SRD: a \textit{Staphylococcus} regulatory RNA database

MOHAMED SASSI,1,3 YOANN AUGAGNEUR,1,3 TONY MAURO,1 LORRAINE IVAIN,1 SVETLANA CHABELSKAYA,1 MARC HALLIER,1 OLIVIER SALLOU,2 and BRICE FELDEN1

1Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
2Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes University, 35043 Rennes, France

ABSTRACT

An overflow of regulatory RNAs (sRNAs) was identified in a wide range of bacteria. We designed and implemented a new resource for the hundreds of sRNAs identified in Staphylococci, with primary focus on the human pathogen \textit{Staphylococcus aureus}. The “Staphylococcal Regulatory RNA Database” (SRD, http://srd.genouest.org/) compiled all published data in a single interface including genetic locations, sequences and other features. SRD proposes novel and simplified identifiers for Staphylococcal regulatory RNAs (srn) based on the sRNA’s genetic location in \textit{S. aureus} strain N315 which served as a reference. From a set of 894 sequences and after an in-depth cleaning, SRD provides a list of 575 srn exempt of redundant sequences. For each sRNA, their experimental support(s) is provided, allowing the user to individually assess their validity and significance. RNA-seq analysis performed on strains N315, NCTC8325, and Newman allowed us to provide further details, upgrade the initial annotation, and identified 159 RNA-seq independent transcribed sRNAs. The lists of 575 and 159 sRNAs sequences were used to predict the number and location of srns in 18 \textit{S. aureus} strains and 10 other Staphylococci. A comparison of the srn contents within 32 Staphylococcal genomes revealed a poor conservation between species. In addition, sRNA structure predictions obtained with MFold are accessible. A BLAST server and the intaRNA program, which is dedicated to target prediction, were implemented. SRD is the first sRNA database centered on a genus; it is a user-friendly and scalable device with the possibility to submit new sequences that should spread in the literature.

Keywords: small regulatory RNAs; bacteria; \textit{Staphylococcus aureus}; database; RNA-seq; sRNA identification; sRNA targets

INTRODUCTION

In the recent years, a plethora of regulatory RNAs (sRNAs) were identified in diverse bacterial genomes, including several human pathogens. sRNAs enable bacteria to induce efficient and prompt physiological feedbacks to adjust on their environments, and also to establish infection (Caldelari et al. 2013). Mechanistically, sRNAs intervene on transcription, mRNA turnover, and/or translation of target genes. sRNAs proceed in gene expression regulations, from transcription initiation to translation control and protein activity (Storz et al. 2011). The majority of sRNAs characterized up to now act by pairings with target mRNAs, either encoded on the opposite strand (cis-encoded) or transcribed apart from their targets (trans-encoded). Some have been shown to encode small peptides. While most of the bacterial sRNAs were originally studied in \textit{E. coli} and other Gram-negative bacteria (Mizuno et al. 1984), a recent outburst of srRNAs was identified in Gram-positive bacteria (Brantl and Brückner 2014), including the major human pathogen \textit{Staphylococcus aureus} (Fechter et al. 2014).

\textit{Staphylococcus aureus} is an opportunistic pathogen that has sophisticated regulatory tracks to rapidly and efficiently adapt its growth in response to its disparate habitats and hosts. Several groups have shown experimentally that \textit{S. aureus} express many sRNAs, delivered from the core genome, mobile and accessory elements (Guilet et al. 2013; Tomasini et al. 2014). They include several predicted riboswitches (cis-acting regulatory mRNA leader sequences), many cis-encoded antisense RNAs, several trans-encoded sRNAs (Romilly et al. 2012) with some containing small open reading frames that were shown to be expressed (Sayed et al. 2012; Pinel-Marie et al. 2014). However, and for the most part, their functions and mechanisms are unexplored yet. For the few sRNAs with associated functions, some detect bacterial density, modify cell surface properties for host immune escape, adjust central metabolism for optimal growth, regulate the expression of virulence factors, influence antibiotic resistance (Lalaouna...
et al. 2014), trigger cell death, and encodes toxins (Felden et al. 2011; Guillet et al. 2013).

