Naphthalenes and Quinolines by Domino Reactions of Morita–Baylis–Hillman Acetates

Joel K. Annor-Gyamfi, Ebenezer Ametsetor, Kevin Meraz and Richard A. Bunce *

Department of Chemistry, Oklahoma State University, Stillwater, OK 74078–3071, USA; jannorg@okstate.edu (J.K.A.-G.); eametse@okstate.edu (E.A.); meraz.kevin@outlook.com (K.M.)
* Correspondence: rab@okstate.edu; Tel.: +1-405-744-5952

Supplementary Material

Compound	page
1H-NMR for (E)-2-cyano-3-(2-fluoro-5-nitrophenyl)allyl acetate (4)	4
13C-NMR for (E)-2-cyano-3-(2-fluoro-5-nitrophenyl)allyl acetate (4)	4
1H-NMR for Ethyl 2-(acetoxy(2-fluoro-5-nitrophenyl)methyl)acrylate (5)	5
13C-NMR for Ethyl 2-(acetoxy(2-fluoro-5-nitrophenyl)methyl)acrylate (5)	5
1H-NMR for 2-Cyano-1-(2-fluoro-5-nitrophenyl)allyl acetate (6)	6
13C-NMR for 2-Cyano-1-(2-fluoro-5-nitrophenyl)allyl acetate (6)	6
1H-NMR for Ethyl 2-(acetoxy(5-cyano-2-fluorophenyl)methyl)acrylate (7)	7
13C-NMR for Ethyl 2-(acetoxy(5-cyano-2-fluorophenyl)methyl)acrylate (7)	7
1H-NMR for 2-Cyano-1-(5-cyano-2-fluorophenyl)allyl acetate (8)	8
13C-NMR for 2-Cyano-1-(5-cyano-2-fluorophenyl)allyl acetate (8)	8
1H-NMR for Ethyl 2-(acetoxy(2-fluoropyridin-3-yl)methyl)acrylate (9)	9
13C-NMR for Ethyl 2-(acetoxy(2-fluoropyridin-3-yl)methyl)acrylate (9)	9
1H-NMR for Ethyl 4-cyano-7-nitro-2-naphthoate (15a)	10
13C-NMR for Ethyl 4-cyano-7-nitro-2-naphthoate (15a)	10
1H-NMR for 3-Ethyl 1-methyl 6-nitronaphthalene-1,3-dicarboxylate (15b)	11
13C-NMR for 3-Ethyl 1-methyl 6-nitronaphthalene-1,3-dicarboxylate (15b)	11
1H-NMR for Diethyl 6-nitronaphthalene-1,3-dicarboxylate (15c)	12
13C-NMR for Diethyl 6-nitronaphthalene-1,3-dicarboxylate (15c)	12
1H-NMR for Ethyl 4-benzoyl-7-nitro-2-naphthoate (15d)	13
13C-NMR for Ethyl 4-benzoyl-7-nitro-2-naphthoate (15d)	13
1H-NMR for Ethyl 4-acetyl-7-nitro-2-naphthoate (15e)	14
1H-NMR for Ethyl 4-acetyl-7-nitro-2-naphthoate (15e)	14
1H-NMR for 6-Nitronaphthalene-1,3-dicarbonitrile (16a)	15
13C-NMR for 6-Nitronaphthalene-1,3-dicarbonitrile (16a)	15
1H-NMR for Methyl 3-cyano-6-nitro-1-naphthoate (16b)	16
1H-NMR for Methyl 3-cyano-6-nitro-1-naphthoate (16b)	16
1H-NMR for Ethyl 3-cyano-6-nitro-1-naphthoate (16c)	17
13C-NMR for Ethyl 3-cyano-6-nitro-1-naphthoate (16c)	17
\[^1 \text{H-NMR for 4-Benzoyl-7-nitro-2-naphthonitrile (16d)} \] .. 18

\[^1 \text{C-NMR for 4-Benzoyl-7-nitro-2-naphthonitrile (16d)} \] .. 18

\[^1 \text{H-NMR for 4-Acetyl-7-nitro-2-naphthonitrile (16e)} \] .. 19

\[^1 \text{C-NMR for 4-Acetyl-7-nitro-2-naphthonitrile (16e)} \] .. 19

\[^1 \text{H-NMR for Ethyl 4,7-dicyano-2-naphthoate (17a)} \] .. 20

\[^1 \text{C-NMR for Ethyl 4,7-dicyano-2-naphthoate (17a)} \] .. 20

\[^1 \text{H-NMR for 3-Ethyl 1-methyl 6-cyanonaphthalene-1,3-dicarboxylate (17b)} \] .. 21

\[^1 \text{C-NMR for 3-Ethyl 1-methyl 6-cyanonaphthalene-1,3-dicarboxylate (17b)} \] .. 21

\[^1 \text{H-NMR for Diethyl 6-cyanonaphthalene-1,3-dicarboxylate (17c)} \] .. 22

\[^1 \text{C-NMR for Diethyl 6-cyanonaphthalene-1,3-dicarboxylate (17c)} \] .. 22

