Activation of heme oxygenase expression by cobalt protoporphyrin treatment prevents pneumonic plague caused by inhalation of *Yersinia pestis*

Joshua L. Willix, Jacob L. Stockton, Rachel M. Olson, Paul E. Anderson, and Deborah M. Anderson

Department of Veterinary Pathobiology and the Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO

*For correspondence: andersondeb@missouri.edu

Short Title: Protection from plague by heme oxygenase

Key words: Plague, pneumonia, sepsis, heme oxygenase, cobalt protoporphyrin, *Yersinia pestis*, doxycycline
Abstract.

Pneumonic plague, caused by the gram-negative bacteria *Yersinia pestis*, is an invasive, rapidly progressing disease with poor survival rates. Following inhalation of *Y. pestis*, bacterial invasion of the lungs and a tissue-damaging inflammatory response allows vascular spread of the infection. Consequently, primary pneumonic plague is a multi-organ disease involving sepsis, necrosis of immune tissues and the liver, as well as bronchopneumonia and rampant bacterial growth. Given the likely role of the hyper-inflammatory response in accelerating the destruction of tissue, in this work we evaluated the therapeutic potential of the inducible cytoprotective enzyme heme oxygenase 1 (HO-1) against primary pneumonic plague. On its own, the HO-1 inducer cobalt protoporphyrin IX (CoPP) provided mice protection from lethal challenge with *Y. pestis* CO92 with improved pulmonary bacterial clearance and a dampened inflammatory response compared to vehicle-treated mice. Furthermore, CoPP treatment combined with doxycycline strongly enhanced protection in a rat aerosol challenge model. Compared to doxycycline alone, CoPP treatment increased survival, with a 3-log decrease in median bacterial titer recovered from the lungs and the general absence of a systemic hyper-inflammatory response. In contrast, treatment with the HO-1 inhibitor SnPP had no detectable impact on doxycycline efficacy. The combined data indicate that countering inflammatory toxicity by therapeutically inducing HO-1 is effective in reducing the rampant growth of *Y. pestis* and preventing pneumonic plague.
Introduction

Plague, including the bubonic, pneumonic, and septicemic forms, is a lethal disease caused by *Yersinia pestis*. The incidence of plague has been reduced by modern public health infrastructure, but annual cases of the bubonic plague occur throughout the world due to stable sylvatic cycles of transmission between rodent and flea hosts (1). Recently, pneumonic plague was recognized as a reemerging disease in Madagascar and in 2017 an outbreak of pneumonic plague accounted for 77% of the 2,417 cases with 209 deaths (2). Multiple independent antibiotic resistance mechanisms have emerged from the enzootic cycle and it is thought that genetic engineering of *Y. pestis* could generate a drug-resistant weapon of mass destruction (3-6). For these reasons, there remains a need to develop non-antibiotic strategies for treatment of plague that are broadly protective.

Inhalation of *Y. pestis* by a mammalian host leads to the rapid development of acute bronchopneumonia and secondary sepsis that cause a high rate of mortality even when antibiotics known to be effective against bacterial growth are administered (1). In the lungs, *Y. pestis* initially suppress inflammatory responses using two major thermally controlled virulence strategies: 1) the down-regulation of *lpzM* which causes hypoacylation of lipid A to a form that is less stimulatory to host cells; and 2) the up-regulation of the type III secretion system (T3SS) allowing the delivery of immune modulators into host cells (7-10). These factors are thought to provide immune evasion necessary for bacterial growth and the establishment of disease.

Although the tetraacylated lipid A effectively neutralizes host Toll-like receptor 4 (TLR4) and reduces the strength of the initial immune response, inflammatory toxicity occurs during the disease phase and accelerates the progression to lethality (11, 12). Dissemination of *Y. pestis* through the vasculature causes bacteremia and sepsis, allowing for the colonization of secondary
tissues including the liver and spleen (13-17). Late stage disease is associated with inflammatory lesions, hemorrhage, and necrosis in these tissues as well as in the lungs.

Protection from inflammatory damage has been demonstrated in multiple experimental models through the therapeutic induction of heme oxygenase (HO-1) by treatment with cobalt protoporphyrin IX (CoPP) (18-22). Heme oxygenase is an intracellular enzyme that degrades heme into Fe\(^{2+}\), carbon monoxide (CO), and biliverdin. During infection, heme exacerbates inflammation and oxidative tissue damage. Degradation of heme by HO-1 reduces these tissue damaging responses while the end products, CO and biliverdin, stimulate anti-inflammatory cytokine production and tissue repair (21, 23). The role of HO-1 in plague has not previously been reported.

Although many cell types and tissues are capable of inducing HO-1 expression, transcription is normally repressed and regulated by two independent mechanisms. When heme, or another metalloprotoporphyrin such as CoPP, is taken up by cells it binds to and inactivates the transcriptional repressor \(\text{BTB Domain and CNC Homolog 1 (Bach1)}\) (24). Loss of Bach binding allows transcriptional activators, primarily Nuclear factor (erythroid derived 2)-like 2 (Nrf2), access to bind the \(\text{Hmox1}\) promoter and activate expression. Nrf2 mediates a protective response to oxidative stress and not only activates \(\text{Hmox1}\) but also regulates other promoters, sometimes as a repressor, including pro-inflammatory cytokines such as IL6 and TNF\(\alpha\) (25). The activity of Nrf2 is controlled by its sequestration and degradation in the cytoplasm due to its binding to Kelch-like ECH-associated protein 1 (Keap1) (26). Oxidative stress prevents this interaction, allowing Nrf2 to migrate into the nucleus to bind DNA. Although metalloprotoporphyrins all bind to Bach1 and induce \(\text{Hmox1}\) expression, they do not bind O\(\text{2}\) so they are not degraded by HO-1, and most, except for CoPP, are competitive inhibitors of HO-1.
that shut down its activity (27, 28). Metalloprotoporphyrins can therefore be used to therapeutically induce (CoPP) or inhibit (tin protoporphyrin IX, SnPP) HO-1 in experimental disease models. In this work, we evaluated the therapeutic potential of HO-1 by using CoPP as a treatment for pneumonic plague.

