Chebushev Greedy Algorithm in convex optimization

V.N. Temlyakov *

December 5, 2013

Abstract

Chebyshev Greedy Algorithm is a generalization of the well known Orthogonal Matching Pursuit defined in a Hilbert space to the case of Banach spaces. We apply this algorithm for constructing sparse approximate solutions (with respect to a given dictionary) to convex optimization problems. Rate of convergence results in a style of the Lebesgue-type inequalities are proved.

1 Introduction

We study sparse approximate solutions to convex optimization problems. We apply the technique developed in nonlinear approximation known under the name of greedy approximation. A typical problem of convex optimization is to find an approximate solution to the problem

$$\inf_x E(x)$$

under assumption that E is a convex function. Usually, in convex optimization function E is defined on a finite dimensional space \mathbb{R}^n (see [1], [3]). Recent needs of numerical analysis call for consideration of the above optimization problem on an infinite dimensional space, for instance, a space of

*University of South Carolina and Steklov Institute of Mathematics. Research was supported by NSF grant DMS-1160841
continuous functions. Thus, we consider a convex function \(E \) defined on a Banach space \(X \). This paper is a follow up to papers [6], [7], and [4]. We refer the reader to the above mentioned papers for a detailed discussion and justification of importance of greedy methods in optimization problems.

Let \(X \) be a Banach space with norm \(\| \cdot \| \). We say that a set of elements (functions) \(\mathcal{D} \) from \(X \) is a dictionary, respectively, symmetric dictionary, if each \(g \in \mathcal{D} \) has norm bounded by one (\(\| g \| \leq 1 \)),

\[
g \in \mathcal{D} \quad \text{implies} \quad -g \in \mathcal{D},
\]

and the closure of \(\text{span} \mathcal{D} \) is \(X \). For notational convenience in this paper symmetric dictionaries are considered. Results of the paper also hold for non-symmetric dictionaries with straightforward modifications. We denote the closure (in \(X \)) of the convex hull of \(\mathcal{D} \) by \(A_1(\mathcal{D}) \). In other words \(A_1(\mathcal{D}) \) is the closure of \(\text{conv}(\mathcal{D}) \). We use this notation because it has become a standard notation in relevant greedy approximation literature.

We assume that \(E \) is Fréchet differentiable and that the set

\[
D := \{ x : E(x) \leq E(0) \}
\]

is bounded. For a bounded set \(D \) define the modulus of smoothness of \(E \) on \(D \) as follows

\[
\rho(E, u) := \frac{1}{2} \sup_{x \in \mathcal{D}, \|y\| = 1} |E(x + uy) + E(x - uy) - 2E(x)|. \tag{1.2}
\]

We say that \(E \) is uniformly smooth if \(\rho(E, u) = o(u), \ u \to 0 \).

We defined and studied in [6] the following generalization of the Weak Chebyshev Greedy Algorithm (see [5], Ch. 6) for convex optimization.

Weak Chebyshev Greedy Algorithm (WCGA(co)). Let \(\tau := \{ t_k \}_{k=1}^{\infty}, \ t_k \in (0, 1], \ k = 1, 2, \ldots, \) be a weakness sequence. We define \(G_0 := 0 \). Then for each \(m \geq 1 \) we have the following inductive definition.

1. \(\varphi_m := \varphi_m^{\tau} \in \mathcal{D} \) is any element satisfying

\[
\langle -E'(G_{m-1}), \varphi_m \rangle \geq t_m \sup_{g \in \mathcal{D}} \langle -E'(G_{m-1}), g \rangle.
\]

2. Define

\[
\Phi_m := \Phi_m^{\tau} := \text{span}\{\varphi_j\}_{j=1}^{m},
\]
and define $G_m := G^c_{m,\tau}$ to be the point from Φ_m at which E attains the minimum:

$$E(G_m) = \inf_{x \in \Phi_m} E(x).$$

We consider here along with the WCGA(co) the following greedy algorithm.

E-Greedy Chebyshev Algorithm (EGCA(co)). We define $G_0 := 0$. Then for each $m \geq 1$ we have the following inductive definition.

