The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock

S. D. Xiao¹, M. Y. Wu¹, G. Q. Wang¹, Y. Q. Chen², T. L. Zhang¹,³, *

¹Harbin Institute of Technology, Shenzhen, China

²CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China

³Space Research Institute, Austrian Academy of Sciences, Graz, Austria

Corresponding author: T. L. Zhang (Tielong.Zhang@oeaw.ac.at)
Abstract

We statistically investigate the spectral scalings of magnetic fluctuations at the upstream and downstream regions near the Venusian bow shock and perform a differentiation by shock geometry. Based on the Venus Express data, 115 quasi-parallel (Q_\parallel) bow shock crossings and 303 quasi-perpendicular (Q_\perp) bow shock crossings are selected. The statistical results suggest that the bow shock tends to modify the upstream spectra flatter to $1/f$ noise in the magnetohydrodynamics (MHD) regime and steeper to turbulence in the kinetic regime after the magnetic fluctuations crossing the bow shock, and this modification for the Q_\parallel and Q_\perp bow shock is basically consistent. While the upstream spectral scalings are associated with the shock geometry. The changes of the spectral scalings of magnetic fluctuations near the Q_\parallel bow shocks are not as significant as near the Q_\perp bow shock crossings. That might result from the fluctuations generated by the backstreaming ions which can escape across the Q_\parallel bow shock into the foreshock. Our results suggest that the energy cascade and dissipation near Venus can be modified by the Venusian bow shock, and the Q_\parallel bow shock plays an important role on the energy injection and dissipation in the solar wind interaction with Venus. The large dispersion of spectral scalings indicates that this fluctuation environment is complicated, and the shock geometry is not the only key factor in the fluctuations across the Venusian bow shock. Other possible factors in the shock modification to the upstream fluctuations will be explored in future.
Keywords: Magnetic fluctuations, Turbulence, Venustean bow shock, Spectral scalings,

Shock geometry, Venus Express
1. Introduction

As a typical unmagnetized planet, Venus has no global intrinsic magnetic field. An induced magnetosphere is created by the solar wind (SW) interaction with Venus (e.g., Zhang et al., 2008a), consisting of the magnetic barrier (e.g., Zhang et al., 1991, 2008b; Xiao and Zhang, 2018) and the magnetotail (e.g., Rong et al., 2014; Xiao et al., 2016). The Venusian induced magnetosphere can deflect the upstream SW, and a bow shock and a magnetosheath are formed above (e.g., Zhang et al. 2008c, Phillips and McComas, 1991). The near-Venusian space environment is a natural laboratory to investigate the SW interaction with unmagnetized planetary bodies (e.g., Luhmann, 1986). In the near-Venusian space, magnetic field fluctuations play an important role in the transformation of momentum and energy, and their properties are widely reported (e.g., Luhmann et al., 1983; Guicking et al., 2010; Du et al., 2010; Xiao et al., 2017). The power of these fluctuations generally exhibits a frequency function as $P \propto 1/f^\alpha$ (where P is the power spectral density (PSD), f is the frequency, and α is the spectral scaling index).

The index α is considered as an indicator of the nature of fluctuations, and it generally has different values for the frequency ranges above and below the local proton gyrofrequency ($f_p = e\nu/qm_p$). In the magnetohydrodynamics (MHD) frequency range, the Kolmogorov scaling value of $\alpha \sim 5/3$ is expected for turbulence. Energy cascade occurs in this regime, where the energy is transferred from lower to higher frequencies. In the kinetic frequency range, the turbulence has a larger value of $\alpha \sim 2.8$, in which regime the magnetic energy dissipates into plasma or accumulates by exciting some dispersive waves like the whistler. The spectral scaling indices have been extensively...
used to analyze the magnetic field fluctuations and turbulence in the solar wind (e.g.,
Alexandrova et al., 2008, 2009; Kiyani et al., 2009; Bruno and Carbone, 2013), in the
planetary space environments near Earth (e.g., Vörös et al., 2004; 2007; 2011), Mars
(e.g., Ruhunusiri et al., 2017), and Venus (e.g., Vörös et al., 2008a, 2008b; Dwivedi et
al., 2015; Xiao et al., 2018, 2020a, 2020b).

