Supplementary Information for

Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse

Jitao Chen\(^1\), Isabel P. Montañez\(^{h,c,1}\), Shuang Zhang\(^d\), Terry T. Isson\(^e\), Sophia I. Macarewich\(^{h,f}\), Noah J. Planavsky\(^g\), Feifei Zhang\(^h\), Sofia Rauzi\(^e\), Kierstin Daviau\(^{d,i}\), Le Yao\(^a\), Yu-ping Qi\(^a\), Yue Wang\(^a\), Jun-xuan Fan\(^b\), Christopher J. Poulsen\(^f\), Ariel D. Anbar\(^j\), Shu-zhong Shen\(^{h,k}\), and Xiang-dong Wang\(^{h,1}\)

\(^a\)State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; \(^b\)Department of Earth and Planetary Sciences, University of California, Davis, CA 95616; \(^c\)Institute of the Environment, University of California, Davis, CA 95616; \(^d\)Department of Oceanography, Texas A&M University, College Station, Texas 77843; \(^e\)School of Science, University of Waikato (Tauranga), Tauranga 3110, New Zealand; \(^f\)Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109; \(^g\)Department of Geology and Geophysics, Yale University, New Haven, CT 06511; \(^h\)State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China; \(^i\)Department of Engineering, Toi-Ohomai Institute of Technology, Tauranga 3110, New Zealand; \(^j\)School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287–6004; and \(^k\)CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.

Corresponding authors:
\(^1\)Jitao Chen, Address: 39 East Beijing Road, Nanjing 210008, China; Phone: +86-25-83282160; Email: jtchen@nigpas.ac.cn
\(^1\)Isabel P. Montañez, Address: One Shields Avenue, Davis, CA 95616, U.S.; Phone: 530-754-7823; Email: ipmontanez@ucdavis.edu
\(^1\)Xiang-dong Wang, Address: 163 Xianlin Road, Nanjing 210023, China; Phone: +86-13605184681; Email: xdwang@nju.edu.cn

This PDF file includes:
Supplementary text S1 to S7
Figures S1 to S10
Tables S1 to S3
SI References

Other supplementary materials for this manuscript include the following:
Datasets S1
Supplementary Information
Extended Material and Methods

S1. Paleogeography of the South China sections
During the late Carboniferous, the South China Block was a nearly isolated terrain, located across the paleo-equator at the confluence of the Paleo-Tethys Ocean (west) and Panthalassic Ocean (east) based on various paleogeographic reconstructions (Fig. S1A and Fig. 5A). The Carboniferous-Permian carbonate successions in South China were widely developed on carbonate platform and intra- and inter-platform slopes and basins that defined an open-water seaway (1, 2). The Naqing and Narao successions (~22 km apart) formed on carbonate slopes of the Qian-Gui Basin, now located in Luodian region, Guizhou Province (Fig. S1B).

These successions consist mainly of thin-bedded lime mudstone with episodic bioclastic wackestone to packstone that were deposited by relatively proximal sediment gravity flows (3). The carbonate successions contain abundant conodonts that are used to define a high-resolution bio- and chronostratigraphy, for which the well-studied Naqing section has been chosen as the GSSP (the Global Stratotype Sections and Points) candidate for the four unratified Carboniferous stages (i.e., Serpukhovian, Moscovian, Kasimovian, and Gzhelian stages) (4).

S2. Age model of δ\(^{13}\)C and δ\(^{238}\)U
Ages for geochemical data of the South China Naqing succession were calibrated using the Carboniferous timescale (5) and our updated conodont biostratigraphy (4, 6), assuming constant sedimentation rate within stages. The ages of samples and geochemical data from the Naqing section are relatively reliable given that the stage boundaries (between Moscovian, Kasimovian, Gzhelian, and Asselian) are well constrained based on bed-by-bed conodont biostratigraphic studies (4, 6). The stratigraphic depth and age of the KGB were assigned to 255.65 m (paint marks) and 303.7 Ma, respectively. The Carboniferous astronomical time scale was also established in the Naqing section (7); the ages of samples were, however, calibrated assuming that the stratigraphic depth and age of the KGB are 220.33 m (aluminum spike marks) and 303.4 Ma, respectively. We recalibrated the astronomical ages of our samples using the numerical numbers (255.65 m (paint marks) and 303.7 Ma) that we used for age calibration assuming a linear sedimentation rate. The difference between the two sets of age calibration for the interval between 306–301 Ma is ~0.09 myr on average (Fig. S2).

