1. Introduction

The purpose of this paper is to describe several applications of finiteness properties of F-finite F-modules recently discovered by M. Hochster in [H] to the study of Frobenius maps on injective hulls, Frobenius near-splittings and to the nature of morphisms of F-finite F-modules.

Throughout this paper (R, m) shall denote a complete regular local ring of prime characteristic p. At the heart of everything in this paper is the Frobenius map $f : R \to R$ given by $f(r) = r^p$ for $r \in R$. We can use this Frobenius map to define a new R-module structure on R given by $r \cdot s = r^p s$; we denote this R-module $F_* R$. We can then use this to define the Frobenius functor from the category of R-modules to itself: given an R-module M we define $F(M)$ to be $F_* R \otimes_R M$ with R-module structure given by $r(s \otimes m) = rs \otimes m$ for $r, s \in R$ and $m \in M$.

Let $R[\Theta; f]$ be the skew polynomial ring which is a free R-module $\oplus_{i=0}^{\infty} R\Theta^i$ with multiplication $\Theta r = r^p \Theta$ for all $r \in R$. As in [K1], \mathcal{C} shall denote the category $R[\Theta; f]$-modules which are Artinian as R-modules. For any two such modules M, N, we denote the morphisms between them in \mathcal{C} with $\text{Hom}_{R[\Theta; f]}(M, N)$; thus an element $g \in \text{Hom}_{R[\Theta; f]}(M, N)$ is an R-linear map such that $g(\Theta a) = \Theta g(a)$ for all $a \in M$. The first main result of this paper (Theorem 3.3) shows that under some conditions on N, $\text{Hom}_{R[\Theta; f]}(M, N)$ is a finite set.

An F-module (cf. the seminal paper [L] for an introduction to F-modules and their properties) over the ring R is an R-module M together with an R-module isomorphism $\theta_M : M \to F(M)$. This isomorphism θ_M is the structure morphism of M.

A morphism of F-modules $M \to N$ is an R-linear map g which makes the following diagram commute

$$
\begin{array}{ccc}
M & \xrightarrow{g} & N \\
\downarrow{\theta_M} & & \downarrow{\theta_N} \\
F(M) & \xrightarrow{F(g)} & F(N)
\end{array}
$$

where θ_M and θ_N are the structure isomorphisms of M and N, respectively. We denote $\text{Hom}_F(M, N)$ the R-module of all morphism of F-modules $M \to N$.

1991 Mathematics Subject Classification. Primary 13A35, 13D45, 13P99.
Given any finitely generated R-module M and R-linear map $\beta : M \to F(M)$ one can obtain an R-module

$$M = \lim\limits_\rightarrow \left(M \xrightarrow{\beta} F(M) \xrightarrow{F(\beta)} F^2(M) \xrightarrow{F^2(\beta)} \ldots \right).$$

Since

$$F(M) = \lim\limits_\rightarrow \left(F(M) \xrightarrow{F(\beta)} F^2(M) \xrightarrow{F^2(\beta)} F^3(M) \xrightarrow{F^3(\beta)} \ldots \right) = M$$

we obtain an isomorphism $M \cong F(M)$, and hence M is an F-module. Any F-module which can be constructed as a direct limit as M above is called an F-finite F-module with generating morphism β.

There is a close connection between $R[\Theta; f]$-modules and F-finite F-modules given by Lyubeznik’s Functor from \mathcal{C} to the category of F-finite F-modules which is defined as follows (see section 4 in [L] for the details of the construction.) Given an $R[\Theta; f]$-module M one defines the R-linear map $\alpha : F(M) \to M$ by $\alpha(r\Theta \otimes m) = r\Theta m$; an application of Matlis duality then yields an R-linear map $\alpha^\vee : M^\vee \to F(M)^\vee \cong F(M^\vee)$ and one defines

$$\mathcal{H}(M) = \lim\limits_\rightarrow \left(M^\vee \xrightarrow{\alpha^\vee} F(M^\vee) \xrightarrow{F(\alpha^\vee)} F^2(M^\vee) \xrightarrow{F^2(\alpha^\vee)} \ldots \right).$$

Since M is an Artinian R-module, M^\vee is finitely generated and $\mathcal{H}(M)$ is an F-finite F-module with generating morphism $M^\vee \xrightarrow{\alpha^\vee} F(M^\vee)$. This construction is functorial and results in an exact covariant functor from \mathcal{C} to the category of F-finite F-modules.

The main result in [L] is the surprising fact that for F-finite F-modules \mathcal{M} and \mathcal{N}, $\Hom_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$ is a finite set. In section 3 of this paper we exploit this fact to prove the second main result in this paper (Theorem 3.4) to show the following. Let $\gamma : M \to F(M)$ and $\beta : N \to F(N)$ be generating morphisms for \mathcal{N} and \mathcal{M}. Given an R-linear map g which makes the following diagram commute,

$$\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \\
\downarrow{g} & & \downarrow{F(g)} \\
M & \xrightarrow{\gamma} & F(M)
\end{array}$$

one can extend that diagram to

$$\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \xrightarrow{F(\beta)} F^2(N) \xrightarrow{F^2(\beta)} \ldots \\
\downarrow{g} & & \downarrow{F(g)} \\
M & \xrightarrow{\gamma} & F(M) \xrightarrow{F(\gamma)} F^2(M) \xrightarrow{F^2(\gamma)} \ldots
\end{array}$$

and obtain a map between the direct limits of the horizontal sequences, i.e., an element in $\Hom_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$. We prove that all elements in $\Hom_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$ arise in this way (cf. Theorem 3.4), thus morphisms of F-finite F-modules have a particularly simple form. This answers a question implicit in [L] Remark 1.10(b)].
Finally, in section 3 we consider the module \(\text{Hom}_R(F_* R^n, R^n) \) of near-splittings of \(F_* R^n \). We establish a correspondence between these near-splittings and Frobenius actions on \(E^n \) which enables us to prove the third main result in this paper (Theorem 4.5) which asserts that given a near-splitting \(\phi \) corresponding to a injective Frobenius actions, there are finitely many \(F_* R \)-submodules \(V \subseteq F_* R^n \) such that \(\phi(V) \subseteq V \). This generalizes a similar result in [BH] to the case where \(R \) is not \(F \)-finite.

Our study of Frobenius near-splittings is based on the study of its dual notion, i.e., Frobenius maps on the injective hull \(E = E_R(R/m) \) of the residue field of \(R \). This injective hull is given explicitly as the module of inverse polynomials \(K[x_1^-, \ldots, x_d^-] \) where \(x_1, \ldots, x_d \) are minimal generators of the maximal ideal of \(R \) (cf. [BS] §12.4). Thus \(E \) has a natural \(R[T; f] \)-module structure extending \(T \alpha_1 x_1^{-\alpha_1} \ldots x_1^{-\alpha_d} = \lambda^p x_1^{-p\alpha_1} \ldots x_1^{-p\alpha_d} \) for \(\lambda \in K \) and \(\alpha_1, \ldots, \alpha_d > 0 \). We can further extend this to a natural \(R[T; f] \)-module structure on \(E^n \) given by

\[
T \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} Ta_1 \\ \vdots \\ Ta_n \end{pmatrix}.
\]

The results of section 4 will follow from the fact that there is a dual correspondence between Frobenius near-splittings and sets of \(R(\Theta; f) \)-module structures on \(E^n \).

2. FROBENIUS MAPS OF ARTINIAN MODULES AND THEIR STABLE SUBMODULES

Given an Artinian \(R \)-module \(M \) we can embed \(M \) in \(E^\alpha \) for some \(\alpha \geq 0 \) and extend this inclusion to an exact sequence

\[
0 \to M \to E^\alpha \xrightarrow{A'} E^\beta \to \ldots
\]

where \(A' \in \text{Hom}_R(E^\alpha_R, E^\beta_R) \equiv \text{Hom}_R(R^\alpha, R^\beta) \) is a \(\beta \times \alpha \) matrix with entries in \(R \). Henceforth in this section we will describe certain properties of Artinian \(R \)-modules in terms of their representations as kernels of matrices with entries in \(R \). We shall denote \(M_{\alpha, \beta} \) the set of \(\alpha \times \beta \) matrices with entries in \(R \).

In this section and the next we will need the following constructions. Following [K1] we shall denote the category of Artinian \(R(\Theta; f) \)-modules \(\mathcal{C} \). We denote \(\mathcal{D} \) the category of \(R \)-linear maps \(M \to F_R(M) \) where \(M \) is a finitely generated \(R \)-module, \(F_R(__)/-\) denotes the Frobenius functor, and where a morphism between \(M \xrightarrow{a} F_R(M) \) and \(N \xrightarrow{b} F_R(N) \) is a commutative diagram of \(R \)-linear maps

\[
\begin{array}{ccc}
M & \xrightarrow{\mu} & N \\
\downarrow{a} & & \downarrow{b} \\
F_R(M) & \xrightarrow{F_R(\mu)} & F_R(N)
\end{array}
\]

Section 3 of [K1] constructs a pair of functors \(\Delta : \mathcal{C} \to \mathcal{D} \) and \(\Psi : \mathcal{D} \to \mathcal{C} \) with the property that for all \(A \in \mathcal{C} \), the \(R(\Theta; f) \)-module \(\Psi \circ \Delta(A) \) is canonically isomorphic to \(A \) and for all \(D = (B \xrightarrow{\mu} F_R(B)) \in \mathcal{D} \), \(\Delta \circ \Psi(D) \) is canonically isomorphic to \(D \). The functor \(\Delta \) amounts
to the “first step” in the construction of Lyubeznik’s functor \(\mathcal{H} \): for \(A \in \mathcal{C} \) we define the R-linear map \(\alpha : F(A) \to A \) to be the one given by \(\alpha(r\Theta \otimes a) = r\Theta a \) and we let \(\Delta(A) \) to be the map \(\alpha^\vee : A^\vee \to F(A)^\vee \cong F(A^\vee) \) (cf. section 3 in [K1] for the details of the construction.)

Proposition 2.1. Let \(M = \ker A^t \subseteq E^\alpha \) be an Artinian R-module where \(A \in \text{M}_{n,\beta} \). Let \(B = \{ B \in \text{M}_{\alpha,\alpha} \mid \text{Im} BA \subseteq \text{Im} A[p] \} \). For any \(R[\Theta; f] \)-module structure on \(M \), \(\Delta(M) \) can be identified with an element in \(\text{Hom}_R(\text{Coker} A, \text{Coker} A[p]) \) and thus represented by multiplication by some \(B \in B \). Conversely, any such \(B \) defines an \(R[\Theta; f] \)-module structure on \(M \) which is given by the restriction to \(M \) of the Frobenius map \(\phi : E^\alpha \to E^\alpha \) defined by \(\phi(v) = B^t T(v) \) where \(T \) is the natural Frobenius map on \(E^\alpha \).