The systematic and recent use of high-throughput RNA-sequencing technologies substantially raised the number of sRNAs sequences identified per bacterial species. To cope with that plethora of sRNAs, several databases have emerged from generalists to more specialize. Generalist databases such as rRNAdb (Kin et al. 2007) or NONCODE (Xie et al. 2014) focus exclusively on eukaryotes, while RFam 11.0 (Burge et al. 2013) partitions RNAs data into families for both the eukaryotes and prokaryotes. RNAdb was originally designed for mammalian noncoding RNAs but was officially retired in June 2012 (Pang et al. 2007). On the other hand, there are databases specifically devoted to the bacterial kingdom. sRNAMap is a repository for the microbial genomes sequences identified per bacterial species. To cope with that plethora of sRNAs, several databases have emerged from generalists to more specialize. Generalist databases such as rRNAdb (Kin et al. 2007) or NONCODE (Xie et al. 2014) focus exclusively on eukaryotes, while RFam 11.0 (Burge et al. 2013) partitions RNAs data into families for both the eukaryotes and prokaryotes. RNAdb was originally designed for mammalian noncoding RNAs but was officially retired in June 2012 (Pang et al. 2007). On the other hand, there are databases specifically devoted to the bacterial kingdom. sRNAMap is a repository for the microbial genomes sequences identified per bacterial species. To cope with that plethora of sRNAs, several databases have emerged from generalists to more specialize. Generalist databases such as rRNAdb (Kin et al. 2007) or NONCODE (Xie et al. 2014) focus exclusively on eukaryotes, while RFam 11.0 (Burge et al. 2013) partitions RNAs data into families for both the eukaryotes and prokaryotes. RNAdb was originally designed for mammalian noncoding RNAs but was officially retired in June 2012 (Pang et al. 2007). On the other hand, there are databases specifically devoted to the bacterial kingdom. sRNAMap is a repository for the microbial genomes sequences identified per bacterial species. To cope with that plethora of sRNAs, several databases have emerged from generalists to more specialize. Generalist databases such as rRNAdb (Kin et al. 2007) or NONCODE (Xie et al. 2014) focus exclusively on eukaryotes, while RFam 11.0 (Burge et al. 2013) partitions RNAs data into families for both the eukaryotes and prokaryotes. RNAdb was originally designed for mammalian noncoding RNAs but was officially retired in June 2012 (Pang et al. 2007). On the other hand, there are databases specifically devoted to the bacterial kingdom. sRNAMap is a repository for the microbial genomes sequences identified per bacterial species. To cope with that plethora of sRNAs, several databases have emerged from generalists to more specialize. Generalist databases such as rRNAdb (Kin et al. 2007) or NONCODE (Xie et al. 2014) focus exclusively on eukaryotes, while RFam 11.0 (Burge et al. 2013) partitions RNAs data into families for both the eukaryotes and prokaryotes. RNAdb was originally designed for mammalian noncoding RNAs but was officially retired in June 2012 (Pang et al. 2007). On the other hand, there are databases specifically devoted to the bacterial kingdom. sRNAMap is a repository for the microbial genomes sequences identified per bacterial species. To cope with that plethora of sRNAs, several databases have emerged from generalists to more specialize. Generalist databases such as rRNAdb (Kin et al. 2007) or NONCODE (Xie et al. 2014) focus exclusively on eukaryotes, while RFam 11.0 (Burge et al. 2013) partitions RNAs data into families for both the eukaryotes and prokaryotes. RNAdb was originally designed for mammalian noncoding RNAs but was officially retired in June 2012 (Pang et al. 2007). On the other hand, there are databases specifically devoted to the bacterial kingdom. sRNAMap is a repository for the microbial genomes sequences identified per bacterial species. To cop...
communications as a single sRNA sequence can harbor multiple IDs. To cope with that, we assigned novel and simple identifier that clarifies the actual repertoire of *S. aureus* sRNAs. The genome of N315 (Kuroda et al. 2001) was used as a reference as many sRNA sequences were identified in this strain, with some experimentally validated (Pichon and Felden 2005; Beaume et al. 2010; Chabelskaya et al. 2010).

Each srna gene was assigned with a srn (staphylococcus ribonucleotide) gene identifier. The srn gene identifiers were numbered based on their genetic location onto the genome of *S. aureus* N315 strain and starting from the origin of replication and therefore do not reflect their transcriptional level. srn numbers were assigned by increments of 10 to anticipate the identification of new sRNAs in the upcoming future which would be also numbered based on their genomic locations. When a srn gene is present in other strains it keeps the srn number assigned onto the N315 genome. When a srn identified in N315 is present in multiple copies in N315 or in another strain, the number of copies is provided (srn_1930.1, srn_1930.2, and srn 1930.3), unless experimental evidence indicated that they should be considered as distinct sRNAs (Supplemental Data S3, S4). srn identified in other strains and absent in N315 strain will be assigned with numbers starting from srn_9000 (srn_9480 formerly known as sRNA334). There were only four sRNAs (4.5 S, 6S, tmRNA, and RNase P RNA) for which a srn identifier was not generated, based on their extensive nomenclature, sequence, and functional conservation beyond Staphylococcal genomes (Supplemental Data S5). Therefore, regulatory RNAs such as riboswitches, RNAIII, or RsaE that are pioneered and/or conserved within the genus were also assigned with a srn identifier similar to what was done with the JKD6008 strain (Howden et al. 2013). However, a column entitled “most common name” is present on the website to avoid confusion when dealing with already well-described sRNAs. Additional information, including all other previously published names is provided with the list of srn on the SRD website.

Description of sRNAs in SRD

Among the 575 genomic sequences described in SRD, there are only 60 transcripts identified by multiple experimental approaches (including Northern Blot, 5' and 3' RACE, RT-qPCR, or RNA-seq) and a few for which their functions were characterized (Supplemental Data S3 and SRD website). Among these 60 sRNAs, 49 were described as transcripts whereas 11 were annotated as antisense sRNAs. The majority of the 575 sRNAs were identified or validated by Next-Generation RNA Sequencing (Beaume et al. 2010; Bohn et al. 2010; Lasa et al. 2011; Lioliou et al. 2012; Howden et al. 2013). Although powerful, RNA-seq, as any global approach, can lead to a substantial amount of false positive transcripts due to genomic DNA contaminations, reads mapping onto repeated sequences or/and the inaccurate detection of
transcripts by bioinformatics. Some of the sRNAs previously identified by RNA-seq were of short lengths (<50 nt), mostly detected as cis-encoded antisense RNAs, including a wide antisense transcription that is not understood yet (Lasa et al. 2011). Also, some of the previously published sRNAs were already suspected as potential 5′ UTRs or 3′ UTRs (Beaume et al. 2010; Howden et al. 2013). Therefore, we searched for the presence of srn transcripts in strains N315 and Newman (data submitted to GEO with the accession number GSE64026), cultivated until the exponential phase of growth in a rich medium (BHI), and for strain NCTC8325 cultivated under 16 different growth conditions (growth phase, temperature, O2 limitations, etc.; data kindly provided by Drs. P. Boulouc and T. Rochat). Those three strains are representative as their genomes were completed and annotated (Kuroda et al. 2001; Gillaspy et al. 2006; Baba et al. 2008). Based on our initial compilation and curation, N315, Newman, and NCTC8325 are predicted to contain 518, 508, and 501 independent srn genes, respectively. Altogether, they represent a pool of 535 srn genes. RNA-seq reads were mapped at unique locations onto their respective genomes, counted using HTSeq (Anders et al. 2014) and the presence of transcripts analyzed using Artemis (Carver et al. 2012). Based on the results from HTSeq (Supplemental Data S4), an FPKM normalization (Fragment per kilobase per millions of fragments mapped) and from the visualization of reads onto the annotated genomes (Fig. 2), the srn were either described as transcripts (Fig. 2A), cis-antisense RNAs (Fig. 2B), 5′ UTR (Fig. 2C), 3′ UTR (Fig. 2D), CDS (Fig. 2E, coordinates inside an annotated gene) or not detected (Fig. 2F, ND) in the HTSeq column of the SRD website. A srn was considered as a transcript or cis-antisense (reads mapping onto the opposite strand of a CDS) when the HTSeq count was equal or >15 (Howden et al. 2013), the FPKM normalization >2, the mapping quality (MAPQ score in a SAM file) >30 (probability of a correct match equal to 0.999), and when the

