Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer’s Disease Multimodal Biomarker Discovery Cohort

Sarah Westwooda, Alison L. Bairda, Sneha N. Anandb, Alejo J. Nevado-Holgadoa, Andrey Kormilitzinb,c,d, Angharad R. Morganes, Isabelle Bosf, Stephanie J.B. Vosc, Susan Bakerm, Noel J. Buckleya, Mara Ten Kateg, Philip Scheltensh, Charlotte E. Teunissenh, Rik Vandenbergheh, Silvy Gabeli,j, Karen Meersmansh, i, Sebastiaan Engelborghsh,i, Ellen E. De Roeckh, Kristel Sleegersj,k, Giovanni B. Frisonim,n, Olivier Blinm, Jill C. Richardsonp, Régis Bordetq, José L. Molinuevop,q, Lorena Ramip, Anders Wallinb, Petronella Kettunenh, Magda Tsolakiq, Frans Verheyf, Alberto Líop, Isabel Salag, Julius Poppk,l, Gwendoline Peyratouta, Pablo Martinez-Lagea, Mikel Taintaa, Peter Johannsenaa, Yvonne Freund-Leviiib, Lutz Fröhlichc, Valerija Dobricicdd, Cristina Legido-Quigleye,fi, Lars Bertramdd,gg, Frederik Barkhohth,i, Henrik Zetterbergc,ij,kk, B. Paul Morganh, Johannes Strefferk,mm, Pieter Jelle Visserd and Simon Lovestonea,pp,*

aDepartment of Psychiatry, University of Oxford, UK
bMaurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
cDepartment of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden
dWallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
eDementia Research Institute Cardiff, Cardiff University, Cardiff, UK
fDepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
gAlzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
hUniversity Hospital Leuven, Leuven, Belgium
iLaboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
jDepartment of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, University of Antwerp, Antwerp, Belgium
kCenter for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
lNeurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Belgium
mUniversity of Geneva, Geneva, Switzerland
nIRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
oAIX Marseille University, INS, Ap-Hm, Marseille, France
pNeurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevenage, UK
qUniversity of Lille, Inserm, CHU Lille, France
rAlzheimer’s Disease & Other Cognitive Disorders Unit, Hospital Clinic-IDIBAPS, Barcelona, Spain
sBarcelona Beta Brain Research Center, Universitat Pompeu Fabra, Barcelona, Spain

*Correspondence to: Professor Simon Lovestone, Department of Psychiatry, University of Oxford, UK. E-mail: simon.love stone@psych.ox.ac.uk.

ISSN 1387-2877/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).
Abstract. We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer’s disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ε4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure.

Keywords: Alzheimer’s disease, amyloid-β, biomarkers, plasma, proteomics

INTRODUCTION

Clinical trials for Alzheimer’s disease (AD) modification have recently started to target the earlier prodromal and pre-symptomatic stages in the belief that disease modification efforts are most likely to be effective earlier in the disease process [1, 2]. However, conducting trials in prodromal/preclinical...
individuals necessitates the use of biomarkers to detect evidence of in vivo AD pathology. Currently, pathology detection is possible using biochemical measures in cerebrospinal fluid (CSF) obtained from lumbar puncture and by positron emission tomography (PET) coupled to ligands for amyloid imaging. Both methods are employed routinely in clinical studies but their limitations impact significantly upon the efficiency of clinical trials. Both CSF sampling and PET can be costly and invasive and are therefore not suitable for large-scale screening or where repeated measures are desirable. The relatively low prevalence of amyloid pathology in people with mild cognitive impairment (MCI), and even more so in cognitively healthy individuals, inevitably results in high screen failure rates when trying to detect prodromal or preclinical AD [3]. The cost of this screen failure by either CSF or PET can be prohibitive as well as contributing to the delay in start-up of clinical trials. More worryingly, given that such screening is likely to be mandatory as part of clinical implementation of a successful therapeutic, this screen failure rate is likely to constitute an obstacle to clinical translation through a combination of cost factors and the capacity of health systems to enable lumbar puncture or PET imaging at the scale likely to match demands of their populations. One option to overcome this issue is to employ prediction methods such as apolipoprotein E (APOE) genotyping prior to trial entry, as APOE ε4 carriers are more likely to harbor AD pathology. However, not all individuals with preclinical or prodromal AD have an APOE ε4 allele and furthermore APOE genotyping only reveals risk and does not indicate current pathological state. Therefore, in order to increase the efficiency of recruitment to clinical trials, a cost effective, minimally invasive method that can be implemented on a large scale to predict current AD pathology would be enormously valuable. A blood-based assay that predicted likely pathological load would become part of a diagnostic screening funnel triaging potential trials participants or users of therapy to direct markers of pathology such as CSF measures or PET imaging.

Over a decade ago, we conducted a large agnostic, or untargeted, proteome-wide, discovery study of blood biomarkers in dementia [4]. This study was successful in detecting a signal in the blood that reflected the presence of AD-type dementia and since then many other studies, by others and by ourselves, have aimed to replicate and improve upon this original signal and have identified blood-based protein biomarkers able to distinguish AD-type dementia ‘cases’ from cognitively healthy elderly ‘controls’ [5]. However, the relatively low rate of replication of individual biomarkers across studies may be in part due to issues of a study design that compares people with clinical AD, some of whom will not have pathology, to cognitively healthy elderly controls, many of whom will harbor silent pathology. Other factors limiting replication include technical issues such as assay variance and quality, differences in sampling and storage protocols and the frequently small size of many studies [6, 7]. Nonetheless, such studies demonstrate that there is a signature of disease detectable in blood and the task is now to find a signature that is reproducible.

