Electrophysiological Signature of Homomeric and Heteromeric Glycine Receptor Channels*

Constance Raltschev1, Florian Hetsch2, Aline Winkelmann2, Jochen C. Meier2,3, and Marcus Semtner2,4

From the 1Department of Biomedicine, Cellular Neurophysiology, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland, the 2Division of Cell Physiology, Technische Universität Braunschweig, Spielmannsstrasse 7, 38106 Braunschweig, Germany, and the 4Cellular Neurosciences, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rösle-Straße 10, 13092 Berlin, Germany

Glycine receptors are chloride-permeable, ligand-gated ion channels that contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies have provided detailed insights into the mechanisms of channel gating, desensitization, and ion permeation. However, most of the work has focused only on comparing a few isoforms, and among studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels, including their splice variants, in the same cellular expression system to investigate and compare electrophysiological properties. Our data show that the current-voltage relationships of homomeric channels formed by the α2 or α3 subunits change upon receptor desensitization from a linear to an inwardly rectifying shape, in contrast to their heteromeric counterparts. The results demonstrate that inward rectification depends on a single amino acid (Ala254) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly rectifying upon desensitization. Thus, the alanine residue Ala254 determines voltage-dependent rectification upon receptor desensitization and reveals a physio-molecular signature of homomeric glycine receptor channels, which provides unprecedented opportunities for the identification of these channels at the single cell level.

*This work was supported by Bundesministerium für Bildung und Forschung (BMBF) Grant Era-Net NEURON II CIPRESS (to J. C. M.), Helmholtz Association Grant VH-NG-246 (to J. C. M.), and Deutsche Forschungsgemeinschaft (DFG) Priority Programme SPP 1784 ME2075/7-1 (to J. C. M.). The authors declare that they have no conflicts of interest with the contents of the article.

1 Present address: Dept. of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
2 Both authors contributed equally to this work.
3 To whom correspondence may be addressed. Tel.: 49-30-9406-3267; E-mail: jochen.meier@tu-braunschweig.de.
4 To whom correspondence may be addressed. Tel.: 49-30-9406-3267; E-mail: marcus.semtner@mdc-berlin.de.
5 The abbreviations used are: GlyR, glycine receptor; LGIC, ligand-gated ion channel; TM, transmembrane domain; IV, current-voltage; TRP, transient receptor potential; DIV, day(s) in vitro; WT, wildtype.

received for publication, April 26, 2016, and in revised form, July 1, 2016. Published, JBC Papers in Press, July 5, 2016, DOI 10.1074/jbc.M116.735084

© 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
Glycine Receptor Current-Voltage Relations

FIGURE 1. Properties of glycine-evoked currents through GlyR α3L. A, time course of currents at −50 mV evoked by 1000 μM (left), 100 μM (middle), and 10 μM (right) glycine in a whole-cell patch clamp experiment on a HEK293T cell transiently transfected with GlyR α3L. Inset images illustrate the recorded cell under fluorescence (GFP) and transmission (phase-contrast) illumination. Scale bar, 20 μm. B, non-transfected HEK293T cells did not respond to glycine application (top). Application of 10 μM strychnine reversibly blocked glycine-evoked currents in HEK293T cells transfected with GlyR α3L cDNA (bottom). C, expanded view of a GlyR α3L response to 1000 μM glycine. IV relationships at the indicated time points (1–4) are shown in D. D, IV relationships of homomeric GlyR α3L channels during current desensitization in response to 1000 μM glycine. Note that the IV relationships at peak are linear and become inwardly rectifying upon desensitization. E, averaged IV relationships of homomeric GlyR α3L channels upon desensitization and in response to 1000 μM glycine (n = 12). All IV relationships were normalized to the currents at −150 mV before merging. F, averaged IV relationships of homomeric GlyR α3L channels upon desensitization and in response to 100 μM glycine (n = 10). All IV relationships were normalized to the currents at −150 mV before merging and to the peak currents of responses at 1000 μM glycine after merging. G, summary of the potentials at which the maximal IV outward currents were determined (V1/2max), for currents evoked with 30, 100, and 1000 μM glycine. H, summary of the rectification index (I150 mV/I150 mV) for currents through GlyR α3L homomers evoked with 30, 100, and 1000 μM glycine. Error bars, S.E.

time course and decay half time of desensitization underlie large cell-to-cell variability (20) due to many different parameters that may influence the kinetics, such as ligand concentration (16), the phosphorylation state of the intracellular TM3-TM4 loop (16, 20), or the membrane potential (1, 21, 22). GlyR are basically selective for Cl− but also permeable to other anions and even to cations (23–28). Due to anomalous mole fraction effects on ion conductance, it has further been suggested that GlyRs are multi-ion channels with at least two ion binding sites in the channel pore (23, 24). The GlyR pore is formed by the TM2 helices from five channel-forming GlyR subunits. The narrowest point within the pore is located at the intracellular pore mouth and formed by the 2′-Pro and 9′-Leu residues within TM2 (29). Interestingly, amino acids from this region are involved not only in selectivity of GlyR to Cl−, but also in determining its desensitization kinetics (18).

A current-voltage (IV) relationship characterizes and identifies an ion channel. Characteristic IV relationships were identified for many homo- and heteromeric ion channels, including members of the transient receptor potential (TRP) channel family (30, 31). However, in the case of GlyRs, detailed information about isoform-specific characteristics of IV relationships is not available, especially for α2- and α3-containing GlyRs that are involved in neuropathic pain, temporal lobe epilepsy, and autism spectrum disorder (3–6). Here, using the same (HEK293T) cellular expression system and the same experimental setup, we reveal essential information about characteristic IV relations of recombinant homomeric GlyR α2 and α3 channels. The results show that, upon receptor desensitization, the IV relationship switches from a linear behavior to an inwardly rectifying shape, in contrast to homomeric GlyR α1 or heteromeric GlyR α2/β or α3/β channels, where IV relationships remain linear. Furthermore, GlyR α2 and α3 IV rectification is dependent on a single amino acid at the inner pore mouth and closely linked to Cl− permeation. This characteristic electrophysiological IV signature of homomeric GlyR α2 and α3 channels was also found in primary hippocampal neurons with preponderant GlyR α2 protein expression. Thus, our study not only provides useful information about the physiologic-molecular signature of GlyR channels and their identification in native cells but also may help in understanding the complex nature of maladaptive forms of neuronal plasticity in neuropathic pain, autism spectrum disorder, and temporal lobe epilepsy.

