Elena Kamilari, Yiorgos Apidianakis* and Myrofora Panagi**

Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus

Dates: Received: 22 May, 2017; Accepted: 02 June, 2017; Published: 06 June, 2017

*Corresponding authors: Yiorgos Apidianakis, 1 Panepistimiou Ave, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus, Tel. 357-22893767; E-mail: apidian@ucy.ac.cy

**Myrofora Panagi, 1 Panepistimiou Ave, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus, Tel. 357-22893967; Email: mpanagi1@ucy.ac.cy

Keywords: Biomarkers; Drosophila; Human; Model host; Colorectal cancer; Inflammation

https://www.peertechz.com

Review Article

Flies to Humans – Humans to Flies: A Virtuous Circle of Colorectal Cancer Prevention

Abstract

The two Nobel prizes in physiology or medicine of 1995 and 2011 establish Drosophila genetics as a significant contributor of genes and signaling pathways relevant to human disease, including innate immunity and cancer. Other than providing clues on mammalian gene homologue function, relatively little attention has been paid on the translational aspect of Drosophila genes, microbes and environmental factors that influence homeostasis and disease. This is particularly important for colorectal cancer (CRC) prevention, for which molecular diagnostic tools are non-existent. While clinical studies provide a wealth of information on genes and microbes linked to inflammatory bowel disease (IBD) and CRC, it is unknown if they can serve as biomarkers in terms of CRC prevention. We discuss the line of research showing that many biomarkers of intestinal inflammation and CRC in humans may be modeled and mechanistically tested in flies. Vise versa, genes and processes, such as regenerative inflammation and aging-associated DNA damage, found in flies to promote tumorigenesis may be tested as biomarkers of CRC risk in humans. Thus, modeling human intestinal inflammation and cancer in flies can provide a means to assess causality of conserved genes and microbes that can colonize the fly intestine. Moreover, successful modeling in flies enables the “treatability” of the pertinent biomarkers via dietary, probiotic and pharmacological interventions and paves the way for clinical trials of treatments that may alleviate intestinal inflammation and the risk for CRC.

Introduction

The genetic and histological suitability of flies for basic research on CRC

During the last two decades Drosophila has become a powerful model for exploring the links between inflammation and colorectal cancer (CRC). The fully sequenced genome, the high degree of human disease-related gene homology with flies (up to 75%), the reduced genetic redundancy, the great availability of genetic tools enabling spatial and temporal manipulation of cells, as well as, the evolutionary conservation of signaling pathways controlling vital biological processes and immunity, make Drosophila a suitable model host for the identification of candidate biomarkers implicated in tumor-promoting inflammation [1,2]. In addition, the small size, the low cost of maintenance and the easy delivery of orally administrated drugs facilitate whole-animal screening for molecular compounds affecting stem cell mediated carcinogenesis [3,4]. Remarkably, there are at least 60 chemical compounds originally known for their activity in human cells that demonstrably have the same molecular mechanism of action in flies [2].

The intestine is the most rapidly self-renewing tissue of the human body. Intestinal epithelium is continuously exposed to pathogens and chemicals of the lumen leading to enterocyte damage and concomitant regenerative inflammation that completely replenishes the damaged or lost cells by asymmetrically dividing intestinal stem cells (ISCs) [5-7]. ISCs reside at the bottom of the crypt of Lieberkühn along with the secretory Paneth cells. ISCs proliferate to give rise to transient cells that amplify and differentiate, while moving upwards the crypt. Differentiated cells are found at the rim of the crypts and the villi. These are absorptive enterocytes, but also secretory cells, namely, Paneth, enderoendocrine or goblet cells. Between the villi and the lumen there is a goblet cell derived-mucus layer that protects cells from direct bacterial contact. The tissue is supported by stromal cells of various types and surrounded by visceral muscle. Similarly, Drosophila intestine is maintained by ISCs that divide giving rise to new ISCs and transient enteroblasts, which normally differentiate without further divisions into either absorptive enterocytes or enteroendocrine cells [8,9]. Although the mammalian Paneth, goblet and stromal cells are absent in flies, many of their immunity and barrier physiology functions are fulfilled by...
highly endoreduplicating enterocytes and the visceral muscle [1]. The fly intestine generally lacks crypts that support multiple progenitor cells and villi. These appear necessary for maximal nutrient absorption in mammals, but in flies a monolayer of epithelial cells surrounded by two layers of visceral muscle suffices for homeostasis. In addition to the mucus layer, the Drosophila gut lumen is surrounded by a chitin layer, the peritrophic matrix that confers extra protection against pathogens [10].

Using flies for identifying genetic and microbial biomarkers of risk for CRC

Fly immunity shares evolutionary conserved mechanisms with human innate immunity. Drosophila midgut responds to uracil from intestinal pathogenic bacteria by inducing the p38 mitogen–activated protein kinase (p38 MAPK) signaling pathway [11,12], which in turn activates the conserved NAPDH oxidase, Duox, leading to the release of reactive oxygen species (ROS) [13-15]. The antimicrobial activity of ROS is complemented with the production of antimicrobial peptides (AMPs). Toll signaling pathway is responsible for the systemic AMP response mediated by the nuclear translocation of the NF-κB–like transcription factor(s) Dorsal and/or Dif. The second NF-κB–like pathway of Drosophila, named immune deficiency (IMD) pathway, is stimulated by peptidoglycan recognition proteins (PGRPs). IMD is induced by bacterial peptidoglycan leading to the nuclear translocation of Relish and AMPs expression both systemically and in the fly gut [16,17]. Intestinal damage and stress are also capable of stimulating particular AMP expression following secretion of the Upd3 inflammatory cytokine, an analog of the human interleukin (IL)–6, which activates the JAK/STAT signaling in both ISC and the visceral muscle [18,19]. JAK/STAT pathway activation leads to the expression of epidermal growth factors and consequently induction of EGFR/Ras/MAPK cascade inducing ISC proliferation [20,21]. Drosophila stem cells are further modulated by the Target of Rapamycin (TOR), Hippo and wingless pathways [22–24]. This inflammation-induced tissue regeneration process referred to as regenerative inflammation may contribute to tumor initiation and progression and is conserved between flies and mammals [6,7].

Inflammation is pivotal for host defense, but it can lead to pathogenesis when chronic and predispose for cancer. The inflammatory microenvironment facilitates tumor initiation and progression, although a direct causality has not yet been established for CRC. Germline mutations account as a driving force for the 10% of CRC incidence, whereas the vast majority of cases associate with somatic mutations and environmental factors, including chronic inflammation and bacterial infections [25,26]. For instance, the chronic inflammation of the gastrointestinal mucosa present in IBD patients is a key predisposing factor for developing CRC [27]. Nevertheless, so far only Helicobacter pylori infection has been established as a causative agent of gastrointestinal inflammation and cancer [28]. In mammals, areas with active inflammatory responses accompanied by a high rate of epithelial cell–turnover and sustained DNA damage are sufficient to drive carcinogenesis [29]. This setting of increased predisposition to tumorigenesis is also found in the aging midgut of Drosophila [30]. Moreover, pathogenic bacterial infection promotes intestinal tumorigenesis in genetically predisposed adult Drosophila [31].

