Prospects for probing ultralight primordial black holes using the stochastic gravitational-wave background induced by primordial curvature perturbations

Shasvath J. Kapadia,1 Kanhaiya Lal Pandey,1 Teruaki Suyama,2 and Parameswaran Ajith1,3

1International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore - 560089, India
2Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
3Canadian Institute for Advanced Research, CIFAR Azrieli Global Scholar, MaRS Centre, West Tower, 661 University Ave, Toronto, ON M5G 1M1, Canada

Ultralight primordial black holes (PBHs) with masses \(\lesssim 10^{15} \text{g} \) and subatomic Schwarzschild radii, produced in the early Universe, are expected to have evaporated by the current cosmic age due to Hawking radiation. Based on this assumption, a number of constraints on the abundance of ultralight PBHs have been made. However, Hawking radiation has thus far not been verified experimentally. It would, therefore, be of interest if constraints on ultralight PBHs could be placed independent of the assumption of Hawking-radiation. In this paper, we explore the possibility of probing these PBHs, within a narrow mass range, using gravitational-wave (GW) data from the two LIGO detectors. The idea is that large primordial curvature perturbations that result in the formation of PBHs, would also generate GWs through non-linear mode couplings. These induced GWs would produce a stochastic background. Specifically, we focus our attention on PBHs of mass range \(\sim 10^{13} - 10^{15} \text{g} \) for which the induced stochastic GW background peak falls in the sensitivity band of LIGO. We find that, assuming a monochromatic PBH mass distribution, the corresponding GW background would be detectable using presently available LIGO data, provided we neglect the existing constraints on the abundance of PBHs, which are based on Hawking radiation. For more realistic (broader) mass distributions, we find that this stochastic background would be detectable in LIGO’s third observing run, even after considering the existing constraints on PBH abundance. A non-detection should enable us to constrain the amplitude of primordial curvature perturbations as well as the abundance of ultralight PBHs.

I. INTRODUCTION

Primordial black holes (PBHs) are thought to be produced via the direct collapse of overdense regions in the early Universe, in contrast to astrophysical black holes, which are produced by the collapse of the cores of massive stars. The lower limit on the allowed range of masses for PBHs is much smaller than for astrophysical black holes, permitting even the possibility of Planck mass (\(\sim 10^{-5} \text{g} \)) PBHs [1, 2].

PBHs have the potential to provide answers to many open questions in astrophysics and cosmology. They are among the often-considered candidates for dark matter, could aid the formation of supermassive black holes and galaxies, and are speculated to be possible sources of gamma-ray bursts [3–6, and references therein]. If they are found to exist, they could also probe the primordial spectrum of density fluctuations and various phase transitions in the early Universe [3, 7].

They have therefore been searched for extensively using various observations. These include observations of the extragalactic \(\gamma \)-ray background, gravitational microlensing experiments (e.g., OGLE-I-IV, using Kepler objects, Eridanus-II star clusters), cosmic microwave background experiments, dynamical constraints and accretion constraints [5, 7, 8, and the references therein]. These observations and experiments provide strong constraints on PBH abundances in various mass windows above \(10^{15} \text{g} \). Those with masses \(\lesssim 10^{15} \text{g} \), which we refer to here as “ultralight PBHs”, are thought to have evaporated by now due to Hawking-radiation. For such PBHs we have constraints coming from measurements of the abundances of light elements, since the presence of such PBHs in the primordial universe would change the abundance of light elements predicted in the standard big-bang nucleosynthesis (BBN) due to high energy particles of the Hawking radiation [7, 9, and the references therein].

A more recent means of probing PBHs is via gravitational waves (GWs). Ever since their detection on September 14, 2015, GWs have afforded a novel way to infer the existence binary black holes (BBHs), as well as their intrinsic parameters such as their masses and spin angular momenta. During the first and second observing runs (O1 and O2) of the LIGO-Virgo detectors, there were more than a dozen confirmed BBH detections [10, 11], most of which were significantly heavier than those observed in X-ray binaries. Their unexpectedly large masses provided ample opportunity for a number of theoretical formation channels to be proposed [12]. Among them is the possibility that (at least some) of LIGO’s binary black holes are PBHs [4, 13, 14].

While ascertaining the provenance of LIGO’s black holes as PBHs might be challenging, detecting mergers of sub-solar BBHs would likely prove to be an important step in establishing the existence of non-evaporated PBHs, since astrophysical black holes are not expected to be lighter than \(\sim 3M_{\odot} \). The non-detection of sub-solar BBHs would constrain the fraction of dark-matter (\(f_{\text{PBH}} \)) as non-evaporated sub-solar PBHs. A search for a narrow mass-range of resolvable sub-solar BBH systems in LIGO-Virgo data was recently conducted, and a corresponding constraint on \(f_{\text{PBH}} \) placed [7, 16, 17]. In addition, a search in O1 data for the stochastic background of GWs from coalescing stellar mass BBHs [18] and sub-solar-mass BBHs [19] was also carried out.

