Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes

Takeshi Katsuda, Juntaro Matsuzaki, Tomoko Yamaguchi, Yasuhiro Yamada, Kazunori Hosaka, Atsuko Takeuchi, Yoshimasa Saito, Takahiro Ochiya

1) Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
2) Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
3) Department of Clinical Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
4) Division of Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan
5) Corresponding author: tochiya@ncc.go.jp
Abstract

Hepatocytes are regarded as the only effective cell source for cell transplantation to treat liver diseases; however, their availability is limited due to a donor shortage. Thus, a novel cell source must be developed. We recently reported that mature rodent hepatocytes can be reprogrammed into progenitor-like cells with a repopulative capacity using small molecule inhibitors. Here, we demonstrate that hepatic progenitor cells can be obtained from human infant hepatocytes using the same strategy. These cells, named human chemically induced liver progenitors (hCLiPs), had a significant repopulative capacity in injured mouse livers following transplantation. hCLiPs redifferentiated into mature hepatocytes in vitro upon treatment with hepatic maturation-inducing factors. These redifferentiated cells exhibited cytochrome P450 (CYP) enzymatic activities in response to CYP-inducing molecules and these activities were comparable with those in primary human hepatocytes. These findings will facilitate liver cell transplantation therapy and drug discovery studies.

Keywords: hepatocyte, liver progenitor cell, transplantation, liver repopulation, cytochrome P450
Introduction

Expansion of functional human hepatocytes is a prerequisite for liver regenerative medicine. Human hepatocytes are currently regarded as the only competent cell source for transplantation therapy \(^1\); however, their availability is limited due to a shortage of donors. Moreover, the therapeutic application of hepatocytes is hampered by their inability to proliferate in vitro. To overcome this, researchers have sought to generate expandable cell sources as alternatives to primary hepatocytes. Such cell sources include embryonic stem cell- and induced pluripotent stem cell-derived hepatic cells \(^2\)–\(^6\), lineage-converted hepatic cells (induced hepatic cells; \(^7\),\(^8\), and facultative liver stem/progenitor cells (LPCs) residing in adult liver tissue \(^9\). However, while primary hepatocytes efficiently repopulate injured mouse livers (repopulation indexes (RIs) > 50%), the repopulation efficiency of these laboratory-generated hepatocytes is limited, with reported RIs generally less than 5% (reviewed in \(^10\)).

Researchers have also attempted to expand primary human hepatocytes (PHHs) in vitro. Several studies reported the expansion of these cells \(^11\)–\(^15\), suggesting that they are potentially applicable for transplantation therapy. However, the growth rate and proliferative lifespan of PHHs are limited. For example, Yoshizato’s group reported that PHHs can be cultured for several passages, but their growth rate is slow (population doubling time of 20–300 days) \(^15\). This finding indicates that culture of PHHs must be improved for the clinical application of these cells.

We recently reported that a cocktail of small molecule signaling inhibitors reprograms rodent adult hepatocytes into culturable LPCs, named chemically induced liver progenitors (CLiPs) \(^16\). Notably, rat CLiPs extensively repopulate chronically injured mouse livers without causing any tumorigenic features. Here, using the same strategy, we demonstrate that human infant hepatocytes can be also converted into proliferative LPC-like cells, which are named human CLiPs.
Results

Small molecules support expansion of PHHS

In a pilot study, we tested whether the combination of Y-27632 (Y), A-83-01 (A), and CHIR99021 (C), the chemical cocktail used to reprogram rodent hepatocytes, also induced proliferation of commercially available cryopreserved adult PHHs (APHHs) (donor information is summarized in Table 1). In contrast with the basal culture medium (small hepatocyte medium (SHM)), culture in YAC-containing SHM (SHM+YAC) induced the proliferation of cells that morphologically resembled epithelial cells (Fig. S1A). These cells were small and had a higher nucleus-to-cytoplasm ratio than hepatocytes, which is a typical morphological feature of LPCs. When colonies became densely packed, rat and mouse CLiPs exhibited a compact polygonal cell shape delimited by sharply defined refractile borders with bright nuclei in phase contrast images (Fig. S1B, S1C). However, unlike rat and mouse CLiPs, the morphology of human cells did not clearly change after colonies became densely packed (Fig. S1A). Although we did not perform further characterization, these proliferating cells likely arose from non-hepatic cells, such as biliary epithelial cells (BECs) or so-called liver epithelial cells, the origins of which are not well-defined. Thus, we speculated that human hepatocytes require additional proliferative stimuli. Therefore, we tested the ability of fetal bovine serum (FBS) to support the proliferation of these cells. One of three lots of APHHs formed proliferative and densely packed colonies, and exhibited a hepatocytic morphology upon culture in medium supplemented with YAC and 10% FBS (FYAC) (Fig. S1D). By contrast, all three lots of APHHs formed proliferative colonies with hepatic morphologies upon culture in medium supplemented with AC and 10% FBS (FAC) (Fig. S1E). However, the proliferative capacity of these hepatic colony-forming cells was limited, and the number of these cells markedly decreased after the first passage, while non-parenchymal cells (NPCs) with non-hepatic morphologies became the dominant population (data not shown).

Next, considering the previous finding that PHHs derived from young donors are optimal for in vitro expansion, we tested whether infant PHHs (IPHHs) expanded more efficiently in the presence of small molecules and FBS. Using IPHHs derived from a 10-month-old donor (lot FCL), we performed a mini-screen using all possible combinations of Y, A, and C in 10% FBS-supplemented SHM. The water-soluble tetrazolium salt-based (WST) assay demonstrated that these cells proliferated in the presence of A, YA, AC, and YAC (Fig. 1A). Consistent with the observations made in APHHs (Fig. S1E), these cells proliferated most efficiently in FAC and thus we used this medium in all subsequent
experiments. Robust proliferation of hepatocytes was not supported by culture in the presence of AC or FBS alone, but was synergistically supported by culture in the presence of both AC and FBS (Fig. 1B). Although proliferating cells cultured in FAC did not morphologically resemble hepatocytes when the cell density was low, they spontaneously acquired a hepatocyte-like morphology as colonies became densely packed (Fig. 1C). This observation strongly suggests that human proliferative cells cultured in FAC more closely resembled rodent CLiPs than those cultured in the presence of YAC. Unlike APHHS, IPHHs proliferated efficiently and became the predominant population over 2 weeks of culture. Two other lots of IPHHs (lot DUX from an 8-month-old donor and lot JFC from a 1-year-old donor) (Table 1) also proliferated in these culture conditions, although the proliferative capacity varied among the lots: FCL, DUX, and JFC proliferated 49.2 ± 9.34 (at day 14), 46.2 ± 2.12 (at day 14) and 3.66 ± 0.321 (at day 12) folds, respectively (mean ± SEM, determined by 2 repeated experiments for each lot). We also confirmed by microscopy that FAC enabled two more donors (11 mo and 2 yr old)-derived IPHHs and one juvenile donor (7 yr-old)-derived hepatocytes to proliferate and spontaneously change their morphologies to hepatocyte-like ones in the densely packed region of the proliferating colonies (Fig. S1F).

Characterization of proliferating cells cultured in FAC

These proliferating cells expressed multiple surface markers of LPCs, including EPCAM, CD44, PROM1 (also known as CD133), CD24, and ITGA6 (Fig. 1D, S2A). We performed microarray-based transcriptome analysis of previously identified BEC/LPC marker genes to further characterize these cells. Expression of many of these genes was induced during the 2 weeks of culture (Fig. 1E). Some of these genes, such as PROM1 and SPP1, were expressed at comparable levels regardless of whether cells were cultured in the presence of AC, suggesting that their expression was spontaneously induced by the basal culture conditions (Fig. 1E). However, expression of multiple BEC/LPC marker genes, including EPCAM, SOX9, KRT19, TACSTD2, AXIN2, and PROX1, was increased in cells cultured in FAC (Fig. 1E, 1F). Of these, expression of EPCAM, SOX9, and KRT19 was affected not only by the presence of AC but also by the culture duration, suggesting that AC induced expression of these genes during *in vitro* culture. By contrast, expression of AXIN2 and PROX1 was maintained, but not increased, upon culture in the presence of AC. Gene signature enrichment analysis (GSEA) comparing cells cultured in the presence of FBS and those cultured in FAC demonstrated that the majority of gene sets enriched in the latter cells
were related to hepatic function (Fig. 1G, Table S1), suggesting that AC also helped to maintain the hepatocytic characteristics of cultured hepatocytes. Although cell cycle-related gene sets were also identified by GSEA, their enrichment scores were relatively low (Fig. S2B, Table S1). This is likely because cell proliferation was also increased by culture in the presence of FBS. However, proliferating cells were contaminated by fibroblast-like NPCs upon culture in the presence of FBS. Proliferation-related gene sets were enriched in cells cultured in the presence of FBS and in FAC compared with cells at 1 day after plating (D1 hepatocytes) (Fig. S2C, S2D, Table S3 and S4). However, gene sets related to liver fibrogenesis, such as “p75 NTR receptor-mediated signaling”, “PDGF signaling”, and “TGFβ signaling”, were also enriched in cells cultured in the presence of FBS (Fig. 1H, Table S2). Accordingly, expression of the hepatocytic connexin genes GJB1 (also known as CX32) and GJB2 (also known as CX26) was low in cells cultured in the presence of FBS, while the NPC connexin gene GJA1 (also known as CX43) was sharply upregulated \(^{18}\) (Fig. S2E). In addition, the gene set “epithelial to mesenchymal transition” was enriched in cells cultured in the presence of FBS compared with cells cultured in FAC (Fig. 1H), suggesting that the former cells acquired a mesenchymal phenotype. Overrepresentation of TGFβ signaling in hepatocytes reportedly leads to acquisition of a fibroblast-like dedifferentiated state both \textit{in vitro} and \textit{in vivo} \(^{19,20}\). In summary, two small molecules, AC, together with FBS, support the proliferation of hepatic epithelial cells with characteristics of both hepatocytes and LPCs/BECs.

Hepatic differentiation capacity of the proliferative cells

A hepatic differentiation capacity is an important feature of LPCs, particularly for their potential use as a candidate cell source for transplantation therapy. To investigate the hepatic differentiation capacity of these proliferative cells, we passaged and cultured them in the presence of oncostatin M (OSM), dexamethasone, and Matrigel, which induce maturation of LPCs into hepatocytes (Fig. S3A) \(^{21}\). As noted in Figure 1C, the proliferative cells spontaneously acquired hepatic morphologies when they reached 100\% confluency, even in the absence of hepatic maturation inducers (Fig. 2A, S3B, middle panels for each lot). However, this morphological change was more evident in the presence of hepatic maturation inducers (Fig. 2A, S3B, right panels for each lot). In particular, cells acquired a polygonal and cytoplasm-rich morphology, which is similar to that of PHHs (Fig. 2B). Accordingly, microarray analysis confirmed that expression of representative hepatic marker genes,
including ALB, TDO2, and SERPINA1 was increased after hepatic maturation induction (Fig. 2C). However, the expression levels of these genes were not markedly changed in cells from lot JFC. This is presumably because expression of hepatic maturation genes was already high in these cells even before hepatic induction. In contrast with the hepatic marker genes, expression of the BEC/LPC marker genes including SOX9, KRT19, and KRT7 was decreased, suggesting that the proliferative cells lost their BEC/LPC phenotype and acquired a mature hepatic phenotype (Fig. S3C). Hierarchical cluster analysis of genes that were differentially expressed between cells cultured in the presence of hepatic maturation inducers (Hep-i(+)) and cells cultured for the same duration in the absence of hepatic maturation inducers (Hep-i(-)) indicated that the characteristics of Hep-i(+) cells were relatively similar to those of PHHs (Fig. 2D). Overrepresented pathways in Hep-i(+) cells in comparison with Hep-i(-) cells were associated with the immune response and metabolic processes (Fig. 2E), both of which are important functions of the liver. These findings were further validated by GSEA (Fig. 2F, Table S5). By contrast, overrepresented pathways in Hep-i(-) cells in comparison with Hep-i(+) cells were associated with developmental processes and morphogenesis, implying that Hep-i(-) cells were functionally immature compared with Hep-i(+) cells (Fig. S3D). In addition, cell cycle-related genes were overrepresented in Hep-i(-) cells (Fig. S3E, Table S6), which is consistent with the general notion that progenitor cells have a greater proliferative capacity than cells with a more mature phenotype. Taken together, proliferative cells derived from human hepatocytes via culture in FAC lost their immature phenotype and acquired a mature hepatocyte-like phenotype in response to hepatic maturation inducers. Thus, we hereafter designate these proliferative cells as human CLiPs (hCLiPs).

Expression and activities of drug-metabolizing enzymes in hCLiP-derived hepatocytes

Cytochrome P-450 (CYP) enzymes play a central role in the metabolic functions of the liver. Thus, we investigated the metabolic functions of hCLiP-derived hepatocytes. As noted in the previous section, overrepresented pathways in Hep-i(+) cells were associated with metabolism (Fig. 2E, 2F, Table S5). In addition, pathways involving CYPs were enriched in Hep-i(+) cells, as characterized by GSEA using both the KEGG and Reactome databases, although the p-values for these gene sets were higher than 0.05 (Fig. S4A). A heatmap revealed that expression of several CYP genes was higher in Hep-i(+) cells than in Hep-i(-) cells (Fig. 3A). These genes included CYP2B6, CYP2D6, CYP2E1, CYP2C9, and CYP3A4, which play crucial roles in metabolic functionality of the human liver 22. The
enzymatic activities of multiple CYPs were investigated by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a cocktail of substrates (Fig. 3B). This revealed that the enzymatic activities of CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A were comparable, if not the same, in Hep-i(+) cells derived from lots FCL and JFC as in PHHs, but were lower in Hep-i(+) cells derived from lot DUX (Fig. 3B). Expression of CYP1A2, CYP2B6, and CYP3A4 is induced in hepatocytes via transcriptional activation in response to certain chemicals. Thus, we investigated whether the expression and activities of these CYPs were increased in hCLiP-derived hepatocytes treated with prototypical inducers of each CYP isoform, namely, omeprazole (aryl hydrocarbon receptor ligand) for CYP1A2, phenobarbital (indirect activator of constitutive active androstane receptor) for CYP2B6 and CYP3A4, and rifampicin (pregnane X receptor ligand) for CYP3A4. These CYP genes were markedly upregulated in cells derived from the three lots in response to the corresponding inducer (Fig. S4B, S4C). Although enzymatic activities of these CYPs were increased in both Hep-i(-) and Hep-i(+) cells upon treatment with the corresponding inducer, these increases were relatively larger in the latter cells than in the former cells (Fig. 3C, S3D), consistent with the changes in gene expression (Fig. S3C). We also directly quantified CYP protein expression by mass spectrometry. Protein expression of CYP1A2 and CYP3A4 in hCLiP-derived hepatocytes was increased in response to the corresponding inducer (Fig. 3D). In addition, activities of the phase II enzymes sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT) were comparable in hCLiP-derived hepatocytes and PHHs (Fig. 3E). These results demonstrate that hCLiPs differentiate into cells that are metabolically mature after induction of hepatic maturation and thus are potentially applicable for drug metabolism studies.

Long-term expansion of hCLiPs

Long-term culture of hepatocytes or LPCs with a sustained proliferative capacity is of great interest for liver regenerative medicine and drug discovery studies. Thus, we investigated the feasibility of long-term culture of hCLiPs. Cells derived from lots FCL and DUX could be serially passaged until at least passage 10 (P10) without growth arrest (Fig. 4A) or obvious morphological changes (Fig. S5A). The population doubling times of FCL and DUX hCLiPs were 1.27 ± 0.0066 and 1.43 ± 0.0086 d, respectively (Mean ± SEM, determined by 3 repeated experiments for each lot). However, non-hepatic cells with a fibroblast-like morphology were also observed (Fig. S4A, arrows), and the percentage of
these cells varied among repeated experiments for each lot, as assessed by flow cytometric analysis of the epithelial-cell surface marker proteins EPCAM and CD24 (Fig. S5B). Cultures of cells from lot JFC contained more fibroblast-like cells than cultures of cells from lots FCL and DUX (Fig. S5A). Upon culture of cells from lot JFC, the percentage of fibroblastic cells increased with the passage number and fibroblastic cells overwhelmed hCLiPs by P5, as assessed by microscopic observation (n = 3 repeated experiments) (Fig. S4A) and flow cytometric analysis of LPC markers (n = 1 experiment) (Fig. S4B). However, when EPCAM+ cells were sorted from primary hCLiPs at the first passage, proliferative epithelial cells were observed for at least the next three passages (total of four passages) with their population doubling time 1.24 d (n = 1 experiment) during P1 and P4 (Fig. 4A, S5A), confirming the proliferative capacity of hCLiPs obtained from lot JFC. Although expression of surface markers varied among experimental batches at later passages (Fig. S5B), it was relatively stable up to P5 in cells derived from lots FCL and DUX (Fig. S5B). We also investigated the karyotype of cells derived from lots FCL and DUX at P7 (Fig. 4B). hCLiPs derived from lot JFC were contaminated by an increased percentage of fibroblast-like cells; therefore, we karyotyped FACS-sorted EPCAM+ cells (at the first passage) which were then passaged four times after sorting (Fig. 4B). None of the analyzed cells exhibited any chromosomal abnormality (20 cells analyzed per lot) and all the analyzed cells were diploid (50 cells analyzed per lot) (Fig. 4B). This implies that hCLiPs were derived from diploid hepatocytes, which is consistent with our previous observations in rat CLiPs 16. We further investigated transcriptomic changes in hCLiPs derived from lots FCL and DUX between P0 and P10 using cells from the experimental batches that maintained higher levels of EPCAM and CD24 expression (Fig. S5B) (experimental batch #2 and #3 for lots DUX and FCL, respectively). A heatmap of genes that were differentially expressed between P0 and P10 showed that the phenotype of hCLiPs gradually changed (Fig. S5C). As indicated on the right in Figure S5C, genes whose expression decreased included those related to hepatic functions, indicating that hCLiPs lose their hepatic phenotypes during repeated passage. Nonetheless, the heatmap suggested that hCLiPs retained at least some of their original characteristics until approximately P5 (Fig. S4C). Thus, we investigated the hepatic phenotype of hCLiPs at P3 and P5. Quantitative reverse transcription PCR (qRT-PCR) analysis of hCLiPs derived from each lot indicated that absolute expression levels of hepatic genes consistently decreased as the passage number increased (Fig. 4C). Nevertheless, hCLiPs derived from each lot, particularly lots FCL and DUX, could undergo hepatic differentiation (Fig. 4C).
Immunocytochemistry revealed that Hep-i(+) cells derived from lot FCL expressed hepatic marker proteins at P3 (Fig. S5D). We also investigated CYP enzymatic activities in these cells. Although the CYP enzymatic activities clearly decreased upon repeated passage, the basal activities of these enzymes, with the exception of CYP2C19, were maintained at P3 and P5 (Fig. 4D). Induction of CYP3A enzymatic activity in response to rifampicin and phenobarbital was relatively stable even at P3 and P5, especially in Hep-i(+) cells (Fig. 4E). In summary, functional decline of hCLiP-derived hepatocytes during continuous culture is unavoidable; however, CYP3A, the most important CYP in human drug metabolism, is still induced in these cells.

Repopulation of chronically injured mouse livers by hCLiPs

The capacity to repopulate injured livers is the most important and stringent criterion of a candidate cell source for liver regenerative medicine. Depending on the disease, 1–15% of hepatocytes must be replaced to achieve and sustain a therapeutic effect. Consequently, we tentatively regard a RI of 15% as a benchmark of a significant repopulative capacity. Laboratory-generated hepatocytes typically have RIs of less than 5%, although a few studies reported maximum RIs of 20% or 30% in individual animals. A previous study also reported that the repopulative capacity of authentic human hepatocytes decreases upon *in vitro* culture; the RI of cultured hepatocytes that successfully engrafted was 6.6% on average and reached 27% in an individual animal.

We assessed the repopulative capacity of hCLiPs in immunodeficient mice with chronically injured livers. Our previous study revealed that rat CliPs repopulate the liver of cDNA-uPA/SCID mice; therefore, we first transplanted hCLiPs derived from lots FCL, DUX, and JFC at P0–P2 into this model. After intrasplenic transplantation of primary hCLiPs that had been expanded *in vitro* for approximately 2 weeks (11–13 days) (hereafter designated P0-hCLiPs), the human ALB (hALB) level was exponentially increased in the blood of some, but not all, mice (Fig. 5A, red lines). The maximum hALB level in blood was > 10 mg/ml, which is comparable with that observed following transplantation of PHHs in this animal model. Immunohistochemistry (IHC) of human-specific CYP2Cs (including CYP2C9 and other CYP2Cs according to the manufacturer’s datasheet) demonstrated extensive repopulation in mouse livers extracted at 10–11 weeks after transplantation (Fig. 5B). Although the RI varied among mice (32.2 ± 13.5% for lot FCL, n = 11; 39.3 ± 13.5% for lot JFC, n = 11; 17.8 ± 16.4% for lot DUX, n = 4, mean ± SEM), it reached > 90% in some
animals (Fig. 5C). This maximum RI is comparable with that achieved after transplantation of PHHs 10. The repopulative capacity declined as the culture period increased (Fig. 5A, 5C). Nonetheless, one mouse transplanted with FCL-P1-hCLiPs (hCLiPs derived from lot FCL that were passaged once before transplantation) (67.4%) and two mice transplanted with JFC-P2-hCLiPs (hCLiPs derived from lot JFC that were passaged twice before transplantation) (83.1% and 91.1%) exhibited high RIs. We confirmed the repopulative capacity of FCL-P0-hCLiPs using another model, namely, TK-NOG mice 26. In this model, the serum hALB level was dramatically elevated to at most 8.1 mg/ml (Fig. 5D). The maximum RI was lower in TK-NOG mice (57.5%) than in cDNA-uPA/SCID mice (96.0%) (Fig. 5E, 5F). However, engraftment was more efficient in TK-NOG mice than in cDNA-uPA/SCID mice; significant repopulation (> 15% RI) with FCL-P0-hCLiPs was observed in 83% (5/6 mice) of TK-NOG mice (Fig. 5F), but only in 50% (3/6 mice) of cDNA-uPA/SCID mice (Fig. 5C). Examination of the area repopulated by hCLiPs by staining with an antibody against human mitochondria showed that repopulating human cells expressed MDR1 and TTR, which are associated with hepatic function (Fig. 5G, 5H). MDR1 was detected on the apical side of adjacent mouse and human hepatocytes, suggesting that hCLiP-derived cells successfully reconstructed the normal liver architecture (Fig. 5G, arrows). Accordingly, hepatic zonation was correctly established in the repopulated regions, as assessed by investigating expression of glutamate-ammonia ligase (GLUL, also known as glutathione synthetase) (Fig. 5H), and CYP1A2 and CYP3A4 (Fig. 5I).

