Research Article

Evaluation of Annual Rainfall Erosivity Index Based on Daily, Monthly, and Annual Precipitation Data of Rainfall Station Network in Southern Taiwan

Ming-Hsi Lee and Huan-Hsuan Lin

1Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
2Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

Correspondence should be addressed to Ming-Hsi Lee; mhlee@mail.npust.edu.tw

Received 20 August 2014; Accepted 15 October 2014

Academic Editor: Joe-Air Jiang

Copyright © 2015 M.-H. Lee and H.-H. Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The erosivity factor in the universal soil loss equation (USLE) provides an effective means of evaluating the erosivity power of rainfall. The present study proposes three regression models for estimating the erosivity factor based on daily, monthly, and annual precipitation data of rainfall station network, respectively. The validity of the proposed models is investigated using a dataset consisting of 16,560 storm events monitored by 55 rainfall stations in southern Taiwan. The results show that, for 49 of the 55 stations, a strong positive correlation ($r^2 > 0.5$) exists between the annual rainfall amount and the annual rainfall erosivity factor. In other words, the estimation model based on the annual precipitation data provides a reliable means of predicting the long-term annual rainfall erosivity in southern Taiwan. Furthermore, the root mean square error (RMSE) and mean absolute percentage error (MAPE) analysis results show that the estimation models based on annual and monthly precipitation data have a more accurate prediction performance than that based on daily precipitation data.

1. Introduction

Water erosion is one of the most important worldwide environmental concerns, particularly in tropical and subtropical regions of the world such as Taiwan. One of the most important active agents of soil erosion is rain due to its potential for producing soil disaggregation and subsequent removal. The effects of raindrop impact and surface runoff on soil erosion are generally estimated using the universal soil loss equation (USLE) [1]; namely,

$$A = RKLSCP,$$ (1)

where A is the rate of soil loss (ton ha$^{-1}$ yr$^{-1}$), R is the annual rainfall erosivity factor (MJ mm ha$^{-1}$ h$^{-1}$ yr$^{-1}$), K is the soil erodibility factor (t ha yr mm$^{-1}$), L is the slope length factor, S is the slope steepness factor, C is the cover and management factor, and P is the supporting practices factor [2, 3]. Amongst these factors, the erosivity factor (R) is recognized as one of the most effective measures for describing the rainfall erosivity power on a regional scale [4, 5]. In both the original USLE model [1] and the revised-USLE (RUSLE) model [6], R is calculated as the product of the storm rainfall energy (E) and the maximum 30-min rainfall intensity (I_{30}). However, Wischmeier and Smith [7] also defined R as the average of the annual summations of the EI_{30} values for all storm events yielding more than 12.7 mm of rainfall.

The rainfall erosivity index, R, describes the erosive impact of rainfall and runoff on both the detachment and the entrainment of soil and is given as [1]

$$R_j = E_j 	imes I_{30} = \sum_{i=1}^{T_j} (e_i P_{ji}) \times I_{30},$$ (2)

where E_j is the kinetic energy (MJ/mm), I_{30} is the maximum 30-min rainfall intensity (mm/h), e_j is the unitary kinetic energy (MJ/mm-ha), P_{ji} is the rainfall amount (mm), and T_j is the total rainfall duration. Note that the subscripts i and j denote the number of rainfall data instances and the number
of rainfall events, respectively. Summing the rainfall erosivity index of all the rainfall events over one year, the annual rainfall erosivity index can be obtained as

\[R_y = \sum_{j=1}^{Y} R_j, \]

where \(Y \) is the number of rainfall events in the year. In addition, the unitary kinetic energy \(e_i \) is deduced from the relationship between the raindrop diameter and the rainfall intensity as follows [8]:

\[E_i = \begin{cases} 0.119 + 0.0873 \log I_i & \text{for } I_i < 76 \text{ mm/hr}, \\ 0.283 & \text{for } I_i \geq 76 \text{ mm/hr}. \end{cases} \]

The rainfall erosivity index, \(R \), has been widely tested and applied in many countries and regions around the world whose rainfall intensity is characterized mainly as moderate to high [9–15]. In computing the rainfall erosivity factor, the maximum 30-min rainfall intensities for the storm and heavy storm events are generally computed on the basis of hyetograph data or high-resolution rainfall data (pluviograph data). Generally speaking, pluviograph data for at least 20 yrs are required to compute the rainfall erosivity for a given study area using the (R) USLE formulation [2]. However, such large volumes of data are not available for all regions of the world. Furthermore, even if sufficient pluviograph data are available, computing the rainfall erosivity is a complicated and tedious task. To overcome this problem, various simplified models have been proposed for estimating the rainfall erosivity factor using more readily available precipitation data.

Among such models, those based on annual precipitation data are particularly common since annual rainfall data are available in most regions of the world and tend to be fairly reliable. Furthermore, various studies have shown that a good correlation exists between the annual rainfall erosivity and the annual precipitation amount at many locations around the world [16, 17]. Accordingly, annual precipitation data have been used to obtain simple estimates of the rainfall erosivity in many countries [2, 11, 18–34].

