Green synthesis of zinc sulfide nanoparticles-organic heterocyclic polyol system as eco-friendly anti corrosion and anti-bacterial corrosion inhibitor for steel in acidic environment

Reda Abdel Hameeda,b, Mohamad Faridea,b, Mohamad Othmanb,d, Bader Huwaimelb,c, Saedah Al-Mhyawid, Ahmed Shamroukh e, Freah Alshammaryf, Enas Aljuhanig and Metwally Abdallagh

aBasic Science Department, Preparatory Year, University of Ha’il, Hail, Saudi Arabia; bMolecular Diagnostic and Therapeutic Treatment Unit, Ha’il University, Hail, Saudi Arabia; cDepartment of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Hail, Saudi Arabia; dDepartment of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia; ePhotochemistry Department, National Research Center, Dokki, Cairo, Egypt; fDepartment of Preventive Dental Sciences, College of Dentistry, University of Ha’il, Hail, Saudi Arabia; gChemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia; hChemistry Department, Faculty of Science, Banha University, Banha, Egypt

ABSTRACT
Green synthesis, characterization and evaluation of nanoscale zinc sulfide (ZnS) by precipitation chemical method. The zinc sulfide nanoparticles were prepared by chemical precipitation method using heterocyclic polyvinyl alcohol, PVA as a sensitizer. The prepared heterocyclic compounds system ZnS nanoparticles, PVA, EG were used as anti-bacterial corrosion towards sulfate-reducing bacteria (SRB) and anti-corrosion for carbon steel substrate in sulfuric acid and hydrogen sulfide bacterial corrosive environment using chemical, analytical, and electrochemical techniques. Effect of adding PVA, and ethylene glycol, EG to ZnS nanoparticles were studied. Effect of ZnS nanoparticles concentrations and the reaction temperature on the corrosion inhibition efficiency were studied. The inhibition due to adsorption of nanoparticles on steel surface, the adsorption agree well with Langmuir isotherm with suggested chemical adsorption mechanism. Potentiodynamic polarization (PD) and Electrochemical impedance spectroscopy (EIS) data explain that the used inhibitor is mixed-type and improves polarization resistance and inhibition performance by adhering to metal/electrolyte interface. The cathodic and anodic reactions are delayed when inhibitor molecules are added to an aggressive medium, which results in a negative shift in the open circuit potential. Addition of both PVA, and EG as organic polyol materials enhance the adsorption and inhibition properties of zinc sulfide nanoparticles on steel surface.

ARTICLE HISTORY
Received 27 June 2022
Accepted 26 October 2022

KEYWORDS
Zinc sulfide; ZnS; nanoparticles; carbon steel; H2SO4; corrosion chemical method; Heterocyclic adsorption

1. Introduction
Nanoscale zinc sulfide(ZnS) is one of the nanomaterials with unique properties and applications. Zinc sulfide nanoparticles are (II–VI) group of wide band gap semiconductor material, that has unique optoelectronic and adsorption properties (1–3). ZnS of high potential...
applications including solar cells, light-emitting diodes, electroluminescent devices, and corrosion inhibitors. Nanocrystalline zinc sulfide (ZnS) has a large surface-to-volume ratio (1–8). Nanoparticles of broad application spectrum are used in the industrial field as corrosion inhibitors (9, 10). The use of nanomaterials as a corrosion inhibitor is of great industrial, economical, and environmental impact. Nanomaterials have higher corrosion inhibition properties because their surface-to-volume ratio has increased. Many processes have been used for the preparation of nanoparticles (1–10). Various researchers have successfully demonstrated the applicability of nanomaterials as corrosion inhibitors (9–13). The most important application of nanoparticles in the industrial field is having a great specific characteristic to protect the metal from corrosion in different environments (9). Nanocomposites stop the reaction of the surface, control the corrosion rate by blocking active sites of metal surfaces, and provide hardness, straightness, durability, optical qualities, and thermal stability (9–13). These types of compounds are eco-friendly and degradable to the environment. The prominent option is to use inhibitors to protect the metal from corrosion. These inhibitors make a protective film on the metal surface and help to control the corrosion rate. Many organic and inorganic inhibitors were used to reduce corrosion in metal industries (14–21). The traditional corrosion inhibitors are undesirable as it is toxic, expensive, difficult to prepare, and hazardous. Scientific efforts concentrated on the use of eco-friendly corrosion inhibitors (14–51), such as natural products, expired drugs, plastic waste, and nanomaterials (14–51). Surfactants or surface-active materials are widely used as corrosion inhibitors for many acidic, alkaline, marine, and aqueous salts with corrosive materials (14–21). Surfactants act as inhibitors through adsorption on the metal substrate. The most effective inhibitors are nanomaterials but the addition of the surfactant molecules into the nanomaterials not only improves and manages its particle size but also enhances the adsorption and inhibition properties of the nanomaterials. Nanomaterials have higher corrosion inhibition properties because their surface-to-volume ratio has increased. Because the surface-to-volume ratio of nanomaterials has increased, their corrosion inhibition properties have improved. Nanoparticles have been prepared using a variety of methods. Several researchers have demonstrated the effectiveness of nanomaterials as corrosion inhibitors. Metals and their oxide nanoparticles are excellent corrosion inhibitors. It is simple to use as a corrosion inhibitor on metallic surfaces (13). It is simple to use as a corrosion inhibitor on metallic surfaces. Many studies have demonstrated corrosion inhibition by the adsorption of metal nanoparticles and their oxides on metal surfaces. Recent nanoparticle studies have used metal and oxide nanoparticles to improve corrosion resistance, such as TiO2 (52, 53), Cu2O (10, 54), ZnO (55), ZrO2 (56), SiO2 (57), and Ag nanoparticles (58). Atta et al. (10, 21) reported that silver nanoparticles inhibited the corrosion of carbon steel in an acidic solution. By forming oxide film, nanocrystal alloys provide hardness, wear resistance, electrical resistivity, and high-temperature corrosion resistance (49–52).

Numerous techniques have been used to study and evaluate the corrosion behavior of nanocrystal alloys in various environments (59–61). Another excellent method for reducing corrosion costs is nanocomposite (13, 62–69). Nanocomposite preparation involves the use of polymers and nanomaterials. In general, organic and inorganic constituents combine to form a composite (13). The inorganic components of nanocomposite provide super adhesive- ness, high ductility, and good mechanical strength, while the organic components allow for flexibility, compatibility improvement, porosity reduction, and defect reduction. Epoxy (13), polyurethane (13), polyethylene glycol (PEG) (65), polyaniline (PANI) (13), polystyrene, polyacrylic, polyvinyl alcohol (PVA), polypyrrole, polyamide, and other organic polymers are commonly used for the preparation of nanocomposite coatings (13). Metal nanoparticles and their oxides, carbides, and phosphates (13) are commonly used in inorganic constituents. Some articles (13, 62–69) report preliminary research on the corrosion resistance performance of nanocomposite. In the previous work, silver nanomaterials were prepared by the green method using some plant extract and characterized as green corrosion inhibitors for steel alloys used in the manufacturer of petroleum pipelines in an acidic environment, chemical, analytical, and electrochemical techniques were applied to evaluate the inhibition action of the prepared nanomaterials (70, 71). In the present work nanoscale zinc sulfide was prepared by the participation chemical method with PVA as surface active materials as a sensitizer and promotion for both particle size and inhibition properties of the ZnS nanomaterials on the carbon steel surface in an H2SO4 corrosive environment. The prepared heterocyclic compounds system ZnS nanoparticles, PVA, EG were used as anti-bacterial corrosion towards sulfate-reducing bacteria (SRB) and anti-corrosion for carbon steel substrate in sulfuric acid and hydrogen sulfide bacterial corrosive environment using chemical, analytical, and electrochemical techniques. The effect of the addition of surface-active materials PV5 and EG on the corrosion inhibition efficiency of zinc sulfide, ZnS and nanoparticles were studied. The effect of concentration, temperature, and surfactant addition is studied. Inhibition mechanism and adsorption isotherm are the third goal of the present study.
2. Experimental and methods

