ON FINITE BARELY NON-ABELIAN p-GROUPS

DONG SEUNG KANG

Abstract. We will classify the finite barely non-abelian p-groups.

1. Introduction

It is an important theme to determine the structure of a group by using its subgroup in the group theory. Let p be prime and let G be a finite p-group. An old group-theoretic result of Rèdei [3] proved that if every proper subgroup of G is abelian then either abelian or minimal non-abelian. Blackburn [1] showed that if every proper subgroup of G is generated by two elements then G is either metacyclic or a 3-group of maximal class with a few exceptions. Minimal non-abelian p-groups have been investigated in recent years; see [6], [7] and [8].

We will say that a p-group G is barely non-abelian if it satisfies the following conditions: (1) every proper subgroup of G is abelian and (2) if $H_0 \subset H \subset G$ are subgroups, where H is cyclic and H_0 is normal in G, then G/H_0 is abelian.

For $p = 2$, this class of groups naturally came up in [2]. The main result of [2] relies on the classification of barely non-abelian 2-groups; see [2, Proposition 4.6]. The proof of [2, Proposition 4.6] depends, in turn, on a result of Rèdei; see [3]. The purpose of this paper is to classify barely non-abelian p-groups for every prime p. Our main result is as follows.

Theorem 1.1. A non-abelian p-group G is barely non-abelian if and only if $|G| = p^3$ or G is isomorphic to $M(p^k)$, where $k \geq 4$.

The remainder of this paper will be devoted to proving this theorem. Our proof will be entirely elementary; we will not appeal to Rèdei’s theorem. In particular, for $p = 2$ we will give a new elementary proof of [2, Proposition 4.6].

2. Barely non-abelian p-groups

In this section, we introduce a barely non-abelian p-group G and investigate the properties of G.

Received September 3, 2015; Revised November 18, 2015.

2010 Mathematics Subject Classification. 20D15, 11E04.

Key words and phrases. minimal non-abelian groups, metacyclic, barely non-abelian groups, p-groups.

©2016 Korean Mathematical Society
Definition 2.1. We call a finite non-abelian p-group G barely non-abelian p-group if it satisfies the following conditions:

1. every proper subgroup of G is abelian,
2. if $H_0 \subsetneq H \subseteq G$ are subgroups, where H is cyclic and H_0 is normal in G, then G/H_0 is abelian.

Example 2.2. Let $p = 2$. Q_8, D_8 and $M(2n)$ $(n \geq 4$ a power of 2) are barely non-abelian 2-groups. We define the group $M(2n)$ as the semidirect product of $\mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, where the nontrivial element of $\mathbb{Z}/2\mathbb{Z}$ acts on $\mathbb{Z}/n\mathbb{Z}$ by sending 1 to $\frac{n}{2} + 1$. Equivalently,

\[M(2n) = \{ r, s \mid r^n = s^2 = 1, \ sr = r^{n/2+1}s \}. \]

Note that $M(8)$ is the dihedral group D_8; see [2, Proposition 4.6].

Let p be an odd prime. There are two barely non-abelian p-groups of order p^3.

\[G_1 = \langle r, s \mid r^{p^2} = s^p = 1, \ sr = r^{p+1}s \rangle, \]
\[G_2 = \langle r, s \mid r^p = s^p = c^p = 1, \ rc = cr, \ sc = cs, \ sr = crs \rangle. \]

We know that the barely non-abelian p-groups of order p^3 is isomorphic to the semidirect product of $\mathbb{Z}/p^2\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z}$ for G_1 and $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z}$ for G_2, respectively.

Now, we define the group $M(p^n)$ as the semidirect product of $\mathbb{Z}/p^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$, that is,

\[M(p^n) = \{ r, s \mid r^{p^n-1} = s^p = 1, \ sr = r^{p^{n-2}+1}s \}, \]

where $n \geq 4$. Note that $M(p^3) = G_1$.

Lemma 2.3. (a) Every proper subgroup of $M(p^n)$ is abelian.
(b) Every proper quotient of $M(p^n)$ is abelian.
(c) $M(p^n)$ is barely non-abelian for any $n \geq 4$.

