A dual rigidity of the sphere and the hyperbolic plane
Magdalena Caballero and Rafael M. Rubio
Departamento de Matemáticas, Campus de Rabanales,
Universidad de Córdoba, 14071 Córdoba, Spain,
E-mails: magdalena.caballero@uco.es, rmrubio@uco.es

Abstract
There are several well-known characterizations of the sphere as a regular surface in
the Euclidean space. By means of a purely synthetic technique, we get a rigidity result for
the sphere without any curvature conditions, nor completeness or compactness. As well
as a dual result for the hyperbolic plane, the spacelike sphere in the Minkowski space.

2010 MSC: 53A05, 53A35, 53C24.
Keywords: Euclidean and Lorentzian Geometries, Sphere and Hyperbolic Plane.

1 Introduction
In 1897 Hadamard proved that any compact connected regular surface with positive Gaussian
curvature in the three-dimensional Euclidean space \(\mathbb{E}^3 \) is a topological sphere, \([3]\). His result
motivated the search for conditions to conclude that such a surface is necessarily a round
sphere (an Euclidean sphere). Two answers were given by Liebmann. The first one, in 1899
\([6]\), proved the rigidity of the sphere, conjectured by F. Minding in 1939,

\[
\text{If } S \text{ is a compact and connected regular surface in } \mathbb{E}^3 \text{ with constant Gaussian curvature } K, \text{ then } M \text{ is a sphere of radius } 1/\sqrt{K}.
\]

The second one involves the mean curvature, \([7]\).

\[
\text{Any compact and connected regular surface in } \mathbb{E}^3 \text{ with positive Gaussian curvature and constant mean curvature is a sphere.}
\]

Shortly after, Hilbert gave a simpler proof of the first result, \([4]\). His ideas were used by Chern in \([2]\) to get a more general characterization of the sphere, concerning Weingarten surfaces. He obtained the previous two results by Liebmann as corollaries.

Another result on the sphere involving the Gaussian curvature, which is a direct consequence of a result by Hopf \([5]\), asserts that it is the only complete and simply connected regular surface in \(\mathbb{E}^3 \) with positive constant Gaussian curvature.

The last characterization of the sphere we will mention is the Alexandrov theorem, which assures that a compact and connected regular surface of constant mean curvature in \(\mathbb{E}^3 \) is a sphere, \([1]\).
Now consider the Minkowski space \mathbb{L}^3. A regular surface in this space is called spacelike if its induced metric is Riemannian. In this setting, the hyperbolic plane \mathbb{H}^2 can be realized as one connected component of the hyperboloid of two sheets, and so it can be viewed as the spacelike sphere in \mathbb{L}^3. Analogously to the (Euclidean) sphere, the hyperbolic plane can be characterized as the only spacelike regular surface in \mathbb{L}^3 which is complete, simply connected and with negative constant Gaussian curvature, [5].

In this work, we are interested in surfaces foliated by circles. R. López proved that a surface in \mathbb{E}^3 with constant Gaussian curvature and foliated by pieces of circles is included in a sphere, or the planes containing the circles of the foliation are parallel, [8]. In [9], the same author obtained the dual result in \mathbb{L}^3. It states that a spacelike surface in \mathbb{L}^3 with constant Gaussian curvature and foliated by pieces of circles must be a portion of a hyperbolic plane, unless the planes of the foliation are parallel.

This paper is devoted to prove natural dual characterizations of the sphere in \mathbb{E}^3 and the hyperbolic plane in \mathbb{L}^3. In our results neither the Gaussian curvature nor the mean curvature appear. Neither completeness nor compactness hypotheses are required. We only need a hypothesis on the intersection of the surfaces by planes.

More specifically, we say that a regular surface S in the Euclidean space \mathbb{E}^3 satisfying the \mathcal{P} property if for each affine plane Π intersecting S, the set $\Pi \cap S$ is a circle (including the degenerate case with radius zero).

Analogously, we say that a spacelike regular surface S in the Minkowski space \mathbb{L}^3 satisfies the \mathcal{P}^* property if for each spacelike affine plane Π intersecting S, the set $\Pi \cap S$ is a circle (including the degenerate case with radius zero). Notice that a circle in a spacelike affine plane Π of \mathbb{L}^3 is the locus of the points in Π at a constant distance from a fixed point in Π, where the distance considered is the one associated to the induced metric.

We state the following rigidity results:

Theorem 1.1 Let S be a connected regular surface in the Euclidean space \mathbb{E}^3 satisfying the \mathcal{P} property, then S is necessarily an Euclidean sphere.

