AN EXPLICIT EXAMPLE OF FROBENIUS PERIODICITY

HOLGER BRENNER AND ALMAR KAID

Abstract. In this note we show that the restriction of the cotangent bundle $\Omega_{\mathbb{P}^2}$ of the projective plane to a Fermat curve C of degree d in characteristic $p \equiv -1 \mod 2d$ is, up to tensoration with a certain line bundle, isomorphic to its Frobenius pull-back. This leads to a Frobenius periodicity $F^* (\mathcal{E}) \cong \mathcal{E}$ on the Fermat curve of degree $2d$, where $\mathcal{E} = \text{Syz}(U^2, V^2, W^2)(3)$.

Mathematical Subject Classification (2010): primary: 14H60; secondary: 13D40
Keywords: semistable vector bundle, syzygy bundle, Fermat curve, Frobenius periodicity, Hilbert-Kunz theory

1. Introduction

Let C be a smooth projective curve defined over a field K of characteristic $p > 0$. If F denotes the absolute Frobenius morphism $F : C \to C$, then we say that a vector bundle \mathcal{E} on C admits an (s, t)-Frobenius periodicity if there are natural numbers s and t, $t > s$, such that $F^{t*}(\mathcal{E}) \cong F^{s*}(\mathcal{E})$. Of particular interest are vector bundles which admit a $(0, t)$-Frobenius periodicity, i.e., $F^{t*}(\mathcal{E}) \cong \mathcal{E}$. By the classical theorem of H. Lange and U. Stuhler [19, Satz 1.4] such a bundle is étale trivializable, i.e., there exists an étale covering $f : D \to C$ such that $f^*(\mathcal{E}) \cong \mathcal{O}_D^r$ where $r = \text{rk}(\mathcal{E})$. Hence a vector bundle \mathcal{E} with a $(0, t)$-Frobenius periodicity comes from a (continuous) representation $\rho : \pi_1(C) \to GL_r(K)$ of the étale fundamental group $\pi_1(C)$ of the curve (see [ibid., Proposition 1.2]). We recall that a vector bundle which can be trivialized under an étale covering does not necessarily admit a Frobenius periodicity (see [9, Example 2.10] or [2, Example below Theorem 1.1]).

Quasicoherent modules over a scheme of positive characteristic allowing a Frobenius periodicity appear under several names (F-finite modules, unit $\mathcal{O}_X[F]$-modules) and from several perspectives (D-modules, local cohomology, Cartier modules, constructible sheaves on the étale site, Riemann-Hilbert correspondence) in the literature. Beside [19] we mention work of Katz [17, Proposition 4.1.1], Lyubeznik [21], Emerton and Kisin [11], Blickle [3] and Blickle and Böckle [4].

Despite the importance of vector bundles having a Frobenius periodicity, it is not easy to write down non-trivial explicit examples. For a line bundle
the condition becomes \(F^t \mathcal{L} = \mathcal{L}^t = \mathcal{L} \) (with \(q = p^t \)), so \(\mathcal{L} \) must be a torsion element in \(\text{Pic} \ C \) of order \(q - 1 \). For higher rank, a necessary condition is that the bundle \(\mathcal{S} \) has degree 0 and is semistable. By the periodicity it follows that the bundle is in fact strongly semistable, meaning that \(F^t(\mathcal{E}) \) is semistable for all \(t \geq 0 \). On the other hand, if the curve \(C \) and the bundle \(\mathcal{E} \) are defined over a finite field and \(\mathcal{E} \) is strongly semistable of degree 0, then there is necessarily a \((s,t)\)-Frobenius periodicity due to the fact that the number of isomorphism classes of semistable vector bundles of fixed rank and degree is finite ([19, Satz 1.9]). Nevertheless, it is still hard to detect the periodicity \(s \) and \(t \). If we have an extension \(0 \to \mathcal{O}_C \to \mathcal{S} \to \mathcal{O} \to 0 \) given by \(c \in H^1(C, \mathcal{O}_C) \), then its Frobenius pull-back is given by the class \(F^*(c) \), and one can get (semistable, but not stable) examples by looking at the Frobenius action on \(H^1(C, \mathcal{O}_C) \).

In this note we provide a down to earth example of a stable rank-2 vector bundle \(\mathcal{E} \) on a suitable Fermat curve admitting a \((0,1)\)-Frobenius periodicity. Moreover, this periodicity only depends on a congruence condition of the characteristic of the base field, not on its algebraic structure. Our main tools will be results of P. Monsky on the Hilbert-Kunz multiplicity of Fermat hypersurface rings and the geometric approach to Hilbert-Kunz theory developed independently by the first author in [7] and V. Trivedi in [26].

The results of this article are contained in Chapter 4 of the PhD-thesis [14] of the second author. Related results on the free resolution of Frobenius powers on a Fermat ring can be found in the preprint [18]. We thank Manuel Blickle, Aldo Conca, Neil Epstein and Andrew Kustin for useful discussions.

2. A lemma on global sections

To begin with we recall the notions of a syzygy bundle. Let \(K \) be a field and let \(R \) be a normal standard-graded \(K \)-domain of dimension \(d \geq 2 \). Then homogeneous \(R_+ \)-primary elements \(f_1, \ldots, f_n \) (i.e., \(\sqrt{(f_1, \ldots, f_n)} = R_+ \)) of degrees \(d_1, \ldots, d_n \) define a short exact (presenting) sequence

\[
0 \longrightarrow \text{Syz}(f_1, \ldots, f_n) \longrightarrow \bigoplus_{i=1}^n \mathcal{O}_X(-d_i) \overset{f_1, \ldots, f_n}{\longrightarrow} \mathcal{O}_X \longrightarrow 0
\]

on the projective scheme \(X = \text{Proj} R \). The kernel \(\text{Syz}(f_1, \ldots, f_n) \) is locally free and is called the syzygy bundle for the elements \(f_1, \ldots, f_n \).

In this article we only deal with restrictions of syzygy bundles of the form \(\text{Syz}(X^a, Y^a, Z^a) \), \(a \in \mathbb{N} \setminus \{0\} \), on \(\mathbb{P}^2 = \text{Proj} K[X, Y, Z] \) to a plane curve \(C \). Our main interest will be the case \(a = 1 \) which corresponds via the Euler sequence to the cotangent bundle \(\Omega_{\mathbb{P}^2}|_C \) on the projective plane. Since there will be no confusion in the sequel we also denote the restricted bundle on the curve by \(\text{Syz}(X^a, Y^a, Z^a) \).

