The Tetraspanin Protein CD37 Regulates IgA Responses and Anti-Fungal Immunity

Annemiek B. van Spriel1, Mariam Sofi2, Kate H. Gartlan2, Alie van der Schaaf1, Ineke Verschueren3, Ruurd Torensma1, Reinier A. P. Raymakers4, Bruce E. Loveland5, Mihai G. Netea3, Gosse J. Adema1, Mark D. Wright2,3, Carl G. Figdor1,5

1 Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre, Nijmegen, The Netherlands, 2 Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia, 3 Department of Medicine and Nijmegen Institute for Infections, Inflammation and Immunity (NI4i), University Medical Centre, Nijmegen, The Netherlands, 4 Department of Hematology and Central Hematology Laboratory, University Medical Centre, Nijmegen, The Netherlands, 5 Burnet Institute (Austin Campus), Heidelberg, Australia

Abstract

Immunoglobulin A (IgA) secretion by plasma cells in the immune system is critical for protecting the host from environmental and microbial infections. However, the molecular mechanisms underlying the generation of IgA+ plasma cells remain poorly understood. Here, we report that the B cell–expressed tetraspanin CD37 inhibits IgA immune responses in vivo. CD37−/− mice exhibit a 15-fold increased level of IgA in serum and significantly elevated numbers of IgA+ plasma cells in spleen, mucosal-associated lymphoid tissue, as well as bone marrow. Analyses of bone marrow chimeric mice revealed that CD37−/− on B cells was directly responsible for the increased IgA production. We identified high local interleukin-6 (IL-6) production in germinal centers of CD37−/− mice after immunization. Notably, neutralizing IL-6 in vivo reversed the increased IgA response in CD37−/− mice. To demonstrate the importance of CD37—which can associate with the pattern-recognition receptor dectin-1—in immunity to infection, CD37−/− mice were exposed to Candida albicans. We report that CD37−/− mice are evidently better protected from infection than wild-type (WT) mice, which was accompanied by increased IL-6 levels and C. albicans–specific IgA antibodies. Importantly, adoptive transfer of CD37−/− serum mediated protection in WT mice and the underlying mechanism involved direct neutralization of fungal cells by IgA. Taken together, tetraspanin protein CD37 inhibits IgA responses and regulates the anti-fungal immune response.

Introduction

Plasma cells (non-dividing antibody-secreting cells, ASC) are terminally differentiated B cells that are central to humoral immunity. Both mucosal and systemic immune responses to infection can induce IgA+ plasma cell formation, resulting in production of secretory and serum IgA respectively. In both pathways, isotype class-switching in B cells is tightly regulated by the cytokine-milieu. While it is believed that interleukin-6 (IL-6), originally described as a B-cell stimulating factor [1], stimulates plasma cell differentiation and promotes IgA responses in vivo [2], the molecular mechanisms underlying the development of IgA-secreting plasma cells remain poorly understood. In particular, detailed knowledge about proteins in the B cell membrane that control this process is lacking.

IgA-secreting plasma cells are predominantly found in the mucosal-associated lymphoid system (MALT) and bone marrow. During the mucosal immune response, intestinal dendritic cells present mucosal antigen to CD4+ T cells in Peyer’s patches, or present antigen directly to B1 cells in a T cell-independent manner [3,4]. This leads to the local production of secretory IgA, which is important in neutralizing intestinal microbes and controlling gut homeostasis. Secondly, systemic immune responses to T cell-dependent antigens lead to the development of germinal centers (GC) in spleen and peripheral lymph nodes that are the origin of long-lived plasma cells that produce high affinity IgG and IgA antibodies in serum [5–7]. Recent studies have underlined the importance of local production of B cell stimuli (cytokines, TLR ligands) in inducing IgA production during the humoral immune response [3,8], including IL-6 that promotes the generation of IgA-secreting plasma cells [2,3].

Tetraspanins, or transmembrane-four superfamily proteins, are implicated in organizing (immuno)-receptors, integrins, and signaling molecules into functional membrane complexes (tetraspanin microdomains) [9–12]. Consequently, tetraspanins are important in fundamental cellular processes including migration, proliferation, differentiation, and –when deregulated- cancer [13]. CD37 is expressed exclusively on cells of the immune system, in
CD37 Inhibits IgA Responses

Author Summary

Antibody, or immunoglobulin (Ig), production by plasma cells in the immune system is important for protecting the host from microbial infections. IgA is the most abundant antibody isotype produced in the body. However, the molecular mechanisms underlying the generation of IgA-producing plasma cells remain poorly understood. We now report that the B cell–expressed protein CD37 regulates IgA immune responses, both in steady-state conditions and during infection. We found highly increased levels of IgA in serum and elevated numbers of IgA+ plasma cells in lymphoid tissue of mice that are deficient for CD37 (CD37−/− mice). To demonstrate the importance of CD37 in immunity to infection, CD37−/− mice were exposed to the fungus *Candida albicans*. *C. albicans* can cause systemic infection with high mortality in immunocompromised patients. We demonstrate that CD37−/− mice are evidently better protected from infection than wild-type mice, which was dependent on *C. albicans*–specific IgA antibodies. The underlying mechanism involved direct neutralization of fungal cells by IgA.