Previous studies have used fruit flies as model hosts to induce intrinsic and extrinsic oxidative damage that resembles the aging associated changes in progenitor cells [32]. Collective evidence indicates accumulation of γH2AvD foci in ISCs, analogous to the mammalian γH2AX, a DNA damage marker. γH2AvD foci correlate with γ-ray–induced DNA damage in ISCs and age–related accumulation of 8-oxo–2′-deoxyguanosine. Interestingly, age and oxidative stress related DNA damage in Drosophila can be alleviated by the chemotherapy drug Metformin via downregulation of the insulin–like growth factor–I receptor/insulin receptor (IGF1R/IR) and the AKT [33]. As ISCs age, they acquire persistent chromatin lesions bearing double strand breaks (DSB) and thereby, initiating a continuous secretion of inflammatory cytokines. In mammals, damaged ISCs that have entered senescence preserve their capacity to secrete different factors and interact with the surrounding microenvironment [34]. Similarly, age–related DNA damage and JNK–driven dysplasia correlate with barrier failure and excessive systemic inflammatory signaling attributed to the bacterial translocation across the Drosophila gut [35,36]. Somatic inactivation of Notch tumor suppressor during aging in flies causes spontaneous neoplasia driven by somatic recombination, genomic deletions and rearrangements [30].

As microbial intestinal load increases with age, it becomes challenging to maintain symbiosis between the host and its microbes. Alterations within the microbiome structure could elicit an acute inflammatory signaling through the increased production of ROS and AMPs and the release of inflammatory cytokines and growth factors that regenerate the intestinal epithelium. However, chronic inflammatory responses and the excessive exposure of cells to oxidative stress have adverse effects on homeostasis, leading to dysbiosis. Dysbiosis is correlated with IBD [37] and cancer [38]. Drosophila is characterized by a simple microbiome of less than 30 microbial species [35] compared to that of humans, which is composed with hundreds of different bacterial species [39]. Lactobacillus and occasionally Enterobacteriaceae are part of both the fly and human microbiome. While huge differences exist, symbiotic bacteria are critical for host physiology in both species and the number of human bacteria that can colonize flies is far more than those found naturally. They promote growth by modulating nutrient metabolism and absorption [40] and participate in the shaping of gastrointestinal immune landscape [41,42]. Therefore, pinpointing the mechanisms by which gut microbiota affects health and disease, may help to suggest new therapeutic approaches to alleviate microbiota–directed inflammation and CRC incidence. Bacterial mono–associations or poly–associations with germ–free flies would provide insights regarding the contribution of symbiotic bacteria at the species level in intestinal disease.
Mammalian genetic and microbial biomarkers of risk for CRC

Most CRC cases are sporadic, that is, with no known genetic component attributed to them (70%–80% of all cases) and usually appear at an old age [43,44]. Hereditary forms of CRC include familial adenomatous polyposis (-1%), non-polyposis hereditary CRC or Lynch syndrome (2%–5%) and MYH–gene associated polyposis (<1%) [45]. Interestingly, molecular and cellular alterations precede morphological changes of the intestinal mucosa, and may predispose for tumorigenesis [46,47]. This must be true also for intestinal microbes and their balance [48]. Such alterations may be blamed for the recurrence of adenomatous polyps after surgical excision [49]. Therefore, ongoing efforts turn towards finding specific genetic and microbial markers that will allow the early detection of CRC appearance in terms of personalized medicine and treatment.

A hallmark of transition from normal colonic epithelium to neoplastic is genomic instability (GI), which is divided to chromosomal instability (CIN), microsatellite instability (MSI) and epigenetic instability (EI) [44]. The most familiar form of GI is CIN, which is implicated in 80%–85% of colorectal tumors [50]. GI is characterized by a) the presence of aneuploidy, which involves changes in chromosome number, b) modifications in the gene structure, such as insertions, deletions or base substitutions, which are also caused by MSI, c) chromosome rearrangements and d) gene multiplying. The basic concept of GI involves the loss of function of tumor-suppressor genes, such as adenomatous polyposis coli (APC), p53, SMAD4, and tumor-suppressor genes on chromosome 18q the area deleted in colon cancer (DCC), or the activation of the K-Ras oncogene [51].

APC is mutated in up to 80% of sporadic CRC cases and is involved in the negative regulation of Wingless–Int (WNT) signaling pathway. WNT pathway regulates various biological processes, such as cell proliferation, differentiation, polarity, and movement, and maintains intestinal epithelial cell (IEC) homeostasis [52–54]. The canonical WNT pathway is highly conserved and initiates with the binding of Wnts to Frizzled (Fz) receptors [55–57]. Downstream of Fz, Dishevelled (Dsh) the glycogen synthase kinase 3 beta (GSK3β) and casein kinase 1-γ (CK1γ) result in the docking of the scaffold protein Axin and APC and the stabilization of β-catenin. The complex with β-catenin is disrupted upon ligand signaling and β-catenin moves to the nucleus where it binds to T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors activating specific Wnt target genes. In the absence of Wnt, the serine/threonine kinases, CK1 and GSK3α/β, phosphorylate β-catenin, which is guided by the F box/WD repeat protein β-TrCP, for degradation to the proteasome. In the absence of signaling, TCF/LEF is not activated by β-catenin and its targets are suppressed by Groucho [58]. The TCF binding sites are also similar between vertebrates and Drosophila [59]. The function of β-catenin as a TCF activator is strictly regulated by the multihprotein complex that involves APC, which when mutated β-catenin is activated to induce tumor-promoting genes, such as Myc [60].

