Gateway-stable Election Protocol for Heterogeneous Wireless Sensor Network

F. Jibreel¹, M. I. Daabo² and K. A. Gbolagade³

¹Department of Computer Science, Tamale Technical University, Tamale, Ghana.
²Department of Computer Science, University for Development Studies, Navrongo, Ghana.
³Department of Computer Science, Kwara State University, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author FJ designed the study, developed the model, wrote the protocol, simulate the protocol and wrote the first draft of the manuscript. Authors MID and KAG managed the analyses of the study. Author KAG managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2020/v5i130127

Received 10 December 2019
Accepted 18 February 2020
Published 28 February 2020

ABSTRACT

An in-depth study of Stable Election Protocol (SEP) revealed that, distance was not considered in selecting the cluster heads in the network. This allows a distant node that is selected as the head to dissipate huge energy in transmitting data to the Base station (BS). It was further observed that, whenever the Base station is relocated outside the field, the energy consumption of the network is high and hence shortening the lifetime of the network. In this paper, a Gateway-SEP protocol is proposed. The G-SEP modified the election probability of electing cluster heads by considering the distance, average distance and residual energy of the advanced nodes. The scheme also introduced a gateway node at the centre of the network and then installed the BS outside the field. Simulation results using MatLab R2017a showed that, the G-SEP performs better than Zonal-Stable Election protocol (ZSEP) in terms of coverage, stability period, throughput and network lifetime.

*Corresponding author: E-mail: jibreel.fuseini@gmail.com;
1. INTRODUCTION

Modifications in routing algorithms have paved way for more efficient routing protocols to be proposed in a newly discovered field called Wireless Sensor Network (WSN). The WSN seeks to reduce the burden and suffering among people by providing reliable monitoring services to mankind. These sensor nodes can be deployed in any physical environment where human monitoring can be very dangerous. However, the nodes in these networks face some challenges such as energy, storage capacity and processing ability. Therefore an efficient use of these limited resources always enhance the lifetime of the network [1]. There are several ways by which information from the nodes can be sent to another node or Base Station (BS) within the network [2].

Firstly, the nodes can disseminate the information directly to the BS. This method of sending information is called direct transmission. The disadvantage of this method is that, the distant nodes spend a lot of energy to get their information to the BS. Secondly, through the relay nodes. The challenge with this mode of communication is that the nodes which are closer to the BS tend to suffer because of communication overheads. Finally, through the clustering technique where the nodes can be grouped into clusters. Each cluster will be managed and coordinated by an elected head called the cluster head. The head receives the measured data from the non-cluster heads, aggregates it and then forwards it to the BS. This third method proved to be better than all the other methods in terms of energy utilization [3]. Therefore, for larger area coverage, the clustered communication combined with multi-hop communication is usually adopted to reduce energy depletion [4]. In literature, several routing protocols have been proposed with the Base station placed at the centre of the fields. Faisal et al. [5] explained Zonal-Stable Election Protocol (ZSEP) for Wireless Sensor Networks which is a modified form of Stable Election Protocol (SEP). ZSEP put the network into three zones: Zone 0, Head Zone 1, and Head Zone 2. The nodes with lesser energy are deployed in Zone 0 near the Base Station. These nodes adopt single-hop communication method while the advanced nodes closer to the boundaries relay their data through cluster heads (CHs). The results showed that ZSEP performs better than SEP in prolonging the lifetime of the network. Another version of SEP has been described by [6]. M-SEP (Modified Stable Election Protocol) elects cluster heads in two, three and up to ninth level hierarchical wireless sensor networks. The protocol improved SEP schemes significantly in terms of network lifetime, energy consumption and data transmission to BS. However, failed to consider distance in selecting the heads.

The author in [7] presented an improved version of SEP protocol. The protocol, I-SEP (Improved Stable Election Protocol), has two main features: reactive routing and also uses three levels of heterogeneity. In order to reduce the energy depletion due to data transmission, the scheme introduced a specific threshold. The data communication begins when this threshold is reached. The outcome of the simulation revealed that the ISEP prolongs the stability period and network lifetime compared to the SEP, LEACH (Low Energy Adaptive Clustering Hierarchy) and ZSEP. Divya et al. [8] explained a modified form of SEP for heterogeneous wireless sensor networks. EE-SEP (Energy Efficient Stable Election Protocol) introduced a new threshold value which tends to decrease the number of cluster heads during its operation. As the number of CHs are reduced, there is a corresponding increase in the number of alive nodes. The existence of more alive nodes in the network increases the stability period and network lifetime. Simulation results show that EE-SEP algorithm performs better compared to SEP.

