Parshin’s conjecture and motivic cohomology with compact support

Thomas Geisser⋆

Abstract

We discuss Parshin’s conjecture on rational K-theory over finite fields and its implications for motivic cohomology with compact support.

1 Introduction

Parshin’s conjecture states that higher algebraic K-groups of smooth projective schemes over finite fields are torsion. In [6], we studied the properties that Parshin’s conjecture would imply for rational higher Chow groups. We compared higher Chow groups to weight homology $H^W_i(X, \mathbb{Q}(n))$, defined by Jannsen [10] based on the work of Gillet-Soule [8], and obtained a diagram

\[
\begin{array}{cc}
H^c_i(X, \mathbb{Q}(n)) & \xrightarrow{\pi} & H^W_i(X, \mathbb{Q}(n)) \\
\alpha \downarrow & & \gamma \uparrow \\
\tilde{H}^c_i(X, \mathbb{Q}(n)) & \xrightarrow{\beta} & \tilde{H}^W_i(X, \mathbb{Q}(n)).
\end{array}
\]

The terms with the tilde are the cohomology of the first non-vanishing E^1-line of the niveau spectral sequence. Parshin’s conjecture in weight n is equivalent to π being an isomorphism for all X and i. We showed that π is an isomorphism if and only if α, β and γ are isomorphisms, and gave criteria for this to happen.

In this article, we take the cohomological point of view and examine the properties that Parshin’s conjecture implies for motivic cohomology with compact support. Surprisingly, the properties obtained are not dual to the

⋆ Supported in part by NSF grant No.0556263

University of Southern California
properties for higher Chow groups, but have a different flavor. The method to study motivic cohomology with compact support is to use the coniveau filtration. To avoid the problems arising from the covariance of motivic cohomology with compact support for open embeddings (for example, one gets very large by taking inverse limits, and has to deal with derived inverse limits), we consider the dual groups $H^i_c(X, \mathbb{Q}(n))^\ast$. We obtain a niveau spectral sequence, and compare it with the spectral sequence for the dual of weight cohomology $H^i_W(X, \mathbb{Q}(n))^\ast$ as in [6] to obtain a diagram

$$
\begin{array}{ccc}
\tilde{H}^i_W(X, \mathbb{Q}(n))^\ast & \xrightarrow{\gamma^\ast} & \tilde{H}^i_c(X, \mathbb{Q}(n))^\ast \\
\downarrow & & \downarrow \\
H^i_W(X, \mathbb{Q}(n))^\ast & \xrightarrow{\pi^\ast} & H^i_c(X, \mathbb{Q}(n))^\ast
\end{array}
$$

(2)

Again, the upper terms are given by the first non-vanishing row of E^1-terms in the niveau spectral sequence. The map π^\ast is an isomorphism for all X if and only if Parshin’s conjecture holds. In contrast to the homological situation, α^\ast being an isomorphism is stronger than Parshin’s conjecture. We go on to examine the relationship between diagrams (1) and (2). Not surprisingly, this is related to Beilinson’s conjecture that rational and numerical equivalence agree up to torsion over finite fields. Finally we relate bounds for all four rational motivic theories to Parshin’s conjecture.

Since the purpose of this work is to understand interrelations between certain conjectures, we assume the existence of resolution of singularities. Its use in the results of Friendlander and Voevosky [2] maybe be dispensable with more work because we work with rational coefficients, but occasionally we need a smooth and projective model for every function field to do an induction process.

Throughout this paper, the category of schemes over k, written Sch/k denotes the category of separated schemes of finite type over k, and Sm/k the category of smooth schemes over k.

Acknowledgements: This paper was inspired by the work of and discussions with U.Jannsen and S.Saito.

2 Motivic cohomology with compact support

For a scheme X over a field k, motivic cohomology with compact support is defined as

$$H^i_c(X, \mathbb{Z}(n)) = \text{Hom}_{\text{DM}^-} (M^c(X), \mathbb{Z}(n)[i]).$$

A concrete description is given as follows [2 §3]: Let $\rho : (\text{Sch}/k)_{\text{cdh}} \to (\text{Sm}/k)_{\text{Nis}}$ be the map from the large cdh-site of k to the smooth site with the Nisnevich topology. Let $\mathbb{Z}(n)$ be the motivic complex on $(\text{Sm}/k)_{\text{Nis}}$.

and consider an injective resolution $\rho^*\mathbb{Z}(n) \to I$ on $(\text{Sch}/k)_{cdh}$ (we need resolution of singularities to ensure that ρ^* is exact). Let $\mathbb{Z}^c(X)$ be the cdh-sheafification of the presheaf which associates to U the free abelian group generated by those subschemes $Z \subseteq X \times U$ whose projection to U induces an open embedding $Z \subseteq U$. Then $H^i_c(X, \mathbb{Z}(n)) = \text{Hom}_{D(Shv_{cdh})}(\mathbb{Z}^c(X), I[i])$. This satisfies the following properties:

a) Contravariance for proper maps.

