Supporting Information

Substrate Profiling of Mitochondrial Caseinolytic Protease P via a Site-Specific Photocrosslinking Approach

T.-A. Nguyen, T. F. Gronauer, T. Nast-Kolb, S. A. Sieber*, K. Lang*
Table of Contents

Supplementary Figures S1-14 (pages 3-16)
Supplementary Tables S1-12 (pages 17-32)
Experimental procedures (pages 33-42)
 General remarks (page 33)
 Chemical Synthesis (page 34-35)
 Biological Methods (pages 36-42)
References (page 43)
Supplementary Figure S1. Screening of different PylRS variants for the incorporation of DiazK in response to a TAG codon introduced into sfGFP at position 149 in *E. coli*. a) Of the tested PylRS variants for the site-specific incorporation of DiazK into position 149 of sfGFP in *E. coli*, usage of RS3, RS4 and RS5 resulted in visible full-length protein synthesis, as judged by SDS-PAGE. Importantly, no misincorporations in absence of DiazK were observed. RS4 (M6 PylRS: Y271M, L274A, C313A, dubbed DiazKRS) exhibited the best incorporation efficiency, as judged from the ratio of full length vs. truncated protein and was subsequently used for all experiments. Expressions of sfGFP-N149DiazK in *E. coli* were similarly performed as described for the hClpP-DiazK-His6 expressions. b) His6-tag purification of sfGFP-N149DiazK followed by ESI-MS analysis confirmed the identity and integrity of DiazK.
Supplementary Figure S2. Structural analysis of hClpP to determine suitable positions for the site-specific incorporation of DiazK.

a) Full catalytic activity of the serine protease hClpP requires assembly of two hClpP heptameric rings (monomer highlighted in dark grey) into a barrel-shaped tetradecamer (top and side view). Highlighted in pink spheres are the catalytic triads of the serine protease (S153, H178, D227), which lie in close proximity to the heptamer-heptamer interaction interface.

b) Based on the location of the catalytic triad, several positions for the site-specific incorporation of DiazK were elected. Six positions (M88, D92, G123, G124, V125 and S181 (red spheres)) are located close to the catalytic centre (as depicted in the monomer) and within the barrel chamber, as depicted in the top view. M88 (ß1-sheet) and D92 (α2-helix) lie between the substrate entry pore and the catalytic triad, while the G123/G124/V125 junction loop (between β2-sheet and α3-helix) is in close proximity to the catalytic S153. Furthermore, S181 resides on the β7-sheet proximal to H178 of the catalytic triad. K261 resides on the outer side of the barrel. This position was additionally selected to potentially account for interactors.

c) Side view of the selected positions within the tetradecameric structure. All figures are based on PDB: 1TG6, ref. [1]
Supplementary Figure S3. Expression of hClpP-DiazK-H6 variants in *E. coli*. The full SDS-PAGE and western blots of Figure 1b are shown. Expression of hClpP in *E. coli* was performed without the N-terminal 56 amino acid mitochondrial guide-sequence. Full length expression of all hClpP-DiazK variants only occurred in presence of 1 mM DiazK as indicated by SDS-PAGE and western blot (anti H6) analysis and no full-length protein was observed in absence of DiazK.
Supplementary Figure S4. H6-tag affinity purification of hClpP-DiazK variants expressed in *E. coli*. SDS-PAGE of protein fractions after H6-tag purification are shown. Fractions, which were considered pure were pooled, concentrated and rebuffered for subsequent analysis (activity assay, SEC analysis). The two bands, which are visible for the K261 mutant, represent the full length and truncated protein. For the K261-amber variant, the truncated hClpP (K261TAG) appeared to be stable, leading to assembly with the full-length protein into stable heteromeric heptamers. This interaction was likely preserved during H6-tag purification and could only be resolved by denaturing SDS-PAGE. Only fractions, which contained pure full length hClpP-K261DiazK-H6 were pooled and used for subsequent functionality assays.
Supplementary Figure S5. Optimization of amber suppression of hClpP in HEK293T cells. Optimal transfection ratios between hClpP-XXTAG:PylRS were determined via WB analysis. Expressions were performed with the ncAA N-tert-butyloxycarbonyl-L-lysine (BocK) (2 mM). hClpP was expressed with its N-terminal 56 amino acid long mitochondrial guiding sequence and a C-terminal HA-tag. The upper running band of the main hClpP band thereby represents unprocessed hClpP, i.e. hClpP were the 56 amino acid sequence has not been cleaved off. As judged by western blot analysis (anti-HA), a ratio of 3:1 hClpP:PylRS was determined as most appropriate.
Supplementary Figure S6. Full blots of Figure 2, i.e. hClpP-DiazK-HA expressions and photocrosslinks in HEK293T cells, are shown.

a) Full-length of hClpP-DiazK-HA variants only occurred in presence of DiazK. Hsc70 was used as the loading control. The asterisk (*) indicates partially unprocessed hClpP variants, i.e. proteins bearing the 56 amino acid long mitochondrial guiding sequence.

b) After UV-irradiation of HEK293T cells expressing various hClpP-DiazK-HA mutants, novel, higher running bands occurred (compared to (-) minus UV samples), indicating capture of various hClpP substrates. The crosslinked proteins were subsequently identified by mass spectrometry analyses.
Supplementary Figure S7. Immunofluorescence (IF) microscopy experiments, as exemplarily shown for HEK293T cells overexpressing hClpP-D92DiazK-HA and hClpP-K261DiazK-HA. Fixed cells were incubated with MitoRed (Sigma, 53271) to stain mitochondria and with mouse-anti-HA antibody (1:100, SCBT, sc-7392), followed by an anti-mouse IgG-FITC antibody conjugate (1:100, Sigma, F2057) to stain hClpP-D92DiazK-HA and hClpP-K261DiazK-HA and with DAPI to stain nuclei. Nice overlapping IF signal of FITC with MitoRed was observed, indicating localization of amber-suppressed hClpP in the mitochondria. We observed only very minor, if any, FITC fluorescence outside mitochondria, indicating that only a very little fraction of newly expressed hClpP-DiazK variants resides in the cytosol.
Supplementary Figure S8. Graphical representation of trapping experiments with hClpP-DiazK variants. Enrichment factors are plotted against significance of enrichment. Graphs represent data from three technical replicates for each state. Two sample student’s t-test was conducted by comparison of UV-treated group with UV-untreated as single control group. False discovery rate was determined by Benjamini-Hochberg procedure setting correction at 0.05. Cut-off lines were set at a minimum log₂ change of 1 with a minimum p-value of 0.05. Proteins that are annotated as members of mitochondrial compartment are coloured in blue. Proteins coloured in red indicate known hClpP-interactors.
Supplementary Figure S9. Network analysis for proteins that were enriched by hClpP-D92DiazK variant using String v11 database. The network displays connections between identified proteins based on evidence found in literature as indicated in the legend. Minimum required interaction score was set to 0.7 (high confidence). Mitochondrial proteins are marked with red spheres. Blue spheres indicate members of the regulatory pathway of RNA metabolism. Proteins are further clustered and named for their collective pathway affiliation.
Supplementary Figure S10. Network analysis for proteins that were enriched by hClpP-K261DiazK variant using String v11 database. The network displays connections between identified proteins based on evidence found in literature as indicated in the legend. Minimum required interaction score was set to 0.7 (high confidence). Mitochondrial proteins are marked with red spheres. Proteins are further clustered and named for their collective pathway affiliation.
Supplementary Figure S11. Network analysis for proteins that were enriched by (a) hClpP-M88DiazK, (b) hClpP-G123DiazK, (c) hClpP-G124DiazK, (d) hClpP-V125DiazK, (e) hClpP-S181DiazK using String v11 database. The networks display connections between identified proteins based on evidence found in literature as indicated in the legend. Minimum required interaction score was set to 0.7 (high confidence). Mitochondrial proteins are marked with red spheres. Proteins are further clustered and named for their collective pathway affiliation.
Supplementary Figure S12. Substrate comparison between hClpP-DiazK mutants located inside the barrel and outside of the barrel depicted as Venn diagram. The crosslinked mitochondrial substrates of hClpP-DiazK mutants with inner DiazK positions (inside the barrel = M88-, D92-, G123-, G124-, V125- and S181DiazK) were compared with identified mitochondrial substrates of hClpP-K261DiazK (at the surface of the barrel, pointing outside). The partial difference of identified proteins (40 ‘inside’ vs. 50 ‘outside’) indicates that this approach may be suitable to address different compartments of hClpP. Indicative for this observation is the identification of MIPEP only by hClpP-DiazK, which has been previously shown to process pro-hClpP into mature ClpP and thus by virtue requires interaction.[3] The overlap of 23 proteins may hint towards their fate of being both, interactors and substrates of hClpP. Nonetheless, this also exemplifies the challenge of distinguishing between substrates and interactors of hClpP in general. (Venn diagram was generated with: http://bioinformatics.psb.ugent.be/webtools/Venn/)

hClpP variants with inner DiazK positions	Gene names
hClpP-DiazK variants with inner DiazK positions (M88, D92, G123, G124, V125, S181)	MRPS39, MRPL3, TOMM6, LACTB, MRPS5, TIMM13, MRPS9, GCSH, MRPS18B, TIMM6B, COX5A, L2HGDH, MRPS16, MRPL4, MRPS11, MRPS6, MRPL15, TOMM5, MRPL59, MRPL21, MRPL17, MRPS22, UQCRC1, MRPS23, MRPS26, MRPL11, PPA2, MRPL51, MRPL45, MRPL13, WBSRCR16, MRPS29, NF51, TOMM40, PARK7, TOMM22, TRUB2, COX4I1, MRPL43, MRPS31
hClpP-K261DiazK	TOMM70A, ACADSB, IARS2, HSPE1, ECHS1, PDHA1, DLAT, MRPS28, OGDH, ACA1, TRAP1, MDH2, MRPS34, DLST, MRPL44, PDHX, GRSF1, SLIRP, LRPRC, DLD, DBT, MRPL1, MRPL39
Overlap	TOMM70A, ACADSB, IARS2, HSPE1, ECHS1, PDHA1, DLAT, MRPS28, OGDH, ACA1, TRAP1, MDH2, MRPS34, DLST, MRPL44, PDHX, GRSF1, SLIRP, LRPRC, DLD, DBT, MRPL1, MRPL39
hClpP-K261DiazK	MRPS27, GOT2, ATP5H, HIBADH, FH, ACAD9, MTHFD1L, ATP5O, TRMT10C, PITRM1, ATRAF2, ATP5F1, ETFA, GLDC, ID3B, DECR1, MMAB, GLS, HSD17B10, TIMM44, GLUD1, ETFB, ME2, HADH, LARS2, HIBCH, ATP5B, YARS2, IDH2, SHMT2, MCCC2, IVD, NDUFA6, ATP5A1, PNPT1, GARS, LRYM7, SSBP1, IDH3A, AC02, ACADM, ALDH2, SUCLG1, HMGCL, OAT, CS, DARS2, ECH1, MIPEP, ATP5L
Supplementary Figure S13. Volcano plot representation of whole proteome analysis with HEK293T hClpP knockout cells (KO) versus wild type HEK293T cells. Enrichment factors are plotted against significance of enrichment. The graph represents data from four technical replicates for each state. Two sample student’s t-test was conducted by comparison of HEK293T hClpP knockout mutant with wild type HEK293T cells as single control group. False discovery rate was determined by Benjamini-Hochberg procedure setting correction at 0.05. Cut-off lines were set at a minimum log2 change of 1 and -1 with a minimum p-value of 0.05. Proteins that are annotated as members of mitochondrial compartment are colored in blue. Filled red circles represent proteins that were previously annotated as ClpP substrates or interactors. Gene names colored in red indicate proteins which were found in trapping experiments with hClpP-DiazK mutant.
Supplementary Figure S14. Volcano plots of rotenone treated HEK293T cells expressing hClpP-D92DiazK and hClpP-K261DiazK after UV-light irradiation in comparison to UV-light untreated samples. Enrichment factors are plotted against significance of enrichment. Graphs represent data from three technical replicates for each state. Two sample student’s t-test was conducted by comparison of UV-treated group with UV-untreated as single control group. False discovery rate was determined by Benjamini-Hochberg procedure setting correction at 0.05. Cut-off lines were set at a minimum log₂ change of 1 with a minimum p-value of 0.05. Proteins that are annotated as members of mitochondrial compartment are coloured in blue. Proteins coloured in red indicate known hClpP-interactors.
Supplementary Tables

Supplementary Table S1.
MS analysis of purified hClpP-DiazK variants expressed in *E. coli*.

hClpP mutant-H6	Calculated mass [Da]	Observed mass [Da]
wt	24972.82	24972.82
M88DiazK	25095.92	25095.90
D92DiazK	25111.93	25111.93
G123DiazK	25169.94	25169.92
G124DiazK	25169.94	25169.90
V125DiazK	25127.89	25128.90
S181DiazK	25139.93	25140.06
K261DiazK	25098.86	25098.82
Supplementary Table S2.
Mass spectrometry instrument parameters for hClpP-DiazK variants.

