Instability of one-step replica-symmetry-broken phase in satisfiability problems

Andrea Montanari

Laboratoire de Physique Théorique de l’Ecole Normale Supérieure*,
24, rue Lhomond, 75231 Paris CEDEX 05, France

Giorgio Parisi and Federico Ricci-Tersenghi

Dipartimento di Fisica, INFN (UdR and SMC centre) and INFN,
Università di Roma “La Sapienza”,
Piazzale Aldo Moro 2, I-00185 Roma, Italy

(Dated: February 2, 2008)

Abstract

We reconsider the one-step replica-symmetry-breaking (1RSB) solutions of two random combinatorial problems: \(k \)-XORSAT and \(k \)-SAT. We present a general method for establishing the stability of these solutions with respect to further steps of replica-symmetry breaking. Our approach extends the ideas of Ref. [1] to more general combinatorial problems.

It turns out that 1RSB is always unstable at sufficiently small clauses density \(\alpha \) or high energy. In particular, the recent 1RSB solution to 3-SAT is unstable at zero energy for \(\alpha < \alpha_m \), with \(\alpha_m \approx 4.153 \). On the other hand, the SAT-UNSAT phase transition seems to be correctly described within 1RSB.

PACS numbers: 75.10.Nr, 89.20.Ff, 05.70.Fh, 02.70.-c

* UMR 8549, Unité Mixte de Recherche du Centre National de la Recherche Scientifique et de l’Ecole Normale Supérieure.
I. INTRODUCTION

It is well known that there are two possible structures for the low-temperature phase of mean-field spin glasses [2]. The first scenario is described, within replica theory, by a 1RSB ansatz. It corresponds to the existence of an exponential number of pure states which are, roughly speaking, uncorrelated. In the second scenario, a large number [29] of pure states is organized in an ultrametric tree. The tree describes the probabilistic dependencies among the free energies and the distances of different pure states. This probabilistic structure corresponds, in replica jargon, to a full replica symmetry breaking (FRSB) ansatz.

In the last 20 years many combinatorial problems have been successfully analyzed using the well known mapping onto disordered statistical physics models [2, 3]. The same two scenarios are expected to be present within this domain. However, because of the rich structure of many combinatorial problems, their analysis has been so-far limited to 1RSB calculations. It is therefore of the utmost importance to analyze the consistency of the 1RSB solutions. An important check consists in looking at a neighborhood of the 1RSB subspace (in the larger FRSB space) and verify the “local stability” of the 1RSB solution.

Such a computation has recently acquired a further reason of interest. As shown in Ref. [1], even in situations in which the equilibrium behavior is correctly treated within a 1RSB ansatz, non-equilibrium properties generically require a FRSB description. In fact, it turns out that high-lying metastable states are unstable towards FRSB. In a combinatorial optimization context “equilibrium properties” are related to the cost of the optimal solution. “Metastable states” are, possibly, related to the dynamics of local search algorithms [4].

There are two possible instabilities of the 1RSB calculation [1]. If we think of the 1RSB solution as describing the decomposition of the Gibbs measure in many, well-separated pure states, the following scenarios are possible: (I) The states organize themselves into clusters, forming an ultrametric FRSB structure; (II) Each state splits into many sub-states forming an FRSB structure. In Fig. 1 we present a pictorial interpretation of these two instabilities. Type-I instability usually occurs at low energy, and often below the ground-state energy. In this case it is irrelevant from a statistical physics point of view. The calculation of Ref. [5] for 3-SAT was related to type-I instability, and confirmed the irrelevance of this phenomenon. Type-II instability affects always the high-lying metastable states and, in some regions of the phase diagram, even the ground state. Here we shall compute the threshold for this type
FIG. 1: A pictorial view of the two types of instabilities of the 1RSB solution. Blobs represent pure states or clusters of states.

In this paper, we shall focus on satisfiability problems, and in particular treat the special cases of k-XORSAT and k-SAT. These are problems in which a large number of boolean variables have to be fixed in such a way to satisfy a set of constraints (clauses). k-SAT lies at the very heart of theoretical computer science. It is, in fact, one of the first problems which have been proved to be NP-complete (the first being its irregular version: SAT) [6]. A large effort has been devoted to the study of the SAT-UNSAT transition in random k-SAT [7, 8]. The 1RSB solution of this model has been a quite recent achievement [9, 10]. k-XORSAT is somewhat simpler than k-SAT (both from the analytic and the algorithmic point of view), while sharing a similar phase diagram [11, 12]. Interestingly, its 1RSB solution has been proved to be correct in the zero-energy limit [13, 14].

Since we are mainly interested in combinatorial problems, we shall focus on zero-temperature statistical mechanics. In the main part of our paper we fix $T = 0$ since the beginning of our calculations. It is however instructive to solve the problem (in 1RSB approximation) at finite temperature and let $T \to 0$ afterwards. It turns out that the instability of the $T = 0$ 1RSB solution is reflected in an unphysical behavior of the finite temperature solution in the $T \to 0$ limit. This provides an useful check of our calculations.

The paper is organized as follows. In Sec. II we explain how the instability of the 1RSB
phase can be derived from an analysis of the two-step replica symmetry breaking (2RSB) saddle-point equations. We describe our method for a general satisfiability model. In Sec. III we specialize to two prototypical cases: random k-XORSAT and random k-SAT, and show the results of a numerical evaluation of the stability condition. We discuss the consequences of our findings. In Sec. IV we consider the finite-temperature 1RSB solution. We compare the behavior of this solution in the $T \rightarrow 0$ limit and the stability thresholds computed in the previous Section. In Appendix A we collect the explicit formulae for the stability of k-XORSAT and k-SAT. Finally in App. B we expand around the dynamical transition of k-XORSAT, in order to have an analytical characterization of this transition.

II. THE GENERAL APPROACH

In this Section we consider a general model over N Ising spins $\sigma_i = \pm 1$, $i \in \{1, \ldots, N\}$. The Hamiltonian is the sum of $M = \alpha N$ terms, each one being a k-spin interaction (we shall be interested in the case $k \geq 3$). We use the indices $a, b, c \cdots \in \{1, \ldots M\}$ for the interactions, and denote by $\partial a = \{i_1^a, \ldots, i_k^a\}$ the set of sites entering in the interaction a. Conversely ∂i will be the set of interactions in which i participates. With these conventions the Hamiltonian reads

$$H(\sigma) = \sum_{a=1}^{M} E_a(\sigma_{\partial a}),$$

where we used the vector notations $\sigma = (\sigma_1, \ldots, \sigma_N)$ and $\sigma_{\partial a} = (\sigma_{i_1^a}, \ldots, \sigma_{i_k^a})$. The functions $E_a(\cdot)$ may (eventually) depend upon some quenched random variables which we will not note explicitly. Each interaction (clause) $E_a(\cdot)$ can take two values: either 0 (the clause is satisfied) or 2 (unsatisfied).

A nice graphical representation of such a model is obtained by drawing a factor graph [15], cf. Fig. 2. This is a bipartite graph with two type of nodes: variable nodes, and clause nodes. An edge is drawn between the clause a and the variable i if $i \in \partial a$ (or, equivalently, $a \in \partial i$). A crucial property for mean field theory to be exact is that the factor graph must not contain “short” loops.

Let S be the space of probability distribution $\rho \equiv (\rho_+, \rho_0, \rho_-)$ over the set $\{+, 0, -\}$. Geometrically S is the two-dimensional simplex. The zero-temperature 2RSB order parameter for the model (1) is given by a distribution over S for each directed link of the factor graph.
FIG. 2: A fragment of a factor graph. Squares represent clauses (interactions) and circles represents variables (spins). Variable nodes are connected by a link to the clauses they belong to. Cavity fields (and their distributions) are associated with directed edges.

We shall denote such distributions by $Q_{i \rightarrow a}[^{\rho}]$ (if the link is directed from a variable node to a clause node) or by $\hat{Q}_{a \rightarrow i}[\hat{\rho}]$ (in the opposite case). The 2RSB cavity equations for such a model have the general form

$$Q_{i \rightarrow a}[^{\rho}] = \frac{1}{Z} \int \prod_{b \in \partial i \backslash a} d\hat{Q}_{b \rightarrow i}[^{\hat{\rho}}(b)]~ z[^{\hat{\rho}}(b); \mu_2]/\mu_2 ~ \delta[^{\rho} - ^{\rho}[^{\hat{\rho}}(b); \mu_2]], \quad (2)$$

$$\hat{Q}_{a \rightarrow i}[^{\hat{\rho}}] = \int \prod_{j \in \partial a \backslash i} dQ_{j \rightarrow a}[^{\rho}(j)] ~ \delta[^{\hat{\rho}} - ^{\hat{\rho}}[^{\rho}(j)]], \quad (3)$$

where μ_1 and μ_2 are the zero-temperature Parisi parameters and satisfy the usual inequalities $0 \leq \mu_1 \leq \mu_2$. They are related to their finite-temperature counterparts m_1 and m_2 as follows: $\mu_i = \lim_{T \to 0} m_i(T)/T$. The integrals in Eqs. (2), (3) run over the simplex S. The delta-functions are understood to operate on the same space.

