VERY LARGE ARRAY AND JANSKY VERY LARGE ARRAY OBSERVATIONS OF THE COMPACT RADIO SOURCES IN M8

JOSEP M. MASQUEÜ, SERGIO DZIB, AND LUIS F. RODRÍGUEZ
1 Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México
2 Max-Plank-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
3 Astronomy Department, Faculty of Science, King Abdullah University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received 2014 August 22; accepted 2014 October 14; published 2014 November 25

ABSTRACT

We analyze high-resolution Very Large Array continuum observations of the M8 region carried out at several epochs that span a period of 30 yr. Our maps reveal two compact sources. One is associated with Her 36 SE, a possible companion of the O7 luminous massive star Her 36, and the other is associated with G5.97−1.17, whose proplyd nature was previously established. Using the analyzed data, we do not find significant time variability in any of these sources. The derived spectral index of ≥ 0.1 for Her 36 SE, the marginal offset of the radio emission with the previous infrared detection, and the associated X-ray emission previously reported suggest the presence of an unresolved interaction region between the strong winds of Her 36 and Her 36 SE. This region would contribute non-thermal contamination to the global wind emission of Her 36, flattening its spectral index. On the other hand, the emission of G5.97−1.17 can also be explained by a mixture of thermal and non-thermal emission components, with different relative contributions of both emission mechanisms along the proplyd. We argue that the shock created by the photo-evaporation flow of the proplyd with the collimated stellar wind of Her 36 accelerates charged particles in G5.97−1.17, producing considerable synchrotron emission. On the contrary, an electron density enhancement at the southwest of G5.97−1.17 makes the thermal emission dominant over this region.

Key words: H$\text{\textsc{ii}}$ regions – ISM: individual objects (M8) – stars: protostars

Online-only material: color figure

1. INTRODUCTION

The intense radiation produced by recently formed massive stars is capable of ionizing their surrounding material, giving rise to large (>0.1 pc) photoionized regions (H$\text{\textsc{ii}}$ regions). In the H$\text{\textsc{ii}}$ regions, the free electrons emit thermal radiation through the free–free mechanism, which produces bright emission at radio wavelengths that is easily detected with traditional interferometers. As a result, large surveys of massive star-forming regions in the Galaxy can be efficiently performed at centimeter wavelengths and the properties of H$\text{\textsc{ii}}$ regions, as well as of their compact precursors called ultra-compact H$\text{\textsc{ii}}$ (UCH$\text{\textsc{ii}}$) regions and hyper-compact H$\text{\textsc{ii}}$ regions are now well established (Wood & Churchwell 1989; Becker et al. 1994; Hoare et al. 2012).

Recently, special attention has been called to extremely compact objects projected inside UCH$\text{\textsc{ii}}$ regions hidden by the bright extended centimeter emission of the ionized gas (e.g., W3(OH), NGC 6334A; Kawamura & Masson 1998; Carral et al. 2002; Dzib et al. 2013b; Rodríguez et al. 2014; Dzib et al. 2014). The behavior of these compact sources is puzzling: their time variability in scales of months to years and large fluxes are discrepant with those expected for a free–free emitting stellar wind. Moreover, it does not seem to be a unique explanation for their nature: while the compact source in the center of W3(OH) exhibits a positive spectral index consistent with the presence of a fossil photo-evaporating disk (Dzib et al. 2013b), the compact source of NGC 6334A has a negative spectral index characteristic of optically thin synchrotron emission (Rodríguez et al. 2014). The last emission mechanism requires the presence of relativistic electrons, which can be attributed to Fermi acceleration in strong shocks of stellar winds between O companions, implying the presence of a massive binary system ionizing the H$\text{\textsc{ii}}$ region (e.g., several sources in the Cyg OB2 association; Ortiz-León et al. 2011; Blomme et al. 2013).

A technique employed to detect these compact sources consists of discarding the visibilities from the shortest baselines when making the map. These baselines contain information on the extended emission, and hence the resulting map obtained under this technique only retains emission from the most compact objects (see Dzib et al. 2013b, for an example). This technique has been applied successfully for the UC H$\text{\textsc{ii}}$ region W3(OH) (Dzib et al. 2013b) and NGC 6336A (Carral et al. 2002). In this paper, we apply the same technique to the NGC 6523 massive star forming region.

