Lattice dynamics of PbTiO$_3$

Izumi Tomeno1, Jaime A Fernandez-Baca2, Karol J Marty2, Yorihiko Tsunoda3 and Kunihiko Oka4

1 Faculty of Education and Human Studies, Akita University, Akita 010-8502, Japan
2 Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, USA
3 Department of Applied Physics, School of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
4 Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
E-mail: tomeno@gipc.akita-u.ac.jp

Abstract. Inelastic neutron scattering experiments were performed to investigate the phonon dispersion relations along the [1,0,0], [1,1,0] and [1,1,1] directions in cubic PbTiO$_3$. All of the transverse optic (TO) branches soften significantly toward the zone center around T_c. The zone-center TO mode stiffens considerably at 1173 K. The [ξ, 0, 0] TO branch for PbTiO$_3$ measured at 793 K are considerably higher than those for Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$ at 423 K in the entire zone. The [ξ, 0, 0] transverse acoustic (TA) branch is found to soften slightly at 793 K. The [ξ, ξ, ξ] TA branch exhibits two minima at the middle point (1/4,1/4,1/4) and the zone boundary (1/2,1/2,1/2). These two modes are weakly temperature dependent up to 1173 K.

1. Introduction

Lead titanate PbTiO$_3$ undergoes only a single phase transition at $T_c = 763$ K from a cubic paraelectric to tetragonal ferroelectric phase. The covalent nature of Pb 6s and O 2p states plays an important role in the stability of tetragonal PbTiO$_3$ [1]. In the 1970s, Shirane et al. [2] investigated the lattice dynamics of PbTiO$_3$ by inelastic neutron scattering. The [ξ, 0, 0] TO branch softens significantly around the zone center as the temperature approaches T_c. Recently, Kempa et al. [3] determined the phonon dispersion curves along the [1,0,0] and [1,1,0] directions in cubic PbTiO$_3$. However, the results for the [ξ, 0, 0] TO branch are in disagreement with those reported previously [2]. Tomeno et al. [4] studied systematically the phonon dispersion relations in tetragonal PbTiO$_3$. The experimental results for tetragonal PbTiO$_3$ are generally in agreement with the first-principles calculations for the zone-center and zone boundary phonon energies [5]. Ghosez et al. [6] computed the full phonon dispersion curves in cubic PbTiO$_3$ from first-principles calculations. Unfortunately, until recently, the lack of the experimental phonon data above T_c could neither confirm nor disprove the predicted phonon behavior.

Lead titanate PbTiO$_3$ is also the end member of relaxor ferroelectrics (1-x)Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$-xPbTiO$_3$ (PZN-PT) and (1-x)Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$-xPbTiO$_3$ (PMN-PT). The donation of approximately 10% Ti atoms to PZN is crucial to piezoelectric-constant enhancement [7]. The low-lying TO phonon branch in these relaxors drops sharply near the zone center [8,9]. The
soft TO mode in Pb-based relaxors has been discussed in connection with the polar nanoregions [8,10], but the origin of the sharp drop remains controversial [11].

2. Experiment
The inelastic neutron scattering experiments were performed on the triple-axis spectrometers TAS-1 and T1-1 at JRR-3M in the Japan Atomic Energy Agency, and HB-3 at the High Flux Isotope Reactor, Oak Ridge National Laboratory. The TAS-1 and T1-1 spectrometers were operated with fixed incident energy, $E_i = 13.7$ or 14.7 meV. Collimation was 40'-40'-40'-40' for TAS-1, and guide-40'-40'-40' for T1-1. The HB-3 spectrometer was operated with fixed final energy, $E_f = 14.7$ meV. Collimation was either 48'-20'-20'-70' or 48'-40'-40'-70'. The energy resolution for TAS-1 and T1-1 was 0.66 meV in full width at half maximum (FWHM) at zero energy transfer, whereas that for HB-3 was 0.91 or 1.07 meV. The single crystals used in this work were grown using the top-seeded growth technique described in detail previously [12]. Most of the measurements were performed at 793 K, but selected phonons were also determined up to 1173 K.

