The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoons’ head to tail

Su-Ren Chen¹,², Aalia Batool¹,², Yu-Qian Wang¹,², Xiao-Xia Hao¹,², Chawn-Shang Chang³, C Yan Cheng⁴ and Yi-Xun Liu*¹

Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specific genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms ‘spermiogenesis failure’, ‘globozoosperma’, ‘spermatid-specific’, ‘acrosome’, ‘infertile’, ‘manchette’, ‘sperm connecting piece’, ‘sperm annulus’, ‘sperm ADAMs’, ‘flagellar abnormalities’, ‘sperm motility loss’, ‘sperm ion exchanger’ and ‘contraceptive targets’. Importantly, we have focused on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatid-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive ‘pill’ is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.

Cell Death and Disease (2016) 7, e2472; doi:10.1038/cddis.2016.344; published online 10 November 2016

Facts

(1) While some nations are experiencing a population explosion, others show negative growth. The future population growth rate is highly dependent on improving fertility versus contraception.

(2) Male factor infertility is a complex disorder that affects a large sector of the population; however, most of its etiology and genetic tests remain largely unexplored.

(3) Few approaches other than barrier methods have been adequately developed for male contraception. Male hormonal contraception, which disrupts the entire spermatogenesis process, is not a preferred approach and will be discarded in the future.

(4) Most of the spermiogenic genes are highly conserved between mice and humans. Thus gene ablation in mice has been a powerful tool for identifying spermatid-specific proteins essential for spermiogenesis, which might serve as potential targets of male contraception.

Open questions

(1) What are the spermatid-specific factors required for spermiogenesis and how do they control male fertility in mice? Can they be classified into different groups by their localization and function in spermatids?

(2) What do these knockout mice tell us? Which factors are likely to turn out to be the spermatid-specific targets for male contraceptives? What is the mechanism of contraceptive action, and does the ‘pill’ target spermiogenic process specifically and reversibly?

Abbreviations: ART, assisted reproductive techniques; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; CDK, cyclin-dependent kinase; ER, endoplasmic reticulum; ADAM, a disintegrin and metalloproteinase; ZP, sperm-zona pellucida; NHE, Na+/H+ exchanger; pHi, intracellular pH; CatSper, cation channel of sperm; ICATSPER, intracellular Ca2+-selective current; ATP, adenosine triphosphate; BRDT, bromodomain, testis-specific.
(3) Many genes have been shown to be associated with spermiogenesis in mice using knockout mouse models. However, the majority of mouse model studies fail to identify a mutation in infertile human males. Thus are the rodent models physiologically relevant to humans?

As many as 15% of human couples are infertile, and male infertility is associated with about half of these cases.¹ The inability to procreate is frequently considered a personal tragedy and a curse for the couple, impacting on the entire family and even the local community.² Currently, the pathophysiological mechanisms of male infertility are so poorly understood that most infertile men receive a description of ‘idiopathic oligo/asthenozoospermia’ rather than a diagnosis; hence, specific medical treatment is not possible.³ Hormonal therapy has an important but limited role as an effective long-term health issue in men.⁴ It is therefore not a preferred approach as this may lead to other consequences.⁴ Given that many non-obstructive causes of male infertility are unexplained and the therapeutic effect is beyond the power of hormone and ART, focussing on genetic causes and identifying genes and pathways associated with infertility becomes a public health priority.⁵ On the other hand, a few approaches other than barrier methods have been adequately developed for male contraception. Male hormonal contraception, which disrupts the entire spermatogenesis process, is not a preferred approach as this may lead to other long-term health issues in men.⁶ Basic reproductive research has advanced fundamental knowledge about the process and genetics of spermatogenesis. Spermatogenesis can be divided into three main phases: mitotic, meiotic, and haploid spermatid development.⁷ In the mitotic phase, spermatogonial stem cells proliferate and differentiate into differentiating spermatagonia, which subsequently enter the meiotic phase and transform into spermatocytes.⁸ Spermatocytes undergo two consecutive meiotic cell divisions to produce haploid spermatids. Spermatids then experience a multistep differentiation process and undergo dramatic morphological, molecular and cellular alterations via spermiogenesis to form spermatozoa.⁹ Although these transformations are well defined at the morphological level in most species including humans, the underlying mechanisms that regulate these intricate processes are largely unknown. Disruptions in either the mitotic or the meiotic phase tend to cause azoospermia or severe oligospermia, whereas spermiogenic defects often lead to reduced sperm counts, aberrant sperm motility and deformed spermatozoa.¹⁰

Knockout mouse models and N-ethyl-N-nitrosourea mutagenesis presenting with an infertile phenotype, such as spermiogenesis defects, are powerful tools with which to characterize new players in spermatid development, to determine the causes of idiopathic infertility and to develop novel therapeutic approaches for male infertility.¹² Most of the spermiogenic genes are highly conserved between mice and humans. If specific inhibitors for sperm functions can be developed for human spermatids, they would represent a new class of contraceptives that would not require disruption of early spermatogenic cell types and the testicular microenvironment. This gene-based therapies directed against the underlying cause and mechanisms of male infertility would also specifically target men with known disorders of spermatogenesis. In conjunction with improved ICSI/IVF, this novel method will offer the greatest hope for male infertility therapy.

Here we describe the currently known spermatid-unique genes involved in each of the major steps of spermiogenesis and summarize their functions in knockout mouse models. We will also discuss the mechanism, specificity, reversibility and shortcomings of emerging contraceptive ‘pills’.