To address this, we have gradually refined our study design, focusing on an ‘endophenotype’ approach predicated on outcomes not of clinical diagnosis, but of a phenotype indicative of disease such as brain atrophy measured by structural MRI or amyloid-β (Aβ) plaque burden measured by PET and CSF. Using this approach, we have identified putative plasma markers relating to in vivo AD pathology and disease progression using a range of proteomic approaches including mass spectrometry, SOMAscan, and immunocapture [8–15]. In addition, we also performed a series of iterative studies targeting complement and related inflammatory proteins; neuroinflammation itself being an endophenotype associated with disease and amyloid pathology [16]. Many of the proteins identified in these discovery-phase ‘endophenotype’ studies replicate across proteomic platforms and different cohort types. However, unsurprisingly given the wide range of techniques and study designs, not every protein identified replicates in every study. The aim of the present study was to determine the most replicable set of plasma protein markers predicting in vivo brain amyloid pathology, by testing 31 of our previously discovered candidate biomarkers in a large, multi-center cohort of individuals with high and low amyloid burden.

METHODS

Subjects: EMIF-AD Multimodal Biomarker Discovery study (EMIF-AD MBD) cohort

The EMIF-AD MBD is part of the European Medical Information Framework for Alzheimer’s Disease (EMIF-AD; http://www.emf.eu/), a European wide collaboration to facilitate the re-use of existing healthcare data and the sharing of cohort
samples for the benefit of AD research. The EMIF-AD MBD study design, including subject selection criteria, clinical diagnoses, brain amyloid classification, and plasma sample collection have all been described previously [17]. In essence though, we sought to assemble a collection of samples from participants in cohort studies from across the full clinical disease spectrum from preclinical through prodromal to advanced disease, in each category seeking to balance those with amyloid pathology to those without. To do this we selected, using existing data, samples for inclusion from apparently normal, cognitively healthy elderly controls, from participants with diagnosed MCI and from people with established AD-type dementia. Samples were selected within each category with proven high and low amyloid load as previously described [17]. Overall, 1,221 participants were recruited to the EMIF-AD MBD study from 11 European cohorts. Each parent cohort was approved by the local medical ethics committee.

The present study selected two subcohorts of participants from the EMIF-AD MBD study, all with plasma samples available for analysis. Firstly, 1,000 individuals comprising 408 cognitively healthy individuals, 400 individuals with MCI, and 192 AD-type dementia patients were included for proteomic analysis in the University of Oxford laboratories. Secondly, 866 individuals (93 AD, 413 MCI, 360 control) were included for proteomic analysis in the laboratories at Cardiff University. 679 (78%) of the Cardiff sample set were also included in the Oxford sample set. Participants were included in these ‘Oxford’ and ‘Cardiff’ sample sets from across three multi-center studies: DESCRIPA [18], EDAR [19], and PharmaCog [20], and eight single center studies: Amsterdam [21], Antwerp [22], San Sebastian GAP [23], Gothenburg [24], Barcelona IDIBAPS [25], Lausanne [26], Leuven [27], and Barcelona St Pau [28]. Sample number differences between the ‘Oxford’ and ‘Cardiff’ sample sets were necessary due to plasma sample availability. Differences in the distribution of participants across multiple diagnostic categories between the ‘Oxford’ and ‘Cardiff’ sample sets were necessary due to plasma sample availability. The methods for addressing the challenge these differences presented are described in full in Bos et al. [17].

Plasma analyses

Targeted plasma protein analyses were conducted at both Oxford and Cardiff laboratories using Luminex xMAP (Cat#: HNDG1MAG-36K-06, HNDG2MAG-36K-05, HNDG3MAG-36K-07, HND2MAG-39K-02, HK16MAG-99K-03, HNDG1MAG-36K-01), ELISA (Cat#: CSB-EL008551HU and CSB-E13319H), and MSD assays (in-house optimized using U-plex platform). All assays were performed according to the manufacturer’s instructions. Overall, concentrations of 25 proteins were determined at Oxford while 6 proteins were analyzed at Cardiff.

