Nanotechnology for human food: Advances and perspective

Ill-Min Chunga, Govindasamy Rajakumara, Thandapani Gomathi, Seung-Kyu Park, Seung-Hyun Kim, and Muthu Thiruvengadam

aDepartment of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, Republic of Korea; bDepartment of Chemistry, D.K.M. College for Women, Vellore, India

ABSTRACT
Nanotechnology is an exciting and rapidly emerging field in agriculture and food science. The usage of nanoscale materials in sensing and detection applications is growing quickly, providing alternative methods to conventional techniques for detecting chemical and biological contaminants in foods, beverages, and other products. Nanotechnology has the potential to innovate the agricultural, feed, and food sectors (further stated as agri/feed/food). Applications that are marketed already feature original product packaging with antimicrobial nanoparticles, and agrochemicals and nutrients that have been nano-encapsulated. Many nano-enabled products are presently under research and development, and may be introduced into the industry in the future. As with any other structured product, for market sanctions, applications need to prove the safe use of such new products without posing unwarranted safety risks to the consumer or the environment. In this review, we summarize the uses of nanotechnology related to food and nutraceuticals, while also identifying the outstanding challenges.

ARTICLE HISTORY
Received 18 December 2016
Accepted 6 August 2017

KEYWORDS
Food packaging; food safety; nanofood; nanotechnology; nanomaterials

Introduction
Nanotechnology remains a remarkable illustration of rising advances in this century (Bachmann et al. 2001). Several financial experts predicted that this technology would turn out to be booming by 2025 (Glenn and Gordon 1997). Numbers from distinctive sources appear to bolster this confidence and may hint towards the imperative of their ideas. Nanotechnology includes the portrayal, manufacture, and control of structures, gadgets, or materials that have at least one measurement, that is, 1–100 nm long. When the molecule size is diminished beneath this range, the material displays physical and compound properties that differ from the properties of macroscale materials made out of the same substance. Research in the nanotechnology field has soared in the most recent decade, and various organizations are currently gaining practical experience in creating new types of nanosized matter, with foreseen applications that incorporate medicinal therapeutics and diagnostics, vitality generation, sub-atomic registering, and supporting materials. The use of nanotechnology to make nanoscale products for research and development is a burgeoning field and the bright future of nanoparticle research is foreseeable today not only because of its potential applications but also because it offers new synthetic pathways (Chung et al. 2017). Nanotechnology can be applied to improve food flavour and texture, to decrease fat content, or to encapsulate nutrients (e.g., vitamins), so as to ensure they do not degrade during a product’s shelf life (Sekhon 2010). Nanotechnology can potentially improve our presently dismal nutrient use efficacy by nanoformulation of fertilizers, breaking yield, and nutritional quality barriers through bionanotechnology, investigation, and control of pests and diseases by considering the mechanism of host–parasite interactions at the molecular scale, and development of next-generation pesticides and safe carriers (Mukhopadhyay 2014).

In 2008, nanotechnology requested over $15 billion in overall innovative work cash (open and private) and utilized more than 400,000 specialists worldwide (Roco 2011; Roco, Harthorn, et al. 2011; Roco, Mirkin, et al. 2011). Various thematic fields for the
Table 1. Nanoresearch thematic areas relevant to agri-food systems.

S.No.	Nanoresearch area
1.	Nanoparticles
2.	Quantum dots
3.	Carbon nanotubes
4.	Dendrimers
5.	Fullerenes
6.	Biosensors
7.	Diagnostic kits
8.	Micro-electromechanical systems (MEMS)
9.	Biochips
10.	Microfluidics and nanofluidics
11.	Smart delivery systems
12.	Nanofiltration
13.	Nanofibres
14.	Nanoscale processes

Nanotechnological applications are shown in Table 1. Nanotechnologies are anticipated to be worth $3 trillion over the worldwide economy by 2020, and nanotechnology commercial enterprises overall may require no less than 6 million labourers to bolster them before the decade is over (Roco, Harthon, et al. 2011). It is difficult to survey the real financial capability of nanotechnology (Malanowski and Zweck 2007; Sozer and Kokini 2009); to date, it has been utilized in different fields, for example, computer gadgets, communication, energy formation, solutions, and food industry (Sozer and Kokini 2009), likely obliging novel administrative techniques (Blind 2008). Financial and social guarantees and chances of nanotechnologies are critical for people, considering the effects they would have on the general population, going as far as the quality of life and creation of wealth. Then again, nanotechnology has natural hazards and risks besides the conceivably enormous advantages that are stated here (Figure 1).