b) Covariance for flat quasi-finite maps.

c) For a closed subscheme Z of X with open complement U, there is a localization sequence

$$\cdots \to H^i_c(U, \mathbb{Z}(n)) \to H^i_c(X, \mathbb{Z}(n)) \to H^i_c(Z, \mathbb{Z}(n)) \to \cdots.$$ \hspace{1cm} (3)

If X is proper, then since $\mathbb{Z}^c(X) = \mathbb{Z}(X)$, motivic cohomology with compact support agrees with motivic cohomology $H^i_c(X, \mathbb{Z}(n)) := H^i_{cdh}(X, \mathbb{Z}(n))$. Moreover, under resolution of singularities, we get for smooth X of dimension d isomorphisms \[11, 12\]

$$H^i_{cdh}(X, \mathbb{Z}(n)) \cong H^i_{\text{Nis}}(X, \mathbb{Z}(n)) \cong CH^n(X, 2n - i).$$ \hspace{1cm} (4)

Proposition 2.1 a) We have $H^i_c(X, \mathbb{Z}(n)) = 0$ for $i > n + \text{dim} X$.

b) If k is finite, resolution of singularities exists, and if $n > \text{dim} X$, then $H^i_c(X, \mathbb{Q}(n)) = 0$ for $i \geq n + \text{dim} X$.

c) If k is finite and X is smooth of dimension d, then $H^{n+d}(X, \mathbb{Q}(n)) = 0$ unless $n = d$.

Proof. a) Using the localization sequence and induction on the dimension, the statement is easily reduced to the case where X is proper. Then we use that the complex $\mathbb{Z}(n)$ is concentrated in degrees at most n, and X has cdh-cohomological dimension d.

b) This was proved in \[7, \text{Prop.6.3}\]. The idea is to use induction on the dimension to reduce to X smooth and proper, and then use c).

c) If $n < d$ then this follows by comparing to higher Chow groups. If $n > d$, consider the spectral sequence

$$E_1^{s,t} = \bigoplus_{x \in X^{(r)}} H^{t-s}(k(x), \mathbb{Z}(n - s)) \Rightarrow H^{s+t}(X, \mathbb{Z}(n)).$$ \hspace{1cm} (5)

In order for the $E_1^{s,t}$-terms not to vanish, we need $t \leq n$ and $s \leq d$, hence to have $s + t = n + d$ we need $s = d$ and $t = n$. But $E_1^{d,n}$ is a sum of $H^{n-d}(k(x), \mathbb{Z}(n - d))$ for finite fields $k(x)$, and higher Milnor K-theory of finite fields is torsion. \qed
2.1 The niveau spectral sequence

In order not to deal with derived inverse limits and to get smaller groups, we work with the dual of motivic cohomology with compact support

$$H^i_c(X, \mathbb{Q}(n))^* := \text{Hom}(H^i_c(X, \mathbb{Z}(n)), \mathbb{Q}).$$

These groups are covariant for proper maps and contravariant for quasi-finite flat maps. Let Z_s be set of closed subschemes of dimension at most s and let Z_s/Z_{s-1} be the set of ordered pairs $(Z, Z') \in Z_s \times Z_{s-1}$ such that $Z' \subseteq Z$. Then Z_s as well as Z_s/Z_{s-1} are ordered by inclusion, and we obtain a filtration $Z_0 \subseteq Z_1 \subseteq \cdots$. We use covariance for proper maps to define

$$H^i_c(Z_s, \mathbb{Q}(n))^* := \text{colim}_{Z \in Z_s} H^i_c(Z, \mathbb{Q}(n)).$$

For a point $x \in X$ we write $x \in Z_s$ if $\{x\} \in Z_s$, and using contravariance for open embeddings define

$$H^i_c(k(x), \mathbb{Q}(n))^* := \text{colim}_{U \cap \{x\} \neq \emptyset} H^i_c(U \cap \{x\}, \mathbb{Q}(n))^*.$$

Beware that this is typically not the dual of any group. For example, for the function field $k(C)$ of a smooth and proper curve C we have

$$\lim_{U} H^1_c(U, \mathbb{Q}(0)) = \left(\bigprod_{C(0)} \mathbb{Q}\right)/\mathbb{Q},$$

whereas taking duals allows us to work with the countable "predual" group

$$H^1_c(k(C), \mathbb{Q}(0))^* = \text{colim}_U H^1_c(U, \mathbb{Q}(0))^* = \text{ker} \left(\bigoplus_{C(0)} \mathbb{Q} \rightarrow \mathbb{Q} \right).$$

From the localization sequence we obtain

$$H^i_c(Z_s/Z_{s-1}, \mathbb{Q}(n))^* := \text{colim}_{(Z, Z') \in Z_s/Z_{s-1}} H^i_c(Z-Z', \mathbb{Q}(n))^* = \bigoplus_{x \in Z_s} H^i_c(k(x), \mathbb{Q}(n))^*.$$

