Wild food plants and fungi sold in the markets of Luang Prabang, Lao PDR

Łukasz Łuczaj1, Vichith Lamxay2, Khamphart Tongchan3, Kosohn Xayphakatsa4, Kongchay Phimmakong5, Somphavanh Radavanh6, Villapone Kanyason6, Marcin Pietras7 and Małgorzata Karbarz1

Abstract

Background: Open air markets hold an important position for ethnobiologists. In Southeast Asia, they are seriously understudied, in spite of their incredible biocultural diversity. In order to fill this gap we recorded plants and fungi sold in the open air markets of Luang Prabang, Lao PDR.

Methods: The markets were visited 38 times in four seasons: the dry season, early monsoon, mid-monsoon, and end-of-monsoon, at least 8 times per season. All items were photographed and voucher specimens were collected. Fungi were identified using DNA barcoding techniques.

Results: We recorded 110 species of wild edible plants and 54 species of fungi, including 49 wild-collected species. The sold plants included 86 species of green vegetables, 18 species of fruits and 3 species of flowers. Products from woody species constitute around half of all taxa sold. These include the young shoots of tree leaves, which are used for salads—an interesting feature of Lao cuisine. A large number of extremely rare Russula, with no reference sequences represented in databases or even species unknown to science is present on sale in the markets.

Conclusions: Luang Prabang markets are some of the richest in species of wild edible plants and fungi in Asia, and indeed in the whole world. It is worth pointing out the exceptionally long list of wild edible mushrooms which are sold in Luang Prabang (and probably elsewhere in Laos). We view the Morning Market of Luang Prabang as a cultural treasure that unites the traditions of eating a large number of living species with very diverse flora and fauna. Measures should be taken to strike a balance between local foraging traditions and nature conservation priorities.

Keywords: Wild edible plants, Wild vegetables, Edible mushrooms, Mekong region, Ethnobotany, Ethnomycology

Background

Open air markets hold an important position for ethnobiologists [1–3]. They are places where one can usually find the plants, animals, and fungi which are most important to a given culture, e.g., commonly eaten fruits, vegetables, or medicinal plants. Of course, some highly valued goods—plants with a sacred status (like entheogens) or illegal items, such as protected bush meat—may not be present in open air markets, but the bulk of most commonly consumed organisms usually is. Ethnobotanical studies of open air markets are a frequent topic of ethnobotanical enquiry and they have been performed in most geographical regions, including several countries of Eurasia (e.g., [4–37]). The oldest known ethnobiological market surveys were carried out by Hungarian and Polish researchers in the early twentieth century, in Budapest [38, 39], Wilno (now Vilnius in Lithuania) [40] and Poznań [41, 42]. Recently, return studies in the markets of Budapest and Poznań showed large changes in the list of sold plants and fungi compared to what was...
sold in the beginning of the twentieth century [4, 43].
Bye’s study from Mexico [1] was another important early
work based on market surveys.

Ethnobiological studies of markets are an ethnobiolo-
gist’s entry point to local food systems. This research
situation allows for establishing quick contact with plant
sellers (who are often responsible for their collection, or
whose families collect the plants for them). The meeting
in a public space enables a quick exchange of informa-
tion of an ethnobiological character, concerning names
of the sold organisms, their occurrence and properties.
One of the disadvantages of market surveys is sometimes
the difficulty of collecting classic voucher specimens, as
usually only organs or parts of plants are on sale [2].
Fortunately, the difficulties in proper biological identifi-
cation of these fragmentary items can be overcome by
DNA barcoding [28, 31, 37].

Bearing in mind how easy it is to perform a mar-
ket study, it is surprising that there are many parts
of the world in which such studies have been made
rarely or not at all. Open air markets are an impor-
tant part of the eastern and south Asian rural eco-
nomy, and even though Asia is the largest, most
populous, and perhaps the most diverse of all conti-
nents, such studies are quite few and far between
([4–33];). Although surveys of wild edible plants and
fungi sold in Southeast Asia are rare, some research
effort has been put into studying the socioeconomic
aspects of “green” open markets in general [44–47]
as well as the contamination of plants with heavy
metals [48] or parasites and pathogens [49–51].
Some studies from Southeast Asia performed in
open air markets concern plant genetic resources
from a single species, genus or family; the identifica-
tion of the main cultivated plants (e.g., [52–56]); or
medicinal plants [24, 57].

Lao PDR is a diverse country with over 40 ethnic mi-
norities and 11 thousand vascular plants species. Due to
the very turbulent political and economic situation in
Southeast Asia in the twentieth century, the biological
diversity of Laos is still poorly described, in spite of in-
creasing efforts to document its Traditional Knowledge
and identify its non-timber forest products [58–69].

No lists of plants or fungi sold in particular markets
have ever been published in Laos apart from a list of
wild vegetables collected in rice fields and sold locally in
Houaphan Province [23]. More surveys concerning ani-
mals, both vertebrates [70–73] and insects [74], have
been performed. Some new species have been found in
Lao markets, e.g., a new species of Impatiens (a dicot
plant) [75] and a new species of rodent belonging to a
new family, which was found being sold for meat in a
local market [76]. Wildlife—both flora and fauna—is
present in most Lao markets. Wild plants and animals
are an important part of national cuisine, both because
of the country’s low economic status, but also because of
low human density, easy access to nature and wide-
spread beliefs about the health benefits of eating wild
foods. In a recent quick survey of 7 Lao markets, mam-
mals from as many as 12 families were recorded for sale
as bush meat [72].

All the towns in Laos have one or a few markets where
both cultivated and wild products are sold. Luang
Prabang is one of the largest towns in Laos, with a popu-
lation of 90,000 people. It is the biggest tourist hotspot
of the country. Luang Prabang used to be the capital of
Laos until 1975 and hosts many monuments important
to the history of the country. As it is located in the cen-
ter of the city, the Morning Market in the center of the
historical part of Luang Prabang is probably the market
most visited by foreigners. In spite of this, although
some products are tourist-oriented, it mainly serves the
local community. Thus, numerous vegetables, fruits, and
wild and domesticated animals are sold there each day.
A few other open air markets are located in the city and
its peripheries.

Lao markets are worth investigating not only in
search of endangered and rare organisms. Lao cuisine
is very rich in ingredients [77] and many wild vegeta-
bles and fungi are gathered. Lao PDR is undergoing
deep cultural changes as it is becomes increasingly in-
volved in the global market economy, and traditional
subsistence economy is gradually being replaced by
commercial agriculture and the tourist industry, espe-
cially in towns. The richness of Lao NTFP products
and local traditions of plant use have attracted a lot
of research attention in the last three decades, but
what is sold in the local markets was never a subject
of study. The traditional foods of the Luang Prabang
royal court in the mid-twentieth century were docu-
mented in a unique cook book written by the king’s
cook, Phia Sing [77]. A provisional list of edible
plants used in Laos was reported by Jaques Vidal in
the mid-twentieth century, with one of the main sites
of observation being Luang Prabang [78–80].

Mushrooms are an important part of Lao cuisine and
a commonly exploited NTFP. That is why they are fea-
tured in many local rural development studies and some
tries have been made to list the fungi species most
commonly sold in Laos [62–65, 81, 82].

Overall, the aim of our study was to make an inven-
tory of wild edible plants and fungi sold in the markets
of Luang Prabang, with special reference to the following
issues:

- Documenting traditional foods.
- Monitoring the presence of any endangered species.
- The possibility of discovering taxa new to science.
Methods

Fieldwork
The most species-rich Morning Market was surveyed regularly in four different seasons (dry season 10th to 19th of February 2018, end of monsoon/beginning of dry season 10th to 18th of November 2019, early monsoon 31st of May to 10th of June 2019 and mid-monsoon 31st of July to 7th of August 2019), each time for 8 to 11 consecutive days—38 days altogether. All the stalls were visited and most of them were photographed. Voucher specimens of wild vegetables and fungi were taken. Unstructured interviews about the uses and origins of each species were carried out with the market’s sellers, with the help of other co-authors or translators. However, they were not recorded. Apart from the Morning Market, four other markets in Luang Prabang (Phousi, Phanluang, Navieng Kham, Sayxoumxon) and two markets 20 km south of Luang Prabang (north of Xiang Ngeun) were also occasionally monitored and visited at least three times during our research. However, the market with the greatest diversity—the Morning Market—was the main focus. A list of sold taxa was compiled for each season. If possible, plants and fungi were preserved as herbarium specimens and deposited in duplicates: in the herbarium of Warsaw University (WA) and the National Herbarium of Laos (NHL).

