NMR spin echo measurements of 29Si in Silicon powders have uncovered a variety of surprising phenomena that appear to be independent of doping. These surprises include long tails and even-odd asymmetry in Carr-Purcell-Meiboom-Gill (CPMG) echo trains, and anomalous stimulated echoes with several peculiar characteristics. Given the simplicity of this spin system, these results, which to date defy explanation, present a new and interesting puzzle in solid state NMR.

PACS numbers: 03.65.Yz, 03.67.Lx, 76.20.+q, 76.60.Lz

![Graph showing NMR Signal vs Time for different samples](image)

FIG. 1: Two standard measurements of the 29Si T_2 in powdered Silicon at room temperature (RT). CPMG echo trains are shown for four samples (a-d) with different doping, full width half max (FWHM), skin depth (δ), and spin-lattice relaxation time (T_1). Since samples a, b, and c exhibit much wider echoes than sample d, only the top portion of their echoes are visible. Hahn echo measurements (circles with crosses for sample d, others are suppressed for clarity) agree quantitatively with the dipolar decay curve (solid line) calculated for the Silicon lattice (Eqn. 4, see text). Despite big changes in doping (e.g., $\times 10^6$ in P-concentration between samples c and d), the peaks of the CPMG echoes are nearly identical to each other, and they are detectable long after the Hahn echoes decay to zero. These measurements are in a 7.027 Tesla field ($\vec{B} \parallel \hat{z}$, with $f_0 = 59.48$ MHz). N.B., all figures are in color online.

In order to implement quantum computation (QC) based upon spins in semiconductors, a detailed understanding of spin dynamics in these materials is required. To this end, we carried out a series of NMR measurements that were motivated by a simple question: what is the 29Si decoherence time (T_2) in Silicon? Earlier NMR studies in Silicon addressed other phenomena that appear to be independent of doping. These surprises include long tails and even-odd asymmetry in Carr-Purcell-Meiboom-Gill (CPMG) echo trains, and anomalous stimulated echoes with several peculiar characteristics. Given the simplicity of this spin system, these results, which to date defy explanation, present a new and interesting puzzle in solid state NMR.

In this paper, we describe the phenomena and recount tests we have made to explore possible explanations.

Two standard experiments that measure T_2 are reported. First, using the Hahn echo sequence (HE: 90°-(TE)-180°-(TE)-ECHO (10)), the measured decay, with T_{2HE} ≈ 5.6 msec, is in quantitative agreement with that expected for the static 29Si-29Si dipolar interaction. This decay mechanism is commonly encountered in solids, and a number of ingenious pulse sequences have been invented to manipulate the interaction Hamiltonian, pushing echoes out to times well beyond T_{2HE}. A common thread running through those sequences is the use of multiple 90° pulses, and pulses applied frequently compared to T_{2HE}, which refocus the homonuclear dipolar coupling. The same cannot be said about the second sequence that we used to measure T_2, the Carr-Purcell-Meiboom-Gill sequence (CPMG: 90°-{(TE)-180°-(TE)-ECHO} \times n-times (18)). Specifically, the CPMG sequence is not expected to excite echoes beyond T_{2HE}, since 180° pulses should not affect the bilinear homonuclear interaction. This statement is exact in two important limits: either for unlike spins or for magnetically-equivalent spins.

Therefore, we were surprised to find that CPMG echoes are detectable long after T_{2HE}, and the echo peaks appear nearly identical in Silicon samples with very different dopings. This CPMG “tail” appears to be even larger at low temperatures. In addition as the interpulse spacing (TE) is increased, the CPMG echoes develop a pronounced “even-odd asymmetry” (e.g., long after spin echo #1 (“SE1”) is in the noise, spin echo #2 (“SE2”) is clearly observable). Lastly, we show how an “anomalous stimulated echo” is observed in this system, with several peculiar characteristics.

Figure 1 shows CPMG echo trains acquired in four different Silicon samples (both n-type and p-type). As the legend shows, the 29Si NMR spectrum (0.3 kHz ≤ FWHM ≤ 3 kHz), the echo shape, and the T_1 (from 4.8 sec to 5.5 hours at RT) can be quite different, for samples with wide variations in doping. Despite these big changes (e.g., $\times 10^6$ in P-concentration), the peaks of the CPMG echoes are nearly identical to each other, and they persist long after the Hahn echoes have died away.
Qualitatively, the long tail evokes a well-known effect in liquid-state NMR, where diffusion causes slow changes in the local field leading to an extrinsic decay of the Hahn echoes \[^4\] Applying frequent refocusing pulses renders the dynamics "quasi-static", enabling the CPMG echoes to persist to longer times, and revealing the intrinsic \(T_2\). However, in our data, the Hahn echoes appear to persist out to the "intrinsic" \(T_2\) curve, and the CPMG echoes are observed beyond that limit, as we now show.