The base of the Gzhelian at the Narao section is also well constrained by the detailed conodont biostratigraphy (6), but the bases of the Kasimovian and Asselian are not studied in detail, and therefore, the ages of the geochemical data at the Narao section are not as reliable as those of the Naqing section. We thus use only the Naqing geochemical data (carbonate δ\(^{13}\)C and δ\(^{238}\)U) and associated ages for the LOSCAR and \(^{238}\)U modeling.

S3. Evaluation of Diagenetic Alteration
The relationship between δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{18}\)O\(_{\text{carb}}\) is commonly used to access the degree of diagenetic alteration, which may be represented as a linear form or inverted ‘J’ pattern (8). The δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{18}\)O\(_{\text{carb}}\) data from the Naqing and Narao successions do not exhibit co-variation (with \(r^2<0.06\)), or the “meteoric calcite line” or inverted ‘J’ trends indicative of diagenetic alteration. The δ\(^{18}\)O\(_{\text{carb}}\) of the two studied successions are primarily between -8‰ and -2‰, with an average value of ~4.0‰ for the Naqing (n=141) and -3.4‰ for the Narao (n=103) successions (Figs. S5–S7). The δ\(^{13}\)C\(_{\text{carb}}\) values of the Naqing and Narao successions largely overlap with those of diagenetically screened, well-preserved, calcitic brachiopods (9), further supporting that the South China carbonates record depositional seawater δ\(^{13}\)C (1, 10).

It has long been suggested that δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{13}\)C\(_{\text{org}}\) are not altered simultaneously, and thus coupled changes in δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{13}\)C\(_{\text{org}}\) most likely suggest a perturbation of global C cycling rather than diagenetic alteration (11). However, a recent study on the drill core of the Great Bahama Bank suggests coupled δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{13}\)C\(_{\text{org}}\) time series can record alteration of the δ\(^{13}\)C\(_{\text{carb}}\) by \(^{12}\)C-enriched meteoric waters while incorporation of \(^{12}\)C-enriched terrestrial organic C is added to the sediment during subaerial exposure (12). Both the Naqing and Narao successions were deposited in carbonate slope settings and detailed facies
analysis suggests that these successions were unlikely to have been altered by meteoric fluids (3, 13). Therefore, the paired δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{13}\)C\(_{\text{org}}\) negative excursion in the Naqing and Narao successions is most likely a result of perturbation to C cycling.

Trace elements (e.g., Sr and Mn) can be used to access the fidelity of primary geochemical compositions of carbonate minerals given that they substitute into the lattice of carbonate minerals. Recent studies of Bahaman sediment (14, 15) indicate no obvious correlation between δ\(^{238}\)U and common sedimentary diagenetic indicators including Mn/Sr ratios in bulk carbonates, although early diagenesis systematically shifts carbonate δ\(^{238}\)U by up to 0.27 ± 0.14‰ heavier than contemporaneous seawater (14, 15). Nevertheless, it was suggested that both limestones and dolostones with Mn/Sr ratios <10 can be expected to retain their primary marine isotopic signatures, such as δ\(^{13}\)C values (16, 17), although other studies suggested Mn/Sr ≤2 as a cutoff criteria (18). Studies of carbonate δ\(^{238}\)U use relatively more conservative cutoffs of Mn/Sr (e.g., <1 (19, 20); <2 (21, 22), or <2.5 (23)) for diagenetic evaluation, whereas other studies do not use Mn/Sr as a tracer for diagenetic alternation (24-26).

For the Naqing and Narao successions, a total 72 U samples show Mn/Sr ratio <2.5, and only 9 samples have Mn/Sr ratios varying between 2.5 and 3.5. Nonetheless, 8 out of the 9 samples are generally consistent with the overall δ\(^{238}\)U trend (Figs. S5–S7). The one outlier sample (NQ255.8) contains relatively high Mn/Sr (=2.9) and anomalously high Mo/Al (784), suggesting the high δ\(^{238}\)U value (0.02‰) might have resulted from secondary incorporation of U from reducing, and most likely sulfidic, pore water enriched in Mn and Mo and \(^{238}\)U (24, 27). The other obvious “outlier” (NQ254.2), although with very low Mn/Sr (=0.9), has a very negative δ\(^{238}\)U value of -0.69‰ and lies totally off the overall δ\(^{238}\)U trend (Fig. S5), the cause of which is not clear. Negative δ\(^{238}\)U values might record the influence of either dissolution of Fe or Mn oxides (24, 28) or dolomitization under meteoric and hypersaline waters with more negative δ\(^{238}\)U (27, 29). However, the sample has a low Mn/Sr (=0.9) and Mg/Ca (=0.03) ratio (Figs. S6 and S7), suggesting it was not altered by the aforementioned processes. We examined cross-plots of δ\(^{238}\)U against δ\(^{13}\)O, [Sr], [Mn], and Mn/Sr ratios for all the samples (Figs. S6 and S7), and no correlations are observed. Furthermore, existing studies suggest that bulk carbonates faithfully record the general trend of seawater δ\(^{238}\)U, regardless of palaeogeographic location (20), palaeo-bathymetric variations (26), or carbonate lithology (30).