3. Phonon dispersion relations
Figure 1 shows the phonon dispersion relations for cubic PbTiO$_3$ measured at 793 K. The TO Δ_5, Σ_3, Σ_4 and Λ_3 branches soften significantly toward the zone center. A set of TO branches shows the isotropic nature of the soft modes. The softening of these TO modes corresponds to the ferroelectric instability of the Γ_{15} TO mode. It is difficult to determine accurately the energies of the Γ_{15} TO mode near T_c. However, a series of constant-E scans indicates that the energy of the zone center TO mode is lower than 3 meV at 793 K. The present value for the soft mode energy is lower than the value reported by Shirane et al [2] or by Kempa et al [3]. The discrepancy in the soft-mode energy suggests that the phase-transition properties of PbTiO$_3$ are influenced by the crystal growth conditions. Figure 2 shows typical constant-E scans in search of the TO Δ_5 branches. Here the data are taken using the HB-3 spectrometer. The Γ_{15} TO mode stiffens considerably with increasing temperature. The energies of the Γ_{15} TO mode are approximately 6 meV at 1073 K and 8 meV at 1173 K.

In figure 3, the Δ_5 branches in cubic PbTiO$_3$ are compared with the corresponding Δ_2 branches in tetragonal PbTiO$_3$ measured at 295 K [4]. The significant softening of the TO Δ_5 branch is confined to the region $q \leq 0.2$.

The energies of the TA Δ_2 branch at 295 K are higher than those of the TA Δ_5 branch at 793 K. In the cubic phase, the long-wavelength TA Δ_5 and Λ_3 modes soften gradually with decreasing temperature. Constant-Q scans in figure 4 demonstrate that the TA Δ_5 mode softens simultaneously in cubic PbTiO$_3$. A similar tendency has been observed for the TA Δ_5 branch in KTaO$_3$ [13]. The significant softening of the zone-center TO mode in ABO_3 appears to lower the relevant TA phonon branch.

Moreover, the TA Λ_3 branch exhibits two minima around the middle point (1/4,1/4,1/4) and the zone boundary (1/2,1/2,1/2). Constant-E and constant-Q scans in figure 5 indicate the existence of the energy minimum around (1/4,1/4,1/4). The broad minimum of the TA Λ_3 mode around (1/4,1/4,1/4) suggests the tendency toward forming a fourfold periodicity along the [1,1,1] direction. Note in figure 1 that the other TA branches show the normal phonon dispersion. A possible interpretation is that the octahedron rotation of successive oxygen layers follows the sequence of same, same, opposite, and opposite senses. To our knowledge, our findings on the middle-point softening are the first report on the phonon dispersion in perovskite oxides ABO_3. One possibility is that the covalent nature of Pb and O atoms gives rise to the middle-point softening. The present results for the TA Λ_3 branch support the predictions of the unstable mode at (1/4,1/4,1/4) and the flat $[\xi, \xi, \xi]$ TO dispersion from first-principles calculations [6,14]. Figure 1 clearly shows the coexistence of the Γ_{15} and R_{25} mode softening. The lowering of
Figure 1. Phonon-dispersion curves for PbTiO$_3$ measured at 793 K. Each solid circle and the attached bar refer to the phonon peak and its FWHM, respectively. Solid lines are guides for the eye.

the R_{25} phonon energy represents the softening of the oxygen octahedron rotation. The zone-boundary instability in PbTiO$_3$ has been predicted from first-principles calculations [15]. In ABO_3, the tendency toward the R_{25} mode softening generally depends on the tolerance factor, $t = (r_O + r_A)/\sqrt{2}(r_O + r_B)$, where r_O, r_A, r_B are the ionic radii of the O, A, and B ions, respectively. The R_{25} mode softening has been observed for SrTiO$_3$ [16], and NaNbO$_3$ [17]. Lead titanate PbTiO$_3$ has the tolerance factor $t = 1.03$, slightly larger than 1.01 for SrTiO$_3$ and 0.97 for NaNbO$_3$. Theoretically PbTiO$_3$ shows a weak instability at the $(1/2,1/2,1/2)$ point [6,14,15]. In this experiment, we found that the TA phonon energies around $(1/4,1/4,1/4)$ and $(1/2,1/2,1/2)$ are weakly temperature dependent up to 1173 K. Consequently, the softening of the zone-center TO mode dominates the single phase transition in PbTiO$_3$.