Results

Current-Voltage Relationships of Desensitized GlyR α3L Are Inwardly Rectifying—The electrophysiological properties of GlyR α3L were investigated in whole-cell patch clamp recordings on HEK293T cells transiently transfected with the cDNA of the receptor subunit. In agreement with previous publications, application of glycine elicited inward currents at −50 mV in a concentration-dependent manner (Fig. 1A). The time courses of glycine-evoked currents were characteristic in terms of a fast increase that was followed by a slow decline toward a steady state level, which is referred to as receptor desensitization. Note that although considered as inward current by convention, the Cl− flux through GlyR α3L at −50 mV is actually directed outwardly. When glycine was removed from the bath solution, currents returned to baseline levels. The specificity of glycine-induced currents through GlyR α3L was further confirmed by application of the competitive antagonist strychnine (10 μM), which completely and reversibly blocked GlyR α3L...
Glycine Receptor Current-Voltage Relations

TABLE 1

Electrophysiological properties of GlyR channels at −50 mV

GlyR	\(I_{\text{150 gly peak}}\)	\(EC_{50\text{ Gly peak}}\)	\(n_t\text{ peak}\)	\(\tau_{\text{150 gly}}\)	\(I_{\text{150 gly desens.}}\)	\(EC_{50\text{ Gly desens.}}\)	\(n_t\text{ desens.}\)
a1AINS	−4352 ± 291 (9)	55.3 ± 8.5 (7–9)	1.2 ± 0.2 (7–9)	8.3 ± 2.5 (8)	−821 ± 121 (9)	36.9 ± 9.0 (7–9)	0.8 ± 0.2 (7–9)
a1NSN	−5782 ± 256 (6)	65.4 ± 4.1 (4–6)	1.8 ± 0.2 (4–6)	6.6 ± 2.0 (5)	−1328 ± 114 (6)	30.3 ± 4.6 (4–6)	1.8 ± 0.5 (4–6)
a2A	−3741 ± 506 (12)	70.0 ± 1.8 (5–12)	2.1 ± 0.1 (5–12)	6.3 ± 1.0 (9)	−921 ± 120 (12)	35.8 ± 2.5 (5–12)	1.7 ± 0.0 (5–12)
a2B	−1998 ± 357 (11)	22.4 ± 1.6 (10–11)	1.6 ± 0.2 (10–11)	10.1 ± 1.8 (8)	−578 ± 106 (11)	43.5 ± 18.1 (10–11)	0.8 ± 0.3 (10–11)
a2βA	−3255 ± 722 (6)	155.0 ± 12.9 (4–6)	2.2 ± 0.4 (4–6)	7.0 ± 0.8 (6)	−755 ± 128 (6)	146.6 ± 37.5 (4–6)	1.5 ± 0.5 (4–6)
a2βB	−3796 ± 338 (5)	53.3 ± 8.5 (4–5)	1.2 ± 0.2 (4–5)	7.1 ± 1.8 (4)	−896 ± 162 (5)	36.9 ± 9.0 (4–5)	0.8 ± 0.2 (4–5)
a3K	−3006 ± 373 (14)	69.2 ± 4.7 (12–14)	1.4 ± 0.1 (12–14)	6.9 ± 1.1 (10)	−675 ± 100 (14)	66.2 ± 11.2 (12–14)	1.1 ± 0.2 (12–14)
a3L	−4086 ± 572 (23)	94.6 ± 0.5 (5–23)	2.3 ± 0.0 (5–23)	5.3 ± 1.1 (13)	−412 ± 76 (23)	40.0 ± 6.3 (5–23)	1.5 ± 0.3 (5–23)
a3βK	−3055 ± 457 (10)	118.8 ± 8.2 (6–10)	1.6 ± 0.2 (6–10)	5.3 ± 0.8 (10)	−463 ± 57 (10)	41.4 ± 3.1 (6–10)	2.8 ± 0.5 (6–10)
a3Lβ	−1642 ± 333 (8)	138.1 ± 15.6 (6–9)	1.7 ± 0.2 (6–9)	4.8 ± 1.1 (7)	−228 ± 57 (8)	57.5 ± 2.7 (6–9)	1.4 ± 0.1 (6–9)
a3K2A2G	−3175 ± 583 (14)	123.7 ± 11.5 (12–14)	1.7 ± 0.3 (12–14)	7.1 ± 2.3 (5)	−740 ± 104 (14)	85.1 ± 2.5 (12–14)	1.6 ± 0.1 (12–14)
a3L2A2G	−3344 ± 261 (20)	177.6 ± 29.0 (14–20)	2.5 ± 0.7 (14–20)	5.4 ± 0.7 (11)	−814 ± 51 (20)	113.6 ± 1.6 (14–20)	2.2 ± 0.1 (14–20)

Responses to 1000 μM glycine (Fig. 1B, bottom). Non-transfected HEK293T cells did not respond to glycine (Fig. 1B, top).

IV relationships of GlyR α3L were determined at different time points of receptor activation by applying voltage ramps ranging from −150 to +150 mV (600 ms) every 5 s. As expected for a Cl− channel, each IV relationship of GlyR α3L reversed close to the Nernst potential for Cl− (−2.3 mV). Instantly after glycine administration, IV relationships of GlyR α3L were linear (Fig. 1, C and D) but, interestingly, became inwardly rectifying upon desensitization. To quantify this rectification, we analyzed IV relationships obtained 25–30 s after glycine application. To quantify this rectification, we considered the possibility that Cl− permeation through GlyR α3L is limited at positive potentials. To address this option, we performed recordings on GlyR α3L using low intracellular Cl− concentrations and applied 1000 μM glycine. As shown in Fig. 2, B and C, inward rectification was still present under these conditions; however, \(U(\text{max})\) (28.1 ± 1.1 mV, \(n = 5\)) was strongly shifted toward more negative potentials. Intriguingly, when compared with high Cl− pipette solutions, the shift of \(U(\text{max})\) was similar to the shift of the reversal potential (−42.0 ± 2.1 mV, \(n = 5\); Fig. 2C), indicating that the decrease in GlyR α3L conductance at positive membrane potentials is related to diminished Cl− permeation at these membrane potentials.

