A NOTE ON INVERSE CURVATURE FLOWS IN ARW SPACETIMES

CLAUS GERHARDT

Abstract. We prove that the leaves of the rescaled curvature flow considered in [1] converge to the graph of a constant function.

Contents

1. Introduction \hfill 1
2. Proof of Theorem 1.4 \hfill 4
References \hfill 7

1. Introduction

In [1], see also [2, Chapter 7], we considered the inverse mean curvature flow in a Lorentzian manifold $N = N^{n+1}$ which we called an asymptotically Robertson-Walker (ARW) space, and which is defined by the following conditions:

1.1. Definition. A cosmological spacetime N, dim $N = n + 1$, is said to be asymptotically Robertson-Walker (ARW) with respect to the future, if a future end of N, N_+, can be written as a product $N_+ = [a, b] \times S_0$, where S_0 is a compact Riemannian space, and there exists a future directed time function $\tau = x^0$ such that the metric in N_+ can be written as

\begin{equation}
 ds^2 = e^{2\tilde{\psi}} \{- (dx^0)^2 + \sigma_{ij}(x^0, x)dx^i dx^j\},
\end{equation}

where S_0 corresponds to $x^0 = a$, $\tilde{\psi}$ is of the form

\begin{equation}
 \tilde{\psi}(x^0, x) = f(x^0) + \psi(x^0, x),
\end{equation}

Date: June 27, 2011.

2000 Mathematics Subject Classification. 35J60, 53C21, 53C44, 53C50, 58J05.

Key words and phrases. Lorentzian manifold, mass, cosmological spacetime, general relativity, inverse curvature flow, ARW spacetimes.

This work was supported by the DFG.
and we assume that there exists a positive constant c_0 and a smooth Riemannian metric $\bar{\sigma}_{ij}$ on S_0 such that
\begin{equation}
\lim_{\tau \to b} e^{\psi} = c_0 \quad \land \quad \lim_{\tau \to b} \sigma_{ij}(\tau, x) = \bar{\sigma}_{ij}(x),
\end{equation}
and
\begin{equation}
\lim_{\tau \to b} f(\tau) = -\infty.
\end{equation}

Without loss of generality we shall assume $c_0 = 1$. Then N is ARW with respect to the future, if the metric is close to the Robertson-Walker metric
\begin{equation}
ds^2 = e^{2f}\{-dx^0^2 + \bar{\sigma}_{ij}(x)dx^idx^j\}
\end{equation}
near the singularity $\tau = b$. By close we mean that the derivatives of arbitrary order with respect to space and time of the conformal metric $e^{-2f}\bar{g}_{\alpha\beta}$ in (1.1) should converge to the corresponding derivatives of the conformal limit metric in (1.5) when x^0 tends to b. We emphasize that in our terminology Robertson-Walker metric does not imply that $(\bar{\sigma}_{ij})$ is a metric of constant curvature, it is only the spatial metric of a warped product.

We assume, furthermore, that f satisfies the following five conditions
\begin{equation}
-f' > 0,
\end{equation}
there exists $\omega \in \mathbb{R}$ such that
\begin{equation}
n + \omega - 2 > 0 \quad \land \quad \lim_{\tau \to b} |f'|^2e^{(n+\omega-2)f} = m > 0.
\end{equation}
Set $\tilde{\gamma} = \frac{1}{2}(n + \omega - 2)$, then there exists the limit
\begin{equation}
\lim_{\tau \to b} (f'' + \tilde{\gamma}|f'|^2)
\end{equation}
and
\begin{equation}
|D^m_{\tau}(f'' + \tilde{\gamma}|f'|^2)| \leq c_m|f'|^m \quad \forall m \geq 1,
\end{equation}
as well as
\begin{equation}
|D^m_{\tau} f| \leq c_m|f'|^m \quad \forall m \geq 1.
\end{equation}

We call N a normalized ARW spacetime, if
\begin{equation}
\int_{S_0} \sqrt{\det \bar{\sigma}_{ij}} = |S^n|.
\end{equation}

1.2. Remark. (i) If these assumptions are satisfied, then we proved in [1] that the range of τ is finite, hence, we shall assume w.l.o.g. that $b = 0$, i.e.,
\begin{equation}
a < \tau < 0.
\end{equation}

(ii) Any ARW spacetime can be normalized as one easily checks. For normalized ARW spaces the constant m in (1.7) is defined uniquely and can be identified with the mass of N, cf. [3].
(iii) In view of the assumptions on \(f \) the mean curvature of the coordinate slices \(M_\tau = \{ x^0 = \tau \} \) tends to \(\infty \), if \(\tau \) goes to zero.

(iv) ARW spaces satisfy a strong volume decay condition, cf. [4, Definition 0.1].

