Survey and evaluation of mutations in the human KLF1 transcription unit

Merlin Nithya Gnanapragasam¹, John D. Crispino², Abdullah M. Ali³, Rona Weinberg⁴, Ronald Hoffman⁵, Azra Raza³ & James J. Bieker¹,⁶,⁷,⁸

Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources. In all cases we only found changes in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with erythroid malignancies, they are exceedingly rare.

Erythroid Krüppel-like Factor (EKLF/KLF1) is a red cell-enriched, zinc finger DNA binding protein that interacts with its cognate 5’CCMCRCCCN3′ element at target promoters and enhancers¹. Its roles in β-like globin gene regulation during terminal erythroid differentiation have been well-established using genetic, biochemical, and molecular approaches²,³. Specific functional properties and expression characteristics of EKLF, along with recognition of its surprisingly broad role prior to and during red cell differentiation (reviewed in 4–8), provide the conceptual basis for the present study.

First, single amino acids and their modifications are critically important for EKLF protein-protein interactions and its function as an activator or repressor⁹–¹₂, raising the possibility that mutations at these sites or within their consensus sequences could have dramatic functional effects on gene expression control.

Second, subtle altering of EKLF cellular levels can change the erythroid cell cycle status from proliferation to differentiation, an effect mediated, at least in part, by its direct activation of the p21, p18, p27, and E2f2 genes¹³–¹⁷. Induction of p21 is reminiscent of a similar up-regulation that has been observed with KLF4¹⁸ and with KLF6¹⁹, known tumor suppressors that function in a p53-independent manner and that are frequently inactivated or downregulated in human cancer²⁰.

Third, EKLF mRNA is highly restricted in its expression pattern during development to erythropoietic organs such as the yolk sac, fetal liver, adult bone marrow, and red pulp of the spleen¹–¹². Although most abundant in the erythroid cell, EKLF is also highly expressed in the megakaryocyte/erythroid progenitor (MEP)²¹. Its level is downregulated as MEPs differentiate towards the megakaryocytic lineage yet remains high in the erythroid lineage²². By using both gain- and loss-of-function approaches, we²²,²³ and others²³–²⁵ have found that the expression levels of EKLF impacts the bipotential lineage decisions that are made by the MEP, specifically, EKLF inhibits the formation of megakaryocyte colony and cell numbers while at the same time stimulating erythroid differentiation.

Fourth, there are now links between KLF1 mutation and altered mammalian hematology²⁶–²⁸. For example, the semi-dominant mouse mutation Nan (neonatal anemia), which presents with hereditary spherocytosis, was mapped to a single amino acid change (E339D) within the second zinc finger of EKLF²⁹–³¹. The mutation alters the DNA binding specificity of EKLF such that it no longer binds promoters of a subset of its DNA targets²⁹. In addition, recognition of a novel target DNA sequence by Nan-EKLF leads to ectopic expression of genes not normally expressed in the red cell, yielding a neomorphic phenotype with cellular and systemic consequences³²,³³.

¹Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA. ²Department of Medicine, Northwestern University, Chicago, IL, 60611, USA. ³Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA. ⁴Cellular Therapy Laboratory, New York Blood Center, New York, NY, 10065, USA. ⁵Department of Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA. ⁶Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA. ⁷Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA. ⁸Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA. Correspondence and requests for materials should be addressed to J.J.B. (email: james.bieker@mssm.edu)
Excitingly, this murine mutation has converged with human disease, particularly a subtype of congenital dyserythropoietic anemia (CDA)34–39, where the same amino acid is altered (albeit to another charged residue, lysine) in human EKLF/KLF1. These patients are severely anemic with highly elevated HBF and reticulocyte levels, membrane abnormalities, severe hemolytic anemia, erythroid hyperplasia with dyserythropoiesis, splenomegaly, and growth delay36. KLF1/E325K is recognized as a characteristic feature of CDA type IV39.

Additionally, the regulation of some genes are uniquely sensitive to haploinsufficient levels of KLF1 (Lu, Bcl11a, HbA2), leading to altered genetic expression patterns and hematologic parameters in humans, of which hereditary persistence of fetal hemoglobin (HPFH) is particularly relevant to clinical outcome4,5,26,41–43.