The usual yoga with exact couples gives

Proposition 2.2 There is a homological spectral sequence

$$E^1_{s,t} = \bigoplus_{x \in X(s)} H^{s+t}_c(k(x), \mathbb{Q}(n))^* \Rightarrow H^{s+t}_c(X, \mathbb{Q}(n))^*. \quad (6)$$

The d^1-differential is given by

$$H^{i+1}_c(Z_{s+1}/Z_s, \mathbb{Q}(n))^* \rightarrow H^i_c(Z_s, \mathbb{Q}(n))^* \rightarrow H^i_c(Z_s/Z_{s-1}, \mathbb{Q}(n))^*.$$

By Proposition 2.1b), we obtain $H^i_c(k, \mathbb{Q}(n))^* = 0$ for $i > n + s$, i.e. $E^1_{s,t}$ vanishes for $t > n$, so that the spectral sequence (6) is concentrated below and on the line $t = n$. On the line $t = n$, the terms $E^1_{s,n}$ vanish for $s < n$ by Proposition 2.1b). We define $\hat{H}^i_c(X, \mathbb{Q}(n))^*$ to be the cohomology of the line $E^1_{s,n}$.
Parshin’s conjecture and motivic cohomology with compact support

\[\bigoplus_{x \in X_{(n)}} H_c^{2n}(k(x), \mathbb{Q}(n))^* \leftarrow \cdots \leftarrow \bigoplus_{x \in X_{(d)}} H_c^{n+d}(k(x), \mathbb{Q}(n))^*, \]

(7)

where we put the term indexed by \(X_{(i)} \) in degree \(n + i \). It is easy to check that we obtain canonical maps

\[\tilde{H}_c^i(X, \mathbb{Q}(n))^* \xrightarrow{\alpha^*} H_c^i(X, \mathbb{Q}(n))^*, \]

(8)

3 Parshin’s conjecture

Parshin’s conjecture states that for all smooth and projective \(X \) over \(\mathbb{F}_q \), the groups \(K_i(X)_q \) are torsion for \(i > 0 \). In [3] we showed that it implies by Tate’s conjecture and Beilinson’s conjecture that rational and numerical equivalence agree up to torsion. Since \(K_i(X)_q = \bigoplus_n H^{2n-i}(X, \mathbb{Q}(n)) \), it follows that Parshin’s conjecture is equivalent to the following conjecture for all \(n \).

Conjecture \(P^n \): For all smooth and projective schemes \(X \) over the finite field \(\mathbb{F}_q \), and all \(i \neq 2n \), the group \(H_c^i(X, \mathbb{Z}(n)) \) is torsion.

Conjecture \(P^n \) is known for \(n = 0, 1 \) and is trivial for \(n < 0 \). In [6], we considered the homological analog (it was denoted \(P(m) \) in loc.cit.):

Conjecture \(P_m \): For all smooth and projective schemes \(X \) over the finite field \(\mathbb{F}_q \), and all \(i \neq 2m \), the group \(H_c^i(X, \mathbb{Z}(m)) \) is torsion.

This conjecture is not known for any \(m \). One can also consider the restrictions \(P^n(d) \) and \(P_m(d) \) of the above conjectures to varieties of dimension at most \(d \). By the projective bundle formula one gets \(P^n(d) \Rightarrow P^{n-1}(d-1) \) and \(P_m(d) \Rightarrow P_{m-1}(d-1) \), hence \(P^n \Rightarrow P^{n-1} \) and \(P_m \Rightarrow P_{m-1} \).

Lemma 3.1 We have \(P^n(d) \Leftrightarrow P_{d-n}(d) \).

Proof. Let \(X \) be smooth and projective of dimension \(e \leq d \). Then conjecture \(P^{n-d+e} \) holds for \(X \), hence the formula \(H^i(X, \mathbb{Z}(a)) \cong H_c^{2d-i}(X, \mathbb{Z}(e-a)) \) implies conjecture \(P_{d-n} \) for \(X \). The converse is proved the same way. \(\Box \)

Since conjecture \(P^{-1} \) is trivially true, the following Lemma explains why the spectral sequence for homology with compact support in [6] is concentrated in degrees \(s \geq n \), whereas \(\text{(6)} \) a priori is not:

Lemma 3.2 If conjecture \(P_{-1} \) holds, \(H^i_c(X, \mathbb{Q}(n)) = 0 \) for \(n > d = \dim X \) and any \(X \). In particular, the terms \(E^1_{s,t} \) vanish for \(s < n \) in the spectral sequence \(\text{(6)} \).