Although Venus has a similar size to Earth, the Venusian bow shock and magnetosheath
are much smaller, with a scale ratio of ~1/10 (e.g., Slavin et al., 1979). This might result
in some differences between their space plasma environments. Vörös et al. (2008a,
2008b) reported a survey of the spectral scalings of magnetic fluctuations in the
Venusian magnetosheath and wake. They observed 1/f noise in the dayside
magnetosheath, wavy structures near the terminator, and MHD turbulence at the
magnetosheath post terminator boundary layer and near the nightside bow shock. The
observed 1/f noise in the Venusian magnetosheath may indicate that the energy cascade
between different scales is absent and the fluctuations are controlled by multiple
uncorrelated driving sources (e.g., Vörös et al., 2007). Xiao et al. (2018) further
examined the magnetic fluctuations in the dayside Venusian magnetosheath and found
a clear difference of the turbulence distributions between downstream of the quasi-
parallel (Q_\parallel) and the quasi-perpendicular (Q_\perp) shocks. It is speculated that turbulence
can be rapidly developed along the streamlines or penetrate into the Venusian
magnetosheath downstream of the Q_\parallel bow shock. It suggests that the shock geometry
has an effect on the spectral scalings of downstream magnetic fluctuations, and the bow
shock plays a role on the turbulence distribution in the near-Venusian space. Xiao et al.
(2020a) presented a description of the spectral scalings of magnetic fluctuations at the Venusian bow shock crossings. In terms of the spectral scalings, the dayside-nightside shock crossings exhibit a clear asymmetry. Noisy fluctuations dominate at the dayside shock crossing, and more MHD turbulence is present at the nightside shocks. Moreover, this distribution at the bow shock seems independent on the shock geometry. However, we still rarely know how the bow shock modifies the upstream magnetic fluctuations and turbulence from the SW.

Besides, previous investigations of turbulence near Venus are mainly focused on the MHD regime. It is believed that the spectral scalings of magnetic field fluctuations in the kinetic regime are quite different from those in the MHD regime. A recent research presented the global spatial distribution of the spectral scaling indices of magnetic fluctuations in both of MHD and kinetic regimes, and the global distribution suggests that the kinetic effects on magnetic energy dissipation are common in the near-Venusian space (Xiao et al., 2020b). The SW turbulence can be modified by the Venusian bow shock in both MHD and kinetic regime, and kinetic turbulence extensively occurs in the Venusian magnetosheath and the induced magnetosphere. It is believed that kinetic turbulence plays a prominent role in magnetic energy dissipation and particle heating in such an environment.

In this paper, we aim to the differentiation of the spectral scalings of the magnetic field fluctuations upstream and downstream of the Venusian bow shock and the shock geometry effects. The spectral scaling indices will be examined in both MHD and
kinetic regimes. The investigation of the Venusian bow shock modifications to the upstream SW turbulence can help us to better understand the energy injection, cascade, and dissipation in the SW interaction with Venus.

2. Data and Methods

Venus Express (Svedhem et al., 2007; Titov et al., 2006), as the first ESA's Venus exploration mission, was launched in November 2005 and arrived at Venus in April 2006. Venus Express provides a great opportunity to examine the spectral scalings of the magnetic fluctuations near the Venusian bow shock. In this study, the magnetic field data measured by Venus Express magnetometer (Zhang et al., 2006) at a sampling rate of 32 Hz are used, and the bow shock crossings can be identified by the sudden change in the magnitude of the magnetic field between the SW and the Venusian magnetosheath, as shown in Figure 1a.

Figure 1a shows the total magnetic field time series containing a bow shock crossing on Dec. 30, 2006. To examine the spectral scalings of the upstream and downstream magnetic fluctuations near the Venusian bow shock, the upstream and downstream intervals need to be selected during this shock crossing event. For this inbound case, a 256-s upstream interval is selected before the shock, and a 128-s downstream interval is selected after the shock crossing, as indicated in Figure 1b. Figure 1b shows the magnetic field observations near the bow shock crossing in the aberrated Venus solar
orbital (VSO) coordinate system, where the X axis points antiparallel to the average
SW flow (with an aberration angle of 5°) from Venus, the Z axis is perpendicular to the
ecliptic plane and toward north, and the Y axis completes the right-handed Cartesian
coordinate system. Based on these two intervals, the PSDs are calculated via wavelet
transforms (Torrence and Compo, 1998):

$$PSD(f) = \frac{2\Delta t}{N} \sum_{j=1}^{N} [W_x^2(t_j, f) + W_y^2(t_j, f) + W_z^2(t_j, f)],$$

where Δt is the sampling time, N is the length of the time series, and W_x, W_y, and
W_z are the wavelet transforms of the x, y, and z components of the magnetic field.