2.1. Materials used in the present study

Hydrated zinc chloride (ZnCl₂·2H₂O), sodium sulfide (Na₂S) polyvinyl alcohol (PVA), sulfuric acid, sodium carbonate Na₂CO₃, and ethylene glycol (EG). All chemicals used of analytical grade were from Sigma Aldrich. The corrosive solution prepared in this study is aggressive 1.0 M sulfuric acid that was prepared from analytical grade 98% H₂SO₄ (Sigma Aldrich). Distilled water was used as a solvent for all experiments. 1.0 M Na₂CO₃ was used for titration and standardization of 1.0 M sulfuric acid corrosive solution. Each experiment was performed in aerated stagnant solutions and was repeated at least three times under the same conditions to check the reproducibility and the average of the three replicated values was used for further processing of the data. The gravimetric composition of steel materials employed in this study is given in Table 1. It is similar to the composition of the carbon steel used in the manufacturer of petroleum pipelines.

2.2. Preparation nanoparticle zinc sulfide (ZnS) nanoparticles (chemical method)

The chemical precipitation method as mentioned elsewhere (2) was used for the preparation of zinc sulfide nanoparticles (ZnS) (2). In this method, ZnS nanoparticles Capped by PVA were prepared in the solution by chemical precipitation method: A simple chemical co-precipitation method (2, 3) was used to synthesize ZnS nanoparticles in colloidal solution using aqueous solutions of hydrated ZnCl₂·2H₂O and Na₂S in equal molar ratios as source materials and PVA as the capping material. In this procedure, ZnCl₂ (0.1 M) and Na₂S (0.1 M) were dissolved in 500 and 720 ml of distilled water, respectively.

The two solutions were stirred continuously for 30 min. After that, A 5 wt. % (for the total weight of the reactants) solution of PVA was stirred to achieve complete dissolution at room temperature. For the synthesized nanoparticles samples ZnS of molar ratio of zinc chloride and sodium sulfide, 50 ml of sodium sulfide solution was added drop by drop to zinc chloride (ZnCl₂) 100 ml, with continuous magnetic stirring (addition about 30 min) PVA (70 ml) as surfactant solution was then added to the reaction mixture with constant stirring. The white color zinc sulfide (ZnS) nanoparticles grew slowly in the solution, in accordance with the following reaction:

\[\text{ZnCl}_2(aq) + \text{Na}_2\text{S}(aq) \rightarrow 2 \text{NaCl}(aq) + \text{ZnS(S)} \]

(1)

The precipitate was isolated by filtration and dried at 40° C for 36 h to remove any organic residue, water, and other byproducts formed during the reaction process. After drying, the precipitate was used for the synthesis of the inhibitor colloidal solution. The synthesized ZnS, nanoparticles were synthesized and characterized by methods discussed and mentioned elsewhere (2, 3) and was used in the present study as corrosion inhibitor for carbon steel alloy in an 1.0 M sulfuric acid corrosive environment with and without both PVA and EG.

2.3. Inhibitor solution preparation

Five inhibitors materials formulated for the present study, three of which are individual materials with are zinc sulfide nanoparticles (symbolized as (ZnS, Nano)), polyvinyl alcohol (symbolized as (PVAI)), ethylene glycol (symbolized as EG). In addition, two mixtures from zinc sulfide nanoparticles – PVA and or EG (symbolized as (ZnS Nano – PVA)), zinc sulfide nanoparticle – ethylene glycol system (symbolized as (ZnS Nano-EG)). All the inhibitors materials used in the solution at concentration ranges of 50,100, 150, and 200 ppm. All selected materials were used as an inhibitor for carbon steel alloy in an acidic 1.0 M H₂SO₄ corrosive environment.

2.4. Evaluation of the prepared mixture as a corrosion inhibitor

2.4.1. Gravimetric studies (weight loss measurement)

The gravimetric measurements were carried out in a stagnant (but not in dynamic) solution so that the metal sample and inhibitor could have sufficient time to interact with the corrosive medium. Low carbon steel coupons, which cut into dimensions 4.0 × 2.0 × 0.2, were scraped away using emery sheets of different grades. This was put in an acetone bath for 10 min for further cleaning. After that, it was cleaned using a soft cloth and dried. Measurements for weights with the help of a four-digit analytical balance were taken. These carbon steel coupons were hung into the different solutions of inhibitor materials (50,100, 150, and 200 ppm)) in 1.0 M H₂SO₄ from 303 K to 333 K for 7 h. The experiments were done thrice to check for

Table 1. Gravimetric composition of the used steel materials.

Element	Mn	Si	Zn	S	P	C	Fe
Composition weight (%)	0.517	0.201	0.215	0.009	0.007	0.157	About 99
uniformity in results and the calculations performed. From these, the average value of the weight loss was noted. For each new reading, a freshly prepared inhibitor solution was used. The following are the calculations used to study the inhibition parameters.

Corrosion inhibition efficiencies (% I.E.) were calculated based on the weight/mass loss (mg) with (M) and without (M₀) the corrosion inhibitor using the following equation (39–47):

\[
\%\text{I.E.} = \left(\frac{M₀ - M}{M₀}\right) \times 100
\] (2)

For calculating the corrosion rate, the following equation was used:

\[
CR = 87.6 \times \left[\frac{\Delta M}{A \times t \times \rho}\right]
\] (3)

where CR represents corrosion rate in mm/year; weight/mass loss of low carbon steel (mg) as \(\Delta M\), \(A\) represents the exposed surface area of the coupon in cm², \(t\) is the exposure time (h), and \(\rho\), the density of the mild steel in g/cm³.

The fraction of surface coverage was calculated as \(\theta\) from the following equation (39–47):

\[
\theta = \left(\frac{M₀ - M}{M₀}\right)
\] (4)

The surface coverage values obtained from the weight loss method were fitted graphically into various isotherms and the best fit was concluded from the highest regression coefficient value.

2.4.2. Gasometrical measurements (analytical studies)

The progress of the corrosion reaction was determined by volumetric measurement of the evolved hydrogen. The metal sample was put in a Büchner flask containing the test solution. The flask is sealed with a rubber bung, and from its hose barb protruding from its neck, rubber tubing is connected to the bottom of an inverted measuring cylinder which is fitted above a basin. The cylinder and the basin are filled with distilled water. The evolved hydrogen gradually displaces the distilled water and is collected at the top inside the cylinder, and its volume is measured directly with time (34–37)

The experiment is done with and without different concentrations of the tested inhibitor.

2.5. Electrochemical measurements

Electrochemical measurements are made in stagnant solutions, without agitation. Because the agitation can affect the corrosion potential and the current density. The protective film on the metal surface can be affected by agitation, thus reducing the inhibiting power of the used inhibitor (15).

