ABSTRACT
A field experiment was conducted on sandy clay loam soils of Tirupati Campus of ANGR Agricultural University, Andhra Pradesh to optimise the sowing time and nutrient needs of

[Cajanus cajan (L.) Millsp.] for its sustained productivity and profitability. Three sowing times: II FN of September, I FN of October and II FN of October; three nutrient levels (N-P-O-K kg ha⁻¹): 10-40-0, 20-50-10 and 30-60-20 and two foliar treatments: NAA (25 ppm) and DAP (2%) at 60 DAS, 60 and 80 DAS were tested on LRG 41 pigeonpea cultivar in split-split plot design, replicated thrice. Earliest sow pigeonpea (II FN September) resulted in significantly higher seed yield (1700 kg ha⁻¹) and net returns (₹ 32239) due to improvement in yield attributes like pod bearing branches plant⁻¹, number of pods branch⁻¹, number of seeds pod⁻¹ and test weight. Highest nutrient level (30-60-20 NPK ha⁻¹) produced significantly higher seed yield (1589 kg ha⁻¹) and net returns (28448) due to improvement in yield attributes. Foliar application of NAA (25 ppm) and DAP (2%) applied at 60 and 80 DAS recorded significantly highest seed yield (1434 kg ha⁻¹) and net returns (24111) due to its positive effect on pigeonpea yield attributes. Benefit:cost ratio was significantly high (2.71) due to earliest sowing, highest level of nutrient supply (2.46) and foliar application of NAA (25 ppm) and DAP (2%) applied at 60 and 80 DAS (2.26). Early sowings resulted in significantly higher seed yields at higher levels of nutrient supply. Foliar application of DAP (2%) at 60 and 80 DAS recorded significantly higher pigeonpea yield with early sowings. Early sown pigeonpea resulted in significantly higher seed yield at all levels of nutrient supply and foliar applications.

Rabi redgram gave optimum yield and economic returns sown during II FN of September with 30-60-20 kg N, P₂O₅ and K₂O ha⁻¹ along with foliar spray of NAA (25 ppm) and DAP (2 per cent) twice at 60 and 80 DAS.

Key words: Foliar application, Nutrient needs, Pigeonpea, Sowing time, Yield attributes.

INTRODUCTION
Pulses continue to be the major source of protein in Indian diets and play a vital role in sustaining agricultural growth. Increasing pulse production is therefore important for improving food availability, soil health, diet quality and nutritional security. Pigeonpea is an excellent source of proteins and amino acids. It is also rich in vitamin C. High levels of carbohydrates present in it help in maintaining a healthy blood sugar level and boosting energy.

Two major factors limiting the productivity of *rabi* pigeonpea are untimely sowing and limited nutrient application. Efficient use of natural resources and applied agro-inputs depends on optimum sowing time. Among the agro-inputs, nutrient management assumes paramount importance for improving the productivity and profitability of *rabi* pigeonpea. Foliar application of growth regulators (NAA) and nutrient solutions (DAP) can also have positive influence on the productivity of pigeonpea. Information is sought to be obtained in the present investigations on optimum sowing time and nutrient needs for improving and sustaining the productivity of *rabi* pigeonpea.

MATERIALS AND METHODS
Field experiments were conducted for two years (2012-13 and 2013-14) at Tirupati Campus of ANGR Agricultural University, Andhra Pradesh for optimising the sowing time and nutrient needs of *rabi* pigeonpea. Experimental field was sandy clay loam, low in organic carbon and available nitrogen, medium in available phosphorus and available potassium. Experiment was laid out on split-split plot design with three replications and the pigeonpea variety tested was LRG 41. The treatments included three sowing times (main plots): II FN of September (T₁), I FN of October (T₂) and II FN of October (T₃); three nutrient levels of N-P₂O₅-K₂O kg ha⁻¹ (sub-plots): 10-40-0 (N₁), 20-50-10 (N₂) and 30-60-20 (N₃) and two foliar treatments (sub-sub plots): NAA (25 ppm) and DAP (2%) applied at 60 DAS (F₁) and NAA (25 ppm) and DAP (2%) applied at 60 and 80 DAS (F₂).