Let \(K \) be a field and consider a smooth plane curve of the form

\[
V_+(Z^d - P(X, Y)) \subset \mathbb{P}^2 = \text{Proj} K[X, Y, Z],
\]
where $P(X,Y) \in K[X,Y]$ denotes a homogeneous polynomial of degree d. In this situation we can compute global sections of a rank-2 syzygy bundle of the form $\text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})$ by the following lemma which is a slight improvement over [6, Lemma 1]. It relates the sheaves $\text{Syz}(X^{a_1}, Y^{a_2}, P(X,Y)^k)$ with the sheaves $\text{Syz}(X^{a_1}, Y^{a_2}, P(X,Y)^k)$ which come from \mathbb{P}^1 via the Noetherian normalization $C = V_+(Z^d - P(X,Y)) \to \mathbb{P}^1 = \text{Proj} K[X,Y]$. We will use this result several times in the proof of our main theorem in the next section.

Lemma 2.1. Let K be a field and let $P(X,Y) \in K[X,Y]$ be a homogeneous polynomial of degree d. Suppose the plane curve

$$C := \text{Proj}(K[X,Y,Z]/(Z^d - P(X,Y)))$$

is smooth. Further, fix $a_1, a_2, a_3 \in \mathbb{N}_+$ and write $a_3 = dk + t$ with $0 \leq t < d$. Then we have for every $m \in \mathbb{Z}$ a surjective sheaf morphism

$$\varphi_m : S_k(m-t) \oplus S_{k+1}(m) \to \text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m)$$

$$(f_1, f_2, f_3)(g_1, g_2, g_3) \mapsto (Z^d f_1 + g_1, Z^d f_2 + g_2, f_3 + Z^{d-t} g_3)$$

for every $m \in \mathbb{Z}$, where $S_i := \text{Syz}(X^{a_1}, Y^{a_2}, P(X,Y)^i)$ for $i \geq 0$. Moreover, the corresponding map on global sections

$$\Gamma(C, S_k(m-t)) \oplus \Gamma(C, S_{k+1}(m)) \to \Gamma(C, \text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m))$$

is surjective for every $m \in \mathbb{Z}$.

Proof. We consider the sheaf morphism

$$\mathcal{O}_C(m-t-a_1) \oplus \mathcal{O}_C(m-t-a_2) \oplus \mathcal{O}_C(m-t-dk)$$

$$\oplus$$

$$\mathcal{O}_C(m-a_1) \oplus \mathcal{O}_C(m-a_2) \oplus \mathcal{O}_C(m-dk-d)$$

$$\mathcal{O}_C(m-a_1) \oplus \mathcal{O}_C(m-a_2) \oplus \mathcal{O}_C(m-a_3)$$

which maps $(s_1, s_2, s_3, s_4, s_5, s_6) \mapsto (Z^d s_1 + s_4, Z^d s_2 + s_5, s_3 + Z^{d-t} s_6)$. Clearly, φ_m maps $S_k(m-t) \oplus S_{k+1}(m)$ into $\text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m)$. Hence, the map φ_m is obtained from $\tilde{\varphi}_m$ via restriction to $S_k(m-t) \oplus S_{k+1}(m)$ and is therefore a morphism of sheaves. It is enough to prove that φ_m is surjective on global sections for all m. Let $s := (F,G,H) \in \Gamma(C, \text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m))$ be a non-trivial global section, i.e., $FX^{a_1} + GY^{a_2} + HZ^{a_3} = 0$ and $\deg(F) + a_1 = \deg(G) + a_2 = \deg(H) + a_3 = m$. We write

$$F = F_0 + F_1 Z + F_2 Z^2 + \ldots + F_{d-1} Z^{d-1}$$

$$G = G_0 + G_1 Z + G_2 Z^2 + \ldots + G_{d-1} Z^{d-1}$$

$$H = H_0 + H_1 Z + H_2 Z^2 + \ldots + H_{d-1} Z^{d-1}$$
with \(F_i, G_i, H_i \in K[X, Y] \) for \(i = 0, \ldots, d - 1 \). We have \(Z^{a_3} = Z^{dk + t} = (Z^d)^k Z^t = P(X, Y)^k Z^t \). Since \(s \) is a syzygy we obtain (by considering the \(K[X, Y] \))-component corresponding to \(Z^t \) a system of equations

\[
F_i Z^i X^{a_1} + G_i Z^i Y^{a_2} + H_{j(i)} Z^{i(i)} Z^{a_3} = 0,
\]

where \(j(i) \equiv i - t \mod d \). Thus \(s = (F, G, H) \) is the sum of the syzygies

\[
s_i := (F_i Z^i, G_i Z^i, H_{j(i)} Z^{i(i)}) \in \Gamma(C, \text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m))
\]

We show that each of these summands does either come from \(\Gamma(C, S_{k+1}(m)) \) or from \(\Gamma(C, S_k(m-t)) \). We fix one equation

\[
F_{i_0} Z^{i_0 X^{a_1} + G_{i_0} Z^{i_0 Y^{a_2} + H_{j(i_0)} Z^{j(i_0)} Z^{a_3} = 0}
\]

with \(j(i_0) \equiv i_0 - t \mod d \). First, we treat the case where \(i_0 < t \), hence \(j(i_0) = i_0 - t + d \). Factoring out \(Z^{i_0} \) and replacing \(Z^{a_3} \) by \(P(X, Y)^k Z^t \) yields

\[
0 = Z^{i_0} (F_{i_0} X^{a_1} + G_{i_0} Y^{a_2} + H_{j(i_0)} Z^{d-t} P(X, Y)^k Z^t) = Z^{i_0} (F_{i_0} X^{a_1} + G_{i_0} Y^{a_2} + H_{j(i_0)} P(X, Y)^{k+1})
\]

Hence \(g_{i_0} := (Z^{i_0} F_{i_0}, Z^{i_0} G_{i_0}, Z^{i_0} H_{j(i_0)}) \in \Gamma(C, S_{k+1}(m)) \) and \(\varphi_m(g_{i_0}) = s_{i_0} \). Next, we consider the case \(i_0 \geq t \), hence \(j(i_0) = i_0 - t \). We factor out \(Z^t \) and replace \(Z^{a_3} \). This gives

\[
0 = F_{i_0} Z^{j(i_0) + t X^{a_1} + G_{i_0} Z^{j(i_0) + t Y^{a_2} + H_{j(i_0)} Z^{j(i_0)} P(X, Y)^k Z^t} = Z^t (F_{i_0} Z^{j(i_0) X^{a_1} + G_{i_0} Z^{j(i_0) Y^{a_2} + H_{j(i_0)} Z^{j(i_0)} P(X, Y)^k})
\]

Hence we have \(h_{i_0} := (F_{i_0} Z^{j(i_0)}, G_{i_0} Z^{j(i_0)}, H_{j(i_0)} Z^{j(i_0)}) \in \Gamma(C, S_k(m-t)) \) and \(\varphi_m(h_{i_0}) = s_{i_0} \). \(\square \)

Remark 2.2. It is easy to see that the morphisms \(\varphi_m, m \in \mathbb{Z} \), are injective on both summands, i.e., the induced mappings

\[
S_k(m-t) \rightarrow \text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m), \ (f_1, f_2, f_3) \mapsto (Z^t f_1, Z^t f_2, f_3)
\]

and

\[
S_{k+1}(m) \rightarrow \text{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m), \ (g_1, g_2, g_3) \mapsto (g_1, g_2, Z^{d-t} g_3)
\]

are both injective.

