Stratigraphy of the Pliocene deposits of the Black Sea (Ukraine) according to evidence from ostracods (Arthropoda, Crustacea)

N.I. Dykan

Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, Ukraine,
e-mail: natalidykan@gmail.com

Abstract. This article presents a detailed analysis of the taxonomic composition of the Pliocene (Kimmerian, Kujalnikian) and Eopleistocene (Gurian) ostracods in the northern part of the Black Sea. It presents the patterns of the stratigraphic position of the fossil ostracods in the Miocene - Quaternary and their geographic distribution in Western and Eastern Europe (the Pannonian Basin, the Dacian Basin, the Euxinian basin of the Paratethys) and the Mediterranean region. We determined the characteristic species for the Kimmerian, Kujalnikian and Gurian in the northern part of the Black Sea. We established a change in the taxonomic composition of ostracods at the Pliocene (Kujalnikian)/Eopleistocene (Gurian) boundary, namely the disappearance of a large number of Pliocene species and the appearance of new species. Ten species disappeared in the Kujalnikian: Cyprideis pontica, Euxinocythere (M.) crebra, Amnicythere mironovi, Campycypria lobata, Loxoconcha subcrassula, Loxoconcha verticalitercostata, Xestoleberis (X.) cellulocus, Xestoleberis (P.) communis, Candona (C.) expressa, Ilyocypris caspiensis; one species Amnicythere postbissinuata appeared in the Gurian. The brackish water species Cyprideis pontica is the Kujalnikian index species. The stratigraphic position of Cyprideis pontica in the Mediterranean Basin, Pannonian Basin, Dacian Basin, Euxinian Basin (Black Sea) in the Miocene-Quaternary is analyzed. The time of the disappearance of Cyprideis pontica in the Mediterranean, Pannonian and Dacian basins (Messinian, Pontian/Zanclean, Dacian, Kimmerian boundary) and in the Black Sea (Kujalnikian/Gurian boundary) is established. The diagnostic morphological features of the shell Cyprideis pontica (morphology of the surface pore canals) are established and described, which allows us to place this species in the Neogene deposits. Surface pore canals are different shape, sievetyped, deepened in relation to the surface of the valve. Sieve-shaped lamella contains 110-270 internal pores. The internal pores have a staggered shape, the diameter of the osculum of the internal pore is 302-994 nm; diameter of the central pore is 977 nm-1.8 μm. The evolution of Cyprideis pontica, which was separated from the parent species Cyprideis torosa in the Late Miocene, was reconstructed. In the occupation of a new ecological niche with a reduced oxygen content in deeper water biotopes, in the process of adapting to the conditions of hypoxia and necessity of increasing the volume of water filtration, there was a restructuring of the morphology of the surface pore canals of the shell Cyprideis torosa. This involved an increase in the size of the sieve-shaped lamella, the number of internal pores in the sieve-shaped lamella and the size of the osculum of the inner pore. A new morphotype Cyprideis pontica was thus formed within the existing Parathetys-Mediterranean basins. It had a mosaic, ecologically isolated range that coincided geographically or overlapped with the range of the species Cyprideis torosa (sympatric evolutionary speciation). The range of Cyprideis pontica and the dynamics of its populations in the Euxinian Basin during the Sarmatian-Kujalnikian have been reconstructed.

Keywords: stratigraphic boundary, Pliocene, Quaternary, Ostracoda

Стратиграфія плиоценових відкладів Чорного моря (Україна) за остракодами (Arthropoda, Crustacea)

Н.І. Дикань

Інститут геологічних наук НАН України, м. Київ, Україна, e-mail: natalidykan@mail.ru

