Control of spiral-wave dynamics using feedback signals from line detectors

Guoyong Yuan1,2(a), Aiguo Xu3, Guangrui Wang3 and Shigang Chen3

1 Department of Physics, Hebei Normal University - Shijiazhuang, 050016, China
2 Hebei Advanced Thin Films Laboratory - Shijiazhuang, 050016, China
3 Institute of Applied Physics and Computational Mathematics - P. O. Box 8009, Beijing 100088, China

received 31 January 2010; accepted in final form 30 March 2010
published online 5 May 2010

PACS 05.45.-a – Nonlinear dynamics and chaos
PACS 05.65.+b – Self-organized systems
PACS 47.54.-r – Pattern selection; pattern formation

Abstract – We numerically study trajectories of spiral-wave cores in excitable systems modulated proportionally to the integral of the activity on a straight line, several or dozens of equi-spaced measuring points on a straight line, a double line and a contour line. We show the single-line feedback results in the drift of core center along a straight line being parallel to the detector. An interesting finding is that the drift location in y is a piecewise linear increasing function of both the feedback line location and time delay. A similar trajectory occurs when replacing the feedback line with several or dozens of equi-spaced measuring points on the straight line. This allows to move the spiral core to the desired location along a chosen direction by measuring several or dozens of points. Under the double-line feedback, the shape of the tip trajectory representing the competition between the first and second feedback lines is determined by the distance of two lines. Various drift attractors in spiral wave controlled by square-shaped contour line feedback are also investigated. A brief explanation is presented.

Copyright © EPLA, 2010

Introduction. – Spiral waves are typical examples of spatiotemporal patterns in macroscopic systems driven far from thermodynamic equilibrium. They exist extensively in excitable and self-oscillating media [1]. For example, the cardiac muscle [2], platinum with oxidation of CO [3], liquid crystals subjected to electric or magnetic field [4], the slime mould Dictyostelium discoideum [5] and reacting chemical systems [6]. The dynamics of spiral waves has attracted considerable interest, which is attributed not only to the characteristics of its nonlinearity and its being far from equilibrium, but also to its extensive destructions/applications. For example, spiral waves and spatiotemporal chaos from repetitious breakup of spiral waves in cardiac muscle may be the leading mechanism of tachycardia and ventricular fibrillation [7]. Spiral waves in the brain are believed to be associated with epilepsy [8]. Therefore, how to control or eliminate spiral waves and spatiotemporal chaos is an interesting research topic [9–14].

Recently, much attention has been paid to the dynamics of spiral waves subjected to a feedback signal. The motions of a spiral core have been studied under a number of different feedbacks. These feedbacks can be grouped into two classes, local feedback and non-local feedback. Local feedback is also referred to as one-channel feedback. It is performed according to the state at a single measuring point of the excitable system. Non-local feedback is performed according to states at more than one points, normally the mean state over a region. Under local feedback control the trajectory of the spiral core is attracted to a series of limiting cycles centered on the measuring point [15–21]. If the motion on the innermost limit cycle is epicycloidal, then this limiting cycle is referred to as the entrainment attractor. Limiting cycles being further from the measuring point are referred to as resonance attractors. The radius of the attractor is dependent on the time delay. The most straightforward generalization of one-channel feedback is to monitor the states of a system at two points and put in signals from both to determine the strength of the feedback signal [22,23]. It has been observed that two-channel feedback destroys the regular dynamics seen in one-channel feedback if the measuring points are sufficiently separated, and that several complex regimes appear when varying the distance

(a)E-mail: g-y-yuan@sohu.com
between the two measuring points. In the other types of non-local feedback, the modulation is proportional to the integral of the activity in 2D excitable domains of different shapes [24–32]. The behaviors of attractors have been examined for circular, square, elliptical, triangular, pentagonal and rhombic domains. When the domain size is significantly smaller than the wavelength of the spiral wave, the spiral core trajectories are similar to those for local feedback. However, for larger domains, the attractors depend significantly on the size and shape of the domain.

In this letter we numerically study the behaviors of feedback control from several kinds of line detectors to compensate the lack of one-dimensional (1D) case between the zero-dimensional point and the 2D domains mentioned above. The measuring domain is one of the following cases: i) a straight line, ii) several or dozens of equi-spaced measuring points on the straight line, iii) a double line, iv) a contour line.

