Multipartite entanglement criterion via generalized local uncertainty relations

Jia-Bin Zhang¹, Tao Li², Qing-Hua Zhang¹, Shao-Ming Fei¹ & Zhi-Xi Wang¹

We study the detection of multipartite entanglement based on the generalized local uncertainty relations. A sufficient criterion for the entanglement of four-partite quantum systems is presented in terms of the local uncertainty relations. Detailed examples are given to illustrate the advantages of our criterion. The approach is generalized to general multipartite entanglement cases.

Quantum entanglement is a remarkable feature in quantum physics¹ and has attracted much attention in recent years. Entangled states are recognized as the essential resources in quantum information processing, with many experimental realizations²,³ and applications in such as quantum algorithms⁴, quantum teleportation⁵, quantum cryptography⁶. Recently, it was shown that quantum entanglement is tightly connected to wave-particle duality, and it can create a wave-particle entangled state of two photons⁷. Detecting entanglement of multipartite systems is a fundamental problem in the theory of quantum entanglement. Separability criteria to determine whether a given state is separable or not are of crucial importance⁸. Enormous efforts have been dedicated to solve the separability problems⁹–³⁵. Nevertheless, the characterization and quantification of multipartite entanglement are less understood than that of bipartite case, as multipartite states can be entangled in more different ways.

There have been many efficient entanglement criteria such as local uncertainty relations (LUR)¹¹,¹², covariance matrix criterion (CMC)¹³, computable cross-norm or realignment criterion (CCNR)¹⁴, permutation separability criteria¹⁵, criterion based on Bloch representations¹⁷,¹⁸, entanglement witnesses²¹, Bell-type inequalities criteria²², and criterion based on quantum Fisher information²³. Generally, these criteria are only necessary condition for separable states and have different advantages in detect different entanglements.

The LUR criterion, the symmetric CMC criterion and the realignment criterion are usually considered as complementary to the the positive partial transposition criterion. The main advantage of LUR criterion is that it allows us to detect the entanglement of quantum states without having to fully understand them, and it can detect bound entangled states more effectively.

Recently, based on the local sum uncertainty relations, some entanglement criteria have been proposed for both discrete and continuous variable bipartite systems and three-qubit systems³¹–³³. Zhang et al. proposed a tighter form of the original LUR criterion to improve the range of entanglement detection³¹, Akbari-Kourbolagh and Azhdargalam generalized the LUR criterion to the tripartite systems³³.

This paper is structured as follows. We start by introducing the entanglement criterion based on LUR for tripartite systems and generalize the entanglement criterion to four-partite quantum systems. Some detail examples are then given to illustrate the advantages of the criterion. Then, the entanglement criterion for N-partite systems (N > 4) is discussed. Brief discussion and summary are given at last.

Results

Let \(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N \) be an N-partite system with \(\mathcal{H}_k \) the \(d_k \)-dimensional vector space associated with the \(k \)-th subsystem. An N-partite state \(\rho \in \mathcal{H} \) is said to be separable if \(\rho \) can be written as

\[
\rho = \sum_i p_i \rho_i^1 \otimes \rho_i^2 \otimes \cdots \otimes \rho_i^N,
\]

(1)

where \(\rho_i^k \) are density matrices of the subsystem \(\mathcal{H}_k \), \(0 \leq p_i \leq 1, \sum_i p_i = 1 \).

