Genetic Interaction between Mutations in c-Myb and the KIX Domains of CBP and p300 Affects Multiple Blood Cell Lineages and Influences Both Gene Activation and Repression

Lawryn H. Kasper1, Tomofusa Fukuyama1, Stephanie Lerach1, Yunchao Chang1, Wu Xu1, Song Wu2, Kelli L. Boyd3, Paul K. Brindle1*

1 Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 2 Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 3 Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America

Abstract

Adult blood cell production or definitive hematopoiesis requires the transcription factor c-Myb. The closely related KAT3 histone acetyltransferases CBP (CREBBP) and p300 (EP300) bind c-Myb through their KIX domains and mice homozygous for a p300 KIX domain mutation exhibit multiple blood defects. Perplexingly, mice homozygous for the same KIX domain mutation in CBP have normal blood. Here we test the hypothesis that the CBP KIX domain contributes subordinately to hematopoiesis via a genetic interaction with c-Myb. We assessed hematopoiesis in mice bearing compound mutations of c-Myb and/or the KIX domains of CBP and p300, and measured the effect of KIX domain mutations on c-Myb-dependent gene expression. We found that in the context of a p300 KIX mutation, the CBP KIX domain mutation affects platelets, B cells, T cells, and red cells. Gene interaction (epistasis) analysis provides mechanistic evidence that blood defects in KIX mutant mice are consistent with reduced c-Myb and KIX interaction. Lastly, we demonstrated that the CBP and p300 KIX domains contribute to both c-Myb-dependent gene activation and repression. Together these results suggest that the KIX domains of CBP, and especially p300, are principal mediators of c-Myb-dependent gene activation and repression that is required for definitive hematopoiesis.

Introduction

The development of all adult hematopoietic stem cell-derived blood cell lineages requires the transcription factor c-Myb, although how it controls hematopoiesis remains unclear [1,2]. Transcription factors regulate target gene activity through interactions with coactivators and corepressors, and the BIOGRID database (thebiogrid.org, [3]) reports more than fifty c-Myb interacting proteins in mice and humans [4-47]. Although generally thought of as an activator of gene expression, recent findings show that c-Myb can also directly repress target genes [48]; however, details of how c-Myb-interaction partners affect these opposite transcriptional effects, and hematopoiesis, are not well understood.

Perhaps the most widely studied of c-Myb partners, CBP (CREB binding protein, Crebbp) and p300 (E1A binding protein p300, Ep300) reportedly interact with more than 400 other proteins [49]. Together CBP and p300 form the KAT3 family of acetyltransferases that add acetyl groups to lysines in histones and other proteins, although which of these CBP/p300
and mice lacking either CBP or p300 die before birth [54,55].

A schematic showing approximate locations of CBP and p300 domains [91]. Nuclear receptor interaction domain (NRID), the CREB-binding domain (KIX), Cys/His-rich region-1 (CH1 [57] or transcriptional-adaptor zinc-finger-1, TAZ1), bromodomain (Br), plant homeodomain (PHD), HAT enzymatic region, zinc-binding domain (ZZ), TAZ2 (aka CH3 [92]), and the nuclear receptor binding domain (NCBD).

(B) Alignment of the KIX domains of mouse and human p300 and CBP. Amino acids mutated in the KIX domain mutants are indicated with arrows. (C) Pulldown assay with the c-Myb transactivation domain (aa186-325) fused to GST using extracts from wild type (WT) and CBP Knockout (KO) mouse embryonic fibroblasts. Buffer C is extraction buffer without protein. (D) Transient transfection assay showing Gal-c-Myb 186-325 identical to the p300 KIX domain, hematopoiesis in mice homozygous for a comparable mutation in the KIX domain of p300 (Y650A, A654Q and Y658A, Figure 1B) appeared essentially normal [56]. This gene interaction (epistasis) experiment highlights the critical nature of the genetic interaction between c-Myb and the p300 KIX domain for normal megakaryocyte development in vivo. It remains unclear, however, whether other blood cell lineages also require the genetic interaction of c-Myb with the p300 or CBP KIX domain.

Although the sequence of the KIX domain of CBP is 90% identical to the p300 KIX domain, hematopoiesis in mice homozygous for a comparable mutation in the KIX domain of CBP (Y650A, A654Q and Y658A, Figure 1B) appeared essentially normal [56]. This disparity may be due to differences in protein expression (i.e. CBP and p300 have the same functions in blood cells) or biochemical properties (i.e. p300 has a different and more critical function in blood cells than CBP). While the KIX domain of p300 seems to be more critical in hematopoiesis than the KIX domain of CBP, multiple studies have established that both holo-CBP and p300 have important roles in normal blood cell production. Some of these roles seem to be unique to either CBP or p300: for example, analyses of aged mice revealed an increased prevalence of hematopoietic tumors and abnormalities affecting the B cell and myeloid lineages in mice heterozygous for a null allele of CBP, although no such defects were found in p300 null heterozygotes [60]. Similarly, CBP null, but not p300 null hematopoietic stem cells lose self renewal capacity, while p300 null, but not CBP null embryonic stem cells fail in normal blood cell differentiation in vitro [61]. Lineage-specific conditional knockout of CBP and p300 in specific lymphoid compartments have demonstrated that while CBP and p300 are each modestly important for B cells [62], CBP has a unique role in demarcating the development of innate and conventional T cells [63,64]. Importantly, Kimbrel et al. showed that three copies of CBP, the two endogenous alleles plus a CBP cDNA expressed from the p300 promoter, could rescue hematopoiesis in the absence of p300 protein [65]. This suggests that protein expression levels, rather than biochemical properties, may account for the distinct effects of mutating the KIX domains of CBP and p300 on hematopoiesis.

In this study we sought to answer four questions: 1) Does the KIX domain of CBP have a role in hematopoiesis? 2) Is genetic substrates are critical for gene regulation remains uncertain [50]. Histone acetylation is often associated with gene activation [51] and CBP and p300 are usually described as coactivators of gene expression; however, paradoxically p300 has been implicated in both direct activation and repression of genes by c-Myb [48].