The upstream and downstream PSDs are respectively shown in Figure 1c and d with
dashed f_p. An obvious spectral break near the f_p is present in the downstream PSD,
while it is not so clear for the upstream. The spectral break between the MHD and
kinetic regimes is generally around f_p. However, the spectral break is not always
precisely at f_p. For example, the spectral break may correlate better with the ion plasma
frequency under some conditions (Chen et al., 2014). Due to the lack of ion data, here
we can distinguish these two regimes using f_p and ignore the transition range around
f_p to eliminate the interference. In this study, we refer to the frequency range below
$f_p/2$ as the MHD regime and the frequency range above $2f_p$ as the kinetic regime.
The value of f_p is typically exhibited as 0.1 Hz in the upstream SW near Venus and
0.3 Hz in the downstream Venusian magnetosheath. The upstream interval is selected
longer to cover a lower frequency range. Then the spectral indices in the MHD regime
(α_m) and the kinetic regime (α_k) can be estimated as the slopes of the power-frequency
log-log plot of the corresponding PSD in the frequency ranges of concern. Based on the methods described above, a statistical study of the spectral indices is performed at the upstream and downstream regions near the Venusian bow shock in the next section.

3. Statistical Observations

To statistically differentiate the spectral scaling indices for the upstream and downstream regions near the Venusian bow shock and emphasize the shock geometry effects, we examine the Venus Express magnetic field data for ~7 years (2006.05~2012.08) and identify the bow shock crossings. Firstly, we select the orbits when the interplanetary magnetic field (IMF) is relatively steady; that is, the directional changes of the IMF between inbound and outbound crossings of bow shock (~15-min time interval) are less than 30°. Secondly, the shape of the Venusian bow shock can be estimated based on the positions of these two bow shock crossings and the conic section equation $R = L/(1 + e \cos \theta)$ with a focus at $(x_0, 0, 0)$ and a fixed e of 1.03 during solar minimum (2006-2010) or 1.095 during solar maximum (2011-2012) as reported by Shan et al. (2015), where R is the bow shock distance from the conic focus, L is the conic section semi-latus rectum, and e is the eccentricity. At last, we find 209 orbits/418 shock crossings with steady IMF and well-determined bow shock model.

We calculate the PSDs of the upstream and downstream intervals of these shock crossings, and then the values of α_m and α_k can be estimated in the corresponding
frequency ranges, with the method described above. Figure 2 shows the histograms of
\(\alpha \) for the upstream and the downstream intervals of the 418 shock crossings in the
MHD and kinetic regimes. We find that, as shown in Figures 2a and 2b, the median
values of \(\alpha_m \) are 1.26 and 1.03 and the mean values are 1.25 and 1.09 with the
standard deviations of 1.07 and 1.10 for the upstream and the downstream intervals,
respectively. The statistical distributions indicate that these magnetic fluctuations are in
a developing and mixed state. From upstream to downstream, the values of \(\alpha_m \) show
a decreasing trend and the downstream fluctuations tend towards 1/f noise in the MHD
regime. This can be ascribed to the fact that collisionless shock physics is mediated by
particles and that the injection scale tends to be close to the proton kinetic scale. Since
the analysis is performed close to the bow shock, the turbulence has not fully developed
yet. Similar features can also be observed downstream of the Earth bow shock (e.g.,
Yordanova et al., 2008). Figures 2c and 2d indicate the median values of \(\alpha_k \) are 2.27
and 2.88 and the mean values are 2.26 and 2.80 with the standard deviations of 0.72
and 0.54 for the upstream and the downstream intervals, respectively. The values of \(\alpha_k \)
for the downstream tend to be larger and concentrated, and the downstream distribution
indicates that the kinetic turbulence dominates behind the bow shock. As reported by a
previous study (Xiao et al., 2020b), well developed turbulence is a common
phenomenon in the pristine SW near Venus. However, Figure 2 shows that although
some spectral indices indicating the turbulence can still be found, these upstream
intervals are rarely turbulence dominant. We infer that the SW fluctuations have been
modified before they reach the bow shock.
To be noticed, we can find that the histograms in Figure 2 exhibit large dispersions. That indicates the complex and diverse magnetic fluctuations near the Venusian bow shock, and the spectral scalings of the fluctuations could be affected by multiple factors. Some previous studies suggested that the bow shock geometry could affect the fluctuations and turbulence in the near-Venusian space (e.g., Luhmann et al., 1983; Xiao et al., 2018). To further investigate the bow shock modifications to the SW fluctuations and turbulence, we split the bow shock crossings into two categories of Q_\parallel ($\theta_{BN} < 45^\circ$) and Q_\perp ($\theta_{BN} > 45^\circ$) geometries. The shock normal angle θ_{BN} can be calculated by the average upstream magnetic field and the estimated local bow shock normal. The average upstream magnetic field is obtained in the 256-s upstream interval of each shock crossing event. The shock normal is determined by the estimated bow shock model with the method described above. Consequently, 115 Q_\parallel events and 303 Q_\perp events are obtained, and then we can examine the shock geometry effects on the spectral scalings of fluctuations near the bow shock. Here we show two examples of the magnetic field observations in Figure 3 for the Q_\parallel and the Q_\perp bow shock crossings. Figures 3a and 3b present the total magnetic field, and Figures 3c and 3d present the magnetic fields in the aberrated VSO coordinate system. Figures 3a and 3c present a Q_\parallel bow shock ($\theta_{BN} \sim 28.4^\circ$) crossing event on May 16, 2006. Figures 3b and 3d present a Q_\perp bow shock ($\theta_{BN} \sim 84.0^\circ$) crossing event on Nov. 18, 2006. This indicates the high level of excited fluctuations upstream of the Q_\parallel shock by backstreaming ions in comparison with the Q_\perp configuration.