In quantum theory, the observables of a quantum system are represented by a set of Hermitian operators \(\{A_i\} \). The uncertainty principle shows that it is impossible to predict the measurement results of all observables of the system at the same time. The variance of \(A_i \) with respect to \(\rho \) is the uncertainty of an observable \(A_i \), defining as \((\Delta A_i)^2 = \langle A_i^2 \rangle_\rho - \langle A_i \rangle^2_\rho \), where \(\langle A_i \rangle_\rho = \text{Tr}(\rho A_i) \) is the mean value. For a set of quantum observables \(\{A_i\} \), there

¹School of Mathematical Sciences, Capital Normal University, Beijing 100048, China. ²School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China. ³Email: ltiao@btbu.edu.cn
exists a constant U such that $\sum (\Delta A_i)^2 \geq U$. This inequality gives a universally valid limitation of the measurement outcomes. Generally, it is difficult to determine the value U. For the case of Pauli matrices σ_x, σ_y and σ_z, one has $(\Delta \sigma_{xy})^2 + (\Delta \sigma_{yx})^2 + (\Delta \sigma_{zx})^2 \geq 2^5$.

In Ref.\(^{33}\), based on the local sum uncertainty relations, an entanglement criterion has been presented for tripartite systems.

Let $\{A_i^1\}$, $\{A_i^2\}$ and $\{A_i^3\}$ be the set of local observables associated to the subsystems \mathcal{H}_1, \mathcal{H}_2 and \mathcal{H}_3, respectively. U_1, U_2, U_3 are lower bound of these local observables, such that $\sum_i \Delta(A_i^1)^2 \geq U_1$, $\sum_i \Delta(A_i^2)^2 \geq U_2$ and $\sum_i \Delta(A_i^3)^2 \geq U_3$. For any separable tripartite states, the following inequalities hold under any permutations of $\{1, 2, 3\}^{33}$:

$$F_{12}^{13} = \sum_i \Delta(A_i^1 + A_i^2 + A_i^3)^2 - (U_1 + U_2 + U_3 + M_{12}^2 + M_{123}^2) \geq 0,$$

where

$$M_{12} = \sqrt{\sum_i \Delta(A_i^1)^2 - U_1} - \sqrt{\sum_i \Delta(A_i^2)^2 - U_2}, \quad M_{123} = \sqrt{F_{12}^{13} - \sum_i \Delta(A_i^3)^2 - U_3},$$

$$F_{12}^{13} = \sum_i \Delta(A_i^1 + A_i^3)^2 - (U_1 + U_3 + M_{123}^2 + M_{1234}^2) \geq 0,$$

where

$$F = \sum_i \Delta(A_i^1 + A_i^2 + A_i^3 + A_i^4)^2 - \sum_{j=1}^4 U_j, \quad M_{1234} = \sqrt{F_{12}^{13} - \sum_i \Delta(A_i^4)^2 - U_4},$$

$$M_{1234} = \sqrt{F_{12}^{13} - \sqrt{F_{12}^{13}}}.$$

Theorem 1 provides a necessary condition of separable four-partite states. The violations of the inequalities in (1) sufficiently imply entanglement. For the four-qubit W state, $\rho = |W_4\rangle\langle W_4|$ with $|W_4\rangle = \frac{1}{2}(|10100\rangle + |01010\rangle + |00101\rangle + |00011\rangle)$. Let $A_1^1 = A_1^2 = A_1^3 = -A_2^1 = \sigma_z$, $A_1^4 = A_2^3 = -A_3^1 = \sigma_y$ and $A_4^3 = A_2^1 = -A_3^2 = \sigma_x$, thus we get $\sum_i \Delta(A_i^j)^2 \geq 2$, $M_{12} = 0$, $M_{14} = 0$, $M_{123} = \sqrt{3} - \sqrt{2}$, $M_{1234} = \sqrt{\frac{7}{4} - M_{123}^2 - \sqrt{2}}$ and $M_{1234} = \sqrt{3}$, which give rise to $F_{12}^{13} = 3 - M_{123}^2 - M_{1234}^2 < 0$ and $F_{12}^{13} = 0$, which provide a violation for the inequalities (4). Therefore, the criterion identifies four-qubit W state is entangled. By taking use of Theorem 1, more generally states can be detected and we consider some detailed examples for mixed states below.