Staphylococcus strains	GenBank accession number	Genome length	Number of srn genes (a/b)
Reference strains			
S. aureus subsp. aureus str. N315	BA000018.3	2,814,816	153/519
S. aureus subsp. aureus str. Newman	AP009351.1	2,878,897	156/508
S. aureus subsp. aureus str. NCTC8325	CP000253.1	2,821,361	155/501
S. aureus subsp. aureus str. NCTC8325	CP0002120.1	2,924,344	155/571
srn genes predictions in Staphylococcus aureus			
S. aureus 502A	CP007454.1	2,764,699	151/485
S. aureus subsp. aureus str. COL	CP000046.1	2,809,422	147/490
S. aureus M1	HF937103.1	2,864,125	149/499
S. aureus subsp. aureus str. M013	CP003116.1	2,788,636	138/461
S. aureus subsp. aureus str. MRSA252	BX571456.1	2,902,619	143/468
S. aureus subsp. aureus str. MSHR1132	FR821777.2	2,762,785	112/281
S. aureus subsp. aureus str. Mu50	BA000017.4	2,878,529	153/485
S. aureus subsp. aureus str. MW2	BA000033.2	2,820,462	147/485
S. aureus NRS 100	CP007539.1	2,823,087	147/490
S. aureus subsp. aureus str. USA300 FPR3757	CP000255.1	2,872,769	151/498
S. aureus XN108	CP007447.1	3,052,055	156/499
S. aureus subsp. aureus str. ST398	AM990992.1	2,872,582	140/448
S. aureus subsp. aureus str. JH1	CP000736.1	2,906,507	156/498
S. aureus subsp. aureus str. JH9	CP000703.1	2,906,700	156/498
S. aureus subsp. aureus str. RSSA476	BX571457.1	2,799,802	147/481
S. aureus subsp. aureus Mu3	AP009324.1	2,880,168	153/498
S. aureus subsp. aureus str. USA300_TCH1516	CP000730.1	2,872,915	152/499
S. aureus RF122	AJ93818.2	2,742,531	138/445
srn genes predictions in other Staphylococcus			
S. carnosus subsp. carnosus TM300	AM292500.1	2,566,424	9/22
S. epidermidis ATCC 12228	AE015929.1	2,499,279	19/53
S. epidermidis RP62A	CP000029	2,616,530	21/65
S. haemolyticus ICSC1435	AP006716.1	2,685,015	19/56
S. lugdunensis HKU09-01	CP001837.1	2,658,366	17/48
Staphylococcus pasteuri SP1	CP004014.1	2,559,946	26/55
Staphylococcus pseudintermedius ED99			
S. saprophyticus subsp. saprophyticus ATCC 15305	AP008934.1	2,516,575	15/41
S. warneri SG1	CP003668.1	2,486,042	25/54
S. xylosus HKUOPL8	CP007208.1	2,836,901	15/31

*a*Numbers of SRD’s RNA-seq transcribed srn genes.

*b*Numbers of srn were determined after RNA-seq analysis and predictions performed with a set of 575 nonredundant gene sequences.
reads did not overlap with annotated genes. The UTRs were described as 5′ UTRs or 3′ UTRs when the reads are assembled with CDS and when the expression was similar to the flanking genes, as described (Yoder-Himes et al. 2009). The results of our analysis are summarized in Table 3. In N315, we identified 94 srns as transcripts, 24 as cis-antisense RNAs, 14 as CDS, 58 as
5’ UTR, 31 as 3’ UTR, and 297 were not detected. Similar results were obtained for Newman and NCTC8325 strains, respectively (see the SRD website). sRNAs annotated as “ND” were either not detected by HTSeq count or did not meet some of the criteria retained for describing a sequence as transcript or a cis-antisense. Current Illumina sequencing kits are not perfectly adapted to the search of small bacterial transcripts and therefore it is difficult to know whether there are limits in the technology or that transcripts are absent. Forty-five of the sRNAs that were not detected were predicted to have a length <50 nt. Ninety-seven sRNAs were predicted to be between 50 and 100 nt and the others were longer than 100 nt. Overall, only 159 sRNAs were detected as transcripts or as RNA antisense under our experimental conditions (Supplemental Data S5 and http://srd.genouest.org/browsevalidated). Also, there were 24 ambiguous sRNA (Supplemental Data S6). These ambiguous sRNA presented criterion that did not allow us to add them in the list of 159 sRNA (see comments in Supplemental Data). All these results suggest that some sRNAs are expressed or detected under specific conditions that await further experimental assessment, while other sRNAs may not be considered as independent sRNA transcriptional units or may be false positive and arise from transcriptional noise.