Functional characterization of hCLiP-derived hepatocytes in chimeric livers

Finally, we isolated human cells from chimeric mouse livers and investigated their functionality because it has been argued that some types of laboratory-generated hepatocytes are not fully functional in vivo 10. We first performed microarray-based transcriptomic analysis. After isolating hepatocytes from chimeric livers of cDNA-uPA/SCID mice by a two-step collagenase perfusion method, we eliminated mouse cells using a magnetic bead separation system. Microscopic observation revealed that 32.7%, 16.8%, and 33.1% of hepatocytes isolated from chimeric livers of mice transplanted with hCLiPs derived from lots FCL, JFC, and DUX bound to magnetic beads conjugated with a specific anti-mouse antibody prior to magnetic separation, respectively, while these percentages were reduced to 2.9%, 0.0%, and 1.6% after magnetic separation, respectively. Thus, we assumed that the results of experiments performed with these cells should be mostly ascribed to human cells.
Magnetically separated human cells exhibited typical morphologies of mature hepatocytes (Fig. 6A). However, unexpectedly, hierarchical clustering and principle component analysis (PCA) of the entire transcriptome showed that chimeric liver-derived human cells were distinct from PHHs (Fig. 6B, 6C). A control sample of human hepatocytes isolated from chimeric livers following transplantation of IPHHs (lot JFC) yielded similar results as human hepatocytes isolated from chimeric livers following transplantation of hCLiPs (Fig. 6B, 6C), indicating that the transcriptomic difference between human hepatocytes in chimeric livers and PHHs is due to environmental differences between human and mouse livers. Surprisingly, GSEA demonstrated that multiple hepatic function-related gene sets were overrepresented in human hepatocytes isolated from chimeric livers in comparison with PHHs (Table S7). The majority of these gene sets were associated with metabolic pathways. Other hepatic functions were also enriched, such as pathways associated with coagulation and complement production (Fig. 6D, Table S7). BEC/LPC marker genes were underrepresented in hCLiP-derived hepatocytes isolated from chimeric livers and PHHs in comparison with hCLiPs (Fig. S6A), demonstrating that hCLiPs underwent hepatic maturation after repopulating mouse livers. We also investigated whether hCLiP-derived hepatocytes isolated from chimeric livers exhibited CYP activities. As expected based on the transcriptomic analysis, hCLiP-derived cells isolated from chimeric livers exhibited basal enzymatic activities of major CYPs comparable with those in PHHs (Fig. 6E). Enzymatic activities of CYP1A2, CYP2B6, and CYP3A were markedly induced in hCLiP-derived hepatocytes isolated from chimeric livers upon treatment with rifampicin, phenobarbital, and omeprazole (Fig. 6F). Consistently, qRT-PCR analysis demonstrated that expression of *CYP1A2, CYP2B6*, and *CYP3A4* was dramatically upregulated upon treatment with CYP inducers (Fig. S6B). Finally, activities of the phase II enzymes UGT and SULT in hCLiP-derived hepatocytes isolated from chimeric livers were comparable with those in PHHs (Fig. 6G). These results indicate that although their transcriptomic profiles are not identical to those of PHHs, including IPHHs and APHHs, hCLiPs functionally mature in mouse liver.

Discussion

In this study, we demonstrated that hCLiPs can repopulate chronically injured livers of immunodeficient mice. An efficient repopulative capacity is one of the most important requirements of a candidate cell source for transplantation therapy; however, it is very challenging to develop such a cultured cell source. Laboratory-generated hepatic cells, such
as pluripotent cell-derived hepatic cells and those transdifferentiated from cells of different lineage origins, have a poor repopulative capacity. The RI of laboratory-generated hepatocytes is typically less than 5%. After our report of rodent CLiPs, four groups recently reported methods for in vitro generation of proliferative human liver (progenitor) cells from human hepatocytes. In three of these studies, the generated cells exhibited relatively low repopulative efficiency, approximately 13% of RI at maximum. In contrast, Hui’s group reported strikingly high repopulation efficiency with as high as 64% RI. Our study is, thus, not the first one to report substantial repopulation using an in vitro-generated human hepatic cell source. Nonetheless, to solidify a novel concept, more evidence must be provided independently from multiple laboratories. As such, we still believe that our work also plays an important role in pioneering this new field.

Our study also showed that hCLiPs may be a novel cell source for drug discovery studies. The major criterion for the application of cultured hepatic cells in drug discovery studies, particularly to evaluate the functions of drug-metabolizing enzymes, is the inducibility of CYP enzymatic activities. CYP enzymes play central roles in the metabolism of clinically used drugs and xenobiotics. In general, CYP induction accelerates the clearance of xenobiotics, leading to beneficial or harmful outcomes depending on the context. Thus, recapitulation of CYP induction in cultured hepatocytes or their equivalents is important to precisely predict the effects of a tested drug on hepatocytes. However, PHHs lose their hepatic functions, including CYP inducibility, upon in vitro culture. Laboratory-generated hepatocytes reportedly exhibit basal CYP activities after maturation. Although a few groups described CYP inducibility in terms of enzymatic activity, such reports are very limited, to the best of our knowledge. We propose that hCLiPs are a novel platform for drug discovery studies.

In conclusion, we propose that hCLiPs are a novel platform for cell transplantation therapy as well as for drug discovery studies.
Materials and Methods

Primary human hepatocytes

Infant primary human hepatocytes (IPHHs) (lots FCL, DUX, and JFC) were purchased from Veritas Corporation (Tokyo, Japan). Adult primary human hepatocytes (APHHs) (lots HC1-14, HC3-14, HC5-25, and HC7-4) were purchased from Sekisui XenoTech (KS). Donor information is summarized in Table 1.

Culture medium

The basal medium for culture of PHHs was SHM (DMEM/F12 (Life Technologies, MA) containing 2.4 g/l NaHCO₃ and L-glutamine) sup38,39 supplemented with 5 mM HEPES (Sigma, MO), 30 mg/l L-proline (Sigma), 0.05% bovine serum albumin (Sigma), 10 ng/ml epidermal growth factor (Sigma), insulin-transferrin-serine-X (Life Technologies), 10⁻⁷ M dexamethasone (Sigma), 10 mM nicotinamide (Sigma), 1 mM ascorbic acid-2 phosphate (Wako, Osaka, Japan), and antibiotic/antimycotic solution (Life Technologies). Depending on the experiment, this basal medium was supplemented with 10% FBS (Life Technologies), as well as small molecules, namely, 10 mM Y-27632 (Wako), 0.5 mM A-83-01 (Wako), and 3 mM CHIR99021 (Axon Medchem, Reston, VA). After a mini-screen of these three small molecules, PHHs were routinely cultured in SHM supplemented with 10% FBS, 0.5 mM A-83-01, and 3 mM CHIR99021.

Induction of hCLiPs from IPHHs

IPHHs were thawed in a water bath set to 37°C and suspended in 10 ml Leibovitz’s L-15 Medium (Life Technologies) supplemented with Glutamax (Life Technologies) and antibiotic/antimycotic solution. After centrifugation at 50 xg for 5 min, the cells were resuspended in William’s E medium supplemented with 10% FBS, GlutaMAX, antibiotic/antimycotic solution, and 10⁻⁷ M insulin (Sigma). The number of viable cells was determined using trypan blue (Life Technologies). IPHHs from lot JFC were seeded in collagen I-coated plates (IWAKI, Shizuoka, Japan) at a density of approximately 5 x 10³ viable cells/cm². IPHHs from lots FCL and DUX barely attached to the plates, and many of the small number that did attach subsequently detached prior to D3, as monitored by time-lapse imaging using a BZ-X700 microscope (Keyence, Osaka Japan) (data not shown). Therefore, IPPHs from lots FCL and DUX were seeded at a density of approximately 2 x 10⁴ viable cells/cm², which was approximately 4-fold higher than the seeding density of IPHHs.

14
from lot JFC. To determine the fold change in cell number during *in vitro* culture, the number of adherent cells on D3 was counted based on micrographs acquired at 10× magnification (5–10 fields per experiment).

Subculture of hCLiPs
Cells were harvested using TrypLE Express (Life Technologies, MA) when they reached 70–100% confluency and then re-plated into a 10 cm collagen-coated plate at a density of 1–2 × 10^5 cells/dish.

Cell proliferation assay
Numbers of viable cells were estimated based on the WST-8 assay using Cell Counting Kit 8 (Dojindo, Kumamoto, Japan), according to the manufacturer’s instructions.

Flow cytometry and cell sorting
Flow cytometry and sorting of EPCAM+ cells were performed using a S3e™ Cell Sorter (BioRad, Hercules, CA). Cells were labeled with APC-conjugated mouse anti-human CD44 (1:20; G44-26; BD, Franklin Lakes, NJ), APC-conjugated mouse anti-human EPCAM (1:20; EBA-1; BD), PE/Cy7-conjugated anti-human/mouse CD49f (ITGA6) (1:20; GoH3; Biolegend), PE/Cy7-conjugated anti-human CD24 (1:20; ML5; Biolegend), and APC-conjugated human anti-CD133 (1:11; AC133; Miltenyi Biotech) antibodies. An APC-conjugated mouse IgG1, κ isotype control antibody (Biolegend, MOPC-21) and a PE-Cy7-conjugated mouse IgG2b, κ isotype control (BD, 27-35) were used as controls.

Microarray analysis
One-color microarray-based gene expression analysis was performed using a SurePrint G3 Human Gene Expression v3 8x60K Microarray Kit (Agilent, Santa Clara, CA) following the manufacturer’s instructions. The 75th percentile shift normalization was performed using GeneSpring software (Agilent).

Induction of hepatic differentiation of hCLiPs
hCLiPs were harvested using TrypLE Express (Life Technologies) and reseeded into a collagen I-coated 24-well plate at a density of 5 × 10^4 cells/well (2.5 × 10^4 cells/cm^2). When cells reached approximately 50–80% confluency, culture medium was replaced by SHM.
supplemented with 2% FBS, 0.5 mM A-83-01, and 3 mM CHIR99021 in the absence (Hep-i(-)) or presence (Hep-i(+)) of 5 ng/ml human OSM (R&D) and 10⁻⁶ M dexamethasone. Cells were cultured for a further 6 days and fresh medium was provided every 2 days. On D6, cells were overlaid with a mixture of Matrigel (Corning, Corning, NY) and the aforementioned hepatic induction medium at a ratio of 1:7 and cultured for another 2 days. Thereafter, Matrigel was removed via aspiration, samples were washed with Hank’s Balanced Salt Solution supplemented with Ca²⁺ and Mg²⁺ (Life Technologies), and cells were used for RNA extraction or CYP induction experiments.

CYP induction

SHM containing 2% FBS, but not A-83-01 or CHIR99021, was used as basal medium. CYP3A and CYP2B6 were induced via treatment with 10 μM rifampicin and 1 mM phenobarbital. An equal volume of methanol (1/100 dilution) and H₂O (1/1000 dilution) was used as the vehicle control for rifampicin and phenobarbital, respectively. CYP1A2 was induced via treatment with 50 μM omeprazole, and methanol (1/100 dilution) was used as the vehicle control. Each CYP induction medium was replaced by freshly prepared medium every day. After 3 days, CYP activity was measured by LC-MS/MS.

CYP activity assay using a cocktail of substrates

Cells were cultured in phenol red-free William’s E medium supplemented with a cocktail of substrates (1/100 dilution) at 37°C for 1 hr. This cocktail contained 40 μM phenacetin as a CYP1A2 substrate, 50 μM bupropion as a CYP2B6 substrate, 0.1 μM amodiaquin as a CYP2C8 substrate, 5 μM diclofenac as a CYP2C9 substrate, 100 μM S-mephenytoin as a CYP2C19 substrate, 5 μM bufuralol as a CYP2D6 substrate, 5 μM midazolam as a CYP3A substrate, and 100 μM 7-hydroxycoumarin as a UGT and SULT substrate. Thereafter, the culture supernatant was harvested and metabolites were quantified by LC-MS/MS as described previously with minor modifications.

Measurement of CYP protein expression

CYP protein levels were measured as described previously with minor modifications. After trypsin digestion of cells, the target peptide of each CYP isoform was absolutely quantified by LC-MS/MS. The expression levels of each CYP were quantified using previously described peptide standards.
Measurement of cellular DNA
The cellular DNA content was measured to estimate the number of cells for CYP induction experiments. Following removal of Matrigel via aspiration, cells were washed once with phosphate-buffered saline (PBS) and any remaining Matrigel was removed by treating cells with Cell Recovery Solution (Corning) at 4°C for approximately 30 min. Thereafter, cells were washed once with PBS, and the cellular DNA content was determined using a DNA Quantity Kit (Cosmobio, Tokyo, Japan). To estimate the cell number from the DNA content, the correlation between these two parameters was determined using a dilution series of hCLiPs derived from each lot.

qRT-PCR
Total RNA was isolated using an miRNeasy Mini Kit (QIAGEN, Venlo, The Netherlands). Reverse transcription was performed using a High-Capacity cDNA Reverse Transcription Kit (Life Technologies) according to the manufacturer’s guidelines. cDNA was used for PCR with Platinum SYBR Green qPCR SuperMix UDG (Life Technologies). Expression levels of target genes were normalized against that of ACTB as an endogenous control. The primers used for qRT-PCR are listed in the following table.

Gene	Forward	Reverse
ACTB	ACTCTTCCAGCCTTCTITTCC	AGCACTGTGTGCTGCTGATCACAG
ALB	GCAAAGGCTGAGATAAGGAGA	CCTAAGGCCAGCTTTGACTTGC
TAT	ATCTCTGTATGTGGGCGTTG	ACTAACCCTCCGTGAACCTC
TTR	ATCTCCCCATTCCATGAGC	CATTCCTTGGGATTGGTAC
TDO2	GTGCTGTTCCTCAGGCTATCA	TGTGGGGAATCAGGTATGT
G6PC	CTTTGCTGTCTCATTTCTCCTC	TGTGGGATGTGGCTGAAAGTT
CYP1A2	CCCAAGAAGATGCTGTGTCTC	AGGGCTTGTATAATTGGCAGT
CYP2B6	GGGGCACTGAAAAAGACCTGA	AGTTCTGGAGGATGTTGAGT
CYP3A4	ATTTGCATGAGTTTGTCTC	CGGGTTTTCCTGAGTTGAG

Immunocytochemistry (ICC)
The antibodies used for ICC are listed in the table below. Cells were fixed in chilled methanol.
(-30°C) on ice for 5 min. In some experiments, cells were fixed in 4% paraformaldehyde (PFA) (Wako, Osaka, Japan) at room temperature for 15 min and permeabilized by treatment with PBS containing 0.05% Triton X-100 for 15 min. Thereafter, cells were washed three times with PBS, incubated in Blocking One solution (Nacalai Tesque, Kyoto, Japan) at 4°C for 30 min, and labeled with primary antibodies at room temperature for 1 hr or at 4°C overnight. The primary antibodies were detected using Alexa Fluor 488- or Alexa Fluor 594-conjugated secondary antibodies (Life Technologies). Nuclei were counterstained with Hoechst 33342 (Dojindo).

Antibodies for ICC

Antibody	Host animal	Catalog #	Dilution	Manufacturer	Fixation
CYP3A4	Rabbit	Ab3572	1:200	Abcam	Methanol
MRP2	Mouse	Ab3373	1:200	Abcam	Methanol
HNF4A	Rabbit	sc-8987	1:200	Santa Cruz	4% PFA
MDR1	Rabbit	sc-53241	1:200	Santa Cruz	Methanol
CYP2C	Mouse	sc-53245	1:200	Santa Cruz	Methanol
CYP1A2	Mouse	sc-53241	1:200	Santa Cruz	Methanol
TTR	Rabbit	Ab75815	1:500	Abcam	Methanol

IHC

The antibodies used for IHC are listed in the table below. Formalin-fixed paraffin-embedded (FFPE) tissue samples were prepared. Following dewaxing and rehydration, heat-induced epitope retrieval was performed by boiling specimens in ImmunoSaver (Nissin EM, Tokyo, Japan) diluted 1/200 at 98°C for 45 min. Endogenous peroxidase was inactivated by treating specimens with methanol containing 0.3% H₂O₂ at room temperature for 30 min. Thereafter, specimens were permeabilized with 0.1% Triton X-100, treated with Blocking One solution at 4°C for 30 min, and incubated with primary antibodies at room temperature for 1 hr or at 4°C overnight. Sections were stained using ImmPRESS IgG-peroxidase kits (Vector Labs, Burlingame, CA) and a metal-enhanced DAB substrate kit (Life Technologies), according to the manufacturers’ instructions. Finally, specimens were counterstained with hematoxylin, dehydrated, and mounted.

FFPE tissue samples were used for fluorescence IHC unless otherwise stated. Following dewaxing and rehydration, heat-induced epitope retrieval was performed by boiling
specimens in ImmunoSaver (Nissin EM) diluted 1/200 at 98°C for 45 min and then the following staining steps were performed. Fresh frozen tissue blocks prepared using Tissue-Tek® O.C.T. Compound (Sakura Finetek, Tokyo, Japan) were used for CYP1A2 and CYP3A4 staining. Fresh frozen liver sections prepared using a cryostat (Leica) were fixed in chilled (-30°C) acetone (Wako) for 5 min, washed three times with PBS, permeabilized with 0.1% Triton X-100, and treated with Blocking One solution at 4°C for 30 min. Thereafter, specimens were incubated with primary antibodies at room temperature for 1 hr or at 4°C overnight and then stained with a mixture of an Alexa Fluor 488-conjugated antibody (Invitrogen) (1:500) and an Alexa Fluor 594-conjugated antibody (Invitrogen) (1:500) at room temperature for 1 hr. Stained sections were mounted using Vectashield mounting medium containing DAPI (Vector Laboratories).

Antibodies for IHC

Antibody	Host animal	Catalog #	Dilution	Manufacturer	Tissue type
CYP2C	Mouse	sc-53245	1:200	Santa Cruz	FFPE/frozen
MDR1	Rabbit	sc-53241	1:200	Santa Cruz	FFPE
Human Mitochondria	Mouse	ab92824	1:1000	Abcam	FFPE
Human TTR	Rabbit	ab75815	1:500	Abcam	FFPE
GLUL	Rabbit	ab73593	1:1000	Abcam	FFPE
Human CYP1A2	Rabbit	BML-CR3130-0100	1:200	Enzo	Frozen
Human CYP3A4	Rabbit	BML-CR3340-0100	1:200	Enzo	Frozen

Liver repopulation assay using cDNA-uPA/SCID mice

hCLiPs derived from three lots of cells were used. For lots FCL and JFC, primary cultured cells at D11–14 (P0-hCLiPs), cells passaged once (P1-hCLiPs), and cells passaged twice (P2-hCLiPs) were used. For lot DUX, P0-hCLiPs were used. After harvesting cells using TrypLE Express, 0.2–1 × 10^6 cells/mouse were intrasplenically transplanted into 2–4-week-old cDNA-uPA/SCID mice (PhoenixBio Co., Ltd, Higashihiroshima, Japan) under isoflurane anesthesia. From 2 weeks after transplantation, 10 μl blood was retro-orbitally collected each
week and the hALB concentration was measured using a Human Albumin ELISA Quantitation Kit (Bethyl, TX) or a Latex agglutination turbidimetric immunoassay with a BioMajesty analyzer (JCA-BM6050; JEOL, Tokyo, Japan). Livers were extracted at 10–11 weeks after transplantation and histologically analyzed.

Liver repopulation assay using TK-NOG mice

FCL-P0-hCLiPs were used. Seven-week-old TK-NOG mice were obtained from the Central Institute of Experimental Animals (Kawasaki, Japan). One day after arrival at the National Cancer Center, mice were intraperitoneally injected with 10 mg/ml ganciclovir (Mitsubishi Tanabe Pharma Corporation, Osaka, Japan) at a dose of 10 µl/g body weight to induce thymidine kinase-mediated injury in host mouse hepatocytes. One day after injection, approximately 30 µl blood was obtained from the tail. Serum was separated and diluted 1/5 with PBS, and the serum ALT level was measured using a DRI-CHEM 3500 analyzer (Fujifilm, Tokyo, Japan). Mice with serum ALT levels of 500–1600 U/l were chosen as host animals for transplantation. At 1–3 days after ALT measurement, 0.4–1 × 10^6 cells were intrasplenically transplanted into these mice under isoflurane anesthesia. From 2 weeks after transplantation, approximately 20 µl blood was collected each week from the tail and the hALB concentration was measured using a Human Albumin ELISA Quantitation Kit (Bethyl, Montgomery, TX). Livers were extracted at 8–10 weeks after transplantation and histologically analyzed.

Estimation of RIs

Unless otherwise stated, RIs were estimated based on CYP2C positivity using image analysis software and a Keyence BZX-710 microscope. RIs in chimeric mice that were sacrificed to isolate primary hepatocytes were estimated based on magnetic bead separation, as described in the following section.

Isolation of human hepatocytes from chimeric livers of cDNA-uPA/SCID mice

Hepatocytes were isolated from chimeric livers of cDNA-uPA/SCID mice at 10 weeks after transplantation of FCL-P1-hCLiPs, DUX-P0-hCLiPs, and JFC-P0-hCLiPs using a two-step collagenase perfusion method. To remove contaminating mouse hepatocytes, isolated cells were incubated with the 66Z antibody, which recognizes the surface of mouse hepatocytes, but not of human hepatocytes. Cells were washed with DMEM containing 10% FBS and
then incubated with Dynabeads M450-conjugated sheep anti-rat IgG (Dynal Biotech, Milwaukee, WI) for 30 min on ice. The tube was placed in a Dynal MPC-1 holder (Dynal Biotech) for 1–2 min to remove 66Z⁺ mouse hepatocytes. Human hepatocytes were collected as 66Z⁻ cells. 66Z⁺ and 66Z⁻ hepatocytes were counted using a hemocytometer before and after magnetic separation to estimate the repopulation efficiency and purity of human hepatocytes after separation, respectively.

Culture of chimeric liver-derived human hepatocytes
Magnetically purified human hepatocytes were resuspended in SHM containing 2% FBS and seeded into a 24-well collagen I-coated plate. One day later, RNA was prepared from cells in some wells for microarray-based transcriptomic analysis. As a control, RNA was also prepared from hepatocytes isolated from the chimeric liver of a mouse transplanted with IPHHs (lot JFC) immediately after thawing the original cell suspension (kindly prepared by PhoenixBio Co., Ltd). Other hCLiP-derived hepatocytes were used for the CYP activity assay, as described above.

Statistics
Data represent the mean ± SEM of independently repeated experiments or the mean ± SD of technical replicates in separate culture wells. Two groups were statistically compared using the Student’s t-test, unless otherwise stated. Time-dependent alteration of gene expression was analyzed by the linear mixed models using IBM SPSS Statistics 23 (SPSS Inc., Chicago, IL, USA). Group allocation (FBS or FAC), time (culture period [day]), and the interaction of group and time were included in the model as fixed effects. A p-value less than 0.05 was considered statistically significant.

Acknowledgments
We thank Ms. Ayako Inoue for technical help; Dr. Chise Tateno and her colleagues (PhoenixBio Co., Ltd) for assistance with the transplantation experiments, kindly providing chimeric liver samples repopulated with IPHHs (lot JFC), and valuable advice; Drs. Taiji Yamazoe and Allyson J. Merrell for critically reading the manuscript; and Drs. Luc Gailhouste and Yusuke Yamamoto for valuable advice. This research was supported in part by Grants-in-Aid from the Research Program on Hepatitis from Japan Agency for Medical
Research and Development (AMED: 16fk0310512h0005 and 17fk0310101h0001, to T.O.), a grant from InterStem Co., Ltd (to T.O.), a Grant-in-Aid for Young Scientists B (16K16643, to T.K.).

Conflict of interests
T.O. received a research grant from InterStem Co., Ltd.

