Feature Fusion Strategies for End-to-End Evaluation of Cognitive Behavior Therapy Sessions

Zhuohao Chen, Nikolaos Flemotomos, Victor Ardulov, Torrey A. Creed, Zac E. Imel, David C. Atkins, Shrikanth Narayanan

1Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, CA, USA
2Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
3Department of Educational Psychology, University of Utah, Salt Lake City, UT, USA
4Department of Psychology and Behavioral Sciences, University of Washington, Seattle, WA, USA
1sail.usc.edu, 2creed@pennmedicine.upenn.edu, 3zac.imel@utah.edu, 4datkins@u.washington.edu

Abstract
Cognitive Behavioral Therapy (CBT) is a goal-oriented psychotherapy for mental health concerns implemented in a conversational setting with broad empirical support for its effectiveness across a range of presenting problems and client populations. The quality of a CBT session is typically assessed by trained human raters who manually assign pre-defined session-level behavioral codes. In this paper, we develop an end-to-end pipeline that converts speech audio to diarized and transcribed text and extracts linguistic features to code the CBT sessions automatically. We investigate both word-level and utterance-level features and propose feature fusion strategies to combine them. The utterance-level features include dialog act tags as well as behavioral codes drawn from another well-known talk psychotherapy called Motivational Interviewing (MI). We propose a novel method to augment the word-based features with the utterance level tags for subsequent CBT code estimation. Experiments show that our new fusion strategy outperforms all the studied features, both when used individually and when fused by direct concatenation. We also find that incorporating a sentence segmentation module can further improve the overall system given the preponderance of multi-utterance conversational turns in CBT sessions.

Index Terms: cognitive behavioral therapy, end-to-end evaluation, feature fusion strategies

1. Introduction
In psychotherapy assessment, the quality of a session is generally evaluated through the process of behavioral coding in which experts manually identify and annotate behaviors of the participants. However, this procedure is time-consuming, which makes it resource-heavy in terms of human capital and therefore often unfeasible in most treatment contexts. In recent years, researchers have developed automated behavioral coding algorithms using speech and language features for several clinical domains such as addiction counseling [2], post-traumatic stress disorder (PTSD) care [3] and autism diagnosis [4]. The work in [5] even presents an automated evaluation Motivational Interviewing (MI) system which avoids both manual annotation and transcription. Some studies extend to multimodal approaches which also take non-lexical characteristics into consideration [7][2].

Cognitive Behavioral Therapy (CBT) is evidence-based psychotherapy predicated on the cognitive model which involves shifts in the patients thinking and behavioral patterns [10]. In a CBT session, the therapist guides individuals to identify goals and develop new skills to overcome obstacles that interfere with goal attainment. As a common type of talk therapy, CBT has been developed for many decades and has become an effective treatment for a wide range of mental health conditions [11]. Extending upon this strong evidence base, recent research has explored whether combining CBT with other evidence-based psychotherapies might potentiate treatment outcome. For example, studies indicate that adding MI as an adjunct to CBT may benefit patients by increasing motivation for and commitment to the intervention [12][13].

One of the early computational behavioral coding efforts for CBT is found in [14] which employed an end-to-end evaluation pipeline that overcomes the need of manual transcription and coding. This work formulated the CBT session quality evaluation as a classification task and compared the performance of various lexical features.

In this paper, we develop a new automated approach to assess CBT session quality. Specifically, we utilize MI data to extract utterance-level features due to the similarities between MI and CBT and propose a novel fusion strategy. We experiment on both manual transcripts and automatically derived ones to show the superiority of the new fusion approach and robustness of our automated evaluation system.

