GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows

Sarthak Pati, Siddhesh P. Thakur, Ibrahim Ethem Hamamci, Ujjwal Baid, Bhakti Baheti, Megh Bhalerao, Orhun Güley, Sofia Mouchtaris, David Lang, Spyridon Thermos, Karol Gotkowski, Camila González, Caleb Grenko, Alexander Getka, Brandon Edwards, Micah Sheller, Junwen Wu, Deepthi Karkada, Ravi Panchumarthy, Vinayak Ahluwalia, Chunrui Zou, Vishnu Bashyam, Yuemeng Li, Babak Haghighi, Rhea Chitalia, Shahira Abousamra, Tahsin M. Kurc, Aimilia Gastounioti, Sezgin Er, Mark Bergman, Joel H. Saltz, Yong Fan, Prakash Shah, Anirban Mukhopadhyay, Sotirios A. Tsaftaris, Bjoern Menze, Christos Davatzikos, Despina Kontos, Alexandros Karargyris, Renato Umeton, Peter Mattson & Spyridon Bakas.

Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.
Deep Learning (DL) describes a subset of Machine Learning (ML) algorithms built upon the concepts of neural networks. Over the last decade, DL has shown great promise in various problem domains such as semantic segmentation, quantum physics, segmentation of regions of interest (such as tumors) in medical images, medical landmark detection, image registration, predictive modelling, among many others. The majority of this vast research was enabled by the abundance of DL libraries made open-source and publicly available, with some of the major ones being TensorFlow (developed by Google) and PyTorch (by Facebook - originally developed as Caffe by the University of California at Berkeley), which represent the most widely used libraries facilitating DL research. Among the currently available libraries, PyTorch has demonstrated itself to be one of the most customizable and easily deployable through its robust and efficient C++ backend.

There have been various efforts by the medical imaging community towards addressing the clinical end-points of academic research, and packaging pre-coded/pre-trained models for data scientists to leverage and address clinical requirements (Fig. 1). However, all these efforts, resulting in numerous software packages, can confuse the less experienced user and result in endless hours of searching for the appropriate tool to use. To alleviate this situation, we hereby stratify these efforts into a set of well-defined categories to deepen the community’s understanding (Fig. 2). Some of these efforts lie on one side of the spectrum and can be classified as “applications”, since they focus on the end-user, with powerful user interfaces (either graphical, or otherwise). Software packages on the other end of the spectrum can be stratified as “libraries”, since they are built as a mechanism to access low-level machine functionality, while “toolkits” fall in between these two ends, and provide a layer of abstraction to enable research. Finally, “frameworks” fulfill various roles and attempt to provide a multitude of functions targeting both developers and end-users. Examples of such packages are the Medical Imaging Interaction Toolkit (MITK) and the Cancer Imaging Phenomics Toolkit (CaPTk). GaNDLF is also a framework with a notably unique emphasis to DL. Figure 2 illustrates this stratification, while also providing some pertinent examples.

Some of these prior efforts are non-DL based, such as MITK, 3D Slicer, ITK-SNAP, and CaPTk. While they have been lauded for their generalizability, they may fall short when it comes to competitive performance for specific tasks. Towards obtaining superior performance, various efforts concentrating on DL have been devised recently by the community, such as NiftyNet, DeepNeuro, ANTsPyNet, and DLTK, that are implemented in TensorFlow, as well as pymia, InnerEye, and MONA, that are implemented in PyTorch. Additionally, there are specialized DL-based tools that cater to specific problems, such as segmentation, registration, or specific imaging domains, like PathML, TIAToolbox, HistomicsML, that focus on data engineering and enabling ML in computational pathology. However, all these applications and toolkits either (i) describe developer-focused tools targeting members of the

Fig. 1 Current amalgamation of the functionality of GaNDLF. a The entire functionality palette is focused to promote “zero/low-code” principles, and at the same time, each component in the major color groups (i.e., anonymization, harmonization, augmentation, network topologies, training, and post-processing) can be used independently to create customized solutions. The grey arrows represent the flow of operations for a user towards a “zero/low-code” principle for an entire computational training pipeline, starting with data I/O and ending with post-processing. b A high-level flowchart highlighting the “zero-code principle” entry point for the entire functionality palette of GaNDLF and their interactions throughout an AI clinical workflow, using the “zero/low-code” principle. A more comprehensive flowchart version is given in Fig. 4.
advanced computational research community; (ii) can be difficult to grasp by researchers without sufficient experience in DL; (iii) do not make it easy for DL scientific developers to write their architectures in a generalizable way, allowing their application on problems spanning across domains; (iv) make it difficult to write reproducible training pipelines for different problem domains; (v) put the onus of training robust and generalizable models to the user’s knowledge of the training mechanism and the dataset in question; (vi) lack a single end-to-end application programming interface (API) for training and inference that can span across various problem domains; or (vii) do not have appropriate level of interpretability or explainability functionality for researchers to garner meaningful insights into the training.

Here, we introduce the Generally Nuanced Deep Learning Framework (GaNDLF) as a community-driven open-source framework by MLCommons, which is an industry–academic partnership aiming to accelerate the adoption of machine learning innovation to benefit the larger community, to enable both clinical and computational researchers address various AI workloads (such as segmentation, regression, and classification), while producing robust AI models without requiring extensive computational experience. This is done by focusing on ensuring that AI algorithms and pipelines follow paradigms adhering to best practices established by the greater ML community, and leveraging existing collaborative efforts in the space (such as the MLCommons’ MedPerf40). Such practices include: (i) nested cross-validation41; (ii) handling class imbalance42; and (iii) artificial augmentation of training data. Additionally, GaNDLF incorporates capabilities to handle end-to-end processing (i.e., pre- and post-processing steps) in a cohesive and reproducible manner to contribute towards democratizing AI in healthcare, while these best ML practices are at the forefront during training and inference. GaNDLF has been developed in PyTorch/Python as an abstraction layer that incorporates widely used open-source libraries and toolkits (such as MONAI32) that can help researchers generate robust AI models quickly and reliably, facilitating reproducibility and being consistent with the criteria of findability, accessibility, interoperability, and reusability (FAIR). Furthermore, the flexibility of its codebase permits GaNDLF to be used across modalities (e.g., 2D/3D radiology scans, and 2D multi-level histology whole slide images (WSI)), and has scope and functionality for integrating other clinical data (such as genomics and electronic health records) in the future, thus taking current clinical diagnostics to the next frontier of quantitative integration.

Results

To highlight the generalizability of the framework, GaNDLF was applied on both radiology and histology data for a variety of DL workloads/tasks (i.e., segmentation, regression, and classification) on multiple organ systems, imaging modalities, and various applications using numerous DL architectures. For each workload, we performed extensive performance evaluation using dedicated testing (or holdout43) datasets by averaging each model’s training run in a cross-validated schema, ensuring stable model performance reporting without overfitting to a specific data split. Details regarding the experimental design of each application are shown in the Methods’ Experimental Design section. The reported results for all the performed experiments are on the unseen testing (or holdout43) cohorts for each application, and collectively shown in Table 1.

Segmentation workloads. We applied GaNDLF to solve various segmentation problems on imaging acquired during standard clinical practice for multiple anatomical sites, comprising of brain, eyes, breast, lung, maxillofacial region, and colon. Numerous DL architectures, designed for segmentation workloads, were evaluated for multiple applications. These architectures include UNet, UNet with residual connections (ResUNet), Fully Convolutional network (FCN), and UNet with inception modules (see Methods section for details and Supplementary Figs. 1–10 for illustrations). Respective results are reported after quantitative performance evaluation based on Dice Similarity Coefficient (“Dice”). Note that GaNDLF offers the ability to generate other segmentation-specific metrics, such as the Hausdorff distance.