sRNA predictions in other Staphylococcal species and strains

Four *S. aureus* genomes were used to generate SRD. It is however important to include in a database a large number of strains and other species. Therefore, we performed sRNA predictions on a set of 28 strains which included 18 *S. aureus* subspecies and 10 other Staphylococci (Table 2). BLAST (see Materials and Methods) was used to predict the presence of sRNA genes using either the list of 159 sRNA confirmed by our RNA-seq analysis or the curated list containing 575 sRNA. Using the list of 159 sRNA, this resulted in a number of predicted nucleotide sequences that ranged from 112 sRNA genes for *Staphylococcus aureus* subsp. *aureus* str. MSHR1132 to 156 sRNA genes for *Staphylococcus aureus* subsp. *aureus* str. JH1 and *Staphylococcus aureus* subsp. *aureus* str. JH9, respectively. On the opposite a reduced number of genes was predicted for the other 10 *Staphylococcus* species, with only 9 sRNA genes found for *Staphylococcus carnosus* subsp. *carnosus* str. TM300 and a maximum of 26 sRNA genes for *Staphylococcus pasteuri* SP1. Taken together these results suggest a low level of nucleotide sequence conservation for the sRNA genes within the genus.

Comparative analysis of the sRNA gene sequences

To investigate further the 159 sRNA gene sequences detected in the various strains a phylogenetic analysis was performed. A “phylogenomic” tree based on *Staphylococcus* whole-genome content (*Staphylococcus* tree) (Fig. 3A) and a tree based on the sRNA gene content were constructed (sRNA tree) (Fig. 3B). Interestingly, the tree based on the sRNA content showed an outstanding similar topology compared with the tree based on the genome content and clearly differentiates *Staphylococcus aureus* from the other *Staphylococcus* species (Fig. 3). For both trees, *S. aureus* subsp. *aureus* str. MRSH 132 appeared more distant from other *S. aureus* subspecies. This could explain why only 112 sRNA genes were predicted using BLAST for that strain. A “heatmap” representation constructed using a matrix of presence/absence of sRNA sequences in *Staphylococcus* genomes showed a species clusterization similar to that of the *Staphylococcus* tree (Fig. 4). These results confirm a weak conservation of the 159 sRNA outside the *aureus* species. In addition, rnaS P RNA gene, 4.5S RNA gene, sRNA_3910 (RNAIII), and sRNA_2130 (rsaE) were identified in all *Staphylococcus* strains while the tmRNA sequences appears to be substantially degenerated only in *Staphylococcus xylosus* str. HKUOPL8. Regarding the *S. aureus* subspecies, we identified 96 sRNA conserved which we defined as a core sRNA set in this species.

Database overview and usage

Users can access the list of sRNA genes through the Web interface (Fig. 5A). From the SRD home page they can (i) access the data set corresponding to the four genomes used to construct SRD, (ii) retrieve a short list of sRNA genes with a unified annotation, (iii) browse for predictions in other Staphylococci (described elsewhere in the text), (iv) BLAST (Altschul et al. 1990) their own sRNA sequences against the entire SRD database, or (v) search for RNA–RNA interactions using the intaRNA program (Busch et al. 2008). After entering in the webpage of one of the four curated genomes, the users will have access to the full list of sRNA reported so far. For each table, the new nomenclature, the genomic coordinates, the orientation, previous names, and experimental support are provided. The column “experimental evidence” was added for the community in order to have a quick overview of the sRNA that were identified as transcripts through RNA-seq analysis or other experimental approaches. The molecular targets and

| TABLE 3. Description of sRNAS based on SRD’s RNA-seq analysis |
|---------------------|---------------|---------------|
| | N315 | Newman | NCTC8325 |
| CDS | 14 | 13 | 24 |
| 5’ UTR | 58 | 54 | 59 |
| 3’ UTR | 31 | 32 | 28 |
| Not detected (ND) | 297 | 278 | 262 |
| Transcript | 94 | 100 | 104 |
| Antisense | 24 | 30 | 24 |
| Sum | 518 | 507 | 501 |

The sRNAs were described as “CDS,” “5’ UTRs,” “3’ UTRs,” “ND,” “Transcripts,” or “Antisense” based on the following criteria: HTSeq count ≥15, FPKM ≥2, MAPQ ≥30 and no clustering with flanking CDS.
references to the experimental secondary structure information are provided within the “SRD’s RNA-seq transcribed sRNA” tab of the website. In addition, the users can download the Staphylococcal genomes and the srm genes in diverse formats (“FASTA” or “gff”) suitable for subsequent RNA-seq analysis (Fig. 5B).

SRD specific features

Several functions have been included in the SRD website to provide an efficient device for the community working on sRNAs. BLAST and intaRNA (Altschul et al. 1990; Busch et al. 2008) were implemented in the database while external
Evolution of the database and future directions

SRD is a repository for the Staphylococcal sRNAs with primary focus on *S. aureus*. By combining an in-depth cleaning and novel RNA-seq analysis, it clarifies the status regarding the absence of a consensus nomenclature and also to the actual expanding number of individual sRNA genes. With the rising interest of the community in the field of sRNAs, the number of sRNAs detected or characterized in bacteria is predicted to constantly increase. SRD will therefore evolve, based on the identification of novel sRNAs published in the literature. In addition, researchers who would be willing to unify new discoveries under the *srn* nomenclature will have the possibility to submit their sRNA sequence(s) to SRD under the contact information box. SRD would allow both already published and nonpublished submission. For data that would not be already published, temporary *srn* numbers will be assigned and disclosed upon acceptance of the publications in peer-reviewed journals. Therefore, researchers will have the possibility to disclose their results directly with the *srn* nomenclature. To avoid the diffusion of a large number of genes that may not be confirmed later, researchers will be invited to describe how a new sRNA was identified. For the novel sRNAs detected by RNA-seq analysis, that could lead to false-positive sRNAs, a secure ftp link will be provided to solicit researchers to deposit their "fastq" files to check whether they meet the criteria described in the text for being annotated as sRNA transcripts.