IV Rectification Identifies Homomeric GlyRa2 and GlyRa3 Channels—We next studied the characteristics of different RNA splice variants of homomeric GlyR α1, GlyR α2, and GlyR α3 channels and compared their major properties with those of GlyR α3L. As shown in Fig. 3, each of the investigated isoforms responded to the application of glycine. All data on concentration-response curves and desensitization kinetics can be found in Table 1, and the parameters extracted from IV relationships are summarized in Table 2. Like GlyR α3L, the IV relationships of homomeric GlyR α2- and α3-containing channels were inwardly rectifying upon desensitization, whereas GlyR α1 channels displayed linear IV relationships. We also investigated GlyR α2β and GlyR α3β heteromeric channels. The β subunit was previously shown to influence not only the subcellular expression of GlyRs but also their biophysical properties. In our experiments, when comparing homomeric and heteromeric GlyRs, the β subunit-containing channels generally tended to have lower affinities (\(EC_{50}\)) and smaller cooperativities (\(n_t\)) for
Glycine Receptor Current-Voltage Relations

TABLE 2
Properties of GlyR IV relationships

Intracellular condition	V_{rev}	$V(I_{max})$	$-I_{rev}/I_{max}$
HEK293	mV	mV	
α1ΔNS	−3.5 ± 1.7 (4)	138.3 ± 1.17 (4)	0.72 ± 0.16 (4)
α1NS	0.2 ± 0.8 (6)	150.0 ± 0.5 (6)	0.93 ± 0.08 (6)
α2A	−5.2 ± 1.5 (5)	122.9 ± 0.14 (5)	0.51 ± 0.14 (5)
α2B	−1.9 ± 1.6 (5)	118.0 ± 0.13 (5)	0.47 ± 0.13 (5)
α2Bβ	−0.2 ± 0.8 (6)	150.0 ± 0.5 (6)	0.62 ± 0.07 (6)
α3K	−0.4 ± 0.5 (2)	144.9 ± 5.1 (6)	0.725 ± 0.15 (5)
α3L	−2.3 ± 1.0 (9)	105.3 ± 10.1 (9)	0.41 ± 0.08 (9)
α3L, 30 μM Gly	0.2 ± 0.5 (12)	80.9 ± 8.2 (12)	0.17 ± 0.04 (12)
α3L, 100 μM Gly	0.9 ± 2.3 (7)	149.6 ± 0.4.7 (7)	1.82 ± 0.38 (7)
α3L, 1000 μM Gly	3.6 ± 0.3 (10)	122.3 ± 8.5 (10)	1.17 ± 0.50 (10)
α3L, Mg2+/Ca2+/M glycine	−3.1 ± 0.6 (4)	79.3 ± 23.5 (4)	0.21 ± 0.10 (4)
α3L, 18 mV Cl−	−42.0 ± 2.1 (5)	28.1 ± 1.1 (5)	0.41 ± 0.04 (5)
α3Kβ	0.2 ± 0.6 (8)	144.9 ± 5.0 (8)	0.59 ± 0.13 (8)
α3Lβ	0.6 ± 0.3 (8)	146.6 ± 2.6 (8)	0.37 ± 0.07 (8)
α3K-A254G	−2.8 ± 1.1 (6)	150.0 ± 0.6 (6)	0.98 ± 0.08 (6)
α3L-A254G	−3.6 ± 1.2 (12)	114.2 ± 8.6 (12)	0.57 ± 0.09 (12)

HC neuron	mV	mV	
DIV 2–4	0.8 ± 1.7 (8)	91.8 ± 9.8 (8)	0.19 ± 0.03 (8)
DIV 15–25	2.4 ± 2.5 (9)	132.8 ± 13.1 (9)	0.29 ± 0.08 (9)

FIGURE 2. GlyR α3L inward rectification is linked to Cl− permeation. A, averaged IV relationships of GlyR α3L upon desensitization and in response to 1000 μM glycine (n = 4). IV relationships were normalized to the maximum outward current. Experiments were done using a Ca2+/Mg2+–free pipette solution containing 10 mM HEDTA. B, averaged IV relationships of GlyR α3L upon desensitization and in response to 1000 μM glycine. IV relationships were normalized to the maximum outward current. Experiments were performed with the standard pipette solution (black, n = 12) and with a pipette solution containing only 18 mM Cl− (green, n = 5). C, statistical analysis of the reversal potentials (V rev, circles) and the potentials at which the maximal outward currents were determined (V(Imax), triangles) at the conditions shown in A and B. Note that V(I max) was dependent on the Cl− driving force and was not changed by intracellular Ca2+ or Mg2+. Error bars, S.E.

glycine, which is in agreement with previous observations (9). Furthermore, β subunit-containing GlyRs desensitized more slowly compared with corresponding homomeric receptor channels. Most interestingly, although inward rectification remained at substantial levels, the IV relationships of GlyR α2β and GlyR α3β heteromers were much more linear compared with their homomeric counterparts (Fig. 3, B and C, and Table 2).

GlyR Pore Structure Is Closely Linked to IV Rectification—To identify the molecular determinants of GlyR inward rectification, we compared the amino acid sequences of the pore-lining (TM2) regions of rodent GlyR α1–3 (Fig. 4A). Intriguingly, the pore regions are almost completely identical, and only at position 254, GlyR α1 subunits carry a glycine, whereas an alanine residue is present in GlyR α2 and α3 subunits. Amino acid substitution of glycine for alanine at position 254 in GlyR α3 led indeed to a strongly diminished inward rectification of desensitized currents through both GlyR α3 splice isoforms (Fig. 4C), indicating that alanine at position 254 is a major determinant of this characteristic. The recently published cryo-EM structure of GlyR α1 (29) reveals that Gly254 in GlyR α1 is located at the inner mouth of the channel pore and directed toward the permeation pathway (Fig. 4B, shown in red). We generated a structure homology model (35) of GlyR α3 based on GlyR α1. However, the side chain of alanine in this structure model was not directed toward the channel pore, indicating that permeating ions are presumably not sterically hindered by the additional methyl group in GlyR α3 channels. We therefore suggest minimal differences in TM2 positioning relative to the channel pore of GlyR α1 and α3 as a possible reason for the differences in the IV curves. Notably, GlyR β subunits also differ from GlyR α3 at position 254 and hold a proline instead of alanine (Fig. 4A). The fact that the IV relationships of β subunit-containing GlyR channels were not rectifying further supports our hypothesis that is based on mutagenesis and tertiary structure analysis.