Several applications used brain Magnetic Resonance Imaging (MRI) scans, focusing on brain extraction (also known as skull-stripping)11,44, boundary detection of histologically distinct brain tumor sub-regions7–10, as well as comprehensive brain parcellation45. For brain extraction, we used each structural MRI volume as a separate independent input, with the goal of training a computational model that can segment the brain tissue region regardless of the input modality, and remove all non-brain tissue (e.g., neck, fat, eyeballs, and skull). In our analysis, we observed that the ResUNet architecture gave the best results, with average “Dice” of 0.98 ± 0.01. For brain tumor sub-regions, we considered the areas of necrosis, enhancing tumor, and peritumoral edematous/infiltrated tissue, following the convention of the International Brain Tumor Segmentation (BraTS) challenge7–10. To train these models, we used all four structural MRI volumes in tandem as input. For this application, the ResUNet architecture was again observed to give the best results with an average “Dice”, across all the 3 sub-regions, of 0.71 ± 0.05. For brain parcellation, we segmented 133 fine-grained brain regions from the whole brain MRI scans45. In our analysis, we observed that ResUNet gave the most satisfactory results for the problem, with average “Dice” of 0.68 ± 0.15.

For the anatomical site of breast, we had two distinct applications. Firstly, we segmented the background, fatty breast tissue, and dense breast tissue from digital breast tomosynthesis scans46. Our experimentation resulted in the most optimal “Dice” scores using ResUNet, with an average of 0.94, 0.89, and 0.49, for each of the aforementioned regions, respectively, with an overall performance of 0.78 ± 0.09. Secondly, we segmented the structural tumor volume region from T1-weighted pre-contrast, peak-contrast and post-contrast injection scans using the ISPY-1 cohort47. We observed the best performance using ResUNet with an average “Dice” of 0.74 ± 0.01.
For lung, we used low-dose Computed Tomography (CT) scans acquired for both lung cancer screening and COVID-19 assessment, with the intention to segment the lung field incorporating apparent healthy and abnormal tissue. Application of GaNDLF’s ResUNet architecture on scans for both these applications (i.e., cancer screening and COVID-19 assessment), we observed “Dice” scores of 0.95 and 0.97, respectively.

For the anatomical site of the eyes, we segmented the fundus region in Red-Green-Blue (RGB) retinal scans48, and observed that the ResUNet architecture gave the best results, with the average “Dice” coming to 0.71 ± 0.05.

For the anatomical region of maxillofacial, we have used panoramic dental x-ray images, with the goal of distinguishing and accurately segmenting the four quadrants considered in dental practice. After training various DL architectures, we observed that UNet yielded the best results, with the average Dice coming to 0.91 ± 0.01.

Last but not least, and to evaluate GaNDLF’s performance beyond radiology scans, we utilized histology digitized tissue sections (e.g., whole slide images (WSI)), stained for Hematoxylin and Eosin (H&E), of colorectal cancer by leveraging the publicly available dataset of the DigestPath challenge50, with the intention of delineating the cancerous regions. Our results yield and average “Dice” of 0.78 ± 0.09 for a pre-defined testing data split.

Regression. For the DL workload of regression, we have used GaNDLF to solve a specifically targeted regression problem in brain MRI scans, focusing on predicting a surrogate index for brain age51. By virtue of the inherent flexibility in GaNDLF’s design, we modified the VGG16 architecture to predict the age of a brain from a single MRI slice, and replicated previously reported results51. The input for this use case was based on 2D MRI slices of T1-weighted scans, and the output was the brain age. With an average mean squared error (“MSE”) of 0.0141, the prediction quality of the models trained by GaNDLF was in line with the original publication51, showcasing the flexibility of GaNDLF to successfully adapt to various problem domains.

Table 1 Results of various DL workloads using GaNDLF for multiple anatomies.

Task	Organ	Application	Dims (number): type	Output classes	Architecture	Metric Type	Average value
Segmentation	Brain	Brain extraction	3	1	UNet	Dice	0.97 ± 0.01
		Tumor sub-region segmentation	4	3	ResUNet	Dice	0.97 ± 0.01
		Brain parcellation	1	133	ResUNet	Dice	0.74 ± 0.01
	Breast	Breast segmentation	3	3	UInc	Dice	0.91 ± 0.01
	Lung	Lung field segmentation	3	1	ResUNet	Dice	0.95 ± 0.02
	Eye	Fundus segmentation	2	1	ResUNet	Dice	0.97 ± 0.01
	Dental	Quadrant segmentation	2	4	VGG16	Acc	0.90 ± 0.05
	Colon	Colorectal cancer segmentation	2	1	VGG16	Acc	0.90 ± 0.01
Regression	Brain	Age prediction	2	1	Specialized VGG	MSE	0.0141 ± 0.01
Classification	Brain	EGFRvIII status prediction	3	2	VGG11	Acc	0.74 ± 0.08
Foot	Diabetic foot ulceration	2	4	VGG11	Acc	0.92 ± 0.01	
Pan-Cancer	TIL Prediction	Histology H&E	2	2	ImageNet/VGG16	Acc	0.89 ± 0.01

The “Task” showcases the workload type; “Organ” describes the organ system of the data; “Application” describes the use case for the trained model(s); “Dims” describe the dimensionality for each input modality; “Input Modalities” describes the total number of input modalities for the model to train on; “Output Classes” shows the number of classes the model should be predicting; “Architecture” describes the network topology, and “Metric” describes the type and average value of the selected metric on the testing/holdout dataset, and is “Dice” for segmentation tasks, Mean squared error or “MSE” for regression, and Balanced accuracy or “Acc” for classification.
Classification. We have further used GaNDLF to solve multiple classification problems, spanning different domains (e.g., radiology and histology), as well as various organ systems, including feet, brains, and pan-cancer histology images.

Specifically, for the anatomical location of brain, we have applied GaNDLF on 3D MRIs of patients diagnosed with de novo glioblastoma, to predict the EGrFrVIII mutation status. The inputs for model training were structural MRI scans in tandem (passing all the scans together at once) to a VGG11 customized to perform computations in 3D directly, resulting in a best accuracy of 0.74 ± 0.08.

Furthering the application towards 2D RGB data, we have predicted different ulceration status of diabetic foot images from the DFU challenge by passing each image as an input along with its ground truth label. We observed the best performance on VGG11 (that was randomly initialized instead of being pretrained on ImageNet), with a macro-F1 score of 0.561. Notably, the defined approach was among the top-performing ones (ranked 5th) in the International in the DFU Challenge 2021 leaderboard (dfu-2021.grand-challenge.org/evaluation/challenge/leaderboard).

Finally, we used a dataset of histology digitized tissue sections stained for H&E, spanning across 12 anatomical sites. The problem at hand was to predict patches containing tumor-infiltrating lymphocytes (TIL). We observed the best-balanced classification accuracy of 0.89 using a VGG16 that was pretrained on ImageNet and customized for the specific problem.

Discussion

We have introduced the Generally Nuanced Deep Learning Framework (GaNDLF), as an end-to-end solution for scalable clinical workflows, currently focused on (bio)medical imaging. GaNDLF provides a “zero/low-code” solution enabling both computational and non-computational experts to train robust DL models to tackle a variety of workloads/tasks in both 2D and 3D radiology and histology data, without worrying about details such as appropriate data splitting for training, validation, and testing, tackling class imbalances, and implementing various training strategies (e.g., loss functions, optimizers). Specifically, GaNDLF’s contribution spans its ability to: (i) process images of various domains, including both radiology scans and digitized histology WSIs; (ii) enable work on various workloads (i.e., segmentation, regression, and classification); (iii) offer built-in general-purpose functionality for augmentations and cross-validation; (iv) be evaluated on a multitude of applications; (v) enable parallel training by using generic high-performance computing protocols; (vi) integrate tools to promote the interpretability and explainability of DL networks, via M3D-CAM.