Results.

Protection of mice from lethal intranasal challenge with Y. pestis by treatment with CoPP.

Previous work in a murine model of LPS-induced inflammation showed that treatment of mice with CoPP 24 hours prior to challenge was protective (20). To develop a treatment regimen for the plague model, we delivered CoPP by intraperitoneal (IP) injection to mice every 24 or 48 hours, then measured HO-1 in the lungs and liver by ELISA. Compared to vehicle treated mice, both treatment protocols resulted in significantly increased levels of HO-1 in the lungs and liver by 24 hours post-treatment (Figure 1A-B). To ensure sustained HO-1 expression throughout the *Y. pestis* study, we gave two treatments prior to challenge and then every 48 hours post-challenge (Figure 1C). Upon intranasal challenge with *Yersinia pestis* CO92, CoPP-treatment improved survival and increased the time to mortality, and by day 9 all surviving mice showed no sign of disease (Figure 1D). We quantified *Y. pestis* in the lungs at 48 HPI and found that CoPP treatment resulted in a significant reduction in bacterial burden, and half of the mice had no detectable bacteria (Figure 1E).

When we probed for HO-1 in the lungs at 48 HPI, we found that it was increased in the CoPP treatment group compared to vehicle (Figure 2A). Since CoPP treatment and HO-1 activity are expected to reduce inflammatory cytokine production, we measured lung IL6 and TNFα at 48 HPI. In both treatment groups, there were mice with elevated levels of IL6, and the difference between groups was not significant (Figure 2B). The median concentration of pulmonary TNFα
was more than 10-fold higher in the CoPP treatment group, suggesting possible correlation between TNFα and reduced bacterial growth (Figure 2C). We also measured IFNγ since reduced IFNγ has been associated with *Y. pestis* virulence (29). No differences in pulmonary IFNγ levels were found between groups (Figure 2D). Together these data suggest that CoPP treatment may not substantially alter pro-inflammatory cytokine production, and may work by changing the impact of the inflammatory response.

Since a number of mice succumbed in the CoPP treatment group, we sought to understand loss of protection by looking at the infection 24 hours later. In contrast to 48 HPI, there was a large range of bacterial load recovered from the lungs of mice in both groups, and while the median titer was lower in the CoPP treatment group, this difference was not significant (Figure 3A). In the liver 70% of the CoPP-treated mice had undetectable bacteria, yet when bacteria were present, there appeared to be no direct impact of CoPP treatment on growth in the liver. We measured liver function enzymes in the blood and found significantly reduced alkaline phosphatase (ALP) and albumin between treatment groups, and in fact, the levels of ALP in the CoPP treatment group were below the normal range (Figure 3B). Since hepatocytes are the major producer of ALP, this result may indicate reduced hepatocyte function in the CoPP treatment group. Aspartate aminotransferase, gamma globulin, total protein, and cholesterol were increased in the CoPP treatment group compared to vehicle though they remained within normal range, consistent with a moderate reduction in hepatocyte function (Figure 3B, Supplemental Figure S1A-D). These results suggest that even though there was reduced bacterial growth in the liver in the CoPP treatment group, the disease in the liver may have been worsened by the treatment.

We therefore quantified pathological lesions in formalin fixed tissues collected at 72 HPI, scoring the severity of inflammatory and necrotic lesions in the lungs and liver. In the lungs,
lesion severity in both groups was moderate, with some containing neutrophil congestion, alveolar necrosis, hemorrhage and bacteria (Figure 3C-D). This suggests that the frequency of pneumonia was relatively low in these mice, consistent with the low frequency of mice in both groups that harbored high bacterial load. We scored hepatocyte necrosis and inflammatory foci in the liver and found a small, but significant reduction in lesion severity in the CoPP-treatment group. These data correlate with the reduction we observed in the colonization of the liver in the CoPP-treated mice at 72 HPI, and suggest that CoPP did not cause an increase in hepatocyte necrosis.

To verify that loss of protection did not correlate with an unexpected reduction in HO-1, we measured HO-1 in the lung homogenate at 72 HPI, and found high levels of pulmonary HO-1 in the CoPP-treatment group (Figure 4A). In addition, the vehicle treatment group appeared to have induced HO-1 expression, with greater than 10ng/mL in the lung homogenates compared to less than 10ng/mL observed in mice that were not infected (shown in Figure 1A). Given these high levels of HO-1, we anticipated an increase in IL10 and decrease in IL6 in the lungs due to increased HO-1 activity. However, increased pulmonary IL6 was present in the CoPP-treated mice (Figure 4B). Other cytokines in the lungs, including IFNγ, TNFα, and IL10 were not significantly different between groups (Figure 4C-E). These data suggest that the infection may alter the activity of or response to HO-1 such that there was little to no anti-inflammatory effect at 72 HPI.

