A review of the operating parameters on the microbial fuel cell for wastewater treatment and electricity generation

Sima Malekmohammadi* and Seyed Ahmad Mirbagheri
Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
*Corresponding author. E-mail: simamalekmohammadi@yahoo.com

ABSTRACT

Environmental and economic considerations suggest a more efficient and comprehensive use of biomass for bioenergy production. One of the most attractive technologies is the microbial fuel cell using the catabolic activity of microorganisms to generate electricity from organic matter. The microbial fuel cell (MFC) has operational benefits and higher performance than current technologies for producing energy from organic materials because it converts electricity from the substrate directly (at ambient temperature). However, MFCs are still not suitable for high energy demand due to practical limitations. The overall performance of an MFC depends on the electrode material, the reactor design, the operating parameters, substrates, and microorganisms. Furthermore, the optimization of the parameters will lead to the commercial development of this technology in the near future. The simultaneous effect of the parameters on each other (intensifier or attenuator) has also been investigated. The investigated parameters in this study include temperature, pH, flow rate and hydraulic retention time, mode, external resistance, and initial concentration.

Key words: bioenergy, microbial fuel cell, review, wastewater treatment

HIGHLIGHTS

• We discuss about operating parameters that affect MFC in this review.
• Knowing different parameters.
• Simultaneous effect of parameters on each other.
• The concentration effect and the impact of nitrogen presence.
• The flexibility of the system.
• Optimize and design it better.

INTRODUCTION

In recent decades, population growth, urban sprawl, industrial and agricultural production, and the consumption of various chemicals, on the one hand lead to the production of sewage and environmental pollution (Yang et al. 2013; Thung et al. 2015; Raji & Mirbagheri 2021). On the other hand, they lead to fossil fuels consumption and its generated pollutants (Ter Heijne et al. 2007; Wu et al. 2015).

Lack of fossil fuel resources and the effects of global warming have led to a focus on biomass as a sustainable source of energy production (Demirbas et al. 2009). Unlike fossil fuels, biomass is renewable and has a closed carbon cycle (Orecchini & Bocci 2007).

One of the most attractive technologies for bioenergy production is the microbial fuel cell (MFC), which is a good option for organic wastewater treatment and the co-production of energy (Gil et al. 2003). MFCs are bioreactors that use microorganisms as catalysts to oxidize organic compounds and inorganic compounds and produce currents (Qian & Morse 2011). A wide range of substrates, from pure compounds (Rabaey & Verstraete 2005) (such as acetate (He et al. 2008), glucose (Cercado-Quezada et al. 2010), butyrate (Rabaey & Verstraete 2005) to complex mixtures (such as municipal wastewater (Feng et al. 2008), brewery effluent (Feng et al. 2008) and starch production (Kim et al. 2004; Liu et al. 2009) and leachate (Habermann & Pommer 1991; Zhang et al. 2008) have been studied in MFCs so far (Rodrigo et al. 2007; Pant et al. 2010). Researchers have tried to investigate substrates in a wide range of different types of artificial and natural effluents. Substrate
type widely affects the accumulation of microorganisms, their mortality, and power generation rate (Jung & Regan 2007; Kim et al. 2007).

However, MFC has not yet been used for wastewater treatment systems because MFC is a new technology and needs more time to be explored. Another reason is that the power generated is low compared to its competitors such as the methane production anaerobic digester (Pham et al. 2006). Recent research shows that MFC is a practical plan among other options for sustainable bioenergy production in the near future. Increasing the efficiency and decreasing the price of MFC helps to commercialize it; to achieve this, knowing the parameters affecting the MFC performance and optimizing them can be very helpful (Bifinger et al. 2007). MFC performance depends on reactor type (Choi & Chae 2013; Mukherjee et al. 2013), configuration (Du et al. 2007), wastewater type (Liu et al. 2011; Kim et al. 2016), electrode material and surface (Sangeetha & Muthukumar 2013; Zhu et al. 2013; Santoro et al. 2014; Zheng et al. 2016), anodic potential (Wang et al. 2009; Wei et al. 2010), microbial diversity (Mukherjee et al. 2013). Moreover, it depends on operating parameters such as temperature (Patil et al. 2010; Tee et al. 2017), external resistance, pH (Puig et al. 2010), time (Arya et al. 2016; D’Angelo et al. 2017), concentration (Pant et al. 2018), ionic strength (Logan et al. 2006; Aelterman et al. 2008; Jadhav & Ghangrekar 2009).

The aim of this study is to know the parameters affecting MFC and their impact by reviewing previous research in order to optimize the system in terms of cost and efficiency.

Definition of microbial fuel cell

MFC is a tool that uses the catabolic activity of microorganisms to generate electricity from organic matter (Watanabe 2008). At the anode, organic matter is oxidized by electrochemically active microorganisms and electrons being released. The generated electrons are then transferred to the cathode via an external circuit and electricity is generated (Frijters et al. 2006; Solanki et al. 2013). Numerous models have been designed for MFC, but they can be divided into two categories, dual-chamber, and single-chamber (Figures 1 and 2) (Solanki et al. 2013).

Dual-chambers include an anaerobic anode chamber and aerobic cathode chamber, which are separated by a proton exchange membrane (PEM) (Xu et al. 2012; Parkash 2015). The substrate is oxidized as a fuel by microorganisms in the anaerobic chamber in which the anode electrode is located, and electrons and protons are released (Venkata Mohan et al. 2008b; Oh et al. 2010). Protons transfer to the cathode chamber through the proton exchange membrane, protons and electrons react with oxygen to form water in the cathode chamber (Rabaey & Keller 2008). For instance, the following reactions show the oxidation of acetate at the anode and the reduction of oxygen at the cathode (Scott & Yu 2015).

\[
\text{CH}_3\text{COO}^- + 2\text{H}_2\text{O} \leftrightarrow \text{CO}_2 + 7\text{H}^+ + 8\text{e}^{-} \\
\text{O}_2 + 4\text{e}^{-} + 4\text{H}^+ \rightarrow 2\text{H}_2\text{O}
\]

Figure 1 | Schematic diagram of two-chambered MFC.
In a single-chamber system, as in Figure 2, the cathode and PEM chambers have been removed; therefore, it has a simpler design and more affordable price (Liu & Logan 2004; Sun et al. 2009). The cathode is exposed to air on one side and water on the other side (inside) (Wang et al. 2008). Anodic reactions are similar to a dual-chamber system and oxygen in the air can directly react at the electrode (Hou et al. 2011; Sun et al. 2012).

Key parameters influencing the MFC

In addition to the electrode specifications and the reactor configuration, the MFC performance also depends on the characteristics of the wastewater and the various operating parameters such as temperature, pH, and organic loading rate (Oliveira et al. 2013). In this section, the effect of pH, temperature, input concentration, hydraulic retention time (HRT), flow, external resistance and operating mode (batch and continuity) are investigated.

pH

The pH of the anodic part is one of the important factors in the efficiency of MFCs that can affect the metabolic activity of microorganisms (He et al. 2008). Furthermore, the mechanism of electron and proton (H⁺) production is affected by pH (Behera & Ghangrekar 2009; Yuan et al. 2011). MFC performance is strongly influenced by pH. Increasing the pH has a positive effect on the current density (Table 1) and coulombic efficiency because the electron transfer is easier (Behera & Ghangrekar 2009). Moreover, it has a beneficial impact on COD removal (Behera et al. 2010). However, in some studies, lowering the pH leads to increasing the organic matter removal efficiency due to the activity of methane-producing microorganisms (Behera & Ghangrekar 2009). Based on the studies, optimum pH is about 7 and 8, as the microbial activity is more suited (Behera et al. 2010). Both lower and higher pH has an adverse effect on dual-chamber MFCs (Gil et al. 2003; Ren et al. 2007; He et al. 2008). As seen in Table 1, higher pH has a positive effect on single-chamber MFCs.