Our overarching goal is to enable clinical translation and applicability of AI, since specialized hardware (e.g., DL accelerator cards) is usually not considered for purchase by clinical entities in higher income countries, and altogether out of reach for clinics in lower-income countries. Towards this end, we have developed built-in model optimization support in GaNDLF to automatically generate optimized models after the training process is complete, allowing inference of these models on machines without requiring any specialized hardware, or large amounts of memory. We further envision the “model library” in GaNDLF to potentially be a phenomenal resource for pre-trained models and corresponding configurations to replicate training parameters for the scientific community in general. By ensuring that the model library contains information beyond just the trained model weights, but also additional metadata, trained models through GaNDLF will remain reproducible through code changes. GaNDLF is a fully self-contained DL framework that has various abstraction layers to enable researchers to produce and contribute robust DL models with absolutely zero knowledge of DL or coding experience.

The concepts of “zero-” and “low-” code principles in software development have recently been introduced, targeting different user groups. In essence, the “zero-code” principle revolves around allowing users to build solutions without writing any code, whereas the “low-code” principle allows customization of the provided solution with minimal programming. GaNDLF follows these zero/low-code principles and enables targeting a dual audience type: (i) non-computational experts, by providing building blocks for conducting DL analyses by leveraging their domain expertise without the need for any programming skills; (ii) DL researchers, allowing for harmonized I/O (i.e., common data loaders enabling the main focus be kept on the algorithmic development), as well as leveraging or extending existing capabilities to create custom solutions. For a non-computational researcher, GaNDLF ensures the easy creation of robust models using various DL architectures, and built-in automatically triggered ML principles, that can be used for scientific research and method discovery, including the potential for aggregating results from various models, which has been shown to provide greater accuracy. For DL researchers/developers, GaNDLF provides a mechanism for creating customized solutions, robust evaluation of their methods across a wide array of medical datasets that span across dimensions, channels/modalities, and prediction classes, as well as to conduct a comparative quantitative performance evaluation of their algorithm against well-established built-in network architectures, including, but not limited to, UNet, UNetR (UNet with transformer encoding), ResNet, and EfficientNet. Furthermore, GaNDLF provides the means to DL researchers/developers to distribute their methods in a reproducible way to the wider community, thereby expanding their application across various problem domains with relative ease, and providing re-usable components that can be combined to create customized solutions. Ideally, we anticipate the best results when both these groups of the scientific and clinical community bring their expertise together to further our understanding of healthcare. Towards this end, GaNDLF can provide a common frame of reference for both these user groups. By creating tools standardized within the same infrastructure (GaNDLF) for the entire community to leverage, we anticipate the cost and time of creating algorithms to be substantially reduced and hence put efforts in meaningfully translating methods into the clinical practice rather than trying to identify and/or make a tool to work.

The modularity of the software stack is highlighted by large-scale studies of specific focus on federated learning (FL) that GaNDLF has facilitated, beyond the results shown in this manuscript. The FL-specific functionality is provided by its integration to work in conjunction with the Open Federated Learning (OpenFL) library. Further integration with other community-driven efforts, such as MedPerf (medperf.org) of MLCommons (mlcommons.org), would increase the applicability of GaNDLF towards federated learning applications. GaNDLF has notably been used to orchestrate the Federated Tumor Segmentation (FeTS) Challenge, which represents the first-ever computational challenge on FL, targeting (i) the development of novel aggregation methods for federated training, and (ii) the federated evaluation of algorithms “in-the-wild”, to assess algorithmic robustness to distribution shifts between medical institutions. Moreover, GaNDLF’s codebase has facilitated components of the largest to-date real-world FL study (i.e., the FeTS Initiative - www.fets.ai), involving data from 71 geographically-distinct collaborating sites to develop a DL model to detect boundaries of intrinsic sub-regions for the rare disease of glioblastoma in mpMRI scans. Finally, indicating its joint
ability with OpenFL to address workloads in various domains, the GaNDLF-OpenFL integration has enabled an FL histology study on identifying TILs in WSIs from numerous anatomical sites.

One of GaNDLF’s core tenets is to enable work across domains, currently spanning radiology (e.g., MRI, CT) and histology (e.g., H&E-stained slides), including specialized pre-processing functionalities for each. The notable difference between these images is the relatively small resolution and size of radiology scans (typically occupying a few megabytes of disk space), compared with the histology WSI that are described by relatively large resolution (150 K x 150 K pixels) and size, where a single WSI can occupy 40–50 gigabytes. GaNDLF enables researchers to use a single framework across virtually all medical imaging modalities without performing any additional coding, thereby enabling future studies that rely on integrative diagnostics. Owing to the flexibility of the data loading mechanism in GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF, it could also be possible to integrate other data types (such as genomic or healthcare records) into a model towards GaNDLF.

Although GaNDLF has been evaluated across imaging modalities using single inputs (i.e., either a single radiology or histology image) or with multi-channel support (i.e., multiple MRI sequences considered in-tandem), so far, its application has been limited to workloads related to segmentation, regression, and classification, but not towards synthesis, semi/self-supervised training, or physics-informed modeling. Expanding the application areas would further bolster the applicability of the framework. Additionally, application to datasets representing analysis of 4D images (such as dynamic sequences or multi-spectral imaging) has not yet been evaluated. Also, a mechanism to enable aggregation of various models (i.e., train/infer models of different architectures concurrently) is not present, which have generally shown to produce better results. Mechanisms that enable AutoML and other network architecture search (NAS) techniques are tremendously powerful tools that create robust models, but are currently not supported in GaNDLF. Finally, application of GaNDLF to other data types, such as genomics or electronic health records (EHR), which would allow GaNDLF to further inform and aid clinical decision-making by training multi-modal models, has not been fully explored yet but is considered as current work in progress.

To facilitate clinical applicability, reproducibility, and translation, in the domain of healthcare AI, published research is essential to adhere to well-accepted reporting criteria. Some of these criteria are: i) CLAIM (Checklist for Artificial Intelligence in Medical Imaging)66, which outlines the information that authors of medical-imaging AI articles should provide, ii) STARD-AI, which is the AI-specific version of the Standards for Reporting of Diagnostic Accuracy Study (STARD) checklist, and aims to address challenges related to the original STARD checklist related to the utilization of AI models, iii) TRIPOD-AI and PROBAST-AI, which are the AI versions of the TRIPOD (Transparent Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis) statement and the PROBAST (Prediction model Risk Of Bias ASsessment Tool)68, and aim to provide standards both for reporting but also for Risk of Bias assessment, raising awareness of the importance in meta-analyses dealing with AI studies, iv) CONSORT-AI and SPIRIT-AI, which are the AI extensions of the CONSORT (Consolidated Standards of Reporting Trials) and SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials), providing guidance for reporting randomized clinical trials69, v) MI-CLAIM (Minimum Information about Clinical Artificial Intelligence Modelling)70, which focuses on the clinical impact and the technical reproducibility of clinically relevant AI studies, vi) MINIMAR (MINimum Information for Medical AI Reporting)71, which sets the reporting standards for medical AI applications by specifying the minimum information that AI manuscripts should include, and vii) Radiomics Quality Score (RQS)72, which outlines 16 criteria by which to judge the quality of a publication on radiomics.