\[^1 \text{H-NMR for Ethyl 4-benzoyl-7-cyano-2-naphthoate (17d)} \] .. 23

\[^1 \text{C-NMR for Ethyl 4-benzoyl-7-cyano-2-naphthoate (17d)} \] .. 23

\[^1 \text{H-NMR for Ethyl 4-acetyl-7-cyano-2-naphthoate (17e)} \] .. 24

\[^1 \text{C-NMR for Ethyl 4-acetyl-7-cyano-2-naphthoate (17e)} \] .. 24

\[^1 \text{H-NMR for Naphthalene-1,3,6-tricarbonitrile (18a)} \] .. 25

\[^1 \text{C-NMR for Naphthalene-1,3,6-tricarbonitrile (18a)} \] .. 25

\[^1 \text{H-NMR for Methyl 3,6-dicyano-1-naphthoate (18b)} \] .. 26

\[^1 \text{C-NMR for Methyl 3,6-dicyano-1-naphthoate (18b)} \] .. 26

\[^1 \text{H-NMR for Ethyl 3,6-dicyano-1-naphthoate (18c)} \] .. 27

\[^1 \text{C-NMR for Ethyl 3,6-dicyano-1-naphthoate (18c)} \] .. 27

\[^1 \text{H-NMR for 4-Benzoylnaphthalene-2,7-dicarboxitrile (18d)} \] .. 28

\[^1 \text{C-NMR for 4-Benzoylnaphthalene-2,7-dicarboxitrile (18d)} \] .. 28

\[^1 \text{H-NMR for 4-Acetylphenalene-2,7-dicarbonitrile (18e)} \] .. 29

\[^1 \text{C-NMR for 4-Acetylphenalene-2,7-dicarbonitrile (18e)} \] .. 29

\[^1 \text{H-NMR for Ethyl 8-cyanoquinoline-6-carboxylate (19a)} \] .. 30

\[^1 \text{C-NMR for Ethyl 8-cyanoquinoline-6-carboxylate (19a)} \] .. 30

\[^1 \text{H-NMR for Diethyl quinoline-6,8-dicarboxylate (19b)} \] .. 31

\[^1 \text{C-NMR for Diethyl quinoline-6,8-dicarboxylate (19b)} \] .. 31

\[^1 \text{H-NMR for Ethyl 8-benzoylquinoline-6-carboxylate (19d)} \] .. 32

\[^1 \text{C-NMR for Ethyl 8-benzoylquinoline-6-carboxylate (19d)} \] .. 32

\[^1 \text{H-NMR for Ethyl 8-acetylquinoline-6-carboxylate (19e)} \] .. 33

\[^1 \text{C-NMR for Ethyl 8-acetylquinoline-6-carboxylate (19e)} \] .. 33

Control Reaction:

\[^1 \text{H-NMR for Methyl (E)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonyl)pent-4-enoate (22)} \] .. 34

\[^1 \text{C-NMR for Methyl (E)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonyl)pent-4-enoate (22)} \] .. 34

X-Ray Data:

\((E)-2-(Acetoxymethyl)-3-(2-fluoro-5-nitrophenyl)acrylonitrile (4, JAG-5-OAc, CCDC 2035023)\) .. 35-42

\(\text{Methyl (E)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonyl)pent-4-enoate (22, JAG-1-CNTL, CCDC 2035022)}\) ... 43-52
1H-NMR for (E)-2-cyano-3-(2-fluoro-5-nitrophenyl)allyl acetate (4)

13C-NMR for (E)-2-cyano-3-(2-fluoro-5-nitrophenyl)allyl acetate (4)
1H-NMR for Ethyl 2-(acetoxy(2-fluoro-5-nitrophenyl)methyl)acrylate (5)

13C-NMR for Ethyl 2-(acetoxy(2-fluoro-5-nitrophenyl)methyl)acrylate (5)
1H-NMR for 2-Cyano-1-(2-fluoro-5-nitrophenyl)allyl acetate (6)

13C-NMR for 2-Cyano-1-(2-fluoro-5-nitrophenyl)allyl acetate (6)
\[^{1}H\text{-NMR for Ethyl 2-(acetoxy(5-cyano-2-fluorophenyl)methyl)acrylate (7)} \]

\[^{13}C\text{-NMR for Ethyl 2-(acetoxy(5-cyano-2-fluorophenyl)methyl)acrylate (7)} \]
1H-NMR for 2-Cyano-1-(5-cyano-2-fluorophenyl)allyl acetate (8)

13C-NMR for 2-Cyano-1-(5-cyano-2-fluorophenyl)allyl acetate (8)
1H-NMR for Ethyl 2-(acetoxy(2-fluoropyridin-3-yl)methyl)acrylate (9)

13C-NMR for Ethyl 2-(acetoxy(2-fluoropyridin-3-yl)methyl)acrylate (9)
1H-NMR for Ethyl 4-cyano-7-nitro-2-naphthoate (15a)

13C-NMR for Ethyl 4-cyano-7-nitro-2-naphthoate (15a)
1H-NMR for 3-Ethyl 1-methyl 6-nitronaphthalene-1,3-dicarboxylate (15b)

13C-NMR for 3-Ethyl 1-methyl 6-nitronaphthalene-1,3-dicarboxylate (15b)
1H-NMR for Diethyl 6-nitronaphthalene-1,3-dicarboxylate (15c)

13C-NMR for Diethyl 6-nitronaphthalene-1,3-dicarboxylate (15c)
1H-NMR for Ethyl 4-benzoyl-7-nitro-2-naphthoate (15d)

13C-NMR for Ethyl 4-benzoyl-7-nitro-2-naphthoate (15d)
1H-NMR for Ethyl 4-acetyl-7-nitro-2-naphthoate (15e)

13C-NMR for Ethyl 4-acetyl-7-nitro-2-naphthoate (15e)
1H-NMR for 6-Nitronaphthalene-1,3-dicarbonitrile (16a)

13C-NMR for 6-Nitronaphthalene-1,3-dicarbonitrile (16a)
1H-NMR for Methyl 3-cyano-6-nitro-1-naphthoate (16b)

13C-NMR for Methyl 3-cyano-6-nitro-1-naphthoate (16b)
1H-NMR for Ethyl 3-cyano-6-nitro-1-naphthoate (16c)

13C-NMR for Ethyl 3-cyano-6-nitro-1-naphthoate (16c)
1H-NMR for 4-Benzoyl-7-nitro-2-naphthonitrile (16d)

