Species of Mastogloia (Bacillariophyceae) new for the Aegean coast of Turkey

COLAK SABANCI F. Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100, Bornova, Izmir

https://doi.org/10.12681/mms.331

Copyright © 2013

To cite this article:

COLAK SABANCI, F. (2013). Species of Mastogloia (Bacillariophyceae) new for the Aegean coast of Turkey. Mediterranean Marine Science, 14(1), 129-140. doi:https://doi.org/10.12681/mms.331
Species of Mastogloia (Bacillariophyceae) - new for the Aegean coast of Turkey

F. ÇOLAK SABANCI

Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100, Bornova, Izmir, Turkey

Corresponding author: sabanci.fatma@gmail.com

Received: 27 March 2012; Accepted: 24 January 2013; Published on line: 12 March 2013

Abstract

This paper describes the comprehensive morphological characteristics of ten Mastogloia Thwaites ex W. Smith (Bacillariophyceae) species, including M. aquilégiae, M. baldjikiana, M. binozata, M. grunowii, M. ignorata, M. paradoxa, M. pumila, M. cf. regula, M. similis and M. vasta. Specimens were examined under a light microscope; eight of them are reported for the first time from Turkish coastal waters. Apart from the photo documentation, some information on the geographical distribution patterns of the species and the type of substratum is also provided.

Keywords: Mastogloia, morphometric data, taxonomy, periphytic diatoms, Homa Lagoon (Turkey), Eastern Mediterranean.

Introduction

Mastogloia Thwaites ex W. Smith is mainly a marine genus which can also be found in hypersaline, brackish and fresh water environments (Round et al., 1990). The number of taxa (140 taxa, Hustedt, 1933) belonging to this genus in the Van Landingham’s (1971) catalogue of diatoms had increased 1.5 times by 1988 (Novarino, 1989) and an estimated number of 410 taxa have been described. Although Mastogloia has a worldwide distribution, no significant fossil record of the genus is available (Paddock & Kemp, 1990); the sophisticated form of the frustule and, occasionally, the weird pattern of the valves indicate that the origin of the genus does not date back to earlier times and that they are undergoing rapid evolution (Paddock & Kemp, 1990).

Mann (Round et al., 1990) described a new order, the Mastogloiales, including Mastogloia, which was defined as having: two fore and aft chloroplasts that are H-shaped in girdle view, the plates under the valves being indented under the raphe and connected by a central pyrenoid; areolae that are occluded by cribra or volae, but not hymenes; girdle bands that are open porous bands and valvocopulae that are loculate. Species of Mastogloia are easily distinguished from those of other genera by the presence of various forms of marginal chamber ring (Hustedt, 1933) or parrectal ring (Stephens & Gibson, 1979; Paddock & Kemp, 1988; Paddock & Kemp, 1990). The gross arrangement of this feature within the frustule of Mastogloia can be clearly observed in the LM and provides a practical way of describing the differences between most species.

The genus is usually the most prominent and abundant epipelagic or epiphytic diatom representative in a biofilm community (Gaston, 2008; Pennesi et al., 2011) and is especially distributed in tropical and subtropical regions (Voigt, 1942, 1952; Paddock & Kemp, 1990; Hein et al., 2008), but also present in the temperate zone (Tomas, 1982; Pennesi et al., 2011), including scarce occurrences in polar seas (Cleve, 1883). In the temperate Turkish inland waters, genus Mastogloia has been reported from both pelagic and benthic diatom flora (Elmaci & Obali, 1998; Akbulut & Yıldız, 2002; Çelekli & Külköylüoğlu, 2006; Sivaci et al., 2007).

The purpose of this paper was to assess the Mastogloia genus diversity and to report new findings (Mastogloia aquilégiae, M. baldjikiana, M. grunowii, M. ignorata, M. paradoxa, M. cf. regula, M. similis and M. vasta) from Turkish coastal waters based on morphological characters using light microscopy. In addition, some information on two Mastogloia species (M. binozata and M. pumila) previously reported from Turkish waters is also given.

Materials and Methods

Study area

Homa Lagoon (38° 33’, 10°’ N, 26° 49’, 50”, E) is located 25 km northwest of the Gulf of Izmir and bordered by the town of Menemen (Fig. 1). Located adjacent to Çamlıtal Saltpan and Izmir Bird Paradise, the lagoon has a surface area of 1800 hectares (ha) and its depth ranges between 0.5 and 1.5 m. The surrounding
Gediz Delta region (20400 ha) is a typical Mediterranean delta ecosystem consisting of freshwater and salt water marshes (5000 ha), bays and salt pans (3300 ha), and lagoon areas (Homa, 1800 ha; Çilazmak, 725 ha; Taş, 500 ha; Kirdeniz, 450 ha). Homa lagoon is one of the most important lagoons on the Aegean coast of Turkey representing a biodiversity hotspot. Because of high species diversity and natural habitats, the lagoon was included in the List of Wetlands of International Importance, Ramsar Convention.

