Generalised constraints on the curvature perturbation from primordial black holes

Amandeep S. Josan and Anne M. Green
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Karim A. Malik
Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

(Dated: April 22, 2009)

Primordial black holes (PBHs) can form in the early Universe via the collapse of large density perturbations. There are tight constraints on the abundance of PBHs formed due to their gravitational effects and the consequences of their evaporation. These abundance constraints can be used to constrain the primordial power spectrum, and hence models of inflation, on scales far smaller than those probed by cosmological observations. We compile, and where relevant update, the constraints on the abundance of PBHs before calculating the constraints on the curvature perturbation, taking into account the growth of density perturbations prior to horizon entry. We consider two simple parameterizations of the curvature perturbation spectrum on the scale of interest: constant and power-law. The constraints from PBHs on the amplitude of the power spectrum are typically in the range $10^{-2} - 10^{-1}$ with some scale dependence.

PACS numbers: 98.80.Cq

I. INTRODUCTION

Primordial black holes (PBHs) can form in the early Universe via the collapse of large density perturbations [1, 2]. If the density perturbation at horizon entry in a given region exceeds a threshold value, of order unity, then gravity overcomes pressure forces and the region collapses to form a PBH with mass of order the horizon mass. There are a number of limits, spanning a wide range of masses, on the PBH abundance. PBHs with mass $M_{\text{PBH}} \lesssim 5 \times 10^{14} \text{g}$ will have evaporated by the present day [3, 4] and their abundance is constrained by the consequences of the Hawking radiation emitted. More massive PBHs are constrained by their present day gravitational effects. The resulting limits on the initial mass fraction of PBHs are very tight, $\beta \equiv \rho_{\text{PBH}}/\rho_{\text{tot}} < O(10^{-20})$, and can be used to constrain the power spectrum of the primordial density, or curvature, perturbations (see e.g. Ref. [3]).

The power spectrum of the primordial curvature perturbation, $P_\mathcal{R}(k)$, on cosmological scales is now accurately measured by observations of the cosmic microwave background (CMB) [6] and large scale structure [7, 8]. These measurements can be used to constrain, and in some cases exclude, inflation models (c.f. Ref. [9]). Cosmological observations span a relatively small range of scales (comoving wavenumbers between $k \sim 1 \text{Mpc}^{-1}$ and $k \sim 10^{-3} \text{Mpc}^{-1}$), and hence probe a limited region of the inflaton potential. The PBH constraints on the curvature power spectrum are fairly weak; the upper limit is many orders of magnitude larger than the measurements on cosmological scales. They do, however, apply over a very wide range of scales (from $k \sim 10^{-2} \text{Mpc}^{-1}$ to $k \sim 10^{23} \text{Mpc}^{-1}$) and therefore provide a useful constraint on models of inflation [10].

The simplest assumption for the power spectrum is a scale-free power law with constant spectral index, n:

$$P_\mathcal{R}(k) = \frac{k^3}{2\pi^2} \langle |\mathcal{R}_k|^2 \rangle = P_\mathcal{R}(k_0) \left(\frac{k}{k_0} \right)^{n-1}, \quad (1)$$

where k_0 is a suitably chosen normalisation scale. In this case the PBH abundance constraints require $n < 1.25 - 1.30$ [11, 12, 13, 14]. The spectral index on cosmological scales is, however, now accurately measured: $n = 0.963_{-0.014}^{+0.014}$ [8]. In other words, if the power spectrum is a pure power law then the number of PBHs formed will be completely negligible. However, as we will now outline, if the primordial perturbations are produced by inflation then the power spectrum is not expected to be an exact power law over all scales.

The power spectrum produced by slow-roll inflation can be written as an expansion about a wave number k_0 (e.g. Ref. [15])

$$\ln P_\mathcal{R}(k) \approx \ln P_\mathcal{R}(k_0) + [n(k_0) - 1] \ln \left(\frac{k}{k_0} \right) + \frac{1}{2} \alpha(k_0) \ln^2 \left(\frac{k}{k_0} \right) + \ldots, \quad (2)$$

where the spectral index and its running, $\alpha(k) \equiv d \ln n/d \ln k$, are evaluated at k_0 and can be expressed in terms of the slow-roll parameters. This expansion is valid provided $\ln (k/k_0)$ is small for the relevant k values. This is the case for cosmological observations, but not for the wide range of scales probed by PBH constraints.
In fact only very specific, and contrived, inflaton potentials produce a constant spectral index \([10]\). It is possible for the power spectrum to vary sufficiently with scale so that PBHs can potentially be over-produced. For instance in the running-mass inflation model \([17, 18]\), the power spectrum is strongly scale-dependent and PBH constraints exclude otherwise viable regions of parameter space \([19, 20]\). More generally, Peiris and Easther \([21]\) recently found, using slow roll reconstruction, that inflation models which are consistent with cosmological data can over-produce PBHs.

Motivated by this, we compile and update the constraints on the abundance of PBHs (Sec. \(\text{II}\)). We then translate the abundance constraints into detailed generalised constraints on the power spectrum of the curvature perturbations (Sec. \(\text{III}\)), taking into account the evolution of the density perturbations prior to horizon entry.

II. PBH ABUNDANCE CONSTRAINTS

The PBH constraints can, broadly, be split into two classes: those that arise from their present day gravitational consequences and those that arise from the products of their evaporation. In both cases, in order to constrain the primordial density or curvature perturbation, we need to translate the constraints into limits on the initial PBH mass fraction.

