The Effect of Diyala Tributary on Ecological Factors of Tigris River

¹Muhammed R. Nashaat, ²Fatema Sh. Muftin, ³Enaam K. Abbas and ⁴Eman H. Ali

Animal and Fisheries Resources Center, Agricultural Research Directorate, Ministry of Science and Technology, Baghdad, Iraq.

muhanned_nashaat@yahoo.com

Abstract
This study was conducted to investigate the effects of the Diyala Tributary on the physical – chemical factors of the Tigris River. A water sample was collected monthly from five sites. Site 1 was located on the Tigris River before joining the Diyala with Tigris River, site 2 was located on Diyala River, site 3 was located on the Tigris River after 500m from joining area of Tigris with Diyala River, Finally site 4&5 was located 3, 5 Km of site 3 respectively downstream Tigris River. The results of this study illustrated that the variations in the values of turbidity and the total suspended solids in the Tigris River and Diyala Tributary were not sharp, whereas there was clear effect of Diyala Tributary by raising the values of the electrical conductivity, salinity, TDS, BOD₅, total hardness, bicarbonate, sulphate of the Tigris River. Also there was an increase in the phosphate and nitrate concentrations with depletion of dissolved oxygen at site 2 which located on Diyala Tributary that affected on Tigris River significantly.

Keywords: Tigris River; Diyala Tributary; physical and chemical characteristics.

1. Introduction
Water covers a large area of the Earth's surface, accounting for about 71% of it, but the freshwater volume does not exceed 0.03% of this amount [1]. The internal freshwater of Iraq covers an area of 24000 Km² out of about 444,000 Km² Iraq's total area. Thus, Iraq is a country with rich in inland waters compared to neighboring countries [2]. However this surface water is most vulnerable to pollution since the wastewater is easily disposed in it [3]. Approximately 90 per cent of municipal wastewater is discharged into rivers and streams in most developed countries with partial ecological control that is not even acceptable for industrial activities causing poor water quality [4]. Among these water bodies most vulnerable to pollution by municipal wastewater is Diyala Tributary
Many of local studies dealing with physical and chemical characteristics of Tigris, Euphrates Rivers and their tributaries during their ecological study such as [5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16 and 17]. Diyala Tributary, is a major hydro-chemical tributary which affects in the water quality of the Tigris River system. So it is necessary to study the physical and chemical properties of the Tigris Rivers and Diyala Tributary to investigate the impact of Diyala on the Tigris River, especially after the war of 2003 due the current study is the first study after the war of 2003.

2. Material and Methods

2.1 Study area

Diyala Tributary is the most important eastern tributary of the Tigris River, the water source of Diyala Tributary comes from the the Zagros Mountains of western Iran [18]. The river is about 386 Km from its source, until it meets the Tigris River south of Baghdad, Al-Tuthah area [19]. It has an average slope of about 1-85 m/Km [18].

2.2 Sample collection

Monthly sampling was collected from January to December 2014 from five sites from a depth of 0.5 - 1 meter below the water surface, four of which sites was chosen o Tigris River to know the effect of the Diyala Tributary in physical and chemical properties of the Tigris River (Fig. 1), as follows: -

Site (1) located on the Tigris River before joining the Diyala Tributary (which represents the control site) in the Zaafaraniya City near the Animal and Fish Resources Center/ Directorate of Agricultural and Biological Research / Ministry of Science and Technology, before 2 Km from the joining point.

Site (2) located on the Diyala Tributary after sewage treatment plant, waste Rusafa (Rustumia) before 3 Km from its joining with the Tigris (near the old Diyala Bridge).

Site (3) located on the Tigris River, after its joining with Diyala, just 500 meters from the joining of two rivers which represents the mixing between the two rivers.

Finally, the two sites (4 and 5) are located down of the Tigris River, about 3 and 5 Km from the site (3), respectively.
2.3 Procedures

Water samples were collected for Physio-chemical analysis by using polyethylene bottle 5L capacity, which was washed by water sample twice before filling. The sample were collected under the surface water about 20-40 cm, then kept at 15°C in refrigerator. Physical and chemical parameters included:- Air and water temperature were measured by using a precise mercury thermometer. Dissolved oxygen and Biological oxygen demand were measured by using the modified Winkler method [20]. The percentage of saturation oxygen was calculated as reported in [21], electrical conductivity, salinity, pH, and Total Dissolved Solid in water by HANA (HI9811). The Total Suspended Solids were measured according to the method mentioned in APHA [22]. The turbidity was measured by the
turbidity meter Jenwaw company Model-6035. Total hardness, calcium and magnesium were measured according to Lind [23]. Sulphate used the method described by Brand and Tripke [24], the nutrients (Nitrate) and effective phosphate was measured according to the method measured as in APHA [20]. Finally, the Degremont method [25] was used to measure the bicarbonate in the water of the studied sites.

