A note on maximum size of Berge-C_4-free hypergraphs

Beka Ergemlidze *

February 17, 2022

Abstract

In this paper, we consider maximum possible value for the sum of cardinalities of hyperedges of a hypergraph without a Berge 4-cycle. We significantly improve the previous upper bound provided by Gerbner and Palmer. Furthermore, we provide a construction that slightly improves the previous lower bound.

1 Introduction

A Berge cycle of length k, denoted by Berge-C_k, is an alternating sequence of distinct vertices and distinct hyperedges of the form $v_1, h_1, v_2, h_2, \ldots v_k, h_k$ where $v_i, v_{i+1} \in h_i$ for each $i \in \{1, 2, \ldots, k-1\}$ and $v_kv_1 \in h_k$.

Throughout the paper we allow hypergraphs to include multiple copies of the same hyperedge (multi-hyperedges).

Let H be a Berge-C_4-free hypergraph on n vertices, Győri and Lemons [3] showed that $\sum_{h \in H}(|h| - 3) \leq (1 + o(1))12\sqrt{2}n^{3/2}$. Notice that it is natural to take $|h| - 3$ in the sum, otherwise we could have arbitrarily many copies of a 3-vertex hyperedge. In [2] Gerbner and Palmer improved the upper bound proving that $\sum_{h \in H}(|h| - 3) \leq \frac{\sqrt{6}}{2}n^{3/2} + O(n)$, furthermore they showed that there exists a Berge-C_4-free hypergraph \mathcal{H} such that $\sum_{h \in \mathcal{H}}(|h| - 3) \geq (1 + o(1))\frac{1}{3\sqrt{3}}n^{3/2}$.

In this paper we improve their bounds.

Theorem 1. Let \mathcal{H} be a Berge C_4-free hypergraph on n vertices, then

$$\sum_{h \in \mathcal{H}}(|h| - 3) \leq (1 + o(1))\frac{1}{2}n^{3/2}.$$

Furthermore, there exists a C_4-free hypergraph \mathcal{H} such that

$$(1 + o(1))\frac{1}{2\sqrt{6}}n^{3/2} \leq \sum_{h \in \mathcal{H}}(|h| - 3)$$

*Department of Mathematics and Statistics, University of South Florida, Tampa, Florida 33620, USA. E-mail: beka.ergemlidze@gmail.com
This improves the upper-bound by factor of $\sqrt{6}$ and slightly increases the lower-bound. We introduce couple of important notations and definitions used throughout the paper. Length of a path is the number of edges in the path. For convenience, an edge or a pair of vertices \{a, b\} is sometimes referred to as ab.

For a graph (or a hypergraph) H, for convenience, we sometimes use H to denote the edge set of the graph (hypergraph) H. Thus the number of edges (hyperedges) in H is $|H|$.

2 Proof of Theorem 1

We will now construct a graph, existence of which is proved in [2] (page 10). Let us take a graph H on a ground set of H by embedding edges into each hyperedge of H. More specifically, for each $h \in H$ we embed $|h| - 3$ edges on the vertices of h, such that collection of edges that were embedded in h consists of pairwise vertex-disjoint triangles and edges. We say that $e \in H$ has color h if e was embedded in the hyperedge h of the hypergraph H. We will upper bound the number of edges in H, which directly gives us an upper bound on $\sum_{h \in H} (|h| - 3)$.

Observation 2. For each vertex x of the graph H, at most 2 adjacent edges to x have the same color. Moreover, if xy and xz have the same color h, then $yz \in H$ and the color of yz is h as well.

The following lemma is stated and proved in [2] (claim 16, page 10).

Lemma 3. H is $K_{2,7}$-free.

Now we will upper bound the number of edges in H. It should be noted, that the only properties of H that we use during the proof, are Observation 2 and Lemma 3.

For any vertex $v \in V(H)$, let $d(v)$ denote the degree of v in the graph H and let d be the average degree of the graph H.

Claim 1. We may assume that a maximum degree in H is less than $18\sqrt{n}$.