In this article, we explore the prospects of detecting a stochastic background of GWs from primordial curvature perturbations, which also result in the formation of PBHs through gravitational collapse. Owing to this close connection, these induced GWs offer an interesting probe of the abundance and mass function of PBHs [20, 21]. Unlike most previous searches for PBHs via GWs (resolved or stochastic), we do not rely on the induced stochastic GW background. Specifically, we focus on PBH for-
mation in the radiation dominated era due to a large peak in the primordial spectrum of curvature fluctuations around the mass scale of $\sim 10^{13}$-15 g. Such scenarios are possible in some hybrid inflation theories [4, 7, 22, and the references within]. These curvature fluctuations would lead to the formation of GWs via scalar-tensor mode coupling in the second order perturbation theory, thus producing a stochastic GW background [7, 23, and the references therein]. We investigate the detectability of this stochastic background by the LIGO observatories with sensitivities achieved during the first three observing runs as well as the expected design sensitivity.

We find that the GW energy density fraction Ω_{GW} resulting from a monochromatic peak in the curvature power spectrum should be detectable in O1 and O2 data, if we allow the primordial power spectrum to have its maximum possible amplitude (neglecting the existing constraints that are derived assuming Hawking radiation). However, the bulk of its SNR comes from a feature associated with the monochromatic peak (see sections II and III for details). While this might appear unrealistic, we nevertheless investigate its detectability, since certain models of inflation predict such nearly monochromatic distributions [22]. On the other hand, Ω_{GW} resulting from a Gaussian peak in the curvature power spectrum, while undetectable in O1 and O2 data, should be detectable in O3 data for a range of assumed variances. These results advocate a search for the ultralight PBHs investigated in this paper in LIGO-Virgo data from O1 and O2, as well as O3.

It is worth mentioning here that the amplitude of the energy-density fraction Ω_{GW} (which comes from the curvature power spectrum) is a free parameter that needs to be constrained from observation. We consider two cases where we investigate detectability. The first uses existing constraints on the abundance of ultralight PBHs from BBN and extra-galactic photon background, both of which are a consequence of Hawking-radiation, to fix the value of the amplitude. The second makes no assumption pertaining to Hawking-radiation since this has not been verified experimentally to date; the amplitude is fixed by assuming the maximum possible value on $f_{BH}(=1)$.

The article is organized as follows: We summarize how the expected SNR is calculated from the detector sensitivity curve and the energy-density spectrum Ω_{GW} in Section II. We then briefly describe the formation of stochastic GW background induced by primordial scalar perturbations in Section III. Section IV presents prospective SNR values for various detector sensitivities, and a range of ultralight PBHs associated with GWs in second order perturbation theory. Section V concludes the paper by summarizing and discussing the results, while also advocating a search for these PBHs in O1, O2 and O3 data (the latter could become available soon).

II. DETECTABILITY OF THE STOCHASTIC GW BACKGROUND

Apart from the individually resolvable signals, like the ones being detected by LIGO and Virgo, we also expect a stochastic GW background to be present. This could be produced either by energetic processes in the early Universe, or by the incoherent superposition of many independent astrophysical signals whose amplitudes may be too weak to be detectable as individual sources (see, e.g., [24] for a review). The stochastic GW background can be characterized completely from its statistical properties. The central quantity in the detection of this stochastic background is the spectrum of the “GW energy density fraction”, which is the fraction of the critical energy density ρ_c required for a flat universe, as GWs, per logarithmic frequency bin [25, 26]:

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d \log f}, \quad (2.1)$$

where ρ_{GW} is the energy density of GWs. Below, we show how $\Omega_{GW}(f)$ is related to the GW polarizations.

The standard TT gauge GW metric perturbation can be Fourier-expanded as a superposition of plane waves with frequency f and propagation direction \hat{n} [27]:

$$h_{ab}(t, \vec{x}) = \int_{-\infty}^{\infty} df \int_{\mathcal{S}} d^2 \Omega_{\theta} \sum_{A} h_A(f, \hat{\vec{n}}) \epsilon_{ab}^A(\hat{n}) \times \exp(i 2\pi f(t - \hat{n} \cdot \vec{x}/c)), \quad (2.2)$$

where $d\Omega_{\theta}$ is the solid angle element, $A = +, \times$ denote the two polarizations of GWs, and ϵ_{ab}^A denote the corresponding polarization tensors. Assuming that the stochastic GW background can be modelled as a zero-mean Gaussian random process, the mean $\langle h_A(f, \hat{n}) \rangle = 0$ and (co)variances $\langle h_A(f, \hat{n}) h_A^*(f, \hat{n}^\prime) \rangle$ of the random Fourier amplitudes become the defining characteristics of this background. The (co)variances are related to the energy density fraction via the GW power spectral density (PSD) $S_A(f)$ [27]:

$$\langle h_A(f, \hat{n}) h_A^*(f, \hat{n}^\prime) \rangle = \frac{1}{16\pi^2} \delta(f - f^\prime) \delta_{AA'} \delta^2(\hat{n}, \hat{n}^\prime) S_A(f) \quad (2.3)$$

with

$$S_A(f) = \frac{3H_0^2 \Omega_{GW}(f)}{2\pi^2 f^3} \quad (2.4)$$

The detectors’ response to a stochastic background is characterized by the overlap reduction function Γ_{IJ}, which acts as a transfer function between the GW PSD and the detector cross-power C_{IJ}, where I, J are labels for two detectors. If $h(t)$ is the response strain of a detector to a GW metric perturbation $h_{ab}(t, \vec{x})$, then the detector cross power is related to the cross-correlation of the detector response strains as:

$$\langle \tilde{h}_A(f) \tilde{h}_{A'}^*(f^\prime) \rangle = \frac{1}{2} \delta(f - f^\prime) C_{IJ}(f) \quad (2.5)$$

where $C_{IJ} = \Gamma_{IJ} S_A(f)$.

The expected signal-to-noise ratio (SNR) can be evaluated from the GW PSD $S_{\theta}(f)$, the overlap reduction function Γ_{IJ}, as well as the detector noise PSDs $S_\theta(f)$ [25-27]:

$$\rho = \sqrt{2T \int_{f_{\text{low}}}^{f_{\text{high}}} df \sum_{I,J} \sum_{I,J} \frac{\Gamma_{IJ}^2 S^\theta_\theta(f) S_\theta(f) S_\theta(f)}{S_{\theta}(f) S_{\theta}(f)}} \quad (2.6)$$

assuming all detectors have the same coincident observation time T. Above, $f_{\text{low}} - f_{\text{high}}$ denotes the sensitive frequency band of the detectors.

III. STOCHASTIC GW BACKGROUND INDUCED BY PRIMORDIAL SCALAR PERTURBATIONS

Here we briefly outline the generation of the stochastic GW background induced by scalar perturbations. Details of this
derivation may be found in [28], and a more concise version in [23]. We assume that the GWs are produced in the radiation dominated era, and that the perturbations follow Gaussian statistics. We also neglect any modifications to the stochastic background due to propagation through the intervening medium [29], as well as a potential enhancement that could be produced during the matter dominated era [28]. The latter, of course, implies that the SNRs estimated from the energy density fraction derived here would be conservative.

We have strong constraints on the curvature power spectrum, \(P_\gamma(k) \) at scales \(k \sim 10^{-4} \sim 10 \text{ Mpc}^{-1} \) coming from the cosmic microwave background (CMB) and the large scale structures, though the spectrum is almost unconstrained over smaller and larger scales. The exact shape of the curvature power spectrum over these unconstrained scales is currently unknown. Similarly, we practically have no constraints on the mass distribution of PBHs over the mass range corresponding to these scales. It is therefore natural to start with simplified models. Among the most commonly considered models are the monochromatic mass distribution of PBHs though, it is generally agreed upon that such a distribution is unrealistic. However, there are models of inflation that can give rise to a narrow peak in the smaller-scale end in the curvature power spectrum that can, in turn, give rise to a nearly monochromatic PBH mass distribution. On the other hand, PBHs are possible with an extended mass distribution also, although one would need to provide its hyperparameters (such as, mean and variance) which are not known \emph{a priori}. A search for the induced stochastic GW background could inform and constrain these parameters.

We start by relating the wavenumber scale \(k \) with the mass scale within the Hubble horizon, \(M_H \)

\[
k \approx \frac{1}{\sqrt{M_H}} \left[g_{sp}(T(M_H)) \right]^{1/4} \left[g_{st}(T(M_H)) \right]^{-1/3}, \quad (3.1)
\]

where \(T \) is the cosmic temperature, which is related to the mass scale as:

\[
M_H = 12 \left(\frac{10}{g_{sp}(T)} \right)^{1/2} \frac{M^3_G}{T^2}. \quad (3.2)
\]

Above, \(M_G \) is the Plank mass, and \(g_{sp}, g_{st} \) are the effective degrees of freedom of relativistic particles, which can be calculated assuming the Standard Model, as done in [30] and used in [23, 28].

