Charge and spin collective modes in a quasi-1D model of Sr$_2$RuO$_4$

Suk Bum Chung1, S. Raghu1,2, Aharon Kapitulnik1, and Steven A. Kivelson1
1Department of Physics, Stanford University, Stanford, California 94305, USA and
2Stanford Institute for Materials and Energy Science,
SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
(Dated: May 2, 2014)

Given that Sr$_2$RuO$_4$ is a two-component p-wave superconductor, there exists the possibility of well-defined collective modes corresponding to fluctuations of the relative phase and spin-orientation of the two components of the order parameter. We demonstrate that at temperatures much below T_c, these modes have energies small compared to the pairing gap scale if the superconductivity arises primarily from the quasi 1D (d_{xz} and d_{yz}) bands, while it is known that their energies become comparable to the pairing gap scale if there is a substantial involvement of the quasi 2D (d_{xy}) band. Therefore, the orbital origin of the superconductivity can be determined by measuring the energies of these collective modes.

I. INTRODUCTION

The layered perovskite material Sr$_2$RuO$_4$ has attracted strong interest for over a decade because of experiments indicating that it is a spin-triplet superconductor12,2 with spontaneously broken time-reversal symmetry13,14. The only state that possesses both of these properties in a tetragonal system with spin-orbit coupling is the chiral p-wave state, the electronic analogue of 3He-A^\pm. In a single-band, quasi-two dimensional system, this state is expected to be a topological superconductor: it is fully gapped and has topologically protected Majorana fermion zero modes in vortex cores and along its edge.

However, the observation of power laws in specific heat15,16 and NMR17,18, the absence of electric currents along edges and domain walls19, and the absence of a spin transition in the presence of an in-plane magnetic field20 are sharply inconsistent with the theoretically expected properties of a simple chiral superconductor. Motivated by these inconsistencies, three of us21,22 proposed that the multi-band nature of the material is essential.

The electronic structure of this system is derived from the Ru t$_{2g}$ fermions (d_{xz}, d_{yz}, and d_{xy}). These orbitals produce three Fermi surfaces, denoted α, β, and γ. The α and β surfaces are derived from the $\{d_{xz}, d_{yz}\}$ orbitals and are quasi-one dimensional (1D), whereas the γ surface is derived primarily from the d_{xy} orbital and is quasi-two dimensional (2D) (see Fig. 1). Because of the strong differences in character between the different bands, superconductivity in this system is likely derived primarily from either the d_{xy}, or $\{d_{xz}, d_{yz}\}$ orbitals: in either scenario the “active” electrons induce superconductivity in the remaining “passive” subset via the proximity effect23,24. However, to the extent that the proximity effect is weak, there is a range of circumstances in which the experimental observations reflect superconducting properties of mainly the active orbitals.

There are sharp distinctions between the two possibilities for the active electrons. For example, the $p_x + ip_y$ state obtained only from the α, β bands is topologically trivial because the α and β bands form, respectively, a hole and electron pocket leading to a net zero Chern number25. If these were the active electrons, the system behaves as a topologically trivial system near T_c. At $T = 0$, superconductivity occurs on all three bands and is therefore topologically non-trivial; however, the size of the induced gap on the passive γ Fermi surface can be substantially smaller than those on the α, β surfaces, making it difficult to experimentally detect the topologically non-trivial character of the ground state. This scenario could explain, for instance, the absence of any detectable edge currents in the system26. By contrast, when γ is the active band, the system behaves as a topological superconductor even near T_c. Recently, it was shown that there is an intrinsic Kerr response near T_c only when $\{\alpha, \beta\}$ are the active bands27,28. In this paper, as part of a further exploration of the experimentally accessible properties that could distinguish between the two cases, we study the qualitative differences in the character of the charge and spin collective modes.

In forming the α and β bands, the d_{xz} and d_{yz} orbitals are coupled to each other only via spin-orbit coupling and second-neighbor hopping terms, both of which are relatively weak12 in Sr$_2$RuO$_4$. The limit in which these orbital mixing terms vanish defines a multicritical point at which the superconducting state breaks a higher $[SO(3)_{\text{spin}} \times U(1)_{\text{charge}}]^2$ symmetry. Proximate to this multicritical point, i.e. for weak orbital mixing, there are low energy “almost Goldstone modes” associated with fluctuations of the relative phase and spin orientation of the x and y components of the superconducting order parameter. By contrast, the same collective modes have29,30 energies of order Δ_0 when γ is the active band.

This paper is organized as follows. In section II, we discuss the general physics of the collective modes in a multi-component superconductor at a qualitative level and describe the general form of the non-linear sigma model (NLSM) of the system. In sections III-V, we derive the NLSM from the microscopic physics of the quasi-1D model and obtain the gaps of the collective modes. Lastly, we discuss schemes for detecting the modes and consider their broader implication for the superconducting properties of the system.
II. COLLECTIVE MODES IN MULTI-COMPONENT SUPERCONDUCTORS

A. Qualitative discussion

A superconductor described by a multi-component order parameter \((p_x, p_y, p_z)\) will have collective mode excitations associated with the relative phase difference, \(\phi_\alpha = \theta_x - \theta_y\). At zero temperature, such a mode would be expected to have a frequency \(\hbar \omega_0 \sim \sqrt{\mathcal{J}/\chi}\), where \(\chi \sim N(0)\) is the compressibility (\(N(0)\) is the density of states at the Fermi energy) and \(\mathcal{J}\) is the second derivative of the condensation energy with respect to \(\phi_-\). Given that the condensation energy \(\sim N(0) |\Delta_0|^2\), where \(|\Delta_0|\) is the root mean squared gap magnitude, this generally means that \(\hbar \omega_0 \sim |\Delta_0|\). Similar considerations apply to fluctuations in the relative orientation of the spins (i.e. the \(d\)-vector) in a two-component triplet superconductor.

By contrast, if the two components of the order parameter are associated with different orbitals, i.e. the \(p_x\) component with the \(d_{xz}\) and the \(p_y\) with \(d_{yz}\) orbital respectively, and if mixing between the different orbitals were absent, then collective fluctuations of the relative phase and spin-orientation would be gapless. The orbital-mixing terms, which we schematically denote as \(\delta H\) and \(\phi_\alpha\), result in a non-vanishing dependence of the condensation energy on \(\phi_-\). As a result, if the superconductivity arises primarily from the quasi-1D bands, then the relative phase mode is expected to have an energy \(\hbar \omega_0 \approx \gamma |\Delta_0|\), where \(\gamma\) vanishes continuously as \(\delta H\) tends to zero. Naturally, similar considerations apply to the relative spin orientational fluctuations. As we explain below, since appreciable orbital mixing occurs only where the bands cross one another, \(\gamma \ll 1\) even when the characteristic scale associated with \(\delta H\) is \(|\Delta_0|\).

