Some Integral Inequalities For Functions Whose Second Derivatives Are $\varphi-$Convex By Using Fractional Integrals

M. Esra YILDIRIM, Abdullah AKKURT, AND Hseyin YILDIRIM

ABSTRACT. In this paper, we obtain new estimates on generalization of Hermite-Hadamard, Simpson and Ostrowski type inequalities for functions whose second derivatives is $\varphi-$convex via fractional integrals.

1. INTRODUCTION

The following inequality is called Hermite-Hadamard Inequality;

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2},$$

where $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is a convex function and $a, b \in I$ with $a < b$. If f is concave, then both inequalities hold in the reversed direction.

The inequality (1.1) inequality was first discovered by Hermite in 1881 in the Journal Mathesis. This inequality was known as Hermite-Hadamard Inequality, because this inequality was found by Mitrinovic Hermite and Hadamard’s note in Mathesis in 1974.

The inequality (1.1) is studied by many authors, see ([1],[7],[9],[11],[13],[16]–[22]) where further references are listed.

Firstly, we need to recall some concepts of convexity concerning our work.

Definition 1. [6] A function $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex on I if inequality

$$f(ta + (1-t)b) \leq tf(a) + (1-t)f(b),$$

holds for all $a, b \in I$ and $t \in [0, 1]$.

Definition 2. [8] Let $s \in (0, 1]$. A function $f : I \subseteq \mathbb{R}_0 = [0, \infty) \rightarrow \mathbb{R}$ is said to be $s-$convex in the second sense if

$$f(ta + (1-t)b) \leq tf(a) + (1-t)f(b),$$

holds for all $a, b \in I$ and $t \in [0, 1]$.

Tunç and Yıldırım in [22] introduced the following definition as follows:

Definition 3. A function $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to belong to the class of MT(I) if it is nonnegative and for all $x, y \in I$ and $t \in (0, 1)$ satisfies the inequality;

$$f \left(tx + (1-t)y \right) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f (x) + \frac{\sqrt{1-t}}{2\sqrt{t}} f (y).$$

1991 Mathematics Subject Classification. 26D15, 26A51, 26A33, 26D10.

Key words and phrases. Hermite–Hadamard inequality; Ostrowski inequality; Simpson inequality; Riemann–Liouville fractional integral, $\varphi-$convex functions.

M.E. Yıldırım was partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Programme 2228-B).
Dragomir in [3] introduced the following definition as follows:

Definition 4. Let \(\varphi : (0, 1) \rightarrow (0, \infty) \) be a measurable function. We say that the function \(f : I \rightarrow [0, \infty) \) is a \(\varphi \)-convex function on the interval \(I \) if \(x, y \in I \) we have

\[
 f(tx + (1-t)y) \leq t \varphi(t) f(x) + (1-t) \varphi(1-t) f(y).
\]

Remark 1. According to definition 4 for the special choose of \(\varphi \) we can obtain following

If we take \(\varphi(t) \equiv 1 \), we obtain classical convex.

If we take \(\varphi(t) = t^{s-1} \), we obtain \(s \)-convex.

If we take \(\varphi(t) = \frac{1}{2 \sqrt{t} \sqrt{1-t}} \), we obtain MT-convex.

Now, we will give some definitions and notations of fractional calculus theory which are used later in this paper. Samko et al. in [15] used following definitions as follows:

Definition 5. The Riemann-Liouville fractional integrals \(J^\alpha_a f \) and \(J^\alpha_b f \) of order \(\alpha > 0 \) with \(a \geq 0 \) are defined by

\[
 J^\alpha_a f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt, \quad x > a
\]

and

\[
 J^\alpha_b f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) dt, \quad x < b
\]

where \(f \in L_1[a, b] \), respectively. Note that, \(\Gamma(\alpha) \) is the Gamma function and \(J^\alpha_0 f(x) = J^\alpha_b f(x) = f(x). \)