Remark 2.3. The sheaves \(S_k \) and \(S_{k+1} \) are the pull-backs

\[
\pi^*(\text{Syz}_{p_1}(X^{a_1}, Y^{a_2}, P(X, Y)^k)) \text{ and } \pi^*(\text{Syz}_{p_1}(X^{a_1}, Y^{a_2}, P(X, Y)^{k+1}))
\]

respectively under the Noetherian normalization \(\pi : C \rightarrow \mathbb{P}^1 = \text{Proj } K[X, Y] \). In particular, \(S_k \) and \(S_{k+1} \) split as a direct sum of line bundles. If \(t = 0 \) we have \(\text{Syz}_C(X^{a_1}, Y^{a_2}, Z^{a_3}) \cong \text{Syz}_C(X^{a_1}, Y^{a_2}, P(X, Y)^k) \) and the bundle is therefore already defined on \(\mathbb{P}^1 \).
3. Frobenius periodicity up to a twist

Let \(C \) be a smooth projective curve defined over a field of positive characteristic. It is a well-known fact that the pull-back of a semistable vector bundle under the (absolute) Frobenius morphism is in general not semistable anymore; see for instance the example of Serre in [13, Example 3.2]. Using syzygy bundles on Fermat curves one can produce fairly easy examples of this phenomenon.

Example 3.1. Let \(C := \text{Proj}(\mathbb{F}_3[X, Y, Z]/(X^4 + Y^4 - Z^4)) \) be the Fermat quartic in characteristic 3. The cotangent bundle \(\Omega_{\mathbb{P}^2} \) is stable on the projective plane (see for instance [8, Corollary 6.4]) and so is the restriction \(\Omega_{\mathbb{P}^2}|_C = \text{Syz}(X, Y, Z) \) by Langer’s restriction theorem [20, Theorem 2.19]. Its Frobenius pull-back is the syzygy bundle \(\text{Syz}(X^3, Y^3, Z^3) \). The curve equation yields the relation \(X \cdot X^3 + Y \cdot Y^3 - Z \cdot Z^3 = 0 \) and thus we obtain a non-trivial global section of \((F^*(\Omega_{\mathbb{P}^2}|_C))(4)\). But the degree of this bundle equals \(-4\) and therefore \(F^*(\Omega_{\mathbb{P}^2}|_C) \) is not semistable.

A vector bundle \(\mathcal{E} \) such that \(F^e*(\mathcal{E}) \) is semistable for all \(e \geq 0 \) is called **strongly semistable**. This notion goes back to Miyaoka (cf. [22, Section 5]). Before we state our main theorem, we prove the following Lemma separately.

Lemma 3.2. Let \(d \geq 2 \) be an integer and let \(K \) be a field of characteristic \(p \equiv -1 \mod 2d \). Then \(\Omega_{\mathbb{P}^2}|_C \) is strongly semistable on the Fermat curve \(C := \text{Proj}(K[X, Y, Z]/(X^d + Y^d - Z^d)) \).

Proof. We use Hilbert-Kunz theory and its geometric interpretation developed in [7] and [26]. The Hilbert-Kunz multiplicity \(e_{HK}(R) \) of the homogeneous coordinate ring \(R := K[X, Y, Z]/(X^d + Y^d - Z^d) \) of the Fermat curve equals \(\frac{d^2}{4} \) in characteristic \(p \equiv -1 \mod 2d \) by Monsky’s result [24, Theorem 2.3]. By [7, Corollary 4.6] this is equivalent to the strong semistability of \(\Omega_{\mathbb{P}^2}|_C \) in these characteristics. \(\square \)

Remark 3.3. Note that for \(d = 1 \) we have \(C \cong \mathbb{P}^1 \) and \(\Omega_{\mathbb{P}^2}|_C \cong \mathcal{O}_C(-2) \oplus \mathcal{O}_C(-1) \), i.e., \(\Omega_{\mathbb{P}^2}|_C \) is not even semistable. For a general characterization of strong semistability of \(\Omega_{\mathbb{P}^2}|_C \) on the Fermat curve of degree \(d \) depending on the characteristic of the base field see [14, Chapter 4]. The restriction of \(\mathcal{S} \) to every smooth projective curve of degree \(\geq 7 \) is stable by Langer’s restriction theorem [20, Theorem 2.19].

Theorem 3.4. Let \(d \geq 2 \) be an integer and let \(K \) be a field of characteristic \(p \equiv -1 \mod 2d \). Then \(\mathcal{E} := \Omega_{\mathbb{P}^2}|_C \) is strongly semistable on the Fermat curve \(C := \text{Proj}(K[X, Y, Z]/(X^d + Y^d - Z^d)) \) and

\[
F^*(\mathcal{E}) \cong \mathcal{E}(-\frac{3(p-1)}{2}).
\]
Proof. The strong semistability of E in characteristics $p \equiv -1 \mod 2d$ has already been proved in Lemma 3.2. So we have to show that $F^*(E) \cong \text{Syz}(X_p, Y_p, Z_p) \cong E(-\frac{3(p-1)}{2})$. Since the proof is quite long, we divide it into several steps. Note that, since semistability is preserved under base change, we may assume without loss of generality that K is algebraically closed.

