Babesia spp. in questing ticks from eastern Poland: prevalence and species diversity

Angelina Wójcik-Fatla¹ · Violetta Zając¹ · Anna Sawczyn¹ · Ewa Cisak¹ · Jacek Dutkiewicz¹

Received: 27 January 2015 /Accepted: 6 May 2015 /Published online: 16 May 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract A total of 853 questing *Ixodes ricinus* males, females, and nymphs and of 582 questing *Dermacentor reticulatus* males and females were collected from vegetation on the territory of the Lublin province (eastern Poland). The ticks were examined for the presence of *Babesia* by PCR detecting part of 18S ribosomal RNA (rRNA) gene and nuclear small subunit rRNA (SS-rDNA) for determining of *Babesia* spp. and *Babesia microti*, respectively. The overall incidence of *Babesia* strains in *I. ricinus* ticks was 4.6 %. Three species of *Babesia* were identified. The prevalent species was *B. microti* which occurred in 2.8 % of ticks, while *Babesia venatorum*, *Babesia divergens*, and unidentified *Babesia* species were found at the frequency of 1.2, 0.2, and 0.3 %, respectively. Altogether, *B. microti* constituted 61.5 % of the total strains detected in *I. ricinus* ticks. The prevalence of *Babesia* species in *D. reticulatus* ticks was 2.7 %. Two species of *Babesia* were identified. Again, the prevalent species was *B. microti* which occurred in 2.1 % of ticks, while *B. canis* was found in 0.7 % of ticks. In one *D. reticulatus* female, *B. canis* and *B. microti* co-infection was found. Altogether, *B. microti* constituted 75 % of the total strains detected in *D. reticulatus* while *B. canis* formed 25 % of the total strains. The frequency of the occurrence of *Babesia* species in *D. reticulatus* did not depend significantly on locality ($\chi^2 = 1.885, P = 0.390$) nor on the tick stage ($\chi^2 = 4.874, P = 0.087$). The incidence of *Babesia* strains in *D. reticulatus* ticks was 2.7 %. Two species of *Babesia* were identified. Again, the prevalent species was *B. microti* which occurred in 2.1 % of ticks, while *B. canis* was found in 0.7 % of ticks. In one *D. reticulatus* female, *B. canis* and *B. microti* co-infection was found. Altogether, *B. microti* constituted 75 % of the total strains detected in *D. reticulatus* while *B. canis* formed 25 % of the total strains. The frequency of the occurrence of *Babesia* species in *D. reticulatus* did not depend significantly on locality ($\chi^2 = 0.463, P = 0.793$). The difference between the prevalence of *Babesia* in males and females of *D. reticulatus* was insignificant ($P = 0.0954$); nymphs were not found. The dominance of *B. microti* in the species composition of tick-borne *Babesia* found in this study was typical for eastern Europe. In conclusion, the results revealed that the population inhabiting the forested area of eastern Poland could be exposed to *Babesia* parasites, especially to those from the species *B. microti*, a bite of *I. ricinus*, a competent vector of human babesiosis, and probably also by a bite of *D. reticulatus* whose role in the transmission of human babesiosis needs to be clarified.

Keywords Babesia spp. · Ticks · *Ixodes ricinus* · *Dermacentor reticulatus*

Introduction

The protozoan genus *Babesia* Storcia, 1893 (Apicomplexa: Piromplasmita: Babesioidea) comprises intraerythrocytic parasites of mammals and birds which are transmitted by hard ticks (Ixodidae) from the genera *Amblyomma*, *Boophilus*, *Dermacentor*, *Haemaphysalis*, *Hyalomma*, *Ixodes*, and *Rhipicephalus*. These hemoproteozoans cause babesiosis, a disease of animals and humans manifested in severe cases by fever and hemolysis leading to anemia, hyperbilirubinuria, hemoglobinuria, and possible organ failure (Peirce 2000; Hunfeld and Brade 2004; Hamel et al. 2012; Altay et al. 2012; Hildebrandt and Hunfeld 2014; Aydin et al. 2015). To date, more than 100 *Babesia* species have been identified worldwide, of which the most important parasites of domestic animals are *Babesia bigemina*, *Babesia bovis*, and *Babesia divergens* in cattle and *Babesia canis* (formerly *Babesia canis canis*) in dogs. Babesiosis in humans is regarded as an emerging disease with the greatest number of cases (above 1000 per
annum) caused by Babesia microti in North America (Yabsley and Shock 2012). The disease, transmitted by Ixodes scapularis, can range from asymptomatic and mild infections to severe disease and death. In Europe, about 50 cases of babesiosis have been recorded up to date, caused primarily by B. divergens in splenectomized individuals, less so by Babesia venatorum (formerly Babesia sp. EU1) and B. microti. The disease may also develop in the immunocompetent individuals (Martinot et al. 2011).