13C-NMR for 4-Benzoyl-7-nitro-2-naphthonitrile (16d)
1H-NMR for 4-Acetyl-7-nitro-2-naphthonitrile (16e)

13C-NMR for 4-Acetyl-7-nitro-2-naphthonitrile (16e)
1H-NMR for Ethyl 4,7-dicyano-2-naphthoate (17a)

13C-NMR for Ethyl 4,7-dicyano-2-naphthoate (17a)
1H-NMR for 3-Ethyl 1-methyl 6-cyanonaphthalene-1,3-dicarboxylate (17b)

13C-NMR for 3-Ethyl 1-methyl 6-cyanonaphthalene-1,3-dicarboxylate (17b)
1H-NMR for Diethyl 6-cyanonaphthalene-1,3-dicarboxylate (17c)

13C-NMR for Diethyl 6-cyanonaphthalene-1,3-dicarboxylate (17c)
1H-NMR for Ethyl 4-benzoyl-7-cyano-2-naphthoate (17d)

13C-NMR for Ethyl 4-benzoyl-7-cyano-2-naphthoate (17d)
1H-NMR for Ethyl 4-acetyl-7-cyano-2-naphthoate (17e)

13C-NMR for Ethyl 4-acetyl-7-cyano-2-naphthoate (17e)
1H-NMR for Naphthalene-1,3,6-tricarbonitrile (18a)

13C-NMR for Naphthalene-1,3,6-tricarbonitrile (18a)
1H-NMR for Methyl 3,6-dicyano-1-naphthoate (18b)

13C-NMR for Methyl 3,6-dicyano-1-naphthoate (18b)
1H-NMR for Ethyl 3,6-dicyano-1-naphthoate (18c)

13C-NMR for Ethyl 3,6-dicyano-1-naphthoate (18c)
1H-NMR for 4-Benzoylnaphthalene-2,7-dicarbonitrile (18d)

13C-NMR for 4-Benzoylnaphthalene-2,7-dicarbonitrile (18d)
1H-NMR for 4-Acetylnapthalene-2,7-dicarbonitrile (18e)

13C-NMR for 4-Acetylnapthalene-2,7-dicarbonitrile (18e)
1H-NMR for Ethyl 8-cyanoquinoline-6-carboxylate (19a)

13C-NMR for Ethyl 8-cyanoquinoline-6-carboxylate (19a)
1H-NMR for Diethyl quinoline-6,8-dicarboxylate (19b)

13C-NMR for Diethyl quinoline-6,8-dicarboxylate (19b)
1H-NMR for Ethyl 8-benzoylquinoline-6-carboxylate (19d)

13C-NMR for Ethyl 8-benzoylquinoline-6-carboxylate (19d)
1H-NMR for Ethyl 8-acetylquinoline-6-carboxylate (19e)

13C-NMR for Ethyl 8-acetylquinoline-6-carboxylate (19e)
1H-NMR for Methyl (E)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonfonyl)pent-4-enoate (22)

13C-NMR for Methyl (E)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonfonyl)pent-4-enoate (22)
(E)-2-(Acetoxymethyl)-3-(2-fluoro-5-nitrophanyl)acrylonitrile (4, JAG-5-OAc, CCDC 2035023)

Comment
The selected crystal was a 3-component twin by non-merohedry. The scale factors for component 2 and 3 refined to 0.336 (3) and 0.095 (2). The displacement ellipsoids were drawn at the 50% probability level.

Experimental
A colorless block-shaped crystal of dimensions 0.084 × 0.102 × 0.240 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 Quest-geometry diffractometer with a Bruker Photon II CMOS area detector [1,2] and an Incoatec Iис microfocus Mo Kα source (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 9784 peaks in the range 2.31 < < 27.08°. A total of 8358 data were measured in the range 2.311 < < 25.678° using and oscillation frames. The data were corrected for absorption by the empirical method [3] giving minimum and maximum set of 8358 independent data with R(int) = 0.0801 and a coverage of 99.1%.

The triclinic space group P1(1) was determined by statistical tests and verified by subsequent refinement. The structure was solved by dual-space methods and refined by full-matrix least-squares methods on F^2 [4,5]. The positions of hydrogens bonded to carbons were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the isotropic equivalent displacement parameters of the bonded atoms. A total of 174 parameters were refined against 8358 data to give wR (F^2) = 0.2158 and S = 1.020 for weights of $w = 1/ [\bar{2} (F^2) + (0.0500 P)^2 + 1.4000 P + 8.0000 + 6.0 \sin \phi]$, where $P = [Fo^2 + 2Fc^2]/3$. The final R(F) was 0.1022 for the 6452 observed, [$F > 4(\sigma(F))]$, data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 0.405 and $-0.535 \ e/Å^3$, respectively.
Thermal Elipsoid Plot for Structure 4
Table 1. Crystal data and structure refinement for JAG-5-OAc.

Property	Value
Empirical formula	C_{12} H_{9} F N_{2} O_{4}
Formula weight	264.21
Crystal system	triclinic
Space group	P1 bar
Unit cell dimensions	
\(a\) = 7.5185(10) Å	\(= 67.309(4)°\)
\(b\) = 9.1614(11) Å	\(= 83.346(5)°\)
\(c\) = 9.5536(12) Å	\(= 73.576(5)°\)
Volume	582.33(13) Å³
\(Z, Z'\)	2, 1
Density (calculated)	1.507 Mg/m³
Wavelength	0.71073 Å
Temperature	100(2) K
\(F(000)\)	272
Absorption coefficient	0.125 mm\(^{-1}\)
Absorption correction	semi-empirical from equivalents
Theta range for data collection	2.311 to 25.678°
Reflections collected	8358
Independent reflections	8358 \([R(int) = ?]\)
Data / restraints / parameters	8358 / 0 / 174
\(wR(F^2\text{ all data})\)	\(wR2 = 0.2158\)
\(R(F\text{ obsd data})\)	\(R1 = 0.1022\)
Goodness-of-fit on \(F^2\)	1.020
Observed data \([I > 2\sigma(I)]\)	6452
Largest and mean shift / s.u.	0.000 and 0.000
Largest diff. peak and hole	0.405 and -0.535 e/Å³

\[
wR2 = \frac{\sum[w(Fo^2 - Fc^2)^2]}{\sum[w(Fo^2)^2]}^{1/2}
\]

\[
R1 = \frac{\sum|Fo| - |Fc|}{\sum|Fo|}
\]
Table 2. Atomic coordinates and equivalent isotropic displacement parameters for JAG-5-OAc. \(U(\text{eq})\) is defined as one third of the trace of the orthogonalized \(U_{ij}\) tensor.