Throughout we will assume that the PBHs form at a single epoch and their mass is a fixed fraction, \(f_M\), of the horizon mass \(M_{\text{PBH}} = f_M M_H\), where \(f_M \approx (1/3)^{3/2} \) \([22]\). A scale invariant power spectrum produces an extended PBH mass function \(dM_{\text{PBH}}/dM_{\text{PBH}} \propto M_{\text{PBH}}^{-5/2} \) \([2]\), however (as discussed in the introduction above) in this case the number density of PBHs would be completely negligible \([10, 24]\). For scale-dependent power spectra which produce an interesting PBH abundance it can be assumed that all PBHs form at a single epoch \([23]\). As a consequence of near critical phenomena in gravitational collapse \([26, 27, 28]\) the PBH mass may, however, depend on the size of the fluctuation from which it forms \([29, 30, 31]\) in which case the mass function has finite width. Most of the constraints that we discuss below effectively apply to the mass function integrated over a range of masses. The range of applicability is usually significantly larger than the width of the mass function produced by critical collapse, so in the absence of a concrete prediction or model for the primordial power spectrum in most cases it is reasonable to approximate the mass function as a delta-function. The constraints from cosmic-rays and gamma-rays produced by recently evaporating PBHs are an exception to this. These constraints depend significantly on the PBH mass function and therefore need to be calculated on a case by case basis \([32, 33, 34, 35, 36]\). We therefore do not include these constraints in our calculation of generalised constraints on the curvature perturbation power spectrum.

Taking into account the cosmological expansion, the initial PBH mass fraction, \(\beta(M_{\text{PBH}})\), is related to the present day PBH density, \(\Omega^0_{\text{PBH}}\), by

\[
\beta(M_{\text{PBH}}) = \frac{\rho^0_{\text{PBH}}}{\rho^0_{\text{crit}}} = \frac{\Omega^0_{\text{PBH}}}{\Omega^0_{\text{crit}}} \approx \Omega^0_{\text{PBH}} \left(\frac{a_\text{eq}}{a_\text{eq}}\right),
\]

where \(a\) is the scale factor, \(\text{eq}\) refers to matter-radiation equality and \(\rho_{\text{crit}}\) is the critical energy density. Using the constancy of the entropy, \((s = g_* a^3 T^3)\), where \(g_*\) refers to the number of entropy degrees of freedom, we relate the scale factor to the temperature of the Universe and using the radiation density, \(\rho = \frac{4\pi}{3} g_* T^4\), and horizon mass, \(M_H = \frac{4\pi}{3} \rho H^{-3}\), we obtain

\[
\beta(M_{\text{PBH}}) = \Omega^0_{\text{PBH}} \left(\frac{g_*}{g^*}\right)^{1/12} \left(\frac{M_H}{M_{\text{eq}}}\right)^{1/2},
\]

where \(g_*\) is the number of total effective massless degrees of freedom and we have taken \(g^* \approx g_*\). The horizon mass at matter-radiation equality is given by (c.f. Ref. \([37]\))

\[
M_{\text{eq}}^3 = \frac{4\pi}{3} \rho_{\text{eq}} H^{-3} = \frac{8\pi}{3} \frac{\rho_{\text{rad}}}{a_\text{eq}^3}.
\]

Inserting numerical values, \(g_*^I \approx 100, \) \(g^*_\text{eq} \approx 3, \) \(\Omega^0_{\text{rad}} h^2 = 4.17 \times 10^{-5}, \) \(\rho_{\text{crit}} = 1.88 \times 10^{-29} h^2 \) \(\text{g cm}^{-3}\), \(k_{\text{eq}} = 0.07 \Omega^0_{m} h^2 \text{Mpc}^{-1}, \) \(a_\text{eq}^{-1} = 24000 \Omega^0_{m} h^2\), and \(\Omega^0_{m} h^2 = 0.1326 \pm 0.0063\), gives \(M_{\text{eq}}^3 = 1.3 \times 10^{49} (\Omega_{m} h^2)^{-2}\) g meaning that PBHs directly emit all particles which appear elementary at the energy scale of the PBH and have rest mass less than the black hole temperature. Thus if the black hole temperature exceeds the QCD confinement scale, quark and gluon jets are emitted directly. The quark and gluon jets then fragment and decay producing astrophysically stable particles: photons, neutrinos, electrons, protons and their anti-particles. Taking into account the number of emitted species the mass loss rate can be written as \([40]\)

\[
\frac{dM_{\text{PBH}}}{dt} = -5.34 \times 10^{25} \phi(M_{\text{PBH}}) M_{\text{PBH}}^2 g s^{-1},
\]

where \(\phi(M_{\text{PBH}})\) takes into account the number of directly emitted species \(\phi(M_{\text{PBH}}) = 0.267 g_0 + 0.147 g_{1/2} + 0.06 g_1 + 0.02 g_{3/2} + 0.007 g_2\) where \(g_n\) is the number of degrees of freedom with spin \(s\) and is normalized to
one for PBHs with mass $M_{\text{PBH}} \gg 10^{17}$ g which can only emit photons and neutrinos. For lighter PBHs $\phi(5 \times 10^{14}$ g $< M_{\text{PBH}} < 10^{17}$ g) $= 1.569$. The PBH lifetime is then given by

$$\tau \approx 6.24 \times 10^{-27} M_{\text{PBH}}^3 \phi(M_{\text{PBH}})^{-1}.$$ \hspace{1cm} (9)

From the WMAP 5 year data [6] the present age of the Universe is $t_0 = 13.69 \pm 0.13$ Gyr. The initial mass of a PBHs which is evaporating today is therefore $M_{\text{PBH}} \approx 5 \times 10^{14}$ g, while less massive PBHs will have evaporated by the present day.

We will now compile, and where relevant update, the PBH abundance constraints. We divide the constraints into two classes: those, for PBHs with $M_{\text{PBH}} > 5 \times 10^{14}$ g, arising from their gravitational consequences (Sec. II A) and those for $M_{\text{PBH}} < 5 \times 10^{14}$ g arising from their evaporation (Sec. II B).