REFERENCES
1. Fisher R a, Strom SC. Human hepatocyte transplantation: worldwide results. Transplantation. 2006;82(4):441-449. doi:10.1097/01.tp.0000231689.44266.ac
2. Carpentier A, Tesfaye A, Chu V, et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest. 2014;124(11):4953-4964. doi:10.1172/JCI75456
3. Woo DH, Kim SK, Lim HJ, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142(3):602-611. doi:10.1053/j.gastro.2011.11.030
4. Liu H, Kim Y, Sharkis S, Marchionni L, Jang Y-Y. In Vivo Liver Regeneration Potential of Human Induced Pluripotent Stem Cells from Diverse Origins. Sci Transl Med. 2011;3(82):82ra39-82ra39. doi:10.1126/scitranslmed.3002376
5. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481-484. doi:10.1038/nature12271
6. Zhu S, Rezvani M, Harbell J, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508(7494):93-97. doi:10.1038/nature13020
7. Huang P, Zhang L, Gao Y, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14(3):360-370. doi:10.1016/j.stem.2014.10.003
8. Du Y, Wang J, Jia J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14(3):394-403. doi:10.1016/j.stem.2014.10.008
9. Huch M, Gehart H, Boxtel R Van, et al. Article Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell. December 2015:1-14.
doi:10.1016/j.cell.2014.11.050
10. Rezvani M, Grimm AA, Willenbring H. Assessing the therapeutic potential of lab-made hepatocytes. *Hepatology*. 2016;64(1):287-294. doi:10.1002/hep.28569
11. Hino H, Tateno C, Sato H, et al. A Long-Term Culture of Human Hepatocytes Which Show a High Growth Potential and Express Their Differentiated Phenotypes. *Biochem Biophys Res Commun*. 1999;256(1):184-191. doi:10.1006/bbrc.1999.0288
12. Shan J, Schwartz RE, Ross NT, et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. *Nat Chem Biol*. 2013;9(8):514-520. doi:10.1038/nchembio.1270
13. Utoh R, Tateno C, Yamasaki C, et al. Susceptibility of chimeric mice with livers repopulated by serially subcultured human hepatocytes to hepatitis B virus. *Hepatology*. 2008;47(2):435-446. doi:10.1002/hep.22057
14. Walldorf J, Aurich H, Cai H, et al. Expanding hepatocytes in vitro before cell transplantation: Donor age-dependent proliferative capacity of cultured human hepatocytes. *Scand J Gastroenterol*. 2004;39(6):584-593. doi:10.1080/00365520410005586
15. Yamasaki C, Tateno C, Aratani A, et al. Growth and differentiation of colony-forming human hepatocytes in vitro. *J Hepatol*. 2006;44(4):749-757. doi:10.1016/j.jhep.2005.10.028
16. Katsuda T, Kawamata M, Hagiwara K, et al. Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. *Cell Stem Cell*. 2017;20(1):41-55. doi:10.1016/j.stem.2016.10.007
17. Mitaka T, Sato F, Mizuguchi T, Yokono T, Mochizuki Y. Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. *Hepatology*. 1999;29(1):111-125. doi:10.1002/hep.510290103
18. Maes M, Decrock E, Cogliati B, et al. Connexin and pannexin (hemi)channels in the liver. *Front Physiol*. 2014;4 JAN(January):1-8. doi:10.3389/fphys.2013.00405
19. Godoy P, Hengstler JG, Ilkavets I, et al. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β-induced apoptosis. *Hepatology*. 2009;49(6):2031-2043. doi:10.1002/hep.22880
20. Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. *J Biol Chem*. 2007;282(32):23337-23347. doi:10.1074/jbc.M700194200

23
21. Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. *Hepatology*. 2002;35(6):1351-1359. doi:10.1053/jhep.2002.33331

22. Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. *Expert Opin Drug Metab Toxicol*. 2006;2(6):875-894. doi:10.1517/17425255.2.6.875

23. Ohtsuki S, Schaefer O, Kawakami H, et al. Simultaneous Absolute Protein Quantification of Transporters, Cytochrome P450s and UDP-glucuronosyltransferases as a Novel Approach for the Characterization of Individual Human Liver: Comparison with mRNA Levels and Activities. *Drug Metab Dispos*. 2011;40(1):83-92. doi:10.1124/dmd.111.042259

24. Jorns C, Ellis EC, Nowak G, et al. Hepatocyte transplantation for inherited metabolic diseases of the liver. *J Intern Med*. 2012;272(3):201-223. doi:10.1111/j.1365-2796.2012.02574.x

25. Tateno C, Kawase Y, Tobita Y, et al. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice. *PLoS One*. 2015;10(11):e0142145. doi:10.1371/journal.pone.0142145

26. Hasegawa M, Kawai K, Mitsui T, et al. The reconstituted “humanized liver” in TK-NOG mice is mature and functional. *Biochem Biophys Res Commun*. 2011;405(3):405-410. doi:10.1016/j.bbrc.2011.01.042

27. Fu G-B, Huang W-J, Zeng M, et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. *Cell Res*. 2018;(September). doi:10.1038/s41422-018-0103-x

28. Kim Y, Kang K, Lee SB, et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. *J Hepatol*. 2018. doi:10.1016/j.jhep.2018.09.007

29. Hu H, Gehart H, Artegiani B, et al. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. *Cell*. 2018;175(6):1591-1606.e19. doi:10.1016/j.cell.2018.11.013

30. Zhang K, Zhang L, Liu W, et al. In Vitro Expansion of Primary Human Hepatocytes
with Efficient Liver Repopulation Capacity. *Cell Stem Cell*. 2018:1-14. doi:10.1016/j.stem.2018.10.018

31. Baxter M, Withey S, Harrison S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. *J Hepatol*. 2015;62(3):581-589. doi:10.1016/j.jhep.2014.10.016

32. Takayama K, Hagihara Y, Toba Y, Sekiguchi K, Sakurai F, Mizuguchi H. Enrichment of high-functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. *Biomaterials*. 2018;161:24-32. doi:10.1016/j.biomaterials.2018.01.019

33. Takayama K, Morisaki Y, Kuno S, et al. Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. *Proc Natl Acad Sci*. 2014;111(47):16772-16777. doi:10.1073/pnas.1413481111

34. Kanninen LK, Harjumäki R, Peltoniemi P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. *Biomaterials*. 2016;103:86-100. doi:10.1016/j.biomaterials.2016.06.054

35. Pettinato G, Ramanathan R, Fisher RA, Mangino MJ, Zhang N, Wen X. Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition. *Sci Rep*. 2016;6(September):1-17. doi:10.1038/srep32888

36. Inamura M, Kawabata K, Takayama K, et al. Efficient Generation of Hepatoblasts From Human ES Cells and iPS Cells by Transient Overexpression of Homeobox Gene HEX. *Mol Ther*. 2010;450:1-6. doi:10.1038/mt.2010.241

37. Takayama K, Inamura M, Kawabata K, et al. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction. *Mol Ther*. 2012;20(1):127-137. doi:10.1038/mt.2011.234

38. Chen Q, Kon J, Ooe H, Sasaki K, Mitaka T. Selective proliferation of rat hepatocyte progenitor cells in serum-free culture. *Nat Protoc*. 2007;2(5):1197-1205. doi:10.1038/nprot.2007.118

39. Katsuda T, Hosaka K, Ochiya T. Generation of Chemically Induced Liver Progenitors (CLiPs) from Rat Adult Hepatocytes. *Bio-Protocol*. 2018;7(2):1-26. doi:10.21769/BioProtoc.2689

40. Kozakai K, Yamada Y, Oshikata M, et al. Reliable High-throughput Method for
Inhibition Assay of 8 Cytochrome P450 Isoforms Using Cocktail of Probe Substrates and Stable Isotope-labeled Internal Standards. *Drug Metab Pharmacokinet.* 2012;27(5):520-529. doi:10.2133/dmpk.DMPK-12-RG-014

41. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe T, Terasaki T. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with In silico target peptide selection. *J Pharm Sci.* 2011;100(1):341-352. doi:10.1002/jps.22255

42. Yamasaki C, Kataoka M, Kato Y, et al. In vitro evaluation of cytochrome P450 and glucuronidation activities in hepatocytes isolated from liver-humanized mice. *Drug Metab Pharmacokinet.* 2010;25(6):539-550. doi:10.2133/dmpk.DMPK-10-RG-047

Figure Legends

Figure 1. AC together with FBS support the expansion of IPHHs.

(A) WST assay assessing the effects of various combinations of Y, A, and C together with 10% FBS on proliferation of 8-month-old IPHHs (lot FCL). Absorbance at 450 nm was determined at D14 and normalized against that at D0. Data are the mean ± SEM of two repeated experiments.

(B) WST assay assessing the effects of AC and FBS on proliferation of IPHHs (lot FCL). Absorbance at 450 nm was determined at D14 and normalized against that at D0. Data are the mean ± SD of three technical replicates.

(C) Phase contrast images showing the morphological changes of IPHHs (lot FCL) upon culture in FAC. Inset images show spontaneous hepatic differentiation in densely packed regions at D14.

(D) Flow cytometric analysis of surface expression of LPC markers. Results of cells from lot FCL are shown as representative data (see also Fig. S1F).

(E) Heatmap showing expression of BEC/LPC marker genes, as assessed by microarray analysis. Each element represents normalized (log2) expression, as indicated by the color scale. Data are from three lots and two repeated experiments. Hierarchical clustering was performed based on Euclidean distance.

(F) Expression levels of genes that were differentially expressed between cells cultured in the presence of FBS and those cultured in FAC are shown as mean ± SEM of three lots per time point (each value is determined as the mean of 2 repeated experiments for each
P-values were calculated by the linear mixed model to account for the covariance structure due to repeated measures at different time points. The meanings of the various colors are described in the figure.

(G) GSEA demonstrating enrichment of hepatic function-related gene sets in cells cultured in FAC in comparison with cells cultured in the presence of FBS at D14. P-values indicate nominal p-values.

(H) GSEA demonstrating enrichment of fibrosis-related and epithelial-to-mesenchymal transition-related gene sets in cells cultured in the presence of FBS in comparison with cells cultured in FAC at D14. P-values indicate nominal p-values.

Figure 2. FAC-cultured proliferative cells differentiate into mature hepatocytes in vitro.

(A) Phase contrast images showing the morphological changes of FAC-cultured human proliferative cells (lot FCL) treated with (Hep-i(+)) or without (Hep-i(-)) hepatic maturation-inducing factors (see Fig. S2A). Also see Fig. S2B for lots DUX and JFC.

(B) Phase contrast images of PHHs for reference.

(C) Quantified expression of hepatic function-related genes in hCLiPs derived from the three lots with or without hepatic induction and in PHHs. Data are shown as mean ± SEM of two repeated experiments for each lot of hCLiPs and the results of one experiment for each lot of PHHs.

(D) Hierarchical clustering based on Canberra distance of 990 genes that were differentially expressed (≥ 2-fold change on average for the three lots and p < 0.05 by the paired t-test) between Hep-i(-) and Hep-i(+). Data were obtained from two repeated experiments for each lot of hCLiPs and from one experiment for each lot of PHHs.

(E) Biological processes overrepresented in Hep-i(+) cells in comparison with Hep-i(-) cells, as identified using BiNGO, a Cytoscape plug-in. p-value is calculated by the default setting of the plug-in.

(F) GSEA demonstrating enrichment of hepatic function-related gene sets in Hep-i(+) cells in comparison with Hep-i(-) cells (see also Table S5). P-values indicate nominal p-values.

Figure 3. hCLiP-derived hepatocytes exhibit CYP enzymatic activity.

(A) Heatmap showing expression of CYP genes that were differentially expressed between Hep-i(-) and Hep-i(+) cells (≥ 1.5-fold change), as assessed by microarray analysis. Fold change was calculated using the mean values of 3 donor-derived CLiPs (experiments
were repeated twice for each donor-derived CLiPs). Hierarchical clustering was performed based on Euclidean distance.

(B) Basal enzymatic activities of major CYPs in Hep-i(-) cells, Hep-i(+) cells, and PHHs, as assessed by LC-MS/MS using a cocktail of substrates. Data were obtained from two repeated experiments for each lot of hCLiPs and from one experiment for each lot of PHHs.

(C) Inducibility of CYP1A2, CYP2B6, and CYP3A activities. Enzymatic activities in inducer-treated cells were compared with those in cells treated with the corresponding vehicle by LC-MS/MS analysis using a cocktail of substrates. Data are the mean ± SEM of two repeated experiments for each lot of hCLiPs and the results of one experiment for each lot of PHHs.

(D) LC-MS/MS analysis of the intracellular protein levels of CYP1A2 and CYP3A4 in Hep-i(-) and Hep-i(+) cells treated with inducers or the corresponding vehicle. Data are from one experiment for each lot of hCLiPs.

(E) Enzymatic activities of the phase II enzymes UGT and SULT, as assessed by LC-MS/MS analysis using a cocktail of substrates. Data are the mean ± SEM of two repeated experiments for each lot of hCLiPs and the results of one experiment for each lot of PHHs.

Figure 4. hCLiPs stably expand in vitro and retain their hepatic differentiation ability.

(A) Growth curves of hCLiPs from P0–10 (lots FCL and DUX) or P0–4 or P0–5 (lot JFC). Each curve represents data obtained in independent experiments. Data in each plot indicate the cumulative cell numbers at each time point normalized against that at D0 (set to one cell).

(B) Representative chromosomal images of hCLiPs derived from the three lots, as assessed by Q-band karyotyping.

(C) qRT-PCR analysis of hepatocyte-specific genes at P1, P3, and P5. Data are normalized against ACTB expression, and shown as mean ± SEM of two repeated experiments except JFC cells at P5 (n = 1).

(D) Basal enzymatic activities of major CYPs in Hep-i(-) and Hep-i(+) cells at P3 and P5, as well as in PHHs, as assessed by LC-MS/MS using a cocktail of substrates. Data are shown as one experiment or the mean ± SEM of two repeated experiments for each lot of hCLiPs and the results of one experiment for each lot of PHHs. N.d. indicates “not detected”.

(E) Inducibility of CYP1A2, CYP2B6, and CYP3A activities at P3 and P5. Enzymatic
activities in inducer-treated cells were compared with those in cells treated with the corresponding vehicle by LC-MS/MS analysis using a cocktail of substrates. Data are shown as one experiment or the mean ± SEM of two repeated experiments for each lot of hCLiPs and the results of one experiment for each lot of PHHs. N.d. indicates “not detected”.

Figure 5. hCLiPs repopulate chronically injured mouse livers and contribute to reconstruction of the normal liver architecture.

(A) hALB levels in blood of cDNA-uPA/SCID mice. Each line indicates the level in an individual mouse. Colors denote the passage number of transplanted hCLiPs.

(B) Representative images of cDNA-uPA/SCID mouse livers highly (left and middle panels) and slightly (right panel) repopulated by hCLiPs. The percentages indicate RIs.

(C) Distribution of RIs in livers of cDNA-uPA/SCID mice at 10–11 weeks after transplantation of hCLiPs, as assessed by IHC of CYP2C (shown in B). Colors denote the passage number of transplanted hCLiPs. RIs were calculated for samples marked by asterisks using hepatocytes isolated from chimeric livers by two-step collagenase perfusion followed by incubation with magnetic beads conjugated with a specific anti-mouse antibody (see Materials and Methods for details). Bars indicate the mean ± SEM.

(D) hALB levels in sera of TK-NOG mice. Each line indicates the level in an individual mouse.

(E) Representative IHC of human CYP2C in TK-NOG mouse livers highly (left panel) and intermediately (right panel) repopulated by hCLiPs. The percentages indicate RIs determined based on this IHC.

(F) A dot plot showing the distribution of RIs in livers of cDNA-uPA/SCID mice at 10–11 weeks after transplantation of hCLiPs. Bars indicate the mean ± SEM.

(G) IHC of the hepatic function marker proteins MDR1 (left panels) and TTR (right panels). Sections were counterstained with an anti-human mitochondria antibody (green) and DAPI. Images of sections transplanted with hCLiPs derived from lot FCL are shown as representative data.

(H) IHC of the zone 3-specific protein GLUL. Sections were counterstained with an anti-human mitochondria antibody (green) and DAPI. Images of sections transplanted with hCLiPs derived from lot FCL are shown as representative data.

(I) IHC of the zone 3-specific CYPs CYP1A2 and CYP3A4. Sections were counterstained
with an antibody against human CYP2C, which does not show strong zone specificity. Nuclei were also counterstained with DAPI in merged images. Images of sections transplanted with hCLiPs derived from lot FCL are shown as representative data. PV and CV indicate portal vein and central vein, respectively.

Figure 6. Human cells isolated from chimeric livers of mice transplanted with hCLiPs have mature functions.

(A) Phase contrast images of human cells isolated from chimeric livers of mice transplanted with hCLiPs.

(B) Hierarchical clustering based on Euclidean distance of the entire transcriptome (27,459 probes) comparing hCLiPs prior to transplantation (hCLiP), hCLiP-derived hepatocytes from chimeric livers (transplanted cells were at P1, P0, and P0 for lots FCL, DUX, and JFC, respectively), and PHHs. Data for human hepatocytes isolated from chimeric livers of mice transplanted with PHHs (lot JFC) are shown for reference.

(C) PCA mapping of the samples described in (B).

(D) Gene sets enriched in hCLiP-derived cells from chimeric livers in comparison with PHHs (top panels) and their corresponding heatmaps (bottom panels). Hierarchical clustering was performed based on Euclidean distance.

(E) Basal enzymatic activities of major CYPs in hCLiP-derived cells from chimeric livers and PHHs, as assessed by LC-MS/MS using a cocktail of substrates. Each value is determined by one experiment with two replicate cultures.

(F) Inducibility of CYP1A2, CYP2B6, and CYP3A activities. Enzymatic activities in inducer-treated cells were compared with those in cells treated with the corresponding vehicle by LC-MS/MS analysis using a cocktail of substrates. Each value is determined by one experiment with two replicate cultures.

(G) Activities of the phase II enzymes UGT and SULT, as assessed by LC-MS/MS analysis using a cocktail of substrates. Each value is determined by one experiment with two replicate cultures.
Cell type	IPHH	IPHH	IPHH	IPHH	APHH	APHH	APHH	APHH	
Lot	FCL	DUX	JFC	MRW	187273	HC7-4	HC5-25	HC1-14	HC3-14
Age	10 mo	8 mo	1 yr	11 mo	2 yr	7 yr	56 yr	55 yr	45 yr
Sex	Female	Male							
Race	Hispanic	Caucasian							
Cause of death	Anoxia/drowning	Anoxia/second to blunt injury	Asphyxiation	NA	Anoxia/second to blunt injury	Anoxia	Cerebrovascular Accident	Anoxia	Cerebrovascular Accident
CMV	-	-	-	+	NA	+	+	-	-
HIV	-	-	-	-	-	-	-	-	-
HBV	-	+	+	-	-	-	-	-	-
HCV	-	-	-	-	-	-	-	-	-
EBV	-	NA							
RPR	-	NA	NA	-	NA	NA	NA	NA	NA
HTLV	NA	NA	NA	-	NA	NA	NA	NA	NA

IPH: Infant primary human hepatocyte; APH: adult primary human hepatocyte; CMV: cytomegarovirus; HIV: human immunodeficiency virus; HBV: hepatitis B virus; HCV: hepatitis C virus; EBV: Epstein-Barr virus; RPR: rapid plasma reagin; HTLV: human T-cell leukemia virus.
Figure 2

A FAC-cultured proliferative cells and their derivatives

B Primary human hepatocytes (PHHs)

C

Gene	Globally normalized expression [k]
ALB	
TDO2	
SERPINA1	
TF	
C9	
ASGR1	
ASS1	
CEBPA	

D Color Key

- Red: D0
- Green: Hep-i(-)
- Blue: Hep-i(+)
- Purple: PHH

E Immune response

- Complement activation
- Acute inflammatory response

F

- Hallmark_Bile acid metabolism
 - ES = 0.57
 - NES = 2.11
 - p < 0.001

- Hallmark_Xenobiotic metabolism
 - ES = 0.50
 - NES = 1.70
 - p < 0.001

- Reactome_Metabolism of amino acids and derivatives
 - ES = 0.62
 - NES = 1.66
 - p < 0.001

- Reactome_Triglyceride biosynthesis

ES Enrichment score

NES Nominal enrichment score

p-value
Figure 5

A Host: cDNA-uPA/SCID mice

B
- FCL-P0, 96.0%
- JFC-P1, 75.0%
- DUX-P0, 3.6%

C Repopulation index [%]

D Host: TK-NOG mice

E ID-1, RI = 57.5%
- ID-2, RI = 30.6%

F FCL hCLiP (P0)

G m/hMDR1	hMitochondria	Merge

H perIPV | hMitochondria | Merge

I hCYP1A2 | hCYP3A4 | Merge

J
- hCYP2C

Sp	5 mm	CV	PV

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Host: TK-NOG mice

Host: cDNA-uPA/SCID mice

hMDR1	hMitochondria	Merge

perIPV | hMitochondria | Merge

hCYP1A2 | hCYP3A4 | Merge

PV | CV

CC-BY 4.0 International license certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under the copyright holder for this preprint (which was not this version posted April 7, 2019. ; https://doi.org/10.1101/601922 doi: bioRxiv preprint
Figure 6

A

FCL

DUX

JFC

B

C

PC2 (18.8%)

PC1 (57.2%)

CLiP

Chim_CLiP

Chim_PHH

PHH

C

50 mm

80

85

■ Chim_PHH ■ Chim_CLiP ■ CLiP ■ PHH

D

HALLMARK_Coagulation

KEGG_Fatty acid metabolism

ES = 0.49
NES = 1.42
P < 0.001

ES = 0.73
NES = 1.38
p = 0.09

E

F

G

CYP1A2

CYP2B6

CYP2C19

CYP2C9

CYP2D6

CYP3A

CYP1A2 (OMZ)

CYP2B6 (PB)

Fold induction [x]

SULT

UGT

Enzyme activity [pmol/hr/million cells]

Chimera-DUX

Chimera-FCL

Chimera-JFC

PHH-HCs-25

PHH-JFC
Human adult hepatocytes cultured in the presence of YAC

Rat hepatocytes

Mouse hepatocytes

Human adult hepatocytes in FAC

	DUX	JFC	MRW	187273	HC7-4
Age	8 mo	1 yr	11 mo	2 yr	7 yr
Gender	Male	Male	Male	Male	Male

CC-BY 4.0 International license. This is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under the copyright holder for this preprint (which was not this version posted April 7, 2019. ; https://doi.org/10.1101/601922 doi: bioRxiv preprint
Figure 1-figure supplement 2

A

Gene Set	Count FL3-A	Count FL3-A	Count FL4-A	Count FL4-A
DUX (D14)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
EPCAM	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
CD44	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
PROM1	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
CD24	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
ITGA6	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)

B

Cell cycle-related gene sets enriched in cells cultured in FAC in comparison with cells cultured in the presence of FBS.

- **Reactome_Cell cycle checkpoints**
 - Enrichment score (ES): 0.65, NES: 1.58, p = 0.071
 - Enrichment score (ES): 0.73, NES: 1.35, p = 0.20
 - Enrichment score (ES): 0.67, NES: 1.34, p = 0.23
 - Enrichment score (ES): 0.52, NES: 1.14, p = 0.39

- **KEGG_DNA replication**
 - Enrichment score (ES): 0.60, NES: 1.40, p = 0.090
 - Enrichment score (ES): 0.62, NES: 1.41, p < 0.05
 - Enrichment score (ES): 0.62, NES: 1.30, p = 0.22
 - Enrichment score (ES): 0.64, NES: 1.40, p = 0.11

- **Hallmark_E2F targets**
 - Enrichment score (ES): 0.65, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 3.15, p < 0.001
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

- **Hallmark_G2M checkpoint**
 - Enrichment score (ES): 0.67, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 1.42, p = 0.01
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

C

Cell cycle-related gene sets enriched in cells cultured in FAC in comparison with D1 hepatocytes.

- **Reactome_Cell cycle**
 - Enrichment score (ES): 0.62, NES: 1.30, p = 0.22
 - Enrichment score (ES): 0.64, NES: 1.41, p < 0.05
 - Enrichment score (ES): 0.62, NES: 1.30, p = 0.22
 - Enrichment score (ES): 0.64, NES: 1.41, p < 0.05

- **KEGG_Cell cycle**
 - Enrichment score (ES): 0.65, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 3.15, p < 0.001
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

- **Hallmark_E2F targets**
 - Enrichment score (ES): 0.67, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 3.15, p < 0.001
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

- **Hallmark_G2M checkpoint**
 - Enrichment score (ES): 0.67, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 1.42, p = 0.01
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

D

Cell cycle-related gene sets enriched in cells cultured in the presence of FBS in comparison with hepatocytes at D1.

