ABSTRACT. Cardiac resynchronization therapy (CRT) is a well-established treatment modality for ambulatory patients with heart failure (HF) who have prolonged QRS, left bundle branch block, reduced left ventricular (LV) ejection fraction, and New York Heart Association class II–IV. CRT has been shown to induce reverse LV remodeling and improve HF symptoms and clinical outcomes. About one-third of CRT recipients are considered non-responders. Patient selection, LV lead location, LV lead selection, multipoint pacing, and optimization of the atrioventricular and ventriculo-ventricular intervals were all shown to be associated with a better CRT response rate. Herein, we review the determinants of CRT response.

KEYWORDS. Cardiac pacing, cardiac resynchronization therapy, heart failure.

Introduction

Cardiac resynchronization therapy (CRT) is a well-established treatment modality for patients with heart failure (HF) from either ischemic or non-ischemic etiology, depressed left ventricular (LV) ejection fraction, and evidence of electrical dyssynchrony. CRT has also been shown to be beneficial in patients with mildly reduced LVEF who have an indication for pacing and are expected to have a high burden of right ventricular (RV) pacing.1–3 Pivotal studies have shown beneficial effects in terms of morbidity and long-term mortality with CRT. The rate of CRT non-responders varies among studies (25%–33%) depending on the definition of “non-responder.”4–9 There is currently no consensus on the definition of what constitutes a CRT responder. The guidelines recommend CRT based on the data that show a reduction in death and HF hospitalizations, but these are not practical metrics to assess on the patient level. Objective echocardiographic findings of reverse remodeling, like LVEF and LV end-systolic volume (LVESV), can be used to gauge the response to resynchronization, but these are not reliable predictors of improved morbidity and mortality.10

In this article, we aim to review the current literature and summarize the clinical, pre-procedural, intra-procedural, and post-procedural determinants of a favorable response to CRT.

Patient selection

It is imperative to carefully choose the patients most appropriate for CRT placement. Current clinical guidelines recommend a hierarchy of patient characteristics when choosing appropriate patients for CRT that reflect data from clinical trials and analyses.1,2 These characteristics are QRS duration, QRS morphology, cardiac rhythm, and expected pacing burden. Additionally, all patients...
Determinants of Response to Cardiac Resynchronization Therapy

It goes without saying that the ultimate goal of CRT is to improve the NYHA functional class and reduce cardiovascular mortality by reversal of ventricular dyssynchrony. As ventricular dyssynchrony is not regularly quantified, the most readily available surrogate for ventricular dyssynchrony is the surface electrocardiogram (ECG), and randomized controlled trials for CRT have historically used QRS duration (but not morphology) to determine enrollment. As such, the most compelling evidence for CRT is in patients with a QRS duration of ≥150 ms. Much of the evidence for CRT based on QRS morphology (left bundle branch block [LBBB] vs. right bundle branch block [RBBB] vs. intraventricular conduction delay) is gleaned from post-hoc analyses, registry studies, and meta-analyses. Zareba et al. showed in the Multicenter Automatic Defibrillator Implantation Trial—Cardiac Resynchronization Therapy (MADIT-CRT) that, among patients with mild HF, a LVEF of ≤35%, and QRS duration of ≥130 ms, only patients with LBBB derived clinical benefit with CRT with defibrillation (CRT-D).11 Similarly, Gold et al. showed in the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) trial that longer QRS duration and LBBB were predictors of better reverse remodeling.12 Sipahi et al. showed in their meta-analysis that only patients with a QRS duration of ≥150 ms experienced clinical benefit with CRT. However, the investigators did not stratify patients by the QRS morphology.13 In a U.S. Food and Drug Administration patient-level meta-analysis, it was shown that women with LBBB had better outcomes than men with a QRS duration of 130–150 ms and similar outcomes with a QRS duration of ≥150 ms. MADIT-CRT sub-analyses showed that patients with non-LBBB morphology had sustained clinical benefit if they had a P–R duration of >230 ms.14 It should be noted that, while patients with LBBB and a QRS duration of ≥150 ms are the most likely to benefit from CRT on a population-based scale, there is still variability among individual responders. Some patients with LBBB and a QRS duration of ≥150 ms will not respond, and some patients with RBBB will respond. These findings likely represent the heterogeneity of ventricular dyssynchrony and the limitations of using the surface ECG to assess mechanical dyssynchrony. Relative electrical conduction delay, and thus ventricular dyssynchrony, can occur on multiple levels within the heart, including the atria, atrioventricular (AV) junction, and ventricles. The etiology of the conduction delay can vary as well, including myocardial scar or ventricular dimensions. Such factors can be barriers to CRT response. For example, a patient with LBBB and a QRS duration of ≥150 ms may have myocardial scar at the site of the LV lead, and no amount of pacing from this area can overcome the conduction delay. Importantly, CRT use in patients with a QRS duration of ≤120 ms was associated with adverse outcomes, and these devices should be avoided in patients with narrow QRS.16

Baseline rhythm can also affect CRT response rates. Patients with AF were often excluded from the original CRT randomized trials out of concern that AV dyssynchrony would confound the results. From a practical perspective, achieving an optimal biventricular (BiV) pacing percentage during AF can sometimes be difficult due to rapid heart rates. But while up to one-third of patients with HF who would otherwise qualify for CRT have AF, the evidence for these patients is relatively sparse and inconsistent. A randomized trial of standard implantable cardioverter-defibrillator (ICD) versus CRT-D therapy