Normal human development requires CBP and p300 [52,53], and mice lacking either CBP or p300 die before birth [54,55]. This lethality has necessitated studies using either conditional knockout alleles, which allow tissue specific gene inactivation or “knock-in” mice in which CBP and p300 proteins are expressed at normal levels but only specific protein interaction domains are mutated (e.g. CH1, KIX, Figure 1A) [56-58]. The use of domain-specific knock-ins is especially useful in limiting the effect of CBP and p300 mutations to a few specific CBP/p300-interacting proteins out of the hundreds that have been reported [49].

We previously designed a triple point mutation (Y631A, A635Q and Y639A) in the KIX domain of p300 that alters the binding surface for c-Myb and CREB, but which should maintain the secondary and tertiary structure of the domain (Figure 1B) [56]. In this way, these point mutations should specifically block proteins from binding that particular surface of the KIX domain, and not interfere with other surfaces of KIX or other domains of CBP/p300 and their protein interactions. To date, only CREB and c-Myb interactions have been shown to be affected by this mutation [56,59]. We showed previously that mice homozygous for this triple point mutation in the p300 KIX domain exhibit multi-lineage defects in hematopoiesis including severe anemia, B and T cell deficiencies, abnormal megakaryocytes and elevated platelet counts (Table 1) [56]. While blood from mice heterozygous for either a c-Myb null allele or the p300 KIX triple point mutation appears normal, combining these mutations in the same mouse (p300^{-/-}; c-Myb^{-/-}) synergistically affects megakaryocyte development and increases platelet counts without obvious changes in other peripheral blood cell numbers (Table 1) [56]. This gene interaction (epistasis) experiment highlights the critical nature of the genetic interaction between c-Myb and the p300 KIX domain for normal megakaryocyte development in vivo.
interaction between c-Myb and CBP/p300 KIX necessary for the normal production of other blood cell lineages besides megakaryocytes? 3) Does genetic interaction between c-Myb and KIX largely explain the phenotype of c-Myb and KIX mutant mice? and 4) Is the genetic interaction between c-Myb and KIX necessary for both activation and repression of c-Myb-dependent genes? To answer these questions, we assessed blood cell production in mice having compound mutations in c-Myb and/or the KIX domain in CBP and p300 and quantified the effect of KIX domain mutations on c-Myb-dependent changes in gene expression. Our findings suggest that through their KIX domains, CBP, and particularly p300, are the main effectors of the c-Myb-dependent gene activation and repression required for normal hematopoiesis.

Material and Methods

Animals

Animal experiments were approved by the St Jude Institutional Animal Care and Use Committee and performed in accordance with IACUC guidelines. Generation of the p300 and CBP KIX mutant alleles (Mouse Genome Informatics IDs 3578128 and 3578129) was described in Kasper et al. [56]. Note that the numbering of the p300 KIX mutations Tyr631Ala, Ala635Gln, and Tyr639Ala now coincide with more recent mouse p300 protein sequences (NCBI NP_808489.4 and Ensembl ENSMUSP00000066789) and are one position different than those originally listed in 2002. The c-Myb knockout allele (MGI ID 2662859) was described in Mucenski et al. [1]. Unless otherwise noted, mice analyzed in this study were C57BL/6J x 129Sv 6J hybrids generated from multiply-backcrossed congenic lines.

Plasmids and transient transfection assays

The Gal-c-Myb plasmid (aa 186 to 325) was described in Parker et al. [66]. The GST-c-Myb 186-325 plasmid was constructed in pGEX 4T-3 (GE Life Sciences) using an EcoR1/Smal fragment from Gal-c-Myb containing the c-Myb aa186 to 325 insert. Transient transfection assays using MEFs were performed as previously described using the Promega Dual Luciferase Reporter Assay Kit where reporter gene luciferase activity is normalized to cotransfected Renilla luciferase reporter activity [59]. MSCV c-Myb IRES GFP was a gift of Angelika Hoffmeyer.

Flow cytometry, FACs and hematopoietic analysis

Flow cytometry was performed on BD Biosciences FACS Calibur and FACS LSR instruments. FACs of CD4^+CD8^+ double positive thymocytes was performed on a BD Biosciences Aria. All antibodies were from Becton Dickinson, except the IL18R antibody was from R&D Systems. Complete blood counts were generated using a Hemavet Hematology machine. Thus, a mixed model was used (SAS

Table 1. Comparison of blood cell phenotypes between different c-Myb and p300 and/or CBP KIX domain mutant mice.

Relative blood cell abundance	Red	megas/platelets	B cells	Thymocytes	Monoocytes	Neutrophils	refs.
c-Myb^{+/+}	none	none	none	none	none	none	[1,82]
c-Myb^{+/-}	low	v high	v low	info	v low	v high	[83]
c-Myb^{+/KIX}	low	v high	v low	no info	v high	low	[90]
p300^{+/-}	low	v high	v low	no info	v low	v high	[25]
p300^{+/KIX}	norm	high	low	no info	norm	norm	[81]
p300^{+/KIX}/c-Myb^{+/-}	norm	high	norm	low norm	norm norm	norm norm	[56]
p300^{+/KIX}/CBP^{+/-}	low	v low	v low	v low	v low	norm norm	[81]
p300^{+/KIX}/CBP^{+/-}	norm	norm	norm	norm norm	norm norm	norm norm	[56]
c-Myb^{+/-}	norm	norm	norm	norm norm	norm norm	norm norm	[81]

Blood cell numbers are estimated compared to controls within own study as absent (none), very low (v low), low (norm), high or very high (v high). (no info) is indicated where no numbers for a cell type were reported in the original study and n.d. indicates analysis was not done. *Original c-Myb knockout mice indicated that megakaryocytic lineage was spared to some degree [1], but follow up work using chimeric mice showed that c-Myb^-/- cells did not contribute to megakaryocytes in adult mice [82]. †The c-Myb Fox allele is a hypomorph resulting in a reduced c-Myb protein level. c-Myb^{+/-} mice have 5-10% of normal c-Myb protein expression [83]. ‡The ENU induced Plt4 mutation equates to c-Myb V384D [90]. §Total lymphocyte count from peripheral blood given, but not split out into B and T cells [90]. ¶The ENU induced Plt6 mutation equates to p300 Y630N in the KIX domain [81]. #The KIX mutation is a triple point mutation: Y631A, A635Q and Y639A in p300 or Y630A, A654Q and Y658A in CBP.
9.1.3 software). Since no significant strain effect was detected between the C57BL/6J and C57BL/6J x 129Sv F1 mice used in this analysis, their data were combined to increase the power of the analysis. Mice used were one to two months old; the effect of age in this cohort was not significant and is excluded from the model. The mean and 95% confidence intervals were calculated for each cell type tested, and no multiple comparison adjustment was performed for this analysis.