2. Datasets
The CBT data, with accompanying audio-recorded sessions, used in this work come from the Beck Community Initiative [15], a large-scale public-academic partnership to implement CBT in community mental health settings. The CBT quality is evaluated by the session-level behavioral codes based on Cognitive Therapy Rating Scale (CTRS) [16]. Each session receives 11 codes scored on a 7 point Likert scale ranging from 0 (poor) to 6 (excellent) for each evaluated dimension. We also compute the total CTRS by summing up the scores as an overall measurement of the quality of a session. Raters were doctoral-level experts who were required to demonstrate calibration prior to coding process to prevent rater drift, which resulted in high inter-rater reliability for the CTRS total score (ICC = 0.84).

In this paper, we use 225 coded CBT sessions for experiments which include the 92 sessions used in [14] with the highest and lowest total CTRS and 133 additional sessions to balance the distribution. Each session considered is a dyadic conversation between a therapist and a patient. We manually transcribed the sessions including information about talk turns, speaker roles, and punctuation. The sessions were recorded at a 16kHz sampling rate and their lengths range from 10 to 90 min-
utes. We binarized the CTRS codes by assigning codes greater or equal to 4 as “high” and less than 4 as “low” since 4 is the primary anchor indicating the skill is fully present, but still with room for improvement [16]. The threshold indicative of CBT competence on the total CTRS is 40 [17]. The descriptions and the label distributions of the codes are shown in Table 1.

Table 1: CBT behavior codes defined by the CTRS manual

| Abbr. | CTRS Code | low/high |
|-------|-----------|----------|
| ag    | agenda    | 131/94   |
| at    | application of cognitive-behavioral techniques | 150/75 |
| co    | collaboration | 111/114 |
| fb    | feedback  | 150/75   |
| gd    | guided discovery | 146/79 |
| hw    | homework  | 165/60   |
| ip    | interpersonal effectiveness | 47/178 |
| cb    | focusing on key cognitions and behaviors | 122/103 |
| pt    | pacing and efficient use of time | 135/90 |
| sc    | strategy for change | 126/99 |
| un    | understanding | 123/102 |
| total | total score | 134/91 |

3. Approach

Our end-to-end evaluation approach includes two stages. In the first stage, we took the session recordings as inputs and used a speech processing pipeline to substitute manual transcription. In the second stage, we extracted the linguistic features from the therapist’s transcripts to predict the binarized label of each code. The classification tasks are performed by a linear Support Vector Machine (SVM) with sample weights inversely proportional to their class frequencies.

3.1. Speech Processing Pipeline

To automatically transcribe the recorded sessions we adopted the speech pipeline described in [18] consisting of Voice Activity Detection (VAD), diarization, Automatic Speech Recognition (ASR) and role assignment presented by the yellow box in Fig. 1. The diarization error rate (including VAD errors) and ASR word error rate for the transcribed sessions are 21.47% and 44.01%, respectively. The role assignment module in [18] is trained to distinguish the therapist and patient in a counseling session and the annotation accuracy for the transcribed CBT sessions is 100% (225/225).

As shown in Fig. 1 the output of the speech pipeline in the yellow box is at the turn level without any punctuation. There might be multiple utterances within a turn, something which potentially affects the quality of utterance-level lexical features, and the subsequent behavioral coding. Thus, we implemented an utterance segmentation module at the end of the pipeline. We made use of the word boundaries to split the text whenever the pause between consecutive words is more than 2 seconds, and then segmented the transcripts into utterances. The package we applied for utterance segmentation is an open source tool called “DeepSegment” [19]. It employs a bi-LSTM layer followed by a Conditional Random Field (CRF) [20]. The model is trained using the Tatoeba corpus [21] and it achieves an F1 score of 0.7364 on the transcribed sessions.

3.2. Baseline Mid-level Features

We extract a number of different mid-level features from the transcribed text. The first set includes the term frequency - inverse document frequency (tf-idf) [22] transform of n-grams, while the second focuses on estimated Dialog Acts (DA) [23]. The tf-ids and DAs were reported to achieve the best overall performance among the interpretable features in [14]. While these aforementioned features are based on general spoken dialog characteristics, the third feature set considered here is inspired by utterance level codes drawn from MI. Under the hypothesis that there are shared characteristics between MI and CBT (based on prior work that has reported using MI techniques as a way to facilitate CBT treatments [12, 13]), we experimentally investigate the usefulness of MI based “features” in contributing to the quality assessment of CBT.