Step 1. We write $p = dk + (d - 1)$ with k odd. Accordingly, we set $t = d - 1$. Further, we follow the notation of Lemma 2.1 and define the bundles

$$S_k := \text{Syz}(X_p, Y_p, (X^d + Y^d)^k), \quad S_{k+1} := \text{Syz}(X_p, Y_p, (X^d + Y^d)^{k+1}).$$

We show that the surjective morphism

$$\varphi_{2p+1} : S_k(\frac{3p+1}{2} - t) \oplus S_{k+1}(\frac{3p+1}{2}) \to \text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2})$$

defined in Lemma 2.1 can be identified with

$$(\mathcal{O}_C(-d + 2) \oplus \mathcal{O}_C) \oplus \mathcal{O}_C^2 \to \text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2}).$$

We consider the vector bundle $\text{Syz}(U^{k+1}, V^{k+1}, (U + V)^k)(\frac{3k+1}{2})$ on the projective line $\mathbb{P}^1 = \text{Proj} K[U, V]$. Since the degree of this bundle is -1, it has to have a non-trivial global section. Substituting $U = X^d$ and $V = Y^d$ yields a non-trivial syzygy

$$FX^{dk+d} + GY^{dk+d} + H(X^d + Y^d)^k = (FX)X^p + (GY)Y^p + H(X^d + Y^d)^k = 0$$

of total degree $\frac{3dk+d}{2}$. That is, we have a non-trivial global section of $S_k(\frac{3dk+d}{2})$ on the curve C. We have $\Gamma(C, S_k(\frac{3dk+d}{2} - 1)) = 0$ because otherwise the twisted semistable Frobenius pull-back $\text{Syz}(X^p, Y^p, Z^p)(\frac{3dk+d}{2} + d - 2)$ of degree $-d$ would have a non-trivial global section too (see Remark 2.2) which is impossible by semistability. Since deg($S_k(\frac{3dk+d}{2})$) = $(-d + 2)d$, we obtain the splitting (rewrite $\frac{3dk+d}{2} = \frac{3p+1}{2} - (d - 1) = \frac{3p+1}{2} - t$)

$$S_k(\frac{3p+1}{2} - t) \cong \mathcal{O}_C(-d + 2) \oplus \mathcal{O}_C.$$

The other summand $S_{k+1}(\frac{3dk+d}{2} + d - 1)$ has degree 0. It follows once again from Lemma 2.1 and the semistability of $\text{Syz}(X^p, Y^p, Z^p)$ that

$$\Gamma(C, S_{k+1}(\frac{3dk+d}{2} + d - 2)) = 0,$$

i.e., $S_{k+1}(\frac{3dk+d}{2} + d - 1)$ splits as (rewrite $\frac{3dk+d}{2} + d - 1 = \frac{3p+1}{2}$)

$$S_{k+1}(\frac{3p+1}{2}) \cong \mathcal{O}_C^2.$$

Step 2. Let (FX, GY, H) be the non-trivial global section of $S_k(\frac{3p+1}{2} - t)$ constructed above (corresponding to the component \mathcal{O}_C). We show that $H(P) \neq 0$ for every point $P = (x, y, z) \in C$ satisfying $z^d = x^d + y^d = 0$.

The last component H of the section (FX, GY, H) is a homogeneous polynomial in X^d and Y^d (it stems by construction from a syzygy on \mathbb{P}^1 in U and V). Let $P = (x, y, z) \in C$ be a point on the curve such that $z^d = x^d + y^d = 0$. Then $x^d = -y^d$ which implies $x = \zeta y$ where ζ is a dth root of -1. In particular, $P = (\zeta y, y, 0)$. Since K is algebraically closed, $\text{char}(K) \neq 2$ and $p \equiv -1 \mod 2d$, the group $\mu_{2d}(K)$ of $(2d)$th roots of unity in K has order $2d$. Hence, we have

$$X^d + Y^d = \prod_\zeta (X - \zeta Y),$$

where $\zeta \in \mu_{2d}(K)$ runs through the elements with the property $\zeta^d = -1$ (there are exactly d such roots). Now assume $H(P) = 0$. Then $H(P') = 0$ for all points P' of the form $P' = (\zeta y, y, 0)$. So $X^d + Y^d$ has to divide H, i.e., $H = \tilde{H}(X^d + Y^d)$ with a homogeneous polynomial $\tilde{H} \in K[X, Y]$. So we have a relation

$$(FX)X^p + (GY)Y^p + \tilde{H}(X^d + Y^d)^{k+1} = 0$$

of total degree $\frac{3p+1}{2} - t$. That is, we have a non-trivial section of the bundle $S_{k+1}(\frac{3p+1}{2} - t)$. This section maps by Lemma 2.1 and Remark 2.2 to a non-trivial global section of $\text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2} - t)$. But

$$\deg(\text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2} - t)) = (3p + 1 - 2t - 3p)d = (1 - 2t)d < 0.$$

Hence, the section contradicts the semistability of $\text{Syz}(X^p, Y^p, Z^p)$.

Step 3. We show that in the surjective sheaf homomorphism

$$\varphi_{\frac{3p+1}{2}} : (\mathcal{O}_C(-d + 2) \oplus \mathcal{O}_C) \oplus \mathcal{O}_C^2 \longrightarrow \text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2})$$

the summand $\mathcal{O}_C(-d + 2)$ is not necessary, i.e.,

$$\varphi_{\frac{3p+1}{2}} : \mathcal{O}_C^3 = \mathcal{O}_C \oplus \mathcal{O}_C^2 \longrightarrow \text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2})$$

is also surjective.

Set $m := \frac{3p+1}{2}$. By the Nakayama lemma, we can check surjectivity pointwise over the residue field K at every point $P = (x, y, z) \in C$. For this we have to find two linearly independent vectors in the image. First we treat the case $z \neq 0$. We show that we even have a surjective map

$$S_{k+1}(m) = \mathcal{O}_C^2 \longrightarrow \text{Syz}(X^p, Y^p, Z^p)(m).$$

We take basic sections

$$f = (f_1, f_2, f_3), g = (g_1, g_2, g_3) \in \Gamma(C, S_{k+1}(m)) \cong \Gamma(C, \mathcal{O}_C^2).$$

Their images are $\tilde{f} = (f_1, f_2, Z f_3)$ and $\tilde{g} = (g_1, g_2, Z g_3)$. Assume there is a relation $\tilde{f}(P) + \lambda \tilde{g}(P) = 0$ with $\lambda \in K^\times$. Looking at each component this
such that \(v, w \)

therefore we would obtain a relation \(f(P) + \lambda g(P) = 0 \) which contradicts the assumption.