Figure 4 shows the histograms of α for the upstream and the downstream intervals of
the $Q_\|$(red) and Q_\bot(blue) bow shock crossings. Figures 4a and 4b show the histograms of α_m. The median values of α_m for the downstream intervals of $Q_\|$ and Q_\bot bow shocks are 0.96 and 1.05, respectively. The similar distributions suggest that, in the MHD regime, the effects of the bow shock on the SW fluctuations and turbulence are independent on the shock geometry. While the values of α_m for the upstream intervals are obviously related to the shock geometry. For the upstream intervals of $Q_\|$ and Q_\bot bow shocks, the median values of α_m are 0.82 and 1.43, respectively. Both distributions upstream and downstream of the $Q_\|$ bow shocks present two peaks at ~1 and ~1.5. The spectral scalings do not show significant differences between the fluctuations upstream and downstream of the $Q_\|$ shocks. The MHD fluctuations upstream of the Q_\bot bow shocks are also in a mixed state that some fluctuations might be modified or still in developing, but the distribution is more like the SW with pre-existing turbulence. Obvious differences exist between the upstream and downstream intervals of the Q_\bot shocks, which could result from the waves excited behind the Q_\bot shocks. We infer that the pre-existing MHD turbulence from the SW could be more prone to reaching the Q_\bot bow shocks but start to be modified before reaching the $Q_\|$ bow shocks. The modification might be due to the waves generated near the bow shock.

Figures 4c and 4d show the histograms of α_k. The median values of α_k are 2.88 and 2.87 for the downstream intervals of $Q_\|$ and Q_\bot bow shocks, respectively. The distributions indicate that the kinetic turbulence is significantly dominant for the downstream intervals, and it is not shock geometry dependent. The upstream kinetic fluctuations also show a difference between the $Q_\|$ and Q_\bot bow shock crossings. The
median values of α_k for the upstream intervals of Q_{\parallel} and Q_{\perp} bow shocks are respectively 2.70 and 2.11. The statistical kinetic spectral scalings of the fluctuations near the Q_{\parallel} bow shocks do not change significantly as near the Q_{\perp} bow shocks, but the values of α_k for the downstream intervals have a much more concentrated distribution. This indicates that the downstream kinetic turbulence is mainly developed behind the bow shock but not penetrate from the upstream. The kinetic turbulence can also be developed upstream of the Q_{\parallel} bow shocks. We infer that the SW kinetic fluctuations could be affected by the Venusian bow shock at the upstream region and the upstream difference of the Q_{\parallel} and Q_{\perp} bow shock might result from the more backstreaming ions upstream of the Q_{\parallel} bow shock.

Based on the results from Figure 4, we find the shock geometry does influence the spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock. However, a large dispersion is still shown in some histograms. Therefore, the shock geometry is one key factor but not the only factor in the propagation of the fluctuations across the Venusian bow shock.

4. Discussion and Conclusions

In this paper, we use the magnetic field data of Venus Express from 2006.05 to 2012.08 to investigate the spectral scalings variations of the magnetic field fluctuations near the Venusian bow shock. The spectral indices are calculated in the MHD and kinetic
regimes for the upstream and downstream intervals close to the Venusian bow shock.

There are 115 Q_{\parallel} and 303 Q_{\perp} shock crossings selected in this study. Based on the statistical results, the shock effects on the spectral scalings near the Venusian bow shocks are examined.

We find the Venusian bow shock tends to flatten the spectra of upstream MHD fluctuations and steepen the kinetic spectra. At the downstream regions, the MHD magnetic fluctuations and turbulence tend to be modified to $1/f$ noise and the kinetic turbulence can be fully developed behind the shock, which is consistent with the previous studies (e.g., Vörös et al., 2008a; Xiao et al., 2020b). This suggests that the energy cascade and dissipation near Venus can be modified by the Venusian bow shock.

