daily intake (ADI), and the highest acute exposure was calculated for celeries, representing 77% of the acute reference dose (ARfD).

Apart from the MRLs evaluated in the framework of this review, internationally recommended Codex MRLs (CXLs) have also been established for fluxapyroxad. Additional calculations of the consumer exposure, considering these CXLs were performed, the highest chronic exposure was calculated for Dutch toddler representing 55% of the ADI and the highest acute exposure was calculated for celeries, representing 77% of the ARfD.

Although uncertainties remain due to the data gaps identified, these indicative exposure calculations did not indicate a risk to consumer’s health.
Table of contents

- **Abstract**: 1
- **Summary**: 3
- **Background**: 6
- **Terms of Reference**: 7
- **The active substance and its use pattern**: 7
- **Assessment**: 8
 1. **Residues in plants**: 8
 1.1. **Nature of residues and methods of analysis in plants**: 8
 1.1.1. **Nature of residues in primary crops**: 8
 1.1.2. **Nature of residues in rotational crops**: 9
 1.1.3. **Nature of residues in processed commodities**: 9
 1.1.4. **Methods of analysis in plants**: 9
 1.1.5. **Stability of residues in plants**: 10
 1.1.6. **Proposed residue definitions**: 10
 1.2. **Magnitude of residues in plants**: 10
 1.2.1. **Magnitude of residues in primary crops**: 10
 1.2.2. **Magnitude of residues in rotational crops**: 11
 1.2.2.1. **Rotational crop field trials**: 11
 1.2.2.2. **Calculation of concentrations in soil following multiannual applications**: 11
 1.2.2.3. **Calculation of MRLs in rotational crops**: 12
 1.2.3. **Magnitude of residues in processed commodities**: 13
 1.2.4. **Proposed MRLs**: 13
 2. **Residues in livestock**: 13
 2.1. **Nature of residues and methods of analysis in livestock**: 14
 2.2. **Magnitude of residues in livestock**: 14
 3. **Consumer risk assessment**: 15
 3.1. **Consumer risk assessment without consideration of the existing CXLs**: 15
 3.2. **Consumer risk assessment with consideration of the existing CXLs**: 15
 4. **Conclusions**: 16
- **Recommendations**: 16
- **References**: 21
- **Abbreviations**: 22
- **Appendix A**: 22
- **Appendix B**: 53
- **Appendix C**: 83
- **Appendix D**: 87
- **Appendix E**: 97
- **Appendix F**: 99
Background

Regulation (EC) No 396/2005\(^1\) (hereinafter referred to as 'the Regulation') establishes the rules governing the setting and the review of pesticide maximum residue levels (MRLs) at European level. Article 12(1) of that Regulation stipulates that the European Food Safety Authority (EFSA) shall provide, within 12 months from the date of the inclusion or non-inclusion of an active substance in Annex I to Directive 91/414/EEC\(^2\) a reasoned opinion on the review of the existing MRLs for that active substance.

As fluxapyroxad was approved on 1 January 2013 by means of Commission Implementing Regulation (EU) No 589/2012\(^3\) in the framework of Regulation (EC) No 1107/2009\(^4\) as amended by Commission Implementing Regulations (EU) No 540/2011\(^5\) and 541/2011\(^6\), EFSA initiated the review of all existing MRLs for that active substance.

By way of background information, in the framework of Commission Regulation (EU) No 188/2011\(^7\), Fluxapyroxad was evaluated by France, designated as rapporteur Member State (RMS). Subsequently, a peer review on the initial evaluation of the RMS was conducted by EFSA, leading to the conclusions as set out in the EFSA scientific output (EFSA, 2012).

According to the legal provisions, EFSA shall base its reasoned opinion in particular on the relevant assessment report prepared under Directive 91/414/EEC repealed by Regulation (EC) No 1107/2009. It should be noted, however, that, in the framework of Regulation (EC) No 1107/2009, only a few representative uses are evaluated, whereas MRLs set out in Regulation (EC) No 396/2005 should accommodate all uses authorised within the European Union (EU), and uses authorised in third countries that have a significant impact on international trade. The information included in the assessment report prepared under Regulation (EC) No 1107/2009 is therefore insufficient for the assessment of all existing MRLs for a given active substance.

To gain an overview of the pesticide residues data that have been considered for the setting of the existing MRLs, EFSA developed the Pesticide Residues Overview File (PROFile). The PROFile is an inventory of all pesticide residues data relevant to the risk assessment and MRL setting for a given active substance. This includes data on:

- the nature and magnitude of residues in primary crops;
- the nature and magnitude of residues in processed commodities;
- the nature and magnitude of residues in rotational crops;
- the nature and magnitude of residues in livestock commodities;
- the analytical methods for enforcement of the proposed MRLs.

As the basis for the MRL review, on 15 June 2018, EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit by 16 July 2018 their Good Agricultural Practices (GAPs) that are authorised nationally, in a standardised way, in the format of specific GAP forms. In the framework of this consultation, 18 Member States provided feedback on their national authorisations of fluxapyroxad. Based on the GAP data submitted, the designated RMS France was asked to identify the critical GAPs to be further considered in the assessment, in the format of specific GAP overview file. Subsequently, in a second step, Member States were requested to provide residue data supporting the critical GAPs by 19 October 2018.

1 Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1–16.
2 Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1–32. Repealed by Regulation (EC) No 1107/2009.
3 Commission Implementing Regulation (EU) No 589/2012 of 4 July 2012 approving the active substance fluxapyroxad, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 175, 5.7.2012, p. 7–10.
4 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.
5 Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 1–186.
6 Commission Implementing Regulation (EU) No 541/2011 of 1 June 2011 amending Implementing Regulation (EU) No 540/2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 187–188.
7 Commission Regulation (EU) No 188/2011 of 25 February 2011 laying down detailed rules for the implementation of Council Directive 91/414/EEC as regards the procedure for the assessment of active substances which were not on the market 2 years after the date of notification of that Directive. OJ No L 53, 26.2.2011, p. 51–55.
On the basis of all the data submitted by Member States and the EU Reference Laboratories for Pesticides Residues (EURLs), EFSA asked France to complete the PROFile and to prepare a supporting evaluation report. The PROFile and the supporting evaluation report, together with the Pesticide Residues Intake Model (PRIMo) calculations and an updated GAP overview file, were submitted to EFSA on 19 December 2018. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report. During this completeness check, an additional PROFile was compiled to perform the calculation of MRLs in rotational crops.

Considering all the available information and taking into account the MRLs established by the Codex Alimentarius Commission (CAC) (i.e. codex maximum residue limit; CXLs), EFSA prepared in October 2019 a draft reasoned opinion, which was circulated to Member States for commenting via a written procedure. All comments received by 20 November 2019 were considered by EFSA during the finalisation of the reasoned opinion.

The evaluation report submitted by the RMS (France, 2018), taking into account also the information provided by Member States during the collection of data, and the EURLs report on analytical methods (EURLs, 2018) are considered as main supporting documents to this reasoned opinion and, thus, made publicly available.

In addition, further supporting documents to this reasoned opinion are the completeness check report (EFSA, 2019a) and the Member States consultation report (EFSA, 2019b). These reports are developed to address all issues raised in the course of the review, from the initial completeness check to the reasoned opinion. Furthermore, the exposure calculations for all crops reported in the framework of this review performed using the EFSA Pesticide Residues Intake Model (PRIMo) and the PROFiles as well as the GAP overview file listing all authorised uses and import tolerances are key supporting documents and made publicly available as background documents to this reasoned opinion. A screenshot of the report sheet of the PRIMo is presented in Appendix C.

Terms of Reference

According to Article 12 of Regulation (EC) No 396/2005, EFSA shall provide a reasoned opinion on:

- the inclusion of the active substance in Annex IV to the Regulation, when appropriate;
- the necessity of setting new MRLs for the active substance or deleting/modifying existing MRLs set out in Annex II or III of the Regulation;
- the inclusion of the recommended MRLs in Annex II or III to the Regulation;
- the setting of specific processing factors as referred to in Article 20(2) of the Regulation.

The active substance and its use pattern

Fluxapyroxad is the ISO common name for 3-(difluoromethyl)-1-methyl-N-(3',4',5'-trifluorobiphenyl-2-yl)pyrazole-4-carboxamide (IUPAC). The chemical structure of the active substance and its main metabolites are reported in Appendix F.

The EU MRLs for fluxapyroxad are established in Annexes IIIA of Regulation (EC) No 396/2005. Codex maximum residue limits (CXLs) for fluxapyroxad were also established by the Codex Alimentarius Commission (CAC). An overview of the MRL changes that occurred since the entry into force of the Regulation mentioned above is provided below (Table 1).

Procedure	Legal implementation	Remarks
MRL application	Regulation (EC) No 2018/685	In various crops (EFSA, 2017)
	Regulation (EC) No 2016/1902	In various crops (EFSA, 2016a)
	Regulation (EC) No 2016/486	Grapes and potatoes (EFSA, 2015b)
	Regulation (EC) No 978/2011	In various commodities (EFSA, 2011)
Implementation of CAC	Regulation (EC) No 2017/626	47th CCPR (EFSA, 2015a)
	Regulation (EC) No 491/2014	45th CCPR (EFSA, 2013)
For the purpose of this MRL review, all the uses of fluxapyroxad currently authorised within the EU and in third countries as submitted by the Member States during the GAP collection, have been reported by the RMS in the GAP overview file. The critical GAPs identified in the GAP overview file were then summarised in the PROFile and considered in the assessment. The details of the authorised critical GAPs for fluxapyroxad are given in Appendix A.

Assessment

EFSA has based its assessment on the following documents:

- the PROFile submitted by the RMS;
- the additional PROFile prepared by EFSA for the calculation of MRLs in rotational crops;
- the evaluation report accompanying the submitted PROFile (France, 2018);
- the draft assessment report (DAR) and its addenda prepared under Council Directive 91/414/EEC (United Kingdom, 2011a,b);
- the conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (EFSA, 2012);
- the Joint Meeting on Pesticide residues (JMPR) Evaluation report (FAO, 2012, 2015);
- the previous reasoned opinions on fluxapyroxad (EFSA, 2011, 2015b, 2016a, 2017).

The assessment is performed in accordance with the legal provisions of the uniform principles for evaluation and authorisation of plant protection products as set out in Commission Regulation (EU) No 546/2011 and the currently applicable guidance documents relevant for the consumer risk assessment of pesticide residues (European Commission, 1997a–g, 2000, 2010a,b, 2017; OECD, 2011, 2013).

More detailed information on the available data and on the conclusions derived by EFSA can be retrieved from the list of end points reported in Appendix B.

1. Residues in plants

1.1. Nature of residues and methods of analysis in plants

1.1.1. Nature of residues in primary crops

The metabolism of fluxapyroxad was investigated following foliar applications in fruits, pulses and oilseeds and cereals (United Kingdom, 2011b) and assessed in the framework of the peer review (EFSA, 2012). An additional metabolism study on wheat following seed treatment was submitted in support of a previous MRL application (EFSA, 2015b). In all studies fluxapyroxad was radiolabelled in both the aniline and pyrazole rings of the molecule.

After foliar applications on tomatoes and wheat, fluxapyroxad was the major component of the radioactive residues, accounting for 54% total radioactive residue (TRR) up to more than 90% TRR and residue concentrations of 0.03 mg/kg in wheat grains and up to 0.16 mg/kg in tomato fruits (EFSA, 2012). Fluxapyroxad was more extensively metabolised in soyabean seeds, accounting for only 7% TRR up to 21% TRR, and two major metabolites were identified as M700F002 (33.5% TRR, pyrazole labelling) and M700F048 (20% TRR, aniline labelling). Minor metabolites were identified at very low levels, accounting for less than 2% of the TRR (EFSA, 2012).

After a seed treatment on wheat, fluxapyroxad was identified as the major component of the total residue, accounting for 58–79% of the TRR in forage, hay, straw and chaff and 17% of the TRR in grains (EFSA, 2015b). The metabolic pattern found in wheat after seed application was found comparable to the pathway observed in wheat after foliar application and comparable to the metabolism following foliar application in soyabean and tomato.

The metabolic pathway of fluxapyroxad was similar in fruits, pulses and oilseeds and cereals following foliar application, and in cereals after seed treatment.

The application of fluxapyroxad on witloofs is authorised for post-harvest treatment (dipping, drenching of roots, before forcing), for which no metabolism study was submitted. However, considering that the behaviour of fluxapyroxad is the same in three crop groups following foliar application and soil treatments (in rotational crops), it can be assumed that the metabolism following

8 Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127–175.
post-harvest treatment would also follow the same pathway. Therefore, no metabolism study following post-harvest treatment is required.

The application of fluxapyroxad on several root crops (e.g. potatoes) is in the form of soil treatment, for which no metabolism study was submitted. However, since the metabolism observed in rotational crops, following bare soil application, was similar to the primary crop metabolism (see Section 1.1.2), further metabolism studies in primary roots following soil treatment are not required and deemed covered by the metabolism studies in rotational crops.

1.1.2. Nature of residues in rotational crops

Fluxapyroxad is authorised on crops that may be grown in rotation. The field DT90 reported in the soil degradation studies evaluated in the framework of the peer review was higher than 1000 days (EFSA, 2012).

One confined rotational crop study with fluxapyroxad radiolabelled on the aniline and pyrazole rings of the molecule was available for this review (United Kingdom, 2011a; EFSA, 2012). Fluxapyroxad was applied once at a rate of 250 g a.s./ha onto bare soil. Spinach, white radish and spring wheat were planted at nominal plant back intervals (PBI) of 30, 120/149 and 365 days after treatment (DAT).

Residues in wheat straw were up to 2.2 mg/kg (pyrazole label) and 2.65 mg/kg (aniline label), in spinach up to 0.18 mg/kg and 0.1 mg/kg for the pyrazole and aniline labels, respectively, and in roots up to 0.015 mg/kg for both labels (United Kingdom, 2011a). Residues in wheat grain accounted for 0.043 mg/kg and 0.02 mg/kg for the pyrazole and aniline labels, respectively (United Kingdom, 2011a).

Fluxapyroxad was the major component in all matrices, while metabolite M700F002 was also present at relevant levels in all matrices. No specific compound for rotational crops was identified. The metabolism and distribution of fluxapyroxad in rotational crops are similar to the metabolic pathway observed in primary crops (EFSA, 2012).

1.1.3. Nature of residues in processed commodities

Studies investigating the nature of residues in processed commodities were assessed in the peer review (United Kingdom, 2011b; EFSA, 2012). Studies were conducted with radiolabelled fluxapyroxad on the ring simulating representative hydrolytic conditions for pasteurisation (20 min at 90°C, pH 4), boiling/brewing/baking (60 min at 100°C, pH 5) and sterilisation (20 min at 120°C, pH 6). Fluxapyroxad is stable to hydrolysis under standard conditions of pasteurisation, baking/brewing/boiling and sterilisation (EFSA, 2012).

1.1.4. Methods of analysis in plants

Adequately validated analytical methods, involving high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) measurement, were submitted by the applicant, assessed during the peer review, and found being suitable for the control of fluxapyroxad residues in all major category crop groups (high water, high acid, high oil content and dry matrices) with a limit of quantification (LOQ) of 0.01 mg/kg (EFSA, 2012).

The EURLs informed EFSA that fluxapyroxad can be monitored in high water and high acid content commodities with an LOQ of 0.002 mg/kg and in dry and high oil content commodities with an LOQ of 0.005 mg/kg, and in honey with an LOQ of 0.005 mg/kg (EURLs, 2018).

Herbal infusions are classified as difficult matrices to analyse for which separate validation data would be required to demonstrate the applicability of the analytical methods. Since no analytical methods were provided for these matrices a data gap is set for these crops.

1.1.5. Stability of residues in plants

The storage stability of fluxapyroxad was investigated in the framework of the peer review (United Kingdom, 2011a,b, EFSA, 2012). Fluxapyroxad was found to be stable in all plant matrices for a period of 737 days when stored at –20°C (EFSA, 2012). Moreover, when stored at –20°C, metabolite M700F002 was stable for 824 days in all plant matrices, metabolite M700F048 for 733 days in high starch, high acid, high oil and high water content matrices and in wheat straw and metabolite M700F008 was stable 725 days in high starch matrices and in wheat straw, and up to 133 days in high oil and high water content matrices (EFSA, 2012). Fluxapyroxad was also found to be stable for 24 months at –20°C in processed products: apple juice, soybean refined oil, potato crisps, grape raisins and barley beer (United Kingdom, 2011b).
No specific study is available for the storage stability in herbal infusions and spices. However, as storage stability was investigated and demonstrated in the four main plant matrices, the most limiting storage stability conditions demonstrated for general matrices can be considered applicable to these specific matrices.

1.1.6. Proposed residue definitions

The metabolism of fluxapyroxad was similar in all crops following foliar application and seed treatment. Fluxapyroxad is the only toxicologically relevant compound to be considered in the consumer exposure. In the framework of the peer review, the residue definition for risk assessment was proposed as fluxapyroxad (EFSA, 2012). The same residue definition is proposed in the current review. The metabolism in rotational crops is similar to the metabolism observed in primary crops and the processing of fluxapyroxad is not expected to modify the nature of residues. For soil treatments, the metabolism in primary and rotational crops is depicted by the metabolism studies performed in the confined rotational crops on spinach, white radish and spring wheat.

As the parent compound was found to be a sufficient marker in fruits, pulses and oilseeds and cereals, the residue definition for enforcement is proposed as fluxapyroxad only.

An analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all four main plant matrices is available (EFSA, 2012). According to the EURLs, this LOQ is achievable in all four main plant matrices (EURLs, 2018).

1.2. Magnitude of residues in plants

1.2.1. Magnitude of residues in primary crops

To assess the magnitude of fluxapyroxad residues resulting from the reported GAPs, EFSA considered all residue trials reported by the RMS in its evaluation report (France, 2018) as well as the residue trials evaluated in the framework of the peer review (United Kingdom, 2011a; EFSA, 2012) or in the framework of a previous MRL application (EFSA, 2011, 2015b, 2016a, 2017). All residue trial samples considered in this framework were stored in compliance with the conditions for which storage stability of residues was demonstrated. Decline of residues during storage of the trial samples is therefore not expected.

The number of residue trials and extrapolations were evaluated in accordance with the European guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs (European Commission, 2017).

For garlic, onions, shallots, no residue trials were available; therefore, no MRL and risk assessment values can be derived, and the following data gaps were identified:

- Garlic, onions, shallots: eight residue trials compliant with the import tolerance GAP are required.

For all the other crops, available residue trials are sufficient to derive (tentative) MRL and risk assessment values, taking note of the following considerations:

- Apricots: although MRL and risk assessment values can be derived from the southern outdoor GAP, one additional trial on apricots compliant with the northern outdoor GAP, one additional trial compliant with the southern outdoor GAP and eight trials compliant with the import tolerance are still required.
- Peaches: although MRL and risk assessment values for peaches can be derived from the import tolerance GAP, three additional trials on peaches compliant with the southern outdoor GAP are still required.
- Carrots: although MRL and risk assessment values can be derived from northern outdoor GAP, eight trials compliant with the import tolerance are still required.
- Spring onions: although MRL and risk assessment values can be derived from southern outdoor GAP, eight trials compliant with the import tolerance are still required.
- Cauliflowers: although MRL and risk assessment values can be derived from northern outdoor GAP, eight trials compliant with the import tolerance are still required.
- Brussels sprouts: although MRL and risk assessment values can be derived from northern outdoor GAP, eight trials compliant with the southern outdoor GAP are still required.
• Lettuces: although MRL and risk assessment values can be derived from southern outdoor GAP, eight trials compliant with the import tolerance are still required.
• Peas (without pods): although MRL and risk assessment values can be derived from the import tolerance, eight trials compliant with the northern outdoor GAP are still required.

1.2.2. Magnitude of residues in rotational crops

1.2.2.1. Rotational crop field trials

Field rotational crop trials on cereals (wheat), root crops (carrots) and leafy crops (cauliﬂowers, broccoli and lettuces) were assessed in the framework of the peer review (United Kingdom, 2011a; EFSA, 2012).

The rotational crop field studies were conducted with bare soil previously treated at a rate of 250 g a.s./ha and at PBI 30, 120 and 365 DAT (United Kingdom, 2011a). Highest residue levels of fluxapyroxad were detected in carrots (0.08 mg/kg), lettuces (0.03 mg/kg) and cauliflowers/broccoli (0.06 mg/kg), 30 DAT (EFSA, 2012). In wheat grain residue level was below 0.01 mg/kg at all PBI, and in wheat straw the highest residue was below 0.01 mg/kg 30 DAT and found at 0.07 mg/kg and 0.08 mg/kg, 120 and 365 DAT, respectively. No significant levels of metabolites M700F002, M700F008 and M700F048 were detected in edible parts of crops at all PBIs, since metabolite residue levels were always below the LOQ (< 0.01-0.02 mg/kg) (EFSA, 2012, 2017). Regarding the concentration of fluxapyroxad in soil, immediately after application, the residues of fluxapyroxad ranged from 0.024 to 0.114 mg/kg (United Kingdom, 2011a). After a 30-day replant interval, ploughing and planting/sowing of the crops, the residue levels in soil were lower (0.016-0.077 mg/kg) (United Kingdom, 2011a).

Detailed information on the concentration of fluxapyroxad in the different soils tested were missing (only a range was given). Moreover, EFSA could not retrieve information on the residue level in soil for the 120 DAT and 365 DAT in the study.

1.2.2.2. Calculation of concentrations in soil following multiannual applications

In order to assess whether the available rotational crop field studies (and consequently the MRLs derived under Section 1.2.2.3. cover the plateau in soil expected after multiannual applications according to the most critical GAPs currently authorised, EFSA made a comparison between the soil concentration measured at 30 DAT in rotational crop field studies and the total predicted environmental concentration in soil (PECsoil total9) of fluxapyroxad resulting from the use of fluxapyroxad at the most critical GAPs (PEC plateau background) that can be rotated plus the maximal seasonal application rate with applications being made every year for 13 years. This comparison was made for the most critical GAP that can be rotated: potatoes (NEU, SEU); and for the less critical GAP that can be rotated: cucurbits (NEU, SEU).

Considering the NEU and SEU GAP for potatoes (1 × 240 g a.s./ha at BBCH 00), the PECsoil total resulting from applications being made every year for 13 years is 0.2488 mg/kg soil immediately after an application and 0.2312 mg/kg soil 28 days after.

Considering the NEU/SEU GAP for cucurbits (3 × 45 g a.s./ha; PHI 3 days) including 50% crop interception (22.5 g a.s./ha reaching soil), the PECsoil total resulting from applications being made every year for 13 years is 0.04 mg/kg soil immediately after an application and 0.033 mg/kg soil 28 days later.

Therefore, according to the soil concentrations measured in the rotational crop field study (0.016-0.077 mg/kg soil) and considering the PECsoil total as calculated above, the study was under dosed compared to the predicted accumulated soil residue with mixing over 20 cm following multiannual application for all the uses currently authorised on crops that can be rotated.

The range of GAPs modelled below for PECsoil total are deemed to cover the application rates in crops that can be rotated reported in this review. The crop rotational field studies are not covering the soil concentration range following multiannual applications for all the uses assessed above, i.e. PECsoil total calculated is higher than the soil concentrations analysed in the rotational crop field studies.

1.2.2.3. Calculation of MRLs in rotational crops

For the annual crops under consideration, EFSA performed a rough estimate whether a significant uptake of fluxapyroxad residues from the soil is expected and would contribute to the overall

9 Assuming a soil density of 1.5 g/cm², a soil depth of 20 cm and considering the DT values in soil (DFOP kinetics (DT50 of 378 days and DT90 > 1,000 days) k1 = 0.0321, k2 = 0.00069, g = 0.3502)).
fluxapyroxad residues in the crops under consideration. The assessment was based on the data from available rotational crop field studies (United Kingdom, 2011a).

The MRL review should be performed according to the old data requirements applicable at the time of the peer review. Nevertheless, as the EC guidance document on rotational crops (European Commission, 1997c) provides only limited guidance on how to derive MRLs for rotational crops, EFSA followed the methodology described by the recent OECD guidance on rotational crops (OECD, 2018) which is in principle fully applicable only with the new data requirements.

Residues from rotational uses were extrapolated from lettuces to all leafy vegetables, from cauliflowers/broccoli to brassicas, from carrots/turnips to root/tuber vegetables and also on a tentative basis from root/tuber vegetables to bulb vegetables, and finally from wheat grain and straw to cereals grain and straw. Residues resulting from the primary crop use were compared to the residue levels observed through soil uptake in the rotational field trials to the corresponding crop groups. For several crops (e.g. fruiting vegetables, pulses and oilseeds), it was not possible to compare the results of residues from primary uses with the residue in rotational crop field trials, since representatives of these crop groups were not used in the field rotational studies. Nevertheless, as the application on fruiting vegetables and oilseeds is done by foliar treatment close to the harvest (PHI 3–7 days), it is assumed that residues resulting from primary uses will be the main driver for the total residues in these crops. Although no trials on primary uses were available for some feed items (e.g. rice straw), these are not considered relevant when the feed item is authorised as import tolerance only. Therefore, no specific calculation was done for feed items authorised as import tolerances only.

Based on the rotational field studies and considering the worst-case scenario of crop failure (PBI of 30 days), highest residues were 0.08 mg/kg, 0.06 mg/kg, < 0.01 mg/kg and 0.41 mg/kg in root and tuber vegetables, leafy vegetables, cereals grain and straw, respectively.

In case the residues (highest residue (HR) values) in rotational crops were not higher than 25% compared to the highest residue observed in the respective crop from primary uses, the primary uses were considered to cover the residues from the combined sources. If the uptake of residues from rotational crops exceeded 25% of the residue from primary uses the HR in rotational crops was added to each value of the data set used for MRL calculation on the primary crop, in order to derive the combined MRLs and risk assessment values.

For turnip tops, it was not possible to conclude if rotational crops would lead to an increase in residue levels since residues in primary uses were missing. Therefore, the HR and supervised trials median residue (STMR) values from the rotational trials on carrot/radish tops were used to derive a tentative MRL for this crop. In addition, for garlic, onions and shallots (authorised uses as import tolerances only), there were also no residue trials for the primary uses; therefore, HR and STMR values from the rotational trials on carrot/radish roots were used to derive tentative MRL and risk assessment values for these crops. For roots and Brassica vegetables for which no authorised use was reported, HR and STMR values from the rotational trials were used to derive tentative MRLs and risk assessment values.

An overview of the derived tentative MRLs is reported in Appendix B.1.2.2.(c).

Since the rotational crop field studies were underdosed compared to the PECsoil total for the authorised uses assessed above, the possible occurrence of residues of fluxapyroxad at levels higher than the derived tentative MRLs, following multiannual applications, cannot be excluded. Therefore, Member States granting an authorisation should request additional rotational crop field studies conducted with application rates that cover the plateau background concentrations for these crops. Pending the submission of these studies, Member States are recommended to implement appropriate mitigation measures or to reconsider these uses in order to avoid exceedances of the derived MRLs.

1.2.3. Magnitude of residues in processed commodities

The effect of industrial processing and/or household preparation was assessed (EFSA, 2011, 2015b, 2016a, 2017, United Kingdom, 2011b). Additional studies on the effects of processing on the magnitude of fluxapyroxad residues during the processing of grapes, rice and sugar cane were submitted and assessed in support of an MRL application (EFSA, 2015b). Additional data in citrus peel and pulp, wheat grain and oats (grain, husk and dust) were assessed by the RMS in the framework of the current review (France, 2018).