Example 1 (Four-qubit W state mixed with white noise) We first consider $\rho_1 = \frac{1}{16}I + (1 - \rho)|W_4\rangle\langle W_4|$, $0 \leq \rho \leq 1$. For this state, we choose $-A_1^1 = -A_1^2 = -A_1^3 = A_1^4 = \sigma_x$, $-A_2^1 = -A_2^3 = A_2^4 = A_2^2 = \sigma_y$ and $-A_3^1 = -A_3^2 = -A_3^3 = A_3^4 = \sigma_z$, hence $\sum_i \Delta(A_i^j)^2 \geq 2$, $M_{12} = 0$, $M_{14} = 0$, $M_{123} = \sqrt{3} - \sqrt{2} - \sqrt{1 - \frac{1}{4}(1 - \rho)^2}$, $M_{1234} = \sqrt{\frac{10p - 9p^2 + 1}{4} - M_{123}^2} - \sqrt{\frac{1}{4}(1 - \rho)^2}$ and $M_{1234} = \sqrt{3 - \frac{1}{2}p^2 - \sqrt{2}p - p^2 + 1}$. Then, we get $F_{12}^{13} = 10p - 4p^2 - 2 - M_{123}^2 - M_{1234}^2$ and $F_{12}^{13} = 10p - 4p^2 - 2 - M_{1234}^2$. When $p \leq 0.3605$, $F_{12}^{13} \leq 0$, so the state ρ_1 violates one of the inequalities (4). Therefore, the four-partite LUR criterion identifies the ρ_1 as an entangled state, see Fig. 1. While, ρ_1 is detected based on the witness $\mathcal{W} = \frac{3}{2}I - |W_4\rangle\langle W_4|$ which is proposed in Ref.\(^{27}\) when $p < 0.267$, see Fig. 2. That is to say our result detects better the entanglement than the criterion of Ref.\(^{27}\).
represent $-\frac{3}{4}$ and $0.1001 (1010 (1001))$ in Theorem 1. We can see that when $p \leq 0.3605$, state ρ_1 violates one of the inequalities (4), hence ρ_1 is entangled for $p \leq 0.3605$.

Figure 1. For the four-partite W state mixed with the white noise ρ_1. The blue line represents ρ_{1234} and the red dash line stands for ρ_{12} in Theorem 1. We can see that when $p \leq 0.3605$, state ρ_1 violates one of the inequalities (4), hence ρ_1 is entangled for $p \leq 0.3605$.

Figure 2. For the four-partite W state mixed with the white noise ρ_1. The black line represents $\text{Tr}(\rho_1 W)$ in Ref.27. We can see that ρ_1 is detected by the witness $\frac{1}{3} I - |W_1\rangle \langle W_4|$, thus ρ_1 is entangled for $p \leq 0.267$.

Example 2 (Four-qubit Dicke state mixed with white noise) Now, we take $\rho_2 = \frac{p}{12} I + (1 - p)(|D_2^1\rangle\langle D_2^1|)$, $0 \leq p \leq 1$, where $|D_2^1\rangle = \frac{1}{\sqrt{6}}(|1100\rangle + |0110\rangle + |0011\rangle + |0101\rangle + |0110\rangle + |0010\rangle)$. For this state, we choose $A_1^1 = \ldots = A_1^p = \sigma_x, A_2^1 = A_2^p = \sigma_y, A_3^1 = A_3^p = -A_1^1 = -A_2^1 = -A_3^1 = -A_4^1 = \sigma_z$. By direct calculations, we get $M_{12} = 0, M_{34} = 0, M_{123} = \sqrt{A - 2p - 1}, M_{1234} = \sqrt{\frac{35}{3} - \frac{2}{31} p - M_{123}^2 - 1}$ and $F_{p_2} = \frac{2}{3} (p - 1) + \frac{2\sqrt{2}}{3} \sqrt{2p - 2 + 3\sqrt{4 - 2p}}$ and $F_{p_2} = \frac{8p - 8 + 4\sqrt{4 - 2p}}{3}$. When $p \leq 0.437, F_{p_2} \leq 0$, and $F_{p_2} \leq 0$ for $p \leq 0.543$. It can be seen, from Fig. 3, that the ρ_2 violate inequalities (4) for $p \leq 0.543$. Furthermore, comparing with the result in Ref.27 which show that ρ_2 is entangled for $p < 0.356$ (see Fig. 4), the Theorem 1 also detects more entanglement.