Proof. First, using the standard argument, we will show, that we may assume minimum degree in H is more than $d/3$. Let $u \in V(H)$ be a vertex with degree at most $d/3$. Let us delete the vertex u from H, moreover if two distinct edges ux, uy have the same color in H, then delete an edge xy as well (by Observation 2 at most $d/6$ edges will be deleted this way). Let the obtained graph be H'. Clearly $|H \setminus H'| \leq d/3 + d/6$, i.e. $|H'| \geq \frac{nd}{2} - \frac{d}{2} = \frac{(n-1)d}{2}$ and since H' has $n' = n - 1$ vertices, it means that the average degree of H' is at least $\frac{d}{3}$, and it is easy to see that Observation 2 and Lemma 3 still holds for H. So we could upper bound H' in terms of n' and get the same upper bound on H in terms of n. We can repeatedly apply this procedure before we will obtain a graph, with increased (or the same) average degree, and for which Observation 2 and Lemma 3 still holds. So we may assume, that the minimum degree in H is more than $d/3$.

Let us assume there is a vertex u with degree at least $18\sqrt{n}$. It is easy to see, that there are at least $18\sqrt{n} \cdot (d/3 - 1)$ paths of length 2 starting at u, moreover each vertex of H is
the endpoint of at most 6 of these 2-paths, otherwise there would be a $K_{2,7}$, contradicting Lemma 3. So $n > 18\sqrt{n} \cdot (d/3 - 1)/6$, therefore $d < \sqrt{n} + 3$, i.e. $|H| < n^{3/2}/2 + 1.5n$ and we are done. Therefore, we may assume that degree of each vertex of H is less than $18 \sqrt{n}$. □

Let $N_1(v) = \{x \mid vx \in E(H)\}$ and $N_2(v) = \{y \notin N_1(v) \cup \{v\} \mid \exists x \in N_1(v) \text{ s.t. } yx \in E(H)\}$ denote the first and the second neighborhood of v in H, respectively.

Let us fix an arbitrary vertex v and let $G = H[N_1(v)]$ be a subgraph of H induced by the set $N_1(v)$. Clearly, the maximum degree in G is at most 6, otherwise there is a $K_{2,7}$ in the graph H, which contradicts Lemma 3. So

$$|G| \leq 3|N_1(v)| = 3d(v).$$ \hspace{1cm} (1)

Let G_{aux} be an auxiliary graph with the vertex set $N_1(v)$ such that $xy \in E(G_{aux})$ if and only if there exists a $w \in N_2(v)$ with $wx, wy \in E(H)$. Let G'_{aux} be the graph with an edge st $E(G_{aux}) \setminus E(G)$, clearly

$$|G_{aux}| \leq |G'_{aux}| + |G| \leq |G'_{aux}| + 3d(v).$$ \hspace{1cm} (2)

Lemma 4. $|G'_{aux}| < d(v)^{9/5}$.

Proof. If we show, that G'_{aux} is $K_{5,5}$-free, then by Kovári-Sos-Turan Theorem $|G'_{aux}| \leq 41/2 \cdot d(v)^{9/5} < d(v)^{9/5}$. So it suffices to prove that G'_{aux} is $K_{5,5}$-free.

First, let us prove the following claim.

Claim 2. Let xy be an edge of G'_{aux} and let h_x and h_y be the colors of vx and vy in H, respectively. Then either $x \in h_y$ or $y \in h_x$.

Proof. First note that $h_x \neq h_y$ otherwise, by observation 2, xy would be an edge of G and therefore not an edge of G_{aux}. By definition of G'_{aux} there exists $w \in N_2(v)$ such that $wx, wy \in H$. Let h_1 and h_2 be colors of wx and wy respectively. $h_1 \neq h_2$, otherwise $xy \in G$, a contradiction. If $h_1 = h_x$ or $h_2 = h_y$ then by observation 2 $wv \in E(H)$, therefore $w \in N_1(v)$, a contradiction. Clearly h_1, h_2, h_x, h_y are not all distinct, otherwise they would form a Berge-C_4. So either $h_1 = h_y$ or $h_2 = h_x$, therefore $x \in h_y$ or $y \in h_x$. □