B. Non-linear sigma model

To analyze the low-lying collective modes in a two-band spin-triplet superconductor we consider the non-linear sigma model (NLSM) valid deep inside the superconducting phase. We express the order parameter as

\[
\Delta_{\alpha ss'}(k) = \Delta f_\alpha(k)e^{i\theta_\alpha (i\sigma_2 \hat{d}_\alpha \cdot \sigma)_{ss'}},
\]

where \(\alpha = x, y\) labels the two components of the order parameter, \(s, s'\) the spin indices of the two electrons forming the Cooper pair, \(\Delta\) the order parameter amplitude, \(f_\alpha(k)\) the pair wave-function which is determined by the microscopic form of the pairing interaction, and \(\hat{d}_\alpha\) a real unit vector in spin-space. In an \(N\)-orbital basis, \(f_\alpha(k)\) (and consequently \(\Delta_{\alpha ss'}\)) are \(N \times N\) matrices which transform as the \(x\) and \(y\) components of a vector of the tetragonal point group.

The NLSM action is obtained by holding \(\Delta\) and \(f_\alpha(k)\) fixed, and focusing on the long-wave-length fluctuations of \(\theta_\alpha\) and \(\hat{d}_\alpha\):

\[
\mathcal{L} = \frac{1}{2} \sum_\alpha \left[|W| \partial_\alpha \theta_\alpha + \mathcal{M}(\partial_\alpha \hat{d}_\alpha \cdot (\partial_\alpha \hat{d}_\alpha) + \ldots \right] \\
- \mathcal{J} [\theta_x - \theta_y, \hat{d}_x \cdot \hat{d}_y] + \ldots \\
- \sum_\alpha \Gamma_0(\hat{d}_\alpha \cdot \hat{d}_\alpha)/3 - \delta_\alpha^2 \hat{d}_{\alpha}^2 + \ldots
\]

Here, the first line contains the terms which respect the symmetry of the multicritical system. The “...” includes terms proportional to spatial-derivatives and higher powers of time derivatives. Our interest is in the long wavelength limit and we shall neglect spatial derivatives; however, these terms are the only ones which reflect the underlying tetragonal lattice symmetry.

The second-line includes terms derived from inter-orbital mixing without spin-orbit coupling, and the third line includes spin-orbit coupling terms. Again, derivative terms are neglected. Here, \(\mathcal{J}[\phi, x] = \mathcal{J}[\phi + \pi, x] = \mathcal{J}[-\phi, x] = \mathcal{J}[\phi, -x]\). Note that, there is no Goldstone mode resulting from fluctuations of the overall phase \(\phi_+ \equiv \theta_{xz} + \theta_{yz}\) due to the Anderson-Higgs mechanism.

In the next section, we define a microscopic model of the superconductivity on the quasi-1D bands and from it derive estimates of the various couplings that appear in Eq. 2. Estimates for \(\mathcal{W}\) and \(\mathcal{M}\), both of which are of order \(1/N(0)\), are discussed below Eq. 3. To first order in the (spin rotationally invariant) orbital mixing terms, the form \(\mathcal{J}\) is found in Eqs. 13 and 14 to be

\[
\mathcal{J}[\phi_, \hat{d} \cdot \hat{d}'] = \mathcal{J}_0 \cos(2\phi_-) \left[2(\hat{d} \cdot \hat{d}')^2 - 1\right]
\]

and an estimate of \(\mathcal{J}_0\) is presented in Eq. 17. Finally, an expression for \(\Gamma_0\) to second order in the spin-orbit coupling is given in Eq. 19.

Because \(\mathcal{J}_0 > 0\), the orbital mixing term is minimized either when \(\hat{d}_x\) is parallel to \(\hat{d}_y\) and \(\phi_- = \pi/2\), which corresponds to the chiral superconducting state analogous to...
the A-phase of 3He, or when \hat{d}_x is perpendicular to \hat{d}_y and $\phi = 0$ or π, which corresponds to the time-reversal invariant superconducting analogue of the B-phase of 3He. The degeneracy between these two phases is exact (at mean-field level) in the absence of spin-orbit coupling; this observation and the various periodicity conditions impose general constraints on the form of J, which are satisfied by our present result. The degeneracy between the A and B phases is lifted by spin-orbit coupling: for $\Gamma_0 > 0 (\Gamma_0 < 0)$, the A(B) phases have larger condensation energy.

We now proceed to show explicitly how these qualitative considerations apply in a simple, but physically motivated microscopic model of Sr$_2$RuO$_4$.

III. QUASI-1D MODEL OF SR$_2$RUO$_4$ SUPERCONDUCTIVITY

As a microscopic representation of the problem of the pairing in the quasi-1D bands, we consider an idealized form of the Bogoliubov-de Gennes Hamiltonian for the quasi-particles in a p-wave superconducting state, we consider an idealized mean-field level) in the absence of spin-orbit coupling; the higher symmetry of the multicritical point.

A. The multicritical point Hamiltonian

$$H_{multi} = \sum_{a=xz,yz} \sum_{ks} \xi_a(k)c_{a,k,s}^\dagger c_{a,k,s}$$

$$+ \frac{1}{2} \sum_{a=xz,yz} \sum_{b=xz,yz} \sum_{k:ks'} [\Delta_{a;ss'} ^{(a)}(k)c_{a,k,s}^\dagger c_{a,-k,s'}^\dagger + \text{h.c.}],$$

where $c_{a,k,s}$ is the annihilation operator for an electron with the momentum k, orbital index $a = xz, yz$ and spin polarization s, $\xi_a(k) = \epsilon_a - \mu$, the chemical potential μ is set so that these bands are two-third filled and $\Delta_{a;ss'} ^{(a)}(k)$ is the appropriate orbital diagonal matrix element of the pair-field defined in Eq. (4). We further simplify the model by taking the band-structure in the absence of orbital mixing to be strictly one dimensional, $\epsilon_a(k) = -2t \cos k_a$ and the x and y components of the order parameter to originate entirely on the corresponding 1D band, $\Delta_{xz}(k) = \Delta_{yz}(k) = 0$, $\Delta_{xz,ss'} ^{(a)}(k) = \Delta \sin(k_a) \xi ^{(a)}_{xz} \sigma_z$, $\Delta_{yz,ss'} ^{(a)}(k) = \Delta \sin(k_a) \xi ^{(a)}_{yz} \sigma_z$.