- **Reactome_Cell cycle**
 - Enrichment score (ES): 0.65, NES: 1.58, p = 0.071
 - Enrichment score (ES): 0.73, NES: 1.35, p = 0.20
 - Enrichment score (ES): 0.67, NES: 1.34, p = 0.23
 - Enrichment score (ES): 0.52, NES: 1.14, p = 0.39

- **KEGG_Cell cycle**
 - Enrichment score (ES): 0.60, NES: 1.40, p = 0.090
 - Enrichment score (ES): 0.62, NES: 1.41, p < 0.05
 - Enrichment score (ES): 0.62, NES: 1.30, p = 0.22
 - Enrichment score (ES): 0.64, NES: 1.40, p = 0.11

- **Hallmark_E2F targets**
 - Enrichment score (ES): 0.65, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 3.15, p < 0.001
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

- **Hallmark_G2M checkpoint**
 - Enrichment score (ES): 0.67, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.73, NES: 1.42, p = 0.01
 - Enrichment score (ES): 0.70, NES: 1.49, p < 0.01
 - Enrichment score (ES): 0.66, NES: 1.41, p < 0.05

E

Gene	Enrichment	FBS	FAC	p = 0.31	p < 0.05	p = 0.34
GJB1	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
GJB2	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)
GJA1	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)	![Graph](image)

P-values by linear-mixed effects model AC effect, Time effect, Time*AC effect.
Figure 2-figure supplement 1

A

FAC-cultured proliferative cells

OSM + Dexamethasone
Matrigel

D0

D6

D8

50-70% confluent

B

DUX

JFC

CD24

EPCAM

ITGA3

ITGA6

KRT7

KRT19

PROM1

SOX9

C

D

E

Anatomical structure
Morphogenesis
Multicellular organism development
Developmental process

Hallmark_Mitotic spindle

Hallmark_E2F targets

Hallmark_G2M checkpoint

Enrichment score (ES)

Hallmark_E2F targets
ES = -0.39
NES = -1.59
p < 0.001

Enrichment score (ES)

Hallmark_Mitotic spindle
ES = -0.60
NES = -2.49
p < 0.001

Enrichment score (ES)

Hallmark_G2M checkpoint
ES = -0.45
NES = -1.87
p < 0.001
Figure 3-figure supplement 1

A

KEGG_Drug metabolism
cytochrome P450

Enrichment score (ES)

ES = 0.52
NES = 1.28
p = 0.21

KEGG_Metabolism of
Xenobiotics by cytochrome P450

Reactome_Cytochrome P450
arranged by substrate type

ES = 0.66
NES = 1.49
p = 0.07

B

qRT-PCR

CYP1A2 (OMZ / MeOH)

Relative expression vs ACTB (x100,000) []]

CYP2B6 (PB / H2O)

CYP3A4 (PB / H2O)

CYP3A4 (RF / MeOH)

Relative expression vs ACTB (x100,000) []

C

Fold induction (qRT-PCR)

CYP1A2 (OMZ / MeOH)

Fold induction []

CYP2B6 (PB / H2O)

Fold induction []

CYP3A4 (PB / H2O)

Fold induction []

CYP3A4 (RF / MeOH)

Fold induction []

Lot

- DUX
- FCL
- JFC

D

Fold induction (enzyme activity)

CYP1A2 (OMZ / MeOH)

Fold induction []

CYP2B6 (PB / H2O)

Fold induction []

CYP3A4 (PB / H2O)

Fold induction []

CYP3A4 (RF / MeOH)

Fold induction []

Lot

- DUX
- FCL
- JFC
Figure 4-figure supplement 1

A

	DUX	FCL	JFC
	P1	P5	P10
Batch 1	![Image](image1)	![Image](image2)	![Image](image3)
Batch 2	![Image](image4)	![Image](image5)	![Image](image6)
Batch 3	![Image](image7)	![Image](image8)	![Image](image9)

B

FCM for LPC markers

	CD24	CD44	EPCAM	ITGA6	PROM1
Positive fraction [%]	![Graph](image10)	![Graph](image11)	![Graph](image12)	![Graph](image13)	![Graph](image14)

Passage number: 1 2 3 4 5 6 7 8 9 10

C

Color Key

Color	-2	0	2

Row Z-Score

KRT7
TGFB2
AXIN2
GJA1
GJB1
CYP2C9
EPCAM
ALB
TTR

D

CYP3A4 MRP2 HNF4A

MDR1 CYP2C CYP1A2 TTR
Supplemental material

Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes

Takeshi Katsuda, 1 Juntaro Matsuzaki, 1 Tomoko Yamaguchi, 1,2 Yasuhiro Yamada, 3 Kazunori Hosaka, 1 Atsuko Takeuchi, 4 Yoshimasa Saito, 2 Takahiro Ochiya 1*
Supplemental Figure Legends

Figure 1-figure supplement 1. Morphological changes of hepatocytes in response to small molecule stimuli with/without FBS.

(A) Phase contrast images of APHHS cultured in the presence of YAC, which are used to obtain rat and mouse CLiPs. Insets indicate representative magnified images.

(B) Phase contrast images of rat CLiPs obtained by culture in the presence of YAC. The inset shows cells that spontaneously differentiated into mature hepatocyte (MH)-like cells in densely packed regions.

(C) Phase contrast images of mouse CLiPs obtained by culture in the presence of YAC. The inset shows cells that spontaneously differentiated into MH-like cells in densely packed regions.

(D) Phase contrast images of APHHS cultured in the presence of YAC and 10% FBS (FYAC). The inset shows cells that spontaneously differentiated into MH-like cells in densely packed regions.

(E) Phase contrast images of APHHS cultured in FAC. Insets show cells that spontaneously differentiated into MH-like cells in densely packed regions.

(F) Phase contrast images of PHHs obtained from infant donors (4 lots) and a juvenile donor (1 lot). Regions with spontaneous hepatic differentiation are magnified.

Figure 1-figure supplement 2. Characterization of FAC-cultured proliferative human hepatic cells, related to Figure 1.

(A) Flow cytometric analysis of surface expression of LPC markers in cells from lots DUX and JFC.

(B) GSEA demonstrating enrichment of cell cycle-related gene sets in cells cultured in FAC in comparison with cells cultured in the presence of FBS at D14.

(C) GSEA demonstrating enrichment of cell cycle-related gene sets in cells cultured in FAC at D14 in comparison with D1 hepatocytes.

(D) GSEA demonstrating enrichment of cell cycle-related gene sets in cells cultured in the presence of FBS at D14 in comparison with D1 hepatocytes.

(E) Time course of expression of hepatic (GJB1 and GJB2) and NPC (GJA1) connexin genes as assessed by microarray analysis. Data are shown as mean ± SEM of three lots per time point (each value is determined as the mean of 2 repeated experiments for each lot). P-values were calculated by the linear mixed model to account for the covariance.
structure due to repeated measures at different time points. The meanings of the various colors are described in the figure.

Figure 2-figure supplement 1. Characterization of proliferative human hepatic cells following hepatic maturation.

(A) Schematic of the hepatic maturation protocol.
(B) Phase contrast images showing the morphological changes of hCLiPs derived from lots DUX and JFC upon hepatic maturation.
(C) Quantified expression of BEC/LPC marker genes in hCLiPs derived from the three lots with or without hepatic maturation and in PHHs. Data are the mean ± SEM of two repeated experiments for each lot of hCLiPs and the results of one experiment for each lot of PHHs.
(A) Biological processes overrepresented in Hep-i(-) cells in comparison with Hep-i(+) cells, as identified using BiNGO, a Cytoscape plug-in. p-value is calculated by the default setting of the plug-in.
(D) GSEA demonstrating enrichment of cell cycle-related gene sets in Hep-i(-) cells in comparison with Hep-i(+) cells (see also Table S6).

Figure 3-figure supplement 1. Inducibility of CYP1A2 and CYP3A4 in Hep-i(+) cells.

(A) GSEA demonstrating enrichment of CYP-associated metabolic pathways in Hep-i(+) cells in comparison with Hep-i(-) cells.
(B) qRT-PCR analysis of the inducibility of *CYP1A2*, *CYP2B6*, and *CYP3A* mRNA expression. Gene expression levels were normalized against that of *ACTB*. Data are shown as one representative experiment.
(C) Summary of the inducibility of *CYP* mRNA expression in the individual experiments shown in (B). Data are obtained from one experiment for lot JFC and two repeated experiments for DUX and FCL except CYP3A4 (RF/MeOH) in which all data are obtained from one experiment.
(D) Summary of the inducibility of CYP enzymatic activities in the individual experiments shown in (Figure 3C). Data are obtained from two repeated experiments. P-values are obtained by paired student’s t-test.

Figure 4-figure supplement 1. Characterization of hCLiPs upon long-term culture.
(A) Phase contrast images of hCLiPs upon serial passage. Arrows indicate cells with a fibroblast-like morphology.

(B) Surface marker profiling of hCLiPs upon serial passage. Data are from three repeated experiments for cells derived from lots FCL and DUX and from one experiment for cells derived from lot JFC.

(C) Hierarchical clustering based on Euclidean distance of genes that were differentially expressed between hCLiPs at P10 and those at P0. Probes were ranked by the weighted average difference method [1], and the top 5% (2445 probes) were defined as differentially expressed genes.

(D) Immunocytochemistry of hepatic function-related proteins in hCLiPs at P3 after hepatic maturation.

Figure 6-figure supplement 1. Characterization of human cells isolated from chimeric livers of mice transplanted with hCLiPs.

(A) Heatmap showing expression of BEC/LPC marker genes, as assessed by microarray analysis. Each element represents normalized (log2) expression, as indicated by the color scale. Hierarchical clustering was performed based on Euclidean distance.

(B) qRT-PCR analysis of the inducibility of *CYP1A2*, *CYP2B6*, and *CYP3A* mRNA expression. Gene expression levels were normalized against that of *ACTB*. Each value is determined by one experiment with two replicate cultures.
NAME	Data base	NOM	p-val	q-val	FWER p-val
HALLMARK_OXIDATIVE_PHOSPHORYLATION	HALLMARK	0	0.033297755	0.021	
HALLMARK_FATTY ACID_METABOLISM	HALLMARK	0.001968504	0.0551136	0.08	
HALLMARK_MYC_TARGETS_V1	HALLMARK	0.03245436	0.101371616	0.176	
HALLMARK_PANCREAS_BETA CELLS	HALLMARK	0.037254903	0.340671212	0.74	
HALLMARK_MYC_TARGETS_V2	HALLMARK	0.04684318	0.14761625	0.336	
HALLMARK_INTERFERON_ALPHA_RESPONSE	HALLMARK	0.058939096	0.177944999	0.324	
HALLMARK_GLYCOLYSIS	HALLMARK	0.06854839	0.29879961	0.828	
HALLMARK_INTERFERON_GAMMA_RESPONSE	HALLMARK	0.09190288	0.31339951	0.751	
HALLMARK_CHOLESTEROL_HOMEOSTASIS	HALLMARK	0.12252964	0.27703643	0.782	
HALLMARK_ESTROGEN_RESPONSE_LATE	HALLMARK	0.13052209	0.27356262	0.888	
HALLMARK_PEROXISOME	HALLMARK	0.1392157	0.36802122	0.667	
HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY	HALLMARK	0.15031315	0.35984033	0.715	
HALLMARK_BILE ACID_METABOLISM	HALLMARK	0.16338582	0.2828164	0.818	
HALLMARK_ADIPONESIS	HALLMARK	0.18	0.28598496	0.859	
HALLMARK_LV_RESPONSE_UP	HALLMARK	0.2254902	0.34318617	0.965	
HALLMARK_E2F_TARGETS	HALLMARK	0.2296748	0.29983094	0.774	
HALLMARK_P53K_AKT_MTOR_SIGNALING	HALLMARK	0.2309237	0.32903141	0.968	
HALLMARK_XENOBIOTIC_METABOLISM	HALLMARK	0.25308012	0.29413024	0.889	
HALLMARK_DNA_REPAIR	HALLMARK	0.2661484	0.3270163	0.93	
HALLMARK_MTORC1_SIGNALING	HALLMARK	0.28033474	0.32892336	0.951	
HALLMARK_G2M_CHECKPOINT	HALLMARK	0.31939345	0.37537833	0.968	
HALLMARK_IL6_JAK_STAT3_SIGNALING	HALLMARK	0.44624746	0.4894568	0.995	
HALLMARK_PROTEIN_SECRETION	HALLMARK	0.53235906	0.56123456	0.996	
HALLMARK_SPERMATOGENESIS	HALLMARK	0.54789275	0.568492	0.996	
KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	KEGG	0	0.42114097	0.314	
KEGG_GLYCOSPHINGOLID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES	KEGG	0	0.09390438	0.581	
KEGG_RIBOSOME	KEGG	0	0.10131376	0.708	
KEGG_GLUTATHIONE_METABOLISM	KEGG	0.002	0.16022365	0.386	
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	KEGG	0.00415226	0.18038498	0.331	
KEGG_TYROSINE_METABOLISM	KEGG	0.00609756	0.21838278	0.322	
KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS	KEGG	0.00610998	0.10780261	0.465	
KEGG_ASCORBATE_AND_ALDARATE_METABOLISM	KEGG	0.00814664	0.1743629	0.372	
KEGG_PHENYLALANINE_METABOLISM	KEGG	0.01012147	0.28240538	0.317	
KEGG_HISTIDINE_METABOLISM	KEGG	0.012	0.14469703	0.396	
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	KEGG	0.01212122	0.8295114	0.311	
KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM	KEGG	0.012219959	0.13135943	0.401	
KEGG_GLYOXALATE_AND_DICARBOXYLATE_METABOLISM	KEGG	0.014373717	0.09476113	0.732	
KEGG_LYSINE_DEGRADATION	KEGG	0.01778656	0.10249406	0.65	
KEGG_RETINOL_METABOLISM	KEGG	0.018442623	0.1021333	0.473	
KEGG_BASE_EXCISION_REPAIR	KEGG	0.01984127	0.093926735	0.515	
KEGG_PROTEIN_EXPORT	KEGG	0.02008032	0.09562029	0.571	
Pathway	Database	Score 1	Score 2	Score 3	
--	----------	----------	----------	----------	
KEGG_BASAL_TRANSCRIPTION_FACTORS	KEGG	0.226263	0.242806	0.981	
KEGG_ABC_TRANSPORTERS	KEGG	0.232		0.997	
KEGG_CELL_CYCLE	KEGG	0.244048	0.243094	0.981	
KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS	KEGG	0.245436	0.345007	0.994	
KEGG_NUCLEOTIDE_EXCISION_REPAIR	KEGG	0.254620	0.276204	0.982	
KEGG_PURINE_METABOLISM	KEGG	0.259765	0.384226	0.997	
KEGG_O_GLUCAN_BIOSYNTHESIS	KEGG	0.260784	0.373632	0.997	
KEGG_SPHINGOLIPID_METABOLISM	KEGG	0.278826	0.384885	0.997	
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM	KEGG	0.283344	0.387591	0.997	
KEGG_HOMOLOGOUS_RECOMBINATION	KEGG	0.292585	0.294651	0.988	
KEGG_PRION_DISEASE	KEGG	0.308880	0.416919	0.998	
KEGG_VASOPRESSIN_REGULATED_WATER_ReABSORPTION	KEGG	0.312127	0.413439	0.998	
KEGG_OOCYTE_MEIOSIS	KEGG	0.331337	0.409222	0.998	
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.340816	0.409926	0.998	
KEGG_PROTEASOME	KEGG	0.342976	0.386493	0.998	
KEGG_PS3_SIGNALING_PATHWAY	KEGG	0.371819	0.431300	0.997	
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES	KEGG	0.383329	0.415023	0.986	
KEGG_PYRIMIDINE_METABOLISM	KEGG	0.410677	0.427796	0.998	
KEGG_RNA_POLYMERASE	KEGG	0.434863	0.459729	0.998	
KEGG_STEROID_BIOSYNTHESIS	KEGG	0.45	0.494468	1	
KEGG_OTHER_GLYCAN_DEGRADATION	KEGG	0.451807	0.473659	1	
KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION	KEGG	0.481481	0.502190	1	
KEGG_N_GLYCAN_BIOSYNTHESIS	KEGG	0.508911	0.543458	1	
KEGG_PP2A_MEDIATED_PROTEOLYSIS	KEGG	0.535382	0.580983	1	
KEGG_GALACTOSE_METABOLISM	KEGG	0.554436	0.554618	1	
KEGG_P53_SIGNALING_PATHWAY	KEGG	0.588235	0.625836	1	
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	KEGG	0.721212	0.696419	1	
KEGG_CYTOSOLIC_LUPUS_ERYTHEMATOSUS	KEGG	0.737345	0.742511	1	
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY	KEGG	0.788732	0.779239	1	
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX	REACTOME	0	0.148344	0.059	
REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES	REACTOME	0	0.304857	0.2	
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION	REACTOME	0	0.337314	0.332	
REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION	REACTOME	0	0.278874	0.337	
REACTOMEFORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX	REACTOME	0	0.215878	0.353	
REACTOME_ACTIVATION_OF_THE_MRNA_UPON_BINDING_OF_THE_CAP_BINDING_COMPLEX_AND_EIF5S_AND_SUBSEQUENT_BINDING_TO_43S	REACTOME	0	0.206561	0.373	
REACTOME_SULFUR_AMINO_ACID_METABOLISM	REACTOME	0	0.249561	0.546	
REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE	REACTOME	0	0.239770	0.626	
REACTOME_PEPTIDE_CHAIN_ELONGATION	REACTOME	0	0.244815	0.713	
REACTOME_PHASE_II_CONJUGATION	REACTOME	0.001934	0.250582	0.573	
REACTOME_MITOCHONDRIAL_TRNA_AMINOACYLATION	REACTOME	0.004237	0.244317	0.765	
REACTOME_MITOCHONDRIAL_PROTEIN_IMPORT	REACTOME	0.008114	0.238216	0.642	
REACTOME_BASE_EXCISION_REPAIR	REACTOME	0.012121	0.240843	0.828	
REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE					
REACTOME_MEIOTIC_RECOMBINATION					
REACTOME_TRANSPORT_OF_MATURE_MRNA_DERIVED_FROM_AN_INTRONLESS_TRANSCRIPT					
REACTOME_CELL_CYCLE/MITOTIC					
REACTOME_REGULATION_OF/MITOTIC_CELL_CYCLE					
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING					
REACTOME_ASPARAGINE_N_LINKED_GLYCOSYLATION					
REACTOME_MRNA_CAPPING					
REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATION_FROM_TYPE_2_PROMOTER					
REACTOME_KINESINS					
REACTOME_PHOSPHOLIPID_METABOLISM					
REACTOME_RNA_POL_II_TRANSCRIPTION_PRE_INITIATION_AND_PROMOTER_OPENING					
REACTOME_SPHINGOLIPID_DE_NOVO_BIOSYNTHESIS					
REACTOME_NUCLEOTIDE_EXCISION_REPAIR					
REACTOME_DEADENYLATION_OF_MRNA					
REACTOME_MITOTIC_G1_G1_S_PHASES					
REACTOME_PROCESSING_OF_CAPPED_INTRONLESS_PRE_MRNA					
REACTOME_MITOTIC_PROMETAPHASE					
REACTOME_COMPLEMENT_CASCADE					
REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESIS					
REACTOME_RNA_POL_II_TRANSCRIPTION_COUPLED_NER_TC_NER					
REACTOME_FORMATION_OF_RNA_POL_II_ELONGATION_COMPLEX					
REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EM1					
REACTOME_NA_CL_DEPENDENT_NEUROTRANSMITTER_TRANSPORTERS					
REACTOME_AQUAPORIN_MEDIATED_TRANSPORT					
REACTOME_RECYCLING_PATHWAY_OF_L1					
REACTOME_DOUBLE_STRAND_BREAK_REPAIR					
REACTOME_SYNTHESIS_OF_PC					
Reaction Pathway	Score 1	Score 2	Rank		
--	-----------	-----------	------		
REACTOME_NEP_NS2_INTERACTS_WITH_THE_CELLULAR_EXPORT_MACHINERY	0.35908142	0.4259943	1		
REACTOME_RECRUITMENT_OF/MITOTIC_CENTROSOME_PROTEINS_AND_COMPLEXES	0.36210525	0.48352095	1		
REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION	0.36401674	0.4247335	1		
REACTOME_TRANSPORT_OF_VITAMINS_NUCLEOSIDES_ANDRELATED_MOLECULES	0.36565655	0.48103687	1		
REACTOME_RNA_POL_I_TRANSCRIPTION_TERMINATION	0.36666667	0.45379722	1		
REACTOME_MITOTIC_G2_G2_M_PHASES	0.36737775	0.47160075	1		
REACTOME_INTERFERON_SIGNALING	0.37838784	0.54333705	1		
REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS	0.3809524	0.56051135	1		
REACTOME_REGULATION_OF_GLUCOKINASE_BY_GLUCOKINASE_REGULATORY_PROTEIN	0.38414633	0.46148699	1		
REACTOME DEPOSITION_OF_NEW_CENPA_CONTAINING_NUCLEOSOMES_AT_THE_CENTROMERE	0.3866944	0.50058111	1		
REACTOME_G1_S_SPECIFIC_TRANSCRIPTION	0.40980393	0.5132242	1		
REACTOME_RNA_POL_I_TRANSCRIPTION_INITIATION	0.4107143	0.52621585	1		
REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_RICH_ELEMENTS	0.4121339	0.5193209	1		
REACTOME_CYCLIN_A2_B1_ASSOCIATED_EVENTS_DURING_G2_M_TRANSITION	0.41525424	0.48213312	1		
REACTOME_ENDOSOMAL_SORTING_COMPLEX_REQUIRED_FOR_TRANSPORT_ESCRT	0.42028984	0.56217843	1		
REACTOME_HOMOLOGOUS_RECOMBINATION_REPAIR_OF_REPLICATION_INDEPENDENT_DOUBLE_STRAND_BREAKS	0.4231579	0.48362187	1		
REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION	0.42878932	0.5659366	1		
REACTOME_METAL_ION_SLC_TRANSPORTERS	0.4364754	0.5357536	1		
REACTOME_INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS	0.44930416	0.593185	1		
REACTOME_REGULATION_OF_APOPTOSIS	0.4562845	0.5106658	1		
REACTOME_G0_AND_EARLY_G1	0.46450305	0.5801556	1		
REACTOME_ANTIVIRAL_MECHANISM_BY_IFN_STIMULATED_GENES	0.46707818	0.5623559	1		
REACTOME_AMINO_ACID_TRANSPORT_ACROSS_THE_PLASMA_MEMBRANE	0.47010309	0.5824264	1		
REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE1	0.49906543	0.58763456	1		
REACTOME_IRON_UPTAKE_AND_TRANSPORT	0.50701404	0.6135092	1		
REACTOME_OVERESSENTIAL_TRANSCRIPTION_OF_HIV1_TRANSCRIPT_IN_THE_ABSENCE_OF_TAT	0.50701404	0.6135092	1		
REACTOME_REGULATION_OF_REGULATION_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS	0.5152672	0.568452	1		
REACTOME_REGULATION_OF_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE1	0.51827955	0.62653494	1		
REACTOME_STEROID_HORMONES	0.5217391	0.6165913	1		
REACTOME_REGULATION_OF_METABOLISM_OF_STEROID_HORMONES	0.52847401	0.6286636	1		
REACTOME_ABCA_TRANSPORTERS_IN_LIPID_HOMEObatis	0.5394191	0.6343856	1		
REACTOME_REGULATION_OF_MITOTIC_CENTROSOME_PROTEINS	0.5394191	0.6343856	1		
REACTOME_REGULATION_OF_RNA_POL_III_CHAIN_ELONGATION	0.54857114	0.6274575	1		
REACTOME_REGULATION_OF_TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS	0.55193484	0.6294302	1		
REACTOME_REGULATION_OF_RNA_POL_I_TRANSCRIPTION	0.55666006	0.6361149	1		
REACTOME_RNA_POL_I_TRANSCRIPTION_TERMINATION	0.55836576	0.6387037	1		
REACTOME_G0_AND_EARLY_G1	0.55882375	0.6404874	1		
Table S2. All the gene sets enriched in FBS cells compared with FAC cells at D14 of culture (assessed by GSEA)

