Regulation of Spontaneous Eosinophil Apoptosis—A Neglected Area of Importance

Pinja Ilmarinen¹, Eeva Moilanen¹ and Hannu Kankaanranta¹,²

¹The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland.
²Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland and University of Tampere, Tampere, Finland.

ABSTRACT: Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-5, or IL-3 for survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regulation of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review concentrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.

KEYWORDS: asthma, eosinophils, spontaneous apoptosis, glucocorticoids, Fas

CITATION: Ilmarinen et al. Regulation of Spontaneous Eosinophil Apoptosis—A Neglected Area of Importance. Journal of Cell Death 2014:7 1–9 doi:10.4137/JCD.S13588.

RECEIVED: November 6, 2013. RESUBMITTED: December 12, 2013. ACCEPTED FOR PUBLICATION: January 5, 2013.

ACADEMIC EDITOR: Garry Walsh, Editor in Chief

TYPE: Review

FUNDING: This study was financially supported by the Competitive State Research Financing of the Expert Responsibility Area of Tampere University Hospital (Tampere, Finland), grant numbers VTR 15 and VTR 224; Competitive Research Funding of Seinäjoki Central Hospital (Seinäjoki, Finland); Tampere Tuberculosis Foundation (Tampere, Finland); and Finnish Anti-Tuberculosis Association Foundation (Helsinki, Finland), which is gratefully acknowledged.

COMPETING INTERESTS: Authors disclose no potential conflicts of interest.

COPYRIGHT: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

CORRESPONDENCE: pinja.ilmarinen@uta.fi

Introduction

Eosinophilic granulocytes account only for approximately 3% of blood leukocytes in healthy individuals. Similar to neutrophilic granulocytes, they are cells specialized to kill pathogens by the secretion of toxic mediators but also able to regulate function of other immune cells. Although evolutionary, the function of eosinophils is thought to be the innate immune response against parasitic helminthes;¹ they are also critically involved in the pathogenesis of allergic, gastrointestinal, and hyperergic disorders and in tumor immunity.²–⁵ Allergic asthma is characterized by the accumulation of eosinophils in the airways. The current evidence suggests that eosinophils are critical mediators of asthma exacerbations and airway remodelling.⁶–⁹

The biology of eosinophils differs from many other immune cells or malignant cell lines in their requirement for an external stimulus for continuation of survival. In the absence of any such stimulant (eg granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-5 or IL-3), they die by spontaneous (also termed as "passive") apoptosis in a few days.¹⁰ Apoptosis is characterized by cell shrinkage, nuclear coalescence, chromatin condensation, and DNA fragmentation leading to the formation of apoptotic bodies and in vivo, to their ingestion by macrophages or other phagocytes. Generally, apoptosis can be induced via two different pathways, extrinsic (receptor mediated) or intrinsic (mitochondrial centered) (Fig. 1).¹¹

A majority of the studies on the regulation of eosinophil apoptosis have used allergic asthma as a starting point, ie they have focused on the significance and mechanisms of survival-prolonging cytokines.¹⁰,¹²,¹³ Given the importance of eosinophils in certain phenotypes of asthma,¹⁴,¹⁵ this approach is very sensible. However, eosinophils, albeit in low numbers,
Eosinophil apoptosis can be induced by several agents facilitating clearance of eosinophil inflammation. Eosinophil apoptosis can be induced eg by ligation of death receptor Fas or by ligation of tumor necrosis factor receptor (TNFR) family member CD30 and by many pharmacological agents, such as glucocorticoids, theophylline, and leukotriene modifiers.

Plenty of evidence exists supporting the occurrence of steroid-induced eosinophil apoptosis in the airways of steroid-treated asthmatics.

Many cell types of the airways, such as bronchial epithelial cells, bronchial smooth muscle cells, fibroblasts, T cells, and eosinophils express Fas ligand (FasL), and in T cells, the expression is reduced by Th2 cytokines GM-CSF, IL-5, and IL-4. Neutralization of FasL enhanced airway eosinophilia in a mouse model of allergic asthma providing evidence that FasL is a relevant pro-apoptotic agent for eosinophils in vivo.

Treatment with anti-Fas mAb was shown to enhance apoptosis of airway tissue eosinophils in mice. However, this treatment resulted in aggravated airway inflammation due to cytolysis and progression of apoptosis into secondary necrosis. This emphasizes the importance of efficient phagocytic clearance of apoptotic cells.

To combat the eosinophilia associated with several disease conditions, understanding the signaling patterns related to eosinophil survival and apoptosis is extremely important. Ideally, a novel pharmacological agent aimed specifically to deplete eosinophils by inducing eosinophil apoptosis could be targeted to cover all the following options: (1) inhibit the action or signaling of survival-prolonging factors, (2) mimic the action and/or signaling of known external inducers of eosinophil apoptosis.

