Effect of supplementation of Kappaphycus alvarezii based seaweed product on rumen fermentation parameters under in vitro conditions

Avinesh Sharma¹, Chander Datt¹, Ritika Gupta¹, Jitendra Kumar², Shambhvi¹, AK Tyagi¹ and Veena Mani¹

Received: 26 July 2019 / Accepted: 23 August 2019 / Published online: 28 October 2019

© Indian Dairy Association (India) 2019

Abstract: In vitro trials were conducted to study the effect of fortification of different levels of *K. alvarezii* based seaweed product (*K. Alvarezii* powder: *Gracilaria salicornia* powder: *K. alvarezii* sap powder in 1: 1: 1 ratio) to basal substrate on digestibility and rumen fermentation parameters. The results showed that supplementation of different levels (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) of *K. alvarezii* based seaweed product to the basal substrate consisting of sugargraze fodder (sorghum × sorgho × sudan grass hybrid) and concentrate mixture in 60: 40 ratio did not affect in vitro true DM and OM digestibility, total gas production, methane production, ammonia-N, microbial biomass production, individual volatile fatty acid production and metabolisable energy values to any significant extent.

Keywords: In vitro, *Kappaphycus alvarezii*, Fermentation, Methane, *Gracilaria salicornia*, Seaweed product, Volatile fatty acids

Introduction

India possesses 434 species of red seaweeds (Rhodophyta), 194 species of brown seaweeds (Phaeophyta) and 216 species of green (Chlorophyta) seaweeds (Modayil, 2004). *Kappaphycus alvarezii* and *Gracilaria salicornia* are two important species of cultivated red seaweed targeted for carrageenan production which is mostly utilized as thickening agent and stabilizer in the food industry (Pang et al. 2010, Mondal et al. 2015). Seaweeds have been used as livestock feed for many years. The by-products after extraction of carrageenan can be used as animal feed.

Evaluation of seaweeds or their byproducts using in vivo trials is time consuming, laborious and costly and in vitro evaluation is preferred in such investigations. Some literature exist on utilization of brown and green algae as supplements in pure form or in combination with two or three species (Bozic et al. 2009; Machado et al. 2014; El-Waziry et al. 2015), however, recently attention has been focused on utilization of red seaweeds for their nutritional benefits in ruminants which includes reduction in methane production (Rajauria, 2015). Thus, the present study was planned to investigate the effect of *K. alvarezii* based seaweed product on rumen fermentation parameters under in vitro conditions.

Materials and Methods

Substrate for In vitro fermentation

Concentrate mixture and green fodder (sugargraze) were collected from Livestock Research Centre of ICAR-National Dairy Research Institute, Karnal, Haryana. The samples were dried in hot air oven at 65°C for 2 days until constant weight was attained. The dried samples were ground through 1 mm sieve using electrically operated Willey mill. The basal substrate was prepared using concentrate mixture and sugargraze fodder (sorghum × sorgho × sudan grass hybrid) fodder in 40:60 ratio on DM basis. Basal substrate was fortified with varying levels of commercially available *Kappaphycus alvarezii* based seaweed product (SWP; M/s AQUAAGRI Processing Pvt. Ltd., Manamadurai, Tamilnadu) consisted of *K. alvarezii* powder, *Gracilaria salicornia* powder and *K. alvarezii* sap powder in 1: 1: 1 ratio. Substrate components and SWP were analysed for proximate principles (AOAC, 2005) and cell wall constituents (Van Soest et al. 1991).
In vitro rumen fermentation studies

In vitro rumen fermentation of total mixed substrate with varying levels of SWP such as; 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% was carried out using 6 replicates each. Rumen liquor was collected from 3 male adult crossbred cattle maintained to meet the nutrient requirement (ICAR, 2013) prior to feeding and watering, strained using muslin cloth into a pre-warmed thermos flask and brought immediately to the laboratory. The incubations were carried out in 100 mL calibrated glass syringes (Menke and Steingass, 1988). The proportion of medium mixture solution to rumen liquor was 2:1. Just after mixing the medium and rumen liquor, 30 mL of incubation medium was injected to the syringes using auto dispenser. The syringes were shaken gently and residual air or air bubbles, if any, was removed and outlet was closed. At the end of the incubation, 5 µL of gas was withdrawn using Hamilton gas tight syringe and analyzed for its methane level with the help of Gas Chromatograph (Nucon 5700, India) fitted with stainless steel column packed with Porapak-N and Flame Ionization Detector (FID). The standard gas used for methane estimation (Spantech House, Surrey, England) composed of 50% methane and 50% CO₂. Subsequently, substrate and inoculum was recovered. Substrate was analysed for true DM and OM digestibility (TDMD and TOMD) according to Van Soest et al. (1991).