Proof. Matlis duality gives an exact sequence \(R^\beta \xrightarrow{A} R^\alpha \to M^\vee \to 0 \) hence \(\Delta(M) \in \text{Hom}_R(M^\vee, F_R(M^\vee)) \cong \text{Hom}_R(\text{Coker} A, \text{Coker} A[p]). \)

Let \(\Delta(M) \) be the map \(\phi : \text{Coker} A \to \text{Coker} A[p] \).

In view of Theorem 3.1 in [K1] we only need to show that any such R-linear map is given by multiplication by an \(B \in B \), and that any such \(B \) defines an element in \(\Delta(M) \).

We can find a map \(\phi' \) which makes the following diagram

\[
\begin{array}{ccc}
R^\alpha & \xrightarrow{\phi} & R^\alpha / \text{Im} A \\
\downarrow{q_1} & & \downarrow{q_2} \\
R^\alpha / \text{Im} A[p] & \xrightarrow{\phi'} & R^\alpha \\
\end{array}
\]

commute, where \(q_1 \) and \(q_2 \) are quotient maps. The map \(\phi' \) is given by multiplication by some \(\alpha \times \alpha \) matrix \(B \in B \). Conversely, any such matrix \(B \) defines a map \(\phi \) making the diagram above commute, and \(\Psi(\phi) \) gives a \(R[\Theta; f] \)-module structure on \(M \) as described in the last part of the theorem. \(\square \)

Notation 2.2. We shall henceforth describe Artinian R-modules with a given \(R[\Theta; f] \)-module structure in terms of the two matrices in the statement of Proposition 2.1 and talk about Artinian R-modules \(M = \text{Ker} A^t \subseteq E^\alpha \) where \(A \in \text{M}_{n,\beta} \) with \(R[\Theta; f] \)-module structure given by \(B \in \text{M}_{\alpha,\alpha} \).

3. Morphisms in \(\mathcal{C} \)

In this section we raise two questions. The first of these asks when for given \(R[\Theta; f] \)-modules \(M, N \), the set \(\text{Hom}_{R[\Theta; f]}(M, N) \) is finite; later in this section we prove that this holds when \(N \) has no \(\Theta \)-torsion. The following two examples illustrate why this set is not finite in general, and why it is finite in a special simple case.

Example 3.1. Let \(\mathbb{K} \) be an infinite field of prime characteristic \(p \) and let \(R = \mathbb{K}[x] \). Let \(M = \text{ann}_E xR \) and fix an \(R[\Theta; f] \)-module structure on \(M \) given by \(\Theta a = x^p T a \) where \(T \) is the standard Frobenius action on \(E \). Note that \(\Theta M = 0 \) and that for all \(\lambda \in \mathbb{K} \) the map
\(\mu_\lambda : M \to M \) given by multiplication by \(\lambda \) is in \(\text{Hom}_{R[\Theta, f]}(M, M) \), and hence this set is infinite.

Example 3.2. Let \(I, J \subseteq R \) be ideals, and fix \(u \in (I^p : I) \) and \(v \in (J^p : J) \). Endow \(\text{ann}_E I \) and \(\text{ann}_E J \) with \(R[\Theta, f] \)-module structures given by \(\Theta a = uTa \) and \(\Theta b = vTb \) for \(a \in \text{ann}_E I \) and \(b \in \text{ann}_E J \) where \(T \) is the standard Frobenius map on \(E \).

If \(g : \text{ann}_E I \to \text{ann}_E J \) is \(R \)-linear, an application of Matlis duality yields \(g^\vee : R/J \to R/I \) and we deduce that \(g \) is given by multiplication by an element in \(w \in (I : J) \). If in addition \(g \in \text{Hom}_{R[\Theta, f]}(\text{ann}_E I, \text{ann}_E J) \), we must have \(wuTa = g(\Theta a) = \Theta g(a) = vTw a = vu^pTa \), for all \(a \in \text{ann}_E I \), hence \((vu^p - uw)T \text{ann}_E I = 0 \) and \(vu^p - uw \in I^p \). The finiteness of \(\text{Hom}_{R[\Theta, f]}(\text{ann}_E I, \text{ann}_E J) \) translates in this setting to the finiteness of the set of solutions for the variable \(w \) of the equation above, and it is not clear why this set should be finite. However, if we simplify to the case where \(I = 0 \), the set of solutions of \(vu^p - uw = 0 \) over the the fraction field of \(R \) has at most \(p \) elements, and in this case we can deduce that \(\text{Hom}_{R[\Theta, f]}(E, \text{ann}_E J) \) has at most \(p \) elements.

As in \([L]\), for any \(R[\Theta, f] \)-module \(M \) we define the submodule of nilpotent elements to be \(\text{Nil}(M) = \{ a \in M \mid \Theta^e a = 0 \text{ for some } e \geq 0 \} \). We recall that when \(M \) is an Artinian \(R \)-module there exists an \(\eta \geq 0 \) such that \(\Theta^\eta M = 0 \) (cf. \([HS]\) Proposition 1.11 and \([L]\) Proposition 4.4.). We also define \(M_{\text{red}} = M/\text{Nil}(M) \) and \(M^* = \cap_{e \geq 0} \Theta^e M \) where \(R\Theta^e M \) denotes the \(R \)-module generated by \(\{ \Theta^e a \mid a \in M \} \). We also note that when \(M \) is an \(R[\Theta, f] \)-module which is Artinian as an \(R \)-module, there exists an \(e \geq 0 \) such that \(M^* = R\Theta^e M \) and also \((M_{\text{red}})^* = (M^*)_{\text{red}} \) (cf. section 4 in \([K2]\).)

Theorem 3.3. Let \(M, N \) be \(R[\Theta, f] \)-modules and let \(\phi \in \text{Hom}_{R[\Theta, f]}(M, N) \). We have \(\mathcal{H}(\text{Im} \phi) = 0 \) if and only if \(\phi(M) \subseteq \text{Nil}(N) \) and, consequently, if \(\text{Nil}(N) = 0 \), the map \(\mathcal{H} : \text{Hom}_{R[\Theta, f]}(M, N) \to \text{Hom}_{R_{\text{red}}}(\mathcal{H}(N), \mathcal{H}(M)) \) is an injection and \(\text{Hom}_{R[\Theta, f]}(M, N) \) is a finite set.

Proof. We apply \(\mathcal{H} \) to the commutative diagram

\[
\begin{array}{ccc}
M & \overset{\phi}{\longrightarrow} & N \\
\downarrow{\phi} & & \downarrow{\phi} \\
\text{Im} \phi & \overset{\subset}{\longrightarrow} & N
\end{array}
\]

to obtain the commutative diagram

\[
\begin{array}{ccc}
\mathcal{H}(N) & \longrightarrow & \mathcal{H}(\text{Im} \phi) \\
\downarrow{\mathcal{H}(\phi)} & & \downarrow{\mathcal{H}(\phi)} \\
\mathcal{H}(M) & \longrightarrow & \mathcal{H}(M)
\end{array}
\]

Now \(\mathcal{H}(\phi) = 0 \) if and only if \(\mathcal{H}(\text{Im} \phi) = 0 \), and by \([L]\) Theorem 4.2] this is equivalent to \((\text{Im} \phi)^*_{\text{red}} = 0 \).

Choose \(\eta \geq 0 \) such that \(\Theta^\eta \text{Nil}(N) = 0 \) and choose \(e \geq 0 \) such that \((\text{Im} \phi)^* = R\Theta^e \text{Im} \phi \).
Now

\[(\text{Im } \phi)^\ast_{\text{red}} = 0 \iff R\Theta^p R\Theta^e \phi(M) = 0 \]
\[\equiv R\Theta^{p+e} \phi(M) = 0 \]
\[\equiv \text{Im } \phi \subseteq \text{Nil}(N)\]

The second statement now follows immediately. \[\square\]

The second main result in this section, Theorem 3.4 shows that all morphisms of \(\text{F}-\text{finite}\) \(\text{F}-\text{modules}\) arise as images of maps of \(R[\Theta; f]\)-modules under Lyubeznik's functor \(\mathcal{H}\).

Theorem 3.4. Let \(M\) and \(N\) be \(\text{F}-\text{finite}\) \(\text{F}-\text{modules}\). For every \(\phi \in \text{Hom}_{\text{F}}(N, M)\) there exist generating morphisms \(\gamma : M \rightarrow F(M) \in \mathcal{D}\) and \(\beta : N \rightarrow F(N) \in \mathcal{D}\) for \(M\) and \(N\), respectively, and a morphism (in the category \(\mathcal{D}\))

\[
\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \\
\downarrow{g} & & \downarrow{F(g)} \\
M & \xrightarrow{\gamma} & F(M)
\end{array}
\]

such that \(\phi = \mathcal{H}(\Psi(g))\).

Proof. Choose any generating morphisms

\[
N = \lim \left(N \xrightarrow{\beta} F(N) \xrightarrow{F(\beta)} F^2(N) \xrightarrow{F^2(\beta)} \ldots \right)
\]
and

\[
M = \lim \left(M \xrightarrow{\gamma} F(M) \xrightarrow{F(\gamma)} F^2(M) \xrightarrow{F^2(\gamma)} \ldots \right)
\]

and fix any \(\phi \in \text{Hom}_{\text{F}}(N, M)\).

For all \(j \geq 0\) let \(\phi_j\) be the restriction of \(\phi\) to the image of \(F^j(N)\) in \(N\).

The fact that \(\phi\) is a morphism of \(\text{F}-\text{modules}\) implies that for every \(j \geq 0\) we have a commutative diagram

\[
\begin{array}{ccc}
F^j(N) & \xrightarrow{F^j(\beta)} & F^{j+1}(N) \\
\downarrow{\theta_M} & & \downarrow{\theta_N} \\
N & \xrightarrow{\theta_N} & F(N) \\
\downarrow{\phi} & & \downarrow{F(\phi)} \\
M & \xrightarrow{\cong_{\phi_M}} & F(\phi)
\end{array}
\]

where \(\theta_M\) and \(\theta_N\) are the structure isomorphisms of \(M\) and \(N\), respectively, and where the compositions of the vertical maps are \(\phi_j\) and \(F(\phi_j)\). Repeated applications of the Frobenius
functor yields a commutative diagram

\[
\begin{array}{cccccc}
F^j(N) & \xrightarrow{F^j(\beta)} & F^{j+1}(N) & \cdots \\
\phi_j & & F(\phi_j) & & \\
\downarrow \cong & & \downarrow \cong & & \\
\mathcal{M} & \xrightarrow{\theta_M} & F(\mathcal{M}) & \cdots \\
\end{array}
\]

and we can now extend this commutative diagram to the left to obtain

\[
\begin{array}{cccccc}
N & \xrightarrow{\beta} & F(N) & \cdots & F^{j-1}(\beta) & F^j(N) & F^{j+1}(\beta) & F^{j+2}(\beta) & \cdots \\
\phi_0 & \phi_1 & F(\phi_j) & F(\mathcal{M}) & F^2(\mathcal{M}) & \cdots \\
\downarrow \phi_j & \downarrow \theta_M \circ F(\theta_M)^{-1} & \downarrow \theta_M \circ \phi(a) = \theta_M \circ \phi(a) = \theta_M \circ \phi(a) = \theta_M \circ \phi(a) & \\
\mathcal{M} & \xrightarrow{\theta_M \circ \phi(a)} & F(\mathcal{M}) & \cdots \\
\end{array}
\]

This commutative diagram defines a \(R \)-linear map \(\psi_j : N \to \mathcal{M} \). Furthermore, we show next that this \(\psi_j \) is a map of \(\mathcal{F} \)-modules, i.e., that for all \(j \geq 0 \), \(F(\psi_j) \circ \theta_N = \theta_M \circ \psi_j \). Fix \(j \geq 0 \) and abbreviate \(\psi = \psi_j \).