Several researchers have used both annual precipitation data and maximum daily and hourly precipitation data to estimate the rainfall erosivity factor in the Mediterranean region [35, 36]. However, the models used in these studies estimate the mean annual rainfall erosivity over several yrs rather than the rainfall erosivity in a particular yr. Many regression models based on variations in the observed rainfall erosivity or seasonal erosivity have been proposed for predicting the daily rainfall erosivity [15, 33, 37–44] or monthly rainfall erosivity [45, 46]. It has been shown that the use of daily or monthly rainfall records provides a better understanding of the rainfall erosivity of individual storms than annual precipitation data [34]. In constructing daily or monthly prediction models, it is necessary to compute the rainfall erosivity on a daily or monthly basis, respectively. However, calculating the daily and monthly rainfall erosivity is more challenging than computing that for a particular storm. For example, if it rains from May 31 to June 1, the observed rainfall erosivity for this storm has just one value. However, the corresponding data should be divided into two different values (i.e., daily or monthly segments) when constructing daily or monthly models. Thus, the annual sum of the reclassified rainfall erosivity is different from the observed value due to the use of different boundary conditions. Moreover, the daily or monthly rainfall parameters used in daily and monthly models, respectively, provide an inadequate description of the kinetic energy and rainfall intensity terms in the rainfall erosivity index [33, 47].

Although annual regression models are a gross oversimplification of the observed variation in the rainfall erosivity and their estimated values are rough [33, 48], they nevertheless represent a viable alternative to detailed quantitative assessments in providing a long-term assessment of the annual mean rainfall erosivity using the USLE formulation [49]. Thus, as discussed above, numerous researchers have proposed methods for estimating the rainfall erosivity based on annual precipitation data and/or other rainfall parameters. However, such models require careful optimization and calibration for each specific location and include site-specific coefficients. The proposed study is to find out the suitable models among daily, monthly, and annual precipitation data.

The present study proposes three regression models for estimating the rainfall erosivity and finding out the suitable models in southern Taiwan based on daily, monthly, and annual precipitation data of rainfall station network, respectively, even without 30-min rainfall data. The detailed goals of this study can be summarized as follows: (a) to construct new models for the large-scale estimation of the erosivity factor in southern Taiwan and (b) to analyze the spatial distribution of the daily, monthly, and annual rainfall erosivity in southern Taiwan.

2. Materials and Methods

2.1. Study Area. This study considered the regions of Kaohsiung City and Pingtung County in southern Taiwan. The two regions cover areas of 2961 km2 and 2784 km2, respectively, and contain a total of 35 rainfall stations (see Figure 1). Both regions commonly experience extreme rainfall events during the summer months. For example, in August 2009, Typhoon Morakot resulted in catastrophic damage that left 665 people dead, 34 others missing, and roughly US$ 4.4 billion in damages.

2.2. Rainfall Data. Table 1 summarizes the basic geographic and rainfall data of the 28 rainfall stations in Kaohsiung City and 27 rainfall stations in Pingtung County over the 10 yr period extending from 2002 to 2011. Traditionally, the high-resolution rainfall data recorded by each station in Table 1 are used to calculate the rainfall erosivity factor in accordance with (2)–(4) [7]. In the present study, the reliability of these data was evaluated using the 10-min rainfall data obtained for the corresponding period from the Central Weather Bureau (CWB) of Taiwan. In the present study, 16,560 storm events were selected from the 350 observed annual rainfall datasets presented in Table 1 (i.e., 55 stations \times 10 yrs). The corresponding daily, monthly, and annual rainfall data were
Table 1: Geographic and rainfall data (2002-2011) for 55 rainfall stations in southern Taiwan.