Sample name (hClpP mutant)	Injection volume [µl]	flow [µl/min]	Spray voltage [kV]
M88DiazK	5	0.3	1.87
D92DiazK	5	0.4	1.77
G123DiazK	5	0.4	1.77
G124DiazK	5	0.4	1.77
V125DiazK	5	0.4	1.77
S181DiazK	5	0.4	1.77
K261DiazK	5	0.4	1.77
D92DiazK, rotenone treated	1	0.4	1.77
K261DiazK, rotenone treated	1	0.4	1.77
SUPPORTING INFORMATION

Supplementary Table S3.

Significantly enriched proteins (log2 ratio > 1, -log10 \(p \)-value > 1.30) from trapping experiments in HEK293T cells expressing hClpP-D92DiazK. For annotation of hClpP substrates ref. \([34]\) were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	Enrichment factor (log2)	-log10 \(p \)-value	Annotated as substrate
Heterogeneous nuclear ribonucleoprotein U-like protein 2	HNRNPUL2	6.51294017	3.15763196	
Heterogeneous nuclear ribonucleoprotein A/B	HNRNPA8	4.53673108	3.78749803	
Lups La protein	SSB	4.23910013	3.28167315	
RNA-binding motif, single-stranded-interacting protein 1	RBMS1	4.08901272	3.33430836	
Threonine synthase-like 1	THNSL1	4.06954902	2.78971573	
Nucleoside-sensitive element-binding protein 1	YB1X	3.78115891	2.64780991	
5-3 exoribonuclease 2	XR2N	3.78457995	1.98764856	
Polyadenylate-binding protein 1	PABPN1	3.68441094	5.26251798	
Polyadenylate-binding protein 4	PABPC4	3.62741252	3.16526389	
Heterogeneous nuclear ribonucleoprotein D-like	HNRNPDL	3.58322016	2.00047601	
Glycine cleavage system H protein, mitochondrial	GCSh	3.54482893	2.06076792	
Heterogeneous nuclear ribonucleoprotein D-like	HNRNPDL	3.50246874	4.61630576	
Spermidat perinuclear RNA-binding protein	HEL162	3.45256433	4.48774278	
Heterogeneous nuclear ribonucleoprotein D0	HNRPD	3.41360743	4.00708115	
Probable RNA pseudouridine synthase 2	TRUE2	3.17982286	3.20013949	
THUMP domain-containing protein 1	THUMPD1	3.17442703	2.60357959	
Polyadenylate-binding protein	PABPC1	3.13070035	1.75375947	
Zinc finger CCHC-type antiviral protein 1	ZC3HAV1	2.91996510	2.42091828	
Insulin-like growth factor 2 mRNA-binding protein 2	IGF2BP2	2.53435635	2.70072355	
ATP-dependent RNA helicase DHX36	DHX36	2.50137463	4.09070346	
28S ribosomal protein S34, mitochondrial	MRPS34	2.4945666	3.64455329	
28S ribosomal protein S6, mitochondrial	MRPS6	2.38146113	2.39327359	
39S ribosomal protein L1, mitochondrial	MRPL1	2.37353792	1.61545693	
Heterogeneous nuclear ribonucleoprotein U	HNRNP4U	2.36706391	3.15102073	
Enoyl-CoA hydratase, mitochondrial	ECXS1	2.34215643	3.04751512	
Probable E3 ubiquitin-protein ligase makorin-2	MKRN2	2.31989415	3.55549555	
39S ribosomal protein L3, mitochondrial	MRPL3	2.30510203	2.61288642	
28S ribosomal protein S23, mitochondrial	MRPS23	2.28660912	1.62554072	
Insulin-like growth factor 2 mRNA-binding protein 3	IGF2BP3	2.22527631	2.44375937	
G-rich sequence factor 1	GRSF1	2.19136792	2.47773642	
Dihydrolipoyl dehydrogenase; Dihydrolipoyl dehydrogenase, mitochondrial	DLL	2.15375209	2.79680500	
39S ribosomal protein L15, mitochondrial	MRPL15	2.15128517	2.90557684	
28S ribosomal protein S18b, mitochondrial	MRPS18B	2.09424678	2.63309426	
Insulin-like growth factor 2 mRNA-binding protein 1	IGF2BP1	2.06429354	2.94118319	
La-related protein 1	LARP1	2.00626309	2.20226653	
Dihydrolipoylsine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	2.00272941	1.87754064	
39S ribosomal protein L11, mitochondrial	MRPL11	2.00228813	2.24741739	
28S ribosomal protein S9, mitochondrial	MRPS9	1.97829508	2.51746544	
39S ribosomal protein L4, mitochondrial	MRPL4	1.99332411	5.59283687	
Heterogeneous nuclear ribonucleoprotein L	HNRNPL	1.95509582	2.67710781	
39S ribosomal protein L43, mitochondrial	MRPL43	1.82365339	3.13816028	
2-oxoglutarate dehydrogenase, mitochondrial	OGHD	1.81985708	2.85632003	
28S ribosomal protein S5, mitochondrial	MRPS5	1.77959124	2.43990577	
Lipomamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial	DBT	1.75809610	3.17531859	
Heat shock protein 75 kDa, mitochondrial	TRAP1	1.74157142	3.62720842	
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	1.72785168	3.73039999	
28S ribosomal protein S16, mitochondrial	MRPS16	1.67300287	3.86417554	
Constitutive coactivator of PPAR-gamma-like protein 1	FAM120A	1.66441974	2.43200689	
Acetyltransferase component of pyruvate dehydrogenase complex	DLAT	1.64678128	2.61955461	
28S ribosomal protein S31, mitochondrial	MRPS31	1.64251518	2.49501168	
NF-kappa-B-repressing factor	NKR	1.62526107	2.19800741	
39S ribosomal protein L21, mitochondrial	MRPL21	1.61435033	2.75176284	
39S ribosomal protein L13, mitochondrial	MRPL13	1.53686777	1.76171464	
39S ribosomal protein L45, mitochondrial	MRPL45	1.51011912	2.81675844	
Acetyl-CoA acetyltransferase, mitochondrial	ACAT1	1.49288676	4.10884252	
Cytochrome b-24 complex subunit 1, mitochondrial	UCRC1	1.43206473	2.58944946	
Protein deglycase DJ-1	PARK7	1.40789234	1.40334102	
28S ribosomal protein S22, mitochondrial	MRPS22	1.40854136	3.1683956	
Protein Name	Gene ID	Fold Change		
--	-----------	-------------		
Interleukin enhancer-binding factor 3	ILF3	1.39076678		
Heterogeneous nuclear ribonucleoprotein K	HRNPK	1.38711028		
Leucine-rich PPR motif-containing protein, mitochondrial	LRPPRC	1.363213857		
Heterogeneous nuclear ribonucleoprotein A0	HRNPA0	1.350752513		
SRA stem-loop-interacting RNA-binding protein, mitochondrial	SLURP	1.34758695		
Heterogeneous nuclear ribonucleoprotein R	HRNPRR	1.34037145		
40S ribosomal protein S17	RPS17	1.305379232		
39S ribosomal protein L51, mitochondrial	MRPL51	1.294469198		
Williams-Beuren syndrome chromosomal region 16 protein	WBSCR16	1.292111715		
39S ribosomal protein L39, mitochondrial	MRPL39	1.289264679		
Pentatricopeptide repeat domain-containing protein 3, mitochondrial	PTCD3	1.275725047		
28S ribosomal protein S26, mitochondrial	MRPS26	1.262624741		
RNA-binding motif protein, X chromosome	RBMX	1.254060109		
Protein ELYS	AHCTF1	1.225773493		
Interleukin enhancer-binding factor 2	ILF2	1.18741099		
28S ribosomal protein S11, mitochondrial	MRPS11	1.187133153		
39S ribosomal protein L17, mitochondrial	MRPL17	1.182820002		
Far upstream element-binding protein 3	FUBP3	1.172859628		
28S ribosomal protein S23, mitochondrial	DAP3	1.166245143		
Cysteine desulfurase, mitochondrial	NFS1	1.087621053		
L-2-hydroxyglutarate dehydrogenase, mitochondrial	L2HGDH	1.063916524		
39S ribosomal protein L44, mitochondrial	MRPL44	1.001045227		
Significantly enriched proteins (log₂ ratio > 1, -log₁₀ t-test p-value > 1.30) from trapping experiments in HEK293T cells expressing hClpK-K261DiazK. For annotation of hClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	Enrichment factor (log2)	p-value t-test (log10)	Annotated as substrate
Enoyl-CoA hydratase, mitochondrial	ECHS1	7.06297412	6.14249209	*
10 kDa heat shock protein, mitochondrial	HSPE1/Hsp10	5.22580592	1.72892543	-
Isovaleryl-CoA dehydrogenase, mitochondrial	IVD	5.19725927	3.41344426	+
Hydroxycarboxylic Coenzyme A dehydrogenase, mitochondrial	HADH	4.82912254	4.47425768	+
Malate dehydrogenase; Malate dehydrogenase, mitochondrial	MDH2	4.56429545	5.94513283	+
Sepiapterin reductase	SPR	4.56307348	3.7642302	-
99.3% Presequence Protease, putatively metalloproteinase	PITR1	4.4543369	5.58439474	+
Acocitrate hydratase, mitochondrial	ACO2	2.46304861	4.06724225	+
Isocitrate dehydrogenase [NADP], mitochondrial	IDH2	4.13951402	3.8569321	+
Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial	ACADSB	3.87617238	2.68320646	+
Acetyl-CoA acetyltransferase, mitochondrial	ACAT1	3.68018341	4.93768787	+
Citrate synthase; Citrate synthase, mitochondrial	CS	3.55343119	5.48344178	+
Acyltransferase component of pyruvate dehydrogenase complex	DLAT	3.54185422	1.80263618	+
Polyribonucleotide nucleotidyltransferase 1, mitochondrial	PNPT1	3.53656324	5.08405056	+
Isocitrate dehydrogenase [NAD] subunit, mitochondrial; Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	IDH3A	3.56106875	3.3788779	+
Single-stranded DNA-binding protein, mitochondrial	SSBP1	3.35599755	3.85622907	+
Serine hydroxymethyltransferase, mitochondrial	SHMT2	3.34584689	5.22288862	+
Dihydrioplypyrosine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	3.28355551	3.95726853	+
Tyrosine-RNA ligase, mitochondrial	YARS2	3.21464602	2.86106021	+
Dihydrioplyp dehydrogenase, mitochondrial	DLQ	3.1332798	4.18170305	+
2-oxoglutarate dehydrogenase, mitochondrial	OGDH	3.05487124	3.66429743	+
Acyl-Coenzyme A thiosterase 1; Acyl-Coenzyme A thiosterase 2, mitochondrial	ACOT1	2.97547298	3.16847496	+
Lipooamide acyl-CoA dehydrogenase complex, mitochondrial	DBT	2.96526249	2.48860334	-
Electron transfer flavoprotein subunit beta	ETFB	2.90824827	2.26341865	+
Fumarate hydratase, mitochondrial	FH	2.8694989	2.44974423	+
Mitochondrial ribonuclease P protein 1	TRMT10C	2.7855107	1.87222444	+
Mitochondrial import receptor subunit TOM70	TOMM70A	2.76650874	1.38449283	-
Acyl-CoA dehydrogenase family member 9, mitochondrial	ACAD9	2.71775881	4.27364214	+
Protein deglycase DJ-1	PARK7	2.71552658	1.65359826	-
Heat shock protein 75 kDa, mitochondrial	TRAP1	2.70960172	3.19950177	+
Co(l)-bicurinic acid a,c-diamide adenylylsulfotransferase, mitochondrial	MAB	2.69214185	2.97033329	-
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	2.63960838	3.00161336	+
Isoleucine-RNA ligase, mitochondrial	IARS2	2.61310514	3.81692843	+
Leucine-rich PPR motif-containing protein, mitochondrial	LRPRC	2.56129265	2.89057994	+
ATP synthase subunit d, mitochondrial	ATP5H	2.55917295	1.38680909	+
Glutaminase kidney isofom, mitochondrial	GLS	2.5211792	2.01331491	+
3-hydroxyacyl-CoA dehydrogenase type-2	HSD17B10	2.46673584	4.5363713	+
ATP synthase F(0) complex subunit B1, mitochondrial	ATP5F1	2.3569091	1.82969105	+
Mitochondrial intermediate peptidase	MIPEP	2.28592555	2.47338517	+
Glycine-RNA ligase	GAR	2.27018166	1.59511486	+
Aldehyde dehydrogenase, mitochondrial	ALDH2	2.2700901	3.4454489	-
Aspartate–RRA ligase, mitochondrial	DAR52	2.26568476	2.72366543	+
NAD-dependent malic enzyme, mitochondrial	ME2	2.16055562	3.58119527	-
Monofunctional C1-tetrahydrofolate synthase, mitochondrial	MTHFD1L	2.1106542	3.40480894	+
Electron transfer flavoprotein subunit alpha, mitochondrial	ETF	1.99602763	4.13475842	+
ATP synthase subunit beta; ATP synthase subunit beta, mitochondrial	ATP5B	1.99590408	3.31934939	+
Hydroxymethylglutaryl-CoA lyase, mitochondrial	HMGL	1.94890897	1.65773869	+
ATP synthase mitochondrial F1 complex assembly factor 2	ATPAF2	1.93302917	1.60720171	-
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6	NDUF6	1.90193367	1.82497091	+
Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	PDHA1	1.89166832	3.68221395	+
Ornithine aminotransferase, mitochondrial	OAT	1.83684095	2.7689186	+
Isocitrate dehydrogenase [NAD] subunit, mitochondrial	IDH3B	1.83460172	3.62711305	+
Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	SUCLG1	1.83005333	4.50265362	+
Medium-chain specific acyl-CoA dehydrogenase, mitochondrial	ACADM	1.81343157	4.32905502	+
Complex III assembly factor LYRM7	LYRM7	1.74750392	1.82877052	+
Protein Name	Gene Symbol	Normalized p-value	Enrichment p-value	Score
--------------	-------------	--------------------	--------------------	-------
Glycine dehydrogenase (decarboxylating), mitochondrial	GLDC	1.65087446	1.52630458	+
2,4-dienoyl-CoA reductase, mitochondrial	DECR1	1.62497393	1.49161777	+
Mitochondrial import inner membrane translocase subunit TIM44	TIMM44	1.61522675	2.26591336	+
G-rich sequence factor 1	GRSF1	1.60489273	2.3446218	+
ATP synthase subunit g, mitochondrial	ATP5G	1.57912763	1.53196088	-
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	ECH1	1.57240359	2.11807815	+
ATP synthase subunit O, mitochondrial	ATP5O	1.54561996	2.93276679	+
39S ribosomal protein L44, mitochondrial	MRPL44	1.54289563	2.8836699	+
Cytoplasmic dynein 1 light intermediate chain 1	DYNCL1	1.47920227	1.35880247	-
3-hydroxyisobutyrate dehydrogenase, mitochondrial	HIBADH	1.45746994	2.1669445	-
Probable leucine-IRNA ligase, mitochondrial	LARS2	1.41318893	1.96446322	+
Glutamate dehydrogenase 1, mitochondrial	GLUD1	1.39283371	3.3153833	+
Aspartate aminotransferase, mitochondrial	GOT2	1.38335546	1.97231956	-
28S ribosomal protein S28, mitochondrial	MRPS28	1.33673096	2.01300666	+
28S ribosomal protein S27, mitochondrial	MRPS27	1.3307972	2.73973322	+
3-hydroxyisobutyryl-CoA hydrolase, mitochondrial	HIBCH	1.30654263	2.89847207	+
Ran GTPase-activating protein 1	RANGAP1	1.25149218	1.7788658	-
28S ribosomal protein S34, mitochondrial	MRPS34	1.22402382	1.5503205	-
39S ribosomal protein L1, mitochondrial	MRPL1	1.22068787	1.7740484	+
Cytosol aminopeptidase	LAP3	1.2072506	1.48275179	-
Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial	MCCB2	1.13666443	3.04760163	+
SRA stem-loop-interacting RNA-binding protein, mitochondrial	SLIRP	1.12037404	1.84222529	+
Ubiquitin carboxyl-terminal hydrolase; Probable ubiquitin carboxyl-terminal hydrolase FAP-X	USP9X	1.05227025	1.31671925	-
ATP synthase subunit alpha, mitochondrial	ATP5A1	1.00348409	3.88912011	+
Supplementary Table S5.
Significantly enriched proteins (log₂ ratio > 1, -log₁₀ t-test p-value > 1.30) from trapping experiments in HEK293T cells expressing hClpP-M88Dia2K. For annotation of hClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	enrichment factor (log₂)	p-value t-test (-log₁₀)	Annotated as substrate
10 kDa heat shock protein, mitochondrial	HSPE1/Hsp10	2.520680913	2.357710492	-
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	2.465864182	2.80002771	+
39S ribosomal protein L13, mitochondrial	MRPL13	2.259292603	2.699404838	+
Serine beta-lactamase-like protein LACTB, mitochondrial	LACTB	2.176890055	2.572455941	-
Clathrin light chain B	CLTB	2.020890554	2.431020243	-
Clathrin light chain A	CLTA	1.966786702	2.557270996	-
Acetyltransferase component of pyruvate dehydrogenase complex	DLAT	1.89736557	3.709135937	+
Clathrin heavy chain; Clathrin heavy chain 1	CLTC	1.736051559	2.961035244	-
Mitochondrial import receptor subunit TOM22 homolog	TOMM22	1.710225423	1.440738034	-
Hsc70-interacting protein	ST13	1.659377416	1.952781386	-
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	1.573442559	2.736885754	+
Unconventional myosin-Id	MYO1D	1.48491655	1.64829459	-
Stress-induced-phosphoprotein 1	STIP1	1.29959933	2.367580932	+
Non-specific protein-tyrosine kinase	YES1	1.120776494	1.381692323	-
Malate dehydrogenase; Malate dehydrogenase, mitochondrial	MDH2	1.095053355	2.650466362	+
Enoyl-CoA hydratase, mitochondrial	ECHS1	1.090738568	1.345538671	+
Histone-arginine methyltransferase CARM1	CARM1	1.032886796	2.484322024	-
Supplementary Table S6.

