Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition

Miler T. Lee1*, Ashley R. Bonneau1*, Carter M. Takacs1, Ariel A. Bazzini1, Kate R. DiVito1, Elizabeth S. Fleming1 & Antonio J. Giraldez1,2

After fertilization, maternal factors direct development and trigger zygotic genome activation (ZGA) at the maternal-to-zygotic transition (MZT). In zebrafish, ZGA is required for gastrulation and clearance of maternal messenger RNAs, which is in part regulated by the conserved microRNA miR-430. However, the factors that activate the zygotic program in vertebrates are unknown. Here we show that Nanog, Pou5f1 (also called Oct4) and SoxB1 regulate zygotic gene activation in zebrafish. We identified several hundred genes directly activated by maternal factors, constituting the first wave of zygotic transcription. Ribosome profiling revealed that nanog, soxB1 and pou5f1 are the most highly translated transcription factors pre-MZT. Combined loss of these factors resulted in developmental arrest before gastrulation and a failure to activate >75% of zygotic genes, including miR-430. Our results demonstrate that maternal Nanog, Pou5f1 and SoxB1 are required to initiate the zygotic developmental program and induce clearance of the maternal program by activating miR-430 expression.

In animals, maternal gene products drive early development in a transcriptionally silent embryo, and are responsible for ZGA. ZGA occurs during the MZT, when developmental control transfers to the embryonic nucleus. This universal transition represents a major reprogramming event that requires (1) chromatin remodelling to provide transcriptional competency; (2) specific activation of a new transcriptional program; and (3) clearance of the previous transcriptional program. In Drosophila, maternal Zelda is required for activating the first zygotic genes through binding of TAGteam cis elements1,2. However, the maternal factors that mediate ZGA in vertebrates remain largely unknown3,4. In zebrafish, ZGA coincides with the midblastula transition (MBT) ~3 h post-fertilization (h.p.f.), during which genome competency is established through widespread changes in chromatin5,6 and DNA methylation7,8. Bivalent chromatin marks are associated with zygotic genes thought to be ‘poised’ for activation5. Yet, many loci with active marks seem to be transcriptionally inactive5, indicating that competent genes require induction by additional factors. ZGA is required for epiboly9 and the clearance of maternal mRNAs, a process regulated in part by the conserved microRNA (miRNA) miR-430 (refs 10–12). Although significant advances have taken place in understanding how vertebrate embryos acquire transcriptional competency and orchestrate the clearance of the maternal program, the factors that control activation of the specific genes during ZGA remain unknown. Here we combine loss-of-function analyses, high-throughput sequencing and ribosome footprinting to identify factors that activate the first wave of zygotic transcription to initiate nuclear control of embryonic development.

Identifying the first zygotic transcripts

To define factors that mediate transcriptional activation, we first sought to identify the earliest genes transcribed from the zygotic genome. Accurate characterization of the early transcriptome faces two main challenges: (1) zygotic transcription of a gene can be masked by a large maternal contribution; and (2) poly(A) selection of miRNAs can lead to apparent increases in gene expression, reflecting delayed polyadenylation of maternal mRNAs rather than transcription. We reasoned that maternal mRNAs are spliced during oogenesis, so examining introns from total RNA would allow us to quantify de novo transcription independent of polyadenylation or maternal contribution. We performed Illumina total RNA sequencing on wild-type embryos after the onset of zygotic transcription (4 h.p.f., sphere, and 6 h.p.f., shield) (Fig. 1a) compared to embryos before the MZT (2 h.p.f., 64-cell stage) and x-amanitin-treated embryos (assayed at sphere and shield), which lack zygotic transcription. This analysis identified 608 genes with significant increases in exon or intron expression levels >5 RPKM (reads per kilobase per million reads) at sphere stage (P < 0.1, Benjamini–Hochberg multiple test correction) (Fig. 1b, c and Extended Data Fig. 1a–h). Intron signal identifies an additional 6,602 genes with low levels of transcription by 4 h.p.f., and 9,330 transcribed genes by 6 h.p.f., expanding the number of zygotically expressed genes previously identified13,14 (Extended Data Fig. 1i–o and Supplementary Data 1). Over 74% of these are genes with maternal contributions (maternal and zygotic genes), most of which are only identified by elevated intron signal (Fig. 1b and Extended Data Fig. 1g), reflecting the sensitivity of this method to detect de novo transcription.

Next, we examined which genes are directly triggered by the maternal program in the ‘first wave’ of transcription by 4 h.p.f. versus those activated by zygotic factors. We reasoned that blocking zygotic gene function while leaving maternal factors unaffected would uncouple the first from subsequent waves of zygotic transcription. To this end, we inhibited splicing of zygotic mRNAs using morpholinos complementary to U1 and U2 spliceosomal RNAs (U1U2 MO) (Fig. 1d and Extended Data Fig. 1a–d)13. U1U2 MO embryos arrest before epiboly (Fig. 1a), despite remaining transcriptionally active. Illumina sequencing revealed an enrichment in intron–exon boundary reads (Fig. 1e) and activation of a subset of zygotic transcripts to levels >5 RPKM (Methods); these genes constitute the first wave of zygotic transcription (Fig. 1f). To test that these first-wave genes are indeed independent

*These authors contributed equally to this work.
1Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA. 2Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
©2013 Macmillan Publishers Limited. All rights reserved
of zygotic factors, we treated embryos with cycloheximide (CHX) before MBT (32-cell stage) to block translation of zygotic mRNAs selectively, while allowing translation of maternal mRNAs. CHX-treated embryos also fail to reach epiboly (Fig. 1a) and have a highly correlated transcriptome profile with U1U2 MO (Pearson’s $R = 0.97$, Extended Data Fig. 2), confirming first-wave transcription in the absence of zygotic proteins. First-wave genes comprise both embryonic-specific and housekeeping genes ubiquitously expressed in adult tissues (Extended Data Fig. 3a) and are enriched in pattern specification, gastrulation and chromatin modifying functions (Extended Data Fig. 3b). We validated a subset of these genes by RT–PCR, including $kdf4b$, $nrr$ and $isg15$ (Extended Data Fig. 3c–k). Notably, the pri-miR-430 polycistron is highly expressed as part of this first wave (> 1,000 RPKM) (Fig. 1c, f). Together, these results identify 269 first-wave genes expressed by sphere stage for which maternal factors are sufficient for activation.

**Nanog, SoxB1 and Pou5f1 activate the first wave**

Considering the specific, widespread and steep pattern of zygotic gene activation, we proposed that the factors that trigger the first wave may include sequence-specific transcriptional regulators highly translated before ZGA. We analysed the translation levels of all maternal mRNAs using ribosome profiling data (Fig. 2a). We found that Nanog, Sox19b and Pou5f1 are the most highly translated sequence-specific transcription factors in the pre-MZT transcriptome (Fig. 2b). Pou5f1, the SoxB1 family (which includes Sox2 and Sox19b) and Nanog are key transcription factors involved in maintaining pluripotency in embryonic stem (ES) cells (reviewed in refs 17, 18). In zebrafish, Pou5f1 provides temporal control of gene expression and together with SoxB1 regulates dorsal–ventral patterning and neuronal development whereas Nanog is essential for endoderm formation through regulation of zygotic mxtx2 (ref. 24).

To examine the roles of Nanog, Sox19b and Pou5f1 in activating zygotic gene expression, we combined a maternal–zygotic loss-of-function (LOF) Pou5f1 (MzPou5f1) with previously published translation-blocking morpholinos for Nanog (ref. 24) and SoxB1 (ref. 20) (Methods). Because Sox2, Sox3 and Sox19a have been shown to compensate for nanog, sox19b and pou5f1 mRNA injection. d. Ribosome footprints for $h1m$, sox19b and nanog in wild type and Nanog MO plus SoxB1 MO. sox19b and nanog are highly depleted in the morpholino condition. e. Biplots comparing wild-type and morpholino ribosome footprints and input mRNA.
Sox19b loss, we used a combination of morpholinos targeting all four sox genes\(^2\) (Extended Data Fig. 4a). Simultaneous Nanog LOF in combination with SoxB1 or Pou5f1 resulted in complete developmental arrest before gastrulation, with >95% of the treated embryos failing to initiate epiboly (\(n = 387\) and \(n = 52\), respectively) (Fig. 2c and Extended Data Fig. 4b–c). This phenotype resembles that of \(\alpha\)-amanitin-injected embryos, indicating that these factors have a role in activating zygotic genes. We used two different approaches to analyse the activity and specificity of these morpholinos. First, we performed ribosome profiling on wild-type and Nanog plus SoxB1 morpholino-injected embryos pre-MBT\(^{16,25}\). Translation efficiency for both Nanog and Sox19b was reduced >97% in the morpholino-injected embryos compared to wild type (Fig. 2d and Extended Data Fig. 4g), but was largely unaffected for the rest of the transcriptome (Fig. 2e). Second, we co-injected mRNAs encoding Nanog and SoxB1 with the morpholinos and were able to rescue gastrulation (Fig. 2c and Extended Data Fig. 4c–e). Together, these results show that Nanog, Sox19b and Pou5f1 regulate progression through zygotic development and gastrulation.