For analysis of individual fatty acids (IVFA), the rumen fermentation was arrested by chilling at 4°C and the syringe contents were then centrifuged at 3000 rpm for 10 min. A portion of 5 mL of supernatant was added to 1 mL of 25% metaphosphoric acid and kept overnight at 4°C (Patra et al. 2006). The mixture was centrifuged at 3000 rpm for 15 min. and 2 mL of supernatant was taken and stored at -20°C for VFA analysis. The individual VFA in the samples were determined using Gas Chromatograph (Nucon 5700, Nucon Engineers, New Delhi) equipped with flame ionization detector and stainless steel column packed with chromosorb 101 mesh 80-100 (length 1.5 m; o.d 3.175 mm; i.d. 2 mm). Analytical conditions for fractionation of VFA were as follows: Injection port temperature 210°C, column temperature 180°C and detector temperature 230°C. The flow rate of the carrier gas N₂ was 40 mL/min. Individual volatile fatty acids (Acetate, propionate and butyrate) in the samples were determined on the basis of retention time and their concentration was calculated by comparing the retention time as well as the peak area of the standard after blank correction.

For estimation of NH₃-N, 5 mL of acidified supernatant was mixed with 10 mL of NaOH (1 N) and immediately steam distilled using KEL PLUS® - N analyzer (Pelican, India). The NH₃ evolved was collected in boric acid solution (20% w/v) having mixed indicator and titrated against N/100 H₂SO₄.

Metabolizable energy (ME) was calculated using the prediction equation of Menke and Steingass (1988). Microbial biomass production (MBP) was calculated using data of TDOM and net gas volume (Blummel et al. 1997; Blummel and Lebzen, 2001).

Statistical analysis

The data were analyzed by two-way ANOVA and difference between the means was compared by Turkey’s-B multiple range test as per Snedecor and Cochran (1994) using software package SPSS version 20.0 (2012).

Results and Discussion

Chemical composition of feeds/sea weed product

The concentrate mixture contained 20.50% CP and 4.33% EE, 30.26% NDF and 14.20% ADF on DM basis. Sugargraze fodder had 8.78, 1.73, 53.43 and 30.42% of CP, EE, NDF and ADF, respectively. The total ash content in sea weed product was 72.55% and it possessed 5.58% CP and 1.98% EE (Table 1). Thus, SWP contained very high level of total ash while CP level was lower in comparison to concentrate mixture and sugargraze fodder. K. alvarezii collected from Malaysia contained 66.66, 23.25, 5.35, 4.50, 0.23% CHO, total ash, protein, fibre and lipid, respectively (Ahmad et al. 2012) indicating that type of seaweed or formulated product affect the chemical composition.

In vitro evaluation of SWP

TDMD and TOMD were 81.05±0.45 and 82.31±2.78%, respectively. The total gas production was 4.50±0.28 mL/200 mg substrate or 27.50±1.44 mL/g substrate. Methane production was 1.37±0.02 mL/200 mg DM and this represented 25.05±0.38% of total gas production. The values of TDMD and TOMD of SWP as found in the present study were higher as compared to other studies. The values of OMD reported by El-Waziry et al. (2015) were lower than that reported for brown algae mixture (L. digitata and L. hyperborean) in vitro (78.3%) by Hasen et al. (2003) and for U. lactuca (62.1%) by Ventura and Castanon (1998) and also less (60%) than that reported for U. lactuca (Arieli et al. 1993). The in vivo energy digestibility of Ulva lactuca in young rams has been reported as 60% (Arieli et al. 1993). The in vitro OM digestibility of brown and red seaweeds when measured with rumen fluid obtained from seaweed-fed sheep was found to be higher for brown algae Laminaria digitata (94%), Saccharina latissima (97%) and Alaria esculenta (81%) and red algal Palmaria palmata (81%). However, it was lower for other brown seaweeds such as Ascophyllum nodosum (33%), Fucus serratus (15%) and Fucus vesiculosus (26%) (Greenwood et al. 1983). In comparison to brown algae, Macrocystis pyriforma and Sargassum sp., the in situ DM degradability of Macrocystis pyriforma was found to be lower (50%) but higher than that of Sargassum (29%) due to a better composition of the former. Degradability values for the green algae, Ulva lactuca were also relatively lower (54 and 41% for OM and protein, respectively) as reported by Arieli et al. (1993). The ME value of SWP in the present study was 2.86 MJ/kg DM which was 3.3 times lesser than estimate of Ventura and Castanon (1998) in seaweed. The high mineral content of
seaweeds limits their gross, digestible, metabolisable and net energy values (Arieli et al. 1993).