Besides, the metabolic activity of bacteria change the pH (He et al. 2008), which is strongly dependent on the initial pH. If the initial pH is less than 8, after a day or two the output pH increases (Zhao et al. 2006), because proton exchange through the membrane has been slower than the proton production rate. So protons are limited to reactions at the cathode where oxygen as an oxidant is present. The result is the accumulation of protons in the anode leading to a drop in pH (Cheng & Liu 2006). If the initial pH is above 8, the pH decreases because metabolic activities produce weak acid and the activity rate of microorganisms is higher at this pH (Newman 1994; He et al. 2008).

Figure 2 | Schematic diagram of single-chambered MFC.
Table 1 | Power densities reported at different pH values

MFC construction	pH	Substrate	Power density (mW/m²)	Ref.
Dual-chamber, earthen pot anode chamber	8	Rice mill wastewater	48.84	Behera et al. (2010)
	7		32.65	
	6		23.43	
Dual-chamber, Nafion as PEM	8	Rice mill wastewater	15.57	Behera et al. (2010)
	7		6.03	
	6		2.88	
Dual-chamber	7	Anaerobic sewage sludge	8	Jung Rae et al. (2004)
Dual-chamber	4	Acidiphilium cryptum	12.7	Borole et al. (2008)
Dual-chamber	7	Geobacter sulfurreducens	14.7	Bond & Lovley (2003)
Dual-chamber	7	Wastewater	20	Gil et al. (2003)
Dual-chamber	7	Rhodobacter ferrireducens	33	Chaudhuri & Lovley (2003)
Dual-chamber	7	P. vulgaris	32	Allen & Bennetto (2009)
Single-chamber, air-cathode	8	Mixed bacteria culture	87.2	He et al. (2008)
	10		107.1	
	9	Highest value		
	5	Lowest value		

Temperature

Temperature as an important parameter in the process of decomposition and anaerobic digestion is considered (Adekunle & Okolie 2015). Most microbial decomposition processes operate in the mesophilic temperature range (Gavala et al. 2003). The optimum temperature for mesophilic microorganisms in the range of 35 to 40 °C is known (Bohn et al. 2007). When the temperature falls outside this range, the activity of microorganisms gradually decreases.

Based on the performance of MFCs, production of electricity from wastewater treatment is improved primarily in the higher temperature range (Ahn & Logan 2010). Although MFCs perform better at higher temperatures, they are not as sensitive as conventional anaerobic systems in the relatively low-temperature range of 4 and 15 °C and it has also reasonable efficiency compared to other systems (Bohn et al. 2007). So this is one of the advantages of the MFC as far as it can be an appropriate choice for the cold regions with a low flow rate of urban wastewater (Larrosa-Guerrero et al. 2010; Krieg et al. 2019). In MFC, electroactive anodic consortia are produced, which are able to remove COD and generate electricity even at 4 °C (Larrosa-Guerrero et al. 2010). Li et al. examined the power generation of the MFC system in the temperature range of 10 to 55 °C. According to the results, increasing the temperature from 10 to 33 °C led to an increase in current density and then it started to decrease, and there was no constant power from 43 to 55 °C (Li et al. 2013a). Similar results were observed in another study; however, the optimal temperature was 45 °C (Liu et al. 2011b).

Batch or continuous

MFC systems are examined in three modes: batch, fed-batch, and continuous (Logan et al. 2006). Many studies have been investigated in batch mode, but batch systems have many disadvantages such as reduced substrate due to limited food and toxic by-products (Peppas 1986). Moreover, it leads to a sharp decline in MFC power generation (Choudhury et al. 2020). The fed-batch method partially solves this problem and prevents food shortages and power loss (Choudhury et al. 2021). Most studies have been investigated in the fed-batch mode which whenever a power loss is observed, the influent is renewed (Hiegemann et al. 2019). However, power generation is more suitable for practical applications in continuous mode (Chung & Okabe 2009), because batch systems are applied less for wastewater plants. Overall, continuous system operation benefits are including the composition of the medium, secondary metabolite production, growth kinetics, kinetic constants, easier operation, and more reliable and repeatable results (Dunnill 1987). The purpose of continuous MFC research is to evaluate and improve the purification capability (Rabaey et al. 2005; Venkata Mohan et al. 2008; Wen et al. 2009) and the highest COD removal efficiency is about 70 to 90% (Feng et al. 2010).

In terms of performance, batch and continuous achieve almost similar results; however, continuous systems generate less electricity in low hydraulic retention time (HRT) since the chemical oxygen demand (COD) concentration decreases during
the low hydraulic residence time (8 hours) (Huang & Logan 2008; Lanas et al. 2014). Similarly, electricity generated by fed-batch systems is more than continuous systems at 8 hours HRT (Ahn & Logan 2012). In the study of Zhao et al., in the continuous system, the COD removal efficiency was higher, and the generated current density was lower (Zhao et al. 2013). In all three modes, HRT discussed in the next section is more effective than operation mode.

Flow rate and hydraulic retention time

HRT is a significant parameter in wastewater treatment that directly affects design (flow rate and construction), operation, and cost (Akman et al. 2013; Sobieszuk et al. 2017). In fact, the longer the time, the higher the cost, but time affects the removal rate and power generation (Akman et al. 2013). To become economical and practical, the retention time of MFC must be close to the conventional processes (Kim et al. 2015). Theoretically, HRT is dependent on the flow rate and volume and is inversely related to flow (Xu et al. 2015).

The increase in HRT increases the efficiency of COD and coulombic efficiency (CE) (You et al. 2006; Haavisto et al. 2017) because the volumetric organic loading rate rises (Sobieszuk et al. 2017). Furthermore, the increasing time leads to increased pollutant removal efficiency such as total nitrogen (TN), ammonium, nitrate, COD, pharmaceutical products (Li et al. 2013b; Ma et al. 2016; Chang et al. 2018).

Retention time has a greater impact on continuous systems (Sobieszuk et al. 2017). The increase in HRT from 8 to 16 hours results in reducing the voltage from 0.21 to 0.13 hours (Ahn & Logan 2012). For the average COD concentration in the reactor is decreased (Ma et al. 2016). The higher the HRT, the greater the microbial diversity (HaiLiang et al. 2018). It is worth mentioning that retention time and flow rate are inversely related to each other. Flow has a dual effect because it affects both mass movements and biofilm stabilization (Jia et al. 2016). If the influent flow rate increases, actually the time decreases, leading to an increase in dilution rate and a decrease in generated electricity (You et al. 2018).

Since HRT is directly related to the removal efficiency and inversely related to the current density, the optimum time must be found in such a way that both give acceptable results. Initial culture conditions greatly affect the optimal retention time (Mateo et al. 2017). Hence, considering different residual times is more due to diverse microbial communities than different configurations. Since MFCs are dynamic systems, the optimized HRT for an MFC can vary over time (Ieropoulos et al. 2010; Sobieszuk et al. 2017). The optimal time in some studies has been obtained as equal to 15.5 hours (Li et al. 2008), 20 hours (Huang et al. 2008), 11.3 hours (Liu et al. 2008), and 24 hours (Haavisto et al. 2017).

