Review

Daphnane-type diterpenes from genus *Daphne* and their anti-tumor activity

Zi-lin Hou, Guo-dong Yao *, Shao-jiang Song

Liaoning Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China

Abstract

Daphnane-type diterpenoids are the major biologically active constituents in the genus *Daphne*. We find that there are about 101 Daphnane-type diterpenes in this genus, most of those compounds show different degrees of inhibitory effect on various cancer cell. Some of them have been studied in depth and the potent molecular mechanisms might be associated with modulation of different cell-signaling pathways. In addition, some compounds of this type also can inhibit the synthesis of protein and DNA. Absolutely, the anti-tumor activity of Daphnane-type diterpenes is worthy of attention. Unfortunately, most of the current research on the activity of these compounds is focused on simple drug efficacy, and its in-depth mechanism research is far from enough. On the other point of view, there still exists wide growing space on the depth of these compounds.

© 2021 Tianjin Press of Chinese Herbal Medicines. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
- anti-tumor effect
- compound structure
- *Daphne* genus
- Daphnane-type diterpenes
- molecular mechanism

Article info

Article history:
- Received 30 June 2020
- Revised 15 August 2020
- Accepted 1 September 2020
- Available online 8 January 2021

Contents

1. Introduction ... 145
2. Compound structures .. 145
3. Cytotoxicity .. 146
4. Structure-activity relationship 146
5. Molecular mechanism .. 146
 5.1. Lung cancer .. 146
 5.1.1. Yuanhuadine inhibits Akt/mTOR pathways 146
 5.1.2. Yuanhuadine suppresses EGFR pathways 146
 5.1.3. Yuanhuadine prevents HGF/c-Met pathways 146
 5.1.4. Effects of Yuanhuadine on checkpoint proteins 146
 5.1.5. Yuanhuacine inhibits AMPK signaling pathway 146
 5.1.6. Yuanhuacine has an impact on actin cytoskeleton organization 146
 5.1.7. Yuanhuadine could resistant gefitinib resistance 146
 5.2. Breast cancer ... 151
 5.2.1. Yuanhuacine has an impact on apoptosis-regulated proteins 151
 5.2.2. Yuanhuatine inhibits ERα pathway 152
 5.3. Colon cancer and bladder cancer 152
 5.3.1. Yuanhuacine up-regulates expression of P21 152
 5.3.2. Genkwadaphnin blocks expression of PRDM1 152
 5.4. Leukemia ... 153
 5.4.1. Gnidilatimoein eliminates activity of IMPDH 153
 5.4.2. Yuanhuacine and Genkwadaphnin have influence on some biological macromolecules 153
 5.5. Melanoma .. 154
 6. Conclusion and prospect ... 154

* Corresponding author.

E-mail address: guodong_yao@126.com (G.-d. Yao).
1. Introduction

The genus *Daphne* includes about 95 species found mainly in Asia and Europe. It is well known for its Greek mythology and the medicinal usage from ancient to modern time. For example, *Daphne genkwa* Sieb. et Zucc. is a toxic shrub widespread in China and Korea. As a folk medicine, its flower buds are used as for purge water and expel phlegm to relieve cough, kill insects and cure sores. Records from the *Compendium of Materia Medica* and *Drug Properties in Verse* showed that *D. genkwa* had the effect of detoxication. In the Chinese Pharmacopoeia, the medical parts originate from the leaves, flowers or roots of *Daphne odora* Thunb. It was used as a traditional medicine for wind-damp-dispelling, promoting blood circulation and relieving pain. Obviously, these drugs mainly achieve the purpose of treating diseases via dispelling toxins and stimulating the blood vessels, and this just coincides with the view of traditional Chinese medicine treatment of tumor.

Several scholars have concentrated on the chemical composition and bioactivities of genus *Daphne*. Previous phytochemical studies of this genus have shown the presence of flavonoids (Du et al., 2016), lignans (Zhang et al., 2018) and diterpenoids (Zhan et al., 2005). All of these, Daphnane-type diterpenoids are the major biologically active constituents (Zhan et al., 2005). Previous pharmacological researches demonstrated that the type of these compounds bear a wide range of biological activities including anti-tumor, anti-inflammatory, neurotrophic and anti-HIV activities (Han et al., 2016; Yin et al., 2018; Zhang et al., 2018).

Several reviews are available but none of them covers the development of the last decades (Liao et al., 2009; He et al., 2002), which have witnessed enormous progress in the discovery of structural types, as well as the knowledge of the molecular basis underlying the biological activity of these compounds. This review aims at filling this gap, providing a detailed list of the compounds isolated so far and a systematic summary uncovered the anti-tumor activity and related molecular mechanism, in order to find a suitable breakthrough for further development and utilization of this type of compound.

2. Compound structures

Daphnane-type diterpenoids usually embrace a 5/6/7-tricyclic ring system with poly-hydroxyl group and most of them have a characteristic orthoester function located at ring C. According to the oxygen containing functions at ring B and ring C, and the substitution pattern of the ring A compounds of this structural, Daphnane-type diterpenoids that come from this genus can be categorized into daphnetoxins, 12-hydroxydaphnetoxins, 1-alkydaphnanes, genkwannines and resiniferonoids. Additionally, some Daphnane-type diterpenoids have no typical structural features and do not belong to above groups, which are categorized as an independent class (Liao, Chen et al., 2009) (Figs. 1 and 2, Fig. S1, Table 1).