Brain amyloid measurements and group classifications

Measurement and classification of in vivo amyloid burden in the EMIF-AD MBD cohort has been described previously [17]. Briefly, where CSF was available, \(\text{A}^{\beta}_{42}/\text{A}^{\beta}_{40}\) and \(\text{A}^{\beta}_{42}/\text{A}^{\beta}_{40}\) were measured using the V-PLEX Plus \(\text{A}^{\beta}\) Peptide Panel 1 (6E10) Kit from Meso Scale Discovery in a central laboratory (Gothenburg University, Sweden) and the \(\text{A}^{\beta}_{42}/\text{A}^{\beta}_{40}\) ratio was established. The \(\text{A}^{\beta}\) group was defined by the \(\text{A}^{\beta}_{42}/\text{A}^{\beta}_{40}\) ratio, using a cut-off of <0.063 to determine abnormality. Where CSF samples were unavailable, then the locally measured CSF \(\text{A}^{\beta}_{42}\) value and cut-off point provided by the parent cohort or the standardized uptake value ratio (SUVR) and cut-off point from an amyloid PET scan was used. The above measurements were combined into a continuous variable using z-scoring. The \(\text{A}^{\beta}\) Z-score was calculated using the mean and standard deviation of the control subjects as a reference. In cases where an individual had multiple measures of amyloid (e.g., CSF and PET), all data available were used to generate the mean and standard deviation for each measure. However, the measure included in the final \(\text{A}^{\beta}\) Z-score was selected from each individual in the following order of priority: CSF \(\text{A}^{\beta}_{42}/\text{A}^{\beta}_{40}\) ratio, local CSF \(\text{A}^{\beta}_{42}\), or the amyloid PET SUVR. PET amyloid Z-scores were multiplied by –1 in order to be combined with CSF derived amyloid Z-scores.

CSF tau measurements

To assess in vivo tau pathology, continuous phosphorylated tau (p-tau) and total tau (t-tau) values were obtained from the parent cohorts [17]. As sites were not standardized to each other, the p-tau and t-tau values were Z-scored with controls within each data set as a reference.
MRI data

Full details on the MRI data acquisition, visual rating check, and region of interest measurements have been previously reported [17]. Briefly, TI-weighted images, acquired according to local protocols, were collected from each site, each image was visually assessed and Freesurfer used to obtain volumetric measurements.

Clinical and cognitive data

Baseline clinical information and neuropsychological test scores were collected from each local site, harmonized, pooled and stored in an online data platform using tranSMART [29]. Full details of the clinical information provided by each site and the harmonization process has been previously described [17].

In all cohorts, a diagnosis of AD-type dementia was made according to the National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) criteria [30]. The Petersen criteria [31] was used to diagnose MCI in nine cohorts, while two cohorts used the Winblad et al. criteria [32] for this diagnosis. Normal performance on neuropsychological assessment (1.5 SD of the average for age, gender, and education) was used by all cohorts to define cognitively healthy individuals. Further details describing the diagnostic criteria used by each cohort can be found in Bos et al. [17].

For those individuals with MCI at baseline, we identified their clinical diagnosis at the last available follow-up visit provided by each local site (average = 2.21 years). Those that changed in their diagnosis to AD-type dementia, or had a decrease of at least 3 Mini-Mental State Examination (MMSE) points, were classed as MCI-convertors. MMSE was provided for all individuals.

Apolipoprotein E (APOE) genotyping

APOE genotypes for single nucleotide polymorphisms (SNPs) rs429358 and rs7412 were either determined from genome-wide SNP genotyping data (generated via the Infinium Global Screening Array (GSA) with Shared Custom Content, Illumina Inc.) or by TaqMan assays (ThermoFisher Scientific, Foster City, CA) on a QuantStudio-12K-Flex system in 384-well format. After QC, there were sufficient data to classify 926 individuals as APOE ε4 carriers or non-carriers according to their genotype status at rs429358 (C-allele = ε4). Missing values for APOE ε4 status were imputed using regression analyses within study, based on significant predictors (age, gender, MMSE, cognitive scores) [17].

Statistical analyses

All statistical analyses were completed using R (version 3.3.2) and all statistical tests were two-tailed. Individual participant data was excluded where there was a long interval (>1 year), or missing data on the time interval, between plasma collection and measurement of the outcome variable (amyloid status, n = 69 and 30 excluded from Oxford and Cardiff sample sets, respectively; MMSE, n = 73 and 39 excluded from Oxford and Cardiff, respectively; brain volume, n = 121 and 97 excluded from Oxford and Cardiff, respectively). Baseline cohort characteristics between high and low amyloid groups were compared using Mann-Whitney U test. All regression analyses included age as a covariate. p-values and false discovery rate corrected q-values are reported.

Univariate statistics

Univariate statistics were performed using identical statistical methods for both the ‘Oxford’ and ‘Cardiff’ sample sets and the results for all 31 proteins are presented in this manuscript together. The relationship of each individual protein with group-wise outcome variables was tested using logistic regression. The relationship of proteins with continuous outcome variables was examined using linear regression.

ROC analysis was performed on each protein individually, and the outcome was the dichotomous amyloid status. Sensitivity, specificity and area under the curve (AUC) metrics were computed. The 95% confidence intervals were estimated using the bootstrap resampling method with n = 1000 repetitions [33]. The optimal operation point from the ROC curve was identified by maximizing the Youden’s J statistic [34].