In conclusion, this manuscript describes Gener Ally Nuanced Deep Learning Framework (“GaNDLF”), a stand-alone package that provides end-to-end functionality facilitating transparent, robust, reproducible, and deployable DL research. Due to its flexible software architecture, it is possible to either leverage certain parts of GaNDLF in other applications/toolkits, or leverage functions of other toolkits (e.g., MONAI) and libraries to incorporate them within the holistic functionality of GaNDLF. Furthermore, GaNDLF could partner with container-based platforms beyond MedPerf (such as the BraTS algorithmic repository, or ModelHub.AI) towards a structured dissemination of DL models to the research community. As all development is open-sourced in github.com/mlcommons/GaNDLF, with robust continuous integration and code vulnerability testing through Dependabot, contributions from the community will ensure that this framework continues building ties to other packages quickly and reliably for end users. Finally, by creating tools standardized within the same infrastructure (GaNDLF) for the entire community to leverage, we anticipate the cost and time of creating algorithms to be substantially reduced and hence put efforts in meaningfully translating methods into the clinical practice rather than trying to make a tool to work.

Methods
Pre-processing. Providing robust pre-processing techniques that are widely applicable to (bio)medical data, is critical for such a general-purpose framework to succeed. GaNDLF offers most of the pre-processing techniques already reported in the literature, leveraging the capabilities of basic standardized pre-processing routines from ITK74,75, and advanced pre-processing functionality from the CaPTk23,76. The main pre-processing steps for data curation (including harmonization and normalization) are described below.

1. Anonymization:
 - Radiology Images: Since the DICOM format is the standard for radiology images, GaNDLF has provisions to remove all identifiable fields from the DICOM metadata, as well as a conversion to the Neuroimaging Informatics Technology Initiative (NIfTI) file format74,75, which completely removes all extraneous metadata fields.
 - Histology Images: Most WSIs include metadata which could contain protected health information, and GaNDLF can remove such fields from the file header. This works for multiple formats defined by the Open Microscopy Environment standard73, such as TIFF, SVS, and MRX.

2. Data harmonization:
 - Voxel-resolution harmonization: To ensure that the physical definition of the input data is in a common space (for example, all images can have the same image dimensions (for example, all images can be resampled to [240, 240, 155]).

3. Intensity normalization:
 - Thresholding: To consider pixel/voxel values that belong to a specific intensity range and ignore values below/above this range, by making them equal to zero (Eq. (1)):

\[
\begin{align*}
x_i &= \begin{cases}
0 & x_i < \text{threshold}_{\text{min}} \\
0 & x_i > \text{threshold}_{\text{max}} \\
x_i & \text{otherwise}
\end{cases}
\end{align*}
\]

- Clipping: To consider pixel/voxel values that belong to a specific intensity range and convert values below/above this range, by making them equal to the minimum/maximum threshold, respectively (Eq. (2)):

\[
\begin{align*}
x_i &= \begin{cases}
\text{threshold}_{\text{min}} & x_i < \text{threshold}_{\text{min}} \\
x_i & x_i > \text{threshold}_{\text{max}} \\
\text{threshold}_{\text{max}} & \text{otherwise}
\end{cases}
\end{align*}
\]
Data augmentation. DL methods are well-known for being extremely data hungry, but in medical imaging, data is scarce because of various technical, privacy, and ownership concerns, as well as data protection regulatory requirements, such as those set by the Health Insurance Portability and Accountability Act (HIPAA) of the United States and the European General Data Protection Regulation (GDPR). This necessitates the addition of robust data augmentation techniques into the training data, so that models can gain knowledge from larger datasets and hence be more generalizable to unseen data. GaNDLF leverages existing robust data augmentation packages, such as TorchIO and AlbuMiniatures, to provide augmentation transformations in a PyTorch-based mechanism. GaNDLF also stores image metadata (such as affine transform, origin, resolution), which is critical for maintaining correct physical coordinate definition of radiology scans. More details on the available types of augmentations through GaNDLF are shown in the Supplementary Notes: Details of Data Augmentation (Supplementary Table 1), and examples of their effects are illustrated in Fig. 4b, using a brain tumor T2-FLAIR MRI scan from the BraTS challenge dataset.

Training mechanism. The overall pipeline of the training procedure offered in GaNDLF is illustrated in Fig. 4a, and focuses on stability and robustness for the user to generate reproducible results, and clinically-deployable models. Figure 4b showcases the overall software stack. The data flow of GaNDLF leverages two main ideas that allow efficient processing of large datasets (such as histology images or large 3D volumes): (i) patch-based training and inference, which allows the model to operate on smaller “chunks” of the data at a single instance, and hence on the full gamut of images - the size and overlap of these chunks can be customized by the user, (ii) lazy loading of the datasets themselves, allowing GaNDLF to only read the datasets into the memory during computation, and immediately deallocate the memory once it is used.

Cross-validation. k-fold cross validation is a useful technique in ML that ensures reporting unbiased quantitative performance evaluation estimates of algorithmic generalizability on new datasets, i.e., by evaluating results on new unseen data discretized from an entire given data cohort. GaNDLF offers a nested k-fold cross-validation schema, where initially, cases of the complete cohort are randomly divided into k non-overlapping, equally-sized subsets and during each fold, k - 1 of these subsets are considered as the “retrospective”/“discovery” cohort and 1 as the “prospective”/“replication” cohort, which is unseen during training for this specific fold. Note that during each fold, the “prospective”/“replication” cohort is a different subset. This cross-validation scheme is analyzing the given data as if it had independent discovery and replication cohorts, but in a more statistically robust manner by randomly permuting across all given data. The number of folds for each level of split is specified in the configuration file, and the models for different folds can be trained in parallel (in accordance with the user’s computation environment). GaNDLF also offers the option of specifying single fold training, if so desired.

Zero/low-code principle. The main entry point of GaNDLF’s training mechanism follows a zero/low-code principle, where a single file input is provided by the user, through the command line interface - a comma-separated-value (CSV) file and a text file (YAML) with intuitive indications of where to enter the training configuration parameters. The expected CSV file should comprise the subject identifiers along with the corresponding full paths of all required input images and masks (i.e., for segmentation workloads) and the values required for training and follow-up predictions (i.e., for regression and classification workloads). The subject identifiers are randomly split into training, validation, and testing subsets, using nested k-fold cross-validation. The training can be configured to run on multiple DL accelerator cards, such as GPU or Gaudi. Furthermore, a YAML-based configuration file is used to control and parameterize all aspects of the training, such as the subject-based split of the cross-validation, data pre-processing, data augmentations (e.g., type, parameters, and probabilities), model parameters (e.g., architecture, list of classes, final convolution layer, optimizer type, loss function, number of epochs, scheduler, learning rate, batch size), along with the training queue parameters (i.e., samples to extract per volume, maximum queue length, and number of threads to use). The YAML-based configuration file requires an indication of the GaNDLF version used to create the trained model, and the actual trained model, with the intention of ensuring coherence between these two.

Monitoring & debugging. GaNDLF also supports mixed precision training to save computational resources and reduce training time. A single epoch comprises a forward pass of the model using the selected portion of the data and backpropagation of the generated loss, followed by evaluating the model performance on the validation portion of the data. In addition to saving the model trained after every epoch, each model corresponding to the best global losses for the training, validation, and testing datasets is also saved. These saved models can be used for subsequent inference, either using a single independent model or in a aggregated fashion utilizing label fusion. Training statistics (such as the “Dice” similarity coefficient and loss) are stored for each epoch, for the training, validation and the testing data in the form of a CSV file, with the intention of facilitating simplified results reporting and detailed debugging.

