Introduction

Control of gene expression at the level of mRNA translation is a crucial step that regulates proper function of major cellular processes such as cell proliferation, growth, differentiation, apoptosis, stress response, and tumorigenesis. A large body of recent research indicates that the deregulation of mRNA translation can promote cellular transformation and a malignant phenotype [1–4]. Cellular senescence, resulting in permanent arrest of cell growth is emerging as an intrinsic tumor suppressive mechanism [5]. While it has been established that aging and senescence is associated with lower rates of mRNA translation the mechanism [5]. While it has been established that aging and senescence is associated with lower rates of mRNA translation the linkage between translation deregulation and senescence in malignant cells is poorly described. Therefore, understanding the translational regulation in the framework of senescence program in tumor cells may provide an important approach in cancer therapy.

Translation of most mRNAs is primarily regulated at the level of initiation, a process that requires the protein complex known as eukaryotic initiation factor 4F (eIF4F), consisting of three proteins: cap-binding protein eIF4E, scaffolding protein eIF4G, and ATP-dependent RNA helicase eIF4A [6,7]. The aberrant expression of eIF4F components has been shown to be involved in many cancers, particularly in B-cell lymphoma [8–10]. Thus, targeting of the translation initiation complex is emerging as a potential cancer therapy [11–13]. The eukaryotic translation initiation factor 4 gamma (eIF4G) is expressed in mammalian cells in the form of the two homologs, eIF4GI and eIF4GII [14,15]. Recent studies have found that eIF4GI and eIF4GII despite the biochemical and functional similarities can fulfill different roles in mammalian cells [7]. Elevated eIF4GI levels have been shown to correlate with a malignant cell transformation [16–19]. However, little is currently known about eIF4GII expression and its function in translation initiation.

MicroRNAs (miRNAs) are endogenous regulatory RNA molecules that modulate protein expression based on sequence complementation with their target messenger RNAs (mRNAs) [20–24]. Given that these small regulatory molecules are frequently deregulated in various human cancers, they have become potential candidates as biomarkers and therapeutic intervention. Gene expression profiling studies and bioinformatics analysis have discovered numerous miRNAs differentially expressed in several types of human cancers, including B-cell malignancies [25,26]. Among the miRNAs expressed by hematopoietic malignancies, but not B-cell lymphomas, miR-520c-3p has been discovered [27] as well as eIF4GII [28]. While miR-520c-3p has been described as a senescence-inducing miRNA [29], it is not yet known whether the down-regulation of eIF4GII is associated with miR-520c-3p expression.
Author Summary

Control of gene expression on the translational level is critical for proper function of major cellular processes and deregulation of translation can promote cellular transformation. Emerging actors in this post-transcriptional gene regulation are small non-coding RNAs referred to as microRNAs (miRNAs). We established that miR-520c-3p represses tumor growth through the repression of eIF4GII, a major structural component of the translation initiation complex. Since translation of most cellular mRNAs is primarily regulated at the level of initiation, this node is becoming a potential target for therapeutic intervention. Identified in this study, tumor suppressor function of miR-520c-3p is mediated through the inhibition of translational factor eIF4GII, resulting in the repression of global translational machinery and induction of senescence in tumor cells. While aging and senescence has been shown to be associated with reduced translation the linkage between translational deregulation and senescence in malignant cells has not been previously described. Lending further clinical significance to our findings, we were able to demonstrate that primary DLBCL samples had elevated levels of eIF4GII while having reciprocally low miR-520c-3p expression.

Elevated Levels of miR-520c-3p Decreased Translation of Its Target Genes

To better understand the molecular mechanisms whereby miR-520c-3p elicits global translational repression and to identify miR-520c-3p targets and pathways involved in this regulation, we performed microarray analysis of total mRNA and mRNA isolated from polysomal fractions (translational profiling). Significantly altered genes were further analyzed for representation of Gene Ontology (GO) terms to identify key biologically functional categories that were significantly changed in miR-520c-3p overexpressed compared to control transfected cells. Noticeably, GO analysis revealed mainly translation and translation related categories with greatest representations of genes which had decreased protein synthesis (lowest values in the most actively translating fractions [fractions 10–11], and highest values in the...
Figure 1. miR-520c-3p is downregulated in DLBCL cells and affects global gene translation and cell proliferation. (A) Total RNA from normal B-cells, DLBCL, BL, and HeLa cell lines were used to measure miR-520c-3p abundance by RT-qPCR. Graphs represent the means and SEM from
repeats of three independent assays. (B) 48 h after transfection with Pre-miR-Ctrl or Pre-miR-520c-3p HeLa cells were fractionated through sucrose gradients. Absorbance at 254 nm was used to identify the fractions containing ribosomal subunits 40S and 60S, monosomes 80S, and polysomes LMW and HMW (low- and high-molecular weight). (C) 48 h after transfection as described in (B) HeLa cells incubated for 20 min with 35S-labeled amino acids. Lysate aliquots corresponding to the same cell numbers were size fractionated by SDS-PAGE, transferred onto PVDF membranes, and visualized using a PhosphorImager. The 35S-amino acid incorporation was quantified (graph) and is presented as percent signal intensity relative to amino acids. Lysate aliquots corresponding to the same cell numbers were size fractionated by SDS-PAGE, transferred onto PVDF membranes, and control transfection group. (D) Polysome profiles obtained 48 h after transduction of SUDHL4 cells with either empty vector (pCDH-Vector; V) or vector overexpressing miR-520c-3p (pCDH-520c-3p). (E) SUDHL4 cells were transduced as described in (D) and radiolabeled 48 h later as described in (C). (F) 72 h after transfection of HeLa cells as described in (B) cell numbers were counted using a hemocytometer. (G) 72 h after transfection cells as described in Materials and Methods cell numbers were counted using a hemocytometer. (H) After transfection as in (B), HeLa cell proliferation in real-time was monitored by the xCELLigence System. The data are representative of at least three independent experiments. In the graphs (A), (C), (E), (F) and (G) the means and SEM are shown. * indicates \(p < 0.05 \).

doi:10.1371/journal.pgen.1004105.g001

non- translating and low- translating fractions of the gradient [fractions 1–7] in miR-520c-3p overexpressed versus control cells (Figure 3A, Figure S4). Additionally, genes affected by miR-520c-3p overexpression in the most translationally active polysomal fraction 10 were put in the context of the known molecular interactions by using Ingenuity Pathways Analysis (IPA). IPA revealed that the top five networks, with the highest number of involved genes, were molecular functions linked to RNA post transcriptional modification, cellular development, cellular growth and proliferation, cell cycle, and cancer (Table S1). The effect of miR-520c-3p overexpression was furthermore verified for several mRNAs (Figure 3B) chosen from the most significantly altered in microarray data genes (Table S2), which were computationally predicted as direct targets of miR-520c-3p (by miRanda and Microcosm database) and, functionally represented above ranked pathways found by GO and IPA analysis. By comparing miR-520c-3p upregulated to control transfected cells by RT-qPCR analysis, we observed no influence of miR-520c-3p on total mRNA levels of most of the validated miR-520c-3p target transcripts (Figure 3C). Instead, we found that increased miR-520c-3p levels lowered protein expression of studied target genes (Figure 3D).