Figure 1. The main features of extrinsic and intrinsic apoptosis pathways. Fas receptor-mediated pathway is shown as an example of extrinsic apoptotic pathway. Extrinsic apoptosis is initiated by ligation of death receptor Fas leading to the formation of DISC and activation of caspases. Sometimes, BID cleavage into truncated BID (tBID) and mitochondrial route is required for caspase activation in extrinsic apoptosis. Intracellular stress conditions initiate intrinsic pathway of apoptosis, where Bcl-2 family members and MMP play major roles. MMP can be mediated by pore-forming activity of Bax and/or tBID or by mPT. If caspases are inhibited, apoptosis may be executed by apoptosis-inducing factor (AIF) and endonuclease G (ENDOG).
apoptosis such as FasL or glucocorticoids, and (3) enhance the intrinsic pro-apoptotic signaling pathway during spontaneous (passive) eosinophil death. This review focuses on the signaling of spontaneous eosinophil death, a phenomenon that is largely neglected, and compares it with the mechanisms of known inducers of eosinophil apoptosis, FasL, and glucocorticoids.

Inhibitory Signals for Spontaneous Apoptosis

Many eosinophil survival-prolonging inflammatory agents, such as GM-CSF, IL-5 and IL-3, are present in the lungs of asthmatics, and eosinophil apoptosis has been shown to be reduced in the airway submucosa of patients with steroid-untreated asthma when compared to healthy controls. GM-CSF, however, seems to be the main eosinophil survival-prolonging cytokine in asthmatic airways. Pathways activated by IL-5/GM-CSF include Lyn/Syk–Ras–Raf–1-extracellular signal-regulated kinases (ERK) 1/2, Jak2-STAT1, and PI3K-Akt in eosinophils. Of these, the ERK pathway does not seem to be involved in the survival-prolonging action. In addition, inhibition of Bax translocation to mitochondria by IL-5 and GM-CSF has been shown in eosinophils. TGF-β, interestingly, abrogated IL-5/GM-CSF-induced eosinophil survival, and this mechanism involved inhibition of tyrosine phosphorylation of Jak2, Lyn, and ERK 1/2 as well as inhibition of phosphorylation of STAT1 and Akt.

In addition, other significant survival-prolonging factors seem to exist because delayed apoptosis of blood and nasal polyp tissue eosinophils was only partly prevented by anti-GM-CSF, anti-IL-5, and/or anti-IL-3 antibodies. Many pathogenic components, cytokines (eg TNF-α, leptin, interferons (IFNs)) and allergens also prolong eosinophil survival. Generally, NF-κB may be the most important transcription factor mediating eosinophil survival, as its inhibition turns eosinophils into the apoptotic cascade. TNF-α, which can be produced locally by mast cells, was demonstrated to be an anti-apoptotic factor for eosinophils if NF-κB was not inhibited. This effect was proposed to be mediated via TNF receptors, NF-κB, and induction of GM-CSF production. IFN-γ is produced by T helper 1 cells, and its effects on eosinophils seem to be complex. IFN-γ inhibited IL-3- or IL-5–induced differentiation of eosinophils from cord blood mononuclear cells but prolonged eosinophil survival in vitro. Leptin is a cytokine that is mainly produced by adipocytes of white adipose tissue with the main function related to inhibition of appetite. Leptin has been shown to increase eosinophil survival even though it remains unclear whether the survival-prolonging concentrations may be reached in vivo.

In addition, CD40–CD40L interaction has been shown to prolong eosinophil survival. Freshly isolated blood eosinophils did not express CD40, but the expression was strong after 48 h of culture. The mechanism of CD40L-induced survival prolongation involved induced expression of cellular inhibitor of apoptosis proteins (cIAPs). CD40L-deficient mice showed decreased eosinophilic lung inflammation 72 h but not 24 h after allergen challenge suggesting that CD40–CD40L interaction affects maintenance of eosinophilic airway inflammation. In the absence of any of these or other survival-prolonging factors, eosinophils proceed into spontaneous apoptosis.

