COVID-19 in Parkinson’s Disease Patients Living in Lombardy, Italy

Alfonso Fasano, MD PhD,1,2 Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada 2Krembil Brain Institute, Toronto, Ontario, Canada 3Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 4UOS Clinical Nutrition, Pini-CTO, Milan, Italy 5Fondazione Grigioni per il Morbo di Parkinson, Italy 6PARKINSON Institute, Pini-CTO, Milan, Italy

ABSTRACT: Background: It is unknown whether patients with PD are at greater risk of COVID-19, what their risk factors are, and whether their clinical manifestations differ from the general population. Objectives: The study aimed to address all these issues. Methods: In a case-controlled survey, we interviewed 1,486 PD patients attending a single tertiary center in Lombardy, Italy and 1,207 family members (controls). Results: One hundred five (7.1%) and 92 controls (7.6%) were identified as COVID-19 cases. COVID-19 patients were younger, more likely to suffer from chronic obstructive pulmonary disease, to be obese, and vitamin D nonsupplemented than unaffected patients. Six patients (5.7%) and 7 family members (7.6%) died from COVID-19. Patients were less likely to report shortness of breath and require hospitalization. Conclusions: In an unselected large cohort of non-advanced PD patients, COVID-19 risk and mortality did not differ from the general population, but symptoms appeared to be milder. The possible protective role of vitamin D supplementation warrants future studies. © 2020 International Parkinson and Movement Disorder Society

*Correspondence to: Dr. Emanuele Cereda, Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; E-mail: e.cereda@smatteo.pv.it

Relevant conflicts of interest/financial disclosures: Nothing to report.

Funding agencies: This work was supported by “Fondazione Grigioni per il Morbo di Parkinson.”

Received: 12 May 2020; Revised: 25 May 2020; Accepted: 27 May 2020

Published online 26 June 2020 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.28176

Severe acute respiratory syndrome coronavirus 2 (SARS Co-V2) emerged in the region of Wuhan in China around December last year and spread so rapidly that the World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic on 11 March 2020. 1 Specific pre-existing medical conditions and advanced age appear to be linked to more severe manifestations of the infection,1,2 thus raising the question of whether Parkinson’s disease (PD) poses an increased risk of morbidity and mortality in COVID-19 patients. 3

The first reported case of COVID-19 in a 74-year-old PD patient complicated by encephalopathy has recently been described. 4 A series of 10 PD patients collected in Padua, Italy and London, United Kingdom reported a high mortality rate (40%), and worsening of anxiety and other nonmotor features, 5 in keeping with a recent survey among patients and caregivers. 6 We recently gathered clinical information on 117 community-dwelling PD patients with COVID-19 followed in 21 tertiary centres in Italy, Iran, Spain, and the United Kingdom. 7 We found an overall mortality of 19.7%, with a significant effect of concomitant dementia, hypertension, and PD duration. 7

Many questions remain unanswered: (1) Are PD patients more at risk of being infected by SARS Co-V2 and developing COVID-19? (2) What are the risk factors for COVID-19 infection in PD patients? (3) How is the clinical expression of COVID-19 in PD patients? (4) What is the COVID-19 outcome in an unselected cohort of PD patients?

In order to answer these questions, we conducted a phone survey of all PD patients and family members included in the database of one of the largest tertiary centers for PD in Italy, located in Milan–Lombardy, the region with the highest incidence of COVID-19 in the country. 8,9

Patients and Methods

We contacted (using all available phone numbers, up to three attempts on 3 different days) a total of 1,926 patients fulfilling the following inclusion criteria: (1) clinical diagnosis of PD 10; (2) at least one evaluation at the Parkinson Institute (Pini-CTO, Milan, Italy) in 2019; and (3) living in Lombardy. Patients were asked about COVID-19-related symptoms during the previous 3 months, the execution of nasopharyngeal swabs, chest radiograph, or computed tomography, and hospitalization. Interviews were standardized using an electronic case report form and conducted in the presence of 1 family member for support and in the event of patient hospitalization or death at the moment.
of the survey. In order to gather data from a control population with a similar environmental exposure, the survey also involved 1,207 family members willing to participate.

A positive nasopharyngeal swab was needed for a “confirmed” diagnosis of COVID-19, whereas a “probable” diagnosis was formulated using the following criteria: presence of persistent COVID-19-related symptoms (≥3 including fever or ≥5 without fever) or ≥1 symptom in the presence of suggestive chest radiological signs and/or living with a family member with a confirmed diagnosis of COVID-19. If needed, the regional register of health care data was also accessed to obtain laboratory and radiological findings as well as hospitalization data and confirm the date and cause of death.