The GW energy density fraction as a function of the wavenumber can computed (semi-analytically) as follows [23, 28]:

\[
\Omega_{GW}(k)_{\text{today}} = \frac{\Omega_{\delta}(\bar{a})}{24} \left(g_{sp}(T_{\text{eq}}) \right) \left(g_{st}(T_{\text{eq}}) \right)^{-4/3} \left(\frac{k}{aH} \right)^2 \tilde{P}_h(\tau, k). \quad (3.3)
\]

where \(a \) and \(H \) denote, as usual, the scale factor and the Hubble parameter (which need to be evaluated at horizon entry), \(T_{\text{eq}} \) is the temperature of the Universe at the matter-radiation-equality epoch, and \(\tau \) is the conformal time. The time averaged power spectrum \(\bar{P}_h \) of the induced GWs is computed from the assumed curvature power spectrum (see, for example, equations D2 and D3 in [23]).

We can introduce a monochromatic peak in the curvature power spectrum \(P_\gamma(k) \) to source the formation of PBHs with nearly monochromatic mass distribution around a certain mass of interest (\(M_{PBH} \)). Such a curvature power spectrum can be written as a Dirac delta function in log(k) centered around some fiducial value \(\log(k_0) \) which is related to the mass of the PBH through Eq. (3.1), and a free amplitude parameter \(A \):

\[
P_\gamma(k) = A \delta(\log(k/k_0)). \quad (3.4)
\]

For the above power spectrum, \(\bar{P}_h \) has the following analytical form [23]:

\[
\bar{P}^{\text{mono}}_h = \frac{9A^2}{8} \left(\frac{4 - \bar{k}^2}{4} \right) \bar{k}^3 \left(3\bar{k}^2 - 2 \right)^2 \times \left[\pi^2 \left(3\bar{k}^2 - 2 \right) \Theta(2 - \sqrt{3}\bar{k}) + 4 + \left(3\bar{k}^2 - 2 \right) \right] \log \left[1 - \frac{4\bar{k}^2}{3\bar{k}^2} \right] \Theta(2 - \bar{k}).
\]

The corresponding energy density fraction, \(\Omega_{GW}^{\text{mono}} \), can be computed from Eq. (3.3). As illustrated in Fig. 1, \(\bar{P}_h/A^2 \) has a sharp feature, which is a consequence of the Dirac delta function in the curvature power spectrum.

We evaluate the energy density for a range of wavenumbers \(k \) rescaled by the central wavenumber \(k_0 \). The expected SNR that such a \(P_h \) (or, equivalently, \(\Omega_{GW} \)) spectrum would produce depends on the value of the amplitude parameter \(A \). We discuss possible choices of \(A \) in a subsequent section.
B. A broader “Gaussian in \(\log(k) \)” source

An extended, more realistic choice for the curvature power spectrum \(P_\sigma(k) \) would be a normal distribution in \(\log(k) \), centered on \(\log(k_0) \), with a variance \(\sigma^2 \):

\[
P_\sigma(k) = A \exp \left(\frac{(\log(k/k_0))^2}{2\sigma^2} \right) \quad (3.6)
\]

The resulting \(\sigma^2 \) needs to be evaluated numerically, by choosing values for \(A, k_0 \) and \(\sigma \). In Fig. 1, we plot the corresponding \(P_\sigma(k) \), rescaled by \(A^2 \) and \(\sigma \), and compare the corresponding monochromatic case. We find that the sharp feature present for the monochromatic power spectrum progressively gets washed away in the Gaussian case with increasing values of \(\sigma \).

C. Fixing the amplitude \(A \)

To fix the amplitude \(A \), we follow Wang et al.’s [23] prescription — the mass-distribution \(f(M) \) evaluated from the curvature power spectrum \(P_\sigma(k) \) is normalized to existing constraints (upper limits) on the fraction of dark matter \(f_{\text{PBH}} \) in the form of PBHs. The mass function is defined as follows:

\[
f(M) \equiv \frac{1}{\Omega_{\text{CDM}} \Omega_{\text{PBH}}} \frac{d\Omega_{\text{PBH}}}{d\log M/M_0} \quad (3.7)
\]

where \(\Omega_{\text{CDM}} \) and \(\Omega_{\text{PBH}} \) are the cold dark matter and PBH energy densities. Computation of the PBH mass function from the sourcing curvature perturbation is non-trivial and a few formulations have been proposed in the literature (recent progress along this direction is given in [31, 32]). Because of the strong exponential dependence of the PBH abundance on \(A, A \) would not be sensitive to the choice of the formulation of the PBH mass function. To be definite, in this paper we will use the Press-Schechter formalism [33] to compute the PBH mass function.

