Vegetation affects timing and location of wetland methane emissions

Sheel Bansal¹, Olivia Johnson², Jacob Meier¹, and Xiaoyan Zhu³

¹U.S. Geological Survey
²US Geological Survey Northern Prairie Wildlife Research Center
³Jilin Jianzhu University

November 21, 2022

Abstract

Common assumptions about how vegetation affects wetland methane (CH) flux include acting as conduits for CH release, providing carbon substrates for growth and activity of methanogenic organisms, and supplying oxygen to support CH oxidation. However, these effects may change through time, especially in seasonal wetlands that experience drying and re-wetting, or change across space, dependent on proximity to vegetation. In a mesocosm study, we assessed the impacts of on CH flux using clear flux-chamber measurements directly over plants (‘whole-plant’), adjacent to plants (where roots were present but no stems; ‘plant-adjacent’), and plant-free soils (‘control’). During the establishment phase of the study (first 30-days), the whole-plant treatment had 7.5-times higher CH flux rates (51.78±8.16 mg-C md) than plant-adjacent or control treatments, which was primarily due to plant-mediated transport, with little contribution from diffusive-only flux. However, high fluxes from whole-plants depleted porewater CH concentrations both directly below whole-plant and in neighboring plant-adjacent treatments, while controls accumulated a highly concentrated reservoir of porewater CH. When the water table was drawn down to simulate seasonal drying, reserve porewater CH from control soil was released as a pulse, equaling the earlier higher CH emissions from whole-plants. Plant-adjacent treatments, which had neither plant-mediated CH transport nor a concentrated reservoir of porewater CH, had low CH flux throughout the study. Our findings indicate that in seasonal wetlands, vegetation affects the timing and location of CH emissions. These results have important mechanistic and methodological implications for understanding the role of vegetation on wetland CH flux.
Vegetation affects timing and location of wetland methane emissions

Sheel Bansal1*†, Olivia F Johnson1†, Jacob Meier1†, Xiaoyan Zhu2*

1U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th St. Southeast, Jamestown, North Dakota, 58401 USA

2Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Xincheng St., Dist. 5088, Changchun, 130118 China

*Corresponding author: Sheel Bansal, sbansal@usgs.gov, tel: +1 701 253 5544, fax: +1 701 253 5553

*Corresponding author: Xiaoyan Zhu, zhuxy0613@126.com, tel: +86 431 84566407, fax: +86 431 84566071

†these authors contributed equally to the manuscript

Key Points:

- In a mesocosm study, methane (CH\textsubscript{4}) flux rates directly over \textit{Typha} were higher than from soils adjacent to \textit{Typha} or from plant-free controls, but only at the beginning of the study during plant establishment.

- Toward the end of the study, a water-table drawdown caused a pulse of CH\textsubscript{4} release from plant-free control soils, which resulted in cumulative CH\textsubscript{4} emissions that were comparable to emissions from directly over \textit{Typha} over the course of the study.
Combined measurements of CH$_4$ flux and porewater CH$_4$ concentrations indicated there was lateral CH$_4$ transport via roots/rhizomes toward Typha from adjacent, non-vegetated locations, leading to relatively low CH$_4$ emissions from soils directly adjacent to Typha plants, which has important methodological implications for measuring CH$_4$ fluxes.

Abstract

Common assumptions about how vegetation affects wetland methane (CH$_4$) flux include acting as conduits for CH$_4$ release, providing carbon substrates for growth and activity of methanogenic organisms, and supplying oxygen to support CH$_4$ oxidation. However, these effects may change through time, especially in seasonal wetlands that experience drying and re-wetting, or change across space, dependent on proximity to vegetation. In a mesocosm study, we assessed the impacts of Typha on CH$_4$ flux using clear flux-chamber measurements directly over Typha plants (‘whole-plant’), adjacent to Typha plants (where roots were present but no stems; ‘plant-adjacent’), and plant-free soils (‘control’). During the establishment phase of the study (first 30-days), the whole-plant treatment had ~5-times higher CH$_4$ flux rates (51.78±8.16 mg-C m$^{-2}$d$^{-1}$) than plant-adjacent or control treatments, which was primarily due to plant-mediated transport, with little contribution from diffusive-only flux. However, high fluxes from whole-plants depleted porewater CH$_4$ concentrations both directly below whole-plant and in neighboring plant-adjacent treatments, while controls accumulated a highly concentrated reservoir of porewater CH$_4$. When the water table was drawn down to simulate seasonal drying, reserve porewater CH$_4$ from control soil was released as a pulse, equaling the earlier higher CH$_4$ emissions from whole-plants. Plant-adjacent treatments, which had neither plant-mediated CH$_4$ transport nor a concentrated reservoir of porewater CH$_4$, had low CH$_4$ flux throughout the study. Our findings indicate that in seasonal wetlands, vegetation affects the timing and location of CH$_4$
emissions. These results have important mechanistic and methodological implications for understanding the role of vegetation on wetland CH₄ flux.

Key words: aerenchyma, carbon, conduit, flux, greenhouse gas, hydrology, invasive, mesocosm, porewater, seasonal, *Typha*

1 Introduction

Wetlands take up carbon dioxide (CO₂) via primary productivity and emit methane (CH₄) via anaerobic decomposition (Segers, 1998). Relative to other ecosystems, wetlands cover only 5–8% of the terrestrial landscape (Mitch & Gosselink, 2007), but play a significant role in climate regulation (Bastviken et al., 2011; Dean et al., 2018). Estimates of wetland greenhouse gas flux and understanding of carbon storage are limited by high uncertainty. This uncertainty is, in part, due to variation attributable to vegetation-effects on CH₄ production, consumption, and transport, which ultimately influence cumulative wetland CH₄ emissions (Carmichael et al., 2014).

1.1 The role of vegetation on CH₄

Production and transport of CH₄ from wetlands are controlled by a series of interacting biophysical mechanisms. Production of CH₄ is dependent on carbon availability, anoxic conditions, soil pH, redox potential, and temperature (Bridgham et al., 2013; Neubauer et al., 2005), while CH₄ emissions are controlled by diffusion, convection, ebullition, and ventilation (Bridgham et al., 2013; Kayranli et al., 2010; Yavitt & Knapp, 1998). Wetland vegetation influences many of these mechanisms. In terms of CH₄ production and consumption, vegetation provides carbon substrates to fuel microbial processes (Christensen et al., 2003). These carbon
substrates are derived from decomposition of dead plant materials or more directly through root exudates (Carmichael et al., 2014; Tittel et al., 2019). However, the lacunar air-ventilation system of many wetland species that supplies oxygen (O$_2$) to the rhizosphere can also re-oxidize alternative electron acceptors such as sulfate, which inhibits methane production due to microbial competition for carbon substrates (Dalcin Martins et al., 2017; Neubauer et al., 2005; Sutton-Grier & Megonigal, 2011). In addition, plant transport of O$_2$ stimulates aerobic oxidation of CH$_4$ by methanotrophic bacteria (Conrad, 2009; Faußer et al., 2012; Laanbroek, 2010). It has been reported that 30–90% of CH$_4$ produced in the anaerobic environment is oxidized before reaching the atmosphere (Holzapfel-Pschorn et al., 1986). In terms of CH$_4$ transport, the same air-ventilation system for O$_2$ also allows porewater CH$_4$ to diffuse directly from the rhizosphere to the atmosphere, bypassing the hydrologic diffusive barrier along the sediment-water-atmosphere continuum (Bendix et al., 1994; Colmer, 2003; Knoblauch et al., 2015; Laanbroek, 2010). Thus, a large portion of CH$_4$ released from wetlands has been attributed to plant-mediated transport (Bhullar, Edwards, et al., 2013; Carmichael et al., 2014; Shannon et al., 1996) at rates faster than diffusion through the water column. Clearly there are several interactions and tradeoffs among mechanisms that influence the ultimate role of vegetation in wetland CH$_4$ emissions. Given these mechanistic links between vegetation and CH$_4$, it is not surprising that wetland CH$_4$ flux has been linked to phytomass and net primary productivity (Bhullar, Iravani, et al., 2013; Cheng et al., 2007; Christensen et al., 2003; Turetsky et al., 2014).