A. Gravitational constraints

1. Present day density

The present day density of PBHs with $M_{\text{PBH}} > 5 \times 10^{14}$ g which haven’t evaporated by today must be less than the upper limit on the present day cold dark matter (CDM) density. Using the 5 year WMAP measurements [6], $\Omega_{\text{CDM}} h^2 = 0.1099 \pm 0.0062$, $h = 0.719 - 0.026$, gives

$$\Omega_{\text{PBH}}^0 < 0.25,$$ \hspace{1cm} (10)

which, using Eq.(4), leads to

$$\beta(M_{\text{PBH}}) < 1.6 \times 10^{-19} \left(\frac{M_{\text{PBH}}}{5 \times 10^{14} \text{ g}}\right)^{1/2}$$ \hspace{1cm} (11)

for $M_{\text{PBH}} > 5 \times 10^{14}$ g.

2. Lensing of cosmological sources

If there is a cosmologically significant density of compact objects then the probability that a distant point source is lensed is high [43]. The limits as given below have been calculated assuming an Einstein de Sitter Universe, $\Omega_0 = 1$, and a uniform density of compact objects. The recalculation of the constraints for a Λ dominated Universe would be non-trivial. The constraints would, however, be tighter (due to the increased path length and the larger optical depth to a given red-shift) [42], and the constraints given below are therefore conservative and valid to within a factor of order unity.

Gamma-ray bursts

Light compact objects can feptomlens gamma-ray bursts (GRBs), producing a characteristic interference pattern [4]. A null search using BATSE data leads to a constraint [44]

$$\Omega_c < 0.2 \text{ for } 10^{-16} M_\odot < M_{\text{PBH}} < 10^{-13} M_\odot,$$ \hspace{1cm} (12)

where Ω_c is the density of compact objects, assuming a mean GRB red-shift of one.

Quasars

Compact objects with mass $10^{-3} M_\odot < M_{\text{PBH}} < 300 M_\odot$ can microlens quasars, amplifying the continuum emission without significantly changing the line emission [45]. Limits on an increase in the number of small equivalent width quasars with red-shift lead to the constraint [42]:

$$\Omega_c < 0.013 \text{ for } 10^{6} M_\odot < M_{\text{PBH}} < 10^{8} M_\odot.$$ \hspace{1cm} (13)

assuming $\Omega_{\text{tot}} = \Omega_c$.

Radio sources

Massive compact objects, $10^{6} M_\odot < M_{\text{PBH}} < 10^{8} M_\odot$, can millilens sources producing multiple sources with milliarcsec separation [46]. A null search using 300 compact radio sources places a constraint [47]

$$\Omega_c < 0.013 \text{ for } 10^{6} M_\odot < M_{\text{PBH}} < 10^{8} M_\odot.$$ \hspace{1cm} (14)

3. Halo fraction constraints

There are also constraints from the gravitational consequences of PBHs within the Milky Way halo. They are typically expressed in terms of the fraction of the mass of the Milky Way halo in compact objects, $f_h = M_{\text{PW}}^\text{MW} / M_{\text{tot}}^\text{MW}$. They require some modeling of the Milky Way halo (typically the density and/or velocity distribution of the halo objects). Consequently there is a factor of a few uncertainty in the precise values of the constraints.

Assuming that PBHs make up the same fraction of the halo dark matter as they do of the cosmological cold dark matter, and ignoring the uncertainties in the CDM density (since this is negligible compared with the uncertainties in halo fraction limit calculations), we can relate the halo fraction to the PBH cosmological density:

$$f_h \equiv \frac{M_{\text{PW}}^\text{MW}}{M_{\text{CDM}}^\text{MW}} \approx \rho_{\text{PBH}}^0 / \rho_{\text{CDM}}^0 = \frac{\Omega_{\text{PBH}}^0}{\Omega_{\text{CDM}}^0} h^2 \approx 5 \Omega_{\text{PBH}}^0.$$ \hspace{1cm} (15)

Microlensing

Solar and planetary mass compact objects in the Milky Way halo can microlens stars in the Magellanic Clouds, causing temporary one-off brightening of the microlensed
The halo fraction \(f_h \), the value of limits on \(M_{\text{PBH}} \), and the derived value of limits on \(f_h \) varying by factors of order unity for other halo models.

The EROS collaboration find a 95% upper confidence limit \(\tau < 0.36 \times 10^7 \) which they translate into limits on the halo fraction \(f_h \):

\[
f_h < 0.04 \quad \text{for} \quad 10^{-3} M_\odot < M_{\text{PBH}} < 10^{-1} M_\odot, \quad (16)
\]

or

\[
f_h < 0.1 \quad \text{for} \quad 10^{-6} M_\odot < M_{\text{PBH}} < M_\odot. \quad (17)
\]

Combined EROS and MACHO collaboration limits on short duration events constrain the abundance of light MACHOs \(f_h \):

\[
f_h < 0.25 \quad \text{for} \quad 10^{-7} M_\odot < M_{\text{PBH}} < 10^{-3} M_\odot, \quad (18)
\]

while a dedicated search by the MACHO collaboration for long (> 150 days) duration events leads to limits on more massive MACHOS \(f_h \):

\[
f_h < 1.0 \quad \text{for} \quad 0.3 M_\odot < M_{\text{PBH}} < 30 M_\odot, \quad (19)
\]

or

\[
f_h < 0.4 \quad \text{for} \quad M_{\text{PBH}} < 10 M_\odot. \quad (20)
\]

Combined, these limits give

\[
\begin{align*}
&f_h < 0.25 \quad \text{for} \quad 10^{-7} M_\odot < M_{\text{PBH}} < 10^{-6} M_\odot, \quad (21) \\
&f_h < 0.1 \quad \text{for} \quad 10^{-6} M_\odot < M_{\text{PBH}} < M_\odot, \quad (22) \\
&f_h < 0.4 \quad \text{for} \quad M_\odot < M_{\text{PBH}} < 10 M_\odot. \quad (23)
\end{align*}
\]

Wide binary disruption

More massive compact objects would affect the orbital parameters of wide binaries \(f_h \). Comparison of the separations of observed halo binaries with simulations of encounters between compact objects and wide binaries lead to a constraint \(f_h < 0.2 \):\n
\[
f_h < 0.2 \quad \text{for} \quad 10^3 M_\odot < M_{\text{PBH}} < 10^6 M_\odot. \quad (24)
\]

See however Ref. \(57 \) for a recent re-examination of this constraint which leads to a somewhat weaker limit.