Elbhiri et al. [9] suggested an energy efficient algorithm for heterogeneous networks which is based on DEEC protocol. The protocol, DDEEC, has been able to provide a solution to the major problem identified in DEEC’s scheme where the advanced nodes are penalized. However, the algorithm failed to take into account the distance between the Base station and each node in electing the cluster heads. Thus, this research work seeks to enhance this particular protocol. Another version of DEEC, EDEEC, has been explained by Saini et al. [10] for heterogeneous networks. The scheme considered three levels of nodes based on their residual energy. The nodes with highest residual energy are supernodes, with the medium energy, advanced nodes and with the lowest energy, normal nodes. The outcome of the experiment showed that the scheme has been able to prolong the lifetime of the network compared to DEEC protocol.

Keywords: Distance; energy consumption; gateway; G-SEP network lifetime.
Authors in [11] further described an enhanced version of DEEC protocol, TDEEC algorithm. The protocol adopted three types of nodes which are differed according to their residual energy and made slight changes to the probability function. The experimental results showed that the scheme has enhanced the lifetime of the network significantly. Jibreel [12] proposed an improved form of DDEEC for heterogeneous wireless sensor network. iDDEEC modified the average probability of advanced nodes whose residual energy is not up to the threshold value \(T_{\text{thr}}\). The scheme introduced two factors on which the average probability of the advanced nodes now depend. These factors are the average distance of the nodes from the Base station and the residual energy of the nodes. A simulation was performed using MatLab 2017a and results showed that iDDEEC performed better than the DDEEC in terms of throughputs, residual energy and network lifetime. An improved version of E-DEEC has been proposed by the author in [13]. iE-DEEC modified the election probability of the protocol by taking into account the distance of supernodes and the average distance of all the nodes to the Base station (BS) in selecting the cluster heads (CHs). The scheme also introduced different amplification energy levels to minimize the energy consumption during the communications between the CHs and BS and also within inter and intra clusters. MatLab 2017a was used for simulation to evaluate the effectiveness of the scheme. The simulation results showed that the proposed protocol performed better than E-DEEC in terms of throughputs, residual energy and network lifetime.

Kaur and Kaur [14] explained Enhanced M-Gear Protocol for Lifetime Enhancement in Wireless Clustering System. In this scheme, the number of gateway nodes was increased so that the load can be distributed equally among them. The network was divided into a number of sections and each section has its gateway node. The nodes of that region will transmit their data to their gateway node which will then send to the BS. It also introduced gateway to gateway communication to reduce energy consumption. The results of simulation showed that it outperforms MGEAR in terms of throughput, energy consumption and network lifetime. However, having several gateways will lead to an increase in the cost of the network.

The author in [15] proposed an improved version of M-Gear Protocol for homogeneous wireless sensor network. The protocol modified the threshold for choosing cluster heads by taking into account the distance between the nodes and the gateway as well as their residual energy. The scheme also introduced hard and soft thresholds to reduce unnecessary transmission of data to the Base station. The simulation results showed that the scheme performed better than M-Gear in terms of stability period, throughput, residual energy and network lifetime.

From the literature review, each of the routing protocols placed the Base station at the centre of the network. So when it comes to applications such as wild life monitoring where we need the Base station to be far away from the deployment area, then these protocols cannot be applied. This is the challenge this study seeks to address. The remainder of this research is organized as follows: Section 2, explained the methodology used, simulation results and analysis are discussed in Section 3 and the conclusion is then drawn in Section 4.

2. MATERIALS AND METHODS

In this section, both the existing and the proposed protocols are explained.

2.1 The Existing SEP Protocol

The SEP (Stable election protocol) is a heterogeneous routing protocol that has enhanced the performance of popular homogeneous LEACH protocol [16]. The protocol is made up of two types of nodes: the normal nodes (nodes with the lowest energy) and the advanced nodes (nodes with the highest energy) with the BS at the centre of the network. The selection of the cluster head in this scheme is based on the energy remaining of the nodes and this gives the advanced nodes a better chance of being selected as cluster heads in the network. The election probability of nodes becoming cluster heads in normal nodes is given by Equation (1) and that of the advanced nodes is given by Equation (2).