Multivariate amyloid classifier

Logistic regression was used to assess the performance of a multi-protein model for the discrimination between individuals in the abnormal and normal brain amyloid groups. The AUC, sensitivity, specificity, and likelihood ratio (LR) of the model are reported. The optimal operation point from the ROC curve was identified by maximizing the Youden’s J statistic [34].
Table 1
Demographics of subjects from the EMIF-AD MBD study

Variable	Subjects included in Oxford sample set	Subjects included in Cardiff sample set
	Normal amyloid status	Abnormal amyloid status
Normal amyloid status		
N	457	543
Aβ Z-score	0.49 ± 0.62	−1.35 ± 0.48
Age (y)	66.52 ± 8.71	69.81 ± 8.12
Female gender N (%)	223 (49)	301 (55)
CTL N (%)	289 (63)	119 (22)
MCI N (%)	147 (32)	253 (47)
AD N (%)	21 (5)	171 (31)
APOE genotype e4+ N (%)	147 (32)	349 (64)
MMSE	27.93 ± 2.49	25.11 ± 4.29

	Low amyloid status	High amyloid status
Low amyloid status		
N	460	406
Aβ Z-score	0.45 ± 0.62	−1.36 ± 0.51
Age (y)	66.61 ± 8.25	70.47 ± 8.22
Female gender N (%)	253 (55)	226 (56)
CTL N (%)	272 (59)	88 (22)
MCI N (%)	179 (39)	234 (58)
AD N (%)	9 (2)	84 (21)
APOE genotype e4+ N (%)	134 (29)	246 (61)
MMSE	28.09 ± 2.23	25.41 ± 4.26

MCI, mild cognitive impairment; AD, Alzheimer’s disease; APOE, apolipoprotein E; CTL, cognitively healthy control; MMSE, Mini-Mental State Examination. Mean ± standard deviation. *Statistically significant by Mann-Whitney U, p < 0.05.

RESULTS

Clinical characteristics and inter-group differences

The clinical characteristics of the Oxford and Cardiff sample sets, stratified by amyloid status, are presented in Table 1. Across both sample sets, individuals with abnormal amyloid status were older (p < 0.001), more frequently APOE e4 carriers (p < 0.001), and had lower MMSE scores (p < 0.001) compared to those with normal amyloid status. Within the Oxford set only, individuals with abnormal amyloid status were more frequently female (p < 0.05) compared to those with normal amyloid status.

Univariate statistics for amyloid status (high/low group)

Cross-sectional comparisons of protein concentrations between normal and abnormal amyloid status groups revealed seven proteins that remained statistically significant after multiple testing corrections (q < 0.05; ficolin-2 (FCN2), β2-microglobulin (B2M), alpha-1 antitrypsin (A1AT), apolipoprotein E (apoE), complement component 4 (C4), Cathepsin D (CTSD), complement factor I (CFI), Table 2). Five of these proteins have previously been discovered as biomarkers of in vivo brain amyloid pathology in one or more of our previous biomarker studies (FCN2, B2M, A1AT, apoE, and C4), and all five replicate the direction of change previously identified. Expression of cathepsin D has previously been found to be decreased in AD fibroblasts, and here we show that this protein is also decreased in plasma with increased in vivo AD pathology [35]. CFI was previously found as a biomarker for conversion from MCI to dementia, with decreased plasma protein concentration in MCI converters [36]. Therefore, the direction of change identified in this study, decreased CFI with increased pathology, agrees with this previous finding.

Logistic regression analysis was also performed separately for each diagnostic group and APOE e4 carrier groups (e4 non-carrier/e4 carrier). These results are reported in Supplementary Tables 1–5.

ROC analysis was performed on each of the seven proteins found to replicate direction of change to determine their individual predictive ability for the discrimination of normal/abnormal amyloid status groups, and compared to the discriminant ability of age. Table 3 displays the results of the ROC analysis and Supplementary Figure 2 displays both the AUC and corresponding 95% confidence interval of each protein and age. The AUC for every protein is higher than chance, even when including the lower end of the confidence interval.

For these seven proteins, ROC analysis of amyloid status classification was also performed separately for each diagnostic group and APOE e4 carrier groups (e4 non-carrier/e4 carrier). These results are reported in Supplementary Tables 6 and 7.

Multi-protein classifier of amyloid normal/abnormal status

It is possible, if the individual protein associations with in vivo AD pathology are independent of each other, that a compound marker set of some or all of these proteins would have greater predictive value than any one protein alone. In order to
Table 2

Logistic regression (age as covariate) results for each protein with amyloid status as the outcome variable

Sample set	protein	Logistic Regression set beta	q	N
Oxford	FCN2	0.466	0.000*	824
	FGG	-0.071	0.300	891
	Cystatin C	-0.135	0.049*	898
	Clusterin	-0.138	0.045*	906
	B2M	-0.266	0.000*	832
	AGP	0.009	0.901	875
	CP	0.028	0.679	883
	A2M	-0.017	0.813	896
	ApoA1	-0.073	0.290	886
	ApoC3	-0.001	0.991	900
	apoE	-0.220	0.002*	901
	TTR	-0.039	0.572	901
	CFH	-0.049	0.475	907
	CRP	-0.139	0.049*	854
	A1AT	-0.213	0.004*	784
	PDEF	-0.006	0.933	853
	SAP	-0.052	0.449	869
	CC4	0.243	0.001*	894
	BDNF	-0.036	0.603	887
	Cathepsin D	-0.238	0.001*	880
	sICAM-1	-0.148	0.033*	893
	RANTES	-0.100	0.146	905
	NCAM	0.032	0.645	891
	sVCAM-1	-0.071	0.302	891
	PAL1	-0.134	0.052	890

Cardiff	CR1	-0.077	0.378	770
	TCC	0.112	0.149	770
	CFB	-0.042	0.567	788
	CFI	-0.284	0.000*	754
	Eotaxin	0.176	0.037*	749
	MCP	0.031	0.680	769

*Statistically significant < 0.05.