Анотація. Даний детальний аналіз таксономічного складу плиоценових (кімерійських, куяльницьких) і еоплейстоценових (гурійських) остракод у північній частині Чорного моря. Застосовано закономірності стратиграфічного положення викопних остракод у міоцен-квартер та географічного поширення в межах Західної та Східної Європи (Панонський, Дакійський, Євксинський басейни Паратетису) і Середземноморської області. Визначено характерні види для кімерійського, куяльниць-
Introduction. In the Geologic Time Scale (2012) the biostratigraphic divisions of the Pliocene deposits and the Quaternary base (2.588 Ma, between the Gelsonian and Piacenzian (Rickard, 2009) was substantiated by chronostratigraphy, event stratigraphy, magnetostratigraphy, radiometric dating (\(^{40}\)Ar/\(^{39}\)Ar dating, \(^{14}\)C and \(^{230}\)Th/\(^{234}\)U dating, U/Pb dating, \(^{87}\)Sr/\(^{86}\)Sr), climate change and Milankovich cycles (sedimentation cycles), and oxygen and carbon isotopes \(^{18}\)O, \(^{13}\)C curves. Palaeontological characteristic of the Gelsonian and Piacenzian derive from different faunal groups (mammals, planktonic foraminifera, calcareous nanofossils, diatoms, radiolarians, dinoflagellates). However, formally, the Neogene-Quaternary boundary is uniquely substantiated on the appearance of the Gelsonian dinoflagellate cysts of Spinnifites pachyderma and Invertocysta tabulata (middle part of D21, northwestern Europe) and the radiolarian Pterocanium prismaticum (RN12b, northwestern Europe), as well as the disappearance at the end of the Piacenzian of the radiolarian Anthocystidium jenghisi (zone RN12a; northwestern Europe) and the planktonic foraminiferan Dentoglobigerina altispira (zone PL 5, Pacific Ocean). The Pliocene-Quaternary boundary (2,588 Ma) in the Paratethys region is compared with the boundary of the megacycle Ge1 without paleontological substantiation. It is located in the upper part of the Pannonian and within the Kimerian (Fig. 29. Neogene-Quaternary Regional Subdivisions: Hilgen, Lourens, Van Dam, 2012).

In the Quaternary stratigraphic scheme for Ukraine, the Pliocene/Quaternary boundary is placed at the level between the Kujalnikian (Gelsonian) and the Guran (Calabrian) at 1.81 Ma (Stratigraphic Code of Ukraine, 2012). This is based on the appearance in the Guran of the mollusc Dreissena distanta, D. polymorpha, Didacna digressa, D. giriana, Modiolus phaseolinus, nanoplankton Pseudoemiliania, Gephyrocapsa oceanica, Emilia huxleyi, as well as the disappearance of the Kujalnikian form Dreissena theodori. The planktonic Foraminifera Ammonia beccarii, Ammonia tepida, Fissurina porecta, Cananifera paracaea, nanoplankton Discoaster brouweri and D. pentaradiatus (Tabl. 17.) are represented in the stratigraphic scheme of Cenozoic deposits of the Ukrainian sector of the Black Sea: Stratigraphic Code of Ukraine, 2012). The National Stratigraphic Committee of Ukraine adopted the decision on the recognition of the ICS Pliocene/Quaternary boundary at the level of 2.588 Ma (Resolution of the NSCU dated April 18, 2018: Geological Journal, 2018). Accordingly, the Pliocene/ Quaternary boundary is now placed at a lower level in the Kujalnikian horizon, which needs additional palaeontological fauna-floristic substantiation.

The purpose of this article is to detail the microfaunistic characteristics (using ostracods) of the Pliocene (Kimmerian, Kujalnikian) and Eopleistocene (Gurian) marine sediments, and to substantiate the Pliocene/Quaternary boundary in the northern part of the Black Sea.

Neogene ostracods of the Paratethys and Mediterranean regions and the Quaternary ostracods of western and eastern Europe, the Black Sea, Caspian Sea and Mediterranean Sea have been well studied in their systematic, ecological, zoogeographical and palaeogeographical aspects. They are used for detailed relative-age determination and correlation of marine deposits, but fossil ostracods as a biostratigraphic tool have not been used in the international stratigraphic scales of the Neogene-Quaternary (Geologic Time Scale, 2004, 2012) and Ukrainian stratigraphic schemes of the Neogene-Quaternary (Stratigraphic...
This biostratigraphic analysis using ostracods was the first of its kind.

Fossil ostracods are a uniquely informative group of fossil microorganisms. In sediments, ostracods are often the only (and usually numerous) representatives of the fossil fauna. They had a predominantly autochthonous type of burial, often beautifully preserved or at least with a sufficient degree of conservation of the shell to allow species identification. Local and regional biostratigraphic divisions in the Neogene-Quaternary deposits of the Black Sea are distinguished using ostracods (Dykan, 2011; Dykan, 2012; Dykan 2016 a, b, c, d, f). Therefore, the application of fossil ostracods to stratigraphic correlation schemes, as a biostratigraphically important group of fossil microorganisms, is scientifically sound and expedient.

