Femtoscopy in $\sqrt{s_{NN}} = 5.02$ TeV p-Pb collisions with ATLAS

Michael Clark on behalf of the ATLAS Collaboration
Columbia University, 116th St & Broadway, New York, NY 10027, USA
E-mail: michael.ryan.clark@cern.ch

Abstract. Bose-Einstein correlations between identified charged pions are measured for $p+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector using a total integrated luminosity of 28 nb$^{-1}$. Pions are identified using ionisation energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of average transverse pair momentum (k_T) and rapidity ($y_{\pi\pi}$) as well as collision centrality. Pairs are selected with a rapidity $-2 < y_{\pi\pi} < 1$ and with an average transverse momentum $0.1 < k_T < 0.8$ GeV. The effect on the two-particle correlation function from jet fragmentation is studied, and a new method for constraining its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair k_T. A correlation with the local single-particle multiplicity dN_{ch}/dy is demonstrated. The scaling of the extracted radii with the mean number of participants is also used to compare a selection of initial-geometry models. The cross term R_{ol}, which couples radial and longitudinal expansion, is measured as a function of rapidity, and a departure from zero is observed with 4.8σ combined significance for $y_{\pi\pi} > -1$ in the most central events.

Multi-particle correlations in proton-lead ($p+Pb$) [1, 2, 3, 4, 5] and proton-proton ($p+p$) [6] collisions exhibit long-range azimuthal correlations similar to those observed in lead-lead (Pb+Pb) collisions, in which they are attributed to collective expansion of the quark-gluon plasma. Hydrodynamic models can describe the observed correlations in $p+Pb$ [7, 8, 9], but the extent to which they are appropriate in “small” systems remains an open question.

Bose-Einstein correlations between charged pion pairs can be used to measure the spacetime extent of particle production with a technique called femtoscopy (see Reference [10] and references therein). The width of the correlations in relative momentum q is studied as a function of pair transverse momentum k_T. The measured Hanbury Brown and Twiss (HBT) radii, which are interpreted as the size of the particle-emitting region at freezeout, are expected to decrease with rising transverse momentum if the source expands [11]. Thus, HBT measurements can be used to address the questions raised by angular correlation results. While femtoscopic methods have already been applied to $p+Pb$ systems at the LHC [12, 13], these results are obtained using a new data-driven technique to constrain the significant background contribution from jet fragmentation, and they provide the first measurements of the dependence of these source radii on the rapidity $y_{\pi\pi}$.

The data used in this analysis were collected by the ATLAS detector [15] during the 2013 $p+Pb$ run at the Large Hadron Collider (LHC) with a nucleon-nucleon centre-of-momentum energy of $\sqrt{s_{NN}} = 5.02$ TeV. The inner detector is used to reconstruct charged particles.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
Three-dimensional correlation functions are fit to functions of the form

$$C_{k}(q) = [(1 - \lambda) + \lambda K(q)C_{BE}(q)]\Omega(q),$$

(1)

where K is a correction factor for final-state Coulomb interactions and Ω represents non-femtoscopic background which arises due to jet fragmentation. The Bose-Einstein part of the three-dimensional correlation functions are fit to functions of the form

$$C_{BE}(q) = 1 + e^{-\|Rq\|},$$

(2)

where R is a symmetric matrix in the Bertsch-Pratt coordinate system:

$$R = \begin{pmatrix} R_{\text{out}} & 0 & R_{\text{ol}} \\ 0 & R_{\text{side}} & 0 \\ R_{\text{ol}} & 0 & R_{\text{long}} \end{pmatrix}.$$

(3)

In these coordinates, q_{out} is the projection along k_T, q_{side} is the projection along $\hat{z} \times k_T$ (with the z-axis along the beamline), and q_{long} is the longitudinal component. The relative momentum of the pair is evaluated in the longitudinally comoving frame (LCMF), i.e., the frame boosted such that $k_z = 0$.

The jet fragmentation background, $\Omega(q)$, contributes an enhancement at low $|q|$, though usually over a wider range in $|q|$ and with a smaller amplitude than the Bose-Einstein correlation. This background is constrained in same-charge correlation functions by measuring the opposite-sign correlation functions, which do not contain a Bose-Einstein enhancement. Opposite-charge correlations contain contributions from resonance decays and the most prominent of these are removed by cuts on the opposite-charge pion pair mass. Even with resonances removed, due to charge conservation the fragmentation contribution is not identical between same- and opposite-charge correlations, but the shape is similar. The relationship between the two is studied in detail using Pythia 8, and a mapping from opposite- to same-charge correlation functions is derived in simulation for use with the data. For details on this and other aspects of the analysis, see Reference [14].