The function $^{\hat{\rho}}[^{\rho}(1) \ldots ^{\rho}(k-1)]$ (here “c” stands for “cavity”) is model-dependent. We will recall in App. A its precise form for the models treated in Sec. III. The functions $^{\rho}[^{\hat{\rho}}(1) \ldots ^{\hat{\rho}}(l); \mu_2]$ and $z[^{\hat{\rho}}(1) \ldots ^{\hat{\rho}}(l); \mu_2]$ are, on the other hand, universal. They are defined
as follows
\[
\rho_q^c = \frac{1}{z[\{\tilde{\rho}^{(i)}\}; \mu_2]} \sum_{\{q_i\in \Omega_q\} = 1}^l \prod_{i=1}^l \tilde{\rho}^{(i)}_{q_i} e^{-\mu_2 (\sum_i |q_i| - |\sum_i q_i|)}, \quad q \in \{+, 0, -\},
\]
where \(\Omega_+ = \{(q_1 \ldots q_l) : \sum_i q_i > 0\}, \Omega_0 = \{(q_1 \ldots q_l) : \sum_i q_i = 0\}, \text{and} \ \Omega_- = \{(q_1 \ldots q_l) : \sum_i q_i < 0\} \) (with \(q_i \in \{+, 0, -\}\)). The normalization \(z[\{\tilde{\rho}^{(i)}\}; \mu_2]\) is fixed by requiring \(\rho_+^c + \rho_0^c + \rho_-^c = 1\). Hereafter we will use the symbols \(q, q_i, q' \ldots\) for variables running over the set \(\{+, 0, -\}\).

In order to select a type-II instability [1], see Sec. I, we shall consider order parameters which concentrate near the “corners” of the simplex \(S\): \(\delta^{(+)}\), \(\delta^{(0)}\), \(\delta^{(-)}\). The corner distributions are defined by: \(\delta^{(q)}_q = 1\) if \(q = q'\) and 0 otherwise. We can decompose such order parameters as follows:
\[
Q_{i \to a}[\rho] = r_{i \to a}^{(+)} Q_{i \to a}^{(+)}[\rho] + r_{i \to a}^{(0)} Q_{i \to a}^{(0)}[\rho] + r_{i \to a}^{(-)} Q_{i \to a}^{(-)}[\rho],
\]
\[
\hat{Q}_{a \to i}[\rho] = \hat{r}_{a \to i}^{(+)} \hat{Q}_{a \to i}^{(+)}[\rho] + \hat{r}_{a \to i}^{(0)} \hat{Q}_{a \to i}^{(0)}[\rho] + \hat{r}_{a \to i}^{(-)} \hat{Q}_{a \to i}^{(-)}[\rho],
\]
where the distributions \(Q_{i \to a}^{(q)}[\rho]\) and \(\hat{Q}_{a \to i}^{(q)}[\rho]\) are supposed to be normalized and concentrated near \(\delta^{(q)}\). We parametrize the “width” of these distributions using the 6 parameters for each directed link:
\[
\epsilon_i^{(q)}_{\pm} \equiv (-1)^{\delta_i^{(q)}} \int dQ_{i \to a}^{(q)}[\rho] (\rho_+ - \delta^{(q)}), \quad \epsilon_{i \to a}^{(q)\pm} \equiv (-1)^{\delta_i^{(q)}} \int dQ_{i \to a}^{(q)}[\rho] (\rho_- - \delta^{(q)}),
\]
with analogous definitions for the parameters \(\hat{\epsilon}_{a \to i}^{(q)\pm}\) and \(\hat{\epsilon}_{a \to i}^{(q)\pm}\). Notice that the the \((-1)^{\delta_i}\) prefactors have been properly chosen to make the \(\epsilon_{i \to a}^{(q)\pm}, \hat{\epsilon}_{a \to i}^{(q)\pm}\) positive.

It is easy to see that the recursions (2), (3) preserve the subspace \(\{Q, \hat{Q} : \epsilon_{i \to a}^{(q)\pm} = \epsilon_{a \to i}^{(q)\pm} = 0\}\) for any \(i, a, q\). This is in fact a possible embedding of the 1RSB solution in the 2RSB space. Of course the parameters \(r_{i \to a}^{(q)}\) and \(\hat{r}_{a \to i}^{(q)}\) must satisfy, in this case, the 1RSB equations:
\[
r_{i \to a} = \rho^c \{[\hat{r}_{b \to i}]_{b \in \partial_i \setminus a} ; \mu_1\}, \quad \hat{r}_{a \to i} = \hat{\rho}^c \{[r_{j \to a}]_{j \in \partial a \setminus i}\}.
\]

In order to check the stability of the 1RSB subspace, we must linearize Eqs. (2) and (3) for small \(\epsilon_{i \to a}^{(q)\pm}, \hat{\epsilon}_{a \to i}^{(q)\pm}\). This yields equations of the form
\[
\epsilon_i^{(q)\sigma} \approx \sum_{b \in \partial_i \setminus a} \sum_{q', \sigma'} T_{b \to i}^{(q)}(q, \sigma|q', \sigma') \hat{\epsilon}_b^{(q')\sigma'},
\]
\[
\hat{\epsilon}_{a \to i}^{(q)\sigma} \approx \sum_{j \in \partial a \setminus i} \sum_{q', \sigma'} \hat{T}_{j \to a}^{(q)}(q, \sigma|q', \sigma') \epsilon_j^{(q')\sigma'},
\]
where \(\sigma, \sigma' \in \{+,-\} \). The \(6 \times 6 \) matrices \(T^{(a)}_{b \to i} \) and \(\widehat{T}^{(i)}_{j \to a} \) can be computed in terms of the cavity functions \(\rho^c[\ldots], \hat{\rho}^c[\ldots] \) and of the 1RSB solution, cf. Eq. (8). For instance, expanding Eq. (2) we get:

\[
T^{(a)}_{b \to i}(q, \sigma|q', \sigma') = \frac{1}{z_q[\{\widehat{r}_{c \to i}\}; \mu_1]} \sum_{\{q_c\} \in \Omega_q} \prod_{q_b=q'} \widehat{r}^{(q_c)}_{c \to i} e^{-\mu_1 (\sum_c |q_c| - |\sum_c q_c|)} M^{(b)}_{\sigma, \sigma'}(\{q_c\}; \mu_2),
\]

where

\[
z_q[\{\widehat{r}_{c \to i}\}; \mu_1] = \sum_{\{q_c\} \in \Omega_q} \prod_{q_b=q'} \widehat{r}^{(q_c)}_{c \to i} e^{-\mu_1 (\sum_c |q_c| - |\sum_c q_c|)}.
\]

The matrix \(M^{(b)}_{\sigma, \sigma'}(\{q_c\}; \mu_2) \) is obtained by linearizing the cavity function \(\rho^c[\hat{\rho}^{(1)} \ldots \hat{\rho}^{(l)}; \mu_2] \), cf. Eq. (4), near the corners of the simplex:

\[
M^{(i)}_{\sigma, \sigma'}(q_1 \ldots q_l; \mu_2) = \left| \frac{\partial \rho^c_{\sigma'}}{\partial \hat{\rho}^{(i)}_{\sigma'}} - \frac{\partial \rho^c_{\sigma}}{\partial \hat{\rho}^{(i)}_{\sigma}} \right|_{\hat{\rho}^{(i)} = \delta^{(n_i)}}.
\]

Notice that the expression (11) depends explicitly both on \(\mu_1 \) and \(\mu_2 \), and, through \(\hat{r}^{(q)}_{a \to i} \), on \(\mu_1 \). However, it can be shown that the dependence on \(\mu_2 \) cancels if the stability condition is considered. We can therefore identify \(\mu_1 \) with the 1RSB parameter \(\mu \).

Let us now discuss how Eqs. (9), (10) can be used to determine whether the 1RSB solution is stable. The idea is to implement these recursions, together with Eq. (8), as a message-passing algorithm [16]. One keeps in memory the value of the 1RSB order parameter \(r_{i \to a} \) (or \(\hat{r}_{a \to i} \)) and of the 6 fluctuation parameters \(\epsilon^{(q)}_{i \to a} \) (or \(\epsilon^{(q)}_{a \to i} \)) for each directed link. At each iteration these values are updated using Eqs. (8)-(10) for all the links of the graph (one should imagine the old values to be used on the right hand side and the new ones coming out on the left hand side). The matrices \(T^{(a)}_{b \to i} \) and \(\widehat{T}^{(i)}_{j \to a} \) must be recomputed after each sweep in terms of the most recent values of \(r_{i \to a} \) and \(\hat{r}_{a \to i} \). After a fast transient the numbers \(r_{i \to a} \) and \(\hat{r}_{a \to i} \) converge to the 1RSB solution. As for the \(\epsilon^{(q)}_{i \to a} \) and \(\epsilon^{(q)}_{a \to i} \), either they converge to 0 or they stay different from 0 (and, in fact, diverge). In the first case the 1RSB solution is stable, in the second one it is unstable.