Table 3

AUC statistics per protein, for the classification of normal / abnormal brain amyloid status.

Variable	Optimal cutpoint	Sensitivity	Specificity	AUC	Cl. low	Cl. high
FCN2	24607094.990	0.448	0.783	0.640	0.593	0.690
Age	67.355	0.641	0.560	0.619	0.578	0.659
CFI	26793.107	0.547	0.623	0.585	0.531	0.639
C4	73789.784	0.436	0.713	0.580	0.533	0.630
B2M	4232.708	0.433	0.698	0.577	0.526	0.628
Cathepsin D	322.630	0.586	0.547	0.576	0.528	0.625
apoE	106.020	0.667	0.445	0.554	0.504	0.602
A1AT	1675622.528	0.765	0.333	0.552	0.506	0.606

To test this, the seven proteins significant by logistic regression after multiple testing corrections (q < 0.05; FCN2, B2M, apoE, A1AT, CC4, cathepsin D, CFI) were included in a logistic regression classifier, along with age, to determine their predictive ability for amyloid status when combined. After missing data were removed this 8-feature model was tested on 374 individuals and achieved moderate accuracy (AUC = 0.742 (Fig. 1, sensitivity = 0.682, specificity = 0.704, LR = 2.3). In comparison, age alone achieved an AUC = 0.617.

To determine how this 8-feature model performs at different stages of the disease process and also in APOE ε4 carriers and non-carriers independently, we
tested the classification ability of this model within each separate diagnostic group and APOE e4 carriers and non-carriers. Table 4 displays the performance of this model within each group. The performance within the AD-type dementia group could not be accurately determined since removal of subjects with missing data left only 5% of the AD-type dementia cases as amyloid negative.

Relationship of classifier proteins with continuous Aβ Z-score

We next wanted to determine whether this protein-amyloid relationship remains consistent using the Aβ Z-score (Table 5). All, except one protein (A1AT), were significantly related to Aβ Z-score after testing for multiple testing corrections ($q < 0.05$). A1AT was tending towards significance ($q = 0.061$).

DISCUSSION

We have previously used a pathology endophenotype approach to discover plasma proteomic biomarkers designed to be predictive of in vivo AD pathology and disease progression. The aim of the present study was to replicate these previously identified candidate biomarkers in a large multi-center pragmatic sample collection collated from multiple cohorts, as well as to identify a plasma proteomic panel that could classify individuals into high or low brain amyloid groups. Our results show that in around 1,000 samples from multiple studies across Europe, seven biomarkers replicate, and we confirm a panel of proteins that identify abnormal levels of in vivo amyloid pathology with a sensitivity of 0.682 and a specificity of 0.704. While we chose to maximize the

Table 4

	AUC	Sensitivity	Specificity	LR	N
Whole cohort (AD, MCI, CTL)	0.742	0.682	0.704	2.30	374
MCI	0.743	0.658	0.785	3.06	193
CTL	0.768	0.682	0.776	3.04	142
MCI and CTL combined	0.724	0.677	0.661	2.00	335
APOE e4 non-carriers	0.736	0.681	0.725	2.47	199
APOE e4 carriers	0.836	0.757	0.767	3.25	175

MCI, mild cognitive impairment; AD, Alzheimer’s disease, APOE, apolipoprotein E; CTL, cognitively healthy control; AUC, area under the curve; LR, likelihood ratio.
Youden’s index, which gave a balanced compromise between false negative and false positive results, similarly, any other operational point may also be suitable, depending on the clinical utility and priorities. Moreover, the model has predictive value in both APOE ε4 carrier and non-carrier individuals generating a biological predictor that could be used to reduce the screen failure rate in clinical trials.

The final 7-protein biomarker panel consists of: β2-microglobulin (B2M), cathepsin D (CTSD), ficolin-2 (FCN2), complement component 4 (C4), alpha-1 antitrypsin (A1AT), complement factor I (CFI), and apolipoprotein E (apoE). We did not find any significant improvement to AUC by introducing standardized quadratic terms for each of the significant variables. Specifically, our variables are: ‘Age’ and seven proteins: ‘FCN2’, ‘B2M’, ‘ApoE’, ‘A1AT’, ‘CC4’, CathepsinD’, and ‘CFI’. Using them as a linear combination, we achieved AUC = 0.742 and the most significant ones (\(p < 0.001\)) were Age, FCN2, and B2M. Their quadratic terms were found to be both, small (effect size) and statistically insignificant. Although initial discovery-phase studies used an unbiased approach to identify proteins that have a relationship with AD and its pathology, it is noteworthy that the resulting biomarker candidates are also biologically relevant to the disease process. B2M shares structural characteristics with fibrillar Aβ [37] and is one of a number of proteins that form amyloid deposits. Cathepsin D is increased in tangle bearing neurons [38], a process that might be induced by Aβ [39]. Ficolin-2 and mannose-binding lectin (MBL) are both activators of the lectin complement pathway [40] and CSF MBL levels have been shown to be reduced in AD [41]. The complement proteins (C4 and CFI) are two members of a pathway repeatedly shown to be associated with AD through genetics and neuropathology as well as from biomarker studies [42]. A1AT is an acute phase chemoreactant that is metabolized by the serpin enzyme complex (SEC) and hence might compete with and affect the activity of another SEC ligand, Aβ [43]. The relationship between the APOE ε2/ε3/ε4 polymorphism and AD is well established and complementary to our finding here that apoE protein is clearly a marker of amyloid load.

