Abstract

We prove that if \(V \) is a \(C_2 \)-cofinite simple vertex operator algebra of CFT-type with a nonsingular invariant bilinear form and its an automorphism group \(G \) is finite, then an orbifold model \(V^G \) is also \(C_2 \)-cofinite.

1 Introduction

Orbifold models were first studied in [3] in 1985 in order to construct new conformal field theories. From a known rational conformal field theory \(V \) and its finite symmetry group \(G \), they took the set of \(G \)-fixed points \(V^G \), which is called an orbifold model, with expectation of nice algebraic properties including finiteness of isomorphic class of simple modules and modular invariant properties of their characters, see [4]. Separately from that, in order to solve the monstrous moonshine conjecture in the finite group theory, Borcherds [1] has introduced a concept of vertex (operator) algebra (shortly, we call VA or VOA), which is now understood as an algebraic aspect of conformal field theory. As a remarkable application of the theory of vertex operator algebras, a modular invariance property of conformal field theory is proved by Zhu [13] under the assumptions of \(C_2 \)-cofiniteness and the semisimplicity of modules (rationality in the terminology of vertex operator algebra). Therefore, it is now believed that a rational conformal field theory is corresponding to a rational \(C_2 \)-cofinite vertex operator algebra.

Among these two conditions on VOAs, the rationality implies the semisimplicity of the category of \(N \)-gradable modules and the \(C_2 \)-cofiniteness condition seems to be a finiteness condition on the number of isomorphism classes of simple modules. Therefore, the \(C_2 \)-cofiniteness condition plays a basic role to consider the representation theory with finite number of simple modules. For example, under this condition, we are always able to consider fusion products of modules (see [11]), and some kind of modular invariance properties of (pseudo) trace functions [10]. Moreover, roughly speaking, without this condition or a weaker condition, it is hard to argue the general problem.

\[C_2 \text{-cofiniteness of orbifold models for finite groups} \]

Masahiko Miyamoto
Institute of Mathematics, University of Tsukuba,
Tsukuba, 305 Japan
Institute of Mathematics, Academia Sinica
Taipei, Taiwan

Abstract

We prove that if \(V \) is a \(C_2 \)-cofinite simple vertex operator algebra of CFT-type with a nonsingular invariant bilinear form and its an automorphism group \(G \) is finite, then an orbifold model \(V^G \) is also \(C_2 \)-cofinite.
In connection with orbifold models of vertex operator algebras, there is a natural conjecture (called orbifold conjecture) that if V is a C_2-cofinite rational VOA and G is a finite automorphism group, then the fixed point subVOA V^G is still rational and C_2-cofinite. In order to consider this problem, by the above reason, it is natural to expect the C_2-cofiniteness of orbifold models first.

For this conjecture of C_2-cofiniteness, the author [12] gave an affirmative answer to the case with a solvable automorphism group G. Recently, using this result, the author and S. Carnahan gave an affirmative answer to the rationality and C_2-cofiniteness of orbifold models in [2]. So, the remaining is the case for a finite nonabelian simple automorphism group G. In this paper, we will give a complete answer to this conjecture.

Main Theorem Let V be a C_2-cofinite simple vertex operator algebra of CFT-type with a nonsingular invariant bilinear form. If G is a finite automorphism group of V, then V^G is C_2-cofinite.

We close this introduction by acknowledgments with thanks to Naoki Chigira, Eiichi Bannai, Xingjun Lin and Terry Gannon for their advice and the author also would like to express thanks to Toshiyuki Abe, Hiroshi Yamauchi and Ching Hung Lam for their careful checking.

2 Notation and Preliminary results

2.1 G-invariant V-internal fusion product

In this paper, we adopt the notation from [9] and [12]. Let V be a VOA and W its module. For W, we set

$$C_2(W) = \text{Span}_\mathbb{C}\{v_{-2}w \mid v \in V, w \in W\}$$

and if $\dim W/C_2(W) < \infty$, then we call W “C_2-cofinite”. It is known that if V is C_2-cofinite, then all finitely generated V-modules are C_2-cofinite. Let $\text{Irr}(G)$ be the set of irreducible characters of a group G. For $\phi \in \text{Irr}(G)$, M_ϕ denotes a G-module affording ϕ. As Dong and Mason have shown in [5], if G acts on a VOA V faithfully, then V decomposes into a direct sum:

$$V = \bigcoprod_{\phi \in \text{Irr}(G)} (V^\phi \otimes M_\phi) \quad (2.1)$$

of simple $V^G \times G$-modules $V^\phi \otimes M_\phi$, where V^ϕ is a nonzero simple V^G-module. We note that the dual space of $(V^\chi \otimes M_\chi)$ is $V^{\bar{\chi}} \otimes M_{\bar{\chi}}$, where $\bar{\chi}$ denotes the complex conjugate of χ. From now on, to simplify the notation, W^χ denotes $V^\chi \otimes M_\chi$ for $\chi \in \text{Irr}(G)$.

A powerful tool in the representation theory is the rigidity property in the tensor product (or the fusion product \boxtimes in VOA theory defined by intertwining operators), that is, we expect the composition

$$V^G \boxtimes W \xrightarrow{\iota_{W\boxtimes W^*}} (W \boxtimes W^*) \boxtimes W \xrightarrow{\phi} W \boxtimes (W^* \boxtimes W) \xrightarrow{1 \otimes \pi_W} W \boxtimes V^G$$

is an isomorphism.
for some simple object W and its restricted dual W^*, where $\epsilon_W : V^G \to W \boxtimes W^*$ is an embedding and $\pi_W : W^* \boxtimes W \to V^G$ is a homomorphism such that $\pi_W \epsilon_W = 1_{V^G}$. In order to use this property, it is very important to find a natural embedding $\epsilon_W : V^G \to W \boxtimes W^*$.