The above procedure can be improved in several aspects. First of all one can define (and monitor) an appropriate norm of the \(\epsilon \)’s, e.g.

\[
\|\epsilon\| = \frac{1}{N} \sum_{i=1}^{N} \sum_{a \in \partial i} \sum_{q, \sigma} |\epsilon^{(q)}_{i \to a}|.
\]
After each updating sweep one can renormalize the ϵ’s by setting $\lambda = \|\epsilon\|$ and $\epsilon_{i \rightarrow a}^{(q)\sigma} \leftarrow \epsilon_{i \rightarrow a}^{(q)\sigma}/\lambda$. The 1RSB solution is stable if $\lambda < 1$, and unstable otherwise. It is evident that λ converges to the largest eigenvalue of the linear transformation (9), (10). The determination of the “stability parameter” λ can be improved by averaging it over many iterations of the algorithm.

In the next Sections we will be interested in evaluating the stability threshold for ensembles of models. In this case one can implement the same algorithm as before drawing the local structure of the graph randomly at each iteration [17]. Moreover, by cleverly exploiting the structure of the model to be studied, one can reduce the number of fluctuation parameters $\epsilon, \hat{\epsilon}$ per link. In both the examples to be studied below, it is possible to use just one parameter ϵ and one $\hat{\epsilon}$ per link.

As a final remark, let us notice that the method outlined in this Section for $T = 0$, can be generalized to finite-temperature calculations [18].

III. NUMERICAL EVALUATION OF THE STABILITY CONDITION

In this Section we treat two ensembles of satisfiability models having Hamiltonians of the form (1): random k-XORSAT and random k-SAT. In both cases the k-uple of sites $(i_1^a \ldots i_k^a)$ involved in a given clause a is chosen with flat probability distribution among the $\binom{N}{k}$ possible k-uples.

The zero-temperature phase diagram of these models (for $k \geq 3$) is known [7–10, 12–14] to be composed by 3 different phases as a function of α, cf. Figs. 3 and 4. For $\alpha < \alpha_d$ the system is paramagnetic with no diverging energy barriers in the configurational space. For $\alpha_d \leq \alpha \leq \alpha_c$ the model is still unfrustrated: the ground state energy is zero. Nevertheless the Gibbs measure decomposes in an exponentially large number of pure states separated by large energy barriers. For $\alpha > \alpha_c$ frustration percolates and the ground state energy becomes positive. The ground state is still hidden within a large number of metastable states.

Within the 1RSB approximation, the system is completely described by the complexity $\Sigma(e)$, i.e. the normalized logarithm of the number of metastable states with energy density e. For $\alpha > \alpha_d$, the complexity becomes strictly positive in the interval $e \in [e_s(\alpha), e_d(\alpha)]$. The static energy $e_s(\alpha)$ vanishes for $\alpha \leq \alpha_c$ and becomes positive above the static transition
FIG. 3: The stability region in the energy-clause density plane for 3-XORSAT. We used population dynamics algorithms with $O(10^5)$ elements and $O(10^2)$ iterations. The marginal stability line $e_G(\alpha)$ crosses the one-step ground state energy $e_s(\alpha)$ at $\alpha_G = 3.072(2)$ (outside the range shown here).

point α_c. The 1RSB dynamical energy e_d, becomes positive at the dynamical critical point α_d.

The 1RSB calculation of $\Sigma(e)$ becomes quite generally [1] unstable with respect to further replica-symmetry breakings above the Gardner energy e_G, with $e_G < e_d$. We expect the 1RSB result to be correct only for $e \leq e_G$. In the following we shall present our results for $e_G(\alpha)$ obtained with the method outlined in the previous Section.

A. k-XORSAT

The definitions given so far are completed by taking

$$E_a(\sigma_{i_a}) = 1 - J_a \sigma_{i_1} \cdots \sigma_{i_k},$$

where the J_a’s are i.i.d. (quenched) random variables taking the values ± 1 with equal probabilities. We recall [11, 12] that the existence of an unfrustrated ground state can be mapped onto the existence of a solution for a certain random linear system over $\mathbb{F}[2]$.

In Fig. 3 we present our results for the zero temperature phase diagram for $k = 3$ (but the picture remains qualitatively similar for any k). For $k = 3$ we have $\alpha_d \approx 0.81846916$ and $\alpha_c \approx 0.91793528$. It is evident from the data of Fig. 3 that $0 < e_G(\alpha) < e_d(\alpha)$ for
\(\alpha > \alpha_d \), and that \(e_G(\alpha), e_d(\alpha) \downarrow 0 \) as \(\alpha \downarrow \alpha_d \). This is confirmed by a perturbative expansion for \(\alpha \to \alpha_d \), cf. App. B. In particular we get

\[
e_d(\alpha) = e_d^{(0)}(\alpha - \alpha_d)^{1/2} + O(\alpha - \alpha_d), \quad e_G(\alpha) = e_G^{(0)}(\alpha - \alpha_d) + O((\alpha - \alpha_d)^{3/2}), \quad (16)
\]

with \(e_d^{(0)} \approx 0.0107506548 \) and \(e_G^{(0)} \approx 0.0753987711 \) for \(k = 3 \). Let us stress that our result \(e_G(\alpha) > 0 \) for \(\alpha > \alpha_d \) is consistent with the rigorous solution of the model at \(e = 0 \) [13, 14].

In the limit \(\alpha \to \infty \) we expect to recover the fully connected \(k \)-spin Ising spin glass. At zero temperature this model is characterized by FRSB even for what concerns the ground state concerns [19]. This implies that the line \(e_G(\alpha) \) must cross \(e_s(\alpha) \) at some finite \(\alpha_G \). This expectation is in fact fulfilled by our data: we get \(\alpha_G = 3.072(2) \) for \(k = 3 \). For \(\alpha > \alpha_G \) the 1RSB result for the ground state energy is just a lower bound [20].

B. \(k \)-SAT

In this case the energy of a clause is

\[
E_a(\sigma_{\partial a}) = 2 \prod_{i \in \partial a} \frac{1 - J_{a \rightarrow i} \sigma_i}{2},
\]

where the \(J_{a \rightarrow i} \) are i.i.d. (quenched) random variables taking the values \(\pm 1 \) with equal probabilities. The clause has energy 2 (it is not satisfied) if all of participating spins \(\sigma_i \) have opposite signs to the corresponding \(J_{a \rightarrow i} \). In all the other cases it has energy 0 (it is satisfied). In Fig. 4 we show the results of our method for the stability threshold \(e_G(\alpha) \), together with the curves for \(e_s(\alpha) \) and \(e_d(\alpha) \) computed in Refs. [9, 10]. We considered the two prototypical cases \(k = 3 \) and \(k = 4 \), but we expect the picture to remain qualitatively similar for any \(k \geq 3 \). There is an important qualitative difference with respect to \(k \)-XORSAT: for \(k \)-SAT \(e_G(\alpha) \downarrow 0 \) for \(\alpha \downarrow \alpha_m \) with \(\alpha_d < \alpha_m < \alpha_c \). In other words even zero-energy states become unstable towards FRSB at sufficiently low \(\alpha \). In the 1RSB picture, zero-energy states are related to cluster of solutions of the corresponding satisfiability problem [8–10]. It would be interesting to understand how this picture must be modified below \(\alpha_m \). Generalizing the ideas of [1], we expect, within a 2RSB description, such clusters to split continuously into sub-clusters at \(\alpha_m \).

Unlike \(k \)-XORSAT, the stability computation has a non-trivial result even at zero-energy. It is therefore interesting to modify the approach of Sec. II in order to consider this limit.
FIG. 4: The stability region in the energy-clause density plane for 3-SAT (top) 4-SAT (bottom).
Here we used population dynamics algorithms with (typically) $O(10^5)$ elements and $O(10^2)$ iterations.

The zero-energy limit of the 2RSB equations (2), (3) is obtained by taking $\mu_1, \mu_2 \to \infty$ with $\mu_1/\mu_2 = x$ fixed. As already noticed in Sec. II, the stability parameter λ ends up not depending upon μ_2, and therefore x. We report our results for $\lambda(\alpha, e = 0)$ in Fig. 5. This approach provide us good estimates of α_m. We get $\alpha_m = 4.153(1)$ for $k = 3$ and $\alpha_m = 9.086(2)$ for $k = 4$. This should be compared with the values $\alpha_d = 3.925(3)$ and $\alpha_c = 4.266(1)$ for $k = 3$, and $\alpha_d = 8.295(6)$ and $\alpha_c = 9.931(2)$ for $k = 4$.