External resistance

Although the bacteria involved in power generation can overcome the resistance caused by the system, system losses can be minimized by selecting the desired external resistance, and also system performance will be optimized (Clauwaert et al. 2008). If the external resistance is optimal, the output power and the coulombic efficiency increase, and the methane production decrease (Pinto et al. 2010). Through the external resistance, the current rate and cell voltage can be controlled (Can et al. 2014).

In a microbial fuel cell, like any other power source, the goal is to maximize output power. Voltage decreases by decreasing the applied external resistance, but current density increases. Therefore, the suitable voltage loss must be obtained when the current increases to achieve maximum power density. Moreover, the maximum power density is achieved when the internal and external resistances are equal. The external resistance producing the maximum power is accessible using the polarization curve (Figure 3). The optimum points and internal resistance are calculated from polarization curves using the power density peak method (Davis 1967; Logan & Regan 2006; Aelterman et al. 2008; Logan 2008; Manohar et al. 2008; Woodward et al. 2010). The internal resistance may change under different conditions such as pH, temperature, and wastewater characteristics. Naturally, the optimal external resistance also changes (Pinto et al. 2010; Zhang & Liu 2010; Corbella & Puigagut 2018).

External resistance is one of the most important parameters for the commercialization of MFC. In general, MFC performance, both removal efficiency and output current, increases with decreasing external resistance (Katuri et al. 2011; Buitrón et al. 2017). Lee and et al. showed that at lower external resistance, the maximum power was higher (Liu et al. 2005). As the resistance decreased from 50 to 25 and to 10.5 Ω, the current density and power increased (Aelterman et al. 2008). The COD removal efficiency is high in MFC, but the efficiency increases slightly with decreasing resistance (Ahn & Logan 2012).

External resistance is one of the most common parameters affecting MFC, which influences the start-up time directly (Molognoni et al. 2014). Increasing resistance reduces start-up time. For instance, in one study, an external resistance increase...
from 10 to 1,000 Ω led to reducing startup time from 3 days to 0.6 days. This means that the growth of microorganisms occurs faster at higher resistances (Zhang et al. 2017; Suzuki et al. 2018). However, after starting the system, the lower the resistance, the greater the output current (Katuri et al. 2011). It is worth mentioning that very low resistances of up to 10 make the start-up process difficult since the growth and evolution rate of microorganisms decreases; moreover, low external resistance causes thin and compact biofilm (Zhang et al. 2017), and also biomass yield increases in higher external resistance (Katuri et al. 2011). Therefore, first, it is better to start up MFC with high resistance then gradually change to low resistance in order to reach a higher current generation (Ahn & Logan 2012). However, in Buitrón’s research, changing the resistance from the adaptation resistance leads to a reduction in efficiency and power production, and this is one of the factors in the difference in cell function (Buitrón & Moreno-andrade 2014).

Microbial and metabolic diversity also change with changing resistance (Aelterman et al. 2008; Lyon et al. 2010; Suzuki et al. 2018). Because the anode biofilm is dependent on external resistance, and the reason for changing the microbial population is the change in external resistance (Lyon et al. 2010; Mclean et al. 2010). Based on research, low external resistance increases the evolution rate of energy gain, energy output, active biomass, and maximum power density during startup but reduces voltage evolution rate of the population (Zhang et al. 2017).

Initial concentration

COD

A gentle substrate increase in the anolyte (the portion of an electrolyte near an anode, especially in a cell in which the cathode and anode are in separate compartments), through fed-batch or flow, can increase or decrease the power produced by the system (Rabaey et al. 2003; Borole et al. 2011; Xu et al. 2017).

COD concentration has a significant effect on electricity generation, and its increase leads to an increase in electricity production but has little effect on removal efficiency (He et al. 2016). About 25% of the removed COD is used to generate electricity, so the remaining COD is removed by the anaerobic process (Rodrigo et al. 2007). Moon et al. showed that an increase in COD concentration from 100 to 400 mg/L increased the current from 2.2 to 6.8 mA, and Colombian yields fell. Moreover, high flow leads to transferring large amounts of fuel from the anode to the cathode, which is reduced in the aerobic chamber by aerobic bacteria, and so the coulombic efficiency is reduced (Moon et al. 2005).

Asensio et al. examined different concentrations of acetate (COD from 500 to 20,000 mg/L). According to the results, increasing COD from 500 to 5,000 mg/L linearly causes increasing power generation, but the further increase in COD reduces efficiency. COD removal efficiency also increased to a peak in 1,000 mg/L and then slightly decreases (Asensio...
et al. 2016). Extremely low COD concentrations are not suitable at all because the power production is reduced. That’s why the power production of the last MFC chamber will be minimum in stack mode (Ahn & Logan 2013; Ren et al. 2014). Stack requires high COD.

Nitrogen
The MFC system can remove COD and nitrate simultaneously (Al-Mamun et al. 2017). Since the anode chamber is anaerobic, MFC can reduce nitrate during denitrification (Lefebvre et al. 2008; Cai & Zheng 2013). Hence, this system can be a good pre-treatment for the denitrification process to reduce nitrate (Nguyen et al. 2016).

Before denitrification, nitrite is converted to nitrate at the anode chamber and releases electrons (Faraghi & Ebrahimi 2012). Despite producing electrons, nitrite cannot generate electricity exclusively but can be helpful along with COD. Low nitrite concentration, up to 60 mg/L, increases power generation, but further increase has an adverse effect because it inhibits the activity of anodic bacteria (Wang et al. 2012). Despite producing electrons, nitrite cannot generate electricity exclusively but can be helpful along with COD. Low nitrite concentration, up to 60 mg/L, increases power generation, but further increase has an adverse effect because it inhibits the activity of anodic bacteria (Wang et al. 2012).

The presence of cations such as ammonium (NH_4^+), calcium (Ca^{2+}), magnesium (Mg^{2+}), sodium (Na^+), and potassium (K^+) in the substrate leads to an increase in pH in the cathode chamber since they pass through the proton exchange membrane (Rozendal et al. 2006). Therefore, ammonium also passes through the membrane and enters the cathode chamber, and finally escapes in the form of ammonia (Jung et al. 2008). Ammonium passing through the membrane can be harmful, but according to a study by Kuntke et al., increasing ammonium (from 0.07 to 4 g) does not affect efficiency, and it is non-toxic (Kuntke et al. 2011).

Wang et al. investigated the ratio of COD to nitrogen (COD/TN) on nitrogen removal in MFC. When the ratio decreases, the nitrogen effluent concentration reduces (Wang et al. 2019).

The effect interaction of parameters
The purpose of this section is to investigate the simultaneous and interaction effects of the parameters together to select the parameters correctly for optimization and also reduce the adverse effects of parameters. Parameters can intensify and reduce each other or eliminate the effect of a parameter. Furthermore, the impact of each parameter on efficiency is different, and one parameter’s effect may be negligible compared to other parameters. Some articles that have examined the simultaneous and interaction effects of the parameters are listed in Table 2. However, the number of papers that have investigated this issue is very low. Therefore, it is suggested that more attention should be paid to the simultaneous effect of parameters in future studies using the design of experiments (DoE). To identify and reduce the number of experiments, different DoE methods such as full factorial, fractional factorial, Taguchi, and response surface methodology (RSM) can be applied (Antony 2006; Raissi & Farsani 2009; Chen et al. 2015; Mirbagheri et al. 2017). Additionally, for better analysis of the results, statistical methods like ANOVA and non-statistical analysis techniques such as neural networks can be used (Del Vecchio 1998; Jensen 2008; Anderson & Whitcomb 2016; Boudaghpour & Malekmohammadi 2020). It is worth mentioning that the Design-expert software can resolve some needs of experimental chemists, from screening to modeling and optimization (Alben 2002). Knowing the effect of each parameter and their simultaneous interaction will exceedingly help in the optimal design in terms of efficiency and cost. As seen in the table below, many parameters do not interact with each other. However, if both are directly related to efficiency, they increase efficiency and vice versa.