In summary, the B cell–expressed protein CD37 inhibits IgA responses and anti-fungal immunity. This study may contribute to the development of novel immunotherapeutic approaches for invasive fungal disease.

contrast to most other tetraspanins. CD37-deficient mice display defects in various arms of the immune system, including impaired T cell-dependent IgG responses, T cell hyperproliferation, and increased antigen-presenting capacity by dendritic cells [14–16]. We have recently demonstrated that the C-type lectin dectin-1 interacts with tetraspanin CD37 [17]. Dectin-1 recognizes β-glucans that are found in the cell wall of fungi, and is involved in cytokine production and killing of fungal pathogens including *Candida albicans* [18,19].

In this study, we provide novel insights into the mechanisms underlying IgA production during the humoral immune response. We demonstrate that the B cell–expressed tetraspanin CD37 inhibits the formation of IgA-secreting plasma cells *in vivo* that is critically dependent on IL-6. Moreover, CD37-deficient mice are protected against *C. albicans* infection, which was dependent on fungal-specific IgA antibodies. Taken together, tetraspanin protein CD37 inhibits IgA responses both in steady state conditions and during infection. This is the first demonstration that tetraspanins control the immune-mediated defense against fungal pathogens.

Results/Discussion

CD37 inhibits IgA production *in vivo*

CD37 expression was determined in different mouse and human leukocyte populations at the mRNA and protein level, respectively. In both mice and human, B cells were found to be the major CD37 expressing cells (Figure 1A and 1B). In lymphoid tissue, CD37 expression was highest in the B cell follicle area as expected (Figure 1B, data shown for spleen). This high CD37 expression on B cells prompted us to study humoral immunity in CD37-deficient mice in detail. When analyzing the basal antibody levels in sera of naive mice, we observed that basal levels of serum IgA in CD37+/+ mice were increased more than 15-fold compared to C57BL/6j wild-type (WT) mice (Figure 1C). At the same time, IgG1 levels were decreased 2-fold and serum IgM levels were unaltered compared to WT mice. Next, we investigated antibody responses after immunization with the T cell–dependent antigen (NP-KLH) in CD37−/− and WT mice. Sera were analyzed for the presence of antibodies reactive with NP250-BSA (high affinity anti-NP antibody) and NP350-BSA (total anti-NP antibody) [20]. Again, CD37−/− mice developed high titers of anti-NP IgA, with >10-fold increase of high affinity IgA compared to controls 21 days after immunization (Figure 1D).

B cells lacking CD37 are responsible for the high IgA production

We wanted to investigate whether CD37-deficiency on the B cell population was indeed responsible for the high IgA response. WT mice were sublethally irradiated and reconstituted with bone marrow; 80% from μMT mice (B cell-deficient mice), and 20% from WT or CD37−/− mice as a source of B cells. This created WT mice and mice with a CD37-deficient B cell compartment (referred to as chimeric CD37−/− mice). The percentages of CD19+, CD3+, GR-1+, and F4/80-expressing cells assessed in peripheral blood revealed equally efficient reconstitution in WT and chimeric CD37−/− mice (data not shown). Next, NP-specific antibody production was analyzed 35 days after immunization with NP-KLH. The results clearly demonstrate that chimeric mice with a CD37−/− B cell repertoire also produced high titers of NP-specific IgA comparable to intact CD37−/− mice after immunization (Figure 1D, right). Thus, we can conclude that the elevated IgA response in CD37−/− mice is a B cell–intrinsic defect.

