Effects of Three Levels of Green Exercise, Physical and Social Environments, Personality Traits, Physical Activity, and Engagement with Nature on Emotions and Attention

Ke-Tsung Han

Department of Landscape Architecture, National Chin-Yi University of Technology, Taichung 41170, Taiwan; kthan@ncut.edu.tw

Abstract: The current study examined the effects of the three levels of green exercise on people’s psychological health using a randomized trial with a pretest and posttest design and further explored which variables of the physical environment (thermal comfort, noise, and air pollution), social environment (the number of companions and crowdedness), personality traits, physical activity (intensity and frequency), and engagement with nature may help explain experiences during the three levels of green exercise using a cross-sectional approach. Field studies were conducted to test the study’s hypotheses. The participants were 95 students from a technology university in Taiwan. The experiment comprised a 15-min green exercise in a park. No significant differences were found in emotions and attention between the three levels of green exercise. However, a 15-min green exercise of any level significantly improved emotions and attention. Furthermore, fatigue was significantly and negatively associated with daily transportation-related physical activity, agreeableness, and engagement with nature. Moreover, the total mood disturbance was significantly and negatively associated with engagement with nature and daily transportation-related physical activity. The degree of engagement with nature played a pivotal role in green exercise. This study provided the evidence that quantified engagement with nature is beneficial for quantified psychological health for the first time.

Keywords: Stress Reduction Theory; Attention Restoration Theory; the international physical activity questionnaire; the big five test; the profile of mood states; spatial span forward test; digit span backward test; actigraph; Intelligent Device for Energy Expenditure and Activity; social ecological perspective

1. Introduction

Globally, approximately 31% of adults lacked sufficient physical activity in 2008, around 3.2 million deaths each year are attributable to insufficient physical activity [1]. Moreover, three diseases that received the most attention globally are depression, cardiovascular disease, and AIDS in 2020. Among these, depression is the number one cause of human disability and number two cause of the overall burden of society. People in modern society certainly face increasingly serious challenges of physical and psychological health [2]. Research has shown that physical activity benefits not only physical health [3] but also psychological health [4]. The former certainly includes cardiovascular disease [5,6] and the latter particularly includes depression [7,8], as indicated by the results of meta-analyses. Studies have also shown that people engaging in physical activity require positive environmental stimulation to receive comprehensive benefits from their physical activity of choice [9]. For example, a laboratory study showed that sensory stimulation of visual, auditory, and olfactory of natural environments tended to improve emotions of participants conducting green exercise compared to sensory occlusion in terms of a reduction in tension, fatigue, and confusion and an increase in vigor [10]. Immersion in natural environments when taking physical activity is critical for people to receive benefits [11].
Two major theories explore the benefits of exposure to nature: The Stress Reduction Theory (SRT) [12] and the Attention Restoration Theory (ART) [13]. Both theories suggest that thousands of years of evolutionary processes taking place in nature has enabled mankind to respond adaptively to natural elements with beneficial responses [14]. SRT focuses on emotional and physiological recovery from arousal in response to stress [15], while ART emphasizes the benefits of exposure to nature on attention depleted by continuous use and is restored by temporarily not being used due to the ability of nature to fascinate humans [13]. In general, lack of attention decreases cognitive clarity and effective functioning, specifically which results in irritability, impulsiveness, impatience, reduced tolerance for frustration, and increased likelihood of taking risks [13,16–18]. ART sees humans as active and purposive restoration seekers, who take goal-directed behaviors to pursue restorative experiences, while SRT seems to emphasize more people’s direct, psycho-physiological responses to nature [19]. Though the focus of both theories is not on the physical activity, they provide theoretical foundations to explore the psychological health of physical activity taking in natural environments.

As such, “green exercise”, “a direct form of engagement that describes physical activity with a simultaneous exposure to nature” [20], may be a creative solution of the modern challenges of physical and psychological health. According to the degree of engagement with nature, green exercise can further be divided into the following three levels: (1) Viewing nature: This refers to people being visually involved with the environment, such as viewing it from a window or looking at “nature surrogates” (i.e., pictures, posters, and videos of nature); (2) being in the presence of nearby nature: This refers to people being accidentally or incidentally involved with the environment, but relatively passively because their primary interests are activities such as walking, cycling, and talking in a park, not nature itself; and (3) active participation and involvement with nature: This refers to people purposefully engaging with the environment, such as through gardening, farming, and camping [4,21]. Therefore, green exercise is easily practical in everyday life and does not necessarily require organized, planned, purposeful, special, and repetitive activities “out in the wild” to maintain or promote physical fitness, such as exercise or sports [22].

Current empirical research has largely focused on the first level of green exercise (viewing nature) [23]. Studies on the second level of green exercise (being in the presence of nearby nature) have primarily focused on walking or jogging [24,25]. As for studies focusing on the third level of green exercise (active participation and involvement with nature), emphasis has been placed on gardening activities, “nature experiences,” and “outward bound experiences.” Few studies have examined all three levels concurrently [26]. Only six studies [11,27–31] have been published on this subject, which compared only the effects of two levels of green exercise, but not all three. In brief, the second level of green exercise (being in the presence of nearby nature) was found to have more positive influences than did the first level of green exercise (viewing nature) in terms of energy [11,27] and relaxation [31]. The third level of green exercise (active participation and involvement with nature) was also found to have a greater effect of stress restoration than the first level of green exercise (viewing nature) [30]. Furthermore, research on green exercise has rarely considered the degree of engagement with nature or empirically examined its effects on people [26], even though the degree of engagement with nature is the criterion of the categorization of three levels of green exercise. Therefore, the first objective of the present study was to examine the effects of all three levels of green exercise on people’s psychological health to address the gap in the literature. Moreover, given that most studies have focused on the effects of engaging in the same activities in different environments, this study examined the effects on people’s psychological health when engaged in the three levels of green exercise in the same environment. The author was interested in the within-environment (i.e., the same environment) difference rather than the between-environment (i.e., different environment) difference. Specifically, this study explored whether and how different forms of physical activity in the same green space along with the three levels of engagement with nature affect emotions and attention [12,13].
In addition, scholars have suggested that weather should be considered when discussing green exercise [11], as well as noise and air quality [29], taking physical activity alone or with others [32], social interaction [33], duration and intensity of physical activities [34], and physical fitness [35]. As such, social ecologists have provided a comprehensive view of physical activity, arguing that physical activity is influenced by interactions among the physical environment, social environment, and the participants’ personality traits [36,37]. However, although green exercise is one type of physical activity, research on green exercise has not examined the influence of personality traits. Therefore, the second objective of this study was to address this gap in the literature by examining the influence of the physical environment, social environment, personality traits, physical activity, and particularly engagement with nature across all three levels of green exercise in the same environment, to explore which variables may help to explain people’s experiences during the three levels of green exercise. Specifically, the present study comprehensively examined the effects of thermal comfort, noise, and air pollution of the physical environment; the number of companions and crowdedness of the social environment; the personality traits of the participants; the intensity of the physical activities and the frequency of physical activities; and the degree of engagement with nature on emotions and attention during the three levels of green exercise. The investigated physical activities included the experimental green exercise as well as other physical activity performed in daily life. Nevertheless, to explore the mechanism of green exercise with respect to psychological health or the pathways of these various factors are beyond the scope of this study.

Based on the abovementioned objectives, this study proposed two hypotheses:

Hypothesis 1 (H1). Higher levels of green exercise have greater benefits to participants’ emotions and attention than lower levels of green exercise [11,27,30,31] and accordingly.

Hypothesis 2 (H2). The degree of engagement with nature has greater benefits for participants’ emotions and attention than does physical activity, physical and social environments, and personality traits [9,11].

However, these two directional hypotheses are arguable because no research has explored the effects of all of these factors simultaneously on participants’ psychological health. Given that this study explores the influence of the physical environment, social environment, physical activity, and personality traits on people’s psychological health, a literature review is provided below.

2. Physical Environment and Psychological Health

Environmental psychology often regards weather, noise, and air pollution as stressors in the physical environment [38,39]. Weather can affect people’s comfort in outdoor environments [40] as well as their satisfaction and recreational behaviors [41]. In general, weather changes people’s preference for natural environments [42,43]. Research on specific atmospheric conditions has shown that temperature, relative humidity, radiant temperature, wind speed, and thermal comfort affect people’s moods outdoors [28]. With the increasing awareness of the greenhouse effect, the thermal comfort of the outdoor environment has received increasing attention [44,45]. Research has also found that thermal comfort affects preferences, physiological responses, and attention [46]. Moreover, noise affects people’s emotions, mainly causing annoyance [39] and anger [47], general psychological processes such as attention and short-term memory [48], and even psychoneurotic disorders [49]. Air pollution also causes negative emotions [39] such as depression and mood disorder [50] and also influences attention [51]. The effects of particulate matter (PM) and ultrafine particulate matter on the brain and central nervous system have also received considerable attention in recent years [50]. Nevertheless, studies of the effects of outdoor thermal comfort [52,53] and recent exposure to air pollution [54,55] on psychological health remain inadequate.
3. Social Environment and Psychological Health

Crowdedness is often discussed in environmental psychology as a key stressor in the social environment [38,39]. Chen [56] defined a sense of crowdedness as having too much stimulation, too many restrictions on behavior, too much disliked social contact or interference, and inappropriate resources, all of which make people feel the high-density influence. People usually have negative emotions when in an overcrowded space, which affects their physical, cognitive, and behavioral responses [38]. Furthermore, an inverted u-shaped function between presence of people and perceived restorativeness has been found for urban parks. This suggests that having some people nearby is more beneficial for psychological health than a crowded space or an isolated space in the natural environment [57]. Human interaction in social environments also includes companions. Having companionship during activity can reduce a sense of isolation [58] and encourage a person to adhere to walking activities [59]. People generally experience greater enjoyment in outdoor group walks than when walking outdoors alone [60]. Three studies using self-report questionnaires investigated the intermediating relationships between social environment and green exercise with respect to psychological health. One study found that shortage of social support and loneliness partly mediated the relationship but not social cohesion or social contact [61]. The other found no such relationship in terms of social interaction, social cohesion, and loneliness [62]. Another found that social cohesion and loneliness mediated the relationship [63]. Given the inconsistent results and method bias of self-reports of these three studies [63], further explorations of the relationships between green exercise, social environment, and psychological health are needed.

4. Physical Activity and Psychological Health

The benefits of physical activity and exercise on psychological health include improving mood, anxiety, depression, self-perception, self-esteem, and cognitive functioning [4,33]. Meta-analyses further showed that exercise can be an effective healing treatment for depression [7,8] and is beneficial to cognitive functioning [64]. Attention is closely related to cognitive functioning particularly in terms of the ART [13]. Another meta-analysis further indicated that both during and following exercise, exercise-induced arousal improved cognitive performance such as speeded mental processing and enhanced memory storage and retrieval [65]. Moreover, a meta-analysis focusing on green exercise also showed that: (1) It significantly improved self-esteem and total mood disturbance (TMD), with a moderate effect size; (2) the improvements in self-esteem and mood, and the activity duration showed a u-shaped relationship; and (3) the relationship between the improvement in self-esteem and activity intensity showed a linearly negative correlation, whereas the improvement in mood and activity intensity showed a u-shaped relationship [66]. In addition to activity duration and intensity, the effects of green exercise on psychological health, particularly attention, of other factors of physical activity, such as physical fitness and activity frequency [35], have seldom been examined simultaneously.