B. Orbital mixing and spin-orbit coupling

δH contains all permissible terms in the quasi-particle Hamiltonian which break the $[SO(3)_{\text{spin}} \times U(1)_{\text{charge}}]^2$ symmetry of the multicritical point, of which the most important are band-structure terms that mix the two orbitals,

$$\delta H = \sum_{ks} \lambda_k(c_{xz,k,s}^\dagger c_{yz,k,s} + \text{h.c.})$$

$$+ \eta \sum_{a,b=xz,yz} \sum_{k:ss'} \ell_{ab} \sigma_z \xi ^{(a)}_c k_a^ss' c_{a,k,s}^\dagger c_{b,k,s'}, + \cdots$$

where the first term reflects second-neighbor hopping the xz and yz orbitals, so $\lambda_k \equiv 2\delta t \sin k_x \sin k_y$, and the second term represents the Ru atomic spin-orbit coupling where $\ell_{ab} = i \epsilon_{abc}$ are the spin-1 matrices representing the effective orbital angular momentum of the t_{2g} orbitals and σ_z are the usual Pauli spin-matrices. We can see that if we include the xy orbital, the atomic spin-orbit term will include the additional terms $\ell^x \sigma^y + \ell^y \sigma^x$. These terms, however, do not alter any of our qualitative results, except those we discuss in Section IV C and Appendix B.

A more detailed model of the electronic structure of Sr$_2$RuO$_4$ might include additional terms in δH (indicated by \cdots) but we will show that these terms are certainly smaller than the terms we have kept and therefore do not qualitatively effect the outcome of the calculations, so long as we focus on the limit $t \gg |\delta t| \sim |\eta| \gg |\Delta|$.

Eq. (5) omitted the interorbital interaction terms of the form

$$\delta H_{int} = \sum_{\sigma_\sigma'} V \sum_{i\sigma} d_{i\sigma}^\dagger d_{i\sigma}$$

that are local and therefore play a role everywhere in momentum space. However, in the BCS ground state, such interactions cause scattering only in the Cooper channel,
and therefore play an appreciable role only in momentum contributions where the bands cross. Additional interaction terms such as the interorbital singlet-pair hopping terms do not play a role in the spin-triplet superconductor. Among higher order interaction processes, only those terms proportional to the interorbital susceptibility (vanishingly small in the present case) affect the interorbital modes. Thus, we are led to the same conclusion: the mixing between the different orbitals whether it be due to tunneling or to interactions, is weak.

IV. DERIVATION OF THE NLSM

In this section, we will compute the terms in the NLSM in Eq. (2) from the microscopic model in Eqs. (4).

A. Kinetic terms, \(\mathcal{W} \) and \(\mathcal{M} \)

Firstly, we derive expressions for the time-derivative terms in Eq. (2) which do not involve mixing of the orbitals or spin-orbit coupling: to leading order, these terms can be computed in the limit \(\delta H = 0 \) and \(\Delta_0 = 0 \). Because the number density is canonically conjugate to the phase of the superconducting order, these terms ultimately reflect the energy cost of shifting electrons from one orbital to another or from one spin polarizing to the other. To quadratic order, the cost in energy per unit volume associated with a transfer of charge \(\delta n \) per unit cell from one band to the other and with a spin density \(\mathbf{S}_a \) in band \(a \) is

\[
K[\delta n, \mathbf{S}_a] = \frac{1}{4\chi_c} (\delta n)^2 + \frac{1}{2\chi_{sp}} \sum_a \left(\frac{\mathbf{S}_a}{\hbar} \right)^2,
\]

where \(\chi_c = N(0) \) and \(\chi_{sp} = N(0)/4 \) are the density and spin susceptibilities for each quasi-1D band. In the standard presentation, spin-triplet Cooper pairing gives rise to the commutation relations\(^{22,23}\)

\[
[\delta n, e^{i\phi_-}] = -4ie^{i\phi_-},
\]

\[
[S^i_a, \hat{d}^i_b] = i\hbar\epsilon^{ijk}\delta_{ab}\hat{d}^j_b;
\]

thus, we can regard \(K \) as the ‘kinetic’ energy density of \(\phi_- \) and \(\mathbf{d}_a \). By using the Heisenberg equations of motions \(\partial_t\phi = i[\phi, K]/\hbar \) and \(\partial_t\mathbf{d}_a = i[\mathbf{d}_a, K]/\hbar \), we obtain

\[
K[\phi, \mathbf{d}_a] = \frac{\hbar^2\chi_c}{16}(\partial_t\phi)^2 + \frac{\hbar^2\chi_{sp}}{2} \sum_a (\partial_t\hat{d}_a)^2. \tag{11}
\]

This is equivalent to the first line of the NLSM action of Eq. (2).

B. Relative Josephson coupling, \(J \)

The leading contribution to the interorbital Josephson coupling, \(J \), can be computed in the \(\eta = 0 \) limit. As a warm up, we first calculate the ground state energy for the spinless case where the relative phase between the condensate of two components of the order parameter is set to \(\phi_- = \theta_+ - \theta_- \). The ground state energy can be computed as

\[
\mathcal{E}_0(\phi_-) = -\sum_{\alpha k}[E_{\alpha k}(\phi_-) - \xi_{\alpha k}]/2, \tag{12}
\]

where \(E_{\alpha k}(\phi_-) \)’s are the eigenenergies of the spin “up” quasiparticles in \(\mathcal{H}_{BdG} \) in Eq. (4) with \(\hat{d}_x = \hat{d}_y = \hat{z} \) and \(\lambda = 0 \). As we show in Appendix A.1 the local stability of the chiral state follows from the fact that \(\mathcal{E}_0'(\phi_- = \pm\pi/2) = 0 \) and \(\mathcal{E}_0''(\phi_- = \pm\pi/2) > 0 \). Indeed, since in the limit of weak mixing, we know the dependence of the energy on \(\phi_- \) must be approximately harmonic, it follows that \(\mathcal{E}_0'' \) is related to the value of the Josephson coupling. Time reversal symmetry implies that \(\mathcal{E}_0(\phi_-) = \mathcal{E}_0(-\phi_-) \) and the fact that \(\Delta_\alpha \) transforms like a vector under rotations by \(\pi/2 \) implies that \(\mathcal{E}_0(\phi_-) = \mathcal{E}_0(\pi - \phi_-) \). Thus,

\[
\mathcal{E}_0(\phi_-) \approx \text{const.} + J_0 \cos(2\phi_-), \tag{13}
\]

where

\[
J_0 = \frac{1}{4} \mathcal{E}_0''(\phi_- = \pi/2) = -\frac{1}{8} \sum_{\alpha k} \mathcal{E}_0''(\phi_- = \pi/2). \tag{14}
\]

We have computed \(J_0 \) by numerically diagonalizing the model in Eq. (4) with \(\eta = 0 \) – see Fig. 2 and Appendix A.1.