In figure 3(b), the TA Δ_5 and TO Δ_5 branches for PbTiO$_3$ at 793 K are compared with those
Figure 2. Constant-\(E\) scans in \(\text{PbTiO}_3\) for the \(\Delta_5\) mode measured at \(T = 793, 1073\) and 1173 K. Solid lines indicate the best fits to a double Gaussian.

Figure 3. Transverse phonon dispersion curves along [1,0,0] in cubic \(\text{PbTiO}_3\), tetragonal \(\text{PbTiO}_3\), and PZN. The \(\Delta_5\) modes in cubic \(\text{PbTiO}_3\) at 793 K are compared with the \(\Delta_2\) modes in tetragonal \(\text{PbTiO}_3\) at 295 K [4], and the \(\Delta_5\) modes PZN at 423 K [9].

for PZN at 423 K [9]. The energies of the TO \(\Delta_5\) branch for \(\text{PbTiO}_3\) are considerably higher than those for PZN in the entire range. On the other hand, there is a slight difference in the TA \(\Delta_5\) branch between \(\text{PbTiO}_3\) and PZN. The replacement of the B site atom has a strong influence on the TO phonon dispersion. The average mass of the B atom in PZN is 1.75 times that of Ti in \(\text{PbTiO}_3\). Therefore, the reduction of the X point TO energy is roughly explained by the square root of the B atom mass. The force constants for \(\text{PbTiO}_3\) appear to be comparable to those for the Pb-based relaxors. The randomness at the B site in PZN broadens the long-wavelength TO phonon spectra. The important role of Pb atom can account for the similarity in the TA phonon dispersion between \(\text{PbTiO}_3\) and PZN.
Figure 4. Constant-Q scans in PbTiO$_3$ for the TA Δ_3 mode measured at $T = 793$ and 1173 K.

Figure 5. (a) Constant-E scans in PbTiO$_3$ for the Λ_3 mode through (1.25,1.25,0.75) measured at 793 K. (b) Constant-Q scans at $Q=(h,h,2-h)$.

Acknowledgments
We thank K. Kohn, H. Unoki, Y. Ishii, and M. Nishi for helpful discussions. This study was supported in part by the U.S.-Japan Cooperative Program on Neutron Scattering. The work at Oak Ridge National Laboratory was supported by the U.S. Department of Energy under Contract No. DE-AC05-00R22725 with UT-Battelle, LLC.
References

[1] Cohen R E 1992 Nature 358 136
[2] Shirane G, Axe J D, Harada J and Remeika J P 1970 Phys. Rev. B 2 155
[3] Kempa M, Hlinka J, Kulda J, Bourges P, Kania A and Petzelt J 2006 Phase Transit. 79 351
[4] Tomeno I, Ishii Y, Tsunoda Y and Oka K 2006 Phys. Rev. B 73 064116
[5] Garcia A and Vanderbilt D 1996 Phys. Rev. B 54 3817
[6] Ghosez Ph, Cockayne E, Waghmare U V and Rabe K M 1999 Phys. Rev. B 60 836
[7] Kuwata J, Uchino K and Nomura S 1982 Jpn. J. Appl. Phys. 21 1298
[8] Gehring P M, Park S -E and Shirane G 2000 Phys. Rev. Lett. 84 5216
[9] Tomeno I, Shimanuki S, Ishii Y and Tsunoda 2001 J. Phys. Soc. Jpn. 70 1444
[10] Gehring P M, Wakimoto S, Ye Z.-G and Shirane G 2001 Phys. Rev. Lett. 87 277601
[11] Hlinka J, Kamba S, Petzelt J, Kulda J, Randall C A and Zhang S J 2003 Phys. Rev. Lett. 91 1076021
[12] Oka K, Unoki H, Yamaguchi H and Takahashi H 1996 J. Cryst. Growth 166 380
[13] Axe J D, Harada J and Shirane G 1970 Phys. Rev. B 1 1227
[14] Waghmare U V and Rabe K M 1997 Phys. Rev. B 55 6161
[15] Zhong W and Vanderbilt D 1995 Phys. Rev. Lett. 74 2587
[16] Shirane G and Yamada Y 1969 Phys. Rev. 177 858
[17] Tomeno I, Tsunoda Y, Oka K, Matsuura M and Nishi M 2009 Phys. Rev. B 80 104101