Significantly enriched proteins (log₂ ratio > 1, -log₁₀ t-test p-value > 1.30) from trapping experiments in HEK293T cells expressing hClpP-G123DiazK. For annotation of hClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	enrichment factor (log₂)	p-value t-test (-log₁₀)	Annotated as substrate
26S proteasome non-ATPase regulatory subunit 10	PSMD10	2.599224091	3.099309091	
Low molecular weight phosphotyrosine protein phosphatase	ACP1	2.394634883	2.20235606	
Cytochrome c oxidase subunit 5A, mitochondrial	COX5A	1.666353861	2.481374747	
L-2-hydroxylglutarate dehydrogenase, mitochondrial	L2HGDH	1.296777725	2.262133108	
Acetyltransferase component of pyruvate dehydrogenase complex	DLAT	1.292052587	1.997436201	
Dihydrolipoxylysin-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	1.283274333	2.210274591	
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	1.192612966	3.005726645	
Vimentin	HEL113	1.184209188	2.364866983	
SEC23-interacting protein	SEC23IP	1.117851893	1.597814887	
Tubulin alpha-1A chain; Tubulin alpha-3C/D chain; Tubulin alpha-3E chain	TUBA1A	1.113746643	1.816653826	
MAP7 domain-containing protein 1	MAP7D1	1.087779363	1.465578942	
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial	DBT	1.006003698	3.013900794	
Supplementary Table S7.
Significantly enriched proteins (log₂ ratio > 1, -log₁₀ t-test p-value > 1.30) from trapping experiments in HEK293T cells expressing hClpP-G124DiazK. For annotation of hClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	enrichment factor (log₂)	p-value t-test (log₁₀)	Annotated as substrate
Glycine cleavage system H protein, mitochondrial	GCSH	3.83144188	3.39578492	+
Cytochrome c oxidase subunit 4 isoform 1, mitochondrial	COX4I1	2.07114728	3.26673057	+
Low molecular weight phosphotyrosine protein phosphatase	ACP1	1.80448977	1.30789463	-
10 kDa heat shock protein, mitochondrial	HSPE1/Hsp10	1.68412463	2.08915157	-
Inorganic pyrophosphatase 2, mitochondrial	PPA2	1.82349447	2.91607884	+
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial	DBT	1.56262271	2.99743635	-
Mitochondrial import inner membrane translocase subunit Tim8 B	TIMM8B	1.42010689	3.72810838	-
Stress-induced-phosphoprotein 1	STIP1	1.37785149	2.74930439	+
Polyadenylate-binding protein 2	PABPN1	1.31002935	1.34611824	-
Growth arrest and DNA damage-inducible proteins-interacting protein 1	GADD45GIP1	1.22106043	1.4733748	-
Mitochondrial import inner membrane translocase subunit Tim13	TIMM13	1.18352318	2.32393757	-
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	1.05083529	3.76064264	+
Heat shock protein 75 kDa, mitochondrial	TRAP1	1.01244863	3.36180087	+
Supplementary Table S8.

Significantly enriched proteins (log₂ ratio > 1, -log₁₀ t-test p-value > 1.30) from trapping experiments in HEK293T cells expressing hClpP-V125Dia2K. For annotation of hClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-‘.

Protein names	Gene name	enrichment factor (log₂)	p-value t-test (-log₁₀)	Annotated as substrate
Protein deglycase DJ-1	PARK7	2.57212321	2.39456514	-
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial	DBT	2.52292633	3.0810378	-
L-2-hydroxyglutarate dehydrogenase, mitochondrial	L2HGDH	2.40566762	1.6841459	-
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	1.88935089	3.0730658	-
Proteasome activator complex subunit 3	PSME3	1.80785497	2.90815977	-
Acetyltransferase component of pyruvate dehydrogenase complex	DLAT	1.74389521	2.96192323	+
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	1.62713242	2.04765556	+
2-oxoglutarate dehydrogenase, mitochondrial	OGDH	1.41948636	4.23615689	+
Mitochondrial import receptor subunit TOM70	TOMM70A	1.4118385	2.55482142	-
Dihydrolipoyl dehydrogenase, mitochondrial	DLD	1.3963371	2.67590128	+
Acetyl-CoA acetyltransferase, mitochondrial	ACAT1	1.3935407	3.05525474	+
Pyruvate dehydrogenase E1 component subunit alpha	PDHA1	1.36758105	2.68051777	-
Coiled-coil domain-containing protein 80	CCDC80	1.16726494	1.46698247	-
Supplementary Table S9. Significantly enriched proteins (log$_2$ ratio > 1, -log$_{10}$ t-test p-value > 1.30) from trapping experiments in HEK293T cells expressing hClpP-S181DiazK. For annotation of hClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	enrichment factor (log$_2$)	p-value t-test (-log$_{10}$)	Annotated as substrate
39S ribosomal protein L39, mitochondrial	MRPL39	3.69523875	2.87025648	+
Mitochondrial import receptor subunit TOM40 homolog	TOMM40	3.61561521	3.17518351	-
SRA stem-loop-interacting RNA-binding protein, mitochondrial	SLIRP	2.97568321	1.65137757	+
Cleavage and polyadenylation specificity factor subunit 4	CPSF4	2.9491717	2.7265779	-
Small nuclear ribonucleoprotein G	SNRPG	2.80916087	2.04616458	-
Tripeptidyl-peptidase 1	TPP1	2.78866768	1.32640606	-
Transducin beta-like protein 3	TBL3	2.78135109	1.43187895	-
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial	DBT	2.37619591	3.14234269	-
Septin-2	SEPT2	2.26404635	2.4847726	-
Mitochondrial import receptor subunit TOM6 homolog	TOMM6	2.14990807	1.42698883	+
Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial	ACADS8	2.05969874	3.37409556	+
26S proteasome non-ATPase regulatory subunit 4	PSMD4	1.93259303	2.5893379	+
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	1.77110227	4.17378336	+
Acetyltransferase component of pyruvate dehydrogenase complex	DLAT	1.65835698	3.3096671	+
Mitochondrial import receptor subunit TOM5 homolog	TOMM5	1.62214979	2.86460387	-
Nucleoporin Nup43	NUP43	1.62046878	1.42185773	-
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	1.518013	3.07556562	+
Plasminogen activator inhibitor 1 RNA-binding protein	SERBP1	1.43370883	1.71404677	-
Enoyl-CoA hydratase, mitochondrial	ECHS1	1.40692139	2.27185593	+
10 kDa heat shock protein, mitochondrial	HSPE1/Hsp10	1.394804	1.50747413	-
rRNA methyltransferase 2, mitochondrial	HEL97	1.27911504	2.2129185	-
Cyclin-dependent kinase 4	CDK4	1.20119413	3.4476943	-
Mitochondrial import receptor subunit TOM22 homolog	TOMM22	1.15445201	2.30656297	-
Heat shock protein 75 kDa, mitochondrial	TRAP1	1.08820279	2.82503219	+
Supplementary Table S10.