3. Results and Discussion

The seasonal variation of physical and chemical parameter (Table 1) shows that the water temperature demonstrated a slight change between the sites and it was closely correlated with air temperature (Fig. 2,3). Other researchers have reached the same conclusion [12;14 and16]

Table 1. Minimum and maximum (First Line), mean and standard deviation (Second Line), for physical and chemical characteristics at study sites.

Parameter	1	2	3	4	5
Air Temp. °C	15.3-41.2	15.3-45.4	15.3-4.45	15.3-45.5	15.3-45.5
	±9.78	±0.43	±10.44	±10.44	±10.14
Water Temp. °C	14.6-30.6	16-30.5	14.8-30.8	14.8-30.7	14.8-30.8
	±3.37	±0.58	±0.56	±0.56	±0.56
Turbidity NTU	14.49-250	2.89	13.45-227	14.19-80	5.53 -232
	±13.24	±59.48	±56.51	±56.51	±56.51
EC µS/cm	680- 1270	1800-	12-124	61.98	61.98
	±39.9	±11.13	±11.13	±11.13	±11.13
Salinity ‰	0.43-0.81	±0.81	0.5-0.8	0.49-0.87	0.47-0.851
	±0.64	±0.23	±0.72 ±0.12	±0.71 ±0.12	±0.7 ±0.11
pH	7-8.3	7-8.5	7.7-8.3	7.8-8.5	7.8-8.5
	7.75 ± 0.43	7.33 ± 0.49	7.71 ±0.53	7.66 ± 0.47	7.66 ± 0.47
DO mg/ L	5.3-11	0.48	4.2-9.2	3.6-7.9	4.3-7.5
	7.56 ± 1.75	1.23	5.9 ± 1.54	5.39 ± 1.3	5.6 ± 1.13
	±0.42	±0.42	±0.42	±0.42	±0.42
BOD₅ mg/ L	0.8-4.6	2.86 ± 1.2	1.3-7.6	0.9-6.4	0.3-6.6
	12-124	42.02 ±	4.26 ±39.9	3.47 ± 1.75	3.69 ± 2.01
The percentage of oxygen	71.14-75.55	46.25-93.3	44.4-8012	54.84-76.11	
	109.23 85.98	67.37 ±	61.98 ±	63.88 ± 7.38	
	± 11.68	±11.68	±11.68	±11.68	±11.68

The percentage of oxygen
Parameter	Site 1	Site 2	Site 3	Site 4	Site 5
T.H mg/ L	150-520	210-844	200-580	120-576	195-748
	297.83 ±	433.6	314.2 ±	288.4 ±	322.2 ±
Ca2+ mg/ L	80 – 200	112-245	60.12-170	52.104-	80.16-165
	±34.72	±37.26	±30.5	±115 + ±32.05	±26.02
Mg2+ mg/ L	16.85-126	57- 100.7	38.87- 120	23.74- 115	21.27-130
	69.83 ±38.6	78.86 ±	73.27	68.47	70.12
SO4- mg/ L	70-260	80-400	120-400	90 – 300	60 – 200
	118.33	164.16	186.66	135 ±56.8	127.5
	±49.87	±89.69	±82.71	±115 + ±32.05	±35.19
HCO\textsubscript{3}- mg/L	110-166	200 – 290	130-170	120-170	120-168
	141 ± 18.39	265.83 ±	147.58 ±	141.16 ±	142.25 ±
	32.79	12.1	16.27	15.83	
TDS g/L	0.33-0.63	0.5-1.39	0.39-0.68	0.38 - 0.68	0.37 -0.66
	0.5 ± 0.09	1.09	0.56 ±0.09	0.55 ±0.09	0.55 ±0.09
	±0.25				
NO\textsubscript{3}- mg/L	0.27-2.05	0.0049-	0.175-3.23	0.369-2.27	0.24 - 2.46
	0.915 ±	5.25 1.68	1.22 ±0.79	1.066	1.088 ±0.63
	0.516	± 1.77	±0.58		
PO\textsubscript{4}-mg/L	0.008-0.283	0.311-	0.033-	0.041 -0.182	0.035 - 0.46
	0.043 ± 0.07	0.982	0.261	0.07 ±0.03	0.12 ± 0.13
TSS mg/L	0.0014–	0.0005 -	0.003-	0.0008-	0.0015-0.24
	0.214 0.03 ±	0.048	0.197	0.051	0.041 ±0.06
	0.05	0.021	0.018 ±	0.0186 ±	
	±0 014	0 016	0 016		
The variations in the values of turbidity and the total suspended solid (TSS) in the Diyala Tributary were not sharp (Fig. 4,5), with a significant increase during December. Either in Tigris River, the variations were more severe, so were recorded the highest values 250, 227, 232 NTU and 0.214, 0.197, 0.24 mg/L during the beginning of the spring, especially on March at sites 1, 3 and 5 respectively. Current study agrees with previous studies that indicate the arises of turbidity in the Tigris River caused from the total suspended solid such as mud and silt that increase during high water discharge and rain periods, so higher values of turbidity were recorded in the Tigris River during these periods [26 and 27]. The turbidity values recorded in the Tigris River during the present study are more than that of the Diyala River; this may be due to the effect of the Tigris River by the turbid Al-Adeam Tributary [28].