The nanomaterials that are consolidated into buyer items are usually dormant. Succeeding rushes of nanobased items are likely to have far more prominent and more significant societal ramifications, especially since the fields of nanotechnology, biotechnology, and data innovation keep uniting and converging with each other (Michelson and Rejeski 2006). Concerns connected with nanotechnology are communicated with the administration of rising advances (Michelson and Rejeski 2006). The issues, for example, ‘open observation’ and ‘economical administration of nanotechnology’ are critical ideas that must be examined painstakingly (Macoubrie 2004; Lee et al. 2005). It is likely that an open view of nanotechnology will be vital for the acknowledgment of mechanical advances (Lee et al. 2005). There are well-being and ecological concerns regarding future ramifications of nanotechnologies. These concerns may influence the readiness-to-purchase practices of consumers (Lee et al. 2005;...
Siegrist et al. 2007; Sozer and Kokini 2009; Öner et al. 2013).

Food protection

Interest in solid nourishment has expanded considerably over the past years because of the development of the world population and an expanded impression of impoverished ways of life. Universally, by 2050, the number of people aged greater than 65 years is expected to reach around 1.5 billion, which would represent 16% of the world population, while in 1950, this population represented just 5% (Haub 2011). As the population ages, there will likely be an expanding interest for products that have a conceivably constructive outcome on well-being, past the necessary useful nourishment for sustenance. There is currently a wide scope of cholesterol-lowering food accessible in business (for instance, benecol margarine spreads and cream cheese), which included esterized fat and types of phytosterols or stanols (plant concentrates) (Chen et al. 2011). Omega-3 unsaturated fats, which occur naturally in foods such as oily fish and some plant and seed oils, are the most recent substances to be added to food items, including margarine, milk, organic product squeezes, and eggs, to make practical foods for decreasing cardiovascular disease risk (Kaushik et al. 2015). Vitamin D and calcium are added to natural juice products to raise dietary vitamin D levels in an objective population, for example, postmenopausal women who are at risk for osteoporosis (Heaney and Layman 2008; Wong et al. 2007). It is worth noting that this supplementation can cause intestinal symptoms, for example, constipation, gas, and bloating are normal in older individuals and can have a significant effect on their satisfaction (Donini et al. 2009). Expanding dietary fibre consumption alongside the utilization of probiotic or prebiotic supplements or useful nourishments has been proposed to enhance digestive functions and well-being in older individuals (Fuchs et al. 1999; Meyer et al. 2000; Donini et al. 2009). Hence, there are solid reasons to dynamically enhance nourishment items to yield these consumer advantages.

One method that could help address this issue is the advancement in exemplification of supplements that are rich in vitamins and cancer prevention agents. Epitomized supplements can be designed to survive the gastrointestinal framework and release their payload at a specific point, thereby amplifying the beneficial impact. Because of non-strong and semi-strong nourishments, it is likewise crucial to diminish the lattice size to permit their joining without influencing sustenance physical qualities (López-Rubio et al. 2012). More essentially, by diminishing the framework size from the micrometre scale to the nanometre scale, enhanced vehicles with very controllable conveyance rate outputs should be produced (López-Rubio et al. 2012; López-Rubio et al. 2009; Cook et al. 2012). Molecule size straightforwardly influences the conveyance of any bioactive compound to different destinations inside the body. In some cell lines, submicron nanoparticles can be ingested proficiently yet not larger small-scale particles (Champagne and Fustier 2007; de Vos et al. 2010; Ezhilarasi et al. 2013; Celli et al. 2015). Larger particles mostly discharge their exemplified mixes gradually and over longer periods, while decreased molecule size presents a few biocement change variables, including expanded glue power and delayed gastrointestinal travel time, prompting higher bioavailability of the embedded compound (Diarrassouba et al. 2015; Yao et al. 2015).

Food packaging

Nanotechnology, if utilized correctly, may revolutionize the entire agriculture and food industry. Nanotechnology research on food shows a great amount of potential to revamp the entire industry to be more efficient and perform effectively. There are currently some studies in progress about food packaging, including investigations of better plastic-based packaging and the development of packaging that offers excellent preservation and other important characteristics over regular packaging. This new advancement in nanobased packaging may also offer superior freshness sealing, and be able to notify consumers if the packaged food has expired or gone rotten. The packaging may even be able to regenerate from cuts and tears, and also be capable of introducing additional preservatives to prolong the shelf life of the food. Nano-based food packaging will also be able to alter the taste and colouring of its content, identify bacteria that may be inside, and would be more resistant to cuts or tears in comparison to other conventional alternatives. This new field of research not only promises advancements inside the food industry, but can also benefit all the industries that are associated with it. However, due to the early
stage of the research, many organizations are still wary of incorporating nanotechnology in their products.

