Selective Inference for Group-Sparse Linear Models

Fan Yang¹, Rina Foygel Barber¹, Prateek Jain², and John Lafferty³

¹Dept. of Statistics, University of Chicago
²Microsoft Research, Bangalore, India
³Depts. of Statistics and Computer Science, University of Chicago

July 27, 2016

Abstract

We develop tools for selective inference in the setting of group sparsity, including the construction of confidence intervals and p-values for testing selected groups of variables. Our main technical result gives the precise distribution of the magnitude of the projection of the data onto a given subspace, and enables us to develop inference procedures for a broad class of group-sparse selection methods, including the group lasso, iterative hard thresholding, and forward stepwise regression. We give numerical results to illustrate these tools on simulated data and on health record data.

1 Introduction

Significant progress has been recently made on developing inference tools to complement the feature selection methods that have been intensively studied in the past decade [6, 7, 8]. The goal of selective inference is to make accurate uncertainty assessments for the parameters estimated using a feature selection algorithm, such as the lasso [11]. The fundamental challenge is that after the data have been used to select a set of coefficients to be studied, this selection event must then be accounted for when performing inference, using the same data. A specific goal of selective inference is to provide p-values and confidence intervals for the fitted coefficients. As the sparsity pattern is chosen using nonlinear estimators, the distribution of the estimated coefficients is typically non-Gaussian and can have multiple modes, even under a standard Gaussian noise model, making classical techniques unusable for accurate inference. It is of particular interest to develop finite-sample, non-asymptotic results.

In this paper, we present new results for selective inference in the setting of group sparsity [14, 4, 9]. We consider the linear model $Y = X\beta + \mathcal{N}(0, \sigma^2 I_n)$ where $X \in \mathbb{R}^{n \times p}$ is a fixed design matrix. In many applications, the p columns or features of X are naturally grouped into blocks $C_1, \ldots, C_G \subseteq \{1, \ldots, p\}$. In the high dimensional setting, the working assumption is that only a few of the corresponding blocks of the coefficients β contain nonzero elements; that is, $\beta_{C_g} = 0$ for most groups g. This group-sparse model can be viewed as an extension of the standard sparse regression model. Algorithms for fitting this model, such as the group lasso [14], extend well-studied methods for sparse linear regression to this grouped setting.

In the group-sparse setting, recent results of Loftus and Taylor [8] give a selective inference method for computing p-values for each group chosen by a model selection method such as forward stepwise regression. More generally, the inference technique of [8] applies to any model selection method for simultaneous inference of multiple groups of variables. However, the selective inference methods proposed in [8] rely on asymptotic results, and are not applicable in the high dimensional setting where the number of features p is comparable to or even exceeds the number of observations n. In this paper, we develop a finite-sample selective inference procedure for group sparse models that does not require asymptotic assumptions.

We begin by introducing the group-sparse linear model and providing some basic notation and definitions. In Section 2, we state our main technical result, which gives the precise distribution of the projection of the data onto a given subspace. This result is applicable to a broad class of group-sparse selection methods, including the group lasso, iterative hard thresholding, and forward stepwise regression. In Section 3, we illustrate the use of our selective inference tools on simulated data and on health record data. We conclude in Section 4 with a brief discussion of some open problems and future directions.
method whose outcome can be described in terms of quadratic conditions on \(Y \). However, their technique cannot be used to construct confidence intervals for the selected coefficients or for the size of the effects of the selected groups.

Our main contribution in this work is to provide a tool for constructing confidence intervals as well as p-values for testing selected groups. In contrast to the (non-grouped) sparse regression setting, the confidence interval construction does not follow immediately from the p-value calculation, and requires a careful analysis of non-centered multivariate normal distributions. Our key technical result precisely characterizes the density of \(\|P_L Y\|_2 \) (the magnitude of the projection of \(Y \) onto a given subspace \(L \)), conditioned on a particular selection event. This “truncated projection lemma” is the group-wise analogue of the “polyhedral lemma” of Lee et al. [7] for the lasso. This technical result enables us to develop inference tools for a broad class of model selection methods, including the group lasso [14], iterative hard thresholding [1, 5], and forward stepwise group selection [12].

In the following section we frame the problem of group-sparse inference more precisely, and present previous results in this direction. We then state our main technical results; the proofs of the results are given in the appendix. In Section 3 we show how these results can be used to develop inferential tools for three different model selection algorithms for group sparsity. In Section 4 we give numerical results to illustrate these tools on simulated data, as well as on the California county health data used in previous work [8]. We conclude with a brief discussion of our work.

2 Main results: selective inference over subspaces

To establish some notation, we will write \(P_L \) for the projection to any linear subspace \(L \subseteq \mathbb{R}^n \), and \(P_L^\perp \) for the projection to its orthogonal complement. For \(y \in \mathbb{R}^n \), \(\text{dir}_L(y) = \frac{P_L y}{\|P_L y\|_2} \in L \cap \mathbb{S}^{n-1} \) is the unit vector in the direction of \(P_L y \). This direction is not defined if \(P_L y = 0 \).

We focus on the linear model \(Y = X\beta + N(0, \sigma^2 I_n) \), where \(X \in \mathbb{R}^{n \times p} \) is fixed and \(\sigma^2 > 0 \) is assumed to be known. More generally, our model is \(Y \sim N(\mu, \sigma^2 I_n) \) with \(\mu \in \mathbb{R}^n \) unknown and \(\sigma^2 \) known. For a given block of variables \(C_g \subseteq [p] \), we write \(X_g \) to denote the \(n \times |C_g| \) submatrix of \(X \) consisting of all features of this block. For a set \(S \subseteq [G] \) of blocks, \(X_S \) consists of all features that lie in any of the blocks in \(S \).

When we refer to “selective inference,” we are generally interested in the distribution of subsets of parameters that have been chosen by some model selection procedure. After choosing a set of groups \(S \subseteq [G] \), we would like to test whether the true mean \(\mu \) is correlated with a group \(X_g \) for each \(g \in S \) after controlling for the remaining selected groups, i.e. after regressing out all the other groups, indexed by \(S \setminus g \). Thus, the following question is central to selective inference:

\[
\text{Question}_{g, S}: \text{ What is the magnitude of the projection of } \mu \text{ onto the span of } P_{X_{S \setminus g}} X_g? \quad (1)
\]

In particular, we are interested in a hypothesis test to determine if \(\mu \) is orthogonal to this span, that is, whether block \(g \) should be removed from the model with group-sparse support determined by \(S \); this is the question studied by Loftus and Taylor [8] for which they compute p-values. Alternatively, we may be interested in a confidence interval on \(\|P_L \mu\|_2 \), where \(L = \text{span}(P_{X_{S \setminus g}} X_g) \).

Since \(S \) and \(g \) are themselves determined by the data \(Y \), any inference on these questions must be performed “post-selection,” by conditioning on the event that \(S \) is the selected set of groups.
2.1 Background: The polyhedral lemma

In the more standard sparse regression setting without grouped variables, after selecting a set \(S \subseteq [p] \) of features corresponding to columns of \(X \), we might be interested in testing whether the column \(X_j \) should be included in the model obtained by regressing \(Y \) onto \(X_{S\cup j} \). We may want to test the null hypothesis that \(X_j^\top P_{X_{S\cup j}}^\perp \mu = 0 \) is zero, or to construct a confidence interval for this inner product.