Number	Rainfall station	Latitude	Longitude	Reference period (yr)	Elevation (m)	Storm events	Annual rainfall (mm)
1	ZuoYing	120°17'N	22°40'E	10	13	230	1602
2	FongSen	120°23'N	22°32'E	10	61	241	1616
3	SaYe	120°16'N	22°50'E	10	35	366	1736
4	GangShan	120°17'N	22°45'E	10	31	259	1617
5	GuiTingKeng	120°24'N	22°53'E	10	87	259	1421
6	MuJha	120°27'N	22°58'E	10	94	224	2154
7	CiShan	120°29'N	22°32'E	10	63	421	1996
8	FongSyong	120°21'N	22°45'E	10	55	290	1772
9	Jiashian	120°35'N	23°04'E	10	60	232	2650
10	SiBu	120°26'N	22°43'E	10	30	255	1903
11	FongShan	120°21'N	22°38'E	10	27	377	1787
12	DaLiao	120°25'N	22°36'E	10	24	302	1723
13	YueMei	120°32'N	22°58'E	10	112	212	2271
14	MeiNong	120°31'N	22°53'E	10	46	307	2227
15	JiDong	120°33'N	22°50'E	10	95	314	2257
16	JhuZhiJiao	120°20'N	22°48'E	10	51	310	1799
17	JianShan	120°22'N	22°48'E	10	270	313	1823
18	SinFa	120°39'N	23°05'E	10	470	256	3032
19	DaJin	120°38'N	22°53'E	10	190	427	2710
20	YuYouShan	120°42'N	23°00'E	10	1637	381	4070
21	GaoJhong	120°43'N	23°08'E	10	760	241	2785
22	FuSing	120°48'N	23°15'E	10	700	380	2377
23	SiaoGuanShan	120°48'N	23°09'E	10	1781	355	2995
24	SiNan	120°48'N	23°04'E	10	1792	274	3750
25	MeiShan	120°49'N	23°16'E	10	860	319	2589
26	NanTienChih	120°54'N	23°16'E	10	2700	291	3661
27	PaiYun	120°57'N	23°27'E	10	3340	238	2642
28	NanSi	120°53'N	23°26'E	10	1949	438	2672
29	ALi	120°44'N	22°44'E	10	1040	263	2733
30	Majia	120°41'N	22°40'E	10	740	248	3491
31	LiGang	120°29'N	22°47'E	10	42	310	2016
32	PingTung	120°30'N	22°39'E	10	25	292	2124
33	SinWei	120°32'N	22°45'E	10	56	352	2222
34	LinLuo	120°33'N	22°39'E	10	54	234	2230
35	Najhou	120°30'N	22°29'E	10	20	306	1597
36	ChaoJhou	120°32'N	22°32'E	10	12	354	1848
37	FangLiao	120°35'N	22°21'E	10	69	305	1376
38	MaoBiTou	120°44'N	21°55'E	10	49	342	1419
39	JyuCheng	120°44'N	22°04'E	10	54	320	1610
40	LaiYi	120°37'N	22°31'E	10	74	363	2448
41	ChiShan	120°36'N	22°35'E	10	48	284	2630
42	SanDiMan	120°38'N	22°42'E	10	59	245	2575
43	LongCyuan	120°36'N	22°40'E	10	61	333	2438
44	LiLi	120°37'N	22°25'E	10	91	228	1944
45	ChunMi	120°37'N	22°22'E	10	86	387	1677
Table 1: Continued.

Number	Rainfall station	Latitude	Longitude	Reference period (yr)	Elevation (m)	Storm events	Annual rainfall (mm)
46	FangShan	120°39′N	22°14′E	10	36	197	1627
47	FongGang	120°41′N	22°11′E	10	63	307	1534
48	ShangDeWun	120°42′N	22°45′E	10	820	395	1700
49	GuSia	120°38′N	22°46′E	10	140	395	2582
50	WeiLiaoShan	120°41′N	22°49′E	10	1018	229	3548
51	SyuHai	120°53′N	22°11′E	10	20	227	2022
52	MouDan	120°50′N	22°11′E	10	285	273	2118
53	MouDanChihShan	120°50′N	22°09′E	10	504	251	2268
54	DanMenShan	120°44′N	22°06′E	10	260	364	1457
55	ShouKa	120°51′N	22°14′E	10	489	244	2184
	Total				550	16560	

Figure 1: Geographic locations of 55 rainfall stations in southern Taiwan.
2.3. Validation of Models. The present study developed three regression models based on the daily, monthly, and annual rainfall data, respectively, for estimating the annual rainfall erosivity factor \(R \) in southern Taiwan. The estimated values of \(R \) were then compared with the observed erosivity factors calculated using (2)–(4) [7]. For each model, the differences between the estimated and observed values at each rainfall station were evaluated in terms of the root mean square error (RMSE) and mean absolute percentage error (MAPE) computed as mentioned by Lee and Heo [17] as follows:

\[
\text{RMSE} = \sqrt{(R_{\text{obe}} - R_{\text{est}})^2}, \\
\text{MAPE} = \left(\frac{R_{\text{obe}} - R_{\text{est}}}{R_{\text{obe}}} \right) \times 100 \%
\]

where \(R_{\text{obe}} \) denotes the observed rainfall erosivity factor and \(R_{\text{est}} \) is the estimated rainfall erosivity factor.

In order to develop an accurate model for estimating the rainfall erosivity, it must first be determined whether or not a significant relationship exists between the rainfall parameters and the rainfall erosivity. In identifying appropriate parameters for predicting the annual rainfall erosivity, the present study considered four different rainfall parameters, namely, the event rainfall amount \((P_i) \), the daily rainfall amount \((P_d) \), the monthly rainfall amount \((P_m) \), and the annual rainfall amount \((P_y) \). The correlation coefficients between these parameters and the rainfall erosivity were calculated for each of the 55 rainfall stations. In addition, the coefficient of variation (CV) of the observed annual rainfall erosivity and annual rainfall was also computed for each station in accordance with

\[
\text{CV} = \frac{\sigma}{\mu},
\]

where \(\sigma \) is the standard deviation and \(\mu \) is the mean value.

Figure 2 summarizes the methods to develop the regional erosivity models from daily, monthly, and annual precipitation data.