A theoretical decay curve may be calculated and compared to the experiments in Fig. 1, starting from a general spin Hamiltonian for \(^{29}\text{Si}\) in doped Silicon. For example, for sample d, we have:

\[
\mathcal{H} = \mathcal{H}_{\text{lab}} + \mathcal{H}_{\text{Si-Si}} + \mathcal{H}_{\text{Si-Na}} + \mathcal{H}_{\text{Si-\text{H}}} + \mathcal{H}_{\text{Si-e}} - \mathcal{H}_{\text{Si-Si}} , \tag{1}
\]

where \(\mathcal{H}_{\text{lab}}\) includes the magnetic coupling of \(^{29}\text{Si}\) spins to both the static laboratory field and the time-dependent tipping field produced by the rf pulses. Since \(^{29}\text{Si}\) is fairly dilute (4.67% n.a.), \(\mathcal{H}_{\text{Si-Si}}\) is just the direct dipolar coupling. The last two terms, \(\mathcal{H}_{\text{Si-Na}}\) and \(\mathcal{H}_{\text{Si-\text{H}}}\), play the role of the "bath" for the \(^{29}\text{Si}\) spins, which produce static magnetic shifts and determine \(T_1\). In principle, the dynamics of this bath might also affect our \(T_2\) measurements. However, Fig. 1 shows that this is not the case, since samples a-d have nearly identical CPMG tails despite very different baths. This is strong empirical evidence that the \(^{29}\text{Si}\) homonuclear spin-spin coupling is sufficient to describe the physics of all four samples (a-d), which greatly simplifies the model. Therefore, in the rotating frame, the secular part of Eq. (1) (in the absence of rf pulses) is \(H_r\) given by \[^4\]:

\[
\frac{H_r}{\hbar} = \sum_i \Omega_i I_z + \sum_{j>j} (\alpha_{ij} I_z + b_{ij} (I_x I_z + I_z I_y)) , \tag{2}
\]

where \(\Omega_i\) is the magnetic shift for spin \(i\) (relative to on-resonance spins), \(\alpha_{ij} = \frac{2\gamma_0}{r_{ij}} [1 - 3 \cos^2 \theta_{ij}]\) \((2\gamma\) is the gyromagnetic ratio for \(^{29}\text{Si}\)), and \(b_{ij} = -\frac{g_i}{2}\). The vector between spins \(i\) and \(j\), \(\hat{r}_{ij}\), satisfies \(\hat{r}_{ij} \cdot \hat{z} = r_{ij} \cos \theta_{ij}\). If some of the terms in Eq. (2) are truncated, corresponding to specific physical limits, then analytic solutions for the effect of various pulse sequences may be found using the product operator formalism \[^5\] \[^20\]. We start from the initial equilibrium density matrix:

\[
\rho(t = 0) \propto \sum_i I_z , \tag{3}
\]

which assumes the conventional strong field and high temperature approximations \[^4\].

For "unlike spins", where \(|\alpha_{ij}| \ll \Delta \Omega_{ij} \equiv |\Omega_i - \Omega_j|\), we truncate the \(b_{ij}\) terms \[^4\]. In this limit, the peak of the \(k\)th CPMG echo decays according to:

\[
\langle I_Y (k \times \text{TE}) \rangle = \sum_i I_y_i(0) \left\{ \prod_{j>j} \cos \left(\frac{\alpha_{ij} (k \times \text{TE})}{2} \right) \right\} , \tag{4}
\]

which assumes the “infinite \(H_1\) limit”. Experimentally, \(\frac{\gamma_0 H_1}{2\pi} \approx 22 \text{kHz}, \frac{|\Delta \Omega|}{2\pi} < 0.8 \text{kHz}, \frac{|\Delta \Omega|}{2\pi} < 0.3 \text{kHz}\) for samples (a-c) and \(\frac{|\Delta \Omega|}{2\pi} < 3 \text{kHz}\) for sample (d). Eq. (4) also describes a free induction decay (FID) following a single 90\(\gamma\) pulse in another limit: all the \(b_{ij}\) terms are truncated and all \(\Omega_i = 0\). Thus, the truncated dipolar decay of the CPMG echoes for the case of “unlike spins” is apparently unaffected by the 180\(\gamma\) pulses, which flip all \(I_z \rightarrow (-I_z)\), leaving the sign of the bilinear \(a_{ij}\) terms unchanged.