USEPA[29] divided the water into three kinds based on the TSS, since the concentration below 20 mg / L was pure, the water with a TSS of 20-80 mg / L is low turbidity water, and the values above 150 mg / L are turbid, so the Tigris and Diyala Tributary water is pure according to reported TSS values.
Electrical conductivity, salinity and total dissolved solids (TDS) showed a positive relationship between them (Fig. 6,7,8). The highest rates of electrical conductivity, salinity and TDS were recorded on the Diyala River, while the lowest was in the Tigris River. The electrical conductivity, salinity and TDS of the Tigris River before joint Diyala Tributary with Tigris River was less than that at site 3 after the joint of the Diyala Tributary with Tigris River. It was noted that the seasonal variations of electrical conductivity, salinity and TDS in the Tigris and Diyala Rivers did not follow a same pattern during the study period. According to the EPA [30], the water of the Diyala Tributary was considered as brackish water, whereas on the Tigris River before joint of the Diyala Tributary with Tigris River was considered freshwater, furthermore the water of the Tigris River after joint it with Diyala Tributary was considered as brackish water. It was found that clear effect on the Diyala Tributary by raising the values of the electrical conductivity, salinity and TDS of the Tigris River.
The total dissolved solids values for both of Tigris River and Diyala Tributary were within the allowed limits of 1.5 g/L [31].

Figure 6. Variation of conductivity.

Figure 7. Variation of salinity.
The present study agreed with previous studies on week alkaline of Iraq water body (Fig. 9) due to the abundance of bicarbonate and carbonate ion [5; 6; … and 18]. The relatively high pH values during the autumn season may be due to the phytoplankton density during this season, thus increasing the efficiency of photosynthesis, which leads to the consumption of carbon dioxide and increased pH [32]. The recording of light pH values at the Diyala Tributary may be due to the degradation of the organic matter which observed at this site [33].

The dissolved oxygen and percentage of dissolved oxygen values in the Tigris were relatively high (Fig. 10, 11), they were not less than 5.3 mg/L in the waters of the Tigris River before the joint with Diyala Tributary, while the effect of the Diyala Tributary was clear in reducing the oxygen values in the Tigris River at sites which located after jointing it with Diyala Tributary reached to 3.6 mg/L in June at the site 4. On the other hand there was recorded a depletion of dissolved oxygen values of the Diyala River. The dissolved oxygen ranged from 0.7-2 mg/L with an average of 1.29 mg/L, this may be due to the oxidation and fermentation of the resulting materials from the decomposition of the
organic matter from the Rustmiya Water Treatment Plant [34]. As well as low pH values which was recorded at that time [35]. The concentration of dissolved oxygen in Diyala and Tigris Rivers was high in winter season. This may be related to increase in aeration because of rainfall, also decreased temperature during the winter causing an increase of the oxygen solubility [36].

