Critical exponents for an impurity in a bosonic Josephson junction

J. Mumford and D. H. J. O’Dell

Department of Physics and Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada

(Dated: October 2, 2014)

We use fidelity susceptibility to calculate quantum critical scaling exponents for a system consisting of N identical bosons interacting with a single impurity atom in a double well potential (bosonic Josephson junction). Above a critical value of the boson-impurity interaction energy there is a spontaneous breaking of Z_2 symmetry corresponding to a second order quantum phase transition from a balanced to an imbalanced number of particles in either the left or right hand well. We show that the exponents match those in the Lipkin-Meshkov-Glick and Dicke models suggesting that the impurity model is in the same universality class. We also point out that an impurity in a bosonic Josephson junction serves as a toy model for quantum measurement in which wave function collapse occurs as a phase transition.

PACS numbers: 03.75.Lm, 05.30.Rt, 03.65.Ta

I. INTRODUCTION

The fate of a single particle tunnelling in a many-body environment is a subject of fundamental interest not least because of its connection to the decoherence problem in quantum mechanics [1, 2]. In this paper we study a related system consisting of a single impurity atom tunnelling between the wells of a double well potential in the presence of N indistinguishable bosonic atoms. The latter bosonic atoms are assumed to also be trapped in the same double well potential and thus form a bosonic Josephson junction. This setup can be considered to be an elementary example of a Bose-Fermi mixture although, because the statistics of the impurity do not matter, in practice it can be a boson of the same species but in a different internal state. The prospects for realizing such a system in the laboratory are reasonably promising: a large number of experiments have studied ultracold bosons trapped in external double well potentials [3–11], and others have realized the same effective system in a single trap but where two internal states of the atoms are coupled by microwave/radio frequency fields (internal Josephson effect) [12, 13]. Adding a well defined number of impurities is not easy but there has been some progress in this direction in optical lattices [14, 15].

A theoretical analysis of a bosonic Josephson junction with an impurity has been given by Rinck and Bruder [10], who found that by applying a tilt to the double well a multi-particle tunnelling resonance could be induced towards a state where the impurity was expelled to the higher lying well. Subsequently, we undertook a study comparing the mean-field versus the many-body properties and described the appearance of a pitchfork bifurcation in the ground state of the mean-field theory above a certain critical value W_c of the boson-impurity interaction strength [17]. The bifurcation arises from the spontaneous localization of the impurity in one of the wells together with a localization of a majority of bosons in the opposite well (assuming repulsive interactions). In the quantum version this is associated with a saturation of the entanglement entropy between the impurity and the bosons at $S = k_B \ln 2$ and the establishment of a Schrödinger cat state, i.e. a superposition of localizations in either well. Indeed, the system can be viewed as a quantum measurement device with the bosons acting as a meter which indicates the position of the microscopic impurity atom. This meter can be tuned between being quantum (small N) and classical (large N).

In a further study [18], we argued that in many respects the impurity system behaves like the celebrated Dicke model [19] for N two-level atoms coupled to a single mode of the electromagnetic field whose Hamiltonian takes the form

$$\hat{H}_{\text{Dicke}} = \hbar \omega \hat{a}^\dagger \hat{a} + \omega_0 \hat{S}_z + \frac{2}{\sqrt{N}} \lambda (\hat{a} + \hat{a}^\dagger) \hat{S}_x. \quad (1)$$

Here \hat{a} and \hat{a}^\dagger annihilate and create, respectively, a photon of energy $\hbar \omega$ in the electromagnetic field and \hat{S}_x and \hat{S}_z are collective spin operators that arise from treating the two-level atoms, whose levels are separated by energy $\hbar \omega_0$, as pseudospins. \hat{S}_x measures half the difference between the number of atoms in the excited state and the ground state and it eigenvalues lie in the range $-N/2 \ldots N/2$. $\tilde{S}_x = (\hat{S}_x - \hat{S}_-)/2$ measures the coherence between the excited and ground states of the atoms and $\hat{a} + \hat{a}^\dagger$ is proportional to the position operator for the harmonic oscillator associated with the electromagnetic field. In a related pseudospin formulation the Hamiltonian for the bosonic Josephson junction plus impurity can be written (see Section III for details)