Ixodes ricinus is regarded as the most important vector of Babesia in Europe; other potential vectors are Dermacentor reticulatus and Ixodes persulcatus (Hildebrandt et al. 2013; Wójcik-Fatla et al. 2012; Katargina et al. 2011). The aim of the present study was to determine the prevalence and species diversity of Babesia in I. ricinus and D. reticulatus ticks collected in eastern Poland.

Materials and methods

Collection of ticks

A total of 582 questing D. reticulatus ticks (341 females and 241 males) and a total of 853 questing I. ricinus ticks (341 females, 268 males, and 271 nymphs) were collected during spring/summer season in the years 2011–2012 on the areas of six localities situated in the Lublin province (eastern Poland). D. reticulatus ticks were collected on the territory of three localities: Ostrów Lubelski (51° 46′ N, 22° 88′ E), Suchawa (51° 49′ N, 23° 40′ E), and Parczew (51° 64′ N, 22° 90′ E). I. ricinus ticks were collected on the territory of Wilków (51° 25′ N, 21° 88′ E), Suchawa, and Dąbrowa (51° 17′ N 22° 57′ E). Ticks were collected by dragging a woolen flag over the lower vegetation and litter along the paths and edges of deciduous and mixed forests, including suburban localities and recreational areas.

DNA isolation from ticks

Total DNA was isolated from the adult ticks separately and from nymphs in pools of five specimens (Rijpkema et al. 1996) by boiling in 0.7 M ammonium hydroxide and stored at −20 °C for further analysis. Prevalence of infection in nymphs was expressed as the minimum infection rate (MIR) of pools calculated according to Kahl et al. (1989). The concentration of DNA in the isolates was determined with the NanoDrop ND1000 Spectrophotometer (USA). The determined DNA concentrations ranged from 500 to 660 ng/μl for males and from 670 to 880 ng/μl for females of D. reticulatus and from 300 to 500 ng/μl for females, from 180 to 330 ng/μl for males, and from 20 to 80 ng/μl for nymphs of I. ricinus.

Detection of B. microti DNA by PCR and nested PCR

All tick lysates were examined for the presence of B. microti DNA using amplification by PCR and confirmatory re-amplification by nested PCR with the method described previously (Persing et al. 1992) with some modification (Wójcik-Fatla et al. 2012). The primers used in this study are specific for a gene encoding the nuclear small subunit ribosomal RNA (SS-rDNA). As a positive control, DNA extracted from the antigen of B. microti from the slide used for detection of antibodies (Fuller Laboratories, Germany) was used, while nuclease-free water was used as a negative control. The amplifications were carried out in a C1000 Thermal Cycler (BioRad, USA).

Detection of Babesia spp., B. divergens, and B. venatorum

Primers for detection of Babesia spp. including bovine Babesia: B. divergens, B. bigemina, B. major; B. venatorum; B. canis; B. odocoilei; B. ovata; B. motasi, and B. crassa—and primers for identification of B. divergens and B. venatorum were described previously by Hilpertshausen et al. (2006).