Periphytic samples were collected seasonally from four stations in Homa lagoon during June 2006 and September 2007 (2006: June, September, December; 2007: March, June and September). Station 1 is the deepest station and throughout the sampling period the water depth is approximately 1.5 m. The station is wave−exposed and its sea floor is covered with gravel and sand. Station 2 is located in the region where sea water and lagoon water are mixed. This station is a little more sheltered than station 1 and has soft sediment substrata. Station 3 has the same sea floor structure with station 2, but is less affected by seawater. The water depth of these stations varied between 0.6 and 1 m. Station 4 is located in a completely sheltered area and the water depth is less than 0.5 m. The bottom structure is covered with muddy sediment where, during low tide, drying and fracturing is seen.

Periphyton and Water Sampling

Periphyton sampling included epipelic algae, epiphytic algae, and epilithic algae. Epipelic diatom samples were taken using cylindrical Plexiglas corers (13 cm long × 6.1 cm i.d.). The sediment corers were left undisturbed for 24 h. During the exposure period, the corers were artificially illuminated for 2 h. After the waiting period, the sample from the upper part of 0−2 cm was taken and transferred to 250 ml polythene bottles containing distilled water (Ribeiro et al., 2003). For the collection of epiphytic diatom samples, the macroalgae Ulva lactuca Linnaeus was chosen in the research region. The collected specimens of Ulva lactuca were placed in a large wide-mouthed 1lt sample container until it was about half full and 100-200 ml of distilled water was added. Then, the sealed container was shaken strongly for ~ 60 seconds. The substrata were rubbed gently to remove the remaining attached algae and the suspension was decanted in a 250 ml sample bottle (Aligizaki & Nikolaidis, 2006). In order to define the epilithic diatom samples in the benthic regions, stones of 15−20 cm in diameter were used. The stones were chosen as randomly as possible. From them, only those that were not smothered with filamentous algae and had an obvious diatom film were taken into consideration. The selected stones were transferred to a plastic 1lt bath filled with 200 ml of distilled water. The upper parts of the stones were scrubbed using a hard toothbrush and finally the mixture was decanted into the 250 ml polythene bottles (Winter & Duthie, 2000). Finally, all sample bottles containing epipelic, epiphytic and epilithic diatom samples were fixed with a formaldehyde solution (4% final concentration). Permanent slides for the identification of diatoms were prepared from the same sample chemically with 10% HCl, 30% H$_2$SO$_4$, KMnO$_4$ and oxalic acid (Christiansen, 1988).
Cleaned diatom material was mounted permanently on slides with Naphrax and identified at 1000× magnification by phase-contrast optics using an OLYMPUS ×100 PlanApo oil immersion objective lens. Morphological characters of the species [valve size (VS) or valve length × valve width, valve length / valve width (L / W), the number of transapical striae in 10 μm (STR / 10 μm), partecta length at central area (PLC), partecta width at central area (PWC), partecta number in 10 μm at central area (PNC/10 μm), partecta length at apices (PLA), partecta width at apices (PWA), partecta number in 10 μm at apices (PNA/10 μm), large partecta number (LPN) and small partecta number (SPN)] were measured using a calibrated ocular micrometer (μm) in the eyepiece. Identification at species level was performed according to the descriptions of Peragallo & Peragallo (1897−1908), Hendey (1964), Foged (1985a & b), Hartley (1996) and Witkowski et al. (2000).

Water samples were taken at the same time as periphyton sampling for the measurement of temperature (°C) and salinity (p.s.u.). Water temperature (°C) was measured in situ using a mercury thermometer and salinity was measured according to the methodology described in Martin (1972).

Results

Physical Parameters

Physical features of stations in seasons are shown in Table 1. During the sampling period, water temperature varied between 4−28.8°C, and maximum temperature was recorded in June 2006 at station 4, but minimum in December 2006 at station 2 and 3. Salinity ranges between 34.4 psu in September 2007 at station 1 and 54.1 psu in December 2006 at station 4. Significant freshwater input into the study area was provided by rainfall. During autumn, the observed rainfall was less than expected, and the fish traps were closed between June and December; therefore, the seawater input was weak in this period. For these reasons, high salinity values were observed in the sheltered region.