Table 1: Summary of Guideline Recommendations for Cardiac Resynchronization Therapy Based on Baseline Patient Characteristics
NYHA Class

LBBB
QRS ≥ 150 ms
QRS 130–149 ms
QRS 120–129 ms
Non-LBBB
QRS ≥ 150 ms
QRS 130–149 ms
QRS 120–129 ms
AF and HF
Expected high % RV pacing + HF + low EF

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association; AF, atrial fibrillation; EF, ejection fraction; EHRA, European Heart Rhythm Association; ESC, European Society of Cardiology; HF, heart failure; HRS, Heart Rhythm Society; LBBB, left bundle branch block; NYHA, New York Heart Association; RV, right ventricle.
in patients with AF and HF showed no statistically significant reduction in death or HF hospitalization, and this finding was also confirmed with a meta-analysis. The data comparing CRT results in patients with sinus rhythm (SR) versus AF are also lacking and inconclusive, with no large prospective randomized trials able to provide guidance. In a subgroup analysis of a randomized trial, patients with AF benefited from CRT, just to a lesser extent than their SR counterparts. In a subsequent meta-analysis of only prospective studies examining CRT in patients with SR versus AF, there was no difference in mortality or NYHA class, but patients with AF demonstrated a slightly greater improvement in LVEF than those with SR.

Several other factors have been shown to be associated with an improved benefit with CRT, including female sex and a non-ischemic etiology of cardiomyopathy. It should be noted that female sex was correlated with non-ischemic disease, and this association should be taken into account when interpreting those studies. Baseline P–R duration was shown to be inversely related to clinical outcomes. Interestingly, a study showed that, in patients with a non-LBBB configuration, a P–R duration of ≥230 ms identified responders. This observation should be confirmed in prospective studies.

Some risk scores have been proposed to help predict CRT response that use readily available patient characteristics (like QRS duration, QRS morphology, sex, cardiomyopathy etiology, and LV size, to name a few). At best, these unproven scores provide helpful prognostic information for patients, but none have been externally validated or tested in a prospective study.

With the availability of large databases containing vast amounts of information, machine learning (and perhaps, eventually, artificial intelligence) algorithms are being developed to help predict CRT response. Feeny et al. identified 9 readily available patient characteristics (QRS morphology, QRS duration, NYHA class, LVEF, LV end-diastolic diameter, sex, ischemic cardiomyopathy, AF, and epicardial LV lead) and applied a supervised machine learning program to a training cohort. Once training was complete, the algorithm was applied to a test cohort, which not only successfully predicted CRT response better than the previously identified clinical predictors as well as the guidelines but also long-term survival. As of now, machine learning has only been used to prognosticate CRT response in a retrospective manner; no prospective investigations have been published. Additionally, while the possibilities for machine learning are exciting, this tool has not been tested in a randomized fashion against guideline-based practice to improve CRT response rates.

Intra-procedural considerations

Anterolateral, midlateral, and posterolateral LV lead locations have been shown to be associated with improved clinical outcomes. Sub-analyses of randomized trials demonstrated that the apical lead position was associated with an increased risk for HF/mortality compared to the basal and mid-ventricular positions. However, the design of early unipolar and bipolar LV leads frequently called for wedging the leads in an apical location to prevent dislodgment, limiting the ability to pace non-apical sites. For this reason, pre-shaped curves and quadripolar lead designs have almost completely replaced the older generations of leads (Figure 1). These lead tips can be advanced to the terminal branch, and proximal electrodes may be used for pacing. Several studies have shown lower dislodgment rates, better thresholds, and lower rates of phrenic nerve stimulation with quadripolar leads compared to unipolar and bipolar leads. The more recent release of an active fixation quadripolar LV lead allows for even greater flexibility in the pacing site and reduces the risk for dislodgment. However, currently, no study has demonstrated improved objective endpoint outcomes, such as mortality, HF, or LVEF improvement with quadripolar leads compared to older-generation leads.

The use of quadripolar leads to perform multipoint pacing (MPP) has been investigated with reassuring results. With the MPP system, dual-site LV pacing can be performed with 2 different pacing vectors from the quadripolar lead. The More Response on Cardiac Resynchronization Therapy with Multipoint Pacing (MORE-CRT MPP) study was a prospective randomized trial that compared MPP to conventional pacing in CRT non-responders; ultimately, MPP did not result in an improved echocardiographic response (improved LVEF and LVESV), but a subgroup of the MPP arm (named MPP-AS) that was programmed with a wide LV electrode anatomic separation (≥30 mm) and shortest timing delays (5 ms) did experience higher rates of echocardiographic response. Separately, the MORE-CRT MPP phase II trial sought to assess the 6-month impact of MPP programmed to mandate MPP-AS settings in subjects who do not respond to 6 months of BiV pacing (note, the trial was later terminated in November 2021 by the steering committee due to low probability that the results would meet the primary outcome).