If we choose \(p_{\text{norm}}\) and \(p_{\text{adv}}\) for probabilities of becoming normal and advanced nodes respectively then we have:

\[
p_{\text{norm}} = \left(\frac{p_{\text{opt}}}{1 + a} \right)
\]

\[
p_{\text{adv}} = \left(\frac{p_{\text{opt}}(1 + a)}{1 + a} \right)
\]
Where m_α is the percentage of sensor nodes equipped with α times more energy resources than the normal sensor nodes in the network and P_{opt} is the probability by which each node can become a cluster head. Their respective thresholds, $T(n_{nm_\alpha})$, and $T(n_{adv})$ are given in Equations (3) and (4)

$$T(n_{nm_\alpha}) = \begin{cases} \frac{P_{nm}}{1-P_{nm}(r \mod \frac{1}{P_{nm}})} & \text{if } n_{nm_\alpha} \in G \\ 0, & \text{otherwise} \end{cases} \tag{3}$$

where G is the set of normal nodes that have not become cluster head in the past $\frac{1}{P_{nm}}$ rounds of epoch.

$$T(n_{adv}) = \begin{cases} \frac{P_{adv}}{1-P_{adv}(r \mod \frac{1}{P_{adv}})} & \text{if } n_{adv} \in G' \\ 0, & \text{otherwise} \end{cases} \tag{4}$$

where G' is the set of advanced nodes that have not become cluster head in the past $\frac{1}{P_{adv}}$ round of epoch.

Therefore, the normal sensor nodes capture data and transmit it to the cluster heads which will then forward it to the BS. The sensor nodes such as TelosB, MicaZ, Mica2 etc which are used by some of the routing protocols, have short transmission ranges [17]. Therefore, placing the BS at the centre of the deployment field will surely reduce energy consumption during communication. This, however, limits the application of SEP in areas where the BS must be located far from the sensing fields.

2.2 Proposed Protocol

In this section, the proposed scheme, G-SEP (Gateway Stable Election Protocol) which operates similarly to the SEP [16] is explained. The proposed protocol modified the election probability of advanced nodes by introducing a ratio of distance to the average distance of the advanced nodes from the BS. The modification allows the advanced nodes with higher residual energy at the same time closer to the BS to have a better chance of becoming the cluster head. This will reduce the energy depletion of the head since energy will not be wasted as a result of the distance between the head and the BS. Furthermore, in order to relocate the BS away from the centre, a new node called gateway node has been introduced at the centre of the sensing field to cover the gap between the cluster heads (CHs) and the BS. This node is rechargeable and has energy better than the advanced and normal nodes. So, the cluster heads receive the measured quantity from the normal nodes and then transmit it to the gateway node. The gateway node then aggregates the data and then finally sends the report to the BS. So the new protocol adopts a multi-hop communication approach to get data to the BS. The model is shown in Fig. 1.

The election probability of the advanced nodes to become cluster heads is given by Equation (5)

$$P_{adv} = \left(\frac{P_{opt}(1+n)}{1+nm_\alpha}\right) \frac{E_0}{E_0} \frac{D_i}{AVD} \tag{5}$$

Where, E_i is the residual energy of the node, E_0 the initial energy of the node, D_i the distance of each advanced nodes and AVD, the average distance of the advanced nodes to the BS. Each non-cluster head dissipated energy in transmitting k bits data to CH and is given by Equation (6)

$$E_{non-CHg} = E_{TX}(k, d_{to\ CH}) \tag{6}$$

Where E_{TX}, is the energy consumed by the nodes in transmitting data and $d_{to\ CH}$ is the distance from the normal nodes to the CH.

The total energy dissipated by each cluster head is given by Equation (7)

$$E_{CHg} = \left(\frac{n}{c} - kE_{elect}\right) + E_{TX}(k, d_{to\ GW}) \tag{7}$$

where $d_{to\ GW}$ is the distance from the CH to the gateway node.