Handling class imbalance. Class imbalance, i.e., where the presence of one class is significantly different in proportion to another, is a common problem in healthcare informatics. To address this issue, GaNDLF allows the user to set a penalty for the loss function, which is inversely proportional to the classes being trained on. The penalty weights for the loss function will be defined as:

$$p_i = 1 - \frac{n_i}{N}$$

where p_i is the penalty for class i, and n_i is the number of instances of the presence of class i in the total number of samples N.

For example, for a classification workload using 100 cases, if there are 10 from class 0 and 90 from class 1, the weighted loss will get calculated to 0.9 for class 0 and 0.1 for class 1. This basically means that the misclassification penalty during loss back-propagation for class 0 (i.e., the “rarer” class) will be higher than that of class 1. This is more “commensurate” with the class distribution, and makes sense for segmentation workloads as well. We recognize that this approach might not work for all problem types, and thus we have mechanisms for the user to specify a predetermined loss penalty for greater customization.

Inference mechanism. GaNDLF’s inference mechanism follows the same zero/low-code principle as its training mechanism, where the user needs a CSV file comprising of the subjects’ identifiers and the full paths of images, along with a YAML configuration file and the location of the trained models. For each trained model, the corresponding estimated output is stored and (depending on the user’s parameterization) a final predicted output is generated by aggregating the outputs of the independent models. This aggregation happens through different approaches, subject to the prediction task, e.g., a label fusion approach may be used for segmentation workloads, averaging for regression workloads, and majority voting for classification. If the full paths of the ground truth labels are given in the input CSV, then the overall metrics (e.g., “Dice” and loss) of the model’s performance are also calculated and stored.

For radiology scans. As soon as the data is read into memory, GaNDLF applies the pre-processing steps defined in the configuration file to each input dataset (see Section u for examples of these steps). Then TorchIO’s inference mechanism is used to enable patch-based inference for radiology images. This entails patch extraction, usually of the same size as the one that the corresponding model has been trained on, from the image(s) on which the model needs to infer. The forward pass of the model is then applied, and the result is stored in the corresponding location (Fig. 5a). This enables models to be trained and inferred on varied patch sizes based on the available hardware resources. Overlapping patches can be stitched by either cropping or taking an average of the predictions at the overlapping area, and the amount of overlap can be specified to ensure that dense inference can occur. Although patch-based training and inference is being widely used, we note that various potential adverse effects of this process have been reported, requiring the operator’s attention.

For histology WSIs. Histology WSIs need a different inference mechanism, than for training, primarily due to their increased hardware requirements, i.e., WSIs can require more than 50GB when loaded completely on-memory. Fig. 5b illustrates this inference mechanism, which starts with the extraction of a WSI comprising of the subjects’ identifiers and the full paths of images, along with a YAML configuration file and the location of the trained models. For each trained model, the corresponding estimated output is stored and (depending on the user’s parameterization) a final predicted output is generated by aggregating the outputs of the independent models. This aggregation happens through different approaches, subject to the prediction task, e.g., a label fusion approach may be used for segmentation workloads, averaging for regression workloads, and majority voting for classification. If the full paths of the ground truth labels are given in the input CSV, then the overall metrics (e.g., “Dice” and loss) of the model’s performance are also calculated and stored.

For histology WSIs. Histology WSIs need a different inference mechanism, than for training, primarily due to their increased hardware requirements, i.e., WSIs can require more than 50GB when loaded completely on-memory. Fig. 5b illustrates this inference mechanism, which starts with the extraction of a WSI comprising of the subjects’ identifiers and the full paths of images, along with a YAML configuration file and the location of the trained models. For each trained model, the corresponding estimated output is stored and (depending on the user’s parameterization) a final predicted output is generated by aggregating the outputs of the independent models. This aggregation happens through different approaches, subject to the prediction task, e.g., a label fusion approach may be used for segmentation workloads, averaging for regression workloads, and majority voting for classification. If the full paths of the ground truth labels are given in the input CSV, then the overall metrics (e.g., “Dice” and loss) of the model’s performance are also calculated and stored.
Fig. 3 Illustration of various data augmentation techniques available in GaNDLF showing the image and overlaid segmentation.

- **a** Original image,
- **b** affine augmentation,
- **c** elastic augmentation,
- **d** flip augmentation,
- **e** bias augmentation,
- **f** blur augmentation,
- **g** ghosting augmentation,
- **h** noise augmentation,
- **i** spike augmentation,
- **j** motion augmentation.

Legend
- Red: Necrosis
- Yellow: Enhancing Tumor
- Green: Edema

Fig. 3 Illustration of various data augmentation techniques available in GaNDLF showing the image and overlaid segmentation. a Original image, b affine augmentation, c elastic augmentation, d flip augmentation, e bias augmentation, f blur augmentation, g ghosting augmentation, h noise augmentation, i spike augmentation, and j motion augmentation.
count map (Fig. 5b(viii)), which accounts for the contribution of overlapping patches for a tissue region ensuring probabilities are always between 0 and 1. The trained model is then used for a forward pass on each of these patches, producing an independent prediction for each. These predictions are then stitched together to form a segmentation probability map (Figure 5b(ix)). The segmentation probability map and the count map are then multiplied to generate the final segmentation output (Fig. 5b(x)).

Post-processing. It is conceivable that post-processing of a prediction would be required to get the most accurate result. GaNDLF provides a post-processing module that includes common image processing tasks, such as morphological operations (i.e., dilation, erosion, closing, opening), and the ability to map predicted labels from one value to another. The former is useful in cases where segmentation predictions are generated with holes and need to be closed, and the latter can be used to assign the desired final label values to a prediction.

Modularity and extendibility. A description of GaNDLF’s software stack, modularity, and extendibility is hereby provided, as well as how the lower-level libraries are utilized to create an abstract user interface, which can be customized based on the application at hand. Following this, the flexibility of the framework from a technical point-of-view is chronicled, which illustrates the ease with which a new component (e.g., a pre-processing step, or a new network architecture) can be incorporated into the framework, and subsequently applied to new types of data/applications with minimal effort. Specifically, the framework’s flexibility affects components listed in the following subsections.

Dimensions. To ensure maximum flexibility and applicability across various types of data, GaNDLF supports both 3D and 2D datasets. Using the same codebase, GaNDLF has the ability to apply various architectures across diverse modalities such as MRI, CT, retinal, and digitized histology WSI, including immunohistochemical (IHC), In Situ Hybridization (ISH), and H&E stained tissue sections.

Input channels/modalities & output classes. GaNDLF supports multiple input channels/modalities/sequences and output classes, for either segmentation, classification, or regression, to ensure maximal applicability across various problem domains, whether it involves a binary task (e.g., brain extraction) or multi-class outputs (e.g., brain tumor sub-region segmentation).

- Radiology images require the ability to process both 2D and 3D data. Although imaging examples that GaNDLF has been applied and evaluated so far describe CT, MRI, and tomosynthesis scans, it offers support for almost every radiology image via ITK.

Software Stack. The software stack of GaNDLF, illustrated in Figure 4b, depicts the interconnections between the lower level libraries and more abstract functionalities exposed to the user via the command line interface. This ensures that a researcher can perform DL training and/or inference without having to write a single line of code. Furthermore, the flexibility of the stack is demonstrated by the ease with which a new component (e.g., a pre-processing step, or a new network architecture) can be incorporated into the framework, and subsequently applied to new types of data/applications with minimal effort. Specifically, the framework’s flexibility affects components listed in the following subsections.