(v) Similarly one can define \(N \) to be ARW with respect to the past. In this case the singularity would lie in the past, correspond to \(\tau = 0 \), and the mean curvature of the coordinate slices would tend to \(-\infty \).

We assume that \(N \) satisfies the timelike convergence condition. Consider the future end \(N_+ \) of \(N \) and let \(M_0 \subset N_+ \) be a spacelike hypersurface with positive mean curvature \(\bar{H}_{|M_0} > 0 \) with respect to the past directed normal vector \(\bar{v} \)—we shall explain in Section 2 why we use the symbols \(\bar{H} \) and \(\bar{v} \) and not the usual ones \(H \) and \(\nu \). Then, as we have proved in [4], the inverse mean curvature flow

\[
\dot{x} = -\bar{H}^{-1}\bar{v}
\]

with initial hypersurface \(M_0 \) exists for all time, is smooth, and runs straight into the future singularity.

If we express the flow hypersurfaces \(M(t) \) as graphs over \(S_0 \)

\[
M(t) = \text{graph } u(t, \cdot),
\]

then one of the main results in our former paper was:

1.3. **Theorem.** (i) Let \(N \) satisfy the above assumptions, then the range of the time function \(x^0 \) is finite, i.e., we may assume that \(b = 0 \). Set

\[
\tilde{u} = u e^{\gamma t},
\]

where \(\gamma = \frac{1}{n} \bar{\gamma} \), then there are positive constants \(c_1, c_2 \) such that

\[
- c_2 \leq \tilde{u} \leq - c_1 < 0,
\]

and \(\tilde{u} \) converges in \(C^\infty(S_0) \) to a smooth function, if \(t \) goes to infinity. We shall also denote the limit function by \(\tilde{u} \).

(ii) Let \(\bar{g}_{ij} \) be the induced metric of the leaves \(M(t) \), then the rescaled metric

\[
e^{\frac{2\gamma}{n}} \bar{g}_{ij}
\]

converges in \(C^\infty(S_0) \) to

\[
(\gamma^2 n) \frac{1}{4} (-\tilde{u})^\frac{2}{n} \bar{\sigma}_{ij}.
\]

(iii) The leaves \(M(t) \) get more umbilical, if \(t \) tends to infinity, namely, there holds

\[
\bar{H}^{-1} |\bar{h}^\alpha_\lambda - \frac{1}{n} \bar{H} \bar{\delta}^\lambda_\alpha| \leq c e^{-\frac{1}{2} \gamma t}.
\]

In case \(n + \omega - 4 > 0 \), we even get a better estimate

\[
|\bar{h}^\alpha_\lambda - \frac{1}{n} \bar{H} \bar{\delta}^\lambda_\alpha| \leq c e^{-\frac{1}{4} (n+\omega-4) t}.
\]
The results for the mean curvature flow have recently also been proved for other inverse curvature flows, where the mean curvature is replaced by a curvature function F of class (K^*) homogeneous of degree 1, which includes the n-th root of the Gaussian curvature, cf. Heiko Kröner [6].

In this note we want to prove that the functions in (1.15) converge to a constant. This result will also be valid when, instead of the mean curvature, other curvature functions F homogeneous of degree one will be considered satisfying

$$F(1, \ldots, 1) = n$$

provided the rescaled functions in (1.15) can be estimated as in (1.16) and converge in $C^3(S_0)$. For simplicity we shall formulate the result only for the solution in Theorem 1.3, but it will be apparent from the proof that the result is also valid for different curvature functions.

1.4. Theorem. The functions \tilde{u} in (1.15) converge to a constant.

2. Proof of Theorem 1.4

When we proved the convergence results for the inverse mean curvature flow in [1], we considered the flow hypersurfaces to be embedded in N equipped with the conformal metric

$$ds^2 = -(dx^0)^2 + \sigma_{ij}(x^0, x)dx^i dx^j.$$

Though, formally, we have a different ambient space we still denote it by the same symbol N and distinguish only the metrics $\bar{g}_{\alpha\beta}$ and $\tilde{g}_{\alpha\beta}$

$$\tilde{g}_{\alpha\beta} = e^{2\tilde{\psi}}\bar{g}_{\alpha\beta}$$

and the corresponding geometric quantities of the hypersurfaces $\tilde{h}_{ij}, \tilde{g}_{ij}, \tilde{v}$ resp. h_{ij}, g_{ij}, v, etc.. The second fundamental forms \bar{h}_{ij}^α and h_{ij}^α are related by

$$e^\tilde{\psi}\bar{h}_{ij}^\alpha = h_{ij}^\alpha + \tilde{\psi}_\alpha^\alpha \delta_{ij}^\alpha$$

and, if we define F by

$$F = e^\tilde{\psi} \tilde{H},$$

then

$$F = H - n\tilde{v} f' + n\tilde{\psi}_\alpha^\alpha \nu^\alpha,$$

where

$$\tilde{v} = v^{-1},$$

and

$$v^2 = 1 - \sigma_{ij} u_i u_j \equiv 1 - |Du|^2.$$

The evolution equation can be written as

$$\dot{v} = -F^{-1}\nu,$$
since
\[(2.9)\] \[\tilde{\nu} = e^{-\tilde{\psi}} \nu.\]