Supplementary effects of SWP on rumen fermentation variables

The total gas production ranged from 34.50 to 38.25 mL/200 mg substrate and methane production from 7.51 to 9.16 mL/200 mg substrate in treatments supplemented with 0-3% SWP in the substrate (Table 2). Methane production varied from 21.01 to 25.81% of total gas production. Statistical analysis showed that supplementation of SWP @ 0-3% of the substrate did not affect total gas and methane production to any significant level.

The TDMD values ranged from 68.25 to 72.35% while TOMD values varied from 71.60 to 75.10% across the treatments (Table 3). ME values ranged from 6.88 to 8.39 MJ/kg DM and the MBP values ranged from 40.54 to 46.76 mg/tube. The \(\text{NH}_3 \)-N concentration ranged from 10.03 to 11.42 mg/dL. TDMD, TOMD, ME, MBP and \(\text{NH}_3 \)-N were comparable between control and treatments. The proportion of acetate, propionate and butyrate ranged from 66.44 to 68.33%, from 24.61 to 27.85% and from 5.01 to 8.50%, respectively (Table 4). Acetate: propionate ratio was 2.40 to 2.48.

Our results are in conformity with those of El-Waziry et al. (2015) who reported no significant differences in the potential degradability, gas production rate, ME, net energy, OMD and MBP synthesis in diets supplemented with 3 and 5% of *Ulva lactuca*. On the other hand, there was reduction in enteric \(\text{CH}_4 \) production due to macroalgae supplementation (Wang et al. 2008; Bozic et al. 2009). Addition of sea seaweeds showed inhibitory effect on rumen fermentation resulting in decreased total gas production due to macroalgae supplementation.

Parameter	Concentrate mixture	Sugargraze	Seaweed product
Dry matter	89.9	22.25	94.6
Organic matter	92.72	90.28	27.45
Crude protein	20.5	8.78	5.58
Total ash	7.28	9.72	72.55
Ether extract	4.33	1.73	1.98
Neutral detergent fibre	30.26	53.43	15.03
Acid detergent fibre	14.2	30.42	9.92

Table 1 Chemical composition of feed stuffs used for in vitro studies

Level of SWP supplementation (%)	Total gas production (mL/200 mg substrate)	\(\text{CH}_4 \) production (mL/200 mg DM)	\(\text{CH}_4 \) production (%)
0	34.50±0.64	8.10±0.09	23.49±0.28
0.5	37.00±1.08	8.62±0.33	23.29±0.87
1	35.75±2.59	7.51±0.20	21.01±0.56
1.5	38.25±1.25	9.02±0.96	23.58±2.51
2	35.50±0.65	8.31±0.10	23.43±0.30
2.5	35.50±0.96	9.16±0.13	25.81±0.37
3	35.00±1.96	8.41±0.10	24.04±0.31

Table 2 In vitro gas and methane production from TMR supplemented with graded levels of sea weed product

Level of SWP supplementation (%)	TDMD (%)	TOMD (%)	ME (MJ/kg)	MBP (mg)	\(\text{NH}_3 \)-N (mg/100 mL)
0	71.61±1.15	72.67±0.57	6.88±0.13	46.76±0.29	10.03±0.37
0.5	72.08±0.84	74.67±0.22	8.22±0.27	41.00±6.18	10.11±0.51
1	68.90±1.14	71.60±2.50	8.05±0.16	42.67±0.99	10.40±0.32
1.5	72.35±0.67	75.10±0.75	8.39±0.10	41.75±3.07	11.21±0.75
2	68.25±1.09	71.60±1.80	8.02±0.19	40.54±6.97	11.10±0.35
2.5	70.10±2.12	73.45±2.1	8.02±0.28	40.85±4.15	11.33±0.32
3	72.32±0.16	74.97±0.12	7.95±0.17	46.67±2.74	11.42±0.55

Table 3 Effect of supplementation of graded levels of sea weed product on digestibility, microbial biomass and energy value under in vitro conditions

TDMD: true dry matter digestibility, TOMD: true organic matter digestibility, ME: metabolisable energy, MBP: microbial biomass production
production, methane production and volatile fatty acids production under in vitro conditions (Machado et al. 2014). There were no significant changes in digestibility of nutrients in Sahiwal cows when mineral mixture (3%) in the concentrate was replaced by 20% Sargassum wightii (Singh et al. 2015).