For a more general case, we consider the set of local observable $\{A_{i1}^1, \ldots, A_{iN}^1\}$ associated to the subsystems $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_N$, respectively. Every local observable has a lower bound U_j ($j = 1, 2, \ldots, N$) satisfies $\sum_q (A_j)^q \geq U_j$. In order to simplify calculation, let i_{Nj} represent $\{A_{i1}^1, \ldots, A_{iN}^1\}$ and the bi-partition index $(i_1 i_2 \cdots i_K | i_{K+1} \cdots i_N)$ is denoted as $k_1 k_0$, where $k_1 = i_1 i_2 \cdots i_K$ and $k_0 = i_{K+1} i_{K+2} \cdots i_N, \frac{N}{i - 1} \leq K < N$ and $1 \leq i_1 < i_2 < \cdots < i_K \leq N$. For instance, if $N = 4$, hence $K = 2$, and $k_1 k_0 = (12) | 34, 13, 24, 14 | 23$, which represents three classes of bi-partition index of local observable set in N-body quantum system. Similar to the derivation of the Theorem 1, we obtain the following lemma and theorem.

Lemma 2 For multipartite separable states, the following inequalities must hold:
and

\[
\sqrt{F_{12}^{12-N-1}} \sum_i \Delta(A_i^1) - \sum_i \left(\left(A_i^1 + \cdots + A_{N-1}^1 \right) \otimes A_N^1 \right) - \left(A_i^1 + \cdots + A_{N-1}^1 \right) \left(A_N^1 \right) \geq 0. \tag{5}
\]

and

\[
\sqrt{F_{12}^{12-N-1}} \sum_i \left[\left(A_i^1 + \cdots + A_K^1 \right) \otimes \left(A_K^1 + \cdots + A_N^1 \right) \right] \geq 0.
\]

Figure 3. For the four-partite Dicke state D_4^2 mixed with the white noise ρ_2. The blue line stands for F_{123}^{124} and the red dash line stands for F_{123}^{124} and the red dot line stands for F_{12}^{1234} in Theorem 1. When $p \leq 0.3605$, we can see that the state ρ_2 violates one of the inequalities (4), whence our criterion detects the entanglement of ρ_2 for $0 \leq p \leq 0.543$.

Figure 4. For the four-partite Dicke state D_4^2 mixed with the white noise ρ_2. The black line stands for $\text{Tr}(\rho W)$ in Ref.27. By using the witness W, we can see that ρ_2 is entangled for $p \leq 0.356$.

\[
F_{12}^{12-N-1} = \sum_i \Delta(A_i^1 + A_i^2 + \cdots + A_{N-1}^1)^2 - \left(\sum_{j=1}^{N-1} U_j + M_{12}^1 + M_{12}^2 + \cdots + M_{12-N-2}^1 \right).
\]

Theorem 2. For any multipartite separable states, the following inequalities hold under any permutations of the subsystems,

\[
F_{12}^{12-N-1} = - \left(\sum_{j=1}^{N-1} U_j + M_{12}^1 + M_{12}^2 + \cdots + M_{12-N-2}^1 \right).
\]

\[
F_{12}^{12-N-1} = - \left(\sum_{j=1}^{N-1} U_j + M_{12}^1 + M_{12}^2 + \cdots + M_{12-N-2}^1 \right).
\]

where
\[F = \sum_{i=1}^{N} \Delta(A_1^i + A_2^i + \cdots + A_N^i)_{\rho}^2 - \sum_{j=1}^{N} U_j, \quad (7) \]

and

\[M_{k_1|k_0} = \sqrt{F_{\rho|k_0}} - \sqrt{\sum_i \Delta(A_i^i)^2 - U_{|KN}, \text{ for } K = N-1, \quad (8) \]

\[M_{k_1|k_0} = \sqrt{F_{\rho}} - \sqrt{F_{\rho|0}}, \text{ for } K < N-1. \]

\(A_i^i\) is an operator acting on the \(i\)-th subsystem \(\mathcal{H}_i\) with the rest subsystems as identity operators in \(N\)-partite quantum systems.