One of our ideas is to consider $V^G \times G$-module as objects and define a restricted fusion product by using G-commutative intertwining operators. Furthermore, since our purpose is to prove C_2-cofiniteness of $W^\chi \subseteq V$, in order to ensure the existence of fusion products, we will restrict ourself to consider only intertwining operators which appear in V. More precisely, we introduce the following notation.

Definition 1 Let V be a VOA and U a subVOA of V. For U-modules U^1, U^2, W, we call an intertwining operator $\mathcal{Y} \in \mathcal{I}(T_{U^1, U^2})$ “primitive V-internal” if there are embeddings $\tau_i : U^i \to V$ for $i = 1, 2$ and a homomorphism $\mu : V \to W$ such that

$$\mathcal{Y}(v, z)u = \mu(Y(\tau_1(v), z)\tau_2(u)).$$

(2.2)

We will call a linear combination of these primitive V-internal intertwining operators “V-internal operator”.

Definition 2 For $V^G \times G$ modules U, W and T, an intertwining operator $\mathcal{Y} \in \mathcal{I}(T_{U, W})$ is called to be G-commutative if $\mathcal{Y}(gu, z)gw = g(\mathcal{Y}(u, z)w)$ for $u \in U$, $w \in W$ and $g \in G$.

From the definition of V-internal operators, for a simple $V^G \times V$-modules W^{ϕ_i} ($i = 1, 2, 3$), every G-commutative V-internal operators \mathcal{Y} of type $(W^{\phi_i})^*$ is a linear combination of $\{\mathcal{Y}_{g,h} \mid g, h \in G\}$, where $\mathcal{Y}_{g,h}$ is given by

$$\langle w, \mathcal{Y}_{g,h}(v, z)u \rangle = \langle w, Y(v^g, z)u^h \rangle$$

(2.3)

for $w \in W^{\phi_3}, v \in W^{\phi_1}, u \in W^{\phi_2}$. Furthermore, since V is a direct sum of simple V^G-modules (2.1), the definition of V-internal operator implies that if there is a surjective G-commutative V-internal operator \mathcal{Y} of type $(V_{W^{\phi_1}, W^{\phi_2}})^T$ then T is a direct sum of simple $V \times G$-modules.

In this paper, we will only treat $V^G \times G$-modules and the set of G-commutative V-internal operators and we define a tensor product in this category. For example, for two simple $V^G \times G$-modules W^{ϕ_1}, W^{ϕ_2} and a $V^G \times G$-module T, we consider the set of G-commutative V-internal operators $I_{V,G}(W^{\phi_1}, W^{\phi_2})$ of type $(W^{\phi_1}, W^{\phi_2})^T$ and define a fusion product $W^{\phi_1} \boxtimes_{V,G} W^{\phi_2}$ as an isomorphic class of maximal object T with a surjective G-commutative V-internal operators. As we explained, since T is always a direct sum of simple $V^G \times G$-modules and the multiplicity of W^χ in T is less than or equal to $|G|^2$ by (2.3), $W^{\phi_1} \boxtimes_{V,G} W^{\phi_2}$ is well-defined as a finite direct sum of copies of W^ϕ with $\phi \in \text{Irr}(G)$.

Remark 3 We don’t need the precise values for our arguments, but the multiplicity of W^{ϕ_3} in $W^{\phi_1} \boxtimes_{V,G} W^{\phi_2}$ is given by $\langle \phi_3, \phi_1 \phi_2 \rangle$.

3
3 Rigidity

In order to prove C_2-finiteness of V^G, we will take a minimal counter example G with the smallest order. Then G has no proper normal subgroup. Furthermore, by the previous paper \[14\], G is a nonabelian simple group. In this case, G is of even order by Feit-Thompson’s theorem \[7\] and \text{Irr}(G)$ contains χ with $\bar{\chi} = \chi \neq 1$. We note $(W^\chi)^* = W^X = W^\chi$ since the invariant bilinear form on V is G-invariant. As we explained in the previous section, $W^\chi \boxtimes_{V,G} W^x$ is a direct sum of W^ϕ with $\phi \in \text{Irr}(G)$. We choose $\mathcal{Y}^1 \in I_{V,G}(W^X \boxtimes_{V,G} W^X)$ to define a fusion product $W^\chi \boxtimes_{V,G} W^X$. Similarly, we also choose $\mathcal{Y}^2 \in I(W^X \boxtimes_{V,G} W^X \boxtimes_{V,G} W^X)$ and $\mathcal{Y}^3 \in I_{V,G}(W^X \boxtimes_{V,G} W^X \boxtimes_{V,G} W^x)$ to define fusion products $(W^X \boxtimes_{V,G} W^X) \boxtimes_{V,G} W^X$ and $W^X \boxtimes_{V,G} (W^X \boxtimes_{V,G} W^x)$, respectively. Since we are essentially treating only vertex operators in V and $\langle w, \mathcal{Y}^1(v,z)u \rangle$ are linear combinations of $\langle w, Y(g(v),z)h(u) \rangle$ with $g, h \in G$ for $v, u \in V$ and we also have the similar results for \mathcal{Y}^2 and \mathcal{Y}^3 by considering the fusion products as a direct sum of simple $V \times G$-modules, $(\alpha, \mathcal{Y}^2(\mathcal{Y}^1(w^1, x-y)w^2, y)w^3), (\beta, \mathcal{Y}^3(w^1, x)\mathcal{Y}^1(w^2, y)w^3)$ and $(\beta, \mathcal{Y}^3(w^2, y)\mathcal{Y}^1(w^1, x)w^3)$ are all well-defined and expansions of the rational functions for $w^1 \in W^X$, $\alpha \in (W^X \boxtimes_{V,G} W^x) \boxtimes_{V,G} W^X)^*$ and $\beta \in (W^X \boxtimes_{V,G} W^x) \boxtimes_{V,G} W^X)^*$ in the regions $\{(x, y) \in \mathbb{C}^2 \mid 0 < |x-y| < |y|\}$, $\{(x, y) \in \mathbb{C}^2 \mid 0 < |y| < |x|\}$ and $\{(x, y) \in \mathbb{C}^2 \mid 0 < |x| < |y|\}$. To simplify the notation, we denote the rational function for $\langle \cdot, \cdot \rangle$ by $\langle \cdot, \cdot \rangle_f$ with the subscript f. We also have the maximality of fusion products $(W^X \boxtimes_{V,G} W^x) \boxtimes_{V,G} W^X$ and $W^X \boxtimes_{V,G} (W^X \boxtimes_{V,G} W^x)$ and so there is an isomorphism