Electrochemical measurements as accurate and high-performance techniques were applied to evaluate the inhibition performance of the prepared nanoparticles, ZnS-Nano – EG nanoparticles mixture 2 which evaluated as a corrosion inhibitor for steel in 1.0 M H₂SO₄ at 303 K. Electrochemical measurements with a Versa STAT 4 potentiostat were carried out using the Versa Studio software. For the electrochemical testing, a glass cell with three electrodes was used, with platinum as the auxiliary electrode, Ag/AgCl as the reference electrode, and steel samples as the working electrode. The surface area of the steel electrode used in the electrochemical studies was 1.00 cm², and the glass cell held 100 mL of solution. To have a stable open circuit voltage, the working electrode’s potential was maintained for 30 min before each test. The polarization curves were performed at a scan rate of 1 mV S⁻¹ with a potential range of about 250 mV based on the open circuit potential (OCP). The inhibition efficiency (I.E.%) was calculated from the corrosion current density readings using Equation (4) (15–20):

\[
\text{I.E.\%} = \frac{(i_{corr}^0 - i_{corr})}{i_{corr}^0} \times 100
\] (5)

\(i_{corr}^0\): the corrosion current density value with an inhibitor.

\(i_{corr}\): the corrosion current density value without an inhibitor.

In the frequency range of 100 kHz the EIS approach was used with 10 points per decade. To plot and analyze Nyquist curves, a suitable comparable circuit was used. The inhibitory efficiency was calculated using Equation (5) (15–20):

\[
\text{I.E.\%} = \frac{(R_p' - R_p)}{R_p'} \times 100
\] (6)

\(R_p\): the polarization resistance of the steel electrode without an inhibitor.

\(R_p'\): the polarization resistance of the steel electrode with an inhibitor.

2.6. Anti-Bacterial corrosion measurement
(Sulfate Reducing Bacteria Test)

Sulfate-reducing bacteria (SRB) are easily capable of producing hydrogen sulfide (H₂S). The fatigue damage brought on by corrosion is increased by H₂S liberation. SRB (SRB-BART™ – DBI) vials were chosen because of their short testing time (maximum of 11 days) and high approximate population results. The test is finished when the vial turns black, at which point the SRB population may be identified. The findings can be obtained in a maximum of eleven days, which is the test time. The test is finished when the first black sign appears on the test vial, and each day corresponds to
3. Results and discussion

3.1. Synthesis of zinc sulfide nanoparticles (ZnS − nano)

Zinc sulfide nanoparticles (ZnS) were prepared from the aqueous solution of zinc chloride and sodium sulfide with PVA as a sensitizer by the chemical precipitation method. The net ionic reaction is represented in Equation (5):

\[\text{Zn}^{2+} + \text{S}^{2-} \xrightarrow{\text{PVA}} \text{ZnS}_{(s)} \] (7)

PVA as a sensitizer helps the formation of zinc sulfide in the nanoscale particle in the formed precipitate as methods mentioned elsewhere (1−3). In the present work, the same experimental conditions mentioned in the references (1) were applied to ensure the formation of zinc sulfide particles in the nanoscale to be more effective as corrosion inhibitors for steel in a sulfuric acid corrosive environment. As mentioned in the introduction part in general, the unique characteristic of nanolattices is reported from the previous studies (1−10).

3.2. Evaluation of zinc sulfide nanomaterials as a corrosion inhibitor

In the present part the prepared zinc sulfide nanoparticles were evaluated as a corrosion inhibitor for carbon steel in a 1.0 M sulfuric acid corrosive environment using a chemical technique (weight loss method). Different concentrations of the prepared zinc sulfide nanoparticles were used such as 25, 50, 75, and 100 ppm. The data obtained are listed in Table 2. It was found that the zinc sulfide nanoparticles act as good inhibitors and the inhibition efficiency was increased with increasing concentrations of zinc sulfide nanoparticles. The value of the corrosion rate is decreased with the addition of zinc sulfide nanoparticles and it is affected also by concentrations. The inhibition due to the adsorption and adhesion of zinc sulfide nanoparticles on the steel surface affects both the anodic and cathodic active sites (14−19). Figure 1 shows the relation between the weight loss of carbon steel and time with and without different concentrations of the used zinc sulfide nanoparticles. From the figure, it is clear that the addition of zinc sulfide controlled the weight loss of the steel in an acidic environment, and the weight loss of steel was increased with time of immersion in an acidic medium but decreased with increasing the concentrations of zinc sulfide.

3.3. Evaluation of PVA and EG as a corrosion inhibitor

The data in Table 2 also show the corrosion rate, surface coverage \(\theta \), and corrosion inhibition efficiency % I.E. for both polyvinyl alcohol (PVA) and ethylene glycol (EG) which evaluated as inhibitors for carbon steel alloy with a 1.0 M \(\text{H}_2\text{SO}_4 \) corrosive solution. Table 2 shows that the inhibition efficiency increases by increasing inhibitor concentrations and inhibition of ethylene glycol more than that of polyvinyl alcohol. The inhibition efficiency as compared to the inhibition of zinc sulfide nanoparticles is less than by more than 10% for all used concentrations. The same concentrations were taken which are 25, 50, 75, and 100 ppm to make a comparison between the three individual inhibitors. The order of inhibition is ZnS, Nano > EG > PVA, where the maximum inhibition efficiency for corrosion of steel was 90, 81, 78 using 100 ppm from the three inhibitors, respectively.

3.4. Effect of temperature on the % I.E. of the studied individual inhibitors

To understand the mechanism of corrosion and inhibition for the three used individual inhibitors the inhibition efficiency was calculated at different temperatures. A temperature range of 303 K–333 K was taken for investigation for the three samples, ZnS, Nano, EG, and PVA. The highest concentration used from the three used inhibitors materials, which shows the higher inhibition efficiency in all cases is 100 ppm. The relation between temperature and corrosion inhibition efficiency is shown in Figure 2.
inhibition efficiency increased by increasing temperature. This may be attributed to the chemical bond formed between inhibitor molecules and the steel surface; this reveals that the adsorption is chemical in nature.

3.5. Adsorption studies

The process of adsorption is affected mainly by the charge, metal surface nature, electronic characteristic of the metal surface, the temperature of the reaction, the presence of the electrorepelling or electro-donating groups in the derivatives, the electrochemical potential at the solution interface, solvent adsorption, and other ionic species. Weight loss data were used to find out the values of surface coverage (θ) at different inhibitor concentrations to explain the best-fit isotherm for the adsorption process. The results are best fitted by the Langmuir adsorption isotherm according to the following equation (14–19):

$$\frac{C_i}{\theta} = \frac{1}{K_{ads}} + C_i$$ (8)

where K_{ads} and C_i are the equilibrium constants of the adsorption process and the drug concentration, respectively (14–19).