CONCLUSION
The microbial fuel cell is a nascent technology that has many unknown aspects. This system has not been installed on an industrial and large scale yet but commercializing MFC is not unattainable with optimization and upgrades. It seems that the maximum productivity and efficiency are highly dependent on start-up and operation parameters, and considering them can help achieve an optimal microbial fuel cell.

MFC performance is strongly influenced by pH, and slightly basic pH, about 8, is very suitable. The temperature changes have little effect on efficiency, but higher temperatures are better. Increasing the HRT leads to an increase in the power generation of continuous systems, and its effect on batch systems is reversed but increasing the HRT always leads to an increase in COD removal efficiency. MFC performance, both removal efficiency and power production, increases with decreasing external resistance, but it increases startup time. COD concentration has the greatest impact on power generation and has a direct relationship. However, it has little effect on COD removal efficiency. Therefore, in the stack mode, the concentration
Table 2 | Simultaneous effect of parameters

Simultaneous effect of parameters	Condition (reactor/operational specifications)	Comments	Ref.
Parameter 1 = HRT Parameter 2 = External Resistance	- Single chamber - Multi brush anode - Temperature = 30 °C - Operation mode = continuous	- The impact of resistance is insignificant at shorter HRTs - The impact of HRT is greater than the resistance	Ahn & Logan (2012)
Parameter 1 = pH Parameter 2 = External Resistance Parameter 3 = Distance between electrodes Parameter 4 = pH	- Sediment microbial fuel cell - Electrode = graphite plate - Temperature = 29–30 °C - COD concentration = 170–180 mg/litre	- Resistance and pH have an intensifying effect on COD removal and output current density - Reducing the pH leads to an increase in COD removal efficiency, an issue that is greater at lower resistances. - Increasing the electrode distance leads to an increase in removal efficiency, which intensifies at low pHs. - Decreased resistance leads to an increase in the power density and the pH changes have little effect on it. - Reducing the electrode distance increases the power density, and decreasing resistance intensifies its effect. - pH among all parameters is more effective in the removal of COD. - The electrode distance parameter is more effective on the current density than all other parameters, and in the next step are the resistance and pH.	Sajana et al. (2014)
Parameter 1 = pH Parameter 2 = Concentration Parameter 3 = HRT Parameter 4 = inoculum composition (Pure & Co-Cultured)	- Dubbed-chamber - Electrode = Carbon felt - PEM = Nafion 117 - Room temperature	- Generally, the interaction between the parameters of initial COD, HRT, and pH is low. However, the effect of inoculum composition on HRT, pH, and initial COD is significant. HRT, for example, greatly increases the effect of inoculum composition.	Islam et al. (2018)
Parameter 1 = pH Parameter 2 = Temperature Parameter 3 = Concentration	- Mediator-less single–chamber - Cathode = Wet proofed carbon cloth and PEM - Domestic wastewaters - External resistance = 150 Ω - pH = 6.5–7 - Temperature = 25 °C - Operation mode = Batch - Pentachlorophenol (PCP)-glucose concentration = 50–1,500 mg/L	- pH and temperature do not interact with each other, but increase in both of them drastically increases the power density production and coulombic efficiency. In addition, the slope of the pH graph is steeper, so the pH parameter is more efficient. - pH and concentration do not have a reciprocal effect on each other in the power production, but at lower pHs, there is a greater effect of concentration on Coulombic efficiency. - Increasing the concentration strongly affects the power density production, which is more noticeable at low temperatures. However, the interaction between two parameters does not affect coulombic efficiency.	Alshehri (2015)
Parameter 1 = pH Parameter 2 = Internal Resistance	- Dual chambered mediator-less	- When pH is lower, the internal resistance increases	Behera & Ghargrekar (2009)
must be very high to for enough COD to reach the last cells. It is worth mentioning that the presence of nitrogen does not cause any problems in MFC except in high nitrate amounts and it is well removed.

DATA AVAILABILITY STATEMENT

All relevant data are available in this paper or its supplement.

REFERENCES

Adekunle, K. F. & Okolie, J. A. 2015 A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology 06, 205–212. https://doi.org/10.4236/abb.2015.63020.

Aelterman, P., Versichele, M., Marzorati, M., Boon, N. & Verstraete, W. 2008 Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology 99, 8895–8902. https://doi.org/10.1016/j.biortech.2008.04.061.

Ahn, Y. & Logan, B. E. 2010 Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology 101, 469–475. https://doi.org/10.1016/j.biortech.2009.07.039.

Ahn, Y. & Logan, B. E. 2012 A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Applied Microbiology and Biotechnology 93, 2241–2248. https://doi.org/10.1007/s00253-012-3916-4

Ahn, Y. & Logan, B. E. 2013 Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design. Applied Microbiology and Biotechnology 97, 409–416. https://doi.org/10.1007/s00253-012-4453-8

Akman, D., Cirić, K., Ozdemir, S., Ozkaya, B. & Ciner, O. 2013 Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Bioresource Technology 149, 459–464. https://doi.org/10.1016/j.biortech.2013.09.102

Alben, K. T. 2002 Books and software: design, analyze, and optimize with Design-expert. Analytical Chemistry 74, 222 A–223 A. https://doi.org/10.1021/ac0219703.

Allen, M., and P, R. & Bennetto, H. 2009 Microbial fuel-cells: electricity production from carbohydrates. Applied Biochemistry and Biotechnology 39, 27–40.

Al-Mamun, A., Baawain, M. S., Egger, F., Al-Muhtaseb, A. H. & Ng, H. Y. 2017 Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy. Biochemical Engineering Journal 120, 93–102. https://doi.org/10.1016/j.bej.2016.12.015

Alshahri, A. N. Z. 2015 Statistical optimization of pentachlorophenol biodegradation and electricity generation simultaneously in mediator-less air cathode microbial fuel cell. Journal of Environmental and Applied Bioresource 03, 6–15.

Anderson, M. J. & Whitcomb, P. J. 2016 RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd edn. Taylor & Francis, New York, NY, pp. 1–2.

Antony, J. 2006 Taguchi or classical design of experiments: a perspective from a practitioner. Sensor Review 26, 227–230. https://doi.org/10.1108/02602280610675519

Arya, V., Philip, L. & Mutry Bhallamudi, S. 2016 Performance of suspended and attached growth bioreactors for the removal of cationic and anionic pharmaceuticals. Chemical Engineering Journal 284, 1295–1307. https://doi.org/10.1016/j.cej.2015.09.070

Asensio, Y., Fernandez-Marchante, C. M., Lobato, J., Canizares, P. & Rodrigo, M. A. 2016 Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells. Water Research 99, 16–23. https://doi.org/10.1016/j.watres.2016.04.028

Behera, M. & Ghangrekar, M. M. 2009 Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology 100, 5114–5117. https://doi.org/10.1016/j.biortech.2009.05.020

Behera, M., Jana, P. S., More, T. T. & Ghangrekar, M. M. 2010 Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry 79, 228–233. https://doi.org/10.1016/j.bioelectrochem.2010.06.002

Bilfinger, J. C., Pietron, J., Ray, R., Little, B. & Ringeisen, B. R. 2007 A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors and Bioelectronics 22, 1672–1679. https://doi.org/10.1016/j.bios.2006.07.027

Bohn, I., Björnsson, L. & Mattiasson, B. 2007 Effect of temperature decrease on the microbial population and process performance of a mesophilic anaerobic bioreactor. Environmental Technology 28, 943–952. https://doi.org/10.1080/09593332808618843