Conclusions

The supplementation of *K. Alvarezii* based seaweed product at 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% level of substrate containing sugargraze and concentrate mixture in 60: 40 ratio did not affect in vitro DM and OM digestibility, rumen fermentation parameters (IVGP, IVFA, NH₃-N and microbial biomass production) and ME values

Acknowledgements

We are grateful to Director, ICAR-National Dairy Research Institute, Karnal, Haryana for providing necessary facilities to carry out this work. The financial assistance received under CSIR-New Millennium Indian Technology Leadership Initiative programme (*Kappaphycus alvarezi* and red sea weed based formulations for improving productivity and health of dairy animal and poultry) is greatly acknowledged.

References

Ahmad F, Sulaiman MR, Saimon W, Yee CF, Matanjun P (2012) Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Sci 31: 74

AOAC (2005) Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists. Maryland, U.S.A.

Arieli A, Sklan D, Kissil G (1993) A note on the nutritive value of *Ulva lactuca* for ruminants. Anim Prod 57: 329-331

Blummel M, Lebzien P (2001) Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livest Prod Sci 68: 107-117

Blummel M, Makkar HPS, Becker K (1997) In vitro gas production: a technique revisited. J Anim Physiol Anim Nutr 77: 24-34

Bozic AK, Anderson RC, Carstens GE, Rick SC, Callaway TR, Yokoyama MT, Nisbet DJ (2009) Effects of the methane-inhibitors nitrate, nitrothene, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresource Technol 100: 4017-4025

El-Waziry A, Al-Haidary A, Okab A, Samara E, Abdoun K (2015) Effect of dietary seaweed (*Ulva lactuca*) supplementation on growth performance of sheep and on in vitro gas production kinetics. Turk J Vet Anim Sci 39: 81-86

Greenwood Y, Orpin CG, Paterson IW (1983) Digestibility of seaweeds in Orkney sheep. J Physiol 343: 120

Hansen HR, Hector BL, Feldmann J (2003) A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim Feed Technol 105: 21-28

ICAR (2013) Nutrient Requirements of Cattle and Buffaloes. 3rd edn. Indian Council of Agricultural Research, New Delhi, India.

Modayil MJ (2004) How to increase marine fish production. Fishing Chimes 28: 14-16

Mondal D, Ghosh A, Prasad P, Singh S, Bhatt N, Zodape ST, Chaudhary JP, Chaudhari J, Chatterjee PB, Seth A, Ghosh PK (2015) Elimination of gibellicrin from *Kappaphycus alvarezi* seaweed sap foliar spray enhances corn stover production without compromising the grain yield advantage. Plant Growth Regul 75: 657-666

Pang SM, Yeong HY, Lim PH, Nor AR, Gan KT (2010) Commercial varieties of *Kappaphycus* and *Eucheuma* in Malaysia. Malasian J Sci 29: 214-224

Patra AK, Kamra DN and Agarwal N (2006) Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim Feed Technol 128: 276-291

Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N (2014) Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 9: e85289. doi:10.1371/journal.pone.0085289

Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28: 7-55

Rajauria G (2015) Seaweeds: A sustainable feed resource for livestock and aquaculture. In: Seaweed Sustainability: Food and Non-food Application (Brijesh K. Tiwari and Declan J. Troy; Eds.), Academic Press, Elsevier Inc., USA. pp 389-420

Singh BK, Chopra RC, Rai SN, Verma MP and Mohanta RK (2015) Nutritional evaluation of seaweed on nutrient digestibility, nitrogen balance, milk production and composition in Sahiwal cows. Proc. Natl. Acad. Sci. India, Sect. B: Biol Sci 1-7

Snedecor GW, Cochran WG (1994) Statistical Methods. 8th edn. The Iowa State University Press, Ames, Iowa, USA

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fibre, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583-3597

Ventura MR, Castaño JIR (1998) The nutritive value of seaweed (*Ulva lactuca*) for goats. Small Rumin Res 29: 325-327

Wang Y, Xu Z, Bach SJ, McAllister TA (2008) Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim. Feed Sci Technol 145: 375-395

Table 4 Individual VFA's as affected by addition of seaweed product at graded levels

Level of SWP supplementation (%)	Acetate	Propionate	Butyrate	Acetate: propionate ratio
Control	67.37±0.78	26.62±1.69	6.03±0.2	2.56±0.18
0.5	66.88±1.24	24.77±0.78	8.50±1.57	2.70±0.10
1	67.34±1.00	27.63±0.22	5.01±0.89	2.43±0.05
1.5	68.33±2.08	24.61±0.88	7.04±2.47	2.78±0.11
2	66.66±1.35	27.95±1.33	5.38±0.63	2.40±0.17
2.5	66.44±1.09	25.30±0.70	8.24±0.46	2.63±0.12
3	66.46±0.86	26.88±0.43	6.64±1.01	2.47±0.04