1.2 Spatial and temporal considerations on the role of vegetation on CH$_4$

While many studies have examined individual plant-mediated mechanisms of CH$_4$ production, consumption, and transport, relatively few studies address how these mechanisms

4
interact through space and time to influence cumulative CH$_4$ emissions (Neubauer et al., 2005).

For example, transport through macrophyte stems can occur after emergence, during peak growth, and following senescence, albeit the degree of transport is dependent on phenology (J Kim et al., 1999; Yavitt & Knapp, 1998). In contrast, non-vegetated areas of wetlands emit CH$_4$ through transport processes independent of plant phenology, such as diffusion and ebullition (Chanton et al., 1989), which may occur across different time frames during the growing and non-growing seasons. Plant-mediated transport can deplete porewater CH$_4$ directly below plants (Shannon et al., 1996), which may create a spatial porewater CH$_4$ gradient causing lateral CH$_4$ transport toward plants and away from non-vegetated locations adjacent to plants. This loss of porewater CH$_4$ adjacent to plants not only affects CH$_4$ emissions in non-vegetated locations, but also has important implications for the placement of chamber-based measurements of CH$_4$ flux. A chamber over plant stems captures the combined effects of plant-mediated transport and carbon substrate supply (Hu et al., 2016; Jeffrey et al., 2019; Kankaala et al., 2005; Martin & Moseman-Valtierra, 2015; Milberg et al., 2017), while a chamber adjacent to plants only captures the effects of carbon substrate supply (Lawrence et al., 2017; Picek et al., 2007).

Finally, hydrological dynamics interact with wetland vegetation and CH$_4$ production, consumption, and transport (Bansal et al., 2018; D Kim et al., 2012). The role of plant-mediated transport may diminish when the diffusion barrier is lost during drying events (Bhullar, Iravani, et al., 2013), which can occur daily in coastal wetlands, or seasonally in ephemerally ponded wetlands. Similarly, the presence of vegetation may enhance recovery of CH$_4$ following re-wetting through supply of carbon substrates or delay recovery through supply of O$_2$ (D Kim et al., 2012). Linking these spatiotemporal considerations has important implications for
interpreting and assessing the overall effects of vegetation on wetland CH$_4$ emissions and will strengthen our understanding and modeling of wetland carbon cycling.

The role of vegetation in CH$_4$ dynamics is increasingly relevant as wetland plant communities shift, often toward dominant invasive macrophytes such as *Typha × glauca*, *Phragmites australis*, and *Phalaris arundinacea* (Bansal et al., 2019; Lawrence et al., 2017; Rey-Sanchez et al., 2018; Zedler & Kercher, 2004), and as practitioners try to balance multiple ecosystems services during management (Badiou et al., 2011; Eviner et al., 2012). The objective of this study was to improve our mechanistic understanding of how emergent vegetation affects CH$_4$ flux over space, time, and variable hydrological conditions. Specifically, we sought to quantify how CH$_4$ flux rates change from directly over vegetation compared to adjacent or in plant-free soils, and explore temporal changes in CH$_4$ flux rates through stages of vegetation and hydrologic phenology in a simulated seasonal wetland mesocosm.

2 Materials and Methods

2.1 Study site and species

The Prairie Pothole Region (PPR) is the largest wetland ecosystem in North America covering over 820,000 km2 and consists of millions of glacially formed, depressional wetlands (Dahl, 2014). Hydroperiods of PPR wetlands range from ephemeral (~2-weeks) to permanent (year-round) with a majority (87%) of these basins classified as seasonal, emergent wetlands (Dahl, 2014). The seasonality of PPR wetlands is not unique; many wetlands worldwide experience hydrologic drawdown during parts of the year (Galatowitsch, 2012; Kayranli et al., 2010; D Kim et al., 2012). The PPR region is particularly important for migratory bird and
waterfowl habitat, but PPR wetlands are also important to national, continental, and global carbon budgets (Euliss et al., 2006) and have been identified as CH\textsubscript{4} hotspots (Bansal et al., 2016; Tangen et al., 2015). \textit{Typha} is a dominant genus in the region, with a recent expansion of non-native \textit{T. angustifolia} and hybrid \textit{T. × glauca} since the 1960s (Ralston et al., 2007; Stewart & Kantrud, 1971). \textit{Typha} can influence soil organic carbon content via litter accumulation (Vaccaro et al., 2009) and can increase soil CH\textsubscript{4} emissions (Lawrence et al., 2017). We chose to use \textit{Typha} in this study not only because of its prevalence in the PPR, but also its ubiquitous distribution in freshwater-wetlands worldwide (Bansal et al., 2019).

2.2 Mesocosms, treatments, and design

We used a mesocosm approach to isolate mechanisms of vegetation effects on CH\textsubscript{4} emissions and avoid confounded sources of variation that occur under field conditions, such as episodic weather events, soil-porosity heterogeneity, and seasonal temperature variability. Mesocosms were established in 40-liter glass aquaria (30 × 50 × 25 cm). Soils for the mesocosms were collected from a wetland at Northern Prairie Wildlife Research Center in Jamestown, North Dakota, USA (46°52'N, 98°38'W). The wetland has a dominant ring of emergent macrophytes (mostly \textit{Typha}) around the edge and open water in the center. The mineral soils of PPR wetlands are classified within the Mollisol order, Aquoll suborder (Soil Survey Staff, 1999). Soils for this study consist of black and very dark grey, silty clay loam of the Parnell series (Soil Survey Staff, 2020). In autumn 2017, following \textit{Typha} senescence, soils were collected from the top 20 cm of sediment where water depth was ~50 cm and stored in buckets under saturated, anoxic conditions. Saturated soils were passed through a 6-mm sieve to remove coarse vegetation and debris, and homogenized. The average soil organic matter was
3.9% and the average % C was 2.9%, which is typical of PPR wetlands (Tangen & Bansal, 2019b). We assumed any low-molecular-weight, labile-carbon substrates from previous plant exudates were consumed before soil was distributed in mesocosms, however non-labile C likely remained (Waldo et al., 2019). Each mesocosm was filled with uniform soil to a depth of 10 cm. Our experiment consisted of three treatments: ‘whole-plant’, ‘plant-adjacent’ and ‘control’. In total there were 18 replicates (n=6 per treatment). The ‘whole-plant’ and ‘plant-adjacent’ treatments were located within the same mesocosm separated by an acrylic barrier that extended 2 cm into the sediment but not completely to the mesocosm bottom. ‘Control’ treatments were located in separate mesocosms with no plants (Figure 1). Two control treatments were placed in a single mesocosm with a complete physical barrier between each side. Mesocosms were rearranged in the laboratory periodically to avoid confounding effects of environmental heterogeneity in the laboratory. Mesocosms were kept in laboratory conditions, with an air temperature ~23° C, and under full spectrum LED lights (KingLED, Shenzhen, China; VYPRx PLUS LED, Fluence Bioengineering, TX, USA). Lights were kept on a 12- to 16-hour photoperiod. Water levels were maintained at approximately 4 cm above the sediment surface except during drawdown (see Timeline). An opaque PVC collection-chamber base (diameter = 20 cm) was permanently placed in the center of each treatment for gas flux measurements. Supports were used to keep each base raised above the bottom of the aquarium to allow lateral movement of water and root growth. PVC porewater sampling pipes of 2.5 cm diameter with 1-mm slits around the bottom 2 cm (Geoprobe, Salinas, KS, USA) were installed in all treatments for dissolved gas porewater measurements. Porewater sampling pipes were capped between sampling events. PVC pipes of
5-cm diameter with 1-mm slits around bottom 2 cm were inserted into a subset of two mesocosms per treatment for dissolved-oxygen (DO) probes. The ‘whole-plant’ treatments were planted with *T. latifolia* (Roundstone Seeds, KY, USA) seedlings that were germinated in potting soil and reached an approximate plant height of 7 cm. As plants grew, their roots and rhizomes were free to grow into the ‘plant-adjacent’ treatment of the mesocosm. Shoots that emerged in ‘plant-adjacent’ treatment were clipped weekly to maintain a roots/rhizomes-only condition. The ‘control’ mesocosms were maintained plant-free by clipping any germinates from the remnant seed bank. Excessive surface algae were removed manually from all mesocosms when present.

