Systematic review of Mendelian randomization studies on risk of cancer

Georgios Markozannes, Afroditi Kanelloupolou, Olympia Dimopoulou, Dimitrios Kosmidis, Xiaomeng Zhang, Lijuan Wang, Evropi Theodoratou, Dipender Gill, Stephen Burgess and Konstantinos K. Tsilidis

Abstract

Background: We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence.

Methods: We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MR-PEPSSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded.

Results: We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer.

Conclusions: Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.

Keywords: Mendelian randomization, Cancer, Risk factors, Systematic review, Evidence grading
Background

With a global burden of 18.1 million new cases and 9.9 million deaths in 2020 [1], cancer is one of the leading non-communicable diseases. Despite the extensive research in the field, a causal relationship with cancer has been established only for a limited number of risk factors. Identification of causal relationships with specific risk factors and separation from spurious associations is key to cancer prevention. Despite being considered the gold standard for identification of causal relationships, randomized controlled trials (RCT) are often impractical or even unfeasible to perform due to time constraints and ethical issues. Conversely, the capacity of epidemiological observational studies to identify causal relationships is limited, due to confounding, reverse causation, and other biases [2].

Mendelian randomization (MR) is an analytic approach which utilizes genetic variation as a randomized instrument of the exposure of interest to provide insights into causality. As genetic variants are assumed to be randomly distributed at conception, MR can be considered akin to a “natural” RCT [3, 4]. By using genetic variants (single-nucleotide polymorphisms [SNPs]) as instrumental variables (IV) to assess the association of a genetically predicted exposure with the outcome of interest, MR analyses can provide estimates less prone to some common epidemiological biases. Nevertheless, for a MR analysis to be valid, three assumptions for IVs must be met: (a) the genetic variants should be associated with the exposure; (b) the genetic variants must not be associated with measured or unmeasured confounders of the exposure-outcome association; (c) conditional on the exposure and the confounders, the genetic variants must be independent of the outcome. Given the growing availability of large-scale genomic information from published genome-wide association studies (GWAS), it is no wonder that during the past decade MR analyses have seen a substantial increase, especially after the introduction of the “two-sample” summary-data MR approach that can improve feasibility and efficiency [5].

Researchers are faced with the challenge of evaluating the MR evidence, filtering this information and deriving valid inferences. The continuously increasing amount of new scientific information coupled with the fact that two of the three MR assumptions (b and c) cannot be confirmed empirically further complicates this cumbersome task. Furthermore, the field of evaluating MR associations is rapidly evolving [6, 7]. The investigation and assessment of the potential violations of the MR assumptions, especially in the case of multiple instruments, is a key step towards a valid inference and a robust interpretation of potential causal associations. Several sensitivity analyses have been proposed that address the validity of these assumptions, and the results from MR studies that do not use them should be viewed as incomplete [8].

In this paper, we systemically reviewed the literature investigating associations between genetically predicted risk factors and any type of cancer using MR approaches. Firstly, we aimed to map and describe the current state of MR literature on cancer risk, identify areas where research has focused, and identify possible gaps and emerging areas of interest. Furthermore, we aimed to evaluate these associations using a breadth of well-established MR methods and the most commonly applied sensitivity analyses to identify those presenting robust evidence for causality. We note that the word “robust” refers to evidence of causality for the studied associations, not the quality of the analysis.

Methods

This systematic review was conducted in accordance to the published protocol that was registered in the open Science Network registries (https://osf.io/2ruct) and is reported following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) checklist [9].

Search Strategy

A detailed description of the search strategy and inclusion and exclusion criteria along with the data extraction process is provided in the Additional file 1: Supplementary methods [10–26]. Briefly, we searched the Medline (via PubMed) and Scopus databases from inception to 06/10/2020 using a combination of the terms “Mendelian randomization,” “genetic instrument,” and “cancer” and their synonyms for MR studies investigating the association of genetically predicted risk factors with risk of cancer development or mortality. We also screened the references of relevant reviews and the references of the included studies. We extracted information on the exposure and outcome of interest, the genetic instrument, the MR design (one-sample or two-sample, based on whether the gene-exposure and gene-outcome associations were estimated on the same or different populations), and main MR analysis results (as defined by the authors). We further extracted information on a number of sensitivity MR methods, namely MR-Egger, weighted median (WM), MRPRESSO, and also multivariable MR (MVMR).

Evaluation of Robustness in the identified associations

The robustness of the evidence was categorized into four a priori designed levels of evidence for causality (robust, probable, suggestive, insufficient evidence) (Fig. 1) based on information from both the main MR analysis and at least one of the MR-Egger, WM, MRPRESSO, and MVMR. These methods were chosen as they are the
Fig. 1 Categorization of the evidence. * For the main analysis: statistically significant at the threshold set up by the study due to multiple testing or at 0.05 if no multiple testing threshold was defined. For the sensitivity analyses: statistically significant at 0.05.
most commonly used in the MR literature to assess and adjust for potential assumption violations. The grading was performed in the following manner: Robust evidence for causality was achieved when all the performed methods (i.e., main analysis, and MR-Egger, WM, MRPR, ESSO, and MVMR) for the specific association presented a nominally significant p value. We used instead the p value threshold for the main analysis adjusted for multiple testing when this was reported. Furthermore, in all methods, the direction of the effect estimates needed to be concordant. The evidence was graded even if some of the sensitivity analyses were not performed, but at least one was required for the evaluation. Probable evidence for causality was achieved when at least one method (main or sensitivity analysis) had a nominally significant p value of 0.05 (for the main analysis, we took the p value threshold as set up by the study due to multiple testing) and direction of the effect estimate was concordant for all the methods. Suggestive evidence for causality was achieved when at least one method had a nominally significant p value (for the main analysis, we took the p value threshold as set up by the study due to multiple testing), but the direction of the effect estimates differed between methods. Associations that presented nominally non-significant p value for all methods (in the main analysis, the p value did not survive the threshold set up by the study due to multiple testing), but the direction of the effect estimates differed between methods. Associations that presented nominally non-significant p value for all methods (in the main analysis, the p value did not survive the threshold set up by the study due to multiple testing), but the direction of the effect estimates differed between methods. Associations that presented nominally non-significant p value for all methods (in the main analysis, the p value did not survive the threshold set up by the study due to multiple testing), but the direction of the effect estimates differed between methods.

Results

The search strategy yielded a total of 6074 original search results of which 305 were evaluated in full text and 115 records were excluded [12, 14, 15, 20–22, 30–38] (specific reasons for exclusion are presented in Additional file 2: File S1) leading to 190 eligible MR publications [139–328] (Fig. 2). These 190 publications presented 4667 MR associations for 16 exposure categories, including 852 unique exposures, namely amino acids and derivatives ($N = 81$ unique exposures), anthropometrics ($N = 47$), circulating leukocyte telomere length ($N = 1$), diabetes and related biomarkers ($N = 37$), dietary intake and micronutrient concentrations ($N = 42$), fatty acids and derivatives ($N = 59$), growth factors ($N = 12$), inflammatory biomarkers ($N = 82$), lifestyle, education and behavior ($N = 35$), lipid metabolism biomarkers ($N = 148$), methylations ($N = 14$), reproductive factors ($N = 8$), steroids ($N = 24$), clinical measurements ($N = 21$), other diseases and traits ($N = 47$), and other metabolites/biomarkers ($N = 194$) (Additional file 2: File S2), and 21 cancer sites (i.e. head and neck, esophageal, stomach, small intestine, colorectal, liver and biliary tract, pancreatic, lung, skin/melanoma, sarcomas, breast, cervical, endometrial, ovarian, prostate, kidney, bladder and urinary tract, central nervous system, thyroid, leukemias and lymphomas, and any cancer/mixed) and their subsites. The vast majority of associations ($N = 4532$; 97%) investigated cancer risk with only 135 (3%) associations being on cancer mortality. The complete evidence base of the extracted information is provided in the Additional file 2: File S3.

Description of the evidence base

The 190 MR studies on cancer were published as early as 2009, but the majority ($N = 135$; 71%) were published after 2018. Most publications ($N = 149$; 78%) used a two-sample MR design, 30 publications (15.7%) used a one-sample design, and 11 publications (5.8%) presented both one- and two-sample MR analyses. The design of one publication was unclear (Fig. 3).

For most MR analyses, the variants used as instruments for the exposure were derived from populations of European ancestry ($N = 3183$; 68.2%), 31 (0.7%) from Asian, four (0.1%) Amish, three (0.1%) South American, and 56 (1.2%) mixed, while for 1390 (29.8%) associations, the exposure population ancestry was not reported. Regarding the outcome, in most comparisons (3221; 69%) population ancestry was European, 233 (5%) Asian, 12 (0.3%) South American, one African, and 101 (2.2%) mixed, while for 1099 (23.5%) outcome population ancestry was not reported.

Patient and public involvement

No patients were involved in the development of the research question or the outcome measures, nor were they involved in the study design or the interpretation of the results.
Body mass index (BMI) was the most frequently studied exposure with 278 MR analyses across 40 publications, followed by vitamin D-related phenotypes with 149 MR analyses across 25 publications, and height with 109 MR analyses across 23 publications. The sample size for the exposure genetic analysis was reported in 3454 associations with a median of 17,649 participants (range, 231 for the metabolite X-12435 to 1232091 for smoking initiation).

The most frequently studied cancer was breast, which was investigated in 63 publications, followed by lung (N = 57), colorectal (N = 53), and prostate (N = 49). In contrast, pancreatic cancer had the highest number of MR analyses (N = 646; 13.8%), followed by lung (N = 634; 13.6%), breast (N = 586; 12.6%), and ovarian (N = 582; 2.5%). With regards to the number of cases, breast cancer had the highest number of cases (median N = 69,501 across 534 analyses), followed by prostate cancer (median N = 44,825 across 352 analyses), with small intestine cancer having the smallest median number of participants (N = 156; 36 analyses).