$$\rho : (W^X \boxtimes_{V,G} W^x) \boxtimes_{V,G} W^X \rightarrow W^X \boxtimes_{V,G} (W^X \boxtimes_{V,G} W^x)$$

such that

$$\langle \beta, \rho(\mathcal{Y}^2(\mathcal{Y}^1(w^1, x-y)w^2, y)w^3) \rangle_f = \langle \beta, \mathcal{Y}^3(w^1, x)\mathcal{Y}^1(w^2, y)w^3 \rangle_f$$

(3.2)

on x, y for $w^1, w^2, w^3 \in W^X$ and $\beta \in (W^X \boxtimes_{V,G} W^x) \boxtimes_{V,G} W^x)^*$. Since $\pi(Y(v,z)w)$ defines a G-commutative V-internal operator πY for the projection $\pi : V \rightarrow V^G$, we have a projection

$$\pi_x : W^x \boxtimes_{V,G} W^x \rightarrow V^G,$$

which coincides with the one defined by inner product.

Let $\{e^1, ..., e^k\}$ be an orthonormal basis of M_x. We use the notation v^i to denote $v \otimes e^i \in V^x \otimes M_x$ for $v \in V^x$. Using these notation and the ideas in the previous section, the elements in $\epsilon(x)(V^G)$ for the embedding $\epsilon_x : V^G \rightarrow W^X \boxtimes_{V,G} W^x$ are easily given as linear combinations of the following elements:

Lemma 4 For any $\mathcal{Y} \in I_{V,G}(W^X \boxtimes_{V,G} W^x)$ and any $v, u \in V^x$, we have

$$\sum_{i=1}^k \mathcal{Y}(v^i, z)u^i \in (W^X \boxtimes_{V,G} W^x)^G[[z, z^{-1}]]$$

and $\pi_x(\mathcal{Y}(v^s, z)u^t) = 0$ for $s \neq t$. In particular, $W^X \boxtimes_{V,G} W^x$ contains V^G as a V^G-submodule.
Since $g \in G$ is an automorphism preserving inner products, the action of g on $\text{Space}_G \{v \otimes e^1, \ldots, v \otimes e^k\}$ is given by an orthogonal maxtrix $A_g = (a_{ij}(g))$ satisfying $^tA_gA_g = I_k$. We note that A_g does not depend on the choice of $v \in V^\chi$. Set $\mathcal{Y}(v^i, z) = \sum v^i_m z^{-m-1}$. Then we have $\sum g(v^i_m u^i) = \sum_i g(v^i_m)g(u^i) = \sum a_{ij}(g)v^i_m a_{ih}(g)u^h = \sum_j v^i_m u^j$. Hence we have $\sum v^i_m u^i \in (W^x \boxtimes_{V,G} W^x)^G$ for any m. Similarly, we have $|G|\pi(v^i_m u^i) = \sum_{g \in G} g(v^i_m u^i) = \sum_i (\sum_{g \in G} a_{si}(g)a_{ij}(g))v^i_m u^i = 0$ for $s \neq t$, see [6].

We also note that $(W^x \boxtimes_{V,G} W^x)^G$ is isomorphic to V^G, since W^x is a simple $V^G \otimes G$-module. Therefore, we may assume that \mathcal{Y}^1 and \mathcal{Y}^2 satisfy

$$\sum_{i=1}^{k} \mathcal{Y}^1(v^i, z)u^i = \sum_{i=1}^{k} Y(v^i, z)u^i, \quad \pi(\mathcal{Y}^1(v^i, z)u^i) = \pi(Y(v^i, z)u^i)$$

and

$$\mathcal{Y}^2(\sum_{i=1}^{k} \mathcal{Y}^1(v^i, x - y)u^i, y)h^r = Y(\sum_{i=1}^{k} Y(v^i, x - y)u^i, y)h^r$$

for $v, u, h \in V^\chi$. Let $\epsilon_\chi : V^G \to W^x \boxtimes_{V,G} W^x$ be an injection with an identity map $\pi_\chi : V^G \to W^x \boxtimes_{V,G} W^x \to V^G$. We choose \mathcal{Y}^1 satisfying $\pi_\chi(\mathcal{Y}^1(w, z)u) = \pi(Y(w, z)u)$. By these maps, we have the following diagram.

$$\begin{array}{ccc}
V^G \boxtimes_{V,G} W^x & \Downarrow \epsilon_\chi \boxtimes_{V,G} 1_W \\
\downarrow & & \downarrow \\
(W^x \boxtimes_{V,G} W^x) \boxtimes_{V,G} W^x & \xrightarrow{\rho} & W^x \boxtimes_{V,G} (W^x \boxtimes_{V,G} W^x) \\
\downarrow \pi_\chi \boxtimes_{V,G} 1_W & & \downarrow 1_W \boxtimes_{V,G} \pi_\chi \\
V^G \boxtimes_{V,G} W^x & \xrightarrow{\pi_\chi} & W^x \boxtimes_{V,G} V^G
\end{array}$$

Theorem 5 (Rigidity) $(1_W \boxtimes_{V,G} \pi_\chi)\rho(\epsilon_\chi \boxtimes_{V,G} 1_W)$ is an isomorphism.

