ABSTRACT
Objective To compare the clinical, laboratory and outcome features of SLE patients with and without Jaccoud’s arthropathy (JA) from the Grupo Latino Americano De Estudio del Lupus (GLADEL) cohort.
Methods 1480 patients with SLE [(34 centres, 9 Latin American countries with a recent diagnosis (<2 years)] constitute the GLADEL cohort. JA was defined as reducible deformity of the metacarpophalangeal axis, without radiographic erosions at any time. Within this cohort, a nested case–control study was carried out. Control was matched for age, gender and centre in a 1:3 proportion. The variables included were: sociodemographic, clinical and immunological features, disease activity, damage and mortality. Comparisons were performed with Wilcoxon and χ² tests for continuous and categorical variables, respectively. ORs and 95% CIs and Kaplan-Meier survival curve were estimated.
Results Of 1480 patients, 17 (1.1%) JA patients were identified; 16 (94.1%) of them were women, mean age: 31.0 years (SD 12.0). Five (29.4%) patients presented JA at SLE diagnosis and 12 (70.6%) after. The median follow-up time and all disease features were comparable in both groups except for a higher frequency of pneumonitis in the patients with JA [4 (23.5) vs 1 (2.0); p=0.012; (OR: 5.2; 95% CI 1.6 to 149.6)]. The SLE disease activity index, Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index and the Kaplan-Meier survival curve were similar in both groups.
Conclusion JA may tend to appear early in the course of SLE; it seems not to have an impact on disease activity, damage accrual or in survival.

INTRODUCTION
Classically, Jaccoud’s arthropathy (JA) is defined as a reversible, non-erosive, deforming arthropathy; it was originally described in patients with rheumatic fever, but since it has been described in patients with other diseases such as Sjögren’s syndrome, scleroderma, vasculitis, psoriatic arthritis, dermatomyositis, ankylosing spondylitis, mixed connective tissue disease and especially in SLE. Furthermore, this arthropathy has been associated with other non-rheumatic diseases. The prevalence of JA in SLE varies between 2% and 5% according to the published series. It affects mainly the hand joints but may affect the feet or other joints. Its aetiology has not been clarified, but it has been associated with clinical and laboratory manifestations, such as cardiac involvement, sicca syndrome and antiphospholipid antibody positivity. Likewise, JA negatively affects the quality of life of affected patients.

Studies on JA are very scarce in the literature; for the most part, they are limited to a few case series. Data from a Latin American cohort will certainly help to improve our understanding of this rare condition, which can lead to a loss of joint function as well as poor quality of life.

The aim of this study was to compare the clinical, laboratory and outcomes features in patients with JA and without JA, from the Grupo Latino Americano De Estudio del Lupus (GLADEL) cohort.

METHODS
GLADEL was established as a longitudinal multiethnic inception cohort of Latin American patients with SLE with up to 2 years of disease duration from diagnosis. Participants’ enrolment and data collection started in 1997 following a established common protocol in 34 centres distributed among nine Latin American countries.

Researchers at all centres were training in data collection prior to study initiation. All researchers followed local institutional review boards. Although the diagnosis was made based on clinical and laboratory features, and according to the expertise of the investigators,
fulfilment of four of the 1982 American College of Rheumatology (ACR) SLE classification criteria at the time of diagnosis was not mandatory.

For the current study, patients who presented JA at any time in the course of the disease were selected as cases; being this a nested case–control within a cohort, matching was performed for age, gender and centre in a 1:3 proportion. JA was defined as a reducible deformity of the metacarpophalangeal axis, in the absence of radiographic erosions.

The variables examined were: sociodemographic, cumulative clinical and immunological features (from disease onset to the last visit). In addition, the following variables were included: the average disease activity over the course of SLE as assessed with the SLE Disease Activity Index (SLEDAI); damage accrual at the last visit assessed with the Systemic Lupus International Collaborating Clinics/ACR damage Index (SDI), excluding JA; and mortality.