Significantly enriched proteins (log2 ratio > 1, log10 t-test p-value > 1.30) from whole proteome analysis in HEK293T ClpP knockout cells. For annotation of ClpP substrates ref. [3-4] were considered and proteins marked with ‘+’, if they were previously mentioned in any of the references. If no previous connection to ClpP was identified, proteins were annotated with ‘-’.

Protein names	Gene name	enrichment factor (log2)	p-value t-test (log10)	Annotated as substrate
Glutathione S-transferase P	GSTP1;HEL-S-22	3.173206667	3.827196443	+
Inositol 1,4,5-trisphosphate receptor type 2	WD repeat domain phosphoinositide-interacting protein 4	WDR45	2.408337593	1.499630223
Mitochondrial assembly of ribosomal large subunit protein 1	MALSU1	1.746897221	4.405897711	
[3-[methyl-2-oxobutanoate dehydrogenase [lipooamid]] kinase, mitochondrial	BCKDK	1.70224851	3.104599943	
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6	NDUF6A	1.695121288	1.619586569	
[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2, mitochondrial	PDK2	1.65921545	3.185834772	
Decaprenyl-diphosphate synthase subunit 1	DPS1S	1.655128956	3.248254484	
[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial	PDK3	1.642876625	3.857055756	
Probable ATP-dependent RNA helicase DDX28	DDX28	1.636013985	2.181415042	
GATOR complex protein SEC13	-	1.624860764	1.419270127	
Protein VAC14 homolog	VAC14	1.595541954	1.861170551	
Poly(A)-specific ribonuclease PARN	PARN	1.585329792	3.119119302	
Arginase-2, mitochondrial;Arginase	ARG2	1.556794167	2.507832378	
Nicotinate-nucleotide pyrophosphorylase [carboxylating]	QPTR;HEL-S-90n	1.55129528	1.930462222	
Transducin beta-like protein 3	TBL3	1.541714668	2.235732724	
Cytochrome c oxidase subunit 1	MT-CO1;COX1;COX1;COX1;COX1;COX1	1.541699409	1.546969079	
[NADP+] transhydrogenase, mitochondrial	NNT	1.541247296	3.215330366	
H(+)/Cl(-) exchange transporter 7;Chloride channel protein	CLCN7	1.532600302	1.790707262	
39S ribosomal protein L39, mitochondrial	MRPL39	1.531505108	3.204219098	
V-type proton ATPase 116 kDa subunit a isoform 1;V-type proton ATPase subunit a	ATP8V0A1	1.520878884	2.183670528	
Exportin-6	XPO6	1.506718159	1.341499584	
Large neutral amino acids transporter small subunit 1	SLC7A5	1.477167103	1.801000641	
Glycine dehydrogenase (decarboxylating), mitochondrial	GLDC	1.471411228	4.680403685	
Glutamine synthetase	GLUL;PIG59	1.470929623	2.622748509	
Dihydroyoprimidinase-related protein 1	CRMP1	1.427314758	3.325581754	
Inactive hydroxyoysteroid dehydrogenase-like protein 1	HSDL1	1.421708584	2.478345787	
28S ribosomal protein S27, mitochondrial	MRPS27	1.416228924	2.885972261	
Plasmin-3	PL53	1.402068615	3.477388873	
F1H/F2H domain-containing protein 1	FHOD1	1.397722721	2.081428883	
Exocyst complex component 5	EXOC5	1.386257207	1.310222222	
Enhancer of mRNA-decapping protein 4	EDC4	1.383150578	2.37317991	
Glutaminase	DKFZp686O15119	1.364944935	2.862686858	
Conserved oligomeric Golgi complex subunit 5	COG5	1.356807709	1.492994491	
TLD domain-containing protein 1	TLD1;KIAA1609	1.345605855	2.940872872	
Zinc transporter ZIP10	ZIC3A910	1.33773783	2.327281121	
Lysine-rich nuclear protein 1	KNOP1	1.332265854	2.713394846	
DnaJ homolog subfamily A member 3, mitochondrial	DNAJ3	1.330582958	4.033475277	
Multidrug resistance-associated protein 1	ABC11;DKFZp781G125;MRP	1.328831196	3.598731527	
Polymerase delta-interacting protein 2	POLDIP2	1.323642254	4.102978472	
ADP-ribosylation factor-like protein 2-binding protein	ARL2BP	1.32509766	3.374036421	
Carboxymethylisoxazolopyridine homolog	CMX1L	1.321192741	3.347234345	
Rab-3A-interacting protein	RAB3IP	1.317722797	1.726163333	
Adenodoxin, mitochondrial	FXD1	1.317452298	1.416827206	
Triple functional domain protein	TRIO	1.308440685	1.699227142	
Lysocephospholipid acyltransferase 2	RHODAT2	1.303477737	2.56935887	
Inositol 1,4,5-trisphosphate receptor type 2	ITPR2	1.298715161	2.710059145	
Phospholipid-transporting ATPase Ig, Phospholipid-transporting ATPase	ATP11C	1.296540318	1.876141105	
SUPPORTING INFORMATION

Gene Name	Accession Number(s)	Description	
Mothers against decapentaplegic homolog 3 (Mothers against decapentaplegic homolog) 3	1,093614578, 1,496805481	-	
2-methoxy-6-polyphenyl-1,4-benzoxin methylene, mitochondrial	1,093120575, 3,29893025	-	
Geranylgeranyl transferase type-1 subunit beta	1,09295702	1,72314902 -	
Protein TBRG4	1,091749688	1,713543545 +	
General transcription factor 3C polyepitope 1	1,091234326, 1,746313592	-	
CDP-diacylglycerol-inositol 3-phosphatidyltransferase	1,089659691, 2,50502121	-	
Cytoplasmic FMR1-interacting protein 2	1,089017868, 1,339675999	-	
Cystathionine beta-synthase	1,08834552, 2,383030475	-	
Zinc finger protein 5F	1,087993145, 1,83501567	-	
AP-1 complex subunit sigma-2	1,085670948, 1,87051971	-	
Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16	1,082866428, 2,656648626	-	
Lysophosphatidylcholine acyltransferase 1	1,081543037, 1,952192714	-	
Cytochrome c oxidase subunit 2	1,08145082, 1,76708417	-	
DNA-dependent protein kinase catalytic subunit	1,079566159, 1,305483111	-	
WD repeat-containing protein 3	1,071441272, 3,203591381	-	
Probable helicase with zinc finger domain	1,07132673, 1,539244227	-	
Probable histidine--RNA ligase, mitochondrial	1,067705631, 2,423662229	-	
Proto-oncogene tyrosine-protein kinase S5c	1,066912651, 2,09461354	-	
Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial	1,062458992, 2,986145884	-	
NADH-cytochrome b5 reductase 3;NADH-cytochrome b5 reductase 3 membrane-bound form;NADH-cytochrome b5 reductase 3 soluble form;NADH-cytochrome b5 reductase	1,084012884, 1,81119865	-	
Serine/threonine-protein kinase SMG1	1,058713436, 2,171066211	-	
[Pyruvate dehydrogenase [acetyl-transferring]-phosphatase 2, mitochondrial	1,05544138, 2,075787568	-	
Delta-1-pyrroline-5-carboxylate synthase;Gamma-glutamyl phosphate reductase	1,054750443, 2,153505089	+	
DNA-3-methyladenine glycosylase	1,051884174, 2,378683502	-	
Atypical kinase ADC3, mitochondrial	1,051606178, 1,80577989	-	
Lysine--RNA ligase	1,051459628, 2,692602429	-	
ADP-ribosylation factor-binding protein GGA2	1,051235199, 1,857024014	-	
Nucleoside diphosphate kinase 3;Nucleoside diphosphate kinase	1,050832272, 2,438801718	-	
Probable 28S RNA (cytosine(4447)-(C)-5')-methyltransferase	1,049431801, 3,692075435	-	
cDNA FLJ5519	-	1,049320221, 1,6928609	-
Mitochondrial Rho GTPase 2	1,048870087, 2,12888372	-	
Methionine synthase reductase	1,048690796, 1,869042447	-	
28S ribosomal protein S34, mitochondrial	1,04804039, 3,261661452	+	
Motile sperm domain-containing protein 2	1,044107061, 2,282149228	+	
Cleft lip and palate transmembrane protein 1-like protein	1,043674469, 1,617666535	-	
Inhibitor of nuclear factor kappa-B kinase-interacting protein	1,041143894, 3,00977031	-	
Liss1 domain and HEAT repeat-containing protein KIAA1468	1,040667534, 1,647590134	-	
Calpin-1 catalytic subunit	1,037336826, 2,430162479	-	
Ubiquinol-cytochrome-c reductase complex assembly factor 1	1,035808088, 2,725401052	-	
Antigen peptide transporter 1	1,03324604, 2,072414891	-	
39S ribosomal protein L28, mitochondrial	1,032464981, 2,3413517	-	
Catechol-O-methyltransferase	1,031271935, 1,614735336	-	
Cytochrome b	CYTB, cytB, CYTB, CytB, CytB	-	
Motile sperm domain-containing protein 2	MOSPED2	-	
Phosphorylase b kinase regulatory subunit beta	1,026652336, 1,578238673	-	
5-AMP-activated protein kinase catalytic subunit alpha-2	1,025482655, 1,428936219	-	
CCR4-NOT transcription complex subunit 10	1,023015976, 1,467111191	-	
Endoplasmic reticulum aminopeptidase 1	1,020353317, 1,98585378	-	
Alanine--RNA ligase, cytoplasmic	AARS	1,016955376, 3,110358865	+
Serine/threonine-protein kinase Ne7	1,016818047, 1,85209223	-	
Dehydrogenase/reductase SDR family member 7B	DHRST7	1,472475704	-
Thioredoxin-related transmembrane protein 4	TMX4	1,014892101, 1,944765861	-
Telomere length regulation protein TEL2 homolog	TEL02	1,013275146, 1,626543193	-
Coronin; Coronin-7	CORO7-PAM16; CORO7-HC; 1767779	1,012895584, 3,790301474	-
PAB-dependent (A)-specific ribonuclease subunit PAN2	PAN2	1,010728359, 1,651256219	-
Caspase-8; Caspase-8 subunit p18; Caspase-8 subunit p10	CASP8; hCASP1 16983	1,010406494, 3,055731744	-
Conserved oligomeric Golgi complex subunit 8	COG8; hCASP1 2027080	1,009614647, 2,357167679	-
Dehydrogenase/reductase SDR family member 7B	DHRST7; DKFZp564H1664	1,007921219, 1,867458483	-
Diphosphophosphate decarboxylase	MVD	1,006159566, 2,846140995	-
E3 ubiquitin-protein ligase 1	UFL1	1,00866876, 1,58208122	-
Sodium-cell surface antigen heavy chain	SLC3A2	1,001928212, 2,484188639	-
Sodium-coupled neutral amino acid transporter 2	SLC3A2	1,001403332, 1,610205596	-
Supplementary Table S11

Significantly enriched proteins (log₂ ratio > 1, log₁₀ t-test p-value > 1.30) from trapping experiments of rotenone-treated HEK293T cells expressing hClpP-D92DiaZK. Proteins that were enriched only in rotenone treated samples and in no other hClpP-DiazK variants are marked with '+' and with '-' if they are not uniquely enriched.