Mouse embryonic fibroblasts (MEFs) and retroviral infection

Primary MEFs were generated as described from e14.5 C57BL/6J x 129Sv F1 embryos and were used between passage three and six [69]. Retrovirus was generated from MSCV-IRES-GFP (GFP control virus) and MSCV-c-Myb-IRES-GFP plasmids. MEFs were infected with retrovirus 6 days before RNA harvest.

Gene expression

RNA was isolated using Trizol (Life Technologies). Microarray platforms used were Affymetrix Mouse Genome 430v2 Arrays (MEF experiment) and Affymetrix HT MG-430 PM Arrays (KIX CD4+CD8+ double positive thymocyte experiment) and were analyzed using Spotfire software (TIBCO). Array data were deposited with ArrayExpress (E-MTAB-1973 and E-MTAB-1974). Reverse transcriptase reactions were performed using Superscript II (Life Technologies). qPCR was performed on MJ Research Opticon 1.7.3 software. Since no significant strain effect was detected between the C57BL/6J and C57BL/6J x 129Sv F1 mice used in this analysis, their data were combined to increase the power of the analysis. Mice used were one to two months old; the effect of age in this cohort was not significant and is excluded from the model. The mean and 95% confidence intervals were calculated for each cell type tested, and no multiple comparison adjustment was performed for this analysis.
Multiple blood cell lineages require the KIX domains of CBP and p300

Only about 40% of p300^{+/KIX}; CBP^{KIX/KIX} mice reached weaning age; however, the surviving mice appeared grossly normal (SLL, LHK data not shown). We examined the peripheral blood of 1-4 month old wild type (WT), triple-KIX p300^{+/KIX}; CBP^{KIX/KIX} and intermediate genotype control mice (p300^{+/KIX} single heterozygous, CBP^{KIX/KIX} homozygous, and p300^{+/KIX}; CBP^{KIX/KIX} compound heterozygous) by flow cytometry and complete blood count to determine the effect of mutant KIX alleles on cell numbers. We found that in triple-KIX p300^{+/KIX}; CBP^{KIX/KIX} mice, both platelet (Figure 3A) and reticulocyte (immature red cell, Figure 3B) counts were significantly elevated above all control mice. By contrast, triple-KIX p300^{+/KIX}; CBP^{KIX/KIX} mice displayed significantly lower hematocrits (percentage of red cells by volume, Figure 3C) and B cell numbers (Figure 3D) compared with all controls. Counts of CD4⁺ and CD8⁺ T cells in peripheral blood showed that these cell types were significantly diminished in triple-KIX p300^{+/KIX}; CBP^{KIX/KIX} mice compared with controls except for p300^{+/KIX}; CBP^{KIX/KIX} compound heterozygous mice, which showed the same trend, but did not achieve statistical significance (Figure 3E,F; CD4⁺ T cells were also moderately reduced in CBP^{KIX/KIX} mice). We also measured two myeloid lineage cells; neutrophil numbers showed a modest increase in triple-KIX p300^{+/KIX}; CBP^{KIX/KIX} mice compared with wild type, but not the other intermediate genotypes (Figure 3G), and monocyte numbers were not significantly affected (Figure 3H, p=0.36). These data confirm that in the context of a single KIX mutant allele of p300, the KIX domain of CBP is critical for the production of normal numbers of B and T cells, red cells and platelets.

Combining KIX and c-Myb mutant alleles results in epistatic effects on multiple blood cell lineages
consistent with KIX and c-Myb acting in the same pathway

We showed previously [56] using the genetic epistasis method of complex haploinsufficient interaction analysis [73] that mice compound heterozygous for p300ko and a c-Myb null allele exhibit abnormal megakaryocytes, increased platelet counts and reduced thymocyte numbers. These blood defects are not seen in p300ko or c-Myb-/- single heterozygotes [56]. Consistent with the physical binding of c-Myb to the KIX domain [20,66], this genetic experiment provided in vivo evidence that a reduced interaction between p300 KIX and c-Myb is responsible for these aspects of the blood defect in p300ko/xo mice (Table 1, p300ko/xo mice display both increased platelet counts and decreased thymocyte numbers compared with wild type littermates) [56]. However, it remained unclear from that experiment whether other blood cell defects seen in p300ko/xo mice, such as anemia and decreased B cell counts, depend on a genetic interaction between c-Myb and p300. Based on the phenotypic overlap between p300+/KIX;c-Myb-/-;p300-/-; and various c-Myb mutant mice (Table 1), we hypothesized that additional blood lineages require the interaction of the KIX domain and c-Myb, and that CBP, as well as p300, participates in a genetic interaction with c-Myb.

To test these hypotheses, we generated triple heterozygous (triplet-het) p300ko/xo;CBPko/xo; c-Myb-/- mice along with wild type, p300ko/xo;CBPko/xo and c-Myb-/- controls and analyzed their blood by flow cytometry and complete blood count. We found that the numbers of platelets, B cells and both CD4+ and CD8+ T cells differed significantly between triplet-het p300ko/xo;CBPko/xo; c-Myb-/- and all controls (Figure 4A-D). Triple-het p300ko/xo;CBPko/xo; c-Myb-/- mice displayed a lower average hematocrit than controls (42% compared with 45-47%), but the measurement only achieved significance compared with p300ko/xo;CBPko/xo compound heterozygous mice (Figure 4E). Neither neutrophil nor monocyte numbers were significantly altered in triplet-het p300ko/xo;CBPko/xo; c-Myb-/- mice (Figure 4F and G). Although not tested here, it is possible that these myeloid cells are from a yolk-sac derived lineage that is known to be independent of c-Myb [74].