	\(x\)	\(y\)	\(z\)	\(U(\text{eq})\)
F(1)	0.5585(5)	0.6976(4)	0.2162(4)	0.0277(8)
O(1)	0.9855(7)	0.1548(5)	0.7798(5)	0.0347(11)
O(2)	0.9652(6)	0.3702(5)	0.8307(5)	0.0302(10)
O(3)	0.5743(6)	0.1061(5)	0.1328(5)	0.0234(9)
O(4)	0.3522(6)	0.3388(5)	0.1039(5)	0.0269(10)
N(1)	0.7553(8)	-0.0231(6)	0.5043(6)	0.0338(13)
N(2)	0.9346(7)	0.3038(6)	0.7494(6)	0.0237(11)
C(1)	0.6514(8)	0.6004(6)	0.3461(6)	0.0210(12)
C(2)	0.7338(8)	0.4365(6)	0.3674(6)	0.0198(12)
C(3)	0.8266(8)	0.3388(7)	0.5035(6)	0.0209(12)
C(4)	0.8318(8)	0.4080(7)	0.6081(6)	0.0213(12)
C(5)	0.7517(8)	0.5708(7)	0.5852(7)	0.0212(12)
C(6)	0.6583(8)	0.6689(7)	0.4502(7)	0.0245(13)
C(7)	0.7203(8)	0.3807(7)	0.2449(7)	0.0227(12)
C(8)	0.7274(8)	0.2294(7)	0.2534(6)	0.0213(12)
C(9)	0.7445(9)	0.0909(7)	0.3945(7)	0.0242(13)
C(10)	0.7115(8)	0.1969(7)	0.1131(7)	0.0223(13)
C(11)	0.3948(8)	0.1957(7)	0.1210(6)	0.0227(12)
C(12)	0.2642(9)	0.0973(8)	0.1271(7)	0.0291(14)
Table 3. Bond lengths [Å] and angles [°] for JAG-5-OAc.

Bond	Length [Å] 1	Bond	Length [Å] 2	Bond	Length [Å] 3
F(1)-C(1)	1.348(6)	C(4)-C(5)	1.380(8)		
O(1)-N(2)	1.233(6)	C(5)-C(6)	1.386(8)		
O(2)-N(2)	1.229(6)	C(5)-H(5)	0.9500		
O(3)-C(11)	1.358(7)	C(6)-H(6)	0.9500		
O(3)-C(10)	1.453(6)	C(7)-C(8)	1.343(8)		
O(4)-C(11)	1.207(7)	C(7)-H(7)	0.9500		
N(1)-C(9)	1.150(8)	C(8)-C(9)	1.439(8)		
N(2)-C(4)	1.471(7)	C(8)-C(10)	1.505(8)		
C(1)-C(6)	1.377(8)	C(10)-H(10A)	0.9900		
C(1)-C(2)	1.396(7)	C(10)-H(10B)	0.9900		
C(2)-C(3)	1.392(8)	C(11)-C(12)	1.493(8)		
C(2)-C(7)	1.470(8)	C(12)-H(12A)	0.9800		
C(3)-C(4)	1.384(8)	C(12)-H(12B)	0.9800		
C(3)-H(3)	0.9500	C(12)-H(12C)	0.9800		
C(11)-O(3)-C(10)	115.3(4)	C(8)-C(7)-C(2)	129.0(5)		
O(2)-N(2)-O(1)	123.6(5)	C(8)-C(7)-H(7)	115.5		
O(2)-N(2)-C(4)	118.2(5)	C(2)-C(7)-H(7)	115.5		
O(1)-N(2)-C(4)	118.2(4)	C(7)-C(8)-C(9)	123.1(5)		
F(1)-C(1)-C(6)	117.9(5)	C(7)-C(8)-C(10)	120.9(5)		
F(1)-C(1)-C(2)	118.1(5)	C(9)-C(8)-C(10)	116.0(5)		
C(6)-C(1)-C(2)	124.0(5)	N(1)-C(9)-C(8)	177.1(6)		
C(3)-C(2)-C(1)	116.8(5)	O(3)-C(10)-C(8)	111.4(5)		
C(3)-C(2)-C(7)	125.0(5)	O(3)-C(10)-H(10A)	109.3		
C(1)-C(2)-C(7)	118.3(5)	C(8)-C(10)-H(10A)	109.3		
C(4)-C(3)-C(2)	119.0(5)	O(3)-C(10)-H(10B)	109.3		
C(4)-C(3)-H(3)	120.5	C(8)-C(10)-H(10B)	109.3		
C(2)-C(3)-H(3)	120.5	H(10A)-C(10)-H(10B)	108.0		
C(5)-C(4)-C(3)	123.8(5)	O(4)-C(11)-O(3)	122.2(5)		
C(5)-C(4)-N(2)	118.0(5)	O(4)-C(11)-C(12)	125.9(6)		
C(3)-C(4)-N(2)	118.2(5)	O(3)-C(11)-C(12)	111.9(5)		
C(4)-C(5)-C(6)	117.6(5)	C(11)-C(12)-H(12A)	109.8		
C(4)-C(5)-H(5)	121.2	C(11)-C(12)-H(12B)	109.2		
C(6)-C(5)-H(5)	121.2	H(12A)-C(12)-H(12B)	109.5		
C(1)-C(6)-C(5)	118.9(5)	C(11)-C(12)-H(12C)	109.4		
C(1)-C(6)-H(6)	120.6	H(12A)-C(12)-H(12C)	109.5		
C(5)-C(6)-H(6)	120.6	H(12B)-C(12)-H(12C)	109.5		
Table 4. Anisotropic displacement parameters (Å² x 10³) for JAG-5-OAc. The anisotropic displacement factor exponent takes the form:

\[-2 \pi^2 [h^2 a^*^2 U_{11} + \ldots + 2 h k a^* b^* U_{12}]\]

