On Frank’s conjecture on k-connected orientations

Olivier Durand de Gevigney∗†

May 5, 2014

Abstract

We disprove a conjecture of Frank [4] stating that each weakly $2k$-connected graph has a k-vertex-connected orientation. For $k \geq 3$, we also prove that the problem of deciding whether a graph has a k-vertex-connected orientation is NP-complete.

Introduction

An orientation of an undirected graph G is a digraph obtained from G by substituting an arc uv or vu for every edge uv in G. We are interested in characterizing graphs admitting an orientation that satisfies connectivity properties. Robbins [10] proved that a graph G admits a strongly connected orientation if and only if G is 2-edge-connected. The following extension to higher connectivity follows from of a result of Nash-Williams [9]: a graph G admits a k-arc-connected orientation if and only if G is $2k$-edge-connected.

Little is known about vertex-connected orientations. Thomassen [12] conjectured that if a graph has sufficiently high vertex-connectivity then it admits a k-vertex-connected orientation.

Conjecture 1 (Thomassen [12]). For every positive integer k there exists an integer $f(k)$ such that every $f(k)$-connected graph admits a k-connected orientation.

∗Laboratoire G-SCOP, CNRS, Grenoble-INP, UJF, France
†This research was conducted while the author was visiting the University of Waterloo. The author was supported by a grant Explora Doc from Rhône-Alpes and NSERC grant No. OGP0138432.
The case \(k = 2 \) has been proved by Jordán [5] by showing \(f(2) \leq 18 \). Recently, it was shown in [2] that \(f(2) \leq 14 \). However, the conjecture of Thomassen remains open for \(k \geq 3 \).

A graph \(G = (V,E) \) is called \textit{weakly} \(2k \)-\textit{connected} if \(|V| > k \) and for all \(U \subseteq V \) and \(F \subseteq E \) such that \(2|U| + |F| < 2k \), the graph \(G - U - E \) is connected. It is easy to see that any graph admitting a \(k \)-connected orientation is weakly \(2k \)-connected. Note that checking the weak \(2k \)-connectivity of a graph can be done in polynomial time using a variation of the Max-flow Min-cut algorithm [3]. Frank [4] conjectured that this connectivity condition characterizes graphs admitting a \(k \)-connected orientation.

\textbf{Conjecture 2} (Frank [4]). A graph \(G \) admits a \(k \)-connected orientation if and only if \(G \) is weakly \(2k \)-connected.

Berg and Jordán [1] proved this conjecture for the special case of Eulerian graphs and \(k = 2 \). For a short proof of this result, see [7]. In this article we disprove this conjecture for \(k \geq 3 \). For instance, the graph \(G_3 \) in Figure 1 is a counterexample for \(k = 3 \). We also prove that deciding whether a given graph has a \(k \)-connected orientation is NP-complete for \(k \geq 3 \). Both these results hold also for the special case of Eulerian graphs. Hence assuming \(P \neq NP \), there is no good characterisation of graphs admitting a \(k \)-connected orientation for \(k \geq 3 \). We mention that counterexamples can easily be derived from our NP-completeness proof, but we give simple self-contained counterexamples. Furthermore, the gadgets used in the NP-completeness proof are based on properties used in our first counterexample.

This paper is organized as follows. In Section 1 we establish the necessary definitions and some elementary results. In Section 2 we disprove Conjecture 2 for \(k \geq 3 \). For \(k \geq 4 \), we provide Eulerian counterexamples. In Section 3 for \(k \geq 3 \), we reduce the problem of \textsc{Not-All-Equal} 3-SAT to the problem of finding a \(k \)-connected orientation of a graph. This reduction leads to a Eulerian counterexample of Conjecture 2 for \(k = 3 \).

1 Preliminaries

Let \(k \) be a positive integer and let \(D = (V,A) \) be a digraph. We mention that digraphs may have multiple arcs. In \(D \) the indegree (respectively, the outdegree) of a vertex \(v \) is denoted by \(\rho_D(v) \) (respectively, by \(\delta_D(v) \)). The pair \(u,v \in V \) is called \textit{strongly connected} if there exist a dipath from \(u \) to \(v \) and a dipath from \(v \) to \(u \). The digraph \(D \) is called strongly connected if every pair of vertices is strongly connected. The pair \(u,v \in V \) is called \textit{k-connected} if, for all \(U \subseteq V \setminus \{u,v\} \) such that \(|U| < k \), \(u \) and \(v \) are strongly
connected in the digraph $D - U$. A set of vertices is called k-connected if every pair of vertices contained in this set is k-connected. The digraph D is called k-connected if $|V| > k$ and V is k-connected.