Material and methods of research. The Neogene-Quaternary and recent ostracods of the Black Sea were collected over a period of forty years (1978-2017) from outcrops on the northern coast of the Black Sea (from the Danube to the Taman Peninsula), well cores (Odessa region, Kerch Peninsula, Taman Peninsula, the estuaries of the northwest coast of the Black Sea) and stations (the shelf and continental slope of the northern part of the Black Sea, SRV NASU) (Fig. 1). The biostratigraphic conclusions were based on the systematic study of fossil ostracods (the identification of species, the principles and criteria for the determination of taxonomic features, the estimation of the taxonomic weight of the morphological features, the determination of diagnostic features of the different taxonomic ranks, taxonomic diagnoses, unified method of the description of shell morphology) (Dykan, 2006). Electronic-microscopy, taphonomic, statistical, population, geochemical and facial methods, and zoogeographical analyses have been used in the study of fossil ostracods. The determination of the geological ages of the marine deposits was based on biostratigraphic and ecological criteria derived from ostracods. The biostratigraphy is based on the presence of index species; groups of fossil ostracods, which have the upper and lower boundaries, well established first and last appearances of characteristic species; in the presence of periods of optimum of ostracod species (genera); on the ratio of zoogeographical species (Mediterranean, Caspian) and species of different ecological specialization (marine, brackish water, freshwater). Literary sources on the stratigraphic position and geographical distribution of fossil ostracods in the Holarctic belt were also taken into account.

Results and their analysis. In the northern part of the Black Sea, Pliocene deposits are represented by Kimmerian and Kujalnikian horizons. The Kimmerian deposits are distributed on the western shelf from the mouth of the Tiligul estuary, on the Crimean continental slope from isobaths 287 m to 1750 m, to the southern slope of the Kerch-Taman shelf to the isobaths 150-200 m. They are presented by a layer of sandy clayey silts on the north-western shelf; oolitic iron ores with clay layers in the Crimean continental slope; iron-bearing sandstone on the eastern part of the northwestern shelf and the Kerch shelf. The thickness of the Kimmerian deposits decreases from east to west and is 40-50 m (Semenenko, 1987; Shuraev, 2015). The lectostratotype of the Kimmerian is the section near the village Arshintsevo (Kamish-Burun).
The Kimmerian ostracods comprise 19 genera and 38 species. They include some inherited Pontian ostracod genera (Cyprideis, Tyrhenocythere, Euxinocythere (Maecotocythere), Amnicythere, Loxoconchissa (Loxocypnia), Xestoleberis (Pontoleberis), Advenocypris, Bacunella, Camptocypris, Caspiocypris, Pontoniella) as well as some species. The peculiarity of the Pontian relic species in the Kimmerian deposits is that it is poor in crustaceans, which is also manifested in small shells. Typical species of the beginning of the Kimmerian are Tyrhenocythere amnicola donetsiensis Dub., Loxoconchissa (Loxocypnia) eichwaldi (Liv.), Loxoconchissa (Loxocypnia) immodulata (Step.), Loxoconchissa (Loxocypnia) hairdyi (G.W. Müll.), Loxoconcha lepida Step., Pseudocytherura pontica Dub., Camptocypris gracilis (Liv.), Caspiocypris merculieni Vek., Candonia (Candonia) angulata G.W. Müll., Cypria candonaeformis (Schw.), Ilyocypris caspiensis (Neg.) (Table 1). In the northwestern part of the Kimmerian Basin, ostracods formed stable associations of the species Bacunella dorsoarcuata, Camptocypris acronasuta, Camptocypris lobata, Cyprideis torosa, Tyrhenocythere azerbaidjanica (Liv.), and Cryptocyprideis bogatschovi. The Kimmerian species Camptocypris lobata and Bacunella dorsoarcuata had large shells in comparison with the Pontian individuals. This is a clear marker for separating the Pontian and Kimmerian deposits in the northern part of the Black Sea (Dykan, 2016 a).

The Kujalnikian deposits occur in wells on the shelf and in the deep-water zone of the continental slope; their areal distribution coincides with the Kimmerian deposits (Semenenko, 1987). They are presented by sand, silts, sandstones and clay with a total thickness of 40-50 m. The leстоstratotype of the Kujalnikian is the section near the village Kryzhanivka (Odesa region, Ukraine) (Stratigraficheskij slovar SSSR. Paleogen. Neogen. Chetvertichnaya sistema, 1982).