Protein name	Gene name	enrichment factor (log)	p-value t-test (log)	Annotated as substrate
CDKN2A-interacting protein	CDKN2AIP	4.040013777	5.829336166	-
Glycine cleavage system H protein, mitochondrial	GCSH	3.547040595	6.522687658	-
THUMP domain-containing protein 1	THUMPD1	2.28583187	4.467810313	-
L-oxaloacetate dehydrogenase, mitochondrial	L2HG1	2.627576481	3.54081778	-
RNA-binding protein Musashi homolog 1	MSI1	3.157466777	3.508930206	-
RNA-binding protein Musashi homolog 2	MSI2	2.92371033	3.00661316	-
Threonine synthase-like 1	THNSL1	2.611644794	2.96591338	-
Heterogeneous nuclear ribonucleoprotein U-like protein 2	HNRNPU2;	3.97559625	2.948937734	-
Polyadenylate-binding protein 2	PABPN1	2.594634424	2.659805934	-
Inorganic pyrophosphatase 2, mitochondrial	PP2A	1.517691785	2.637044443	-
Heterogeneous nuclear ribonucleoprotein D-like	HNRNPD1	2.11972959	2.585085855	-
Protein phosphatase PTC7 homolog	PTPC7	2.367260172	2.42946468	-
NAD-dependent malic enzyme, mitochondrial	MDMA	2.70599794	2.383645718	-
RNA-binding motif, single-stranded-interacting protein 1	RBM51	4.040859241	2.317205155	-
39S ribosomal protein L53, mitochondrial	MRPL53	1.644228898	2.278296153	-
39S ribosomal protein L52, mitochondrial	MRPL52	1.684214222	2.268756866	-
39S ribosomal protein L33, mitochondrial	MRPL33	3.921019156	2.196620941	-
Dihydrolipooyl dehydrogenase, mitochondrial	DLD	3.568975709	2.178907394	-
Pyruvate dehydrogenase protein X component, mitochondrial	PDHX	3.274047919	2.133876801	-
Heterogeneous nuclear ribonucleoprotein D-like	HNRNPD1	2.604936259	1.989514669	-
Probable E3 ubiquitin-protein ligase makorin-2	MKRN2	3.091680264	1.952359517	-
Putative transferase CAF17, mitochondrial	IBA57	2.29867109	1.927930884	-
5-3 exoribonuclease 2	XRN2	2.899070362	1.894339879	-
RNA-binding motif, single-stranded-interacting protein 2	RBM52	2.731841921	1.76350979	-
Scaffold attachment factor B2	SABF2	2.6444863	1.705375671	-
Heterogeneous nuclear ribonucleoprotein D0	HNRPD	2.8901515	1.705329435	-
Enoyl-CoA hydratase, mitochondrial	EC1H1	3.209923076	1.2562904	-
3-hydroxyacyl-CoA dehydrogenase type-2	HSD17B10	3.046260469	1.627047645	-
Heterogeneous nuclear ribonucleoprotein L-like	HNRNPL1	1.78703256	1.5285333	-
Dihydrolipopolysaccharide-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial	DLST	2.34655262	1.48673972	-
Acetyltransferase component of pyruvate dehydrogenase complex; Dihydrolipopolysaccharide-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	DLAT	2.174352815	1.389623642	-
Leucine-rich PPR motif-containing protein, mitochondrial	LRPPRC	3.256026535	1.369892574	-
39S ribosomal protein L11, mitochondrial	MRPL11	2.657172419	1.554166166	-
Heterogeneous nuclear ribonucleoprotein Q	SYNCRIP	2.908112696	1.348293304	-
10 kDa heat shock protein, mitochondrial	HSP10/Hsp10	2.380939534	1.346793493	-
Acetyl-CoA acetyltransferase, mitochondrial	ACA1T	2.900621023	1.346787135	-
Heat shock protein 75 KD, mitochondrial	TRAP1	3.443383745	1.28523902	-
Hsc70-interacting protein; Putative protein FAM10A4; Putative protein FAM10A5	ST13	2.343873193	1.213008881	-
Isocitric–RNA ligase, mitochondrial	IARS2	2.172470393	1.210529616	-
ATP synthase mitochondrial F1 complex assembly factor 2	ATPF2	2.369971558	1.207983975	-
2-oxoglutarate dehydrogenase, mitochondrial	OGDH	3.257917422	1.207115173	-
ATP-dependent RNA helicase DHX36	DHX36	2.20148615	1.187528067	-
Presequence protease, mitochondrial	PITRM1	2.58780206	1.1651027	-
Lipoamide acetyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial	DBT	2.845733967	1.144769609	-
39S ribosomal protein L54, mitochondrial	MRPL54	1.658340666	1.111061732	-
39S ribosomal protein L52, mitochondrial	MRPL2	2.507914069	1.11005147	-
39S ribosomal protein L16, mitochondrial	MRPL16	2.99404281	1.10972023	-
2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial	BCOGA	1.593486921	1.100859652	-
39S ribosomal protein L44, mitochondrial	MRPL44	3.076696717	1.096454719	-
Lupon Lα protein	SSB	2.815146607	1.095890681	-
Mitochondrial ribonuclease P protein 1	TRMT10C	1.63024209	1.09022013	-
THUMP domain-containing protein 3	THUMPD3	1.871894572	1.08164004	-
Polyadenylate-binding protein; Polyadenylate-binding protein 4	PABPC4	2.757012728	1.064928915	-
Zinc finger protein ubi-d4	PDP2	1.477201208	1.047100703	-
39S ribosomal protein L39, mitochondrial	MRPL39	3.260246654	1.037794749	-
Supplementary Table S12.

Significantly enriched proteins (log₂ ratio > 1, -log₁₀ t-test p-value > 1.30) from trapping experiments of rotenone-treated HEK293T cells expressing hClpP-K261DiazK. Proteins that were enriched only in rotenone treated samples and in no other hClpP-DiazK variants are marked with ‘+’, and with ‘-’, if they are not uniquely enriched.

Protein names	Gene name	enrichment factor (log₂)	p-value t-test (log₁₀)	Annotated as substrate
Enoyl-CoA hydratase, mitochondrial	ECHS1	2.003698056	5.274079005	-
10 kDa heat shock protein, mitochondrial	HSP1/Hsp10	2.416902285	3.559659958	-
Tyrosine--tRNA ligase, mitochondrial;Tyrosine--tRNA ligase	YARS2	2.676012595	3.065404256	-
Malate dehydrogenase;Malate dehydrogenase, mitochondrial	MDH2	2.538980576	2.600123723	-
Kappa-casein	CSN3	3.196187718	2.359725952	+
Single-stranded DNA-binding protein;Single-stranded DNA-binding protein, mitochondrial	SSBP1	3.129474044	2.081043879	-
Polyribonucleotide nucleotidyltransferase 1, mitochondrial	PNPT1	1.332356849	1.964796431	-
Isovaleryl-CoA dehydrogenase, mitochondrial	IVD	2.242487823	1.945773443	-
Cyclin-dependent kinase 4	CDK4	1.647243029	1.94344203	-
Prerelease protease, mitochondrial	PITRM1	2.271304681	1.935722987	-
Inorganic pyrophosphatase 2, mitochondrial	PPA2	2.066109134	1.739587784	-
Tubulin beta chain	TUBB	1.719995809	1.61362599	-
Histidine triad nucleotide-binding protein 2, mitochondrial	HINT2	2.158128659	1.56341949	-
Citrate synthase/Citrate synthase, mitochondrial	CS	2.614555541	1.521754853	-
Putative transferase CAF17, mitochondrial	IBA57	1.419573126	1.488054911	-
Mitochondrial import receptor subunit TOM40 homolog	TOMM40	1.483859403	1.405593232	-
Acetyltransferase component of pyruvate dehydrogenase complex	DLAT	3.254700786	3.54489009	-
Hydroxacyl-coenzyme A dehydrogenase, mitochondrial	HADH	2.39319267	1.331132947	-
Acyl-CoA dehydrogenase family member 9, mitochondrial	ACAD9	2.455665811	1.292857488	-
Mitochondrial ribonucleoside P protein 1	TRMT10C	2.355294345	1.282247543	-
Aconitate hydratase, mitochondrial	ACO2	2.855714637	1.259790421	-
Heat shock protein 75 kDa, mitochondrial	TRAP1	3.172907231	1.242417653	-
Host cell factor 1	HOFC1	1.306021892	1.20465155	-
SRA stem-loop-interacting RNA-binding protein, mitochondrial	SLRP	3.272002454	1.12571205	+
NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial	NDUFV2	1.84084095	1.117319743	-
Glutamate dehydrogenase 1, mitochondrial	GLUD1	2.092659677	1.045743306	-
Poly [ADP-ribose] polymerase 1	PARP1	1.622107904	1.03410085	-
5-AMP-activated protein kinase catalytic subunit alpha-2;5-AMP-activated protein kinase catalytic subunit alpha-1	PRKAA1	2.443330979	1.022978035	+
Experimental Procedures

General remarks

All chemicals and solvents were obtained from commercial suppliers (Carbolution, Sigma Aldrich) and used without further purification unless otherwise stated. Technical grade pentane and DCM were distilled prior use. Thin-layer chromatography (TLC) was performed on Merck Millipore silica gel 60 F-254 plates. The developed silica plates were visualized by UV light (254 nm) and/or staining with ninhydrin or potassium permanganate. Flash column chromatography used for product purification was performed on silica gel 60 (230-400 mesh).

NMR spectra were recorded on Bruker AVHD300 (300 MHz for 1H-NMR, 75 MHz for 13C-NMR). Chemical shifts (δ), reported in ppm, are referenced to the residual proton solvent signals. Coupling constants (J) are reported in Hertz (Hz) while peak multiplicities are described as follows: s (singlet), d (doublet), t (triplet), m (multiplet).

Small molecule liquid chromatography mass spectrometry (LC-MS) was performed on an Agilent Technologies 1260 Infinity LC-MS system with a Phenomenex AerisTM Peptide XB-C18 column (100 x 2.1 mm, 3.6 µm) coupled to a 6310 Quadrupole spectrometer. The solvent system consisted of MQ H$_2$O + 0.1% FA as buffer A and MeCN + 0.1% FA as buffer B. Protein LC-MS was carried out on a Jupiter C4 column (2 x 150 mm, 5µm). Protein mass was calculated by deconvolution within the Chemstation software (Agilent Technologies). Theoretical protein masses were calculated using ProtParam and were manually corrected for the mass of the ncAA. Samples were analysed by UV absorbance at 193, 254 and 280 nm followed by both positive and negative ESI-mode.
Chemical synthesis

Synthesis of 2-(3-methyl-3H-diazirin-3-yl)ethan-1-ol (1)

To 4-Hydroxy-2-butanone (4.0 g, 45.0 mmol, 1.0 eq.) on ice was added NH₃ (7 M in MeOH, 35 ml). After 3 h, hydroxylamine-O-sulfonic acid (5.7 g, 50.0 mmol, 1.1 eq.) was added and the reaction was stirred o.n. at r.t. The mixture was filtered through Celite and the filter cake was washed with MeOH. The solvent was removed and the crude intermediate was taken up in MeOH (40 ml) and Et₃N (8 ml) and stirred on ice. I₂ was added portion-wise until the reaction mixture maintained a dark yellow/brown color. After 3 h, the solvent was removed and taken up in Et₂O (150 ml). The organic phase was washed with 1 M HCl (80 ml). The aqueous phase was extracted again with Et₂O (150 ml). The combined organic phase was washed with 20% w/v Na₂S₂O₃ (100 ml) and brine (100 ml). The organic phase was dried over Na₂SO₄, filtered and removed under reduced pressure to yield a dark yellow oil (1.88 g, 18.8 mmol, 42%). The crude product 1 was used without further purification.

¹H NMR (300 MHz, CDCl₃) δ = 1.07 (s, 3H), 1.63 (t, J = 6.3 Hz, 2H), 3.52 (t, J = 6.3 Hz, 2H).

Synthesis of 2-(3-Methyl-diazirin-3-yl)ethyl (4-nitrophenyl) carbonate (2)

To a solution of 1 (1.9 g, 18.8 mmol, 1.0 eq.) in DCM (100 ml) on ice was added 4-nitrophenyl chloroformate (4.5 g, 22.5 mmol, 1.2 eq.) and pyridine (1.8 ml, 22.5 mmol, 1.2 eq.) and the reaction was stirred o.n. at r.t. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography (10% → 15% EtOAc in pentane) to obtain the final product 2 as a yellow oil (3.1 g, 11.6 mmol, 62%).