Pick any \(a \in N \) represented as an element of \(F^e(N) \). If \(e < j \) then the fact that \(\phi \) is a morphism of \(\mathcal{F} \)-modules, implies that

\[
\theta_M \circ \psi(a) = \theta_M \circ \phi(a) = F(\phi) \circ \theta_N(a) = F(\psi) \circ \theta_N(a).
\]

Assume now that \(e \geq j \); we have

\[
\theta_M \circ \psi(a) = \theta_M \circ \theta_M^{-1} \circ F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\phi_j)(a) = F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\phi_j)(a)
\]

and

\[
F(\psi) \circ \theta_N(a) = F(\theta_M^{-1} \circ F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\phi_j))(F^e(\beta)(a)) = F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\theta_M) \circ F^{e-j}(\phi_j)(a) = F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\phi_j)(a)
\]

where the penultimate inequality follows from the fact that \(\phi \) is a morphism of \(\mathcal{F} \)-modules.

Consider now the set \(\{\psi_i\}_{i \geq 0} \); it is a finite set according to Theorem 5.1 in [H], hence we can find a sequence \(0 \leq i_1 < i_2 < \cdots \) such that \(\psi_{i_1} = \psi_{i_2} = \ldots \). By replacing \(N \) and \(\mathcal{M} \) with \(F^{i_1}(N) \) and \(F^{i_1}(\mathcal{M}) \) we may assume that \(i_1 = 0 \).

Pick \(j \geq 0 \) so that \(\phi(N) \subseteq F^j(M) \). Since \(\mathcal{M} \cong F^j(M) \) we may replace \(\mathcal{M} \) with \(F^j(M) \) and assume that \(\phi(N) \subseteq M \) and hence also that for all \(e \geq 0 \), \(F^e(\phi)(F^e(N)) \subseteq F^e(M) \).
Fix now any $e \geq 0$ and pick any $i_k > e$; the fact that $\psi_0 = \psi_{i_k}$ implies that for all $a \in F^e(N)$, $F^e(\phi_0)(a) = \psi_0(a) = \psi_{i_k}(a) = \phi(a)$ and since this holds for all $e \geq 0$ we deduce that ϕ is induced from the commutative diagram

$$
\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \\
\downarrow{\phi_0} & & \downarrow{F(\phi_0)} \\
M & \xrightarrow{\gamma} & F(M)
\end{array}
$$

\begin{array}{ccc}
F^2(\beta) & \rightarrow & F^2(N) \\
\downarrow{F^2(\phi_0)} & & \downarrow{F^2(\phi_0)} \\
F^2(\gamma) & \rightarrow & F^2(M)
\end{array}

\ldots

An application of the functor Ψ to the leftmost square in the commutative diagram above yields a morphism of $R[\Theta; f]$-modules $g : M \rightarrow N$ and $\phi = \mathcal{H}(g)$. □

4. Applications to Frobenius splittings

For any R-module M let $F_* M$ denote the additive Abelian group M with R-module structure given by $r \cdot a = r^a a$ for all $r \in R$ and $a \in M$. In this section we study the module $\text{Hom}_R(F_* R^n, R^n)$ of near-splittings of $F_* R^n$. Given such an element $\phi \in \text{Hom}_R(F_* R^n, R^n)$ we will describe the submodules $V \subseteq F_* R^n$ for which $\phi(V) \subseteq V$. These submodules in the case $n = 1$, known as ϕ-compatible ideals, are of significant importance in algebraic geometry (cf. [BK] for a study of applications of Frobenius splittings and their compatible submodules in algebraic geometry.) We will prove that under some circumstances these form a finite set and thus generalize a result in [BB] obtained in the F-finite case.

We first exhibit the following easy implication of Matlis duality necessary for the results of this section.

Lemma 4.1. For any (not necessarily finitely generated) R-module M, $\text{Hom}_R(M, R) \cong \text{Hom}_R(R^\vee, M^\vee)$.

Proof. For all $a \in E$ let $h_a \in \text{Hom}_R(R, E)$ denote the map sending 1 to a.

For any $\phi \in \text{Hom}_R(M, R)$, $\phi^\vee \in \text{Hom}_R(R^\vee, M^\vee)$ is defined as $(\phi^\vee(h_a))(m) = \phi(m) a$ for any $m \in M$ and $a \in E$. For any $\psi \in \text{Hom}_R(R^\vee, M^\vee)$ we define $\tilde{\psi} \in \text{Hom}_R(M, R)$ as $(\tilde{\psi}(m))(a) = (\psi(h_a))(m)$ for all $a \in E$ and $m \in M$. Note that the function $\psi \mapsto \tilde{\psi}$ is R-linear.

It is now enough to show that for all $\phi \in \text{Hom}_R(M, R)$, $\tilde{\psi}^\vee = \phi$, and indeed for all $a \in E$ and $m \in M$

$$(\tilde{\phi}^\vee(m))(a) = (\phi^\vee(h_a))(m) = \phi(m) a,$$

i.e., $(\tilde{\phi}^\vee(m)) \in \text{Hom}_R(E, E)$ is given by multiplication by $\phi(m)$ and so under the identification of $\text{Hom}_R(E, E)$ with R, $\tilde{\phi}^\vee$ is identified with ϕ. □

We can now prove a generalization Lemma 1.6 in [F] in the form of the next two theorems.

Theorem 4.2.

(a) The $F_* R$-module $\text{Hom}_R(F_* R, E)$ is injective of the form $\bigoplus_{\gamma \in \Gamma} F_* E \oplus H$ where Γ is non-empty, $H = \bigoplus_{\lambda \in \Lambda} F_* E(R/P_\lambda)$, Λ is a (possibly empty) set, P_λ
is a non-maximal prime ideal of R for all $\lambda \in \Lambda$ and $E(R/P_\lambda)$ denotes the injective hull of R/P_λ.

(b) Write $\mathcal{B} = \text{Hom}_{F,R}(E, \oplus_{\gamma \in \Gamma} F_\gamma E) \subseteq \prod_{\gamma \in \Gamma} \text{Hom}_{F,R}(E, F_\gamma E)$. We have

$$\text{Hom}_R(F_*R, R) \cong \mathcal{B} \subseteq \prod_{\gamma \in \Gamma} \text{Hom}_{F,R}(E, F_\gamma E) \cong \prod_{\gamma \in \Gamma} F_*RT$$

where T is the standard Frobenius map on E.

(c) The set Γ is finite if and only if $F_\ast \mathbb{K}$ is a finite extension of \mathbb{K}, in which case $\# \Gamma = 1$.

Proof. The functors $\text{Hom}_R(-, E) = \text{Hom}_R(- \otimes_{F,R} F_*R, E)$ and $\text{Hom}_{F,R}(-, \text{Hom}_R(F_*R, E))$ from the category of F_*R-modules to itself are isomorphic by the adjointness of Hom and \otimes, and since $\text{Hom}_R(-, E)$ is an exact functor, so is $\text{Hom}_{F,R}(-, \text{Hom}_R(F_*R, E))$, thus $\text{Hom}_R(F_*R, E)$ is an injective F_*R-module and hence of the form $G \oplus H$ where G is a direct sum of copies of F_*E and H is as in the statement of the Theorem. Write $G = \oplus_{\gamma \in \Gamma} F_\gamma E$.

Pick any $h \in \text{Hom}_R\left(E, \bigoplus_{\lambda \in \Lambda} F_\gamma E(R/P_\lambda)\right)$. For any $a \in E$, $h(a)$ can be written as a finite sum $b_{\lambda_1} + \cdots + b_{\lambda_s}$ where $\lambda_1, \ldots, \lambda_s \in \Lambda$ and $b_{\lambda_1} \in F_*E(R/P_{\lambda_1}), \ldots, b_{\lambda_s} \in F_*E(R/P_{\lambda_s})$.

Use prime avoidance to pick a $z \in m \setminus \bigcup_{i=1}^s P_{\lambda_i}$; now z and its powers act invertibly on each of $F_*E(R/P_{\lambda_1}), \ldots, F_*E(R/P_{\lambda_s})$ while a power of z kills a, and so we must have $h(a) = 0$. We deduce that $\text{Hom}_R\left(E, \bigoplus_{\lambda \in \Lambda} F_\gamma E(R/P_\lambda)\right) = 0$ and

$$\text{Hom}_R(E, \text{Hom}_R(F_*R, E)) \cong \text{Hom}_R\left(E, G \oplus \bigoplus_{\lambda \in \Lambda} F_\gamma E(R/P_\lambda)\right)$$

$$\cong \text{Hom}_R(E, G) \oplus \text{Hom}_R\left(E, \bigoplus_{\lambda \in \Lambda} F_\gamma E(R/P_\lambda)\right)$$

$$\cong \text{Hom}_R(E, G)$$

$$\cong \text{Hom}_R(E, \oplus_{\gamma \in \Gamma} F_\gamma E)$$

$$= \mathcal{B}.$$

Now $\text{Hom}_R(E, F_*E)$ is the R-module of Frobenius maps on E which is isomorphic as an F_*R module to F_*RT and we conclude that $\text{Hom}_R(E, \text{Hom}_R(F_*R, E)) \subseteq \prod_{\gamma \in \Gamma} F_*RT$.

An application of the Matlis dual and Lemma 11 now gives

$$\text{Hom}_R(F_*R, R) \cong \text{Hom}_R(E, \text{Hom}_R(F_*R, E))$$

and (b) follows.

Write $\mathbb{K} = R/m$ and note that $F_*\mathbb{K}$ is the field extension of \mathbb{K} obtained by adding all pth roots of elements in \mathbb{K}. We next compute the cardinality of Γ as the $F_*\mathbb{K}$-dimension of $\text{Hom}_{F_*\mathbb{K}}(F_*\mathbb{K}, G)$. A similar argument to the one above shows that

$$\text{Hom}_{F_*\mathbb{K}}\left(F_*\mathbb{K}, \bigoplus_{\lambda \in \Lambda} F_\gamma E(R/P_\lambda)\right) = 0$$
hence $\text{Hom}_{F,K}(F,K,G) = \text{Hom}_{F,K}(F,K,\text{Hom}_R(F,R,E))$.