Morphometric characteristic in Mastogloia species

In this study eight Mastogloia species were found. These included M. aquilegiae, M. baldjikiana, M. grunowii, M. ignorata, M. paradoxa, M. cf. regula, M. similis and M. vasta. All these species are relatively uncommon and were reported for the first time from Turkish coastal waters. Additionally, two other species, M. binotata and M. pumila, that have been previously reported in Turkish coastal waters (Üstsoy et al., 2004; Sıvacı et al., 2008) were morphologically described. Classification of the genus follows that of Graham & Wilcox (2000) as:

- Phylum: Ochrophyta
- Class: Bacillariophyceae
- Subclass: Bacillariophycidae
- Order: Mastogloiales

![Fig. 2: a, b & c. Photographs of Mastogloia aquilegiae showing transapical striae and partectal ring.](image-url)
Family: Mastogloiaeaceae

Mastogloia aquilegiae Grunow in A. Schmidt 1893

Figs. 2a–c

Valves are lanceolate with slightly protracted, broadly rounded apices (Figs. 2a, b & c), 30.0 μm long and 13.3 μm wide. Raphe is straight. The transapical striae are radiate (23 in 10 μm). Partectal ring extends to the apices. Rectangular partecta are uniform in size and shape, reaching 1.9–2.1 μm in width, 8–9 in 10 μm, and convex in the inner margin (Table 2).

Distribution & Ecology: June 2006 (epiphytic, station 4).

Mastogloia baldjikiana Grunow in A. Schmidt 1893

Figs. 3a–c

Valves are elliptical–lanceolate with short protracted apices (Figs. 3a, b & c), 16.7 to 17.7 μm long and 8.7 to 9.2 μm wide. Raphe is wavy to straight. The transapical striae are radiate (26–27 in 10 μm). Partectal ring extends to the apices. Partecta are variable in size and shape, reaching 1.4–1.8 μm in width, 3 in 5 μm, and convex in the inner margin (Table 2).

Distribution & Ecology: December 2006 (epiphytic, station 3).

Mastogloia binotata (Grunow) Cleve 1895

Basionym: *Cocconeis binotata* Grunow 1863

Figs. 4a–c

Valves are elliptical (Figs. 4a, b & c), 22.1 μm long and 14.0 μm wide. Raphe is straight. The transapical striae are radiate (15–16 in 10 μm), crossed by a more or less quincunx pattern. A single central partectum is apically elongated, 2.0–2.3 μm in width, and straight in the inner margin (Table 2). Rectangular partecta are uniform in size and shape, reaching 1.3–1.7 μm in width, 8 in 10 μm, and flat in the inner margin (Table 2).

Distribution & Ecology: September 2006 (epiphytic, station 1); December 2006 (epipelic, station 2).

Mastogloia grunowii A. Schmidt 1893

Figs. 5a–c

Valves are elliptical–lanceolate with sub-rostrate apices (Figs. 5a, b & c), 28.9 to 29.2 μm long and 10.5 to 11.1 μm wide. Raphe is slightly wavy or straight. The transapical striae are radiate (26–27 in 10 μm). Partectal ring extends to the apices. Partecta are variable in size and shape, reaching 1.6–2.2 μm in width, 4–5 in 10 μm, and convex in the inner margin (Table 2).

Distribution & Ecology: September 2006 (epiphytic, station 1); December 2006 (epipelic, station 2).

Mastogloia ignorata Hustedt 1933

Figs. 6a–b

Valves are elliptical–lanceolate with protracted to rostrate apices (Figs. 6a & b), 33.2 μm long and 12.1 μm wide. Raphe is straight. The transapical striae are radiate (24 in 10 μm). Partectal ring extends to the apices. Rectangular partecta are uniform in size and shape, reaching 1.3–1.7 μm in width, 8 in 10 μm, and flat in the inner margin (Table 2).

Distribution & Ecology: December 2006 (epiphytic, station 3).
Mastogloia paradoxa Grunow 1878

Fig. 7a–c

Valves are lanceolate with rostrate apices (Figs. 7a, b & c), 33.9 to 38.7 µm long and 10.4 to 11.7 µm wide. Raphe is sinuous with flaps (Fig. 7a). The transapical striae are parallel (27–28 in 10 µm). Partectal ring more displaced interiorly toward the middle line of the valve by a siliceous flange attached to the margin which show some partectal duct. Partecta differing in size, the larger ones located at the central area, reaching 1.2–1.8 µm in width, 5–6 in 10 µm, and almost flat in the inner margin (Table 2).

Distribution & Ecology: September 2006 (epilithic, stations 2 and 3); December 2006 (epipelic, station 4).