Pigeonpea seeds were sown on well-prepared seed bed with a spacing of 45 x 15 cm. Weeds were managed with pre-emergence application of Imazethapyr followed by two manual weedicings at 35 and 70 DAS. Fertilisers were applied to supply the nutrients as per the treatments. Entire quantities of fertilisers were applied by placement at sowing.

Department of Agronomy, S.V. Agricultural College, Tirupati-517 502, Andhra Pradesh, India.

Corresponding Author: C. Nagamani, Department of Agronomy, S.V. Agricultural College, Tirupati-517 502, Andhra Pradesh, India. Email: cnagamani80@gmail.com

How to cite this article: Nagamani, C., Sumathi, V. and Reddy, G.P. (2020). Optimising Sowing Time and Nutrient Needs of *rabi* Pigeonpea (*Cajanus cajan* (L.) Millsp.) in *alfisols* of Andhra Pradesh. Agricultural Science Digest.

Submitted: 07-01-2019 Accepted: 13-04-2020 Published: 10.18805/ag.D-4867

How to cite this article: Nagamani, C., Sumathi, V. and Reddy, G.P. (2020). Optimising Sowing Time and Nutrient Needs of *rabi* Pigeonpea (*Cajanus cajan* (L.) Millsp.) in *alfisols* of Andhra Pradesh. Agricultural Science Digest.
Yield attributing characters (number of pod bearing branches plant$^{-1}$, number of pods branch$^{-1}$, number of seeds pod$^{-1}$ and test weight) were recorded at harvest and after cleaning the produce from five randomly selected plants in each net plot area. Seed and stalk yields were expressed in terms of kg ha$^{-1}$. Net returns were computed by subtracting cost of cultivation from gross returns. Benefit: cost ratio (returns per rupee invested) has been computed for each treatment by dividing the gross returns with corresponding cost of cultivation. Recorded and calculated data from two years study were subjected to stastical scrutiny through pooled analysis. Results of the pooled analysis data for the two years has been presented and briefly discussed.

RESULTS AND DISCUSSION

Yield attributes

Yield attributes varied significantly due to treatments (Table 1). Earliest sown pigeonpea (II FN of September) significantly improved the yield attributes (number of pod bearing branches plant$^{-1}$, number of pods branch$^{-1}$ and number of seeds pod$^{-1}$) except the test weight which was on par with that of I FN of October (T$_1$) sowing. Longer vegetative lag phase for efficient use of growth resources, better balance between vegetative and reproductive phase and adequate time for pod setting appears to have contributed for significant improvement in yield attributes of pigeonpea due to earliest sown crop (Laxminarayana, 2003, Mishra et al., 2006, Rani and Reddy, 2010, Ram et al., 2011).

Highest nutrient level of 30-60-20 kg N, P$_2$O$_5$ and K$_2$O ha$^{-1}$ (N$_6$) greatly contributed for significant improvement in yield attributes presumably due to cumulative improvement in different growth parameters and synergistic effect of primary nutrients leading to increased stature of sink coupled with higher magnitude of biomass accrual and efficient translocation of metabolites to the sink (Patel and Patel, 1995), Kantwa et al., (2005) and Meena et al., (2013). Foliar spray of NAA (25 ppm) and DAP (2 %) twice at 60 and 80 DAS (F$_{12}$) improved the yield components relative to foliar spray once at 60 DAS (F$_{6}$) with significant disparity between them. Reduction in flower drop, increased phloem area of vascular bundle of stalk and pod and supply due to NAA spray and N and P$_2$O$_5$ supply through DAP during flower initiation through foliar spray might have contributed to improvement in yield attributes.

Pigeonpea sown during II FN of September receiving 30-60-20 kg N, P$_2$O$_5$ and K$_2$O ha$^{-1}$ (T$_{N_6}$) significantly improved the yield attributes. Interaction of sowing times and foliar application significantly varied the number of pod bearing branches plant$^{-1}$. Two foliar applications to early sown pigeonpea (T$_{F_{12}}$) significantly improved the pod bearing branches plant$^{-1}$ compared to other combinations. Longer vegetative lag phase due to early sowing and adequate availability of N and P$_2$O$_5$ during branching due to two foliar applications contributed to more number of pod bearing branches plant$^{-1}$.