Finally, relevant demographic and clinical data were extracted from the institutional electronic chart of the patient and confirmed during the interview.

Between-group comparisons (COVID-19 PD cases vs. unaffected PD patients and PD with COVID-19 vs. controls with COVID-19) were initially performed using Fisher’s exact test for categorical variables and Student’s t test or the Mann-Whitney U test (depending on data distribution) for continuous variables. Then, given the significant difference in age among these groups, dichotomous variables and outcomes were compared using age-adjusted logistic regression analysis (an independent model for each variable/outcome) to calculate odds ratio (OR) with 95% confidence interval (95% CI). All analyses were conducted using STATA statistical software (version 15.1; StataCorp LP, College Station, TX).

Results

Data on 1,486 patients were collected (response rate: 77.2%). Reasons of exclusion from the analysis were: patient unreachable (N = 302), refusal (N = 98), and patient died before the pandemic or during it for causes other than COVID-19 (N = 40). Among unreachable patients, 139, 129, and 54 had one, two, and three available phone numbers, respectively; in 15%, the number appeared to be wrong. No differences were detected when comparing responders versus nonresponders except for longer disease duration in the latter group (Supporting Information Table S1).

We identified 32 confirmed and 73 probable cases of COVID-19 among the PD patients (total, 105; 7.1%).

TABLE 1. Features of PD patients by COVID-19 status

Feature	Confirmed/Probable COVID-19 Cases (N = 105)	Unaffected PD Patients (N = 1,381)	P Value*	Age-Adjusted OR [95% CI]**	P Value**
Male sex	55 (52.4%)	790 (57.2%)	0.36	—	—
Age (years)	70.5 ± 10.1	73.0 ± 9.5	0.017	—	—
Disease duration (years)	9.9 ± 6.4	9.5 ± 6.8	0.51	—	—
H & Y stage	2.2 ± 0.8	2.2 ± 0.9	0.94	—	—
Body mass index (kg/m²)	25.6 ± 4.9	25.0 ± 4.1	0.24	—	—
Current smoking	6 (5.7%)	64 (4.6%)	0.63	—	—
Outings (n/week)	0.8 ± 1.9	0.8 ± 1.9	0.88	—	—
Comorbidities					
Obesity	19 (18.1%)	151 (10.9%)	0.037	1.72 [1.00–2.94]	0.048
Hypertension	44 (41.9%)	535 (38.7%)	0.53	—	—
COPD	6 (5.7%)	24 (1.7%)	0.016	3.82 [1.51–9.65]	0.005
Diabetes	8 (7.6%)	111 (8.0%)	0.003	1.29 [0.86–1.95]	0.22
Cancer	1 (0.9%)	45 (3.3%)	0.72	—	—
Drugs/ supplements					
L-dopa	100 (95.2%)	1,324 (95.9%)	0.72	—	—
Dopamine agonists	50 (47.6%)	649 (47.0%)	0.24	—	—
MAO-B inhibitors	23 (21.9%)	271 (16.6%)	0.72	—	—
COMT inhibitors	6 (5.7%)	66 (4.1%)	0.82	—	—
Amantadine	11 (1.0%)	28 (2.0%)	0.24	—	—
ACE inhibitors	15 (14.3%)	173 (12.5%)	0.72	—	—
ARBs	13 (12.4%)	125 (9.0%)	0.82	—	—
Immunosuppressive agents	5 (4.8%)	42 (3.0%)	0.82	—	—
NSAIDs	6 (5.7%)	70 (5.1%)	0.82	—	—
Vitamin D	13 (12.4%)	316 (22.9%)	0.010	0.56 [0.32–0.99]	0.048

Values are mean ± SD or n (%), significant data are bold-typed. Between-group comparisons of continuous variables were initially performed using the unpaired Student’s t test (normal distribution) or the Mann-Whitney U test (non-normal distribution), whereas categorical variables were analyzed by Fisher’s exact test.

*Then, given the significant between-group age difference, age-adjusted ORs were calculated.

