Import of the Carboxy-Terminal Portion of Acyl-CoA Oxidase into Peroxisomes of *Candida tropicalis*

Gillian M. Small and Paul B. Lazarow

The Rockefeller University, New York

Abstract. We report the sequence of a cDNA clone that codes for the carboxy-terminal portion of the peroxisomal protein, acyl-CoA oxidase, from the yeast, *Candida tropicalis*. This is a newly identified acyl-CoA oxidase sequence, most likely a second allele of *POX4*.

The cDNA clone was expressed by in vitro transcription followed by translation. The major product, a 43-kD protein, associated with isolated peroxisomes in an in vitro import assay. More than half of the peroxisome-associated protein was protected from added protease, implying that it was internalized within the organelle. These findings indicate that there is sufficient information in the carboxy-terminal portion of the protein to target it to peroxisomes.

Results

Sequence

The sequence of cDNA clone 1:18 for acyl-CoA oxidase and the predicted amino acid sequence are shown in Fig. 2.1 This cDNA sequence was compared with the two acyl-CoA oxidase genes, *POX4* and *POX5*, described by Okazaki et al. (11). It is 97.2% homologous to bases 622–2,130 of *POX4* and 55.6% homologous to *POX5* (bases 577–1,989). There are 42 differences in DNA sequence between *POX4* and our cDNA, of which 34 (81%) are third base changes. These result in 11 amino acid differences, of which at least four are conserved.

Materials and Methods

The cDNA clone 1:18 encoding acyl-CoA oxidase (14) was excised from PBR322 and cut with Mae I. The 1,161-bp Mae I-last I fragment (Fig. 1) was cloned into M13 vectors, and sequenced from both ends of clone 1:18 (Fig. 1) were cloned into M13 vectors, and sequenced according to Maxam and Gilbert (9).

1. This sequence data have been submitted to the EMBL/Gen Bank Data Libraries under the accession number Y00623.
2. POX2, another gene with some homology to *POX4* (6), differs from all three sequences by having two internal ECO RI sites.
The 1,161-bp Pst I idase eDNA. Arrows indicate the Bal 31 ments that were se-
dermine the Maxam and Gilbert procedure (9). The 1,161-bp Mae I Pst I fragment was cloned into the expression vector pGEM3 and predicted sizes of the translation products.

serve as initiators of translation are indicated, together with the predicted mass would be 33,92g D.

designate our cDNA allele pox4-2 and that of Okazaki et al. pox4-1 in accordance with convention (17).

In vitro expression
The cDNA clone was expressed in pGEM3 (plasmid pGSP4-2a) from an internal methionine codon just downstream from a Mae I site (Fig. 1). The in vitro expression product had a mass of ~43 kD (Fig. 3 a), in agreement with the expected mass of 43,702 D. The predicted mass of the pox4-1 gene is 76 kD (5). A second polypeptide with a mass of ~32 kD (Fig. 3 a), in agreement with the expected mass of ~43 kD (Fig. 3 a), in agreement with the expected.

Immunoprecipitation
Both the 43- and the 32-kD cell-free translation products were immunoprecipitated with an antiserum against acyl-

CoA oxidase (Fig. 3 c). This confirms that plasmid pGSP4-2a encodes acyl-CoA oxidase and indicates that antigenic sites are present in the carboxy-terminal portion of this protein.
Figure 3. In vitro expression and import into peroxisomes of the carboxy-terminal portion of acyl-CoA oxidase. (a) Expression. pGSP4-2a was transcribed and translated in vitro. 1.3 μl of translation products, in the presence of 5 μg of peroxisomal protein, was subjected to SDS-PAGE and fluorography. (b) Import. Newly synthesized translation products (180 μl) were mixed with peroxisomes (700 μg of protein) and divided into three equal samples. After incubation at 26°C for 30 min, aliquots were (+) or were not (−) digested with 2.5 μg of thermolysin at 4°C for 30 min in the presence (lane 6) or absence (lanes 2–5) of 1% sodium deoxycholate and 1% Triton X-100. Supernatants and peroxisome pellets were then separated by centrifugation; 20% of the pellets and 5% of the supernatants were analyzed by SDS-PAGE and fluorography. The pellet after detergent treatment was omitted here because in preliminary experiments it was found to contain negligible protein or radioactivity (see Fig. 4). Globin is not digested under these conditions. (c) Immunoprecipitation. Samples from a and b (each equivalent to 5 μl of cell-free translation products) were subjected to immunoprecipitation with antiserum against acyl-CoA oxidase. Lanes 7, 8, and 9 contain the immunoprecipitated products from lanes 1, 3, and 5, respectively.

Figure 4. Temperature dependence of import. Newly synthesized translation products (300 μl) were mixed with peroxisomes (2.2 mg of protein) and divided into two equal samples. Incubation was at 4°C (a) or 26°C (b) for 30 min. After each sample was divided in three and binding and import were assessed as in Fig. 3b except that only 1 μg of thermolysin was used.
Temperature Dependence of Import

When the import assay was carried out on ice (Fig. 4 a), 24% of the 43-kD translation product and 40% of the 32-kD product bound to the peroxisomes, but neither product was protected from proteolysis. Therefore import but not binding requires incubation at 26°C.