Whereby, we interpret our δ\(^{238}\)U records to most likely reflect original seawater isotopic variability, although absolute isotopic values might be overall overprinted and shifted towards more positive values during early diagenesis.

S4. Evaluation of Detrital Contamination

Incorporation of δ\(^{238}\)U from detrital material would artificially shift the measured carbonate δ\(^{238}\)U to slightly more positive values given that detrital material have relatively higher δ\(^{238}\)U (approximately -0.3‰) (31, 32), inherited from continental crust, than seawater values (-0.39‰) (14). The Naqing and Narao carbonates mostly have low Rb/Sr ratios of < 0.03, suggesting minimal incorporation of clay minerals in the carbonates (Figs. S6 and S7). Exceptions are the NR228.8 with ~0.11 and NR229 with ~0.13 from the Narao section (Figs. S6 and S7), which are from the slightly calcareous black mudstone immediately below the KGB. The high TOC and high Rb/Sr ratios of these two samples (NR228.8 and NR229) suggest that their relatively high δ\(^{238}\)U values may record secondary overprint.

Mo, Zn and Fe are redox-sensitive elements that are often enriched in sediments with dissolved H: S present in pore fluids (33). Enrichment of these elements may also result from elevated terrestrial input (34). The enrichment of Mo, Zn and Fe in the samples immediately below the KGB is most likely due to high clay contents with high [Al] (Figs. S5–S7). Thus, the δ\(^{238}\)U values across the KGB that partly come from organic-rich, carbonate-poor samples suggest that the carbonate δ\(^{238}\)U could have only been more negative if the analyzed U were partially leached from the clay portion of the bulk sediment powder or were overprinted by authigenic enrichment of isotopically heavy U(IV) in carbonates during early diagenesis.

S5. Biodiversity reconstruction

A total of 1,215 foraminiferal species, including 1,068 fusulinid species and 147 non-fusulinid species, were compiled for the Kasimovian through Gzhelian, based on the global foraminiferal database (provided
by J.R. Groves). Eight time bins with one-million-year interval were assigned for the Kasimovian–Gzhelian interval. The foraminiferal diversity was obtained according to the species counting of each time slice during this interval. In this study, the time framework was recalibrated based on the Carboniferous timescale (5) and the foraminiferal ages in the database of J.R. Groves (35). The diversity curve of all marine species comes from a new Cambrian-Triassic biodiversity curve with an imputed temporal resolution of 26 ± 14.9 kyr, which was calculated using a parallel computing program of constrained optimization method – CONOP.SAGA, and data from 11,000 marine fossil species, collected from over 3,000 stratigraphic sections (36). The biodiversity curve suggests a ~24.9% loss of total marine species, and notably, this biodiversity crisis represents a pronounced interruption of the recently recognized, long-term late Carboniferous–early Permian Biodiversification Event (36).

S6. Potential impact of sea level on proxy-derived temperature change

Quantifying the influence of sea-level change on δ¹⁸O-derived temperature changes requires sufficient knowledge of changes in global land ice volume. Although our climate model simulations (LowCO₂ and HighCO₂) incorporate glacial-interglacial changes in Gondwanan land ice surface extent based on the most up to date knowledge of glacial evidence for the LPIA (see Experimental design portion of the Coupled Climate Model Simulations section), we cannot use ice volume estimates from LowCO₂ and HighCO₂ simulations to constrain the influence of ice volume and sea-level change on measured δ¹⁸O values because poorly constrained paleo-elevation and thickness of Gondwanan ice sheets. In the version of CESM1.2 used for LowCO₂ and HighCO₂ simulations, land ice is prescribed by lowering the surface albedo over specific regions of the land surface and the surface extent of the ice sheet remains fixed throughout the simulation. Because the elevation and thickness of Gondwanan ice sheets is unknown, we set the elevation of prescribed ice sheets to values that compare well with those of the modern Greenland and Antarctic ice sheets (ranging between ~1,500–3,000 m above sea level). As a result, calculations of total ice volume based on prescribed ice sheets in LowCO₂ and HighCO₂ are highly dependent on the assumptions made about the proportion of land:ice within each ice center.