Local intracardiac electrograms have been utilized to identify the site of the most delayed LV electrical activation, which can be preferably selected when possible for LV pacing. QLV measurement, defined as the interval from the onset of the QRS surface ECG to the first positive or negative peak of the LV electrogram, was shown to be highly correlated with clinical outcome, including an improvement in LV dP/dt max and LV reverse remodeling, when stimulating at sites with a QLV delay of >95 ms. With the MPP system, dual-site LV pacing (MPP) has been investigated with reassuring results. With the MPP system, dual-site LV pacing can be performed with 2 different pacing vectors from the quadripolar lead. The More Response on Cardiac Resynchronization Therapy with Multipoint Pacing (MORE-CRT MPP) study was a prospective randomized trial that compared MPP to conventional pacing in CRT non-responders; ultimately, MPP did not result in an improved echocardiographic response (improved LVEF and LVESV), but a subgroup of the MPP arm (named MPP-AS) that was programmed with a wide LV electrode anatomic separation (≥30 mm) and shortest timing delays (5 ms) did experience higher rates of echocardiographic response. Separately, the MORE-CRT MPP phase II trial sought to assess the 6-month impact of MPP programmed to mandate MPP-AS settings in subjects who do not respond to 6 months of BiV pacing (note, the trial was later terminated in November 2021 by the steering committee due to low probability that the results would meet the primary outcome).

Choosing the LV pacing site that results in the surface ECG with the narrowest QRS has recently become a more popular method to identify the preferred LV lead pacing site. Sweeney et al. described that increasing R amplitude on V1–V2, indicating ventricular fusion, was associated with an increased probability of reverse remodeling with BiV pacing. This finding of increased R-wave prominence in V1/V2, as well as QRS normalization in V1 and
V2, and QRS shortening by ≥25 ms were identified as predictors of reverse remodeling in a later study. These results can be achieved by modifying the lead position during implant or the LV offsets during follow-up.

Body surface mapping using an ECG belt to characterize electrical heterogeneity (EH) for different LV pacing sites during CRT is a newer methodology that has been found to improve the acute hemodynamic response to CRT. Two EH metrics, the standard deviation of activation times and the mean left thorax activation times, are computed from isochronal maps based on 53-electrode surface mapping during BiV pacing from different sites in coronary veins. The site with the greatest reduction in these 2 parameters was shown to be associated with the greatest hemodynamic response in acute studies. To examine the long-term effect of this type of optimization, the ongoing ECG Belt for CRT Response Study is a prospective, interventional, randomized pre-market study, which uses the ECG belt at implant to help choose the

Figure 1: A: Boston Scientific shaped quadripolar leads. B: Medtronic shaped quadripolar leads. C: Medtronic active fixation quadripolar lead.
most optimal LV lead pacing site and again at follow-up for vector/timing parameters.48

Echocardiographic studies have shown that targeting the areas of latest activated LV segment (concordance) was associated with better LV reverse remodeling. The Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchronization Therapy (TARGET) trial was a randomized study that examined the impact of using baseline echocardiographic speckle-tracking 2-dimensional radial strain imaging versus the conventional approach to guide LV lead positioning. It showed that patients who had guided LV lead placement over a scar-free area experienced fewer HF hospitalizations and better remodeling.49 The Speckle-tracking Assisted Resynchronization Therapy for Electrode Region (STARTER) trial randomized patients to guided LV lead placement determining the site of latest time to peak radial strain by speckle-tracking echocardiography versus a conventional fluoroscopy approach. The study showed that the transthoracic echocardiography (TTE)-guided group had a significant reduction in HF and mortality outcomes and better lead placement concordance with the site of latest mechanical activation.50

Retrospective magnetic resonance imaging studies have demonstrated an association between LV lead location over transmural scarred areas and CRT non-responders.51

The locations of the RV and right atrial (RA) leads have not been shown to correlate with clinical outcomes. Sporadic studies suggested some improvement with septal RV positioning, but these results were not reproducible.29,52

\textbf{Postprocedural considerations}

Most of the responders will experience LVEF improvement and LVESV reduction (reverse LV remodeling) in about 3 months, although it could take up to 2 years. Clinical improvement should also be evaluated with quality-of-life questionnaires and the 6-min walk test.

Close follow-up after CRT implant is important for many reasons. CRT recipients are typically frail patients with HF and other comorbidities. They have different etiologies of cardiomyopathy, including ischemic, non-ischemic, and other concomitant pathologies (RV failure, valvular disease, pulmonary hypertension, etc.). As such, we advocate that this group warrants multidisciplinary care of experts, including electrophysiologists and HF and cardiac imaging specialists. This approach allows for better optimization of the CRT therapy, enables patient education and early intervention for more advanced therapies, and has been shown to be associated with better outcomes.53

Prompt response to the information received by the device diagnostics is of great significance. The percentage of BiV pacing is highly correlated with clinical outcome. Every effort should be made to ensure 100% BiV pacing. The best clinical outcomes were shown to be correlated with >98% pacing.54 Unfortunately, about 40% of the CRT recipients do not achieve this target.55 Supraventricular tachycardia, AF, and ventricular ectopy are known to interfere with BiV pacing. In instances of prolonged AV conduction, shortening of the AV interval should improve the rate of BiV pacing. In instances of enhanced AV nodal conduction, nodal blocking agents will usually suffice. Some algorithms (ie, ventricular sensed response) may provide better synchronization by identifying intrinsic conduction and promoting pacing soon after detection. Two retrospective studies suggested a clinical benefit with AV node ablation in patients with resistant AF, but this strategy should be evaluated in prospective investigations.56,57 The Catheter Ablation vs. Standard Conventional Treatment in Patients with LV Dysfunction and AF (CASTLE-AF) trial showed that catheter ablation for AF in patients with HF (27% of patients had CRT devices) significantly reduced the rate of death from any cause and HF hospitalization compared to medical therapy.58 If frequent premature ventricular contractions (PVCs) interfere with optimal BiV pacing and cannot be suppressed with pharmacologic treatment, catheter ablation should be considered.59,60 In non-responder patients with BiV pacing >95%, assessment of pseudo-fusion with intrinsic conduction or PVCs is recommended with 12-lead ECG or Holter monitoring, as the rate of BiV pacing may be overestimated.61

