Ultra-low noise HEMTs for high-impedance and low-frequency preamplifiers: realization and characterization from 4.2 K to 77 K

Y Jin, Q Dong, YX Liang, A Cavanna, U Gennser, L Couraud, C Ulysse
CNRS/LPN, route de Nozay, 91460 Marcoussis, France

yong.jin@lpn.cnrs.fr

Abstract. We report on the experimental results of specially designed HEMTs made at CNRS/LPN. These HEMTs, with a resistance input and different capacitance inputs, have been characterized from 4.2 K to 77 K with a power consumption of 100 µW. At 4.2 K, the lowest input noise voltage, 6 nV/Hz$^{1/2}$ at 1 Hz, has been obtained with the HEMT having the largest input capacitance; the lowest input noise current of about 3 aA/Hz$^{1/2}$ at 1 Hz has been observed with the HEMT with the smallest input capacitance; and the white noise voltage in these HEMTs is of about 0.2 nV/Hz$^{1/2}$. By increasing the temperature from 4.2 K to 77 K, noise voltage and noise current increase, but their values are limited within a factor of about 3 compared with their lowest values at 4.2 K. Our results show that the HEMT can be a promising transistor to fill the gap for FETs below 100 K for high-impedance and low-frequency readout electronics.

1. Introduction

High impedance ultra sensitive sensors operate at few tens of mK in order to avoid the thermal noise perturbation. High performance low-frequency readout electronics have been based for decades on Si JFETs. However, their operating temperature is limited to above about 100 K because of the charge freeze-out. Consequently, a long cable is required between readout electronics and sensors, which degrades the sensors intrinsic performance and the readout rate. From the intrinsic point of view, the charge freeze-out can be avoided by using a degenerate electron gas. Currently, there are two types of FETs available to operate at very low-temperature: MOSFETs and HEMTs. It is well known that the MOSFET suffers from the effects of an extremely high low-frequency noise due to the oxide layer between the metal gate and the active conducting channel [1].

The HEMT is based on a 2DEG (Two Dimensional Electron Gas), which is realized in a heterostructure with a high purity material interface. In particular at cryogenic conditions, high electron mobility can be obtained and it has been widely used for mesoscopic field-effect devices operating at tens of mK for quantum coherent electron transport investigations, as well as for the demonstration of a fully ballistic FET [2]. However, for cryogenic readout electronics, commercially available HEMTs are used in a frequency range above a few hundreds of kHz, and suffer a relatively high noise current and especially a large low-frequency noise or an 1/f noise. Based on our early investigations [3], one 1/f noise source in the HEMT at low temperature has been found out [4]. In this work, we show that specially designed HEMTs can reach unprecedented low noise values at low frequencies and deep cryogenic conditions [5].
2. Experiments

The HEMTs in this work are based on an AlGaAs/GaAs heterostructure grown by MBE (Molecular Beam Epitaxy). It consists of a GaAs buffer layer, a 20 nm AlGaAs spacer layer, a Si δ-doping layer, then a 15 nm undoped AlGaAs barrier layer, and finally a 6 nm undoped GaAs cap layer. At 4.2K, the 2DEG carrier concentration and mobility are 4.5×10^{12} m$^{-2}$ and 29 m2V$^{-1}$s$^{-1}$, respectively. HEMTs with various gate lengths and gate widths are fabricated and individually packaged in ceramic SOT23 as shown in figure 1. In this work, experimental results are based on the HEMTs with three gate surfaces of 6.4×10^4, 2.0×10^4 and 2.0×10^3 µm2, respectively.

