MV-algebras freely generated by finite Kleene algebras

Stefano Aguzzoli, Leonardo M. Cabrer, and Vincenzo Marra

Abstract. If \(V \) and \(W \) are varieties of algebras such that any \(V \)-algebra \(A \) has a reduct \(U(A) \) in \(W \), there is a forgetful functor \(U: V \rightarrow W \) that acts by \(A \mapsto U(A) \) on objects, and identically on homomorphisms. This functor \(U \) always has a left adjoint \(F: W \rightarrow V \) by general considerations. One calls \(F(B) \) the \(V \)-algebra freely generated by the \(W \)-algebra \(B \). Two problems arise naturally in this broad setting. The description problem is to describe the structure of the \(V \)-algebra \(F(B) \) as explicitly as possible in terms of the structure of the \(W \)-algebra \(B \). The recognition problem is to find conditions on the structure of a given \(V \)-algebra \(A \) that are necessary and sufficient for the existence of a \(W \)-algebra \(B \) such that \(F(B) \cong A \). Building on and extending previous work on MV-algebras freely generated by finite distributive lattices, in this paper we provide solutions to the description and recognition problems in case \(V \) is the variety of MV-algebras, \(W \) is the variety of Kleene algebras, and \(B \) is finitely generated—equivalently, finite. The proofs rely heavily on the Davey–Werner natural duality for Kleene algebras, on the representation of finitely presented MV-algebras by compact rational polyhedra, and on the theory of bases of MV-algebras.

1. Introduction.

Consider a variety of algebras \(V \), and write \(\mathcal{F}_\kappa^V \) for the algebra in \(V \) freely generated by a set of cardinality \(\kappa \). Suppose further that \(W \) is a variety such that any \(V \)-algebra \(A \) has a reduct \(U(A) \) in \(W \). Then there exists a forgetful functor \(U: V \rightarrow W \) that acts by \(A \mapsto U(A) \) on objects, and identically on homomorphisms. This functor \(U \) always has a left adjoint, as follows. Let \(B \) be any \(W \)-algebra, and say its cardinality is \(\kappa = |B| \). Then \(B \) is isomorphic to a quotient \(\mathcal{F}_\kappa^W / \Theta \), for some congruence \(\Theta \subseteq \mathcal{F}_\kappa^W \times \mathcal{F}_\kappa^W \). Because of our assumption about \(V \) and \(W \), each \(W \)-term also is a \(V \)-term; hence, \(\Theta \) generates a uniquely determined congruence on \(\mathcal{F}_\kappa^V \). More formally, there is a unique \(W \)-homomorphism, \(u_\kappa: \mathcal{F}_\kappa^W \rightarrow U(\mathcal{F}_\kappa^V) \), that extends the set-theoretic bijection between free generators. Writing \(u_\kappa^2: (\mathcal{F}_\kappa^W)^2 \rightarrow U(\mathcal{F}_\kappa^V)^2 \) for the product map \((x, y) \mapsto (u_\kappa(x), u_\kappa(y))\), let \(\overline{\Theta}_\kappa \) denote the \(V \)-congruence on \(\mathcal{F}_\kappa^V \) generated by \(u_\kappa^2(\Theta) \). Then there is a unique \(W \)-homomorphism

\[
B \cong \mathcal{F}_\kappa^W / \Theta \xrightarrow{u_\kappa^2} U(\mathcal{F}_\kappa^V / \overline{\Theta}_\kappa)
\]
that extends the map that sends the Θ-class of a free generator of \mathcal{F}_W^κ to the $\widehat{u}_k^2(\Theta)$-class of the corresponding generator of \mathcal{F}_V^κ. (Here and throughout, \cong denotes the existence of an isomorphism). Now η_B can be shown to be a universal arrow from B to the functor U, in the sense of [11, Definition on p. 55]: for any V-algebra A and any W-homomorphism $f: B \to U(A)$, there exists a unique V-homomorphism $f': \mathcal{F}_\kappa^V/\widehat{u}_k^2(\Theta) \to A$ such that $f = U(f') \circ \eta_B$, i.e., such that the following diagram commutes.

\[
\begin{array}{c}
U(A) \\
\uparrow
\end{array}
\quad
\begin{array}{c}
U(f')
\downarrow
\end{array}
\quad
\begin{array}{c}
\eta_B
\downarrow
\end{array}
\quad
\begin{array}{c}
U(\mathcal{F}_\kappa^V/\widehat{u}_k^2(\Theta))
\end{array}
\quad
\begin{array}{c}
B
\end{array}
\]

By [11, Theorem IV.1.2], this universal property of η_B uniquely determines a functor $F: W \to V$ that is a left adjoint of U. The action of F on a W-algebra B is just

\[F(B) = \mathcal{F}_\kappa^V/\widehat{u}_k^2(\Theta),\]

and one calls $F(B)$ the V-algebra freely generated by the W-algebra B; one also says that $F(B)$ is free over B. (This terminology notwithstanding, note that neither u_κ nor η_B need be injective, and that B need not be isomorphic to a subalgebra of the W-reduct of $F(B)$. Take for W the variety of groups, and for V the variety of Abelian groups. Then $F(B)$ is the Abelianization of B, and η_B is a quotient map that need not be into). As with all universal constructions, $F(B)$ is uniquely determined to within an isomorphism. Also, note that if B is finitely presented, i.e., if κ is a finite integer and Θ is finitely generated, then so is $F(B)$, because in this case $\widehat{u}_k^2(\Theta)$ is itself finitely generated by construction.

Given this broad setting, two questions arise naturally.

(I) The description problem. Given a W-algebra B, describe the structure of the V-algebra $F(B)$ as explicitly as possible in terms of the structure of B.

(II) The recognition problem. Given a V-algebra A, find conditions on the structure of A that are necessary and sufficient for the existence of a W-algebra B such that $F(B) \cong A$.

Let us point out that (II) is usually harder than (I), for quite general reasons. Indeed, (I) does not entail an existence question: the problem is to obtain a more transparent description of a given object, namely, (1). By contrast, (II) explicitly asks whether an object with a certain property exists.

This paper is devoted to solving problems (I) and (II) in case V is the variety of MV-algebras, W is the variety of Kleene algebras, and B is finitely generated. When W is, instead, the variety of distributive lattices, and B is a finitely generated distributive lattice, a solution to (I) and (II) is given in [14]. Although our proofs are independent of [14], the techniques used here build upon those employed in that paper. It may also be of some interest to