5. Personality Traits, Physical Activity, and Psychological Health

Most researchers have argued that there is a significant correlation between the activity type that people engage in and their personality traits [67,68]. Extraversion was found to be positively correlated with exercise participation and regular exercise, and emotional stability was positively correlated with regular exercise [69]. It was found that those with greater personality traits of emotional stability, extraversion, openness to learning, agreeableness, cautiousness, and responsibility had greater motivation to exercise [70]. Meta-analyses also showed that: (1) Extraversion, conscientiousness, and openness all had a positive correlation with physical activity; (2) neuroticism had a negative correlation with physical activity [71,72]; (3) lower neuroticism and higher conscientiousness were correlated with more physical activity and with less physical inactivity and static behavior; and (4) extraversion and openness were correlated with more physical activity and less
physical inactivity. However, extraversion and openness are not related to most static behaviors such as watching television [73].

Individuals with some personality traits also tend to have a sense of belonging to the natural world. Studies showed that extraversion, agreeableness, conscientiousness, and openness were positively associated with the concept that nature and humanity are one, while neuroticism was negatively associated with that concept, as measured by various scales [74–76]. Specifically, openness was found to have the largest correlation with the Connectedness to Nature [74] and the Inclusion of Nature in Self [76]. Moreover, openness and agreeableness were found to have the largest and the second largest correlation, respectively, with the Nature Relatedness, Commitment to Nature, Connectedness to Nature, Connectivity with Nature, Emotional Affinity toward Nature, and Environmental Identity [75,76]. Therefore, people with the personality traits of extraversion, conscientiousness, openness, and agreeableness are more likely to take physical activity in natural environments.

Moreover, the relationship between personality traits and psychological health has long been hypothesized since the ancient Greece [77]. Meta-analyses showed that: In general, high levels of neuroticism and low levels of extraversion, conscientiousness, and agreeableness were positively related to mood disorders [78]; and, specifically, high neuroticism and low conscientiousness were positively related to depressive disorders [79]. Moreover, it was found that: (1) Extraversion and agreeableness were positively related to mental health [80] and optimism [81]; and (2) extraversion, agreeableness, and openness were positively related to vitality [82,83]. Nevertheless, personality traits, physical activity, and psychological health are seldom investigated simultaneously. Given that personality traits are related to both physical activity and psychological health, it is necessary to further examine which one has greater explanatory power for the psychological health effects of engaging in green exercise in the same natural environment.

6. Research Methods
6.1. Research Design

This study is part of a larger research project funded by a government agency. Although this research project involved human subjects, the funding agency did not require this research project to be submitted to the Institutional Review Board (IRB). Nevertheless, we (the author and research assistants) adhered to the Declaration of Helsinki on human research ethics revised in 1975, when conducting this study. H1 (differences in emotions and attention between three green exercise levels) was tested using a randomized trial with a pretest and posttest design in which each of the participants and his or her companions were randomly assigned to a real environment to engage in one of the three levels of green exercise as an experimental treatment. Thus, the unit of randomization was the individual participant. Given that we adopted a rigorous randomized trial to maintain the internal validity of this study, the participants were not allowed to choose their preferred activities of engagement with nature. H2 (greater effects of engagement with nature on emotions and attention than other factors) was further examined using a cross-sectional approach to collect additional data on the physical environment (thermal comfort, noise, and air pollution), the social environment (number of companions and crowdedness), and personality traits (Figure 1), which could not be controlled in this field study. The physical activity variables included activity intensity, limb activity, and activity frequency. The participants were not aware of their level of green exercise was designated. However, the research assistant was aware of the participant assignments and she also assessed the outcomes.
6.2. Experimental Procedure

Each participant’s experimental session lasted approximately 70 min, which included times for explaining the instructions, putting on physical activity instruments, reading and signing consent forms, completing questionnaires and scales (pretest), performing attention tests (pretest), calibrating instruments, taking the treatment, completing scales (posttest), performing attention tests (posttest), and removing the instruments, which were all conducted at the experimental environment (Figure 2). A research assistant was with the participants during the experimental procedures except for when the participants were taking the treatment. Before the official experiment, the research assistant had gone over the entire procedure three times with one male and two female volunteer students individual by individual to familiarize herself with the experiment. The same research assistant then conducted all experimental sessions to maintain the consistency of intervention and data collection, who also took photos and notes of the participants to make sure that each experimental condition was provided as planned.

Figure 1. Research structure.
6.3. Experimental Setting

The experimental environment was a forest park in Taichung, Taiwan, which spans 11.4 hectares. Overall, the park comprises 3.7 hectares of trees, which accounts for more than 30% of the total area. To ensure that the participants conducted the activities in the same location, a small area was assigned in the park as a common activity site for the experiment, which covered approximately 0.24 ha (56 × 67 × 15 × 80 m; Figures 3 and 4). The experiment was conducted from 2 December 2015 to 23 February 2016, 8 a.m. to 5 p.m., to fit the participants’ school schedules. The average temperature during this period was 20.50 °C (SD = 3.405).

Figure 2. Timeline of the experimental procedure.

Activity	Duration
Putting on Instruments (Actigraph, GPS watch, and IDEEA)	13 min
Filling in Questionnaires (informed consent and background information)	1 min
Filling in Scales (The Big Five Test, IPAG, and POMS)	10 min
Taking Attention Test (SSF and DSB)	7 min
Calibrating Instruments	2 min
Taking Experimental Treatment	15 min
Filling in Scales (the degree of engagement with nature and POMS)	3 min
Taking Attention Test (SSF and DSB)	7 min
Filling in Questionnaire (physical condition and exercise frequency)	2 min
Taking off Instruments	10 min
Sustainability 2021, 13, x FOR PEER REVIEW 8 of 29

Figure 3. Aerial photograph of the experimental site.

Figure 4. Photographs of the experimental site at eye level, facing (a) east, (b) west, (c) south, and (d) north.

6.4. Experimental Treatment

The experimental treatment for each participant lasted 15 min for only one activity bout of one session, a time that was selected because studies have shown that one bout of 15-min green exercise is beneficial for physical and psychological health [11,84]. We randomly assigned each of the participants to one of three groups that corresponded to the three levels of green exercise based on a random number generator on the internet. That is, the interventions were administered individual by individual. The instruction given to the participants was that we would like to know their activity experience in the forest park. In the first-level group (viewing nature), participants were instructed to sit on a long chair and view the surrounding scenery. In the second-level group (being in the presence of nearby nature), participants were instructed to act freely (e.g., chatting, standing, walking, and jogging), but could not sit, lie, or rest. In the third-level group (active participation and involvement with nature), participants were instructed to collect at least seven natural elements that they considered special, such as stones, flowers, fruits, branches, leaves, and insects [26], similar to scavenging done by early humans [85]. Previous research
showed that this experimental treatment resulted in significant difference in the degree of engagement with nature and in the levels of physical activity between the three levels of green exercise [26]. These interventions did not cause important adverse events and/or side effects.

6.5. Participants and Companions

The participants were recruited from a technology university in Taiwan via flyers. For safety reasons and because this study explored the effects of physical activity on people in an outdoor environment, the inclusion criterion for participants was general good health. Exclusion criteria for participants were injuries, pain, asthma [60], or allergies (e.g., to sunlight, air pollution, and plants). We also encouraged the participants to invite their relatives and friends to accompany them. However, they could not bring their spouse or romantic partner [60]. This was because romantic relationships may have impacts on emotional and cognitive well-being [86]. The invited companions were not required to complete any questionnaire, wear any instrument, or provide any information. Given that the companions were at their own will to accompany the participants, the number of companions could not be controlled by this study. We recruited 101 Taiwanese college students as the participants, of which 95 (41 men and 54 women) were valid, with an average age of 20.47 years (standard deviation [SD] = 1.236), average height of 165.53 cm (SD = 8.805), average weight of 56.96 kg (SD = 11.391), and average body mass index of 20.67 (SD = 2.963). Furthermore, 39 participants were accompanied by between one and five companions.

In the end, 33 participants participated in the first-level activity (viewing nature), 13 of which brought companions; 31 participated in the second-level activity (being in the presence of nearby nature), 13 of which brought companions; and 31 participated in the third-level activity (active participation and involvement with nature), 13 of which brought companions. The results of statistical analyses showed no significant differences between the three participant groups in terms of college attended, years of study, with or without companions, companion types, age, height, weight, and body mass index, except for gender ($\chi^2 = 7.998$, $p = 0.018$, df = 2). Neither the participants nor their companions received compensation. Data from six participants were ruled invalid because their physical activity instruments recorded incomplete data. We did not exclude any participants, nor did we lose any of them during any stage of the experimental procedures. Since the participants attended only one activity bout of one session, their nonattendance days/rate was zero.

6.6. Research Variables and Measurements

The present study contained 2 major independent variables to examine H1 (differences in emotions and attention between three green exercise levels), 10 major predictor variables to examine H2 (greater effects of engagement with nature on emotions and attention than other factors), and 2 major dependent variables to examine both H1 and H2. A summary of these variables and their measurements is presented in Table 1.
Table 1. Research variables and measurements.

Category	Description
Personality Traits (predictor variable)	
Personality characteristics	the self-reported Big Five Test (questionnaire)
Social Environment (predictor variable)	
Number of companions	number of companions accompanying the participants in the green exercise (questionnaire)
Crowdedness	the number of other people and vehicles during the green exercise (photo records)
Physical Environment (predictor variable)	
Thermal comfort	(physiologically equivalent temperature, PET; standard effective temperature, SET): environmental conditions (weather instruments: temperature, humidity, wind speed, and average radiant temperature); and human conditions (questionnaire: metabolic heat and clothing quantity)
Noise	the mean value of environmental sound during green exercise (decibel meter)
Air pollution	SO$_2$, CO, O$_3$, PM$_{10}$, PM$_{2.5}$, NO$_X$, NO, and NO$_2$ (Air Quality Station)
Daily Physical Activity (predictor variable)	
Physical activity	self-reported Chinese version of the International Physical Activity Questionnaire (IPAQ), which assesses physical activity over the past 7 days (questionnaire)
Activity frequency	self-reported frequency of physical activity over the past 7 days (questionnaire)
Experimental Treatment (independent and predictor variable)	
Engagement with nature	self-reported degree of engagement with nature (questionnaire)
Physical activity	body movement speed (global positioning system watch, GPS), hand activity (MicroMini-Motionlogger Actigraph), limb activity, posture, posture change, gait, and energy expenditure (Intelligent Device for Energy Expenditure and Activity, IDEEA)
Emotions and Attention (dependent variable)	
Emotions	the self-reported Profile of Mood States (POMS) and total mood disturbance (TMD) (questionnaire)
Attention	spatial span forward (SSF) test and digit span backward (DSB) test

6.6.1. Three Levels of Green Exercise (Independent and Predictor Variable)

Engagement with nature refers to people’s external attention to [9] and involvement with nature in physical, psychological, and spiritual ways [26]. A questionnaire that included eight items (vision, hearing, smell, taste, touch, body and limbs, cognition, and spirituality) was used to measure the participants’ engagement with nature on a 7-point scale. A sample item is: To what extent was your interaction or engagement with nature in terms of vision. The higher the total score, the higher was the degree of engagement with nature [26].