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
F(1)	34(2)	18(2)	29(2)	-8(1)	-4(2)	-3(1)
O(1)	48(3)	19(2)	36(3)	-7(2)	-8(2)	-8(2)
O(2)	35(3)	31(2)	31(2)	-15(2)	0(2)	-13(2)
O(3)	25(2)	18(2)	31(2)	-12(2)	-2(2)	-8(2)
O(4)	34(2)	21(2)	26(2)	-11(2)	-3(2)	-5(2)
N(1)	54(4)	24(3)	32(3)	-15(3)	-3(3)	-16(3)
N(2)	25(3)	25(3)	25(3)	-10(2)	3(2)	-12(2)
C(1)	23(3)	16(3)	25(3)	-6(2)	0(2)	-8(2)
C(2)	21(3)	16(3)	24(3)	-8(2)	4(2)	-9(2)
C(3)	24(3)	15(3)	26(3)	-7(2)	3(2)	-9(2)
C(4)	22(3)	20(3)	24(3)	-8(2)	2(2)	-11(2)
C(5)	21(3)	22(3)	26(3)	-14(2)	5(2)	-9(2)
C(6)	26(3)	18(3)	34(3)	-13(3)	5(3)	-10(3)
C(7)	24(3)	20(3)	22(3)	-6(2)	0(2)	-6(2)
C(8)	23(3)	19(3)	23(3)	-8(2)	-1(2)	-6(2)
C(9)	31(3)	19(3)	29(3)	-14(3)	0(3)	-10(2)
C(10)	23(3)	22(3)	27(3)	-13(3)	3(2)	-9(2)
C(11)	28(3)	22(3)	19(3)	-9(2)	-1(2)	-7(2)
C(12)	30(4)	29(3)	32(4)	-11(3)	-3(3)	-12(3)
Table 5. Hydrogen coordinates and isotropic displacement parameters for JAG-5-OAc.

	x	y	z	U(eq)
H(3)	0.885464	0.226246	0.524185	0.025
H(5)	0.760224	0.614057	0.659185	0.025
H(6)	0.600038	0.781417	0.429913	0.029
H(7)	0.704297	0.463145	0.145940	0.027
H(10A)	0.676214	0.302452	0.026320	0.027
H(10B)	0.833542	0.133692	0.089518	0.027
H(12A)	0.258568	0.091619	0.027423	0.044
H(12B)	0.140469	0.149343	0.156047	0.044
H(12C)	0.307447	-0.013678	0.202526	0.044
Bond Sequence	Torsion Angle (°)			
--------------	-------------------			
F(1)-C(1)-C(2)-C(3)	-179.2(5)			
C(6)-C(1)-C(2)-C(3)	0.4(8)			
F(1)-C(1)-C(2)-C(7)	2.1(8)			
C(6)-C(1)-C(2)-C(7)	-178.2(6)			
C(1)-C(2)-C(3)-C(4)	0.1(8)			
C(7)-C(2)-C(3)-C(4)	178.6(5)			
C(2)-C(3)-C(4)-C(5)	-0.9(8)			
C(2)-C(3)-C(4)-N(2)	-178.4(5)			
O(2)-N(2)-C(4)-C(5)	-9.4(7)			
O(1)-N(2)-C(4)-C(5)	170.7(5)			
O(2)-N(2)-C(4)-C(3)	168.3(5)			
O(1)-N(2)-C(4)-C(3)	-11.6(7)			
C(3)-C(4)-C(5)-C(6)	1.1(8)			
N(2)-C(4)-C(5)-C(6)	178.7(5)			
F(1)-C(1)-C(6)-C(5)	179.4(5)			
C(2)-C(1)-C(6)-C(5)	-0.2(9)			
C(4)-C(5)-C(6)-C(1)	-0.6(8)			
C(3)-C(2)-C(7)-C(8)	26.9(10)			
C(1)-C(2)-C(7)-C(8)	-154.6(6)			
C(2)-C(7)-C(8)-C(9)	2.2(10)			
C(2)-C(7)-C(8)-C(10)	-179.7(5)			
C(11)-O(3)-C(10)-C(8)	77.7(6)			
C(7)-C(8)-C(10)-O(3)	-130.1(6)			
C(9)-C(8)-C(10)-O(3)	48.1(7)			
C(10)-O(3)-C(11)-O(4)	-4.0(8)			
C(10)-O(3)-C(11)-C(12)	174.3(5)			
Comment
The displacement ellipsoids were drawn at the 50% probability level.

Experimental
A colorless, block-shaped crystal of dimensions 0.048 × 0.068 × 0.150 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 Quest -geometry diffractometer with a Bruker Photon II cmos area detector [1,2] and an Incoatec I s microfocus Mo K source (= 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 9637 peaks in the range 2.66 < < 27.10°. A total of 42733 data were measured in the range 2.659 < < 27.192° using and oscillation frames. The data were corrected for absorption by the empirical method [3] giving minimum and maximum transmission factors of 0.708 and 0.746. The data were merged to form a set of 3947 independent data with R(int) = 0.0637 and a coverage of 99.9%.