Kujalnikian ostracods comprise 19 genera and 42 species. A characteristic feature of the Kujalnikian ostracods is the transitional Kimmerian-Kujalnikian type fauna, where 62% are Kimmerian relics: Pseudocytherura pontica, Cyprideis torosa (Jones), Cyprideis pontica Krštić, Tyrhenocythere amnicola donetsiensis Dub., Tyrhenocythere azerbaidjanica (Liv.&Agal.), Euxinocythere (Maecotocythere) crebra (Schn.), Amnicythere palimpsesta (Liv.), Amnicythere multituberculata (Liv.), Amnicythere mironovi (Schn.), Loxoconchissa (Loxocypnia) eichwaldi (Liv.), Loxoconchissa (Loxocypnia) immodulata (Step.), Loxoconcha lepida (Step.), L. subcrassula Suz., Xestoleberis (Pontoleberis) laevis (Karm.), Camptocypris acronasuta (Liv.), Camptocypris gracilis (Liv.), Caspiocypris labiata (Zal.), Bacunella dorsoarcuata (Zal.), Pontoniella acuminata (Zal.), Cryptocyprideis bogatschovi (Liv.), Advenocypris centropunctata (Suz.), Candonia (Candonia) expressa, Candonia (Candonia) angulata (G.W. Müll.), Candonia (Candonia) elongata (Schw.), Cypria candonaeformis (Schw.), Cypria arma (Schn.). Caspian immigrants accounted for 28% of the total number of species: Caspiocypris lobata (Zal.), Caspiocypris merculieni Vek., Cyprideis ruggieri Dec., Amnicythere spectabilis (Mark.), Loxoconcha bulgarica Car., Loxoconcha verticalitercostata Dyk., Candonia (Candonia) neglecta Sars, Candonia (Eucandonia) balatonica Dad., Cyprinotus salinus (Br.), Ilyocypris bradyi Sars, II. gibba (Ramd.), II. caspiensis (Neg.). Mediterranean immigrants account for 10% of the total number of species: Aurila notata (Reuss), Xestoleberis (Pontoleberis) communis G.W. Müll., Xestoleberis (Xestoleberis) cellulosus Vek., X. (Xestoleberis) chanakovi Liv.&Agal. (Fig. 2).

Fig. 2. The ratio of zoogeographic groups of ostracods in Kujalnikian deposits
Table 1. Stratigraphic position of ostracodes in Neogene-Quaternary deposits of the northern part of the Black Sea

Species composition of ostracods	Pliocene	Eocene	Neopleistocene	Holocene										
	km	kj	gu	ch	de	eu	kg	pk	ne	bg	vz	kl	fn	gz
Cyprideis torosa**														
Cyprideis pontica**														
Cyprideis ruggieri**														
Cyprideis acervumis**														
Cyprideis compleporiferus**														
Cyprideis subtorosus**														
Cryptocyprideis bogatschovi*														
Cytheridea sakariai***														
Paracyprideis naptatscholana***														
Tyrrhenocythere amnicola donetziensis**														
Tyrrhenocythere azerbaidjanica**														
Tyrrhenocythere trabzonensis**														
Tyrrhenocythere sollertissimorete**														
Tyrrhenocythere pontica**														
Tyrrhenocythere complexolacunisae**														
Hemicytheria dubokensis**														
Aurila dubowskijy***														
Aurila notata***														
Urocythereis margaritifera***														
Euxinocythere (E.) relicta**														
Euxinocythere (E.) magma**														
Euxinocythere (E.) multipunctata***														
Euxinocythere (E.) bosqueti**														
Euxinocythere (M.) bacuana**														
Euxinocythere (M.) lopatici++														
Euxinocythere (M.) crebra++														
Euxinocythere (M.) praebiquana**														
Amnicytheria quinquetuberculata**														
Amnicytheria resupina**														
Amnicytheria plana**														
Amnicytheria postbissinuata++														
Amnicytheria longa**														
Amnicytheria palimpseta++														
Amnicytheria multituberculata++														
Amnicytheria polymorpha**														
Amnicytheria spectabilis**														
Amnicytheria striatocostata**														
Amnicytheria cymbula**														
Amnicytheria mironovi**														
Amnicytheria volgensis++														
Amnicytheria piragatica++														
Amnicytheria gracilloides++														

Note: * - freshwater species; ** - brackishwater species; *** - marine species
Continuation of Table 1. Stratigraphic position of ostracods in Neogene-Quaternary deposits of the northern part of the Black Sea