Let $G = (V, E)$ be a graph. We mention that graphs may have multiple edges. In G the degree of a vertex v is denoted by $d_G(v)$ and the number of edges joining v and a subset U of $V - v$ is denoted by $d_G(v, U)$. The pair $u, v \in V$ is called connected if there is a path joining u and v. The pair $u, v \in V$ is called weakly $2k$-connected if, for all $U \subseteq V \setminus \{u, v\}$ and $F \subseteq E$ such that $2|U| + |F| < 2k$, u and v are connected in the graph $G - U - F$. A set of vertices is called weakly $2k$-connected if every pair of vertices contained in this set is weakly $2k$-connected. So G is weakly $2k$-connected if $|V| > k$ and V is weakly $2k$-connected.

The constructions in this paper are based on the following facts.

Proposition 1. Let $G = (V, E)$ be a graph admitting a k-connected orientation D. Let v be a vertex of degree $2k$ and $u \neq v$ be a vertex such that $d_G(u, v) = 2$. Then $\rho_D(v) = \delta_D(v) = k$ and the two parallel edges between u and v have opposite directions in D.

Proof. By k-connectivity of D, the indegree (respectively, the outdegree) of v is at least k. Hence, since $2k = d_G(v) = \rho_D(v) + \delta_D(v)$ we have $\rho_D(v) = \delta_D(v) = k$. Now suppose for a contradiction that the two parallel edges between u and v have the same direction, say from u to v. Then the set of vertices that have an outgoing arc to v is smaller than k and deleting this set results in a digraph that is not strongly connected, a contradiction. □

For $U \subseteq V$, a pair of dipaths of D (respectively, paths of G) is called U-disjoint if each vertex of U is contained in at most one dipath (respectively, path). Let X and Y be two disjoint vertex sets. A k-difan from X to Y (respectively, a k-fan joining X and Y) is a set of k pairwise U-disjoint dipaths from X to Y (respectively, paths joining X and Y) where U is defined by $U = V \setminus (X \cup Y)$ if $|X| = |Y| = 1$, $U = V \setminus X$ if $|X| = 1$ and $|Y| > 1$, $U = V \setminus Y$ if $|Y| = 1$ and $|X| > 1$, $U = V$ if $|X| > 1$ and $|Y| > 1$.

By Menger’s theorem [8], a pair u, v of vertices of D is k-connected if and only if there exist a k-difan from u to v and a k-difan from v to u. Let X be a k-connected set of at least k vertices and let v be a vertex in $V \setminus X$ such that there exist a k-difan from X to v and a k-difan from v to X; then, it is easy to prove that $X \cup v$ is k-connected.

Kaneko and Ota [10] showed that a pair u, v of vertices of G is weakly $2k$-connected if and only if there exist 2 edge-disjoint k-fans joining u and v. Let X be a weakly $2k$-connected set of at least k vertices and let v be a
vertex in $V \setminus X$ such that there exist 2 edge-disjoint k-fans joining v and X; then, it is easy to prove that $X \cup v$ is weakly $2k$-connected. Let X and Y be two disjoint weakly $2k$-connected sets each of at least k vertices such that there exist 2 edge-disjoint k-fans joining X and Y; then, it is easy to prove that $X \cup Y$ is weakly $2k$-connected.

2 Counterexamples

We first disprove Conjecture 2 for $k = 3$ and then extend the idea of the proof to higher connectivity. We recall that G_3 is the graph defined in Figure 1.

![Graph G_3](image)

Figure 1: G_3 every thick and red edge represents a pair of parallel edges and black edges represent simple edges.

Proposition 2. The graph G_3 is weakly 6-connected and has no 3-connected orientation.