The monoclinic space group P2_1_1/c was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 [4,5]. The positions of hydrogens bonded to carbons were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the isotropic equivalent displacement parameters of the bonded atoms. A total of 235 parameters were refined against 3947 data to give wR(F^2) = 0.1027 and S = 1.007 for weights of w = 1/[F^2 + (0.0200 P)^2 + 2.8000 P], where P = [Fo^2 + 2Fc^2]/3. The final R(F) was 0.0459 for the 3251 observed, [F > 4 (F)], data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 0.987 and -0.666 e/Å^3, respectively.
Thermal Elipsoid Plot for Structure 22
Table 1. Crystal data and structure refinement for JAG-1-CNTL.

Property	Value
Empirical formula	C\textsubscript{19}H\textsubscript{16}FN\textsubscript{4}O\textsubscript{4}S
Formula weight	373.39
Crystal system	monoclinic
Space group	P21/c
Unit cell dimensions	\(a = 11.2443(3)\) Å \(= 90^\circ\)
	\(b = 20.9387(5)\) Å \(= 91.1985(9)^\circ\)
	\(c = 7.5398(2)\) Å \(= 90^\circ\)
Volume	1774.79(8) Å\(^3\)
Z, Z'	4, 1
Density (calculated)	1.397 Mg/m\(^3\)
Wavelength	0.71073 Å
Temperature	100(2) K
\(F(000)\)	776
Absorption coefficient	0.217 mm\(^{-1}\)
Absorption correction	semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.708
Theta range for data collection	2.659 to 27.192\(^\circ\)
Reflections collected	42733
Independent reflections	3947 [R(int) = 0.0637]
Data / restraints / parameters	3947 / 0 / 235
\(wR(F^2\text{ all data})\)	\(wR2 = 0.1027\)
\(R(F\text{ obsd data})\)	\(R1 = 0.0459\)
Goodness-of-fit on \(F^2\)	1.007
Observed data [I > 2 \((I)\)]	3251
Largest and mean shift / s.u.	0.000 and 0.000
Largest diff. peak and hole	0.987 and -0.666 e/Å\(^3\)

\[wR^2 = \left(\frac{\sum\left[w(F_o^2 - F_c^2)\right]}{\sum\left[w(F_o^2)\right]} \right)^{1/2} \]

\[R1 = \left(\frac{\sum\left|F_o\right| - \left|F_c\right|}{\sum\left|F_o\right|} \right) / \left|F_o\right| \]
Table 2. Atomic coordinates and equivalent isotropic displacement parameters for JAG-5-OAc. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U(\text{eq})$
F(1)	0.5585(5)	0.6976(4)	0.2162(4)	0.0277(8)
O(1)	0.9855(7)	0.1548(5)	0.7798(5)	0.0347(11)
O(2)	0.9652(6)	0.3702(5)	0.8307(5)	0.0302(10)
O(3)	0.5743(6)	0.1061(5)	0.1328(5)	0.0234(9)
O(4)	0.3522(6)	0.3388(5)	0.1039(5)	0.0269(10)
N(1)	0.7553(8)	-0.0231(6)	0.5043(6)	0.0338(13)
N(2)	0.9346(7)	0.3038(6)	0.7494(6)	0.0237(11)
C(1)	0.6514(8)	0.6004(6)	0.3461(6)	0.0210(12)
C(2)	0.7338(8)	0.4365(6)	0.3674(6)	0.0198(12)
C(3)	0.8266(8)	0.3388(7)	0.5035(6)	0.0209(12)
C(4)	0.8318(8)	0.4080(7)	0.6081(6)	0.0213(12)
C(5)	0.7517(8)	0.5708(7)	0.5852(7)	0.0212(12)
C(6)	0.6583(8)	0.6689(7)	0.4502(7)	0.0245(13)
C(7)	0.7203(8)	0.3807(7)	0.2449(7)	0.0227(12)
C(8)	0.7274(8)	0.2294(7)	0.2534(6)	0.0213(12)
C(9)	0.7445(9)	0.0909(7)	0.3945(7)	0.0242(13)
C(10)	0.7115(8)	0.1969(7)	0.1131(7)	0.0223(13)
C(11)	0.3948(8)	0.1957(7)	0.1210(6)	0.0227(12)
C(12)	0.2642(9)	0.0973(8)	0.1271(7)	0.0291(14)
Table 3. Bond lengths [Å] and angles [°] for JAG-1-CNTL.