Optimization of the device to improve the rate of response to CRT has been long disputed, and, even today, there is a lack of consensus as there are insufficient data to support systematic optimization of all patients.56 CRT optimization using echocardiographic parameters such as mitral inflow (shortest AV delay without truncation of the A-wave), LV outflow tract velocity time integral, largest stroke volume, tissue Doppler imaging, LV M-mode and septal–lateral wall motion delay, and strain measurements has been extensively studied, but the results have been disappointing.62 Early attempts to program an optimal AV and ventriculo-ventricular (VV) delay based on these echocardiographic parameters resulted in a positive acute hemodynamic response.53 However, the long-term outcomes were similar with fixed AV delays to patient-specific algorithms and echocardiography-guided approach in both the SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy (SMART-AV) study and the Frequent Optimization Study Using the Quick-Opt Method (FREEDOM) study.54,63 Speckle tracking is an emerging tool in echocardiography that helps define cardiac strain patterns and could potentially find a role in CRT optimization. We have already discussed the results of the STARTER trial that showed better outcomes when strain was assessed intra-procedurally at the time of LV lead placement. Another randomized trial of CRT non-responders, though small with just 30 patients, showed that programming AV and VV delays to optimize strain patterns by speckle tracking resulted in improved LVEF and NYHA class compared to conventional optimization strategies.64 There are currently no large, randomized trials testing this method.
Automated device algorithms have been developed simultaneously in an effort to achieve AV and VV optimization in a more continuous and dynamic fashion. These include QuickOpt and SyncAV (Abbott, Chicago, IL, USA); SmartDelay (Boston Scientific, Marlborough, MA, USA); and SonR, MicroPort, and AdaptivCRT (Medtronic, Minneapolis, MN, USA). The Adaptive CRT trial studied the algorithm that enables repeated adjustments of AV and VV intervals based on intrinsic conduction in patients with intact intrinsic conduction (PR ≤ 200 ms).67 The investigators demonstrated the non-inferiority of the algorithm compared to TTE optimization at 6 months of follow-up. The ongoing prospective, randomized AdaptResponse trial is examining whether patients with the AdaptivCRT algorithm turned on will have a superior outcome compared to those with standard CRT programming among patients with intact AV conduction and LBBB.68 No automated dynamic AV or VV delay algorithms have been shown to be superior to fixed delay programming.

The SonR hemodynamic sensor attempts to optimize the AV and VV intervals based on global ventricular contractility. The Clinical Impact of the SonR Hemodynamic Method (CLEAR) study was a single-blinded study that used an RV lead sensor and showed an increased rate of responders in the sensor arm compared to the standard-of-care arm.69,70 The Clinical Trial of the SonRtip Lead and Automatic AV-VV Optimization Algorithm in the PARADYM RF SonR CRT-D (RESPOND-CRT) study included both ischemic and non-ischemic patients with NYHA class III; it showed that sensor-driven optimization of AV/VV intervals was non-inferior to the TTE-guided strategy.70 Interestingly, the sensor arm had a lower rate of HF admissions despite no difference in reverse remodeling.

The third method used to optimize CRT is the electrocardiographic QRS-based approach, and it includes the analysis of the 12-lead ECG and fusion-optimized intervals (FOIs). These techniques have become increasingly popular, as they are faster and simpler. A number of older studies have suggested that certain patterns of paced QRS and narrowing of the QRS with CRT can lead to a response to CRT.46,71,72 When patients were prospectively randomized to VV optimization with echocardiographic versus QRS width criteria, at 6-month follow-up, the ECG-optimized group had lower mortality and heart transplantation rates and an LVEVS reduction of >10% (50% vs. 67.9%, P = .0023) compared to the echo-optimized group.73

The FOI method uses fusion with intrinsic conduction to achieve the shortest possible QRS and was shown to acutely improve the dP/dT in patients with CRT who have intrinsic conduction and an LBBB pattern.74,75 In a 12-month follow-up study, patients randomized to fusion optimization showed a higher rate of reverse remodeling than echo-optimized patients (LVEVS was reduced by >15% in 74% vs. 53% of patients, respectively; P = .026).76 The FOI method identifies first the sensed AV interval that provides the narrowest QRS. It is important to note that the onset of the QRS is the fast deflection and not the pacing spike. The shortest paced AV interval that provides the narrowest QRS is identified next. Then, the VV interval is adjusted during atrial sensing, comparing QRS duration during simultaneous RV/LV pacing, LV pre-excitation by 30 ms, and RV pre-excitation by 30 ms. The VV value that provides the narrowest QRS is considered the fusion-optimized VV interval.62 Limitations of the method include patients with AF, complete AV block, prolonged AV interval, and non-LBBB morphology where further research is required. Further research should also include direct comparisons between the echocardiographic, electrocardiographic, and automated device algorithm methodologies to further elucidate what the preferred methodology with the highest patient benefit may be and under what criteria. The role of ECG body-surface mapping also needs to be further defined, as clinical research is in early stages.

