전자빔 조사 에너지에 따른 In$_2$O$_3$박막의 특성 변화

허성보·천주용·이영진·이학민·김대일
울산대학교 첨단소재공학부

Effect of Electron Irradiation Energy on the Properties of In$_2$O$_3$ Thin Films

Sung-bo Heo, Joo-Yong Chun, Young-Jin Lee, Hak-Min Lee, Daeil Kim
School of Materials Science and Engineering, University of Ulsan, 680-749, Korea

Abstract We have considered the effect of electron irradiation energy of 300, 600 and 900 eV on structural, electrical and optical properties of In$_2$O$_3$ films prepared with RF magnetron sputtering. In this study, the thin film crystalization, optical transmittance and sheet resistance are dependent on the electron's irradiation energy. The electron irradiated In$_2$O$_3$ films at 900 eV are grown as a hexagonal wurtzite phase. The sheet resistance decreases with an increase in electron irradiation energy and In$_2$O$_3$ film irradiated at 900 eV shows the lowest sheet resistance of 110 Ω/\square. The optical transmittance of In$_2$O$_3$ films in a visible wave length region also depends on the electron irradiation energy. The film that at 900 eV shows the higher figure of merit than another films prepared in this study.

(Received April 16, 2012; Revised May 8, 2012; Accepted May 21, 2012)

Key words: In$_2$O$_3$, Magnetron sputter, Electron irradiation, XRD, AFM

1. 서 론

In$_2$O$_3$, SnO$_2$ 그리고 ZnO 박막은 각기광(약 380~780 nm) 영역에서의 높은 투과도와 적외선 영역에서 높은 반사를 보이는 투명화학적으로 주목받는 재료이다. 특히 비화학양론비(non-stoichiometric)로 성장된 박막은 N형 반도체 특성을 갖기 때문에 광전 자소자, 액정표시소자 및 태양전지의 투명전극 재료로 이용되고 있으며, 향후에도 이에 대한 수요는 계속 증가할 전망이다[1-3].

이러한 투명전극 박막을 제조하는 방법으로 화학상증착법(Chemical Vapor Deposition; CVD)[4], Spray Pyrolysis[5]와 같은 화학적 증착법, 그리고 마그네트론 스피터링[6], 필스레이저 증착[7], 전자선 증착[8] 등의 물리적 증착법이 개발되어 왔다.

최근 Senthilkumar[9] 등은 전자빔증착법(Electron beam evaporation)으로 성장시킨 In$_2$O$_3$ 박막의 구조와 열처리 온도에 관한 연구를 보고하였고, Morikawa [10] 등은 직류 마그네트론 스피터링 방법으로 In$_2$O$_3$ 박막을 성장시킨 후에, 진공과 대기 중에서 각각 열처리를 수행하여 박막의 결정화와 전기저항의 관계를 발표하였다. 일반적으로 In$_2$O$_3$ 박막은 유리 기판 접착력이 우수하고 ZnO 계열의 투명전극 소재 보다는 상대적으로 우수한 전기저항도를 갖는 장점을 갖지만 In의 높은 결정화 온도에 의한 기판재료의 선택제약성이 단점이다. 따라서 최근에는 정밀하게 제어된 에너지를 가진 전자를 표면에 조사하여박막의 물성을 개선하고 기판 재료의 선택성을 넓히는 연구가 활발히 진행되고 있다.

본 연구에서는 높은 총합율, 두께 균일도 그리고 박막의 조성비 조절이 유의미한 Radio Frequency (RF) 마그네트론 스피터를 이용하여 낮은 전기 비저항과 높은 가시광 투과성을 갖는 In$_2$O$_3$ 박막을 제작하고 중합 후 전자빔 조사 에너지에 따른 In$_2$O$_3$ 박막의 전기적, 광학적, 구조적 변화를 연구하였다.

2. 실험 방법

Fig. 1에 나타난 전자빔 조사 장치와 RF 마그네트론 스피터 장치를 사용하여 유리 기판(코닝1747) 위
전자빔 조사 에너지에 따른 In$_2$O$_3$ 박막의 특성 변화

Fig. 1. A schematic diagram of electron beam source and magnetron sputtering system.

에 두께 100 nm의 In$_2$O$_3$ 박막을 증착하였다. 증착 이전에 타겟 표면의 오염물을 제거하기 위하여 15분 동안 에비 스파터링을 수행하였고, 유리판(20×20 mm2)은 아세트, 메탄올, 증류수의 순서로 세척하고 절소가스로 건조하였다.

스파터링 타겟으로서는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확 보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였으며 타겟과 기판사이의 간격은 50 mm로 고정하였다. 스파터링 타겟으로는 직경 3인치의 고순도 In$_2$O$_3$ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확보하고 증착시간을 조정하여 100 nm의 두께를 갖는 박막을 증착하였다.
허성보·천주용·이영진·이학민·김대일

전의 평균 투과도는 78.3%이었으나 900 eV 에너지 조사 후 80.1%로 향상됨을 알 수 있었다.