Progression of Spontaneous Apoptosis

When eosinophils isolated from human blood are cultured in the absence of any inducers or inhibitors of apoptosis, approximately half of them undergo spontaneous apoptosis in 2 days. We have applied several methods for the determination of eosinophil apoptosis providing basic information on the progression of apoptosis and the cascade of apoptotic events in spontaneously dying eosinophils. According to our combined data over time, apoptotic values obtained with Annexin-V-propidium iodide double-staining are continuously higher when compared to those obtained with other standard methods of apoptosis determination (DNA fragmentation assay, morphological examination, ΔΨm dissipation) (Fig. 2, unpublished observation). This suggests that cell surface expression of phosphatidylserine (PS) precedes many well-known manifestations of apoptosis in eosinophils. Early occurrence of PS exposure has been previously demonstrated in eosinophils, and evidence exists also of PS exposure as a caspase-dependent event. Mitochondrial events such as cytochrome c release and ΔΨm dissipation were shown to occur after PS exposure in eosinophils, which was in contrast to lymphocytes. It seems that the order of events is stimulus dependent as well as cell-type dependent. To further support early time-course of PS exposure, it was shown that PS exposure preceded cell shrinkage and DNA fragmentation in a lymphoma cell line by using three different stimulants to induce apoptosis. During the process of apoptosis, early appearance of PS is logical since PS functions as a cell surface signal for phagocytes to ingest the apoptotic cells and attraction of phagocytes and phagocytosis may be considered as one of the most important events for occurrence of apoptosis in a non-inflammatory fashion. Indeed, inhibition of PS exposure during apoptosis led to more than 50% reduction in engulfment of apoptotic cells. However, from the methodological point of view, it is recommended to measure apoptosis using a combination of different methods, not solely Annexin-V-assay despite the early appearance of PS in apoptotic cells. All methodologies to analyze apoptosis have their drawbacks.

Mediators of Spontaneous Eosinophil Apoptosis

Bcl-2 members and mitochondrial events during spontaneous eosinophil apoptosis. Members of Bcl-2 family are critical in monitoring intracellular damage and important for mitochondrial membrane permeabilization (MMP) to occur.
especially in the intrinsic pathway of apoptosis. The Bcl-2 family consists of a group of anti-apoptotic proteins and two groups of pro-apoptotic proteins. Because eosinophils undergo apoptosis quite rapidly, the expression of proteins regulating longevity is balanced toward pro-apoptotic members. Generally, pro-apoptotic Bcl-2 family members Bax and Bid are strongly expressed in untreated human eosinophils. Cleavage of Bax and Bid into pore-forming fragments enables permeabilization of the outer mitochondrial membrane and release of cytochrome c. It was shown that during spontaneous eosinophil apoptosis, Bax is clustered and re-localized into mitochondria, independent from caspases, and this leads to the release of cytochrome c to the cytosol and activation of caspases. An accelerated Bax translocation is observed in dexamethasone-treated eosinophils. Also Bid is processed during spontaneous apoptosis and at a faster rate during Fas- and glucocorticoid-induced apoptosis. Spontaneous, FasL-, and dexamethasone-mediated eosinophil apoptosis were reduced by 30, 50, and 25%, respectively, in cultured bronchoalveolar lavage (BAL) eosinophils from Bid-deficient mice, suggesting that Bid has a lesser role in spontaneous and glucocorticoid-induced apoptosis and is a more critical mediator in FasL-induced apoptosis. It seems clear that extrinsic (FasL-induced) apoptosis requires an additional mitochondrial loop in eosinophils.

As expected in cells prone to undergo apoptosis, the expression of anti-apoptotic Bcl-2 members Bcl-2, Bcl-xL, and Mcl-1L is generally low in eosinophils. However, the level of Bcl-2 expression seems to depend on the status of the patient and origin of eosinophils, because higher expression of Bcl-2 was found in the lung eosinophils of patients with asthma and children with severe exacerbations when compared to eosinophils of healthy individuals or children with mild-to-moderate exacerbations, respectively. Anti-apoptotic Mcl-1L is degraded during spontaneous apoptosis and in an accelerated manner during glucocorticoid-induced apoptosis.

In addition to the pore-forming activity of cleaved Bax or Bid, MMP can be mediated via mitochondrial permeability transition (mPT) pore. It is a channel formed to the merging point of inner and outer mitochondrial membranes in response to Ca\(^{2+}\), oxidants, or pro-apoptotic Bcl-2 family members leading to free passage of solutes and molecules up to 1.5 kDa. MMP does not seem to be important for spontaneous apoptosis or Fas-induced apoptosis but is a critical mediator of eosinophil apoptosis induced by glucocorticoids. As discussed above, pores formed in the outer mitochondrial membrane by the cleaved Bax and/or Bid are probably responsible for the MMP in the pathways of spontaneous and Fas-induced eosinophil apoptosis.

Caspases and calpains. Caspases are cysteine-dependent aspartate-specific proteases involved in the execution phase of apoptosis and are further divided into initiators (caspases-8, -9, and -10) and effectors (caspases-3, -6, and -7). Initiator caspases are synthesized as inactive proenzymes and require dimerization for activation that is enabled by platforms such as death-inducing signaling complex (DISC) or apoptosome. Effector caspases occur as inactive dimers and require cleavage by initiator or other effector caspases to become activated. When activated, caspases cleave cellular components into tetrapeptide sequences optimal enough to fit their catalytic site.

