Alleviation of nicotine-induced reproductive disorder, clastogenicity, and histopathological alterations by fenugreek saponin bulk and nanoparticles in male rats

Karima A. Hamed1 · Samia A. El-Fiky1 · Azza M. Gawish2 · Wagdy K. B. Khalil1 · Hanan R. H. Mohamed2

Received: 10 August 2021 / Accepted: 4 February 2022 / Published online: 19 February 2022 © The Author(s) 2022

Abstract
Nicotine is the most abundant ingredient in cigarette smoking and has serious side effects on the lung, heart, reproductive system, and many other human organs. Saponins extracted from many plants exhibit multiple biological actions such as anti-cancer effects. Therefore, the possible protective effect of fenugreek saponin (FS) and nanofenugreek saponin (NFS) against nicotine-induced toxicity in male rats was investigated in this study. Animals were divided into a control group and the nicotine (1.5 mg/kg/day), FS (25, 50, and 100 mg/kg/day), or/and NFS (20, 40, and 80 mg/kg/day) administered groups. Micronucleus assay, histopathological, and sperm abnormality examinations as well as measurement of the acetylcholinesterase (AChE) gene expression were conducted. Our findings revealed that nicotine treatment induced significant increases in the incidence of micronucleus, sperm abnormalities, and expression levels of AChE in addition to inducing histopathological changes in rat testis. On the other hand, administration of FS or NFS with nicotine significantly decreased the incidence of micronuclei and the percentage of sperm abnormalities as well as the expression levels of AChE gene. Moreover, nicotine-induced histological alterations were reduced by given FS or NFS with nicotine. In conclusion, nicotine-induced sperm abnormalities, chromosomal damage, and histological injuries were mitigated by administration of FS or NFS with nicotine, and thus, FS and NFS could be used as ameliorating agents against nicotine toxicity.

Keywords Nicotine · Clastogenicity · Sperm abnormalities · Fenugreek saponin · Nanoparticles

Introduction
Cigarettes contain nearly 4000 toxic ingredients (Richter et al. 2008). Nicotine is a highly toxic organic compound, mainly found in tobacco and responsible for many of the toxic effects of smoking (Jalili et al. 2014). About 23% of adults worldwide smoke tobacco. The highest smoking prevalence rates are seen among individuals with lower educational levels and incomes with 80% of smokers living in low- and middle-income countries (Perez-Warnisher et al. 2018).

Each cigarette contains about 10 mg of nicotine. Nicotine affects a variety of biological activities including gene expression and DNA structure. Nicotine use induces cellular oxidative stress in mice through reduction of glutathione components and the activities of several oxygen free radical scavengers such as catalase and superoxide (Zhang et al. 2001; El-Sokkary et al. 2007; Li et al. 2014).

Thickening of the tunica propria and high decreases in the testis weight and the number of spermatocytes, spermatids, and Sertoli cells were observed in mice administered nicotine at doses of 0.2, 0.4, and 0.6 mg/100 g body weight (Reddy et al. 1998). A human study also demonstrated that cigarette smoking causes sperm immaturities, chromatin disturbance in spermatozoa, and nuclear DNA damage and thus endangers the pregnancy chance (Elshal et al. 2009).

In addition, liver tissue is well studied to be the primary site of nicotine biotransformation where it exerts a number of adverse physiological effects on the liver. After nicotine is absorbed through the lungs during smoking, it is rapidly metabolized in the liver promoting three main undesirable...
damage was assessed by performing sperm abnormalities nicotine-induced sperm abnormalities and chromosomal alterations in rats. The possible impact of FS or NFS on clastogenicity, sperm abnormalities, and histopathological protective role of FS and NFS separately against nicotine Therefore, this study was conducted to explore the possible effects with their potential advantages (Rudramurthy et al. 2021). Nanomaterials exhibited many biological properties (Hochella 2002; Lead and Wilkinson 2006; Madden et al. 2006; Mohammed and Safwat 2013; Mohammed et al. 2020). Moreover, smoking causes genotoxic effects and cell injury in rat livers. In contrast, nicotine addiction is moderated by the neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system (Dajas-Bailador and Wonnacott 2004; Bandyopadhyaya et al. 2008).

Therefore, researchers are making continuous efforts to use various natural products against the harmful toxic effects of nicotine. Natural anti-oxidants are widely used as components of the diet and have been researched for the prevention of diseases such as cancer, coronary heart disease, and at the same time altitude sickness (Bjelakovic et al. 2007; Kabir et al. 2021; Bhattacharya et al. 2021). Fenugreek seeds have long been used in traditional medicine as anti-diabetic and hypcholesterolemic agents. Fenugreek contains alkaloids (trigonelline, choline, gentianine, and carpaine), diosgenin, saponins, steroid sapogenins, glycoside and trifenoiside A, flavonoids, tannins, quercetin, vitexin, and fixed oil which possess potent pharmacological activities including anti-fungal, anti-inflammatory, and anti-bacterial effect (Singhal et al. 1982; Petit et al. 1995; Skibola and Smith 2000).

Saponins, steroid compounds, are triterpene glycosides and are produced primarily by plants, but also by small marine animals and some bacteria. Overall, saponin-containing herbs have been shown to display a wide range of attractive biological and pharmacological behaviors, including anti-fungal, anti-bacterial, anti-inflammatory, and hypocholesterolemic activities (Yoshiki et al. 1998; Palsamy and Subramanian 2009; Hamden et al. 2009). Moreover, well-regulated saponins, isolated as food additives from fenugreek, have typically been positioned to alleviate a wide range of complications related to various diseases, including hypercholesterolemia and obesity (Petit et al. 1995; Murakami et al. 2000).

Recently, nanoparticles have been used for many medical purposes rather than the same bulky materials because nanoparticles have unique physical and chemical properties and also exhibit different activities, due to limited electronic properties (Hochella 2002; Lead and Wilkinson 2006; Madden et al. 2006; Mohammed and Safwat 2013; Mohammed et al. 2020). Nanomaterials exhibited many biological effects with their potential advantages (Rudramurthy et al. 2016; Abdel-Daim et al. 2019; El-Sayed and Kemel 2020a, b; El-Sayed and Kemel 2020a; Bhattacharya et al. 2021).

