A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

Toshimitsu TAKAESU

Faculty of Mathematics, Kyushu University, Fukuoka, 812-8581, Japan

Abstract. In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy’s uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated.

Key words: weak commutation relations, Heisenberg-Lie algebra, time operators, Hamiltonians, time-energy uncertainty relation, Dirac operators, essential self-adjointness.

MSC 2010: 81Q10, 47B25, 46L60.

1 Introduction and Results

In this article we investigate a norm-inequality of the linear operators which obey a generalized weak commutation relation of a type of the Heisenberg-Lie algebra, and consider its application to the theory of the time operator [7, 2], and an abstract Dirac operator. Let $X = \{X_j\}_{j=1}^{N}$, $Y = \{Y_j\}_{j=1}^{N}$, and $Z = \{Z_j\}_{j=1}^{N}$ be symmetric operators on a Hilbert space \mathcal{H}. The weak commutator of operators A and B is defined for $\psi \in \mathcal{D}(A) \cap \mathcal{D}(B)$ and $\phi \in \mathcal{D}(A^*) \cap \mathcal{D}(B^*)$ by

$$\{A, B\}_w(\phi, \psi) = (A^* \phi, B \psi) - (B^* \phi, A \psi).$$

Here the inner product has a linearity of

$$\langle \eta, \alpha \phi + \beta \psi \rangle = \alpha \langle \eta, \phi \rangle + \beta \langle \eta, \psi \rangle$$

for $\alpha, \beta \in \mathbb{C}$. We assume that (X, Y, Z) satisfies the following conditions.

(A.1) Z_j, $1 \leq j \leq N$, is bounded operator.

(A.2) Let $\mathcal{D}_X = \bigcap_{j=1}^{N} \mathcal{D}(X_j)$ and $\mathcal{D}_Y = \bigcap_{j=1}^{N} \mathcal{D}(Y_j)$. It follows that for $\phi, \psi \in \mathcal{D}_X \cap \mathcal{D}_Y$,

$$[X_j, Y_l]_w(\phi, \psi) = \delta_{j,l} (\phi, iZ_j \psi),$$

$$[X_j, Z_l]_w(\phi, \psi) = [Y_j, Z_l]_w(\phi, \psi) = 0$$

$$[X_j, X_l]_w(\phi, \psi) = [Y_j, Y_l]_w(\phi, \psi) = [Z_j, Z_l]_w(\phi, \psi) = 0.$$

Note that $[Z_j, Z_l] \psi = 0$ follows for $\psi \in \mathcal{H}$, since $Z_j, j = 1, \cdots, N$, is bounded. In this article we consider an generalization of the inequality

$$\int_{\mathbb{R}^N} \frac{1}{|r|^2} |u(r)|^2 \, dr \leq \frac{4}{(N-2)^2} \int_{\mathbb{R}^N} |\nabla u(r)|^2 \, dr, \quad N \geq 3.$$
This inequality is a basic one of Hardy’s uncertainty principle inequalities. For Hardy’s uncertainty inequalities, refer to e.g. [5, 6, 13].

Let us introduce the additional conditions.

(A.3) X_j is self-adjoint for all $1 \leq j \leq N$.

(A.4) X_i and Z_l strongly commutes for all $1 \leq j \leq N$ and $1 \leq l \leq N$.

Since Z_j, $j = 1, \cdots, N$, is bounded self-adjoint operator, we can set $\lambda_{\min}(Z)$ and $\lambda_{\max}(Z)$ by

$$\lambda_{\min}(Z) = \min_{1 \leq j \leq N} \inf \sigma(Z_j),$$

$$\lambda_{\max}(Z) = \max_{1 \leq j \leq N} \sup \sigma(Z_j),$$

where $\sigma(O)$ denotes the spectrum of the operator O.