Statistical analysis

Categorical variables were summarised as frequencies and percentages, while continuous variables are presented as medians with their IQRs. Comparisons between the two groups were performed with the Wilcoxon and \(\chi^2 \) tests for continuous and categorical variables, respectively. ORs and 95% CIs were estimated. The Kaplan-Meier survival curve was estimated, and the log-rank test was calculated.

Statistical significance was set at \(p \leq 0.05 \). All analyses were performed using the SAS software, V.9.4.

RESULTS

A total of 1480 patients with SLE were included in the GLADEL cohort. Seventeen (1.1%) developed JA. Sixteen (94.1%) were women, with a mean age of 31.0 years (SD 12.0). The three major cohort’s ethnic groups were represented: 10 (58.8%) Caucasian, 5 (29.4%) Mestizo and 2 (11.8%) Afro-Latin American.

A total of five (29.4%) patients presented JA at the time of SLE diagnosis and 12 (70.6%) during their follow-up. The median follow-up time in the two patient groups was similar [69.0 months (IQR 12.0), vs 57.0 (IQR 37.0); \(p=0.720 \)].

Table 1 describes and compares the sociodemographic characteristics, cumulative clinical and serological features, median SLEDAI and SDI between patients with JA and the control group. Within the clinical features, patients with JA had pneumonitis more frequently that those without it; however, the CI was wide, and thus, this finding needs to be interpreted with caution. We did not find a higher frequency of renal manifestation among our patients with JA. Van Vugt et al. described a negative association between the presence of JA and lupus nephritis. This apparent protective effect could not be corroborated by Lhakum et al.; they studied 458 patients with SLE; deforming arthropathy was present in 40 of them (8.7%). The prevalence of EA, JA and MDA was 2.8%, 1.8% and 4.1%, respectively. In this study, a higher occurrence of renal involvement (69.2%) as well as another major organ involvement, particularly neurological and haematological, was found among the patients with JA.

Within the clinical features, lupus pneumonitis was found more frequently among the patients with JA than those without it; however, the CI was wide, and thus, this finding needs to be interpreted with caution. We did not find a higher frequency of renal manifestation among our patients with JA. Van Vugt et al. described a negative association between the presence of JA and lupus nephritis. This apparent protective effect could not be corroborated by Lhakum et al.; they studied 458 patients with SLE; deforming arthropathy was present in 40 of them (8.7%). The prevalence of EA, JA and MDA was 2.8%, 1.8% and 4.1%, respectively. In this study, a higher occurrence of renal involvement (69.2%) as well as another major organ involvement, particularly neurological and haematological, was found among the patients with JA. We found no specific relationship between JA and any autoantibodies including anti-SSA/Ro, SSB/La and antiphospholipid antibodies. These last have even been postulated as part of pathophysiology, with microvascular
Table 1 Characteristics of patients with JA and controls from GLADEL cohort