NGC 6523 is an extremely dense stellar cluster belonging to the OB1 Sagittarius association. Observations up to today reveal a complex scenario for this region: it appears to be located at the front edge of a molecular cloud whose foreground material has been blown up by the stellar activity of NGC 6523, and a new generation of stars is being triggered inside the cloud (Lada et al. 1976; Elmegreen & Lada 1977; Lightfoot et al. 1984). Behind this cluster, projected in the center, we find the famous Lagoon Nebula, or M8, an H$\text{\textsc{ii}}$ region located at 1.3 kpc (Arias et al. 2006) that is sustained by the UV photons from the O7 star Herschel 36 (Woolf 1961, hereafter Her 36). This luminous star, previously detected at optical and IR wavelengths, has multiple components (Allen 1986; Arias et al. 2010). The gas ionized by Her 36 forms a blister H$\text{\textsc{ii}}$ region shaped by the complex distribution of material in the region (but see Lightfoot et al. 1984 for caveats to this interpretation), acquiring a distinctive morphology which has led to it being called the “Hourglass Nebula” (Allen 1986). Radio observations presented by Stecklum et al. (1998) show diffuse emission spanning over a large area but no significant emission coming directly from Her 36. These observations also show that the brightest peak
of the diffuse radio emission falls 2\degree7 to the southeast of the massive star. Wood & Churchwell (1989) first associated this bright emission with a UCH\,\Pi region ionized by a B0 star (it was called G5.97−1.17, and we will refer to it as G5.97 through the rest of the paper). However, later studies showed that G5.97 is most likely a proplyd being photo-evaporated by Her 36 (Stecklum et al. 1998). To date, the majority of currently known proplyds are located in the Orion Nebula (Ricci et al. 2008), which makes the few proplyd candidates in other \Pi regions a good case study, since their potential proplyd nature may have different intrinsic properties and associated ambient. Indeed, the technique mentioned above is ideal to isolate the compact centimeter emission of proplyds since they are generally embedded in an extended ionized strong emitting ambient.

In this paper, we analyze archival Very Large Array (VLA) and new Jansky Very Large Array (JVLA) data of continuum centimeter emission observed toward the M8 region. We aim to determine the nature of the compact sources found in the region. In Section 2, we describe the archival observations. In Section 3, we present the resulting maps and derive spectral indices. In Section 4, we discuss a possible interpretation of the physical processes involved in the detected sources. Finally, in Section 5, we provide a summary of our conclusions.

2. OBSERVATIONS

The separation between Her 36 and the G5.97 source in the plane of the sky is 2\degree7. Thus, high angular resolution observations carried out in the A or B configuration are required, which have enough angular resolution to separate both sources. On the other hand, the fluxes of the compact sources projected inside UCH\,\Pi regions reported to date are typically of the order \sim 10\,mJy. These cuts of the UV range were chosen based on a trade off between removing extended emission and keeping enough visibilities to obtain a good map. The remaining emission shows two compact radio sources, one to the southeast and another to the northwest of the mapped region, corresponding to G5.97 and Her 36, respectively.

Emission associated with Her 36 is clearly detected as a compact radio source in these images. It always appears as a point source, at 1.3 cm in 2005 May and 2014 May, at 2 cm in 1988 January and 1996 December, and in the 3.6 cm observations of 2003 July. On the other hand, it is marginally detected at 6 cm in the observations of 1985 April and 1986, and is undetected in the rest of the observations. The maps of 1995 September and 1996 January have lower quality with respect to the other maps and are not appropriate for the detection of Her 36. Also, the poor detectability of Her 36 when observed at 6 cm compared to shorter wavelengths suggests a positive spectral index for this source. We will further discuss the spectral index of Her 36 in the next section. As we will see later, this radio emission is not directly associated with Her 36 but is located between this star and a very nearby companion.

The G5.97 source is detected in all of the bands and all of the epochs and also appears to be partially resolved. At 6 cm, the proplyd is marginally elongated toward the southeast, opposite to Her 36, especially in the 1985 observations where the elongation is seen as a tail. At 3.6 cm, G5.97 appears to be