Functional Determination of Somatic GlyR Subunit Composition in Hippocampal Neurons—We finally asked whether the particular biophysical characteristics of GlyR α1 versus α2 and α3 can be used as an electrophysiological signature or fingerprint of the neuronal endogenous GlyR subunit composition. It was recently shown that the GlyR β subunit is expressed as mRNA, not as protein, in mouse hippocampal neurons (36). We performed patch clamp experiments on rat primary hippocampal neurons. In immature neurons at DIV 2–4, IV relationships of 1000 μM glycine-evoked currents clearly had an inwardly rectifying shape that resembled mostly those of transiently expressed GlyR α2 or α3 homomeric channels in HEK293T cells (Fig. 5B; compare with Fig. 3C). Messenger RNA coding for GlyR α3 was detected in primary hippocampal neurons, although at rather low levels compared with those corresponding to GlyR α2 and GlyR β coding transcripts (Fig. 5A). The same holds true for more mature hippocampal neurons at DIV 15–25. However, there were significant differences in the shape of their IV relationships, which were much more
linear than those from immature neurons but still displayed substantial inward rectification (Fig. 5, B–E).

Discussion

GlyRs are ligand-gated chloride channels that contribute to synaptic signal transmission in the mammalian CNS. Currently, there are inconsistent data regarding biophysical properties of GlyRs due to heterogeneous heterologous expression systems. Here, we comparatively investigated the properties of glycine-evoked currents through recombinant GlyR channels using GlyRα1ΔIns and GlyRα1Ins as well as heteromeric GlyRα1/β channels upon desensitization and in response to 1000 μM glycine. IV relationships were normalized to the currents at −150 mV. Insets, averaged and normalized time courses at −50 mV from 2 s before to 30 s after the start of glycine application. D, statistical analysis of the potentials at which the maximal outward currents were determined (V(Imax)). The color code is similar to that in A–C. Note that only homomeric GlyRα2 and GlyRα3 channels display pronounced inward rectification. Error bars, S.E.

Glycine Receptor Current-Voltage Relations

FIGURE 3. IV relationships of desensitized currents through GlyR channels. A–C, averaged IV relationships of homomeric GlyRα1ΔIns (A, left) and GlyRα1Ins (A, right), GlyRα2A (B, top left) and GlyRα2B (B, top right), and GlyRα3K (C, top left) and GlyRα3L (C, top right) as well as heteromeric GlyRα2A/β (B, bottom left) and GlyRα2B/β (B, bottom right) and GlyRα3K/β (C, bottom left) and GlyRα3L/β (C, bottom right) channels upon desensitization and in response to 1000 μM glycine. IV relationships were normalized to the currents at −150 mV. Insets, averaged and normalized time courses at −50 mV from 2 s before to 30 s after the start of glycine application. D, statistical analysis of the potentials at which the maximal outward currents were determined (V(Imax)). The color code is similar to that in A–C. Note that only homomeric GlyRα2 and GlyRα3 channels display pronounced inward rectification. Error bars, S.E.
differences in gating (37, 38), our data suggest that the amino acid sequence homology between the different GlyR subunits gives rise to similar desensitization properties at 50 mV. Indeed, the desensitization kinetics expressed as values were consistent between 5 and 10 s for each of the investigated homomeric GlyR channels. However, these data are not in good agreement with previous studies that reported that splicing of the long insert into GlyR3 mRNA impacts on desensitization kinetics (12, 39–41). Notably, desensitization of GlyR channels may be highly variable (20, 41) and influenced by many parameters, such as receptor density (42), membrane potential (43), intracellular and extracellular pH (44, 45), ion concentration (46, 47), the membrane lipid composition, and phosphorylation of the intracellular TM3-TM4 domain or the N-glycosylation of the receptor N terminus (20). Technical features, such as slow or fast ligand application or the ligand concentration (16, 48), duration of ligand administration, or the recording mode may also account for these differences. Co-expression of the GlyR β subunit did not change Hill coefficients of glycine-response curves and decay kinetics of GlyR2- and GlyR3-containing channels, but the sensitivity of heteromorphic channels was consistently increased by a factor of approximately 2 in comparison with the respective homomeric GlyR2/3 variants, which is a new finding compared with recent publications that did not report such a tendency for GlyR2-containing or GlyR3-containing GlyRs (49–51). Differences in the binding affinities of glycine between the sites formed by or the surfaces were previously resolved (52), possibly explaining these differences from previous studies.

We also investigated IV relationships of GlyR channels with different subunit compositions. The IV relationship of an ion channel can be regarded as a signature. It is an important

FIGURE 4. An alanine residue within the GlyRα3 pore is important for inward rectification. A, sequence comparison of the pore-lining regions of GlyR α1, GlyR α2, GlyR α3, and GlyR β subunits (starting from position 243). Note that the sequences of all α subunits are completely identical with the exception of one alanine/glycine at position 254. B, left, front (bottom) and top (top) view on homomeric GlyR α1 in the glycine-bound state (Protein Data Bank entry 1JAE). Gly254 is located at the inner pore mouth and directed toward the channel pore. Right, structure homology model of a homomeric GlyR α3 channel. The side chain of Ala254 is not directed toward the channel pore. C, averaged IV relationships of A254G mutants of GlyR α3K (top) and GlyR α3L (middle) upon desensitization and in response to 1000 μM glycine. IV relationships were normalized to the currents at −150 mV. IV relationships of GlyR α3Kwt and GlyR α3Lwt are illustrated for comparison. Experiments were performed with the standard pipette solution. Insets, averaged and normalized time courses at −50 mV from 2 s before to 30 s after glycine application. Bottom, statistical analysis of V(I) (max). Inward rectification of the A254G mutants was significantly reduced in comparison with WT. Error bars, S.E.
Glycine Receptor Current-Voltage Relations

FIGURE 5. Functional GlyR subunit expression in hippocampal neurons. A, PCR of cDNA from cultured hippocampal neurons at DIV 3 or DIV 24 using specific primers for GlyR α1, GlyR α2, and GlyR α3. GAPDH was tested in parallel in PCRs for GlyR α1, GlyR α2, and GlyR α3. Note that mRNAs level of GlyR α2 and GlyR α3 are more pronounced than those of GlyR α1 and GlyR α3 at both time points. B and C, averaged IV relationships of DIV 2–4 neurons upon desensitization and in response to 1000 μM glycine. Note that IVs were determined by subtraction of currents in the presence and absence of glycine. IV relationships were normalized to the currents at −150 mV. Experiments were performed with the same pipette solution as used in HEK293T cells. Insets, representative transmission light (Ph2) images from a neuron at DIV 3 (B) or at DIV 24 (C). Scale bar, 20 μm. D, summary of the potentials at which the maximal IV outward currents were determined (V(III(max))) for currents evoked by 1000 μM glycine in DIV 2–4 and DIV 15–25 neurons. E, summary of the rectification index (−I/I_{150 mV}/I_{+150 mV}) for currents evoked by 1000 μM glycine in DIV 2–4 and DIV 15–25 neurons. Error bars, S.E.