Variables	JA (n=17)	Control (n=51)	P value	OR (95% CI)
Age at diagnosis, years (median, IQR)	31.0 (12.0)	29.0 (14.0)	0.590	
Follow-up in the cohort, months (median, IQR)	69.0 (21.0)	57.0 (37.0)	0.720	
Female gender (n, %)	16 (94.1)	48 (94.1)	1.000	
Ethnic group (n, %)				
Caucasian	10 (58.8)	36 (70.6)	0.665†	
Mestizo	5 (29.4)	11 (21.5)		
Afro-Latin American	2 (11.8)	3 (5.9)		
Others	0 (0.0)	1 (2.0)		
Residence (n, %)				
Urban	17 (100.0)	48 (94.1)	0.567	
Socioeconomic status (n, %)				
High/high-middle	3 (17.6)	8 (15.7)	0.586	
Middle	5 (29.4)	12 (23.5)		
Middle–low/low	9 (52.9)	31 (60.8)		
Education level; years (n, %)				
0–7	7 (41.2)	19 (37.3)	0.570	
8–12	9 (52.9)	24 (47.1)		
>12	1 (5.9)	8 (15.7)		
Type of social health coverage (n, %)				
Public	14 (82.4)	40 (78.4)	0.999	
Private	3 (17.6)	11 (21.6)		
Cumulative clinical features, (n, %)				
Malar rash	11 (64.7)	33 (64.7)	1.000	
Discoid lupus	1 (5.9)	5 (9.8)	0.999	
Photosensitivity	11 (64.7)	31 (60.8)	0.773	
Oral ulcers	9 (52.9)	24 (47.1)		
Arthritis	16 (94.1)	43 (84.3)	0.432	
Pleuritis	4 (23.5)	8 (15.7)	0.477	
Pericarditis	3 (17.6)	8 (15.7)	0.999	
Neurological disorder	8 (47.1)	17 (33.3)	0.309	
Renal disorder	7 (41.2)	30 (58.8)	0.205	
Haematological disorder	13 (76.5)	42 (82.3)	0.723	
Immunological disorder*10	11 (84.6)	40 (88.9)	0.647	
ANA	16 (94.1)	49 (96.1)	0.999	
Autoantibodies, (n,%)*				
Anti-dsDNA	6 (35.3)	32 (62.7)	0.088	
Anti-SSA/Ro	5 (29.4)	14 (27.4)	0.999	
Anti-SSB/La	3 (17.6)	6 (11.8)	0.680	
Antiphospholipid	11 (64.7)	25 (49.0)	0.261	
Hypocomplementaemia	12 (70.6)	33 (64.7)	0.657	
Raynaud’s phenomenon	9 (52.9)	25 (49.0)	0.779	
Xerophthalmia and xerostomia	6 (35.3)	9 (17.6)	0.176	
Lupus pneumonia	4 (23.5)	1 (2.0)	0.012 15.4 (1.6–149.6)	
SLEDAI average at follow-up (median, IQR)*14	3.83 (4.29)	3.33 (5.31)	0.606	
SDI score (last visit) (median, IQR)	2 (4)	1 (3)	0.647	
Mortality at follow-up, (n, %)	4 (23.5)	7 (13.7)	0.447	

*Missing data.
†To calculate the p value, the categories African, Latin American and others were combined.
ACR, American College of Rheumatology; GLADEL, Grupo Latino Americano De Estudio del Lupus ; JA, Jaccoud’s arthropathy; SDI, SLICC/ACR Damage Index; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SLICC, Systemic Lupus International Collaborating Clinics.
damage. Likewise, JA does not appear to have a direct impact on either disease activity, damage accrual or survival in our cohort.

Our study has some limitations. First, the small number of individuals identified precludes us from making definitive conclusions about our findings; second, although investigators participating in the GLADEL cohort were trained in data collection prior to study initiation, it is possible that JA may have not been detected by some of them; furthermore, the lack of more refined methods to evaluate erosions makes it possible that some patients may have been misclassified; third, data on rheumatoid factor and anticyclic citrullinated peptide, as well as, acute phase reactants and auto antibodies were not systematically obtained in our patients; and fourth, the association between JA and pneumonitis needs to be interpreted with caution given its wide CI.

Despite these limitations, we can conclude that JA could be considered a manifestation that may appear early in the course of SLE and associated with certain clinical features (pulmonary involvement) but apparently has no impact on either disease activity, damage accrual or survival.

Author affiliations
1Department of Internal Medicine, Centro de Enfermedades Autoinmunes y Reumáticas (CREAR), Rosario, Argentina
2Department of Rheumatology, Hospital Provincial de Rosario, Rosario, Argentina
3Department of Rheumatology, Hospital Escuela Eva Perón, Granadero Baigorria, Argentina
4Department of Rheumatology, Hospital Interzonal General de Agudos General San Martin, La Plata, Argentina
5Department of Rheumatology, Hospital Privado, Cordoba, Argentina
6Department of Rheumatology, Hospital Angeles del Pedregal, Ciudad de México, Ciudad de México, Mexico
7Department of Rheumatology, Hospital Nacional Guillermo Almenara Irioyen, ESSALUD, Lima, Peru
8Department of Rheumatology, Hospital das Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
9Department of Rheumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
10Department of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
11Department of Rheumatology, Universidad de Antioquia, Hospital Universitario “Fundación San Vicente”, Medellín, Colombia
12Department of Medicine, Division of Clinical Immunology and Rheumatology, School of Medicine, The University of Alabama at Birmingham, Birmingham, England, USA
13Department of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru

Acknowledgements We are grateful to Daniel Villaiba and Leonardo Grasso for providing expert assistance with the ARTHROS (version 6.0) software.

Contributors All authors were involved in drafting or revising this article critically for important intellectual content, and all authors approved the final version to be published. RO, GP-E, GA and BAP-E have full access to all of the data from the study and take responsibility for their integrity and the accuracy of the analyses performed.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Santiago MB, Galvão V. Jaccoud arthropathy in systemic lupus erythematosus: analysis of clinical characteristics and review of the literature. Medicine 2008;87:37–44.
2. van Vugt RM, Derksen RH, Kater L, et al. Deforming arthropathy or lupus and rhupus hands in systemic lupus erythematosus. Ann Rheum Dis 1998;57:540–4.
3. Santiago MB. Miscellaneous non-inflammatory musculoskeletal conditions. Jaccoud’s arthropathy. Best Pract Res Clin Rheumatol 2011;25:715–25.
4. Alarcón-Segovia D, Abud-Mendoza C, Díaz-Jouanen E, et al. Deforming arthropathy of the hands in systemic lupus erythematosus. J Rheumatol 2018;16:15–5.
5. Galvão V, Atta AM, Sousa Atta ML, et al. Profile of autoantibodies in Jaccoud’s arthropathy. Joint Bone Spine 2009;76:356–60.
6. Santiago MB, Dourado SMM, Silva NO, et al. Valvular heart disease in systemic lupus erythematosus and Jaccoud’s arthropathy. Rheumatol Int 2011;31:49–52.
7. Fraga M, Congia M, Galbiati A, et al. Musculoskeletal manifestations as determinants of quality of life impairment in patients with systemic lupus erythematosus. Lupus 2018;27:190–8.
8. Spronk PE, ter Borg EJ, Kallenberg CG. Patients with systemic lupus erythematosus and Jaccoud’s arthropathy: a clinical subset with an increased C reactive protein response? Ann Rheum Dis 1992;51:358–61.
9. Santiago MB. Jaccoud’s arthropathy: proper classification criteria and treatment are still needed. Rheumatol Int 2013;33:2953–4.
10. Babini SM, Cocco JA, de la Sota M, et al. Tendinous laxity and Jaccoud’s syndrome in patients with systemic lupus erythematosus. Possible role of secondary hyperparathyroidism. J Rheumatol 1989;16:494–8.
11. Ostendorf B, Scherer A, Specker C, et al. Jaccoud’s arthropathy in systemic lupus erythematosus: differentiation of deforming and erosive patterns by magnetic resonance imaging. Arthritis Rheum 2003;48:157–65.
12. Saketkoo LA, Quinet R. Revisiting Jaccoud arthropathy as an ultrasound diagnosed erosive arthropathy in systemic lupus erythematosus. J Clin Rheumatol 2007;13:322–7.
13. Sá Ribeiro D, Galvão V, Luiz Fernandes J, et al. Magnetic resonance imaging of Jaccoud’s arthropathy in systemic lupus erythematosus. J Rheumatol 2010;77:241–5.
14. Lins CF, de Sá Ribeiro DL, Santos WGD, et al. Sonographic findings of hands and wrists in systemic lupus erythematosus patients with Jaccoud arthropathy. J Clin Rheumatol 2018;24:70–4.
15. Lhakum P, Kasitanon N, Sivasomboon C, et al. Deforming arthropathy in Thai patients with systemic lupus erythematosus. J Clin Rheumatol 2016;22:1–7.