An overview of all available processing studies is available in Appendix B.1.2.3. Robust processing factors (fully supported by data) could be derived for orange (dry pomace, juice), apple/pear (juice, sauce), plums (dried, jam), table grape (raisins), wine grapes (wet pomace, pasteurised juice, red wine), potato (flakes, chips/crisps, wet peel, peeled, boiled, microwaved boiled, fried, dried pulp),...
tomato (unpeeled and canned, paste, juice), melon (peeled), barley (brewing malt, beer, whole-meal flour), and wheat (whole-meal flour, whole-meal bread, white flour, white bread), while limited processing factors (not fully supported by data, since less than three independent studies were available) were derived for apple/pear (wet and dry pomace, canned), plums (dried, jam), peanuts (crude and refined oil, meal/press cake), sunflowers seeds (crude and refined oil, meal/press cake), rapeseeds (crude and refined oil, meal/press cake), rice (unpolished, unpolished and cooked, polished, polished and cooked, flour, bran), sugar beet (thick juice, raw sugar, white sugar, dry pulp, molasses, ensiled pulp) and sugar canes (raw sugar, refined sugar and molasses).

Further processing studies are not required as they are not expected to affect the outcome of the risk assessment. However, if more robust processing factors were to be required by risk managers for enforcement purposes, additional processing studies would be needed.

1.2.4. Proposed MRLs

The available data on primary crops are considered sufficient to derive MRL proposals as well as risk assessment values for all commodities under evaluation, except for herbal infusions and apricots where tentative MRLs are derived and for garlic, onions and shallots where data were insufficient to derive MRL.

Specific MRLs from rotational crops considering a worst-case scenario reflecting crop failure (PBI of 30 days) were also derived for potatoes, cauliflowers, Brussels sprouts and sugar beet roots on a tentative basis. For garlic, onions and shallots, tentative MRLs and risk assessment values are based on results of the rotational field trials on roots, since no residue trials on primary uses were available. For fruiting vegetables and pulses and oilseeds, the tentative MRLs are based on the primary uses only, since residues resulting from primary uses by foliar treatment close to the harvest, are expected to be the main driver for the total residues in these crops.

It is noted that the rotational crop field studies did not cover the predicted concentration in soil of fluxapyroxad resulting from multiannual applications according to all the uses reported in this review. Therefore, the MRL proposals as well as risk assessment values may not be sufficient to cover the potential residues levels in rotational crops following multiannual applications according to these authorised uses and are proposed on a tentative basis only.

Tentative MRLs were also derived for feed crops (ex: cereal straw) in view of the future need to set MRLs in feed items.

2. Residues in livestock

Fluxapyroxad is authorised for use on crops that might be fed to livestock (e.g. cereals, sugar beets). Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance (OECD, 2013), which has now also been agreed upon at European level. The input values for all relevant commodities are summarised in Appendix D. Since residues from rotational crop field studies could contribute to the dietary burden, combined residue from primary uses and from rotational crop field studies were combined and used as input values (see Appendix B.1.2.2.(c)). According to this calculation, the main contributors to the dietary burden are the residue in wheat straw and rye straw from primary uses and potato (processed) from the combined residues of primary uses and rotational crop field studies. The dietary burdens calculated for all groups of livestock were found to exceed the trigger value of 0.1 mg/kg dry matter (DM). Behaviour of residues was therefore assessed in all commodities of animal origin.

2.1. Nature of residues and methods of analysis in livestock

The metabolism of fluxapyroxad residues in livestock was investigated in lactating goats and laying hens (United Kingdom, 2011a) at dose rates covering the maximum dietary burdens calculated in this review (2.5–10N). These studies were assessed in the framework of the peer review (EFSA, 2012). In all studies, fluxapyroxad was radiolabelled in the aniline and/or pyrazole ring of the molecule.

The study on lactating goats fed for 8 consecutive days with 0.4 mg/kg body weight (bw) per day showed that fluxapyroxad was rapidly excreted, with more than 80% of the TRR recovered in urine and faeces. Parent was the main constituent, while another predominant component was metabolite M700F008 present at relevant levels in ruminant matrices (EFSA, 2012).

The study performed on laying hens fed for 12 consecutive days with 11.5 mg/kg feed (equivalent to 0.4 mg/kg bw per day) showed that fluxapyroxad was extensively degraded in livestock matrix (<
0.5% and 0.18% of the TRR in tissues and eggs, respectively). The parent and metabolite M700F008 were the main constituents of the residues in hens.

In livestock, parent compound and metabolite M700F008 were the main constituents of the residues in all matrices. All other identified metabolites were present at more than 10% TRR but at levels lower than 0.003 mg/kg. Therefore, the metabolism of fluxapyroxad in livestock is adequately elucidated, and fluxapyroxad and metabolite M700F008 are the most relevant components of the residues in livestock commodities (EFSA, 2012).

As the parent compound was found to be a sufficient marker in livestock commodities, the residue definition for enforcement is proposed as fluxapyroxad only.

An analytical method using HPLC-MS/MS and its independent laboratory validation (ILV) have been provided and fully validated for the determination of fluxapyroxad in foodstuff of animal origin with an LOQ of 0.01 mg/kg for liver, kidney, fat and muscle and an LOQ of 0.001 mg/kg for milk, eggs and cream (EFSA, 2012). Screening data generated by EURsLs for commodities of animal origin show that fluxapyroxad can be monitored in meat with a screening detection limit (SDL) of 0.0025 mg/kg and in milk with an SDL of 0.005 mg/kg (EURsLs, 2018).

In the framework of the peer review upon consideration of metabolism data and mammalian toxicology information, the residue for risk assessment was defined as sum of fluxapyroxad and metabolite M700F008, expressed as parent equivalent (EFSA, 2012). The same residue definition is proposed for the current review.

2.2. Magnitude of residues in livestock

In the framework of the peer review, feeding studies were performed with dairy cows and laying hens (United Kingdom, 2011a; EFSA, 2012).

Livestock feeding studies were carried out on dairy cows (parent and metabolite M700F002 co-dosed for 28 consecutive days at dose levels of 0.11, 0.21, 0.65 and 2.18 mg/kg bw per day and 0.004, 0.01, 0.03 mg/kg bw per day, respectively) and laying hens (parent and metabolite M700F002 co-dosed for 28 consecutive days at dose levels of 0.019, 0.038, 0.11 and 0.38 mg/kg bw per day and 0.0015, 0.003, 0.009 and 0.03 mg/kg bw per day, respectively) and assessed in the framework of the peer review (United Kingdom, 2011a; EFSA, 2012). Samples of meat, fat, liver, kidney, milk and eggs were taken from dosed animals and analysed for fluxapyroxad and metabolites M700F008 and M700F002.

Since MRLs in feed items (cereals, potatoes) that are the major contributors to the dietary burden are derived on a tentative basis, MRLs derived for livestock products are also proposed on a tentative basis. The study performed on dairy cows and laying hens was used to derive (tentative) MRL and risk assessment values in milk, eggs and tissues of ruminants/poultry. Since extrapolation from ruminants to pigs is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the MRL and risk assessment values in pigs. All samples were stored at −20°C and analysed within 30 days, and therefore, specific storage stability studies are not deemed necessary (United Kingdom, 2011a).

In the feeding study on cattle, fluxapyroxad residues were found at up to 0.0374 mg/kg in whole milk, up to 0.217 mg/kg in meat, up to 0.171 mg/kg in fat, at up to 0.094 mg/kg in liver and up to 0.019 mg/kg in kidney (highest dose level). Metabolite M700F008 was found at up to 0.0017 mg/kg in whole milk, up to 0.0052 mg/kg in cream and up to 0.032 mg/kg in liver.

In tissues and milk from all the dosing groups, metabolite M700F002 was always below the LOQs of 0.01 and 0.001 mg/kg, respectively. In the feeding study on hens, fluxapyroxad residues were found at up to 0.031 mg/kg in eggs and at low amounts in fat from the highest dose group. In all other tissues analysed, parent was always below the LOQ of 0.01 mg/kg. Metabolite M700F008 was found at up to 0.0055 mg/kg in eggs, at the LOQ of 0.01 mg/kg in liver and at low amounts in fat and liver from the highest dose group.

3. Consumer risk assessment

In the framework of this review, only the uses of fluxapyroxad reported by the RMS in Appendix A were considered; however, the use of fluxapyroxad was previously also assessed by the JMPR (FAO, 2012, 2015). The CXLs, resulting from these assessments by JMPR and adopted by the CAC, are now international recommendations that need to be considered by European risk managers when establishing MRLs. To facilitate consideration of these CXLs by risk managers, the consumer exposure was calculated both with and without consideration of the existing CXLs.
3.1. Consumer risk assessment without consideration of the existing CXLs

Chronic and acute exposure calculations for all crops reported in the framework of this review were performed using revision 3 of the EFSA PRIMo (EFSA, 2018). Input values for the exposure calculations were derived in compliance with the decision tree reported in Appendix E. Hence, for those commodities where an (tentative) MRL could be derived by EFSA in the framework of this review, input values were derived according to the internationally agreed methodologies (FAO, 2009). For those commodities where data were insufficient to derive an MRL in Section 1, EFSA considered the existing EU MRL for an indicative calculation. A peeling factor (PF) was applied to melons, pumpkins and watermelons (PF = 0.38). In order to include the potential uptake of fluxapyroxad from residues in crops that may be grown in rotation, HR and STMR values derived based on the rotational field trials were also considered in the calculations when appropriate (see Section 1.2.2 and Appendix B.1.2.2.(c)). All input values included in the exposure calculations are summarised in Appendix D.

The exposure values calculated were compared with the toxicological reference values for fluxapyroxad derived by EFSA (2012). The highest chronic exposure was calculated for Dutch toddler, representing 44% of the acceptable daily intake (ADI), and the highest acute exposure was calculated for celeries, representing 77% of the acute reference dose (ARfD). Although uncertainties remain due to the data gaps identified in the previous sections, this indicative exposure calculation did not indicate a risk to consumer’s health.

3.2. Consumer risk assessment with consideration of the existing CXLs

To include the CXLs in the calculations of the consumer exposure, CXLs were compared with the EU MRL proposals in compliance with Appendix E and all data relevant to the consumer exposure assessment have been collected from JMPR evaluations. An overview of the input values used for this exposure calculation is also provided in Appendix D. It is noted that the residue definitions derived in the JMPR evaluation for plants differ from the residue definition proposed by EFSA in the current review. Furthermore, the EU has made a reservation on the adoption of several CXLs due to different methodologies on extrapolation, pooling and trials numbers. Consequently, the CXLs for the following commodities were not adopted and translated into the EU Regulation: apricots, strawberries, blackberries, dewberries, raspberries, blueberries, cranberries, currants, gooseberries, rose hips, mulberries, azaroles, elderberries, carrots, parsnips, garlic, onion, shallots, tomatoes, sweet peppers, aubergines (eggplants), okra/lady’s fingers, cucumbers, gherkins, melons, pumpkins, watermelons, broccoli, cauliflower, Brussels sprouts, head cabbage, Chinese cabbage, kale, kohlrabi, roman rocket/rucola, leaves and sprouts of Brassica sp. and celery. Therefore, the CXLs of the commodities listed above were not included in the consumer risk assessment.

Peeling factors were applied to oranges (PF = 0.16), melons, pumpkins and watermelons (PF = 0.38) and to bananas (PF = 0.26). A conversion factor (CF = 3) was applied to table/wine grapes.

Chronic and acute exposure calculations were also performed using revision 3 of the EFSA PRIMo and the exposure values calculated were compared with the toxicological reference values derived for fluxapyroxad. The highest chronic exposure was calculated for Dutch toddler representing 55% of the ADI and the highest acute exposure was calculated for celeries, representing 77% of the ARfD. Although (major) uncertainties remain due to the data gaps identified for a certain number of these CXLs, this indicative exposure calculation did not indicate a risk to consumers.

Conclusions

The metabolism of fluxapyroxad in plant was investigated in primary and rotational crops. According to the results of the metabolism studies, the residue definition for enforcement and risk assessment can be proposed as fluxapyroxad. These residue definitions are also applicable to processed commodities. Fully validated analytical methods are available for the enforcement of the proposed residue definition in all four main plant matrices at the LOQ of 0.01 mg/kg. According to the EURLs, the LOQ of 0.01 mg/kg is achievable by using the QuEChERS method in routine analyses.

The available data on primary crops are considered sufficient to derive (tentative) MRL proposals as well as risk assessment values for all commodities under evaluation, except for garlic, onions and shallots where data were insufficient to derive MRLs.
MRLs and risk assessment values considering a worst-case scenario reflecting crop failure (PBI of 30 days) were also derived for rotational crops on a tentative basis. For garlic, onions and shallots, the (tentative) MRL and risk assessment values derived are based on the results of the rotational field trials on roots, since no residue trials on primary uses were available. For fruiting vegetables and pulses and oilseeds, the tentative MRLs are based on the primary uses only, since representative of these crop groups were not assessed in the rotational crop field studies.

Since the rotational crop field studies were underdosed compared to the PEC_{soil} total for the authorised uses in annual crops, the possible occurrence of residues of fluxapyroxad at levels higher than the derived (tentative) MRLs, following multiannual applications, cannot be excluded. Therefore, Member States granting an authorisation should request additional rotational crop field studies conducted with application rates that cover the plateau background concentrations for these crops. Pending the submission of these studies, Member States are recommended to implement appropriate mitigation measures in order to avoid exceedances of the derived MRLs.

Fluxapyroxad is authorised for use on crops that might be fed to livestock. Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance. The dietary burdens calculated for all groups of livestock were found to exceed the trigger value of 0.1 mg/kg DM. Behaviour of residues was therefore assessed in all commodities of animal origin.

The metabolism of fluxapyroxad residues in livestock was investigated in lactating goats and laying hens at dose rate covering the maximum dietary burdens calculated in this review. According to the results of these studies, the residue definitions were proposed for enforcement as fluxapyroxad only, and for risk assessment as sum of fluxapyroxad and metabolite M700F008, expressed as parent equivalent. An analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all animal tissues and 0.001 mg/kg in milk and eggs is available. According to the EURs screening data for commodities of animal origin show that fluxapyroxad can be monitored in meat with an SDL of 0.0025 mg/kg and in milk with an SDL of 0.005 mg/kg.

Livestock feeding studies on animal were used to derive (tentative) MRL and risk assessment values in milk, eggs and tissues of ruminants and poultry. Since extrapolation from ruminants to pigs is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the (tentative) MRL and risk assessment values in pigs.

Chronic and acute consumer exposure resulting from the authorised uses reported in the framework of this review was calculated using revision 3 of the EFSA PRIMo. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The highest chronic exposure was calculated for Dutch toddler, representing 44% of the ADI, and the highest acute exposure was calculated for celeries, representing 77% of the ARfD.

Apart from the MRLs evaluated in the framework of this review, internationally recommended CXLs have also been established for fluxapyroxad. Additional calculations of the consumer exposure, considering these CXLs were performed, the highest chronic exposure was calculated for Dutch toddler representing 55% of the ADI and the highest acute exposure was calculated for celeries, representing 77% of the ARfD.

Although uncertainties remain due to the data gaps identified in the previous sections, these indicative exposure calculations did not indicate a risk to consumer’s health.

Recommendations

MRL recommendations were derived in compliance with the decision tree reported in Appendix E of the reasoned opinion (see Table 2). All MRL values listed as ‘Recommended’ in the table are sufficiently supported by data and are therefore proposed for inclusion in Annex II to the Regulation. The remaining MRL values listed in the table are not recommended for inclusion in Annex II because they require further consideration by risk managers (see Table 2 footnotes for details). In particular some tentative MRLs need to be confirmed by the following data:

- Residue trials supporting GAPs on garlic, onions, shallots;
- A representative analytical method for herbal infusions from leaves and herbs and herbal infusions from roots.
- Rotational crop field studies investigating the magnitude of residues in rotational crops covering the plateau concentration expected when fluxapyroxad is used according to the GAPs assessed in this MRL review (data gap relevant for all crops that can be grown in rotation).
Pending the submission of the rotational crop field studies, Member States are recommended to implement proper mitigation measures or to reconsider these uses in order to avoid exceedances of the derived MRLs.

It is highlighted, however, that some of the MRLs derived result from a CXL or from a GAP in one climatic zone only, whereas other GAPs reported by the RMS were not fully supported by data. EFSA therefore identified the following data gaps which are not expected to impact on the validity of the MRLs derived but which might have an impact on national authorisations:

- Additional residue trials supporting GAPs on apricots, peaches, carrots, Spring onions, cauliflowers, Brussels sprouts, lettuces and peas (without pods).

If the above reported data gaps are not addressed in the future, Member States are recommended to withdraw or modify the relevant authorisations at national level.

Table 2: Summary table

Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review	Comment	
110010	Grapefruit	0.3	–	0.4	Recommended	
110020	Oranges	0.3	0.3	0.3	Recommended	
120010	Almonds	0.04	0.04	0.04	Recommended	
120020	Brazil nuts	0.04	0.04	0.04	Recommended	
120030	Cashew nuts	0.04	0.04	0.04	Recommended	
120040	Chestnuts	0.04	0.04	0.04	Recommended	
120050	Coconuts	0.04	0.04	0.04	Recommended	
120060	Hazelnuts	0.04	0.04	0.04	Recommended	
120070	Macadamia	0.04	0.04	0.04	Recommended	
120080	Pecans	0.04	0.04	0.04	Recommended	
120090	Pine nuts	0.04	0.04	0.04	Recommended	
120100	Pistachios	0.04	0.04	0.04	Recommended	
120110	Walnuts	0.04	0.04	0.04	Recommended	
130010	Apples	0.9	0.9	0.9	Recommended	
130020	Pears	0.9	0.9	0.9	Recommended	
130030	Quinces	0.9	0.9	0.9	Recommended	
130040	Medlar	0.9	0.9	0.9	Recommended	
130050	Loquat	0.9	0.9	0.9	Recommended	
140010	Apricots	1	–	0.15	Further recommendation needed	
140020	Cherries	3	3	3	Recommended	
140030	Peaches	1.5	1.5	1.5	Recommended	
140040	Plums	1.5	1.5	1.5	Recommended	
151010	Table grapes	3	3	3	Recommended	
151020	Wine grapes	3	3	3	Recommended	
152000	Strawberries	4	–	4	Recommended	
154010	Blueberries	7	–	7	Recommended	
163020	Bananas	3	3	3	Recommended	
163030	Mangoes	0.5	–	0.8	Recommended	
211000	Potatoes	0.1	0.03	0.3	Further consideration needed	
212010	Cassava	0.1	–	0.2	Further recommendation needed	
212020	Sweet potatoes	0.1	–	0.2	Further recommendation needed	
212030	Yams	0.1	–	0.2	Further recommendation needed	
212040	Arrowroot	0.1	–	0.2	Further recommendation needed	
213010	Beetroot	0.3	–	0.5	Further consideration needed	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	MRL (mg/kg)	Comment	
-------------	----------------------------	-------------------------	----------------------	-------------	------------------------------	
213020	Carrots	0.3	–	0.5	Further consideration needed\(^d\)	
213030	Celereic	0.3	–	0.5	Further consideration needed\(^d\)	
213040	Horseradish	0.3	–	0.5	Further consideration needed\(^d\)	
213050	Jerusalem artichokes	0.3	–	0.5	Further consideration needed\(^d\)	
213060	Parsnips	0.3	–	0.5	Further consideration needed\(^d\)	
213070	Parsley root	0.3	–	0.5	Further consideration needed\(^d\)	
213080	Radishes	0.3	0.2	0.5	Further consideration needed\(^d\)	
213090	Salsify	0.3	–	0.5	Further consideration needed\(^d\)	
213100	Swedes	0.3	–	0.5	Further consideration needed\(^d\)	
213110	Turnips	0.3	–	0.5	Further consideration needed\(^d\)	
220010	Garlic	0.1	–	0.2	Further consideration needed\(^d\)	
220020	Onions	0.1	–	0.2	Further consideration needed\(^d\)	
220030	Shallots	0.1	–	0.2	Further consideration needed\(^d\)	
220040	Spring onions	0.6	–	0.7	Further consideration needed\(^d\)	
231010	Tomatoes	0.6	–	0.3	Further consideration needed\(^d\)	
231020	Peppers	0.6	–	0.3	Further consideration needed\(^d\)	
231030	Aubergines (egg plants)	0.6	–	0.3	Further consideration needed\(^d\)	
232010	Cucumbers	0.2	–	0.2	Further consideration needed\(^d\)	
232020	Gherkins	0.2	–	0.2	Further consideration needed\(^d\)	
232030	Courgettes	0.2	–	0.2	Further consideration needed\(^d\)	
233010	Melons	0.15	–	0.15	Further consideration needed\(^d\)	
233020	Pumpkins	0.15	–	0.15	Further consideration needed\(^d\)	
233030	Watermelons	0.15	–	0.15	Further consideration needed\(^d\)	
234000	Sweet corn	0.15	0.15	0.15	Further consideration needed\(^d\)	
241010	Broccoli	2	–	2	Further consideration needed\(^d\)	
241020	Cauliflower	0.15	–	0.2	Further consideration needed\(^d\)	
242010	Brussels sprouts	0.3	–	0.4	Further consideration needed\(^d\)	
242020	Head cabbage	0.4	–	0.5	Further consideration needed\(^d\)	
243010	Chinese cabbage	4	–	4	Further consideration needed\(^d\)	
243020	Kale	0.07	–	0.15	Further consideration needed\(^d\)	
244000	Kohlrabi	0.07	–	0.15	Further consideration needed\(^d\)	
251010	Lamb’s lettuce	4	–	4	Further consideration needed\(^d\)	
251020	Lettuce	4	4	4	Further consideration needed\(^f\)	
251030	Scarole (broad-leaf endive)	4	–	4	Further consideration needed\(^d\)	
251040	Cress	4	–	3	Further consideration needed\(^d\)	
251050	Land cress	4	–	3	Further consideration needed\(^d\)	
251060	Rocket, Rucola	4	–	4	Further consideration needed\(^d\)	
251070	Red mustard	4	–	3	Further consideration needed\(^d\)	
251080	Leaves and sprouts of Brassica spp.	4	–	3	Further consideration needed\(^d\)	
252010	Spinach	3	–	3	Further consideration needed\(^d\)	
252020	Purslane	3	–	3	Further consideration needed\(^d\)	
252030	Beet leaves (chard)	3	–	3	Further consideration needed\(^d\)	
255000	Witloof	6	–	6	Further consideration needed\(^d\)	
256010	Chervil	3	–	3	Further consideration needed\(^d\)	
256020	Chives	3	–	3	Further consideration needed\(^d\)	
256030	Celery leaves	3	–	3	Further consideration needed\(^d\)	
256040	Parsley	3	–	3	Further consideration needed\(^d\)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review	Comment	
-------------	-----------	------------------------	---------------------	-----------------------	---------	
256050	Sage	3	–	3	Further consideration needed\((d)\)	
256060	Rosemary	3	–	3	Further consideration needed\((d)\)	
256070	Thyme	3	–	3	Further consideration needed\((d)\)	
256080	Basil	3	–	3	Further consideration needed\((d)\)	
256090	Bay leaves (laurel)	3	–	3	Further consideration needed\((d)\)	
256100	Tarragon	3	–	3	Further consideration needed\((d)\)	
260010	Beans (fresh, with pods)	0.09	0.09	0.09	Further consideration needed\((g)\)	
260030	Peas (fresh, with pods)	2	2	2	Further consideration needed\((g)\)	
260040	Carroons	9	–	9	Further consideration needed\((d)\)	
270030	Celery	9	–	9	Further consideration needed\((d)\)	
270040	Fennel	9	–	9	Further consideration needed\((d)\)	
270050	Globe artichokes	0.3	–	0.5	Further consideration needed\((d)\)	
270060	Leek	0.6	–	0.7	Further consideration needed\((d)\)	
300010	Beans (dry)	0.3	0.3	0.3	Further consideration needed\((g)\)	
300020	Lentils (dry)	0.4	0.4	0.4	Further consideration needed\((f)\)	
300030	Peas (dry)	0.4	0.4	0.4	Further consideration needed\((f)\)	
300040	Lupins (dry)	0.3	–	0.2	Further consideration needed\((d)\)	
401010	Linseed	0.9	0.8	0.9	Further consideration needed\((f)\)	
401020	Peanuts	0.01*	0.01	0.01*	Further consideration needed\((f)\)	
401040	Sesame seed	0.9	0.8	0.9	Further consideration needed\((f)\)	
401050	Sunflower seed	0.8	0.8	0.9	Further consideration needed\((f)\)	
401060	Rape seed	0.9	0.8	0.9	Further consideration needed\((f)\)	
401070	Soya bean	0.15	0.15	0.15	Further consideration needed\((f)\)	
401080	Mustard seed	0.9	0.8	0.9	Further consideration needed\((f)\)	
401090	Cotton seed	0.3	0.3	0.3	Further consideration needed\((h)\)	
401100	Pumpkin seeds	0.9	0.8	0.9	Further consideration needed\((f)\)	
401110	Safflower	0.9	0.8	0.9	Further consideration needed\((f)\)	
401120	Borage	0.9	0.8	0.9	Further consideration needed\((f)\)	
401130	Gold of pleasure	0.9	0.8	0.9	Further consideration needed\((f)\)	
401140	Hempseed	0.9	0.8	0.9	Further consideration needed\((f)\)	
401150	Castor bean	0.9	0.8	0.9	Further consideration needed\((f)\)	
500010	Barley grain	2	2	3	Further consideration needed\((f)\)	
500030	Maize grain	0.01*	0.01*	0.01*	Further consideration needed\((f)\)	
500050	Oats grain	2	2	3	Further consideration needed\((f)\)	
500060	Rice grain	5	5	5	Further consideration needed\((f)\)	
500070	Rye grain	0.4	0.3	0.4	Further consideration needed\((f)\)	
500080	Sorghum grain	0.7	0.7	0.8	Further consideration needed\((f)\)	
500090	Wheat grain	0.4	0.3	0.4	Further consideration needed\((f)\)	
632000	Herbal infusions (dried, leaves)	0.01*	–	30	Further recommendation needed\((d)\)	
633000	Herbal infusions (dried, roots)	2	–	2	Further recommendation needed\((d)\)	
900010	Sugar beet (root)	0.15	0.15	0.4	Further consideration needed\((f)\)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	MRL (mg/kg)	Outcome of the review	Comment
-------------	-------------------------------	-------------------------	---------------------	-------------	-----------------------	---------
900020	Sugar cane	3	–	3	Further consideration needed (d)	
900030	Chicory roots	0.3	–	0.3	Further consideration needed (d)	
1011010	Swine meat	0.02	0.015	0.015	Further consideration needed (9)	
1011020	Swine fat (free of lean meat)	0.2	0.2	0.2	Further consideration needed (9)	
1011030	Swine liver	0.1	0.1	0.1	Further consideration needed (9)	
1011040	Swine kidney	0.1	0.1	0.1	Further consideration needed (9)	
1012010	Bovine meat	0.02	0.015	0.015	Further consideration needed (9)	
1012020	Bovine fat	0.2	0.2	0.2	Further consideration needed (9)	
1012030	Bovine liver	0.1	0.1	0.1	Further consideration needed (9)	
1012040	Bovine kidney	0.1	0.1	0.1	Further consideration needed (9)	
1013010	Sheep meat	0.02	0.015	0.015	Further consideration needed (9)	
1013020	Sheep fat	0.2	0.2	0.2	Further consideration needed (9)	
1013030	Sheep liver	0.1	0.1	0.1	Further consideration needed (9)	
1013040	Sheep kidney	0.1	0.1	0.1	Further consideration needed (9)	
1014010	Goat meat	0.02	0.015	0.015	Further consideration needed (9)	
1014020	Goat fat	0.2	0.2	0.2	Further consideration needed (9)	
1014030	Goat liver	0.1	0.1	0.1	Further consideration needed (9)	
1014040	Goat kidney	0.1	0.1	0.1	Further consideration needed (9)	
1015010	Horse meat	0.02	0.015	0.015	Further consideration needed (9)	
1015020	Horse fat	0.2	0.2	0.2	Further consideration needed (9)	
1015030	Horse liver	0.1	0.1	0.1	Further consideration needed (9)	
1015040	Horse kidney	0.1	0.1	0.1	Further consideration needed (9)	
1016010	Poultry meat	0.02	0.02	0.01*	Further consideration needed (i)	
1016020	Poultry fat	0.05	0.05	0.05	Further consideration needed (9)	
1016030	Poultry liver	0.02	0.02	0.02	Further consideration needed (9)	
1020010	Cattle milk	0.02	0.02	0.02	Further consideration needed (9)	
1020020	Sheep milk	0.02	0.02	0.02	Further consideration needed (9)	
1020030	Goat milk	0.02	0.02	0.02	Further consideration needed (9)	
1020040	Horse milk	0.02	0.02	0.02	Further consideration needed (9)	
1030000	Birds’ eggs	0.02	0.02	0.02	Further consideration needed (9)	
	Other commodities of plant/animal origin	See Reg. 2018/685	–	–	Further consideration needed (j)	

MRL: maximum residue level; CXL: codex maximum residue limit.