The mathematical model. – In our study the FitzHugh-Nagumo (FHN) model [33,34] is used to describe the excitable media. The FHN model is a set of two-variable “reaction-diffusion” equations. This model is generic for excitable systems and can be applied to a variety of systems. It can reproduce many qualitative characteristics of electrical impulses along nerves and cardiac fibers, such as the existence of an excitation threshold, relative and absolute refractory periods, and the generation of pulse trains under the action of external currents. The FHN model with a line feedback reads

\[\frac{\partial u}{\partial t} = \frac{1}{\varepsilon}[-v - u(u - a)(u - 1)] + \nabla^2 u + \frac{I}{\varepsilon}, \quad (1) \]

\[\frac{\partial v}{\partial t} = -\gamma v + \beta u - \delta, \quad (2) \]

where the variables \(u(x, y, t) \) and \(v(x, y, t) \) are the activator and inhibitor, respectively; \(\varepsilon \) is the time scale which is named excitability parameter; \(a \) represents the threshold for excitation; \(\gamma, \beta \) and \(\delta \) are parameters controlling the rest state and dynamics. Here, \(a = 0.03, \gamma = 1.0, \delta = 0.0, \beta = 2.0 \) and \(\varepsilon = 0.004 \). To perform the line feedback, the modulation signal \(I(t) \) is computed as

\[I(t) = k_{fb}(B(t - \tau) - B_0), \quad (3) \]

where

\[B(t) = \frac{1}{L} \int_L u(x', y', t)ds' \quad (4) \]

Thus, the feedback signal is proportional to the integral value \(B \) of the first variable over the measuring line of length \(L \) taken with a time delay \(\tau \). The parameter \(k_{fb} \) is the feedback gain, and \(B_0 \) is the average value of \(B(t) \) over one revolution of a spiral wave without feedback. In numerical simulations the system (1), (2) is integrated by the split operator method with time step \(\Delta t = 0.005 \) t.u., space step \(h = 0.1 \) s.u. and a \(200 \times 200 \) array. No-flux boundary conditions are used.

Resonant drift of spiral wave under a straight-line feedback. – A single spiral can be induced from the system of equations (1), (2) without the feedback term by truncating a traveling pulse. The variables \(u \) and \(v \) are set initially to zero uniformly in the medium. To create a spiral wave, a super-threshold value \(u = 0.8 \) is given along a line near the boundary of the excitable medium to induce a propagating wave. When the propagating wave approaches the center of the excitable medium, one-half of the planar wave is erased by resetting \(u = v = 0 \). Subsequently, the open end of the planar wave curls into a spiral wave with its core located near the center of the excitable medium. The generated spiral wave rotates with a rotation period \(T_0 \approx 0.58 \) t.u. (about 116 time steps) and a wavelength \(\lambda \approx 5.8 \) s.u. (about 58 space grids) (shown in fig. 1(a)). In the following parts of the paper, the units of time and space are time step and spatial grid, respectively.

Switching on the feedback control induces a drift of the spiral-wave core. In the system described by eqs. (1) and (2), under a single-point feedback, the spiral-wave core has a drift along a stable circular orbit centered at the measuring point. The initial position of the detector with respect to the spiral tip, the time delay and the feedback gain affect the nature of the attractor, which is consistent with the feedback-controlled results from the open gel reactor and the Oregonator model [17,18]. Now we focus mainly on the resonant drift of the spiral-wave...
Fig. 2: (Color online) Trajectories of a spiral-wave tip under feedback control for different locations of the feedback line. In panel (a) the values of y_{fb} corresponding to the black, red, green, blue and cyan lines are 199, 175, 158, 156, and 155, respectively. In (b) the values of y_{fb} corresponding to the black, red, green, blue, lines are 5, 30, 50, 55, respectively. In (c) the values of y_{fb} corresponding to the left black, left red, left green, right black, right red, right green are 80, 90, 100, 120, 112, 101, respectively. Panel (d) shows the location of the SLD trajectory labeled by 1 that of the feedback line y_{fb}. Here the measuring line is parallel to the x-axis and has a length $L = 200$. $k_{fb} = 0.05$ and $\tau = 10$.