The KRAS oncogene is an activated form of the endogenous gene and present in up to 43% of human CRC tumors. It encodes the guanosine diphosphate (GDP) and guanosine triphosphate (GTP) binding proteins. Wild type KRAS is induced by the epidermal growth factor receptor (EGFR) pathway, but the KRAS oncogene is constitutively active independently of such stimulation [61]. Activation of EGFR promotes an excessive mitogenic signaling cascade through the activation of numerous pathways, including the RAS – RAF – mitogen-activated protein kinase (MAPK), the phosphatidylinositol 3-kinase (PI3K) – Akt, and the phospholipase C pathway [62, 63]. BRAF V600E (involved in 10–15% of CRC tumors), which encodes a guanosine triphosphate (GTPase), is also involved in the EGFR pathway activation [64]. PIK3CA gene of PI3K pathway is mutated in ~15% of CRCs [65], while some cases include mutations in PTEN, a tumor suppressor, which normally inhibits PI3K [66]. Additional mutations present in CRC tumors include FBXW7, TCF7L2, NRAS, FAM13B, CTNNB1 and SMAD2 [67] (Table 1). Mutations in the MSI pathway are primarily due to the loss of function of DNA repair proteins, MLH1, MLH3, PMS1, PMS2, MSH2, MSH3, MSH6 and Exo1 [68]. MSI also affects cell mitosis (TGF-β, GRB1, TCF-4, WISP3, activin receptor-2, IGF-2 receptor, axin-2, and CDX), apoptosis (BAX, caspase-5, RIZ, BCL-10, PTEN, hG4-1, and FAS), and additional DNA repair genes (MBD-4, BLM, CHK1 and RAD50) [69, 70]. The most known, clinically evaluated MSI markers are mononucleotide (BAT-25, BAT-26, NR-21, NR-24, and MONO-27) exhibiting high sensitivity and specificity [64] (Table 2). Two kinds of Ei have been mostly described in CRC: CpG island methylator phenotype (CIMP), and global DNA hypomethylation. Both mechanisms cause silencing of gene expression. Known biomarkers for CIMP-positive tumors are CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 and methylation must occur in at least 3 of them [71]. Indicative lists of mouse and fly homologs of human genetic and epigenetic biomarkers of inflammation and CRC are provided in Tables 1, 2.

Genetic biomarkers linked to inflammation (IBD) may also be linked to CRC. Chronic inflammation and tissue damage induce cell proliferation and aberrant differentiation of macroscopically normal–appearing colonic mucosa, which may lead to crypt enlargement and potentially to cancer initiation and progression [72–74]. The most used marker for cell proliferation during inflammation and cancer is Ki67 [75–80]. Additional markers used to estimate colorectal tumor cell mitosis are MCM7 and its negative regulator Geminin, which are involved in the DNA replication [81–83], as well as, Aurora kinase A (AURKA), which plays a critical role in cell cycle regulation [84], and proliferating cell nuclear antigen (PCNA), which is necessary for DNA synthesis during replication [85,86]. Inflammation responses involve the recruitment of tissue-resident macrophages and mast cells, which produce a variety of inflammatory mediators, including cytokines, chemokines, proteases, matrix metalloproteinases, TNF-α, interleukins (IL), interferons (IFN), and enzymes such as cyclooxygenase-2 (COX-2), 5-lipoxygenase (5LOX), and phospholipase A2 (PLA2) responsible for eicosanoid formation [87]. Many other cytokines may be pro-tumorigenic, including IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and VEGF.
These mediators could serve as prognostic biomarkers for CRC appearance. Additional processes and genes affecting susceptibility to intestinal infection, stress or inflammation in human, mice and flies are described in table 2 [89].

Bacteria have been linked both positively and negatively to inflammation (IBD) and CRC. Major disruption of the healthy microbiota caused by extensive and prolonged antibiotic use, especially in neonates and children, can result in life-threatening necrotizing enterocolitis. In this case intestinal dysbiosis results in excessive inflammation, mucosal injury and cell death without regeneration [90]. Shifting the balance of intestinal

Table 1: Genomic Instability and Epigenetic Instability related genes and their homology in human, mice and flies.

PROCESS	HUMAN SNPs/GENES [136]	MOUSE SNPs/GENES [137]	FLY GENES	HOMOLOGY
Chromosomal Instability				
APC	APC	APC-like [138]	Human-mouse: 90%	
TP53	Tp53	p53 [139]	Human-mouse: 77%	
SMAD4	Smad4	Med [140]	Human-mouse: 98% Human-fly: 78%	
KRAS	Kras	Ras85D [141]	Human-mouse: 96% Human-fly: 85%	
MYC	Mbc	dMyc [142]	Human-mouse: 87%	
RAF1	Raf1	D-raf [143]	Human-mouse: 98%	
PI3KCA	Pk3ca	PI3K [144]	Human-mouse: 99%	
BRAF	Braf	Raf [145]	Human-mouse: 86% Human-fly: 45%	
PTEN	Pten	Pten [146]	Human-mouse: 99% Human-fly: 47%	
FBXW7	Fbxw7	Archipelago [147]	Human-mouse: 95%	
TCF7L2	Tcf7l2	dTCF [59]	Human-mouse: 97%	
NRAS	Nras	NRas [148]	Human-mouse: 99%	
AMER1	Amer1		Human-mouse: 77%	
CTNNB1	Ctnnb1	arm [149]	Human-mouse: 99% Human-fly: 67%	
SMA2D2	Smad2	Smad2 [150]	Human-mouse: 99%	
Microsatellite Instability				
MLH1	Mlh1	Mlh1 [151]	Human-mouse: 88% Human-fly: 58%	
MLH3	Mlh3		Human-mouse: 70%	
PMS1	Pms1		Human-mouse: 75%	
PMS2	Pms2	Pms2 [152]	Human-mouse: 77%	
MSH2	Msh2	spell1 [153]	Human-mouse: 93% Human-fly: 45%	
MSH3	Msh3		Human-mouse: 82%	
MSH6	Msh6	Msh6 [152]	Human-mouse: 85% Human-fly: 44%	
Exo1	Exo1		Human-mouse: 73%	
TGFB1	Tgfb1	Dik1/Pref-1 [154]	Human-mouse: 90%	
PI3K3R1	Pk3r1	PI3K21B [155]	Human-mouse: 96%	
TCF-4	Tcf4	dTCF [59]	Human-mouse: 96%	
WISP3	Wisp3	Ccn [156]	Human-mouse: 79%	
ACVR2A	Acvr2a	put [157]	Human-mouse: 99% Human-fly: 47%	
IGF2R	Igf2r	Dtnf1 [158]	Human-mouse: 81%	
AXIN2	Axin2	Daxin [159]	Human-mouse: 88%	
CDX	Cdx1		Human-mouse: 84%	
BAX	Bax		Human-mouse: 92%	
PRDM2	Prdm2		Human-mouse: 81%	
BCL10	Bcl10		Human-mouse: 91%	
PA2G4	Pa2g4	CG10576 [160]	Human-mouse: 99% Human-fly: 56%	
FAS	Fas		Human-mouse: 49%	
MBD4	Mbd4		Human-mouse: 96%	
BLM	Blm		Human-mouse: 75%	
CHEK1	Chek1	grp [161]	Human-mouse: 93% Human-fly: 47%	
RAD50	Rad50	rad50 [162]	Human-mouse: 92% Human-fly: 29%	
Epigenomic Instability				
CACNA1G	Cacna1g	Ca-a1T [163]	Human-mouse: 94%	
IG2F2	Igf2	Igf [164]	Human-mouse: 82%	
NEUROG1	Neurog1	Atonal [165]	Human-mouse: 77%	
RUNX3	Runx3	Runt [166]	Human-mouse: 89%	
SOCS1	Socs1	SOCS36E [167]	Human-mouse: 92%	

Citation: Kamilari E, Apidianakis Y, Panagi M (2017) Flies to Humans - Humans to Flies: A Virtuous Circle of Colorectal Cancer Prevention. Arch Clin Gastroenterol 3(3): 047-060. DOI: http://doi.org/10.17352/2455-2283.000038
Table 2: Processes and genes affecting susceptibility to intestinal infection, stress or inflammation in humans, mice and flies, per Vaiserman, 2015 [89].