Globozoospermia-related proteins: roles in acrosome

Although the acrosome is known to be derived from the Golgi apparatus and its biogenesis involves three consecutive phases, the molecular mechanisms underlying acrosome formation remain largely unknown.¹⁴,¹⁵ Globozoospermia (a condition that causes ∼0.1% of cases of human infertility) is characterized by round-headed spermatozoa that lack an acrosome (Figure 1a), and human mutants and mouse strains presenting with such a defect represent very valuable models to decipher acrosome biogenesis.¹⁶,¹⁷

Using knockout mouse (−/−) models, a number of genes (e.g., Dpy19l2¹⁸ Pick1,¹⁹ Dnah1,²⁰ Gopc,²¹ Vps54,²² Hrb,²³ Zpb1,²⁴ Ck2α²⁵ Hsp90b1,²⁶ Gb2,²⁷ Spaca1,²⁸ Atg7,²⁹ Sm2,³⁰ Fads2,³¹ Flotillin-2,³² Ccdc136,³³ Pcsk4³⁴ and Hiatl³⁵) have been found to trigger globozoospermia. Among them, deletions and/or mutations in SPATA16,³⁶,³⁷ PICK1,³⁸ DPY19L2,³⁹ ZPB1,⁴⁰ and DNAH1⁴¹ have been identified in globozoospermia patients. The involvement of the human orthologues of the other above-mentioned mouse genes in human globozoospermia requires further investigation. It may also be important to classify these globozoospermia-related proteins in terms of their diverse cellular functions (such as Golgi vesicle fusion, acrosome exocytosis, acrosome attachment and spreading over the nucleus) or phases (Golgi phase, cap phase, acrosome phase and maturation phase). Notably, PICK1, Gopc, Vps54, Hrb and SPATA16 control the Golgi vesicle fusion that is necessary for acrosome formation (Figure 1b), whereas DPY19L2 regulates the attachment of the nuclear envelope to the acrosomal matrix protein ACRBP.¹⁸,¹⁹ (Figure 1c). The acrosomal matrix protein ACRBP was recently identified as another globozoospermia-related protein to regulate acrosomal granule formation.⁴⁰

It is cautious to that only a limited number of studies focus on the interaction and regulation among these globozoospermia-related proteins. Pcsk4-null sperm exhibit low expression of ACRBP,⁴⁴ ATG7 regulates GOpc during acrosome biogenesis.⁴⁵ The levels of ZPB1 and SPACA1 are externally low in the Gopc−/− mouse testes.⁴⁶ PICK1 interacts and cooperates with GOpc and CK2α in acrosome biogenesis.¹⁹ Recently, He et al.³³ identified ICA1L as a new BAR domain-binding partner of PICK1, and sperm from Ica1f−/− mice exhibit the characteristics of globozoospermia.
In addition to acrosome integrity, acrosomal exocytosis (also called the ‘acrosome reaction’) is an important event during the final phase of fertilization.44,45 We emphasize the fact that most of the identified factors also control the process of exocytosis in the somatic cells of non-reproductive tissues. In particular, AFAF (also called MN9)46,47 and SPESP1,48–50 are specifically localized in the equatorial segment of sperm. We found that \textit{Afa}^-/- male mice are subfertile and the fertilization and induced acrosome exocytosis rates of \textit{Afa}/null sperm are considerably reduced.51,52 Furthermore, AFAF facilitates an interaction with Syntaxin1a and Snap25 during sperm acrosomal exocytosis.51,52 Spesp1−/− male mice are subfertile, partially owing to the loss of equatorial membrane after the acrosome reaction. The disruption of \textit{Spesp1} causes aberrant expression and distribution of acrosomal protein MC101, ADAM family proteins and MN9 antigen.48 Loss of \textit{Afaf} or \textit{Spesp1} does not lead to complete infertility in mice, and no mutation of either of these genes is found in male infertility patients. As such, identification of spermatid-specific factors that are critical for acrosomal exocytosis is of great interest.

Manchette of elongating spermatids

The manchette is a transient skirt-like structure in the elongating spermatid head that assembles concurrently with the elongation and condensation of the spermatid nucleus and growth of the centrosome-derived axoneme.53 The basic platform of the manchette consists of microtubules, actin filaments and the associated motor protein (e.g., myosin).54 Next, we introduced the several manchette-specific protein complexes and the consequences of their disruption in spermatid elongation (Figure 2).

\textit{Mns1}-deficient males are sterile, exhibiting a sharp reduction in sperm production, and the remnant sperm are immotile with abnormal short and crooked tails.55 A subsequent study has shown that \textit{Mns}1 colocalizes with the motor protein KIF3A in the manchette and the principal piece of the sperm tail. Phenocopying \textit{Mns1}−/−, a germ cell-specific depletion of \textit{Kif3a}, affects sperm tail formation, manchette organization

![Figure 2](https://example.com/figure2.png)
and the shaping of sperm heads. KIF3A also interacts with a KIF1-binding protein (KBP) in the manchette of elongating spermatids; however, the role of KBP in spermatid elongation remains unknown.

Rimbp3 (the gene encoding RIM-BP3) mutant mice display ectopic positioning of the manchette within the spermatid, a presumed cause of sperm head deformities. Consistent with its role in morphogenesis, the RIM-BP3 protein physically associates with HOOK1, a known manchette-bound protein required for sperm morphogenesis. Rimbp3 may modulate the interaction of HOOK1 with certain organelles to which the manchette should be anchored. KIF3B, a kinesin family member, was identified as another RIM-BP3-interacting partner in a yeast two-hybrid screen.