Definition 6. The Euler Beta function is defined as follows:

\[
 \beta(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \quad x, y > 0.
\]

The incomplete beta function is defined as follows:

\[
 \beta(a, x, y) = \int_0^a t^{x-1} (1-t)^{y-1} dt, \quad x, y > 0, \quad 0 < \alpha < 1.
\]

2. **Main results**

Throughout this paper, we use \(S_f \) as follows:

\[
 S_f(x, \lambda; a, b) \equiv (1-\lambda) \left\{ \frac{(b-x)^{\alpha+1}-(x-a)^{\alpha+1}}{b-a} \right\} f'(x) + (1+\alpha-\lambda) \left\{ \frac{(x-a)^{\alpha}+(b-x)^{\alpha}}{b-a} \right\} f(x) + \lambda \left\{ \frac{(x-a)^{\alpha}(f(a)+(b-x)^{\alpha} f(b))}{b-a} \right\} - \frac{\Gamma(\alpha+2)}{b-a} \left\{ J^\alpha_x f(a) + J^\alpha_x f(b) \right\},
\]
for any \(x \in [a, b], \lambda \in [0, 1] \) and \(\alpha > 0 \).

In [14], Jackeun Park established the following lemma which is necessary to prove our main results:

Lemma 1. Let \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a twice differentiable function on the interior \(I^0 \) of an interval \(I \) such that \(f'' \in L_1 [a, b] \), where \(a, b \in I \) with \(a < b \). Then, for any \(x \in [a, b], \lambda \in [0, 1] \) and \(\alpha > 0 \) we have

\[
S_f (x, \lambda, \alpha; a, b) = \frac{(x-a)^{\alpha+2}}{b-a} \int_0^1 t (\lambda - t^\alpha) f'' (tx + (1-t) a) dt
+ \frac{(b-x)^{\alpha+2}}{b-a} \int_0^1 t (\lambda - t^\alpha) f'' (tx + (1-t) b) dt.
\]

Theorem 1. Let \(\varphi : (0, 1) \rightarrow (0, \infty) \) be a measurable function. Assume also that \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable function on the interior \(I^0 \) of an interval \(I \) such that \(f'' \in L_1 [a, b] \), where \(a, b \in I^0 \) with \(a < b \). If \(|f''|^{q} \) is \(\varphi \)-convex on \([a, b]\) for some fixed \(q \geq 1 \), then for any \(x = ta + (1-t)b, t \in [0, 1], \lambda \in [0, 1], \) and \(\alpha > 0 \):

\[
|S_f (x, \lambda, t, \varphi; a, b)| \leq A_1^{\frac{1}{q}} (\alpha, \lambda) \left[\frac{(x-a)^{\alpha+2}}{b-a} \left\{ A_2 (\alpha, \lambda, t, \varphi) |f'' (x)|^q + A_3 (\alpha, \lambda, t, \varphi) |f'' (b)|^q \right\}^{\frac{1}{q}} \right],
\]

the above inequality for fractional integrals holds, where

\[
A_1 (\alpha, \lambda) = \frac{\lambda^{1+\frac{\alpha}{2}} + 1}{\alpha + 2},
A_2 (\alpha, \lambda, t, \varphi) = \int_0^1 |t (\lambda - t^n)| t \varphi (t) dt,
A_3 (\alpha, \lambda, t, \varphi) = \int_0^1 |t (\lambda - t^n)| (1-t) \varphi (1-t) dt.
\]