Seed and stalk yield

Significantly, higher seed and stalk yield were with the crop sown during II FN of September (T$_1$). Cumulative effect of improvement in growth and yield attributes resulted in significantly higher seed yield with the earliest sown crop Padhi (1995) and Laxminarayana (2003). Application of 30-60-20 kg N, P$_2$O$_5$ and K$_2$O ha$^{-1}$ (N$_6$) resulted in significantly higher seed and stalk yield. Improvement in growth parameters leading to improvement in yield attributes increased the yield at higher nutrient levels (Meena et al., 2013 and Umesh et al., 2013). Foliar spray of NAA (25 ppm) and DAP (2 %) twice at 60 and 80 DAS (F$_{12}$) resulted in significantly higher seed and stalk yields (Table 2) relative to that due to the same foliar spray once at 60 DAS (F$_{6}$). It was probable that application of NAA might have induced large number of new sinks leading to greater activity of carboxylating enzymes and rate of protein synthesis. This resulted in higher photosynthetic rate, translocation and accumulation of metabolites in the sink and eventually greater seed production (Dixit and Elamathi, 2007).

Interaction of sowing times and nutrient levels significantly increased the seed and stalk yield of pigeonpea. It appears that, early sowing with higher nutrient dose (T$_{N_6}$) had improved growth parameters (plant height, leaf area, dry matter production and crop growth rate) and yield attributes (number of pod bearing branches plant$^{-1}$, number of pods branch$^{-1}$, number of seeds pod$^{-1}$ and test weight) leading to higher seed and stalk yield. Significantly, higher seed yield was with crop sown during II FN of September receiving two foliar sprays at 60 and 80 DAS (T$_{F_{12}}$) due to N and P$_2$O$_5$ availability from flower primordia initiation to seed maturity as DAP was applied through foliar application. Highest nutrient level along with foliar application twice (N$_6$F$_{12}$) resulted in higher seed yield. Earliest sown crop receiving higher nutrient dose and two foliar applications (T$_{N_6}$F$_{12}$) resulted in the highest seed yield of *rabi* pigeonpea due to efficient use of natural resources and applied nutrients.

Economics

Gross returns, net returns and benefit: cost ratio varied significantly due to times of sowing, nutrient levels and foliar sprays (Table 2). Significantly higher gross and net returns and benefit: cost ratios were with the crop sown during II FN of September due to high seed and stalk yield. Among the nutrient levels, application of 30-60-20 kg N, P$_2$O$_5$ and K$_2$O ha$^{-1}$ (T$_{N_6}$) resulted in significantly higher gross returns, net returns and benefit: cost ratio due to improvement in yield attributes and seed yield. Foliar application of NAA (25 ppm) and DAP (2 per cent) twice at 60 and 80 DAS resulted in significantly higher gross and net returns as well as benefit-cost ratio compared with that due to same foliar spray at 60 DAS alone because of higher seed yield.

Pigeonpea sown during II FN of September, receiving 30-60-20 kg N, P$_2$O$_5$ and K$_2$O ha$^{-1}$ (T$_{N_6}$) resulted in significantly higher gross and net returns and benefit: cost ratio. Higher leaf area, crop growth rate, dry matter
Table 1: Effect of sowing time, nutrient levels and foliar application on yield parameters of pigeonpea (pooled data over two years).