Remote monitoring provides a unique way of communication between HF patients and their providers and has become an even more valuable tool during the time of the coronavirus disease 2019 pandemic and the requirement or preference for virtual visits. Early initiatives of remote monitoring focused on patient education, communication with nursing staff by telephone or telemonitoring of patients' vital signs and weight. Prospective studies failed to show a reduction in HF hospitalizations and mortality of those methodologies compared to routine care.77,78 The evolution of remote monitoring included the automated reporting of markers of sympathetic activation and parasympathetic withdrawal—namely, the heart rate variability—among parameters, like arrhythmia occurrence, heart rate, percentage of BiV pacing, patient activity, and intrathoracic impedance. These parameters are used to identify clinical deterioration early and allow preventive treatment. Some studies showed a decrease in hospitalizations, reduced costs, and improvement in patient symptoms.79-82

When cardiac resynchronization therapy fails
One of the most frustrating complications of CRT is the failure to place a coronary sinus (CS) lead. This result is not uncommon and can occur for various reasons—failure to cannulate the CS, absence of CS branches that can accommodate a lead, high pacing thresholds due to scar, diaphragm stimulation from multiple vectors, or unstable lead position, to name a few. Fortunately, several alternatives to CS lead placement exist, including an LV epicardial lead, LV endocardial lead, and left bundle area pacing (LBAP). While there are pros and cons to each approach, none have been effectively compared to conventional CRT in a head-to-head fashion.

Surgically implanted epicardial LV leads have historically been the back-up option when a CS lead is not successful. In a non-randomized prospective cohort of patients who qualified for CRT, in which an epicardial LV lead was surgically implanted when a transvenous CS lead could not be placed, both groups experienced effective narrowing of the QRS from 182 ± 22 ms to 143 ± 16 ms (P < .001), with no difference between the 2 techniques.83 In a separate
Reduced mortality and HF

Subgroup analyses of RCTs, meta-analyses

QRS

Non-apical lead position

Reduced mortality and HF

Subgroup analyses of RCTs

Maximize BiV pacing percentage

Post-hoc subgroup analysis of RCT

Small RCT

Improved BiV pacing percentage

Improved NYHA and LVEF

RCT

Optimize LV strain

Reduced mortality and HF, Improved NYHA and LVEF

RCT

Program delays to optimize LV strain pattern

Improved HF and LVEF

Small RCT

Fusion-optimized interval

Improved LVESV

RCT

Abbreviations: BiV, biventricular; HF, heart failure; LBAP, left bundle branch block; LV, left ventricle; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; NYHA, New York Heart Association; MPP-AS, multipoint pacing with wide anatomic separation; RCT, randomized controlled trial.

Conclusions

In summary, CRT is a fundamental treatment modality for a selected group of patients with HF. Guideline-based patient selection, intra-procedural measures (LV lead location, optimal AV and VV intervals, utilizing quadrupolar leads and advanced imaging modalities in selected patients) and postprocedural measures (maximizing the BiV pacing rate and optimizing the pacing parameters) can decrease the rate of non-responders to a minimum (Table 2).

References

1. Writing Committee Members, Yancy CW, Jessup M, et al. ACC/AHA guideline for the management of heart failure. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;128(16):e240–e327.
2. Glikson M, Nielsen JC, Kronborg MB, et al. ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: developed by the task force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ES) with the special contribution of the European Heart Rhythm Association (EHRA). Eur Heart J. 2021;42(16):3427–3520.
3. Normand C, Linde C, Singh J, Dickstein K. Indications for cardiac resynchronization therapy: a comparison of the major international guidelines. J Am Coll Cardiol Heart Fail. 2018;6(4):308–316.
4. Moss AJ, Hall WJ, Cannom DS, et al. Cardiac resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–1338.
5. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–1853.
6. Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. J Am Med Assoc. 2003;289(20):2685–2694.
7. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. *N Engl J Med*. 2004;350(21):2140–2150.

8. Abraham WT, Young JB, León AR, et al. Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure. *Circulation*. 2004;110(18):2864–2868.

9. Tang AS, Wells GA, Talajic M, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. *N Engl J Med*. 2010;363(25):2385–2395.

10. Cha YM, Rea RF, Wang M, et al. Response to cardiac resynchronization therapy predicts survival in heart failure: a single center experience. *J Cardiovasc Electrophysiol*. 2007;18(10):1015–1019.

11. Zareba W, Klein H, Cygankiewicz I, et al. Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial—Cardiac Resynchronization Therapy (MADIT-CRT). *Circulation*. 2011;123(10):1061–1072.

12. Gold MR, Thébault C, Linde C, et al. The effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the REsynchronization rEVersing Remodeling in Systolic left vEntricular dysfunction (REVERSE) study. *Circulation*. 2012;126(7):822–829.

13. Sipahi I, Carrigan TP, Rowland DY, Stambler BS, Fang JC. Impact of QRS duration on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. *Arch Intern Med*. 2011;171(16):1454–1462.

14. Kutyifa V, Stockburger M, Daubert JP, et al. PR interval identifies clinical response in patients with non-left bundle branch block: a Multicenter Automatic Defibrillator Implantation Trial—Cardiac Resynchronization Therapy sub-study. *Circ Arrhythm Electrophysiol*. 2014;7(4):645–651.

15. Stockburger M, Moss AJ, Klein HU, et al. Sustained clinical benefit of cardiac resynchronization therapy in non-LBBB patients with prolonged PR-interval: MADIT-CRT long-term follow-up. *Clin Res Cardiol*. 2016;105(11):944–952.

16. Beshai JE, Grimm RA, Nagueh SF, et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. *N Engl J Med*. 2007;357(24):2461–2471.