Proof. First we show that G_3 is weakly 6-connected. Observe that there exist 2 edge-disjoint 3-fans joining any pair of vertices in $A \setminus w_a$. Then, note that there exist 2 edge-disjoint 3-fans joining w_a and $A \setminus w_a$. Hence A is weakly 6-connected. Symmetrically B is also weakly 6-connected. There exist 2 edge-disjoint 3-fans joining A and B so $A \cup B$ is weakly 6-connected. There exists 2 edge-disjoint 3-fans joining x (respectively, y) and $A \cup B$. It follows that G_3 is weakly 6-connected.

Suppose for a contradiction that G_3 has a 3-connected orientation D. Note that every pair of parallel edges is incident to a vertex of degree 6 and the maximal edge multiplicity is 2. Hence, by Proposition 1, the two edges in every parallel pair have opposite directions in D. Thus, in D the orientation of the edges of the path $u_a v_a w_b y x w_a v_b u_b$ results in a directed path from u_a...
to u_b or from u_a to u_b. In particular both v_aw_b and v_bw_a are directed from A to B or from B to A. In both cases $D - \{x, y\}$ is not strongly connected, a contradiction.

We mention that G_3 is not a minimal counterexample. Indeed the graph H_3 obtained from G_3 by deleting the two vertices t_a and t_b and adding the new edges $u_av_a, v_ay, yu_a, u_bv_b, v_bx$ and xu_b is weakly 6-connected but has no 3-connected orientation. (Suppose that H_3 has a 3-connected orientation D. Then, by Proposition 1 in D the orientation of the edges of the two triangles v_ayw_b and v_bxw_a results in circuits. Considering the cut $\{x, y\}$, we see that those circuits must be either both clockwise or both counterclockwise, say clockwise. Hence, by Proposition 1 in D the orientation of the path u_axu_b results in a dipath from u_a to u_b or from u_b to u_a. In the first case $D - \{y, v_b\}$ is not strongly connected, in the other case $D - \{x, v_a\}$ is not strongly connected.)

We now extend this construction to higher connectivity. Let $k \geq 4$ be an integer. We define the graph $G_k = (V, E)$ as follows (see Figure 2). Let $n \geq k^2$ be an odd integer. The vertex set V is the union of the pairwise disjoint sets A, B, C and $\{w, x, y, z\}$ where $|A| = |B| = n$ and $|C| = k - 3$. Now we add simple edges such that each of A and B induces a complete simple graph. Choose arbitrarily one vertex from each of A, B and C, say $a \in A, b \in B$ and $c \in C$ and add the cycle $azywbc$. By the choice of n, we can now add pairs of parallel edges between vertices in $A \cup B \setminus \{a, b\}$ and

![Diagram](image-url)

Figure 2: G_k every thick and red edge represents a pair of parallel edges and black edges represent simple edges.
Let $C \cup \{w, x, y, z\}$ such that each vertex of $A \cup B$ is incident to at most one pair of parallel edges,

\[
d_{G_k}(v, A) = d_{G_k}(v, B) = 2\lceil \frac{k}{2} \rceil \text{ for all } v \in C - c,
\]

\[
d_{G_k}(c, A) = d_{G_k}(c, B) = 2\lceil \frac{k}{2} \rceil + 1,
\]

\[
d_{G_k}(w, A) = d_{G_k}(z, B) = 2k - 2,
\]

\[
d_{G_k}(y, A) = d_{G_k}(x, B) = 2 \text{ and}
\]

\[
d_{G_k}(x, A) = d_{G_k}(y, B) = 2k - 4.
\]

Proposition 3. Let $k \geq 4$ be an integer. The graph G_k is Eulerian, weakly $2k$-connected and has no k-connected orientation.

Proof. Since n is odd, both of the complete graphs induced by A and B are Eulerian. Hence G_k, which is obtained from those graphs by adding a cycle and parallel edges, is Eulerian. Since $k \geq 4$, $n \geq k^2 \geq 2k + 2$ thus both of the complete graphs induced by A and B are weakly $2k$-connected. Note that there exist 2 edge-disjoint k-fans joining A and B (one uses $C \cup \{w, x, y\}$ the other one uses $C \cup \{x, y, z\}$), thus $A \cup B$ is weakly $2k$-connected. Note also that, for any vertex $v \in C \cup \{w, x, y, z\}$, there exist 2 edge-disjoint k-fans joining v and $A \cup B$. Hence, G_k is weakly $2k$-connected.