3. Results and Discussion

3.1. Relationship between Rainfall Parameters and Rainfall Erosivity. Figures 3(a)–3(d) show the relationships between the event rainfall amount and the event rainfall erosivity, the daily rainfall amount and the daily rainfall erosivity,
the monthly rainfall amount and the monthly rainfall erosivity, and the annual rainfall amount and the annual rainfall erosivity, respectively. In general, the results show that the rainfall erosivity varies from one geographic location to another, even under the same annual rainfall conditions. Figure 3(a) is one scatter plot of rainfall \(P_j \) and rainfall erosivity \(R_j \) that shows a significant nonlinear relationship \(R_j = 0.73P_j^{1.54}, r^2 = 0.80 \) between the event rainfall amount \(P_j \) and the event rainfall erosivity \(R_j \). Similarly, Figure 3(b) shows a significant relationship \(R_d = 0.50P_d^{1.66}, r^2 = 0.82 \) between the daily rainfall amount \(P_d \) and the daily rainfall erosivity \(R_d \). Figures 3(c) and 3(d) show that the monthly rainfall amount \(P_m \) and monthly rainfall erosivity \(R_m \) and the annual rainfall amount \(P_y \) and the annual rainfall erosivity \(R_y \) are also related; that is, \(R_m = 0.60P_m^{1.49}, r^2 = 0.91 \), and \(R_y = 2.74P_y^{1.20}, r^2 = 0.73 \), respectively. In other words, irrespective of the time interval considered, a relationship exists between the rainfall amount and the rainfall erosivity.
Comparing the four intervals, it is seen that the strongest correlation exists between the monthly rainfall amount and the monthly rainfall erosivity.

Table 2 shows the mean, minimum, maximum, and CV values of the annual rainfall amount and annual rainfall erosivity at each of the 55 rainfall stations over the considered time period (2002–2011). From inspection, the average annual mean rainfall over the 55 stations is equal to 2237 mm. Moreover, the minimum annual rainfall of 491 mm was recorded at the SyuHai station in 2002, while the maximum annual rainfall of 6224 mm was recorded at the YuYouShan station in 2005. The annual mean rainfall erosivity over all 55 rainfall stations is equal to 31118 MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\). In addition, the minimum rainfall erosivity of 2271 MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\) was measured at the DanMenShan station in 2002, while the maximum rainfall erosivity of 142370 MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\) was measured at the YuYouShan station in 2005.

An inspection of Table 2 shows that the correlation coefficients (\(r^2\)) between the mean annual rainfall and the rainfall erosivity range from 0.29 to 0.95. Moreover, 49 of the 55 stations have a correlation coefficient (\(r^2\)) greater than 0.5, which are satisfied by a significance test (two-tailed test) with a 99% confidence level (\(P\) value < 0.01). The CV values of the annual rainfall range from 0.16 to 0.49, while those of the annual rainfall erosivity range from 0.16 to 1.19. Of all the stations, the GuTingKeng station has the highest CV (0.49) for the annual rainfall, while the MaoBiTou station has the highest CV (1.19) for the annual rainfall erosivity.

GIS (Geographic Information System) was used to interpolate and plot the spatial variability of the annual rainfall erosivity factor (\(R_y\)) over the study area using the Kriging interpolation method [16]. Figures 4(a) and 4(b) show the results obtained for the annual rainfall and annual erosivity, respectively. An inspection of Figure 4(a) shows that the mean annual total rainfall ranges from 1376 to 4070 mm yr\(^{-1}\). Based on the regression relationship for the annual rainfall (\(R_y = 2.74P^{1.20}\)), the rainfall gradient values range from 14785 to 72039 MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\). Moreover, the Kriging interpolation results show that the annual rainfall erosivity has a west-east gradient with values ranging from 15000 to 70000 MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\). It is seen that the spatial distributions of the annual rainfall and annual rainfall erosivity, respectively, are similar. Different interpolation methods may result in different spatial distributions of the rainfall erosivity. However, Angulo-Martínez and Beguería [33] found that all common interpolation methods are capable of capturing the regional distribution of the \(R\) factor given the use of a spatially dense rainfall database with a high temporal resolution.

The rainfall erosivity map presented in Figure 4(b) is of great relevance for soil erosion evaluation and control. It has implications not only for agriculture but also for many...
Table 2: Annual rainfall and annual rainfall erosivity data (2002–2011) for 55 rainfall stations in southern Taiwan.

Number	Rainfall station	Annual rainfall (mm)	Annual rainfall erosivity (MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\))	Regression models	\(r^2\)					
	Max	Min	Mean	CV	Max	Min	Mean	CV	\(R_y = 1.82P^{1.24}\)	
8									0.25	
9									0.45	
10									0.79	
11									0.23	
12									0.93	
13									0.59	
14									0.91	
15									0.80	
16									0.88	
17									0.49	
18									0.83	
19									0.62	
20									0.76	
21									0.38	
22									0.30	
23									0.34	
24									0.45	
25									0.25	
26									0.85	
27									0.72	
28									0.49	
29									0.76	
30									0.53	
31									0.86	
32									0.29	
33									0.88	
34									0.79	
35									0.96	
36									0.46	
37									0.87	
38									0.32	
39									0.86	
40									0.64	
41									0.56	
42									0.81	
43									0.79	
44									0.27	
45									0.50	
46									0.81	
activities related to land use planning. Furthermore, it can be used as a guide for soil conservation practices and landscape modeling since the R factor is usually an important part of erosion models such as the USLE [16].