In order to measure the physical activity during the experiment, we used a global positioning system (GPS) watch (Forerunner 405, Garmin, Taipei, ROC) worn on the participants’ nondominant hand to continually record their position, movement, and duration (4 Hz sample rate) of activity. The positioning accuracy was within 10 m. In combination with a geographic information system software (ArcGIS, Environmental Systems Research Institute, Redlands, CA, USA), we calculated the body movement speeds of the participants (total distance covered divided by time: m/s). In addition, we used a MicroMini-Motionlogger Actigraph watch (Ambulatory Monitoring Inc., Ardsley, NY, USA) with proportional integrating measure mode worn on the wrist of participants’ dominant hand to objectively record hand activity (16 Hz sample rate, 2–3 Hz bandwidth, no unit of measurement) [87]. The device has good reliability and validity [88,89]. By using an Intelligent Device for Energy Expenditure and Activity (IDEEA) 3 (MiniSun, Fresno, CA, USA), we continually measured participants’ limb activity (type %), posture (type %, m/m), posture change (number), gait (type %), and energy expenditure (kcal/m) during the experiment (64 Hz sample rate). The empirical results demonstrated that (1) the IDEEA accurately identified participants’ physical activity types with an accuracy of >98%. The correlation coefficient between estimated walking and running speeds and actual speed was 0.986 [90]. (2) The intraclass correlation reliability between the measured gait and force plate measurements was 0.784 (stride) and 0.998 (rhythm) [91]. (3) The IDEEA accurately estimated the energy consumed during physical activities, with an accuracy of more than 95% [92].
6.6.2. Personality Traits (Predictor Variable)

Personality traits refer to people’s unique characteristic patterns of thoughts, feelings, and behaviors [93], which we measured using the Chinese version of the Big Five Test. Huang [94] translated the Big Five Test, developed by John et al. [95], into Chinese. The Chinese version of the Big Five Test comprised of 44 questions on a 5-point scale, 16 of which were reverse items: The higher the score, the more apparent was the personality trait. Huang [94] also collected the data of 157 participants in Taiwan using a questionnaire to test the Chinese version of the Big Five Test. The results showed that it had good internal consistency reliability (Cronbach’s $\alpha = 0.75$), as did each personality trait dimension (Cronbach’s $\alpha = 0.80$ for extraversion, 0.71 for agreeableness, 0.78 for conscientiousness, 0.79 for neuroticism, and 0.77 for openness). Sample items include: I am an outgoing and sociable person; I like to cooperate with others; I make plans and follow through with them; I get nervous easily; and I am curious about many different things.

6.6.3. Social Environment (Predictor Variable)

Human interactions in social environments often include companions, who accompany individuals in their activities. We recorded the number of companions in the questionnaire. In addition, Manning et al. [96] suggested that research on the degree of crowdedness should be conducted using a visual method rather than the traditional method of asking respondents about the number of people they encounter. Therefore, panoramic photographs were taken every five minutes at the center of the experimental site to record the number of people and vehicles (i.e., cars, motorcycles, and bicycles). Thus, each participant had four sets of data on crowdedness from the beginning of the experiment to the end, whereas nonparticipants and vehicles were tallied only once.

6.6.4. Physical Environment (Predictor Variable)

Thermal comfort, which is defined as the condition of satisfaction provided by the thermal environment [97], comprises environmental conditions (temperature, relative humidity, wind speed, and average radiant temperature) and human conditions (metabolic heat and clothing quantity). This study followed Standard 55 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers and Standard 7726 of the International Organization for Standardization [98] to measure the environmental conditions during the experiment using appropriate instruments (R.M. Young-41382 (measuring range: 0–100% sRH, accuracy at 23 °C: ±1% RH, response time: 10 s; calibrated measuring range: −50 to 50 °C, accuracy at 23 °C: ±0.3 °C, response time: 10 s), R.M. Young-03002 (wind speed range: 0–50 m/s, azimuth range: 360° mechanical, 352° electrical, wind speed accuracy: ±0.5 m/s, wind direction accuracy: ±5°, anemometer threshold: 1.1 m/s, vane threshold: 1.3 m/s), R.M. Young Company, Traverse City, MI, USA, and TRH-301 (range: 0–100% RH, 0–100 °C, accuracy: ±2% RH, ±0.3 °C, compensation: ±0.008% RH/°C, response time: <15 s), TECPEL Co. Ltd., New Taipei City, ROC) set up at the experimental site. We used questionnaires to survey the participants’ physical conditions (sex, height, weight, age, clothing, and physical activity) on site. Subsequently, we used RayMan software [99,100] to calculate two thermal comfort indices, physiologically equivalent temperature (PET) and standard effective temperature (SET).

In general, noise is unwanted sound. During the experiment, we measured the ambient sound volume in decibels (dBA) every five minutes at the center of the experimental site using a decibel meter (DT-805, (range: 30–130 dB, accuracy: ±1.4 dB, frequency: 31.5–8 kHz), SHENZHEN EVERBEST MACHINERY INDUSTRY CO., LTD., Shenzhen, China). Therefore, each participant had four items of data measured on noise from the start of the experiment to the end, and the mean value was then calculated.

Air pollutants are defined as substances in the air that directly or indirectly impair people’s health or environmental quality [101]. We adopted air quality data of the Taichung City Air Quality Station (Environmental Protection Administration, EPA) closest to the
experimental site. The data were collected hourly and included SO\textsubscript{2}, CO, O\textsubscript{3}, PM\textsubscript{10}, PM\textsubscript{2.5}, NO\textsubscript{x}, NO, and NO\textsubscript{2}.

6.6.5. Daily Physical Activity (Predictor Variable)

The physical activity of participants over the seven days before the experiment was measured using the Chinese version of the International Physical Activity Questionnaire (IPAQ), which features 27 questions that cover job, transport, housework, recreation, and sitting. The level of physical activity was calculated as frequency × time × metabolic equivalent per week. Liou [102] obtained approval of the World Health Organization (WHO) to translate the IPAQ into Chinese. A test found that: (1) The content validity index of the Chinese and English versions was more than 98%, (2) the internal rank correlation between the degree of similarity of the languages and meanings was 0.72–0.93, (3) the test-retest reliability was 0.78, and (4) the criterion validity with respect to the three-dimensional space accelerator was 0.31–0.52 [103]. Example questions included: Don’t count the walks you have mentioned about work and traffic. In the past seven days, how many days did you use walking as leisure or exercise, with each time lasting more than 10 min? When you use walking as leisure or exercise, how much time does this type of walking usually take up a day? Please consider again only those activities that lasted more than 10 min. In the past seven days, how many days did you do perform strenuous and moderately strenuous activities during your leisure time? How many hours do you usually spend a day doing strenuous and moderately strenuous leisure activities? Moreover, we used questionnaires to survey how many times the participants had engaged in physical activity in the seven days before the experiment. This was because extraversion was positively correlated with regular exercise, which was positively correlated with emotional stability [69].

6.6.6. Emotions (Dependent Variable)

Emotions are broadly defined as the feeling dimension of people [104], and in this study, they were measured using the Chinese version of the Profile of Mood States (POMS) both before and after the experimental treatment. Although moods last longer than emotions in general [105], mood states and emotions were viewed relatively equivalent in this study. Chang and Lu [106] used back translation to translate the POMS short form [107] into Chinese. The internal consistency reliability of the Chinese version was 0.71–0.93, and the total explained variance of validity was 65.56%. Moreover, exploratory factor analysis showed that it had good reliability and validity. Hsu et al. [108] then conducted confirmatory factor analysis to prove the construct validity of the Chinese version of the POMS, which included vitality, self-esteem, confusion, fatigue, anger, tension, and depression. Each question of the POMS was measured on a 5-point scale, and the higher the score, the stronger the emotion. Example questions included: Energetic, dignified, confused, fatigued, furious, nervous, and hopeless. In addition, we used TMD to assess the participants’ overall emotional state. We calculated the score from the sum of the five negative emotion scores in the Chinese version of the POMS, minus the scores of the two positive emotions, and added the constant 100 [109]. The higher the TMD score, the more disturbed, irritated, or disordered was each participant.

6.6.7. Attention (Dependent Variable)

Attention is the concentration of consciousness or the allocation of limited cognitive processing resources [110], which in this study was objectively measured using the spatial span forward (SSF) and digit span backward (DSB) tests from the Wechsler Memory Scale (third edition) both before and after the experimental treatment. The SSF is a visual memory span test conducted using a spatial memory span board, on which has 10 numbered small blocks. The research assistant touched blocks (from two to nine) in a specific order at a speed of approximately one second per block, and participants must then identify the blocks in the same order. When participants perform the DSB test, they must accurately reverse the order of the digital strings (from two to eight) dictated by the research assistant
and repeat them. The test was shown to have good reliability and validity [111]. Before the official test, participants were allowed two practice runs. Their attention was calculated as the maximum number of correct answers before two consecutive incorrect answers [112]. The higher the score, the greater was the participant’s attention.

6.7. Statistical Analysis

Statistical analyses were conducted using the PASW Statistics for Windows, version 22.0 (IBM Corp., Armonk, NY, USA). The collected data did not have any missing values. Outliers were limited, only four for both fatigue pretest and posttest, two for tension pretest and three for tension posttest, four for both depression pretest and posttest, and one for both SSF pretest and posttest. Nevertheless, the analyses were by intent to treat. That is, all data were included for analyses after participant allocation. The estimate of treatment effect is generally conservative for intent to treat because of dilution due to noncompliant participants [113]. Appendix A Table A1 is the descriptive statistics and the distribution of the collected data. When the data did not meet the premises of statistical analyses, such as normality, homogeneity, sphericity, or covariance matrix, they were transformed [98].

H1, Higher levels of green exercise have greater benefits to participants’ emotions and attention than lower levels of green exercise, was examined using multivariate analysis of variance (MANOVA). MANOVA was used because it is a statistical test of more than one dependent variable based on their optimal linear combination [98]. That is, MANOVA can simultaneously consider the relationship of all dependent variables to examine whether a significant difference exists in the experimental treatment, and then, analyze whether the experimental treatment has significant differences in terms of individual dependent variables. Further, the observed power of the MANOVA was reported. The Bonferroni correction was used for post hoc pair comparisons because there were three levels of green exercise as the experimental treatment in consideration of the experiment-wise error-rate.

H2, the degree of engagement with nature has greater benefits for participants’ emotions and attention than does physical activity, physical and social environments, and personality traits, was examined using multiple linear regression analyses. Nevertheless, predictor variables that are highly correlated with others must be excluded to prevent collinearity and to fit the premises of the regression models [114]. Moreover, given that the a priori power for the determined sample size for the regression analyses is dependent on the number of the predictors, which should consider the collinearity problem, this study calculated the post hoc power using the predictors without the collinearity using the G*Power 3.1.9.2 program (Heinrich-Heine-Universität, Düsseldorf, Germany).

7. Results

7.1. Scale Reliability

We conducted internal consistency reliability analyses for the Big Five Test, IPAQ, POMS (both pretest and posttest), and the degree of engagement with nature. The results showed that (1) the Big Five Test had relatively acceptable reliability (Cronbach’s $\alpha = 0.65$), (2) the IPAQ had less than ideal reliability (Cronbach’s $\alpha = 0.574$), (3) the POMS had good reliability for the pretest and posttest (Cronbach’s $\alpha = 0.929$ and 0.880, respectively), and (4) the degree of engagement with nature had good reliability (Cronbach’s $\alpha = 0.765$) [115]. Since the internal consistency reliability of these scales was not very low, the data of these scales were not removed from the analysis.