Illumina sequencing revealed that combined loss of Nanog, SoxB1 and Pou5f1 results in widespread reduction in first-wave gene expression by 4 h.p.f.: 77% for strictly zygotic genes, 50% for maternal and zygotic genes (Fig. 3a, b and Extended Data Fig. 5). By 6 h.p.f., expression loss is systemic, with 86% of strictly zygotic and 79% of maternal and zygotic genes failing to be expressed to wild-type levels (Fig. 3a, b and Extended Data Fig. 5), an effect that was rescued by injection of the cognate mRNAs (Fig. 3c and Extended Data Figs 5 and 6). Comparing the single and double LOF transcriptomes to the triple, we found that regulation is often combinatorial and redundant, with Nanog LOF having the strongest effect and SoxB1 the weakest (Fig. 3d and Extended Data Fig. 7a–c). By 6 h.p.f., affected genes include housekeeping genes, general transcription factors (for example, gata6, otx1, irx1b, ntlA) and major signalling components in gastrulation, anterior–posterior axis and dorsal–ventral axis specification (for example, oep, fgf3, wnt11, chd, nog1, nd2, bmp2b) (Extended Data Fig. 7d, e). Together, these results show that Nanog, Pou5f1 and SoxB1 have a fundamental role in activating the first wave, an effect that propagates to subsequent waves resulting in a global impact on zygotic gene expression.

miR–430 is strongly activated by Nanog

Notably, among the first-wave genes co-regulated by Nanog, Pou5f1 and SoxB1 was miR–430, a microRNA family that functions in the clearance of maternal mRNAs in zebrafish and Xenopus\(^{16–12}\). Northern blot analysis revealed a strong reduction of mature miR-430 levels in Nanog LOF embryos (Fig. 4a). Although individual loss of SoxB1 or Pou5f1 had no detectable effect on miR-430 expression, when combined with Nanog LOF they reduced miR-430 levels even further, a phenotype that was rescued by co-injecting the respective mRNAs (Fig. 4a–c). Nanog morpholino embryos failed to repress a GFP reporter of endogenous miR-430 activity\(^{25}\), consistent with Nanog’s role in activating miR-430 (Extended Data Fig. 8a, b).

To determine whether Nanog specifically binds the miR-430 genomic locus, we analysed Nanog chromatin immunoprecipitation sequencing (ChIP-seq) data at high (3.3 h.p.f.) and dome stage (4.3 h.p.f.)\(^{24}\). Consistent with widespread Nanog regulation, 74% of first-wave genes are bound by Nanog, a significant enrichment compared to subsequent wave genes (Fig. 4d and Extended Data Fig. 9a). miR-430 is expressed from a 17-kilobase (kb) genomic region on chromosome 4, which includes 55 repeated miR-430 hairpin sequences. Because this locus is repetitive, it had been excluded from previous analyses; however, the sequences are largely unique relative to the rest of the genome. Reads aligning the miR-430 locus were enriched >16-fold in the Nanog immunoprecipitation compared to whole-cell extract (Fig. 4e), indicating that strong Nanog binding throughout the locus correlates with strong miR-430 expression at ZGA. When the reads were aligned to the presumptive 5’ end of the polycistron, we observed a strong peak of binding in a ~600-nucleotide region between two miR-430 precursors, which contains three canonical Nanog binding sites (CATT[TT][G][T][G][CA])\(^{19,27}\).

To determine whether Nanog induces clearance of maternal mRNAs through activation of miR-430, we analysed the expression of an endogenous miR-430 target, cdha2b (ref. 10). cdha2b mRNA is maternally deposited and cleared in wild type by 6 h.p.f. (Fig. 5a). In contrast, cdha2b mRNA is stabilized in MZdicer mutants or \(\alpha\)-amanitin-treated embryos, which lack miR-430 processing and expression, respectively. Similar loss of regulation is observed in Nanog plus SoxB1 MO, as well as triple LOF embryos, a defect that is rescued by providing the cognate mRNAs (Fig. 5b and Extended Data Fig. 8c). To determine the global effect of this regulation, we examined RNA-seq levels of maternal mRNAs containing miR-430 target sites. Loss of Nanog alone or in combination with loss of SoxB1 and MZpou5f1 resulted in miR-430 target stabilization, similar to MZdicer\(^{19,16,26}\) (Fig. 5c and Extended Data Fig. 8d–f) (\(P < 1 \times 10^{-3}\), two-sided Wilcoxon rank-sum test). A significant, but weaker, effect was observed in Pou5f1 plus SoxB1 LOF embryos.
Figure 4 | miR-430 expression is regulated by Nanog. a, Northern blot shows that miR-430 is severely reduced in Nanog LOF and nearly undetectable in the triple LOF embryos. b, RNA-seq read levels of the pri-mir-430 polycistron in wild-type and LOF embryos. c, Bar plot of total miR-430 aligning reads. d, First-wave genes are highly bound by Nanog. e, Nanog binding across the miR-430 region (top panel) and a zoomed region where reads are preferentially aligned to the 3′ end (bottom). Binding profiles show a strong peak between two precursors, pre-mir-430a, pre-mir-430b and pre-mir-430c are marked in red.

(P < 1 × 10^{-25}) (Extended Data Fig. 8d). These results show that Nanog together with Pou5f1 and SoxB1 activate miR-430 expression, thus revealing a genetic network that links maternal regulation of zygotic gene expression to zygotic clearance of maternal mRNAs.

Discussion

Our transcriptome analysis during the maternal-to-zygotic transition provides three major insights. First, maternal factors directly regulate hundreds of mRNAs that constitute the first wave of zygotic transcription. These targets are activated in the absence of zygotic gene function and are enriched for genes that guide early embryonic development. Transcriptional competence coincides with changes in the chromatin and DNA methylation states of the genome. Modifications to the epigenetic landscape during the MZT may be sufficient to allow basal levels of transcription; however, we show here that maternal transcription factors have a vital role in shaping transcriptional output.

Second, we observe that Nanog, SoxB1 and Pou5f1, previously implicated in the maintenance of pluripotency, contribute to widespread activation of zygotic genes during the MZT. These maternal factors enhance transcriptional activation of more than 74% of first-wave zygotic genes, and by 6 h.p.f. influence expression of >80% genes overall. Simultaneous removal of Nanog with SoxB1 and/or Pou5f1 results in complete block of gastrulation and developmental arrest, similar to global inhibition of zygotic gene expression (Fig. 2c and Extended Data Fig. 9c). Nanog binds 74% of first-wave genes during the early stages of ZGA (Fig. 4d). Additionally, while this manuscript was under review, Pou5f1 and Sox2 were also shown to associate with ~40% of early zygotic genes. However, Sox2 and Pou5f1 LOF is insufficient to block gastrulation and zygotic development (Fig. 2c). This highlights the central role of Nanog, which together with Pou5f1 and Sox2 initiates the zygotic program of development, although it is likely that additional factors cooperate with them to provide genome competency and regulate the timing of ZGA. These factors’ role in vertebrates may be comparable to Zelda in *Drosophila*, in activating a large cohort of zygotic genes. In mouse, Oct4 and Nanog have been proposed to regulate gene expression at the 2-cell stage and along with Sox2 are required for specification of the blastocyst lineages. This is because, when we examine early zygotic genes in mouse, we find that they are enriched for Nanog, Oct4 and Sox2 binding in embryonic stem cells. Conceptually and mechanistically, many parallels exist between the MZT and the cellular reprogramming that occurs in induced pluripotent stem cells (iPSCs). Indeed, reprogramming of terminally differentiated cells was first shown in the context of the early embryo through nuclear transfer. The onset of zygotic developmental control can be viewed as a major reprogramming event that occurs on fusion of two terminally differentiated cells (sperm and oocyte). As shown in ES cells and iPSCs, Pou5f1, Nanog and Sox2 are central players in the induction and maintenance of pluripotency.