PROCESS	HUMAN SNPs/GENES [136]	MOUSE SNPs/GENES [137]	FLY GENES	HOMOLOGY
Autophagy				
ATG16L1	Atg16l1	CG31033 [168]	Human-mouse: 94% Human-fly: 38%	
IRGM1	IRGM1		Human-mouse: 57%	
ULK1	AtG16L1	Atg1 [169]	Human-mouse: 89%	
MTMR3	Mtmr3	CG3632 (Myotubularin-like) [170]	Human-mouse: 84%	
VAMP3	Vamp3	n-Syb, Syb/dVAMP [171]	Human-mouse: 94%	
DAP	Dap		Human-mouse: 96%	
LRRK2	Lrk2	dLRRK [172]	Human-mouse: 87%	
CUL2	Cul2	Cul-2 [173]	Human-mouse: 97% Human-fly: 51%	
PARK7	Park7	dj-1beta [174]	Human-mouse: 92% Human-fly: 56%	
NOD2	Nod2	PGRPs [5]	Human-mouse: 79%	
RipK3	RipK3	Imd homolog of RipK2 [5]	Human-mouse: 59%	
NF-κB	NF-κB	NF-κB-like transcription factor(s) Dorsal and/or Dif [6]	Human-mouse: 86%	
TNFa	Tnfa	Eiger [6]	Human-mouse: 79%	
COX-2	Ptgs2	COX-like [6]	Human-mouse: 87%	
TLR1-10	Tlr1-11	toll [53]	Human-mouse: 74%	
TLR-4	Tlr4	toll [53]	Human-mouse: 67%	
B-defensins			Human-mouse: 67%	
Slc11a1	Slc11a1	Nramp [178]	Human-mouse: 89%	
Fcgr2B	Fcgr2b		Human-mouse: 60%	
TLR-4	Tlr4	toll [53]	Human-mouse: 67%	
Adaptive Immunity			Human-mouse: 59%	
Akt	Akt		Human-mouse: 67%	
JAK2	Jak 2,3	hop [176]	Human-mouse: 94% Human-fly: 83%	
TYK2	Tyk2	Tyk2 [177]	Human-mouse: 78%	
IL-1	Il1		Human-mouse: 98% Human-fly: 68%	
Rel	Rel	Rel [179]	Human-mouse: 70%	
Card9	Card9		Human-mouse: 86%	
MIF	Mif		Human-mouse: 90%	
Foxo3	Foxo3	dFOXO [180]	Human-mouse: 94%	
Prdm1	Prdm1		Human-mouse: 67%	
Lsp1	Lsp1		Human-mouse: 68%	
Smad3	Smad3	Smox [181]	Human-mouse: 100% Human-fly: 81%	
Smad7	Smad7	MAD [182]	Human-mouse: 98%	
TGF-β	Tgfβ1		Human-mouse: 90%	
Ntrsf6	Fas		Human-mouse: 49%	
Smad7	Smad7	MAD [182]	Human-mouse: 98%	
Tnfα	Tnfa		Human-mouse: 90%	
Tnf-α	Tnfrsf9		Human-mouse: 57%	
Tnf-α	Tnfrsf14	Tnfrsf14	Human-mouse: 46%	
TGF-β	Tgfβ1		Human-mouse: 46%	
IL6	Il6	Upd [6]	Human-mouse: 40%	
IL10	Il10		Human-mouse: 41%	
IL2A	Il2a		Human-mouse: 73%	
IL12	Il12b		Human-mouse: 59%	
IL13	Il13		Human-mouse: 66%	
IL17A	Il17a		Human-mouse: 58%	
IL18	Il18		Human-mouse: 62%	
IL22	Il22fβ		Human-mouse: 65%	
IL1R	Il1r		Human-mouse: 69%	
IL7R	Il7r		Human-mouse: 63%	
IL8R	Cxcr2		Human-mouse: 71%	
Il17R	Il17ar		Human-mouse: 70%	
Il23R	Il23r		Human-mouse: 67%	
Ilfng	Ilfng		Human-mouse: 41%	
Vnn1	Vnn1		Human-mouse: 76%	
Regeneration				
-----------------------	-----------------	-----------------	-----------------	
TNFSF8	Tnfsf8	Human-mouse: 70%		
TNFSF11	Tnfsf11	Human-mouse: 84%		
TNFSF15	Tnfsf15	Human-mouse: 65%		
CCR3	Ccr3	Human-mouse: 70%		
CCR9	Ccr9	Human-mouse: 86%		
CXCR3	Cxcr3	Human-mouse: 86%		
CXCR4	Cxcr4	Human-mouse: 89%		
CXCL1	Cxcl1	Human-mouse: 73%		
IL5	Il5	Human-mouse: 72%		
GATA3	Gata3	Human-mouse: 96%		
DENND1B	Dennd1b	Human-mouse: 83%		
LNPEP	Lnpep	Human-mouse: 88%		

Oxidative stress			
TNFSF8	Tnfsf8	Human-mouse: 70%	
TNFSF11	Tnfsf11	Human-mouse: 84%	
TNFSF15	Tnfsf15	Human-mouse: 65%	
CCR3	Ccr3	Human-mouse: 70%	
CCR9	Ccr9	Human-mouse: 86%	
CXCR3	Cxcr3	Human-mouse: 86%	
CXCR4	Cxcr4	Human-mouse: 89%	
CXCL1	Cxcl1	Human-mouse: 73%	
IL5	Il5	Human-mouse: 72%	
GATA3	Gata3	Human-mouse: 96%	
DENND1B	Dennd1b	Human-mouse: 83%	
LNPEP	Lnpep	Human-mouse: 88%	