In order to compare Eq. (4) to the data, we only need to have realistic values of \(a_{ij}\) for our powder samples. To obtain these \(a_{ij}\), we built 20,000 “chunks” of the real Silicon lattice with arbitrary orientations, and determined the ~80 nearest neighbors occupied according to the 4.67% n.a.. Averaging Eq. (4) over all “chunks” \[^5\] yields the black curve shown in Fig. 1, which agrees remarkably well with the Hahn echo data points, but which fails to describe the measured CPMG echoes.

When CPMG experiments are carried out in liquids, the well-known echo modulation due to J-coupling between unlike spins can be effectively turned off \[^21\], if pulses are applied so frequently that \(\frac{\pi}{2} \gg J_{ij}\) and \(\pi \gg \Delta \Omega_{ij}\). Similarly, in our solid-state measurements, applying a CPMG sequence with frequent pulses (i.e., small TE) might push the system artificially into the “like spin” regime, where \(|a_{ij}| \gg \Delta \Omega_{ij}\). In that limit, all the terms of Eq. (2) should be retained. This precludes an analytic solution, but numerical calculations of \(\langle I_Y (t) \rangle\) can be carried out for small numbers of spins, including the required ensemble averaging \[^19\]. These calculations show that the initial decay of the CPMG echoes in that limit should be \(\approx \frac{1}{2}\) faster than Eq. (4), which agrees with the well-known second moment expressions \[^5\] \[^22\].

Our data require another explanation.

Empirically, the long tail induced by the CPMG sequence has several interesting characteristics \[^4\]. For example, Fig. 2 shows that the tail height, relative to

![FIG. 2: CPMG echo peaks at RT (triangles) and 4.2 K (squares) for sample d. The sets are scaled so that SE1 agree. The solid line is the calculated decay from Fig. 1 (see text). While the qualitative temperature effect is clear, the non-ideal conditions of the 4.2 K data set (173 kHz pulses and repetition time=100 sec ≈ \(\frac{1}{2}\)) prevent a quantitative assessment.](image-url)
To see if the long tail was due to some kind of multiple-pulse NMR \[T_2 \approx \text{TE} \times T_{TM} \] we decided to look for a contribution to the CPMG echoes that is reminiscent of a stimulated echo [10], using the sequence: \(90^\circ \text{X} \text{DETECT} \text{Y} \), where \(T_\text{TM} \) and \(T_\text{TE} \) can be varied independently. Using this sequence, we detect a conventional spin echo \(\text{SE}_2 \) that peaks at total time \(T_\text{HE} = 2 \times T_\text{TE} \), while \(\text{SE}_1 \) peaks at \(T_\text{HE} = 2 \times T_\text{TM} \). Figure 5 shows the height of the \(\text{STE}_A \) as either \(T_\text{TM} \) or \(T_\text{TE} \) is varied. There are several remarkable features of the data in Fig. 5: 1) we observe \(\text{STE}_A \), even for our best 180°-pulses, where there should be none, 2) they decay slowly as \(T_\text{TE} \) or \(T_\text{TM} \) are increased, 3) they appear to “start” at non-zero values at the left edge of Fig. 5, and 4) the data set has a larger scatter than expected, given the signal to noise of each individual data point.

Given the results in Figs. 1-5, we have tried to minimize the effects of nonidealities commonly reported in multiple pulse NMR [10, 17]: (i) inhomogeneous \(H_1 \), (ii) finite-size \(H_1 \), (iii) a “spin locking” effect, and (iv) phase transients [10]. For (i), the results are unchanged if we use a tiny (~6%) coil filling factor, or samples of very different skin depths. For (ii), the same effects are seen in all samples, even though \(H_1 / \text{FWHM} \) changes by factor of 10. For (iii), similar results are obtained with $n = 2$, for very long \(T_\text{TE} \). In Fig. 4(a) $T_\text{TE} \approx 5.35$ so that \(\text{SE}_1 \) is tiny relative to the FID. Surprisingly, \(\text{SE}_2 \) (at \(T_\text{TE} \approx 10.7 \)) is nearly three times the height of \(\text{SE}_1 \); \(\text{SE}_2 \) is also narrower than \(\text{SE}_1 \). In Fig. 4(b), \(T_\text{TE} \) is doubled, which pushes \(\text{SE}_1 \) into the noise, while \(\text{SE}_2 \) is clearly visible, even though it occurs $21.4 \times T_\text{TE}$ after the 90° pulse.