Disk heating

Massive halo objects traversing the Galactic disk will heat the disk, increasing the velocity dispersion of the disk stars \(f_h \). This leads to a limit, from the observed stellar velocity dispersions, on the halo fraction in massive objects \(f_h \):

\[
f_h < \frac{M_{\text{disk,lim}}}{M_{\text{PBH}}},
\]

\[
M_{\text{disk,lim}} = 3 \times 10^6 \left(\frac{\rho_h}{0.01 M_\odot\text{pc}^{-3}} \right)^{-1} \times \left(\frac{\sigma_{\text{obs}}}{60 \text{ km s}^{-1}} \right)^2 \left(\frac{t_s}{10^{10} \text{ yr}} \right)^{-1} M_\odot, \quad (25)
\]

where \(\rho_h \) is the local halo density and \(\sigma_{\text{obs}} \) and \(t_s \) are the velocity dispersion and age of the halo stars, respectively.

B. Evaporation constraints

1. **Diffuse gamma-ray background**

PBHs with masses in the range \(2 \times 10^{13} < M_{\text{PBH}} < 5 \times 10^{14} \) g evaporate between \(z \approx 700 \) and the present day and can contribute to the diffuse gamma-ray background \(23, 24, 32, 60, 61, 62 \). As discussed above, these constraints depend significantly on the PBH mass function and hence we will not consider them further.

2. **Cosmic-rays**

The abundance of PBHs evaporating around the present day can also be constrained by limits on the abundance of cosmic-rays (in particular positrons and antiprotons) \(23, 63 \). The constraints from anti-protons have been calculated for several mass functions and are essentially equivalent to those from the diffuse gamma-ray background \(55, 64 \).

3. **Neutrinos**

Neutrinos produced by PBH evaporation contribute to the diffuse neutrino background. The neutrino spectrum, and hence the resulting PBH abundance constraints, depend strongly on the PBH mass function, but the constraints are typically weaker than those from the diffuse gamma-ray background \(53, 54 \).

4. **Hadron injection**

PBHs with mass \(M_{\text{PBH}} < 10^{10} \) g have a lifetime \(\tau < 10^8 \) s and evaporate before the end of nucleosynthesis, and can therefore affect the light element abundances \(55, 66, 67, 68 \). The constraints from hadron injection have been re-evaluated (see Ref. \(69 \)), taking into account the emission of fundamental particles and using more up to date measurements of the Deuterium

\[...\]
and 4He abundances ($D/H \leq 4.0 \times 10^{-5}, Y_p \leq 0.252$
respectively):
\[
\beta(M_{\text{PBH}}) < 10^{-20} \quad \text{for} \quad 10^8 \, \text{g} < M_{\text{PBH}} < 10^{10} \, \text{g}, \quad (26)
\]
\[
\beta(M_{\text{PBH}}) < 10^{-22} \quad \text{for} \quad 10^{10} \, \text{g} < M_{\text{PBH}} < 3 \times 10^{10} \, \text{g}. \quad (27)
\]

5. Photodissociation of deuterium

The photons produced by PBHs which evaporate between the end of nucleosynthesis and recombination can photodissociate deuterium [70]. Adapting that calculation to the standard cosmology we find:
\[
\beta(M_{\text{PBH}}) < 3 \times 10^{-22} \left(\frac{M_{\text{PBH}}}{f_m 10^{10} \, \text{g}} \right)^{1/2} \quad \text{for} \quad 10^{10} \, \text{g} < M_{\text{PBH}} < 10^{13} \, \text{g}. \quad (28)
\]

6. CMB distortion

Photons emitted by PBHs which evaporate between $z \sim 10^6$ and recombination at $z \sim 10^3$ can produce distortions in the cosmic microwave background radiation [72]. Using the COBE/FIRAS limits on spectral distortions of the CMB from a black body spectrum [73], Ref. [74] finds
\[
\beta(M_{\text{PBH}}) < 10^{-21} \quad \text{for} \quad 10^{11} \, \text{g} < M_{\text{PBH}} < 10^{13} \, \text{g}. \quad (29)
\]

7. (Quasi-)stable massive particles

In extensions of the standard model there are generically stable or long lived massive ($O(100 \, \text{GeV})$) particles. Light PBHs with mass $M_{\text{PBH}} \lesssim 10^{11} \, \text{g}$ can emit these particles and their abundance is hence limited by the present day abundance of stable massive particles [75] and the decay of long-lived particles [76, 77].