Description of the instrument selection

The median number of SNPs used as instruments was five, ranging from one to 3163, whereas for 141 (3%)...
MR analyses this information was not reported (Additional file 2: Table S1). In the majority of the analyses (4108; 88%), instrument selection was based on the genome-wide significance threshold 5×10^{-8}, 87 (1.9%) analyses used a stricter threshold of significance, 102 (2.2%) analyses used a more lenient threshold, and in 370 (7.9%) analyses the significance threshold for instrument selection was not reported. For 1241 (26.6%) associations, the authors reported that the choice of the instruments was based on their biological relevance to the exposure of interest. The most frequently used clumping thresholds for SNP inclusion were $r^2 < 0.001$ ($N = 1203; 25.9%$), $r^2 < 0.01$ ($N = 1058; 22.7%$), and $r^2 < 0.1$ ($N = 1059; 22%$). The percentage of variance explained (R^2) was reported for 2162 (46.3%) associations and ranged from 0.01 to 100% (for chemokine [C-X-C motif] ligand 1 and chemokine [C-C motif] ligand 4) with a median of 2.9% (Additional file 2: Table S1). Only about one-in-four associations ($N = 1135$) reported a numerical estimation of the power of the MR analysis, with a median reported power of 76% (range 1 to 100%) (Additional file 2: Table S1). A total of 1326 (28%) associations reported on the adjustments used for the exposure GWAS. The majority ($N = 1283; 96.8%$) adjusted for population stratification, 907 (68.4%) adjusted for age, 720 (54.3%) for sex, and 271 (20.4%) used adjustments specific to genotyping methods. Other adjustments included study location or assessment center ($N = 169; 12.8%$), anthropometrics ($N = 85; 6.4%$), lifestyle factors ($N = 73; 5.5%$), and study year/time ($N = 42; 3.1%$), whereas in 81 (1.7%) analyses a number of additional adjustment factors were used.

Description of the results and robustness of the evidence

Most analyses were based on a two-sample ($N = 4304; 92.2%$) and only 363 (7.8%) used a one-sample design. The statistical analysis method of preference as main analysis with 2974 (63.7%) associations was the inverse-variance weighted method (either fixed-effect or random-effects), whereas 734 (15.7%) associations were derived from likelihood-based analyses. Other statistical analysis approaches used for the main MR analysis included the Wald ratio, generalized models (generalized least squares and generalized summary-based MR), two-stage regression approaches (35% of the one-sample designs), WM, and MR using robust-adjusted profile scores. Forty-two publications (22.1%) performed an adjustment for multiple comparisons, and from the 4667 total associations only 523 (11.2%) were statistically significant in the main analysis at the threshold set up by the study due to multiple testing or at nominal significance (p value < 0.05) if no multiple testing threshold was defined. Sensitivity analyses were mostly performed in two-sample MR, and a limited number of these sensitivity analyses were performed in one-sample MR designs.

Across two-sample designs, MR-Egger was evaluated in 1293 (30%) analyses with 140 (10.8%) of those presenting a nominally statistically significant MR-Egger slope; a total of 1055 (24.5%) associations performed a
WM analysis with 217 (20.6%) being statistically significant, while sensitivity analyses using MRPRESSO or multivariable MR were fairly limited with only 142 (3.3%; with \(N = 55 \); 38.7% statistically significant) and 171 (4%; with \(N = 53 \); 31% statistically significant) associations, respectively (Additional file 2: Table S2). Across the 363 analyses with one-sample design, 46 performed a MR-Egger (\(N = 3 \); 6.5% significant), 27 a WM (\(N = 5 \); 18.5% significant), no analysis performed MRPRESSO, and 27 performed a MVMR analysis (\(N = 9 \); 33.3% significant) (Additional file 2: Table S2).

A total of 1467 (31.4%) MR associations reported in 121 publications presented results on both the main and at least one sensitivity analysis and were further evaluated based on the aforementioned grading scheme. The rest of the MR associations (\(N = 3200 \); 68.6%) across 123 publications only presented results for the main analysis and therefore could not be graded. Of those 3200 associations, 293 (9.2%) had a one-sample and 2907 (90.8%) a two-sample design. For 36.6% (\(N = 1171 \)) of analyses, the authors selected the IVs based on their biological relevance to the exposure, with 1106 (94.5%) of them having a two-sample design. A total of 238 (7.4%) associations with only a main analysis were statistically significant (or survived a multiple testing threshold) and for only 60 (25.2%) of those the selection of the instrument was based on biological relevance. Of those, 14 used a \textit{cis} definition for the selected instruments, but none of those performed a colocalization analysis.

A graphical overview of the robustness of the evidence per exposure category and cancer group is presented in Fig. 4. Out of the 1467 graded associations, we observed 87 MR analyses that presented \textit{robust} evidence (5.9%; 1.9% of total MR analyses), 275 with \textit{probable} evidence (18.8%; 5.9% of total), 89 with \textit{suggestive} evidence (6.1%; 1.9% of total), and 1016 with \textit{insufficient} evidence (69.3%; 21.8% of total) based on the results of the main and sensitivity analyses. Across the 16 exposure categories, anthropometrics had the highest number of \textit{robust} analyses (\(N = 16 \); 18.4%), followed by steroids (\(N = 13 \); 15%), circulating leukocyte telomere length (\(N = 13 \); 15%), the other diseases and traits category (\(N = 12 \); 13.8%), and lipids (\(N = 10 \); 11.5%), whereas no \textit{robust} association was found among the amino acids and derivatives, fatty acids and derivatives, inflammatory biomarkers, methylations, and other metabolites and biomarkers categories (Table 1). Across cancers, the highest number of \textit{robust} associations was observed for breast...
cancer with 29 (33.3%) of the 87 robust associations, followed by lung cancer (N = 14; 16.1%) and endometrial (N = 11; 12.6%). Head and neck, stomach, small intestine, pancreatic, cervical, and central nervous system cancers did not present any robust MR associations (Table 2). The network of the robust exposure–cancer associations is presented in Fig. 5.

The 16 robust associations from the anthropometrics category pertained to BMI (including childhood BMI and early life body size) and waist-to-hip ratio (WHR) with decreased risk of total breast cancer [164, 250, 255, 299], estrogen receptor positive (ER+) [250, 299], and negative (ER−) disease [164, 250, 299]); BMI with increased risk of kidney/renal cell [240] and endometrial [293] cancer, and adult height with increased overall [204] and ovarian cancer risk [194]. Thirteen robust associations were observed in the steroids category, pertaining to the positive association of different measures of testosterone with breast (total, ER+) and endometrial cancer, and to the negative association of sex-hormone-binding globulin (SHBG) and endometrial cancer [301]. Thirteen robust associations were also found for longer (shorter) leukocyte telomere length pertaining to increased (decreased risk, respectively) risk of total cancer [244], lung (total, adenocarcinoma [AC], AC-never smokers) [241], kidney/renal cell [185], osteosarcoma [314], skin [288], thyroid [288], leukemia [288], and lymphoma and multiple myeloma [288]. The 10 robust associations from the lipid metabolism biomarkers category pertained to high-density lipoprotein cholesterol (HDL-C) with increased risk of breast (total, ER+, ER−) [279] but decreased risk of overall cancer [197]; triglycerides (TGL) with decreased risk of breast [207]; low-density lipoprotein cholesterol (LDL-C) with decreased risk of endometrial (total, non-endometrioid) [321] and lung squamous cell carcinoma (SCC) [178]; total cholesterol and lung SCC (decreased risk) [178]; and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase with ovarian cancer (decreased risk for decreased genetically predicted levels of the exposure) [309]. From the lifestyle, education, and behavior category, six associations were found with robust evidence, namely between smoking and increased risk of lung cancer (total [286, 328], SCC [328], small cell [328]), two between physical activity and decreased risk of colorectal cancer [296] and one between chronotype and decreased risk of breast cancer [254]. From the dietary intake and micronutrient concentrations category, we found eight robust associations pertaining to magnesium with breast (total and ER+) and endometrial cancer, and to ferritin with liver (increased risk) [311], alcohol consumption with lung (increased risk) [286], and vitamin B12 with increased risk of ovarian cancer of low malignant potential [274]. Transferrin saturation showed increased risk of liver cancer, but transferrin levels presented a decreased risk [311]. The rest of the robust associations pertained to age at menarche with ovarian (total and serous; decreased risk) [260], alcohol use disorder diagnostic codes with ovarian serous (decreased risk) [317], endometriosis with ovarian [261] and with endometriosis-uterine

Table 1 Number and percent of Mendelian randomization analyses per grading category by exposure category

