Title
A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization.

Permalink
https://escholarship.org/uc/item/1n18892x

Journal
The Journal of general physiology, 146(5)

ISSN
0022-1295

Authors
Thiffault, Isabelle
Speca, David J
Austin, Daniel C
et al.

Publication Date
2015-11-01

DOI
10.1085/jgp.201511444

Peer reviewed
A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization

Isabelle Thiffault,1 David J. Specia,4 Daniel C. Austin,5 Melanie M. Cobb,4 Kenneth S. Eum,5 Nicole P. Safina,3 Lauren Grote,3 Emily G. Farrow,1 Neil Miller,1 Sarah Soden,1,3,7 Stephen F. Kingsmore,1,2,3,7 James S. Trimmer,4,5 Carol J. Saunders,1,2,7 and Jon T. Sack1,6

1Center for Pediatric Genomic Medicine, 2Department of Pathology and Laboratory Medicine, and 3Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108
4Department of Neurobiology, Physiology and Behavior, 5Department of Physiology and Membrane Biology, and 6Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
7University of Missouri—Kansas City School of Medicine, Kansas City, MO 64109

The epileptic encephalopathies are a group of highly heterogeneous genetic disorders. The majority of disease-causing mutations alter genes encoding voltage-gated ion channels, neurotransmitter receptors, or synaptic proteins. We have identified a novel de novo pathogenic K+ channel variant in an idiopathic epileptic encephalopathy family. Here, we report the effects of this mutation on channel function and heterologous expression in cell lines. We present a case report of infantile epileptic encephalopathy in a young girl, and trio-exome sequencing to determine the genetic etiology of her disorder. The patient was heterozygous for a de novo missense variant in the coding region of the KCNB1 gene, c.1133T>C. The variant encodes a V378A mutation in the α subunit of the Kv2.1 voltage-gated K+ channel, which is expressed at high levels in central neurons and is an important regulator of neuronal excitability. We found that expression of the V378A variant results in voltage-activated currents that are nonselective to the selective Kv2 channel blocker guangxitoxin-1E. These voltage-activated Kv2.1 V378A currents were nonselective among monovalent cations. Striking cell background–dependent differences in expression and subcellular localization of the V378A mutation were observed in heterologous cells. Further, coexpression of V378A subunits and wild-type Kv2.1 subunits reciprocally affects their respective trafficking characteristics. A recent study reported epileptic encephalopathy-linked missense variants that render Kv2.1 a tonically activated, nonselective cation channel that is not voltage activated. Our findings strengthen the correlation between mutations that result in loss of Kv2.1 ion selectivity and development of epileptic encephalopathy. However, the strong voltage sensitivity of currents from the V378A mutant indicates that the loss of voltage-sensitive gating seen in all other reported disease mutants is not required for an epileptic encephalopathy phenotype. In addition to electrophysiological differences, we suggest that defects in expression and subcellular localization of Kv2.1 V378A channels could contribute to the pathophysiology of this KCNB1 variant.

INTRODUCTION

The early infantile epileptic encephalopathies (EIEEs) are a group of disorders characterized by intractable seizures, persistently abnormal cortical function, and unfavorable neurodevelopmental outcomes (Berg et al., 2010; Nabbout and Dulac, 2012; Covantis, 2014). The etiologies include structural brain malformations, acquired brain insults, and inborn errors of metabolism (Nabbout and Dulac, 2012; Covantis, 2014). A significant proportion of these cases remain without molecular diagnosis despite extensive investigation. Recently, variants in genes encoding voltage-gated potassium (Kv) channels, including KCNQ2 (Singh et al., 1998; Weckhuysen et al., 2013), KCNQ3 (Cavaretta et al., 2014), and KCNB1 (Srivastava et al., 2014; Torkamani et al., 2014), have been associated with EIEE (Malivevic and Lerche, 2014). KCNB1 encodes the Kv2.1 pore-forming and voltage-sensing subunit of a delayed rectifier Kv channel that is expressed in diverse neuron types (Trimmer, 2015). Kv2.1 is highly expressed in the neurons throughout the brain and forms the principal delayed rectifier current of many neuron types (Murakoshi and Trimmer, 1999; Du et al., 2000; Malin and Nerbonne, 2002; Guan et al., 2007; Mandikian et al., 2014). Kv2.1 plays important roles in regulating neuronal excitability, contributing to action potential repolarization (Liu and Bean, 2014) and dynamic modulation of neuronal activity (Misonou et al., 2004, 2008; Fox et al., 2013). In addition to its electrical roles in neurons, Kv2.1 plays a less understood structural role in neurons. Kv2.1 channels

© 2015 Thiffault et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
form large clusters on the cell body, proximal dendrites, and axon initial segments of neurons that represent plasma membrane–ER junctions (Trimmer, 1991; Antonucci et al., 2001; King et al., 2014; Fox et al., 2015). The majority of these clustered channels are reported to be non-conducting (O’Connell et al., 2010; Fox et al., 2013). The presence of Kv2.1 drives recruitment of other proteins to these clusters, indicating that subcellular localization of Kv2.1 could have neurophysiological consequences beyond electrical signaling (Antonucci et al., 2001; Fox et al., 2015).

Genetic defects in Kv2.1 lead to neurological consequences. Mice lacking Kv2.1 are strikingly hyperactive, defective in spatial learning, hypersensitive to convulsants, and exhibit accelerated seizure progression (Speca et al., 2014). Human genetic evidence indicates that mutations in Kv2.1 can lead to EIEE. De novo missense variants in KCNB1 were initially reported in three patients with EIEE with associated cognitive and motor dysfunction (Torkamani et al., 2014). These variants were located within the Kv2.1 pore domain and associated with a loss of ion selectivity and voltage-sensitive gating, resulting in a tonic inward cation conductance. A fourth patient was recently identified through whole-exome sequencing (Srivastava et al., 2014). In this Communication, we report the fifth patient with a novel de novo variant in the KCNB1 gene, c.1133T>C (p.V378A), located in the Kv2.1 pore domain, and a basic characterization of the effects of the mutation on channel expression and function. As this is the original reporting of this KCNB1 variant, we present a clinical history of the patient. We then present functional evidence regarding the unique electrophysiological activity and subcellular localization of this Kv2.1 channel variant that could provide additional insight into the pathophysiological molecular mechanisms underlying the neurological defects seen in EIEE patients.

MATERIALS AND METHODS

Clinical reporting
Presentation of patient information, clinical findings, diagnostic assessment, therapeutic intervention, and outcomes conform to standardized clinical case report guidelines (Gagnier et al., 2013). All human studies were approved by the institutional review board of the Children’s Mercy Hospital, and the parents gave informed consent for participation in the study.