Species composition of ostracods	Pliocene	Eocene	Neopleistocene	Holocene										
	km	kj	gu	ch	de	eu	kg	pk	ne	bg	vz	k1	fn	gz
Amnicythere histriana***														
Calistocythere flavidofusca***														
Calistocythere diffusa***														
Calistocythere cristata***														
Mediocytherideis apatoica**														
Loxoconchissa (L.) petasus**														
Loxoconchissa (L.) eichwaldi**														
Loxoconchissa (L.) babazananica**														
Loxoconchissa (L.) immodulata**														
Loxoconchissa (L.) praeimmodulata**														
Loxoconchissa (L.) endocaropus**														
Loxoconchissa (L.) bairdyi**														
Loxoconcha subcrassula**														
Loxoconcha ljuljevi***														
Loxoconcha lepida**														
Loxoconcha bulgarica***														
Loxoconcha gibboidea***														
Loxoconcha rhomboidea***														
Loxoconcha verticalitercostata														
Loxoconcha granulata***														
Loxoconcha remnata***														
Loxoconcha globoza***														
Loxoconcha elliptica***														
Loxoconcha aestuarii***														
Loxoconcha pontici***														
Palmoconcha agilia***														
Paracytheridea paulii***														
Paradoxostoma variabile***														
Paradoxostoma guttatum***														
Paradoxostoma naviculum***														
Paradoxostoma simile***														
Pseudocytherura pontica***														
Cushmanidea tschernjawskii***														
Cushmanidea baccesci***														
Carinocythereis carinata***														
Carinocythereis rubra***														
Costa edwardsii runcinata***														
Xestoleberis (P.) laevis***														
Xestoleberis (P.) communis***														
Xestoleberis (X.) decipiens***														
Xestoleberis (X.) acutipenis***														
Xestoleberis (X.) aurantia***														
Xestoleberis (X.) corneli***														
Xestoleberis (X.) cellulosus***														
Xestoleberis (X.) elongata***														
Xestoleberis (X.) chanakovi***														
End of Table 1. Stratigraphic position of ostracods in Neogene-Quaternary deposits of the northern part of the Black Sea

Species composition of ostracods	Pliocene	Early Pliocene	Neopleistocene	Holocene								
	km	kj	de	eu	kg	pk	ne	bg	vz	kl	fn	gz
Semicytherura sulcata***												
Semicytherura cuxinica***												
Cytherois cepa***												
Camptocypris acronasuta**												
Camptocypris gracilis**												
Camptocypris lobata**												
Caspiocypris labiata**												
Caspiocypris merculiensis**												
Bacunella dorsoaruata**												
Pontoniella acuminata**												
Advenocypris centropunctata*												
Limnocythere inopinata*												
Metacypris cordata*												
Darwinula stevensoni*												
Candona (C.) expressa*												
Candona (C.) candida*												
Candona (C.) angulata*												
Candona (C.) iliensis*												
Candona (C.) neglecta*												
Candona (C.) elongata*												
Candona (C.) rawsoni*												
Candona (C.) angulata*												
Candona (E.) balatonica*												
Candona (E.) caucasica*												
Typhlocypris rostrata*												
Typhlocypris compressa*												
Cyclocypris ovum*												
Cyclocypris laevis*												
Cypria candonaeformis												
Cypria arma*												
Cypria laeustris*												
Cyprinotus salinus*												
Ilyocypris bradyi*												
Ilyocypris gibba*												
Ilyocypris caspiensis*												
Eucythere ex.gr.declivis*												
Eucypris clavata*												
Zonocypris membranace*												
Herpetocypris reptans*												
Heterocypris incongruens*												
Bairdia raris*												
Bythocythere schornikovi***												
Cytheropteron rotundatum***												
Cytheridea acuminata***												
Heterocythereides reticulata***												
Typical species of the Kujalnikian ostracods are *Cyprideis ruggierii* Dec., *Aurila notata* (Reuss), *Amnicythere spectabilis* (Mark.), *Loxoconcha bulgarica* Car., *Xestoleberis (Xestoleberis) chanakovi*, *Candona (Eucandona) balatonica* Dad., *Cypria arma* (Schn.) (Dykan, 2006, 2016 a). Kujalnikian ostracod associations had a brackish water-freshwater-marine composition: brackish water species accounted for 57 %, freshwater – 31 %, marine – 12 % of the total number of species (Fig. 3).

Gurian deposits are embedded low down in the marine Quaternary deposits and they are mosaicically distributed between isobaths 10-90 m in the northwestern and northeastern shelf of the Black Sea. They are represented by silts and clays with a total thickness of up to 20 m.