Mastogloia pumila (Cleve & Möller; Grunow) Cleve 1895

Basionym: Mastogloia braunii var. pumila Grunow in van Heurck 1880

Figs. 8a–e

Valves are elliptical−lanceolate with slightly protracted to broadly rounded apices (Figs. 8a, b, c, d & e), 17.0 to 31.8 µm long, 5.7 to 9.0 µm wide. Raphe is almost straight. The transapical striae (25–28 in 10 µm) vary

http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 11/05/2020 21:38:05 |
from parallel at central area to slightly radiate at apices (Fig. 8a). A partectal ring runs at the valve’s valvocopula. Partecta differing in size, the largest one located at the central area, reaching 0.9−2.0 µm in width, and convex in the inner margin (Table 2).

Distribution & Ecology: June 2006 (epipelic, station 3); September 2006 (epiphytic and epilithic, stations 2−4); December 2006 (epipelic, epiphytic and epilithic, stations 1−4); March 2007 (epilithic, stations 2−4); June 2007 (epipelic, epiphytic and epilithic, stations 2−4); September 2007 (epiphytic, epilithic, stations 1−3).

Mastogloia cf. regula Hustedt 1933
Figs. 9a–c

Valves are elliptical-lanceolate with rounded apices (Figs. 9a, b & c), 18.8 to 19.2 µm long and 5.3 to 5.4 µm wide. Raphe is almost straight. The transapical striae (24−25 in 10 µm) vary from parallel at central area to slightly radiate at apices. A partectal ring runs at the valve’s valvocopula. Rectangular partecta are uniform in size and shape, reaching 0.7−0.9 µm in width, 8−9 in 10 µm, and convex in the inner margin (Table 2).

Distribution & Ecology: June 2006 (epipelic and epiphytic, station 4).

Mastogloia similis Hustedt 1933
Figs. 10a−c

Valves are linear−lanceolate with rostrate apices (Figs. 10a, b & c), 38.9 µm long and 10.9 µm wide. Raphe is straight. The transapical striae are parallel (27 in 10 µm). A partectal ring runs at the valve’s valvocopula and displaced interiorly toward the middle line of the valve by a siliceous flange attached to the margin which show some partectal duct. Partecta differing in size, the larger ones located at the central area, reaching 2.1−2.5 µm in width, 3 in 5 µm and convex in the inner margin (Table 2).

Distribution & Ecology: December 2006 (epilithic, station 4).

Mastogloia vasta Hustedt 1933
Figs. 11a−c

Valves are elliptical−lanceolate with rounded apices (Figs. 11a, b & c), 32.1 to 41.7 µm long and 13.2 to 17.0 µm wide. Raphe is straight. The central area is transapically dilated and is connected to two narrow longitudinal depressions (i.e. H-shaped area) (Fig. 11a). The transapical striae are radiate (21−23 in 10 µm). Partectal ring runs at the valve’s valvocopula. Quadrangular partecta are not uniform in size and shape, reaching 2.2−3.2 µm in width, 6−7 in 10 µm, and convex in the inner margin (Table 2).

Distribution & Ecology: June 2006 (epilithic and epipelic, stations 3 and 4); September 2006 (Epiphytic, sta-
tions 2 and 3); December 2006 (epipelic and epilithic, station 3); March 2007 (epipelic, station 3); September 2007 (epipelic, station 1).

Discussion

Infraspecific taxa of the genus *Mastogloia* have been described by Smith (1856), Cleve (1894–1896), Boyer (1927), Hustedt (1933), Voigt (1942, 1952, 1963), Stoerner *et al.* (1964), Ricard (1975), Foged (1985a & b) and others by means of transmitted light microscopy (TLM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Although studies related to genus *Mastogloia* started in 1856, the study of this genus is ongoing as region-specific new records are added (Gaiser *et al.*, 2010; Martinez–Goss & Evangelista, 2010) or ultrastructural studies (Pennesi *et al.*, 2011).