Bond, D. R. & Lovley, D. R. 2003 Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology 69, 1548–1555. https://doi.org/10.1128/AEM.69.5.1548-1555.2003

Borole, A. P., O’Neill, H., Tsouris, C. & Cesar, S. 2008 A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters 30, 1367–1372. https://doi.org/10.1007/s10529-008-9700-y

Borole, A. P., Reguera, G., Ringeisen, B., Wang, Z. W., Feng, Y. & Kim, B. H. 2011 Electroactive biofilms: current status and future research needs. Energy and Environmental Science 4, 4813–4834. https://doi.org/10.1039/c1ee02511b

Boudaghpour, S. & Malekmohammadi, S. 2020 Modeling prediction of dispersal of heavy metals in plain using neural network. Journal of Applied Water Engineering and Research 8, 28–43. https://doi.org/10.1080/23249676.2020.1719219

Buitrón, G. & Moreno-andrade, I. 2014 Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance. 2471–2481. https://doi.org/10.1016/j/s12010-014-1195-5
Buitrón, G., López-Prieto, I., Zúñiga, I. T. & Vargas, A. 2017 Reduction of start-up time in a microbial fuel cell through the variation of external resistance. *Energy Procedia* **142**, 694–699. https://doi.org/10.1016/j.egypro.2017.12.114

Cai, J. & Zheng, P. 2013 Simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. *Bioresource Technology* **128**, 760–764. https://doi.org/10.1016/j.biortech.2012.08.046

Can, P., Lobato, J. & Rodrigo, M. 2014 Effects of External Resistance on Microbial Fuel Cell’s Performance. In: Environment, Energy and Climate Change II (G. Lefebvre, E. Jiménez & B. Cabañas, eds.). Springer, New York, NY, pp.175–197. https://doi.org/10.1007/698.

Cerdá-Quezada, B., Delia, M. L. & Bergel, A. 2010 Testing various food-industry wastes for electricity production in microbial fuel cell. *Bioresource Technology* **101**, 2748–2754. https://doi.org/10.1016/j.biortech.2009.11.076

Chang, T. J., Chang, Y. H., Chao, W. L., Jane, W. N. & Chang, Y. T. 2018 Effect of hydraulic retention time on electricity generation using a solid-plain-graphite plate microbial fuel cell anoxic/oxic process for treating pharmaceutical sewage. *Journal of Environmental Science and Health – Part A Toxic/Hazardous Substances and Environmental Engineering* **53**, 1185–1197. https://doi.org/10.1080/10934529.2018.1530338

Chaudhuri, K. S. & Lovley, D. R. 2003 Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. *Nature Biotechnology* **21**, 1229–1232. https://doi.org/10.1038/nbt867

Chen, L., Liu, Z., Sun, P. & Huo, W. 2015 Formulation of a fuel spray SMD model at atmospheric pressure using design of experiments (DoE). *Fuel* **153**, 355–360. https://doi.org/10.1016/j.fuel.2015.03.013

Cheng, S. & Liu, H. 2006 Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. *Environmental Science & Technology* **40**, 2426–2432.

Choi, S. & Chae, J. 2013 Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC). *Sensors and Actuators, A: Physical* **195**, 206–212. https://doi.org/10.1016/j.sna.2012.07.015

Choudhury, P., Ray, R. N., Bandyopadhyay, T. K. & Bhunia, B. 2020 Fed batch approach for stable generation of power from dairy wastewater using microbial fuel cell and its kinetic study. *Fuel* **266**, 117073. https://doi.org/10.1016/j.fuel.2020.117073.

Choudhury, P., Ray, R. N., Bandyopadhyay, T. K., Basak, B., Muthuraj, M. & Bhunia, B. 2021 Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. *International Journal of Hydrogen Energy* **46**, 3171–3182. https://doi.org/10.1016/j.ijhydene.2020.06.152

Chung, K. & Okabe, S. 2009 Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. *Applied Microbiology and Biotechnology* **83**, 965–977. https://doi.org/10.1007/s00253-009-1990-z

Clauwaert, P., Aelterman, P., Pham, T. H., De Schamphelaire, L., Carballe, M., Rabaei, K. & Verstraete, W. 2008 Minimizing losses in bi electrochemical systems: the road to applications. *Applied Microbiology and Biotechnology* **79**, 901–913. https://doi.org/10.1007/s00253-008-1522-2

Corbella, C. & Puigagut, J. 2018 Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: influence of anode material and external resistance. *Science of the Total Environment* **631–632**, 1406–1414. https://doi.org/10.1016/j.scitotenv.2018.03.084

D’Angelo, A., Mateo, S., Scialdone, O., Cañizares, P., Fernandez-Morales, F. J. & Rodrigo, M. A. 2017 Optimization of the performance of an air-cathode MFC by changing solid retention time. *Journal of Chemical Technology and Biotechnology* **92**, 1746–1755. https://doi.org/10.1002/jctb.5175

Davis, J. B. 1967 *Microbial Fuel Cell*.

Del Vecchio, L. A. 1998 Understanding design of experiments. *IEEE Electrical Insulation Magazine* **14**, 40. https://doi.org/10.1109/MEI.1998.730815

Demirbas, M. F., Balat, M. & Balat, H. 2009 Potential contribution of biomass to the sustainable energy development. *Energy Conversion and Management* **50**, 1746–1760. https://doi.org/10.1016/j.enconman.2009.03.013

Du, Z., Li, H. & Gu, T. 2007 A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. *Biotechnology Advances* **25**, 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004

Dunnill, P. 1987. Biochemical Engineering and Biotechnology. In: *Chemical Engineering Research and Design*. pp. 211–217. https://doi.org/10.1016/c2013-0-09819-2.

Faraghi, N. & Ebrahimi, S. 2012 Nitrite as a candidate substrate in microbial fuel cells. *Biotechnology Letters* **34**, 1483–1486. https://doi.org/10.1007/s10529-012-0939-y

Feng, Y., Wang, X., Logan, B. E. & Lee, H. 2008 Brewery wastewater treatment using air-cathode microbial fuel cells. *Applied Microbiology and Biotechnology* **78**, 873–880. https://doi.org/10.1007/s00253-008-1560-2

Feng, Y., Lee, H., Wang, X., Liu, Y. & He, W. 2010 Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell. *Bioresource Technology* **101**, 632–638. https://doi.org/10.1016/j.biortech.2009.08.046

Frijters, C. T. M. J., Vos, R. H., Scheffer, G. & Mulder, R. 2006 Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. *Water Research* **40**, 1249–1257. https://doi.org/10.1016/j.watres.2006.01.013

Gavalas, H. N., Angelidaki, I. & Ahring, B. K. 2003 Kinetics and modeling of anaerobic digestion process. *Advances in Biochemical Engineering/Biotechnology* **81**, 57–93. https://doi.org/10.1007/3-540-45839-9_3

Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. & Kim, H. J. 2003 Operational parameters affecting the performance of a mediator-less microbial fuel cell. *Biosensors and Bioelectronics* **18**, 327–334. https://doi.org/10.1016/S0956-5663(02)00110-0
Haavisto, J. M., Kokko, M. E., Lay, C. & Puhakka, J. A. 2017 Effect of hydraulic retention time on continuous electricity production from xylose in up-flow microbial fuel cell. 0–27. https://doi.org/10.1016/j.ijhydene.2017.05.068.