We next determined whether a complex haploinsufficiency interaction between CBPko, p300ko and c-Myb null mutant alleles existed by using a statistical model to calculate epistasis [67]. In this model, epistasis is present when the effect of combined mutations (in this case the triplet-het p300ko/xo;CBPko/xo; c-Myb-/-) is greater than would be predicted from the phenotype of the intermediate genotypes (p300ko/xo;CBPko/xo and c-Myb-/-). Positive epistasis (a higher than expected phenotype compared to intermediate controls) and negative epistasis (lower than expected phenotype) are represented by positive and negative values respectively; a value of zero indicates no epistasis [68]. Platelet counts in triple-het p300ko/xo;CBPko/xo; c-Myb-/- mice showed the effect of positive epistasis (0.41 ± 0.15, mean epistasis value ± 95% confidence interval, Figure 4H), while B cell and both CD4+ and CD8+ T cell counts displayed negative epistasis (-1.35 ± 0.50, -1.08 ± 0.60 and -1.13 ± 0.50, Figure 4H). For hematocrit, the negative epistasis value was small; however, the 95% confidence interval did not overlap zero (-0.11 ± 0.08, Figure 4H). Neutrophils and monocytes in triple-het p300ko/xo;CBPko/xo; c-Myb-/- mice demonstrated no epistatic effects (-0.013 ± 0.61 and 0.16 ± 0.52, Figure 4H). Overall, the analysis indicates that a genetic interaction between c-Myb, CBP and p300 is limiting for the maintenance of normal numbers of platelets and lymphocytes.

The impact of this triple mutation combination on hematocrit was less robust, but there is strong homeostatic pressure to maintain red cell production, so even a small variance in hematocrit may be significant. In fact, increased reticulocyte (immature red cell) counts seen in triple-het p300ko/xo;CBPko/xo; c-Myb-/- mice show that red cell production is stressed and support the assertion that compensatory mechanisms are at work (Figure S1).
Both c-Myb activated and repressed transcription requires the KIX domains of CBP and p300

So far we have shown that KIX and c-Myb mutant mouse phenotypes overlap, and that p300

CBP(KIX) and c-Myb null mutant alleles can synergize. We next investigated whether c-

Myb-dependent gene expression requires the KIX domains of CBP and p300. For our initial studies we chose mouse embryonic fibroblasts (MEFs), over hematopoietic cells for three reasons: 1) sufficient numbers of phenotypically uniform primary MEFs with a p300

CBP(KIX) genotype can be obtained; 2) p300

CBP(KIX) MEFs are phenotypically similar to wild-type cells and do not have broad transcriptional defects (see blue probe sets in Figure 5A and B); and 3) MEFs possess little or no endogenous c-Myb allowing us to control c-

Myb expression by retroviral transduction (Figure S2). In this way we could more confidently identify Myb-responsive genes, and eliminate those genes that might depend on KIX via another transcription factor or are altered by developmental defects. Despite the lack of endogenous c-Myb in MEFs, the expression of many genes increased or decreased more than twofold in response to exogenous c-Myb (black probesets in wild-type cells and do not have broad transcriptional defects) (see black probe sets in Figure 5A and Table S1). Of the 446 genes uniquely probe sets induced or repressed at least twofold by exogenous c-Myb in wild type MEFs showed that 382 of 509 probe set signals (75%) were at least 1.5 fold higher in wild type + c-Myb MEFs compared with p300

CBP(KIX) + c-Myb MEFs (Figure 5A, probe sets in black and Table S1). Interestingly, of probe sets repressed at least 50% by c-Myb expression in wild type MEFs, 91 of 148 (61%) were at least 1.5 fold higher in p300

CBP(KIX) c-Myb MEFs than wild type + c-Myb MEFs (Figure 5B, probe sets in black and Table S1). Of the 444 genes uniquely identified with probe sets induced or repressed at least twofold by exogenous c-Myb in MEFs, 173 (39%) have previously been shown to recruit c-Myb in their vicinity by ChIP-seq [48]. However, only 26 of these 173 genes were similarly activated or repressed by c-Myb in both MEFs and the ER-inducible c-Myb expressing mouse myeloid precursor cells used in the ChIP-seq study [48] (Table S1) indicating that c-Myb regulation of target genes is highly dependent on cell type. Nonetheless, these data indicate that the KIX domains of CBP and p300 contribute to both c-Myb-dependent activation and repression of transcription.

Next, we sought to verify that the KIX domain has a similar role in endogenous c-Myb-dependent gene activation and repression using a hematopoietic cell type that normally expresses c-Myb. To do this, we utilized data from a study by Yuan et al. That identified genes regulated by T cell specific expression of many genes increased or decreased more than twofold in response to a particular stimulus, dependent on a specific transcription factor or expressed in a certain cell type) even if the changes to individual genes are small [75,76]. Amongst a diverse group of 79 other gene sets we analyzed by GSEA, the two c-Myb-dependent gene sets derived from the data of Yuan mice (see blue probe sets in Figure 6A and B); however, when we looked specifically at c-Myb-dependent gene expression (black probe sets in Figure 6A, B and Table S2), the result resembled the situation we observed in c-Myb expressing MEFs (Figure 5). Most c-Myb activated genes defined in c-Myb null DP thymocytes decreased in triple-KIX p300

CBP(KIX) DP thymocytes (Figure 6A, black probe sets, Table S2), while most c-Myb repressed genes increased (Figure 6B, black probe sets, Table S2), demonstrating that both activation and repression of many c-Myb-dependent genes require the KIX domain.