**To fully investigate differences in comorbidities and drugs/supplements (an independent model for each variable).

ACE, angiotensin-converting enzyme; ARBs, angiotensin-receptor blockers; COMT, catechol-O-methyltransferase; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 19; MAO-B, monoamine oxidase B; NSAIDs, nonsteroidal anti-inflammatory drugs.
TABLE 2. Clinical features of COVID-19 among affected PD and non-PD controls (family members)

Clinical features	Total reported symptoms	Fever	Cough	Shortness of breath	Nasal congestion	Olfactory dysfunction	Gustatory dysfunction	Nausea or vomiting	Diarrhea	Myalgia or arthralgia	Fatigue	Conjunctivitis	Respiratory symptoms	Gastrointestinal	Systemic	Unspecific/mild	Asymptomatic	Outcome	Hospitalization
PD With COVID-19 (N = 105)	3.4 ± 1.8	74 (70.5%)	62 (59.0%)	17 (16.2%)	44 (41.9%)	17 (16.2%)	19 (18.1%)	15 (14.3%)	28 (26.7%)	35 (33.3%)	40 (38.1%)	10 (9.5%)	50 (47.6%)	13 (12.4%)	22 (21.0%)	18 (17.1%)	6 (5.7%)	18 (17.1%)	
Controls With COVID-19 (N = 92)	3.5 ± 1.8	67 (72.8%)	55 (59.8%)	26 (28.3%)	35 (38.0%)	17 (18.5%)	16 (17.4%)	15 (16.3%)	20 (21.7%)	30 (32.6%)	31 (33.7%)	7 (7.6%)	52 (56.5%)	10 (10.9%)	11 (12.0%)	14 (15.2%)	5 (5.4%)	25 (27.2%)	
P Value	0.70	0.75	1.00	0.06	0.66	0.71	1.00	0.70	0.74	1.00	0.55	0.80	0.25	1.00	0.79	0.85	0.25	0.77	0.12
Age-Adjusted OR [95% CI]	—	0.85 [0.45–1.61]	0.91 [0.50–1.63]	0.33 [0.15–0.70]	1.39 [0.76–2.52]	0.78 [0.36–1.67]	1.08 [0.51–2.30]	1.05 [0.47–2.35]	1.58 [0.80–3.14]	1.14 [0.62–2.11]	1.31 [0.71–2.38]	1.18 [0.42–3.22]	0.64 [0.36–1.14]	1.42 [0.57–3.56]	2.05 [0.91–4.59]	1.18 [0.05–1.50]	0.45 [0.13–1.53]	0.41 [0.20–0.86]	
P Value	—	0.61	0.74	0.004	0.29	0.52	0.84	0.91	0.19	0.67	0.39	0.75	0.13	0.45	0.08	0.68	0.14	0.20	0.018

Values are mean ± SD or n (%), significant data are bold-typed. Between-group comparisons of clinical features, pattern of symptoms, and outcomes were performed using the unpaired Student’s t test whereas categorical variables were analyzed by the Fisher’s exact test.

*Given the significant between-group age difference (Supporting Information Table S2), age-adjusted ORs.

**Were used to further explore these comparisons (an independent model for each variable/outcome).

Compared to unaffected PD patients, COVID-19 PD cases were younger, more likely to suffer from chronic obstructive pulmonary disease, to be obese, and vitamin D non-supplemented (Table 1). Fever, cough, and nasal congestion were the most frequent symptoms (Table 2). Eighteen patients (17.1%) were hospitalized and 6 died (5.7%).

Ninety-two family members were diagnosed with COVID-19 (7.6%; P = 0.60 vs. PD patients). Their demographic and clinical characteristics were similar to PD patients, with the exception of younger age and higher number of weekly outings (Table 2 and Supporting Information Table S2). When analyzing COVID-19 cases among PD patients and family members, the former were less likely to report shortness of breath (SOB) and require hospitalization after adjusting for age.

Discussion

This single-center case-controlled survey described the clinical features and predictors of COVID-19 infection and outcome in a relatively unselected and homogeneous large cohort of PD patients and controls (their family members). Our study sought to answer important questions.

Are PD Patients More at Risk of Being Infected by SARS Co-V2 and Developing COVID-19?

All interviewees live in Lombardy, the region where the first Italian patient was diagnosed with COVID-19 on 20 February 2020. Since then, the increasing number of cases recorded in Lombardy, and subsequently throughout the country, led Italy to be the third-most affected country worldwide. More than 36% of Italian COVID cases are to this date (3 May) in Lombardy, where roughly 0.8% of the population has been diagnosed with COVID-19. However, the accuracy of prevalence data is hampered by the existence of asymptomatic cases and the lack of population screening campaigns. In this survey, COVID-19 prevalence was similar in PD patients and study controls (7.1% vs. 7.6%).

What Are the Risk Factors of COVID-19 Infection in PD Patients?