For example, if we assume that all of the grid cells under the ice sheet surface (above sea level) are ice, then the total land ice volumes in LowCO₂ and HighCO₂ are 170E6 km³ and 76E6 km³, respectively, with a change in total ice volume of 94E6 km³ (~160 m sea level change) (37). We recognize that in reality there would be some proportion of land underneath each ice sheet, so these total ice volume values are high compared to the most recent ice volume estimates (37), even though the areal extent of the prescribed ice sheets are based on the most up to date knowledge of glacial evidence. If we make an assumption of the proportion of land to ice within each ice center, i.e., conservatively that 25% of the volume within each ice sheet is the land surface underneath the ice sheet, then the total ice volume in LowCO₂ and HighCO₂ would decrease to 127.5E6 km³ and 57E6 km³, respectively, and the change in total ice volume would be 70.5E6 km³ between the simulations (~120 m sea-level change) (38). These absolute estimates now lie within the current range of ice volume estimates for the LPIA (37), but there is no way to validate this assumption based on glacial proxy evidence. Thus, the ice volumes we infer from the prescribed land ice in each climate simulation are not sufficiently robust to be used to back-out the influence of sea-level change on the proxy δ¹⁸O values as a means of further constraining the paeo SSTs. Although the representation of continental ice in CESM1.2 and the uncertainty in Gondwanan ice thickness precludes using such prescribed ice volume estimates to disentangle the influences of ice volume, sea level, and temperature signals archived in the proxy δ¹⁸O values, proxy-model comparison gives us confidence that the δ¹⁸O-derived temperature changes are reasonable. In Main Text Fig. 1C, sea surface temperatures calculated based on the δ¹⁸O of calcite brachiopods correspond to mean values of ~25.1 and 29.4°C for the pre-warming state and amplitude of warming, respectively. The simulated mean sea surface temperatures (upper 100 m) in the South China region for the LowCO₂ and HighCO₂ simulations are 25.5 and 29.8°C, which corresponds to a regional warming of 4.3°C. Thus, the simulated sea surface temperatures compare very well with the amplitude of warming of sea surface temperatures inferred from calcite brachiopod δ¹⁸O values (~4.3°C), providing confidence that the elevations and areal extents of the prescribed ice sheets in the low and high CO₂ experiments are reasonable.
S7. Regression analysis