Meig1 mutant male mice are sterile as a result of disrupted manchette structure and impaired sperm elongation and condensation. PACRG interacts with MEIG1, and Pacrg knockout also impairs manchette structure. MORN3, expressed in the manchette of the elongating sperm, was recently identified as another MEIG1-interacting protein.

LRGUK1 binds to HOOK2 and mutation of Lrguk1 leads to manchette dysfunction and, ultimately, to abnormal sperm head shaping and sterility. Sun4-deficient mice lack the linkers between the nuclear envelope and the microtubule manchette. Azi1-null spermatids show defective manchette structure and abnormal head morphologies, suggesting defects in intramanchette transport. Inactivation of Sperm1 in mice results in deformed spermatozoa characterized by 'head-bent-back' abnormalities and male infertility, and SPEM1 interacts with UBQLN1 and RANBP17 in the manchette of elongating spermatids. FUSED interacts with the outer dense fibre protein ODF1 and manchette-expressed kinesin KIF27, and Fused-null spermatozoa exhibit perturbed manchette formation.

It will be interesting to specifically disrupt the interaction of the MNS1-KIF3A-KBP, KIF3B-RIM-BP3-HOOK1, PACRG-MEIG1-MORN3, LRGUK1-HOOK2 and UBQLN1-SPEM1-RANBP17 complex and elucidate the physiological roles of the 'complex' in the manchette and in spermiogenesis. More mouse models affecting manchette formation can be found in other articles and review.

Head–tail conjunction: interaction between OAZ3, ODF1, SPATA6, and myosins

The sperm head and tail are bridged by the connecting piece, which not only serves as a physical linkage but also participates in sperm motility. ‘Decapitated sperm’, or ‘acephalic sperm’, a type of human teratozoospermia, refers to the condition in which the ejaculate contains mostly sperm tails without heads. To date, several proteins that interact with myosin (an actin-based motor protein) have been reported to contribute to the connection between the sperm head and tail (Figure 3; left).
Oaz3 encodes ornithine decarboxylase antizyme 3 and is specifically expressed in spermatids. The heads and tails of Oaz3-disrupted spermatids are easily separated in culture medium during incubation. Although the tailless sperm failed to acrosome-react, the heads were capable of fertilizing eggs via ICSI. Ruan et al. further suggest that the Oaz3-encoded protein p12 interacts with myosin phosphatase targeting subunit 3 (MYP3T) to modulate the activity of protein phosphatase PP1β and PP1γ2.

Similarly, mice lacking Odf1, a gene encoding outer dense fibre protein 1, display detachment of the sperm head. Haplo-deficiency of ODF1 (Odf1+/−) in mouse sperm causes relaxation of head-to-tail linkage and severe male subfertility. Linking of ODF1 to microtubules might occur via ODF1/SPAG5/SPAG4 (axoneme-binding proteins) interaction and to mitochondria via ODF1/KLC3 (kinesin light chain) interaction.

However, neither the Oaz3- nor Odf1-deficient mice display uniformly 100% acephalic spermatozoa, suggesting that, in the absence of these genes, the connecting piece can still be formed, although in many spermatozoa it is not strong enough to maintain stability. Ablation of Spata6 (spermatogenesis-associated 6 gene) completely disrupts formation of the connecting piece, leading to accephalic spermatozoa and male sterility in mice. Interaction between SPATA6 and myosin light and heavy chain subunits (e.g., MYL6) strongly suggests that SPATA6 is involved in myosin-based microfilament transport during connecting piece formation. Further identification of spermatid-specific factors that control the connection of the sperm head and tail and mutation screening in human teratozoospermia patients remain to be investigated.

Septin-based organization of the annulus

The annulus is an electron-dense ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Septin-based organization of the annulus is a requisite for the structural and mechanical integrity of the annulus. The spermatozoa from a subset of human patients with asthenospermia syndrome have a commonly disorganized annulus/septin ring.

The genetic loss of Sept4 in mice causes disorganization of the annulus and adjacent cortex, which results in fragility and immotility of spermatozoa. Septins 1, 6, 7 and 12 co-localize with SEPT4, while SEPT12 forms a filamentous structure with septins 2, 4, 6 and 7 at the sperm annulus (Figure 3; right). These septin complexes appear to assemble in round spermatids and are associated with the cocharperone DNAJB13. Recently, Yeh et al. determined that SEPT12 colocalizes and interacts with SPAG4 (also known as SUN4) in the nuclear periphery of round spermatids and in the tail of elongating spermatids. Furthermore, Tssk4−/− mice are subfertile owing to disorganization of the midpiece–principal piece junction and significantly decreased sperm motility. TSSK4 and ODF2 can regulate each other through phosphorylation. In addition, Sept1−/− and Tat1−/− spermatozoa had structural defects similar to those described in Sept4-null sperm, including thinning of the flagellum at the midpiece–principal piece junction and hairpin-like bending of the flagellum. However, the underlying mechanism of disorganization of the annulus in Sepp1-null and Tat1-null spermatozoa and their interaction with septins remain unknown.

Cyclins comprise a family of highly conserved proteins and exert their crucial roles by activating cyclin-dependent kinases (CDKs). Close cooperation between specific sets of cyclin/CDK partners is of great significance. Cdk16-deficient spermatozoa display thinning and elongation of the annulus region and show impaired motility. Mikoletic et al. suggest that Cdk16 interacts with the CCNY protein; however, CCny−/− male mice are fertile. CCNYL1, which is specifically expressed in the testis, also cooperates with CDK16 to regulate the structure and function of the annulus (Figure 3; right). The CCNYL1/CDK16 complex regulates annulus development partially via non-classical WNT (wingless-related MMTV integration site) signalling and GSK-mediated SEPT4 clustering in the epididymis.

