Fulvestrant-Induced Cell Death and Proteasomal Degradation of Estrogen Receptor α Protein in MCF-7 Cells Require the CSK c-Src Tyrosine Kinase

Citation
Yeh, Wei-Lan, Keiko Shioda, Kathryn R. Coser, Danielle Rivizzigno, Kristen R. McSweeney, and Toshi Shioda. 2013. Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor α protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS ONE 8(4): e60889.

Published Version
doi:10.1371/journal.pone.0060889

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11181000

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Fulvestrant-Induced Cell Death and Proteasomal Degradation of Estrogen Receptor α Protein in MCF-7 Cells Require the CSK c-Src Tyrosine Kinase

Wei-Lan Yeh, Keiko Shioda, Kathryn R. Coser, Danielle Rivizzigno, Kristen R. McSweeney, Toshi Shioda*

Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, United States of America

Abstract

Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast cancer cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.

Introduction

Approximately 70% of breast cancers express estrogen receptor α (ERα), and most of these ERα-positive primary tumors depend on estrogen signaling for their growth and survival [1]. Endocrine therapy aims to shut off estrogen signaling in ERα-positive breast cancer cells to halt cell proliferation and/or to induce cell death [2–7]. Two types of antiestrogens with distinct mechanisms of actions have been used for this purpose: Selective Estrogen Receptor Modulators (SERMs) and the Selective Estrogen Receptor Down-regulators (SERDs). The SERMs, represented by tamoxifen or raloxifene, bind to ERα as partial agonist or antagonists in a manner dependent on target tissues [8–10]. On the other hand, the SERDs, represented by fulvestrant, bind to ERα and induce rapid proteasomal degradation of ERα protein [11]. Unfortunately, the benefit of endocrine therapy is seriously limited by resistance of tumors against antiestrogens [12], and a large number of studies have proposed molecular mechanisms behind the endocrine therapy resistance of human breast cancer cells. When activated by agonistic ligands, ERα functions as a transcription factor and affects expression of thousands of genes in human breast cancer cells [13–15]. In addition, ERα initiates rapid intracellular signaling [16] through phosphorylation of membrane receptor kinases, including insulin-like growth factor I receptor (IGF-IR) [17], epidermal growth factor receptor (EGFR) [18], and HER2/ERBB2 [19]. ERα also interacts with other signaling kinases and adaptor molecules such as c-Src [20], Shc [21], PAK1 [22], DLC1 [23,24], PELP1/MNAR [22,25,26], and p85 PI3-kinase regulatory subunit [27]. These interactions lead to activation of downstream signaling kinases such as the p42/44 MAPK and AKT [28], which play critical roles in regulating cell proliferation and survival. Some of these ERα-activated protein kinases (e.g., c-Src, PAK1, MAPK, and AKT) phosphorylate ERα to enhance the genomic actions of ERα. Roles of another network of signaling pathway involving STAT1, interferon regulatory factor 1, NF-kB, and their downstream effectors (e.g., caspases and BCL2 family apoptosis regulators) are also becoming increasingly evident [29]. Thus, a large body of evidence supports the notion that a highly complex signaling network is involved in the mechanism of estrogen actions and possibly the endocrine therapy resistance of ERα-positive breast cancer cells.

To identify novel components in the signaling network leading to endocrine therapy resistance, functional screening studies using the RNAi knockdown technique have been performed by several laboratories. For example, Iorns et al. [30] transfected MCF-7 human breast cancer cells with an arrayed library of siRNA oligonucleotides that targeted 779 human kinases and phospha-
with the pLKO.1 empty lentiviral vector resulted in only induced massive cell death in mock-infected cells and cells infected performed. Exposure of cells to 100 nM fulvestrant for 7 days passages, within which all experiments in the present study were 75% reduction in CSK protein expression (Fig. 1B). The CSK shRNA lentiviruses showed significant resistance to fulvestrant- and Fig. S1). In contrast, MCF-7 cells infected cells the CSK caused resistance of MCF-7 cells to fulvestrant caused massive cell death, with 21.5 ± 1.3% and 35.5 ± 2.7% surviving cells after exposure to shRNA #1 and #2, respectively. To determine whether the CSK knockdown efficiency correlates with the strength of fulvestrant resistance, MCF-7 cells were infected with a 10-clone panel of shRNA lentiviruses (Table S1), and their fulvestrant-induced cell death was examined (Fig. S2). Effective RNAi knockdown of CSK was observed with four shRNA lentiviral clones whereas three clones as well as pLKO.1 control clones failed RNAi knockdown. Fulvestrant resistance was observed with the four shRNA lentiviral clones that effectively knocked down CSK whereas cells infected with the failed lentiviral

Results

RNAi knockdown of the c-Src Tyrosine Kinase (CSK) caused resistance of MCF-7 cells to fulvestrant.

Our prior studies revealed the critical importance of BIK (a BH3-only family pro-apoptotic protein) and TP53 (a tumor suppressor transcription factor necessary for transcriptional induction of the BIK mRNA transcripts) in fulvestrant-induced apoptosis of MCF-7 cells [31,32]. To obtain further insights into the mechanism of fulvestrant actions, we performed RNAi knockdown screenings to identify additional molecules required for fulvestrant-induced MCF-7 cell apoptosis. MCF-7 cells grown in 384-well plates were infected with a library of arrayed lentiviruses expressing shRNA species targeting the entire RefSeq collection of known human protein kinases and phosphatases consisting of 6,560 lentivirus clones [33,34]. Cells were then exposed to 100 nM fulvestrant for 7 days, and surviving cells were visualized by crystal violet staining. These screenings revealed that RNAi knockdown of MAP2K7 or CSK (c-Src tyrosine kinase, NCBI gene ID = 1445) strongly suppress fulvestrant-induced MCF-7 cell death (Fig. 1A for CSK data; MAP2K7 data not shown). Since a similar RNAi knockdown project by Iorns et al. already identified MAP2K7 and several other kinases including CDK10 as Ser/Thr kinases required for tamoxifen sensitivity of MCF-7 cells, we focused on the roles of CSK in the cytocidal action of fulvestrant on MCF-7 cells.