[Proof] Clearly, the above homomorphisms are commutative with actions of $V^G \times G$. Since W^x is a simple $V^G \times G$-module, it is enough to show $(1_W \boxtimes_{V,G} \pi_\chi)\rho(\epsilon_\chi \boxtimes_{V,G} 1_W) \neq 0$. As we mentioned, $\sum_{i=1}^{k} \mathcal{Y}^1(v^i, z)u^i \in V^G[[z, z^{-1}]]$ for $v, u \in V^\chi$. We can choose homogenous elements $v, u, h, w \in V^\chi$ so that $u_{2wt(u) - 1}h = 1$ and $\langle w, v \rangle \neq 0$. Then since $\pi(Y(u^i, z)w^j) = 0$ for $i \neq j$, we have

$$\langle w^j, (1_W \boxtimes_{V,G} \pi_\chi)\rho(\mathcal{Y}^2(\sum_{i=1}^{k} \mathcal{Y}^1(v^i, x - y)u^i, y)h^j) \rangle_f = \langle w^j, (1_W \boxtimes_{V,G} \pi_\chi) \sum_{i=1}^{k} \mathcal{Y}^2(v^i, x)\mathcal{Y}^1(u^i, y)h^j \rangle_f$$

$$= \langle w^j, \sum_{i=1}^{k} \mathcal{Y}^2(v^i, x)\pi_\chi(\mathcal{Y}^1(u^i, y)h^j) \rangle_f$$

$$= \langle w^j, \mathcal{Y}^3(v^j, x)\pi(\mathcal{Y}^1(w^j, y)h^j) \rangle_f.$$
Since we can recognize its expansion region from the products of intertwining operators, we will omit ρ from now on. We summarize the above result as a corollary.

Corollary 6 There is $0 \neq s \in \mathbb{C}$ such that for $\theta \in W^\times$, we have

$$
\langle \theta, \sum_{i=1}^{k} Y(Y(v^i, x-y)u^i, y)w^r \rangle_f = s \langle \theta, \sum_{i=1}^{k} Y(Y(u^i, y)w^r) \rangle_f
$$

for $v, u, w \in V^\times$ and $r \in \{1, \ldots, k\}$.

Remark 7 The above does not mean the rigidity of Borcherds identity

$$
\langle \theta, \sum_{i=1}^{k} (v^i u^i) w^r \rangle \sim \langle \theta, \sum_{j=0}^{\infty} \left(\frac{n}{j}\right) (-1)^j \{v^r_{n-j} \pi(u_{m+j} w^r) - (-1)^n u^r_{n+m-j} \pi(v^r w^r)}\rangle_f
$$

However, we will get this identity under some stronger conditions.

4 Proof of the main theorem

4.1 Borcherds identity

Let $\theta \in W^\times$, $v, u, w \in V^\times$ be homogeneous elements. We choose $r \in \{1, \ldots, k\}$. As it is well known, there is a rational function $t(x, y)$ such that

$$
t(x, y) = \langle \theta, Y(\sum_{i=1}^{k} Y(v^i, x-y)u^i, y)w^r \rangle_f
$$

(4.1) in the region $0 < |x-y| < |y|$. Since $t(x, y)$ is defined by elements in V and vertex operator Y of V, there are $a, b, c \in \mathbb{Z}$ and a homogeneous polynomial $f(x, y)$ such that

$$
t(x, y) = \frac{f(x, y)}{x^a y^b (x-y)^c}.
$$

(4.2)

From the expansions of $t(x, y)$ in the regions $\{(x, y) \in \mathbb{C}^2 \mid 0 < |x-y| < |y|\}$, $\{(x, y) \in \mathbb{C}^2 \mid 0 < |y| < |x|\}$ and $\{(x, y) \in \mathbb{C}^2 \mid 0 < |x| < |y|\}$, we get $a \leq \text{wt}(u) + \text{wt}(w)$, $b \leq \text{wt}(v) + \text{wt}(u)$ and $c \leq \text{wt}(v) + \text{wt}(w)$. Allowing negative values for a, b, c, w, we put $f(x, y) = \sum_{i=0}^{d} r_i x^{l-i} y^i$ with $r_0 \neq 0 \neq r_t$ and $f(x, y)$ has no zero (pole) at $x-y$. The total degree of $t(x, y)$ is $t = a - b - c$, which coincides with $\text{wt}(\theta) - \text{wt}(v) - \text{wt}(u) - \text{wt}(w)$. By the property of the rigidity (Theorem 5), we have

$$
t(x, y) = s \langle \theta, Y(v^r, x)\pi(Y(u^r, y)w^r) \rangle_f
$$

(4.3) in the region $\{(x, y) \in \mathbb{C}^2 \mid 0 < |y| < |x|\}$ for some $0 \neq s \in \mathbb{C}$. We also have a similar expansion in the region $\{(x, y) \in \mathbb{C}^2 \mid 0 < |x| < |y|\}$.