In the setting where \(S \) is the output of the lasso, Lee et al. [7] characterize the selection event as a polyhedron in \(\mathbb{R}^n \): for any set \(S \subseteq [p] \) and any signs \(s \in \{\pm 1\}^S \), the event that the lasso (with a fixed regularization parameter \(\lambda \)) selects the given support with the given signs is equivalent to the event \(Y \in A = \{y : Ay < b\} \), where \(A \) is a fixed matrix and \(b \) is a fixed vector, which are functions of \(X, S, s, \lambda \). The inequalities are interpreted elementwise, yielding a convex polyhedron \(A \). To test the regression question described above, one then tests \(\eta^\top \mu \) for a fixed unit vector \(\eta \propto P_{X_{S\cup j}}^\perp X_j \). The "polyhedral lemma" [7, Theorem 5.2] proves that the distribution of \(\eta^\top Y \), after conditioning on \(\{Y \in A\} \) and on \(P_\eta^\perp Y \), is given by a truncated normal distribution, with density

\[
f(r) \propto \exp \left\{ - (r - \eta^\top \mu)^2 / 2 \sigma^2 \right\} \cdot 1 \{a_1(Y) \leq r \leq a_2(Y)\}.
\]

(2)

The interval endpoints \(a_1(Y), a_2(Y) \) depend on \(Y \) only through \(P_\eta^\perp Y \) and are defined to include exactly those values of \(r \) that are feasible given the event \(Y \in A \). That is, the interval contains all values \(r \) such that \(r \cdot \eta + P_\eta^\perp Y \in A \).

Examining (2), we see that under the null hypothesis \(\eta^\top \mu = 0 \), this is a truncated zero-mean normal density, which can be used to construct a p-value testing \(\eta^\top \mu = 0 \). To construct a confidence interval for \(\eta^\top \mu \), we can instead use (2) with nonzero \(\eta^\top \mu \), which is a truncated noncentral normal density.

2.2 The group-sparse case

In the group-sparse regression setting, Loftus and Taylor [8] extend the work of Lee et al. [7] to questions where we would like to test \(P_\mathcal{L} \mu \), the projection of the mean \(\mu \) to some potentially multi-dimensional subspace, rather than simply testing \(\eta^\top \mu \), which can be interpreted as a projection to a one-dimensional subspace, \(\mathcal{L} = \text{span}(\eta) \). For a fixed set \(A \subseteq \mathbb{R}^n \) and a fixed subspace \(\mathcal{L} \) of dimension \(k \), Loftus and Taylor [8, Theorem 3.1] prove that, after conditioning on \(\{Y \in A\} \), on \(\text{dir}_\mathcal{L}(Y) \), and on \(P_\mathcal{L}^\perp Y \), under the null hypothesis \(P_\mathcal{L} \mu = 0 \), the distribution of \(\|P_\mathcal{L} Y\|_2 \) is given by a truncated \(\chi_k \) distribution,

\[
\|P_\mathcal{L} Y\|_2 \sim (\sigma \cdot \chi_k \text{ truncated to } R_Y) \text{ where } R_Y = \{ r : r \cdot \text{dir}_\mathcal{L}(Y) + P_\mathcal{L}^\perp Y \in A \}.
\]

(3)

In particular, this means that, if we would like to test the null hypothesis \(P_\mathcal{L} \mu = 0 \), we can compute a p-value using the truncated \(\chi_k \) distribution as our null distribution. To better understand this null hypothesis, suppose that we run a group-sparse model selection algorithm that chooses a set of blocks \(S \subseteq [G] \). We might then want to test whether some particular block \(g \in S \) should be retained in this model or removed. In that case, we would set \(\mathcal{L} = \text{span}(P_{X_{S\setminus g}}^\perp X_g) \) and test whether \(P_{\mathcal{L}} \mu = 0 \).

Examining the parallels between this result and the work of Lee et al. [7], where (2) gives either a truncated zero-mean normal or truncated noncentral normal distribution depending on whether the null hypothesis \(\eta^\top \mu = 0 \) is true or false, we might expect that the result (3) of Loftus
and Taylor [8] can extend in a straightforward way to the case where \(\mathcal{P}_L \mu \neq 0 \). More specifically, we might expect that (3) might then be replaced by a truncated noncentral \(\chi_k \) distribution, with its noncentrality parameter determined by \(\| \mathcal{P}_L \mu \|_2 \). However, this turns out not to be the case. To understand why, observe that \(\| \mathcal{P}_L Y \|_2 \) and \(\text{dir}_L(Y) \) are the length and the direction of the vector \(\mathcal{P}_L Y \); in the inference procedure of Loftus and Taylor [8], they need to condition on the direction \(\text{dir}_L(Y) \) in order to compute the truncation interval \(\mathcal{R}_Y \), and then they perform inference on \(\| \mathcal{P}_L Y \|_2 \), the length. These two quantities are independent for a centered multivariate normal, and therefore if \(\mathcal{P}_L \mu = 0 \) then \(\| \mathcal{P}_L Y \|_2 \) follows a \(\chi_k \) distribution even if we have conditioned on \(\text{dir}_L(Y) \). However, in the general case where \(\mathcal{P}_L \mu \neq 0 \), we do not have independence between the length and the direction of \(\mathcal{P}_L Y \), and so while \(\| \mathcal{P}_L Y \|_2 \) is marginally distributed as a noncentral \(\chi_k \), this is no longer true after conditioning on \(\text{dir}_L(Y) \).

In this work, we consider the problem of computing the distribution of \(\| \mathcal{P}_L Y \|_2 \) after conditioning on \(\text{dir}_L(Y) \), which is the setting that we require for inference. This leads to the main contribution of this work, where we are able to perform inference on \(\mathcal{P}_L \mu \) beyond simply testing the null hypothesis that \(\mathcal{P}_L \mu = 0 \).

2.3 Key lemma: Truncated projections of Gaussians

Before presenting our key lemma, we introduce some further notation. Let \(A \subseteq \mathbb{R}^n \) be any fixed open set and let \(\mathcal{L} \subseteq \mathbb{R}^n \) be a fixed subspace of dimension \(k \). For any \(y \in A \), consider the set

\[\mathcal{R}_y = \{ r > 0 : r \cdot \text{dir}_L(y) + \mathcal{P}_L y \in A \} \subseteq \mathbb{R}^+ \].

Note that \(\mathcal{R}_y \) is an open subset of \(\mathbb{R}^+ \), and its construction does not depend on \(\| \mathcal{P}_L y \|_2 \), but we see that \(\| \mathcal{P}_L y \|_2 \in \mathcal{R}_y \) by definition.

Lemma 1 (Truncated projection). Let \(A \subseteq \mathbb{R}^n \) be a fixed open set and let \(\mathcal{L} \subseteq \mathbb{R}^n \) be a fixed subspace of dimension \(k \). Suppose that \(Y \sim \mathcal{N}(\mu, \sigma^2 I_n) \). Then, conditioning on the values of \(\text{dir}_L(Y) \) and \(\mathcal{P}_L Y \) and on the event \(Y \in A \), the conditional distribution of \(\| \mathcal{P}_L Y \|_2 \) has density

\[f(r) \propto r^{k-1} \exp \left\{ -\frac{1}{2\sigma^2} \left(r^2 - 2r \cdot \langle \text{dir}_L(Y), \mu \rangle \right) \right\} \cdot 1 \{ r \in \mathcal{R}_Y \} . \]

We pause to point out two special cases that are treated in the existing literature.

Special case 1: \(k = 1 \) and \(A \) is a convex polytope. Suppose \(A \) is the convex polytope \(\{ y : A y < b \} \) for fixed \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). In this case, this almost exactly yields the “polyhedral lemma” of Lee et al. [7, Theorem 5.2]. Specifically, in their work they perform inference on \(\eta^\top \mu \) for a fixed vector \(\eta \); this corresponds to taking \(\mathcal{L} = \text{span}(\eta) \) in our notation. Then since \(k = 1 \), Lemma 1 yields a truncated Gaussian distribution, coinciding with Lee et al. [7]’s result (2). The only difference relative to [7] is that our lemma implicitly conditions on \(\text{sign}(\eta^\top Y) \), which is not required in [7].