It is straightforward to generalize the above result to the spinful case and obtain \(J \) of Eq. (2). From the definition of the d-vector\(^{20,23}\)

\[
\begin{pmatrix} \Delta_{\sigma\uparrow\uparrow} & \Delta_{\sigma\uparrow\downarrow} \\ \Delta_{\sigma\downarrow\uparrow} & \Delta_{\sigma\downarrow\downarrow} \end{pmatrix} = \Delta_\sigma\alpha(k)e^{i\theta_\sigma}\hat{d}_\sigma \cdot \begin{pmatrix} -\hat{e}_z + i\hat{e}_y \\ \hat{e}_z \\ \hat{e}_x + i\hat{e}_y \end{pmatrix},
\]

it follows that it is always possible to choose the spin quantization axis, \(\hat{e}_z \), to be perpendicular to both \(\hat{d}_x \) and \(\hat{d}_y \), in which case all pairing is between like spins (\(\Delta_{\sigma\uparrow\uparrow} = 0 \)). Thus, for \(\eta = 0 \), the Josephson coupling is a sum of terms two equal contributions from spin-up and spin-down pairs:

\[
\mathcal{E}_0(\phi_-) = \mathcal{J}_0(\cos(2\phi_+ \mp 2\phi_\downarrow)) \tag{16}
\]

where \(\theta_+ = \theta_+ - \theta_- + \alpha + \pi, \theta_\uparrow\downarrow = \theta_- - \theta_+ - \alpha \), and \(\cos \alpha = \frac{\hat{d}_x \cdot \hat{d}_y}{\mathcal{E}_0''} \). A small exercise in trigonometry thus leads to this result to Eq. (2) with Eq. (14) for \(J_0 \).

We have numerically evaluated the integral over \(\mathbf{k} \) in Eq. (14) to obtain the results for \(J_0 \) shown in Fig. 2. It is clear that \(J_0 \) scales as

\[
J_0 \sim \frac{|\delta t|}{\hbar} \frac{\Delta_0^2}{16} \sim \frac{|\delta t|}{\hbar} N(0) \Delta_0^2, \tag{17}
\]

where \(N(0) = 16\pi/\sqrt{3}\hbar t \) is the density of states for each quasi-1D orbital; this can be also obtain through analytic
approximation presented in Appendix A. As promised, \(\mathcal{J}_0 \) is parametrically smaller than the condensation energy per unit volume, \(N(0)\Delta_0^2/2 \).

A few points are worth noting. Firstly, this result is non-analytic in \(\delta t \), from which one concludes that it is non-perturbative. In Appendix A.2 we compute \(\mathcal{J}_0 \) perturbatively in powers of \(\delta t \), in which limit we obtain \(\mathcal{J}_0 \sim N(0)(\delta t)^4/(t\Delta_0) \), which is an analytic function of \(\delta t \), but non-analytic in \(\Delta_0 \). This reflects the fact that the perturbative expression is valid only for \(|\delta t| \ll \Delta_0 \), a physically unreasonable restriction. The perturbative expression does, however, match smoothly to the non-perturbative one when \(|\delta t| \sim \Delta_0 \). The origin of Eq. 17 can be understood intuitively as arising from the quasi 1D character of the bands. The contribution to the condensation energy from the portions of the bands away from the crossing points (enclosed by red circles in Fig. 17) is largely insensitive to orbital mixing - only in a neighborhood of width \(\sim |\delta t|/t \) about the crossing points is orbital mixing significant, but there it makes an \(O(1) \) change in the condensation energy. These considerations lead to the proposed scaling expression. On the other hand, if the chiral pairing originated from the nearly circular 2D Fermi surface, changes in the relative phase of the \(p_x \) and the \(p_y \) components of the pair-field affect the pairing gap magnitude over most of the Fermi surface, so \(\mathcal{J}_0 \) (or more properly, \(E_0^{\psi} \)) must be order of the total condensation energy.\(^{18,21,22} \)

C. Spin-orbit term, \(\Gamma_0 \)

The \(xy \) orbital does not play a direct role in our analysis, but does contribute to the intra-orbital \(d \)-vector locking \(\Gamma \). While we will not consider the superconductivity in this orbital, it does affect the pairing interaction in the quasi-1D orbitals. It is due to the spin-orbit coupling involving the \(xy \) orbitals that we have anisotropy in the spin channel of the pairing interaction. More specifically, in both quasi-1D orbitals, the effective pairing interaction for \(\hat{d} \parallel \hat{z} \) will be stronger than the effective pairing interaction for \(\hat{d} \perp \hat{z} \). This difference in the pairing interaction can be estimated as \(\delta V/V \propto (\eta/t)^2 \) as it is due to the electrons having intermediate states in the \(xy \) orbitals (see Appendix A.3 for derivation). Now, from the BCS self-consistency condition \(\log(t/\Delta) \propto t/V \), the pairing gap will change by

\[
\frac{\delta \Delta}{\Delta} \propto \frac{t\delta V}{V^2} = \left(\frac{\eta}{t} \right)^2 \log \frac{t}{\Delta}
\]

(18)

for small \(\delta V \). Therefore, the condensation energy for the case \(\hat{d} \parallel \hat{z} \) should be slightly larger by

\[
\Gamma_0 \equiv \frac{1}{2} N(0)\delta(\Delta^2) \propto \left[\left(\frac{\eta}{t} \right)^2 \log \frac{t}{\Delta} \right] N(0)\Delta^2
\]

(19)

than that of the case \(\hat{d} \perp \hat{z} \); this is the origin of the intra-orbital \(d \)-vector locking in Eq. 2. We emphasize that the energy scale of this locking is much smaller than that of the condensation energy, which is consistent with the \(c \)-axis Knight shift experiment.\(^{26,27} \) However, this small \(d \)-vector locking, unlike the small \(J \), is not a characteristic unique to the quasi-1D model, as the pairing interaction anisotropy due to the same physics can also occur in the 2D orbital.

V. NORMAL MODES

In the usual fashion, we can obtain an understanding of the low energy collective modes from the equations of motion derived from the non-linear sigma model in Eq. 2. The \(d \)-vector dynamics are those of coupled pendulums, while the relative phase, \(\phi_- \) executes familiar Josephson oscillations. Looking at these modes in the limit that \(k \to 0 \) (spatially homogeneous modes) and for small amplitude deviations from the A-phase ground-state, in which \(\phi_- = 0 \) and \(\hat{d}_x = \hat{d}_y = \hat{z} \), we find

\[
\frac{\hbar^2}{16} \chi_x \phi_- = 4\mathcal{J}_0 \phi_-,
\]

\[
\frac{\hbar^2}{2} \chi_{xy} \delta t^2 \left[\frac{\delta \hat{d}_x}{\delta \hat{d}_y} \right] = -4 \hat{J}_0 \left(\begin{array}{c} \Gamma_0 + 4\mathcal{J}_0 \\ \Gamma_0 + 4\mathcal{J}_0 \\ -4\mathcal{J}_0 \end{array} \right) \left[\begin{array}{c} \delta \hat{d}_x \\ \delta \hat{d}_y \\ \delta \hat{d}_z \end{array} \right].
\]