Older age, longer disease duration, and use of advanced therapies in one study and dementia, hypertension, and—again—disease duration in another study have been found to predict poor COVID-19 outcome in PD patients. Our study expands these notions, focusing on the risk of getting infected. The most interesting result is the seemingly protective effect of vitamin D intake, as hypothesized by several researchers during the past weeks. Vitamin D can reduce the risk of infections through several mechanisms, for example, by reducing concentrations of proinflammatory cytokines. Evidence supporting this role of vitamin D has been confirmed by two recent studies. One study found significant negative correlations (r = −0.44) between the average vitamin D levels of different European countries and the national prevalence of COVID-19 cases and associated mortality. Another
age-stratified lower vitamin D levels in SARS-CoV-2 PCR-
positive versus -negative cases (median of 11.1 vs. 24.6
ng/mL, respectively; P = 0.004).19

When comparing COVID-19 affected with non-
affected PD patients, the former were younger, more
frequently obese, and suffering from chronic obstructive
pulmonary disease. Whereas obesity and comorbid
respiratory disorders are well-known COVID-19 risk
factors,20 the younger age of affected patients might
relies on the more aggressive preventive measures
adopted for older patients. No role for hypertension
was detected, in contrast with reports in non-PD20 and
other PD cohorts.7 Hypertension in PD is rare and
related to the occurrence of dysautonomia. Likewise,
smoking is not common in PD, thus explaining why it
did not increase COVID-19 risks in spite of what has
been observed in the general population.20

In keeping with another PD series,7 we did not
find any significant effect of anti-PD drugs in spite
of the hypothesized protective role of levodopa,21
entacapone,22 and amantadine.23,24 The same was true
for angiotensin-receptor blockers and angiotensin-conver-
ting-enzyme inhibitors.25 Finally, although the role of
nonsteroidal anti-inflammatory drugs is still unclear,26
we did not find any significant effect.

How Is the Clinical Expression of COVID-19 in
PD Patients?

No study has, so far, evaluated the clinical manifesta-
tion of COVID-19 in PD patients. Worsening of PD-
related symptoms has been hypothesized,27,28 as later
confirmed by a small series.5 In our study, we found
that the clinical expression of COVID-19 largely over-
laps with that of non-PD patients with few exceptions.
The reason for the reduced occurrence of SOB is only
speculative at the moment and probably related to the
poorly understood pathophysiology of respiratory func-
tion in PD.29 Uncontrolled studies have focused on the
occurrence of dyspnea, reaching the overall conclusion
that it is a common PD symptom, although patient self-
reporting seems reduced.30,31 Alternatively, given that
SOB has been associated with anxiety or complications
of l-dopa therapy,32 it is conceivable that surveyed PD
patients found it difficult to attribute their respiratory
symptoms to COVID-19 alone. In this survey, we also
found that hospitalization was required in PD patients
less often, possibly because of the aforementioned
reduced occurrence of SOB and the tendency for frail
patients to be treated at home.33

What Is the COVID-19 Outcome in an
Unselected Cohort of PD Patients?

COVID-19 mortality in PD patients is still far from
being elucidated. So far, two studies have reported
figures of 19.7%7 and 40%.5 Although PD patients
might be at risk in light of their frailty and advanced
age, we believe that the available data are misled by the
ascertainment methods. Our survey found a much
lower figure (5.7%) that did not differ importantly
from the rate in the non-PD control population. Italian
data suggest an overall mortality of 9.5% for all
patients ≥50 and of 12.8% for all patients aged
≥70 years.2 Our mortality rate is probably under-
represented for the reasons detailed below.

Study Limitations and Conclusions

Besides the well-known limitation of a telephone sur-
vey, our study has two other major limitations: (1) We
directed our attention toward community-dwelling PD
patients because we could not reach patients living in
nursing homes or other long-term care facilities, where
outbreaks with high mortality rates have been
reported.34 (2) Some patients could not be reached for
unknown reasons, thus raising the possibility of patient
death attributed to COVID-19. Furthermore, COVID-
19 diagnosis could not be confirmed in many cases,
which is in line with the challenge of population screen-
ing during this unprecedented crisis. Other limitations
include the younger age of non-PD COVID-19 cases,
which we mitigated statistically and the small size for
some comparisons.

In conclusion, this is the first case-controlled study on
a relatively unselected and homogeneous large cohort
of PD patients. Overall, we confirmed that COVID-19
risk, morbidity, and mortality in patients with mild-to-
moderate PD do not differ from the general population.
Interestingly, we found a possible protective role of
vitamin D intake, which should be confirmed by appro-
priate randomized controlled trials.35

Acknowledgments: The authors are grateful to Carlotta Belliri, PhD,
Serena Caronni, PhD, Viviana Cereda, PsyD, Aurora Colombo, PsyD,
Beatrice Pozzi, PsyD, Alessandra Ranghetti, PsyD, and Elisa Reali, PsyD,
for having conducted the phone interviews and to Alessandro Gagliardi
and Jennifer S. Hartwig for the assistance in data processing and manu-
script editing, respectively.