Gurian ostracods total 11 genera and have a poor species composition (17 species). They are presented by Miocene-Pliocene relics, which accounted for 94 % of the total: *Loxoconchissa (Loxoconchissa) bairdi* (G.W. Müll.), *Loxoconchissa (Loxocaspia) babazananica* (Liv.), *Bacunella dorsoarcuata* (Zal.), *Pontoniella acuminata* (Zal.), *Tyrrenocythere amnicola donetiensis* Dub., *Tyrrenocythere azerbaidjanica* (Liv.), *Camptocypria acronasuta* (Liv.), *Camptocypria gracilis* (Liv.), *Amnicythere palimpsesta* (Liv.), *Cyprideis torosa* (Jones), *Cypria candonaeformis* (Schw.), *Illyocypris gibba* (Ramd.), *Illyocypris bradyi* Sars, *Advenocypris centropunctata* (Suz.), *Cryptocyprideis bogatschovi* (Liv.), *Darwinula stevensoni* (Brady & Rob.). The index species of the beginning of the Gurian is *Amnicythere postbissinuata* (Neg.) (Dykan, 2016 a) (Table 1). Gurian ostracod associations had a brackish water-freshwater composition: brackish water species dominated (accounting for 69 % of the total number of species), with freshwater ostracods comprising 31 %; Fig. 3).

The Pliocene/Quaternary boundary, as defined by ostracods between the Kujalnikian and Gurian horizons in the northern part of the Black Sea, is based on the change in taxonomic composition of ostracods, with the disappearance of Pliocene species and the appearance of new Quaternary ones. Ten species disappeared in the Kujalnikian: *Cyprideis pontica* Krstić, *Euxinocythere (Maetocythere) crebra* (Schn.), *Amnicythere mironovi* (Schn.), *Camptocypria lobia* (Zal.), *Loxoconcha subcrassula* Suz., *Loxoconcha verticalitercostata* Dyk., *Xestoleberis (Xestoleberis) cellulosus* Vek., *Xestoleberis (Pontoleberis) communis* G.W. Müll., *Candona (Candona) expressa* Karm., *Illyocypris caspiensis* (Neg.): and one species, *Amnicythere postbissinuata*, appeared in the Gurian (Figs. 4, 5).

Also, the biostratigraphic marker of the Kujalnikian in the Black Sea is *Cyprideis pontica* Krstić, 1968 (Dykan, 2016 b). The brackish-water
species *Cyprideis pontica* has a narrow stratigraphic range (in the upper half of the Middle Miocene-Pliocene) and a widespread geographic distribution within Western and Eastern Europe (Pannonian Basin, Dacian Basin, Euxinian Basin of Paratethys), and the Mediterranean region. The stratigraphic position of the species *Cyprideis pontica* in the Mediterranean region (eastern Mediterranean Basin, Crete and Dacian Basin, Euxinian Basin of Paratethys), and the Mediterranean region. The stratigraphic position of the species *Cyprideis pontica* in the Mediterranean region (eastern Mediterranean Basin, Crete and

Table 1. Stratigraphic position of *Cyprideis pontica* Krstić in Paratethys-Mediterranean region

Period	Epoch	MEDITERRANEAN BASIN (MN/2000)	PANNONIAN BASIN (OUC, 2012)	DACIAN BASIN (OUC, 2012)	EVKSIAN BASIN (OUC, 2012)
QUATERNARY		CALABRIAN	LOWER PLEISTOCENE	PRESENEAN	PRESENEAN
		1.80			
		GELASIAN	RUSSENIAN		
		0.00			
		PIACENZIAN	PRESENEAN		
		1.63			
		ZANLICEAN	DACIAN		
		4.102			
		MESSENEI	PONTIAN		
		0.10			
		TORSOBIAN	PANNESIAN		
		1.20			
		SERSSIPALIAN	SARMATIAN		
		0.82			
		LANGAHAN	RARMATIAN		
		1.87			
		The stratigraphic position of *Cyprideis pontica*	Pre/Cenozoic boundary		
northern Greece) covers the upper Serravallian-Messinian interval (Mostafawi, 1989, 1996); in the Pannonian Basin (Austria, Slovenia, northern and eastern Serbia) the Upper Pannonian-Upper Pontian (Gross et al, 2008); in the Dacian Basin (northern Bulgaria, Romania) the Pontian (Krstić et al, Olteanu, 1989); and in the Euxinian Basin (Black Sea) (northern shelf, the Indo-Kuban depression) the Sarmatian-Kujalnikian (Dykan, 2016 a, b). The species *Cyprideis pontica* disappears at the boundary of the Late Miocene (Messinian, Pontian) and the Pliocene (Zanclean, Dacian, Kimmerian) (5.33 Ma) in the Mediterranean, Pannonian Basin and Dacian Basin (The Geologic Time Scale, 2012) (Table 1).