We extract all these features for the therapist side of the conversation only, because, as reported in [14], they perform robustly for the task of behavioral coding, and further fusing features of the two roles (i.e., therapist and patient) does not lead to substantial improvements. We compute the tf-ids over unigrams. We additionally tag each utterance in a CBT session by one DA from the 7-class scheme described in Table 2. We used a linear chain CRF model trained on the Switchboard-DAMSL dataset [24] which achieves 84.78% accuracy of the in-domain test set. For the DA-based feature representation we 1) count the utterances coded with each DA and normalize the counts with respect to the total number of utterances in each session; 2) count the words in the utterances tagged by each DA and normalize the count with respect to the total number of words in each session. Concatenating the two sets of normalized features, we get a DA feature set of $7 \times 2 = 14$ dimensions that outperforms the individual use of either of those sets.

To capture MI-like approaches used within a CBT session, we use specific utterance-level representations that describe MI relevant behaviors in the conversation. In particular, we employ the set of Motivational Interviewing Skills [25] codes described in [2] and summarized in Table 2. We cluster ‘RES’ and ‘REC’ into one class ‘RE’ since they are domain-specific in distribution [26] and easily confused with each other. We extract the MI relevant behavioral codes (MC, henceforth) the same way as in [9] which uses a neural architecture stacking an
embedding layer, a bi-LSTM with attention layer and a dense layer. We train the model on the MI corpus from [27][28] with train/validation/test split equal to 3/1/1 and the classification accuracy on the MI test set is 81.1%. The final MC-based feature representation is the same as the DA-based described previously. As observed in Table 2, the main difference between the DAs and the MCs is that the former focus on the function of the dialog structure, while the latter emphasize on the critical and causal elements deemed useful in the psychotherapy.

The tf-idfs are computed with regards to the occurrence of words in the sessions while the DAs and MCs are both annotations extracted at the utterance level. On this basis, we group the basic features into word-level features (tf-idfs) and utterance-level features (DAs, MCs).

Table 2: Details of DA and MC

| Coding Schemes | Codes |
|----------------|-------|
| DA             | Question, Statement, Agreement, Other, Appreciation, Incomplete, Backchannel |
| MC             | Facility (FA), Giving Information (GI), Reflection (RE), Closed Question (QUC), Open Question (QUO), MI Adherent (MIA), MI Non-Adherent (MIN) |

4. Feature Fusion Strategies

In this section, we discuss two feature fusion methods for combining the word-level and the utterance-level features.

4.1. Fusion by Concatenation

The first fusion approach is straightforward, namely concatenation of the different feature sets. The hypothesis here is that the fused feature sets are complementary to each other so that they jointly carry richer information. Herein we combine the word-level feature tf-idfs with each of the utterance-level features (DAs, MCs) and denote the fused feature sets as tf-idfs + DAs and tf-idfs + MCs, respectively.

4.2. Augmenting Words with Utterance Tags

When we compute word-level features like tf-idfs and bag of words, contextual information is ignored. For example, the word “homework” (an important element within CBT) in a question may denote that the therapist is checking if the patient has completed the given assignment, while in a reflection it might imply that the therapist is describing/confirming the assignment to/with the patient. The distribution of (just the) word “homework” helps us evaluate how well a therapist incorporates the use of homework relevant to CBT. However, to incorporate the context in which they are used, we propose a fusion strategy of augmenting words with utterance level information.

We show an example of the word augmentation we propose using MCs in Fig. 2. We first tag the therapist’s utterances by the model trained in Section 3.2 and then pad the words with the label of the utterance they belong to. In Fig. 2, the augmented tokens “homework/QUC” and “homework/RE” are viewed as different words for further analysis. Finally, we extract the tf-idfs based on the augmented words of the therapist to obtain the fused features.