(20)

where \(\delta \hat{d}_x \cdot \hat{e}_z = 0 \). The above equation of motion tells that the small value of \(J \) in the quasi-1D model gives
us more soft collective modes than the 2D model. From this we can deduce the the gaps (or “masses”) of three distinct normal modes, all of which vanish in the limit $\delta H \to 0$, i.e. at the multicritical point:

$$m_c = 8\sqrt{J_0/\chi_c} = (\gamma_c)\Delta_0,$$

$$m_{s+} = 2\sqrt{2\Gamma_0/\chi_{sp}} = (\gamma_{s+})\Delta_0,$$

$$m_{s-} = 2\sqrt{2(\Gamma_0 + 8J_0)/\chi_{sp}} = (\gamma_{s-})\Delta_0,$$ \hspace{1cm} (21)

where for the relative phase mode, $\gamma_c \sim |\delta t|/t$, for the in-phase spin-wave mode, $\gamma_{s+} \sim (\eta/t)^2$, while for the relative d-vector orientation mode, $\gamma_{s-} \sim$ the larger of γ_c and γ_{s-}. We also see, as is natural, that the in-phase spin-wave mode is unaffected by the interorbital coupling.

VI. DISCUSSION

Most studies to date have worked with the assumption that γ is the active band. From an experimental perspective, heat capacity measurements showed that the fraction of density of states at the Fermi level that was depleted at T_c is consistent with the contribution from the γ band. However, the balance is delicate, as the contribution from $\{\alpha, \beta\}$ to the total density of states is similar to the contribution from γ. From a theoretical perspective, asymptotically exact calculations in the weak-coupling limit involving all three Fermi surfaces lead inevitably to the conclusion that the dominant pairing strength occurs among the 1D bands. However, when stronger electron correlations are present, the validity of these results is unclear. In this regard, it is important to consider experimental signatures that may help to discriminate between the two possibilities for the active orbitals. This has been the primary motivation for carrying out the present analysis.

We have shown that if the chiral p-wave superconductivity in Sr$_2$RuO$_4$ arises from the quasi-1D bands, this implies that the collective properties are controlled by the existence of a nearby multicritical point at which there is an enlarge emergent order parameter symmetry and correspondingly a set of anomalously soft “almost Goldstone” soft collective modes.

Because of the relatively weak spin-orbit coupling in Sr$_2$RuO$_4$, the in-phase spin-wave mode is expected to have energy small compared to the superconducting gap. An estimate of the in-phase spin-wave gap can be obtained on the basis of experiments on the the c-axis Knight shift, from which it follows that $\gamma_{s+} = m_{s+}/\Delta_0$ is less than 0.01. This result implies an extremely small value of Γ_0 in Eq. 2 but does not distinguish between different microscopic origins of the pairing. We have therefore focused, in particular, on the gap (mass) of the relative phase and relative d-vector orientational modes, which are analogues of the “clapping modes” familiar from studies of 3He-A24,25 and also investigated in the chiral d-wave superconductor.\(^{26}\) The corresponding mode frequencies have been computed in the context of the quasi-2D bands, leading to the prediction that they would have an energy $\sqrt{2}\Delta_0 (\gamma_c = \gamma_{s-} = \sqrt{2}\Delta_0).$ We recover their result from our NLSM if we extrapolate the results to the case of strong inter-component Josephson coupling, where J_0 is comparable to the condensation energy density. However, because inter-orbital mixing is relatively weak, the corresponding modes are expected to have parametrically lower energy if the superconductivity arises in the quasi 1D bands - hence Eq. 21. (For more on this correspondence see Appendix D.)

The various collective modes in Sr$_2$RuO$_4$ can, in principle be detected using methods that have already been discussed in the literature for the 2D model, which includes, among others, electron spin resonance\(^{26,30,31}\) (see Appendix C), ultrasound attenuation and Raman scattering.\(^{19}\) However, we can expect the inter-orbital ‘nearly Goldstone’ modes to have much lower energy if the pairing originates primarily on the quasi 1D bands, than if it arises on the quasi 2D band.

Our analysis has potential implications for various existing experimental puzzles concerning the properties of Sr$_2$RuO$_4$ near T_c. If the phase transition exhibits mean-field behavior, an inescapable consequence is that the transition must be split by a field applied in the basal plane. The fact that this does not occur in Sr$_2$RuO$_4$ suggests that fluctuations may play a significant role in the transition. The higher emergent symmetry of the proximate multicritical point would be an obvious source of anomalously strong fluctuations. In this regard it is worth noting that in two dimensions, a non-zero (Kosterliz-Thouless) transition is still possible, despite the existence of gapless spin-wave like modes, but for an order parameter with a larger continuous symmetry, such fluctuations necessarily reduce the transition temperature to $T = 0$, or to a low temperature at which explicit symmetry breaking terms, or three dimensional couplings cut-off these fluctuations. These issues will be investigated in depth in a future publication.

Acknowledgements: We thank E. Abrahams, S. Brown, S. Chakravarty, A. Chubukov, E. Fradkin, L. Fu, T. Geballe, C. Kallin, H.-Y. Kee, D. J. Scalapino and B. Spivak for helpful discussions. This work was supported in part by DE-AC02-76SF00515 (SBC, AK, and SAK), and the Alfred P. Sloan Foundation (SR). We thank the Aspen Center for Physics and the KITP, where part of this work was carried out, for hospitality during the workshop ‘New Topological States of Quantum Matter’ and the program ‘Topological Insulators and Superconductors’ respectively.
where our basis is \((u_{zk}, u_{yk}, v_{zk}, v_{yk})^T\). This gives us the eigenenergies of

\[E_{k\pm}(\phi_-) = \frac{1}{\sqrt{2}} \sqrt{A_k \pm \sqrt{B_k(\phi_-)}}, \] (A2)
where
\[
A_k \equiv \xi_{xk}^2 + \xi_{yk}^2 + \Delta_0^2(\sin^2 k_x + \sin^2 k_y) + 2\lambda_k^2, \\
B_k(\phi_-) \equiv [(\xi_{xk} - \xi_{yk}^2) + \Delta_0^2(\sin^2 k_x - \sin^2 k_y)]^2 + 4\lambda_k^2[(\xi_{xk} + \xi_{yk})^2 + \Delta_0^2(\sin^2 k_x + \sin^2 k_y)] \\
- 8\lambda_k^2\Delta_0^2\sin k_x \sin k_y \cos \phi_-.
\]

(A3)

The ground state energy has minima at \(\phi_- = \pm \pi/2 \) and therefore can be approximated by Eq. (13). To see this note that the total ground state energy
\[
\mathcal{E}_0(\phi_-) = \text{const} - \frac{1}{2} \sum_k [E_{k+}(\phi_-) + E_{k-}(\phi_-)].
\]