Habermann, W. & Pommer, E. H. 1991 Biological fuel cells with sulphide storage capacity. Applied Microbiology and Biotechnology 35, 128–133. https://doi.org/10.1007/BF00180650

HaiLiang, S., Hua, L., Shuai, Z., YuLi, Y., LiMin, Z., Han, X. & XiaoLi, Y. 2018 Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: effects of circuit operation mode and hydraulic retention time. Chemical Engineering Journal 350, 920–929.

He, Z., Huang, Y., Manohar, A. K. & Mansfeld, F. 2008 Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Electrochimica Acta 74, 78–82. https://doi.org/10.1016/j.bioelechem.2008.07.007

He, W., Wallack, M. J., Kim, K. Y., Zhang, X., Yang, W., Zhu, X., Feng, Y. & Logan, B. E. 2016 The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. Water Research 105, 351–360. https://doi.org/10.1016/j.watres.2016.09.008

Hiegemann, H., Litfinfski, T., Krimmler, S., Lübken, M., Klein, D., Schmelz, K. G., Ooms, K., Pant, D. & Wichern, M. 2019 Performance and inorganic fouling of a submersible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresource Technology 294. https://doi.org/10.1016/j.biortech.2019.122227.

Hou, B., Sun, J. & Hu, Y. 2011 Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Applied Microbiology and Biotechnology 90, 1563–1572. https://doi.org/10.1007/s00253-011-3226-2

Huang, L. & Logan, B. E. 2008 Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Applied Microbiology and Biotechnology 80, 655–664. https://doi.org/10.1007/s00253-008-1588-x

Huang, L., Zeng, R. J. & Angelidaki, I. 2008 Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technology 99, 4178–4184. https://doi.org/10.1016/j.biortech.2007.08.067

Ieropoulos, I., Winfield, J. & Greenman, J. 2010 Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology 101, 3520–3525. https://doi.org/10.1016/j.biortech.2009.12.108

Islam, M. A., Ong, H. R., Ethiraj, B., Cheng, C. K. & Rahman Khan, M. M. 2018 Optimization of co-culture inoculated microbial fuel cell performance using response surface methodology. Journal of Environmental Management 225, 242–251. https://doi.org/10.1016/j.jenvman.2018.08.002

Jadhav, G. S. & Ghangrekar, M. M. 2009 Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology 100, 717–723. https://doi.org/10.1016/j.biortech.2008.07.041

Jensen, W. A. 2008 DOE simplified: practical tools for effective experimentation, second edition. Journal of Quality Technology 40, 124–125. https://doi.org/10.1080/00224065.2008.1191777

Jia, H., Yang, G., Wang, J., Ngo, H. H., Guo, W., Zhang, H. & Zhang, X. 2016 Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor. Bioresource Technology 218, 286–293. https://doi.org/10.1016/j.biortech.2016.06.064

Jung, S. & Regan, J. M. 2007 Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology 77, 393–402. https://doi.org/10.1007/s00253-007-1162-y

Jung, R. K., Zuo, Y., Regan, J. M. & Logan, B. E. 2008 Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnology and Bioengineering 99, 1120–1127. https://doi.org/10.1002/bit.21687

Jung Rae, K., Booki, M. & Bruce, E. L. 2004 Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied Microbiology and Biotechnology 68, 23–30.

Katuri, K. P., Scott, K., Head, I. M., Piccioreau, C. & Curtis, T. P. 2011 Microbial fuel cells meet with external resistance. Bioresource Technology 102, 2758–2766. https://doi.org/10.1016/j.biortech.2010.10.147

Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J. & Phung, N. T. 2004 Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology 65, 672–681. https://doi.org/10.1007/s00253-003-1412-6

Kim, J. R., Jung, S. H., Regan, J. M. & Logan, B. E. 2007 Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology 98, 2568–2577. https://doi.org/10.1016/j.biortech.2006.09.036

Kim, K. Y., Yang, W. & Logan, B. E. 2015 Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water Research 80, 41–46. https://doi.org/10.1016/j.watres.2015.05.021

Kim, K. Y., Yang, W., Evans, P. J. & Logan, B. E. 2016 Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresource Technology 221, 96–101. https://doi.org/10.1016/j.biortech.2016.09.031

Krieg, T., Mayer, F., Sell, D. & Holtmann, D. 2019 Insights into the applicability of microbial fuel cells in wastewater treatment plants for a sustainable generation of electricity. Environmental Technology (United Kingdom) 40, 1101–1109. https://doi.org/10.1080/09593330.2017.1401668

Kuntke, P., Geleji, M., Bruning, H., Zeeman, G., Hamelers, H. V. M. & Bijlsma, C. J. N. 2011 Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresource Technology 102, 4376–4382. https://doi.org/10.1016/j.biortech.2010.12.085
Lanas, V., Ahn, Y. & Logan, B. E. 2014 Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. *Journal of Power Sources* 247, 228–234. https://doi.org/10.1016/j.jpowsour.2013.08.110

Larrosa-Guerrero, A., Scott, K., Head, I. M., Mateo, F., Ginesta, A. & Godínez, C. 2010 Effect of temperature on the performance of microbial fuel cells. *Fuel* 89, 3985–3994. https://doi.org/10.1016/j.fuel.2010.06.025

Lefebvre, O., Al-Mamun, A. & Ng, H. Y. 2008 A microbial fuel cell equipped with a biocathode for organic removal and denitrification. *Water Science and Technology* 58, 881–885. https://doi.org/10.2166/wst.2008.343

Li, Z., Yao, L., Kong, L. & Liu, H. 2008 Electricity generation using a baffled microbial fuel cell convenient for stacking. *Bioresource Technology* 99, 1650–1655. https://doi.org/10.1016/j.biortech.2007.04.003

Li, L. H., Sun, Y. M., Yuan, Z. H., Kong, X. Y. & Li, Y. 2013a Effect of temperature change on power generation of microbial fuel cell. *Environmental Technology (United Kingdom)* 34, 1929–1934. https://doi.org/10.1080/09593330.2013.828101

Li, X., Zhu, N., Wang, Y., Li, P., Wu, P. & Wu, J. 2013b Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: effects of HRT and non-precious metallic catalyst. *Bioresource Technology* 128, 454–460. https://doi.org/10.1016/j.biortech.2012.10.053

Liu, H. & Logan, B. E. 2004 Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. *Environmental Science and Technology* 38, 4040–4046. https://doi.org/10.1021/es0499344

Liu, H., Cheng, S. & Logan, B. E. 2005 Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. *Environmental Science and Technology* 39, 658–662. https://doi.org/10.1021/es048927c

Liu, H., Cheng, S., Huang, L. & Logan, B. E. 2008 Scale-up of membrane-free single-chamber microbial fuel cells. *Journal of Power Sources* 179, 274–279. https://doi.org/10.1016/j.jpowsour.2007.12.120

Liu, Z., Liu, J., Zhang, S. & Su, Z. 2009 Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. *Biochemical Engineering Journal* 45, 185–191. https://doi.org/10.1016/j.bej.2009.03.011

Li, G., Yates, M. D., Cheng, S., Call, D. F., Sun, D. & Logan, B. E. 2011a Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. *Bioresource Technology* 102, 7301–7306. https://doi.org/10.1016/j.biortech.2011.04.087

Liu, Y., Climent, V., Berná, A. & Feliz, J. M. 2011b Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. *Electroanalysis* 23, 387–394. https://doi.org/10.1002/ealan.201000499

Logan, B. E. 2008 Microbial Fuel Cells. https://doi.org/10.1002/9780470258590.