Similar to the previously-mentioned feature concatenation method, we fuse the augmented tf-idfs with each of the DAs and MCs and denote the fused feature sets as DA-tf-idfs and MC-tf-idfs, respectively.

5. Experiments and Results

In this section, we describe experiments on both the manual and the automatically derived transcripts of the CBT sessions.

We compute the tf-idfs, DA-tf-idfs and MC-tf-idfs using the TfidfVectorizer from the scikit-learn Python module [29]. We set the parameters max_df=0.95 and min_df=0.05 to ignore terms that appear in more than 95% or less than 5% of the documents and select the K best features based on cross-validation on the total CTRS using a univariate F-test. All the feature sets are z-normalized before being fed into the linear SVM classifier. A 5-fold cross-validation is conducted to report the F1 score of each CTRS code and the total CTRS. The F1 scores are computed according to the total number of true and false positives over the folds [30].

5.1. Results on Manual Transcripts

The results of the classification task on the manual transcripts are presented in Table 3. From the reported results we find that the code ‘ip’ (interpersonal effectiveness) – which has the most imbalanced label distribution – always has the lowest F1 score. Among the basic feature sets, the tf-idfs achieve a substantially better performance compared to either DAs or MCs, which indicates that these utterance-level features cannot fully capture CBT-relevant information contained in the word-level features.

Next we look at the direct fusion results of word level and utterance level features. By comparing the results of the tf-idfs with tf-idfs + DAs and tf-idfs + MCs we conclude that directly concatenating the tf-idfs with utterance-level features does not lead to substantial improvements, confirming a similar conclusion drawn in [14]. Finally, we consider the proposed alternative fusion strategy. The performance of the DA-tf-idfs and MC-tf-idfs demonstrates that applying the new proposed fusion strategy to augment the words with the utterance tags, by either DAs or MCs, results in a better CBT relevant code prediction performance. Especially the MC-tf-idfs – which yield the best results among all the features sets – significantly improve the F1 score of the total CTRS and averaged F1 score over tf-idfs (with p-value < 0.05 based on the combined 5×2cv F test [31]).

It is interesting to point out that the MCs always lead to better performance compared to DAs, no matter whether we try to predict the CTRS codes by the basic feature set or after fusing with the tf-idfs. This indicates that the behavioral codes defined in MI might exploit more useful therapy-relevant information, by encoding not only structural characteristics of the conversation, but also more psychotherapy-based cues. This also under-
scores the potential for transfer learning between MI and CBT (and perhaps other domains); some initial insights along these lines are provided in [22].

Table 3: F1 scores of the tasks on the manual transcripts.

|        | tf-idfs | DAs | MCs | tf-idfs | DAs | MCs | tf-idfs | DAs | MCs |
|--------|---------|-----|-----|---------|-----|-----|---------|-----|-----|
| ag     | 0.76    | 0.60| 0.65| 0.75    | 0.76| 0.77| 0.75    | 0.77| 0.80|
| at     | 0.70    | 0.60| 0.61| 0.70    | 0.69| 0.71| 0.70    | 0.71| 0.73|
| co     | 0.75    | 0.63| 0.64| 0.74    | 0.75| 0.75| 0.75    | 0.75| 0.80|
| fb     | 0.75    | 0.56| 0.63| 0.75    | 0.76| 0.74| 0.76    | 0.74| 0.76|
| gd     | 0.74    | 0.58| 0.61| 0.72    | 0.77| 0.76| 0.73    | 0.76| 0.73|
| hw     | 0.64    | 0.55| 0.61| 0.66    | 0.70| 0.70| 0.68    | 0.70| 0.68|
| ip     | 0.54    | 0.51| 0.55| 0.57    | 0.53| 0.57| 0.58    | 0.57| 0.58|
| cb     | 0.73    | 0.55| 0.69| 0.75    | 0.75| 0.77| 0.77    | 0.77| 0.77|
| pt     | 0.69    | 0.54| 0.66| 0.69    | 0.73| 0.74| 0.75    | 0.74| 0.75|
| sc     | 0.73    | 0.60| 0.61| 0.74    | 0.76| 0.76| 0.76    | 0.76| 0.76|
| un     | 0.74    | 0.56| 0.58| 0.74    | 0.76| 0.73| 0.75    | 0.76| 0.75|
| avg    | 0.71    | 0.57| 0.62| 0.71    | 0.72| 0.73| 0.74    | 0.74| 0.74|
| tot    | 0.78    | 0.62| 0.67| 0.77    | 0.78| 0.81| 0.83    | 0.83| 0.83|