Table 1

Summary of the Observations Taken from the VLA Archive

Date	Conf.	Project	\(\lambda \) (cm)	\(\alpha \) (J2000)	\(\delta \) (J2000)	Phase Calibrator	Bootstrapped Flux (Jy)	rms Noise (10^{-4} Jy beam^{-1})
1985 Apr 8	B	AG178	6.0	18\(^{h}\)03\(^{m}\)39\(^{s}\)077	24\degree23\arcmin10\arcsec74	1748-253	0.4773 ± 0.0003	4.5
1986 Apr 27	A	AW158	6.0	18\(^{h}\)03\(^{m}\)41\(^{s}\)666	24\degree22\arcmin40\arcsec57	1808-209	0.3079 ± 0.0004	5.1
1988 Jan 22	B	AT089	2.0	18\(^{h}\)03\(^{m}\)40\(^{s}\)766	24\degree22\arcmin40\arcsec62	NRAO530	5.15 ± 0.05	4.2
1995 Sep 25	BnA	AH557	6.0	18\(^{h}\)03\(^{m}\)41\(^{s}\)565	24\degree22\arcmin38\arcsec56	1730-130	5.8 ± 0.1	5.0
1996 Jan 23	CnB	AH557	3.6	18\(^{h}\)03\(^{m}\)41\(^{s}\)565	24\degree22\arcmin38\arcsec56	1730-130	8.8 ± 0.1	5.7
1996 Dec 24	A	AH605	2.0	18\(^{h}\)03\(^{m}\)40\(^{s}\)514	24\degree22\arcmin44\arcsec08	1730-130	17.04 ± 0.13	1.7
2003 Jul 5	A	AB1094	6.0	18\(^{h}\)03\(^{m}\)40\(^{s}\)000	24\degree22\arcmin40\arcsec07	1820-254	0.7022 ± 0.0006	2.5
2005 May 5	B	AK566	1.3	18\(^{h}\)03\(^{m}\)40\(^{s}\)000	24\degree22\arcmin40\arcsec00	1820-254	0.759 ± 0.002	1.2
2014 May 28	A	14A-481	1.3	18\(^{h}\)03\(^{m}\)40\(^{s}\)500	24\degree22\arcmin44\arcsec40	J1745-2900	0.992 ± 0.001	0.5

Note. The data are from the VLA archive, with the exception of the 2014 May data that was taken by us with the Jansky Very Large Array.

3. RESULTS

3.1. Emission Maps

The corresponding natural-weighted maps of the observations of the G5.97 region listed in Table 1 are shown in Figure 1. The maps were constructed by discarding the short spacings of the UV data set in order to remove the large-scale emission. In particular, we removed the baselines shorter than 65 k\,\lambda at 6 cm, 100 k\,\lambda at 3.6 cm, 150 k\,\lambda at 2 cm, and 90 k\,\lambda at 1.3 cm, which correspond to angular scales of 3\prime2, 2\prime1, 1\prime4, and 2\prime1, respectively. These cuts of the UV range were chosen based on a trade off between removing extended emission and keeping enough visibilities to obtain a good map. The remaining emission shows two compact radio sources, one to the southeast and another to the northwest of the mapped region, corresponding to G5.97 and Her 36, respectively.
composed of several blended components. This is best seen in the 2003 July map, which has the highest angular resolution of the 3.6 band where the source presents two components: one component can be associated with the southeastern elongation discussed above and the other component is elongated roughly in the north-south direction. At 2 cm and 1.3 cm, G5.97 appears to be more compact compared with the maps corresponding to longer wavelengths and the southeastern elongation is hardly noticed. In particular, the 2014 May observations at 1.3 cm, carried out with very high angular resolution capable of resolving G5.97, reveal a cometary morphology with the tip of this shape pointing to Her 36.

3.2. Fluxes and Spectral Indices

In Table 2, we report the flux peak value and position of the radio source associated with Her 36. We provide as upper limits of the peak flux for the non-detections and marginal detections three times the rms noise of the maps. In Table 3, we present the parameters of the emission of G5.97 derived in the following manner: first, we used the outcome of the “findsources” function of CASA to set a reliable fitting region around each source; then, we used the “fitcomponents” function in each region to fit a Gaussian plus a zero-level offset and extract the parameters shown in the table. A close inspection of the flux values of the tables shows no or modest time variability for both sources (less than 30%). Since we are comparing data taken at different epochs with different observational setups (e.g., array configuration, UV coverage, calibration, etc.), we consider any time variability below 30% as not significant. For the same reason, the estimation of spectral indices is only reliable with data corresponding to the 1995 September, 1996 January, and 2003 July observations, when two bands were simultaneously observed. In these epochs, Her 36 is only detected at 3.6 cm in 2003 July, allowing us to derive a lower limit of the spectral index for this epoch (≥ 0.1). The poor detection of Her 36 at 6 cm favors a dominant thermal nature for the Her 36 emission.
On the other hand, G5.97 has a flat spectral index: by using the 3.6 and 6 cm bands, we derived a spectral index of -0.05 ± 0.19 in 1995 September and 0.02 ± 0.28 in 2003 July. The 1.3 and 2.0 cm data of the observations of 1996 January yield -0.14 ± 0.55, which is more uncertain due to the lower quality of the maps of this epoch but still consistent with a flat spectral index.

In order to study the spectral index derived as a function of position, we obtained the map of the spectral index of the 2003 July observations combining the emission maps at 6 and 3.6 cm, which is shown in Figure 2. We did not show the spectral index maps of the 1996 January and 1995 September epochs, where several bands were also simultaneously observed, because the poor quality of the emission maps prevented us from obtaining any significant trend. The initial maps were constructed with the same UV range and restoring beam (corresponding to the largest beam of the two combined maps, i.e., the map at 6 cm), and a cutoff at seven times the rms noise level. This cutoff is adequate to derive a significant trend for the spectral index in the map and only derives the uncertain extreme negative value of -1 at the north of G5.97. The most notable feature is the gradient of the spectral index over the NE–SW direction. This gradient can be explained if we consider the centimeter emission of G5.97 the most prominent feature is the difference between the thermal and non-thermal emission: there is a different contribution of each type of emission in different parts of G5.97.