3. Cytotoxicity

Previous pharmacological studies showed that Daphnane-type diterpenes exhibit inhibitory effects on lung cancer, liver cancer, breast cancer, colon cancer and leukemia cells, and some of them have been tested for their activities in A549, HepG2, SMMC-7721, MCF-7, SK-BR-3, HCT116, SW480, HL-60 cells (Table S1) (Li et al., 2013). To make the results more intuitive, we use a heat map to describe this trend (Fig. 3).

4. Structure-activity relationship

Daphnane-type diterpenes have complex structures and rich functional groups, which can exert an influence on their biological activity. This paper roughly analyzed and summarized the relationship between the structure and activity of these compounds (Liao, et al., 2009). According to the difference of rings A, B, C and the location of substituents, combined with literature reports we described the structure-activity relationship as follows (Fig. 4).

5. Molecular mechanism

Regarding the high biological activity of some Daphnane-type diterpenes and as part of our screening program to evaluate the potential chemotherapeutic effects of natural compounds, we have mapped their pharmacological mechanisms of action. The methods adopted by different researchers in the study of the activity of these compounds are not completely consistent. In order to make it clear and preciseness we describe these on the supporting information (Figs. S2–S5).

5.1. Lung cancer

5.1.1. Yuanhuadine inhibits Akt/mTOR pathways

When treated with Yuanhuadine, the activation of ERK1/2 and Akt was suppressed. Furthermore, the phosphorylation of Akt...
Fig. 2. Chemical structures of daphnetoxins (1–11), 12-hydroxydaphnetoxins (12–56), genkwanines (57–67), 1-alkylidendaphnanes (68–77), resiniferonoids (78–80) and others (81–101).
No.	Compounds	Chemical structures	Original plants
1	Daphnetoxin	R₁ = OH, R₂ = OH, R₃ = Ph, R₄ = H	D. mezereum (Ronlán & Wickberg, 1970)
2	Daphnegiraldifin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₄CH₃, R₄ = Ph, R₅ = H	D. giraldii (Liao et al., 2009)
3	Daphne factor F₁	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = H	D. papyrecea (Wu et al., 1994, 1993)
4	Excoecaria factor O₁	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = H	D. autiloba (Adolf et al., 1985)
5	Excoecariatoxin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = H	D. autiloba (Wang et al., 1981; Powell et al., 1985; Bala et al., 1999)
6	Tanguticamin	R₁ = OH, R₂ = OOC(CH₂)₁₄CH₃, R₃ = Ph, R₄ = H	D. tangutica (Liao, Chen & Yue, 2009)
7	Tanguticin	R₁ = OH, R₂ = OOC(CH₂)₁₄CH₃, R₃ = Ph, R₄ = H	D. tangutica (Liao, Chen & Yue, 2009)
8	14'-Ethyltetrahydrouratokin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = H	D. autiloba (Adolf et al., 1988)
9	Simplexin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = H	D. tangutica (Powell et al., 1985)
10	Invesiculosin	R₁ = OH, R₂ = OAc, R₃ = Ph, R₄ = H	D. tangutica (Liao, Chen & Yue, 2009)
11	Tangutcahin		
12	12-Hydroxydaphnetoxin	R₁ = OH, R₂ = OH, R₃ = Ph, R₄ = OH	D. mezereum (Ronlán & Wickberg, 1970)
13	Gniditrin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. giraldii (Kupchan et al., 1975)
14	Gnidicin	R₁ = OH, R₂ = OH, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. giraldii (Kupchan et al., 1975)
15	Gnididin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. giraldii (Kupchan et al., 1975)
16	Daphnegiraliddin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. giraldii (Kupchan et al., 1975)
17	Acutilobin A	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. autiloba (Huang et al., 2012)
18	Acutilobin B	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. autiloba (Huang et al., 2012)
19	Genkwadaphnine	R₁ = OH, R₂ = OH, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. genkwa (Kasal, Lee & Huang, 1981)
20	Yuanhuajine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Zhang et al., 2006)
21	Kirkinine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. autiloba (He et al., 2000)
22	Gnidilatin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. oleoide (Ullah et al., 2001)
23	Mezerein	R₁ = OH, R₂ = OH, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. mezereum (Ronlán & Wickberg, 1970)
24	Yuanhuaoate A	R₁ = OH, R₂ = OH, R₃ = Ph, R₄ = OAc	D. genkwa (Zeng et al., 2009)
25	Yuanhuahine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Hong, Nam, Seo & Lee, 2010)
26	Yuanhualine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Hong, Nam, Seo & Lee, 2010)
27	14'-Ethyltetrahydrouratokin	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. odorona (Hajime, Mitsuru et al., 1982)
28	Yuanhualine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. odorona (Hajime, Mitsuru et al., 1982)
29	Yuanhuacine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Wang et al., 1981)
30	Isoyuanhuacine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Wang et al., 2018)
31	Yuanhuadine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Liao, Chen & Yue, 2009)
32	Yuanhuagaine	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Zhang et al., 2006)
33	Genkwadane D	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Liao, Chen & Yue, 2009)
34	5-Hydroxyresiniferonol-6R,7R epoxy-12-acetoxy-9,13,14ortho-2E-decenoate	R₁ = OH, R₂ = OH, R₃ᵣ(CH₂)₁₂(CH₃)₅CH₃, R₄ᵣ(CH₂)₂CH₅, R₅ = OAc	D. genkwa (Akhtar, Khan & Ali, 2006)
35	Tanguticacin	R₁ = OH, R₂ = OOC(CH₂)₁₂CH₃, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. tangutica (Liao, Chen & Yue, 2009)
36	Tanguticacin	R₁ = OH, R₂ = OOC(CH₂)₁₂CH₃, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. tangutica (Liao, Chen & Yue, 2009)
37	Genkwadaphnin-20-palmitate	R₁ = OH, R₂ = OOC(CH₂)₁₂CH₃, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. oleoide (Taninaka et al., 1999)
38	Gnidilatidin-20-palmitate	R₁ = OH, R₂ = OOC(CH₂)₁₂CH₃, R₃ = Ph, R₄ = OOC(CH = CH(CH₂)₅)CH₃	D. oleoide
Table 1 (continued)