In this experimental model (low volume intranasal challenge), untreated mice typically experience sepsis at 72 HPI, and we asked if this response was dampened or worsened by CoPP treatment (30). In the serum, we found that the median IL6 titer in the CoPP-treatment group was 1,000-fold higher than the vehicle-treatment group with approximately 2-fold more animals in
the CoPP treatment group having high levels of IL6 (>1,000 pg/mL) and other cytokines including IFNγ and TNFα but not IL10 suggesting the onset of sepsis (Figure 4F, Supplemental Figure S2). We compared mice in both groups that harbored high serum IL6 and found an apparent dampening of the hyper-inflammatory response, such that IFNγ and TNFα in the CoPP treatment group appeared lower than in the vehicle group (Figure 4G). The combined data may indicate that protection was limited to the primary lung infection.

CoPP treatment enhances antibiotic efficacy in the rat pneumonic plague model. Mice challenged by low volume intranasal infection with *Y. pestis* CO92 have significant amounts of challenge material retained in the upper respiratory tract where dissemination and secondary disease develop without primary lung involvement (30, 31). To test the efficacy of CoPP treatment on primary pneumonic plague in a relevant animal model, we evaluated aerosol challenge of rats in an antibiotic treatment model. Rats that are challenged by aerosolized *Yersinia pestis* rapidly develop primary lung infection and succumb to disease with severe bronchopneumonia (30, 32). In this study, we chose to use the outbred strain Sprague Dawley (SD) rats (*Rattus rattus*) as the test subjects as this strain has been previously well characterized in its response to CoPP treatment and is known to be sensitive to *Y. pestis* infection (33-39). To determine a dose where there is at least 90% lethality, we conducted a dose escalation experiment in a pilot study. In female rats, we observed 100% lethality at a mean presented dose of 5.5x10^4 CFU (Supplemental Figure S3A). Whereas the male rats in the same cohort received over 9.5x10^4 CFU but survived suggesting they may be more resistant to infection than females.

When we increased the challenge dose to 2.3x10^5 CFU, 100% lethality was observed in the males (Supplemental Figure S3B). Disease progression was very rapid in male and female SD rats, causing lethality on days 2 and 3 post-infection. Because of the small difference in
susceptibility, we challenged male and female rats separately in the treatment studies, targeting presented doses where 100% lethality was expected in control animals.

Previous work established that twice daily doses of 40mg/kg intragastric (IG) doxycycline can protect mice from aerosol challenge with Y. pestis (40). We therefore gave once daily doses of half strength (20mg/kg) in the rat model beginning 24 hours post-infection (HPI) as a sub-protective treatment. To test CoPP efficacy, we either began dosing 24 hours prior to infection as we did in the mouse model or 1 day post-infection (+1 DPI). Control animals, male and female, that received water by oral gavage succumbed to disease on days 2-4, with only 5% surviving the infection (Figure 5A). Rats treated with doxycycline showed a small improvement with 25% survival and lethality occurring 3-4 days post-infection. In contrast, pre-exposure CoPP treatment greatly enhanced the efficacy of doxycycline, with 95% survival of animals in this group. When CoPP began 24 hours post-infection, there was no significant difference in survival of female rats compared to the doxycycline treatment group (Figure 5B). However, there was a small improvement in efficacy in the male rats, with greater than 50% survival (Figure 5C). Overall this study demonstrates that treatment of rats with CoPP, strongly enhances doxycycline efficacy against primary pneumonic plague.

Induction of HO-1 leads to improved pulmonary clearance of Y. pestis in the rat pneumonic plague model.

Tin protoporphyrin IX (SnPP) is a potent inhibitor of HO-1 in vitro and in vivo with a long serum half-life and absorption in tissues including the lungs and liver (41-43). To determine the effect of inhibiting HO-1, we compared efficacy of CoPP treatment to that of SnPP in male rats challenged by aerosol exposure to Y. pestis in the doxycycline treatment model. Strikingly, while CoPP treatment improved the efficacy of doxycycline, SnPP treatment had no effect.
Figure 6A). Rats that succumbed had developed primary pneumonic plague, typified by bacterial microcolonies, neutrophilic recruitment, alveolar necrosis, pulmonary edema, and hemorrhage (Supplemental Figure S4A-C). Furthermore, CoPP greatly enhanced pulmonary bacterial clearance, with a 3-log reduction in the median bacterial titer recovered from the lungs compared to all other groups (Figure 6B). In addition, very few rats in the CoPP group had bacteremia, whereas 100% of the controls and about 80% of the doxycycline and SnPP groups harbored *Y. pestis* in the blood. These data indicate that the reduction of pulmonary *Y. pestis* delayed or prevented the development of secondary infection. In contrast, the inhibition of HO-1 by SnPP did not have a detectable impact on bacterial growth.

We also measured HO-1 and inflammatory cytokines in the lungs and serum at 48 HPI. Somewhat unexpectedly, there were no significant differences in HO-1 concentration in the lungs between any of the groups at 48 HPI, with considerable variation in the amounts within in each group (Figure 6C). This may indicate that the infection induces HO-1. To determine if the animals were experiencing a hyper-inflammatory response, we measured pulmonary and serum cytokines. Pulmonary IL6, IFNγ, TNFα, and IL10 were significantly reduced in the CoPP group compared to vehicle (Figure 6D-G). However, while there were overall lower levels of these cytokines in the CoPP group compared to doxycycline alone or SnPP, the differences were not significant, indicating a small effect conferred by doxycycline.

Serum cytokines, including IL6, IFNγ, TNFα, and IL10, were elevated in the control groups and in SnPP-treated rats indicating sepsis (Figure 6H-K). In contrast, sepsis was not present in the CoPP-treated rats, with significantly lower serum IL6 and IFNγ (Figure 6J-K). Overall, the combined data suggest that the CoPP and doxycycline combined for a synergistic
improvement in controlling pulmonary bacterial growth and vascular spread, resulting in strong protection from primary pneumonic plague.

