PHENOMENOLOGICAL STUDIES OF TOP PAIR PRODUCTION AT NEXT-TO-LEADING ORDER * **

MALGORZATA WOREK
Fachbereich C Physik, Bergische Universität Wuppertal
D-42097 Wuppertal, Germany
email: worek@physik.uni-wuppertal.de

The calculation of NLO QCD corrections to the $t \bar{t} \rightarrow W^+ W^- b \bar{b} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ process with complete off-shell effects, is briefly summarized. Besides the total cross section and its scale dependence, a few differential distributions at the TeVatron run II and LHC are given. All results presented in this contribution have been obtained with the help of the Helac-NLO Monte Carlo framework.

PACS numbers: 12.38.Bx, 14.65.Ha, 14.80.Bn

1. Introduction

The Large Hadron Collider (LHC), with its two main multipurpose detectors ATLAS and CMS, is the experimental project that dominates present particle physics and will likely dominate its next 20-25 years. With the successful start of collisions at 7 TeV, the LHC has put yet another big step towards a thorough examination of the Terascale. Ultimately, it has replaced the older, lower-energy Tevatron, which has been closed in September this year. The large energy available at the LHC has opened many multi-particle channels that are now to a large degree scrutinized. The immense amount of available phase space, and the large acceptance of the ATLAS and CMS detectors allow for the production and identification of final states with 4 or more QCD jets together with isolated leptons. These multi-particle events hide or strongly modify all possible signals of physics

* Presented at the XXXV International Conference of Theoretical Physics, Matter to the Deepest: Recent Developments in Physics of Fundamental Interactions, Ustron11, 12 - 18 September 2011, Ustron, Poland
** Preprint number: WUB/11-17

(1)
beyond the Standard Model. In view of a correct interpretation of the signals of new physics which might be extracted from data, it is of considerable interest to reduce our theoretical uncertainty for the physical processes under study, especially when large QCD backgrounds are involved. In this respect, the need of next-to-leading-order (NLO) corrections for the LHC is unquestionable.

Efficient numerical evaluation of multi-particle final states at NLO QCD can be performed with the help of the Helac-NLO Monte Carlo program [1]. Helac-NLO is an extension of the Helac-Phegas Monte Carlo program [2–4], which is based on off-shell Dyson-Schwinger recursive equations. It can be used to efficiently obtain helicity amplitudes and total cross sections for arbitrary multiparticle processes in the Standard Model and has been already extensively used and tested, see e.g. [5–10]. Virtual corrections are obtained using the Helac-1Loop program [11], based on the Ossola-Papadopoulos-Pittau (OPP) reduction technique [12] and the reduction code CutTools [13–17]. Moreover, the OneLOop library [18] has been used for the evaluation of the scalar integrals. Reweighting techniques, helicity and colour sampling methods are used in order to optimize the performance of the system. In addition, the singularities from soft or collinear parton emission are isolated via Catani-Seymour dipole subtraction for NLO QCD calculations using a formulation for massive quarks [19,20] and for arbitrary polarizations [21]. Calculations of this part are performed with the help of the Helac-Dipoles software [21]. The optimization and phase space integration is executed with the help of PARNI [22] and KALEU [23]. All parts of the Helac-NLO framework are publicly available [1].

With the help of the Helac-NLO system several $2 \rightarrow 4$ processes have recently been calculated at next-to-leading order QCD, including $t\bar{t}bb$ [24], $ttjj$ [25,26] and $W^+W^-b\bar{b}$ [27]. In this contribution, a brief report on the $pp(p\bar{p}) \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ computation with complete off-shell effects is given. Double-, single- and non-resonant top contributions of the order $O(\alpha_s^3\alpha^4)$ are consistently taken into account, which requires the introduction of a complex-mass scheme for unstable top quarks. Moreover, the intermediate W bosons are treated off-shell. A few examples of Feynman diagrams contributing to the leading order $gg \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ subprocess are presented in Figure 1.

Parallel to our work, another NLO study of $t\bar{t}bb$ [28,30] at the LHC appeared. Moreover, NLO QCD corrections to the $W^+W^-b\bar{b}$ [31] process have been calculated.

\footnote{http://helac-phegas.web.cern.ch/helac-phegas/}
Fig. 1. Representative Feynman diagrams contributing to the leading order process $gg \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ at $O(\alpha_s^2\alpha^4)$, with different off-shell intermediate states: double-, single-, and non-resonant top quark contributions.