Epithelial Barrier			
TNFSF8	Tnfsf8	Human-mouse: 70%	
TNFSF11	Tnfsf11	Human-mouse: 84%	
TNFSF15	Tnfsf15	Human-mouse: 65%	
CCR3	Ccr3	Human-mouse: 70%	
CCR9	Ccr9	Human-mouse: 86%	
CXCR3	Cxcr3	Human-mouse: 86%	
CXCR4	Cxcr4	Human-mouse: 89%	
CXCL1	Cxcl1	Human-mouse: 73%	
IL5	Il5	Human-mouse: 72%	
GATA3	Gata3	Human-mouse: 96%	
DENND1B	Dennd1b	Human-mouse: 83%	
LNPEP	Lnpep	Human-mouse: 88%	

Citation: Kamilari E, Apidianakis Y, Panagi M (2017) Flies to Humans - Humans to Flies: A Virtuous Circle of Colorectal Cancer Prevention. Arch Clin Gastroenterol 3(3): 047-060. DOI: http://doi.org/10.17352/2455-2283.000038
microbiota from a pathogenic to a protective complement of bacteria can protect the gut from inflammation and subsequent injury [91]. Accordingly, broad-spectrum antibiotics destroy the flora leading to intestinal inflammation and damage that can be prevented with oral administration of microbiota-derived molecular patterns, such as lipopolysaccharide (LPS) that induce a steady state of inflammatory cytokines and prime the epithelium again pathogens [92]. From the immunological perspective evidence reveals various properties of intestinal bacteria that distinguish them as commensals vs. pathogens [93]. Nevertheless, for the most part microbiota is just linked to the healthy or the diseased state with only a few clear cases of bacterial pathogens presented as causal for the disease. Reduced abundance of potentially beneficial bacteria has been reported for patients with IBD and CRC (Table 3). Some of these belong to the family Lachnospiraceae, which produce short chain fatty acids, such as the anti-inflammatory butyric acids [94] and include the genera Lachnospira [95–97], Blautia [98–100], Anaerostipes [95] and Roseburia [103–106], even though some reports indicate increase abundance in CRC [107,108]. The genus Lactobacillus was negatively correlated with CRC [109–115]. Lactobacillus strains have been well characterized for their probiotic properties including production of butyrate, which has an anti-inflammatory function [94], as well as, the antibacterial lactic acid and bacteriocins. In addition, Lactobacilli reduce the secretion of virulence factors from entervoerulent pathogens alleviating their deleterious effects on the host [116]. Similarly, Clostridia members of clusters XIVa, IV and XVIII, have been reported to reduce inflammation [117] and have decreased abundance in IBD [117–122]. Moreover, some reports have found reduced amounts of Bifidobacteria in CRC patients [95], while others the opposite [123].

Translational studies for identifying “treatable” biomarkers of risk for CRC using Drosophila

Deciphering the right inflammatory status in the intestine is necessary for designing clinical trials against IBD and maybe CRC. Mucosal healing in IBD patients has shown promise as it correlates with remission of ulcers in Crohn’s disease and erosions and ulcers in ulcerative colitis [7,124]. Transcriptomic studies in humans have led to the identification of genetic and microbial associations with IBD and CRC. Here, we emphasize the use of Drosophila as a whole-animal model to validate the effectiveness, causality and toxicity of identified “treatable” biomarkers in intestinal disease. Examples include the “humanized” Drosophila strains, which are genetically engineered to express human orthologs [2,125]. Notably, tens of chemicals originally selected to target human proteins, such as Rapamycin, BEZ235, SP600125 and DAPT, have been shown to have the same mechanism of action in Drosophila i.e. inhibition of PI3K/mTOR, JNK and γ-secretase/Notch signaling, respectively [125–130]. Thus, accumulating evidence suggests that Drosophila could fill the gap between in vitro and mammalian model host testing (Figure 1).

Moreover, flies could be used to examine the association between identified intestinal disease–related microbiota and host. For instance, the commensal microbe of Drosophila Acetobacter pomorum was found to modulate insulin pathway via acetic acid production and subsequently promote ISC proliferation and overall animal growth [131]. Also, a positive correlation between Enterococcus spp. and IBD patients has been also reported. Enterococcus strains that form better biofilms, adhere strongly on intestinal cells and possess antioxidant defense mechanisms are mostly found in IBD patients versus healthy people [132]. Therefore, dissecting host–microbe interactions of overrepresented in IBD and CRC bacterial strains, such as Bacteroides, Escherichia, Enterococcus and Enterobacter in gnotobiotic flies could give insights regarding bacterial pathogenicity. This is more feasible nowadays due to the increasing number of human microbiota species that we are able to culture and thus test in model organisms, such as flies [133]. Similarly, Drosophila could be used to determine the beneficial impact of bacteria underrepresented in CRC like Clostridia and Lactobacillus.

Accumulated evidence in Drosophila highlights the role of diet in intestinal disease. Nutrient deprivation and reduced insulin pathway correlate with reduced ISC proliferation and number, a phenotype that is reversible upon feeding [134]. Dietary L-glutamate also stimulates intestinal cell proliferation and growth via regulation of Ca2+ signaling [135]. This plasticity of ISC to nutrient availability could be used to target

MMP12	Mmp12	dm1- and dm2-MMPs [201]	Human-mouse: 62%
MMP13	Mmp13	dm1- and dm2-MMPs [201]	Human-mouse: 86%
MMP14	Mmp14	Mmp1 [202]	Human-mouse: 97% Human-fly: 39%
TIMP1	Timp1		Human-mouse: 74%
TIMP2	Timp2		Human-mouse: 98%
TIMP3	Timp3	dN-TIMP [201]	Human-mouse: 96%
DLG5	Dlg5	Dlg5 [203]	Human-mouse: 92%
MLCK	Mylk3	Strn-Mlck [204]	Human-mouse: 68%

| Additional Pro-tumorigenic | | | |
|---------------------------|------------------------|-----------------|
| IL11 | Il11 | | Human-mouse: 88% |
| IL23 | Il23 | | Human-mouse: 74% |
| IL33 | Il33 | | Human-mouse: 52% |
| VEGF | Vegf | Pvf1/3 - VEGF-related factor 1/3 [66] | Human-mouse: 88% |
the aberrant proliferation of dysplastic lesions. Given that CRC is a multifactorial disease, a sophisticated combination of probiotic, chemical and dietary interventions might be required to efficiently prevent the disease. In this regard, tumor-initiating inflammation may be successfully targeted by sequestration of regenerative chemokines/cytokines and selective inhibition of signaling molecules that promote tumor survival and growth [25].