Exposure category	Robust evidence	Probable evidence	Suggestive evidence	Insufficient evidence	Non-evaluable
Amino acids and derivatives	0 (0)	5 (1.82)	0 (0)	27 (2.66)	210 (6.56)
Anthropometrics	16 (18.39)	37 (13.45)	16 (17.98)	177 (17.42)	299 (9.34)
Circulating leukocyte telomere length	13 (14.94)	20 (7.27)	1 (1.12)	25 (2.46)	68 (2.13)
Clinical measurements	2 (2.3)	14 (5.09)	5 (5.62)	25 (2.46)	53 (1.66)
Diabetes and related biomarkers	2 (2.3)	22 (8)	20 (22.47)	121 (11.91)	188 (5.88)
Dietary intake and micronutrient concentrations	7 (8.05)	31 (11.27)	8 (8.99)	235 (23.13)	371 (11.59)
Fatty acids and derivatives	0 (0)	14 (5.09)	6 (6.74)	27 (2.66)	187 (5.84)
Growth factors	1 (1.15)	1 (0.36)	1 (1.12)	1 (0.1)	72 (2.25)
Inflammatory biomarkers	0 (0)	6 (2.18)	3 (3.37)	22 (2.17)	347 (10.84)
Lifestyle, education and behavior	9 (10.34)	48 (17.45)	9 (10.11)	66 (6.5)	108 (3.38)
Lipid metabolism biomarkers	10 (11.49)	35 (12.73)	7 (7.87)	144 (14.17)	344 (10.75)
Methylation	0 (0)	0 (0)	0 (0)	6 (0.59)	23 (0.72)
Other diseases and traits	12 (13.79)	21 (7.64)	11 (12.36)	67 (6.59)	96 (3)
Other metabolites/biomarkers	0 (0)	4 (1.45)	0 (0)	21 (2.07)	783 (24.47)
Reproductive factors	2 (2.3)	5 (1.82)	1 (1.12)	24 (2.36)	29 (0.91)
Steroids	13 (14.94)	12 (4.36)	1 (1.12)	28 (2.76)	22 (0.69)
Total	87 (100)	275 (100)	89 (100)	1016 (100)	3200 (100)
leiomyoma [235] (both increased risk), gallstone disease with gallbladder (increased risk) [264], insulin-like growth factor 1 (IGF-1) with breast (increased risk) [295], obstructive sleep apnea syndrome with breast (increased risk) [271], polycystic ovary syndrome with ovarian endometrioid (decreased risk) [237], stem cell growth factor beta (SCGF-β) with prostate (decreased risk) [304], schizophrenia with breast (total, ER+, ER−; increased risk) [210], standardized forced expiratory volume in 1 s with lung SCC (increased risk) [281], thyroid-stimulating hormone with cancer overall (decreased risk) [313], type 2 diabetes with esophageal (decreased risk) [312], and vitiligo with non-melanoma skin, melanoma, and ovarian (decreased risk) [306].

When the MR-Egger test was removed from the grading scheme as a sensitivity analysis, a total of 70 associations with probable and four with suggestive evidence were upgraded to robust, while 35 associations were upgraded from suggestive to probable. In contrast, 23 MR analyses with probable and 32 with suggestive evidence were downgraded to insufficient evidence. Finally, 15 associations with robust evidence, 34 with probable, 17 with suggestive, and 242 with insufficient evidence now presented only a main analysis and were non-evaluable (Additional file 2: Table S3).

Discussion

In this large systematic overview, we searched and mapped current literature evaluating the association of 852 distinct genetically predicted risk factors across 16 broad exposure categories in relation to 21 cancer sites and their subtypes by evaluating the results of 190 publications and over 4600 MR associations. Using a set of clear, comprehensive and easily replicable criteria to evaluate the validity of the reported associations, we found that less than 90 of the reported MR analyses presented robust evidence for causality and that the vast majority of the analyses did not perform sensitivity analyses, at least with regard to MR-Egger, WM, MRPR ESSO, and MVMR. Most of the MR analyses supported by robust evidence were observed for anthropometric indices, steroid hormones, telomere length, and lipids.

The median number of IV size across all analyses was relatively small ($N = 5$), despite most studies being conducted in an era of large GWASs across a wide breadth of phenotypes. This may partially be explained by the large number of infrequently used biomarkers that were assessed in some studies [245, 315]. This may have affected the implementation of sensitivity analyses such as MR-Egger in several cases that did not include enough IVs. However, in only a limited number of analyses a

Table 2 Number and percent of Mendelian randomization analyses per grading category by cancer group

Cancer group	Robust evidence	Probable evidence	Suggestive evidence	Insufficient evidence	Non-evaluable
Head and neck	0 (0)	2 (0.73)	0 (0)	10 (0.98)	23 (0.72)
Esophageal	1 (1.15)	1 (0.36)	0 (0)	8 (0.79)	28 (0.88)
Stomach	0 (0)	3 (1.09)	0 (0)	7 (0.69)	20 (0.63)
Small intestine	0 (0)	0 (0)	0 (0)	0 (0)	36 (1.13)
Colorectal	2 (2.3)	31 (11.27)	21 (23.6)	75 (7.38)	156 (4.88)
Liver and biliary tract	3 (3.45)	2 (0.73)	1 (1.12)	5 (0.49)	29 (0.91)
Pancreatic	0 (0)	15 (5.45)	2 (2.25)	42 (1.43)	587 (18.34)
Lung	14 (16.09)	46 (16.73)	14 (15.73)	148 (14.57)	412 (12.88)
Skin/melanoma	3 (3.45)	7 (2.55)	0 (0)	14 (1.38)	136 (4.25)
Sarcomas	1 (1.15)	1 (0.36)	0 (0)	3 (0.3)	1 (0.03)
Breast	29 (33.33)	40 (14.55)	20 (22.47)	140 (13.78)	357 (11.16)
Cervical	0 (0)	2 (0.73)	1 (1.12)	3 (0.3)	14 (0.44)
Endometrial	11 (12.64)	7 (2.55)	0 (0)	10 (0.98)	31 (0.97)
Ovarian	9 (10.34)	35 (12.73)	11 (12.36)	180 (17.72)	347 (10.84)
Prostate	1 (1.15)	15 (5.45)	6 (6.74)	57 (5.61)	278 (8.69)
Kidney	2 (2.3)	9 (3.27)	1 (1.12)	17 (1.67)	55 (1.72)
Bladder and urinary tract	2 (2.3)	6 (2.18)	5 (5.62)	23 (2.26)	116 (3.62)
Central nervous system	0 (0)	22 (8)	1 (1.12)	110 (10.83)	201 (6.28)
Thyroid	1 (1.15)	4 (1.45)	0 (0)	9 (0.89)	34 (1.06)
Leukemias and lymphomas	2 (2.3)	16 (5.82)	2 (2.25)	125 (12.3)	213 (6.66)
Any cancer/mixed	6 (6.9)	11 (4)	4 (4.49)	30 (2.95)	126 (3.94)
Total	87 (100)	275 (100)	89 (100)	1016 (100)	3200 (100)
further exploration of the association was performed using other approaches such as colocalization. Apart from sensitivity MR analyses not being frequently performed in the original studies (often but not always due to lack of sufficient number of IVs), other valuable insights regarding the methodological approaches can be gained by examining this evidence base. We observed that several different clumping thresholds for pruning SNPs were applied. While most studies used thresholds ranging from $r^2 < 0.001$ to $r^2 < 0.1$, one in ten had an even more liberal threshold. Researchers should consider adjusting for the potential correlation between IVs when using less strict thresholds such as 0.1 or higher [329]. Of note is also that less than half of the analyses provided the percentage of variance explained by the IV and less than one quarter provided a power estimation, although some studies presented the power estimations graphically, but we were not able to extract those. Both the R^2 and a priori power estimation are equally important for evaluating the capacity of an IV to provide valid and accurate estimates and can help to differentiate between non-significant but otherwise underpowered associations from real null ones.

Across the MR analyses pertaining to anthropometric exposures, robust evidence was observed predominantly for BMI. BMI was inversely associated with risk of total, ER−, and ER+ breast cancer (mostly post-menopausal), which was supported by robust evidence across several
different MR analyses. In contrast, observational evidence supports a positive association of body fatness with post-menopausal breast cancer risk, and an inverse association for premenopausal disease [22, 330, 331]. These contradictory results between MR and observational evidence may be attributed to the fact that genetically predicted BMI reflects more closely early life body fatness [164, 332], and early life body fatness has been inversely associated in observational [333] and in MR studies [164, 299] with both pre- and post-menopausal breast cancer. Robust evidence was also observed for a positive association of BMI and endometrial cancer in Asian populations [293], which is in line with the observational evidence on body fatness and endometrial cancer in the general population [330, 334, 335]. The results were also consistent in the main analysis of the four MR publications on BMI and endometrial cancer among European populations; however, these publications did not perform any sensitivity analyses for endometrial cancer [149, 203, 236], so they could not be evaluated in our grading scheme. The positive association of body fatness with renal cell carcinoma from observational studies [330, 336, 337] was confirmed in our review based on robust evidence for BMI and probable evidence for WHR and body fat percentage, both of which were upgraded to robust in the sensitivity analysis excluding the MR-Egger analysis. Several well-acknowledged observational associations of adiposity and cancer risk, namely for ovarian [330, 334, 338] and colorectal [330, 339] cancer were only supported by probable evidence. The association for ovarian cancer from the largest MR study to-date failed to reach robust evidence due to the main analysis not surviving the multiple comparisons threshold set by the original publication that investigated many risk factors, despite being nominally significant [261]. Similarly, for colorectal cancer, the MR analyses, despite consistently indicating an increased risk [164, 167], did not reach robust evidence due to several reasons, including not surviving the multiple correction thresholds and having non-significant sensitivity analyses. BMI also presented probable evidence of an increased risk with lung SCC. The results from observational data are showing inverse associations for BMI and risk of total lung cancer [330, 340], which are likely due to residual confounding by smoking [341]. With respect to other anthropometric exposures, namely adult height, WHR, waist and hip circumference, the results were in line with the ones for BMI although being supported by lower levels of evidence in MR studies, with the exception of adult height and overall [204] and ovarian cancer [194] that reached robust evidence.

Robust and probable evidence was also found for the positive association of genetically predicted testosterone concentrations with risk of breast and endometrial cancer, and the negative association of SHBG with endometrial cancer. These results have been partially confirmed in observational evidence [342, 343]. Conversion of androgens into estrogens in the adipose tissue of post-menopausal women may partially explain these results, due to the role of estrogens in breast [344] and endometrial cancer cell proliferation [345]. On the other hand, excess weight, insulin resistance, and hyperinsulinemia have been associated with changes in total and bioavailable plasma sex steroid levels in women through a number of mechanisms that can lead to a decrease in plasma SHBG levels, and a rise in bioavailable testosterone [346].