Increased formation of IgA–secreting plasma cells in CD37−/− mice

The high IgA titers in serum of CD37−/− mice suggest an enhanced generation of IgA-secreting plasma cells. To determine if this was the case, spleens, bone marrow, and mucosal-associated lymphoid tissue from immunized mice were examined for the frequency of NP-specific IgA-ASC using ELISPOT assays. In line with IgA levels in serum, the numbers of IgA-ASC were increased in spleen of CD37−/− mice compared to control WT mice at day 14 following immunization (Figure 2A). This observation was confirmed by immunohistochemical analysis (Figure 2B). High numbers of IgA+ cells were present in GC and white pulp area in spleens of immunized CD37−/− mice, whereas in spleens of WT mice IgA+ cells were very rarely detected. CD138 staining confirmed that the IgA+ cells in CD37−/− spleens were indeed plasma cells (Figure 2C). Since IgA-ASC are known to migrate preferentially to the MALT using specific gut-homing receptors [21], Peyer’s patches and mesenteric lymph nodes of immunized CD37−/− mice were analyzed for the presence of NP-specific IgA-ASC. Both the morphology and organization of mesenteric lymph nodes (Figure 2D) and Peyer’s patches (Figure 2E) of CD37−/− mice were comparable to WT mice, although CD37−/− Peyer’s patches were slightly increased in size. The percentage of IgA+ NP-specific plasma cells was increased in MALT of immunized CD37−/− mice compared to WT controls (Figure 2F), demonstrating that IgA-ASC generated in CD37−/− spleens preferentially homed to the MALT rather than to the bone marrow. IgG1+ NP-specific plasma cells were hardly detected in MALT of CD37−/− and WT mice as expected. Taken together, CD37−/− mice possess increased generation of antigen-specific IgA plasma cells after immunization.

Elevated IgA responses in CD37−/− mice are dependent on IL-6

IL-6 is a cytokine that has been implicated in promoting the generation of IgA-secreting plasma cells [2,3]. Moreover, we have recently shown that signals transduced through the CD37
molecular partner, dectin-1, lead to an elevated production of IL-6 by CD37−/− cells [17]. Consequently, we examined whether a dysregulation of IL-6 production in immunized CD37−/− mice may underlie the excess production of IgA. We first examined the expression of IL-6 in the germinal centers (GC) of immunized mice by immunohistochemistry. We readily detected IL-6

Figure 1. Increased IgA production in CD37-deficient mice. (A) Murine CD37 mRNA expression (arbitrary units) on various MACS-purified leukocyte subsets determined by quantitative RT-PCR. i/mDC = immature dendritic cell, mf = macrophage. (B) Human CD37 expression on peripheral blood CD19+ B cells determined by flow cytometry (left) and in B cell follicle area (arrow) of spleen determined by immunohistochemistry (right). Scale bar is 50 μm. Similar CD37 expression was found in lymph nodes. (C) Sera of non-immunized WT (black) and CD37−/− (white) mice were analyzed for the amount of immunoglobulin isotypes by ELISA. Antibody titer is expressed in arbitrary units and represented as mean±SEM (n = 9). Asterisks indicate significant difference (*p<0.0002, **p<0.00005). (D) WT and CD37−/− mice were immunized with NP-KLH and sera were assayed for high affinity NP-specific IgA by ELISA (left). IgA response in chimeric mice that contain either WT or CD37-deficient B cell compartment 35 d after immunization (right). Antibody titer is expressed in arbitrary units and represented as mean±SEM (n = 6). Asterisks indicate significant difference as per: *p<0.03 and **p<0.001. Similar results were obtained for total (low and high affinity) NP-specific IgA.

doi:10.1371/journal.ppat.1000338.g001
Figure 2. Increased formation of IgA–secreting plasma cells in CD37−/− mice. (A) The frequency of high affinity NP-specific IgA–ASC was assessed in CD37−/− (white) and WT (black) spleen and bone marrow by ELISPOT at d 14 and 35 of the immune response. Non-immunized mice are
CD37 Inhibits IgA Responses

Expression of IgA in the GC area of spleens of CD37−/− mice was substantially reduced compared to WT mice. IgA production by peritoneal B cells during Th cell-independent responses is not dependent on IL-6 [22], which correlates with normal IgA response in CD37−/− mice after T cell-independent immunization (data not shown).

Next, the effect of IL-6 on IgA production during ex vivo restimulation experiments was analyzed. Spleen cells of immunized WT and CD37−/− mice were stimulated with NP-KLH in vitro in the absence or presence of neutralizing IL-6 antibodies. Figure 3B shows increased IgA production by CD37−/− cultures compared to WT cells as expected. Blocking IL-6 resulted in substantially reduced IgA production by CD37−/− cells, which supported our hypothesis that the mechanism underlying the elevated IgA responses in CD37−/− mice is controlled at the level of IL-6. WT and CD37−/− cultures produced 1900 vs. 5300 pg/ml IgA, respectively, which decreased to 500 vs. 2000 pg/ml in the presence of neutralizing IL-6 antibodies. We also established that purified CD37−/− splenic B cells were capable of autocrine IL-6 production upon restimulation in vitro using intracellular cytokine staining (data not shown).