We may identify $\text{Hom}_{F,K}(F,K,\text{Hom}_R(F,R,E))$ and $\text{Hom}_{F,R}(F,K,\text{Hom}_R(F,R,E))$. Another application of the adjointness of Hom and \otimes gives

$$\text{Hom}_{F,R}(F,K,\text{Hom}_R(F,R,E)) \cong \text{Hom}_R(F,K \otimes_{F,R} F,R,E) \cong \text{Hom}_R(F,K,E)$$

Since $mF_*K = 0$, we see that the image of any $\phi \in \text{Hom}_R(F_*K,E)$ is contained in $\text{ann}_E m \cong K$ and we deduce that $\text{Hom}_R(F_*K,E) \cong \text{Hom}_R(F,K,E)$. We can now conclude that the cardinality of Γ is the F_*K-dimension of $\text{Hom}_R(F_*K,E)$. In particular Γ cannot be empty and (a) follows.

If \mathcal{U} is a K-basis for F_*K containing $1 \in F_*K$,

$$\text{Hom}_K(F_*K,E) \cong \prod_{b \in \mathcal{U}} \text{Hom}_K(Kb,K)$$

and when \mathcal{U} is finite, this is a one-dimensional F_*K-vector space spanned by the projection onto $K1 \subset F_*K$. If \mathcal{U} is not finite, the dimension as K-vector space of $\prod_{b \in \mathcal{U}}$ is at least $2^{|\mathcal{U}|}$ hence $\text{Hom}_K(F_*K,E)$ cannot be a finite-dimensional F_*K-vector space. □

Theorem 4.3. Let $G = \oplus_{\gamma \in \Gamma} F,E$ and B be as in Theorem 4.2. Let $B \in \text{Hom}_R(F,R^n,R^n)$ be represented by $(B_\gamma T)_{\gamma \in \Gamma} \in B$. For all $\gamma \in \Gamma$ consider E^n as an $R[\Theta_\gamma; f]$-module with $\Theta_\gamma v = B_\gamma^t Tv$ for all $v \in E^n$. Let V be an R-submodule of R^n and fix a matrix A whose columns generate V. If $B(F_*V) \subseteq V$, then $\text{ann}_E A^t$ is a $R[\Theta_\gamma; f]$ submodule of E^n for all $\gamma \in \Gamma$.

Proof. Apply the Matlis dual to the commutative diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & F_*A & \longrightarrow & F_*R^n & \longrightarrow & F_*R^n/F_*A & \longrightarrow & 0 \\
& & B & \downarrow & & \text{Id} & \downarrow & & \\
0 & \longrightarrow & A & \longrightarrow & R^n & \longrightarrow & R^n/A & \longrightarrow & 0
\end{array}
$$

where the rightmost vertical map is induced by the middle map to obtain

$$
\begin{array}{cccccc}
0 & \longrightarrow & (R^n/A)^\vee & \longrightarrow & E^n & \longrightarrow & 0 \\
& & B^\vee & \downarrow & & B^\vee & \downarrow & & \\
0 & \longrightarrow & (F_*R^n/F_*A)^\vee & \longrightarrow & \text{Hom}_R(F_*R^n,E) & \longrightarrow & 0
\end{array}
$$

Note that $B^\vee \in \text{Hom}_R(E^n, \oplus_{\gamma \in \Gamma} E^n)$ is given by $(B_\gamma^t)_{\gamma \in \Gamma}$.

Using the presentation $F_*R^n \xrightarrow{F_*A^t} F_*R^n \rightarrow F_*R^n/\text{Im} F_*A \rightarrow 0$ we obtain the exact sequence

$$0 \rightarrow (F_*R^n/F_*A)^\vee \rightarrow \text{Hom}_R(F_*R^n,E) \xrightarrow{F_*A^t} \text{Hom}_R(F_*R^n,E)$$

thus

$$(F_*R^n/F_*A)^\vee = \text{ann}_{\text{Hom}_R(F_*R^n,E)} F_*A^t.$$
We obtain the commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & \text{ann}_{E^n} A^i \\
\downarrow & & \downarrow (B^i T)_\gamma \\
0 & \rightarrow & \bigoplus_{\gamma \in \Gamma} \text{ann}_{F,E^n} F_* A^i \\
& & \bigoplus_{\gamma \in \Gamma} F_* E^n
\end{array}
\]

and we deduce that \(\text{ann}_{E^n} A^i\) is a \(R[\Theta; f^i]\)-module for all \(\gamma \in \Gamma\). \(\square\)

Theorem 4.4. Let \(M\) be an \(R[\Theta; f]\)-module with no nilpotents and assume \(M\) is an Artinian \(R\)-module. Then \(M\) has finitely many \(R[\Theta; f]\)-submodules. (Cf. Corollary 4.18 in [BB].)

Proof. Write \(M = \mathcal{H}(M)\). In view of [L Theorem 4.2], there is an injection between the set of inclusions of \(R[\Theta; f]\)-submodules \(N \subseteq M\) and the set of surjections of \(F\)-finite \(F\)-modules \(M \rightarrow N\) hence it is enough to show that there are finitely many such surjections. By [L Theorem 2.8] the kernels of these surjections are \(F\)-finite \(F\)-submodules of \(M\) hence it is enough to show that \(M\) has finitely many submodules. Assume this statement is false and choose a counterexample \(M\) with infinitely many submodules.

All objects in the category of \(F\)-finite \(F\)-modules have finite length (cf. [L Theorem 3.2]) hence we may assume that among all counterexamples \(M\) has minimal length. By [H Corollary 5.2] the isomorphism class of any simple \(F\)-finite \(F\)-module is a finite set and the set of simple submodules of \(M\) belong to finitely many of these isomorphism classes, namely those occurring as factors in a composition series for \(M\). We deduce that there are finitely many simple \(F\)-finite \(F\)-submodules of \(M\). Since \(M\) has infinitely many \(F\)-finite \(F\)-submodules, there must be a simple \(F\)-finite \(F\)-submodule \(P \subset M\) contained in infinitely many \(F\)-finite \(F\)-submodules of \(M\). The infinite set of images of these in the quotient \(M/P\) exhibit a counterexample of smaller length. \(\square\)

Corollary 4.5. Let \(B \in \text{Hom}_R(F, R^n, R)\) be represented by \((B^i T)_\gamma \in \mathcal{B},\) and assume that \((B^i T) : E \rightarrow \bigoplus_{\gamma \in \Gamma} E\) is injective. Then there are finitely many \(B\)-compatible submodules of \(F, R^n\).

Proof. For all \(\gamma \in \Gamma\) write \(Z_\gamma = \{v \in E^n | B^i T v\}\) and let \(C_\gamma\) be a matrix with columns in \(R^n\) be such that \(Z_\gamma = \text{ann}_{E^n} C_\gamma\). If \(\text{Im} C_\gamma \subsetneq mR^n\) for all \(\gamma \in \Gamma\), then \(\sum_{\gamma \in \Gamma} \text{Im} C_\gamma\) is not the whole of \(R^n\), and if \(C\) is a matrix whose columns generate \(\sum_{\gamma \in \Gamma} \text{Im} C_\gamma\), for any non-zero \(v \in \text{ann}_{E^n} C_\gamma\), we have \((B^i T) v = 0\) for all \(\gamma \in \Gamma\). We conclude that there exists a \(\gamma \in \Gamma\) such that, \(\text{Im} C_\gamma = R^n\), i.e., that the Frobenius map \(B^i T\) on \(E^n\) has no nilpotents. For this \(\gamma \in \Gamma\), Theorem 4.4 shows that \(E^n\) has finitely many \(R[\Theta; f]\)-submodules where the action of \(\Theta\) is given by \(B^i T\).

Let \(V\) be an \(R\)-submodule of \(R^n\) and fix a matrix \(A\) whose columns generate \(V\). Theorem 4.3 implies that if \(F_* V \subseteq F_* R^n\) is \(B\)-compatible then \(\text{ann}_{E^n} A^i \subseteq E^n\) is an \(R[\Theta; f]\)-submodule of \(E^n\) with the Frobenius action given by \(B^i T\) for all \(\gamma \in \Gamma\), and hence there are finitely many such \(B\)-compatible submodules. \(\square\)
ACKNOWLEDGEMENTS

I thank Karl Schwede for our pleasant discussions on Frobenius splittings and in particular for showing me a variant of results in section [4] in the F-finite case.

REFERENCES

[BB] M. Blickle and G. Böckle. Cartier Modules: finiteness results. Preprint, oai:arXiv.org:0909.2531.

[BK] M. Brion and S. Kumar. Frobenius splitting methods in geometry and representation theory. Progress in Mathematics, 231, Birkhäuser Boston, Inc., Boston, MA, 2005.

[BS] M. P. Brodmann and R. Y. Sharp. Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.

[F] R. Fedder. F-purity and rational singularity. Transactions of the AMS, 278 (1983), no. 2, pp. 461–480.

[HS] R. Hartshorne and R. Speiser. Local cohomological dimension in characteristic p, Ann. of Math. 105 (1977), pp. 45–79.

[H] M. Hochster. Some finiteness properties of Lyubeznik’s \mathcal{F}-modules. Algebra, geometry and their interactions, pp. 119–127, Contemporary Mathematics, 448, American Mathematical Society, Providence, RI, 2007.

[K1] M. Katzman. Parameter test ideals of Cohen Macaulay rings. Compositio Mathematica, 144 (2008), pp. 933–948.

[K2] M. Katzman. Frobenius maps on injective hulls and their applications to tight closure. Journal of the LMS, to appear.

[L] G. Lyubeznik. F-modules: applications to local cohomology and D-modules in characteristic $p > 0$. J. Reine Angew. Math. 491 (1997), pp. 65–130.

MORDECHAI KATZMAN

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom

E-mail address: M.Katzman@sheffield.ac.uk
SOME PROPERTIES AND APPLICATIONS OF F-FINITE F-MODULES

MORDECHAI KATZMAN

Abstract. M. Hochster’s work in [H] has shown that F-finite F-modules over regular local rings have finitely many F-submodules. In this paper we apply this theorem to prove that morphisms of F-finite F-modules have a particularly simple form and we also show that there exist finitely many submodules compatible with a given Frobenius near-splitting thus generalizing a similar result in [BB] to the case where the base ring is not F-finite.

1. Introduction

The purpose of this paper is to describe several applications of finiteness properties of F-finite F-modules recently discovered by M. Hochster in [H] to the study of Frobenius maps on injective hulls, Frobenius near-splittings and to the nature of morphisms of F-finite F-modules.

