Relation between the autocorrelation and Wigner functions

Héctor Manuel Moya-Cessa1,2, Demetrios N. Christodoulides2

1Instituto Nacional de Astrofísica, Óptica y Electrónica,
Calle Luis Enrique Erro No. 1, 72840 Santa María Tonantzintla, Pue.

2CREOL/College of Optics, University of Central Florida, Orlando, FL, USA

Abstract

We show a simple mechanism to measure the Wigner function of a harmonic oscillator. For this system we also show that autocorrelation and Wigner functions are equivalent.

PACS numbers: Applied Mathematics Information Sciences 7 (3), 839-841 (2013).
Non classical states of ions [1] and cavity fields [2] have been produced recently in experiments around the world [3–7]. Once a given nonclassical state has been produced, it is important to count with mechanisms that allow us to measure them, making the gathering of such information a key problem in quantum mechanics. Among this mechanisms one can count with the fact that the passage of atoms through a cavity may indicate the photon statistics of the cavity field [2]. For instance, information about the position or momentum allows us to look for non classicality of the system. However, it is possible to obtain full information from a system by measuring, not some of its observables, but directly the density matrix [8, 9], i.e. obtaining information about all possible observables. One of the possible ways of obtaining such information is via a quasiprobability distribution function, that may be related to the density matrix by using the equation [10, 11]

\[F(\alpha, s) = \frac{2}{\pi(1-s)} \sum_{k=0}^{\infty} \left(\frac{s+1}{s-1} \right)^k \langle \alpha, k | \rho | \alpha, k \rangle \]

with \(s \) the quasiprobability function’s parameter that indicates which is the relevant distribution (\(s = -1 \) Husimi [12], \(s = 0 \) Wigner [13] and \(s = 1 \) Glauber-Sudarshan [14, 15] distribution functions), \(\rho \) the density matrix and the states \(|\alpha, k\rangle \) are the so-called displaced number states [16].

It is well known that the Glauber-Sudarshan \(P \)-function is highly singular (note the term \(s - 1 \) in the denominator). It may be used to measure non-classicality of states [17]. It is not the purpose of the present contribution to discuss about when is this function well-behaved, however, it may be used to write the density in a (diagonal) coherent state basis

\[\rho = \frac{1}{\pi} \int d^2 \alpha P(\alpha) |\alpha\rangle \langle \alpha| = \frac{1}{\pi} \int d^2 \alpha F(\alpha, 1) |\alpha\rangle \langle \alpha|, \]

that may be used to derive Fokker-Planck equations (partial differential equations) from master equations (equations that involve superoperators) [18].

The (Husimi) \(Q \)-function may be obtained from (1) by taking \(s = -1 \). In such a case, the only term that survives in the sum is \(k = 0 \), that allow us to write

\[Q(\alpha) = F(\alpha, -1) = \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle. \]

Moreover, besides applications in classical optics, it has been shown that these phase space distributions can be expressed, in thermofield dynamics, as overlaps between the state
of the system and *thermal* coherent states [19], that is probably the reason by which, systems subject to decay may still be "measured" [20].

Wineland’s [8] and Haroche’s [9] groups used the above expression to measure the Wigner function \((s = 0)\) case of the quantized motion of an ion and the quantized cavity field, respectively. It is somehow simple to obtain a quasiprobability distribution function from experimental data from the above equation as there is already there a direct recipe. Let us write equation (1) as

\[
F(\alpha, s) = \frac{2}{\pi(1 - s)} \sum_{k=0}^{\infty} \left(\frac{s + 1}{s - 1} \right)^k \langle k | D^\dagger(\alpha) \rho D(\alpha) | k \rangle \tag{4}
\]

where \(D(\alpha) = \exp(\alpha a^\dagger - \alpha^* a)\), with \(a\) and \(a^\dagger\) the annihilation and creation operators respectively, is the Glauber displacement operator. Note that, in order to obtain a quasiprobability distribution function we need to do the following: displace the system by an amplitude \(\alpha\) and then measure the diagonal elements of the displaced density matrix.