(A4)

when differentiated by \(\phi \) gives us
\[
\mathcal{E}_0'(\phi_-) = \sin \phi_- \sum_k \frac{\lambda_k^2\Delta_0^2\sin k_x \sin k_y}{E_{k+}(\phi_-)E_{k-}(\phi_-)[E_{k+}(\phi_-) + E_{k-}(\phi_-)]}.
\]

(A5)

for which we used
\[
E_{k\pm}(\phi_-) = \pm \frac{2\lambda_k^2\Delta_0^2\sin k_x \sin k_y}{E_{k\pm}(\phi_-)[E_{k+}(\phi_-) - E_{k-}(\phi_-)]} \sin \phi_-.
\]

(A6)

This derivative vanishes at \(\phi = \pm \pi/2 \), as \(E_{k\pm}(\phi = \pm \pi/2) \)'s are even in \(k_x \) and \(k_y \). From the second derivative
\[
\mathcal{E}_0''(\phi_- = \pi/2) = 2 \sum_k \frac{\lambda_k^2\Delta_0^2\sin k_x \sin k_y}{(E_{k+} - E_{k-})^2(E_{k+} + E_{k-})} \left[\frac{1}{E_{k+} + E_{k-}} - \frac{1}{(E_{k+} + E_{k-})^2} \right]_{\phi_- = \pm \pi/2},
\]

(A7)

which is clearly positive we see that these extrema at \(\phi_- = \pm \pi/2 \) are minima. Lastly, we note that \(\mathcal{E}_0'(\phi_-) \) is \(\pi \)-periodic in \(\phi_- \), as Eq. (A3) shows that each eigenenergy is invariant under the combination of \(\phi_- \rightarrow \pi - \phi_- \) and \(\pi/2 \) rotation in the \(k \)-space.

We now need to evaluate Eq. (A7). Since the main contributions will come from the four crossing points of the 1D orbitals, we take the following expansion around \((k_x, k_y) = (2\pi/3, 2\pi/3)\):
\[
E_{\pm} = \left\lfloor \frac{\sqrt{v(k_x + k_y - 4\pi/3)}}{2} \pm \sqrt{\frac{v^2(k_x - k_y)^2}{4} + \lambda^2} \right\rfloor + \Delta^2 = \lambda \left(q_x \pm \sqrt{q_y^2 + 1} \right)^2 + \frac{\Delta^2}{\lambda^2},
\]

(A8)

where \(v = \sqrt{3\delta t/2}, \lambda = 3|\delta t|/2, \Delta = \Delta_0|\sin 2\pi/3| \), and \(q_x = v(k_x + k_y - 4\pi/3) / 2\lambda, q_y = v(k_x - k_y) / 2\lambda \). We also note the following two points: i) \text{min}(E_+) = \Delta \) and ii) when \(E_\pm \) is at its minimum, \(E_{-(+)} \sim \lambda \gg \Delta \) so \text{min}(E_+ + E_-) \sim \lambda. This leads to the following approximation:
\[
\mathcal{J}_0 = \frac{1}{4} \mathcal{E}_0''(\phi_- = \pi/2) \approx \frac{1}{2} \sum_k \frac{\lambda_k^2\Delta_0^2\sin^2 k_x \sin^2 k_y}{(E_{k+} - E_{k-})^2(E_{k+} + E_{k-})} = \frac{\lambda^4\Delta^4}{8\pi^2} \int d^2q \frac{1}{(E_{k+} - E_{k-})^3(E_{k+} + E_{k-})} \\
\approx \frac{8\lambda^2}{\pi^2} \int d^2q \left[(q_x + \sqrt{q_y^2 + 1})^2 + \frac{\Delta^2}{\lambda^2} \right]^{-\frac{3}{2}} = \int d^2q \left[(q_x + \sqrt{q_y^2 + 1})^2 + \frac{\Delta^2}{\lambda^2} \right]^{-\frac{3}{2}} \\
= \frac{\Delta^4}{8\pi^2\lambda^2} \int d^2q \left[(q_x^2 + \Delta^2/\lambda^2)^2(\bar{q}_y^2 + 1)^2 \right]^{-\frac{3}{2}} = \frac{\Delta^4}{8\pi^2\lambda^2} \frac{2\lambda^2\pi}{\Delta^2},
\]

(A9)

We obtained the same dependence on parameters as in Fig. (2) though the coefficient came out about an order of magnitude larger.
2. Perturbation method

We show here that once we ignore the spin-orbit coupling, Due to the C_4 symmetry, this inter-orbital Josephson coupling is zero for the lowest order. To see this, we note that from the second order perturbation theory

\[
\mathcal{E}_j^{(1)}(\phi_{-}) = \sum_{k,s} \frac{\langle \lambda_k e_{x,ks}^d \phi_{gs} \lambda_{k'} e_{y,k's}^d \rangle}{E_{x,k} - E_{y,k'}} = -\frac{(\delta t)^2}{2} \sum_{k,s} \frac{\sin^2 k_x \sin^2 k_y \Delta_{x,ss}^2 \Delta_{y,k';s}^2 + \text{c.c.}}{E_{x,k} + E_{y,k'}} = 0,
\]

(A10)

where $E_{ok} \equiv \sqrt{E_{ok}^2 + |\Delta_{ok}|^2}$, and we used

\[
\langle \phi_{-}, -k,s' \phi_{+}, k,s \rangle = -\frac{\Delta_{x,ss'}}{2E_{ok}};
\]

(A11)

this result is basically due to $\Delta_{x,y}$ being odd in $\sin k_x(y)$.

Therefore, it is from the second order inter-orbital Josephson coupling that gives rise to the dependence of the energy on the relative phase ϕ and the spin state $\hat{d}_{xz,ys}$. Given that we have completely decoupled opposite spins, we only need to consider the process that tunnels two spin up-up pairs and two spin down-down pairs. This can be calculated from the fourth order perturbation theory:

\[
\mathcal{E}_j^{(2)}(\phi_{-}) = \sum_{k',k,s} \frac{\langle \lambda_k e_{x,ks}^d \phi_{gs} \lambda_{k'} e_{y,k's}^d \rangle}{E_{x,k} - E_{y,k'}} \left(\frac{1}{E_{x,k} - E_{y,k'}} \right) \left(\frac{1}{E_{x,k'} - E_{y,k'}} \right)
\]

\[
\times \left[\frac{\Delta_{x,k;ss}^2}{2E_{x,k}} \right] \left(\frac{\Delta_{y,k';ss}^2}{2E_{y,k'}} \right) \left(\frac{\Delta_{x,k';s's}^2}{2E_{x,k'}} \right) + \text{c.c.} \right] \left(1 - \delta_{k,k'} \right) \left(1 - \delta_{k,k'} \right)
\]

\[
\times \left(\frac{1}{E_{x,k} - E_{y,k'}} \right) \left(\frac{1}{E_{x,k'} - E_{y,k'}} \right)
\]

\[
= \sum_{k,s} \frac{\lambda_k^4}{8} \frac{\Delta_{x,k;ss}^2 \Delta_{y,k';s's}^2 + \text{c.c.}}{(E_{x,k} + E_{y,k'})^3}
\]

(A12)

which gives us

\[
\mathcal{J}_0 = \sum_k \frac{\lambda_k^4}{8} \frac{\Delta_{x,k;ss}^2 \Delta_{y,k';s's}^2 + \text{c.c.}}{(E_{x,k} + E_{y,k'})^3} \sim \frac{(\delta t)^4}{t^2 \Delta}
\]

(A13)

Note that this result is consistent with our BdG calculation, for it is qualitatively the same as taking the first term of Eq. (A11) which is much larger than the second term in the $|\Delta| \gg |\delta t|$ limit.