When a food product is not consumed promptly after production, it must be contained in a package that serves various capacities. Notwithstanding, shielding the product from earth or dust, oxygen, light, pathogenic microorganisms, dampness, and various other dangerous or hurtful substances is necessary. The packaging must additionally be sheltered under its planned states of utilization, latent, easy to deliver, lightweight, simple to discard or reuse, ready to withstand adverse conditions amid preparing or filling, impenetrable to a large group of ecological stockpiling and transport conditions, and impervious to physical misuse. These are difficult requests for any material to fulfil. A basic issue in sustenance bundling is that of movement and penetrability (Lagaron et al. 1997; Mercea 2000; Do and Cy 2004; Yam 2010; Robertson 2012), since no material is totally impermeable to barometrical gasses, water vapour, or common substances contained inside the food being packaged or even the packaging material itself. In a few applications, great obstructions to relocation or gas dispersion are undesirable, for example, in packaging for fresh foods grown from the ground whose time span of usability is reliant on access to a consistent supply of oxygen for supported cell respiration (Robertson 2012). A list of polymers used for packaging food materials employed by the food-processing industries that have been approved by the FDA is shown in Table 2. Plastics used for carbonated refreshment holders must have high oxygen and carbon dioxide boundaries to avert oxidation and decarbonation of the drink (Öner et al. 2013; Robertson 2012). In different items, relocation of carbon dioxide is far less of an issue than relocation of either oxygen or water vapour. Due to these complexities, food items require refined and distinctive packaging capacities, and the requests on the packaging business will only increase as food products are transported over progressively more steps between producers and consumers.

Food safety and nanotechnology

Foodborne sicknesses total $152 billion in well-being-related costs every year in the US, especially for bacterial contaminations brought about by Salmonella, Escherichia coli, Listeria monocytogenes, and Campylobacter spp (Scharff 2010, 2012; Hoffmann et al. 2012; Scallan et al. 2015). Other foodborne pathogens include Campylobacter spp., Clostridium perfringens, Cryptosporidium parvum, Cyclospora cayetanensis, E. coli O157: H7, Shiga toxin-producing E. coli non-O157 (STEC non-O157), and L. monocytogenes. The yearly disease cost of norovirus, nontyphoidal Salmonella enterica, Shigella spp., Toxoplasma gondii, Vibrio vulnificus, V. parahaemolyticus, and other noncholera Vibrio species and Yersinia enterocolitica has been examined in the US (Hoffmann et al. 2012). The freshness of food items is preserved by utilizing packaging that hosts a low-oxygen environment unsuitable for microbial growth; therefore, the packaging utilized is essentially immune from incursion of various gases. Due to their large filler-matrix-friendly surface area, nanocomposites are included in the polymer matrix. Furthermore, a small, anti-gas barrier is formed by the nanoreinforcements, effectively barring gas entry. Both of these are identified as polymer nanocomposites.

A key impediment of modern test conventions is that the example vessel must be opened after the end of the advancement period so that an administrator can conduct the expository test. If a pathogen is present in the initial sample, proliferation can result in a pathogen concentration as high as $10^{8}–10^{9}$ CFU/mL, so that opening the specimen vessel after incubation presents both the client and environment to a danger of pollution. This risk of danger may prevent numerous food product makers from conducting pathogen testing on location. Numerous companies instead send samples to external research facilities for testing, bringing about extra cost and time delay. Any edible material that contains nutrients is considered food. When food is introduced to an organism, the organs begin processing the nutrition and convert it into energy, which is critical to the function of living organisms. In most living organisms, the cells are responsible for energy processing and production. The healthier the food is, the more energy is produced to maintain the metabolism of the body. The basic secret of nanotechnology and the food industry is that human cells and food products constituents, which are of nanoscale and microscale, can easily interact with nanoparticles at the cellular level; therefore, nanotechnology is included in all divisions of the food industry, such as packaging, processing, safety, and security.

Nutritional supplements that utilize nanotechnology deliver drugs efficiently. Additionally, many
Table 2. Some representative synthetic polymer-based nanocomposites and their enhanced material properties, method of processing, and level of incorporation.