Collectively these functional properties suggest that genetic mutation or altered levels of KLF1 may also be a causative factor for a specific subset of hematopoietic disease. We focused our attention on two types of disorders. Myeloproliferative neoplasms (MPN) are chronic hematological malignancies that yield an excessive proliferation of blood cells with normal differentiation46,47. On the other hand, unrestricted proliferation and impaired differentiation are characteristic of acute myeloid leukemia (AML)40,41. Our test hypothesis is that dysregulation of KLF1 function may contribute or lead to either of these human malignancies.

Results

Chromosomal associations. 19p13.13, the chromosomal locus of KLF1, has been associated with variation in blood cell traits in meta-analysis studies48. Recent studies provide an extensive catalogue of SNP variants of consequence for red cell parameters49. Perusal of the data enable us to extract the ones most relevant to KLF1 as summarized in Table 1, suggesting these KLF1 gene variants are significantly associated with altered MCH, MCV, and MCHC red cell indices, and RBC and RET numbers. In combination with studies summarized in the Introduction, we felt justified to address whether mutagenic changes in KLF1 might also be associated with aberrant or malignant red cell parameters.

Genomic analyses of KLF1 in selected populations. The complete human KLF1 transcription unit is only 3.5 kb50, enabling us to interrogate its proximal promoter, 5′ UTR, introns, exons, and 3′ UTR by overlapping amplimers. The proximal promoter contains highly conserved transcription factor binding sequences that are critical for its expression in erythroid cells51–55. To begin our evaluation of human KLF1 genomic status, we focused first on sequencing human leukemia cell lines that retain erythroid and/or megakaryocytic features56,57. These lines are derived from CML, AML-M6 or -M7 patients (F36P, HEL, JK1, K562, KMOE2, KU812, LAMA84, OCIM1, TF1), and include those with mixed erythroid/megakaryocytic features (CMK, KG1, Meg01). We conclude from genomic sequence comparison of these lines to the 1000 Genomes project58,59 that the KLF1 genomic changes observed represent known single nucleotide polymorphisms (SNPs), but no novel mutations (Table 2).

We then directly assessed primary human DNA samples from a selected cohort of patients. Given that KLF1 levels may be playing a directive role in erythroid/megakaryocyte bipotential decisions, we focused on myeloproliferative neoplasms (MPNs) as cells whose aberrant properties might result from expression of mutated KLF1. MPNs are a heterogeneous group of clonal hematological malignancies that are characterized by hypercellular bone marrow, pancytopenia, and a gradual evolution to myelofibrosis (MF) and acute leukemia60,61. These disorders are clonal and yield an excessive proliferation of blood cells that exhibit normal differentiation44. We were particularly interested in two subtypes of MPNs: polycythemia vera (PV) and essential thrombocythemia (ET), which represent abnormalities in the proliferation of erythroid and megakaryocytic lineage respectively45. We therefore sequenced genomic DNA from a collection of individuals with PV (eighteen), ET (eleven), and MF (five) samples. No novel mutations were identified, only SNPs (Table 2). Although rs115672848 is a rare variant, we found no evidence for its selective enrichment.

Many KLF1 target genes overlap with the expression signature identified in the differential analysis of myelodysplastic syndrome (MDS) patients that vary in their response to lenalidomide treatment62. We hypothesized that the mutational status of KLF1 may provide a mechanistic basis to explain the differential expression signature in these patients, and potentially predict whether they will respond to lenalidomide. We analyzed 26 samples each of responders and non-responders. All variants identified in these samples were known SNPs (Table 2), and none partitioned significantly to either of the two differentially responding groups. There were no significant difference

Table 1. KLF1 loci associated with RBC traits. SNPs (rsID) at or near the KLF1 gene associated with red blood cell indices are tabulated with respect to chromosome 19 location (Ch37), percent minor allele frequency (MAF), and nucleotide change compared to the reference genome (REF/ALT). Univariable analysis indicates the direction and significance of the allelic effect on the index parameter. Data from49.