Plant and fungi identification
Plants were identified using local field guides and literature available in our institutions and internet resources, taking into consideration recent Lao plant checklists [83, 84]. Altogether, 109 specimen vouchers of fungi were analyzed. They were first identified morphologically using the only available guide to the mycota of Laos [82]. The collected voucher specimens were identified with DNA barcoding [85, 86] following the guidelines of accepted methods for DNA barcoding of fungi [87]. Fungal DNA was extracted from a small part of the sporocarp (ca. 1 mm³ of dry mycelium taken from the cap) using a Plant and Fungi DNA Purification Kit (Eurx), following standard protocol. The PCR cocktail consisted of a 4 µl DNA extract, 0.5 µl of each of the primers (ITS5/ITS1f and ITS4 in 10 nmol concentration) and a 5-µl Type-it Microsatellite PCR Kit (Qiagen). PCR was carried out using the following thermocycling conditions: an initial 15 min at 95 °C, followed by 35 cycles at 95 °C for 30 s, 55 °C for 30 s, 72 °C for 1 min, and a final cycle of 10 min at 72 °C. The PCR products were estimated by running a 5-ml DNA amplicon on 1.5% agarose gel for 30 min. The PCR products were sequenced using ITS4 or ITS5 primers at the Laboratory of Molecular Biology of Adam Mickiewicz University (Poznań) and at the Institute of Biology and Biotechnology of the University of Rzeszów. Obtained sequences were compared with published sequences in UNITE databases using the BLAST tool. A positive identification of a specimen was confirmed if they shared > 97% ITS region sequence identity with the reference sequence. Nuclear ITS sequences obtained in this study have been deposited in GenBank [88] (with the accession numbers listed in Table 3). Nomenclature has been accepted according to the species hypothesis described in UNITE [89].

Plant nomenclature follows the Plant List [90] and fungi names follow Index Fungorum [91].

Wild versus cultivated
It is important to bear in mind that the studied area is a complex agroforestry ecosystem—the gardens have many trees and the numerous species that surround villages often come from spontaneous regeneration; thus, it is very difficult to establish if certain products come from planted or wild specimens. This concerns for example trees growing within villages as well as plants that are both cultivated and collected from the wild or merely tolerated within the agroecosystem, being a part of incipient cultivation (see e.g., [92]). We assume that wild and cultivated plants constitute a continuum. In our study, we decided to include all plants which are at least sometimes collected from spontaneously self-seeded specimens or plants and which are considered wild by the local population even if they are also cultivated. In this, we follow the emic approach to classifying whether a wild plant is wild (for a discussion of this approach, see paper by Sõukand and Kalle [93]). A very similar problem in identifying what is wild in a Southeast Asian market was encountered by the researchers in the markets of Khon Kaen in the Isaan Province of Thailand [15]. They wrote: “Given the extent to which rural ecosystems in Northeast Thailand have been subject to continuing human interference for hundreds of years, it is often difficult to determine if a species is truly wild or not. Wild species are defined as species that normally grow under natural conditions without deliberate human management” [15]. Further they give examples of star fruit (Averrhoa carambola L.) and tamarind (Tamarindus indica L.) often self-propagating and considered wild or numerous species transplanted to gardens from wild locations to enhance market yields.