RNAi knockdown of two independent shRNA lentivirus clones targeting human CSK [The RNAi Consortium Clone ID = TRCN0000199018 (target sequence, 5'-CGACTAAGTCTGACGTTGGA, is in the CSK coding sequence) and TRCN0000199031 (target sequence, 5'-CAGTCTCTGACGACCCACCCT, is in the 3'-UTR of the CSK mRNA transcripts); hereafter referred to as shRNA #1 and #2, respectively] confirmed the requirement of CSK for the cytocidal action of fulvestrant in MCF-7 cells.

Effective RNAi knockdown of CSK was observed with four shRNA lentiviral clones whereas three clones as well as pLKO.1 control clones failed RNAi knockdown. Fulvestrant resistance was observed with the four shRNA lentiviral clones that effectively knocked down CSK whereas cells infected with the failed lentiviral

![Figure 1. RNAi knockdown of CSK in MCF-7 cells causes resistance to fulvestrant.](image-url)
CSK is required for fulvestrant-induced ERα protein degradation in estrogen-dependent human breast cancer cells

Fulvestrant causes proteasomal degradation of ERα protein in breast cancer cells [11,31,35]. High concentrations of 17β-estradiol (E2), a physiological ligand of ER, also causes proteasomal degradation of liganded ERα protein [42–44]. Since strong genetic and phenotypic heterogeneity, including sensitivity to antiestrogens, has been shown to occur in MCF-7 cell cultures maintained in different institutions and cell resource repositories [45–50], we first attempted to confirm that both fulvestrant and E2 cause proteasome-dependent degradation of ERα protein. When MCF-7 cells were exposed to 100 nM fulvestrant, expression of ERα protein was reduced in a time-dependent manner (Fig. 3A, 3C). Similarly, exposure of hormone-starved MCF-7 cells to 100 nM E2 caused time-dependent reduction in ERα protein expression (Fig. 3B, 3C). Under our experimental conditions, the time-dependent reduction in ERα protein caused by exposure to fulvestrant and E2 were comparable, with only 35% of ERα protein remained after 6 hours of exposure (Fig. 3C). It is important to emphasize that the E2-induced reduction in ERα protein expression was observed only at the highest concentration of the ligand tested (100 nM; Fig. 3D). In contrast, E2-stimulated proliferation of MCF-7 cells at only 100 pM [13]. The observed reduction in ERα protein expression after exposure to both fulvestrant and E2 did not occur when cells were pre-exposed to MG132, a wide-spectrum proteasome inhibitor [51] (Figs. 3F–G), confirming the reported proteasome-dependent nature of fulvestrant- and E2-induced degradation of ERα protein [52,53]. Exposure to a high concentrations of MG132 (125 nM) caused increase in ERα protein expression to a level even greater than basal ERα protein expression (i.e., persistent synthesis and proteasomal degradation) in MCF-7 cells.

Although fulvestrant and tamoxifen are similar in inhibiting estrogen signaling, their mechanisms of actions differ. Whereas fulvestrant causes proteasomal degradation of ERα protein in breast cancer cells [11,31,35], tamoxifen is known to stabilize ERα protein [54,55]. To explain the fulvestrant-specific resistance of the CSK-knockdown MCF-7 cells without affecting their tamoxifen sensitivity, we hypothesized that CSK may be required for fulvestrant-induced proteasomal degradation of ERα protein. To test this hypothesis, we examined time-dependent degradation of ERα protein after exposure to 100 nM fulvestrant in MCF-7 cells infected with pLKO.1 control or CSK shRNA lentiviruses (Fig. 4). Infection with both CSK shRNA lentiviruses #1 and #2 almost completely abolished the fulvestrant-induced ERα protein degradation when examined by Western blotting. However, infection

RNAi knockdown of CSK does not affect MCF-7 cell sensitivity to either tamoxifen or paclitaxel

Two different types of antiestrogens are presently used for endocrine therapy of breast cancer—namely, the SERDs (represented by fulvestrant) and the SERMs (represented by tamoxifen). Cross-resistance of breast cancer cells to these distinct types of drugs is often observed, in both clinical and cell culture settings [35–37]. To examine whether CSK is required for the cytotoxic effects of tamoxifen, MCF-7 cells were exposed to 4-hydroxytamoxifen (4-OHT), which is the biologically active metabolite of tamoxifen [38]. A 10-day exposure to 1 μM 4-OHT caused significant MCF-7 cell death although its cytotoxic effect was weaker than that of fulvestrant (Figs. 2A and S3A), in agreement with previous studies [39,40]. To our surprise, RNAi knockdown of CSK did not affect the tamoxifen effect at all. These results indicate that CSK is specifically required for fulvestrant (SERD)-induced MCF-7 cell death while it is dispensable for the cytotoxic action of tamoxifen (SERM).

To further characterize the specificity of the CSK requirement for drug-induced MCF-7 cell death, we examined the effects of RNAi knockdown of CSK on MCF-7 cell sensitivity to paclitaxel, a widely used chemotherapeutic drug that inhibits dissociation of microtubule polymers [41]. A 2-day exposure of MCF-7 cells to varying concentrations of paclitaxel (1–1000 nM) caused massive cell death in a dose-dependent manner (Figs. 2B and 3B). However, RNAi knockdown of CSK failed to affect the cytotoxic effects of paclitaxel. Thus, the drug resistance of MCF-7 cells infected with shRNA lentiviruses targeting CSK was highly specific for fulvestrant.
with pLKO.1 control virus did not significantly alter the action of fulvestrant effect (Figs. 4A and 4B). To obtain more quantitative ER\(a\) protein data, we repeated this experiment but using ELISA (Fig. 4C). After exposure to fulvestrant for 6 hours, ER\(a\) protein in pLKO.1-infected control cells was reduced from 37.65 ± 1.64 ng/100 μg total extractable cellular protein to 22.27 ± 0.72 ng/100 μg. On the other hand, ER\(a\) expression in cells infected with CSK shRNA lentiviruses was slightly reduced from 37.45 ± 1.48 ng/100 μg to 30.22 ± 1.75 ng/100 μg (shRNA #1) and 39.55 ± 0.65 ng/100 μg to 31.60 ± 0.77 ng/100 μg (shRNA #2) (Fig. 4C). Thus, agreeing with the Western blotting data, ER\(a\) expression determined by ELISA was reduced to 33.6 ± 6.1% of vehicle-exposed control after 6-hour exposure to 100 nM fulvestrant in pLKO.1-infected cells. In contrast, cells infected with