To prove that increased IgA production in CD37−/− mice was indeed dependent on IL-6 in vivo, we neutralized IL-6 in WT and CD37−/− mice during immunizations using blocking antibodies. Serum was analyzed for the presence of high affinity (anti-NP) IgA antibodies at different days after immunization. Evidently, IL-6 neutralization reversed the production of high IgA levels in CD37−/− mice (Figure 3C, left), demonstrating the importance of IL-6 in IgA plasma cell development in CD37−/− mice. Only 25% of the CD37−/− mice produced NP-specific IgA titers after treatment with anti-IL-6 antibodies, compared to 100% of isotype control-treated CD37−/− mice 14 days after immunization (Figure 3C, right). IgA formation by WT mice (with or without anti-IL-6) was below the level of detection (not shown). Our findings are in accordance with observations made in IL-6-deficient mice that exhibit impaired antibody production during systemic immune responses [23-25]. Mucosal IgA responses were reported to be significantly impaired or unaltered in IL-6-deficient mice dependent on the model of immunization used [23,25,26]. Moreover, IL-6 polymorphisms were recently reported to be associated with IgA-deficiency in patients [27]. Since IL-6 is crucial for the induction of already-committed (surface IgA+) B cells to become IgA-secreting plasma cells [2], our data suggest that CD37 is directly implicated in the inhibition of the late-stage development of IgA plasma cells, i.e., at the level of terminal B cell differentiation. Taken together, we established that high IL-6 levels directly relate to the increased IgA production in CD37−/− mice.

IgA production during fungal infection in CD37-deficient mice

Given that IgA contributes to protecting the host from microbial infections, we hypothesized that CD37-deficiency may have important implications for the outcome of infectious diseases. We have recently demonstrated that CD37 interacts with the C-type lectin dectin-1 [17], a β-glucan receptor that is required for effective immunity to fungal infections [20,29]. Therefore, the CD37-deficient immune response during Candida albicans infection was explored. C. albicans normally colonizes the mucosa without causing disease, but can cause systemic infection with high mortality in immunocompromised patients [30,31]. In particular, the incidence of invasive C. albicans infections is high among cancer patients [32-34].

C. albicans-infected WT and CD37−/− mice were infected with C. albicans and IL-6 production by CD37−/− and WT splenocytes was studied upon restimulation with fungal antigens. CD37−/− splenocytes produced increased levels of IL-6 compared to WT cells upon exposure to either live or heat-killed C. albicans, or the fungal cell wall extract zymosan both 3 and 7 days after infection (Figure 4A). Blocking dectin-1 with antibody 2A11 inhibited IL-6 production by both WT and CD37−/− splenocytes stimulated with C. albicans or the dectin-1 ligand curdlan (Figure S1), showing that IL-6 production is dependent on dectin-1. As such, CD37 controls dectin-1-mediated IL-6 production, possibly by recruiting dectin-1 into tetraspanin microdomains that may alter signal transduction pathways and subsequent cytokine profiles. In line with our findings, IL-6-deficient mice are more susceptible to C. albicans and A. fumigatus infection, which is related to decreased neutrophil effector activity, impaired Th1-mediated immune responses [25], and defective Th17 responses [35]. Studying Th2/Th1/Th17 cytokine production by CD37−/− splenocytes revealed that IL-10 production was comparable between CD37−/− and WT splenocytes, and IFNγ production was low but increased by CD37−/− cells 3 days after infection (Figure 4A). The role of IL-6 in inducing Th17 responses is well established in mice. Accordingly, we observed significantly increased IL-17 production by CD37−/− splenocytes stimulated with C. albicans stimulation (Figure 4A). Th17 cells have been implicated as an important effector mechanism against C. albicans infection [36,37], although IL-17 may also impair anti-fungal immunity under certain conditions [38,39].