Let us consider five-partite quantum systems to illustrate the theorem. In the case of \(N = 5\), we can have

\[\begin{cases}
 k_1 \in \{123, 124, 125, 134, 135, 145, 234, 235, 245, 345\} \text{ and } k_0 \in \{45, 35, 34, 25, 24, 23, 15, 14, 13, 12\} & K=3; \\
 k_1 \in \{1234, 1235, 1245, 1345, 2345\} \text{ and } k_0 \in \{5, 4, 3, 2, 1\} & K=4.
\end{cases} \]

Hence we have

\[\begin{align*}
F_{12345}^{12345} &= F - (M_{12}^2 + M_{13}^2 + M_{14}^2 + M_{15}^2 + M_{2345}^2), \\
F_{12345}^{12354} &= F - (M_{12}^2 + M_{13}^2 + M_{15}^2 + M_{235}^2 + M_{24}^2), \\
F_{12345}^{12453} &= F - (M_{12}^2 + M_{13}^2 + M_{14}^2 + M_{245}^2 + M_{35}^2), \\
F_{12345}^{12543} &= F - (M_{12}^2 + M_{13}^2 + M_{14}^2 + M_{254}^2 + M_{3}^2), \\
F_{12345}^{13452} &= F - (M_{12}^2 + M_{13}^2 + M_{14}^2 + M_{15}^2 + M_{245}^2) = F - (M_{12}^2 + M_{13}^2 + M_{14}^2 + M_{15}^2 + M_{245}^2), \\
F_{12345}^{13542} &= F - (M_{12}^2 + M_{13}^2 + M_{15}^2 + M_{235}^2 + M_{4}^2), \\
F_{12345}^{14532} &= F - (M_{12}^2 + M_{15}^2 + M_{234}^2 + M_{3}^2), \\
F_{12345}^{14523} &= F - (M_{14}^2 + M_{24}^2 + M_{235}^2 + M_{5}^2), \\
F_{12345}^{14523} &= F - (M_{14}^2 + M_{24}^2 + M_{23}^2 + M_{15}^2), \\
F_{12345}^{14523} &= F - (M_{14}^2 + M_{24}^2 + M_{15}^2 + M_{23}^2), \\
F_{12345}^{14523} &= F - (M_{14}^2 + M_{24}^2 + M_{15}^2 + M_{23}^2), \\
\end{align*} \quad (9) \]

where \(F = \sum_i \Delta(A_i^i + A_2^i + \cdots + A_N^i)_{\rho}^2 - \sum_{j=1}^{N} U_j \), \(M_{12345} = \sqrt{F_{12345}^{12345}} - \sqrt{\sum_i \Delta(A_i^i)^2 - U_{5}} \), \(M_{12345} = \sqrt{\sum_{i} \Delta(A_i^i)^2 - U_{5}} \).