Given that microRNAs have been shown to influence translation as well as message stability [37], we investigated both potential post-transcriptional mechanisms (Figure 3E, Figure S5). We found only one message (Vil2 mRNA) to be affected on both the stability and translational level by miR-520c-3p. As shown in Figure 3E, corresponding with protein levels, we found decreased levels of all the validated transcripts in the actively translating fractions of the gradient (fractions 8–11), and elevated levels in the non-translating and low-translating fractions of the gradient (fractions 1–7) in groups transfected with miR-520c-3p. These differences were not observed when testing the distribution of the housekeeping GAPDH mRNA. The above data confirm that miR-520c-3p targets and decreases expression of many important genes involved in translational control, cell proliferation and cancer development. eIF4GII Is a Specific Target of miR-520c-3p Importantly, among the validated genes in which translation and protein levels were strongly decreased by miR-520c-3p was eukaryotic translation initiation factor 4 gamma, 3 (eIF4GII), one of the crucial components of the cap-dependent translation regulation complex eIF4F (Figure 3D and E). Therefore, we hypothesized that the influence of miR-520c-3p overexpression on global protein synthesis and cell phenotype might be mediated by eIF4GII. eIF4GII was predicted to have two miR-520c-3p binding sites in its 3’ untranslated region (3’UTR) (Figure 4A). The specific influence of miR-520c-3p on eIF4GII was initially confirmed by heterologous reporter constructs, which revealed diminished luciferase activity in the construct bearing the 3’ untranslated region (3’UTR) of eIF4GII mRNA suggesting that miR-520c-3p indeed repressed eIF4GII translation through its 3’UTR sequence (Figure 4B). Further, to corroborate that miR-520c-3p repressed eIF4GII translation specifically through the seed sites on its 3’UTR, heterologous GFP reporters were transfected in the conditions of either elevated miR-520c-3p or miR-Ctrl. These reporters were bearing segments with the predicted miR-520c-3p sites that were either wild type (wt) or with mutated (mut) seed region on eIF4GII 3’UTR (Figure 4C). As demonstrated in Figure 4D, increased miR-520c-3p levels efficiently reduced GFP wild type expression in both eIF4GII fragments, confirming miR-520c-3p’s repressive ability on both studied sites. Mutation of the seed region 1 (mut1) only slightly increased GFP expression in miR-520c-3p overexpressing cells compared to the wild type. However, mutating the seed region 2 (mut2) in the eIF4GII 3’UTR strongly increased GFP levels in miR-520c-3p overexpressing populations. Significantly, GFP mRNA levels remained unchanged between transfection groups (Figure S6A). These data suggest that miR-520c-3p inhibits eIF4GII expression through two sites in eIF4GII 3’UTR but one site, seed region 1, may not be the true binding site for miR520c-3p. Instead seed region 2 is indeed functional; therefore mutation in site 2 prevents the downregulation of GFP protein.

The repression through the eIF4GII 3’UTR miR-520c-3p sites was additionally evaluated by rescue experiments. Transfection with miR-520c-3p efficiently repressed eIF4GII levels in vector transfected populations but did not affect the levels of overexpressed eIF4GII with deleted 3’UTR sequence, pCDH-eIF4GII(CR) (Figure 4E). Strikingly, overexpression of pCDH-eIF4GII(CR) also changed the levels of senescence markers and abolished miR-520c-3p triggered differences in their expression. On the contrary, knocking down miR-520c-3p with miRZip-520c-3p increased the expression of eIF4GII, which was able to restore eIF4GII levels silenced by siRNA and modulated levels of studied senescence phenotype proteins (Figure 4F). Finally, we tested if miR-520c-3p overexpression affects the availability of eIF4GII for translation initiation and observed miR-520c-3p mediated reduction in the abundance of eIF4GII associated with the 5’ 7-methyl-GTP cap structure analog (Figure 4G). All together, these results strongly support the contention that the miR-520c-3p elicitation changes in protein translation and cell phenotype are indeed a consequence of modulated eIF4GII levels, via miR-520c-3p interaction with binding sites in the eIF4GII 3’UTR.

Contribution of eIF4GII in the Phenotype Triggered by miR-520c-3p Given that mRNA translation is primarily regulated at the level of initiation and that eIF4GII is a key scaffolding protein that forms a critical link between the mRNA cap structure and poly(A) tail during this process, we further postulated that the repression of the eIF4GII by miR-520c-3p might elicit a global mRNA translation inhibition upon miR-520c-3p overexpression. To test this possibility we silenced the eIF4GII protein levels by using eIF4GII-targeting siRNA. Indeed, knockdown of eIF4GII expression
consistently repressed global translation as monitored by the global polysome distribution profiles (Figure 5A) and nascent protein synthesis assessed by incorporation of 35S-labeled amino acids (Figure 5B).

We also tested whether silencing of eIF4GII could affect the translation of specific mRNAs validated in Figure 3 as miR-520c-3p targets by monitoring the fraction of those mRNAs associated with the translational apparatus. Corresponding to the overexpression of miR-520c-3p, knockdown of eIF4GII decreased protein levels of the miR-520c-3p target genes (Figure 5C). As illustrated in Figure 5D, examined mRNA levels were very low in non-translating and low-translating fractions of the gradient (fractions 1–7). In the Ctrl siRNA group, most of the transcripts were abundant in the actively translating polysomal fractions of the gradient (fractions 8–10). Silencing of eIF4GII led to a leftward shift in mRNA distribution, indicating that the studied transcripts associated with smaller
miR-520c-3p Down-Regulates eIF4GII in Lymphoma

A

GO0007155 Cell adhesion
GO0042254 Ribosome biogenesis and assembly
GO0044267 Cellular protein metabolic process
GO00086418 RNA aminoacylation for protein translation
GO0008100 Tricarboxylic acid cycle intermediate metabolic process
GO0044262 Cellular carbohydrate metabolic process
GO0006099 Tricarboxylic acid cycle
GO0006414 Translational elongation
GO0008652 Amino acid biosynthetic process
GO00027017 Microtubule-based process
GO0006730 One-carbon compound metabolic process
GO0051258 Protein polymerization
GO00086096 Glycolysis
GO0006412 Translation