Results
We recorded the sales of 110 species of wild plants for food purposes (Table 1; Figs. 1, 2, and 3). They belong to 49 plant families. The taxa included 86 species of green wild vegetables, 19 species of fruits, and 3 species of flowers. Among plants, the most represented plant families were Fabaceae, Poaceae, Solanaceae, and
Scientific name	Family	Local name	Local name	Voucher Number (WA)	Jun	Aug	Nov	Feb	Parts used	Use		
Acacia concinna (Willd.) DC.	Fabaceae	som poi	นิยมป้อม	72429	x	x	x	x	green parts	in BS and MVS to give them sour taste		
Acacia pennata (L.) Willd.	Fabaceae	phak kan kong	นิยมก่าบ่อย	72440	x	x	x	x	green parts	BS, chicken soup		
Adenanthera pavonina L.	Fabaceae	phak mak lam	นิยมบานม่วง	72466	x				green parts	BS, MVS		
Aegle marmelos (L.) Corrêa	Rutaceae	mak tum	นิยมบานม่วง	72477	x	x	x	x	fruit	tea, also raw; sticky inside to make glue for paper; young leaf tasty but they don't sell it in the market		
Albizia procera (Roxb.) Berth.	Fabaceae	phak thon	นิยมกรอบ						green parts	soup, raw		
Alternanthera sessilis (L.) DC.	Amaranthaceae	phak tan	นิยมบานม่วง	72455	x				green parts	soup, MVS		
Amaranthus spinosus L.	Amaranthaceae	phak hom nam	นิยมบานม่วง	72447	x	x	x	x	green parts	soup, MVS		
Amaranthus viridis L.	Amaranthaceae	phak hom	นิยมบานม่วง	72439	x	x	x	x	green parts	soup, MVS		
Amocalyx microlobus Pierre ex Spire	Apocynaceae	mak sim	นิยมบานม่วง						young fruits	raw or added to dishes to give them sour taste		
Amorphophallus paeoniifolius (Dennst.) Nicolson	Araceae	duk deu	นิยมบานม่วง	72492					stalks	soup, MVS		
Anisomeles indica (L.) Kuntze	Lamiaceae	phak ki on	นิยมบานม่วง						observed in previous years	observed in previous years	green parts	soup, MVS
Antidesma acidum Retz.	Phyllanthaceae	mak mao	นิยมบานม่วง	72493	x				green parts with fruits	green parts added to a soup made with Russula species; always sold placed near a bowl of these mushrooms; fruits are first sour then turn sweet		
Arennga westerhoutii Griff.	Palmae	mak tao	นิยมบานม่วง	72478	x	x			seed, sap for wine	seed to make a sweet dessert, sap for wine		
Averrhoa carambola L.	Euphorbiaceae	mak fu yang	นิยมบานม่วง						fruit	raw, also in salads, chicken soup to give sourness		
Azadirachta indica A. Juss.	Meliaceae	phak ka dao	นิยมบานม่วง	72430	x	x	x	x	green parts	MVS		
Bambusae, including:	Poaceae								shoots	BS, bamboo MVS		
Bambusa blumeana Schultes	Poaceae								shoots	BS, bamboo MVS		
Bambusa longisculpulata Gamble	Poaceae								shoots	BS, bamboo MVS		
Bambusa tulda Roxb.	Poaceae								shoots	BS, bamboo MVS		
Cephalostachyum virgatum (Munro) Kurz	Poaceae								shoots	BS, bamboo MVS		
Gigantochloa albociliata (Munro)Kurz	Poaceae								shoots	BS, bamboo MVS		
Indocalamus petelotii	Poaceae								shoots	BS, bamboo MVS		
Scientific name	Family	Local name	Local name	Voucher Number (WA)	Jun	Aug	Nov	Feb	Parts used	Use		
-----------------------------------	--------------	------------	------------------------------	---------------------	-----	-----	-----	-----	---------------------------	---		
Bauhinia malabarica Roxb.	Fabaceae	phak xiao	บัวบูระเรือ	72448	x	x			green parts	raw and boiled, soup, MVS - added to dishes to give them acidity		
Caesalpinia mimosoides Lam.	Fabaceae	nam phak kha	ตองมิ้น, ตองมิ้น	72418	lv	lv	fl	fl	green parts, flowers	flowers, raw with geaouw, jackfruit salad and other things; young shoots added to dishes to give them sourness		
Calamus viminalis Willd.	Palmae	wai kom	กระยิม						x x x x stalk	burn it for geaw also for soup and ‘o lam’ soup		
Canarium asperum Benth.	Burseraceae	mak bai	มะใบ						shoots	soup, MVS		
Careya arborea Roxb.	Lecythidaceae	phak ka don	มะหว่าจะบิน						green parts	raw, as condiment for spicy salad		
Caryota urens L.	Palmae	nyod tao	ยอดแอก	72491	x	x			inside of stalk	boiled in soup quite rare in the market, highly prized		
Castanopsis hystrix Hook. f. &	Fagaceae	mak ko	มะแอก	72480	x				fruit	after frying		
Celastrus paniculatus Willd.	Celastraceae	mak taek	มะขามแอก	72467	x				green parts	soup, MVS		
Ceratopteryx asiatica (L.) Urb.	Umbelliferae	phak nok	มะขามแอก	72421	x	x	x		green parts	raw or boiled in soup, MVS		
Chlorella sp.	Cladophoraceae	khai	ใบ	72452	x	x	x	x	whole plant (green parts)	sheets of dried algae spiced with sesame and garlic fried as a snack or sidedish; the fresh algae also eaten in a sort of vegetable porridge for breakfast		
Coccinia grandis (L.)o’gilt.	Cucurbitaceae	phak tam nin, phak tam ling	มะแอกมัน, มะแอกมัน	72464	x	x	x	x	green parts	soup, MVS		
Colocasia esculenta (L.)Schott	Araceae	bon van	บัวบูระเรือ	72458	x	x	x	x	leaf stalk	soup, MVS, require longer processing		
Colocasia gigantea (Blume) Hook.f.	Araceae	thoun	บุบ		x	x	x	x	leaf stalk	papaya salad, soup, MVS		
Colubrina longipes Back.	Rhamnaceae	phak kan tong	ตองมัน	72463	x				green parts	soup, MVS		
Commelina diffusa Burm.f.	Commelinaceae	phak kab pi, phak pab	ตองมันบิน, ตองมันบิน		x				green parts	soup, MVS		
Commelina zeylanica Falkenb.	Commelinaceae	phak kab pi, phak pab	ตองมันบิน, ตองมันบิน		x				green parts	soup, MVS		
Crasocephalum crepidioides (Benth.) S.Moore	Asteraceae	nya heu bin	ตองมันบิน	72426	x	x	x		green parts	soup, MVS		
Scientific name	Family	Local name	Local name	Voucher Number (WA)	Jun	Aug	Nov	Feb	Parts used	Use		
-----------------	--------	------------	------------	--------------------	-----	-----	-----	-----	------------	-----		
Jun Aug Nov Feb												
Parts used												
Use												
Number of species												
Cratoxylum cochinchinense	Guttiferae	phak tio	น้ำถั่วจืด	72409	x	x	green parts	soup, MVS				
Cyclea barbata	Menispermaceae	mo noy	เหมืองย้อย	72411	x	x	green parts	soup, MVS				
Daemonorops jenkinsiana (Griff.) Mart.	Palmae	wai	ลายใหญ่	72479	x	x	stalk	burned for geaw also for soup, 'o lam' and MVS				
Delonix regia (Hook.) Raf.	Fabaceae	fang daeng, mak fang	น้ำถั่วมะระ, น้ำมะระ	72490	x	x	preserved fruit	endosperm of seeds eaten after boiling				
Diplazium esculentum (Retz.)Sw.	Woodsiaceae	phak lud	น้ำถั่วอุ่น	72425	x	x	x	green parts	soup and MVS, needs boiling			
Eichhornia crassipes (Mart.) Solms	Pontederiaceae	phak tob	น้ำถั่วป	72487	x	x	green parts	steamed and eaten in salad with sesame, fish sauce, coriander and onion, MVS, soup				
Eleusine indica (L.) Gaertn.	Poaceae	nya phak khuai	น้ำถั่วเผ็ด	72465	x	green parts	MVS					
Eryngium foetidum L.	Umbelliferae	phak hom pe	น้ำถั่วหอมจืด	72422	x	x	x	green parts	aromatic herb added to soups and other dishes			
Erythrina stricta Roxb.	Fabaceae	dok thong, phak thong	น้ำถั่วถีบ, น้ำถีบหนู	72407	x	x	green parts, fruit	young leaves, fruits, raw or 5 min boiling				
Ficus fistulosa Reinw. ex Blume	Moraceae	mak war	น้ำถั่วbanana	x	green parts, fruit	fruit and leaf						
Flacourtia indica (Burm.f.) Merr.	Salicaceae	mak kvien, mak ken ta khuai	น้ำถั่วเห็ด, น้ำถั่วปิ้งก้าว	x	green and ripe fruits	to give acidity to dishes, also raw						
Gnaphalium polycaulon Pers.	Asteraceae	phak kaeb	น้ำถั่วขาว	x	green parts	MVS						
Hibiscus sabdariffa L.	Malvaceae	som pho di	น้ำถั่วส้ม	72511	x	x	fruit	leaf - soup, fruit - soup, jam				
Houttuynia cordata Thunb.	Saururaceae	phak khao thong	น้ำถั่วทะลุ	72427	x	x	x	green parts	raw salad			
Hydrocleys zealanica Vahl	Hydrophyllaceae	phak bi i ian	น้ำถั่วโก้	72461	x	green parts	soup, MVS					
Ipomoea aquatica Forssk.	Convolvulaceae	phak bong	น้ำถั่วบั้ง	72434	x	x	x	green parts	soup, MVS			
Lasia spinosa (L.) Thwaites	Araceae	phak nam, bon nam	น้ำถั่วโบ้, น้ำถั่วบั้ง	72431	x	x	green parts	soup, MVS				
Leucaena leucocephala (Lam.) de Wit	Fabaceae	phak ka thin	น้ำถั่วเมือง	72488	x	x	x	green parts	pods and leaves raw in papaya salad, also in 'lab' meat salad			
Limnocharis flava (L.) Buchenau	Limnocharitaceae	phak khan chong	น้ำถั่วบางจูบ	72424	x	x	x	green parts	soup, MVS			
Limnophila chinensis	Scrophulariaceae	phak kha	น้ำถั่วทอง	72420	x	x	x	green parts	soup, MVS, as an aromatic herb giving flavour			
Scientific name	Family	Local name	Voucher Number (WA)	Jun	Aug	Nov	Feb	Parts used	Use			
-----------------	--------	------------	---------------------	-----	-----	-----	-----	------------	-----			
Juniperus	Scrophulariaceae	nya khai hao	72454	x	green parts	soup, MVS						
Lygodium flexuosum	Lygodaceae	phak kud roy	72437	x	green parts	soup, MVS						
Moringa oleifera	Moringaceae	phak i hoom	72489	x	green parts	soup, MVS						
Oxalis corniculata	Oxalidaceae	som saeng ka	72438	x	x	x	x	green parts	soup			
Pandanus amaryllifolius	Pandanaceae	bai toey	72482	x	x	x	x	green parts	soup, MVS			
Passiflora edulis	Passifloraceae	mak nong	72459	x	x	x	x	green parts	soup, MVS			
Pattieria	Passiaceae	phak kud	72471	x	x	x	x	green parts	soup, MVS			

(Continued...)

