Generalized Descents and Normality

Miklós Bóna
Department of Mathematics
University of Florida
Gainesville FL 32611-8105

today

Abstract

We use Janson’s dependency criterion to prove that the distribution of \(d \)-descents of permutations of length \(n \) converge to a normal distribution as \(n \) goes to infinity. We show that this remains true even if \(d \) is allowed to grow with \(n \), up to a certain degree.

1 Introduction

Let \(p = p_1 p_2 \cdots p_n \) be a permutation. We say that the pair \((i, j)\) is a \(d \)-descent in \(p \) if \(i < j \leq i + d \), and \(p_i > p_j \). In particular, 1-descents correspond to descents in the traditional sense, and \((n - 1)\)-descents correspond to inversions. This concept was introduced in [2] by De Mari and Shayman, whose motivation came from algebraic geometry. They have proved that if \(n \) and \(d \) are fixed, and \(c_k \) denotes the number of permutations of length \(n \) with exactly \(k \) \(d \)-descents, then the sequence \(c_0, c_1, \cdots \) is unimodal, that is, it increases steadily, then it decreases steadily. It is not known in general if the sequence \(c_0, c_1, \cdots \) is log-concave or not, that is, whether \(c_k - 1 \leq c_k \) holds for all \(k \). We point out that in general, the polynomial \(\sum_k c_k x^k \) does not have real roots only. Indeed, in the special case of \(d = n - 1 \), we get the well-known [1] identity

\[
\sum_k c_k x^k = (1 + x) \cdot (1 + x + x^2) \cdots \cdot (1 + x + \cdots + x^{n-1}),
\]

which has all \(n \)th roots of unity as roots. Indeed, in this case, a \(d \)-descent is just an inversion, as we said above.
In this paper, we prove a related property of generalized descents by showing that their distribution converges to a normal distribution as the length \(n \) of our permutations goes to infinity. Our main tool is Janson’s dependency criterion, which is a tool to prove normality for sums of bounded random variables with a sparse dependency graph.

2 The Proof of Asymptotic Normality

2.1 Background and Definitions

We need to introduce some notation for transforms of the random variable \(Z \). Let \(Z = Z - E(Z) \), let \(Z = Z / \sqrt{\text{Var}(Z)} \), and let \(Z_n \to N(0, 1) \) mean that \(Z_n \) converges in distribution to the standard normal variable.

For the rest of this paper, let \(d \geq 1 \) be a fixed positive integer. Let \(X_n = X_n^{(d)} \) denote the random variable counting the \(d \)-descents of a randomly selected permutation of length \(n \). We want to prove that \(X_n \) converges to a normal distribution as \(n \) goes to infinity, in other words, that \(\tilde{X}_n \to N(0, 1) \) as \(n \to \infty \). Our main tool in doing so is a theorem called Janson’s dependency criterion. In order to state that theorem, we need the following definition.

Definition 1 Let \(\{Y_{n,k} \mid k = 1, 2, \cdots \} \) be an array of random variables. We say that a graph \(G \) is a dependency graph for \(\{Y_{n,k} \mid k = 1, 2, \cdots \} \) if the following two conditions are satisfied:

1. There exists a bijection between the random variables \(Y_{n,k} \) and the vertices of \(G \), and

2. If \(V_1 \) and \(V_2 \) are two disjoint sets of vertices of \(G \) so that no edge of \(G \) has one endpoint in \(V_1 \) and another one in \(V_2 \), then the corresponding sets of random variables are independent.

Note that the dependency graph of a family of variables is not unique. Indeed if \(G \) is a dependency graph for a family and \(G \) is not a complete graph, then we can get other dependency graphs for the family by simply adding new edges to \(G \).

Now we are in position to state Janson’s dependency criterion.

Theorem 1 [5] Let \(Y_{n,k} \) be an array of random variables such that for all \(n \), and for all \(k = 1, 2, \cdots, N_n \), the inequality \(|Y_{n,k}| \leq A_n \) holds for some
real number A_n, and that the maximum degree of a dependency graph of
\{Y_{n,k}|k = 1,2,\cdots,N_n\} is Δ_n.

Set $Y_n = \sum_{k=1}^{N_n}Y_{n,k}$ and $\sigma_n^2 = \text{Var}(Y_n)$. If there is a natural number m so that
\[N_n\Delta_n^{m-1}\left(\frac{A_n}{\sigma_n}\right)^m \to 0,\]
then
\[\hat{Y}_n \to N(0,1).\]

2.2 Applying Janson’s Criterion

We will apply Janson’s theorem with the $Y_{n,k}$ being the indicator random
variables $X_{n,k}$ of the event that a given ordered pair of indices (indexed
by k in some way) form a d-descent in the randomly selected permutation
$p = p_1p_2\cdots p_n$. So N_n is the number of pairs (i,j) of indices so that $1 \leq i < j \leq i + d \leq n$. Then by definition,
\[Y_n = \sum_{k=1}^{N_n}Y_{n,k} = \sum_{k=1}^{N_n}X_{n,k} = X_n.\]

There remains the task of verifying that the variables $Y_{n,k}$ satisfy all
conditions of Jansen’s theorem.

