Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
BRIEF NOTE

The potential role of physical activity and a healthy diet in increasing nitric oxide during COVID-19 outbreak

Les rôles potentiels de l’activité physique et d’une alimentation saine dans l’augmentation de l’oxyde nitrique pendant l’épidémie de COVID-19

H.L. Corrêa, H.G. Simões, R.V.P. Neves, L.A. Deus, T.S. Rosa*

Graduate Program of Physical Education, Catholic University of Brasilia, Federal district, Brasilia, Brazil

Received 15 July 2021; accepted 9 November 2021
Available online 29 August 2022

KEYWORDS
COVID-19; SARS-CoV; Nitric oxide; Physical activity; Nutrition; Physical exercise; Pandemic

Summary The potential role of physical activity and a healthy diet in increasing nitric oxide during COVID-19 outbreak. This manuscript presents a perspective which provide new insights about the promising role of nitric oxide on COVID-19. Demonstration that nitric oxide was an important cornerstone against viral infections, including SARS-CoV-1 in 2009. Thus, given the concern that higher NO− could improve endothelial health and might be a protection factor against COVID-19, should we critically consider non-pharmacological strategies that increase NO− bioavailability as medicine for COVID-19? From this perspective, we highlight the potential effect of physical activity and healthy diet in stimulating the increase of NO− bioavailability.

MOTS CLÉS
COVID-19 ; SARS-CoV ; Oxyde nitrique ; Activité physique ; Nutrition ; Exercice physique ; Pandémie

Résumé Les rôles potentiels de l’activité physique et d’une alimentation saine dans l’augmentation de l’oxyde nitrique pendant l’épidémie de COVID-19. Ce manuscrit présente une perspective qui fournit de nouvelles informations sur le rôle prometteur de l’oxyde nitrique sur la protection contre le risque de COVID-19. Dès 2009, a été évoqué le rôle de l’oxyde nitrique contre le risque d’infections virales, y compris contre la première pandémie liée au coronavirus SARS-CoV-1. Compte tenu de l’hypothèse qu’une augmentation de la production de NO− permettrait d’améliorer la santé endothéliale et pourrait être un facteur de protection contre COVID-19, la question se pose sur la promotion de stratégies non pharmacologiques.

* Corresponding author.
E-mail address: thiago.rosa@p.ucb.br (T.S. Rosa).

https://doi.org/10.1016/j.sci spo.2021.11.009
0765-1597/© 2022 Elsevier Masson SAS. All rights reserved.
1. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and chronic diseases

The strong virulence and spread of SARS-CoV-2 resulted in the coronavirus disease 2019 (COVID-19) pandemic with number of infected and dead people still increasing over the planet. At this point, thousands of people are infected and fighting somehow against this invisible enemy. The deadly impact of this virus has created an environment of fear and uncertainty, especially for, but not exclusive to, people with chronic diseases who have been the mostly affected by disease [1]. Endothelial dysfunction and consequent decrease in nitric oxide (NO•) levels may be a key factor in accelerating the progress of SARS-CoV-2 infection leading to the highest severity of COVID-19 disease in those already chronically ill [2].

It is known that the endogenous production of NO• is involved in the protection against several vascular and cardiac diseases [3]. Moreover, in 2004, a study demonstrated that low-dose inhaled NO• could shorten the time of ventilatory support in patients infected with SARS-CoV-1 [4]. Although the effect of NO• on SARS is still unknown, this molecule can be truly relevant in the prevention and treatment of the comorbidities associated to COVID-19.

2. Nitric oxide role in the prevention and treatment of COVID-19, can the past and the present be allies?

Endogenously, the NO• is synthesized by a family of three isoforms of nitric oxide synthases (NOS): neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) [3,5]. All of them require of L-arginine and molecular oxygen followed by a sum of cofactors to produce NO•. When produced, this gaseous signaling molecule play a key role in the regulation of numerous pathways (Fig. 1) related to the treatment of different diseases [3].