$$\hat{H} = 2 N J^a \tilde{S}_z^a + 2 J \tilde{S}_z + 2 W \tilde{S}_x^a \tilde{S}_x \quad (2)$$

where the superscript ‘a’ denotes the impurity; J and J^a are the bare hopping frequencies between the two wells for the bosons and impurity, respectively, and W parameterizes the boson-impurity coupling strength. In this form the impurity model is reminiscent of the Mermin central-spin model where a distinguishable central-spin is surrounded by N spins on a lattice [21, 23].
the impurity model \hat{S}_z measures the coherence of the bosons between the two wells, or, equivalently, half the difference in the number of bosons in the antisymmetric and symmetric modes formed, respectively, from the odd and even combinations of the modes associated with each well. \hat{S}_z measures half the number difference between the two wells, or, equivalently, the coherence between their symmetric and antisymmetric combinations. S_x^c and S_z^c are the corresponding quantities for the impurity. In the thermodynamic limit where $N \to \infty$, the ground state of the Dicke model undergoes a second order phase transition due to a spontaneous breaking of \mathbb{Z}_2 symmetry at the critical coupling strength $\lambda_c = \sqrt{\omega \omega_0}/2$ \cite{24, 25}. This phase transition (PT) bears a very close resemblance to the bifurcation that occurs in the impurity model at $W_c = \sqrt{J J^a}/2$. \hfill (3)

In the Dicke case the ground state below the transition ($\lambda < \lambda_c$) is known as the normal state and is characterized by $\langle S_x^c \rangle = 0$ and $\langle \hat{a} + \hat{a}^\dagger \rangle = 0$, whereas the ground state above the transition is known as the superradiant state because it corresponds to a spontaneous macroscopic excitation of the electromagnetic field with both $\langle S_x^c \rangle \neq 0$ and $\langle \hat{a} + \hat{a}^\dagger \rangle \neq 0$. Analogous ground states occur for the impurity model: when $W < W_c$ both the boson and the impurity probability distributions are symmetric $\langle S_x^c \rangle = 0$ and $\langle \hat{a} + \hat{a}^\dagger \rangle = 0$ and both expectation values acquire finite values in the symmetry broken state occurring when $W > W_c$. Furthermore, the dependence of the ground state energy upon the scaled parameters W/W_c and λ/λ_c is identical in the two models in the immediate vicinity of the transition $\cite{18}$. It is also notable that the mean-field dynamics is in both cases regular below the transition and chaotic above it $\cite{18, 20}$. In this paper we shall further investigate the bifurcation in the impurity model by calculating the critical exponents in order to establish whether it is indeed a second order phase transition in the same universality class as that in the Dicke model.

Although both the Dicke and Impurity models share many common features there is one glaring difference: the Dicke model couples N spin-1/2 particles to a harmonic oscillator whereas the impurity model couples N spin-1/2 particles to one other spin. In essence the impurity model truncates the harmonic oscillator Hilbert space to just two states, the ground state and the first excited state. The spin-1/2 representing the impurity can never become macroscopically excited like the simple harmonic oscillator can. It is therefore quite remarkable that the impurity model behaves like the Dicke model, but the evidence we present here, building upon that accumulated in $\cite{17}$ and $\cite{18}$, supports the point of view that very close the transition where the impurity/harmonic oscillator is barely excited a two state Hilbert space for the impurity/electromagnetic field oscillator suffices to describe the critical properties.