Throughout this paper (R,m) shall denote a complete regular local ring of prime characteristic p. At the heart of everything in this paper is the Frobenius map $f : R \to R$ given by $f(r) = r^p$ for $r \in R$. We can use this Frobenius map to define a new R-module structure on R given by $r \cdot s = r^p s$; we denote this R-module $F_* R$. We can then use this to define the Frobenius functor from the category of R-modules to itself: given an R-module M we define $F_* R \otimes_R M$ with R-module structure given by $r(s \otimes m) = rs \otimes m$ for $r, s \in R$ and $m \in M$. Henceforth we shall abbreviate $F_* R$ to F for the sake of readability.

Let $R[\Theta; f]$ be the skew polynomial ring which is the free R-module $\bigoplus_{i=0}^{\infty} R \Theta^i$ with multiplication $\Theta r = r^p \Theta$ for all $r \in R$. As in [K1], \mathcal{C} shall denote the category of $R[\Theta; f]$-modules which are Artinian as R-modules. For any two such modules M, N, we denote the morphisms between them in \mathcal{C} with $\text{Hom}_{R[\Theta, f]}(M, N)$; thus an element $g \in \text{Hom}_{R[\Theta, f]}(M, N)$ is an R-linear map such that $g(\Theta a) = \Theta g(a)$ for all $a \in M$. The first main result of this paper (Theorem 3.3) shows that under some conditions on N, $\text{Hom}_{R[\Theta, f]}(M, N)$ is a finite set.

An F-module (cf. the seminal paper [L] for an introduction to F-modules and their properties) over the ring R is an R-module \mathcal{M} together with an R-module isomorphism $\theta_{\mathcal{M}} : \mathcal{M} \to F(\mathcal{M})$. This isomorphism $\theta_{\mathcal{M}}$ is the structure morphism of \mathcal{M}.

1991 Mathematics Subject Classification. Primary 13A35, 13D45, 13P99.

The author gratefully acknowledges support from EPSRC grant EP/G060967/1.
A morphism of F-modules $M \to N$ is an R-linear map g which makes the following diagram commute

$$
\begin{array}{c}
\begin{array}{c}
M \\
\downarrow \theta_M
\end{array}
\end{array}
\xrightarrow{g}
\begin{array}{c}
\begin{array}{c}
N \\
\downarrow \theta_N
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
F(M) \\
\downarrow \theta_{F(M)}
\end{array}
\end{array}
\xrightarrow{F(g)}
\begin{array}{c}
\begin{array}{c}
F(N) \\
\downarrow \theta_{F(N)}
\end{array}
\end{array}
\end{array}
$$

where θ_M and θ_N are the structure isomorphisms of M and N, respectively. We denote $\text{Hom}_F(M, N)$ the R-module of all morphism of F-modules $M \to N$.

Given any finitely generated R-module M and R-linear map $\beta : M \to F(M)$ one can obtain an R-module

$$M = \lim_{\to} \left(M \xrightarrow{\beta} F(M) \xrightarrow{F(\beta)} F^2(M) \xrightarrow{F^2(\beta)} \cdots \right).$$

Since

$$F(M) = \lim_{\to} \left(F(M) \xrightarrow{F(\beta)} F^2(M) \xrightarrow{F^2(\beta)} F^3(M) \xrightarrow{F^3(\beta)} \cdots \right) = M$$

we obtain an isomorphism $M \cong F(M)$, and hence M is an F-module. Any F-module which can be constructed as a direct limit as M above is called an F-finite F-module with generating morphism β.

There is a close connection between $R[\Theta; f]$-modules and F-finite F-modules given by Lyubeznik’s Functor from \mathcal{C} to the category of F-finite F-modules which is defined as follows (see section 4 in [1] for the details of the construction.) Given an $R[\Theta; f]$-module M one defines the R-linear map $\alpha : F(M) \to M$ by $\alpha(r \otimes m) = r\Theta m$; an application of Matlis duality then yields an R-linear map $\alpha^\vee : M^\vee \to F(M)^\vee \cong F(M^\vee)$ and one defines

$$\mathcal{H}(M) = \lim_{\to} \left(M^\vee \xrightarrow{\alpha^\vee} F(M^\vee) \xrightarrow{F(\alpha^\vee)} F^2(M^\vee) \xrightarrow{F^2(\alpha^\vee)} \cdots \right).$$

Since M is an Artinian R-module, M^\vee is finitely generated and $\mathcal{H}(M)$ is an F-finite F-module with generating morphism $M^\vee \xrightarrow{\alpha^\vee} F(M^\vee)$. This construction is functorial and results in an exact covariant functor from \mathcal{C} to the category of F-finite F-modules.

Later in this paper we will need the following related constructions. Following [1] we shall denote \mathcal{D} the category of all R-linear maps $M \to F(M)$ where M is any finitely generated R-module, and where a morphism between $M \xrightarrow{a} F(M)$ and $N \xrightarrow{b} F(N)$ is a commutative diagram of R-linear maps

$$
\begin{array}{c}
\begin{array}{c}
M \\
\downarrow a
\end{array}
\end{array}
\xrightarrow{\mu}
\begin{array}{c}
\begin{array}{c}
N \\
\downarrow b
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
F(M) \\
\downarrow \theta_{F(M)}
\end{array}
\end{array}
\xrightarrow{F(\mu)}
\begin{array}{c}
\begin{array}{c}
F(N) \\
\downarrow \theta_{F(N)}
\end{array}
\end{array}
\end{array}
$$

Section 3 of [1] constructs a pair of functors $\Delta : \mathcal{C} \to \mathcal{D}$ and $\Psi : \mathcal{D} \to \mathcal{C}$ with the property that for all $L \in \mathcal{C}$, the $R[\Theta; f]$-module $\Psi \circ \Delta(L)$ is canonically isomorphic to L and for all $D = (B \xrightarrow{\phi} F(B)) \in \mathcal{D}$, $\Delta \circ \Psi(D)$ is canonically isomorphic to D. The functor Δ amounts to the “first step” in the construction of Lyubeznik’s functor \mathcal{H}: for $L \in \mathcal{C}$ we define the
R-linear map $\alpha : F(L) \to L$ to be the one given above and we let $\Delta(L)$ to be the map $\alpha^\vee : L^\vee \to F(L)^\vee \cong F(L^\vee)$ (cf. section 3 in [K1] for the details of the construction.)

The main result in [H] is the surprising fact that for F-finite F-modules M and N, $\text{Hom}_F(N, M)$ is a finite set. In section 3 of this paper we exploit this fact to prove the second main result in this paper (Theorem 3.4) to show the following. Let $\gamma : M \to F(M)$ and $\beta : N \to F(N)$ be generating morphisms for M and N. Given an R-linear map g which makes the following diagram commute,

\[
\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \\
\downarrow{g} & & \downarrow{F(g)} \\
M & \xrightarrow{\gamma} & F(M)
\end{array}
\]

one can extend that diagram to

\[
\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) & \xrightarrow{F(\beta)} & F^2(N) & \xrightarrow{F^2(\beta)} & \cdots \\
\downarrow{g} & & \downarrow{F(g)} & & \downarrow{F^2(g)} & & \cdots \\
M & \xrightarrow{\gamma} & F(M) & \xrightarrow{F(\gamma)} & F^2(M) & \xrightarrow{F^2(\gamma)} & \cdots
\end{array}
\]

and obtain a map between the direct limits of the horizontal sequences, i.e., an element in $\text{Hom}_R(N, M)$. We prove that all elements in $\text{Hom}_R(N, M)$ arise in this way (cf. Theorem 3.4), thus morphisms of F-finite F-modules have a particularly simple form. This answers a question implicit in [L, Remark 1.10(b)].

Finally, in section 4 we consider the module $\text{Hom}_R(F_*, R^n)$ of near-splittings of F_*, R^n. We establish a correspondence between these near-splittings and Frobenius actions on E^n which enables us to prove the third main result in this paper (Theorem 4.5) which asserts that given a near-splitting ϕ corresponding to an injective Frobenius action, there are finitely many F_*-submodules $V \subseteq F_*, R^n$ such that $\phi(V) \subseteq V$. This generalizes a similar result in [BB] to the case where R is not F-finite.

Our study of Frobenius near-splittings is based on the study of its dual notion, i.e., Frobenius maps on the injective hull $E = E_R(R/m)$ of the residue field of R. This injective hull is given explicitly as the module of inverse polynomials $K[x_1^-, \ldots, x_d^-]$ where x_1, \ldots, x_d are minimal generators of the maximal ideal of R (cf. [BS], §12.4). Thus E has a natural $R[T; f]$-module structure extending $T\lambda x_1^{-\alpha_1} \cdots x_1^{-\alpha_d} = \lambda^p x_1^{-p\alpha_1} \cdots x_d^{-p\alpha_d}$ for $\lambda \in K$ and $\alpha_1, \ldots, \alpha_d > 0$. We can further extend this to a natural $R[T; f]$-module structure on E^n given by

\[
T \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} Ta_1 \\ \vdots \\ Ta_n \end{pmatrix}.
\]

Throughout this paper T will denote this natural Frobenius map, while Θ will be used for general Frobenius maps.
The results of section 2 will follow from the fact that there is a dual correspondence between Frobenius near-splittings and sets of $R[\Theta; f]$-module structures on E^α.

2. Frobenius maps of Artinian modules and their stable submodules

Given an Artinian R-module M we can embed M in E^α for some $\alpha \geq 0$ and extend this inclusion to an exact sequence

$$0 \to M \to E^\alpha \xrightarrow{A^t} E^\beta \to \ldots$$

where $A^t \in \text{Hom}_R(E^\alpha_R, E^\beta_R)$. In our setup Matlis duality gives $\text{Hom}_R(E^\alpha_R, E^\alpha_R) \cong R$ and so $A^t \in \text{Hom}_R(E^\alpha_R, E^\beta_R) \cong \text{Hom}_R(R^\alpha, R^\beta)$ is a $\beta \times \alpha$ matrix with entries in R. Henceforth in this section we will describe certain properties of Artinian R-modules in terms of their representations as kernels of matrices with entries in R. We shall denote $M_{\alpha,\beta}$ the set of $\alpha \times \beta$ matrices with entries in R and for any such matrix A we will write A^p to denote the matrix obtained by raising each of its entries to the pth power.

We now explore the duality between E^α with a given $R[\Theta; f]$-module structure and R-linear maps $R^\alpha \to R^\alpha$ for $\alpha \geq 1$ given by the functors Δ and Ψ defined in section 1. Under this duality the $R[\Theta; f]$-module structure corresponding to the map $(R^\alpha \to R^\alpha) \in \mathcal{D}$ given by multiplication by $B \in M_{\alpha,\alpha}$ is given by $\Theta = B^tT$ where T is the natural Frobenius map on E^α described in section 1.