The higher erosivity observed in the tropic region is caused by the high amount of precipitation, intensity, and kinetic energy of rain. The main generating mechanism of rainfall is convection effect in most tropical regions. As a result, the regions receive more rain with higher intensities than the temperate regions, dominated by midlatitude cyclones [41].

The regression models to estimate rainfall erosivity for specific locations are unable to accurately predict actual rainfall erosivity for other locations due to site-specific conditions. Therefore, simplified methods based on annual precipitation for estimating rainfall erosivity should be used with caution according to location or time period. Their results deserve careful attention as applying simplified methods to estimating annual rainfall erosivity.

3.2. Applicability of Three Regression Models. The applicability of the daily, monthly, and annual regression models developed in the previous subsection (i.e., $R_d = 0.50P_{d,166}$, $R_m = 0.60P_{m,149}$, and $R_y = 2.74P_{y,120}$, resp.) was evaluated by comparing the results obtained from each model for the rainfall erosivity factor with the observed rainfall erosivity factor. Furthermore, the individual data points indicate the annual average rainfall erosivity factor. Overall, the results presented in Figure 5 show that, in terms of the error rate, the three regression models can be ranked as follows: daily > annual > monthly. In other words, the regression models based on annual and monthly rainfall data are more accurate than that based on daily rainfall data.

According to Table 3 and Figure 5, the data of estimated annual mean rainfall erosivity was underestimated by daily rainfall models, respectively. Nevertheless, Liu et al. [50] indicated that much precipitation information could be provided by daily rainfall data rather than monthly and annual ones. Different from the results of [50] in China, the rainfall event in southern Taiwan might be consistent for several days, and an underestimate could be therefore produced as daily rainfall data was used to estimate erosivity.

3.3. Spatial Distribution Comparison of Three Regression Models. Figure 6 presents the annual rainfall erosivity (R_y) and MAPE maps for each of the three regression models. Note that the observed annual rainfall erosivity map is also presented for comparison purposes. The annual rainfall erosivity (R_y) map was based on annual average rainfall

Table 2: Continued.

Number	Rainfall station	Annual rainfall (mm)	Annual rainfall erosivity (M J mm ha$^{-1}$ h$^{-1}$ yr$^{-1}$)	Regression models	r^2
47	FongGang	1972 849 1534 0.27	37847 5489 17706 0.49	$R_y = 0.77P_{1,36}^1$	0.68
48	ShangDeWun	2671 909 1700 0.33	42345 11248 54945 0.16	$R_y = 17.34P_{0,99}^1$	0.59
49	GuSia	3495 1598 2582 0.27	48113 16361 35280 0.32	$R_y = 2.78P_{1,20}^1$	0.73
50	WeiLiaoShan	5666 1377 3548 0.40	121787 14042 61679 0.52	$R_y = 2.66P_{1,23}^1$	0.87
51	SyuHai	2939 491 2022 0.37	53235 4231 28585 0.49	$R_y = 2.14P_{1,21}^1$	0.88
52	MouDan	2661 1396 218 0.20	50943 13706 22589 0.50	$R_y = 0.50P_{1,41}^1$	0.56
53	MouDanChihShan	3377 1577 2268 0.26	53046 13279 24154 0.52	$R_y = 0.99P_{1,30}^1$	0.50
54	DanMenShan	2129 558 1457 0.41	30074 2271 16433 0.49	$R_y = 10.52P_{1}^1$	0.48
55	ShouKa	2606 1735 2184 0.16	28325 10158 24854 0.20	$R_y = 1.24P_{1,25}^1$	0.52
Figure 5: Validation results for (a) daily, (b) monthly, and (c) annual regression models based on relationship between estimated R_y and observed R_y.
Figure 6: Rainfall erosivity maps and mean absolute percentage error (MAPE) maps for three estimation models: (a) observed, (b) daily, (c) monthly, and (d) annual models.
Table 3: Comparison of estimated rainfall erosivity factor R_y and observed rainfall erosivity factor R_y (unit: MJ mm ha$^{-1}$ h$^{-1}$ yr$^{-1}$).