The spectral indices for the downstream intervals show this shock modification is independent on the shock geometry. However, we find the upstream spectral scalings are associated with the shock geometry. In the MHD regime, the spectra upstream of Q_{\parallel} bow shocks are flatter than of Q_{\perp} bow shocks. In the kinetic regime, the spectra upstream of Q_{\parallel} bow shocks are steeper than of Q_{\perp} bow shocks. As reported by a previous study, the α_m in the pristine solar wind far upstream of the Venusian bow shock is near Kolmogorov scaling value and the values of α_k are typically $\sim 2.5-3$ (Xiao et al., 2020b). Our results in this study indicate that the bow shock effects on the SW fluctuations could begin at the upstream region, which might result from reflected ions and newborn pickup ions. Such as, the ULF waves excited by backstreaming ions exhibit their frequency range of $0.3-0.5f_p$ (e.g., Shan et al., 2016), which could lead to a decrease of α_m, and the whistler-mode waves generated upstream of the bow shock
exhibit their frequency range from several f_p to 2 Hz (e.g., Russell, 2007), which could lead to an increase of α_k. For validating the PSDs in the spacecraft frame, the possibility of violation the Taylor hypothesis need to be considered, especially at high frequencies and in an environment close to a shock (e.g., Klein et al., 2014). Unfortunately, because of the limited observational data, it is hard to detect the violation of the Taylor hypothesis in this study. Multiple wave modes can be generated near the bow shock, and sometimes the spectral shape might be not clear for the fluctuations in the shock-upstream and shock-downstream regions. The values of α in this region exhibit a large variation. To interpret these fluctuations, we further examine their compression and rotation senses (Arthur et al., 1976; Means, 1972), as with some prior studies on magnetic field fluctuations near Venus (e.g., Guicking et al., 2010; Du et al., 2010; Xiao et al., 2017). The histograms of these fluctuation properties are shown in Figure 5 for the Q_\parallel (red) and Q_\perp (blue) events.

The transverse and compressional ratio (ζ) of fluctuations is defined as $(P_\perp - P_\parallel)/P_T$, where P_\perp is the transverse power of the fluctuations with respect to the ambient magnetic field, P_\parallel is the compressional power, and P_T is the total power. The range of ζ is from -1 to 1. A positive (negative) ratio means the transverse power is higher (lower) than the compressional power, and a ratio of 1 indicates that this fluctuation is purely transverse. Figures 5a-5d show the histograms of ζ in the MHD and kinetic regimes. In the MHD regime, we can find the upstream fluctuations are mainly transverse, while more compressional fluctuations are present downstream, especially behind the Q_\perp bow shock. That might be due to the compressional waves generated
by the mirror mode instability (e.g., Volwerk et al., 2008). In the kinetic regime, the
transverse fluctuations dominate in the region near the Venusian bow shock, and this
nature is shock geometry independent.

The ellipticity (ε) of fluctuations is defined as the ratio of the minor to major axis of
the polarization ellipse transcribed by the field variations of the components transverse
to the ambient field (Samson and Olson, 1980). The sign indicates the direction of
rotation of the polarization ellipse, i.e., the rotation sense about the ambient field
(Means, 1972). Negative signs refer to left-handed polarized waves and positive signs
refer to right-handed polarized waves. The waves of linear and circular polarization
correspond to the ε of 0 and \pm1, respectively. Figures 5e-5h show the histograms of ε
in the MHD and kinetic regimes. The histograms indicate that many right-handed
polarized fluctuations can be generated behind the bow shock, and they could be excited
by the pickup ions. In addition, we consider that these left-handed polarized waves in
kinetic regime, which are hardly observed downstream, are related to the upstream
whistler-mode waves or so-called 1-Hz waves generated at the bow shock and
propagating upstream (e.g., Russell, 2007; Xiao et al., 2020). These waves are
elliptically polarized and intrinsically right-handed polarized; however, they are
observed left-handed elliptically polarized in spacecraft frame due to the Doppler
shifting effect.