Associated Blood Index	rsID	BP (GRCh37)	REF/ALT	MAF (%)	Estimate of Additive Allelic Effect	Standard Error of Estimator	−log10 P	Unadjusted R2
RET#	rs3817621	12998205 G/C	23.9	−0.038	0.0042	18.6	0.000527	
RET%	rs3817621	12998205 G/C	23.9	−0.046	0.0042	27	0.000776	
RBC#	rs56397034	13000550 G/C	38.9	−0.049	0.0036	41.3	0.001166	
MCV	rs56397034	13000550 G/C	38.9	0.068	0.0036	78.5	0.002203	
MCH	rs56397034	13000550 G/C	38.9	0.071	0.0036	85.3	0.002411	
MCHC	rs11085824	13001547 A/G	37.6	0.029	0.0035	15.8	0.000407	
MPN70,71, acute erythroleukemia (250 samples total in two studies72,73), and AML tabulations 74, along with those be accumulated in an unbiased manner. Consistent with our own directed sequencing studies, perusal of recent published data from whole genome and exome analyses. These global analyses enable tabulation of altered genes to approach and queried pub-

As indicated in Table 2, many of these variants have been noted before 26. The ones that result in non-synonymous coding changes are predicted not to affect KLF1 function66,67 (with the possible exception of rs2072596 as highlighted in Table 2). However, it is noteworthy that a geographical analysis68,69 shows that, unlike

in clinical parameters between the most common rs3817621 (p = 0.44) and rs2072597 (p = 0.53) SNPs. In addition, while rs201870270 and rs182276666 are rare variants, they are not selectively enriched.

We next examined ten acute megakaryoblastic leukemia (AMKL) samples63, including four from patients with Down syndrome (DS) and six from those without DS. AMKL is an aggressive form of leukemia where a majority of the expanding cells are abnormal megakaryoblasts 64, and whose DNA methylation patterns are distinct between DS and non-DS cells65. Again, all samples contain known KLF1 SNPs (Table 2).

As indicated in Table 2, many of these variants have been noted before26. The ones that result in non-synonymous coding changes are predicted not to affect KLF1 function66,67 (with the possible exception of rs2072596 as highlighted in Table 2). However, it is noteworthy that a geographical analysis68,69 shows that, unlike ones whose variation is common and universal (e.g., rs2072597), some with an overall low frequency (~5%) are nonetheless highly enriched (~20%) prevalently and exclusively in selected genetic or geographic sub-populations while completely absent in all others (e.g., rs16978754) (Fig. 1).

Alternative analyses. Given our hypothesis, we were surprised by the absence of mutations associated with our target samples/sources. To expand our analysis, we also considered an in silico approach and queried published data from whole genome and exome analyses. These global analyses enable tabulation of altered genes to be accumulated in an unbiased manner. Consistent with our own directed sequencing studies, perusal of recent MPN70,71, acute erythroleukemia (250 samples total in two studies72,73), and AML tabulations74, along with those derived from The Cancer Genome Atlas (TCGA) data set75,76, do not reveal a role for KLF1 in any case in these blood cancers. KLF1 is not one of 142 driver genes identified from an analysis of 1699 pediatric leukemias and tumors77. An shRNA screen of AML cells lines also did not implicate a role for KLF178, and KLF1 does not appear in differential analyses related to predicting therapy resistance in AML79. Examination of COSMIC data (v83)80 indicates that, out of 3478 curated hematopoietic and lymphoid samples, only a single coding sequence variant was observed (F27V) in a CLL patient81, one predicted to be benign66,67.

We finally considered whether variation in levels of KLF1, rather than a mutated form, might be correlated with a particular blood cancer. This hypothesis arises from two bits of data. One, it is known that some genes are uniquely sensitive to haploinsufficient levels KLF1 (reviewed in4,26). Two, KLF1 levels vary considerably across

Table 2. SUMMARY of genomic sequence analyses. Tabulation of all KLF1 SNPs (rsID) found in the present study, grouped together based on cell types as described in the Results. Included are the number of examples of each change, along with chromosome 19 location (Ch38), nucleotide change compared to the reference genome (REF/ALT), and percent minor allele frequency (MAF). Location with respect to the KLF1 transcription unit (promoter, coding region, 3′UTR) are as indicated, along with the amino acid change. “Class 1” refers to the effect based on other criteria66,67. KLF1 transcription initiation is at BP = 12887203 in Ch38 (based on50,54). *rare (~<1%); **noted previously in reference68 as implicated in hypomorphic KLF1 expression; ***based on references66,67; ****PolyPhen suggests ‘possibly damaging’ due to cross-KLF family conservation of F (phenylalanine) at this position, possibly by decreasing its stability79.