We highlight that NO• can be a biosynthetic factor for the building of natural products with a nitrogen-nitrogen bond as 1,2,3-triazolopyrimidine scaffold of 8-azaganine, which set forth a vast range of antimicrobial, anti-inflammatory and antiviral activities [6]. Furthermore, when NO• reacts with molecular oxygen, it became a more nitrosative substance capable to interact with the nucleophilic sulfur of the thiol (SH) group of cysteines by the S-nitrosylation process [7]. Thus, viral cysteines-containing enzymes can be nitrosylated by NO• products [8].

Considering that several viral-encoded proteins present reactive cysteine, NO• can impair the virus development in the host. In this regard, NO• antiviral role was already demonstrated among different families of DNA and RNA of virus, including Coronaviridae [8]. In 2009 [9], it was found that NO• inhibits the replication of SARS-CoV-1 mainly by the reduction of the spike protein palmitoylation, affecting the interaction between this protein with its respective receptor: the angiotensin converting enzyme 2. They also verified that NO• causes a reduction in viral RNA production at the beginning of viral replication. Although this finding was in SARS-CoV-1, it should be partially generalized to COVID-19 since they present genetic similarities [10].

On the other hand, caution is needed when interpreting the role of NO•. When lipopolysaccharides stimulation occurs in neutrophils and macrophages, increases the iNOS-derived NO•, which is one of the one of the main agents for inducing sepsis [11]. Moreover, NO• interacts with NADPH oxidase generating peroxynitrite leading to a immunosuppression [11]. In this regard, it must be important to note that the beneficial effect of NO• may depend of the eNOS and nNOS expression [12].

The eNOS and nNOS-derived NO• may act as an antagonist of the effects of SARS-CoV-2 [2] due to its selective pulmonary vasodilatation, lowering pulmonary vascular resistance, pulmonary hypertension, edema formation and, consequently, risk of thrombosis [13,14]. Also, due to NO•-anti-inflammatory properties, it can also reduce the production of pro-inflammatory protein by vascular regulation [4,13]. Therefore, NO• might improve arterial oxygenation being a potential treatment for COVID-19, which was historically used as a treatment of SARS-CoV-1.

According to the historically role of NO•, it was an important cornerstone against viral infections, including SARS-CoV-1. Thus, given the concern that higher NO• could improve endothelial health and might be a protection factor against COVID-19, should we critically consider non-pharmacological strategies that increase NO• bioavailability as medicine for COVID-19? From this perspective, we highlight the potential effect of physical activity and a healthy diet in increasing NO• bioavailability.

3. Exercise-induced NO• and NO• rich-diet as medicine against COVID-19

It has already being speculated that physical activity might induce protective effects against SARS-CoV-2 from a plethora of signaling in cardiorespiratory, musculoskeletal and nervous system [15]. However, we are opening a perspective that NO• may be a key that triggers the exercise-related benefits, which is also applied for healthy diet against SARS-CoV-2. Here, we will explain how nitric oxide can be boosted by exercise and nutrition.

During exercise-training, the fluids of the organism starts to flow faster to better transport oxygen and nutrients to
basal transforms ties can to exercise-trained higher cell, it eNOS, NO fluids in and sedentary will shear relation − seems not Although nitrate − such, NO leading and increasing − provoke anion concentration − diet, NO − way, NO− bioavailability can also be increased by vasoactive peptides and proteins induced by muscle contraction [16]. This way, it is common to find several reports of exercise-trained individuals, mainly older ones, with higher basal levels of NO− [18]. Furthermore, in healthy people, NO− seems to be intensity-dependent since higher intensities exercises promotes a more substantial increase in NO− in relation to lower intensities [19]. However, to work in higher intensities requires a better dose-response control to not provoke an immunosuppression by over-reaching or over-training [18,20].