No.	Compounds	Chemical structures	Original plants
39	Gnidicin-20-palmitate	(CH = CH)2(CH2)4CH3, R4 = OCO-Ph, R1 = OH, R2 = OCO(CH2)4CH3, R3 = Ph	D. oleoidé
			[Taninaka et al., 1999]
40	Acutilobin C	(CH = CH)2(CH2)4CH3, R4 = OCO-Ph, R1 = OH, R2 = OCO(CH2)4CH3, R3 = Ph	D. autiloba
			[Huang et al., 2012]
41	Acutilobin D	(CH = CH)2(CH2)4CH3, R4 = OCO-Ph, R1 = OH, R2 = OCO(CH2)4CH3, R3 = Ph	D. autiloba
			[Huang et al., 2012]
42	Acutilobin E	(CH = CH)2(CH2)4CH3, R4 = OCO-Ph, R1 = OH, R2 = OCO(CH2)4CH3, R3 = Ph	D. autiloba
			[Huang et al., 2012]
43	Tanguticaquin	R2 = OH, R4 = H	D. tangutica
			[Liao, Chen & Yue, 2009]
44	1,2α-Dihydrodaphnetoxin	R2 = OH, R4 = H	D. genkwa
			[Pan et al., 2010]
45	Daphne factor F2	R2 = OH, R4 = OCO(CH2)4CH3, R3 = Ph	D. odora
			[Tamura, 1979]
46	Yuanhuapine	R2 = OH, R4 = OAc	D. genkwa
			[Hu et al., 1986]
47	Yuanhuatine	R2 = OH, R4 = OCOCH3, R5 = H	D. genkwa
			[Zhan et al., 2005]
48	1,2α-Dihydro-20-palmitoyldaphnetoxin	R2 = OOC(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
49	Acutilobin F	R2 = OOC(CH = CH)2(CH2)4CH3, R4 = OH	D. autiloba
			[Huang et al., 2012]
50	Acutilobin G	R3 = OOC(CH = CH)2(CH2)4CH3, R4 = OH	D. autiloba
			[Huang et al., 2012]
51	Genkwamine M	R5 = OH, R2 = OCO(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
52	Genkwamine N	R6 = OCO(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
53	Genkwamine N-20-palmitate	R6 = OCO(CH2)4CH3, R2 = OCO(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
54	Orthobenzoate 2	R5 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
55	Tanguticadin	R5 = OOC(CH = CH)2(CH2)4CH3, R6 = OH	D. tangutica
			[Liao, Chen & Yue, 2009]
56	Tanguticadin	R5 = OOC(CH = CH)2(CH2)4CH3, R6 = OH	D. tangutica
			[Liao, Chen & Yue, 2009]
57	Genkwamine A	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
58	Genkwamine B	R1 = OCO(CH = CH)2(CH2)4CH3, R2 = OH	D. genkwa
			[Zhan et al., 2005]
59	Genkwamine C	R1 = OCO(CH = CH)2(CH2)4CH3, R2 = OH	D. genkwa
			[Zhan et al., 2005]
60	Genkwamine D	R1 = OCOCH3, R2 = OH	D. genkwa
			[Zhan et al., 2005]
61	Genkwamine E	R1 = OH, R5 = OCO(CH = CH)2(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
62	Genkwamine F	R1 = OH, R5 = OCO(CH = CH)2(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
63	Genkwamine G	R1 = OH, R5 = OCO(CH = CH)2(CH2)4CH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
64	Genkwamine H	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
65	Genkwamine L	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Zhan et al., 2005]
66	Yuanhuaoate B	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Zeng et al., 2009]
67	Genkwadane A	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Li et al., 2013]
68	Genkwadane B	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Li et al., 2013]
69	Genkwadane C	R1 = OH, R2 = OCOCH3, R3 = OH	D. genkwa
			[Li et al., 2013]
70	Gnidimacrin	(CH = CH)2(CH2)4CH3, R4 = OCO-Ph, R1 = OH, R2 = OCO(CH2)4CH3, R3 = Ph	D. odora
			[Otsuki et al., 2020]