In order to investigate the critical behavior and obtain the critical scaling exponents we shall calculate the fidelity susceptibility of the ground state. Over the past decade the concept of fidelity, which originated in quantum information theory $\cite{20}$, has gained wide use in analyzing critical behavior and classifying the universality of systems. It is most commonly used to quantify changes in the ground state of a system over a PT. This is done by calculating the product between the ground state with itself at different points in parameter space

$$F(W, \delta W) = \langle |\psi_0(W)\psi_0(W + \delta W)| \rangle \hfill (4)$$

where W is the tunable parameter that drives the PT and ψ_0 is the ground state. It is expected that $F(W, \delta W)$ will tend to unity away from the critical region and reach a minimum when $W = W_c - \delta W/2$ where the scalar product will be between the ground state below and above the critical point. The fidelity was first demonstrated in the one-dimensional (1D) XY model where it was shown to decrease to a minimum near the critical point $\cite{27}$. Furthermore, excited state fidelity has been used to characterize quantum phase transitions (QPT) where the ground state fidelity has failed $\cite{28}$. Since the fidelity is a quantity depending only on the geometry of the Hilbert space and requires no knowledge of the order parameter it is useful in cases when the order parameter of a system is not always obvious and has been studied in a variety of systems $\cite{29-31}$. That being said, a more sensitive and natural quantity to study where no a priori knowledge of the system is needed, is the fidelity susceptibility (FS) $\cite{32, 33}$. The FS measures the response of the fidelity to infinitesimal changes in the driving parameter of the system. It is closely related to the second derivative of the ground state energy with respect to the driving parameter, $\frac{\partial^2 E_0}{\partial \delta W^2}$, so the FS is also similar to the magnetic susceptibility or specific heat when the driving parameters are the magnetic field and temperature, respectively. This means the FS can be used to study the critical behaviour of a system through calculations of scaling exponents.

In this paper we add to work done by others $\cite{34, 36}$ regarding the scaling and criticality of bosons in a double well potential. We follow standard steps $\cite{37, 38}$ to show that the FS can be used to calculate scaling exponents for a general system. We then use the FS to focus on the critical behaviour of the two-site boson-impurity Hubbard model. The paper is organized in the following way: In Sec \hbox{III} we go into more detail about our model for the physical system under study. In Sec \hbox{III} we show how critical scaling exponents can be extracted from the FS. In Sec \hbox{IV} we apply the methods of Sec \hbox{III} to our system as well as extrapolate data to find numerical values for W_c. In Sec \hbox{V} we find the FS critical exponents analytically and in Sec \hbox{V} we give a summary and outlook for further work. Some of the details of the analytic calculations have been placed in an appendix.
II. MODEL

We model the bosonic Josephson junction plus impurity system using the two-site Bose Hubbard Hamiltonian

\[\hat{H} = -NJ^a \hat{A} - J \hat{B} + \frac{W}{2} \Delta \hat{N} \Delta \hat{M}. \]

(5)

Here, \(\Delta \hat{N} \equiv \hat{b}^\dagger_R \hat{b}_R - \hat{b}^\dagger_L \hat{b}_L \) is the number difference operator between the two wells for the bosons and \(\hat{B} \equiv \hat{b}^\dagger_L \hat{b}_R + \hat{b}^\dagger_R \hat{b}_L \) is the boson hopping operator. \(\Delta \hat{M} = \hat{a}^\dagger_R \hat{a}_R - \hat{a}^\dagger_L \hat{a}_L \) and \(\hat{A} \equiv \hat{a}^\dagger_L \hat{a}_R + \hat{a}^\dagger_R \hat{a}_L \) are the equivalent operators for the impurity. The L and R subscripts denote the left and right modes and the creation/annihilation operators follow the usual bosonic commutation relations, i.e. \([\hat{b}_\alpha, \hat{b}^\dagger_\beta] = [\hat{a}_\alpha, \hat{a}^\dagger_\beta] = 1\) with \(\alpha = L, R \) and all other combinations of the boson and impurity operators are zero. The scaling by \(N \) in the first term in Eq. (5) is applied so that every term is \(O(N) \) and therefore \(W_c \) takes a finite value in the thermodynamic limit. The pseudospin formulation of the Hamiltonian given in Eq. (2) is obtained from Eq. (5) by introducing the symmetric and antisymmetric combinations of the L and R modes: \(\hat{b}_L \equiv \frac{1}{\sqrt{2}} (\hat{b}_S + \hat{b}_{AS}) \) and \(\hat{b}_R \equiv \frac{1}{\sqrt{2}} (\hat{b}_S - \hat{b}_{AS}) \), and then applying Schwinger’s oscillator model for angular momentum \(S_\pm = (\hat{b}^\dagger_{AS} \hat{b}_S - \hat{b}^\dagger_{S} \hat{b}_{AS})/2 = \hat{B}/2 \) and \(S_z = (\hat{b}^\dagger_{AS} \hat{b}_S + \hat{b}^\dagger_{S} \hat{b}_{AS})/2 = -\Delta \hat{N}/2 \). An analogous set of transformations apply to the impurity.