7.2. Hypothesis 1 (Differences in Emotions and Attention between Three Green Exercise Levels)

We set the SSF, DSB, seven emotions in the POMS, and TMD as dependent variables; the levels of green exercise as an independent variable and independent factor; and the test time (pretest and posttest) as independent variables and a dependent factor (repeated measures) to conduct a two-way mixed-design MANOVA. The results of the MANOVA showed the following: (1) The interaction between green exercise levels and test time reached significance only in the SSF test and entailed a moderate effect size ($F_{(2,89)} = 3.700, p = 0.029$,
η_p² = 0.077); the 95% confidence interval (CI) for the difference did not include 0. Follow-up tests showed that for the second-level green exercise (being in the presence of nearby nature), the SSF posttest (M = 9.323) was significantly greater than the pretest (M = 8.774) with an observed power of 0.554, and the 95% CI for the difference did not include 0, whereas for the third-level green exercise (active participation and involvement with nature), the SSF posttest (M = 10.000) was also significantly greater than the pretest (M = 8.452) with an observed power of 0.975, and the 95% CI for the difference did not include 0. (2) The main effects of green exercise levels were nonsignificant (F(2, 89) ≤ 1.482, p ≥ 0.233, η_p² ≤ 0.032).

(3) The main effects of test time for SSF, vitality, confusion, fatigue, anger, tension, depression, and TMD all reached significance (F(1, 89) ≥ 5.704, p ≤ 0.019, η_p² ≥ 0.060) with observed powers at least greater than 0.656 and entailed at least a moderate effect size. Moreover, none of the 95% CIs for the difference included 0, and all posttests were greater than the pretests (Table 2; Appendix A Table A2).

Table 2. Summarized results of the two-way mixed-design multivariate analysis of variance.

Effect Variable	F	P	η_p²	Observed Power	Mean (SD)	Mean Diff.	95% Conf. Int. for the Diff.	Post hoc	
Treatment									
Interaction	3.700	0.029	0.077	0.666			Pre-Post −1.037	0.491	
L1	0.529	0.472	0.016	0.109			Pre-Post −1.066	−0.031	Post > Pre
L2	4.686	0.038	0.135	0.554			Pre-Post −2.328	−0.768	Post > Pre
L3	16.434	0.000	0.354	0.975			Pre-Post −2.331	−0.423	Post > Pre
SSF Interaction	16.521	0.000	0.157	0.980			Pre-Post −1.231	−0.423	Post > Pre
Vigour	5.704	0.019	0.060	0.656			Pre-Post −1.905	−0.175	Post > Pre
Confusion	65.739	0.000	0.425	1.000			Pre-Post 3.102	5.116	Pre > Post
Fatigue	62.562	0.000	0.413	1.000			Pre-Post 2.996	4.957	Pre > Post
Anger	3.615	0.000	0.256	1.000			Pre-Post 0.919	1.949	Pre > Post
Anxiety	68.100	0.000	0.433	1.000			Pre-Post 1.457	2.381	Pre > Post
Depression	16.616	0.000	0.157	0.981			Pre-Post 0.368	1.069	Pre > Post
TMD	79.864	0.000	0.473	1.000			Pre-Post 10.334	16.243	Pre > Post

* Treatment L1 denotes Level 1 Green Exercise, L2 denotes Level 2 Green Exercise, and L3 denotes Level 3 Green Exercise. The significant results from the follow-up tests of the ANOVAs used a family-wise error rate of 0.05/10 = 0.005. *, *** in interaction denotes significance levels at 0.05, and 0.001, respectively.

7.3. Hypothesis 2 (Greater Effects of Engagement with Nature on Emotions and Attention Than Other Factors)

The predictor variables with collinearity were eliminated [114]. As a result, 23 predictor variables (the Big Five Test, IPAQ, the degree of engagement with nature, number of companions, activity frequency, MicroMini-Motionlogger Actigraph hand activity,
IDEEA all posture speed, IDEEA numbers for ascending and descending stairs, crowd-
edness in terms of the number of vehicles, noise, O$_3$, SO$_2$, and two dummy variables for the three green exercise levels) were appropriate for conducting multiple linear regression analyses without collinearity. Next, we used the changed values (posttest values minus pretest values) of the SSF, DSB, TMD, and the seven emotions of the POMS as dependent variables to conduct multiple linear regression analyses. The results showed that: (1) Fatigue reached significance ($F_{(21,73)} = 1.761$, $p = 0.040$, $R^2 = 0.336$, R^2 Adjusted = 0.145) with a post hoc power of 0.981, the significant predictor variables were transportation-related physical activity (beta = −0.337, $t(94) = −2.96$, $p = 0.004$), agreeableness (beta = −0.234, $t(94) = −2.186$, $p = 0.032$), and the degree of engagement with nature (beta = −0.227, $t(94) = −2.126$, $p = 0.037$; Table 3; Appendix A Table A3). (2) The TMD reached significance ($F_{(21,73)} = 1.769$, $p = 0.039$, $R^2 = 0.337$, R^2 Adjusted = 0.147) with a post hoc power of 0.982; the significant predictor variables were the degree of engagement with nature (beta = −0.319, $t(94) = −2.994$, $p = 0.004$) and transportation-related physical activity (beta = −0.265, $t(94) = −2.332$, $p = 0.022$; Table 3; Appendix A Table A4).

Table 3. Results of multiple linear regressions (only significant relationships are shown).

Predictor	Depend Variable: Fatigue				Depend Variable: TMD			
	R (SE)	Beta	t	p	R (SE)	Beta	t	p
Constant	17.439 (14.95)	1.166	0.247	0.247	59.820 (44.039)	1.358	0.179	
Transportation-related physical activity	−0.046 (0.016)	−0.337	−2.96	0.004 **	−0.107 (0.046)	−0.265	−2.332	0.022 *
Engagement with nature	−0.149 (0.070)	−0.227	−2.126	0.037 *	−0.617 (0.206)	−0.319	−2.994	0.004 **
Agreeableness	−0.348 (0.159)	−0.234	−2.186	0.032 *				

F, $**$ in interaction denotes significance levels of 0.05 and 0.01$^\circ$.

8. Discussion

The results did not support H1, which stated that higher levels of green exercise would have greater benefits to participants’ emotions and attention than would lower levels. Six studies have compared the effects of two levels of green exercise, with most finding varying effects between different environments [11,27,28,30,31]. However, no differences were found in terms of the effects within similar environments [11]. Therefore, future studies should examine whether different environments (i.e., between-environment difference), different levels of green exercise (i.e., within-environment difference), or the interaction between environments and green exercise levels have greater effects on people. Moreover, the classification of environments should not be limited to the dichotomy of natural and manmade environments [84]. More crucially, the present study found that regardless of the level of green exercise participants engaged in, as little as 15 min was beneficial for improving their emotions, such as vitality, confusion, fatigue, anger, tension, depression, and total mood disturbance, and attention in terms of spatial span forward test. This result is consistent with both other empirical research findings [11,28,84] and SRT [12] and ART [13]. This result demonstrates the importance of green exercise for psychological health, particularly with respect to its convenient practicality in daily life.

The results partially supported H2, which stated that the degree of engagement with nature would have greater benefits for participants’ emotions and attention than physical activity, physical and social environments, and personality traits. Fatigue was significantly and negatively associated with transportation-related physical activity, agreeableness, and the degree of engagement with nature (in a descending order) and the TMD was significantly and negatively associated with the degree of engagement with nature and
transportation-related physical activity (in a descending order). Therefore, when people engage in green exercise, the more direct and profound the interaction with nature is, the more likely it is to reduce negative emotions. This is the first time that empirical research has directly shown that quantified engagement with nature is beneficial for quantified psychological health (decreased fatigue and total mood disturbance). Furthermore, this is consistent with previous findings in that environmentally oriented activities [116], positive environmental stimuli [9], and immersion in natural environments [11] are crucial for people to receive benefits from physical activity. Therefore, green exercise should be considered a method of locking people’s physical activities and environments into an ongoing positive relationship [117]. Furthermore, engagement with nature appears to be the key to integrating people’s physical activities and environments.

H2 (greater effects of engagement with nature on emotions and attention than other factors) failed to find significant results related to attention. This may be because attention was measured by SSF and DSB, which are focused on working memory [112]. There is a broad consensus that attention and working memory are closely linked [118]. However, a recent systematic review study of ART indicated no current agreements on what constitutes a measurement of attention as proposed by the ART. Therefore, an optimal testing protocol of attention, in the view of the ART, should include working memory as measured by SSF and DSB [112], cognitive flexibility as measured by the Trail Making Test B [119], and alerting, orienting, and executive control as measured by the Attention Network Task [120]. Therefore, future research on the ART may need to apply a set of tests to measure attention [121].

H1 (Higher levels of green exercise have greater benefits to participants’ emotions and attention than lower levels of green exercise) and H2 (The degree of engagement with nature has greater benefits for participants’ emotions and attention than does physical activity, physical and social environments, and personality traits) appeared to be similar. However, H1 focused on examining the effect of the experimental treatment of the three green exercise levels operationalized simultaneously by not only types of physical activity but also levels of engagement with nature. This research found no significant differences between the three green exercise levels. By contrast, H2 focused on further exploring the effect of the physical environment, social environment, personality traits, physical activity, engagement with nature, and the three green exercise levels, respectively. This research found engagement with nature played an important role. While the results of the examinations of H1 and H2 appeared to be at odds at first, they were in agreement that the three green exercise levels as the dependent variable did not influence emotions and attention as indicated by MANOVAs and the three green exercise levels as the predictor variables were not significantly related to emotions and attention as indicated by multiple linear regressions. Therefore, engagement with nature may be more influential than the three green exercise levels. Alternatively, the types of physical activity used to operationalize the three green exercise levels may be too limited. For example, the first-level green exercise of viewing nature is not necessarily limited to sitting, standing still, or lying down. Additionally, the second-level green exercise of being in the presence of nearby nature can have various levels of physical activity, such as walking and jogging, which were found to have different effects on emotions and attention [84]. Future research on green exercise should further investigate the influence of physical activity and engagement with nature on people. The framework of green exercise proposed by Han and Wang [26], which includes the dimensions of the natural environment, physical activities, and engagement with nature, may serve as a guidance to further investigate the main effect of each dimension and the interactions of these three dimensions on people.

Surprisingly, physical activity related to transportation rather than physical activity in green exercise was associated with the reduction in negative emotions. The WHO [122] recommends at least 150 min of accumulated moderate-intensity physical activity each week, including leisure, occupation, transportation, household chores, play, games, sports, and planned exercise. Therefore, physical activity related to transportation possibly played
a pertinent role in relieving the negative emotions of participants in this study because they were college students who had engaged in little occupation, household chores, play, games, sports, or planned exercise. The means (and SDs in parentheses) for job, transportation, housework, recreation, and sitting in the IPAQ were 13.61 (46.37), 21.38 (36.02), 17.44 (107.73), 24.73 (37.97), and 17.07 (8.59), respectively. The physical activity level of transportation was the second highest and that of recreation was the highest. Nevertheless, given that the reliability of the Chinese version of the IPAQ was less than ideal (Cronbach’s $\alpha = 0.574$), the results in this study require replicating and may not be generalizable to other participant groups or regions.

Agreeableness refers to the degree to which a person is polite, trustworthy, friendly, and easy to communicate with [123]. A study found that agreeableness had a significant and negative correlation with burnout [124]. Another study found that agreeableness had a significant and negative correlation with fatigue but a significant and positive correlation with emotional stability [125]. Moreover, some researchers claimed that agreeable people have relatively high effortful control and are less likely to be influenced by mood-disordered outcomes [126]. However, because the abovementioned three studies were not focused on the relationships between agreeableness and emotions when performing green exercise, future studies may extend the focus from the effects of agreeableness in an interpersonal context to those of agreeableness in terms of the interaction between people and the environment.