(continued on next page)
No.	Compounds	Chemical structures	Original plants
71	Wikstroelide E		D. genkwa
			(Li et al., 2013)
72	Pimelotide A	\(R_1 = \text{CH}_3, R_2 = \text{H} \)	D. genkwa
			(Li et al., 2013)
73	Pimelotide C	\(R_1 = \text{H}, R_2 = \text{CH}_3 \)	D. genkwa
			(Li et al., 2013)
74	Daphneodorin A		D. odora
			(Otsuki et al., 2020)
75	Daphneodorin B		D. odora
			(Otsuki et al., 2020)
76	Daphneodorin C		D. odora
			(Otsuki et al., 2020)
77	pimelea factor P2		D. genkwa
			(Li et al., 2013)
78	Daphneresiniferin A	\(R = \text{OCOCH}_3 \)	D. genkwa
			(Bang et al., 2013)
79	Daphneresiniferin B	\(R = \text{Ph} \)	D. genkwa
			(Bang et al., 2013)
80	14-(P-methoxylphenol)-exoecainol		D. autiloba
			(Coetzer & Pieterse, 1972; Huang et al., 1985)
81		\(R = \text{CH}_3(\alpha) \)	D. tanguica
			(Pan et al., 2010)
82		\(R = \text{CH}_3(\beta) \)	D. tanguica
			(Pan et al., 2010)
83	Daphnegiralgin		D. giraldii
			(Su & Wu, 2014)
84	Genkwanine O		D. genkwa
			(Zhan et al., 2005)
85	Wikstroelide M		D. autiloba
			(Zhang et al., 2014)
86	Daphne factor F3		D. genkwa
			(Wu et al., 1994, 1993)
87	Yuanhuaoate E		D. genkwa
			(Zhan et al., 2005)
88	Neogenkwanine A	\(R_1 = \text{OCOPh}, R_2 = \text{H}, R_3 = \text{H} \)	D. genkwa
			(Li et al., 2015)
89	Neogenkwanine B	\(R_1 = \text{H}, R_2 = \text{OCOPh}, R_3 = \text{H} \)	D. genkwa
			(Li et al., 2015)
90	Neogenkwanine C	\(R_1 = \text{OCOPh}, R_2 = \text{H} \)	D. genkwa
		\(R_3 = \text{GRP}_1\text{GRP}_2 \)	(Li et al., 2015)
91	Neogenkwanine D	\(R_1 = \text{OCOPh}, R_2 = \text{H} \)	D. genkwa
		\(R_3 = \text{GRP}_1\text{GRP}_2 \)	(Li et al., 2015)
92	Neogenkwanine E	\(R_1 = \text{H}, R_2 = \text{OCOPh} \)	D. genkwa
		\(R_3 = \text{GRP}_1\text{GRP}_2 \)	(Li et al., 2015)
93	Neogenkwanine F	\(R_1 = \text{H}, R_2 = \text{OCOPh} \)	D. genkwa
		\(R_3 = \text{GRP}_1\text{GRP}_2 \)	(Li et al., 2015)
94	Neogenkwanine G	\(R_1 = \text{OCOPh}, R_2 = \text{OCOPh}, R_3 = \text{H} \)	D. genkwa
			(Li et al., 2015)
95	Neogenkwanine I	\(R_1 = \text{H}, R_2 = \text{H}, R_3 = \text{H} \)	D. genkwa
			(Li et al., 2015)
96	Neogenkwanine H		D. genkwa
			(Li et al., 2015)
97	Genkwanine I		D. genkwa
			(Zhan et al., 2005)
98	Gnidilatinomonoerin		D. mucronata
			(Mianahadiz & Yazdanparast, 2004)
99	Yuanhuaoate C		D. genkwa
			(Zeng et al., 2009)
100	Genkwanine K		D. genkwa
			(Zhan et al., 2005)
101	Genkwanine J		D. genkwa
			(Zhan et al., 2005)
upstream PDK-1 and its downstream effectors GSK3β and STAT3 were also inhibited. In addition, Yuanhuadine suppressed the phosphorylation of mTOR and its downstream effectors p70S6K and 4EBP1. Collectively, Yuanhuadine inhibits the antiproliferation of A549 cells by suppressing Akt/mTOR signaling pathways (Hong et al., 2011) (Fig. 5).

5.1.2. Yuanhuadine suppresses EGFR pathways

Research shows that the EGF-stimulated activation of EGFR was alleviated significantly when treated with Yuanhuadine in A549 cells (Hong et al., 2011). The activation of Akt and ERK1/2, downstream effectors of EGFR, was also inhibited by the compound. These results suggest that Yuanhuadine induce anti-proliferative
activity might be concomitant with the suppression of EGFR signaling pathways (Fig. 5).