Both c-Myb activated and repressed gene sets are significantly enriched among genes differentially expressed between triple-KIX p300

CBP(KIX) and wild type CD4+CD8+ double positive thymocytes

To assess the statistical significance of this correlation, we included the c-Myb-dependent gene set generated from the c-Myb null CD4+CD8+ double positive (DP) thymocyte Affymetrix data set of Yuan et al. in a Gene Set Enrichment Analysis (GSEA) of our wild type and triple-KIX p300

CBP(KIX) DP thymocyte Affymetrix data [70,75]. GSEA is a computational method used to measure the coordinate regulation of sets of genes defined by biological criteria (e.g. activated or repressed in response to a particular stimulus, dependent on a specific transcription factor or expressed in a certain cell type) even if the changes to individual genes are small [75,76]. Amongst a diverse group of 79 other gene sets we analyzed by GSEA, the two c-Myb-dependent gene sets derived from the data of Yuan
et al. were significantly correlated with the KIX mutant data set (Figure 7A-D, false discovery rate (FDR) q = 0.0, family-wise error rate (FWER) p = 0.0) and followed the expected trend (i.e. wild type DP thymocytes expressed c-Myb activated genes more highly than \(p300^{+/KIX}; CBP^{+/KIX} \), and c-Myb repressed genes were expressed lower in wild type than \(p300^{+/KIX}; CBP^{+/KIX} \) DP thymocytes). Of the 283 genes uniquely identified with probe sets induced or repressed at least twofold by c-Myb in Yuan et al., 106 (38%) were shown to recruit c-Myb in their vicinity by ChIP-seq using ER-inducible c-Myb expressing myeloid precursor cells [48]. However, for only 20 of these 106 genes was the direction of regulation by c-Myb the same in both DP thymocytes and the myeloid cells used in the ChIP-seq experiment [48,70] (Table S2). While the agreement in DP thymocyte gene expression between KIX dependence in our study and c-Myb gene dependence in the study of Yuan et al. indicates that an intact KIX domain is required for much of c-Myb dependent gene expression, it appears that c-Myb target genes differ substantially between cell types.

Triple-KIX \(p300^{KIX}; CBP^{KIX/KIX} \) and **triple-het** \(p300^{+/KIX}; CBP^{+/KIX}; c-Myb^{+/−} \) mice recapitulate the abnormal CD4+CD8+CD25+ thymic population associated with loss of c-Myb

In the dataset from Yuan et al., one gene repressed by c-Myb in CD4+CD8+ DP thymocytes is **Il2ra**, which encodes CD25, the alpha chain of the IL2 receptor (Figure 7D) [70]. We...
2.5% and 28.7% ± 5.0% respectively, Figure S3A-E). Likewise, CD4 controls (Figure S3D,F and G). Likewise, CD4 thymocytes upregulated activated and repressed target genes [48], but whether the common pathway to affect many c-Myb-dependent genes and examined CD25 (IL2RA) protein expression in CD4+ population in triple-het previously that T cell-specific deletion of c-Myb using either had more CD4 9.8%, Figure 8E), which was not present in wild type (3.4% ±

The KIX domains of both CBP and p300 participate in the normal formation of multiple blood cell lineages

In our original study, the lack of a blood phenotype in CBP+/KIX mice compared with that seen in p300+/KIX mice surprised us [56]. We hypothesized that this difference was due to the relative amounts of CBP and p300 protein in a critical cell type rather than functional differences between CBP and p300 [56]. The findings of this study support this hypothesis. Triple-KIX p300+/KIX, CBP+/KIX mice display multiple blood lineage defects, while p300+/KIX and CBP+/KIX mice have normal blood (Figure 3); therefore, in this context, mutation of both CBP and p300 is necessary to produce a blood phenotype. Our results agree with the finding that in the absence of endogenous p300 protein, CBP produced from a CBP cDNA driven by the p300 promoter can rescue hematopoiesis [65]. In this regard, p300 KIX is more important than CBP KIX for hematopoiesis in mice, but in other organisms CBP might predominate and it may prove fruitful to look for CBP mutations in human and horse hematopoietic syndromes with phenotypic similarities to the p300+/KIX mice [56,79,80].

Multiple blood cell lineages require the genetic interaction between c-Myb and the KIX domains of CBP and p300

Several studies report phenotypic similarities between mice with mutations in the p300 and c-Myb domains through which they physically interact [25,56,81]. The complex haploinsufficiency analysis we performed previously [56] and here, tests for epistasis (gene interaction), which is a method to examine whether c-Myb and KIX might interact in vivo. Indeed, triple-het p300+/KIX, CBP+/KIX, c-Myb+/c mice showed evidence of epistasis, supporting the c-Myb:KIX common pathway hypothesis, most clearly for the lymphoid and megakaryocyte
intermediate genotype controls (Figure 4). This suggests that triple-het expression in mice (5-10% of normal) decimates B and T cell (Figure 4F,G and H). Previous studies have shown that the thymocytes (Figure 6) show that much of c-Myb-dependent c-Myb function impairs B, T and red cell production the most, numbers (Table 1) [25]. These data suggest a hierarchy: partial display decreased lymphocyte counts and hematocrit, elevated p300 adult blood cell lineages [1,82]; however, partial reductions in c-Myb protein level or diminutions of the KIX:c-Myb interaction affect blood cell lineages nonuniformly. Low c-Myb protein expression in mice (5-10% of normal) decimates B and T cell numbers and produces fetal liver cells that form few or no red cell or granulocytic myeloid (including neutrophil) lineage colonies, but generate more monocytic myeloid and megakaryocyte lineage colonies than wild type controls (Table 1) [83]. Similarly, mice homozygous for a single amino acid substitution (M303V) in the KIX-binding domain of c-Myb, which results in decreased c-Myb transactivation potential, display decreased lymphocyte counts and hematocrit, elevated numbers of platelets, but normal monocyte and neutrophil numbers (Table 1) [25]. These data suggest a hierarchy: partial c-Myb function impairs B, T and red cell production the most, sometimes spares myeloid cell types, and favors the megakaryocyte/platelet lineage. Indeed, none of the combinations of KIX and c-Myb mutant alleles utilized in this study (p300^{−/−}, triple-KIX p300^{−/−};CBP^{+/−} or triple-het p300^{−/−};CBP^{+/−};c-Myb^{−/−}) displayed a defect in the myeloid lineage cells (neutrophils and monocyte/macrophages) (Table 1). It is unclear whether normal production of the myeloid lineages requires less wild type CBP/p300 protein than other blood cell lineages (both triple-KIX p300^{−/−};CBP^{+/−} and triple-het p300^{−/−};CBP^{+/−};c-Myb^{−/−} mice have some wild type CBP and/or p300 protein), if c-Myb interacts with CBP/p300 via domains other than KIX or utilizes other cofactors, or if the remaining myeloid cells are c-Myb-independent [74,78].