Equation (4) may be rewritten as

\[
F(\alpha, s) = \frac{2}{\pi(1 - s)} Tr \left\{ \left(\frac{s + 1}{s - 1} \right)^{a^\dagger a} D^\dagger(\alpha) \rho D(\alpha) \right\}. \tag{5}
\]

By using the commutation properties under the symbol of trace, and the system in a *pure* state \(|\psi\rangle\), the above equation may be casted into

\[
F(\alpha, s) = \frac{2}{\pi(1 - s)} Tr \left\{ D(\alpha) \left(\frac{s + 1}{s - 1} \right)^{a^\dagger a} D^\dagger(\alpha) \rho D(\alpha) \right\} = \frac{2}{\pi(1 - s)} \langle\psi| D(\alpha) \left(\frac{s + 1}{s - 1} \right)^{a^\dagger a} D^\dagger(\alpha)|\psi\rangle \tag{6}
\]

Consider now a displaced harmonic oscillator with frequency \(\omega\)

\[
H = \omega a^\dagger a + \beta a^\dagger + \beta^* a \tag{7}
\]

with \(\beta\) the amplitude of the displacement. One can directly write the evolved wave function as (we set \(\hbar = 1\))

\[
|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle = D^\dagger(\beta/\omega)e^{-i\omega t a^\dagger a}D(\beta/\omega)|\psi(0)\rangle \tag{8}
\]

From equation (6) we may obtain the *autocorrelation function* [21]

\[
A(t) = \langle\psi(0)|\psi(t)\rangle = \langle\psi(0)|D^\dagger(\beta/\omega)e^{-i\omega t a^\dagger a}D(\beta/\omega)|\psi(0)\rangle \tag{9}
\]
that is very similar to equation (6). In fact, if we choose $t = \pi/\omega$ in the above equation, it produces a term

$$e^{-i\pi a^\dagger a} = (-1)^a^\dagger a,$$

(10)

that is essential in the production of the Wigner function (the alternating term), so that by setting $s = 0$ in equation (6), the Wigner and autocorrelation functions become proportional:

$$F(\beta/\omega, 0) = W(\beta/\omega) = \frac{2}{\pi} A(\pi/\omega)$$

(11)

which is not surprising as the Wigner function is the generating function for all spatial autocorrelation functions of the wave function [22].

Thus, an eigenstate of the harmonic oscillator, namely, a number state $|n\rangle$, may be easily measured, simply by choosing as initial state $|\psi(0)\rangle = |n\rangle$, and projecting it with the same number state. This can be done for instance in cavity QED, by writing the evolved wavefunction as a density matrix and then measuring its diagonal elements by passing atoms through the cavity [20]. Note however, that, for every displacement of the harmonic oscillator, a single value of the Wigner function is obtained. Therefore for the reconstruction of the Wigner function it is necessary a big number of experiments in order to fill the phase space up.

Note that such systems may be emulated in classical light propagation through waveguide arrays [23, 24] due to the analogy between linear lattices and the atom-field interaction [25]. Therefore, experiments leading to measurements of quasiprobability distribution functions may be easier to implement in classical optical systems.

In conclusion, we have shown a simple method to reconstruct the Wigner function for the harmonic oscillator and have shown that for this system, the autocorrelation function is proportional to the Wigner function.
[1] H. Moya-Cessa and P. Tombesi, Filtering number states of the vibrational motion of an ion, Phys. Rev. A 61, 025401 (2000).

[2] H. Moya-Cessa, A. Vidiella-Barranco, Interaction of squeezed light with two-level atoms, Journal of Modern Optics 39 (12), 2481-2499 (1992).

[3] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle and D. J. Wineland, Creation of a six-atom 'Schrodinger cat' state, Nature 438, 639 (2005).