We smoothed the geochemical records with a locally weighted polynomial regression (LOWESS) method using the Bootstrap function in freeware ACYCLE (39) and PAST (40), which yield essentially similar trends. We also used a cross-validation approach in MATLAB script to select robust smoothing factors for various datasets.
Fig. S1. Paleogeography of the Pennsylvanian. (A) Global paleogeography of the Pennsylvanian (adapted from Ron Blakey), showing the location of South China. (B) Pennsylvanian paleogeography of South China adapted from Jiao et al. (2003) (5), showing locations of the Naqing (N 25° 14′ 40″, E 106° 29′ 26″) and Narao (N 25° 24′ 39″, E 106° 36′ 25″) sections.
Fig. S2. Age model of δ^{13}C and δ^{238}U for the Naqing section. (A) Comparison of our interpolated ages based on stratigraphic height and conodont biozones assuming constant sedimentation rate within stages, and astronomically calibrated ages using stratigraphic height (220.33 m of aluminum spikes) and age (303.4 Ma) of the Kasimovian–Gzhelian boundary (7). (B) Comparison of our interpolated ages based on stratigraphic height and conodont biozones assuming constant sedimentation rate within stages, and astronomically recalibrated ages by correcting the precise stratigraphic height (255.65 m of paint marks) and age (303.7 Ma) of the Kasimovian–Gzhelian boundary.
Fig. S3. Sensitivity tests of the evolution of average surface ocean δ^{13}C reconstructed using LOSCAR during the carbon emission event. By varying climate sensitivity, δ^{13}C of the carbon source, carbon emission duration and the amount of carbon emission, we have generated 432 scenarios in total.
Fig. S4. Sensitivity tests of the evolution of atmospheric ρCO$_2$ reconstructed using LOSCAR during the carbon emission event. By varying climate sensitivity, carbon emission duration and the amount of carbon emission, we have generated 108 scenarios in total.
Fig. S5. Correlation between $\delta^{238}\text{U}$ and trace elements and total organic carbon (TOC) of the Naqing (A) and Narao (B) successions for evaluation of diagenetic alteration and detrital contamination. The light red and gray shaded area indicates intervals with relatively high contents of TOC and negative $\delta^{238}\text{U}$ values across the KGB, respectively. Note the difference in thickness of individual conodont biozones and lithofacies between the two sections.
Fig. S6. δ^{238}U and stable isotopes and elements cross-plots of the Naqing succession for diagenetic evaluation. Lack of co-variations suggests minimum alteration on carbonate δ^{238}U by later diagenesis.
Fig. S7. δ²³⁸U and stable isotopes and elements cross-plots of the Narao succession for diagenetic evaluation. Lack of co-variations suggests minimum alteration on carbonate δ²³⁸U by later diagenesis.
Fig. S8. Linked LOSCAR and U mass balance model results of greenhouse hyperthermal events, including PTB (A), TJB (B), OAE2 (C), and PETM (D) events. Carbonate δ^{238}U data with a regression line (blue); red line indicates diagenetic correction (subtracting 0.27‰). PTB data from ref. (19, 20, 41), TJB data from ref. (42), OAE2 data from ref. (26), and PETM data from ref. (43). LOSCAR modeling (black solid line) of atmospheric p^{CO_2} compared to available p^{CO_2} data (red cycle) for TJB (44). U riverine flux generated from LOSCAR and used in U cycle modeling. Model estimate of anoxic seafloor area (f_{anox}) of PTB and TJB based on diagenetically corrected δ^{238}U data, whereas for the OAE2 and PETM based on original values, as suggested by original papers that the data were derived from. For f_{anox} panels, the upper and lower bounds of the shaded area represent the 97.5th and 2.5th percentile, respectively, while the red solid line represents the mean.
Fig. S9. Comparison between the KGB warming event and greenhouse C perturbation events over the last 300 Myr, using various k_{anox} values for sensitive test on f_{anox} (see Materials and Methods in the main text). (A) and (B) Increase in anoxic seafloor area (f_{anox}) modelled using $k_{\text{anox}}=5.10E-05$ yr$^{-1}$. (C) and (D) Increase in anoxic seafloor area (f_{anox}) modelled using a full range of k_{anox} between 5.10E-05 yr$^{-1}$ and 1.74E-04 yr$^{-1}$ integrated in Monte Carlo simulation (SI Appendix, Table S3). The dashed trend lines are plotted based on all events excluding the KGB and PETM. Data points indicate simulations from this study only (linked LOSCAR and U modeling); error bars are the 97.5$^{\text{th}}$ and 2.5$^{\text{th}}$ percentile.
Fig. S10. Coupled climate model simulations. (A) Annual mean meridional overturning circulation by Eulerian mean flow (Sv) in the late Pennsylvanian Panthalassic Ocean in HighCO2 (560 ppm, interglacial state) and LowCO2 (280 ppm, glacial state) simulations. Red indicates clockwise circulation, and blue indicates counterclockwise circulation. (B) Depth-latitude cross-section of ideal age (years) in the upper 1000 m of the Panthalassic Ocean, suggesting ventilation in the Southern Hemisphere for both simulations and a lack of ventilation in the Northern Hemisphere in HighCO2. Ideal Age is a tracer in the ocean model (POP2) of CESM used to estimate ventilation timescales in the ocean. Water masses with a low ideal age have been in recent contact with the surface and/or mixed with young water masses, while water masses with a high ideal age have been removed from the surface for that duration in years. (C) Vertical profiles of Panthalassic seawater density at 30˚N, the equator, and 30˚S show enhanced surface stratification in HighCO2 (solid lines) compared to LowCO2 (dashed lines). (D) Near-equilibrium conditions over the last 300 years of the LowCO2 and HighCO2 simulations. Global mean upper (0 m) and deep (3000 m) ocean temperature (top). Variability in the maximum strength of the Northern Panthalassic Overturning Circulation (positive values) and Southern Panthalassic Overturning Circulation (negative values) (bottom). The global mean salinity remains stable throughout each of the simulations.
Table S1. U mass balance model parameters.

Parameter	Value	Unit	Reference
N_{sw} (initial)*	$1.96 \times 10^{13} (\pm 20\%)$	mol	(45)
$\delta^{238}U_{riv}$	-0.24 (± 0.1)	‰	(46)
k_{anox}	$5.10 \times 10^{-5} (\pm 20\%)$ to 1.74×10^{-4}	yr$^{-1}$	(23, 47)
k_{other}	$1.74 \times 10^{-6} (\pm 20\%)$	yr$^{-1}$	(23)
Δ_{anox}	0.55 to 0.85	‰	(23, 46, 48)
Δ_{other}	-0.1 to 0.1	‰	(23)
$\delta^{238}U_{sw}$	$\delta^{238}U_{carb} - 0.27$ (where indicated by authors)	‰	(32)
f_{anox} (initial)	determined by spin up*	-	-
$A_{seafloor}$	3.62×10^{14}	m2	(49)
J_{riv}	$(2.35 \times 10^{-6}) \times J_{weath _LOSCAR} - (7.98 \times 10^{-9})$	mol/yr	(50)