The KIX domains of CBP and p300 contribute to both c-Myb-dependent activation and repression of transcription Our data from both c-Myb-expressing mouse embryonic fibroblasts (Figure 5) and CD4⁺CD8⁺ double positive thymocytes (Figure 6) show that much of c-Myb-dependent gene expression depends on the KIX domain. Since in both of our model systems one wild type allele of either CBP or p300 remains, we could not determine whether the unaffected minority of c-Myb-dependent genes are truly KIX-independent or if they receive sufficient coactivation from the remaining wild type CBP or p300.

Our observation that c-Myb repressed many genes in a KIX-dependent manner (Figures 5B and 6B) was initially unexpected. However, Zhao et al. recently showed using an estrogen inducible ER-c-Myb fusion expressing myeloid cell line that c-Myb and p300 are directly recruited to both c-Myb activated and repressed target genes [48]. They also compared bone marrow cells transduced with a retrovirus expressing wild type or L302A c-Myb (the L302A mutation ablates the interaction of c-Myb with the KIX domain [66]) and showed that most direct c-Myb activated (15 of 19) and repressed (29 of 34) genes tested were sensitive to L302A [48]. Analysis of granuloid/myeloid progenitor (GMP) cells, which express endogenous c-Myb, from wild type and Myb^{Ex308GE308G} mutant mice (the E308G mutation decreases c-Myb interaction with the KIX domain) [84] showed a similar mutation sensitivity for both c-Myb activated and repressed gene expression [48]. Our study did not address whether the c-Myb- and CBP/p300 KIX-dependent genes we observed were direct or indirect targets of these factors. However, our expression data nicely complement the study of Zhao et al. and demonstrate a clear role for the KIX domain in both c-Myb activated and repressed gene sets (Figures 5-7).

c-Myb may either activate or repress genes in a context dependent manner In comparing c-Myb-dependent genes from different studies, we were struck by how little overlap exists between the datasets [48,71,85-88]. This has been a challenge for those attempting to define c-Myb target genes and it is unclear how much can be explained by differences in cell types used and study design. Interestingly, recent attention to c-Myb repressed genes may offer a clue in this mystery. During GSEA analysis, we found that a gene expression dataset derived from analysis of wild type and Myb^{Ex4;Plt4} Lin[−] Sca-1⁺ c-kit[−] (LSK) hematopoietic precursor cells [71] was highly enriched in our analysis of wild type and p300^{−/−};CBP^{+/−} CD4⁺CD8⁺ double positive (DP) thymocytes (Figure 9, FDR q = 0.00079, FWER p = 0.0030). Although the Pit4 mutation (V384D) in Myb does not disrupt the interaction with CBP KIX or full-length p300 [89], it produces a similar phenotype to that seen in p300^{−/−} mice [90]. Surprisingly, the GSEA correlation we observed is largely reversed; most genes that are repressed in Myb^{Ex4;Plt4} LSK cells showed increased expression in p300^{−/−};CBP^{+/−} DP thymocytes compared to wild type (Figure 9). These data suggest that c-Myb in collaboration with CBP and p300 can either repress or activate the same genes based on as yet unknown cellular cues (e.g. LSK cells vs. DP thymocytes).

In all, our data suggest that while the KIX domain of p300 is more critical for murine hematopoiesis, the KIX domain of CBP also participates. We have shown that the functional interaction between c-Myb and the KIX domains of CBP and p300 impacts all of the blood cell lineages dysregulated by CBP/p300 KIX domain mutations; however, it remains unknown whether c-Myb-dependent myeloid lineage production also requires the c-Myb:KIX interaction. Lastly, while CBP and p300 are primarily known for their roles as coactivators, mutation of the KIX domain impacts both the repression and the activation of c-Myb-dependent genes. These findings provide mechanistic
insight into how c-Myb, p300, and CBP influence hematopoiesis, and establish the importance of the interaction between CBP/p300 KIX and c-Myb for multiple blood cell lineages.

Supporting Information

Figure S1. Combined KIX and c-Myb insufficiency produces a genetic interaction that affects reticulocyte number. Peripheral blood counts from 3-12 month old C57BL6x129Sv (F1) background mice. Counts from automated Hemavet complete blood count. Asterisks indicate significant p value by pairwise Tukey post test following one way ANOVA (* p<0.05, ** p<0.01, *** p<0.001). p300^{+/KIX};CBP^{+/KIX} data were left out of ANOVA and Tukey post test analyses because these genotypes were represented by a single mouse in this experiment. ANOVA p=0.0002.

(TIF)

Figure S2. Primary mouse embryonic fibroblasts (MEFs) have little or no endogenous c-Myb. Western blot of whole cell extracts from wild type and CBP^{+/KIX};p300^{+/KIX} MEFs transduced with c-Myb or control retrovirus (all retroviruses used express Green Fluorescent Protein (GFP) from an internal ribosomal entry site (IRES), c-Myb L302A is a c-Myb mutant that is not reported in this study). c-Myb was detected with clone 1-1 monoclonal antibody from Millipore.

(TIF)

Figure S3. CD25 is abnormally expressed on CD4⁺CD8⁺ double positive thymocytes from triple-KIX p300^{+/KIX};CBP^{+/KIX} mice, but intermediate KIX mutant genotypes as well as c-Myb⁺ mice are much less affected. CD25 expression on CD4⁺CD8⁺ double positive (DP) thymocytes from 5 week old C57Bl/6Jx129Sv F1 (A-E) and 4 week old C57Bl/6J (F,G) mice.

(TIF)

Table S1. Affymetrix microarray probe sets from Figure 5 (from microarray data set deposited with ArrayExpress (E-MTAB-1973)) showing the expression in wild type (WT) and p300^{+/KIX}; CBP^{+/KIX} primary mouse embryonic fibroblasts (MEFs) transduced with MSCV c-Myb IRES GFP (c-Myb) retrovirus of genes that were induced or repressed at least twofold by exogenous c-Myb in wild type MEFs.