The energy dissipated by the gateway node in transmitting aggregated k bits of data to the BS is given by Equation (8)

$$E_{GWN} = kE_{elect}\left(\frac{n}{c}\right) + k\left(\frac{n}{c}\right)E_{DA} + E_{TX}(k, d_{to\ BS}) \tag{8}$$

where $d_{to\ BS}$ is the distance from the gateway node to the BS.

The energy dissipated in a cluster per round is given by Equation (9)

$$E_{cluster} \approx \left(\frac{n}{c} - 1\right)E_{non-CHg} + E_{CHg} \tag{9}$$

The total energy consumed by the network is given by Equations (10) and (11).
3. RESULTS AND DISCUSSION

In this section, ZSEP scheme and proposed routing protocol, G-SEP are simulated in the MatLab 2017a environment. This is to evaluate the performance of the routing protocols when the BS is placed far from the sensing field. For simulation, a network consisting of 100 nodes randomly deployed in a field of dimension 100m x 100m and a BS located at (50m, 300m) away from the field. There are 20% advanced nodes that are equipped with more energy than the normal nodes (m = 0.2 and a = 1). All nodes are stationary after deployment. Table 1 defines the simulation parameters used in this research work.

Network performance parameters taken for analyses were as follows:

i. Network Lifetime
ii. Stability Period
iii. Packets to BS
iv. Residual energy

Fig. 2 shows the number of alive nodes per round during the simulation process for both ZSEP and G-SEP routing protocols. It can be seen from the graph that the lifetime of the network has been prolonged significantly in G-SEP compared to SEP. The nodes in ZSEP stay alive for a short period, less than 100 rounds and died out but continued to be alive up to 3500 rounds in G-SEP before vanishing. This indicates that nodes stay alive for a longer time in G-SEP and therefore, have a better lifetime than ZSEP routing scheme. This outcome is a result of the multi-hop communication approach implemented in the new protocol. The gateway receives the captured data from the cluster heads, and relay the final information to the BS. This conserved energy in the network and hence more alive nodes.

Fig. 3. displays the number of dead nodes per round for the G-SEP protocol and the existing scheme. It was again noticed from the graph that, the amount of death nodes in G-SEP is really very small compared to that of ZSEP as seen in Fig. 3. Just at 100 rounds, all the nodes in ZSEP had disappeared compared with G-SEP, where all the nodes were dead at 3500 rounds. For the stability of the network, the proposed scheme has proven to be far better than the existing algorithm. The first node in the ZSEP died less than 50 rounds and that of the new scheme, at 1100 rounds. This indicates that the proposed scheme has efficiently cut-rate the number of dead nodes resulting in a better network lifetime and stability period as we have observed.
Table 1. Simulation parameters

S/N	Parameter	Values
1	$E_{e_{\text{lect}}}$	50nJ/bit
2	$E_{f_{i}}$	10pJ/bit/m2
3	E_{mp}	0.0013pJ/bit/m2
4	E_0	0.5J
5	Message size, k	4000
6	n	100
7	p_{opt}	0.1
	E_{DA}	5nJ/bit/message

Fig. 2. Number of the alive nodes per round

Fig. 3. Number of the dead nodes per round

Fig. 4. also shows the quantity of data relayed to the BS per round in both G-SEP and the ZSEP protocols. It was noticed that the amount of data conveyed to the BS by ZSEP algorithm increases from 0 to approximately 2250 at the 200 rounds. Thus forwarding a small amount of data to the BS. In the new algorithm, a huge amount of data was observed being sent to the BS which is more than 14000. This performance is a result of the large amount of energy that has been conserved.
by the nodes in the network. Firstly, data aggregation. In ZSEP, the cluster heads aggregate the received data and then transmit to the BS which consumes their energy. However, in the new protocol, the gateway node does the data aggregation in place of CHs and then transmit the final report to the BS. So G-SEP conserved energy of the heads and hence their ability to transmit more. Secondly, G-SEP adopts a multi-hop communication strategy that is absent in the existing protocol.

Fig. 5. shows the residual energy of the network in the proposed and the existing protocols. It is also clear that the new algorithm utilizes its energy efficiently throughout the simulation period than the existing protocol. In the existing scheme, as early as 100 rounds, no more energy is available to support the nodes. This result is expected since ZSEP was not developed for the distant Base station. However, the proposed algorithm on the other hand, shows relatively low energy consumption because of the presence of the gateway. It manages the energy consumption of G-SEP until 1500 rounds. This again proved that, the energy remaining per round in the proposed model is better than the ZSEP protocols.