We do not include direct boson-boson intra-well (or inter-well) interactions in our calculations and assume they can be removed (or the boson-impurity interaction enhanced) by a Feshbach resonance if necessary. We do this both to highlight the effect of the impurity and also because it turns out not to change the results in a qualitative way. Indeed, the nonlinearity due to the boson-impurity interactions can lead to very similar results as those resulting from the boson-impurity interaction (the impurity can be viewed as mediating an effective interaction between the bosons). In the case of repulsive boson-boson interactions, a purely bosonic system has no PT in the ground state but does experience a symmetry breaking bifurcation in the excited states known as macroscopic self-trapping \([10, 11] \) which has been seen in experiments \([6] \). If, on the other hand, the boson-boson interactions are attractive then there is a \(\mathbb{Z}_2 \) symmetry breaking PT in the ground state above a critical interaction strength where the bosons clump together in a single well. This PT has been studied by Buonsante et al \([36] \) and we shall find that the PT in our system falls in the same universality class.

In previous work we found through stability analysis around the mean-field stationary points \([18] \) that a pitchfork bifurcation of \(\Delta N \) occurs at a critical value of the boson-impurity interaction \(W_c \) given above in Eq. (5). For \(W < W_c \), \(\Delta N = 0 \) and the bosons occupy each well equally. Above \(W_c \) it becomes energetically favourable for the bosons to build-up in one well and the impurity to be localized in the opposite well. This transition corresponds to the breaking of the \(\mathbb{Z}_2 \) symmetry characterized by

\[(\Delta \hat{M}, \Delta \hat{N}, \hat{A}, \hat{B}) \rightarrow (-\Delta \hat{M}, -\Delta \hat{N}, \hat{A}, \hat{B}). \]

(6)

We will consider \(W \) as the driving parameter and will analyze the system’s response to infinitesimal changes in it through the FS.

III. FIDELITY SUSCEPTIBILITY

As mentioned in the introduction, a more sensitive quantity than the fidelity is the FS which we shall denote by \(\chi_F \). The two are related through the Taylor expansion of Eq. (5) to second order

\[F(W, \delta W) \approx 1 - \frac{\chi_F(W)}{2} (\delta W)^2 + \ldots. \]

(7)

It can be viewed as the system’s response to an infinitesimal change in the driving parameter. Equation (5) has the general form

\[\hat{H} = \hat{H}_0 + W \hat{H}_I \]

(8)

where \(\hat{H}_I \) is considered to be the driving term of the system. From perturbation theory \([33] \) the FS is

\[\chi_F(W) = \sum_{n \neq 0} \frac{|\langle \psi_n(W) | \hat{H}_I | \psi_0(W) \rangle|^2}{(E_n - E_0)^2}, \]

(9)

where \(\psi_n(W) \) and \(E_n \) are the \(n \)-th eigenstate and eigenenergy of the entire Hamiltonian, respectively. It is expected that for finite \(N \) the FS scales as \([35, 38] \)

\[\frac{\chi_F}{N^d} \propto 1/|W - W_{\text{max}}|^{\alpha \pm} \]