1. $\varphi_m := \varphi^E_{m,\tau} \in \mathcal{D}$ is any element satisfying (assume existence)

$$\inf_c E(G_{m-1} + c\varphi_m) = \inf_{c,g \in \mathcal{D}} E(G_{m-1} + cg).$$

2. Define $\Phi_m := \Phi_{m,\tau} := \text{span}\{\varphi_j\}_{j=1}^m$,

and define $G_m := G^E_{m,\tau}$ to be the point from Φ_m at which E attains the minimum:

$$E(G_m) = \inf_{x \in \Phi_m} E(x).$$

The EGCA(co) is in a style of X-Greedy algorithms studied in approximation theory (see [5], Ch. 6). In a special case of $X = \mathbb{R}^d$ and \mathcal{D} is a canonical basis of \mathbb{R}^d the EGCA(co) was introduced and studied in [4]. Convergence and rate of convergence of the WCGA(co) were studied in [6]. For instance, the following rate of convergence theorem was proved in [6].

Theorem 1.1. Let E be a uniformly smooth convex function with modulus of smoothness $\rho(E, u) \leq \gamma u^q$, $1 < q \leq 2$. Take a number $\epsilon \geq 0$ and an element f^c from \mathcal{D} such that

$$E(f^c) \leq \inf_{x \in \mathcal{D}} E(x) + \epsilon, \quad f^c / B \in A_1(\mathcal{D}),$$

with some number $B \geq 1$. Then we have for the WCGA(co) ($p := q/(q-1)$)

$$E(G_m) - \inf_{x \in \mathcal{D}} E(x) \leq \max \left(2\epsilon, C(q, \gamma)B^q \left(C(E, q, \gamma) + \sum_{k=1}^m t_k^p \right)^{1-q} \right). \quad (1.3)$$

We will use the following notations. Let f_0 be a point of minimum of E:

$$E(f_0) = \inf_{x \in \mathcal{D}} E(x).$$
We denote for $m = 1, 2, \ldots$

$$f_m := f_0 - G_m.$$

In particular, if the point of minimum f_0 belongs to $A_1(D)$, then Theorem 1.1 in the case $t_k = t \in (0, 1)$, $k = 1, \ldots$, with $\epsilon = 0$, $B = 1$, gives

$$E(G_m) - E(f_0) \leq C(q, \gamma, t)m^{1-q}.$$ \hspace{1cm} (1.4)

Inequality (1.4) uses only information that $f_0 \in A_1(D)$. Theorem 1.1 is designed in a way that the convergence rate is determined by smoothness of E and complexity of f_0. Our way of measuring complexity of the element f_0 in Theorem 1.1 is based on $A_1(D)$. Given a dictionary D we say that f_0 is simple with respect to D if $f_0 \in A_1(D)$. Next, let for every $\epsilon > 0$ an element f^ϵ be such that

$$E(f^\epsilon) \leq E(f_0) + \epsilon, \quad f^\epsilon / A(\epsilon) \in A_1(D)$$

with some number $A(\epsilon)$ (the smaller the $A(\epsilon)$ the better). Then we say that complexity of f_0 is bounded (bounded from above) by the function $A(\epsilon)$.

We apply algorithms which at the mth iteration provide an m-term polynomial G_m with respect to D. The approximant belongs to the domain D of our interest. Then on one hand we always have the lower bound

$$E(G_m) - \inf_{x \in D} E(x) \geq \inf_{x \in D \cap \Sigma_m(D)} E(x) - \inf_{x \in D} E(x)$$

where $\Sigma_m(D)$ is a collection of all m-term polynomials with respect to D. On the other hand if we know f_0 then the best we can do with our algorithms is to get

$$\|f_0 - G_m\| = \sigma_m(f_0, D)$$

where $\sigma_m(f_0, D)$ is the best m-term approximation of f_0 with respect to D. Then we can aim at building algorithms that provide an error $E(G_m) - E(f_0)$ comparable to $\rho(E, \sigma_m(f_0, D))$. It would be in a style of the Lebesgue-type inequalities. However, it is known from greedy approximation theory that there is no Lebesgue-type inequalities which hold for an arbitrary dictionary even in the case of Hilbert spaces. There are the Lebesgue-type inequalities for special dictionaries. We refer the reader to [5], [2], [8], [9] for results on the Lebesgue-type inequalities. In this paper we obtain rate of convergence results for the WCGA(co) in a style of the Lebesgue-type inequalities.
We will use the following assumptions on properties of E.