Plotting C_i/θ versus C_i gave a straight line, as shown in Figure 3. The straight line with approximately a unit slope value has an intercept of $1/K$. The standard free energy of adsorption ΔG°_{ads} is calculated using the equation (14–19):

$$K_{ads} = \frac{1}{55.5} \exp \left(\frac{-\Delta G}{RT} \right)$$ (9)

where K_{ads} is the adsorption equilibrium constant, 55.5 is the dose of water in the bulk of solution in mole/liter, T is the absolute temperature, and R is the gas constant.
The calculated values of ΔG_{ads} are -38.7 kJ/mol, -37.6, and -36.4 for the three used inhibitors (ZnS, Nano, EG, and PVA), respectively. The negative value of $\Delta G^\circ_{\text{ads}}$ indicates that the adsorption process of drug molecules on the metal surface is spontaneous (14–20). On the other hand, all the obtained values are nearly equal to the threshold value of -40 kJ/mol required for chemical adsorption, which indicates that the mechanism of adsorption is chemical adsorption (14–20). The studied inhibitor compounds inhibit the corrosion process by adsorbing their constituent molecules at the metal/solution interface. In addition, it is believed that the formation of solid complex molecules with the metal atom has received considerable attention (14–20).

3.6. Studies of the corrosion inhibition efficiency of the mixed inhibitors system

Zinc sulfide nanoparticles (ZnS-Nano) mixed with polyvinyl alcohol and ethylene glycol were used as a mixed inhibitor system. The effect of adding 100 ppm from both PVA and EG to zinc sulfide nanoparticles was studied at 303 K. Two different mixtures were formulated by mixing zinc sulfide nanoparticles with PVA and EG and evaluated as corrosion inhibitors mixture for carbon steel in a 10 M H_2SO_4 corrosive environment. The corrosion inhibition efficiency of zinc sulfide nanoparticles (ZnS-Nano) with PVA and EG as additives are listed in Table 3. This shows that the inhibition efficiency in the case of mixture 2 (ZnS-Nano – EG) is more than the inhibition efficiency in the case of mixture 1 (ZnS-Nano – PVA). Comparing the corrosion inhibition efficiency of the individual inhibitors Table 2 with the inhibition efficiency of the mixed inhibitor system Table 3 it was found that the inhibition increased by about 10% in the case of the mixed inhibitor system. This difference means that the inhibitors system acts as a promoter of the inhibition efficiency, the order of the corrosion inhibition efficiency for all studied materials s as follows: (ZnS-Nano – EG) > (ZnS-Nano – PVA) > (ZnS-Nano) > (EG) > (PVA). Figure 4 shows the inhibition efficiency of the five studied materials, and the inhibition efficiency increased by increasing inhibitor concentrations. For all concentrations the inhibition efficiency

![Langmuir adsorption isotherm model for the three-used inhibitors ZnS, Nano, EG, and PVA, on the carbon steel in a 1.0 M H$_2$SO$_4$ solution at 303 K of, weight loss data.](image)

Table 3. Effect of concentration of the mixed inhibitor system, (ZnS-Nano – EG), (ZnS-Nano – PVA), on the inhibition efficiency of steel corrosion in 1.0 M H_2SO_4, at 303 K, WL data.

Mixed inhibitor system	Mixture No.	ZnS-Nano concentration ppm	(PVA / EG) concentration ppm	The total concentration of mixture ppm	Inhibition efficiency % I.E.
Blank Free Free Free Free Free					
(Zinc sulfide nanoparticles – PVA)	Mixture 1	12.5	12.5	25	90
(ZnS-Nano – PVA)		25	25	50	92.5
		37.5	37.5	75	94.5
		50	50	100	96
(Zinc sulfide nanoparticles – EG)	Mixture 2	12.5	12.5	25	93
(ZnS-Nano – EG)		25	25	50	94
		37.5	37.5	75	97
		50	50	100	98
for mixed inhibitors systems is more than the inhibition efficiency for individual inhibitors. This summarized the results recorded in both Tables 2 and 3.

3.7. Gasometrical measurement hydrogen evolution method (analytical studies)

Analytical techniques were used to compare the inhibition effect of both individual materials and mixed nanomaterial systems. Gasometrical or hydrogen evolution technique was based on the measurements of the volume of the evolved hydrogen during the corrosion reaction at different time intervals. When carbon steel or any active metals placed in the acidic environment upon the electrochemical reactivity series more active metal like iron replace hydrogen of the acid and the hydrogen was evolved in the form of hydrogen gas. The evolved hydrogen was measured using a gasometric system and used for the calculation of corrosion inhibition efficiency % I.E. in the present study the gasometrical technique was used for evaluation and comparison of the five prepared nanomaterials’ polyol system which was used as an inhibitor for steel in the 1.0 M H₂SO₄ acidic environment.

The volume of hydrogen evolved during the corrosion reaction of iron acidic 1.0 M H₂SO₄ medium with and without four different concentrations of nanomaterials as an inhibitor, 25, 50, 75, and 100 ppm were measured with time at room temperature (30°C). The inhibition efficiency was calculated using the following equation (34–37):

\[
\% I.E. = \left[1 - \frac{V_{inh}}{V_{free}}\right] \times 100
\]

where \(V_{inh} \) is the volume of hydrogen gas evolved for the inhibited solution and \(V_{free} \) for the uninhibited solution. The values of evolved hydrogen volumes and inhibition efficiencies at different concentrations of the used nanomaterials inhibitor are shown in Table 4. The inhibition efficiency increase with increasing the inhibitor concentration. This indicates that the applied inhibitor materials act as a good inhibitor for carbon steel in the 1.0 M H₂SO₄ acidic environment (34–37). Table 4 and Figure 5 show that the inhibition efficiency increase by about 15% in the case of the mixed inhibitor system, the mixed inhibitor system acts as a promoter for the corrosion inhibition efficiency, and the order of the corrosion inhibition efficiency for the five studied inhibitors materials is as follows: \((ZnS-Nano – EG)\) >

Table 4. Gasometrical comparison of the mixed Nano-system and individual inhibitor materials, corrosion inhibition efficiencies of steel in 1.0 M H₂SO₄, the effect of different concentrations of zinc sulfide nanomaterials (ZnS-Nano) at 303 K.

Types of inhibitor materials	Inhibitor name	Sample	Corrosion inhibition efficiency % I.E % (Equation 10)				
Free	Blank	Free	Concentrations ppm				
Mixed inhibitor systems	(Zinc sulfide nanoparticles – EG)	(ZnS-Nano – EG)	25	92	94	96	97
	(Zinc sulfide nanoparticles – PVA)	(ZnS-Nano – PVA)	50	91	92	94	95
Individual inhibitor material	(Zinc sulfide nanoparticles)	(ZnS-Nano)	75	82	85	78	89
	(Ethylene glycol)	EG	100	74	76	79	80
	Polyvinyl alcohol	PVA					

The volume of hydrogen evolved during the corrosion reaction of iron acidic 1.0 M H₂SO₄ medium with and without four different concentrations of nanomaterials as an inhibitor, 25, 50, 75, and 100 ppm were measured with time at room temperature (30°C). The inhibition efficiency was calculated using the following equation (34–37):

\[
\% I.E. = \left[1 - \frac{V_{inh}}{V_{free}}\right] \times 100
\]

where \(V_{inh} \) is the volume of hydrogen gas evolved for the inhibited solution and \(V_{free} \) for the uninhibited solution. The values of evolved hydrogen volumes and inhibition efficiencies at different concentrations of the used nanomaterials inhibitor are shown in Table 4. The inhibition efficiency increase with increasing the inhibitor concentration. This indicates that the applied inhibitor materials act as a good inhibitor for carbon steel in the 1.0 M H₂SO₄ acidic environment (34–37). Table 4 and Figure 5 show that the inhibition efficiency increase by about 15% in the case of the mixed inhibitor system, the mixed inhibitor system acts as a promoter for the corrosion inhibition efficiency, and the order of the corrosion inhibition efficiency for the five studied inhibitors materials is as follows: \((ZnS-Nano – EG)\) >

Table 4. Gasometrical comparison of the mixed Nano-system and individual inhibitor materials, corrosion inhibition efficiencies of steel in 1.0 M H₂SO₄, the effect of different concentrations of zinc sulfide nanomaterials (ZnS-Nano) at 303 K.