Discussion.

Pneumonic plague is a deadly disease that consists of fulminant bronchopneumonia and severe sepsis. In this work, we showed that this can be prevented by treatment with the heme analog and inducer of HO-1 expression, cobalt protoporphyrin IX. On its own, CoPP treatment of mice appeared to reduce inflammatory toxicity, rather than suppress cytokine production during pulmonary *Y. pestis* infection. This allowed for improved bacterial clearance by the innate immune response. Synergistic protection with antibiotics was observed in a rat doxycycline treatment model. Since it is known that doxycycline efficacy is dependent on host neutrophils, these data suggest that HO-1 may improve the neutrophilic response to *Y. pestis* (40).

Previous work has established a role for HO-1 in improving the bacteriocidal mechanisms of neutrophils, and in decreasing damage to tissues caused by release of reactive oxygen species (ROS) by neutrophils (44, 45). In oxygen rich environments, such as the lungs, free iron generated as a result of hemolysis leads to the generation of ROS that is pro-inflammatory and cytotoxic to cells (21). Highly virulent and invasive pathogens, such as *Y. pestis*, are likely able to exploit this response and grow, resulting in a feedback loop of neutrophilic inflammation and tissue damage that favors bacterial growth. Further protection from ROS may be provided by biliverdin and CO, produced by heme degradation, which have anti-apoptotic and anti-inflammatory effects that could dampen immunopathology (22). Future work examining the activity of CoPP-treated macrophages or neutrophils in vitro and in vivo should be informative in understanding which, if any, of these mechanisms results in protection from pneumonic plague.
CoPP allows for Nrf2-regulated gene expression, an anti-oxidant program with pleiotropic effects including an overall suppression of the inflammatory response (26). During *Y. pestis* infection of mice, however, this response was not observed, and in fact, increased IL6 was found. This may be a consequence of modulation of host cell signaling by *Y. pestis* virulence factors or is an indication that essential co-stimulatory signals were not present. Without doxycycline, CoPP provided moderate protection and, in fact, it appeared that loss of protection may have been caused by off-target effects. For example, we found abnormally low ALP, elevated IL6, and other modest changes in the serum of mice in the CoPP treatment group that may suggest liver toxicity. Other heme binding proteins, primarily cytochrome P450 in the liver, are known to bind to and be inhibited by CoPP (46). Alternatively, over-production of HO-1 in the liver may have unwanted effects (47). Additional investigation is needed to understand the mechanism underlying these observations, whether it is caused by HO-1 or CoPP directly, and if reducing this effect improves protection. Nevertheless, the targeting of HO-1 or another cytoprotective mechanism to limit inflammatory damage is a promising treatment strategy for pneumonic plague.

In this work, we observed an unexpected difference between male and female Sprague Dawley (SD) rats in their susceptibility to aerosol challenge with *Y. pestis*. In human plague, there are no known sex dependent differences in susceptibility, though historically, there have been more male than female plague victims, Sexual dimorphism has been frequently documented in infectious diseases, and in general, females show greater humoral and cell mediated responses than males of the same age and species, making females more resistant (48). In contrast, in the pneumonic plague model, SD rat females were more sensitive to infection by aerosolized *Y. pestis* suggesting the effects we observed may result from the unique host-pathogen interactions.
that define plague. Since the disease course appeared to have the same kinetics and outcome in both sexes, we think it likely that the difference in susceptibility relates to an early event that impacts the initiation of infection. In an endotoxin challenge model, the inflammatory response of the SD rat female involved higher production of inflammatory cytokines from alveolar macrophages (49). Alveolar macrophages are early cellular targets of *Y. pestis* infection of the lungs, where such an effect could impact the initiation of infection (50). Future treatment and vaccine studies of plague should include male and female animals until there is a better understanding of the mechanism underlying sex-dependent susceptibility in the SD rat.

Materials and Methods.

Bacterial Strains. *Yersinia pestis* CO92 is a wild type (Orientalis biovar) strain originally isolated from a plague patient (51). Bacteria were routinely grown from frozen stock by streaking for isolation onto heart infusion agar (HIA) plates (non-pigmented strains) or HIA plates supplemented with 0.005% (w/v) Congo Red and 0.2% (w/v) galactose (for CO92) to screen bacteria that retain the pigmentation locus (52). For intranasal challenge studies, a single pigmented colony was used to inoculate heart infusion broth (HIB) supplemented with 2.5mM CaCl₂ and grown for 18–24 hrs at 37°C, 125 rpm. For aerosol challenge, bacteria were prepared as previously described (53). Briefly, *Y. pestis* CO92 seed stocks were used to inoculate HIB+2.5mM CaCl₂ and grown for 20-22 hrs at 37°C, 125rpm. Bacteria were sedimented by centrifugation followed by resuspension in 10mL sterile PBS. Presented dose was calculated using Guyton’s formula after verifying nebulizer and impinger concentrations by plating on HIA with congo red (54). All work with the wild type *Y. pestis* strain CO92 was performed in a select agent-authorized biosafety level 3 laboratory.

Vertebrate Animals.
Ethics Statement. All animal procedures were in compliance with the Office of Laboratory Animal Welfare and the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the University of Missouri Animal Care and Use Committee.

Mouse model. Wild type C57BL/6 mice were used for the mouse studies. Breeder pairs were purchased (Jackson Laboratories, Maine, USA) and mice were reared at the University of Missouri. Approximately equal numbers of male and female, aged-matched mice, ranging from 15–30 g were used. Cobalt protoporphyrin IX (CoPP, Enzo Life Sciences, New York, USA) was solubilized in 0.1M NaOH and neutralized to pH7 with HCl. Mice were given 5mg/kg CoPP, or an equivalent volume of vehicle control, by intraperitoneal injection per treatment.