Polymer/Monomer	Nanomaterial	Method of processing	Enhanced material properties
Poly(vinyl alcohol) (PVA)	Cellulose nanocrystals (CNC)	Solvent casting	Tensile strength (TS) increased by up to 45%.
Poly(caprolactone) (PCL)	CNC	Film casting	Water vapour permeability (WVP)
Low-density polyethylene/linear low-density polyethylene (LDPE/LLDPE)	Nanoclay	Co-rotating twin screw extruding	Elastic modulus (EM) of LDPE/LLDPE
Polyethylene (PE)	Layered silicate	Micro-extruding	Crystallization temperature increased from 102°C to 111°C.
Polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend	Montmorillonite (MMT)-based organoclay	Melt extrusion	Adding 1.5 vol% organoclay increased both O2 and CO2 barrier properties
Maleated polyethylene	Silicate	Melt extrusion	The stiffness of the film increased with the addition of silicate filler
Ethylene-vinyl alcohol copolymer (EVOH)/(poly(lactic acid) (PLA))	Clay	Melt blending	Barrier to oxygen enhanced with the addition of clay
LDPE/LLDPE	MMT organoclay	Twin extruder	Oxygen permeability (OP) decreased by 50% with the addition of organoclay.
Polyvinyl chloride (PVC)	Organoclay	Melt intercalation	TS increased by adding 3phr nanoclay
PVC/ethylene-vinyl acetate copolymer (EVA)	OMMT	Melt compounding	Impact strength improved
Poly(ethylene-co-vinyl acetate) (EVA)	Nanosilica	Two-roll mixing	TS, hardness, and abrasion resistance increased by adding nanosilica
Unsaturated polyester (UP) and vinyl ester oligomer (VEO)	Organophilic MMT clay	Casting	TS of 10% VEO-toughened UP resin increased. Flexural strength increased by 19% and 41%, respectively, with the addition of the same amounts of organoclay
Poly(methyl methacrylate) (PMMA)	Layered silicate	Injection moulding	Tensile modulus increased by 35% compared to neat PMMA.
PP	Clay	Twin screw extruder	Oxygen transmission rate (OTR) reduced by 21.4% with 4% nanoclay.
Polymide (PI)	Clay	Casting	Water vapour transmission rate (WVTR) decreased by 28.1% with 2% nanoclay.
PI	Clay (Na ion-exchanged clays Nap-saponite (SPT), Nap-mica (Mica), and Nap-MMT)	Casting	A 3 wt% clay reduced gas permeability and oxygen permeability to less than half compared with neat PI.
Polystyrene (PS)	Organo-montmorillonite Cloisite 20A (C20A)	Melt processing with twin screw extruding	Tensile, flexural, and impact strengths increased by 83%, 55%, and 74%, respectively by adding 5% clay
PP	Corn zein	Solution intercalation method	OP reduced by four times with nanocoating of PP films. WVP reduced by 30% by adding 5 wt. % OMMT
PI	Clay (Cloisite 30B)	Casting	OP of the film with 10 wt. % clay decreased by 95% (42 cc/m²/day) compared with neat PI film (768 cc/m²/day)
High-density polyethylene	Clay (MMT)	Melt mixing	OP decreased by 30% when 15 wt% of clay was added
EVOH	Organically modified MMT	Casting	Oxygen and water vapour barrier properties increased by 59% and 90%, respectively with the addition of 3 wt% clay

Commercial nutraceuticals are available. These supplements interact most powerfully with cells and are easily acceptable. Even though nanotechnology has been introduced in foods by producers, it is yet to be recognized by the consumers, due to the ethical issues and unawareness. The possible usage of nanotechnology and its benefits in industry and customer health has to be spread. Future nanotechnology research in the food industry and its incorporation has the capability to reinvent the food world.
Nanotechnology and food pathogen detection

The most normally utilized quick techniques for routine pathogen testing are catalyst-connected enzyme-linked immunosorbent assays (ELISAs) in a 96-well-plate design. Despite the fact that some computerization has been accomplished recently, ELISAs remain present, drawn out, and extravagant, especially when many objectives must be screened. Biosensors are a potential distinct option for ELISAs, and give likely a standout amongst the most promising approaches to take care of a few issues concerning straightforward, quick, reproducible, and modest multianalyte determination.

A biosensor is an incorporated receptor-transducer instrument that changes upon recognition of an organic compound into a quantifiable physical sign, which is externally visible. The receptor can be a counteracting agent raised against an antigen, a single-stranded DNA atom equipped for hybridizing with an antigen-particular DNA section, or an aptamer chosen to perceive the objective antigen directly. Due to their rapid execution, usability, and high level of robotization, biosensors have the potential for immediate, continuous, on-line, monitoring of antigens along the creation chain. However, imperative difficulties remain (i.e. the reliance of the productivity of allergen recognition on networks and preparing), both from identifying a particular target and fundamentally influencing any biosensor execution. Joining the selectivity of science with the handling force of present-day microelectronics and optoelectronics, biosensors offer excellent expository potential with real applications in food security, on account of focal points of recognizing analytes in complex lattices with minimal sample treatment.