DISCUSSION

Over the last 20 yr, the number of sequences identified as sRNAs dramatically increased in *Staphylococcus aureus*. However, the democratization of Next-Generation Sequencing and the absence of a consensus in the community for annotating newly identified sRNAs led to a growing confusion that become detrimental to the field. SRD compiled the existing data in a single interface, removed the repeated and or redundant sequences and proposed a novel, simplified, nomenclature. Compared with the databases on other prokaryotes sRNAs, SRD is the first sRNA database dedicated to the *Staphylococcus* genus. SRD assigned a single identifier for the whole genus while other sRNA databases, such as BSRD (Li et al. 2013), provide an index per strain. A unique identifier offers a substantial advantage when comparing different strains, as it should avoid the dissemination of multiple redundancies. Therefore, the data provided by SRD would have been difficult to fuse with other databases. SRD hosts a

![FIGURE 4. Comparative analysis through a “heatmap” cluster based on a matrix of presence (black) and absence (red) of *srn* sequences.](image-url)
Staphylococcal regulatory RNAs

An overflow of regulatory RNAs (sRNAs) was identified in a wide range of bacteria. We designed and implemented a new resource for the hundreds of sRNAs identified in Staphylococci, with primary focus on the human pathogen Staphylococcus aureus. The "Staphylococcus Regulatory RNA Database" (SRD; http://sra-genomex.org) compiled all published data in a single interface including genetic locations, sequences and other features. SRD proposes a simplified and unified nomenclature for Staphylococcal regulatory sRNAs based on the sRNAs' genetic location in S. aureus strain N315 which served as a reference. From a set of 805 sequences and after an in-depth cleaning, SRD provides a list of 175 sRNAs potentially exempt of repeated sequences. For each sRNA, its experimental support(s) is provided, allowing the user to individually assess their reliability and significance. RosSeq analyses performed on strains N315, 83258 and Newman allowed us to improve the initial annotation and to dress a list of 143 RosSeq independent sRNAs. In addition, structure predictions obtained with RNfold are downloadable. A BLAST server and the instRNA program, which is dedicated to target prediction, were implemented. These 143 sRNAs sequences were used to predict the number and location of sRNAs in 16 S. aureus strains and 10 other Staphylococci. SRD is the first sRNA database centered on a genus since the comparison of the sRNAs within 32 Staphylococci genomes revealed a poor conservation between species. It is a user-friendly and scalable device with the possibility to submit new sequences which should rapidly spread in the literature.

Specific features of SRD:
- In-depth manual curation of sRNAs
- Novel and simple annotation of sRNAs identified in S. aureus: sRNAs for Staphylococcus Ribolocietide
- RosSeq downloads available for further RosSeq analysis
- BLAST server and instRNA program implemented
- Prediction of sRNA structures available
- Visualization of the distribution of sRNA on corresponding chromosomes

FIGURE 5. Screenshots of SRD. (A) Main webpage interface to navigate and access specific features within the database. (B) Example of the presentation of sRNA data determined after curation of repeated and redundant sequences.
large collection of manually curated Staphylococcal sRNAs (575 srr genes) mostly exempted of repeated sequences and of redundancies. Furthermore, coupled with an SRD’s RNA-seq analysis, a list of 159 RNA-seq transcribed srr is provided that includes all the 60 previously experimentally supported sRNAs. This suggests that the SRD’s criteria used to describe the srr transcripts that combined previously published cut offs (Yoder-Himes et al. 2009; Howden et al. 2013) with high mapping quality scores and FPKM normalization (to prevent the detection of incorrectly mapped reads or of long transcripts that do not arise from transcriptional noise) were relevant. However, among the nearly 300 srr genes not transcribed under the physiological conditions tested, some may be later annotated as sRNA transcripts once additional data and work will provide transcriptional evidence. From this set of 159 srr genes, predictions were issued by sequence similarity to identify homologous genes in other Staphylococcal species. A comparison of the SRD’s predictions with the BSRD entries for Staphylococcus strains shows that a genus-specific database is relevant. Indeed, in BSRD there is a huge discrepancy in the number of sRNAs sequences being available within the S. aureus subps. aureus species. While 154 sRNAs were listed for strain N315, mostly based on the work of Beaume et al. (2010), there were <60 sequences inventoried by similarity for other Staphylococcal strains (Li et al. 2013). All BSRD S. aureus entries are present in our database, and the predictions performed within the genus from a set of 575 srr genes (versus 8248 genes for BSRD), led to a larger set of predicted genes in SRD (Table 4). The comparative analysis performed for the srr content confirmed a low level of conservation within the genus and therefore in the bacterial kingdom. The weak sequence conservation at the DNA level in comparison with the protein level is therefore a serious limitation for retrieving genes, and therefore sRNAs, between species (Konstantinidis and Tiedje 2007; Sentausa and Fournier 2013). To our knowledge, there is no recognized standard to assign identifiers or nomenclature to sRNAs. Therefore, to not favor anyone name (spr, rsa, sau, teg, and others) we created the srr identifier. In addition, a most common name was assigned based on the chronological discovery of experimental confirmation to avoid the community to name some of the already very well-described sRNAs under a srr identifier while using the database. However, for the sRNAs that were only described by RNA-seq, the community is encouraged to use the srr identifier in an effort for unifying the work done on the sRNAs so far. We believe that SRD will help the scientific community working on Staphylococcal sRNA identification, function, and biology. SRD provides a simple and unified sRNA resource, a detailed annotation for each sRNA, a direct access to various RNA and genomic analysis tools. Finally, it shall encourage the community to participate in an effort to submitting new Staphylococcus sRNAs in SRD and to develop other genus specific sRNA databases that should be an essential extension to the generalist sRNA databases.