NAME	Data base	NOM p-val	FDR q-val	FWER p-val
HALLMARK_TGF_BETA_SIGNALING	HALLMARK	0	0.009140522	0.005
HALLMARK_MYOGENESIS	HALLMARK	0	0.069657445	0.105
HALLMARK_NOTCH_SIGNALING	HALLMARK	0	0.059325222	0.131
HALLMARK_HYPOXIA	HALLMARK	0	0.045752253	0.132
HALLMARK_ANDROGEN_RESPONSE	HALLMARK	0	0.048646573	0.15
HALLMARK_IL2_STAT5_SIGNALING	HALLMARK	0	0.12665664	0.46
HALLMARK_UV_RESPONSE_DN	HALLMARK	0.004	0.050967343	0.202
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	HALLMARK	0.004032258	0.040872145	0.15
HALLMARK_APOICAL_JUNCTION	HALLMARK	0.008080808	0.064334035	0.25
HALLMARK_TNFA_SIGNALING_VIA_NFKB	HALLMARK	0.04710921	0.23871371	0.678
HALLMARK_ESTROGEN_RESPONSE_EARLY	HALLMARK	0.068041235	0.39715317	0.848
HALLMARK_KRAS_SIGNALING_UP	HALLMARK	0.08595388	0.3668031	0.873
HALLMARK_INFLAMMATORY_RESPONSE	HALLMARK	0.104166664	0.3623399	0.884
HALLMARK_HEME_METABOLISM	HALLMARK	0.10735586	0.37135115	0.856
HALLMARK_APOPTOSIS	HALLMARK	0.20162933	0.3912459	0.925
HALLMARK_ALLOGRAFT_REJECTION	HALLMARK	0.20654397	0.40170398	0.971
HALLMARK_KRAS_SIGNALING_DN	HALLMARK	0.23695652	0.44194546	0.971
HALLMARK_COMPLEMENT	HALLMARK	0.25995806	0.40901086	0.979
HALLMARK_WNT_BETA_CATENIN_SIGNALING	HALLMARK	0.27145708	0.39942184	0.985
HALLMARK_ANGIOGENESIS	HALLMARK	0.276	0.3740405	0.935
HALLMARK_HEDGEHOG_SIGNALING	HALLMARK	0.29218107	0.417504	0.971
HALLMARK_COAGULATION	HALLMARK	0.3668033	0.4653472	0.994
HALLMARK_APICAL_SURFACE	HALLMARK	0.49266246	0.5583202	0.996
HALLMARK_F53_PATHWAY	HALLMARK	0.562	0.6015378	0.996
HALLMARK_MITOTIC_SPINDLE	HALLMARK	0.634981	0.692988	0.999
HALLMARK_UNFOLDED_PROTEIN_RESPONSE	HALLMARK	0.6608187	0.7113714	0.999
KEGG_REGULATION_OF_ACTIN_CYTOSkeleton	KEGG	0	0.26748475	0.135
KEGG_RENAL_CELL_CARCINOMA	KEGG	0	0.14733337	0.145
KEGG_FOCAL_ADHESION	KEGG	0	0.11863231	0.177
KEGG_GAP_JUNCTION	KEGG	0	0.090973504	0.181
KEGG_PANCREATIC_CANCER	KEGG	0	0.07751717	0.191
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE	KEGG	0	0.072336674	0.238
KEGG_GLIOMA	KEGG	0	0.07472582	0.303
KEGG_PATHWAYS_IN_CANCER	KEGG	0	0.08921946	0.356
KEGG_GNRH_SIGNALING_PATHWAY	KEGG	0	0.08600339	0.471
KEGG_MELANOMEGESIS	KEGG	0	0.083558686	0.499
Pathway Name	Database	E-value 1	E-value 2	E-value 3
---	----------	-----------	-----------	-----------
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY	KEGG	0.08406236	0.513	
KEGG_MELANOMA	KEGG	0.07987432	0.526	
KEGG_MTOR_SIGNALING_PATHWAY	KEGG	0.001984127	0.404	
KEGG_ADHERENS_JUNCTION	KEGG	0.002	0.792	
KEGG_HEDGEHOG_SIGNALING_PATHWAY	KEGG	0.00203252	0.3	
KEGG_DILATED_CARDIOMYOPATHY	KEGG	0.00203666	0.412	
KEGG_MELANOMA	KEGG	0.004016064	0.723	
KEGG_TGF_BETA_SIGNALING_PATHWAY	KEGG	0.006048387	0.218	
KEGG_WNT_SIGNALING_PATHWAY	KEGG	0.006072875	0.654	
KEGG_AXON_GUIDANCE	KEGG	0.00610998	0.561	
KEGG_ECM_RECEPTOR_INTERACTION	KEGG	0.006134969	0.457	
KEGG.ARRHYTHMOGENIC.RIGHT_VENTRICULAR_CARDIOMYOPATH_ARVC	KEGG	0.008048289	0.396	
KEGG_CALCIUM_SIGNALING_PATHWAY	KEGG	0.008048289	0.72	
KEGG_ERBB_SIGNALING_PATHWAY	KEGG	0.011560693	0.69	
KEGG_NEURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY	KEGG	0.011695907	0.893	
KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM	KEGG	0.012	0.811	
KEGG_HYPERVENTRICULAR_CARDIOMYOPATH_HCM	KEGG	0.012121212	0.496	
KEGG_GLUCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE	KEGG	0.012371134	0.457	
KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION	KEGG	0.013752456	0.686	
KEGG_CHRONIC_MYELOID_LEUKEMIA	KEGG	0.014141414	0.525	
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION	KEGG	0.017681729	0.737	
KEGG_BASAL_CELL_CARCINOMA	KEGG	0.017716536	0.624	
KEGG.T_CELL_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.023529412	0.837	
KEGG_ENDOCYTOSIS	KEGG	0.02414487	0.86	
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION	KEGG	0.024193548	0.796	
KEGG_TIGHT_JUNCTION	KEGG	0.025742574	0.954	
KEGG_DORSO_VENTRAL_AXISFORMATION	KEGG	0.028	0.765	
KEGG_SMALL_CELL_LUNG_CANCER	KEGG	0.030303031	0.954	
KEGG_COLORECTAL_CANCER	KEGG	0.031007752	0.887	
KEGG_JAK_STAT_SIGNALING_PATHWAY	KEGG	0.032388665	0.951	
KEGG_LONG_TERM.DEPRESSION	KEGG	0.039014373	0.906	
KEGG_INOSITOL_PHOSPHATE_METABOLISM	KEGG	0.03984064	0.95	
KEGG_LONG_TERM.POTENTATION	KEGG	0.04106776	0.876	
KEGG_PROSTATE_CANCER	KEGG	0.051181104	0.94	
KEGG_VEGF_SIGNALING_PATHWAY	KEGG	0.051587302	0.887	
KEGG_REGULATION_OF_AUTOPHAGY	KEGG	0.057613168	0.908	
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION	KEGG	0.065606363	0.969	
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES	KEGG	0.06732673	0.851	
Pathway Name	Gene ID	EASE Score	p-value	
-------------	---------	------------	---------	
KEGG_LEISHMANIA_INFECTION	KEGG	0.07350097	0.17480563	
KEGG_TYPE_II_DIABETES_MELLITUS	KEGG	0.07535642	0.22229297	
KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION	KEGG	0.07976653	0.2695417	
KEGG_ACUTE_MYELOID_LEUKEMIA	KEGG	0.08398437	0.18182568	
KEGG_NOTCH_SIGNALING_PATHWAY	KEGG	0.0945674	0.2062194	
KEGG_BLADDER_CANCER	KEGG	0.09475806	0.2211357	
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION	KEGG	0.09775967	0.26839873	
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.09807692	0.22352994	
KEGG_ALZHEIMERS_DISEASE	KEGG	0.11568627	0.26617536	
KEGG_NON_SMALL_CELL_LUNG_CANCER	KEGG	0.11585366	0.32056734	
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.1391129	0.32459637	
KEGG_CELL_ADHESION_MOLECULES_CAMS	KEGG	0.14137214	0.27759257	
KEGG_HEMATOPOIETIC_CELL_LINEAGE	KEGG	0.15132925	0.27026564	
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.17358491	0.31436855	
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	KEGG	0.2248996	0.38231078	
KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT	KEGG	0.238921	0.3450556	
KEGG_GLYCEROLIPID_METABOLISM	KEGG	0.2446184	0.39567888	
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY	KEGG	0.27272728	0.4235654	
KEGG_CARDIAC_MUSCLE_CONTRACTION	KEGG	0.28629032	0.3667903	
KEGG_INSULIN_SIGNALING_PATHWAY	KEGG	0.28962818	0.4352693	
KEGG_TYPE_I_DIABETES_MELLITUS	KEGG	0.29531568	0.36894542	
KEGG_TASTE_TRANSDUCTION	KEGG	0.3149284	0.44023284	
KEGG_CHEMOKINE_SIGNALING_PATHWAY	KEGG	0.32515338	0.44404286	
KEGG_ALLOGRAFT_REJECTION	KEGG	0.34653464	0.43249342	
KEGG_ENDOMETRIAL_CANCER	KEGG	0.37356323	0.4635634	
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS	KEGG	0.3821782	0.46541697	
KEGG_GLYCOSAMINOGLYCAN_DEGRADATION	KEGG	0.38431373	0.45974267	
KEGG_OLFFACTORY_TRANSDUCTION	KEGG	0.40243903	0.4683876	
KEGG_ASTHMA	KEGG	0.4251497	0.5052454	
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY	KEGG	0.4389313	0.50985673	
KEGG_RIBOFлавIN_METABOLISM	KEGG	0.53521127	0.58716464	
KEGG_GRAFT_VERSUS_HOST_DISEASE	KEGG	0.55040324	0.6123126	
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION	KEGG	0.5691383	0.6504817	
KEGG_LYPOSOME	KEGG	0.5777778	0.6579626	
KEGG_AUTOIMMUNE_THYROID_DISEASE	KEGG	0.5922921	0.649898	
KEGG_VIBRIO_CHOLERAE_INFECTION	KEGG	0.60465115	0.676522	
KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM	KEGG	0.66041666	0.71129733	

CC-BY 4.0 International license certified by peer review. This preprint has been peer-reviewed and approved for posting on bioRxiv. The copyright holder for this preprint, posted April 7, 2019. doi: bioRxiv preprint
Pathway	Database	Score_1	Score_2	Score_3	
KEGG_PRIMARY_IMMUNODEFICIENCY	KEGG	0.768116	0.717756	1	
REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX	REACTOME	0	0.008672	0.004	
REACTOME_TGF_BETA_RECEPTOR_SIGNALING_ACTIVATES_SMADS	REACTOME	0	0.032109	0.032	
REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SMAD3_SMAD4_HETEROTRIMER	REACTOME	0	0.076937	0.107	
REACTOME_DOWNREGULATION_OF_SMAD2_3_SMAD4_TRANSCRIPTIONAL_ACTIVITY	REACTOME	0	0.069923	0.115	
REACTOME_AXON_GUIDANCE	REACTOME	0	0.350912	0.49	
REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS	REACTOME	0	0.349406	0.577	
REACTOME_MUSCLE_CONTRACTION	REACTOME	0	0.332317	0.597	
REACTOME_YAP1_AND_WWTR1_TA2_STIMULATED_GENE_EXPRESSION	REACTOME	0	0.280454	0.601	
REACTOME_DEVELOPMENTAL_BIOLOGY	REACTOME	0	0.232599	0.795	
REACTOME_PLATELET_CALCIUM_HOMEOSTASIS	REACTOME	0	0.209718	0.831	
REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION	REACTOME	0	0.240939	0.87	
REACTOME_SIGNALLING_BY_NGF	REACTOME	0	0.246139	0.93	
REACTOME_DOWNREGULATION_OF_TGF_BETA_RECEPTOR_SIGNALING	REACTOME	0.001953	0.041111	0.055	
REACTOME_CD28_CO_STIMULATION	REACTOME	0.001968	0.280521	0.634	
REACTOME_SIGNALING_BY_NOTCH	REACTOME	0.002012	0.242625	0.976	
REACTOME_L1CAM_INTERACTIONS	REACTOME	0.002049	0.211958	0.817	
REACTOME_PRE_NOTCH_PROCESSING_IN_GOLGI	REACTOME	0.002061	0.245140	0.739	
REACTOME_SIGNALING_BY_BMP	REACTOME	0.002150	0.249304	0.703	
REACTOME_GENERATION_OF_SECOND_MESSENGER_MOLECULES	REACTOME	0.003968	0.230538	0.758	
REACTOME_SIGNALLING_TO_RAS	REACTOME	0.003968	0.239673	0.976	
REACTOME_CELL_SURFACE_INTERACTIONS_AT_THE_VASCULAR_WALL	REACTOME	0.004024	0.230806	0.744	
REACTOME_SIGNALING_BY_FGFR1_MUTANTS	REACTOME	0.004073	0.230613	0.774	
REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY	REACTOME	0.004107	0.231708	0.893	
REACTOME_DOWNSTREAM_SIGNAL_TRANSDUCTION	REACTOME	0.004149	0.232004	0.967	
REACTOME_CD28_DEPENDENT_PI3K_AKT_SIGNALING	REACTOME	0.004166	0.256719	0.679	
REACTOME_CLASS_B_2_SECRETIN_FAMILY RECEPTORS	REACTOME	0.004223	0.247512	0.791	
REACTOME_P75_NTR_RECEPTOR_MEDIATED_SIGNALLING	REACTOME	0.005964	0.239674	0.793	
REACTOME_INTEGRIN_ALPHAIIIB_BETA3_SIGNALING	REACTOME	0.006048	0.220046	0.813	
REACTOME_SIGNALING_BY_PDGF	REACTOME	0.006048	0.245263	0.929	
REACTOME_SMOOTH_MUSCLE_CONTRACTION	REACTOME	0.006316	0.324704	0.513	
REACTOME_METABOLISM_OF_CARBOHYDRATES	REACTOME	0.007797	0.312715	0.998	
REACTOME_SIGNALLING_TO_ERKS	REACTOME	0.007961	0.260066	0.988	
REACTOME_HS_GAG_BIOSYNTHESIS	REACTOME	0.008048	0.215910	0.817	
REACTOME_GASTRIN_CREB_SIGNALLING_PATHWAY_VIA_PKC_AND_MAPK	REACTOME	0.008298	0.273003	0.991	
REACTOME_SEMAPHORIN_INTERACTIONS	REACTOME	0.009901	0.232509	0.809	
REACTOME_NOTCH1_INTRACELLULAR_DOMAIN_REGULATES_TRANSCRIPTION	REACTOME	0.012244	0.252056	0.981	
Reactome Pathway	Reactome ID	Enrichment Score	p-Value		
--	------------------	------------------	---------		
REACTOME_SIGNALING_BY_FGFR_IN_DISEASE	0.03815261/1	0.23262077	1		
REACTOME_SIGNALING_BY_ERBB2	0.038854804/1	0.27109525	0.992		
REACTOME_UNBLOCKING_OF_NMDA_RECEPTOR/GLUTAMATE_BINDING_AND_ACTIVATION	0.042662844/0.988	0.25614145	0.988		
REACTOME_MYD88_MAL CASCADE_INITIATED_ON_PLASMA_MEMBRANE	0.03659043/1	0.3283036	1		
REACTOME_SIGNALING_BY_NOTCH1	0.04088177/0.988	0.326848	0.988		
REACTOME_SMAD2_SMAD3_SMAD4_HETEROTRIMER_REGULATES_TRANSCRIPTION	0.04519774/0.97	0.28556967	0.97		
REACTOME_HEPARAN_SULFATE_HEPARIN_HS_GAG_METABOLISM	0.04780766/0.936	0.25139165	0.936		
REACTOME_CTLA4_INHIBITORY_SIGNALING	0.053169735/0.998	0.29976577	0.998		
REACTOME_SHC_RELATED_EVENTS	0.05367793/0.985	0.26087067	0.985		
REACTOME_NP睞SIGNALS_DEATH_THROUGH_JNK	0.05555556/0.996	0.2853004	0.996		
REACTOME_PLC_BETA_MEDIATED_EVENTS	0.05555556/0.998	0.28691858	0.998		
REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX	0.056338027/0.997	0.29976757	0.997		
REACTOME_TCR_SIGNALING	0.056862745/0.997	0.2794434	0.997		
REACTOME_SIGNALING_BY_CONSTITUENTLY_ACTIVE_EGFR	0.059760958/0.966	0.23002647	0.966		
REACTOME_NEUROTRANSMITTER_RECEPTOR_BINDING_AND_DOWNSTREAM_TRANSMISSION_IN_THE_POSTSYNAPTIC_CELL	0.06143983/0.998	0.299749	0.998		
REACTOME_PI_3K_CASCADE	0.06418219/1	0.32761446	1		
REACTOME_OPIOIDSIGNALING	0.06464647/0.998	0.29923415	0.998		
REACTOME_SIGNAL_AMPLIFICATION	0.06465517/0.997	0.283984	0.997		
REACTOME_PRE_NOTCH_EXPRESSION_AND_PROCESSING	0.06570105/0.951	0.24722461	0.951		
REACTOME_POST_CHAPERONIN_TUBULIN_FOLDING_PATHWAY	0.07185629/0.936	0.24711274	0.936		
REACTOME_NEUROTRANSMITTER_RELEASE_CYCLE	0.073469386/0.993	0.27882959	0.993		
REACTOME_NETRIN1_SIGNALING	0.073469386/0.993	0.27882959	0.993		
REACTOME_A_TETRASACCHARIDE_LINKER_SEQUENCE_IS_REQUIRED_FOR_GAG_SYNTHESIS	0.07356725/0.998	0.24500555	0.977		
REACTOME_ACTIVATED_TLR4_SIGNALLING	0.073619634/1	0.32829455	1		
REACTOME_TIE2_SIGNALING	0.07386741/1	0.3239474	1		
REACTOME_ACTIVATION_OF_NMDA_RECEPTOR_UPON_GLUTAMATE BINDING_AND_POSTSYNAPTIC_EVENTS	0.076612905/1	0.32168338	1		
REACTOME_TOLL_RECEPTOR_CASCADES	0.077659245/1	0.32478077	1		
REACTOME_INTEGRATION_OF_ENERGY_METABOLISM	0.07936508/0.997	0.32500213	1		
REACTOME_CHONDROITIN_SULFATE_BIOSYNTHESIS	0.08384458/0.998	0.280959	0.998		
REACTOMEobble SIGNALING BY NODAL	0.083980235/0.998	0.27994627	0.998		
REACTOME_SHC1 EVENTS_IN_EGFR_SIGNALING	0.08634538/0.998	0.28288525	0.998		
REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBP	0.0882353/0.997	0.28480482	0.977		
REACTOME_REGULATION_OF_INSULIN_SECRETION	0.09202454/1	0.32412344	1		
REACTOME_G_ALPHA_Z_SIGNALLING_EVENTS	0.093495395/1	0.3244087	1		
REACTOME_NETRIN1_SIGNALING	0.09356725/0.998	0.30178303	0.998		
REACTOME	Pathway Description	ID	Score 1	Score 2	Score 3
--------------------------------	---	------	---------	---------	---------
REACTOME_BETA_DEFENSINS		REACTOME	0.60991377	0.6945276	1
REACTOME_ACTIVATION_OF_GENES_BY_ATF4		REACTOME	0.6184739	0.69640636	1
REACTOME_REGULATION_OF_SIGNALING_BY_CBL		REACTOME	0.6277228	0.65669465	1
REACTOME_REGULATION_OF_HYPOXIA_INDUCTIBLE_FACTOR_HIF_BY_OXYGEN		REACTOME	0.642	0.6977118	1
REACTOME_ACRYL_CHAIN_REMODELLING_OF_PS		REACTOME	0.64681727	0.68370587	1
REACTOME_PROLONGED_ERK_ACTIVATION_EVENTS		REACTOME	0.6487026	0.6829492	1
REACTOME_FACTORS_INVOLVED_IN_MEGAKARYOCYTE_DEVELOPMENT_AND_PLATELET_PRODUCTION		REACTOME	0.655706	0.7207404	1
REACTOME_PHOSPHORYLATION_OF_CD3_AND_TCR_ZETA_CHAINS		REACTOME	0.66262627	0.74118894	1
REACTOME_LIPOPROTEIN_METABOLISM		REACTOME	0.66735536	0.71920806	1
REACTOME_EGFR_DOWNREGULATION		REACTOME	0.7153996	0.698543	1
REACTOME_G1_PHASE		REACTOME	0.7247525	0.7448583	1
REACTOME_ANTIGEN_ACTIVATES_B_CELL_RECEPTOR_LEADING_TO_GENERATION_OF_SECOND_MESSENGERS		REACTOME	0.76953906	0.7667614	1
REACTOME_ARMS_MEDIATED_ACTIVATION		REACTOME	0.83430797	0.844075	1
REACTOME_PTM_GAMMA_CARBOXYLATION_HYPUSINEFORMATION_ANDARYLSULFATASEACTIVATION		REACTOME	0.84166664	0.8691274	1
REACTOME_INFLAMMASOMES		REACTOME	0.8441815	0.81469715	1
REACTOME_PROTEOLYTIC_CLEAVAGE_OF_SNARE_COMPLEX_PROTEINS		REACTOME	0.87866926	0.8793891	1
REACTOME_ACTIVATED_NOTCH1_TRANSMITS_SIGNAL_TO_THE_NUCLEUS		REACTOME	0.88293654	0.8689792	1
REACTOME_BOTULINUM_NEUROTOXICITY		REACTOME	0.9001957	0.8991205	1
REACTOME_ACRYL_CHAIN_REMODELLING_OF_PI		REACTOME	0.91549295	0.8765289	1
REACTOME_CGMP_EFFECTS		REACTOME	0.92345125	0.8787303	1
REACTOME_NITRIC_OXIDE_STIMULATES_GUANYLATE_CYCLASE		REACTOME	0.92421055	0.8652372	1
REACTOME_RIP_MEDIATED_NFKB_ACTIVATION_VIA_DAI		REACTOME	0.9631902	0.976541	1
Table S3. All the gene sets enriched in FAC cells at D14 of culture compared with D1 hepatocytes (assessed by GSEA)

