Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds*

Jiaxian WU¹ Qihua RUAN² Yihu YANG³

Abstract This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation:

$$u_t = \Delta u + \nabla \phi \cdot \nabla u + a(x)u \ln u + b(x)u$$

on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvature bounded below by $-K$ ($K \geq 0$), where ϕ is a C^2 function, $a(x)$ and $b(x)$ are C^1 functions with certain conditions.

Keywords Gradient estimate, Bakry-Emery Ricci curvature, Nonlinear diffusion equation

2000 MR Subject Classification 58J35

1 Introduction

The notion of Bakry-Emery Ricci tensor associated with a diffusion operator was introduced by Bakry [1], which we recall as follows.

Definition 1.1 Given an n-dimensional Riemannian manifold (M, g) and a C^2 function ϕ on M, one has a diffusion operator $L := \Delta + \nabla \phi \cdot \nabla$, where the Δ and ∇ are the Laplace operator and the gradient operator on M respectively. Then the Bakry-Emery Ricci tensor associated with the diffusion operator L is defined as the following symmetric 2-tensor:

$$\widetilde{\text{Ric}} := \text{Ric} - \nabla^2 \phi - \frac{\nabla \phi \otimes \nabla \phi}{m - n},$$

where the constant $m \geq n$; if $m = n$, we assume $\phi = 0$. Denote by Ric_∞ the limit $\lim_{m \to \infty} \widetilde{\text{Ric}} = \text{Ric} - \nabla^2 \phi$.

*Manuscript received June 21, 2013. Revised June 29, 2014.

¹School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China. E-mail: wujiaxian2014@nuist.edu.cn

²Department of Mathematics, Putian University, Putian 351100, Fujian, China. E-mail: ruanqihua@163.com

³Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: yangyihu@sjtu.edu.cn

*This work was supported by the National Natural Science Foundation of China (Nos. 11171253, 11471175), the Fujian Provincial National Natural Science Foundation of China (No. 2012J01015) and the Startup Foundation for Introducing Talent of Nuist(No. 2014r030) and the Pre-research Foundation of NSFC(No. 2014x025).
In this note, we want to study the gradient estimates of the Hamilton type for the positive solution to the following nonlinear diffusion equation:

$$u_t = Lu + a(x)u \ln u + b(x)u$$ \tag{1.1}

on a complete noncompact Riemannian manifold with the above Bakry-Emery Ricci curvature bounded below by $-K$ ($K \geq 0$), where $a(x)$ and $b(x)$ are C^1 functions with certain conditions (for details, see Theorem 1.3).

The elliptic case of the equation (1.1) with $\phi = 0$, namely

$$\triangle u + au \ln u + bu = 0,$$ \tag{1.2}

was first considered by Ma [6] in the case that a and b are constants and $a < 0$ when he studied the gradient Ricci Soliton. He also pointed out that it is interesting to consider the gradient estimates for the positive solutions to the corresponding parabolic equation

$$u_t = \triangle u + au \ln u + bu.$$ \tag{1.3}

Later, Yang [12] studied the above parabolic equation and obtained the gradient estimate of Li-Yau type (see [3]) for the solutions to (1.3). Here we should also mention that Li [5] studied earlier the following equation:

$$u_t = \triangle u + bu^\alpha$$ \tag{1.4}

for some $\alpha > 0$, and got the gradient estimates and the Harnack inequality which generalize the corresponding estimates of Li-Yau [3].

When $a = b = 0$, the equation was studied by Li [5]. He obtained a gradient estimate of the Li-Yau type.

There is another kind of gradient estimates developed by Hamilton [2]. He considered the heat equation on compact manifolds and obtained the following estimate, which we call the gradient estimate of Hamilton type.

Theorem 1.1 Let M be a compact manifold without boundary and with Ricci curvature bounded below by $-K$, $K \geq 0$. Suppose that u is any positive solution to the heat equation $u_t = \triangle u$ with $u \leq C$ for all $(x, t) \in M \times (0, +\infty)$. Then

$$\frac{\lvert \nabla u \rvert^2}{u^2} \leq \left(\frac{1}{t} + 2K \right) \left(\ln \frac{C}{u} \right).$$

In [10], Souplet and Zhang extend the above gradient estimate to noncompact manifolds.

Theorem 1.2 (Souplet-Zhang) Let M be an n-dimensional complete noncompact manifold with the Ricci curvature bounded below by $-K$, $K \geq 0$. Suppose that u is any positive solution to the heat equation $u_t = \triangle u$ in $Q_{2R,2T} = B(x_0, 2R) \times [t_0 - 2T, t_0]$, and $u \leq C$ in $Q_{2R,2T}$. Then one has in $Q_{R,T}$,

$$\frac{\lvert \nabla u \rvert}{u} \leq C_1 \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{K} \right) \left(1 + \ln \frac{C}{u} \right),$$

where C_1 is some positive constant depending only on the dimension n of M.