Fine-aggregate concrete with polymer and basalt fiber

V APerfilov
Oil and Gas Facilities Chair, Volgograd State Technical University, 28, Lenin avenue, Volgograd 400005, Russia
E-mail: vladimirperfilov@mail.ru

Abstract. The article covers the results of research and experimental studies aimed at determination of the impact of polymer and basalt fibre as well as plasticizing agents on the properties of fine-aggregate concrete. The authors identified the physical and mechanical properties of fine-aggregate fibre-reinforced concrete depending on the amount of basalt and polymer fibres. The article also dwells on the impact of different plasticizing agents on the properties of fine-aggregate fibre-reinforced concrete. It was determined that the optimal concentration of polymer and basalt fibre is 0.9-1.0 kg/m³ when maximum compression strength and tension in bending have been reached. The authors managed to select efficient superplasticizing agents Sika ViscoCrete 5-800 and POLIPLAST SP-4 which provided maximum increase in strength of fine-aggregate concrete. It was determined that the use of polymer and basalt fibres ensures increase in strength and crack resistance of the obtained fine-aggregate concrete compositions.

1. Introduction
The performed theoretical and experimental studies have shown that concrete strengthened with polymer and basalt fibres demonstrate high physical and mechanical properties. Reinforcement with fine-grained fibre fillers improve key disadvantages of conventional concrete - low tensile strength and brittle failure (crack resistance). Fibre-reinforced concrete has a higher strength in shear, impact strength, fracture toughness, freeze-thaw resistance, waterproofing, etc. [1-23].

2. Relevance
Use of fine-grained fibre fillers in cement concrete exerts positive impact on structurization, physical and mechanical properties as well as operational characteristics of concrete. This is achieved by means of better adhesion of fibres to cement matrix, a relatively high strength and elasticity modulus of synthetic fibres, their resistivity to alkaline environment.

3. Problem statement
Synthetic fibres are rarely used in Russia, and they are mainly imported. As such, polypropylene fibres are produced by (Fibrin, Krenit, Crackstop), Adfil (England), Belgian fibres N.V. (Belgium), PP EUROFIBER manufactured by P. Baumhueter GmbH (Germany). Diameter of such fibres is about 20 mcm, and tensile strength is up to 300 MPa [9]. However, wide use of polymer fibres is restricted by their low mechanic properties and high cost.

C-AIRLAIID company and South Ural State University have performed many experiments to develop Russian synthetic fibres with improved physical and mechanic properties. As a result, they
have received polymer fibres having high elasticity modulus and tearing strength due to chemical and ultra-fine components introduced into the nucleus polymer [9].

Fibres obtained in C-AIRLAID from high modulus thermoplastic polymer have a diameter of 20-50 mcm and a length of 3-18 mm with tearing strength reaching 500 MPa. Recommended practices have been prepared to describe the application of construction micro-reinforcing fibres in construction mixtures and concrete. The practices have been issued as technical specification TU 2272-006-13429727-2007.

Basalt fibres manufactured by ZAO “Mineral 7” as per TU V V.2.7-26.8-32673353-001-2007 are based on basaltic rocks, have a diameter of 13-17 mcm and a length of 6-12 mm, their tensile strength is up to 2000 MPa.

4. Theoretical part
Use of polymer and basalt fibres facilitates the formation of rheologically homogeneous mixture at the stage of mixing. This mixture has high plasticity and is nonsegregating. After hardening the obtained fibre-reinforced concrete has a three-dimension reinforced micro-structure of cement stone that prevents from the formation of shrinkage cracks.

The task of scientific research is to improve the efficiency of the process of production of modified fine-aggregate fibre-reinforced concrete mixture with the view to improve its compressive strength and tension in bending using components than strengthen the fibre-reinforced concrete structure the micro-level.

The studies of the impact of fine-aggregate fibre fillers have been performed using construction micro-reinforcing fibre (CMRF) manufactured by C-AIRLAID [9] as using basalt fibre having a diameter of 13-17 mcm and a length of 6-12 mm.

Fire-reinforced concrete composition was selected using software [12]. Micro-reinforcing fibre was added at the stage of mixing of dry components of the mixture. The obtained specimens of fibre-reinforced concrete are shown in Fig. 1.

The size of the specimens of fibre-reinforced concrete is 40x40x160 mm as per the Russian standard GOST 10180.

5. Results of experimental studies
The results of the studies aimed at determination of mechanical properties of fine-aggregate fibre-reinforced concrete are given in Table 1.
The analysis of the studies results has shown that compared to the reference concrete having no CMRF and basalt fibre, compressive and tensile strength in bending is increased in all mixtures of fine-aggregate fibre-reinforced concrete with fibre content from 0.6 to 1.2 g/m³.

Table 1. Impact of high-disperse fibres on the strength of fibre-reinforced concrete.