core subjected to a line feedback. Considering the long measuring line which is parallel to the x-axis and whose ends are on the left and right boundaries, respectively, we find that the drift trajectory induced by the feedback signal is divided into three parts (shown in fig. 1 and fig. 2). In the part of trajectory labeled by 1 in fig. 2(a), the spiral-wave core drifts first outwards from the domain center to a certain location. In part 2 the trajectory starts a resonant drift from a certain location to the boundary along a straight line parallel to the measuring line, and finally stays near the boundary with the form of a complex meandering attractor in part 3. The final position of the spiral core is close to either the left boundary or the right one, which is determined by the location y_{fb} of the measuring line. The straight-line drift (SLD), which is defined as the part of the drift parallel to the measuring line and labeled by 2 in fig. 2(a), towards the right boundary occurs when $y_{fb} > 100$ and the SLD is towards the left boundary when $y_{fb} \leq 100$. In figs. 1(b) and (c) the movement directions of SLD mediated by the feedback derived from the line integral located at $y_{fb} = 150$ and $y_{fb} = 50$ are compared. From fig. 2 it is found that, when the absolute distance $|y_{fb} - 100|$ increases, the part of trajectory labeled by 1 rotates around the the initial spiral core in counterclockwise direction. Figure 2(d) shows also that, when $y_{fb} > 100$, the location y_{SLD} of the SLD part of the trajectory, which is computed by the arithmetic mean of the maximum and minimum y-values for the SLD part, is a piecewise linear increasing function of y_{fb}. On each linear part the distance $y_{fb} - y_{SLD}$ has a constant value. The value for the left linear part is about 25, while it is about 82 for the right one.

The feedback is applied with a time delay τ. As can be seen in fig. 3(a), the value of τ affects the location y_{SLD} of SLD. The function $y_{SLD}(\tau)$ is T_0-periodic and piecewise linearly increasing. Further, to increase or decrease the feedback gain k_{fb} does not result in a change in the drift trajectory of the spiral core. However, it affects the drift velocity of the core. Figure 3(b) shows the relation between $1/t_{SLDE}$ and k_{fb}. t_{SLDE} is the time interval from the start of the drift to the formation of the final meandering attractor. It is inversely proportional to the drift velocity. $1/t_{SLDE}$ is nearly linearly rising with the increase of k_{fb}.

The effects of the length of the feedback line on a spiral wave are shown in fig. 4. When the line length L is significantly smaller than the spiral wavelength λ (about 58 space grids), the spiral core finally follows a circular path with the center of the short measuring line. The trajectories are similar to those for local feedbacks. When the length increases, the circular path is stretched along the horizontal direction. If the two ends of the line are
Fig. 5: (Color online) Trajectories (black) of a spiral-wave tip under the double-line feedback for the different locations of the second measuring line. \(y_{fb1} = 105\) in (a). \(y_{fb2} = 140\) in (b). \(y_{fb2} = 160\) in (c). \(y_{fb2} = 165\) in (d). \(y_{fb2} = 175\) in (e). \(y_{fb2} = 185\) in (f). Here, the position of the first measuring line is fixed at \(y_{fb1} = 150\), and \(y_{fb2} > 100\). Red (green) curves show the trajectories when only the first (second) feedback line exists. \(L_1 = 200, L_2 = 200, \tau = 10\) and \(k_{fb} = 0.05\).

Fig. 6: (Color online) Similar to fig. 5, but here \(y_{fb2} \leq 100\). \(y_{fb2} = 5\) in (a). \(y_{fb2} = 15\) in (b). \(y_{fb2} = 30\) in (c). \(y_{fb2} = 60\) in (d). \(y_{fb2} = 65\) in (e). \(y_{fb2} = 90\) in (f).

close to left and right boundaries, respectively, a transient SLD and a final complex meandering attractor occur.

Replacing the feedback line with several or dozens of equi-spaced measuring points on the line, i.e., replacing the integral (4) with the sum \(\frac{1}{N} \sum_{n=1}^{N} u(x_n', y_n', t)\), we observe the same drift trajectory as that of the line, where \(N\) is the total number of the measuring points. Figure 1(d) shows the trajectory of the spiral tip with a six-points feedback, where the points lie collectively on the line locating at \(y_{fb} = 150\) and have an equi-spaced distribution from the left boundary to the right one. In this case, the spiral tip follows the trajectory including a SLD toward left boundary and a complex meandering attractor, which is nearly the same as the one shown in fig. 1(b). It has become widely accepted that the most dangerous cardiac arrhythmias are due to spiral waves or re-entrant waves. Therefore, it is very important to control spiral waves in those systems. The above information tells that the feedback signal derived from several or dozens of measuring points can move the spiral core to the desired location along a chosen direction.