Each PCR reaction was carried out in a 25-μl reaction volume which contained the following mix of reagents: 0.625 U Taq DNA polymerase (Qiagen, USA), 1 × PCR buffer containing 15 mM MgCl2, 2.5 μl 2 mM dNTP (final concentration 0.1 mM) (Thermo Scientific, Lithuania), 1.25 μl 10 μM each of primer (Eurogentec, Seraing, Belgium), 2 μl of matrix DNA, and nuclease-free water (Applied Biosystems, USA). Tick lysates confirmed as positive for B. divergens and B. venatorum were used as positive and nuclease-free water as negative controls. The amplification was carried out in C1000 Thermal Cycler (BioRad, USA) under the following conditions: preincubation at 95 °C for 3 min, 45 cycles, each of 30 s at 94 °C (denaturation), 30 s at 61 °C (primers annealing), and 45 s at 72 °C (elongation). Final elongation was performed for 10 min at 72 °C. Products of amplification were identified in 2 % agarose gel (Prona, Basica LE), after electrophoresis in standard conditions and staining with ethidium bromide solution (2 μg/ml).

DNA sequencing

DNA sequencing of all Babesia spp. positive samples was performed with ABI PRISM 310 Genetic Analyzer (Applied Biosystems, Inc., Foster City, CA, USA) using ABI PRISM Big Dye Terminator v. 3.1. Cycle Sequencing Kits and Big Dye XTerminator Purification Kit (Applied Biosystems). For sequencing of B. microti positive samples, the tenfold dilution of amplified DNA was used, and fivefold for Babesia spp. The results were compared with sequences in GenBank database using the BLAST software at the National Center for Biotechnology Information (Bethesda, Maryland, USA).
Statistical analysis

The obtained results were analyzed by χ² test and Student’s t test, using the STATISTICA v. 6.0 package (Statsoft, Tulsa, OK, USA). The value p<0.05 was considered significant.

Results

The overall incidence of Babesia strains in I. ricinus ticks collected in eastern Poland was 4.6 % (Table 1). Three species of Babesia were identified. The prevalent species was B. microti which occurred in 2.8 % of ticks, while B. venatorum, B. divergens, and unidentified Babesia species were found at the frequency of 1.2, 0.2, and 0.3 %, respectively. Altogether, B. microti constituted 61.5 % of the total strains detected in I. ricinus, B. venatorum—25.7 %, B. divergens—5.1 %, and unidentified Babesia species—7.7 %. The prevalence of Babesia species in I. ricinus did not depend significantly on locality (χ²=1.885, P=0.390) nor on the tick stage (χ²=4.874, P=0.087).

The incidence of Babesia strains in D. reticulatus ticks collected in eastern Poland was 2.7 % (Table 2). Two species of Babesia were identified. The prevalent species was also B. microti which occurred in 2.1 % of ticks, while B. canis was found in 0.7 % of ticks. Altogether, B. microti constituted 75 % of the total strains detected in D. reticulatus, while B. canis formed 25 % of the total strains. There was one D. reticulatus female co-infected with B. canis and B. microti. The frequency of the occurrence of Babesia species in D. reticulatus did not depend significantly on locality (χ²=0.463, P=0.793). The difference between the prevalence of Babesia in males and females of D. reticulatus was insignificant (P=0.0954); nymphs were not found. However, the difference between the diversity of Babesia species among I. ricinus and D. reticulatus ticks proved to be significant (P<0.05).

A total of 54 positive samples were sequenced (one sample was co-infected). Twenty-four samples from I. ricinus ticks showed a high level of similarity to B. microti (accession numbers: KM051833.1, KM051836.1). B. venatorum was confirmed in ten samples (accession numbers: JQ929917.1, KM244044.1). Two samples (accession numbers: KC465977.2, AY572456.1) were identified as B. divergens.

In three cases, the sequencing failed and Babesia species remained unidentified.

In most cases, isolates obtained from D. reticulatus ticks showed 100 % similarity to B. microti (accession numbers: AB085191.1, AB366158.1). Three samples were defined as B. canis (accession numbers: AY072926.1, KM111283.1), and in one isolate, two sequences of B. canis and B. microti (accession numbers: AY072926.1 and AB085191.1) were found.