4. DISCUSSION

4.1. The Compact Radio Emission of Her 36

The positive spectral index of Her 36 derived above (≥ 0.1) suggests that we are detecting the radio emission of a free–free

Table 2

Epoch	λ (cm)
1986.3	6.0 cm
1995.7	3.6 cm
1996.1	2.0 cm
1999.0	1.0 cm

Table 3

α (J2000) b	δ (J2000) b	Position Uncertainty c	$\theta_{M} \times \theta_{\alpha}$; P.A.b	S_{ν} (mJy)	Epoch	λ (cm)
40:517	04:31	0.001, 0.03	0.75 $\pm 0.28 \times 0.20 \pm 0.06$; 135 ± 133	17.76 ± 0.88	1985.3	6.0 cm
40:510	04:54	0.001, 0.02	0.46 $\pm 0.06 \times 0.26 \pm 0.14$; 137 ± 20	14.11 ± 0.85	1986.3	6.0 cm
40:501	04:29	0.001, 0.02	0.90 $\pm 0.30 \times 0.30 \pm 0.05$; 171 ± 17	19.16 ± 0.96	1988.1	2.0 cm
40:515	04:26	0.002, 0.02	Unresolved or poorly determined	15.80 ± 0.88	1995.7	6.0 cm
40:505	04:24	0.002, 0.02	Unresolved or poorly determined	15.95 ± 1.27	1995.7	6.0 cm
40:498	04:50	0.002, 0.04	Unresolved or poorly determined	19.07 ± 1.66	1996.1	2.0 cm
40:486	04:50	0.003, 0.04	Unresolved or poorly determined	17.89 ± 1.98	1996.1	1.3 cm
40:501	04:40	< 0.001, 0.01	0.35 $\pm 0.02 \times 0.23 \pm 0.04$; 158 ± 24	18.75 ± 0.70	1997.0	2.0 cm
40:505	04:43	0.001, 0.01	0.49 $\pm 0.04 \times 0.25 \pm 0.11$; 138 ± 11	15.50 ± 0.73	2003.5	6.0 cm
40:503	04:50	< 0.001, 0.01	0.29 $\pm 0.01 \times 0.27 \pm 0.01$; 53 ± 29	15.14 ± 0.44	2003.5	3.6 cm
40:501	04:46	0.001, 0.01	0.34 $\pm 0.03 \times 0.25 \pm 0.05$; 41 ± 21	15.12 ± 0.59	2005.3	1.3 cm
40:508	04:34	< 0.001, 0.01	0.26 $\pm 0.02 \times 0.23 \pm 0.02$; 42 ± 65	12.56 ± 0.24	2014.4	1.3 cm
ionized stellar wind with an optically thick portion. However, if we assume that the wind is emanating from an O7 V star, then a flux of 0.026 mJy is expected at 3.6 cm according to the tabulated values of Dzib et al. (2013a) scaled at a distance of 1.3 kpc, which is clearly below the flux measured for Her 36 when detected at 3.6 cm (0.91 mJy). Following the formulation of Panagia & Felli (1975) and adopting a terminal velocity for the stellar wind of 2700 km s$^{-1}$ (Dzib et al. 2013a), the fluxes of Her 36 at 3.6, 2, and 1.3 cm yield values between (1.5 and 2.1) \times 10$^{-5}$ M_{\odot} yr$^{-1}$ for the mass loss rate of the massive protostar, more than one order of magnitude above the expected values derived from Vink et al. (2001) assuming that Her 36 has a solar metallicity.

High-resolution infrared images of Her 36 (Goto et al. 2006; Stecklum et al. 1995) reveal an additional compact source, located 0\farcs25 SE (hereafter Her 36 SE) of the Her 36 luminous star. Goto et al. (2006) also detected this compact source at 2 cm and attributed this emission to an embedded early B-type star that produces a small H\ii region, even though they also discussed the influence of the nearby Her 36 luminous star in terms, for instance, of external photoionization (i.e., a proplyd or photoevaporating globule). In the top panel of Figure 3, we show the 1.3 cm emission around Her 36 obtained with superuniform weighting, which appears to be associated instead with the Her 36 SE component, which is consistent with the Goto et al. (2006) results. Thus, the discrepancy of the radio flux derived above is explained if we assume that it comes from a process occurring near Her 36 SE instead of being associated with the wind directly emanating from the Her 36 main component. Our derived lower limit for the spectral index ($\gtrsim 0.1$) is consistent either with the presence of a small H\ii region (the expected spectral indices can be flat or positive up to two) and a proplyd or photoevaporating globule (with an expected thermal flat spectral index; e.g., see Felli et al. 1993) in Her 36 SE. The required Lyman photons to have a flux of 1.22 mJy at 1.3 cm for Her 36 SE is 2.1 \times 1044 photons s$^{-1}$, which is easily provided by an early B star embedded in Her 36 SE or an O7 star separated by 325 AU (assuming 1.3 kpc of distance and 0\farcs25 for the size of Her 36 SE that gives a geometric dilution factor of 0.06). Therefore, with the present data, we are not able to discard either internal or external ionization for Her 36 SE.