Therefore, this study was conducted to explore the possible protective role of FS and NFS separately against nicotine clastogenicity, sperm abnormalities, and histopathological alterations in rats. The possible impact of FS or NFS on nicotine-induced sperm abnormalities and chromosomal damage was assessed by performing sperm abnormalities and micronucleus tests. The expression of acetylcholine esterase gene was also measured to explore the influence of FS or NFS administration on nicotine-induced neurological changes. In addition, histopathological examination of testis was done.

Materials and methods

Experimental animals

Male adult rats, *Rattus norvegicus* (180 ± 15 g), were obtained from the Animal House colon, National Research Center (NRC), Dokki, Giza, Arab Republic of Egypt (ARE). Animals were housed in plastic cages and acclimated in laboratory conditions for 14 days prior to experiments at 25–30 °C and 40–45% relative humidity on a 12-h light/dark cycle. Rats were allowed free access to a commercial diet and water. Food and feces were removed from cages and cleaned daily to keep the sawdust dry throughout the experiments. All animals received humane care inconsistent with the guidelines of the Animal Care and Use Committee of the National Research Center, Egypt with registration number 16456.

Chemicals

Nicotine (1-methyl-2–3-pyridel-pyrolidin; C10H14N2, Merck, Germany) and methanol extracted from fenugreek were obtained from the Faculty of Pharmacy, Cairo University Arab Republic of Egypt.

Preparation of FS nanopowders

In order to prepare dry saponin nanopowder with a basic particle size of 50 nm, the saponins were ultra-sonic and suspended in deionized water with the help of Biologics Ultrasonic Homogenizer, Model 150VT, with vibration at 20 kHz. The nanoparticle products were ultra-sonicated and appeared as a homogeneous suspension of nanoparticles suitable for characterization and administration.

Characterization of FS nanopowders

The morphology of nanosaponins was analyzed using transmission electron microscopy (a Tecnai G20 FEI, Netherlands). Briefly, a drop of suspended nanoparticles was placed on a Parafilm and carbon-coated mesh (Agar Scientific, UK) floated onto the nanoparticle droplet and held for 5 min, then fixed in 2% phosphorous tungstic acid (PTA) (Sigma, USA) for another 5 min. The grid was removed to temper excess fluid and dropped onto Whatman paper (GE Healthcare, UK) into a Petri dish. The mesh was dried again in a dryer. Two
different methods of imaging were done; the first was the bright field upon electron acceleration at a voltage of 200 kV using the lanthanum electron source gun (LaB6). The second is diffraction pattern imaging. An Eagle CCD camera with 4-K image resolution was used to acquire and collect the transmitted electron images.

The zeta potential of the ultra-sonicated saponin nanoparticle was also measured using a Dynamic Laser Light Scattering (DLS) method in a Malvern zeta instrument 3000 (Malvern Instrument, UK) (Morsy et al. 2016). Briefly, about 100 μl of saponin nanoparticles was re-suspended in 900 μl Milli-Q water and added to the cuvette; zeta potential was then measured at 25 °C temperature and at a scattering angle of 90 °C.

Experimental design

Seventy rats were randomly divided into 14 experimental groups with equal sample size, five rats per group, as displayed in Table 1. The rats in the first group (Group I) were given deionized distilled water daily for 60 days, whereas those in the second group (Group II) were injected daily with nicotine at a dose 1.5 mg/kg body weight that is equivalent to smoking 15–30 cigarettes per day (Zimmerman and McGeechi 1985) for 60 days. Rats from the third to the fifth groups (Groups III, IV, and V) were orally given 25, 50, or 100 mg/kg b.w. of phenolic FS daily for 60 days, respectively (Hamden et al. 2010), while rats of the sixth, seventh, and eighth groups (Groups VI, VII, and VIII) were orally given 20, 40, or 80 mg/kg b.w. of NFS daily for 60 days, respectively; these doses were selected as a result of our initial NFS toxicity test that confirmed the lack of toxicity and/or lethality throughout the applied trial periods. Rats of the remaining six groups were orally administered nicotine (1.5 mg/kg b.w.) with three different doses of either FS 25, 50, or 100 mg/kg b.w. (Groups IX, X, and XI) or NFS 20, 40, or 80 mg/kg b.w. (Groups XII, XIII, and XIV), respectively.

At the end of the experimental period (60 days), all animals were euthanized and sacrificed by cervical dislocation. After rats were dissected, the liver, brain, blood vessel, testis, and bone marrow were withdrawn for further analyses.

Biological assay

Sperm abnormalities

Sperm abnormalities were analyzed using the method described by Wyrobek et al. (1984). Euthanized dead rats were dissected and the caudal epididymis was removed to examine sperm abnormalities. The caudal epididymis and vas deferens were removed, soaked in 3 ml saline and centrifuged at 3000 round per minute (rpm) for 5 min. The centrifuged sperm solution was filtered by an 80-µm silk mesh to remove tissue fragments and then placed on the slides. Slides were raised to dry, and then dipped in absolute alcohol for 1 min as a stabilizing agent. Tissue fixed on the slide was dipped in eosin dye (0.4%) for 15 min. Slides were examined and photographed using light microscopic at 400× magnification.

Table 1 The experimental design

EG	DW	Nicotine (mg/kg b.w.)	FS (mg/kg b.w.)	NS (mg/kg b.w.)	Time
Group I	+ + +	—	—	—	—
Group II	—	1.5 mg	—	—	—
Group III	—	—	25 mg	—	—
Group IV	—	—	50 mg	—	—
Group V	—	—	100 mg	—	—
Group VI	—	—	—	20 mg	—
Group VII	—	—	—	40 mg	—
Group VIII	—	—	—	80 mg	—
Group IX	—	1.5 mg	25 mg	—	—
Group X	—	1.5 mg	50 mg	—	—
Group XI	—	1.5 mg	100 mg	—	—
Group XII	—	1.5 mg	—	20 mg	—
Group XIII	—	1.5 mg	—	40 mg	—
Group XIV	—	1.5 mg	—	80 mg	—

EG experimental groups, DW distilled water, FS fenugreek saponin, NS nanofenugreek saponin
Micronucleus test

For micronucleus analysis, bone marrow cells were flushed down from femur bone, mixed with fetal bovine serum, and spread into thin smear on clean slides. After slides drying, cells were fixed in methanol and then stained in May-Grunwald–Giemsa dyes (Schmid 1975). Using light microscope, micronucleated polychromatic erythrocytes (MNPCEs) were scored in 1000 polychromatic erythrocytes (PCEs) and the ratio of polychromatic (PCEs) to normochromatic erythrocytes (NCEs) was detected in 1000 erythrocytes.