Third, we show that Nanog together with SoxB1 and Pou5f1 directly regulate miR-430, which is responsible for clearance of maternal mRNAs during the MZT, facilitating the transfer of developmental control to the zygotic program (Extended Data Fig. 9c). Members of the conserved miR-430/295/302/372 family of miRNAs stabilize self-renewal fate in ES cells and enhance reprogramming efficiency. We propose that in both cases these miRNAs are ‘clearing the slate’ by accelerating the removal of mRNAs from the previous program, thus facilitating the establishment of new states by reprogramming factors. The marked upregulation of miR-430 expression by Nanog, Sox2 and Pou5f1 provides a central link between the mechanisms that drive zygotic gene activation and the clearance of the previous maternal history.

METHODS SUMMARY

Nanog, Oct4 and Sox2 were generated as previously described. All injections were performed at the one-cell stage. For translation inhibition, 32-cell stage embryos were incubated in media with 50 μg ml^{-1} cycloheximide (Sigma Aldrich) at 28 °C until collection. Total RNA libraries were constructed using the TruSeq Stranded and Ribo-Zero Gold kits (Illumina). Aligned reads were intersected with Ensembl C70 and RefSeq gene exons and intron annotations. Differential expression was performed using DESeq. ChiP-seq data were analysed as described previously, except for the miR-430 locus, for which unique alignments were not required. Ribosome profiling was performed as described in ref. 16, using the Epicentre ARTseq kit. Sequencing samples are summarized in Extended Data Table 1.
Online Content Any additional Methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 14 May; accepted 4 September 2013.

Published online 22 September 2013.

ten Bosch, J. R., Benavides, J. A. & Clive, T. W. The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development 133, 1967–1977 (2006).

2. Liang, H. L. et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456, 400–403 (2008).

3. Tadros, W. & Lissiphtz, H. D. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042 (2009).

4. Andersen, I. S. et al. Epigenetic marking of the zebrafish developmental program. Curr. Top. Dev. Biol. 104, 85–112 (2013).

5. Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

6. Lindeman, L. C. et al. Preprocessing of developmental gene expression by modified histones before zygotic genome activation. Dev. Cell 21, 993–1004 (2011).

7. Potok, M. E., Nix, D. A., Parnell, T. J. & Cairns, B. R. Reprogramming the maternal genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772 (2013).

8. Jiang, L. The Oct4 and Nanog transcription network regulates pluripotency. Nature Rev. Genet. 10, 266–276 (2009).

9. Kane, D. A. & Kimmel, C. B. The zebrafish midblastula transition. Development 136, 759–772 (2009).

10. Bunt, T. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456, 400–403 (2008).

11. Lund, E., Liu, M., Hartley, R. S., Sheets, M. D. & Dahlberg, J. E. Deadenylation of maternal mRNAs mediates mRNA decay in Xenopus laevis embryos. RNA 15, 2351–2363 (2009).

12. Giraldez, A. J. microRNAs, the cell's Nepenthe: clearing the past during the temporal control of early development. Development 136, 759–772 (2009).

13. Harvey, S. A. A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PloS ONE 3, e13952 (2010).

14. Aanes, H. An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo. Mol. Syst. Biol. 9, 632 (2013).

15. Kaida, D. MicroRNAs, the cell's Nepenthe: clearing the past during the temporal control of early development. Development 136, 759–772 (2009).

16. Giraldez, A. J. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Rev. Mol. Cell Biol. 8, 625–635 (2007).

17. Chambers, I. & Tomlinson, S. R. The transcriptional foundation of pluripotency. Nature Rev. Mol. Cell Biol. 7, 759–772 (2006).

18. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

19. Onichtchouk, D. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

20. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

21. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

22. Chambers, I. A. et al. Nanog safeguards pluripotency and mediates germine development. Nature 450, 1230–1234 (2007).

23. Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biol. 9, 625–635 (2007).

24. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the somatic cell reprogramming pathway. Dev. Cell 21, 218–223 (2009).

25. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

26. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnol. 29, 443–448 (2011).

27. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank Y. Kamachi, W. Driever, A. F. Schier, N. Ivanova and I.-H. Park for reagents and fish lines; S. Mane and J. Overton for outstanding sequencing support; E. Zdobnov for hosting genomics data; A. Hubaud, N. Darracere and M. Kozioł for contribution in the early stages of this project; and all the members of the Giraldez laboratory for discussions. This work was supported by NIH grants F32HD071697-02 (M.T.L.), T32GM070749 (A.R.B.), F32HD061194-03 (C.M.T.), Pew Fellows Program in Biomedical Sciences (A.A.B), RO1GM081602-06, R01GM103789-01, R01HD074078-02, the Pew Scholars Program in the Biomedical Sciences and the Yale Scholars Program (A.J.G.).

Author Contributions M.T.L., A.R.B. and A.J.G. designed the project, performed experiments and data analysis. M.T.L., A.R.B., C.M.T. and A.J.G. wrote the manuscript. C.M.T. designed and performed the cycloheximide experiment and contributed to in situ hybridizations. A.A.B. designed and performed ribosome profiling and U1U2 experiments. K.R.D. and E.S.F. assisted with gene validation.

Received 14 May; accepted 4 September 2013.
METHODS

Zebrafish maintenance. MZpou5fl (h349Tg:h349Tg) (ref. 48) were generated as previously described41. Embryos obtained from natural crosses between homozygous MZpou5fl (h349Tg:h349Tg) mutants were injected with 30 pg of pou5fl mRNA at the one-cell stage. MZdicerhunc/hunc fish were generated as described previously46. Zebrafish wild-type embryos were obtained from natural crosses of TU-AB and TLF strains of mixed ages (5–17 months). Selection of mating pairs was random from a pool of 60 males and 60 females allocated for a given day of the month. Fish lines were maintained in accordance with AAALAC research guidelines, under a protocol approved by Yale University IACUC.

Treatments and mRNA injection. Embryos from all wild-type crosses were pooled following collection and distributed equally between experimental conditions. Unless otherwise stated, a minimum of 30 wild-type embryos were subjected to each treatment in each experimental replicate. Morpholinos were obtained from Gene Tools and re-suspended in nuclelease-free water. Unless otherwise stated, 1 nl of morpholino solution was injected into dechorionated embryos at the one-cell stage. A combination of two morpholinos was used to target each gene in a 1:1 ratio as described in ref. 20, with one SoxB1 morpholino targeting a conserved region of both sox2 and sox3. Nanog and SoxB1 morpholinos were previously described in refs 20, 24, respectively. For individual and combinatorial loss of function, wild-type and MZpou5fl embryos were injected with 1 ng of each SoxB1 morpholino (0.125 mM each) and 5 ng of Nanog morpholino (0.6 mM each). For inhibition of splicing, one morpholino (1.25 mM each) complementary to U1 and two morpholinos (0.6 mM each) complementary to isoforms of U2 spliceosomal RNAs (U1U2) were used15,45,50. Divergence of the U2 genes in zebrafish requires the use of two different morpholinos to block activity.

Zebrafish Nanog and SoxB1 capped mRNA was generated by in vitro transcription using mMessage mMachine S6 kit (Ambion) in accordance with the manufacturer’s instructions. For Nanog morpholino rescue, zebrafish nanog was cloned into a pCS2 vector and sense mutations introduced during PCR amplification (indicated in lowercase). 5′-ATGCCCAATGAGAAATGCCTGCGTGAAGTTAC-3′. SoxB1 rescue construct were provided by Y. Kamachi46. To rescue the loss-of-function phenotype, 50 pg of Nanog and 20 pg of SoxB1 (5 pg each) mRNAs were injected either individually or together into morpholino-injected embryos at the one-cell stage. Triple loss-of-function embryos were additionally injected with 30 pg of pou5fl mRNA41.

For polymerase II inhibition, α-amanitin was obtained from Sigma Aldrich and re-suspended in nuclease-free water. Dechorionated embryos were injected with 0.2 ng of α-amanitin at the one-cell stage49.

For translation inhibition, wild-type embryos were collected and dechorionated at the one-cell stage. To allow for translation of maternal mRNAs, at 32-cell stage, embryos were transferred to media containing cycloheximide (50 µM of each) and 5 ng of Nanog morpholino (0.6 mM each). For inhibition of splicing, one morpholino (1.25 mM each) complementary to U1 and two morpholinos (0.6 mM each) complementary to isoforms of U2 spliceosomal RNAs (U1U2) were used15,45,50. Divergence of the U2 genes in zebrafish requires the use of two different morpholinos to block activity.