Now we deal with the case \(z = 0 \), i.e., \(P = (x, y, 0) \). Let

\[
f = (FX, GY, H) \in \Gamma(C, S_k(m - t)) \cong \Gamma(C, \mathcal{O}_C(-d + 2) \oplus \mathcal{O}_C)
\]

be the section (corresponding to \(\mathcal{O}_C \) which we have found in step 1. The image of \(f \) in the bundle \(\text{Syz}(X^p, Y^p, Z^p)(m) \) is the section \((Z^iFX, Z^iGY, H) \). Evaluated at \(P \) we obtain the vector \(v = (0, 0, H(P)) \). Since \(0 = z^d = x^d + y^d \)
we have \(H(P) \neq 0 \) by step 2. Now we take a section \(0 \neq g = (g_1, g_2, g_3) \in \Gamma(C, S_k+1(m)) \cong \Gamma(C, \mathcal{O}_C^3) \). The image of \(g \) equals \((g_1, g_2, Zg_3) \). Evaluation at \(P \) gives the vector \(w = (g_1(P), g_2(P), 0) \), where either \(g_1(P) \) or \(g_2(P) \) is not 0 (otherwise \(g_3(P) \) would be 0 as well). Hence we have found a vector \(w \) such that \(v, w \) are linearly independent over \(K \).

Step 4. So far we have shown that we have a surjective morphism

\[
\mathcal{O}_C^3 \twoheadrightarrow \text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2}) \to 0.
\]

Since \(\det(\text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2})) \cong \mathcal{O}_C(-1) \) we have a short exact sequence

\[
0 \to \mathcal{O}_C(-1) \to \mathcal{O}_C^3 \to \text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2}) \to 0.
\]

Dualizing and tensoring with \(\mathcal{O}_C(-1) \) gives

\[
0 \to (\text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2}))^\vee(-1) \to \mathcal{O}_C^3(-1) \to \mathcal{O}_C \to 0,
\]

where the map \(\mathcal{O}_C^3(-1) \to \mathcal{O}_C \) is given by some linear forms \(L_1, L_2, L_3 \)
in the homogeneous coordinate ring \(R = K[X, Y, Z]/(X^d + Y^d - Z^d) \). In particular, we have \((\text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2}))^\vee(-1) \cong \text{Syz}(L_1, L_2, L_3) \). We show that \(\{L_1, L_2, L_3\} \) and \(\{X, Y, Z\} \) generate the same ideal in \(R \). Assume to the contrary that \(L_1, L_2, L_3 \) are linearly dependent. Such an equation yields a non-trivial section of \(\text{Syz}(L_1, L_2, L_3)(1) \). This bundle has degree \(\deg(\text{Syz}(L_1, L_2, L_3)(1)) = (2 - 3)d = -d < 0 \). But since \(\text{Syz}(X^p, Y^p, Z^p) \) is semistable, so is \((\text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2}))^\vee \) and thus also \(\text{Syz}(L_1, L_2, L_3) \). So the section contradicts the semistability.

Step 5. We have already proved that

\[
\mathcal{E} \cong \text{Syz}(X, Y, Z) \cong (\text{Syz}(X^p, Y^p, Z^p)(\frac{3p + 1}{2}))^\vee(-1).
\]
Since $\text{Syz}(X^p, Y^p, Z^p)$ is a bundle of rank 2, we have
\[\text{Syz}(X^p, Y^p, Z^p) \cong \text{Syz}(X^p, Y^p, Z^p) \otimes O_C(-3p). \]
So finally we obtain
\[
\mathcal{E} \cong \text{Syz}(X, Y, Z) \\
\cong (\text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2}))^\vee(-1) \\
\cong \text{Syz}(X^p, Y^p, Z^p)^\vee \otimes O_C(-\frac{3p+1}{2}) \otimes O_C(-1) \\
\cong \text{Syz}(X^p, Y^p, Z^p) \otimes O_C(3p) \otimes O_C(-\frac{3p+1}{2}) \otimes O_C(-1) \\
\cong \text{Syz}(X^p, Y^p, Z^p)(\frac{3p-1}{2}),
\]
and consequently $F^*(\mathcal{E}) \cong \text{Syz}(X^p, Y^p, Z^p) \cong \mathcal{E}(\frac{-3p-1}{2})$ which finishes the proof.

Remark 3.5. We also comment on the case $p \equiv 1 \mod 2d$. Then we write $p = dk + 1$ with k even and set $t = 1$. The syzygy bundle $\text{Syz}(U^k, V^k, (U + V)^{k+1})(\frac{3k}{2})$ on $\mathbb{P}^1 = \text{Proj} K[U, V]$ has degree -1 and therefore has to have a non-trivial global section. Substituting $U = X^d$ and Y^d and multiplying with XY gives then a syzygy
\[
(FY)X^p + (GX)Y^p + (HXY)(X^d + Y^{d+1}) = 0,
\]
i.e., a global section of $\mathcal{S}_{k+1}(\frac{3dk}{2} + 2)$ on the Fermat curve. As in the proof of Theorem 3.4 we obtain the splittings (rewrite $\frac{3dk}{2} + 2 = \frac{3p+1}{2}$)
\[
\mathcal{S}_{k+1}(\frac{3p+1}{2}) \cong O_C(-d + 2) \oplus O_C \text{ and } \mathcal{S}_k(\frac{3p+1}{2} - t) \cong O_C^2.
\]
Unfortunately, we do not know how to prove an analog of step 2 in these characteristics, i.e., to show that $H(P) \neq 0$ for every point $P = (x, y, z) \in C$ with $x^d = x^d + y^d = 0$. Here the reasoning of the proof (step 2) of Theorem 3.4 would lead to a section of $\text{Syz}(X^p, Y^p, (X^d + Y^{d+1})^{k+2})$ which is not helpful to get a contradiction.

Remark 3.6. We cannot expect that Theorem 3.4 holds in every characteristic p where $\Omega_{xz}|_C$ is strongly semistable. For example, consider in characteristic 2 the Fermat cubic $C = \text{Proj}(K[X, Y, Z]/(X^3 + Y^3 - Z^3))$, which is an elliptic curve. It is a well-known fact that semistable vector bundles on elliptic curves are strongly semistable (see for instance [27, appendix]). Hence $\Omega_{xz}|_C \cong \text{Syz}(X, Y, Z)$ is strongly semistable by [5, Proposition 6.2]. The pullback $F^*(\Omega_{xz}|_C) \cong \text{Syz}(X^2, Y^2, Z^2)$ has for the first time non-trivial global sections in total degree 3, namely the (only) syzygy $(X, Y, -Z)$ which comes
from the equation of the curve. This section gives rise to the short exact sequence

\[0 \rightarrow \mathcal{O}_C \rightarrow \text{Syz}(X^2, Y^2, Z^2)(3) \rightarrow \mathcal{O}_C \rightarrow 0, \]

i.e., Syz\((X^2, Y^2, Z^2)(3)\) is the bundle \(F_2\) in Atiyah’s classification [1]. Since the Hasse invariant of \(C\) is 0, we have \(F^*(F_2) \cong \mathcal{O}_C^2\) and therefore \(F^*(\Omega_{p2}|_C) \not\cong \Omega_{p2}|_C(-\frac{3(p-1)}{2})\). We have \(F^{2*}(\Omega_{p2}|_C) \cong \mathcal{O}_C(-6) \oplus \mathcal{O}_C(-6)\) and we obtain (up to a twist) the periodicity \(F^{3*}(\Omega_{p2}|_C) \cong (F^{2*}(\Omega_{p2}|_C))(-6)\).