Cyprideis pontica continued to exist during the Sarmatian-Kujalnikian in the Euxinian Basin. High density monotypic populations of the species were formed in the deep-water habitats of the eastern part of the Black Sea (Indo-Kuban depression) during the Sarmatian-Maeotian. The area with *Cyprideis pontica* declined in the Pliocene to the northwestern part of the sea, where this species was still widespread in the shallow coastal biotope, though with a population of low density. *Cyprideis pontica* was rare in the Kujalnikian, its few populations represented only, or mainly by, larvae. The species had disappeared in the Black Sea by the Kujalnikian/Gurian boundary.

Cyprideis pontica is a phylogenetic branch of the species *Cyprideis torosa* - separating from the parent species *C. torosa* in the Late Miocene. As a result of the occupation of a new ecological niche in deeper water biotopes of the shelf and continental slope with a reduced oxygen content, part of the population of *Cyprideis torosa* went through a narrow specialization process. In the process of adaptation to hypoxia and the necessity to increase the volume of water filtration, there was a reorganization of the morphology of the surface pore channels in the species *Cyprideis torosa*. This involved an increase in the size of the sieve-shaped lamellae, the number of internal pores in these lamellae and the size of the osculum of the inner pore, and a change in the shape of the inner pore on the stack with a rim along the perimeter. As a result of these evolutionary processes, a new morphotype *Cyprideis pontica* was formed within the Paratethys-Mediterranean basins. It occupied a mosaic, ecologically isolated area that coincided geographically or overlapped with the area occupied by the species *Cyprideis torosa* (sympatric evolutionary process) (Fig. 6).

The morphology of the shell of *Cyprideis pontica* Krstić has a diagnostic feature (the morphology of the surface pore canals), which allows this species to be recognised in the Neogene deposits (Dykan, 2016 a, b). The surface pore canals have a different shape (rounded, oval, flower-shaped, irregularly elongated, irregularly oval), different sizes (8-42 μm), sieve-typed, deepened in relation to the surface of the valve. The sieve-shaped lamella contains from 110 to 270 internal pores. The internal pores have a staggered shape and a round osculum (302-994 nm in diameter) with a rim along the perimeter. The central pore is located in the centre of the sieve-shaped lamella, deepened in relation to the surface of the valve, with a round osculum (977 nm-1.8 μm in diameter) (Fig. 7).

Conclusions. A monographic study of the Neogene-Quaternary ostracods of the Black Sea, their stratigraphic position and geographical distribution in the Mediterranean-Black Sea-Caspian region allow one to conclude that a change in the taxonomic composition and ecological specialization of ostracods occurred at the Kujalnikian/Gurian boundary in the northern part of the basin.
of the Black Sea. 24% of Pliocene species, including the index species *Cyprideis pontica*, disappeared in the Kujalnikian. Ostracod associations had a brackish water-freshwater-marine composition. In the Gurian, the new species *Amnicythere postbissinuata* appeared and brackish water-freshwater associations formed, with the domination of brackish water species.

References

Dykan N. I., 2006. *Systematyka chetvertynnykh ostrakod Ukrainy [Systematics of Quaternary Ostracods of Ukraine]*. IHN NANU, Kyiv (in Ukrainian).

Dykan N. I., 2011. *Biostratigrafiya srednemiocenovyh-nizhnemiocenovyh otlozhnjen Tamskogo poluostrova po ostrakodam [Biostratigraphy of the Middle-Miocene–Lower-Miocene deposits of the Taman Peninsula by ostracods]*. Geologicheskij zhurnal, № 3, 29-39 (in Russian).

Dykan N. I., 2012. *Rozchlenuvannia pliots-en-chetvertynnykh vidkladiv Chornoho moria (pivnichnyi shelf) za ostrakodamy [Determining of the age of the Pliocene-Quaternary deposits of the Black Sea (Northern shelf) by ostracodes]*. Tektonika i stratyhrafija, № 39, 111-131 (in Ukrainian).

Dykan N. I., 2016 a. *Neohen-chetvertychnye ostrakody severnoi chast Chornoho moria [Neogene-Quaternary ostracods of the northern part of the Black Sea]*. Chetvertykh khozvyia, Kyiv (in Russian).

Dykan N. I., 2016 b. *Popov Kamen section. Ostracods: Paleontological Journal, 50 (10), 77-81.*

Dykan N. I., 2016 c. *Taman ostracods. Paleontological Journal, 50 (10), 142-150.*

Dykan N. I., 2016 d. *Taman section. Ostracods: Paleontological Journal, 50 (10), 24-25.*

Dykan N. I., 2016 g. *Vid Cyprideis pontica Krstic, 1968 (Ostracoda, Crustacea) – indikator granicy pliocen-chetvertichnykh otlozhnjen (severnaya chast Chernogo moria [View of *Cyprideis pontica* Krstic, 1968 (Ostracoda, Crustacea) - indicator of...*
the boundary of Pliocene-Quaternary deposits (northern part of the Black Sea). Geologiya i poleznye iskopaemye Mirovogo okeana, Kyiv, № 1 (43), 19–43 (in Russian).