Figure 3. Both fulvestrant and 17\(\beta\)-estradiol (E2) enhance proteasomal degradation of ER\(x\) protein in MCF-7 cells. (A–C) Fulvestrant (A) and E2 (B) caused time-dependent reduction in ER\(x\) protein expression: Western blotting. Intensities of ER\(x\) protein bands were determined by densitometry (C, mean ± SEM of three independent experiments. Asterisks indicate statistical significance, \(p<0.05\) to vehicle control). (D, E) E2 dose-dependent reduction in ER\(x\) protein expression. Cells were exposed to varying concentrations of E2 for 6 hours and subjected to Western blotting analysis of ER\(x\) protein (D). Intensities of ER\(x\) protein bands were determined by densitometry (E, mean ± SEM of three independent experiments. Asterisk indicates t-test significance \(p<0.05\) to vehicle control). (F–H) Pre-exposure to MG132 dose-dependently prevented reduction in ER\(x\) protein expression caused by fulvestrant (F) and E2 (G). Con, vehicle control (0.1% ethanol). Cells were exposed to varying concentrations of MG132 for 30 minutes and then exposed additionally to fulvestrant or E2 for 6 hours. Intensities of ER\(x\) protein bands were determined by densitometry (H, mean ± SEM of three independent experiments. Asterisks indicate statistical significance, \(p<0.05\)).

doi:10.1371/journal.pone.0060889.g003
with CSK shRNA lentiviruses retained 79.08 ± 14.72% (shRNA #1) and 89.56 ± 20.44% (shRNA #2) ERα protein expression as compared to vehicle control at under the same conditions. When CSK protein was re-expressed in the cells infected with the CSK shRNA #1 lentivirus by transfection of an expression plasmid, the fulvestrant-induced degradation of ERα protein was partly rescued (Fig. S4). However, re-expression of CSK did not reinstate the fulvestrant-induced MCF-7 cell death (data not shown), presumably due to the transient nature of CSK re-expression from a plasmid vector. Thus, RNAi knockdown of CSK expression strongly suppresses the fulvestrant-induced ERα protein degradation in MCF-7 cells.

To determine whether the suppression of the fulvestrant-induced ERα protein degradation by RNAi knockdown of CKS is also observed in another cell culture model, we repeated the same experiment with T47D human breast cancer cells. Whereas T47D cells are dependent on estrogen for their proliferation, they survive in the absence of estrogen signaling due to the loss-of-function mutation of the p53 tumor suppressor protein [56]. Thus, when T47D cells were exposed to fulvestrant, cells neither proliferated nor died (Fig S5A). Expression of ERα protein in T47D cells infected with the pLKO.1 control lentiviral vector was strongly diminished upon exposure to 100 nM fulvestrant for 3–9 hours (Figs. S5C, S5E), reproducing the observation made with MCF-7 cells (Fig. 2). In contrast, ERα protein was significantly resistant to degradation in fulvestrant-exposed T47D cells infected with the CSK-KD #1 shRNA lentivirus (Figs. S5D, S5E), whose CSK expression was reduced by approximately 70% (data not shown). The resistance was partly reversed by re-expression of CSK from an exogenous vector (Fig. S5E). These results indicate that CSK is required for the fulvestrant-induced ERα protein degradation in T47D cells even though fulvestrant does not show significant cytotoxic action in this cell line.

Small-molecular-weight inhibitors of c-Src do not affect fulvestrant-induced MCF-7 cell death or ERα protein degradation

CSK (c-Src tyrosine kinase) is a protein tyrosine kinase that phosphorylates the C-terminal regulatory tyrosine of c-Src oncoprotein, which itself is a protein tyrosine kinase [57]. Phosphorylation by CSK suppresses the kinase activity of c-Src as well as other Src-family tyrosine kinases, and this is a physiological mechanism regulating c-Src activity both in mammals and Drosophila [57, 58]. Roles of CSK in metastasis of human cancer cells have also been suggested [58]. c-Src directly phosphorylates nuclear hormone receptors such as androgen receptor or ERα, and this phosphorylation is required for steroid hormone signaling [59–61]. Thus, c-Src links signaling initiated by the plasma membrane receptor tyrosine kinases such as epidermal growth factor receptor and steroid hormone signaling [62–64].

To determine whether CSK affects fulvestrant-induced ERα protein degradation through altering c-Src kinase activity, we examined effects of small-molecular-weight inhibitors of c-Src tyrosine kinase on fulvestrant-induced MCF-7 cell death and ERα degradation. PP1 is a relatively specific inhibitor of c-Src although it also inhibits tyrosine kinase activities of c-Kit and Bcr-Abl [65]. AZD0530 (a.k.a. saracatinib) selectively inhibits c-Src and Bcr-Abl kinases [66–69]. We reasoned that, if CSK is required for fulvestrant-induced cell death or ERα protein degradation through suppression of c-Src, inhibition of c-Src tyrosine kinase by chemical inhibitors would pharmacologically mimic CSK activation and show the opposite effect of CSK knockdown-namely, enhanced MCF-7 cell sensitivity to fulvestrant actions. However, by our hands, neither PP1 (0.5–10 μM) nor AZD0530 (0.1–2 μM) significantly affected the fulvestrant-induced MCF-7 cell death (Fig. S6). These c-Src inhibitors did not affect the fulvestrant-induced ERα protein degradation, either (Fig. 5). Repeated experiments with reduced fulvestrant concentrations or shorter exposure times did not reveal any effects of PP1 or AZD0530 (data...
Effective inhibition of c-Src tyrosine kinase activity by these compounds was confirmed by strong suppression of epidermal growth factor-induced phosphorylation of Tyr416, a well-accepted hallmark of c-Src activation [58,70–73] (Fig. S7). Interestingly, c-Src kinase activity was not significantly enhanced in the MCF-7 cells whose CSK expression was suppressed by RNAi knockdown (Fig. S7C), suggesting that c-Src regulation by CSK may have been replaced by other mechanisms.