- Radiology images require the ability to process both 2D and 3D data. Although imaging examples that GaNDLF has been applied and evaluated so far describe CT, MRI, and tomosynthesis scans, it offers support for almost every radiology image via ITK.
Network architectures. GaNDLF seeks to provide both well-established and state-of-the-art network architectures showing promise in the field of healthcare. The currently available (and ever expanding) architectures offered through GaNDLF, and their detailed descriptions are provided in the Supplementary Methods: Network Architectures as well as their illustrations in Supplementary Figs. 1-10.

Applications. As previously stated, GaNDLF can train DL models to target various workloads, including segmentation, regression, and classification. Depending on available resources, most models can be extended for all these workloads (such as UNet), and there are workload-specific models, such as the brain age prediction model17, which modifies a VGG-16 model pre-trained on ImageNet weights and is only defined for regression. The flexibility of GaNDLF’s framework makes it possible for all these models to co-exist and to leverage the robustly designed data loading and augmentation mechanisms for future study extensions. Having a common API for all these workloads also makes it relatively easy for researchers to start applying well-defined network architectures towards various problems and datasets, thereby contributing in getting DL-based pipelines into clinical workloads.

Performance evaluation. We provide different options to evaluate the model performance during training, and mechanisms to incorporate new validated recommendations133 as needed. Below definitions of the metrics used in the results section of this manuscript are provided. Specifically, for segmentation workloads, the "Dice Similarity Coefficient"114 (Eq. (4)) is mostly used as the performance evaluation metric, and all related models were trained to maximize it. "Dice" is a common metric used to evaluate the performance of segmentation workloads. It measures the extent of spatial overlap, while taking into account the intersection between the predicted masks (PM) and the provided ground truth (GT), hence handles over- and under-segmentation.

\[
\text{Dice} = \frac{2|GT \cap PM|}{|GT| + |PM|}
\]

Additionally, the "Hausdorff Distance"115 is a metric for segmentation workloads (Eq. (5)). This metric quantifies the distance between the boundaries of the ground truth labels against the predicted label. It is sensitive to local differences, as opposed to "Dice", which represents a global measure of overlap.

\[
H_{95}(PM, GT) = \max \left\{ \sup_{p \in PM} d(p, GT), \sup_{p \in GT} d(g, PM) \right\}
\]

where \(d(x, Y) = \min_{y \in Y} \|x - y\|\) is the distance of \(x\) to set \(Y\).

For regression workloads, we used the Mean Squared Error ("MSE")116 as our evaluation metric and all models were trained to minimize it. "MSE" measures the statistical difference between the target prediction \(T\) and the output of the model \(P\) for the entire sample size \(n\) (illustrated by Eq. (6)). The same mechanism has been used for accuracy, macro-averaged F1-score, and area-under-the-curve, among others by leveraging TorchMetrics17.

\[
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (T_i - P_i)^2
\]

For classification workloads, we used the balanced accuracy ("Acc")118 as an evaluation metric and trained models to minimize the cross entropy loss119. "Acc" can be used for both binary and multi-class classification, and is defined the arithmetic mean of sensitivity and specificity. This metric is especially useful when dealing with imbalanced data, i.e. when one of the target classes appears a lot more than the other118.

\[
\text{Acc} = \frac{\text{TP}}{\text{TP} + \text{FP}} + \frac{\text{TN}}{\text{TN} + \text{FN}}
\]

where \(TP \& TN\) are the number of true and false positives, and \(FP \& FN\) are the number of false positives and negatives, respectively.

Interpretability tools. It is an ongoing problem that deep neural networks lack the interpretability or explainability necessary for medical practitioners to trust into the
networks decisions, hindering the practical application of such models in clinical practice. To counter this, GaNDLF integrated the PyTorch library M3D-CAM, which enables the easy generation of attention maps of CNN-based models for both 2D and 3D data, and is applicable to both classification and segmentation models (examples illustrated in Fig. 6). The attention maps can be generated with multiple methods: Guided Back-propagation, Grad-CAM, CAM, Guided Grad-CAM and Grad-CAM++. The regions visualize the input data that most heavily influenced the model prediction at a certain layer.

Model optimization. Typical clinical environments do not have access to specialized hardware (such as DL acceleration cards) and increased memory, which are necessary for practical on-premise deployment of DL models. This situation is further exacerbated in developing regions, where clinical environments are even more limited in resources. The question of training, or even inference/exection, of DL models has not received sufficient attention in current literature, hindering clinical translation of state-of-the-art models. One of the reasons that this clinical applicability is typically not considered during the life-cycle of a research project is because of the added complexity. Thus, to further the use of models trained using GaNDLF in clinical/low-resource settings, GaNDLF incorporates post-training optimization of all models using OpenVINO by default, and provides the optimized model as an additional output at the conclusion of any model training procedure. This enables inference of DL models to be deployed to low-resource machines, which magnifies their impact in precision medicine.

Software development practices. GaNDLF incorporates several well-known robust software development measures to ensure ongoing software quality in the presence of community contributions. These measures include the following:

- “Unit testing” refers to tests of individual functional components of the software, to ensure that implementation changes do not break the usage contract established by that component. These units are the smallest relevant units of functionality, and testing these helps ensure that bugfixes, feature additions, and performance optimizations do not cause breaking changes to basic calculations made by the software, such as those that would impact model training. GaNDLF includes extensive unit tests for all custom functionality which is built atop other libraries.
- “System testing” refers to larger-scale tests of software functionality, to test the usage of the software in a broader way that more closely correlates to real usage. GaNDLF’s test suite includes extensive system tests, including tests of each major usage mode (training, inference, data preparation, and so on), and tests for each model architecture across types of data (such as radiology and histology images) and types of workloads (such as classification, regression, and segmentation) as appropriate. GaNDLF’s test suite requires all tests to pass before code can be committed to the repository, and changes cannot be committed to the code repository if any tests fail for any reason.
- Automated and publicly-declared vulnerability testing of code dependencies via Dependabot, which ensures that GaNDLF stays up-to-date on security patches.
- “Automated test coverage reports” are a metric collected during testing, reflecting how much of the codebase is traversed by tests. Higher code coverage indicates that more individual components, functions, and conditional branches of the software have been tested. GaNDLF automatically reports code coverage changes on any incoming contribution and flags changes that decrease code coverage for further review.
- “Continuous deployment” via containerization using the Docker, Singularity, and MLCube standards.

While the above tests cover code-level reliability, it is difficult to infer reliability regarding performance of the models produced by GaNDLF, in part due to stochasticity of the training process. We are actively working on additions to the automated test suite that would measure performance of each model on small sample datasets, and flag contributions that cause drops in performance for further review.

Experimental design. For each application, multiple models are trained in accordance with the cross-validation schema described in Methods Section. For performance evaluation, we use the model with the best validation score as defined in the application-specific evaluation criteria and apply this model to the test dataset for each fold, giving us the average performance of an architecture for the specific problem. To maintain reproducibility and prevent overfitting, we have trained each architecture with a 20/16/64 split, which results in the training of 25 models in total, for each architecture. Specifically, the 20/16/64 split comprises 5 non-overlapping splits (i.e., each containing 20%) of the complete dataset. Each one of these splits is set aside as the testing cohort for each fold. From the remaining 80% of the complete data during this fold, 5 further splits are done, each containing 16% of the full data, and used for validation. Finally, the remaining data for this fold, which represent 64% of the full cohort, are used for training.