Proof. By using Lemma 1, the power mean inequality, then we get

\[
|S_f (x, \lambda, t, \varphi; a, b)| \\
\leq \frac{(x-a)^{\alpha+2}}{b-a} \left(\int_0^1 |t (\lambda - t^n)| dt \right)^{1-\frac{1}{q}} \left(\int_0^1 |t (\lambda - t^n)| |f'' (tx + (1-t) a)|^q dt \right)^{\frac{1}{q}}
+ \frac{(b-x)^{\alpha+2}}{b-a} \left(\int_0^1 |t (\lambda - t^n)| dt \right)^{1-\frac{1}{q}} \left(\int_0^1 |t (\lambda - t^n)| |f'' (tx + (1-t) b)|^q dt \right)^{\frac{1}{q}}
= A_1^{\frac{1}{q}} (\alpha, \lambda) \left[\frac{(x-a)^{\alpha+2}}{b-a} \left(\int_0^1 |t (\lambda - t^n)| |f'' (tx + (1-t) a)|^q dt \right)^{\frac{1}{q}} \right.
+ \left. \frac{(b-x)^{\alpha+2}}{b-a} \left(\int_0^1 |t (\lambda - t^n)| |f'' (tx + (1-t) b)|^q dt \right)^{\frac{1}{q}} \right],
\]

where

\[
A_1 (\alpha, \lambda) = \int_0^1 |t (\lambda - t^n)| dt = \left(\frac{\alpha^{\frac{1}{\alpha}} + 1}{\alpha + 2} - \frac{\lambda}{2} \right).
\]
By substituting (2.3) and (2.4) in (2.2), we get
\begin{equation}
\begin{aligned}
&I_1 = \int_0^1 |t (\lambda - t^\alpha)| \| f'' (tx + (1-t) a) \|^q dt \\
&\le \int_0^1 |t (\lambda - t^\alpha)| \left\{ t \varphi (t) \| f'' (x) \|^q + (1-t) \varphi (1-t) \| f'' (a) \|^q \right\} dt \\
&= A_2 (\alpha, \lambda, t, \varphi) \| f'' (x) \|^q + A_3 (\alpha, \lambda, t, \varphi) \| f'' (a) \|^q,
\end{aligned}
\end{equation}
and similarly we can obtain
\begin{equation}
\begin{aligned}
&I_2 = \int_0^1 |t (\lambda - t^\alpha)| \| f'' (tx + (1-t) b) \|^q dt \\
&\le \int_0^1 |t (\lambda - t^\alpha)| \left\{ t \varphi (t) \| f'' (x) \|^q + (1-t) \varphi (1-t) \| f'' (b) \|^q \right\} dt \\
&= A_2 (\alpha, \lambda, t, \varphi) \| f'' (x) \|^q + A_3 (\alpha, \lambda, t, \varphi) \| f'' (b) \|^q.
\end{aligned}
\end{equation}
By substituting (2.3) and (2.4) in (2.2), we get
\begin{equation}
\begin{aligned}
&|S_f (x, \lambda, \alpha, t, \varphi; a, b)| \\
&\le \left(\frac{\alpha \lambda^1 + \frac{\alpha + 1}{2}}{\alpha + 2} - \frac{1}{2} \right) \frac{1}{\varphi^q} \left\{ \int_0^1 |f'' (x)\|^q \int_0^1 |t (\lambda - t^\alpha) t \varphi (t) dt \right\} \\
&+ |f'' (a)|^q \int_0^1 |t (\lambda - t^\alpha) (1-t) \varphi (1-t) dt \right\} \frac{1}{\varphi} \\
&+ \frac{(b-x)^{\alpha + 2}}{b-a} \left\{ \int_0^1 |f'' (x)\|^q \int_0^1 |t (\lambda - t^\alpha) t \varphi (t) dt \right\} \frac{1}{\varphi} \\
&+ |f'' (b)|^q \int_0^1 |t (\lambda - t^\alpha) (1-t) \varphi (1-t) dt \right\} \frac{1}{\varphi}.
\end{aligned}
\end{equation}
Thus the proof is completed. \(\square\)