Focusing on the biogeographical distribution of the species examined in this paper, we found that: (i) *M. aquilegiae* Grunow has been reported from the Greek Islands of Samos and Kos (Foged, 1985a & b), from the Greek Bay of Pagasitikos (Foged, 1986); (ii) *M. baldjikiana* Grunow was reported from Borneo, New Caledonia and Vaira in Tahiti (Hustedt, 1933; Ricard, 1975; Witkowski *et al.*, 2000). It has also been recorded from the Greek Island of Kos (Foged, 1985b), and other areas of Greece (Messologhi lagoon, Danielidis, 1991; EVOIKOS Gulf, Belegratis, 2002) and from the Xisha Islands of the South China Sea (Shicheng, 1993); (iii) *M. grunowii* A. Schmidt has been reported from the Xisha Islands of the South China Sea (Shicheng, 1993) and the Greek coast of Athos (Poliatis, 1925); (iv) *M. ignorata* Hustedt has been reported from the Greek Islands of Samos, Kos and Kalymnos (Foged, 1985a & b), other areas of Greece (Pagasitikos Bay, Foged, 1986; Messologhi lagoon, Danielidis, 1991; EVOIKOS Gulf, Belegratis, 2002), and also from areas of the Mediterranean (Tomas, 1982), Australia and New Zealand (Day *et al.*, 1995); (v) *M. paradoxa* Grunow has been reported from the Greek Islands of Samos and Kos (Foged, 1985a & b), other areas of Greece (Pagasitikos Bay, Foged, 1986; Messologhi lagoon, Danielidis, 1991; EVOIKOS Gulf, Belegratis, 2002), and also from areas of the Mediterranean (Adriatic Sea, Viličić *et al.*, 2002), the Black Sea (Caraus, 2002) and the Adriatic Sea (Viličić *et al.*, 2002); (vi) *M. regula* Hustedt has been reported from the South Pacific (Funafuti, Vanuatu) and the Mediterranean (Crete) (Witkowski *et al.*, 2000); (vii) *M. similis*
Table 2. Comparison of morphological features among ten Mastogloia species studied in this paper and in the literature.

Taxa	VS (μm)	L/W	STR/10 μm	PLC (μm)	PWC (μm)	PNC/10 μm	PLA (μm)	PWA (μm)	PNA/10 μm	LPN	SPN	Reference
M. aquilegiae	50.0–13.3	3.7	23	1.0–1.3	1.9–2.1	8–9	1.2–1.5	1.6–1.9	8	5	64–17	
M. baldjikiana	16.7–8.7	1.9	27							5		
M. similis	17.7–9.2	1.9	26	2.2–2.4	1.4–1.8	3 (in 5 μm)	1.9–2.0	1.0–1.2	5	5	28–12	
M. conica	18–45	20–24	1.5–2.5	5–6						4		
M. binotata	22.1–14.0	1.5	15–16	10.2–10.7	2.0–2.3					5	19–34–14–20	
M. paradoxa	28.9–11.1	2.6	26	2.4–2.6	2.0–2.2	4–5	2.6–2.9	1.1–1.4	5	5	1.9–12	
M. ignorata	29.2–10.5	2.7	26–27	1.8–2.0	1.6–1.8	5	2.1–2.5	0.9–1.2	5	5	22–24	
M. pumila	38.9–15.5	2.6	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	20–33–5–12	
M. regula	38.7–11.7	3.2	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	32–12	
M. regula	39.0–14.0	2.7	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	23–35–7–12	
M. paradoxa	39.9–10.4	3.2	27	1.5–1.9	1.2–1.5	6	0.9–1.2	0.7–0.9	5 (in 5 μm)	6	23–35–7–12	
M. pumila	38.3–11.3	3.3	27	2.1–2.4	1.6–1.8	3 (in 5 μm)	1.2–1.4	0.7–1.1	4–5 (in 5 μm)	5	24–30	
M. regula	38.7–11.7	3.2	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	28	
M. regula	39.0–14.0	2.7	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	29	
M. paradoxa	39.9–10.4	3.2	27	1.5–1.9	1.2–1.5	6	0.9–1.2	0.7–0.9	5 (in 5 μm)	6	30–36–9–12	
M. pumila	38.3–11.3	3.3	27	2.1–2.4	1.6–1.8	3 (in 5 μm)	1.2–1.4	0.7–1.1	4–5 (in 5 μm)	5	31	
M. regula	38.7–11.7	3.2	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	32	
M. regula	39.0–14.0	2.7	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	33	
M. paradoxa	39.9–10.4	3.2	27	1.5–1.9	1.2–1.5	6	0.9–1.2	0.7–0.9	5 (in 5 μm)	6	34	
M. pumila	38.3–11.3	3.3	27	2.1–2.4	1.6–1.8	3 (in 5 μm)	1.2–1.4	0.7–1.1	4–5 (in 5 μm)	5	35	
M. regula	38.7–11.7	3.2	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	36	
M. regula	39.0–14.0	2.7	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	37	
M. paradoxa	39.9–10.4	3.2	27	1.5–1.9	1.2–1.5	6	0.9–1.2	0.7–0.9	5 (in 5 μm)	6	38	
M. pumila	38.3–11.3	3.3	27	2.1–2.4	1.6–1.8	3 (in 5 μm)	1.2–1.4	0.7–1.1	4–5 (in 5 μm)	5	39	
M. regula	38.7–11.7	3.2	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	40	
M. regula	39.0–14.0	2.7	27–28	1.8–2.3	1.4–1.7	5	1.3–1.5	1.0–1.2	4 (in 5 μm)	6	41	

VS: Valve size (valve length/valve width); L/W: valve length/valve width; STR/10 μm: the number of transapical striae in 10 μm; PLC: Particella length at central area; PWC: Particella width at central area; PNC/10 μm: Particella number in 10 μμm at central area; PLA: Particella length at apices; PWA: Particella width at apices; PNA/10 μm: Particella number in 10 μm at apices; LPN: Large particella number; SPN: Small particella number.