The present study examined the effects on people engaged in three levels of green exercise in the same natural environment. The variance among the stressors in the environment, such as thermal comfort (PET: $M = 22.96^\circ C$, SD = 6.932; SET: $M = 14.760$, SD = 5.562), noise ($M = 47.83$ dBA, SD = 2.397), and degree of crowdedness ($M = 48.053$, SD = 20.746), may not be large enough to reveal their influence. Moreover, PET around $22^\circ C$ is regarded as slightly cool for the people in Taiwan [127] and 47 dBA is much lower than the standard (60 dBA) proposed by the Noise Control Act [128]. Different environments may have greater variances. Additionally, the air pollution was based on hourly data from an air quality station approximately eight km from the experimental site. Future studies should consider using on-site instruments to measure real-time air quality. Moreover, some scholar may argue that companions could confound the experimental treatment of the participants’ the degree of engagement with the natural environment. A previous study showed that both the interaction between the three-level green exercise and the presence of companions on engagement with nature and the main effect of the presence of companions on engagement with nature were not significant [26]. Although this study is the first to examine the effect of the number of companions on psychological health when engaging in green exercise without a dichotomy (i.e., the presence or absence of companions) [60,129,130], the variance in the number of companions was small ($M = 0.611$, SD = 0.96). Furthermore, the quality of such accompanying relationships should be considered in future studies, such as emotional support [39].

9. Conclusions

Engaging in 15 min of green exercise of any level improved participants’ emotions and attention. Therefore, people can easily choose viewing nature, being in the presence of nearby nature, or active participation and involvement with nature according to their convenience or physical ability in everyday life to enhance their psychological health. Policymakers, government officials, environmental planners and designers, and the general public should not only prevent the existing natural environments from destruction but also create more natural settings to allow people having more opportunities of viewing nature, being nearby nature, or active involvement with nature. Nonetheless, it should be noted that plants are generally regarded as a representation of nature [131,132]. Having plants nearby indoors or outdoors is certainly feasible. Plants can provide people many sensory stimulations, such as visual, olfactory, tactile, taste, and even auditory.
Moreover, the degree of engagement with nature played a pivotal role in green exercise. Engagement with nature is likely the crucial element of green exercise, which integrates people’s physical activities and environments into an ongoing positive relationship [117]. Studies on green exercise should consider the framework of green exercise proposed by Han and Wang [26] to further examine the effects of natural environment, physical activities, and engagement with nature on people. Moreover, a comprehensive view of the social ecology should be adopted to explore physical activity, which is an interaction among the physical environment, social environment, and participants’ personality traits [36,37], which may prove both useful and productive for green exercise to meet the increasingly serious challenge of physical and psychological health of the modern society [2].

Funding: This study was funded by the Ministry of Science and Technology in Taiwan (MOST 104-2410-H-167-009).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data are available on request from the corresponding author.

Acknowledgments: The author thanks Y.-T. Chang and H.-L. Chu for data collection, organization, and analyses.

Conflicts of Interest: The author declares that there is no conflict of interest.

Appendix A

Table A1. Descriptive statistics and distribution of the collected data.

Variable	Number	Min.	Max.	Mean	S.D.	Skewness	Kurtosis
Physiologically Equivalent Temperature							
Overall	95	5.3	35.9	22.096	6.932	−0.117	−0.34
Level 1	33	10.7	34.8	23.279	6.137	0.208	−0.594
Level 2	31	5.3	35.4	19.958	7.64	0.162	−0.514
Level 3	31	8	35.9	22.974	6.706	−0.406	0.342
Standard Effective Temperature							
Overall	95	2.8	26.2	14.76	5.565	−0.092	−0.78
Level 1	33	8.1	26.2	16.258	4.774	0.321	−0.622
Level 2	31	2.8	22.6	12.597	6.261	0.161	−1.267
Level 3	31	6.3	23.9	15.329	5.09	−0.107	−0.862
Noise (dB)							
Overall	95	44.13	56.33	47.83	2.397	0.8	0.595
Level 1	33	44.53	56.33	47.445	2.602	1.509	3.037
Level 2	31	44.4	52.4	48.21	1.998	0.618	−0.207
Level 3	31	44.13	52.65	47.86	2.544	0.373	−0.878
Crowdedness -People							
Overall	95	22	412	114.737	82.604	1.627	2.17
Level 1	33	22	412	93.636	74.833	2.826	9.869
Level 2	31	42	344	128.774	77.69	1.325	1.2
Level 3	31	30	346	123.161	92.758	1.284	0.454
Crowdedness -Automobile							
Overall	95	12	101	38.789	17.367	1.556	3.283
Level 1	33	13	94	40.121	17.92	1.115	1.53
Level 2	31	14	87	37.129	15.022	1.31	3.231
Level 3	31	12	101	39.032	19.288	2.071	5.193
Crowdedness -Motorcycle							
Overall	95	0	27	5.295	5.345	1.48	2.356
Level 1	33	0	11	3.848	3.318	0.562	−0.714
Level 2	31	0	27	5.226	6.344	1.928	3.945
Level 3	31	0	18	6.903	5.706	0.653	−0.995
Variable	Number	Min.	Max.	Mean	S.D.	Skewness	Kurtosis
----------	--------	------	------	------	------	----------	----------
Crowdedness – Bicycle							
Overall	95	0	22	3.968	3.802	1.58	4.354
Level 1	33	0	11	4.03	3.206	0.564	−0.531
Level 2	31	0	14	4.258	3.898	0.781	−0.094
Level 3	31	0	22	3.613	4.349	2.722	10.096
Crowdedness – Totalvehicle							
Overall	95	13	137	48.053	20.764	1.852	4.971
Level 1	33	22	113	48	19.349	1.437	3.098
Level 2	31	22	103	46.613	18.759	1.56	3.445
Level 3	31	13	137	49.548	24.397	2.187	6.321
SO₂ (ppb)							
Overall	95	0.1	8.9	3.133	1.902	0.626	0.051
Level 1	33	0.2	6.6	2.774	1.728	0.516	−0.259
Level 2	31	0.2	7.9	3.245	1.931	0.59	0.021
Level 3	31	0.1	8.9	3.387	2.043	0.671	0.21
CO (ppm)							
Overall	95	0.3	1.5	0.671	0.29	1.335	0.952
Level 1	33	0.33	1.4	0.646	0.256	1.595	2.415
Level 2	31	0.3	1.5	0.658	0.288	1.322	1.379
Level 3	31	0.4	1.47	0.707	0.327	1.193	0.165
NOₓ (ppb)							
Overall	95	13	93	31.495	16.892	1.627	2.331
Level 1	33	13	73	27.742	14.276	1.594	2.496
Level 2	31	14	93	32.207	19.531	1.908	3.553
Level 3	31	18	71	34.581	16.472	1.282	0.272
NO (ppb)							
Overall	95	1.8	61	8.615	11.138	2.936	9.023
Level 1	33	1.8	48	6.916	9.378	3.584	13.503
Level 2	31	2	61	10.055	14.041	2.979	8.642
Level 3	31	2.1	35	8.968	9.752	1.761	1.761
NO₂ (ppb)							
Overall	95	11	45	22.857	8.298	0.686	−0.223
Level 1	33	11	45	20.806	8.248	1.042	0.837
Level 2	31	11	40	22.172	7.824	0.442	−0.654
Level 3	31	14	45	25.548	8.314	0.718	−0.559
PM₁₀ (µg/m³)							
Overall	95	1.7	165	54.148	38.25	1.181	1.134
Level 1	33	16	165	62.276	44.314	0.88	−0.002
Level 2	31	5	118	46.036	25.499	0.46	1.116
Level 3	31	1.7	159	53.852	41.43	1.31	1.185
PM₂.₅ (µg/m³)							
Overall	95	2	80	29.047	18.44	0.942	0.126
Level 1	33	2	72	30.621	20.754	0.763	−0.638
Level 2	31	3	58	25.799	14.129	0.565	0.014
Level 3	31	7	80	30.821	19.98	1.063	0.234
O₃ (ppb)							
Overall	95	2.2	52	25.947	12.955	−0.006	−0.699
Level 1	33	2.4	49	28.648	15.058	−0.467	−1.105
Level 2	31	2.2	50	25.159	10.997	−0.098	0.211
Level 3	31	2.2	52	23.984	12.318	0.503	0.179
Table A1. Cont.

