Acanthosis Nigricans – A Two-Sided Coin: Consider Metabolic Syndrome and Malignancies!

Uwe Wollina¹, Gesina Hansel¹, Torello Lotti², Georgi Tchernev³, Aleksandra Vojvodic¹, Ivanka Temelkova³

¹Department of Dermatology and Allergology, Teaching Hospital Dresden - Friedrichstadt, Dresden, Germany; ²Professor & Chair of Dermatology, University of Rome “G. Marconi”, Rome, Italy; ³Onkodera - Clinic for Dermatology, Venereology and Dermatologic Surgery, General Skobelev 26, 1606, Sofia, Bulgaria; ⁴Department of Dermatology and Venereology, Military Medical Academy of Belgrade, Belgrade, Serbia;

Abstract

BACKGROUND: Acanthosis nigricans (AN) is acquired hyperpigmentation of the intertriginous body regions. Histologically, AN is characterised by a thickened stratum corneum and a variable amount of acanthosis. Although benign and rarely symptomatic, AN may be a red flag for underlying pathologies.

CASE PRESENTATION: We analysed our patients with AN and could differentiate three different patterns, that are illustrated by one case report each. The is the benign AN associated with metabolic syndrome including obesity. The second type is the paraneoplastic AN malignancy which is associated with a wider range of malignancies. This type may occur before, after or with the clinical appearance of the malignancy. The third type is relapsing AN after complete remission. We present a patient who had a malignant AN and was treated successfully for his cancer. Years later, however, AN relapsed. In that case in association with the appearance of skin tags. Cancer restaging excluded a tumour relapse. His BMI was 31.2 kg/m², and the diagnosis of benign AN was confirmed.

CONCLUSIONS: The diagnosis of AN remains incomplete without screening for metabolic syndrome and/or cancer. The combination of AN and skin tags is more often associated with metabolic syndrome. AN may be considered as a red flag for malignancies and the metabolic syndrome.

Introduction

Acanthosis nigricans (AN) is acquired hyperpigmentation of the intertriginous body regions and sometimes the periareolar skin. Besides the colour change, the disease most often remains asymptomatic. AN can occur as focal or diffuse papillomatous, hyperkeratotic, thickened lesions, which are symmetrically distributed. It rarely affects mucosa such as oral cavities.

Histologically, AN is characterised by a thickened stratum corneum and a variable amount of acanthosis. Horn pseudocysts can occasionally be present. The darker colour of AN is likely due to hyperkeratosis. A subtly mixed cellular infiltrates may be seen [1].

AN can develop in children, adolescents and adults. In children, the commonly affected body region is the neck followed by the axillae [2].

The prevalence of AN differs between ethnic groups. In the US, among native Americans, the prevalence was up to 34.2% followed by African Americans, Hispanics and Caucasians [3].

The pathogenesis of AN is complex. Elevated insulin concentrations result in direct and indirect activation of insulin-like growth factor (IGF)-1...
receptors on suprabasal keratinocytes and fibroblasts. Other tyrosine kinase receptors such as epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) may also contribute to hyperproliferation of keratinocytes and fibroblasts [4]. However, in obesity, the insulin concentrations are lower than warranted for such effects [5]. Extensive AN has been associated with hypochondroplasia with FGFR3 mutations [6]. Another possible, but the very rare association is a mutation of the ELOV1 gene that encoded ELOVL fatty acid elongase 1, which catalyses elongation of saturated and monounsaturated C22-C26-very long-chain fatty acids [7]. Malignancy-associated AN might be explained by elevated levels of growth factors such as transforming growth factor (TGF-α), which can stimulate EGFR [8]. What causes the intertriginous areas to be most responsive has yet not been discovered.

Differential diagnoses

AN may resemble other disorders such as terra firma forme dermatosis [9], confluent and reticulated papillomatosis [10], berloque dermatitis, Riehl's melanosis, poikiloderma of Civatte [11].