Łuczaj et al. Journal of Ethnobiology and Ethnomedicine (2021) 17:6 Page 7 of 27
Scientific name	Family	Local name (WA)	Use							
Phyllanthus emblica L.	Euphorbiaceae	mak kaam pom	soup, MVS							
Piper ribesoides Wall., Piper interruptum Opiz.	Piperaceae	sa khan	stalk							
Piper sarmentosum Roxb.	Piperaceae	phak iloed	green parts							
Polygonum odoratum Lour.	Polygonaceae	phud phaeng	aromatic herb added to soups, MV and other dishes							
Protium serratum (Wall.ex Colebr.)Engl.	Burseraceae	mak phaen	ripe fruits used to give acid taste to dishes							
Rhus chinensis Mill.	Anacardiaceae	som fad	used to add sour taste to dishes							
Sauropsis androgynus (L.) Merr.	Euphorbiaceae	phak wan ban	soup, MW							
Schleichera oleosa (Lour.) Merr.	Sapindaceae	mak ko som	used to give acid taste to dishes							
Sechium edule (Jacquin) Swartz	Cucurbitaceae	phak soe, mak soe	soup, MW							
Sesbania grandiflora (L.) Poir.	Fabaceae	phak khae khae, dok khae	flowers, green parts, raw							
Solanum barbisetum Nees	Solanaceae	mak pu mak nya	raw							
Solanum indicum L.	Solanaceae	mak kaen kon	fruit							
Solanum latiscapum Dunal	Solanaceae	mak oek	papaya salad							
Solanum nigrum L.	Solanaceae	phak did nam	soup, MW, also used raw							
Solanum spirale Roxb.	Solanaceae	mak did	soup, MW							
Spilanthes acmella (L.) Kurz	Asteraceae	phak khad hun	raw, but mostly in soups, MVS, ‘o lam’							
Spilanthes paniculata Wall. ex DC.	Asteraceae	phak khad dok roy	soup, MW							
Spondias pinnata (Koenig ex Lf.)Kurz	Anacardiaceae	mak kok	fruit grilled for geauw, also chicken soup, o lam, also raw							
Scientific name	Family	Local name (WA)	Local name	Voucher Number (WA)	Jun	Aug	Nov	Feb	Parts used	Use
------------------------------	-------------------	-----------------	------------	---------------------	-----	-----	-----	-----	-------------	--
Tamarindus indica L.	Fabaceae	mak kham			x	x	x	x	fruit	raw or paste as condiment
Tiliacora triandra Diels.	Menispermaceae	bai ya nang		72433	x	x	x	x	green parts	used to make yanang water used in bamboo soup
Trapa natans L.	Trapaceae	mak ka chap		72514					fruit	boiled snack
Zanthoxylum retsa (Roxb.)DC.	Anacardiaceae	mak khaen		72486	x	x	x	x	fruit (seed coating)	spice for all foods
Zizyphus sp.	Rhamnaceae	mak ka than				x			fruit	raw snack
unidentified		mak noy tai							fruit	raw snack
unidentified		phak i tu							green parts	soup. MW
unidentified		phak dit pa							green parts	soup. MW

Abbreviations: BS bamboo soup, MVS mixed vegetable salad, lv leaves, fl flowers, fr fruit
Fig. 1 (See legend on next page.)
Scrophulariaceae. Woody plants (trees, shrubs, and woody vines) constitute exactly half (50%) of the plants sold, and among them 36% are trees (bamboos were not included in this calculation).

The largest number of taxa was available in the early monsoon season (June), with a slightly lower number in the mid-monsoon and on the turn of the monsoon and dry season. A much lower choice of plants was available in the dry season (Table 1). However, in each season (observation period), some plants were observed which were not present in other periods.

Molecular investigation and morphological observation revealed a total of 54 fungal taxa from 17 fungi families (Tables 2 and 3; Figs. 3, 4, 5, and 6). Of these, 37 taxa were assigned down to species level and the rest to genus level. Russulaceae was best represented among fungi. The extraction of genetic material failed for some specimens; therefore, they could only be identified morphologically. The most common fungi sold in open air market were russuloid fungi, representing 16 taxa. Within this group, seven taxa were identified to species level and nine to genus level. Some differences between obtained sequences were recorded in this group. The phylogenetic analysis of ITS sequences placed these taxa in separate clades. Therefore, 9 unique taxa of unidentified Russula species have been distinguished, each with low similarity to the reference sequence (Table 3). Additionally, the differences between obtained Russula’ sequences was higher than 3%, which is the expected level of interspecific variation for fungi within ITS. This allows us to assume that a large number of extremely rare Russula, with no reference sequences represented in databases, or even species unknown to science may be present on sale in the markets.

Discussion

The number of food taxa sold in the studied markets is remarkable on a world scale (see e.g., a list of ethnobotanical market studies in Eurasia in a recent paper about Armenia [94]). We should especially note the long list of 54 fungal species sold, comparable to some of the markets of Mexico (over 90 species sold in 12 local markets [95] and 40 species in another market [96]) and Central Europe, e.g., Poland—32 species in Rzeszów [31], 56 species in Poznań [41] or Hungary, with 38 species in Budapest [38, 39]. Such a large number of fungi on sale have not yet been recorded anywhere in Asia outside Laos. Only 6 fungi species have been recorded in the Isaan Province of Thailand, which is culturally very close to Laos [15]. Two studies from Yunnan, China, both found 18 species of fungi on sale [14, 32]. In Armenia, 12 species of fungi are sold in the markets of its capital city—Yerevan [94]. Some of the Russula taxa recorded on sale in Luang Prabang may potentially be new species, but, due to the extremely complex taxonomy of the genus, we did not undertake the challenge of describing them. Also, some taxa found in the markets, i.e., Pisolithus orientalis, Polyporus usd, and Calvatia sp. have not been reported as used for consumption in Laos before.

The number of wild food plants—110—is also impressive. For comparison, in Khon Kaen (Bang Lam Phu) located in the Isaan Province, a neighboring region of Thailand, Shirai et al. recorded only half as many species (54) as we found in Luang Prabang [15]. Out of these 54 species 22 were recorded in Luang Prabang as well. In Jinping, Yunnan, China, 35 species of wild food plants were sold in markets [97]; in an area of Assam, India—29 [25]; in the Ukhrul District of Manipur, India [26]—55; and only 28 species of wild vegetables (out of 132 of all the plant taxa in the market) were found in a study of 10 markets in Myanmar [98].

The diversity of wild food plants sold can only be compared to Xishuangbangna in Yunnan, China, where 146 species were recorded in 10 markets [14]; to Armenia, where in Yerevan, the capital of the country, 148 wild food species were recorded on sale [94]; or to Turkey, where 143 wild edible plants were found in Mugla, Bodrum [9].

A large group of species sold are wild vegetables: leaves, shoots, inner stems, or flowers which are ingredients of traditional dishes. They are mainly used to make a dish called soup phak, a gently boiled salad flavored with spices. Sometimes the species are sold in a mix. A previous paper from another part of Laos (Houphuan) reports the use of mainly wild vegetable mixes [23], but here in Luang Prabang, most species are sold in bunches of single species. Only small rice field weeds are sold in a mix.

It is worth emphasizing that a large proportion of wild vegetables in the markets of Luang Prabang come from woody taxa. In most countries, agricultural weeds

Fig. 1 Selected edible plants sold in the markets. a–c Caesalpinia mimosoides: shoots (a), flowers (b), and flowers in traditional unripe jackfruit salad sold in the morning market; ferns: d Lygodium flexuosum. e Diplazium esculentum. f Marsilea crenata. g o laim, a traditional Luang Prabang stewed dish containing numerous wild ingredients served in restaurants in the city; some of its ingredients include wood of sakhan pepper (Piper ribesoides) (h) and juice from bai yanang (Tilia cordata) leaves (i). j Flowers of Markhamia stipulata. k–m Orophyllum indicum: flowers (k), unripe fruits (l); young leafy shoots (m).
Fig. 2 Selected edible plants sold in the markets. a Processed fruits of *Delonix regia*. b Fruits of *Livistona saribus*. c Young shoots of *Eleusine indica*. d–f *Cladophora* sp., raw plants (d), fried (e), boiled served as breakfast soup in the market (f). g *Moringa oleifera*. h *Acacia pennata*. i *Leucaena leucocephala*. j *Trapa natans*. k *Acacia concinna*. l Sellers of wild vegetables. m A mix of wild vegetables, mainly weeds of rice fields.
Fig. 3 Selected edible fungi and plants sold in the markets.