Endoplasmic reticulum (ER) quality-control system: CALR3/PDILT/ADAMs/PMIS2

Membrane and secretory proteins are cotranslationally translocated into the ER lumen, where numerous molecular chaperones and folding enzymes assist their maturation. The testes presents a special case for the control of ER protein folding because of the unusual environment (e.g., low temperature and dramatic morphological changes of spermatids).

Calmegin (CLGN), a disintegrin and metallopeptidase 1a (ADAM1a), ADAM2, ADAM311,12 ADAM311,12 and calretilcin 3 (CALR)14 are spermatid-specific ER chaperones essential for oviduct migration and sperm–zona pellucida (ZP) binding, as disruption of these genes results in a similar sperm phenotype, that is, impaired migration into the oviduct and ZP-binding ability (Figure 4). Notably, Adam3-null spermatozoa can effectively fertilize eggs when surrounded in cumulus oophoros, suggesting that the principle role of ADAM3 is sperm migration into the oviduct but not ZP binding.

Prss37 deficiency causes the absence of mature ADAM3 in sperm and a defect in sperm migration from the uterus into the oviduct. PDILT−/− male mice are sterile because ADAM3 could not be folded properly and transported to the sperm surface without the PDILT/CALR3 complex.15,17,18 Because ADAM3 is the only protein commonly disrupted or displaced in all of the above-mentioned gene knockout sperm, it is likely that ADAM3 has a central role in sperm migration from the uterus into the oviduct. A recent study suggests that Pmis2-deficient spermatozoa lack the ADAM3 protein, but the amount of Pmis2 is also severely reduced in Adam3-deficient spermatozoa.19 Thus the spermatid-specific protein Pmis2 may also function as another ultimately essential factor for sperm migration and/or sperm–ZP binding. Interestingly, in contrast to previously known gene knockout mouse lines, Ly6k-null spermatozoa had no aberrant expression and...
Spermatid-specific Na+/H+ exchangers (NHEs): factor independent from the ADAM3 pathway for sperm motility.123,124 The SLC9 gene family encodes NHEs and mtsNHE.130 are predominantly expressed in the testes. The spermatid-specific NHE129 and NHA1130 are specifically distributed in the principal piece of the sperm flagellum, and both spermNHE- and Nha1-deficient male mice are completely infertile owing to the severely diminished sperm motility in the female reproductive tracts129,132 (Figure 5). The sAC-cAMP signalling is impaired in spermatozoa lacking spermNHE or Nha1, and the sperm motility defect can be rescued by the addition of cell-permeable cAMP analogues.132,133 The sAC is the major source of cAMP in the sperm, and male mice deficient in sAC are infertile because their sperm show no motility despite normal sperm morphology and counts.134

We suggest that immunization of female mice with the Nha1/Nha2 (these two Nha genes are functionally redundant) DNA vaccine via oral feeding significantly decreases fertility rates and newborn numbers.132,135 The antisperm or vaginal fluid from the Nha1/Nha2 cDNA vaccinated female mice specifically recognized the principal piece of the sperm tail and triggered sperm agglutination.132,135 Importantly, principal piece distribution of NHA1 in spermatozoa is phylogenetically conserved in spermatogenesis.132 Furthermore, the defect of the Nha1-null sperm is clinically relevant because NHA1 expression is either reduced or absent in patients with teratozoospermia.136

Ca²⁺/CaM/kinase in the sperm

The vigorous asymmetric motion of hyperactivated spermatozoa requires Ca²⁺ entry into the sperm tail by cation channel of sperm (CatSper), a sperm-specific ion channel. CatSper is directly activated by progesterone and prostaglandins – female factors that stimulate Ca²⁺ influx.137 Other factors, including neurotransmitters, chemokines and odorants, also affect sperm function by changing intracellular Ca²⁺-selective current (IcatSper).138

CatSper1–CatSper4 are highly specialized flagellar proteins, and genetic disruption of any of the four sperm-specific CatSperms abrogated IcatSper, sperm cell hyperactivated motility and male fertility via disrupting Ca²⁺ influx139–142 (Figure 5). Mutations in CatSper1 and CatSper2 are also associated with male infertility in humans143–145; however, CatSper3 and CatSper4 have not been investigated. Each of the CatSper1–CatSper4 genes encodes a subunit of a tetramer surrounding a Ca²⁺-selective pore-forming α subunit. In addition to the pore-forming proteins, the sperm Ca²⁺ channel contains the auxiliary subunits CatSperδ,146 CatSperγ147 and CatSperδ.148 Mice lacking the sperm tail-specific CatSperδ are infertile, and their spermatozoa lack both Ca²⁺ current and hyperactivated motility.148 However, the roles of CatSperβ and CatSperγ and their interactions with other subunits are still unknown.