We briefly outline the method that can be used to acquire \(f(M) \), given a density spectrum \(P_\sigma(k) \). Assuming that PBHs are formed via critical collapse, the mass \(M \) of a PBH is related to the Horizon mass scale \(M_H \) and the amplitude of density fluctuations \(\delta \) as follows:

\[
M = K M_H (\delta - \delta_c)^{\gamma} \quad (3.8)
\]

where \(K = 3.3, \delta_c = 0.45 \) and \(\gamma = 0.36 \) are numerical constants [23]. We assume a zero-mean Gaussian distribution of \(\delta(M) \) with variance \(\sigma_\infty^2(k(M_H)) \) at a given horizon scale corresponding to \(M_H \):

\[
P_{M_0}(\delta(M)) = \frac{1}{\sqrt{2\pi\sigma_\infty^2(k(M_H))}} \exp \left(-\frac{\delta^2(M)}{2\sigma_\infty^2(k(M_H))} \right) \quad (3.9)
\]

where \(\sigma_\infty^2(k) \) is the variance of \(\delta(M) \), and can be written in terms of curvature power spectrum \(P_\sigma(k) \) as:

\[
\sigma_\infty^2(k) = \frac{16}{81} \int_{-\infty}^{\infty} \frac{q^4}{k^2} T^2(q) \left(1/k \right) P_\sigma(q) d\log q w^2(q/k) \quad (3.10)
\]

where \(w(q/k) = \exp(-q^2/(2k^2)) \) is a Gaussian window function, and \(T(q, \tau = 1/k) = 3(sin y - y \cos y)/y^3, \ y \equiv q\tau/\sqrt{3} \) is a transfer function. We plot \(\sigma_\infty(k) \) in Fig. 2 for both the monochromatic and Gaussian power spectra, as a function of \(k/k_0 \) and therefore the mass-function \(f \). For the latter, we vary also the variance \(\sigma^2 \), and find that \(\sigma_\infty(k) \) spans a wider range of \(k/k_0 \), as expected.

Using the Press-Schechter [33] formalism, the probability of PBH production, \(\beta_{M_0} \), can be computed from the distribution on \(\delta(M) \) as:

\[
\beta_{M_0} = \int_{M_1}^{M_0} 2\pi \Omega_{\text{PBH}} dM_0 \left[\int_{-\infty}^{\infty} P_{M_0}(\delta(M)) d\delta(M) \right] \quad (3.11)
\]

\[
\equiv \int_{-\infty}^{\bar{\beta}_{M_0}(M)} dM \quad (3.12)
\]

For the assumed distribution \(P_{M_0}(\delta) \), \(\bar{\beta}(M) \) is given by:

\[
\bar{\beta}_{M_0}(M) = \frac{M}{\sqrt{2\pi\gamma\sigma_\infty^2(k(M_H))}} \left(\frac{M}{K M_H} \right)^{1+1/y} \times \exp \left(-\frac{1}{2\sigma_\infty^2(k(M_H))} \left(\delta_c + \left(\frac{M}{K M_H} \right)^{1/y} \right)^2 \right) \quad (3.13)
\]

where \(\bar{\beta}_{M_0} \) is the distribution in the log of the PBH masses post critical collapse. The mass-function can now be computed from this distribution:

\[
f(M) = \frac{\Omega_{\text{CDM}}}{\Omega_{\text{PBH}}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{g_{\sigma_\infty^2}(T(M_H))}{g_{\sigma_\infty^2}(T_{eq})} \frac{T(M_H)}{T_{eq}} \right) d\delta(M) \quad (3.7)
\]

2 The peak of \(\sigma_\infty/k \) differs from \(k/k_0 = 1 \) by an amount that depends on the shape of \(P_\sigma \). As a result, the PBH mass-scale must accordingly depend on \(k \) rescaled by this shift in the peak. For a more detailed explanation, see [23].
A method to translate this curve to the upper limit on the largest allowed in this formalism, and its non-detection would σ and, for the case of Gaussian peak, a standard deviation of $10^{-19} M_\odot$ the cases, the monochromatic peak and the Gaussian peak in the curvature power spectrum, for a mass-scale $10^{-19} M_\odot$. For illustrative purposes, in Fig. 3, we plot the amplitude of an extended mass function was provided in [34], from the extra-galactic photon background, as well as BBN. For the mass-scales that we probe in this article, the upper limit on $f(M)$, for monochromatic P_ν, as well as the normal-in-log P_ν with variance $\sigma = 0.88$. The power spectrum is normalized to the upper limit on f_{BH} from other experiments (Big Bang Nucleosynthesis, extragalactic photon background, etc) that assume Hawking radiation (see for example [35] and references therein).

\[\times \tilde{\beta}_{M_\odot}(M) d \log M_\odot. \]
(3.14)

On the other hand f_{BH} is given by:

\[f_{BH} = \int_0^\infty f(M) d \log (M/M_\odot). \]
(3.15)