A considerable fraction of the studies focused on circulating leukocyte telomere length, for which robust associations were observed with total cancer, and with lung, leukemia, lymphoma, osteosarcoma, skin, and thyroid cancers, where longer telomers increased the risk (or shorter lengths decreased the risk) of these cancers. Furthermore, a positive association with increased telomere length was supported by probable evidence for a number of other cancer sites, such as glioma, bladder, kidney, melanoma, multiple myeloma, non-Hodgkin’s lymphoma, ovarian, and prostate cancer, several of which were upgraded to robust with the exclusion of the MR-Egger analysis. In contrast, negative associations of increased telomere length with cervical, head and neck, pancreatic, and skin basal cell cancers were supported by probable evidence. The observational evidence has created controversy in the literature about the direction of the associations [347, 348], while in a recent umbrella review the strength of the observational evidence was deemed relatively weak and inconsistent [349]. A recent review on the association of telomere length and cancer risk highlighted the importance of the pleiotropic effects of certain telomere-related loci such as TERT, TERC, and OBFC1 [20], while mediation MR analyses have indicated that a considerable proportion of the association between the TERT region and lung cancer risk is mediated by telomere length [241]. The current understanding is that telomeres may both promote and also limit cancer proliferation and neoplastic progression [350, 351], although the potential of proliferation from longer telomeres seemingly overshadows the risk stemming from genetically determined shorter telomeres [352].

Several associations were identified for lipids, especially TGL, total cholesterol, LDL-C, and HDL-C. Specifically, the negative association of TGL with total and ER+ breast cancer was supported by robust and probable evidence, which is in line with the observational evidence [353, 354]. For LDL-C and HDL-C, the MR results were consistent across several studies, indicating a positive association with total, ER+, and ER− breast cancer. These associations are further supported by
consistent results from MVMR analyses adjusting for other lipid traits. However, the observational evidence is contradictory for LDL-C and HDL-C, as previous meta-analyses have shown a negative association for LDL-C and no association for HDL-C [354, 355]. With regard to endometrial cancer, we found robust evidence for a negative association with LDL-C and lower levels of evidence for associations with other lipids [321]. These results were concordant with MVMR analyses adjusting for BMI, but further MVMR analyses mutually adjusting for lipids were not performed. Limited observational evidence indicates a positive association with TGL [356–358] but no association with LDL-C or HDL-C [356, 359, 360]. An emerging robust association was observed between HMG-CoA reductase, the drug target of statins, and lower risk of ovarian cancer with consistent MVMR results accounting for BMI. Observational evidence for statin use suggests a decreased risk of ovarian cancer among statin users [361]. Only two associations presented robust evidence with lung SCC, pertaining to a negative association for total cholesterol and LDL-C, but MVMR analyses were not conducted, while for total lung cancer these associations were supported by probable evidence. Observational studies indicated a lower risk of lung cancer for circulating lipids [362]. For several other cancers such as colorectal, glioma, lymphomas, pancreatic, kidney, and multiple myeloma, the MR results were limited and inconsistent, without any robust evidence. The role of lipid metabolism in carcinogenesis and tumor growth has been acknowledged in the literature [363, 364] although the molecular mechanism is not yet fully understood and the associations are complicated by the potential role of different lipid subfractions and correlation between different lipids as well as with other traits and diseases such as BMI or metabolic syndrome [365, 366]. Regulating lipid metabolism has been identified as a promising target for anti-cancer interventions [363]. An overview of reviews on statin use has shown low levels of evidence in meta-analyses of observational studies for decreased risk of breast, colorectal, esophageal, gastric, hematological, liver, and prostate cancers, while the results from meta-analyses of RCTs were null [367].

Many of the included associations were non-evaluable due to not performing any of the sensitivity analyses required for our grading. Reasons may vary across studies, including inability to do so due to low number of instruments, especially for the MR-Egger analyses, prioritization of statistically significant associations for further evaluation with sensitivity analyses, or sensitivity analyses not being part of the authors’ analysis plan. There is a necessity to study these associations more comprehensively, especially in the cases of polygenic definition of instruments, which are more prone to biases or pleiotropy that can drive associations both towards and away from the null. Regardless of the reason and the appropriateness of the decision to include sensitivity MR analyses, these associations are not sufficiently investigated and are all considered non-evaluable in our grading scheme, which focuses on evaluating the robustness for causality of the studied associations.

Other efforts to summarize the evidence of MR analyses on cancer risk have been performed previously. However, they were either limited to specific exposures [12, 14, 18, 20] or cancer sites [15, 16], or used a more narrative approach of presenting and assessing the MR results [11, 13, 19], while none performed a formal evaluation of the evidence. Instead, our review used predefined criteria for the categorization of the evidence for causality, which increases the transparency and reproducibility of our results. We did not evaluate the quality of reporting of the MR studies, as there are only some very recent efforts focusing in this topic [17], and comprehensive reporting guidelines were very recently developed [7]. In addition, as guidelines for performing MR studies [6] have also very recently been developed and are not yet widely agreed upon, we refrained from using those to evaluate the quality of the identified studies. Although the grading scheme utilized in our review prohibited us from evaluating a large proportion of the included MR analyses because they did not report on any sensitivity MR analysis, most of the results that received robust evidence were in line with previous observational research and are further supported by mechanistic evidence.

Several limitations need to be acknowledged. Our search strategy may have resulted in missing some relevant studies, especially if the MR analysis was not the primary focus of some studies but only a supplementary analysis, which seems to be increasingly common in recent GWA studies. In these cases, however, we would not expect a comprehensive evaluation of the studied associations using sensitivity MR analyses, which would only lead to inflation of the number of associations with non-evaluable evidence. The structure of the criteria for evaluation of the robustness of the MR evidence for causality was more geared towards the evaluation of two-sample MR approaches, but the percentage of one-sample designs that did not perform one of the prespecified sensitivity analyses was only marginally higher than that of two-sample designs. Associations evaluated in earlier publications, especially those before many of the sensitivity analyses were introduced, could also not be evaluated. However, the majority of the studies were published after 2018 and the earlier associations often relied on limited number of cases or on instruments including only a limited number of SNPs and with low
percentage of variability explained. Information of the percentage of variance explained and statistical power of the instrument was often not reported, and thus a complete assessment of weak instrument bias could not be performed. Therefore, the grading scheme did not allow us to distinguish MR analyses that presented robust evidence of lack of association from MR analyses that did not present an association due to being insufficiently powered. Future studies may benefit from reporting this information. The approach undertaken in this review for grading the associations did not allow us to evaluate MR analyses that only presented a main analysis without being supported by sensitivity analyses. Since two of the three MR assumptions are not directly testable, a MR analysis is imperative to be supported by a comprehensive evaluation of complementary and sensitivity analyses to increase credibility of the results, as such approaches can at least give some indication of large violations of the assumptions. Most MR analyses evaluating associations for gene products using cis instruments were non-evaluable using our current criteria as most included one or two SNPs as IVs, and the sensitivity analyses could not be applied. However, only two of these studies performed colocalization analysis and neither presented statistically significant associations for these specific analyses. More recently introduced sensitivity MR analyses were not included in the current evaluation, as their use is very infrequent in the MR literature. Finally, there is discrepancy in the availability of genetic data for different cancers, and hence the MR studies that have been possible; thus, cancer consortia are encouraged to make their summary data more readily and widely available.

Conclusions
The field of cancer epidemiology is challenging to evaluate due to the sheer amount of available observational evidence and further burdened by the increasing interest on MR methodologies that could complement findings from traditional observational research. Our work summarizes and evaluates the robustness of the MR analyses evidence for causality in cancer prevention and etiology. Only a minority of the evaluated MR analyses were supported by robust evidence. In addition, we identified gaps in the conduct and reporting of MR studies that will assist in developing stronger future reporting guidelines.

Abbreviations
AC: Adenocarcinoma; BMI: Body mass index; ER+: Estrogen receptor positive; ER-: Estrogen receptor negative; FEV1: Forced expiratory volume in one second; GWAS: Genome-wide association studies; HDL-C: High-density lipoprotein cholesterol; HGNC-A: 3-Hydroxy-3-methylglutaryl coenzyme A; IGF-1: Insulin-like growth factor 1; IV: Instrumental variable; LDL-C: Low-density lipoprotein cholesterol; MR: Mendelian randomization; MVMR: Multivariable Mendelian randomization; PRISMA: Preferred Reporting Items for Systematic Review and Meta-Analysis; RCT: Randomized controlled trial; SCC: Squamous cell carcinoma; SCGF-beta: Stem cell growth factor beta; SHBG: Sex-hormone-binding globulin; SNPs: Single-nucleotide polymorphism; TGL: Triglycerides; WHR: Waist-to-hip ratio; WM: Weighted median

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12916-022-02246-y.

Additional file 1. Supplementary methods.
Additional file 2: File S1. List of excluded studies and reason for exclusion. File S2. List of distinct exposures per exposure category. File S3. Evidence base. Table S1. Description of instrument characteristics by exposure category. Table S2. Summary results of the main and sensitivity Mendelian randomization (MR) analyses by exposure category and cancer group. Table S3. Grading of the evidence based on the sensitivity analysis by excluding the results from the MR-Egger test.

Acknowledgements
We thank Professor Julian P T Higgins for providing meaningful comments and suggestions.

Authors’ contributions
GM, DK, and KKT were responsible for the study conception and initial design. DG, and SB contributed to the study design. GM, AK, OD, DK, XZ, and LW contributed to data extraction, coding, and evaluation of the included studies. GM contributed to data analysis and drafted the manuscript. KKT is the guarantor, he had full access to all the data in the study, takes responsibility for the integrity of the data, and attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. All authors critically revised the manuscript and approved the final version.