E1. Smoothness. We assume that E is a convex function with

$$
\rho(E, u) \leq \gamma u^2.
$$

E2. Restricted strong convexity. We assume that for any S-sparse element f we have

$$
E(f) - E(f_0) \geq \beta \|f - f_0\|^2.
$$

Here is one assumption on the dictionary D that we will use (see [8]). For notational simplicity we formulate it for a countable dictionary $D = \{g_i\}_{i=1}^{\infty}$.

A. We say that $f = \sum_{i \in T} x_i g_i$ has ℓ_1 incoherence property with parameters S, V, and r if for any $A \subset T$ and any Λ such that $A \cap \Lambda = \emptyset$, $|A| + |\Lambda| \leq S$ we have for any $\{c_i\}

$$
\sum_{i \in A} |x_i| \leq V |A|^r \|f_A - \sum_{i \in \Lambda} c_i g_i\|, \quad f_A := \sum_{i \in A} x_i g_i.
$$

(1.6)

A dictionary D has ℓ_1 incoherence property with parameters K, S, V, and r if for any $A \subset B$, $|A| \leq K$, $|B| \leq S$ we have for any $\{c_i\}_{i \in B}$

$$
\sum_{i \in A} |c_i| \leq V |A|^r \|\sum_{i \in B} c_i g_i\|.
$$

The following theorem is the main result of the paper.

Theorem 1.2. Let E satisfy assumptions **E1** and **E2**. Suppose for a point of minimum f_0 we have $\|f_0 - f^*\| \leq \epsilon$ with K-sparse $f := f^*$ satisfying property **A**. Then for the WCGA(co) with weakness parameter t we have for $K + m \leq S$

$$
E(G_m) - E(f_0) \leq \max \left(\left(E(0) - E(f_0) \right) \exp \left(-c_1 m \frac{K}{K^2} \right), 8(\gamma^2 / \beta) \epsilon^2 \right) + 2 \gamma \epsilon^2,
$$

where $c_1 := \frac{\beta^2}{64 \gamma^2}.$

Let us apply Theorem 1.2 in a particular case $r = 1/2$. If we assume that $\sigma_K(f_0, D) \leq C_1 K^{-s}$ then for m of order $K \ln K$ Theorem 1.2 with $\epsilon = C_1 K^{-s}$ provides the bound

$$
E(G_m) - E(f_0) \leq C_2 K^{-2s}.
$$

Note that K^{-2s} is of order $\rho(E, K^{-s})$ in our case.

In the case of direct application of the Weak Chebyshev Greedy Algorithm to the element f_0 the corresponding results in a style of the Lebesgue-type inequalities are known (see [2] and [8]).
2 Proofs

We assume that E is Fréchet differentiable. Then convexity of E implies that for any x, y

$$E(y) \geq E(x) + \langle E'(x), y - x \rangle$$

(2.1)

or, in other words,

$$E(x) - E(y) \leq \langle E'(x), x - y \rangle = \langle -E'(x), y - x \rangle.$$

(2.2)

We will often use the following simple lemma (see [6]).

Lemma 2.1. Let E be Fréchet differentiable convex function. Then the following inequality holds for $x \in D$

$$0 \leq E(x + uy) - E(x) - u\langle E'(x), y \rangle \leq 2\rho(E, u\|y\|).$$

(2.3)

The following two simple lemmas are well-known (see [5], Chapter 6 and [6], Section 2).

Lemma 2.2. Let E be a uniformly smooth convex function on a Banach space X and L be a finite-dimensional subspace of X. Let x_L denote the point from L at which E attains the minimum:

$$E(x_L) = \inf_{x \in L} E(x).$$

Then we have

$$\langle E'(x_L), \phi \rangle = 0$$

for any $\phi \in L$.