Corollary 1. Let \(\varphi (t) = 1 \) in Theorem 1, then we get the following inequality:
\begin{equation}
\begin{aligned}
&|S_f (x, \lambda, \alpha; a, b)| \\
&\le \left(\frac{\alpha \lambda^1 + \frac{\alpha + 1}{2}}{\alpha + 2} - \frac{1}{2} \right) \frac{1}{\varphi^q} \left\{ \int_0^1 |f'' (x)|^q \int_0^1 |t (\lambda - t^\alpha) t \varphi (t) dt \right\} \\
&+ \frac{(b-x)^{\alpha + 2}}{b-a} \left\{ \int_0^1 |f'' (x)|^q \int_0^1 |t (\lambda - t^\alpha) t \varphi (t) dt \right\} \frac{1}{\varphi} \\
&+ \frac{(b-x)^{\alpha + 2}}{b-a} \left\{ \int_0^1 |f'' (x)|^q \int_0^1 |t (\lambda - t^\alpha) t \varphi (t) dt \right\} \frac{1}{\varphi}.
\end{aligned}
\end{equation}
Where
\begin{equation}
\begin{aligned}
A_2 (\alpha, \lambda) &= \int_0^1 |t (\lambda - t^\alpha)| t \varphi (t) dt = \frac{3 - (\alpha + 3) \lambda + 2 \alpha \lambda^1 + \frac{\alpha}{2}}{3 (\alpha + 3)} \\
A_3 (\alpha, \lambda) &= \int_0^1 |t (\lambda - t^\alpha) (1-t) \varphi (1-t) dt \frac{\alpha \lambda^1 + \frac{\alpha}{2}}{\alpha + 2} - \frac{2 \alpha \lambda^1 + \frac{\alpha}{2}}{3 (\alpha + 3)} + \frac{\alpha \lambda}{6} - \frac{\alpha}{(\alpha + 2) (\alpha + 3)}.
\end{aligned}
\end{equation}
Corollary 3. Let \(\varphi(t) = t^{s-1} \) in Theorem 1, then we have

\[
|S_f(x, \lambda, \alpha, t, \varphi; a, b)| \leq \left(\frac{\lambda^{s+2}+1}{\alpha s+2} - \frac{2}{\alpha s+2} \right) \frac{1}{\lambda^s+1} \left[\frac{(x-a)^{n+2}}{b-a} \left\{ |f''(x)|^q A_4(\alpha, \lambda, s) + |f''(a)|^q A_5(\alpha, \lambda, t, \varphi) \right\} \right]^{\frac{1}{q}}
\]

\[+ \frac{(b-x)^{n+2}}{b-a} \left\{ |f''(x)|^q A_4(\alpha, \lambda, s) + |f''(b)|^q A_5(\alpha, \lambda, t, \varphi) \right\} \]

Where

\[
A_4(\alpha, \lambda, s) = \frac{2\lambda^{s+2}+1}{\alpha s+2} - 2 \frac{\lambda^{s+2}+1}{\alpha s+2} + \frac{1}{\alpha s+2}
\]

\[
A_5(\alpha, \lambda, t, \varphi) = \lambda \beta \left(\lambda^s+1, 2, s+1 \right) - \beta \left(\lambda^s+1, \alpha+2, s+1 \right)
\]

+ \beta \left(1 - \lambda^s+1, \alpha+2, s+1 \right) - \lambda \beta \left(1 - \lambda^s+1, 2, s+1 \right).

Theorem 2. Let \(\varphi : (0, 1) \rightarrow (0, \infty) \) be a measurable function. For \(f : I \subset [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable function on the interior \(I^0 \) assume also that \(f'' \in L_1[a, b] \) where \(a, b \in I^0 \) with \(a < b \). If \(|f''|^q \) is \(\varphi \)-convex on \([a, b] \) for some fixed \(q > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then for any \(x \in [a, b], \lambda \in [0, 1] \) and \(\alpha > 0 \) the following inequality holds

\[
|S_f(x, \lambda, \alpha, t, \varphi; a, b)| \leq B^+ (\alpha, \lambda, p) \left[\frac{(x-a)^{n+2}}{b-a} \left\{ |f''(x)|^q + |f''(a)|^q \right\} t^\varphi(t) dt \right]^{\frac{1}{q}}
\]