Table 4: F1 scores of the tasks on the automatically derived transcripts from the speech pipeline.

|        | tf-idfs | DAs | MCs | DA-tf-idfs | MC-tf-idfs |
|--------|---------|-----|-----|------------|------------|
| ag     | 0.75    | 0.62| 0.64| 0.77       | 0.78       |
| at     | 0.69    | 0.59| 0.61| 0.73       | 0.73       |
| co     | 0.73    | 0.61| 0.66| 0.74       | 0.75       |
| fb     | 0.75    | 0.58| 0.64| 0.75       | 0.77       |
| gd     | 0.68    | 0.57| 0.60| 0.72       | 0.70       |
| hw     | 0.65    | 0.52| 0.63| 0.73       | 0.69       |
| ip     | 0.55    | 0.53| 0.53| 0.52       | 0.53       |
| cb     | 0.71    | 0.56| 0.63| 0.71       | 0.75       |
| pt     | 0.66    | 0.46| 0.64| 0.68       | 0.72       |
| sc     | 0.72    | 0.62| 0.63| 0.73       | 0.76       |
| un     | 0.74    | 0.56| 0.56| 0.72       | 0.73       |
| avg    | 0.69    | 0.56| 0.62| 0.71       | 0.72       |
| tot    | 0.76    | 0.60| 0.66| 0.77       | 0.80       |

5.2. Results of Automatically-derived Transcripts

We next consider the end-to-end automated evaluation of CBT sessions using the transcripts generated by the speech processing pipeline described in Section 3.1. We perform the prediction tasks on the basic feature sets and the fused features after word augmentation.

The experimental results are given in Table 4. Comparing the results with those in Table 3, we observe that while the performance of the code prediction using the automatically derived transcripts is degraded compared to evaluating on manually-derived transcripts, the drop is relatively small. This modest performance degradation underscores both the robustness of this end-to-end speech processing system, and the room for further improvements. Again the tf-idfs features achieve significantly better F1 scores than the DAs and MCs (p < 0.01) while DAs lead to the worst performance among the basic feature sets. The DA-tf-idfs and MC-tf-idfs both outperform the tf-idfs, which is consistent with the results of the manual transcripts (Table 3). The MC-tf-idfs achieve the best overall metrics and F1 scores for the majority of the CTRS codes.

One operational challenge for utterance level processing that we often face while dealing with rich spoken interactions such as seen during therapy is the presence of multiple utterances per talk turn. This led us to investigate the role of using turn level utterance segmentation. To demonstrate the effect of incorporating an utterance segmentation module, we experi-

6. Conclusions and Future Work

In this paper, we employed an end-to-end approach to assess CBT psychotherapy sessions automatically without manual transcription and annotation. The overall CBT session quality assessment was formulated as a binary classification task, for each of the 11 target behavioral codes, and was performed using word-level and utterance-level linguistic feature sets and their fused combinations. In particular, inspired by the commonality in certain elements of the therapy process between MI and CBT, we introduce utterance-level MI codes as one of the feature sets. A new feature fusion strategy was proposed where we augmented the words of an utterance with an utterance-level augmentation.

Figure 3: Comparison of the tasks performed with and without the utterance segmentation for different feature sets.

In the future, we will explore the importance of each code in DAs and MCs for predicting the CBT session quality and explore in further detail transfer learning between MI and CBT domains.