B

Accession #	Gene name	Gene Function
NM 001198801.1	eIF4GII	Translation, component of eIF4F complex
NM 201559.2	FOXO3	Transcriptional factor; DNA damage response; apoptosis
NM 001111077.1	VIL2	Cell surface structure adhesion, migration; implicated in cancer
NM 001207000.1	HNRPD	Transcriptional regulator; RNA binding protein
NM 001419.2	HuR	RNA binding protein, post-transcriptional gene regulation
NM 001137554.1	MCT-1	Oncogene involved in translation and cell cycle progression

C

Fold of total mRNA levels

D

Pre-miR

Ctrl	520c-3p
eIF4GII	[Image]
FOXO3	[Image]
VIL2	[Image]
HNRPD	[Image]
HuR	[Image]
MCT-1	[Image]
GAPDH	[Image]

E

Percent mRNA

elf4GII	FOXO3	VIL2	HNRPD	HuR	MCT-1	GAPDH
[Image]						
miR-520c-3p Down-Regulates eIF4GII in Lymphoma

Figure 3. Analysis of microarray data in HeLa cells. (A) Functional categories of total and polysome associated mRNAs in Pre-miR-520c-3p compared to Pre-miR-Ctrl transfected cells. Heat map represents GO annotations with the most altered values in sucrose gradient fractions. Top 100 categories are illustrated in Figure S4. T indicates total RNA; lanes 1 through 11 represent RNA from sucrose fractions of increasing molecular weight. (B and C) The levels of total mRNAs of validated genes were measured by RT-qPCR in cells transfected with Pre-miR-520c-3p compared to Pre-miR-Ctrl. Graphs represent the means and SEM from three repeats of three independent assays. (D) Protein levels of miR-520c-3p target genes were measured by Western blotting. GAPDH was used as a loading control. (E) Cells were fractionated through sucrose gradients and the relative distribution of selected miR-520c-3p target mRNA (and housekeeping GAPDH mRNA) was studied by RT-qPCR analysis of RNA in each of 11 gradient fractions. Data are representative of three independent experiments.

doi:10.1371/journal.pgen.1004105.g003

polysomes and further suggesting that eIF4GII siRNA suppressed the initiation of mRNA translation.

As we observed, overexpression of pCDH-eIF4GII(CR) construct affected the expression of senescence markers (Figure 4E), therefore we wished to determine if eIF4GII repression might also participate in the process of miR-520c-3p triggered formation of the senescent phenotype. Comparable to the cells with increased miR-520c-3p, silencing of eIF4GII by siRNA caused a significant decline in the cell proliferation (Figure 5E) but no significant increase in cellular apoptosis (Figure 5F). Moreover, eIF4GII knockdown initiated cell cycle arrest in G1 phase (Figure 5G, Figure S6B), induced β-galactosidase activity (Figure 5H) and altered levels of the senescence markers p16, p53, and HuR (Figure 5I). Collectively, these findings indicate that the miR-520c-3p-elicited repression in global translation is facilitated through the influence of miR-520c-3p on eIF4GII expression, and further eIF4GII actively contributes to the miR-520c-3p triggered decrease in cell proliferation and the induction of senescence.

Both miR-520c-3p Overexpression and eIF4GII Knockdown Diminished the Clonogenic Capacity of Lymphoma Cells

Based on above data, we hypothesized that overexpression of miR-520c-3p can suppress tumor growth by decreasing protein translation, inhibiting proliferation, and promoting cell senescence. To address our hypothesis, we transfected Farage cells with either Pre-miRNA-Ctrl, Pre-miR-520c-3p (Figure 6A), or siRNA targeting eIF4GII or control siRNA (Figure 6B) and carried out soft agar colony formation assays. As shown, either elevated miR-520c-3p levels or reduced eIF4GII levels significantly decreased the ability of cells to form colonies when compared to control transfections. These results provided further evidence that eIF4GII is implicated in miR-520c-3p mediated cells growth control.

Increase in miR-520c-3p Expression Resulted in Repressed Tumor Formation in a Human Xenograft Model

Finally, we examined whether overexpression of miR-520c-3p inhibits tumor formation in vivo. To this end, we established a preclinical xenograft mouse model with SUDHL4 cells transfected with either an empty vector (pCDH-Vector) or a vector overexpressing miR-520c-3p (pCDH-520-3p). Upregulation of miR-520c-3p resulted in a significant repression of lymphoma tumors growth (Figure 6C and D, Figure S7A). Consistently, similar results were obtained in a xenograft model performed with Pre-miR-520c-3p transfected HeLa cells (Figure S7B). To test if the tumors growth repression was influenced by translational inhibition, polysome distribution profiles were analyzed in tumors harvested from xenografts (Figures 6E). Indeed, such profiles were consistent with our in vitro cell culture data (Figure 1B and D) showing a global translational decrease in miR-520c-3p overexpressing tumors. Likewise, Western blot analysis of examined senescence markers in xenografts confirmed that the decrease in tumors growth was also affected by induced cellular senescence (Figure 6F). In summary, our findings provide strong evidence that miR-520c-3p overexpression contributes to the observed inhibition of tumor formation in the human xenograft mouse model by maintaining a translationally repressed state, inhibiting proliferation and initiating cellular senescence in cancer cells. We propose that the observed decreased protein translation and premature senescence is mediated, at least in part, through a miR-520c-3p-mediated decrease in expression of translational factor, eIF4GII.

Reciprocal Expression of miR-520c-3p and eIF4GII in DLBCLs

Although eIF4GII has been found significantly elevated in a variety of cancers, to date, the tumorigenic potential of eIF4GII has not been investigated [16–19]. In the present study, we explored the expression of both miR-520c-3p levels and eIF4GII protein expression in a DLBCL model. As shown in Figure 1A, miR-520c-3p levels were consistently lower in both primary DLBCL cells and cultured DLBCL cell lines as compared to primary normal B-cells. Conversely, eIF4GII protein expression appeared to be low in normal B-cells and markedly elevated in all studied DLBCL cell lines (Figure 7A). To evaluate eIF4GII protein levels on primary DLBCL specimens and reactive lymph nodes, we performed immunohistochemistry analysis of tissue microarrays (TMA) on 49 primary DLBCL specimens (Table 1, Figure 7B). In agreement with Western blot analysis (Figure 7A), TMA data revealed that eIF4GII was markedly increased in 71% of all DLBCL (GCB and ABC subtype) compared to GCB of the reactive lymph nodes (14%) as summarized in Table 1 and representative sections shown in Figure 7B. Simultaneously, RNA from the same TMA samples was purified and expression of miR-520c-3p was measured by RT-qPCR (Table S3, Figure 7C). Despite the internal variability characteristic for primary samples derived from different patients we observed significant inverse relationship between eIF4GII protein expression and miR-520c-3p levels (Pearson correlation coefficient r = −0.38, p<0.02) in studied DLBCL cases. Altogether, this data support the role of miR-520c-3p and eIF4GII in the deregulation of protein synthesis in DLBCL and support the potential role of these molecules as specific therapeutic targets.