Downstream of Ca²⁺, flagellar bending is governed by Ca²⁺-binding proteins, including Calm, enkurin and calaxin.149 Cris−/− male mice are subfertile owing to altered Ca²⁺ regulation of flagellar beat asymmetry.150 CRIS can directly interact with Calm-activated protein kinase CaMKIV and proteins involved in flagellar transport (e.g., KIF2A, IFT172).150 Cnnm4-deficient male mice are almost infertile because of perturbed Ca²⁺ influx.151

Figure 4 Models for the contributors and roles of the spermatid-specific ER quality-control system. After sperm are deposited in the female reproductive environment, they become metabolically active and pass through the uterotubal junction (UTJ) into the oviduct. ADAM1α, ADAM2, ADAM3, CLGN, CALR3, ACE, PDILT and PMIS2 are spermatid-specific ER chaperones. Disruption of these genes results in similar phenotypes, including impaired migration through the UTJ and/or impaired sperm-ZP binding. Heterodimerization of ADAMs and correct localization of ADAM3 are the central elements for sperm migrating and fertilizing ability. ADAM3 can regulate the PMIS2 expression directly or indirectly. ACE contributes to the removal of TEX101 and LY6K from mature spermatozoa to guarantee correct localization of ADAM3 on the mature sperm surface. Only knockout of LY6K does not affect the expression and distribution of ADAM3.
In addition to sperm-specific Na⁺/H⁺ exchangers and pHi-dependent CatSper (reviewed here), there are voltage-gated H⁺ channels, HCO₃⁻ transporters and K⁺ channels, which are required for sperm pHi regulation and sperm motility (refer to Nishigaki et al. 152).

Sperm-specific glycolytic enzyme in adenosine triphosphate (ATP) production

Glycolysis is the primary source of ATP in sperm. 11 Targeted disruption of sperm-specific glycolytic enzyme genes, such as Gapdhs,153 Ldhc,154 Pgk2155 and Eno4,156 results in reduced levels of ATP in sperm and disruption of sperm motility, leading to male infertility. Recent studies further suggest that Galntl5-deficient mice show male infertility owing to attenuated glycolytic enzymes (e.g., PGK2) required for motility and a patient diagnosed with asthenozoospermia had a mutation in the GALNTL5 gene.157–159

Transcriptional regulators of the haploid phase

Inactivation of Zmynd15 in mice results in early activation of several haploid genes including Prmt1, Tnp1, Spem1 and Catpser3, as well as depletion of late spermatids and male infertility.160 The p.K507Sfs*3 mutation in exon 9 of ZMYND15 was recently identified in one family with idiopathic azoospermia.161 Rbx2−/− mice show complete male sterility owing to a complete block in development just prior to spermatid elongation. Many genes (e.g., genes required for flagellum formation and vesicle transport) are directly controlled by RFX2 during spermiogenesis.162,163

Perspectives on potential new small-molecule contraceptives targeting spermatogenic-specific proteins

For the development of non-hormonal male contraceptives, we found that adjudin, an analogue of an anticancer drug called lonidamine, acts by disrupting germ cell-anchoring junctions in the seminiferous epithelium to induce germ cell loss from the testis.164 Furthermore, epidydymal protease inhibitor DNA vaccine165 and anti-Juno monoclonal antibody166 have been developed and tested for male contraception. Recently, spermatogenic-specific proteins (e.g., BRDT, PPP3CC/PPP3R2) have been pursued as potential targets of small-molecule contraceptives167,168 (Figure 6). Filippakopoulos et al. 171 have established the feasibility of targeting human BRDT with acetyl-lysine competitive small molecules (JQ1), which blocks the interactions of bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) with histones. Subsequently, the complete and
reversible contraceptive effect of JQ1 has been tested in mice. JQ1 treatment reduces testis size, spermatozoa number and motility without affecting hormone levels, including the serum levels of follicle-stimulating hormone, luteinizing hormone and testosterone. Although JQ1-treated males mate normally, the inhibitory effects of JQ1 evident at the spermatocyte and round spermatid stages cause a complete and reversible contraceptive effect. After JQ1 treatment is halted, the fertility of AQ-treated male mice can be completely returned.

Preliminary studies confirmed that BRDT would meet target specificity, drugability and essential function requirements. However, the clinical and non-clinical safety profile of JQ1 remains to be examined. A recent study argued that mice dosed with JQ1 at efficacious doses exhibit dose-dependent decreases in their lymphoid and immune cell compartments, illustrating potential issues of immune system interference by JQ1. The development of highly selective small molecules to target BRDT specifically will avoid potential side effects owing to inhibition of its somatic isoforms (e.g., BRD2, BRD3 and BRD4). It is rather remarkable that crystal structure-based virtual screening has recently been used to identify novel potent BRDT inhibitors.

Genetic disruption of either the catalytic subunit (PPP3CC) or the regulatory subunit (PPP3R2) of sperm-specific calcineurin or short-term in vivo pharmacological inhibition with calcineurin inhibitors (cyclosporine A or FK506) leads to complete male infertility, with reduced sperm motility owing to an inflexible midpiece during sperm maturation in the epididymis. Importantly, inhibitors of sperm-specific calcineurin could act on male fertility both effectively and reversibly because inhibition of PPP3CC/PPP3R2 targets spermatozoa in the epididymis. We suggest that targeting spermatid-specific proteins is better, because targeting spermatids is safer and reversibility is less of an issue than targeting spermatocyte- and/or spermatogonia-specific proteins. Many spermatid-specific proteins mentioned in this review (e.g., spermNHE, NHA1, CatSper and GAPDH) are prime candidates as targets for male contraceptive development using small-molecular inhibitors.

Conclusions and future perspectives

Studies using mouse knockout technology have identified many spermatid-specific genes essential for spermiogenesis, which in turn are pathogenic factors of human male infertility. The large-scale analysis of mouse models will hopefully help to identify more infertility-related mutations and risk factors in humans. Importantly, the underlying mechanisms and direct correlations between spermiogenic defects of mice and male infertility in humans are far from clear. Rather than investigating novel infertility-associated factors, studies of the classification and inter-relation among known spermatid-specific factors are likely to yield the much needed information.