4. A computation of the Hilbert-Kunz function

We recall that the Hilbert-Kunz function of a standard graded ring \(R\) of characteristic \(p > 0\) with graded maximal ideal \(m\) is the function

\[e \mapsto \varphi_R(e) := \text{length}(R/m^{\lceil pe \rceil}), \]

where \(m^{\lceil pe \rceil}\) denotes the extended ideal under the \(e\)-th iteration of the Frobenius endomorphism on \(R\); see for instance [23] for this rather complicated function and its properties. As a consequence of Theorem 3.4 we obtain the complete Hilbert-Kunz function of the Fermat ring \(R = K[X, Y, Z]/(X^d+Y^d-Z^d)\) in characteristics \(p \equiv -1 \mod 2d\). The following result is implicitly contained in [12, Lemma 5.6] of P. Monsky and C. Han.

Corollary 4.1. Let \(d \geq 2\) be a positive integer and let \(K\) be a field of characteristic \(p \equiv -1 \mod 2d\). Then the Hilbert-Kunz function of the Fermat ring \(R = K[X, Y, Z]/(X^d+Y^d-Z^d)\) is

\[\varphi_R(e) = \frac{3d}{4}p^{2e} + 1 - \frac{3d}{4} \]

Proof. Since the length of \(R/m^{\lceil pe \rceil}\), \(m = (X, Y, Z)\), does not change if one enlarges the base field, we may assume that \(K\) is algebraically closed. Hence, \(\varphi_R(e) = \sum_{m=0}^{\infty} \text{dim}_K(R/m^{\lceil pe \rceil})_m\) (this sum is in fact finite since the algebras \(R/m^{\lceil pe \rceil}\) have finite length). It follows from the presenting sequence of \(\text{Syz}(X, Y, C)\) on the Fermat curve \(C = \text{Proj} R\) that (setting \(q := p^e\))

\[(\ast) \quad \text{dim}_K(R/m^{[q]})_m = h^0(C, \mathcal{O}_C(m) - 3h^0(C, \mathcal{O}_C(m-q)) + h^0(C, \text{Syz}(X^q, Y^q, Z^q)(m)). \]

By Theorem 3.4 we have \(\text{Syz}(X^p, Y^p, Z^p) \cong \text{Syz}(X, Y, Z)(-\frac{3(p-1)}{2})\) and consequently \(\text{Syz}(X^q, Y^q, Z^q) \cong \text{Syz}(X, Y, Z)(-\frac{3(q-1)}{2})\) for all \(q = p^e, e \geq 1\). The global evaluation of the presenting sequence of \(\mathcal{E}(k) := \text{Syz}(X, Y, Z)(k)\) gives the exact sequence

\[0 \rightarrow \Gamma(C, \mathcal{E}(k)) \rightarrow \Gamma(C, \mathcal{O}_C(k-1)^3) \rightarrow \Gamma(C, \mathcal{O}_C(k)) \rightarrow K \rightarrow 0 \]

for \(k = 0\) and the short exact sequence

\[0 \rightarrow \Gamma(C, \mathcal{E}(k)) \rightarrow \Gamma(C, \mathcal{O}_C(k-1)^3) \rightarrow \Gamma(C, \mathcal{O}_C(k)) \rightarrow 0 \]
for $k \geq 1$. Hence we obtain

$$h^0(C, \mathcal{E}(k)) = \begin{cases} 3h^0(C, \mathcal{O}_C(k - 1)) - h^0(C, \mathcal{O}_C(k)) + 1 & \text{if } k = 0, \\ 3h^0(C, \mathcal{O}_C(k - 1)) - h^0(C, \mathcal{O}_C(k)) & \text{if } k \neq 0. \end{cases}$$

For $k \geq d - 2$ we have by Riemann-Roch $h^0(C, \mathcal{O}_C(k)) = dk - g + 1$, where g is the genus of the curve. Since $p \equiv -1 \mod 2d$, this holds in particular for $k \geq \frac{p+1}{2}$. So the geometric formula for the Hilbert-Kunz function (*) gives (in order to obtain an easier calculation we sum up to $2q$):

$$\varphi_R(e) = \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) - 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m - q))$$

$$+ 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m - \frac{3(q-1)}{2} - 1))$$

$$- 2 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m - \frac{3(q-1)}{2})) + 1$$

$$= \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) - 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m))$$

$$+ 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) - \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) + 1$$

$$= \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) - 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) + 1$$

$$= \sum_{m=\frac{q+3}{2}}^{2q} (dm - g + 1) - 3 \sum_{m=\frac{q+3}{2}}^{2q} (dm - g + 1) + 1$$

$$= d \left(q(2q+1) - \frac{(q+3)(q+5)}{8} \right) - \frac{3g(q-1)}{2} + \frac{3(q-1)}{2}$$

$$- 3d \left(\frac{q(q+1)}{2} - \frac{(q+1)(q+3)}{8} \right) + \frac{3g(q-1)}{2} - \frac{3(q-1)}{2} + 1$$

$$= \frac{3d}{4} q^2 + 1 - \frac{3d}{4}.$$

Thus we have obtained the desired formula for the Hilbert-Kunz function of the ring R. \hfill \square

Remark 4.2. Corollary 4.1 matches for $d = 3$ with the result [10, Theorem 4] of Buchweitz and Chen, which says that the Hilbert-Kunz function of the
homogeneous coordinate ring of a plane elliptic curve defined over a field K of odd characteristic p equals $\frac{4}{3}p^2e - \frac{3}{4}$.

5. Examples of a $(0,1)$-Frobenius periodicity on Fermat curves

In this section, we show how to get via Theorem 3.4 non-trivial examples of $(0,1)$-Frobenius periodicities, i.e., we give explicit examples of vector bundles E on certain Fermat curves such that $E \cong F^*(E)$.