Discussion

Activation of ERα by E2 triggers assembly of an active transcription complex, which in turn signals polyubiquitination and proteasomal degradation of the liganded ERα protein [44,74–80]. Chu et al. reported that the E2-triggered proteasomal degradation of ERα protein in MCF-7 cells were enhanced by activation of c-Src [81]. Binding of fulvestrant to ERα also causes proteasomal degradation although it is not associated with transcriptional activation. Because the fulvestrant-triggered ERα protein degradation is 10 times faster than that triggered by E2 in MCF-7 cells [82], mechanisms of the ERα protein degradation invoked by these two ligands may significantly differ. Our present study provided evidence that CSK, the negative regulator protein tyrosine kinase of c-Src, is required for fulvestrant-triggered ERα protein degradation in MCF-7 cells, which appears to be opposite to the report of Chu et al. [81]. However, the apparent lack of c-Src activation in the MCF-7 cells whose CSK expression was stably suppressed by RNAi knockdown (Fig. S7) may suggest that c-Src might be regulated by other mechanisms in the absence of CSK in these cells. Rengifo-Cam et al. demonstrated activation of c-Src by 48-hour adenoviral overexpression of a dominant-negative CSK in human colorectal cancer cells [36]. Since our present study was performed using stable CSK-knockdown cultures of MCF-7 cells, transient activation of c-Src, if any, could have been suppressed by compensating mechanisms. Our attempts to suppress the intracellular CSK actions by dominant-negative CSK as reported by Rengifo-Cam et al. were unsuccessful due to nonspecific induction of apoptosis of MCF-7 cells, which express...

Figure 5. PP1 or AZD0530 tyrosine kinase inhibitors had no effect on ERα protein degradation in MCF-7 cells. In panels (A) and (B), ERα protein expression after 6-hour exposure to 100 nM fulvestrant in the presence of PP1 or AZD0530 was determined by Western blotting (A) and ELISA (B, mean±SEM of three or more independent experiments. Asterisks indicate statistical significance, p<0.05, to fulvestrant-only group). In panels (C) and (D), fulvestrant concentration was reduced as indicated, and ERα protein expression after 6-hour exposure in the presence of PP1 or AZD0530 was determined by Western blotting (C). Panel (D) shows a typical densitometric quantitation of the ERα protein band. Three independently performed experiments did not show statistically significant effects of PP1 or AZD0530.

doi:10.1371/journal.pone.0060889.g005
wild type p53 tumor suppressor protein as the majority of human ER+/PR+/HER2- breast cancers [56,93].

In MCF-7 cells, fulvestrant mobilizes ERα into the nuclear matrix in a manner dependent on interactions between the helix 12 domain of ERα and cytokeratins 8 or 18 [75,84–86]. Mobilization of ERα to nuclear matrix is necessary for poly-ubiquitination of ERα protein by a mechanism involving the NEDD8 ubiquitin-like protein and the Uba3-containing NEDD8-activating enzyme [87] and subsequent degradation by the 20S proteasome [85]. Using a panel of kinase inhibitor/activator chemicals, Marauda et al. observed that protein kinase C is an enhancer of the fulvestrant-induced proteasomal ERα degradation in MCF-7 cells whereas protein kinase A, MAPKα, and phosphatidylinositol-3-kinase act as suppressors [82]. Tsai et al. also reported that forskolin, a potent activator of protein kinase A, prevents fulvestrant-induced ERα protein degradation in MCF-7 cells [98]. Thus, the signaling involving protein kinases seems to have significant roles in regulating the fulvestrant-induced proteasomal ERα protein degradation in breast cancer cells. Our finding that CSK is required for this fulvestrant action provides additional insights into how the kinase/phosphatase-mediated intracellular signaling network in human breast cancer cells is closely linked to antiestrogen sensitivity.

A number of previous studies including ours [35] isolated fulvestrant-resistant variants of MCF-7 cells after long-term exposure of the polyclonal MCF-7 cell culture to fulvestrant. These studies agree that the fulvestrant resistant variants isolated with this approach did not depend on estrogen signaling because other signaling pathways (e.g., EGF receptor, ERK1/2, c-Met, and AKT [89–92]) supported their proliferation and survival. In those fulvestrant resistant variants, the fulvestrant-induced ERα protein degradation was intact. By siRNA transfection-based RNAi knockdown screenings generating synthetic resistance to tamoxifen, Iorns et al. identified CDK10, CRKβ, and MAP2K7 as kinases necessary for tamoxifen sensitivity of MCF-7 cells [30]. Again, knockdown of any of these three kinases caused estrogen insensitivity in MCF-7 cells. Our shRNA lentivirus-based RNAi knockdown screenings generating synthetic resistance to fulvestrant identified MAP2K7 and CSK as kinases necessary for fulvestrant-induced MCF-7 cell death. Independent identification of MAP2K7 as a kinase required for sensitivities of both tamoxifen (Iorns et al. [30]) and fulvestrant (our present study) supports validity of the RNAi knockdown screenings performed in our present study. Since MAP2K7 knockdown did not affect the fulvestrant-induced proteasomal degradation of ERα protein (data not shown), CSK is a unique protein whose knockdown in MCF-7 cells does not cause estrogen insensitivity but leads to drug resistance due to cancellation of the induced ERα protein degradation.

Details of the link between CSK knockdown and cancellation of the fulvestrant-induced proteasomal ERα degradation remain to be determined. Attempts made in our present study did not establish roles of c-Src in the requirement of CSK for the fulvestrant-induced ERα protein degradation although the possible involvement of c-Src in this mechanism cannot be denied. As CSK directly phosphorylates not only c-Src but also the transcription factor [93] and the ATP-activated P2X3 receptor [94], these non-Src CSK substrates might also be involved in the fulvestrant-induced ERα protein degradation. In this context, it is interesting that phosphorylation of c-Jun at Tyr26 and Tyr170 by CSK causes ubiquitination and proteasomal degradation of the c-Jun protein [93].

In summary, our present study identified CSK as a novel protein tyrosine kinase required for the fulvestrant-induced proteasomal degradation of ERα protein in MCF-7 cells. RNAi knockdown of CSK caused specific resistance to fulvestrant without affecting MCF-7 cell sensitivities to tamoxifen or paclitaxel, suggesting possible importance of CSK for better understanding of the mechanisms of the cytoidal action of fulvestrant in human breast cancer cells.