Rainfall station	R_y	R_y^*	R_y^{**}	R_y^{***}	RMSE*	RMSE**	RMSE***	MAPE*	MAPE**	MAPE***
ZuoYing	22454	26889	18927	19208	4435	3527	3246	20	16	14
FongSen	22072	25814	16576	19409	3742	5496	2663	17	25	12
SaYe	23135	27360	20807	19680	4225	2328	3455	18	10	15
GangShan	20975	19239	18767	19412	1736	2208	1563	8	11	7
GuTingKeng	17198	25627	20154	16625	8429	2956	573	49	17	3
Mulha	23355	32082	22104	25164	8727	1251	1809	37	5	8
CiShan	24545	27016	26060	24999	2471	1515	454	10	6	2
FongSyong	25122	33138	22358	21677	8016	2764	3445	32	11	14
Jiashian	41555	50785	40394	35132	9230	1161	6423	22	3	15
SiBu	27468	37029	25515	23613	9561	1953	3855	35	7	14
FongShan	24753	30880	22707	21887	6127	2046	2866	25	8	12
DaLiao	22962	29446	21045	20955	6484	1917	2007	28	8	9
YueMei	25374	35168	31863	29181	9794	6489	3807	39	26	15
MeiNong	31859	43738	30787	28519	11879	1072	3340	37	3	10
JiDong	72039	63584	48644	41295	8429	2956	573	49	17	3
GuShan	17198	25627	20154	16625	8429	2956	573	49	17	3
FongSyong	25122	33138	22358	21677	8016	2764	3445	32	11	14
Jiashian	41555	50785	40394	35132	9230	1161	6423	22	3	15
SiBu	27468	37029	25515	23613	9561	1953	3855	35	7	14
FongShan	24753	30880	22707	21887	6127	2046	2866	25	8	12
DaLiao	22962	29446	21045	20955	6484	1917	2007	28	8	9
YueMei	25374	35168	31863	29181	9794	6489	3807	39	26	15
MeiNong	31859	43738	30787	28519	11879	1072	3340	37	3	10
JiDong	72039	63584	48644	41295	8429	2956	573	49	17	3
GuShan	17198	25627	20154	16625	8429	2956	573	49	17	3
FongSyong	25122	33138	22358	21677	8016	2764	3445	32	11	14
Jiashian	41555	50785	40394	35132	9230	1161	6423	22	3	15
SiBu	27468	37029	25515	23613	9561	1953	3855	35	7	14
FongShan	24753	30880	22707	21887	6127	2046	2866	25	8	12
DaLiao	22962	29446	21045	20955	6484	1917	2007	28	8	9
YueMei	25374	35168	31863	29181	9794	6489	3807	39	26	15
MeiNong	31859	43738	30787	28519	11879	1072	3340	37	3	10
JiDong	72039	63584	48644	41295	8429	2956	573	49	17	3
GuShan	17198	25627	20154	16625	8429	2956	573	49	17	3
FongSyong	25122	33138	22358	21677	8016	2764	3445	32	11	14
Jiashian	41555	50785	40394	35132	9230	1161	6423	22	3	15
SiBu	27468	37029	25515	23613	9561	1953	3855	35	7	14
erosivity recorded at the 55 rainfall stations, and it leads to the comparison between spatial distribution of the annual rainfall amount and the geographic distribution of annual rainfall erosivity. It is seen that the spatial distributions of the estimated and observed values of R_y are similar. However, for each regression model, the estimated value of R_y is slightly lower than the observed value due to statistical errors. In addition, a comparison of Figures 6(b)–6(d) confirms that the monthly rainfall model yields a better estimation performance than the daily or annual model.

4. Conclusions

The rainfall erosivity factor (R) is one of the key factors in the USLE model and has gained increasing importance as the environmental effects of climate change have become more severe. This study has proposed three models for estimating the value of R based on daily, monthly, and annual precipitation data of rainfall station network, respectively. The validity of the three models has been evaluated using the rainfall data collected over a period of ten years (2002–2011) at 55 rainfall stations in southern Taiwan. The results have shown that, of the three models, the annual and monthly models yield a better agreement with the observed rainfall erosivity factor than the daily model.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to thank the financial support provided by the National Science Council in Taiwan (NSC 102-2625-M-020-002).

References

[1] W. H. Wischmeier and D. D. Smith, "Rainfall energy and its relationship to soil loss," *Transactions American Geophysical Union*, vol. 39, pp. 283–229, 1958.

[2] K. G. Renard and J. R. Freimund, "Using monthly precipitation data to estimate the R-factor in the revised USLE," *Journal of Hydrology*, vol. 157, no. 1–4, pp. 287–306, 1994.

[3] A. M. Da Silva, "Rainfall erosivity map for Brazil," *Catena*, vol. 57, no. 3, pp. 251–259, 2004.

[4] R. P. C. Morgan, *Soil Erosion and Conservation*, Longman, Harlow Essex, UK, 1986.

[5] N. de Santos Loureiro and M. de Azevedo Coutinho, "Rainfall changes and rainfall erosivity increase in the Algarve (Portugal)," *Catena*, vol. 24, no. 1, pp. 55–67, 1995.

[6] P. I. A. Kinnell, "Converting USLE soil erodibilities for use with the QEI$_{50}$ index," *Soil & Tillage Research*, vol. 45, no. 3–4, pp. 349–357, 1998.