Zebrafish Nanog and SoxB1 capped mRNA was generated by in vitro transcription using mMessage mMachine S6 kit (Ambion) in accordance with the manufacturer’s instructions. For Nanog morpholino rescue, zebrafish nanog was cloned into a pCS2 vector and sense mutations introduced during PCR amplification (indicated in lowercase). 5′-ATGCCCAATGAGAAATGCCTGCGTGAAGTTAC-3′. SoxB1 rescue construct were provided by Y. Kamachi46. To rescue the loss-of-function phenotype, 50 pg of Nanog and 20 pg of SoxB1 (5 pg each) mRNAs were injected either individually or together into morpholino-injected embryos at the one-cell stage. Triple loss-of-function embryos were additionally injected with 30 pg of pou5fl mRNA41.

For polymerase II inhibition, α-amanitin was obtained from Sigma Aldrich and re-suspended in nuclease-free water. Dechorionated embryos were injected with 0.2 ng of α-amanitin at the one-cell stage49.

For translation inhibition, wild-type embryos were collected and dechoronated at the one-cell stage. To allow for translation of maternal mRNAs, at 32-cell stage, embryos were transferred to media containing cycloheximide (50 µM of each) and 5 ng of Nanog morpholino (0.6 mM each). For inhibition of splicing, one morpholino (1.25 mM each) complementary to U1 and two morpholinos (0.6 mM each) complementary to isoforms of U2 spliceosomal RNAs (U1U2) were used15,45,50. Divergence of the U2 genes in zebrafish requires the use of two different morpholinos to block activity.

Ribosome profiling. Fifty wild-type embryos injected with 1 nl of Nanog morpholino (0.6 mM each) and SoxB1 morpholino (0.125 mM each) mix and fifty non-injected embryos were collected at the 64-cell stage. Embryos were lysed using 800 µl of a mammalian cell lysis buffer containing 100 µg ml−1 cycloheximide as per the manufacturer’s instruction (ARTseq Ribosome Profiling kit, RPHMR12126, Epicentre). For nucleate treatment, 3 µl of ARTseq nuclease was used. Ribosome protected fragments were run and 28–29-nt fragments were gel purified as previously described34 and cloned according to the manufacturer’s protocol (ARTseq kit). Illumina libraries were constructed and sequence reads analysed as in ref. 16. Subsequent to sequencing, traces of exogenous RNA corresponding to a nanog antisense probe, and ntlα sense and antisense, were detected outside the expected size range. Only 28- and 29-nt sense sequences were used in the analysis matching the size of the ribosome footprint.

Reverse transcription PCR (RT–PCR). Total RNA from ten embryos was extracted using Trizol (Invitrogen) at sphere and shield stage for each experimental condition. RNA was treated with TURBO DNase (Ambion) for 30 min at 37 °C and extracted using phenol chloroform. cDNA was generated by reverse transcription with random hexamers using SuperscriptIII (Invitrogen). RT–PCR reactions were carried out at an annealing temperature of 60 °C for 35 cycles. Primers are listed below.

Illumina sequencing. Total RNA was extracted as above, and strand-specific TruSeq RNA sequencing libraries were constructed by the Yale Center for Genome Analysis. Before sequencing, samples were treated with Epicentre Ribo-Zero Gold kits according to the published protocol, to deplete ribosomal RNA. Samples were multiplexed on Illumina HiSeq 2000/2500 machines to produce single-end 76–nt reads. Sequencing samples are summarized in Extended Data Table 1.

Raw reads were initially filtered by aligning permissively to a ribosomal DNA index using Bowtie v0.12.9 with switches -s -k 1 -x -e 10000. Unaligned reads were then aligned to the zebrafish Zv9 (UCSC danRe7) genome sequence using TopHat v2.0.27 with default parameters.

Hybrid gene models were constructed from the union of zebrafish Ensembl r70, ReSeq annotations (downloaded from http://www.gene.uchsc.edu on 8 February 2013) and Ensembl RNA-seq gene models52. All overlapping transcript isoforms were merged to produce maximal exonic annotations. To quantify exonic expression levels per gene, genome-uniquely aligning reads overlapping ≥10 nt to the exonic region of a given gene were summed. To quantify intronic expression levels per gene, an annotation mask was first created consisting of repetitive sequences as annotated by RepeatMasker in addition to any region aligned by ≥2 reads in the α-amanitin samples; this is to minimize false-positive introns due to annotation inconsistencies, under the assumption that the transcriptionally inhibited α-amanitin transcriptome should contain no intron-containing transcripts. Valid intron-overlapping reads aligned the intronic region uniquely and overlapped no more than 50% to the masked regions. For the purposes of RPMK normalization, we considered intron length to be the number of unmasked nucleotides. We additionally identified reads that mapped to at most two different genomic loci (for example, two closely related paralogues) and from these calculated ‘meta gene’ expression values. Meta genes were treated as conventional genes for differential expression, but counted as two different genes in subsequent analyses.

The mir-430 locus is internally repetitive; therefore, reads were aligned to mir-430 in a separate step using Bowtie with switches -n 2 -k 1 on the genomic region chr4:27999472-28021845, which spans the presumed mir-430 polycistron. Reads overlapping any of the Ensembl annotated mir-430 hairpins in this region were counted as mir-430 cluster reads. Reads are counted only once, regardless of the number of times they overlap.

Differential gene expression analysis. Differential expression analysis was performed using the R package DESeq2 with the parameters fit.type = local and sharingMode = fit-only. For exonic expression comparisons, raw exon-overlapping read counts were assembled for all genes with a raw read count of at least 10 in one of the compared samples. Genes annotated as Ensembl ‘endogeneous’, ‘IG_pseudogene’, ‘IG_V_pseudogene’, ‘misc_RNA’, ‘Mt_rRNA’, ‘Mt_tRNA’, ‘non_coding’, ‘nonse_disked’, ‘reserved’, ‘rrna’, ‘sense_intronic’, ‘sense_overlapping’, ‘snRNA’, ‘snRNA’ were excluded. Additionally, all Ensembl mir-430 annotations were excluded, and a meta ‘mir-430 hairpin’ gene added in, based on the quantification described in the previous section. For intronic expression comparisons, because overall counts are lower, variance models for DESeq were calculated using both intronic counts and exonic counts as separate gene entries (that is, at most 1 intron count entry and 1 exonic count entry per gene). Differential expression proceeded as normal, except multiple test correction of P values was applied relative only to the intronic counts.

Six sets of differential expression analyses were performed separately: exons and introns for each of (group 1) wild-type 64 cell, wild-type sphere, wild-type shield, U1U2 MO 4 h.p.f., α-amanitin 4 h.p.f. and α-amanitin 6 h.p.f., with the two α-amanitin conditions serving as pseudo replicates for DESeq for variance
GATAA-3
TCCAGTCCGCCATTTC-3
5
5
GTTACCTTAGC-3
Morpholino oligonucleotide sequence.

To focus on the maximally non-redundant region in the locus, reads and enrichment, reads were normalized by the number of times the read aligned exhaustively to the region chr4:27994413–28019085 (2 kb).

In the zebrafish genome, Zv9. For the first wave, using an estimate for zygotic transcription based on intronic signal for amanitin expression levels. Expression calls are provided in Supplementary Data 1.

Although a cutoff of 5 RPKM was used for the main analyses, increases in either exon or intron levels are considered to be significant expression change, with intronic signal taking precedence when the directions of signal, depending on the pattern of signal originally used to call the gene as zygotic. Although no significant changes in intron level were used as further confirmation when no significant changes in intron level were detected, significant expression changes in either exon or intron levels were considered to be of biological importance. Increases in either exon signal, intron signal, or both determined positive zygotic transcription. For genes with a maternal contribution, increases in intronic signal due to zygotic transcription can be accompanied by no change or decreases in exonic signal. For genes significantly expressed, zygotic transcription contribution was estimated using either intronic RPKM level or the RPKM difference between the post-MZT condition and the maximum of 64-cell and 10 nt of unmasked intron sequence.

GATCCAGTGACTGAAAGGCCTCTAATCAGGTCAAAC

TCGAACGGAACCGGACTGCTGCCTTG
3
5
TGATGCAAGCTTGGGGATCTGTGATAGGT

Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene transcriptional network in embryonic stem cells. Dev. Cell 13, 69–79 (2007).

Integration of external signaling pathways with the core transcriptional regulatory circuitry of embryonic stem cells. Cell 133, 1106–1117 (2008).

Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004).