Theorem 1.2 Let S be a spacelike connected regular surface in the Minkowski space \mathbb{L}^3 satisfying the \mathcal{P}^* property, then S is necessarily a hyperbolic plane.

2 The proofs

Euclidean case.

Let S be a surface in \mathbb{E}^3 satisfying the \mathcal{P} property and let $Q \in S$ be an arbitrary point. We consider the tangent plane T_QS and its normal line through Q, \mathcal{L}. We take the sheaf of affine planes with axis \mathcal{L} and we denote by $\{C_i\}_{i \in I}$ the family of circles obtained when intersecting those planes with S.

We consider a plane Π_0 parallel to T_QS such that $C = \Pi_0 \cap S$ is a non degenerate circle and we denote $P = \Pi_0 \cap \mathcal{L}$. Then $\Pi_0 \cap C_i \neq \emptyset$ for all $i \in I$, and the intersection points of each circle C_i with Π_0 are the opposite points of a chord of C_i contained in Π_0 with midpoint P. Therefore, the point P must be the center of C and as direct consequence the circles C_i have all the same radius. Thus, the sphere given by $\bigcup_{i \in I} C_i$ is contained in S. We finish the proof thanks to the connectedness of S.

Lorentzian case.

Let S be a surface in \mathbb{L}^3 satisfying the P^* property and let Π_0 be a spacelike plane such that $C = \Pi_0 \cap S$ is a non-degenerate circle. We denote its center by P and the normal line through P by \mathcal{L}.

Firstly, we prove that $\mathcal{L} \cap S \neq \emptyset$. We proceed by contradiction. Let us assume $\mathcal{L} \cap S = \emptyset$. Therefore, any plane parallel to Π_0 either does not intersect S or it does it in a non-degenerate circle whose interior contains a point of \mathcal{L}. We deduce that any line parallel to \mathcal{L} intersects S at most in one point, otherwise the intersection of S and the plane generated by both lines contains a non-spacelike curve. Thus, we have proved that S is a graph over a domain of Π_0 not intersecting \mathcal{L} and foliated by circles. Since S is spacelike, it can not be asymptotic to \mathcal{L} or any line parallel to it, and so $\partial S \neq \emptyset$. If ∂S does not contain a point of \mathcal{L}, then it contains a circle. In both cases we can find spacelike planes intersecting S in a non closed curve, which is a contradiction.

We notice that S must by closed, otherwise we proceed as before to arrive to a contradiction. We take a point Q at which the distance from P to $\mathcal{L} \cap S$ is attained.

For each $A \in C$ and for each chord perpendicular to the segment AP, we call its midpoint A_m. We can choose the chord as close to A as necessary so that the plane generated by it and the segment A_mQ is spacelike, we denote it by Π_{A_m}. We define ε_A to be the supremum (in the set of all possible chords satisfying the previous property) of the distance from A to A_m.

If $\varepsilon = \min_C \varepsilon_A$, we take $0 < \rho < \varepsilon$ and for each $A \in C$ we consider the chord with $d(A_m, A) = \rho$. Hence, all the circles $\Pi_{A_m} \cap S$ have the same radius, and so there is a hyperbolic cap contained in S and containing C.

Finally, for each point $A \in S$ there exists a spacelike plane intersecting S in a non-degenerate circle containing A. Therefore, there exists a hyperbolic cap contained in S and containing A. We finish the proof by using a connectedness argument.

Acknowledgments

The authors are partially supported by the Spanish MICINN Grant with FEDER funds MTM2010-18099.

References

[1] A. Alexandrov, Uniqueness theorems for surfaces in the large, Vestnik Leningrad Univ., 13 (1958) 5-8.

[2] S. S. Chern, Some new characterizations of the Euclidean sphere, Duke Math. J., 12 (1945), 270–290.

[3] J. Hadamard, Sur certaines propriétés des trajectoires en dynamique, J.Math.Pures Appl. 3 (1897), 331-387.

[4] D. Hilbert, Grundlagen der geometrie, 3rd ed., Leipzig, 1909.

[5] H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), 313–339.

[6] H. Liebmann, Eine neue eigenschaft der kugel, Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Klasse (1899), 44–55.
[7] H. Liebmann, Über die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann. 53 (1900), 81–112.

[8] R. López, Surfaces of constant Gauss curvature, *Houston Journal of Mathematics*, 27 (2001), 799–805.

[9] R. López, Surfaces of constant Gauss curvature in Lorentz-Minkowski Tree-space, *Rocky Mountain Journal of Mathematics*, 33 (2003), 971–993.