- **a** Auricularia spp., mainly *A. delicosa*.
- **b** Pleurotus giganteus.
- **c** Flowers of *Sesbania grandiflora*.
- **d** *Cratoxylum cochinchinense*.
- **e** *Lasia spinosa*.
- **f** *Limnocharis flava*.
- **g** *Melianta suavis*.
- **h** *Neptunia oleracea*.
- **i** *Pandanus amaryllifolius*.
- **j** *Piper sarmentosum*.
- **k** *Bauhinia malabarica*.
- **l** *Crassocephalum crepidioides*.
Table 2: List of the recorded fungi taxa

Scientific name	Family	Local Lao name transliteration	Local Lao name	Feb	Jun	Aug	Nov	Use	Status
Amanita hemibapha (Berk. & Broome) Sacc. 1887	Amanitaceae	het la ngok leuang	毡帽鹅膏菌	x	x			food	wild
Amanita princeps Corner & Bas 1962	Amanitaceae	het la ngok khoa	毡帽鹅膏菌	x	x			food	wild
Amanita sp.	Amanitaceae	het la ngok	毡帽鹅膏菌	x	x			food	wild
Astraeus odoratus Phasri, Watling, M.P. Martin & Whalley 2004	Diplocystidiaceae	het pho	蜜环菌	x				food	wild
Auricularia spp., including:	Auriculariaceae	het hou nou	耳杯菌	x	x	x		food	wild
Auricularia aff. lbrilléa Kobayasi 1973									
Auricularia delicata (Mont. ex Fr.) Henn. 1893									
Auricularia mesenterica (Dicks.) Pers. 1822 or A. asiatica Bandara & K.D. Hyde 2016									
Auricularia nigricans (Sw.) Birkebak, Looney & Sánchez-García 2013									
Boletus aff. gertrudiae Peck 1911	Boletaceae	het pheung	骆驼菌					food	wild
Boletus reticulatus Schaeff. 1763	Boletaceae	het pheung	骆驼菌					food	wild
Calvatia sp.	Agaricaeae	het thang						food	wild
Cantharellula sp.	Cantharellaceae	het saet						food	wild
Cantharellus spp.	Cantharellaceae	het saet						food	wild
Clavulina sp.	Cantharellaceae	het nuat						food	wild
Flammulina velutipes (Curtis) Singer 1951	Agaricaeae	het sen nyai						food	wild
Ganoderma gibbosum (Cooke) Pat. 1897	Ganodermataceae	het lin chu						medicine sold to Chinese tourists	wild
Ganoderma sp.	Ganodermataceae	het lin chu						medicine sold to Chinese tourists	wild
Lactifluus pinguis (Van de Putte & Verbeken) Van de Putte 2012 and Lactifluus volemus (Fr.) Kuntze 1891	Russulaceae	het hat						food	wild
Lentinula edodes (Berk) Pegler 1976	Omphalotaceae	het horn						food	cultivated
Lentinus polychrous Lév. 1844	Polyporaceae	het bot						food	wild
Lentinus squarrosulus Mont. 1842	Polyporaceae	het khoa						food	wild
Leucoagaricus meleagris (Gray) Singer 1951*	Agaricaeae	not recorded*						food	wild
Macrocybe gigantea (Massee) Pegler & Lodge 1998	Tricholomataceae	het tin sang						food	cultivated
Scientific name	Family	Local Lao name transliteration	Local Lao name	Feb	Jun	Aug	Nov	Use	Status
-----------------	--------	--------------------------------	----------------	-----	-----	-----	-----	-----	--------
Phlebopus portentosus (Berk. & Broome) Boedijn 1951	Boletinaceae	het pheung	het pheung	x	x	x	x	food	wild
Pisolithus orientalis Watling, Phosri & M.P. Martin 2012	Sclerodermataceae	het mak kheua	het mak kheua	x	food	wild			
Pleurotus aff. ferulaginis Zervakis, Venturella & Cattar. 2014	Pleurotaceae	het nang lom	het nang lom	x	x	x	x	food	wild
Pleurotus eryngii (DC.) Quél. 1872	Pleurotaceae	het tin haet	het tin haet	x	x	x	x	food	cultivated
Pleurotus giganteus (Berk) Karun. & K.D. Hyde 2011	Pleurotaceae	het sang	het sang	x	x	x	x	food	wild
Pleurotus pulmonarius (Fr.) Quél. 1872	Pleurotaceae	het nang lom	het nang lom	x	x	x	x	food	cultivated
Polyporus udus Jungh. 1840	Polyporaceae	het ting moi	het ting moi	x	x	x	x	food	wild
Russula spp., all species sold mixed together, including:	Russulaceae	large variety of names used, e.g. het din, het nam mak, het le dou, het kok	large variety of names used, e.g. het din, het nam mak, het le dou, het kok	x	x	x	x	food	cultivated

Russula alboareolata Hongo 1979
Russula delica Fr. 1838
Russula faustiana Samari 1992
Russula integra (L) Fr. 1838
Russula paludosa Britzelm. 1891
Russula sp. 1
Russula sp. 2
Russula sp. 3
Russula sp. 4
Russula sp. 5
Russula sp. 6
Russula sp. 7
Russula sp. 8
Russula sp. 9
Russula subfoetens W.G. Sm. 1873
Russula virescens (Schaeff) Fr. 1836
Schizophyllum commune Fr. 1815
Schizophyllaceae | het khaen | het khaen | x | x | x | x | food | wild |
Termitomyces fuliginosus R.Heim 1951
Termitomyces eurrhizus (Berk) R. Heim 1942
Termitomyces heimii Natarajan 1979
Lyophyllaceae | het khon kao | het khon kao | x | x | x | x | food | wild |
Lyophyllaceae | het pouak | het pouak | x | x | x | x | food | wild |
Table 2 List of the recorded fungi taxa (Continued)

Scientific name	Family	Local Lao name transliteration	Local Lao name	Feb	Jun	Aug	Nov	Use	Status
Termitomyces microcarpus (Berk. & Broome) R. Heim 1941	Lyophyllaceae	het kai noy	x	x	x	food	wild		
Volvariella volvacea (Bull) Singer 1951	Pluteaceae	het feuong	x	x	x	x	food	wild and cultivated	
unidentified	?	het hai	x			food	wild		

A single fruiting body found in the market, it may have been mistakenly collected instead of some other species.
Voucher no. starting from WA00000	Accession number	Molecular identification	Best match sequence	E value	Similarity (%)
72234		Amanita hemibapa	m. i.		
72249	MT252579	Amanita hemibapa	KY349225	0.0	97.33
72256	MT252585	Amanita princeps	UDB033485	0.0	99.43
72255	MT252584	Amanita sp.	MH508508	0.0	90.97
72263		Amanita sp.	m. i.		
72212	MT252558	Astraeus odoratus	LC307160	0.0	100.0
72205		Auricularia aff. fibrillifera	m. i.		
72172	MT252524	Auricularia delicata	KX022020	0.0	99.64
72174	MT252526	Auricularia delicata	KX022020	0.0	99.64
72181	MT252533	Auricularia delicata	KX022020	0.0	99.64
72216	MT252562	Auricularia delicata	KX022020	0.0	99.64
72220	MT252566	Auricularia mesenterica	UDB033860	0.0	99.82
72171	MT252523	Auricularia nigricans	KY293392	0.0	99.8
72173	MT252525	Auricularia nigricans	KY293392	0.0	99.8
72191	MT252541	Auricularia nigricans	KY293392	0.0	99.82
72209	MT252555	Auricularia nigricans	FJ617292	0.0	100.0
72217	MT252527	Auricularia sp.	UDB033911	0.0	99.64
72182	MT252534	Auricularia sp.	UDB033911	0.0	99.28
72233		Boletaceae	m. i.		
72250		Boletaceae	m. i.		
72272		Boletus aff. gertrudiae	m. i.		
72217	MT252563	Boletus reticulatus	UDB032667	0.0	100.0
72244	MT252569	Boletus reticulatus	UDB032667	0.0	100.0
72230	MT252570	Boletus reticulatus	UDB032667	0.0	100.0
72240	MT252575	Boletus reticulatus	UDB032667	0.0	100.0
72275	MT252596	Calvatia sp.	MNS23227	0.0	99.11
72238		Cantarellus sp.	m. i.		
72189		Cantharellaceae	m. i.		
72187		Cantharellula sp.	m. i.		
72204	MT252552	Cantharellus sp.	X907211	0.0	96.54
72241		Cantharellus sp.	m. i.		
72242		Cantharellus sp.	m. i.		
72247		Cantharellus sp.	m. i.		
Table 3 The list of voucher specimens and the results of DNA barcoding (Continued)