a new steady state is achieved during the spin up for each simulation based on the selected input parameters
Event	Total C injection (Gt)	Duration of C injection (kyr)	Injection rate (Gt/kyr)	Duration of SST warming (AT)	Rate of warming (°C/kyr)	f_{anox} (%)	f_{anox} (%) peak	M_{anox} (%)	Note
KGB	5000	300	0.0167	4	0.005	4.19	22.41	18.22	1
	10000	300	0.0333	4	0.013	4.29	22.46	18.17	
	7000	17	0.420	10	0.270	0.2	17	16.8	2
	22400	15	1.520	10	0.500	0.2	60	59.8	
	22400	15	0.420	9	0.231	3.0	48.1	45.1	3
	12000	20	0.600	3	0.035	0.21	8.4	8.19	4
	12000	10	1.200	4	0.047	0.21	21.0	20.79	
	12000	85	0.141	--	--	2.9	48.0	45.1	
PTB	6000	220	0.027	2	150	0.013	--	2.5	6
	18750	220	0.113	5	150	0.033	--	7.5	
	7200	150	0.048	1.5	100	0.015	3	2.7	7
	18900	150	0.126	2	100	0.020	2.8	5.2	
	18900	150	0.126	--	--	3.02	4.49	1.47	8
	7200	150	0.048	--	--	3.15	5.01	1.86	
	18900	150	0.126	--	--	1.00	2.03	1.83	
	28000	150	0.072	1.1	100	0.011	3	7.7	9
	27000	150	0.180	2.3	100	0.023	2.8	12.2	
	27000	150	0.180	--	--	4.50	9.32	4.82	10
	10200	21	0.486	--	--	0.50	2.33	1.83	11
	9600	3	3.220	--	--	0.50	2.35	1.85	
	9600	75	0.128	--	--	0.2	2.03	1.83	
	9600	5	1.920	--	--	0.2	2.23	2.03	
	0.300	3	3	1.000	--	--	0.2	1.10	13
	1.700	5	21	0.238	0.900	2.275	0.580		

Note:
1: All estimates from this study.
2: C injection data from ref. (51); f_{anox} data from ref. (23); T change data from ref. (52-54)
3: C injection data from ref. (51); f_{anox} from this study
4: C injection data from ref. (55); f_{anox} from ref. (42).
5: C injection data from ref. (55, 56); f_{anox} from this study.
6: C injection data from ref. (57); f_{anox} from ref. (58) base on Mo isotopes, and we add 50% error.
7: All from ref. (26).
8: C injection data from ref. (26); f_{anox} from this study.
9: All from ref. (26).
10: C injection data from ref. (26); f_{anox} from this study.
11: C injection data from ref. (59, 60) for max. and min. rate of C injection; f_{anox} from this study.
12: All from ref. (43).
13: C injection data from ref. (60-64); Duration of T change was purposely chosen two extremes from ref. (59)
Table S3. Comparison of anoxic seafloor area (f_{anox}) during greenhouse OAE/hyperthermal events in various modeling efforts.

Event	Peak f_{anox} (%) of ref. (47) using $k_{anox}=1.74E-04$ yr$^{-1}$	Peak f_{anox} (%) of this study using $k_{anox}=5.10E-05$ yr$^{-1}$	Peak f_{anox} (%) of this study using a full range between k_{anox} of ref. (23, 47)	Peak f_{anox} (%) of previous studies
PTB	$10.0^{±5.6}_{±14.0}$	48.10	35.01	$17–60$ (ref. (23, 47))
TJB	$3.7^{±1.3}_{±1.2}$	10.70	6.41	$8.4–21$ (ref. (42))
OAE2	$0.6^{±0.5}_{±1.1}$	9.32	4.56	$8–15$ (ref. (26))
PETM	$0.15^{±0.0}_{±0.4}$	2.33	1.77	$2.03–2.23$ (ref. (43))

Dataset S1 (separate file). Isotope and element data.