Macmillan Publishers Limited. All rights reserved

© 2013 Macmillan Publishers Limited. All rights reserved
Extended Data Figure 1 | Identifying de novo zygotic transcription.

a. Schematic of the sequencing strategy used in this study. Most zebrafish protein-coding genes (>95%) contain introns. De novo transcription produces intronic RNA sequences, which are spliced out of pre-mRNAs by the spliceosome, consisting of several ncRNA species including U1 and U2.

b. Typical mRNA-seq applications use poly(A)\(^+\) selection to enrich for the mature mRNA population. Sequence reads map predominantly to exonic regions, with very few reads mapping to introns. During embryogenesis, many zygotic transcribed genes are expected to have a maternal contribution in the cytoplasm from the oocyte. The resulting signal will be a mixture of maternal-derived (orange) and zygotic-derived (blue) mRNA molecules, which cannot be deconvoluted without comparing to a reference sample to look for exon expression level change. c. mRNA-seq applications that skip poly(A)\(^+\) selection and instead use a rRNA depletion protocol (RiboZero) will not enrich for the mature mRNA population. Thus, transcripts in all stages of biogenesis (pre-mRNA, partially spliced mRNA, spliced introns) will be sequenced, and reads are expected to map to both exons and introns. Because maternally contributed mRNAs are mature, any intron signal detected must derive from de novo zygotic transcription. To determine the background signal for each intron, \(\alpha\)-amanitin is used as a negative control for transcription.

d. Morpholinos complementary to U1 and U2 injected into one-cell embryos inhibit zygotic splicing. Thus, pre-mRNAs fail to be processed, and the entire population of zygotic mRNAs will be unspliced. There are two benefits: (1) intron signal is amplified, as introns are stabilized in the pre-mRNA compared to spliced out introns; (2) protein production from zygotic mRNAs is effectively halted, as pre-mRNAs are generally not competent for normal translation. Only the first wave of transcription, resulting from activation by maternal factors, is observed. Transcription that requires zygotic proteins (subsequent waves) will be largely absent. e. The proportion of sequencing reads aligning to gene introns. Total RNA sequencing reveals elevated intronic sequence reads, corresponding to de novo zygotic transcription. f. The fate of the 5,318 sphere-stage (4 h.p.f.) zygotic genes that are only detectable through significant changes in intron sequence. At shield stage (6 h.p.f.), 64% of the genes are still detected as zygotically transcribed based only on intron signal. These include genes that have simultaneous zygotic transcription with decay of the maternal contribution. 30% of the genes are detected using both exon and intron signal by stage, indicating that transcription levels at stage were low but detect differences in exons, but were apparent in the introns.

g. Number of genes detected in wild-type sphere-stage embryos, sphere embryos injected with U1U2 MO and wild-type shield-stage embryos, at different thresholds of detection. For both groups, a multiple test-corrected \(P < 0.1\) threshold (Benjamin–Hochberg) was used for differential expression of exonic signal. For intronic signal, an uncorrected \(P < 0.1\) was used for the ‘All detected’ group, whereas a multiple test-corrected \(P < 0.1\) was used for the >5 RPKM gain group. h. Quantitative RT–PCR was performed for select genes to confirm zygotic transcription in wild-type sphere-stage embryos (dark blue bars) compared to \(\alpha\)-amanitin-treated embryos (light blue bars). Primers were designed to amplify pre-mRNAs across exon–intron boundaries, except for \(cldne\). Expression levels are reported as percentage of CT value compared to a maternally provided housekeeping gene (\(\alpha\)-\(\beta\)act) \((\text{ACT} \times 100)\). Error bars show s.e.m. for three technical replicates. Increased pre-mRNA levels were observed for all zygotic genes tested between wild type and \(\alpha\)-amanitin. Maternally provided genes \(\text{mtATP6}\) and \(\text{mtND5}\) show no increase in wild type. Genes marked with an asterisk represent the bottom 10% of significant differential intron expression based on the RNA-seq data (which quantifies both pre-mRNA and spliced introns). This shows that using intron signal is a reliable indication of zygotic transcription. i. Genes detected in this study were compared to previous annotations of zygotic transcripts\(^1\), which used SNPs to identify transcripts derived from paternal alleles, to distinguish zygotic transcription from the maternal contribution. From their genomic sequencing results, we extracted 6,750 genes with informative exonic SNPs, which were consistently called between the two sets of matings. 178 of the genes we call zygotically transcribed at sphere stage at levels >5 RPKM are among the 6,750 informative genes. 87% of these are also found to be transcribed by ref. 13, with agreement between both strictly zygotic genes (Z) and maternal\(+\)zygotic genes (M+Z). 24 genes were not detected by ref. 13 (N.D.). At shield stage, 82% of the zygotic genes are also found by ref. 13, with 134 genes not detected. j. These undetected genes nevertheless have highly increased expression pre-64-cell to post-MZT (shield) using the RNA-seq data generated by ref. 13 (left) and in the current study (right). k. Cumulative plots show that SNP density is significantly lower among ref. 13 undetected genes at shield compared to detected genes \((P = 1.6 \times 10^{-3} \text{, two-sided Wilcoxon rank sum test})\), suggesting that low SNP density may account for the missed genes. l. Overall, ref. 13 and the current study distinguish a similar number of zygotic versus maternal transcripts at 6 h.p.f., among Ensembl genes with informative SNPs, with 74% agreement. However, 64% of zygotic transcripts identified in the current study do not have informative SNPs, and are thus not called transcribed by ref. 13. m. Genes called transcribed by ref. 13 but not in the current study have significantly higher intron signal than maternal genes \((P = 1.4 \times 10^{-10}, \text{two-sided Wilcoxon rank sum test})\), indicating that our significance threshold to detect zygotic transcription is conservative.