2.3 Timeline

The experiment took place from autumn 2017 to spring 2019, for a total of 400 days. There were five phases related to phenology or hydrological conditions: ~1 month of establishment (days 1–28), ~8 months of growth (days 29–274), ~1 week of surface water drawdown (days 275–286), ~1 week of dry soil (days 287–295), and ~3 months after re-wetting (days 296–400). Each phase had periodic CH$_4$ flux measurements: establishment (3 rounds of flux measurements), growth (4 rounds), drawdown (2 rounds), dry soil (1 round), and re-wetting (3 rounds). Uptake of CO$_2$ rapidly increased during the establishment phase as plants grew in height; the growth phase was distinguished from the establishment phase as the point when CO$_2$ uptake by plants leveled off (Bansal et al., 2020). Dissolved CH$_4$ was measured in surface water during the establishment, growth, and re-wetting phases, and in porewater during the growth and re-wetting phases. Water levels were maintained at ~4-cm depth throughout the study except during drawdown and dry soil phases. During the drawdown phase, soils were allowed to dry
until the water table was below the sediment surface, with 40–50% volumetric water content (10-cm Hydrosense II, Campbell Scientific, Logan, Utah). We characterized the dry-soil phase by cracks in the soil surface and < 40% volumetric water content. Soils were re-wetted to ~4-cm standing water for the re-wetting phase.

At the conclusion of the experiment, soil samples (~10 g) were collected and analyzed for % organic matter; soils were sieved, dried at 105°C for 72 hours then 500°C for 5 hours. A set of sieved soil samples (~10g) were analyzed of % C (combustion method, North Dakota State University Soil Testing Lab). Belowground biomass was assessed in three of the mesocosms with plants to confirm lateral root and rhizome growth from the whole-plant into the plant-adjacent treatments. All soil was rinsed from plant structures, roots and rhizomes were separated, and all material was dried at 60°C for 72 hours. The whole-plant treatment had greater rhizome biomass than plant-adjacent treatment (866.2 g m⁻³ ±235.4 and 289.4 g m⁻³ ±158.8, respectively) and similar root biomass (232.9 g m⁻³ ±35.7 and 176.7 g m⁻³ ±81.7, respectively). While we did not measure root and rhizome growth throughout the study, the first clipping of shoots in the plant-adjacent treatment began within the first 30 days of the study, indicating roots and rhizomes had grown into the plant-adjacent treatment during the establishment phase.
Figure 1. Experimental design and timeline. Day 1 (top left) image shows an example of the whole-plant treatment and plant-adjacent treatment immediately after transplanting Typha seedlings.

2.4 Methane-flux measurement, Surface and porewater methane concentrations

CH₄ gas flux measurements were conducted periodically throughout the experiment (see Timeline). Gas flux was measured using a closed, static-chamber system with a high-frequency, infrared, gas analyzer (Gasmet DX4040, Gasmet Technologies Oy, Helsinki, Finland). Measured gas flux thus integrates flux due to plant-mediated transport and flux due to diffusion through the water column. Care was taken to minimize disturbance to soil and plants to diminish artificially induced ebullition. Due to our mesocosm and chamber design, determining experimental from natural ebullition was not possible, and measurements indicating ebullition were re-measured. A clear acrylic chamber (diameter = 20 cm, height = 20 to 100 cm, varied with height of plant, Figure 1), with two internal fans to circulate air within the chamber, was placed onto the PVC
base for 10–30 minutes. Air and soil temperature (Fluke 54 II B thermometer, Fluke Co, WA, USA) were recorded during each flux sampling. Flux rates were calculated and checked for appropriate fit using the *HMR* package in R 3.5.1 (Pedersen et al., 2010), which accounts for chamber volume, air temperature, and changes in gas concentrations over time. Surface-water, CH$_4$ concentrations were used to calculate diffusive flux rates using a k_{600} value of 0.01 (Bansal et al., 2020).

Surface and porewater, dissolved-gas concentrations were measured using the headspace equilibration method (Hope et al., 1995; Jahangir et al., 2012). Duplicate surface-water samples were collected 2 cm below the surface, and duplicate porewater samples were collected from the bottom of the 2.5-cm diameter PVC sampling pipes after evacuation of standing water. Nitrogen gas was added to the sample water at a ratio of 7:5 followed by vigorous shaking for at least three minutes. Headspace gas was analyzed on a gas chromatograph (SRI Instruments, CA, USA), equipped with a flame ionization detector and electron capture detector. Optical sensors (PME minidot, Vista, California) measured continuous DO at 1-hour intervals. Surface-water electrical conductivity and pH (ExStick EC500, Extech Instruments, Nashua, NH, USA) were recorded in February 2018, 2019 and October 2018, with average values of and 2835 ± 35 μS m$^{-1}$ and 8.7 ± 0.07 respectively.

2.6 Statistical analyses

We used linear mixed effects analysis of variance (ANOVA) to test the effects of treatment, phase, and their interaction on CH$_4$ flux rates and dissolved CH$_4$ concentrations. Mean value of gas flux rates or dissolved gas concentrations across rounds within each phase for each replicate were used in the ANOVAs. In total, there were n=90 values for gas flux rates (18
replicates per phase × 5 phases), 54 values for surface dissolved gas concentrations (18 replicates per phase × 3 phases), and 36 values for porewater dissolved gas concentrations (18 replicates per phase × 2 phases). Replicate was considered a random effect to account for repeated measurements over the course of the study. Least Significant Difference tests were used to compare means among treatments within phases. Data were log-transformed to meet ANOVA assumptions of homoscedasticity of error variance and normality. Analyses were conducted using the lmerTest package in R 3.5.1 (Kuznetsova et al., 2017), with Kenward-Roger estimates for degrees of freedom, and assessed significance at α = 0.05. All mean values are reported as mean ± standard error throughout results.

To model CH₄ flux rates over time (to help separate signal from noise), data were fitted to a mixed general additive model (GAM), with day of experiment, treatment, and their interaction as fixed effects and replicate as a random effect, using the mgcv package in R 3.5.1 (Wood, 2017) using a Gaussian family object. The modeled CH₄ flux rates were used to calculate cumulative CH₄ emissions over time for each treatment. It is important to note that day of experiment indirectly accounts for our experimental manipulation of water level (intended to mimic seasonal draw down of temporary wetlands).