*: Indicates that the MRL is set at the limit of quantification.

(F): The residue definition is fat soluble.

(a): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; no CXL is available (combination H-I in Appendix E).

(b): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; there are no relevant authorisations or import tolerances reported at EU level (combination A-VII in Appendix E).

(c): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level, which is also fully supported by data, leads to a lower MRL (combination H-VII in Appendix E).

(d): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); no CXL is available (combination F-I in Appendix E).

(e): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; existing CXL is covered by the recommended MRL (combination H-III in Appendix E).

(f): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); existing CXL is covered by the tentative MRL (combination F-III in Appendix E).

(g): MRL is derived from the existing CXL, which is not sufficiently supported by data but for which no risk to consumers is identified (assuming the existing residue definition); GAP evaluated at EU level, which is also not fully supported by data, would lead to a lower tentative MRL (combination F-V in Appendix E).
(h): MRL is derived from the existing CXL, which is not sufficiently supported by data but for which no risk to consumers is identified (assuming the existing residue definition); there are no relevant authorisations or import tolerances reported at EU level (combination A-V in Appendix E).

(i): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); CXL is not compatible with EU residue definitions (combination F-II in Appendix E).

(j): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of 0.01 mg/kg may be considered (combination A-I in Appendix E).

References

EFSA (European Food Safety Authority), 2011. Reasoned opinion of EFSA: setting of new MRLs for fluxapyroxad (BAS 700 F) in various commodities of plant and animal origin. EFSA Journal 2011;9(6):2196, 68 pp. https://doi.org/10.2903/j.efsa.2011.2196

EFSA (European Food Safety Authority), 2012. Conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F). EFSA Journal 2012;10(1):2522, 90 pp. https://doi.org/10.2903/j.efsa.2012.2522

EFSA (European Food Safety Authority), 2013. Scientific support for preparing an EU position for the 45th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2013;11(7):3312, 210 pp. https://doi.org/10.2903/j.efsa.2013.3312

EFSA (European Food Safety Authority), 2015a. Scientific support for preparing an EU position in the 47th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2015;13(7):4208, 178 pp. https://doi.org/10.2903/j.efsa.2015.4208

EFSA (European Food Safety Authority), 2015b. Reasoned opinion on the modification of the existing maximum residue levels for fluxapyroxad in grapes and potatoes. EFSA Journal 2015;13(9):4223, 25 pp. https://doi.org/10.2903/j.efsa.2015.4223

EFSA (European Food Safety Authority), 2016a. Reasoned opinion on the setting of import tolerances for fluxapyroxad in various crops. EFSA Journal 2016;14(3):4404, 28 pp. https://doi.org/10.2903/j.efsa.2016.4404

EFSA (European Food Safety Authority), 2016b. Scientific support for preparing an EU position in the 48th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2016;14(8):4571, 166 pp. https://doi.org/10.2903/j.efsa.2016.4571

EFSA (European Food Safety Authority), 2017. Reasoned opinion on the modification of the existing maximum residue levels for fluxapyroxad in various crops. EFSA Journal 2017;15(9):4975, 30 pp. https://doi.org/10.2903/j.efsa.2017.4975

EFSA (European Food Safety Authority), 2018. Guidance on use of EFSA Pesticide Residue Intake Model (EFSA PRIMO revision 3). EFSA Journal 2018;16(1):5147, 43 pp. https://doi.org/10.2903/j.efsa.2018.5147

EFSA (European Food Safety Authority), 2019a. Completeness check report on the review of the existing MRLs of fluxapyroxad prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 29 October 2019. Available online: www.efsa.europa.eu

EFSA (European Food Safety Authority), 2019b. Member States consultation report on the review of the existing MRLs of fluxapyroxad prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 13 December 2019. Available online: www.efsa.europa.eu

EURLs (European Union Reference Laboratories for Pesticide Residues), 2018. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Analytical methods validated by the EURLs and overall capability of official laboratories to be considered for the review of the existing MRLs for fluxapyroxad. October 2018. Available online: www.efsa.europa.eu

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1996.

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/VI/95-rev. 6, 22 July 1997.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.

European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.

European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals. 7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs). SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.
European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.

European Commission, 2017. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.10.3, June 2017.

FAO (Food and Agriculture Organization of the United Nations), 2009. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 2nd Edition. FAO Plant Production and Protection Paper 197, 264 pp.

FAO (Food and Agriculture Organization of the United Nations), 2012. fluxapyroxad. In: Pesticide residues in food – 2012. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 256.

FAO (Food and Agriculture Organization of the United Nations), 2015. fluxapyroxad. In: Pesticide residues in food – 2015. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 223.

France, 2018. Evaluation report prepared under Article 12.1 of Regulation (EC) No 396/2005. Review of the existing MRLs for fluxapyroxad, December 2018. Available online: www.efsa.europa.eu

OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org

OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 04 September 2013.

OECD (Organisation for Economic Co-operation and Development), 2018. Guidance document on Residues in Rotational Crops. In: Series on Pesticides No 97. ENV/JM/MONO(2018)9, 22 May 2018.

United Kingdom, 2011a. Draft assessment report on the active substance fluxapyroxad prepared by the rapporteur Member State UK in the framework of Council Directive 91/414/EEC, January 2011. Available online: www.efsa.europa.eu

United Kingdom, 2011b. Final Addendum to the Draft Assessment Report on BAS 700 F (fluxapyroxad), compiled by EFSA, October 2011. Available online: www.efsa.europa.eu

Abbreviations

a.i. active ingredient
a.s. active substance
ADI acceptable daily intake
ARfD acute reference dose
BBCH growth stages of mono- and dicotyledonous plants
bw body weight
CAC Codex Alimentarius Commission
CAS Chemical Abstract Service
CCPR Codex Committee on Pesticide Residues
CF conversion factor for enforcement residue definition to risk assessment residue definition
CXL codex maximum residue limit
DALA days after last application
DAR draft assessment report
DAT days after treatment
DB dietary burden
DM dry matter
DP dustable powder
DT90 period required for 90% dissipation (define method of estimation)
EC emulsifiable concentrate
eq residue expressed as a.s. equivalent
EURLs European Union Reference Laboratories for Pesticide Residues (former CRLs)
FAO Food and Agriculture Organization of the United Nations
GAP Good Agricultural Practice
GR granule
HPLC high-performance liquid chromatography
HPLC-MS high-performance liquid chromatography with mass spectrometry
HPLC-MS/MS high-performance liquid chromatography with tandem mass spectrometry
Acronym	Description
HR	highest residue
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ILV	independent laboratory validation
ISO	International Organisation for Standardization
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on Pesticide Residues)
Koc	organic carbon adsorption coefficient
LOQ	limit of quantification
MRL	maximum residue level
MS	mass spectrometry detector
MS/MS	tandem mass spectrometry detector
NEU	northern European Union
OECD	Organisation for Economic Co-operation and Development
PBI	plant back interval
PF	peeling factor
PF	processing factor
PECsoil	predicted environmental concentration in soil
PHI	preharvest interval
P_{ow}	partition coefficient between n-octanol and water
ppm	parts per million (10^{-6})
PRIMO	(EFSA) Pesticide Residues Intake Model
PROFILE	(EFSA) Pesticide Residues Overview File
QuEChERS	Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method)
RA	risk assessment
RAC	raw agricultural commodity
RD	residue definition
RMS	rapporteur Member State
SANCO	Directorate-General for Health and Consumers
SC	suspension concentrate
SEU	southern European Union
SMILES	simplified molecular-input line-entry system
SL	soluble concentrate
STMR	supervised trials median residue
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
UV	ultraviolet (detector)
WHO	World Health Organization
Appendix A – Summary of authorised uses considered for the review of MRLs

A.1. Authorised outdoor uses in northern EU

Crop and/or situation	MS or country	F or I	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks					
Apples	BE	F	Scab	Foliar	53 to 81	7	102 g a.s./ha	35					
				treatment	1 to 3								
				general	7								
Pears	BE	F	Scab	Foliar	53 to 81	7	102 g a.s./ha	35					
				treatment	1 to 3								
				general	7								
Quinces	SL, NL, DE,	F	Venturia spp.	Foliar	53 to 81	7	90 g a.s./ha	35					
	CZ, FR			treatment	1 to 3								
				spraying	7								
Medlars	SL, NL, DE,	F	Venturia spp.	Foliar	53 to 81	7	90 g a.s./ha	35					
	CZ, FR			treatment	1 to 3								
				spraying	7								
Loquats	SL, NL, DE,	F	Venturia spp.	Foliar	53 to 81	7	90 g a.s./ha	35					
	CZ, FR			treatment	1 to 3								
				spraying	7								
Apricots	SL	F		Foliar	55 to 85	10	45 g a.s./ha	21					
				treatment	1 to 3								
				spraying	10								
Peaches	SL, UK	F	Sphaerotheca pannosa	Foliar	51 to 85	10	45 g a.s./ha	21					
				treatment	1 to 3								
				spraying	10								
Table grapes	SL, CZ	F	Erysiphe necator Uncinula necator	Foliar	11 to 83	10	45 g a.s./ha	35					
				treatment	1 to 3								
				spraying	10								
Crop and/or situation	MS or country	F G or I(a)	Pests or group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min–max	Interval between application (min)	Application rate per treatment a.s./hL	Water L/ha min–max	Rate and unit PHI (days)(d)	Remarks
-----------------------	---------------	------------	-----------------------------------	---------------------	-----------	------------	----------------------------------	----------------	-------------------------------	---	-------------------	--------------------------	---------
Wine grapes	AT	F	SC 300 g/L	Foliar treatment – spraying	11 to 83	1 to 3	10	–	–	72 g a.s./ha	35		
Strawberries	AT, UK	F	SC 75 g/L	Foliar treatment – spraying	60 to 89	3	7	–	–	45 g a.s./ha	1		
Potatoes	AT, NL, FR, UK, SL	F	SC 300 g/L R. solani	Soil treatment – general (see also comment field)	0 to 0	1	–	–	–	240 g a.s./ha	n.a.	Same GAP for seed treatment in furrow for FR	
Beetroot	AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	2	–	–	–	75 g a.s./ha	7		
Carrots	AT, FR	F	SC 75 g/L ‘Alternaria dauci, Alternaria radicina’	Foliar treatment – spraying	12 to 49	2	7	–	–	75 g a.s./ha	7		
Celeriacs	DE, AT, FR	F	SC 75 g/L Alternaria spp.	Foliar treatment – broadcast spraying	12 to 49	1 to 2	7	–	–	75 g a.s./ha	7		
Horseradishes	DE, AT	F	SC 75 g/L Alternaria spp.	Foliar treatment – broadcast spraying	12 to 49	2	7	–	–	75 g a.s./ha	7		
Jerusalem artichokes	AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	2	–	–	–	75 g a.s./ha	7		
Review of the existing MRLs for fluxapyroxad

Crop and/or situation	MS or country	F or G group or pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Application Range of growth stages & season(c)	Number min–max	Interval between application (min)	Application rate per treatment a.s./ha L/ha	Rate and unit	PHI (days)(d)	Remarks	
Parsnips	AT	F	SC	75 g/L	Foliar treatment – general	12 to 49	2	75 g a.s./ha	7				
Parsley roots	DE	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	2	75 g a.s./ha	7				
Radishes	DE, AT	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	2	75 g a.s./ha	7				
Salsifies	DE, AT	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	2	75 g a.s./ha	7				
Swedes	DE, AT	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	2	75 g a.s./ha	7				
Turnips	DE, AT	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	2	75 g a.s./ha	7				
Spring onions	DE, AT, FR	F	SC	75 g/L	Foliar treatment – broadcast spraying	49	1 to 2	75 g a.s./ha	14				
Cucumbers	AT, FR	F	SC	75 g/L	Foliar treatment – broadcast spraying	14 to 89	3	75 g a.s./ha	3				
Crop and/or situation	MS or country	F	G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks				
-----------------------	---------------	---	-----------	-----------------------------------	-------------	-------------	-------------------------------	--------------	---------				
					Type(b)	Conc. a.s.	Method kind						
Gherkins	AT, FR	F			SC	75 g/L	Foliar treatment – broadcast spraying	14 to 89	3	7	–	45 g a.s./ha	3
Courgettes	AT	F			SC	75 g/L	Foliar treatment – general	14 to 89	3	–	–	45 g a.s./ha	3
Melons	AT	F			SC	75 g/L	Foliar treatment – general	14 to 89	3	–	–	45 g a.s./ha	3
Pumpkins	AT	F			SC	75 g/L	Foliar treatment – general	14 to 89	3	–	–	45 g a.s./ha	3
Watermelons	AT	F			SC	75 g/L	Foliar treatment – general	14 to 89	3	–	–	45 g a.s./ha	3
Broccoli	AT, FR, UK	F			SC	75 g/L	Foliar treatment – broadcast spraying	41 to 91	1 to 3	7	–	75 g a.s./ha	14
Cauliflowers	AT, FR, UK	F			SC	75 g/L	Foliar treatment – broadcast spraying	41 to 91	1 to 3	7	–	75 g a.s./ha	14
Brussels sprouts	FR, UK	F			SC	75 g/L	Foliar treatment – broadcast spraying	41 to 91	1 to 3	7	–	75 g a.s./ha	14
Crop and/or situation	MS or country	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------------	------------------------------------	-------------	-------------	-------------------------------	------------	---------						
Head cabbages	AT, FR, UK	F	SC	75 g/L	Foliar treatment – broadcast spraying	14							
				41 to 91	1 to 3	75 g a.s./ha							
Lamb's lettuces	DE, AT, FR	F	SC	75 g/L	Foliar treatment – broadcast spraying	14							
				12 to 49	1	150 g a.s./ha							
Lettuces	DE, AT, FR, UK	F	SC	75 g/L	Foliar treatment – broadcast spraying	14							
				12 to 49	1	150 g a.s./ha							
Escaroles	DE, AT, FR	F	SC	75 g/L	Foliar treatment – broadcast spraying	14							
				12 to 49	1	150 g a.s./ha							
Cresses	AT	F	SC	75 g/L	Foliar treatment – general	14							
				12 to 49	1	150 g a.s./ha							
Land cresses	AT	F	SC	75 g/L	Foliar treatment – general	14							
				12 to 49	1	150 g a.s./ha							
Roman rocket	DE, AT, FR	F	SC	75 g/L	Foliar treatment – broadcast spraying	14							
				12 to 49	1	150 g a.s./ha							
Red mustards	AT	F	SC	75 g/L	Foliar treatment – general	14							
				12 to 49	1	150 g a.s./ha							
Crop and/or situation	MS or country	F G or I^(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)^(d)	Remarks					
-----------------------	---------------	------------------------	-----------------------------------	-------------	----------------	-------------------------------	----------------	---------					
Baby leaf crops	DE, AT	F	SC	75 g/L	Foliar treatment – general (see also comment field)	1	150 g a.s./ha	14 DE: BBCH 12–18 AT: BBCH 12–49					
Spinaches	AT	F	SC	75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14					
Purslanes	AT	F	SC	75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14					
Chards	AT	F	SC	75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14					
Chervil	DE, AT	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	150 g a.s./ha	14					
Chives	DE, AT	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	150 g a.s./ha	14					
Celery leaves	DE	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	150 g a.s./ha	14					
Crop and/or situation	MS or country	F G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks					
-----------------------	---------------	------------	-----------------------------------	-------------	-------------	-------------------------------	---------------	---------					
Parsley	DE	F	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	150 g a.s./ha	14						
Sage	DE, AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14						
Rosemary	DE, AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14						
Thyme	DE, AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14						
Basil	DE, AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14						
Laurel	DE, AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14						
Tarragon	DE, AT	F	SC 75 g/L	Foliar treatment – general	12 to 49	150 g a.s./ha	14						
Crop and/or situation	MS or country	F or G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks					
-----------------------	---------------	----------------	-----------------------------------	-------------	-------------	------------------------------	--------------	---------					
Peas (with pods)	DE, AT	F	SC 75 g/L	Foliar treatment – general (see also comment field)	1	– – 150 g a.s./ha	7	DE: BBCH 15-77 AT: BBCH 15-89					
Peas (without pods)	AT, FR, UK	F	SC 75 g/L	Foliar treatment – broadcast spraying	89 1	– – 150 g a.s./ha	7						
Globe artichokes	FR	F	Powdery mildew (Leveillula taurica, Glovinomyces cichoracearum (=Erysiphe c.), Ascochyta	SC 75 g/L	Foliar treatment – broadcast spraying	51 to 85 2 7	– – 45 g a.s./ha	7					
Leeks	DE, AT, FR	F	SC 75 g/L	Foliar treatment – broadcast spraying	1 to 2 7	– – 75 g a.s./ha	14						
Barley	PL	F	EC 62.5 g/L	Foliar treatment – general	25 to 69 2	– – 125 g a.s./ha	35						
Oat	LT, FI, NL, HU	F	EC 62.5 g/L	Foliar treatment – broadcast spraying	25 to 69 2	– – 125 g a.s./ha	35						

Notes:
(a) MS, G, I: country group or region
(b) Type: EC, SC, etc.
(c) Range of growth stages & season
(d) PHI: Preharvest interval

Review of the existing MRLs for fluxapyroxad

www.efsa.europa.eu/efsajournal
## Crop and/or situation	MS or country	F or G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks
Rye | CZ, FI, HU, LT, NL, PL, SL | F | EC 62.5 g/L | Foliar treatment – broadcast spraying | 2 | – – | 125 g a.s./ha | 35
Wheat | CZ, FI, HU, LT, NL, PL, SL | F | EC 62.5 g/L | Foliar treatment – broadcast spraying | 2 | – – | 125 g a.s./ha | 35
Herbal infusions from leaves and herbs | DE | F | SC 75 g/L | Foliar treatment – broadcast spraying (see also comment field) | 12 to 49 | 1 | – – | 150 g a.s./ha | 14
Herbal infusions from roots | DE, AT | F | SC 75 g/L | Foliar treatment – broadcast spraying | 12 to 49 | 2 | – – | 75 g a.s./ha | 7
Chicory roots | FR | F | SC 75 g/L | Foliar treatment – broadcast spraying | 13 to 49 | 2 | 7 | – – | 75 g a.s./ha | 14

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI – minimum preharvest interval.
A.2. Authorised outdoor uses in southern EU

Crop and/or situation	MS or country	F or G	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks				
Apples	PT, IT, EL, FR	F	Scab of apple and powdery mildew, Podosphaera leucotricha, Venturia inaequalis, Venturia pirina, Staphylium vesicarium	SC 300 g/L	Foliar treatment – spraying	53 to 81, 1 to 3, 7	–	–				
Pears	PT, IT, EL, FR	F	Scab of apple and powdery mildew, Podosphaera leucotricha, Venturia inaequalis, Venturia pirina, Staphylium vesicarium	SC 300 g/L	Foliar treatment – spraying	53 to 81, 1 to 3, 7	–	–				
Quinces	IT, FR	F	Podosphaera leucotricha, Venturia inaequalis, Venturia pirina, Staphylium vesicarium	SC 300 g/L	Foliar treatment – spraying	53 to 81, 1 to 3, 7	–	–				
Crop and/or situation	MS or country	FG or T	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)^(d)	Remarks				
-----------------------	--------------	---------	----------------------------------	-------------	------------	-------------------------------	--------------------------	---------				
Medlars	IT, FR	F	Podosphaera leucotricha Venturia inaequalis Venturia pirina Stemphylium vesicarium	SC 300 g/L Foliar treatment – spraying	53 to 81 1 to 3 7 – –	90 g a.s./ha	35					
Loquats	IT, FR	F	Podosphaera leucotricha Venturia inaequalis Venturia pirina Stemphylium vesicarium	SC 300 g/L Foliar treatment – spraying	53 to 81 1 to 3 7 – –	90 g a.s./ha	35					
Apricots	PT, IT, EL, BG, FR	F	Powdery mildew Sphaerotheca pannosa Erysiphe necator	SC 300 g/L Foliar treatment – spraying	51 to 85 1 to 3 10 – –	45 g a.s./ha	21					
Peaches	PT, IT, EL, BG, FR	F	Powdery mildew Sphaerotheca pannosa Erysiphe necator	SC 300 g/L Foliar treatment – spraying	51 to 85 1 to 3 10 – –	45 g a.s./ha	21					
Table grapes	IT, EL, BG	F	Erysiphe necator Uncinula necator	SC 300 g/L Foliar treatment – spraying	11 to 83 1 to 3 10 – –	45 g a.s./ha	35					
Crop and/or situation	MS or country	F G or I \(^{(a)}\)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)\(^{(d)}\)	Remarks				
-----------------------	--------------	--------------------	---------------------------------------	-------------	-----------------	-------------------------------	------------------	---------				
Wine grapes	IT, EL, BG	F	Erysiphe necator Uncinula necator	SC 300 g/L	Foliar treatment – spraying	11 to 83	1 to 3	10	–	–	45 g a.s./ha	35
Strawberries	FR, EL	F	Sphaerotheca macularis	SC 75 g/L	Foliar treatment – spraying	60 to 89	1 to 3	7	–	–	45	1
Mangoes	FR	F	Oidium mangiferae	SC 300 g/L	Foliar treatment – spraying	51 to 83	1 to 3	10	–	–	45 g a.s./ha	21
Potatoes	IT, FR	F	Rhizoctonia solani	SC 300 g/L	Soil treatment – general (see also comment field)	0 to 0	1	–	–	240 g a.s./ha	n.a.	Treatment of seeds potatoes in furrow
Beetroots	IT, EL	F	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	–	75 g a.s./ha	7		
Carrots	IT, FR, EL	F	Alternaria dauci Alternaria radicina	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	2	7	–	–	75 g a.s./ha	7
Celeriacs	IT, EL	F	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	–	75 g a.s./ha	7		
Horseradishes	IT, EL	F	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	–	75 g a.s./ha	7		
Crop and/or situation	MS or country	F G or T(1)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks				
-----------------------	---------------	-------------	-----------------------------------	-------------	-------------	-------------------------------	----------------	---------				
Jerusalem artichokes	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Parsnips	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Parsley roots	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Radishes	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Salsifies	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Swedes	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Turnips	IT, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	12 to 49	1 to 2	–	75 g a.s./ha	7				
Spring onions	FR	F	Purple blotch (Alternaria porri), Rust (Puccinia allii) SC 75 g/L Foliar treatment – broadcast spraying	20 to 49	1 to 2	7	75 g a.s./ha	14				
Crop and/or situation	MS or country	FG or group of pests controlled	Preparation	Application	PHI (days)	Remarks						
-----------------------	--------------	---------------------------------	-------------	-------------	------------	---------						
			Type(b) Conc. a.s. Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	a.s./hL min-max	Water L/ha min-max	Rate and unit			
Tomatoes	IT, FR, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	14 to 89	1 to 2	7	–	75 g a.s./ha	3			
Sweet peppers	IT, EL	F	SC 75 g/L Foliar treatment – general	14 to 89	1 to 2	7	–	75 g a.s./ha	3			
Aubergines	IT, FR, EL	F	SC 75 g/L Foliar treatment – general	14 to 89	1 to 2	7	–	75 g a.s./ha	3			
Cucumbers	IT, FR, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	14 to 89	3	7	–	45 g a.s./ha	3			
Gherkins	IT, FR, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	14 to 89	3	7	–	45 g a.s./ha	3			
Courgettes	IT, FR, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	14 to 89	3	7	–	45 g a.s./ha	3			
Melons	IT, FR, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	14 to 89	3	7	–	45 g a.s./ha	3			
Pumpkins	IT, FR, EL	F	SC 75 g/L Foliar treatment – broadcast spraying	14 to 89	3	7	–	45 g a.s./ha	3			
Crop and/or situation	MS or country	Pests or group of pests controlled	Preparation	Type	Conc. a.s.	Application	Application rate per treatment	PHI (days)	Remarks			
-----------------------	---------------	------------------------------------	-------------	------	-----------	-------------	-----------------------------	-----------	---------			
Watermelons	IT, FR, EL	F	SC	75 g/L	Foliar treatment – broadcast spraying	14 to 89	3	7	–	–	45 g a.s./ha	3
Broccoli	IT, EL	F	SC	75 g/L	Foliar treatment – general	41 to 48	1 to 3	7	–	–	75 g a.s./ha	14
Cauliflowers	IT, EL	F	SC	75 g/L	Foliar treatment – general	41 to 48	1 to 3	7	–	–	75 g a.s./ha	14
Brussels sprouts	IT	F	SC	100 g/L	Foliar treatment – broadcast spraying	1 to 3	7	–	–	–	75 g a.s./ha	14
Head cabbages	IT, EL	F	SC	75 g/L	Foliar treatment – general	41 to 48	1 to 3	7	–	–	75 g a.s./ha	14
Lamb’s lettuces	EL	F	SC	75 g/L	Foliar treatment – general	12 to 49	1 to 1	–	–	–	90 g a.s./ha	14
Lettuces	IT, FR, EL	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	1	–	–	–	150 g a.s./ha	14
Escaroles	IT, FR	F	SC	75 g/L	Foliar treatment – broadcast spraying	12 to 49	1	–	–	–	150 g a.s./ha	14
Cresses	EL	F	SC	75 g/L	Foliar treatment – general	12 to 49	1	–	–	–	90 g a.s./ha	14
Table: Review of the existing MRLs for fluxapyroxad

Crop and/or situation	MS or country	F or Group of Pests controlled	Preparation	Method kind	Range of growth stages & season	Number min–max	Interval between application (min)	Application rate per treatment	PHI (days)	Remarks
Land cresses	EL	F	SCLESC	Foliar	12 to 49	1	–	90 g a.s./ha	14	
Roman rocket	FR	F	Sclerotinia sclerotiorum, Sclerotinia minor	Foliar	12 to 49	1	–	150 g a.s./ha	14	
Red mustards	EL	F	SCLESC	Foliar	12 to 49	1	–	90 g a.s./ha	14	
Peas (with pods)	IT, EL	F	SC	Foliar	12 to 49	1	–	150 g a.s./ha	7	
Cardoons	IT, EL	F	SC	Foliar	41 to 49	1	–	150 g a.s./ha	7	
Celeries	IT, FR, EL	F	SC	Foliar	41 to 49	1	–	150 g a.s./ha	7	
Florence fennels	IT, FR, EL	F	SC	Foliar	41 to 49	1	–	150 g a.s./ha	7	
Globe artichokes	IT, EL	F	SC	Foliar	51 to 85	1 to 2	–	45 g a.s./ha	7	
Leeks	FR	F	Foliar	20 to 49	1 to 2	7	–	75 g a.s./ha	14	
Crop and/or situation	MS or country	F G or I^(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)^(d)	Remarks		
----------------------	---------------	------------------------	-----------------------------------	-------------	-------------	------------------------------	----------------	---------		
Rhubarbs	FR, IT, EL	F	SC 75 g/L Foliar treatment	41 to 49	1	150 g a.s./ha	7			
Barley	IT, ES	F	EC 125 g a.s./ha	1 to 2	21	125 g a.s./ha	35			
Oat	IT, ES	F	EC 112.5 g a.s./ha	1 to 2	21	112.5 g a.s./ha	35			
Rye	IT, ES	F	EC 112.5 g a.s./ha	1 to 2	21	112.5 g a.s./ha	35			
Wheat	IT, ES	F	EC 125 g a.s./ha	1 to 2	21	125 g a.s./ha	35			

MS: Member State; a.s.: active substance.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).