Expression level of acetylcholinesterase gene

Isolation of RNA

RNA was completely isolated from the brain tissues of all mice using the standard TRIzol® extraction method (Cat# 15,596–026, Invitrogen, Germany). The entire extracted RNA was then treated with RNA-free DNase (Invitrogen, Germany) to digest any DNA residues and re-suspended in DEPC-treated water, and the purity of the isolated RNA was detected using formaldehyde containing agarose gel electrophoresis. RNA integrity was also studied by ethidium bromide dye analysis of the 28S and 18S domains using formaldehyde-containing agarose gel electrophoresis.

RT reaction

The entire isolated RNA was reverse transcribed into a complementary DNA (cDNA) suspension with a total volume of 20 µl using the RevertAid™ First Strand (cDNA) synthesis kit (MBI Fermentas, Germany).

RT-PCR

Amplification of the acetylcholinesterase (AChE) gene was performed using a StepOne™ Real-Time PCR Polymerase Chain Reaction System from Applied Biosystems (Thermo Fisher Scientific, Waltham, MA, USA). A separate PCR mixture of 25 µl was assigned to each sample using 2 × SYBER green master Mix and the AChE gene was amplified using the primer sequences designed by Bansal et al. (2009) shown in Table 2. Relative quantification of the target AChE gene to the β actin reference gene was determined using the $2^{-\Delta\Delta CT}$ method.

Histopathological diagnosis

Testicular tissues were immediately preserved in 10% formaldehyde fixative for 48 h, washed and dried in ascending grades of alcohol, cleaned in xylene, and inserted into paraffin wax. Then, 5-µm-thick paraffin sections were prepared, mounted on clean slides, and stained with Ehrlich’s hematoxylin–eosin (Bancroft & Gamble 2002). Staining slides are examined under an Olympus microscope (BX41, Hamburg, Germany) and imaged by a Nikon microscope and histology camera.

Statistical analysis

Data was analyzed as described by Ali (2019) using Statistical Package of the Social Sciences (SPSS) software version 22. According to Kolmogorov-Smirnov and Shapiro–Wilk tests, data were normally distributed within groups. Accordingly, parametric analysis was applied for statistical analysis of data. One-way analysis of variance (ANOVA) was utilized to study the effect of treatment on the studied parameters. Duncan’s test was utilized to study the similarity among the studied groups. Data was presented as mean ± standard error of mean.

Results

Characterization of FS nanoparticles

The TEM photos were taken to verify the primary particle sizes and morphology of saponin nanoparticles. The diameter of ultra-sonicated nanosaponin was measured in a random view field. The ultra-sonicated saponin nanoparticles were amorphous with an average diameter of 14.36 ± 0.723 nm. Transmission electron microscope imaging and analysis (TIA) software was used for spectrum acquisition and analysis of EDX peaks (Fig. 1). Analysis of zeta potential was carried out to understand the charges as well as particle stability and the zeta potential for saponin nanoparticle was found to be −34.2 mV (Fig. 2).

Micronucleus test

Erythrocytes were classified as PCE, normochromatic erythrocytes (NCE), and MnPCE (Fig. 3). Results of micronucleus assay revealed that daily administered doses of FS or
NFS alone did not induce a significant effect on the values of MnPCE and the ratio of PCE/NCE compared to those in control rats as shown in Table 3. Whereas, there is no significant change that was observed in MnPCE counts and the PCE/NCE ratio of control rats, and rats treated with all doses of FS or NFS as confirmed by Duncan’s multiple
Table 3 The mean values of PCE, NCE, PCE/NCE ratio, and MnPCE in male rats exposed to nicotine and different doses of fenugreek saponin or nanofenugreek saponin separately or in combination

Group	Dose (mg/kg)	PCE	NCE	PCE/NCE ratio	MnPCE
Control		978.40 ± 21.97ab	1021.60 ± 21.97b	0.96 ± 0.04ab	19.80 ± 1.71cd
Nicotine	1.5	868.40 ± 10.05c	1131.60 ± 10.05a	0.77 ± 0.02b	41.80 ± 2.82e
Saponin	25	1022.60 ± 19.97a	977.40 ± 19.97c	1.05 ± 0.04a	24.40 ± 3.34c
	50	978.20 ± 22.22ab	1021.80 ± 22.22b	0.96 ± 0.04ab	19.80 ± 1.71cd
	100	989.40 ± 12.05ab	1010.60 ± 12.05b	0.98 ± 0.02ab	17.60 ± 2.62d
Nanosaponin	20	1023.00 ± 20.25a	977.00 ± 20.25c	1.05 ± 0.04a	17.40 ± 1.36d
	40	1003.60 ± 3.80a	996.40 ± 3.80bc	1.01 ± 0.01a	14.20 ± 1.71d
	80	998.60 ± 4.68ab	1001.40 ± 4.68ab	1.00 ± 0.01a	14.40 ± 2.58d
Nicotine Saponin	25	873.40 ± 12.60b	1126.60 ± 12.60a	0.78 ± 0.02b	43.60 ± 2.87a
	50	880.80 ± 6.74bc	1119.20 ± 6.74a	0.79 ± 0.01b	38.00 ± 1.95ab
	100	960.80 ± 19.12ab	1039.20 ± 19.12b	0.94 ± 0.02ab	35.40 ± 1.86b
Nicotine Nanosaponin	20	904.20 ± 4.59b	1095.80 ± 4.59ab	0.82 ± 0.01b	40.40 ± 2.98a
	40	896.60 ± 4.21b	1103.40 ± 4.21a	0.81 ± 0.01b	31.20 ± 3.35b
	80	961.40 ± 22.08ab	1038.60 ± 22.08b	0.93 ± 0.04ab	24.40 ± 2.11d

- In the same column, means marked with the same superscript letter are insignificantly different (P > 0.05), whereas those marked with different ones are significantly different (P < 0.05). Data is presented as mean ± SEM.

range test. However, the mean values of PCE, NCE, MnPCE, and PCE/NCE ratio in rats treated nicotine alone were significantly affected in comparison with those in control rats (Table 3). The mean values of PCE and PCE/NCE ratio were significantly decreased and the mean values of NCE and MnPCE were significantly increased in male rats exposed to nicotine alone compared with control rats as seen in Table 3.