SI References
1. J. Chen, I. P. Montañez, Y. Qi, S. Shen, X. Wang, Strontium and carbon isotopic evidence for decoupling of pCO$_2$ from continental weathering at the apex of the late Paleozoic glaciation. *Geology* **46**, 395–398 (2018).
2. I. P. Montañez *et al*., Carboniferous climate teleconnections archived in coupled bioapatite δ^{18}O$_{PO4}$ and 87Sr/86Sr records from the epicontinental Donets Basin, Ukraine. *Earth and Planetary Science Letters* **492**, 89–101 (2018).
3. J. Chen *et al*., Coupled sedimentary and δ^{13}C records of late Mississippian platform-to-slope successions from South China: Insight into δ^{13}C chemostratigraphy. *Palaeogeography, Palaeoclimatology, Palaeoecology* **448**, 162–178 (2016).
4. X. Wang *et al*., Carboniferous integrative stratigraphy and timescale of China. *Science China Earth Sciences* **62**, 135–153 (2019).
5. V. I. Davydov, D. Korn, M. D. Schmitz, F. M. Gradstein, O. Hammer, "The Carboniferous Period" in The Geologic Time Scale 2012, M. Gradstein, J. G. Ogg, M. Schmitz, G. Ogg, Eds. (Elsevier B.V., 2012), 10.1016/b978-0-444-59425-9.00023-8, pp. 603–651.
6. Y. Qi *et al*., Conodont faunas across the Kasimovian-Gzhelian boundary (Late Pennsylvanian) in South China and implications for the selection of the stratotype for the base of the global Gzhelian stage. *Papers in Palaeontology* **6**, 439–484 (2020).
7. H. Wu *et al*., An \sim34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm. *Geology* **47**, 83–86 (2019).
8. P. K. Swart, The geochemistry of carbonate diagenesis: The past, present and future. *Sedimentology* **62**, 1233–1304 (2015).
9. E. L. Grossman *et al*., Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. *Palaeogeography, Palaeoclimatology, Palaeoecology* **268**, 222–233 (2008).
10. X. Tian *et al*., Glacio-eustasy and δ^{13}C across the Mississippian–Pennsylvanian boundary in the eastern Paleo-Tethys Ocean (South China): Implications for mid-Carboniferous major glaciation. *Geological Journal* **55**, 2704–2716 (2020).
11. A. H. Knoll, J. M. Hayes, A. Kaufman, K. Swett, I. B. Lambert, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. *Nature* **321**, 832–838 (1986).
12. A. M. Oehlert, P. K. Swart, Interpreting carbonate and organic carbon isotope covariance in the sedimentary record. *Nature Communications* **5**, 4672 (2014).
13. J. Chen *et al.*, Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China). *Palaeogeography Palaeoclimatology Palaeoecology* **531**, 108873 (2019).
14. X. Chen *et al.*, Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. *Geochimica et Cosmochimica Acta* **237**, 294–311 (2018).
15. F. L. H. Tissot *et al.*, Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. *Geochimica et Cosmochimica Acta* **242**, 233–265 (2018).
16. L. A. Derry, A. J. Kaufman, S. B. Jacobsen, Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. *Geochimica et Cosmochimica Acta* **56**, 1317–1329 (1992).
17. A. J. Kaufman, A. H. Knoll, Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. *Precambrian Research* **73**, 27–49 (1995).
18. I. P. Montañez, J. L. Banner, D. A. Osleger, L. E. Borg, P. J. Bosserman, Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. *Geology* **24**, 917–920 (1996).
19. K. V. Lau *et al.*, Marine anoxia and delayed Earth system recovery after the end-Permian extinction. *Proceedings of the National Academy of Sciences of the United States of America* **113**, 2360–2365 (2016).
20. F. Zhang *et al.*, Congruent Permian-Triassic δ^{238}U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. *Geology* **46**, 327–330 (2018).
21. K. V. Lau, F. A. Macdonald, K. Maher, J. L. Payne, Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. *Earth and Planetary Science Letters* **458**, 282–292 (2017).
22. R. Bartlett *et al.*, Abrupt global-ocean anoxia during the Late Ordovician-early Silurian detected using uranium isotopes of marine carbonates. *Proceedings of the National Academy of Sciences of the United States of America* **115**, 5896–5901 (2018).
23. F. Zhang *et al.*, Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. *Science Advances* **4**, e1602921 (2018).
24. A. v. S. Hood *et al.*, Integrated geochemical-petrographic insights from component-selective δ^{238}U of Cryogenian marine carbonates. *Geology* **44**, 935–938 (2016).
25. M. Elrick *et al.*, Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. *Geology* **45**, 163–166 (2017).
26. M. O. Clarkson et al., Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the United States of America 115, 2918–2923 (2018).

27. S. J. Romaniello, A. D. Herrmann, A. D. Anbar, Uranium concentrations and \(^{238}\text{U}/^{235}\text{U}\) isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy. Chemical Geology 362, 305–316 (2013).

28. S. Weyer et al., Natural fractionation of \(^{238}\text{U}/^{235}\text{U}\). Geochimica et Cosmochimica Acta 72, 345–359 (2008).