Special case 2: the mean \(\mu \) is orthogonal to the subspace \(\mathcal{L} \). In this case, without conditioning on \(\{ Y \in A \} \), we have \(\mathcal{P}_L Y = \mathcal{P}_L (\mu + \mathcal{N}(0, \sigma^2 I)) = \mathcal{P}_L (\mathcal{N}(0, \sigma^2 I)) \), and so \(\| \mathcal{P}_L Y \|_2 \sim \sigma \cdot \chi_k \). Without conditioning on \(\{ Y \in A \} \) (or equivalently, taking \(A = \mathbb{R}^n \)), the resulting density is then

\[f(r) \propto r^{k-1} e^{-r^2/2\sigma^2} \cdot 1 \{ r > 0 \} \]

\(^1\)Here and throughout the paper, we ignore the possibility that \(Y \perp \mathcal{L} \) since this has probability zero.
which is the density of the χ_k distribution (rescaled by σ), as expected. If we also condition on \{$Y \in A$\} then this is a truncated χ_k distribution, as proved in Loftus and Taylor [8, Theorem 3.1].

2.4 Selective inference on truncated projections

We now show how the key result in Lemma 1 can be used for group-sparse inference. In particular, we show how to compute a p-value for the null hypothesis $H_0 : \mu \perp \mathcal{L}$, or equivalently, $H_0 : \|\mathcal{P}_L \mu\|_2 = 0$. In addition, we show how to compute a one-sided confidence interval for $\|\mathcal{P}_L \mu\|_2$, specifically, how to give a lower bound on the size of this projection.

Theorem 1 (Selective inference for projections). Under the setting and notation of Lemma 1, define

$$P = \frac{\int_{r \in \mathcal{R}_Y \setminus r > \|\mathcal{P}_L \mu\|_2} r^{k-1} e^{-r^2/2 \sigma^2} dr}{\int_{r \in \mathcal{R}_Y} r^{k-1} e^{-r^2/2 \sigma^2} dr}. \quad (4)$$

If $\mu \perp \mathcal{L}$ (or, more generally, if $\langle \text{dir}_L(Y), \mu \rangle = 0$), then $P \sim \text{Uniform}[0, 1]$. Furthermore, for any desired error level $\alpha \in (0, 1)$, there is a unique value $L_\alpha \in \mathbb{R}$ satisfying

$$\frac{\int_{r \in \mathcal{R}_Y \setminus r > \|\mathcal{P}_L \mu\|_2} r^{k-1} e^{-(r^2 - 2rL_\alpha)/2 \sigma^2} dr}{\int_{r \in \mathcal{R}_Y} r^{k-1} e^{-(r^2 - 2rL_\alpha)/2 \sigma^2} dr} = \alpha, \quad (5)$$

and we have

$$\mathbb{P}\{\|\mathcal{P}_L \mu\|_2 \geq L_\alpha\} \geq \mathbb{P}\{\langle \text{dir}_L(Y), \mu \rangle \geq L_\alpha\} = 1 - \alpha.$$

Finally, the p-value and the confidence interval agree in the sense that $P < \alpha$ if and only if $L_\alpha > 0$.

From the form of Lemma 1, we see that we are actually performing inference on $\langle \text{dir}_L(Y), \mu \rangle$. Since $\|\mathcal{P}_L \mu\|_2 \geq \langle \text{dir}_L(Y), \mu \rangle$, this means that any lower bound on $\langle \text{dir}_L(Y), \mu \rangle$ also gives a lower bound on $\|\mathcal{P}_L \mu\|_2$. For the p-value, the statement $\langle \text{dir}_L(Y), \mu \rangle = 0$ is implied by the stronger null hypothesis $\mu \perp \mathcal{L}$. We can also use Lemma 1 to give a two-sided confidence interval for $\langle \text{dir}_L(Y), \mu \rangle$; specifically, $\langle \text{dir}_L(Y), \mu \rangle$ lies in the interval $[L_{\alpha/2}, L_{1-\alpha/2}]$ with probability $1 - \alpha$. However, in general this cannot be extended to a two-sided interval for $\|\mathcal{P}_L \mu\|_2$.

To compare to the main results of Loftus and Taylor [8], their work produces the p-value P testing the null hypothesis $\mu \perp \mathcal{L}$, but does not extend to testing $\mathcal{P}_L \mu$ beyond the null hypothesis, which the second part (5) of our main theorem is able to do.²

3 Applications to group sparse regression methods

In this section we develop inference tools for three methods for group-sparse model selection: forward stepwise regression (also considered by Loftus and Taylor [8] with results on hypothesis testing), iterative hard thresholding (IHT), and the group lasso.

²Their work furthermore considers the special case where the conditioning event, $Y \in A$, is determined by a “quadratic selection rule,” that is, A is defined by a set of quadratic constraints on $y \in \mathbb{R}^n$. However, extending to the general case is merely a question of computation (as we explore below for performing inference for the group lasso) and this extension should not be viewed as a primary contribution of this work.
3.1 General recipe

With a fixed design matrix, the outcome of any group-sparse selection method is a function of Y. For example, a forward stepwise procedure determines a particular sequence of groups of variables. We call such an outcome a selection event, and assume that the set of all selection events forms a countable partition of \mathbb{R}^n into disjoint open sets: $\mathbb{R}^n = \bigcup \mathcal{A}_e$. Each data vector $y \in \mathbb{R}^n$ determines a selection event, denoted $e(y)$, and thus $y \in \mathcal{A}_e(y)$.

Let $\mathcal{S}(y) \subseteq [G]$ be the set of feature groups that are selected for testing. This is assumed to be a function of $e(y)$, i.e. $\mathcal{S}(y) = \mathcal{S}_e$ for all $y \in \mathcal{A}_e$. For any $g \in \mathcal{S}_e$, define $\mathcal{L}_{e,g} = \text{span}(\mathcal{P}^{\perp}_{\mathcal{S}_e \setminus g} X_g)$; this is the subspace of \mathbb{R}^n indicating correlation with group X_g beyond what can be explained by the other selected groups, $X_{\mathcal{S}_e \setminus g}$.

Write $\mathcal{R}_Y = \{ r > 0 : r \cdot U + Y_\perp \in \mathcal{A}_{e(Y)} \}$, where $U = \text{dir}(\mathcal{L}_{e(Y),g}(Y))$ and $Y_\perp = \mathcal{P}^{\perp}_{\mathcal{L}_{e(Y),g}} Y$. If we condition on the event $\{ Y \in \mathcal{A}_e \}$ for some e, then as soon as we have calculated the region $\mathcal{R}_Y \subseteq \mathbb{R}_+$, Theorem 1 will allow us to perform inference on the quantity of interest $\| \mathcal{P}_{\mathcal{L}_{e,Y,g}} \mu \|_2$ by evaluating the expressions (4) and (5). In other words, we are testing whether μ is significantly correlated with the group X_g, after controlling for all the other selected groups, $\mathcal{S}(Y) \setminus g = \mathcal{S}_e \setminus g$.