Figure 1 shows the HBT radii as a function of k_T in four centrality intervals. A decrease of the radii with rising k_T, interpreted as a signature of collective expansion, is observed in central events. This trend is diminished in peripheral events.
Figure 2. Three-dimensional HBT radii as a function of the rapidity \(y_{\pi\pi}^* \) of pion pairs [14].\ The widths of the boxes vary between centrality intervals only for visual clarity.\ The HBT radii are presented as a function of pair rapidity \(y_{\pi\pi}^* \) in Figure 2. Central collisions exhibit larger radii on the backward (Pb-going) side of the event, while peripheral events show no distinguishable variation of the radii with rapidity.

Figure 3. The transverse area \(R_{\text{out}} R_{\text{side}} \) is shown in (a) as a function of local multiplicity in several intervals of centrality and \(y_{\pi\pi}^* \) [14].\ The volume element of the HBT matrix \(\det(R) \) is shown in (b) as a function of \(N_{\text{part}} \) for three Glauber-Gribov colour fluctuation models.

Source radii are observed to correlate strongly with the single-particle local multiplicity \(dN_{\text{ch}}/dy^* \), as illustrated in Figure 3(a), which presents the transverse area \(R_{\text{out}} R_{\text{side}} \) at \(0.2 < k_T < 0.3 \text{ GeV} \) in several centrality and rapidity intervals as a function of \(dN_{\text{ch}}/dy^* \).\ The linear behaviour with multiplicity indicates a constant areal density at low \(k_T \).

Figure 3(b) compares the volume scale \(\det(R) \) with the average number of nucleon participants \(\langle N_{\text{part}} \rangle \), both for the standard Glauber model and for two choices of the Glauber-Gribov colour fluctuation (GGCF) extension [16].\ This extension of the Glauber initial-geometry model account for fluctuations in the nucleon-nucleon cross section. The volume scale increases at a rate greater than linearly for all choices shown for \(N_{\text{part}} \).\ While the final-state volume indicated by \(\det(R) \) should not necessarily scale linearly with the initial size \(N_{\text{part}} \), extreme departure from a linear behaviour is difficult to describe. These results indicate that fluctuations in the size of the proton are crucial for the understanding of the initial geometry of \(p+\text{Pb} \) collisions.

The cross-term, \(R_{\text{ol}} \), which couples to the lifetime of the source [17], is shown in Figure 4. In hydrodynamic models, a nonzero \(R_{\text{ol}} \) necessitates both longitudinal and transverse expansion.
A significant departure from zero is observed in this parameter in central events, but only for rapidities $y^*_{\pi\pi} \gtrsim -1$. This indicates that the particle production at mid-rapidity and in the proton-going direction is sensitive to the local z-asymmetry of the system.

These results provide a detailed description of the freeze-out geometry of proton-lead collisions. The large pseudorapidity coverage of the ATLAS detector has been utilised to probe the rapidity dependence of the asymmetric $p+Pb$ collisions. Clear signatures of collective behaviour are observed in central collisions, but they are significantly diminished in peripheral collisions.

This work was supported by U.S. Department of Energy grant DE-FG02-86ER40281.

References
[1] ALICE Collaboration 2013 Phys. Lett. B 719 29
[2] ATLAS Collaboration 2013 Phys. Rev. Lett. 110 182302
[3] CMS Collaboration 2013 Phys. Lett. B 724 213
[4] ATLAS Collaboration 2014 Phys. Rev. C 90 044906
[5] CMS Collaboration 2015 Phys. Rev. Lett. 115 012301
[6] ATLAS Collaboration 2016 Phys. Rev. Lett. 116 172301
[7] Bozek P 2012 Phys. Rev. C 85 014911
[8] Shuryak E and Zahed I 2013 Phys. Rev. C 88 044915
[9] Bozek P and Broniowski W 2013 Phys. Rev. C 88 014903
[10] Lisa M A, Pratt S, Soltz R and Wiedemann U 2005 Ann. Rev. Nucl. Part. Sci. 55 357
[11] Kolb P F and Heinz U W 2003 (Preprint nucl-th/0305084)
[12] ALICE Collaboration 2015 Phys. Rev. C 91 034906
[13] ALICE Collaboration 2014 Phys. Lett. B 739 139
[14] ATLAS Collaboration 2016 ATLAS-CONF-2016-027 URL https://cds.cern.ch/record/2157691
[15] ATLAS Collaboration 2008 JINST 3 S08003
[16] Alvioli M and Strikman M 2013 Phys. Lett. B 722 347
[17] Chapman S, Scotto P and Heinz U W 1995 Phys. Rev. Lett. 74 4400