Discussion

The presented results demonstrate that 4.6 % of I. ricinus ticks collected on the territory of the Lublin region (eastern Poland) are infected with Babesia hemoprotozoans, which confirms that in Poland, there is a potential risk of babesiosis from exposure to the bite of this very common tick species, a competent vector of the disease. Values similar to the presented study, ranging from 3.5 to 4.1 % were recorded in ticks of this species in Germany by Eshoo et al. (2014) and Silaghi et al.

Table 1	Prevalence of various Babesia species in Ixodes ricinus ticks collected at three localities in the Lublin province (eastern Poland)																				
Locality Babesia species	Ticks infected/examined (percent)	Dąbrowa	Suchawa	Wilków	Total																
		F	M	N	T	F	M	N	T	F	M	N	T	F	M	N	T	F	M	N	T
Babesia divergens	0/179	1/139	0/135	1/453	0/48	0/36	0/84	0/87	0/93	1/136	1/316	0/314	1/268	1/271	2/853						
		(0)	(0.7)	(0)	(0.2)	(0)	(0)	(0.7)	(0.3)	(0)	(0)	(0.4)	(0.4)	(0.2)							
Babesia microti	9/179	2/139	5/135	16/453	3/48	0/36	3/84	1/87	1/93	3/136	5/316	13/314	3/268	8/271	24/853						
		(5.0)	(1.4)	(3.7)	(3.5)	(6.2)	(0)	(3.6)	(1.1)	(1.1)	(2.2)	(1.6)	(4.1)	(1.1)	(2.9)	(2.8)					
Babesia venatorum	5/179	1/139	2/135	8/453	0/48	0/36	0/84	1/87	1/93	0/136	2/316	6/314	2/268	2/271	10/853						
		(2.8)	(0.7)	(1.5)	(1.8)	(0)	(0)	(1.1)	(1.1)	(0)	(0.6)	(1.9)	(0.7)	(0.7)	(1.2)						
Unidentified Babesia species	0/179	0/139	0/135	0/453	0/48	0/36	0/84	0/87	0/93	3/136	3/316	0/314	0/268	3/271	3/853						
		(0)	(0)	(0)	(0)	(0)	(0)	(1.1)	(1.1)	(2.2)	(0.9)	(0)	(0)	(1.1)	(0.3)						
Total	14/179	4/139	7/135	25/453	3/48	0/36	3/84	2/87	2/93	7/136	11/316	19/314	6/268	14/271	39/853						
		(7.8)	(2.9)	(5.2)	(5.5)	(6.2)	(0)	(3.6)	(2.3)	(2.1)	(5.1)	(3.5)	(6.1)	(2.2)	(5.2)	(4.6)					

F females, M males, N nymphs, T total, N. f. not found

*Minimum infection rate calculated according to Kahl et al. (1989)
Table 2 Prevalence of various *Babesia* species in *Dermacentor reticulatus* ticks collected at three localities in the Lublin province (eastern Poland)

Locality	Babesia species	Ticks infected/examined (percent)															
	F	M	N	T	F	M	N	T	F	M	N	T	F	M	N	T	
Ostrów Lubelski	Babesia canis	1/81	0/67	1/148	0/147	0/135	0/282	2/113	1/39	3/152	3/341	1/241	4/582				
		(1.2)	(0)	(0.7)	(0)	(0)	(1.8)	(2.6)	N. f.	(2.0)	(0.9)	(0.4)	N. f.	(0.7)			
Parczew	Babesia microti	1/81	1/67	2/148	1/147	7/135	8/282	1/113	1/39	2/152	3/341	9/241	12/582				
		(1.2)	(1.5)	N. f.	(1.4)	(0.7)	(5.2)	N. f.	(2.8)	(0.9)	(2.6)	N. f.	(1.3)	(0.9)	(3.7)	N. f.	(2.1)
Suchawa	Total	2/81	1/67	3/148	1/147	7/135	8/282	3/113	2/39	5/152	6/341	10/241	16/582				
		(2.5)	(1.5)	N. f.	(2.0)	(0.7)	(5.2)	N. f.	(2.8)	(2.7)	(5.1)	N. f.	(3.3)	(1.8)	(4.1)	N. f.	(2.7)