Proof. By induction on the dimension of \(X \) and the sequence \(\text{(6)} \) we can assume that \(X \) is smooth and proper. Then \(H^i_c(X, \mathbb{Q}(n)) = H^{2d-i}_c(X, \mathbb{Q}(d-n)) \)

\[\bigoplus_{x \in X_{(n)}} H_c^{2n}(k(x), \mathbb{Q}(n))^* \leftarrow \cdots \leftarrow \bigoplus_{x \in X_{(d)}} H_c^{n+d}(k(x), \mathbb{Q}(n))^*, \]

(7)
Lemma 3.3 The following statements are equivalent:

a) Conjecture \(P^n \).

b) For all schemes \(X \) over \(\mathbb{F}_q \), we have \(H^i_c(X, \mathbb{Q}(n)) = 0 \) for \(i < 2n \).

c) For all finitely generated fields \(k/\mathbb{F}_q \), we have \(H^i_c(k, \mathbb{Q}(n))^* = 0 \) for \(i < 2n \).

Proof. a) \(\Rightarrow b) \) follows by induction on the dimension and localization to reduce to the smooth and proper case, b) \(\Rightarrow c) \) follows by taking colimits, and c) \(\Rightarrow a) \) follows with the spectral sequence (6).

It is not a priori clear if the terms \(H^i_c(k(x), \mathbb{Q}(n)) \) with \(2n \leq i < \text{trdeg } k(x) + n \) should vanish or not. Thus the following statement is possibly stronger than Parshin’s conjecture (but see Proposition 5.2):

Proposition 3.4 The following statements are equivalent:

a) Conjecture \(P^n \) holds, and for smooth and projective \(X \) we have

\[
\check{H}^i_c(X, \mathbb{Q}(n))^* \cong \begin{cases}
CH^n(X)^* & i = 2n; \\
0 & \text{else}
\end{cases}
\]

b) The groups \(H^i_c(k, \mathbb{Q}(n))^* \) vanish for \(i \neq n + \text{trdeg } k \).

c) The map \(\alpha^* \) is an isomorphism for all \(X \).

Proof. a) \(\Rightarrow b) \): We proceed by induction on the transcendence degree. Choose a smooth and projective model \(X \) of \(k \). Since \(H^i_c(X, \mathbb{Q}(n)) \) is \(CH^n(X) \) for \(i = 2n \) and vanishes for \(i \neq 2n \), an inspection of the spectral sequence (6) shows the vanishing. b) \(\Rightarrow c) \) is clear.

c) \(\Rightarrow a) \): Conjecture \(P^n \) follows because \(\check{H}^i_c(X, \mathbb{Q}(n))^* \) vanishes for \(i < 2n \), and the sequence is exact because for smooth and proper \(X \), \(H^i_c(X, \mathbb{Q}(n))^* \) vanishes for \(i > 2n \) and is isomorphic to \(CH^n(X) \) for \(i = 2n \).

The statements of this Proposition are non-trivial even in the case \(n = 0 \) (but they can be proven with methods similar to [10, Thm.5.10] in this case).

4 Weight cohomology

Let \(\mathcal{C} \) be category of correspondences with objects smooth projective varieties \([X] \) over the field \(k \), \(\text{Hom}_\mathcal{C}([X], [Y]) = \oplus CH_{\dim X_i} \times (X_i \times Y)_{\mathbb{Q}} \) for \(X = \coprod X_i \), the decomposition into connected components, and the usual composition of correspondences. In [8], Gillet and Soulé defined, for every separated scheme of finite type, a weight complex \(W(X) \) in the homotopy category of bounded complexes in \(\mathcal{C} \), satisfying the following properties [8 Thm. 2]:
a) $W(X)$ is represented by a bounded complex

$$[X_0] \leftarrow [X_1] \leftarrow \cdots \leftarrow [X_k]$$

with $\dim X_i \leq \dim X - i$.

b) $W(\cdot)$ is covariant functorial for proper maps.

c) $W(\cdot)$ is contravariant functorial for open embeddings.

d) If $T \to X$ is a closed embedding with open complement U, then there is a distinguished triangle

$$W(T) \xrightarrow{i^*} W(X) \xrightarrow{j^*} W(U).$$

Our notation differs from loc.cit. in variance. In loc.cit., resolution of singularities is used to obtain an integral result, but see [9] for a rational result.

We define dual weight cohomology (with compact support) $H^i_{W}(X, \mathbb{Q}(n))^*$ to be the ith cohomology of the complex

$$\text{CH}^n(X_0)^* \leftarrow \text{CH}^n(X_1)^* \leftarrow \text{CH}^n(X_2)^* \leftarrow \cdots,$$

induced by contravariance of CH^n, and with $\text{CH}^n(X_i)^*$ placed in degree $2n+i$. Note that this is the dual of the functor obtained via the contravariant analog of [10, Thm.5.13] from the (contravariant) functor $\text{CH}^n(\cdot)$ on the category C. We define dual weight cohomology of a field to be

$$H^i_{W}(K, \mathbb{Q}(n))^* := \varprojlim_U H^i_{W}(U, \mathbb{Q}(n))^*,$$

where U runs through smooth schemes with function field K.