However, a close inspection of the high-resolution map of Her 36 of Figure 3 shows that within the errors, the 1.3 cm emission is slightly offset in the direction of the Her 36 main component. If this offset is significant, then the radio emission of Her 36 SE could be ascribed to a wind interaction region, presumably fairly close to Her 36 SE since its wind is expected to be significantly less powerful than that of the Her 36 main component. The lower limit for the spectral index of Her 36 is compatible with the flat index expected from a mixture of free–free emission of the ionized material of the wind and a non-thermal component produced in the wind collision region. A similar scenario was found in the massive multiple system Cyg OB2 5 of the Cygnus OB2 association (Contreras et al. 1997; Kennedy et al. 2010; Ortiz-León et al. 2011; Dzib et al. 2013a). However, the emission arising from the wind collision region associated with Cyg OB2 #5 was found to be variable in a period of a few years. This variability was attributed to variations of free–free opacity as the companion moves along the orbit and the column density of ionized material changes with the line of sight. If we consider that Her 36 SE is orbiting around the Her 36 main component, adopting their separation as the orbital radius and 30 M_{\odot} for Her 36, we obtain a period of 1200 yr. Therefore, in the case that the radio emission arises from a wind colliding region, in 30 yr we do not expect significant changes in the observed flux of Her 36.

Besides, Rauw et al. (2002) reported the detection of X-ray emission peaking at Her 36 but also presenting a distant enhancement located \sim0.2 pc, far away at the southeast of Her 36. The presence of X-ray emission in Her 36 is consistent

Figure 2. Maps of the spectral index distribution in G5.97 obtained with the 6 (red contours) and 3.6 cm (black contours) bands observed during 2003 July. The maps were obtained with the same UV range (from 50 to 600 kλ) and restored with the same synthesized beam (0\farcs75 \times 0\farcs35 and P.A. 1.5). The contours are 3, 5, 10, and 20 times the rms noise of each map (0.32 mJy at 3.6 cm and 0.65 mJy at 6 cm). The cross marks the G5.97 position shown in Figure 1. The beam is shown in the bottom right corner.

(A color version of this figure is available in the online journal.)
with the existence of a wind interaction region between the Her 36 main component and Her 36 SE. Also, these winds must be powerful enough to interact with the hosting molecular cloud, ∼0.2 pc distant from Her 36, producing hot gas and creating the extended southeastern enhancement of X-ray emission (Rauw et al. 2002). Very high resolution (e.g., VLBI) observations are required to resolve and confirm the existence of a wind colliding region in Her 36, and assess if the involved winds are powerful enough to alter the hosting cloud and other associated objects, such as the G5.97 proplyd.

4.2. Thermal and Non-thermal Emission in G5.97

In a previous study, Stecklum et al. (1998) provides evidence for the proplyd nature of G5.97. The fluxes presented in Table 3 and plotted in Figure 2 are consistent with the proplyd hypothesis. First, the flux values range between 13 and 19 mJy in all of the observed bands and epochs, implying a rather flat average spectral index, and consistent with the 17 mJy measured by Stecklum et al. (1998) at 2 cm. These authors estimated the number of required Lyman photons to provide this flux and found a slight deficit of ionizing photons coming from Her 36, even though the application of the main sequence of Lyman luminosity to the young Her 36 star could not be appropriate at all. Another property supporting the proplyd hypothesis is the measured steady flux of G5.97. The timescale for dissipation of a proplyd is of the order of 10^4 yr (Henney & O’Dell 1999; Miotello et al. 2012) and we do not expect significant changes in a few years. Besides, Castelaz & Bales (1995) compared Hubble Space Telescope (HST) images of the Orion proplyds, finding no evidence of morphological or flux variations. In their VLA study of Orion at 3.6 cm, Zapata et al. (2004) detected a total of 77 compact radio continuum sources, of which 30 are associated with proplyds. While most of the sources associated with proplyds appear to be steady in time, nine of them exhibit significant flux density variations along the four years of the Zapata et al. study. Does this imply that the free–free emission from the proplyd is variable in time? As noted by Zapata et al. (2004), the radio continuum emission from a proplyd may be contaminated by time-variable non-thermal emission from the associated young star, as indicated by the evidence of circular polarization found for at least one source (their source number 6). We mapped the Stokes V parameter to look for circular polarization in all of the observations of Table 1 to search for gyrosynchrotron emission in G5.97 with null detections. Possibly, at the distance of M8, the intensity of the circular polarized emission, if present, is expected to be extremely weak. Thus, this non-detection is consistent with the fact that G5.97 does not have a variable non-thermal component, i.e., coronal emission.

