The significance of chemokine CXCL-8 in esophageal carcinoma

Marta Łukaszewicz-Zając1, Sara Pączek1, Barbara Mroczko2

1Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
2Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland

Submitted: 1 May 2017
Accepted: 22 August 2017

Arch Med Sci
DOI: https://doi.org/10.5114/aoms.2017.71933
Copyright © 2020 Termedia & Banach

Chemokines are a group of small molecular weight proteins that are structurally related. These molecules play an important role in the growth, differentiation and activation of many types of cells [1, 2]. Chemokines are synthesized mostly by leukocytes and act through their cognate G-protein coupled receptors to cause a cellular response, such as migration, adhesion or chemotaxis [1, 3]. The chemokine family has been classified into four classes: CC, CXC, CX3C, and (X), based on the arrangement of N-terminal cysteine residues [4]. These small peptides may also be grouped into inflammatory, homeostatic or dual function chemokines. Inflammatory chemokines can be induced during an immune response, whereas homeostatic chemokines are involved in control of cell migration [5]. The chemokine receptors are seven-transmembrane receptors coupled to G-proteins, that consist of an N-terminus outside the cell surface, three extracellular and three intracellular loops as well as a C-terminus in the cytoplasm [6, 7].

C-X-C motif chemokine 8 (CXCL-8) is a pro-inflammatory cytokine that belongs to the CXC chemokine subgroup. The CXC family members, known as α-chemokines, have an intervening amino acid between the first two cysteines and are located on chromosome 4 [8]. The CXC chemokines were further classified based on the presence or absence of the motif glu-leu-arg (ELR motif), into ELR+ and ELR– chemokines [3]. CXCL-8 is also known as interleukin-8 (IL-8) as well as neutrophil-activating peptide-1 (NAP-1). This cytokine was originally described as an inducer of neutrophil mobilizations in vivo [9, 10]. The CXCL-8 gene encodes for a protein of 99 amino acids that is processed to either 72 amino acids in monocytes and macrophages or 77 amino acids in nonimmune cells [7, 11]. In physiological conditions CXCL-8 stimulates release of neutrophil granules. As a chemoattractant, this cytokine may change the levels of intracellular calcium as well as inducing re-arrangement of the cytoskeleton and exocytosis of granule proteins [5, 12]. The activation of CXCL-8 is regulated via two cell-surface, G protein coupled receptors (CXCR-1 and CXCR-2) that are structurally similar [6, 7]. The CXCR-1 receptor is activated in response to binding of CXCL-8 and granulocyte chemotactic protein-2 (GCP-2), while CXCR-2 is activated by multiple C-X-C chemokines, such as growth-related oncogenes (GRO) [6, 7]. In addition, it has been assessed that CXCR-2 is the primary receptor for angiogenesis [1, 13].