Lemma 2.3. For any bounded linear functional F and any dictionary \mathcal{D}, we have

$$\sup_{g \in \mathcal{D}} \langle F, g \rangle = \sup_{f \in A_1(\mathcal{D})} \langle F, f \rangle.$$

Proof of Theorem 1.2. Let

$$f := f^\epsilon = \sum_{i \in T} x_i g_i, \quad g_i \in \mathcal{D}, \quad |T| = K.$$

We examine n iterations of the algorithm for $n = 1, \ldots, m$. Denote by T^n the set of indices of g_i picked by the WCGA(co) after n iterations, $\Gamma^n :=$
$T \setminus T^n$. Denote as above by $A_1(D)$ the closure in X of the convex hull of the symmetric dictionary D. We will bound from above $a_n := E(G_n) - E(f^\epsilon)$. Assume $\|f_{n-1}\|^2 \geq 4(\gamma/\beta)\epsilon^2$ for all $n = 1, \ldots, m$. Denote $A_n := \Gamma^{n-1}$ and

$$ f_{A_n} := f^\epsilon_{A_n} := \sum_{i \in A_n} x_i g_i, \quad \|f_{A_n}\|_1 := \sum_{i \in A_n} |x_i|. $$

The following lemma is used in our proof.

Lemma 2.4. Let E be a uniformly smooth convex function with modulus of smoothness $\rho(E, u)$. Take a number $\epsilon \geq 0$ and a K-sparse element $f^\epsilon = \sum_{i \in T} x_i g_i$ from D such that

$$ \|f_0 - f^\epsilon\| \leq \epsilon. $$

Then we have for the WCGA(co)

$$ E(G_n) - E(f^\epsilon) \leq E(G_{n-1}) - E(f^\epsilon) + \inf_{\lambda \geq 0} \left(-\lambda t \|f_{A_n}\|_1^{-1}(E(G_{n-1}) - E(f^\epsilon)) + 2\rho(E, \lambda)\right), $$

for $n = 1, 2, \ldots$.

Proof. It follows from the definition of WCGA(co) that $E(0) \geq E(G_1) \geq E(G_2) \ldots$. Therefore, if $E(G_{n-1}) - E(f^\epsilon) \leq 0$ then the claim of Lemma 2.4 is trivial. Assume $E(G_{n-1}) - E(f^\epsilon) > 0$. By Lemma 2.1 we have for any λ

$$ E(G_{n-1} + \lambda \varphi_n) \leq E(G_{n-1}) - \lambda(-E'(G_{n-1}), \varphi_n) + 2\rho(E, \lambda) \quad (2.4) $$

and by (1) from the definition of the WCGA(co) and Lemma 2.3 we get

$$ \langle -E'(G_{n-1}), \varphi_n \rangle \geq t \sup_{g \in D} \langle -E'(G_{n-1}), g \rangle = t \sup_{\phi \in A_1(D)} \langle -E'(G_{n-1}), \phi \rangle \geq t \|f_{A_n}\|_1^{-1} \langle -E'(G_{n-1}), f_{A_n} \rangle. $$

By Lemma 2.2 and (2.2) we obtain

$$ \langle -E'(G_{n-1}), f_{A_n} \rangle = \langle -E'(G_{n-1}), f^\epsilon - G_{n-1} \rangle \geq E(G_{n-1}) - E(f^\epsilon). $$

Thus,

$$ E(G_n) \leq \inf_{\lambda \geq 0} E(G_{n-1} + \lambda \varphi_n) \leq E(G_{n-1}) + \inf_{\lambda \geq 0} \left(-\lambda t \|f_{A_n}\|_1^{-1}(E(G_{n-1}) - E(f^\epsilon)) + 2\rho(E, \lambda)\right), \quad (2.5) $$

which proves the lemma.
Denote
\[a_n := E(G_n) - E(f^\epsilon). \]

From (2.5) we obtain
\[a_n \leq a_{n-1} + \inf_{\lambda \geq 0} \left(-\lambda t \frac{a_{n-1}}{\|f_{A_n}\|_1} + 2\rho(E, \lambda) \right). \tag{2.6} \]