\[+ \frac{(b-x)^{n+2}}{b-a} \left\{ |f''(x)|^q + |f''(b)|^q \right\} \frac{1}{t^\varphi(t) dt} \]

where

\[
B(\alpha, \lambda, p) = \frac{\lambda^{1+p+\alpha}}{\alpha} \left\{ \Gamma(1+p) \Gamma \left(\frac{1+p+\alpha}{\alpha} \right) \left({}_2F_1 \left(1, 1+p, 2+p + \frac{1+p}{\alpha}, 1 \right) \right) \right\}
\]

+ \beta \left(1 + p, -\frac{1+p+\alpha}{\alpha} \right) - \beta \left(\lambda, 1 + p, -\frac{1+p+\alpha}{\alpha} \right),

also, for \(0 < b < c \) and \(|z| < 1 \), \({}_2F_1 \) is hypergeometric function defined by

\[
{}_2F_1(a, b, c, z) = \frac{1}{\beta(b, c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt.
\]
Proof. By using Lemma 1 and the Hölder inequality, we have the below inequality

\[
|S_f(x, \lambda, \alpha, t, \varphi; a, b)| \\
\leq \frac{(t-a)^{\gamma+2}}{b-a} \left(\int_0^1 |t (\lambda - t^\alpha)|^p \, dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)a)|^q \, dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{\gamma+2}}{b-a} \left(\int_0^1 |t (\lambda - t^\alpha)|^p \, dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)b)|^q \, dt \right)^{\frac{1}{q}} \\
= \left(\frac{1}{\lambda} \int_0^1 |t (\lambda - t^\alpha)|^p \, dt \right)^{\frac{1}{p}} \left[\frac{(x-a)^{\gamma+2}}{b-a} \left(\int_0^1 |f''(tx + (1-t)a)|^q \, dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{\gamma+2}}{b-a} \left(\int_0^1 |f''(tx + (1-t)b)|^q \, dt \right)^{\frac{1}{q}} \right].
\]

(2.6)

Since \(|f''|\) is \(\varphi\)-convex on \([a, b]\), we have

\[
\int_0^1 |f''(tx + (1-t)a)|^q \, dt \leq \int_0^1 t \varphi(t) |f''(x)|^q \, dt \\
+ \int_0^1 (1-t) \varphi(1-t) |f''(a)|^q \, dt \\
= \left(|f''(x)|^q + |f''(a)|^q \right) \int_0^1 t \varphi(t) \, dt,
\]

(2.7)

and using same technique, we get

\[
\int_0^1 |f''(tx + (1-t)b)|^q \, dt \leq \int_0^1 t \varphi(t) |f''(x)|^q \, dt \\
+ \int_0^1 (1-t) \varphi(1-t) |f''(b)|^q \, dt \\
= \left(|f''(x)|^q + |f''(b)|^q \right) \int_0^1 t \varphi(t) \, dt.
\]

(2.8)

On the other hand we can obtain the following equality:

\[
B(\alpha, \lambda, p) = \int_0^1 |t (\lambda - t^\alpha)|^p \, dt \\
= \int_0^{\lambda^\frac{1}{\alpha}} \{t(\lambda - t^\alpha)\}^p \, dt + \int_{\lambda^\frac{1}{\alpha}}^1 \{t(t^\alpha - \lambda)\}^p \, dt \\
= C_1(\alpha, \lambda, p) + C_2(\alpha, \lambda, p).
\]