Materials and Methods

Chemicals

Fulvestrant (Faslodex™/ICI 182,780; research-grade pure chemical) and PPI were purchased from Tocris (Ellisville, MO). Crystal violet, 4-Hydroxytamoxifen, paclitaxel, and MG132 were from Sigma (St. Louis, MO). Puromycin hydrochloride and 17α-Estradiol was from Calbiochem (Gibbstown, NJ). AZD0530 was obtained from Selleck Chemicals Co. (ShangHai, China). Recombinant human epidermal growth factor (EGF) was purchased from R&D Systems (Minneapolis, MN).

Cell Culture

MCF-7 human breast cancer cell culture (BUS stock) was provided by C. Sonnenschein and A. M. Soto (Tufts University) [95,96], and its fulvestrant-sensitive monoclonal subline (W2) was described in our recent study [35]. Our present study was performed using the W2 clone of MCF-7 cells. T47D human breast cancer cells were purchased from ATCC (Manassas, VA). All cells were maintained in Dulbecco’s MEM (DMEM) supplemented with 5% FCS (HyClone, DEFINED grade; Thermo Scientific, Waltham, MA) in 10% CO2 at 37 °C. To examine ERα protein degradation induced by 17α-estradiol, subconfluent cells were washed three times with phenol red-free DMEM (containing no serum) and incubated in the last wash medium for 60 minutes at 37 °C. Medium was then replaced by phenol red-free DMEM supplemented with 5% charcoal/dextran-stripped FCS (HyClone) and hormone-starved for another 24 hours before exposure to 17α-estradiol [13].

shRNA Lentivirus Production and Infection

Lentiviruses expressing shRNA species targeting specific human mRNA transcripts were produced using the pLKO.1 vector harboring the puromycin-resistance marker following published protocols [33]. Subconfluent HEK293T packaging cells grown in 96-well plates were transfected with arrayed, pLKO.1-based shRNA expression plasmids for human kinome screening (6,560 protein kinases and phosphatases) obtained from The RNAi Consortium (Broad Institute, Cambridge, MA) with the expression plasmids for VSV-G surface antigen and the core lentiviral protein. For infection, 5 × 10^5 cells were seeded into wells of 96-well plate and allowed to attach for 24 hours. Cells (5–10 × 10^4 cells/well) were infected with lentiviruses (4 × 10^4 IU; MOI = 4–8) in the presence of 8 μg/ml polybrene under 1,200 g gravity by spinning for 60 minutes. Medium was changed 48 hours after infection, and successful infected cells were selected by puromycin (2.5 μg/ml) for 48 hours.

Cell Viability and Crystal Violet Staining

Cell viability was assessed by crystal violet staining. Cells grown in 96-well plate were washed with PBS twice and then fixed with 12% formaldehyde. After 10 minutes incubation at room temperature, cells were completely dried and stained with 1% crystal violet for 5 minutes. Stained cells were washed with tap water and subjected to spectrophotometric quantitation (OD 590 nm) using SpectraMax M5 (Molecular Devices, Sunnyvale, CA).
Protein Analyses

Western blotting was performed as we previously described [97]. Briefly, cells were washed with ice cold PBS and lysed with a RIPA buffer (150 mM NaCl, 25 mM Tris HCl pH 7.6, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS). Protein concentration was determined by bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL) with BSA as a standard. 80 μg of total cellular protein was separated on 7.5% Tris-HCl polyacrylamide gels and transferred to PVDF membranes (Bio-Rad, Richmond, CA). The membranes were incubated for 1 h with 5% dry skim milk in PBST buffer (PBS containing 0.05% tween 20) to block nonspecific binding and then incubated with primary antibodies (x1000 dilution) overnight at 4 °C. The primary antibodies were: anti-human actin (goat IgG, sc-1616/I-19, Santa Cruz Biotechnology, Santa Cruz, CA), anti-human ERα (rabbit IgG, sc-542/ MC-20 and sc-544/G-20, Santa Cruz Biotechnology), and anti-human CSK (goat IgG, ab744–100, Abcam, Cambridge, MA). The membranes were washed with PBST and then incubated with peroxidase-conjugated secondary antibodies (donkey anti-goat IgG or goat anti-rabbit IgG, x3000 dilution, Santa Cruz Biotechnology) for 1 h at room temperature. All antibodies were diluted in 1% dry skim milk in PBST buffer. Protein bands were visualized by enhanced chemiluminescence (GE Healthcare, Piscataway, NJ) using Kodak BioMax MR films (Perkin Elmer, Waltham, MA). Signal intensities of protein bands were quantitated by densitometry from at least three independent experiments using ImageQuant system (GE Healthcare).

Phosphorylation of c-Src was examined using the Odyssey infrared imaging system (LI-COR Biosciences, Lincoln, Nebraska) as previously described [98] using rabbit anti-phosphorylated human c-Src polyclonal antibody (P-Tyr416, #2101, Cell Signalling Technology, Danvers, MA) and mouse anti-human c-Src monoclonal antibody (IgG2, sc-32789, Santa Cruz Biotechnology) as primary antibodies. Secondary antibodies (IRDye 680 donkey anti-rabbit IgG and IRDye 800 donkey anti-mouse IgG) were purchased from LI-COR Biosciences. For c-Src kinase activity assay, c-Src protein was immunoprecipitated using the anti-human c-Src monoclonal antibody and protein G beads and subjected to the ProFluor Src family kinase assay (Promega, Madison, WI) following the manufacturer’s instructions.

ERα ELISA

Cell lysates were prepared with the RIPA buffer, and 100 μg of total protein was subjected to ERα ELISA (Active Motif; Carlsbad, CA) following manufacturer’s instructions. Absorbance at 450 nm was determined by Synergy HT plate reader (BioTek, Winooski, VT).

Expression of CSK by transient transfection of an expression plasmid

An expression plasmid for human full-length CSK (Cat, # RC210756) and its control vector (pCMV6-ENTRY) was purchased from OriGene Technologies (Rockville, MD). The plasmid expressed an open reading frame for human CSK transcript variant 1 tagged C-terminally with the myc and DDK epitope peptides and placed under the CMV promoter. Subconfluent cells were transfected with the CSK expression plasmid or the control plasmid together with an expression plasmid for a green fluorescence protein (GFP) using TransIT-LT1 transfection reagent following the manufacturer’s instructions [Mirus Bio, Madison, WI]. High transfection efficiency (>70%) was confirmed by expression of the EGFP observed using a fluorescence microscope.