Genetic analysis
DNA was extracted from peripheral blood of patient CMH574 and her two healthy parents (CMH575 and CMH576) and prepared with the Nextera Expanded Exome kit (Illumina). Samples were sequenced on a HiSeq 2000 instrument with TruSeq SBS v3 reagents (Illumina), yielding paired 100 nucleotide reads. Alignment, variant calling, and analysis were performed as reported previously (Bell et al., 2011; Saunders et al., 2012). Patient CMH574 was sequenced to a depth of 10.4 gigabases resulting in median target coverage of 135×, which identified ~170,000 nucleotide variants. Variants were filtered to 1% minor allele frequency in an internal database of 2,129 samples, and then prioritized by the American College of Medical Genetics categorization (Richards et al., 2008), OMIM identity, and phenotypic assessment. The patient was found to have a heterozygous missense variant in exon 2 of KCNB1, c.1133T>C (p.V378A). The variant was confirmed by Sanger sequencing. Family relationships were confirmed by segregation analysis of rare single-nucleotide variants on several chromosomal regions. The KCNB1 variant was absent from the patient’s parents, the NHLBI Exome Sequencing Project, and an internal variant database.

Plasmids
A single T1133C point mutation was introduced into the hKv2.1/pRC/CMV plasmid (Zhang et al., 2003) encoding human Kv2.1 (RefSeq accession no. NP_004966) to generate the V378A plasmid. The modification was confirmed by sequencing. Where noted, an empty RBG4 plasmid was cotransfected to normalize total amount of DNA/transfection, or an empty EGFP-C1 plasmid (no. 6084-I; Takara Bio Inc.) was cotransfected to provide GFP expression in transfected cells. Kv2.1 AC297 was a previously described variant of rat Kv2.1 (Lim et al., 2000) in the pCGN plasmid (Tanaka and Herr, 1990). Human wild-type and V378A mutant plasmid DNA used in all experiments was transformed and purified identically and contemporaneously using a Maxi-prep purification kit (QIAGEN).

Cell culture and transfection
All cell lines were grown in a humidified incubator at 37°C and 5% CO2. COS-1 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% bovine calf serum (HyClone), 1% penicillin/streptomycin, and 1× GlutaMAX (Thermo Fisher Scientific). COS-1 cells were split to 10% confluence and then transfected in Opti-MEM (Thermo Fisher Scientific) 24 h later with the constructs described above using LipofectAMINE 2000 (Thermo Fisher Scientific) according to the manufacturer’s protocol. Media was replaced 4 h after transfection. COS-1 cells were used 40–48 h after transfection. CHO-K1 (CCL-61; ATCC) cells were maintained in tissue culture–treated polystyrene dishes (BioLite; Thermo Fisher Scientific), Ham’s F12 media (MT-10-080-CV; Corning) containing 10% FBS (GemCell), 1% penicillin/streptomycin, and 1% penicillin/streptomycin (Thermo Fisher Scientific). Cells were transfected in Ham’s F12 media with LipofectAMINE 2000 according to the manufacturer’s protocol, using 2 µl Lipofectamine, and 1 µg DNA per milliliter media. Media was replaced 4–6 h after transfection, and cells were used for experiments 2 d later.

Electrophysiology
Whole-cell voltage-clamp recordings were used to measure currents from Kv2.1 channels expressed in CHO-K1 cells. Cells were harvested by scraping in divalent-free PBS with 1 mM EDTA, pelleted at 650 g for 7 min, resuspended in CHO-SFMII media (Thermo Fisher Scientific) supplemented with 25 mM HEPES, pH 7.3, and rotated in a polypolyethylene tube at room temperature until use. Aliquots of cell suspension were added to a recording chamber and rinsed with external solution 5 or more minutes before recording. The external (bath) solution contained (mM): 3.5 KCl, 155 NaCl, 1.5 CaCl2, 1 MgCl2, and 10 HEPES, adjusted to pH 7.4 with NaOH. The internal (pipet) solution contained (mM): 50 KF, 70 KCl, 35 KOH, 5 EGTA, and 50 HEPES, adjusted to pH 7.3 with HCl. A measured liquid junction potential of 12 mV was corrected. The Kv2 inhibitor GxTX was the guangxitoxin-1E toxin with methionine 35 replaced by norleucine, synthesized as described previously (Tilley et al., 2014). GxTX was added by flushing 200 µl through a low volume recording chamber (R-24N, 400 Epileptic encephalopathy Kv2.1 mutant
Warner). Pipettes were pulled from thin-wall borosilicate glass (no. BF150-110-7.5HP; Sutter Instrument). Pipette tip resistances were <3 MΩ. Recordings were performed at room temperature (21–23°C). Voltage clamp was achieved with an amplifier (Axon Axopatch 200B; Molecular Devices) run by PatchMaster software (HEKA). The holding potential was ~100 mV. Series resistance compensation was used when needed to constrain voltage error to <10 mV. Capacitance and ohmic leak were subtracted using a P/5 protocol. Recordings were low-pass filtered at 10 kHz and digitized at 100 kHz. Current traces were digitally filtered at 2 kHz for display in figures. Data were analyzed and plotted with Igor-Pro software (Version 6; WaveMetrics). Conductance was measured from tail currents immediately after a 100-ms step to the indicated voltage; tails were analyzed at 0 mV for wild-type channels and at ~100 mV for V378A. Fits with the fourth power of a Boltzmann distribution are described previously (Sack et al., 2004; Tilley et al., 2014). Conductance data shown are normalized to the peak amplitude of the fit; \(V_{\text{m}} \) reported is the voltage when the fit reaches half-maximal amplitude. Ion selectivity experiments were conducted by exchange of external solution. 155 mM NaCl was replaced by KCl, CsCl, KCl, NH₄Cl, or NMDG + HCl, and adjusting pH to 7.4 with NMDG. Ionic permeability was calculated from the reversal potential with the indicated ion in the external solution, as described previously (Hegeboom et al., 1994). The ratio \(P_X/P_k \) is the permeability of the indicated ion normalized to K⁺.

Immunofluorescence immunocytochemistry

COS-1 and CHO-K1 cells grown on poly-l-lysine–coated glass coverslips were fixed for 15 min in ice-cold 4% formaldehyde prepared fresh from paraformaldehyde, 4% sucrose, and 0.1% Triton X-100 in DPBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, and 1.76 mM KH₂PO₄; pH 7.4) with 1 mM CaCl₂ and 1 mM MgCl₂, or were fixed for 30 min in 4% formaldehyde prepared fresh from paraformaldehyde and 4% sucrose in DPBS. Cells were blocked and permeabilized with 3% (wt/vol) bovine serum albumin and 0.1% Triton X-100 in DPBS for 60 min, and then coverslips were incubated with primary antibody overnight at 4°C (anti-Kv2.1 K89/34 IgG1: 1:20 dilution of tissue culture supernatant, Research Resource Identifier [RRID]: AB_10671955; anti-GFP N86/38 IgG2a: 1:5 dilution of tissue culture supernatant, RRID: AB_10671055; both from the UC Davis/National Institutes of Health [NIH] NeuroMab Facility; anti-α-HA, RRID: AB_2532070). Primary antibodies were detected with appropriate mouse IgG subclass-specific fluorescent secondary antibodies (A21127, A21131, A21121, and A21147; 1:2,000; Thermo Fisher Scientific) and Hoechst 33342 stain (H21491; Thermo Fisher Scientific). Coverslips were washed again in DPBS and mounted with Prolong Gold (P36930; Thermofisher Scientific). Images were acquired using an AxioCam HRm high resolution CCD camera installed on an AxioObserver Z1 microscope with a 63x, 1.3-numerical aperture (NA) lens or a 20x, 0.8-NA lens and an Apotome controlled by AxioVision software (Carl Zeiss). Images were processed identically in Photoshop to maintain consistency between samples.