References
1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:
497–506.
2. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteris-
tics of patients dying in relation to COVID-19 in Italy. JAMA 2020
Mar 23. https://doi.org/10.1001/jama.2020.4683. [Epub ahead of print].
3. Papa SM, Brundin P, Fung VSC, et al. Impact of the COVID-19
pandemic on Parkinson’s disease and movement disorders. Mov Dis-
ord Clin Pract 2020;7:357–360.
4. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complica-
tions of coronavirus disease (COVID-19): encephalopathy. Cureus
2020;12:e7352. [Epub ahead of print].
5. Antonini A, Leta V, Teo J, Chaudhuri KR. Outcome of Parkinson’s
disease patients affected by COVID-19. Mov Disord 2020 Apr 29.
https://doi.org/10.1002/mds.28104. [Epub ahead of print].
Prasad S, Holla VV, Neeraja K, et al. Parkinson’s disease and COVID-19: perceptions and implications in patients and caregivers. Mov Disord 2020 Apr 17. https://doi.org/10.1002/mds.20808. [Epub ahead of print].

Fasano A, Elia AE, Dallocchio C, et al. Predictors of COVID-19 outcome in Parkinson’s disease. Submitted.

Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020;323:1574–1581.

Civile DdP. COVID-19 Italia—Monitoraggio della situazione [online]. Available at: https://opendatadc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2ccee478eac8262f384138b1.

Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30:1591–1601.

Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amidst the COVID-19 pandemic. Obesity (Silver Spring) 2020 Apr 16. https://doi.org/10.1002/oby.22838. [Epub ahead of print].

Jakovac H. COVID-19 and vitamin D: is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab 2020;318:E589.

Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: a review. Diabetes Metab Syndr 2020;14:367–382.

Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus 2020;12:e7560.

Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov 2020 Apr 29. https://doi.org/10.1016/j.medidd.2020.100041. [Epub ahead of print].

McCartney DM, Byrne DG. Optimisation of vitamin D status for enhanced immuno-protection against Covid-19. Ir Med J 2020;113:58. [Epub ahead of print].

Silberstein M. Vitamin D: a simpler alternative to tocilizumab for trial in COVID-19? Med Hypotheses 2020;140:109767.

Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res 2020 May 6. https://doi.org/10.1007/s41055-020-01357-8. [Epub ahead of print].

D’Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 2020;12:E1359.

Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect 2020 Apr 23. https://doi.org/10.1016/j.jinf.2020.04.021. [Epub ahead of print].

Natal S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol 2020 Apr 8. https://doi.org/10.1002/jmv.25826. [Epub ahead of print].

Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. bioRxiv 2020 Mar 27. https://doi.org/10.1101/2020.03.22.002386.

Smeszek SP, Przychoden BP, Polymeropoulos MH. Amantadine disrupts lysosomal gene expression; potential therapy for COVID19. bioRxiv 2020 Apr 3. https://doi.org/10.1101/2020.04.05.026187.

Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX, Gong X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci 2007;16:2065–2071.

Jarcho JA, Ingelfinger JR, Hamel MB, D’Agostino RB, Sr., Harrington DP. Inhibitors of the renin-angiotensin-aldosterone system and COVID-19. N Engl J Med 2020 May 1. https://doi.org/10.1056/NEJMe2012924. [Epub ahead of print].

Little P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ 2020;368:m1183.

Helmich RC, Bloom BR. The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities. J Parkinsons Dis 2020;10:351–354.

Fasano A, Antonini A, Katzenschlager R, et al. Management of advanced therapies in Parkinson’s disease patients in times of humanitarian crisis: the COVID-19 experience. Mov Disord Clin Pract 2020;7:361–372.

Monteiro L, Souza-Machado A, Valderramas S, Melo A. The effect of levodopa on pulmonary function in Parkinson’s disease: a systematic review and meta-analysis. Clin Ther 2012;34:1049–1055.

Baille G, Chenivesse C, Perez T, et al. Dyspnea: an underestimated symptom in Parkinson’s disease. Parkinsonism Relat Disord 2019;60:162–166.

Baille G, De Jesus AM, Perez T, et al. Ventilatory dysfunction in Parkinson’s disease. J Parkinsons Dis 2020;10:354.

Ko PW, Kang K, Lee HW. Levodopa-induced respiratory dysfunction confirmed by levodopa challenge test: a case report. Medicine (Baltimore) 2018;97:e12488.

Kittleson MM. The invisible hand of levodopa, inflammatory drugs and covid-19. bioRxiv 2020 Mar 23. https://doi.org/10.1101/2020.03.22.002386.

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.