3 Results

3.1 Methane flux, Surface and porewater methane concentrations

There were significant effects of treatment, phase, and treatment × phase interaction on CH₄ flux rates (Table 1, Figure 2a). During the establishment phase of the study, the whole-plant treatment had CH₄ flux rates 4–6 times higher than plant-adjacent and control treatments.
Measured CH$_4$ flux rates from the whole plant-treatment were 96% greater than calculated diffusive flux rates (calculated using surface CH$_4$ concentrations), indicating plant-mediated CH$_4$ transport as the dominant process contributing to measured flux during establishment (Figure 3). The average chamber-measured CH$_4$ flux rate for control treatment during the establishment phase was 13.18 ±9.35 mg-C m$^{-2}$ d$^{-1}$, and the average calculated diffusive flux rate was 6.18 ±1.37 mg-C m$^{-2}$ d$^{-1}$, thus chamber-based measurements had a higher magnitude, but also greater variability (Figure 3). The discrepancy is likely due to sampling differences; for measured emissions, the “foot print” of flux was the entire surface area of chamber area, giving a more integrated measurement that may have also included microbubbles of CH$_4$ in addition to diffusive flux, as opposed to the two single syringes of water collected from surface water for calculated diffusive flux. Likewise, there is a known time frame over which chamber flux was measured, while the calculated diffusive rate is based on an estimated piston velocity, which is related to tank size and assumed laboratory conditions. Control treatment chamber CH$_4$ flux rates increased almost three-fold from 13.18 ±9.35 mg-C m$^{-2}$ d$^{-1}$ in the establishment phase to 30.88 ±10.31 mg-C m$^{-2}$ d$^{-1}$ in the growth phase. During the growth phase, all three treatments had similar flux rates (Figure 2a). From the growth phase to the water table drawdown phase, whole-plant treatment CH$_4$ flux rates declined, plant-adjacent flux rates remained consistent, while control treatment CH$_4$ flux increased to a rate (432.50 ±9.35 mg-C m$^{-2}$ d$^{-1}$) that was 14 times greater than during the growth phase (Figure 2a). During drawdown, control flux rates were significantly higher than whole-plant treatment. Finally, during the dry and re-wet phases, CH$_4$ flux rates were low and similar among treatments (Figure 2a).

The temporal patterns of CH$_4$ flux rates over the course of the study for whole-plant treatment were relatively high in the beginning and then steadily declined; for plant-adjacent
treatment, flux rates were consistently low; and for the control treatment, flux rates were low in the beginning, peaked in middle, and then low at the end (Figure 4a). This temporal pattern of CH₄ flux rates resulted in relatively high cumulative CH₄ emissions early in the study from the whole-plant treatment, but overall similar cumulative CH₄ emissions between whole-plant and control treatment by the end of the study (Figure 4b). There were much lower cumulative CH₄ emissions from plant-adjacent treatment over the course of the study compared to whole-plant or control treatments (Figure 4b).

Porewater dissolved CH₄ concentrations were significantly affected by treatment, phase and treatment × phase interaction (Table 1, Figure 2b). During the growth phase, porewater CH₄ concentration was lowest in whole-plant treatment, highest for control treatment, and intermediate for plant-adjacent treatment (Figure 2b). All treatments had low and similar porewater CH₄ concentrations during the re-wetting phase. There were no treatment differences in porewater DO concentrations (F₂,₃ = 6.02, p = 0.08), which were < 1% maximum saturation during the growth phase, increased to ~18% during the drawdown phase, up to 90% during dry phase, and then returned to < 1% after re-wetting.
Table 1. Analysis of variance results from linear mixed effects model testing the effects of treatment, phase, and their interaction on CH$_4$ flux rates, and surface and porewater dissolved CH$_4$ concentrations. ‘n’ represents number of values used each test

$$\begin{array}{cccccccc}
\text{Treatment} & \text{Phase} & \text{Treatment \times} & \text{Phase} \\
& & & \\
F & p & F & p & F & p & n \\
\hline
\text{CH}_4 \text{ flux rate} & 3.79 & 0.046 & 24.48 & <0.001 & 6.68 & <0.001 & 90 \\
\text{Surface water CH}_4 \text{ concentration} & 3.01 & 0.080 & 8.73 & 0.001 & 1.81 & 0.152 & 54 \\
\text{Porewater CH}_4 \text{ concentration} & 7.46 & 0.006 & 14.94 & 0.002 & 4.63 & 0.005 & 36
\end{array}$$
Figure 2. Whole-plant (green), plant-adjacent (orange), and control (blue) treatment means (±SE) of (a) CH₄ flux rates and (b) dissolved porewater CH₄ concentrations within each phase of the experiment. Within each phase, different letters indicate significant differences among treatments (ANOVA results in Table 1). Phases were establishment (‘est’), growth, drawdown (‘down’), dry, and re-wet. Note the log scale on the y-axis of CH₄ flux rates.
Figure 3. Whole-plant (green), plant-adjacent (orange), and control (blue) treatment means (±SE) of CH$_4$ flux during the establishment phase (first 30-days); shading indicates measured flux using chamber-based measurements (top lighter bar) and CH$_4$ diffusive flux calculated using surface water dissolved CH$_4$ concentrations (bottom darker bar)
Figure 4. Time series of modeled (a) CH₄ flux rates (means = dots, SE = lines) and (b) cumulative CH₄ emissions across days of the experiment for whole-plant (green), plant-adjacent (orange), and control (blue) treatments. Flux rates were modeled from periodic measurements across the experiment using generalized additive modeling.
4 Discussion

4.1 Temporal- and spatial-effects of vegetation on CH$_4$ flux

Our study demonstrates how CH$_4$ emissions are affected by the linkage between plant-mediated transport, porewater CH$_4$ concentrations, and the timing of water inundation. The elevated flux rates that we measured during *Typha* establishment align with the current consensus that vegetation acts as a conduit for CH$_4$ transport from the rhizosphere to the atmosphere at rates much higher than diffusive-only flux (Bendix et al., 1994; Colmer, 2003; Laanbroek, 2010). However, high rates of plant-mediated transport appeared to deplete the porewater CH$_4$ reservoir below and around vegetation, which likely led to lower flux rates from the whole-plant and plant-adjacent treatments later in the experiment. In contrast, non-vegetated controls had a highly concentrated CH$_4$ porewater reservoir that contributed to higher flux rates during simulated draw down of the water table that typically occurs later in the growing season in seasonal wetland. Ultimately, there were comparable total CH$_4$ emissions between whole-plant and control treatments. This finding challenges the common assumption that actively growing emergent vegetation increases CH$_4$ emissions from wetlands (Bhullar, Edwards, et al., 2013; Carmichael et al., 2014), as the generalization may not apply in seasonally inundated wetlands (Altor & Mitsch, 2006, 2008). However, it should be noted that the soils used in our mesocosms were collected from locations that historically had vegetation, thus there may have been residual, older plant-C inputs to fuel CH$_4$ production in our plant-free control treatment.

Through combined measurements of dissolved porewater CH$_4$ and CH$_4$ flux rates, our study revealed potentially significant mechanisms in plant-mediated CH$_4$ flux. Low porewater
CH$_4$ concentrations below plants was somewhat unexpected, as vegetation is known to supply fresh carbon substrates (i.e., root exudates) to fuel methanogenic CH$_4$ production (Christensen et al., 2003; King & Reeburgh, 2002; Knorr et al., 2008; Waldo et al., 2019). By observing high plant-mediated flux rates in combination with depleted porewater CH$_4$, we infer that CH$_4$ was being transported to the atmosphere relatively quickly after it was produced in the sediment below plants. Similar patterns of decreased sediment CH$_4$ in vegetated compared to non-vegetated sites have been observed in brackish tidal systems (Chanton et al., 1989; Gross et al., 1993) and in northern peatlands (Shannon et al., 1996).