Despite its assumed proplyd nature, G5.97 exhibits some differences from the “classical” proplyds found in the Orion Nebula. In addition to having a higher mass loss rate and being about three times larger than the largest Orion proplyds (Stecklum et al. 1998), G5.97 may experience different physical processes. Figure 2 shows that the average flat spectral index of G5.97, a typical feature of most proplyds, is a combination of thermal and non-thermal emission. The fact that in the figure the peak in the spectral index is displaced with respect to the emission peaks (and these are also displaced between them) can be explained by a scenario wherein there is a region of thermal emission surrounded by extended emission with an important non-thermal contribution. Thus, the spatial distribution of the centimeter emission in G5.97 is the result of several components. Similar results were found previously for proplyd-like objects in NGC 3606 (Mücke et al. 2002). For this case, synchrotron emission from a relativistic particle population embedded in a magnetic field was proposed to explain the nature of the non-thermal emission. Among several possibilities, they argued that shocks created by the photo-evaporated flow of the proplyd could provide the required particle acceleration. In any case, the fact that a fraction of the measured flux of G5.97 corresponds to non-thermal emission provides another possible explanation for the discrepancy, found by Stecklum et al. (1998), between the required and received ionizing photons from Her 36.

Similarly to the proplyd-like objects of NGC 3606, the non-thermal extended emission in a considerable fraction of G5.97 can be explained by the presence of relativistic electrons in a magnetic field. The relativistic electrons can be accelerated by the shock created by the photo-evaporated flow of G5.97 with the strong collimated wind of Her 36 (see previous section). Alternatively, a stellar origin for the non-thermal emission seems unlikely, given the fact that it is extended in a big portion of G5.97, consistent with the non-detection of circular polarized emission. As in Mücke et al. (2002), the results presented in
this paper prove that the magnetic field likely plays a role in the physical processes occurring in proplyds. Also, not only the UV photons but the wind coming from the ionizing star can also be responsible for at least part of the proplyd radio emission.

The thermal emission found to the SW of G5.97 has spectral index values up to 0.6, typical of thermal radio-jets. Thus, we first consider the presence of a possible protostellar jet powered by the star associated with G5.97 as the possible origin for the thermal emission. Jet signatures have been detected in proplyds with outflow velocities of 100 km s\(^{-1}\) (Henney et al. 2002), commonly being less powerful compared to jets powered by other young stellar objects (e.g., see Anglada 1996). Following the Curiel et al. (1987, 1989) formulation for a shock wave caused by a jet impinging on the circumstellar material, under the Rayleigh–Jeans approximation, the total expected flux in milliJansky's is

\[
S_v = 1.42 \times 10^{22} \left(\frac{\Omega}{\text{arcsec}^2} \right) \left(\frac{v}{5 \text{ GHz}} \right)^2 \times \left(\frac{T_e}{10^4 \text{ K}} \right) \left[1 - \exp(-\tau_v) \right],
\]

where \(\Omega\) is the angular size of the emitting area (i.e., the region affected by the jet), \(T_e\) is the electronic temperature, \(v\) is the frequency, and \(\tau_v\) is the optical depth given by the expression

\[
\tau_v = 1.55 \times 10^{-3} \left(\frac{n_0}{10^4 \text{ cm}^{-3}} \right) \left(\frac{V}{100 \text{ km s}^{-1}} \right)^{1.68} \times \left(\frac{v}{5 \text{ GHz}} \right)^{-2.1} \left(\frac{T_e}{10^4 \text{ K}} \right)^{-0.55},
\]