Finally, in the large connectivity limit, the 1RSB solution is unstable even for the ground state. The curves $e_G(\alpha)$ and $e_s(\alpha)$ cross at α_G. We get $\alpha_G = 4.390(5)$ for $k = 3$ and
FIG. 5: The stability parameter (largest eigenvalue of the stability matrix) \(\lambda(\alpha, e = 0) \) for 3-SAT (left) and 4-SAT (right).

\(\alpha_G = 11.00(2) \) for \(k = 4 \).

IV. ON THE ZERO-TEMPERATURE LIMIT OF THE 1RSB SOLUTION

In this Section we consider the finite-temperature 1RSB solution and discuss its \(T \to 0 \) limit. At finite temperature the 1RSB order parameter is given by a probability distribution over the reals for each directed link. We shall call these distributions \(\rho_{i \to a}(h) \) and \(\tilde{\rho}_{a \to i}(u) \). The variables \(u \) and \(h \) are “cavity fields”. If the factor graph were a tree, we could define the cavity fields as follows. Consider the branch \(a \to i \) of the graph: this is the connected sub-tree which has \(i \) as the root and contains only \(a \) among the neighbors of \(i \). Let \(Z_{a \to i}(\sigma_i) \) be the partition function for this subsystem constrained to a given value of \(\sigma_i \), at inverse temperature \(\beta \). This quantity can be parametrized in terms of a cavity field \(u_{a \to i} \) as follows

\[
Z_{a \to i}(\sigma_i) = Z_{a \to i}^{(0)} e^{\beta u_{a \to i} \sigma_i}.
\]

(18)

It is now elementary to show that, if the Hamiltonian has the form (1), with \(E_a(\sigma_{\partial a}) \) taking values in \(\{0, 2\} \), the field \(u_{a \to i} \) must become an integer number when \(T \to 0 \). The same conclusion is easily reached for the fields \(h_{i \to a} \).

The situation is less clear on locally tree-like graphs, such as the ones considered in Sec.
III. However, one can argue that the same property of the $T \to 0$ limit must hold within each pure state. Suppose now that the 1RSB cavity fields distributions $\rho_{i \to a}(h)$ or $\hat{\rho}_{a \to i}(u)$ have a non-vanishing support over non-integer fields even in the $T \to 0$ limit. It is reasonable to take this as an evidence for the 1RSB ansatz being incorrect (this kind of argument was pioneered in Ref. [21]). In fact we do not expect the properties of the system to be discontinuous at $T = 0$.

Let us notice in passing that other interesting phenomena appear when $T > 0$. At infinitesimal temperature the cavity fields acquire a small part proportional to the temperature. These evanescent contributions can in turn undergo one or several replica-symmetry-breaking transitions [8]. This is what happens in 3-SAT above $\alpha_b \approx 3.87 < \alpha_d$ [22]. The underlying physical phenomenon is the following. In the region $\alpha_b < \alpha < \alpha_d$ the space of solutions decomposes into clusters. However these cluster do not have any backbone (i.e. a subset of the variables which is fixed in all the solution of the cluster). The backbone percolates at α_d. In this Section we focus on “hard” cavity fields (i.e. non-vanishing in the zero-temperature limit) and these effects do not concern us. Notice that “hard” fields are the ones determining the energy in the $T \to 0$ limit.

It is easy to understand why a cavity fields distribution not concentrated on the integers in the $T \to 0$ limit, should be related to the instability of the 1RSB solution. Indeed the effect of the finite temperature is to provide fields that are not integers but differ from integers by a term of order T. When we insert these slightly-non-integer fields in the cavity equations this perturbation may be amplified, and after a finite number of steps the distribution may spread over non-integer fields. This instability corresponds to the propagation of a perturbation at any distance and it is a signal of instability of the 1RSB solution.

We investigated this phenomenon analytically for k-XORSAT and k-SAT. The idea is to write the 1RSB order parameter as follows

$$\hat{\rho}_{a \to i}(u) = \hat{r}_{a \to i}^{(+)} \delta(u - 1) + \hat{r}_{a \to i}^{(0)} \delta(u) + \hat{r}_{a \to i}^{(-)} \delta(u + 1) + \hat{\epsilon}_{a \to i}^{(+)}(u) + \hat{\epsilon}_{a \to i}^{(-)}(u),$$ \hspace{1cm} (19)

and analogously for $\rho_{i \to a}(h)$, with $\hat{\epsilon}_{a \to i}^{(+)}(u), \hat{\epsilon}_{a \to i}^{(-)}(u)$ small perturbations supported, respectively over $(0,1)$, and $(-1,0)$ (it turns out that $|u| \leq 1$ always). We then considered the $T = 0$ cavity equations with 1RSB parameter μ. It is easy to realize that the 1RSB equations leave the $\hat{\epsilon}_{a \to i}, \hat{\epsilon}_{i \to a} = 0$ subspace invariant (we worked indeed within this subspace in the rest of the paper). The next step is therefore to expand for small perturbations $\hat{\epsilon}_{i \to a}^{(\pm)}(h)$.
and $\tilde{\epsilon}_{a\rightarrow i}^{(\pm)}(u)$. The resulting linear equations have a simple invariant subspace:

$$\tilde{\epsilon}_{a\rightarrow i}^{(\pm)}(u) = \tilde{\delta}_{a\rightarrow i}^{(\pm)} e^{\mu |u|},$$

and analogously for $\epsilon_{i\rightarrow a}^{(\pm)}(h)$ (with parameters $\delta_{i\rightarrow a}^{(\pm)}$). One can therefore deduce a set of linear recursions for the parameters $\tilde{\delta}_{a\rightarrow i}^{(\pm)}$, $\delta_{i\rightarrow a}^{(\pm)}$. It turns out that, both for k-SAT and for k-XORSAT, these recursions are equivalent to the ones obtained in the previous Sections for the 2RSB perturbations. Under the assumption that Eq. (20) defines the most relevant (unstable) subspace, this implies that stability with respect to non-integer fields is indeed equivalent to stability with respect to 2RSB perturbations.

For finite μ, we analyzed this instability numerically. As an example, in Fig. 6 we report the results of a numerical solution of the 1RSB equations for 3-SAT at $\alpha = 4.51 > \alpha_G$. Here we used $T = 10^{-5}$ and 1RSB parameter $\mu = 1.75$ and 2.25, which should be confronted with the ground-state value $\mu_a(\alpha = 4.51) = 1.94(1)$. The first choice of μ corresponds to metastable states, while the second to an energy below the ground state. It is clear from the figure that $\mu = 1.75$ is in the unstable region while $\mu = 2.25$ is in the stable region.

In fact the distributions $\rho_{i\rightarrow a}(h)$ or $\hat{\rho}_{a\rightarrow i}(u)$ acquire a non-vanishing support on non-integer fields as soon as $\mu < \mu_{\text{int}}(\alpha)$ (i.e. for energy $e > e_{\text{int}}(\alpha)$). A precise numerical
FIG. 7: Distributions $\hat{\epsilon}_{a\rightarrow i}^{(\pm)}(u)$ of non-integer cavity fields for 3-SAT, averaged over all the directed links of the factor graph. Here we used $\alpha = 4.51$ and $\mu = 1.9 < \mu_{\text{int}}$ and normalized the integral of $\hat{\epsilon}_{a\rightarrow i}^{(\pm)}(u)$ to 1. The continuous line is a fit to the expected form $\hat{\delta}_{\star} \exp(\mu|u|)$, cf. 20. We found the value $\hat{\delta}_{\star} \approx 0.351$ for the best fitting coefficient.

determination of $\mu_{\text{int}}(\alpha)$ is not simple because the solution of the cavity equations at finite temperature is a rather slow process. Moreover many systematic effects must be taken into account. As mentioned above consistency implies that $\mu_{\text{int}}(\alpha) \leq \mu_{G}(\alpha)$. Furthermore, we argued $\mu_{\text{int}}(\alpha) = \mu_{G}(\alpha)$ under the assumption that Eq. (20) defines indeed the most relevant perturbation. Our numerical best estimates give $\mu_{\text{int}}(4.51) = 2.00(3)$. This is numerically compatible with the result obtained with the methods of Secs. II and III: $\mu_{G}(4.51) = 2.045(5)$.

Finally in Fig. 7 we present our numerical data for the average of the distributions $\hat{\rho}_{a\rightarrow i}(u)$ at $\alpha = 4.51$ and $\mu = 1.9 < \mu_{\text{int}}(\alpha)$. If the analytical argument outlined above is correct and in the approximation that $|\mu_{\text{int}} - \mu| \approx 0.10 \ll 1$, we should have $\hat{\epsilon}_{a\rightarrow i}^{(\pm)}(u) \approx \hat{\delta}_{\star} \exp(\mu|u|)$. The reasonable agreement confirms that Eq. (20) corresponds to the most relevant subspace for finite-T perturbations.
V. CONCLUSION

Our main conclusion is that FRSB plays an important role in random combinatorial optimization problems such as k-XORSAT and k-SAT. We investigated this issue by analyzing the stability of the cavity recursions, both within a 2RSB ansatz, cf. Secs. II and III, and at finite temperature, cf. Sec. IV.