Surface plasmon resonance-based detection

With high surface affectability, and constant and mark-free reaction, surface plasmon resonance (SPR) has been broadly utilized in several transduction designs to portray biomolecular associations. SPR permits us to screen using different procedures, that is, DNA hybridization, antibody–antigen typing, and DNA–protein communications (Homola 2008). Recently, nanomaterials were actualized in the natural acknowledgment component to enhance the SPR-sign change. Attractive nanoparticles, especially, have been used to improve discovery affectability in sandwich tests by expanding the mass change upon particular tying at the adjacent surface examined area. On the other hand, gold nanomaterials, notwithstanding the mass-change improvement, give an electronic coupling communication between characteristically restricted SPR and the thin film surface plasmon, consequently further enhancing the general affectability of the test (Kwon et al. 2012).

A few further examinations, particularly for antigen discovery, should be specified. Without a doubt, conceived as an atomic communication checking system, SPR innovation was effectively used for basic portrayal, yielding valuable data crucial to allergen-hazard administration. Concurrent quantitative determination of five whey proteins in six specimens was performed by Billakanti et al. (2010) for different whey and milk sources (Rouge et al. 2010) utilizing i-SPR innovation for the quick, quantitative location of various food allergens. This method allowed for an active connection between satisfaction with life and satisfaction with food-related life. Satisfaction with life and food-related life are connected with the inclination for specific food products (Morales et al. 2011; Schnettler, Miranda, et al. 2011; Schnettler, Reyes, et al. 2011; Schnettler et al. 2012). Individuals with a positive subjective prosperity in general and in the area of sustenance have different dietary patterns than the individuals who are unsatisfied with their life and their food-related life. The previous, by and large, is described as making the most of their sustenance. One specific route in which nourishment can be relied upon to add to general prosperity is by sustenance-prompted enthusiastic reactions, specifically negative feelings such as neophobia and nausea (Raudenbush and Frank 1999; Siegrist et al. 2013; Olabi et al. 2015).

Generally, people are neophobic when they are young and become more neophobic as they age. In any case, Pliner and Salvy (2006) and Paupério et al. (2014) presented nourishment neophobia as an identity quality, a persisting piece of identity, something that is not anticipated to change after some time. This theory must be managed in new examinations of this issue with a longitudinal study format. The standards for food naming would need to consider data regarding the type of generation, plainly showing whether the food was delivered with nanotechnology. In the meantime, the strong powers of the South Korean government (Ministry of Health, Service of
Agriculture) would need to give buyers accurate and robust data in regard to the dangers and events connected with nanotechnologically created foods to make the sale of these items straightforward.

Evaluating rising advancements like nanotechnology is difficult because authentic information is not accessible for effect appraisal, and a significant part of the work is at a crucial examination stage with a future guarantee of a scope of utilization. In such circumstances, bibliometrics and patent investigation can be utilized to both survey status and patterns in innovation advancement, and order and guide them to relevant application zones for vital arranging.

The structure and databases were used to gauge the current state of nanotechnology in advancement and to evaluate these advancements regarding food security. More than 60% of results from both the databases were on R&D endeavours to improve plant/creature profitability, followed by exploration in food handling and packaging, which addresses the other two parts of food security frameworks, specifically food accessibility and use.

Nanotechnology in agri-food production

Nanotechnology is one of the most significant tools in modern agriculture, and agri-food nanotechnology is expected to soon become a driving economic strength. Agri-food themes emphasize sustainability and protection of agriculturally produced foods, excluding crops for human consumption and animal feeding. Nanotechnology offers new agrochemical agents and new delivery mechanisms to improve crop productivity, and it promises to reduce pesticide use (Sekhon 2014). Nanotechnology can enhance agricultural production, and its uses include nanof ormulations of agrochemicals for applying pesticides and fertilizers for crop improvement. The use of nanosensors/nanobiosensors in crop protection for the identification of diseases and agrochemical residues, nanodevices for the genetic manipulation of plants, plant disease diagnostics, animal health, animal breeding, poultry production, and postharvest management (Sekhon 2014). Nanotechnology usages involve nanoparticle-mediated gene or DNA transfer in plants for the development of insect-resistant plants, nanofeed additives, food processing and storage, and increased product shelf life. Nanotechnology promises to accelerate the development of biomass-to-fuel production technologies (Table 3).