Proposition 2.1. Let $M = \ker A^t \subseteq E^\alpha$ be an Artinian R-module where $A \in M_{\alpha,\beta}$. Let $B = \{B \in M_{\alpha,\alpha} \mid \text{Im} BA \subseteq \text{Im} A^p\}$. For any $R[\Theta; f]$-module structure on M, $\Delta(M)$ can be identified with an element in $\text{Hom}_R(\text{Coker} A, \text{Coker} A^p)$ and thus represented by multiplication by some $B \in B$. Conversely, any such B defines an $R[\Theta; f]$-module structure on M which is given by the restriction to M of the Frobenius map $\phi : E^\alpha \to E^\alpha$ defined by $\phi(v) = B^tT(v)$ where T is the natural Frobenius map on E^α.

Proof. Matlis duality gives an exact sequence $R^\alpha \xrightarrow{\Delta} R^\alpha \to M^\vee \to 0$ hence

$$\Delta(M) \in \text{Hom}_R(M^\vee, F_R(M^\vee)) \cong \text{Hom}_R(\text{Coker} A, \text{Coker} A^p).$$

Let $\Delta(M)$ be the map $g : \text{Coker} A \to \text{Coker} A^p$.

In view of Theorem 3.1 in [K1] we only need to show that any such R-linear map is given by multiplication by an $B \in B$, and that any such B defines an element in $\Delta(M)$.

Using the freeness of R^α, we find a map g' which makes the following diagram commute, where q_1 and q_2 are quotient maps. The map g' is given by multiplication by some $\alpha \times \alpha$ matrix $B \in B$. Conversely, any such matrix B defines a map g making the diagram above commute, and $\Psi(g)$ gives a $R[\Theta; f]$-module structure on M as described in the last part of the proposition.

\square
Notation 2.2. We shall henceforth describe Artinian R-modules with a given $R[\Theta; f]$-module structure in terms of the two matrices in the statement of Proposition 2.1 and talk about Artinian R-modules $M = \text{Ker} A' \subseteq E^\alpha$ where $A \in M_{\alpha,\beta}$ with $R[\Theta; f]$-module structure given by $B \in M_{\alpha,\alpha}$.

3. Morphisms in \mathcal{C}

In this section we raise two questions. The first of these asks when for given $R[\Theta; f]$-modules M, N, the set $\text{Hom}_R[\Theta; f](M, N)$ is finite; later in this section we prove that this holds when N has no Θ-torsion. The following two examples illustrate why this set is not finite in general, and why it is finite in a special simple case.

Example 3.1. Let \mathbb{K} be an infinite field of prime characteristic p and let $R = \mathbb{K}[x]$. Let $M = \text{ann}_E xR$ and fix an $R[\Theta; f]$-module structure on M given by $\Theta a = x^pTa$ where T is the standard Frobenius action on E. Note that $\Theta M = 0$ and that for all $\lambda \in \mathbb{K}$ the map $\mu_\lambda : M \to M$ given by multiplication by λ is in $\text{Hom}_R[\Theta; f](M, M)$, and hence this set is infinite.

Example 3.2. Let $I, J \subseteq R$ be ideals, and fix $u \in (I^{[p]} : I)$ and $v \in (J^{[p]} : J)$. Endow $\text{ann}_E I$ and $\text{ann}_E J$ with $R[\Theta; f]$-module structures given by $\Theta a = uTa$ and $\Theta b = vTb$ for $a \in \text{ann}_E I$ and $b \in \text{ann}_E J$ where T is the standard Frobenius map on E.

If $g : \text{ann}_E I \to \text{ann}_E J$ is R-linear, an application of Matlis duality yields $g^\vee : R/J \to R/I$ and we deduce that g is given by multiplication by an element in $w \in (I : J)$. If in addition $g \in \text{Hom}_R[\Theta; f]\text{ann}_E I, \text{ann}_E J)$, we must have $wuTa = g(\Theta a) = \Theta g(a) = vTwa = vw^pTa$, for all $a \in \text{ann}_E I$, hence $(vw^p - uw)T\text{ann}_E I = 0$ and $vw^p - uw \in I^{[p]}$. The finiteness of $\text{Hom}_R[\Theta; f]\text{ann}_E I, \text{ann}_E J)$ translates in this setting to the finiteness of the set of solutions modulo $I^{[p]}$ for the variable w of the equation above, and it is not clear why this set should be finite. However, if we simplify to the case where $I = J = 0$, the set of solutions of $vw^p - uw = 0$ over the the fraction field of R has at most p elements, and in this case we can deduce that $\text{Hom}_R[\Theta; f](E, E)$ has also at most p elements.

As in [L], for any $R[\Theta; f]$-module M we define the submodule of nilpotent elements to be $\text{Nil}(M) = \{a \in M \mid \Theta^e a = 0 \text{ for some } e \geq 0\}$. We recall that when M is an Artinian R-module there exists an $\eta \geq 0$ such that $\Theta^\eta \text{Nil}(M) = 0$ (cf. [HS] Proposition 1.11 and [L] Proposition 4.4)). We also define $M_{\text{red}} = M/\text{Nil}(M)$ and $M^* = \cap_{e \geq 0} R\Theta^e M$ where $R\Theta^e M$ denotes the R-module generated by $\{\Theta^e a \mid a \in M\}$. We also note that when M is an $R[\Theta; f]$-module which is Artinian as an R-module, there exists an $e \geq 0$ such that $M^* = R\Theta^e M$ and also $(M_{\text{red}})^* = (M^*)_{\text{red}}$ (cf. section 4 in [K2]).

Theorem 3.3. Let M, N be $R[\Theta; f]$-modules and let $\phi \in \text{Hom}_R[\Theta; f](M, N)$. We have $\mathcal{K}(\text{Im} \phi) = 0$ if and only if $\phi(M) \subseteq \text{Nil}(N)$ and, consequently, if $\text{Nil}(N) = 0$, the map $\mathcal{K} : \text{Hom}_R[\Theta; f](M, N) \to \text{Hom}_{R[\Theta; f]}(\mathcal{K}(N), \mathcal{K}(M))$ is an injection and $\text{Hom}_R[\Theta; f](M, N)$ is a finite set.
Proof. We apply \(\mathcal{H} \) to the commutative diagram

\[
\begin{array}{ccc}
M & \xrightarrow{\phi} & N \\
\downarrow & & \downarrow \\
\text{Im } \phi & \xrightarrow{\phi} & \text{Im } \phi
\end{array}
\]

to obtain the commutative diagram

\[
\begin{array}{ccc}
\mathcal{H}(N) & \xrightarrow{\mathcal{H}(\phi)} & \mathcal{H}(\text{Im } \phi) \\
\downarrow & & \downarrow \\
\mathcal{H}(M) & & \mathcal{H}(M)
\end{array}
\]

Now \(\mathcal{H}(\phi) = 0 \) if and only if \(\mathcal{H}(\text{Im } \phi) = 0 \), and by [L, Theorem 4.2] this is equivalent to \((\text{Im } \phi)^* = 0 \).

Choose \(\eta \geq 0 \) such that \(\Theta^\eta \text{Nil}(N) = 0 \) and choose \(e \geq 0 \) such that \((\text{Im } \phi)^* = R\Theta^e \text{Im } \phi \).

Now

\[
(\text{Im } \phi)^* = 0 \iff R\Theta^\eta R\Theta^e \phi(M) = 0 \\
\iff R\Theta^{\eta+e} \phi(M) = 0 \\
\iff \text{Im } \phi \subseteq \text{Nil}(N)
\]

The second statement now follows immediately. \(\square \)

The second main result in this section, Theorem 3.4, shows that all morphisms of \(F \)-finite \(F \)-modules arise as images of maps of \(R[\Theta; f] \)-modules under Lyubeznik’s functor \(\mathcal{H} \).

Theorem 3.4. Let \(M \) and \(N \) be \(F \)-finite \(F \)-modules. For every \(\phi \in \text{Hom}_{F^n}(N,M) \) there exist generating morphisms \(\gamma : M \to F(M) \in \mathcal{D} \) and \(\beta : N \to F(N) \in \mathcal{D} \) for \(M \) and \(N \), respectively, and a morphism (in the category \(\mathcal{D} \))

\[
\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \\
\downarrow & & \downarrow \text{F(g)} \\
M & \xrightarrow{\gamma} & F(M)
\end{array}
\]

such that \(\phi = \mathcal{H}(\Psi(g)) \), i.e., such that \(\phi \) is the map of direct limits

\[
\begin{array}{cccccc}
N & \xrightarrow{\beta} & F(N) & \xrightarrow{F(\beta)} & F^2(N) & \xrightarrow{F^2(\beta)} & \cdots \\
\downarrow & & \downarrow \text{F(g)} & & \downarrow \text{F^2(g)} & & \cdots \\
M & \xrightarrow{\gamma} & F(M) & \xrightarrow{F(\gamma)} & F^2(M) & \xrightarrow{F^2(\gamma)} & \cdots
\end{array}
\]

Proof. Choose any generating morphisms

\[
N = \lim\left(N \xrightarrow{\beta} F(N) \xrightarrow{F(\beta)} F^2(N) \xrightarrow{F^2(\beta)} \cdots \right)
\]
and
\[M = \lim_{\rightarrow} \left(M \xrightarrow{\gamma} F(M) \xrightarrow{F(\gamma)} F^2(M) \xrightarrow{F^2(\gamma)} \ldots \right) \]

and fix any \(\phi \in \text{Hom}_{R}(N,M) \).

For all \(j \geq 0 \) let \(\phi_j \) be the restriction of \(\phi \) to the image of \(F^j(N) \) in \(N \).

The fact that \(\phi \) is a morphism of \(F \)-modules implies that for every \(j \geq 0 \) we have a commutative diagram

\[
\begin{array}{ccc}
F^j(N) & \xrightarrow{F^j(\beta)} & F^{j+1}(N) \\
\downarrow \quad \theta_{M} & & \downarrow \theta_{N} \\
M & \xrightarrow{\sim} & F(M)
\end{array}
\]

where \(\theta_{M} \) and \(\theta_{N} \) are the structure isomorphisms of \(M \) and \(N \), respectively, and where the compositions of the vertical maps are \(\phi_j \) and \(F(\phi_j) \). Repeated applications of the Frobenius functor yields a commutative diagram

\[
\begin{array}{ccc}
F^j(N) & \xrightarrow{F^j(\beta)} & F^{j+1}(N) \\
\downarrow \quad \phi_j & & \downarrow F(\phi_j) \\
M & \xrightarrow{\sim} & F(M)
\end{array}
\]

and we can now extend this commutative diagram to the left to obtain

\[
\begin{array}{ccc}
N & \xrightarrow{\beta} & F(N) \\
\downarrow \phi_0 & & \downarrow F(\phi) \\
M & \xrightarrow{\sim} & F(M)
\end{array}
\]

This commutative diagram defines an \(R \)-linear map \(\psi_j : N \to M \). Furthermore, we show next that this \(\psi_j \) is a map of \(F \)-modules, i.e., that for all \(j \geq 0 \), \(F(\psi_j) \circ \theta_{N} = \theta_{M} \circ \psi_j \). Fix \(j \geq 0 \) and abbreviate \(\psi = \psi_j \).