Eosinophils have been shown to express caspases-3, -6, -7, -8, and -9. Many apoptotic events during spontaneous or induced eosinophil apoptosis are reduced or prevented by pan-caspase inhibitors suggesting that eosinophil apoptosis is mediated by the activation of the caspase cascade. Caspase-9, accounted as the initiator caspase activated in response to mitochondrial apoptotic pathway, has been shown to be processed during spontaneous and induced apoptosis. However, its inhibition by Z-LEHD-FMK did not prevent spontaneous apoptosis or FasL-mediated apoptosis, suggesting that it may not function as a critical initiator caspase in these pathways. However, a possibility exists that the inhibitor used was inefficient, because according to our data it inhibited only 65% of caspase-9 activity in eosinophils. It can be suspected that the residual 35% of caspase-9 activity was enough to activate effector caspases. Also caspase-8 activity has been detected in spontaneously dying eosinophils in some but not all studies. But similar to caspase-9, its inhibition did not prevent apoptotic events during spontaneous apoptosis.

Altogether, the initiator caspase responsible for the proceeding of spontaneous apoptosis is not clear. In neutrophils, activation of caspase-8 was shown to be dependent on initiator caspase-9 and may be actually activated by effector caspase-3, as previously described.
eosinophils, activation of both initiator caspases (8 and 9) has been detected during Fas- and glucocorticoid-induced apoptosis.84,106,107 The evidence indicates that caspase-8 functions as the critical initiator caspase in FasL-mediated eosinophil apoptosis as its inhibition was reported to prevent Bid-cleavage and reduce apoptosis.84

Activation of effector caspases-3 and -6 seems to be a general feature of eosinophil apoptosis. Involvement of these caspases has been found in spontaneous eosinophil apoptosis and apoptosis induced by various stimuli.52,75,87,96,102 Lamin degradation and DNA fragmentation are caspase-6-dependent events in eosinophils, and inhibition of caspase-6 delayed or halted apoptosis at the level of chromatin condensation but did not prevent apoptosis.75 This is consistent with the results in other cell types.108-111 Also PS externalization was shown to be partly dependent on caspase-6.75 Inhibition of caspase-3 partially prevented DNA fragmentation in eosinophils.75,96

Calpains are calcium-activated (papain-like) neutral proteases that are involved in the execution of both apoptosis and necrosis. At least 14 isoforms of calpains exist. Similar to caspases, calpains are cysteine proteases; but in contrast to caspases, they require no particular amino acid in the substrate peptide sequence. Calpains are activated by increased intracellular calcium and their substrates include X-linked IAP (XIAP), Bcl-xL, Bid, and pro-caspases-3, -7, -8, and -9.112,113 DNA fragmentation during spontaneous apoptosis was prevented by inhibition of calpains 1 and 2. Unfortunately, no information exists on the role of calpains in FasL- or glucocorticoid-induced eosinophil apoptosis. However, lack of role of calpains in nitric oxide-induced apoptosis suggests that calpains are not activated in analogous situations to caspases. Calpains have been shown to be involved in the cleavage of Bax in spontaneous eosinophil apoptosis. Bax cleavage is a pro-apoptotic event leading to its mitochondrial targeting.119

Reactive oxygen species (ROS). ROS induce apoptosis of human eosinophils and are often involved in the mitochondrial pathway of apoptosis.114,115 Thiol-antioxidant glutathione is considered to form the most important antioxidant defence in mitochondria.116 Spontaneous eosinophil apoptosis was reduced by antioxidants that elevate intracellular levels of glutathione and by hypoxia,86,115,117,118 suggesting a role of ROS in mediating spontaneous apoptosis and importance of glutathione in the regulation of intracellular oxidant levels in eosinophils. In a similar manner, the antioxidants increasing glutathione reduced Fas-induced apoptosis.115 Also, glucocorticoid-induced apoptosis was prevented by mimetic of superoxide dismutase (SOD) and hypoxia, indicating the involvement of ROS.86 ROS seem to mediate also eosinophil apoptosis induced by many other stimuli.73,115,119 However, the exact mechanism of increased oxidant levels remains unclear. Decrease in the levels of an important mitochondrial antioxidant MnSOD was demonstrated during spontaneous apoptosis as well as in glucocorticoid-treated cells.86 Levels of a cytosolic antioxidant were not similarly decreased. It is possible that loss of mitochondrial antioxidant defence at least partly explains the increased ROS during spontaneous and glucocorticoid-induced eosinophil apoptosis.