Porewater CH$_4$ was moderately greater in the plant-adjacent treatment than in the whole-plant treatment. This finding suggests that higher CH$_4$ flux via plant-mediated transport is, in part, enhanced by a supply of CH$_4$ that is produced and laterally transported via roots from adjacent soils within wetlands. This effect may have been magnified in our experiment due to the shallow depth of our aquarium soils. Root growth was bound by mesocosm volume and soil depth, therefore the distance required for porewater CH$_4$ to diffuse via roots is likely shorter than in a natural wetland. To better assess the complete impact of vegetation on wetland CH$_4$ budgets, future studies should consider a ‘zone of influence’ surrounding aerenchymous wetland plants, which accounts for root and stem transport of porewater CH$_4$.

Typha not only affected the timing of CH$_4$ emissions, but also the residence time of the porewater CH$_4$ reservoir, which has implications for CH$_4$ oxidation potential. A common assumption is that wetland vegetation increases oxidation of porewater CH$_4$ due to a supply of O$_2$ to the rhizosphere (Conrad, 2009; Faußer et al., 2012; Laanbroek, 2010). However, plant-mediated transport allows CH$_4$ to quickly bypass the primary zone of oxidation that occurs near the water-table surface (Bendix et al., 1994; Colmer, 2003; Knoblauch et al., 2015; Laanbroek,
The elevated CH$_4$ flux rates we observed in tandem with depleted porewater reservoir indicate a low residence time of CH$_4$ and provides evidence that the depleted porewater reservoir is due to plant-transport, not rhizosphere oxidation. Therefore, *Typha* reduces CH$_4$ oxidation spatially (by allowing CH$_4$ to avoid the zone of oxidation) and temporally (through short residence time of porewater CH$_4$).

4.2 Drying CH$_4$ pulse and re-wetting CH$_4$ recovery

The majority of depressional wetlands in the PPR are temporary or seasonal, as are many tropical and subtropical wetlands, vernal pools, and swamps. These systems are subject to regular drying and re-wetting events across entire wetlands, or at wetland-upland transition zones (Dahl, 2014; Jeffrey et al., 2019; Keeley & Zedler, 1998; Tangen & Bansal, 2019a). Drying and re-wetting also occur during episodic events such as droughts or floods (Altor & Mitsch, 2006, 2008; Beringer et al., 2013), during agricultural actions such as wetland drainage for agriculture, and mid-season drying of rice fields (Runkle et al., 2019; Tangen et al., 2015), or during wetland restoration (Audet et al., 2013; Tuittila et al., 2000). Thus, drying (or water-table drawdown) and re-wetting of wetlands can have notable impacts on a wide span of wetland CH$_4$ budgets (Badiou et al., 2011; Brown et al., 2014; Goodrich et al., 2015; Kroeger et al., 2017; Marcé et al., 2019).

During a drying event, the water table drops, hydrostatic pressure is lowered, and the hydrologic barrier to free gas flow is removed, thereby allowing a rapid, pulsed release of porewater CH$_4$ to the atmosphere (Roslev & King, 1996). The rapid release of CH$_4$ during drying is not only dependent on water table dynamics, but also requires a sufficiently large and concentrated porewater CH$_4$ reservoir to fuel the CH$_4$ pulse. Our study suggests that a drying-induced pulse of CH$_4$ may be considerably dampened in the presence of vegetation due to
depletion of porewater CH$_4$ from plant-mediated transport. In contrast, a drying-induced CH$_4$
pulse may be a dominant factor controlling annual CH$_4$ budgets for unvegetated wetlands (or
unvegetated location within wetlands) if there is a sufficiently large reserve pool of porewater
CH$_4$.

Water-logged soils facilitate anoxic conditions that promote CH$_4$ production. However, as
exemplified in the present study and other recent research, the timing of inundation affects the
magnitude of CH$_4$ emissions and how vegetation affects CH$_4$ flux. Altor & Mitsch (2006) found
greater CH$_4$ emissions from permanently inundated areas than from intermittently flooded areas
of experimental riparian marshes, and found no difference in CH$_4$ flux between vegetated and
non-vegetated plots in intermittently flooded areas. In Typha-dominated constructed wetlands,
plants enhanced CH$_4$ emissions in wetlands with 40–60% soil moisture content but had no effect
in a wetland with <40% soil moisture (McInerney & Helton, 2016). Still, more field studies are
needed from seasonal wetlands to further elucidate how plant-mediated fluxes change across
variable hydrology in natural conditions (Beringer et al., 2013; D Kim et al., 2012).

Recovery of CH$_4$ production and emissions following re-wetting after drying is also
potentially affected by the presence of wetland vegetation. During drying, there is consumption
of labile carbon substrates by aerobic respiration, regeneration of alternate electron acceptors,
reduction in size of methanogenic communities, and increased CH$_4$ oxidation, all of which delay
recovery of CH$_4$ emissions by days to months following re-wetting (Boon et al., 1997; Conlin &
Crowder, 1989; D Kim et al., 2012; Knorr et al., 2008; Sundh et al., 1994; Tian et al., 2012).
Vegetation can speed up the rate of recovery by priming microbial activity via fresh carbon
substrates (Ström et al., 2005; Waldo et al., 2019), but can also delay recovery by supplying O$_2$
for methanotrophic communities (Faußer et al., 2012), and by extending dry conditions through
In our study, O₂ levels were minimal in all treatments following re-wetting and none of the treatments exhibited high CH₄ flux rates or accumulated a porewater CH₄ reserve after three months. Although not significant, we observed a slight trend of lower flux rates and lower porewater CH₄ in ‘whole plant’ treatments during the re-wetting phase. The lack of CH₄ recovery after re-wetting may be a result of limitations on carbon substrate from sources such as groundwater and decomposing plant material not being replenished in mesocosms as they would in a natural wetland, or because the fresh carbon inputs did not have enough time to accumulate for microbial consumption (Neubauer et al., 2005; Sutton-Grier & Megonigal, 2011; Updegraff et al., 1995).

4.3 Modeling and management implications

Budgets of CH₄ at local- to global-scales are often estimated using process-based models such as DNDC (Li, 2000), Ecosys (Grant & Roulet, 2002), and CLM4Me (Riley et al., 2011). These models couple biological and physical processes, and are highly sensitive to water table depth, vegetation, and various CH₄ transport pathways. A recent review on CH₄ models identified a need to increase understanding of individual CH₄ processes over vertical and horizontal space, as well as hot moments and hot spots, as crucial for improving model predictions (Xu et al., 2016). In this paper, we outline several relevant mechanisms to help improve the underlying assumptions that drive these models. In particular, we demonstrate how vegetation can influence the timing of CH₄ emissions and residence time of porewater CH₄, lateral transport of porewater CH₄, and effects of water table drawdown. Our findings also have implications for empirically derived, data-driven models that predict flux at annual time steps over entire wetland systems. We demonstrate the dynamic temporal and spatial interaction
between wetland vegetation and hydrology on seasonal CH$_4$ fluxes (Riley et al., 2011). Thus, process-based and empirical CH$_4$ models need to consider intra-annual hydrologic dynamics (e.g., drying and re-wetting events) and spatial wetland heterogeneity (e.g., vegetated and non-vegetative cover, aerenchymous and non-aerenchymous vegetation types) for accurate predictions of CH$_4$ budgets.

Wetland drainage and restoration also have important impacts on CH$_4$ budgets. While wetland drainage generally decreases CH$_4$ emissions (Tangen et al., 2015), we show how drainage can produce a temporary, large pulse of CH$_4$, offsetting the subsequent decrease in CH$_4$ flux. While the flooding that is required to restore wetlands may increase CH$_4$ emissions (Audet et al., 2013; Tuittila et al., 2000), our results suggest re-wetting wetlands later in the season could result in lower CH$_4$ emissions relative to early-season flooding. A better understanding of the mechanisms affecting CH$_4$ recovery could aid in reducing CH$_4$ emissions with wetland restoration (Jerman et al., 2009; Runkle et al., 2019). More research is needed, ideally using high frequency data such as from eddy covariance flux towers (e.g., FLUXNET-CH4 database, [Knox et al., 2019]) to understand short-term effects of drying and re-wetting on CH$_4$ flux.