Lemma 4.1 We have $H^i_{W}(X, \mathbb{Q}(n))^* = 0$ unless $2n \leq i \leq \dim X + n$. In particular, $H^i_{W}(K, \mathbb{Q}(n))^* = 0$ for every finitely generated field K/k unless $2n \leq i \leq \text{trdeg}_k K + n$.

Proof. This follows from the first property of weight complexes together with $\text{CH}^n(T) = 0$ for $n > \dim T$. □

It follows from Lemma [13] that the niveau spectral sequence

$$E^1_{s,t} = \bigoplus_{x \in X^{(s)}} H^s_{W}^t(k(x), \mathbb{Q}(n))^* \Rightarrow H^{s+t}_{W}(X, \mathbb{Q}(n))^*$$

is concentrated on and below the line $t = n$ and on and above the line $s + t = 2n$. If we let $\hat{H}^i_{W}(X, \mathbb{Q}(n))^* = E^2_{i-n,n}(X)$ be the homology of the complex

$$\bigoplus_{x \in X^{(s)}} H^{2n}_{W}(k(x), \mathbb{Q}(n))^* \leftarrow \cdots \leftarrow \bigoplus_{x \in X^{(d)}} H^{n+d}_{W}(k(x), \mathbb{Q}(n))^*,$$
then we obtain a canonical and natural map
\[\gamma^* : \tilde{H}^i_W(X, \mathbb{Q}(n))^* \to H^i_W(X, \mathbb{Q}(n))^*. \]

4.1 Comparison

We are going to check the hypothesis of [10, Prop. 5.16] to construct a functor between motivic cohomology with compact support and weight cohomology. Recall that motivic cohomology with compact support is defined as the cohomology of \(C'(X) = \text{Hom}_{D(\text{Shv}_{cdh})}(\mathbb{Z}^c(X), I) \), where \(\rho^* \mathbb{Z}(n) \to I \) is an injective resolution on the cdh-site. Then \(C' \) is a covariant functor from the category of schemes over \(k \) with proper maps to the category of complexes with bounded above cohomology, which is contravariant for open embeddings. Moreover, for proper \(X \) we have \(C'(X) = I(X) \), and a closed embedding \(i : Y \to X \) with open complement \(j : U \to X \) gives a short exact sequence
\[0 \to C'(U) \to C'(X) \to C'(Y) \to 0. \]
Restricting \(C' \) to smooth and proper \(X \), we have \(H^i C'(X) = 0 \) for \(i > 2n \), and a functorial isomorphism
\[H^{2n} C'(X) = H^{2n} I(X) \cong \tau_{\geq 2n} I(X) \cong CH^n(X). \]
by (4). We obtain a morphism of functors on the category of smooth and proper schemes,
\[C' = I \to \tau_{\geq 2n} I \xrightarrow{\sim} H^{2n}(I)[-2n] = CH^n(-)[-2n] \]
Reversing all the arrows induced by arrows between schemes, but not by arrows between cohomology theories in the proof of [10, Prop. 5.16] gives a natural transformation \(H^i_c(X, \mathbb{Z}(n)) \to H^i_W(X, \mathbb{Z}(n)) \), hence a natural transformation
\[\pi^* : H^i_W(X, \mathbb{Q}(n))^* \to H^i_c(X, \mathbb{Q}(n))^*. \]
From now on we return to the situation \(k \) finite.

Proposition 4.2 Assume that every finitely generated field \(K/k \) has a smooth and projective model over \(k \), and let \(K \) be finitely generated of transcendence degree \(d \) over \(k \).
 a) The map \(\pi^* \) induces isomorphisms
 \[H^{n+d}_W(K, \mathbb{Q}(n))^* \cong H^{n+d}_c(K, \mathbb{Q}(n))^*. \]
 In particular, we have \(\tilde{H}^i_W(X, \mathbb{Q}(n))^* \cong \tilde{H}^i_c(X, \mathbb{Q}(n))^* \).
 b) If \(d > n \), then \(\pi^* \) induces isomorphisms

Proof. We proceed by induction on d. Given K of transcendence degree d, choose a smooth and projective model X of K and compare (6) and (9).

a) If $d < n$, then both terms vanish by Proposition 2.1b) and Lemma 4.1.

For $d = n$ we obtain $CH^n(X) \cong H^{n+d}_c(K, \mathbb{Q}(n))^* \cong H^{n+d}_W(K, \mathbb{Q}(n))^*$. For $d > n$, we obtain from $H^{n+d}_W(X, \mathbb{Q}(n)) = 0$ a commutative diagram with exact rows

\[
\cdots \leftarrow \bigoplus_{x \in X_{(d-1)}} H^{n+d-1}_W(k(x), \mathbb{Q}(n))^* \leftarrow H^{n+d}_W(K, \mathbb{Q}(n))^* \leftarrow 0
\]

\[
\cdots \leftarrow \bigoplus_{x \in X_{(d-1)}} H^{n+d-1}_c(k(x), \mathbb{Q}(n))^* \leftarrow H^{n+d}_c(K, \mathbb{Q}(n))^* \leftarrow 0.
\]

b) follows by a similar argument, noting that the d_2-differentials originating from the terms in question end in terms considered in a), and there are no higher differentials.