Segmentation of brain in MRI. Brain extraction is an essential pre-processing step in the realm of neuroimaging, and has an immediate impact on the quality of all subsequent processing and analyses steps. We have used a multi-institutional dataset of 2520 MRI scans along with their corresponding manually annotated brain masks. We trained on 1320 scans in a modality-agnostic manner (i.e., each structural MRI scan was treated as a separate input) as described in ref. and setting a internal validation set of 180 scans, with an independent testing cohort of 360 scans to ascertain the model performance. We trained by resampling the data from an isotropic resolution of 1 mm³ with a shape of 240 × 240 × 160 to an anisotropic resolution of 1.825 × 1.825 × 1.25 mm³ with a shape of 128 × 128 × 128. The reason for this resampling was GPU memory limitations, i.e., 11GB VRAM. We trained multiple architectures (UNet, ResUNet, FCN) with only z-score normalization by discarding the zero-voxels, with no augmentations enabled.

Segmentation of brain tumor sub-regions in MRI. Gliomas are among the most common and aggressive brain malignancies and accurate delineation of these regions can provide valuable clinical insights. We have used the publicly available MRI data from the International Brain Tumor Segmentation (BraTS) challenge of 2020–2018 to train multiple models to segment the various brain tumor sub-regions. Specifically, we used the full cohort of 371 training subjects, which we iteratively split it into 74 testing, 60 validation, and 237 training subjects following the k-fold cross-validation schema mentioned in the Cross-Validation sub-section in Methods, with all the 4 structural MRI sequences making up a single input.
Whole brain parcellation in MRI. Whole brain structural segmentation could provide richer neuroanatomy information in neuroimaging studies where those structures are relatively small and thus it becomes more challenging to accurately segment them in the similar image appearances. We have used the publicly available MRI data from the Multi-Atlas Labelling Challenge (MALC) of 2012 to train multiple models to segment the whole brain into 133 fine-grained sub-regions from T1-weighted scans. Specifically, this challenge dataset contains in total of 30 scans, where a training list of 15 scans and a testing list of 15 scans are provided from the challenge. We trained by resampling the data into an isotropic resolution of 1 mm3 into a shape of 256 × 256 × 256 as referred from prior work. Particularly, a ResUNet model and an UNet model are implemented for training with a set of common hyperparameters that runs in a GPU with 24 GB of memory, 30 base filters, Dice loss with SGD as the optimizer. Differently, ResUNet used a learning rate of 0.02 and a patch size of 64 × 64 × 64, whereas UNet used a learning rate of 0.01 and a patch size of 96 × 96. For pre-processing, the dataset is normalized into range of $[-1, 1]^3$ with no augmentations enabled.

Segmentation of fatty and dense breast tissue using DBT. Breast density has been widely demonstrated to be an independent risk factor for breast cancer. Given the rise of digital breast tomosynthesis (DBT) in breast cancer screening compared to traditional 2D mammography, there is potential for volumetric breast density (VBD) routine in breast tomosynthesis. We retrospectively analyzed 1080 negative DBT screening exams completed between 2011 and 2016 at the Hospital of the University of Pennsylvania that contained both 2D raw DBT and 3D reconstructed images. Using the available cranio-caudal and mediolateral oblique views for each patient, a total of 48350 DBT views were available. We created a convolutional neural network that employed the U-Net architecture for a 3-label image segmentation problem (background, fatty breast tissue, dense breast tissue). Training, validation, and testing sets comprised 70%, 15%, and 15% of the original dataset, respectively. Corresponding ground truth segmentations were generated from a previously validated software that generated VBD metrics based on both 3D reconstructed slices and raw 2D DBT data. 24 models were trained, each using a unique combination of learning rates, batch sizes, patch sizes, and optimizers. Data augmentation during training included affine transformations, blur transformations, and noise transformations, with probabilities of 0.25, 0.5, and 0.5, respectively. The performance of each model was based on weighted and unweighted Dice scores and the final model was selected based on validation set performance.

Segmentation of structural tumor volume from breast MRI. The ACRIN 6657/1-SPY TRIAL5,13 enrolled 257 women from May 2002 to March 2006. From these cases, after applying the inclusion/exclusion criteria, we were left with 163 subjects which contained the 3 time-points of interest with regards to contrast injection. Those were pre-injection, 1 and post-injection scans. The first-post contrast image for each case was used by the radiologist to delineate the entire 3-D primary tumor segmentation for each patient, also known as the "structural tumor volume", since it contained peak excitation of the contrast agent. We trained the ResUNet using all the 3 time-points using an initial and minimum learning rates of 0.01 and 10^{-4}, respectively, driven using the SGD optimizer. We observed an average "Dice" of 0.74 across 5 fold cross-validation.

Segmentation of lung field in CT. An accurate volumetric estimation of the lung field is of crucial importance for understanding the diversity of lung diseases, such as influenza, pneumonia, and COVID-19. However, manual segmentation of the lung field is time-intensive and subjective with low inter-individual reliability, especially for large-scale datasets. Automatic segmentation algorithms can substantially accelerate the analytical procedure. We trained 3D U-Net convolutional models with the ACRIN trial and independent datasets based on the ResUNet structure. The first dataset was identified within the lung cancer screening cohort at the University of Pennsylvania Health System (UPHS), and consisted of 500 low-dose CT scans in which 25 were diagnosed with lung cancer. Their corresponding ground truth segmentations for the lung field were derived using semi-automatic procedure leveraging 2-cluster k-means, followed by manual qualitative refinements. The second dataset contains 673 low-dose CT scans identified within COVID-19 patients admitted to UPHS. Because of the difficulties posed by pathological presentations of COVID-19 in scans, the ground truth was obtained by manually choosing scans with correct segmentations generated by the algorithm that worked on individual slices and accounted for the presence of severe pathologies. We trained our models on the two cohorts datasets into training, validation, and test sets. For the first dataset, there are 254 scans in the training set, 64 scans in the validation set and 182 scans in the test set. For the second dataset, there are 360 scans in the training set, 98 scans in the validation set and 215 scans in the test set. We performed windowed pre-processing and clipped the intensities between 0 and 200 Hounsfield units. We split each volume into a set of $128 \times 128 \times 128$ in order to consider the entire chest region and to ensure that the trained model remained agnostic to the original image resolution. We trained the ResUNet architecture with clipping and z-score normalization by discarding the zero-voxels with no augmentations enabled. The "Dice" score was employed as our evaluation metric and the model was trained to maximize the "Dice" score.

Segmentation of retinal fundus. We used the dataset from the PALM challenge, which consists of segmentation of lesions in retinal fundus images and replicated the results for a ResUNet architecture from. Additionally, we trained on FCN, UNet, and Ulc to show results from a diversified set of architectures from the same dataset. We used the full cohort of 400 training subjects, and iteratively split into 80 testing, 64 validation, and 256 training subjects following the k-fold cross-validation schema mentioned in the Cross-Validation sub-section in Methods. In total, 25 models are trained for each architecture (UNet, ResUNet, Unic, and FCN). For each model, we used a set of common hyperparameters options that runs in a GPU with 11GB of memory, namely, patch size of 2048 × 1024, 30 base filters, "Dice" loss with SGD as the optimizer. For pre-processing, we used full-image normalization, and data augmentation was performed using flipping, rotation, noise and blur, each with a probability of 0.5. The performance is evaluated in comparison with the ground truth binary masks of the fundus in the testing set.