Assume henceforth, θ satisfies $\langle \theta, V^G_2 W^\times \rangle = 0$. Here and further $A_{-2}B$ denotes the subspace spanned by $\{a_{-2}b \mid a \in A, b \in B\}$ for subsets A, B of V. Then there is no
positive powers of y in the expansion in (4.3) in the region $0 < |x - y| < |y|$. This implies $t - a - b \leq 0$. As a result, we have

$$
\text{wt}(\theta) = t + \text{wt}(v) + \text{wt}(u) + \text{wt}(w) - a - b - c \leq \text{wt}(v) + \text{wt}(u) + \text{wt}(w) - c. \tag{4.4}
$$

In particular, if we take 0 with $\text{wt}(\theta) \geq \text{wt}(v) + \text{wt}(u) + \text{wt}(w)$, then $c \leq 0$ and $t(x,y)$ has no pole at $x - y$. In other words, $\langle \theta, \sum_{i=1}^{k}(v^i_n u^m r) \rangle = 0$ for $n \geq 0$. Under this assumption, $t(x,y)$ has the same expansions with only finitely many terms of $x^p y^q$ in the region $\{(x,y) \in \mathbb{C}^2 \mid 0 < |x| < |y|\}$ and $\{(x,y) \in \mathbb{C}^2 \mid 0 < |y| < |x|\}$. In particular, we have

$$
\langle \theta, v^r_n \pi(u^m w^r) \rangle = \langle \theta, u^r_n \pi(v^m w^r) \rangle. \tag{4.5}
$$

Since the expansion in $0 < |y| < |x|$ is a finite sum, we can replace $x^p y^q$ by $y^{-(x-y)/p} x^p y^q = \sum_{j=0}^{\infty} \binom{n}{p} (x-y)^j y^{p+q-j}$. For example, the expansion of $t(x,y)$ in the region $0 < |y| < |x|$ is

$$
\sum_{n,m \in \mathbb{Z}, \text{finite}} \langle \theta, v^r_n \pi(u^m w^r) \rangle x^{n-1} y^{m-1} = \sum_{n,m \in \mathbb{Z}, \text{finite}} \langle \theta, v^r_n \pi(u^m w^r) \rangle \sum_{j=0}^{\infty} \binom{n-1}{j} (x-y)^j y^{m-2-n-j} = \sum_{j=0}^{\infty} \sum_{p \in \mathbb{Z}, \text{finite}} \langle \theta, \sum_{n \in \mathbb{Z}, \text{finite}} \binom{n-1}{j} v^r_n \pi(u^r_{p-1-n-j} w^r) \rangle (x-y)^j y^{-p-1},
$$

where $p = m + n + 1 + j$. This should be equal to the expansion

$$
\sum_{j,p \in \mathbb{Z}} \langle \theta, \sum_{i=1}^{k} (v^i_{n,j-1} u^i_p) w^r \rangle (x-y)^j y^{-p-1}
$$

of $t(x,y)$ in the region $0 < |x - y| < |y|$ up to nonzero scalar multiples (which we denote by \sim). We exchange the indexes n and j to come back to the ordinary indexes. We note $n \geq 0$ because j is non-negative. Then by (4.5), we have

$$
\langle \theta, \sum_{i=1}^{k} (v^i_{n,j-1} u^i_p) w^r \rangle \sim \sum_{n \in \mathbb{Z}, \text{finite}} \langle \theta, v^r_n \pi(u^r_{p-1-n-j} w) \rangle
$$

$$
= \langle \theta, \sum_{j \leq n-1} v^r_n \pi(u^r_{p-1-n-j} w) \rangle + \langle \theta, \sum_{n-1 < j} v^r_n \pi(u^r_{p-1-n-j} w) \rangle
$$

$$
= \langle \theta, \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle + \langle \theta, \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p-1-n-j} w) \rangle
$$

$$
= \langle \theta, \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle + \langle \theta, \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p-1-n-j} w) \rangle
$$

$$
= \langle \theta, \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle + \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle
$$

$$
= \langle \theta, \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle + \sum_{j=0}^{\infty} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle
$$

where we have omitted the superscript r of v^r and others. Therefore, we have:

Theorem 8 [Borcherd’s identity]

If $\langle \theta, V^2 GW \rangle = 0$ and $\text{wt}(\theta) > \text{wt}(v) + \text{wt}(u) + \text{wt}(w)$, then there is $0 \neq s \in \mathbb{C}$ such that for $r = 1, \ldots, k$, we have

$$
\langle \theta, \sum_{j=0}^{\infty} \binom{n}{j} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle = \rho \langle \theta, \sum_{j=0}^{\infty} \binom{n}{j} (\frac{n+j}{n}) v^r_{n,j} \pi(u^r_{p+n} w) \rangle - \rho u^r_{n+p-j} \pi(v^r_{p-j} w). \tag{4.6}
$$
4.2 Finiteness of $|V^\chi : V^\chi_2 V^G|$

In this section, we will prove the following proposition.

Proposition 9 \[\dim(W^\chi/(L(-1)W^\chi + W^\chi_2 V^G)) < \infty. \]

[Proof] We first note that $V^\chi_2 W^\chi \subseteq L(-1)W^\chi + W^\chi_2 V^G$. Suppose that the proposition is false, then for any integer n, there is a $\theta \in W^\chi$ with $\wt(\theta) > n$ such that $\langle \theta, L(-1)W^\chi + W^\chi_2 V^G \rangle = 0$. Since V is C_2-cofinite, all V-modules are \mathbb{N}-gradable. Therefore, for a subset B which generates V as a subVA, we have $\dim V/B_{-2} V < \infty$ as we mentioned in [12]. Since W^χ generates a G-invariant subVA of V contains V^G, W^χ generates V. Since $V/C_2(V)$ is finite, V has a finite set of generators. Therefore, there is $p^1 \in \mathbb{N}$ such that $B = \oplus_{i=0}^{p^1} W^\chi_i$ generates V as a subVA. Since the V^G-parts in $B_{-2} V$ come from only $\pi(B_{-2} W^\chi)$, we have $\dim V^G/\pi(B_{-2} W^\chi) < \infty$. So, there is $p^2 \in \mathbb{N}$ such that $\pi(B_{-2} W^\chi)$ contains $\prod_{i=p^2}^{\infty} V^G$. Set $p = \max\{p^1, p^2\}$. Under these setting, we will prove the following lemma, which contradicts the choice of θ.