Types of inhibitor materials	Inhibitor name	Sample	Corrosion inhibition efficiency % I.E % (Equation 10)				
Free	Blank	Free	Concentrations ppm				
Mixed inhibitor systems	(Zinc sulfide nanoparticles – EG)	(ZnS-Nano – EG)	25	92	94	96	97
	(Zinc sulfide nanoparticles – PVA)	(ZnS-Nano – PVA)	50	91	92	94	95
Individual inhibitor material	(Zinc sulfide nanoparticles)	(ZnS-Nano)	75	82	85	78	89
	(Ethylene glycol)	EG	100	74	76	79	80
	Polyvinyl alcohol	PVA					

The volume of hydrogen evolved during the corrosion reaction of iron acidic 1.0 M H₂SO₄ medium with and without four different concentrations of nanomaterials as an inhibitor, 25, 50, 75, and 100 ppm were measured with time at room temperature (30°C). The inhibition efficiency was calculated using the following equation (34–37):

\[
\% I.E. = \left[1 - \frac{V_{inh}}{V_{free}}\right] \times 100
\]

where \(V_{inh} \) is the volume of hydrogen gas evolved for the inhibited solution and \(V_{free} \) for the uninhibited solution. The values of evolved hydrogen volumes and inhibition efficiencies at different concentrations of the used nanomaterials inhibitor are shown in Table 4. The inhibition efficiency increase with increasing the inhibitor concentration. This indicates that the applied inhibitor materials act as a good inhibitor for carbon steel in the 1.0 M H₂SO₄ acidic environment (34–37). Table 4 and Figure 5 show that the inhibition efficiency increase by about 15% in the case of the mixed inhibitor system, the mixed inhibitor system acts as a promoter for the corrosion inhibition efficiency, and the order of the corrosion inhibition efficiency for the five studied inhibitors materials is as follows: \((ZnS-Nano – EG)\) >
The data in Table 4, calculated from the analytical gasometrical technique, agree well with those obtained from the chemical technique (weight loss method) with small acceptable experimental differences.

Table 5. The polarization parameters with and without various inhibitor mixture doses (ZnS-Nano – EG).

Solution type	Inhibitor mixture (ZnS-Nano – EG) ppm	i_{corr} mA cm$^{-2}$	$-\xi_{corr}$ mV (SCE)	β_a mVdec$^{-1}$	β_c mVdec$^{-1}$	θ	% I.E.
Inhibitor mixture (ZnS-Nano – EG)	Free	1.5	498	118	127	–	–
	50	0.11	573	158	172	0.926	92.6
	100	0.08	582	169	184	0.947	94.7
	150	0.06	594	172	193	0.96	96.0
	200	0.05	602	176	199	0.967	96.7

Figure 5. The gasometrical data for the relation between concentration and inhibition efficiency for both individual and mixed inhibitor systems.

Figure 6. Steel polarization curve measured in 1.0 M sulfuric acid with and without various concentrations of mixed inhibitor systems (ZnS-Nano – EG).
3.8. Potentiodynamic polarization study
(electrochemical studies)

Table 5 lists Tafel parameters such as corrosion current density (i_{corr}), corrosion potential (E_{corr}), cathodic Tafel slope (β_c), and inhibition efficiency (I.E.%). Figure 6 depicts typical potentiodynamic polarization curves for steel in 1.0 M H$_2$SO$_4$ with and without various concentrations of the mixed inhibitor system (ZnS-Nano – EG). As seen, the addition of the inhibitor mixture (ZnS-Nano – EG) results in a decrease in current, owing to the steel being protected from corrosion. With and without an inhibitor, the cathodic branch has distinct Tafel lines, demonstrating that activation regulates the hydrogen evolution reaction. The addition of the inhibitor combination to the corrosive media reduced the cathodic Tafel slope (β_c). Furthermore, a decrease in hydrogen evolution that does not affect the reaction process can account for the decrease in cathodic surface area. When the E_{corr} shift exceeds 85 mV, which corresponds to the uninhibited solution, it is used to determine whether an inhibitor is cathodic or anodic. When the displacement is less than 85 mV, the inhibitor is classified as a mixed-type inhibitor (15–20). In the current study, the inhibitor mixture (ZnS-Nano – EG) acts as a mixed-type inhibitor.

3.9. Electrochemical impedance spectroscopy
(electrochemical studies)

The Nyquist diagram for the steel solution in 1.0 M H$_2$SO$_4$ with and without various inhibitor combination concentrations is shown in Figure 7 (ZnS-Nano – EG). The characteristics related to the impedance of the schematic, such as charge transfer resistance R_{ct}, double layer capacitance C_{dl}, and inhibitory efficiency, are provided in Table 6 after a thorough simulation by the EC-Lab V10.02 program. A charge transfer process governs the corrosion reaction primarily. Figure 7 shows that all fitted Nyquist plots show a single capacitive loop and that the size of these plots increases with an increasing inhibitor concentration (15–20). Table 6 shows that the R_p values increased as the inhibitor concentration increased and that the inhibition efficiency reached 97% at 100 ppm. In contrast, the C_{dl} and Q values decreased, indicating adsorption on the steel surface.

3.10. Kinetics and thermodynamic parameters

For the determination of the kinetic parameters of the corrosion process, and to elucidate the mechanism of inhibition, weight loss measurements were performed at different temperatures: 303, 313, 323, and 333 K. for the inhibitor mixture 2 (ZnS-Nano – EG) as the best inhibitor of higher inhibition efficiency than another used inhibitor in the present study. The

Solution type	Inhibitor mixture (ZnS-Nano – EG) ppm	R_1 (Ohm/ cm2)	R_∞ (Ohm/ cm2)	C_{dl} µF cm$^{-2}$	Θ	% I.E.
Blank solution	Free	1.84	19.8	1.73	–	–
Inhibitor mixture	50	11.7	289	11.7	0.903	93.1
	100	12.4	354	12.4	0.931	94.4
	150	16.9	498	13.9	0.944	96.1
	200	18.3	613	18.5	0.968	96.8

Figure 7. Nyquist diagram for steel in 1.0 M sulfuric acid with and without different concentrations of the mixed inhibitor system (ZnS-Nano – EG).
corrosion inhibition efficiency of inhibitor mixture 2 was found to increase by increasing temperature proving that the protective film formed from this mixture on the steel surface is more bonded and more stable at higher temperatures (15). The Arrhenius equation and the transition state equation (15–21) can be used to express the relationship between corrosion rate and temperature:

$$\ln R_{corr} = \exp \left(-\frac{E_a}{RT} \right) + A$$ \hspace{1cm} (11)

where E_a is the apparent activation energy, R is the universal gas constant, A is the Arrhenius pre-exponential factor, and T is the absolute temperature.