Mitogen-activated protein kinases (MAPKs) and mammalian sterile 20-like kinase (Mst). MAPKs are serine/threonine kinases mainly activated by proinflammatory cytokines, growth factors, and environmental stress. MAPK family consists of c-Jun N-terminal kinases (JNK) 1-3, ERK 1/2, 3, 5 and 7, and p38 family members and a serial of phosphorylation cascades leads to activation of MAPK. MAPKs phosphorylate transcription factors resulting in transcription of genes involved in apoptosis, survival, proliferation, and differentiation. Additionally, MAPKs affect function of numerous other proteins via phosphorylation.120,121 JNK has been previously shown to mediate apoptosis through several pathways: AP-1-mediated transcription of FasL and TRAIL-receptor 1,122,123 phosphorylation of Bcl-2 family protein members,120,124,125 mPT induction,126,127 and phosphorylation of histone H2AX required for DNA fragmentation.128

Some evidence has been gathered regarding the role of JNK as a mediator of spontaneous eosinophil apoptosis, even though results are contradictory. Spontaneous eosinophil apoptosis was decreased by a peptide inhibitor of JNK but not by the other JNK inhibitors tested. Furthermore, modest or no activation of JNK and lack of activation of c-Jun has been demonstrated in spontaneously dying eosinophils.73,129 Instead, JNK was involved in glucocorticoid-induced eosinophil apoptosis and its activation was dependent on oxidants.86 Indeed, increased level of ROS is one possible general activation mechanism for JNK in eosinophils proceeding toward apoptosis. Additionally, activation of JNK pathway has been previously demonstrated to occur in response to FasL in lymphocytes,130,131 and some evidence points to the role of JNK in FasL-induced eosinophil apoptosis.132 The other MAP kinases ERK 1/2 and p38 seem to mediate eosinophil survival, not apoptosis.49,50 Interestingly, p38 MAP kinase seems to be active in isolated eosinophils, and its inhibition by a pharmacological inhibitor induces apoptosis.50

Mst1 belongs to a group of germinal center kinases (GSKs) that is involved in many functions of immune cells such as trafficking, proliferation, and apoptosis.133 Mst1 has been shown to be involved in the activation of MAPKs such as JNK.134 Caspase-mediated cleavage and release of 36 kDa fragment of Mst1 was demonstrated to correlate with eosinophil apoptosis but not with neutrophil apoptosis. Cleavage of Mst1 was increased by FasL and decreased by IL-5, suggesting an important role of this kinase in mediating eosinophil apoptosis.135

Summary and Conclusions

Eosinophil apoptosis induced by FasL or glucocorticoids is a physiologically or clinically relevant mechanism of eosinophil clearance. Plenty of evidence exist about the clinical relevance of steroid-induced eosinophil apoptosis in the airways of steroid-treated asthmatics.28-31 Most likely, spontaneous
eosinophil apoptosis occurs in a physiological situation, even though direct evidence is difficult to obtain. The signaling pathway of spontaneous apoptosis seems to overlap with the pathways of FasL or glucocorticoid-stimulated apoptosis. A summary of different pathways is shown in Table 1. Pre-mitochondrial phases of FasL-stimulated apoptosis have unique features such as Fas-associated protein with death domain (FADD) phosphorylation and activation of initiator caspase-8. However, mitochondrion has an important role in all of these pathways of apoptosis as suggested by common dependence on mitochondrial ROS and processing of pro-apoptotic Bcl-2 family members. The mechanism of MMP may differ between these pathways of apoptosis. Bax and Bid seem to be important mediators of MMP in eosinophils undergoing spontaneous apoptosis, while FasL-stimulated apoptosis was dependent on Bid. mPT is emphasized during glucocorticoid-induced apoptosis. Effector caspases seem to be similarly activated in all three apoptotic routes. Activation of JNK may also be common for these pathways of apoptosis, even though additional evidence is required to address it. In a physiological situation, some level of mitochondrial disruption may already be ongoing at the time the cell encounters a pro-apoptotic stimulant, and the stimulant probably adds pro-apoptotic signals that merge at the level of mitochondria to augment, amplify, and finalize the ongoing process of (spontaneous) apoptosis. Thereby, enhancement of the ongoing spontaneous apoptosis is a relevant therapeutic strategy to treat diseases with eosinophilic inflammation.

Author Contributions

PI wrote the first draft of the manuscript. HK contributed to the writing of the manuscript. HK and EM made critical revisions. All authors reviewed and approved of the final manuscript.