Since \(\text{SE}_2 \) is the first echo to occur after three pulses, we decided to look for a contribution to the CPMG echoes that is reminiscent of a stimulated echo [10], using the sequence: 90°-X-(X+TE)-180°-Y-TM-180°-DETECT, where \(T_\text{TM} \) and \(T_\text{TE} \) can be varied independently. Using this sequence, we detect a conventional spin echo \(\text{SE}_2 \) that peaks at total time $2 \times T_\text{TM}$, along with an “anomalous stimulated echo” \(\text{STE}_A \) that peaks at \(T_\text{TM} + T_\text{TE} \). This even-odd asymmetry, which emerges for \(T_\text{TE} > T_\text{TM} \), persists even for \(T_\text{TM} \) of (a) 30 msec and (b) 60 msec. The numbered echoes in (c-d) exhibit a pronounced even-odd asymmetry, which emerges for \(T_\text{TE} \geq T_{2HE} \). (d) shows the same effect in Si:Sb at RT with well-calibrated pulse angles, low repetition rates, and a narrow spectrum. The long tail persists even for \(T_\text{TM} \) of (a) 1.12 msec, (b) 2.65 msec, and (c) 11.23 msec. The solid line from Fig. 1 is scaled to intercept the first echo in each graph. The numbered echoes in (c-d) exhibit a pronounced even-odd asymmetry, which emerges for \(T_\text{TE} \geq T_{2HE} \). This even-odd asymmetry leads to remarkable results as \(T_\text{TE} \) is increased still further. Figure 4 shows the FID and first two spin echoes acquired in a CPMG experiment with \(n = 2 \), for very long \(T_\text{TE} \). In Fig. 4(a) $T_\text{TE} \approx 5.35$ so that \(\text{SE}_1 \) is tiny relative to the FID. Surprisingly, \(\text{SE}_2 \) (at $T_\text{TE} \approx 10.7$) is nearly three times the height of \(\text{SE}_1 \); \(\text{SE}_2 \) is also narrower than \(\text{SE}_1 \). In Fig. 4(b), \(T_\text{TE} \) is doubled, which pushes \(\text{SE}_1 \) into the noise, while \(\text{SE}_2 \) is clearly visible, even though it occurs $21.4 \times T_\text{TE}$ after the 90° pulse.

Since \(\text{SE}_2 \) is the first echo to occur after three pulses, we decided to look for a contribution to the CPMG echoes that is reminiscent of a stimulated echo [10], using the sequence: 90°-X-(X+TE)-180°-Y-TM-180°-DETECT, where \(T_\text{TM} \) and \(T_\text{TE} \) can be varied independently. Using this sequence, we detect a conventional spin echo \(\text{SE}_2 \) that peaks at total time $2 \times T_\text{TM}$, along with an “anomalous stimulated echo” \(\text{STE}_A \) that peaks at \(T_\text{TM} + T_\text{TE} \). Figure 5 shows the height of the \(\text{STE}_A \) as either \(T_\text{TM} \) or \(T_\text{TE} \) is varied. There are several remarkable features of the data in Fig. 5: 1) we observe \(\text{STE}_A \), even for our best 180°-pulses, where there should be none, 2) they decay slowly as \(T_\text{TE} \) or \(T_\text{TM} \) are increased, 3) they appear to “start” at non-zero values at the left edge of Fig. 5, and 4) the data set has a larger scatter than expected, given the signal to noise of each individual data point.

Given the results in Figs. 1-5, we have tried to minimize the effects of nonidealities commonly reported in multiple pulse NMR [10, 17]: (i) inhomogeneous \(H_1 \), (ii) finite-size \(H_1 \), (iii) a “spin locking” effect, and (iv) phase transients [10]. For (i), the results are unchanged if we use a tiny (~6%) coil filling factor, or samples of very different skin depths. For (ii), the same effects are seen in all samples, even though \(H_1 / \text{FWHM} \) changes by factor of 10. For (iii), similar results are obtained with
an alternating phase Carr-Purcell sequence, where 180 degree pulse phases alternate between “−X” and “X”, even though the number of pulses is reduced and their spacing is increased, so we don’t see how this could explain the puzzling results of Figs. 4-5.