Now let us assume for a contradiction, that there is a $K_{5,5}$ in G'_{aux} with parts A and B. By the pigeon-hole principle, there exists $v_1, v_2, v_3 \in A$ such that colors of vv_1, vv_2 and vv_3 are all different. Similarly, there exists $v_4, v_5, v_6 \in B$ such that colors of vv_4, vv_5 and vv_6 are distinct. For each $1 \leq i \leq 6$ let $h_i \in E(H)$ be the color of vv_i. If $v_i \in A, v_j \in B$ and $h_i = h_j$, then $v_i v_j \in G$ therefore $v_i v_j \notin G_{aux}$, a contradiction. So h_i is different for each $i \in \{1, 2, 3, 4, 5, 6\}$. So we have a $K_{3,3}$ in G'_{aux} with parts v_1, v_2, v_3 and v_4, v_5, v_6 such that color h_i of each vv_i is distinct for each $1 \leq i \leq 6$.

Let D be a bipartite directed graph with parts v_1, v_2, v_3 and v_4, v_5, v_6, such that $v_i \mapsto v_j \in D$ if and only if $v_i \in h_j$ and v_i and v_j are in different parts. By Claim 2 for each $1 \leq i \leq 3$ and $4 \leq j \leq 6$, either $v_i v_j \in D$ or $v_j v_i \in D$.

Claim 3. Let F_1 and F_2 be directed graphs with the edge sets $E(F_1) = \{\vec{y}x, \vec{z}x, \vec{w}z\}$ and $E(F_2) = \{\vec{y}x, \vec{z}x, \vec{z}w, \vec{u}w\}$, where x, y, z, w, u are distinct vertices. Then D is F_1-free and F_2-free.

Proof. Let us assume, that D contains F_1. Then without loss of generality we may assume, that $v_4\vec{v}_1, v_5\vec{v}_1, v_2\vec{v}_5 \in D$. So by definition of D, $v_4, v_5 \in h_1$ and $v_2 \in h_5$. Then we have, $vv_4 \subset h_4$, $v_4v_5 \subset h_1$, $v_5v_2 \subset h_5$ and $v_2v \subset h_2$, therefore the hyperedges h_1, h_1, h_5, h_2 form a berge C_4 in H, a contradiction.

If D contains F_2, without loss of generality we may assume that $v_4\vec{v}_1, v_5\vec{v}_1, v_5\vec{v}_2, v_6\vec{v}_2 \in D$. So by definition of D, we have $v_4, v_5 \in h_1$ and $v_5, v_6 \in h_2$, so $v, h_4, v_4, h_1, v_5, h_2, v_6, h_6$ is a Berge-C_4, a contradiction. □

Now since each vertex of D has at least 3 incident edges, there is a vertex in D with at least 2 incoming edges, without loss of generality let this vertex be v_1 and let the incoming edges be $v_4\vec{v}_1$ and $v_5\vec{v}_1$. By Claim 3 D does not contain F_1, therefore for each $2 \leq i \leq 3$, $v_i\vec{v}_4, v_i\vec{v}_5 \notin D$ i.e. $v_4\vec{v}_i, v_5\vec{v}_i \in D$ for every $1 \leq i \leq 3$. If $v_6\vec{v}_1 \in D$, then $v_4\vec{v}_2, v_5\vec{v}_2, v_5\vec{v}_1, v_6\vec{v}_1$ would form F_2 which contradicts Claim 3, therefore $v_6\vec{v}_1 \notin D$. Similarly $v_2\vec{v}_6 \in D$ (and $v_3\vec{v}_6 \in D$), but now $v_1\vec{v}_6, v_2\vec{v}_6$ and $v_3\vec{v}_6$ form F_1, a contradiction.

This completes the proof of the lemma. □

Using the information above, we will complete the proof of the upper bound. By the Blackley-Roy inequality there exists a vertex $v \in V(H)$ such that there are at least d^2 ordered 2-walks starting at vertex v. We now fix this vertex v and define G, G_{aux} and G'_{aux} for v similarly as before. Clearly at most $2d(v)$ of these 2-walks may not be a path, so there are at least $d^2 - 2d(v)$ 2-paths starting at v.