As a simple example, consider the five-qubit state \(\rho = |W_{\delta}\rangle \langle W_{\delta}| \) with \(|W_{\delta}\rangle = \frac{1}{\sqrt{5}}(|10000\rangle + |01000\rangle + |00100\rangle + |00010\rangle + |00001\rangle)\). Let \(A_1^1 = A_2^1 = A_3^1 = A_4^1 = A_5^1 = \sigma_x + \), \(A_2^2 = A_3^2 = A_4^2 = A_5^2 = \sigma_y\), \(A_1^3 = -A_2^3 = A_3^3 = A_4^3 = A_5^3 = \sigma_z\). We have \(U_1 = U_2 = U_3 = U_4 = U_5 = 2, M_{12} = M_{34} = 0, M_{13} = 0.2161, M_{1234} = 1.218, M_{123} = 0, M_{1245} = 0.2797\) and \(M_{12345} = 0.8536\), which give rise to \(F_{12345} = 3 - M_{12}^2 - M_{23}^2 - M_{15}^2 < 0\) and \(F_{12345} < 0\), namely, the state is entangled.

Conclusion

We have generalized the LUR criterion for three qubit quantum systems to multiquit quantum systems, and obtained new entanglement criteria for four-partite quantum systems as well as for general multipartite systems. By detailed examples we have shown that our criteria can detect better the entanglement than some existing criteria. It is further known that in certain situations they can provide a nonlinear refinement of linear entanglement witnesses\(^{38}\), and it can be measured in experimental settings similar to those of entanglement witnesses. The effectiveness of the LUR criteria relies heavily on certain notions of information content of quantum states and choice of observables.

Quantum entanglement is fundamentally connected to the quantum steering, local uncertainty relations (LURs) are a common tool for entanglement detection, and the underlying idea can be directly generalized to steering detection\(^{29}\).

The considered system here is closed systems with no decoherence effects taken into account. Also, it would be interesting to find criteria for open quantum systems, since realistic quantum systems inevitably interact with the environment. It would be also interesting if our approach may highlight further investigations on the \(k\)-separability\(^{27}\) of multipartite systems and genuine multipartite entanglement detection.
Methods

Proof of the Theorem 1 By straightforward computation, we have
\[
\sum_i \Delta(A_i^1 + A_i^2 + A_i^3 + A_i^4) = \sum_i \Delta(A_i^1 + A_i^2 + A_i^3)^2 + \sum_i \Delta(A_i^4)^2 + 2 \sum_i \left[\langle (A_i^1 + A_i^2 + A_i^3) \otimes A_i^4 \rangle - \langle A_i^1 + A_i^2 + A_i^3 \rangle \langle A_i^4 \rangle \right].
\]
Taking into account that for any tripartite separable states \(\rho \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3 \),
\[
\sqrt{F_{\rho}^{12}} \sum_i \Delta(A_i^3)^2 - U_3 \pm \sum_i \left[\langle (A_i^1 + A_i^2) \otimes A_i^3 \rangle - \langle A_i^1 + A_i^2 \rangle \langle A_i^3 \rangle \right] \geq 0,
\]
where \(F_{\rho}^{12} = \sum_i \Delta(A_i^1 + A_i^2)^2 - (U_1 + U_2 + M_i^2) \), we obtain
\[
\sum_i \Delta(A_i^1 + A_i^2 + A_i^3 + A_i^4)^2 \geq U_1 + U_2 + U_3 + U_4 + M_i^2 + M_i^4 \quad \text{for any tripartite separable states} \quad \rho \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3.
\]

Proof of the Theorem 2 We denote the length of \(k_0 \) as \(|k_0|\). From above, one has \(|k_0| + |k_1| = N\).