17. Healy JS, Hohnloser SH, Exner DV, et al. Cardiac resynchronization therapy in patients with permanent atrial fibrillation: results from the resynchronization for ambulatory heart failure trial (RAFT). *Circ Heart Fail*. 2012;5(5):566–570.

18. Mustafa U, Atkins J, Mina G, et al. Outcomes of cardiac resynchronisation therapy in patients with heart failure awith atrial fibrillation: a systematic review and meta-analysis of observational studies. *Open Heart*. 2019;6(1):e000937.

19. Linde C, Leclercq C, Rex S, et al. Long-term benefits of biventricular pacing in congestive heart failure: results from the Multisite Stimulation in cardiomyopathy (MUSTIC) study. *J Am Coll Cardiol*. 2002;40(1):111–118.

20. Upadhyay GA, Choudhry NK, Auricchio A, Ruskin J, Singh JP. Cardiac resynchronization in patients with atrial fibrillation: a meta-analysis of prospective cohort studies. *J Am Coll Cardiol*. 2008;52(15):1239–1246.

21. Arshad A, Moss AJ, Foster E, et al. Cardiac resynchronization therapy is more effective in women than in men: the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) trial. *J Am Coll Cardiol*. 2011;57(7):813–820.

22. Biton Y, Zareba W, Goldenberg I, et al. Sex differences in long-term outcomes with cardiac resynchronization therapy in mild heart failure patients with left bundle branch block. *J Am Heart Assoc*. 2015;4(7):e002013.

23. Poole JE, Singh JP, Birgersdotter-Green U. QRS duration or QRS morphology: what really matters in cardiac resynchronization therapy? *J Am Coll Cardiol*. 2016;67(9):1104–1117.

24. Barshevet A, Goldenberg I, Moss AJ, et al. Response to preventive cardiac resynchronization therapy in patients with ischaemic and nonischaemic cardiomyopathy in MADIT-CRT. *Eur Heart J*. 2010;32(13):1622–1630.

25. Goldenberg I, Moss AJ, Hall WJ, et al. Predictors of response to cardiac resynchronization therapy in the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT). *Circulation*. 2011;124(14):1527–1536.

26. Gasparini M, Klercy S, Leclercq C, et al. Validation of a simple risk stratification tool for patients implanted with cardiac resynchronization therapy: the VALID-CRT risk score. *Eur J Heart Fail*. 2015;17(7):717–724.

27. Feeny AK, Rickard J, Patel D, et al. Machine learning prediction of response to cardiac resynchronization therapy: improvement vs current guidelines. *Circ Arrhythm Electrophysiol*. 2019;12(7):e007316.

28. Singh JP, Klein HU, Huang DT, et al. Left ventricular lead position and clinical outcome in the Multicenter Automatic Defibrillator Implantation Trial—Cardiac Resynchronization Therapy (MADIT-CRT) TrialClinical Perspective. *Circulation*. 2011;123(11):1159–1166.

29. Thébault C, Donal E, Meunier C, et al. Sites of left and right ventricular lead implantation and response to cardiac resynchronization therapy observations from the REVERSE trial. *Eur Heart J*. 2012;33(21):2662–2671.

30. Wilton SB, Shibata MA, Sondergaard R, Cowan K, Semeniuk L, Exner DV. Relationship between left ventricular lead position using a simple radiographic classification scheme and long-term outcome with resynchronization therapy. *J Interv Card Electrophysiol*. 2008;23(3):219–227.

31. Arias MA, Pachón M, Puchol A, et al. Acute and mid-term outcomes of transvenous implant of a new left ventricular quadripolar lead versus bipolar leads for cardiac resynchronization therapy: results from a single-center prospective database. *Cardiol J*. 2012;19(5):470–478.

32. Crossley GH, Biffi M, Johnson B, et al. Performance of a novel left ventricular lead with short bipolar spacing for cardiac resynchronization therapy: primary results of the Attain Performa quadripolar left ventricular lead study. *Heart Rhythm*. 2015;12(4):751–758.

33. Sperzel J, Dänischel W, Guteleben K-J, et al. First prospective, multi-centre clinical experience with a novel left ventricular quadripolar lead. *Europace*. 2011;14(3):365–372.

34. Forleo GB, Della Rocca DG, Papavasileiou LP, Di Molfetta A, Santini L, Romeo F. Left ventricular pacing with a new quadripolar transvenous lead for CRT: early results of a prospective comparison with conventional implant outcomes. *Heart Rhythm*. 2011;8(1):31–37.

35. Mittal S, Nair D, Padanilam BJ, et al. Performance of anatomically designed quadripolar left ventricular leads: results from the NAVIGATE X4 clinical trial. *J Cardiovasc Electrophysiol*. 2016;27(10):1199–1205.

36. Jackson KP, Faerestrand S, Phillipon F, et al. Performance of an active fixation quadripolar left ventricular lead for cardiac resynchronization therapy: Attain Stability Quad Clinical Study results. *J Cardiovasc Electrophysiol*. 2020;31(5):1147–1154.

37. Zanón F, Baracca E, Pastore G, et al. Multipoint pacing by a left ventricular quadripolar lead improves the acute hemodynamic response to CRT compared with
conventional biventricular pacing at any site. Heart Rhythm. 2015;12(5):975–981.

38. Pappone C, Čalović Ž, Vicedomini G, et al. Multipoint left ventricular pacing improves acute hemodynamic response assessed with pressure-volume loops in cardiac resynchronization therapy patients. Heart Rhythm. 2014;11(3):394–401.