¹H NMR (300 MHz, CDCl₃): δ = 1.12 (s, 3H), 1.80 (t, J = 6.4 Hz, 2H), 4.25 (t, J = 6.4 Hz, 2H), 7.40 (d, J = 9.2 Hz, 2H), 8.29 (d, J = 9.2 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ = 20.0, 23.7, 33.9, 64.4, 122.0, 125.5, 145.6, 152.5, 155.6.

Synthesis of N²-(tert-butoxycarbonyl)-N⁶-((2-(3-methyl-3H-diazirin-3-yl)ethoxy)carbonyl)-L-lysine (3)

To a solution of 2 (3.1 g, 11.6 mmol, 1.0 eq.) in dioxane (30 ml) was added Na-Boc-Lysine (3.4 g, 13.9 mmol, 1.2 eq.) and Et₃N (3.2 ml, 23.2 mmol, 2.0 eq.) and the reaction was stirred o.n. at r.t. The reaction mixture was concentrated under reduced and purified by flash chromatography (2% MeOH in DCM → 5% MeOH in DCM +0.5% AcOH) to yield the final product 3 as a colourless oil (2.6 g, 6.9 mmol, 60%).

¹H NMR (300 MHz, DMSO-d₆): δ = 1.02 (s, 3H), 1.23-1.41 (m, 13H), 1.48-1.66 (m, 4H), 2.95 (d, J = 6.4 Hz, 2H), 3.86 (t, J = 6.3 Hz, 2H), 3.91-3.78 (m, 1H), 7.00 (d, J = 7.9 Hz, 1H), 7.15 (t, J = 5.5Hz, 1H).

The chemical shifts are according to literature.[5]

LC-MS (m/z): calcd. for C₁₆H₂₅N₆O₆ [M-H]⁺ 371.2; found: 371.1.
Synthesis of \(N^6-(2-(3\text{-methyl}-3H\text{-diazirin}-3\text{-yl})\text{ethoxy})\text{carbonyl})-L\text{-lysine TFA salt/DiazK (4)\)

To a stirred solution of 3 (4.8 g, 13.0 mmol, 1.0 eq.) in DCM (28 ml) on ice was added TFA (7 ml) and H\(_2\)O (1 ml). After 3 h, the solvent was removed, the crude product precipitated in ice-cold Et\(_2\)O and collected by centrifugation. This was repeated twice and the final product was lyophilised to obtain the final product 4 as a white powder (4.6 g, 13.5 mmol, 96%, TFA salt).

\(^1\text{H NMR\) (300 MHz, D\(_2\)O): \(\delta = 1.06 \) (s, 3H), 1.34-1.48 (m, 2H), 1.50-1.61 (m, 2H), 1.64-1.75 (m, 2H), 1.82-1.95 (m, 2H), 3.16 (t, \(J = 6.5 \) Hz, 2H), 3.74 (t, \(J = 6.1 \) Hz, 1H), 4.04 (t, \(J = 6.0 \) Hz, 2H). The chemical shifts are according to literature.\(^5\)

\text{LC-MS (m/z): calcd. for. C}_{11}\text{H}_{20}\text{N}_{4}\text{O}_{4} [M+H]^+ 273.2; found: 273.2.}

DiazK stock solutions (100 mM) were stored in 100 mM TFA in H\(_2\)O, filtered (0.2 \(\mu \)m filter) and stored at -20°C prior use.

\(^1\text{H NMR of DiazK (4)\}

\[\text{O} \]
\[\text{N} \]
\[\text{N} \]
\[\text{O} \]
\[\text{CO} \]
\[\text{H}_2\text{N} \]
\[\text{COOH} \]
\[\text{TFA} \]
Biological Methods

Cloning of hClpP constructs

Plasmids for bacterial expressions: hClpP sequence (lacking the N-terminal 56 amino acid signal sequence and bearing a C-terminal StreptII-tag) was amplified from pET301_hClpP vector (Sieber Lab, TU Munich) and cloned into the pPylt backbone (containing Mb_tRNA_CUA and an arabinose-inducible promoter) with a C-terminal His6-tag using Gibson cloning protocol as recommended (NEB). Respective amber codon (TAG) positions were introduced via SLIM.

Protein sequence of hClpP for bacterial expression:

MPPIPIPVVEQTGRGERAYDIYSRLLRERIVCV
MGPI
DSVASLVIAQLLFLQSESNKKPIHMYINSPPGGVTAGLAIY
DTMQYILNPICTWCVGQAA
SMGSLLLAAGTPGMRHSLPNSRIMIHQPSSGARGQATDIAQAEIMKLKKQLYNIYAKHTKQSLQVIESAMERDRYMSPMEAQEFGILDKVLHPPQDGEDEPTLVQKEPVEAAPAEVPVF

Plasmids for mammalian expression: hClpP sequence (containing the N-terminal 56 amino acid mitochondrial signal recognition motif and a C-terminal FLAG-tag) was amplified from pRK5SV40_hClpP vector (Sieber Lab, TU Munich) and subcloned into a pET17 helper plasmid. FLAG-tag was replaced with an HA-tag via SLIM and respective TAG positions were introduced thereafter via SLIM. hClpP(TAG)-HA constructs were amplified with primers bearing XbaI and BamHI restriction sites prior and after the gene and cloned into pEF1_POI_4xPylt backbone using standard restriction cloning protocols.

Protein sequence of hClpP for mammalian expression:

MWPGILVGARVASCYPALGPRLAHHFPAQRPOQRTLONGLALQCLHATATRALPLIPIVEQTGGERAYDIYSRLLRERIVCV
MGPI
DSVASLVIAQLLFLQSESNKKPIHMYINSPPGGVTAGLAIY
DTMQYILNPICTWCVGQAA
SMGSLLLAAGTPGMRHSLPNSRIMIHQPSSGARGQATDIAQAEIMKLKKQLYNIYAKHTKQSLQVIESAMERDRYMSPMEAQEFGLDKVLHPPQDGEDEPTLVQKEPVEAAPAEVPVF

Expression and purification of recombinant (amber suppressed) hClpP

E. coli DH10β cells were co-transformed with pBK_Mb_PylRS_DiazKRS (Mb mutations: Y271M, L274A, C313A, KanR) and pPylt(-56aa)-hClpP-TAG-His6 (Te6), SOC rescued (1h, 37°C) and cultured in LB medium o.n. at 37°C with 1x antibiotic strength(s). For wt expression, the addition of the PylRS plasmid was omitted. The o.n. culture was diluted into 2xYT to an OD600 of ~0.05 with 1x antibiotic strengths and incubated at 37°C, 200 rpm. At approximately OD600 of ~0.3, DiazK was added to a final concentration of 1 mM (for amber suppressed proteins). At approximately OD600 of ~0.6, protein expression was induced with arabinose (0.02% w/v final concentration). After 3 h (for wt hClpP) or 18 h (for amber suppressed hClpP), expression cultures were harvested via centrifugation (4200 rpm, 15’, 4°C). For SDS-PAGE analysis, 1 ml of culture was pelleted, resuspended in 1x Laemmli loading buffer (normalised according to OD600 values; per OD = 1, 100 µl of 1x loading buffer), boiled at 95°C for 10’, pelleted again (max. speed, 10’) and supernatant was subjected to HisTrap purification on GE Äkta system (hClpP lysis buffer supplemented with imidazole, 20mM (A) and 300 mM (B); gradient A→B). Appropriate fractions were analysed via 15% SDS-PAGE, pooled, concentrated/rebuffered with an Amicon Ultra-4 10K MWCO centrifugal filter units (Millipore) and SEC buffer (20 mM HEPES, pH 7 (6°C), 100 mM NaCl). Samples were aliquoted, flash frozen and stored at -80°C until further use.
Expression and purification of recombinant *E. coli* ClpX

E. coli ClpX was expressed as described before [9]. In brief, *E. coli* ClpX was overexpressed in *E. coli* (DE3) Rosetta 2 with a N-terminal His6-TEV construct. For this, LB-Medium was inoculated with o.n. cultures, incubated at 37 °C with constant shaking and overexpression was induced at OD₆₀₀ = 0.8 by addition of IPTG (1:2000 dilution, 0.5 M stock solution in H₂O). After incubation for 20 h at 25 °C and 200 rpm bacteria were harvested by centrifugation (6000 g, 10’, 4°C), washed with 30 ml PBS buffer (140 mM NaCl, 10 mM Na₂HPO₄, 2.7 mM KCl, 1.8 mM KH₂P₄, pH 7.6) and again centrifuged at 15,000 g for 10’ at 4°C. Lysis was performed in EcClpX lysis buffer I (50 mM HEPES, 300 mM KCl, 1 mM DTT, 10 mM imidazole, 5 mM MgCl₂, 15% (v/v) glycerol, pH 7.6) by sonication. Lysate was cleared by centrifugation (38700 g, 30’, 4°C) and processed using a Superdex 200 10/300 (GE Healthcare) with a centrifugal filter with a cut-off of 30 kDa.

Protein assembly analysis via size-exclusion chromatography

His-purified protein samples (wt-hClpP-His₆ and all hClpP-DiazK-His₆ amber mutants) were subjected to SEC using a SuperdexTM 75 10/300 (GE Healthcare) with the SEC buffer. Raw data of the elution profiles were processed using Microsoft Excel and OriginPro16G. Peak intensities (280 nm absorption) from 5-20’ retention time were considered and all signals were normalised to the highest signal intensity.

hClpP protease activity assay

E. coli ClpX recognizes peptides C-terminally tagged with a short amino acid sequence and forms a functional complex with *H. Sapiens* ClpP. It is therefore suitable as a *H. Sapiens* ClpX substitute for in vitro protease activity assays. To determine residual protease activity of mutated ClpXP, cleavage of ssrA-tagged GFP was monitored by the decrease of fluorescence signal. For this, 59 µl of enzyme buffer mix (0.2 µM hClpP₁₄, 0.4 µM eClpX₆; 10x ATP-regeneration mix: 40 mM ATP, 160 mM creatine phosphate, 200 U/ml creatine phosphokinase in 25 mM HEPES, 200 mM KCl, 1 mM DTT, 5 mM MgCl₂, 15% (v/v) glycerol, pH 7.6) protein was eluted with 20 ml elution buffer (50 mM HEPES, 300 mM KCl, 1 mM DTT, 40 mM imidazole, 15% (v/v) glycerol, pH = 7.6) protein was eluted with 20 ml elution buffer (50 mM HEPES, 300 mM KCl, 1 mM DTT, 300 mM imidazole, 15% (v/v) glycerol, pH 7.6). Fractions containing protein were pooled and 1 mM EDTA and 2 mg/ml TEV-protease were added and incubated o.n. at 10 °C under constant agitation. Completion of His-tag cleavage was confirmed by LC-MS and crude protein was purified by size exclusion chromatography in EcClpX lysis buffer I without imidazole. Fractions containing EcClpX were pooled and concentrated using a centrifugal filter with a cut-off of 30 kDa.

Mammalian cell culturing and photocrosslinking

HEK293T cell culturing was performed as previously described [10]. Transfections were either performed in 6-well plates or in 10 cm dishes for proteomics experiments (triplicates, +/-UV). 24 h after seeding, media was replaced with fresh DMEM containing 2 mM DiazK (pH was neutralised with 1 M NaOH). Transfection mixtures with plasmids pEF1₍₊₎His6aa_hClpP</sub>_TAG_HA_4xPylt and pEF1_{Mm}DiazKRS_{_4xPylt} (plasmid ratio 3:1) were prepared as depicted in the following table:

Type of dish	Number of seeded cells/well	Total amount of DNA per well [µg]	OPTIMEM per well [µl]	Polyethyleneimine (1 mg/ml) per well [µl]
6 well	5x10⁴/2ml	2	200	9
10cm dish	3.5x10⁵/10ml	10	1000	30

Mixtures were prepared and incubated at r.t. for 15’ prior addition to the wells and cells containing DMEM with the DiazK. 40-44 h post-transfection, cells were washed 3x with 1x PBS (1x well volume). The plates or dishes (in 1x PBS, 0.5x of the usual well volume) were either placed on a cooling pad and irradiated for 15’ with a 15 W, 365 nm...
UV lamp (Vilber, VL-215.L, +UV) prior scraping or harvested (-UV) immediately. Cells were pelleted at 700 g, 4°C, 15', supernatant discarded, flash frozen in liquid nitrogen and stored at -20°C until further use.