Gravitinos in supergravity theories and moduli in string theories are generically quasi-stable and decay after big bang nucleosynthesis, potentially altering the light element abundances. The effect of their decay on the products of big bang nucleosynthesis leads to a constraint on the initial PBH fraction [76]:
\[
\beta(M_{\text{PBH}}) < 5 \times 10^{-19} \left(\frac{g^*_i}{200} \right)^{1/4} \left(\frac{\alpha}{3} \right) \left(\frac{x_{\phi}}{6 \times 10^{-3}} \right)^{-1} \times \left(\frac{f_M M_{\text{PBH}}}{10^9 \, \text{g}} \right)^{-1/2} \left(\frac{Y_{\phi}}{10^{-14}} \right)
\quad \text{for} \quad M_{\text{PBH}} < 10^9 \, \text{g}, \quad (30)
\]
where x_{ϕ} is the fraction of the luminosity going into quasi-stable massive particles, g_i^* is the initial number of degrees of freedom (taking into account supersymmetric particles), α is the mean energy of the particles emitted in units of the PBH temperature and Y_{ϕ} is the limit on the quasi-stable massive particle number density to entropy density ratio.

In supersymmetric models, in order to avoid the decay of the proton, there is often a conserved quantum number R-parity, which renders the Lightest Supersymmetric Particle (LSP) stable and the present day density of such stable particles produced via PBH evaporation must not exceed the upper limit on the present day CDM density [72]. This leads to a constraint on the initial PBH fraction (c.f. Ref. [76]):
\[
\beta(M_{\text{PBH}}) < 6 \times 10^{-19} r^2 \left(\frac{g^*_i}{200} \right)^{1/4} \left(\frac{\alpha}{3} \right) \left(\frac{x_{\text{LSP}}}{0.6} \right)^{-1} \times \left(\frac{f_M M_{\text{PBH}}}{10^{11} \, \text{g}} \right)^{-1/2} \left(\frac{m_{\text{LSP}}}{100 \, \text{GeV}} \right)^{-1}
\quad \text{for} \quad M_{\text{PBH}} < 10^{11} \, \text{g} \left(\frac{100 \, \text{GeV}}{m_{\text{LSP}}} \right), \quad (31)
\]
where m_{LSP} is the mass of the LSP and x_{LSP} is the fraction of the luminosity carried away by the LSP.

These constraints depend on the (uncertain) details of physics beyond the standard model, and we therefore summarise them conservatively as
\[
\beta(M_{\text{PBH}}) \lesssim 10^{-18} \left(\frac{f_M M_{\text{PBH}}}{10^{11} \, \text{g}} \right)^{-1/2}
\quad \text{for} \quad M_{\text{PBH}} < 10^{11} \, \text{g}. \quad (32)
\]

8. Present day relic density

It has been argued that black hole evaporation could leave a stable Planck mass relic [78, 79, 80], in which case the present day density of relics must not exceed the upper limit on the CDM density
\[
\Omega_{\text{rel}}^0 < 0.25. \quad (33)
\]

Writing the relic mass as $M_{\text{rel}} = f_{\text{rel}} M_{\text{Pl}}$ this gives a tentative constraint
\[
\beta(M_{\text{PBH}}) < 4 \frac{1}{f_M^{1/2} f_{\text{rel}}} \left(\frac{M_{\text{PBH}}}{5 \times 10^{14} \, \text{g}} \right)^{3/2}
\quad \text{for} \quad M_{\text{PBH}} < 5 \times 10^{14} \, \text{g}. \quad (34)
\]

The constraints are summarised in Table I and are displayed in Fig. 1. As can be seen from Fig. 1, the constraints probe a very large range of scales and in some

\footnote{More massive PBHs can also emit these particles in the late stages of their evaporation, when their mass drops below $\sim 10^9 \, \text{g}$. However the resulting constraints are substantially weaker than those from hadron injection during nucleosynthesis.}
cases several constraints overlap across particular mass ranges. The solid line indicates the strongest constraints for each mass scale and we consider only these when constraining the primordial power spectrum in Sec. III.

III. CONSTRAINTS ON THE CURVATURE PERTURBATION POWER SPECTRUM

We focus in the following on the standard case of PBH formation, which applies to scales which have left the horizon at the end of inflation. It has recently been shown [81, 82] that PBHs can also form on scales which never leave the horizon during inflation, and therefore never become classical. We also only consider gaussian perturbations and a trivial initial radial density profile, and refer to Ref. [83] for the effects of non-gaussian perturbations and to Refs. [84, 85] for estimates on the effect of deviations from a trivial initial density profile.

A region will collapse to form a PBH if the smoothed density contrast, in the comoving gauge, at horizon crossing \((R = (aH)^{-1})\), \(\delta_{\text{hor}}(R)\), satisfies the condition \(\delta_c \leq \delta_{\text{hor}}(R) \leq 1\) [22], where \(\delta_c \sim 1/3\). The mass of the PBH formed is approximately equal to the horizon mass at horizon entry, \(M_{\text{PBH}} = f_M M_H\), which is related to the smoothing scale, \(R\), by [37]

\[
M_H = M_H^{eq}(k_{eq}R)^2 \left(\frac{g_{*eq}}{g_*}\right)^{1/3},
\]

where \(M_H^{eq} = 1.3 \times 10^{49} (\Omega_m h^2)^{-2} \text{g}\) is the horizon mass at matter-radiation equality.

Taking the initial perturbations to be Gaussian, the probability distribution of the smoothed density contrast, \(P(\delta_{\text{hor}}(R))\), is given by (e.g. Ref. [86])

\[
P(\delta_{\text{hor}}(R)) = \frac{1}{\sqrt{2\pi \sigma^2_{\text{hor}}(R)}} \exp\left(\frac{-\delta_{\text{hor}}^2(R)}{2\sigma^2_{\text{hor}}(R)}\right),
\]

where \(\sigma^2(R)\) is the mass variance

\[
\sigma^2(R) = \int_0^\infty W^2(kR) \mathcal{P}_\delta(k, t) \frac{dk}{k},
\]

and \(W(kR)\) is the Fourier transform of the window function used to smooth the density contrast. We assume a Gaussian window function for which \(W(kR) = \exp(-k^2 R^2/2)\).