Theorem 1 Assume (A.1)-(A.4). Let $\Psi \in \mathcal{D}(\|X\|^{-1}) \cap \mathcal{D}_X \cap \mathcal{D}_Y$. Then the following (1) and (2) hold

(1) If $N\lambda_{\min}(Z) - 2\lambda_{\max}(Z) > 0$, it follows that

$$\|X^{-1}\Psi\|^2 \leq \frac{4}{(N\lambda_{\min}(Z) - 2\lambda_{\max}(Z))^2} \sum_{j=1}^{N} \|Y_j \Psi\|^2.$$ \hspace{1cm} (1)

(2) If $2\lambda_{\min}(Z) - N\lambda_{\max}(Z) > 0$, it follows that

$$\|X^{-1}\Psi\|^2 \leq \frac{4}{(2\lambda_{\min}(Z) - N\lambda_{\max}(Z))^2} \sum_{j=1}^{N} \|Y_j \Psi\|^2.$$ \hspace{1cm} (2)

Before proving Theorem 1 let us consider the replacement of X and Y in Theorem 1. Let us introduce the following conditions substitute for (A.3) and (A.4).

(A.5) Y_j is self-adjoint for all $1 \leq j \leq N$.

(A.6) Y_i and Z_l strongly commutes for all $1 \leq j \leq N$ and $1 \leq l \leq N$.

It is seen from (A.2), that

$$[Y_j, X_i]^w(\phi, \psi) = \delta_{j,i}(\phi, i(-Z_j)\psi), \hspace{1cm} \phi, \psi \in \mathcal{D}_X \cap \mathcal{D}_Y.$$ \hspace{1cm} (3)

Note that $\inf \sigma(-Z_j) = -\sup(Z_j)$ and $\sup(-Z_j) = -\inf \sigma(Z_j)$ follow. Then we obtain a following corollary:
Corollary 2 Assume (A.1)-(A.2) and (A.5)-(A.6). Let $\Psi \in D(|Y|^{-1}) \cap D_X \cap D_Y$. Then the following (1) and (2) hold.
(1) If $2\lambda_{\min}(Z) - N\lambda_{\max}(Z) > 0$, it follows that
\[
\left\| |Y|^{-1}\Psi \right\|^2 \leq \frac{4}{(2\lambda_{\min}(Z) - N\lambda_{\max}(Z))^2} \sum_{j=1}^{N} \left\| X_j\Psi \right\|^2. \tag{4}
\]
(2) If $N\lambda_{\min}(Z) - 2\lambda_{\max}(Z) > 0$, it follows that
\[
\left\| |Y|^{-1}\Psi \right\|^2 \leq \frac{4}{(N\lambda_{\min}(Z) - 2\lambda_{\max}(Z))^2} \sum_{j=1}^{N} \left\| X_j\Psi \right\|^2. \tag{5}
\]