Logan, B. E. & Regan, J. M. 2006 Electricity-producing bacterial communities in microbial fuel cells. *Trends in Microbiology* 14, 512–518. https://doi.org/10.1016/j.tim.2006.10.003

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S. & Aelterman, P. 2006 Microbial fuel cells: methodology and technology. *Environmental Science and Technology* 40, 5181–5192. https://doi.org/10.1021/es0605016

Lyon, D. Y., Buret, F., Vogel, T. M. & Monier, J. M. 2010 Is resistance futile? changing external resistance does not improve microbial fuel cell performance. *Bioelectrochemistry* 78, 2–7. https://doi.org/10.1016/j.bioelechem.2009.09.001

Ma, D., Jiang, Z. H., Lay, C. H. & Zhou, D. 2016 Electricity generation from swine wastewater in microbial fuel cell: hydraulic reaction time effect. *International Journal of Hydrogen Energy* 41, 21820–21826. https://doi.org/10.1016/j.ijhydene.2016.08.019

Manohar, A. K., Bretschger, O., Nealson, K. H. & Mansfeld, F. 2008 The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. *Bioelectrochemistry* 72, 149–154. https://doi.org/10.1016/j.bioelechem.2008.01.004

Mateo, S., D’Angelo, A., Scialdone, O., Cañizares, P., Rodrigo, M. A. & Fernandez-Morales, F. J. 2017 The influence of sludge retention time on mixed culture microbial fuel cell start-ups. *Biochemical Engineering Journal* 123, 38–44. https://doi.org/10.1016/j.biortech.2017.03.018

Mclean, J. S., Wanger, G., Gorby, Y. A., Wainstein, M., McQuaid, J., Ishii, S. I., Bretschger, O., Beyenal, H. & Nealson, K. H. 2010 Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities. *Environmental Science and Technology* 44, 2721–2727. https://doi.org/10.1021/es903043p

Mirbagheri, S. A., Malekmohamadi, S. & Ehteshami, M. 2017 Designing activated carbon and zeolite amended biosand filters: optimization using response surface methodology. *Desalination and Water Treatment* 93, 48–60. https://doi.org/10.1004/dwt.2017.21458

Molognoni, D., Puig, S., Balaguer, M. D., Liberale, A., Capodaglio, A. G., Callegari, A. & Colprim, J. 2014 Reducing start-up time and minimizing energy losses of microbial fuel cells using maximum power point tracking strategy. *Journal of Power Sources* 269, 405–411. https://doi.org/10.1016/j.jpowsour.2014.07.035

Moon, H., In, S. C., Jae, K. J. & Kim, B. H. 2005 Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. *Biochemical Engineering Journal* 27, 59–65. https://doi.org/10.1016/j.biortech.2005.02.010

Mukherjee, S., Su, S., Pannanee, W., Irvin, R. T., Hassett, D. J. & Choi, S. 2013 A microliter-scale microbial fuel cell array for bacterial electrogenic screening. *Sensors and Actuators, A: Physical* 201, 532–537. https://doi.org/10.1016/j.sna.2012.10.025

Newman, E. B. 1994 General microbiology. In: *Research in Microbiology*, p. 157. https://doi.org/10.1016/0923-2508(94)90009-4.

Nguyen, V. K., Park, Y., Yang, H., Yu, J. & Lee, T. 2016 Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system. *Journal of Industrial Microbiology and Biotechnology* 43, 783–793. https://doi.org/10.1007/s10295-016-1762-6

Oh, S. T., Kim, J. R., Premier, G. C., Lee, T. H., Kim, C. & Sloan, W. T. 2010 Sustainable wastewater treatment: how might microbial fuel cells contribute. *Biotechnology Advances* 28, 871–881. https://doi.org/10.1016/j.biotechadv.2010.07.008
Oliveira, V. B., Simões, M., Melo, L. F. & Pinto, A. M. F. R. 2013 Overview on the developments of microbial fuel cells. *Biochemical Engineering Journal* 73, 53–64. https://doi.org/10.1016/j.biject.2013.01.012

Orecchini, F. & Bocci, E. 2007 Biomass to hydrogen for the realization of closed cycles of energy resources. *Energy* 32, 1006–1011. https://doi.org/10.1016/j.energy.2006.10.021

Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. 2010 A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. *Bioresearch Technology* 101, 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

Pant, D., Bogaert, G. V., Alvarez-Gallego, Y., Diels, L. & Vanbroekhoven, K. 2018 Evaluation of bioelectrogenic potential of four industrial effluents As substrate for low cost microbial fuel cells operation. *Environmental Engineering and Management Journal* 17, 1897–1904. https://doi.org/10.30638/eemj.2016.203

Parkash, A. 2015 Design and fabrication of a double chamber microbial fuel cell for voltage generation from biowaste. *Journal of Bioprocessing & Biotechniques* 05. https://doi.org/10.4172/2157-9821.1000246.

Patil, S. A., Harnisch, F., Kapadnis, B. & Schröder, U. 2010 Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. *Biosensors and Bioelectronics* 26, 803–808. https://doi.org/10.1016/j.bios.2010.06.019

Peppas, N. A. 1986 Biochemical engineering fundamentals. *Journal of Controlled Release* 4, 232. https://doi.org/10.1016/0168-3659(86)90022-2

Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaere, L., Boon, N. & Verstraete, W. 2006 Microbial fuel cells in relation to conventional anaerobic digestion technology. *Engineering in Life Sciences* 6, 285–292. https://doi.org/10.1002/elsc.200620121

Pinto, R. P., Srinivasan, B., Guiot, S. R. & Tartakovsky, B. 2010 The effect of real-time external resistance optimization on microbial fuel cell performance. *Water Research* 45, 1571–1578. https://doi.org/10.1016/j.watres.2010.11.033

Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D. & Colprim, J. 2010 Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. *Bioresearch Technology* 101, 9594–9599. https://doi.org/10.1016/j.biortech.2010.07.082

Qian, F. & Morse, D. E. 2011 Miniaturizing microbial fuel cells. *Trends in Biotechnology* 29, 62–69. https://doi.org/10.1016/j.tibtech.2010.10.003

Rabaey, K. & Keller, J. 2008 Microbial fuel cell cathodes: from bottleneck to prime opportunity? *Water Science and Technology* 57, 655–659. https://doi.org/10.2166/wst.2008.103

Rabaey, K. & Verstraete, W. 2005 Microbial fuel cells: novel biotechnology for energy generation. *Trends in Biotechnology* 23, 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

Rabaey, K., Lissens, G., Siciliano, S. D. & Verstraete, W. 2003 A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. *Biotecnology Letters* 25, 1531–1535. https://doi.org/10.1023/A:1025484009367

Rabaey, K., Osieur, W., Verhage, M. & Verstraete, W. 2005 Continuous microbial fuel cells convert carbohydrates to electricity. *Water Science and Technology* 52, 515–523. https://doi.org/10.2166/wst.2005.0561

Raisi, S. & Farsani, R. E. 2009 Statistical process optimization through multi-response surface methodology. *World Academy of Science, Engineering and Technology* 39, 280–284.