n. Reference 14 used a time course poly(A)\(^+\) RNA-seq strategy to define zygotic transcripts. The comparable r70 Ensembl genes in the ref. 14 maternal\(+\)zygotic gene category are largely found in our study; however, we find thousands more transcribed genes based on intron signal—these genes represent transcription that is masked by the maternal contribution. o. Overall, our study captures most of the zygotic genes in the three categories described by ref. 14: maternal–zygotic genes (zygotic genes with maternal contribution, yellow), MBT genes (strictly zygotic genes detected at MBT, 3.5 h.p.f., orange), and post-MBT genes (strictly zygotic genes detected at 5.3 h.p.f., pink). Venn diagrams show the number of comparable r70 Ensembl genes that overlap between the two studies. Left panels include all zygotic genes detected in this study; right panels impose a zygotic expression threshold of >5 RPKM. Percentages within each box are calculated as the number of genes detected in this study (at either time point) that overlap the respective ref. 14 group, divided by the size of the ref. 14 group. The overlap percentages are generally high, indicating that our study recovered genes previously annotated as zygotically transcribed as well as many additional zygotic genes based on the use of intronic reads.
Extended Data Figure 2 | Cycloheximide and U1U2 MO transcriptomes show first-wave genes. a–c, Biplots comparing strictly zygotic genes found by either the current study or ref. 13 at >5 RPKM (N = 202). Zygotic expressed genes of ref. 13 were identified by comparing their raw RNA-seq data at 128-cell (pre-MZT) versus 3.5 h.p.f. In a, zygotic expression in U1U2 MO treated embryos (Total RNA, 4hpf) is compared to ref. 13 embryos treated with cycloheximide (CHX) (poly(A)^+), assayed at 3.5 h.p.f., which shows lagging expression of many first-wave genes (defined as having >5 RPKM in U1U2 MO). Genes verified by RT–PCR as first wave (kif4, mrr, sox11a, ig5, cldne) are highlighted, in addition to cldnh, which misses the threshold for first wave in the U1U2 MO transcriptome, and vox, which was highlighted by ref. 13. In b, c, Embryos treated with CHX and assayed in the current study at 4 h.p.f. and 6 h.p.f. (Total RNA) show gradual increases in expression of zygotic genes. Together these results suggest that expression of first-wave genes is independent of de novo zygotic factors, and that transcription overall is slower in CHX-treated embryos compared to wild type or U1U2 MO. d, Biplot showing gene expression levels (exonic) for all genes in U1U2 MO embryos at 4 h.p.f. compared to CHX-treated embryos assayed at 6 h.p.f. Magenta points, strictly zygotic genes; dark-blue points, maternal + zygotic genes. 97% of the first-wave genes called in U1U2 MO were expressed >1 RPKM in the CHX condition. e, Biplot comparing exonic expression levels between wild-type (4 h.p.f.) and CHX-treated embryos. Magenta points are strictly zygotic genes expressed >5 RPKM in wild-type. The dotted line indicates 5 RPKM expression in CHX. f, Box-and-whisker plots comparing exonic expression level differences between wild-type and treated embryos in maternal genes, strictly zygotic multi-exon genes, and strictly zygotic single-exon genes. Both U1U2 MO and CHX-treated embryos show loss of expression in zygotic genes compared to wild type (U1U2 MO: P = 9.4 × 10^{-94} for multi-exonic, P = 4.2 × 10^{-39} for single exon, Wilcoxon rank-sum test comparing to maternal; CHX: P = 4.3 × 10^{-137} multi-exon, P = 1.5 × 10^{-28} single exon). The box defines the first and third quartiles, with the median indicated with a thick black line. The systemic decreases in expression in the U1U2 MO or CHX conditions compared to wild type indicate that although maternal factors can activate to a large extent expression of the first-wave genes, additional zygotic contribution of transcription factors (Nanog, SoxB1 and Pou5f1, but possibly others as well) might be required to reach wild-type levels of expression for many genes. This was also observed in ref. 13 for the gene vox. Alternatively, lower expression of first-wave zygotic genes might be caused by reduced level of maternal encoded proteins, as incubation with CHX at 32-cell stage might also decrease translation of the maternally deposited mRNAs. We consistently observe that CHX-treated embryos show lower/delayed expression compared with U1U2-MO-treated embryos, indicating that premature inhibition of maternal mRNA translation has an effect on the rate of activation of the first-wave genes. g, UCSC Genome Browser track showing an example of premature cleavage and polyadenylation (PCPA) for grhl3. Arrows indicate primer sites for RT–PCR. Previously, it was shown that U1 snRNA also serves to protect nascent mRNAs from PCPA, and that U1 inhibition results in 3'-truncation that may affect transcript level quantification56. h, RT–PCR for grhl3 on shield-stage embryos (N = 5). Wild-type (WT), U1U2 MO and CHX-treated embryos all amplify a 381-bp fragment from exon 1 to the beginning of intron 1. U1U2-MO-injected embryos amplify an unspliced 2,164-bp gene product spanning exon 1 to 3, whereas wild-type and CHX-treated embryos have a 294-bp spliced product, with α-amanitin as a negative control. i, Biplots comparing expression levels at the 5' end of a transcript compared to the 3' end, to detect PCPA at 4 h.p.f. Read density was assayed in up to 1,000 nucleotides of 5' and 3' sequence per transcript. The range of asymmetry values in wild type reflects sequencing biases or transcript annotation irregularities. Several genes in U1U2 MO embryos show elevated asymmetry compared to wild-type (orange dots, >twofold), reflecting a drop-off of read density moving 5'-3' in the transcript, indicative of PCPA. These genes are included in our annotations of the zygotic first wave of expressed genes. The minor extent of PCPA during embryogenesis may reflect the short length of many of the zygotic genes, as PCPA is associated with longer genes that are likely to harbour cryptic polyadenylation sites. Transcripts in CHX-treated embryos generally do not show this trend.
To assay the embryonic specificity of the first-wave genes, we used publicly available microarray data from NCBI GEO across eight normal adult tissue types (brain, GSE11107; liver, GSE11107; heart, GSE17993; skin, GSE24528; kidney, GSE32363; digestive tract, GSE35889; ovary, GSE14979; testis, GSE14979) to classify genes as expressed specifically in the embryo (called ‘present’ by the MAS5 algorithm in 0–2 different adult tissues), genes expressed semi-specifically (present in 3–5 different adult tissues), and genes expressed ubiquitously (present in 6–8 different adult tissues); this latter group would correspond to ‘housekeeping’ genes. Sphere-stage first-wave genes consist of a mixture of specifically expressed and housekeeping genes. Subsequent-wave genes and genes expressed at levels \( \leq 5 \) RPKM consist of a larger proportion of genes typically expressed ubiquitously in adult fish, suggesting a widespread activation of genes encoding general cellular processes in addition to developmentally specific ones. b. Gene Ontology enrichment analysis for first-wave, subsequent-wave and the low expressed genes with intronic RPKM \( \geq 0.5 \). Top 5 scoring clusters are shown for each gene set. Clusters were defined using DAVID (http://david.abcc.ncifcrf.gov) Gene Functional Annotation Clustering on GO ‘FAT’ annotations and ‘high’ stringency. Clusters are annotated with representative GO terms and corresponding Benjamini–Hochberg FDR corrected \( P \) values. c. To validate genes activated in the first wave versus subsequent waves, RT–PCR was performed on shield stage (6 h.p.f.) in wild-type, \( \alpha \)-amanitin, U1U2 MO and cycloheximide (CHX)-treated embryos. The unspliced products for \( \text{nrr, isg15} \) and \( \text{klf4} \) are detected only in U1U2 morphants, confirming that U1U2 is indeed blocking splicing. CHX treatment indicates the single-exon genes \( \text{cldne} \) and \( \text{sox11a} \) are activated in the first wave. \( \text{cldhb} \) is detected at low levels in wild type, as well as both U1U2 MO and CHX-treated embryos; however, based on RNA-seq levels at sphere stage, this gene does not pass the expression threshold to be called first wave. \( \text{krt4} \) is significantly reduced in U1U2 MO and CHX-treated embryos, indicating that zygotic factors are required for its activation. Maternal \( \text{tubb4b} \) is present in all conditions. d–h, UCSC Genome Browser tracks for first-wave genes \( \text{nrr, isg15, klf4, cldhne} \) and \( \text{sox11a} \). i, UCSC Genome Browser track for \( \text{cldnb} \), which shows low expression levels at sphere stage. j, k, UCSC Genome Browser track for a gene activated in subsequent waves (\( \text{krt4} \)) and for a maternally provided gene (\( \text{tubb4b} \)).
Extended Data Figure 4 | Loss-of-function and rescue for Nanog, SoxB1 and Pou5f1. a, Wild-type embryos were injected with Sox2, Sox3, Sox19a and Sox19b morpholinos individually and in combination (0.125 mM). Consistent with other reports, only quadruple LOF results in severe developmental defects (27 h.p.f.)20. LOF phenotype is rescued by injecting soxb1 mRNA (imaged at 24 h.p.f.). b, Wild-type and MZpou5f1 embryos were injected with SoxB1 MO (0.125mM each) and Nanog MO (0.6mM each) individually and in combination (Nanog + SoxB1). Loss of Nanog results in severe gastrulation defects and failure to progress past 80% epiboly, as previously reported24. Loss of SoxB1 in both wild-type and MZpou5f1 embryos showed developmental delay, whereas combined LOF for Nanog/SoxB1 or Pou5f1/Nanog completely arrested development before epiboly. c, Individual LOF for Nanog, SoxB1 and Pou5f1 resulted in developmental abnormalities (top panel). Embryos with Nanog LOF did not progress past 80% epiboly. The LOF phenotypes were rescued by injecting the respective mRNAs (LOF + mRNA) (bottom panel). Embryos imaged at 23 h.p.f. d, e, Wild-type and MZpou5f1 embryos were co-injected with Nanog + SoxB1 MO. LOF embryos arrest at sphere stage and resemble α-amanitin-injected embryos (+MO). Combinatorial LOF is rescued with co-injection of the respective mRNAs (MO + mRNA). Embryos were imaged when wild-type siblings reached 80% epiboly (d) and 24 h.p.f. (e). f, Ribosome profiling was performed at 2 h.p.f. on wild-type embryos and embryos injected with Nanog and SoxB1 morpholino at one-cell stage, to determine the specificity of the morpholinos to repress translation of nanog and soxB1 mRNA. Sequenced ribosome protected fragments (RPFs) were predominantly 28–29 nucleotides long, indicative of the width of the ribosome footprint. UCSC Genome Browser tracks (sense strand) showing ribosome profiling (top 2 tracks per gene) and input mRNA (bottom 2 tracks per gene). nanog and sox19b show significant reduction in RPFs in the Nanog MO + SoxB1 MO injected embryos compared to wild type. Input mRNA is unaffected. Neither h1m, a highly expressed gene, nor oep, a low expressed gene, has any change in either RPFs or input mRNA between wild-type and injected embryos.
Extended Data Figure 5 | A transcriptome-wide effect is observed in LOF embryos. a, b, Biplots comparing log2 RPKM exonic expression levels between time-matched wild-type and Nanog + SoxB1 + Pou5f1 LOF embryos (a); and between wild-type and triple LOF embryos co-injected with mRNA for nanog, soxB1 and pou5f1 (b) at 4 h.p.f., 6 h.p.f. and 8 h.p.f. Dark blue points highlight all strictly zygotic genes, whereas magenta points highlight the first-wave zygotic genes. miR-430 is highlighted at 4 h.p.f. in red, whereas green points indicate expression levels of (left to right) sox2, sox3, sox19a, sox19b and nanog. c, Plots showing proportion of the zygotic transcriptome affected (including first and subsequent waves). For sphere and shield stages and each LOF (Nanog MO, Nanog MO + SoxB1 MO, MZpou5f1 + Nanog MO + SoxB1 MO), dark blue regions represent genes with normal expression compared to wild type; light blue regions represent genes with significant loss of expression. Inner ring comprises zygotic genes with <1 RPKM of maternal contribution; outer ring comprises zygotic genes with maternal contribution. Percentages represent total affected genes in that condition over both gene categories. At sphere stage (4 h.p.f.) the effect for maternal and zygotic (M+Z) genes is weaker than for strictly zygotic genes, which may reflect a reduced power to detect changes due to the maternal contribution (see also Fig. 3b).
Extended Data Figure 6 | Zygotic genes fail to be activated with Nanog, SoxB1 and Pou5f1 LOF.  a–f, In situ images showing that loss of Nanog and SoxB1 function results in a significant reduction in zygotic foxa3, blf, vent, foxd3, krt18 and ntla expression. LOF embryos (Nanog + SoxB1 MO) resemble α-amanitin-injected embryos by in situ, as well as in their transcriptome profiles. Loss of Nanog and SoxB1 is rescued by nanog and soxb1 mRNA (MO + mRNA), which is sufficient to restore wild-type expression profiles. g, h, In situ hybridization for zygotically transcribed cldne and cebpβ shows that loss of Nanog and SoxB1 (Nanog + SoxB1 MO) has minimal effect on activation of cldne and cebpβ. However, triple LOF shows a decrease in expression for both genes, as shown in the UCSC tracks. I–o, RT–PCR analysis (i) and UCSC Genome Browser tracks (j–o) for zygotic genes klf4b, vox, tbx16, mxtx2, her3 and sox32, showing differential expression of zygotic genes in LOF conditions. Expression levels were rescued by injecting nanog and soxb1 mRNA (MO + mRNA). Maternal hist1h2aa was present in the α-amanitin control. RT (–) indicates the absence of reverse transcriptase, to control for genomic DNA contamination. In UCSC tracks, loss of Nanog, SoxB1 and Pou5f1 in each sequenced condition is indicated by (–).
Extended Data Figure 7 | Loss of function affects genes across functional categories in a combinatorial manner. a, Comparisons of the single and double LOF transcriptomes to the triple LOF reveal that regulation is often combinatorial and redundant. Although all three factors seem to exert some influence on most of the transcribed genes, the effects observed in the combined LOF are not usually additive. Nanog seems to have the strongest individual effect of the three factors, but Pou5f1/SoxB1 can often act redundantly, or amplify the effect of Nanog alone. Venn diagrams show overlap between genes significantly downregulated at shield stage in single (pink), double (green) and triple (blue) LOF embryos. n = 2,172, left; n = 2,027, right. b, Pie charts showing the relative influence of each factor in the triple LOF. For each pie chart, genes downregulated in the triple LOF were compared in the single and double LOF transcriptomes. If the downregulation of a gene observed in the single LOF was less than twofold different from that observed in the triple LOF, the gene was considered to be regulated by the single factor alone. Otherwise, if the downregulation in the double was less than twofold different than the triple LOF, the gene was considered regulated by the combination of two factors. All remaining genes display the strongest downregulation in the triple LOF. Note that genes in each category may be affected by other combinations of LOF; however, the effect there is weaker. c, Breakdown of effects showing the redundancy of regulation in genes downregulated in the triple LOF. The largest category of genes seems to be regulated exclusively by Nanog (31%), as loss of Nanog function is equivalent to the triple LOF. 16% of genes seem to be regulated by both Nanog and Pou5f1 together, as loss of either Nanog alone or loss of Pou5f1 alone is sufficient to achieve the loss of function observed in the triple LOF. 16% of genes have equivalent effects with either Nanog LOF or Pou5f1 + SoxB1 double LOF, suggesting that Pou5f1 and SoxB1 act redundantly for these genes to co-regulate with Nanog. 9% of genes show the strongest effect only in the triple LOF. This suggests that there is redundancy between all three factors, as these genes can still be activated when one or two factors are lost. In all, 76% of the affected genes are subject to some form of redundant or combinatorial regulation. Asterisk indicates that for genes where the effect in the triple LOF was equivalent to both the double loss of SoxB1 and Nanog, and the double loss of SoxB1 and Pou5f1, we inferred that the effect was conferred by SoxB1 alone. d, Most genes are affected in the double or triple LOF conditions, across the gene categories defined in Extended Data Fig. 3a, including both embryo-specific genes and housekeeping (ubiquitously expressed) genes. e, Heat map showing specific embryonic functional categories of genes downregulated in LOF embryos. Three GO categories of genes expressed in wild type at shield stage are shown: general transcription factors, gastrulation and cell movement genes, and patterning genes (anterior–posterior axis and dorsal–ventral axis). Expression levels are represented as row-normalized values on a red–green colour scale for wild type (WT), α-amanitin treated (A), Nanog LOF (N), Nanog + SoxB1 LOF (NS), and Nanog + SoxB1 + Pou5f1 triple LOF (NSP). Widespread loss of expression is observed across these functional categories, with the triple LOF exhibiting the greatest similarity to α-amanitin.
a) GFP-Reporter-mRNA and miR-430