Chemokines and their specific receptors are known to play an important role in inflammation, infection and tissue injury as well as in the
Esophageal cancer (EC) is one of the most aggressive tumors of the alimentary tract. Due to its unfavorable survival rate and late diagnosis, it is a focus of research for oncologists from all over the world [14]. The poor prognosis of EC patients is caused by the lack of early symptoms of disease [15]. At first, attention should be paid to signs of dysphagia, which starts with difficulty in swallowing. Other significant symptoms include vomiting, hemoptysis, chronic cough and epigastric pain [16]. Staging in EC is specified by the AJCC (American Joint Committee on Cancer) System, based on the TNM classification, which determines the primary tumor invasion (T factor), the participation of lymph nodes (N factor) and distant metastases (M factor) [17]. There are two main histological subtypes of EC: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). As for the incidence, in 2012 EC occurred in an estimated 450,000 cases worldwide, whereas ESCC occurred almost seven times more often than EAC. However, in Europe and the United States the number of EAC has been dramatically increasing for the last 20 years, while ESCC seems to be relatively stable in Western countries. It has been estimated that the rate of increase in EAC cases is greater than that of any other solid tumor over the same time period [18, 19]. These changes in epidemiology might be due to the increasing frequency of Barrett’s esophagus (BE) in the population. The factors which may affect ESCC are mostly observed in developing countries, while the components affecting EAC can be commonly observed in the economically developed countries [1, 18, 19]. It is generally known that the leading risk factors for both types of EC are tobacco smoking and excessive alcohol consumption as well as a bad economic situation and frequent intake of hot drinks. The most common factors which may cause EAC are obesity, gastroesophageal reflux disease (GERD) and BE [20]. In addition, some studies show that morbidity for men, especially for EAC cases, is higher than for women. Generally, it has been estimated that the mortality rate is similar to the incidence rate for EC [21]. The treatment guidelines include various options such as esophagectomy, radio- and chemotherapy or resection of local mucosa [22]. Despite the advances in EC management, the survival rate of EC patients is still poor, mostly because of the lack of effective screening for early detection and absence of early symptoms of the disease. Actually, there are no highly sensitive and highly specific biomarkers useful in early detection of EC [23]. The classical biochemical tumor markers used in the routine diagnosis and follow-up of EC patients are: for ESCC squamous cell carcinoma antigen (SCC-Ag), and for EAC carcinoembryonic antigen (CEA). However, their diagnostic sensitivity and specificity are still unsatisfactory [24]. Thus, currently there is an urgent need for novel, less invasive and cheaper screening tools for early EC diagnosis [25]. Currently, cancer proteomics provide a novel tool to identify new diagnostic biomarkers that may improve clinical outcome. In our previous studies we assessed the diagnostic usefulness of selected inflammatory proteins such as C-reactive protein (CRP), interleukin-6 (IL-6), chemokine CXCL12 and its specific receptor (CXCR-4) as well as the receptor for CXCL-8 (CXCR-2) in EC patients [26–29]. We conclude that the diagnostic significance of all analyzed inflammatory mediators was higher than that of classical tumor markers (CEA and SCC-Ag) of esophageal cancer and increased for combined measurement with CEA or SCC-Ag. In addition, serum CRP and IL-6 levels were found to be indicators of tumor stage (TNM), the presence of lymph node (N factor) and distant metastases (M factor) and may be useful in the assessment of tumor progression as well as prognosis of EC patients’ survival. Our findings demonstrated the high diagnostic usefulness of the measurement of selected inflammatory mediators, especially in the diagnosis of patients with ESCC.

The role of chemokines and their receptors, including CXCL-8 and CXCR-2, in tumor development is explained by the fact that chronic inflammation is a crucial process in carcinogenesis. These proteins attract leukocytes to the inflammation site [3]. It has been shown that chemokines play a dual role in tumor progression. The recruitment of immune cells may promote anti-tumor activities via macrophages, which eliminate the tumor cells. On the other hand, the attraction of immune cells by chemokines and other factors secreted by malignant cells may facilitate the increase of tumor growth and supply survival factors as well as angiogenic mediators for the tumor. Thus, chemokines including CXCL-8 secreted by the tumor tissue or stroma promote leukocyte infiltration of the tumor [3, 30].

Originally, the chemokine CXCL-8 was identified as a neutrophil chemotactic factor in the supernatants of activated monocytes [31]. CXCL-8 as a CXC family chemokine attracts neutrophils and lymphocytes [3]. However, elevated expression of CXCL-8 and/or its receptors has been found in endothelial cells, infiltrating neutrophils, and tumor-associated macrophages as well as in cancer cells. Stromal cells are also able to produce CXCL8 to simplify the invasion or metastasis of cancer cells. Thus, it may suggest that this chemokine is a component of the tumor microenvironment [32, 33]. Moreover, CXCL-8 may also contribute...
The significance of chemokine CXCL-8 in esophageal carcinoma

CXCL-8 – C-X-C motif chemokine 8.

Figure 1. The role of chemokine CXCL-8 in cancer [48]
The chemokine CXCL-8 is an activator of neutrophil chemotaxis and degranulation. Recent investigations have indicated that this chemokine plays a crucial role in development and metastasis of many tumors, including EC. In our paper, we review the current literature regarding the clinical significance of CXCL-8 in the diagnosis and prognosis of EC patients. The authors revealed the significantly increased expression of CXCL-8 in EC cells that correlated with clinicopathological tumor parameters. In addition, the measurement of CXCL-8 concentrations might also be useful in the diagnosis of this malignancy. Moreover, inhibition of its specific receptor, CXCR-2, may lead to decreased invasiveness of EC. In conclusion, current investigations have shed light on the potential usefulness of CXCL-8 in the diagnosis and prognosis of EC patients. However, due to its non-specific nature, future larger studies on serum of EC patients must be performed. Despite this, the CXCL-8 and CXCL-8/CXCR-2 pathway may represent novel therapeutic applications.