The flow (2.8) can also be considered to comprise more general curvature functions \(F\) by assuming that \(F = F(\tilde{h}_i^j)\), where \(\tilde{h}_i^j\) is an abbreviation for the right-hand side of (2.3). Stipulating that indices of tensors will be raised or lowered with the help of the metric
\[(2.10)\] \[g_{ij} = -u_i u_j + \sigma_{ij},\]
we may also consider \(F\) to depend on
\[(2.11)\] \[\tilde{h}_{ij} = h_{ij} - \tilde{v} f'_i g_{ij} + \psi_{ij} \nu^\alpha g_{ij}\]
and we define accordingly
\[(2.12)\] \[F_{ij} = \frac{\partial F}{\partial \tilde{h}_{ij}}.\]

Now, let us prove Theorem 1.4. We use the relation
\[(2.13)\] \[\tilde{v}^2 = 1 + \|Du\|^2 = 1 + g^{ij} u_i u_j\]
and shall prove that
\[(2.14)\] \[\lim_{t \to \infty} (\|Du\|^2)^t e^{2\gamma t} = 2\gamma \Delta \tilde{u} \tilde{u},\]
where
\[(2.15)\] \[\tilde{u} = \lim_{t \to \infty} u e^{\gamma t},\]
as well as
\[(2.16)\] \[(\tilde{v}^2)^t e^{2\gamma t} = -2\gamma \|D\tilde{u}\|^2\]
yielding
\[(2.17)\] \[-\Delta \tilde{u} \tilde{u} = \|D\tilde{u}\|^2\]
on the compact limit hypersurface \(M\). Since \(\tilde{u}\) is strictly negative we then conclude
\[(2.18)\] \[\int_M \|D\tilde{u}\|^2 \tilde{u}^{-1} = 0,\]
hence \(\|D\tilde{u}\| = 0\).

Let us first derive (2.14). Using
\[(2.19)\] \[\dot{g}_{ij} = -2F^{-1} h_{ij},\]

cf. [2, Lemma 2.3.1], where we write \(g_{ij} = g_{ij}(t, \xi)\), \(\xi = (\xi^i)\) are local coordinates for \(S_0\), and where
\[(2.20)\] \[\dot{g}_{ij} = \frac{\partial g_{ij}}{\partial t} = \dot{u}_i u_j + u_i \dot{u}_j + \sigma_{ij} \dot{u},\]
and \(\sigma_{ij}\) is defined by
\[(2.21)\] \[\sigma_{ij} = \frac{\partial \sigma_{ij}}{\partial u},\]
we deduce

\[
\left(\|Du\|^2\right)' = (g^{ij} u_i u_j)' = 2g^{ij} \ddot{u}_i u_j - \ddot{g}_{ij} u^i u^j
\]

(2.22)

\[
= 2F^{-1} H + \ddot{g}^{ij} \sigma_{ij} \ddot{u} - \ddot{\sigma}_{ij} \ddot{u}^i u^j
\]

\[
= 2F^{-1} H + \ddot{v} F^{-1} \ddot{g}^{ij} \sigma_{ij} + 2F^{-1} \ddot{h}_{ij} u^i u^j
\]

\[
= 2F^{-1} H + \ddot{v} F^{-1} \sigma_{ij} \ddot{\sigma}_{ij} + 2F^{-1} \ddot{h}_{ij} u^i u^j
\]

where we used the relation

\[
(2.23) \quad g^{ij} = \sigma_{ij} + \ddot{v}^2 \ddot{u}^i \ddot{u}^j
\]

and where \(\ddot{u}^i\) is defined by

\[
(2.24) \quad \ddot{u}^i = \sigma^{ij} u_j.
\]

The last two terms on the right-hand side of (2.22) are an \(o(e^{-2\gamma t})\), thus we have

\[
(2.25) \quad \left(\|Du\|^2\right)' = 2F^{-1} (H + \ddot{v} \ddot{\sigma}_{ij} \ddot{\sigma}_{ij}) + o(e^{-2\gamma t}).
\]