Sample Type	rsID	BP (GRCh38)	number	REF/ALT	MAF (%)	Location	Predicted effect***
cell lines	rs3817621	12887391	8	G/C	32.5	**promoter (−188)	
	rs112631212	1286615	1	T/G	1.44	**M39L-class 1 likely benign	
	rs2072597	12885926	10	A/G	44.4	**S102P-class 1 likely benign	
	rs16978757	12884608	1	G/A	5.61	3′UTR	
	rs16978754	12884589	1	T/C	5.59	3′UTR	
MPN	rs115672848	12888141	1	C/T	0.14	promoter (−938)	
	rs3817621	12887391	5	G/C	32.5	**promoter (−188)	
	rs97343031	12887288	2	C/T	1.58	**promoter (−85)	
	rs112631212	1286615	7	T/G	1.44	**M39L-class 1 likely benign	
	rs2072597	12885926	12	A/G	44.4	**S102P-class 1 likely benign	
	rs2072596	12885686	3	A/G	4.95	**F182L-class 1 likely benign****	
	rs16978757	12884608	1	G/A	5.61	3′UTR	
	rs16978754	12884589	1	T/C	5.59	3′UTR	
MDS	rs201870270	12887780	1	delA	0.8	promoter (−577)	
	rs3817621	12887391	15	G/C	32.5	**promoter (−188)	
	rs97343031	12887288	4	C/T	1.58	**promoter (−85)	
	rs112631212	1286615	1	T/G	1.44	**M39L-class 1 likely benign	
	rs2072597	12885926	21	A/G	44.4	**S102P-class 1 likely benign	
	rs182276666	12885919	1	G/A	0.08	**A104V-class 1 likely benign	
	rs2072596	12885686	2	A/G	4.95	**F182L-class 1 likely benign****	
	rs16978754	12884589	2	T/C	5.59	3′UTR	
AMKL	rs3817621	12887391	1	G/C	32.5	**promoter	
	rs2072597	12885926	5	A/G	44.4	**S102P-class 1 likely benign	
that leads to CDA type IV, with its dominant effect on erythroid cell properties, including proliferation34,36,39. The possible that mutated KLF1 would not have a causative effect on cell cycle in this context in any case.

Differentiates to the mature erythroid cell86. Intriguingly, the KLF1 gene exhibits a synergistic “type III/cluster 3” extent of 5hmC modification at the KLF1 locus is also inversely correlated with its expression as the CD34+ cell

We queried a series of 200 AML samples to see whether KLF1 levels correlate with a particular AML subtype83. We were surprised by two observations (Fig. 2b). First, there is a wide range in KLF1 expression within the AML M6 and M7 categories that generally would be anticipated to express elevated levels of KLF1. Second, other AML subtypes, including M0-M5, contain samples that express similar high levels of KLF1. This was not expected as KLF1 is most highly enriched in erythroid, not myeloid, cells. Clearly, normal cellular and genetic control mechanisms are altered in many of these patient samples, as KLF1 levels do not even correlate with HBG expression (Fig. 2b), a target that is normally repressed by KLF1 and whose levels are indirectly proportional to that of KLF142. We conclude there is no apparent correlation between KLF1 levels and malignancy status across a range of AML malignancy subtypes.

Discussion
Given the molecular and biochemical properties of KLF1, along with its regulation of selected downstream target gene expression, it remains surprising that our study did not uncover any mutations associated with erythroid dysplasia or malignancy. A simple explanation is that an insufficient number of samples have been analyzed. Although this possibility cannot be excluded, we directly analyzed nearly 150 samples, and in addition perused numerous databases without success. In any case, other explanations come to mind.