Parameter to characterize and identify an ion channel's bio-physical properties or the subunit composition in vitro and in vivo. For GlyR channels, few data are available with respect to their IV relations, although glycine-induced currents through these channels are known to be voltage-dependent (21, 48, 53). However, many studies on IV relations of native or recombinant GlyR α1-containing channels were performed using different cellular expression systems, including neurons, HEK cells, and Xenopus oocytes (23, 24, 54–56). In the present study, we describe for the first time IV relationships of homomeric and heteromeric GlyR channels over a wide voltage range from −150 to +150 mV using the same HEK293T′ cellular expression system. The finding that IV relations of homomeric GlyR α2 and α3 channels change from linear to inwardly rectifying upon desensitization might be indicative for the changes of the structural configuration of the agonist binding sites, channel pore, linker sequences, and intracellular domains, altogether leading to the apparent changes in conductance (37). However, our data show that GlyR α3 inward rectification depends on a large extent on ion permeation because inward rectification of GlyR α3L was observed with both symmetrical and asymmetrical Cl− gradients, and the membrane potential of the onset of rectification (V(III(max))) shifted to the same extent as the Nernst potential would predict. Thus, the inward rectification of desensitized GlyR α3L currents is not dependent on a given membrane potential but rather on a given chemical Cl− gradient across the membrane. Interestingly, a three-site/four-barrier rate model was previously suggested for GlyR α1 (25), and rectification of the single channel conductance can be changed by point mutations of the amino acids that putatively contribute to the barriers within the channel pore (26). We have found that inward rectification of a GlyR α3L mutant, A254G, was significantly reduced. Alanine at position 254 in the TM2 is located at the inner channel pore mouth of GlyR α3L and can be considered analogous to Gly256 in GlyR α1, where it is located at position 2′ in the pore-forming TM2 transmembrane helix (26, 29). Substituting glycine with alanine actually deletes only a methyl group but does not introduce or delete charged or polar residues in a protein. It is therefore likely that, structurally, either the pore diameter is affected or the general positioning of TM2 is changed by the A254G mutation in GlyR α3L. However, our data do not favor one of these two possibilities, and the protein homology structure model of GlyR α3 (see Fig. 4) predicts that the methyl group of Ala254 is not directly displayed toward the pore. Rather, mutational studies on GlyR α1 (57) have suggested that ion permeation is sterically regulated at the inner pore mouth between positions −3 and +2 relative to TM2. It is furthermore accepted that the narrowest point in the GlyR pore is located at the inner mouth (29, 58). Our results therefore suggest that the inwardly rectifying IV relationship of desensitized GlyR α3 channels is most likely determined by an asymmetrical energy barrier for Cl− permeation. Interestingly, gating and permeation of LGICs are closely linked, and desensitization was recently shown to be regulated by interactions between the TM2 and TM3 segments, affecting the lumina of the channel pores close to the intracellular side (18). Although position 254 (Gly254 in α1, Ala254 in α2 and α3) was not directly investigated in that study, it is close to the other positions (e.g. Gly256 in α1) (18) that are involved in TM2-TM3 coupling and receptor desensitization. Thus, Ala254 in GlyR α2 and α3 homomeric channels determines rectification of the IV relationship in the desensitized state, which is most likely due to an asymmetrical energy barrier for Cl− permeation. Our study also showed that inward rectification only occurs with homomeric
GlyR α2 and α3 channels, consistent with the presence of an alanine at position 254. In contrast, IV relationships of homomeric GlyR α1 channels or heteromeric GlyR α2/β or GlyR α3/β channels were rather linear in the desensitized state. The inwardly rectifying IV relationship can therefore be regarded as a signature of homomeric GlyR α2 or α3 channels, which is useful for the discrimination of these GlyR channels from homomeric GlyR α1 or heteromeric GlyR α2 and α3 channels that contain the β subunit. Indeed, primary hippocampal neurons investigated at DIV 2–25 were shown here to display GlyR responses with rather inwardly rectifying IV relationships upon desensitization, suggesting that homomeric GlyR α2 and/or α3 channels were expressed at these developmental states. Our RT-PCR analysis provides evidence that supports this conclusion because GlyR α2 was preponderantly expressed between DIV 3 and DIV 24 (Fig. 5A). The finding that mRNA coding for GlyR β was also detected actually also supports recent evidence for the lack of GlyR β protein expression in hippocampal neurons (36). Furthermore, these results indicate that the identified voltage-dependent rectification of homomeric GlyR α2/3 can be used as physio-molecular signature to identify these channels at the single cell level.

In vivo, GlyR α2 and α3 are expressed in different brain regions, including the neocortex and hippocampus, in both post- and presynaptic neuronal compartments (2, 4, 8, 59, 60). The intracellular chloride concentration of most mature neurons in the CNS is relatively low, shifting the onset of GlyR rectification in the physiological range of membrane potentials. Thus, postsynaptic plasma membrane homomeric GlyR α2 or GlyR α3 channels would restrain chloride conductance at depolarized membrane potentials (e.g. during a series of action potentials and resulting massive membrane depolarization) if glutamatergic synapses are active. However, at presynaptic terminals of glutamatergic synapses, homomeric GlyR α3L was shown to be expressed in presynaptic vesicles with the ligand-binding domain facing the lumen of vesicles (4). Because the vesicular membrane potential would be much more positive compared with the plasma membrane potential, ranging between +40 and +80 mV (61), voltage-dependent rectification of GlyR-dependent currents can be particularly relevant with regard to the loading of vesicles with neurotransmitters because it would contribute to increasing ΔpH. The glycine transporter GlyT1 is also expressed at glutamatergic terminals in the vesicular membrane (62), and vesicle loading with glutamate indeed depends on the vesicular chloride gradient (63). Thus, vesicular GlyRs would be permanently desensitized (due to GlyT1-dependent glycine fill) and restrain chloride-facilitated glutamate loading of presynaptic vesicles, due to voltage-dependent rectification.

Altogether, our study reveals that inward rectification of IV relationships of desensitized homomeric GlyR α2 and α3 is a physio-molecular signature of these channels and a peculiar biophysical property that restrains chloride conductance at depolarized membrane potentials or in compartments with a low chloride concentration, which can be particularly relevant for maladaptive forms of neuronal plasticity in neuropsychiatric disorders, such as autism (5), and epilepsy (3, 4).