It is now generally accepted that sperm count and sperm morphology/shape are not perfect or reliable indicators of fertility and more assays (e.g., DNA fragmentation analysis, computer-assisted semen analysis, motile sperm organelle morphology examination and gene mutation screening) need to be adapted for clinical use. Some obvious structural defects can be detected microscopically, whereas some defects in energy production, signalling transduction and metabolism require more sophisticated assays for screening. Although the molecular diagnosis of infertility would be difficult with the current available technologies, we suggest that deletions and/or mutations in SPATA16, PICK1, DPY19L2, ZPBP1, DNAH1, CatSper1/2, GALNTL5 and others need to be checked for infertility diagnosis of globozoospermia. Whole genome-based techniques will hopefully help to identify more infertility-related mutations and risk factors in future.
A male contraceptive ‘pill’ is still many years away. But recent research into developing small-molecule inhibitors that target specific sperm antigens/enzymes/proteins as contraceptives may offer some insightful information in male contraceptive development.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements
This up-to-date review refers to many outstanding research papers and reviews. We apologize to colleagues whose work is not cited here owing to limited space or our unintentional negligence. This work was supported by Major Research Plan ‘973’ Project (2012CB944702), Natural Science Foundation of China (3117380, 31471352, 31501198 and 81270662) and Academician Workstation Support (Shenyang, Changsha and Shandong).

Author contributions
Su-Ren Chen and Yi-Xun Liu were involved in conception and designing, drafting and revising the article. Aalia Batool, Yiu-Qian Wang and Xiao-Xia Hao contributed to the literature collection. Chawn-Shang Chang and C Yan Chen gave critical revision of the manuscript. All authors read and approved the final manuscript.

1. Skakkebaek NE, Jørgensen N, Main KM, Rapert-De Meyts E, Leffers H, Andersson AM et al. Is human fecundity declining? Int J Androol 2006; 29: 2–11.
2. Ombelet W, Cooke I, Dyer S, Serour G, Devroey P. Infertility and the provision of infertility research papers and reviews. Fertil Steril 2014; 101: 1073.e3–1085.e3.
3. Massart A, Lissens W, Tourneay H, Stoffels K. Genetic causes of spermatozoa motility failure. J Androl 2012; 14: 40–48.
4. Liu YX. Control of spermatogenesis in primates and the prospect for male contraception. Arch Androl 2005; 51: 77–82.
5. Kennedy CL, O’Byran MK. N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility biogenesis as revealed by super-resolution and immunoelectron microscopy. Invest Cell Tissue Res 2013; 205: 231–237.
6. Yuen RK, Merkoulovaich A, McDonald JR, Vlasschaert M, Lo K, Grober E et al. Development of a high-resolution Y-chromosome microarray for improved male infertility diagnosis. Fertil Steril 2014; 101: 1073.e3–1085.e3.
7. Massart A, Lissens W, Tourneay H, Stoffels K. Genetic causes of spermatozoa motility failure. J Androl 2012; 14: 40–48.
8. Liu YX. Control of spermatogenesis in primates and the prospect for male contraception. Arch Androl 2005; 51: 77–82.
9. Kennedy CL, O’Byran MK. N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility biogenesis as revealed by super-resolution and immunoelectron microscopy. Invest Cell Tissue Res 2013; 205: 231–237.
10. Yuen RK, Merkoulovaich A, McDonald JR, Vlasschaert M, Lo K, Grober E et al. Development of a high-resolution Y-chromosome microarray for improved male infertility diagnosis. Fertil Steril 2014; 101: 1073.e3–1085.e3.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements
This up-to-date review refers to many outstanding research papers and reviews. We apologize to colleagues whose work is not cited here owing to limited space or our unintentional negligence. This work was supported by Major Research Plan ‘973’ Project (2012CB944702), Natural Science Foundation of China (3117380, 31471352, 31501198 and 81270662) and Academician Workstation Support (Shenyang, Changsha and Shandong).

Author contributions
Su-Ren Chen and Yi-Xun Liu were involved in conception and designing, drafting and revising the article. Aalia Batool, Yiu-Qian Wang and Xiao-Xia Hao contributed to the literature collection. Chawn-Shang Chang and C Yan Chen gave critical revision of the manuscript. All authors read and approved the final manuscript.

References
1. Skakkebaek NE, Jørgensen N, Main KM, Rapert-De Meyts E, Leffers H, Andersson AM et al. Is human fecundity declining? Int J Androol 2006; 29: 2–11.
2. Ombelet W, Cooke I, Dyer S, Serour G, Devroey P. Infertility and the provision of infertility research papers and reviews. Fertil Steril 2014; 101: 1073.e3–1085.e3.
3. Massart A, Lissens W, Tourneay H, Stoffels K. Genetic causes of spermatozoa motility failure. J Androl 2012; 14: 40–48.
4. Liu YX. Control of spermatogenesis in primates and the prospect for male contraception. Arch Androl 2005; 51: 77–82.
5. Kennedy CL, O’Byran MK. N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility biogenesis as revealed by super-resolution and immunoelectron microscopy. Invest Cell Tissue Res 2013; 205: 231–237.
6. Yuen RK, Merkoulovaich A, McDonald JR, Vlasschaert M, Lo K, Grober E et al. Development of a high-resolution Y-chromosome microarray for improved male infertility diagnosis. Fertil Steril 2014; 101: 1073.e3–1085.e3.
7. Massart A, Lissens W, Tourneay H, Stoffels K. Genetic causes of spermatozoa motility failure. J Androl 2012; 14: 40–48.
8. Liu YX. Control of spermatogenesis in primates and the prospect for male contraception. Arch Androl 2005; 51: 77–82.
9. Kennedy CL, O’Byran MK. N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility biogenesis as revealed by super-resolution and immunoelectron microscopy. Invest Cell Tissue Res 2013; 205: 231–237.
10. Yuen RK, Merkoulovaich A, McDonald JR, Vlasschaert M, Lo K, Grober E et al. Development of a high-resolution Y-chromosome microarray for improved male infertility diagnosis. Fertil Steril 2014; 101: 1073.e3–1085.e3.
50. Suryavath V, Panneerissos S, Wolkowicz MJ, Shetty J, Sherman NE, Flickinger CJ et al. Dynamic changes in equatorial segment protein 1 (SPESP1) glycosylation during mouse spermiogenesis. Biol Reprod 2015; 92: 129.