Funding
This work was supported by Cancer Res UK (grant number C18281/A29019). SB is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (204623/Z/16/Z). This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. ET is supported by a Cancer Res UK Career Development Fellowship (C31250/A22804). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The data underlying this article are available in the supplement and in the original publications.

Declarations
Ethics approval and consent to participate
Not required.

Consent for publication
Not applicable.

Competing interests
DG is employed part-time by Novo Nordisk, outside and unrelated to the current work; the rest of the authors declare that they have no competing interests.

Author details
1Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. 2Department of Epidemiology and Biostatistics, St. Mary’s Campus, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK. 3Bristol Medical School, University of Bristol, Bristol, UK. 4Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece. 5Centre for Global Health, Usher Institute, The University of
Edinburgh, Edinburgh, UK. ©CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK. © Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK. ©Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK.

Received: 8 September 2021 Accepted: 10 January 2022

Published online: 02 February 2022

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

2. Dwam K, Gamble C, Williamson PR, Kirkham JJ, Reporting Bias G. Systematic review of the empirical evidence of study publication bias and outcome reporting bias – an updated review. PLoS one. 2013;8(7):e66844.

3. Hingorani A, Humphries S. Nature’s randomised trials. Lancet (London, England). 2005;366(9501):1906–8.

4. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

5. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84.

6. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Research. 2019;4(1):186.

7. Skrivankova WV, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. Jama. 2021;326(16):1614–21.

8. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.

9. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res ed). 2009;339:b2535.

10. Boof AG, Dekkers OM, le Cessie S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol. 2015;44(2):496–511.

11. Yarmolinsky J, Wade KH, Richmond RC, Langdon RJ, Bull CJ, Tilling KM, et al. Causal inference in cancer epidemiology: what is the role of mendelian randomization? Cancer Epidemiol Biomark Prev. 2018;27(9):995–1010.

12. Murphy N, Jenab M, Gunter MJ. Adiposity and gastrointestinal cancers: A meta-analysis implementing a Mendelian randomization approach. Cancer Epidemiology Biomarkers and Prevention. 2009;18(3):1016–7.

13. O’Mara TA, Glubb DM, Kho PF, Thompson DJ, Spurlee AB. Genome-wide association studies of endometrial cancer: latest developments and future directions. Cancer Epidemiol Biomark Prev. 2019;28(7):1095–102.

14. Lor GCY, Risch HA, Fung WT, Au Yeung SL, Wong IOL, Zheng W, et al. Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Med. 2016;14:66.

15. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.

16. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

17. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

18. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181(4):251–60.

19. Minelli C, Fabiola Del Greco M, van der Plaat DA, Bowden J, Sheenan NA, Thompson J. The use of two-sample methods for Mendelian randomization analyses on single large datasets. bioRxiv. 2020.2020.05.20.208226.

20. Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods using summary data. Genet Epidemiol. 2020;44(4):313–29.

21. Kanduri C, Bock C, Gunderson S, Hoveg E, Sandve GK. Colocalizations of genomic elements: approaches, recommendations and challenges. Bioinformatics. 2019;35(9):1615–24.

22. Zhou H, Zhang Y, Liu J, Yang Y, Fang W, Hong S, et al. Education and lung cancer: a Mendelian randomisation study. Ann Oncol. 2019;30:118.

23. Liu J, Zhou H, Zhang Y, Fang W, Yang Y, Hong S, et al. A Mendelian randomization study of the effects of Croot’s disease on lung cancer. Ann Oncol. 2019;30:118.

24. Bonilla C, Lewis SJ, Martin RM, Donovan JL, Harmsy FC, Neal DE, et al. Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Med. 2016;14:66.

25. Bonilla C, Lewis SJ, Rowlands MA, Gaunt TR, Davey Smith G, Gunnell D, et al. Assessing the role of insulin-like growth factors and binding proteins in prostate cancer using Mendelian randomization: genetic variants as instruments for circulating levels. Int J Cancer. 2016;139(7):1520–33.

26. Guo Q, Burgess S, Turman C, Bolla MK, Wang Q, Lush M, et al. Body mass index and breast cancer survival: a Mendelian randomization analysis. Int J Epidemiol. 2017;46(6):1814–22.

27. Chou WC, Hisung CN, Chen WT, Tseng LM, Wang HC, Chu HW, et al. A functional variant near XCL1 gene improves breast cancer survival via promoting cancer immunity. Int J Cancer. 2020;146(8):2182–93.

28. Xu J, Chang WS, Tsai CW, Bau DT, Yu Y, Davis JW, et al. Leukocyte telomere length is associated with aggressive prostate cancer in localized prostate cancer patients. EBioMedicine. 2020;52:102616.

29. Langdon R, Richardson R, Elliott HR, Dudding T, Kazmi N, Penfold C, et al. Identifying epigenetic biomarkers of established prognostic factors and survival in a clinical cohort of individuals with oropharyngeal cancer. Clin Epigenetics. 2020;2(1):195.

30. Bradley D. Obesity, thyroid nodularity, and thyroid cancer: epiphenomenon or cause? J Clin Endocrinol Metab. 2020;105(8):e3100–2.

31. Karantanos T, Kaier H, Chatudiev S, Resar LMS, Molteno AR. Inflammation exerts a nonrandom norm in the acquisition and progression of the MPN insights from a Mendelian randomization study. EClinicalMedicine. 2020;21:103324.

32. Salaspuro M, Lachenmeier DW. Unique human cancer model for acetaldelyde based on Mendelian randomization. Arch Toxicol. 2020;94(8):2877–85.

33. Bell KIL. Causal inference in melanoma epidemiology using Mendelian randomization. Br J Dermatol. 2020;182(1):13–4.

34. Boffetta P. Exploring a cancer biomarker: the example of C-reactive protein. J Natl Cancer Inst. 2010;102(3):142–3.

35. Abrams JA, Chak A. Applying big GWAS data to clarify the role of obesity in Barrett’s esophagus and esophageal adenocarcinoma. J Natl Cancer Inst. 2014;106:111.

36. Schooling CM, Childhood adiposity, adult body mass index, and disease in later life. BMJ. 2020;369:m1708. https://doi.org/10.1136/bmj.m1708.

37. Bocca S, Hashibe M, Galli P. Aldehyde dehydrogenase 2 and head and neck cancer: A meta-analysis implementing a Mendelian randomization approach. Cancer Epidemiology Biomarkers and Prevention. 2009;18(3):1016.

38. Went M, Sud A, Law PJ, Johnson DC, Weinhold N, Forsti A, et al. Assessing the effect of obesity-related traits on multiple myeloma using a Mendelian randomisation approach. Blood cancer journal. 2017;7(6):e573.

39. Said MA, Eppinga RN, Hagemeijer Y, Verweij N, van der Harst P. Telomere length and risk of cardiovascular disease and cancer. J Am Coll Cardiol. 2017;70(4):506–7.
130. Prescott J, Setiaawan W, Wentzensen N, Schumacher F, Yu H, Delahanty R, et al. Body mass index genetic risk score and endometrial cancer risk. PLoS One. 2015;10(11):e0143256.

131. Ojha J, Codd V, Nelson CP, Samani NJ, Smailov M, Madsen NR, et al. Genetic variation associated with longer telomere length increases risk of chronic lymphoproliferative leukemia. Cancer Epidemiol Biomark Prev. 2016;25(7):1043–9.

132. Walsh KM, Whitehead TP, de Smith AJ, Smailov M, Park M, Endfoot AA, et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis. 2016;37(6):576–82.

133. Rode L, Nordestgaard BG, Bojesen SE. Long telomeres and cancer risk among 95 568 individuals from the general population. Int J Epidemiol. 2016;45(5):1634–43.

134. Luu HN, Long J, Wen W, Zheng Y, Cai Q, Gao YT, et al. Association between genetic risk score for telomere length and risk of breast cancer. Cancers Causes Control - CCC. 2016;27(10):1219–28.

135. Antovi SO, Barlet W, Broderick BT, Chaffee KG, Oberg A, Jatoi A, et al. Genetically predicted telomere length is not associated with pancreatic cancer risk. Cancer Epidemiol Biomark Prev. 2017;26(6):971–4.

136. Howell AE, Zheng J, Haycock PC, McAlenean A, Retin C, Martin RM, et al. Use of Mendelian randomization for identifying risk factors for brain tumors. Frontiers in genetics. 2018;8:525.

137. Gentiluomo M, Canzian F, Niccolini F, Landi S, Cape D. Germline genetic variability in pancreatic cancer risk and prognosis. Sem Cancer Biol. 2020.

138. Fussey JM, Beaumont RN, Wood AR, Vaidya B, Smith J, Tyrrell J. Mendelian randomization analysis in three large cohorts. BMJ (Clin Res ed) 2014, 349:g6330.

139. Allin KH, Nordestgaard BG, Zacho J, Tybjaerg-Hansen A, Bojesen SE. C-reactive protein and colorectal cancer risk. Int J Cancer. 2015;137(4):911–20.

140. Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG. High body mass index genetic risk score and endometrial cancer risk. Int J Epidemiol. 2016;45(5):1189–92.

141. Fang C, Wang H, Li X, Wang D, Gao YT, et al. Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. Tumour Biol. 2015;36(2):896–908.

142. Andren-Sandberg A, Gustafsson MA, Cullen MW, Rached A, Bratt J, et al. Silencing a circulating gene variant that is associated with breast cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

143. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

144. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

145. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

146. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

147. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

148. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

149. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

150. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.

151. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG: Genetically low adiponectin genotype is associated with increased early-onset colorectal cancer risk. Cancer Prev Res (Phila). 2015;8(6):586–92.
as body mass index, but not waist hip ratio, is causal for endometrial cancer. Cancer Epidemiol Biomark Prev. 2016;25(11):1490-10.

174. Qu K, Pang Q, Lin T, Zhang L, Gu M, Niu W, et al. Circulating interleukin-10 levels and human papilloma virus and Epstein-Barr virus-associated cancers: evidence from a Mendelian randomization meta-analysis based on 11,170 subjects. OncoTargets Therapy. 2016;9:251-67.

175. Xu W, Cheng Y, Zhu H. Evaluation of an association of blood homocysteine levels with gastric cancer risk from 27 case-control studies. Medicine. 2016;95(20):e3703.

176. Xuan Y, Li KH, Hu ZQ, Teng ZM, Hu DJ. A Mendelian randomization study of plasma homocysteine and multiple myeloma. Sci Rep. 2016;6:25204.

177. Carreras-Torres R, Johansson M, Gaboroneau V, Haycock PC, Wade KH, Relton CL, et al. The role of obesity, type 2 diabetes, and metabolic factors in pancreatic cancer: a Mendelian randomization study. J Natl Cancer Inst. 2017;109:9.

178. Carreras-Torres R, Johansson M, Haycock PC, Wade KH, Relton CL, Martin RM, et al. Obesity, metabolic factors and risk of different histological types of lung cancer: a Mendelian randomization study. PloS One. 2017;12(6):e0177875.

179. Cheng Y, Yu C, Huang M, Du F, Song C, Ma Z, et al. Genetic association of telomere length with hepatocellular carcinoma risk: a Mendelian randomization analysis. Cancer Epidemiol. 2017;50(5):A39-45.

180. Day FR, Thompson DJ, Helgason H, Chaisson DI, Finucane H, Sulem P, et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet. 2017;49(9):1285-9.

181. Dimitrakopoulou VI, Tsilidis KK, Haycock PC, Dimou NL, Al-Dabhani K, Martin RM, et al. Circulating vitamin D concentration and risk of seven cancers: a Mendelian randomisation study. BMJ Clin Res Ed. 2017;359:j461.

182. Haycock PC, Burgess S, Nounou A, Zheng J, Okoli GN, Bowden J, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 2017;3(6):636-51.

183. Mårdvall CI, Atif S, Nordsetgaard BG. Plasma urate, cancer incidence, and all-cause mortality: a Mendelian randomization study. Clin Chem. 2017;63(9):1151-60.

184. Levy M, Hall D, Sud A, Law P, Litchfield K, Dudäkia D, et al. Mendelian randomisation analysis provides no evidence for a relationship between adult height and testicular cancer risk. Andrology. 2017;5(5):914-22.

185. Machiela MJ, Hofmann JN, Carreras-Torres R, Brown KM, Johansson M, Wang Z, et al. Genetic variants related to longer telomere length are associated with increased risk of renal cell carcinoma. Eur Urol. 2017;72(3):747-54.

186. Mao Y, Yan C, Lu Q, Zhu M, Yu F, Wang C, et al. Genetically predicted high body mass index is associated with increased gastric cancer risk. Eur J Hum Genet. 2017;25(9):1061-6.

187. May-Wilson S, Sud A, Law PJ, Palin K, Tuupanen S, Gyffle A, et al. Pro-inflammatory fatty acid profile and colorectal cancer risk: a Mendelian randomisation analysis. Eur J Cancer (Oxford, England : 1990). 2017;80:228-38.

188. Nimptsch K, Song M, Aleksandrova K, Katsoulis M, Korteni M, Law PJ, et al. Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies. Eur J Epidemiol. 2017;32(5):419.

189. Rodriguez-Broadbent H, Law PJ, Sud A, Palin K, Tuupanen S, Gyffle A, et al. Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer. Int J Cancer. 2017;140(12):2701-8.

190. Wang C, Qin N, Zhu M, Chen M, Xie K, Cheng Y, et al. Metabolome-wide association study identified the association between the circulating polynomials satiated fatty acids variant rs174548 and lung cancer. Carcogenomics. 2017;3(8):1147-54.

191. Chandler PD, Tobias DK, Wang L, Smith-Warner SA, Chaisson DI, Rose L, et al. Association between vitamin D genetic risk score and cancer risk in a large cohort of U.S. women. Nutrients. 2018;10(1).

192. Disney-Hogg L, Cornish AJ, Sud A, Law PJ, Kinnersley B, Jacobs DI, et al. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med. 2018;16(1):42.

193. Disney-Hogg L, Sud A, Law PJ, Cornish AJ, Kinnersley B, Ostrom QT, et al. Influence of obesity-related risk factors in the aetiology of glioma. Br J Cancer. 2018;118(7):1020-7.

194. Dixon-Suen SC, Nagle CM, Thrift AP, Pharaoh PDP, Ewing A, Pearce CL, et al. Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study. Br J Cancer. 2018;118(8):1123-9.
women of African ancestry in the root consortium. Int J Cancer. 2018;142(1):36–43.

217. Winslow UC, Nordenstam BG, Aftab S. High plasma 25-hydroxyvitamin D and high risk of nonmelanoma skin cancer: a Mendelian randomization study of 97849 individuals. Br J Dermatol. 2018;178(6):1388–95.

218. Yarmolinsky J, Bernyman K, Langdon R, Bonilla C, Davey Smith G, Martin RM, et al. Mendelian randomization does not support serum calcium in prostate cancer risk. Cancer Causes Control. 2018;29(11):1073–80.

219. Yarmolinsky J, Bonilla C, Haycock PC, Langdon RJQ, Lotta LA, Langenberg C, et al. Circulating selenium and prostate cancer risk: a Mendelian randomization analysis. J Natl Cancer Inst. 2018;110(10):1035–8.

220. Zhang C, Morimoto LM, de Smith AJ, Hansen HIA, Gonzalez-Maya J, Endicott AA, et al. Genetic determinants of childhood and adult height associated with osteosarcoma risk. Cancer. 2018;124(18):3742–52.

221. Adams CD, Neuhase SL. Bi-directional Mendelian randomization of epithelial ovarian cancer and schizophrenia and uni-directional Mendelian randomization of schizophrenia on circulating 1- or 2-glycerophosphocholine metabolites. Mol Genet Metabolism Rep. 2019;21:100274.

222. Adams CD, Richmond R, Ferreira DLS, Spiller W, Tan V, Zheng J, et al. Circulating metabolic biomarkers of screen-detected prostate cancer in the ProtecT study. Cancer Epidemiol Biomark Prev. 2019;28(11):1608–16.

223. Au Yeung SI, Luo S, Schooling CM. The impact of GDF-15, a biomarker for metformin, on the risk of coronary artery disease, breast and colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian randomisation study. Diabetologia. 2019;62(9):1638–46.

224. Au Yeung SI, Schooling CM. Impact of glycemic traits, type 2 diabetes and metformin use on breast and prostate cancer risk: a Mendelian randomization study. BMJ Open Diabetes Res Care. 2019;7(1):e000872.

225. Battram T, Richmond RC, Baglietto L, Haycock PC, Perduca V, Bojesen SE, et al. Appraising the causal relevance of DNA methylation for risk of lung cancer. Int J Epidemiol. 2019;48(3):1493–504.

226. Beynon RA, Richmond RC, Santos Ferreira DL, Moseley RE, Murray D, et al. Investigating the effects of lycopene and green tea on the circulating vitamin D concentrations and risk of prostate cancer: a Mendelian randomization study. Br J Cancer. 2019;121(2):180–92.

227. Beynon RA, Richmond RC, Santos Ferreira DL, Ness AR, May M, Smith GD, et al. The genetic interplay between selenium and prostate cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(5):1447–56.

228. Cao X, Huang M, Zhu M, Fang R, Ma Z, Jiang T, et al. Mendelian randomization does not support serum calcium in prostate cancer risk revisited using Mendelian randomisation. Eur J Epidemiol. 2019;34(6):591–600.

229. Kho PF, Glubb DM, Thompson DJ, Spurdle AB, D’Mara TA. Assessing the role of selenium in endometrial cancer risk: a Mendelian randomization study. Front Oncol. 2019;9:182.

230. Kuo CL, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 36,100 older participants. Aging Cell. 2019;18(6):e13017.

231. Langdon RJ, Richmond RC, Herzig G, Zheng J, Wade KH, Carreras-Torres R, et al. A phenotype-wide Mendelian randomization study of pancreatic cancer using summary genetic data. Cancer Epidemiol Biomark Prev. 2019;28(12):2070–8.

232. Li M, Kwok MK, Fong SSM, Schooling CM. Indoleamine 2,3-dioxygenase and ischemic heart disease: a Mendelian randomization study. Sci Rep. 2019;9(1):1–16.

233. Liu J, Zhou H, Zhang Y, Huang Y, Fang W, Yang Y, et al. Docomasapentaenoic acid and lung cancer risk: a Mendelian randomization study. Cancer Med. 2019;8(4):1817–25.

234. Liyanage UE, Ong JS, An J, Gharahkhani P, Law MH, MacGregor S. Mendelian randomization study for genetically predicted polyunsaturated fatty acids levels on overall cancer risk and mortality. Cancer Epidemiol Biomark Prev. 2019;28(6):1015–23.

235. Liyanage UE, Ong JS, An J, Gharahkhani P, Law MH, MacGregor S. Association between coffee consumption and overall risk of being diagnosed with or dying from cancer among > 300000 UK Biobank participants in a large-scale Mendelian randomization study. Int J Epidemiol. 2019;48(5):1447–56.

236. Ooi BNS, Loh H, Ho PI, Milne RL, Giles G, Gao C, et al. The genetic interplay between body mass index, breast size and breast cancer risk: a Mendelian randomization analysis. Int J Epidemiol. 2019;48(3):781–94.