On the other hand, treatment of nicotine-exposed rats with FS or NFS decreased the mean values of MnPCE but this effect was only significant in nicotine-exposed rats treated with high dose of FS and those treated with the medium and high doses of NFS (Table 3).

Sperm abnormalities

Sperm abnormalities induced by nicotine treatment included deviation from normal shape (Fig. 4a) in head and tail. Abnormal heads contained amorphous head and banana-shaped head, whereas the abnormal tail included divided and coiled tail (Fig. 4b–e). The results found that mean values of sperm abnormalities in male rats exposed to nicotine were increased significantly compared with those in control rats (Table 4). In contrast, daily administration of various doses of FS or NFS did not affect the morphological properties of the head and tail of spermatozoa, throughout 60 days post-treatment compared with those in control rats (Table 4).

As shown in Table 4, administration of the nicotine-exposed rats with FS at low dose did not decrease the sperm abnormalities induced by nicotine. However, treatment of nicotine-exposed rats with medium and high doses of FS decreased significantly the mean values of sperm abnormalities induced by nicotine (Table 4). Moreover, treatment of nicotine-exposed rats with all doses of NFS decreased significantly in a dose-dependent manner compared to the mean values of sperm abnormalities induced by nicotine.

Expression profile of AChE gene

Expression levels of the AChE gene in the brain of male rats exposed to nicotine and treated with different doses of FS and or NFS are summarized in Table 5. The expression levels of AChE gene in rats administrated the different doses of FS or NFS did not differ significantly from those in the control rats.

Treatment of nicotine-exposed rats with low and medium doses of FS decreased the expression levels of AChE gene in comparison to the group of rats exposed with nicotine alone. However, treatment of nicotine-exposed rats with high dose of FS decreased significantly (P < 0.05) the expression levels of AChE in comparison to the group of rats exposed with nicotine alone (Table 5).

Moreover, treatment of nicotine-exposed rats with medium and high doses of NFS decreased significantly (P < 0.05) the expression levels of AChE gene in brain tissues of nicotine-exposed rats compared with group of rats exposed with nicotine alone as seen in Table 5.
Histopathological lesions in testis

Histological analysis of the testicular section of the control rats demonstrated normal morphological features of testicular parenchyma and almost intact seminiferous tubules with apparent intact germinal epithelium at different stages of development and maturation (arrow) with intact interstitial tissue (star) and normal vasculatures (Fig. 5a). Likewise, examination of the testicular sections of rats treated with the highest dose of FS or NFS demonstrated almost intact histological features of testicular parenchyma without abnormal morphological changes (Fig. 5b, c). On other hand, nicotine exposure caused atrophy of seminiferous tubules with hypoplasia of interstitial tissue (star). Moderate records of intraepithelial vacuolization (dashed arrow) with germinal epithelial degenerative changes including karyopyknosis (arrow head) and loss of basal cellular elements were also observed in the testis tissues after nicotine treatment (Fig. 5d).

Meanwhile, examination of the testicular tissues of rats treated with FS with nicotine showed more organized histological features of testicular parenchyma with significant protective efficacy on germinal epithelial developmental stages (arrow) as well as interstitial tissue (star) with minimal records of abnormal morphological changes. However, mild persistent records of tubular atrophy were seen (Fig. 5e). Finally, marked higher protective efficacy on germinal epithelial stages with restoration of normal tubular and cellular elements densities (arrow) were observed in the...

Table 4
Sperm head and tail abnormalities in male rats exposed to nicotine alone and different doses of fenugreek saponin and nanofenugreek saponin separately or in combinations.

Group	Dose (mg/kg)	Banana	Amorphous	Coiled		
Control		2.20±1.11^c	0.60±0.24^c	0.00±0.00^c	0.40±0.24^c	
Nicotine	1.5	25.80±4.26^a	2.00±0.63^a	2.80±0.55^a	6.80±1.59^a	
Saponin	25	1.80±0.73^c	0.00±0.00^c	0.40±0.24^c	0.20±0.20^c	
	50	2.60±1.29^c	0.60±0.24^c	0.00±0.00^c	0.60±0.40^c	
	100	0.80±0.37^c	0.80±0.37^{bc}	0.60±0.24^c	0.60±0.24^c	
Nanosaponin	20	2.60±0.51^c	0.40±0.24^c	0.80±0.37^{bc}	0.00±0.00^c	
	40	1.80±0.58^c	0.40±0.24^c	0.20±0.20^c	0.80±0.37^{de}	
	80	1.40±1.44^c	0.60±0.40^c	0.20±0.20^c	0.20±0.20^c	
Nicotine	Saponin	25	21.60±1.75^{de}	1.60±0.51^{de}	2.20±0.58^b	4.20±1.59^b
		50	19.20±2.82^b	0.80±0.37^{bc}	1.20±0.58^b	2.40±0.68^b
		100	18.60±1.81^b	1.20±0.58^b	0.80±0.37^{bc}	1.40±0.40^d
Nicotine	Nanosaponin	20	19.00±1.00^b	1.60±0.87^{de}	1.20±0.66^b	3.40±1.21^{bc}
		40	12.60±0.68^c	1.20±0.37^b	0.80±0.37^{bc}	0.60±0.24^c
		80	6.40±1.44^d	0.60±0.40^c	0.20±0.20^c	0.20±0.20^c

- In the same column, means marked with the same superscript letter are insignificantly different (P>0.05), whereas those marked with different ones are significantly different (P<0.05). Data is presented as mean±SEM.