(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of Pesticide.

(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.

(d): PHI – minimum preharvest interval.
A.3. Authorised indoor uses (and post-harvest uses) in EU

Crop and/or situation	MS or country	F or G or T(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks				
				Type(b) Conc. a.s. Method kind Range of growth stages & season(c) Number min–max Interval between application (min) a.s./hl min–max Water L/ha min–max Rate and unit								
Strawberries	AT, FR, UK	I	Sphaerotheca macularis SC 75 g/L	Foliar treatment – spraying 60 to 89 1 to 3 7 – – 45 g a.s./ha	1							
Tomatoes	AT, FR, UK	I	Alternaria solani, Alternaria alternata SC 75 g/L	Foliar treatment – broadcast spraying 14 to 89 1 to 2 7 – – 75 g a.s./ha	3							
Sweet peppers	AT, FR, UK	I	Alternaria solani, Alternaria alternata SC 75 g/L	Foliar treatment – broadcast spraying 14 to 89 1 to 2 7 – – 75 g a.s./ha	3							
Aubergines	AT, FR	I	Alternaria solani SC 75 g/L	Foliar treatment – broadcast spraying 14 to 89 1 to 2 7 – – 75 g a.s./ha	3							
Cucumbers	AT, FR, UK	I	SC 75 g/L	Foliar treatment – broadcast spraying 14 to 89 3 7 – – 45 g a.s./ha	3							
Gherkins	AT, FR	I	SC 75 g/L	Foliar treatment – broadcast spraying 14 to 89 3 7 – – 45 g a.s./ha	3							
Courgettes	AT, FR	I	SC 75 g/L	Foliar treatment – broadcast spraying 14 to 89 3 7 – – 45 g a.s./ha	3							
Crop and/or situation	MS or country	F G or T	Pests or group of pests controlled	Preparation	Method	Application	Application rate per treatment	PHI (days)	Remarks			
-----------------------	--------------	----------	-----------------------------------	-------------	--------	------------	--------------------------------	-----------	---------			
Melons	FR	I	Powdery mildew (Erysiphe cichoracearum (=Golovinomyces c.), Sphaerotheca fuliginea (=Podosphaera xanthii), Leveillula taurica (=Oidiopsis taurica) Mycospharella melonis (=Didymella bryoniae)	SC	75 g/L	Foliar treatment – broadcast spraying	45 g a.s./ha	3				
Pumkins	FR	I	Powdery mildew (Erysiphe cichoracearum (=Golovinomyces c.), Sphaerotheca fuliginea (=Podosphaera xanthii), Leveillula taurica (=Oidiopsis taurica) Mycospharella melonis (=Didymella bryoniae)	SC	75 g/L	Foliar treatment – broadcast spraying	45 g a.s./ha	3				
Crop and/or situation	MS or country	FG or T	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks				
-----------------------	---------------	---------	------------------------------------	-------------	------------	-------------------------------	------------	---------				
Watermelons	FR	I	Powdery mildew (Erysiphe cichoracearum (=Golovinomyces c.), Sphaerotheca fuliginea (=Podosphaera xanthii), Leveillula taurica (=Oidiopsis taurica) Mycosphaerella melonis (=Didymella bryoniae)	SC 75 g/L	Foliar treatment – broadcast spraying	14 to 89	1 to 3	7	–	–	45 g a.s./ha	3
Lamb’s lettuces	FR	I	Sclerotinia sclerotiorum, Sclerotinia minor	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	7	–	–	90 g a.s./ha	14
Lettuces	FR, UK	I	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	7	–	–	90 g a.s./ha	14	
Escaroles	FR	I	Sclerotinia sclerotiorum, Sclerotinia minor	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	7	–	–	90 g a.s./ha	14
Roman rocket	FR	I	Sclerotinia sclerotiorum, Sclerotinia minor	SC 75 g/L	Foliar treatment – broadcast spraying	12 to 49	1 to 2	7	–	–	90 g a.s./ha	14
Crop and/or situation	MS or country	Pests or group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min–max	Interval between application (min)	a.s./ha L min–max	Rate and unit	PHI (days)(d)	Remarks
-----------------------	--------------	-------------------------------------	---------------------	-----------	------------	----------------------------------	----------------	-----------------------------------	-----------------	-------------	-------------	---------
Witloofs	FR I	Rust (Puccinia ichorii), Alternaria spp.	SC	75 g/L	Post-harvest – spraying	2	–	11250 g a.s./ha	21		1st application (dipping/drenching) BBCH 49 after harvest, before storage: 0.25 L/ hL. 2nd application, shortly after preparation for forcing (Spraying): 15 mL/ m²	

MS: Member State; a.s.: active substance.
(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI – minimum pre-harvest interval.
A.5. Import tolerance

Crop and/or situation	MS or country	F, G, or T^(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)^(b)	Remarks					
Grapefruits	BR	F		Foliar	3		50 g a.s./ha	14					
				treatment – spraying									
Apples	US	F		EC	62.5 g/L	1 to 4	100 g a.s./ha	0					
				Foliar	1 to 4								
				treatment – spraying									
Pears	US	F		EC	62.5 g/L	1 to 4	100 g a.s./ha	0					
				Foliar	1 to 4								
				treatment – spraying									
Quinces	US	F		EC	62.5 g/L	1 to 4	100 g a.s./ha	0					
				Foliar	1 to 4								
				treatment – spraying									
Medlars	US	F		EC	62.5 g/L	1 to 4	100 g a.s./ha	0					
				Foliar	1 to 4								
				treatment – spraying									
Loquats	US	F		EC	62.5 g/L	1 to 4	100 g a.s./ha	0					
				Foliar	1 to 4								
				treatment – spraying									
Apricots	US	F		EC	62.5 g/L	1 to 3	125 g a.s./ha	0					
				Foliar	1 to 3								
				treatment – spraying									
Cherries	US	F		EC	100 g/L	1 to 3	125 g a.s./ha	0					
				Foliar	1 to 3								
				treatment – spraying									
Peaches	US	F		EC	62.5 g/L	1 to 3	124 g a.s./ha	0					
				Foliar	1 to 3								
				treatment – spraying									
Crop and/or situation	MS or country	F or G or T	Pests or group of pests controlled	Preparation	Application	PHI (days)(d)	Remarks						
-----------------------	--------------	-------------	------------------------------------	-------------	-------------	---------------	---------						
				Type(b)	Conc. a.s.	Range of growth stages & season(c)	Number min–max	Interval between application (min)	Application rate per treatment	Rate and unit			
Plums	US	F		EC	62.5 g/L	Foliar treatment – spraying	1 to 3	7	–	124 g a.s./ha	0		
Strawberries	US	F		EC	100 g/L	Foliar treatment – spraying	1 to 3	7	–	200 g a.s./ha	0		
Blueberries	US	F		EC	100 g/L	Foliar treatment – spraying	1 to 3	7	–	200 g a.s./ha	0		
Mangoes	BR	F		SC	200 g/L	Foliar treatment – spraying	4	–	–	67 g a.s./ha	7		
Potatoes	US	F		EC	62.5 g/L	Foliar treatment – spraying	1 to 2	7	–	100 g a.s./ha	7		
Carrots	US	F		Soil treatment – general (see also comment field)	0	1	–	–	250 g a.s./ha	n.a.			
Garlic	US	F		EC	62.5 g/L	Soil treatment – general (see also comment field)	0	1	–	250 g a.s./ha	n.a.		
Onions	US	F		EC	62.5 g/L	Soil treatment – general	0	1	–	250 g a.s./ha	n.a.		
Crop and/or situation	MS or country	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	--------------	-----------------------------------	-------------	-------------	-------------------------------	-----------	---------						
Shallots	US	F	EC	Soil treatment – general	0 1 – –	250 g a.s./ha	n.a.						
Spring onions	US	F	EC	Soil treatment – general	0 1 – –	250 g a.s./ha	n.a.						
Cucumbers	US	F	EC	Foliar treatment – spraying (see also comment field)	3 7 – –	100 g a.s./ha	0 Not more than 2 sequential applications						
Gherkins	US	F	EC	Foliar treatment – spraying	3 7 – –	100 g a.s./ha	0						
Courgettes	US	F	EC	Foliar treatment – spraying	3 7 – –	100 g a.s./ha	0						
Melons	BR	F	SC	Foliar treatment – spraying	4 – –	58 g a.s./ha	7						
Pumpkins	BR	F	SC	Foliar treatment – spraying	4 – –	58 g a.s./ha	7						
Watermelons	BR	F	SC	Foliar treatment – spraying	4 – –	58 g a.s./ha	7						
Sweet corn	US	F	EC	Foliar treatment – general	1 to 2 – –	50 g a.s./ha	7						
Crop and/or situation	MS or country	FGTI(a)	Pests or group of pests controlled	Preparation	Method kind	Range of growth stages & season(b)	Number min-max	Interval between application (min)	Application rate per treatment a.s./ha	Rate and unit	PHI (days)(a)	Remarks	
-----------------------	---------------	---------	-----------------------------------	-------------	------------	------------------------------------	---------------	----------------------------------	--	-------------	-------------	---------	
Broccoli	US	F		EC	Foliar	100 g/L	3	7		100 g a.s./ha	3		
Cauliflowers	US	F		EC	Foliar	100 g/L	0	1		250 g a.s./ha	n.a.		
Chinese cabbages	US	F		EC	Foliar	100 g/L	3	7		100 g a.s./ha	3		
Lettuces	US	F		EC	Foliar	100 g/L	0	1		250 g a.s./ha	n.a.		
Beans (with pods)	US	F		EC	Foliar	62.5 g/L	1 to 2	7		100 g a.s./ha	7		
Beans (without pods)	US	F		EC	Foliar	62.5 g/L	1 to 2	7		100 g a.s./ha	7		
Peas (with pods)	US	F		EC	Foliar	62.5 g/L	1 to 2	7		100 g a.s./ha	7		
Peas (without pods)	US	F		EC	Foliar	62.5 g/L	1 to 2	7		100 g a.s./ha	7		
Cardoons	US	F		EC	Foliar	100 g/L	3	7		200 g a.s./ha	1		
Crop and/or situation	MS or country	FG or T(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(b)	Remarks					
-----------------------	--------------	------------	----------------------------------	-------------	------------	-------------------------------	---------------	---------					
Celeries	US	F		EC	100 g/L	Foliar treatment – broadcast spraying (see also comment field)	3	7	–	–	200 g a.s./ha	1	Not more than 2 sequential applications
Florence fennels	US	F		EC	100 g/L	Foliar treatment – broadcast spraying (see also comment field)	3	7	–	–	200 g a.s./ha	1	Not more than 2 sequential applications
Rhubarbs	US	F		EC	100 g/L	Foliar treatment – broadcast spraying	3	7	–	–	200 g a.s./ha	1	
Beans (dry)	US	F		EC		Foliar treatment – broadcast spraying	1 to 2	7	–	–	200 g a.s./ha	21	
Lentils (dry)	US	F		EC		Foliar treatment – broadcast spraying	1 to 2	7	–	–	100 g a.s./ha	21	
Peas (dry)	US	F		EC		Foliar treatment – broadcast spraying	1 to 2	7	–	–	100 g a.s./ha	21	
Crop and/or situation	MS or country	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------------	-----------------------------------	-------------	-------------	--------------------------------	-----------	---------						
Lupins (dry)	US	F	EC	Foliar treatment – broadcast spraying	1 to 2	7	–	–	200 g a.s./ha	21			
Linseeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Peanuts	US	F	EC	Foliar treatment – general	1 to 3	14	–	–	100 g a.s./ha	7			
Poppy seeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Sesame seeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Sunflower seeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Rapeseeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Soyabeans	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Mustard seeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Pumpkin seeds	US	F	EC	Foliar treatment – general	1 to 2	7	–	–	100 g a.s./ha	21			
Crop and/or situation	MS or country	Pest(s) controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	--------------	--------------------	-------------	-------------	--------------------------------	------------	---------						
Safflower seeds	US F	EC	Foliar treatment – general	1 to 2	7	100 g a.s./ha	21						
Borage seeds	US F	EC	Foliar treatment – general	1 to 2	7	100 g a.s./ha	21						
Gold of pleasure seeds	US F	EC	Foliar treatment – general	1 to 2	7	100 g a.s./ha	21						
Hemp seeds	US F	EC	Foliar treatment – general	1 to 2	7	100 g a.s./ha	21						
Castor beans	US F	EC	Foliar treatment – general	1 to 2	7	100 g a.s./ha	21						
Barley	US F	EC	Foliar treatment – broadcast spraying	2	–	100 g a.s./ha	21						
Maize	US F	EC	Foliar treatment – general	1 to 2	–	50 g a.s./ha	21						
Oat	US F	EC	Foliar treatment – broadcast spraying	2	–	100 g a.s./ha	21						
Rice	US F	SC	Foliar treatment – broadcast spraying	2	7	150 g a.s./ha	28						
Crop and/or situation	MS or country	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	--------------	-----------------------------------	-------------	-------------	-------------------------------	------------	---------						
Rye	US	F	EC	100 g/L	Foliar treatment – broadcast spraying	2	–	100 g a.s./ha	21				
Sorghum	US	F	EC	100 g/L	Foliar treatment – broadcast spraying	2	–	100 g a.s./ha	21				
Wheat	US	F	EC	100 g/L	Foliar treatment – broadcast spraying	2	–	100 g a.s./ha	21				
Sugar beets	US	F	EC	100 g/L	Foliar treatment – broadcast spraying	3	14	100 g a.s./ha	7				
Sugar canes	US	F	EC	100 g/L	Foliar treatment – broadcast spraying	2	14	125 g a.s./ha	14				

MS: Member State; a.s.: active substance.
(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI – minimum preharvest interval.
Appendix B – List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants

B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crops	Applications	Sampling	Comment/source
Fruit crops	Tomato	Foliar	3 × 100 g a.s./ha, interval days	7 DALA	Radiolabelled fluxapyroxad: aniline and pyrazole rings (United Kingdom, 2011b; EFSA, 2012)
Cereals/grass	Wheat	Foliar	2 × 125 g a.s./ha, BBCH 30-35, 69	36 DAT, 4, 34-35 DALA	Radiolabelled fluxapyroxad: aniline and pyrazole rings (United Kingdom, 2011b; EFSA, 2012)
		Seed treatment, 75 g a.s/100 kg (equivalent to 135 g a.s./ha)	93, 112, 161 DAT	Radiolabelled fluxapyroxad: aniline and pyrazole rings (EFSA, 2015b)	
Pulses/oilseeds	Soyabean	Foliar	3 × 60 g a.s./ha, BBCH 16-17, 51-59, 71-75	0 DAT, 34 DALA	Radiolabelled fluxapyroxad: aniline and pyrazole rings (United Kingdom, 2011b; EFSA, 2012)

Rotational crops (available studies)	Crop groups	Crop(s)	Application(s)	PBI (DAT)	Comment/source
Root/tuber crops	White radish	Bare soil, 1 × 250 g a.s./ha	30, 120/149, 365	Rotational crops studies are used as surrogate for depicting the metabolism following soil treatment in roots and leafy vegetables. Studies with radiolabelled fluxapyroxad: aniline and pyrazole rings (United Kingdom, 2011a; EFSA, 2012)	
Leafy crops	Spinach	Bare soil, 1 × 250 g a.s./ha	30, 120/149, 365		
Cereal (small grain)	Wheat	Bare soil, 1 × 250 g a.s./ha	30, 120/149, 365		

Processed commodities (hydrolysis study)	Conditions	Stable?	Comment/source
	Pasteurisation (20 min, 90°C, pH 4)	Yes	United Kingdom (2011b), EFSA (2012)
	Baking, brewing and boiling (60 min, 100°C, pH 5)	Yes	United Kingdom (2011b), EFSA (2012)
	Sterilisation (20 min, 120°C, pH 6)	Yes	United Kingdom (2011b), EFSA (2012)
Question	Answer	Notes	
--	-------------------------	--	
Can a general residue definition be proposed for primary crops?	Yes	For foliar applications.	
Rotational crop and primary crop metabolism similar?	Yes	For soil treatment (based on the confined rotational studies).	
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes		
Plant residue definition for monitoring (RD-Mo)	Fluxapyroxad		
Plant residue definition for risk assessment (RD-RA)	Fluxapyroxad		
Methods of analysis for monitoring of residues (analytical technique, matrix groups, LOQs)	Matrices with high water content, high oil content, high acid content and dry matrices (EFSA, 2012):		
 • HPLC–MS/MS, LOQ 0.01 mg/kg
 • Confirmatory method available.
 • ILV available
 - The EURLs reported that fluxapyroxad can be monitored in all four main plant matrices with at least an LOQ of 0.01 mg/kg (EURLs, 2018)
 - Herbal infusions (from leaves and rots):
 • No method available (data gap) |

a.s.: active ingredient; DAT: days after treatment; DALA: days after last application; PBI: plant-back interval; HPLC–MS/MS: high-performance liquid chromatography with tandem mass spectrometry; LOQ: limit of quantification; ILV: independent laboratory validation.
Stability of residues in plants

Plant products (available studies)	Category	Commodity	T (°C)	Stability period	Compounds covered	Comment/source
				Value Unit		
High water content		Apples, tomato, potato, Triticale (whole plant)	−20	24 Months	Fluxapyroxad, M700F002	United Kingdom (2011a), EFSA (2012)
		Apples, tomato, potato, Triticale (whole plant)	−20	24 Months	M700F048	United Kingdom (2011b), EFSA (2012)
		Apples, tomato, potato, Triticale (whole plant)	−20	4 Months	M700F008	United Kingdom (2011a), EFSA (2012)
High oil content		Avocado, soyabean seed	−20	24 Months	Fluxapyroxad, M700F002	United Kingdom (2011a), EFSA (2012)
		Avocado, soyabean seed	−20	24 Months	M700F048	United Kingdom (2011b), EFSA (2012)
		Avocado, soyabean seed	−20	4 Months	M700F008	United Kingdom (2011a), EFSA (2012)
High protein content		Dried peas	−20	24 Months	Fluxapyroxad, M700F002	United Kingdom (2011a), EFSA (2012)
High starch content		Wheat grain	−20	24 Months	Fluxapyroxad, M700F002	United Kingdom (2011a), EFSA (2012)
		Wheat grain	−20	24 Months	M700F008, M700F048	United Kingdom (2011b), EFSA (2012)
High acid content		Lemons, grapes	−20	24 Months	Fluxapyroxad, M700F002	United Kingdom (2011a), EFSA (2012)
		Lemons, grapes	−20	24 Months	M700F048	United Kingdom (2011b), EFSA (2012)
Processed products		Apple (juice), soybean (refined oil), potato (crisps), grape (raisins), barley (beer)	−20	24 Months	M700F048	United Kingdom (2011b)
Others		Wheat straw	−20	24 Months	Fluxapyroxad, M700F002	United Kingdom (2011a), EFSA (2012)
		Wheat straw	−20	24 Months	M700F008 and M700F048	United Kingdom (2011b), EFSA (2012)
B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials – Primary crops

Commodity	Region/Indoor(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)
Grapefruits	Import (BR)	0.03; 0.04; 0.05; 0.06; 0.06; 0.07; 0.14; 0.14; 0.16; 0.16; 0.17	Trials on oranges compliant with GAP (EFSA, 2017). Extrapolation to grapefruits was proposed (EFSA, 2017)	0.4	0.17	0.07
			MRL_{OECD} = 0.31			
Apples, Pears, Quinces, Medlars, Loquats/Japanese medlars	NEU	0.013; 0.017; 0.027; 0.029; 0.0295; 0.050; 0.0505; 0.14	Trials on apples compliant with GAP (France, 2018). Extrapolation to all pome fruits is applicable	0.2	0.14	0.03
	SEU	0.012; 0.024; 0.028; 0.031; 0.0465; 0.050; 0.067; 0.10	Trials on apples compliant with GAP (France, 2018). Extrapolation to all pome fruits is applicable	0.2	0.1	0.04
	Import (US)	0.08; 0.14; 0.15; 0.16; 0.18; 0.21; 0.21; 0.21; 0.23; 0.23; 0.24; 0.25; 0.26; 0.28; 0.29; 0.30; 0.31; 0.34; 0.35; 0.36; 0.37; 0.38; 0.45; 0.47	Combined data set of trials on apples (14) and pears (10) compliant with GAP (EFSA, 2011). Extrapolation to all pome fruits is applicable	0.8	0.47	0.26
Apricots	NEU	0.018; 0.025; 0.031; 0.046; 0.048	Combined data set of trials on apricots (1) and peaches (4) compliant with GAP (EFSA, 2011). Extrapolation to apricots is applicable	0.1 (tentative)^(d)	0.05	0.03
	SEU	< 0.01; 0.018; 0.021; 0.026; 0.032; 0.042; 0.047; 0.084	Combined data set of trials on apricots (3) and peaches (5) compliant with GAP (EFSA, 2011). Extrapolation to apricots is applicable	0.15 (tentative)^(d)	0.08	0.03
	Import (US)	–	No residue trials are available	–	–	–
Cherries (sweet)	Import (US)	0.25; 0.31; 0.53; 0.55; 0.56; 0.82; 1.10; 1.86	Trials on cherries (sweet and sour) compliant with GAP (EFSA, 2016a)	3	1.86	0.56
			MRL_{OECD} = 2.85			
Peaches	NEU	0.018; 0.025; 0.031; 0.046; 0.048	Combined data set of trials on apricots (1) and peaches (4) compliant with GAP (EFSA, 2011). Extrapolation to apricots is applicable	0.1	0.05	0.03