Discussion

Numerous studies have established that miRNAs are incorporated in major critical cellular pathways and can function in concert with other genes crucial for control of cellular growth [20,21]. Nevertheless, to understand the role of these small regulatory molecules in tumorogenesis, it is essential to identify the gene/pathway that they regulate. Herein, we demonstrated that elevated levels of miR-520c-3p resulted in inhibition of global gene translation, cell proliferation and promoted senescence in HeLa and DLBCL cells. Microarray analysis revealed that miR-520c-3p regulates the expression of many translation, cell proliferation and cancer related genes. Among those identified by microarray analysis and validated miR-520c-3p target genes, we found, eIF4GII, a pivotal scaffold member of eIF4F, and a central
organizing protein in the recruitment of mRNA during translational initiation. Furthermore, we observed that, comparable to miR-520c-3p elevation, silencing of eIF4GII by siRNA repressed translation, cell proliferation, promoted senescence and diminished the clonogenic ability of cancer cells. In addition, the overexpression of miR-520c-3p reduced eIF4GII translation and

Figure 4. eIF4GII is a specific target of miR-520c-3p. (A) Schematics of eIF4GII mRNA depicting the miR-520c-3p predicted target sites in 3′-untranslated region (3′UTR) and luciferase reporter construct bearing either no eIF4GII mRNA sequences or eIF4GII 3′UTR. (B) Plasmids pLenti-UTR-Luc-eIF4GII(3′UTR) or pLenti-UTR-Luc-Blank were cotransfected with Pre-miR-Ctrl or Pre-miR-520c-3p; the levels of luciferase activity were measured 48 h after cotransfection. Average and SD of three independent experiments are shown. * p<0.05. (C) Schematic of GFP reporter constructs bearing segments with predicted miR-520c-3p sites either wild type (wt) or with mutated (mut) seed sequences on eIF4GII 3′UTR. (D) 48 h after cotransfection of the plasmids from (C) with Pre-miR-Ctrl or Pre-miR-520c-3p in HeLa cells, the expression of GFP in each transfection group were analyzed by Western blot. (E) Six days after cotransfection of SUDHL4 cells with pCDH Vector or pCDH-eIF4GII(CR) along with either pCDH-Vector or pCDH-520c-5p, Western blot was performed. (F) Western blot analysis of eIF4GII, p16, p53, and HuR expression six days after co-transfection HeLa cells with Ctrl siRNA or eIF4GII siRNA along with either miRZip-Vector or miRZip-520c-3p. GAPDH was used as a loading control. (G) At 48 h after transfection HeLa cells with Pre-miR-Ctrl or Pre-miR-520c-3p, pull-down reactions with 5′7 mG cap analog were performed. eIF4GII abundance was analyzed by Western blot. Input and 20 μg of whole cell lysates were included as a blotting control. All data are representative of three independent experiments.

doi:10.1371/journal.pgen.1004105.g004
miR-520c-3p Down-Regulates eIF4GII in Lymphoma

A. Ctrl. siRNA vs. eIF4GII siRNA

B. siRNA
- Ctrl
- eIF4GII

C. siRNA
- eIF4GII
- FOXO3
- VIL2
- HNRPA3
- HuR
- MCT-1
- GAPDH

D. FOXO3 vs. eIF4GII siRNA
- VIL2
- HNRPA3
- HuR
- MCT-1
- GAPDH

E. Ctrl siRNA vs. eIF4GII siRNA
- HeLa
- Farage

F. HeLa vs. Farage
- % apoptotic cells

G. Changes in cell cycle (%)
- G1
- S
- G2

H. Ctrl siRNA vs. eIF4GII siRNA

I. siRNA
- Ctrl
- eIF4GII
- p16
- p53
- HuR
- GAPDH

HeLa
Farage
that the main tumor-suppressive mechanisms of miR-520c-3p can be attributed through the repression of translation and induction of premature senescence, which is a direct function of reduced eIF4GII protein levels. Recent reports indicate that mechanisms inducing premature senescence of cancer cells are emerging as a promising anti-tumorogenic, back-up program to improve on an insufficient apoptotic response [46,47]. In addition, the combination of senescence induced therapy and a conventional therapy is postulated as a rational approach to cancer treatment [48,49]. Accordingly, corresponding inhibition of translation and induction of senescence by miRNAs and/or small molecule inhibitors that target eIF4GII hold promise as an innovative strategy for cancer therapy.

MicroRNAs play a fundamental role in cancer biology and the alteration of their expression can have substantial effects on cell phenotypes. Thus, the role of miRNAs in the cancer pathogenesis makes them novel biomarkers and important therapeutic tools [50]. Accordingly, the results of several studies offer the experimental basis for the use of these small molecules in a therapeutic approach. For example, miR-34a and miR-155 have been already established as promising targets for lymphoma treatment [29–31]. While existing expression profiling studies have identified numerous miRNAs differentially expressed in lymphoma malignancies, DLBCL was found to have the most heterogeneous miRNA signature [26,32,51,52]. Aberrant expression of miRNA can be a consequence of various mechanisms such as structural alterations, chromatin remodeling, aberrant transcription factor activity, etc. Encoded on chromosome 19q13.42, miR-520c was identified as being associated with t(4;14) and t(11;14) translocations in multiple myeloma. In addition, several other miRNAs located on chromosome 19q13.42, such as miR-520g, miR-520h, and miR-520b, have been found to be downregulated in multiple myeloma [53]. Although recurrent translocations involving chromosome 19q13 such as t(14;19)(q32.3;q13.2) have been reported in B-cell malignancies, they are extremely rare [54,55]. Given that epigenetics has a profound effect on the regulation of miRNA expression and DNA hypermethylation has been already established as promising targets for lymphoma treatment, we examined if the decreased expression of miR-520c in DLBCLs as compared to normal B cells could be due to hypermethylation of the genomic locus (Text S1, Figure S8A, Table S4). However, no hypermethylation within the studied locus was detected in lymphomas. We observed focal areas of hypomethylation of miR-520 and 5’ from the coding sequence in lymphomas, which may represent a permissive state for the binding of putative transcriptional repressors. Since specific miRNA can be deregulated by multiple mechanisms, examining the regulation of miR-520c repression in DLBCL by alternative means is an opportunity for future investigation.