The fraction of the energy density of the Universe contained in regions dense enough to form PBHs is then given, as in Press-Schechter theory [31], by,

\[
\beta(M_{\text{PBH}}) = 2 \frac{M_{\text{PBH}}}{M_H} \int_{\delta_c}^1 P(\delta_{\text{hor}}(R)) d\delta_{\text{hor}}(R).
\]

This leads to a relationship between the PBH initial mass fraction and the mass variance,

\[
\beta(M_{\text{PBH}}) = \frac{2 f_M}{\sqrt{2\pi \sigma_{\text{hor}}(R)}}
\]

\(\times \int_{\delta_c}^1 \exp\left(-\frac{\delta_{\text{hor}}^2(R)}{2\sigma^2_{\text{hor}}(R)}\right) d\delta_{\text{hor}}(R),
\]

\[
\approx f_M \text{erfc}\left(\frac{\delta_c}{\sqrt{2\sigma_{\text{hor}}(R)}}\right).
\]

The constraints on the PBH initial mass fraction can therefore be translated into constraints on the mass variance by simply inverting this expression.

In order to calculate the mass variance we need the density contrast in the comoving, or total matter, gauge as a function of time and scale (c.f. Ref. [14, 36]). To calculate this we take the expressions for the evolution of perturbations in the conformal Newtonian gauge, valid on both sub- and super-horizon scales, and carry out a gauge transformation to the total matter gauge (for further details see Appendix A). We find

\[
\delta(k, t) = -\frac{4}{\sqrt{3}} \left(\frac{k}{aH}\right) j_1(k/\sqrt{3}aH) \mathcal{R},
\]

where \(j_1\) is a spherical Bessel function and \(\mathcal{R}\) is the primordial curvature perturbation. Hence the power spectrum of the density contrast is given by:

\[
\mathcal{P}_\delta(k, t) = \frac{16}{3} \left(\frac{k}{aH}\right)^2 j_1^2(k/\sqrt{3}aH) \mathcal{P}_R(k).
\]

Substituting this into Eq. (37), and setting \(R = (aH)^{-1}\),

\[
\text{FIG. 1: The limits on the initial mass fraction of PBHs as a function of PBH mass (in grams). The solid lines represent the tightest limits for each mass range and the dotted lines are the weaker limits where there is an overlap between constraints. As discussed in Sec. III we have not considered the diffuse gamma-ray background constraint which applies for } 2 \times 10^{13} \text{g} < M_{\text{PBH}} < 5 \times 10^{14} \text{g as it depends significantly on the PBH mass function.}
\]
description	mass range	constraint on $\beta(M_{\text{PBH}})$
present day PBH density	$M_{\text{PBH}} > 5 \times 10^{14}$ g	$< 2 \times 10^{-19} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
GRB femtolensing	$10^{-16} M_\odot < M_{\text{PBH}} < 10^{-13} M_\odot$	$< 1 \times 10^{-19} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
Quasar micro-lensing	$0.001 M_\odot < M_{\text{PBH}} < 60 M_\odot$	$< 1 \times 10^{-19} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
Radio source micro-lensing	$10^6 M_\odot < M_{\text{PBH}} < 10^8 M_\odot$	$< 6 \times 10^{-20} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
LMC Microlensing	$10^{-7} M_\odot < M_{\text{PBH}} < 10^{-6} M_\odot$	$< 3 \times 10^{-20} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
Halo density	$10^{-6} M_\odot < M_{\text{PBH}} < M_\odot$	$< 1 \times 10^{-20} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
	$M_\odot < M_{\text{PBH}} < 10 M_\odot$	$< 5 \times 10^{-20} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
Wide binary disruption	$10^3 M_\odot < M_{\text{PBH}} < 10^5 M_\odot$	$< 3 \times 10^{-20} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
Disk heating	$M_{\text{PBH}} > 3 \times 10^6 M_\odot$	$< 2 \times 10^{6} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{-1/2}$

Evaporation

diffuse gamma-ray background	$2 \times 10^{13} \text{ g} < M_{\text{PBH}} < 5 \times 10^{14} \text{ g}$	depends on PBH mass function
cosmic-rays	similar to DGRB	depends on PBH mass function
neutrinos	similar to DGRB	depends on PBH mass function
hadron injection	$10^8 \text{ g} < M_{\text{PBH}} < 10^{10} \text{ g}$	$< 10^{-20}$
	$10^{10} \text{ g} < M_{\text{PBH}} < 3 \times 10^{10} \text{ g}$	$< 10^{-22}$
photodissociation of deuterium	$10^{10} \text{ g} < M_{\text{PBH}} < 10^{13} \text{ g}$	$< 3 \times 10^{-22} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{1/2}$
CMB distortion	$10^{11} \text{ g} < M_{\text{PBH}} < 10^{12} \text{ g}$	$< 10^{-21}$
(Quasi-)stable massive particles	$M_{\text{PBH}} < 10^{11} \text{ g}$	$< 10^{-18} \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{-1/2}$
present day relic density	$M_{\text{PBH}} < 5 \times 10^{14} \text{ g}$	$< 4 \left(\frac{f_{\text{rel}}}{0.01} \right) \left(\frac{M_{\text{PBH}}}{T_{\text{rel}}/5 \times 10^{14} \text{ g}} \right)^{3/2}$

*aThese constraints depend on the PBH distribution within the Milky Way halo and hence have a factor of order a few uncertainty.

*bConservative summary, depends on physics beyond the standard model of particle physics.

*cOnly applies if evaporation leaves stable relic.