[7] W. H. Wischmeier and D. D. Smith, *Predicting Rainfall Erosion Losses-A guide to Conservation Planning*, Agricultural Hand-Book, No.282, U.S. Department of Agriculture, Washington, DC, USA, 1978.

[8] J. O. Laws and D. A. Parsons, "The relation of raindrop size to intensity," *Transactions of the American Geophysical Union*, vol. 26, pp. 452–460, 1943.

[9] A. N. Sharpley and J. R. Williams, *EPIC—Erosion/Productivity Impact Calculator*, U. S. Department of Agriculture Technical Bulletin, 1990.

[10] B. Yu and C. J. Rosewell, "An assessment of a daily rainfall erosivity model for New South Wales," *Australian Journal of Soil Research*, vol. 34, no. 1, pp. 139–152, 1996.

[11] E. A. Mikhailova, R. B. Bryant, S. J. Schwager, and S. D. Smith, "Predicting rainfall erosivity in Honduras," *Soil Science Society of America Journal*, vol. 61, no. 1, pp. 273–279, 1997.

[12] B. Yu, "Rainfall erosivity and its estimation for Australia's tropics," *Australian Journal of Soil Research*, vol. 36, no. 1, pp. 143–165, 1998.

[13] Q. Hu, C. J. Gantzzer, P.-K. Jung, and B.-L. Lee, "Rainfall erosivity in the Republic of Korea," *Journal of Soil and Water Conservation*, vol. 55, no. 2, pp. 115–120, 2000.

[14] N. de Santos Loureiro and M. de Azevedo Coutinho, "A new procedure to estimate the RUSLE EI$_{50}$ index, based on monthly rainfall data and applied to the Algarve region, Portugal," *Journal of Hydrology*, vol. 250, no. 1–4, pp. 12–18, 2001.

[15] B. Yu, G. M. Hashim, and Z. Eusof, "Estimating the R-factor with limited rainfall data: a case study from peninsular Malaysia," *Journal of Soil and Water Conservation*, vol. 56, no. 2, pp. 101–105, 2001.
C. A. Bonilla and K. L. Vidal, "Rainfall erosivity in Central Chile," *Journal of Hydrology*, vol. 410, no. 1-2, pp. 126–133, 2011.

J.-H. Lee and J.-H. Heo, "Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea," *Journal of Hydrology*, vol. 409, no. 1-2, pp. 30–48, 2011.

M. A. Stocking and H. A. Elwell, "Rainfall erosivity over Rhodesia," *Transactions of the Institute of British Geographers*, vol. 1, no. 2, pp. 231–245, 1976.

E. Roose, "Application of the universal soil loss equation in West Africa," in *Soil Conservation and Management in the Humid Tropics*, D. J. Greenland and R. Lal, Eds., pp. 177–188, John Wiley & Sons, Chichester, UK, 1977.

A. Lo, S. A. El-Swaify, E. W. Dangler, and L. Shinshiro, "Effectiveness of E_{0} as an erosivity index in Hawaii," in *Soil Erosion and Conservation*, S. A. El-Swaify, W. C. Moldenhauer, and A. Lo, Eds., pp. 384–399, Soil Conservation Society of America, Ankeny, Iowa, USA, 1985.

G. Balamurugan, "Sediment balance and delivery in a humid tropical urban river basin: the Kelang River, Malaysia," *Catena*, vol. 18, no. 3-4, pp. 271–287, 1991.

K. Banasik and D. Górski, "Rainfall erosivity for South-East Poland," in *Conserving Soil Resources. European Perspectives*, R. J. Rickson, Ed., Lectures in Soil Erosion Control, pp. 201–207, Silsoe College, Cranfield University, Cranfield, UK, 1994.

E. Bergsma, P. Charman, F. Gibbons, H. Humi, W. C. Moldenhauer, and S. Panichapong, *Terminology for Soil Erosion and Conservation*, International Society of Soil Science (ISSS), Wageningen, The Netherlands, 1996.

A. A. Millward and J. E. Mersey, "Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed," *Catena*, vol. 38, no. 2, pp. 109–129, 1999.

C.-Y. Lin, W.-T. Lin, and W.-C. Chou, "Soil erosion prediction and sediment yield estimation: the Taiwan experience," *Soil and Tillage Research*, vol. 68, no. 2, pp. 143–152, 2002.

D. Yang, S. Kanae, T. Oki, T. Koike, and K. Musiake, "Global potential soil erosion with reference to land use and climate changes," *Hydrological Processes*, vol. 17, no. 14, pp. 2913–2928, 2003.

S. Sudhishri and U. S. Patnaik, "Erosion index analysis for Eastern Ghat High Zone of Orissa," *Indian Journal of Dryland Agricultural Research and Development*, vol. 19, pp. 42–47, 2004.

A. R. Seqpshahk and P. Sarkhosh, "Estimating storm erosion index in southern region of I. R. Iran," *Iranian Journal of Science and Technology, Transaction B: Engineering*, vol. 29, no. 3, pp. 357–363, 2005.