237. Qian F, Rookus MA, Leslie G, Risch HA, Greene MH, Aars JM, et al. Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BCRA1 and BCRA2 mutation carriers. Br J Cancer. 2019;121(2):180–92.

238. Qian F, Wang S, Mitchell J, McCuffog L, Barrowdale D, Leslie G, et al. Height and body mass index as modifiers of breast cancer risk in BCRA1/2 mutation carriers: a Mendelian randomization study. J Natl Cancer Inst. 2019;111(4):350–64.

239. Qin N, Li N, Wang C, Pu Z, Ma Z, Jin G, et al. Association of mosaic loss of chromosome Y with lung cancer risk and prognosis in a Chinese population. J Thoracic Oncol. 2019;14(1):37–44.

240. Richmond RC, Anderson EL, Dashti HS, Jones SE, Lane JM, Strand LB, et al. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisation study. BMJ (Clin Res ed.). 2019;365:d2327.

241. Shu X, Wu L, Khankari NK, Shu XO, Wang TJ, Michailidou K, et al. Associations of obesity and circulating insulin and glucose with breast cancer, and type 2 diabetes and metabolic traits: a Mendelian randomization analysis. Int J Epidemiol. 2019;48(3):940–51.

242. Smith Byrne K, Appleby PN, Key TJ, Holmes MV, Fensom GK, Agudo A, et al. The role of plasma microsemimoprotein-beta in prostate cancer: an observational nested case-control and Mendelian randomization study in the European prospective investigation into cancer and nutrition. Ann Oncol. 2019;30(6):983–9.
257. Srinivas N, Rachakonda S, Hielscher T, Calderazzo S, Rudnai P, Gurza E, et al. Telomere length, arsenic exposure and risk of basal cell carcinoma of skin. Carcinogenesis. 2019;40(6):715–23.

258. Takahashi H, Comish AJ, Sud A, Law PJ, Disney-Hogg L, Galvocressi L, et al. Mendelian randomization provides support for obesity as a risk factor for meningioma. Sci Rep. 2019;9(1):1309.

259. Wang X, Deter JY, Albanes D, Arndt V, Berndt SI, Bézieau S, et al. Mendelian randomization analysis of C-reactive protein on colorectal cancer risk. Int J Epidemiol. 2019;48(3):677–80.

260. Yang H, Dai H, Li L, Wang X, Wang P, Song F, et al. Age at menarche and epithelial ovarian cancer risk: a meta-analysis and Mendelian randomization study. Cancer Med. 2019;8(8):4012–22.

261. Yarmolinsky J, Relton CL, Lophatananon A, Muir K, Menon U, Gentry-Maharaj A, et al. Appraising the role of previously reported risk factors in epithelial ovarian cancer risk: a Mendelian randomization analysis. PLoS Med. 2019;16(8):e1002893.

262. Zhou H, Zhang Y, Liu J, Yang Y, Fang W, Hong S, et al. Education and lung cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(3):743–50.

263. Zhu Y, Wei Y, Zhang R, Dong X, Shen S, Zhao Y, et al. Elevated platelet count appears to be causally associated with increased risk of lung cancer: a Mendelian randomization analysis. Cancer Epidemiol Biomark Prev. 2019;28(5):935–42.

264. Barahona Ponce C, Scherer D, Brinster R, Boekstegers F, Marcelin K, Gárate V, et al. Gallstones, body mass index, C-reactive protein and glioblast cancer - Mendelian randomization analysis of Chilean and European Genotype Data. Hepatology (Baltimore, Md). 2020;73(5):1783–96.

265. Baumeister SE, Leitzmann MF, Bahls M, Meisinger C, Amos CI, Hung RJ, et al. Physical activity does not lower the risk of lung cancer. Cancer Res. 2020;80(17):3765–9.

266. Beeghly-Fadiel A, Khanaki NK, Delahanty RJ, Shu XO, Lu Y, Schmidt MK, et al. A Mendelian randomization analysis of circulating lipids traits and breast cancer risk. Int J Epidemiol. 2020;49(4):1177–301.

267. Cheng WW, Wang ZK, Shangguan HF, Zhu Q, Zhang HY. Are vitamins and colorectal cancer risk? A Mendelian randomization study. J Clin Endocrinol Metab. 2020;105(7):e2398–407.

268. Dusingize JC, Olsen CM, An J, Pandeya N, Law MH, Thompson BS, et al. Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. Lancet Gastroenterol Hepatol. 2020;5(5):155–62.

269. Dusingize JC, Olsen CM, An J, Pandeya N, Law MH, Thompson BS, et al. Body mass index and height and risk of cutaneous melanoma: Mendelian randomization analyses. Int J Epidemiol. 2020;49(4):1236–45.

270. Fussey JM, Beaumont RN, Wood AR, Vaidya B, Smith J, Tyrrell J. Does Physical activity does not lower the risk of lung cancer. Cancer Res. 2020;80(17):3765–9.

271. Larsson SC, Carter P, Kar S, Vithayathil M, Mason AM, Michaelsson K, et al. Smoking, alcohol consumption, and cancer: a mendelian randomization study in UK Biobank and international genetic consortia participants. PLoS Med. 2020;17(1):e1003178.

272. Leaton SC, Carter P, Vithayathil M, Kar S, Mason AM, Burgess S. Insulin-like growth factor-1 and site-specific cancers: a Mendelian randomization study. Cancer Med. 2020;9(18):6836–42.

273. Li C, Stoma S, Lotta LA, Warner S, Albrecht E, Allione A, et al. Da Silva Couto Alves A et al: Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am J Hum Genet. 2020;106(3):389–404.

274. Li S, Xu Y, Zhang Y, Nie L, Ma Z, Ma L, et al. Mendelian randomization analyses of genetically predicted circulating levels of cytokines with risk of breast cancer. NPJ precision oncology. 2020;4:25.

275. Liyanage UE, Law MH, Barrett JH, Isles MM, MacGregor S. Is there a causal relationship between vitamin D and melanoma risk? A Mendelian randomization study. Br J Dermatol. 2020;182(1):97–103.

276. Lu Y, Gentiluomo M, Lorenzo-Bermejo J, Morelli L, Obaze O, Campa D, et al. Mendelian randomisation study of the effects of known and putative risk factors on pancreatic cancer. J Med Genet. 2020;57(7):820–8.

277. Luo S, Schooling CM, Wong IKC, Au Yeung SL. Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: a Mendelian randomisation study. Diabetologia. 2020;63(1):1349–59.

278. Maruda T, Ogawa K, Kamatani Y, Murakami Y, Kimura T, Okada Y. A Mendelian randomization study identified obesity as a causal risk factor of uterine endometrial cancer in Japanese. Cancer Sci. 2020;111(12):4646–51.

279. Murphy N, Carreras-Torres R, Song M, Chan AT, Martin RM, Papadimitriou N, et al. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and Mendelian randomizations analyses. Gastroenterology. 2020;158(5):1380–1312.e1320.

280. Murphy N, Knuppel A, Papadimitriou N, Martin RM, Tsilidis KK, Smith-Byrne K, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ~460000 women. Ann Oncol. 2020;31(5):641–9.

281. Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Martin RM, Lewis SJ, et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat Commun. 2020;11(1):1397.

282. Pedersen KM, Colak Y, Ellervik C, Hasselbalch HC, Bojesen SE, Nordhaegard BG. Loss-of-function polymorphism in IL6R reduces risk of JAK2V617F somatic mutation and myeloproliferative neoplasm: a Mendelian randomization study. EClinicalMedicine. 2020;21:100280.

283. Peng H, Wu X, Wen Y, Li C, Liu J, Li J, et al. Association between systemic sclerosis and risk of lung cancer: results from a pool of cohort studies and Mendelian randomization analysis. Autoimmun Rev. 2020;19:101005.

284. Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey Smith G. Use of genetic variation to separate the effects of early and later life adiposity on disease risk: Mendelian randomisation study. BMJ (Clin Res ed). 2020;369:m2037.
300. Robinson T, Martin RM, Yarmolinsky J. Mendelian randomisation analyses of circulating adipokines and C-reactive protein on breast cancer risk. Int J Cancer. 2020;147(6):1597–603.

301. Ruth KS, Day FR, Tyrell J, Thompson DJ, Wood AR, Mahajan A, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26(2):252–8.

302. Saunders CN, Cornish AJ, Kinnellers B, Law PJ, Claus EB, Iyassova D, et al. Lack of association between modifiable exposures and glioma risk: a Mendelian randomization analysis. Neuro- oncology. 2020;22(2):207–15.

303. Seyed Khoei N, Jenab M, Murphy N, Banbury BL, Carreras-Torres R, Vallion V, et al. Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses. BMC Med. 2020;18(1):229.

304. Sun X, Ye D, Du L, Qian Y, Jiang X, Mao Y. Genetically predicted levels of circulating cytokines and prostate cancer risk: A Mendelian randomization study. Int J Cancer. 2020;147(9):2469–78.

305. Wang T, Ren C, Ni J, Ding H, Qi Q, Yan C, et al. Genetic association of plasma homocysteine levels with gastric cancer risk: a two-sample Mendelian randomization study. Cancer Epidemiol Biomark Prev. 2020;29(2):187–92.

306. Wen Y, Wu X, Peng H, Li C, Jiang Y, Liang H, et al. Cancer risks in patients with vitiligo: a Mendelian randomization study. J Cancer Res Clin Oncol. 2020;146(8):1933–40.

307. Went M, Cornish AJ, Law PJ, Kinnellers B, van Duin M, Weinhold N, et al. Search for multiple myeloma risk factors using Mendelian randomization. Blood Adv. 2020;4(10):2172–9.