(2.9)
By letting \(\lambda - t^\alpha = u \) and \(t^\alpha = u \), respectively, we have

\begin{equation}
C_1(\alpha, \lambda, p) = \int_0^{\lambda \frac{p}{\alpha}} \{ t (\lambda - t^\alpha) \}^p \, dt
= \frac{1}{\alpha} \int_0^{\lambda} u^p (\lambda - u)^{\frac{1+p}{\alpha} - \alpha} \, du
= \frac{1}{\alpha} \int_0^{1} \lambda^{\frac{p}{\alpha} + 1/p} u^p \left(1 - \frac{1}{\alpha} \right)^{- \frac{1}{\alpha}} \lambda \, dy
= \frac{\lambda^{\frac{p}{\alpha} + 1/p}}{\alpha} \int_0^{1} y^p \left(1 - \frac{1}{\alpha} \right)^{- \frac{1}{\alpha}} \, dy
= \frac{\lambda^{\frac{p}{\alpha} + 1/p}}{\alpha} \Gamma \left(1 + p \right) \Gamma \left(\frac{1+p+\alpha}{\alpha} \right) _2 F_1 \left(1, 1+p, 2+p + \frac{1+p}{\alpha}, 1 \right),
\end{equation}

and

\begin{equation}
C_2(\alpha, \lambda, p) = \int_{\lambda}^{1} \frac{1}{\lambda + \frac{p}{\alpha}} \{ t (t^\alpha - \lambda) \}^p \, dt
= \frac{1}{\alpha} \int_{\lambda - \frac{1+p}{\alpha}}^{1} (u - \lambda)^p \, du
= \frac{\lambda^{\frac{p}{\alpha} + 1/p}}{\alpha} \left\{ \beta \left(1 + p, -\frac{1+p+\alpha}{\alpha} \right) - \beta \left(\lambda, 1 + p, -\frac{1+p+\alpha}{\alpha} \right) \right\}.
\end{equation}

Thus, we get the desired result. \(\square \)

Corollary 4. Let \(\varphi(t) = 1 \) in Theorem 2, then we get the following inequality for any \(x \in [a, b], \lambda \in [0, 1] \) and \(\alpha > 0 \);

\[
|S_f(x, \lambda, \alpha, t, \varphi; a, b)| \leq \left(\int_0^1 |t (\lambda - t^\alpha)|^p \, dt \right)^{\frac{q}{p}} \left[\frac{(x-a)^{\alpha+2}}{b-a} \left\{ \frac{|f''(x)|^q + |f'(a)|^q}{2} \right\} \right]^{\frac{1}{q}}
+ \frac{(b-x)^{\alpha+2}}{b-a} \left\{ \frac{|f''(x)|^q + |f'(b)|^q}{2} \right\}^{\frac{1}{q}}.
\]

Corollary 5. If we choose \(\varphi(t) = 1 \) and \(x = \frac{a+b}{2} \) in Theorem 2, we can obtain the corollary 2.6, 2.7, 2.8 in (14), respectively for \(\lambda = \frac{1}{3}, \lambda = 0, \lambda = 1 \).

Corollary 6. Let in \(\varphi(t) = t^\alpha \) Theorem 2, then we obtain

\[
|S_f(x, \lambda, \alpha, t, \varphi; a, b)| \leq \left(\int_0^1 |t (\lambda - t^\alpha)|^p \, dt \right)^{\frac{q}{p}} \left[\frac{(x-a)^{\alpha+2}}{b-a} \left\{ \frac{|f''(x)|^q + |f'(a)|^q}{s+1} \right\} \right]^{\frac{1}{q}}
+ \frac{(b-x)^{\alpha+2}}{b-a} \left\{ \frac{|f''(x)|^q + |f'(b)|^q}{s+1} \right\}^{\frac{1}{q}}.
\]
REFERENCES

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54 (1948) 439-460. http://dx.doi.org/10.1090/s0002-9904-1948-08894-7

[2] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1(1) (2010) 51-58. http://dx.doi.org/10.15352/afa/1399900993

[3] S. S. Dragomir, Inequalities of Jensen type for \(\varphi \)-convex functions, Fasc. Math. 55 (2015) 35-52

[4] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), no. 1, 100-111.