Appendix B: d-vector locking

To see why we need the spin involving the xy orbital to lock the d-vector along the c-axis, we need to examine the spin-orbit coupling part - with the xy orbital included - of the orbital hybridization of Eq. (2):

\[
\delta H_{kin} = \eta \sum_{a,b \ k, s,s'} \ell_{ab} \cdot \sigma_{s's} e_{a,ks}^\dagger e_{b,k's}.
\]

(B1)

This means that when we only include the spin-orbit coupling between the 1D orbitals, S_z will remain a good quantum number while $S_{x,y}$ will not. Therefore, it is energetically more favorable to have an equal-spin pairing with the spin quantization axis along the z direction, which equivalent to the d-vector lying in the xy plane. For the same reason, the spin orbit coupling between the xz and xy orbital will favor the d-vector lying in the yz plane and that between the yz and xy orbital the d-vector lying in the xz plane. We therefore conclude that the d-vector is locked to the c-axis because the spin-orbit couplings involving the xy orbital have larger effect than the spin-orbit coupling involving only the 1D orbitals.

We will now show that the pairing interaction anisotropy in the normal state is proportional to η^2. To do so, we will calculate how the normal state pair-field susceptibility, which is proportional to the normal state pairing interaction.
To account for the effect of the spin-orbit coupling, what we will calculate is the inter-orbital susceptibility of the intra-orbital pairs. Since the form of the spin-orbit coupling is the same for any pair of orbitals, we can expect the dependence on η to be the same. Therefore, we will only look at the triplet pair susceptibility involving one pair in the xz orbital and another pair on the yz orbital:

$$\chi^{\text{ISC}:x-y}_{\alpha}(\mathbf{k}, i\Omega) = \sum_{\alpha\beta\gamma\lambda} \int_0^\beta d\tau e^{i\Omega\tau} \langle T_\tau c^\dagger_{x,\alpha}(\tau)c^\dagger_{y,\beta}(0)c_{y,\gamma}(0)(i\sigma_\alpha \hat{d} \cdot \sigma_\beta)(-i\hat{d} \cdot \sigma_\gamma) \rangle,$$

ignoring the xy orbital. In this case S_z is a good quantum number, so we obtain

$$\chi^{\|}_{\alpha}(\mathbf{k}, i\Omega) = \frac{1}{\beta} \sum_{\omega_n} \sum_{\sigma = \uparrow, \downarrow} \sum_{\mu} \langle y, -\mathbf{k}, \sigma | \mu, -\mathbf{k}, \sigma \rangle \langle \mu, -\mathbf{k}, \sigma | x, -\mathbf{k}, \sigma \rangle \langle y, \mathbf{k}, \sigma | \mu, \mathbf{k}, \sigma \rangle \langle \mu, \mathbf{k}, \sigma | x, \mathbf{k}, \sigma \rangle,$$

$$\chi^{\perp}_{\alpha}(\mathbf{k}, i\Omega) = \frac{1}{\beta} \sum_{\omega_n} \sum_{\sigma = \uparrow, \downarrow} \sum_{\mu} \langle y, -\mathbf{k}, \sigma | \mu, -\mathbf{k}, \sigma \rangle \langle \mu, -\mathbf{k}, \sigma | x, -\mathbf{k}, \sigma \rangle \langle y, \mathbf{k}, \bar{\sigma} | \mu, \mathbf{k}, \sigma \rangle \langle \mu, \mathbf{k}, \sigma | x, \mathbf{k}, \bar{\sigma} \rangle,$$

for the d-vector in and out of plane, respectively. When we take into account that the Green function is diagonal not in the orbital basis but in the band basis, we can write

$$\chi^{\|}_{\alpha}(\mathbf{k}, i\Omega) = \frac{1}{\beta} \sum_{\omega_n} \sum_{\sigma = \uparrow, \downarrow} \sum_{\mu} \langle y, -\mathbf{k}, \sigma | \mu, -\mathbf{k}, \sigma \rangle \langle \mu, -\mathbf{k}, \sigma | x, -\mathbf{k}, \sigma \rangle \langle y, \mathbf{k}, \sigma | \mu, \mathbf{k}, \sigma \rangle \langle \mu, \mathbf{k}, \sigma | x, \mathbf{k}, \sigma \rangle,$$

where μ, ν are band indices and $\tilde{\epsilon}_i$'s are the normal state eigenenergies. Using the fact that $\sum_{\mu}(y|\mu\mathbf{k})\langle \mu|\mathbf{x},\mathbf{k}\rangle = 0$ and, in an appropriate basis, $\langle a\bar{\sigma}|\mu\bar{\sigma}\rangle = \langle a\sigma|\mu\sigma\rangle^*$, a being the orbital label, we obtain the anisotropy

$$\Delta \chi^{\|}_{\alpha}(\mathbf{k}, i\Omega) = \chi^{\|}_{\alpha}(\mathbf{k}, i\Omega) - \chi^{\perp}_{\alpha}(\mathbf{k}, i\Omega) = \frac{2}{\beta} \left[\int |(y|\mathbf{k} \uparrow \langle \alpha \bar{\kappa} \uparrow | \langle \alpha \bar{\kappa} \uparrow | x \bar{k} \uparrow \rangle^2 - \text{Re}(y|\mathbf{k} \uparrow \langle \alpha \bar{\kappa} \uparrow | x \bar{k} \uparrow \rangle)^2 \right] \times \sum_{\omega_n} \left[\frac{1}{-i\omega_n - \Omega - \tilde{\epsilon}_x(-\mathbf{k})} - \frac{1}{-i\omega_n - i\Omega - \tilde{\epsilon}_x(-\mathbf{k})} \right] \left[\frac{1}{i\omega_n - \tilde{\epsilon}_x(\mathbf{k})} - \frac{1}{i\omega_n - i\tilde{\epsilon}_x(\mathbf{k})} \right]$$

It is the transformation matrix between the orbital and the band basis that gives rise to the η^2 dependence.