The 1RSB ground state becomes unstable in two different regimes. In the UNSAT region, it becomes unstable in highly constrained problems: $\alpha > \alpha_G$, i.e. when the corresponding factor graph has large connectivity. This result was not unexpected. As shown in Refs. [19] (for k-XORSAT) and [23, 24] (for 3-SAT), in the $\alpha \to \infty$ limit, these models have a low temperature FRSB phase. In the SAT region there is an exponential number of unfrustrated ground states (i.e. solutions of the satisfiability problem). The 1RSB solution indicates that these solutions have a clustered structure in the region $\alpha_d < \alpha < \alpha_c$. However, this solution becomes unstable in the underconstrained region $\alpha_d < \alpha < \alpha_m$. Providing a more refined description of the space of solutions in this regime is an open problem (which will require presumably FRSB).

Let us recall that high-lying metastable states are always unstable against FRSB. This could have remarkable consequences on the performances of local search algorithms (such as simulated annealing). Let us suppose, just to estimate how large this effect can be, that there are no metastable states above the instability energy $e_G(\alpha)$. This would imply that the total number of metastable states at the SAT-UNSAT phase transition is $\Sigma(e_G(\alpha_c), \alpha_c) \approx 0.0019$ (for 3-SAT) and 0.0099 (for 4-SAT), instead of $\Sigma(e_d(\alpha_c), \alpha_c) \approx 0.010$ (for 3-SAT) and 0.029 (for 4-SAT). In other words metastability would start having some effect only at much larger sizes.

In this work we studied the stability of the 1RSB phase, by analyzing the stability of the cavity recursions with respect to two types of perturbations. In Secs. II and III we considered a perturbation towards 2RSB, while in Sec. IV we used a perturbation towards non-integer fields. We argued that the two approaches give indeed coincident answers, cf. Sec. IV. This leaves open the questions whether there can be more dangerous instabilities. In replica formalism, one should diagonalize the Hessian of the free energy in the full replica space. We expect that our calculation corresponds to selecting one particular subspace. The question is whether this is the most dangerous subspace. The fact [18] that in the $\alpha \to \infty$
limit our calculation yields the replicon instability points towards a positive answer.

Acknowledgments

FRT thanks ICTP for kind hospitality during the completion of this manuscript. Work supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00307, Dyglagemem.

APPENDIX A: EXPLICIT FORMULAE

In this Appendix we give the explicit forms of the recursions (8), (9) and (10) for the models treated in Sec. III. Moreover we show how to reduce the size of the 6×6 matrices $T^{(a)}_{b\rightarrow i}$ and $\hat{T}^{(i)}_{j\rightarrow a}$ using the symmetries of the models. Finally, it will become evident that the stability parameter λ depends uniquely upon the smallest replica-symmetry breaking parameter μ_1.

Before turning to the models of Sec. III, it is useful to compute the matrix $M^{(i)}_{\sigma,\sigma'}(q_1 \ldots q_l; \mu_2)$, cf. Eq. (11), which is model-independent. We get the following result

$$M^{(i)}_{\sigma,\sigma'}(q_1 \ldots q_l; \mu_2) = \begin{cases}
0 & \text{if } \sum_{j \neq i} q_j > 1 \text{ or } < 1, \\
\epsilon^{-2\mu_2 \delta_{\sigma,\sigma'}\delta_{\sigma',-}} & \text{if } \sum_{j \neq i} q_j = 1 \text{ and } q_i = 0, +, \\
\epsilon^{2\mu_2 \delta_{\sigma,\sigma'}\delta_{\sigma',-}} & \text{if } \sum_{j \neq i} q_j = 1 \text{ and } q_i = -, \\
\epsilon^{-2\mu_2 \delta_{\sigma,\sigma'}\delta_{\sigma',+}} & \text{if } \sum_{j \neq i} q_j = -1 \text{ and } q_i = 0, -, \\
\epsilon^{2\mu_2 \delta_{\sigma,\sigma'}\delta_{\sigma',+}} & \text{if } \sum_{j \neq i} q_j = -1 \text{ and } q_i = +, \\
\delta_{\sigma,\sigma'} & \text{if } \sum_{j \neq i} q_j = 0.
\end{cases} \quad (A1)$$

1. k-XORSAT

Let us start by recalling that the function $\hat{\rho}^c[\rho^{(1)} \ldots \rho^{(k-1)}]$ takes in this case the form:

$$\hat{\rho}^c_+ = \frac{1}{2} \left[\prod_{i=1}^{k-1} (\rho^{(i)}_+ + \rho^{(i)}_-) + \prod_{i=1}^{k-1} (\rho^{(i)}_+ - \rho^{(i)}_-) \right], \quad (A2)$$

$$\hat{\rho}^c_0 = 1 - \prod_{i=1}^{k-1} (\rho^{(i)}_+ + \rho^{(i)}_-) \quad (A3)$$

$$\hat{\rho}^c_- = \frac{1}{2} \left[\prod_{i=1}^{k-1} (\rho^{(i)}_+ + \rho^{(i)}_-) - \prod_{i=1}^{k-1} (\rho^{(i)}_+ - \rho^{(i)}_-) \right]. \quad (A4)$$
This completely specifies the 2RSB saddle point equations (2), (3). Moreover, it turns out that the 1RSB solution is symmetric under spin inversion: \(r_{i-a}^{(+)} = r_{i-a}^{(-)} \), and \(\hat{r}_{a-i}^{(+)} = \hat{r}_{a-i}^{(-)} \) [14]. We can therefore parametrize it in terms of a single real number per directed link, e.g. \(r_{i-a}^{(0)}, \hat{r}_{a-i}^{(0)} \). Using this simplifying features it is easy to show that the matrices \(T_{b-i}^{(a)} \), \(\hat{T}_{j-a}^{(i)} \) have the following form:

\[
T_{b-i}^{(a)} = \begin{bmatrix}
C_1 & C_2 & 0 & C_3 & 0 & 0 \\
0 & C_1 & 0 & 0 & 0 & 0 \\
0 & 0 & C_4 & 0 & 0 & C_5 \\
C_5 & 0 & 0 & C_4 & 0 & 0 \\
0 & 0 & 0 & C_1 & 0 & 0 \\
0 & 0 & C_3 & 0 & C_2 & C_1 \\
\end{bmatrix}, \quad \hat{T}_{j-a}^{(i)} = \begin{bmatrix}
1/2 & 0 & 0 & 0 & 0 & 1/2 \\
0 & 1/2 & 0 & 0 & 1/2 & 0 \\
0 & 0 & \hat{C} & \hat{C} & 0 & 0 \\
0 & 0 & \hat{C} & \hat{C} & 0 & 0 \\
0 & 1/2 & 0 & 0 & 1/2 & 0 \\
1/2 & 0 & 0 & 0 & 0 & 1/2 \\
\end{bmatrix}, \quad (A5)
\]

where we ordered the 6 components as follows \((q, \sigma) = \{(+, +), (+, -); (0, +), (0, -); (-, +), (-, -)\}\). The constants \(C_1, \ldots, C_5 \) are easily computed using Eqs. (11) and (A1), while \(\hat{C} = \hat{C}_{j-a}^{(i)} \) is given by

\[
\hat{C}_{j-a}^{(i)} = \frac{1}{2} \frac{r_{j-a}^{(0)} \prod_{l \in \partial a \setminus \{i, j\}} (1 - r_{l-a}^{(0)})}{1 - \prod_{l \in \partial a} (1 - r_{l-a}^{(0)})}. \quad (A6)
\]