308. Wong YY, Zhang H, Liang CA, Shiraiishi K, Yu K, Matsuo K, et al. Tuberculosis infection and lung adenocarcinoma: Mendelian randomization and pathway analysis of genome-wide association study data from never-smoking Asian women. Genomics. 2020;111(2):1223–32.

309. Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, et al. Association between genetically proxied inhibition of HMG-CoA reductase – smoking Asian women. Genomics. 2020;112(2):1223–55.

310. Yuan S, Carter P, Bruzelius M, Vithayathil M, Kar S, Mason AM, et al. Effects of tumour necrosis factor on cardiovascular disease and cancer: a two-sample Mendelian randomization study. EBioMedicine. 2020;59:102956.

311. Yuan S, Carter P, Vithayathil M, Kar S, Giovannucci E, Mason AM, et al. Iron status and cancer risk in UK Biobank: a two-sample Mendelian randomization study. Nutrients. 2020;12(2).

312. Yuan S, Kar S, Carter P, Vithayathil M, Mason AM, Burgers S, et al. Is type 2 diabetes causally associated with cancer risk? Evidence from a two-sample Mendelian randomization study. Diabetes. 2020;69(7):1588–96.

313. Yuan S, Kar S, Vithayathil M, Carter P, Mason AM, Burgers S, et al. Causal associations of thyroid function and dysfunction with overall, breast and thyroid cancer: A two-sample Mendelian randomization study. Int J Cancer. 2020;147(7):1895–903.

314. Zhang C, Hansen LM, Semmens EC, Gonzalez-Mayor L, Morimoto L, Wei Q, et al. Common genetic variation and risk of osteosarcoma in a multi-ethnic pediatric and adolescent population. Bone. 2020;130:115070.

315. Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet. 2020;52(10):1112–31.

316. Zhou W, Brumpton B, Kabil O, Gudmundsson J, Thorleifsson G, Weinsson J, et al. GWAS of thyroid stimulating hormone highlights pleotropic effects and inverse association with thyroid cancer. Nat Commun. 2020;11(1):3981.

317. Zhu J, Jiang X, Niu Z. Alcohol consumption and risk of breast and ovarian cancer: a Mendelian randomization study. Cancer Genet. 2020;245:35–41.

318. Zhu J, Sun Q, Hou H, Zhu K, Wang Q, Liu H, et al. The association between BMI and kidney cancer risk: an updated dose-response meta-analysis in accordance with PRISMA guideline. Medicine. 2018;97(4):e12860.

319. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and breast cancer. Available at https://dietandcancerreport.org.

320. Rukhin A, Ahmad S, Ericson U, Stock T, Renstrom F, et al. Inverse relationship between a genetic risk score of 31 BMI loci and weight change before and after reaching middle age. Int J Obesity. 2016;40(2):252–9.

321. Hilayat K, Yang CM, Shi BM. Body fatness at a young age, body fatness gain and risk of breast cancer: systematic review and meta-analysis of cohort studies. Obes Rev. 2018;19(2):254–68.

322. Kalliala I, Markozannes G, Gunter MJ, Parakivaisi E, Gabra H, Mitra A, et al. Obesity and gynaecological and obstetric conditions: umbrella review of the literature. BMJ (Clin Res ed). 2017;356:j4777.

323. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and endometrial cancer. Available at https://dietandcancerreport.org.

324. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at dietandcancerreport.org.

325. Liu X, Sun Q, Hou H, Zhu K, Wang Q, Liu H, et al. The association between BMI and kidney cancer risk: An updated dose-response meta-analysis in accordance with PRISMA guideline. Medicine. 2018;97(4):e12860.

326. Kalliala I, Markozannes G, Gunter MJ, Parakivaisi E, Gabra H, Mitra A, et al. Obesity and gynaecological and obstetric conditions: umbrella review of the literature. BMJ (Clin Res ed). 2017;359:j4511.

327. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and endometrial cancer. Available at https://dietandcancerreport.org.

328. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at dietandcancerreport.org.

329. Liu X, Sun Q, Hou H, Zhu K, Wang Q, Liu H, et al. The association between BMI and kidney cancer risk: An updated dose-response meta-analysis in accordance with PRISMA guideline. Medicine. 2018;97(4):e12860.

330. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and endometrial cancer. Available at https://dietandcancerreport.org.

331. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at https://dietandcancerreport.org.

332. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and colorectal cancer. Available at https://dietandcancerreport.org.

333. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and colorectal cancer. Available at https://dietandcancerreport.org.

334. Lu Appendix A, Key TJ, Dossus L, Rinaldi S, Cust A, Lukanova A, et al. Endogenous oestrogens and risk of endometrial cancer. Int J Cancer. 2021;148(2):307–13.

335. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and breast cancer. Available at https://dietandcancerreport.org.

336. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and endometrial cancer. Available at https://dietandcancerreport.org.

337. Liu X, Sun Q, Hou H, Zhu K, Wang Q, Liu H, et al. The association between BMI and kidney cancer risk: An updated dose-response meta-analysis in accordance with PRISMA guideline. Medicine. 2018;97(4):e12860.

338. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at dietandcancerreport.org.

339. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at https://dietandcancerreport.org.

340. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at dietandcancerreport.org.

341. World Cancer Research Fund/ American Institute for Cancer Research. Continuous Update Project Report 2018. Diet, nutrition, physical activity and kidney cancer. Available at https://dietandcancerreport.org.

342. Allen NE, Key TJ, Dossus L, Rinaldi S, Cust A, Lukanova A, et al. Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocrine-related Cancer. 2008;15(2):485–97.

343. Davis SR, Wahlin-Jacobsen S. Testosterone in women—the clinical significance. Lancet Diabetes Endocrinol. 2015;3(12):980–92.

344. Platet N, Cathiard AM, Gleizes M, Garcia M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol/Hematol. 2004;51(1):55–67.
345. Yamamoto T, Kitawaki J, Urabe M, Honjo H, Tamura T, Noguchi T, et al. Estrogen productivity of endometrium and endometrial cancer tissue; influence of aromatase on proliferation of endometrial cancer cells. J Steroid Biochem Mol Biol. 1993;44(4-6):463–8.

346. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomark Prev. 2002;11(12):1531–43.

347. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2011;20(6):1238–50.

348. Zhang X, Zhao Q, Zhu W, Liu T, Xie SH, Zhong LX, et al. The association of telomere length in peripheral blood cells with cancer risk: a systematic review and meta-analysis of prospective studies. Cancer Epidemiol Biomark Prev. 2017;26(9):1381–90.

349. Smith L, Luchini C, Demurtas J, Soysal P, Stubbs B, Harner M, et al. Telomere length and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res Rev. 2019;51:1–10.

350. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

351. Aviv A, Anderson JJ, Shyu JW. Mutations, cancer and the telomere length paradox. Trends Cancer. 2017;3(4):253–8.

352. McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: the price of cellular immortality. J Clin Invest. 2019;129(9):3474–81.

353. Ma HQ, Cui LH, Li CC, Yu Z, Piao JM. Effects of serum triglycerides on prostate cancer and breast cancer risk: a meta-analysis of prospective studies. Nutr Cancer. 2016;68(7):1073–82.

354. Ni H, Liu H, Gao R. Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS One. 2015;10(11):e0142669.

355. Touvier M, Fassier P, His M, Norat T, Chan DS, Blacher J, et al. Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Br J Nutr. 2015;114(3):347–57.

356. Seth D, Garino H, Wiggera P, Holmberg L, Hammar N, Jungner I, et al. Lipid profiles and the risk of endometrial cancer in the Swedish AMORIS study. Int J Mol Epidemiol Genet. 2012;3(2):122–33.

357. Bjørge T, Stocks T, Lukanova A, Tretli S, Selmer R, Manjer J, et al. Metabolic syndrome and endometrial carcinoma. Am J Epidemiol. 2010;171(9):892–902.

358. Trabert B, Wentzensen N, Felix AS, Yang HP, Sherman ME, Brinton LA. Metabolic syndrome and risk of endometrial cancer in the United States: a study in the SEER-Medicare linked database. Cancer Epidemiol Biomark Prev. 2015;24(1):261–7.

359. Lindemann K, Vatten LJ, Ellström-Engh M, Eskild A. Serum lipids and endometrial cancer risk: results from the HUNT-II study. Int J Cancer. 2009;124(12):2938–41.

360. Esposito K, Chiiodini P, Capuano A, Bellastella G, Maiorino M, Giugliano D. Metabolic syndrome and endometrial cancer: a meta-analysis. Endocrine. 2014;45(1):28–36.

361. Liu Y, Qin A, Li T, Qin X, Li S. Effect of statin on risk of gynecologic cancers: a meta-analysis of observational studies and randomized controlled trials. Gynecologic Oncol. 2014;133(3):647–55.

362. Lin X, Lu L, Liu L, Wei S, He Y, Chang J, et al. Blood lipids profile and lung cancer risk in a meta-analysis of prospective cohort studies. J Clin Lipidol. 2017;11(4):1073–81.

363. Butler LM, Perone Y, Dehais J, Lupien LE, de Laat V, Talebi A, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–93.

364. Lim JY, Kwan HY. Roles of lipids in cancer. In: Advances in Lipid Metabolism. edn: London: IntechOpen Limited; 2018.

365. Long J, Zhang C, Zhu N, Du K, Yin YF, Tan X, et al. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res. 2018;8(5):778–91.

366. Yang X, Wang J. The role of metabolic syndrome in endometrial cancer: a review. Frontiers Oncol. 2019;9:744.

367. Jeong GH, Lee KH, Kim JY, Eisenhut M, Kronbichler A, van der Vliet HJ, et al. Effect of statin on cancer incidence: an umbrella systematic review and meta-analysis. J Clin Med. 2019;8:6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.