At the Q_l shocks, some ions can escape into the foreshock region, and a variety of
large-amplitude waves can be excited by these backstreaming ions (e.g., Delva et al.
2011, Collinson et al., 2012; Shan et al., 2013). These waves generated in the foreshock can be convected to the downstream side across the Q_\parallel bow shock (e.g., Luhmann et al., 1983; Du et al., 2010; Shan et al., 2014). That might be a reason of the statistical finding that there are no significant variations of the spectral scalings of magnetic fluctuations near the Q_\parallel bow shocks. This suggests that the Q_\parallel bow shock is an important channel of the energy injection and dissipation in the interaction of the SW with Venus. More fluctuations and higher energies are injected at Q_\parallel rather than Q_\perp shocks. At the Q_\perp shocks, these ions will generally gyrate back and then excite waves behind the shocks (e.g., Volwerk et al., 2008). These waves could result in the changes of downstream spectral scalings. However, in some cases, the waves upstream of Q_\perp shocks can be transmitted into the downstream, and the downstream spectra could also be similar to the upstream except an enhanced amplitude (e.g., Lu et al., 2009). Thereby, the spectral scalings variations across the bow shock could be controlled by multiple factors. In this study, we find the shock geometry is an important factor. Other possible factors affecting the Venusian bow shock modification to the SW fluctuations will be our future topics.
Declarations

Availability of data and materials

Venus Express magnetic field data are available in the ESA’s Planetary Science Archive (ftp://psa.esac.esa.int/pub/mirror/VENUS-EXPRESS/).

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Funding

This work was supported by NSFC grants (41904156, 41974205, 41774171, 41774167 and 41804157), the project funded by China Postdoctoral Science Foundation (2019M651271), the pre-research Project on Civil Aerospace Technologies (No. D020103) funded by CNSA, Shenzhen Science and Technology Research Program (JCYJ20180306171918617) and Shenzhen Science and Technology Program (Group No. KQTD20180410161218820). Tielong Zhang was supported by CAS Center for Excellence in Comparative Planetology.

Authors' contributions
SDX initiated the investigation and prepared the original manuscript. TLZ supervised
the investigation. MYW and GQW participated in the discussions and reviewed the
manuscript. YQC and TLZ gave the suggestions of the manuscript. All authors read
and approved the final manuscript.

Acknowledgments

The authors are grateful to the supports of NSFC (41904156, 41974205, 41774171, 41774167, 41804157), China Postdoctoral Science Foundation (2019M651271), and the pre-research Project on Civil Aerospace Technologies (No. D020103) funded by CNSA. The authors also acknowledge the financial support of Shenzhen Science and Technology Research Program (JCYJ20180306171918617) and Shenzhen Science and Technology Program (Group No. KQTD20180410161218820), and the support of CAS Center for Excellence in Comparative Planetology.
Alexandrova, O., Carbone, V., Veltri, P., Sorriso-Valvo, L. (2008). Small-scale energy cascade of the solar wind turbulence. Astrophysical Journal, 674(2), 1153-1157.

Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., et al. (2009). Universality of solar-wind turbulent spectrum from mhd to electron scales. Physical Review Letters, 103(16), 165003.

Arthur, C. W., R. L. McPherron, and J. D. Means (1976), A comparative study of three techniques for using the spectral matrix in wave analysis, Radio Sci., 11(10), 833-845, doi:10.1029/RS011i010p00833.

Bruno, R., & Carbone, V. (2013). The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 10(1), 1-208.

Chen, C. H. K., Leung, L., Boldyrev, S., Maruca, B. A., Bale, S. D. (2014), Ion-scale spectral break of solar wind turbulence at high and low beta, Geophys. Res. Lett., 41, 8081–8088, doi:10.1002/2014GL062009.

Collinson, G. A., Wilson, L. B., Sibeck, D. G., Shane, N., Zhang, T. L., Moore, T. E., Coates, A. J., and Barabash, S. (2012), Short large-amplitude magnetic structures (SLAMS) at Venus, J. Geophys. Res., 117, A10221, doi:10.1029/2012JA017838.

Delva, M., Mazelle, C., Bertucci, C., Volwerk, M., Vörös, Z., and Zhang, T. L. (2011), Proton cyclotron wave generation mechanisms upstream of Venus, J. Geophys.
Du, J., Zhang, T. L., Baumjohann, W., Wang, C., Volwerk, M., Vörös, Z., & Guicking, L. (2010). Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations. Journal of Geophysical Research, 115, A12251. https://doi.org/10.1029/2010JA015549

Dwivedi, N. K., Schmid, D., Narita, Y., Kovács, P., Vörös, Z., Delva, M., & Zhang, T. (2015). Statistical investigation on the power-law behavior of magnetic fluctuations in the Venusian magnetosheath. Earth, Planets and Space, 67(1), 137.

Guicking, L., Glassmeier, K. H., Auster, H. U., Delva, M., Motschmann, U., Narita, Y., & Zhang, T. L. (2010). Low-frequency magnetic field fluctuations in Venus’ SW interaction region: Venus Express observations. Annales Geophysicae, 28, 951–967.