To see this, note that the first quantized form of the normal state Hamiltonian can be written as

$$h_{\text{kin}} + \delta h_{\text{kin}} = \frac{\xi_x + \xi_y}{2} + \tilde{\xi}_x - \tilde{\xi}_y = \begin{bmatrix} \cos \rho & -i\sigma \sin \rho \\ -i\sigma \sin \rho & -\cos \rho \end{bmatrix}$$

when ignoring the spin conserving orbital hybridization, with $\tan \rho = 2\eta/(\xi_x - \xi_y)$. This gives us $\langle \alpha \uparrow | x \uparrow \rangle = e^{-i\pi/4} \sin(\rho/2)$ and $\langle \alpha \uparrow | x \uparrow \rangle = e^{-i\pi/4} \cos(\rho/2)$, so we obtain

$$|\langle \alpha \uparrow | x \uparrow \rangle|^2 - \text{Re}(\langle \alpha \uparrow | x \uparrow \rangle \langle \alpha \uparrow | x \uparrow \rangle^2 = 2\cos^2(\rho/2)\sin^2(\rho/2) = \frac{\eta^2}{(\xi_x - \xi_y)^2 + \eta^2},$$

and the pair-field anisotropy at the zero temperature and frequency is

$$\Delta \chi^{\|}_{\alpha}(\mathbf{k}, i\Omega = 0)|_{T=0} = -\frac{1}{2} \frac{\eta^2}{|\xi_x - \xi_y|^2 + \eta^2}.$$
field that couples linearly to our collective modes can serve as a driving force. One well known case is the AC Zeeman field\(^2\), which couples through the Zeeman energy term \(\mathcal{H}_Z = -\mu_B H \cdot \sum_a \mathbf{S}_a \) (where \(\mu_B \) is the Bohr magneton). To see this, note that we can approximate, for a small \(H, \mathbf{S}_a \approx \chi_{sp} \mathbf{\hat{z}} \times (\partial_t \mathbf{d}_a) \), giving us the spin equations of motion

\[
\frac{\chi_{sp}}{2} \frac{\partial^2}{\partial t^2} \begin{bmatrix} \delta \mathbf{d}_x \\ \delta \mathbf{d}_y \end{bmatrix} = \left[\begin{array}{cc} \Gamma + 4J & -4J \\ -4J & \Gamma + 4J \end{array} \right] \begin{bmatrix} \delta \mathbf{d}_x \\ \delta \mathbf{d}_y \end{bmatrix} + \left(\begin{array}{c} \frac{1}{1} \end{array} \right),
\]

which are just those of a pair of driven coupled harmonic oscillators. The sharp difference between the quasi-1D and the 2D model is that the former has a double resonance peak whereas the latter has only a single peak just like that of the longitudinal NMR in \(^3\)He-A\(^2\). The charge analogue for this would be a uniaxial AC strain along the \(a(b) \)-axis. This will give rise to a chemical potential difference between the \(xx, yz \) orbitals, we expect the energy cost to be proportional to \(u \Delta N \). This can act as a driving force for the relative phase mode, as \(\delta N \approx \hbar \chi_{sp} \partial_t \phi/2 \) for a small \(u \). The order of magnitude estimate for these resonance frequencies are \(\sim 0.1 \Gamma \sim 10 \text{GHz} \).

We note that the layered structure of Sr\(_2\)RuO\(_4\) will make these resonances easier to detect. Note that since we expect the \(d \)-vectors to point at the \(c \)-axis in the equilibrium, the Zeeman field will be applied along the \(ab \) plane. Given the long penetration length (\(\sim 152 \text{nm} \)) for this in-plane field, we do not expect the Meissner screening to be significant. Also, because the lower critical field is very small, we can actually induce a nearly uniform magnetic field.

The interorbital collective modes can also be detected is through relaxation processes. For instance, the phonon modes involving displacement of the next-nearest neighbor Ru atoms will modulate the interorbital coupling and hence can decay into the interorbital collective modes. Another is the NQR relaxation of the Ru atoms due to the relative phase mode, which gives rise to oscillating electric quadrupole moments on the Ru atoms as it involves oscillation of Cooper pair numbers between the Ru \(d_{xz} \) and the Ru \(d_{yz} \) orbitals. These electric quadrupole moments will relax the Ru nuclear quadrupole moments through the Ru atomic spin-orbit coupling.

Appendix D: Relation to collective modes of the 2D model

We show here how our collective modes are related to the collective modes studied for the 2D model. For every branch of collective modes in the 2D model, we can find its symmetry equivalent in the quasi-1D model. However, there are energy degeneracies in the 2D model which we expect would be broken in the quasi-1D model. We will show how this gives rise to the possibility of having soft collective modes in the quasi-1D model.

By generalizing the results from \(^3\)He-A\(^2\), one can see that there should be 12 branches of collective modes in a 2D chiral \(p \)-wave superconductors\(^2\). Six of them involve no fluctuation of the orbital degrees of freedom, while the other six involves the relative fluctuation of the \(p_x \) and \(p_y \) pairings (termed ‘clapping’ modes).

The spectra of the six branches involving no orbital fluctuation remain essentially the same regardless of whether we take the quasi-1D or the 2D model. They consist of the overall phase modes, the overall amplitude (Higgs) modes, the two branches of total spin modes, and also the two branches of condensate polarization modes. Regardless of the model, only the total spin modes can be soft; the overall amplitude and polarization modes have gaps equal to the pair-breaking frequency \(2\Delta_0 \) while the overall phase modes are gapped by the plasmon frequency.

On the other hand, the spectra of the \(p_x-p_y \) relative modes are strongly affected by how close the system is to being rotationally invariant. There consist of six branches - the relative phase modes, the relative amplitude modes, the two branches of the relative spin modes, and the two branches the spin relative amplitude mode (the relative amplitude oscillation out of phase by \(\pi \) between the spin up-up and down-down pairs). When the system is rotationally invariant, the relative phase modes and the relative amplitude modes are related by \(\pi/4 \) rotation around the \(c \)-axis due to the combined \(U(1) \) symmetry of the overall phase and the orbital rotation. Therefore, up to the spin-orbit coupling, all six branches have the same gap, which is calculated to be \(\sqrt{2}\Delta_0 \). However, when the rotational invariance is broken, this degeneracy between the relative phase and the relative amplitude mode is completely broken. Since the \(p_x \) and the \(p_y \) pairings are nearly decoupled in the quasi-1D model, the relative phase mode is nearly Goldstone while the relative phase mode have a gap that is almost same as the overall amplitude mode. Due to the same reason, the relative spin modes are nearly Goldstone, while the spin relative amplitude modes have a gap close to \(2\Delta_0 \).