Suppose for a contradiction that G_k has a k-connected orientation D. Since $d_{G_k}(w) = d_{G_k}(x) = d_{G_k}(y) = d_{G_k}(z) = 2k$ and by Proposition 1 the orientation of the set of simple edges of the path $azyxwb$ results in the dipath $azyxwb$ or the dipath $bwxyza$. In both cases, $D - (C \cup \{x, y\})$ is not strongly connected, a contradiction.

Note that with a slightly more elaborate construction we can obtain a counterexample such that $|V| = O(k)$.

3 NP-completeness

In this section we prove the following result.

Theorem 1. Let $k \geq 3$ be an integer. Deciding whether a graph has a k-connected orientation is NP-complete. This holds also for Eulerian graphs.

A reorientation of a digraph D is a digraph obtained from D by reversing a subset of arcs. Obviously, the problem of finding a k-connected orientation of a graph and the problem of finding a k-connected reorientation of a digraph are equivalent. For convenience we prove the NP-completeness of the
second problem by giving a reduction from the problem of NOT-ALL-EQUAL 3-SAT which is known to be NP-complete [11].

Let Π be an instance of NOT-ALL-EQUAL 3-SAT and let $k \geq 3$ be an integer. We define a directed graph $D_k = D_k(\Pi) = (V, A)$ such that there exists a k-connected reorientation of D_k if and only if there is an assignment of the variables which satisfies Π.

The construction of D_k associates to each variable x a circuit Δ_x and to each pair (C, x) where x is a variable that appears in the clause C a special arc e_x^C (see Figure 3). A reorientation of D_k is called consistent if the orientation of parallel edges is preserved and, for each variable x, the orientations of the special arcs of type e_x^C and the circuit Δ_x are either all preserved or all reversed. A consistent reorientation of D_k defines a natural assignment of the variables in which a variable x receives value true if Δ_x is preserved and false if Δ_x is reversed. We define reciprocally a natural consistent reorientation from an assignment of the variables.

![Figure 3: Representation of the circuits and the special arcs of $D_3(\Pi)$ where Π is composed of the clauses $C = (x, y, z)$ and $C' = (x, y, z)$. The dashed boxes represent the clause-variable gadgets.](image-url)

For each clause C we construct a C-gadget (see Figure 4) that uses the special arcs associated to C. The purpose of the C-gadgets is to obtain the following property.

Proposition 4. An assignment of the variables satisfies Π if and only if it defines a natural consistent k-connected reorientation.

For each pair (C, x) where C is a clause and x is a variable that appears
in \(C \) we define a \((C, x)\)-gadget (see Figure 5) which links the orientation of \(\Delta_x \) to the orientation of \(e^C_x \). We will prove the following fact.

Proposition 5. If there exists a \(k \)-connected reorientation of \(D_k \) then there exists a consistent \(k \)-connected reorientation of \(D_k \).

Figure 4: A clause gadget for \(k = 3 \) and \(C = (x, y, z) \). Each red and thick edge represents a pair of parallel arcs in opposite directions.

Figure 5: A \((C, x)\)-gadget for \(k = 3 \) and \(x \in C \). Each red and thick edge represents a pair of parallel arcs in opposite directions.

Let \(L \) be a set of \(k - 1 \) vertices. We construct a clause gadget as follows. For a clause \(C \) composed of the variables \(x, y, z \) we add the vertices \(w^C, u^C_x, u^C_y, u^C_z \). We add arcs such that \(L \cup w^C \) induces a complete digraph. We add the special arc \(w^C u^C_x \) if \(x \in C \) and the special arc \(u^C_x w^C \) if \(x \in C \). This special arc is denoted by \(e^C_x \). We define similarly the special arcs \(e^C_y \) and \(e^C_z \). This ends the construction of the \(C \)-gadget. Let \(W \) denote the set of all vertices of type \(w^C \).