For instance, we have not considered whether the epigenetic status of the KLF1 gene may be playing a role in its regulation that may be of consequence to malignancy. For example, 5mC modification at the KLF1 locus inversely correlates with its expression when compared across a number of cell types84,85. In addition, the level and extent of 5hmC modification at the KLF1 locus is also inversely correlated with its expression as the CD34+ cell differentiates to the mature erythroid cell86. Intriguingly, the KLF1 gene exhibits a synergistic “type III/cluster 3” pattern of expression control such that KLF1 transcript levels are dramatically increased in Tet2/Dnmt3a double knockout cells42. Of relevance to the present discussion, increased KLF1 levels in a subset of AML is only seen in this cell line, with some studies indicating low to nil50,88,89, and others showing detectable levels90. There is a

K562 cells merit additional discussion. There are inconsistencies in the literature as to whether KLF1 is expressed in this cell line, with some studies indicating low to nil10,88,89, and others showing detectable levels80. There is a large body of work on its use as a cotransfection reporter line whose utility is dependent on lack of KLF1 expression (studies that began with88). This line was established decades ago91, and early on was noted to exhibit variability92,93. We have noted major differences in transfection efficiency upon comparing our lab K562 stock with the

Methods
K562 cells were from our original lab stock88; all other cell lines were purchased from either the ATCC or DSMZ. K562 cells merit additional discussion. There are inconsistencies in the literature as to whether KLF1 is expressed in this cell line, with some studies indicating low to nil10,88,89, and others showing detectable levels80. There is a large body of work on its use as a cotransfection reporter line whose utility is dependent on lack of KLF1 expression (studies that began with88). This line was established decades ago91, and early on was noted to exhibit variability92,93. We have noted major differences in transfection efficiency upon comparing our lab K562 stock with the
ATCC K562 line (unpublished observations) although we did not find any KLF1 genomic sequence differences. We suggest labs are working with dissimilar isolates, differing in levels of GATA1 and/or KLF1.

Patient samples were procured after informed consent and IRB approval within the individual institutions (Mount Sinai School of Medicine, Columbia University Medical Center, New York Blood Center, Northwestern University School of Medicine). All methods were performed in accordance with the relevant institutional guidelines and regulations. Mononuclear cells from MPN patients were provided by the Myeloproliferative Disorders Research Consortium Tissue Bank Core C.

Genomic DNA was isolated from all samples using a Qiagen DNeasy Blood & Tissue Kit. PCR primers spanning the complete KLF1 transcription unit were used to amplify eight overlapping regions across the locus (Supplemental Table 1). These were individually sequenced in both directions (with their corresponding PCR forward and reverse primer) using a 96-well format (Macrogen USA). With regards to comparison of clinical parameters in MDS samples, for continuous variables satisfying the normality assumption, a two-tailed unpaired t test was used.

Figure 2. Variation of KLF1 levels across aberrant erythroid sources. (a) BloodSpot (82; http/servers.binf.ku.dk/bloodspot?gene=KLF1&dataset=MERGED_AML) analysis of relative KLF1 levels in samples across dysplastic and leukemic sources, as well as that seen during normal hematopoiesis (concordant with murine studies22). (b) Left - Analysis of KLF1 expression in AML samples derived from a range of subtypes (M0–M7), also compared to CD34, promyelocytes (pros) and polymorphonuclear leukocytes (PMNs). nc = not categorized. Right – Graph showing lack of correlation between KLF1 and HBG levels in the same set of AML samples. Note that HBG expression within the five highest-expressing KLF1 samples vary tremendously.
Discovery of any nucleotide change(s) followed alignment to the GRCh38 reference sequence using Vector NTI ContigExpress software (ThermoFisher Scientific). SNPs and any associated parameters were identified from the 1000 Genomes databases\(^5\),\(^6\),\(^7\). Other datasets queried included BloodSpot\(^8\), eBioPortal\(^9\), GGV\(^10\), UK10K\(^11\), COSMIC\(^12\), and NCBI public resources.