MATERIALS AND METHODS

Bacterial strains and growth conditions

Staphylococcus aureus strains Newman and N315 were grown in liquid Brain Heart Infusion broth (BHI, Oxoid) and Tryptone Soya Broth (TSB, Oxoid) at 37°C, under agitation.

RNA extraction

Overnight cultures of _S. aureus_ were diluted to an OD600 nm of 0.1 into fresh BHI broth and cultured for 5 h at 37°C at 160 rpm. Cells were harvested by centrifugation at 15,000g for 30 sec and pellets washed with 500 µL of cold lysis buffer (20 mM sodium acetate, 1 mM EDTA, 0.5% SDS at pH 5.5). Cells were broken out using acid

Table 4. Comparison between BSRD and SRD number of entries

Staphylococcus strains	BSRD sRNAs	SRD’s RNA-seq and predictions
S. aureus subsp. aureus N315	154	519
S. aureus subsp. aureus Newman	58	508
S. aureus subsp. aureus NCTC 8325	55	571
S. aureus subsp. aureus JKD6008	NA	501
S. aureus subsp. aureus NCTC 8325	NA	461
S. aureus subsp. aureus MSIRH1132	NA	281
S. aureus subsp. aureus ST398	NA	448
S. aureus subsp. aureus COL	53	490
S. aureus subsp. aureus JH1	55	498
S. aureus subsp. aureus JH9	55	498
S. aureus subsp. aureus MRSA252	57	468
S. aureus subsp. aureus MSSA476	55	481
S. aureus subsp. aureus Mu3	55	498
S. aureus subsp. aureus Mu50	55	485
S. aureus subsp. aureus MW2	56	485
S. aureus subsp. aureus USA300_FPR3757	58	498
S. aureus subsp. aureus USA300_TCH1516	59	499
S. aureus 502A	NA	485
S. aureus XN108	NA	499
S. aureus M1	NA	499
S. aureus NRS 100	NA	490
S. aureus RF122	54	445
S. carnosus subsp. carnosus TM300	52	52
S. epidermidis ATCC 12228	53	53
S. epidermidis RP62A	57	65
S. haemolyticus JCSC143	56	56
S. lugdunensis HUK09-01	NA	48
S. pasteuri SP1	NA	55
S. pseudintermedius ED99	NA	31
S. saprophyticus subsp. saprophyticus	53	41
ATCC 15305	NA	499
S. warneri SG1	NA	54
S. xylosus HUKOPL8	NA	31

BSRD numbers of sRNAs were determined from data collected in the literature and predictions performed from a set of 8248 nonredundant gene sequences. SRD numbers of srr were determined after RNA-seq analysis and predictions performed with a set of 575 nonredundant gene sequences. (NA) Not assayed.
treated glass beads (Sigma) in the presence of phenol (pH 4) in an FP120 FastPrep cell disruptor (MP Biomedicals) for 30 sec at power 6.5. Lyases were centrifuged for 5 min at 16,000g at 4°C. Total RNAs were extracted with phenol/chloroform and precipitated overnight. The RNA samples were treated with DNase I, Amplification Grade (Invitrogen). The absence of DNA contamination was checked by qPCR in an Applied Biosystems instrument. The integrity of each RNA preparation was verified on a “Bioanalyzer” (Agilent).

cDNA Library construction and Illumina RNA-seq
Ribosomal RNAs were depleted using the Ribo-Zero Magnetic Kit (Epicentre) and following manufacturer’s recommendations. Stranded cDNAs libraries were prepared using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs). The concentration, quality, and purity of the libraries were determined on a BioAnalyzer (Agilent), a Qubit fluorometer (Invitrogen), and a Nanodrop (Thermo Scientific). Libraries were pooled and sequenced on an Illumina Hiseq 1500 instrument following the manufacturer’s recommendations and using the rapid run mode for 200 cycles in paired-end.

Read mapping and visualization
The genome sequences and annotation files were obtained from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/). A “fastqc” report was performed prior mapping the data onto the appropriate genome. RNA-seq reads were mapped using Tophat2 and BWA (Li and Durbin 2010; Kim et al. 2013) with initial settings modified to allow the mapping of stranded library of an average mean distance between mates of 250 (for Tophat2) and to allow the alignment of a read to a single location with no mismatch (Tophat2 and BWA). BAM files were converted into SAM files and filtered on bitwise flag values (Li et al. 2009) to select properly paired reads. SAM files were then converted to BAM files, sorted by query, and counted by HTSeq count (Anders et al. 2014) for stranded library with the mode union. BAM files were visualized using the Artemis program (Carver et al. 2012).

Data set building and comparative analysis
The 32 genomes of Staphylococcus used in this study were downloaded from GenBank (Table 2). The published sRNA sequences were extracted from their respective genomes to construct a pool of sRNA. This pool was used to predict the srr genes in reference genomes. Then a pool of SRD’s RNA-seq transcribed sRNA was used to predict srr genes in 28 Staphylococcus genomes. The predictions were done using “BLASTN” with a cutoff E-value $<1 \times 10^{-20}$, percentage similarity $>80\%$ and an alignment length >60 nt of the query length. The 32 Staphylococcus genomes and the predicted srr genes sequences were aligned using Muscle aligner implemented in Mauve software (Darling et al. 2010). Mauve alignment generated a genome content matrix for which the identity scores range between 0 and 1, where 0 indicates that no identical homologous nucleotides were found, and 1 indicates that every homologous nucleotide was identical. A matrix based on the srr gene content was generated (the similarity between two species is defined as the number of genes that they have in common divided by the total number of srr genes) (Snel et al. 1999, 2005; Huson and Bryant 2006). The genome content based matrix and the srr gene content based matrix were then used to construct, respectively, a Staphylococcus “phylogenicomic” tree-based on genome content and a Staphylococcus tree-based on srr content, using Neighbor-joining algorithm in the package SplitsTree4 (Huson and Bryant 2006). A “heatmap” clusterization was constructed using a matrix based on presence and absence of srr genes using the R package (http://www.r-project.org/).