REFERENCES

1. Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. *J Allergy Clin Immunol*. 2004;113:30–37.
2. Trivedi SG, Lloyd CM. Eosinophils in the pathogenesis of allergic airways disease. *Cell Mol Life Sci*. 2007;64:1269–1289.
3. Zuo L, Rothenberg ME. Gastrointestinal eosinophilia. *Immunity Allergy Clin North Am*. 2007;27:443–455.
4. Gleich GJ, Leiferman KM. The hyper eosinophilic syndromes: current concepts and treatments. *Br J Haematol*. 2009;145:271–285.
5. Ellyard JL, Simson L, Parish CR. Th2-mediated anti-tumour immunity: friend or foe? *Tissue Antigens*. 2007;70:1–11.
6. Nair P, Pizcichini MM, Kjærgaard M, Inman MD, Effimiadis A, Pizcichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. *N Engl J Med*. 2009;360:985–993.
7. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. *N Engl J Med*. 2009;360:973–984.
8. Flood-P page P, Menzies-Gow A, Phipps S, Ying S, Wangao A, Ludwig MS, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. *J Clin Invest*. 2003;112:1029–1036.
9. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, et al. A critical role for eosinophils in allergic airways remodeling. *Science*. 2004;305:1776–1779.
10. Park YM, Bochner BS. Eosinophil survival and apoptosis in health and disease. *Allergy Asthma Immunol Res*. 2010;2:87–101.
11. Galluzi I, Vitale I, Abrams J, Alonetti S, Barcheck EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. *Cell Death Differ*. 2012;19:107–120.
12. Kankaanranta H, Moilanen E, Zhang X. Pharmacological regulation of human eosinophil apoptosis. *Curr Drug Targets Inflamm Allergy*. 2005;4:433–445.
13. Walsh G. Eosinophil apoptosis and clearance in asthma. *J Cell Death*. 2013;6:17–25.

DISCLOSURES AND ETHICS

As a requirement of publication the authors have provided signed confirmation of their compliance with ethical and legal obligations including but not limited to compliance with ICMJE authorship and competing interests guidelines, that the article is neither under consideration for publication nor published elsewhere, of their compliance with legal and ethical guidelines concerning human and animal research participants (if applicable), and that permission has been obtained for reproduction of any copyrighted material. This article was subject to blind, independent, expert peer review. The reviewers reported no competing interests. Provenance: the authors were invited to submit this paper.

Table 1. A summary of the mechanisms involved in the regulation of spontaneous eosinophil apoptosis when compared to extrinsic apoptosis induced by Fas or intrinsic apoptosis induced by glucocorticoids.

	FAS-MEDIATED APOPTOSIS	SPONTANEOUS APOPTOSIS	APOPTOSIS INDUCED BY GLUCOCORTICOIDS	REF.
Caspase-3	++	++	++	52, 75, 87, 96, 101–103
Caspase-6	ND	++	ND	75
Caspase-8	+++	+	+	52, 84, 87, 96, 101–103, 106
Caspase-9	+	+	+	52, 84, 101, 102, 106, 107
Calpains	ND	++	ND	49, 75
mPT	–	+	+++	73, 96, 97
Bid	+++	++	++	84, 106, 85
Bax	ND	++	++	49, 52, 86, 90
JNK	++ (id)	+?	++	73, 86, 129, 132
ROS	++	++	++	73, 86, 115, 117, 135
Mst 1/2	++	+	ND	135