Next, the development of fungal-specific IgA antibodies in CD37−/− and WT mice exposed to C. albicans was analyzed. WT mice did not generate a detectable IgA response after C. albicans infection. In contrast, all CD37−/− mice exhibited high titers of IgA antibodies specific for C. albicans and zymosan in their serum (Figure 4B). Candida-specific IgG was not detected in serum of WT and CD37−/− mice 7 days after infection (not shown). Finally, we investigated the role of tetraspanin CD37 in the outcome of infectious disease. WT and CD37−/− mice were systemically infected with C. albicans yeasts, and kidneys were analyzed for the outgrowth of viable C. albicans after 1 and 7 days. CD37−/− mice exhibited significantly decreased susceptibility to infection and reduced fungal outgrowth in their kidneys—the main target organ for C. albicans -7 days after infection when compared to WT mice (Figure 4C, left). Histology revealed major infection areas with abscesses and hyphal infiltration in WT kidneys. In contrast, morphology of kidneys of CD37−/− mice looked...
Figure 3. Increased IgA production after immunization in CD37−/− mice is dependent on IL-6. (A) Immunohistochemical analysis of spleens from CD37−/− and WT mice 14 d after NP-KLH immunization. Germinal centers (identified in serial sections by PNA staining) are indicated in the B cell follicles. Immunized WT mice have non-detectable levels of IL-6 in spleens (left). In contrast, B cell follicles in spleens of immunized CD37−/− mice are clearly positive for IL-6 (red) in the GC area (right). Spleens of non-immunized mice (WT and CD37−/−) were negative for IL-6 staining (not shown). Scale bar is 50 μm. (B) Effect of neutralizing anti–IL-6 during ex vivo restimulation. Splenocytes from WT and CD37−/− mice were prepared 14 d after NP-KLH immunization, and stimulated in vitro with NP-KLH (1 μg/ml) in the absence or presence of anti–IL-6. Supernatants were collected after 48 h, and assayed for IgA production by ELISA (expressed in arbitrary units). Asterisk indicates significant difference (*p < 0.002). (C) IL-6 was neutralized in WT and CD37−/− mice during immunizations using blocking IL-6 antibodies (as described in Materials and methods). High affinity NP-specific IgA was assayed in serum of CD37−/− mice treated with anti–IL-6 (black) or control antibody (white) (left). Antibody titer is expressed in arbitrary units and represented as mean ± SEM (n = 6). Asterisks indicate significant difference as per: *p < 0.04. Histogram shows percentage of CD37−/− mice with high IgA anti-NP3 levels (above 10^6 background level) in serum after treatment with anti–IL-6 (black) compared to control treated CD37−/− mice (white) at indicated days after immunization (right). Similar results were obtained for total NP-specific antibody (against NP20-BSA).

doi:10.1371/journal.ppat.1000338.g003
normal with no mycelial structures and presence of leukocyte infiltrates (Figure 4C, right). Next, we evaluated survival of WT and CD37−/− mice after lethal fungal infection. The absence of CD37 resulted in prolonged survival and decreased mortality after lethal candidiasis (Figure 4D), further emphasizing the importance of CD37 in regulating anti-fungal immunity.

In order to get more insight into the underlying mechanism, CD37−/− serum was analyzed for fungal opsonization and/or neutralizing capacity. IgA-mediated phagocytosis through Fc alpha receptor CD89 is well-established in humans [40,41], in whom serum IgA is mostly monomeric. In mice, serum IgA is predominantly dimeric/polymeric and it is currently unknown whether the murine Fcα/μ receptor is effective in clearing IgA-opsonized pathogens [42]. We observed similar uptake of C. albicans by GR-1+ neutrophils in the presence of WT or CD37−/− serum of infected mice (Figure 5A). Serum heat-inactivation inhibited C. albicans uptake, demonstrating that the phagocytosis was mainly complement-mediated and not dependent on IgA. Also, the increase in GR-1-expressing cells in blood after C. albicans infection was comparable between WT and CD37−/− mice.
immunity. plasma cells and may contribute to better insight into anti-fungal tetraspanins may control the immune-mediated defense against dependent on IL-6. Moreover, this is the first demonstration that Quantitative RT–PCR

Materials and Methods

Biosystems) with mouse CD37 primers (5

hexamer primers (Amersham) and Superscript II RT (Invitrogen). using Trizol (Invitrogen) and transcribed into cDNA using random

leukocyte populations (purified by MACS sorting, Miltenyi Biotec)

(58) were frozen for immunohistochemistry or processed for

(spleens, bone marrow, mesenteric lymph nodes, and Peyer's

patches) were frozen for immunohistochemistry or processed for

ELISPOT as described [20,46], again using NP 20-BSA and NP 3-

NP-specific ASC in spleen and bone marrow was determined by

NP antibody, respectively. The frequency of total and high affinity

NP antibody, respectively. The frequency of total and high affinity

were assayed by ELISA using plates coated with 20 μg/mL of either NP20-BSA or NP3-BSA to detect total and high affinity anti-

NP antibody, respectively. The frequency of total and high affinity

NP-specific ASC in spleen and bone marrow was determined by

ELISPOT as described [20,46], again using NP20-BSA and NP3-

BSA for antibody capture.