Recently, Nakamura et al. (2018) published an important study demonstrating that Aβ fragments can be reliably detected in blood and perform as well as current CSF biomarkers for predicting brain amyloid [44]. This approach using immunoprecipitation combined with mass spectrometry (IP+MS),
was able to predict brain amyloid status with up to 90% accuracy. This finding builds upon other recent work by Ovod et al. (2017) who also used an IP+MS technique to identify blood Aβ with high concordance to amyloid PET [45]. While these papers are important in demonstrating the value of blood Aβ as a biomarker tool for brain pathology, replication in more studies with larger sample sizes is needed, and the proteomic technology employed will require refinement to enable implementation at scale. Nevertheless, these studies provide considerable further proof of concept for AD blood biomarkers. While the accuracy rates reported in our study are not as high as those reported when measuring blood Aβ levels, we are still able to achieve a level of accuracy sufficient to make a substantial impact upon the cost efficiency of clinical trials while using immunocapture—a practical and low-cost assay technology already in very wide use in both clinical and research laboratories.

Given that sample collection and storage protocols differed across the 11 cohorts included in the EMIF-AD MBD study [17], this pragmatic meta-collection reflects the challenges faced by any putative biomarker in the real-world of multi-site, multi-national clinical studies, and even more so in clinical practice, where standardization of sample collection is sought but rarely achieved. Replication of any putative biomarker set in such a collection of samples has a higher prior probability of effective utility in practice than replication in a single cohort or single site study with a fully standardized sample collection procedure. Nonetheless, the limitations of this study are also acknowledged; this study was designed to determine whether candidate biomarkers replicate in their ability to predict amyloid, it was not designed to determine the real-world value of the biomarkers or the biomarker panel they form for clinical trial screening. Selecting half of the samples from people with high amyloid enables proof of concept but clearly random prediction will already identify 50% of those with amyloid correctly. Additionally, missing data (4–11% per protein as a result of variable sample volume and quality and occasional assay performance failure) meant that when combining multiple proteins together in a biomarker panel the overall sample size with complete data was significantly reduced. However, even in this reduced sample set with 50% prediction accuracy possible by chance, the likelihood ratio with our biomarker panel is 2.3 in the whole cohort and 3 for preclinical disease, suggesting approximately a 15% and 20% improvement in detection respectively [46].

ACKNOWLEDGMENTS

This research was conducted as part of the EMIF-AD project which has received support from the Innovative Medicines Initiative Joint Undertaking...
under EMIF grant agreement n° 115372, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. ANH and SL were supported by a MRC Mental Health Data Pathfinder award to the University of Oxford, and by the NIHR Oxford Health Biomedical Research Centre (BRC). FB is supported by the NIHR UCLH biomedical research centre. The Lausanne study was funded by a grant supported by the NIHR UCLH biomedical research centre. The datasets generated and analyzed during the current study are available via the EMIF-AD Catalogue via submitted research questions which have to be approved by the data-owners from each parent cohort.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: https://dx.doi.org/10.3233/JAD-190434.

REFERENCES

[1] Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 4, 195-214.

[2] Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y) 5, 272-293.

[3] Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, Visser PJ, Aalten P, Aarsland D, Alcolea D, Alexander M, Almdahl IS, Arnold SE, Baldaieas I, Barthel H, van Berckel BN, Bibeau K, Blennow K, Brooks DJ, van Buchem MA, Camus V, Cavedo E, Chen K, Chetelat G, Cohen AD, Drzezaga A, Engelborghs S, Fagan AM, Fladby T, Fleisher AS, van der Flier WM, Ford L, Frested S, Forteja J, Fossett N, Frederiksen KS, Freund-Levy Y, Frisoni GB, Froelich L, Gabryelewicz T, Gill KD, Gkatzima O, Gomez-Tortosa E, Gordon MF, Grimmer T, Hampel H, Hausner L, Hellswig S, Herukka SK, Hildebrandt H, Ishihara L, Ivanova A, Jagust WJ, Johannsen P, Kandimalla R, Kapaki E, Klimkowicz-Mosser S, Koglin N, Kornhuber J, Kramberger MG, Van Laere K, Landau SM, Lee DY, de Leon M, Lisseti V, Lleo A, Madsen K, Maier W, Marcusson J, Mattsson N, de Mendonca A, Meulenbroek O, Meyer PT, Mintun MA, Mok V, Molinuenuo JL, Mollerard HM, Morris JC, Mozekko B, Van der Mussiele S, Na DL, Newberg A, Nordberg A, Ossenkoppele R, Paraskevas GP, Parnetti L, Perera G, Peters O, Popp J, Prabhakar S, Rabinovici GD, Ramakers IH, Rami L, Resende de Oliveira C, Rimme JO, Rodrigue KM, Rodriguez-Rodriguez E, Roe CM, Rot U, Rowe CC, Rutherford E, Sabri O, Sanchez-Juan P, Santanai J, Sarazin M, Schroder J, Schutte C, Seo SW, Soetewey F, Soininen H, Spina L, Struyf H, Teunissen CE, Tsolaki M, Vandenbergehe R, Verbeek MM, Villemagne VL, Vos SJ, van Waalwijk van Doorn LJ, Walderman G, Wallin A, Wallin AK, Wiltfang J, Wolk DA, Zboch M, Zetterberg H (2015) Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 313, 1924-1938.