Table 5
The relative expression of acetylcholinesterase (AChE) in the brain tissues of in male rats exposed to nicotine alone and different doses of fenugreek saponin or nanofenugreek saponin separately or in combination.

Group	Dose (mg/kg)	AChE	
Control		1.00±0.01^c	
Nicotine	1.5	1.65±0.01^a	
Saponin	25	0.98±0.03^c	
	50	0.94±0.01^c	
	100	0.91±0.01^c	
Nanosaponin	20	0.99±0.01^c	
	40	0.92±0.02^c	
	80	0.90±0.02^c	
Nicotine	Saponin	25	1.55±0.01^a
	50	1.45±0.03^{ab}	
	100	1.21±0.02^b	
Nicotine	Nanosaponin	20	1.38±0.07^{ab}
	40	1.15±0.06^b	
	80	0.85±0.05^c	

- In the same column, means marked with the same superscript letter are insignificantly different (P>0.05), whereas those marked with different ones are significantly different (P<0.05). Data is presented as mean±SEM.

Discussion

Cigarette smoking is one of the important causes directing human health problems due to the abundance of toxic compounds in cigarettes including nicotine. However, these special effects mainly occur later in life, particularly at older ages, such that they may have developed the third notable risk factor, after increased cholesterol and blood sugar, in the common disease problem of elderly individuals (Gore et al. 2011). Consequently, the current study aimed to evaluate the ameliorative role of FS and its nanoparticles against nicotine-induced toxicity in male rats.

Numerous evidences indicate that nicotine supports the development of cancer. Evidence from in vitro experimental studies on cell cultures and in vivo studies in rodents as well as humans generally from epidemiological studies suggests that nicotine itself, independent of other tobacco components, may accelerate a number of important effects in the development of cancer (Schaal and Chellappan 2014). Moreover, there is an association between the induction of cell death, chromosomal aberrations, and the frequency of micronucleus formation (Ayd-Boussema et al. 2007). Micronuclei are usually formed from acentric segments or from whole chromosomes (with kinetochore abnormalities) (Zaichkina et al. 2007). The cytogenetic damage caused by clastogenic agents on the mitotic cell is expressed as an increase in the frequency of micronuclei during the post-mitotic interphase after treatment. Moreover, it is understood that the lack of repair/defect repair of DNA double-strand breaks contributes to chromosomal aberrations (Conrad et al. 2011), which can be investigated by quantitative...
micronucleus analysis. Hence, the micronucleus assay is a very useful parameter used to review genetic damage and is widely used to examine the protective ability of synthetic and natural products (Mahrous et al. 2002; Hassan and Ahmed 2004).

In this study, the frequency of micronuclei was significantly increased in nicotine-treated rats compared to control rats. This increase may be due to the mutagenic effect of nicotine (Hecht 2012), confirmed by the National Cancer Institute, which reported that a person who smokes 20 cigarettes a day is ten times more likely to develop lung cancer than a non-smoker (Wagner 2003). These results are in line with Bonassi et al. (2003), who reported that smokers had an increased frequency of micronuclei compared to non-smokers. Moreover, Kausar et al. (2009) confirmed that there are higher micronucleus frequencies in epithelial cells of nicotine users. In addition, Kamboj and Mahajan (2007) described that unnatural oral practices of tobacco significantly increase the frequency of micronuclei. Chromosomal aberrations developed in human lymphocytes are predictive of the risk of developing mutagenicity (Rossner et al. 2005) and are also associated with micronucleation in lymphocytes (Bonassi et al. 2007). The carcinogenic effect of nicotine was demonstrated through
its ability to propagate tumor progression (Singh et al. 2011).

Our findings of micronucleus assay demonstrated the potential ameliorative role of FS and NFS against the clastogenicity of nicotine as manifested by the significant reductions in the micronucleus frequencies after administration of FS or NFS with nicotine. The action can be explained by Lobo et al. (2010) and Chaturvedi et al. (2012) as reported that saponin and phenolic natural antioxidants in fenugreek have the ability to scavenge the free radicals that created in human body as a result of environmental pollution. In addition, the saponin fraction was well known to reduce the viability of the human tumor cell line in a dose-dependent way (Melek et al. 2012). Also total saponins from stem and leaf of Panax ginseng extensively reduced the genotoxicity of cyclophosphamide in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptosis in bone marrow cells (Zhang et al. 2009).

Nanoparticles are of great scientific interest because they represent a remarkable bridge between bulk materials and atomic or molecular structures (Murray et al. 2000). The physical, chemical, and biological properties of nanomaterials are very different compared to their bulk materials and single atoms or molecules; therefore, the various effects of the active pharmaceutical ingredients are enhanced in this single atoms or molecules; therefore, the various effects of the active pharmaceutical ingredients are enhanced in this way (Bamrungsap et al. 2012; Busquets 2018; Abdel-Daim et al. 2019; El-Sayed and Kamel 2020a, b; El-Sayed and Kamel 2020a; Bhattacharya et al. 2021). This occurrence could explain the significant decrease in the number of MnPCE in rats treated with nicotine in combination with NFS in this work. Furthermore, biosynthesized nanoparticles have successfully controlled oxidative stress, genotoxicity, and apoptosis-related changes in in vitro studies (Kim et al. 2007; Bhattacharya et al. 2021). The male reproductive system has been documented to be highly sensitive to chemicals and drugs that have been defined to cause adverse effects on male reproductive capacity under certain conditions (Bonde 1996). Rats were used in the current study because rats were shown to have a clear reproductive system and all toxic compounds that were used to cause anti-fertility properties in males were found to be active in rats (Güven et al. 1999). Chronic nicotine treatment in male rats in this study increased the percentage of sperms with abnormally morphology. This study supports previous studies that demonstrated that administration of nicotine reduces sperm motility and reduces both live sperm and sperm with normal morphology (Fairuz et al. 2011). Our results showed that the percentages of the banana head as well as the forked and coiled tail-shaped spermatozoa of rats given nicotine alone were significantly increased compared with control. These results agreed with Hornstein & Gibbons (2009), who proved that smoking has been repetitively associated with male infertility.