Experimental Procedures

Molecular Biology—The clones coding for GlyR α1ΔIns, GlyR α1ns, GlyR α2A, GlyR α2B, and GlyR β were described earlier (64). In these cases, EGFP (Clontech) was co-expressed. Cloning of GlyR α3K^{2A,4G} and GlyR α3L^{2A,4G} was performed using Fusion-PCR with oligonucleotides 5’-GGGAGGCGCCTGGGATACCCAGTACTGACA-3’ and 5’-CCCAGGCTTACCCGGAGCTGCA-3’ followed by Stul restriction digest and self-ligation. IRES-EGFP (expression of GFP from an internal ribosome entry site) constructs containing GlyR α3K, GlyR α3L, GlyR α3K^{2A,4G}, or GlyR α3L^{2A,4G} were generated by molecular subcloning. RNA was isolated from DIV 2–4 primary rat hippocampal neurons using TRIzol reagent (Invitrogen). cDNA was obtained by reverse transcription of 2 µg of RNA with an equimolar mixture of 3’-anchored poly(T) oligonucleotides (T18V, T15V, and T13V) and Superscript II (Invitrogen), according to the manufacturer’s protocol. cDNA of DIV 2–4 primary rat hippocampal neurons was screened for expression of GlyR subunits using PCR and oligonucleotides specific to GlyR α1 (5’-CTGTGTCGCTGCTGTCGGTGTTCA-3’ and 5’-TTGGGAAACCCATGCGGAAAAA-3’), α2 (5’-CACGACTTGGAAATTCCTGGCC-3’ and 5’-GAAGGCAAGTCGGGAGACG-3’), and β (5’-TGAATACCAGATGCGGAG-3’ and 5’-TACGTGGAAGAAGAAGAGG-3’). cDNA coding for the housekeeping gene Gapdh (glyceraldehyde 3-phosphate dehydrogenase) was amplified using GAPDH-specific primers (5’-CACATGATGGTCAAGACCT-3’ and 5’-GCCGGATCCCACTGCT-3’), and β (5’-TGAATACCAGATGCGGAG-3’ and 5’-TACGTGGAAGAAGAAGAGG-3’). The PCR protocol consisted of an initial denaturation step (2 min at 94°C) followed by 35 cycles with 94°C denaturation (1 min), 58°C annealing temperature (1 min), and 72°C elongation (1 min). PCR products were separated using agarose gel electrophoresis and visualized using ethidium bromide.

Cell Culture and Transfection—HEK293T cells were cultured in T75 culture flasks containing 10 ml of DMEM (catalog no. 41965-062, Gibco) supplemented with 4.5 g/liter glucose, 10% FCS (catalog no. 1050064, Life Technologies), and 1% penicillin/streptomycin (catalog no. 15140122, Life Technologies) at 37°C and 5% CO₂ in a humidified incubator. Cell passaging was performed every 2–3 days at an average confluence of 80–90%. Two or 3 days before transfection, 300,000 HEK293T cells were seeded onto glass coverslips (diameter 13 mm) coated for 20–30 min with 0.1% polyornithin (poly-lysine) and 0.1% poly-DL-ornithine hydrobromide, catalog no. P8638-100MG, Sigma). Cells were allowed to adhere for at least 2 h before electrophysiological recordings were carried out.
Glycine Receptor Current-Voltage Relations

Hippocampal Cell Culture—All animals were killed according to the permit (LaGeSo, 0122/07) given by the Office for Health Protection and Technical Safety of the regional government of Berlin and in compliance with regulations laid down in the European Community Council Directive. Primary hippocampal neurons from E19 Wistar rats were prepared as described previously (65) and kept in B27- and 1% FCS-supplemented Neurobasal medium (66). The initial cell density was 68,000/cm².

Electrophysiology—A ListMedical amplifier, an ITC-18 interface, and Patchmaster software (HEKA, Lambrecht, Germany) were used for patch clamp recordings. Patch pipettes, made from borosilicate glass (Science Products, Hofheim, Germany), had resistances of 2–6 megaohms when filled with the intracellular solution containing 130 mM CsCl, 5 mM NaCl, 0.5 mM CaCl₂, 1 mM MgCl₂, 5 mM EGTA, and 30 mM HEPES, pH 7.2 (CsOH). The Ca²⁺/Mg²⁺-free pipette solution contained 130 mM CsCl, 5 mM NaCl, 10 mM HEDTA, and 30 mM HEPES, pH 7.2 (CsOH). The low-chloride pipette solution contained 10 mM CsCl, 120 mM CsMeSO₄, 5 mM NaCl, 0.5 mM CaCl₂, 1 mM MgCl₂, 5 mM EGTA, and 30 mM HEPES, pH 7.2 (CsOH). The standard extracellular solution (pH 7.4) contained 140 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, 10 mM HEPES-NaOH, and 10 mM glucose. All chemicals were obtained from Sigma. Cells were voltage-clamped at a potential of −50 mV. Series resistances (Rₛ), monitored by −5 mV voltage pulses (50 ms) applied every 5–10 s, were between 5 and 30 megaohms. IV relationships were obtained by voltage ramps ranging from −150 to +150 mV applied every 5–10 s. Data were acquired with a sampling frequency of 10 kHz after Bessel filtering at 2.8 kHz. All experiments were performed at room temperature (20–25 °C). Transfected cells were identified by the EGFP fluorescence (see “Molecular Biology”). Perfusion of the extracellular solutions was gravity-driven. A perfusion pencil with a 200-μm tip placed at a distance of 100–200 μm from the recorded cell was used to obtain relatively short wash-in/wash-out times (<1 s).

Data Analysis and Statistics—Offline analysis of the data was performed using IGOR Pro version 6.37 (WaveMetrics, Lake Oswego, OR). From each experiment and at each glycine concentration, we extracted the currents at −50 mV before glycine application (Iₚₑ𝐚ᵏ), at the peak response (during the first second of glycine application; Iₚᵉᵃᵏ) and after 25–35 s of continuous glycine presence in the bath (Iₜₜₒₛₑ). Iₚᵉᵃᵏ and Iₜₜₒₛₑ were corrected for Iᵦₑᵦ before generating the concentration-response curves. EC₅₀ and nₜₜₐ values were determined by fitting the concentration-response curves (normalized to 1000 μM glycine) from each experiment with the Hill equation. The τ values of decay were calculated as the mean from the monoexponential fit of the decay of (1000 μM) glycine-evoked currents from each experiment. For the illustration of current decay, time courses at −50 mV were normalized to their peak responses during glycine application and then merged. IV relationships were generated from voltage ramps ranging from −150 to +150 mV applied every 5–10 s. For analysis, we extracted an IV that was recorded immediately before glycine and subtracted it from a given IV in the presence of glycine. The merged IVs shown in the present paper were derived by averaging all IVs from one and the same condition after normalization to either Iᵦₑᵦ or its maximum current. Reversal potentials (Vᵦₑᵦ), potentials of the maximum current (Vᵦₑᵦ), and −Iᵦₑᵦ/150 mV values were determined from the IV relationships. Vᵦₑᵦ and Vᵦₑᵦ were corrected offline for liquid junction potentials using Patch’er’s Power Tools (Francisco Mendez and Frank Würrie-hausen, Göttingen, Germany). Calculated liquid junction potentials were ±5.0 mV for the standard intracellular solution and the Ca²⁺/Mg²⁺-free intracellular solution and +11.0 mV for the low chloride pipette solution.