Reference: 'Peragallo and Peragallo (1897-1908), 'Hendey (1964), 'Foged (1985a, b), 'Witkowski et al., (2000), 'This study: The literature data is given as bold and italic.'
Hustedt has been reported from the Greek Bay of Pagasitikos (Foged, 1986), Crete (Witkowski et al., 2000) and from Indonesia; and (vii) *M. vasta* Hustedt has been reported from the Greek Bay of Evoikos (Belegratis, 2002), Australia and New Zealand (Day et al., 1995).

A comparison of the morphological features for the ten studied *Mastogloia* species is presented in Table 2. Our specimens are usually smaller in size than those previously reported. The valve length and width for *M. aqilegiae* were smaller in our samples (50×13.3 µm) than that reported by Foged (1985a) (64×17 µm). Morphometric data determined for *M. baldjikiana*, especially valve size (valve length×valve width), striae density (number of transapical striae in 10 µm) and partecta width at central area showed some differences with other studies. The valve size of *M. baldjikiana* in our samples was determined as 16.7±17.7×8.7–9.2 µm. However, the valve size of the same species was reported by Foged (1985b), Witkowski et al. (2000) and Pennesi et al. (2011) as 28±12 µm, 18–45×10–20 µm and 23.6–27.9×10.6–12.1 µm respectively. The striae density for *M. baldjikiana* was higher in our samples (26–27 striae in 10 µm) than that reported by Witkowski et al. (2000) (20–24 striae in 10 µm), but the striae density for the same species in Pennesi et al. (2011) was found to be 24–28 striae in 10 µm. However, partecta width at central area for *M. baldjikiana* was slightly narrower in our samples (1.4–1.8 µm) than that reported by Witkowski et al. (2000) and Pennesi et al. (2011) (1.5–2.5 µm; 1.9–2.1 µm, respectively).

Both the valve width and partecta width at central area for *M. grunowii* in our samples were different from the study conducted by Witkowski et al. (2000). In our samples, the valve width was between 10.5 and 11.1 µm, the partecta width at central area varied between 1.6 and 2.2 µm. On the other hand, Witkowski et al. (2000) reported the valve width and the partecta width at central area as 12–22 µm and 2 µm respectively. Furthermore, Van Landingham (1971) suggested that *M. grunowii* should merge into *M. quinquecostata*. However, Shicheng (1993) stated that although *M. grunowii* and *M. quinquecostata* were very similar to each other, they represent different species. It is reported that in *M. grunowii*, central partecta are slightly larger, about 2 µm in width, decreasing in size at the ends but not reaching the ends, whereas in *M. quinquecostata*, partecta are very narrow, equal in size and 1.0–1.5 µm in width, reaching the ends, 4–5 in 10 µm. In this study, the partecta of *M. grunowii* were 1.8–2.6 µm long and 1.6–2.2 µm wide at the center, gradually becoming narrower towards the apices, 2.1–2.9 µm in length and 0.9–1.4 µm in width, in compliance with the measurements of Shicheng (1993).

The morphometric measurements for *M. ignorata* and *M. paradoxa*, especially the partecta width at central area were different from the data reported by Witkowski et al. (2000). For *M. ignorata*, the partecta width showed little variation at central area (1.3–1.7 µm in width), and in the apices (1.2–1.4 µm in width), and they were uniform in width, and 8 in 10 µm. However, the partecta width at central area of the same species was reported slightly wider by Witkowski et al. (2000) (2 µm). For *M. paradoxa*, the partecta width at central area, the partecta width at apices and partecta number in 10 µm at central area were determined as 1.2–1.8 µm, 0.7–1.2 µm and 5–6, respectively. Whereas, these morphometric data were reported as 1.5–2 µm, 1 µm and 4–5 respectively (Witkowski et al., 2000). The valve size of *M. punila* in our samples was determined as 17.0–31.8×5.7–9.0 µm. However, the valve size of the same species was reported by both Hendey (1964) and Witkowski et al. (2000) as 20–30×5–9 µm. Also, the partecta width at central area of the same species is slightly narrower in our samples (0.9–2.0 µm) than that reported by Witkowski et al. (2000) (1.5–2.0 µm).