Let B be a bipartite graph with parts $N_1(v)$ and $N_2(v)$ such that $xy \in B$ if and only if vx is a 2-path of H and $y \in N_2(v)$ (clearly $x \in N_1(v)$). The number of 2 paths vx such that $xy \notin B$ is exactly $2 |G| \leq 6d(v)$ (here we used (1)), therefore we have

$$|B| \geq d^2 - 2d(v) - 6d(v) = d^2 - 8d(v).$$

Let B' be a subgraph of B with the edge set $E(B') = \{xy \in E(B) \mid \exists z \in N_1(v) \setminus \{x\} \text{ such that } yz \in E(B)\}$. Clearly, $xy, yz \in E(B')$ means that $xz \in E(G_{aux})$, moreover, by Lemma 3 for each $xz \in G_{aux}$ there is at most 6 choices of $y \in N_2(v)$ such that $xy, yz \in E(B')$, therefore it is easy to see that the number of 2-paths in B' with terminal vertices in $N_1(v)$ is at most $6|G_{aux}|$. So $|B'| \leq 12|G_{aux}|$, therefore by Lemma 4 and 2 we have $|B'| \leq 12(d(v)^{9/5} + 3d(v))$, so

$$|B \setminus B'| \geq d^2 - 12d(v)^{9/5} - 44d(v) \quad (3)$$
On the other hand, by definition of B' each vertex of $N_2(v)$ is incident to at most 1 edge of $B \setminus B'$, so $|N_2(v)| \geq |B \setminus B'|$, therefore by (3) we have $n > |N_2(v)| \geq d^2 - 12d(v)^{9/5} - 44d(v)$. Using Claim [4] we have $d^2 < n + 12 \cdot (18\sqrt{n})^{9/5} + 44 \cdot 18\sqrt{n}$ i.e. $d^2 < n + 2184n^{0.9} + 792\sqrt{n}$. So for large enough n we have

$$d < \sqrt{n} + 1100n^{0.4}.$$

Therefore

$$|H| < \frac{1}{2}n^{2.5} + 550n^{1.4} = \frac{1}{2}n^{1.5}(1 + o(1))$$

$$\sum_{h \in \mathcal{H}}(|h| - 3) = |H| \leq (1 + o(1))\frac{1}{2}n^{3/2}.$$

Now it remains to prove the lower bound. Let G be a bipartite C_4-free graph on $n/3$-vertices, with $|E(G)| = \left(\frac{n}{6}\right)^{3/2} + o(n^{3/2})$ edges. Let us replace each vertex of G by 3 identical copies of itself, this will transform each edge to a 6-set. Let the resulting 6-uniform hypergraph be \mathcal{H}. Clearly

$$\sum_{h \in \mathcal{H}}(|h| - 3) = 3|\mathcal{H}| = \frac{1}{2\sqrt{6}}n^{3/2} + o(n^{3/2}).$$

Now let us show that \mathcal{H} is Berge-C_4-free. Let us assume for a contradiction that there is a Berge 4-cycle in \mathcal{H}, and let this Berge cycle be $a, h_{ab}, b, h_{bc}, c, h_{cd}, d, h_{da}$. If a, b, c, d are copies of 4 or 3 distinct vertices of G, then there would be a C_4 or C_3 in G respectively, a contradiction. So a, b, c, d are copies of only two vertices of G, say x and y, so at least two of the pairs ab, bc, cd, da correspond to xy in G, therefore it is easy to see, that at least two of the hyperedges $h_{ab}, h_{bc}, h_{cd}, h_{da}$ should be the same, a contradiction.

Acknowledgements

I want to thank my colleagues Abhishek Methuku and Ervin Gyori for having extremely helpful discussions about this problem.

References

[1] G. R. Blakley and P. Roy. A Hölder type inequality for symmetric matrices with nonnegative entries. *Proceedings of the American Mathematical Society* 16.6(1965): 12441245

[2] D. Gerbner, C. Palmer. Extremal results for Berge hypergraphs. *SIAM Journal on Discrete Mathematics*, 31(4), 2314-2327, (2017).

[3] E. Győri, N. Lemons. Hypergraphs with no cycle of length 4. *Discrete Math*, 312(9):1518-1520, (2012).

[4] T. Kövári, V. Sós, P. Turán. On a problem of K. Zarankiewicz. In *Colloquium Mathematicae*, 3(1), (1954), 50–57.