Western Blot

bacterial samples: After SDS-PAGE of expression samples, western blots were performed via standard semidy blot procedure on nitrocellulose membranes (0.2 µm, Amersham™, Protran™, GE Healthcare Life Sciences). Membrane was blocked with 5% skim milk powder in 1x TBS-T (0.1%, 1h, r.t.) followed by incubation with anti-His6-HRP antibody (1:5000, Roche), o.n. at 4°C. Membranes were washed 5x with 1x TBS-T and blots were developed using Amersham ECL™ Prime Western Blotting Detection Reagent (GE Healthcare).

mammalian samples: HEK293T cell pellets (-/+ UV) were lysed by freeze/thaw cycles (3x). Lysates were cleared (max speed, 4°C, 15') and supernatant fractions were kept for further analysis. BCA assays (Pierce™ BCA Protein Assay Kit, Thermo Scientific) were performed to ensure equal loading prior SDS-PAGE loading. After transfer onto nitrocellulose membrane, the membrane was blocked with 5% skim milk powder in 1x TBS-T (0.1%, 1h, r.t.), followed by incubation with primary anti-HA antibody (rabbit, 1:5000, provided by Itzen Lab, UKE Hamburg) in 1% skim milk powder in 1x TBS-T (0.1%), o.n. at 4°C. Membranes were washed 5x with 1x TBS-T, followed by incubation with the secondary goat anti-rabbit-IgG-HRP antibody (1:40000, provided by Itzen Lab, UKE Hamburg) for 1 h at r.t. After washing with 1x TBS-T (3x), blots were developed using Amersham ECL™ Prime Western Blotting Detection Reagent (GE Healthcare).

Rotenone treatment of HEK293T expressing hClpP-DiazK variants

HEK293T cells were cultivated in 10cm dishes with DMEM containing DiazK and transfected with pEF1_(+)56aa_hClpP_D92TAG_HA_4xPylt or pEF1_(+)56aa_hClpP_K261TAG_HA_4xPylt and pEF1_Mm_DiazKRS_4xPylt as described before. 40 h post-transfection, rotenone (10 mM stock solution in DMSO) was added to the plates to a final concentration of 1 µM. After 6 h, cells were harvested and processed for +/- UV-light treatment and proteomic measurements as described before.

Immunofluorescence microscopy of HEK293T cells expressing hClpP-DiazK variants

For each condition, 2.5 x 10⁴ HEK293T cells (25 µl of 10⁶ cells/ml) were incubated with 5 µl transfection mix containing 12 ng plasmid (3:1 POI:RS, POI either hClpP-D92TAG or hClpP-K261TAG) and 0.04 µg PEI (1 mg/ml) per µl OPTIMEM for 15' at r.t. and seeded (V₅ = 30 µl) into the channel of the µ-slide (ibidi µ-slide IV 0.4, cat. No. 80606). After incubation for 3 h at 37°C, 5% CO₂, either 60 µl DMEM or 60 µl DMEM containing 2.5 mM diazK (final concentration in channel: 2 mM) was added to each well of the inlet and incubated at 37°C, 5% CO₂. After 40 h, media in each well of the channel was replaced with DMEM containing 200 nM MitoRed (Sigma 53271, 60 µl each, ~160 nM final MitoRed in each channel) and incubated for 1 h at 37°C. Each channel was washed twice with 1x PBS, the liquid was removed and cells were fixed with 60 µl MeOH for 10' at -20°C. After washing twice with 1x PBS at r.t., the channel was blocked with 60 µl blocking solution (3% BSA and 0.3% Triton-X 100 in 1x PBS) for 1 h at r.t. The liquid was removed and 25 µl of primary anti-HA antibody (mouse, 1:100, Santa Cruz Biotechnology, sc-7392; in 1% BSA and 0.3% Triton-X 100 in 1x PBS) was added and slide was incubated for 2 h at r.t. The channel was washed with 1x PBS (3x), all liquid was removed and subsequently incubated with secondary goat anti-mouse-IgG-FITC antibody solution (Sigma, F0257, 1:100; in 1% BSA and 0.3% Triton-X 100 in 1x PBS) in darkness for 1 h at r.t. The channel was washed once with 1x PBS, liquid was removed and mounting medium containing DAPI (ibidi, cat. No. 50011) was added. Images were acquired on an SP8 Stellaris 8 Falcon confocal microscope (Leica Microsystems) with an HC PL APO CS2 63x/1.4 objective with oil immersion. All fluorophores were imaged sequentially. DAPI was excited at 405 nm, FITC at 495 nm and MitoRed at 569 nm. The laser intensities were kept constant between each channel of the ibidi µ-slide. Images were analyzed with FIJI ImageJ[11] and were presented with the same contrast settings.
Experiments for proteomic analyses of hClpP-crosslinked proteins

In situ trapping and HA-Antibody Enrichment

Cells were thawed on ice, resuspended in 1 ml lysis buffer (50 mM Tris/HCl, 150 mM NaCl, 1 mM MgCl$_2$ \cdot 6H_2O, 1% (v/v) 4-Nonylphenyl-polyethylene glycol (NP-40), 5% (v/v) glycerol, pH = 7.4 at 4°C) and incubated for 30' at 4°C. Afterwards membranes and cell debris were separated by centrifugation (21100 g, 20', 4°C). For protein enrichment, 30 μl monoclonal HA-antibody agarose beads suspension (A2095, isotype IgG1, Merck) per replicate in LoBind Eppendorf tubes were equilibrated with 1 ml wash buffer (50 mM Tris/HCl, 150 mM NaCl, 0.05% (v/v) NP-40, 5% (v/v) glycerol, pH = 7.4 at 4°C) and centrifuged at 1000 g for 1' at 4°C. 500 μl cytosolic fraction were incubated with equilibrated beads for 3 h at 4°C on a rotating wheel. Afterwards beads were centrifuged at 1000 g for 1' at 4°C. The supernatant was discarded and beads were washed two times each with 1 ml wash buffer and two times each with 1 ml basic buffer (50 mM Tris/HCl, 150 mM NaCl, pH = 7.4 at 4°C) to remove unspecifically bound proteins.

Digestion, reduction, alkylation

Digestion and reduction of enriched proteins was performed by addition of 25 μl digestion buffer I (5 ng/μl trypsin (in 50 mM acetic acid), 50 mM Tris/HCl, 2 M urea, 1 mM DTT (freshly prepared and diluted 1:1000 from 1 M stock, pH = 8.0) and incubated for 30'. Afterwards, alkylation of free cysteines and further digestion was conducted by addition of 100 μl digestion buffer II (5.5 mM IAA – freshly prepared and diluted 1:100 from 550 mM stock, 50 mM Tris/HCl, 2 M urea, pH = 8.0), following incubation for 16 - 19 h at 25°C with continuous mixing at 650 rpm in a thermostaker (Thermomixer comfort 5355, Eppendorf).

Desalting and sample preparation

Digestion was stopped by adjusting the pH to 2 - 3 via addition of 17.5 μl 10% (v/v) FA in water. Peptide solutions were desalted by stage tips with two-layered C18 material (SDC-XC, 3M) according to a published protocol. In brief, per replicate two layers of C18 material were packed into a 200 μl pipet tip and washed with 70 μl MeOH, 70 μl 80% (v/v) MeCN, 0.5% (v/v) FA and 3x 70 μl 0.5% (v/v) FA (centrifugation: 1000 g, 1-2', r.t.). Samples were loaded and centrifuged at 1000 g for 1-2' at r.t. Beads were washed with 70 μl 0.5% (v/v) FA and the washing solution was also loaded onto the C18 material. Samples were desalted by washing two times with 70 μl 0.5% (v/v) FA. Elution of peptides was conducted with 2x 30 μl 80% (v/v) MeCN, 0.5% (v/v) FA into fresh LoBind Eppendorf tubes followed by speedvac assisted solvent removal. Samples were stored at -80°C until further use. For LC-MS/MS measurement sample peptides were dissolved in 25 μl 1% (v/v) aqueous FA and sonicated 3x 5' with centrifugation for 1' at 17000 g in between. Dissolved peptides were filtered using 0.22 μm Ultrafree-MC® centrifugal filters (UFC30GVNB, Merck) pre-equilibrated with 300 μl 1% (v/v) FA. Filtrates were transferred to MS-vials prior to LC-MS/MS analysis.

Data acquisition on Orbitrap Fusion

Peptide samples from substrate enrichment experiments were analyzed with an UltiMate 3000 nano HPLC system (Dionex) using an Acclaim C18 PepMap100 (75 μm ID x 2 cm) trap and an Acclaim PepMap RSLC C18 (75 μm ID x 50 cm) separation column in EASY-spray setting coupled to an Orbitrap Fusion (Thermo Fisher Scientific Inc.). 1-5 μl peptide sample (see Supplementary table 1) were loaded on the trap and washed with 0.1% (v/v) TFA, then transferred to the analytical column (buffer A: H$_2$O with 0.1% (v/v) FA, buffer B: MeCN with 0.1% (v/v) FA, flow as indicated in the table below, gradient: to 5% buffer B in 7’, from 5% to 22% buffer B in 105’, then to 32% buffer B in 10’, to 90% buffer B in 10’ and hold at 90% buffer B for 10’, then to 5% buffer B in 0.1’ and hold 5% buffer B for 9.9’) and ionized by nanospray ionization (NSI) with capillary temperature of 275 °C. Spray voltage was applied as indicated in the table below. Orbitrap Fusion was operated in a TOP speed data dependent mode. Master scan acquisition was carried out in the orbitrap at a resolution of $R = 120,000$, an AGC target of 2.0e5 in a scan range of 300 - 1500 m/z and a maximum injection time of 50 ms. Monoisotopic Peak Determination was set to “Peptide” and dynamic exclusion was enabled with dynamic exclusion duration set to 60 s with a mass tolerance (low/high) of 10 ppm. Precursors with a charge state of 2 - 7 and intensities greater than 5.0e3 were submitted to fragmentation by higher collisional dissociation (HCD). Isolation of precursors was performed in the Quadrupole with an isolation window of 1.6 m/z. Detection was carried out in the ion trap to an AGC target of 1.0e4 with first
mass set to 120 m/z, Ion Trap Scan Rate set to “Rapid” and “Inject Ions for All Available Parallelizable Time” set to true. Maximum Ion Injection Time was set to 100 ms and peptide fragments were generated by HCD with a collision energy of 30%.

Data processing
MS-data were processed using Andromeda search engine of MaxQuant (MQ) Software (version 1.6.0.1). For identification of peptides, MS/MS spectra were searched against a Uniprot reference proteome (taxon identifier 9606, canonical version, without isoforms, downloaded 2017/07/18). MaxQuant settings were largely set on default with Label-free quantification (LFQ) enabled and Trypsin as digestion enzyme with a maximum of 2 missed cleavages and a minimum peptide length of 7 amino acids. Methionine oxidation and N-terminal acetylation were set as variable modifications with a maximum number of 5 modifications per peptide and carbamidomethylation of cysteines was used as fixed modification. Second peptide search was enabled as well as match between runs with a matching time window of 0.7' and an alignment time window of 20'. For identification false discovery rate on the PSM, protein and site level were set to 0.01.