Variable	Number	Min.	Max.	Mean	S.D.	Skewness	Kurtosis	
Movement Speed								
(m/s)								
Overall	95	0.002	1.446	0.274	0.225	1.907	7.203	
Level 1	33	0.002	0.183	0.068	0.037	1.283	2.817	
Level 2	31	0.094	1.446	0.407	0.265	2.375	7.61	
Level 3	31	0.174	0.706	0.362	0.119	0.874	1.137	
Exercise Frequency								
Overall	95	0	7	1.305	1.337	1.464	3.07	
Level 1	33	0	4	1.182	1.185	0.947	0.193	
Level 2	31	0	5	1.129	1.204	1.452	2.78	
Level 3	31	0	7	1.613	1.585	1.551	3.438	
Total Mood Disturbance								
– Pretest								
Overall	95	69	152	100.221	17.887	0.389	−0.237	
Level 1	33	70	131	99.758	15.379	0.026	−0.473	
Level 2	31	69	143	99.968	19.305	0.479	−0.345	
Level 3	31	73	152	100.968	19.386	0.484	−0.102	
Total Mood Disturbance								
– Posttest								
Overall	95	60	137	87.484	14.923	0.604	0.176	
Level 1	33	67	107	88.121	11.578	−0.142	−1.05	
Level 2	31	66	137	88.032	17.678	0.678	0.195	
Level 3	31	60	124	86.258	15.492	0.853	0.166	
The Big Five – Extraversion								
Overall	95	16	37	25.705	4.199	0.321	−0.169	
Level 1	33	20	37	26.636	4.084	0.461	−0.255	
Level 2	31	16	33	24.645	4.071	−0.014	0.036	
Level 3	31	19	35	25.774	4.334	0.55	−0.437	
The Big Five – Agreeableness								
Overall	95	26	42	31.621	3.304	0.458	0.224	
Level 1	33	26	42	31.273	3.859	0.842	0.585	
Level 2	31	27	36	30.774	2.918	0.273	−1.389	
Level 3	31	27	41	32.839	2.721	0.309	1.816	
The Big Five – Conscientiousness								
Overall	95	20	34	27.684	3.068	−0.119	−0.343	
Level 1	33	20	34	27.424	3.527	−0.189	−0.467	
Level 2	31	22	33	27.839	2.841	0.007	−0.616	
Level 3	31	22	34	27.806	2.833	0.06	−0.14	
The Big Five – Neuroticism								
Overall	95	17	29	24.221	2.799	−0.363	−0.314	
Level 1	33	18	29	23.939	2.957	−0.338	−0.467	
Level 2	31	18	29	24.806	2.272	−0.711	1.481	
Level 3	31	17	29	23.935	3.087	−0.037	−0.728	
The Big Five – Openness								
Overall	95	23	46	33.947	4.234	0.055	0.162	
Level 1	33	25	41	33.606	4.286	−0.231	−0.79	
Level 2	31	27	44	33.581	4.089	0.305	−0.119	
Level 3	31	23	46	34.677	4.362	0.105	1.692	
Companion								
Overall	95	0	5	0.611	0.96	2.407	7.82	
Level 1	33	0	5	0.697	1.262	2.602	7.043	
Level 2	31	0	3	0.581	0.807	1.347	1.351	
Level 3	31	0	2	0.548	0.723	0.952	−0.378	
Variable	Number	Min.	Max.	Mean	S.D.	Skewness	Kurtosis	
--------------------------------	--------	------	------	---------	--------	----------	----------	
Spatial Span Forward								
Overall	95	5	13	8.589	1.653	−0.197	−0.064	
Green exercise								
Level 1	33	5	13	8.545	1.872	−0.228	0.172	
Level 2	31	6	12	8.774	1.586	−0.246	−0.51	
Level 3	31	6	12	8.452	1.502	−0.09	−0.018	
Spatial Span Forward								
Overall	95	4	14	9.368	1.863	−0.061	0.513	
Green exercise								
Level 1	33	4	12	8.818	1.878	−0.503	0.533	
Level 2	31	5	14	9.323	1.869	0.118	0.85	
Level 3	31	8	13	9.581	2.579	−0.211	−0.561	
Digit Span Backward								
Overall	95	2	14	8.632	2.832	0.143	−0.757	
Green exercise								
Level 1	33	2	14	8.727	3.43	−0.503	−1.022	
Level 2	31	4	13	8.355	2.288	0.191	−0.743	
Level 3	31	4	14	8.806	2.688	0.462	−0.516	
Digit Span Backward								
Overall	95	3	14	9.116	3.007	−0.322	−0.755	
Green exercise								
Level 1	33	3	14	8.97	3.432	−0.447	−1.022	
Level 2	31	3	14	8.066	2.96	−0.046	−0.747	
Level 3	31	4	14	9.581	2.579	−0.211	−0.561	
Engagement with Nature								
Overall	95	8	49	31.663	7.506	−0.393	0.569	
Green exercise								
Level 1	33	19	49	31.606	6.451	0.576	0.779	
Level 2	31	8	42	28.967	8.611	−0.542	−0.03	
Level 3	31	20	47	34.419	6.530	−0.338	0.275	
International Physical Activity Questionnaire								
Overall	95	2	1093	94.224	132.479	5.338	35.968	
Green exercise								
Level 1	33	21.97	268.5	75.377	54.412	1.794	4.923	
Level 2	31	2	1093	112.5	197.386	4.415	21.589	
Level 3	31	13.5	584.4	96.011	111.679	3.088	11.978	
Profile of Mood States(Vitality)–Pretest								
Overall	95	0	22	11.895	6.356	−0.229	−0.837	
Green exercise								
Level 1	33	1	22	12.424	6.892	−0.197	−1.207	
Level 2	31	0	22	11.935	5.680	−0.434	0.191	
Level 3	31	0	22	11.290	6.553	−0.181	−0.992	
Profile of Mood States(Vitality)–Posttest								
Overall	95	0	24	12.800	6.657	−0.378	−0.891	
Green exercise								
Level 1	33	0	24	13.515	6.433	−0.516	−0.838	
Level 2	31	23	12.161	7.221	−0.182	−1.065		
Level 3	31	24	12.677	6.447	−0.478	−0.580		
Profile of Mood States(Self-esteem)–Pretest								
Overall	95	0	16	8.474	3.590	−0.562	0.013	
Green exercise								
Level 1	33	0	16	7.788	4.106	−0.308	−0.523	
Level 2	31	0	14	8.774	3.364	−0.679	0.283	
Level 3	31	15	8	8.903	3.208	−0.664	1.056	
Profile of Mood States(Self-esteem)–Posttest								
Overall	95	0	16	8.600	4.106	−0.347	−0.635	
Green exercise								
Level 1	33	0	15	8.402	4.402	−0.435	−0.985	
Level 2	31	0	16	8.742	4.313	−0.278	−0.571	
Level 3	31	2	16	9.097	3.590	−0.126	−0.559	
Variable	Number	Min.	Max.	Mean	S.D.	Skewness	Kurtosis	
---	--------	------	------	-------	-------	----------	----------	
Profile of Mood States(Confusion)—Pretest								
Overall	95	0	23	7.168	5.635	0.586	−0.517	
Green exercise	Level 1	33	0	18	7.697	5.382	0.351	−1.120
	Level 2	31	0	23	7.290	6.548	0.693	−0.527
	Level 3	31	0	19	6.848	4.992	0.615	−0.007
Profile of Mood States(Confusion)—Posttest								
Overall	95	0	14	3.189	3.810	1.139	0.384	
Green exercise	Level 1	33	0	12	4.212	3.621	0.516	−0.619
	Level 2	31	0	14	2.806	4.159	1.650	1.910
	Level 3	31	0	12	2.484	3.520	1.475	1.174
Profile of Mood States(Fatigue)—Pretest								
Overall	95	0	23	6.958	6.079	0.790	−0.132	
Green exercise	Level 1	33	0	14	6	4.054	0.096	−0.852
	Level 2	31	0	17	6.161	5.973	0.648	−0.961
	Level 3	31	0	23	8.774	7.584	0.556	−1.012
Profile of Mood States(Fatigue)—Posttest								
Overall	95	0	22	3.200	3.945	2.089	5.991	
Green exercise	Level 1	33	0	12	2.788	3.059	1.176	1.158
	Level 2	31	0	16	3.097	3.515	1.829	4.830
	Level 3	31	0	22	3.742	5.092	2.100	4.989
Profile of Mood States(Anger)—Pretest								
Overall	95	0	13	2.053	3.160	1.637	1.966	
Green exercise	Level 1	33	0	10	1.818	2.789	1.791	2.443
	Level 2	31	0	12	2.452	3.677	1.317	0.508
	Level 3	31	0	13	1.903	3.037	1.984	4.665
Profile of Mood States(Anger)—Posttest								
Overall	95	0	12	0.653	1.797	4.055	19.368	
Green exercise	Level 1	33	0	7	0.606	1.391	3.441	14.028
	Level 2	31	0	12	0.871	2.487	3.717	14.558
	Level 3	31	0	5	0.484	1.338	2.935	7.760
Profile of Mood States(Tension)—Pretest								
Overall	95	0	12	3.232	3.140	0.992	0.232	
Green exercise	Level 1	33	0	11	3.273	3.034	0.802	−0.198
	Level 2	31	0	12	3.355	3.489	1.177	0.756
	Level 3	31	0	10	3.065	2.977	0.962	−0.044
Profile of Mood States(Tension)—Posttest								
Overall	95	0	8	1.379	2.105	1.492	1.127	
Green exercise	Level 1	33	0	7	1.667	2.245	1.098	−0.219
	Level 2	31	0	8	1.516	2.264	1.553	1.510
	Level 3	31	0	7	0.935	1.750	2.140	4.355
Profile of Mood States(Depression)—Pretest								
Overall	95	0	10	1.179	2.114	2.218	4.875	
Green exercise	Level 1	33	0	10	1.182	2.338	2.406	5.915
	Level 2	31	0	7	1.419	2.157	1.482	1.201
	Level 3	31	0	9	0.935	1.843	3.176	12.113
Profile of Mood States(Depression)—Posttest								
Overall	95	0	7	0.463	1.236	3.332	11.737	
Green exercise	Level 1	33	0	5	0.364	0.994	3.652	15.111
	Level 2	31	0	7	0.645	1.539	2.989	9.720
	Level 3	31	0	5	0.387	1.145	3.427	11.445
Table A1. Cont.

Variable	Number	Min.	Max.	Mean	S.D.	Skewness	Kurtosis
Intelligent Device for Energy Expenditure							
and Activity—All posture speed							
Overall	62	0.202	198.7	75.543	67.496	0.276	-1.338
Green exercise							
Level 2	31	0.202	198.7	72.054	65.950	0.358	-1.285
Level 3	31	0.206	194.5	79.033	69.919	0.205	-1.404
Intelligent Device for Energy Expenditure							
and Activity—Numbers for ascending and							
descending stairs							
Overall	62	0	566	82.677	90.244	2.732	12.392
Green exercise							
Level 2	31	3	245	74.935	66.546	0.988	0.305
Level 3	31	0	566	90.419	109.576	2.846	11.384

Table A2. Statistics of MANOVA.

Effect	Value	F	Hypothetical df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power
Between-Subjects								
Pillar’s Trace	0.983	506.890	9.000	81.000	0.000	0.983	4562.009	1.000
Wilks’ Lambda (A)	0.017	506.890	9.000	81.000	0.000	0.983	4562.009	1.000
Roy’s Largest Root	0.521	506.890	9.000	81.000	0.000	0.983	4562.009	1.000
Time								
Pillar’s Trace	0.248	1.289	18.000	164.000	0.201	0.124	23.794	1.000
Wilks’ Lambda (A)	0.767	1.279	18.000	162.000	0.208	0.124	23.030	1.000
Roy’s Largest Root	0.806	1.657	9.000	82.000	0.113	0.154	14.915	1.000
Within-Subjects								
Pillar’s Trace	0.819	14.601	9.000	81.000	0.000	0.619	131.411	1.000
Wilks’ Lambda (A)	0.381	14.601	9.000	81.000	0.000	0.619	131.411	1.000
Roy’s Largest Root	1.622	14.601	9.000	81.000	0.000	0.619	131.411	1.000

Parameter	Overall 62 0.202	198.7	75.543	67.496	0.276	4562.009	1.000
Green exercise	Level 2 31 0.202 198.7 72.054 65.950 0.358	-1.285					
Level 3 31 0.206 194.5 79.033 69.919 0.205	-1.404						

ANOVA

Source	Measure	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power
Spatial	Sphericity Assumed	31.392	1	31.392	16.521	0.000	0.157	16.521	0.980
Span	Sphericity Assumed	31.392	1	31.392	16.521	0.000	0.157	16.521	0.980
Forward	Sphericity Assumed	31.392	1	31.392	16.521	0.000	0.157	16.521	0.980
Digit Span	Sphericity Assumed	10.190	1	10.190	3.274	0.074	0.035	3.274	0.433
Backward	Sphericity Assumed	10.190	1	10.190	3.274	0.074	0.035	3.274	0.433
Lower-bound	Sphericity Assumed	10.190	1	10.190	3.274	0.074	0.035	3.274	0.433
Vitality	Sphericity Assumed	49.690	1	49.690	5.704	0.019	0.060	5.704	0.656
Self-esteem	Sphericity Assumed	0.521	1	0.521	2.029	0.054	0.002	0.202	0.073
Confusion	Sphericity Assumed	775.588	1	775.588	65.799	0.000	0.425	65.799	1.000
Fatigue	Sphericity Assumed	720.827	1	720.827	62.562	0.000	0.413	625.62	1.000
Anger	Sphericity Assumed	94.422	1	94.422	30.615	0.000	0.256	30.615	1.000
Tension	Sphericity Assumed	169.114	1	169.114	68.100	0.000	0.443	68.100	1.000
Depression	Sphericity Assumed	23.737	1	23.737	16.616	0.000	0.157	16.616	0.981
Total Mood Disturbance	Sphericity Assumed	8111.149	1	8111.149	79.864	0.000	0.473	79.864	1.000