When \(K = N = 1, \) one has \(|k_0| = 1, \) by straightforward computation, we have
\[
\sum_i \Delta(A_i^1 + A_i^2 + \cdots + A_i^N)^2 = \sum_i \Delta(A_i^1 + A_i^2 + \cdots + A_i^{N-1})^2 + \sum_i \Delta(A_i^N)^2 + 2 \sum_i \left[\langle (A_i^1 + A_i^2 + \cdots + A_i^{N-1}) \otimes A_i^N \rangle - \langle A_i^1 + A_i^2 + \cdots + A_i^{N-1} \rangle \langle A_i^N \rangle \right].
\]
By Lemma 2, for any multiparticle separable states \(\rho \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N, \)
\[
\sqrt{F_{\rho}^{12-N-1}} \sum_i \Delta(A_i^N)^2 - U_N \pm \sum_i \left[\langle (A_i^1 + A_i^2 + \cdots + A_i^{N-1}) \otimes A_i^N \rangle - \langle A_i^1 + A_i^2 + \cdots + A_i^{N-1} \rangle \langle A_i^N \rangle \right] \geq 0,
\]
via calculation, we obtain
\[
\sum_i \Delta(A_i^1 + A_i^2 + \cdots + A_i^N)^2 \geq \sum_{j=1}^{N} U_j + M_{12}^2 + M_{123}^2 + \cdots + M_{123\cdots N-1}^2, \]
namely, \(F_{\rho}^{12-N-1\uparrow} \geq 0 \). By relabeling the sub-indices, we have \(F_{\rho}^{k_{0}\downarrow} \geq 0 \).

When \(K < N - 1, \) one has \(|k_0| \geq 2, \)

\[\]
\[
\sum_i \Delta(A_i^1 + \cdots + A_i^N)_p^2 = \sum_i \Delta(A_i^1 + \cdots + A_i^K)^2 + \sum_i \Delta(A_{K+1}^i + \cdots + A_{2K-1}^i)^2 + 2 \sum_i [<(A_i^1 + \cdots + A_i^K) \otimes (A_{K+1}^i + \cdots + A_{2K-1}^i)>(A_i^1 + \cdots + A_i^K)(A_{K+1}^i + \cdots + A_{2K-1}^i)].
\]

By using Lemma 2, we get
\[
\sum_i \Delta(A_i^1 + A_i^2 + \cdots + A_i^N)^2_p \geq \sum_{j=1}^N U_j + (M_{12}^1 + M_{12}^2 + \cdots + M_{12}^{K+1} + M_{12}^{K+2} + \cdots + M_{2K-1}^{K+1} + M_{2K}^{2K-1} - N),
\]

namely, \(F_p^{12-K-K+1K+2-N} \geq 0\). By relabeling the sub-indices, one can show that \(F_p^{k(k)} \geq 0\).