39. Rinaldi CA, Leclercq C, Kranig W, et al. Improvement in acute contractility and hemodynamics with multipoint pacing via a left ventricular quadriportal pacing lead. J Interv Card Electrophysiol. 2014;40(1):75–80.

40. Menardi E, Ballari GP, Goletto C, et al. Characterization of ventricular activation pattern and acute hemodynamics during multipoint left ventricular pacing, Heart Rhythm. 2015;12(8):1762–1769.

41. Leclercq C, Burri H, Curnis A, et al. Cardiac resynchronization therapy non-responder to responder conversion rate in the more response to cardiac resynchronization therapy with multipoint pacing (MORE-CRT MPP) study: results from phase I. Eur Heart J. 2019;40(35):2979–2987.

42. Leclercq C, Burri H, Curnis A, et al. Rationale and design of a randomized clinical trial to assess the safety and efficacy of multipoint pacing therapy: MORE Response on cardiac resynchronization therapy with multipoint pacing (MORE-CRT MPP-PHASE II). Am Heart J. 2019;209:1–8.

43. Singh JP, Fan D, Heist EK, et al. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm. 2006;3:1285–1292.

44. Gold MR, Birgersdotter-Green U, Singh JP, et al. The relationship between ventricular electrical delay and left ventricular remodeling with cardiac resynchronization therapy. Eur Heart J. 2011;32(20):2516–2524.

45. Sweeney MO, Helkamp AS, van Bommel RJ, et al. QRS fusion complex analysis using wave interference to predict reverse remodeling during cardiac resynchronization therapy. Heart Rhythm. 2014;11(5):806–813.

46. Sweeney MO, van Bommel RJ, Schalij MJ, et al. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy. Circulation. 2010;121(5):626–634.

47. Johnson B, Vatterott PJ, Peterson MA, et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: relationship with acute hemodynamic improvement. Heart Rhythm. 2016;14(3):385–391.

48. U.S. National Library of Medicine. ECG belt for CRT response. Available at: https://clinicaltrials.gov/ct2/show/NCT03504020. Accessed October 1, 2021.

49. Khan FZ, Virdee MS, Palmer CR, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59(17):1509–1518.

50. Saba S, Marek J, Schwartzman D, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail. 2013;6(3):427–434.

51. Kronborg MB, Kim WY, Mortensen PT, et al. Non-contrast magnetic resonance imaging for guiding left ventricular lead position in cardiac resynchronization therapy. J Interv Card Electrophysiol. 2012;33(1):27–35.

52. Leclercq C, Sadoul N, Mont L, et al. Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT Study. Eur Heart J. 2015;37(5):473–483.

53. Altman RK, Parks KA, Schlett CL, et al. Multidisciplinary care of patients receiving cardiac resynchronization therapy is associated with improved clinical outcomes. Eur Heart J. 2012;33(17):2181–2188.

54. Daubert J-C, Saxon L, Adamson PB, et al. 2012 EHRA/HRSA expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Heart Rhythm. 2012;9(9):1524–1576.

55. Cheng A, Landman SR, Stadler RW. Reasons for loss of CRT pacing: insights from 32,844 patients. Circ Arrhythm Electrophysiol. 2012;5(5):884–888.

56. Dong K, Shen W-K, Powell BD, et al. Atrioventricular nodal ablation predicts survival benefit in patients with atrial fibrillation receiving cardiac resynchronization therapy. Heart Rhythm. 2010;7(9):1240–1245.

57. Gasparini M, Auricchio A, Regoli F, et al. Four-year efficacy of cardiac resynchronization therapy on exercise tolerance and disease progression: the importance of performing atrioventricular junction ablation in patients with atrial fibrillation. J Am Coll Cardiol. 2006;48(4):734–743.

58. Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378(5):417–427.

59. Lakkireddy D, Di Biase L, Ryschon K, et al. Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol. 2012;60(16):1531–1539.

60. Cronic EM, Bogun FM, Maury P, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: executive summary. J Interv Card Electrophysiol. 2020;59(1):81–133.

61. Kamath GS, Cotiga D, Koneru JN, et al. The utility of 12-lead Holter monitoring in patients with permanent atrial fibrillation for the identification of non responders after cardiac resynchronization therapy. J Am Coll Cardiol. 2009;53(12):1050–1055.

62. Pujol-Lopez M, San Antonio R, Mont L, et al. Electrocardiographic optimization techniques in resynchronization therapy. Europace. 2019;21(9):1286–1296.

63. Porciani MC, Dongina C, Macioce R, et al. Echocardiographic examination of atrioventricular and interventricular delay-optimization in cardiac resynchronization therapy. Am J Cardiol. 2005;95(9):1108–1110.

64. Ellenbogen KA, Gold MR, Meyer TE, et al. Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: clinical perspective: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122(25):2660–2668.

65. Abraham W, Gras D, Yu C, et al. Results from the FREEDOM trial—assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy in non-responders: a pilot study. Open Med (Wars). 2019;14:945–952.

66. Martin DO, Lemke B, Birnie D, et al. Investigation of a novel algorithm for synchronized left-ventricular pacing ablation in patients with atrial fibrillation receiving cardiac resynchronization therapy. Heart Rhythm. 2012;9(11):1807–1814.

67. Martin DO, Lemke B, Birnie D, et al. Investigation of a novel algorithm for synchronized left-ventricular pacing ablation in patients with atrial fibrillation receiving cardiac resynchronization therapy. Heart Rhythm. 2012;9(11):1807–1814.