(XLSX)

Table S2. Affymetrix microarray probe sets from Figure 6 (from microarray data set deposited with ArrayExpress (E-MTAB-1974)) showing the expression in wild type (WT) and triple-KIX p300^{+/KIX}; CBP^{+/KIX} CD4⁺CD8⁺ double positive (DP) thymocytes of genes that were induced or repressed at least twofold by c-Myb KO in a study by Yuan et al. that identified genes regulated by T cell specific inactivation of c-Myb in CD4⁺CD8⁺ double positive (DP) thymocytes.

(XLSX)

Acknowledgements

We thank Angelika Hoffmeyer for MSCV-c-Myb-IRES plasmid, Geoff Neale for advice on microarrays, Ryszard Korona for advice on calculating epistasis, Richard Cross, Stacie Woolard and the Flow Cytometry and Cell Sorting Shared Resource for flow cytometry, the Hartwell Center for Affymetrix microarrays and Celeste Barlow and the Animal Resource Center for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: LHK TF PKB. Performed the experiments: LHK TF SL YC WX. Analyzed the data: LHK TF SW KLB PKB. Wrote the manuscript: LHK PKB.
Hematopoiesis and the Myb:KIX Genetic Interaction

1. Mucenski ML, McLain K, Kier AB, Sadowski SH, Schreiner CM et al. (1991) A functional c-myc gene is required for normal murine fetal hepatic hematopoiesis. Cell 65: 677-689. doi: 10.1016/0092-8674(91)90099-K. PubMed: 1709952.

2. Tober J, McGrath KE, Pallis J (2008) Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-Myb. Blood: 111: 2636-2639. doi: 10.1182/blood-2007-11-124855. PubMed: 18174377.

3. Chatr-Aryamonti A, Breitbart JK, Heinicke S, Boucher L, Winter A et al. (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41: D616-D623. doi: 10.1093/nar/gks1158. PubMed: 23038989.

4. Dash AB, Orrico FC, Ness SA (1996) The EVES motif mediates both intramolecular and intermolecular regulation of c-Myb. Genes Dev 10: 1858-1869. doi: 10.1101/gad.10.10.1858. PubMed: 8786344.

5. Hedge SP, Kumar A, Kurschner C, Shapiro LH (1996) c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation. Mol Cell Biol 16: 2729-2737. PubMed: 9566862.

6. Ness SA (1999) Myb binding proteins: regulators and cohorts in transformation. Oncogene 18: 3039-3046. doi: 10.1038/sj.onc.1202726. PubMed: 10378699.

7. Kowenz-Leutz E, Leutz A (1999) A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. Mol Cell 4: 735-743. doi: 10.1016/S1097-2765(00)80384-6. PubMed: 10619021.

8. Murre C, Gertler F, Chumakov AM, Müller C, Friedman AD et al. (1999) C/EBP epsilon directly interacts with the DNA binding domain of c-myc and cooperatively activates transcription of myeloid promoters. Blood 93: 3327-3337. PubMed: 10233885.

9. Tanikawa J, Ichikawa-Iwata E, Kanei-Ishii C, Nakai A, Matsuzawa S et al. (2000) Nuclear export, a novel partner for the Myb transcription factor family that regulates their activity. J Biol Chem 275: 4152-4158. doi: 10.1074/jbc.M000372200. PubMed: 10747903.

10. Ying GG, Proost P, van Damme J, Bruschi M, Introna M et al. (2000) Nucleolin, a novel partner for the Myb transcription factor family that regulates their activity. J Biol Chem 275: 4152-4158. doi: 10.1074/jbc.M000372200. PubMed: 10747903.

11. Nicot C, Mahieux R, Pise-Masison C, Brady J, Gessain A et al. (2001) Nuclear export, a novel partner for the Myb transcription factor family that regulates their activity. J Biol Chem 275: 4152-4158. doi: 10.1074/jbc.M000372200. PubMed: 10747903.

12. Kowenz-Leutz E, Leutz A (1999) A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. Mol Cell 4: 735-743. doi: 10.1016/S1097-2765(00)80384-6. PubMed: 10619021.

13. Sramko M, Markus J, Kabat J, Wolff L, Bies J (2006) Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 281: 40065-40075. doi: 10.1074/jbc.M609404200. PubMed: 17077080.

14. Saether T, Benge T, Ledasaa M, Maftei V, Am-Kristiansen AH et al. (2007) The chromatin remodelling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 282: 13994-14005. doi: 10.1074/jbc.M700755200. PubMed: 17344210.

15. Mertz JA, Kobayashi R, Dudley JP (2007) ALY is a common coactivator of RUNX1 and c-myc on the type B leukemogenic virus enhancer. J Biol Chem 282: 2636-2639. doi: 10.1074/jbc.M804340200. PubMed: 17229714.

16. Kanei-Ishii C, Nomura T, Takagi T, Watanabe N, Nakayama KI et al. (2008) Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myc for nemo-like kinase (NLK)-induced degradation. J Biol Chem 283: 30540-30548. doi: 10.1074/jbc.M804340200. PubMed: 18765672.

17. Pani E, Menigatti M, Schubert S, Hess D, Gernits B et al. (2008) Pin1 interacts with c-Myc in a phosphorylation-dependent manner and regulates its transcription activity. Biochim Biophys Acta 1783: 1121-1128. doi: 10.1016/j.bbamcr.2008.02.020. PubMed: 18359295.

18. Shi Y, Ko S, Kim S, Echchagida I, Oh TS et al. (2008) Loss of androgen receptor in aging and oxidative stress through Myb protooncoprotein-associated reciprocal chromatin dynamics of p53 and poly(ADP-ribose) polymerase PARP-1. J Biol Chem 283: 36474-36485. doi: 10.1074/jbc.M700720200. PubMed: 18291164.

19. Pham LV, Zhou HJ, Lin-Lee YC, Tamayo AT, Yoshimura LC et al. (2008) Nuclear tumor necrosis factor receptor-associated factor-6 in lymphoid cells negatively regulates c-Myc-mediated transcription through small ubiquitin-related modifier-1 modification. J Biol Chem 283: 5081-5089. doi: 10.1074/jbc.M700720200. PubMed: 18291164.