Bond	Length [Å]	Angle [°]	
S(1)-O(1)	1.4388(15)	C(8)-C(9)	1.384(3)
S(1)-O(2)	1.4393(17)	C(8)-C(13)	1.401(3)
S(1)-C(14)	1.759(2)	C(9)-C(10)	1.371(3)
S(1)-C(1)	1.822(2)	C(10)-C(11)	1.383(3)
F(1)-C(9)	1.355(3)	C(10)-H(10)	0.9500
O(3)-C(2)	1.319(3)	C(11)-C(12)	1.388(3)
O(3)-C(3)	1.450(3)	C(11)-H(11)	0.9500
O(4)-C(2)	1.202(3)	C(12)-C(13)	1.383(3)
N(1)-C(6)	1.150(3)	C(12)-H(12)	0.9500
C(1)-C(2)	1.527(3)	C(13)-H(13)	0.9500
C(1)-C(4)	1.531(3)	C(14)-C(19)	1.389(3)
C(1)-H(1)	1.0000	C(14)-C(15)	1.392(3)
C(3)-H(3A)	0.9800	C(15)-C(16)	1.383(3)
C(3)-H(3B)	0.9800	C(15)-H(15)	0.9500
C(3)-H(3C)	0.9800	C(16)-C(17)	1.379(4)
C(4)-C(5)	1.515(3)	C(16)-H(16)	0.9500
C(4)-H(4A)	0.9900	C(17)-C(18)	1.382(4)
C(4)-H(4AB)	0.9900	C(17)-H(17)	0.9500
C(5)-C(7)	1.337(3)	C(18)-C(19)	1.391(3)
C(5)-C(6)	1.444(3)	C(18)-H(18)	0.9500
C(7)-C(8)	1.469(3)	C(19)-H(19)	0.9500
C(7)-H(7)	0.9500		
O(1)-S(1)-O(2)	118.91(10)	O(3)-C(3)-H(3C)	109.5
O(1)-S(1)-C(14)	108.76(10)	H(3A)-C(3)-H(3C)	109.5
O(2)-S(1)-C(14)	109.00(10)	H(3B)-C(3)-H(3C)	109.5
O(1)-S(1)-C(1)	106.07(9)	C(5)-C(4)-C(1)	111.02(17)
O(2)-S(1)-C(1)	108.31(9)	C(5)-C(4)-H(4A)	109.4
C(14)-S(1)-C(1)	104.90(9)	C(1)-C(4)-H(4A)	109.4
C(2)-O(3)-C(3)	115.27(17)	C(5)-C(4)-H(4AB)	109.4
C(2)-C(1)-C(4)	111.55(17)	C(1)-C(4)-H(4AB)	109.4
C(2)-C(1)-S(1)	109.17(14)	H(4A)-C(4)-H(4AB)	108.0
C(4)-C(1)-S(1)	107.82(14)	C(7)-C(5)-C(6)	120.60(19)
C(2)-C(1)-H(1)	109.4	C(7)-C(5)-C(4)	122.85(19)
C(4)-C(1)-H(1)	109.4	C(6)-C(5)-C(4)	116.49(18)
S(1)-C(1)-H(1)	109.4	N(1)-C(6)-C(5)	177.4(2)
O(4)-C(2)-O(3)	125.21(19)	C(5)-C(7)-C(8)	127.26(19)
O(4)-C(2)-C(1)	124.11(19)	C(5)-C(7)-H(7)	116.4
O(3)-C(2)-C(1)	110.68(17)	C(8)-C(7)-H(7)	116.4
O(3)-C(3)-H(3A)	109.5	C(9)-C(8)-C(13)	116.46(19)
O(3)-C(3)-H(3B)	109.5	C(9)-C(8)-C(7)	118.82(19)
H(3A)-C(3)-H(3B)	109.5	C(13)-C(8)-C(7)	124.61(19)
Bond	Angle	Bond	Angle
-----------------------	---------	-----------------------	---------
F(1)-C(9)-C(10)	118.3(2)	C(15)-C(14)-S(1)	118.93(16)
F(1)-C(9)-C(8)	117.49(19)	C(16)-C(15)-C(14)	118.8(2)
C(10)-C(9)-C(8)	124.3(2)	C(16)-C(15)-H(15)	120.6
C(9)-C(10)-C(11)	118.0(2)	C(14)-C(15)-H(15)	120.6
C(9)-C(10)-H(10)	121.0	C(17)-C(16)-C(15)	120.4(2)
C(11)-C(10)-H(10)	121.0	C(17)-C(16)-H(16)	119.8
C(10)-C(11)-C(12)	120.2(2)	C(15)-C(16)-H(16)	119.8
C(10)-C(11)-H(11)	119.9	C(16)-C(17)-C(18)	120.3(2)
C(12)-C(11)-H(11)	119.9	C(16)-C(17)-H(17)	119.9
C(13)-C(12)-C(11)	120.4(2)	C(18)-C(17)-H(17)	119.9
C(13)-C(12)-H(12)	119.8	C(17)-C(18)-C(19)	120.8(2)
C(11)-C(12)-H(12)	119.8	C(17)-C(18)-H(18)	119.6
C(12)-C(13)-C(8)	120.7(2)	C(19)-C(18)-H(18)	119.6
C(12)-C(13)-H(13)	119.7	C(14)-C(19)-C(18)	118.0(2)
C(8)-C(13)-H(13)	119.7	C(14)-C(19)-H(19)	121.0
C(19)-C(14)-C(15)	121.7(2)	C(18)-C(19)-H(19)	121.0
C(19)-C(14)-S(1)	119.34(18)		
Table 4. Anisotropic displacement parameters ($\AA^2 \times 10^3$) for JAG-5-OAc. The anisotropic displacement factor exponent takes the form:

$$-2 \pi^2 [h^2 a^{*2} U_{11} + \ldots + 2hk a^* b^* U_{12}]$$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
F(1)	34(2)	18(2)	29(2)	-8(1)	-4(2)	-3(1)
O(1)	48(3)	19(2)	36(3)	-7(2)	-8(2)	-8(2)
O(2)	35(3)	31(2)	31(2)	-15(2)	0(2)	-13(2)
O(3)	25(2)	18(2)	31(2)	-12(2)	-2(2)	-8(2)
O(4)	34(2)	21(2)	26(2)	-11(2)	-3(2)	-5(2)
N(1)	54(4)	24(3)	32(3)	-15(3)	-3(3)	-16(3)
N(2)	25(3)	25(3)	25(3)	-10(2)	3(2)	-12(2)
C(1)	23(3)	16(3)	25(3)	-6(2)	0(2)	-8(2)
C(2)	21(3)	16(3)	24(3)	-8(2)	4(2)	-9(2)
C(3)	24(3)	15(3)	26(3)	-7(2)	3(2)	-9(2)
C(4)	22(3)	20(3)	24(3)	-8(2)	2(2)	-11(2)
C(5)	21(3)	22(3)	26(3)	-14(2)	5(2)	-9(2)
C(6)	26(3)	18(3)	34(3)	-13(3)	5(3)	-10(3)
C(7)	24(3)	20(3)	22(3)	-6(2)	0(2)	-6(2)
C(8)	23(3)	19(3)	23(3)	-8(2)	1(2)	-6(2)
C(9)	31(3)	19(3)	29(3)	-14(3)	0(3)	-10(2)
C(10)	23(3)	22(3)	27(3)	-13(3)	3(2)	-9(2)
C(11)	28(3)	22(3)	19(3)	-9(2)	1(2)	-7(2)
C(12)	30(4)	29(3)	32(4)	-11(3)	-3(3)	-12(3)
Table 5. Hydrogen coordinates and isotropic displacement parameters for JAG-1-CNTL.