29. C. H. Stirling, M. B. Andersen, E.-K. Potter, A. N. Halliday, Low-temperature isotopic fractionation of uranium. Earth and Planetary Science Letters 264, 208–225 (2007).

30. F. Zhang et al., Two distinct episodes of marine anoxia during the Permian-Triassic crisis evidenced by uranium isotopes in marine dolostones. Geochimica et Cosmochimica Acta 287, 165–179 (2020).

31. J. Noordmann et al., Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway). Chemical Geology 396, 182–195 (2015).

32. F. L. H. Tissot, N. Dauphas, Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochimica et Cosmochimica Acta 167, 113–143 (2015).

33. N. Tribovillard, T. J. Algeo, T. Lyons, A. Ribouleau, Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, 12–32 (2006).

34. F. Zhang et al., Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis. Earth and Planetary Science Letters 533, 115976 (2020).

35. J. R. Groves, W. Yue, Foraminiferal diversification during the late Paleozoic ice age. Paleobiology 35, 367–392 (2009).

36. J.-x. Fan et al., A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272–277 (2020).

37. I. P. Montañez, Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record. Geological Society, London, Special Publications 512, doi.org/10.1144/SP512-2021-124 (2021).

38. I. P. Montañez, C. J. Poulsen, The late Paleozoic ice age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013).

39. M. Li, L. Hinnov, L. Kump, Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences 127, 12–22 (2019).

40. Ø. Hammer, D. A. T. Harper, P. D. Ryan, PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (2001).

41. G. A. Brennecka, A. D. Herrmann, T. J. Algeo, A. D. Anbar, Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 108, 17631–17634 (2011).

42. A. B. Jost et al., Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction. Geochemistry, Geophysics, Geosystems 18, 3093–3108 (2017).
43. M. O. Clarkson et al., Upper limits on the extent of seafloor anoxia during the PETM from uranium isotopes. Nat Commun 12, 399 (2021).
44. M. F. Schaller, J. D. Wright, D. V. Kent, Atmospheric pCO₂ perturbations associated with the Central Atlantic Magmatic Province. Science 331, 1404–1409 (2011).
45. T.-L. Ku, K. G. Knauss, M. G.G., Uranium in open ocean: concentration and isotopic composition. Deep-Sea Research 24, 1005–1017 (1977).
46. M. B. Andersen, C. H. Stirling, S. Weyer, Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry 82, 799–850 (2017).
47. M. A. Kipp, F. L. H. Tissot, Inverse methods for consistent quantification of seafloor anoxia using uranium isotope data from marine sediments. Earth and Planetary Science Letters 577, 117240 (2022).
48. S. Yang, B. Kendall, X. Lu, F. Zhang, W. Zheng, Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambrian Research 298, 187–201 (2017).
49. F. K. Lutgens, E. J. Tarbuck, Essentials of geology, New York: Macmillan. (1992).
50. J. L. Morford, S. Emerson, The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta 63, 1735–1750 (1999).
51. Y. Cui, L. R. Kump, A. Ridgwell, Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 389, 128–136 (2013).
52. J. Chen et al., High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 448, 26–38 (2016).
53. J. Chen et al., Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 560, 10973 (2020).
54. M. M. Joachimski, A. S. Alekseev, A. Grigoryan, Y. A. Gatovsky, Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections. GSA Bulletin 132, 427–443 (2020).
55. M. Ruhl, N. R. Bonis, G. J. Reichart, J. S. Sinninghe Damste, W. M. Kurschner, Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333, 430–434 (2011).
56. G. L. Foster, P. Hull, D. J. Lunt, J. C. Zachos, Placing our current 'hyperthermal' in the context of rapid climate change in our geological past. Philos Trans A Math Phys Eng Sci 376, 20170086 (2018).
57. D. J. Beerling, S. J. Brettell, Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling. Geology 35, 247–250 (2007).
58. C. R. Pearce, A. S. Cohen, A. L. Coe, K. W. Burton, Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology 36, 231–234 (2008).
59. S. K. Turner, Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 20170082 (2018).
60. M. Gutjahr et al., Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. *Nature* **548**, 573–577 (2017).
61. Y. Cui et al., Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. *Nature Geoscience* **4**, 481–485 (2011).
62. G. J. Bowen et al., Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum. *Nature Geoscience* **8**, 44–47 (2015).
63. R. E. Zeebe, A. Ridgwell, J. C. Zachos, Anthropogenic carbon release rate unprecedented during the past 66 million years. *Nature Geoscience* **9**, 325–329 (2016).
64. S. Kirtland Turner, A. Ridgwell, Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM. *Earth and Planetary Science Letters* **435**, 1–13 (2016).