Mice were challenged with Y. pestis CO92 by intranasal instillation of a 10µl volume as previously described (30). Actual CFU was verified by plating a serial dilution of the challenge material on HIA. Infected mice were monitored by daily health assessment for signs of progressing disease, including reduced activity, hunched posture, lack of grooming, and labored breathing as well as other less common signs such as ocular discharge.

Rat model. Age-matched male and female Sprague Dawley rats (12-16 weeks old) were used for this study and were obtained from Charles River Laboratories. Rats were housed for >7 days in the ABSL3 facility prior to initiating the study. Approximately 2x10⁹ CFU/mL was placed in the sparging liquid aerosol generator nebulizer in a nose-only inhalation exposure system (CH Technologies, New Jersey, USA). Aerosol conditions: 65% humidity, 10-20 min exposure time. Two Teflon impingers were placed at the base of the exposure tower to measure Y. pestis concentration in the aerosol. In each trial, males and females were age-matched and within each cohort, weight differences were less than 10%. Age-matched male and female rats differed in weight by as much as 50% resulting in significant differences in the volume of air (and challenge
material) inhaled. Therefore, to control over dosing, males and females were challenged in separate cohorts. Actual presented dose was calculated as aerosol concentration x minute volume (MV) x exposure time. For each trial, all animals were challenged in a single cohort. Doses of individual animals are shown in Supplemental Tables 1-3.

Rats were given 5mg/kg CoPP (or SnPP where indicated) by intraperitoneal injection per treatment. In different studies, the duration of CoPP treatment was progressively reduced to minimize the potential toxicity of the treatment without detectable impact on the survival outcome. Oral doxycycline (20mg/kg Vibramycin) or water was given once daily by gavage beginning 24 hours post-exposure for 7 days. Rats were weighed daily and scored for the appearance of clinical signs of disease including hunched posture, poor grooming, reduced activity, porphyrin discharge, and labored breathing.

All animals that survived to the end of the observation period (10, 14 or 21 days as indicated in the figures) or were identified as moribund (defined by pronounced neurologic signs, inactivity, and severe weakness) were euthanized by CO₂ asphyxiation followed by bilateral pneumothorax or cervical dislocation, methods approved by the American Veterinary Medical Association Guidelines on Euthanasia.

CFU Determination. At the indicated time points post-infection animals were euthanized and tissues were aseptically removed and homogenized in sterile PBS. Samples were serially diluted and plated on HIA in duplicate for enumeration of viable bacteria. The limit of detection was 50 CFU/mL.

Histopathology. After euthanasia, lungs were perfused in situ with 10% formalin; lungs, liver and spleen were removed and incubated in 10% formalin for 2 days. Organs were then prepared for embedment, blocked in wax, and cut into 5 µm sections. Tissue sections were stained with
hematoxylin and eosin, and stained slides were affixed with permanent coverslips. Sample identities were blinded for analysis. For quantification, inflammatory lesions, necrosis, hemorrhage, edema and other lesions were scored for increasing severity in size and/or frequency in at least 10 non-overlapping fields for each tissue. The appearance of bacterial colonies in the tissues was noted but not included in the lesion scoring if it wasn’t causing tissue pathology.

Protein Quantification. Blood, collected post-mortem by cardiac puncture and lungs, homogenized in sterile PBS, were centrifuged to remove cellular material. Serum and lung homogenate were antibiotic-treated to inactivate *Y. pestis* and stored at -80°C until analysis. To quantify cytokines, serum and lung homogenate were analyzed by a multiplex cytokine assay (Millipore Sigma, Missouri, USA) for pro-inflammatory cytokines known to play a role in plague: IFNγ, TNFα, IL6, and IL10. For some studies, ELISA was used: TNFα, IL6, IFNγ (R&D Systems, Minnesota, USA); HO-1 (Enzo Life Sciences, New York, USA). For some studies, aliquots of serum were sent for analysis of liver damage indicators (ALP, AST, and ALT) as well as total albumin, cholesterol, total protein, and total bilirubin (Comparative Clinical Pathology Services, LLC, Columbia, Missouri, USA).

Statistical Evaluation. Control conditions from all trials were compared by ANOVA to verify similarity in results, then combined for statistical evaluation. Statistical significance was assessed by the tests indicated in the figure legends using GraphPad software (GraphPad Software, California, USA). Significance was concluded when *P*<0.05.

Funding: This work was supported by Public Health Service Award NIH/NIAID 1R21AI133450 and University of Missouri CVM Faculty Research Award (DMA); JLW was partially supported by DHS/KBA Center of Excellence for Emerging and Zoonotic Animal
Diseases and the Phi Zeta Honor Society, University of Missouri chapter. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The authors declare no conflict of interest.

Acknowledgements. We are grateful to Hayden Siegfried for excellent technical assistance and to Dr. Craig Franklin for helpful discussion on histopathology. Histopathology staining was completed by IDEXX-RADIL (Missouri, USA).
References.

1. Butler T. 2013. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. Am J Trop Med Hyg 89:788-793.

2. Nguyen V, Parra-Rojas C, Hernandez-Vargas E. 2018. The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling. Epidemics 25:20-25.

3. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P. 1997. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. New Eng J Med 337:677-680.

4. Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, Courvalin P, Carniel E. 2001. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Inf Dis 7:43-48.

5. Hinnebusch B, Rosso M, Schwan T, Carniel E. 2002. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 2:349-354.

6. Cabanel N, Bouchier C, Rajerison M, Carniel E. 2017. Plasmid-mediated doxycycline resistance in a Yersinia pestis strain isolated from a rat. Int J Antimicrob Agents Oct 10.