Abbreviations: ++, apoptosis is completely dependent; +, apoptosis is partially (approximately 50%) dependent or clearly involved in apoptosis; −, no role in apoptosis; ND, not determined, id, indirect evidence; Bax, Bcl-2-associated X protein; Bid, BH3-interacting domain death agonist; JNK, c-Jun N-terminal kinase; Mst, mammalian sterile 20-like kinase, mPT, mitochondrial permeability transition; ROS, reactive oxygen species.
36. Sharma SK, Almeida FA, Kierstein S, Hortobagyi L, Lin T, Larkin A, et al. Sys... of eosinophils in asthma. J Exp Clin Immunol. 2003;22:484–490.
37. Uller L, Rydell-Tormanen K, Persson CG, Erjefalt JS. Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation. Allergy. 2008;63:1156–1163.
38. Robinson DS, Hamid Q, Tsicopoulos A, Barkans J, Bentley AM, et al. Evaluation of apoptosis of eosinophils, macrophages, and T lymphocytes in, mucosal biopsies of patients with asthma and chronic bronchitis. J Allergy Clin Immunol. 1999;103:563–573.
39. Scotto JD, Karasov WH, Lammers JW, et al. Interleukin-5 signaling in human eosinophils involves JAK2, but not PI 3-kinase/Akt and MAP kinase pathways, in anti-apoptotic signals of GM-CSF in human eosinophils. J Leukoc Biol. 1999;65:700–706.
40. Adachi T, Motojima S, Hirata A, Fukuda T, Makino S. Eosinophil viability-enhancing activity in spumt from patients with bronchial asthma, contributions of interleukin-5 and granulocyte/macrophage colony-stimulating factor. Am J Respir Crit Care Med. 1995;151:618–623.
41. Tai PC, Sun L, Spry CJ. Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin Exp Immunol. 1991;85:312–316.
42. van der Bruggen T, Caldenhoven E, Kanters D, Coffer P, Raaijmakers JA, Lamers JW, et al. Interleukin-5 signaling in human eosinophils involves Jak2 tyrosine kinase and JAK2 association with STAT5. J Immunol. 1995;155:342–348.
43. Youssef S, Hoesli DC, Blaser K, Mills GB, Simon HU. Requirement of lyn and syk tyrosine kinases for the prevention of apoptosis by cytokines in human eosinophils. J Exp Med. 1996;183:1407–1414.
44. Pazdurk K, Oliszewska-Pazdurk B, Staffod S, Garafalo RP, Alam R, Lym, Jak2, and raf1 kinases are critical for the autocrineapoptotic effect of interleukin 5, whereas only raf1 kinase is essential for eosinophil activation and degranulation. J Exp Med. 1998;188:421–429.
45. Rosas M, Dijkers PF, Lindemans CL, Lamers JW, Koenderman L, Coffer P. IL-5-mediated eosinophil survival requires inhibition of GSK-3 and correlates with beta-catenin relocalization. J Leukoc Biol. 2006;80:186–195.
46. Pazdurk K, Schreiber D, Forshyre P, Justement L, Alam R. The intracellular signal transduction mechanism of interleukin 5 in eosinophils: the involvement of lyn tyrosine kinase and the ras-raf-1-MEK-microtubule-associated protein kinase pathway. J Exp Med. 1995;181:1827–1834.
47. Pazdurk K, Staffod S, and Ra. The activation of the jak-STAT 1 signaling pathway by IL-5 in eosinophils. J Immunol. 1995;155:397–402.
48. Alam R, Forsythe P, Bishop PK, Lamers JW, Koenderman L, Coffer P. Lyn, Jak3, and STAT3 kinases are critical for the autocrine apoptotic effect of interleukin 5, whereas only raf1 kinase is essential for eosinophil activation and degranulation. J Exp Med. 1998;188:421–429.
49. Rosas M, Dijkers PF, Lindemans CL, Lamers JW, Koenderman L, Coffer P. IL-5-mediated eosinophil survival requires inhibition of GSK-3 and correlates with beta-catenin relocalization. J Leukoc Biol. 2006;80:186–195.
50. Youssef S, Hoesli DC, Blaser K, Mills GB, Simon HU. Requirement of lyn and syk tyrosine kinases for the prevention of apoptosis by cytokines in human eosinophils. J Exp Med. 1996;183:1407–1414.
51. Mike S, Nakao A, Hiramura M, Kurasawa K, Saito Y, Iwamoto I. Involvement of JAK2, bcl2 protein, and kit in the apoptosis of human eosinophils. Blood. 1997;100:1677–1684.
52. Mike S, Nakao A, Hiramura M, Kurasawa K, Saito Y, Iwamoto I. Involvement of JAK2, bcl2 protein, and kit in the apoptosis of human eosinophils. Blood. 1997;100:1677–1684.
90. Sivertson KL, Seeds MC, Long DL, Peachman KK, Bass DA. The different effect of dexamethasone on granulocyte apoptosis involves stabilization of Mcl-1 in neutrophils but not in eosinophils. Cell Immunol 2007;254:512–21.

91. Vignola AM, Chanez P, Giambra G, Virginio P, Salviati E, Principi M, et al. Hydrogen peroxide reverses IL-5 afforded eosinophil survival and activation. Pulm Pharmacol Ther 2000;13:73–82.

92. Zang X, et al. Hydrogen peroxide reverses IL-5 afforded eosinophil survival and activation. J Clin Invest 2000;106:308–19.

93. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-affected human eosinophil survival by inducing apoptosis. J Immunol 2006;176:3467–75.

94. Podleska A, Kiefel V, Berti A, Zimmerscheid J, Diel T, Strosnider J, et al. Caspase-3 and -7 are key mediators of apoptosis in IL-3-dependent eosinophils. Blood 2005;105:508–18.

95. Rasola A, Bernardi P. Mitochondrial permeability transition in eosinophils. J Leukoc Biol 2000;67:27–35.

96. Letuve S, Druilhe A, Grandsaigne M, Aubier M, Pretolani M. Involvement of caspases and of mitochondria in Fas ligation-induced eosinophil apoptosis: modulation by interleukin-6 and -8. J Leukoc Biol 2001;70:675–775.

97. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-affected human eosinophil survival by inducing apoptosis. J Immunol 2006;176:3467–75.

98. Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem 2004;279:21777–21786.

99. Ruchaud S, Korfali N, Villa P, Kottke TJ, Dingwall C, Kaufmann SH, et al. Sequence of physical changes to the cell membrane during glucocorticoid-induced apoptosis in neutrophils. J Exp Med 2002;196:281–292.

100. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004;384:203–232.

101. Zhang JP, Wong CK, Lam CW. Role of caspases in dexamethasone-induced apoptosis and activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in human eosinophils. Clin Exp Immunol 2000;121:222–232.

102. Daigle I, Simon HU. Inhibitors of caspase-3, -8 and in all neutrophils but not eosinophil. Int Arch Allergy Immunol 2001;126:147–156.

103. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-affected human eosinophil survival by inducing apoptosis. J Leukoc Biol 2006;79:2950–2958.

104. Delvaux T, Rey-Pinton P, Kalden JR, Sotey B, Egly M, Orlien A, et al. The different effect of dexamethasone on granulocyte apoptosis involves stabilization of Mcl-1 in neutrophils but not in eosinophils. Cell Immunol 2007;246:512–21.

105. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281–292.

106. Niazia S, Robertson NM, Agraval A, Haste AT, Peters SP, Zangrilli J. Overlap between death receptor and non-receptor-mediated mechanisms during apoptosis in human eosinophils. Clin Exp Immunol 2005;139:670–677.

107. Thorbern NA, Razo TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, et al. A combinational approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272:17907–17911.

108. Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG. The calpain system and cancer. Nat Rev Cancer 2011;11:364–374.

109. Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death. J Cell Biol 2002;158:573–583.

110. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-affected human eosinophil survival by inducing apoptosis. J Leukoc Biol 2006;79:2950–2958.

111. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-affected human eosinophil survival by inducing apoptosis. J Leukoc Biol 2006;79:2950–2958.

112. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-affected human eosinophil survival by inducing apoptosis. J Leukoc Biol 2006;79:2950–2958.
Regulation of spontaneous eosinophil apoptosis

118. Nissim Ben Efraim AH, Eliashar R, Levi-Schaffer F. Hypoxia modulates human eosinophil function. *Clin Mol Allergy*. 2010;8:10.

119. Kano G, Almanan M, Bochner BS, Zimmermann N. Mechanism of siglec-8-mediated cell death in IL-5-activated eosinophils: role for reactive oxygen species-enhanced MEK/ERK activation. *J Allergy Clin Immunol*. 2013;132:437–445.

120. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. *Oncogene*. 2007;26:3100–3112.

121. Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. *Life Sci*. 2012;90:237–248.

122. Eichhorst ST, Muller M, Li-Weber M, Schulzer-Bergkamen H, Angel P, Krammer PH. A novel AP-1 element in the CD95 ligand promoter is required for induction of apoptosis in hepatocellular carcinoma cells upon treatment with anticancer drugs. *Mol Cell Biol*. 2000;20:7826–7837.

123. Guan B, Yue P, Lorcan R, Sun SY. Evidence that the human death receptor 4 is regulated by activator protein 1. *Oncogene*. 2002;21:3121–3129.

124. Schroeter H, Boyd CS, Ahmed R, Spencer JP, Duncan RF, Rice-Evans C, et al. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. *Biochem J*. 2003;372:359–369.

125. Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function. *Microbiol Mol Biol Rev*. 2006;70:1061–1095.

126. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. *J Biol Chem*. 2008;283:11355–11357.

127. Lin X, Wang YJ, Li Q, Hou YY, Hong MH, Cao YL, et al. Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. *FEBS J*. 2009;276:2022–2036.

128. Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY, et al. Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. *Mol Cell*. 2006;23:121–132.

129. Hasula H, Zhang X, Saarelainen S, Moilanen E, Kankaanranta H. c-Jun N-terminal kinase mediates constitutive human eosinophil apoptosis. *Pulm Pharmacol Ther*. 2007;20:580–587.

130. Wilson DJ, Fortner KA, Lynch DH, Mattingly RR, Macara IG, Posada JA, et al. JNK, but not MAPK, activation is associated with Fas-mediated apoptosis in human T cells. *Eur J Immunol*. 1996;26:989–994.

131. Caillat MA, Peter ME, Kischkel FC, Chinnaiyan AM, Dixir VM, Krammer PH, et al. CD95 (APO-1/Fas) induces activation of SAP kinases downstream of ICE-like proteases. *Oncogene*. 1996;13:2087–2096.

132. Hebestreit H, Dibbert B, Latelli I, Braun D, Schapowal A, Blaser K, et al. Disruption of Fas receptor signalling by nitric oxide in eosinophils. *J Exp Med*. 1998;187:415–425.

133. Yin H, Shi Z, Jiao S, Chen C, Wang W, Greene MI, et al. Germinal center kinases in immune regulation. *Cell Mol Immunol*. 2012;9:439–445.

134. Ura S, Nishina H, Gotoh Y, Katada T. Activation of the c-Jun N-terminal kinase pathway by MST1 is essential and sufficient for the induction of chromatin condensation during apoptosis. *Mol Cell Biol*. 2007;27:5514–5522.

135. De Souza PM, Kankaanranta H, Michael A, Barnes PJ, Giembycz MA, Lindsay MA. Caspase-catalyzed cleavage and activation of Mst1 correlates with eosinophil but not neutrophil apoptosis. *Blood*. 2002;99:3432–3438.