Discussion

In the first of a planned series of experiments designed to study the information that targets a peroxisomal protein to peroxisomes, we have expressed the DNA encoding the carboxy-terminal portion of acyl-CoA oxidase by in vitro transcription and translation, and have followed the import of the resultant polypeptide into peroxisomes of C. tropicalis.

Our results indicate that sufficient information is present in the carboxy-terminal 40% of acyl-CoA oxidase to target it to peroxisomes, resulting in partial import (protease protection). Under optimal conditions (Fig. 4), 59–63% of the peroxisome-associated translation products were imported (protease resistant). Two different-sized carboxy-terminal polypeptides were expressed from the plasmid pGS4-2a. It is interesting to note that both binding and import of the 32-kD polypeptide was greater than that of the 43-kD protein. This may reflect differences in the transient folding of these molecules. Although the specificity of binding and import was not tested in these experiments, we know that the full-length acyl-CoA oxidase associates in vitro only with peroxisomes (not with mitochondria), and does so in a time- and temperature-dependent fashion (19). These data suggest that targeting of peroxisomal proteins may differ from that of mitochondrial and chloroplast proteins, most of which possess a cleavable amino-terminal topogenic sequence (16, 21).

Our results do not exclude the possibility that targeting information may also be located within the amino-terminal 60% of acyl-CoA oxidase. Experiments are in progress to test this possibility.

We thank Mr. Gary Richo for excellent technical assistance, Ms. Helen A. Valsamis for dedicated Maxam and Gilbert sequencing, Mr. Richard Boulett of Genetics Institute (Cambridge, MA) for the dideoxy sequencing, and Dr. Enrique Prud'ee (Lady Davis Institute for Medical Research, Montreal) for help with preparing the plasmid.

This work was supported by National Science Foundation grant DCB83-09222.

Received for publication 14 January 1987, and in revised form 10 March 1987.

References

1. Borst, P. 1986. How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim. Biophys. Acta. 866:1-16.
2. Domnes, P., V. Donumus, and W.-H. Kunau. 1983. β-Oxidation in Candida tropicalis. Partial purification and biological function of an inducible 2,4-dienoyl coenzyme A reductase. J. Biol. Chem. 258:10846-10852.
3. Fujiki, Y., A. L. Hubbard, S. Fowler, and P. B. Lazarow. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment. Application to endoplasmic reticulum. J. Cell Biol. 93:97-102.
4. Fujiki, Y., R. A. Rachubinski, and P. B. Lazarow. 1984. Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc. Natl. Acad. Sci. USA. 81:7127-7131.
5. Fujiki, Y., R. A. Rachubinski, A. Zentella-Dehesa, and P. B. Lazarow. 1986. Induction, identification, and cell-free translation of mRNAs coding for peroxisomal proteins in Candida tropicalis. J. Biol. Chem. 261:15787-15793.
6. Kamiryo, T., and K. Okazaki. 1984. High-level expression and molecular cloning of genes encoding Candida tropicalis peroxisomal proteins. Mol. Cell. Biol. 4:2136-2142.
7. Laskey, R. A., and A. D. Miles. 1975. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur. J. Biochem. 56:335-341.
8. Lazarow, P. B., and Y. Fujiki. 1985. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1:489-503.
9. Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499-560.
10. Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035-7056.
11. Okazaki, K., T. Takechi, N. Kambara, S. Fukui, I. Kubota, and T. Kamiryo. 1986. Two acyl-coenzyme A oxidases in peroxisomes of the Candida tropicalis: primary structures deduced from genomic DNA sequence. Proc. Natl. Acad. Sci. USA. 83:1232-1236.
12. Osumi, M., N. Miwa, Y. Teranishi, A. Tanaka, and S. Fukui. 1974. Ultrastructure of Candida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch. Microbiol. 99:181-201.
13. Pelham, H. R. B., and R. J. Jackson. 1976. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67:247-256.
14. Rachubinski, R. A., Y. Fujiki, and P. B. Lazarow. 1985. Cloning of cDNA coding for peroxisomal acyl-CoA oxidase from the yeast Candida tropicalis. Nature. 318:397-3977.
15. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467.
16. Schmidt, G. W., and M. L. Mishkind. 1986. The transport of proteins into chloroplasts. Annu. Rev. Biochem. 55:879-912.
17. Sherman, F. 1981. Genetic nomenclature. In The Molecular Biology of the Yeast Saccharomyces. Life Cycle and Inheritance. J. N. Strathern, E. W. Jones, and J. R. Broach, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 639-640.
18. Small, G. M., T. Imanaka, and P. B. Lazarow. 1986. Expression in vitro of a partial cDNA clone for acyl-CoA oxidase: assay for import of translation products into yeast peroxisomes. J. Cell Biol. 103:924a. (Abstr.)
19. Small, G. M., T. Imanaka, H. Shio, and P. B. Lazarow. 1987. Efficient association of in vitro translation products with purified, stable Candida tropicalis peroxisomes. Mol. Cell. Biol. 7:1848-1855.
20. Tanaka, A., M. Osumi, and S. Fukui. 1982. Peroxisomes of alkane-grown yeast: fundamental and practical aspects. Ann. N. Y. Acad. Sci. 386:183-198.
21. Tzagoloff, A., and A. M. Myers. 1986. Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 55:249-285.