F females, *M* males, *N* nymphs, *T* total, *N. f.* not found

(2012), respectively. Studies in other European countries revealed a lower prevalence of *Babesia in I. ricinus* compared to the current study, with values ranging from 0.3 % in Hungary (Egyed et al. 2012) to 2.7 % in Belgium (Lempereur et al. 2011). Higher values ranging from 6.1 to 51.7 % were reported from France (Halos et al. 2005; Cotté et al. 2010), Germany (Franke et al. 2011), the Netherlands (Tijsse-Klasen et al. 2011), and Austria (Blaschitz et al. 2008).

B. microti distinctly prevailed among *Babesia* species detected in the current study in *I. ricinus* ticks, amounting to 61.5 % of the total count. A similar or higher prevalence of this species in *I. ricinus* was reported from Slovenia (Duš et al. 2001), from Germany (Silaghi et al. 2012; Eshoo et al. 2014), and from Belarus (Reye et al. 2013). All but one *Babesia* species were identified as *B. microti* in the Netherlands (96.4 % of all positive *Babesia* spp. ticks) (Tijsse-Klasen et al. 2011).

Different results were obtained by many other authors, mostly from Western and Northern Europe and, less frequently, from central and eastern Europe, who reported the dominance of *B. venatorum* among *Babesia* species determined in *I. ricinus* ticks. The dominance of *B. divergens* in *I. ricinus* ticks was confirmed by Overzier et al. (2013), Otranto et al. (2014).

It is evident from the above presented results that with only a few exceptions, the *I. ricinus* ticks living in eastern Europe, including Poland, harbor mostly *B. microti*, while those living in western and northern Europe harbor mostly *B. venatorum*. Germany is a transitory area where ticks of this species harbor, usually in almost equal parts, *B. microti* and *B. venatorum* and/or *B. divergens*. This regularity could probably be explained by the fact that in the countries of eastern Europe, the prevalence of *B. microti* in rodents is 10–20 %, which is distinctly higher compared to the countries of western Europe. In consequence, higher infection rates of ticks with *B. microti* could be determined in eastern Europe (Sílský et al. 2006; Hartelt et al. 2008). The common occurrence of *B. microti* in *I. ricinus* ticks living on the territory of Poland and other countries of eastern Europe has also been shown by a number of earlier studies where only *B. microti* was determined (Rudolf et al. 2005; Wójcik-Fatla et al. 2006).

The prevalence of *Babesia* spp. in *D. reticulatus* ticks noted in this study was 2.7 %, being lower compared to that found in *I. ricinus*. Similar to *I. ricinus*, also in *D. reticulatus*, the *B. microti* strains prevailed. In Poland, the presence of *B. microti* in adult *D. reticulatus* ticks collected from vegetation has been detected so far only by Wójcik-Fatla et al. (2012) with frequency of 4.5 %. The present study is the first confirmation of these findings, with the slightly lower incidence. To date, the authors of other studies performed in Belgium (Cochez et al. 2012), Germany (Silaghi et al. 2012; Najim et al. 2014), France (Bonnet et al. 2013), Belarus (Reye et al. 2013), and Slovakia (Švehlová et al. 2014) have detected neither the presence of *B. microti* nor other *Babesia* species pathogenic for humans in adult *D. reticulatus* ticks.

The repeatedly found occurrence of *B. microti* in the adult *D. reticulatus* ticks stated in the current study suggests that this species should be considered as a potential vector of human babesiosis, although its role needs an experimental confirmation (Hildebrandt et al. 2013). So far, Walter (1982) has not been successful in the experimental transmission of *B. microti* into golden hamsters by infected *D. reticulatus* nymphs. However, to solve unequivocally the problem of potential risk, such an experiment should be repeated with the adult ticks which are known to feed on humans and large animals. A small percent of the *D. reticulatus* ticks (0.7 %) examined in the presented study harbored *B. canis*, an important causative agent of babesiosis in dogs. *D. reticulatus* is a known vector of this pathogen, and its presence in ticks from eastern Poland is in accordance with the results of Adaszek et al. (2011) that canine babesiosis occurs more often in eastern Poland than in other parts of the country.