Statistical MS-data analysis
MaxQuant data were further statistically processed with Perseus software (version 1.6.2.3). A ProteinGroups table was loaded into the program with LFQ intensities of all replicates as main column. Rows were filtered based on categorical columns omitting values that met the criterium of “reverse”, “potential contaminant” and “only identified by site”. After log2 transformation, matrices were further filtered based on valid values. Proteins with less than 50% of valid values in LFQ intensity compared to all replicates were excluded. Remaining missing values were inserted by imputation from a normal distribution (width: 0.3, down shift: 1.2 - 1.8). Categorical annotation of UV-irradiated (+UV) and non-treated (-UV) samples was performed before data were analyzed by two-sided student’s t-test with -UV as single control group with Benjamini-Hochberg false discovery rate correction (FDR 0.05). Additionally, GO-term annotations with GOBP, GOMF and GOCC, downloaded from Uniprot were added. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE[12] partner repository with the dataset identifier PXD027954.
Experiment for whole proteome analysis of HEK293T hClpP knockout mutant

For whole proteome analysis HEK293T wild type cells and HEK293T hClpP knockout cells (generously provided by Prof. Aleksandra Trifunovic, CECAD Cologne) were cultivated on 10 cm dishes to a confluency of 30-40%. Experiments were conducted in quadruplicates per state. Medium was removed, and cells were scratched after addition of 500 µl 1x PBS. Cells were centrifuged at 500 g, for 10’ at 4°C and the supernatant was discarded. 500 µl lysis buffer (50 mM Tris/HCl, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.1% sodium deoxycholate, pH = 7.5) was added and cells were incubated for 15’ on ice. Afterwards cell debris was separated by centrifugation at 21100 g for 15’ at 4°C. Protein concentration of cytosolic fractions was adjusted to 100 µg/µl by addition of lysis buffer and proteins were subsequently precipitated by addition of 400 µl acetone (-80°C) and incubation o.n. at -20°C. Protein pellets were centrifuged at 21100 g for 10’ at 4°C and the supernatant was discarded. Washing steps were performed with 1.) 500 µl and 2.) 200 µl methanol (-20°C) with centrifugation steps (21100 g, 10’, 4°C) in between.

Reduction, alkylation and digestion
Sample preparation was conducted according to a modified FASP (Filter aided sample preparation) protocol. For this, filter units (Millipore, Cat. MRCF0R030, NMWL: 30 kDa) were washed once with 500 µl 50 mM aqueous NaOH, centrifuged at 14000 g for 15’ and washed again with 500 µl UA buffer (8 M urea, 0.1 M Tris/HCl, pH = 8.5) with centrifugation at 14000 g for 15’.

Protein pellets were dissolved in 100 µl UA buffer and 1 µl DTT in water (stock solution: 100 mM, final concentration per sample: 1 mM) was added. Samples were incubated at 37°C for 1 h under continuous mixing in a thermostaker. 50 µl of the protein solution was added to the filter units and centrifuged at 14000 g for 15’. 200 µl UA buffer was added and filter units were centrifuged at 14,000 g for 15’.

For alkylation of free cysteines 100 µl iodoacetamide (0.05 M in UA buffer) was added to each filter unit and incubated for 20’ after short mixing for 1’ at 600 rpm. Filter units were centrifuged at 14000 g for 10’ and washed two times with 100 µl UA buffer each (14000 g, 15’). 100 µl ABC buffer (50 mM ammonium bicarbonate) was added and each filter unit was centrifuged at 14000 g for 10’. This step was repeated and afterwards 40 µl ABC buffer containing 2 µl Trypsin (5 ng/µl trypsin (in 50 mM acetic acid)) was added. Digestion was performed by incubation of the filter units in a wet chamber at 37°C for 16 h.

Digested peptides were eluted after transfer of the filter units to new collection tubes by centrifugation at 14000 g for 10’. 40 µl ABC buffer was added to each filter and centrifuged again at 14000 g for 10’.

Desalting and sample preparation
Digestion was quenched by addition of 0.5 µl formic acid and desalting was performed with Sep-Pak® C18 columns (50 mg sorbent per cartridge, 55 – 105 µm particle size, Waters, WAT054955). Columns were washed with 1 ml acetonitrile, 500 µl elution buffer (80% MeCN, 19.5% H₂O, 0.5% FA) and three times with 0.1% FA in H₂O. Samples were loaded onto the columns and washed with 1 ml 0.1% FA and 250 µl 0.5% FA in H₂O. Peptides were eluted by addition of three times 250 µl elution buffer. Samples were dried by speedvac solvent removal and stored at -80°C.

For analysis by LC-MS/MS peptide samples were dissolved in 25 µl 1% FA in H₂O and sonicated three times for 5’. Peptide solutions were filtered with 0.22 µm Ultrafree-MC® centrifugal filters (Merck, UFC30GVNB) after equilibration with 300 µl 1% FA.

Data acquisition on Orbitrap Fusion
Peptide samples from whole proteome experiments were analyzed with an UltiMate 3000 nano HPLC system (Dionex) using an Acclaim C18 PepMap100 (75 µm ID x 2 cm) trap and an Acclaim PepMap RSLC C18 (75 µm ID x 50 cm) separation column in EASY-spray setting coupled to an Orbitrap Fusion (Thermo Fisher Scientific Inc.). 3 µl peptide sample were loaded on the trap and washed with 0.1% (v/v) TFA, then transferred to the analytical column (buffer A: H₂O with 0.1% (v/v) FA, buffer B: MeCN with 0.1% (v/v) FA, 0.4 µl/min, gradient: to 5% buffer B in 7’, from 5% to 22% buffer B in 105’, then to 32% buffer B in 10’, to 90% buffer B in 10’ and hold at 90% buffer B for 10’, then to 5% buffer B in 1.1’ and hold 5% buffer B for 9.9’) and ionized by nanospray ionization (NSI) with capillary temperature of 275 °C. Spray voltage was applied as indicated in the table below. Orbitrap Fusion was
operated in a TOP speed data dependent mode. Master scan acquisition was carried out in the orbitrap at a resolution of $R = 120,000$, an AGC target of $2.0e5$ in a scan range of $300 - 1500 \text{ m/z}$ and a maximum injection time of 50 ms. Monoisotopic Peak Determination was set to "Peptide" and dynamic exclusion was enabled with dynamic exclusion duration set to 60 s with a mass tolerance (low/high) of 10 ppm. Precursors with a charge state of $2 - 7$ and intensities greater than $5.0e3$ were submitted to fragmentation by higher collisional dissociation (HCD). Isolation of precursors was performed in the Quadrupole with an isolation window of 1.6 m/z. Detection was carried out in the ion trap to an AGC target of $1.0e4$ with first mass set to 120 m/z, Ion Trap Scan Rate set to "Rapid" and "Inject Ions for All Available Parallelizable Time" set to true. Maximum Ion Injection Time was set to 100 ms and peptide fragments were generated by HCD with a collision energy of 30%.

Data processing
MS-data were processed using Andromeda search engine of MaxQuant (MQ) Software (version 1.6.17.0). For identification of peptides, MS/MS spectra were searched against a Uniprot reference proteome (taxon identifier 9606, canonical version, without isoforms, downloaded 2017/07/18). MaxQuant settings were largely set on default with Label-free quantification (LFQ) enabled and Trypsin as digestion enzyme with a maximum of 2 missed cleavages and a minimum peptide length of 7 amino acids. Methionine oxidation and N-terminal acetylation were set as variable modifications with a maximum number of 5 modifications per peptide and carbamidomethylation of cysteines was used as fixed modification. Second peptide search was enabled as well as match between runs with a matching time window of 0.7' and an alignment time window of 20'. For identification false discovery rate on the PSM, protein and site level were set to 0.01.

Statistical MS-data analysis
MaxQuant data were further statistically processed with Perseus software (version 1.6.2.3). A ProteinGroups table was loaded into the program with LFQ intensities of all replicates as main column. Rows were filtered based on categorical columns omitting values that met the criterium of "reverse", "potential contaminant" and "only identified by site". After log2 transformation, matrices were further filtered based on valid values. Proteins with less than 50% of valid values in LFQ intensity compared to all replicates were excluded. Remaining missing values were inserted by imputation from a normal distribution (width: 0.3, down shift: 1.5). Categorical annotation of Hek293T hClpP knockout (KO) and Hek293T wild type (WT) samples was performed before data were analyzed by two-sided student’s t-test with WT as single control group with Benjamini-Hochberg false discovery rate correction (FDR 0.05). Additionally, GO-term annotations with GOCC, downloaded from Uniprot were added.
SUPPORTING INFORMATION

References

[1] S. G. Kang, M. R. Maurizi, M. Thompson, T. Mueer, B. Ahvazi, J. Struct Biol 2004, 148, 338-352.

[2] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, C. V. Mering, Nucleic Acids Res 2019, 47, D607-D613.

[3] S. Jacques, A. M. van der Sloot, C. H. C, J. Coolsome-Huntington, S. Tsao, S. Tollis, T. Bertomeu, E. J. Culp, D. Pallant, M. A. Cook, E. Bonneil, P. Thibault, G. D. Wright, M. Tyers, Genetics 2020, 214, 1103-1120.

[4] a) J. Ishizawa, S. F. Zarabi, R. E. Davis, O. Halgas, T. Nii, Y. Jitkova, R. Zhao, J. St-Germain, L. E. Heese, G. Egan, V. R. Ruvolo, S. H. Barghout, Y. Nishida, R. Hurren, W. A, M. Gronda, T. Link, K. Wong, M. Mabanglo, K. Kojima, G. Borthakur, R. Hurren, W. Houry, A. B. Leber, M. D. Minden, W. Houry, H. Kantarjian, M. Stagni, A. Mattison, E. C. R. Spier, E. F. Pai, A. D. Schimmer, M. Andreeff, Cancer Cell 2019, 35, 721-737 e729; b) F. Fischer, J. D. Langer, H. D. Osiewacz, Sci Rep 2015, 5, 18375; c) K. Szczepanowska, P. Nelson, A. Kukat, E. Hofsetz, H. Nolde, K. Senft, C. Becker, B. Ruzzenente, H. T. Hornig-Do, R. Wilbom, R. J. Wiesner, M. Kruger, A. Trifunovic, EMBO J 2016, 35, 2566-2583; d) A. Cole, Z. Wang, E. Cova, V. Voisin, M. Gronda, Y. Jitkova, R. Mattson, R. Hurren, S. Babovic, N. Maclean, I. Restall, X. Wang, D. H. E. Jeyaraju, M. A. Sukhai, S. Prabha, S. Bhardwaj, A. Ramakrishnan, E. Leung, Y. L. Ong, N. Zhang, K. R. Combes, T. Ketola, F. Lin, W. A. Houry, A. Aman, R. Al-Awar, W. Zheng, W. Houry, A. C. R. Spier, E. Hofsetz, H. Nolte, K. Senft, C. Becker, B. Ruzzenente, H. T. Hornig-Do, R. Wilbom, R. J. Wiesner, M. Kruger, A. Trifunovic, EMBO J 2016, 35, 2566-2583; e) E. Hofsetz, F. Demir, K. Szczepanowska, A. Kukat, J. N. Kozakhedathau, A. Trifunovic, P. F. Huesgen, Mol Cell Proteomics 2020, 19, 1330-1345.

[5] C. Chou, R. Uprety, L. Davis, J. W. Chin, A. Deiters, Chemical Science 2011, 2, 480-483.

[6] J. Chiu, P. E. March, R. Lee, D. Tillett, Nucleic Acids Res 2004, 32, e174.

[7] W. H. Schmied, S. J. Ellsasser, C. Ullamapinlan, J. W. Chin, J Am Chem Soc 2014, 136, 15577-15583.

[8] S. G. Kang, J. Ortega, S. K. Singh, N. Wang, N. N. Huang, A. C. Steven, M. R. Maurizi, J Biol Chem 2002, 277, 21095-21102.

[9] S. R. Geiger, T. Bottcher, S. A. Sieber, P. Cramer, Angew Chem Int Ed Engl 2011, 50, 5749-5752.

[10] M. Cigler, T. G. Muller, D. Horn-Ghetko, M. K. von Wrisberg, M. Fottner, R. S. Goody, A. Trifunovic, Nat Methods 2012, 9, 676-682.

[11] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat Methods 2012, 9, 676-682.

[12] Y. Perez-Riverol, A. Csordas, J. Bai, M. Bernal-Llinares, S. Hewapathirana, D. J. Kondor, R. N. H. H. E. Jeyaraju, M. A. Sukhai, S. Prabha, S. Bhardwaj, A. Ramakrishnan, E. Leung, Y. H. Qia, N. Zhang, K. R. Combes, T. Ketola, F. Lin, W. A. Houry, A. Aman, R. Al-Awar, W. Zheng, E. Hofsetz, H. Nolte, K. Senft, C. Becker, B. Ruzzenente, H. T. Hornig-Do, R. Wilbom, R. J. Wiesner, M. Kruger, A. Trifunovic, EMBO J 2016, 35, 2566-2583; e) E. Hofsetz, F. Demir, K. Szczepanowska, A. Kukat, J. N. Kozakhedathau, A. Trifunovic, P. F. Huesgen, Mol Cell Proteomics 2020, 19, 1330-1345.

[13] J. R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Nat Methods 2009, 6, 359-362.