G.-H. Zhang, M. A. Nearing, and B.-Y. Liu, "Potential effects of climate change on rainfall erosivity in the Yellow River basin of China," *Transactions of the American Society of Agricultural Engineers*, vol. 48, no. 2, pp. 511–517, 2005.

D. Torri, L. Borselli, F. Guzzetti et al., "Soil erosion in Italy: an overview," in *Soil Erosion in Europe*, J. Boardman and J. Poesen, Eds., pp. 245–261, John Wiley & Sons, Chichester, UK, 2006.

O. Lawal, G. Thomas, and N. Babatunde, "Estimation of potential soil losses on a regional scale: a case of Abomey-Bohicon region," *Benin Republic Agricultural Journal*, vol. 2, no. 1, pp. 1–8, 2007.

J. J. le Roux, T. L. Morgenthal, J. Malherbe, D. J. Pretorius, and P. D. Summer, "Water erosion prediction at a national scale for South Africa," *Water SA*, vol. 34, no. 3, pp. 305–314, 2008.

M. Angulo-Martínz and S. Beguería, "Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the Ebro Basin (NE Spain)," *Journal of Hydrology*, vol. 379, no. 1-2, pp. 111–121, 2009.

Z. Xin, X. Yu, Q. Li, and X. X. Lu, "Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956–2008," *Regional Environmental Change*, vol. 11, no. 1, pp. 149–159, 2011.

N. Diodato, "Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime," *Hydrology and Earth System Sciences*, vol. 8, no. 1, pp. 103–107, 2004.

S. Grauso, N. Diodato, and V. Verrubbi, "Calibrating a rainfall erosivity assessment model at regional scale in Mediterranean area," *Environmental Earth Sciences*, vol. 60, no. 8, pp. 1597–1606, 2010.

C. W. Richardson, G. R. Foster, and D. A. Wright, "Estimation of erosion index from daily rainfall amount," *Transactions American Society of Agricultural Engineers*, vol. 26, no. 1, pp. 153–157, 1983.

H. Elsenbeer, D. K. Cassel, and W. Tinner, "A daily rainfall erosivity model for western Amazonia," *Journal of Soil & Water Conservation*, vol. 48, no. 5, pp. 439–444, 1993.

D. Capolongo, N. Diodato, C. M. Mannaearts, M. Piccarreta, and R. O. Strobl, "Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (Southern Italy)," *Journal of Hydrology*, vol. 356, no. 1-2, pp. 119–130, 2008.

V. Bagarello and F. D’Asaro, "Estimating single storm erosion index," *Transactions of the American Society of Agricultural Engineers*, vol. 37, no. 3, pp. 785–791, 1994.

G. Petkovšek and M. Mikšo, "Estimating the R factor from daily rainfall data in the sub-Mediterranean climate of southwest Slovenia," *Hydrological Sciences Journal*, vol. 49, no. 5, pp. 869–877, 2004.

B. Yu and C. J. Rosewell, "A robust estimator of the R-factor for the universal soil loss equation," *Transactions of the American Society of Agricultural Engineers*, vol. 39, no. 2, pp. 559–561, 1996.

S. D. Angima, D. E. Stott, M. K. O’Neill, C. K. Ong, and G. A. Weesies, "Soil erosion prediction using RUSLE for central Kenyan highland conditions," *Agriculture, Ecosystems and Environment*, vol. 97, no. 1–3, pp. 295–308, 2003.

F. K. Salako, "Development of isoorad maps for Nigeria from daily rainfall amount," *Geoderma*, vol. 156, no. 3-4, pp. 372–378, 2010.

N. Diodato, "Predicting RUSLE (Revised Universal Soil Loss Equation) monthly erosivity index from readily available rainfall data in Mediterranean area," *Environmentalist*, vol. 26, no. 1, pp. 63–70, 2006.

N. Diodato and G. Belloccchi, "Estimating monthly (R)USLE climate input in a Mediterranean region using limited data," *Journal of Hydrology*, vol. 345, no. 3-4, pp. 224–236, 2007.

J. S. Selker, D. A. Haith, and J. E. Reynolds, "Calibration and testing of a daily rainfall erosivity model," *Transactions of the American Society of Agricultural Engineers*, vol. 33, no. 5, pp. 1612–1618, 1990.

N. Diodato, M. Ceccarelli, and G. Belloccchi, "Decadal and century-long changes in the reconstruction of erosive rainfall anomalies in a Mediterranean fluvial basin," *Earth Surface Processes and Landforms*, vol. 33, no. 13, pp. 2078–2093, 2008.
[49] J. M. V. d. Knijff, R. J. A. Jones, and L. Montanarella, “Soil erosion risk assessment in Italy,” European Soil Bureau EUR 19044 EN, 1999.

[50] Z. Liu, C. Colin, A. Trentesaux et al., “Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin,” Quaternary Research, vol. 63, no. 3, pp. 316–328, 2005.
Hindawi
Submit your manuscripts at
http://www.hindawi.com