2. Numerical Results

The process $pp(p\bar{p}) \rightarrow t\bar{t} + X \rightarrow W^+W^-b\bar{b} + X \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ is considered, both at the TeVatron run II and the LHC i.e. at a center-of-mass energy of $\sqrt{s} = 1.96$ TeV and $\sqrt{s} = 7$ TeV correspondingly. The Standard Model parameters are as follows:

$$m_W = 80.398 \text{ GeV}, \quad \Gamma_W = 2.141 \text{ GeV} \quad (2.1)$$

$$m_Z = 91.1876 \text{ GeV}, \quad \Gamma_Z = 2.4952 \text{ GeV} \quad (2.2)$$

$$G_\mu = 1.16639 \times 10^{-5} \text{ GeV}^{-2} \quad (2.3)$$
Algorithm	σ_{LO} [fb]	σ_{NLO} [fb]
anti-k_T	34.922 ± 0.014	35.697 ± 0.049
k_T	34.922 ± 0.014	35.723 ± 0.049
C/A	34.922 ± 0.014	35.746 ± 0.050

Table 1. Integrated cross section at LO and NLO for $p\bar{p} \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ production at the TeVatron run II.

The electromagnetic coupling and $\sin^2 \theta_W$ are derived from the Fermi constant and masses of W and Z bosons. The top quark mass is $m_t = 172.6$ GeV and all other QCD partons and leptons are treated as massless. The top quark width is $\Gamma_{t}^{\text{LO}} = 1.48$ GeV at LO and $\Gamma_{t}^{\text{NLO}} = 1.35$ GeV at NLO where $\alpha_s = \alpha_s(m_t) = 0.107639510785815$. The on-shell scheme is adopted for mass renormalization. All final-state partons with pseudorapidity $|\eta| < 5$ are recombined into jets via the k_T algorithm [32–34], the anti-k_T algorithm [35] and the inclusive Cambridge/Aachen algorithm (C/A) [36] with a cone of size $R = 0.4$. Additional cuts are imposed on the transverse momenta and the rapidity of two recombined b-jets:

$$ p_{T_b} > 20 \text{ GeV}, \quad |y_b| < 4.5. \quad (2.4) $$

Basic selection is applied to decay products of top quarks:

$$ p_{T_\ell} > 20 \text{ GeV}, \quad |\eta_\ell| < 2.5, \quad \Delta R_{b\ell} > 0.4, \quad p_{T_{\text{miss}}} > 30 \text{ GeV}. \quad (2.5) $$

The CTEQ6 set of parton distribution functions (PDFs) is consistently used [37,38]. In particular, CTEQ6L1 PDFs with a 1-loop running α_s is taken at LO and CTEQ6M PDFs with a 2-loop running α_s at NLO. The contribution from b quarks in the initial state is neglected. The number of active flavors is $N_F = 5$, and the respective QCD parameters are $\Lambda_5^{\text{LO}} = 165$ MeV and $\Lambda_5^{\text{NLO}} = 226$ MeV. In the renormalization of the strong coupling constant, the top-quark loop in the gluon self-energy is subtracted at zero momentum. In this scheme the running of α_s is generated by the contributions of the light-quark and gluon loops. The renormalization and factorization scales, μ_R and μ_F, are set to the common value $\mu = m_t$.

2.1. TeVatron Run II

We start with a discussion of the total cross section at the TeVatron run II. In spite of the fact that the TeVatron has been recently closed, the data analysis in the CDF and D0 experiments is still ongoing. Therefore,
Fig. 2. Differential cross section distributions as a function of the averaged transverse momentum $p_T\ell$ of the charged leptons, averaged rapidity $y\ell$ of the charged leptons, $p_{T\text{miss}}$ and $\Delta R_{\ell\ell}$ for the $p\bar{p} \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ process at the TeVatron run II. The blue dashed curve corresponds to the leading order, whereas the red solid one to the next-to-leading order result. The lower panels display the differential K factor.

in Table 1 results for the total cross section for the central value of the scale, $\mu_F = \mu_R = m_t$ and for three different jet algorithms: k_T, anti-k_T and the inclusive Cambridge/Aachen algorithm (C/A), are presented. The total cross section receives small NLO QCD correction of the order of 2%. Residual scale uncertainties, as obtained by varying the scale down and up by a factor 2, are at the 40% level in the LO case. The dependence is large, illustrating the well known fact that the LO prediction can only provide a rough estimate. As expected, we observe a reduction of the scale uncertainty
Table 2. Integrated cross section at LO and NLO for $pp \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ production at the LHC.

Algorithm	σ_{LO} [fb]	σ_{NLO} [fb]
anti-k_T	550.54 ± 0.18	808.29 ± 1.04
k_T	550.54 ± 0.18	808.86 ± 1.03
C/A	550.54 ± 0.18	808.28 ± 1.03

Table 2 shows the integrated cross sections at the LHC with $\sqrt{s} = 7$ TeV, for three different jet algorithms. At the central scale value, the full cross section receives NLO QCD corrections of the order of 47%. After including the NLO corrections, a large scale dependence of about 37% in the LO cross section is considerably reduced down to 9%.