7. Acknowledgements

This work was supported by the NIH.
8. References

[1] R. Bakeman, “Behavioral observation and coding,” Handbook of Research Methods in Social and Personality Psychology, p. 138, 2000.

[2] B. Xiao, D. Can, J. Gibson, Z. E. Imel, D. C. Atkins, P. G. Georgiou, and S. S. Narayanan, “Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion,” Journal of Child Psychology and Psychiatry, vol. 57, no. 8, pp. 927–937, 2016.

[3] B. Shiner, L. W. D’Avolio, T. M. Nguyen, M. H. Zayed, B. V. Watts, and L. Fiore, “Automated classification of psychotherapy note text: implications for quality assessment in PTSD care,” Journal of evaluation in clinical practice, vol. 18, no. 3, pp. 698–701, 2012.

[4] D. Bone, S. L. Bishop, M. P. Black, M. S. Goodwin, C. Lord, and S. S. Narayanan, “Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion,” Journal of Child Psychology and Psychiatry, vol. 57, no. 8, pp. 927–937, 2016.

[5] T. Hirsch, C. Soma, K. Merced, P. Kuo, A. Dembe, D. D. Caperton, D. C. Atkins, and Z. E. Imel, “It’s hard to argue with a computer” investigating psychotherapists’ attitudes towards automated evaluation,” in Proceedings of the 2018 Designing Interactive Systems Conference, 2018, pp. 559–571.

[6] W. R. Miller and S. Rollnick, Motivational interviewing: Helping people change. Guilford press, 2012.

[7] V. Ardulov, M. Mendlen, M. Kumar, N. Anand, S. Williams, T. Lyon, and S. Narayanan, “Multimodal interaction modeling of child forensic interviewing,” in Proceedings of the 20th ACM International Conference on Multimodal Interaction, 2018, pp. 179–185.

[8] K. Singla, Z. Chen, N. Flemotomos, J. Gibson, D. Can, D. C. Atkins, and S. Narayanan, “Using prosodic and lexical information for learning utterance-level behaviors in psychotherapy,” in Interspeech, 2018, pp. 3413–3417.

[9] Z. Chen, K. Singla, J. Gibson, D. Can, Z. E. Imel, D. C. Atkins, P. Georgiou, and S. Narayanan, “Improving the prediction of therapist behaviors in addiction counseling by exploiting class confusions,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 6605–6609.

[10] J. S. Beck and A. Beck, “Cognitive behavior therapy.” New York: Basics and beyond. Gaiford Publication, 2011.

[11] S. G. Hofmann, A. Asnaani, I. J. Vonk, A. T. Sawyer, and A. Fang, “The efficacy of cognitive behavioral therapy: A review of meta-analyses,” Cognitive therapy and research, vol. 36, no. 5, pp. 427–440, 2012.

[12] H. A. Westra and D. J. Dozois, “Preparing clients for cognitive behavioral therapy: A randomized pilot study of motivational interviewing for anxiety,” Cognitive Therapy and Research, vol. 30, no. 4, pp. 481–498, 2006.

[13] C. L. Randall and D. W. McNeil, “Motivational interviewing as an adjunct to cognitive behavior therapy for anxiety disorders: A critical review of the literature,” Cognitive and behavioral practice, vol. 24, no. 3, pp. 296–311, 2017.

[14] N. Flemotomos, V. R. Martinez, J. Gibson, D. C. Atkins, T. Creed, and S. Narayanan, “Language features for automated evaluation of cognitive behavior psychotherapy sessions.” in Interspeech, 2018, pp. 1908–1912.

[15] T. A. Creed, S. A. Frankel, R. E. German, K. L. Green, S. Jager-Hyman, K. P. Taylor, A. D. Adler, C. B. Wolk, S. W. Stirman, S. H. Waltman et al., “Implementation of transdiagnostic cognitive therapy in community behavioral health: The beck community initiative.” Journal of consulting and clinical psychology, vol. 84, no. 12, p. 1116, 2016.