Pick any \(a \in N \) represented as an element of \(F^e(N) \). If \(e < j \) then the fact that \(\phi \) is a morphism of \(F \)-modules implies that

\[\theta_{M} \circ \psi(a) = \theta_{M} \circ \phi(a) = F(\phi) \circ \theta_{N}(a) = F(\psi) \circ \theta_{N}(a). \]
Assume now that \(e \geq j \); we have
\[
\theta_M \circ \psi(a) = \theta_M \circ \theta_M^{-1} \circ F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\phi_j)(a)
\]
and
\[
F(\psi) \circ \theta_N(a) = F(\theta_M^{-1} \circ F(\theta_M^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_M^{-1}) \circ F^{e-j}(\phi_j))(F^{e}(\beta)(a))
\]
where the penultimate inequality follows from the fact that \(\phi \) is a morphism of \(F \)-modules.

Consider now the set \(\{\psi_i\}_{i \geq 0} \); it is a finite set according to Theorem 5.1 in \([H]\), hence we can find a sequence \(0 \leq i_1 < i_2 < \cdots \) such that \(\psi_{i_1} = \psi_{i_2} = \cdots \). By replacing \(N \) and \(M \) with \(F^{e_1}(N) \) and \(F^{e_1}(M) \) we may assume that \(i_1 = 0 \).

Pick \(j \geq 0 \) so that \(\phi \) maps the image of \(N \) in \(N \) into \(F^j(M) \). Since \(M \cong F^j(M) \) we may replace \(M \) with \(F^j(M) \) and assume that \(\phi(\text{Im } N) \subseteq \text{M} \) and hence also that for all \(e \geq 0 \), \(F^e(\phi) \) maps the image of \(F^e(N) \) in \(N \) into \(F^e(M) \).

Fix now any \(e \geq 0 \) and pick any \(i_k > e \); the fact that \(\psi_0 = \psi_i \) implies that for all \(a \in F^e(N) \), \(F^e(\phi_0)(a) = \psi_0(a) = \psi_i(a) = \phi(a) \) and since this holds for all \(e \geq 0 \) we deduce that \(\phi \) is induced from the commutative diagram

\[
\begin{array}{cccccc}
N & \xrightarrow{\beta} & F(N) & \xrightarrow{F(\beta)} & F^2(N) & \xrightarrow{F^2(\beta)} \cdots \\
\phi_0 & \downarrow & F(\phi_0) & \downarrow & F^2(\phi_0) & \\
M & \xrightarrow{\gamma} & F(M) & \xrightarrow{F(\gamma)} & F^2(M) & \xrightarrow{F^2(\gamma)} \cdots \\
\end{array}
\]

An application of the functor \(\Psi \) to the leftmost square in the commutative diagram above yields a morphism of \(R[\Theta; f]-\text{modules} \) \(g : M \to N \) and \(\phi = \mathcal{H}(g) \).

\[\square\]

4. Applications to Frobenius splittings

For any \(R \)-module \(M \) let \(F_n M \) denote the additive Abelian group \(M \) with \(R \)-module structure given by \(r \cdot a = r^na \) for all \(r \in R \) and \(a \in M \). In this section we study the module \(\text{Hom}_R(F_n R^n, R^n) \) of near-splittings of \(F_n R^n \). Given such an element \(\phi \in \text{Hom}_R(F_n R^n, R^n) \) we will describe the submodules \(V \subseteq F_n R^n \) for which \(\phi(V) \subseteq V \). These submodules in the case \(n = 1 \), known as \(\phi \)-compatible ideals, are of significant importance in algebraic geometry (cf. \([BK]\) for a study of applications of Frobenius splittings and their compatible submodules in algebraic geometry.) We will prove that under some circumstances these form a finite set and thus generalize a result in \([BB]\) obtained in the \(F \)-finite case.

We first exhibit the following easy implication of Matlis duality necessary for the results of this section.
Lemma 4.1. For any (not necessarily finitely generated) R-module M, $\text{Hom}_R(R^\vee,M^\vee) \cong \text{Hom}_R(R^\vee,M^\vee)$.

Proof. For all $a \in E$ let $h_a \in \text{Hom}_R(R,E)$ denote the map sending 1 to a.

For any $\phi \in \text{Hom}_R(R,M)$, $\phi^\vee \in \text{Hom}_R(R^\vee,M^\vee)$ is defined as $(\phi^\vee(h_a))(m) = \phi(m)a$ for any $m \in M$ and $a \in E$. For any $\psi \in \text{Hom}_R(R^\vee,M)$ we define $\tilde{\psi} \in \text{Hom}_R(R,M)$ as $\left(\tilde{\psi}(m)\right)(a) = (\psi(h_a))(m)$ for all $a \in E$ and $m \in M$. Note that the function $\psi \mapsto \tilde{\psi}$ is R-linear.

Let $\psi \in \text{Hom}_R(R^\vee,M^\vee)$ and fix an $m \in M$. Note that for all $a \in E$

$$\tilde{\psi}^\vee(h_a)(m) = \tilde{\psi}(m)a$$

when we view $\tilde{\psi}$ as an element in $\text{Hom}_R(M,R)$. After we identify $\text{Hom}_R(M,E^\vee)$ with $\text{Hom}_R(M,R)$ we can write

$$\tilde{\psi}^\vee(h_a)(m) = \tilde{\psi}(m)(a) = \psi(h_a)(m)$$

thus $\tilde{\psi}^\vee = \psi$.

It is now enough to show that for all $\phi \in \text{Hom}_R(M,R)$, $\tilde{\phi}^\vee = \phi$, and indeed for all $a \in E$ and $m \in M$

$$\left(\tilde{\phi}^\vee(m)\right)(a) = (\phi^\vee(h_a))(m) = \phi(m)a,$$

i.e., $\left(\tilde{\phi}^\vee(m)\right) \in \text{Hom}_R(E,E)$ is given by multiplication by $\phi(m)$ and so under the identification of $\text{Hom}_R(E,E)$ with R, $\tilde{\phi}^\vee$ is identified with ϕ. \qed

We can now prove a generalization Lemma 1.6 in [F] in the form of the next two theorems.

Theorem 4.2. (a) The $F_\ast R$-module $\text{Hom}_R(F_\ast R,E)$ is injective of the form $\bigoplus_{\gamma \in T} F_\ast E \oplus H$ where T is non-empty, $H = \bigoplus_{\lambda \in \Lambda} F_\ast E(R/P_\lambda)$, Λ is a (possibly empty) set, P_λ is a non-maximal prime ideal of R for all $\lambda \in \Lambda$ and $E(R/P_\lambda)$ denotes the injective hull of R/P_λ.

(b) Write $\mathcal{B} = \text{Hom}_{F_\ast R}(E,\bigoplus_{\gamma \in T} F_\ast E) \subseteq \prod_{\gamma \in T} \text{Hom}_{F_\ast R}(E,F_\ast E)$. We have

$$\text{Hom}_R(F_\ast R,R) \cong \mathcal{B} \subseteq \prod_{\gamma \in T} \text{Hom}_{F_\ast R}(E,F_\ast E) \cong \prod_{\gamma \in T} F_\ast RT$$

where T is the standard Frobenius map on E.

(c) The set T is finite if and only if $F_\ast \mathbb{K}$ is a finite extension of \mathbb{K}, in which case $

\#T = 1$.

Proof. The functors $\text{Hom}_R(-,E) = \text{Hom}_R(- \otimes_{F_\ast R} F_\ast R,E)$ and $\text{Hom}_{F_\ast R}(-,\text{Hom}_R(F_\ast R,E))$ from the category of F,R-modules to itself are isomorphic by the adjointness of Hom and \otimes, and since $\text{Hom}_R(-,E)$ is an exact functor, so is $\text{Hom}_{F_\ast R}(-,\text{Hom}_R(F_\ast R,E))$, thus $\text{Hom}_R(F_\ast R,E)$ is an injective $F_\ast R$-module and hence of the form $G \oplus H$ where G is a direct sum of copies of $F_\ast E$ and H is as in the statement of the Theorem. Write $G = \bigoplus_{\gamma \in T} F_\ast E$. To finish establishing (a) we need only verify that $T \neq \emptyset$ and we do this below.
Pick any \(h \in \text{Hom}_R \left(E, \bigoplus_{\lambda \in \Lambda} F_\ast E(R/P_\lambda) \right) \). For any \(a \in E \), \(h(a) \) can be written as a finite sum \(b_{\lambda_1} + \cdots + b_{\lambda_s} \) where \(\lambda_1, \ldots, \lambda_s \in \Lambda \) and \(b_{\lambda_i} \in F_\ast E(R/P_\lambda), \ldots, b_{\lambda_s} \in F_\ast E(R/P_\lambda). \)

Use prime avoidance to pick a \(z \in m \setminus \cup_{\lambda \in \Lambda} P_\lambda \); now \(z \) and its powers act invertibly on each of \(F_\ast E(R/P_\lambda), \ldots, F_\ast E(R/P_\lambda) \) while a power of \(z \) kills \(a \), and so we must have \(h(a) = 0 \).

We deduce that \(\text{Hom}_R \left(E, \bigoplus_{\lambda \in \Lambda} F_\ast E(R/P_\lambda) \right) = 0 \) and

\[
\text{Hom}_R \left(E, \text{Hom}_R (F, R, E) \right) \cong \text{Hom}_R \left(E, G \oplus \bigoplus_{\lambda \in \Lambda} F_\ast E(R/P_\lambda) \right)
\]

\[
\cong \text{Hom}_R (E, G) \oplus \text{Hom}_R \left(E, \bigoplus_{\lambda \in \Lambda} F_\ast E(R/P_\lambda) \right)
\]

\[
\cong \text{Hom}_R (E, G)
\]

\[
\cong \text{Hom}_R (E, \oplus_{\gamma \in \Gamma} F/E)
\]

\(= B \).

Now \(\text{Hom}_R (E, F, E) \) is the \(R \)-module of Frobenius maps on \(E \) which is isomorphic as an \(F, R \) module to \(F, RT \) and we conclude that \(\text{Hom}_R (E, \text{Hom}_R (F, R, E)) \subseteq \prod_{\gamma \in \Gamma} F, RT \).

An application of the Matlis dual and Lemma 4.1 now gives

\[
\text{Hom}_R (F, R, R) \cong \text{Hom}_R (E, \text{Hom}_R (F, R, E))
\]

and (b) follows.