Proof. (a) Let S be a proper subgroup of $M(p^n)$. If S contains the index p subgroup $\langle r \rangle$, then $S = \langle r \rangle$ and hence S is abelian. If not, let $S_0 = S \cap \langle r \rangle$. Then $S_0 \subseteq \langle r^p \rangle$ is central in $M(p^n)$. Hence $S/S_0 \subseteq M(p^n)/\langle r \rangle \cong \mathbb{Z}/p\mathbb{Z}$, that is, S/S_0 is cyclic. Thus S is abelian, as desired.
(b) Assume $M(p^n)/N$ is not abelian for some non-trivial normal subgroup N of $M(p^n)$. Then N cannot contain $r^{p^{n-2}}$. Otherwise,

\[(sN)(rN) = srN = r^{p^{n-2}+1}sN = (rN)(sN). \]

Hence we have

\[N \cap \langle r \rangle = \{1\}. \]

Since $\langle r \rangle$ has an index p in $M(p^n)$, this implies that $|N| = p$. Moreover, N and $\langle r \rangle$ are complementary normal subgroups in $M(p^n)$. Thus $M(p^n) \cong N \times \langle r \rangle$ is abelian. It is a contradiction.
BARELY NON-ABELIAN p-GROUPS

Theorem 2.4. Suppose G be a barely non-abelian p-group of order $\geq p^4$.

(a) The center $Z(G)$ has index p^2 in G.

(b) If S is a proper subgroup of G, then $[S : (S \cap Z(G))] \leq p$.

(c) $x^p \in Z(G)$ for every $x \in G$.

Let G' be the commutator subgroup of G.

(d) $G' \subset Z(G)$.

(e) $|G'| = p$. In the sequel we shall denote the non-identity element of G' by c, that is, $G' = \langle c \rangle$ of order p.

(f) If $x \in G$ is an element of order $n \geq p^2$ then $x^{n/p} \in G'$.

(g) G is generated by two elements r and s such that $rs = csr$.

Proof. (a) Let H be a subgroup of index p in G; see, e.g., [4, 5.3.1(ii)]. Choose $g \in G \setminus H$; applying [4, 5.3.1(ii)] once again, we can find a subgroup $H' \subset G$ such that $g \in H'$ and $[G : H'] = p$. Since G is a barely non-abelian group, both H and H' are abelian. Thus every $x \in H \cap H'$ commutes with g and with every element of H. Since H and g generate G, we conclude that $x \in Z(G)$, i.e.,

\begin{equation}
H \cap H' \subset Z(G).
\end{equation}

Since G is non-abelian,

\begin{equation}
|G : Z(G)| \geq p^2;
\end{equation}

see, e.g., [5, 6.3.4]. On the other hand, since $[G : H] = [G : H'] = p$, it is easy to see that

\begin{equation}
|G : (H \cap H')| = p^2.
\end{equation}

Part (a) now follows from (2.3-2.5). For future reference we remark that our argument also shows that

\begin{equation}
H \cap H' = Z(G).
\end{equation}

(b) By [4, 5.3.1(ii)], S is contained in a subgroup H of index p. By (2.6), $Z(G) = H' \cap H'$, where H' is another subgroup of G of index p. Then $S \cap Z(G) = S \cap H'$, and the latter clearly has index $\leq p$ in S.

(c) Apply part (b) to the cyclic group $S = \langle x \rangle$.

(d) Follows from the fact that the factor group $G/Z(G)$ has order p^2 and, hence, is abelian.

(e) Since G is a non-abelian p-group, it has an element r of order $n \geq p^2$. Let $H = \langle r \rangle$ and $H_0 = \langle r^{n/p} \rangle$ be cyclic subgroups of G of orders n and p respectively. By part (c), $r^{n/p} = \left(r^{n/p} \right)^p \in Z(G)$ and hence $H_0 = \langle r^{n/p} \rangle \subseteq Z(G)$. Then H_0 is normal in G. Since G is a barely non-abelian group, G/H_0 is abelian. In other words,

\begin{equation}
G' \subset H_0.
\end{equation}
Thus \(|G'| \leq |H_0| = p\). On the other hand, since \(G\) is non-abelian, \(|G'| \neq 1\).

Thus \(G'\) has exactly \(p\) elements, as claimed.

(f) By (2.7), \(x^{n/p} \in G'\).

(g) Choose two non-commuting elements \(r\) and \(s\) in \(G\). Since \(G\) is a barely non-abelian group, these elements generate \(G\). By part (e), \(rsr^{-1}s^{-1} \in G' = \langle c \rangle\). Without loss of generality, we may assume let \(rs = csr\), as desired. □

We now proceed to give a complete list of barely non-abelian \(p\)-groups.