	x	y	z	U(eq)
H(1)	0.329595	0.313612	0.406793	0.027
H(3A)	0.560398	0.431167	0.094771	0.056
H(3B)	0.557416	0.471752	0.274480	0.056
H(3C)	0.448167	0.475421	0.135375	0.056
H(4A)	0.175575	0.325745	0.628979	0.030
H(4AB)	0.190352	0.401552	0.610747	0.030
H(7)	0.084888	0.452472	0.378571	0.031
H(10)	-0.243854	0.507819	0.037014	0.041
H(11)	-0.223145	0.447904	-0.223428	0.041
H(12)	-0.075160	0.370117	-0.239303	0.038
H(13)	0.054097	0.352406	0.000453	0.033
H(15)	0.511275	0.213775	0.622754	0.033
H(16)	0.694108	0.176743	0.522216	0.042
H(17)	0.840514	0.248745	0.440674	0.047
H(18)	0.807296	0.358039	0.461481	0.047
H(19)	0.626788	0.397037	0.569703	0.037
Table 6. Torsion angles [°] for JAG-1-CNTL.

Bond Pair	Torsion Angle
O(1)-S(1)-C(1)-C(2)	173.33(14)
O(2)-S(1)-C(1)-C(2)	44.64(17)
C(14)-S(1)-C(1)-C(2)	-71.65(16)
O(1)-S(1)-C(1)-C(4)	51.98(16)
O(2)-S(1)-C(1)-C(4)	-76.71(16)
C(14)-S(1)-C(1)-C(4)	167.00(14)
C(3)-O(3)-C(2)-O(4)	4.0(3)
C(3)-O(3)-C(2)-C(1)	-175.66(17)
C(4)-C(1)-C(2)-O(4)	29.5(3)
S(1)-C(1)-O(2)-O(4)	-89.6(2)
C(4)-C(1)-C(2)-O(3)	-150.88(17)
S(1)-C(1)-C(2)-O(3)	90.07(17)
C(2)-C(1)-C(4)-C(5)	71.2(2)
S(1)-C(1)-C(4)-C(5)	-168.94(14)
C(1)-C(4)-C(5)-C(7)	-102.7(2)
C(1)-C(4)-C(5)-C(6)	80.1(2)
C(6)-C(5)-C(7)-C(8)	-4.5(3)
C(4)-C(5)-C(7)-C(8)	178.4(2)
C(5)-C(7)-C(8)-C(9)	143.5(2)
C(5)-C(7)-C(8)-C(13)	-40.4(3)
C(13)-C(8)-C(9)-F(1)	179.33(19)
C(7)-C(8)-C(9)-F(1)	-4.2(3)
C(13)-C(8)-C(9)-C(10)	-0.1(3)
C(7)-C(8)-C(9)-C(10)	176.3(2)
C(8)-C(9)-C(10)-C(11)	0.2(4)
C(9)-C(10)-C(11)-C(12)	0.1(3)
C(10)-C(11)-C(12)-C(13)	-0.4(4)
C(11)-C(12)-C(13)-C(8)	0.5(3)
C(9)-C(8)-C(13)-C(12)	-0.2(3)
C(7)-C(8)-C(13)-C(12)	-176.4(2)
O(1)-S(1)-C(14)-C(19)	-160.84(16)
O(2)-S(1)-C(14)-C(19)	-29.79(19)
C(1)-S(1)-C(14)-C(19)	86.02(18)
O(1)-S(1)-C(14)-C(15)	18.73(19)
O(2)-S(1)-C(14)-C(15)	149.79(16)
C(1)-S(1)-C(14)-C(15)	-94.40(17)
C(19)-C(14)-C(15)-C(16)	0.6(3)
S(1)-C(14)-C(15)-C(16)	-178.99(16)
C(14)-C(15)-C(16)-C(17)	-1.0(3)
C(15)-C(16)-C(17)-C(18)	0.4(3)
C(16)-C(17)-C(18)-C(19)	0.6(3)
C(15)-C(14)-C(19)-C(18)	0.4(3)
S(1)-C(14)-C(19)-C(18)	179.95(16)
C(17)-C(18)-C(19)-C(14)	-1.0(3)
Table 7. Hydrogen bonds for JAG-1-CNTL [Å and °].

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C(1)-H(1)...O(1)#1	1.00	2.31	3.290(2)	166.1
C(4)-H(4A)...N(1)#2	0.99	2.37	3.300(3)	156.7
C(4)-H(4AB)...F(1)#3	0.99	2.31	3.249(3)	158.5
C(15)-H(15)...O(3)#2	0.95	2.64	3.481(3)	148.4

Symmetry transformations used to generate equivalent atoms:
#1 x, -y+1/2, z-1/2 #2 x, -y+1/2, z+1/2 #3 -x, -y+1, -z+1

References

1. Data Collection: APEX3 (2018) Bruker Inc., Madison, Wisconsin, USA.
2. Data Reduction: SAINT (2016) Bruker Inc., Madison, Wisconsin, USA.
3. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10, doi:10.1107/S1600576714022985
4. Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8, doi:10.1107/S2053273314026370
5. Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. 2015, C71, 3–8, doi:10.1107/S2053273314026370