Raij, M. & Mirbagheri, S. A. 2021 A global trend of Fenton-based AOPs focused on wastewater treatment: a bibliometric and visualization analysis. *Water Practice and Technology* 16, 19–34. https://doi.org/10.2166/wpt.2020.099

Ren, Z., Ward, T. E. & Regan, J. M. 2007 Electricity production from cellulose in a microbial fuel cell using a defined binary culture. *Environmental Science and Technology* 41, 4761–4766. https://doi.org/10.1021/es070577h

Ren, L., Zhang, X., He, W. & Logan, B. E. 2014 High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate. *Biotechnology and Bioengineering* 111, 2163–2169. https://doi.org/10.1002/bit.25290

Rodrigo, M. A., Cañizares, P., Lobato, J., Paz, R., Sáez, C. & Linares, J. J. 2007 Production of electricity from the treatment of urban waste water using a microbial fuel cell. *Journal of Power Sources* 169, 198–204. https://doi.org/10.1016/j.jpowsour.2007.01.054

Rozendal, R. A., Hamelers, H. V. M. & Buisman, C. J. N. 2006 Effects of membrane cation transport on pH and microbial fuel cell performance. *Environmental Science and Technology* 40, 5206–5211. https://doi.org/10.1021/es060387r

Sajana, T. K., Ghangrekar, M. M. & Mitra, A. 2014 Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water. *Aquacultural Engineering* 61, 17–26. https://doi.org/10.1016/j.aquaeng.2014.05.004

Sangeetha, T. & Muthukumar, M. 2013 Influence of electrode material and electrode distance on bioelectricity production from sago-processing wastewater using microbial fuel cell. *Environmental Progress and Sustainable Energy* 32, 390–395. https://doi.org/10.1002/ep.11603

Santoro, C., Guizilizzoni, M., Baena, J. C., Pasaogullari, U., Casalegno, A., Li, B., Babanova, S., Artyushkova, K. & Atanassov, P. 2014 The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. *Carbon* 67, 128–139. https://doi.org/10.1016/j.carbon.2013.09.071

Scott, K. & Yu, E. H. 2015 Microbial electrochemical and fuel cells: fundamentals and applications. *Microbial Electrochemical and Fuel Cells: Fundamentals and Applications* 1–393. https://doi.org/10.1016/C2014-001767-4

Sobieszuk, P., Zamojska-Jaroszewicz, A. & Makowski, L. 2017 Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling. *Journal of Power Sources* 371, 178–187. https://doi.org/10.1016/j.jpowsour.2017.10.032

Solanki, K., Subramanian, S. & Basu, S. 2013 Microbial fuel cells for azo dye treatment with electricity generation: a review. *Bioresearch Technology* 131, 564–571. https://doi.org/10.1016/j.biortech.2012.12.063
Sun, J., Hu, Y., Bi, Z. & Cao, Y. 2009 Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. *Journal of Power Sources* **187**, 471–479. https://doi.org/10.1016/j.jpowsour.2008.11.022

Sun, J., Li, Y., Hu, Y., Hou, B., Xu, Q., Zhang, Y. & Li, S. 2012 Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. *Biotechnology Letters* **34**, 2023–2029. https://doi.org/10.1007/s10529-012-1002-8

Suzuki, K., Kato, Y., Yui, A., Yamamoto, S., Ando, S., Rubaba, O., Tashiro, Y. & Futamata, H. 2018 Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells. *Journal of Bioscience and Bioengineering* **125**, 565–571. https://doi.org/10.1016/j.jbiosc.2017.12.018

Tee, P. F., Abdullah, M. O., Tan, I. A. W., Amin, M. A. M., Nolasco-Hipolito, C. & Bujang, K. 2017 Effects of temperature on wastewater treatment in an affordable microbial cell-adsorption hybrid system. *Journal of Environmental Engineering* **5**, 178–188. https://doi.org/10.1016/j.jece.2016.11.040

Ter Heijne, A., Hamelers, H. V. M. & Buisman, C. J. N. 2007 Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. *Environmental Science and Technology* **41**, 4130–4134. https://doi.org/10.1021/es0607284

Thung, W. E., Ong, S. A., Ho, L. N., Wong, Y. S., Oon, Y. L., Oon, Y. S. & Lehl, H. K. 2015 Simultaneous wastewater treatment and power generation with innovative design of an upflow membrane-less microbial fuel cell. *Water, Air, and Soil Pollution* **226**, 165. https://doi.org/10.1007/s11270-015-2410-x

Venkata Mohan, S., Lalith Babu, V., Srikanth, S. & Sarma, P. N. 2008a Bio-electrochemical evaluation of fermentative hydrogen production process with the function of feeding pH. *International Journal of Hydrogen Energy* **33**, 4533–4546. https://doi.org/10.1016/j.ijhydene.2008.05.073

Venkata Mohan, S., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G. & Sarma, P. N. 2008b Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. *Bioresource Technology* **99**, 596–603. https://doi.org/10.1016/j.biortech.2006.12.026

Wang, X., Feng, Y. J. & Lee, H. 2008 Electricity production from beer brewery wastewater using single chamber microbial fuel cell. *Water Science and Technology* **57**, 1117–1121. https://doi.org/10.2166/wst.2008.064

Xu, D., Xiao, E. R., Xu, P., Zhou, Y., Zhou, Q. H., Xu, D. & Wu, Z. B. 2017 Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland-microbial fuel cell systems. *Bioresource Technology* **271**, 492–495. https://doi.org/10.1016/j.biortech.2018.09.039

Yuan, Y., Zhao, B., Zhou, S., Zhong, S. & Zhuang, L. 2011 Electrocatalytic activity of anodic biofilm towards nitrate: a comparison with cathodic biofilm towards nitrite. *Journal of Material Science and Technology* **27**, 4175. https://doi.org/10.1016/j.jmatecsc.2010.06.062

Yang, F., Ren, L., Pu, Y. & Logan, B. E. 2013 Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. *Bioresource Technology* **128**, 784–787. https://doi.org/10.1016/j.biortech.2012.10.021

You, S. J., Zhao, Q. L., Jiang, J. Q. & Zhang, J. N. 2006 Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation. *Chemical and Biochemical Engineering Quarterly* **20**, 407–412.

You, J., Greenman, J. & Ieropoulos, I. 2018 Novel analytical method for fuel cell design for rapid in situ optimisation of dilution rate and substrate supply rate, by flow, volume control and anode placement. *Energies* **11**(9), 2377. https://doi.org/10.3390/en11092377

Zhang, P. Y. & Liu, Z. L. 2010 Experimental study of the microbial fuel cell internal resistance. *Journal of Power Sources* **195**, 8013–8018. https://doi.org/10.1016/j.jpowsour.2010.06.062
Zhang, J. N., Zhao, Q. L., You, S. J., Jiang, J. Q. & Ren, N. Q. 2008 Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. *Water Science and Technology* **57**, 1017–1021. https://doi.org/10.2166/wst.2008.063

Zhang, L., Li, J., Zhu, X., Ye, D., Fu, Q. & Liao, Q. 2017 Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields: effects of external resistance. *Industrial and Engineering Chemistry Research* **56**, 3767–3774. https://doi.org/10.1021/acs.iecr.6b04619

Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P. & Herrmann, I. 2006 Challenges and constraints of using oxygen cathodes in microbial fuel cells. *Environmental Science and Technology* **40**, 5193–5199. https://doi.org/10.1021/es060332p

Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L. & Hu, Y. 2013 Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. *Chemical Engineering Journal* **229**, 364–370. https://doi.org/10.1016/j.cej.2013.06.023

Zheng, Y., Huang, Y., Liao, Q., Zhu, X., Fu, Q. & Xia, A. 2016 Effects of wettability on the growth of *Scenedesmus obliquus* biofilm attached on glass surface coated with polytetrafluoroethylene emulsion. *International Journal of Hydrogen Energy* **41**, 21728–21735. https://doi.org/10.1016/j.ijhydene.2016.07.007

Zhu, X., Zhang, L., Li, J., Liao, Q. & Ye, D. D. 2013 Performance of liter-scale microbial fuel cells with electrode arrays: effect of array pattern. *International Journal of Hydrogen Energy* **38**, 15716–15722. https://doi.org/10.1016/j.ijhydene.2013.06.052

First received 8 February 2021; accepted in revised form 11 August 2021. Available online 24 August 2021