Figure 8 shows an Arrhenius curve for carbon steel submerged in 1.0 M sulfuric acid with and without different concentrations of the mixture 2 inhibitor ($ZnS-Nano – EG$). The plots obtained are straight lines, with the slope of each straight line corresponding to the apparent activation energy, as given in Table 7. The higher value of E_a for carbon steel with the inhibitor mixture ($ZnS-Nano – EG$) compared to that without the

Inhibitor	Inhibitor concentrations (ppm)	E_a (kJmol$^{-1}$)	ΔH_a (kJmol$^{-1}$)	$-\Delta S_a$ (Jmol$^{-1}$)
Blank Free acid (1.0 M H$_2$SO$_4$)	56.5	48	158	
Mixture 2 inhibitor (ZnS-Nano – EG)	25	63.6	56	149
	50	67.5	58	141
	75	69.7	62	137
	100	73.2	69	129
	500	78.6	74	121

Table 7. Values of activation parameters for carbon steel in 1.0 M H$_2$SO$_4$ with and without different concentrations of the expired drug inhibitor.

Figure 8. Arrhenius plot for carbon steel in an 1.0 M H$_2$SO$_4$ solution with and without varying concentrations of the inhibitor mixture 2 ($ZnS-Nano – EG$).

Figure 9. Transition state plot for carbon steel in 1.0 M H$_2$SO$_4$ with various inhibitor mixture 2 ($ZnS-Nano – EG$) doses.
inhibitor mixture (ZnS-Nano – EG) could be attributed to its chemical adsorption in the current investigation.

The inhibition efficiency increases with an increase in temperature, leading to the conclusion that the protective film of these compounds formed on the carbon steel surface is stable at higher temperatures; this indicates that the inhibitor system (ZnS-Nano – EG) produces chemical adsorption (15).

The higher value of activation energy (Ea) with an inhibitor is higher than without it, which is attributed to its chemical adsorption (15, 16).

In the present study, the higher value of Ea for carbon steel, with the inhibitor system, compared to that without it, is attributed to its chemical adsorption (15).

An alternative form of the Arrhenius equation is the transition state equation (45–51):

$$CR = \left(\frac{RT}{Nh} \right) \exp \left(\frac{\Delta S_a}{R} \right) \exp \left(-\frac{\Delta H_a}{RT} \right)$$

(12)

where h is Plank’s constant, N is Avogadro’s number, ΔS_a is the entropy of activation, and ΔH_a is the enthalpy of activation. A plot of log (CR/T) vs. 1/T, as shown in Figure 9 gave a straight line, with a slope of $(-\Delta H_a/2.303R)$ and an intercept of $[\log(R/Nh) + (\Delta S_a/R)]$, from which the values of ΔH_a and ΔS_a were calculated and listed in Table 7.

The endothermic nature of the metal dissolving process is reflected by the positive values of ΔH_a for corrosion of carbon steel with and without the inhibitor. The decrease in carbon steel corrosion rate is primarily regulated by kinetic parameters of activation, as seen by the increase in ΔH_a with increasing inhibitor system concentrations (15–21). The entropy of activation values for inhibited solutions is less negative than for uninhibited solutions. This shows that as the reactants progressed to the active complex, the unpredictability increased (40–51). This suggests that an increase in randomness occurred while moving from reactants to the activated complex (15).

3.11. Corrosion inhibition mechanism

The mechanism of corrosion inhibition in an acidic solution is the adsorption of inhibitor onto the metal surface. In acidic conditions, inhibitor adsorption at the metal/solution interface is the initial stage of the inhibitory mechanism. Four different types of adsorption may take place during inhibition involving organic molecules at the metal/solution contact (15–21):

1. The electrostatic attraction of charged metals and molecules.
2. The metal’s interaction with the molecules’ unshared electron pairs.
3. Pi-electrons’ interactions with metal, and
4. A synthesis of the three options above.

The number of adsorption sites and their charge density, molecule size, the heat of hydrogenation, the mechanism of contact with the metal surface, and the creation of metallic complexes are some of the variables that determine an inhibitor’s ability to inhibit (14–21). Physical adsorption requires the presence of a metal with a vacant low-energy electron orbital, an inhibitor with molecules that are very loosely coupled to electrons or a heteroatom with lone pair electrons, and charged species in the bulk of the solution. However, in an acidic media, the described chemical can be protonated. They consequently transform into cations and coexist with the equivalent molecular form:

$$[\text{INHIBITOR}] + x^+ H^+ [\text{INHIBITOR}]^{x+}$$

(13)

where H^+ stands for the hydrogen proton from the acidic, corrosive environment, and [INHIBITOR] for the tramadol molecule. The protonated $[\text{INHIBITOR}]^{x+}$ could be linked to the carbon steel surface by the electrostatic interaction between SO_4^{2-} and protonated $[\text{INHIBITOR}]^{x+}$ (15–21) since the steel surface has a positive charge in the H$_2$SO$_4$ medium. This might be further explained by the idea that when SO_4^{2-} is present, negatively charged SO_4^{2-} binds to positively charged surfaces, causing protonated INHIBITOR to adsorb to the metal surface. Chemical interaction exists in addition to electrical interaction. Chemical contact was brought about by non-bonding oxygen, nitrogen, and benzene ring electrons (15–21). In the present work, the suggested mechanism for the inhibition process is due to the adsorption and adhesion of the inhibitor molecules on the steel surface with the formation of the complex between the metallic surface and inhibitor molecules. This suggestion was proved by obeying the adsorption process to the Langmuir adsorption isotherm model which suggests the monolayer adsorption of the inhibitor molecules on the metallic surface. In addition, the positive values of enthalpy of the adsorption process are shown. The observed increment of the inhibition efficiency with the rising temperature is because of the absorbed energy needed for the formation of the chemical bond (chemisorption mechanism) between the metallic surface and adsorbed inhibitor nanoparticles. All the mentioned points prove the complex formation between steel and inhibitor molecules.

3.12. Anti-Bacterial Activity (SRB biological resistivity)

The sulfate-reducing bacteria (SRB) is a kind of pathogenic bacteria that can grow in water tanks and petroleum tanks causing the reduction of sulfate ions into hydrogen sulfide gas (H2S) which is dangerous [70].
The production of corrosive hydrogen sulfide (H2S) causes severe problems for tanks and pipelines. Heterocyclic compounds containing sulfur, oxygen, and nitrogen are efficient compounds against sulfate-reducing bacteria. In the present work, the prepared heterocyclic mixture from polyol and zinc sulfide (ZnS) nanoparticles were tested as anti-sulfate-reducing bacteria. Individual inhibitor compounds were also tested against the same kind of bacteria the antibacterial efficiency of both mixture inhibitors and individual inhibitors were compared. The water sample that included the sulfate-reducing bacteria (SRB) came from an Egyptian gas field. The water analysis, SRB population, and monitoring techniques used with SRB (BART) vials have all been covered previously (capacity of 15 ml). In ultra-pure water, a tiny concentration of each inhibitor was created (1 ppm mol-1), and only 1 ml of this solution was introduced to the SRB test vial along with the water sample (15 ml) containing the SRB source [70]. As a blank, a different vial was created with only 15 ml of SRB water supply and no other inhibitors. All vials were cultured in an incubator at 35°C. The maximum SRB test duration is just 11 days, although it may be shorter if it is realized that the first black sign has shown on the test vials. The test for the blank was finished in just 4 days with an aggressive population value of roughly 27000 (cfu ml-1). For PVA and EG, the test was finished after 7 days, yielding a population value of 325 (cfu ml-1), with the severity of SRB being changed from aggressive to moderate in the case of the blank sample. As shown in Table 8, the observed results for all inhibitor mixture systems (ZnS-Nano - EG), (ZnS-Nano - PVA), and (ZnS-Nano) were achieved after 8 days with good efficiency against SRB bacteria, giving 75 cfu ml-1 population (not aggressive). The findings unmistakably offer a useful signal of a decrease in SRB reactivity. Additionally, the corrosion brought on by the presence of sulfate-reducing bacteria (SRB) can be reduced thanks to the biological activity of the inhibitors (ZnS-Nano - EG), (ZnS-Nano - PVA), and (ZnS-Nano). This means that, the antibacterial efficiency against the sulfate-reducing bacteria (SRB) for the heterocyclic polyol compounds is higher in the case of an inhibitor mixture than in the case of individual inhibitors.