Nanotechnology and food security

The kind of drivers of the mechanical changes in different subfields of nanoresearch (like nanodevices or nanobiotechnology), which may form a base for innovative directions that can improve food security, was likewise researched. It was found that nanoparticles is

| Table 3. Comparisons between green revolution technologies and nanotechnology on their impacts and implications for food systems. |
|---------------------------------|---------------------------------|---------------------------------|
| Features | Green revolution technologies | Nanotechnologies |
| Primary area of focus | Productivity of mainly cereal crops like wheat, rice, and maize | Productivity and management of crops and livestock by crop and livestock improvement, pest diagnosis and surveillance, food processing, safety, and packaging |
| Secondary area of focus | Nil | Vaccines, pesticides, fertilizers, water, gene, drug, remediation for natural resources, and other input delivery formulation in plants and animals, nanoarray-based gene expression in plants and animals under stress conditions |
| Applications | Crop input packages; improvement of plant architecture; genetic enhancement through conservative breeding | Areas of gene/DNA delivery, expressions sequencing, therapy, regulation: DNA targeting, extraction, hybridization, fingerprints for DNA; RNA detection, cell probes, cell sorting, and bioimaging |
| Regulatory system | Not warranted | Developing but still not in practice in many places |
| Parties in technology development and dissemination | Public sector | Large- and small-scale industry, venture, capital funds |
| Research skills required | Plant breeding and other agricultural sciences | New knowledge and skill set in addition to conventional; new workforce to be created |
| Environment risks | Evidence for several negative effects on natural resources | Data still not available |
| Public acceptance | Whole world has accepted | Preliminary protests by civil societies |
the most broadly searched term, followed by nanofiltration routines/gadgets and nanocapsules. Definitions such as cases and particles are known to not target conveyance, offer better control, and build general useful proficiency particularly for inputs such as composts, pesticides (including biopesticides), and enhancing the administration modes for improved efficiency.

Nanotechnology and art have inspired each other. In this context, public perceptions of nanotechnology have emerged, evolved, and been studied by social scientists. This discussion overviews the intertwining of nanotechnology and culture, and of some of the public perceptions that may have been shaped by this process. Nourishment/food security is an essential topic in India and has drawn prompt consideration by the national organizers. Rural efficiency, soil health, water assets, and nourishment bundling and stockpiling are four key determinants of future food security. Rising innovations such as nanotechnology can be targeted to these four essential determinants to catalyse an examination and build a flexible food security framework. The present patterns in nanotechnology were evaluated for their capability to improve food security, utilizing R&D markers like writing and licenses mapped in an exceptionally planned structure. The survey demonstrates that nanotechnology has a bigger canvas and more unique potential to address food security when contrasted with green transformation advancements and biotechnologies.

Conclusion

Nanotechnology can enhance food products, making them more delicious, healthier, and more nutritious, and can create new food items, new food packaging, and storage methods. Then again, many of these applications are currently at an initial stage, and most are targeted towards high-value items, at least in the short-term. Fruitful utilizations of nanotechnology to food products are restricted. Nanotechnology can be utilized to upgrade food flavour and surfaces, to standardize supplements such as vitamins to guarantee that they do not degrade within an item’s time span of usability.

Notwithstanding this, nanomaterials can be utilized to make packaging that keeps the items inside fresher for longer. Insightful food packaging utilizing nanosensors could even furnish consumers with data on the condition of the food inside. Food packaging materials can be produced with nanoparticles that alert buyers when an item is no longer safe to eat. Sensors can caution before the food product spoils or can tell us the precise nutritional status contained in the substance. Nanotechnology is going to change the whole packaging industry. Food nanotechnology advances present vital difficulties for both government and industry. The food-preparing industry must guarantee consumer certainty and acknowledgment of nanofoods. Administrative bodies, for example, the FDA, ought to create criteria to be followed when assessing food security, food packaging, and supplementation of nanomaterials with novel properties.

Embedding bioactive mixes and probiotic microscopic organisms inside prebiotic substances to ensure, or even increase, their survival while passing the upper gastrointestinal tract is a field of extraordinary enthusiasm for both the scholarly world and food businesses. An example of this innovation involves packaging bioactive mixes in micro- or nano-scaled particles that disconnect them and control their discharge until particular conditions arise. Electrospun nanofibres can likewise be utilized as the conveyance framework in food supplements to secure them amid handling and storage, or in conveyance frameworks for exchanging the segments to a distant site in the body. The impact of this charge on the grip to the fibre of food components, for example, proteins, has not been broadly researched, but rather, is liable to be of critical utilization in developing products such as nutraceuticals conveyance frameworks.

Finally, many sustenance-grade polymer frameworks (e.g. natural sustenance hydrocolloids) are difficult to create with electrospinning because of their poor viscoelastic conduct, absence of adequate atomic ensnarement, and constrained dissolvability. Generally, because just several handling parameters can be controlled straightforwardly as a portion of the included parameters are either exceptionally associated or obtained from the properties of the utilized polymer arrangement. Modern created electrospun nanofibres achieve a dimensional spread of the request of 10 rate focuses or worse among ostensibly identical specimens. Along these lines, a principle test related with the large-scale manufacturing of nanofibre fabrics is the execution of systems permitting improvements
in the procedure and item reproducibility and to develop classes of utilisable materials.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by KU-Research Professor Program of Konkuk University. This work was supported by a grant from the Next-Generation BioGreen21 Program (Center for Nutraceutical & Pharmaceutical Materials no. PJ01180902), Rural Development Administration, Republic of Korea.