The results of the biological oxygen Demand BOD \textsubscript{5} of the Diyala Tributary showed high values in the summer and autumn (Fig. 12), which caused the increase of the values of this factor in the sites of the Tigris River downstream after jointed with Diyala River. The real reason for the high values of the BOD \textsubscript{5} is the presence and degradation of organic matter as well as presence of large amounts of pollutants, which can lead to the lack of
dissolved oxygen, also the decay conditions which observed in the Diyala Tributary can cause low concentrations of oxygen compared to with the rest of the sites, when there was enough oxygen for organic decomposition, the carbon turns to carbon dioxide, phosphorus to phosphates and nitrogen to ammonia and nitrate, But when no enough oxygen, the carbon turn to methane, nitrogen compounds to amines (stench) [36]. Generally, results indicate that increasing levels of BOD5, especially at site 3 during the study period; this may be due to decomposition of organic matters that run directly to the river with domestic sewage to Diyala Tributary which flows into the Tigris River. Such finding was found by Nashaat. [37]; Marhoon et al. [38] and Abed and Nashaat [14].

Odum [39] divided the water into two types depending on BOD5 as BOD5 = 2 Clean, BOD5 = 5 or more are doubtful in its cleanliness, Thus, it can be noted that Tigris and Diyala River was doubtful in its cleanliness especially after joint Diyala with Tigris River .

![Figure 12. Variation of BOD5.](image)

The high values of the total hardness were recorded in the Diyala Tributary (210-792 mg/L) compared to the site upstream before the jointed with Diyala Tributary (150-120 mg / L) whereas at site 3 on Tigris River after jointed it with Diyala Tributary (Fig. 13), the total hardness was observed an increasing in value, with the rate reached to 273.5 mg/L, so according to the Kevin [40] calcification of water hardness the water of the Tigris River and Diyala Tributary was very hardness and the effect of Diyala hardness on the Tigris was similar to salinity as the values were high after jointed it with Diyala Tributary.
Figure 13. Variation of total hardness.

Our result denoted a clear increase in positive ions values in the Diyala Tributary compared with Tigris River (Fig. 14,15). In addition, it was found a clear impact on the Diyala Tributary at site 3 by increased a positive ion concentration, furthermore the current study found presence of calcium with higher concentrations than magnesium ion concentrations.

The results of this study show that the Tigris River and Diyala Tributary falls within the permissible limit of 150 mg / L for magnesium , while as only Tigris River falls within the permissible limit of 200 mg / L natural water for calcium [41].

Figure 14. Variation of calcium.
Bicarbonate ions were present at high concentrations in the Diyala Tributary compared to the Tigris River as well as with Sulphate ions (Fig. 16,17). Similar results were reported in other Iraqi studies [11 and 37]. As for Sulphate ion may come from the decomposition of the organic matter which effluent from sewage treatment plants or from the effects of farm waste or fertilizer that added to farms [42] The increase in sulphate value in winter season and decrease in summer season may be generally related with discharge of the domestic sewage and agricultural runoff, these ions can be produced by decompositions of organic matters or using chemical fertilizers [22].
It was found all nutrient shapes were with semi concentrations at site 1 during the study period, whereas showed a clear increase in these nutrients in the Diyala Tributary compared to the Tigris River with a clear effect of Diyala nutrients at site 3 (Fig. 18, 19). The presence of nitrates at high concentrations, especially in the summer may be due to increased organic oxidation and metabolic activities of organisms that release nutrients to the aquatic environment [43], while the increase in phosphate values in the Diyala Tributary may be due to the discharge of the wastewater from Al-Rustamiyah sewage treatment plant.

By reviewing the nitrate results, we find that it was below the usual permissible limits (15 mg/L) for Iraqi water standards [44].
4. **Conclusions:**

The results of this study concluded that there was clear effect of Diyala Tributary by raising the values of the all Tigris River water characteristics except turbidity and TSS characteristics. Also there was an increase in the phosphate and nitrate concentration with depletion of dissolved oxygen on water of Diyala Tributary that a significant effected on Tigris River.

References

[1] Hakim M A, Juraimi A S, Begum M, Hasanuzzaman M and Uddin M K 2009 Suitability evaluation of groundwater for irrigation, drinking and industrial purposes. *Am. J. Environ. Sci.*, 5: 413-419. DOI: 10.3844/ajessp.