Genus *Babesia* spp., as a tick-borne protozoan parasite developing in erythrocytes, could lead to rare but potentially life-threatening parasitic disease, which is confirmed by reported clinical cases of babesiosis. The first two cases of this disease
in Poland was described by Wlec-Faleciak et al. (2010) as a co-infection with Lyme borreliosis, caused by a parasite with a homology of 98.9 % to B. divergens or B. venatorum. In Europe, before the aforementioned study, only three clinical cases caused by B. microti were described, which is a minority of the circa. Fifty cases of human babesiosis recorded in continental Europe, caused mostly by B. divergens and, to a lesser extent, by B. venatorum in immunocompromised individuals (Hildebrandt and Hunfeld 2014). The number of babesiosis cases caused by B. microti in Europe forms only a small fraction of those reported from North America (Yabsley and Shock 2012). The reason for this discrepancy remains unclear.

Conclusion

In conclusion, the current study reveals that the population of *I. ricinus*, a competent vector of human babesiosis occurring on the territory of eastern Poland, is infected with a relatively marked frequency with three species of *Babesia* pathogenic for humans, which creates the risk of babesiosis in persons exposed to tick bite. The population of *D. reticulatus*, another tick species inhabiting this territory, is also infected with *B. microti*, and its potential role in spreading the disease should be considered and further investigated by experimental studies.

Acknowledgments This study was funded by the National Science Centre (grant number N N40404267640).

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Adaszek L, Martinez AC, Winiarczyk S (2011) The factors affecting the distribution of babesiosis in dogs in Poland. Vet Parasitol 181:160–165

Altay K, Dumanli N, Aktas M (2012) A study on ovine tick-borne hemoproteozoon parasites (*Theileria* and *Babesia*) in the East Black Sea Region of Turkey. Parasitol Res 111:149–153

Aydin MF, Aktas M, Dumanli N (2015) Molecular identification of *Theileria* and *Babesia* in ticks collected from sheep and goats in the Black Sea region of Turkey. Parasitol Res 114:65–69

Blaschitz M, Narodoslawczyk-Göllner M, Kanzler M, Stanek G, Wolochnick J (2008) *Babesia* species occurring in Austrian *Ixodes ricinus* ticks. Appl Environ Microbiol 74:4841–4846

Bonnet S, de la Fuente J, Nicollet P, Liu X, Madani N, Blanchard B, Maingourd C, Alongi A, Torina A, Fernández de Mera IG, Vicente J, George JC, Vayssier-Taussat M, Joncour G (2013) Prevalence of tick-borne pathogens in adult *Dermacentor* spp. ticks from nine collection sites in France. Vector Borne Zoonotic Dis 13: 226–236

Cochez C, Lempereur L, Madder M, Claerebout E, Simons L, De Wilde N, Linden A, Saegerman C, Heyman P, Losson B (2012) Foci report on indigenous *Dermacentor reticulatus* populations in Belgium and a preliminary study of associated babesiosis pathogens. Med Vet Entomol 26:355–358

Cotté V, Bonnet S, Cote M, Vayssier-Taussat M (2010) Prevalence of five pathogenic agents in questing *Ixodes ricinus* ticks from western France. Vector Borne Zoonotic Dis 10:723–730

Duh D, Petrovec M, Avisic-Zupanc T (2001) Diversity of *Babesia* infecting European sheep ticks (*Ixodes ricinus*). J Clin Microbiol 39:3395–3397

Egyé L, Elő P, Štěreta-Lancz Z, Szél Z, Balogh Z, Štěrta T (2012) Seasonal activity and tick-borne pathogen infection rates of *Ixodes ricinus* ticks in Hungary. Ticks Tick Borne Dis 3:90–94

Eshoo MW, Crowder CD, Carolan HE, Rounds MA, Ecker DJ, Haag H, Mothes B, Nolte O (2014) Broad-range survey of tick-borne pathogens in Southern Germany reveals a high prevalence of *Babesia microti* and a diversity of other tick-borne pathogens. Vector Borne Zoonotic Dis 14:584–591