Using Eqs. (39) and (42), we can translate the PBH abundance constraints in Sec. [11] into constraints on the amplitude of the curvature perturbation spectrum. For each constraint we take the pivot point, k_0, to correspond to the scale of interest, $k_0 = 1/R$, and consider a range of values for $n(k_0)$ consistent with slow roll inflation, $0.9 < n(k_0) < 1.1$. The resulting constraints for $n(k_0) = 1$ are displayed in Fig. 2. For $n(k_0) = 0.9$ and 1.1 the constraints are weakened or strengthened, respectively, at the order of 2 percent. This indicates that, for slow-roll inflation models, the constraints are not particularly sensitive to the exact shape of the power spectrum in the vicinity of the scale of interest. The large scale constraints (small k) come from various astrophysical sources such as Milky Way disk heating, wide binary
disruption and a variety of lensing effects. The small scale constraints generally arise from the consequences of PBH evaporation, in particular on nucleosynthesis and the CMB. These evaporation constraints lead to tighter constraints on the abundance of PBHs and therefore the primordial black holes. We then translated these limits into generalised constraints on the power spectrum of primordial curvature perturbations, taking into account the full time evolution of the density contrast. The constraints on the amplitude of the power spectrum are typically in the range $P_R < 10^{-2} - 10^{-1}$ with some scale dependence. This is slightly weaker than the $P_R < 10^{-3} - 10^{-2}$ assumed in Ref. [21]. These more accurate generalised constraints could be used to more accurately constrain the parameter space of slow-roll inflation models (c.f. [11, 12, 13, 14, 19, 20, 21]).

IV. SUMMARY

We have compiled, and where relevant updated, the observational limits on the initial abundance of primordial black holes. We then translated these limits into generalised constraints on the power spectrum of the primordial curvature perturbation, taking into account the full time evolution of the density contrast. The constraints on the amplitude of the power spectrum are typically in the range $P_R < 10^{-2} - 10^{-1}$ with some scale dependence. This is slightly weaker than the $P_R < 10^{-3} - 10^{-2}$ assumed in Ref. [21]. These more accurate generalised constraints could be used to more accurately constrain the parameter space of slow-roll inflation models (c.f. [11, 12, 13, 14, 19, 20, 21]).

Acknowledgments

The authors would like to thank Carlos Hidalgo and Jane MacGibbon for useful discussions and comments. AJ is supported by the University of Nottingham, AMG is supported by STFC.

APPENDIX A: DENSITY CONTRAST CALCULATION

The general, scalar, perturbed metric can be written as (c.f. [86]):

$$ds^2 = a^2(\tau)\{-(1 + 2\phi)d\tau^2 + 2B_i^{(s)}d\tau dx^i + (1 - 2\psi)\delta_{ij} + 2E_{ij}^{(s)}dx^idx^j\},$$

(A1)

where $B_i^{(s)}$ and $E_{ij}^{(s)}$ can be written as

$$B_i^{(s)} = -\frac{ik_i}{k}B, \quad (A2)$$

$$E_{ij}^{(s)} = \left(-\frac{kk_j + 1}{2}\delta_{ij}\right)E, \quad (A3)$$

where ϕ, B, ψ, E are arbitrary scalar functions which describe the perturbations on a Friedmann-Robertson-Walker (FRW) background. Performing a first order coordinate change, $\tilde{\tau} = \tau + \xi^0$, $\tilde{x}^i = x^i + \xi^i$, the scalar metric variables in the new gauge (denoted by a tilde) are then given by

$$\tilde{\phi} = \phi - \xi^0 - h\xi^0, \quad (A4)$$

$$\tilde{B} = B - \xi^i + k\xi^0, \quad (A5)$$

$$\tilde{\psi} = \psi + h\xi^0, \quad (A6)$$

$$\tilde{E} = E - k\xi, \quad (A7)$$

where the scalar part of $\xi^i(\tau, x^i)$ is defined as $\xi^{i(s)} = -\frac{k^i}{k}\xi$, primes denote derivatives with respect to conformal time τ, and $h = a'/a = aH$. The density contrast and the velocity perturbation transform as

$$\tilde{\delta} = \delta + 3h(1 + w)\xi^0, \quad (A8)$$

$$\tilde{V} = V + \xi', \quad (A9)$$

where V is related to the scalar part of the 3-velocity vector, $v^i = -\frac{dx^i}{d\tau}$. Ref. [88] calculated the evolution of the density and velocity perturbations in the conformal Newtonian gauge (which has $B_N = E_N = 0$).

They found that during radiation domination ($w = 1/3$) for a fluid with vanishing anisotropic stress (and hence $\phi_N = \psi_N$), the remaining perturbations evolve according to

$$\phi_N = \frac{j_1(k)}{\sqrt{3k}}C, \quad (A10)$$
\[\delta_N = \frac{2}{\sqrt{3}} \left(2 \frac{j_1(\kappa)}{\kappa} - j_0(\kappa) - \kappa j_1(\kappa) \right) C, \quad \text{(A11)} \]

\[V_N = \left(j_1(\kappa) - \frac{\kappa}{2} j_0(\kappa) \right) C, \quad \text{(A12)} \]

where \(\kappa = k/\sqrt{3}aH \) and \(C \) is a normalisation constant.