Limitations

The use of animal models provides the ability to study the effects of biomarkers of fundamental signaling pathways, microbes and environmental factors and suggest therapeutic interventions against intestinal inflammation and tumorigenesis. A practical limitation of using Drosophila in translational studies on IBD and CRC is the inability to assess the disease promoting properties of human anaerobes that are highly sensitive to the presence of oxygen. An additional limitation of the fly model is the lack of adaptive immunity and the absence of lamina propria in which immune cells reside and infiltrate. Thus, alternative animal hosts such as mouse models should be used to validate and complement the assessment of biomarkers, especially those related to adaptive immunity and highly sensitive to oxygen microbes. Regardless, advantages such as the short lifespan of the fly facilitate assessments of drug-diet-microbial interventions against sporadic intestinal cancer during ageing that is impractical to perform in mice. Thus, Drosophila can be an attractive model host for studying well-conserved genetic, microbial, and environmental components of intestinal homeostasis and disease, the analogous features of which might play a pivotal role in human health.

References

1. Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4: 21-30. Link: https://goo.gl/RtfHyD
2. Fernandez-Hernandez I, Scheenaard E, Pollarolo G, Gonzalez C (2016) The translational relevance of Drosophila in drug discovery. EMBO reports 17: 471-472. Link: https://goo.gl/iyeyS3
3. Tzelepis I, Kapsetaki SE, Panayidou S, Apidianakis Y (2013) Drosophila...
meganogaster: a first step and a stepping-stone to anti-infectives. Curr. Opin. Pharmacol. 13: 763-768. Link: https://doi.org/00VpV6

4. Markstein M, Dettorre S, Cho J, Neummuller RA, Craig-Muller S, et al. (2014) Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A 111: 4530-4535. Link: https://doi.org/0SwZmS

5. Cossignier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7: 349-359. Link: https://doi.org/prKeY8

6. Panayidou S, Apidianakis Y (2013) Regenerative inflammation: lessons from Drosophila intestinal epithelium in health and disease. Pathogens 2: 209-231. Link: https://doi.org/epgBKj

7. Kariin M, Clevers H (2016) Reparative inflammation takes charge of tissue regeneration. Nature 529: 307-315. Link: https://doi.org/oRMUDd

8. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439: 475-479. Link: https://doi.org/EY66In

9. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439: 470-474. Link: https://doi.org/XchMQc

10. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaire B, et al. (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108: 15956-15971. Link: https://doi.org/hm5OLM

11. Ha E, Lee K, Seo YY, Kim S, Lim J, et al. (2013) Bacterial-Derived Uracil as a Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated host-microbe homeostasis. Trends in immunology 31: 278-287. Link: https://doi.org/AMyhJ7

12. Lee K, Kim S, Kim E, Ha E, You H, et al. (2013) Bacterial-Derived Uracil as a Modulator of Mucosal Immunity and Gut-Microbe Homeostasis in Drosophila. Cell 153: 797-811. Link: https://doi.org/uCTdAa

13. Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science (New York) 310: 847-850. Link: https://doi.org/dkWD1h

14. Bae YS, Choi MK, Lee W (2010) Dual oxidase in murine intestinal and host-microbe homeostasis. Trends in immunology 31: 278-287. Link: https://doi.org/AMyhJ7

15. Jones RM, Luo L, Arditia CS, Richardson AN, Kenw YM, et al. (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32: 3017-3028. Link: https://doi.org/spB9qK

16. Tzou P, Ohbresser S, Ferrand D, Capovilla M, Reichhart J, et al. (2009) Tissue-Specific Inducible Expression of Antimicrobial Peptide Genes in Drosophila Surface Epithelia. Immunology 13: 737-748. Link: https://doi.org/lJFCRw

17. Buchon N, Osman D, David FA, Yu Fang H, Boquete J, et al. (2003) Morphological and Molecular Characterization of Adult Midgut Compartimentalization in Drosophila. Cell Rep 3: 1725-1738. Link: https://doi.org/ySTWB0

18. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaire B (2009) Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation. Cell Host Microbe 5: 200-211. Link: https://doi.org/kZ2mDs

19. Jiang H, Patel PH, Kohlmaier A, Greely MO, McEwen DG, et al. (2009) Cytokine/Jak/Stat Signaling Mediates Regeneration and Homeostasis in the Drosophila Midgut. Cell 137: 1343-1355. Link: https://doi.org/pGoB3S

20. Buchon N, Broderick NA, Kuraishi T, Lemaire B (2010) Drosophila EGFR signaling coordinates stem cell proliferation and gut remodeling following infection. BMC biol 8: 152. Link: https://doi.org/zEBMQu

21. Jiang H, Edgar BA (2011) Intestinal stem cells in the adult Drosophila midgut. Exp Cell Res 317: 2780-2789. Link: https://doi.org/NLUsjC

22. Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455: 1119-1123. Link: https://doi.org/eaNR0t

23. Ren F, Wang B, Yue T, Yun EY, Ip YT, et al. (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci USA 107: 21064-21069. Link: https://doi.org/IBCvXm

24. Quan Z, Sun P, Lin G, Xi R (2013) TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation through Rheb-TORC1-S6K but independently of nutritional status or Notch regulation. J Cell Sci 126: 3884-3892. Link: https://doi.org/e4qN8W

25. Gribenikov SV, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140: 883-899. Link: https://doi.org/EFnrJd

26. Yurgul MB, Kulke MH, Fuchs CS, Allen BA, Uno H, et al. (2017) Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol 35: 1086-1095. Link: https://doi.org/Hm59Ee

27. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. Gastrointestinal and liver physiology 287: G7-17. Link: https://doi.org/xxOhrD

28. de Martel C, Franceschi S (2009) Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 70: 183-194. Link: https://doi.org/zSS4K7

29. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860-867. Link: https://doi.org/CGduZz

30. Siudeja K, Nassari S, Gervais L, Skorski P, Lameiras S, et al. (2015) Frequent somatic mutation in adult intestinal stem cells drives neoplasia and genetic mosaicism during aging. Cell stem cell 17: 653-674. Link: https://doi.org/CmIHu

31. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci USA 106: 20883-20888. Link: https://doi.org/QkbhvW

32. Park J, Lee S, Na H, Pyo J, Kim Y, et al. (2012) Age-and oxidative stress-induced DNA damage in Drosophila intestinal stem cells as marked by gamma-H2AX. Exp Gerontol 47: 401-405. Link: https://doi.org/cc52bH

33. Na H, Park J, Pyo J, Lee S, Jeon H, et al. (2013) Mechanism of metformin: Inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 134: 381-390. Link: https://doi.org/2q3Obh

34. Rodier F, Coppé J, Patil CK, Hoeijmakers WA, Muñoz DP, et al. (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature cell biol 11: 973-979. Link: https://doi.org/uFBKBe

35. Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster - from microbial recognition to whole-organism physiology. Nature reviews immunology 14: 796-810. Link: https://doi.org/29ax2F