[4] Hye A, Lynham S, Thambissetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijndijk F, Tabrizi SJ, Banner S, Shaw CE, Foy C, Poppe M, Ascher N, Hamilton G, Powell J, Brown RG, Sham P, Ward M, Lovestone S (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129, 3042-3050.

[5] Hampel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29, 26–32.

[6] Henriksen K, O’Bryant SE, Hampel H, Trojanowksi QJ, Montine TJ, Jeromin A, Blennow K, Lonneborg A, Wyss-Coray T, Soares H, Bazenet C, Sjogren M, Hu W, Lovestone S, Karsdal MA, Weiner MW (2014) The future of blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10, 115-131.

[7] O’Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S, Bazenet C, Soares H, Lovestone S, Hampel H, Montine T, Blennow K, Foroud T, Carrillo M, Graff-Radford N, Laske C, Breitler M, Shaw L, Trojanowksi QJ, Schupf N, Rissman RA, Fagan AM, Oberoi P, Inok R, Weiner MW, Grammas P, Posner H, Martins R (2015) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 11, 549-560.

[8] Thambissetty M, Simmons A, Velayudhan A, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A, Protiti P, Powell J, Causevic M, Killick R, Lunnon K, Lynham S, Broadstock M, Choudhry F, Howlett DR, Williams RJ, Sharp SJ, Mitchelmore C, Tunnard C, Leung R, Foy C, O’Brien D, Breen G, Furney SJ, Ward M, Kloszewksa I, Mecocci P, Soininen H, Tsolaki M, Vellas B,
Hodges A, Murphy DG, Parkins S, Richardson JC, Resnick SM, Ferrucci L, Wong DF, Zhou Y, Muhlboeck S, Evans A, Francis PT, Spencer C, Lovestone S (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67, 739-748.

[9] Kiddie SJ, Thambisetty M, Simmons A, Riddoch-Contreras J, Hye A, Westman E, Pike I, Ward M, Johnston C, Lupton MK, Lunnon K, Soininen H, Kloszweska I, Tsolaki M, Vellas B, Mecocci P, Lovestone S, Newhouse S, Dobson R, Alzheimer’s Disease Neuroimaging Initiative (2012) Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS One 7, e44260.

[10] Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R, Sattellecker M, Lupton M, Lunnon K, Kehoeane A, Ward M, Pike I, Zuchit HD, Pepin D, Zhung W, Tummclifte A, Richardson J, Gausther S, Soininen H, Kloszweska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S (2014) Plasma proteins predict conversion to dementia from prodromal disease. *Alzheimers Dement* 10, 799-807.e792.

[11] Sattellecker M, Kiddie SJ, Newhouse S, Protsi P, Nelson S, Williams S, Johnston C, Killick R, Simmons A, Westman E, Hodges A, Soininen H, Kloszweska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, AddNeuroMed Consortium, Dobson RJ (2014) Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. *Alzheimers Dement* 10, 724-734.

[12] Aston NJ, Kiddie SJ, Graf J, Ward M, Baird AL, Hye A, Westwood S, Wong KV, Dobson RJ, Rabinovic GD, Miller BL, Rosen HJ, Torres A, Zhang Z, Thurfjell L, Covin A, Heirn CT, Baker D, Bazenet C, Lovestone S, AIBL Research Group (2015) Blood protein predictors of brain amyloid for enrollment in clinical trials? *Alzheimers Dement* (Amst) 1, 48-60.

[13] Doyle N, Baker D, Burnham SC, Coffin A, Zhang Z, Sangurdekar DP, Tan Heir CA, Bazenet C, Lovestone S, Kiddie S, Dobson RJ, AIBL research group (2015) Blood protein markers of nesocortical amyloid-beta burden: A candidate study using SOMAscan technology. *J Alzheimers Dis* 46, 947-961.

[14] Westwood S, Leoni E, Hye A, Lynham S, Khondoker M, Ashton NJ, Kiddie SJ, Baird AL, Sainz-Fuertes R, Leung R, Graf J, Heirn CT, Baker D, Cereda C, Bazenet C, Ward M, Thambisetty M, Lovestone S (2016) Blood-based biomarker candidates of cerebral amyloid using PsB PET in non-demented elderly. *J Alzheimers Dis* 52, 561-572.

[15] Westwood S, Baird AL, Hye A, Ashton NJ, Nevado-Holgado AJ, Anand SN, Liu B, Newby D, Bazenet C, Kiddie SJ, Ward M, Newson B, Desai K, Tan Heir C, Zanette M, Galimberti D, Parnetti L, Lleo A, Baker S, Narayan VA, van der Flier WM, Scheltens P, Teunissen CE, Visser PJ, Lovestone S (2018) Plasma protein biomarkers for the prediction of CSF amyloid and tau and [(18)F]-Flutemetamol PET scan result. *Front Aging Neurosci* 10, 409.