Resonant drift of spiral waves under a double-line feedback. – The effects of the double-line feedback on a spiral wave are examined by systematically varying the distance between two parallel measuring lines, as shown in fig. 5 and fig. 6. Suppose that the lines are parallel to the \(x\)-axis, and their locations are described by \(y_{fb1}\) and \(y_{fb2}\), respectively. In the simulations we fix \(y_{fb1} = 150\) and change \(y_{fb2}\). Figure 5 shows six typical examples of spiral tip trajectories found for different values of \(y_{fb2}\) under the condition \(y_{fb2} > 100\). When the position \(y_{fb2}\) approaches to 100, the first part of the trajectory with double-line feedback is similar to the corresponding one of \(y_{fb} = y_{fb1}\) in the single-line feedback. This is because the drift velocity with a single-line feedback for \(y_{fb}\) near 100 is much smaller than that for \(y_{fb}\) far away from 100. After the transient period the trajectory forms directly a meandering attractor and does not undergo a SLD, as shown in fig. 5(a). When \(y_{fb2} > 130\), the SLD part appears in the trajectory. A consecutive increase of \(y_{fb2}\) results in a rotation in counterclockwise direction for the first of the drift and a periodic variety of the SLD location. This is because the same change occurs under a single-line feedback. A special case is observed for \(y_{fb2} = 175\) due to the symmetry of singe-feedback trajectories for \(y_{fb} = 150\) and for \(y_{fb} = 175\), where the trajectory forms a meandering attractor near the initial core after undergoing a transitional circular drift (see fig. 5(e)). \(y_{fb2} = 175\) is also a transition position if one compares the SLD location under the double-line feedback with that under the single-line feedback \(y_{fb} = y_{fb2}\).

Now we examine the drift behavior under a double-line feedback with \(y_{fb2} \leq 100\). When the second feedback line is close to the bottom boundary, the first part of the trajectory with the double-line feedback approaches that for the case with only the second line. See figs. 6(a) and (b). This is because the drift velocity is large when the feedback line is close to the upper or lower boundary in the single-line feedback control. On the other hand,
for a large \(y_{fb} \) being close to 100, there is a first part approaching that of the single-line feedback \(y_{fb} = 150 \), see fig. 6(f). This is due to the small drift velocity when \(y_{fb} \) is close to 100. For moderate \(y_{fb} \), the drift includes the first part, whose location lies between the corresponding part of the single-line feedback \(y_{fb} = y_{fb1} \) and that of \(y_{fb} = y_{fb2} \), the long or short SLD, and the final meandering, see figs. 6(c)–(e). The SLD towards the left or right depends on the competition between the trajectories with the single-line feedback \(y_{fb} = y_{fb1} \) and with \(y_{fb} = y_{fb2} \).

Resonant drift of spiral waves under a contour line feedback. – The role of the domain shape has been studied in relation to reaction-diffusion systems with global feedback. Square-, circular-, triangular- and elliptical-shaped domains are commonly used in experiments and computations as they are simplest two-dimensional confined geometries. In this section the influence of contour-line of the feedback domains on the evolution of spiral waves is investigated in detail.

Figure 7 shows the drift trajectories that correspond to four square-shape contour lines with different side lengths and a fixed center (140, 100). When the side length \(d \) is significantly smaller than the spiral wavelength \(\lambda \), the spiral leaves the initial center by drifting toward the left until it turns to follow a circular path, as shown in fig. 7(a). This motion resembles those observed in the reported results applying a point feedback. In this case, when \(d \) increases, the radius of the resonance attractor becomes larger slowly. Around \(d = 30 \), the motion is changed, and the spiral core first drifts away from the initial core, then it approaches a stable square trajectory, which is rotated by about 45°, see fig. 7(b). As a result of the significant increase of \(d \), the spiral core is attracted toward a stable squared trajectory with a large side length and an orientation coinciding with the feedback contour, as shown in fig. 7(c). In the range where this kind of attractors forms, the size of the square trajectory is slowly reduced with increasing of \(d \). An interesting cross-shaped trajectory is generated when increasing the contour line size to \(d = 90 \). This trajectory can be considered as a combination of four small pieces of square trajectories linked together. With a further increase of \(d \) to make the left side of the contour line approach the initial core, a final complex meandering trajectory locates inside the contour, see fig. 7(d).