7. Rebeil R, Ernst R, Gowen B, Miller S, Hinnebusch B. 2004. Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 52:1363-1373.

8. Montminy S, Khan N, McGrath S, Walkowicz M, Sharp F, Conlon J, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter R, Goguen J, Lien E. 2006. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066-1073.
9. Rebeil R, Ernst RK, Jarrett CO, Adams KN, Miller SI, Hinnebusch BJ. 2006. Characterization of late acyltransferase genes of *Yersinia pestis* and their role in temperature-dependent lipid A variation. J Bacteriol 188:1381-1388.

10. Price P, Jin J, Goldman W. 2012. Pulmonary infection by *Yersinia pestis* rapidly establishes a permissive environment for microbial proliferation. Proc Natl Acad Sci USA 109:3083-3088.

11. Walker R, Barnes M, Higgins E. 1966. Composition of and pathopathology produced by plague endotoxins. Nature 209:1246.

12. Albizo J, Surgalla M. 1970. Isolation and characterization of *Pasteurella pestis* endotoxin. Infect Immun 2:229-236.

13. Wang H, Cui Y, Wang Z, Wang X, Guo Z, Yan Y, Li C, Cui B, Xiao X, Yang Y, Qi Z, Wang G, Wei B, Yu S, He D, Chen H, Chen G, Song Y, Yang R. 2011. A dog-associated primary pneumonic plague in Qinghai Province, China. Clin Infect Dis 52:185-190.

14. Ge P, Xi J, Ding J, Jin F, Zhang H, Guo L, Zhang J, Li J, Gan Z, Wu B, Liang J, Wang X, Wang X. 2015. Primary case of human pneumonic plague occurring in a Himalayan marmot natural focus area Gansu Province, China. Int J Infect Dis 33:67-70.

15. Richard V, Riehm J, Herindrainy P, Soanandrasana R, Ratsitoharina M, Rakotomanana F, Andrianalimanana S, Scholz H, Rajerson M. 2015. Pneumonic plague outbreak, Northern Madagascar, 2011. Emerg Infect Dis 21:8-15.

16. Runfol J, House J, Miller L, Colton L, Hite D, Hawley A, Mead P, Schriefer M, Petersen J, Casaceli C, Erlandson K, Foster C, Pabilonia K, Mason G, Douglas J.
2015. Outbreak of human pneumonic plague with dog-to-human and possible human-to-human transmission - Colorado, June-July 2014. MMWR 64:429-434.

17. Li Y, Li D, Li H, Han Y. 2016. Plague in China 2014—All sporadic case report of pneumonic plague. BMC Infect Dis 16:85.

18. Hill-Batorski L, Halfmann P, Neumann G, Kawaoka Y. 2013. The cytoprotective enzyme heme oxygenase-1 suppresses ebola virus replication. J Virol 87:13795-13802.

19. Konrad F, Braun S, Ngamsri K, Vollmer I, Reutershan J. 2014. Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow. Am J Physiol Lung Cell Mol Physiol 307:L707-L717.

20. Piotrowski J, Jedrzejewski T. 2014. Heme oxygenase-1 induction by cobalt protoporphyrin enhances fever and inhibits pyrogenic tolerance to lipopolysaccharide. J Thermal Biol 45:69-74.

21. Espinoza J, Gonzalez P, Kalergis A. 2017. Modulation of antiviral immunity by heme oxygenase-1. Am J Path 187:487-493.

22. Zhang A, Duan H, Li N, Zhao L, Pu F, Huang B, Wu C, Nan Y, Du T, Mu Y, Zhao Q, Sun Y, Zhang G, Hiscox J, Zhou E, Xiao S. 2017. Heme oxygenase-1 metabolite biliverdin, not iron, inhibits porcine reproductive and respiratory syndrome virus replication. Free Radic Biol Med 102:149-161.

23. Sheikh S, Haegazi R, Kobayashi T, Onyiah J, Russo S, Matsuoka K, Sepulveda A, Li F, Otterbein L, Plevy S. 2011. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J Immunol 186:5506-5513.

24. Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, Taketo M, Yamamoto M, Igarashi K. 2002.
Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21:5216-5224.

25. Kobayashi E, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624.

26. Ahmed S, Luo L, Namani A, Wang X, Tang X. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta 1863:585-597.

27. Sardana M, Kappas A. 1987. Dual control mechanism for heme oxygenase: Tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver. Proc Natl Acad Sci 84:2464-2468.

28. Ryter S, Alam J, Choi A. 2006. Heme oxygenase-1/ Carbon monoxide: From basic science to therapeutic applications. Physiol Rev 86:583-650.

29. Nakajima R, Brubaker R. 1993. Association between virulence of Yersinia pestis and suppression of Gamma Interferon and Tumor Necrosis Factor Alpha. Infect Immun 61:23-31.

30. Olson R, Anderson D. 2019. Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model. PloS One 14:e0217440.

31. Miller M, Stabenow J, Parvathareddy J, Wodowski A, Fabrizio T, Bina X, Zalduondo L, Bina J. 2012. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: Effect of instillation volume and form of anesthesia. PloS One 7:e31359.
32. Coate E, Kocsis A, Peters K, Anderson P, Ellersieck M, Fine D, Anderson D. 2014. Remote monitoring of the progression of primary pneumonic plague in Brown Norway rats in high-capacity, high-containment housing. Pathog Dis 71:265-275.