Immunoblots

Cell lysates were prepared as described previously (Shi et al., 1994). Proteins were separated by 9% SDS-PAGE and transferred to nitrocellulose membranes. Blots were probed with rabbit anti-Kv2.1 (1:500; KC; RRID: AB_2315767) and as loading controls mouse anti-mortalin (1:2, N52A/42 tissue culture supernatant; RRID: AB_10674108, from the UC Davis/NIH NeuroMab Facility) or rabbit anti-actin (1.0 µg/ml; RRID: AB_630834; sc-1616R; Santa Cruz Biotechnology, Inc.) for 60 min in TBS, followed by incubation with appropriate fluorescently labeled secondary antibody (1:1,500) for an additional 60 min. Imaging and quantitation of blots was performed on a FluorChem Q imager (Protein Simple), using the multiplex band analysis tool (version 3.4.0) to assess Kv2.1 fluorescence intensity after background subtraction. Kv2.1 expression intensity was then normalized to either the actin or mortalin-loading control for each sample before statistical analysis.

Analysis and statistics

GraphPad Prism (version 6.0b) or IgorPro (version 6; WaveMetrics) software was used for presentation and statistical analyses of microscopy or electrophysiology data, respectively. Data are presented as means ± SEM.

Accession numbers

The RefSeq accession numbers for KCNBI variants reported in this paper are NM_004975.2 and NP_004966.1.

RESULTS

Clinical data

A 3-yr-old Caucasian female presented with intractable multifocal epilepsy, global developmental delay, and difficulty feeding. Prenatal history was unremarkable; delivery was at full-term with a normal neonatal period. Her first recognized seizure at 15 mo lasted for ~10 min. EEG recordings revealed intermittent left and right temporal/temporal parietal spike, polyspike and slow wave discharges, and intermittent superimposed left and right temporal focal slowing. Starting in the first months of life, she was easily startled, blinked repeatedly, and had episodes of staring, suggesting an earlier onset of seizures. Brain MRI at 13 and 18 mo were normal.

She developed a social smile at age 3 mo and rolled between 6 and 10 mo of life. Between 13 and 15 mo, she began to regress significantly in skills and developed oral motor dysphagia requiring liquid formula supplementation. At 15 mo, she was able to sit with some support, and by age 3 yr she was able to sit independently but could not stand or walk. She never developed speech, only limited vocalization and inappropriate laughter. At age 3 yr she functioned at a 5–8 mo developmental level. Her seizures were refractory to numerous medications including Keppra, Depakote, Clobazam, Zonisamide, and Lamictal. After implementation of the ketogenic diet, she was initially seizure free for 6 mo, followed by breakthrough seizures ranging from 1 to >20 per day. Relevant family history included febrile seizures in the patient’s mother until age 9. An extensive workup was normal, including: high resolution karyotype, CGH microarray, methylation studies for Angelman syndrome, palmitoyl protein thioesterase 1 and tripeptidyl peptidase 1 enzymes, comprehensive epilepsy gene panel (53 genes; no. 523; GeneDx), sequence and deletion/duplication analysis, carbonyl-deficient transferrin analysis, N-glycan structural analysis, very long chain fatty acids, plasma amino acids, 7-dehydrocholesterol, urine organic acids, and oligosaccharides.
Whole-exome sequencing analyses reveal a novel de novo KCNB1 missense variant

The patient was found to be heterozygous for a de novo missense variant, 1133T>C, in exon 2 of KCNB1, which encodes the Kv2.1 channel. This variant affects codon 378, a highly conserved amino acid residue in the pore helix of the Kv2.1 channel. The mutation substitutes valine 378 with alanine, the disruption of which is predicted by SIFT (Kumar et al., 2009) and PolyPhen2 (Adzhubei et al., 2010) to be damaging. Valine 378 is the amino acid position just before the “GYG” motif, encoded by residues 379–381, which defines the K+ selectivity filter. Previous studies found that a valine to alanine mutation at the equivalent residue in the Drosophila melanogaster Shaker K+ channel results in voltage-activated channels exhibiting loss of ion selectivity (Heginbotham et al., 1994), suggesting that degenerate ion permissiveness may underlie the functional defect in our patient.

Kv2.1 V378A forms voltage-activated ion channels

To determine whether the V378A variant alters the function of the Kv2.1 channel, we expressed wild-type and mutant human Kv2.1 channels in CHO-K1 cells and examined whole-cell current under voltage clamp. Cotransfection of the wild-type Kv2.1 construct with a GFP construct resulted in voltage-activated currents in green fluorescent cells (GFP+). When voltage was stepped positive from a negative holding potential, outward currents resulted after a delay, with a sigmoid waveform (Fig. 1 A) indicative of the human voltage-activated delayed rectifier Kv2.1 channel (Ikeda et al., 1992; Zhang et al., 2003; Torkamani et al., 2014). Transfections of the V378A construct also resulted in voltage-activated currents (Fig. 1 B). These currents are distinct from the previously described EIEE-linked KCNB1 variants, S347R, G379R and T374I, none of which retained voltage activation (Torkamani et al., 2014). After a positive voltage step, the outward currents from V378A exhibited a marked peak followed by decay, indicating that inactivation occurs at a faster rate in the mutant channels; upon return to the negative holding voltage, V378A displayed larger inward tail currents (Fig. 1, A and B). The voltage dependence of channel gating was reconstructed from tail currents after depolarizing voltage stimuli (Fig. 1 C). This analysis indicated that voltage-dependent gating of the V378A variant was distinct from wild type yet had a similar steepness when fitted with a Boltzmann distribution. The incidence of voltage-activated current in GFP+ cells was low compared with wild-type Kv2.1; voltage-activated currents >400 pA at 60 mV were apparent in only 20% (18/88) of V378A GFP+ cells recorded, compared with 68% (38/56) for cells transfected with wild-type Kv2.1. As endogenous voltage-gated currents can occasionally be present in CHO-K1 cells (Lalik et al., 1993), we tested whether the currents from V378A-transfected cells had pharmacology typical of Kv2.1 channels. The tarantula venom peptide toxin GxTX is the most thoroughly validated Kv2.1 inhibitor (Herrington et al., 2006; Li et al., 2013; Liu and Bean, 2014) and does not bind to CHO-K1 cells lacking Kv2.1 channels (Tilley et al., 2014). Currents from both wild-type Kv2.1 and V378A cells were inhibited by GxTX (Fig. 1, D–F), corroborating the conclusion that the voltage-activated currents with large inward tail currents originated from Kv2.1 channels.