In addition, Aydos et al. (2001) showed that administration of nicotine to rats results in an increase in collagen fibers in the basal layer, destruction of intercellular junctions between Sertoli cells, chromosomal abnormalities, damaged germ cells, and morphological abnormalities in sperm. Similarly, another study suggested that in addition to reducing sperm count, survival, and motility, nicotine administration can damage sperm DNA and cell membrane as well as induce apoptosis in testicular cells (Salahipour et al. 2017). Hamden et al. (2010) demonstrated that administration of fenugreek seed extract to diabetic rats significantly reduces sperm abnormalities and improve sperm count. Correspondingly, Sakr et al. (2012) reported that fenugreek seeds inhibit adriamycin-stimulated cytogenetics and testicular impairment in albino rats. All of these studies are in agreement with our results as most of the percentages of sperm abnormalities were significantly reduced in the rats of the groups given either FS or NFS with nicotine when compared to rats treated with nicotine only. Furthermore, the potential protective role of fenugreek seed extract on the reproductive system was examined, as demonstrated by histological studies on the testis and epididymis (Hamden et al. 2010).

Exposure to cigarette smoke has offset an increased risk of neurodegenerative diseases such as Alzheimer’s disease, stroke, and multiple sclerosis. Components of cigarette smoke and especially nicotine alter the function of different types of neurons, thereby impairing primary neuronal transmission and disturbing synaptic properties. Cigarette smoke also increased oxidative stress in the brain (Anbarasi et al. 2006; Sundstrom et al. 2008; Mansvelder et al. 2009; Cataldo et al. 2010; Shah and Cole 2010). Acetylcholine signaling and the central cholinergic system play a vital role in the behavioral regulation of both animals and humans (DeFeudis 2012).

Acetylcholinesterase (AChE) is the key enzyme for the metabolism of hydrolyzed acetylcholine (English and Webster 2012; Silman and Sussman 2008). Each molecule of AChE destroys about 25,000 molecules of acetylcholine (ACh) per second in both neural and non-neuronal tissues (Taylor and Radic 1994). In this study, the expression level of AChE was measured because the expression level of AChE is more sensitive to nicotine administration than the activity of AChE because while the AChE level is altered nicotine exposed rats, the AChE activity is unchanged (Carcoba et al. 2014). Our finding of high increases in the expression level of AChE gene after prolonged nicotine intake gene compared to control rats is consistent with Benowitz (2008), who reported that nicotine administration causes neural adaptation by receptor desensitization and an up-regulation of nicotinic acetylcholine receptors (nAChRs). Moreover, Dome et al. (2010)
stated that restriction with the normal function of these nAChRs may be the origin of the negative side effects of nicotine present in cigarette smoke, and this might encourage changes in the AChE activity, leading to a change in the levels of ACh, and successively changing cholinergic neurotransmission.

Both the leaves and seeds of fenugreek are exhausted in traditional medicine against several diseases among Indian and Chinese population (Basch et al. 2003). Satheeshkumar et al. (2010) showed the inhibitory potential effect of fenugreek seed extract on the activities of AChE as it involved in the pathogenesis of Alzheimer’s disease (AD). These results are in agreement with our finding; the significant decrease in the expression of AChE gene was found in the animals’ administrated nicotine in combination with FS and NFS. In the same line with our findings, Sharififar et al. (2012) reported that between 3 different plants, fenugreek division extract showed high AChE inhibitory activity. Moreover, Khalil et al. (2016) found that dietary administration of FS raised in the inhibition of apoptosis and AChE activity thus induced neuroprotective effects in rats.

Results of the present study displayed that nicotine administration had adversely affected several parts of testis histological features. In the same way, previous studies have also shown that rats with nicotine exposure caused degeneration of spermatids and spermatocytes resulting in interruption of spermatogenesis (Kuladip et al. 2010). Our study showed that nicotine exposure caused several lesions in testes tissues which agreed with Hasan et al. (2007), who found that smoking decreased the height of germinal epithelium, diminished the number of germ cells and the diameter of tubules, and induced apoptosis in genital cells of the testis. These changes appeared due to the presence of numerous toxic elements in cigarettes that affected all tissues including the testis. Moreover, Mahanem et al. (2006) reported that histological sections of testis from the nicotine group show sloughing of immature germ cells into the lumen and vacuolation of tubules.

In the present study, several testis histological features were positively improved by oral administration of FS and NFS in rats exposed to nicotine. In agreement with these results, Sakr et al. (2012) reported that fenugreek seed extracts deteriorate Adriamycin-stimulated oxidative stress and testicular toxicity in mice. Previous findings reported that the ethanolic extract of fenugreek seeds recovered the sexual function of healthy men and women (Rao et al. 2015). Fenugreek seeds that have been acknowledged for their multiple pharmacological activities involve anti-oxidation (Ahmadiani et al. 2001). Fenugreek seed polyphenols prevented lipid peroxidation and oxidative hemolysis caused by H2O2 in vitro in human erythrocyte (Kaviarsan et al. 2004).

Conclusion

Oral administration of FS or NFS mitigated the nicotine-induced clastogenicity and reproductive toxicity by significantly decreasing the micronucleus frequencies, sperm abnormalities, and histopathological damage, and expression of AChE gene was highly increased.

Acknowledgements

Great thanks and appreciation to the Faculty of Science, Cairo University and the National Research Center for providing us with the necessary equipment for the experimental parts of this study.

Author contribution

The study plan was designed by all authors; K.A.H. conducted the experiments and written manuscripts. H.R.H. has shared in conducting micorrunulaceous assay and manuscript review, A.M.G. performed the histological examinations and manuscript review, and S.A. El-F. and W.K.B.K. were involved in performing RTPCR tests and sperm abnormalities as well as reviewing the manuscript.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). Faculty of Science, Cairo University and the National Research Center provided partial funding.