Wetland management actions to control problematic invasive macrophytes include crushing, cutting above/below water, harvesting, and herbicide (Bansal et al., 2019; Carson et al., 2018; Hazelton et al., 2014; Keyport et al., 2019). These manipulations of emergent vegetation could affect plant-mediated CH$_4$ production, consumption, and transport (Zhu et al., 2007). In terms of ecosystem services, the role of vegetation on CH$_4$ flux and wetland carbon budgets (and consequently carbon storage potential) should be considered when deciding management actions (Eviner et al., 2012). Our study highlights how the timing of management may affect CH$_4$. For example, cutting and drowning Typha stems during their establishment may prevent the large
CH₄ flux rates we observed early on in our study, but this action may only be effective in permanently inundated wetlands. If a wetland dries later in the season, there may be a CH₄ release that eliminates any benefit from early season cutting. Including the effect of vegetation on the timing of CH₄ fluxes, drying-induced pulses of CH₄, and re-wetting recovery time frames will improve wetland CH₄ budgets and management decisions.

Acknowledgements

We thank B. Hanson for assistance measuring gas flux. Funding for this study was provided by the U.S. Geological Survey Climate and Land Use Change R&D Program. The data are in the ScienceBase repository and are available at Bansal et. al. (2020). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References:

Altor, A. E., & Mitsch, W. J. (2006). Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. *Ecological Engineering*, 28(3), 224-234. doi:https://doi.org/10.1016/j.ecoleng.2006.06.006

Altor, A. E., & Mitsch, W. J. (2008). Methane and carbon dioxide dynamics in wetland mesocosms: Effects of hydrology and soils. *Ecological Applications*, 18(5), 1307-1320. doi:https://doi.org/10.1890/07-0009.1

Audet, J., Elsgaard, L., Kjaergaard, C., Larsen, S. E., & Hoffmann, C. C. (2013). Greenhouse gas emissions from a Danish riparian wetland before and after restoration. *Ecological Engineering*, 57, 170-182. doi:https://doi.org/10.1016/j.ecoleng.2013.04.021
Badiou, P., McDougal, R., Pennock, D., & Clark, B. (2011). Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. *Wetlands Ecology and Management, 19*(3), 237-256.

doi:https://doi.org/10.1007/s11273-011-9214-6

Bansal, S., Lishawa, S. C., Newman, S., Tangen, B. A., Wilcox, D., Albert, D., et al. (2019). *Typha* (Cattail) invasion in North American wetlands: biology, regional problems, impacts, ecosystem services, and management. *Wetlands, 39*(4), 645-684.

doi:https://doi.org/10.1007/s13157-019-01174-7

Bansal, S., Meier, J. A., Johnson, O. F., & Tangen, B. A. (2020). Greenhouse gas fluxes, dissolved gas concentration, and water properties of laboratory mesocosms: U.S. Geological Survey data release, edited, U.S. Geological Survey, https://doi.org/10.5066/P9QT9V3K

Bansal, S., Tangen, B. A., & Finocchiaro, R. G. (2016). Temperature and hydrology affect methane emissions from Prairie Pothole wetlands. *Wetlands, 36*(2), 371-381.

doi:https://doi.org/10.1007/s13157-016-0826-8

Bansal, S., Tangen, B. A., & Finocchiaro, R. G. (2018). Diurnal patterns of methane flux from a seasonal wetland: mechanisms and methodology. *Wetlands, 38*(5), 933-943.

doi:https://doi.org/10.1007/s13157-018-1042-5

Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater methane emissions offset the continental carbon sink. *Science, 331*(6013), 50-50.

doi:https://doi.org/10.1126/science.1196808
Bendix, M., Tornbjerg, T., & Brix, H. (1994). Internal gas transport in *Typha latifolia* L. and *Typha angustifolia* L. 1. Humidity-induced pressurization and convective throughflow. *Aquatic Botany, 49*(2-3), 75-89. doi:https://doi.org/10.1016/0304-3770(94)90030-2

Beringer, J., Livesley, S. J., Randle, J., & Hutley, L. B. (2013). Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. *Agricultural and forest meteorology, 182*, 239-247. doi:https://doi.org/10.1016/j.agrformet.2013.06.008

Bhullar, G. S., Edwards, P. J., & Venterink, H. O. (2013). Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. *Journal of Plant Ecology, 6*(4), 298-304. doi:https://doi.org/10.1093/jpe/rts045

Bhullar, G. S., Iravani, M., Edwards, P. J., & Venterink, H. O. (2013). Methane transport and emissions from soil as affected by water table and vascular plants. *BMC ecology, 13*(1), 32. doi:https://doi.org/10.1186/1472-6785-13-32

Boon, P. I., Mitchell, A., & Lee, K. (1997). Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. *Hydrobiologia, 357*(1), 73-87. doi:https://doi.org/10.1023/A:1003126601466

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. *Global Change Biology, 19*(5), 1325-1346. doi:https://doi.org/10.1111/gcb.12131

Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T., & Lafleur, P. M. (2014). Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane
emissions and water table depth. *Journal of Geophysical Research: Biogeosciences*, 119(5), 826-835. doi:https://doi.org/10.1002/2013jg002576

Carmichael, M., Bernhardt, E., Bräuer, S., & Smith, W. (2014). The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget? *Biogeochemistry*, 119, 1-24. doi:https://doi.org/10.1007/s10533-014-9974-1

Carson, B. D., Lishawa, S. C., Tuchman, N. C., Monks, A. M., Lawrence, B. A., & Albert, D. A. (2018). Harvesting invasive plants to reduce nutrient loads and produce bioenergy: an assessment of Great Lakes coastal wetlands. *Ecosphere*, 9(6), e02320. doi:https://doi.org/10.1002/ecs2.2320

Chanton, J. P., Martens, C. S., & Kelley, C. A. (1989). Gas transport from methane-saturated, tidal freshwater and wetland sediments. *Limnology and Oceanography*, 34(5), 807-819. doi:https://doi.org/10.4319/lo.1989.34.5.0807

Cheng, X., Peng, R., Chen, J., Luo, Y., Zhang, Q., An, S., et al. (2007). CH$_4$ and N$_2$O emissions from *Spartina alterniflora* and *Phragmites australis* in experimental mesocosms. *Chemosphere*, 68(3), 420-427. doi:http://dx.doi.org/10.1016/j.chemosphere.2007.01.004

Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., et al. (2003). Factors controlling large scale variations in methane emissions from wetlands. *Geophysical Research Letters*, 30(7). doi:https://doi.org/10.1029/2002GL016848

Colmer, T. D. (2003). Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. *Plant, Cell & Environment*, 26(1), 17-36. doi:https://doi.org/10.1046/j.1365-3040.2003.00846.x
Conlin, T. S., & Crowder, A. A. (1989). Location of radial oxygen loss and zones of potential iron uptake in a grass and two nongrass emergent species. *Canadian Journal of Botany*, 67(3), 717-722. doi:https://doi.org/10.1139/b89-095

Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. *Environmental Microbiology Reports, 1*(5), 285-292. doi:https://doi.org/10.1111/j.1758-2229.2009.00038.x

Dahl, T. E. (2014), Status and trends of prairie wetlands in the United States 1997 to 2009Rep., 67 pp, U.S. Department of the Interior, Fish and Wildlife Services, Washington, DC.