First, it is clear that $N_n \leq nd$, and we will compute the exact value of N_n
later. By the definition of indicator random variables, we have $|Y_{n,k}| \leq 1$,
so we can set $A_n = 1$ for all n

Next we consider the numbers Δ_n in the following dependency graph of
the family of the $Y_{n,k}$. Clearly, the indicator random variables that belong
to two pairs (i,j) and (r,s) of indices are independent if and only if the sets
\{i,j\} and \{r,s\} are disjoint. So fixing (i,j), we need one of $i = r$, $i = s$,
$j = r$ or $j = s$ to be true for the two distinct variables to be dependent. So
let the vertices of G be the N_n pairs of indices (i,j) so that $i < j \leq i + d$,
and connect (i,j) to (r,s) if one of $i = r$, $i = s$, $j = r$ or $j = s$ holds. The
graph defined in this way is clearly a dependency graph for the family of the
$Y_{n,k}$. For a fixed pair (i,j), each of these four equalities occurs at most d
times. (For instance, if $i = s$, then r has to be one of $i - 1, i - 2, \cdots , i - d$.)
Therefore, $\Delta_n \leq 4d$.

If we take a new look at (1), we see that the Janson criterion will be
satisfied if we can show that σ_n is large. This is the content of the next
lemma.
Lemma 1 If $n \geq 2d$, then
\[
\text{Var}(X_n) = \frac{6dn + 10d^3 - 3d^2 - d}{72}.
\]
(2)

In particular, Var(X_n) is a linear function of n.

Note that in particular, for $d = 1$, we get the well-known fact [1] that the variance of Eulerian numbers in permutations of length n is $(n + 1)/12$.

Proof: By linearity of expectation, we have
\[
\text{Var}(X_n) = E(X_n^2) - (E(X_n))^2
\]
(3)
\[
= E\left(\left(\sum_{k=1}^{N_n} X_{n,k}\right)^2\right) - \left(\sum_{k=1}^{N_n} E(X_{n,k})\right)^2
\]
(4)
\[
= E\left(\left(\sum_{k=1}^{N_n} X_{n,k}\right)^2\right) - \sum_{k=1}^{N_n} E(X_{n,k})^2
\]
(5)
\[
= \sum_{k_1,k_2} E(X_{n,k_1}X_{n,k_2}) - \sum_{k_1,k_2} E(X_{n,k_1})E(X_{n,k_2})
\]
(6)

Clearly, $E(X_{n,k}) = 1/2$, so the N_n^2 summands that appear in the last line of the above chain of equations with a negative sign are each equal to $1/4$. As far as the N_n^2 summands that appear with a positive sign, most of them are equal to $1/4$. More precisely, if X_{n,k_1} and X_{n,k_2} are independent, then
\[
E(X_{n,k_1}X_{n,k_2}) = E(X_{n,k_1})E(X_{n,k_2}) = \frac{1}{4}.
\]

If $k_1 = k_2$, then $E(X_{n,k_1}X_{n,k_2}) = E(X_{n,k_1}^2) = E(X_{n,k_1}) = 1/2$. Otherwise, if X_{n,k_1} and X_{n,k_2} are dependent, then either $E(X_{n,k_1}X_{n,k_2}) = 1/3$, or $E(X_{n,k_1}X_{n,k_2}) = 1/6$. Indeed, if X_{k_1} is the indicator variable of the pair (i,j) being a d-descent and X_{k_2} is the indicator variable of the pair (r,s) being a d-descent, then as we said above, X_{n,k_1} and X_{n,k_2} are dependent if and only if one of $i = r$, $i = s$, $j = r$ or $j = s$ holds. If $i = r$ or $j = s$ holds, then $E(X_{n,k_1}X_{n,k_2}) = 1/3$, and if $i = s$ or $j = r$ holds, then $E(X_{n,k_1}X_{n,k_2}) = 1/6$. Indeed, for instance, with $i = r$, we have $X_{n,k_1} = X_{n,k_2} = 1$ if and only if p_i is the largest of the entries p_i, p_j, and p_s. Similarly, with $i = s$, we have $X_{n,k_1} = X_{n,k_2} = 1$ if and only if $p_r > p_i > p_j$.

We will now count how many summands $E(X_{n,k_1}X_{n,k_2})$ are equal to $1/2$, to $1/3$, and to $1/6$.