Lemma 10 There are $\alpha \in V^G$, $w \in B$ with $\wt(\alpha) \leq p$ and $m \in \mathbb{Z}$ such that $\langle \theta^r, \alpha_m w^r \rangle \neq 0$

In particular, $\wt(\theta) \leq 2p$.

[Proof] Since $\theta \neq 0$ and W^χ is generated by $B = \oplus_{i=0}^{p^1} W^\chi_i$ as a V^G-module, there are $\alpha \in V^G$, $w \in B$ and $m \in \mathbb{Z}$ such that $\langle \theta, \alpha_m w \rangle \neq 0$. We choose α and w with the minimal total weight $\wt(\alpha) + \wt(w)$. If $\wt(\alpha) > p$, then there are $\beta^{(j)} \in B$, $u^{(j)} \in W^\chi$ such that $\alpha = \sum_j \pi(\beta^{(j)} u^{(j)})$. Then since $\langle \theta, \pi(\beta^{(j)} u^{(j)}) \rangle = 0$ for some j, we may assume $\alpha = \pi(\beta^{(j)} u^{(j)})$. We denote $\beta^{(j)}$, $u^{(j)}$ by β, u, respectively. Furthermore, using skew symmetry, we have $\alpha = \sum_{j=0}^{\infty} \frac{(-1)^j L(-1)^j}{j!} \pi(u_{-2-j} \beta)$. For $j \geq 1$, we have $\langle \theta^r, \pi(L(-1)^j u_{-2-j} \beta) \rangle = (-m_2)(\theta^r, \pi(L(-1)^j u_{-2-j} \beta)) = 0$ from the minimality of $\wt(\alpha) + \wt(w)$. Therefore, we may replace α by $\pi(u_{-2} \beta)$. We again use the notation β^j and u^j to denote $\beta \otimes e^j$ and $u \otimes e^j$, respectively. Since we have taken θ with large enough weight, we can apply Borcherds identity (4.6). From the choice of u, β and the minimality of $\wt(\alpha) + \wt(w)$, we have

\[
0 \neq \langle \theta^r, \sum_{k=1}^{\infty} (u_{-2}^j \beta^j) m \rangle \wedge^\chi \sum_{j=0}^{\infty} (-1)^j (u_{-2-j}^r \pi(\beta_{m+j} \beta) - (-1)^{-2} \beta_{m-2-j} \pi(u_j^r w^r))
\]

\[
\sim \sum_{j=0}^{\infty} (-1)^j \pi((u_j^r w^r))
\]

Since $\langle \theta^r, L(-1)^j W^\chi \rangle = 0$, we have $\langle \theta^r, \pi(u_j^r w^r) m_{-2-j} \beta^r \rangle \neq 0$ for some j. Then $\beta^r \in B$ and $\wt(\pi(u_j^r w^r)) + \wt(\beta^r) < \wt(\pi(u_{-2} \beta)) + \wt(w) = \wt(\alpha) + \wt(w)$, which contradicts the choice of α and w. \]
4.3 Coefficient functions

We quote the most part of the proof from [12] by replacing simple V^G-modules by simple $V^G \times G$-modules. Since $L(-1)C_2(W^\chi) \subseteq C_2(W^\chi)$, $W^\chi/C_2(W^\chi)$ is a finitely generated $\mathbb{C}[L(-1)] \times G$-module by Proposition 3. Let D be the inverse image in W^χ of the $L(-1)$-torsion submodule of $W^\chi/C_2(W^\chi)$. Then there is a set of free generators $\{\alpha^i : i = 1, \ldots, t\}$ such that

$$W^\chi = (\oplus_{i=1}^t \mathbb{C}[L(-1)]\alpha^i \otimes M_\chi) \oplus D.$$

If W^χ is C_2-cofinite, then so is V^G by the main theorem in [11] since $(W^\chi)^* \cong W^\chi$. So we may assume that W^χ is not C_2-cofinite. Furthermore, since $\dim(W^\chi/(L(-1)W^\chi + V^G_2W^\chi)) < \infty$, we have $t \geq 1$. Choose α^1 so that $\text{wt}(\alpha^1)$ is the minimal weight of elements in $W - D$ and we denote α^1 by α and set $K = (\oplus_{i=2}^t \mathbb{C}[L(-1)]\alpha^i) \otimes M_\chi \oplus D$.

Then $W^\chi/K \cong \mathbb{C}[L(-1)]\alpha \otimes M_\chi$.

The key idea is to denote elements $a_{-n+\text{wt}(a)+\text{wt}(b)-\text{wt}(\alpha)-1}b$ in W^χ as

$$f(n)\alpha_{-n-1}1 \quad \text{modulo } K$$

for $n \in \mathbb{Z}$ and consider $f(n)$ as functions of $n \in \mathbb{Z}$. From now on, for $a, b \in V$, we always use M to denote $\text{wt}(a) + \text{wt}(b) - \text{wt}(\alpha)$. We note that since $\text{wt}(a_{-x-M-1}b) < \text{wt}(\alpha)$ for $x \in \mathbb{Z}_{<0}$, $a_{-x+M-1}b \in K$ by the choice of α. Namely, $f(x) = 0$ for $x \in \mathbb{Z}_{<0}$. In order to obtain $f(x)$ by inner products, we take $\theta = \prod \theta^n \in \prod W^n_\chi$ so that $\langle \theta, V^G_2W^\chi + K \rangle = 0$ and

$$\langle \theta, \alpha_{-x-1}1 \rangle = 1$$

for all $x \in \mathbb{N}$. We note that $\langle \theta, L(-1)\alpha_{-1}1 \rangle = x\langle \theta, \alpha_{-x-1}1 \rangle = x$. Then we have