Details of the characterization method can be found in [5]. As usual, a real FET is considered as a noiseless transistor with two noise sources in its input, i.e., the noise-voltage e_n which is the lowest noise level of a FET, and the noise-current i_n (see figure 1). With an input impedance z, i_n induces a noise voltage $e_{ni} = i_n \times |z|$. In practice, only the equivalent total input noise voltage e_{in} can be measured directly. By supposing that e_n and i_n are uncorrelated, e_{in} can be expressed as:

$$e_{in} = \sqrt{e_n^2 + e_{ni}^2} = \sqrt{e_n^2 + i_n^2 z^2}.$$

(1)

e_n can be obtained with a sufficiently small input resistor R_{input} or a large enough input capacitance C_{input}; i_n can thus be grounded, and consequently $e_{ni} \ll e_n$, and $e_{in} = e_n$. The determination of i_n needs an $|z|$ big enough to have $e_{in} > e_n$ and then i_n can be deduced from:

$$i_n = \sqrt{e_{in}^2 - e_n^2} |z| = e_{in} |z|$$

(2)

Figure 1. Fabricated HEMT, equivalent input noise voltage e_{in}, noise current i_n and the common-source voltage amplifier at 4.2 K (in the frame with black dashed line) based on the HEMT, $R_{input} = 50$ Ω and $R_L = 300$ Ω for e_{in} characterization.

A HEMT based common-source amplifier can be used to determine e_n and i_n. For e_n measurement, the HEMT, $R_{input} = 50$ Ω and the load resistance $R_L = 300$ Ω, are mounted in a cryogenic insert as illustrated in figure 1. Using a lock-in amplifier, the voltage gain A_v and the output impedance or the channel impedance R_C can be measured in-situ. The signal at the drain of the HEMT is amplified once more by a low-noise amplifier with a voltage gain A_{v-amp}. The output voltage noise spectrum $e_{measured}$ is recorded by a vector signal analyzer. The noise voltage spectrum at the drain e_{drain} is deduced directly from $e_{measured}/A_{v-amp}$ and e_n is obtained from e_{drain}/A_v. For i_n characterization, to avoid the thermal noise perturbation, we use a C_{input} common-source voltage amplifier as shown in figure 2. In this configuration, the effective voltage gain A_{v-cap} cannot be measured directly due to the feedback effect induced by C_{input}, the gate-source capacitance C_{gs}, the gate-drain capacitance C_{gd} and the Miller effect. The detail of the determination of A_{v-cap} and C_{total} is described in [5]. By neglecting the real resistance due to the gate leakage current, $|z|$ can be simply expressed as $(2\pi f C_{total})^{-1}$, where f is the frequency. i_n
can be deduced from the results on the R_{input} (see figure 1) and the C_{input} (see figure 2) according to equation (2).

3. Results
We report measured e_{in} at a chosen working point of $V_{\text{ds}} = 100$ mV and $I_{\text{ds}} = 1$ mA. This choice is in order to have sufficient large values of the transconductance g_m. Corresponded C_{gs} under the chosen working point, according to the measurement method described in [5], are of about 92, 26.5 and 5.3 pF, respectively. Our experimental results show that e_{in} is approximately inversely proportional to the square root of C_{gs} [6]; on the other hand, using capacitance input measurement method, i_{n} increases with the increase of C_{gs}. Therefore, both e_{in} and i_{n} must be taken into account for designing readout electronics.

3.1. HEMT with $C_{\text{gs}} = 92$ pF
We plot e_{in} spectra in figure 3 with different input configurations at 4.2 K. At the chosen working point, g_m and the output conductance g_d are 35 mS and 0.75 mS, respectively. e_{in} with 50 Ω input (see figure 1) and 1 nF input (see figure 2) show the lowest noise spectra. e_{in} reaches a value of $6 \text{nV/Hz}^{1/2}$ at 1 Hz, and about 0.3 nV/Hz$^{1/2}$ at 1 kHz. The corner frequency (at which the $1/f$ noise value = the white noise value) is 1.2 kHz and the white noise is 0.22 nV/Hz$^{1/2}$ [5]. With the decrease of C_{input} from 300 pF to 10 pF, e_{in} increases and reaches its maximum value of about 20 nV/Hz$^{1/2}$ at 1 Hz. At 1 Hz, the highest input impedance equals about 1 GΩ with $C_{\text{input}} = 10$ pF and $C_{\text{total}} \approx 150$ pF [5]. We have $i_{\text{n}} \approx 19$ aA/Hz$^{1/2}$ at 1 Hz according to equation (2). It is interesting to notice that the maximum e_{in} is about 3 times larger than e_{in} at 1 Hz even C_{input} being almost zero.