Note: (a) Indoor, (b) HR, (c) STMR, (d) Tentative.
Commodity	Region/indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL^(b) (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)	
SEU	< 0.01; 0.018; 0.021; 0.026; 0.032; 0.042; 0.047; 0.084	Combined data set of trials on apricots (3) and peaches (5) compliant with GAP (EFSA, 2011). Extrapolation to apricots is applicable. MRL_{OECD} = 0.13	0.15 (tentative)^(d)	0.08	0.03		
Import (US)	0.28; 0.30; 0.32; 0.33; 0.34; 0.43; 0.45; 0.55; 0.55; 0.58; 0.59; 0.63	Trials on peaches compliant with GAP (EFSA, 2011). Since all trials are on peaches, extrapolation to apricots is not possible. MRL_{OECD} = 1.34	1.5	0.63	0.44		
SEU	0.23; 0.24; 0.27; 0.37; 0.38; 0.49; 0.55; 0.56; 0.64; 0.95	Trials on plums compliant with GAP (EFSA, 2011) MRL_{OECD} = 1.40	1.5	0.95	0.44		
Table grapes	0.067; 0.083; 0.087; 0.13; 0.053; 0.060; 0.060; 0.068; 0.098; 0.113; 0.113; 0.203	Combined data set of four trials compliant with GAP (first four values) and eight trials on table/wine grapes scaled using the proportionality approach with a scaling factor of 0.75 (EFSA, 2015b; France, 2018) MRL_{OECD} = 0.28	0.3	0.20	0.09		
SEU	0.03; 0.03; 0.03; 0.04; 0.06; 0.07; 0.11; 0.15; 0.20; 0.26	Trials on table and wine grapes compliant with GAP (EFSA, 2015b) MRL_{OECD} = 0.42	0.5	0.26	0.07		
Wine grapes	0.083; 0.15; 0.15; 0.27; 0.08; 0.10; 0.10; 0.11; 0.16; 0.18; 0.18; 0.32	Combined data set of four trials compliant with GAP (first four values) and eight trials on table/wine grapes scaled using the proportionality approach with a scaling factor of 1.2 (EFSA, 2015b; France, 2018) MRL_{OECD} = 0.47	0.5	0.32	0.15		
SEU	0.03; 0.03; 0.03; 0.04; 0.06; 0.07; 0.11; 0.15; 0.20; 0.26	Trials compliant with GAP (EFSA, 2015b) MRL_{OECD} = 0.42	0.5	0.26	0.07		
Strawberries	0.037; 0.038; 0.040; 0.066; 0.071; 0.130; 0.130; 0.300	Trials on strawberries compliant with GAP (France, 2018) MRL_{OECD} = 0.46	0.5	0.3	0.07		
SEU	0.011; 0.090; 0.110; 0.110; 0.120; 0.150; 0.160; 0.190	Trials on strawberries compliant with GAP (France, 2018) MRL_{OECD} = 0.32	0.4	0.19	0.12		
EU	< 0.01; < 0.01; 0.042; 0.091; 0.12; 0.13; 0.13; 0.21	Trials on strawberries compliant with GAP (France, 2018) MRL_{OECD} = 0.37	0.4	0.21	0.11		
Import (US)	0.21; 0.26; 0.76; 0.76; 0.87; 0.97; 1.01; 2.34	Trials on strawberries compliant with GAP (EFSA, 2016a) MRL_{OECD} = 3.52	4	2.34	0.82		
Commodity	Region/ indoor	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR_(b) (mg/kg)	STMR^(c) (mg/kg)	
---	---------------	--	---	------------------------	--------------------------	-----------------------------	
Blueberries Import (US)		1.27; 1.71; 2.39; 2.42; 3.77	Trials on blueberries compliant with GAP (EFSA, 2016a). MRLOECD = 6.94	7	3.77	2.39	
Mangoes SEU		0.01; 0.020; 0.021; 0.029	Trials on mangoes compliant with GAP (France, 2018)	0.06	0.03	0.02	
Import (BR)		0.13; 0.16; 0.20; 0.37	Trials on mangoes compliant with GAP (EFSA, 2016a). RMS reported that the tolerance established in the exporting country is 0.5 mg/kg (France, 2018) MRLOECD = 0.65	0.8	0.37	0.18	
Potatoes NEU		< 0.01; < 0.01; < 0.01; 0.01; 0.02; 0.04; 0.04	Trials on potatoes compliant with GAP (France, 2018)	0.08	0.04	0.01	
Import (US)		21 × < 0.01	Trials on potatoes compliant with GAP (EFSA, 2011) MRLOECD = 0.01	0.01*	0.01	0.01	
Carrots, Beetroots, Celeriacs/turnip rooted celeries, Jerusalem artichokes, Parsnips, Parsley roots/ Hamburg roots parsley, Radishes, Salsifies, Swedes/ rutabagas, Turnips	NEU	0.03; 0.03; 0.03; 0.03; 0.04; 0.04; 0.06; 0.10; 0.13; 0.18	Trials on carrots compliant with GAP (EFSA, 2017). Extrapolation to the whole group of root and tuber vegetables (except sugar beet) is applicable MRLOECD = 0.28	0.3	0.18	0.04	
SEU		< 0.01; < 0.02; < 0.03; 0.03; 0.04; 0.04; 0.05; 0.08	Trials on carrots compliant with GAP (EFSA, 2017). Extrapolation to the whole group of root and tuber vegetables (except sugar beet) is applicable MRLOECD = 0.12	0.15	0.08	0.04	
Import (US)		–	No residue trials are available. GAP authorised for carrots only	–	–	–	
Garlic	Import (US)	–	No residue trials are available.	–	–	–	
Onions	Import (US)	–	No residue trials are available.	–	–	–	
Shallots	Import (US)	–	No residue trials are available.	–	–	–	
Spring onions/green onions and Welsh onions	NEU	< 0.01; 0.02; 0.06; 0.09; 0.10; 0.12; 0.17; 0.22	Trials on leeks compliant with GAP (EFSA, 2017). Extrapolation to Spring onions is applicable MRLOECD = 0.39	0.4	0.22	0.10	
SEU		0.07; 0.08; 0.14; 0.18; 0.19; 0.23; 0.26; 0.42	Trials on leeks compliant with GAP (EFSA, 2017). Extrapolation to Spring onions is applicable MRLOECD = 0.65	0.7	0.42	0.19	
Import (US)		–	No residue trials are available.	–	–	–	
Commodity	Region/indoor	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)	
---------------------------	---------------	---	---	------------------------	--------------------------	---------------------------	
Tomatoes, Aubergines	SEU	< 0.010; 0.018; 0.028; 0.030; 0.049; 0.051; 0.061; 0.150	Trials on tomatoes compliant with GAP (France, 2018). Extrapolation to aubergines is applicable MRL_{OECD} = 0.23	0.3	0.15	0.04	
	EU	0.038; 0.046; 0.047; 0.053; 0.063; 0.078; 0.086; 0.1	Trials on tomatoes compliant with GAP (France, 2018). Extrapolation to aubergines is applicable MRL_{OECD} = 0.19	0.2	0.1	0.06	
Sweet peppers/bell peppers	SEU	< 0.01; 0.017; 0.028; 0.037; 0.050; 0.100; 0.110	Trials compliant with GAP (France, 2018) MRL_{OECD} = 0.20	0.2	0.11	0.03	
	EU	0.029; 0.029; 0.064; 0.069; 0.072; 0.088; 0.093; 0.15	Trials compliant with GAP (France, 2018) MRL_{OECD} = 0.23	0.3	0.15	0.07	
Cucumbers, Gherkins, Courgettes	NEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.022; 0.058; 0.095	Combined data set of trials on cucumber (4) and courgette (4) compliant with GAP (France, 2018). Extrapolation to gherkins and courgettes is applicable MRL_{OECD} = 0.16	0.2	0.10	0.01	
	SEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.012; 0.013; 0.015	Combined data set of trials on cucumber (4) and courgette (4) compliant with GAP (France, 2018). Extrapolation to gherkins and courgettes is applicable MRL_{OECD} = 0.02	0.03	0.02	0.01	
	EU	< 0.01; 0.012; 0.014; 0.014; 0.019; 0.022; 0.028; 0.064	Combined data set of trials on cucumber (4) and courgette (4) compliant with GAP (France, 2018). Extrapolation to gherkins and courgettes is applicable MRL_{OECD} = 0.09	0.1	0.06	0.017	
Import (US)		Mo (scaled): 0.01; 0.04; 0.08; 0.08; 0.02; 0.03; 0.05; 0.05; 0.07; 0.11	Combined data set of trials on cucumber (4) and courgette (6) scaled using the proportionality approach with a scaling factor of 0.5 (EFSA, 2016a). Extrapolation to gherkins and courgettes is applicable MRL_{OECD} = 0.18	0.2	0.11	0.05	
Melons, Pumpkins, Watermelons	NEU	< 0.01; 0.014; 0.021; 0.026; 0.030; 0.032; 0.036	Trials on melons compliant with GAP (France, 2018). Extrapolation to watermelons and pumpkins is applicable MRL_{OECD} = 0.07	0.07	0.04	0.024	
	SEU	< 0.01; 0.019; 0.021; 0.023; 0.024; 0.028; 0.034; 0.036	Trials on melons compliant with GAP (France, 2018). Extrapolation to watermelons and pumpkins is applicable MRL_{OECD} = 0.07	0.07	0.04	0.024	
Commodity	Region/ indoor(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)	
--------------------	-------------------	---	---	------------------------	--------------	----------------	
EU		< 0.01; 0.010; 0.013; 0.023; 0.026; 0.036; 0.039; 0.040; 0.055	Trials on melons compliant with GAP (France, 2018). Extrapolation to watermelons and pumpkins is applicable MRL_{OECD} = 0.09	0.09	0.06	0.03	
Import (BR)		0.02; 0.03; 0.04; 0.05; < 0.01; 0.05; 0.06; 0.07	Combined data set of trials on melons (4) and watermelons (4) compliant with GAP (EFSA, 2016a). Extrapolation to pumpkins is applicable MRL_{OECD} = 0.12	0.15	0.07	0.045	
Sweet corn	Import (US)	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.09	Trials compliant with GAP (EFSA, 2011) MRL_{OECD} = 0.13	0.15	0.09	0.01	
Broccoli	NEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.09	Combined data set of trials on cauliflower (4) and broccoli (4) compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.12	0.15	0.08	0.01	
	SEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01	Combined data set of trials on cauliflower (4) and broccoli (4) compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.08	0.08	0.05	0.01	
	Import (US)	Scaled: 0.08; 0.10; 0.16; 0.28; 0.31; 0.34; 1.27	Trials on broccoli were scaled using the proportionality approach using a scaling factor of 0.5 to 1.0 (EFSA, 2016a) MRL_{OECD} = 2.01	2	1.27	0.28	
Cauliflowers	NEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.02	Combined data set of trials on cauliflower (4) and broccoli (4) compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.12	0.15	0.08	0.01	
	SEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01	Combined data set of trials on cauliflower (4) and broccoli (4) compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.08	0.08	0.05	0.01	
	Import (US)	–	No residue trials available	–	–	–	
Brussels sprouts	NEU	0.02; 0.04; 0.06; 0.14	Trials on Brussels sprouts compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.28	0.4	0.14	0.05	
	SEU	–	No residue trials available	–	–	–	
Commodity	Region/indoor	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR_(b) (mg/kg)	STMR_(c) (mg/kg)	
-----------------------------------	---------------	--	--	------------------------	--------------------------	--------------------------	
Head cabbages	NEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.01; 0.012; 0.27	Trials on head cabbages compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.41	0.5	0.27	0.01	
	SEU	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.01; 0.02; 0.03	Trials on head cabbages compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.04	0.05	0.03	0.01	
Chinese cabbages/pe-tsai	Import (US)	0.475; 0.565; 0.895; 1.7; 1.9	Trials on mustard greens (Chinese cabbages) compliant with GAP (EFSA, 2016a) MRL_{OECD} = 3.73	4	1.9	0.90	
Lettuces, Escaroles/broad-leaved endives, Roman rocket/rucola	NEU	0.01; (0.01); 0.03; 0.05; 0.06; 0.18; 0.87; 1.44	Trials on open leaf variety except one trial (0.01; in brackets) compliant with GAP (EFSA, 2017). Extrapolation to escaroles and Roman rocket is applicable MRL_{OECD} = 2.47	3	1.44	0.06	
	SEU	< 0.01; < 0.01; 0.05; 0.07; 0.16; 0.76; 1.58; 1.80	Trials on lettuce (open leaf variety) compliant with GAP (EFSA, 2017). GAP authorised for lettuces, escaroles and Roman rocket. Extrapolation to escaroles and Roman rocket is applicable MRL_{OECD} = 3.53	4	1.8	0.12	
	EU	< 0.01; < 0.01; 0.07; 0.23; 0.26; 0.58; 1.30; 1.80	Trials on lettuce (open leaf variety) compliant with GAP (EFSA, 2017). Extrapolation to escaroles and Roman rocket is applicable MRL_{OECD} = 3.20	4	1.8	0.25	
Import (US)		No residue trials available. GAP authorised for lettuces only		–	–	–	
Lamb's lettuces/corn salads	NEU	0.01; (0.01); 0.03; 0.05; 0.06; 0.18; 0.87; 1.44	Trials on open leaf variety except one trial (0.01; in brackets) compliant with GAP (EFSA, 2017). Extrapolation to lamb's lettuce is applicable MRL_{OECD} = 2.47	3	1.44	0.06	
	SEU	< 0.01; 0.011; 0.032; 0.042; 0.083; 0.31; 0.73; 0.79	Trials on lettuces (open leaf variety) compliant with GAP (France, 2018). Extrapolation to lamb's lettuce is applicable MRL_{OECD} = 1.57	2	0.79	0.06⁽ⁱ⁾	
	EU	< 0.01; < 0.01; 0.07; 0.23; 0.26; 0.58; 1.30; 1.80	Trials on lettuce (open leaf variety) compliant with GAP (EFSA, 2017). Extrapolation to lamb's lettuce is applicable MRL_{OECD} = 3.20	4	1.8	0.25	
Commodity	Region/indoor(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)	
-----------	------------------	---	-----------------	------------------------	---------------	----------------	
Cresses, Land cresses, Red mustards	NEU	0.01; (0.01); 0.03; 0.05; 0.06; 0.18; 0.87; 1.44	Trials on open leaf variety except one trial (0.01; in brackets) compliant with GAP (EFSA, 2017). Extrapolation to cresses, land cresses and red mustards is applicable MRL_{OECD} = 2.47		3	1.44	0.06
	SEU	< 0.01; 0.011; 0.032; 0.042; 0.083; 0.31; 0.73; 0.79	Trials on lettuces (open leaf variety) compliant with GAP (France, 2018). Extrapolation to cresses, land cresses and red mustards is applicable MRL_{OECD} = 1.57		2	0.79	0.06
Baby leaf crops (including brassica species), Spinaches, Purslanes, Chards/beet leaves, Chervil, Chives, Celery leaves, Parsley, Sage, Rosemary, Thyme, Basil and edible flowers, Laurel/bay leave, Tarragon	NEU	0.01; (0.01); 0.03; 0.05; 0.06; 0.18; 0.87; 1.44	Trials on open leaf variety except one trial (0.01; in brackets) compliant with GAP (EFSA, 2017). Extrapolation to baby leaf crops (including brassica species), spinach and similar leaves and herbs is applicable MRL_{OECD} = 2.47		3	1.44	0.06
Witloofs/Belgian endives	EU	1.40; 1.50; 2.40; 2.50	Trials compliant with GAP (EFSA, 2017) MRL_{OECD} = 5.85		6	2.5	1.95
Peas (with pods), Beans (with pods)	NEU	0.067; 0.086; 0.12; 0.12; 0.24; 0.26; 0.33; 0.47	Trials on fresh peas with pods compliant with GAP (France, 2018). GAP not authorised for beans (with pods) MRL_{OECD} = 0.77		0.8	0.47	0.18
	SEU	0.078; 0.08; 0.08; 0.11; 0.11; 0.12; 0.13; 0.28	Trials on fresh peas with pods compliant with GAP (France, 2018). GAP not authorised for beans (with pods) MRL_{OECD} = 0.39		0.4	0.28	0.11
Import (US)							
Commodity	Region/ indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)	
-----------	-----------------------------	---	-----------------	-----------------------	--------------------------	--------------------------	
Peas (without pods), Beans (without pods)	NEU	–	No residue trials available. GAP authorised for peas (without pods) only	–	–	–	
	Import (US)	< 0.01; 0.02; 0.03; 0.03; 0.03; 0.03; 0.04	Trials on fresh peas without pods compliant with GAP (EFSA, 2011). Extrapolation to beans without pods is applicable MRL_{OECD} = 0.08	0.08	0.04	0.03	
Celeries, Cardoons, Florence fennels, Rhubarbs	SEU	0.14; 0.23; 0.25; 0.60; 1.33; 2.95; 3.63; 3.64; 3.83	Trials on celeries compliant with GAP (EFSA, 2016a). Extrapolations to cardoons, Florence fennels and rhubarbs are applicable MRL_{OECD} = 8.39	9	3.83	1.33	
	Import (US)	1.30; 1.45; 1.50; 1.85; 2.65; 5.15	Trials on celeries compliant with GAP (EFSA, 2016a). Extrapolations to cardoons, Florence fennels and rhubarbs are applicable MRL_{OECD} = 8.20	9	5.15	1.68	
Globe artichokes	NEU	0.06; 0.06; 0.06; 0.19	Trials on globe artichokes compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.35	0.5	0.19	0.06	
	SEU	0.07; 0.07; 0.09; 0.14	Trials on globe artichokes compliant with GAP (EFSA, 2017) MRL_{OECD} = 0.28	0.3	0.14	0.08	
Leeks	NEU	< 0.01; 0.02; 0.06; 0.09; 0.10; 0.12; 0.17; 0.22	Trials on leeks compliant with GAP (EFSA, 2017). Extrapolation to Spring onions is applicable MRL_{OECD} = 0.39	0.4	0.22	0.10	
	SEU	0.07; 0.08; 0.14; 0.18; 0.19; 0.23; 0.26; 0.42	Trials on leeks compliant with GAP (EFSA, 2017). Extrapolation to Spring onions is applicable MRL_{OECD} = 0.65	0.7	0.42	0.19	
Beans (dry), Lupins/lupini beans (dry)	Import (US)	< 0.01; < 0.01; < 0.01; < 0.01; 0.01; 0.01; 0.02; 0.03; 0.05; 0.06; 0.14	Trials on dry beans compliant with GAP (EFSA, 2011). Extrapolation to Lupins/lupini beans (dry) is applicable MRL_{OECD} = 0.19	0.2	0.14	0.01	
Lentils (dry), Peas (dry)	Import (US)	0.01; 0.01; 0.02; 0.02; 0.04; 0.10; 0.12; 0.15; 0.20	Trials on dry peas compliant with GAP (EFSA, 2011). Extrapolation to lentils (dry) is applicable MRL_{OECD} = 0.36	0.4	0.2	0.04	
Commodity	Region/ indoor\(^{(a)}\)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR\(^{(b)}\) (mg/kg)	STMR\(^{(c)}\) (mg/kg)	
--	---------------------------	---	--	------------------------	-----------------------	-------------------------	
Linseeds, Poppy seeds, Sesame seeds, Sunflower seeds, Rapeseeds/canola seeds, Mustard seeds, Pumpkin seeds, Safflower seeds, Borage seeds, Gold of pleasure seeds, Hemp seeds, Castor beans	Import (US)	0.01; 0.02; 0.02; 0.02; 0.02; 0.02; 0.04; 0.05; 0.05; 0.06; 0.06; 0.09; 0.09; 0.11; 0.12; 0.12; 0.15; 0.18; 0.19; 0.24; 0.24; 0.27; 0.81	Combined data set of trials on rapeseeds (16) and sunflower seeds (8). Extrapolation to linseeds, poppy seeds, sesame seeds, sunflower seeds, rapeseeds/canola seeds, mustard seeds, pumpkin seeds, safflower seeds, borage seeds, gold of pleasure seeds, hemp seeds and castor beans is applicable (EFSA, 2011). MRL\(_{OECD}\) = 0.81	0.9	0.81	0.09	
Peanuts/groundnuts	Import (US)	12 × < 0.01	Trials on peanuts compliant with GAP (EFSA, 2011). MRL\(_{OECD}\) = 0.01	0.01*	0.01	0.01	
Soyabeans	Import (US)	< 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; < 0.01; 0.04; 0.04; 0.13	Trials on soyabeans compliant with GAP (EFSA, 2011). MRL\(_{OECD}\) = 0.15	0.15	0.13	0.01	
Barley grains, Oat grains	NEU	0.08; 0.08; 0.099; 0.11; 0.11; 0.13; 0.17; 0.19; 0.20; 0.21; 0.23; 0.24; 0.36; 0.38; 0.38	Trials on barley compliant with GAP (EFSA, 2012; France, 2018). Extrapolation to oat grains is applicable. MRL\(_{OECD}\) = 0.62	0.7	0.38	0.19	
	SEU	0.02; 0.08; 0.09; 0.10; 0.13; 0.13; 0.14; 0.15; 0.16; 0.23; 0.24; 0.29; 0.36; 0.38; 0.39; 0.41; 0.58; 0.60	Trials on barley compliant with GAP (EFSA, 2012; France, 2018). Extrapolation to oat grains is applicable. MRL\(_{OECD}\) = 0.91	1	0.6	0.17	
	Import (US)	< 0.01; 0.41; 0.42; 0.42; 0.52; 0.54; 0.54; 0.55; 0.82; 0.88; 1.09; 1.65	Trials on barley compliant with GAP (EFSA, 2011). Extrapolation to oat grains is applicable. MRL\(_{OECD}\) = 2.32	3	1.65	0.54	
Barley straw, Oat straw	NEU	0.47; 0.62; 0.64; 0.70; 0.74; 0.99; 1.30; 1.50; 1.54; 1.71; 1.79; 2.10; 2.37; 2.39; 2.45; 3.55	Trials on barley straw compliant with GAP (France, 2018). Extrapolation to oat straw is applicable. MRL\(_{OECD}\) = 5.01	5 (tentative)\(^{(f)}\)	3.55	1.52	
	SEU	0.11; 0.22; 0.45; 0.49; 0.76; 0.91; 0.96; 0.96; 1.24; 1.29; 2.2; 2.2; 2.68; 2.83; 2.89; 2.90; 2.95	Trials on barley straw compliant with GAP (France, 2018). Extrapolation to oat straw is applicable. MRL\(_{OECD}\) = 5.70	6 (tentative)\(^{(f)}\)	2.95	1.24	
Commodity	Region/indoor(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)	
-----------	------------------	--	-----------------	------------------------	-------------	--------------	
Maize/corn grains	Import (US)	–	Not relevant for import tolerances.	–	–	–	
Maize/corn stover	Import (US)	15 × < 0.01	Trials on maize compliant with GAP (EFSA, 2011) MRL_{OECD} = 0.01	0.01*	0.01	0.01	
Rice grains	Import (US)	0.26; 0.34; 0.37; 0.47; 0.59; 0.60; 0.61; 0.81; 0.92; 0.92; 0.94; 1.08; 1.16; 1.22; 1.67; 3.73	Trials on rice compliant with GAP (EFSA, 2016a) MRL_{OECD} = 4.27	5	3.73	0.87	
Rice straw	Import (US)	–	Not relevant for import tolerances	–	–	–	
Sorghum grains	Import (US)	0.13; 0.15; 0.17; 0.17; 0.19; 0.21; 0.30; 0.41; 0.43	Trials on sorghum compliant with GAP (EFSA, 2011) MRL_{OECD} = 0.72	0.8	0.43	0.19	
Sorghum stover	Import (US)	–	Not relevant for import tolerances	–	–	–	
Wheat grains, Rye grains	NEU	0.016; 0.019; 0.02; 0.02; 0.03; 0.03; 0.03; 0.04; 0.04; 0.05; 0.06; 0.07	Trials on wheat compliant with GAP (EFSA, 2012; France, 2018). Extrapolation to rye grains is applicable MRL_{OECD} = 0.11	0.15	0.07	0.03	
	SEU	< 0.01; < 0.01; < 0.01; 0.01; 0.01; 0.01; 0.01; 0.02; 0.02; 0.03; 0.03; 0.04; 0.06; 0.0		0.15	0.09	0.02	
	Import (US)	0.05; 0.05; 0.07; 0.08; 0.11; 0.12; 0.12; 0.17; 0.19; 0.21	Extrapolated from – Trials on wheat compliant with GAP (EFSA, 2011). Extrapolation to rye grain is applicable MRL_{OECD} = 0.35	0.4	0.21	0.12	
Wheat straw, rye straw	NEU	0.41; 0.44; 0.52; 0.95; 1.0; 1.02; 1.04; 1.1; 1.17; 1.53; 1.56; 1.80; 2.78; 3.92; 4.58; 6.05	Trials on wheat straw compliant with GAP (EFSA, 2011; France, 2018). Extrapolation to rye straw is applicable MRL_{OECD} = 8.41	9 (tentative)	6.05	1.14	
	SEU	0.11; 0.38; 0.46; 0.55; 0.63; 0.64; 0.71; 0.75; 1.0; 1.19; 1.76; 2.23; 2.58; 2.67; 5.83; 5.85	Trials on wheat straw compliant with GAP (EFSA, 2011; France, 2018). Extrapolation to rye straw is applicable MRL_{OECD} = 8.89	9 (tentative)	5.85	0.88	
	Import (US)	–	Not relevant for import tolerances	–	–	–	
Herbal infusions from leaves and herbs	NEU	0.1; 0.1; 0.3; 0.5; 0.6; 1.8; 8.7; 14.4	Extrapolation from trials on lettuces (open leaf varieties) to which a dehydration factor (10×) was applied MRL_{OECD} = 8.89	30 (tentative)	14.4	0.55	
Commodity Region/indoor\(^{\text{(a)}}\) Residue levels observed in the supervised residue trials (mg/kg) Comments/source Calculated MRL (mg/kg) HR\(^{\text{(b)}}\) (mg/kg) STMR\(^{\text{(c)}}\) (mg/kg)

Commodity	Region/indoor\(^{\text{(a)}}\)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR\(^{\text{(b)}}\) (mg/kg)	STMR\(^{\text{(c)}}\) (mg/kg)
Herbal infusions from roots	NEU	0.24; 0.24; 0.24; 0.24; 0.32; 0.32; 0.48; 0.8; 1.04; 1.04	Extrapolation from trials on carrots to which a dehydration factor (8 ×) was applied MRL\(_{\text{OECD}}\) = 1.84	2 (tentative)\(^{\text{(e)}}\)	1.04	0.32
Sugar beet roots	Import (US)	0.01; 0.01; 0.03; 0.03; 0.03; 0.04; 0.04; 0.05; 0.06; 0.06; 0.07	Trials on sugar beet roots compliant with GAP (EFSA, 2011) MRLOECD = 0.12	0.15	0.07	0.04
Sugar beet tops	Import (US)	–	Not relevant for import tolerances		–	–
Sugar canes	Import (US)	0.05; 0.06; 0.26; 0.56; 1.34	Trials on sugar canes compliant with GAP (EFSA, 2016a) MRLOECD = 2.60	3	1.34	0.26
Chicory roots	NEU	0.05; 0.06; 0.06; 0.06; 0.08; 0.10; 0.11; 0.21	Trials on chicory roots compliant with GAP (EFSA, 2017) MRLOECD = 0.30	0.3	0.21	0.07
Turnip tops	NEU	–	No residue trials available		–	–
	SEU	–	No residue trials available		–	–

GAP: Good Agricultural Practice; OECD: Organisation for Economic Co-operation and Development; MRL: maximum residue level; Mo: residue levels expressed according to the monitoring residue definition; RA: residue levels expressed according to risk assessment residue definition.

*: Indicates that the MRL is proposed at the limit of quantification.

(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Indoor: indoor EU trials or Country code: if non-EU trials.

(b): Highest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(c): Supervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(d): MRL is tentative because residue trials are missing.

(e): MRL is tentative because analytical methods are missing.

(f): A tentative MRL is derived for feed crops, in view of the future need to set MRLs in feed items.
B.1.2.2. Residues in rotational crops

(a) Overall summary

Residues in rotational and succeeding crops expected based on confined rotational crop study?

Yes

Study performed with 250 g a.s./ha (1N rate when compared to annual/seasonal rate for the most critical GAP). Residues present at relevant levels in wheat straw (2.65 mg/kg), spinach (0.18 mg/kg) and wheat grain (0.043 mg/kg).

Residues in rotational and succeeding crops expected based on field rotational crop study?

Yes

Study performed with bare soil application of 250 g a.s./ha. Highest residue levels of fluxapyroxad were detected in carrots (0.08 mg/kg), lettuce (0.03 mg/kg) and cauliflowers/broccoli (0.06 mg/kg), 30 DAT (EFSA, 2012). Metabolites M700F002, M700F008 and M700F048 were always below the LOQ (EFSA, 2012, 2017).

(b) Summary of residues data from the rotational crop residue trials

Commodity	Region/indoor	PBI (days)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Carrot/Radish roots	NEU/SEU	30	< 0.01; 0.02; 0.04; 0.08	Rotational crops field trials conducted at a dose rate of application not covering the max PEC_{soil} for parent (United Kingdom, 2011a)	0.2(e)	0.08	0.03
		120	< 0.01; 0.02; 0.03				
		365	< 0.01; 0.02; 0.02				
Carrot/Radish tops	NEU/SEU	30	< 0.01; 0.03; 0.03; 0.07	Rotational crops field trials conducted at a dose rate of application not covering the max PEC_{soil} for parent (United Kingdom, 2011a)	0.2(e)	0.07	0.03
		120	< 0.01; 0.02; 0.02				
		365	< 0.01; 0.02; 0.02				
Cauliflower/Broccoli (whole plant)	NEU/SEU	30	< 0.01; < 0.01; 0.01; 0.06	Rotational crops field trials conducted at a dose rate of application not covering the max PEC_{soil} for parent (United Kingdom, 2011a)	0.15(e)	0.06	0.01
		120	< 0.01; < 0.01; 0.02				
		365	< 0.01; 0.02				
Cauliflower/Broccoli (inflorescence)	NEU/SEU	30	< 0.01; < 0.01; < 0.01; < 0.01	Rotational crops field trials conducted at a dose rate of application not covering the max PEC_{soil} for parent (United Kingdom, 2011a)	0.01 (e)	< 0.01	< 0.01
		120	< 0.01; < 0.01; < 0.01				
		365	< 0.01; < 0.01				
Lettuce (whole plant without roots)	NEU/SEU	30	< 0.01; < 0.01; < 0.01; 0.02; 0.03	Rotational crops field trials conducted at a dose rate of application not covering the max PEC_{soil} for parent (United Kingdom, 2011a)	0.06(e)	0.03	< 0.01
		120	< 0.01; < 0.01; < 0.01; 0.01				
		365	0.01; 0.02				

GAP: good agricultural practice; DAT: day after treatment; LOQ: limit of quantification; a.s.: active substance.
Summary of residues data from the combined primary uses and rotational crops

Commodity	Region/indoor^(a)	PBI (days)^(b)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR^(c) (mg/kg)	STMR^(d) (mg/kg)
Wheat grain	NEU/SEU	30	< 0.01; < 0.01; < 0.01; < 0.01	Rotational crops field trials conducted at a dose rate of application not covering the max PECsoil for parent (United Kingdom, 2011a)	0.01^(e)	< 0.01	< 0.01
		120	< 0.01; < 0.01				
		365	< 0.01; < 0.01				
Wheat straw	NEU/SEU	30	0.04; 0.17; 0.33; 0.41	Rotational crops field trials conducted at a dose rate of application not covering the max PECsoil for parent (United Kingdom, 2011a)	1.5^(e)	0.41	0.25
		120	0.03; 0.04; 0.07				
		365	0.04; 0.05; 0.08				
Fruiting vegetables	NEU/SEU	30	–	Possible uptake from the soil is expected to be negligible compared to the primary treatment by foliar application close to the harvest. However, this should be confirmed by rotational crop field studies with fruiting vegetables conducted at a dose rate of application covering the max PECsoil for parent	–	–	–
		120	–				
		365	–				
Pulses and oilseeds	NEU/SEU	30	–	Possible uptake from the soil is expected to be negligible compared to the primary treatment by foliar application close to the harvest. However, this should be confirmed by rotational crop field studies with pulses and oilseeds conducted at a dose rate of application covering the max PECsoil for parent	–	–	–
		120	–				
		365	–				

PEC_{soil}: predicted environmental concentration in soil.