Data Availability

Not applicable.

Declarations

Ethics approval

All animals received humane care in accordance with guidelines of Animal Care and Use Committee of National Research Center, Egypt with registration number 16456.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdel-Daim MM, Eissa IAM, Abdeen A, Abdel-Latif HMR, Ismail M, Dawood MAO, Hassan AM (2019) Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in...
Cataldo JK, Prochaska JJ, Glantz SA (2010) Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis 19:465–480
Chaturvedi S, Hemamalini R, Khare SK (2012) Effect of processing conditions on saponin content and antioxidant activity of Indian varieties of soybean (Glycine max Linn) Ann. Phytomedicine 1:62–68
Conrad S, Künnzel L, Löbrich M (2011) Sister chromatid exchanges occur in G2-irradiated cells. Cell Cycle 10(2):222–228
Dajas-Bailador F, Wonnacott S (2004) Nicotinicacetylcholine receptors and the regulation of neuronal signaling. Pharmacol Sci 25:317–324
DeFeudis FV (2012) Central Cholinergic Systems and Behaviour. Amsterdam, Elsevier
Deng Y, Xu ZF, Liu W, Xu B, Yang HB, Wei YG (2012) Riluzole-triggered GSH synthesis via activation of glutamate transporters to antagonize methylmercury-induced oxidative stress in rat cerebral cortex. Oxid Med Cell Longev 2012:534705
Dome P, Lazzry J, Kalapos MP, Rihmer Z (2010) Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 34:295–327
El-Sayed A, Kamel M (2020a) Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ Sci Pollut Res 27:19200–19213
El-Sayed A, Kamel M (2020b) Advanced applications of nanotechnology in veterinary medicine. Environ Sci Pollut Res 27:19073–19086
Elshal MF, El-Sayed IH, Elsaeedi MA, El-Masry SA, Kumsosani TA (2009) Sperm head defects and disturbances in spermatozoal chromat and DNA integrities in idiopathic infertile subjects: association with cigarette smoking. Clin Biochem 42:589–594
El-Sokkory GH, Cuzzocrea S, Reiter RJ (2007) Effect of chronic nicotine administration on the rat lung and liver: beneficial role of melatonin. Toxicology 239:60–67
El-Zayadi A (2006) Heavy smoking and liver. World J Gastroenterol 12:6098–6101
English BA, Webster AA (2012) Chapter 132 — acetylcholinesterase and its inhibitors. In: Robertson D, Biaggioni I, Burnstock G et al (eds) Primer on the Autonomic Nervous System, 3rd edn. Academic Press, San Diego, pp 631–633
Fairuz A, Hashida N, Mahamn M (2011) Effect of nicotine and goat milk co-administration on rat testis and sperm parameters. Austral J Basic Appl Sci 5(12):2738–2741
Gore FM, Bleem PJ, Patton GC, Ferguson J, Joseph V, Coffey C et al (2011) Global burden of disease in young people aged 10–24 years: a systematic analysis. Lancet 377(9783):2093–2102
Güven MC, Can B, Ergüns A, Saran Y, Aydos K (1999) Ultrastructural effects of cigarette smoke on rat testis. Eur Urol 36(6):645–649
Hamden KN, Alouche M, Damak E-F (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from live mill waste in vitro and in rats. Chem Biol Interact 180:421–432
Hamden K, Jaouadi T, Salami T, Bejar CS, El- Ficky A (2010) Modulatory effect of fenugreek saponins on the activities of intestinal and hepatic disaccharidase and glycochen and liver function of diabetic rats. Biotechnol Bioprocess Eng 15:745–753
Hasan A, Mohsen G, Mahmoud RM, Mohammad K (2007) Effect of cigarette smoke on spermato genesis in rats. Urol J 4(3):159–163
Hamdan MI, Ahmed KA (2004) Chemopreventive effect of green and black tea on benzo-A-pyrene treated mice. Vet Med J 52(4):457–473
Hecht SS (2012) Research opportunities related to establishing standards for tobacco products under the family smoking prevention and tobacco control act. Nicotine Tobacco Res 14:18–28
Hochella MF (2002) There’s plenty of room at the bottom: nanoscience in geochemistry. Geochim Cosmochim Acta 66:735
Hornstein MD and Gibbons WE (2009). Optimizing natural fertility in couples planning pregnancy—I and II. In: Rose DB, editor. UpToDate, Waltham, MA. (Electronic publishing).

Hukkaen J, Jacob P, Benowitiz N (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

Jalili C, Salahshoor MR, Moradi S, Pourmotabbed A, Motaghi M (2014) The therapeutic effect of the aqueous extract of Boswellia serrata on the learning deficit in kindled rats. Int J Prev Med 5:563–568

Kabir MdT, Rahman MdH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SAM, El-Seedi HR, Abdel-Daim MM (2021) Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 11(3):392

Kamboj M, Mahajan S (2007) Micronucleus—an upcoming marker of genotoxic damage. Clin Oral Invest 11:121–126

Kausar A, Giri S, Mazumdar M, Giri A, Roy P, Dhar P (2009) Micronucleus and other nuclear abnormalities among betel quid chewers with or without sadagura, a unique smokeless tobacco preparation, in a population from North-East India. Mutat Res 677(1–2):72–75

Kaviarsan S, Vijayalakshmi K, Anuradha CV (2004) Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Food Hum. Nutr 59:143–147

Khalil WKB, Rosdhy HM, Kassem SM (2016) The potential therapeutic role of fenugreek saponin against Alzheimer’s disease: evaluation of apoptotic and acetylcholinesterase inhibitory activities. J App Pharm Sci 6(09):166–173

Kim JS, Kuk E, Yu Jong-Ho KN, Park SJ, Lee HJ, Kim SH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

Kuladip J, Prabhat KS, Dipak KD (2010) Nicotine diminishes testicular gametogenesis, steroidogenesis, and steroidogenic acute regulatory protein expression in adult albino rats: possible influence on pituitary gonadotropins and alteration of testicular antioxidant status. Toxicol Sci 116(2):647–659

Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

Li S, Lu D, Zhang Y, Zhang Y (2014) Long-term treatment of hydro-gen-rich saline abates testicular oxidative stress induced by nicotine in mice. J Assist Reprod Genet 2014(31):109–114

Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and tumor promotion in streptozotocin-nicotinamide-induced diabetic rats. Chem. Biol Interact 179:356–362

Mansvelder HD, Mertz M, Role LW (2009) Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 20:432–440

Madden AS, Hochella MF Jr, Lutxton TP (2006) Insights for size-Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and tumor promotion in streptozotocin-nicotinamide-induced diabetic rats. Chem. Biol Interact 179:356–362

Mohammed ET, Safwat GM (2013) Full length article: assessment of the ameliorative role of selenium nanoparticles on the oxidative stress of acetaminophen in some tissues of male albino rats. Beni-Suef Univ J Basic Appl Sci 2(2):80–85

Mohammed ET, Radi AM, Aleya L, Abdel-Daim MM (2020) Cynar-axcolynus leaves extract alleviates nandrolone decanoate-induced alterations in testicular function and sperm quality in albino rats. Environ Sci Pollut Res 27:5009–5017

Morsy GM, El-Ala KSA, Ali AA (2016) Studies on fate and toxicity of nanolulmina in male albino rats: lethality, bioaccumulation and genotoxicity. Toxicol Ind Health 32(2):344–359

Murakami TA, Kishi H, Matsuda, Yoshikawa M (2000) Medicinal foodstuffs. XVII. Fenugreek seed. (3): Structures of new furostan-4-oxo steroid saponins, trigonoesides Xa, Xb, Xlb, XIa, and XIIa, from the seeds of Egyptian Trigonella foenum-graecum L. Chem Pharm Bull 48:994–1000

Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

Palsamy P, Subramanian S (2009) Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem. Biol Interact 179:356–362

Perez-Warnisher MT, De Miguel M, Seijo LM (2018) Tobacco use worldwide: legislative efforts to curb consumption. Ann Glob Health 84(4):571–579. https://doi.org/10.9204/aogh.2362

Petit PR, Sauvageau YD, Hillaire-Buys DM, Lecomte OM, Baissac YG (1995) Steroid saponins from fenugreek seeds: extraction, purification and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids 10:674–680

Rao A, Steels E, Beccaria G, Inder WJ, Vitetta L (2015) Influence of a specialized Trigonella foenum-graecum seed extract (Libifem), on testosterone, estradiol and sexual function in healthy menstruating women, a randomized placebo controlled study. Phytother Res 2015(29):1123–1130

Reddy S, Londonkar R, Ravindra RS, Patil SB (1998) Testicular changes due to graded doses of nicotine in albino mice. Indian J Physiol Pharmacol 42:276–280

Richter P, Pechack T, Swahn M, Wagman V (2008) Reducing levels of toxic chemicals in cigarette smoke: a new Healthy People 2010 objective. Public Health Rep (Washington, D.C.: 1974) 123(1):30–38

Rossner P et al (2005) Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environ Health Perspect 113:517–520

Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 27(21):7

Sakr SA, El-Shenawy SM, El-Shahaba AM (2012) Aqueous fenugreek seed extract ameliorates adriamycin-induced cytotoxicity and testicular alterations in albino rats. Reprod Sci 19(1):70–78

Salahipour MH, Hasanzadeh S, Malekinejad H (2017) Ameliorative effects of Achillea millefolium inflorescences alcoholic extract against nicotine-induced reproductive failure in rat. Exp Toxicol Pathol 69:504–516

Satheeshkumar N, Mukherjee PK, Bharda S, Saha BP (2010) Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum-graecum L. and its constituents. Phytomedicine 17:292–295

Schaal C, Chellappan SP (2014) Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 12(1):14–23

Schmid W (1975) The micronucleus test. Mutat Res 31:9–15

Shah RS, Cole JW (2010) Smoking and stroke: the more you smoke the more you stroke. Expert Rev Cardiovasc Ther 8:917–932

Sharififar F, Moshafi MH, Shafazand E, Koohpayeh A (2012) Acetylcholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chem 130:20–23
Silman I, Sussman JL (2008) Acetylcholinesterase: how is structure related to function? Chem Biol Interact 175:3–10
Singh S, Pillai S, Chellappan S (2011). Nicotinic acetylcholine receptor signaling in tumor growth and metastasis J Oncol; 2011:456743.
Singhal PC, Gupta RK, Joshi LD (1982) Hypocholesterolemic effect of Trigonella foenum graecum. CurrSci 51:136–137
Skibola CF, Smith MT (2000) Potential health impacts of excessive flavonoid intake. Free Radical Biol Med 29:375–383
Sundstrom P, Nystrom L, Hallmans G (2008) Smoke exposure increases the risk for multiple sclerosis. Eur J Neurol 15:579–583
Taylor P, Radic Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281–320
Wagner HL (2003). Nicotine: drugs, the straight facts series. ISBN 0–7910–7264–9, Chelsea House Publishers.
Wyrobek A F, Watchmarkers and Gordon L (1984). Sperm morphology testing in mice, in: Hand book of mutagenicity test procedures, Elsev. Sci. pub. BV., second Edition.739–750.
Yoshiki Y, Kudou S, Okubo K (1998) Relationship between chemical structures and biological activities of triterpenoid saponins from soybean (review). Biosci Biotechnol Biochem 62:2291–2299
Zaichkina SI, Rozanova OM, Aptikaeva GF, et al. (2007): Rad. Environ. Biophys.; 46(2): 131–135
Zhang QH, Wu CF, Yang JY, Mu YH, Chen XX, Zhao YQ (2009): Reduction of cyclophosphamide-induced DNA damage and apoptosis effects of ginsenoside Rb-1 on mouse bone marrow cells and peripheral blood leukocytes Environ. Toxicol. Pharmacol; 384–389
Zhang S, Day I, Ye S (2001) Nicotine-induced changes in gene expression by human coronary artery endothelial cells. Atherosclerosis 154:277–283
Zimmerman M, McGeachie J (1985) The effect of nicotine on aortic endothelial cell turn over—an autoradiographic study. Atherosclerosis 58:39–47
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.