5.1.3. Yuanhuadine prevents HGF/c-Met pathways

Research suggests that c-Met-dependent signaling in A549 cells is suppressed because Yuanhuadine can abrogate the HGF-induced auto-phosphorylation of c-Met (Hong et al., 2011). This may be a possible mechanism of action for the antiproliferative activity of Yuanhuadine (Fig. 5).

5.1.4. Effects of Yuanhuadine on checkpoint proteins

Yuanhuadine can arrest lung cancer A549 cells at the G0/G1 and G2/M phase, and these events were correlated with the expression of checkpoint proteins, such as CDK4, CDK2, cyclin E, cyclin A, c-Myc and so on (Hong et al., 2011). The event may be owing to the inhibition of Akt/GSK-3β or Akt/c-Myc signaling by Yuanhuadine. In addition, the down regulation of PDK-1 might enhance the negative regulation of the Akt signaling pathway by Yuanhuadine. The impact on G2/M phase cell-cycle arrest by Yuanhuadine was partially associated with the suppression of cyclin B1 and CDC2 (Fig. 5).

5.1.5. Yuanhuacine inhibits AMPK signaling pathway

After treatment with Yuanhuacine, the activation of mTORC2-associated downstream targets including Akt, protein kinase C alpha (PKC-α), ras-related C3 botulinum toxin substrate 1 (Rac1), and filamentous-actin (F-actin) was suppressed. Thus, Yuanhuacine could regulate AMPK/mTOR signaling pathway (Kang et al., 2015) (Fig. 5).

5.1.6. Yuanhuadine has an impact on actin cytoskeleton organization

Research has shown that Yuanhuadine effectively inhibit the invasion and migration of human non-small lung cancer H1993 cells, which can be ascribed to the actin cytoskeleton organization via downregulating F-actin and upregulating of E-cadherin (Kang et al., 2015) (Fig. 5).

5.1.7. Yuanhuadine could resistant gefitinib resistance

In H292-Gef cells, treatment with Yuanhuadine consequently resulted in SerpinB2 up-regulated and the lysosomal degradation of uPA then the proteolytic activity of MMP2 was inhibited. In addition, the expression of activated p38 and ERK (phosphorylated-p38 (p-p38) and p-ERK) was down-regulated in human non-small lung cancer cells treated with Yuanhuadine (Fig. 6).

Yuanhuadine through targeting the degradation of AXL receptor tyrosine kinase to overcome gefitinib resistance. Mechanistically, Yuanhuadine could induce the cleavage of AXL through the two sequential steps of presenilin-dependent regulated intramembrane proteolysis (RS-RIP), the ectodomain shedding and the intramembrane cleavage. Collectively, Yuanhuadine may accelerate the degradation of AXL, resulting in the reduction of full-length AXL expression and the half-life of AXL shorten (Bae et al. 2015) (Fig. 6).

5.2. Breast cancer

5.2.1. Yuanhuacine has an impact on apoptosis-regulated proteins

Bcl-2 family proteins act as vital regulators of apoptotic process (Czabotar et al., 2014). DNA usually degraded to fragments of low molecular weight when cells undergoing apoptosis, resulting a special DNA peak called Sub-G1. The cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP) can also indicate that cells may undergone apoptosis. Yuanhuacine has been shown to induce apoptosis in breast cancer MCF-7 and myeloid leukemia HL-60 cells by modulating multiple signaling pathways (Li et al., 2013) (Fig. 7).

5.2.2. Yuanhuacine inhibits ERα pathway

There is no doubt, ERα is the most important disease target of breast cancer. Numerous cases have shown that Akt/mTOR and ERK/MEK signaling molecules are important downstream molecules of ERα (Saini et al., 2013; Zheng et al., 2015). As reports go, Yuanhuacine has an inhibitory effect on ERα and it down-stream signaling pathways (Zhang et al., 2019) (Fig. 7).

5.3. Colon cancer and bladder cancer

5.3.1. Yuanhuacine up-regulates expression of P21

According to the search, Yuanhuacine has an anti-tumor effect on bladder cancer T24T and colon cancer HCT116 cells, it could up-regulate p21 without an influence on p53, which was ascribable to that Yuanhuacine treatment could induce Sp1 protein, whereas it did not show an impact on p53 or STAT3 expression (Zhang et al., 2014). Yuanhuacine can activate p38 to stabilize Sp1 protein and, subsequently, leads to p21 transcription and protein expression. Collectively, Yuanhuacine induce inhibition of cell growth by up-regulating p21 protein expression in an p53-independent pathway (Figs. 8 and 9).

5.3.2. Genkwadaphnin blocks expression of PRDM1

Research shows that Genkwadaphnin could prominently induce the expression of the transcriptional repressor PRDM1 in human colon cancer SW620 cells (Kang et al., 2016). Furthermore, the con-
Daphnane-type diterpenes could enhance via induce the phosphorylation of PKD1 and MEK, leading to the down-regulation of c-Myc and up-regulation of p21 subsequently. Thus, Genkwadaphnin has an anti-proliferative effect (Fig. 8).