[2] Jerry W and Webb P E 2004 *Water issues in Iraq, challenges / status*. World water and environmental resources congress, Salt Lake City, Utha, USA.

[3] Samarghandi M, Nouri J, Mesdaghinia A R, Mahvi A H, Nasser S and Vaezi F 2007 Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. *Int. J. Environ. Sci. Tech.* 4(1):19-25.

[4] WHO (World Health Organization) 1997 *Guideline for Drinking Water Quality, Health Criteria and Other Supporting Information*. (2nd. Ed). Vol. 2.

[5] Al-Azzawe M N, Nshaat M R and Ahmed D S 2012 Limnological characteristics of Tigris River at Baghdad city. *The 4th Conference on Environmental Science 5-6/December /2012*, 48-57.

[6] Salman R S, AL-Sariy J S and Nshaat M R 2015 The Physical and Chemical Characteristic of Al-Garraf Canal Water at Waist Province River. *Ibn Al-Haitham J. for Pure & Appl. Sci.*, Vol. 28 (3) : 345-356. (In Arabic).
[7] AL-Shamy N J, AL-Sariy J S and Nashaat M R 2015 Environmental Properties of Tigris River at Al- Kut Dam in Wasit Province. Ibn Al-Haitham J. for Pure & Appl. Sci., Vol. 28 (3): 317-330. (In Arabic).

[8] Nashaat M R, Rasheed K A and Hassan H A 2015 Study of Ecological Parameters of Al-Kuffa River in Iraq. Iraqi Journal of Biotechnology, Vol. 14(2): 401-417. (In Arabic).

[9] Rasheed K A, Nashaat M R and Hassan H A 2015 Study of Physico-chemical Properties of Al-Shamyia River in Iraq. Iraqi Journal of Biotechnology, Vol. 14(2): 339-355. (In Arabic).

[10] Al-Azawii L H A, Al-Azzawi M N and Nashaat M R 2015 The effects of Industrial Institutions on Ecological Factors of Tigris River through Baghdad Province. International Journal of Advanced Research, Vol. 3, Issue 3: 1266-1278.

[11] Salman R M, Nashaat M R, Moftin F Sh 2017 Estimating the Water Properties Which Effluent From Sewage Treatment Plants of Al-Kut Province Into the Tigris River, Iraq. European Academic Research, vol. 4, Issue 12: 10672-10687.

[12] Mirza N N A, Nashaat, M R 2018 An ecological assessment for interactions between the physico-chemical characteristics of Gharaf river characteristics, Southern Iraq. Journal of Research in Ecology, 6(2): 2344-2363.

[13] Al-Azawii L H A, Nashaat M R and Muftin F S 2018 Assessing the Effects of Al-Rasheed Electrical Power Plant on the Quality of Tigris River, Southern of Baghdad by Canadian Water Quality Index (CCME WQI). Iraqi J. Sci., 59(3A): 1162-1168. DOI:10.24996/ijs.2018.59.3A.2.

[14] Abed I F, Nashaat M R 2018 Interactions between the Ecological Dejiala River Properties, Southern Iraq. Iraqi J. Sci., 59(2C): 1026-1040. DOI:10.24996/ijs.2018.59.2C.6.

[15] Rhadi M M, Nashaat M R and Dauod H A 2018 Environmental Effect of Al-Kut Dam on Tigris River Properties Which Passed throw Wasit Province-Iraq. Wasit Journal for Science & Medicine, 11(1):82-98.

[16] Muftin F S, Nashaat M R, Rasheed R S, Racine, K H 2019 Impact of Al-Rasheed Power Plant Effluents on Some Ecological characteristics of Tigris River, Southern Baghdad City. Journal of Madenat Alelem University College, 11(1): 114-124.

[17] Khalaf Z N, Nashaat M R and AL-Sariy J S 2020 Limnological Features of Southern Part of the Gharaf River and the Impact of Floodplain Period on it Characteristics. Iraqi J.Sci.(Accepted).

[18] Al-Ansari N A, Salman H H and Al-Sinawi G T 1987 Periodicity of selected water quality parameters for the Tigris water at Baghdad. J. Wat. Res., 6;11-17.

[19] Al-Sahaf M M and Al-Khashab W H 1983 Hydrology. University of Mosul, University Press Directorate: 52 pp.

[20] APHA, American Public Health Association 1998 Standard Methods for the Examination of Water and Wastewater., Publ. 20th ed.