Voucher no. starting from WA00000	Accession number	Molecular identification	Best match sequence	E value	Similarity (%)
72267		*Cantharellus* sp. 2		m. i.	
72262	MT252590	*Clavulina* sp.		0.0	90.2
72278	MT252597	*Ganoderma gibbosum*	UDB013455	0.0	99.6
72225		*Ganoderma* sp.		m. i.	
72226		*Ganoderma* sp.		m. i.	
72227		*Ganoderma* sp.		m. i.	
72228		*Ganoderma* sp.		m. i.	
72180	MT252532	*Lactifluus pinguis*	HQ318263	0.0	98.22
72261	MT252589	*Lactifluus volmus*	HQ318269	0.0	99.83
72235		*Lactifluus/Lactarius* sp.		m. i.	
72236		*Lactifluus/Lactarius* sp.		m. i.	
72192	MT252542	*Lentinula edodes*	MH444818	0.0	98.38
72206	MT252553	*Lentinula edodes*	MH444818	0.0	99.54
72186	MT252538	*Lentinus polychrous*	KX239770	0.0	98.54
72170	MT252522	*Lentinus squarrosulus*	UDB034239	0.0	99.79
72210	MT252556	*Lentinus squarrosulus*	UDB034239	0.0	98.78
72211	MT252557	*Lentinus squarrosulus*	UDB034239	0.0	99.79
72218	MT252564	*Lentinus squarrosulus*	UDB034239	0.0	98.78
72196		*Lentinus squarrosulus*		m. i.	
72198		*Lentinus squarrosulus*		m. i.	
72219	MT252565	*Leucoagaricus meleagris*	MK412590	0.0	99.48
7244	MT252576	*Leucoagaricus* sp.	KP012716	0.0	100.0
72195	MT252544	*Macrocybe gigantea*	MK024240	0.0	99.83
72259		*Macrocybe gigantea*		m. i.	
72269	MT252593	*Macrocybe gigantea*	MK024240	0.0	99.32
72222		*Phlebopus portentosus*		m. i.	
72232	MT252572	*Phlebopus portentosus*	KJ489037	0.0	100.0
72224	MT252595	*Pisolithus orientalis*	UDB034465	0.0	99.56
72207		*Pleurotus aff. feruliginis*		m. i.	
72208	MT252554	*Pleurotus eryngii*	MH517521	0.0	99.68
72266	MT252591	*Pleurotus giganteus*	UDB032675	0.0	99.63
72190	MT252540	*Pleurotus pulmonarius*	MN239983	0.0	100.0
72257	MT252586	*Pleurotus pulmonarius*	MN239983	0.0	99.52
72260	MT252588	*Pleurotus pulmonarius*	MN239983	0.0	99.84
Voucher no. starting from WA00000	Accession number	Molecular identification	Best match sequence	E value	Similarity (%)
----------------------------------	------------------	--------------------------	---------------------	---------	----------------
72214	MT252560	*Polyporus udus*	KX851643	0.0	100.0
72251	MT252580	*Russula alboareolata*	AF345247	0.0	99.59
72291	MT252574	*Russula delica*	JN969380	0.0	97.96
72194	MT252543	*Russula faustiana*	KX655858	0.0	99.5
72177	MT252529	*Russula integra*	LC176765	0.0	99.5
72178	MT252530	*Russula integra*	LC176765	0.0	99.84
72270	MT252594	*Russula paludosa*	KU552086	0.0	97.0
72197		*Russula sp. 1*	m. i.		
72176	MT252528	*Russula sp. 2*	FJ455025	0.0	94.25
72198	MT252546	*Russula sp. 2*	FJ455025	0.0	94.25
72200	MT252548	*Russula sp. 3*	UDB025264	0.0	99.24
72210	MT252549	*Russula sp. 4*	UDB000893	0.0	90.13
72221	MT252567	*Russula sp. 5*	UDB025229	0.0	96.76
72248	MT252578	*Russula sp. 6*	AB854696	0.0	99.72
72258	MT252587	*Russula sp. 6*	AB854696	0.0	99.7
72252	MT252581	*Russula sp. 7*	KY774273	0.0	94.22
72254	MT252583	*Russula sp. 8*	KU141238	0.0	98.06
72268	MT252592	*Russula sp. 9*	JQ991785	0.0	94.38
72202	MT252550	*Russula subfoetens*	KF002757	0.0	98.3
72185	MT252537	*Russula virescens*	UDB033741	0.0	100.0
72199	MT252547	*Russula virescens*	UDB033882	0.0	99.49
72203	MT252551	*Russula virescens*	UDB033882	0.0	99.4
72253	MT252582	*Russula virescens*	UDB033741	0.0	99.85
72183	MT252535	*Schizophyllum commune*	MK910772	0.0	100.0
72215	MT252561	*Schizophyllum commune*	MK910772	0.0	100.0
72231	MT252571	*Termitomyces eurrhizus*	HM230658	0.0	99.14
72245		*Termitomyces eurrhizus*	m. i.		
72273		*Termitomyces eurrhizus*	m. i.		
72271		*Termitomyces fuliginosus*	m. i.		
72196	MT252545	*Termitomyces heimii*	MK920156	0.0	99.4
72246	MT252577	*Termitomyces microcarpus*	UDB034442	0.0	100.0
72264		*Termitomyces microcarpus*	m. i.		
72276		*Termitomyces microcarpus*	m. i.		
Voucher no. starting from WA00000	Accession number	Molecular identification	Best match sequence	E value	Similarity (%)
----------------------------------	------------------	--------------------------	---------------------	---------	----------------
72277		*Termitomyces microcarpus*			
72179	MT252531	*Termitomyces* sp.	KX646696	0.0	99.57
72184	MT252536	*Termitomyces* sp.	KX646696	0.0	99.42
72188	MT252539	*Termitomyces* sp.	KX646696	0.0	99.57
72223	MT252568	*Termitomyces* sp.	KX646696	0.0	99.24
72229		*Termitomyces* sp.			
72237	MT252573	*Termitomyces* sp.	KY679707	0.0	99.61
72193		Unidentified	No PCR product		
72213	MT252559	*Volvariella volvacea*	U15973	0.0	99.83

* m. i. failure to obtain genetic material, morphological identification only
Fig. 4 Selected edible fungi sold in the studied markets.

- **A. Astraeus odoratus**
- **B. Pisolithus orientalis**
- **C. Calvatia sp.**
- **D-F. Polyporus udus**
- **G. Macrocybe gigantea**
- **H. Clavulina sp.**
- **I. Schizophyllum commune**
- **J. Boletus cf. gertrudiae**
- **K. B. reticulatus**
- **L. Phlebotus portentosus**

Łuczaj et al. Journal of Ethnobiology and Ethnomedicine (2021) 17:6 Page 21 of 27
Fig. 5 Selected edible fungi sold in the studied markets. a. Amanita hemibapha. b. Amanita princeps. c. Amanita sp. d. Lentinus squarrosus. e. L. polychrous. f. Lactarius pinguis. g. L. volemus. h. Termitomyces microcarpus. i. T. eurhizus. j. T. fuliginosus. k. The diversity of Cantharellus spp. l. Termitomyces heimii
Fig. 6 (See legend on next page.)
(predominantly annually and biennials) dominate among currently used wild vegetables. The Mediterranean and many parts of China are examples of such places. However, in more wooded areas with a high level of biodiversity, local populations preserve the knowledge about the edibility of local, indigenous woody plants. This is the case in the Qingling Mountains in Shaanxi, China, where—similarly to Lao PDR—young shoots of many species of local trees and shrubs are used for food [99].

Even though we recorded much higher numbers of wild plants and fungi than in any other previous study from Southeast Asia, we suspect that even more species may still occasionally appear due to the extreme diversity of ingredients used by the population of Lao PDR. We hope this is only the beginning of a more detailed surveillance of Lao markets. This also applies to animals, which, as has been pointed out by Greatorex et al. [72], are a potential epidemiological hazard, as proven by the recent coronavirus epidemic [100].