References

Bachmann G, Holtmannspötter D, Korte S, Zweck A. 2001. Angels on a pinhead: new research networks for nanotechnology. Foresight 3(4):331–339.

Billakanti JM, Fee CJ, Lane FR, Kash AS, Fredericks R. 2010. Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. Int Dairy J. 20:96–105.

Blind K. 2008. Regulatory foresight: methodologies and selected applications. Technol Forecast Soc Change. 75(4):496–516.

Celli GB, Ghanem A, Brooks MSL. 2015. Bioactive encapsulated powders for functional foods-a review of methods and current limitations. Food Bioproc Tech. 8:1825–1837.

Champagne CP, Fustier P. 2007. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 18:184–190.

Chen ZY, Ma K, Liang Y, Peng C, Zuo Y. 2011. Role and classification of cholesterol-lowering functional foods. J Funct Foods. 3:61–69.

Chung IM, Rajakumar G, Lee JH, Kim SH, Thiruvengadam M. 2017. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata. Appl Microbiol Biotechnol. 101(13):5247–5257. doi:10.1007/s00253-017-8363-9.

Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskii VV. 2012. Microencapsulation of probiotics for gastrointestinal delivery. J Control Release. 162:56–67.

de Vos P, Faas MM, Spasojevic M, Sikkema J. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J. 20:292–302.

Diarrassouba F, Garrait G, Remondetto G, lvarez P, Beyssac E, Subirade M. 2015. Food protein-based microspheres for increased uptake of vitamin D3. Food Chem. 173:1066–1072.

Do K, Cy L. 2004. Comprehensive study on vitamin C equivalent antioxidant capacity of various polyphenols in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr. 44:253–273.

Donini L, Savina C, Cannella C. 2009. Nutrition in the elderly: role of fiber. Arch Gerontol Geriatr. 49:61–69.

Ezhilarasi P, Karthik P, Chhanwal N, Anandharamakrishnan C. 2013. Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc Tech. 6:628–647.

Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Stampfer MJ, Rosner B, Speizer FE, Willett WC. 1999. Dietary fiber and the risk of colorectal cancer and adenoma in women. N Engl J Med. 340:169–176.

Glenn JC, Gordon TJ. 1997. The millennium project: 1997 state of the future – implications for actions today. Technol Forecast Soc Change. 56(3):203–296.

Haub C. 2011. World population aging: clocks illustrate growth in population under age 5 and over age 65. Population Ref Bureau. 18:2013.

Heaney RP, Layman DK. 2008. Amount and type of protein influences bone health. Am J Clin Nutr. 87:1567S–1570S.

Hoffmann S, Batz MB, Morris JG Jr. 2012. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Protection. 75:1292–1302.

Homola J. 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 108:462–493.

Kaushik P, Dowling K, Barrow CJ, Adhikari B. 2015. Microencapsulation of omega-3 fatty acids: a review of microencapsulation and characterization methods. J Funct Foods. 19:868–881.

Kwon MJ, Lee J, Wark AW, Lee HJ. 2012. Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes. Anal Chem. 84:1702–1707.

Lagarom JM, Ocio MJ, Lopez-Rubio AR. 1997. The Wiley encyclopedia of packaging technology. New York: John Wiley & Sons. Vol. 41; p. 381.

Lee CJ, Scheufele DA, Lewenstein BV. 2005. Public attitudes toward emerging technologies examining the interactive effects of cognitions and effect on public attitudes toward nanotechnology. Sci Comm. 272:240–267.

López-Rubio A, Sanchez E, Sanz Y, Lagaron JM. 2009. Encapsulation of living bifidobacteria in ultrathin PVOH electrospin fibers. Biomacromol. 10:2823–2829.

López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM. 2012. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll. 28:159–167.

Macoubrie J. 2004. Public perceptions about nanotechnology: risks, benefits and trust. J Nanopart Res. 6(4):395–405.

Malanowski N, Zweck A. 2007. Bridging the gap between foresight and market research: integrating methods to assess the economic potential of nanotechnology. Technol Forecast Soc Change. 74(9):1805–1822.

Merces PA. 2000. Models for diffusion in polymers. Plastic Packaging Materials for Food — Barrier Function, Mass Transport. In: Piringer O-G, Baner AL, editors. Quality assurance and legislation. Weinheim: Wiley-VCH; p. 125–157.