Kv2.1 V378A channels are not K+ selective

The reversal potential of Kv2.1 was notably altered by the V378A variant. Distinct from wild-type Kv2.1 channels, V378A channels produced large inward tail currents at voltages much more positive than the calculated K+ reversal potential of -97 mV (Fig. 2, A and B), suggesting that ions other than K+, such as Na+, might permeate the mutant channels. To test this hypothesis, we
substituted extracellular sodium with NMDG+, a large cation that cannot permeate most ion channels. NMDG+ substitution reduced the large inward tail currents. This indicates that Na+ was indeed permeating the V378A channel (Fig. 2, B, D, and E). To test if the V378A channel had completely lost the ability to select between monovalent cations, we measured the relative permeabilities of K+, Na+, NMDG+, Rb+, Cs+, and NH\textsubscript{4}+. Significantly greater permeability was seen for Na+, Cs+, and NH\textsubscript{4}+ (Fig. 2 F). None of the metal ions had a permeability distinguishable from K+. This is similar to the effects of the homologous mutation in the Shaker K+ channel (V443A) (Heginbotham et al., 1994). The loss of ionic selectivity suggests that in vivo, voltage activation of Kv2.1 V378A channels would result in Na+ flux through the channel along with K+, eliminating the ability of the channel to repolarize cells. Instead, Kv2.1 V378A would likely depolarize cells upon channel opening.

To generate a channel expression profile that could better mimic the EIEE patient heterozygous for Kv2.1 V378A, we cotransfected equal amounts of Kv2.1 wild-type and V378A subunits. The proportion of cotransfected cells with distinct delayed rectifier current (34/78 of GFP+ cells, 44%, had voltage-activated currents >400 pA at 60 mV) was intermediate between those seen upon expression of wild-type Kv2.1 and V378A subunits alone (see above). However, the voltage-activated currents recorded from V378A/wild-type Kv2.1 cotransfections had ionic selectivity similar to wild-type Kv2.1 (Fig. 2 F). This suggests that currents through channels containing V378A subunits could be small relative to channels containing only wild-type subunits, and/or that heteromeric wild-type/mutant channels may not localize efficiently to the plasma membrane.

The V378A mutation alters Kv2.1 expression

The changes in function of the V378A mutant channel potentially underlie the human disease phenotype, as proposed for other Kv2.1 pore mutations (Torkamani et al., 2014). However, it was notable that V378A channels failed to produce significant current in the majority of patch-clamped cells, suggesting an alteration in protein expression or localization. Expression and localization of wild-type and V378A channels were tested by immunofluorescence labeling of transfected cells with specific anti-Kv2.1 antibodies. CHO-K1 cells were transiently cotransfected with GFP and wild-type Kv2.1 or V378A. Multiplex immunofluorescence labeling (Fig. 3 A) indicated that although the incidence of GFP expression was similar between cultures transfected with wild-type and V378A plasmids, fewer cells expressed V378A protein relative to wild-type Kv2.1. Specifically, although GFP was expressed in \(\leq 20\% \) of cells cotransfected with either Kv2.1 wild-type or V378A plasmids, detectable
immunolabeling for V378A protein was found in a significantly lower percentage (1.6%) of cells than wild-type Kv2.1 (7.2%; Fig. 3 B). Thus, the incidence of Kv2.1 protein expression and voltage-activated current (seen above) were both reduced by the V378A mutation. Notably, there were no obvious differences in localization of the V378A protein relative to wild-type Kv2.1 in CHO-K1 cells (Fig. 3 A). Immunoblot analysis also indicated that total levels of V378A protein were lower than wild-type Kv2.1 (Fig. 3, C and D). Sodium influx can be toxic to cells, potentially reducing protein expression. To test whether reduced V378A expression is a response to permeation through the nonselective channels, transfected CHO-K1 cells were cultured in the presence of GxTX, which inhibits ion flux through both Kv2.1 wild-type and V378A (Fig. 1 F). However, GxTX treatment failed to rescue the reduced expression level of the V378A mutant in CHO-K1 cells, as assayed by immunoblot (Fig. 3, C and D).

To test whether the reduced expression of V378A channels seen in CHO-K1 cells was a generalized phenomenon, we examined the expression of V378A in another mammalian cell type, COS-1, in which we have extensively characterized the subcellular localization of rat Kv2.1 (e.g., Shi et al., 1994). Significant differences were also observed in Kv2.1 expression incidence between wild-type and V378A mutant Kv2.1 in COS-1 cells, although the fractional decrement with V378A was not as profound as in CHO-K1 cells (Fig. 4 A). No significant decrement in expression incidence was observed when wild-type and V378A subunits were coexpressed (Fig. 4 A). The subcellular localization of the V378A mutant was distinct from wild-type Kv2.1 in COS-1 cells. Wild-type Kv2.1 was observed at/near the plasma membrane, as described previously for rat Kv2.1 in this cell type (Shi et al., 1994). This plasma membrane pattern was observed only in a subset of cells expressing V378A, as a significant fraction of cells exhibited little to no expression at/near the plasma membrane (Fig. 4 B). Remarkably, incubation of COS-1 cells with GxTX rescued the expression pattern of the V378A mutant, changing the localization to a plasma membrane–like pattern more typical of wild-type Kv2.1 (Fig. 4, B and C). V378A-expressing cells with no plasma membrane–associated labeling exhibited robust intracellular immunofluorescence labeling that overlapped with Lens culinaris lectin labeling, a marker of the Golgi apparatus (Hsu et al., 1992; Ridgway et al., 1992; Fig. 4 D). Immunoblot analyses of COS-1 cells revealed lower levels of the V378A mutant protein, similar to what was observed in CHO-K1 cells (Fig. 3, C and D). Consistent with effects observed by immunofluorescence labeling, effects of treatment with GxTX could also be seen by immunoblotting of COS-1 cells, which showed that the reduced level of V378A protein expression was restored to that of wild-type Kv2.1 upon GxTX treatment (Fig. 4, E and F).

The distinct differences in subcellular localization of the mutant and wild-type Kv2.1 isoforms raised questions as to the effects of their coexpression, as occurs in

Figure 3. Decreased Kv2.1 V378A expression and lack of rescue by GxTX in CHO-K1 cells. (A) Multiplex imaging of EGFP (green), Kv2.1 (red), and Hoechst 33258 (blue, to label nuclei), indicating reduced incidence of Kv2.1 V378A expression compared with wild-type Kv2.1. Bar, 10 µm. (B) Similar transfection efficiency of EGFP but significantly lower transfection efficiency of Kv2.1 V378A compared with wild-type Kv2.1, as measured by immunofluorescence labeling (n = 3 independent samples per treatment). (C) Immunoblot analysis of Kv2.1 protein extracts cultured in the presence of 400 nM GxTX, showing reduced levels of V378A Kv2.1 protein that is not rescued by 400 nM GxTX treatment. (D) Quantitation of immunoblot analyses demonstrating significantly lower expression and lack of GxTX rescue in Kv2.1 V378A-expressing cells relative to wild type (n = 3 per treatment). **, P < 0.01, by two-way ANOVA followed by post-hoc Tukey tests. Error bars represent means ± SEM.
heterozygous patients. To test how expression of mutant V378A subunits could impact the surface localization of wild-type subunits, and vice versa, we exploited an epitope-tagged Kv2.1 C-terminal truncation mutant ΔC237, which is wild type throughout, including at the pore region, and has a subcellular localization indistinguishable from wild-type Kv2.1 (Lim et al., 2000) but lacks immunoreactivity with the anti-Kv2.1 antibody used here to detect the expression of the V378A mutant. The wild-type Kv2.1 ΔC237 truncation mutant was coexpressed with human Kv2.1 V378A. Immunolabeling for antibodies that selectively recognize one or the other allowed us to separately determine the subcellular localization of the wild-type and mutant Kv2.1 subunits in coexpressing cells. Coexpression revealed a reciprocal effect of wild-type and mutant subunits on subcellular localization, in that each was impacted by the presence of the other. Specifically, a prominent decrease in plasma membrane–associated immunolabeling for ΔC237, and an increased intracellular retention, was observed upon its coexpression with V378A. Moreover, coexpression of ΔC237 with the V378A mutant yielded an increase in V378A plasma membrane–associated immunolabeling (Fig. 5 A). At the individual cell level, the distinct subcellular localizations of ΔC237 with the V378A seen in singly expressing cells became more similar upon coexpression, with substantial overlap of immunolabeling for both isoforms in both intracellular and plasma membrane compartments (Fig. 5 B).