Although we constantly produce endogenous NO− through L-arginine-NOS pathway, there are other sources to generate NO− such as the nitrate-nitrite-NO− pathway, which can be stimulated by the ingestion of a high concentration of nitrate diet (e.g. lettuce, spinach and beetroot) [21]. This kind of diet significantly increases the bioavailability of NO−, and it has already been reported that it promotes beneficial effects on insulin resistance, chronic obstructive pulmonary disease, cancer, and osteoporosis [21]. Hence, an important hypothesis to test is whether exercise-training depends on the NO− bioavailability to be a protection factor to the COVID-19, as well as the impact of high-NO− against SARS-CoV-2. Although the present study presented several pathways related to NO− acting as a protective mechanism for the SARS-CoV-2, there still a lack of consensus in relation to the real involvement of NO− in this specific virus. Therefore, the hypothesis of the present study should be interpreted with caution since the type of the NOS isomorph and the clinical condition of the patient should also be considered.

It is recommended that future clinical trials report and discuss any impact of NO− on SARS-CoV-2 infection, such as the effect of NO− derived from exercise training and healthy diet on respiratory infections. This could improve our understanding with respect to the safety and clinical applications of proper exercise and strategic nutrition as prevention, treatment, and rehabilitation. Such information is important to help assess whether the long-term benefits of those behavioral factors can impact on the COVID-19 outbreak as well as other possible viral infections.
Disclosure of interest

The authors declare that they have no competing interest.

References

[1] Mehra MR, Desai SS, Kuy S, et al. Cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med 2020;382(1–7):e102.
[2] Green SJ. COVID-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect 2020;22(4–5):149–50.
[3] Farah C, Michel LY, Balligand J-L. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 2018;15(5):292.
[4] Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. J Clin Infect Dis 2004;39(10):1531–5.
[5] Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012;33(7):829–37.
[6] Zhao G, Guo Y-Y, Yao S, et al. Nitric oxide as a source for bacterial triazole biosynthesis. Nat Commun 2020;11(1):1–10.
[7] Jaffrey SR, Erdjument-Bromage H, Ferris CD, et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 2001;3(2):193–7.
[8] Persichini T, Colasanti M, Colizzi V, et al. NO and virus. Cell Death Differ 1999;48:25–31.
[9] Åkerström S, Gunalan V, Keng CT, et al. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. J Virol 2009;395(1):1–9.
[10] Rabaan AA, Al-Ahmed SH, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. J Infez Med 2020;28(2):174–84.
[11] Fortin CF, McDonald PP, Füllöp T, et al. Sepsis, leukocytes, and nitric oxide (NO): an intricate affair. Shock 2010;33(4):344–52.
[12] Boettger MK, Üceyler N, Zelenka M, et al. Differences in inflammatory pain in nNOS-, iNOS- and eNOS-deficient mice. Eur J Pain 2007;11(7):810–8.
[13] Kobayashi J, Murata I. Nitric oxide inhalation as an interventional rescue therapy for COVID-19-induced acute respiratory distress syndrome. Ann Intensive Care 2020;10(1):1–2.
[14] Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. J Int J Biol Sci 2013;9(10):1057.
[15] Woods J, Hutchinson NT, Powers SK, et al. The COVID-19 pandemic and physical activity. Sports Med Health Sci 2020;2(2):55–64.
[16] Nosarev AV, Smagily LV, Anfinogenova Y, et al. Exercise and NO production: relevance and implications in the cardiopulmonary system. Front Cell Dev Biol 2015;2:73.
[17] Maiorana A, O’Driscoll G, Taylor R, et al. Exercise and the nitric oxide vasodilator system. Sports Med 2003;33(14):1013–35.
[18] Sousa CV, Aguilar SS, Santos PA, et al. Telomere length and redox balance in master endurance runners: the role of nitric oxide. J Exp Gerontol 2019;117:113–8.
[19] Ramos JS, Dalessicq LC, Tjonna AE, et al. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 2015;45(5):679–92.
[20] Lancaster GI, Febbraio MA. Exercise and the immune system: implications for elite athletes and the general population. Immunol Cell Biol 2016;94(2):115–6.
[21] Kobayashi J, Ohtake K, Uchida H. NO-rich diet for lifestyle-related diseases. Nutrients 2015;7(6):4911–37.