Immunohistochemistry

Spleens, mesenteric lymph nodes and Peyer’s patches taken from mice before and after immunization were embedded in OCT. Frozen sections (6 μm) were fixed in acetone for 10 min. at −20 C. Slides were blocked (5% goat serum) and stained with anti-IgA, anti-IgG1, anti-IL6, anti-CD138, anti-CD45R (B220) (all from BD-Pharimingen), or isotype controls. Goat anti-rat-biotin (Molecular Probes) was used as secondary Ab, and staining was revealed using SA-alkaline phosphatase labeling kit (Vector Laboratories) with Fast Red substrate. Slides were counterstained with Meyer’s hematoxylin.

Reconstitution experiments

Bone marrow chimeras were generated as previously described [47]. Briefly, 10^7 (CD37−/- or WT) and μMT (CD37+ bone marrow cells were injected intravenously into sublethally irradiated C57Bl/6j recipients at a ratio of 4 parts μMT to 1 part WT
or CD37−/− bone marrow as a source for B cells. This created WT mice and mice with a CD37-deficient B cell compartment (referred to as chimeric CD37−/− mice). Six weeks after reconstitution, heparinized blood was obtained from chimeric mice and reconstitution of all major leukocyte populations was monitored by flow cytometry, using the antibodies against: PE-conjugated 1D3-PE (CD19, BD-Pharmingen), PE-conjugated RB6-8C5-PE (GR-1, BD-Pharmingen), Cy3-conjugated KT3.1 (CD8, made in house), PE-conjugated F4/80 (BD-Pharmingen), and FITC-conjugated M1/70 (CD11b, made in house). 2 weeks thereafter, mice (n = 7) were immunized with NP-KLH as described above. Sera were collected 35 days after immunization and analyzed for presence of NP-specific antibodies by ELISA.

Ex vivo restimulation experiments
Splenocytes were prepared from WT and CD37−/− mice 14 days after NP-KLH immunization. Cells were stimulated with NP-KLH (1 μg/ml) in the absence or presence of 5 μg/ml (azide- and LPS-free) neutralizing anti-IL-6 MP5-20F3 (Biolegend). Supernatants were collected after 48 h, and IgA production was determined by ELISA.

IL-6 neutralization in vivo
WT and CD37−/− mice (n = 6) were immunized with NP-KLH as described above. Mice received 2 injections of neutralizing (azide- and LPS-free) anti-IL-6 MP5-20F3 or isotype control; 60 μg intraperitoneally at day 0, and 60 μg intravenously 7 days after immunization. Mice were bled and sera collected at days 7, 14, 21 and 35 post-infection. Lymphoid organs (spleens, bone marrow, mesenteric lymph nodes, and Peyer’s patches) were frozen in OCT for immunohistochemistry or processed for FACS analysis.

Candida albicans infection protocols
C. albicans ATCC MYA-3573 (UCR20), a well-described clinical strain [48], was injected intravenously (1×10⁶ colony-forming units (CFU), in 100 μL sterile pyrogen-free saline) in CD37−/− and WT mice. Blood (50 μL) was collected at different time points after infection and stained with GR-1-PE to identify neutrophils by flow cytometry. Subgroups of five or six animals were sacrificed on day 1 or 7, and kidneys were removed aseptically, weighed and homogenized in sterile saline in a tissue grinder. The number of viable Candida cells in the tissues was determined by plating serial dilutions on Sabouraud dextrose agar plates. Colony-forming units were counted after 24 h of incubation at 37°C, and expressed as log CFU/g tissue. Alternatively, kidneys were embedded in OCT, and frozen sections (6 μm) were stained with periodic acid-Schiff to identify C. albicans by histology. In adoptive transfer experiments, WT mice (n = 5) received 1×10⁶ CFU C. albicans intravenously (in 100 μL sterile pyrogen-free saline) with 20% pooled serum of infected CD37−/−/mice that was either untreated or depleted for IgA (as described below). Colony-forming units were determined in kidneys 7 days after infection. For survival experiments, CD37−/− and WT mice (n = 6) were injected intravenously with lethal dose of 5×10⁵ CFU C. albicans and mice were assessed twice daily.