Theorem 2.5. Let \(G\) be a barely non-abelian \(p\)-group. Then \(G\) is one of the following groups:

(a) \(|G| = p^3\),

(b) \(M(p^k)\), where \(k \geq 4\).

Proof.

(a) follows from Example 2.2.

(b) Write \(G = \langle r, s \rangle, G' = \langle c \rangle\), and \(sr = crs\). Denote the orders of \(r\) and \(s\) by \(n\) and \(m\) respectively. We may assume without loss of generality that \(p\) is an odd prime, \(|G| \geq p^4\) and \(n \geq m\). Let \(n = m = p\). Then \(G/G'\) is an abelian group of order \(\leq p^2\). Hence \(|G| \leq p^2|G'| = p^3\).

Now let \(n \geq m \geq p^2\). By Theorem 2.4(c), we have \(r^{n/p} \in G'\), where the order of \(r^{n/p}\) is \(p\). We may assume that \(G' = \langle r^{n/p} \rangle\).

By Theorem 2.4(c) once again, \(s^{m/p} \in G'\). Then there exists a positive integer \(t\) such that \(s^{m/p} = (r^{n/p})^t\). Let \(\tilde{s} = (r^{n/m})^{-1}s\). We claim that

\[
\tilde{s}^{m/p} = 1.
\]

We now consider two cases.

Case I: \(m < n\).

\[
\tilde{s}^{m/p} = \left((r^{n/m})^{-t}\right)^{m/p} = \left(r^{n/p}\right)^{-t}s^{m/p} = 1,
\]

where \(r^{n/m} \in Z(G)\), as claimed.

Case II: \(m = n\). Then

\[
\tilde{s}^p = \left((r^{n/m})^{-t}\right)^p = \left(r^{-t}s\right)^p = c^{pt}s^p(r^{n/p})^t,
\]

where \(s^p\) and \((r^{-1})^p\) are in \(Z(G)\). Hence

\[
\tilde{s}^{m/p} = \left(c^{pt}s^p(r^{n/p})^t\right)^{m/p^2} = c^{mpt}s^{p}r^{n/p} = (r^{n/p})^{-t} = 1,
\]

where \(s^{m/p} = \left(r^{n/p}\right)^t\) because \(n = m\). This proves the claim. Now observe that \(G = \langle r, s \rangle = \langle r, \tilde{s} \rangle\) and \(r\tilde{s}r^{-1}\tilde{s}^{-1} = r\tilde{s}r^{-1}\tilde{s}^{-1} = c\), where \(c = r^{n/p}\). Thus we may replace \(s\) by \(\tilde{s}\). By (2.8), \(\tilde{s}\) has order \(\leq m/p\). After repeating this process a finite number of times, we may assume \(m = p\).
Thus G is generated by elements r and s such that $r^n = s^p = 1$ and $sr = r^{n/p+1}s$, where $n \geq p^3$ is a power of p. This completes the proof of Theorem 2.5. □

Acknowledgement. We would like to thank referee for helpful comments and bringing Theorem 2.5 to our attention.

References

[1] N. Blackburn, *On a special class of p-groups*, Acta Math. 100 (1958), 45–92.
[2] D.-S. Kang and Z. Reichstein, *Trace forms of Galois field extensions in the presence of roots of unity*, J. Reine Angew. Math. 549 (2002), 79–89.
[3] L. Rédei, *Das schiefen Produkt in der Gruppentheorie*, Comment. Math. Helv. 20 (1947), 225–267.
[4] D. J. S. Robinson, *A Course in the Theory of Groups*, Second edition, Springer-Verlag, New York, 1996.
[5] W. R. Scott, *Group Theory*, Dover Publications, Inc., 1987.
[6] M. Xu, *A theorem on metabelian p-groups and some consequences*, Chinese Ann. Math. Ser. B 5 (1984), no. 1, 1–6.
[7] M.-Y. Xu and Q. Zhang, *A classification of metacyclic 2-groups*, Algebra Colloq. 13 (2006), no. 1, 25–34.
[8] Q. Zhang, X. Sun, L. An, and M. Xu, *Finite p-groups all of whose subgroups of index p^2 are abelian*, Algebra Colloq. 15 (2008), no. 1, 167–180.

Dong Seung Kang
Department of Mathematical Education
Dankook University
Yongin 448-701, Korea
E-mail address: dskang@dankook.ac.kr