To evaluate these expressions accurately, ideally we would like an explicit characterization of the region $\mathcal{R}_Y \subseteq \mathbb{R}_+$. To gain a better intuition for this set, define $z_Y(r) = r \cdot U + Y_\perp \in \mathbb{R}^n$ for $r > 0$, and note that $z_Y(Y) = Y$ when we plug in $r = \| \mathcal{P}_{\mathcal{L}_{e(Y),g}} Y \|_2$. Then we see that

$$\mathcal{R}_Y = \{ r > 0 : e(z_Y(r)) = e(Y) \}. \quad (6)$$

In other words, we need to find the range of values of r such that, if we replace Y with $z_Y(r)$, then this does not change the output of the model selection algorithm, i.e. $e(z_Y(r)) = e(Y)$. For the forward lasso and IHT methods, we find that we can calculate \mathcal{R}_Y explicitly. For the group lasso, we cannot calculate \mathcal{R}_Y explicitly, but we can nonetheless compute the integrals required by Theorem 1 through numerical approximations. We now present the details for each of these methods.

3.2 Forward stepwise regression

Forward stepwise regression [3, 12] is a simple and widely used method. We will use the following version:\footnote{Since the distribution of Y is continuous on \mathbb{R}^n, we ignore sets of measure zero without further comment.} for design matrix X and response $Y = y$,

1. Initialize the residual $\hat{\epsilon}_0 = y$ and the model $\mathcal{S}_0 = \emptyset$.

2. For $t = 1, 2, \ldots, T$,

 (a) Let $g_t = \arg \max_{g \in [G], \mathcal{S}_{t-1}} \{ \| X_g^T \hat{\epsilon}_{t-1} \|_2 \}$.
 (b) Update the model, $\mathcal{S}_t = \{ g_1, \ldots, g_t \}$, and update the residual, $\hat{\epsilon}_t = \mathcal{P}^{\perp}_{X_{\mathcal{S}_t}} y$.

Testing all groups at time T. First we consider the inference procedure where, at time T, we would like to test each selected group g_t for $t = 1, \ldots, T$. Our selection event $e(Y)$ is the ordered
sequence \(g_1, \ldots, g_T\) of selected groups. For a response vector \(Y = y\), this selection event is equivalent to

\[
\|X_{y_k} g \mathcal{P}_{X_{S_k}} y\|_2 > \|X_{y_k} g \mathcal{P}_{X_{S_k}} y\|_2 \quad \text{for all } k = 1, \ldots, T, \text{ for all } g \notin S_k.
\]

Now we would like to perform inference on the group \(g = g_t\), while controlling for the other groups in \(S(Y) = S_T\). Define \(U\), \(Y_{\perp}\), and \(z_Y(r)\) as before. Then, to determine \(\mathcal{R}_Y = \{r > 0 : z_Y(r) \in \mathcal{A}_e(Y)\}\), we check whether all of the inequalities in (7) are satisfied with \(y = z_Y(r)\): for each \(k = 1, \ldots, T\) and each \(g \notin S_k\), the corresponding inequality of (7) can be expressed as

\[
r^2 \cdot \|X_{y_k} g \mathcal{P}_{X_{S_k}} U\|_2^2 + 2r \cdot \langle X_{y_k} g \mathcal{P}_{X_{S_k}} U, X_{y_k} g \mathcal{P}_{X_{S_k}} Y_{\perp} \rangle + \|X_{y_k} g \mathcal{P}_{X_{S_k}} Y_{\perp}\|_2^2 > r^2 \cdot \|X_{y_k} g \mathcal{P}_{X_{S_k}} U\|_2^2 + 2r \cdot \langle X_{y_k} g \mathcal{P}_{X_{S_k}} U, X_{y_k} g \mathcal{P}_{X_{S_k}} Y_{\perp} \rangle + \|X_{y_k} g \mathcal{P}_{X_{S_k}} Y_{\perp}\|_2^2.
\]

Solving this quadratic inequality over \(r \in \mathbb{R}_+\), we obtain a region \(\mathcal{I}_{k,g} \subseteq \mathbb{R}_+\) which is either a single interval or a union of two disjoint intervals, whose endpoints we can calculate explicitly with the quadratic formula. The set \(\mathcal{R}_Y\) is then given by all values \(r\) that satisfy the full set of inequalities:

\[
\mathcal{R}_Y = \bigcap_{k=1, \ldots, T} \bigcap_{g \in |G| \setminus S_k} \mathcal{I}_{k,g}.
\]

This is a union of finitely many disjoint intervals, whose endpoints are calculated explicitly as above.

Sequential testing. Now suppose we carry out a sequential inference procedure, testing group \(g_t\) at its time of selection, controlling only for the previously selected groups \(S_{t-1}\). In fact, this is a special case of the non-sequential procedure above, which shows how to test \(g_T\) while controlling for \(S_T \setminus g_T = S_{T-1}\). Applying this method at each stage of the algorithm yields a sequential testing procedure. (The method developed in [8] computes p-values for this problem, testing whether \(\mu \perp \mathcal{P}_{X_{S_{t-1}}} X_{g_t}\) at each time \(t\).) See Appendix B for detailed pseudo-code of our inference algorithm for forward selection.

3.3 Iterative hard thresholding (IHT)

The iterative hard thresholding algorithm finds a \(k\)-group-sparse solution to the linear regression problem, iterating gradient descent steps with hard thresholding to update the model choice as needed [1, 5]. Given \(k \geq 1\), number of iterations \(T\), step sizes \(\eta_t\), design matrix \(X\) and response \(Y = y\),

1. Initialize the coefficient vector, \(\beta_0 = 0 \in \mathbb{R}^p\) (or any other desired initial point).
2. For \(t = 1, 2, \ldots, T\),

 (a) Take a gradient step, \(\tilde{\beta}_t = \beta_{t-1} - \eta_t X^T (X \beta_{t-1} - y)\).
 (b) Compute \(\|(\tilde{\beta}_t)_g\|_2\) for each \(g \in |G|\) and let \(S_t \subseteq |G|\) index the \(k\) largest norms.
 (c) Update the fitted coefficients \(\beta_t\) via \((\beta_t)_j = (\tilde{\beta}_t)_j \cdot 1\{j \in \cup_{g \in S_t} C_g\}\).
Here we are typically interested in testing $g \in S_T$. We condition on the selection event, $e(Y)$, given by the sequence of k-group-sparse models S_1, \ldots, S_T selected at each stage of the algorithm, which is characterized by the inequalities

$$\| (\hat{\beta}_t)_{c_t} \|_2 > \| (\hat{\beta}_t)_{c_h} \|_2 \quad \text{for all } t = 1, \ldots, T, \text{ and all } g \in S_t, h \notin S_t. \quad (8)$$

Fixing a group $g \in S_T$ to test, determining $R_Y = \{ r > 0 : z_Y(r) \in A_{\eta}(Y) \}$ involves checking whether all of the inequalities in (8) are satisfied with $y = z_Y(r)$. First, with the response Y replaced by $y = z_Y(r)$, we show that we can write $\hat{\beta}_t = r \cdot c_t + d_t$ for each $t = 1, \ldots, T$, where $c_t, d_t \in \mathbb{R}^p$ are independent of r; in Appendix A.3, we derive c_t, d_t inductively as

$$\begin{align*}
c_1 &= \frac{m_n}{n} X^T U, \\
d_1 &= (I - \frac{m}{n} X^T X) \beta_0 + \frac{m_n}{n} X^T Y_1,
\end{align*}$$

$$\begin{align*}
c_t &= (I_p - \frac{m}{n} X^T X) P_{S_{t-1}} c_{t-1} + \frac{m_n}{n} X^T U, \\
d_t &= (I_p - \frac{m}{n} X^T X) P_{S_{t-1}} d_{t-1} + \frac{m_n}{n} X^T Y_1, \quad \text{for } t \geq 2.
\end{align*}$$

Now we compute the region R_Y. For each $t = 1, \ldots, T$ and each $g \in S_t, h \notin S_t$, the corresponding inequality in (8), after writing $\hat{\beta}_t = r \cdot c_t + d_t$, can be expressed as

$$r^2 \cdot \| (c_t)_{c_g} \|_2^2 + 2r \cdot \langle c_t c_{g'} \rangle (d_t)_{c_g} + \| (d_t)_{c_g} \|_2^2 > r^2 \cdot \| (c_t)_{c_h} \|_2^2 + 2r \cdot \langle (c_t)_{c_h} \rangle (d_t)_{c_h} + \| (d_t)_{c_h} \|_2^2.$$

As for the forward stepwise procedure, solving this quadratic inequality over $r \in \mathbb{R}_+$, we obtain a region $I_{t,g,h} \subseteq \mathbb{R}_+$ that is either a single interval or a union of two disjoint intervals whose endpoints we can calculate explicitly. Finally, we obtain $R_Y = \bigcap_{t=1,\ldots,T} \bigcap_{g \in S_t} \bigcap_{h \in [G] \backslash S_t} I_{t,g,h}$.