$$\langle \theta, a_{-x-\text{wt}(a)+\text{wt}(b)-1}b \rangle = f(x).$$

So we will consider the set $\text{Map}(\mathbb{N}, \mathbb{C})$ of all maps from \mathbb{Z} to \mathbb{C} satisfying $f(n) = 0$ for $n \in \mathbb{Z}_{<0}$. Let \mathcal{F}_0 and \mathcal{F}_1 be the spaces of coefficients $f(x)$ of $a_{-x+M-1}b$ at $\alpha_{-x-1}1$ modulo K for $a \in V^G, b \in W^\chi$ and $a \in W^\chi, b \in V^G$, that is,

$$\mathcal{F}_0 = \text{Span}_\mathbb{C} \left\{ f \in \text{Map}(\mathbb{N}, \mathbb{C}) \mid \exists a \in V^G, \exists b \in W^\chi \text{ s.t. } \langle \theta, a_{-x+M-1}b \rangle = f(x) \text{ for } x \in \mathbb{N} \right\},$$

$$\mathcal{F}_1 = \text{Span}_\mathbb{C} \left\{ f \in \text{Map}(\mathbb{N}, \mathbb{C}) \mid \exists a \in W^\chi, \exists b \in V^G \text{ s.t. } \langle \theta, a_{-x+M-1}b \rangle = f(x) \text{ for } x \in \mathbb{N} \right\}.$$

For a map $f : \mathbb{N} \rightarrow \mathbb{C}$, we introduce two linear operators S and T as follows:

$$Sf(n) = (-1)^n \sum_{k=0}^n \binom{n}{k} (-1)^k f(n - k) \quad \text{for } n \in \mathbb{N},$$

$$Tf(n) = (-1)^n f(n) \quad \text{for } n \in \mathbb{N}.$$

Clearly, $S^2 = T^2 = \text{id}$. We also have the following by induction.

Lemma 11 [12]

$$(ST)^k f(n) = \sum_{j=0}^n \binom{n}{j} k^j f(n - j) \text{ for } k = 1, \ldots$$
We consider the set of functions with finite supports and the set of polynomials.

\[\mathcal{F}_{\text{finite}} = \{ f : \mathbb{N} \to \mathbb{C} \mid |\{ n \in \mathbb{N} : f(n) \neq 0 \}| < \infty \} \]

\[\mathcal{F}_{\text{poly}} = \{ f \in \mathbb{C}[x] \}. \]

An important element of \(\mathcal{F}_{\text{finite}} \) is a Kronecker delta function \(\delta^i(x) \) which is defined by \(\delta^i(0) = 1 \) and 0 otherwise. Clearly, \(\{ \delta^i(x) \mid i \in \mathbb{N} \} \) is a basis of \(\mathcal{F}_{\text{finite}} \).

Lemma 12 We have:
1. \(\mathcal{F}_{\text{finite}} \) and \(\mathcal{F}_{\text{poly}} \) are all \(\mathbb{C}[x] \)-invariant.
2. \(T(\mathcal{F}_{\text{finite}}) = \mathcal{F}_{\text{finite}} \)
3. \(S(\mathcal{F}_{\text{finite}}) = \mathcal{F}_{\text{poly}} \)
4. \(T(\mathcal{F}_0) = \mathcal{F}_0 \)

Proof Since \((xf)(n) = nf(n)\), we have (1). Since \(T(\delta^i) = (-1)^i \delta^i \), we have (2). The direct calculation shows \((S\delta^i)(x) = (-1)^n \sum_{k=0}^x \binom{x}{k} (-1)^k \delta(x-k) = (-1)^x \binom{n}{x} (-1)^{-x} = (-1)^i \binom{\hat{n}}{i} \cdot (x-1) \cdots (x-i+1) \in \mathcal{F}_{\text{poly}} \). Thus we have (3). For (4), as we have shown in [12], \(\mathcal{F}_0 \) is a \(\mathbb{C}[x] \)-invariant. Therefore, if \(f \in \mathcal{F}_0 \) has a support \(\{n_1, \ldots, n_r\} \), then since \((x^j f)(n_i) = n^i_j f(n_i) \) and \(x^j f \in \mathcal{F}_0 \) for \(j = 0, 1, \ldots, r \), we have \(\delta^{n_i} \in \mathcal{F}_0 \) for \(i = 1, \ldots, r \). We hence have \(T(f) = \sum_{i=1}^{r} (-1)^{n_i} f(n_i) \delta^{n_i} \in \mathcal{F}_0 \).

Lemma 13 \(S(\mathcal{F}_0) = \mathcal{F}_1 \). In particular, \(\mathcal{F}_1 \subseteq \mathcal{F}_{\text{poly}} \).

Proof As we have explained in [12], the operator \(S \) comes from the skew-symmetry, that is, for \(f(x) = \langle \theta, a_{-x+M-1}b \rangle \), we have
\[
\langle \theta, b_{-x+M-1}a \rangle = \langle \theta, (-1)^{x+M} \sum_{k=0}^{\infty} \frac{L(-1)^k}{k!} (-1)^k a_{-(x-k)+M-1}b \rangle = \langle \theta, (-1)^{x+M} \sum_{k=0}^{x} \frac{(\hat{\chi})k}{k!} (-1)^k f(x-k) \alpha_{x-k+1} \rangle
\]
since \(L(-1)^k a_{x-k+M-1}b \in K \) for \(k > x \),
\[
= \langle \theta, (-1)^{x+M} \sum_{k=0}^{x} \frac{(\hat{\chi})k}{k!} (-1)^k f(x-k) \alpha_{x-1} \rangle = \langle \theta, (-1)^{x+M} Sf(x) \alpha_{x-1} \rangle.
\]
Thus we have \(\mathcal{F}_1 \subseteq S(\mathcal{F}_0) \) and \(\mathcal{F}_0 \subseteq S(\mathcal{F}_1) \). Since \(S^2 = 1 \), we have the equality.