Write \(k = R/m \) and note that \(F, k \) is the field extension of \(k \) obtained by adding all \(p \)th roots of elements in \(k \). We next compute the cardinality of \(\Gamma \) as the \(F, k \)-dimension of \(\text{Hom}_{F, k} (F, k, G) \). A similar argument to the one above shows that

\[
\text{Hom}_{F, k} \left(F_\ast k, \bigoplus_{\lambda \in \Lambda} F_\ast E(R/P_\lambda) \right) = 0
\]

hence \(\text{Hom}_{F, k} (F_\ast k, G) = \text{Hom}_{F, k} (F_\ast k, \text{Hom}_R (F, R, E)). \)

We may identify \(\text{Hom}_{F, k} (F_\ast k, \text{Hom}_R (F, R, E)) \) and \(\text{Hom}_{F, R} (F_\ast k, \text{Hom}_R (F, R, E)). \) Another application of the adjointness of Hom and \(\otimes \) gives

\[
\text{Hom}_{F, R} (F_\ast k, \text{Hom}_R (F, R, E)) \cong \text{Hom}_R (F_\ast k \otimes_{F, R} F, R, E) \cong \text{Hom}_R (F_\ast k, k).
\]

Since \(mF_\ast k = 0 \), we see that the image of any \(\phi \in \text{Hom}_R (F_\ast k, E) \) is contained in \(\text{ann}_E m \cong k \) and we deduce that \(\text{Hom}_R (F_\ast k, E) \cong \text{Hom}_R (F, k, k). \) We can now conclude that the cardinality of \(\Gamma \) is the \(F, k \)-dimension of \(\text{Hom}_R (F, k, k) \). In particular \(\Gamma \) cannot be empty and (a) follows.

If \(U \) is a \(k \)-basis for \(F, k \) containing \(1 \in F, k \),

\[
(1) \quad \text{Hom}_k (F, k, k) \cong \prod_{u \in U} \text{Hom}_k (k, k)
\]

and when \(U \) is finite, this is a one-dimensional \(F, k \)-vector space spanned by the projection onto \(k1 \subset F, k \). If \(U \) is not finite, the dimension as \(k \)-vector space of \((1) \) is at least \(2^{\# U} \) hence \(\text{Hom}_k (F, k, k) \) cannot be a finite-dimensional \(F, k \)-vector space. \(\square \)
Our next result is to establish a connection between submodules of \(R^n \) compatible with a given \(B \in \text{Hom}_R(F, R^n, R^n) \) and submodules of \(E^n \) fixed under a sequence of Frobenius actions determined by \(B \).

Note that the previous theorem allows us to view elements of \(\text{Hom}_R(F, R^n, R^n) \cong \text{Hom}_R(F, R, R)^{n \times n} = \mathfrak{B}^{n \times n} \) as elements in \(\prod_{\gamma \in \Gamma} F, R^{n \times n}T \), i.e., as sequences \((B, T)_{\gamma \in \Gamma} \) where each \(B_\gamma \) is an \(n \times n \) matrix with entries in \(F, R \) and \(T \) is the natural Frobenius action on \(E^n \).

Theorem 4.3. Let \(G = \oplus_{\gamma \in \Gamma} F, E \) and \(\mathfrak{B} \) be as in Theorem 4.2. Let \(B \in \text{Hom}_R(F, R^n, R^n) \) be represented by \((B_\gamma, T)_{\gamma \in \Gamma} \in \mathfrak{B}^{n \times n} \). For all \(\gamma \in \Gamma \) consider \(E^n \) as an \(R[\Theta; f] \)-module with \(\Theta_\gamma v = B_\gamma^tTv \) for all \(v \in E^n \). Let \(V \) be an \(R \)-submodule of \(R^n \) and fix a matrix \(A \) whose columns generate \(V \). If \(B(F, V) \subseteq V \), then \(\text{ann}_{E^n} A^t \) is a \(R[\Theta; f] \) submodule of \(E^n \) for all \(\gamma \in \Gamma \).

Proof. Apply the Matlis dual to the commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & F, V \\
| & B & | \downarrow \\
0 & \longrightarrow & V
\end{array}
\quad \begin{array}{ccc}
F, R^n & \longrightarrow & F, R^n/F, A \\
| & B & | \downarrow \\
R^n & \longrightarrow & R^n/V
\end{array}
\quad \begin{array}{c}
\longrightarrow \\
\downarrow \text{ann} \\
0
\end{array}
\]

where the rightmost vertical map is induced by the middle map to obtain

\[
\begin{array}{ccc}
0 & \longrightarrow & (R^n/V)^{\vee} \\
| & \downarrow \text{ann} & | \downarrow \text{ann} \\
0 & \longrightarrow & (F, R^n/F, V)^{\vee}
\end{array}
\quad \begin{array}{c}
E^n \\
\downarrow \text{ann} \\
\text{Hom}_R(F, R^n, E)
\end{array}
\]

Note that the previous theorem shows that

\[
\text{Hom}_R(E^n, \text{Hom}_R(F, R^n, E)) \cong \text{Hom}_R(E^n, \oplus_{\gamma \in \Gamma} F, E^n).
\]

Also note that under this isomorphism \(B^\vee \in \text{Hom}_R(E^n, \oplus_{\gamma \in \Gamma} F, E^n)^{n \times n} \) is given by \((B^\vee_t)_{\gamma \in \Gamma} \) and that the image of \(B^\vee \) is contained in \(\oplus_{\gamma \in \Gamma} F, E^n \).

Using the presentation \(F, R^n \xrightarrow{F, A^t} F, R^n \rightarrow F, R^n/F, V \rightarrow 0 \) we obtain the exact sequence

\[
0 \rightarrow (F, R^n/F, V)^{\vee} \rightarrow \text{Hom}_R(F, R^n, E) \xrightarrow{F, A^t} \text{Hom}_R(F, R^n, E)
\]

thus

\[
(F, R^n/F, V)^{\vee} = \text{ann}_{\text{Hom}(F, R^n, E)} F, A^t.
\]

We now obtain the commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & \text{ann}_{E^n} A^t \\
| & \downarrow \text{ann} & | \downarrow \text{ann} \\
0 & \longrightarrow & \oplus_{\gamma \in \Gamma} \text{ann}_{F, E^n} F, A^t
\end{array}
\quad \begin{array}{c}
E^n \\
\downarrow \text{ann} \\
\oplus_{\gamma \in \Gamma} F, E^n
\end{array}
\]

and we deduce that \(\text{ann}_{E^n} A^t \) is a \(R[\Theta; f] \)-module for all \(\gamma \in \Gamma \). \(\square \)
Theorem 4.4. Let M be an $R[\Theta; f]$-module with no nilpotents and assume M is an Artinian R-module. Then M has finitely many $R[\Theta; f]$-submodules. (Cf. Corollary 4.18 in [BB].)

Proof. Write $M = H(M)$. In view of [L, Theorem 4.2], there is an injection between the set of inclusions of $R[\Theta; f]$-submodules $N \subseteq M$ and the set of surjections of F-finite F-modules $M \twoheadrightarrow N$ hence it is enough to show that there are finitely many such surjections. By [L, Theorem 2.8] the kernels of these surjections are F-finite F-submodules of M hence it is enough to show that M has finitely many submodules.

All objects in the category of F-finite F-modules have finite length (cf. [L, Theorem 3.2]) and the theorem now follows from [H, Corollary 5.2(b)].

Corollary 4.5. Let $B = \text{Hom}_R(F_n, R)$ be represented by $(B^T_\gamma)_{\gamma \in \Gamma} \in \mathbb{B}^{n \times n}$, and assume that $B^T_\gamma : E^n \to E^n$ is injective for some $\gamma \in \Gamma$. Then there are finitely many B-compatible submodules of $F_n R^n$. In particular this holds when $n = 1$ and $(B_\gamma T)_{\gamma \in \Gamma} : E \to \bigoplus_{\gamma \in \Gamma} E$ is injective.

Proof. Let V be an R-submodule of R^n and fix a matrix A whose columns generate V. Theorem 4.3 implies that if $F_* V \subseteq F_* R^n$ is B-compatible then for all $\gamma \in \Gamma$, $\text{Ann}_{E^n} A^T \subseteq E^n$ is an $R[\Theta; f]$-submodule of E^n with the Frobenius action given by $B^T_\gamma T$. If there exists a $\gamma \in \Gamma$ such that $B^T_\gamma T$ is injective, then [S, Theorem 3.10] or [EH, Theorem 3.6] imply that there must finitely many $R[\Theta; f]$-submodules of E^n and hence also finitely many B-compatible submodules of R^n.

Assume now that $n = 1$. For all $\gamma \in \Gamma$ write $Z_\gamma = \{ v \in E | B_\gamma T v = 0 \}$ and let $C_\gamma \subseteq R$ be the ideal for which $Z_\gamma = \text{Ann}_E C_\gamma$. If $C_\gamma \subseteq mR$ for all $\gamma \in \Gamma$, then $C = \sum_{\gamma \in \Gamma} C_\gamma \neq R$, and for any non-zero $v \in \text{Ann}_E C \neq 0$, we have $B_\gamma T v = 0$ for all $\gamma \in \Gamma$. We conclude that there exists a $\gamma \in \Gamma$ such that, $C_\gamma = R$, i.e., that the Frobenius map $B_\gamma T$ on E is injective, and the last assertion of the corollary follows.

Acknowledgements

I thank Karl Schwede for our pleasant discussions on Frobenius splittings and in particular for showing me a variant of results in section 4 in the F-finite case. I thank the anonymous referee for useful suggestions which improved the original version of this paper.

References

[BB] M. Blickle and G. B"ockle. Cartier Modules: finiteness results. Preprint, oai:arXiv.org:0909.2531.

[BK] M. Brion and S. Kumar. Frobenius splitting methods in geometry and representation theory. Progress in Mathematics, 231, Birkhäuser Boston, Inc., Boston, MA, 2005.

[BS] M. P. Brodmann and R. Y. Sharp. Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.

[EH] F. Enescu and M. Hochster. The Frobenius structure of local cohomology. Algebra Number Theory 2 (2008), no. 7, 721-754.

[F] R. Fedder. F-purity and rational singularity. Transactions of the AMS, 278 (1983), no. 2, pp. 461–480.
[HS] R. Hartshorne and R. Speiser. *Local cohomological dimension in characteristic p*, Annals of Mathematics **105** (1977), pp. 45–79.

[H] M. Hochster. *Some finiteness properties of Lyubeznik's F-modules*. Algebra, geometry and their interactions, pp. 119–127, Contemporary Mathematics, **448**, American Mathematical Society, Providence, RI, 2007.

[K1] M. Katzman. *Parameter test ideals of Cohen Macaulay rings*. Compositio Mathematica, **144** (2008), pp. 933–948.

[K2] M. Katzman. *Frobenius maps on injective hulls and their applications to tight closure*. Journal of the LMS, **81** (2010), no. 3, 589-607.

[L] G. Lyubeznik. *F-modules: applications to local cohomology and D-modules in characteristic p > 0*. J. Reine Angew. Math. **491** (1997), pp. 65–130.

[S] R. Y. Sharp. *Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure*. Transactions of the AMS **359** (2007), no. 9, 4237–4258.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom

E-mail address: M.Katzman@sheffield.ac.uk