By assumption E1 we have \(\rho(E, u) \leq \gamma u^2 \). We get from (2.6)
\[a_n \leq a_{n-1} + \inf_{\lambda \geq 0} \left(-\lambda t a_{n-1} \frac{1}{\|f_{A_n}\|_1} + 2\gamma \lambda^2 \right). \]

Let \(\lambda_1 \) be a solution of
\[\frac{\lambda t a_{n-1}}{2\|f_{A_n}\|_1} = 2\gamma \lambda^2, \quad \lambda_1 = \frac{t a_{n-1}}{4\gamma \|f_{A_n}\|_1}. \]

Our assumption A (see (1.6)) gives
\[
\|f_{A_n}\|_1 = \|(f^\epsilon - G_{n-1})_{A_n}\|_1 \leq VK^r \|f^\epsilon - G_{n-1}\|
\leq VK^r (\|f_0 - G_{n-1}\| + \|f_0 - f^\epsilon\|) \leq VK^r (\|f_{n-1}\| + \epsilon). \tag{2.7}
\]

We bound from below \(a_{n-1} = E(G_{n-1}) - E(f^\epsilon) \). By our smoothness assumption and Lemma 2.1
\[E(f^\epsilon) - E(f_0) \leq 2\gamma \|f^\epsilon - f_0\|^2 \leq 2\gamma \epsilon^2. \]

Therefore,
\[a_{n-1} = E(G_{n-1}) - E(f^\epsilon) = E(G_{n-1}) - E(f_0) + E(f_0) - E(f^\epsilon)
\geq E(G_{n-1}) - E(f_0) - 2\gamma \epsilon^2. \]

By restricted strong convexity assumption E2
\[E(G_{n-1}) - E(f_0) \geq \beta \|G_{n-1} - f_0\|^2 = \beta \|f_{n-1}\|^2. \]

Thus
\[a_{n-1} \geq \beta \|f_{n-1}\|^2 - 2\gamma \epsilon^2. \tag{2.8} \]

Specify
\[\lambda = \frac{t \beta \|f_{A_n}\|_1}{32\gamma (VK^r)^2}. \]
Then, using (2.7) and (2.8) we get
\[\frac{\lambda}{\lambda_1} = \frac{\beta\|f_{A_n}\|_1^2}{8(VK^r)^2a_{n-1}} \leq \frac{\beta(\|f_{n-1}\| + \epsilon)^2}{8\beta\|f_{n-1}\|^2 - 2\gamma\epsilon^2}. \] (2.9)

By our assumption \(\|f_{n-1}\|^2 \geq 4(\gamma/\beta)\epsilon^2 \) and a trivial inequality \(\beta \leq 2\gamma \) we obtain from (2.9) that \(\lambda \leq \lambda_1 \) and therefore
\[a_n \leq a_{n-1} \left(1 - \frac{\beta t^2}{64\gamma(VK^r)^2}\right), \quad n = 1, \ldots, m. \]

Denote \(c_1 := \frac{\beta t^2}{64\gamma V^2r} \). Then
\[a_m \leq a_0 \exp\left(-\frac{c_1 m}{K^2r}\right). \] (2.10)

We obtained (2.10) under assumption \(\|f_{n-1}\|^2 \geq 4(\gamma/\beta)\epsilon^2, \quad n = 1, \ldots, m. \) If \(\|f_{n-1}\|^2 < 4(\gamma/\beta)\epsilon^2 \) for some \(n \in [1, m] \) then \(a_{m-1} \leq a_{n-1} \leq 2\gamma\|f_{n-1}\|^2 \leq 8(\gamma^2/\beta)\epsilon^2 \). Therefore,
\[a_m \leq \max\left(a_0 \exp\left(-\frac{c_1 m}{K^2r}\right), 8(\gamma^2/\beta)\epsilon^2\right). \]

Next, we have
\[E(G_m) - E(f_0) = a_m + E(f^\epsilon) - E(f_0) \leq a_m + 2\gamma\epsilon^2. \]

This completes the proof of Theorem 1.2.

The above technique of studying the WCGA(co) works for the EGCA(co) as well. Instead of Lemma 2.4 we have the following one.