Case reports

Case 1: A 48-year-old adipose male presented with hyperpigmented lesions on the thighs and scrotum. His body mass index (BMI) was 36 kg/m². He suffered from arterial hypertension and hyperlipidemia. On examination, we observed diffuse brownish hyperpigmentation of thighs and scrotal skin with papillomatosis (Figure 1). No treatment was warranted. We recommended nutritional counselling. The diagnosis of benign AN was confirmed.

Case 2: A 39-year-old male presented with a relapse of intertriginous AN. His medical history was remarkable for kidney cancer in 2012 that was found after the first episode of AN and completely removed by surgery. The diagnosis of AN malignancy was confirmed. Five years later he demonstrated with a relapse of AN brownish-blackish hyperpigmentation in association with skin tags after complete remission in 2013 (Figure 2). We performed a computerised tomography of the abdomen and laboratory investigation that gave no hint of cancer relapse. His BMI was 31.2 kg/m². The diagnosis of benign AN was confirmed, and surgical excision of the thigh lesions was performed. We also recommended nutritional counselling.

Case 3: A 62-year female presented with brownish hyperpigmentation of the neck, the back and the anal fold was presented by the department of oncology (Figure 3). She suffered from cholangiocarcinoma with peritoneal metastases and was treated by chemotherapy with gemcitabine and cisplatin — AN developed shortly after tumour diagnosis. Malignant AN was confirmed, and anti-pruritic topical therapy with 5% polidocanol ointment was recommended.

Acanthosis nigricans and the metabolic syndrome

The major features of the metabolic syndrome are insulin resistance, visceral adiposity, atherogenic dyslipidemia and endothelial dysfunction [12]. AN has a strong association with overweight in adults, adolescents and children. Obesity in adults is defined as 30 kg/m², whereas in children and adolescents, overweight is defined as ≥ the 95th percentile of the
In conclusion, although AN by itself is most often an asymptomatic disease without significant impairment, the diagnosis is of great importance to identify underlying pathologies. The most important is the metabolic syndrome in overweight and obese patients of any age. The second is the role of malignant AN as an obligate paraneoplasia.

Table 1: Malignant tumours associated with AN

Tumour	Reference
Breast cancer	Levine et al., 2010 [27]
Cholangiocarcinoma	Scully et al., 2001 [26]
Clear-cell renal carcinoma	Ferral de Campos et al., 2016 [25]
Endometrial adenocarcinoma	Owen et al., 2017 [24]
Fallopian tube carcinoma	West et al., 2018 [25]
Gallbladder adenocarcinoma	Zaidi et al., 2009 [26]
Gastric adenocarcinoma	Yu et al., 2017 [27]
Gastric diffuse B-cell lymphoma	
Gastrintestinal stromal tumor	Park et al., 2013 [29]
Hepatoblastular carcinoma	Antoni et al., 2018 [30]
Rectal adenocarcinoma	Guntur et al., 2013 [31]
Insulinoma	Patron et al., 2016 [32]
Lung cancer	Owen 2016 [33]
Meningioma	Driach et al., 2008 [34]
Mycosis fungoides, Sézary syndrome	Cheng et al., 2015 [35], Fahmy et al., 2016 [36]
Oral cancer	Singh & Raj 2013 [37]
Pancreatic adenocarcinoma	McMeans & Greer 2006 [38]
Pediatric cancer	Tammaro et al., 2015 [39]
Rectal adenocarcinoma	Marchiner & Redhead 2011 [40]
Sarcoma	Brantlach & Muelaite 2015 [41]