3.4 The group lasso

The group lasso, first introduced by Yuan and Lin [14], is a convex optimization method for linear regression where the form of the penalty is designed to encourage group-wise sparsity of the solution. It is an extension of the lasso method [11] for linear regression. The method is given by

$$\hat{\beta} = \arg \min_{\beta} \left\{ \frac{1}{2} \| y - X \beta \|_2^2 + \lambda \sum_g \| \beta_{c_g} \|_2 \right\},$$

where $\lambda > 0$ is a penalty parameter. The penalty $\sum_g \| \beta_{c_g} \|_2$ promotes sparsity at the group level.

For this method, we perform inference on the group support S of the fitted model $\hat{\beta}$. We would like to test Question $g \in S$. In this setting, for groups of size ≥ 2, we believe that it is not possible to analytically calculate R_Y, and furthermore, that there is no additional information that we can condition on to make this computation possible, without losing all power to do inference.

We thus propose a numerical approximation that circumvents the need for an explicit calculation of R_Y. Examining the calculation of the p-value P and the lower bound L_α in Theorem 1, we see that we can write $P = f_Y(0)$ and can find L_α as the unique solution to $f_Y(L_\alpha) = \alpha$, where

$$f_Y(t) = \frac{\mathbb{E}_{r \sim \sigma^2 \chi_k} \left[e^{rt/2} \cdot \mathbb{1} \{ r \in R_Y, r > \| P_L Y \|_2 \} \right]}{\mathbb{E}_{r \sim \sigma^2 \chi_k} \left[e^{rt/2} \cdot \mathbb{1} \{ r \in R_Y \} \right]},$$

where we treat Y as fixed in this calculation and set $k = \dim(L) = \text{rank}(X_{S_0})$. Both the numerator and denominator can be approximated by taking a large number B of samples

5Our method can also be applied to a modification of group lasso designed for overlapping groups [4] with a nearly identical procedure but we do not give details here.
\(r \sim \sigma \cdot \chi_k \) and taking the empirical expectations. Checking \(r \in \mathcal{R}_Y \) is equivalent to running the group lasso with the response replaced by \(y = z_Y(r) \), and checking if the resulting selected model remains unchanged.

This may be problematic, however, if \(\mathcal{R}_Y \) is in the tails of the \(\sigma \cdot \chi_k \) distribution. We implement an importance sampling approach by repeatedly drawing \(r \sim \psi \) for some density \(\psi \); we find that \(\psi = \| P_L Y \|_2 + \mathcal{N}(0, \sigma^2) \) works well in practice. Given samples \(r_1, \ldots, r_B \sim \psi \) we then estimate

\[
\hat{f}_Y(t) \approx \tilde{f}_Y(t) := \sum_b \frac{\psi_{\sigma \cdot \chi_k}(r_b)}{\psi(r_b)} \cdot e^{r_b t/\sigma^2} \cdot 1 \{ r_b \in \mathcal{R}_Y, r_b > \| P_L Y \|_2 \}
\]

where \(\psi_{\sigma \cdot \chi_k} \) is the density of the \(\sigma \cdot \chi_k \) distribution. We then estimate \(P \approx \hat{P} = \tilde{f}_Y(0) \). Finally, since \(\tilde{f}_Y(t) \) is continuous and strictly increasing in \(t \), we estimate \(L_\alpha \) by numerically solving \(\tilde{f}_Y(t) = \alpha \).

4 Experiments

In this section we present results from experiments on simulated and real data, performed in R [10]. All code to reproduce these experiments is available online.\(^6\)

4.1 Simulated data

We fix sample size \(n = 500 \) and \(G = 50 \) groups each of size 10. For each trial, we generate a design matrix \(X \) with i.i.d. \(\mathcal{N}(0, 1/n) \) entries, set \(\beta \) with its first 50 entries (corresponding to first \(s = 5 \) groups) equal to \(\tau \) and all other entries equal to 0, and set \(Y = X \beta + \mathcal{N}(0, I_n) \).

IHT We run IHT to select \(k = 10 \) groups over \(T = 5 \) iterations, with step sizes \(\eta_t = 2 \) and initial point \(\beta_0 = 0 \). For a moderate signal strength \(\tau = 1.5 \), we plot the p-values for each selected group across 200 trials in Figure 1; each group displays p-values only for those trials in which it was selected. The histogram of p-values for the \(s \) true signals and for the \(G - s \) nulls are also shown. We see that, at this moderate signal strength, the the distribution of p-values for the true signals concentrates near zero while the null p-values are roughly uniformly distributed.

Next we look at the confidence intervals given by our method, examining their empirical coverage across different signal strengths \(\tau \) in Figure 2. We fix confidence level 0.9 (i.e. \(\alpha = 0.1 \)) and run 2,000 trials to obtain empirical coverage with respect to both \(\| P_L \mu \|_2 \) and \(\langle \text{dir}_L(Y), \mu \rangle \), with results shown separately for true signals and for nulls. For true signals, we see that the confidence interval for \(\| P_L \mu \|_2 \) is somewhat conservative while the coverage for \(\langle \text{dir}_L(Y), \mu \rangle \) is right at the target level, as expected from our theory. As signal strength \(\tau \) increases, the gap is reduced for the true signals; this is because \(\text{dir}_L(Y) \) becomes an increasingly more accurate estimate of \(\text{dir}_L(\mu) \), and so the gap in the inequality \(\| P_L \mu \|_2 \geq \langle \text{dir}_L(Y), \mu \rangle \) is reduced. For the nulls, if the set of selected groups contains the support of the true model, which is nearly always true for higher signal levels \(\tau \) in this experiment, then the two are equivalent (as \(\| P_L \mu \|_2 = \langle \text{dir}_L(Y), \mu \rangle = 0 \)), and coverage is at the target level. At low signal levels \(\tau \), however, one or more of the \(s \) true groups is occasionally missed, in which case we again have a gap in the inequality \(\| P_L \mu \|_2 \geq \langle \text{dir}_L(Y), \mu \rangle \).

\(^6\)Available at https://www.stat.uchicago.edu/~rina/group_inf.html.
Figure 1: Iterative hard thresholding (IHT). For each group, we plot its p-value for each trial in which that group was selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for nulls (right, gray) are attached.

Figure 2: Iterative hard thresholding (IHT). Empirical coverage over 200 trials with signal strength τ. “Norm” and “inner product” refer to coverage of $\|P_L\mu\|_2$ and $\langle \text{dir}_L(Y), \mu \rangle$, respectively.

Group lasso The group lasso is run with penalty parameter $\lambda = 4$. The group lasso algorithm is run via the R package `gglasso` [13]. Figure 3 shows the p-values obtained with the group lasso, while Figure 4 displays the coverage for the norms $\|P_L\mu\|_2$ and the inner products $\langle \text{dir}_L(Y), \mu \rangle$; these plots are produced exactly as Figures 1 and 2 for IHT, except that only 200 trials are shown for the coverage plot due to the slower run time of this method. We observe very similar trends for this method as for IHT.