Let \(M \) be a set of \(k - 2 \) new vertices and choose arbitrarily one vertex \(m \in M \). For each pair \((C, x)\) where \(C \) is a clause and \(x \) is a variable that appears in \(C \) we add the new vertices \(t^C_x, u^C_x, u^C_{mx}, u^C_{mx}, v^C_x \) and denote \(U^C_x = \{ u^C_x, u^C_{mx}, u^C_{mx}, u^C_{mx} \} \). We add arcs such that \(M \cup (U^C_x \setminus u^C_x) \) induces a complete digraph. We add pairs of parallel arcs in opposite directions between the pairs of vertices \((v^C_x, t^C_x)\), \((t^C_x, u^C_{mx})\), \((u^C_{mx}, u^C_x)\), \((u^C_x, u^C_{mx})\) and all the pairs of type \((t^C_x, m')\) and \((u^C_x, m')\) for each \(m' \in M \setminus m \). Note that, so far, the undirected degree of \(t^C_x \) and \(u^C_x \) is \(2k - 2 \). We add an arc \(t^C_x u^C_x \) if \(x \in C \) and an arc \(u^C_x t^C_x \) if \(x \in C \). Call this arc \(f^C_x \). The definition of the \((C, x)\)-gadget is concluded by the following definition of the circuit \(\Delta_x \).
For each variable x define a new vertex v_x and add arcs such that v_x and the set of vertices of type t^C_x and u^C_x induce a circuit Δ_x that traverses (in arbitrary order) all the (C, x)-gadgets such that C is a clause containing x. In this circuit connect a (C, x)-gadget to the next (C', x)-gadget by adding an arc leaving the head of f^C_x and entering the tail of $f^C_{x'}$ (see Figure 3). Note that now the undirected degree of t^C_x and u^C_x is $2k$.

We denote by N the union of L, M and all the vertices of type v_x or v^C_x. To conclude the definition of D_k we add edges such that N induces a complete digraph.

The proof of Proposition 5 follows from the construction of the (C, x)-gadgets.

Proof of Proposition 5. Let D' be a k-connected reorientation of D_k and let x be a variable. Observe that all the vertices incident to Δ_x except v_x are of degree $2k$ and incident to $k - 1$ pairs of parallel edges. Hence, by Proposition 1 Δ_x is either preserved or reversed. Let C be a clause in which x appears. In $D' - (M \cup t^C_x)$ exactly one arc enters U^C_x and exactly one arc leaves U^C_x (see Figure 3). One of these arcs belongs to Δ_x and the other is the special arc e^C_x. Hence, by k-connectivity of D', e^C_x is reversed if and only if Δ_x is reversed.

If there exists a pair of parallel arcs in the same direction in D' then reversing the orientation of one arc of this pair preserves the k-connectivity. Hence we may assume that in D' the orientation of parallel edges is preserved.

The following fact follows easily from the definition of D_k. We recall that W is the set of vertices of type w^C.

Proposition 6. In every consistent reorientation of D_k the set $V \setminus W$ is k-connected.

Proof. Let D' be a consistent reorientation of D_k. Clearly N is k-connected. Let C be a clause and x be a variable that appears in C. The circuit C_x contains a dipath from (respectively, to) t^C_x to (respectively, from) v_x that is disjoint from $M \cup v^C_x$. Hence $N \cup t^C_x$ is k-connected.

We may assume without loss of generality that, in $D' - (M \cup t^C_x)$, the special arc e^C_x enters U^C_x and an arc of Δ_x leaves U^C_x. Let u be a vertex of U^C_x. Observe that there is a k-difan from u to $M \cup t^C_x \cup v_x$ (the dipath to v_x uses arcs of Δ_x). Observe that there is a k-difan from $M \cup t^C_x \cup L$ to u (the dipath from L uses the arc e^C_x). Hence, since M and L are subsets of N, $N \cup t^C_x \cup U^C_x$ is k-connected and the proposition follows.
We can now prove Proposition 4.

Proof of Proposition 4. Let Ω be an assignment of the variables and D' the natural consistent reorientation of D_k defined by Ω. Let e^C_x be a special arc associated to a clause C and a variable x. In D', the arc e^C_x leaves w_C if and only if $x = \text{true}$ and $x \in C$ or $x = \text{false}$ and $\bar{x} \in C$. And, in D', the arc e^C_x enters w_C if and only if $x = \text{true}$ and $\bar{x} \in C$ or $x = \text{false}$ and $x \in C$. Hence C contains a true (respectively, false) value if and only if there exists a special arc leaving (respectively, entering) w_C in D'. Thus a clause C is satisfied by Ω if and only if w_C is left by at least one special arc and entered by at least one special arc. (\star)

Observe that, for each clause C, the only arcs incident to w_C in $D' - L$ are special. Since $|L| = k - 1$, if D' is k-connected then (\star) holds for all clauses thus Ω satisfies Π. Conversely, if Ω satisfies Π then for every clause C (\star) holds and w_C has at least k out-neighbors and at least k in-neighbors. Thus by Proposition 6 D' is k-connected.