(Proof of Theorem)
(1) Let $\Psi \in D(|X|^{-1}) \cap D_X \cap D_Y$. For $\varepsilon > 0$ and $t > 0$, it is seen that
\[
\left\| (Y_j - itX_j(X^2 + \varepsilon)^{-1})\Psi \right\|^2 = \left\| Y_j\Psi \right\|^2 - it \left[Y_j, X_j(X^2 + \varepsilon)^{-1}\Psi, \Psi \right] + t^2 \left\| X_j(X^2 + \varepsilon)^{-1}\Psi \right\|^2. \tag{6}
\]
We see that
\[
[Y_j, X_j(X^2 + \varepsilon)^{-1}]\Psi = [Y_j, X_j](\Psi, (X^2 + \varepsilon)^{-1}\Psi) + [Y_j, (X^2 + \varepsilon)^{-1}]\Psi(X_j\Psi, \Psi). \tag{7}
\]
From (A.2) and (A.4), we obtain that
\[
[Y_j, X_j](\Psi, (X^2 + \varepsilon)^{-1}\Psi) = -i ((X^2 + \varepsilon)^{-1/2}\Psi, Z_j(X^2 + \varepsilon)^{-1/2}\Psi). \tag{8}
\]
Note that for a symmetric operator A and the non-negative symmetric operator B, the resolvent formula $[A, (B + \lambda)^{-1}]\Psi(v,u) = [B, A]^w((B + \lambda)^{-1}v, (B + \lambda)^{-1}u)$ for $\lambda > 0$ follows. Then by using this formula, (A.2) and (A.4) yield that
\[
[Y_j, (X^2 + \varepsilon)^{-1}]\Psi(X_j\Psi, \Psi) = 2i(X_j(X^2 + \varepsilon)^{-1}u, Z_jX_j(X^2 + \varepsilon)^{-1}u) \tag{9}
\]
Since $\left\| (Y_j - itX_j(X^2 + \varepsilon)^{-1})\Psi \right\|^2 \geq 0$ and $t > 0$, we see from (7), (8) and (9) that
\[
\left\| Y_j\Psi \right\|^2 \geq -t^2 \left\| X_j(X^2 + \varepsilon)^{-1} \right\|^2 + t \left[((X^2 + \varepsilon)^{-1/2}\Psi, Z_j(X^2 + \varepsilon)^{-1/2}u) - 2t(X_j(X^2 + \varepsilon)^{-1}u, Z_jX_j(X^2 + \varepsilon)^{-1}\Psi) \right] \\
\geq \left(-t^2 - 2t\lambda_{\max}(Z) \right) \left\| X_j(X^2 + \varepsilon)^{-1} \right\|^2 + t\lambda_{\min}(Z) \left\| (X^2 + \varepsilon)^{-1/2}\Psi \right\|^2. \tag{10}
\]
Then we have that
\[
\sum_{j=1}^{N} \left\| Y_j\Psi \right\|^2 \geq \left(-t^2 - 2t\lambda_{\max}(Z) \right) \left\| X(X^2 + \varepsilon)^{-1}\Psi \right\|^2 + tN\lambda_{\min}(Z) \left\| (X^2 + \varepsilon)^{-1/2}\Psi \right\|^2. \tag{11}
\]
Note that $\lim_{\varepsilon \to 0} \left\| X(X^2 + \varepsilon)^{-1}\Psi \right\|^2 = \left\| X^{-1}\Psi \right\|^2$ and $\lim_{\varepsilon \to 0} \left\| (X^2 + \varepsilon)^{-1/2}\Psi \right\|^2 = \left\| X^{-1}\Psi \right\| = 0$ follow from the spectral decomposition theorem. Then we have
\[
\sum_{j=1}^{N} \left\| Y_j\Psi \right\|^2 \geq \left(-t^2 + (N\lambda_{\min}(Z) - 2\lambda_{\max}(Z))t \right) \left\| X^{-1}\Psi \right\|^2. \tag{12}
\]
By taking \(t = \frac{N\lambda_{\text{min}}(Z) - 2\lambda_{\text{max}}(Z)}{2} > 0 \) in the right side of (12), we obtain (1).

(2) By computing \(\| (Y_j + iX_j(X^2 + \varepsilon)^{-1/2}) \Psi \|^2 \) for \(t > 0 \) and \(\varepsilon > 0 \), in a similar way of (1), we see that

\[
\| Y_j \Psi \|^2 \geq -t^2 \| X_j(X^2 + \varepsilon)^{-1}u \|^2 - t \lambda_{\text{min}}(Z) \| (X^2 + \varepsilon)^{-1/2} \Psi \|.
\]

Then by taking \(\varepsilon \to 0 \) in the right side of (13), it follows that

\[
\sum_{j=1}^{N} \| Y_j \Psi \|^2 \geq \left(-t^2 + (2\lambda_{\text{min}}(Z) - N\lambda_{\text{max}}(Z))t \right) \| X^{-1} \Psi \|.
\]

By taking \(t = \frac{(2\lambda_{\text{min}}(Z) - N\lambda_{\text{max}}(Z))}{2} > 0 \) in (14), we obtain (2). ■.