The striae density for *M. cf. regula* (24–25 striae in 10 µm) in our samples was greater in comparison to that reported by Witkowski et al. (2000) (20–22 in 10 µm). The partecta size of *M. cf. regula* varied at the central area (0.9–1.5 µm in length, 0.7–0.9 µm in width), and in the apices (1.1–1.5 µm in length, 0.7–0.9 µm in width), and they were uniform in size and 8–9 in 10 µm. Witkowski et al. (2000) found that the valve outline of *M. regula* and *M. linearis* was similar, differing however in the form of apices (more capitae in *M. regula*) and in the shape and size of partecta: in *M. regula* (the partecta width at central area; 0.5–1 µm) they are apically rectangular, ca. 8 in 10 µm, whereas in *M. linearis* (the partecta width at central area; 0.7–1 µm) they are distinctly apically rectangular, 4–5 in 10 µm. For *M. similis*, some differences with Witkowski et al. (2000) in the striae density and the partecta width of both central area and apices were determined. The striae density, the partecta width at central area and apices in our samples were 27 in 10 µm, 2.1–2.5 µm and 0.9–1.0 µm respectively. It is noted that these data were reported by Witkowski et al. (2000) as 28 in 10 µm, 2 µm and 1 µm respectively.

The valve size for *M. vasta* was slightly larger in our samples (32.1–41.7×13.2–17.0 µm) than that reported by Witkowski et al. (2000) (20–40×9–16 µm). The partecta width and partecta number in 10 µm at central area was determined as 2.2–3.2 µm and 6–7 in 10 µm, whereas in Witkowski et al. (2000), it is reported as 1–4 µm and 3–8 in 10 µm, respectively. The majority of these differences between my specimens and others reported in the literature can be associated with a case of natural morphometric differentiation between different populations of the same species. This is more or less expected, as literature data for the studied species are very scarce.

There are many cultural studies investigating the relationship between morphological characteristics and environmental parameters, which reported that the morphological differences may be dependent on the environmental parameters e.g. salinity (Johansen & Theriot, 1987;
In the study area, there was a wide spectrum of ecologically different biotopes and this allows the formation of marine, brackish water and fresh water forms in the region. The Mastogloia species examined in this study preferred different biotopes and stations. They were more frequently observed primarily in epiphytic diatom samples and then in epilithic and epipelic diatom samples. Martinez-Goss & Evangelista (2011) reported generally high abundances of the Mastogloia species in epipelic and epiphytic flora. In Homa lagoon, although M. pumila and M. vasa have been determined in all periphyton samples, M. aquilaegei and M. ignorata have been observed only in epiphytic diatom samples and M. binotata has been found in epilithic diatom samples only. When the distribution of these species per station was examined, M. vasa and M. ignorata were present only at station 1 and station 3, respectively, and M. aquilaegei, M. baldjikiana, M. cf. regulä and also M. similis were present at station 4 in particular. The reason for preferring station 4 might be due to the shallowness (~0.5 m) and brackish water characteristics. Stoemer (1967) examined the effect of total dissolved solids on the valve structure and found the presence of coarsely structured forms of diatoms in habitats having relatively low levels of total dissolved solids, while the more finely structured forms are consistently present in brackish or other highly mineralized waters. The variability of the valve morphology examined in Homa lagoon might be affected by the rapid environmental changes; therefore, both coarsely and finely structured forms of the genus Mastogloia were identified.

The Mastogloia genus, one of the largest diatom genera, has a tropical to temperate worldwide distribution. Although most of the Mastogloia species are marine species, some freshwater and brackish water forms have been reported (Round et al., 1990; Patrick & Reimer, 1966). However, the taxonomic literature on brackish water diatoms is quite scattered. In this sense, the detailed description about the taxonomy, ecology and distribution of species obtained in this study will help correct species recognition and contribute to the knowledge of the periphytic algal flora apart from the better known pelagic one.

References

Akbahut, A., Yıldız, K., 2002. The planktonic diatoms of Lake Çıldır (Arzahan-Turkey). Turkish Journal of Botany, 26, 55-75.

Aligizaki, K., Nikolaidis, G., 2006. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea, Greece. Harmful Algae, 5, 717-730.

Belegratis, M.R., 2002. Studies on periphytic algae in marine sites of Evvokos Gulf. PhD Thesis. University of Athens, Greece, 337 pp.

Boyer, C.S., 1927. Synopsis of North American Diatomaceae Part II. Naviculatae, Surirellatae. p. 229-583. In: Proceedings of the Academy of Natural Sciences of Philadelphia Vol. 79. The Academy of Natural Sciences, Philadelphia.

Cărașu, I., 2002. Algae of Romania. A distributional checklist of actual algae. Studii şi Cercetări Știinţifice, Universitatea din Bacău, seria Biologie, Vol. 7, 694 pp.