References
1. Miller, I. J. & Bieker, J. I. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell. Biol. 13, 2776–2786 (1993).
2. Perkins, A. Erythroid Kruppel like factor: from fishing expedition to gourmet meal [In Process Citation].
3. Bieker, J. J. EKLF and the development of the erythroid lineage. in Transcription Factors: Normal and Malignant Development of Blood Cells (eds. Ravid, K. & Licht, J. D.) 71–84 (Wiley-Liss, New York, 2000).
4. Siatecka, M. & Bieker, J. J. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 118, 2044–54 (2011).
5. Borg, J., Patrinos, G. P., Felice, A. E. & Philipsen, S. Erythroid phenotypes associated with KLF1 mutations. Haematologica 96, 635–8 (2011).
6. Tallack, M. R. & Perkins, A. C. KLF1 directly coordinates almost all aspects of terminal erythroid differentiation. IUBMB Life 62, 886–90 (2010).
7. Tien, Y. Y. & Bieker, J. J. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 33, 4–13 (2013).
8. Gnanapragasam, M. N. & Bieker, J. J. Of orchestration of late events in erythropoiesis by KLF1/EKLF. Curr Opin Hematol 24, 183–190 (2017).
9. Zhang, W., Kadam, S., Emerson, B. M. & Bieker, J. J. Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol Cell Biol 21, 2413–22 (2001).
10. Sengupta, T., Chen, K., Milot, E. & Bieker, J. J. Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol 28, 6160–70 (2008).
11. Chen, X. & Bieker, J. J. Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol 24, 10416–24 (2004).
12. Siatecka, M., Xue, L. & Bieker, J. J. Sumoylation of EKLF Promotes Transcriptional Repression and Is Involved in Inhibition of Megakaryopoiesis. Mol Cell 27, 8547–8560 (2007).
13. Tallack, M. R., Keys, J. R. & Perkins, A. C. Erythroid Kruppel-like factor regulates the G1 cyclin dependent kinase inhibitor p18INK4c. J Biol Chem 369, 313–21 (2007).
14. Pilon, A. M. et al. Failure of terminal erythroid differentiation in KLF1-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2. Mol Cell Biol 28, 7394–401 (2008).
15. Tallack, M. R., Keys, J. R., Humbert, P. O. & Perkins, A. C. EKLF/KLF1 controls cell cycle exit via direct regulation of E2F2. J Biol Chem 284, 20966–74 (2009).
16. Siatecka, M., Lohmann, F., Bao, S. & Bieker, J. J. EKLF directly activates the p21WAF1/CDPI1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol 30, 2811–2822 (2010).
17. Gnanapragasam, M. N. et al. KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128, 1631–41 (2016).
18. Rowland, B. D. & Peper, D.S. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6, 11–23 (2006).
19. Narla, G. et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65, 1213–22 (2005).
20. Abbas, T. & Drutta, A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9, 400–14 (2009).
21. Southwood, C. M., Downs, K. M. & Bieker, J. J. Erythroid Kruppel-like Factor (EKLF) exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Devel. Dyn. 206, 248–259 (1996).
22. Frontelo, P. et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood 110, 3871–3880 (2007).
23. Bouliloux, F. et al. EKLF regulates megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 112, 576–84 (2008).
24. Tallack, M. R. & Perkins, A. C. Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood. Haematologica 95, 144–7 (2010).
25. Isern, J., Fraser, S. T., He, Z., Zhang, H. & Baron, M. H. Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf. Blood 116, 3972–80 (2010).
26. Perkins, A. et al. Kruppel erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 127, 1856–62 (2016).
27. Waye, J. S. & Eng, B. Kruppel-like factor 1: hematologic phenotypes associated with KLF1 gene mutations. Int J Lab Hematol 37(Suppl 1), 78–84 (2015).
28. Keller, J. et al. Novel mutations in KLF1 encoding the In(Lu) phenotype reflect a diversity of clinical presentations. Transfusion 58, 196–199 (2018).
29. Siatecka, M. et al. Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor. Proc Natl Acad Sci USA 107, 15151–6 (2010).
30. White, R. A. et al. Hematologic characterization and chromosomal localization of the novel dominantly inherited mouse hemolytic anemia, neonatal anemia (Nan). Blood Cells Mol Dis 43, 141–8 (2009).
31. Heruth, D. P. et al. Mutation in erythroid specific transcription factor KLF1 causes Hereditary Spherocytosis in the Nan hemolytic anemia mouse model. Genomics 96, 303–7 (2010).
32. Gillinder, K. R. et al. Promiscuous DNA binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Nucleic Acids Res 45, 1130–1143 (2017).
33. Planutis, A. et al. Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development 144, 430–440 (2017).
34. Arnaud, L. et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet 87, 721–7 (2010).
35. Singleton, B. K. et al. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Blood 118, 3137–45 (2011).
36. Jaffray, J. A. et al. Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: Review of all reported cases and development of a clinical diagnostic paradigm. Blood Cells Mol Dis 51, 71–5 (2013).
37. de-la-Iglesia-Inigo, S. et al. A case of congenital dyserythropoietic anemia type IV. Clin Case Rep 5, 248–252 (2017).
38. Oortolano, R., Forouhar, M., Warwick, A. & Harper, D. A Case of Congenital Dyserythropoietic Anemia Type IV Caused by E325K Mutation in Erythroid Transcription Factor KLF1. J Pediatr Hematol Onccol (2017).
39. Ravindranath, Y. et al. KLF1 E325K-associated Congenital Dyserythropoietic Anemia Type IV: Insights Into the Variable Clinical Severity. J Pediatr Hematol Onccol (2017).