References

1. Schwartz RA. Acanthosis nigricans. J Am Acad Dermatol. 1994; 31(1):1-19. https://doi.org/10.1016/S0190-9622(94)70129-8
2. Sinha S, Schwartz RA. Juvenile acanthosis nigricans. J Am Acad Dermatol. 2007; 57(3):502-8. https://doi.org/10.1016/j.jaad.2006.08.016
3. Stuart CA, Glikson CR, Smith MM, Bosma AM, Keenan BS, Nagamani M. Acanthosis nigricans as a risk factor for non-insulin dependent diabetes mellitus. Clin Pediatr (Phil). 1998; 37(2):73-9. https://doi.org/10.1177/000992289803700203
4. Hodak E, Gottlieb AB, Anzliotti M, Krueger JG. The insulin-like growth factor 1 receptor is expressed by epithelial cells with proliferative potential in human epidermis and skin appendages: correlation of increased expression with epidermal hyperplasia. J Invest Dermatol. 1996; 106(3):564-70. https://doi.org/10.1111/j.1523-1747.ep12340440.PMID:8648195
5. Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care. 2006; 29(11):2427-32. https://doi.org/10.2337/dc06-0709
6. Muguet Guenot L, Aubert H, Isidor B, Toutain A, Mazereeuw-Hautier J, Collet C, Bourrat E, Mousquet B, Barbato S, Groupe de Recherche de la Société Française de Dermatologie Pédiatrique. Acanthosis nigricans, hypochondroplasia, and FGFR3 mutations: Findings with five new patients, and a review of the literature. Pediatr Dermatol. 2019; 36(2):242-246. https://doi.org/10.1111/pde.13748
7. Mueller N, Sassa T, Morales-Gonzalez S, Schneider J, Saichow DJ, Seelow D, Knierim E, Stenzel W, Kihara A, Schuette M, De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high-frequency deafness and optic atrophy. J Med Genet. 2019; 56(3):164-175. https://doi.org/10.11138/jmedgenet-2018-105711 PMid:30482246
8. Ellis DL, Kafka SP, Chow JC, Nanney LB, Inman WH, McCadden ME, King LE Jr. Melanoma, growth factors, acanthosis nigricans, the sign of Leser-Trelat, and multiple acrochordons. A possible role for alpha-transforming growth factor in cutaneous paraneoplastic syndromes. N Engl J Med. 1987; 317(25):1582-7. https://doi.org/10.1056/NEJM198712173172506
9. Unal E, Guarneri C, Chokeeva AA, Wollina U, Tchernev G. Terra
24. Deen J, Moloney T, Burdon-Jones D. Severe. Malignant Acanthosis Nigricans Associated with Early Diagnosis of Liver Cancer. An Bras Dermatol. 2018; 19(1):1-12. https://doi.org/10.1590/s1984-00362018000100010

25. West L, Carlson M, Wallis L, Golf HW. The Sign of Leser-Trelat and Malignant Acanthosis Nigricans Associated With Fallopian Tube Carcinoma. Obstet Gynecol. 2018; 132(5):1116-1119. https://doi.org/10.1097/AOG.0000000000002920

26. Ziadli T, Alahyane A, El Fahssi M, Mahmri R, Elhouaji A, Baba H, Ouid Jiddou C, Nafae I, Mejdane A, Bounaim A, Ali A, Zentar A, Hommeda A, Saïr K. [Acanthocarcinoma of gallbladder revealed by acanthosis nigricans]. Gastroenterol Clin Biol. 2009; 33(10):986-8. https://doi.org/10.1016/j.gcb.2009.06.010

27. Yu Q, Li XL, Ji G, Wang Y, Gong Y, Xu H, Shi YL. Malignant acanthosis nigricans: an early diagnostic clue for gastric adenocarcinoma. World J Surg Oncol. 2017; 15(1):208. https://doi.org/10.1186/s12957-017-1274-5

28. Mignogna MD, Fortuna G, Falletti J, Leucci S. Gastric diffuse large B-cell lymphoma (DLBCL) exhibiting oral acanthosis nigricans and tripe palms. Dig Liver Dis. 2009; 41(10):766-8. https://doi.org/10.1016/j.dld.2009.02.049