Example 5.1. Let $d \geq 2$ and let K be a field of characteristic $p \equiv -1 \mod 2d$. The ring homomorphism

$$K[X, Y, Z]/(X^d + Y^d - Z^d) \longrightarrow K[U, V, W]/(U^{2d} + V^{2d} - W^{2d})$$

which sends $X \mapsto U^2$, $Y \mapsto V^2$, and $Z \mapsto W^2$ induces a finite cover $f : C^{2d} \rightarrow C^d$, where C^d denotes the Fermat curve of degree i. Since $f^*(\mathcal{O}_{C^{2d}}(1)) \cong \mathcal{O}_{C^{2d}}(2)$, we see that $\deg(f) = 4$. The group $\mathbb{Z}/(2) \times \mathbb{Z}/(2)$ acts on C^{2d} by sending (u, v, w) either to (u, v, w), $(-u, v, w)$, $(u, -v, w)$, or $(u, v, -w)$, and C^d is the quotient of this action. Moreover, f is a finite separable morphism and therefore f preserves semistability. Theorem 3.4 gives, via pull-back under f, the isomorphic vector bundles

$$\text{Syz}_{C^{2d}}(U^{2p}, V^{2p}, W^{2p}) \cong f^*(\text{Syz}_{C^d}(X^p, Y^p, Z^p))$$
$$\cong f^*(\text{Syz}_{C^d}(X, Y, Z)(-\frac{3(p - 1)}{2}))$$
$$\cong f^*(\text{Syz}_{C^d}(X, Y, Z)) \otimes f^*(\mathcal{O}_{C^d}(-\frac{3(p - 1)}{2}))$$
$$\cong \text{Syz}_{C^{2d}}(U^2, V^2, W^2)(-3(p - 1))$$

on the Fermat curve C^{2d}. In particular, we have the periodicity

$$\text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3) \cong F^*(\text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3))$$

(note that this bundle has degree 0 and is not trivial since there are no non-trivial global sections below the degree of the curve).

Remark 5.2. By the classical result [19, Satz 1.4] of H. Lange and U. Stuhler the periodicity $\text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3) \cong F^*(\text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3))$ in Example 5.1 implies the existence of an étale cover

$$g : D \longrightarrow C^{2d}$$

such that

$$g^*(\text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3)) \cong \mathcal{O}_D^2.$$
of the algebraic fundamental group \(\pi_1(C^{2d}) \). It would be interesting to see how the étale trivialization \(g \) and the representation \(\rho \) look explicitly in this example.

Remark 5.3. In this remark we show that \(\mathcal{E} := \text{Syz}(U^2, V^2, W^2)(3) \) is not étale trivializable in characteristic 0. We consider this bundle on the smooth projective relative curve

\[
C^{2d} := \text{Proj}(\mathbb{Z}[U, V, W]/(U^{2d} + V^{2d} - Z^{2d})) \to \text{Spec} \mathbb{Z}_{2d}.
\]

For a prime number \(p \equiv 2d \) the special fiber \(C_p^{2d} \) over \((p) \) is the (smooth) Fermat curve over the finite field \(\mathbb{F}_p \). The generic fiber \(C_0^{2d} \) over \((0) \) is the Fermat curve over \(\mathbb{Q} \). To prove that \(\mathcal{E}_0 := \mathcal{E}|_{C_0^{2d}} \) is not étale trivializable on \(C_0^{2d} \) we use once again Hilbert-Kunz theory (cf. also the proof of Lemma 3.2). Note that \(\mathcal{E}_0 \) is semistable by [5, Proposition 2]. If \(d \geq 4 \) is even (the case \(d = 2 \) is trivial) we consider prime numbers \(p \equiv d \pm 1 \) mod \(2d \) and if \(d \geq 3 \) is odd we look at prime numbers \(p \equiv d \) mod \(2d \). In these characteristics, [24, Theorem 2.3] yields that the Hilbert-Kunz multiplicity \(e_{HK}(R_p) \) of the homogeneous coordinate ring \(R_p \) of the Fermat curve \(C^d \to \text{Spec} \mathbb{F}_p \) of degree \(d \) equals

\[
e_{HK}(R_p) = \frac{3d}{4} \frac{(d(d-3))^2}{4dp^2} \quad \text{if } d \text{ is even and } e_{HK}(R_p) = \frac{3d}{4} + \frac{d^3}{4p^2} \quad \text{if } d \text{ is odd}.
\]

Hence, \(\Omega_{\mathbb{Z}^2|C^d} \) is not strongly semistable by [7, Corollary 4.6]. Since we can realize the fibers \(C_p^{2d} \), as in Example 5.1, as coverings \(f : C_p^{2d} \to C^d \), the bundles \(\mathcal{E}_p := \mathcal{E}|_{C_p^{2d}} \cong f^*(\Omega_{\mathbb{Z}^2|C^d})(3) \) are not strongly semistable either. Note that by the well-known theorem of Dirichlet (cf. [25, Chapitre VI, §4, Théorème et Corollaire]) there are infinitely many such fibers. Therefore, there is no étale cover \(g : D \to C_0^{2d} \) such that \(g^*(\mathcal{E}_0) \cong \mathcal{O}_D \).

This observation is somehow related to the Grothendieck-Katz \(p \)-curvature conjecture [16, (I quat)] which states the following: Let \(R \) be a \(\mathbb{Z} \)-domain of finite type, \(\mathbb{Z} \subseteq R \), and \(\mathcal{X} \to \text{Spec} R \) a smooth projective morphism of relative dimension \(d \geq 1 \). If \(\mathcal{E} \) is a vector bundle on \(\mathcal{X} \to \text{Spec} R \) equipped with an integrable connection \(\nabla \) such that \(\nabla|_{\mathcal{X}_p} \) has \(p \)-curvature 0 on the special fiber \(\mathcal{X}_p \) for almost all closed points \(p \in \text{Spec} R \), then there exists an étale cover \(g : Y \to \mathcal{X}_0 \) of the generic fiber \(\mathcal{X}_0 \) such that \((g^*(\mathcal{E}_0), g^*(\nabla_0))\) is trivial. For a detailed account on integrable connections and \(p \)-curvature see [15] and [16].