We found that reduced miR-520c-3p was correlated with elevated eIF4GII expression in DLBCL. While the other
Figure 6. Overexpression of miR-520c-3p in DLBCL diminished colony formation in clonogenic assay and decreased tumor growth in xenograft model. (A) Farage cells after transfection with either Pre-miR-Ctrl or Pre-miR-520c-3p were cultured in agarose/medium for two weeks.
Representative pictures (10 x) are shown. Graphs represent the means and SD of three independent experiments. (B) Farage cells were transfected with Ctrl siRNA or eIF4GII siRNA, assay was performed and analyzed as described in (A). * p<0.05. (C and D) SCID Beige mice (n = 5) received a subcutaneous injection of SUDHL4 cells either expressing empty pCDH-Vector (on left sites; red arrow) or overexpressing miR-520c-3p, pCDH-miR-520c-3p (on right sites; green arrow). The average tumor volume of each group with SEM is shown as a function of time. The repeated measure ANOVA showed a significant effect of time on tumors growth F(8,64) = 40.23, p<0.001, and significant repression of growth by miR-520c-3p as revealed by significant effect of treatment F(1,8) = 49.98, p<0.001 and significant treatment x time interaction F(8,64) = 5.93, p<0.001. (E) Lysates from SUDHL4 xenograft tumors obtained in C and D were fractionated by centrifugation through 10–50% linear sucrose gradients, and the polysome profiles were studied. (F) Protein extracts from xenograft tumors from (C) and (D) were subjected to Western blot analysis using indicated senescence markers antibodies.

doi:10.1371/journal.pgen.1004105.g006

functionally complementary scaffolding factors eIF4E and eIF4GII have been described as significantly increased in a variety of cancers [8–10,17–19], our studies are the first to implicate eIF4GII in a malignancy. In the light of increasing evidence that abnormal function of cellular eIF4F complex caused by elevated expression of initiation factors plays a major role in tumorigenesis [56], it is widely believed that targeting the molecules of this complex is a rational cancer therapy [11,34,57]. Recently, promising research has been done on targeting eIF4E by using eIF4E-specific antisense nucleotides [4]. Also, small-molecule inhibitors have been utilized to block interactions between the translation initiation factors eIF4E and eIF4GII, and to modulate eIF4A activity [12,13]. Our findings that eIF4GII is overexpressed in DLBCL, provides an additional component of the eIF4F complex consideration as a potential therapeutic target.

In summary, we revealed a tumor-suppressive function of miR-520c-3p and identified eIF4GII as a major effector of this action. Our findings demonstrate the ability of miR-520c-3p to repress the development of cancer malignancies through coordinated control of several significant mechanisms: (1) inhibition of eIF4GII and consequent repression of global translational machinery and induction of senescence in tumor cells, and (2) corresponding regulation of other target genes involved in cancer development. Whereas much extant research has demonstrated the role of miRNA-target gene interactions for a single pathway, only a limited number of studies have shown the interaction of a specific miRNA with a major regulatory node, which has the potential to enhance pleiotropic phenotypic effects. The data presented herein not only illustrates the complexity of the miR-520c-3p triggered post-transcriptional regulation network that regulates translation and cell growth, but also provides information about the cooperation between the functionally related mechanisms that results in tumor growth repression. These in vitro and in vivo results were confirmed in DLBCL patient samples, where miR-520c-3p levels were inversely correlated to eIF4GII protein expression. Our study established a novel link between regulation of translation and senescence in malignant cells and suggests that protein synthesis control is a crucial part of the complex mechanism leading malignant cells to senescence program.

Materials and Methods

Ethics Statement

Human sample studies have been approved by the University of Maryland School Institutional Review Board and conform to the Declaration of Helsinki.

Animal procedures were performed in compliance with protocols approved by the Institutional Animal Care and Use Committee of the University of Maryland.

Cell Culture and Transfections

Human cervical carcinoma HeLa cells were cultured in DMEM (Gibco BRL, Gaithersburg, MD) supplemented with 10% FBS. Diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL) cell lines were cultured in RPMI medium 1640 (Gibco BRL, Gaithersburg, MD) containing 10% FBS. HeLa cells were transfected by using Oligofectamine (Invitrogen) with 50 nM small RNAs Pre-miR-520c-3p (AAAGUGCUCCUUGUAAGGGGU), control Pre-miR-Ctrl (Ambion), or 20 nM siRNA targeting eIF4GII and control siRNA (Qiagen). Farage cells were transfected with Nucleofector Kit V (Amaxa, Inc., Germany). For transduction of SUDHL4 cells plasmids pCDH-Vector or pCDH-miR-520c-3p (System Biosciences, CA) were transfected with PureFrection (System Biosciences, CA) in HEK-293TN packaging cells. Afterward, SUDHL4 cells were co-cultivated with the viral particle producing HEK-293TN cells for 48 h, transferred to flasks and subjected to selection with 0.5 µg/ml puromycin. Plasmids pLenti-UTR-Luc-Blank or pLenti-UTR-Luc-eIF4GII(3’UTR) were purchased from Applied Biological Materials Inc. (BC, Canada), miRZip-Vector and miRZip-520c-3p constructs were from System Biosciences. Cloning of the eIF4GII 3’UTR fragments containing seed regions (wild-type or mutants) of miR-520c-3p in plasmid pDNA3.1/NT-GFP-TOPO were performed using NT-GFP Fusion TOPO TA Expression Kit (Invitrogen). The EIF4G3 lentiviral expression vector was generated through amplification of EIF4G3’s coding region (CD) from a human cDNA library and cloning the product into pCDH-EF1-MCS-IRESpuro (System Biosciences).

Primary Cells

Human sample studies have been approved by the University of Maryland School Institutional Review Board and conform to the Declaration of Helsinki. Primary normal B cells were purified from human peripheral blood mononuclear cells (PBMCs) obtained from Sanguine Biosciences, Inc. (Valencia, CA). B cells isolation was performed with human B Cell Isolation Kit (B-CELL) from Miltenyi Biotec Inc (Auburn, CA) according to manufacturer’s protocol. Collected B cells purity was determined by flow cytometry. DLBCL primary cells were obtained from lymph node biopsies, followed by cell density ficoll-gradient separation. Tonsils were provided by the UMGCC Pathology Biorepository and Research Core to serve as normal Germinal Center B-cell (GCB) controls. GCBs were isolated from tonsils as previously described [58] with purity greater than 95%, CD19+, CD38+ and IgD-.