Meyer KA, Kushi LH, Jacobs DR, Lavin J, Sellers TA, Folsom AR. 2000. Carbohydrates, dietary fiber, and incident
type 2 diabetes in older women. Am J Clin Nutr. 71:921–930.

Michelson ES, Rejeski D. 2006. Falling through the cracks? Public perception, risk, and the oversight of emerging nanotechnologies. ISTAS 2006. IEEE International Symposium in 2006; New York; p. 1–17.

Morales BS, Vargas HM, Maldonado JS, Coria MD. 2011. Satisfaction with food and life, an exploratory study among students in la frontera university, Temuco-Chile. Psicologia Sociedade. 23:426–435.

Mukhopadhyay SS. 2014. Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl. 7:63–71.

Olabi A, Neuhaus T, Bustos R, Cook-Camacho M, Corvi T, Abdouni L. 2015. An investigation of flavor complexity and food neophobia. Food Qual Prefer. 42:123–129.

Öner MA, Karaca F, Beşer SG, Yildirimaz H. 2013. Comparison of nanotechnology acceptance in Turkey and Switzerland. Int J Innovation Tech Manag. 10:1340007.

Paupério A, Severo M, Lopes C, Moreira P, Cooke L, Oliveira A. 2014. Could the food neophobia scale be adapted to pregnant women? A confirmatory factor analysis in a Portuguese sample. Appetite. 75:110–116.

Pliner P, Salvy S. 2006. Food neophobia in humans. Front Nut Sci. 3:75.

Raudenbush B, Frank RA. 1999. Assessing food neophobia: The role of stimulus familiarity. Appetite. 32:261–271.

Robertson GL. 2012. Food packaging: principles and practice. Boca Raton, FL: CRC Press.

Roco MC. 2011. The long view of nanotechnology development: the national nanotechnology initiative at 10 years. J Nanopart Res. 13:427–445.

Roco MC, Harthorn B, Guston D, Shapira P. 2011. Innovative and responsible governance of nanotechnology for societal development. In: Roco MC, Mirkin CA, Hersam MC, editors. Nanotechnology research directions for societal needs in 2020. Dordrecht: Springer; p. 561–617.

Roco MC, Mirkin CA, Hersam MC. 2011. Nanotechnology research directions for societal needs. J Nanopart Res. 13(3):897–919.

Rouge P, Culerrier R, Granier C, Rance F, Barre A. 2010. Characterization of IgE-binding epitopes of peanut (Arachis hypogaea) PNA lectin allergen cross-reacting with other structurally related legume lectins. Mol Immunol. 47: 2359–2366.

Scallan E, Hoekstra R, Mahon B, Jones T, Griffin P. 2015. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol Infect. 143:2795–2804.

Scharf RL. 2010. Health-related costs from foodborne illness in the United States. Produce Safety Project, Georgetown University, Washington, DC.

Scharf RL. 2012. Economic burden from health losses due to foodborne illness in the United States. J Food Pro. 75:123–131.

Schnettler B, Miranda H, Lobos G, Sepulveda J, Denegri M. 2011. A study of the relationship between degree of ethnocentrism and typologies of food purchase in supermarkets in central-southern Chile. Appetite. 56:704–712.

Schnettler B, Miranda H, Sepulveda J, Denegri M. 2012. Consumer preferences of genetically modified foods of vegetal and animal origin in Chile. Food Sci & Tech (Campinas). 32:15–25.

Schnettler B, Reyes P, Henriquez J, Ruff P, Sepulveda J, Dene gri M, Miranda H, Sepúlveda N, Lobos G. 2011. Preferences for lamb’s meat in supermarkets in Temuco, La Araucania Region, Chile. Revista Científica. 21:388–395.

Sekhon BS. 2010. Food nanotechnology – an overview. Nanotechnol Sci Appl. 3:1–15.

Sekhon BS. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl. 7:31–53.

Siegrist M, Cousin ME, Kastenholz H, Wiek A. 2007. Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. Appetite 49:459–466.

Siegrist M, Hartmann C, Keller C. 2013. Antecedents of food neophobia and its association with eating behavior and food choices. Food Qual Prefer. 30:293–298.

Sozer N, Kokini JL. 2009. Nanotechnology and its applications in the food sector. Trends Biotechnol. 27(2): 82–89.

Wong P, Christie J, Wark J. 2007. The effects of smoking on bone health. Clinical Sci. 113:233–241.

Yam KL. 2010. The Wiley encyclopedia of packaging technology. New York: John Wiley & Sons.

Yao M, McClements DJ, Xiao H. 2015. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr Opin Food Sci. 2:14–19.