[21] Mackereth F J H, Heron J and Talling J F 1978 Water analysis: Same revised methods for limnologists. Sci. Publ. Freshwater Biol. Assoc. England,: 121 pp.
[22] APHA, American Public Health Association 2003 Standard methods for the examination of Water and Wastewater. 14th Ed. American Public Health Association, Washington. DC.

[23] Lind O T 1979 Handbook of common methods in limnology. C.V. Mosby, St. Louis.: 199 pp.

[24] Brands H J and Tripke E 1982 Water Manual. Vulkan-Verlag, Essem: 320pp.

[25] Degremont, Company 1979 Water treatment hand book. 5ed, Division of John Wiley & Sons, New York: 1186 pp.

[26] Mustafa M H 2002 Wadi Al-Murr is a natural Daring Canal for the irrigation project of the northern island of Iraq. Journal of Environmental Research and Sustainable Development, 5(1):37-67.

[27] Nomman M M 2008 Effect of Industrial influent on water quality of Tigris River and upon the performance treatment plant within sector Baiji-Tikrit. M.Sc.Thesis, Coll. of Engn., Tikrit Uni:199p.

[28] Al-Rubaie M A J 1997 Environmental Study on the Great River and its Impact on the Tigris River. M.Sc. Thesis, University of Baghdad.

[29] USEPA 2002 Vermilion river TMDLS for dissolved oxygen and nitrogen Environmental Technology division. Water Quality Protection Division, Office of Water, Washington, D.C.

[30] EPA 2006 Method 1681: faecal coliforms in sewage sludge (bioslids) by multiple-tube fermentation using A-1 medium. Office of water (4303 T) 1200 Pennsylvania. Document No. EPA- 821- R- 06- 013: 8-38.

[31] Bouwer H 1978 Ground water hydrology. Mc Graw –Hill, NewYork: 480pp.

[32] Hassan F M and Saleh M J and Hamid H A 2005 Estimate some of the heavy elements in the water coming from the Al-Furat State Company Iraq and its impacts. Journal of Environmental Research and Development, 8 (1): 51-75 .(InArabic)

[33] Dallas H F, and Day J A 2004 The effect of water quality variables on aquatic ecosystems: a review WRC Report No TT224/04.Water Research Commission: 222.

[34] Sarhan A T 2002 Scarcity of water resources and their impact on water quality and pollution. Journal of Qadisiyah, 7(4): 33 - 147. (In Arabic).

[35] Adeyemo O K, Adedokun O A and Yusuf R K 2008 Seasonal changes in physico-chemical parameters and nutrient load of river sediments in Ibadan city, Nigeria. Global NEST J., 10 (3), 326-336.

[36] Heemken O P, Stachel B, Theoblad N and Wenclawiak B W 2000 Temporal Variability of organic micropollutants in suspended particulate matter of the River Elba at Hamburg and the River Mulde at Dessau, Germany. Arch, Environ. Contam. Toxicol, 38: 11-31.

[37] Nashaat M R 2010 Impact of Al-Durah power plant effluents on physical, chemical and invertebrates biodiversity in Tigris River, southern Baghdad . Ph. D. Thesis, Coll. of Science, Univ. Baghdad: 183 pp.

[38] Marhoon K A, Muhammed R Nashaat and Foad M A 2017 Environmental and Vertical Distribution Study of Zooplankton in AL- Diwaniyah River/ Iraq. Journal of Biodiversity and Environmental Sciences (JBES), 10(6): 2017-228.
[39] Odum 1971 Fundamentals of Ecology. Saunders International student Edition .3rd Edition.

[40] Kevin R 1999 Scaling in geothermal heat pump systems. Oregon Institute of Technology, U.S. Department of Energy.

[41] EPA(Environmental Protection Agency) 1999 National primary drinking water standards, Office of Water, 810-F-94-100

[42] Hashim A Gh and Rabee A M 2014 Impact of Diyala Tributary on the Quality of Tigris River Water. J. Int. Environmental Application & Science, 9(4): 493-504.

[43] Zdanowski B 1994 Long term changes of phosphorus and nitrogen cotenant of trophic status in heated Konin lakes. Arch. Pol. Fish., 2: 179-191.

[44] Regulation No. 25 for protection of rivers and watercourse from pollution 2001. Iraqi newspaper number 3890 in 8-6-2001.