For the PBH abundance calculation we need the density perturbation in the total matter gauge (T), which is defined by \(B_T + V_T = 0 \), and \(E_T = 0 \). Since the comoving curvature perturbation, \(\mathcal{R} \), is identical to the curvature perturbation in the total matter gauge, \(\psi_T \) (see e.g. [39]), we get using eqs. (A4)(A7),

\[\mathcal{R} = \phi_N - \frac{h}{k} V_N. \quad \text{(A13)} \]

Similarly, the density contrast in the total matter gauge (during radiation domination) is

\[\delta_T = \delta_N - 4 \frac{h}{k} V_N. \quad \text{(A14)} \]

Using the solutions eqs. (A10) and (A12) above we get

\[\mathcal{R} = \frac{C}{2\sqrt{3}} j_0(\kappa), \quad \text{(A15)} \]

which reduces in the small \(\kappa \) (large scale) limit to \(C = 2\sqrt{3}\mathcal{R} \), allowing us to replace the normalisation constant \(C \) with the large scale limit of \(\mathcal{R} \). Equation (A15) then becomes, using eqs. (A11) and (A12),

\[\delta_T = -\frac{1}{\sqrt{3}} \left(\frac{k}{aH} \right) j_1(k/\sqrt{3}aH)\mathcal{R}. \quad \text{(A16)} \]

[1] B. J. Carr and S. W. Hawking Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.
[2] B. J. Carr Astrophys. J. 201 (1975) 1–19.
[3] S. W. Hawking Commun. Math. Phys. 43 (1975) 199–220.
[4] J. H. MacGibbon, B. J. Carr and D. N. Page Phys. Rev. D78 (2008) 064043 arXiv:0709.2380.
[5] B. J. Carr arXiv:astro-ph/0511743.
[6] WMAP Collaboration, J. Dunkley et al. Astrophys. J. Suppl. 180 (2009) 306–329 arXiv:0803.0586.
[7] The 2dFGRS Collaboration, S. Cole et al. Mon. Not. Roy. Astron. Soc. 362 (2005) 505–534 arXiv:astro-ph/0501174.
[8] SDSS Collaboration, M. Tegmark et al. Phys. Rev. D74 (2006) 123507 arXiv:astro-ph/0608632.
[9] H. Peiris and R. Easther JCAP 0610 (2006) 017 arXiv:astro-ph/0609003.
[10] B. J. Carr and J. E. Lidsey Phys. Rev. D48 (1993) 543–553.
[11] B. J. Carr, J. H. Gilbert and J. E. Lidsey Phys. Rev. D50 (1994) 4853–4867 arXiv:astro-ph/9405027.
[12] A. M. Green and A. R. Lidde Phys. Rev. D56 (1997) 6166–6174 arXiv:astro-ph/9704251.
[13] H. I. Kim and C. H. Lee Phys. Rev. D54 (1996) 6001–6007.
[14] T. Bringmann, C. Kiefer and D. Polarski Phys. Rev. D65 (2002) 024008 arXiv:astro-ph/0109404.
[15] J. E. Lidsey et al. Rev. Mod. Phys. 69 (1997) 373–410 arXiv:astro-ph/9508078.
[16] A. Vallinotto, E. J. Copeland, E. W. Kolb, A. R. Liddle and D. A. Steer Phys. Rev. D69 (2004) 103519 arXiv:astro-ph/0311005.
[17] E. D. Stewart Phys. Lett. B391 (1997) 34–38 arXiv:hep-ph/9606241.
[18] E. D. Stewart Phys. Rev. D56 (1997) 2019–2023 arXiv:hep-ph/9703232.
[19] S. M. Leach, I. J. Grivell and A. R. Liddle Phys. Rev. D62 (2000) 043516 arXiv:astro-ph/0004296.
[20] K. Kohri, D. H. Lyth and A. Melchiorri JCAP 0804 (2008) 038 arXiv:0711.5006.
[21] H. V. Peiris and R. Easther JCAP 0807 (2008) 024 arXiv:0805.2154.
[22] B. Carr, edited by J.L Sanz and L. Goicoechea, eds., in Observational and theoretical aspects of relativistic astrophysics and cosmology, (World Scientific Singapore), 1985.
[23] J. H. MacGibbon and B. J. Carr Astrophys. J. 371 (1991) 447–469.
[24] H. I. Kim, C. H. Lee and J. H. MacGibbon Phys. Rev. D50 (1999) 063004 arXiv:astro-ph/9901030.
[25] A. M. Green and A. R. Lidde Phys. Rev. D60 (1999) 063509 arXiv:astro-ph/9901268.
[26] M. W. Choptuiuk Phys. Rev. Lett. 70 (1993) 9–12.
[27] A. M. Green and A. R. Lidde Phys. Rept. 376 (2003) 339–405 arXiv:gr-qc/0210101.
[28] C. Gundlach and J. M. Martin-Garcia Living Rev. Rel. 10 (2007) 5 arXiv:0711.4620.
[29] J. C. Niemeyer and K. Jedamzik Phys. Rev. Lett. 80 (1998) 5481–5484 arXiv:astro-ph/9709072.
[30] J. C. Niemeyer and K. Jedamzik Phys. Rev. D59 (1999) 124013 arXiv:astro-ph/9901292.
[31] I. Musco, J. C. Miller and L. Rezzolla Class. Quant. Grav. 22 (2005) 1405–1424 arXiv:gr-qc/0412063.
[32] G. D. Kribs, A. K. Leibovich and I. Z. Rothstein Phys. Rev. D60 (1999) 103510 arXiv:astro-ph/9904021.
[33] E. V. Bugaev and K. V. Konishchev Phys. Rev. D65 (2002) 123005 arXiv:astro-ph/0005295.
[34] E. V. Bugaev and K. V. Konishchev Phys. Rev. D66 (2002) 084004 arXiv:astro-ph/0206082.
[35] A. Barrau, D. Blais, G. Boudoul and D. Polarski Phys. Lett. B551 (2003) 218–225 arXiv:astro-ph/0210149.
[36] E. Bugaev and P. Kilmain arXiv:0812.4247.
[37] A. M. Green, A. R. Lidde, K. A. Malik and M. Sasaki Phys. Rev. D70 (2004) 041502 arXiv:astro-ph/0403181.
[38] S. W. Hawking Nature 248 (1974) 30–31.
[39] J. H. MacGibbon and B. R. Webber Phys. Rev. D41 (1990) 3052–3079.