Forward stepwise The forward stepwise method is implemented with $T = 10$ many steps, and p-values and confidence intervals are computed by considering all 10 selected groups simultaneously at the end of the procedure (rather than sequentially) so that the results are more comparable to the other two methods. Figure 5 shows the p-values obtained with the forward stepwise method, while Figure 6 displays the coverage for the norms $\|P_L\mu\|_2$ and the inner products $\langle \text{dir}_L(Y), \mu \rangle$; these plots are produced exactly as Figures 1 and 2 for IHT. We again observe similar trends in the results.
Figure 3: Group lasso. For each group, we plot its p-value for each trial in which that group was selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for nulls (right, gray) are attached.

Figure 4: Group lasso. Empirical coverage over 200 trials with signal strength τ. “Norm” and “inner product” refer to coverage of $\|P_L\mu\|_2$ and $\langle \text{dir}_L(Y), \mu \rangle$, respectively.

4.2 California health data

We examine the 2015 California county health data\(^7\) which was also studied by Loftus and Taylor [8]. We fit a linear model where the response is the log-years of potential life lost and the covariates are the 34 predictors in this data set. We first let each predictor be its own group (i.e., group size 1) and obtain p-values by running each of the three algorithms considered in Section 3. Next, we form a grouped model by expanding each predictor into a group of size three using the first three non-constant Legendre polynomials, thus expanding predictor X_j to the group $(X_j, \frac{1}{2}(3X_j^2 - 1), \frac{1}{2}(5X_j^3 - 3X_j))$. In each case we set parameters so that 8 groups are selected. The selected groups and their corresponding p-values are given in Table 1; interestingly, even when the same predictor is selected by multiple methods, its p-value can differ substantially across the different methods.

5 Conclusion

We develop selective inference tools for group-sparse linear regression methods, where for a data-dependent selected set of groups S, we are able to both test each group $g \in S$ for inclusion in

\(^7\)Available at http://www.countyhealthrankings.org
Figure 5: Forward stepwise regression. For each group, we plot its p-value for each trial in which that group was selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for nulls (right, gray) are attached.

Figure 6: Forward stepwise regression. Empirical coverage over 2000 trials with signal strength τ. “Norm” and “inner product” refer to coverage of $\|P_{\mathcal{L}}\mu\|_2$ and $\langle \text{dir}_\mathcal{L}(Y), \mu \rangle$, respectively.

the model defined by \mathcal{S}, and form a confidence interval for the effect size of group g in the model. Our theoretical results can be easily applied to a range of commonly used group-sparse regression methods, thus providing an efficient tool for finite-sample inference that correctly accounts for data-dependent model selection in the group-sparse setting.

Acknowledgments
Research supported in part by ONR grant N00014-15-1-2379, and NSF grants DMS-1513594 and DMS-1547396.

A Proofs

A.1 Proof of Theorem 1
For any $y \in \mathcal{A}$, define a function $f_y : \mathbb{R} \to [0, 1]$ as

$$f_y(t) = \frac{\int_{r \in \mathcal{R}_y, r > \|P_{\mathcal{L}} y\|_2} r^{k-1} e^{-(r^2 - 2r t) / 2 \sigma^2} dr}{\int_{r \in \mathcal{R}_y} r^{k-1} e^{-(r^2 - 2r t) / 2 \sigma^2} dr}.$$
A.2 Proof of Lemma 1

We begin with the following elementary calculation (for completeness the proof is given below):

(A as always we ignore the case \(P = 0 \) to avoid degeneracy.) By examining the integrals, we can immediately see that, for any fixed \(y \), \(f_y(t) \) is strictly increasing as a function of \(t \), with \(\lim_{t \to -\infty} f_y(t) = 0 \) and \(\lim_{t \to \infty} f_y(t) = 1 \). These properties guarantee that, for any fixed \(y \) and any fixed \(\alpha \in (0, 1) \), there is a unique \(t \in \mathbb{R} \) with \(f_y(t) = \alpha \), i.e. this proves the existence and uniqueness of \(L_\alpha \) as required.

Furthermore, Lemma 1 immediately implies that, after conditioning on the event \(Y \in A \), and on the values of \(\text{dir}_L(Y) \) and \(P_L \), the conditional density of \(\|P_L Y\|_2 \) is

\[
\alpha \propto r^{k-1} e^{-(r^2 - 2rt_Y)/2\sigma^2} \cdot 1 \{r \in R_Y\}
\]

for \(t_Y := \langle \text{dir}_L(Y), \mu \rangle \), and therefore, \(f_Y(t_Y) \sim \text{Uniform}[0, 1] \). In the case that \(\mu \perp L \), we have \(t_Y = 0 \) always and therefore \(P = f_Y(0) \sim \text{Uniform}[0, 1] \), as desired. In the general case, by definition of \(L_\alpha \), we have \(f_Y(L_\alpha) = \alpha \) and so, again using the fact that \(f_Y(\cdot) \) is strictly increasing,

\[
f_Y(t_Y) \leq \alpha = f_Y(L_\alpha) \iff t_Y \leq L_\alpha,
\]

and so by definition of \(t_Y \),

\[
\mathbb{P}\{\langle \text{dir}_L(Y), \mu \rangle < L_\alpha\} = \mathbb{P}\{t_Y < L_\alpha\} = \mathbb{P}\{f_Y(t_Y) < \alpha\} = \alpha.
\]

Furthermore, we know that \(\|P_L \mu\|_2 \geq \langle \text{dir}_L(Y), \mu \rangle = t_Y \), and so

\[
\mathbb{P}\{\|P_L \mu\|_2 < L_\alpha\} \leq \mathbb{P}\{\langle \text{dir}_L(Y), \mu \rangle < L_\alpha\} = \alpha.
\]

Finally, we see that since \(P = f_Y(0) \) while \(\alpha = f_Y(L_\alpha) \), \(P < \alpha \) if and only if \(0 < L_\alpha \).

Table 1: Selective p-values for selected groups in the California county health data experiment.

Group size	Forward stepwise p-value / seq. p-value	Iterative hard thresholding p-value	Group lasso p-value
1	80th percentile income 0.116 / 0.000	80th percentile income 0.000	80th percentile income 0.000
	Injury death rate 0.000 / 0.000		% Obese 0.007
	Violent crime rate 0.016 / 0.000	% Smokers 0.004	Violent crime rate 0.055
	% Receiving HbA1c 0.591 / 0.839	% Single-parent household 0.009	% Physically inactive 0.040
	% Obese 0.481 / 0.464		Violent crime rate 0.075
	Chlamydia rate 0.944 / 0.975	% Children in poverty 0.332	% Single-parent household 0.075
	% Physically inactive 0.654 / 0.812	Food environment index 0.807	% Smokers 0.701
	% Alcohol-impaired 0.104 / 0.104	Mentally unhealthy days 0.957	Preventable hospital stays rate 0.932
Preventable hospital stays rate 0.421 / 0.421			

The predictors obtained with forward stepwise are tested both simultaneously at the end of the procedure (first p-value shown), and also tested sequentially (second p-value shown), and are displayed in the selected order. For IHT and group lasso the predictors are shown in order of increasing selective p-value.
Lemma 2. Suppose that $\tilde{Y} \sim \mathcal{N}(\tilde{\mu}, \sigma^2 I_k)$. Let $R = \|\tilde{Y}\|_2 \in \mathbb{R}_+$ and $U = \text{dir}(\tilde{Y}) \in S^{k-1}$ be the radius and direction of the random vector \tilde{Y}. Then the joint distribution of (R, U) has density

$$f(r, u) \propto r^{k-1} \exp\left\{-\frac{1}{2\sigma^2} \left(r^2 - 2r \cdot \langle u, \tilde{\mu} \rangle\right)\right\} \quad \text{for } (r, u) \in \mathbb{R}_+ \times S^{k-1}.$$

Next, let $V \in \mathbb{R}^{n \times k}$ be an orthonormal basis for L and let $\tilde{Y} = V^\top Y \sim \mathcal{N}(\tilde{\mu}, \sigma^2 I_k)$ where $\tilde{\mu} = V^\top \mu$.