Dalcin Martins, P., Hoyt, D. W., Bansal, S., Mills, C. T., Tfaily, M., Tangen, B. A., et al. (2017). Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. *Global Change Biology, 23*(8), 3107-3120. doi:https://doi.org/10.1111/gcb.13633

Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G., Egger, M., et al. (2018). Methane feedbacks to the global climate system in a warmer world. *Reviews of Geophysics, 56*(1), 207-250. doi:https://doi.org/10.1002/2017rg000559

Euliss, N. H., Gleason, R., Olness, A., McDougal, R., Murkin, H., Robarts, R., et al. (2006). North American prairie wetlands are important nonforested land-based carbon storage sites. *Science of the Total Environment, 361*(1), 179-188. doi:https://doi.org/10.1016/j.scitotenv.2005.06.007

Eviner, V. T., Garbach, K., Baty, J. H., & Hoskinson, S. A. (2012). Measuring the effects of invasive plants on ecosystem services: challenges and prospects. *Invasive Plant Science and Management, 5*(1), 125-136. doi:https://doi.org/10.1614/IPSM-D-11-00095.1
Faußer, A. C., Hoppert, M., Walther, P., & Kazda, M. (2012). Roots of the wetland plants *Typha latifolia* and *Phragmites australis* are inhabited by methanotrophic bacteria in biofilms. *Flora - Morphology, Distribution, Functional Ecology of Plants, 207*(11), 775-782. doi:https://doi.org/10.1016/j.flora.2012.09.002

Galatowitsch, S. (2012), Northern great plains wetlands, in *Wetland habitats of North America: Ecology and conservation concerns*, edited, pp. 283-298, University of California Press.

Goodrich, J., Campbell, D., Roulet, N., Clearwater, M., & Schipper, L. (2015). Overriding control of methane flux temporal variability by water table dynamics in a Southern Hemisphere, raised bog. *Journal of Geophysical Research: Biogeosciences, 120*(5), 819-831. doi:https://doi.org/10.1002/2014JG002844

Grant, R. F., & Roulet, N. T. (2002). Methane efflux from boreal wetlands: Theory and testing of the ecosystem model Ecosys with chamber and tower flux measurements. *Global Biogeochemical Cycles, 16*(4), 2-1-2-16. doi:https://doi.org/10.1029/2001gb001702

Gross, M. F., Hardisky, M. A., Wolf, P. L., & Klemas, V. (1993). Relationships among *Typha* biomass, pore water methane, and reflectance in a Delaware (USA) brackish marsh. *Journal of Coastal Research*. 339-355.

Hazelton, E. L., Mozdzer, T. J., Burdick, D. M., Kettenring, K. M., & Whigham, D. F. (2014). *Phragmites australis* management in the United States: 40 years of methods and outcomes. *AoB Plants, 6*. doi:https://doi.org/10.1093/aobpla/plu001

Holzapfel-Pschorrn, A., Conrad, R., & Seiler, W. (1986). Effects of vegetation on the emission of methane from submerged paddy soil. *Plant and Soil, 92*(2), 223-233. doi:https://doi.org/10.1007/bf02372636
Hope, D., Dawson, J. J., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO₂ in upland streamwater using headspace analysis. *Journal of Hydrology, 166*(1-2), 1-14. doi:https://doi.org/10.1016/0022-1694(94)02628-O

Hu, Q., Cai, J., Yao, B., Wu, Q., Wang, Y., & Xu, X. (2016). Plant-mediated methane and nitrous oxide fluxes from a carex meadow in Poyang Lake during drawdown periods. *Plant and Soil, 400*(1-2), 367-380. doi:https://doi.org/10.1007/s11104-015-2733-9

Jahangir, M. M., Johnston, P., Khalil, M. I., Grant, J., Somers, C., & Richards, K. G. (2012). Evaluation of headspace equilibration methods for quantifying greenhouse gases in groundwater. *Journal of environmental management, 111*, 208-212. doi:https://doi.org/10.1016/j.jenvman.2012.06.033

Jeffrey, L. C., Maher, D. T., Johnston, S. G., Kelaher, B. P., Steven, A., & Tait, D. R. (2019). Wetland methane emissions dominated by plant-mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. *Limnology and Oceanography, 64*(5), 1895-1912. doi:https://doi.org/10.1002/lno.11158

Jerman, V., Metje, M., Mandić-Mulec, I., & Frenzel, P. (2009). Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures. *Biogeosciences, 6*(6), 1127-1138. doi:https://doi.org/10.5194/bg-6-1127-2009

Kankaala, P., Käki, T., Mäkelä, S., Ojala, A., Pajunen, H., & Arvola, L. (2005). Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. *Global Change Biology, 11*(1), 145-153. doi:https://doi.org/10.1111/j.1365-2486.2004.00888.x
Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2010). Carbon storage and fluxes within freshwater wetlands: a critical review. *Wetlands, 30*(1), 111-124. doi:https://doi.org/10.1007/s13157-009-0003-4

Keeley, J. E., & Zedler, P. H. (1998), Characterization and global distribution of vernal pools, paper presented at Ecology, conservation, and management of vernal pool ecosystems, proceedings from 1996 conference, California Native Plant Society.

Keyport, S., Carson, B. D., Johnson, O., Lawrence, B. A., Lishawa, S. C., Tuchman, N. C., & Kelly, J. J. (2019). Effects of experimental harvesting of an invasive hybrid cattail on wetland structure and function. *Restoration Ecology, 27*(2), 389-398. doi:https://doi.org/10.1111/rec.12859

Kim, D., Vargas, R., Bond-Lamberty, B., & Turetsky, M. (2012). Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. *Biogeosciences, 9*(7), 2459-2483. doi:https://doi.org/10.5194/bg-9-2459-2012

Kim, J., Verma, S. B., & Billesbach, D. P. (1999). Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: Effect of growth stage and plant-mediated transport. *Global Change Biology, 5*(4), 433-440. doi:https://doi.org/10.1046/j.1365-2486.1999.00237.x

King, J., & Reeburgh, W. (2002). A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. *Soil Biology and Biochemistry, 34*(2), 173-180. doi:https://doi.org/10.1016/S0038-0717(01)00164-X

Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., & Pfeiffer, E. M. (2015). Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds
of the northeast Siberian polygonal tundra. *Journal of Geophysical Research: Biogeosciences*, 120(12), 2525-2541. doi:https://doi.org/10.1002/2015JG003053

Knorr, K. H., Glaser, B., & Blodau, C. (2008). Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought. *Biogeosciences*, 5(5), 1457-1473. doi:https://doi.org/10.5194/bg-5-1457-2008

Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., et al. (2019). FLUXNET-CH4 synthesis activity: objectives, observations, and future directions. *Bulletin of the American Meteorological Society*. (2019).