36. Biteau B, Hochmuth CE, Jasper H (2008) JNK Activity in Somatic Stem Cells Causes Loss of Tissue Homeostasis in the Aging Drosophila Gut. Cell stem cell 3: 442-455. Link: https://doi.org/oYGlBq

37. Frank DN, St Amand AL, Feldman RA, Boedecker EC, Harpaz N, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007: 104: 13780-13785. Link: https://doi.org/1PNJdJ

38. Lupton JR (2004) Microbial degradation products influence colon cancer risk: the butyrate controversy. J Nutr 134: 479-482. Link: https://doi.org/oAXtB1
39. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230. Link: https://doi.org/10.1038/nature11434

40. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11: 227-238. Link: https://doi.org/10.1038/nrmicro3068

41. Lievin-Le Moal V, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19: 315-337. Link: https://doi.org/10.1128/CMR.19.2.315-337.01009-02

42. Hooper LV, Litman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336: 1268-1273. Link: https://doi.org/10.1126/science.1225011

43. Whiffin N, Hosking FJ, Farrington SM, Palles C, Dobkins SE, et al. (2014) Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet 23: 4729-4737. Link: https://doi.org/10.1093/hmg/ddu310

44. Binefa G, Rodriguez-Moranta F, Teule À, Medina-Hayas M (2014) Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol 20: 6786-6808. Link: https://doi.org/10.3748/wjg.v20.i33.6786

45. Farrington SM, Tenesa A, Barnett RS, Wiltshire A, Prendergast J, et al. (2005) Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet 77: 112-119. Link: https://doi.org/10.1086/429707

46. Nambiar PR, Gupta RR, Misra V (2010) An "omics" based survey of human colon cancer. Mutat Res Rev 693: 3-18. Link: https://doi.org/10.1016/j.yxer.2010.07.001

47. Aghagolzadeh P, Radpour R (2016) New trends in molecular and cellular biomarker discovery for colorectal cancer. World J Gastroenterol 22: 5678. Link: https://doi.org/10.3748/wjg.v22.i30.5678

48. Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15: 317-328. Link: https://doi.org/10.1016/j.chom.2014.06.009

49. Rutter MD, Chattro, A, Barbour JA, Thomas-Gibson S, Bhandari P, et al. (2015) British Society of Gastroenterology/Association of Coloproctologists of Great Britain and Ireland guidelines for the management of large non-pancolitic uncolorectal polyps. Gut 64: 1847-1873. Link: https://doi.org/10.1136/gutjnl-2014-308609

50. Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Nature 435: 527. Link: https://doi.org/10.1038/nature03913

51. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, et al. (1988) Genetic alterations during colorectal-tumor development. New England Journal of Medicine 319: 525-532. Link: https://doi.org/10.1056/NEJM198808163190805

52. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum mol Genet 10: 1109-1120. Link: https://doi.org/10.1093/hmg/10.10.1109

53. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment polarity in Drosophila. Nature 287: 795-801. Link: https://doi.org/10.1038/287795a0

54. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, et al. (1987) The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50: 649-657. Link: https://doi.org/10.1016/0092-8674(87)90203-1

55. Whi...
76. Palmqvist R, Selberg P, Oberg A, Tavelin B, Rutegard JN, et al. (1999) Low
luminal cell proliferation at the invasive margin is associated with a poor
prognosis in Dukes' stage B colorectal cancers. Br J Cancer 79: 577-581.
[Link: https://www.ncbi.nlm.nih.gov/pubmed/10585014]

77. Oshima CT, Iriya K, Forones NM (2005) Ki-67 as a prognostic marker in
colorectal cancer but not in gastric cancer. Neoplasia 52: 420-424. [Link:
https://www.ncbi.nlm.nih.gov/pubmed/15966720]

78. Salminen E, Palmsu, Vahlberg T, Roberts PJ, Soderstrom KO (2005) Increased
proliferation activity measured by immunoreactive Ki67 is associated with
survival improvement in rectal/recto sigmoid cancer. World J Gastroenterol
11: 3245-3249. [Link: https://link.springer.com/article/10.1007/s12038-005-0056-3]

79. Reimers MS, Zeestraten EC, van Alphen TC, Dekker JT, Putter H, et al. (2014)
Combined analysis of biomarkers of proliferation and apoptosis in colon
cancer: an immunohistochemistry-based study using tissue microarray. Int J
Colorectal Dis 29: 1043-1052. [Link: https://link.springer.com/article/10.1007/s00058-014-0096-1]

80. Melling N, Kowitz CM, Simon R, Bokemeyer C, Terracciano L, et al. (2016)
Cytokine-induced Modulation of Colorectal Cancer. Front Oncol 6.
[Link: https://www.frontiersin.org/article/10.3389/fonc.2016.00201]

81. Nishihara K, Shomori K, Fujioka S, Tokuyasu N, Inaba A, et al. (2008)
DOI: http://doi.org/10.17352/2455-2283.000038

82. Nishihara K, Shomori K, Tamura T, Fujioka S, Ogawa T, et al. (2009)
Minichromosome maintenance protein 7 in colorectal cancer:
implication of prognostic significance. Int J Clin Pathol 69: 209-214. [Link:
https://www.ncbi.nlm.nih.gov/pubmed/19417564]

83. Nishihara K, Shomori K, Fujisita T, Fujisaki S, Okuyasu N, Inaba A, et al. (2008)
High Ki67 expression is an independent good prognostic marker in colorectal
cancer. J Clin Pathol 61: 366-368. [Link: https://www.ncbi.nlm.nih.gov/pubmed/18377999]

84. Nishihara K, Shomori K, Tamura T, Fujisaki S, Ogawa T, et al. (2009)
Immunohistochemical expression of geminin in colorectal cancer:
Implication of prognostic significance. Int J Oncol 35: 297-304. [Link:
https://www.ncbi.nlm.nih.gov/pubmed/19455506]

85. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is
the auxiliary protein of DNA polymerase- delta. Nature 326: 515-517. [Link:
https://www.nature.com/articles/326515a0]

86. Mulligan JM, Mai KT, Parks W, Geridzen RG (1987) Proliferating cell
nuclear antigen, (PCNA) and MIB 1: Markers of locally advanced and
biologically aggressive prostate cancer. Can J Urol 4: 422-425. [Link:
https://www.ncbi.nlm.nih.gov/pubmed/3863928]

87. Sethi G, Shanmugam MK, Ramachandran L, Kumar AP, Tergaonkar V (2012)
Fluctuations in butyrate-producing bacteria in in ulcerative colitis patients of North India. World J Gastroenterol 19: 3404-
3414. [Link: https://www.wjgnet.com/1007-9327/full/v39/p3414.htm]