5.4. Leukemia

5.4.1. Gnidilatimoein eliminates activity of IMPDH

As reports go, Inosine monophosphate dehydrogenase (IMPDH) play a vital role in cell growth, differentiation, apoptosis and transformation (Cuny et al., 2017). Researches has clearly indicated that gnidilatimoein, as a potent natural anti-proliferative and differentiation-inducing agent, exerts its delicate biological effects mainly through modulation of GTP pool size with the final subsequent effects on cellular DNA content (Nouri et al., 2011) (Fig. 10).

5.4.2. Yuanhuacine and Genkwadaphnin have influence on some biological macromolecules

According to the research, Yuanhuacine could inhibit the activity of DNA topoisomerase I and more important the effect is closely associated with the orthoest group. The reason is that the linkage area of DNA topo I has positive charge and the orthoest group happens to be an electron-donating group (Zhang et al., 2006). Other than this, protein synthesis is also inhibited after treatment with Yuanhuacine or Genkwadaphnin in P-388 cells (Zhang et al., 2006). They could block the elongation process and interference with the peptidyl transferase reaction. Mechanically, these compounds have a significantly inhibition on both the polyuridine-directed polyphenylalanine synthesis and the formation of the first peptide bond between puromycin and met-trNA bound to the 80S initiation complex (Fig. 11).

5.5. Melanoma

Gnidilatidin can decrease expression of metastasis associated proteins. Researches show that gnidilatidin could decrease the expression of MMP9, MMP2 and CD44. Beyond that, Id2 (inhibitor of DNA binding 2) and Syt2 (synaptogaminlike 2) were also suppressed, which closely associated with tumor cell migration and invasion. In addition, Egr1 (early growth response 1), a cancer suppressor gene was up-regulated after treatment with gnidilation. Gnidilation inhibited the expression of MiTF, and the expression of Mif-regulated genes important for melanogenesis such as tyrosinase (Tyr), tyrosinase-related protein 1 (Trp 1), and dopachrome tautomerase (Dct), as well as the melanosyme transport protein Rab27a were also decreased (Villareal et al., 2018) (Fig. 12).

In short, Daphnane-type diterpenes, come from Daphne L. (Thymelaeaceae), have prominent medicinal properties which can play an important effect on some relevant signaling pathways. To make it more intuitive, we describe it graphically (Fig. 13).

Other than this, Daphnane-type diterpenes also with mitochondrial toxicity (Diogo et al., 2009) (Fig. 14). Researches have shown that Daphnetoxin presented an effect on the function of mitochondrial including increased proton leak in the inner mitochondrial membrane, increased induction of the mitochondrial permeability transition pore, inhibition of ATP synthase and inhibition of the mitochondrial respiratory chain.

6. Conclusion and prospect

Natural products and their derivatives are primary sources of anticancer agents with novel mechanisms. Traditional medicine has been considered as the mainstay for the resource sourcing of natural products. Plants of genus Daphne are of great importance due to their outstanding therapeutic and medicinal usage in different ethnic cultures over the world. Daphnane-type diterpenenoids is the characteristic component of the genus. Our review shows that there are 101 Daphnane-type diterpenenoids in the genus, some of...
them show different degrees of inhibitory effect on various cancer cells and we have mapped their pharmacological mechanism of action.

An appealing opportunity is raised by the repeated that although there are 95 species of this genus, relatively few reports of this type of compounds. No doubt that here still a promising research about the genus. Unfortunately, an appealing question is also occurring that most of the current research on the activity of these compounds is focused on simple drug efficacy (~29%), and its in-depth mechanism research (~10%) is far from enough (Fig. 15).

We thought that the production of natural product may be the mainly barrier of its application to a certain extent. Maybe, we can try to solve this problem in a synthetic way. This raised the prospect of promoting a further research of these compounds based on the expected activity. In addition, most of this type of compound contains toxicity which may also be the limiting. We can try to modify its structure based on the related research on its structure–activity relationship in order to maximize its application. Furthermore, the combination of drugs may also be an effective way to reduce its toxicity.

Development of effective drugs is the holy grail of researchers. However, drug development faces multiple challenges that lead high costs and long development cycles for new therapeutics. In this condition, natural medicine with multiple targets, relatively low resistance has attracted the attention of researchers. Like a river flows, surely to the sea. Therefore, we summarize the current research status, in order to find a suitable breakthrough for further development and utilization of this type of compound. Hopping call for more researchers putting emphasis on its derivatives, pharmacology, toxicology and pharmacokinetic research.
Zi-lin Hou, Guo-dong Yao and Shao-jiang Song

Chinese Herbal Medicines 13 (2021) 145–156

Fig. 14. Molecular mechanisms of Daphnane-type diterpenes on mitochondrial.

Fig. 15. Current status of activity research of Daphnane-type diterpenes.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was financially supported by National Nature Science Foundation of China [Grant No. 81573319, 81872766, 81973528], China Postdoctoral Science Foundation [Grant No. 2019M661135, 2017M620104].

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chmed.2020.09.006.

References

Adolf, W., Dossaji, S. F., Seip, E. H., & Hecker, E. (1985). Skin irritant diterpene orthoesters of the daphnane type from Peddelia africana and P. volkensii. Phytochemistry, 24, 2047–2048.