4. Conclusions

From the experimental data and calculation results, the following important points can be concluded:

- The addition of PVA during the preparation of zinc sulfide nanoparticles improves the size of nanoparticles and their efficiency toward corrosion inhibition of steel.
- All the studied materials act as good corrosion inhibitors for steel in a 1.0 M H2SO4 acidic environment.
- The inhibition efficiency of the studied inhibitors was found to increase by nanoparticle concentration, Polyol concentrations, and reaction temperature.
- The inhibition is due to the adsorption and adhesion of zinc sulfide nanomaterial molecules on the steel surface, and the adsorption obeys the Langmuir adsorption isotherm model, the suggested inhibition mechanism is chemical adsorption.
- The inhibition efficiency of the mixed – nanomaterials-drug system is higher by 15% than the inhibition efficiency of the individual nanomaterials or polyol.
- The order of the inhibition efficiency of the five studied nanomaterials drugs is (ZnS-Nano – EG) > (ZnS-Nano – PVA) > (ZnS-Nano) > (EG) > (PVA).
- The antibacterial efficiency against the sulfate-reducing bacteria (SRB) for the heterocyclic polyol compounds is higher in the case of an inhibitor mixture than in the case of individual inhibitors.

Acknowledgements

The authors highly appreciate and profusely thank Scientific Research Deanship and the Molecular diagnostic and therapeutic treatment unit at the University of Ha'il, KSA. This research has been funded by Scientific Research Deanship at University of Ha'il – Saudi Arabia through project number MDR-22025.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research has been funded by Scientific Research Deanship at the University of Ha'il – Saudi Arabia through project number MDR-22025.

ORCID

Ahmed Shamroukh http://orcid.org/0000-0001-5302-1815
Metwally Abdallah http://orcid.org/0000-0002-6132-8849

References

[1] Jafarov, M.A.; Nasirov, E.F.; Kazmzade, A.H.; Jahangirova, S.A. Synthesis and Characterization of Nanoscale
Material ZnS in Porous Silicon by Chemical Method. Chalcogenide Lett. 2021, 18 (12), 791–795.

[2] Allehyan, S.H.A.; Seoudi, R.; Said, D.A.; Lashin, A.R.; Abouelsayed, A. Synthesis, Characterization, and Size Control of Zinc Sulfide Nanoparticles Capped by Poly (ethylene Glycol). J. Electron. Mater. 2015, 44 (11), 4227–2236. DOI: 10.1007/s11664-015-3974-3.

[3] Rahdar, A. J. Nanostruct. Chem. 2013, 6 (3), 61.

[4] Mahmudin, L.; Suharyadi, E. Agung Bambang Setio Seto Utomo, Kamsul Abraha, Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications. J. Modern Phys. 2015, 6, 1071–1076.

[5] Dong, F.; Koodali, R.T.; Wang, H.; Ho, W. Nanomaterials for Environmental Applications. J. Nanomater. 2014, 2014, 1–4.

[6] Rodrigues, S.M.; Demokritou, P., Dokozlian, N., et al. Nanotechnology for Sustainable Food Production: Promising Opportunities and Scientific Challenges. Environ. Sci. Nano. 2017, 4 (4), 767–781.

[7] Guo, D.; Xie, G.; Luo, J. Mechanical Properties of Nanomaterials: Basics and Applications. J. Phys. D: Appl. Phys. 2013, 47 (1), 013001.

[8] Jabeena, M.; Asharaf, M.W.; Tayyabasad, S.; Alie, N.; Kurnar, R.V.; Alrob, H. Growth of Zinc Oxide Nanowires by Equimolar Solution Technique on Conducting Substrates Used for Optical Applications. Dig. J. Nanostruct. Biostroct. 2021, 16 (4), 1253–1261.

[9] Abdelhameed, R.S.; Abd-Alhakeem, H.; Abu-Nawwas, A.; Shehata, H.A. Nano-composite as Corrosion Inhibitors for Steel Alloys in Different Corrosive Media. Adv. Appl. Sci. Res. 2013, 4 (3), 126–129.

[10] Atta, A.; Abdel Hameed, R.S.; Al-Lohedan, H.A.; Ezzat, A.O.; Hashem, A.I. Magnetite Doped Cuprous Oxide Nanoparticles as Modifier for Epoxy Organic Coating. Prog. Org. Coat. 2017, 112, 295–303.

[11] Khodair, Z.T.; Khodam, A.A.; Jasim, H.A. Corrosion Protection of Mild Steel in Different Aqueous Media via Epoxy/Nanomaterial Coating: Preparation, Characterization and Mathematical Views. J Mater Res Technol. 2018, 8 (1), 424–435. doi:10.1007/jmrt.2018.03.003

[12] Rathish, R.J.; Dorothy, R., Joany, R.M., et al. Corrosion Resistance of Nanoparticle-Incorporated Nano Coatings. Eur. Chem. Bull. 2013, 2 (12), 965–970.

[13] Jain, P.; Patidar, B.; Bhawars, J. Potential of Nanoparticles as a Corrosion Inhibitor: A Review. J. Bio- Tribo-Corros. 2020, 6, 43. DOI: 10.1007/s40735-020-00335-0.

[14] Abdelhameed, R.S. Recycling of the Used Cooking Oils as Corrosion Inhibitors for Steel in Different Corrosive Media. Adv. Appl. Sci. Res. 2016, 7 (2), 92–102.

[15] Abdel Hameed, R.S. Cationic Surfactant-Zn1+ System as Mixed Corrosion Inhibitors for Carbon Steel in Sodium Chloride Corrosive Medium. Portugaliae Electromich. Acta 2018, 36 (4), 1–19.

[16] Abdel Hameed, R.S. Schiff Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Corrosive Medium. Tenside Surfact. Deterg. 2019, 56 (3), 209–215.

[17] Abdel Hameed, R.S. Solvent Free Glycolysis of Plastic Waste as Green Corrosion Inhibitor for Carbon Steel in Sulfuric Acid. J. New Mater. Electrochem. Syst. 2017, 20, 141–149.

[18] Abdel Hameed, R.S. Aminolysis of Polyethylene Terephthalate Waste as Corrosion Inhibitor for Carbon Steel in HCl Corrosive Medium. Adv. Appl. Sci. Res. 2011, 2 (3), 483–499.

[19] Abdel Hameed, R.S. Recycling of Plastic Waste as Green Corrosion Inhibitors for Steel in Different Corrosive Media. Mater. Sci. J. 2016, 14 (12), 503–509.

[20] Abdel Hameed, R.S. Ranitidine Drugs as Non-Toxic Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Medium. Portugaliae Electrochim. Acta 2011, 29 (4), 273–285.