*: Indicates that the MRL is proposed at the limit of quantification.

(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Country code: if non-EU trials.

(b): Plant back interval: the interval (days, months, years) between the final application of a pesticide product to a primary crop and the planting of a rotational crop.

(c): Highest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(d): Supervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(e): MRL proposal based on a PBI of 30 days.
Commodity	Primary crops	Rotational crops	HRRotation > 25%	Combined assessment					
	STMR	HR	Calculated MRL	STMR	HR	Calculated MRL			
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Carrots, Beetroots, Celeriacs/turnip rooted celeries, Horseradishes,	0.04	0.18	0.3	0.03	0.08	0.12	0.26	0.5 (tentative)	
Jerusalem artichokes, Parsnips, Parsley roots/ Hamburg roots parsley,									
Radishes, Salsifies, Swedes/rutabaga, Turnips									
Garlic	n.c.	n.c.	n.c.						
Onions	n.c.	n.c.	n.c.						
Shallots	n.c.	n.c.	n.c.						
Broccoli	1.27	0.28	2	0.01	0.06	N	1.27	0.28	2 (tentative)
Cauliflower	0.01	0.08	0.15	0.01	0.06	Y	0.07	0.14	0.2 (tentative)
Brussels sprouts	0.05	0.14	0.4	0.01	0.06	Y	0.11	0.2	0.4 (tentative)
Head cabbages	0.01	0.27	0.5	0.01	0.06	N	0.01	0.27	0.5 (tentative)
Chinese cabbages/pe-tsai	0.90	1.9	4	0.01	0.06	N	0.90	1.9	4 (tentative)
Kale	n.r.	n.r.	n.r.	0.01	0.06	Y	0.01	0.06	0.15 (tentative)
Kohlrabies	n.r.	n.r.	n.r.	0.01	0.06	Y	0.01	0.06	0.15 (tentative)
Lettuces, Lamb’s lettuces/corn salads, Escaroles/broad-leaved endives,	0.25	1.8	4	< 0.01	0.03	N	0.25	1.8	4 (tentative)
Roman rocket/rucola									
Cresses and other sprouts and shoots, Land cresses, Red mustards, Baby	0.06	1.44	3	< 0.01	0.03	N	0.06	1.44	3 (tentative)
leaf crops (including brassica species), Spinaches, Purslanes, Chards/									
beets leaves, Chervil, Chives, Celery leaves, Parsley, Sage, Rosemary,									
Thyme, Basil and edible flowers, Laurel/bay leave, Tarragon									
Commodity	Primary crops	Rotational crops	HRrotation > 25%	Combined assessment					
---	---------------	------------------	------------------	--------------------					
	STMR (mg/kg)	HR (mg/kg)	HR MRL (mg/kg)	STMR (mg/kg)					
Witloofs/Belgian endives	1.95	2.5	6	0.01					
Celeries, cardoons, Florence fennels, rhubarbs	1.68	5.15	9	0.01					
Globe artichokes	0.09	0.22	0.4	0.01					
Leeks	0.19	0.42	0.7	0.01					
Spring onions	0.19	0.42	0.7	0.01					
Barley, oat (grain)	0.54	1.65	3	0.01					
Maize (grain)	0.01	0.01	0.01*	0.01					
Rice (grain)	0.87	3.73	5	0.01					
Sorghum (grain)	0.19	0.43	0.8	0.01					
Wheat, rye (grain)	0.12	0.21	0.4	0.01					
Herbal infusion from leaves and herbs	0.55	14.4	30	0.01					
Herbal infusion from roots	0.32	1.04	2	0.03					
Sugar beet roots	0.04	0.07	0.15	0.03					
Sugar canes	0.26	1.34	3	0.03					
Chicory roots	0.07	0.21	0.3	0.03					
Barley, oat (straw)	1.52	3.55	6	0.25					
Wheat, rye straw	1.14	6.05	9	0.25					
Turnip (top)	n.c.	n.c.	n.c.	0.03					

STMR: supervised trials median residue; HR: highest residue; MRL: maximum residue level; n.c.: not conclusive as residues trials on primary crops are not available; n.r.: not relevant as primary uses are not authorised on these crops.

*: Indicates that the MRL is set at the limit of quantification (LOQ).
(a): Based on rotational crop field trials in carrots/radishes. Applied to bulb vegetables on a tentative basis.
(b): Based on rotational crop field trials in cauliflowers/broccoli.
(c): Based on rotational crop field trials in lettuces.
(d): Based on rotational crop field trials in wheat grain.
(e): Based on rotational crop field trials in wheat straw.
(f): MRL is tentative since MRL values may not be sufficient to cover the potential residue levels in rotational crops following multiannual applications.
(g): MRL is tentative as additional trials are required to support the primary crop use.
(h): MRL is tentative in the view of future setting of MRLs for feed items.
(i): MRL is tentative because analytical methods are missing.
(j): No authorised uses on primary crops were reported for these crops.
(k): MRL is tentative, as derived from a data set where the HR from rotational studies was added to each residue value from primary crop uses.
B.1.2.3. Processing factors

Processed commodity	Number of valid studies^a	Processing Factor (PF)	Comment/source	
		Individual values	Median PF	
Grapefruits, juice	4	`< 0.03; < 0.04; < 0.05; < 0.06`	< 0.05 Results from studies on oranges (EFSA, 2017)	
Grapefruits, dry pomace	4	0.04; 0.08; 0.11; 0.12	0.10 Results from studies on oranges (EFSA, 2017)	
Apples, Pears, juice	4	0.19; 0.20; 0.23; 0.24	0.22 Results from studies on apples (France, 2018)	
Apples, Pears, dry pomace	2	6.40; 7.41	6.91 Tentative^b (France, 2018)	
Apples, Pears, wet pomace	2	4.50; 4.69	4.60 Tentative^b (France, 2018)	
Apples, sauce	4	0.19; 0.24; 0.28; 0.40	0.26 France, 2018	
Pears, canned	2	0.15; 0.28	0.22 Tentative^b Results from studies on apples (France, 2018)	
Plums, dried (prunes)	2	2.22; 3.0	2.80 Tentative^b (EFSA, 2011)	
Plums, jam	2	0.29; 0.48	0.41 Tentative^b (EFSA, 2011)	
Table grapes, dried (raisins)	4	1.98; 2.80; 2.93; 5.81	2.86 EFSA (2015b)	
Wine grapes, juice	4	0.22; 0.27; 0.42; 0.46	0.34 EFSA (2015b)	
Wine grapes, wet pomace	4	4.0; 4.8; 5.7; 7.21	5.25 EFSA (2015b)	
Wine grapes, red wine (unheated)	4	0.19; 0.21; 0.22; 0.24	0.22 EFSA (2015b)	
Potatoes, unpeeled and boiled	3	n.r.	< 0.67 EFSA (2011)	
Potatoes, unpeeled and microwaved	3	n.r.	< 0.67 EFSA (2011)	
Potatoes, fried	3	n.r.	< 0.67 EFSA (2011)	
Potatoes, crisps	3	n.r.	< 0.67 EFSA (2011)	
Potatoes, granules or flakes	3	n.r.	< 0.67 EFSA (2011)	
Potatoes, process waste (wet peel)	3	n.r.	5.00 EFSA (2011)	
Potatoes, dry pulp	3	n.r.	8.00 EFSA (2011)	
Tomatoes, unpeeled and canned	4	n.r.	0.22 EFSA (2011)	
Tomatoes, paste	4	n.r.	0.71 EFSA (2011)	
Tomatoes, juice	4	n.r.	0.19 EFSA (2011)	
Melons, peeled	21	From 0.18 to 0.77	0.38 France (2018)	
Peanuts, crude oil	2	n.r.	0.35 Tentative^b (EFSA, 2011)	
Processed commodity	Number of valid studies (a)	Processing Factor (PF)	Comment/source	
-------------------------------------	----------------------------	------------------------	----------------	
		Individual values	Median PF	
Peanuts, refined oil	2	n.r.	0.24	Tentative(b) (EFSA, 2011)
Peanuts, meal/press cake	2	n.r.	< 0.12	Tentative(b) (EFSA, 2011)
Sunflower seeds, crude oil	2	n.r.	0.23	Tentative(b) (EFSA, 2011)
Sunflower seeds, refined oil	2	n.r.	0.10	Tentative(b) (EFSA, 2011)
Sunflower seeds, meal/press cake	2	n.r.	0.14	Tentative(b) (EFSA, 2011)
Rapeseeds, crude oil	2	n.r.	0.81	Tentative(b) (EFSA, 2011)
Rapeseeds, refined oil	2	n.r.	0.28	Tentative(b) (EFSA, 2011)
Rapeseeds, meal/press cake	2	n.r.	0.44	Tentative(b) (EFSA, 2011)
Barley, brewing malt	4	n.r.	0.01	EFSA (2011)
Barley, beer	4	n.r.	0.02	EFSA (2011)
Barley, whole-meal flour	4	n.r.	0.23	EFSA (2011)
Rice, unpolished	2	0.05; 0.20	0.10	Tentative(b) (EFSA, 2016a)
Rice, unpolished and cooked	2	0.16; 0.59	0.40	Tentative(b) (EFSA, 2016a)
Rice, polished	2	0.01; 0.07	0.04	Tentative(b) (EFSA, 2016a)
Rice, polished and cooked	2	0.10; 0.46	0.30	Tentative(b) (EFSA, 2016a)
Rice, flour	2	0.01; 0.08	0.05	Tentative(b) (EFSA, 2016a)
Rice, bran	2	0.91; 0.94	0.90	Tentative(b) (EFSA, 2016a)
Wheat, whole-meal flour	12	1.02; 0.83; 0.86; 1.46; 1.05; 1.0; 0.92; 0.73; 0.87; 0.85; 1.82; 1.13	0.94	France (2018)
Wheat, whole-meal bread	12	0.73; 0.56; 0.59; 1.02; 0.73; 0.70; 0.58; 0.50; 0.58; 0.58; 1.23; 0.81	0.66	France (2018)
Wheat, white flour	12	0.20; 0.17; 0.16; 0.55; 0.23; 0.09; 0.17; 0.10; 0.14; 0.15; 0.64; 0.42	0.17	France (2018)
Wheat, white bread	12	0.15; 0.15; 0.11; 0.38; 0.14; 0.09; 0.13; 0.10; 0.10; 0.45; 0.26	0.13	France (2018)
Sugar beets, thick juice	2	n.r.	0.75	Tentative(b) (EFSA, 2011)
Sugar beets, raw sugar	2	n.r.	0.99	Tentative(b) (EFSA, 2011)
Sugar beets, white sugar	2	n.r.	0.17	Tentative(b) (EFSA, 2011)
Sugar beets, dry pulp	2	n.r.	1.74	Tentative(b) (EFSA, 2011)
Sugar beets, molasses	1	0.80	0.80	Tentative(b) (EFSA, 2011)
B.2. Residues in livestock

Relevant groups (subgroups)	Dietary burden expressed in mg/kg bw per day	mg/kg DM	Most critical subgroup(a)	Most critical commodity(b)	Trigger exceeded (Y/N)		
	Median	Maximum	Median	Maximum			
Cattle (all diets)	0.08	0.12	2.37	3.92	Cattle (dairy)	Rye, straw	Y
Cattle (dairy only)	0.08	0.12	2.00	3.20	Cattle (dairy)	Rye, straw	Y
Sheep (all diets)	0.09	0.19	2.52	4.77	Sheep (lamb)	Rye, straw	Y
Sheep (ewe only)	0.08	0.16	2.52	4.77	Sheep (ram/ewe)	Rye, straw	Y
Swine (all diets)	0.03	0.05	1.48	2.15	Swine (breeding)	Potato, process waste	Y
Poultry (all diets)	0.06	0.11	0.87	1.57	Poultry (layer)	Wheat, straw	Y
Poultry (layer only)	0.06	0.11	0.87	1.57	Poultry (layer)	Wheat, straw	Y

DM: dry matter.

(a): When one group of livestock includes several subgroups (e.g. poultry 'all' including broiler, layer and turkey), the result of the most critical subgroup is identified from the maximum dietary burdens expressed as 'mg/kg bw per day'.

(b): The most critical commodity is the major contributor identified from the maximum dietary burden expressed as 'mg/kg bw per day'.

PF: Processing factor (= residue level in processed commodity expressed according to RD-Mo / residue level in raw commodity expressed according to RD-Mo); n.r.: not reported.

(a): Studies with residues in the RAC at or close to the LOQ were disregarded (unless concentration may occur).

(b): A tentative PF is derived based on a limited data set (less than three independent studies available).
B.2.1. Nature of residues and methods of analysis in livestock

B.2.1.1. Metabolism studies, methods of analysis and residue definitions in livestock

Livestock (available studies)	Animal	Dose (mg/kg bw/d)	Duration (days)	Comment/source
Laying hen	0.4	12	Radiolabelled fluxapyroxad: aniline and/or pyrazole rings (United Kingdom, 2011a; EFSA, 2012)	
Lactating ruminants	0.4	8	Radiolabelled fluxapyroxad: aniline and/or pyrazole rings (United Kingdom, 2011a; EFSA, 2012)	
Time needed to reach a plateau concentration in milk and eggs (days)

	Milk: 5–7	Rapid depletion of the total radioactivity 1-day post dosing (EFSA, 2012)
	Eggs: 10–12	From metabolism study (EFSA, 2012)

Metabolism in rat and ruminant similar

Can a general residue definition be proposed for animals?

Yes

Animal residue definition for monitoring (RD-Mo)

Animal residue definition for risk assessment (RD-RA)

Fluxapyroxad

Log Pow at pH 7 = 3.13
Feeding studies indicate the highest residue level in ruminant fat (0.024 mg/kg)

Fat soluble residues

Methods of analysis for monitoring of residues (analytical technique, matrix groups, LOQs)

Liver, kidney, fat and muscle (EFSA, 2012):
- HPLC–MS/MS, LOQ 0.01 mg/kg for fluxapyroxad
- Confirmatory method available
- ILV available

Milk, skimmed milk, cream and eggs (EFSA, 2012):
- HPLC–MS/MS, LOQ 0.001 mg/kg for fluxapyroxad
- Confirmatory method available
- ILV available

The EURLs reported that fluxapyroxad can be monitored in meat with an SDL of 0.0025 mg/kg and in milk with an SDL of 0.005 mg/kg (EURLs, 2018)

bw: body weight; Pow: partition coefficient between n-octanol and water; HPLC–MS/MS: high-performance liquid chromatography with tandem mass spectrometry; LOQ: limit of quantification; SDL: screening detection limit; ILV: independent laboratory validation.

B.2.1.2. Stability of residues in livestock

Not available and not required since samples in livestock feeding studies were analysed within 30 days.
B.2.2. Magnitude of residues in livestock

B.2.2.1. Summary of the residue data from livestock feeding studies

Animal commodity	Residues at the closest feeding level (mg/kg)	Estimated value at 1N	MRL proposal (mg/kg)	CF^(c)		
	Mean	Highest	STMR_{Mo}^(a) (mg/kg)	HR_{Mo}^(b) (mg/kg)		
Cattle (all)						
Muscle	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Fat	0.013	0.013	0.01	0.01	0.15 (tentative)	2
Liver	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Kidney	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Cattle (dairy only)						
Milk^(e)	0.001	n.a.	0.001	0.001	0.001* (tentative)	2
Sheep (all)						
Muscle	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Fat	0.019	0.019	0.011	0.017	0.02 (tentative)	2
Liver	0.013	0.013	0.01	0.013	0.015 (tentative)	3
Kidney	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Sheep (ewe only)^(f)						
Milk^(e)	0.001	n.a.	0.001	0.001	0.001* (tentative)	2
Swine (all)						
Muscle	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Fat	0.011	0.011	0.01	0.01	0.01 (tentative)	2
Liver	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Kidney	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Poultry (all)						
Muscle	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Fat	< 0.01	< 0.01	0.01	0.011	0.015 (tentative)	2
Liver	< 0.01	< 0.01	0.01	0.01	0.01* (tentative)	2
Poultry (layer only)^(g)						
Eggs^(g)	0.0017	0.0028	0.001	0.003	0.003 (tentative)	4

b.w.: body weight.

*: Indicates that the MRL is proposed at the limit of quantification.

(a): Median residues expressed according to the residue definition for monitoring, recalculated at the 1N rate for the median dietary burden.

(b): Highest residues expressed according to the residue definition for monitoring, recalculated at the 1N rate for the maximum dietary burden.

(c): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.

(d): Closest feeding level and N dose rate related to the maximum dietary burden.

(e): For milk, mean was derived from samplings performed from day 5 to day 28 (daily mean of 3 cows).

(f): Since extrapolation from cattle to other ruminants and swine is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the MRL and risk assessment values in sheep and swine.

(g): For eggs, mean residues were derived from samplings performed from day 13 to day 27 (daily mean of 10 laying hens).
B.3. Consumer risk assessment

B.3.1. Consumer risk assessment without consideration of the existing CXLs

ARfD	0.25 mg/kg bw (EFSA, 2012)
Highest IESTI, according to EFSA PRIMo (rev.3)	Celeries: 77% of ARfD
NESTI (% ARfD)	Not assessed in this review.

Assumptions made for the calculations

The calculation is based on the highest residue levels expected in raw agricultural commodities, except for melons, pumpkins and watermelons, which were derived using a processing factor (peeling factor = 0.38). For roots/tuber vegetables and sugar beet roots, the highest residue from the combined primary uses and rotational crop residue trials was used. For garlic, onions, shallots, cauliflowers and Brussels sprouts, the highest residue from the rotational crop field trials performed on roots was used.

The contributions of commodities where no GAP was reported in the framework of the MRL review were not included in the calculation.

ADI

TMDI according to EFSA PRIMo	0.02 mg/kg bw per day (EFSA, 2012)
NTMDI, according to (to be specified)	Not assessed in this review
Highest IEDI, according to EFSA PRIMo (rev.3)	44% ADI (NL toddler)
NEDI (% ADI)	Not assessed in this review

Assumptions made for the calculations

The calculation is based on the median residue levels derived for raw agricultural commodities except for melons, pumpkins and watermelons, where the processing factor (peeling factor = 0.38) was also applied.

For roots/tuber vegetables and sugar beet roots, the median residue from the combined primary uses and rotational crop residue trials was used. For garlic, onion, shallots, cauliflower and Brussels sprouts, the median residue from the rotational crop field trials performed on roots was used.

The contributions of commodities where no GAP was reported in the framework of the MRL review were not included in the calculation.

Consumer exposure assessment through drinking water resulting from groundwater metabolite(s) according to SANCO/221/2000 rev.10 Final (25/02/2003)

Metabolite(s)	Not assessed in this review
ADI (mg/kg bw per day)	Not assessed in this review
Intake of groundwater metabolites (% ADI)	Not assessed in this review
B.3.2. Consumer risk assessment with consideration of the existing CXLs

ARfD
- Highest IESTI, according to EFSA PRIMo (rev.3)
- NESTI (% ARfD)

Assumptions made for the calculations
- For those commodities having a CXL higher than the EU MRL proposal, highest residue levels applied in the EU scenario were replaced by the highest residue levels derived by JMPR
- A conversion factor of 3 was applied to table/wine grapes. Peeling factors were applied to oranges (0.16), bananas (0.23) and to melons, pumpkins and watermelons (0.38)
- Considering that CXLs for meat were expressed on a fat basis, EFSA re-calculated the corresponding highest residue levels for meat

ADI
- TMDI according to EFSA PRIMo
- NTMDI, according to (to be specified)
- Highest IEDI, according to EFSA PRIMo (rev.3)
- NEDI (% ADI)

Assumptions made for the calculations
- For those commodities having a CXL higher than the EU MRL proposal, median residue levels applied in the EU scenario were replaced by the median residue levels derived by JMPR
- A conversion factor of 3 was applied to table/wine grapes. Peeling factors were applied to oranges (0.16), bananas (0.23) and to melons, pumpkins and watermelons (0.38)
- Considering that CXLs for meat were expressed on a fat basis, EFSA re-calculated the corresponding median residue levels for meat

B.4. Proposed MRLs

Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review	Comment
110010	Grapefruit	0.3	–	0.4	Recommended\(^{(a)}\)
110020	Oranges	0.3	0.3	0.3	Recommended\(^{(a)}\)
120010	Almonds	0.04	0.04	0.04	Recommended\(^{(a)}\)
120020	Brazil nuts	0.04	0.04	0.04	Recommended\(^{(a)}\)
120030	Cashew nuts	0.04	0.04	0.04	Recommended\(^{(a)}\)

Enforcement residue definition: fluxapyroxad\(^{(a)}\)

ARfD: acute reference dose; bw: body weight; NESTI: national estimated short-term intake; PRIMo: (EFSA) Pesticide Residues Intake Model; CXL: Codex maximum residue limit; JMPR: Joint Meeting on Pesticide Residues; IESTI: international estimated short-term intake.