(10)
where α_{\pm} is the scaling exponent above and below the quantum critical point (QCP), respectively, W_{max} is the value of W at which χ_{F} is at a maximum, and χ_{F}/N^{d} is an intensive quantity. When $W = W_{\text{max}}$ χ_{F} will be limited by the size of the system, so we have

$$\chi_{F\text{max}} \propto N^{\nu}. \quad (11)$$

This quantity will diverge in the thermodynamic limit as $W_{\text{max}} \to W_{c}$. Figure 1 illustrates how $\chi_{F\text{max}}$, which is given by the peak of each curve, depends on N. In order to capture the behavior of both Eq. (10) and Eq. (11) we use the following form [75]

$$\frac{X}{N^{d}} = \frac{c}{N^{-\mu+d} + g(W)|W - W_{\text{max}}|^{\alpha}}, \quad (12)$$

where c is a constant and $g(W)$ is a nonzero function of W, both being intensive quantities. Since we are dealing with the susceptibility of the ground state wave function in the Fock basis, N plays the role of the system size. With this in mind we can use the finite size scaling hypothesis [42] giving

$$f = N^{-1}Y [N^{\alpha}(W - W_{\text{max}})] \quad (13)$$

where f is the free energy density and Y is some function. We expect Eq. (13) to vanish as $W \to W_{\text{max}}$ and at the same time the domain of the correlations to diverge. In this limit it is natural to expect [43]

$$f \sim \xi^{-1} \sim (W - W_{\text{max}})^{-\nu} \quad (14)$$

where ξ is the correlation length (in Fock space) and ν is the correlation length critical exponent. Combining Eqs. (13) and (14) gives the relation $\alpha = 1/\nu$. Using the fact that in general the susceptibility due to W is $\chi = -\frac{\partial^{2} E}{\partial W^{2}}$ we can show the reduced FS is a universal function of N and the driving parameter

$$\frac{\chi_{F\text{max}} - \chi_{F}}{\chi_{F}} = X[N^{1/\nu}(W - W_{\text{max}})] \quad (15)$$

where X is some function. Finally, combining this equation with Eq. (12) gives us the important scaling relation

$$\alpha = \nu(\mu - d) \quad (16)$$

which we will use to help classify the boson-impurity system. It should be noted that Eq. (15) has been defined by others [37, 38] with the exponent of N being ν instead of $1/\nu$ which we have here. In the next section we numerically evaluate the FS and guided by the above scaling hypotheses find the critical exponents by collapsing the data onto universal curves.

IV. NUMERICAL RESULTS

Our results in this section are obtained by numerically diagonalizing the Hamiltonian given in Eq. 6. An N boson system produces a $(2N + 2) \times (2N + 2)$ matrix, so a system size of $N \sim 1000$ can be easily accommodated allowing us to obtain exact results. We note that due to symmetry parity is a conserved quantity, i.e. $[\hat{H}, \hat{P}] = 0$, and hence all the eigenvectors of our Hamiltonian have well defined parity in Fock space. Since we perform FS calculations on the ground state (which is of even parity) we can reduce the computation time by only considering even parity states. However, above W_{c} the eigenstates typically come in even and odd pairs separated by an exponentially small energy difference and numerical diagonalization routines find it very hard to identify the parity of such eigenvectors. Unless one is careful numerical errors lead to eigenvectors with broken symmetry [17], and this directly impacts our results since it is the critical region we are concerned with in our calculations. We have outlined the resolution to this problem in the Appendix of our previous work [18] where we force the eigenstates to have definite parity by diagonalizing the
Hamiltonian in the parity basis.