Franke J, Hildebrandt, Meier F, Straube E, Dom W (2011) Prevalence of Lyme disease agents and several emerging pathogens in questing ticks from the German Baltic coast. J Med Entomol 48:441–444

Halos L, Jamal T, Maillard R, Beugnet F, Le Menach A, Boulouis HJ, Vayssier-Taussat M (2005) Evidence of *Bartonella* sp. in questing adult and nymphal *Ixodes ricinus* ticks from France and co-infection with *Borrelia burgdorferi sensu lato* and *Babesia* sp. Vet Res 36:79–87

Hamel D, Silaghi C, Lescai D, Pfister K (2012) Epidemiological aspects on vector-borne infections in stray and pet dogs from Romania and Hungary with focus on *Babesia* spp. Parasitol Res 110:1537–1545

Hartelt K, Pluta S, Oehme R, Kimmig P (2008) Spread of ticks and tick-borne diseases in Germany due to global warming. Parasitol Res 103(Suppl 1):S109–S116

Hildebrandt A, Hunfeld KP (2014) Human babesiosis—a rare but potentially dangerous zoonosis. Dtsch Med Wochenschr 139:957–962 (in German)

Hildebrandt A, Gray JS, Hunfeld KP (2013) Human babesiosis in Europe: what clinicians need to know. Infection 41:1057–1072

Hilpertshauser H, Deplazes P, Schnyder M, Gern L, Mathis A (2006) Spread of ticks and tick-borne diseases in Austria: a preliminary study of associated babesiosis pathogens. Med Vet Entomol 20:307–312

Hunfeld KP, Brade V (2004) Zoonotic *Babesia*: possibly emerging pathogens to be considered for tick-infested humans in central Europe. Int J Med Microbiol 293(Suppl 37):93–103

Kahl O, Schmidt K, Schönberg A, Laukamm-Josten U, Knüüle W, Bienzle U (1989) Prevalence of *Borrelia burgdorferi* in *Ixodes ricinus* ticks in Berlin (West). Zbl Bakt Hyg A 270:434–440

Katargina O, Geller J, Vlasilenko V, Kuznetsova T, Järvekülg L, Vene S, Katargina O, Geller J, Vasilenko V, Kuznetsova T, Järvekülg L, Vene S, Arnold A, Cloetens P, Kaltseis K, Guglielmone MA, Heymer A, Hendrickx AM, Abivar T, Wasternack M, Eveson J, Fröhlich-Rieger G, Stemme S, Kozlov A, Hildebrandt A (2011) Detection and characterization of *Babesia* species in *Ixodes* ticks in Estonia. Vector Borne Zoonotic Dis 11:923–928

Lempereur L, De Cat A, Caron Y, Madder M, Claerebout E, Saegerman C, Losson B (2011) First molecular evidence of potentially zoonotic *Babesia microti* and *Babesia* sp. EU1 in *Ixodes ricinus* ticks in Belgium. Vector Borne Zoonotic Dis 11:125–130

Martinot M, Zadeh MM, Hansmann Y, Grawey I, Christmann D, Agullion S, Jouglin M, Chauvin A, De Briel D (2011) Babesiosis in immunocompetent patients, Europe. Emerg Infect Dis 17:114–116

Najm NA, Meyer-Kayser E, Hoffmann L, Herb I, Fensterer V, Pfister K, Silaghi C (2014) A molecular survey of *Babesia* spp. and *Theileria* spp. in *Ixodes* ticks from nine collection sites in France. Vector Borne Zoonotic Dis 13: 226–236
spp. in red foxes (*Vulpes vulpes*) and their ticks from Thuringia, Germany. Tick Borne Dis 5:386–391

Otranto D, Dantas-Torres F, Giannelli A, Latrofa MS, Cascio A, Cazin S, Ravagnan S, Montarsi F, Zanzani SA, Manfredi MT, Capelli G (2014) Ticks infesting humans in Italy and associated pathogens. Parasit Vectors 7:328–336