No.	Fibre content, kg/m³	Basalt fibre	Construction micro-reinforcing fibre (CMRF)		
	Tensile strength in bending, MPa	Compression strength, MPa	Tensile strength in bending, MPa	Compression strength, MPa	
1	0	3.49	31.36	3.41	31.28
2	0.6	3.57	31.64	3.50	31.59
3	0.7	3.63	32.22	3.57	32.17
4	0.8	3.71	33.73	3.64	33.61
5	0.9	3.82	36.25	3.83	36.68
6	1.0	3.91	36.77	3.71	36.18
7	1.1	3.79	36.60	3.76	36.54
8	1.2	3.71	34.81	3.62	34.77

Use of fibre increased the bonding with cement-sand matrix and, consequently, increase the compression and bending strength of the specimens. Fig. 2 shows the photo of the destroyed specimen of fibre-reinforced concrete using polymer CMRF fibre. The figure demonstrates that the main crack that formed during loading did not tear the specimen into two parts, and the specimen was not destroyed. The life of specimen of concretes with polymer and basalt fibre is significantly longer than the life of specimen of ordinary fine-aggregate concrete. The increasing of crack resistance and, consequently, of life performance of fibre-reinforced concrete is related to macro-reinforcing capacity of fibres and relaxation of stress at the matrix-filler contact surfaces. As a result the time of formation of a macro-crack that divides the specimen into parts can significantly exceed the duration of preparatory stages of destruction at micro- and nano-levels.

Figure 2. Specimen with polymer fibre after testing.
The optimal composition of fibre-reinforced concrete is with concentration of polypropylene fibre equalling 0.9 kg/m³; it demonstrated an increase of compression strength by 17 % and an increase of tensile strength in bending by 12.3 %.

The mixture with basalt fibre concentration equalling 1.0 kg/m³ demonstrated an increase of compression strength by 17.3% and of bending strength by 12%.

Further increase of fibre content resulted in formation of lumps, decreasing of compression strength and tension in bending and to unnecessary increase in the cost of fibre-reinforced concrete.

Thus, the use of polymer CMRF fibre and basalt fibre in concrete mixtures helps to reduce the consumption of an expensive bonding material, reduce the labour costs for reinforcement of reinforced concrete products and increase its crack resistance and lifetime.

In order to improve the physical and mechanical properties of fibre-reinforced concrete it is necessary to study the impact of plasticising agents on the strength of cement-sand mixture. In order to study the impact of plasticising agent we have made bar specimen having dimensions 40x40x160 mm of cement-sand mixture having composition C:S=1:3 with water-cement ratio W/C=0.53. Key materials that have been used were cement manufactured by ZAO Oskolcement grade CEM I 42.5N (Portland cement, M500 D0), sand by ZAO Orlovskiy Sand Pit with fineness modulus 1.91. During the study we have considered the following plasticising agents: D-11 plasticising agent, superplasticising agents S-3, Poliplast SP-3, Supranaft, Muraplast FK 88 (050), POLIPLAST SP-4, Sika ViscoCrete 5-800, SikaPlast 2135. Superplasticising agents were added to the concrete mixture with tempering water at the ratio 0.5 % of cement mass. Bar specimens acquired strength in normal conditions at a temperature of 22°C and humidity 80-100 %. The strength of the samples was determined by ultrasonic nondestructive control method as per the Russian standard GOST 17624 using Pulsar-1.2 device on the 28th day.

The results of the performed studies are provided in Table 2 and in Figure 3.

Name	Cone flow diameter, mm	Density kg/m³	Strength of cement-sand solution, MPa	
Reference specimen	107	2017.58	2.75 bending	29.82 compression
Sika Plast 2135	142	2070.315	3.2 bending	32.61 compression
VC 5-800	149	1994.14	3.15 bending	34.05 compression
Supranaft	145	2009.765	3.15 bending	31.08 compression
SP3	145	1996.09	3.3 bending	30.27 compression
SP4	159	1955.08	3.45 bending	33.78 compression
С3	147	2041.015	2.8 bending	32.16 compression
D11	126	1984.375	2.7 bending	29.55 compression

Plasticization effect of different fillers were studied using shaker apparatus and slump cone. The analysis of the results showed that the best plasticization effect is achieved when adding superplasticising agents POLIPLAST SP-4 that was determined by the cone flow diameter equalling 159 mm whereas reference test (without fillers) demonstrated only 107 mm. Plasticization effect of different fillers were studied using shaker apparatus and slump cone. The highest compression strength was demonstrated by compositions which include superplasticising agents Sika ViscoCrete 5-800 and POLIPLAST SP-4. Their strength increased by 13.3-14.2 % compared to the reference specimen.
Figure 3. Impact of plasticising agents on the strength of the cement-sand solution.

6. Conclusions
The results of the experiments show the positive influence of fibre and superplasticising agents on physical and mechanical properties of the cement-sand solution.

Introduction of POLIPLAST SP-4 and Sika ViscoCrete 5-80 agents provided an increase in strength and fluidity of the solution.