Adolf, W., Seip, E. H., Hecker, E., & Dossaji, S. F. (1988). Irritant principles of the mezerneon family (Thymelaeaceae). V. New skin irritants and tumor promoters of the daphnane and 1-alpha-alkyldaphnane type from Synaptoplepis kirki and Synaptoplepis retusa. Journal of Natural Products, 51, 662–674.

Akhtar, K., Khan, S. B., & Ali, I. (2006). Structural determination of diterpenes from Daphne genkwa by NMR spectroscopy. Magnetic Resonance in Chemistry, 44, 1063–1066.

Bae, S. Y., Hong, J. Y., Lee, H. J., Park, H. J., & Lee, S. K. (2015). Targeting the degradation of AXL receptor tyrosine kinase to overcome resistance in gefitinib-resistant non-small cell lung cancer. Oncotarget, 6, 10146–10160.

Bala, A. E., Delorme, R., Kollmann, A., Kerhoas, P., Einhorn, J., & Augé, D. (1999). Insecticidal activity of daphnane diterpenes from Lasiopithon kraussianus (meiôn) (Thymelaeaceae) roots. Pesticide Science, 53, 745–750.

Bang, K. K., Yun, C. Y., Lee, C. J., Jin, Q. Lee, J. W., Jung, S. H., et al. (2013). Melanogenesis inhibitory daphnane diterpenoids from the flower buds of Daphne genkwa. Bioorganic & Medicinal Chemistry Letters, 23, 3334–3337.

Coeterer, J., & Pieterse, M. J. (1972). The structure of 12-hydroxydaphnetoxin, a poisonous constituent of Lasiopithon Bucheli. An x-ray analysis of 12-hydroxydaphnetoxin trihydroxamate. Acta Crystallographica. Section B, Structural Science, 28, 620–624.

Cuny, C. D., Suebsuwong, C., & Ray, S. S. (2017). Inosine-5′-monophosphate dehydrogenase (IMPDH) inhibitors: A patent and scientific literature review (2002–2016). Expert Opinion on Therapeutic Patents, 27, 677–690.

Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nature Reviews Molecular Cell Biology, 15, 49–63.

Du, W. J., Yang, X. L., Song, J. Z., Wang, J. Y., Zhang, W. J., He, X., et al. (2016). Antitumor activity of total flavonoids from Daphne genkwa in colorectal cancer. Phytotherapy Research, 30, 323–330.

Hajime, O., Mitsuru, H., Takanao, O., Kouchi, K., Hirotá, F., Masami, S., et al. (1982). Resiniferon-related diterpene esters from Daphne odora Thunb. and their ornihtine decarboxylase-inducing activity in mouse skin. Agricultural and Biological Chemistry, 46, 2605–2608.

Han, B. S., Kim, K. S., Kim, Y. J., Jung, H. Y., Kang, Y. M., Lee, K. S., et al. (2016). Daphnane Diterpenes from Daphne genkwa activate nur1 and have a neuroprotective effect in an animal model of Parkinson’s disease. Journal of Natural Products, 79, 1604–1609.

He, W., Cik, M., Appendino, G., Puyuelo, I. V., Leysen, J. E., & De Kimpe, N. (2002). Daphnane-type diterpene orthoesters and their biological activities. Mini Reviews in Medicinal Chemistry, 2, 185–200.

He, W., Cik, M., Lesage, A., Van der Linden, I., De Kimpe, N., Appendino, G., et al. (2000). Kirkinine, a new daphnane orthoester with potent neuroprotective activity from Synaptoplepis kirki. Journal of Natural Products, 63, 1185–1187.

Hong, J. Y., Chung, H. J., Lee, H. J., Park, H. J., & Lee, S. K. (2011). Growth inhibition of human lung cancer cells via down-regulation of epidermal growth factor receptor signaling by Yuanhuadine, a daphnane diterpene from Daphne genkwa. Journal of Natural Products, 74, 2102–2108.

Hong, J. Y., Nam, J. W., Seo, E. K., & Lee, S. K. (2010). Daphnane diterpene esters with anti-proliferative activities against human lung cancer cells from Daphne genkwa. Chemical & Pharmaceutical Bulletin, 58, 234–237.

Hu, B. H., Sha, H., He, Z. W., & Wu, X. C. (1986). Studies on the constituent of the yuannhua’s flower buds——isolation and structure of yuannhanpine. Acta Chimica Sinica, 44, 843–845.

Huang, S. Z., Zhang, X. J., Li, X. Y., Kong, L. M., Jiang, H. Z., Ma, Q. Y., et al. (2012). Daphnane-type diterpene esters with cytotoxic and anti-HIV-1 activities from Daphne acutiloba Reh. Phytochemistry, 75, 99–107.

Huang, Z. H., Yang, Y. M., Dai, M. L., & Wang, C. R. (1985). Studies on the mass spectra of diterpene orthoesters isolated from Thymelaeaceae species. Chinese Journal of Chemistry, 3, 217–227.

Jiang, H. L., Wang, R., Li, J. Y., et al. (2015). A new highly oxygenated daphnane diterpene ester from the flower buds of Daphne genkwa. Natural Product Research, 20, 1878–1883.