Statistics

Values are expressed as mean±SEM of at least three independent experiments. One-way analysis of variance (ANOVA) was performed on the values followed by Tukey post-hoc test in GraphPad PRISM6 statistic software package (GraphPad Software, La Jolla, CA).

Supporting Information

Figure S1 RNAi knockdown of CSK in MCF-7 cells causes resistance to fulvestrant: Crystal violet staining data. Cells were infected with empty lentivirus vector (pLKO.1) or two independent clones of lentiviruses expressing different shRNA species targeting CSK (CSK KD #1 and #2) and exposed to puromycin, fulvestrant, or vehicle for 7 days.

Figure S2 RNAi knockdown of CSK in MCF-7 cells and resistance to fulvestrant. A) Cells were infected with empty lentivirus vector (pLKO.1) or lentivirus clones expressing different shRNA species targeting CSK as listed in Table S1 and subjected to Western blotting quantitation of CSK protein expression. CSK-KD, CSK knockdown. B, C) Fulvestrant resistance of MCF-7 cells infected with shRNA lentiviruses targeting CSK. Cells infected with shRNA lentiviruses were exposed to 100 nM fulvestrant or vehicle for 7 days. B) Gross appearance of cell culture after crystal violet staining. C) Phase contrast microscopic images. MCF-7 cells expressing CSK (MCF-7 W2 and pLKO.1 infected cells) showed massive apoptotic death after fulvestrant exposure whereas cells subjected to RNAi knockdown of CSK survived. MCF-7 cells with CSK knockdown often showed significant pileup growth appearance as shown in this picture.

Figure S3 RNAi knockdown of CSK does not affect MCF-7 cell sensitivity to tamoxifen or paclitaxel. Cells were infected with empty lentivirus vector (pLKO.1) or two independent clones of lentiviruses expressing different shRNA species targeting CSK (CSK KD #1 and #2) and then exposed to 1 μM 4-hydroxytamoxifen (4-OHT) for 10 days (A) or 1–1000 nM paclitaxel for 2 days (B). Cell viability was determined by crystal violet staining. Quantified data obtained by spectrophotometry of the stained cells are shown in Fig. 2.

Figure S4 Re-expression of CSK in MCF-7 cells rescues fulvestrant-induced ERα protein degradation. A) Diminished CSK protein expression in MCF-7 cells subjected to lentiviral RNAi knockdown and re-expression by transfection of a CSK expression plasmid: Western blotting. MCF-7 cells were infected with pLKO.1 control lentivirus (lane 1) or the CSK-KD#1 shRNA lentivirus (lanes 2, 3). The cells infected with the CSK-KD#1 virus were further subjected to transfection of an expression plasmid for human CSK (lane 3) or a control plasmid harboring no insert (lane 2). B) Time-course of ERα protein expression in MCF-7 cells exposed to fulvestrant: Western blotting. Intensities of ERα protein bands were determined by densitometry (C, mean ± SEM of three independent experiments. * indicates statistical significance (p<0.05) against the control without exposure to fulvestrant (con). # indicates statistical significance (p<0.05) between CSK knockdown cells with or without re-expression of CSK1 from a plasmid.
Figure S5 Re-expression of CSK in MCF-7 cells rescues fulvestrant-induced ERα protein degradation. (A, B) Effects of E2 and fulvestrant on proliferation and survival of T47D cells. Cells were for up to 6 days (A) or 11 days (B) in the presence or absence of E2 and/or fulvestrant in the medium, and the live cell numbers in the culture were determined by crystal violet staining. Note that live cell number was not decreased in the presence of fulvestrant even though cells were not proliferated in this condition, either. (C, E) Changes in ERα protein expression in T47D cells exposed to fulvestrant. T47D cells infected with pLKO.1 control lentivirus (C) or the CSK-KD#1 shRNA lentivirus targeting CSK (D) were exposed to 100 nM fulvestrant or vehicle [ethanol] for 3, 6, or 9 hours (control, no exposure) and then subjected to Western blotting determination of ERα protein expression. Intensities of ERα protein bands were determined by densitometry (E, mean ± SEM of three independent experiments). Asterisk indicates statistical significance (p<0.05) against control; sharp indicates significant differences between the pLKO.1-infected and the CSK-KD#1 infected cells observed when cells were exposed to fulvestrant (p<0.05, t-test).

(PDF)

Figure S6 PP1 or AZD0530 tyrosine kinase inhibitors had no effect on fulvestrant-induced cell death. Cells were exposed to PP1 (0.1–2 μM, A) or AZD0530 (0.1–2 μM, B) for 30 min and then exposed to 100 nM fulvestrant in the presence of the same c-Src kinase inhibitors for 5 days. Cell viability was determined by crystal violet staining. Representative crystal violet staining images are shown. Amounts of stained cells were determined by spectrometry as shown in the bar graphs (mean ± SEM of three independent experiments; asterisk indicates statistical significance p<0.05 against the vehicle control, sharp indicates significance against the absence of AZD0530).

(PDF)

Figure S7 c-Src phosphorylation and kinase activity in MCF-7 cells. (A) Fulvestrant does not induce c-Src phosphor-

References

1. EBCTCG (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trials’ Collaborative Group. Lancet 351: 1451–1467.

2. Rust AJ, Sutherland RL, Musgrove EA (2007) Live or let die: oestrogen regulation of survival signalling in endocrine response. Breast Cancer Res 9: 306.

3. Lin NU, Winer EP (2008) Advances in adjuvant endocrine therapy for breast cancer. Breast Cancer 14: 194–199.

4. Jordan VC, Brodie AM (2007) Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72: 7–25.

5. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, et al. (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18: 1133–1144.

6. Kurebayashi J (2007) Current clinical trials of endocrine therapy for breast cancer. Breast Cancer 14: 200–214.

7. Utsunomiya T, Kobayashi N, Hanada H (2007) Recent perspectives of endocrine therapy for breast cancer. Breast Cancer 14: 194–199.

8. Wu YL, Yang X, Ren Z, McDonnell DP, Norris JD, et al. (2005) Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell 18: 413–424.

9. Jordan VC (2006) Optimising endocrine approaches for the chemoprevention of breast cancer beyond the Study of Tamoxifen and Raloxifene (STAR) trial. Eur J Cancer 42: 2909–2913.

10. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, et al. (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 293: 2727–2741.

11. Howell A (2006) Pure oestrogen antagonists for the treatment of advanced breast cancer. Endocr Relat Cancer 13: 699–706.