Lemma 2.5. Let \(E \) be a uniformly smooth convex function with modulus of smoothness \(\rho(E, u) \). Take a number \(\epsilon \geq 0 \) and a \(K \)-sparse element \(f^\epsilon \) from \(D \) such that
\[\|f_0 - f^\epsilon\| \leq \epsilon. \]

Then we have for the EGCA(co)
\[E(G_n) - E(f^\epsilon) \leq E(G_{n-1}) - E(f^\epsilon) \]
\[+ \inf_{\lambda \geq 0} (-\lambda\|f_{A_n}\|^{-1}_1(E(G_{n-1}) - E(f^\epsilon)) + 2\rho(E, \lambda)), \]
for \(n = 1, 2, \ldots \).
Proof. In the proof of Lemma 2.4 we did not use a specific form of the G_{n-1} as the one generated by the $(n-1)$th iteration of the WCGA(co), we only used that $G_{n-1} \in D$. Let G_{n-1} be from the $(n-1)$th iteration of the EGCA(co) and let φ_m^t, $t \in (0, 1)$, be such that

$$\langle -E'(G_{n-1}), \varphi_m^t \rangle \geq t \sup_{g \in D} \langle -E'(G_{n-1}), g \rangle.$$

Then the above proof of Lemma 2.4 gives

$$\inf_{\lambda \geq 0} E(G_{n-1} + \lambda \varphi_m^t) \leq \inf_{\lambda \geq 0} (-\lambda t \| f_A^n \|_1^{-1} (E(G_{n-1}) - E(f^e)) + 2\rho(E, \lambda)). \quad (2.11)$$

Definition of the EGCA(co) implies

$$E(G_m) \leq \inf_{c} E(G_{n-1} + c \varphi_m) \leq \inf_{\lambda \geq 0} E(G_{n-1} + \lambda \varphi_m^t). \quad (2.12)$$

Combining (2.11) and (2.12) and taking into account that $E(G_m)$ does not depend on t, we complete the proof of Lemma 2.5.

The following theorem is derived from Lemma 2.5 in the same way as Theorem 1.2 was derived from Lemma 2.4.

Theorem 2.1. Let E satisfy assumptions $E1$ and $E2$. Suppose for a point of minimum f_0 we have $\| f_0 - f^e \| \leq \epsilon$ with K-sparse $f := f^e$ satisfying property A. Then for the EGCA(co) we have for $K + m \leq S$

$$E(G_m) - E(f_0) \leq \max \left((E(0) - E(f_0)) \exp \left(-\frac{c_1 m}{K^2 \epsilon^2} \right), 8\left(\frac{\gamma^2}{\beta}\right) \epsilon^2 \right) + 2\epsilon^2,$$

where $c_1 := \frac{\beta}{64\gamma V^2}$.

10
References

[1] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and Examples, Canadian Mathematical Society, Springer, 2006.

[2] E. Livshitz and V. Temlyakov, Sparse approximation and recovery by greedy algorithms, Preprint, 2013.

[3] Yu. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, Boston, 2004.

[4] S. Shalev-Shwartz, N. Srebro, and T. Zhang, Trading accuracy for sparsity in optimization problems with sparsity constrains, SIAM Journal on Optimization, 20(6) (2010), 2807–2832.

[5] V.N. Temlyakov, Greedy approximation, Cambridge University Press, 2011.

[6] V.N. Temlyakov, Greedy approximation in convex optimization, arXiv: 1206.0392v1 [stat.ML] 2 Jun 2012 (see also IMI Preprint, 2012:03, 1–25).

[7] V.N. Temlyakov, Greedy expansions in convex optimization, arXiv: 1206.0393v1 [stat.ML] 2 Jun 2012 (see also IMI Preprint, 2012:03, 1–27).

[8] V.N. Temlyakov, Sparse approximation and recovery by greedy algorithms in Banach spaces, arXiv: 1303.6811v1 [stat.ML] 27 Mar 2013.

[9] T. Zhang, Sparse Recovery with Orthogonal Matching Pursuit under RIP, IEEE Transactions on Information Theory, 57 (2011), 6215–6221.