Figure 1 shows the results of plugging the numerically calculated eigenstates and energies for different system sizes into Eq. (9). We observe a clear peak in the FS for each value of N which increases in height and sharpness as N increases. This corresponds to the shrinking of the critical region and $W_{\text{max}} \to W_c$ as $N \to \infty$. To find μ we first make a log-log plot of χ_{max} as a function of N as shown in Fig. 2. We fit the curves to a second degree polynomial and extrapolate their slopes in the limit $1/N \to 0$. From the inset we see that the slopes converge to a value of $\mu \approx 4/3$. We calculate μ for different values of J^a to show that μ does not depend on J^a and therefore is universal. Next, we use Eq. (15) to find ν by changing it in small increments until the average overlap of data points for different values of N is maximized. Figure 3 shows the scaled W in the vicinity of W_{max} where a maximum overlap is achieved for $\nu \approx 3/2$. Figure 1 shows that below W_{max} χ_{F} is an intensive quantity, so we have $d = 0$ in Eq. (10). Above W_{max} χ_{F} has a linear dependence on N, so χ_{F}/N is an intensive quantity and $d = 1$. Using Eq. (16) to calculate α_{\pm} we obtain $\alpha_{-} \approx 2$ and $\alpha_{+} \approx 1/2$. These values of α_{\pm}, μ and ν (keeping in mind the different definitions of ν) are the same as those obtained for the Lipkin-Meshkov-Glick (LMG) model numerically [38] and analytically [44], for the Dicke model obtained numerically [45], as well as for the system consisting of bosons in a double well potential with attractive interactions obtained analytically [39]. This suggests that the boson-impurity system belongs in the same universality class as these models and that the QPT is second order.

We now shift our focus back to the convergence of W_{max} to W_c in the thermodynamic limit. Using the same steps used to determine μ we find the slope of a log-log plot of $|W_c - W_{\text{max}}|^\beta$ as a function of N giving the convergence scaling exponent, δ, which we find to be the same as the inverse of the correlation length exponent, so $\delta = 1/\nu \approx 2/3$. In Fig. 1 we show the effectiveness of the FS in predicting W_c with $1/N$ extrapolation. For three different values of J^a, using Eq. (4), we have $W_c = 1, \sqrt{3}, \sqrt{5}$ compared to the extrapolated values of $W_{\text{max}} = 1.0062, 1.7387, 2.2432$ (all values are in units of J). With only five points of data we find the two sets of values to be in good agreement. Thus, if we were unable to find W_c analytically, the FS would provide an excellent avenue to determine values numerically. We summarize our numerical results in Table I where the uncertainties are standard errors using a least-squares fit to our data.

V. ANALYTIC CALCULATION OF α_{\pm}

In the thermodynamic limit the critical region collapses to a point and fluctuations vanish away from this point. For large systems away from the critical region this property allows us to use a mean-field approxima-

![FIG. 4: Extrapolated values of W_{max} for different values of J^a: 0.75 J (red squares), 1 J (blue circles), and 1.25 J (black triangles). The dashed lines show quadratic fits for $1/N \to 0$ and the system size range is $500 \leq N \leq 2500$.](image)
where \(\gamma = \sqrt{\frac{W^2 + 4J^2}{W^2 + 4J^2}} \). Setting \(J^a = J \) for further simplification and scaling Eq. (22) by 2\(J \) gives an effective Hamiltonian dependent on a single parameter, \(\Sigma = W/J \),

\[
\frac{H_{\text{eff}}}{2NJ} = -\frac{|\Sigma|}{4} Z^2 - \sqrt{1 - Z^2}. \tag{23}
\]

A mean-field Hamiltonian of the same form occurs in the case of a purely bosonic Josephson junction where the microscopic origin of \(\Sigma \) is direct boson-boson interactions [40, 41]. Specifically, the minus sign in front of the first term indicates effectively attractive boson-boson interactions. Although we have calculated \(H_{\text{eff}} \) here assuming repulsive boson-impurity interactions, it turns out to be unchanged for attractive interactions. Thus, the impurity always mediates attractive effective boson-boson interactions [46, 47], and it is for this reason that the PT in the impurity model falls into the same universality class as the clumping PT for attractive bosons. We can visualize how this happens by considering the impurity localized in one well and having |\(W \) | > \(W_c \), so the ground state will have a larger fraction of bosons in one well over the other. For \(W > 0 \) the impurity expels bosons from the well it’s in and for \(W < 0 \) bosons are attracted to the impurity. In both cases there is a build-up of bosons in one well over the other which is what happens when there are attractive boson-boson interactions.