Use of superplasticising agents also results in decrease of the consumption of mixing water with preservation of the solution fluidity that is important for fine-aggregate fibre-reinforced concrete.

References
[1] Perfilov V A, Atkina A V and Kusmartseva O A 2010 Use of modifying micro-reinforcement components to improve the strength of cellular materials J. News of High. Educ. Institutions. Construction (Novosibirsk) 9 11–14
[2] Perfilov V A, Atkina A V, Kusmartseva O A 2009 Fiber reinforced concrete with superfine fiber fillers Proc. Int. Conf. “Low-rise construction” in the framework of the project “Affordable and comfortable housing for Russian citizens: technology and materials, the problems and prospects of the development in the Volgograd region”, (Volgograd: VolgGASU) pp 89–91
[3] Perfilov V A and Kotliarevskaia A V 2011 Use of fiber additives and superplasticizing agents for improvement of foam concrete strength 6th Int. Conf. Safety and reliability of construction materials, structures and foundation basements (Volgograd: VolgGASU) pp 251–252
[4] Perfilov V A, Kotliarevskaia A V and Kusmartseva O A 2011 Raw material for the use of cellular materials and the method for its manufacturing Invention patent No. 2422408 Bullet. 18
[5] Perfilov V A and Lepilov V I 2008 Haydite blocks with high heat-shielding properties J. News of High. Educ. Institutions. North-Caucasian region. Ser.: Technical science 6 116–120
[6] Perfilov V A, Lepilov V I and Kotliarevskaia A V 2012 Foam fiber reinforced concrete blocks with reduced thermal conductivity for fencing structures 10th Int. Scient. Conf. Quality of indoor air and environment (Volgograd: VolGASU) pp 439–444
[7] Perfilov V A, Zubova M O and Neizvestnyi D L 2011 Application of basalt fibers and a modifying additive for increasing the strength characteristics of heavy concrete J. News of High. Educ. Institutions. Construction 12 46–49

[8] Kotliarevskaia A V Foam fiber reinforced concrete with use of microstrengthening agents and modifying agents Ph. D. Thesis in Eng. Science (Volgograd) p 161

[9] LLC “C-AIRLAID” 2012 https://www.airlaid.ru

[10] Bentur A, Mindess S 1990 Fiber reinforced cementitious composites Elsevier Applied Science. London & New York. pp 348–351

[11] Hannant D J 1978 Fibre cement ang concrete (N.Y: Dep. Civil. Eng. University Surrey) p 76

[12] Perfilov V A and Mityaev S P 2009 Calculation of fiber-reinforced concrete with a nano-additive Inventor’s Certificate of state reg. of software No. 2009612195

[13] Perfilov V A, Alatortseva U V and Tiurin A A 2010 Fiber reinforced concrete mixture Invention Patent No. 2008133782/03

[14] Perfilov V A and Zubova M O 2013 Basalt fiber as the main component of dispersed-fiber reinforcing concrete J. Bull. of Donbas Nat. Acad. of Constr. and Arch. 3(101) 146–148

[15] Perfilov V A 2015 Fine-grain fiber-reinforced concrete Thesis. Ministry of Education and Science of the Russian Federation (Volgograd: VolgGASU) p 126

[16] Perfilov V A, Zubova M O 2015 Effect of basalt fibers on the strength of fine fiber reinforced concrete J. Internet Bull. of VolgGASU. Series: Multidisciplinary 1(37) 9

[17] Perfilov V A, Zubova M O 2015 Of superplasticizers on the properties of fiber-reinforced concrete J. Internet Bull. of VolgGASU. Series: Multidisciplinary 1(37) 11

[18] Perfilov V A, Oreshkin D V, Zemlyanushnov D Y 2016 Concrete strength and crack resistance control 2nd International Conference on Industrial Engineering, ICIE 2016 J. Procedia Engineering pp 1474–78

[19] Perfilov V A, Gabova V V 2017 Nanomodified constructional fiber-reinforced concrete International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2017) J. MATEC Web of Conferences 129 4

[20] Perfilov V A, Zubova M O 2014 Fine-grained basalt fiber reinforced concrete J. Bull. of the Volgograd St. Univ. of Archit. and Civil Eng. Series: Construction and architecture 38 85–93

[21] Perfilov V A, Atkina A V, Kusmartseva O A and Kanavets U V 2009 Fiber reinforced concrete with macro strengthening and nano additives Proc. III All-Russia Scient. & Socio-economic and technological challenges of the construction complex of the region. Science. Practice. Education pp 236–238

[22] Perfilov V A, Alatortseva U V, Dmitruk M I and Zhoga I L 2009 Application modifying nano-additives to improve strength fiber-reinforced concrete J. News of High. Educ. Institutions. Construction (Novosibirsk) 8 17–19

[23] Perfilov V A and Alatortseva U V 2009 Structural fiber reinforced concretes with modifying nano-additives Proc. IInd Int. Nanotechn. Forum (Moscow) pp 374–375