In order to quantify the size of the non-factorizable corrections for the LHC, a comparison to the narrow-width limit of our calculation has again been performed. Going from NWA to the full result changes the cross section no more than 1.2% for our inclusive setup.

Table 2 shows the integrated cross sections at the LHC with $\sqrt{s} = 7$ TeV, for three different jet algorithms. At the central scale value, the full cross section receives NLO QCD corrections of the order of 47%. After including the NLO corrections, a large scale dependence of about 37% in the LO cross section is considerably reduced down to 9%.

In order to quantify the size of the non-factorizable corrections for the LHC, a comparison to the narrow-width limit of our calculation has again been performed. Going from NWA to the full result changes the cross section no more than 1.2% for our inclusive setup.

Table 2 shows the integrated cross sections at the LHC with $\sqrt{s} = 7$ TeV, for three different jet algorithms. At the central scale value, the full cross section receives NLO QCD corrections of the order of 47%. After including the NLO corrections, a large scale dependence of about 37% in the LO cross section is considerably reduced down to 9%.

In order to quantify the size of the non-factorizable corrections for the LHC, a comparison to the narrow-width limit of our calculation has again been performed. Going from NWA to the full result changes the cross section no more than 1.2% for our inclusive setup.

In order to quantify the size of the non-factorizable corrections for the LHC, a comparison to the narrow-width limit of our calculation has again been performed. Going from NWA to the full result changes the cross section no more than 1.2% for our inclusive setup.
Fig. 3. Differential cross section distributions as a function of the averaged transverse momentum $p_T\ell$ of the charged leptons, averaged rapidity $y\ell$ of the charged leptons, $p_T\text{miss}$ and $\Delta R_{\ell\ell}$ for the $pp \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ process at the LHC. The blue dashed curve corresponds to the leading order, whereas the red solid one to the next-to-leading order result. The lower panels display the differential K factor.

Particular, in case of the $p_T\ell$ differential distribution, a distortion up to 25% is reached, while for $p_T\text{miss}$ a distortion up to 80% is visible. For the $y\ell$ distribution, rather constant corrections up to 50% are obtained. And finally, the distribution in $\Delta R_{\ell\ell}$ has even acquired corrections up to 90%.

3. Summary

The NLO QCD corrections to the full decay chain $pp(p\bar{p}) \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ have been briefly presented. In the cal-
culation, all off-shell effects of top quarks and W gauge bosons have been included in a fully differential way. The total cross section and its scale dependence, as well as a few differential distributions at the TeVatron run II and the LHC have been given. The impact of the NLO QCD corrections on integrated cross sections at the TeVatron is small, of the order 2%. On the other hand, at the LHC, 47% NLO QCD corrections have been obtained. Residual theoretical uncertainties due to higher order corrections have been estimated to be at the 8% – 9% level. An finally, NLO QCD corrections do not only affect the overall normalization of the integrated cross sections, but can also change the shape of some differential distributions.

Acknowledgment

I would like to thank the organizers of the XXXV International Conference of Theoretical Physics, Ustron11, for the kind invitation and the very pleasant atmosphere during the conference.

The calculations presented here, have been performed on the Grid Cluster of the Bergische Universitat Wuppertal, financed by the Helmholtz-Alliance Physics at the Terascale and the BMBF.

The author was supported by the Initiative and Networking Fund of the Helmholtz Association, contract HA-101 (Physics at the Terascale).

REFERENCES

[1] G. Bevilacqua, M. Czakon, M.V. Garzelli, A. van Hameren, A. Kardos, C.G. Papadopoulos, R. Pittau, M. Worek, HELAC-NLO, [arXiv:1110.1499 [hep-ph]].
[2] A. Kanaki and C. G. Papadopoulos, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306, [hep-ph/0002082].
[3] C. G. Papadopoulos, PHEGAS: A phase space generator for automatic cross section computation, Comput. Phys. Commun. 137 (2001) 247, [hep-ph/0007335].
[4] A. Cafarella, C. G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941, [arXiv:0710.2427 [hep-ph]].
[5] T. Gleisberg, F. Krauss, C. G. Papadopoulos, A. Schaelicke and S. Schumann, Cross sections for multi-particle final states at a linear collider, Eur. Phys. J. C34 (2004) 173, [hep-ph/0311273].
[6] C. G. Papadopoulos and M. Worek, Multi-parton Cross Sections at Hadron Colliders, Eur. Phys. J. C50 (2007) 843, [hep-ph/0512150].
[7] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C53 (2008) 473, [arXiv:0706.2569 [hep-ph]].

[8] C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing Strongly Interacting Vector Boson Systems at the CERN Large Hadron Collider, Phys. Rev. D80 (2009) 035027, [arXiv:0810.4861 [hep-ph]].

[9] S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C66 (2010) 585, [arXiv:0912.0749 [hep-ph]].