Taken together, these results strongly suggest that the effects are due principally to the 29Si homonuclear dipolar coupling. In that case, why is it so hard to find a quantitative explanation for the data? The form of Eq. 2 for a clean Silicon sample is one problem, since many spins may have $|a_{ij}| \sim \Delta \Omega_{ij}$, which make simulations particularly challenging 22. The dilution of the moments on the lattice could be another issue 22. The strange features in Fig. 5 (in particular, point 3), and the narrowness of SE2 in Fig. 4 seem to be beyond the conventional theory of solid-state NMR. In recent NMR experiments 22, large polarizations have produced measurable dipolar field effects, which led some to question the approximations underlying Eq. 3. While we don’t have such large polarizations, the effects do appear to be more pronounced at low temperatures (Fig. 2).

In the broader context of QC, the generic form of Eq. 2 suggests that similar surprises may be found in other systems with small, long-range, qubit-qubit interactions, particularly when “bang-bang” control is used 22. Understanding these phenomena in Silicon may help to prevent similar surprises from imposing a performance limit on quantum computers in the future.

This work was supported by the National Security Agency (NSA) and Advanced Research and Development Activity (ARDA) under Army Research Office (ARO) contract #DAAD19-01-1-0507. We would like to thank T.P. Ma (Yale EE) for providing the Si:P samples, and also R. Falster (MEMC) for providing the Si:B and Si:Sb samples that were used in this study. We thank C.P. Slichter, R. Tycko, W.S. Warren, D.G. Cory, T.F. Havel, J.S. Waugh, R.G. Griffin, S.M. Girvin, A. Vestergren, and V.V. Dobrovitski for stimulating discussions. In particular, we appreciate the help of K.W. Zilm and X. Wu, who independently verified several of these results.

1. B. E. Kane, Nature 393, 133 (1998); Fortschr. Phys. 48, 1023 (2000).
2. V. Privman, I. D. Vagner, and G. Kiventsev, Phys. Lett. A 239, 141 (1998).
3. D. P. DiVincenzo and D. Loss, J. of Magnetism and Magnetic Materials 200, 202 (1999).
4. R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).
5. T. D. Ladd et al., Phys. Rev. Lett. 89, 017901 (2002).
6. R. G. Shulman and B. J. Wyld, Phys. Rev. 103, 1127 (1956).
7. G. Lampel, Phys. Rev. Lett. 20, 491 (1968).
8. R. K. Sundfors and D. F. Holcomb, Phys. Rev. 136, A810 (1964); H. Alloul and P. Doulou, Phys. Rev. Lett. 59, 578 (1987); S. E. Fuller, E. M. Meintjes, and W. W. Warren, Phys. Rev. Lett. 76, 2806 (1996).
9. C. P. Slichter, Principles of Magnetic Resonance (Springer, New York, ed. 3, 1990).
10. E. L. Hahn, Phys. Rev. 80, 580 (1950).
11. J. G. Powles and P. Mansfield, Phys. Lett. 2, 58 (1962).
12. E. D. Ostroff and J. S. Waugh, Phys. Rev. Lett. 16, 1097 (1966).
13. W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. Lett. 25, 218 (1970); Phys. Rev. B 3, 684 (1971).
14. J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968).
15. P. Mansfield, J. Phys. C 4, 1444 (1971); W. K. Rhim, D. D. Ellements, and R. W. Vaughan, J. Chem. Phys. 58, 1772 (1973).
16. U. Haeberlen, High Resolution NMR in Solids:Selective Averaging, Supplement 1 to Advances in Magnetic Resonance (Academic Press, New York, 1976).
17. M. Mehring, High Resolution NMR in Solids (Springer-Verlag, Berlin, ed. 2, 1983).
18. H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954); S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 6881 (1958).
19. D. Li, A. E. Dementev, K. MacLean, S. E. Barrett, (in preparation).
20. O. W. Sorensen et al., Prog. Nucl. Magn. Reson. Spectrosc. 16, 103 (1983).
21. R. Freeman, Spin Choreography: Basic Steps in High Resolution NMR (Oxford University Press, Oxford, 1998).
22. J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
23. A. Allerhand, J. Chem. Phys. 44, 1 (1966).
24. E. D. Fel’dman and S. Lacelle, J. Chem. Phys. 104, 2000 (1996); S. Lacelle and L. Tremblay, J. Chem. Phys. 102, 947 (1995).
25. W. S. Warren, W. Richter, A. H. Andreotti, and B. T. Farmer, Science 262, 133 (1993); S. Lee, W. Richter, S. Vathyam, and W.S. Warren, J. Chem. Phys. 105, 874 (1996).
26. L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).