Kiyani, K. H., Chapman, S. C., Khotyaintsev, Y. V., Dunlop, M. W., & Sahraoui, F. (2009). Global scale-invariant dissipation in collisionless plasma turbulence. Physical Review Letters, 103(7), 075006.

Klein, K., Howes, G., & Tenbarge, J. (2014). The violation of the Taylor hypothesis in measurements of solar wind, turbulence. The Astrophysical Journal Letters, 790(2).

Lu, Q., Hu, Q., & Zank, G P. (2009). The interaction of Alfvén waves with perpendicular shocks. Astrophysical journal, 706(1), 687.
Luhmann, J. G., Tatrallyay, M., Russell, C. T., & Winterhalter, D. (1983). Magnetic field fluctuations in the Venus magnetosheath. Geophysical Research Letters, 10(8), 655–658. https://doi.org/10.1029/GL010i008p00655

Luhmann, J.G. (1986). The SW interaction with Venus. Space Sci. Rev. 44, 241–306

Means, J. D. (1972), Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves, *J. Geophys. Res.*, 77(28), 5551-5559, doi:10.1029/JA077i028p05551.

Phillips, J.L. and McComas, D.J. (1991). The magnetosheath and magnetotail of Venus. Space Sci Rev 55, 1–80. https://doi.org/10.1007/BF00177135

Rong, Z. J., Barabash, S., Futaana, Y., Stenberg, G., Zhang, T. L., Wan, W. X., Wei, Y., Wang, X.-D., Chai, L. H., and Zhong, J. (2014), Morphology of magnetic field in near-Venus magnetotail: Venus express observations, *J. Geophys. Res. Space Physics*, 119, 8838–8847, doi:10.1002/2014JA020461.

Ruhunusiri, S., Halekas, J. S., Espley, J. R., Mazelle, C., Brain, D., Harada, Y., DiBraccio, G. A., Livi, R., Larson, D. E.,... Howes, G. G. (2017). Characterization of turbulence in the Mars plasma environment with MAVEN observations. *J. Geophys. Res. Space Phys.*, 122(1), 656–674. https://doi.org/10.1002/2016JA023456

Russell, C.T., 2007. Upstream whistler-mode waves at planetary bow shocks: a brief review. *J. Atmos. Sol. Terr. Phys.* 69 (14), 1739–1746
Samson, J.C. and Olson, J.V. (1980), Some comments on the descriptions of the polarization states of waves. Geophysical Journal of the Royal Astronomical Society, 61: 115-129. https://doi.org/10.1111/j.1365-246X.1980.tb04308.x

Shan, L., Lu, Q., Wu, M., Gao, X., Huang, C., Zhang, T., and Wang, S. (2014), Transmission of large-amplitude ULF waves through a quasi-parallel shock at Venus, J. Geophys. Res. Space Physics, 119, 237–245, doi:10.1002/2013JA019396.

Shan, L., Lu, Q., Mazelle, C., Huang, C., Zhang, T., Wu, M., et al. (2015). The shape of the venusian bow shock at solar minimum and maximum: Revisit based on vex observations. Planetary and Space Science, 109-110(1), 32–37. https://doi.org/10.1016/j.pss.2015.01.004

Slavin, J. A., Elphic, R. C., Russell, C. T., Intriligator, D. S., & Wolfe, J. H. (1979). Position and shape of the Venus bow shock: Pioneer Venus Orbiter observations. Geophysical Research Letters, 6(11), 901–904. https://doi.org/10.1029/GL006i011p00901

Svedhem, H., Titov, D. V., McCoy, D., Lebreton, J. P., Barabash, S., Bertaux, J. L., et al. (2007). The first European mission to Venus. Planetary and Space Science, 55(12), 1636–1652. https://doi.org/10.1016/j.pss.2007.01.013

Titov, D. V., Svedhem, H., Koschny, D., Hoofs, R., Barabash, S., Bertaux, J. L., et al. (2006). Venus Express science planning. Planetary and Space Science, 54(13-14),
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., & Glassmeier, K.-H. (2008). First identification of mirror mode waves in Venus’ magnetosheath? Geophysical Research Letters, 35, L12204. https://doi.org/10.1029/2008GL033621

Vörös, Z., Baumjohann, W., Nakamura, R., Volwerk, M., Runov, A., Zhang, T. L., et al. (2004). Magnetic turbulence in the plasma sheet. Journal of Geophysical Research, 109, A11215. https://doi.org/10.1029/2004JA010404

Vörös, Z., Baumjohann, W., Nakamura, R., Runov, A., Volwerk, M., Asano, Y., Jankovičová, D., Lucek, E. A., and Rème, H. (2007). Spectral scaling in the turbulent Earth's plasma sheet revisited, Nonlin. Processes Geophys., 14, 535–541, https://doi.org/10.5194/npg-14-535-2007.