33. Anderson K, Simionatto C, Drummond G, Kappas A. 1984. Tissue distribution and disposition of tin-protoporphyrin, a potent competitive inhibitor of heme oxygenase. J Pharmacol Exp Ther 228:327-333.

34. Kappas A, Simionatto C, Drummond G, Sassa S, Anderson K. 1985. The liver excretes large amounts of heme into bile when heme oxygenase is inhibited competitively by Sn-protoporphyrin. Proc Natl Acad Sci 82:896-900.

35. Rosenberg D. 1993. Pharmacokinetics of cobalt chloride and cobalt-protoporphyrin.

36. Sebbane F, Gardner D, Long D, Gowen B, Hinnebusch B. 2005. Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Path 166:1427-1439.

37. Airhart C, Rohde H, Hovde C, Bohach G, Deobald C, Lee S, Minnich S. 2008. Lipid A mimetics are potent adjuvants for an intranasal pneumonic plague vaccine. Vaccine 26:5554-5561.

38. Kolodziejek A, Schnider D, Rohde H, Wojtowicz A, Bohach G, Minnich S, Hovde C. 2010. Outer membran protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on LPS core length. Infect Immun In press.
39. Unuma K, Aki T, Matsuda S, Funakoshi R, Yoshida K, Uemura K. 2013. Inducer of heme oxygenase-1 cobalt protoporphyrin accelerates autophagy and suppresses oxidative damages during lipopolysaccharide treatment in rat liver. Hepatol Res 43:91-96.

40. Heine H, Louie A, Sorgel F, Bassett J, Miller L, Sullivan L, Kinzig-Schippers M, Drusano G. 2007. Comparison of 2 antibiotics that inhibit protein synthesis for the treatment of infection with Yersinia pestis delivered by aerosol in a mouse model of pneumonic plague. J Infect Dis 196:782-787.

41. Anonymous. Vector-borne diseases: animals and patterns. Global health impacts of vector-borne diseases: workshop summary, p. In National Academy of Sciences E, and Medicine (ed), Board on Global Health.

42. Minjauw B, McLeod A. 2003. The impact of ticks and tick-borne diseases on the livelihood of small-scale and marginal livestock owners in India and eastern and southern Africa.

43. Rosenberg R, Lindsey N, Fischer M, Gregory C, Hinckley A, Mead P, Paz-Bailey G, Waterman S, Drexler N, Kersh G, Hooks H, Partridge S, Visser S, Beard C, Petersen L. 2018. Vital signs: trends in reported vector-borne disease cases - United States and territories, 2004-2106. MMWR Morb Mortal Wkly Rep 67:496-501.

44. Onyiah J, Sheikh S, Maharshak N, Steinbach E, Russo S, Kobayashi T, Mackey L, Hansen J, Moeser A, Rawls J, Borst L, Otterbein L, Plevy S. 2013. Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology 144:789-798.

45. Orf K, Cunnington A. 2015. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front Microbiol 6:666.
46. **Kappas A, Drummond G.** 1986. Control of heme metabolism with synthetic metalloporphyrins. J Clin Invest **77**:335-339.

47. **Sachar M, Anderson K, Ma X.** 2016. Protoporphyrin IX: the good, the bad, and the ugly. J Pharmacol Exp Ther **356**:267-275.

48. **Ahmed S, Penhale W, Talal N.** 1985. Sex hormones, immune responses, and autoimmune diseases: Mechanisms of sex hormone action. Am J Path **121**:531-551.

49. **Spitzer J, Zhang P.** 1996. Protein tyrosine kinase activity and the influence of gender in phagocytosis and tumor necrosis factor secretion in alveolar macrophages and lung-recruited neutrophils. Shock **6**:426-433.

50. **Pechous R, Sivaraman V, Price P, Stasulli N, Goldman W.** 2013. Early Host Cell Targets of *Yersinia pestis* during Primary Pneumonic Plague. PLoS Path **9**:e1003679.

51. **Doll J, Zeitz P, Ettestad P, Bucholtz A, Davis T, Gage K.** 1994. Cat-transmitted fatal pneumonic plague in a person who traveled from Colorado to Arizona. Am J Trop Med Hyg **51**:109-114.

52. **Surgalla M, Beesley E.** 1969. Congo red-agar plating medium for detecting pigmentation in *Pasteurella pestis*. App Microbiol **18**:834-837.

53. **Anderson P, Olson R, Willix J, Anderson D.** 2019. Standardized method for aerosol challenge of rodents with *Yersinia pestis* for modeling primary pneumonic plague. Methods Mol Biol **2010**:29-39.

54. **Guyton A.** 1947. Measurement of the respiratory volumes of laboratory animals. Am J Physiol **150**:70-77.

Figure Legends.
Figure 1. CoPP is protective against pneumonic plague in mice. (A-B) Groups of 5 mice (male and female) were provided CoPP treatment by intraperitoneal injection. Comparison between daily (24hr) and every other day (48hr) dosing was assessed by measuring HO-1 in the lung (A) and liver (B) homogenates 24 hrs after the second treatment. Data shown were collected in two independent trials (n=10 per group). Data represent the mean with error bars showing standard deviation; statistical significance was evaluated by one-way ANOVA followed by Dunnett’s multiple comparison’s test; *P<0.05. (C) Dosing protocol for the mouse studies: IP treatment with CoPP (5mg/kg, black arrows) or PBS vehicle was provided 24 hrs prior to challenge and on the day of challenge. Additional treatments were provided every other day for the duration of the 10 day observation period. (D-E) Groups of 10 C57BL/6 mice were treated with vehicle or CoPP following the protocol in C, then challenged by intranasal infection with 5,000-8,000 CFU *Y. pestis* CO92. (D) Mice were monitored for survival for 10 days; data shown were combined from 3 independent trials (n=30 per group); data were evaluated by Gehan-Breslow log rank test, *P<0.05. (E) Groups of 3-5 male and female C57BL/6 mice, challenged and treated as in shown in C, were euthanized at 48 hours post-infection (HPI) and bacterial titer was determined by serial dilution and plating; dotted line represents the limit of detection and the number below the line indicates the number of mice with undetectable bacteria. Data shown was collected in 3 independent trials, n=13 per group; bars indicate the median; data were evaluated by Mann-Whitney, *P<0.05.