[16] J. Young and A. T. Beck, “Cognitive therapy scale: Rating manual,” Unpublished manuscript, p. 36th, 1980.

[17] T. M. Vallis, B. F. Shaw, and K. S. Dobson, “The cognitive therapy scale: psychometric properties.” Journal of consulting and clinical psychology, vol. 54, no. 3, p. 381, 1986.

[18] V. R. Martinez, N. Flemotomos, V. Ardulov, K. Somandepalli, S. B. Goldberg, Z. E. Imel, D. C. Atkins, and S. Narayanan, “Identifying therapist and client personae for therapeutic alliance estimation,” Proc. Interspeech 2019, pp. 1901–1905, 2019.

[19] “Deepsegment: A sentence segmenter that actually works!” [Online]. Available: https://github.com/bedapudi6788/deepsegment/

[20] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” 2001.

[21] T. Ho and A. Simon, “Tatoeba: Collection of sentences and translations,” 2016.

[22] M. Dillon, “Introduction to modern information retrieval: G. salton and m. McGill. mcgraw-hill, new york (1983). xx iv 448 pp., isbn 0-07-054484-0,” 1983.

[23] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Taylor, R. Martin, C. V. Ess-Dykema, and M. Meteer, “Dialogue act modeling for automatic tagging and recognition of conversational speech,” Computational linguistics, vol. 26, no. 3, pp. 339–373, 2000.

[24] D. Can, D. C. Atkins, and S. S. Narayanan, “A dialog act tagging approach to behavioral coding: A case study of addiction counseling conversations,” in Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[25] W. R. Miller, T. B. Moyer, D. Ernst, and P. Amrhein, “Manual for the motivational interviewing skill code (misc),” Unpublished manuscript. Albuquerque: Center on Alcoholism, Substance Abuse and Addictions, University of New Mexico, 2003.

[26] Z. Chen, K. Singla, D. C. Atkins, Z. E. Imel, and S. Narayanan, “A label proportions estimation technique for adversarial domain adaptation in text classification,” arXiv preprint arXiv:2003.07444, 2020.

[27] D. C. Atkins, M. Steyvers, Z. E. Imel, and P. Smyth, “Scaling up the evaluation of psychotherapy: evaluating motivational interviewing fidelity via statistical text classification,” Implementation Science, vol. 9, no. 1, p. 49, 2014.

[28] J. S. Baer, E. A. Wells, D. B. Rosengren, B. Hartzler, B. Beadnell, and C. Dunn, “Agency context and tailored training in technology transfer: A pilot evaluation of motivational interviewing training for community counselors,” Journal of substance abuse treatment, vol. 37, no. 2, pp. 191–202, 2009.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[30] G. Forman and M. Scholz, “Apples-to-apples in cross-validation: A critical review of the literature,” Acm Sigkdd Explorations Newsletter, vol. 3, no. 1, pp. 49–57, 2010.

[31] H. A. Westra and D. J. Dozois, “Preparing clients for cognitive behavioral therapy: A randomized pilot study of motivational interviewing for anxiety,” Cognitive Therapy and Research, vol. 30, no. 4, pp. 481–498, 2006.

[32] A. S. Goldberg, Z. E. Imel, D. C. Atkins, and S. Narayanan, “Language features for automated evaluation of cognitive behavior psychotherapy sessions.” in Interspeech, 2018, pp. 1908–1912.

[33] T. A. Creed, S. A. Frankel, R. E. German, K. L. Green, S. Jager-Hyman, K. P. Taylor, A. D. Adler, C. B. Wolk, S. W. Stirman, S. H. Waltman et al., “Implementation of transdiagnostic cognitive therapy in community behavioral health: The beck community initiative.” Journal of consulting and clinical psychology, vol. 84, no. 12, p. 1116, 2016.

[34] J. Young and A. T. Beck, “Cognitive therapy scale: Rating manual,” Unpublished manuscript, p. 36th, 1980.