The ongoing process of modernization of Lao society may bring a decrease in the number of taxa used. In some cases (protected animals), this may be with benefit to nature. In the case of plants and fungi, the taxa for sale are common species originating from rice fields, gardens, and nearby forests, exploited to a level which does not endanger them. Forgetting them may bring large loss to the rich Lao culinary tradition. Fortunately, all the ingredients listed in the Phia Sing’s recipe book of the Lao royal court in Luang Prabang (including all the species of fungi) can still be found in markets, which demonstrate Lao cuisine’s great resistance to change. We did detect some identification mistakes in Phia Sing’s book: the plant listed as mak deed is not Ardisia crispa, but Solanum spirale Roxb., phak tam ling/phak tam nin listed as Melothria heterophylla is actually Coccinia grandis (L.) Voigt.

The large knowledge of forest products in Lao PDR can also serve as a model for tropical organic and permaculture movements, which advocate an increase in the number of food taxa we utilize with a minimal impact on nature [101]. However, this should be done without over-harvesting natural resources. Unfortunately, with the increasing population of Southeast Asia and the culinary popularity of “bush food”, there is a danger that many species will become decimated [100]. Fortunately, our study found that it is mainly common weeds and semi-cultivated common tropical trees that are used as food sources, while the danger of over-harvesting fungi is very unlikely and usually does not impact mushroom populations [102].

We hope that our study will add to the knowledge of edible fungi in SE Asia and help to distinguish them from the toxic taxa. This especially concerns the genus Amanita. There are many cases of fungi poisoning in Lao PDR. The recently published first atlas of Lao fungi [82] aims to help collectors, but many of the photographed taxa are only identified to the genus level and marked with numbers—this shows the vast need to perform mycotaxonomic and ethnomycolological studies in Lao PDR.

The availability of the lists of wild food plants used in particular areas, especially those sold in markets, is very important both on a local and on a global scale. Such research on local food items allows for the recording of traditional products. Their exact taxonomic identification will make further phytochemical and nutritional research easier and enable the characterization of local food culture, which if properly advertised, can highly improve the livelihoods of local populations through international marketing and increasing these products’ prices. The lists of plants used can also help increase existing local efforts to popularize Lao cuisine among tourists online [103] and by a small ethnobotanical market guidebooks [104]. Moreover, it enables the detection of protected species sold in the markets. On a global scale, the inventorying of all wild foods is an important task for developing further strategies for improving the nutrition of the human population and food security [31, 94, 105–108].

Conclusions
The markets of Luang Prabang are very rich in wild edible plants, especially in wild vegetables originating from woody species. The list of fungi sold in them is the longest ever recorded in Asia. The incredible biological diversity we found there has urged us to make similar documentation in other large market towns of Lao PDR.

Authors’ contributions
The first author conceived the study and took part in all the field visits and interviews. KP and VL identified the plants. MP and MK identified the fungi. Other authors took part in some of the interviews and manuscript preparation. The authors read and approved the final version of the paper.

Funding
The research was financed by the University of Rzeszów and private funds of the first author, as well as the Institute of Dendrology (Polish Academy of Sciences).
Availability of data and materials
For voucher specimens, see “Methods” section.

Ethics approval and consent to participate
The research adhered to the local traditions for such research, the Code of Ethics of the International Society of Ethnobiology [109]. Prior oral informed consent was obtained from all study participants. Copies of voucher specimens were transferred to Poland with the Material Transfer Agreement received from the authorities of Lao PDR. The research was carried out in close cooperation with the Ministry of Science and Technology of Lao People’s Democratic Republic and the regional authorities of Luang Prabang.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Biology and Biotechnology, ul. Pigionia 1, 35-310 Rzeszów, Poland. 2Department of Biology, Faculty of Natural Sciences, National University of Laos, Vientiane, Lao People’s Democratic Republic. 3Pha Tad Ke Botanical Garden, Ban Wat That, PO Box 959, 06000 Luang Prabang, Lao People’s Democratic Republic. 4Biotechnology and Ecology Institute, Ministry of Science and Technology, Doon Teaw Village, Km 14 Office, Thangon Road, Xaythany District, PO Box 2279, Vientiane, Lao People’s Democratic Republic. 5Department of Science and Technology, Luang Prabang, Lao People’s Democratic Republic. 6Department of Science, Ministry of Science and Technology, Doon Teaw, Km 14, Thangon Road, Xaythany District, PO Box 2279, Vientiane, Lao People’s Democratic Republic. 6Department of Science, Ministry of Science and Technology, Lao People’s Democratic Republic. 7Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.

Received: 11 June 2020 Accepted: 28 October 2020
Published online: 26 January 2021