12. Cook KL, Shajahan AN, Clarke R (2011) Autophagy and endocrine resistance in breast cancer: Expert review of anticancer therapy 11: 1283–1294.

13. Coser KR, Chesnes JF, Hur J, Ray S, Iselbacher KJ, et al. (2003) Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray. Proc Natl Acad Sci U S A 100: 13994–13999.

14. Madak-Erdoğan Z, Kieser KJ, Kan SH, Komm B, Katzenellenbogen JA, et al. (2000) Nuclear and Extraneuronal Pathway Inputs in the Regulation of Global Gene Expression by Estrogen Receptors. Mol Endocrinol.

15. Frasier J, Danes JM, Komm B, Chang KC, Lyttle CR, et al. (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogen control of proliferation and cell phenotype. Endocrinology 144: 4362–4374.

16. Bjornstrom L, Spjborg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19: 833–842.

17. Kuhlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, et al. (2000) Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem 275: 18447–18453.

18. Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, et al. (2003) Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 23: 1633–1646.

19. Chung YL, Shu ML, Yang SC, Lin CH, Yen SH (2002) Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer 97: 306–312.

20. Migliaccio A, Castoria G, Di Domenico M, De Falco A, Bilancio A, et al. (2002) Src is an initial target of sex steroid hormone action. Ann N Y Acad Sci 963: 18447–18453.

21. Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, et al. (2003) Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 23: 1633–1646.

22. Song RX, McPherson RA, Adam L, Yao Y, Shupnik M, et al. (2002) Linkage of rapid estrogen action to MAPK activation by ERα-Shc association and Shc pathway activation. Mol Endocrinol 16: 116–127.

23. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12: 1001s–1007s.

Acknowledgments

We thank Kevin Haggis at Molecular Pathology Unit, Massachusetts General Hospital, for help to perform the Odyssey imaging of phosphorylated c-Src. We appreciate Naomi Laing, Lihua Yu, and Robert Godin of AstraZeneca Pharmaceuticals for helpful discussions. We also thank Crystal Mahoney, Sabrina Collins, Shannon Smith, and Noel Rosenthal for technical assistance.

Author Contributions

Conceived and designed the experiments: WLY TS. Performed the experiments: WLY KS KRC DR KRM. Analyzed the data: WLY TS. Wrote the paper: WLY TS.
41. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332: 40.

40. Diel P, Smolnikar K, Michna H (1999) The pure antiestrogen ICI 182780 is more effective in the induction of apoptosis and down regulation of BCL-2 than a multinational, double-blind, randomized trial. J Clin Oncol 22: 1605–1613.

39. Howell A, Robertson J (1995) Response to a specific antioestrogen (ICI 182780) to the growth of hormone-responsive breast cancer cells and provokes apoptosis. Proc Natl Acad Sci U S A 101: 2351–2356.

38. Santen RJ, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal stimulation in breast cancer. Clin Rev Cancer 10: 338–345.

37. Brunner N, Boysen B, Jirous S, Skaar TC, Holst-Hansen C, et al. (1997) MCF7/tamoxifen resistant as a common monoclonal drug-resistant progenitor. Proc Natl Acad Sci U S A 104: 14356–14359.

36. Migliaccio A, Castoria G, Di Domenico M, Lombardi M, et al. (2007) Crosstalk between EGFR and extranuclear steroid receptors. Oncogene 26: 6365–6375.

35. Tatton L, Morley GM, Choppa R, Khwaja A (2003) CSK Is Required for Cytocidal Fulvestrant Action. CSK Is Required for Cytocidal Fulvestrant Action

34. Rengifo-Cam W, Konishi A, Morishita N, Matsuoka H, Yamori T, et al. (2004) Identification of CDK10 as an important determinant of resistance to endocrine therapy in breast cancer. Cancer Cell 13: 91–104.

33. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, et al. (2001) Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res 61: 7244–7253.

32. Hur J, Chesnes J, Coser KR, Lee RS, Geck P, et al. (2004) The Bik BH3-only proapoptotic protein in breast cancer cells: p53-dependent induction of Bik mRNA by fulvestrant and proteasomal degradation of Bik protein. Cancer Res 66: 10153–10161.

31. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, et al. (2001) The Bik BH3-only proapoptotic protein in breast cancer cells: p53-dependent induction of Bik mRNA by fulvestrant and proteasomal degradation of Bik protein. Cancer Res 66: 10153–10161.

30. Iorns E, Turner NC, Elliott R, Syed N, Garrone O, et al. (2008) Identification of ERα as a key determinant of endocrine therapy resistance in breast cancer. Cancer Cell 13: 91–104.

29. Hong Y, Yen RC, Huang M, Huang A, Yen J, et al. (2007) Functional regulation of oestrogen receptor pathway by the dynein light chain 1. Functional regulation of oestrogen receptor pathway by the dynein light chain 1.

28. Santen RJ, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal stimulation in breast cancer. Clin Rev Cancer 10: 338–345.

27. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, et al. (2001) The Bik BH3-only proapoptotic protein in breast cancer cells: p53-dependent induction of Bik mRNA by fulvestrant and proteasomal degradation of Bik protein. Cancer Res 66: 10153–10161.

26. Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ (2002) Estrogen receptor alpha tyrosine-phosphorylated peptide. Mol Cancer Res 5: 1213–1221.

25. Migliaccio A, Varricchio L, García G, Lombardi M, et al. (2007) The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol Endocrinol 18: 2219–2230.

24. Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, et al. (2005) Tyrosine phosphorylation of estradiol receptor by Src regulates and is induced by estrogen receptor alpha (ERα) via interaction with ERα and p38. Cancer Res 65: 5805–5811.

23. Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, et al. (1999) Polyamine transporters in breast cancer: Possible therapeutic targets. Cancer Res 59: 125–129.

22. Sabe H, Knudsen B, Okada M, Nada S, Nakagawa H, et al. (1992) Activation of c-Src in cells expressing human MCF-7 breast cancer cells: an important determinant of resistance to endocrine therapy in breast cancer. Cancer Cell 13: 91–104.

21. Inoue E, Turner NC, Elliott R, Syed N, Garrone O, et al. (2008) Identification of CSK as an important determinant of resistance to endocrine therapy in breast cancer. Cancer Cell 13: 91–104.