[10] C. C. Calame et al., NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories, JHEP 1107, 126 (2011), [arXiv:1106.3178 [hep-ph]].

[11] A. van Hameren, C. G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 0909 (2009) 106, [arXiv:0903.4665 [hep-ph]].

[12] G. Ossola, C. G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007) 147, [hep-ph/0609007].

[13] G. Ossola, C. G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 0803 (2008) 042, [arXiv:0711.3596 [hep-ph]].

[14] P. Draggiotis, M. V. Garzelli, C. G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP 0904 (2009) 072, [arXiv:0903.0356 [hep-ph]].

[15] M. V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP 1001 (2010) 040, [Erratum-ibid. 1010 (2010) 097], [arXiv:0910.3130 [hep-ph]].

[16] M. V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the R_ξ gauge and in the Unitary gauge, JHEP 1101 (2011) 029, [arXiv:1009.4302 [hep-ph]].

[17] M. V. Garzelli and I. Malamos, R2SM: A Package for the analytic computation of the R_2 Rational terms in the Standard Model of the Electroweak interactions, Eur. Phys. J. C71 (2011) 1605, [arXiv:1010.1248 [hep-ph]].

[18] A. van Hameren, OneLoop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427, [arXiv:1007.4716 [hep-ph]].

[19] S. Catani and M. H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B485 (1997) 291, [hep-ph/9605323].

[20] S. Catani, S. Dittmaier, M. H. Seymour and Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B627 (2002) 189, [hep-ph/0201036].

[21] M. Czakon, C. G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 0908 (2009) 085, [arXiv:0905.0883 [hep-ph]].

[22] A. van Hameren, PARNI for importance sampling and density estimation, Acta Phys. Polon. B40 (2009) 259, [arXiv:0710.2448 [hep-ph]].
[23] A. van Hameren, *Kaleu: a general-purpose parton-level phase space generator*, [arXiv:1003.4953 [hep-ph]].

[24] G. Bevilacqua, M. Czakon, C. G. Papadopoulos, R. Pittau and M. Worek, *Assault on the NLO Wishlist: pp \(\rightarrow t\bar{t}b\bar{b}\), JHEP 0909 (2009) 109, [arXiv:0907.4723 [hep-ph]].

[25] G. Bevilacqua, M. Czakon, C. G. Papadopoulos and M. Worek, *Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of pp \(\rightarrow t\bar{t} + 2\) jets at Next-To-Leading Order*, Phys. Rev. Lett. 104 (2010) 162002, [arXiv:1002.4009 [hep-ph]].

[26] G. Bevilacqua, M. Czakon, C. G. Papadopoulos and M. Worek, *Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD*, [arXiv:1108.2851 [hep-ph]].

[27] G. Bevilacqua, M. Czakon, A. van Hameren, C. G. Papadopoulos and M. Worek, *Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order*, JHEP 1102 (2011) 083, [arXiv:1012.4230 [hep-ph]].

[28] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, *NLO QCD corrections to t anti-t b anti-b production at the LHC: 1. Quark-antiquark annihilation*, JHEP 0808 (2008) 108, [arXiv:0807.1248 [hep-ph]].

[29] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, *NLO QCD corrections to pp \(\rightarrow t\bar{t}b\bar{b} + X\) at the LHC*, Phys. Rev. Lett. 103 (2009) 012002, [arXiv:0905.0110 [hep-ph]].

[30] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, *NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results*, JHEP 1003 (2010) 021, [arXiv:1001.4006 [hep-ph]].

[31] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, *NLO QCD corrections to WWbb production at hadron colliders*, Phys. Rev. Lett. 106 (2011) 052001, [arXiv:1012.3975 [hep-ph]].

[32] S. Catani, Y. L. Dokshitzer and B. R. Webber, *The k-perpendicular clustering algorithm for jets in deep inelastic scattering and hadron collisions*, Phys. Lett. B285 (1992) 291.

[33] S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, *Longitudinally invariant kT clustering algorithms for hadron hadron collisions*, Nucl. Phys. B406 (1993) 187.

[34] S. D. Ellis and D. E. Soper, *Successive combination jet algorithm for hadron collisions*, Phys. Rev. D48 (1993) 3160, [hep-ph/9305266].

[35] M. Cacciari, G. P. Salam and G. Soyez, *The anti-kT jet clustering algorithm*, JHEP 0804 (2008) 063, [arXiv:0802.1189 [hep-ph]].

[36] Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Webber, *Better Jet Clustering Algorithms*, JHEP 9708 (1997) 001, [hep-ph/9707323].

[37] J. Pumplin et. al., *New generation of parton distributions with uncertainties from global QCD analysis*, JHEP 0207 (2002) 012, [hep-ph/0201195].

[38] D. Stump et. al., *Inclusive jet production, parton distributions, and the search for new physics*, JHEP 0310 (2003) 046, [hep-ph/0303013].