88. Bosch X, Caldas C, de la Macorra J (2006) Diversification of commensal
microbiota in conventional and serrated precursors of colorectal cancer.
Gut 55: 236-240. [Link: https://www.nature.com/articles/gut.2005.176]

89. Sansonetti P (2011) To be or not to be a pathogen: that is the mucosally
relevant question. Mucosal immunity 4: 8-14. [Link: https://doi.org/10.17352/2455-2283.000038]

90. Nej J, Walker WA (2011) Necrotizing enterocolitis. New England Journal of
Medicine 364: 255-264. [Link: https://www.nejm.org/doi/full/10.1056/NEJMr1108162]

91. Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, et al. (2011) Towards
the treatment-naive microbiome in new-onset Crohn's disease. Cell host microbe 15: 382-389. [Link:
https://www.cell.com/cell-host-microbe]

92. Liguori G, Lamas B, Richard ML, Brandi G, Da Costa G, et al. (2016) Fungal
dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J
dhrohns Colitis 10: 281-290. [Link: https://www.ncbi.nlm.nih.gov/pubmed/26823201]

93. Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J, et al. (2016) The gut
microbiota in conventional and serrated precursors of colorectal cancer.
Microbiome 4: 69. [Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769716/]

94. Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J, et al. (2016) The gut
microbiota in conventional and serrated precursors of colorectal cancer.
Microbiome 4: 69. [Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769716/]

95. Chen W, Liu F, Ling Z, Tong X, Xiang C (2012) Human intestinal lumen and
oral flora by toll-like receptors is required for prevention of colorectal tumors. Int J Cancer 116: 762-767. [Link:
https://www.ncbi.nlm.nih.gov/pubmed/21468974]
125. Gianotti L, Morelli L, Galliatti F, Rocchetti S, Coppola S, et al. (2010) A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol 16: 167-175. Complete. Link: https://gogo.gl/6VvXze

126. Orlando A, Refolo M, Messa C, Amati L, Lavermicocca P, et al. (2012) Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei (IMPC2. 1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr Cancer 64: 1103-1111. Link: https://gogo.gl/KMB98

127. Uccello M, Malaguarnera G, Basile F, D'agata V, Malaguarnera M, et al. (2012) Potential role of probiotics on colorectal cancer prevention. BMC Surg 12: S35. Link: https://gogo.gl/Ve061

128. Zhong L, Zhang X, Covasa M (2014) Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol 20: 7878-7886. Link: https://gogo.gl/HV9eY

129. de Moreno de LeBlanc A, LeBlanc JG (2014) Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 20: 16518-16528. Link: https://gogo.gl/NFHFHT

130. Lievin-Le Moal V, Servin AL (2014) Antiprofungal activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 27: 167-199. Link: https://gogo.gl/0tpxco

131. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, et al. (2013) Treg induction by a rationally selected mixture of Clostridia strains from the fecal microbiota of healthy human volunteers. Cell 153: 264-276. Link: https://gogo.gl/3FUaZl

132. Stefancik R, Sarkar S (2003) Relationship between the DNA binding activities of SMAD and NF-kB/CTF transcription factors defines a new superfamily of genes. DNA Sequence 14: 233-239. Link: https://gogo.gl/BPRX95

133. Rajilić-Stojanović M, Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38: 996-1047. Link: https://gogo.gl/ESuykV

134. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, et al. (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13: 397-406. Link: https://gogo.gl/FeI6V4

135. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, et al. (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13: 397-406. Link: https://gogo.gl/FeI6V4

136. Zaninelli A, Murgia C, Teague AG, Sansom OJ, Cagan RL (2016) Functional exploration of colorectal cancer genomes using Drosophila. Nature communications 7: 13615. Link: https://gogo.gl/6Pmdus

137. Doyen H, John V, Anderson J, Chen L, de Saint Andrieu P, et al. (2001) Expansion of genome-secretase inhibitors reduce beta-amyloid. J Neurochem 76: 173-181. Link: https://gogo.gl/sRpCu

138. Gallant P, Shio Y, Cheng PF, Parkhurst SM, Eisenman RN (1996) Myc and Max homologs in Drosophila. Science 274: 1523. Link: https://gogo.gl/hb240g

139. Tsuda L, Inoue YH, Yoo M, Mizuno M, Hata M, Lim Y, et al. (1993) A protein kinase similar to MAP kinase activator acts downstream of the Raf kinase in Drosophila. Cell 72: 407-414. Link: https://gogo.gl/TNdKcr

Citation: Kamilari E, Apidianakis Y, Panagi M (2017) Flies to Humans - Humans to Flies: A Virtuous Circle of Colorectal Cancer Prevention. Arch Clin Gastroenterol 3(3): 047-060. DOI: http://doi.org/10.17352/2455-2283.000038
190. Missirlis F, Prive G, Belousci A, Kwan T, Rodrigues V, et al. (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci U S A 92: 10089-10093. Link: https://goo.gl/kqRi7w

191. Kidwell JF (1972) The effective lethal phase of the curly mutant in Drosophila melanogaster. J Hered 63: 100.

192. Kim RH, Peters M, Jang Y, Shi W, Pintilie M, et al. (2005) DJ1, a novel transmembrane domain protein of Drosophila melanogaster. Genetics 166: 3-11. Link: https://goo.gl/dnqC7t

193. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, et al. (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 98: 5550-5555. Link: https://goo.gl/edD2aM

194. Syed ZA, Härter T, Uv A, van Dijk-Härd IF (2008) A potential role for Drosophila mucins in development and physiology. PLoS One 3: e3041. Link: https://goo.gl/H2x29Q

195. Barry WE, Thummel CS (2016) The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. eLife 5: 10.7554/elife.11183. Link: https://goo.gl/mnDWGq

196. Jacobs HW, Richter DD, Venkatesh TR, Lehner CF (2002) Completion of mitosis requires neither fzb/rap nor fzd2, a male germline-specific Drosophila Cdh1 homolog. Current biology 12: 1435-1441. Link: https://goo.gl/rok6zo

197. Lawoko-Kerali G, Rivolta MN, Holley M (2002) Expression of the transcription factor GATA3 and Pax2 during development of the mammalian inner ear. J Mol Biol 275: 35978-35985. Link: https://goo.gl/MlebwZ

198. Llano E, Pendas AM, Aza-Blanc P, Kornberg TB, Lopez-Otin C (2000) Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 275: 35978-35985. Link: https://goo.gl/XiSKNF

199. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, et al. (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 98: 5550-5555. Link: https://goo.gl/edD2aM

197. Lawoko-Kerali G, Rivolta MN, Holley M (2002) Expression of the transcription factor GATA3 and Pax2 during development of the mammalian inner ear. J Mol Biol 275: 35978-35985. Link: https://goo.gl/MlebwZ