On the other hand, there holds

\[
(2.26) \quad h_{ij} \ddot{v} = -u_{ij} + \ddot{h}_{ij},
\]

where \(\ddot{h}_{ij}\) is the second fundamental form of the slices \(\{x^0 = \text{const}\}\)

\[
(2.27) \quad \ddot{h}_{ij} = -\dddot{\sigma}_{ij}
\]

and we infer

\[
(2.28) \quad H \ddot{v} = -\Delta u + g^{ij} \ddot{h}_{ij}
\]

\[
= -\Delta u + \dddot{H} + \dddot{v} \dddot{h}_{ij} \dddot{u}^i \dddot{u}^j.
\]

Combining (2.22), (2.27) and (2.28) we obtain

\[
(\|Du\|^2)' = 2F^{-1} (H - \dddot{H}) + o(e^{-2\gamma t})
\]

(2.29)

\[
= 2F^{-1} (H - \dddot{H}) + o(e^{-2\gamma t})
\]

\[
= -2F^{-1} \Delta u + o(e^{-2\gamma t}).
\]

In view of [2, Lemma 7.3.4], the estimates for \(h_{ij}, u,\) and \(\psi,\) and the homogeneity of \(F,\) there holds

\[
(2.30) \quad \lim_{t \to \infty} F(-u) = n \gamma^{-1} = \gamma^{-1},
\]

hence we deduce

\[
(2.31) \quad \lim_{t \to \infty} (\|Du\|^2)' e^{2\gamma t} = 2\gamma \Delta u \ddot{u}.
\]

Let us now differentiate \(\dddot{u}^2\). From the relation

\[
(2.32) \quad \dddot{v} = \eta_{\alpha} \dddot{u}^\alpha, \quad (\eta_{\alpha}) = (-1, 0, \ldots, 0),
\]

we infer

\[
(2.33) \quad \dddot{v} = \eta_{\alpha} \dddot{u}^\alpha \dddot{u} + \eta_{\alpha} \dddot{u}^\alpha
\]

\[
= -F^{-1} \eta_{\alpha} \dddot{u}^\alpha \dddot{u}^\beta + (F^{-1})_{k} u^k,
\]
where we used
\begin{equation}
\dot{\nu} = (-F^{-1})^k x_k,
\end{equation}
and the first term on the right-hand side of (2.33) is an \(o(e^{-2\gamma t})\) in view of the asymptotic behaviour of an ARW space, cf. the definition of close in Definition 1.1, while
\begin{equation}
(F^{-1})^k = -F^{-2} F^{ij} \left\{ h_{ij,k} - \tilde{v}_k f' g_{ij} - f'' u_k g_{ij} + \psi_{\alpha \beta} \nu^\alpha x_k g_{ij} + \psi_{\alpha} x_{l} h_{l}^k g_{ij} \right\},
\end{equation}
where we applied the Weingarten equation to derive the last term on the right-hand side. Therefore, we infer
\begin{equation}
\lim_{t \to \infty} (F^{-1})^k u^k e^{2\gamma t} = \|D\tilde{u}\|^2 - \frac{1}{n} \lim_{t \to \infty} \frac{f''}{|f'|^2}
\end{equation}
in view of (1.8) on page 2 and the definition of \(\gamma\) in Theorem 1.3 on page 3, and we deduce further
\begin{equation}
\lim_{t \to \infty} (\tilde{v}^2)' = -2\gamma\|D\tilde{u}\|^2,
\end{equation}
hence the limit function \(\tilde{u}\) satisfies
\begin{equation}
\|D\tilde{u}\|^2 = -\Delta \tilde{u}
\end{equation}
completing the proof of Theorem 1.4 on page 4.

2.1. Remark. We believe that this method of proof will also work for other curvature flows driven by extrinsic curvatures, in Riemannian or Lorentzian manifolds, to prove that the leaves of the rescaled curvature flows converge to the graph of a constant function.

Indeed, applying this method we proved in [5, Lemma 6.12] that the rescaled curvature flow converges to a sphere.

References

[1] Claus Gerhardt, The inverse mean curvature flow in ARW spaces - transition from big crunch to big bang, 2004, arXiv:math.DG/0403485, 39 pages.
[2] ———, Curvature Problems, Series in Geometry and Topology, vol. 39, International Press, Somerville, MA, 2006.
[3] ———, The mass of a Lorentzian manifold, Adv. Theor. Math. Phys. 10 (2006), 33–48, math.DG/0403002.
[4] ———, The inverse mean curvature flow in cosmological spacetimes, Adv. Theor. Math. Phys. 12 (2008), 1183–1207, arXiv:math.DG/0403097.
[5] ———, Inverse curvature flows in hyperbolic space, 2011, arXiv:1101.2578.
[6] Heiko Kröner, The inverse F-curvature flow in ARW spaces, 2011, arXiv:1106.4703.