As we already pointed out, the 6-dimensional transformation defined above can be reduced thanks to the symmetries of the system. Consider indeed the following parametrization of the fluctuation variables in terms of the numbers \(\delta_{i-a} \):

\[
\begin{align*}
\epsilon_{i-a}^{(+)} &= \left(e^{\mu_1 - 2\mu_2} / r_{i-a}^{(+)} \right) \delta_{i-a}, & \epsilon_{i-a}^{(+)} &= 0, \\
\epsilon_{i-a}^{(0)} &= \left(1 / r_{i-a}^{(0)} \right) \delta_{i-a}, & \epsilon_{i-a}^{(0)} &= \left(1 / r_{i-a}^{(0)} \right) \delta_{i-a}. \\
\epsilon_{i-a}^{(-)} &= 0, & \epsilon_{i-a}^{(-)} &= \left(e^{\mu_1 - 2\mu_2} / r_{i-a}^{(-)} \right) \delta_{i-a},
\end{align*} \quad (A7)
\]

and the analogous for \(\epsilon_{a-i}^{(a, \sigma)} \) (in terms of \(\delta_{i-a} \)). It is easy to show that the linear subspace defined in this way is preserved by the transformations (9), (10). Moreover, a numerical calculation confirms that the largest eigenvalue \(\lambda \) belongs to this subspace. Therefore, instead of Eqs. (9), (10) we can iterate the simpler recursion:

\[
\begin{align*}
\delta_{i-a} &= \sum_{b \in \partial a \setminus \{i\}} \epsilon_{b-i}^{(a)} \delta_{b-i}, \\
\hat{\delta}_{a-i} &= \sum_{j \in \partial a \setminus \{i\}} \hat{\epsilon}_{j-a}^{(i)} \delta_{j-a}.
\end{align*} \quad (A10)
\]
The real numbers $t_{b\to i}^{(a)}$ and $\tilde{t}_{j\to a}^{(i)}$ can be derived from the matrices $T_{b\to i}^{(a)}$ and $\tilde{T}_{j\to a}^{(i)}$. The result is

\begin{align}
 t_{b\to i}^{(a)} &= \frac{1}{z[\{\tilde{r}_{c\to i}; \mu_1 \}]} \sum' \prod_{c \in \partial a \setminus \{a, b\}} (\tilde{r}_{c\to i}^{(q_c)} e^{-\mu_1 |q_c|}) \quad (A11) \\
 \tilde{t}_{j\to a}^{(i)} &= \prod_{l \in \partial a \setminus \{i, j\}} (1 - r_{l\to a}^{(0)}) , \quad (A12)
\end{align}

where the sum \sum' is over the $\{q_c\}$ such that $\sum_{c \in \partial a \setminus \{a, b\}} q_c = 0$ or 1, and $z[\{\tilde{r}_{c\to i}; \mu_1 \}]$ is defined as in Eq. (4) and discussion below. Notice that the above expression no longer depend upon μ_2.

2. k-SAT

Once again, the first step consists in assigning the (model-dependent) function $\hat{\rho}[\rho(1) \ldots \rho(k-1)]$ entering in Eq. (3). Unlike for k-XORSAT, this function depends upon the quenched variables $J_{a\to i}$. We have

\begin{align}
 \hat{\rho}_{a\to i}(J_{a\to i}) &= \prod_{j \in \partial a \setminus i} \rho_{j\to a} (-J_{a\to j}) , \quad (A13) \\
 \hat{\rho}_{a\to i}(0) &= 1 - \prod_{j \in \partial a \setminus i} \rho_{j\to a} (-J_{a\to j}) , \quad (A14) \\
 \hat{\rho}_{a\to i}(-J_{a\to i}) &= 0 , \quad (A15)
\end{align}

where, for greater clarity, we used the notations $\rho(q)$ and $\hat{\rho}(q)$, instead of ρ_q and $\hat{\rho}_q$ for indicating the arguments of the distributions ρ and $\hat{\rho}$. Obviously, the 1RSB solution (8) has the property that $\hat{\rho}_{a\to i}^{(q)} = 0$ for $q = -J_{a\to i}$. The distributions $\hat{\rho}_{a\to i}$ can therefore be parametrized by giving a single real number: for instance $\hat{\rho}_{a\to i}^{(0)}$.

Let us now consider the fluctuation parameters $\epsilon_{i\to a}^{(q)\sigma}$ and $\tilde{\epsilon}_{a\to i}^{(q)\sigma}$. The fist important observation consists in noticing that, because of Eqs. (A13)–(A15), $\tilde{\epsilon}_{a\to i}^{(q)\sigma} = 0$ if $\sigma = -J_{a\to i}$ or $q = -J_{a\to i}$. Using the form of the transformation $T_{b\to i}^{(a)}$, this implies $\epsilon_{i\to a}^{(+)} = \epsilon_{i\to a}^{(-)} = 0$. We are therefore left with 4 parameters $\epsilon_{i\to a}$’s and 2 $\tilde{\epsilon}_{a\to i}$’s different from zero.

In order to write explicit forms for the transformations (9) and (10), it is convenient to parametrize the remaining $\epsilon_{i\to a}$’s as follows:

\begin{align}
 \epsilon_{i\to a}^{(+)} &= \left(e^{\mu_1 - 2\mu_2} / r_{i\to a}^{(+)} \right) \delta_{i\to a}^{(+)} , \quad \epsilon_{i\to a}^{(0)+} = (1/r_{i\to a}^{(0)}) \delta_{i\to a}^{(0)+} , \quad \epsilon_{i\to a}^{(0)} = (1/r_{i\to a}^{(0)}) \delta_{i\to a}^{(0)} , \quad (A16) \\
 \epsilon_{i\to a}^{(-)} &= \left(e^{\mu_1 - 2\mu_2} / r_{i\to a}^{(-)} \right) \delta_{i\to a}^{(-)} , \quad \epsilon_{i\to a}^{(0)-} = (1/r_{i\to a}^{(0)}) \delta_{i\to a}^{(0)-} . \quad (A17)
\end{align}
Analogously we parametrize the non-zero $\hat{e}(q)_{a\rightarrow i}$’s in terms of $\hat{e}(q)_{a\rightarrow i}$’s. We are now in position to write the explicit form of the transformations (9), (10) in a compact form. In this case it is more convenient not to use the matrix notation. We get:

$$
\delta^{(+)}_{i\rightarrow a} = \sum_{b\in\Gamma_+} t^{(a)}_{b\rightarrow i}(0) \hat{\delta}^{(+)}_{b\rightarrow i} + \sum_{b\in\Gamma_-} t^{(a)}_{b\rightarrow i}(1) \hat{\delta}^{(0)}_{b\rightarrow i},
$$

$$
\delta^{(0)}_{i\rightarrow a} = \sum_{b\in\Gamma_+} t^{(a)}_{b\rightarrow i}(0) \hat{\delta}^{(0)}_{b\rightarrow i} + \sum_{b\in\Gamma_-} t^{(a)}_{b\rightarrow i}(1) \hat{\delta}^{(0)}_{b\rightarrow i},
$$

$$
\delta^{(0)}_{i\rightarrow a} = \sum_{b\in\Gamma_+} t^{(a)}_{b\rightarrow i}(-1) \hat{\delta}^{(+)}_{b\rightarrow i} + \sum_{b\in\Gamma_-} t^{(a)}_{b\rightarrow i}(0) \hat{\delta}^{(0)}_{b\rightarrow i},
$$

$$
\delta^{(-)}_{i\rightarrow a} = \sum_{b\in\Gamma_+} t^{(a)}_{b\rightarrow i}(-1) \hat{\delta}^{(+)}_{b\rightarrow i} + \sum_{b\in\Gamma_-} t^{(a)}_{b\rightarrow i}(0) \hat{\delta}^{(0)}_{b\rightarrow i},
$$

where we used the shorthands $\Gamma_\sigma = \{ b \in \partial i : J_{b\rightarrow i} = \sigma \}$. As for Eq. (10), we get

$$
\hat{\delta}_{a\rightarrow i}^{(J_i)J_i} = \sum_{j \in \partial a \setminus i} \prod_{l \in \partial a \setminus \{i,j\}} (1 - r^{(0)}_{l\rightarrow a}) \delta_{J_i\rightarrow a}^{(-J_j)\rightarrow J_j},
$$

$$
\hat{\delta}_{a\rightarrow i}^{(0,0)J_i} = \sum_{j \in \partial a \setminus i} \prod_{l \in \partial a \setminus \{i,j\}} (1 - r^{(0)}_{l\rightarrow a}) \delta_{J_i\rightarrow a}^{(0)\rightarrow J_j},
$$

where we used the shorthands J_i, J_j for (respectively) $J_{a\rightarrow i}$ and $J_{a\rightarrow j}$. The last thing which remains to be specified are the coefficients $t^{(a)}_{b\rightarrow i}(q)$ entering in Eqs. (A18)-(A21):

$$
t^{(a)}_{b\rightarrow i}(q) = \frac{1}{z[\{\hat{r}_{e\rightarrow i}; \mu_1\}] \sum_{\{\sigma_{c}\} c \in \partial i \setminus \{a,b\}} \prod (\hat{e}^{(\alpha)}_{c\rightarrow i} e^{-\mu_1|\sigma_c|})}.
$$

As for k-XORSAT, the recursions (A18)-(A23) can be further simplified by restricting them to a particular linear subspace. Notice in fact that the subspace $\delta_{i\rightarrow a}^{(+)} = \delta_{i\rightarrow a}^{(0)}$, $\delta_{i\rightarrow a}^{(-)} = \delta_{i\rightarrow a}^{(0)}$, $\hat{\delta}_{a\rightarrow i}^{(J_{a\rightarrow i})J_{a\rightarrow i}} = \hat{\delta}_{a\rightarrow i}^{(0)J_{a\rightarrow i}}$, is preserved by the above transformation. A numerical calculation confirms that it contains the largest eigenvalue. A further simplification occurs as $\mu_1 \rightarrow \infty$, since in this limit $t^{(a)}_{b\rightarrow i}(\pm 1) \rightarrow 0$

APPENDIX B: k-XORSAT: EXPANSION NEAR THE DYNAMIC TRANSITION

In this Appendix we focus on XORSAT and expand both $e_d(\alpha)$ and $e_G(\alpha)$ for $\alpha \rightarrow \alpha_d$. This provides us with an analytic characterization of the dynamic transition.