NAME	Data base	NOM p-val	FDR q-val	FWER p-val
HALLMARK_GLYCOLYSIS	HALLMARK	0	0.7723993	0.31
HALLMARK_MITOTIC_SPINDLE	HALLMARK	0	0.40886086	0.325
HALLMARK_ESTROGEN_RESPONSE_LATE	HALLMARK	0	0.28703052	0.337
HALLMARK_ESTROGEN_RESPONSE_EARLY	HALLMARK	0	0.30188328	0.513
HALLMARK_APICAL_JUNCTION	HALLMARK	0.00204918	0.22587866	0.345
HALLMARK_G2M_CHECKPOINT	HALLMARK	0.002079002	0.198052	0.365
HALLMARK_MYOGENESIS	HALLMARK	0.014738842	0.24096768	0.523
HALLMARK_E2F_TARGETS	HALLMARK	0.015067796	0.26477665	0.516
HALLMARK_SPERMATOGENESIS	HALLMARK	0.0360617	0.2996657	0.68
HALLMARK_PS1_PATHWAY	HALLMARK	0.05201254	0.27523178	0.7
HALLMARK_WNT_BETA_CATENIN_SIGNALING	HALLMARK	0.05555556	0.2485178	0.715
HALLMARK_APOPTOSIS	HALLMARK	0.058467742	0.25779	0.713
HALLMARK_APICAL_SURFACE	HALLMARK	0.071428575	0.3019745	0.67
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	HALLMARK	0.07707911	0.21365157	0.552
HALLMARK_IL2_STATS_SIGNALING	HALLMARK	0.10865191	0.2975242	0.74
HALLMARK_PROTEIN_SECRETION	HALLMARK	0.11287129	0.21933454	0.531
HALLMARK_MTORC1_SIGNALING	HALLMARK	0.17407657	0.26067865	0.703
HALLMARK_ADIGENESIS	HALLMARK	0.1501977	0.30644655	0.72
HALLMARK.REACTIVER_OXIGEN_SPECIES_PATHWAY	HALLMARK	0.21518987	0.27716193	0.747
HALLMARK_OXIDATIVE_PHOSPHORYLATION	HALLMARK	0.21676892	0.2929448	0.697
HALLMARK_HEME_METABOLISM	HALLMARK	0.22244489	0.3234865	0.824
HALLMARK.NOTCH_SIGNALING	HALLMARK	0.23565574	0.3538672	0.862
HALLMARK_UV_RESPONSE_DN	HALLMARK	0.23935091	0.33959162	0.817
HALLMARK_CHOLESTEROL_HOMEOSTASIS	HALLMARK	0.29155812	0.33648738	0.84
HALLMARK_HYPOXIA	HALLMARK	0.30184805	0.42339282	0.916
HALLMARK_ALLOGRAFT_REJECTION	HALLMARK	0.31411532	0.44160774	0.927
HALLMARK.PANCREAS_BETA.Cells	HALLMARK	0.32251522	0.37625432	0.887
HALLMARK_MYC_TARGETS_V1	HALLMARK	0.34253585	0.33057216	0.821
HALLMARK.ANGIOGENESIS	HALLMARK	0.3501048	0.3368286	0.835
HALLMARK.DNA_REPAIR	HALLMARK	0.38279507	0.38013265	0.867
HALLMARK_PEROXISOME	HALLMARK	0.3884462	0.42334442	0.918
HALLMARK.UNFOLDED_PROTEIN_RESPONSE	HALLMARK	0.43286574	0.44448406	0.927
HALLMARK.PI3K_AKT_MTOR_SIGNALING	HALLMARK	0.4871795	0.5088305	0.958
HALLMARK.FATTY.ACID_METABOLISM	HALLMARK	0.5149105	0.52106726	0.958
HALLMARK.HEDGEHOG_SIGNALING	HALLMARK	0.53166986	0.524049	0.963
HALLMARK.KRAS_SIGNALING_UP	HALLMARK	0.5697446	0.5549849	0.97
HALLMARK.ANDROGEN(Response	HALLMARK	0.614	0.50705363	0.973
HALLMARK.MYC_TARGETS_V2	HALLMARK	0.6204082	0.7148062	0.989
HALLMARK.INTERFERON_ALPHA_RESPONSE	HALLMARK	0.64908725	0.57167804	0.974
KEGG_CELL_CYCLE	KEGG	0	0	0
KEGG_LYSOSOME	KEGG	0	0	0
Pathway	Database	Count1	Count2	
--	----------	--------	--------	
KEGG_OOCYTE_MEIOSIS	KEGG	0	0	
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	KEGG	0	0	
KEGG_DNA_REPLICATION	KEGG	0	0	
KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION	KEGG	0	0	
KEGG_GLUTATHIONE_METABOLISM	KEGG	0	0	
KEGG_NUCLEOTIDE_EXCISION_REPAIR	KEGG	0	0	
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON	KEGG	0	0	
KEGG_FOCAL_ADHESION	KEGG	0	0	
KEGG_ECM_RECEPTOR_INTERACTION	KEGG	0	0	
KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM	KEGG	0	0	
KEGG_SMALL_CELL_LUNG_CANCER	KEGG	0	0	
KEGG_BASE_EXCISION_REPAIR	KEGG	0	0	
KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION	KEGG	0	0	
KEGG_PS3_SIGNALING_PATHWAY	KEGG	0	0	
KEGG_VIBRIO_CHOLERA_INFECTION	KEGG	0	0	
KEGG_ADHERENS_JUNCTION	KEGG	0	0	
KEGG_MISMATCH_REPAIR	KEGG	0	0	
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS	KEGG	0	0	
KEGG_N_GLYCAN_BIOSYNTHESIS	KEGG	0	0	
KEGG_OTHER_GLYCAN_DEGRADATION	KEGG	0	0	
KEGG_PURINE_METABOLISM	KEGG	0	0	
KEGG_Axon_GUIDANCE	KEGG	0	0	
KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM	KEGG	0	0	
KEGG_RIBOSOME	KEGG	0	0	
KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS	KEGG	0	6.62E-05	0.001
KEGG_O_GLYCAN_BIOSYNTHESIS	KEGG	0	6.38E-05	0.001
KEGG_HOMOLOGOUS_RECOMBINATION	KEGG	0	6.16E-05	0.001
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	KEGG	0	1.69E-04	0.003
KEGG_GLYCOSAMINOGLYCAN_DEGRADATION	KEGG	0	1.64E-04	0.003
KEGG_GAP_JUNCTION	KEGG	0	2.62E-04	0.005
KEGG_ENDOCYTOSIS	KEGG	0	3.14E-04	0.006
KEGG_TIGHT_JUNCTION	KEGG	0	4.50E-04	0.009
KEGG_APOPTOSIS	KEGG	0	4.37E-04	0.009
KEGG_INOSITOL_PHOSPHATE_METABOLISM	KEGG	0	4.25E-04	0.009
KEGG_PANCREATIC_CANCER	KEGG	0	5.03E-04	0.011
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS	KEGG	0	5.34E-04	0.012
KEGG_COLORECTAL_CANCER	KEGG	0	9.53E-04	0.022
KEGG_DILATED/Cardiomyopathy	KEGG	0	0.001618864	0.038
KEGG_INSULIN_SIGNALING_PATHWAY	KEGG	0	0.001986736	0.046
KEGG_PATHWAYS_IN_CANCER	KEGG	0	0.003456226	0.084
KEGG_PYRIMIDINE_METABOLISM	KEGG	0	0.004266664	0.106
KEGG_ENDOMETRIAL_CANCER	KEGG	0	0.004352812	0.111
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION	KEGG	0	0.004411798	0.114
Pathway Description	Database	P-value	Adjusted P-value	
---	----------	---------------	-----------------	
KEGG_CHRONIC_MYELOID_LEUKEMIA	KEGG	0.007003753	0.178	
KEGG_WNT_SIGNALING_PATHWAY	KEGG	0.01072876	0.271	
KEGG_GLIOMA	KEGG	0.010621405	0.274	
KEGG_MELANOCYTOMA	KEGG	0.01156208	0.435	
KEGG_ALZHEIMERS_DISEASE	KEGG	0.012936451	0.347	
KEGG_HUNTINGTONS_DISEASE	KEGG	0.015376451	0.347	
KEGG_CALCIUM_SIGNALING_PATHWAY	KEGG	0.01631627	0.47	
KEGG_CHEMOKINE_SIGNALING_PATHWAY	KEGG	0.019824699	0.576	
KEGG_MAPK_SIGNALING_PATHWAY	KEGG	0.02155172	0.984	
KEGG_PROSTATE_CANCER	KEGG	0.02197802	0.426	
KEGG_STARCH_AND_SUCROSE_METABOLISM	KEGG	0.02222222	0.41	
KEGG_GNRH_SIGNALING_PATHWAY	KEGG	0.02222222	0.488	
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC	KEGG	0.022415459	0.451	
KEGG_GALACTOSE_METABOLISM	KEGG	0.02288329	0.076	
KEGG_ERBB_SIGNALING_PATHWAY	KEGG	0.02288329	0.446	
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY	KEGG	0.02298851	0.407	
KEGG_LYSINE_DEGRADATION	KEGG	0.02358491	0.242	
KEGG_LONG_TERM_POTENTIATION	KEGG	0.02415459	0.451	
KEGG_AMYOTROPHIC_LATERAL_SCLEROSIS_ALS	KEGG	0.04045286	0.255	
KEGG_NON_SMALL_CELL_LUNG_CANCER	KEGG	0.04474273	0.268	
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM	KEGG	0.04545454	0.364	
KEGG_VALINE_LEUCINE_AND_ISOULEUCINE_DEGRADATION	KEGG	0.04739337	0.518	
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES	KEGG	0.04938272	0.137	
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION	KEGG	0.08656009	0.869	
KEGG_SPHINGOLIPID_METABOLISM	KEGG	0.08888889	0.346	
KEGG_GLYCOSAMINOLYSLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE	KEGG	0.09049774	0.41	
KEGG_THYROID_CANCER	KEGG	0.09292959	0.355	
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION	KEGG	0.01138952	0.658	
KEGG_ABC_TRANSPORTERS	KEGG	0.01165501	0.362	
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES	KEGG	0.01196173	0.487	
KEGG_MOTOR_SIGNALING_PATHWAY	KEGG	0.013636364	0.685	
KEGG_GLYCOSAMINOLYSLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE	KEGG	0.014018591	0.536	
KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS	KEGG	0.014319809	0.542	
KEGG_MELANOMA	KEGG	0.017278617	0.797	
KEGG_NOTCH_SIGNALING_PATHWAY	KEGG	0.01818181	0.716	
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HC	KEGG	0.018518519	0.937	
KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450	KEGG	0.019607844	0.922	
KEGG_GLYCEROLIPID_METABOLISM	KEGG	0.021413276	0.768	
KEGG_BLADDER_CANCER	KEGG	0.025462963	0.949	
KEGG_ETHER_LIPID_METABOLISM	KEGG	0.02764977	0.726	
KEGG_SELENOAMINO_ACID_METABOLISM	KEGG	0.027713627	0.61	
KEGGPROPANOATE_METABOLISM	KEGG	0.032397408	0.857	
KEGG_PYRUVATE_METABOLISM	KEGG	0.038297873	0.893	
Pathway/Module	Database	Score_1	Score_2	Score_3
---------------	----------	---------	---------	---------
KEGG RNA POLYMERASE	KEGG	0.70509976	0.7758138	1
KEGG SNARE INTERACTIONS IN VESICULAR TRANSPORT	KEGG	0.73660713	0.73980784	1
KEGG PROTEASOME	KEGG	0.77412283	0.78505254	1
REACTOME THE ROLE OF NEF IN HIV1 REPLICATION AND DISEASE PATHOGENESIS	REACTOME	0	1	0.268
REACTOME O_LINKED GLYCOSYLATION OF MUCINS	REACTOME	0	0.8851604	0.66
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	REACTOME	0	0.60931796	0.669
REACTOME MHC CLASS II ANTIGEN PRESENTATION	REACTOME	0	0.37284474	0.683
REACTOME SIGNALING BY RHO GTPASES	REACTOME	0	0.52456874	0.698
REACTOME NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	REACTOME	0	0.83120763	0.511
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME L1CAM INTERACTIONS	REACTOME	0	0.7801215	0.618
REACTOME AXON GUIDANCE	REACTOME	0	0.695976	0.618
REACTOME SEMAPHORIN INTERACTIONS	REACTOME	0	0.65015167	0.624
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	REACTOME	0	0.60931796	0.669
REACTOME MHC CLASS II ANTIGEN PRESENTATION	REACTOME	0	0.37284474	0.683
REACTOME SIGNALING BY RHO GTPASES	REACTOME	0	0.52456874	0.698
REACTOME NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	REACTOME	0	0.83120763	0.511
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME L1CAM INTERACTIONS	REACTOME	0	0.7801215	0.618
REACTOME AXON GUIDANCE	REACTOME	0	0.695976	0.618
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME THE ROLE OF NEF IN HIV1 REPLICATION AND DISEASE PATHOGENESIS	REACTOME	0	1	0.268
REACTOME O_LINKED GLYCOSYLATION OF MUCINS	REACTOME	0	0.8851604	0.66
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	REACTOME	0	0.60931796	0.669
REACTOME MHC CLASS II ANTIGEN PRESENTATION	REACTOME	0	0.37284474	0.683
REACTOME SIGNALING BY RHO GTPASES	REACTOME	0	0.52456874	0.698
REACTOME NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	REACTOME	0	0.83120763	0.511
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME L1CAM INTERACTIONS	REACTOME	0	0.7801215	0.618
REACTOME AXON GUIDANCE	REACTOME	0	0.695976	0.618
REACTOME SEMAPHORIN INTERACTIONS	REACTOME	0	0.65015167	0.624
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	REACTOME	0	0.60931796	0.669
REACTOME MHC CLASS II ANTIGEN PRESENTATION	REACTOME	0	0.37284474	0.683
REACTOME SIGNALING BY RHO GTPASES	REACTOME	0	0.52456874	0.698
REACTOME NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	REACTOME	0	0.83120763	0.511
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME L1CAM INTERACTIONS	REACTOME	0	0.7801215	0.618
REACTOME AXON GUIDANCE	REACTOME	0	0.695976	0.618
REACTOME SEMAPHORIN INTERACTIONS	REACTOME	0	0.65015167	0.624
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	REACTOME	0	0.60931796	0.669
REACTOME MHC CLASS II ANTIGEN PRESENTATION	REACTOME	0	0.37284474	0.683
REACTOME SIGNALING BY RHO GTPASES	REACTOME	0	0.52456874	0.698
REACTOME NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	REACTOME	0	0.83120763	0.511
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME L1CAM INTERACTIONS	REACTOME	0	0.7801215	0.618
REACTOME AXON GUIDANCE	REACTOME	0	0.695976	0.618
REACTOME SEMAPHORIN INTERACTIONS	REACTOME	0	0.65015167	0.624
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	REACTOME	0	0.60931796	0.669
REACTOME MHC CLASS II ANTIGEN PRESENTATION	REACTOME	0	0.37284474	0.683
REACTOME SIGNALING BY RHO GTPASES	REACTOME	0	0.52456874	0.698
REACTOME NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	REACTOME	0	0.83120763	0.511
REACTOME TRAFFICKING OF AMPA RECEPTORS	REACTOME	0	0.8279305	0.603
REACTOME L1CAM INTERACTIONS	REACTOME	0	0.7801215	0.618
REACTOME AXON GUIDANCE	REACTOME	0	0.695976	0.618
REACTOME SEMAPHORIN INTERACTIONS	REACTOME	0	0.65015167	0.624
Pathway Description	Reactome ID 1	Reactome ID 2	Reactome ID 3	
--	--------------	--------------	--------------	
REACTOME_SEMA4D_IN_SEMAPHORIN_SIGNALING	0.019607844	0.59871024	0.866	
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE	0.01992032	0.6503028	0.903	
REACTOME_SHC1_EVENTS_IN_ERBB4_SIGNALING	0.02061856	0.5858371	0.875	
REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES	0.02173913	0.4493058	0.934	
REACTOME_GABA RECEPTOR ACTIVATION	0.022636916	0.49423516	0.899	
REACTOME_SIGNALING_BY_ERBB2	0.022739726	0.4366992	0.913	
REACTOME_NG_F_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMBRANE	0.0227613413	0.40752572	0.929	
REACTOME_CELL_CELL_COMMUNICATION	0.022794112	0.38178933	0.941	
REACTOME_CELL_CYCLE_MITOTIC	0.0228571429	0.44978172	0.904	
REACTOME_CREB_PHOSPHORYLATION_THROUGH_THE_ACTIVATION_OF_CAMKII	0.022886598	0.42404675	0.921	
REACTOME_PYRUVATE_METABOLISM	0.03	0.4274575	0.97	
REACTOME_CHONDROITIN_SULFATE_BIOSYNTHESIS	0.03105901	0.51261544	0.89	
REACTOME_GRB2_EVENTS_IN_ERBB2_SIGNALING	0.031325	0.39212142	0.968	
REACTOME_BIOSYNTHESIS_OF_THE_N_GLYCAN_PRECURSOR_DOLICHOL_LIPID_LINKED_OGOSACCHARIDE_LLO_AND_TRANSFER_TO_A_NASCENT_PROTEIN	0.03187251	0.46996012	0.9	
REACTOME_DAG_AND_IP3_SIGNALING	0.032	0.40043262	0.957	
REACTOME_HEMOSTASIS	0.0324536	0.37782547	0.973	
REACTOME_AQUAPONIN_MEDIATED_TRANSPORT	0.034	0.38116404	0.97	
REACTOME_SIGNALING_BY_EGFR_IN_CANCER	0.034345386	0.4588665	0.903	
REACTOME_GLYCOSAMINOLYCAN_METABOLISM	0.035051547	0.39384407	0.903	
REACTOME_REGULATION_OF_INSULIN_SECRETION	0.03526971	0.38474652	0.97	
REACTOME_MITOTIC_G2_G2_M_PHASES	0.035785288	0.40478413	0.93	
REACTOME_EGFR_DOWNREGULATION	0.036	0.3924705	0.979	
REACTOME_CHONDROITIN_SULFATE_DERMATAN_SULFATE_METABOLISM	0.0375829	0.38335457	0.97	
REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGONLIKE_PEPTIDE1	0.0375829	0.38335457	0.97	
REACTOME_SIGNALLING_TO_RAS	0.04016064	0.3933041	0.961	
REACTOME_TRAFFICKING_OF_GLUR2_CONTAINING_AMPA_RECEPTORS	0.04106776	0.39186966	0.96	
REACTOME_GABA_B RECEPTOR_ACTIVATION	0.04158004	0.525541	0.779	
REACTOME_HS_GAG_DEGRADATION	0.041841004	0.43135157	0.908	
REACTOME_DEPOSITION_OF_NEW_CENPA_CONTAINING_NUCLEOSOMES_AT_THE_CENTROMERE	0.043809526	0.54476666	0.777	
REACTOME_KERATAN_SULFATE_KERATIN_METABOLISM	0.043912176	0.38281733	0.961	
REACTOME_RECRUITMENT_OF_MITOTIC_CENTROSOME_PROTEINS_AND_COMPLEXES	0.044265594	0.38321716	0.938	
REACTOME_NIRAGE_SIGNALS DEATH THROUGH INK	0.044444446	0.39475164	0.96	
REACTOME_ASPARAGINE_N_LINKED_GLYCOSYLATION	0.04509804	0.55457187	0.875	
REACTOME_MEIOSIS	0.0455408	0.5207542	0.731	
REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROSONES	0.047808766	0.37895462	0.938	
REACTOME_DNA_REPLICATION	0.04828974	0.6039341	0.871	
REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE	0.05	0.3994328	0.955	
REACTOME_INSULIN_SYNTHESIS_AND_PROCESSING	0.050560726	0.382607	0.97	
REACTOME_RECYCLING_PATHWAY_OF_L1	0.05078125	0.3771852	0.941	
REACTOME_BASIGIN_INTERACTIONS	0.051181104	0.3962499	0.968	
Process	Reactome Score	Coordination Score	Significance Score	
--	----------------	-------------------	--------------------	
REACTOME_LAGGING_STRAND_SYNTHESIS	0.24346076	0.40332192	1	
REACTOME_GABA_SYNTHESIS_RELEASE_REUPTAKE_AND_DEGRADATION	0.24842106	0.42833132	1	
REACTOME_FANCONI_ANEMIA_PATHWAY	0.25	0.38749287	0.985	
REACTOME_NEGATIVE_REGULATION_OF_FGFR_SIGNALING	0.25	0.4854644	1	
REACTOME_TRNA_AMINOACYLATION	0.25146198	0.38943264	0.979	
REACTOME_SHC_related_events	0.25646123	0.4135579	1	
REACTOME_PREFOLDIN_MEDIATED_TRANSFER_OF_SUBSTRATE_TO_CCT_TRIC	0.2581262	0.4102672	1	
REACTOME_GAP_JUNCTION_TRAFFICKING	0.2653846	0.47247592	1	
REACTOME_NITRIC_OXIDE_STIMULATES_GUANANYLATE_CYCLASE	0.26652893	0.4410526	0.99	
REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI	0.26706827	0.3986297	0.994	
REACTOME_NUCLEOTIDE_EXCISION_REPAIR	0.26907632	0.40049168	0.99	
REACTOME_CRC1_REMOVAL_FROM_CHROMATIN	0.26984128	0.40019473	0.985	
REACTOME_ACTIVATED_TLR4_SIGNALLING	0.2706334	0.49710628	1	
REACTOME_GASTRIN_CREB_SIGNALLING_PATHWAY_VIA_PKC_AND_MAPK	0.27663934	0.4977732	1	
REACTOME_PI3K CASCADE	0.2776699	0.4985311	1	
REACTOME_DOWNSTREAM_SIGNAL_TRANSDUCTION	0.2782101	0.4134006	1	
REACTOME_CGMP_EFFECTS	0.27920792	0.47571832	1	
REACTOME_ADP_SIGNALLING_THROUGH_P2RY1	0.27935222	0.48178342	1	
REACTOME_SHC1_EVENTS_IN_EGFR_SIGNALING	0.29056603	0.4189004	1	
REACTOME_GPP_LI_MEDIATED_ACTIVATIONCASCADE	0.29577464	0.4727983	1	
REACTOME_INSULIN_RECEPTOR_RECYCLING	0.29745597	0.43639275	1	
REACTOME_SIGNALING_BY_ERBB4	0.29865125	0.4856835	1	
REACTOME_APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_APC_C_CDH1_TARGETED_PROTEINS_IN_LATE_MITOSIS_EARLY_G1	0.30214426	0.40860397	1	
REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF/MITOTIC_PROTEINS	0.30254404	0.39817518	0.996	
REACTOME_INWARDLY_RECTIFYING_K_CHANNELS	0.30406854	0.482639	1	
REACTOME_NUCLEOTIDE_LIKE_PURINERGIC_RECEPTORS	0.30722892	0.47393579	1	
REACTOME_INSULIN_RECEPTOR_SIGNALING.CASCADE	0.30753967	0.46407533	1	
REACTOME_PROTEIN_FOLDING	0.31060606	0.43639275	1	
REACTOME_G_BETA_GAMMA_SIGNALLING_THROUGH_PI3KGAMMA	0.31111112	0.49730146	1	
REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS	0.3148515	0.40537477	1	
REACTOME_INTRINSIC_PATHWAY_FOR_APOPTOSIS	0.3158816	0.44312698	1	
REACTOME_ANTIGEN_ACTIVATES_B_CELL_RECEPTOR_LEADING_TO_GENERATION_OF_SECOND_MESSENGERS	0.32046333	0.49720708	1	
REACTOME_RNA_POL_1_RNA_POL_III_AND/MITOCHONDRIAL_TRANSCRIPTION	0.32086614	0.43049237	1	
REACTOME_SIGNALING_BY_NOTCH	0.32301742	0.43580106	1	
REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS	0.33003953	0.4833378	1	
REACTOME_MRNA_CAPING	0.33139536	0.4147052	1	
REACTOME_YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EXPRESSION	0.33398438	0.47356662	1	
REACTOME_M_G1_TRANSITION	0.33737373	0.4092618	1	
REACTOME_TRANSCRIPTION_COUPLED_NER_TC_NER	0.33794466	0.4164459	1	
REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION	0.34	0.43001503	1	
REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT	0.34502923	0.5472944	1	
REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION	0.34791252	0.48294798	1	
REACTOME_NCAM1_INTERACTIONS	0.34989202	0.47750407	1	
Pathway Description	REACTOME Accession	Coordinates	Score	
---------------------	--------------------	-------------	-------	
TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM	REACTOME 0.5813492 0.6646683	1		
CYTOKINE SIGNALING IN IMMUNE SYSTEM	REACTOME 0.5872093 0.67201287	1		
RNA POL II TRANSCRIPTION_PRE_INITIATION_AND_PROMOTER_OPENING	REACTOME 0.5886994 0.8691565	1		
MITOCHONDRIAL PROTEIN IMPORT	REACTOME 0.59607846 0.7107834	1		
ASSOCIATION OF TRIC_CCT_WITH_TARGET_PROTEINS_DURING_BIOSYNTHESIS	REACTOME 0.5961165 0.6617224	1		
ER PHAGOSOME PATHWAY	REACTOME 0.6034155 0.6719121	1		
FORMATION OF TRANSCRIPTION_COUPLED_NER_TCR_REPAIR_COMPLEX	REACTOME 0.6046065 0.6967116	1		
MICRORNA_MIRNA_BIogenesis	REACTOME 0.6130952 0.68457764	1		
SIGNALING BY THE B CELL RECEPTOR BCR	REACTOME 0.6156788 0.69850504	1		
IRON UPTAKE AND TRANSPORT	REACTOME 0.6156863 0.707968	1		
AUTODEGRADATION_OF_CDH1_BY_CDH1_APC_C	REACTOME 0.6171875 0.6973698	1		
REGULATION OF ORNITHINE_DECARBOXYLASE_ODC	REACTOME 0.61742425 0.6985509	1		
ACYL_CHAIN_REMOELLING_OF_PG	REACTOME 0.6184739 0.69997597	1		
URINARY_TRANSPORT	REACTOME 0.6315789 0.7265882	1		
TRANSPORT_OF_VITAMINS_NUCLEOSIDES_ANDRELATED_MOLECULES	REACTOME 0.6340509 0.7086435	1		
SYNTHESIS_OF_PIPS_AT_THE_GOLGI_MEMBRANE	REACTOME 0.6400778 0.67692393	1		
MRNA_PROCESSING	REACTOME 0.6468484 0.7357486	1		
GLYCOLYSIS	REACTOME 0.6527197 0.6941115	1		
IL_3_5_AND_GM-CSF_SIGNALING	REACTOME 0.6673257 0.7125085	1		
NUCLEAR_SIGNALING_BY_ERBB4	REACTOME 0.6727273 0.709619	1		
ACTIVATED_TAK1_MEDIATES_P38_MAPK_ACTIVATION	REACTOME 0.6742857 0.70873433	1		
CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_ENDOSOMES	REACTOME 0.6789834 0.8289077	1		
SIGNALING_BY_HIPPO	REACTOME 0.68241966 0.7471256	1		
METABOLISM_OF_RNA	REACTOME 0.6829746 0.80239934	1		
PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA	REACTOME 0.6843137 0.7932807	1		
VIF_MEDIATED_DEGRADATION_OF_APOBEC3G	REACTOME 0.6853282 0.7415259	1		
ANTIGEN_PROCESSING.Cross_PRESENTATION	REACTOME 0.68798447 0.76797783	1		
AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1	REACTOME 0.6880045 0.77595633	1		
CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6	REACTOME 0.6893204 0.74198365	1		
TRANSCRIPTIONAL_REGULATION_OF.WHITE ADIPOCYTE_DIFFERENTIATION	REACTOME 0.6923077 0.71260464	1		
LATE_PHASE_OF_HIV_LIFE_CYCLE	REACTOME 0.6968504 0.80989	1		
ANTIGEN_PRESENTATION.FOLDING.AsSEMBLY_AND.PEPTIDE_LOADING_OF_CLASS_I_MHC	REACTOME 0.6978131 0.8019022	1		
RAPI_SIGNALLING	REACTOME 0.7 0.7130784	1		
RNA_PROCESSING	REACTOME 0.7029703 0.8734247	1		
METAL_ION_SLC_TRANSPORTERS	REACTOME 0.703125 0.765433	1		
STRIATED_MUSCLE_CONTRACTION	REACTOME 0.71456313 0.7100167	1		
ABORTIVE_ELONGATION_OF_HIV1_TRANSCRIPT_IN_ABSENCE_OF_TAT	REACTOME 0.71734893 0.7773761	1		
GAP_JUNCTION_ASSEMBLY	REACTOME 0.72745097 0.73580307	1		
METABOLISM_OF_MRNA	REACTOME 0.729249 0.82917347	1		
OXYGEN_DEPENDENT_PROLINE_HYDROXYLATION_OF_HYPOXIA_INDUCEBLE_FACTOR_ALPHA	REACTOME 0.7305503 0.7757375	1		
REGULATION_OF_IFNA_SIGNALING	REACTOME 0.73735886 0.7694927	1		
BOTULINUM_NEUROTOXICITY	REACTOME 0.74224806 0.729335	1		
METABOLISM_OF_VITAMINS_AND_COFACTORS	REACTOME 0.74552685 0.7653011	1		
Reactome Pathway	REACTOME Score	Frequency	ID	
---	----------------	-----------	----	
REACTOME_TIE2_SIGNALING	0.749499	1		
REACTOME_RNA_POL_I_TRANSCRIPTION_INITIATION	0.756	1		
REACTOME_SIGNALING_BY_WNT	0.756705	1		
REACTOME_G_ALPHA_S_SIGNALLING_EVENTS	0.7684263	1		
REACTOME_CIRCADIAN_REPRESSION_OF_EXPRESSION_BY_REV_ERBA	0.7684825	1		
REACTOME_RNA_POL_III_TRANSCRIPTION_TERMINATION	0.7806324	1		
REACTOME_DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR	0.7855787	1		
REACTOME_CTNNB1_PHOSPHORYLATION_CASCADE	0.786	1		
REACTOME_RORA_ACTIVATES_CIRCADIAN_EXPRESSION	0.7891683	1		
REACTOME_AMINO_ACID_AND_Oligopeptide_SLC_TRANSPORTERS	0.7899628	1		
REACTOME_POTASSIUM_CHANNELS	0.7919192	1		
REACTOME_DOWNREGULATION_OF_TGF_BETA_RECEPTOR_SIGNALING	0.8019162	1		
REACTOMEdeauxylation_DEPENDENT_MRNA_DECAY	0.81349206	1		
REACTOME_SIGNALING_BY_FGFR1_FUSION_MUTANTS	0.85048544	1		
REACTOME_PYRIMIDINE_METABOLISM	0.86570245	1		
REACTOME_SIGNALING_BY_CONSTITUTIVELY_ACTIVE_EGFR	0.8700565	1		
REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0	0.88235295	1		
REACTOME_AMINE_COMPOUND_SLC_TRANSPORTERS	0.89641434	1		
REACTOME_SIGNALING_BY_FGFR1_MUTANTS	0.9040307	1		
REACTOME_ACETYLCOLINE_BINDING_AND_DOWNSTREAM_EVENTS	0.9099617	1		
REACTOME_REGULATION_OF_SIGNALING_BY_CBL	0.94140625	1		
REACTOME_FGFR_LIGAND_BINDING_AND_ACTIVATION	0.94255316	1		
REACTOME_TRAF6_MEDIATED_NFKB_ACTIVATION	0.96007985	1		
REACTOME_SHC_MEDIATED_CASCADE	0.97131145	1		
REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATION_FROM_TYPE_2_PROMOTER	0.9802371	1		
REACTOME_SIGNALING_BY_FGFR_MUTANTS	0.98035365	1		
Table S4. All the gene sets enriched in FBS cells at D14 of culture compared with D1 hepatocytes (assessed by GSEA)