Author Contributions—C. R. and F. H. conducted most of the experiments and analyzed the results. M. S. and J. C. M. wrote most of the paper. A. W. cloned most of the cDNAs and generated the point mutations. M. S. and J. C. M. conceived the idea for the project.

Acknowledgments—We thank Anne Schäfer, Silke Dusatko, Maren Wendi, Andrea Eisenmann, and Carola Bernert for excellent technical assistance and Dr. Oliver Dauwe for fruitful discussions on the manuscript.

References

1. Legendre, P. (2001) The glycinerergic inhibitory synapse. Cell Mol. Life Sci. 58, 760–793
2. Lynch, J. W. (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56, 303–309
3. Çalıskan, G., Müller, I., Semtner, M., Winkelmann, A., Raza, A. S., Hollnagel, J. O., Rösler, A., Heinemann, U., Stork, O., and Meier, J. C. (2016) Identification of parvalbumin interneurons as cellular substrate of fear memory persistence. Cereb. Cortex 26, 2323–2340
4. Winkelmann, A., Maggio, N., Eller, J., Çalıskan, G., Semtner, M., Häussler, U., Jüttert, R., Dugladez, T., Smolinsky, B., Kowalczyk, S., Chronowska, E., Schwarz, G., Rathjen, F. G., Rechavi, G., Haas, C. A., et al. (2014) Changes in neural network homeostasis trigger neuropsychiatric symptoms. J. Clin. Invest. 124, 966–971
5. Pilorge, M., Fassier, C., Le Corronc, H., Potey, A., Bai, J., De Gois, S., Delaby, E., Assouline, R., Guinchat, V., Devillard, F., Delorme, R., Nguyen, G., Rastam, M., Meier, J. C., Otani, S., et al. (2016) Genetic and functional analyses demonstrate a role for abnormal glycinerergic signaling in autism. Mol. Psychiatry 21, 936–945
6. Harvey, R. J., Depner, U. B., Wassle, H., Ahmadi, S., Heinidl, C., Reinhold, H., Smart, T. G., Harvey, K., Schultz, B., Aabo-Sørensen, O. M., Zimmer, A., Poisbeau, P., Welzl, H., Wolfer, D. P., Betz, H., et al. (2004) GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887
7. Breitinger, H. G., Villmann, C., Becker, K., and Becker, C. M. (2001) Opposing effects of molecular volume and charge at the hyperekplexia site α1 (P250) govern glycine receptor activation and desensitization. J. Biol. Chem. 276, 29657–29663
8. Legendre, P., Förster, B., Jüttert, R., and Meier, J. C. (2009) Glycine receptor subtypes caught between genome and proteome: functional implications of RNA editing and splicing. Front. Mol. Neurosci. 2, 23
9. Grudzinska, J., Schem, R., Haeger, S., Nicke, A., Schmalzing, G., Betz, H., and Laube, B. (2005) The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45, 727–739
10. Webb, T. I., and Lynch, J. W. (2007) Molecular pharmacology of the glycine receptor chloride channel. Curr. Pharm. Des. 13, 2350–2367
11. Malosio, M. L., Grenningloh, G., Kühse, J., Schmieden, V., Schmitt, B., Prior, P., and Betz, H. (1991) Alternative splicing generates two variants of the α1 subunit of the inhibitory glycine receptor. J. Biol. Chem. 266, 2048–2053
12. Nikolic, Z., Laube, B., Weber, R. G., Lichter, P., Köschis, P., Pousta, A., Mülhardt, C., and Becker, C. M. (1998) The human glycine receptor subunit α3: Glr3 gene structure, chromosomal localization, and func-
Glycine Receptor Current-Voltage Relations