Now let $R = \|\tilde{Y}\|_2 = \|P_L Y\|_2$ and let $U = \text{dir}(\tilde{Y}) = V^\top \text{dir}_L(Y)$; note that $\text{dir}_L(Y) = VU$.

Defining $W = P_L^\perp Y$, we see that $Y = r \cdot Vu + w$, and that $\tilde{Y} \perp W$ by properties of the normal distribution. Combining this with the result of Lemma 2, we see that the joint density of (R, U, W) is given by

$$f_{R, U, W}(r, u, w) \propto r^{k-1} \exp\left\{-\frac{1}{2\sigma^2} \left(r^2 - 2r \cdot \langle u, \tilde{\mu} \rangle\right)\right\} \cdot \exp\left\{-\frac{1}{2\sigma^2} \|w - P_L^\perp \tilde{\mu}\|_2^2\right\}$$

for $(r, u, w) \in \mathbb{R}_+ \times S^{k-1} \times L_\perp$. After conditioning on the event $\{Y \in A\}$, this density becomes

$$\propto r^{k-1} \exp\left\{-\frac{1}{2\sigma^2} \left(r^2 - 2r \cdot \langle u, \tilde{\mu} \rangle\right)\right\} \cdot \exp\left\{-\frac{1}{2\sigma^2} \|w - P_L^\perp \tilde{\mu}\|_2^2\right\} \cdot 1 \{r \cdot Vu + w \in A\}.$$

Next note that the event $\{Y \in A\}$ is equivalent to $\{R \in R_Y\}$ where $R_Y = \{r > 0 : r \cdot Vu + W \in A\}$, and so the conditional density of R, after conditioning on U, W, and on the event $Y \in A$, is

$$\propto r^{k-1} \exp\left\{-\frac{1}{2\sigma^2} \left(r^2 - 2r \cdot \langle U, \tilde{\mu} \rangle\right)\right\} \cdot 1 \{R \in R_Y\},$$

as desired. Now we prove our supporting result, Lemma 2.

Proof of Lemma 2. It’s easier to work with the parametrization (Z, U) where $Z = \log(R)$. By a simple change of variables calculation, the claim in the lemma is equivalent to showing that

$$f_{Z, U}(z, u) \propto e^{kz} \exp\left\{-\frac{1}{2\sigma^2} \left(e^{2z} - 2e^z \cdot \langle u, \tilde{\mu} \rangle\right)\right\} \quad \text{for } (z, u) \in \mathbb{R} \times S^{k-1}.$$

Fix any $\varepsilon \in (0, 1)$ and, for each $(z, u) \in \mathbb{R} \times S^{k-1}$, consider the region $(z - \varepsilon, z + \varepsilon) \times C^\varepsilon_u \subseteq \mathbb{R} \times S^{k-1}$, where C^ε_u is a spherical cap, $C^\varepsilon_u := \{v \in S^{k-1} : \|v - u\|_2 < \varepsilon\}$. Let s_ε be the surface area of $C^\varepsilon_u \subseteq S^{k-1}$ (note that this surface area does not depend on u since it’s rotation invariant).

To check that our density is correct, it is sufficient to check that

$$\mathbb{P}\{(Z, U) \in (z - \varepsilon, z + \varepsilon) \times C^\varepsilon_u\} \propto \text{Volume} \left((z - \varepsilon, z + \varepsilon) \times C^\varepsilon_u\right) \cdot e^{kz} \cdot \exp\left\{-\frac{1}{2\sigma^2} \left(e^{2z} - 2e^z \cdot \langle u, \tilde{\mu} \rangle\right)\right\} \cdot (1 + o(1)),$$

where the $o(1)$ term is with respect to the limit $\varepsilon \to 0$ while (z, u) is held fixed, and where the constant of proportionality is independent of ε and of z, u. We can also calculate $\text{Volume} \left((z - \varepsilon, z + \varepsilon) \times C^\varepsilon_u\right) = 2\varepsilon \cdot s_\varepsilon$.

14
Now consider
\[Y_{z,u}^ε = \{ y \in \mathbb{R}^n : y/\|y\|_2 \in C_u^ε, \log(\|y\|_2) \in (z - \varepsilon, z + \varepsilon) \} \subseteq \mathbb{R}^n. \]

We have
\[\mathbb{P} \{(Z, U) \in (z - \varepsilon, z + \varepsilon) \times C_u^ε \} = \mathbb{P} \{ \tilde{Y} \in Y_{z,u}^ε \}. \]

Since \(Y_{z,u}^ε = \bigcup_{t \in [-ε, z + \varepsilon]} (t \cdot C_u^ε) \), and the surface area of \(t \cdot C_u^ε \subseteq t \cdot \mathbb{S}^{k-1} \) is equal to \(s_ε t^{k-1} \), we can also calculate
\[\text{Volume}(Y_{z,u}^ε) = \int_{z - \varepsilon}^{z + \varepsilon} s_ε t^{k-1} \, dt = \frac{1}{k} s_ε t^{k-1} \bigg|_{t = z - \varepsilon}^{z + \varepsilon} = \frac{1}{k} s_ε \cdot (e^{k(z+\varepsilon)} - e^{k(z-\varepsilon)}) = 2\varepsilon \cdot s_ε \cdot e^{kz} \cdot (1 + o(1)), \]

since \(e^{k(z+\varepsilon)} - e^{k(z-\varepsilon)} = e^{kz} \cdot 2k\varepsilon \cdot (1 + o(1)) \). And, since \(\max_{y \in Y_{z,u}^ε} \|y - e^z \cdot u\|_2 \to 0 \) as \(\varepsilon \to 0 \), then for any \(y \in Y_{z,u}^ε \), the density of \(\tilde{Y} \) at this point is given by
\[f_{\tilde{Y}}(y) = \frac{1}{\sqrt{(2\pi\sigma^2)^n}} e^{-\frac{1}{2\sigma^2} \|y - \bar{\mu}\|^2_2} = \frac{1}{\sqrt{(2\pi\sigma^2)^n}} e^{-\frac{1}{2\sigma^2} \|e^z \cdot u - \bar{\mu}\|^2_2} \cdot (1 + o(1)), \]

where again the \(o(1) \) term is with respect to the limit \(\varepsilon \to 0 \) while \((z, u) \) is held fixed. So, we have
\[\mathbb{P} \{(Z, U) \in (z - \varepsilon, z + \varepsilon) \times C_u^ε \} = \mathbb{P} \{ \tilde{Y} \in Y_{z,u}^ε \} = \int_{y \in Y_{z,u}^ε} f_{\tilde{Y}}(y) \, dy \]
\[= \text{Volume}(Y_{z,u}^ε) \cdot \frac{1}{\sqrt{(2\pi\sigma^2)^n}} e^{-\frac{1}{2\sigma^2} \|e^z \cdot u - \bar{\mu}\|^2_2} \cdot (1 + o(1)) \]
\[= 2\varepsilon \cdot s_ε \cdot e^{kz} \cdot (1 + o(1)) \cdot \frac{1}{\sqrt{(2\pi\sigma^2)^n}} e^{-\frac{1}{2\sigma^2} \|e^z \cdot u - \bar{\mu}\|^2_2} \cdot (1 + o(1)) \]
\[= 2\varepsilon \cdot s_ε \cdot e^{kz} \cdot \exp \left\{ -\frac{1}{2\sigma^2} (e^{2z} - 2e^z \cdot \langle u, \bar{\mu} \rangle) \right\} \cdot \frac{1}{\sqrt{(2\pi\sigma^2)^n}} e^{-\frac{1}{2\sigma^2} \|\bar{\mu}\|^2_2} \cdot (1 + o(1)), \]

which gives the desired result since the term in square brackets is constant with respect to \(z, u, \varepsilon \).