Database design
The web server has been designed in PHP with the “Symfony” framework (http://symfony.com). It includes a set of scripts that automatically parse the raw input files (srr, genomes), fill in a MySQL database for each set of genome/srr, and build some templates for all input predictions. Those scripts allow the addition of other genomes easily by simply adding the new files to the directory structure. They will update the existing information and insert the new ones. The website menus are automatically adapted to the list of analyzed genomes, removing the need to modify the website when new information is added (new genomes, new predictions, etc.). The scripts also (i) extract the FASTA sequence of each srr (to prefill IntaRNA form for example), (ii) execute MFold to create the pdf files containing the structure, and (iii) prepare a blast index for all genomes and set of srr.

A srr distribution is proposed in the web interface with pan and zoom options. This distribution is displayed using the D3js library (http://d3js.org/).

DATA DEPOSITION
The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and are accessible through GEO Series accession number GSE64026 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64026).

SUPPLEMENTAL MATERIAL
Supplemental material is available for this article.

ACKNOWLEDGMENTS
This research was supported by a Marie Curie International Incoming Fellowship (project 621959—SrHyb) within the 7th European Community Framework Programme and by the region Bretagne grant SAD 2013—SARS 8254. T.M. is a recipient of a fellowship from the Direction Générale pour l’Armement. We thank Dr. Philippe Bouloc and Dr. Tatiana (Orsay—Université Paris Sud) Rochat for providing a BAM file combining 16 growth conditions for strain NCTC8325. We are most grateful to the “plate-forme Génomique Santé” Biogenouest Genomics, Biosit core facility for its technical support and to the CNRS-UPMC ABiMS bioinformatics platform (http://abims.sb-roscoff.fr) for providing computational resources and support. This work has benefited from the facilities and expertise of the high-throughput sequencing platform of IMAGIF (Centre de Recherche de Gif—www.imagif.cnrs.fr).

Received December 17, 2014; accepted February 16, 2015.
REFERENCES

Abu-Qatouseh LF, Chinni SV, Seggewis J, Proctor RA, Brosius J, Rozhdestvensky TS, Peters G, von Eiff C, Becker K. 2010. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl) 88: 565–575.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403–410.

Anders S, Pyl PT, Huber W. 2014. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 16–19.

Anderson KL, Roberts C, Diz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunnam PM. 2006. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188: 6739–6756.

Baba T, Takai T, Schneewind O, Takeuchi F, Hiramatsu K. 2006. Genome sequence of Staphylococcus aureus strain Newman and comprehensive analysis of staphylococcal genomics: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190: 300–310.

Beaume M, Fernandez D, Farinelli L, Deluen C, Linder P, Gaspin C, Rompy B, Schrenzel I, Francois P. 2010. Cartography of methicillin-resistant S. aureus transcriptic detection, orientation and temporal expression during growth phase and stress conditions. PLoS One 5: e10725.

Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P, Borezée-Durant E, Barbet R, Jacquet E, Jacq A, et al. 2010. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 38: 6620–6636.

Brantl S, Brückner R. 2014. Small regulatory RNAs from low-GC Gram-positive bacteria. RNA Biol 11: 443–456.

Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A. 2013. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41: D226–D232.

Busch A, Richter AS, Backofen R. 2006. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24: 2849–2856.

Caldelari I, Chen Y, Rompy B, Vogel J. 2014. Novel aspects of RNA regulation in Staphylococcus aureus. RNA Biol 11: 245–249.

Cao Y, Wu J, Liu Q, Zhao Y, Ying X, Cha L, Wang L, Li W. 2010. sRNATarBase: a comprehensive database of bacterial sRNA targets verified by experiments. RNA 16: 2051–2057.

Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Comparison of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl) 88: 565–575.

Felden B, Vandenesch F, Bouloc P, Romby P. 2011. The Nucleic Acids Res 37: 7239–7257.

Fechter P, Caldelari I, Lioliou E, Rompy B. 2014. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Lett 588: 2523–2529.

Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, Francois P, Vandenesch F, Gaspin C, et al. 2009. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37: 2159–2177.

Gillaspy AF, Worrell V, Orvis J, Roe BA, Dyer DW, Landollo JJ. 2006. Staphylococcus aureus NCTC8325 genome. In Gram-positive pathogens (ed. Fischetti V, et al.), pp. 381–412. ASM Press, Washington, DC.

Guillet J, Hallier M, Felden B. 2013. Emerging functions for the Staphylococcus aureus RNase. PLoS Pathog 9: e1003767.

Howden BP, Beaume M, Harrison PF, Hernandez D, Schrenzel J, Seemann T, Francois P, Stinear TP. 2013. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother 57: 3864–3874.

Huang HY, Chang HY, Chou CH, Tseng CP, Ho SY, Yang CD, Ju YW, Huang HD. 2009. sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res 37: D150–D154.

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.

Kery MB, Feldman M, Livny J, Tjaden B. 2014. TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42: W124–W129.