[4] A. Ben-Kish, B. De Marco, V. Meyer, M. Rowe, J. Britton, W. M. Itano, B. M. Jelenkovic, C. Langer, D. Leibfried, T. Rosenband, and D. J. Wineland, Experimental Demonstration of a Technique to Generate Arbitrary Quantum Superposition States of a Harmonically Bound Spin-1/2 Particle, Phys. Rev. Lett. 90, 037902 (2003).

[5] D.J. Wineland, C.R. Monroe, C. Sackett, D. Kielpinski, M. Rowe, V. Meyer, W. Itano, Superposition and quantum measurement of trapped atoms, Ann. der Physik 9, 11 (2000).

[6] S. Haroche, M. Brune, and. J.M. Raimond, Schrödinger cat states and decoherence studies in cavity QED, Eur. Phys. J. Special Topics 159, 19 (2008).

[7] P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, Generating and Probing a Two-Photon Fock State with a Single Atom in a Cavity, Phys. Rev. Lett. 88, 143601 (2002).

[8] D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland, Experimental Determination of the Motional Quantum State of a Trapped Atom, Phys. Rev. Lett. 77, 4281 (1996).

[9] P. Bertet, A. Auffeves, P. Maioli, S. Osnaghi, T. Meunier, M. Brune, J. M. Raimond, and S. Haroche, Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity, Phys. Rev. Lett. 89, 200402 (2002).

[10] A. Royer, Wigner function as the expectation value of a parity operator, Phys. Rev. A 15, 449 (1977).

[11] H. Moya-Cessa and P.L. Knight, Series representation of quantum-field quasiprobabilities, Phys. Rev. A 48, 2479 (1993).

[12] K. Husimi, Some Formal Properties of the Density Matrix, Proc. Phys. Math. Soc. Jpn. 22,
[13] E.P. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40, 749 (1932).

[14] R.J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131, 2766 (1963).

[15] E.C.G. Sudarshan, Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett. 10, 277 (1963).

[16] F.A.M. de Oliveira, M.S. Kim, P.L. Knight and V. Buzek, Properties of displaced number states, Phys. Rev. A 41, 2645 (1990).

[17] J. Janszky, Min Gyu Kim, and M. S. Kim, Quasiprobabilities and the nonclassicality of fields, Phys. Rev. A 53, 502 (1996).

[18] H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications, Springer, Berlin, 1984.

[19] S. Chaturvedi, V. Srinivasan and G.S. Agarwal, Quantum phase space distributions in thermofield dynamics, J. Phys. A 32 1909 (1999).

[20] R Juárez-Amaro and H Moya-Cessa, Direct measurement of quasiprobability distributions in cavity QED, Phys. Rev. A 68, 023802 (2003).

[21] H. Eleuch, Quantum Trajectories and Autocorrelation Function in Semiconductor Microcavity, Appl. Math. Inf. Sc. 3, 185 (2009).

[22] C.K. Zachos, D.B. Fairlie and T.L. Curtright, in Quantum Mechanics in Phase Space, An Overview with Selected Papers (World Scientific Series in 20th Century Physics, Vol. 34, 2005).

[23] R. Keil, A. Perez-Leija, P. Aleahmad, H. Moya-Cessa, S. Nolte, D.N. Christodoulides, Observation of Bloch-like revivals in semi-infinite GlauberFock photonic lattices, Opt. Lett. 37 (18), 3801-3803 (2012).

[24] A. Perez-Leija, R. Keil, A. Szameit, A.F. Abouraddy, H. Moya-Cessa, D.N. Christodoulides Physical Review A 85 (1), 013848 (2012).

[25] M.D. Crisp, Ed Jaynes’ steak dinner problem II (Physics and Probability, Essays in honor of Edwin T. Jaynes) ed. W.T. Grandy, Jr, and P.W. Milonni (Cambridge: Cambridge University Press, 1993).