We obtain a commutative diagram

\[
\begin{array}{ccc}
\tilde{H}_W(X, \mathbb{Q}(n))^* & \xrightarrow{\tilde{H}_c(X, \mathbb{Q}(n))^*} \\
\gamma^* & \downarrow \alpha^* & \\
H_W(X, \mathbb{Q}(n))^* & \xrightarrow{\pi^*} H_c(X, \mathbb{Q}(n))^*. \\
\end{array}
\]

(11)

Proposition 4.3 The following statements are equivalent:

a) Conjecture P^n.

b) The map π^* is isomorphisms for all X.

c) We have $H^i_W(k, \mathbb{Q}(n))^* \cong H^i_c(k, \mathbb{Q}(n))^*$ for all i and k.

Proof. a) \Leftrightarrow b): For smooth and proper X this is clear. In general, one does induction on the dimension and uses localization sequences.

b) \Leftrightarrow c): One direction follows by taking colimits, and the other by comparing the spectral sequences (6) and (9).

The following Proposition is analog to Proposition 4.4 and dual to \cite{[6], Prop.3.4}:

Proposition 4.4 The following statements are equivalent and follow from α^* being an isomorphism:

a) For smooth and projective X, we have

\[
\tilde{H}_W(X, \mathbb{Q}(n))^* \cong \begin{cases}
CH^n(X)^* & i = 2n; \\
0 & \text{else}.
\end{cases}
\]
b) The groups $H_i^W(k, \mathbb{Q}(n))^*$ vanish for $i \neq n + \text{trdeg } k$.

c) The map γ^* is an isomorphism for all X and i.

Proof. The proof is similar to Proposition 3.4.

a) \Rightarrow b): We proceed by induction on the transcendence degree. Choose a smooth and projective model X of k. Since $H_i^W(X, \mathbb{Q}(n))$ is $CH^n(X)$ for $i = 2n$ and vanishes for $i \neq 2n$, an inspection of the spectral sequence (6) gives the result.

b) \Rightarrow c) \Rightarrow a) are clear. If α^* is an isomorphism, then so is π^*, and hence γ^*.

\[\square\]

5 Beilinson’s conjecture and duality

Beilinson conjectured that over a finite field, rational and numerical equivalence agrees up to torsion. This can be reformulated to the following:

Conjecture D(n): For all smooth and projective schemes X over the finite field \mathbb{F}_q, the intersection pairing gives a functorial isomorphism

$$CH^n(X) \cong \text{Hom}(CH_n(X), \mathbb{Q}).$$

Note that since both sides are countable, this implies finite dimensionality. By the projection formula, the pairing induces a map of complexes

\[
\begin{array}{cccccc}
CH_n(X_0) & \leftarrow & CH_n(X_1) & \leftarrow & CH_n(X_2) & \leftarrow & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \\
CH^n(X_0)^* & \leftarrow & CH^n(X_1)^* & \leftarrow & CH^n(X_2)^* & \leftarrow & \cdots.
\end{array}
\]

Taking homology, we obtain a map

$$\delta : H_i^W(X, \mathbb{Q}(n)) \rightarrow H_i^W(X, \mathbb{Q}(n))^*.$$

Taking the limit over decreasing open sets with function field K, δ induces a map $H_i^W(K, \mathbb{Q}(n)) \rightarrow H_i^W(K, \mathbb{Q}(n))^*$. This in turn induces a map of complexes

\[
\begin{array}{cccccc}
\bigoplus_{x \in X(n)} H_{2n}^W(k(x), \mathbb{Q}(n)) & \leftarrow & \bigoplus_{x \in X(n+1)} H_{2n+1}^W(k(x), \mathbb{Q}(n)) & \leftarrow & \cdots \\
\downarrow & & \downarrow & & \cdots & & \\
\bigoplus_{x \in X(n)} H_{2n}^W(k(x), \mathbb{Q}(n))^* & \leftarrow & \bigoplus_{x \in X(n+1)} H_{2n+1}^W(k(x), \mathbb{Q}(n))^* & \leftarrow & \cdots.
\end{array}
\]
which gives the map τ making the following diagram commutative

\[\begin{array}{ccccccccc}
H^c_i(X, \mathbb{Q}(n)) & \xrightarrow{\pi} & H^W_i(X, \mathbb{Q}(n)) & \xrightarrow{\delta} & H^W_i(X, \mathbb{Q}(n))^* & \xrightarrow{\pi^*} & H^c_i(X, \mathbb{Q}(n))^* \\
\downarrow{\alpha} & & \uparrow{\gamma} & & \gamma^* & & \downarrow{\alpha^*} \\
\tilde{H}^c_i(X, \mathbb{Q}(n)) & \xrightarrow{\beta} & \tilde{H}^W_i(X, \mathbb{Q}(n)) & \xrightarrow{\tau} & \tilde{H}^W_i(X, \mathbb{Q}(n))^* & \xrightarrow{\gamma^*} & \tilde{H}^c_i(X, \mathbb{Q}(n))^*.
\end{array}\]

Lemma 5.1 Conjecture $D(n)$ is equivalent to δ being an isomorphism for all i and X, and implies that τ is an isomorphism for all i and X.