Vörös, Z., Zhang, T. L., Leubner, M. P., Volwerk, M., Delva, M., Baumjohann, W., & Kudela, K. (2008a). Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophysical Research Letters, 35, L11102. https://doi.org/10.1029/2008GL033879

Vörös, Z., Zhang, T. L., Leubner, M. P., Volwerk, M., Delva, M., & Baumjohann, W. (2008b). Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. Journal of Geophysical Research, 113, E00B21. https://doi.org/10.1029/2008JE003159
Vörös, Z. (2011). Magnetic reconnection associated fluctuations in the deep magnetotail: ARTEMIS results, Nonlin. Processes Geophys., 18, 861–869, https://doi.org/10.5194/npg-18-861-2011.

Xiao, S. D., Zhang, T. L., and Wang, G. Q. (2017). Statistical study of low frequency magnetic field fluctuations near Venus during the solar cycle. J. Geophys. Res. Space Phys., 122(8), 8409–8418.

Xiao, S. D., Zhang, T. L., & Vörös, Z. (2018). Magnetic fluctuations and turbulence in the Venusian magnetosheath downstream of different types of bow shock. Journal of Geophysical Research: Space Physics, 123, 8219–8226. https://doi.org/10.1029/2018JA025250

Xiao, S. D., Zhang, T. L., Vörös, Z., Wu, M. Y., Wang, G. Q., & Chen, Y. Q. (2020a). Turbulence near the Venusian bow shock: Venus Express observations. Journal of Geophysical Research: Space Physics, 125, e2019JA027190. https://doi.org/10.1029/2019JA027190

Xiao, S. D., Wu, M. Y., Wang, G. Q., Wang, G., Chen, Y. Q., & Zhang, T. L. (2020b). Turbulence in the near-Venusian space: Venus Express observations. Earth Planet. Phys., 4(1), 82–87. doi: 10.26464/epp2020012

Yordanova, E., Vaivads, A., Andre, M., Buchert, S. C., & Voeroes, Z. (2008). Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Physical Review Letters, 100(20), 205003.
Zhang, T.L., Luhmann, J.G., Russell, C.T., (1991). The magnetic barrier at Venus. J. Geophys. Res. 96, 11145–11153.

Zhang, T. L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell, C. T., et al. (2006). Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express. Planetary and Space Science, 54(13–14), 1336–1343. https://doi.org/10.1016/j.pss.2006.04.018

Zhang, T.L., et al., (2008a). Induced magnetosphere and its outer boundary at Venus. J. Geophys. Res. 113, E00B20. https://doi.org/10.1029/2008JE003215.

Zhang, T.L., Delva, M., Baumjohann, W., et al. (2008b). Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planet. Space Sci. 56 (6), 790–795.

Zhang, T. L., et al. (2008c), Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum, Planet. Space Sci., 56, 785–789, doi:10.1016/j.pss.2007.09.012.
Figure Legends

Figure 1. A Venusian bow shock crossing event observed by Venus Express on 30 Dec. 2006. Panel a presents the time series of the total magnetic field and the shock crossing interval is shown in shadow. Panel b presents the magnetic field observations near the bow shock in the aberrated VSO coordinate system, and the upstream and downstream intervals are indicated. Panels c and d present the PSDs of the magnetic fluctuations for the upstream and downstream intervals.

Figure 2. Histograms of the spectral indices for (a, c) the upstream and (b, d) the downstream intervals of the bow shock crossings. The upper panels a and b show the histograms for the MHD regime, and the lower panels c and d show the histograms for the kinetic regime.

Figure 3. The time series of the magnetic field magnitude and components for the two types of shock geometry encountered during the Venusian bow shock crossings. The left panels a and c present the magnetic field observations near a Q_\parallel bow shock on 2006 May 16. The right panels b and d present the magnetic field observations near a Q_\perp bow shock on 2006 November 18.

Figure 4. Histograms of the spectral indices for (a, c) the upstream and (b, d) the downstream intervals of the Q_\parallel (red) and Q_\perp (blue) bow shock crossings. The upper panels a and b show the histograms for the MHD regime, and the lower panels c and d show the histograms for the kinetic regime.
Figure 5. Histograms of (a-d) the transverse and compressional ratio and (e-h) the ellipticity of fluctuations for the upstream and the downstream intervals of the Q_{\parallel} (red) and Q_{\perp} (blue) bow shock crossings. The upper panels show the histograms for the MHD regime, and the lower panels show the histograms for the kinetic regime.