Note: All postures are ascending and descending. The table above represents the MANOVA results for the study variables, including the effects of time and treatment on various parameters such as spatial span, digit span, vitality, self-esteem, confusion, fatigue, and anger. The significant values (Sig.) are indicated with p-values less than 0.05, and effect sizes (Partial Eta Squared) are provided to assess the magnitude of the effects.
Source	Measure	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power
Spatial Span	Sphericity Assumed	14.062	2	7.031	3.700	.029	.017	.140	.666
	Greenhouse-Geisser	14.062	2	7.031	3.700	.029	.017	.140	.666
	Huynh-Feldt	14.062	2	7.031	3.700	.029	.017	.140	.666
	Lower-bound	14.062	2	7.031	3.700	.029	.017	.140	.666
Digit Span Backward	Sphericity Assumed	1.971	2	0.986	0.317	.072	.007	.063	.009
	Greenhouse-Geisser	1.971	2	0.986	0.317	.072	.007	.063	.009
	Huynh-Feldt	1.971	2	0.986	0.317	.072	.007	.063	.009
	Lower-bound	1.971	2	0.986	0.317	.072	.007	.063	.009
Vitality	Sphericity Assumed	12.580	2	6.290	0.722	.049	.016	.144	.016
	Greenhouse-Geisser	12.580	2	6.290	0.722	.049	.016	.144	.016
	Huynh-Feldt	12.580	2	6.290	0.722	.049	.016	.144	.016
	Lower-bound	12.580	2	6.290	0.722	.049	.016	.144	.016
Self Esteem	Sphericity Assumed	8.712	2	1.429	0.729	.072	.007	.063	.009
	Greenhouse-Geisser	8.712	2	1.429	0.729	.072	.007	.063	.009
	Huynh-Feldt	8.712	2	1.429	0.729	.072	.007	.063	.009
Confusion	Sphericity Assumed	11.322	2	5.661	0.480	.620	.011	.960	.126
	Greenhouse-Geisser	11.322	2	5.661	0.480	.620	.011	.960	.126
	Huynh-Feldt	11.322	2	5.661	0.480	.620	.011	.960	.126
Fatigue	Sphericity Assumed	34.975	2	17.488	1.518	.225	.033	.036	.015
	Greenhouse-Geisser	34.975	2	17.488	1.518	.225	.033	.036	.015
	Huynh-Feldt	34.975	2	17.488	1.518	.225	.033	.036	.015
Anger	Sphericity Assumed	1.459	2	0.729	0.426	.701	.005	.047	.086
	Greenhouse-Geisser	1.459	2	0.729	0.426	.701	.005	.047	.086
	Huynh-Feldt	1.459	2	0.729	0.426	.701	.005	.047	.086
Tension	Sphericity Assumed	2.086	2	1.043	0.420	.638	.009	.047	.086
	Greenhouse-Geisser	2.086	2	1.043	0.420	.638	.009	.047	.086
	Huynh-Feldt	2.086	2	1.043	0.420	.638	.009	.047	.086
Depression	Sphericity Assumed	2.576	2	1.273	0.627	.128	.001	.001	.001
	Greenhouse-Geisser	2.576	2	1.273	0.627	.128	.001	.001	.001
	Huynh-Feldt	2.576	2	1.273	0.627	.128	.001	.001	.001
Total Mood Disturbance	Sphericity Assumed	97.650	2	48.825	0.481	.620	.011	.961	.126
	Greenhouse-Geisser	97.650	2	48.825	0.481	.620	.011	.961	.126
	Huynh-Feldt	97.650	2	48.825	0.481	.620	.011	.961	.126
	Lower-bound	97.650	2	48.825	0.481	.620	.011	.961	.126
Appendix B. Cont.

Tests of Within-Subjects Effects

Source	Measure	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power	
Time	Spatial Span Forward	Linear	31.392	1	31.392	18.621	0.000	0.157	18.621	0.980
	Digit Span Backward	Linear	10.190	1	10.190	3.274	0.074	0.035	3.274	0.433
	Vitality	Linear	49.690	1	49.690	5.704	0.019	0.060	5.704	0.656
	Self-esteem	Linear	0.521	1	0.521	0.202	0.654	0.002	0.202	0.073
	Confusion	Linear	775.588	1	775.588	65.739	0.000	0.425	65.739	1.000
	Fatigue	Linear	720.827	1	720.827	62.562	0.000	0.413	62.562	1.000
	Anger	Linear	94.422	1	94.422	30.615	0.000	0.256	30.615	1.000
	Tension	Linear	169.114	1	169.114	68.100	0.000	0.433	68.100	1.000
	Depression	Linear	23.737	1	23.737	16.616	0.000	0.157	16.616	0.981
	Total Mood Disturbance	Linear	8111.149	1	8111.149	79.864	0.000	0.473	79.864	1.000

Tests of Between-Subjects Effects

Source	Measure	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power	
Intercept	Spatial Span Forward	Linear	14,926.764	1	14,926.764	3499.120	0.000	0.075	3499.120	1.000
	Digit Span Backward	Linear	14,572.208	1	14,572.208	1017.795	0.000	0.083	1017.795	1.000
	Vitality	Linear	27,848.781	1	27,848.781	363.517	0.000	0.803	363.517	1.000
	Self-esteem	Linear	13,540.176	1	13,540.176	490.236	0.000	0.846	490.236	1.000
	Confusion	Linear	481.435	1	481.435	137.690	0.000	0.607	137.690	1.000
	Fatigue	Linear	4749.818	1	4749.818	115.364	0.000	0.565	115.364	1.000
	Anger	Linear	320.932	1	320.932	30.822	0.000	0.257	30.822	1.000
	Tension	Linear	1050.013	1	1050.013	974.459	0.000	0.472	974.459	1.000
	Depression	Linear	1025.440	1	1025.440	79.423	0.000	0.009	79.423	0.115
	Total Mood Disturbance	Linear	1038.971	1	1038.971	1025.440	0.000	0.236	1025.440	1.000

* This means the interaction of time and treatment.
Table A3. Statistics of multiple linear regression analysis on fatigue.

Model	R	R Square	Adjusted R Square	Standard Error of the Estimate	Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	0.580	0.336	0.145	4.5506	0.336	1.761	21	73	0.040

ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	765.732	21	36.463	1.761	0.040
Residual	1511.700	73	20.708		
Total	2277.432	94			

Table A4. Statistics of multiple linear regression analysis on total mood disturbance.

Model	R	R Square	Adjusted R Square	Standard Error of the Estimate	Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	0.581	0.337	0.147	13.4051	0.337	1.769	21	73	0.039

ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	6674.558	21	317.836	1.769	0.039
Residual	13,117.864	73	179.697		
Total	19,792.421	94			

References

1. World Health Organization. Physical Inactivity: A Global Public Health Problem. 2020. Available online: https://www.who.int/dietphysicalactivity/factsheet_inactivity/en/ (accessed on 20 July 2020).
2. World Health Organization. World Health Report; World Health Organization: Geneva, Switzerland, 2001.
3. Maas, J.; Verheij, R.A. Are health benefits of physical activity in natural environments used in primary care by general practitioners in The Netherlands? Urban For. Urban Green. 2007, 6, 227–233. [CrossRef]
4. Pretty, J.; Peacock, J.; Sellengs, M.; Griffen, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [CrossRef]
5. Dibben, G.O.; Dalal, H.M.; Taylor, R.; Doherty, P.; Tang, L.H.; Hillsdon, M. Cardiac rehabilitation and physical activity: Systematic review and meta-analysis. Heart 2018, 104, 1394–1402. [CrossRef]
6. Li, J.; Siegrist, J. Physical activity and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Int. J. Environ. Res. Public Health 2012, 9, 391–407. [CrossRef] [PubMed]
7. Cooney, G.M.; Dwan, K.; Greig, C.A.; Lawlor, D.A.; Rimer, J.; Waugh, F.R.; McMurdo, M.; Mead, G.E. Exercise for depression. Cochrane Database Syst. Rev. 2013, 9, CD004366. [CrossRef]
8. Krogh, J.; Hjorthøj, C.; Speyer, H.; Gluud, C.; Nørdenstof, M. Exercise for patients with major depression: A systematic review with meta-analysis and trial sequential analysis. BMJ Open 2017, 7, e014820. [CrossRef] [PubMed]
9. Harte, J.L.; Eifert, G.H. The effects of running, environment, and attentional focus on athletes’ catecholamine and cortisol levels and mood. Psychophysiology 1995, 32, 49–54. [CrossRef]
10. Wooller, J.-J.; Barton, J.; Gladwell, V.F.; Micklewright, D. Occlusion of sight, sound and smell during Green Exercise influences mood, perceived exertion and heart rate. Int. J. Environ. Res. 2016, 26, 267–280. [CrossRef]
11. Kinnafick, F.-E.; Thogersen-Ntoumani, C. The effect of the physical environment and levels of activity on affective states. J. Environ. Psychol. 2014, 36, 241–251. [CrossRef]
12. Ulrich, R.S. Aesthetic and affective response to natural environment. In Behavior and Natural Environments; Altman, I., Wohlwill, J.F., Eds.; Plenum Press: New York, USA, 1983; pp. 85–125.
13. Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989.
14. Ulrich, R.S.; Parsons, R. Influences of passive experiences with plants on individual well-being and health. In Role of Horticulture in Human Well-Being and Social Development; Relt, P., Ed.; Timber Press: Oregon, Portland, 1992; pp. 93–105.
15. Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [CrossRef]
16. Hartig, T.; Mang, M.; Evans, G.W. Restorative effects of natural environment experiences. *Environ. Behav.* 1991, 23, 3–26. [CrossRef]

17. Hartig, T.; Korpela, K.; Evans, G.W.; Garling, T. A measure of restorative quality in environments. *Scand. Hous. Plan. Res.* 1997, 14, 175–194. [CrossRef]

18. Kaplan, S.; Bardwell, L.V.; Slakter, D.B. The museum as a restorative environment. *Environ. Behav.* 1993, 26, 725–742. [CrossRef]

19. Han, K.-T. A review: Theories of restorative environments. *J. Ther. Hortic.* 2001, 12, 30–43.

20. Rogerson, M.; Brown, D.K.; Sandercock, G.; Wooller, J.J.; Barton, J. A comparison of four typical green exercise environments and prediction of psychological health outcomes. *Perspect. Public Health* 2016, 136, 171–180. [CrossRef]

21. Keniger, L.E.; Gaston, K.J.; Irvine, K.N.; Fuller, R. What are the benefits of interacting with nature? *Int. J. Environ. Res. Public Health* 2013, 10, 913–935. [CrossRef]

22. Caspersen, C.; Powell, K.; Christensen, G. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. *Public Health Rep.* 1985, 100, 126–131.

23. Han, K.-T. *Restorative Nature: An Overview of the Positive Influences of Natural Landscapes on Humans*; Lambert Academic Publishing: Saarbrücken, Germany, 2011.

24. Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. *BMC Public Health* 2010, 10, 456–465. [CrossRef]

25. Thompson Coon, J.T.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. *Environ. Sci. Technol.* 2011, 45, 1761–1772. [CrossRef]

26. Han, K.-T.; Wang, P.-C. Empirical examinations of effects of three-level green exercise on engagement with nature and physical Activity. *Int. J. Environ. Res. Public Health* 2018, 15, 375. [CrossRef]

27. Plante, T.G.; Cage, C.; Clements, S.; Stover, A. Psychological benefits of exercise paired with virtual reality: Outdoor exercise energizes while indoor virtual exercise relaxes. *Int. J. Stress Manag.* 2006, 13, 108–117. [CrossRef]

28. Park, B.J.; Furuya, K.; Kaseta, T.; Takayama, N.; Kagawa, T.; Miyazaki, Y. Relationship between psychological responses and physical environment in forest settings. *Landsc. Urban Plan.* 2011, 102, 24–32. [CrossRef]

29. Tyrvainen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. *J. Environ. Psychol.* 2014, 38, 1–9. [CrossRef]

30. Han, K.-T. Influence of passive versus active interaction with indoor plants on the restoration, behavior, and knowledge of students at a junior high school in Taiwan. *Indoor Built Environ.* 2018, 27, 818–830. [CrossRef]

31. Lin, W.; Chen, Q.; Jiang, M.; Zhang, X.; Liu, Z.; Tao, J.; Wu, L.; Xu, S.; Kang, Y.; Zeng, Q. The effect of green space behaviour and per capita area in small urban green spaces on psychophysiological responses. *Landsc. Urban Plan.* 2019, 192, 103637. [CrossRef]

32. Marselle, M.R.; Irvine, K.N.; Warber, S.L. Walking for well-being: Are group walks in certain types of natural environments better for well-being than group walks in urban environments? *Int. J. Environ. Res. Public Health* 2013, 10, 5603–5628. [CrossRef]

33. Barton, J.; Griffin, M.; Pretty, J. Exercise-, nature-, and socially interactive-based initiatives improve mood and self-esteem in the clinical population. *Perspect. Public Health* 2012, 132, 89–96. [CrossRef]

34. Marselle, M.R.; Irvine, K.N.; Lorenzo-Arribas, A.; Warber, S.L. Does perceived restorativeness mediate the effects of perceived biodiversity and perceived naturalness on emotional well-being following group walks in nature? *J. Environ. Psychol.* 2016, 46, 217–232. [CrossRef]

35. Mackay, G.J.S.; Neill, J.T. The effect of “green exercise” on state anxiety and the role of exercise duration, intensity, and greenness: A quasi-experimental study. *Psychol. Sport Exerc.* 2010, 11, 238–245. [CrossRef]

36. Sallis, J.F.; Owen, N. Ecological models. In *Health Behavior and Health Education: Theory, Research, and Practice*; Glanz, K., Lewis, K.M., Rimer, B.K., Eds.; Jossey-Bass: San Francisco, CA, USA, 1997; pp. 402–403.