Polyribosome Fractionation

Polysomal fractions were carried out and microarray analysis was performed as previously described [59]. Briefly, cell lysates were fractionated by centrifugation through 10–50% linear sucrose gradients and divided into 11 fractions. RNA was purified from each fraction for microarray and RT-qPCR analysis.

Microarray Data Analysis

RNA purified from sucrose fractions was labeled using Illumina TotalPrep RNA Amplification Kit (Ambion; Austin, TX). Human HT-12 v1.0 gene expression BeadChips containing 48,000 ReSeq transcripts (Illumina, San Diego, CA), were used for microarray
Figure 7. DLBCL cells express high levels of eIF4GII protein and low levels of miR-520c-3p. (A) eIF4GII protein levels in normal B-cells and DLBCL cells were analyzed by Western blot. β-Actin was used as a loading control. Data are representative of three independent experiments. (B) Pictured are representative fields (20× and 400× magnifications) of germinal center B-cell centroblasts of reactive lymph nodes and DLBCL tissue.
miR-520c-3p Down-Regulates eIF4GII in Lymphoma

microarrays immunohistochemically stained with anti-eIF4GII antibody. HE staining was used for morphologic examination. (C) RNA from tissue microarrays used in (B) was purified and expression of miR-520c-3p was measured by RT-qPCR. Graphs represent the means and SEM from repeats of three independent assays.
doi:10.1371/journal.pgen.1004105.g007

analysis. Raw microarray data were filtered by the detection p-value≤0.02, normalized by Z-score transformation and tested for significant differences in signal intensity. The sample quality was analyzed by scatter plot, principal component analysis (PCA), and gene sample z-scores based hierarchy clustering to exclude possible outliers. ANOVA test was used to eliminate the genes with larger variances within each comparison group. Genes were considered to be significantly changed after calculating Z-ratio, indicating fold difference (Z≥1.5 or ≤−1.5), false discovery rate (fdr), which controls for the expected proportion of false rejected hypothesis (fdr≤0.3) and p<0.05. Genes differentially expressed in studied groups were analyzed for representation of Gene Ontology (GO) terms to identify key biologically functional categories that were significantly changed (p<0.05) in miR-520c-3p overexpressed versus control transfected cells as described before [60]. Ingenuity Pathways Analysis IPA (https://analysis.ingenuity.com/; Ingenuity Systems; Redwood City, CA) was performed to identify the top network functions amongst the genes translationally regulated by miR-520c-3p. Network analysis utilizes a curated knowledge base on known functional interactions and protein functions to algorithmically infer biochemical interactions. Significance of functions and pathways was calculated using the right-tailed Fisher’s Test. See www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40489 for complete array results.

RNA Analysis
Total cellular RNA or RNA from polysomal fractions were purified by using Trizol (Invitrogen), reverse transcribed with the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) and quantified by real-time qPCR analysis using gene-specific primer pairs. qPCR analysis was carried out by using IQ SYBR Green Supermix (Quanta) and BioRad iCycler instrument. RNA from tissue microarrays (TMAs) was isolated using RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Life Technologies) according to manufacturer’s protocol. Mature miR-520c-3p and RNU6B were quantified using TagMan MicroRNA Assays (Applied Biosystems). Each reaction was carried out in triplicate and three independent experiments were run.

Oligonucleotides Used for Real Time RT-qPCR Analysis
For real-time qPCR quantification of selected miR-520c-3p targets following gene-specific primer pairs were used: CCCTTCAAGATGCACCTCAT and GTGGTCCACAGCTAGTGTTA and GAAAGTTGCAGGCACCAAAT for miR-520c-3p, TCCCTTTTCCGTGATCTTTT and TGGGATTCTGTGGAGAAAG for HuR mRNA, TGCTATCATGGCAGAGGAA and ATATGGCCACAGGCAGCATCATT for MCT-1 mRNA and, CCGAGTCAACCAGTTTGGCTGCTAGTAT and AGCCTTCTCCATGTTGGTGAAGAC for GAPDH mRNA.

Analysis of Newly Translated Protein
For analysis of de novo translation, 72 h after transfection 10⁶ cells were incubated with 1 mCi [35S]methionine and L-[35S]cysteine (Easy Tag EXPRESS; PerkinElmer Life and Analytical Sciences, Waltham, MA) per 6-well plate for 20 minutes. Cell lysates were then resolved by SDS-PAGE and transferred onto PVDF membranes. Radiolabel incorporation was visualized by PhosphorImager (GE Healthcare).

Western Blot Analysis
10–50 μg of whole cell lysates were resolved by SDS-PAGE (Invitrogen, Carlsbad, CA) and transferred onto PVDF membranes. After incubation with monoclonal antibodies recognizing eIF4GII (Sigma), p53, HuR, VIL2, GFP (all from Santa Cruz), GAPDH and β-Actin (both from Abcam, Cambridge, UK), or polyclonal FOXO3 (Cell Signaling), p16, HNRPDL, eIF4E (all from Santa Cruz), blots were incubated with the secondary antibodies (Santa Cruz). Signals were detected by enhanced chemiluminescence (Pierce, Rockford, IL).

Assessment of Cell Cycle, Cell Proliferation, Cell Apoptosis and Senescence
72 h after transfections cells were fixed with 70% ethanol, washed with PBS and digested with RNase (100 μm/ml) at 37 °C for 1 h. The cells were then stained with 50 μg/ml PI and analyzed for cell cycle with a flow cytometer. Cell proliferation in real-time was monitored by the xCELLigence System, RTCA DP Instrument (Roche Diagnostics GmbH, Germany). The cells were also stained with Trypan Blue (Sigma-Aldrich) and counted using a hemocytometer. The percentage of apoptotic cells was determined by flow cytometry with the Annexin V staining kit (BD Biosciences, CA). Senescence induction in the cells was tested by measurement of β-galactosidase activity with Senesence β-Galactosidase staining kit (Cell Signaling) and Western blot of p16, p53 and HuR senescence markers.

m²GTP Pull-Down Assay
For cap-binding assay, 500 μg total cell lysates were incubated with a 7-Methyl GTP-Sepharose beads (GE Healthcare, Little Chalfont, UK) overnight at 4°C. After washing of the beads, the bound proteins were analyzed by Western blot.