ADI: acceptable daily intake; bw: body weight; NEDI: national estimated daily intake; PRIMo: (EFSA) Pesticide Residues Intake Model; CXL: Codex maximum residue limit; JMPR: Joint Meeting on Pesticide Residues; TMDI: theoretical maximum daily intake; NTMDI: national theoretical maximum daily intake.
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	MRL (mg/kg)	Outcome of the review	Comment
120040	Chestnuts	0.04	0.04	0.04	Recommended(b)	
120050	Coconuts	0.04	0.04	0.04	Recommended(b)	
120060	Hazelnuts	0.04	0.04	0.04	Recommended(b)	
120070	Macadamia	0.04	0.04	0.04	Recommended(b)	
120080	Pecans	0.04	0.04	0.04	Recommended(b)	
120090	Pine nuts	0.04	0.04	0.04	Recommended(b)	
120100	Pistachios	0.04	0.04	0.04	Recommended(b)	
120110	Walnuts	0.04	0.04	0.04	Recommended(b)	
130010	Apples	0.9	0.9	0.9	Recommended(c)	
130020	Pears	0.9	0.9	0.9	Recommended(c)	
130030	Quinces	0.9	0.9	0.9	Recommended(c)	
130040	Medlar	0.9	0.9	0.9	Recommended(c)	
130050	Loquat	0.9	0.9	0.9	Recommended(c)	
140010	Apricots	1	–	0.15	Further recommendation needed(d)	
140020	Cherries	3	3	3	Recommended(e)	
140030	Peaches	1.5	1.5	1.5	Recommended(e)	
140040	Plums	1.5	1.5	1.5	Recommended(e)	
151010	Table grapes	3	3	3	Recommended(c)	
151020	Wine grapes	3	3	3	Recommended(c)	
152000	Strawberries	4	–	4	Recommended(g)	
154010	Blueberries	7	–	7	Recommended(g)	
163020	Bananas	3	3	3	Recommended(b)	
163030	Mangoes	0.5	–	0.8	Recommended(b)	
211000	Potatoes	0.1	0.03	0.3	Further consideration needed(f)	
212010	Cassava	0.1	–	0.2	Further recommendation needed(g)	
212020	Sweet potatoes	0.1	–	0.2	Further recommendation needed(g)	
212030	Yams	0.1	–	0.2	Further recommendation needed(g)	
212040	Arrowroot	0.1	–	0.2	Further recommendation needed(g)	
213010	Beetroot	0.3	–	0.5	Further consideration needed(g)	
213020	Carrots	0.3	–	0.5	Further consideration needed(g)	
213030	Celeriac	0.3	–	0.5	Further consideration needed(g)	
213040	Horseradish	0.3	–	0.5	Further consideration needed(g)	
213050	Jerusalem artichokes	0.3	–	0.5	Further consideration needed(g)	
213060	Parsnips	0.3	–	0.5	Further consideration needed(g)	
213070	Parsley root	0.3	–	0.5	Further consideration needed(g)	
213080	Radishes	0.3	0.2	0.5	Further consideration needed(f)	
213090	Salsify	0.3	–	0.5	Further consideration needed(g)	
213100	Swedes	0.3	–	0.5	Further consideration needed(g)	
213110	Turnips	0.3	–	0.5	Further consideration needed(g)	
220010	Garlic	0.1	–	0.2	Further consideration needed(g)	
220020	Onions	0.1	–	0.2	Further consideration needed(g)	
220030	Shallots	0.1	–	0.2	Further consideration needed(g)	
220040	Spring onions	0.6	–	0.7	Further consideration needed(g)	
231010	Tomatoes	0.6	–	0.3	Further consideration needed(g)	
231020	Peppers	0.6	–	0.3	Further consideration needed(g)	
231030	Aubergines (egg plants)	0.6	–	0.3	Further consideration needed(g)	
232010	Cucumbers	0.2	–	0.2	Further consideration needed(g)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review MRL (mg/kg)	Comment	
-------------	-----------	------------------------	---------------------	----------------------------------	---------	
232020	Gherkins	0.2	–	0.2	Further consideration needed (g)	
232030	Courgettes	0.2	–	0.2	Further consideration needed (g)	
233010	Melons	0.15	–	0.15	Further consideration needed (g)	
233020	Pumpkins	0.15	–	0.15	Further consideration needed (g)	
233030	Watermelons	0.15	–	0.15	Further consideration needed (g)	
234000	Sweet corn	0.15	0.15	0.15	Further consideration needed (f)	
241010	Broccoli	2	–	2	Further consideration needed (g)	
241020	Cauliflower	0.15	–	0.2	Further consideration needed (g)	
242010	Brussels sprouts	0.3	–	0.4	Further consideration needed (g)	
242020	Head cabbage	0.4	–	0.5	Further consideration needed (g)	
243010	Chinese cabbage	4	–	4	Further consideration needed (g)	
243020	Kale	0.07	–	0.15	Further consideration needed (g)	
244000	Kohlrabi	0.07	–	0.15	Further consideration needed (g)	
251010	Lamb's lettuce	4	–	4	Further consideration needed (g)	
251020	Lettuce	4	4	4	Further consideration needed (f)	
251030	Scarole (broad-leaf endive)	4	–	4	Further consideration needed (g)	
251040	Cress	4	–	3	Further consideration needed (g)	
251050	Land cress	4	–	3	Further consideration needed (g)	
251060	Rocket, Rucola	4	–	4	Further consideration needed (g)	
251070	Red mustard	4	–	3	Further consideration needed (g)	
251080	Leaves and sprouts of Brassica spp	4	–	3	Further consideration needed (g)	
252010	Spinach	3	–	3	Further consideration needed (g)	
252020	Purslane	3	–	3	Further consideration needed (g)	
252030	Beet leaves (chard)	3	–	3	Further consideration needed (g)	
255000	Witloof	6	–	6	Further consideration needed (g)	
256010	Chervil	3	–	3	Further consideration needed (g)	
256020	Chives	3	–	3	Further consideration needed (g)	
256030	Celery leaves	3	–	3	Further consideration needed (g)	
256040	Parsley	3	–	3	Further consideration needed (g)	
256050	Sage	3	–	3	Further consideration needed (g)	
256060	Rosemary	3	–	3	Further consideration needed (g)	
256070	Thyme	3	–	3	Further consideration needed (g)	
256080	Basil	3	–	3	Further consideration needed (g)	
256090	Bay leaves (laurel)	3	–	3	Further consideration needed (g)	
256100	Tarragon	3	–	3	Further consideration needed (g)	
260010	Beans (fresh, with pods)	2	2	2	Further consideration needed (g)	
260020	Beans (fresh, without pods)	0.09	0.09	0.09	Further consideration needed (g)	
260030	Peas (fresh, with pods)	2	2	2	Further consideration needed (g)	
260040	Peas (fresh, without pods)	0.09	0.09	0.09	Further consideration needed (g)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review MRL (mg/kg)	Comment	
-------------	-----------	------------------------	---------------------	-----------------------------------	---------	
270020	Cardoons	9	–	9	Further consideration needed(d)	
270030	Celery	9	–	9	Further consideration needed(d)	
270040	Fennel	9	–	9	Further consideration needed(d)	
270050	Globe artichokes	0.3	–	0.5	Further consideration needed(d)	
270060	Leek	0.6	–	0.7	Further consideration needed(d)	
270070	Rhubarb	9	–	9	Further consideration needed(d)	
300010	Beans (dry)	0.3	0.3	0.3	Further consideration needed(g)	
300020	Lentils (dry)	0.4	0.4	0.4	Further consideration needed(f)	
300030	Peas (dry)	0.4	0.4	0.4	Further consideration needed(f)	
300040	Lupins (dry)	0.3	–	0.2	Further recommendation needed(d)	
401010	Linseed	0.9	0.8	0.9	Further consideration needed(f)	
401020	Peanuts	0.01*	0.01	0.01*	Further consideration needed(f)	
401030	Poppy seed	0.9	0.8	0.9	Further consideration needed(f)	
401040	Sesame seed	0.9	0.8	0.9	Further consideration needed(f)	
401050	Sunflower seed	0.8	0.8	0.9	Further consideration needed(f)	
401060	Rape seed	0.9	0.8	0.9	Further consideration needed(f)	
401070	Soya bean	0.15	0.15	0.15	Further consideration needed(f)	
401080	Mustard seed	0.9	0.8	0.9	Further consideration needed(f)	
401090	Cotton seed	0.3	0.3	0.3	Further consideration needed(h)	
401100	Pumpkin seeds	0.9	0.8	0.9	Further consideration needed(f)	
401110	Safflower	0.9	0.8	0.9	Further consideration needed(f)	
401120	Borage	0.9	0.8	0.9	Further consideration needed(f)	
401130	Gold of pleasure	0.9	0.8	0.9	Further consideration needed(f)	
401140	Hempseed	0.9	0.8	0.9	Further consideration needed(f)	
401150	Castor bean	0.9	0.8	0.9	Further consideration needed(f)	
500010	Barley grain	2	2	3	Further consideration needed(f)	
500030	Maize grain	0.01*	0.01*	0.01*	Further consideration needed(f)	
500050	Oats grain	2	2	3	Further consideration needed(f)	
500060	Rice grain	5	5	5	Further consideration needed(f)	
500070	Rye grain	0.4	0.3	0.4	Further consideration needed(f)	
500080	Sorghum grain	0.7	0.7	0.8	Further consideration needed(f)	
500090	Wheat grain	0.4	0.3	0.4	Further consideration needed(f)	
632000	Herbal infusions (dried, leaves)	0.01*	–	30	Further recommendation needed(d)	
633000	Herbal infusions (dried, roots)	2	–	2	Further recommendation needed(d)	
900010	Sugar beet (root)	0.15	0.15	0.4	Further consideration needed(f)	
900020	Sugar cane	3	–	3	Further consideration needed(d)	
900030	Chicory roots	0.3	–	0.3	Further consideration needed(d)	
1011010	Swine meat	0.02	0.015	0.015	Further consideration needed(g)	
1011020	Swine fat (free of lean meat)	0.2	0.2	0.2	Further consideration needed(g)	
1011030	Swine liver	0.1	0.1	0.1	Further consideration needed(g)	
1011040	Swine kidney	0.1	0.1	0.1	Further consideration needed(g)	
1012010	Bovine meat	0.02	0.015	0.015	Further consideration needed(g)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review		
-------------	--------------------	-------------------------	----------------------	-----------------------		
1012020	Bovine fat	0.2	0.2	Further consideration needed (g)		
1012030	Bovine liver	0.1	0.1	Further consideration needed (g)		
1012040	Bovine kidney	0.1	0.1	Further consideration needed (g)		
1013010	Sheep meat	0.02	0.015	Further consideration needed (g)		
1013020	Sheep fat	0.2	0.2	Further consideration needed (g)		
1013030	Sheep liver	0.1	0.1	Further consideration needed (g)		
1013040	Sheep kidney	0.1	0.1	Further consideration needed (g)		
1014010	Goat meat	0.02	0.015	Further consideration needed (g)		
1014020	Goat fat	0.2	0.2	Further consideration needed (g)		
1014030	Goat liver	0.1	0.1	Further consideration needed (g)		
1015010	Horse meat	0.02	0.015	Further consideration needed (g)		
1015020	Horse fat	0.2	0.2	Further consideration needed (g)		
1015030	Horse liver	0.1	0.1	Further consideration needed (g)		
1015040	Horse kidney	0.1	0.1	Further consideration needed (g)		
1016010	Poultry meat	0.02	0.02	Further consideration needed (g)		
1016020	Poultry fat	0.05	0.05	Further consideration needed (g)		
1016030	Poultry liver	0.02	0.02	Further consideration needed (g)		
1020010	Cattle milk	0.02	0.02	Further consideration needed (g)		
1020020	Sheep milk	0.02	0.02	Further consideration needed (g)		
1020030	Goat milk	0.02	0.02	Further consideration needed (g)		
1020040	Horse milk	0.02	0.02	Further consideration needed (g)		
1030000	Birds’ eggs	0.02	0.02	Further consideration needed (g)		
–	Other commodities	See Reg. 2018/685	–	Further consideration needed (g)		

MRL: maximum residue level; CXL: codex maximum residue limit.

*: Indicates that the MRL is set at the limit of quantification.

(F): The residue definition is fat soluble.

(a): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; no CXL is available (combination H-I in Appendix E).

(b): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; there are no relevant authorisations or import tolerances reported at EU level (combination A-VII in Appendix E).

(c): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level, which is also fully supported by data, leads to a lower MRL (combination H-VII in Appendix E).

(d): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers is identified; GAP evaluated at EU level, which is also fully supported by data, leads to a lower MRL (combination F-I in Appendix E).

(e): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; existing CXL is covered by the recommended MRL (combination H-III in Appendix E).

(f): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); existing CXL is covered by the tentative MRL (combination F-III in Appendix E).

(g): MRL is derived from the existing CXL, which is not sufficiently supported by data but for which no risk to consumers is identified (assuming the existing residue definition); GAP evaluated at EU level, which is also not fully supported by data, would lead to a lower tentative MRL (combination F-V in Appendix E).

(h): MRL is derived from the existing CXL, which is not sufficiently supported by data but for which no risk to consumers is identified (assuming the existing residue definition); there are no relevant authorisations or import tolerances reported at EU level (combination A-V in Appendix E).

(i): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); CXL is not compatible with EU residue definitions (combination F-II in Appendix E).

(j): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of 0.01 mg/kg may be considered (combination A-I in Appendix E).
Appendix C – Pesticide Residue Intake Model (PRIMo)

PRIMo (EU1)

LOQs (mg/kg) range from: 0.001 to: 0.01

ADI (mg/kg bw per day): 0.02

ARfD (mg/kg bw): 0.25

Source of ADI: EFSA

Source of ARfD: EFSA

EFSA PRIMo revision 3.0; 2017/12/11

Year of evaluation: 2012

No of diets exceeding the ADI: ---

Calculated exposure (% of ADI) MS Diet

Commodity/group of commodities	Exposure resulting from	Calculated exposure (% of ADI) MS Diet
	MS Diet	
	Highest contributor to	
	2nd contributor to	
	3rd contributor to	
	MS Diet (in % of ADI)	
	Commodity/group of	
	commodities	
	1st contributor to	
	3rd contributor to	
	MS diet (in % of ADI)	
	Commodity/group of	
	commodities	

Fluxapyroxad (F)

Chronic risk assessment: JMPR methodology (IEDI/TMDI)

Conclusion:

LT adult

UK vegetarian

UK adult

Rice

Wheat

Sugar beet roots

Barley

Rye

Apples

Pears

Plums

Wine grapes

Fluxapyroxad (F)

Toxicological reference values

Normal mode

Commodity/group of commodities

Input values

Details - acute risk assessment/children

Details - acute risk assessment/adults

Details - chronic risk assessment

Supplementary results - chronic risk assessment

Details - chronic risk assessment

The estimated long-term dietary intake (TMDI/IEDI/EDII) was below the ADI. The long-term intake of residues of fluxapyroxad (F) is unlikely to present a public health concern.

www.efsa.europa.eu/efsajournal

EFSA Journal 2020;18(1):5984
The acute risk assessment is based on the ARfD.
The calculation is based on the large portion of the most critical consumer group.

Unprocessed commodities

Results for children

Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
77%	Celeries	9/5.15	193	38%	Florence fennel	9/5.15	96
77%	Rhubarbs	9/5.15	192	33%	Celeries	9/5.15	82
40%	Witloofs/Belgian endives	6/2.5	99	21%	Cardoons	9/5.15	53
33%	Florence fennel	9/5.15	84	19%	Chinese cabbages/po-tai	4/1.9	48
29%	Escarol/broad-leaved	4/1.8	72	19%	Rhubarbs	9/5.15	48
27%	Lettuces	4/1.8	69	16%	Witloofs/Belgian endives	6/2.5	46
26%	Pears	0.8/0.47	65	15%	Escarol/broad-leaved	4/1.8	36
24%	Chinese cabbages/po-tai	4/1.9	61	14%	Blueberries	7/3.77	34
24%	Peaches	1.5/0.63	60	12%	Broccoli	2/1.27	30
21%	Broccoli	2/1.27	53	9%	Lettuces	4/1.8	22
20%	Apples	0.8/0.47	51	9%	Strawberries	4/2.34	22
16%	Plums	1.5/0.95	40	8%	Plums	1.5/0.95	19
15%	Strawberries	4/2.34	38	7%	Cherries (seed)	3/1.86	19
13%	Spinaches	3/1.44	33	7%	Chards/best leaves	3/1.44	18
12%	Mangos	0.8/0.47	29	6%	Pears	0.8/0.47	14

Results for adults

Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
93%	Florence fennel/boiled	9/5.15	233	70%	Celeries/boiled	9/5.15	174
92%	Rhubarbs/boiled	9/5.15	229	40%	Florence fennel/boiled	9/5.15	100
49%	Witloofs/boiled	6/2.5	123	30%	Rhubarbs/boiled	9/5.15	75
46%	Escarol/broad-leaved end	4/1.8	119	25%	Cardoons/boiled	9/5.15	63
40%	Broccoli/boiled	2/1.27	100	18%	Witloofs/boiled	6/2.5	46
19%	Spinaches/fruzan	3/1.44	47	15%	Escarol/broad-leaved	4/1.8	37
18%	Chards/best leaves/boiled	3/1.44	45	12%	Broccoli/boiled	2/1.27	31
12%	Leaks/boiled	0.7/0.42	29	7%	Chards/best leaves/boiled	3/1.44	18
7%	Head cabbages/boiled	0.5/0.27	17	5%	Spinaches/boiled	3/1.44	12
5%	Sugar beets (roo)/sugar	0.41/0.44	13	3%	Peaches/canned	1.5/0.63	8.5
5%	Parsnips/boiled	0.5/0.26	13	3%	Leaks/boiled	0.7/0.42	7.3
5%	Peaches/canned	1.5/0.63	13	2%	Purslane/soiled	3/1.44	5.9
5%	Blueberries/processed (not t)	7/3.77	13	2%	Cauliflowers/boiled	0.2/0.14	5.8
5%	Beetrots/boiled	0.5/0.26	12	2%	Beetrots/boiled	0.5/0.26	5.8
4%	Potatoes/soiled	0.30/0.12	11	2%	Sugar beets (roo)/sugar	0.41/0.44	5.3

Processed commodities

Results for children

Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
93%	Florence fennel/boiled	9/5.15	233	70%	Celeries/boiled	9/5.15	174
92%	Rhubarbs/boiled	9/5.15	229	40%	Florence fennel/boiled	9/5.15	100
49%	Witloofs/boiled	6/2.5	123	30%	Rhubarbs/sauce/puree	9/5.15	75
48%	Escarol/broad-leaved	4/1.8	119	25%	Cardoons/boiled	9/5.15	63
40%	Broccoli/boiled	2/1.27	100	18%	Witloofs/boiled	6/2.5	46
19%	Spinaches/fruzan	3/1.44	47	15%	Escarol/broad-leaved	4/1.8	37
18%	Chards/best leaves/boiled	3/1.44	45	12%	Broccoli/boiled	2/1.27	31
12%	Leaks/boiled	0.7/0.42	29	7%	Chards/best leaves/boiled	3/1.44	18
7%	Head cabbages/boiled	0.5/0.27	17	5%	Spinaches/boiled	3/1.44	12
5%	Sugar beets (roo)/sugar	0.41/0.44	13	3%	Peaches/canned	1.5/0.63	8.5
5%	Parsnips/boiled	0.5/0.26	13	3%	Leaks/boiled	0.7/0.42	7.3
5%	Peaches/canned	1.5/0.63	13	2%	Purslane/soiled	3/1.44	5.9
5%	Blueberries/processed	7/3.77	13	2%	Cauliflowers/boiled	0.2/0.14	5.8
5%	Beetrots/boiled	0.5/0.26	12	2%	Beetrots/boiled	0.5/0.26	5.8
4%	Potatoes/soiled	0.30/0.12	11	2%	Sugar beets (roo)/sugar	0.41/0.44	5.3

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of fluxapyroxad (F) is unlikely to For processed commodities, no exceedance of the ARfD/ADI was identified.
Fluxapyroxad (F)

Toxicological reference values

LOQs (mg/kg)	ADI (mg/kg bw per day)	ARfD (mg/kg bw)
range from: 0.01 to: 0.01	0.02	0.25

Source of ADI: EFSA
Source of ARfD: EFSA
EFSA PRIMo revision 3.0; 2017/12/11
Year of evaluation: 2012
No of diets exceeding the ADI: ---

Calculated exposure (% of ADI)

Commodity/group of commodities	MRLs set at the LOQ (in % of ADI)	commodities not under assessment (in % of ADI)
Banana	55% 10.96	15% 6% 4%
Wheat	37% 7.49	17% 3% 2%
Table grapes	31% 6.16	8% 5% 2%
Table grapes	26% 5.10	7% 4% 2%
Celery	24% 4.81	3% 2% 2%
Sugar canes	23% 4.59	3% 2% 2%
Sugar canes	22% 4.37	2% 2% 2%
Wheat	21% 4.14	3% 2% 2%
Barley	20% 4.03	2% 2% 2%
Sugar beet roots	20% 4.00	2% 2% 2%
Wine grapes	19% 3.72	2% 2% 3%
Wheat	17% 3.43	3% 3% 2%
Apples	16% 3.25	4% 3% 2%
Wine grapes	13% 2.83	4% 3% 2%
Rice	11% 2.52	5% 3% 1%
Wheat	10% 2.22	5% 3% 1%
Barley	9% 1.87	5% 3% 0.8%
Wheat	8% 1.52	5% 3% 0.8%
Barley	6% 1.19	5% 3% 0.6%
Barley	4% 0.87	5% 3% 0.6%

Exposure resulting from

Commodity/group of commodities	MRLs set at the LOQ (in % of ADI)	commodities not under assessment (in % of ADI)
Banana	55% 10.96	15% 6% 4%
Wheat	37% 7.49	17% 3% 2%
Table grapes	31% 6.16	8% 5% 2%
Table grapes	26% 5.10	7% 4% 2%
Celery	24% 4.81	3% 2% 2%
Sugar canes	23% 4.59	3% 2% 2%
Sugar canes	22% 4.37	2% 2% 2%
Wheat	21% 4.14	3% 2% 2%
Barley	20% 4.03	2% 2% 2%
Sugar beet roots	20% 4.00	2% 2% 2%
Wine grapes	19% 3.72	2% 2% 3%
Wheat	17% 3.43	3% 3% 2%
Apples	16% 3.25	4% 3% 2%
Wine grapes	13% 2.83	4% 3% 2%
Rice	11% 2.52	5% 3% 1%
Wheat	10% 2.22	5% 3% 1%
Barley	9% 1.87	5% 3% 0.8%
Wheat	8% 1.52	5% 3% 0.8%
Barley	6% 1.19	5% 3% 0.6%
Barley	4% 0.87	5% 3% 0.6%

Conclusion:

The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of fluxapyroxad (F) is unlikely to present a public health concern.

Details - chronic risk assessment/children

Commodity/group of commodities	MRLs set at the LOQ (in % of ADI)	commodities not under assessment (in % of ADI)
Banana	55% 10.96	15% 6% 4%
Wheat	37% 7.49	17% 3% 2%
Table grapes	31% 6.16	8% 5% 2%
Table grapes	26% 5.10	7% 4% 2%
Celery	24% 4.81	3% 2% 2%
Sugar canes	23% 4.59	3% 2% 2%
Sugar canes	22% 4.37	2% 2% 2%
Wheat	21% 4.14	3% 2% 2%
Barley	20% 4.03	2% 2% 2%
Sugar beet roots	20% 4.00	2% 2% 2%
Wine grapes	19% 3.72	2% 2% 3%
Wheat	17% 3.43	3% 3% 2%
Apples	16% 3.25	4% 3% 2%
Wine grapes	13% 2.83	4% 3% 2%
Rice	11% 2.52	5% 3% 1%
Wheat	10% 2.22	5% 3% 1%
Barley	9% 1.87	5% 3% 0.8%
Wheat	8% 1.52	5% 3% 0.8%
Barley	6% 1.19	5% 3% 0.6%
Barley	4% 0.87	5% 3% 0.6%

Summary

- **PRIMo (CXL1)**
- **Input values**
- **Supplementary results**
- **Details - acute risk assessment/children**
- **Details - acute risk assessment/adults**
- **Conclusion:** The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of fluxapyroxad (F) is unlikely to present a public health concern.
The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
77% Celeries	9/5.15	193	38% Florence fennels	9/5.15	96		
77% Rhubarbs	9/5.15	192	33% Calabrese	9/5.15	82		
62% Bananas	3/1.6	155	21% Cardoons	9/5.15	53		
41% Table grapes	3/1.4	102	19% Chinese cabbages/pe-tsai	4/1.9	48		
40% Witloofs/Belgian endives	6/2.5	99	19% Rhubarbs	9/5.15	48		
33% Florence fennels	9/5.15	84	19% Table grapes	3/1.4	47		
29% Escaroles/broad-leaved endives	4/1.8	72	18% Witloofs/Belgian endives	6/2.5	46		
27% Lecces	4/1.8	69	15% Escaroles/broad-leaved endives	4/1.8	36		
26% Pears	0.9/0.47	65	14% Blueberries	7/3.77	34		
24% Chinese cabbages/pe-tsai	4/1.9	61	14% Bananas	3/1.6	34		
24% Peaches	1.5/0.63	60	13% Wine grapes	3/1.4	33		
21% Broccoli	2/1.27	53	12% Broccoli	1/2.7	30		
20% Apples	0.9/0.47	51	9% Lecces	4/1.8	22		
16% Pums	1.5/0.95	40	9% Strawberries	4/2.34	22		
15% Strawberries	4/2.34	38	8% Pums	1.5/0.95	19		

Conclusion:
No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of fluapyroxad (F) is unlikely to For processed commodities, no exceedance of the ARfD/ADI was identified.
Appendix D – Input values for the exposure calculations

D.1. Livestock dietary burden calculation

Feed commodity	Median dietary burden	Maximum dietary burden		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Risk assessment residue definition: fluxapyroxad				
Grapefruits, dried pulp	0.01	STMR × F (0.1)	0.01	STMR × F (0.1)
Apple, pomace, wet	1.17	STMR × PF (4.6)	1.17	STMR × PF (4.6)
Potato, culls	0.09	STMR^(a) (tentative)	0.12	HR^(a) (tentative)
Potato, process waste	0.45	STMR × PF (5)^(a) (tentative)	0.45	STMR × PF (5)^(a) (tentative)
Potato, dried pulp	0.72	STMR × PF (8)^(a) (tentative)	0.72	STMR × PF (8)^(a) (tentative)
Carrot, culls	0.12	STMR^(a) (tentative)	0.26	HR^(a) (tentative)
Swede, roots	0.12	STMR^(a) (tentative)	0.26	HR^(a) (tentative)
Turnip, roots	0.12	STMR^(a) (tentative)	0.26	HR^(a) (tentative)
Cassava, roots	0.03	STMR^(a) (tentative)	0.08	HR^(a) (tentative)
Cabbage, heads, leaves	0.01	STMR^(a) (tentative)	0.27	HR^(a) (tentative)
Bean, seed (dry)	0.01	STMR (tentative)	0.01	STMR (tentative)
Cowpea, seed	0.01	STMR (tentative)	0.01	STMR (tentative)
Pea (Field pea), seed (dry)	0.04	STMR (tentative)	0.04	STMR (tentative)
Lupin, seed	0.01	STMR (tentative)	0.01	STMR (tentative)
Lupin seed, meal	0.01	STMR × default PF (1.1)^(b) (tentative)	0.01	STMR × default PF (1.1)^(b) (tentative)
Flaxseed/Linseed, meal	0.18	STMR × default PF (2)^(b) (tentative)	0.18	STMR × default PF (2)^(b) (tentative)
Peanut, meal	0.00	STMR × PF (0.12) (tentative)	0.00	STMR × PF (0.12) (tentative)
Sunflower, meal	0.01	STMR × PF (0.14) (tentative)	0.01	STMR × PF (0.14) (tentative)
Canola (Rape seed), meal	0.04	STMR × PF (0.44) (tentative)	0.04	STMR × PF (0.44) (tentative)
Rape, meal	0.04	STMR × PF (0.44) (tentative)	0.04	STMR × PF (0.44) (tentative)
Soybean, seed	0.01	STMR (tentative)	0.01	STMR (tentative)
Soybean, meal	0.01	STMR × default PF (1.3)^(b) (tentative)	0.01	STMR × default PF (1.3)^(b) (tentative)
Soybean, hulls	0.13	STMR × default PF (13)^(b) (tentative)	0.13	STMR × default PF (13)^(b) (tentative)
Safflower, meal	0.18	STMR × default PF (2)^(b) (tentative)	0.18	STMR × default PF (2)^(b) (tentative)
Barley, grain	0.54	STMR (tentative)	0.54	STMR (tentative)
Brewer’s grain, dried	1.78	STMR × default PF (3.3)^(b) (tentative)	1.78	STMR × default PF (3.3)^(b) (tentative)
Corn, field (Maize), grain	0.01	STMR (tentative)	0.01	STMR (tentative)
Corn, pop, grain	0.01	STMR (tentative)	0.01	STMR (tentative)
Corn, field, milled by-products	0.01	STMR^(a) (tentative)	0.01	STMR^(a) (tentative)
Feed commodity	Median dietary burden	Maximum dietary burden		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Corn, field, hominy meal	0.01 STMR (a)	(tentative)	0.01 STMR (a)	(tentative)
Corn, field, distiller’s grain (dry)	0.01 STMR (a)	(tentative)	0.01 STMR (a)	(tentative)
Corn, field, gluten feed	0.01 STMR (a)	(tentative)	0.01 STMR (a)	(tentative)
Oat, grain	0.54 STMR	(tentative)	0.54 STMR	(tentative)
Rice, bran/pollard	0.78 STMR × PF (0.9)	(tentative)	0.78 STMR × PF (0.9)	(tentative)
Rye, grain	0.12 STMR	(tentative)	0.12 STMR	(tentative)
Sorghum, grain	0.19 STMR	(tentative)	0.19 STMR	(tentative)
Triticale, grain	0.12 STMR	(tentative)	0.12 STMR	(tentative)
Wheat, grain	0.12 STMR	(tentative)	0.12 STMR	(tentative)
Wheat, distiller’s grain (dry)	0.38 STMR × default PF (3.3)	(tentative)	0.38 STMR × default PF (3.3)	(tentative)
Wheat gluten, meal	0.21 STMR × default PF (1.8)	(tentative)	0.21 STMR × default PF (1.8)	(tentative)
Wheat, milled by-products	0.81 STMR × default PF (7)	(tentative)	0.81 STMR × default PF (7)	(tentative)
Beet, sugar, dried pulp	0.21 STMR (c) × PF (1.74)	(tentative)	0.21 STMR (c) × PF (1.74)	(tentative)
Beet, sugar, ensiled pulp	0.04 STMR (c) × PF (0.37)	(tentative)	0.04 STMR (c) × PF (0.37)	(tentative)
Beet, sugar, molasses	0.10 STMR (c) × PF (0.8)	(tentative)	0.10 STMR (c) × PF (0.8)	(tentative)
Sugarcane, molasses	0.01 STMR (c) × PF (0.04)	(tentative)	0.01 STMR (c) × PF (0.04)	(tentative)
Barley, straw	1.52 STMR	(tentative)	3.55 HR	(tentative)
Oat, straw	1.52 STMR	(tentative)	3.55 HR	(tentative)
Rye, straw	1.14 STMR	(tentative)	6.05 HR	(tentative)
Triticale, straw	1.14 STMR	(tentative)	6.05 HR	(tentative)
Wheat, straw	1.14 STMR	(tentative)	6.05 HR	(tentative)
Turnip, tops (leaves)	0.03 STMR	(tentative)	0.07 HR	(tentative)

STMR: supervised trials median residue; HR: highest residue; PF: processing factor.

*: Indicates that the input value is proposed at the limit of quantification.

(a): For corn, no default processing factor was applied because residues are expected to be below the LOQ. Concentration of residues in this commodity is therefore not expected.

(b): In the absence of processing factors supported by data, a default processing factor was included in the calculation to consider the potential concentration of residues in these commodities.

(c): Combined residues from primary uses and rotational crop field studies.