Keep the center of contour at (90, 100) close to that of the initial spiral (88, 100), we observe the trajectories of the spiral-wave tip under various side lengths \(d \) of the square contour. As \(d \) increases, the trajectory is similar to the contours with the center at (140, 100). The difference is that, after the stable square trajectory with orientational angle 45° with respect to the feedback contour, the complex meandering attractor locating at the initial core appears.

Discussion and conclusion. – The analysis of the spiral-wave dynamics under feedback control via a line may be performed via the drift velocity mediated by the corresponding feedback. Here the dynamics can be understood via the results of one-point feedback.

When \(k_{fb} > 0 \), the drift induced by feedback can be expressed as [32]

\[
\gamma(x, y) = \varphi + \omega \tau + \phi(x, y),
\]

where \((x, y)\) are the Cartesian coordinates of the core center of the unperturbed spiral wave, \(\omega \) is the fundamental frequency in the Fourier expansion of the feedback signal. When a one-point feedback is applied, the phase of the feedback signal follows:

\[
\phi(x, y) = \pi + \arctan \left(\frac{y}{x} \right) + \frac{2\pi}{\lambda} \sqrt{x^2 + y^2},
\]

for any points \((x, y)\) except the measuring point \((0, 0)\). The drift velocity field is obtained from the phase \(\phi(x, y) \) and eq. (5). The domain center is a stable fixed point, since within its vicinity drift vectors are oriented toward the origin. A radial displacement of the core center is accompanied by a counterclockwise rotation of the vectors. At a certain displacement the vectors are orientated perpendicularly to the radial direction. It turns out that the circle with a certain radius is a limiting cycle of the drift velocity field. The limiting cycle represents the so-called resonance attractor of the spiral wave.

Let us assume that the drift of the spiral core is mainly affected by the points which are in the feedback line and are the nearest from the core center. The spiral first leaves the position where its core was initially placed by drifting until it reaches the circular attractor of these points. After traveling a short distance, the neighboring points start to become the new nearest points. The spiral core turns to follow the attractor of the neighboring points, which
may be obtained by translating the former attractor. This process is continued until the spiral core reaches the vicinity of the boundary, and the SLD part parallel to the feedback line forms. When the tip approaches the boundary, the feedback signal is periodic because the feedback line crosses the spiral wave, as shown in fig. 1. So the complex meandering attractor is generated in the domain close to the boundary. Replacing the feedback line with several or dozens of equi-spaced measuring points on the line, the same drift trajectories are observed. It may be explained by the similarities between the attractor of the one-point feedback and that of the short-line feedback with length significantly smaller than the spiral wavelength.

Based on the above explanations, the distance \(|y_{SLD} - y_p|\) corresponds to the radius \(R\) of the resonance attractor under one-point feedback, which can be obtained from ref. [32] to be

\[
\frac{R}{\lambda} = m - 0.25 \text{ sign}(k_p) - \frac{\varphi}{2\pi} - \frac{\tau}{T_{\infty}},
\]

where \(m\) is an integer. By transforming \(y_{SLD}\) to \(|y_{SLD} - y_p|\), it is easy to find that figs. 2(d) and 3(a) agree qualitatively with the theoretical predictions given by eq. (7). For each value of \(\tau\) there are several possible stable attractors corresponding to different values of integer \(m\), which results in the piecewise behavior of the drift lines vs. feedback lines and time delay.

In this letter we discussed also the dynamics of spiral waves under the double-line feedback and square-shaped contour line one. The trajectory of the spiral tip with the double-line feedback may be understood via the competition between two corresponding single-line feedbacks. A variety of attractors can be obtained from a contour line feedback.

This work is supported by the National Natural Science Foundation of China (under Grant Nos. 10647127 and 10775018), Science Foundations of Hebei Education Department (under Grant No. 2009135), Hebei Nature Science Foundation Project (under Grant No. A2006000128) and Science Foundation Of Hebei Normal University.