tional characterization of alternative transcripts. J. Biol. Chem. 273, 19708–19714
13. Kuhse, J., Kuryatov, A., Maulet, Y., Malosio, M. L., Schnieden, V., and Betz, H. (1991) Alternative splicing generates two isoforms of the α2 subunit of the inhibitory glycine receptor. FEBS Lett. 283, 73–77
14. Breitinger, U., Breitinger, H. G., Bauer, F., Fahmy, K., Glockenhammer, D., and Becker, C. M. (2004) Conserved high affinity ligand binding and membrane association in the native and refolded extracellular domain of the human glycine receptor α1-subunit. J. Biol. Chem. 279, 1627–1636
15. Breitinger, H. G., Villmann, C., Melzer, N., Rennert, J., Breitinger, U., Schwarzinger, S., and Becker, C. M. (2009) Novel regulatory site within the TM3–4 loop of human recombinant α3 glycine receptor determines channel gating and domain structure. J. Biol. Chem. 284, 28624–28633
16. Heindl, C., Brune, K., and Rennert, B. (2007) Kinetics and functional characterization of the glycine receptor α2 and α3 subunit. Neurosci. Lett. 429, 59–63
17. Yévenes, G. E., and Zeilhofer, H. U. (2011) Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PLoS ONE 6, e23886
18. Gielen, M., Thomas, P., and Smart, T. G. (2015) The desensitization gate of inhibitory Cys-loop receptors. Nat. Commun. 6, 6829
19. Jones, M. V., and Westbrook, G. L. (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19, 96–101
20. Papke, D., and Grosman, C. (2014) The role of intracellular linkers in gating and desensitization of human pentameric ligand-gated ion channels. J. Neurosci. 34, 7238–7252
21. Faber, D. S., and Korn, H. (1987) Voltage-dependence of glycine-activated Cl– channels: a potentiometer for inhibition? J. Neuro. 7, 807–811
22. Moroni, M., Biro, I., Giugliano, M., Vijayan, R., Biggin, P. C., Beato, M., and Sivilotti, L. G. (2011) Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents. J. Neurosci. 31, 14095–14106
23. Bormann, J., Hamill, O. P., and Sakmann, B. (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurons. J. Physiol. 385, 243–286
24. Fatima-Shad, K., and Barry, P. H. (2008) Anion-cation permeability correlates with hydrated counte-
tory glycine receptor channel reveal determinants of ion-charge selectivity. Proc. Biol. Sci. 275, 261–275
25. Weltzien, F., Puller, C., O'Sullivan, G. A., Paarmann, I., and Betz, H. (2012) Distribution of the glycine receptor β-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J. Comp Neurol. 520, 3962–3981
26. Colquhoun, D. (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947
27. Keramidas, A., Moorhouse, A. J., Schofield, P. R., and Barry, P. H. (2004) Hydroxylated residues influence desensitization behaviour of recombinant α3 glycine receptor channels. J. Neurochem. 83, 30–36
28. Meiselbach, H., Vogel, N., Langhofer, G., Stangl, S., Schleyer, B., Bahnsaw, L., Stich, H., Breitinger, H. G., Becker, C. M., and Villmann, C. (2014) Single expressed glycine receptor domains reconstitute functional ion channels without subunit-specific desensitization behavior. J. Biol. Chem. 289, 29135–29147
29. Langhofer, G., Janzen, D., Meiselbach, H., and Villmann, C. (2015) Length of the TM3–4 loop of the glycine receptor modulates receptor desensitization. Neurosci. Lett. 600, 176–181
30. Legendre, P., Muller, E., Badieu, C. I., Meier, J., Vannier, C., and Triller, A. (2002) Desensitization of homomeric alpha1 glycine receptor increases with receptor density. Mol. Pharmacol. 62, 817–827
31. Legendre, P. (1999) Voltage dependence of the glycine receptor-channel kinetics in the zebrafish hindbrain. J. Neurophysiol. 82, 2120–2129
32. Chen, Z., and Huang, R. (2007) Identification of residues mediating inhibition of glycine receptors by protons. Neuropharmacology 52, 1606–1615
33. Song, Y. P., Schlesinger, F., Ragancokova, D., Calixto, R., Dengler, R., and Krampfl, K. (2010) Changes in extracellular pH affect glycine receptor channels expressed in HEK 293 cells. Eur. J. Pharmacol. 636, 59–64
34. Karlsson, U., Druzin, M., and Johansson, S. (2011) Cl(–) concentration changes and desensitization of GABA(A) and glycine receptors. J. Gen. Physiol. 138, 609–626
35. Fucile, S., De Saint Jan, D., de Carvalho, L. P., and Bregestovski, P. (2000) Fast potentiation of glycine receptor channels by intracellular calcium in neurons and transfected cells. Neuron 28, 571–583
36. Akaike, N., and Kaneda, M. (1989) Glycine-gated chloride current in acutely isolated rat hypotalamic neurons. J. Neurophysiol. 62, 1400–1409
37. Miller, P. S., Harvey, R. J., and Smart, T. G. (2004) Differential agonist sensitivity of glycine receptor α2 subunit splice variants. Br. J. Pharmacol. 143, 19–26
38. Yang, Z., Cromer, B. A., Harvey, R. J., Parker, M. W., and Lynch, J. W. (2007) A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J. Neurochem. 103, 580–589
39. Chen, X., Cromer, B., Webb, T. I., Yang, Z., Hantke, J., Harvey, R. J., Parker, M. W., and Lynch, J. W. (2009) Dihydropyridine inhibition of the glycine receptor: subunit selectivity and a molecular determinant of inhibition. Neuropharmacology 56, 318–327
40. Shan, Q., Han, L., and Lynch, J. W. (2012) Distinct properties of glycine receptor β+/β– interface: unambiguously characterizing heteromeric interface reconstituted in homomorphic protein. J. Biol. Chem. 287, 21244–21252
41. Saul, B., Kuner, T., Sobetzko, D., Brune, W., Hanefeld, F., Meinck, H. M., and Becker, C. M. (1999) Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J. Neurosci. 19, 869–877
42. Bormann, J., Rundström, N., Betz, H., and Langosch, D. (1993) Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers EMBO J. 12, 3729–3737; Correction (1994) EMBO J. 13, 1493
43. Gundersen, C. B., Miledi, R., and Parker, I. (1984) Properties of human brain glycine receptors expressed in Xenopus oocytes. Proc. R. Soc. Lond. B Biol. Sci. 211, 235–244
Glycine Receptor Current-Voltage Relations

56. Zhang, Z. W., and Berg, D. K. (1995) Patch-clamp analysis of glycine-induced currents in chick ciliary ganglion neurons J. Physiol. 487, 395–405
57. Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys. J. 79, 247–259
58. Zhorov, B. S., and Bregestovski, P. D. (2000) Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Biophys. J. 78, 1786–1803
59. Eichler, S. A., Förstera, B., Smolinsky, B., Jüttner, R., Lehmann, T. N., Fäuling, M., Schwarz, G., Legendre, P., and Meier, J. C. (2009) Splice-specific roles of glycine receptor α3 in the hippocampus. Eur. J. Neurosci. 30, 1077–1091
60. Kubota, H., Alle, H., Betz, H., and Geiger, J. R. (2010) Presynaptic glycine receptors on hippocampal mossy fibers. Biochem. Biophys. Res. Commun. 393, 587–591
61. Tabb, J. S., Kish, P. E., Van Dyke, R., and Ueda, T. (1992) Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH. J. Biol. Chem. 267, 15412–15418
62. Cubelos, B., Giménez, C., and Zafra, F. (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb. Cortex 15, 448–459
63. Schenck, S., Wojcik, S. M., Brose, N., and Takamori, S. (2009) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat. Neurosci. 12, 156–162
64. Förstera, B., a Dzaye, O. D., Winkelmann, A., Semtner, M., Benedetti, B., Markovic, D. S., Synowitz, M., Wend, P., Fäuling, M., Junier, M. P., Glass, R., Kettenmann, H., and Meier, J. C. (2014) Intracellular glycine receptor function facilitates glioma formation in vivo. J. Cell Sci. 127, 3687–3698
65. Förstera, B., Belaidi, A. A., Jüttner, R., Bernert, C., Tsokos, M., Lehmann, T. N., Horn, P., Dehnice, C., Schwarz, G., and Meier, J. C. (2010) Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 133, 3778–3794
66. Brewer, G. J., and Cotman, C. W. (1989) Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 494, 65–74