Throughout this Section, we shall work within the random k-XORSAT ensemble defined in Sec. III.
1. Dynamic energy: $e_d(\alpha)$

Before dwelling upon the calculation, let us recall some well-known relations valid within a 1RSB approximation. The complexity can be obtained as the Legendre transform of the replicated free energy [25]:

$$\Sigma(e) = \mu e - \mu \phi(\mu), \quad e = \frac{\partial}{\partial \mu} [\mu \phi(\mu)]. \quad (B1)$$

Since $e_d(\alpha) \downarrow 0$ as $\alpha \downarrow \alpha_d$, we are interested in the zero-energy (large μ) limit of the above expressions. In this limit the free energy admits an expansion of the form:

$$\mu \phi(\mu) = \phi_0 + \phi_1 e^{-2\mu} + \phi_2 e^{-4\mu} + O(e^{-6\mu}). \quad (B2)$$

which implies

$$\Sigma(e) = -\phi_0 - \frac{1}{2} e \log \left(\frac{e}{-2\phi_1} \right) + \frac{1}{2} e - \frac{\phi_2}{4\phi_1^2} e^2 + O(e^3). \quad (B3)$$

The dynamical energy (and the corresponding replica-symmetry breaking parameter) is defined as the location of the maximum of the complexity. It is therefore easy to obtain

$$e_d = \frac{\phi_1^2}{4\phi_2} + O(\phi_1^4/\phi_2^2), \quad \mu_d = -\frac{1}{2} \log \left(\frac{-\phi_1}{8\phi_2} \right) + O(\phi_1^2/\phi_2). \quad (B4)$$

Let us now turn to the case of random k-XORSAT. The 1RSB variational free energy reads

$$\mu \phi(\mu) = k\alpha \int dP(r) \int d\hat{P}(\hat{r}) \log \left[1 + \frac{1}{2} (e^{-2\mu} - 1)(1 - r_0)(1 - \hat{r}_0) \right] -$$

$$-\alpha \sum_{i=1}^k dP(r^{(i)}) \log \left[1 + \frac{1}{2} (e^{-2\mu} - 1) \prod_{i=1}^k (1 - r_0^{(i)}) \right] -$$

$$-\sum_{l=0}^\infty p_l \int d\hat{P}(\hat{r}^{(i)}) \log \left[\sum_{q_1 \ldots q_l} \prod_{i=1}^l \hat{r}_q^{(i)} e^{-\mu \sum_i |q_i| + \mu \sum_i q_i} \right], \quad (B5)$$

where $p_l = e^{-k\alpha (k\alpha)^l/l!}$ is the connectivity distribution of the variable nodes in the factor graph. The order parameters r and \hat{r} are symmetric distributions over $\{+, 0, -\}$ (which can therefore be parametrized using a single real number) and represent the distribution of the cavity fields. The functions $P(r)$ and $\hat{P}(\hat{r})$ are their distributions with respect to the disorder.
As shown in Refs. [13] and [14] it is important to distinguish the “core” of the factor graph. Outside the core the cavity fields are trivial: \(r_q = \delta_q = \delta_q^{(0)} \). We rewrite [14]:

\[
P[r] = u F[r] + (1 - u) \delta[r - \delta^{(0)}],
\]

\[
\hat{P}[\hat{r}] = \hat{u} \hat{F}[\hat{r}] + (1 - \hat{u}) \delta[\hat{r} - \delta^{(0)}],
\]

where the parameters \(u \) and \(\hat{u} \) satisfy the self-consistency equations

\[
\hat{u} = u^{k-1}, \quad u = 1 - e^{-k\alpha \hat{u}}.
\]

These equations have a non-trivial solution \(u, \hat{u} > 0 \) for \(\alpha \geq \alpha_d \).

Plugging the decomposition (B6), (B7) into Eq. (B5) we get:

\[
\mu \phi(\mu) = k\alpha u \hat{u} \int dF(r) \int d\hat{F}(\hat{r}) \log \left[1 + \frac{1}{2} (e^{-2\mu} - 1) (1 - r_0) (1 - \hat{r}_0) \right] - \\
- \alpha u^k \int \prod_{i=1}^{k} dF(r^{(i)}) \log \left[1 + \frac{1}{2} (e^{-2\mu} - 1) \prod_{i=1}^{k} (1 - r_0^{(i)}) \right] - \\
- (1 - e^{-k\alpha \hat{u}}) \sum_{l=1}^{\infty} f_l \int \prod_{i=1}^{l} d\hat{F}(\hat{r}^{(i)}) \log \left[\sum_{q_1 \ldots q_l} \prod_{i=1}^{l} \hat{r}^{(i)}_{q_i} e^{-\mu \sum_i |q_i| + \mu \sum_i q_i} \right],
\]

where \(f_l = (e^{k\alpha \hat{u}} - 1)^{-1} (k\alpha \hat{u})^l / l! \) is the connectivity distribution inside the core. The 1RSB saddle-point equations can be obtained by differentiating the above expression with respect to the distributions \(F(r) \) and \(\hat{F}(\hat{r}) \):

\[
F(r) = \sum_{l=1}^{\infty} f_l \int \prod_{i=1}^{l} d\hat{F}(\hat{r}^{(i)}) \delta[r - \rho^c[\hat{r}^{(1)} \ldots \hat{r}^{(l)}]],
\]

\[
\hat{F}(\hat{r}) = \int \prod_{i=1}^{k-1} dF(r^{(i)}) \delta[\hat{r} - \rho^c[r^{(1)} \ldots r^{(k-1)}]].
\]

The saddle point equations imply that, as \(\mu \to \infty \), \(F(r) \) and \(\hat{F}(\hat{r}) \) are supported over \(r_0, \hat{r}_0 = O(e^{-2\mu}) \). In particular we get

\[
\langle r_0 \rangle_F = \frac{f_2}{1 - (k - 1) f_1} e^{-2\mu} + O(e^{-4\mu}), \quad \langle \hat{r}_0 \rangle_{\hat{F}} = \frac{(k - 1) f_2}{1 - (k - 1) f_1} e^{-2\mu} + O(e^{-4\mu}).
\]

Using these results, one can expand Eq. (B9) for \(\mu \to \infty \). We get the form (B2) with
(the first two coefficients were already derived in [14]):

\[
\phi_0(\alpha) = -[k\alpha u \hat{u} - \alpha u^k - k\alpha \hat{u} + (1 - e^{-k\alpha \hat{u}})] \log 2, \quad (B13)
\]

\[
\phi_1(\alpha) = -\alpha u^k + \frac{1}{2}(k\alpha \hat{u})^2 e^{-k\alpha \hat{u}}, \quad (B14)
\]

\[
\phi_2(\alpha) = \frac{1}{2} \alpha u^k - \frac{1}{4} (k\alpha \hat{u})^2 e^{-k\alpha \hat{u}} \left[1 - 2k\alpha \hat{u} + \frac{1}{2} (k\alpha \hat{u})^2 \right] +
\]

\[
+ \frac{1}{4} (k\alpha \hat{u})^5 \frac{(k - 1)(1 - u)^2}{u[1 - k(k - 1)\alpha(1 - u)u^{-2}]}.
\quad (B15)
\]

It is easy to check that both \(\phi_0(\alpha)\) and \(\phi_1(\alpha)\) have finite limits \(\phi_{0,d}\) and \(\phi_{1,d}\) as \(\alpha \downarrow \alpha_d\). On the other hand, in the same limit, \(\phi_2(\alpha) = \phi_{2,d}(\alpha - \alpha_d)^{-1/2} + O(1)\), with

\[
\phi_{2,d} = \frac{1}{4} (k\alpha_d \hat{u}_d)^4 \frac{(k - 1)\alpha_d(1 - u_d)}{\sqrt{2(k - 1)\alpha_d k(k - 1)\alpha_d \hat{u}_d - (k - 2)}},
\quad (B16)
\]

where we defined \(u_d = \lim_{\alpha \to \alpha_d} u\), \(\hat{u}_d = \lim_{\alpha \to \alpha_d} \hat{u}\). Using these expressions in Eq. (B4), we recover the first of the two results in (16) with \(e_d(0) = \phi_{1,d}^2/(4\phi_{2,d})\). Moreover

\[
\mu_d(\alpha) = -\frac{1}{4} \log(\alpha - \alpha_d) - \frac{1}{2} \log \left(\frac{-\phi_{1,d}}{8\phi_{2,d}} \right) + O((\alpha - \alpha_d)^{1/2}). \quad (B17)
\]

One can define one more instability threshold \(\mu_{1-1}(\alpha)\) such that the 1RSB solution becomes unstable within the 1RSB space itself for \(\mu < \mu_{1-1}(\alpha)\). For \(\mu < \mu_{1-1}(\alpha)\), the 1RSB saddle point equations cannot be any longer solved by a population dynamics algorithm. One has, obviously, \(\mu_{1-1}(\alpha) < \mu_G(\alpha)\). More surprisingly, for \(\alpha \gtrsim \alpha_d\), \(\mu_d(\alpha) < \mu_{1-1}(\alpha)\). This implies that the first expression in Eq. (16) cannot be directly tested against the results of a population dynamics calculation.