Proof. The equivalence follows from the definition of δ, and the statement about τ follows by a colimit argument. \qed

Parshin’s conjecture and Beilinson’s conjecture can be combined into the following

Conjecture $BP(n)$: For all smooth and projective schemes X over the finite field \mathbb{F}_q, the cup product pairing

\[H^i(X, \mathbb{Q}(n)) \times H^{2d-i}(X, \mathbb{Q}(d-n)) \rightarrow \mathbb{Q}\]

is perfect.

Proposition 5.2 For fixed n, the following statements are equivalent:

a) Conjecture $BP(n)$.

b) Conjectures $D(n)$, P^n and P_n.

c) There are perfect pairings of finite dimensional vector spaces

\[H^c_i(X, \mathbb{Q}(n)) \times H^c_i(X, \mathbb{Q}(n)) \rightarrow \mathbb{Q}\]

for all X, respectively smooth projective X.

d) All maps in (12) are isomorphisms for all X, respectively for all smooth and proper X.

Proof. a) \Leftrightarrow b): If $i > 2n$, then the left hand side in $BP(n)$ vanishes, hence perfectness is equivalent to the vanishing of $H^{2d-i}(X, \mathbb{Q}(d-n)) \cong H^c_i(X, \mathbb{Q}(n))$ for $i > 2n$, i.e. conjecture P_n of [6]. If $i < 2n$, then the right hand side in $BP(n)$ vanishes, so perfectness is equivalent to P^n. For $i = 2n$, we recover conjecture $D(n)$.

b) \Leftrightarrow c): Clearly conjecture $BP(n)$ is a special case of the assertion in c). For the other direction, it suffices to construct a functorial map $H^c_i(X, \mathbb{Q}(n)) \rightarrow H^c_i(X, \mathbb{Q}(n))^*$ which is the intersection pairing for smooth and projective X, and which is compatible with localization sequences on both sides. Indeed having such a map one can use the usual devissage to reduce to the case that X is smooth and projective. One way to construct such a map is to write $H^c_i(X, \mathbb{Z}(n)) \cong \text{Hom}_{DM-}(\mathbb{Z}(n)[i], M^c(X))$, which gives the map τ making the following diagram commutative

\[\begin{array}{ccccccccc}
H^c_i(X, \mathbb{Q}(n)) & \xrightarrow{\pi} & H^W_i(X, \mathbb{Q}(n)) & \xrightarrow{\delta} & H^W_i(X, \mathbb{Q}(n))^* & \xrightarrow{\pi^*} & H^c_i(X, \mathbb{Q}(n))^* \\
\downarrow{\alpha} & & \uparrow{\gamma} & & \gamma^* & & \downarrow{\alpha^*} \\
\tilde{H}^c_i(X, \mathbb{Q}(n)) & \xrightarrow{\beta} & \tilde{H}^W_i(X, \mathbb{Q}(n)) & \xrightarrow{\tau} & \tilde{H}^W_i(X, \mathbb{Q}(n))^* & \xrightarrow{\gamma^*} & \tilde{H}^c_i(X, \mathbb{Q}(n))^*.
\end{array}\]

(12)
\[H^j_c(X, \mathbb{Z}(n)) \cong \text{Hom}_{DM^-}(M^c(X), \mathbb{Z}(n)[i]), \] where \(DM^- \) is Voevodsky’s triangulated category of homotopy invariant Nisnevich sheaves with transfers. Then the pairing is given by the composition

\[\text{Hom}_{DM^-}(\mathbb{Z}(n)[i], M^c(X)) \times \text{Hom}_{DM^-}(M^c(X), \mathbb{Z}(n)[i]) \to \text{Hom}_{DM^-}(\mathbb{Z}(n), \mathbb{Z}) \cong \mathbb{Z}, \]

using the cancellation theorem.

b) ⇔ d) Conjecture \(P_n, D(n) \) and \(P^n \) imply that the left square, middle horizontal maps, and right horizontal maps of (12) are isomorphisms for all \(X \). Conversely, isomorphisms of the three upper maps of (12) for smooth and proper \(X \) imply that \(P_n, D(n) \), and \(P^n \) hold, respectively. \(\square \)