Restimulation assay with fungal antigens
To assess cytokine production, spleens were removed 3 or 7 days after infection and 5×10⁵ spleenocytes were stimulated with 1×10⁵ live or heat-killed C. albicans yeasts (ET ratio 2:1), or 1 mg/ml zymosan (Sigma). Measurement of IL-6, IL-10, IL-17 and γIFN was performed in supernatants collected after 48 h of incubation at 37°C (5% CO₂) in 24-well plates by commercial ELISA assays (Biosource, Camarillo, CA; detection limit 16 pg/ml) according to the instructions of the manufacturer. In dectin-1 blocking studies, antibody 2A11 (10 μg/ml) was added during stimulations as described [17]. Curdlan is a specific dectin-1 ligand with no TLR2- or TLR4-stimulating properties [49].

Detection of anti-Candida IgA antibodies in mice
Serum of CD37−/− and WT mice (n = 5) was collected 7 days after C. albicans infection, and different dilutions were incubated with 1×10⁵ Candida or 1×10⁵ zymosan particles for 30 min. at 4°C. After washing twice in saline, Candida particles were incubated with biotinylated anti-mouse IgA (BD-Pharmingen) followed by SA-CY5 (Invitrogen), and analyzed by flow cytometry. Serum of non-infected mice was used as control.

IgA depletion of serum
Streptavadin-coated 2 μm microspheres (Polysciences, PA) were incubated with biotinylated anti-mouse IgA (BD Biosciences) according to the instructions of the manufacturer. Sera of WT and CD37−/− mice (n = 4) were collected 7 days after C. albicans infection, pooled, and incubated with 100×10⁵ anti-IgA coated microspheres (1 h at RT, shaking).

C. albicans phagocytosis and neutralization assays
C. albicans phagocytosis was performed as described [41]. Briefly, FITC-labeled C. albicans particles were incubated with blood leukocytes (ratio 2:1) in the absence or presence of serum from infected WT or CD37−/− mice for various time points at 37°C. As control, sera were heat-inactivated at 56°C for 30 min. to inactivate complement. GR-1-PE was used to stain neutrophils and phagocytosis was quantified by flow cytometry. In addition, uptake was analyzed by fluorescence light microscopy. For neutralization experiments, C. albicans was cultured overnight at 37°C in Sabouraud dextrose medium (Oxoid, UK), washed, and 1×10⁵ yeasts were incubated in the absence or presence of 20% serum (from WT or CD37−/− mice; collected 7 days after infection) or 20% IgA-depleted serum. Viability was assessed after shaking for 5 h at 37°C by plating serial dilutions on Sabouraud dextrose agar plates.

Statistical analyses
Data are presented as mean±SEM. Statistical differences were determined using the unpaired Student’s t-test. Significance was accepted at the p<0.05 level.

Accession/ID numbers
Human CD37, GeneID 951; Murine CD37, GeneID 12493, MGI: 89330; Murine IL-6, GeneID: 16193, MGI: 9659; Murine IgA, GeneID: 230447, MGI: 96444.

Supporting Information
Figure S1 IL-6 production by WT and CD37−/− splenocytes stimulated by C. albicans is dependent on dectin-1. Spleens were removed from CD37−/− and WT mice 7 d after infection (1×10⁶ CFU C. albicans) and restimulated with heat-killed C. albicans (E:T ratio 2:1) or the dectin-1 ligand Curdlan (100 μg/ml) for 48 h, after which IL-6 in supernatants were measured by ELISA. Antibody 2A11 was added during stimulations (10 μg/ml) to block dectin-1. Found at: doi:10.1371/journal.ppat.1000338.s001 (0.01 MB PDF)

Figure S2 Normal increase of GR-1-positive cells in blood of CD37−/− mice. Granulopoiesis in WT and CD37−/− mice (n = 5) systemically infected with 1×10⁶ CFU C. albicans. Percentage
of GR-1-positive cells in blood was determined by flow cytometry at different time points after infection.

Acknowledgments

We thank David Tarlinton (The Walter and Eliza Hall Institute of Medical Research, Australia) for helpful discussions. Maaike van Hout assisted us with the quantitative RT-PCR experiments. Furthermore, we greatly appreciate the technical help from the animal house staff of both the Central Animal Facility of the University Medical Centre Nijmegen and the Burnet Institute Austin Campus.

Author Contributions

Conceived and designed the experiments: ABoS MGN JGA MDW CGF. Performed the experiments: ABoS MS KHG ABoS IV BEl. Analyzed the data: ABoS MS KHG ABoS IV RT RAPR BEL MGN JGA MDW CGF. Contributed reagents/materials/analysis tools: ABoS RT RAPR BEL MGN CGF. Wrote the paper: ABoS MDW CGF.