(d): Residues from rotational crop field studies on potatoes.
D.2. Consumer risk assessment without consideration of the existing CXLs

Commodity	Chronic risk assessment	Acute risk assessment		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Risk assessment residue definition 1: fluxapyroxad				
Grapefruits	0.07 STMR	0.17 HR		
Apples	0.26 STMR	0.47 HR		
Pears	0.26 STMR	0.47 HR		
Quinces	0.26 STMR	0.47 HR		
Medlars	0.26 STMR	0.47 HR		
Loquats/Japanese medlars	0.26 STMR	0.47 HR		
Apricots	0.03 STMR (tentative)	0.08 HR (tentative)		
Cherries (sweet)	0.56 STMR	1.86 HR		
Peaches	0.44 STMR	0.63 HR		
Plums	0.44 STMR	0.95 HR		
Table grapes	0.09 STMR	0.26 HR		
Wine grapes	0.15 STMR	0.32 HR		
Strawberries	0.82 STMR	2.34 HR		
Blueberries	2.39 STMR	3.77 HR		
Mangoes	0.18 STMR	0.37 HR		
Potatoes	0.09 STMR^(a) (tentative)	0.12 HR^(a) (tentative)		
Cassava roots/manioc	0.03 STMR^(b) (tentative)	0.08 HR^(b) (tentative)		
Sweet potatoes	0.03 STMR^(b) (tentative)	0.08 HR^(b) (tentative)		
Yams	0.03 STMR^(b) (tentative)	0.08 HR^(b) (tentative)		
Arrowroots	0.03 STMR^(b) (tentative)	0.08 HR^(b) (tentative)		
Beetroots	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Carrots	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Celeriacs/turnip rooted celeries	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Horseradishes	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Jerusalem artichokes	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Parsnips	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Parsley roots/Hamburg roots parsley	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Radishes	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Salsifies	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Swedes/rutabagas	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Turnips	0.12 STMR^(a) (tentative)	0.26 HR^(a) (tentative)		
Garlic	0.03 STMR^(c) (tentative)	0.08 HR^(c) (tentative)		
Onions	0.03 STMR^(c) (tentative)	0.08 HR^(c) (tentative)		
Shallots	0.03 STMR^(c) (tentative)	0.08 HR^(c) (tentative)		
Spring onions/green onions and Welsh onions	0.19 STMR (tentative)	0.42 HR (tentative)		
Tomatoes	0.06 STMR (tentative)	0.15 HR (tentative)		
Sweet peppers/bell peppers	0.07 STMR (tentative)	0.15 HR (tentative)		
Aubergines/eggplants	0.06 STMR (tentative)	0.15 HR (tentative)		
Cucumbers	0.05 STMR (tentative)	0.11 HR (tentative)		
Commodity	Chronic risk assessment	Acute risk assessment		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Gherkins	0.05 STMR (tentative)		0.11 HR (tentative)	
Courgettes	0.05 STMR (tentative)		0.11 HR (tentative)	
Melons	0.02 STMR × PF (0.38) (tentative)		0.03 HR × PF (0.38) (tentative)	
Pumpkins	0.02 STMR × PF (0.38) (tentative)		0.03 HR × PF (0.38) (tentative)	
Watermelons	0.02 STMR × PF (0.38) (tentative)		0.03 HR × PF (0.38) (tentative)	
Sweet corn	0.01 STMR (tentative)		0.09 HR (tentative)	
Broccoli	0.28 STMR (tentative)		1.27 HR (tentative)	
Cauliflowers	0.07 STMR(c) (tentative)		0.14 HR(c) (tentative)	
Brussels sprouts	0.11 STMR(c) (tentative)		0.20 HR(c) (tentative)	
Head cabbages	0.01 STMR (tentative)		0.27 HR (tentative)	
Chinese cabbages/pe-tsai	0.90 STMR (tentative)		1.90 HR (tentative)	
Kale	0.01 STMR(b) (tentative)		0.06 HR(b) (tentative)	
Kohlrabies	0.01 STMR(b) (tentative)		0.06 HR(b) (tentative)	
Lamb's lettuces/corn salads	0.25 STMR (tentative)		1.80 HR (tentative)	
Lettuces	0.25 STMR (tentative)		1.80 HR (tentative)	
Escaroles/broad-leaved endives	0.25 STMR (tentative)		1.80 HR (tentative)	
Cresses and other sprouts and shoots	0.06 STMR (tentative)		1.44 HR (tentative)	
Land cresses	0.06 STMR (tentative)		1.44 HR (tentative)	
Roman rocket/rucola	0.25 STMR (tentative)		1.80 HR (tentative)	
Red mustards	0.06 STMR (tentative)		1.44 HR (tentative)	
Baby leaf crops (including brassica species)	0.06 STMR (tentative)		1.44 HR (tentative)	
Spinaches	0.06 STMR (tentative)		1.44 HR (tentative)	
Purslanes	0.06 STMR (tentative)		1.44 HR (tentative)	
Chards/beet leaves	0.06 STMR (tentative)		1.44 HR (tentative)	
Witloofs/Belgian endives	1.95 STMR (tentative)		2.50 HR (tentative)	
Chervil	0.06 STMR (tentative)		1.44 HR (tentative)	
Chives	0.06 STMR (tentative)		1.44 HR (tentative)	
Celery leaves	0.06 STMR (tentative)		1.44 HR (tentative)	
Parsley	0.06 STMR (tentative)		1.44 HR (tentative)	
Sage	0.06 STMR (tentative)		1.44 HR (tentative)	
Rosemary	0.06 STMR (tentative)		1.44 HR (tentative)	
Thyme	0.06 STMR (tentative)		1.44 HR (tentative)	
Basil and edible flowers	0.06 STMR (tentative)		1.44 HR (tentative)	
Laurel/bay leave	0.06 STMR (tentative)		1.44 HR (tentative)	
Tarragon	0.06 STMR (tentative)		1.44 HR (tentative)	
Beans (with pods)	0.58 STMR (tentative)		0.78 HR (tentative)	
Beans (without pods)	0.03 STMR (tentative)		0.04 HR (tentative)	
Peas (with pods)	0.58 STMR (tentative)		0.78 HR (tentative)	
Peas (without pods)	0.03 STMR (tentative)		0.04 HR (tentative)	
Cardoons	1.68 STMR (tentative)		5.15 HR (tentative)	
Celeries	1.68 STMR (tentative)		5.15 HR (tentative)	
Commodity	Chronic risk assessment	Acute risk assessment		
--	-------------------------	-----------------------		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Commodity	**Comment**	**Comment**		
Florence fennels	1.68 STMR (tentative)	5.15 HR (tentative)		
Globe artichokes	0.08 STMR (tentative)	0.19 HR (tentative)		
Leeks	0.19 STMR (tentative)	0.42 HR (tentative)		
Rhubarbs	1.68 STMR (tentative)	5.15 HR (tentative)		
Beans (dry)	0.01 STMR (tentative)	0.14 HR (tentative)		
Lentils (dry)	0.04 STMR (tentative)	0.20 HR (tentative)		
Peas (dry)	0.04 STMR (tentative)	0.20 HR (tentative)		
Lupins/lupini beans (dry)	0.01 STMR (tentative)	0.14 HR (tentative)		
Linseeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Peanuts/groundnuts	0.01* STMR (tentative)	0.01* HR (tentative)		
Poppy seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Sesame seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Sunflower seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Rapeseeds/canola seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Soyabeans	0.01 STMR (tentative)	0.13 HR (tentative)		
Mustard seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Pumpkin seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Safflower seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Borage seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Gold of pleasure seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Hemp seeds	0.09 STMR (tentative)	0.81 HR (tentative)		
Castor beans	0.09 STMR (tentative)	0.81 HR (tentative)		
Barley grains	0.54 STMR (tentative)	1.65 HR (tentative)		
Maize/corn grains	0.01* STMR (tentative)	0.01* HR (tentative)		
Oat grains	0.54 STMR (tentative)	1.65 HR (tentative)		
Rice grains	0.87 STMR (tentative)	3.73 HR (tentative)		
Rye grains	0.12 STMR (tentative)	0.21 HR (tentative)		
Sorghum grains	0.19 STMR (tentative)	0.43 HR (tentative)		
Wheat grains	0.12 STMR (tentative)	0.21 HR (tentative)		
Herbal infusions from leaves and herbs	0.55 STMR (tentative)	14.4 HR (tentative)		
Herbal infusions from roots	0.32 STMR (tentative)	1.04 HR (tentative)		
Sugar beet roots	0.12 STMR (a) (tentative)	0.15 HR (a) (tentative)		
Sugar canes	0.26 STMR (tentative)	1.34 HR (tentative)		
Chicory roots	0.07 STMR (tentative)	0.21 HR (tentative)		

Risk assessment residue definition 2: sum of fluxapyroxad and metabolite M700F008, expressed as parent equivalent.
### Commodity Input value (mg/kg) Comment	Input value (mg/kg) Comment
Sheep muscle | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Sheep fat tissue | 0.02 STMR × CF (tentative) | 0.03 HR × CF (tentative)
Sheep liver | 0.04 STMR × CF (tentative) | 0.05 HR × CF (tentative)
Sheep kidney | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Goat muscle | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Goat fat tissue | 0.02 STMR × CF (tentative) | 0.03 HR × CF (tentative)
Goat liver | 0.04 STMR × CF (tentative) | 0.05 HR × CF (tentative)
Goat kidney | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Equine muscle | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Equine fat tissue | 0.02 STMR × CF (tentative) | 0.03 HR × CF (tentative)
Equine liver | 0.03 STMR × CF (tentative) | 0.03 HR × CF (tentative)
Equine kidney | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Poultry muscle | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Poultry fat tissue | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Poultry liver | 0.02 STMR × CF (tentative) | 0.02 HR × CF (tentative)
Cattle milk | 0.002 STMR × CF (tentative) | 0.002 HR × CF (tentative)
Sheep milk | 0.002 STMR × CF (tentative) | 0.002 HR × CF (tentative)
Goat milk | 0.002 STMR × CF (tentative) | 0.002 HR × CF (tentative)
Horse milk | 0.002 STMR × CF (tentative) | 0.002 HR × CF (tentative)
Birds eggs | 0.004 STMR × CF (tentative) | 0.012 HR × CF (tentative)

*: Indicates that the input value is proposed at the limit of quantification.
(a): STMR and HR derived from the combined residues in primary uses and residues in rotational crop field studies.
(b): STMR and HR derived from residues in rotational crop field studies; no authorised uses on primary crops.
(c): STMR and HR derived from residues in rotational crop field studies; no residues trials in primary uses available.

D.3. Consumer risk assessment with consideration of the existing CXLs

Risk assessment residue definition 1: fluxapyroxad

Commodity	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Grapefruits	0.07	STMR	0.17	HR
Oranges	0.01	STMR × CXL	0.03	HR × CXL PF
Almonds	0.01	STMR × CXL	0.03	HR × CXL
Brazil nuts	0.01	STMR × CXL	0.03	HR × CXL
Cashew nuts	0.01	STMR × CXL	0.03	HR × CXL
Chestnuts	0.01	STMR × CXL	0.03	HR × CXL
Coconuts	0.01	STMR × CXL	0.03	HR × CXL
Hazelnuts	0.01	STMR × CXL	0.03	HR × CXL
Macadamia	0.01	STMR × CXL	0.03	HR × CXL
Pecans	0.01	STMR × CXL	0.03	HR × CXL
Pine nuts	0.01	STMR × CXL	0.03	HR × CXL
Pistachios	0.01	STMR × CXL	0.03	HR × CXL
Walnuts	0.01	STMR × CXL	0.03	HR × CXL
Apples	0.28	STMR × CXL	0.47	HR × CXL
Pears	0.28	STMR × CXL	0.47	HR × CXL
Quinces	0.28	STMR × CXL	0.47	HR × CXL
Commodity	Chronic risk assessment	Acute risk assessment		
-----------------------------------	-------------------------	-----------------------		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Medlars	0.28 STMR (CXL)	0.47 HR (CXL)		
Loquats/Japanese medlars	0.28 STMR (CXL)	0.47 HR (CXL)		
Apricots	0.03 STMR (tentative)	0.08 HR (tentative)		
Cherries (sweet)	0.56 STMR	1.86 HR		
Peaches	0.44 STMR	0.63 HR		
Plums	0.44 STMR	0.95 HR		
Table grapes	1.41 STMR (CXL) × CF	4.20 HR (CXL) × CF		
Wine grapes	1.41 STMR (CXL) × CF	4.20 HR (CXL) × CF		
Strawberries	0.82 STMR	2.34 HR		
Blueberries	2.39 STMR	3.77 HR		
Bananas	0.04 STMR (CXL) × PF	0.42 HR (CXL) × PF		
Mangoes	0.18 STMR(a)	0.37 HR(a)		
Potatoes	0.09 STMR(b) (tentative)	0.12 HR(b) (tentative)		
Cassava roots/maniaic	0.03 STMR(b) (tentative)	0.08 HR(b) (tentative)		
Sweet potatoes	0.03 STMR(b) (tentative)	0.08 HR(b) (tentative)		
Yams	0.03 STMR(b) (tentative)	0.08 HR(b) (tentative)		
Arrowroots	0.03 STMR(b) (tentative)	0.08 HR(b) (tentative)		
Beetroots	0.12 STMR (tentative)	0.26 HR (tentative)		
Carrots	0.12 STMR (tentative)	0.26 HR (tentative)		
Celeriacs/turip rooted celeries	0.12 STMR (tentative)	0.26 HR (tentative)		
Horseradishes	0.12 STMR (tentative)	0.26 HR (tentative)		
Jerusalem artichokes	0.12 STMR (tentative)	0.26 HR (tentative)		
Parsnips	0.12 STMR (tentative)	0.26 HR (tentative)		
Parsley roots/Hamburg roots parsley	0.12 STMR (tentative)	0.26 HR (tentative)		
Radishes	0.12 STMR (tentative)	0.26 HR (tentative)		
Salsifies	0.12 STMR (tentative)	0.26 HR (tentative)		
Swedes/rutabagas	0.12 STMR (tentative)	0.26 HR (tentative)		
Turnips	0.12 STMR (tentative)	0.26 HR (tentative)		
Garlic	0.03 STMR(c) (tentative)	0.08 HR(c) (tentative)		
Onions	0.03 STMR(c) (tentative)	0.08 HR(c) (tentative)		
Shallots	0.03 STMR(c) (tentative)	0.08 HR(c) (tentative)		
Spring onions/green onions and Welsh onions	0.19 STMR (tentative)	0.42 HR (tentative)		
Tomatoes	0.06 STMR (tentative)	0.15 HR (tentative)		
Sweet peppers/bell peppers	0.07 STMR (tentative)	0.15 HR (tentative)		
Aubergines/eggplants	0.06 STMR (tentative)	0.15 HR (tentative)		
Okra, lady's fingers	0.07 STMR (tentative)	0.44 HR (tentative)		
Cucumbers	0.05 STMR (tentative)	0.11 HR (tentative)		
Gherkins	0.05 STMR (tentative)	0.11 HR (tentative)		
Courgettes	0.05 STMR (tentative)	0.11 HR (tentative)		
Melons	0.02 STMR × PF (tentative)	0.03 HR × PF (tentative)		
Commodity	Chronic risk assessment	Acute risk assessment		
-----------------------------------	-------------------------	-----------------------		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Pumpkins	0.02 STMR × PF (tentative)	0.03 HR × PF (tentative)		
Watermelons	0.02 STMR × PF (tentative)	0.03 HR × PF (tentative)		
Sweet corn	0.01 STMR (tentative)	0.09 HR (tentative)		
Broccoli	0.28 STMR (tentative)	1.27 HR (tentative)		
Cauliflower	0.07 STMR (tentative)	0.14 HR (tentative)		
Brussels sprouts	0.11 STMR (tentative)	0.20 HR (tentative)		
Head cabbages	0.01 STMR (tentative)	0.27 HR (tentative)		
Chinese cabbages/pe-tsai	0.90 STMR (tentative)	1.90 HR (tentative)		
Kales	0.01 STMR(b) (tentative)	0.06 HR(b) (tentative)		
Kohlrabies	0.01 STMR(b) (tentative)	0.06 HR(b) (tentative)		
Lamb’s lettuces/corn salads	0.25 STMR (tentative)	1.80 HR (tentative)		
Lettuces	0.25 STMR (tentative)	1.80 HR (tentative)		
Escaroles/broad-leaved endives	0.25 STMR (tentative)	1.80 HR (tentative)		
Cresses and other sprouts and shoots	0.06 STMR (tentative)	1.44 HR (tentative)		
Land cresses	0.06 STMR (tentative)	1.44 HR (tentative)		
Roman rocket/rucola	0.25 STMR (tentative)	1.80 HR (tentative)		
Red mustards	0.06 STMR (tentative)	1.44 HR (tentative)		
Baby leaf crops (including brassica species)	0.06 STMR (tentative)	1.44 HR (tentative)		
Spinaches	0.06 STMR (tentative)	1.44 HR (tentative)		
Purslaneas	0.06 STMR (tentative)	1.44 HR (tentative)		
Chards/beet leaves	0.06 STMR (tentative)	1.44 HR (tentative)		
Witloofs/Belgian endives	1.95 STMR (tentative)	2.50 HR (tentative)		
Chervil	0.06 STMR (tentative)	1.44 HR (tentative)		
Chives	0.06 STMR (tentative)	1.44 HR (tentative)		
Celery leaves	0.06 STMR (tentative)	1.44 HR (tentative)		
Parsley	0.06 STMR (tentative)	1.44 HR (tentative)		
Sage	0.06 STMR (tentative)	1.44 HR (tentative)		
Rosemary	0.06 STMR (tentative)	1.44 HR (tentative)		
Thyme	0.06 STMR (tentative)	1.44 HR (tentative)		
Basil and edible flowers	0.06 STMR (tentative)	1.44 HR (tentative)		
Laurel/bay leave	0.06 STMR (tentative)	1.44 HR (tentative)		
Tarragon	0.06 STMR (tentative)	1.44 HR (tentative)		
Beans (with pods)	0.65 STMR (CXL) (tentative)	0.74 HR (CXL) (tentative)		
Beans (without pods)	0.03 STMR (CXL) (tentative)	0.04 HR (CXL) (tentative)		
Peas (with pods)	0.65 STMR (CXL) (tentative)	0.74 HR (CXL) (tentative)		
Peas (without pods)	0.03 STMR (CXL) (tentative)	0.04 HR (CXL) (tentative)		
Cardoons	1.68 SMTR (tentative)	5.15 HR (tentative)		
Celeries	1.68 STMR (tentative)	5.15 HR (tentative)		
Florence fennels	1.68 STMR (tentative)	5.15 HR (tentative)		
Globe artichokes	0.08 STMR (tentative)	0.19 HR (tentative)		
Commodity	Chronic risk assessment	Acute risk assessment		
-----------------------------------	-------------------------	-----------------------		
	Input value (mg/kg)	Comment		
Leeks	0.19	STMR (tentative)		
Rhubarbs	1.68	STMR (tentative)		
Beans (dry)	0.04	STMR (tentative)		
Lentils (dry)	0.04	STMR (tentative)		
Peas (dry)	0.04	STMR (tentative)		
Lupins/lupini beans (dry)	0.01	STMR (tentative)		
Linseeds	0.09	STMR (tentative)		
Peanuts/groundnuts	0.01*	STMR (tentative)		
Poppy seeds	0.09	STMR (tentative)		
Sesame seeds	0.09	STMR (tentative)		
Sunflower seeds	0.09	STMR (tentative)		
Rapeseeds/canola seeds	0.09	STMR (tentative)		
Soyabeanse	0.01	STMR (tentative)		
Mustard seeds	0.09	STMR (tentative)		
Cotton seed	0.30	CXL (tentative)		
Pumpkin seeds	0.09	STMR (tentative)		
Safflower seeds	0.09	STMR (tentative)		
Borage seeds	0.09	STMR (tentative)		
Gold of pleasure seeds	0.09	STMR (tentative)		
Hemp seeds	0.09	STMR (tentative)		
Castor beans	0.09	STMR (tentative)		
Barley grains	0.54	STMR (tentative)		
Maize/corn grains	0.01	STMR (tentative)		
Oat grains	0.54	STMR (tentative)		
Rice grains	0.87	STMR (tentative)		
Rye grains	0.12	STMR (tentative)		
Sorghum grains	0.19	STMR (tentative)		
Wheat grains	0.12	STMR (tentative)		
Herbal infusions from leaves and	0.55	STMR (tentative)		
herbs		14.40	HR (tentative)	
Herbal infusions from roots	0.32	STMR (tentative)		
Sugar beet roots	0.12	STMR (tentative)		
Sugar canes	0.26	STMR (tentative)		
Chicory roots	0.07	STMR (tentative)		
Bovine muscle	0.03	STMR (CXL) × CF (tentative)		
Bovine fat tissue	0.05	STMR (CXL) × CF (tentative)		
Bovine liver	0.08	STMR (CXL) × CF (tentative)		
Bovine kidney	0.08	STMR (CXL) × CF (tentative)		

Risk assessment residue definition 2: sum of fluxapyroxad and metabolite M700F008, expressed as parent equivalent.

Swine muscle 0.03 STMR (CXL) × CF (tentative) | 0.06 HR (CXL) × CF (tentative)
Swine fat tissue 0.05 STMR (CXL) × CF (tentative) | 0.18 HR (CXL) × CF (tentative)
Swine liver 0.08 STMR (CXL) × CF (tentative) | 0.31 HR (CXL) × CF (tentative)
Swine kidney 0.08 STMR (CXL) × CF (tentative) | 0.31 HR (CXL) × CF (tentative)
Bovine muscle 0.03 STMR (CXL) × CF (tentative) | 0.06 HR (CXL) × CF (tentative)
Bovine fat tissue 0.05 STMR (CXL) × CF (tentative) | 0.18 HR (CXL) × CF (tentative)
Bovine liver 0.08 STMR (CXL) × CF (tentative) | 0.31 HR (CXL) × CF (tentative)
Bovine kidney 0.08 STMR (CXL) × CF (tentative) | 0.31 HR (CXL) × CF (tentative)
Commodity	Chronic risk assessment	Acute risk assessment		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Sheep muscle	0.03	STMR (CXL) × CF (tentative)	0.06	HR (CXL) × CF (tentative)
Sheep fat tissue	0.05	STMR (CXL) × CF (tentative)	0.18	HR (CXL) × CF (tentative)
Sheep liver	0.08	STMR (CXL) × CF (tentative)	0.31	HR (CXL) × CF (tentative)
Sheep kidney	0.08	STMR (CXL) × CF (tentative)	0.31	HR (CXL) × CF (tentative)
Goat muscle	0.03	STMR (CXL) × CF (tentative)	0.06	HR (CXL) × CF (tentative)
Goat fat tissue	0.05	STMR (CXL) × CF (tentative)	0.18	HR (CXL) × CF (tentative)
Goat liver	0.08	STMR (CXL) × CF (tentative)	0.31	HR (CXL) × CF (tentative)
Goat kidney	0.08	STMR (CXL) × CF (tentative)	0.31	HR (CXL) × CF (tentative)
Equine muscle	0.03	STMR (CXL) × CF (tentative)	0.06	HR (CXL) × CF (tentative)
Equine fat tissue	0.05	STMR (CXL) × CF (tentative)	0.18	HR (CXL) × CF (tentative)
Equine liver	0.08	STMR (CXL) × CF (tentative)	0.31	HR (CXL) × CF (tentative)
Equine kidney	0.08	STMR (CXL) × CF (tentative)	0.31	HR (CXL) × CF (tentative)
Poultry muscle	0.02	STMR × CF (tentative)	0.02	HR × CF (tentative)
Poultry fat tissue	0.02	STMR (CXL) × CF (tentative)	0.05	HR (CXL) × CF (tentative)
Poultry liver	0.02	STMR (CXL) × CF (tentative)	0.03	HR (CXL) × CF (tentative)
Cattle milk	0.004	STMR (CXL) × CF (tentative)	0.02	HR (CXL) × CF (tentative)
Sheep milk	0.004	STMR (CXL) × CF (tentative)	0.02	HR (CXL) × CF (tentative)
Goat milk	0.004	STMR (CXL) × CF (tentative)	0.02	HR (CXL) × CF (tentative)
Horse milk	0.004	STMR (CXL) × CF (tentative)	0.02	HR (CXL) × CF (tentative)
Birds eggs	0.006	STMR (CXL) × CF (tentative)	0.02	HR (CXL) × CF (tentative)

STMR: supervised trial median residue; HR: high residue.

*: Indicates that the input value is proposed at the limit of quantification.
(a): STMR and HR derived from the combined residues in primary uses and residues in rotational crop field studies.
(b): STMR and HR derived from residues in rotational crop field studies; no authorised uses in primary crops.
(c): STMR and HR derived from residues in rotational crop field studies; no residues trials in primary uses available.
Appendix E – Decision tree for deriving MRL recommendations

Evaluation of the GAPs and available residues data at EU level

Consumer risk assessment for GAPs evaluated at EU level – EU scenarios

Recommendations resulting from EU authorisations and import tolerances
Comparison of the EU recommendation with the existing CXL

- CXL available?
 - Yes:
 - RD comparable?
 - Yes:
 - CXL higher?
 - Yes: Maintain current CXL or EU recommendation; CXL is recommended; EU recommendation is covered as well.
 - No: Maintain current CXL or EU recommendation; higher CXL is not safe for consumer.
 - No: Maintain EU recommendation indicating that no CXL is available.
 - No: RD comparable?
 - Yes: Maintain EU recommendation indicating CXL is not compatible.
 - No: CXL higher?
 - Yes: Maintain current CXL or EU recommendation; higher CXL is not safe for consumer.
 - No: Maintain EU recommendation indicating that CXL is covered.

Consumer risk assessment with consideration of the existing CXL

- CXL supported by data?
 - Yes: Risk identified?
 - Yes: CXL is included in the RA, input values for the RA remain unchanged.
 - No: Risk identified?
 - Yes: CXL is included in the RA, input values for the RA remain unchanged.
 - No: Input values for the RA remain unchanged.
 - No: Input values for the RA remain unchanged.

Recommendations with consideration of the existing CXL

- EU recommendation indicating that no CXL is available.
- EU recommendation indicating CXL is not compatible.
- EU recommendation indicating that CXL is covered.
- EU recommendation; higher CXL is not safe for consumer.
- EU recommendation; higher CXL is not safe for consumer.
- EU recommendation; higher CXL is not safe for consumer.
- CXL is recommended; EU recommendation is covered as well.
Appendix F – Used compound codes

Code/trivial name(a)	IUPAC name/SMILES notation/InChiKey(b)	Structural formula(c)
Fluxapyroxad	3-(difluoromethyl)-1-methyl-N-(3’,4’,5’-trifluoro[1,1’-biphenyl]-2-y1)-1H-pyrazole-4-carboxamide	
FC(F)c1nn(C)cc1C(-O)Nc1cccccc1c1cc(F)c(F)c(F)c1		
SXSGXWCSHSVGBP-UHFFFAOYSA-N	![Fluxapyroxad structural formula](image1)	
M700F002	3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid	
OC(-O)c1c[NH]nc1C(F)F		
IGQNDARULCASRN-UHFFFAOYSA-N	![M700F002 structural formula](image2)	
M700F008	3-(difluoromethyl)-N-(3’,4’,5’-trifluorobiphenyl-2-yl)-1H-pyrazole-4-carboxamide	
O=C(Nc1cccccc1c1cc(F)c(F)c1)c1c[NH]nc1C(F)F		
SYGSBKQBCWBROS-UHFFFAOYSA-N	![M700F008 structural formula](image3)	
M700F048	3-(difluoromethyl)-1-(b-D-glucopyranosyoxy)-N-(3’,4’,5’-trifluorobiphenyl-2-yl)-1H-pyrazole-4-carboxamide	
Fc1ccc(cc(F)c1F)c1cccccc1N(C(-O)c1cn(nc1C(F)F)O[C@@H]1O
[C@@H](CO)[C@@H](O)[C@@H](O)[C@@H]1O
KBDSMYNDPGODLU-AUJACXKFSA-N | ![M700F048 structural formula](image4) |

SMILES: simplified molecular-input line-entry system.

(a): The metabolite name in bold is the name used in the conclusion.
(b): ACD/Name 2015 ACD/Labs 2015 Release (File version N20E41, Build 75170, 19 Dec 2014).
(c): ACD/ChemSketch 2015 ACD/Labs 2015 Release (File version C10H41, Build 75059, 17 Dec 2014).