2. Stability threshold: \(e_G(\alpha)\)

In order to compute the stability threshold, it is helpful to restrict ourselves to the core as in the previous Section: the fluctuation parameters \(\epsilon_{i-a}\) and \(\hat{\epsilon}_{a-i}\) vanish outside. Moreover, we can work with the “reduced” recursion (A10). It is natural to consider the behavior of the joint probability distributions \(F(r, \delta), \hat{F}(\hat{r}, \hat{\delta})\) under the recursions (8) and (A10). In analogy with Eqs. (B10), (B11), we obtain

\[
F(r, \delta) = \sum_{i=1}^{\infty} f_i \prod_{i=1}^{l} d\hat{F}(\hat{r}^{(i)}, \hat{\delta}^{(i)}) \delta[r - \rho c\{\{\hat{r}^{(j)}\}\}] \delta[\delta - \sum_{i=1}^{l} t^{(i)}\{\{\hat{r}^{(j)}\}\}] \delta^{(i)}, \quad (B18)
\]

\[
\hat{F}(\hat{r}, \hat{\delta}) = \int \prod_{i=1}^{k-1} dF(r^{(i)}, \delta^{(i)}) \delta[\hat{r} - \rho c\{\{r^{(j)}\}\}] \delta[\hat{\delta} - \sum_{i=1}^{k-1} \hat{t}^{(i)}\{\{r^{(j)}\}\}] \delta^{(i)}, \quad (B19)
\]
where the coefficients \(t^{(i)}[\ldots] \) and \(\tilde{t}^{(i)}[\ldots] \) are easily computed using Eqs. (A11) and (A12). Alternatively these equations could have been derived by “projecting” Eqs. (2) and (3).

Notice that the marginal distributions \(F(r) \) and \(\hat{F}(\hat{r}) \) satisfy the Eqs. (B10), (B11). Therefore, if \(\mu \to \infty, F(r, \delta), \hat{F}(\hat{r}, \hat{\delta}) \) are supported on \(r_0, \hat{r}_0 = O(e^{-2\mu}) \). As for \(\delta, \hat{\delta} \) two cases are possible: either their support shrinks to 0 (and therefore the 1RSB solution is stable) or it remains distinct from 0. This can be checked by looking at the average value of \(\delta, \hat{\delta} \) with respect to the above distributions. Using Eqs. (B18), (B19), we get

\[
\langle \delta \rangle_F = \sum_{l=1}^{\infty} \sum_{i=1}^{l} f_l \langle t^{(i)}[\{r^{(j)}\}] \cdot \hat{\delta}^{(i)} \rangle_{\hat{F}}, \quad \langle \hat{\delta} \rangle_{\hat{F}} = \sum_{i=1}^{k-1} \langle \bar{t}^{(i)}[\{\hat{r}^{(j)}\}] \cdot \delta^{(i)} \rangle_F. \tag{B20}
\]

We are interested in the regime \(\alpha \downarrow \alpha_d, \mu_1 \uparrow \infty \), with \(e^{-\mu_1} \sim (\alpha - \alpha_d) \). This can be checked to be the correct scaling at the end of the computation. If we expand the above equations in this limit, we get

\[
\langle \delta \rangle_F = [f_1 + 2f_2(e^{-\mu_1} + 2\langle \hat{r}_0 \rangle_{\hat{F}})]\langle \hat{\delta} \rangle_{\hat{F}} + O(e^{-2\mu_1}), \tag{B21}
\]
\[
\langle \hat{\delta} \rangle_{\hat{F}} = (k-1)[1 - (k-2)\langle r_0 \rangle_F] \langle \delta^{(i)} \rangle_F + O(e^{-2\mu_1}). \tag{B22}
\]

which imply the marginality condition

\[
(k-1)[1 - (k-2)\langle r_0 \rangle_F][f_1 + 2f_2(e^{-\mu_1} + 2\langle \hat{r}_0 \rangle_{\hat{F}})] = 1 + O(e^{-2\mu_1}). \tag{B23}
\]

Notice that \(\langle r_0 \rangle_F \) and \(\langle \hat{r}_0 \rangle_{\hat{F}} \) are formally of order \(e^{-2\mu_1} \), cf. Eq. (B12) but since \(1 - (k-1)f_1 = O(\alpha - \alpha_d) \), they must be in fact considered of order \(e^{-\mu_1} \). The relation can be inverted yielding

\[
\mu_G(\alpha) = -\frac{1}{2} \log(\alpha - \alpha_d) - \log A + O((\alpha - \alpha_d)^{1/2}), \tag{B24}
\]

where

\[
A = \frac{2(1 - u_d)}{\zeta \alpha_d u_d} \sqrt{2(k-1)\alpha_d[k(k-1)\alpha_d u_d - (k-2)]}, \quad \zeta = 1 + \sqrt{5 - \frac{2(k-2)}{k(k-1)\alpha_d u_d}}. \tag{B25}
\]

Plugging this result into the general relations (B1), (B2), we get the second result in Eq. (16), with \(e_G^{(0)} = -2A^2 \phi_{1,d} \).

[1] A. Montanari and F. Ricci-Tersenghi, Eur. Phys. J. B 33, 339 (2003).
[2] M. Mezard, G. Parisi and M. A. Virasoro, *Spin Glass Theory and Beyond* (World Scientific, Singapore, 1987).

[3] O. Dubois, R. Monasson, B. Selman, and R. Zecchina. (eds.), Theor. Comp. Sci. **265**, issue 1-2 (2001)

[4] S. Cocco, A. Montanari, R. Monasson, and G. Semerjian. *Approximate analysis of search algorithms with "physical" methods*. cs.CC/0302003

[5] G. Parisi. *On the survey-propagation equations for the random K-satisfiability problem*. cs.CC/0212009

[6] M. R. Garey and D. S. Johnson, *Computers and intractability* (Freeman, New York, 1979).

[7] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, Nature **400**, 133 (1999).

[8] G. Biroli, R. Monasson, M. Weigt, Eur. Phys. J. B **14**, 551 (2000).

[9] M. M´ezard, G. Parisi, and R. Zecchina, Science **297**, 812 (2002).

[10] M. M´ezard and R. Zecchina, Phys. Rev. E **66**, 056126 (2002).

[11] N. Creignou, H. Daudé, Discr. Appl. Math. **96-97**, 41 (1999).

[12] F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E **63**, 026702 (2001).

[13] S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Phys. Rev. Lett. **90**, 047205 (2003).

[14] M. M´ezard, F. Ricci-Tersenghi, and R. Zecchina, J. Stat. Phys. **111**, 505 (2003).

[15] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, IEEE Trans. Inform. Theory **47**, 498 (2001).

[16] T. Richardson and R. Urbanke, in *Codes, Systems, and Graphical Models*, edited by B. Marcus and J. Rosenthal (Springer, New York, 2001).

[17] M. M´ezard and G. Parisi, Eur. Phys. J. B **20**, 217 (2001).

[18] A. Montanari and F. Ricci-Tersenghi. *The asymptotic dynamics of mean-field glasses is cooling-schedule dependent*. In preparation.

[19] E. Gardner, Nucl. Phys. **B257 [FS14]**, 747 (1985).

[20] S. Franz and M. Leone, J. Stat. Phys. **111**, 535 (2003).

[21] R. Monasson, J. Phys. A **31**, 513 (1998).

[22] G. Parisi. *On the survey-propagation equations for the random K-satisfiability problem*. cs.CC/0212009

[23] L. Leuzzi and G. Parisi, J. Stat. Phys. **103**, 679 (2001).
[24] A. Crisanti, L. Leuzzi, and G. Parisi, J. Phys. A 35, 481 (2002).

[25] R. Monasson, Phys. Rev. Lett. 75, 2847 (1995).

[26] A. J. Bray, M. A. Moore. Comment on “On the formal equivalence of the TAP and thermodynamic methods in the SK model.” cond-mat/0305620

[27] A. Annibale, A. Cavagna, I. Giardina, G. Parisi, E. Trevigne. The role of the Becchi-Rouet-Stora-Tyutin supersymmetry in the calculation of the complexity for the Sherrington-Kirkpatrick model. cond-mat/0307465

[28] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo. On Spin-Glass Complexity. cond-mat/0307543

[29] An estimate of their number is still matter of debate. See Refs. [26–28] for some recent contributions.