Colony Assay
Fare cells were transfected with Pre-miR-Ctrl, Pre-miR-520c-3p, eIF4GII siRNA or Ctrl siRNA and cultured in agarose/medium. 24 h later cells were plated at 7500 cells/ml in a 1:3 agarose to DMEM mixture on the top of solidified 1:1 agarose/DMEM feeder layer and covered with MDEM. Two days later

Samples	N	Staining	% Positive		
		Negative	Low	High	
DLBCL	49	14	24	11	71.43
GCB subtype	11	3	7	1	72.73
ABC subtype	38	11	17	10	71.05
Normal GCB	7	6	1	0	14.29

Table 1. Immunohistological analysis of eIF4GII expression in DLBCL and normal GCB.
colonies (>50 cells) were counted and pictures were taken with using Cell Colony Counter (Microbiology International).

Tissue Microarrays (TMA) Staining and Immunohistologic Analysis

Tissue microarrays, containing 10 reactive lymph nodes, 54 DLBCL, and 6 other types of lymphoma were purchased from Biomax and stained with Vectastain Elite ABC kit (Vector Laboratories) as described before [61]. Anti-eIF4GII antibody (Abcam) was used at 1:1000 dilution, 4°C, overnight. Hematoxylin-eosin (HE) staining was used for morphologic examination. The DLBCL was classified into GCB and ABC subtypes, according to well-accepted immunohistochemistry-based algorithms [61]. The immunohistochemical staining was evaluated according to the following criteria: negative, <25% neoplastic cells staining; low, 26–50% neoplastic cells staining; high, >50% neoplastic cells staining. The images were analyzed with a Nikon eclipse 50i microscope (Nikon Instruments).

In Vivo Tumor Growth in the Xenograft Models

Severe combined immunodeficiency (SCID) Beige mice were maintained in a pathogen-free environment under controlled conditions of light and humidity. Animal procedures were performed in compliance with protocols approved by the Institutional Animal Care and Use Committee of the University of Maryland. Six weeks old male mice were injected with 1.5×10⁶ SUDHL4 cells, either expressing empty vector or overexpressing miR-520c-3p into the left and right dorsal flanks, resuspended in 50% PBS and mixed with an equal volume of Matrigel. Tumors were measured and volumes were calculated as previously described [61,62]. Thirty-one days after injection, tumors were harvested for further analysis. The effect of miR-520c-3p overexpression on tumor growth was evaluated using analysis of variance (ANOVA) with time as a repeated measure factor.

Supporting Information

Figure S1 Overexpression of miR-520c-3p. (A) miR-520c-3p abundance as measured by RT-qPCR 72 h after transfection of HeLa cells with Pre-miR-Ctrl or Pre-miR-520c-3p. (B) 72 h after transfection as described in (A) HeLa cells were fractionated through sucrose gradients. Fractions containing ribosomal subunits 40S and 60S, monosomes 80S, and polysomes LMW and HMW (low- and high-molecular weight) are indicated. RNA was prepared from each fraction, and the relative intensity of the rRNA molecules is shown. (C) 72 h after transfection as described in (A) HeLa cells were harvested 20 min after incubation with 35S-labeled amino acids, size fractionated by SDS-PAGE, transferred onto PVDF membranes, and visualized using a PhosphoImager. Graph depicts quantification of the 35S-amino acid incorporation presented as percentage of signal intensity relative to control transfection. (D) miR-520c-3p levels were measured by RT-qPCR 72 h after transfection of SUDHL4 cells with either empty vector (pCDH-Vector) or vector overexpressing miR-520c-3p (pCDH-520c-3p), or transfecting Farage cells with Pre-miR-Ctrl or Pre-miR-520c-3p. (E) SUDHL4 cells were transduced as described in (D) and analyzed 72 h later as described in (B). (F) Cells were transduced as described in (D) and analyzed 72 h later as described in (C).

Figure S2 Downregulation of miR-520c-3p. (A and B) 48 h after transduction with miRZip-Vector or miRZip-520c-3p HeLa cells were analyzed for global protein synthesis as described in Figure S1B and C, respectively. (C and D) SUDHL4 cells were transduced and analyzed as described in (A and B).

Figure S3 Cell cycle analysis. (A) Cells were stained with PI and subjected to cell cycle analysis 72 h after transfection with Pre-miR-Ctrl or Pre-miR-520c-3p (HeLa) or transduction with pCDH-Vector or pCDH-520c-3p (SUDHL6). (B) Cells were transinfected/transduced as described in (A) and cell cycle was analyzed 48 h later. Representative pictures are shown. Graphs represent the means and SEM from three repeats of three independent assays.

Figure S4 Top 100 functional annotations for total and polysome associated mRNAs in Pre-miR-520c-3p compared to Pre-miR-Ctrl transfected HeLa cells identified by GO analysis. T represents total RNA; lanes 1 through 11 represent RNA from sucrose fractions of increasing molecular weight.

Figure S5 Half-lives of validated in Figure 3 mRNAs were measured by incubating cells with actinomycin D (4 μg/ml), extracting total RNA at the indicated times, and measuring mRNAs normalized to GAPDH mRNA by RT-qPCR analysis.

Figure S6 (A) (Upper) Schematic of GFP reporter constructs bearing segments with predicted miR-520c-3p sites with either wild type (wt) or with mutated (mut) seed sequences on eIF4GII 3’UTR. (Lower) GFP mRNA levels measured by RT-qPCR 48 h after cotransfection of above plasmids with Pre-miR-Ctrl or Pre-miR-520c-3p. (B) 72 h after transfection with Ctrl siRNA or eIF4GII siRNA, HeLa cells were stained with PI and subjected to cell cycle analysis. Representative pictures are shown.

Figure S7 Xenograft tumors in SCID mice using cells overexpressing miR-520c-3p. (A) mRNAs extracted from SUDHL4 xenograft tumors were subjected to RT-qPCR for validation of miR-520c-3p levels. (B) Mice (n = 6) received a subcutaneous injection of HeLa cells either transfected with Pre-miR-Ctrl or Pre-miR-520c-3p. Tumors were measured and volumes were calculated as described in the paper. The repeated measure ANOVA showed a significant effect of time on tumors growth F(13,78) = 10.05, p < 0.001, and significant inhibition of growth by miR-520c-3p as revealed by significant effect of treatment F(1,7) = 40.60, p < 0.001 and significant treatment x time interaction F(13,78) = 2.04, p < 0.05.