4. CONCLUSION
In this work, Gateway-SEP (G-SEP) protocol for heterogeneous networks has been proposed. In this new protocol, the election probability of the
advanced nodes has been modified to consider the distance, average distance and residual energy. This has reduced the energy depletion of the heads. Also, the gateway node was introduced at the centre of the network and then placed the Base station outside the deployment area. The gateway node collects the captured data from the cluster heads, aggregates it and conveys the final report to the distant Base station. The data aggregation by the gateway node also resulting in a reduction of energy consumption in the network. Finally, the multi-hop communication approach adopted in this scheme has also conserved the energy of the network. The simulation results showed that, the proposed protocol performed better than the ZSEP in terms of coverage, stability period, throughput and network life time.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocols for wireless microsensor networks. Hawaii International Conference on Systems Science; 2000.
2. Wang F, Liu J. Networked wireless sensor data collection: Issues, challenges and approaches. IEEE Communications Surveys & Tutorials. 2011;13(4):673–687.
3. Seddiki N, Abedsalem B. Study of the performance of multi-hop routing protocols in wireless sensor networks. (IJACSA) International Journal of Advanced Computer Science and Applications. 2017;8(2):378-384.
4. Guo P, Iang T, Zhang JK, Chen HH. Clustering algorithm in initialization of multi-hop wireless sensor networks. IEEE Transactions on Wireless Communications. 2009;8(12):5713–5717.
5. Faisal S, Javaid N, aavaid AJ, Khan MA, Bouk SH, KhanZA. Z-SEP: Zonal-stable election protocol for Wireless Sensor Networks. Journal of Basic and Applied Scientific Research. 2013;1–9.
6. Arya G, Chauhan DS, Modified stable election protocol (M-SEP) for hierarchical WSN. International Journal of Computer Applications (0975 – 8887). 2013;79(16): 35-39.
7. Sharma S. Improved stable election protocol for heterogeneous wireless sensor network. International Journal of Science and Research (IJSR). 2015;4(4): 1370-1374.
8. Divya1 C, Krishnan N, Gandhimathy T. Energy efficient stable election protocol for clustered heterogeneous wireless sensor networks. IOSR Journal of Computer Engineering (IOSR-JCE). 2013;12(5):55-61.
9. Elbiri B, Saadane R, El Fkihiand S, Aboutajdine D. Developed Distributed Energy-efficient Clustering (DDEEC) for heterogeneous wireless sensor networks. I/V Communications and Mobile Network (ISVC), 5th International Symposium on. 2010;1-4.
10. Saini P, Sharma AK. E-DEEC- enhanced distributed energy efficient clustering scheme for heterogeneous WSN”. 1st International Conference on Parallel, Distributed and Grid Computing. 2010;205-210.
11. Saini P, Sharma AK. Energy efficient scheme for clustering protocol prolonging the lifetime of heterogeneous wireless sensor networks. International Journal of Computer Applications. 2010;6(2):30-36.
12. Jibreel F. Improved developed distributed energy-efficient clustering scheme (IDDEEC). International Journal of Innovative Science and Research Technology. 2018;3(12):564-567.
13. Jibreel F. Improved Enhanced Distributed Energy Efficient Clustering (iE-DEEC) scheme for heterogeneous wireless sensor network. International Journal of Engineering Research and Advanced Technology (IJEART). 2019;5(1):6-11.
14. Kaur G, Kaur S. Enhanced m-gear protocol for lifetime enhancement in wireless clustering system. International Journal of Computer Applications (0975 – 8887). 2016;147(14):30-34.
15. Jibreel F. Improved-gateway-based energy-aware multi-hop routing protocol for WSNs. International Journal of Innovative Science and Research Technology. 2018;3(12):625-630.
16. Smaragdakis G, Matta I, Bestavros A. SEP: A Stable election protocol for
clustered heterogeneous wireless sensor networks. Second International Workshop on Sensor and Actor Network Protocols and Applications. 2004;1-11.

17. Dener MA. New gateway node for wireless sensor network applications. Scientific Research and Essays. 2016;11(20):213-220.

© 2020 Jibreel et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/54998