51. Hu XQ, JI SY, LI YC, Fan CH, Cai H, Yang JL et al. Acrosome formation-associated factor is involved in fertilization. Fertil Steril 2010; 93: 1482–1492.

52. Hao J, Chen MJ, LI SW, Wang Y, Huang X et al. Equatorial segment protein 1 (SPESP1) is not essential for acrosome biogenesis but is required for the acrosome reaction. Biochem Biophys Res Commun 2014; 444: 537–542.

53. Kierszenbaum AL. Intramitochondrial transport (MIT): managing the making of the spermatic head, centrosome, and tail. Mol Reprod Dev 2002; 62: 1–4.

54. Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016; 151: R43–R54.

55. Zhou J, Yang F, LEU NA, Wang PJ. MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet 2012; 8: e1002516.

56. Lehti MS, Kotaja N, Sironen A. KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol 2013; 377: 44–55.

57. Lehti MS, Kotaja N, Sironen A. KIF-1B-binding proteins interact with KIF3A in haploid male germ cells. Reproduction 2015; 150: 209–216.

58. Zhao J, DU YR, Qin WH, Hu YG, Huang YN, Bao L et al. RIM-BP3 is a manchette-associated protein essential for spermiogenesis. Development 2009; 136: 373–382.

59. Kram J, Chen MJ, PISETIEN K. Genes that influence Hook2, a gene required for endocytic trafficking in drosophila. Genetics 1999; 151: 675–684.

60. Mendoza-Lujambio I, Burford P, Dicksen C, Meinhardt A, Hoyer-Fender S, Engel W et al. The Hook1 gene is non-functional in the abnormal spermatozoon head shape (ash) mutant mouse. FEBS Lett 1990; 257: 167–168.

61. Zhang Z, Shen X, Gude DR, Wilkinson BM, Justice MJ, Flickinger CJ et al. MEIG1 is essential for spermiogenesis in mice. Proc Natl Acad Sci USA 2006; 103: 17055–17060.

62. Zhang L, Shang XJ, LI HF, Shi YQ, LI UI, Teves ME et al. Characterization of membrane organization and recognition repeat containing 3, melioid expressed gene 1 binding partner in mouse germ cells. Anat Rec 2002; 268: 1647–1658.

63. Liu Y, DeBloet K, de Kretser DM, ODonnell LE, Aernier DJ et al. LRG1-K is required for basal body and manchette function during spermatogenesis and male fertility. PLoS Genet 2015; 11: e1005090.

64. Baron Gaillard CL, Palesi-Pocahard E, Massey-Harroche D, Richard F, Aranajo JP, Chaumein JP et al. Hook3 is involved in the morphogenesis of the primary cilium. Mol Cell Biol 2011; 22: 4548–4562.

65. Pasch E, Link J, Beck C, Scheuere S, Alshheimer M. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility. Bio Open 2015; 4: 1792–1802.

66. Calvi A, Wong AS, Wright G, Wong ES, Loo TH, Stewart CL et al. SUN4 is necessary for normal remodeling during spermiogenesis. Dev Biol 2015; 407: 321–330.

67. Hall EA, Keghren M, Ford MJ, Daviey T, Jarman AP, Smith LB et al. Acute versus chronic asbestos exposure in mice. Cell Death and Disease 2013; 4: 330.

68. Nishimura H, Kim E, Nakanishi T, Baba T. Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. FEBS Lett 2009; 583: 848–852.

69. Nakanishi T, Yamada S, Wada I, Kominami K, Tanaka H et al. Oaz3 modulates protein phosphatase activity. Mol Hum Reprod 2016; 22: 299–309.

70. Oaz3 is essential for rigid connection of sperm tails to heads in mouse. Cell Reprod 2014; 14: 499–506.

71. Oh C, Aho S, Hansamidin R, Nayeniam K, Muller C, Sancken U et al. Characterization, expression pattern and chromosomal localization of the spermatogenesis associated 6 gene (Spa6). Mol Hum Reprod 2003; 9: 321–330.

72. Yuan S, Stratton CJ, Bao J, Zhang H, Bhetwal BF, Yamaguchi R et al. Spat6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci USA 2015; 112: E430–E439.

73. Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G. Septins at the annulus of mammalian sperm, Biol Chem 2011; 392: 799–803.

74. O’Donnell L, McLachlan RI, Merriner DJ, O’Bryan MK, Jamsai D. Ka TNB1 in the human asthenozoospermia: case report. Andrology 2013; 2: 327–330.