Acknowledgments
The present project was supported by the Medical University of Bialystok, Poland (N/ST/ MN/16/001/2207). BM is supported by funds from the Leading National Research Centre (KNOW).

Table I. Diagnostic significance of CXCL-8 in esophageal cancer

Source	Results	References
Elevated CXCL-8 and its receptor (CXCR-2) expression significantly correlated with the depth of invasion, lymph node metastasis and with lymphatic and venous invasion	[48]	
Co-expression of CXCL-8 and CXCR-2 was an independent predictive factor for recurrence-free survival of ESCC patients		
Serum concentrations of CXCL-8 were significantly higher in ESCC patients in which CXCL-8 and CXCR-2 were overexpressed		[51]
CXCL-8 gene expression was significantly increased in EAC and CXCL-8 expression levels in tumor and non-tumor samples were associated with poor prognosis. Elevated expression of CXCL-8 in association with miRNA could predict clinical outcome for EAC patients		
Serum levels of CXCL-8 were significantly elevated in EAC patients compared to healthy controls	[52]	
Serum concentrations of CXCL-8 were significantly higher in ESCC patients		
Serum CXCL-8 levels positively correlated with tumor size, cancer dissemination, presence of lymph node and distant metastasis		
Serum CXCL-8 concentrations correlated with pro-inflammatory cells and the biochemical marker of inflammation CRP		
Elevated expression of CXCL-8 in association with miRNA could predict clinical outcome for EAC patients		
Elevated CXCL-8 and its receptor (CXCR-2) expression significantly correlated with clinicopathological tumor parameters. In addition, the measurement of CXCL-8 concentrations might also be useful in the diagnosis of this malignancy. Moreover, inhibition of its specific receptor, CXCR-2, may lead to decreased invasiveness of EC. In conclusion, current investigations have shed light on the potential usefulness of CXCL-8 in the diagnosis and prognosis of EC patients. However, due to its non-specific nature, future larger studies on serum of EC patients must be performed. Despite this, the CXCL-8 and CXCL-8/CXCR-2 pathway may represent novel therapeutic applications.		
Conflict of interest

The authors declare no conflict of interest.