For the mass-scales that we probe in this article, the upper limits on f_{BH} have been placed, assuming Hawking radiation, from the extra-galactic photon background, as well as BBN. As the existing constraints, we will use the ones given in [9] which we show as a green curve in Fig. 3. This curve is valid only for the PBHs with monochromatic mass function. A method to translate this curve to the upper limit on the amplitude of an extended mass function was provided in [34], which we use in this paper to estimate maximal value for A. For illustrative purposes, in Fig. 3, we plot $f(M)$, for both the cases, the monochromatic peak and the Gaussian peak in the curvature power spectrum, for a mass-scale $10^{-19} M_\odot$, and, for the case of Gaussian peak, a standard deviation of $\sigma = 0.88$. Conversely, since Hawking radiation has not been verified experimentally, we can also put an estimate on A by setting $f_{BH} = 1$. The corresponding Ω_{GW} would be the largest allowed in this formalism, and its non-detection would put Hawking-radiation-independent constraints on f_{BH}, the first of its kind in the narrow mass-range of ultralight PBHs probed in this paper.

IV. RESULTS

We evaluate expected SNRs for various sensitivities of the LIGO detectors, for choices of masses: 10^{-19}, $10^{-19.5}$, $10^{-19.5}$, $10^{-20} M_\odot$, and set an SNR threshold of 2 for detectability. As shown in Fig. 4, these masses are associated with Ω_{GW} that fall within LIGO’s sensitivity band, both for the monochromatic peak and the Gaussian peak in the curvature power spectrum. We also plot the power-law integrated sensitivity curves of LIGO, which represent sensitivity curves for a stochastic GW background whose $\Omega_{GW}(f)$ can be approximated as a power-law in the frequency.

We consider two cases, as described in an earlier section. For the first case, the amplitude of the curvature power spectrum, A, is fixed so as to respect the upper limits on the mass-functions set by constraints on f_{BH} by other experiments that assume Hawking radiation. For the second case, we allow the amplitude to take its maximum possible value, as determined by $f_{BH} = 1$. All the SNRs are tabulated in Table I. We restrict ourselves to a two-detector network consisting of LIGO-Hanford and LIGO-Livingston. For the O1 and O2 observing runs, we use the publicly available PSDs estimated by the LIGO-Virgo collaboration [36]. For O3 sensitivity, we use the PSD from [37] for Advanced LIGO’s [38] Design sensitivity, we use the projected PSD [39].

We find that the detectability of the GW background depends not only on the sensitivity of the detectors, but also
on the choice of the form of curvature power spectrum, as well as its amplitude A. Among the PBH masses considered, $10^{-18} M_\odot$ corresponds to the most optimistic scenario in terms of the expected SNRs. With the O1+O2 sensitivity, only if we assume the monochromatic power spectrum and the highest possible value of A (corresponding to $f_{PBH} = 1$; i.e., by neglecting the constraints obtained from current experiments) the expected SNRs cross the threshold of 2. Even then, since a significant fraction of the SNR comes from a sharp feature in Ω_{GW}, these SNRs may be argued to be unrealistic. Nevertheless, as monochromatic PBH mass distribution is one of the viable possibilities, it could be interesting to search for this signal in O1+O2 data. On the other hand, for the O3 sensitivity, expected SNRs are above the threshold for both choices of the shape of the power spectrum (monochromatic and normal-in-log) for a wider PBH mass range. Note that this is possible even for a less optimistic choice of A (its maximum possible value that is not ruled out by current experiments). By the time the LIGO detectors reach design sensitivity, the background corresponding to all PBH masses considered here should be detectable with significant SNRs, if the curvature power spectrum has the amplitude A that we assume. Conversely, a non-detection would put strong constraints on the amplitude A of the curvature power spectrum as well as the abundances of the corresponding PBHs, independent of Hawking-radiation considerations.

V. SUMMARY AND OUTLOOK

In this work, we explore the possibility of detecting the stochastic GW background produced by primordial curvature perturbations, which are associated with the formation of PBHs. These GWs, produced by scalar-tensor mode coupling in the second order perturbation theory, can be modelled assuming a shape for the curvature power spectrum $P_c(k)$. We consider two models for the primordial curvature power spectrum — one with a monochromatic peak, expressed as a Dirac delta function in $\log(k)$ centered on $\log(k_0)$, and another with a Gaussian peak in $\log(k)$ with mean $\log(k_0)$, and variance σ^2. Following the prescription of Wang et al [23], we evaluate the energy density fraction $\Omega_{GW}(f)$ from the power spectrum P_c. We find that $\Omega_{GW}(f)$ falls within the LIGO detectors’ sensitivity bands for a narrow range of ultralight PBH masses around 10^{15} g. Motivated by this, we compute the expected SNRs, for both cases, assuming Ω_{GW} associated with PBH masses $10^{-18.5}, 10^{-19}, 10^{-19.5}$ and $10^{-20} M_\odot$. We consider sensitivities associated with LIGO observing runs O1+O2, O3 (projected) as well as the design sensitivity (projected).