b) Wild type, α-aamanin, SoxB1 MO, Nanog MO, Nanog + SoxB1 MO

(c) Wild type, Uninjected, Nanog + SoxB1 MO, MO + mRNA

d) WT vs MZdicer, WT vs Nanog LOF, WT vs MZpou5f1, WT vs MZpou5f1 + SoxB1 LOF, WT vs Nanog + SoxB1 LOF, WT vs Triple LOF

©2013 Macmillan Publishers Limited. All rights reserved
**Extended Data Figure 8 | miR-430 activity requires Nanog function.**

**a**, Schematic representation of miR-430 activity reporter GFP-3×IPT-miR-430 containing three complementary target sites to miR-430 (ref. 26). If maternal factor (M) is present, miR-430 is expressed and represses translation of the target mRNAs (no GFP expressed). Conversely, loss (X) of the maternal factor required for miR-430 activation would lead to a failure to repress miR-430 targets and GFP expression. dsRed is a control mRNA that is not subject to regulation by miR-430 and is co-injected with the target mRNA.

**b**, GFP-reporter and dsRed (injection control) mRNAs were co-injected into embryos at one-cell stage and fluorescence assayed 7–8 h.p.f. GFP-reporter is repressed in wild-type and SoxB1 morphants by endogenous miR-430 (ref. 26), as shown by a decrease in GFP expression. The GFP-reporter fails to be repressed in α-amanitin (that fail to activate zygotic transcription and do not express miR-430) and Nanog-MO-injected embryos, indicating a loss of miR-430 activity.

**c**, *In situ* hybridization for maternal miR-430 target gene *cd82b*. At shield stage, *cd82b* is cleared from wild-type and MZpou5f1 embryos. Combined Nanog, SoxB1 and Pou5f1 LOF causes a failure in clearance (MZpou5f1 + Nanog + SoxB1 MO). Injection of *nanog*, *soxb1* and *pou5f1* mRNA rescues the phenotype (MO + mRNA).

**d**, Cumulative plots showing the effect of each LOF condition on miR-430 target repression, as in ref. 16, using Total RNA-seq. Plots show the distribution of log2 fold expression level difference for each condition relative to wild type in three groups of genes defined in ref. 16: miR–430 targets with multiple 7mer or 8mer seed target sites in their 3′ UTR; miR-430 targets with a single 7mer or 8mer seed in the 3′ UTR; and genes lacking miR-430 seed sites in their 3′ UTRs. *P* values are for two-sided Wilcoxon rank-sum tests comparing each of the two miR-430 target groups to the non-targets. MZdicer expression data are from ref. 16. Displacement of the curve to the left (−) from the grey control line indicates a larger fraction of genes are accumulated (fail to be degraded) in the indicated condition compared to wild type. Nanog has the strongest effect, although there is also an effect from the combined loss of Pou5f1 and SoxB1.