20. Fang F, Ryczyn MA, Cleveenger CV (2009) Role of c-Myc during prolactin-induced signal transducer and activator of transcription 5a signaling in breast cancer cells. Endocrinology 150: 1597-1606. doi: 10.1210/ebi.2008-1079. PubMed: 19039376.

21. Kitagawa K, Hirokawa T, Uchida Y, Shibata H, Kato R et al. (2007) Fbxw7 promotes ubiquitin-dependent degradation of c-Myc: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myc. Oncogene 26: 2393-2405. doi: 10.1038/onc.2007.111. PubMed: 17867545.

22. Egoh A, Nosuke Kansashi S, Kanei-Ishii C, Nomura T, Ishii S (2010) Ribosomal protein L4 positively regulates activity of a c-myc protooncoprotein gene. Genes Cells 15: 829-841. PubMed: 20604857.

23. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB et al. (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140: 744-752. doi: 10.1016/j.cell.2010.01.044. PubMed: 20211142.

24. Jin S, Zhao H, Yi Y, Nakata Y, Kalota A et al. (2010) c-Myc binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemias. J Clin Invest 120: 593-605. doi: 10.1172/JCI38030. PubMed: 20093773.

25. Miyamoto-Sato E, Fujimori S, Ishizaka M, Hira N, Masuoka K et al. (2010) A comprehensive resource of interacting protein regions for human transcription factor networks. PLOS ONE 5: e9229. doi: 10.1371/journal.pone.0009289. PubMed: 20195357.

26. Alm-Kristiansen AH, Lorenzo PI, Molvaeorysrk AR, Maftei V, Ledasaa M et al. (2011) PIA15 interacts with FLASH and enhances its co-activation of c-Myc. Mol Cancer 10: 21. doi: 10.1186/1476-4598-10-21. PubMed: 21338522.

27. Jin W, Liu Y, Chen L, Zhu H, Di GH et al. (2011) Involvement of Mydod and c-myc in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res Treat 125: 699-713. doi: 10.1007/s10549-010-0678-1. PubMed: 20364306.
nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated CBP and p300 histone acetyltransferases. Epigenetics 5: 9-15. doi: 10.1038/376348a0. PubMed: 7630403.

S0925-4773(00)00360-9. PubMed: 10906457.

Yao TP, Oh SP, Fuchs M, Zhou ND, Ch'ng LE et al. (2000) Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev 95: 133-145. doi: 10.1016/S0925-4773(00)00360-9. PubMed: 10906457.

Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M et al. (2005) Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24: 3846-3856. doi: 10.1038/sj.emboj.7600846. PubMed: 16237459.

Yuan J, Crittenden RB, Bender TP (2010) C-myc promotes the survival of CD4+CD8+ double-positive thymocytes through upregulation of Bcl-xL. J Immunol 184: 2783-2804. doi:10.4049/jimmunol.0902846. PubMed: 20124358.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545-15550. doi:10.1073/pnas.05065910102. PubMed: 16199517.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 227-233. doi:10.1038/ng1075. PubMed: 12934351.

Steenstra DP, Pardanani A, Stevenson WS, Hoyt R, Klu H et al. (2006) More on Myb in myelofibrosis: molecular analyses of MYB and EP300 in 55 patients with myeloproliferative disorders. Blood 107: 1733-1735; author reply 10.1088/2005-09-3646. PubMed: 16461764.

Tallmadge RL, Stokol T, Gould-Earley MJ, Earley E, Secor EJ et al. (2012) Fell Pony syndrome: characterization of developmental hematopoiesis failure and associated gene expression profiles. Clin
81. Kauppi M, Murphy JM, de Graaf CA, Hyland CD, Greig KT et al. (2008) Point mutation in the gene encoding p300 suppresses thrombocytopenia in Mpl-/- mice. Blood 112: 3148-3153. doi:10.1182/blood-2007-10-119677. PubMed: 18684867.

82. Sumner R, Crawford A, Mucenski M, Frampton J (2000) Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 19: 3335-3342. doi:10.1038/sj.onc.1203660. PubMed: 10916950.

83. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G et al. (2003) Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22: 4476-4488. doi:10.1093/emboj/cdg434. PubMed: 12941699.

84. Papathanasiou P, Tunningley R, Pattabiraman DR, Ye P, Gonda TJ et al. (2010) A recessive screen for genes regulating hematopoietic stem cells. Blood 116: 5849-5858. doi:10.1182/blood-2010-04-269951. PubMed: 20610815.

85. Chen J, Bender TP (2001) A novel system to identify Myb target promoters in Friend murine erythroleukemia cells. Blood Cells, Molecules, and Diseases 27: 429-436. doi:10.1006/bcmd.2001.0401.

86. Lang G, White JR, Argent-Katwala MJ, Allinson CG, Weston K (2005) Myb proteins regulate the expression of diverse target genes.

87. Lorenzo PI, Brendeford EM, Giffian S, Gavrilov AA, Leedesak M et al. (2011) Identification of c-Myb Target Genes in K562 Cells Reveals a Role for c-Myb as a Master Regulator. Genes Cancer 2: 805-817. PubMed: 22393465.

88. Quintana AM, Liu F, O'Rourke JP, Ness SA (2011) Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer 11: 30. doi:10.1186/1471-2407-11-30. PubMed: 21261996.

89. Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ (2009) Mutations in multiple domains of c-Myb disrupt interaction with CBP/p300 and abrogate myeloid transforming ability. Mol Cancer Res 7: 1477-1486. doi:10.1158/1541-7786.MCR-09-0070. PubMed: 19737967.

90. Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD et al. (2004) Suppressor screen in Mpl-/- mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci U S A 101: 6553-6558. doi:10.1073/pnas.0401496101. PubMed: 15071178.

91. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6: 197-208. doi:10.1038/nrm1589. PubMed: 15739886.

92. De Guzman RN, Liu HY, Martinez-Yamout M, Dyson HJ, Wright PE (2000) Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J Mol Biol 303: 243-253.