An analytic calculation of the scaling exponents for the clumping transition for attractive bosons has been given in reference [30]. Their method for calculating the FS consists of approximating the ground state wave function as a Gaussian in Fock space centered at \(Z = 0 \) for \(W \ll W_c \) and a symmetric superposition of Gaussians for \(W \gg W_c \). In our calculations we do not use a superposition of Gaussians for \(W \gg W_c \), but instead choose to have a single Gaussian centered at one of the two mean-field solutions, shown in Eq. (A1), to represent the symmetry broken phase. The difference in these two approaches results in terms proportional to \(e^{-N|\Sigma - \Sigma_c|} \), so if we are sufficiently far from the critical region, then each approach is equivalent. Using a different form of the FS [30, 50]

\[
\chi_F(\Sigma) = \left\{ \begin{array}{ll}
\frac{1}{|\Sigma|^N} \frac{1}{\sqrt{2(\Sigma^2 - 4)}} & , \Sigma \ll \Sigma_c \\
\frac{1}{N} \frac{1}{Z^2} \left(\frac{\Sigma^2 - 2}{\sqrt{2(\Sigma^2 - 4)}} \right)^N + \frac{(\Sigma^2 - 2)^2}{4\Sigma^2(\Sigma^2 - 4)^2} & , \Sigma \gg \Sigma_c.
\end{array} \right.
\tag{25}
\]

We can see the scaling exponents are \(\alpha_- = 2 \) and \(\alpha_+ = 1/2 \) agreeing with the numerical values calculated in the previous section. Equation (25) shows the leading order behaviour of the FS. Below \(\Sigma_c \) there is a single leading term because the Gaussian wave function is fixed at \(Z = 0 \), so changes in \(\Sigma \) can only affect its size. Above \(\Sigma_c \) changes in \(\Sigma \) affect both the size and position of the wave function giving two terms where we see in the thermodynamic limit the position dependent term dominates.

VI. SUMMARY AND OUTLOOK

In this paper we have studied a \(\mathbb{Z}_2 \) symmetry breaking PT driven by an impurity atom in a bosonic Josephson junction. In the mean-field theory \(W_c \) marks the onset of a bifurcation from a state with zero number difference between the two wells for both the bosons and the impurity to a state with a spontaneously broken symmetry. If the boson-impurity interactions are repulsive the bosons and impurity choose opposite wells and if the interactions are attractive they chose the same well. Quantum mechanically, the ground state probability distribution goes from having Gaussian fluctuations around \(\Delta N = 0 \) to a superposition of two Gaussians each centered at one of the two bifurcating mean-field solutions. This state becomes a Schrödinger Cat state if \(N \) is large and experience shows that external perturbations from the environment will cause it to localize into one well or the other. Interpreting the bosons as a meter measuring the position of the impurity, we have a particularly simple toy model for a quantum measurement that describes wave function collapse in terms of a PT [51, 52].

We have numerically computed the critical scaling exponents of the FS for this PT. For the case of the exponents \(\alpha_{\pm} \), which give the scaling of the FS with the boson-impurity interaction strength \(W \) on either side of the transition, we also performed an analytic calculation and found that it agreed with the numerical result. The exponents we find for the FS are the same as those that have previously been calculated for the LMG and Dicke models as well as for a system consisting of bosons in a

\(J^a \)	0.25 (circle)	0.75 (square)	1.25 (triangle)
\(\mu \)	1.335(3)	1.334(2)	1.333(2)
\(\nu \)	1.499(2)	1.504(5)	1.502(3)
\(W_c \)	1	\(\sqrt{3} \)	\(\sqrt{5} \)
\(W_{\text{Extrap}} \)	1.0062(2)	1.7387(3)	2.2432(3)