Lourens L., Hilgen F., Shackleton N. J., Laskar J., Wilson D., 2004. The Neogene Period: The Geologic Time Scale, 409-440. doi.org/10.1017/CBO9780511536045.022.

Geologic Time Scale, 2004. Editors: Gradstein F. M., Ogg J. G., Smith A. G. Cambridge University Press. doi.org/10.1017/CBO9780511536045.

Geologic Time Scale, 2012. Editors: Gradstein F. M. Ogg J. G. M. Schmitz, Ogg G. Gebrüder Borntraeger, Stuttgart, German. doi.org/10.1016/C2011-1-08249-8.

Gross M., Minati K., Danielopol D., Piller W., 2008. Environmental change and diversification of Cyprideis in the Late Miocene of the Styreal Basin (Lake Pannon, Austria). Senckenbergiana lethaea, 88 (1), 161-181.

Hilgen J., Lourens L.J., Van Dam J.A., 2012. The Neogene Period: The Geologic Time Scale, 923-964. doi.org/10.1016/C2011-1-08249-8.

Krstić N., Stancheva M., 1989.Ostracods of Eastern Serbia and Northern Bulgaria with notices on a Northern Turkey assemblage and some Mediterranean assemblage: Chronostratigraphe und Neostratotypen. Neogene der Westlichen (Zentrale) Paratethys. Pontien, VIII, 753-819.

Mostafawi N., 1996. Neogene Ostracodefaunen im Gebiet südlich von Thessaloniki (Nordgriechenland). Senckenbergiana lethaea, № 76 (1/2), 159-173.

Mostafawi N., 1989. Neogene ostracods of Chersonisos and Vrysses (Crete, Greece). Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 178 (2), 183–201.

Olteanu R., 1989. La faune d’ostracodes pontics du Bassin Dacique: Chronostratigraphie und Neostyratotypen. Neogene der Westlichen (Zentrale) Paratethys. Pontien, VIII, 722-751.

Natsionalnyi stratyrafičniy komitet Ukrainy, 2018. Pro diyalnist Nacionalnogo stratyrafičnogo komitetu Ukrayiny [About the activities of the National Stratigraphic Committee of Ukraine]. Geologichnyj zhurnal, 2 (363), 95-100 (in Ukrainian).

Riccardi A. C., 2009. Ratification of the definition of the base of Quaternary System/Period (and top of the Neogene System/Period), and redefinition of the base of the Pleistocene Series/Epoch (and top of the Pliocene Series/Epoch). IUGS. Retrieved from http://www.stratigraphy.org/upload/IUGS%20Ratification_O%20&Pleistocene.pdf.

Semenenko V. N., 1987. Stratigráficheskaya korrelyaciya verhnego miocena i pliocena Vostochnogo Paratetisa i Tetisa [Stratigraphic correlation of the Upper Miocene and the Pliocene of the Eastern Parathetis and Tetis]. Naukova dumka, Kyiv.

Shnyukov E. F., Shuraev I. N., 2015. Kimmerijskie peschaniki Krymskogo kontinentalnogo sklona [Cimmerian sandstones of the Crimean continental slope]: Stratotipovi ta oporni rozrizi fanerozozemenskii vidkladiv Ukraini: suchasni stan paleontologichnoi vivechenosti ta perspektivi podalshh doslidzhenn. IHN NANU, Kyiv, 8, 215-221 (in Russian).

Shnymuk E. F., Shuraev I. N., 2015. Kimmerijskie peschaniki Krymskogo kontinentalnogo sklona [Cimmerian sandstones of the Crimean continental slope]: Stratotipovi ta oporni rozrizi fanerozozemenskii vidkladiv Ukraini: suchasni stan paleontologichnoi vivechenosti ta perspektivi podalshh doslidzhenn. IHN NANU, Kyiv, 8, 215-221 (in Russian).

Stratigráficheskij slovar SSSR. Paleogen. Neogen. Chetvertichnaya sistema, 1982. Leningrad.

Stratyrafichnij kodeks Ukrayiny, 2012. [Stratigraphic Code of Ukraine]. Vidp. red. P.F.Gozhyk, 2-e vyd., Kyiv (in Ukrainian).