References

1. Srivastava MS, Hussain Z, Girić Z, et al. Targeting chemokine pathways in esophageal adenocarcinoma. Cell Cycle 2014; 13: 3320-7.
2. Borisch LG, Steinicke JW. Chemokines and chemokines. J Allergy clin Immunol 2003; 111 (2 Suppl): S460-75.
3. Raman D, Baughner PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett 2007; 256: 137-65.
4. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. 2000; 12: 121-7.
5. Palomino DC, Marti LC. Chemokines and immunity. Einstein 2015; 13: 469-73.
6. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science 1991; 253: 1278-80.
7. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735-41.
8. Murphy PM, Baggioioli M, Charo IF; et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52: 145-76.
9. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Letters. 2008;267: 226-44.
10. Van Damme J, Van Beeumen J, Opdenakker G, Billiau S. A novel, NH2-terminal sequence-characterized human monokine possessing neutrophil chemotactic, skin reactive, and granulocytosis-promoting activity. J Exp Med 1988; 167: 1364-76.
11. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neurooncol 2005; 7: 122-33.
12. Paccaud JP, Schifferli JA, Baggiolini M. NAP-1/IL-8 induces up-regulation of CR1 receptors in human neutrophil leukocytes. Biochem Biophys Res Commun 1990; 166: 187-92.
13. Addison CL, Daniel TQ, Burdick MD, et al. The CXC chemokine receptor 2, CXCR2 is the putative receptor for ELRC CXC chemokine-induced angiogenic activity. J Immunol 2000; 165: S267-79.
14. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-34.
15. Murakami S, Hashimoto T, Noguchi T, et al. The utility of endoscopic screening for patients with esophageal head and neck cancer. Dis Esophagus 2019; 12: 186-90.
16. Newton S, Hickey M, Brant J. Mosby's Oncology Nursing Advisor: A Comprehensive Guide to Clinical Practice. 2nd ed. Mosby 2017; 58-60.
17. Jass JR, LH S. WHO International histological classification of tumors. Histological typing of intestinal tumors. Springer-Verlag, New York 1989.
18. Vial M, Grande L, Pera M. Epidemiology of adenocarcinoma of the esophagus, gastric cardia and upper gastric third. Recent Results Cancer Res 2010; 182: 1-17.
19. Bosetti C, Levi F, Ferlay J. Trends in oesophageal cancer incidence and mortality in Europe. Int J Cancer 2008; 122: 1118-29.
20. DomperArnal ML, Ferrández Arenas À, Lasas Arbeloa À. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol 2015; 14: 7933-43.
21. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 2015; 64: 381-7.
22. Berry MF. Esophageal cancer: staging system and guidelines for staging and treatment. J Thorac Dis 2014; 6 (Suppl 3): S289-97.
23. Merkow RP, Bilimoria KY, McCarter MD, Chow WB, Ko CY, Bentrem DJ. Use of multimodality neoadjuvant therapy for esophageal cancer in the United States: assessment of 987 hospitals. Ann Surg Oncol 2012; 19: 357-64.
24. Motoyama S, Miura M, Hinaí Y, et al. CRP genetic polymorphism is associated with lymph node metastasis in thoracic esophageal squamous cell cancer. Ann Surg Oncol 2009; 16: 2479-85.
25. Uemura N, Kondo T. Current advances in esophageal cancer proteomics. Biochim Biophys Acta 2015; 1854: 687-95.
26. Łukaszewicz-Zając M, Mroczko B, Kozłowski M, Szmitkowski M. The serum concentrations of chemokine CXCL12 and its specific receptor CXCR4 in patients with esophageal cancer. Dis Markers 2016; 2016: 7963895.
27. Łukaszewicz-Zając M, Kuczyńska-Przybik A, Muszyński P, Kozłowski M, Szmitkowski M, Mroczko B. Serum concentrations of receptor for interleukin-8 in patients with esophageal cancer. Pol Arch Med Wewn 2016; 126: 854-61.
28. Łukaszewicz-Zając M, Mroczko B, Kozłowski M, Szmitkowski M, Ziegenhirt K. The significance of chemokine CXCL-8 in esophageal carcinoma.
a potential regulatory factor in breast tumors. Int J Cancer 1997; 72: 937-41.
40. König A, Vilsmaier T, Rack B, et al. Determination of interleukin-4, -5, -6, -8 and -13 in serum of patients with breast cancer before treatment and its correlation to circulating tumor cells. Anticancer Res 2016; 36: 3123-30.
41. Brew R, Erikson JS, West DC, Kinsella AR, Slavin J, Christmas SE. Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine 2000; 12: 78-85.
42. Xia W, Chen W, Zhang Z, et al. Prognostic value, clinicopathologic features and diagnostic accuracy of interleukin-8 in colorectal cancer: a meta-analysis. PLoS One 2015; 10: e0123484.
43. Kitadai Y, Haruma K, Sumii K, et al. Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 1998; 152: 93-100.
44. Ivarsson K, Runesson E, Sundfeldt K, et al. The chemotactic cytokine interleukin-8 – a cyst fluid marker for malignant epithelial ovarian cancer? Gynecol Oncol 1998; 71: 420-3.
45. Yin J, Zeng F, Wu N, Kang K, Yang Z, Yang H. Interleukin-8 promotes human ovarian cancer cell migration by epithelial-mesenchymal transition induction in vitro. Clin Transl Oncol 2015; 17: 365-70.
46. Reiland J, Furcht LT, McCarthy JB. CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 1999; 41: 78-88.
47. Chan SL, Chan AW, Chan AK, et al. Systematic evaluation of circulating inflammatory markers for hepatocellular carcinoma. Liver Int 2017; 37: 280-9.
48. Ogura M, Takeuchi H, Kawakubo H, et al. Clinical significance of cxcl-8/cxcr-2 network in esophageal squamous cell carcinoma. Surgery 2013; 154: 512-20.
49. Krzystek-Korpacka M, Matusiowiec M, Diakowska D, et al. Elevation of circulating interleukin-8 is related to lymph node and distant metastases in esophageal squamous cell carcinomas: implication for clinical evaluation of cancer patient. Cytokine 2008; 41: 232-9.
50. Nguyen GH, Schetter AJ, Chou DB, et al. Inflammatory and microRNA gene expression as prognostic classifiers of Barrett’s associated esophageal adenocarcinoma. Clin Cancer Res 2010; 16: 5824-34.
51. Alvarez H, Opalinska I, Zhou L, et al. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet 2011; 7: e1001356.