4
1. First, $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/2$ if and only if $k_1 = k_2$. This happens N_n times, once for each pair (i, j) so that $i < j \leq i + d$. For a given i, there are d such pairs if $i \leq n - d$, and $d - t$ such pairs if $i = n - d + t$, so

$$N_n = (n-d)d + (d-1) + (d-2) + \cdots + 1 = (n-d)d + \binom{d}{2}.$$

2. Second, $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/3$ if $i = r$, or $j = s$. By symmetry, we can consider the first case, then multiply by two. If $i \leq n - d$, then we have $d(d-1)$ choices for j and s, and if $i = n - d + t$, then we have $(d-t)(d-t-1)$ choices. So the number of pairs (k_1, k_2) so that $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/3$ is

$$2(n-d)d(d-1) + 2(d-1)(d-2) + 2(d-2)(d-3) + \cdots + 2 \cdot 2 \cdot 1 = 2(n-d)d(d-1) + 4 \binom{d}{3}. $$

3. Finally, $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/6$ if $i = s$, or $j = r$. By symmetry, we can again consider the first case, then multiply by two. If $d \leq i \leq n - d$, then there are d^2 choices for (j, r). If $i \leq d$, then there are d choices for j, and $i-1$ choices for r. If $n - d < i$, then there are $n - i$ choices for j, and d choices for r, assuming that $n \geq 2d$. So the number of pairs (k_1, k_2) so that $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/6$ is

$$2(n-2d)d^2 + 2(d-1)d + 2(d-2)d + \cdots + 2d = 2(n-2d)d^2 + d^2(d-1).$$

For all remaining pairs (k_1, k_2), the variables X_{n,k_1} and X_{n,k_2} are independent, and so $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/4$.

Comparing our results from cases 1-3 above with (3), and recalling that in all other cases, $\mathbb{E}(X_{n,k_1}X_{n,k_2}) = 1/4$, we obtain the formula that was to be proved. ☐

The proof of our main theorem is now immediate.

Theorem 2 Let d be a fixed positive integer. Let X_n be the random variable counting d-descents of a randomly selected n-permutation. Then $\tilde{X}_n \to N(0,1)$.
Proof: Use Theorem 1 with \(Y_n = X_n, \Delta_n = 4d, N_n = (n - d)d + \binom{d}{2}, \) and \(\sigma_n = \sqrt{\frac{6dn + 10d^3 - 3d^2 - d}{12}}.\) All we need to show is that there exists a positive integer \(m\) so that

\[
\left((n - d)d + \binom{d}{2} \right) \cdot (4d)^{m-1} \cdot \left(\frac{72}{6dn + 10d^3 - 3d^2 - d} \right)^{m/2} \to 0,
\]

for which it suffices to find a positive integer \(m\) so that

\[
(dn) \cdot (4d)^{m-1} \cdot \left(\frac{12}{dn} \right)^{m/2} \to 0. \tag{7}
\]

Clearly, any \(m \geq 3\) suffices, since for any such \(m\), the left-hand side is of the form \(C/n^\alpha\), for positive constants \(C\) and \(\alpha\). \(\Box\)

3 Further Directions

We see from (7) that the statement of Theorem 2 can be strengthened, from a constant \(d\) to a \(d\) that is a function of \(n\). Indeed, (7) is equivalent to saying that

\[
\left(\frac{d}{n} \right) \cdot (4d)^{m-1} \cdot \left(\frac{1}{n} \right)^{m/2} \to 0.
\]

This convergence holds as long as \(d \leq n^{1-\epsilon}\) for some fixed positive \(\epsilon\), we can choose \(m\) so that \((m/2) \cdot \epsilon > 1\), and then condition (7) will be satisfied. So we have proved the following theorem.

Theorem 3 Let \(n \to \infty\), and let us assume that there exists a positive constant \(\epsilon\) so that for \(n\) sufficiently large, \(d = d(n) \leq n^{1-\epsilon}\). Let \(X_n\) be defined as before. Then

\[
\tilde{X}_n \to N(0, 1).
\]

This leaves the cases of larger \(d\) open. We point out that in the special case of \(d = n - 1\), that is, inversions, asymptotic normality is known [3], [4].

Another possible direction for generalizations is the following. Let \(d = (d_1, d_2, \ldots, d_{n-1})\), where the \(d_i\) are positive integers. If \(p = p_1 \ldots p_n\) is in an \(n\)-permutation, let \(f_d(p)\) be the number of pairs \((i, j)\) such that \(0 < j - i \leq d_i\) and \(p_i > p_j\). For instance, if \(d = (1, 1, \ldots, 1)\) then \(f_d(p)\) is the number of
descents of p. If $d = (n-1, n-2, \ldots, 1)$ then $f_d(p)$ is the number of inversions of p. It is known [2], by an argument from algebraic geometry, that if

$$c_k = |\{p \in S_n : f_d(p) = k\}|,$$

then the sequence c_0, c_1, \cdots is unimodal. Log-concavity and normality are not known. Note that in this paper, we have treated the special case of $d = (d, d, \cdots, d)$.

Acknowledgment

I am thankful to Richard Stanley who introduced me to the topic of generalized descents.

References

[1] M. Bóna, Combinatorics of Permutations, CRC Press - Chapman Hall, 2004.

[2] F. De Mari, M. A. Shayman, Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix. Acta Appl. Math. 12 (1988), no. 3, 213–235.

[3] P. Diaconis, Group Representations in Probability and Statistics, Institute of Mathematical Statistics Lecture Notes, 11, 1988.

[4] J. Fulman, Stein’s Method and Non-reversible Markov Chains. Stein’s method: expository lectures and applications, 69–77, IMS Lecture Notes Monogr. Ser., 46, Inst. Math. Statist., Beachwood, OH, 2004.

[5] Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs. Ann. Prob. 16 (1988), no. 1, 305-312.