Kroeger, K. D., Crooks, S., Moseman-Valtierra, S., & Tang, J. (2017). Restoring tides to reduce methane emissions in impounded wetlands: A new and potent blue carbon climate change intervention. *Scientific Reports*, 7(1), 1-12. doi:https://doi.org/10.1038/s41598-017-12138-4

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. *Journal of statistical software*, 82(13). doi:https://doi.org/10.18637/jss.v082.i13

Laanbroek, H. J. (2010). Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. *Annals of Botany*, 105(1), 141-153. doi:https://doi.org/10.1093/aob/mcp201

Lawrence, B. A., Lishawa, S. C., Hurst, N., Castillo, B. T., & Tuchman, N. C. (2017). Wetland invasion by *Typha × glauca* increases soil methane emissions. *Aquatic Botany*, 137, 80-87. doi:https://doi.org/10.1016/j.aquabot.2016.11.012

Li, C. S. (2000), Modeling trace gas emissions from agricultural ecosystems, in *Methane Emissions from Major Rice Ecosystems in Asia*, edited by R. Wassmann, R. S. Lantin and
Marcé, R., Obrador, B., Gómez-Gener, L., Catalán, N., Koschorreck, M., Arce, M. I., et al. (2019). Emissions from dry inland waters are a blind spot in the global carbon cycle. *Earth-Science Reviews*, 188, 240-248. doi:https://doi.org/10.1016/j.earscirev.2018.11.012

Martin, R., & Moseman-Valtierra, S. (2015). Greenhouse gas fluxes vary between *Phragmites australis* and native vegetation zones in coastal wetlands along a salinity gradient. *Wetlands*, 35(6), 1021-1031. doi:https://doi.org/10.1007/s13157-015-0690-y

McInerney, E., & Helton, A. M. (2016). The effects of soil moisture and emergent herbaceous vegetation on carbon emissions from constructed wetlands. *Wetlands*, 36(2), 275-284. doi:https://doi.org/10.1007/s13157-016-0736-9

Milberg, P., Törnqvist, L., Westerberg, L. M., & Bastviken, D. (2017). Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes. *AoB Plants*, 9(4), plx029. doi:https://doi.org/10.1093/aobpla/plx029

Mitch, W., & Gosselink, J. (2007), *Wetlands*, 574 pp., John Wiley & Sons, Inc, New Jersey.

Neubauer, S. C., Givler, K., Valentine, S., & Megonigal, J. P. (2005). Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. *Ecology*, 86(12), 3334-3344. doi:https://doi.org/10.1890/04-1951

Pedersen, A. R., Petersen, S. O., & Schelde, K. (2010). A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. *European Journal of Soil Science*, 61(6), 888-902. doi:https://doi.org/10.1111/j.1365-2389.2010.01291.x
Picek, T., Čížková, H., & Dušek, J. (2007). Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon. *Ecological Engineering, 31*(2), 98-106. doi:https://doi.org/10.1016/j.ecoleng.2007.06.008

Ralston, S. T., Linz, G., Bleier, W., & Homan, H. (2007). Cattail distribution and abundance in North Dakota. *J. Aquat. Plant Management, 45*, 21-24. doi:https://doi.org/10113/4230

Rey-Sanchez, A. C., Morin, T. H., Stefanik, K. C., Wrighton, K., & Bohrer, G. (2018). Determining total emissions and environmental drivers of methane flux in a Lake Erie estuarine marsh. *Ecological Engineering, 114*, 7-15. doi:https://doi.org/10.1016/j.ecoleng.2017.06.042

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., et al. (2011). Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. *Biogeosciences, 8*(7), 1925-1953. doi:https://doi.org/10.5194/bg-8-1925-2011

Roslev, P., & King, G. M. (1996). Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. *FEMS Microbiology Ecology, 19*(2), 105-115. doi:https://doi.org/10.1111/j.1574-6941.1996.tb00203.x

Runkle, B. R., Suvočarev, K., Reba, M. L., Reavis, C. W., Smith, S. F., Chiu, Y.-L., & Fong, B. (2019). Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. *Environmental science & technology, 53*(2), 671-681. doi:https://doi.org/10.1021/acs.est.8b05535

Segers, R. (1998). Methane production and methane consumption: a review of processes underlying wetland methane fluxes. *Biogeochemistry, 41*(1), 23-51. doi:https://doi.org/10.1023/A:1005929032764
Shannon, R. D., White, J. R., Lawson, J. E., & Gilmour, B. S. (1996). Methane efflux from emergent vegetation in peatlands. *Journal of Ecology*. 239-246.
doi:https://doi.org/10.2307/2261359

Soil Survey Staff, Natural Resources Conservation Service, (1999), *Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys*, United States Department of Agriculture, p. 436.

Ström, L., Mastepanov, M., & Christensen, T. R. (2005). Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. *Biogeochemistry*, 75(1), 65-82. doi:https://doi.org/10.1007/s10533-004-6124-1

Sundh, I., Nilsson, M., Granberg, G., & Svensson, B. H. (1994). Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. *Microbial Ecology*, 27(3), 253-265. doi:https://doi.org/10.1007/bf00182409

Sutton-Grier, A. E., & Megonigal, J. P. (2011). Plant species traits regulate methane production in freshwater wetland soils. *Soil Biology and Biochemistry*, 43(2), 413-420.
doi:https://doi.org/10.1016/j.soilbio.2010.11.009

Tangen, B. A., & Bansal, S. (2019a). Hydrologic lag effects on wetland greenhouse gas fluxes.

Atmosphere, 10(5), 269.
Tangen, B. A., & Bansal, S. (2019b). Soil properties and greenhouse gas fluxes of Prairie Pothole Region wetlands: A comprehensive data release. U.S. Geological Survey, doi:https://doi.org/10.5066/F7KS6QG2

Tangen, B. A., Finocchiaro, R. G., & Gleason, R. A. (2015). Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America. *Science of the Total Environment*, 533, 391-409. doi:https://doi.org/10.1016/j.scitotenv.2015.06.148

Tian, J., Zhu, Y., Kang, X., Dong, X., Li, W., Chen, H., & Wang, Y. (2012). Effects of drought on the archaeal community in soil of the Zoige wetlands of the Qinghai–Tibetan plateau. *European Journal of Soil Biology*, 52, 84-90. doi:https://doi.org/10.1016/j.ejsobi.2012.07.003

Tittel, J., Hüls, M., & Koschorreck, M. (2019). Terrestrial vegetation drives methane production in the sediments of two German reservoirs. *Scientific Reports*, 9(1), 15944. doi:https://doi.org/10.1038/s41598-019-52288-1

Tuittila, E. S., Komulainen, V. M., Vasander, H., Nykänen, H., Martikainen, P. J., & Laine, J. (2000). Methane dynamics of a restored cut-away peatland. *Global Change Biology*, 6(5), 569-581. doi:https://doi.org/10.1046/j.1365-2486.2000.00341.x

Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R., et al. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. *Global Change Biology*, 20(7), 2183-2197. doi:https://doi.org/10.1111/gcb.12580

Updegraff, K., Pastor, J., Bridgham, S. D., & Johnston, C. A. (1995). Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. *Ecological Applications*, 5(1), 151-163. doi:https://doi.org/10.2307/1942060
Vaccaro, L. E., Bedford, B. L., & Johnston, C. A. (2009). Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in Lake Ontario wetlands. *Wetlands, 29*(3), 1036-1048. doi:https://doi.org/10.1672/08-28.1

Waldo, N. B., Hunt, B. K., Fadely, E. C., Moran, J. J., & Neumann, R. B. (2019). Plant root exudates increase methane emissions through direct and indirect pathways. *Biogeochemistry, 145*(1), 213-234. doi:https://doi.org/10.1007/s10533-019-00600-6

Wood, S. (2017), Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8-23, edited.

Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., et al. (2016). Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. *Biogeosciences, 13*(12), 3735-3755. doi:https://doi.org/10.5194/bg-13-3735-2016

Yavitt, J. B., & Knapp, A. K. (1998). Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. *New Phytologist, 139*(3), 495-503. doi:https://doi.org/10.1046/j.1469-8137.1998.00210.x

Zedler, J. B., & Kercher, S. (2004). Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. *Critical Reviews in Plant Sciences, 23*(5), 431-452. doi:https://10.1080/07352680490514673

Zhu, N., An, P., Krishnakumar, B., Zhao, L., Sun, L., Mizuochi, M., & Inamori, Y. (2007). Effect of plant harvest on methane emission from two constructed wetlands designed for the treatment of wastewater. *Journal of environmental management, 85*(4), 936-943. doi:https://doi.org/10.1016/j.jenvman.2006.11.004