Received: 5 February 2021; Accepted: 12 April 2021
Published online: 05 May 2021

References
1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information Anniversary (Cambridge University Press, 2010).
2. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. *Nature (London)* **438**, 639 (2005).
3. Lu, C. Y. et al. Experimental entanglement of six photons in graph states. *Nat. Phys.* **3**, 91 (2007).
4. Verstraete, F. & Verschelde, H. Optimal teleportation with a mixed state of two qubits. *Phys. Rev. Lett.* **90**, 097901 (2003).
5. Hofmann, H. F. & Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. *Phys. Rev. Lett.* **99**, 130504 (2007).
6. Hofmann, H. F. Bound entangled states violate a nonsymmetric local uncertainty relation. *Phys. Rev. A* **68**, 034307 (2003).
7. Gühne, O., Hyllus, P., Gittsovich, O. & Eisert, J. Covariance matrices and the separability problem. *Phys. Rev. Lett.* **99**, 130504 (2007).
8. de Julio, I. V. Separability criteria based on the Bloch representation of density matrices. *Quan. Inf. Comput.* **3**, 193 (2003).
9. de Julio, I. V. Further results on entanglement detection and quantification from the correlation matrix criterion. *J. Phys. A* **41**, 065309 (2008).
10. Fei, S. M., Guhne, O. & Wang, Z. X. Separability of mixed states: Necessary and sufficient conditions. *Phys. Lett. A* **223**, 1 (1996).
11. de Julio, I. V. Separability criteria based on the Bloch representation of density matrices. *Quan. Inf. Comput.* **7**, 624 (2007).
12. Hofmann, H. F. & Takeuchi, S. Separability of mixed states: Necessary and sufficient conditions. *J. Phys. A* **41**, 065309 (2008).
13. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. *Rev. Mod. Phys.* **80**, 517 (2008).
14. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed quantum states: Linear contractions and permutation criteria. *Open Syst. Inf. Dyn.* **13**, 103 (2006).
15. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. *Phys. Lett. A* **223**, 1 (1996).
16. de Julio, I. V. Separability criteria based on the Bloch representation of density matrices. *Quan. Inf. Comput.* **7**, 624 (2007).
17. de Julio, I. V. Further results on entanglement detection and quantification from the correlation matrix criterion. *J. Phys. A* **41**, 065309 (2008).
18. Fei, S. M., Zhao, M. J., Chen, K. & Wang, Z. X. Experimental determination of entanglement for arbitrary pure states. *Phys. Rev. A* **80**, 032320 (2009).
19. Peres, A. Separability criteria for density matrices. *Phys. Rev. Lett.* **77**, 1413 (1996).
20. Gühne, O. & Lütkenhaus, N. Nonlinear entanglement witnesses. *Phys. Rev. Lett.* **96**, 170502 (2006).
21. Laskowski, W. & Żukowski, M. Detection of N-particle entanglement with generalized Bell inequalities. *Phys. Rev. A* **72**, 062112 (2005).
22. Kourbolahy, Y. A. & Aszhargamal, M. Entanglement criteria for multipartite systems based on quantum Fisher information. *Phys. Rev. A* **99**, 123004 (2019).
23. Briegel, H. J., Browne, D. E., Dür, W., Rausendorf, R. & Van den Nest, M. Measurement-based quantum computation. *Nat. Phys.* **5**, 19 (2009).
24. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. *Rev. Mod. Phys.* **80**, 517 (2008).
25. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Entanglement. *Rev. Mod. Phys.* **81**, 865 (2009).
26. Gühne, O. & Töth, G. Entanglement detection. *Phys. Rep.* **474**, 1 (2009).
27. Shi, Y., Duan, L. & Vidal, G. Classical simulation of quantum many-body systems with a tree tensor network. *Phys. Rev. A* **74**, 022320 (2006).
28. Li, M., Fei, S. M. & Wang, Z. X. Separability and entanglement of quantum states based on covariance matrices. *J. Phys. A* **41**, 202002 (2008).
29. Zhang, C. I., Zhang, Y. S., Zhang, S. & Guo, G. C. Entanglement detection beyond the computable cross-norm or realignment criterion. *Phys. Rev. A* **77**, 060301(R) (2008).
30. Zhang, C. I., Nha, H., Zhang, Y. S. & Guo, G. C. Entanglement detection via tighter local uncertainty relations. *Phys. Rev. A* **81**, 012324 (2010).
31. Zhao, M. J., Wang, Z. X. & Fei, S. M. Multiqubits entanglement witness based on W state. *Rep. Math. Phys.* **63**, 409 (2009).
32. Kourbolahy, Y. A. & Aszhargamal, M. Entanglement criterion for tripartite systems based on local sum uncertainty relations. *Phys. Rev. A* **97**, 042333 (2018).
33. Aulbach, M. Classification of entanglement in symmetric states. *Int. J. Quantum Inf.* **10**, 1230004 (2012).
34. Gühne, O., Meichler, M. & Peter Adam, G. T. Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. *Phys. Rev. A* **74**, 010301(R) (2006).
35. Uola, R., Costa, A. C. S., Nguyen, H. C. & Gühne, O. Quantum steering. *Rev. Mod. Phys.* **92**, 015001 (2020).
36. Hong, Y. & Luo, S. L. Detecting κ-nonsingularity via local uncertainty relations. *Phys. Rev. A* **93**, 042310 (2016).

Acknowledgements
This work is supported by the Natural Science Foundation of China under Grant No. 11675113; Beijing Municipal Commission of Education (KZ201810028042); Beijing Natural Science Foundation (Grant No. Z190005);
Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China (No. SIQSE202001).

Author contributions
The first and the second authors wrote the main manuscript text and all authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021