[5] I. I˙scan, K. Bekar, S. Numan, Hermite-Hadamard an Simpson type inequalities for differentiable quasi-geometrically convex func- tions, Turkish J. Anal. and Number Theory, 2(2) (2014) 42-46. http://dx.doi.org/10.12691/tjant-2-2-3

[6] I. I˙scan, New estimates on generalization of some integral inequalities for ds-convex functions and their applications, Int. J. Pure Appl. Math., 86(4) (2013) 727-746. http://dx.doi.org/10.12732/ijpam.v86i4.11

[7] I. I˙scan, Generalization of different type integral inequalities via fractional integrals for functions whose second derivatives absolute value are quasi-convex Konuralp Journal of Mathematics, 1(2) (2013) 67-79.

[8] I. I˙scan, On generalization of different type integral inequalities for s-convex functions via fractional integrals presented

[9] H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard’s type for convex functions with applications, Journ. of Inequal. and Appl., 2011:86 (2011). http://dx.doi.org/10.1186/1029-242x-2011-86

[10] V. G. Miheșan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex, Cluj-Napoca, Romania (1993).

[11] M. E. Özdemir, M. Avic, H. Kavurmaci, Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals. [arXiv:1202.0380v1 [math.CA]].

[12] J. Park, Generalization of some Simpson-like type inequalities via differentiable s-convex mappings in the second sense, In- ter. J. of Math. and Math. Sci., 2011 Art No: 493531, 13 pages. http://dx.doi.org/10.1155/2011/493531

[13] Jaekeun Park, Some new Hermite-Hadamard-like type inequalities on geometrically convex functions. Int. J. of Math. Anal., 8(16) (2014),793-802. http://dx.doi.org/10.12988/ijma.2014.4243

[14] Jaekeun Park, On Some Integral Inequalities for Twice Differentiable Quasi-Convex and Convex Functions via Fractional Integrals, Applied Mathematical Sciences, Vol. 9(62) (2015), 3057-3069 HIKARI Ltd, www.m-hikari.com. http://dx.doi.org/10.12988/ams.2015.53248

[15] Samko, S.G., Kilbas A.A. and Marichev, O.I., Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, 1993, ISBN 2881248640.

[16] M. Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and applied analysis, 2012 (2012) 10 pages, Art ID:428983. http://dx.doi.org/10.1155/2012/428983

[17] M. Z. Sarikaya, E. Set, H. Yildiz, N. Basak, Hermite- Hadamard’s inequalities for fractional integrals and related frac- tional inequalities, Math. and Comput. Model., 2011 (2011). http://dx.doi.org/10.1016/j.mcm.2011.12.048

[18] E. Set, M. Z. Sarikaya, M. E. Özdemir, Some Ostrowski’s type Inequalities for functions whose second derivatives are s-convex in the second sense, arXiv:1006.24 88v1 [math.CA] 12 June 2010.

[19] E. Set, E. Ozdemir, M. Z. Sarıkaya, F. Karako, Hermite-Hadamard type inequalities for mappings whose derivatives are s-convex in the second sense via fractional integrals, Khayyam J. Math., 1(1) (2015) 62-70.

[20] Gh. Toader, On a generalization of the convexity, Mathematika, 30(53) (1988), 83-87.

[21] M.Tunc, On some new inequalities for convex functions, Turk. J. Math., 35 (2011), 1-7.

[22] M. Tunc, H. Yıldırım, On MT-Convexity, arXiv: 1205.5453 [math. CA] 24 May 2012
[Department of Mathematics, Faculty of Science, University of Cumhuriyet, 58140, Sivas, Turkey
E-mail address: mesra@cumhuriyet.edu.tr

[Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaraş Sütçü İmam, 46100, Kahramanmaraş, Turkey
E-mail address: abdullahmat@gmail.com

[Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaraş Sütçü İmam, 46100, Kahramanmaraş, Turkey
E-mail address: hyildir@ksu.edu.tr