29. Park KW, Lim DH, Lee SI. Malignant acanthosis nigricans in a patient with a gastrointestinal stromal tumor. Korean J Intern Med. 2013; 28(5):632-3. https://doi.org/10.3904/kjim.2013.28.5.632

30. Antonio JR, Trídico LA, Antonio CR. Malignant Acanthosis Nigricans associated with early diagnosis of liver cancer. An Bras Dermatol. 2018; 93(4):616-17. https://doi.org/10.1590/abd1806-4841.20187560.PMID:30066784

31. Gunduz K, Coban M, Oztürk F, Ermercanci AT. Malignant acanthosis nigricans associated with leiocarcinoma. Cutan Ocul Toxicol. 2013; 32(2):173-5. https://doi.org/10.1080/15569572.2012.713417

32. Patra S, Chakraborty PP, Barman H, Santra G. Acanthosis nigricans in insulinoma: before and after successful surgical enucleation. BMJ Case Rep. 2016; 2016:bcr2016218003. https://doi.org/10.1136/bcr-2016-218003

33. Owen CE. Cutaneous manifestations of lung cancer. Semin Oncol. 2016; 43(3):366-9. https://doi.org/10.1053/j.seminoncol.2016.02.025

34. Dainichi T, Moroi Y, Duan H, Urabe K, Koga T, Miyazono M, Sasaki T, Hashimoto T, Furue M. Paraneoplastic acanthosis nigricans and silent meningioma producing transforming growth factor-alpha. Eur J Dermatol. 2008; 18(6):721-2. https://doi.org/10.1046/j.1468-3083.2004.01775.x

35. Cheng E, Roy DB, Magro CM. A case of acanthosis nigricans coexisting with mycosis fungoides. Dermatol Online J. 2015; 21(7). https://doi.org/10.1016/j.berm.2015.07.001

36. Fahmy J, Halabi MM, Fortuna G, Falletti J, Leuci S. Gastric diffuse large B-cell lymphoma (DLBCL) exhibiting oral acanthosis nigricans and tripe palms. BMJ Case Rep. 2015; 2015:bcr2015218003. https://doi.org/10.1136/bcr-2015-218003

37. Singh SK, Rai T. A rare case of malignant acanthosis nigricans in a lady with ovarian cancer. Indian Dermatol Online J. 2013; 4(2):125-7. https://doi.org/10.4103/2229-5178.110640

38. McGinness J, Greer K. Malignant acanthosis nigricans and tripe palms associated with pancreatic adenocarcinoma. Cutis. 2006; 78(1):37-40. https://doi.org/10.1043/j.cut.2006.07.005

39. Tammaro A, Giuliani V, Parisella F, Persechino S. Bilaterally mammary acanthosis nigricans as paraneoplastic manifestation of prostate adenocarcinoma. G Ital Dermatol Venereol. 2016; 151(5):578-9. https://doi.org/10.1007/s11070-016-1608-7

40. Marschner ML, Reinhardt JF. Malignant acanthosis nigricans in rectal adenocarcinoma. Del Med J. 2011; 83(8):247-9. https://doi.org/10.1001/jama.2009.02.010

41. Brantsch KD, Moehrle M. Acanthosis nigricans in a patient with sarcoma of unknown origin. J Am Acad Dermatol. 2010; 62(3):527-8. https://doi.org/10.1016/j.jaad.2009.02.010

PMID:27750322

PMID:27601929

PMID:30374476

PMID:30365811

PMID:30241752

PMID:30712903

PMID:30712903

PMID:30712903

PMID:21855730

PMID:19145649

PMID:27254939

PMID:27254939

PMID:28413386

PMID:25003519

PMID:19765931

PMID:19349220

PMID:21856784

PMID:27838838

PMID:5128931

PMID:27178690

PMID:30719203

PMID:50178

PMID:39145649

PMID:5480432

PMID:20159329

PMID:22964676