DISCUSSION

Trio-exome sequencing has become an effective tool for EIEE diagnosis, with de novo variants in ion channels playing a prominent role (Weckhuysen et al., 2013; EuroEPINOMICS-RES, 2014; Dyment et al., 2015). Consistent with their extreme genomic, proteomic, and functional diversity, Kv channels have been implicated in an exceptionally wide variety of genetic and autoimmune neurological disorders, including episodic ataxia,
Epileptic encephalopathy Kv2.1 mutant

The de novo V378A variant in KCNB1 fundamentally changes the ion selectivity of Kv2.1 channels from potassium-selective to nonselective cation channels, as was also demonstrated for three previously reported de novo KCNB1 mutations (Torkamani et al., 2014). To date, all reported missense variants are located within the pore domain of Kv2.1 (Sirivastava et al., 2014; Torkamani et al., 2014). All variants that have been studied in heterologous expression systems reported here and previously (Torkamani et al., 2014) have formed channels with loss of K⁺ selectivity, yielding a depolarizing inward cation conductance at negative voltages. Notably, the variant we report here is functionally distinct from those whose currents have been reported previously, in that the V378A channel is gated by voltage, whereas the other disease-associated Kv2.1 mutations characterized to date remain constitutively open (Torkamani et al., 2014). V378A channels are voltage dependent and sensitive to the Kv2-specific toxin GxTX, providing compelling evidence that the nonselective cation currents recorded from cells expressing the mutant channels are from bona fide Kv2.1 channels. These findings support the previously proposed pathogenic role for altered ionic selectivity, yet suggest that the abrogation of voltage-activated gating reported for all other Kv2.1 EIEE mutations that have been studied by voltage clamp (Torkamani et al., 2014) is not required for a disease phenotype.

Figure 5. Coexpression of wild-type Kv2.1 ΔC237 and Kv2.1 V378A results in intermediate surface expression levels. (A) Cell surface expression of wild-type Kv2.1 ΔC237 (WT), Kv2.1 V378A (V378A), Kv2.1 V378A in the presence of wild-type Kv2.1 ΔC237 (V378A Het), and wild-type Kv2.1 ΔC237 in the presence of Kv2.1 V378A (WT Het) as determined by immunofluorescence in COS-1 cells, using antibodies that distinguish wild-type Kv2.1 ΔC237 and Kv2.1 V378A. Data are from at least 80 cells per independent sample (n = 3 per treatment). Data are the mean ± SEM. **, P < 0.01; ***, P < 0.001 (two-tailed unpaired t test). (B) Multiplex immunofluorescence labeling for wild-type Kv2.1 ΔC237 (red), Kv2.1 V378A (green), and Hoechst 33258 (blue) in cells expressing wild-type Kv2.1 ΔC237 alone (top), expressing Kv2.1 V378A alone (middle), or expressing both subunits (bottom). Images were acquired with optimal exposure. Bar, 10 µm for all panels.
In addition to altered ion selectivity, our immuno-
cytchemistry experiments in transfected COS-1 cells
reveal drastic changes in the subcellular localization
of the human Kv2.1 V378A mutant, and a reduction of
apparent transfection efficiency. This could be a cellular
response to a toxic inward current through V378A that
triggers channel internalization and cell death, as these
phenotypes are partially rescued by culturing cells in
the Kv2 inhibitor GxTX. Additionally, the changes in
V378A channel conductance result from structural de-
fects in the K+ channel selectivity filter, which could im-
impact the stability and localization of channel protein.
Removal of K+ ions from the K+ channel pore leads to
pore collapse (Zhou et al., 2001) and degradation of Kv
channel proteins (Parcej and Dolly, 1989). Changes to
the structure of the pore of Kv channels can also alter
their trafficking (Manganas et al., 2001b; Vacher et al.,
2007). Synonymous defects in pore structure and local-
ization suggest caution in ascribing the pathophysiol-
gy of the Kv2.1 pore mutations to channel conductance
without taking into consideration possible effects on
channel expression and localization.

Exogenous alteration of ion channel function can
also alter channel localization. Inhibitors of ion chan-
nels have been shown to lead to pharmacological rescue
of their normal expression patterns. Kv1 channel expression
can be rescued by peptide inhibitors (Vacher et al.,
2007; Rangaraju et al., 2010), similar to the effects of GxTX on Kv2.V378A channels in COS-1 cells. Pharmacological rescue of expression has also been observed for several other disease-associated ion channel mutations, most prominently mutant CFTR and HERG (KCNH2) channels, which result in cystic fibrosis (Cai et al., 2011) and cardiac arrhythmias (Balijepalli et al.,
2010), respectively. In these cases, pharmacological rescue has been primarily attributed to chaperone-like ef-
fects on biosynthetic folding of the mutant channels
within the ER, leading to release from retention in the
ER and cell surface expression (Leidenheimer and
Ryder, 2014). A similar rescue of episodic ataxia-related
Kv1.1 mutants is observed in response to treatment with
general chemical chaperones (Manganas et al., 2001b),
which are also presumed to act at the level of protein
folding in the ER. These known mechanisms of rescue rely on treatments with membrane-permeable com-
ounds that can access intracellular compartments such
as the ER. The mechanism underlying the pharmacolo-
gical rescue of the V378A mutants in COS-1 cells, and
the lack of rescue by GxTX in CHO-K1 cells, is not known. However, that GxTX rescued V378A expression
in COS-1 cells, which have a substantial intracellular
(Golgi) pool of mutant channels, versus CHO-K1 cells,
which do not, is consistent with such an intracellular
mechanism of pharmacological rescue. GxTX partitions
into the outer leaflet of cell membranes, where it binds to membrane-facing regions of Kv2 channels (Milescu
et al., 2009; Gupta et al., 2015). Through an endocytotic
mechanism, GxTX could potentially access intracellular membranes and mediate rescue of the Golgi-localized
V378A mutant via chaperone-like effects on channel folding, as observed in the pharmacological and chemical
rescue of other intracellularly retained disease-associated ion channel mutants. Alternately, GxTX could rescue
expression of the V378A mutant by binding surface channels and preventing internalization, either by sta-
bilizing their protein structure or by inhibiting their potentially toxic nonselective inward currents.