이와 같이 전자빔 조사를 통한 광학적 투과도의 향상은 In$_2$O$_3$ 박막을 디스플레이 또는 태양전지의 투명전도막으로 응용하기에 매우 적합한 것을 알 수 있다.

Table 1은 전자빔 조사 에너지에 따른 In$_2$O$_3$ 박막의 면저항과 평균 가시광 투과도, 그리고 Figure of Merit(FOM) 비교 결과이다. FOM 수치는[14,15] In$_2$O$_3$ 박막과 같은 투명전극 소재의 전기광학적 특성을 비교할 수 있는 적도로서 관련 수식은 다음과 같다.

Figure of Merit (FOM) = T^{10}/R_{sh}

위 수식에서 T는 가시광 영역에서의 투과도이며, R_{sh}는 박막의 면저항이다. 투명전도막의 특성은 가시광 투과율과 전기전도도에 민감하게 의존하지만, 일반적으로 투과율과 면저항은 서로 반비례 되는 관계를 갖기 때문에 적절한 가시광 투과도와 면저항의 선택적인 조정이 필요하다[13].

본 연구에서 전자빔 조사 이전의 In$_2$O$_3$ 박막의 FOM 수치는 $4.61 \times 10^{-4} \Omega^{-1}$이었으나, 900 eV 전자
전자빔 조사 에너지에 따른 In₂O₃ 박막의 특성 변화

Table 1. Variation of sheet resistance, optical transmittance and figure of merit (FOM) of In₂O₃ films as a function of electron irradiation energy

	Sheet resistance(Ω/□)	Transmittance(%)	FOM(10⁻⁴ Ω⁻¹)
As deposition	190	78.4	4.61
450W-300eV	150	79.0	6.32
450W-600eV	130	79.3	7.56
450W-900eV	110	80.1	9.88

4. 결론

RF 마그네트론 스피터를 이용하여 100 nm 두께의 In₂O₃ 박막을 유리기판에 중착하고 30분간 전자빔을 조사하여 전자빔 에너지에 따른 박막의 결정화, 표면거칠기 그리고 전기적, 광학적 특성 변화를 분석하였다.

In₂O₃ 박막의 결정화는 전자빔 조사 에너지가 900 eV 일 때, (222) 방향성을 보였으며 박막의 표면 거칠기 또한 2.3 nm까지 감소하였다. FOM 수치는 전자빔 조사를 하지 않은 In₂O₃ 박막의 경우 4.61×10⁻⁴ Ω⁻¹에서 900eV 전자빔 조사 후 9.88×10⁻⁴ Ω⁻¹까지 약 2배로 증가 하여 전자빔 조사 공정이 In₂O₃ 두명 전도막의 특성을 개선시킬 수 있 었다.

참고문헌

1. S. B. Heo, H. M. Lee, C. W. Jung, S. K. Kim, Y. J. Lee, Y. S. Kim, Y. Z. You and D. Kim : J. Kor. Soc. Heat treat, 24 (2011) 31.
2. Z. You and J. Dong : Microelectrode J, 38 (2007) 108.
3. U. Betz, M. Olsson, J. Martly and M. Escola : Surf. Coat. Technol, 200 (2006) 5751.
4. K. Maki, N. Komiya and A. Suzuki : Thin Solid Films, 445 (2003) 224.
5. A. Nakaruk, D. Ragazzon and C.C. Sorrell : J. Analytical and Applied Pyrolysis 88 (2010) 98.
6. J. H. Kwak and S. H. Cho : J. Korean Vacuum Soc, 19 (2010) 224.
7. E. O. Ashrodiya, L. Semple and R. Bruning : Thin Solid Films, 492 (2005) 153.
8. V. Korobov, M. Leibovitch and Y. Shapira : Appl. Phys. Lett, 65 (1994) 2290.
9. V. Senthilkumar and P. Vickraman : Curr. Appl. Phys, 10 (2010) 880.
10. H. Morikawa and M. Fujita : Thin Solid Films, 359 (2000) 61.
11. D. Kim : J. Kor. Soc. Heat treat, 24 (2011) 199.
12. K. Shimakawa and T. Itoh : Jpn. J. Appl. Phys, 46 (2007) 24.
13. S. B. Heo, Y. J. Lee, H. M. Lee, S. K. Kim, Y. S. Kim, Y. M. Kong and D. Kim, J. Kor. Soc. Heat treat, 24 (2011) 338.
14. G. Haacke : J. Appl. Phys, 47 (1976) 4086.
15. D. Kim : Appl. Surf. Sci, 257 (2010) 704.