The power-spectra have a free amplitude parameter A, which we fix in two ways. The first normalizes the mass-function $f(M)$ to the upper limits on f_{PBH} from other experiments that assume Hawking radiation, in the ultralight PBH regime. The second allows f_{PBH} to attain its maximum possible value of unity, not relying on Hawking-radiation based constraints since it has thus far not been verified experimentally.

We then compute the expected SNRs, which we tabulate in Table I. Among the four masses considered, the most optimistic from a detection perspective is $10^{-19} M_\odot$, which produces a significant expected SNR even for O1+O2 sensitivity. However, it must be noted that this is only for the monochromatic case, where the dominant contribution of the SNR comes from a sharp feature of its Ω_{GW}. On the other hand, all masses produce significant expected SNRs assuming an O3 sensitivity.
even for the more realistic Gaussian power spectrum, provided A is kept at its maximum allowed value (corresponding to $f_{\text{PBH}} = 1$). At design sensitivity, all masses considered are detectable, for both choices of power spectra, and even after considering the current constraints on f_{PBH} (which limits the value of A).

While a perfectly monochromatic power spectrum is probably not realistic, there are models of inflation that predict narrow power spectra that are reasonably approximated by the monochromatic spectrum. Therefore, given the fact that we get large expected SNRs (even with O1 and O2 sensitivity) for a range of PBH masses, there is good motivation for searching for this signal in O1 and O2 data. In O3 data, even the signal corresponding to the more realistic log-normal spectrum should be detectable, depending on the true value of A. A non-detection would enable us to place upper limits on the amplitude A of the primordial power spectrum as well as the abundance of primordial black holes in the relevant mass range. This could, in turn, constrain models of inflation.

At design sensitivity, the stochastic background from stellar mass BBH mergers would also be detectable [18]. Therefore, a significant SNR would not in itself suggest the detection of the induced stochastic background associated with PBHs. Nevertheless, the difference in the shape of Ω_{GW} from each of these sources should enable us to distinguish the primordial background from the astrophysical background.

The detectability of the induced stochastic GW background in current and future sensitivities of the LIGO detectors has been either touched upon in previous work (see [40]), or explored in more detail assuming a log-normal power spectrum [41]. The latter work focuses on the very important topic of constructing sensitivity (power-law integrated) curves [27] for such stochastic backgrounds, for log-normal power spectra and LIGO at design sensitivity. They don’t however explicitly compute SNRs for a range of current and future sensitivities of LIGO, nor evaluate values of the amplitude of the curvature power spectrum with and without constraints on f_{PBH} from other experiments. Furthermore, they only restrict themselves to the log-normal curvature power spectrum, and don’t consider the monochromatic spectrum like we do in this work. Indeed, we show that in principle, constraints on the stochastic background from the monochromatic spectrum associated with ultralight PBHs can be placed with existing data from O1 and O2. We are currently in the process of conducting a search for this background in O1 and O2 data, which we hope to report soon.

Acknowledgments:— We would like to thank Shivraj Kandhasamy for very useful comments on the manuscript. We also thank Sai Wang, Kazunori Kohri, Soichiro Morisaki, and Joseph Romano for illuminating discussions. We would also like to acknowledge the Summer School on Gravitational Wave Astronomy (ICTS/gws2019/07) organized by the International Centre for Theoretical Science (ICTS), TIFR, which served as the genesis for this project. SJK’s, KLP’s and PA’s research was supported by the Department of Atomic Energy, Government of India. In addition, SJK’s research was supported by the Simons Foundation through a Targeted Grant to ICTS. PA’s research was supported by the Max Planck Society through a Max Planck Partner Group at ICTS and by the Canadian Institute for Advanced Research through the CIFAR Azrieli Global Scholars program. TS was supported by the MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 17H06359, No. 18H04338, and No. 19K03864. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