6 Parshin’s conjecture and the four motivic theories

Recall from [2] that we have four motivic theories: Motivic cohomology, motivic cohomology with compact support, motivic homology and motivic homology with compact support. All four theories are homotopy invariant and satisfy a projective bundle formula. Motivic cohomology is contravariant, has a Mayer-Vietoris long exact sequence for Zariski covers, and a long exact sequence for abstract blow-ups. Motivic cohomology is contravariant for proper maps, covariant for quasi-finite flat maps, and satisfies a localization long exact sequence (which implies in particular Mayer-Vietoris and abstract blow-up long exact sequences). Motivic homology and motivic homology with compact support satisfy the dual properties. The theories are related by the following diagram

\[
\begin{array}{ccc}
H^j_c(X, \mathbb{Q}(n)) & \xrightarrow{\text{proper}} & H^i(X, \mathbb{Q}(n)) \\
\cong & & \cong \\
H^i(X, \mathbb{Q}(m)) & \xrightarrow{\text{proper}} & H^j_c(X, \mathbb{Q}(m))
\end{array}
\]

The horizontal maps are isomorphisms for proper \(X \), and the vertical maps are isomorphisms if \(X \) is smooth of pure dimension \(d \), and \(m + n = d \) and \(j + i = 2d \). The functorialities suggest that groups diagonally opposite should be in some form of duality; we saw that with rational coefficients, this is equivalent to deep conjectures, for a result with torsion coefficients see [5].

The following diagram describes the range where these groups can be non-zero, where they can be non-zero assuming Parshin’s conjecture, where they can be non-zero assuming Parshin’s conjecture plus smoothness of \(X \), and where they can be non-zero assuming Parshin’s conjecture plus properness.
of X, respectively. The bold faced inequalities indicate that they are strong enough to recover Parshin’s conjecture.

Coh compact sup	Mot Cohomology	Mot Homology	Borel-Moore hom
$H^i_c(X, \mathbb{Q}(n))$	$H^i(X, \mathbb{Q}(n))$	$H_j(X, \mathbb{Q}(m))$	$H^j_c(X, \mathbb{Q}(m))$
always	$i \leq n + d$	$j \geq m$	$j \geq 2m$
Parshin ⇒	$2n \leq i \leq n + d$	$n \leq i \leq n + d$	$m \leq j \leq m + d$
P+smooth	$n \leq i \leq 2n$	$m \leq j \leq 2m$	
P+proper	$2n \leq i \leq n + d$	$2m \leq j \leq m + d$	

Proof. The first row follows from the definitions (and that the cdh-cohomological dimension agrees with the dimension). Since Borel-Moore homology $H^j_c(X, \mathbb{Q}(m))$ is isomorphic to higher Chow groups $CH_m(X, j - 2m)$, they can only be non-zero for $j \geq 2m$. The second row is the translation of this fact into a statement for motivic cohomology for smooth X, and for motivic homology for proper X.

The results under Parshin’s conjecture for Borel-Moore homology and motivic cohomology with compact support can be obtained by using induction on the dimension and the localization sequences. To obtain them for motivic homology and cohomology, one uses the isomorphisms $H_i(X, \mathbb{Z}(n)) \cong H^i_{2d-l}(X, \mathbb{Z}(d-n))$ and $H^i(X, \mathbb{Z}(n)) \cong H^i_{2d-l}(X, \mathbb{Z}(d-n))$ for a smooth scheme X of dimension d to obtain the result for smooth schemes. Then induction on the dimension and the blow-up long exact sequences gives results for all schemes.

The extra information for the smooth and proper case in case of homology and cohomology is obtained by comparing to the other theories. □

The bold faced inequalities were a motivation to write this paper: It might be difficult to prove a statement which only holds for smooth and proper X, as in the case of higher Chow groups. It might be easier to prove a statement which holds for all smooth schemes (motivic homology), or all proper schemes (motivic cohomology), or all schemes (motivic cohomology with compact support).

References

1. S. Bloch, Algebraic cycles and higher K-theory. Adv. in Math. 61 (1986), no. 3, 267–304.
2. E. Friedlander, V. Voevodsky, Bivariant Cycle Homology. Cycles, transfers, and motivic homology theories, 138–187, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000.
3. T. Geisser, Tate’s conjecture, algebraic cycles and rational K-theory in characteristic p. K-Theory 13 (1998), no. 2, 109–122.
4. T. Geisser, Motivic cohomology, K-theory, and topological cyclic homology. Handbook of K-theory. Vol. 1, 2, 193–234, Springer, Berlin, 2005.
5. T. Geisser, Duality via cycle complexes, to appear in: Annals of Math.
6. T. Geisser, Parshin’s conjecture revisited. K-theory and noncommutative geometry, 413–425, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2008.
7. T. Geisser, On Suslin’s singular homology and cohomology, Preprint 2009.
8. H. Gillet, C. Soulé, Descent, motives and K-theory. J. Reine Angew. Math. 478 (1996), 127–176.
9. H. Gillet, C. Soulé, Motivic weight complexes for arithmetic varieties. J. Algebra 322 (2009), no. 9, 3088–3141.
10. U. Jannsen, Hasse principles for higher-dimensional fields, Preprint Universität Regensburg 18/2004.
11. A. Suslin, V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 117–189, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.
12. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not. 2002, no. 7, 351–355.