37. Stokols, D. Establishing and maintaining health environment. *Am. Psychol.* 1992, 47, 6–22. [CrossRef]

38. Gifford, R. *Environmental Psychology: Principles and Practice*; Allyn & Bacon: Needham Heights, MA, USA, 1997.

39. Halpern, D. *Mental Health and the Built Environment: More than Bricks and Mortar?* Taylor & Francis Ltd.: London, UK, 1995.

40. Stathopolos, T.; Wu, H.; Zacharias, J. Outdoor human comfort in an urban climate. *Energy Build.* 2004, 35, 297–305. [CrossRef]

41. Gómez Martínez, M.B. Weather, climate and tourism: A geographical perspective. *Ann. Tour. Res.* 2005, 32, 571–591. [CrossRef]

42. Hipp, J.A.; Ogunseitan, O.A. Effect of environmental conditions on perceived psychological restorativeness of coastal parks. *J. Environ. Psychol.* 2011, 31, 421–429. [CrossRef]

43. White, M.P.; Cracknell, D.; Corcoran, A.; Jenkinson, G.; Depledge, M.H. Do preferences for waterscapes persist in inclement weather and extend to sub-aquatic scenes? *Landsc. Res.* 2014, 39, 339–358. [CrossRef]

44. Fang, Y.-C.; Lin, Y.-J. Influences of microclimate on user’s thermal comfort in urban park. *J. Landsc.* 2010, 16, 77–99.

45. Wu, Y.-J. Environmental Thermal Comfort and Visitors’ Adaptive Behavior in Urban Greenway-A Case Study of Jing-Guo Greenway in Taichung City. Master’s Thesis, University of Chung Hsing, Taichung, China, 2011.

46. Ni, S.-C. The Influences of Thermal Comfort on Physiological Effect, Preference, and Attention Restoration. Unpublished Master’s Thesis, National Taiwan University, Taipei, China, 2011.

47. Bronzaft, A.L. Noise pollution: A hazard to physical and mental well-being. In *Handbook of Environmental Psychology*; Bechtel, R.B., Churchman, A., Eds.; John Wiley & Sons: New York, NY, USA, 2002; pp. 499–510.
48. Parsons, R.J. Environmental psychophysiology. In *Handbook of Psychophysiology*; Cacioppo, J.T., Tassinary, L.G., Bernston, G.G., Eds.; Cambridge: New York, NY, USA, 2007; pp. 752–788.
49. Noise (II) The Third Public Nuisance of the Living Environment. Available online: http://www.ch.com.tw/index.aspx?sv=ch_fitness&chapter=AIA900602 (accessed on 17 February 2021).
50. Calder, J.; Zelenski, J.M.; Murphy, S.A. The Nature Relatedness Scale: Linking individuals’ connection with nature to environmental concern and behavior. *Environ. Behav.* 2009, 41, 715–740. [CrossRef]
76. Tam, K.-P. Concepts and measures related to connection to nature: Similarities and differences. *J. Environ. Psychol.* **2013**, *34*, 64–78. [CrossRef]

77. Alizadeh, Z.; Feizi, A.; Rejali, M.; Afshar, H.; Keshteli, A.H.; Adibi, P. The predictive value of personality traits for psychological problems (stress, anxiety and depression): Results from a large population based study. *J. Epidemiol. Glob. Health* **2018**, *8*, 124–133. [CrossRef]

78. Malouff, J.M.; Thorsteinsson, E.B.; Schutte, N.S. The relationship between the five factor model of personality and symptoms of clinic disorders: A meta-analysis. *J. Psychopathol. Behav. Assess.* **2005**, *27*, 101–114. [CrossRef]

79. Kotov, R.; Gamez, W.; Schmidt, F.; Watson, D. Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. *Psychol. Bull.* **2010**, *136*, 768–821. [CrossRef]

80. Carver, C.S.; Scheier, M.F. Dispositional optimism. *Handbook of Personality: Theory and Research*; Clark, M.S., Fiske, S.T., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1982; pp. 1–54. [CrossRef]

81. Ryan, R.M.; Frederick, C. On energy, personality, and health: Subjective vitality as a dynamic reflection of well-being. *J. Pers. 1997*, *65*, 529–565. [CrossRef] [PubMed]

82. Engin Deniz, M.; Satici, A.S. The relationships between Big Five personality traits and subjective vitality. *An. De Psicol.* **2017**, *33*, 218–224. [CrossRef]

83. Ryan, R.M.; Frederick, C. On energy, personality, and health: Subjective vitality as a dynamic reflection of well-being. *J. Pers. 1997*, *65*, 529–565. [CrossRef] [PubMed]

84. Han, K.-T. The effect of nature and physical activity on emotions and attention while engaging in green exercise. *Urban For. Urban Green.* **2017**, *24*, 5–13. [CrossRef]

85. Dominguez-Rodrigo, M. Hunting and scavenging by early humans: The state of the debate. *J. World Prehist.* **2002**, *16*, 1–54. [CrossRef]

86. Kansky, J. What’s love got to do with it?: Romantic relationships and well-being. In *Handbook of Well-Being*; Diener, E., Oishi, S., Tay, L., Eds.; DEF Publishers: Salt Lake City, UT, USA, 2018; pp. 1–24.

87. Calkins, M.; Szmerekovszy, J.G.; Biddle, S. Effect of Increased Time Spent Outdoors on Individuals with Dementia Residing in Nursing Homes. *J. Hous. Elder.* **2007**, *21*, 211–228. [CrossRef]

88. Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C. The role of actigraphy in the study of sleep and circadian rhythms. *Sleep 2003*, *26*, 342–392. [CrossRef]

89. Stone, K.L.; Ancoli-Israel, S. Actigraphy. In *Principles and Practice of Sleep Medicine*; Kryger, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2011.

90. Zhang, K.; Werner, P.; Sun, M.; Pi-Sunyer, F.X.; Boozer, C. Measurement of human daily physical activity. *Obes. Res.* **2003**, *11*, 33–40. [CrossRef] [PubMed]

91. Costa, P.T., Jr.; McCrae, R.R. Normal personality assessment in clinical practice: The NEO Personality Inventory. *Psychol. Assess.* **1992**, *4*, 5–13. [CrossRef]

92. Manning, R.E.; Lime, D.W.; Friemund, W.A. Use of visual research methods to measure standards of quality for parks and outdoor recreation. *J. Leis. Res.* **2004**, *36*, 552–579. [CrossRef]

93. Huang, Y.-C. The Relationship between Personality, Sales Skill, Selling-customer Orientation and Sales Performance of Part-time Salespeople. Unpublished Master’s Thesis, National Sun Yat-sen University, Kaohsiung, China, 2010.

94. John, O.P.; Donahue, E.M.; Kentle, R.L. The Big Five Inventory–Versions 4a and 54; Institute of Personality and Social Research: Berkeley, CA, USA, 1991.

95. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. *Int. J. Biometeorol.* **2007**, *51*, 323–334. [CrossRef]

96. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. *Int. J. Biometeorol.* **2010**, *54*, 131–139. [CrossRef]

97. Huang, Y.-C. The Relationship between Personality, Sales Skill, Selling-customer Orientation and Sales Performance of Part-time Salespeople. Unpublished Master’s Thesis, National Sun Yat-sen University, Kaohsiung, China, 2010.

98. John, O.P.; Donahue, E.M.; Kentle, R.L. The Big Five Inventory–Versions 4a and 54; Institute of Personality and Social Research: Berkeley, CA, USA, 1991.

99. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. *Int. J. Biometeorol.* **2007**, *51*, 323–334. [CrossRef]

100. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. *Int. J. Biometeorol.* **2010**, *54*, 131–139. [CrossRef]

101. Air Pollution Control Act. Available online: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=o0020001 (accessed on 17 February 2021).
105. Ekman, P. Expression and the Nature of Emotion. In Approaches to Emotion; Scherer, K., Ekman, P., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1984; pp. 319–343.
106. Chang, Y.-C.; Lu, J.-H. The revised report of Profile of Mood State (POMS). Sports Exerc. Res. 2001, 3, 47–55.
107. McNair, D.M.; Lorr, M.; Droppleman, L.F. Revised Manual for the Profile of Mood States; Educational and Industrial Testing Service: San Diego, CA, USA, 1992.
108. Hsu, P.-Y.; Chang, Y.-C.; Lu, J.-H. The re-revised Profile of Mood States (PMOS). Sports Exerc. Res. 2003, 5, 85–95.
109. Heuchert, J.P.; McNair, D.M. Profile of Mood States 2nd Edition–Youth. Poms 2-Y Assess. Rep. Derrick Smith 2012, 1–6.
110. Anderson, J.R. Poms 2-Y Assess. Rep. Derrick Smith 2012, 1–6.
111. Gupta, S.K. Intention-to-treat concept: A review. Perspect. Clin. Res. 2011, 2, 109–112. [CrossRef]
112. Heuchert, J.P.; McNair, D.M. Profile of Mood States 2nd Edition–Youth.
113. Staats, H.; Hartig, T. Alone or with a friend: A social context for psychological restoration and environmental preferences. J. Environ. Psychol. 2004, 24, 199–211. [CrossRef]
114. Chiou, H.-J. Scale Development Theory and Applications
115. DeVellis, R.F. Quantitative Research and Statistical Analysis in Social and Behavioral Sciences
116. Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [CrossRef]
117. Bamberg, J.; Hitchings, R.; Latham, A. Enriching green exercise research. Landsc. Urban Plan. 2018, 178, 270–275. [CrossRef]
118. Oberauer, K. Working memory and attention–a conceptual analysis and review. J. Cogn. 2019, 2, 36. [CrossRef] [PubMed]
119. Partington, J.; Leiter, J.E.; Graydon, R. Partington’s Pathways Test. Psychol. Serv. Cent. J. 1949, 1, 11–20.
120. Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [CrossRef]
121. Stevenson, M.P.; Schilhab, T.; Bentsen, P. Attention restoration theory II: A systematic review to clarify attention processes affected by exposure to natural environments. J. Toxicol. Environ. Health-Pt B Crit. Rev. 2018, 21, 227–268. [CrossRef]