References

1. Hirano T, Taga T, Nakano N, Yasukawa K, Kashibaumiwa S, et al. (1985) Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or Bsp-2). Proc Natl Acad Sci U S A 82: 5490–5494.
2. Ramos JA, Husband AJ, Carmichael IA, Bao S, Manthari KI, et al. (1994) The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 264: 61–65.
3. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, et al. (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157–1160.
4. McGehee JR, Kunisawa J, Kiyono H (2007) Gut lymphocyte migration: we are halfway home. Trends Immunol 28: 130–135.
5. Kelsoe G (1996) Life and death in germinal centers (redux). Immunol Today 17: 822–829.
6. McHeyzer-Williams LJ, Driver DJ, McHeyzer-Williams MG (2001) Germinal center reaction.Curr Opin Hematol 8: 52–59.
7. Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5: 230–242.
8. Gerriets A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunol Today 34: 70–75.
9. Wright MD, Tomlinson MG (1999) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15: 588–594.
10. Kopf M, Baumann H, Freudenberg M, Lamers M, et al. (1994) Interleukin-10 production by peritoneal cavity B cells is IL-6 independent: implications for the recognition of Candida albicans by the innate immune system. J Immunol 158: 630–636.
11. Tarrant JM, Robb L, van Spriel AB, Wright MD (2003) Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 24: 610–617.
12. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6: 801–811.
13. Wright MD, Moseley GW, van Spriel AB (2004) Tetraspanin microdomains in immune cell signalling and malignant disease. Trends Immunol 25: 533–542.
14. Knobeloch KP, Wright MD, Ochsenbein AF, Lieberknecht O, Lohse J, et al. (2000) Targeted inactivation of the tetraspanin CD53 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol Cell Biol 20: 5363–5369.
15. van Spriel AB, Pali KL, Sofi M, Ponsi R, Dorsainvil H, et al. (2004) A regulatory role for CD53 in T cell proliferation. J Immunol 172: 2953–2961.
16. Sheng KC, van Spriel AB, Garland KH, Sofi M, Apostolopoulos V, et al. (2008) Tetraspanins CD53 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur J Immunol 39: 30–55.
17. Meyer-Weitz F, Fiegler HG, Giesen M, Beutler P, Wright MD, et al. (2007) Dectin-1 interaction with tetraspanin CD53 inhibits IL6 production. J Immunol 178: 154–162.
18. Arizuimi K, Shira GL, Shikano S, Xu S, Ritter K, et al. (2000) Identification of a novel, distantly related, cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275: 20157–20167.
19. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6: 33–43.
20. Smith KG, Ligit A, Nossal GJ, Tarlinton DM (1997) The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. Embry Dev 16: 2996–3006.
21. Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3: 822–829.
22. Beagley KW, Bao S, Ramos JA, Eldridge JH, Husband AJ (1995) IgA production by peritoneal cavity B cells is IL-6 independent: implications for intestinal IgA responses. Eur J Immunol 25: 2123–2126.
23. Kopf M, Baumann H, Freer G, Freundenberg M, Lammers M, et al. (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 339–342.
24. Kopf M, Herren S, Wills MV, Ponsi R, Kosco-Vilbois MH, et al. (1999) Interleukin-6 influences germinal center development and antibody production via a compensation of complement component. J Exp Med 188: 1895–1906.
25. Romanov L, Menacci A, Cenci E, Spaccalegro R, Toniatti C, et al. (1996) Impaired neutrophil chemotaxis and CD+ T helper cell 1 development in interleukin-6-deficient mice infected with Candida albicans. J Exp Med 183: 1345–1355.
26. Abramson GR, Ikeda L, Kopf M, Neufeld JG, Lyle YK (1996) IL-6-deficient mice exhibit normal mucosal IgA responses to local immunizations and meet the eye. J Cell Sci 114: 4143–4151.
27. Casadevall A, Feldman R, Kacena A, Schub A, Golde DW (1988) GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 332: 647–648.
28. Wagner RD, Vazquez-Torres A, Jones-Carson J, Warner T, Balish E (1996) B cell knockout mice are resistant to mucosal and systemic candidiasis of endogenous origin but susceptible to experimental systemic candidiasis. J Infect Dis 174: 589–597.
29. Komai-Koma M, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350: 423–426.
30. Lohr PA, Nossal GJ, Andrews RD, McHeyzer-Williams MG (1992) Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)azetyl (NP)-specific, IgG1 B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur J Immunol 22: 3001–3011.
31. Nguyen KD, Xuan Y, Puthalakath H, Light A, Willis SN, et al. (2006) CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat Immunol 7: 190–198.
32. Lehrer RI, Clive MJ (1969) Interaction of Candida albicans with human leukocytes and serum. J Bacteriol 98: 996–1004.
33. Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ (2008) Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 10: 2055–2066.