40. Iolascon, A., Esposito, M. R. & Russo, R. Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morphology to molecular approach. *Haematologica* **97**, 1786–94 (2012).
41. Singleton, B. K., Burton, N. M., Green, C., Brady, R. L. & Anstee, D. J. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. *Blood* **112**, 2081–8 (2008).
42. Bieker, J. J. Putting a finger on the switch. *Nat Genet* **42**, 733–4 (2010).
43. Liu, D. et al. Erythroid Krüppel-like factor mutations are relatively more common in a thalassemia endemic region and ameliorate the clinical and hematological severity of beta-thalassemia. *Blood* (2014).
44. Levine, R. L. & Gilliland, D. G. Myeloproliferative disorders. *Blood* **112**, 2190–8 (2008).
45. Vainchenker, W., Delhommeau, F., Constantinescu, S. N. & Bernard, O. A. New mutations and pathogenesis of myeloproliferative neoplasms. *Blood* **118**, 1723–35 (2011).
46. Rosenbauer, F., Koschmieder, S., Steidl, U. & Tenen, D. G. Effect of transcription-factor concentrations on leukemic stem cells. *Blood* **106**, 1519–24 (2005).
47. Tenen, D. G. Disruption of differentiation in human cancer: AML shows the way. *Nat Rev Cancer* **3**, 89–101 (2003).
48. Ganesh, S. K. et al. Multiple loci influence erythocyte phenotypes in the CHARGE Consortium. *Nat Genet* **41**, 1191–8 (2009).
49. Astle, W. J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. *Cell* **167**, 1415–1429 e19 (2016).
50. Bieker, J. J. Isolation, genomic structure, and expression of human Erythroid Kruppel-like Factor (EKLF). *DNA and Cell Biol.* **15**, 347–352 (1996).
51. Crossley, M., Tsang, A. P., Bieker, J. J. & Orkin, S. H. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. *J. Biol. Chem.* **269**, 15440–15444 (1994).
52. Chen, X., Reitman, M. & Bieker, J. J. Chromatin structure and transcriptional control elements of the erythroid Kruppel-like factor (EKLF) gene. *J Biol Chem* **273**, 25031–40 (1998).
53. Xue, L., Chen, X., Chang, Y. & Bieker, J. J. Regulatory elements of the EKLF gene that direct erythroid cell-specific expression during mammalian development. *Blood* **103**, 4078–83 (2004).
54. Lohmann, F. & Bieker, J. J. Activation of Ekl expression during hematopoiesis by Gata2 and Sma5 prior to erythroid commitment. *Development* **135**, 2071–82 (2008).
55. Lohmann, F. et al. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. *Mol Cell Biol* **35**, 3726–38 (2015).
56. Stamatoyannopoulos, G. & Grosveld, F. Hemoglobin Switching. in *The Molecular Bases of Blood Diseases* (eds Stamatoyannopoulos, G., Majerus, P. W., Perlmutter, R. M. & Varmus, H.) 1–13 (W. B. Saunders Co., Philadelphia, 2001).
57. Lawrence, M. S. et al. Erythroid and megakaryocytic transformation. *Blood* **112**, 600–5 (2013).
58. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc* **4**, 1073–81 (2009).
59. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. *Nat Methods* **7**, 4–9 (2010).
60. Auton, A. et al. A global reference for human genetic variation. *Nature* **526**, 61–8 (2015).
61. Marcus, J. H. & Novembre, J. Visualizing the geography of genetic variants. *Bioinformatics* **33**, 594–595 (2017).
62. Schischlik, F. & Kralovics, R. Mutations in myeloproliferative neoplasms - their significance and clinical use. *Expert Rev Hematol* **10**, 961–973 (2017).
63. Vainchenker, W. & Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. *Blood* **129**, 667–679 (2017).
64. Ping, N. et al. Exome sequencing identifies highly recurrent somatic GATA2 and CEBPA mutations in acute erythroid leukemia. *Leukemia* **31**, 195–202 (2017).
65. Grossmann, V. et al. Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. *Leukemia* **27**, 1940–3 (2013).