NAME	Data base	NOM p-val	FDR q-val	FWER p-val	
HALLMARK_MYOGENESIS	HALLMARK	0	0.14730352	0.079	
HALLMARK_APICAL_SURFACE	HALLMARK	0	0.09853713	0.105	
HALLMARK_APICAL_JUNCTION	HALLMARK	0	0.07615069	0.113	
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	HALLMARK	0.001972387	0.08726127	0.157	
HALLMARK_GLYCOLYSIS	HALLMARK	0.00203252	0.16894755	0.293	
HALLMARK_APOPTOSIS	HALLMARK	0.004282655	0.16553766	0.45	
HALLMARK_ESTROGEN_RESPONSE_EARLY	HALLMARK	0.007984032	0.23145741	0.667	
HALLMARK_WNT_BETA_CATENIN_SIGNALING	HALLMARK	0.021052632	0.14467469	0.34	
HALLMARK_SPERMATOGENESIS	HALLMARK	0.025263159	0.1641514	0.455	
HALLMARK_VU_RESPONSE_DN	HALLMARK	0.020449897	0.14861557	0.473	
HALLMARK_TGF_BETA_SIGNALING	HALLMARK	0.004329004	0.14200172	0.376	
HALLMARK_NOTCH_SIGNALING	HALLMARK	0.00856531	0.2221453	0.62	
HALLMARK_MITOTIC_SPINDLE	HALLMARK	0.005948104	0.16412668	0.333	
HALLMARK_P53_PATHWAY	HALLMARK	0.03164557	0.21310273	0.739	
HALLMARK_IL2_STATS_SIGNALING	HALLMARK	0.038291873	0.24038444	0.66	
HALLMARKHEME_METABOLISM	HALLMARK	0.049568966	0.2288018	0.694	
HALLMARK_ESTROGEN_RESPONSE_LATE	HALLMARK	0.081196584	0.22756888	0.704	
HALLMARK_HYPOXIA	HALLMARK	0.102970295	0.22310638	0.726	
HALLMARK_G2M_CHECKPOINT	HALLMARK	0.11264822	0.18801047	0.562	
HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY	HALLMARK	0.13598326	0.27202892	0.82	
HALLMARK_ANGIogenesis	HALLMARK	0.14092666	0.21681286	0.705	
HALLMARK_HEDGEHOG_SIGNALING	HALLMARK	0.1431624	0.29210445	0.819	
HALLMARK_PROTEIN_SECRETION	HALLMARK	0.15	0.22699594	0.68	
HALLMARK_ANDROGEN_RESPONSE	HALLMARK	0.16458334	0.2814426	0.819	
HALLMARK_ALLOGRAFT_REJECTION	HALLMARK	0.20930232	0.37116182	0.906	
HALLMARK_E2F_TARGETS	HALLMARK	0.21825397	0.21651524	0.731	
HALLMARK_KRAS_SIGNALING_UP	HALLMARK	0.25240847	0.3832338	0.905	
HALLMARK_ADIPGENESIS	HALLMARK	0.25518674	0.3352233	0.883	
HALLMARK_MTORC1_SIGNALING	HALLMARK	0.36325678	0.4023514	0.92	
HALLMARK_PANCREAS_BETA.Cells	HALLMARK	0.37281552	0.4749836	0.954	
HALLMARK_CHOLESTEROL_HOMEOBSTASIS	HALLMARK	0.42008197	0.5189852	0.968	
HALLMARK_INFLAMMATORY_RESPONSE	HALLMARK	0.4731801	0.50717777	0.969	
HALLMARK_DNA_REPAIR	HALLMARK	0.5020747	0.512673	0.966	
HALLMARK_UNFOLDED_PROTEIN_RESPONSE	HALLMARK	0.5177453	0.52676517	0.982	
HALLMARK_COMPLEMENT	HALLMARK	0.5242915	0.5216831	0.981	
HALLMARK_PEROXISOME	HALLMARK	0.6866667	0.6795607	0.996	
HALLMARK_PI3K_AKT_MTOR_SIGNALING	HALLMARK	0.68937874	0.71274674	0.996	
HALLMARK_KRAS_SIGNALING_DN	HALLMARK	0.6973415	0.69501626	0.996	
HALLMARK_OXIDATIVE_PHOSPHORYLATION	HALLMARK	0.74012476	0.8970353	1	
HALLMARK_MYC_TARGETS_V1	HALLMARK	0.77272725	0.9044862	1	
KEGG_DILATED_CARDIOMYOPATHY	KEGG	0	0.25345153	0.119	
Pathway	Source	Score1	Score2		
--	--------	--------	--------		
KEGG_ECM_RECEPTOR_INTERACTION	KEGG	0.1343	0.126		
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC	KEGG	0.2761	0.297		
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM	KEGG	0.2146	0.307		
KEGG_AXON_GUIDANCE	KEGG	0.1842	0.324		
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON	KEGG	0.2059	0.417		
KEGG_FOCAL_ADHESION	KEGG	0.1871	0.424		
KEGG_P53_SIGNALING_PATHWAY	KEGG	0.1879	0.487		
KEGG_TIGHT_JUNCTION	KEGG	0.1812	0.506		
KEGG_VIBrio_CHOLEREA_INFECTION	KEGG	0.1703	0.545		
KEGG_GAP_JUNCTION	KEGG	0.1701	0.567		
KEGG_HEDGEHOG_SIGNALING_PATHWAY	KEGG	0.1635	0.573		
KEGG_SMALL_CELL_LUNG_CANCER	KEGG	0.2065	0.678		
KEGG_MELANOMENESIS	KEGG	0.1952	0.695		
KEGG_MAPK_SIGNALING_PATHWAY	KEGG	0.2002	0.731		
KEGG_PATHWAYS_IN_CANCER	KEGG	0.1943	0.731		
KEGG_GLYGOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE	KEGG	0.1855	0.753		
KEGG_AMYOTROPHIC_LATERAL_SCLEROSIS_ALS	KEGG	0.1811	0.757		
KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION	KEGG	0.1709	0.759		
KEGG_COLORECTAL_CANCER	KEGG	0.1743	0.774		
KEGG_WNT_SIGNALING_PATHWAY	KEGG	0.1710	0.786		
KEGG_LONG_TERM_POTENTIATION	KEGG	0.1739	0.804		
KEGG_GNRH_SIGNALING_PATHWAY	KEGG	0.1823	0.836		
KEGG_CALCIUM_SIGNALING_PATHWAY	KEGG	0.1543	0.575		
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION	KEGG	0.1635	0.601		
KEGG_ENDOCYTOSIS	KEGG	0.1957	0.752		
KEGG_OOCYTE_MEIOSIS	KEGG	0.1739	0.810		
KEGG_ADHERENS_JUNCTION	KEGG	0.1918	0.871		
KEGG_OGLYCAN_BIOSYNTHESIS	KEGG	0.1728	0.801		
KEGG_GLUTATHIONE_METABOLISM	KEGG	0.1728	0.801		
KEGG_ALZHEIMERS_DISEASE	KEGG	0.1720	0.518		
KEGG_GALACTOSE_METABOLISM	KEGG	0.1802	0.362		
KEGG_GLIOMA	KEGG	0.1887	0.871		
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOS	KEGG	0.1892	0.875		
KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM	KEGG	0.1756	0.757		
KEGG_CHEMOKINE_SIGNALING_PATHWAY	KEGG	0.1728	0.518		
KEGG_GLYCOAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE	KEGG	0.1912	0.881		
KEGG_TGF_BETA_SIGNALING_PATHWAY	KEGG	0.1919	0.871		
KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION	KEGG	0.2112	0.909		
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES	KEGG	0.1961	0.715		
KEGG_INOSITOL_PHOSPHATE_METABOLISM	KEGG	0.1913	0.863		
KEGG_BASAL_CELL_CARCINOMA	KEGG	0.1948	0.881		
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES	KEGG	0.1849	0.871		
Pathway	Database	P1	P2	P3	
--	----------	-----	-----	----	
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.31392932	0.4492608	0.997	
KEGG_SPHINGOLIPID_METABOLISM	KEGG	0.32639584	0.43888833	0.997	
KEGG_INSULIN_SIGNALING_PATHWAY	KEGG	0.33611690	0.36830994	0.993	
KEGG_PURINE_METABOLISM	KEGG	0.35714286	0.43267143	0.997	
KEGG_RIBOSOME	KEGG	0.35968378	0.44314380	0.997	
KEGG_HOMOLOGOUS_RECOMBINATION	KEGG	0.38844622	0.44224462	0.997	
KEGG_ABC_TRANSPORTERS	KEGG	0.40124740	0.5170816	1	
KEGG_PENTOSE_PHOSPHATE_PATHWAY	KEGG	0.40319362	0.49504974	0.997	
KEGG_N(GLYCANCE_BIOSYNTHESIS	KEGG	0.40740740	0.44094044	0.997	
KEGG_JAK_STAT_SIGNALING_PATHWAY	KEGG	0.41201717	0.51134840	1	
KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION	KEGG	0.41361455	0.53284806	1	
KEGG_NUCLEOTIDE_EXCISION_REPAIR	KEGG	0.41497976	0.4873057	0.997	
KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM	KEGG	0.42857143	0.50411834	1	
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	KEGG	0.42924712	0.44516996	0.997	
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	KEGG	0.43688583	0.43267143	0.997	
KEGG_MISMATCH_REPAIR	KEGG	0.44124740	0.5170816	1	
KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT	KEGG	0.45122449	0.50908051	1	
KEGG_DNA_REPLICATION	KEGG	0.51292247	0.50522876	1	
KEGG_TYPE_II_DIABETES_MELLITUS	KEGG	0.51572323	0.5533579	1	
KEGG_PYRUVATE_METABOLISM	KEGG	0.53578734	0.61797779	1	
KEGG_TASTE_TRANSDUCTION	KEGG	0.55360625	0.6010258	1	
KEGG_OXIDATIVE_PHOSPHORYLATION	KEGG	0.58350201	0.6651935	1	
KEGG_BASE_EXCISION_REPAIR	KEGG	0.58835353	0.63821277	1	
KEGG_RIG_I LIKE_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.60692465	0.6725721	1	
KEGG_STARCH_AND_SUCROSE_METABOLISM	KEGG	0.62075685	0.6724012	1	
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY	KEGG	0.63934433	0.6692971	1	
KEGG_PARKINSONS_DISEASE	KEGG	0.67139596	0.7328858	1	
KEGG_PRIMARY_IMMUNODEFICIENCY	KEGG	0.68714100	0.6653396	1	
KEGG_PYRIMIDINE_METABOLISM	KEGG	0.68951611	0.7514886	1	
KEGG_BASAL_TRANSCRIPTION_FACTORS	KEGG	0.70061111	0.8069129	1	
KEGG_TYPE_I_DIABETES_MELLITUS	KEGG	0.70119524	0.75544345	1	
KEGG_RNA_DEGRADATION	KEGG	0.73991936	0.82764167	1	
KEGG_CITRATE_CYCLE_TCA_CYCLE	KEGG	0.74645035	0.80769455	1	
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY	KEGG	0.78189374	0.7499555	1	
KEGG_STEROID_BIOSYNTHESIS	KEGG	0.79492190	0.8252448	1	
KEGG_SELENOAMINO_ACID_METABOLISM	KEGG	0.79878058	0.8032862	1	
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION	KEGG	0.83914727	0.787934	1	
REACTOME_THE_ROLE_OF_NEF_IN_HIV1_REPLICATION_AND_DISEASE_PATHOGENESIS	REACTOME	0	0.48078176	0.151	
REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH	REACTOME	0	0.4148518	0.226	
REACTOME_KERATAN_SULFATE_BIOSYNTHESIS	REACTOME	0	0.3341985	0.253	
REACTOME_NCAM1_INTERACTIONS	REACTOME	0	0.20037591	0.289	
REACTOME_NEF_MEDIATES_DOWN_MODULATION_OF_CELL_SURFACE_RECEPTORS_BY_RECRUITING_THEM_TO_CLATHRIN_ADAPTERS	REACTOME	0	0.17231195	0.289	
REACTOME_NEUROTRANSMITTER_RECEPTOR_BINDING_AND_DOWNSTREAM_TRANSMISSION_IN_THE_POSTSYNAPTIC_CELL	REACTOME	0	0.16374151	0.304	
Pathway	Reactome ID	X	Y	Width	Height
--	-------------	---	---	-------	--------
Reactome Axon Guidance	Reactome	0	0.17802835	0.337	
Reactome Transmission Across Chemical Synapses	Reactome	0	0.21958348	0.425	
Reactome Developmental Biology	Reactome	0	0.20178899	0.425	
Reactome O-Linked Glycosylation of Mucins	Reactome	0	0.19103965	0.428	
Reactome Activation of NMDA Receptor Upon Glutamate Binding and Postsynaptic Events	Reactome	0	0.20680486	0.464	
Reactome Glucosaminoglycan Metabolism	Reactome	0	0.21825135	0.503	
Reactome Integrin Cell Surface Interactions	Reactome	0	0.20611614	0.504	
Reactome Semaphorin Interactions	Reactome	0	0.21163976	0.525	
Reactome HS GAG Degradation	Reactome	0	0.18634602	0.528	
Reactome L1CAM Interactions	Reactome	0	0.19282745	0.542	
Reactome Post NMDA Receptor Activation Events	Reactome	0	0.20142873	0.564	
Reactome Heparan Sulfate Heparin HS GAG Metabolism	Reactome	0	0.19876066	0.574	
Reactome Muscle Contraction	Reactome	0	0.21252726	0.606	
Reactome A Tetrasaccharide Linker Sequence Is Required For GAG Synthesis	Reactome	0	0.22302278	0.63	
Reactome Chondroitin Sulfate Dermatan Sulfate Metabolism	Reactome	0	0.2411889	0.663	
Reactome Cell Death Signalling Via Nrig And Nade	Reactome	0	0.23381677	0.663	
Reactome ERK MAPK Targets	Reactome	0	0.22738229	0.699	
Reactome MHC Class II Antigen Presentation	Reactome	0	0.22801387	0.709	
Reactome Myogenesis	Reactome	0	0.22809654	0.714	
Reactome NRAGE Signals Death Through Ink	Reactome	0	0.24913042	0.741	
Reactome CREB Phosphorylation Through The Activation Of Ras	Reactome	0	0.24368389	0.752	
Reactome Chondroitin Sulfate Biosynthesis	Reactome	0	0.2452073	0.764	
Reactome Nuclear Events Kinase And Transcription Factor Activation	Reactome	0	0.24989551	0.767	
Reactome G Alpha Z Signalling Events	Reactome	0	0.24704373	0.767	
Reactome G1 Phase	Reactome	0	0.24179539	0.767	
Reactome Signaling By Rho GTPases	Reactome	0	0.2371991	0.768	
Reactome Factors Involved in Megakaryocyte Development And Platelet Production	Reactome	0	0.26111913	0.801	
Reactome Lysosome Vesicle Biogenesis	Reactome	0	0.27612013	0.834	
Reactome Signalling By NGF	Reactome	0	0.28725097	0.852	
Reactome Signal Transduction By L1	Reactome	0	0.275578	0.878	
Reactome Smooth Muscle Contraction	Reactome	0	0.30001768	0.889	
Reactome P7S NTR Receptor Mediated Signalling	Reactome	0	0.29895258	0.889	
Reactome PLC Beta Mediated Events	Reactome	0	0.30219775	0.897	
Reactome NGF Signalling Via Trka From The Plasma Membrane	Reactome	0	0.294335	0.9	
Reactome Kinesins	Reactome	0	0.29239932	0.9	
Reactome Regulation Of Insulin Secretion	Reactome	0.001915709	0.28572986	0.883	
Reactome Effects Of PIp2 Hydrolysis	Reactome	0.001930502	0.2301776	0.706	
Reactome Post Chaperonin Tubulin Folding Pathway	Reactome	0.002004008	0.2752618	0.816	
Reactome Opioid Signalling	Reactome	0.003731343	0.28438777	0.94	
Reactome Signalling By FGFR	Reactome	0.003899524	0.28697053	0.874	
Reactome Downstream Signaling Of Activated FGFR	Reactome	0.003899524	0.28784266	0.936	
Reactome Keratan Sulfate Keratin Metabolism	Reactome	0.003875969	0.21886954	0.403	
Reactome Trafficking Of AMPA Receptors	Reactome	0.003891051	0.20470771	0.527	
Pathway	Score	Pos	Width		
---	---------	-------	--------		
Reactome Gap junction trafficking	0.003891	0.244358	0.742		
Reactome neuronal system	0.003968	0.228224	0.931		
Reactome Cell surface interactions at the vascular wall	0.005762	0.283701	0.854		
Reactome G alpha 1213 signalling events	0.005725	0.280395	0.878		
Reactome signalling by PDGF	0.005758	0.280494	0.878		
Reactome collagen formation	0.007952	0.235962	0.284		
Reactome trafficking of Glur2-containing AMPA receptors	0.008081	0.296269	0.888		
Reactome Ca dependent events	0.009709	0.284163	0.931		
Reactome signalling by FGFR in disease	0.009784	0.283157	0.931		
Reactome extracellular matrix organization	0.009825	0.263205	0.264		
Reactome HS GAG biosynthesis	0.011235	0.296214	0.694		
Reactome integration of energy metabolism	0.011472	0.319635	0.706		
Reactome downregulation of TGF beta receptor signalling	0.011695	0.290233	0.94		
Reactome Ras activation upon Ca2 influx through NMDA receptor	0.011834	0.236637	0.706		
Reactome regulation of kit signalling	0.0012	0.338157	0.976		
Reactome transport of inorganic cations and amino acids oligopeptides	0.001212	0.304096	0.917		
Reactome interaction between L1 and ankyrins	0.001215	0.195210	0.527		
Reactome signalling to Ras	0.001336	0.290571	0.935		
Reactome hemostasis	0.001692	0.300341	0.946		
Reactome signalling by EGFR in cancer	0.001714	0.301440	0.897		
Reactome cell cell communication	0.001734	0.301988	0.9		
Reactome MAPK targets nuclear events mediated by MAP kinases	0.001915	0.316175	0.957		
Reactome recycling pathway of L1	0.001949	0.284926	0.944		
Reactome metabolism of carbohydrates	0.001960	0.290836	0.94		
Reactome insulin synthesis and processing	0.002115	0.313358	0.957		
Reactome integrin alpha IIB beta 3 signalling	0.002169	0.295358	0.922		
Reactome basigin interactions	0.002268	0.250892	0.76		
Reactome diabetes pathways	0.002519	0.318206	0.961		
Reactome deposition of new CENPA containing nucleosomes at the centromere	0.002574	0.304755	0.897		
Reactome P130CAS linkage to MAPK signalling for integrins	0.002605	0.294316	0.889		
Reactome glucagon signalling in metabolic regulation	0.002707	0.325285	0.96		
Reactome pre notch expression and processing	0.002739	0.308177	0.948		
Reactome GRB2 SOS provides linkage to MAPK signalling for integrins	0.002766	0.299039	0.98		
Reactome acyl chain remodelling of PC	0.002868	0.288726	0.929		
Reactome phospholipase C mediated cascade	0.002906	0.323997	0.968		
Reactome CREB phosphorylation through the activation of CAMK II	0.003071	0.247289	0.746		
Reactome cell junction organization	0.003082	0.295718	0.907		
Reactome SEMA4D in semaphorin signalling	0.003225	0.280958	0.856		
Reactome platelet activation signalling and aggregation	0.003275	0.335944	0.979		
Reactome TGF beta receptor signalling activates SMADS	0.003326	0.312489	0.948		
Reactome platelet aggregation plug formation	0.003373	0.323130	0.965		
Reactome CYCLIN A B1 associated events during G2 M transition	0.003474	0.302947	0.92		
Reactome PKA mediated phosphorylation of CREB	0.003474	0.323569	0.965		
Node ID	Name	Score			
---	---	---------			
REACTOME_SIGNALING_BY_ERBB2	REACTOME 0.034816246 0.28717205 0.94				
REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS	REACTOME 0.034883723 0.27808312 0.858				
REACTOME_OTHER_SEMAPHORIN_INTERACTIONS	REACTOME 0.037401576 0.25583962 0.741				
REACTOME_THROMBIN_SIGNALLING_THROUGH_PROTEINASE_ACTIVATED_RECEPTORS_PARS	REACTOME 0.039772727 0.30676284 0.95				
REACTOME_CTLA4_INHIBITORY_SIGNALING	REACTOME 0.04054054 0.29363027 0.929				
REACTOME_MITOTIC_PROMETAPHASE	REACTOME 0.04474708 0.30941245 0.948				
REACTOME_PYRUVATE_METABOLISM	REACTOME 0.051823415 0.29494432 0.926				
REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE1	REACTOME 0.05212355 0.2980257 0.929				
REACTOMEFORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC	REACTOME 0.05234375 0.29153083 0.897				
REACTOME_RAPI_1_SIGNALLING	REACTOME 0.05973025 0.2873766 0.931				
REACTOME_UNBLOCKING_OF_NMDA_RECEPTOR_GLUTAMATE_BINDING_AND_ACTIVATION	REACTOME 0.059760958 0.2980257 0.931				
REACTOME_SEMA4D_INDUCED_CELL_MIGRATION_AND_GROWTH_CONE_COLLAPSE	REACTOME 0.061657034 0.29498982 0.978				
REACTOME_GPVI_MEDIATED_ACTIVATION_CASCADE	REACTOME 0.06403013 0.2930612 0.929				
REACTOME_SIGNALING_BY_SCF_KIT	REACTOME 0.06496063 0.3237212 0.968				
REACTOME_GABA_B_RECEPTOR_ACTIVATION	REACTOME 0.06563707 0.2849982 0.878				
REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY	REACTOME 0.06613226 0.41052425 0.996				
REACTOME_PI_3K_CASCADE	REACTOME 0.06810638 0.3469555 0.984				
REACTOME_G_PROTEIN_BETA_GAMMA_SIGNALLING	REACTOME 0.07569721 0.2886714 0.944				
REACTOME_GABA_RECEPTOR_ACTIVATION	REACTOME 0.07617875 0.2934198 0.946				
REACTOME_PREFOLDIN_MEDIATED_TRANSFER_OF_SUBSTRATE_TO_CCT_TRIC	REACTOME 0.07630522 0.30005464 0.917				
REACTOME_ACTIVATION_OF_CHAPERONE_GENES_BY_XBP1S	REACTOME 0.07858546 0.2917432 0.907				
REACTOME_GABA_SYNTHESIS_RELEASE_REUPTAKE_AND_DEGRADATION	REACTOME 0.080078125 0.3422235 0.979				
REACTOME_MEIOTIC_RECOMBINATION	REACTOME 0.08023524 0.3507033 0.988				
REACTOME_DAG_AND_IP3_SIGNALING	REACTOME 0.08267716 0.3227793 0.964				
REACTOME_MITOTIC_G2_G2_M_PHASES	REACTOME 0.08301158 0.3085473 0.95				
REACTOME_GRB2_EVENTS_IN_ERBB2_SIGNALING	REACTOME 0.08394375 0.3507325 0.988				
REACTOME_PRE_NOTCH_PROCESSING_IN_GOLGI	REACTOME 0.08406365 0.3085473 0.95				
REACTOME_SIGNAL_AMPLIFICATION	REACTOME 0.08484375 0.3085473 0.95				
REACTOME_EGFR_DOWNREGULATION	REACTOME 0.08510638 0.3802053 0.994				
REACTOME_REGULATION_OF_WATER_BALANCE_BY_RENAL_AQUaporINS	REACTOME 0.0871913 0.41655624 0.997				
REACTOME_NUCLEOTIDE_BINDING_DOMAIN_LEUCINE_RICH_REPEAT_CONTAINING_RECEPTOR_NLR_SIGNALING_PATHWAYS	REACTOME 0.09356725 0.3457019 0.984				
REACTOME_CELL_CELL_JUNCTION_ORGANIZATION	REACTOME 0.09356725 0.3457019 0.984				
REACTOME_INHIBITION_OF_INSULIN_SECRETION_BY_ADRENALINE_NORADRENALINE	REACTOME 0.09375 0.32280883 0.964				
REACTOME_MEIOSIS	REACTOME 0.0967118 0.3083016 0.948				
REACTOME_PIP3_ACTIVATES_AKT_SIGNALING	REACTOME 0.09722224 0.33911064 0.979				
REACTOME_SHC1_EVENTS_IN_ERBB4_SIGNALING	REACTOME 0.1010101 0.39072296 0.996				
REACTOME_G1_S_SPECIFIC_TRANSCRIPTION	REACTOME 0.101960786 0.39072296 0.996				
REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION	REACTOME 0.10351625 0.34112415 0.979				
REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROSOMES	REACTOME 0.10412574 0.32102893 0.965				
REACTOME_SHC_RELATED_EVENTS	REACTOME 0.104961835 0.32102893 0.965				
REACTOME_CHROMOSOME_MAINTENANCE	REACTOME 0.10763209 0.33865628 0.976				
REACTOME_SIGNALING_BY_ROBO_RECEPTOR	REACTOME 0.11045365 0.32630578 0.965				
REACTOME_CELL_CYCLE	REACTOME 0.11045365 0.32630578 0.965				
Pathway	REACTOME	0.11372549	0.33998445	0.979	
--	---------	-------------	-------------	-------	
Reactome:Glutathione Conjugation					
Reactome:Striated Muscle Contraction					
Reactome:Nephrin Interactions					
Reactome:YAP1 And WWTR1 TAZ Stimulated Gene Expression					
Reactome:Activation of Kainate Receptors Upon Glutamate Binding					
Reactome:Signaling By BMP					
Reactome:Signalling To Erks					
Reactome:PI3K Events In ErbB4 Signaling					
Reactome:Adp Signalling Through P2ry1					
Reactome:Signaling By Notch					
Reactome:Transmembrane Transport of Small Molecules					
Reactome:Synthesis And Interconversion Of Nucleotide Di And Triphosphates					
Reactome:Insulin Receptor Recycling					
Reactome:Recruitment Of Mitotic Centrosome Proteins And Complexes					
Reactome:CGMP Effects					
Reactome:Myd88 Cascade Initiated On Plasma Membrane					
Reactome:Shc Mediated Signalling					
Reactome:E2F Mediated Regulation Of DNA Replication					
Reactome:Ion Transport By P Type AtPases					
Reactome:Downstream Signal Transduction					
Reactome:Aquaporin Mediated Transport					
Reactome:Signaling By ErbB4					
Reactome:Map Kinase Activation In Tlr Cascade					
Reactome:G Beta Gamma Signalling Through Pi3KGamma					
Reactome:Cell Cycle Mitotic					
Reactome:Phosphorylation Of The ApC C					
Reactome:PI3K Events In ErbB2 Signaling					
Reactome:Latent Infection Of Homo Sapiens With Mycobacterium Tuberculosis					
Reactome:NerTr1 Signaling					
Reactome:GAB1 Signalosome					
Reactome:Mitotic M M G1 Phases					
Reactome:Telomere Maintenance					
Reactome:Membrane Trafficking					
Reactome:Darp32 Events					
Reactome:Gastrin Creb Signalling Pathway Via Pkc And Mapk					
Reactome:Trf6 Mediated Induction Of Nfkb And Map Kinases Upon Tlr7 8 Or 9 Activation					
Reactome:SRP Dependent Cotranslational Protein Targeting To Membrane					
Reactome:Activated Tlr4 Signalling					
Reactome:Signaling By Tgfa Beta Receptor Complex					
Reactome:Pyruvate Metabolism And Citric Acid Tca Cycle					
Reactome:Asparagine N Linked Glycosylation					
Reactome:Apc Cdc20 Mediated Degradation Of Nek2a					
Reactome:Platelet Homeostasis					
Pathway	Score	Similarity	Rank		
--	-------	------------	------		
REACTOME_P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT	0.9224652	1	1		
REACTOME_METABOLISM_OF_MRNA	0.9241517	1	1		
REACTOME_FGFR_LIGAND_BINDING_AND_ACTIVATION	0.9246436	0.947385	1		
REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_RICH_ELEMENTS	0.9298597	1	1		
REACTOMEFORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX	0.9356137	0.9335302	1		
REACTOME_AUTODEGRADATION_OF_CDHL_BY_CDHL_APC_C	0.9386503	0.9989878	1		
REACTOME_MRNA_PROCESSING	0.9389764	0.99967253	1		
REACTOME_METABOLISM_OF_RNA	0.9472617	1	1		
REACTOME_RNA_POL_III_CHAIN_ELONGATION	0.9570552	0.9933826	1		
REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE	0.96311474	0.9993026	1		
REACTOME_GENERATION_OF_SECOND_MESSENGER_MOLECULES	0.96837944	0.9769819	1		
REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC	0.9773196	0.9965843	1		
REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6	0.9794239	0.999003	1		
REACTOME_TCR_SIGNALING	0.98163265	0.8948293	1		
Table S5. Significantly enriched gene sets (Nom p < 0.05) in Hep-i(+) cells compared with Hep-i(-) cells (assessed by GSEA)