20. Hur J, Jessup J, Sun M, Paciga JE, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal stimulation in breast cancer. Clin Rev Cancer 10: 338–345.

19. Howell A, Robertson J (1995) Response to a specific antioestrogen (ICI 182780) to the growth of hormone-responsive breast cancer cells and provokes apoptosis. Proc Natl Acad Sci U S A 101: 2351–2356.

18. Santen RJ, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal stimulation in breast cancer. Clin Rev Cancer 10: 338–345.

17. Sabe H, Okada M, Nakagawa H, Hanafusa H (1992) Activation of c-Src in cells expressing human MCF-7 breast cancer cells: an important determinant of resistance to endocrine therapy in breast cancer. Cancer Cell 13: 91–104.

16. Baselga J, Cervantes A, Martinelli E, Chirivella I, Hoekman K, et al. (2010) Phase III randomized trial of fulvestrant versus letrozole in postmenopausal women with hormone receptor-positive advanced breast cancer. J Clin Oncol 28: 163–1637.

15. Rengifo-Cam W, Konishi A, Morishita N, Matsuoka H, Yamori T, et al. (2004) Identification of CDK10 as an important determinant of resistance to endocrine therapy in breast cancer. Cancer Cell 13: 91–104.

14. Levenson AS, Jordan VC (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57: 3071–3078.

13. Jones C, Payne J, Wells D, Delhanty JD, Lakhanli SR, et al. (2008) Comparative genomic hybridization reveals extensive variation among different MCF-7 cell stocks. Cancer Genet Cytoenet 141: 153–158.

12. Berkers CR, Verdoes M, Lichtman E, Fehliger E, Keseler BM, et al. (2005) Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature methods 2: 357–362.

11. Ishii Y, Papa L, Bahadur U, Yue Z, Aguirre-Ghiso J, et al. (2011) Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to its refolding and degradation. Oncogene 30: 6365–6375.

10. Stoenoiu DL, Patel K, Mancini MG, Duttemeier M, Smith CL, et al. (2001) FRAP reveals that motility of estrogen receptor-alpha is ligand- and proteasome-dependent. Nat Rev Mol Cell Biol 2: 15–23.

9. Yang S, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295: 2463–2468.

8. Shah YM, Rowan BG (2003) The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol Endocrinol 18: 1213–1221.

7. Migliaccio A, Varricchio L, García G, Lombardi M, et al. (2007) Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene 26: 6619–6629.

6. Tsai KK, Mills RD, Hossain MI, Chan KC, Jarassasmere B, et al. (2010) Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth factors 29: 320–330.

5. Rengifo-Cam W, Konishi A, Morishita N, Matsuoka H, Yamori T, et al. (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal stimulation in breast cancer. Clin Rev Cancer 10: 338–345.

4. Diel P, Smolnikar K, Michna H (1999) The pure antiestrogen ICI 182780 is more effective in the induction of apoptosis and down regulation of BCL-2 than tamoxifen in MCF-7 cells. Breast Cancer Res Treat 58: 87–97.

3. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, et al. (2001) The Bik BH3-only proapoptotic protein in breast cancer cells: p53-dependent induction of Bik mRNA by fulvestrant and proteasomal degradation of Bik protein. Cancer Res 66: 10153–10161.

2. Santen RJ, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal stimulation in breast cancer. Clin Rev Cancer 10: 338–345.

1. Powers GL, Ellison-Zelik J, Casa AJ, Lee AV, Alazid ET (2010) Protease inhibition represses ERalpha gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 29: 1509–1518.

77. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 96: 1858–1862.
78. Alarid ET, Bakopoulos N, Solodin N (1999) Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol Endocrinol 13: 1522–1534.
79. Reid G, Hubner MR, Metivier R, Brand H, Denger S, et al. (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695–707.
80. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276: 35684–35692.
81. Chu I, Arnaout A, Loiseau S, Sun J, Seth A, et al. (2007) Src promotes estrogen-dependent estrogen receptor alpha proteolysis in human breast cancer. J Clin Invest 117: 2205–2215.
82. Marsaud V, Gougelet A, Maillard S, Renoir JM (2003) Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Molecular endocrinology 17: 2013–2027.
83. Lacroix M, Toillon RA, Leclercq G (2006) p53 and breast cancer, an update. Endocr Relat Cancer 13: 293–325.
84. Long X, Nephew KP (2006) Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 281: 9607–9615.
85. Long X, Fan M, Nephew KP (2010) Estrogen receptor-alpha-interacting cytokeratins potentiate the antiestrogenic activity of fulvestrant. Cancer biology & therapy 9: 389–396.
86. Kocanova S, Mazaheri M, Caze-Subra S, Bystricky K (2010) Ligands specify estrogen receptor alpha nuclear localization and degradation. BMC cell biology 11: 98.
87. Tsai HW, Katzenellenbogen JA, Katzenellenbogen BS, Shughrue PA (2004) Protein kinase A activation of estrogen receptor alpha transcription does not require proteasome activity and protects the receptor from ligand-mediated degradation. Endocrinology 145: 2730–2738.
88. Nicholson RI, Gee JM, Knowlden J, McClelland R, Madden TA, et al. (2003) The biology of antihormone failure in breast cancer: Breast cancer research and treatment 80 Suppl 1: S29–S44; discussion S33.
89. Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, et al. (2004) Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors in combination. Clinical cancer research: an official journal of the American Association for Cancer Research 10: 3468–3484.
90. Hiscox S, Jordan NJ, Jiang W, Harper M, McClelland R, et al. (2006) Chronic exposure to fulvestrant promotes overexpression of the c-Met receptor in breast cancer cells: implications for tumour-stroma interactions. Endocrine-related cancer 13: 1083–1099.
91. D’Arco M, Giudantulli R, Leone V, Carloni P, Bisa N, et al. (2009) The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. The Journal of biological chemistry 284: 21393–21401.
92. Villalobos M, Olea N, Brotons JA, Olea-Serrano MF, Ruiz de Almodovar JM, et al. (1995) The E-screen assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103 Suppl 7: 113–122.
93. Yahata T, Shao W, Eudobi H, Huj J, Coer KR, et al. (2001) Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev 15: 2598–2612.
94. Ackah E, Yu J, Zolelker S, Ivokiri Y, Shank C, et al. (2003) Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest 115: 2119–2127.