[21] Abdel Hameed, R.S.; Abu-Nawwas, A.-A.H.; Shehata, H.A. Nano-composite as Corrosion Inhibitors for Steel Alloys in Different Corrosive Media: Review Article. Adv. Appl. Sci. Res. 2013, 4 (3), 126–129.

[22] Atta, A.M.; Al-Hodan, H.A.; Abdel Hameed, R.S. Preparation of Green Cardanol-Based Epoxy and Hardener as Primer Coatings for Petroleum and gas Steel in Marine Environment. Prog. Org. Coat. 2017, 111, 283–293. DOI: 10.1016/j.porgcoat.2017.06.002.

[23] Abdel Hameed, R.S. Expired Ranitidine Drugs as Green Corrosion Inhibitor for Aluminum in 1M Hydrochloric Acid. Al-Azhar Bull. Sci. 2009, 20 (1), 150.

[24] Abdel Hameed, R.S. Expired Drugs as Corrosion Inhibitors for Metals and Alloys. Physical Chemistry: An Indian Journal. PCAU 2013, 8 (4), 146–149.

[25] Vaszcins, N.; Duca, D.-A.; Flueras, A.; Dana, M.-L. EXPIRED DRUGS AS INHIBITORS IN ELECTROCHEMICAL PROCESSES–A MINI-REVIEW. Stud. Univ. Babes-Bolyai, Chem. 2019, 64, 3.

[26] Chauhan, D.S.; Sorour, A.A.; Quraishi, M.A. An Overview of Expired Drugs as Novel Corrosion Inhibitors for Metals and Alloys. Int. J. Chem. Pharm. Sci. 2016, 4, 680.

[27] Abdel Hameed, R.S.; Al Sha’fey, H.I.; Abu-Nawwas, A.H. 2-(2,6-Dichloranilino) Phenyl Acetic Acid Drugs as Eco-Friendly Corrosion Inhibitors for Mild Steel in 1M HCl. Int. J. Electrochem. Sci. 2014, 9, 6006–6019.

[28] Alsha’fey, H.I.; Abdel Hameed, R.S.; Ali, F.A.; Aboul-Magd, A.E.-A.S.; Salah, M. Effect of Expired Drugs as Corrosion Inhibitors for Carbon Steel in 1M HCL Solution. Int. J. Pharmaceut. Sci. Res. 2014, 27 (1), 146.

[29] Abdel Hameed, R.S.; Al Sha’fey, H.I.; Abu-Nawwas, A.H. Expired Voltaren Drugs as Corrosion Inhibitor for Aluminium in Hydrochloric Acid. Int. J. Electrochem. Sci. 2015, 10, 2098–2109.

[30] Abdel Hameed, R.S.; Al-bonayan, A.M. Recycling of Some Water Soluble Drugs for Corrosion Inhibition of Steel Materials: Analytical and Electrochemical Measurements. J. Optoelectr. Biomed. Mater. 2021, 13 (2), 45–55. https://chalcogen.ro/45_HameedRSA.pdf.

[31] Abdel Hameed, R.S.; Aljuhani, E.H.; Falaly, R.; Munshi, A.M. Effect of Expired Paracetamol-Zn1+ System and Its Synergistic Effect Towards Iron Dissolution Inhibition and Green Inhibition Performance. J. Adhes. Sci. Technol. 2020, 34 (2020), 1–27. DOI:10.1080/01694243.2020.1826801.

[32] Abdel Hameed, R.S.; Mohamed, D.; Khaled, A.; Abdallah, M.; Aljuhani, M.M.; Al-Mhyawi, S.R.; Soliman, M.S. Application of Expired Co-Amoxiclav Medicinal Drugs for Corrosion Inhibition of Steel Alloy Used in Petroleum Industry in Acidic Environment. Int. J. Corros. Scale Inhib. 2021, 10 (2), 714–731.
Inhibitor for Stainless Steel: The Pigment Extract Study. Mater. Res. 2017, 20 (6), 1492–1502.

[58] Ayman M, A.; El-Mahdy, G.A.; Al-Lohedan Hamad, A. Corrosion Inhibition Efficiency of Modified Silver Nanoparticles for Carbon Steel in 1 M HCl. Int. J. Electro Chem. Sci. 2013, 8 (2013), 4873–4885.

[59] Gao, W.; Liu, Z.; Li, Z.; Li, S.S.; Gong, H. Nano-crystal Alloy and Alloy-Oxide Coatings and Their High-Temperature Corrosion Properties. Int. J. Mod. Phys. B 2002, 16 (1–2), 128–136.

[60] Erb, U. Electrodeposited Nanocrystals: Synthesis: Properties and Industrial Applications. Nanostruct. Mater. 1995, 6 (5–8), 533–538.

[61] Ghosh, S.K.; Grover, A.K.; Dey, G.K.; Suri, A.K. Synthesis of Corrosion-Resistant Nanocrystalline Nickle-Copper Alloy Coatings by Pulse-Plating Technique. Defence Sci. J. 2005, 55 (1), 63–74.

[62] Kim, H.; Ra, H.N., Kim, M., et al. Enhancement of Barrier Properties by wet Coating of Epoxy-ZrP Nanocomposites on Various Inorganic Layers. Prog. Org. Coat. 2017, 108 (2017), 25–29.

[63] Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel. Corros. Sci. 2017, 115, 78–92.

[64] Huang, T.C.; Lai, G.H., Li, C.E., et al. Advanced Anti-Corrosion Coatings Prepared from α-Zirconium Phosphate/Polyurethane Nanocomposites. RSC Adv. 2017, 7 (16), 9908–9913.

[65] Gu, M.; Jiang, C., Liu, D., et al. Cellulose Nanocrystal/ Polyethylene Glycol) Composite as an Iridescent Coating on Polymer Substrates: Structure-Color and Interface Adhesion. ACS Appl. Mater. Interfaces 2016, 8 (47), 32565–32573.

[66] Kumar, M.S.; Yasoda, K.Y.; Batabyal, S.K.; Kothurkar, N.K. Carbon-polyaniline Nanocomposites as Supercapacitor Materials. Mater. Res. Express 2018, 5 (4), 045505.

[67] Mahmoud, A.H.; Salih, S.A.; Bahaa, M.A.; Abou-Elhagag, A.H. Electrodeposition and Corrosion Protection Performance of Polypyrrole Composites on Aluminum. Int. J. Electrochem. Sci. 2016, 11, 3938–3951.

[68] Quadri, T.W.; Olasunkanmi, L.O., Fayemi, O.E., et al. Zinc Oxide Nanocomposites of Selected Polymers: Synthesis: Characterization, and Corrosion Inhibition Studies on Mild Steel in HCl Solution. ACS Omega 2017, 2 (11), 8421–8437.

[69] Deshpande, P.P.; Bhopale, A.A.; Mooss, V.A.; Athawale, A.A. Conducting Polyaniline/Nano-Zinc Phosphate Composite as a Pigment for Corrosion Protection of low-Carbon Steel. Chem. Pap. 2016, 71 (2), 189–197.

[70] Meesters, K.P.; Van Groenestijn, J.; Gerritse, J. Biofouling reduction in recirculating cooling systems through biofiltration of process water. Water Res. 2003, 37 (1), 525–532.

[71] Mahmood, M.H.; Al Hazza, S.; Haidera, F.I. Developing of Corrosion Resistance Nano Copper Oxide Coating on Copper Using Anodization in Oxalate Solution. Int. J. Eng. 2018, 31 (3), 450–455.