NAME	Data base	NOM p-val	FDR q-val	FWER p-val		
HALLMARK_BILE_ACID_METABOLISM	HALLMARK	0	0	0		
HALLMARK_XENOBIOTIC_METABOLISM	HALLMARK	0	0	0		
HALLMARK_INTERFERON_ALPHA_RESPONSE	HALLMARK	0	0.00203192	0.009		
HALLMARK_INTERFERON_GAMMA_RESPONSE	HALLMARK	0	0.00442158	0.025		
HALLMARK_IL6_JAK_STAT3_SIGNALING	HALLMARK	0.00173014	0.00449853	0.032		
HALLMARK_FATTY_ACID_METABOLISM	HALLMARK	0.00328947	0.01714626	0.134		
HALLMARK_OXIDATIVE_PHOSPHORYLATION	HALLMARK	0.00619935	0.05405483	0.47		
HALLMARK_ALLOGRAFT_REJECTION	HALLMARK	0.00825082	0.05582702	0.438		
HALLMARK_MTORC1_SIGNALING	HALLMARK	0.01344894	0.09290828	0.688		
HALLMARK_INFLAMMATORY_RESPONSE	HALLMARK	0.03526642	0.10364589	0.77		
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	KEGG	0	0	0		
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION	KEGG	0	0.00458059	0.01		
KEGG_VIRAL_MYOCARDITIS	KEGG	0	0.00076614	0.024		
KEGG_ASTHMA	KEGG	0	0.00676075	0.028		
KEGG_ALLOGRAFT_VERSUS_HOST_DISEASE	KEGG	0	0.00690803	0.036		
KEGG_ALLOGRAFT_REJECTION	KEGG	0	0.00590976	0.037		
KEGG_AUTOIMMUNE_THYROID_DISEASE	KEGG	0	0.00564335	0.041		
KEGG_TYPE_I_DIABETES_MELLITUS	KEGG	0	0.00564193	0.045		
KEGG_HEMATOPOIETIC_CELL_LINEAGE	KEGG	0	0.00909959	0.071		
KEGG_HISTIDINE_METABOLISM	KEGG	0	0.00021632	0.075		
KEGG_CELL_ADOPTION_MOLECULES_CAMS	KEGG	0	0.0216824	0.221		
KEGG_GLYCOSIS_GLUCONEDGENESIS	KEGG	0	0.02754897	0.29		
KEGG_ALANINE_ASPARATE_AND_GLUTAMATE_METABOLISM	KEGG	0	0.02762055	0.31		
KEGG_LEISHMANIA_INFECTION	KEGG	0	0.001980198	0.242		
KEGG_TYROSINE_METABOLISM	KEGG	0	0.002087683	0.359		
KEGG_PEROXISOME	KEGG	0	0.003875969	0.213		
KEGG_NITROGEN_METABOLISM	KEGG	0	0.003875969	0.598		
KEGG_SYSTEMIC_LIPID_ERYTHEMATOSUS	KEGG	0	0.00403225	0.193		
KEGG_BETA_ALANINE_METABOLISM	KEGG	0	0.00588024	0.103		
KEGGPRIMARY_IMMUNODEFICIENCY	KEGG	0	0.00871959	0.562		
KEGG_PHENYLALANINE_METABOLISM	KEGG	0	0.008230452	0.743		
KEGG_ARGININ AND_PROLINE_METABOLISM	KEGG	0	0.008316008	0.335		
KEGGPRIMARY_BILE_ACID_BIOSYNTHESIS	KEGG	0	0.01062601	0.649		
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	KEGG	0	0.01443299	0.54		
KEGG_NICOTINATE_AND_NICOTAMIDE_METABOLISM	KEGG	0	0.014613778	0.556		
KEGGVALINE_LEUCINE_AND_ISOULUCINE_DEGRADATION	KEGG	0	0.037698414	0.676		
KEGG_OFACTORY_TRANSDUCTION	KEGG	0	0.03976143	0.879		
REACTOME_DOWNSTREAM_TCR_SIGNALING	REACTOME	0	0	0		
REACTOME_GENERATION_OFSECOND_MESSENGER_MOLECULES	REACTOME	0	0.002413546	0.005		
REACTOME_TCR_SIGNALING	REACTOME	0	0.005957666	0.019		
REACTOME_PDI_SIGNALING	REACTOME	0	0.061128862	0.162		
Pathway	Reactome ID	Reactome Score	Reactome ID	Reactome Score	Reactome ID	Reactome Score
--	-------------	----------------	-------------	----------------	-------------	----------------
REACTOME_PHOSPHORYLATION_OF_CD3_AND_TCR_ZETA_CHAINS						
REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES						
REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY						
REACTOME_INTERFERON_GAMMA_SIGNALING						
REACTOME_TRIGLYCERIDE_BIOSYNTHESIS						
REACTOME_GLYCEROPHOSPHOLIPID_BIOSYNTHESIS						
REACTOME_TRANSPORT_TO_THE_GOLGI_AND_SUBSEQUENT_MODIFICATION						
REACTOME_NUCLEOTIDE_BINDING_DOMAIN_LEUCINE_RICH_REPEAT_CONTAINING_RECEPTOR_NLR_SIGNALING_PATHWAYS						
REACTOME_CLASS_B_2_SECRETIN_FAMILY_RECEPTORS						
REACTOME_PLATELET_HOMEOSTASIS						
REACTOME_METABOLISM_OF_VITAMINS_AND_COFACTORS						
REACTOME_ENDOGENOUS_STEROLS						
REACTOME_TRANSPORT_OF_VITAMINS_NUCLEOSIDES_ANDRELATED_MOLECULES						
REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS						
REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION						
REACTOME_GLUCOSE_METABOLISM						
REACTOME_SYNTHESIS_SECRETION_AND_INACTIVATION_OF_GLP1						
REACTOME_ACVL_CHAIN_REMODELLING_OF_PI						
REACTOME_ACVL_CHAIN_REMODELLING_OF_PS						
REACTOME_INCRETIN_SECRETION_AND_INACTIVATION						
REACTOME_OLFATORY_SIGNALING_PATHWAY						
REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES						
REACTOME_IRON_UPTAKE_AND_TRANSPORT						
REACTOME_COMPLEMENT_CASCADE						
REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT						
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM						
REACTOME_INNATE_IMMUNE_SYSTEM						
REACTOME_PYRIMIDINE_METABOLISM						
REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_7ALPHA_HYDROXYCHOLESTER						
REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA CELLS						
REACTOME_SULFUR_AMINO_ACID_METABOLISM						
REACTOME_BILE_ACID_AND_BILE_SALT_METABOLISM						
REACTOME_INTERFERON_SIGNALING						
REACTOME_TRANSPORT_OF_GLUCOSE_AND_OTHER_SUGARS_BILE_SALTS_AND_ORGANIC_ACIDS_METAL_IONS_AND_AMINE_COMPOUNDS						
Table S6. Significantly enriched (NOM p < 0.05) gene sets in hCLiP-chimera-derived hepatocytes in comparison with PHHs

NAME	Data base	NOM p-val	FDR q-val	FWER p-val
HALLMARK_NOTCH_SIGNALING	HALLMARK	0	0.14523014	0.114
HALLMARK_APICAL_SURFACE	HALLMARK	0	0.15693645	0.214
HALLMARK_HYPOXIA	HALLMARK	0	0.23320402	0.308
HALLMARK_KRAS_SIGNALING_DN	HALLMARK	0	0.21433364	0.308
HALLMARK_COAGULATION	HALLMARK	0	0.18801166	0.308
HALLMARK_HEDGEHOG_SIGNALING	HALLMARK	0	0.20412263	0.402
HALLMARK_MYOGENESIS	HALLMARK	0	0.2369269	0.519
KEGG_NITROGEN_METABOLISM	KEGG	0	1	0.431
KEGG_DORSO_VENTRAL_AXISFORMATION	KEGG	0	0.8070004	0.532
KEGG_RENIN_ANGIOTENSIN_SYSTEM	KEGG	0	0.67188025	0.737
KEGG_GLYCOLYSIS_GLUCONEOGENESIS	KEGG	0	0.5798928	0.737
KEGG_STEREOID_HORMONE_BIOSYNTHESIS	KEGG	0	0.4406415	0.737
KEGG_BUTANOATE_METABOLISM	KEGG	0	0.42509153	0.737
KEGG_METABOLISM_OF_XENOBIOITICS_BY_CYTOCHROME_P450	KEGG	0	0.38385913	0.737
KEGG_BASAL_CELL_CARCIINOMA	KEGG	0	0.35087314	0.737
KEGG_PROPANOATE_METABOLISM	KEGG	0	0.2907683	0.737
KEGG_DRUG_METABOLISM_CYTOCHROME_P450	KEGG	0	0.31267843	0.737
KEGG_GRAFT_VERSUS_HOST_DISEASE	KEGG	0	0.3060045	0.737
KEGG_RETINOL_METABOLISM	KEGG	0	0.2978703	0.737
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC	KEGG	0	0.30322078	0.737
KEGG_COMPLEMENT_AND_COAGULATION CASCADES	KEGG	0	0.29349664	0.737
KEGG_AUTOIMMUNE_THYROID_DISEASE	KEGG	0	0.31930727	0.779
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM	KEGG	0	0.34937185	0.894
KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	KEGG	0	0.35212293	0.894
KEGG_GALACTOSE_METABOLISM	KEGG	0	0.34549597	0.894
Pathway Name	Source	p-value	q-value	
---	--------	---------	---------	
KEGG_STARCH_AND_SUCROSE_METABOLISM	KEGG	0.32447046	0.894	
KEGG_ASCORBATE_AND_ALDARATE_METABOLISM	KEGG	0.33308324	0.894	
KEGG_CELL_ADHESION_MOLECULES_CAMS	KEGG	0.32254976	0.942	
KEGG_ARACHIDONIC_ACID_METABOLISM	KEGG	0.316469	0.942	
KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS	KEGG	0.31435984	0.942	
KEGG_HEDGEHOG_SIGNALING_PATHWAY	KEGG	0.31573096	0.942	
KEGG_GLUCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES	KEGG	0.36563307	0.942	
KEGG_STEROID_BIOSYNTHESIS	KEGG	0.40754798	0.942	
REACTOME_PRE_NOTCH_PROCESSING_IN_GOLGI	REACTOME	0.45624468	0.258	
REACTOME_SYNTHESIS_OF_PA	REACTOME	0.49582168	0.551	
REACTOME_ACYL_CHAIN_REMODELLING_OF_PG	REACTOME	0.35054788	0.551	
REACTOME_AMINE_COMPOUND_SLC_TRANSPORTERS	REACTOME	0.5495397	0.819	
REACTOME_NA_CL_DEPENDENT_NEUROTRANSMITTER_TRANSPORTERS	REACTOME	1	0.913	
REACTOME_GLYCOLYSIS	REACTOME	1	0.913	
REACTOME_TRANSPORT_OF_VITAMINS_NUCLEOSIDES_ANDRELATED_MOLECULES	REACTOME	0.9796463	0.913	
REACTOME_ACYL_CHAIN_REMODELLING_OF_PS	REACTOME	0.8588539	0.913	
REACTOME_FORMATION_OF_FIBRIN_CLOT_CLOTTINGCASCADE	REACTOME	0.85995644	0.913	
REACTOME_BIOLOGICAL_OXIDATIONS	REACTOME	0.80131924	0.913	
REACTOME_CYTOCHROME_P450_ARRANGED_BY_SUBSTRATE_TYPE	REACTOME	0.8075716	0.913	
REACTOME_INTRINSIC_PATHWAY	REACTOME	0.760971	0.913	
REACTOME_PHASE1_FUNCTIONALIZATION_OF_COMPOUNDS	REACTOME	0.7406764	0.946	
REACTOME_INTERACTION_BETWEEN_L1_AND_ANKyrINs	REACTOME	0.6859455	0.946	
REACTOME_ACYL_CHAIN_REMODELLING_OF_PC	REACTOME	0.69108987	1	
REACTOME_HS_GAG_BIOSYNTHESIS	REACTOME	0.69282025	1	
REACTOME_EFFECTS_OF_PIP2_HYDROLYS	REACTOME	0.7313041	1	
REACTOME_A_TETRASACCHARIDE_LINKER_SEQUENCE_IS_REQUIRED_FOR_GAG_SYNTHESIS	REACTOME	0.70685107	1	
REACTOME_ACYL_CHAIN_REMODELLING_OF_PE	REACTOME	0.6834588	1	
Pathway	Source	Score	Weight	
--	--------------	--------	--------	
REACTOME_HEPARAN_SULFATE_HEPARIN_HS_GAG_METABOLISM	REACTOME	0.68222684	1	
REACTOME_HS_GAG_DEGRADATION	REACTOME	0.664482	1	
REACTOME_PRE_NOTCH_EXPRESSION_AND_PROCESSING	REACTOME	0.6609847	1	
REACTOME_GRB2_SOS_PROVIDES_LINKAGE_TO_MAPK_SIGNALING_FOR_INTERGRINS_	REACTOME	0.66925216	1	
REACTOME_AMINE_DERIVED_HORMONES	REACTOME	0.6552516	1	
REACTOME_METABOLISM_OF_STEROID_HORMONES_AND_VITAMINS_A_AND_D	REACTOME	0.6392642	1	
REACTOMEACYL_CHAIN_REMODELLING_OF_PI	REACTOME	0.6242897	1	
REACTOME_TRANSPORT_OF_GLUCOSE_AND_OTHER_SUGARS_BILE_SALTS_AND_ORGANI	REACTOME	0.6194206	1	
REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS	REACTOME	0.6084904	1	
REACTOME_ANTIGEN_ACTIVATES_B_CELL_RECEPTOR_LEADING_TO_GENERATION_OF_SE	REACTOME	0.68690026	1	
REACTOME_STEROID_HORMONES	REACTOME	0.6336788	1	
REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2_	REACTOME	0.6231095	1	
REACTOME_CLASS_B_2_SECRETIN_FAMILY_RECEPTORS	REACTOME	0.63061726	1	
REACTOME_GLUCAGON_TYPE_LIGAND_RECEPTORS	REACTOME	0.6273213	1	
REACTOME_CHOLESTEROL_BIOSYNTHESIS	REACTOME	0.6142165	1	
REACTOME_G_ALPHA_S_SIGNALLING_EVENTS	REACTOME	0.63354135	1	
REACTOME_PHOSPHOLIPID_METABOLISM	REACTOME	0.64769787	1	