where \(n_0\) and \(V\) are the pre-shock density and the velocity in which the jet impinges on the medium, respectively. Assuming that all of the gas is ionized with \(T_e = 10^4\) K and adopting a pre-shock density of \((4-20) \times 10^4\) cm\(^{-3}\) (Stecklum et al. 1998) and a typical jet velocity of 100 km s\(^{-1}\) (e.g., Henney et al. 2002), we derive values of \(\tau_v\) between 0.005 and 0.03 for the 6 cm band. For an area of 0.3 arcsec\(^2\), which corresponds to the size of the restoring beam of the maps of Figure 2, Equation (1) yields predicted 6 cm flux densities of 0.2–1 mJy. On the other hand, integrating in the 6 cm map of Figure 2, the flux arising from the same beam size area used above (0.3 arcsec\(^2\), which encloses the region where the spectral index is \(\gtrsim 0.1\) (i.e., the region of G5.97 where the thermal emission is dominant) and limited by the contour three times the rms noise level at the southwest, we obtain 5 mJy. Applying the same calculations and assumptions at the 3.6 cm band, we obtain the same flux discrepancy (0.3–1.7 mJy versus 5 mJy measured in the 3.6 cm map). Thus, unless there is a jet in G5.97 with significantly higher mass loss rate and/or terminal velocity than the typical jets associated with proplyds and/or other assumptions made here are wrong, the thermal emission of G5.97 must have another origin.

Another possibility is that the electronic density, \(N_e\), increases at the SW of G5.97. Since thermal free–free emission is proportional to \(N_e^2\) and synchrotron emission is proportional to \(N_e\), a sufficiently high enhancement of the electron density (and the gas density in the case of being fully ionized) would make the thermal contribution dominant. In this sense, Mücke et al. (2002) argue that the higher electron densities found in the Orion proplyds with respect to the NGC 3606 proplyd-like objects makes the contribution of the thermal emission more important for the former. This is not the case for G5.97: in the lower panel of Figure 3, G5.97 appears resolved and presents a bow-shock morphology with the tip pointing to Her 36, located in a limiting region of the proplyd where the non-thermal emission starts to be dominant (spectral index \(\lesssim 0.1\), see the peak position in Figure 2). This suggest that an important part of the radio emission arises from the interaction of G5.97 with the stellar wind coming from Her 36. This is also seen in Figure 2(a) of Stecklum et al. (1998), obtained from the subtraction of a scaled Hα image from the broadband HST image of M8. Here, G5.97 shows an ionized bow oriented toward Her 36, and possibly associated with the bow-shock identified in Figure 3, clearly separated from a star located behind which may be associated with the disk of the proplyd. According to the orientation of G5.97 with respect to Her 36, the position of the disk plus associated star where the largest concentration of material is probably found, is approximately coincident with the part of G5.97 with positive spectral index, while the rim and the rest of the source appear to be associated with the non-thermal emission. Although the picture proposed here implies a highly asymmetrical appearance for G5.97, some inclination angles of the circumstellar disk with respect to the photo-ionizing star can develop complex morphologies for the proplyds (Henney et al. 1996). High-resolution observations at millimeter wavelengths to map the distribution of G5.97 and, if possible, resolve the disk, are required to test the hypotheses discussed here.

5. SUMMARY AND CONCLUSIONS

In this paper, we monitored the radio emission of M8 by analyzing archival VLA observations spanning about 20 yr at 1.3, 2, 3.6, and 6 cm bands. We detected the compact source Her 36 SE, a possible companion of the Her 36 luminous star. The emission is not resolved and appears slightly displaced toward the Her 36 main component. The derived spectral index of \(\gtrsim 0.1\) for the Her 36 star, being preferentially detected at short wavelengths, is consistent with that of thermal emission with some non-thermal contamination. A possible explanation relies on the presence of an unresolved interaction region between the winds of Her 36 and Her 36 SE that would produce significant non-thermal emission, consistent with the previous detection of X-ray emission (Rauw et al. 2002) over this source. These winds are likely powerful enough to affect the surrounding cloud, including the G5.97 proplyd.

The G5.97 source presents features consistent with having a proplyd nature. It is partially resolved, especially at long wavelengths bands where a tail oriented in opposition to Her 36 is marginally seen at 6 cm, and with our highest resolution map at 1.3 cm where a cometary morphology pointing to Her 36 is observed. Its flux does not vary significantly with time, with values ranging between 12.5 and 19 mJy in all of the observed bands and epochs, also implying a rather flat spectral index. We did not detect circular polarized emission in G5.97, indicating that the contamination of gyrosynchrotron emission from the associated star is not important, consistent with the non-variability of the G5.97 brightness. The spatial distribution of the spectral index reveals that both non-thermal and thermal emission may be present in G5.97, dominating the non-thermal contribution in a major part of the source, except for the SW part where a gradient toward positive spectral index values can clearly be seen. The thermal emission is too bright for a jet launched by the star associated with G5.97, considering the low mass loss rate expected for jets arising from proplyds. As the most likely explanation for the spectral index distribution,
we propose that the shock created by the photo-evaporation flow with the collimated stellar wind of Her 36 accelerates charged particles producing non-thermal synchrotron emission in a considerable fraction of G5.97. According to this scenario, an electron density enhancement at the southwest of G5.97, possible as a result of the orientation between the axis of the disk of the proplyd and Her 36, makes the thermal emission dominant over this region.