75. Qi Y, Jiang M, Yuan Y, Bi Y, Zheng B, Guo X. SUN4 is essential for spermiogenesis in mice. Mol Cell Endocrinol 2009; 309: 321–330.

76. Nakanishi T, Yamada S, Wada I, Kominami K, Tanaka H et al. Oaz3 modulates protein phosphatase activity. Mol Hum Reprod 2016; 22: 299–309.

77. Oaz3 is essential for rigid connection of sperm tails to heads in mouse. Cell Reprod 2014; 14: 499–506.
110. Cho C, Bunch DQ, Faure JE, Goulding EH, Edii YM, Primakof P et al. Fertilization defects in sperm from mice lacking Hefin beta. Science 1998; 281: 1857–1859.

111. Yamaguchi R, Muro Y, Isotani A, Tokuhara K, Takumi K, Ashihara M et al. Disruption of ADAM3 impairs the migration of sperm into oviduct in mice. Biol Reprod 2009; 81: 142–146.

112. Ikawa M, Tokuhara K, Yamaguchi R, Benham AM, Tamura T, Wada I et al. Caspser is a novel transmembrane protein required for sperm fertility. J Biol Chem 2011; 286: 5606–5614.

113. Tokuhara K, Ikawa M, Benham AM, Okabe M. Protein disulfide isomerase homolog PDL1 is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected]. Proc Natl Acad Sci USA 2012; 109: 3850–3855.

114. Shen C, Kuan Y, Liu J, Feng J, Chen X, Wu W et al. Piss3 is required for male fertility in the mouse. Biol Reprod 2013; 88: 123.

115. van Lith M, Mart van Lith, Harm van Lith, Benham AM, Okabe M, Ikawa M. Mice expressing aberrant sperm-specific Na+/H+ exchanger (sNHE) are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 2012; 109: 1178–1184.

116. Liu J, Xin J, Cho KH, Ikawa M, Chen M, Zhang XS. A novel transmembrane protein in the CatSper channel complex. J Biol Chem 2007; 282: 18945–18952.

117. Wang H, Liu J, Cho KH. A novel, single, transmembrane protein CatSper1 is associated with CATSPER1 channel protein. Biol Reprod 2009; 81: 539–544.

118. Garcia MA, Meizel S. Regulation of intracellular pH in capacitated human spermatozoa by a novel testis-specific Na+/H+ exchanger. Cell Death Dis 2011; 2: 101.

119. Ikawa M, Fujihara Y, Ikawa M, Okabe M. Mice expressing aberrant sperm-specific Na+/H+ exchanger (sNHE) are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 2004; 101: 14864–14869.

120. Endo S, Yotsuba A, Kato K, Ikawa M, Fujihara Y, Okabe M. GPI-anchored protein complex, L Y6K/TEX101, is required for migration of sperm into oviduct in mouse. J Biol Chem 2005; 280: 1376–1383.

121. Fujihara Y, Okabe M, Ikawa M. GPI-anchored protein complex, L Y6K/TEX101, is required for the migration of sperm into oviduct in mouse. J Biol Chem 2013; 288: 1181–1186.

122. Martins AD, Bernardino RL, Neuhaus-Oliveira A, Sousa M, Sa R, Alves MG. Targeted deletion of the gene encoding calnexin, a developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol Biol Cell 2007; 18: 2795–2804.

123. Yamaguchi R, Fujihara Y, Ikawa M, Okabe M. Mice expressing aberrant sperm-specific protein PM232 produce normal-looking but fertility-incompetent spermatozoa. Mol Biol Cell 2012; 23: 2671–2679.

124. Ikawa M, Tokuhiro K, Y amaguchi R, Benham AM, T amura T, Wada I et al. Caspser is a novel transmembrane protein required for sperm fertility. J Biol Chem 2011; 286: 5606–5614.

125. Garcia MA, Meizel S. Regulation of intracellular pH in capacitated human spermatozoa by a novel testis-specific Na+/H+ exchanger. Cell Death Dis 2011; 2: 101.

126. Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Proc Natl Acad Sci USA 2003; 100: 14866–14868.

127. Quill TA, Sugden SA, Ross LM, Doolittle LK, Hammers LA, Garbers DL. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA 2003; 100: 14869–14874.
171. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. *Nature* 2010; 468: 1067–1073.

172. Lee DJ, Katavolos P, Palanisamy G, Katewa A, Sioson C, Corpuz J et al. Nonselective inhibition of the epigenetic transcriptional regulator BET induces marked lymphoid and hematopoietic toxicity in mice. *Toxicol Appl Pharmacol* 2016; 300: 47–54.

173. Gao N, Ren J, Hou L, Zhou Y, Xin L, Wang J et al. Identification of novel potent human testis-specific and bromodomain-containing protein (BRDT) inhibitors using crystal structure-based virtual screening. *Int J Mol Med* 2016; 38: 39–44.

174. Castaneda J, Matzuk MM. DEVELOPMENTAL BIOLOGY. Toward a rapid and reversible male pill. *Science* 2015; 350: 385–386.

175. Gao Y, Zhang X, Xiong S, Han W, Liu J, Huang G. Motile sperm organelle morphology examination (MSOME) can predict outcomes of conventional *in vitro* fertilization: a prospective pilot diagnostic study. *Hum Fertil* 2015; 18: 258–264.

176. Sikka SC, Hellstrom WJ. Current updates on laboratory techniques for the diagnosis of male reproductive failure. *Asian J Androl* 2016; 18: 392–401.