Christiansen, T., 1988. Alge i naturen og i laboratoriet. Københavns Universitet, Institute for Sporeplanter, Norregade, 137 pp.

Cleve, P.T., 1883. Diatoms collected during the expedition of the Vega. Vega-Expeditionens Vetenskapliga lakttagelser, 3, 455-517.

Cleve, P.T., 1894. Synopsis of the naviculoid diatoms. Part 2. Mastogloia Thwaites (1848). Kongliga Svenska Vetens- kaps-akademiens Handlingar, 27 (3), 142-162.

Cox, E.J., 1983. Observations on the diatom genus Donkinia Ralfs in Priërich. II. Frustular studies and intra-specific variation. Botanica Marina, 26 (12), 553-566.

Cox, E.J., 1995. Morphological variation in widely distributed diatom taxa: taxonomic and ecological implications. p. 335-345. In: Proceedings of the 13th International Diatom Symposium, Maratemala, Italy, 1-7 September 1994. Biopress, Bristol.

Çelekli, A., Külköylüoğlu, O., 2006. Net planktonic diatom (Bacillariophyceae) composition of Lake Abant (Bolu). Turkish Journal of Botany, 30, 331-347.

Danielidis, D.B., 1991. A systematic and ecological study of diatoms in the Lagoons of Messolonghi, Aetoliko and Kleissona. PhD Thesis. University of Athens, Greece, 287 pp.

Day, S.A., Wickham, R.P., Entwisle, T.J., Tyler, P.A., 1995. Bibliographic checklist of non-marine algae in Australia. Flora of Australia, Supplementary Series 4. Australian Biological Resources Study, Canberra, 284 pp.

Elmaci, A., Olah, O., 1998. The algal flora of the littoral region in Lake Aşchir. Turkish Journal of Biology, 22 (1), 81-98.

Foged, N., 1985a. Diatoms in Samos, a Greek island in the Aegean. Bibliotheca Diatomologica, No. 10. J. Cramer, Vaduz Liechtenstein, 118 pp.

Foged, N., 1985b. Diatoms in Kos and Kalymnos, two Greek islands in the Aegean. Bibliotheca Diatomologica, No. 10. J. Cramer, Vaduz Liechtenstein, 104 pp.

Foged, N., 1986. Diatoms in Gambie. Diatoms in the Volo Bay, Greece. Bibliotheca Diatomologica, No. 12. J. Cramer, Berlin-Stuttgart, 220 pp.

Gaiser, E., La Hée, J.M., Tobias, F.A.C., Wachnicka, A.H., 2010. Mastogloia smithii var. lucasris Grunder. a structural engineer of calcarceous mats in karstic subtropical wetlands. Proceedings of the Academy of Natural Sciences of
alternative calculation of carbons that can be turned into energy by primary production. *Ege Journal of Fisheries & Aquatic Sciences*, 21 (3-4), 339-342.

VanLandigham, S.L., 1971. *Catalogue of the Fossil and Recent Genera and Species of Diatoms and their Synonyms. Part IV. Fragilaria through Naunema*. Verlag Von J. Cramer, Weinheim, 1757-2385.

Viličić, D., Marasović, I., Mioković, D., 2002. Checklist of phytoplankton in the eastern Adriatic Sea. *Acta Botanica Croatica*, 61 (1), 57-91.

Voigt, M., 1942. Contribution to the knowledge of the diatom genus *Mastogloia*. *Journal of the Royal Microscopical Society*, 62 (1-2), 1-20.

Voigt, M., 1952. A further contribution to the knowledge of the diatom genus *Mastogloia*. *Journal of the Royal Microscopical Society*, 71 (4), 440-449.

Voigt, M., 1963. Some new and interesting *Mastogloia* from the Mediterranean area and the Far East. *Journal of the Royal Microscopical Society*, 82 (2), 111-121.

Wendker, S., Geissler, U., 1988. Investigation on valve morphology of two *Nitzschia lanceolatae*. p. 469-480. In: Proceedings of the 9th International Diatom Symposium, Bristol, 24-30 August, 1986. Otto Koeltz, Koenigstein.

Winter, J.G., Duthie, H.C., 2000. Stream epilithic, epipellic and epiphytic diatoms: habitat fidelity and use in biomonitoring. *Aquatic Ecology*, 34 (4), 345-353.

Witkowski, A., Lange-Bertalot, H., Metzeltin, D., 2000. Diatom flora of marine coasts I. In: *Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 7. Diversity-Taxonomy-Identification*. Lange-Bertalot, H. (Ed.). Koeltz Scientific Books, Königstein, 925 pp.