The patient described here is heterozygous for the
de novo KCNB1 mutation that yields V378A Kv2.1. The
distinct phenotypes of the V378A mutant, specifically alterations in both ion selectivity and subcellular local-
ization, are somewhat mitigated by coexpression with
Kv2.1 isoforms with wild-type properties. This suggests
that the Kv2.1 phenotype of the heterozygous patient
may not be as drastically altered as it would be in a ho-
mozygous phenotype, and that within the tetrameric
Kv2.1 channels, the mutant V378A subunits may exert
dose-dependent as opposed to dominant effects on
wild-type subunits. Detailed analyses of Kv2.1 channels with distinct subunit stoichiometries, of the type needed
to determine how the subunit stoichiometry yields the distinct phenotypes of tetrameric channels, have not
been performed. This could be achieved through ex-
tensive dose–response studies of wild-type and mutant subunits to bias their respective assembly into hetero-
meric channels with a predominance of wild-type or
mutant subunits within the channel population, and
the subsequent deconvolution of the expressed channel
characteristics to determine the details of the channels with distinct characteristics (Ruppersberg et al.,
1990; MacKinnon, 1991; Manganas and Trimmer, 2000), or
generation of concatenated subunits to generate tetra-
meric channels with covalently defined subunit compos-
sitions (Sack et al., 2008). Future studies may reveal the
nature of the impact of the growing number of diverse
KCNB1 mutations associated with epileptic encephalopa-
thies on heteromeric channels, as has been performed
for other Kv channelopathies, for example, KCNAM
mutations associated with episodic ataxia, for which muta-
tions with dominant, recessive, and haploinsufficiency
phenotypes have been documented (Adelman et al.,
1995; Manganas et al., 2001a; Kulmann, 2002).

The cell type–specific differences in V378A trafficking
are reminiscent of Kv2.1 expression in different neuronal subpopulations of the mammalian brain. For
instance, Kv2.1 clusters colocalize with ryanodine recep-
tor–rich calcium signaling domains at the plasma
membrane to a different extent in striatal and neocorti-
cal neurons (Mandikian et al., 2014), and in cultured
hippocampal interneurons versus principal neurons
(Antonucci et al., 2001). Additionally, steady-state levels
of Kv2.1 phosphorylation also differ between different
neuronal subpopulations (Mandikan et al., 2014). Cell type–specific differences in the subcellular localization of Kv2.1 channels are also observed in different heterologous cell backgrounds (Scannevin et al., 1996; Mohapatra and Trimmer, 2006). Our results suggest that expression and localization defects may contribute to the pathophysiological impact of disease-causing Kv2.1 mutations in a cell type–specific fashion. As Kv2.1 channel localization plays a structural role in neurons in contributing to the formation of plasma membrane–ER junctions and recruiting junctional proteins including those involved in intracellular Ca2+ signaling (Antonucci et al., 2001; Fox et al., 2015), changes in Kv2.1 localization could yield neurological consequences related to nonconductive functions of Kv2.1. The cell type–specific pharmacological rescue of the V378A variant indicates that effects on subcellular localization should be considered in therapeutic strategies targeting disease-causing Kv2.1 variants, as attempts to pharmacologically inhibit their aberrant depolarizing currents could inadvertently result in greater functional expression of disease-causing channels.

We thank the family of the patient for participation. This work is dedicated to the memory of coauthor Kenneth Sungin Eum (1987–2014). Ken was a talented PhD student who conducted much of the electrophysiology. He was especially driven by this opportunity to study the mechanisms underlying debilitating disease.

We acknowledge support from the Clare Giannini Fund (to S.F. Kingsmore) and the NIH (award R01 NS042225 to J.S. Trimmer). GxTX was synthesized at the Molecular Foundry of the Lawrence Berkeley National Laboratory under US Department of Energy contract no. DE-AC02-05CH11231.

The authors declare no competing financial interests.

Author contributions: Conception and design of exome sequencing experiments: S.F. Kingsmore, N. Miller, C.J. Saunders, and E.G. Farrow. Analysis and interpretation of exome sequencing data: C.J. Saunders, E.G. Farrow, I. Thiffault, and N. Miller. Contributed reagents/materials/analysis tools: N. Miller and E.G. Farrow. Patient recruitment and clinical investigations: N.P. Safina, L. Grote, and S. Soden. Electrophysiology: K.S. Eum, D.C. Austin (performed), and J.S. Trimmer (directed). Writing: I. Thiffault, C.J. Saunders, N.P. Safina, and H.J. Chung. 2014. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit. *PLoS One* 9:e103655. http://dx.doi.org/10.1371/journal.pone.0103655

Covas, A. 2014. Clinical management of epileptic encephalopathies of childhood and infancy. *Expert Rev. Neurother.* 14:687–701. http://dx.doi.org/10.1586/14737175.2014.919854

Dedek, K., L. Fusco, N. Teloy, and O.K. Steinlein. 2003. Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. *Epilepsy Res.* 54:21–27. http://dx.doi.org/10.1016/S0920-9211(03)00037-8

Devaux, J.J., K.A. Kleopa, E.C. Cooper, and S.S. Scherer. 2004. KCNQ2 is a nodal K+ channel. *J. Neurosci.* 24:1236–1244. http://dx.doi.org/10.1523/JNEUROSCI.6123-03.2004

Du, J., L.L. Haak, E. Philips-Tansley, J.T. Russell, and C.J. McBain. 2000. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. *J. Physiol.* 522:19–31. http://dx.doi.org/10.1111/j.1469-7793.2000.0122-00019.x

Dymant, D.A., M. Tétreault, C.L. Beaulieu, T. Hartley, P. Ferreira, J.W. Chardon, J. Marcadier, S.L. Sawyer, J.J. Mosca, A.M. Innes, et al. 2015. Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study. *Clin. Genet.* 88:34–40. http://dx.doi.org/10.1111/cge.12464

EuroEPINOMICS-RES. 2014. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. *Am. J. Hum. Genet.* 95:360–370. http://dx.doi.org/10.1016/j.ajhg.2014.08.013

Fox, P.D., R.J. Loftus, and M.M. Tamkun. 2015. Regulation of Kv2.1 K+ conductance by cell surface channel density. *J. Neurosci.* 35:1259–1270. http://dx.doi.org/10.1523/JNEUROSCI.3908-12.2013

Fox, P.D., C.J. Haberkorn, E.J. Akin, P.J. Seel, D. Krapf, and M.M. Tamkun. 2015. Induction of stable ER-plasma-membrane junctions by Kv2.1 potassium channels. *J. Cell Sci.* 128:2096–2105. http://dx.doi.org/10.1242/jcs.166009

Gagnier, J.J., G. Kenle, D.G. Altman, D. Moher, H. Sox, D. Riley, and CARE Group. 2013. The CARE guidelines: Consensus-based clinical case reporting guideline development. *Glob. Adv. Health Med.* 2:38–43. http://dx.doi.org/10.7453/gahmj.2013.008