At 77 K, only $R_{\text{input}} = 50$ Ω and $C_{\text{input}} = 100$ pF are used for the noise characterizations, e_{in} spectra are plotted in figure 4, in the same figure e_{in} at 4.2 K are reported for comparison. At 77 K and 1 Hz, e_{in} is around 20 nV/Hz$^{1/2}$ and i_{n} (with $C_{\text{total}} \approx 240$ pF) can be estimated at 52 aA/Hz$^{1/2}$. Each e_{in} component increases with the increase of temperature from 4.2 K to 77 K: e_{in} and i_{n} increase about three times.

![Figure 3. e_{in} spectra of the HEMT with $C_{\text{gs}} = 92$ pF at 4.2 K, with different C_{input} from 10 pF to 1 nF and $R_{\text{input}} = 50$ Ω.](image1)

![Figure 4. e_{in} spectra of the HEMT with $C_{\text{gs}} = 92$ pF at 4.2 K and 77 K, with $C_{\text{input}} = 100$ pF and $R_{\text{input}} = 50$ Ω.](image2)

3.2. HEMT with $C_{\text{gs}} = 26.5$ pF
In Figure 5, we plot e_{in} spectra of the HEMT with $C_{\text{gs}} = 26.5$ pF at 4.2 K with different C_{input} and R_{input}. At the chosen working point, g_m and g_d are 110 mS and 1.3 mS, respectively. The input noise voltage e_{in} is of about 15 nV/Hz$^{1/2}$ at 1 Hz and 0.54 nV/Hz$^{1/2}$ at 1 kHz. The corner frequency can be estimated at 13 kHz and the white noise is only 0.15 nV/Hz$^{1/2}$. Such a low white-noise value is owing to the high
g_m value [5]. At 1 Hz with $C_{\text{input}} = 10$ pF, e_{in} is around 30 nV/Hz$^{1/2}$ and C_{total} is about 67 pF, the assessed i_n is thus of about 10 aA/Hz$^{1/2}$. At 77 K, only $R_{\text{input}} = 50$ Ω is chosen for the noise characterizations, e_m spectrum is plotted in figure 6, in the same figure e_{in} at 4.2 K is reported for comparison. Again, e_n increases about three times from 4.2 K to 77 K.

Figure 5. e_{in} spectra of the HEMT with $C_{gs} = 26.5$ pF at 4.2 K, with C_{input} from 10 to 47 pF and $R_{\text{input}} = 50$ Ω.

Figure 6. e_{in} spectra of the HEMT with $C_{gs} = 26.5$ pF at 4.2 K and 77 K, only with $R_{\text{input}} = 50$ Ω.

3.3. **HEMT with $C_{gs} = 5.3$ pF**

In Figure 7, we plot e_{in} spectra of the HEMT with $C_{gs} = 5.3$ pF at 4.2 K with different C_{input} and R_{input}. At the chosen working point, g_m and g_d are 44 mS and 1.3 mS, respectively. The input noise voltage e_{in} is of about 30 nV/Hz$^{1/2}$ at 1 Hz and 1.4 nV/Hz$^{1/2}$ at 1 kHz. The corner frequency can be estimated at 55 kHz and the white noise is 0.23 nV/Hz$^{1/2}$. By contrast, no significant increase of e_{in} values can be found with $C_{\text{input}} = 5$ pF compared to e_{in} obtained with $R_{\text{input}} = 50$ Ω.