Denote by $G'_k = G'_k(\Pi)$ the underlying undirected graph of $D_k(\Pi)$. We can now prove the main theorem of this section.

Proof of Theorem 1. By Propositions 5 and 4, $G'_k(\Pi)$ has a k-connected orientation if and only if there exists an assignment satisfying Π. Since the order of $G'(\Pi)$ is a linear function of the size of Π and NOT-ALL-EQUAL 3-SAT is NP-complete [11] this proves the first part of Theorem 1.

Observe that in G'_k the only vertices of odd degree are of type u^C_x and w^C. Let l be an arbitrary vertex of L. We can add a set F of edges of type u^C_xm, ml, lw^C such that $G'_k + F$ is Eulerian. Observe that for any orientation of F, Propositions 5 and 4 still hold for $D_k + F$. This proves the second part of Theorem 1.

The following fact shows that $G'_k(\Pi)$ is a counterexample to Conjecture 2 if Π is not satisfiable.

Proposition 7. The graph $G'_k(\Pi)$ is weakly $2k$-connected.

Proof. By Proposition 6, $V \setminus W$ is k-connected in D_k, thus $V \setminus W$ is weakly $2k$-connected in G'_k. Since there exist 2 edge-disjoint k-fans from w^C to $V \setminus W$ for every clause C, G'_k is weakly $2k$-connected. ■
We now construct an Eulerian counterexample to Conjecture \(^2\) for \(k = 3\). Let \(x\) be a variable and \(C = (x, x)\) be a clause. Let \(H'_3\) be the Eulerian graph obtained from \(G'_3(\{C\})\) by adding an edge \(u_C^m\) in each of the two copies of the \((C, x)\)-gadget. The next result follows from the discussion above.

Proposition 8. \(H'_3\) is an Eulerian weakly 6-connected graph that has no 3-connected orientation.

Acknowledgement

I thank Joseph Cheriyan for inviting me to the University of Waterloo and for his profitable discussions. I thank Zoltán Szigeti who observed that the graph \(H_3\) obtained from \(G_3\) by complete splitting-off on \(t_a\) and on \(t_b\) is a smaller counterexample. I thank both of them and Abbas Mehrabian for careful reading of the manuscript.

References

[1] A. R. Berg and T. Jordán. Two-connected orientations of Eulerian graphs. *Journal of Graph Theory*, 52(3):230–242, 2006.

[2] J. Cheriyan, O. Durand de Gevigney, and Z. Szigeti. Packing of rigid spanning subgraphs and spanning trees. Submitted to *Journal of Combinatorial Theory, Series B*.

[3] L. R. Ford and D. R. Fulkerson. *Flows in Networks*. Princeton Univ. Press, 1962.

[4] A. Frank. Connectivity and network flows. In *Handbook of Combinatorics*, pages 111–177. MIT Press, 1995.

[5] T. Jordán. On the existence of \(k\) edge-disjoint 2-connected spanning subgraphs. *Journal of Combinatorial Theory, Series B*, 95(2):257–262, 2005.

[6] A. Kaneko and K. Ota. On minimally \((n, \lambda)\)-connected graphs. *Journal of Combinatorial Theory, Series B*, 80(1):156 – 171, 2000.

[7] Z. Király and Z. Szigeti. Simultaneous well-balanced orientations of graphs. *Journal of Combinatorial Theory, Series B*, 96(5):684–692, 2006.

[8] K. Menger. Zur allgemeinen kurventheorie. *Fundamental Mathematics*, pages 96–115, 1927.
[9] C. St. J. A. Nash-Williams. On orientations, connectivity and odd-vertex-pairings in finite graphs. *Canadian Journal Mathematics*, pages 555–567, 1960.

[10] H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control. *The American Mathematical Monthly*, 46(5):pp. 281–283, 1939.

[11] T. J. Schaefer. The complexity of satisfiability problems. In *ACM Symposium on Theory of Computing*, pages 216–226, 1978.

[12] C. Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. *Annals of the New York Academy of Sciences*, 555(1):402–412, 1989.