Antonucci, D.E., S.T. Lim, S. Vassanelli, and J.S. Trimmer. 2001. Dynamic localization and clustering of dendritic Kv2.1 voltage-dependent potassium channels in developing hippocampal neurons. *Neuroscience.* 108:69–81. http://dx.doi.org/10.1016/S0306-4522(01)00476-6

Baljepally, S.Y., C.L. Anderson, E.C. Lin, and C.T. January. 2010. Rescue of mutated cardiac ion channels in inherited arrhythmia syndromes. *J. Cardiovasc. Pharmacol.* 56:113–122. http://dx.doi.org/10.1586/0022-3042.56.2.113
Guan, D., T. Tkatch, D.J. Surmeier, W.E. Armstrong, and R.C. Fochting. 2007. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. *J. Physiol.* 581:941–960. http://dx.doi.org/10.1113/jphysiol.2007.128454

Gupta, K., M. Zamanian, C. Bae, M. Mileds, D. Krepkly, D.C. Tilley, J.T. Sack, Y.Y. Vladimir, J.I. Kim, and K.J. Swartz. 2015. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels. *eLife* 4:e06774. http://dx.doi.org/10.7554/eLife.06774

Heginbotham, L., Z. Lu, A. Abramson, and R. MacKinnon. 1994. Mutations in the K+ channel signature sequence. *Biophys. J.* 66:1061–1067. http://dx.doi.org/10.1016/S0006-3495(04)80887-2

Hennington, J., V.P. Zhou, J.M. Bagianese, P.M. Dukls, Y. Feng, V.A. Warren, M.M. Smith, M.G. Kohls, V.M. Garsky, M. Sanchez, et al. 2006. Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucagon-dependent insulin secretion. *Diabetes.* 55:1034–1042. http://dx.doi.org/10.2337/diabetes.55.04.06.db05-0788

Hsu, V.W., N. Shah, and R.D. Klausner. 1992. A brefeldin A-like phenotype is induced by the overexpression of a human ER-2-like protein, ELP-1. *Cell.* 69:625–635. http://dx.doi.org/10.1016/0092-8674(92)90226-3

Ikeda, S.R., F. Soler, R.D. Zühlke, R.H. Joho, and D.L. Lewis. 1992. Heterologous expression of the human potassium channel Kv2.1 in clonal mammalian cells by direct cytoplasmic microinjection of cRNA. *Pflugers Arch.* 422:201–203. http://dx.doi.org/10.1007/BF00370422

King, A.N., C.F. Manning, and J.S. Trimmer. 2014. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. *J. Comp. Neurol.* 522:2594–2608. http://dx.doi.org/10.1002/cne.23551

Kullmann, D.M. 2002. The neuronal channelopathies. *Annu. Rev. Physiol.* 64:845–868. http://dx.doi.org/10.1146/annurev.physiol.64.090501.140035

Kumar, P., S. Henikoff, and P.C. Ng. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat. Protoc.* 4:2004–2012. http://dx.doi.org/10.1038/nprot.2009.86

Lalik, P.H., D.S. Krafte, W.A. Volberg, and R.B. Ciccarelli. 1993. Determination of the subunit stoichiometry of a voltage-activated potassium channel. *J. Biol. Chem.* 268:29685–29693. http://dx.doi.org/10.1074/jbc.268.49.29685

Mandikian, D., E. Bocksteins, L.K. Parajuli, H.I. Bishop, O. Cerda, R. Shigemoto, and J.S. Trimmer. 2014. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1’ channels and yarondine receptors. *J. Comp. Neurol.* 522:3555–3574. http://dx.doi.org/10.1002/cne.23641

Manganas, L.N., and J.S. Trimmer. 2000. Subunit composition determines Kv1 potassium channel surface expression. *J. Biol. Chem.* 275:29863–29869. http://dx.doi.org/10.1074/jbc.M005010200

Manganas, L.N., S. Akhtar, D.E. Antonucci, C.R. Campomanes, J.O. Dolly, and J.S. Trimmer. 2001a. Episodic ataxia type-1 mutations in the Kv.1 potassium channel display distinct folding and intracellular trafficking properties. *J. Biol. Chem.* 276:49427–49434. http://dx.doi.org/10.1074/jbc.M109325200

Manganas, L.N., Q. Wang, R.H. Scannevin, D.E. Antonucci, K.J. Rhodes, and J.S. Trimmer. 2001b. Identification of a trafficking determinant localized to the Kv1 potassium channel pore. *Proc. Natl. Acad. Sci. USA.* 98:14055–14059. http://dx.doi.org/10.1073/pnas.241403898

Mileds, M., F. Bosmans, S. Lec, A.A. Alabi, J.I. Kim, and K.J. Swartz. 2009. Interactions between lipids and voltage sensor paddles detected with tarantula toxins. *Nat. Struct. Mol. Biol.* 16:1080–1085. http://dx.doi.org/10.1038/nsmb.1679

Misonou, H., D.P. Mohapatra, E.W. Park, V. Leung, D. Zhen, K. Misonou, A.E. Anderson, and J.S. Trimmer. 2004. Regulation of ion channel localization and phosphorylation by neuronal activity. *Nat. Neurosci.* 7:711–718. http://dx.doi.org/10.1038/nn1260

Misonou, H., S.M. Thompson, and X. Cai. 2008. Dynamic regulation of the Kv2.1 voltage-gated potassium channel during brain ischemia through neuroglial interaction. *J. Neurosci.* 28:8529–8538. http://dx.doi.org/10.1523/JNEUROSCI.1417-08.2008

Mohapatra, D.P., and J.S. Trimmer. 2006. The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels. *J. Neurosci.* 26:6695–6695. http://dx.doi.org/10.1523/JNEUROSCI.4620-05.2006

Murakoshi, H., and J.S. Trimmer. 1999. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. *J. Neurosci.* 19:1728–1755.

Nabbout, R., and O. Duluc. 2012. Epilepsy: Genetics of early-onset epilepsy with encephalopathy. *Nat. Rev. Neuro.* 8:129–130. http://dx.doi.org/10.1038/nrneuro.2012.12

O’Connell, K.M., R. Loftus, and M.M. Tamkun. 2010. Localization and subunit composition of a putative constituent of certain voltage-activated K+ channels. *J. Comp. Neurol.* 522:3555–3574. http://dx.doi.org/10.1002/cne.23641

Rangaraju, S., K.K. Khoo, Z.P. Feng, G. Crossley, M.W. Pennington, et al. 2010. Potassium channel modulation by a toxin domain in matrix metalloprotease 23. *J. Biol. Chem.* 285:9124–9136. http://dx.doi.org/10.1074/jbc.M109.071206

Richard, C.S., S. Bale, D.B. Bellissimo, S. Das, W.W. Grody, M.R. Hegde, E. Lyon, and B.E. Ward. 2008. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. *Genet. Med.* 10:294–300. http://dx.doi.org/10.1097/GIM.0b013e3181635ca8