[1] S. Hawking, MNRAS 152, 75 (1971).
[2] B. J. Carr and S. W. Hawking, MNRAS 168, 399 (1974).
[3] B. J. Carr, in 22nd Texas Symposium on Relativistic Astrophysics (2005) pp. 89–100, arXiv:astro-ph/0504034 [astro-ph].
[4] S. Clesse and J. García-Bellido, Phys. Rev. D 92, 023524 (2015), arXiv:1501.07565 [astro-ph.CO].
[5] B. Carr, F. Kühnel, and M. Sandstad, Phys. Rev. D 94, 083504 (2016), arXiv:1607.06077 [astro-ph.CO].
[6] K. L. Pandey and A. Mangalam, Journal of Astrophysics and Astronomy 39, 9 (2018), arXiv:1801.06649 [astro-ph.GA].
[7] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Classical and Quantum Gravity 35, 063001 (2018), arXiv:1801.05235 [astro-ph.CO].
[8] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, (2020), arXiv:2002.12778 [astro-ph.CO].
[9] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010), arXiv:0912.5297 [astro-ph.CO].
[10] B. P. Abbott et al., Physical Review X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE].
[11] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M. Zaldarriaga, Phys. Rev. D 100, 032901 (2019).
[12] K. Belczynski, D. E. Holz, T. Bulik, and R. O’Shaughnessy, Nature 534, 512 (2016), arXiv:1602.04531 [astro-ph.HE].
[13] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli, and A. G. Riess, Phys. Rev. Lett. 116, 201301 (2016), arXiv:1603.00464 [astro-ph.CO].
[14] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Phys. Rev. Lett. 117, 061101 (2016), arXiv:1603.08338 [astro-ph.CO].
[15] The LIGO Scientific Collaboration, the Virgo Collaboration, B. P. Abbott, et al., arXiv e-prints, arXiv:2001.01761 (2020), arXiv:2001.01761 [astro-ph.HE].
[16] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 121, 231103 (2018).
[17] R. Magee, A.-S. Deutsch, P. McClincy, C. Hanna, C. Horst, D. Meacher, C. Messick, S. Shandera, and M. Wade, Phys. Rev. D 98, 103024 (2018).
[18] B. P. Abbott et al., Phys. Rev. D 100, 061101 (2019), arXiv:1903.02886 [gr-qc].
[19] S. Wang, Y.-F. Wang, Q.-G. Huang, and T. G. F. Li, Phys. Rev. Lett. 120, 191102 (2018).
[20] R. Saito and J. Yokoyama, Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys.Rev.Lett. 107, 069901 (2011)], arXiv:0812.4339 [astro-ph].
[21] R. Saito and J. Yokoyama, Prog. Theor. Phys. 123, 867 (2010), [Erratum: Prog.Theor.Phys. 126, 351–352 (2011)], arXiv:0912.5317 [astro-ph.CO].
[22] J. García-Bellido, A. Linde, and D. Wands, Phys. Rev. D 54, 6040 (1996), arXiv:astro-ph/9605094 [astro-ph].
[23] S. Wang, T. Terada, and K. Kohri, Phys. Rev. D 99, 103531 (2019), arXiv:1903.05924 [astro-ph.CO].
[24] J. D. Romano and N. J. Cornish, Living Reviews in Relativity 20, 2 (2017), arXiv:1608.06889 [gr-qc].
[25] B. Allen, in Relativistic Gravitation and Gravitational Radiation, edited by J.-A. Marck and J.-P. Lasota (1997) p. 373, arXiv:gr-qc/9604033 [gr-qc].
[26] B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999), arXiv:gr-qc/9710117 [gr-qc].
[27] E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM].
[28] K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018), arXiv:1804.08577 [gr-qc].
[29] V. Domeke, R. Jinno, and H. Rubira, arXiv e-prints, arXiv:2002.11083 (2020), arXiv:2002.11083 [astro-ph.CO].
[30] K. Saikawa and S. Shirai, Journal of Cosmology and Astroparticle Physics 2018, 035 (2018).
[31] T. Suyama and S. Yokoyama, PTEP 2020, 023E03 (2020), arXiv:1912.04687 [astro-ph.CO].
[32] C. Germani and R. K. Sheth, Phys. Rev. D 101, 063520 (2020), arXiv:1912.07072 [astro-ph.CO].
[33] W. H. Press and P. Schechter, ApJ 187, 425 (1974).
[34] B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen, and H. Veermäe, Phys. Rev. D 96, 023514 (2017), arXiv:1705.05567 [astro-ph.CO].
[35] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010).
[36] The LIGO Scientific Collaboration, the Virgo Collaboration, R. Abbott, et al., arXiv e-prints, arXiv:1912.11716 (2019), arXiv:1912.11716 [gr-qc].
[37] The KAGRA Collaboration, The LIGO Scientific Collaboration, and the Virgo Collaboration, Advanced LIGO, Advanced Virgo and KAGRA observing run plans (2019).
[38] and J Aasi et al., Classical and Quantum Gravity 32, 074001 (2015).
[39] L. Barsotti, P. Fritschel, M. Evans, and S. Gras, https://dcc.ligo.org/T1800044-v5/public.
[40] G. Ballesteros, J. Rey, M. Tasio, and A. Urbano, arXiv e-prints, arXiv:2001.08220 (2020), arXiv:2001.08220 [astro-ph.CO].
[41] K. Inomata and T. Nakama, Phys. Rev. D 99, 043511 (2019), arXiv:1812.00674 [astro-ph.CO].