Lemma 14 \(T(\mathcal{F}_1) \subseteq \mathcal{F}_{\text{finite}} + \mathcal{F}_1 \).

Proof For \(v, u, w \in V^x \), we set \(N = \text{wt}(w) + \text{wt}(v) + \text{wt}(u) \). Since
\[
\text{wt}((v_{-x+h+N}u)_{-h}w) = x
\]
for any \(h \in \mathbb{Z} \), for any \(x > N \) and \(h \geq 0 \), we have
\[
0 = \langle \theta, \sum_{i=1}^{\delta} (v_{-x+h+N}u')_{-h}w \rangle
\]
\[
= \langle \theta, \sum_{j=0}^{\infty} ((-1)^{x+h+N}j) \alpha_{x+h+N-j} \pi(u^r_{-h+j}w^r) \rangle
\]
\[
- \langle \theta, \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \text{wt}(v) \cdot \text{wt}(u)-1 \rangle \alpha_{x+h+N-j} \pi(u^r_{-h+j}w^r) \rangle
\]
\[
- \langle \theta, \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \text{wt}(v) \cdot \text{wt}(u)-1 \rangle \alpha_{x+h+N-j} \pi(u^r_{-h+j}w^r) \rangle
\]
by the Borcherds identity (Theorem 8).

We note \(v_jw = 0 \) for \(j \geq Q = \text{wt}(v) + \text{wt}(w) \). Let us consider a \(Q \times Q \) matrix

\[
A := \left((-1)^{h-j+N} \binom{-x+h+N}{j} \right)_{h,j=0,\ldots,Q-1}
\]

consisting of coefficients of \((-1)^x u^r_{-x-2+N-j}(v^r w^r)\). It is easy to see \(\det A = \pm 1 \) since \((-^x_j) - \binom{x}{j-1} = \binom{x}{j-1}\). Therefore, for each \(0 \leq m < Q \), there are polynomials \(\lambda^m_r(x) \in \mathbb{C}[x] \) such that

\[
\langle \theta, \sum_{r=0}^{Q-1} \lambda^m_r(x) \left(\sum_{j=0}^{N+h+2} (-x+h+N) \binom{-x+h+N}{j} (-1)^j v^r_{-x+h-N-j}(u^r_{-2-h+j}w^r) \right) \rangle = (-1)^x \langle \theta, u^r_{-x-2+N-m} \pi(v^r_m w^r) \rangle
\]

for \(x > N \). Since all terms of the left side are in \(\mathcal{F}_1 \), the equation (4.7) for \(x > N \) implies that

\[
T(\langle \theta, u^r_{-x-2+N-m} \pi(v^r_m w^r) \rangle) \in \mathcal{F}_1 + \mathcal{F}_{\text{finite}}.
\]

Furthermore, since \(\{ \langle \theta, u^r_{-x-2+N-m} \pi(v^r_m w^r) \rangle \mid v, u, w \in V^x, m \in \mathbb{Z} \} \) spans \(\mathcal{F}_1 \), we have the desired result.

Then we have \(STST(F_0) = STS(F_0) = ST(F_1) \subseteq S(\mathcal{F}_{\text{finite}} + \mathcal{F}_1) \subseteq \mathcal{F}_{\text{poly}} + \mathcal{F}_{\text{finite}} \).

However, by the direct calculation, we have

\[
(ST)^2 \delta^k(x) = \sum_{j=0}^{x} \binom{x}{j} 2^j \delta^k(x-j) = \binom{x}{k} 2^{x-k} \quad \text{for} \quad x \geq 0,
\]

which is not a sum of a polynomial and a function with finite support. So, we have a contradiction.

This completes the proof of the main theorem.

References

[1] R.E. Borcherds, *Vertex algebras, Kac-Moody algebras, and the Monster*, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.

[2] S. Carnahan and M. Miyamoto, *Rationality of fixed-point vertex operator algebras*. arXiv:1603.05645.

[3] L. Dixon, J.A. Harvey, C. Vafa, E. Witten, *Strings on orbifolds I, II*, Nucl.Phys B282, 620 (1985), Nucl. Phys B274 285 (1986).

[4] R. Dijkgraaf, C. Vafa, E. Verlinde, H. Verlinde, *The operator algebra of orbifold models*, Comm. Math. Phys. 123 (1989), 485-526.

[5] C. Dong and G. Mason, *On quantum Galois theory*, Duke Math. J. 86 (1997), no.2, 305-321.

[6] W. Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam 1967.

[7] W. Feit and J.G. Thompson, *Solvability of groups of odd order*, Pacific J. Math. 13 (1963) 775-1029.
[8] A. Hanaki, M. Miyamoto, D. Tambara, *Quantum Galois theory for finite groups*, Duke Math. J. 97 (1999), no.3, 541-544.

[9] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, *Mem. Amer. Math. Soc.* 104 (1993).

[10] M. Miyamoto, *Modular invariance of vertex operator algebras satisfying C_2-cofiniteness*, Duke Math. J. 122 (2004), no. 1, 51-??.

[11] M. Miyamoto, *C_1-cofiniteness and Fusion Products of Vertex Operator Algebras*, "Conformal field theories and tensor categories" held in 2011 (editor Y.-Z. Huang), Springer Proceedings in mathematics & Statistics (2013), arXiv:1305.3008.

[12] M. Miyamoto, *A C_2-cofiniteness of cyclic orbifold models*. Comm. Math. Phys. 335 no.3 (2015), 1279-1286.

[13] Y. Zhu, *Modular invariance of characters of vertex operator algebras*, J. Amer. Math. Soc., 9 (1996), 237-302.