Kim DD, Martinez-Doglia P, Cowen K, Palmenberg AC, Pimentel H, Kelley R, Salzberg SL. 2013. TargetRNA2: accurate annotation of transcripts in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36.

Kim T, Yamada K, Terai G, Okida H, Yoshinari Y, Ono Y, Kojima A, Kimura Y, Komori T, Asai K. 2007. IRfinder: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res 35: D145–D148.

Konstantinidis KT, Tiedje JM. 2007. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10: 504–509.

Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, et al. 2001. Whole genome sequencing of Staphylococcus aureus Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190: 300–310.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Maith, Abecasis G, Gilks W149–W154.

Lalouenna D, Eyraud A, Chabelskaya S, Felden B, Massé E. 2014. Regulatory RNAs involved in bacterial antibiotic resistance. PLoS Pathog 10: e1004299.

Marchais A, Naville M, Bohn C, Bouloc P, Gautheret D, Touzet H, Gaspin C, et al. 2011. Genome-wide antisense transcription drives mRNA processing in bacteria. Cold Spring Harb Perpet Med 3: a010297.

Michalski A, Naville M, Bohn C, Bouloc P, Gautheret D. 2009. Single-stranded RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother 57: 3864–3874.

Mizuno T, Chou MY, Inouye M. 1984. A unique mechanism regulating the expression of antimicrobial resistance in Staphylococcus aureus. J Mol Med (Berl) 62: 300–307.

Oguchi A, Aoki K, Nagai Y, et al. 2001. Whole genome sequencing of Staphylococcus aureus Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190: 300–310.

Olson PD, Projan SJ, Dunman PM. 2006. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188: 6739–6756.

Rasmussen KH, Wachmann C, Scherer N, Madsen J, Lønning PE, Tiedje JM. 2003. Integration of high-throughput DNA and RNA sequence-based experimental data. Genome Res 13: 1755–1766.

Sassi et al.
Morrison JM, Miller EW, Benson MA, Alonzo F III, Yoong P, Torres VJ, Hinrichs SH, Dunman PM. 2012. Characterization of SSR42, a novel virulence factor regulatory RNA that contributes to the pathogenesis of a Staphylococcus aureus USA300 representative. *J Bacteriol* **194**: 2924–2938.

Nielsen JS, Christiansen MH, Bonde M, Gottschalk S, Frees D, Thomsen LE, Kallipolitis BH. 2011. Searching for small σB-regulated genes in *Staphylococcus aureus*. *Arch Microbiol* **193**: 23–24.

Novick RP, Iordanescu S, Projan SJ, Kornblum J, Edelman I. 1989. *pT181* plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. *Cell* **59**: 395–404.

Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. *EMBO J* **12**: 3967–3975.

Pang KC, Stephen S, Dinger ME, Engström PG, Lenhard B, Mattick JS. 2007. RNAdb 2.0—an expanded database of mammalian non-coding RNAs. *Nucleic Acids Res* **35**: D178–D182.

Pichon C, Felden B. 2005. Small RNA genes expressed from *Staphylococcus aureus* genomic and pathogenicity islands with specific expression among pathogenic strains. *Proc Natl Acad Sci* **102**: 14249–14254.

Pinel-Marie ML, Brielle R, Felden B. 2014. Dual toxic peptide-coding *Staphylococcus aureus* RNA under antisense regulation targets host cells and bacterial rivals unequally. *Cell Rep* **7**: 424–435.

Pischimarov J, Kuenne C, Billion A, Hemberger J, Cemić F, Chakraborty T, Hain T. 2012. sRNAdb: a small non-coding RNA database for gram-positive bacteria. *BMC Genomics* **13**: 384.

Roberts C, Anderson KL, Murphy E, Projan SJ, Mouts W, Hurlburt B, Smeltzer M, Overbeek R, Díaz T, Dunman PM. 2006. Characterizing the effect of the *Staphylococcus aureus* virulence factor regulator, SarA, on log-phase mRNA half-lives. *J Bacteriol* **188**: 2593–2603.

Romilly C, Caldelari I, Parmentier D, Lioliou E, Romby P, Fechter P. 2012. Current knowledge on regulatory RNAs and their machineries in *Staphylococcus aureus*. *RNA Biol* **9**: 402–413.

Sayed N, Jousselin A, Felden B. 2012. A cis-antisense RNA acts in *trans* in *Staphylococcus aureus* to control translation of a human cytolytic peptide. *Nat Struct Mol Biol* **19**: 105–112.

Sentausa E, Fournier PE. 2013. Advantages and limitations of genomics in prokaryotic taxonomy. *Clin Microbiol Infect* **19**: 790–795.

Snel B, Bork P, Huynen MA. 1999. Genome phylogeny based on gene content. *Nat Genet* **21**: 108–110.

Snel B, Huynen MA, Dutilh BE. 2005. Genome trees and the nature of genome evolution. *Annu Rev Microbiol* **59**: 191–209.

Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: expanding frontiers. *Mol Cell* **43**: 880–891.

Tomasini A, Francois P, Howden BP, Fechter P, Romby P, Caldelari I. 2014. The importance of regulatory RNAs in *Staphylococcus aureus*. *Infect Genet Evol* **21**: 616–626.

Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y. 2014. NONCODEv4: exploring the world of long non-coding RNA genes. *Nucleic Acids Res* **42**: D98–D103.

Xue T, Zhang X, Sun H, Sun B. 2014. ArtR, a novel sRNA of *Staphylococcus aureus*, regulates α-toxin expression by targeting the 5′ UTR of sarT mRNA. *Med Microbiol Immunol* **203**: 1–12.

Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R. 2009. Mapping the *Burkholderia cenocepacia* niche response via high-throughput sequencing. *Proc Natl Acad Sci* **106**: 3976–3981.

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res* **31**: 3406–3415.