In our example of the relative Fermat curve \(C^{2d} \), we have for infinitely many prime numbers \(p \equiv -1 \) mod \(2d \) the Frobenius descent \(F^*(\mathcal{E}_p) \cong \mathcal{E}_p \) on \(C_p^{2d} \). By the so-called Cartier-correspondence [15, Theorem 5.1] this is equivalent to the existence of an integrable connection \(\nabla_p \) on \(\mathcal{E}_p \) with vanishing \(p \)-curvature. If one could establish a connection on \(\mathcal{E} \) (since \(\mathcal{E} \) is a vector bundle over a curve, this connection would be automatically integrable) which is compatible with the connections on the special fibers \(C_p^{2d}, p \equiv -1 \) mod \(2d \), then our example would show that the Grothendieck-Katz conjecture does not hold if one only requires vanishing \(p \)-curvature for infinitely many closed points.
Remark 5.4. In this remark we assume that the base field is algebraically closed. We consider the Verschiebung

\[V : \mathcal{M}_{C^{2d}}(2, \mathcal{O}_{C^{2d}}) \rightarrow \mathcal{M}_{C^{2d}}(2, \mathcal{O}_{C^{2d}}), \ [\mathcal{E}] \mapsto [F^*\mathcal{E}] \]

induced by the Frobenius morphism on \(C^{2d} \). We recall that the Verschiebung is a rational map from the moduli space \(\mathcal{M}_{C^{2d}}(2, \mathcal{O}_{C^{2d}}) \) parametrizing (up to \(S \)-equivalence) semistable vector bundles on \(C^{2d} \) of rank 2 and trivial determinant to itself. The vector bundle \(S := \text{Syz}(U^2, V^2, W^2) \) is stable on the projective plane \(\mathbb{P}^2 = \text{Proj} K[U, V, W] \) by [8, Corollary 6.4]. Since the discriminant of this bundle equals \(\Delta(S) = 4c_2(S) - c_1(S)^2 = 12 \), the restriction of \(S \) to every smooth projective curve of degree \(\geq 7 \) remains stable by Langer’s restriction theorem [20, Theorem 2.19]. In particular, \(S|_{C^{2d}} \cong \text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3) \) is stable on the Fermat curve \(C^{2d} \) for \(d \geq 4 \). Hence, for \(d \geq 4 \) the bundle \(\text{Syz}_{C^{2d}}(U^2, V^2, W^2)(3) \) defines a closed point of \(\mathcal{M}_{C^{2d}}(2, \mathcal{O}_C) \) which is fixed under the Verschiebung \(V \).

Remark 5.5. We may pull-back the vector bundle \(E = \text{Syz}(U^2, V^2, W^2)(3) \) along the cone mapping

\[p : T = \text{Spec} K[U, V, W]/(U^{2d} + V^{2d} - W^{2d}) \setminus \{m\} \rightarrow C^{2d} \]

to obtain the bundle \(G = p^*(E) \) on the punctured spectrum with the property \(F^*(G) \cong G \). This can however not be extended to get a Frobenius periodicity on the module level, since \(F^*\Gamma(T, G) \neq \Gamma(T, F^*G) \). A Frobenius periodicity for a coherent \(R \)-module \(M \), where \(R \) is a local noetherian domain, implies that \(M \) is free. This observation follows by looking at Fitting ideals of a free resolution (we thank Manuel Blickle and Neil Epstein for this remark).

References

1. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414–452.
2. I. Biswas and L. Ducrohet, An analog of a theorem of Lange and Stuhler for principal bundles, C.R. Acad. Sci. Paris, Ser. I 345 (2007), no. 9, 495–497.
3. M. Blickle, Minimal \(\gamma \)-sheaves, Algebra and Number Theory 2 (2008), no. 3, 347–368.
4. M. Blickle and G. Böckle, Cartier modules: finiteness results, Preprint (2009).
5. H. Brenner, Computing the tight closure in dimension two, Math. Comput. 74 (2005), no. 251, 1495–1518.
6. , On a problem of Miyaoka, Number Fields and Function Fields - Two Parallel Worlds (B. Moonen R. Schoof G. van der Geer, ed.), Progress in Mathematics, vol. 239, Birkhäuser, 2005, pp. 51–59.
7. , The rationality of the Hilbert-Kunz multiplicity in graded dimension two, Math. Ann. 334 (2006), no. 1, 91–110.
8. , Looking out for stable syzygy bundles, Adv. Math. 219 (2008), no. 2, 401–427.
9. H. Brenner and A. Kaid, On deep Frobenius descent and flat bundles, Math. Res. Lett. 15 (2008), no. 5-6, 1101–1115.
10. R.-O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997), no. 1, 246–267.
11. M. Emerton and M. Kisin, *The Riemann-Hilbert Correspondence for Unit F-Crystals*, Astérisque, vol. 293, Société Mathématique de France, 2004.
12. C. Han and P. Monsky, *Some surprising Hilbert-Kunz functions*, Math. Z. 214 (1993), 119–135.
13. R. Hartshorne, *Ample vector bundles on curves*, Nagoya Math. J. 43 (1971), 73–89.
14. A. Kaid, *On semistable and strongly semistable syzygy bundles*, PhD-thesis, University of Sheffield, 2009.
15. N. M. Katz, *Nilpotent connections and the monodromy theorem: applications of a result of Turrittin*, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232.
16. *Algebraic solutions of differential equations (p-curvature and the Hodge filtration)*, Invent. Math. 18 (1972), 1–118.
17. *p-adic properties of modular forms*, Modular Functions of One Variable, Lect. Notes in Math., vol. 350, 1973, pp. 69–190.
18. A. Kustin, H. Rahmati, and A. Vraciu, *The resolution of the bracket powers of the maximal ideal in a diagonal hypersurface*, Preprint (2010).
19. H. Lange and U. Stuhler, *Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe*, Math. Zeitschrift 156 (1977), 73–83.
20. A. Langer, *Moduli spaces of sheaves and principal G-bundles*, Algebraic geometry, Seattle 2005 (D. Abramovich et al., ed.), Proc. Symp. Pure Math., vol. 80, AMS, 2009, pp. 273–308.
21. G. Lyubeznik, *F-modules: applications to local cohomology and D-modules in characteristic $p > 0$*, J. reine angew. Math. 491 (1997), 65–130.
22. Y. Miyaoka, *The Chern class and Kodaira dimension of a minimal variety*, Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., vol. 10, 1987, pp. 449–476.
23. P. Monsky, *The Hilbert-Kunz function*, Math. Ann. 263 (1983), 43–49.
24. *The Hilbert-Kunz multiplicity of an irreducible trinomial*, J. Algebra 304 (2006), no. 3, 1101–1107.
25. J. P. Serre, *Cours d’arithmétique*, Presses Universitaires de France, 1970.
26. V. Trivedi, *Semistability and Hilbert-Kunz multiplicity for curves*, J. Algebra 284 (2005), no. 2, 627–644.
27. L. W. Tu, *Semistable bundles over an elliptic curve*, Adv. Math. 98 (1993), 1–26.