**e**, Cumulative plots showing the effect of triple LOF with and without mRNA rescue on miR-430 target repression, using poly(A) selection RNA-seq. At 6 h.p.f., miR-430 targets fail to be degraded in the LOF condition compared to wild type, with expression levels of targets high in the LOF relative to wild type. Co-injection of *nanog*, *soxb1* and *pou5f1* mRNAs restores miR-430 activity, and the targets’ expression levels are restored to near wild-type levels.

**f**, At 8 h.p.f., miR-430 targets are still undegraded in the LOF, but are degraded to wild-type levels in the rescue. *P* values are for two-sided Wilcoxon rank-sum tests comparing each of the two miR-430 target groups to the non-targets.
Extended Data Figure 9 | Nanog, Pou5f1 and SoxB1 bind to and regulate embryonic genes. a, Nanog chromatin immunoprecipitation sequencing binding data in zebrafish at 3.3 h.p.f. (ref. 24) was re-analysed to determine Nanog-bound regions genome wide. Pie charts show percentage of genes in each category that are associated with Nanog bound regions (~5 kb). 74% of first-wave genes detected at sphere were associated with Nanog binding, twofold higher than subsequent-wave genes ($P = 3.7 \times 10^{-29}$, two-sided Fisher’s exact test). Low expressed zygotic genes are also less associated with Nanog-bound regions. For those genes that are nonetheless affected by Nanog LOF, this suggests that they are influenced by Nanog indirectly, rather than through Nanog binding at the gene locus. The enrichment of Nanog binding on the first-wave genes versus subsequent waves supports a model where Nanog has a central role in the regulation of the activation of the first wave of zygotic transcription. ChIP-seq data for Nanog, Oct4 and Sox2 in mouse embryonic stem cells57,58 were used to examine the binding profiles of genes transcribed during pre-implantation mouse embryogenesis59, as ChIP data do not exist for early mouse embryos. Three gene groups were analysed: α-amanitin-sensitive genes expressed at early 2-cell stage (minor wave ZGA), α-amanitin sensitive genes expressed at late 2-cell stage (major wave ZGA), and genes expressed during the 4–8-cell stages (mid-preimplantation). Gene promoters (defined to be 5 kb upstream to 50 bp downstream the annotated transcription start site of a gene) are highly enriched in binding sites among the genes comprising ZGA, as compared to the genome as a whole ($P = 4.03 \times 10^{-9}$ for the minor wave, $P = 6.05 \times 10^{-18}$ major wave, two-sided Fisher’s exact test). Genomic coordinates (mm8) for genes were defined by NIA/NIH U-cluster annotations for the microarray probes in ref. 59. Note that not all of the genes expressed during ZGA are necessarily expressed in ES cells; thus, the binding proportions are likely to be underestimates. Although these represent two different states of development, these results are consistent with a role for these factors in activating the earliest waves of zygotic gene expression also in mammals. c, Model showing maternal gene expression in red and zygotic gene expression in blue during the maternal to zygotic transition. Gene expression is depicted on the y axis and time on the x axis. During the MZT, Nanog, SoxB1 and Pou5f1 are required to activate a large fraction of zygotic genes, including miR-430, which in turn is responsible for the clearance of a significant portion of maternal mRNAs. In the loss of function of Nanog, SoxB1 and Pou5f1, there is a reduction in zygotic gene activation, causing a failure in the establishment of the zygotic developmental program, including loss of miR-430 expression and maternal mRNA clearance.
## Extended Data Table 1 | Summary of Illumina sequencing data generated in this study

| Sample* | Preparation | Age† | Genotype | Treatment | Total reads | rRNA | Aligned‡ |
|---------|-------------|------|----------|-----------|-------------|------|----------|
| 1       | input mRNA  | 2    | WT       | none      | 11,701,690  | 7,122,193 | 3,601,785 |
| 2       | ribosome profiling | 2    | WT       | none      | 35,324,638  | 28,567,085 | 4,782,034 |
| 3       | input mRNA  | 2    | WT       | Nanog MO, SoxB1 MO | 10,054,885  | 5,862,165 | 3,376,709 |
| 4       | ribosome profiling | 2    | WT       | Nanog MO, SoxB1 MO | 37,708,163  | 28,354,953 | 5,946,384 |
| 5       | RiboZero    | 2    | WT       | none      | 13,290,599  | 6,830,823 | 4,757,404 |
| 6       | poly(A)+    | 4    | WT       | poly(A)+  | 21,504,328  | NA | 17,269,920 |
| 7       | RiboZero    | 4    | WT       | none      | 49,104,024  | 29,072,153 | 16,633,109 |
| 8       | RiboZero    | 4    | WT       | a-amanitin | 43,280,984  | 17,159,279 | 22,541,707 |
| 9       | RiboZero    | 4    | WT       | cycloheximide | 60,498,090  | 13,960,195 | 40,936,195 |
| 10      | RiboZero    | 4    | WT       | U1U2 MO   | 57,668,297  | 37,115,620 | 16,937,567 |
| 11      | RiboZero    | 4    | WT       | Nanog MO  | 15,632,568  | 6,248,360 | 9,384,208 |
| 12      | RiboZero    | 4    | WT       | SoxB1 MO  | 17,468,137  | 8,655,861 | 7,812,276 |
| 13      | RiboZero    | 4    | WT       | Nanog MO, SoxB1 MO | 13,583,155  | 6,597,214 | 5,853,123 |
| 14      | RiboZero    | 4    | MZpou5f1 | none      | 116,396,185 | 90,173,314 | 25,218,839 |
| 15      | RiboZero    | 4    | MZpou5f1 | Nanog MO  | 91,577,210  | 45,289,682 | 39,254,866 |
| 16      | RiboZero    | 4    | MZpou5f1 | SoxB1 MO  | 47,420,118  | 32,192,741 | 12,137,679 |
| 17      | RiboZero    | 4    | MZpou5f1 | Nanog MO, SoxB1 MO | 42,220,676  | 28,214,894 | 11,452,982 |
| 18      | RiboZero    | 4    | MZpou5f1 | Nanog MO, SoxB1 MO, rescue mRNA | 63,765,933  | 22,119,249 | 36,076,903 |
| 19a     | RiboZero    | 6    | WT       | none      | 14,503,666  | 5,448,147 | 7,847,519 |
| 19b     | RiboZero    | 6    | WT       | none      | 15,074,846  | 8,338,535 | 5,830,376 |
| 19c     | RiboZero    | 6    | WT       | none      | 17,682,683  | 8,153,773 | 7,808,568 |
| 20      | poly(A)+    | 6    | WT       | none      | 22,626,103  | NA | 20,010,462 |
| 21      | RiboZero    | 6    | WT       | a-amanitin | 35,748,801  | 3,075,825 | 9,151,010 |
| 22      | RiboZero    | 6    | WT       | cycloheximide | 61,123,998  | 3,691,903 | 5,792,495 |
| 23      | RiboZero    | 6    | WT       | Nanog MO  | 16,430,596  | 7,745,144 | 7,965,252 |
| 24a     | RiboZero    | 6    | WT       | Nanog MO, SoxB1 MO | 14,084,576  | 8,615,769 | 4,883,307 |
| 24b     | RiboZero    | 6    | WT       | Nanog MO, SoxB1 MO | 14,567,957  | 7,517,631 | 5,664,236 |
| 25      | RiboZero    | 6    | MZpou5f1 | none      | 101,366,092 | 81,625,522 | 13,520,349 |
| 26      | RiboZero    | 6    | MZpou5f1 | SoxB1 MO  | 13,616,658  | 5,839,148 | 6,383,235 |
| 27      | RiboZero    | 6    | MZpou5f1 | Nanog MO, SoxB1 MO | 28,843,110  | 13,273,879 | 12,670,402 |
| 28      | poly(A)+    | 6    | MZpou5f1 | Nanog MO, SoxB1 MO | 25,148,861  | NA | 22,263,359 |
| 29      | poly(A)+    | 6    | MZpou5f1 | Nanog MO, SoxB1 MO, rescue mRNA | 23,785,791  | NA | 21,033,046 |
| 30      | poly(A)+    | 8    | WT       | none      | 23,504,890  | NA | 20,790,090 |
| 31      | poly(A)+    | 8    | MZpou5f1 | Nanog MO, SoxB1 MO | 25,758,851  | NA | 22,615,585 |
| 32      | poly(A)+    | 8    | MZpou5f1 | Nanog MO, SoxB1 MO, rescue mRNA | 23,475,791  | NA | 20,291,649 |

*All rows represent separately collected biological samples; that is, 19a, 19b and 19c, and 24a and 24b are biological replicates.
†Age in hours post fertilization.
‡Reads aligning to the genome, minus rRNA-aligning reads where applicable.