2 Applications

2.1 Time-Energy Uncertainty inequality

In this subsection we consider an application to the theory of time operators [2, 7]. Let \(H, T, \) and \(C \) be linear operators on a Hilbert space \(H \). It is said that \(H \) has the weak time operator \(T \) with the uncommutative factor \(C \) if \((H, T, C)\) satisfy the following conditions.

(T.1) \(H \) and \(T \) are symmetric.

(T.2) \(C \) is bounded and self-adjoint.

(T.3) It follows that for \(\phi, \psi \in D(H) \cap D(T) \),

\[[T, H]^{w}(\phi, \psi) = (\phi, C\psi). \]

(T.4)

\[\delta_{C} := \inf_{\psi \in \ker C \setminus \{0\}} \frac{|\langle \psi, C\psi \rangle|}{\| \psi \|^2} > 0. \]

Assume that \((H, T, C)\) satisfies (T.1)-(T.4). Then by using \(\| Au \| \| Bu \| \geq |\text{Im}(Au, Bu)| \geq \frac{1}{2} |A, B|^{w}(u, u)| \), it is seen that \((H, T, C)\) satisfies the time-energy uncertainty inequality ([2], Proposition 4.1):

\[
\| (H - < H \gamma > \psi) \Psi \| \| (T - < T \gamma > \psi) \Psi \| \geq \frac{\delta_{C}}{2}, \quad \psi \in D(H) \cap D(T),
\]

where \(< O \gamma > = (\gamma, O\psi) \). From (2) in Theorem 1 and (1) in Corollary 2, we obtain another type of the inequality between \(T \) and \(H \) :
Corollary 3 (Time-Energy Uncertainty Inequalities)
Assume (T.1)-(T.3). Then the following (i) and (ii) hold.
(i) If T is self-adjoint, C and T strongly commute, and $\sup \sigma(C) < 2 \inf \sigma(C)$, it follows that for $\psi \in \mathcal{D}(|T|^{-1}) \cap \mathcal{D}(T) \cap \mathcal{D}(H)$,

$$
\| |T|^{-1} \psi \| \leq \frac{2}{2 \inf \sigma(C) - \sup \sigma(C)} \| H \psi \|.
$$

(ii) If H is self-adjoint, C and H strongly commute, and $\sup \sigma(C) < 2 \inf \sigma(C)$, it follows that for $\psi \in \mathcal{D}(|H|^{-1}) \cap \mathcal{D}(H) \cap \mathcal{D}(T)$,

$$
\| |H|^{-1} \psi \| \leq \frac{2}{2 \inf \sigma(C) - \sup \sigma(C)} \| T \psi \|.
$$

2.2 Abstract Dirac Operators with Coulomb Potential

Next let us consider the application to abstract Dirac operators. We consider the self-adjoint operators $P = \{P_j\}_{j=1}^N$ and $Q = \{Q_j\}_{j=1}^N$ on a Hilbert space \mathcal{H}. Let us set a subspace $\mathcal{D} \subset \bigcap_{j,l}(\mathcal{D}(P_j) \cap \mathcal{D}(Q_l))$. It is said that $(\mathcal{H}, \mathcal{D}, P, Q)_N$ is the weak representation of the CCR with degree N, if \mathcal{D} is dense in \mathcal{H} and it follows that for $\phi, \psi \in \mathcal{D}$,

$$
[P_j, Q_l]^{w}(\phi, \psi) = i \delta_{j,l}(\phi, \psi),
[P_j, P_l]^{w}(\phi, \psi) = [Q_j, Q_l]^{w}(\phi, \psi) = 0.
$$