References
1. Bye RA: Medicinal Plants of the Sierra Madre: Comparative Study of Tarahumara and Mexican Market Plants. Econ Bot. 1986;40(1):103–24.
2. Nguyen ML, Doherty KT, Wieting J. Market survey research: a model for ethnobotanical education. Ethnobot Res Appl. 2008;17(6):87–92.
3. Mati E, de Boer H. Ethnobotany and trade of medicinal plants in the Qaysari market, Kurdish Autonomous Region. Iraq. J Ethnopharmacol. 2011;133(2):490–510.
4. Sucholas J. Zioł i rośliny świąteczne miejskiego targowiska w Poznaniu (Wielkopolska): powrót do badań Szułczewskiego po 80 latach. Herbs and ceremonial plants of the urban marketplace in Poznan (Greater Poland): Szułczewski’s study revisited after 80 years. Etnobiologia Polska. 2016;6:34–51.
5. Bussmann RW, Panigrazi Z, Narell V, Sikharulidze S, Kikvidze Z, Kikodze D, Tchelidze D, Batasashvili K, Robb J, Plants in the spa—the medicinal plant market of Botomari, Sakartvelo (Republic of Georgia). Caucasian. Indian J Tradit Know. 2017;16:25–34.
6. Karosou R, Deimtenzoglou S. The herbal market of Cyprus. Traditional links and cultural exchanges. J Ethnopharmacol. 2011;133(1):191–203.
7. Hanlidou E, Karousou R, Kleftoyanni V, Kokkini S. The herbal market of Thessaloniki (IN Greece) and its relation to the ethnobotanical tradition. J Ethnopharmacol. 2009;128:281–90.
8. Łuczaj L, Zovko-Konič M, Miličević T, Dolina K, Pandža M. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia). J Ethnobiol Ethnomed. 2013;9:2.
9. Ertug F. Wild Edible Plants of the Bodrum Area (Mugla, Turkey). Turk J Bot. 2004;28:161–74.
10. Dogan Y, Ugalu I, Durkan N. Wild edible plants sold in the local markets of İzmir, Turkey. Pak. J Bot. 2013;45(51):177–84.
11. Nedelecheva A, Dogan Y. An ethnobotanical study on wild medicinal plants sold in the local markets at both sides of the Bulgarian–Turkish border. Planta Med. 2015;81(B1):16.
12. Dogan Y, Nedelecheva A. Wild plants from open markets on both sides of the Bulgarian-Turkish border. Ind J Tradit Know. 2015;14(3):351–8.
13. Pemberton RW, Lee NS. Wild food plants in South Korea; Market presence, new crops, and exports to the United States. Econ Bot. 1996;50(1):57–70.
14. Xu YK, Tao GD, Liu HW, Yan KL, Diao XS. Wild vegetable resources and market survey in Xixiuhangbang–southwest China. Econ Bot. 2004;58(4):647–67.
15. Shira Y, Rambo AT. Urban Demand for Wild Foods in Northeast Thailand: A survey of edible wild species sold in the Khon Kaen municipal market. Ethnobot Res Appl. 2014;12:113–29.
16. Konsam S, Thongam B, Handique AK. Assessment of wild leafy vegetables traditionally consumed by the ethnic communities of Manipur, northeast India. J Ethnobiol Ethnomed. 2016;12:21.
17. Vlkova M, Verner V, Kandakov A, Poloszey Z, Karabov N, Pawera L, Nadvršnikova I, Banout J. Edible plants sold on marginal rural markets in Fergana Valley, southern Kyrgyzstan. Bulg J Agricult Sci. 2015;21(2):243–50.
18. Hannayun M, Khan MA, Begum S. Marketing of medicinal plants of Utror-Gravelis Valleys, Swat, Pakistan. Ethnobot Leaflets. 2003;2003(1):13.
19. Amiri MS, Joharchi MR. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J Phytother. 2013;3:254–71.
20. Kumar V, Jain SK. Plant products in some tribal markets of central India. Econ Bot. 2002;56(3):242–5.
21. Li DL, Zheng XL, Duan L, Deng SW, Ye W, Wang AH, Xing FW. Ethnobotanical survey of herbal tea plants from the traditional markets in Chaoshan, China. J Ethnopharmacol. 2017;205:195–206.
22. Slášić M, Walujo EB, Supriatna J, Mangurwardoyo W. The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia. J Ethnopharmacol. 2015;175:432–43.
23. Kosaka Y, Kayyonga L, Villaphone A, Chanthavong H, Takeda S, Kato M. Wild edible herbs in paddy fields and their sale in a mixture in Houaphan Province, the Lao People’s Democratic Republic. Econ Bot. 2013;67(4):335–49.
24. Nguyen TS, Xia NH, Van Chu T, Van Sam H. Ethnobotanical study on medicinal plants in traditional markets of Son La province, Vietnam. Forest Soc. 2019;3(2):171–92.
25. Kar A, Borthakur SK. Wild vegetable sold in local markets of Karbi Anglong, Assam. Indian J Tradit Know. 2007;6(1):169–72.
26. Salam S, Jamir NS, Singh PK. Wild leafy vegetables sold in local markets in Ukhrul District of Manipur, India. Pleione. 2012;6(2):298–303.
27. Zhang L, Zhuang H, Zhang Y, Wang L, Zhang Y, Geng Y, Gou Y, Pei S, Wang Y. Plants for health: An ethnobotanical 25-year repeat survey of traditional medicine sold in a major marketplace in North-west Yunnan, China. J Ethnopharmacol. 2018;224:119–25.
28. Martin G. Searching for plants in peasant market-places. In: Plotkin MJ, Famolare L, editors. Sustainable harvest and marketing of rainforest products. Washington, DC: Island Press, Washington; 1992. p. 212–23.
29. Cruz-Garcia G, Laguzen-Rivera L, Chavez-Angeles MG, Solano-Gomez R. The Wild Orchid Trade in a Mexican Local Market: Diversity and Economics. Econ Bot. 2015;69(4):291–305.
30. Boa E. Wild edible fungi: a global overview of their use and importance to people. Non-wood forest products 17. Rome: FAO; 2004.
31. Kaper-Pakosz R, Pietras M, Łuczaj L. Wild and native plants and mushrooms sold in the open-air markets of south-eastern Poland. J Ethnobiol Ethnomed. 2016;12(1):45.
32. Liu D, Cheng H, Bussmann RW, Guo Z, Liu B, Long C. An ethnobotanical survey of edible fungi in Chuxiong City, Yunnan, China. J Ethnopharmacol. 2018;194(1):352.
33. Sulini AA, Sabran SF. Edible and medicinal plants sold at selected local markets in Batu Pahat, Johor, Malaysia. InAIP Conference Proceedings. 2018;2001(020006). https://doi.org/10.1063/1.5050102. AIP Publishing. Accessed 3 Oct 2020.
34. de Albuquerque UP, Monteiro JM, Ramos MA, de Amorim EL. Medicinal and magic plants from a public market in northeastern Brazil. J Ethnopharmacol. 2007;110(1):76–91.
35. Macią MJ, García E, Vidaurre PJ. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J Ethnopharmacol. 2005;97(2):337–50.
36. Van Andel T, Myren B, Van Onselen S. Ghana’s herbal market. J Ethnopharmacol. 2012;140(2):368–78.
37. Kool A, de Boer HJ, Krüger Å, Ryberg A, Abbad A, Björk L, Martin G. Molecular identification of commercialized medicinal plants in Southern Morocco. PLos One. 2012;7(6):e39459.
38. Penzes A. Budapesti viragok. Kertészeti Lapok. 1926a:113–4.
39. Penzes A. Budapesti viragok. Kertészeti Lapok. 1926b:9130–1.
40. Muszyński. Wileński zioła ludowe. Wiadomości Farmaceutyczne. 1927;21-22: 469–76.
89. Nilsson RH, Larsson K-H, Taylor ACS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Köljalg U, Abarenkov K. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018; https://doi.org/10.1093/nar/gky1022.
90. The Plant List: a working list of all plant species. http://www.theplantlist.org/. Accessed 10 Mar 2020.
91. Index Fungorum. http://www.indexfungorum.org/. Accessed 10 Mar 2020.
92. Deur D, Turner NJ, editors. Keeping it living: traditions of plant use and cultivation on the Northwest Coast of North America. Seattle: University of Washington Press; 2005.
93. Sõukand R, Kalle R. Emic conceptualization of a ‘wild edible plant’ in Estonia in the second half of the 20th century. TRAMES - J Humanities Soc Sci. 2015; 19(1):15–34.
94. Nanagulyan S, Zakaryan N, Kartashyan N, Piwowarczyk R, Luczaj L. Wild plants and fungi sold in the markets of Yerevan (Armenia). J Ethnobiol Ethnomed. 2020;16:26.
95. Pérez-Moreno J, Martínez-Reyes M, Yescas-Pérez A, Delgado-Alvarado A, Xoronzostle-Cázares B. Wild mushroom markets in central Mexico and a case study at Ozumba. Econ Bot. 2008;62(3):3425–36.
96. Monroy-Esquivel A, Estrada-Torres A, Kong A, Juárez-Sánchez L. Commercialization of wild mushrooms during market days of Tránsala, Mexico. Micologia Aplicada Int. 2001;13(1):31–40.
97. Huai HY, Zhang B, Liu HS. Ethnobotany of wild edible plant resources in periodic markets in Jinping autonomous county of Miao, Yao, and Dai. Acta Botanica Yunnanica. 2008;30(5):603–10.
98. Zhang Y, Li JQ, Wu HH, Whitney CW, San TT, Yang XF, Mon AM, Hei PP. The Secret of Health in the Daily Cuisine: the Typical Health Vegetables in the Local Markets in Central Myanmar. J Ethnobiol Ethnomed. 2020; 16:73.
99. Kang Y, Luczaj L, Ye S, Zhang S, Kang J. Wild food plants and wild edible fungi of Heihe valley (Qingling Mountains, Shaanxi, central China): herbophilic and indifference to fruits and mushrooms. Acta Soc Bot Pol. 2012;81(4):239–44.
100. Volpato G, Fontefrancesco MF, Gruppuso P, Zocchi DM, Pieroni A. Baby pangolins on my plate: possible lessons to learn from the COVID-19 pandemic. J Ethnobiol Ethnomed. 2020;16.
101. Jose S. Agroforestry for conserving and enhancing biodiversity. Agrofor. Syst. 2012;85(1):1–8.
102. Egli S, Peter M, Buser C, Stahel W, Ayer F. Mushroom picking does not impair future harvests—results of a long-term study in Switzerland. Biol Cons. 2006;129(2):271–6.
103. Pha Khao Lao. https://www.phakhaolao.la Accessed 1 Oct 2020.
104. Vongouline S. What’s in the market? A Visitor’s Guide to Lao Tastes, Culture and Daily Life. Luang Prabang: Big Brother Mouse; 2010.
105. Gahukar RT. Potential of minor food crops and wild plants for nutritional security in the developing world. J Agr Food Inform. 2014;15(4):342–52.
106. Pieroni A, Hovsepian AK, Manduzai AK, Sõukand R. Wild food plants traditionally gathered in central Armenia: archeaic ingredients or future sustainable foods? Environ Dev Sustain. 2020;13:1–24.
107. Luczaj L, Stryamets N, Fontefrancesco MF, Pieroni A. The importance of tolerating interstices: Babushka markets in Ukraine and Eastern Europe and their role in maintaining local food knowledge and diversity. Heliyon. 2020; 6(1):e03222.
108. Pawera L, Khomsan A, Zuhud EA, Hunter D, Ickowitz A, Polesny Z. Wild Food Plants and Trends in Their Use: From Knowledge and Perceptions to Drivers of Change in West Sumatra, Indonesia. Foods. 2020;9(9):1240.
109. International Society of Ethnobiology Code of Ethics (with 2008 additions). http://ethnobiology.net/code-of-ethics/. Accessed 10 Mar 2016.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.