Figure 7. e_{in} of the HEMT with $C_{gs} = 5.3$ pF at 4.2 K, with C_{input} of 5 and 100 pF, and $R_{\text{input}} = 50$ Ω.

Figure 8. e_{in} of the HEMT with $C_{gs} = 5.3$ pF at 4.2 K and 77 K, with $C_{\text{input}} = 100$ pF and $R_{\text{input}} = 50$ Ω.
At 1 Hz with $C_{\text{input}} = 5$ pF, e_{nt} can be estimated at 40 nV/Hz$^{1/2}$ and C_{total} can be found of about 17 pF (its equivalent impedance at 1 Hz is 9.4 GΩ), the assessed i_n is only 2.8 aA/Hz$^{1/2}$. Indeed, the 5.3 pF HEMT shows an extremely low i_n, however, its total input noise e_{nt} is higher than that can be obtained with the 92 pF HEMT. Obviously, 5.3 pF HEMT is more favorable compared to 92 pF HEMT for increasing the operating frequency of the readout electronics.

In Fig. 8, we report e_{nt} spectra with $R_{\text{input}} = 50$ Ω and $C_{\text{input}} = 100$ pF at 77 K and 4.2 K. Again, e_{nt} increase of about three times from 4.2 K to 77 K. e_{nt} remains almost the same with $C_{\text{input}} = 100$ pF and with $R_{\text{input}} = 50$ Ω at a given temperature. It is worthy to note that the input impedance at 1 Hz with $C_{\text{input}} = 100$ pF ($C_{\text{total}} = 112$ pF) is of about 1.4 GΩ. So, e_{nt} is dominated by e_n, and the i_n contribution is negligible even the input impedance is in the giga-ohm range.

The results of this work provide a useful basis to design HEMTs for each specific application, i.e., to find the best compromise between e_n and i_n at a chosen operating frequency.

Acknowledgment
This work was supported in part by the French RENATECH network, le RTRA Triangle de la Physique grants No. 2008-015T and No. 2009-004T, European FP7 space project CESAR grant No. 263455 and DEFI Instrumentation aux limites CryoHEMTs 2013. Q. D. is funded by the BDI CNRS/CEA. We thank Drs. A. Juillard, B. Sadoulet, A. Anthore, F. Pierre, F. Parmentier and E. Cambril for stimulating discussions and help.

References
[1] A. Van der Ziel, Noise in Solid State Devices and Circuits, New York: Wiley, (1986).
[2] E. Grémion, D. Niepce, A. Cavanna, U. Gennser, and Y. Jin, “Evidence of a fully ballistic one-dimensional field-effect transistor: Experiment and simulation,” Appl. Phys. Lett. 97, 233505 (2010).
[3] E. Grémion, A. Cavanna, Y.X. Liang, U. Gennser, M.C. Cheng, M. Fesquet, G. Chardin, A. Benoît, Y. Jin, “Development of Ultra-Low Noise HEMTs for Cryoelectronics at ≤4.2 K,” J. Low Temp. Phys. 151, 971 (2008).
[4] Y. Liang, Q. Dong, M.-C. Cheng, U. Gennser, A. Cavanna, Y. Jin, “Insight into low frequency noise induced by gate leakage current in AlGaAs/GaAs high electron mobility transistors at 4.2 K,” Appl. Phys. Lett. 99, 113505 (2011).
[5] Q. Dong, Y. X. Liang, D. Ferry, A. Cavanna, U. Gennser, L. Couraud, and Y. Jin, “Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics,” Appl. Phys. Lett. 105, 013504 (2014).
[6] Q. Dong, Y. X. Liang, U. Gennser, A. Cavanna, and Y. Jin, “The Role of the Gate Geometry for Cryogenic HEMTs: Towards an Input Voltage Noise Below 0.5 nV/√Hz at 1 kHz and 4.2 K,” J. Low Temp. Phys. 167, 626 (2012).