Ridgway, N.D., P.A. Dawson, Y.K. Ho, M.S. Brown, and J.L. Goldstein. 1992. Translocation of oxytocin binding protein to Golgi apparatus triggered by ligand binding. *J. Cell Biol.* 116:307–319. http://dx.doi.org/10.1083/jcb.116.2.307

Thiffault et al. 409
Ruppersberg, J.P., K.H. Schröter, B. Sakmann, M. Stocker, S. Sewing, and O. Pongs. 1990. Heteromultimeric channels formed by rat brain potassium-channel proteins. *Nature* 345:535–537. http://dx.doi.org/10.1038/345535a0

Sack, J.T., R.W. Aldrich, and W.F. Gilly. 2004. A gastropod toxin selectively slows early transitions in the Shaker K channel’s activation pathway. *J. Gen. Physiol.* 130:415–420. http://dx.doi.org/10.1085/jgp.200309939

Sammier, P.D., C.M. Weigle, and M.M. Tamkun. 2008. The Kv2.1 K+ channel targets to the axon initial segment of hippocampal and cortical neurons in culture and in situ. *BMC Neurosci.* 9:112. http://dx.doi.org/10.1186/1471-2202-9-112

Saunders, C.J., N.A. Miller, S.E. Soden, D.L. Dinwiddie, A. Noll, Srivastava, S., J.S. Cohen, H. Vernon, K. Barañano, R. McClellan, Speca, D.J., G. Ogata, D. Mandikian, H.I. Bishop, S.W. Wiler, K. Singh, N.A., C. Charlier, D. Stauffer, B.R. DuPont, R.J. Leach, R. Mels, G.M. Ronen, I. Bjørre, T. Quattlebaum, J.V. Murphy, et al. 2012. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. *Sci. Transl. Med.* 4:154ra135. http://dx.doi.org/10.1126/scitranslmed.3004041

Sack, J.T., O. Shamotienko, and J.O. Dolly. 2008. How to validate a hetereric ion channel drug target: Assessing proper expression of concatenated subunits. *J. Gen. Physiol.* 131:415–420. http://dx.doi.org/10.1085/jgp.200709939

Torkamani, A., K. Bersell, B.S. Jorge, R.L. Bjork Jr., J.R. Friedman, C.S. Bloss, J. Cohen, S. Gupta, S. Naidu, C.G. Vanoye, et al. 2014. De novo KCNBI mutations in epileptic encephalopathy. *Ann. Neurol.* 76:529–540. http://dx.doi.org/10.1002/ana.24263

Trimmer, J.S. 1991. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. *Proc. Natl. Acad. Sci. USA* 88:10764–10768. http://dx.doi.org/10.1073/pnas.88.23.10764

Trimmer, J.S. 2015. Subcellular localization of K+ channels in mammalian brain neurons: Remarkable precision in the midst of extraordinary complexity. *Neuron* 85:238–256. http://dx.doi.org/10.1016/j.neuron.2014.12.042

Vacher, H., D.P. Mohapatra, H. Misonou, and J.S. Trimmer. 2007. Regulation of Kv1 channel trafficking by the mamba snake neurotoxin dendrotoxin K. *FASEB J.* 21:906–914. http://dx.doi.org/10.1096/fj.06-7229com

Weckhuysen, S., S. Mandelstam, A. Suls, D. Audenaert, T. Deconinck, L.R. Claes, L. Deprez, D. Hristova, I. Yordanova, et al. 2012. KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy. *Ann. Neurol.* 71:15–25. http://dx.doi.org/10.1002/ana.22644

Weckhuysen, S., V. Ivanovic, R. Hendrickx, R. Van Coster, H. Hjalgrim, R.S. Møller, S. Grønborg, A.S. Schoonjans, B. Ceulemans, S.B. Heavin, et al. 2013. Extending the KCNQ2 encephalopathy spectrum: Clinical and neuroimaging findings in 17 patients. *Neurology* 81:1697–1703. http://dx.doi.org/10.1212/WNL.0b013e3182a6005f

Wimmer, V.C., C.A. Reid, E.Y. So, S.F. Berkovic, and S. Petrov, 2010. Axon initial segment dysfunction in epilepsy. *J. Physiol.* 588:1829–1840. http://dx.doi.org/10.1113/jphysiol.2010.188417

Zhang, Z.H., Y.T. Lee, K. Rhodes, K. Wang, T.M. Argentieri, and Q. Wang. 2003. Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels. *Brain Res. Mol. Brain Res.* 115:29–38. http://dx.doi.org/10.1016/S0169-328X(03)00175-X

Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. *Nature* 414:43–48. http://dx.doi.org/10.1038/35102009

Shi, G., A.K. Kleinkelaus, N.V. Marrion, and J.S. Trimmer. 1994. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. *J. Biol. Chem.* 269:23204–23211.

Singh, N.A., C. Charlier, D. Stauffer, B.R. DuPont, R.J. Leach, R. Mels, G.M. Ronen, I. Bjørre, T. Quattlebaum, J.V. Murphy, et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. *Nat. Genet.* 18:25–29. http://dx.doi.org/10.1038/ng0198-25

Speca, D.J., G. Ogata, D. Mandikian, H.I. Bishop, S.W. Wiler, K. Eum, H.J. Wenzel, E.T. Doisy, L. Matt, K.L. Campi, et al. 2014. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. *Genes Brain Behav.* 13:394–408. http://dx.doi.org/10.1111/gbb.12120

Srivastava, S., J.S. Cohen, H. Vernon, K. Barañano, R. McClellan, L. Jamal, S. Naidu, and A. Fatemi. 2014. Clinical whole exome sequencing in child neurology practice. *Ann. Neurol.* 76:473–483. http://dx.doi.org/10.1002/ana.24251

Tanaka, M., and W. Herr. 1990. Differential transcriptional activation by Oct-1 and Oct-2: Interdependent activation domains induce Oct-2 phosphorylation. *Cell* 60:375–386. http://dx.doi.org/10.1016/0092-8674(90)90589-7

Tilley, D.C., K.S. Eum, S. Fletcher-Taylor, D.C. Austin, C. Dupré, L.A. Patrón, R.L. Garcia, K. Lam, V. Yarov-Yarovoy, B.E. Cohen, and J.T. Sack. 2014. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells. *Proc. Natl. Acad. Sci. USA* 111:E4789–E4796. http://dx.doi.org/10.1073/pnas.1406761111

Sack. 2014. Chemoselective tarantula toxins report voltage activation of a delayed rectifier K+ channel polypeptide in rat brain. *Proc. Natl. Acad. Sci. USA* 88:10764–10768. http://dx.doi.org/10.1073/pnas.88.23.10764

Trimmer, J.S. 2015. Subcellular localization of K+ channels in mammalian brain neurons: Remarkable precision in the midst of extraordinary complexity. *Neuron* 85:238–256. http://dx.doi.org/10.1016/j.neuron.2014.12.042

Vacher, H., D.P. Mohapatra, H. Misonou, and J.S. Trimmer. 2007. Regulation of Kv1 channel trafficking by the mamba snake neurotoxin dendrotoxin K. *FASEB J.* 21:906–914. http://dx.doi.org/10.1096/fj.06-7229com