Let us define an abstract Dirac operator as follows. Let $(\mathcal{H}, \mathcal{D}, P, Q)_3$ be the weak representation of the CCR with degree three. Let $A = \{A_j\}_{j=1}^3$ and B be the bounded self-adjoint operators on a Hilbert space \mathcal{K}. Here $A = \{A_j\}_{j=1}^3$ and B satisfy the canonical anti-commutation relations $\{A_j, A_l\} = 2 \delta_{j,l}$, $\{A_j, B\} = 0$, $B^2 = I_\mathcal{K}$ where $I_\mathcal{K}$ is the identity operator on \mathcal{K}. The state Hilbert space space is defined by $\mathcal{H}_{\text{Dirac}} = \mathcal{K} \otimes \mathcal{H}$. The free abstract Dirac operator is defined by

$$
H_0 = \sum_{j=1}^3 A_j \otimes P_j + B \otimes M.
$$

Here we assume the following condition.

(D.1) P_j and P_l strongly commute for $1 \leq j \leq 3$, $1 \leq l \leq 3$. P_j, $1 \leq j \leq 3$, and M strongly commute.

Then it is seen that $H_0^2 \Psi = (P^2 + M^2) \Psi$ for $\Psi \in \mathcal{D}$. The abstract Dirac Operator with the Coulomb potential is defined by

$$
H(\kappa) = H_0 + \kappa I_\mathcal{K} \otimes |Q|^{-1},
$$

where $\kappa \in \mathbb{R}$ is a parameter called the coupling constant. We assume that the following condition holds.

(D.2) It follows that $\mathcal{D} \subset \mathcal{D}(Q|^{-1})$.

Then it follows from (1) in Theorem[1] that for $\psi \in \mathcal{D}$,

$$
\|I_\mathcal{K} \otimes |Q|^{-1} \psi\|^2 \leq 4 \sum_{j=1}^3 \|P_j \psi\|^2 \leq 4 \|H_0 \psi\|^2.
$$

Hence by the Kato-Rellich theorem, we obtain the following corollary.
Corollary 4 Assume (D.1) and (D.2). Then for $|\kappa| < \frac{1}{2}$, $H(\kappa)$ is essentially self-adjoint on \mathcal{D}.

Acknowledgments
It is pleasure to thank assistant professor Akito Suzuki and associate professor Fumio Hiroshima for their advice and comments.

References

[1] A.Arai, Mathematical principles of quantum phenomena, Asakura-syoten, 2005. (in japanese)
[2] A.Arai, Generalized weak Weyl relation and decay of quantum dynamics, Rev. Math. Phys. 17 (2005) 1071-1109.
[3] A.Arai, Heisenberg Operators, invariant domains and Heisenberg equations of motion, Rev. Math. Phys 19 (2007) 1045-1069.
[4] A.Arai, Spectrum of time operators. Lett. Math. Phys. 80 211-221 (2007).
[5] G.B.Folland and A.Sitaram, The uncertainty principle : A mathematical survey, J. Fourier Anal. Appl. 3 (1997) 207-238.
[6] V.Havin and B.Joricke, The uncertainty principle in harmonic analysis, Springer 1994.
[7] M.Miyamoto, A generalized Weyl relation approach to the time operator and its connection to the survival probability, J. Math. Phys 42 (2001) 1038-1052.
[8] J.G.Muga, R.S.Mayato,and I.L.Egsquiza (eds.), Time in quantum mechanics. Springer 2002.
[9] P.Pfeifer and J. Frölich, Generalized time-energy uncertainty relations and bounds on lifetimes of resonances, Rev. Mod. Phys. 67 (1995) 759-779.
[10] M.Reed and B.Simon, Methods of Modern Mathematical Physics Vol.II, Academic Press, 1979.
[11] K.Schmüdgen, On the Heisenberg commutation relationhn. I, J. Funct. Anal. 50 (1983) 8-49.
[12] B. Thaller, The Dirac equation, Springer, 1992.
[13] S.Thangavelu, An introduction to the uncertainty principle : Hardy’s theorem on Lie groups, Birkhäuser, 2004.