Figure 2. CoPP treatment does not induce inflammatory cytokines in the lungs during *Y. pestis* infection. Groups of 5 male and female C57BL/6 mice were treated as in Figure 1 with vehicle (open circles) or CoPP (closed circles) and challenged with *Y. pestis* CO92. At 48 HPI, lungs were removed, homogenized in PBS, and analyzed for: (A) HO-1; (B) IL6; (C) TNFα; (D) IFNγ.
by ELISA. Data shown was combined from 4 independent trials, n=20 per group. Data were analyzed by one-way ANOVA with Tukey’s post-test, *P<0.05, ***P<0.001, bars indicate median, nd: not detected.

Figure 3. Loss of protection is associated with increased bacterial growth and liver injury.

Groups of 3-6 C57BL/6 mice were treated as in Figure 1 with CoPP or vehicle followed by intranasal infection with *Y. pestis* CO92. (A) Bacterial titer in the lungs and liver at 72 HPI; bars indicate median, horizontal dotted line represents the limit of detection and the number of mice with undetectable bacteria is indicated beneath (n=10 per group, collected in two independent trials). (B) Liver function enzymes alkaline phosphatase (ALP), aspartate amino transferase (AST), and alanine amino transferase (ALT) were measured in the blood at 72 HPI; data shown were collected in 4 independent trials (n=20-22 per group) and depict the mean of all the trials with standard deviation; grey boxes indicate normal range for C57BL/6 mice. (C-D) Formalin fixed lungs and liver were prepared at 72 HPI and processed for histopathology. (C) Representative images from CoPP-treated mice: Left side (lungs): upper panel represents mild to moderate inflammatory pathology found in most animals in this group, lower panel is the severe lesion found in 1 animal in this group showing neutrophil congestion, alveolar necrosis and bacterial growth typical of primary pneumonic plague; Right side (liver): representative images found in the CoPP treatment group showing mild inflammatory lesions. (D) Mean severity score of lung pathology, bars indicate standard deviation. Data shown were collected in 2 independent trials, and were analyzed for statistical significance by (A) Mann-Whitney or (B,D) unequal t-test comparing treated to untreated, *P<0.05.

Figure 4. Loss of protection in CoPP-treated mice is associated with increased IL6. Cytokine analysis of samples collected at 72 HPI (shown in figure 3). Filtered lung homogenates (A-E)
and serum (F-G) were analyzed for the following proteins by ELISA or Multiplex: (A) HO-1; (B) IL6; (C) IFNγ; (D) TNFα; (E) IL10, (F) serum IL6, right panel indicates the percent of mice with high levels of serum IL6 (>1,000pg/mL); (G) IFNγ, TNFα, and IL10 from mice with high serum IL6. Bars indicate median. Data shown were collected in 2-4 independent trials, and were analyzed for statistical significance by Mann Whitney test comparing treated to untreated, *P<0.05.

Figure 5. CoPP treatment enhances antibiotic efficacy against primary pneumonic plague in the rat model. Male and female rats (cohorts of 20-21, 5-6 rats/treatment group) were challenged by aerosolized Y. pestis CO92 (individual animal doses shown in Supplemental Table S2). Oral doxycycline treatment was given daily, beginning 24 hours post-challenge (Control + Dx); CoPP treatment initiated 24 hours prior to challenge (CoPP+Dx) or 24 hours post-challenge (+1DPI CoPP+Dx); control animals received PBS and water (Control). Treatments continued for 7 days; animals were monitored for a 21 day observation period. A) Combined data, males and females; B) Females only; C) Males only. Data shown was collected in a total of 4 independent trials (2 trials for each sex). Data were evaluated by Gehan-Breslow-Wilcoxon log rank test, n=20-22 per group; different letters indicate statistical significance between groups.

Figure 6. Stimulation of HO-1 enhances doxycycline efficacy in preventing bacterial growth.

Groups of 28 (n=7 per group) male Sprague-Dawley rats were challenged by inhalation exposure to Y. pestis CO92 (individual doses shown in Supplemental Table S3). Study design: Rats were pre-treated with 5mg/kg CoPP (CoPP+Dx) or SnPP (SnPP+Dx) IP on days -1, 0, +2, and +4; doxycycline (Dx) treatment (20mg/kg IG) began 24 HPI and continued once daily for 7 days. Vehicle control animals received PBS by IP injection and water by oral gavage (control). (A) For each group, 4 rats were monitored for survival over 14 days; (B-L) The remaining 3 rats per
group were euthanized at 48 HPI, lungs (B-G) and blood (B, H-K) removed and processed for:

(B) CFU; (C) HO-1, (D, H) IL6, (E, I) IFNγ, (F, J) TNFα, (G, K) IL10. Data shown were

collected in 3 independent trials, n=9-12 per group; bars indicate median. Data were pooled for

statistical analyses by Gehan-Breslow log rank (A) or Kruskal Wallis followed by Dunn’s

multiple comparisons test (B-K), *P<0.05, **P<0.01, ***P<0.001, NS: not significant; LH: lung

homogenate.