Overzier E, Pfister K, Thiel C, Herb I, Mahling M, Silaghi C (2013) Diversity of *Babesia* and *Rickettsia* species in questing *Ixodes ricinus*: a longitudinal study in urban, pasture, and natural habitats. Vector Borne Zoonotic Dis 13:559–564

Peirce MA (2000) A taxonomic review of avian piroplasms of the genus *Babesia* Starcovici, 1893 (Apicomplexa: Piroplasmorida: Babesiidae). J Nat Hist 34:317–332

Persing DH, Mathiesen D, Marshall WF, Telford SR, Apelmann A, Thomford JW, Conrad PA (1992) Detection of *Babesia microti* by polymerase chain reaction. J Clin Microbiol 30:2097–2103

Reye AL, Stegniy V, Mishaeva NP, Velhin S, Hübschen JM, Ignatyev G, Muller CP (2013) Prevalence of tick-borne pathogens in *Ixodes ricinus* and *Dermacentor reticulatus* ticks from different geographical locations in Belarus. PLoS One 8(1), e54476. doi: 10.1371/journal.pone.0054476

Rijpkema S, Golubic D, Moelkenboer M, Verbeek-De Kruif N, Schellekens J (1996) Identification of four genomic groups of *Borrelia burgdorferi* sensu lato in *Ixodes ricinus* ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol 20:23–30

Rudolf I, Golovchenko M, Sikutová S, Rudenko N, Grubhoffer L, Habálek Z (2005) *Babesia microti* (Piroplasmida: Babesiidae) in nymphal *Ixodes ricinus* (Acari: Ixodidae) in the Czech Republic. Folia Parasitol (Praga) 52:274–276

Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M (2012) *Babesia* spp. and *Anaplasma phagocytophilum* in questing ticks, ticks parasitizing rodents and the parasitized rodents-analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors 5:191–204

Śiński E, Bajer A, Welc R, Paweleczyk A, Ogrzewalska M, Behnke JM (2006) *Babesia microti*: prevalence in wild rodents and *Ixodes ricinus* ticks from the Mazury Lakes District of North-Eastern Poland. Int J Med Microbiol 296(Suppl 40):137–143

Śvehlová A, Berthová L, Sallay B, Boldiš V, Sparagano OA, Špitalská E (2014) Sympatric occurrence of *Ixodes ricinus*, *Dermacentor reticulatus* and *Haemaphysalis concinna* ticks and *Rickettsia* and *Babesia* species in Slovakia. Ticks Tick Borne Dis 5:600–605

Tijssen E, Jacobs JJ, Swart A, Fonville M, Reimerink JH, Brandenburg AH, van der Giessen JW, Hofhuis A, Sproon H (2011) Small risk of developing symptomatic tick-borne diseases following a tick bite in The Netherlands. Parasit Vectors 4:17–24

Walter G (1982) Transmission of *Babesia microti* by nymphs of *Dermacentor marginatus*, *D. reticulatus*, *Haemaphysalis punctata*, *Rhipicephalus sanguineus* and *Ixodes hexagonus*. Z Parasitenkd 66:353–354 (in German)

Welc-Faleciak R, Hildebrandt A, Śiński E (2010) Co-infection with *Borrelia* species and other tick-borne pathogens in humans: two cases from Poland. Ann Agric Environ Med 17:309–313

Wójcik-Fatla A, Cisak E, Chmielewska-Badora J, Zwoliński J, Buczek A, Dutkiewicz J (2006) Prevalence of *Babesia microti* in *Ixodes ricinus* ticks from Lublin region (eastern Poland). Ann Agric Environ Med 13:319–322

Wójcik-Fatla A, Bartosik K, Buczek A, Dutkiewicz J (2012) *Babesia microti* in adult *Dermacentor reticulatus* ticks from eastern Poland. Vector Borne Zoonotic Dis 12:841–843

Yabsley MJ, Shock BC (2012) Natural history of *Zoonotic Babesia*: role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2:18–31