REFERENCES

[1] Cross M. C. and Hohenberg P. C., Rev. Mod. Phys., 65 (1993) 852.
[2] Courtemanche M., Chaos, 6 (1996) 579.
[3] Nettesheim S., Oertzen A. V., Rotermund H. H. and Eršl G., J. Chem. Phys., 98 (1993) 9977.
[4] Frisch T., Rica S., Coulet P. and Gilli J. M., Phys. Rev. Lett., 72 (1994) 1471.
[5] Frisch C. A., Panfilov A. V., Hogeweg P., Siegert F. and Weijer C. J., J. Theor. Biol., 181 (1996) 203.
[6] Winfree A. T. and Strogatz S. H., Physica D, 8 (1983) 35.
[7] Gray R. A., Jalife J., Panfilov A. V., Baxter W. T., Cabo C., Davidenko J. M. and Pertsov A. M., Science, 270 (1995) 1222.
[8] Huang X., Troy W. C., Yang Q., Ma H., Schiff S. J. and Wu J. Y., J. Neurosci., 24 (2004) 9897.
[9] Kim M., Bertram M., Pollmann M., Oertzen A., Mikhailov A. S., Rotermund H. H. and Eršl G., Science, 292 (2001) 1357.
[10] Sakaguchi H. and Fujimoto T., Phys. Rev. E, 67 (2003) 067202.
[11] Wang P. Y. and Xie P., Phys. Rev. E, 61 (2000) 5120.
[12] Zhang H., Cao Z., Wu N. J., Ying H. P. and Hu G., Phys. Rev. Lett., 94 (2005) 188301.
[13] Yuan G. Y., Wang G. R. and Chen S. G., Europhys. Lett., 72 (2005) 908.
[14] Yuan G. Y., Chen S. G. and Yang S. P., Eur. Phys. J. B, 58 (2007) 331.
[15] Steinbock O., Zykov V. S. and Müller S. C., Nature, 366 (1993) 322.
[16] Grill S., Zykov V. S. and Müller S. C., J. Phys. Chem., 100 (1996) 19082.
[17] Braunstein M. and Engel H., Phys. Rev. E, 62 (2000) 5986.
[18] Grill S., Zykov V. S. and Müller S. C., Phys. Rev. Lett., 75 (1995) 3368.
[19] Karma A. and Zykov V. S., Phys. Rev. Lett., 83 (1999) 2453.
[20] Zykov V. S., Kheowan O. U., Rangsiman O. and Müller S. C., Phys. Rev. E, 65 (2002) 062606.
[21] Kheowan O. U., Zykov V. S., Rangsiman O. and Müller S. C., Phys. Rev. Lett., 86 (2001) 2170.
[22] Goldschmidt D. M., Zykov V. S. and Müller S. C., Phys. Rev. Lett., 80 (1998) 5220.
[23] Zykov V. S., Brandtstädtär H., Bordiougov G. and Engel H., Phys. Rev. E, 72 (2005) 065201R.
[24] Zykov V. S., Bordiougov G., Brandtstädtär H., Gerdes I. and Engel H., Phys. Rev. Lett., 92 (2004) 018304.
[25] Zykov V. S. and Engel H., Phys. Rev. E, 70 (2004) 016201.
[26] Zykov V. S., Mikhailov A. S. and Müller S. C., Phys. Rev. Lett., 78 (1997) 3398.
[27] Kheowan O. U., Zykov V. S. and Müller S. C., Phys. Chem. Chem. Phys., 4 (2002) 1334.
[28] Kheowan O. U., Kantrasiri S., Wiliaart P., Storb U. and Müller S. C., Phys. Rev. E, 70 (2004) 046221.
[29] Kheowan O. U., Kantrasiri S., Úthaisar C., Gáspár V. and Müller S. C., Chem. Phys. Lett., 389 (2004) 140.
[30] Kheowan O. U., Chan C. K., Zykov V. S., Rangsiman O. and Müller S. C., Phys. Rev. E, 64 (2001) 035201.
[31] Naknamueang S., Allen M. A. and Müller S. C., Phys. Rev. E, 74 (2006) 066209.
[32] Zykov V. S. and Engel H., Physica D, 199 (2004) 243.
[33] FitzHugh R. et al., Biophys. J., 1 (1966) 445.
[34] Courtemanche M., Skaggs W. and Winfree A. T., Physica D, 41 (1990) 173.