J.M.M. acknowledges financial support from DGAPA-UNAM through a postdoctoral fellowship. L.F.R. acknowledges the support of DGAPA, UNAM, and of CONACyT (México). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We are grateful to Omaira González-Martín, who reduced and verified the X-ray data discussed in this paper.

REFERENCES

Allen, D. A. 1986, MNRAS, 219, 35
Anglada, G. 1996, in ASP Conf. Ser. 93, Radio Emission from the Stars and the Sun, ed. A. R. Taylor & J. M. Paredes (San Francisco, CA: ASP), 3
Arias, J. I., Barbá, R. H., Gamen, R. C., et al. 2010, ApJL, 710, L30
Arias, J. I., Barbá, R. H., Maíz Apellániz, J., Morrell, N. I., & Rubio, M. 2006, MNRAS, 366, 739
Becker, R. H., White, R. L., Helfand, D. J., & Zoonematkermani, S. 1994, ApJS, 91, 347
Blomme, R., Nazé, Y., Volpi, D., et al. 2013, A&A, 550, A90
Carral, P., Kurtz, S. E., Rodríguez, L. F., et al. 2002, AJ, 123, 2574
Castelaz, M. W., & Bales, M. 1995, BAAS, 27, 1320
Contreras, M. E., Rodríguez, L. F., Tapia, M., et al. 1997, in ESA Special Publication, Vol. 402, Hipparcos-Venice 97, ed. R. M. Bonnet, E. Høg, P. L. Bernacca et al. (Noordwijk: ESA), 401
Curiel, S., Canto, J., & Rodríguez, L. F. 1987, RMxAA, 14, 595
Curiel, S., Rodríguez, L. F., Bohigas, J., et al. 1989, ApL&C, 27, 299
Dzib, S. A., Rodríguez, L. F., Loinard, L., et al. 2013a, ApJ, 763, 139
Dzib, S. A., Rodríguez, L. F., Medina, S.-N. X., et al. 2014, A&A, 567, L5
Dzib, S. A., Rodríguez-Gurza, C. B., Rodríguez, L. F., et al. 2013b, ApJ, 772, 151
Elmegreen, B. G., & Lada, C. J. 1977, ApJ, 214, 725
Felli, M., Taylor, G. B., Catarsi, M., Churchwell, E., & Kurtz, S. 1993, A&AS, 101, 127
Goto, M., Stecklum, B., Linz, H., et al. 2006, ApJ, 649, 299
Henney, W. J., & O’Dell, C. R. 1999, AJ, 118, 2350
Henney, W. J., O’Dell, C. R., Meaburn, J., Garrington, S. T., & Lopez, J. A. 2002, ApJ, 566, 315
Henney, W. J., Raga, A. C., Lizano, S., & Curriel, S. 1996, ApJ, 465, 216
Hoare, M. G., Purcell, C. R., Churchwell, E. B., et al. 2012, PASP, 124, 939
Kawamura, J. H., & Masson, C. R. 1998, ApJ, 509, 270
Kennedy, M., Dougherty, S. M., Fink, A., & Williams, P. M. 2010, ApJ, 709, 632
Lada, C. J., Gottlieb, C. A., Gottlieb, E. W., & Gull, T. R. 1976, ApJ, 203, 159
Lightfoot, J. F., Deighton, D. W., Furniss, I., et al. 1984, MNRAS, 208, 197
Miotello, A., Robberto, M., Potenza, M. A. C., & Ricci, L. 2012, ApJ, 757, 78
Mücke, A., Koribalski, B. S., Moffat, A. F. J., Corcoran, M. F., & Stevens, I. R. 2002, ApJ, 571, 366
Ortiz-León, G. N., Loinard, L., Rodríguez, L. F., Mioduszewski, A. J., & Dzib, S. A. 2011, ApJ, 737, 30
Panagia, N., & Felli, M. 1975, A&A, 39, 1
Rauw, G., Nazé, Y., Gosset, E., et al. 2002, A&A, 395, 499
Ricci, L., Robberto, M., & Soderblom, D. R. 2008, AJ, 136, 2136
Rodríguez, L. F., Masqué, J. M., Dzib, S. A., Loinard, L., & Kurtz, S. E. 2014, RMxAA, 50, 3
Stecklum, B., Henning, T., Eckart, A., Howell, R. R., & Hoare, M. G. 1995, ApJ, 445, L153
Stecklum, B., Henning, T., Feldt, M., et al. 1998, AJ, 115, 767
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
Wood, D. O. S., & Churchwell, E. 1989, ApJ, 340, 265
Woolf, N. J. 1961, PASP, 73, 206
Zapata, L. A., Rodríguez, L. F., Kurtz, S. E., & O’Dell, C. R. 2004, AJ, 127, 2252