Segmentation of quadrants in panoramic dental X-ray images. Dental enumeration from panoramic dental X-Ray images has a crucial role in the identification of dental diseases. Performing that task with deep learning provides an extensive advantage for the clinician to number the dentition quickly and point out the teeth that need care more accurately. Quadrant segmentation from those panoramic images is the first and the most critical step of numbering the dentition accurately, and a previous study has used an UNet model to achieve that task. Here, we replicated those results by training a segmentation model with GaNLDL that extracts quadrants from the dental X-ray images. To do that, we have used 250 dental X-ray images with their corresponding ground truth masks, and after setting up our training and testing set, we trained our model by using a combination of Dice and Jaccard loss, with SGD as the optimizer. We used our model to evaluate the performance in comparison with the ground truth masks of the testing set.
We trained the VGG11 classification architecture utilizing the k-fold cross validation functionality to classify the EGFRvIII status as positive or negative based on the four structural modalities as well as the segmentation map of tumor core. The patch size was set to 128 × 128 × 3. The various experiments were carried out to find the optimal set of hyperparameters utilizing the various options available in GaNDLF. Baseline results were obtained without using any additional data augmentation techniques. Best performance was achieved with cross-entropy loss function, SGD optimizer and step scheduler with learning rate of 0.1.

Reporting summary. Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The data used for each of the experiments are available as follows:

Segmentation of Brain in MRI: The data used was a combination of a publicly available dataset, augmented with scans from private collections of multiple institutions, namely the University of Pennsylvania Health System (UPHS), Thomas Jefferson University, and MD Anderson Cancer Center. The data that support the findings of this study are available from the individual hospitals, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of the aforementioned clinical sites.

Segmentation of Brain Tumor Sub-regions in MRI: The data used was from the Brain Tumor Segmentation (BraTS) challenge of 2020–2022.

Whole Brain Parcellation in MRI: The data used was from the Multi-Atlas Labelling challenge (MALC) of 2012–2022.

Segmentation of Breast Tissue using DFT: The data that support the findings of this study are available from the UPHS, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of the University of Pennsylvania.

Segmentation of Structural Tumor Volume Breast MRI: The data used in this study was obtained from the ACRIN 6657/7-SPY1 Trial, and can be downloaded from https://wiki.cancerimagingarchive.net/display/Public/SPY1.

Segmentation of Lung Field in CT: The data that support the findings of this study are available from the UPHS, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of the University of Pennsylvania.

Segmentation of Colon Cancer in WSI: The data used was from the PALM challenge.

Segmentation of Quadrants in Panoramic Dental X-Ray Images: The data that support the findings of this study are available from the Istanbul Medipol University, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of the Istanbul Medipol University.

Segmentation of Coloroecal Cancer in WSI: The data used was from the DigestPath challenge.

Brain Age Prediction from MRI: The data used was from the UK Biobank and a multisite schizophrenia consortium.

Classification of Diabetic Foot Ulcer Images: The data used was from the Diabetic Foot Ulcer Grand Challenge (DFUC) of 2021.

Classification of Tumor Infiltrating Lymphocytes: The data used is available in The Cancer Genome Atlas (TCGA).

Code availability

To encourage reproducibility, all the code used for this work is open-sourced at github.com/mlcommons/GaNDLF, and it can be installed as detailed at mlcommons.github.io/GaNDLF/setup.

Received: 2 August 2022; Accepted: 27 March 2023; Published online: 16 May 2023

References

1. Hansen, L. K. & Salamon, P. Neural network ensembles. IEEE Transactions Pattern Analysis Machine Intelligence. 12, 993–1001 (1990).
Zhang, J., Liu, M. & Shen, D. Detecting anatomical landmarks from limited information. *Photogrammetry Remote Sens. 145*, 60–77 (2018).

Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. *Nat. Commun. 5*, 1–9 (2014).

Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (brats). *IEEE Transactions Medical Imaging* 34, 1993–2024 (2014).

Bakas, S. et al. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. *Scientific Data* 4, 1–13 (2017).

Bakas, S. et al. Segmentation labels and radiomic features for the pre-operative scans of the type-phen collection. The cancer imaging archive 286 (2017) https://doi.org/10.7937/K9/TCA17.1KLXWJJ1Q.

Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018) https://doi.org/10.1007/978-3-030-19936-2.

Thakur, S. et al. Brain extraction on mri scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. *NeuroImage 220*, 117081 (2020).

Rudie, J. D. et al. Multi-disease segmentation of gliomas and white matter hyperintensities in the brats data using a 3d convolutional neural network. *Front. Comput. Neurosci.* 13, 84 (2019).

Maghsoodi, O. H. et al. O-net: An overall convolutional network for segmentation tasks. In *International Workshop on Machine Learning in Medical Imaging*, 199–209 (Springer, 2020) https://doi.org/10.1007/978-3-030-59861-7_21.

Ghese, F. C. et al. An artificial agent for anatomical landmark detection in medical images. In *International conference on medical image computing and computer-assisted intervention*, 229–237 (Springer, 2016) https://doi.org/10.1007/978-3-319-46726-9_27.

Zhang, J., Liu, M. & Shen, D. Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. *IEEE Transactions Image Process.* 26, 4753–4764 (2017).

Borovec, J. et al. Anhirt: automatic non-rigid histological image registration challenge. *IEEE Transactions on Medical Imaging* (2020) https://doi.org/10.1109/TMI.2020.2986331.

Li, H. & Fan, Y. Non-rigid image registration using self-supervised fully convolutional networks without training data. In *2018 IEEE 15th International Symposium on Medical Image Computing and Computer-Assisted Intervention (ISICI)*, 1075–1078 (IEEE, 2018) https://doi.org/10.1109/ISICI.2018.8363757.

Akbari, H. et al. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma. *Cancer 126*, 2625–2636 (2018).

Pouyanfar, S. et al. A survey on deep learning: Algorithms, techniques, and applications. *ACM Comput. Surveys*, 51, 1–36 (2018).

Sheller, M. J., Reina, G. A., Edwards, B., Martin, J. & Bakas, S. Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. In *International MICCAI Brainlesion Workshop*, 92–104 (Springer, 2018) https://doi.org/10.1007/978-3-030-11723-9_8.

Sheller, M. J. et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. *Scientific Reports.* 10, 1–12 (2020).

Wolf, I. et al. The medical imaging interaction toolkit (mitk): a toolkit facilitating the creation of interactive software by extending vtk and itk. In *Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display*, vol. 5367, 16–27 (International Society for Optics and Photonics, 2004) https://doi.org/10.1117/12.535112.

Davatzikos, C. et al. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. *J. Med. Imaging*. 5, 011018 (2018).

Kikinis, R., Pieper, S. D. & Vosburgh, K. G. 3d slicer: a platform for subject-specific image analysis, visualization, and clinical support. In *Intraoperative imaging and image-guided therapy*, 277–289 (Springer, 2014) https://doi.org/10.1007/978-1-4614-7657-3_19.

Yushkevich, P. A., Gao, Y. & Gerig, G. Itk-snap: An interactive tool for semi-automated segmentation of multi-modality biomedical images. In *2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, 3342–3345 (IEEE, 2016) https://doi.org/10.1109/EMBC.2016.7591443.

Gibson, E. et al. Niftynet: a deep-learning platform for medical imaging. *Computer Methods Programs Biomed.* 158, 113–122 (2018).

Beers, A. et al. Deep injection: an open-source deep learning toolbox for neuroimaging. *Neuroinformatics* 1–14 (2020) https://doi.org/10.1007/s12021-020-00477-5.

Tustison, N. J. et al. Antux: A dynamic ecosystem for quantitative biological and medical imaging. *medRxiv* (2020) https://doi.org/10.1101/2020.10.19.20210455.
Competing interests
The authors declare no Competing Interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s44172-023-00066-3.

Correspondence and requests for materials should be addressed to Spyridon Bakas.

Peer review information Communications Engineering thanks Shuoong Wang and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editors: Mengying Su and Miranda Vinay. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023