TABLE I: Critical scaling exponents and analytic and extrapolated values of the QCP for different values of \(J^a \). The scaling exponents and QCP values are calculated with system size ranges of 1000 \(\leq N \) \(\leq 3000 \) and 500 \(\leq N \) \(\leq 2500 \), respectively.
The effect described in this paper is different to the classic problem of an impurity in a uniform superfluid [53], or its descendant, an impurity in an extended gaseous Bose-Einstein condensate (BEC) [54, 57]. For example, the Bose-Hubbard Hamiltonian employed here is a tight-binding model where the single particle wave functions (modes) are assumed to be unchanged by interactions, whereas the transition to a self-localized polaron state in an initially uniform BEC involves a change in the impurity wave function from delocalized to localized and the BEC develops a corresponding density dip. Furthermore, the type of symmetry that is broken in going from a uniform to a localized wave function is in general different to the binary choice underlying Z2 symmetry breaking. However, in one dimensional extended systems the Josephson model underlying the physics studied here appears quite naturally as the impurity splits the BEC in two and we would expect there to be connections [58, 59]. Finally, we mention that there are many other aspects to the impurity model and its close relatives, including how the coherence of the bosons is affected by the impurity [60, 61], and system-bath dynamics [62–64].

Acknowledgments

We acknowledge insightful discussions with Jonas Larson and the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding. JM also acknowledges funding from the government of Ontario.

Appendix A: Steps for Analytic Calculations

In this appendix we briefly outline the steps used to derive Eq. (25) from Eq. (23). We start by expanding Eq. (23) around the minima above and below \(\Sigma_c \)

\[
Z_0 = \begin{cases}
0 & , \Sigma \leq \Sigma_c \\
\pm \sqrt{1 - \left(\frac{\Sigma}{\Sigma_c}\right)^2} & , \Sigma > \Sigma_c
\end{cases}
\] (A1)

where \(\Sigma_c = 2 \). If we are sufficiently far away from \(\Sigma_c \), then \(H_{\text{eff}} \) is parabolic in shape around the minima, so the leading order term in the expansion will be the second giving a Schrödinger equation

\[
\left[-\frac{d^2}{du^2} + h(\Sigma)u^2 \right] \Psi_\Sigma(Z) = E\Psi_\Sigma(Z)
\] (A2)

where \(u = Z - Z_0 \) and

\[
h(\Sigma) = \left\{ \begin{array}{ll}
\frac{N^2}{\Sigma^2} (\Sigma + 2), & \Sigma \ll \Sigma_c \\
\frac{N^2}{\Sigma^2} (\Sigma^2 - 4), & \Sigma \gg \Sigma_c
\end{array} \right.
\] (A3)

Equation (A2) describes a harmonic oscillator in Fock space which means the ground state wave function will be a Gaussian of the form

\[
\Psi_\Sigma(Z) = \frac{1}{\sqrt[4]{\sigma_\Sigma} \sqrt{2\pi}} e^{-\frac{(Z-Z_0)^2}{2\sigma_\Sigma^2}}.
\] (A4)

The difference between the \(\Sigma < \Sigma_c \) and \(\Sigma > \Sigma_c \) wavefunctions is due to \(Z_0 \) through Eq. (A1) and the relation \(\sigma_\Sigma^2 = \frac{\langle Z^2 \rangle}{\langle Z \rangle^2} \). With these forms of the ground state we can use Eq. (24) giving

\[
\chi_F(\Sigma) = \frac{1}{2} \frac{d^2}{d\hat{\Sigma}^2} \int_{-\infty}^{\infty} \Psi_\Sigma(Z)\Psi_\Sigma + \delta \Sigma(Z)dZ \mid_{\delta \Sigma = 0}
\] (A5)

and from here we obtain the expressions given in Eq. (25).
[63] G. Ferrini, D. Spehner, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. A \textbf{82}, 033621 (2010).

[64] S. McEndoo, P. Haikka, G. De Chiara, G. M. Palma and S. Maniscalco, EPL \textbf{101}, 60005 (2013).