Figure S8 Interrogation of a 2 kbp locus around miR520C using Mass Array Sequenom Epityping reveals focal losses of methylation, but no gains of methylation in DLBCL cell lines and primary cases, as compared to normal GCB cells. Columns correspond to each interrogated CpG within the ampinron (CpGs in columns correspond to the indicated genomic location as visualized in UCSC browser and reflect methylation either within the coding sequence of the gene or adjacent 5’ and 3’ sequences). We profiled 4 fractions of isolated GCBs, 6 DLBCL cell lines and 9 primary DLBCL cases.

Table S1 The top five functional networks derived by Ingenuity Pathways Analysis (IPA) from the genes translationally regulated by miR-520c-3p.
Table S2 List of genes with the most significantly altered Z-ratio in Pre-miR-520c-3p compared to Pre-miR-Ctrl transfected HeLa cells.

Table S3 eIF4GII (IHC staining) and miR-520c-3p (measured by RT-qPCR) expression in TMA of primary DLBCL samples. 0 - negative staining, 1 - positive staining.

Table S4 EpiTYPER primer sequences designed for miR520c.

Text S1 Single Locus Quantitative DNA Methylation Assays.

References

1. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 345: 544–547.
2. Clemens MJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23: 3180–3188.
3. Polonovsky VA, Bitterman PB (2006) The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol 3: 10–17.
4. Graff JR, Konieczek BW, Vincent TM, Lynch RL, Montieth D, et al. (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117: 2638–2648.
5. Shay JW, Robinson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.
6. Gingras AC, Raught B, Sonenberg N (1999) eIF4 translation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963.
7. Caron S, Charon M, Cramer E, Sonenberg N, Huang J, Furtat I (2004) Selective modification of eukaryotic initiation factor 4E (eIF4E) at the onset of cell differentiation: recruitment of eIF4GII and long-lasting phosphorylation of eIF4E. Mol Cell Biol 24: 4920–4928.
8. Wang S, Rosenwald IB, Hutzler MJ, Savas L, et al. (1999) Expression of the eukaryotic translation initiation factors 4E and Zaphia in non-Hodgkin’s lymphomas. Am J Pathol 155, 247–253.
9. Meric F, Hutt KK (2002) Translation initiation in cancer: a novel target for therapy. Mol Cancer Ther 1: 971–979.
10. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, et al. (2004) The translation factor eIF4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 486–496.
11. Wendel HG, De Stanchina E, Friman JS, Malina A, Ray S, et al. (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.
12. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, et al. (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Mol Cell 120: 257–267.
13. Bordin ME, Robert F, Gerard B, Lindqvist L, Chen SM, et al. (2008) Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 118: 2651–2660.
14. Gradi A, Imataka H, Swiderek YV, Rom E, Raught B, et al. (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18: 334–342.
15. Imataka H, Gradi A, Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal 17: 7480–7489.
16. Fukasaku-Shimogori T, Ishii I, Kashiwagi K, Masuda H, Eikomoto H, et al. (1997) Malignant transformation by overproduction of translation initiation factor eIF4E. Cancer Res 57: 5041–5044.
17. Bordin ME, C Dieisenger, I, Brass N, Steinhardt H, Iro E, et al. (2001) Translation initiation factor eIF4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 92: 822–829.
18. Avdulov S, Li S, Michalk V, Burrichter D, Peterson M, et al. (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5: 353–363.
19. Tu L, Liu Z, He X, He Y, Yang H, et al. (2010) Over-expression of eukaryotic translation initiation factor 9 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Mol Cancer 9: 78.
20. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107: 823–826.
21. Meibers PS (2003) Cancer genomics: small RNAs with big impacts. Nature 435: 745–746.
22. Volinia S, Calin GA, Liu CG, Ambro S, Cimmino A, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257–2261.

Acknowledgments

We are grateful to our colleagues, S. Houng and W. H. Wood for providing expert technical assistance. We also are indebted to the University of Maryland Greenebaum Cancer Center Core Flow Cytometry Facility for providing flow cytometry analyses.

Author Contributions

Conceived and designed the experiments: KMM RS RBG. Performed the experiments: KMM XFZ BD JJS KLB RJP ALL MS YZ EL KGB RS. Analyzed the data: KMM XFZ YZ KLB RS ZL RBG. Wrote the paper: KMM RBG.
45. Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, et al. (2012) MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31: 4150–4163.

46. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.

47. Ewald JA, Desotelle JA, Wilding G, Jarrett DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102: 1536–1546.

48. Lleonart ME, Carnero A, Paciucci R, Wang ZZ, Shoukry N (2011) Cancer, senescence, and aging: translation from basic research to clinics. J Aging Res: 692301. doi: 10.4061/2011/692301.

49. Nardella C, Clodessy JG, Alimoni A, Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11: 503–531.

50. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nature Reviews Cancer 6: 857–866.

51. Lawrie CH, Chi J, Taylor S, Tramonti D, Ballabio E, et al. (2009) Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med 13: 1246–1260.

52. Mazan-Mamczarz K, Gartenhaus RB. (2013) Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk Res 37: 1420–1428.

53. Chi J, Ballabio E, Chen XH, Kutsche R, Taylor S, et al. (2011) MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct 6: 25.

54. Ibrahim HA, Amen F, Reid AG, Naresh KN (2011) BCL3 rearrangement, amplification and expression in diffuse large B-cell lymphoma. Eur J Haematol 87: 480–485.

55. Michaux L, Dierlamm J, Wodarska I, Bours V, Van den Berghe H (1997) t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases. Cancer Genet Cytogenet 94: 36–43.

56. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23: 5189–5199.

57. Wendel HR, Silva RL, Malina A, Mills JR, Zhu H, et al. (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21: 3232–3237.

58. Greve J, Philipsen A, Krause K, Klapper W, Heidorn K, et al. (2003) Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood 101: 3574–3580.

59. Mazan-Mamczarz K, Hagner PR, Zhang Y, Dai B, Lehrmann E, et al. (2011) ATM regulates a DNA damage response posttranscriptional RNA operon in lymphocytes. Blood 117: 2441–2450.

60. Mazan-Mamczarz K, Hagner PR, Dai B, Wood WH, Zhang Y, et al. (2008) Identification of transformation-related pathways in a breast epithelial cell model using a ribonomic approach. Cancer Res 68: 7750–7755.

61. Dai B, Zhao XF, Mazan-Mamczarz K, Hagner P, Coel S, et al. (2011) Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun 2: 402.

62. Dai B, Zhao XF, Hagner P, Shapiro P, Mazan-Mamczarz K, et al. (2009) Extracellular signal-regulated kinase positively regulates the oncogenic activity of MCT-1 in diffuse large B-cell lymphoma. Cancer Res 69: 7835–7843.