68. U.S. National Library of Medicine. AdaptResponse Clinical Trial. Available at: https://clinicaltrials.gov/ct2/show/NCT02205359. Accessed October 1, 2021.
Determinants of Response to Cardiac Resynchronization Therapy

69. Ritter P, Delnoy PPH, Padeletti L, et al. A randomized pilot study of optimization of cardiac resynchronization therapy in sinus rhythm patients using a peak endocardial acceleration sensor vs. standard methods. *Europace*. 2012;14(9):1324–1333.

70. Brugada J, Delnoy PP, Brachmann J, et al. Contractility sensor-guided optimization of cardiac resynchronization therapy: results from the RESPOND-CRT trial. *Eur Heart J*. 2016;38(10):730–738.

71. Lecoq G, Leclercq C, Leray E, et al. Clinical and electrocardiographic predictors of a positive response to cardiac resynchronization therapy in advanced failure. *Eur Heart J*. 2005;26(11):1094–1100.

72. Hsin JM, Selzman KA, Leclerq C, et al. Paced left ventricular QRS width and ECG parameters predict outcomes after cardiac resynchronization therapy: PROSPECT-ECG substudy. *Circ Arrhythm Electrophysiol*. 2011;4(6):851–857.

73. Tamborero D, Vidal B, Tolosana JM, et al. Electrocardiographic vs echocardiographic optimization of the interventricular pacing delay in patients undergoing cardiac resynchronization therapy. *J Cardiovasc Electrophysiol*. 2011;22(10):1129–1134.

74. Arbelo E, Tolosana JM, Trucco E, et al. Fusion-optimized intervals (FOI): a new method to achieve the narrowest QRS for optimization of the AV and VV intervals in patients undergoing cardiac resynchronization therapy. *J Cardiovasc Electrophysiol*. 2014;25(3):283–292.

75. Jastrzebski M, Baranchuk A, Fijorek K, et al. Cardiac resynchronization therapy-induced acute shortening of QRS duration predicts only in patients with left bundle branch block. *Europace*. 2019;21(2):281–289.

76. Trucco E, Tolosana JM, Arbelo E, et al. Improvement of reverse remodeling using electrocardiogram fusion-optimized intervals in cardiac resynchronization therapy: a randomized study. *JACC Clin Electrophysiol*. 2018;4(2):181–189.

77. Krum H, Forbes A, Yallop J, et al. Telephone support to rural and remote patients with heart failure: The Chronic Heart Failure Assessment by Telephone (CHAT) study. *Cardiovasc Thes*. 2013;31(4):230–237.

78. Ferrante D, Varini S, Macchia A, et al. Long-term results after a telephone intervention in chronic heart failure: DIAL (randomized trial of phone intervention in chronic heart failure) follow up. *J Am Coll Cardiol*. 2010;56(5):372–378.

79. Crossley GH, Boyle A, Vitense H, Chang Y, Mead RH; CONNECT Investigators. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. *J Am Col Cardiol*. 2011;57(10):1181–1189.

80. Landolina M, Pereg GB, Lunati M, et al. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators clinical perspective: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLOV) Study. *Circulation*. 2012;125(24):2985–2992.

81. Piccini JP, Mittal S, Snell J, Frillinger JB, Dalal N, Varma N. Impact of remote monitoring on clinical events and associated health care utilization: a nationwide assessment. *Heart Rhythm*. 2016;13(12):2279–2286.

82. Boehmer JP, Hariharan R, Devecchi FG, et al. A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the MultiSense Study. *JACC Heart Fail*. 2017;5(3):216–225.

83. Mair H, Sachweh J, Meuris B, et al. Surgical epicardial left ventricular lead versus coronary sinus lead placement in biventricular pacing. *Eur J Cardiothorac Surg*. 2005;27(2):235–242.

84. Shah RV, Lewis EF, Givertz MM. Epicardial left ventricular lead placement for cardiac resynchronization therapy following failed coronary sinus approach. *Congest Heart Fail*. 2006;12(6):312–316.

85. Geller L, Sallo Z, Molnar L, et al. Long-term single-centre large volume experience with transeptal endocardial left ventricular lead implantation. *Europace*. 2019;21(8):1237–1245.

86. Okabe T, Hummel JD, Bank AJ, et al. Leadless left ventricular stimulation with WISE-CRT system—initial experience and results from phase I of SOLVE-CRT study (nonrandomized, roll-in phase). *Heart Rhythm*. 2021;S1547-5271(21)01808-7.

87. Vintner M, Risum N, Svendsen JH, Mogelvang R, Philbert BT. A randomized trial of His pacing versus biventricular pacing in symptomatic heart failure patients with left bundle branch block (His-Alternative). *JACC Clin Electrophysiol*. 2021;7(11):1422–1432.

88. Wu S, Su L, Vijayaraman P, et al. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with His bundle pacing and biventricular pacing. *Can J Cardiol*. 2021;37(2):319–328.

89. Koplan BA, Kaplan AJ, Weiner S, Jones PW, Seth M, Christman SA. Heart failure decompensation and all-cause mortality in relation to percent biventricular pacing in patients with heart failure: is a goal of 100% biventricular pacing necessary? *J Am Coll Cardiol*. 2009;53(4):355–360.

90. Hayes DL, Boehmer JP, Day JD, et al. Cardiac resynchronization therapy and the relationship of percent biventricular pacing to symptoms and survival. *Heart Rhythm*. 2011;8(9):1469–1475.