[16] Morgan AR, Touchard S, Leckey C, O’Hagan C, Nevado-Holgado AJ, Barkhof F, Bertram L, Bliu O, Bos I, Dobrinic V, Engelborghs S, Frisoni G, Frolich L, Gabel S, Johannesen P, Kettunen P, Kloszweska I, Legido-Quijley C, Lleo A, Martinez-Lage P, Mecocci P, Meersmans K, Molinuevo JL, Peyratout G, Popp J, Richardon J, Sala I, Scheltens P, Stref MJ, Soininen H, Tanta-Scueva M, Teunissen C, Tsolaki M, Vandenbergh E, Visser PJ, Visser PJ, Voyle N, Baker D, Burnham SC, Covin A, Zhang Z, Sangurdekar DP, Morgan BP (2019) Inflammatory biomarkers in Alzheimer’s disease’s plasma. *Alzheimers Dement* 15, 776-787.

[17] Boss I, Bos I, Vandenberghe R, Scheltens P, Engelborghs S, Frisoni G, Molinuevo JL, Wallin A, Lleo A, Popp J, Martinez-Lage P, Baird A, Dobson R, Legido-Quijley C, Sleeers K, Van Broeckhoven C, Bertram L, Ten Kate M, Barkhof F, Zetterberg H, Lovestone S, Streffer J, Visser PJ (2018) The EMIF-AD Multimodal Biomarker Discovery study: Design, methods and cohort characteristics. *Alzheimers Res Ther* 10, 64.

[18] Visser PJ, Verhey FRJ, Boada M, Bulloch R, De Deyn PP, Frisoni GB, Frolich L, Hampel H, Jolles J, Jones R, Minthon L, Nobili F, Rikkert MO, Ouisset PJ, Rigaud AS, Scheltens P, Soininen H, Spuril, Touchon J, Tsolaki M, Vellas B, Wahlund LO, Wilcock G, Winblad B (2008) Development of screening guidelines and clinical criteria for predementia Alzheimer’s disease. *Neuropenidemiology* 30, 254-265.

[19] Reijis BLR, Ramakers HGB, Elias-Simmenschin L, Teunissen CE, Koel-Simmelink M, Tsolaki M, Wahlund LO, Waldemar G, Hausner L, Johannsen P, Vanderstichele H, Verhey F, Devanand DP, Visser PJ (2017) Relation of odor identification with Alzheimer’s disease markers in cerebrospinal fluid and cognition. *J Alzheimers Dis* 60, 1025-1034.

[20] Galluzzi S, Marizzi M, Babiloni C, Albani D, Antelmi L, Bagnoli C, Bartres-Faz D, Cordone S, Didic M, Farotti L, Fiedler U, Forloni G, Gitter N, Hensch T, Jovicich J, Leewsis A, Marra C, Molinuevo JL, Nobili F, Pariente J, Parnetti L, Payoux P, Del Pericio C, Ranjeva JP, Rolandi E, Rossini PM, Schonkenchept P, Soricelli A, Tsolaki M, Visser PJ, Wiltfang J, Richardson JC, Bordet R, Blin O, Frisoni GB, PharmacoG Consortium (2016) Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: A ‘European ADNI study’.* J Intern Med* 279, 576-591.

[21] van der Flier WM, Pijnenburg YAL, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, van Berckel BNMM, Stam CJ, Barkhof F, Visser PJ, van Egmond E, Scheltens P (2014) Optimization of patient care and research: The Amsterdam Dementia Cohort. *J Alzheimers Dis* 41, 313-327.

[22] Somers C, Struyfs H, Goossens J, Niemannsverdriet E, Luyckx J, De Roeck N, De Vii B, Coss P, Martin JJ, De Deyn PP, Bjerke M, Engelborghs S (2016) A decade of cerebrospinal fluid biomarkers for Alzheimer’s disease in Belgium. *J Alzheimers Dis* 54, 383-395.

[23] Estanga A, Ecsy-Torres M, Ibanez A, Izaigrette A, Villanua J, Garcia- Sebastian M, Gaspar MTI, Otaegui-Arrazola A, Iriondo A, Clerigue M, Martinez-Lage P (2017) Beneficial effect of bilingualism on Alzheimer’s disease CSF biomarkers and cognition. *Neurol In Aging* 50, 144-151.

[24] Wallin A, Nordlund A, Jonsson M, Blennow K, Zetterberg H, Ohlfelt A, Stahlhammer J, Eckerstrom M, Carlsson M, Olsson E, Gothlin M, Svensson J, Rolstad S, Eckerstrom C, Bjerke M (2016) Alzheimer’s diseasesubcortical vascular disease spectrum in a hospital-based setting: Overview of results from the Gothenburg MCI and dementia studies. *J Cereb Blood Flow Metab* 36, 95-113.

[25] Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, Sanchez-Velle R (2016) Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. *J Alzheimers Dis* 22, 909-922.

[26] Tautvydaite D, Kukreja D, Antonietti JP, Antonietti JP, Henry H, von Gunten A, Popp J (2017) Interaction between personality traits