66. Bodini, M. et al. The hidden genomic landscape of acute myeloid leukemia: subclonal structure revealed by undetected mutations. *Blood* **125**, 600–5 (2015).
67. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. *Nature* **502**, 333–339 (2013).
68. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. *Nature* **505**, 495–501 (2014).
69. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. *Nature* **555**, 371–376 (2018).
70. Li, H. et al. The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. *Blood* **129**, 497–508 (2017).
71. Ng, S. W. et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. *Nature* **540**, 433–437 (2016).
72. Forbes, S. A. et al. COSMIC: somatic cancer mutations at high-resolution. *Nucleic Acids Res* **45**, D777–D783 (2017).
73. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukaemia. *Cell* **152**, 714–26 (2013).
74. Bagger, O. E. et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. *Nucleic Acids Res* **44**, D917–24 (2016).
75. Ley, T. J. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukaemia. *N Engl J Med* **368**, 2059–74 (2013).
76. Taskesen, E. et al. Two splice-factor mutant leukaemia subgroups uncovered at the boundaries of MDS and AML using combined gene expression and DNA-methylation profiling. *Blood* **123**, 3327–35 (2014).
77. Huhr, S. et al. Epigenetic dysregulation of the erythropoietic transcription factor KLF1 and the beta-like globin locus in juvenile myelomonocytic leukaemia. *Epigenetics*, 1–9 (2017).
78. Madzio, J. et al. Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. *Cell Rep* **6**, 231–244 (2014).
79. Zhang, X. et al. DNM3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. *Nat Genet* **48**, 1014–23 (2016).
80. Donze, D., Townes, T. M. & Bieker, J. J. Role of Erythroid Krüppel-like Factor (EKLF) in human g- to β-globin switching. *J. Biol. Chem.* **270**, 1955–1959 (1995).
81. Trakarnsanga, K. et al. Induction of adult levels of beta-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. *Haematologica* **99**, 1677–85 (2014).
90. Kang, Y., Kim, Y. W., Yun, J., Shin, J. & Kim, A. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human beta-globin locus. Biochim Biophys Acta 1849, 282–9 (2015).
91. Lozzio, C. B. & Lozzio, B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321–34 (1975).
92. Lozzio, B. B. & Lozzio, C. B. Properties and usefulness of the original K-562 human myelogenous leukemia cell line. Leuk Res 3, 363–70 (1979).
93. Dimery, L. W. et al. Variation amongst K562 cell cultures. Exp Hematol 11, 601–10 (1983).
94. Ulirsch, J. C. et al. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits. Cell 165, 1530–1545 (2016).
95. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401–4 (2012).
96. Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).
97. Geihs, M. et al. An interactive genome browser of association results from the UK10K cohorts project. Bioinformatics 31, 4029–31 (2015).
98. Khamphikham, P. et al. Genetic variation of Kruppel-like factor 1 (KLF1) and fetal hemoglobin (HbF) levels in beta(0)-thalassemia/ HbE disease. Int J Hematol (2017).

Acknowledgements
This work was supported by PHS grants R21 CA133608 and R01 DK46865 to JJB, and by a Cooley’s Anemia Fellowship to MNG. The Myeloproliferative Disorders Research Consortium Tissue Bank Core C was supported by grant P01 CA108671. We thank Dr John Martignetti for discussion and comments on the manuscript, and Dr Tim Ley for discussion.

Author Contributions
M.N.G. performed experiments, M.N.G. and J.J.B. designed the study, analyzed data, and wrote the manuscript, R.W., A.M.A., J.D.C., R.H., and A.R. provided patient samples and discussion. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24962-3.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and indicate if changes were made.