\[\square \]

A.3 Derivations for IHT inference

Here we derive the formulas for the coefficients \(c_t, d_t \) used in the inference procedure for group-sparse IHT. First, at time \(t = 1 \),
\[\tilde{\beta}_1 = b_0 - \eta_1 \nabla f(b_0) = b_0 - \eta_1 \left(\frac{1}{n} X^T (Xb_0 - z_Y(r)) \right) = r \cdot \left[\frac{\eta_1}{n} X^T U \right] + \left[(I_p - \frac{\eta_1}{n} X^T X) b_0 + \frac{\eta_1}{n} X^T Y_\perp \right] =: r \cdot c_1 + d_1. \]

Next, at each time \(t = 2, \ldots, T \), assume that \(\tilde{\beta}_{t-1} = c_{t-1} + d_{t-1} \). Then, writing \(\mathcal{P}_{S_{t-1}} \) as the matrix in \(\mathbb{R}^{p \times p} \) which acts as the identity on groups in \(S_{t-1} \) and sets all other groups to zero, we have \(b_t = \mathcal{P}_{S_{t-1}} \tilde{\beta}_{t-1} = \mathcal{P}_{S_{t-1}} c_{t-1} + \mathcal{P}_{S_{t-1}} d_{t-1} \), and so
\[\tilde{\beta}_t = b_t - \eta_t \nabla f(b_t) = b_t - \eta_t \left(\frac{1}{n} X^T (Xb_t - z_Y(r)) \right) = r \cdot \left[(I_p - \frac{\eta_t}{n} X^T X) \mathcal{P}_{S_{t-1}} c_{t-1} + \frac{\eta_t}{n} X^T U \right] + \left[(I_p - \frac{\eta_t}{n} X^T X) \mathcal{P}_{S_{t-1}} d_{t-1} \right] =: r \cdot c_t + d_t. \]
Algorithm 1 Post-selection Inference for Forward Selection

1: **Input**: Response Y, design matrix X, groups $C_1, \ldots, C_G \subseteq \{1, \ldots, p\}$, maximum number of selected groups T, desired accuracy α
2: **Initialize**: $S_0 = \emptyset$, residual $\tilde{e}_0 = Y$, $\mathcal{R}_Y = \mathbb{R}_+$
3: for $t = 1, 2, \ldots, T$ do
4: $g_t = \text{arg max}_{g \in |G| \setminus S_{t-1}} \{\|X_g^T \tilde{e}_{t-1}\|^2\}$
5: Update the model, $S_t = \{g_1, \ldots, g_t\}$, and the residual, $\tilde{e}_t = \mathcal{P}_{X_{S_t}} Y$
6: $L_t \leftarrow \text{span}(\mathcal{P}_{X_{S_{t-1}}} X_{g_t})$, $U_t \leftarrow \mathcal{P}_{L_t} Y$, $Y_t \leftarrow \mathcal{P}_{L_t} Y$
7: for $g \notin S_t$ do
8: $a_{t,g} \leftarrow \|X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} U_t\|^2_2 - \|X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} U_t\|^2_2$
9: $b_{t,g} \leftarrow \langle X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} U_t, X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} Y_t^* \rangle - \langle X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} U_t, X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} Y_t^* \rangle$
10: $c_{t,g} \leftarrow \|X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} Y_t^*\|^2_2 - \|X_{g,t}^T \mathcal{P}_{X_{S_{t-1}}} Y_t^*\|^2_2$
11: $I_{t,g} \leftarrow \{r \in \mathbb{R}_+: a_{t,g}r^2 + 2b_{t,g}r + c_{t,g} \geq 0\}$
12: $\mathcal{R}_Y \leftarrow \mathcal{R}_Y \cap I_{t,g}$
13: end for
14: $P_t = \frac{\int_{r \in \mathcal{R}_Y, r > \|P_{L_t} Y\|^2_2} 1 - e^{-(r^2/2) \alpha} \, dr}{\int_{r \in \mathcal{R}_Y} 1 - e^{-(r^2/2) \alpha} \, dr}$
15: $L_t^\alpha = \beta$ s.t. $\frac{\int_{r \in \mathcal{R}_Y, r > \|P_{L_t} Y\|^2_2} 1 - e^{-(r^2-2\beta)/2\alpha} \, dr}{\int_{r \in \mathcal{R}_Y} 1 - e^{-(r^2-2\beta)/2\alpha} \, dr} = \alpha$
16: end for
17: **Output**: Selected groups $\{g_1, \ldots, g_T\}$, p-values $\{P_1, \ldots, P_T\}$, confidence interval lower bounds $\{L_1^\alpha, \ldots, L_T^\alpha\}$

B Pseudo-code: post-selection inference for forward selection

In Algorithm 1 we provide a detailed pseudo-code of our inference method for forward selection (described in Section 3.2). Here, we compute the P value as well as confidence interval for each selected group conditioned on our previous selections. The algorithm is efficient and only overhead above the Forward Selection method is computation of the integral of a one-dimensional density over different intervals (see Step 15).
References

[1] Thomas Blumensath and Mike E Davies. Sampling theorems for signals from the union of finite-dimensional linear subspaces. *Information Theory, IEEE Transactions on*, 55(4): 1872–1882, 2009.

[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine Learning*, 3(1):1–122, 2011.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning*. Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[4] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with overlap and graph lasso. In *Proceedings of the 26th annual international conference on machine learning*, pages 433–440. ACM, 2009.

[5] Prateek Jain, Nikhil Rao, and Inderjit S. Dhillon. Structured sparse regression via greedy hard-thresholding. *CoRR*, abs/1602.06042, 2016. URL http://arxiv.org/abs/1602.06042.

[6] Jason D. Lee and Jonathan E. Taylor. Exact post model selection inference for marginal screening. In *Advances in Neural Information Processing Systems 27*, pages 136–144, 2014.

[7] Jason D Lee, Dennis L Sun, Yuekai Sun, and Jonathan E Taylor. Exact post-selection inference with the lasso. *arXiv preprint arXiv:1311.6238*, 2013.

[8] Joshua R. Loftus and Jonathan E. Taylor. Selective inference in regression models with groups of variables. arXiv:1511.01478, 2015.

[9] Sofia Mosci, Silvia Villa, Alessandro Verri, and Lorenzo Rosasco. A primal-dual algorithm for group sparse regularization with overlapping groups. In *Advances in Neural Information Processing Systems 23*, pages 2604–2612, 2010.

[10] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/.

[11] Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 267–288, 1996.

[12] Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. *IEEE Trans. Information Theory*, 53(12):4655–4666, 2007. doi: 10.1109/TIT.2007.909108. URL http://dx.doi.org/10.1109/TIT.2007.909108.

[13] Yi Yang and Hui Zou. *gglasso: Group Lasso Penalized Learning Using A Unified BMD Algorithm*, 2014. URL https://CRAN.R-project.org/package=gglasso. R package version 1.3.

[14] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(1):49–67, 2006.