Kang, H. B., Lee, H. R., Jeo da J., Shin, S. H., Nah, S. S., Yoon, S. Y., et al. (2016). PRDM1, a tumor-suppressor gene, is induced by genkwadaphnin in human colon cancer SW620 cells. Journal of Cellular Biochemistry, 117, 172–179.

Kang, J. I., Hong, J. Y., Lee, H. J., Bae, S. Y., Jung, C., Park, H. J., et al. (2015). Anti-tumor activity of Yuanhuacine by regulating AMPK/mTOR signaling pathway and actin cytoskeleton organization in non-small cell lung cancer cells. Plos One, 10, 60144368.

Kasal, R. K., Lee, K. H., & Huang, H. C. (1981). Genkwadaphnin, a potent antiepileptic diterpene from Daphne genkwa. Phytochemistry, 20, 2592–2594.

Kupchan, S. M., Sweeney, J. C., Baer, R. L., Murae, T., Zimmerly, V. A., & Sickles, B. R. (1975). Letter: Guadinid, guadinin, and guadin, novel potent antiepileptic diterpenoid esters from Gymnadenia tanphrantha. Journal of the American Chemical Society, 97, 672–673.

Li, I. Z., Gao, P. Y., Peng, Y., et al. (2010). Daphnane-type diterpenoids from the flower buds of Daphne genkwa. Helvetica Chimica Acta, 93, 1172–1179.

Li, F., Sun, H., Hong, L., Li, B., Wu, Y., Xia, M., et al. (2013). Daphnane-type diterpenes with inhibitory activities against human cancer cell lines from Daphne genkwa. Bioorganic & Medicinal Chemistry Letters, 23, 2500–2504.

Li, L. Z., Song, J. S., Gao, P. Y., & Sun, Y. (2015). Chemisinom abstract: Neogenkwaines a-h: Daphnane-type diterpenoids containing 4,7 or 4,6-ether groups from the flower bud of daphne genkwa. RSC Advances, 5, 4143–4152.

Li, S., Zhou, G., Hua, Y., Wang, L., Kwan, H., & Yu, Z. (2013). Isolation of anticancer constituents from flos genkwa (Daphne genkwa Sieb.et Zucc.) through bioassay-guided procedures. Chemistry Central Journal, 7, 159.

Liao, S. G., Chen, H. D., & Yue, J. M. (2009). Plant orthoesters. RSC Advances, 5, 4143–4152.

Mianbadadi, M., & Yazdaniparast, R. (2004). Inhibition of substrate-tumor cell adhesion under the effect of g nidilitaminoino purified from Daphne mucronata. The American Journal of Chinese medicine, 32, 369–376.
Wang, C. R., Chen, Z. X., Ying, B. P., Zhou, B. N., Liu, J. S., & Pan, B. C. (1981). Studies on the active principles of the root of yuan-hua (Daphne genkwa). *Fitoterapia*, 41, 87–91.

Ronlán, A., & Wickberg, B. (1970). The structure of mezerein, a major toxic principle of *Daphne mezereum* L. *Tetrahedron Letters*, 49, 4261–4264.

Wang, L., Lan, X. Y., Ji, J., Zhang, C. F., Li, F., Wang, C. Z., et al. (2018). Anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenes from *Daphne genkwa* based on hierarchical cluster and principal component analysis. *Journal of Natural Medicines*, 84(4), 421–425.

Wang, Z. J., Fan, C. Q., Ding, J., & Yue, J. M. (2005). Novel diterpenoids with potent inhibitory activity against endothelium cell HMEC and cytotoxic activities from *Daphne genkwa* Sieb. et Zucc. processed by rice vinegar. *Heterocl. Acta*, 40(5), 1273–1281.

Zhang, C. Y., Luo, L. B., & Song, B. (2016). Sesquiterpenes and lignans from the flower buds of *Daphne genkwa* and their nitric oxide inhibitory activities. *Natural Product Research*, 30(10), 1299–1303.

Zhang, C. Y., Luo, L., Xia, J., Song, Y. N., Zhang, L. J., Zhang, M., et al. (2018). A new daphnane-type diterpenoid from *Daphne giralda*. *Chemistry of Natural Compounds*, 50(2), 285–287.

Zhou, Y., Zhang, X., Gu, W. G., Yang, L. M., Chen, H., Zheng, C. B., et al. (2014). Inhibitory effects of *Daphne genkwa* ssp. oleoides on inflammatory nitric oxide inhibitory activities. *Phytochemistry*, 102, 1525–1529.

Zheng, N., Zhang, P., Huang, H., Liu, W., Hayashi, T., Zang, L., et al. (2015). ERα-independent cascade. *Journal of Biological Chemistry*, 290(21), 12827–12839.

Zhou, Y., Zhang, X., Gu, W. G., Yang, L. M., Chen, H., Zheng, C. B., et al. (2014). Preparation of quinoxaline and quinoline diterpenes from *Daphne genkwa* and their cytotoxicity against *H. pylori* 11644. *Cytokine*, 38(1), 2893–2899.