Treatment	Number of pod bearing branches plant\(^{-1}\)	Number of pods branch\(^{-1}\)	Number of seeds pod\(^{-1}\)	Test weight (g)	
T\(_1\)	9.60	12.30	4.17	10.08	
T\(_2\)	7.99	11.15	3.90	9.82	
T\(_3\)	7.04	8.56	3.54	9.23	
SEm ±	0.156	0.120	0.051	0.089	
CD (5%)	0.61	0.47	0.20	0.35	
N\(_1\)	7.27	9.42	3.52	9.37	
N\(_2\)	8.26	10.71	3.89	9.75	
N\(_3\)	9.10	11.88	4.21	10.01	
SEm ±	0.039	0.077	0.031	0.047	
CD (5%)	0.12	0.24	0.10	0.14	
F\(_1\)	7.99	10.36	3.79	9.60	
F\(_2\)	8.43	10.98	3.95	9.82	
SEm ±	0.011	0.043	0.020	0.026	
CD (5%)	0.03	0.13	0.06	0.08	
T\(_1\)N\(_1\)F\(_1\)	8.19	10.51	3.86	9.59	
T\(_1\)N\(_1\)F\(_2\)	8.69	11.44	4.02	9.83	
T\(_1\)N\(_2\)F\(_1\)	9.34	12.23	4.12	10.06	
T\(_1\)N\(_2\)F\(_2\)	10.01	12.76	4.25	10.15	
T\(_1\)N\(_3\)F\(_1\)	10.42	13.04	4.34	10.29	
T\(_1\)N\(_3\)F\(_2\)	10.98	13.79	4.44	10.56	
T\(_1\)N\(_1\)F\(_2\)	6.89	9.25	3.60	9.55	
T\(_1\)N\(_2\)F\(_2\)	7.32	9.81	3.71	9.68	
T\(_1\)N\(_3\)F\(_2\)	7.86	10.85	3.81	9.75	
T\(_1\)N\(_2\)F\(_3\)	8.23	11.66	3.96	9.85	
T\(_1\)N\(_3\)F\(_3\)	8.62	12.32	4.08	9.94	
T\(_1\)N\(_1\)F\(_2\)	9.01	13.02	4.20	10.16	
T\(_1\)N\(_3\)F\(_1\)	6.06	7.56	2.82	8.85	
T\(_1\)N\(_3\)F\(_2\)	6.47	7.94	3.09	8.89	
T\(_1\)N\(_3\)F\(_3\)	6.88	8.19	3.48	9.21	
T\(_1\)N\(_2\)F\(_3\)	7.21	8.57	3.71	9.48	
T\(_1\)N\(_3\)F\(_3\)	7.62	9.28	4.02	9.37	
T\(_1\)N\(_3\)F\(_3\)	7.98	9.84	4.15	9.75	
T\(_1\)xF	SEm ±	0.067	0.134	0.054	0.081
CD (5%)	0.21	0.41	0.17	NS	
T\(_1\)xF	SEm ±	0.019	0.074	0.034	0.045
CD (5%)	0.06	NS	NS	NS	
N\(_1\)xF	SEm ±	0.019	0.074	0.034	0.045
CD (5%)	NS	NS	NS	NS	
T\(_1\)N\(_1\)xF	SEm ±	0.033	0.128	0.059	0.078
CD (5%)	NS	NS	NS	NS	
Optimising Sowing Time and Nutrient Needs of *rabi* Pigeonpea (*Cajanus cajan* (L.) Millsp.) in *alfisols* of Andhra Pradesh

Table 2: Effect of sowing time, nutrient levels and foliar application on yield and economics of pigeonpea (pooled data over two years).

Treatment	Seed yield (kg ha\(^{-1}\))	Stalk yield (kg ha\(^{-1}\))	Gross returns (₹)	Net returns (₹)	B:C ratio
\(T_1\)	1700	7226	50987	32239	2.71
\(T_2\)	1329	4102	40307	21559	2.14
\(T_3\)	1067	3253	32268	15320	1.71
SEm ±	36.8	52.3	1962	1962	0.104
CD (5%)	144	204	7661	7661	0.41
\(N_1\)	1127	4611	34016	16030	1.89
\(N_2\)	1379	4867	41588	22839	2.22
\(N_3\)	1589	5102	47959	28448	2.46
SEm ±	10.3	6.7	396	396	0.020
CD (5%)	32	21	1219	1219	0.06
\(F_1\)	1297	4806	39206	20767	2.12
\(F_2\)	1434	4914	43169	24111	2.26
SEm ±	3.6	5.3	196	196	0.011
CD (5%)	11	16	581	581	0.03
\(T_1N_1\)	1371	6951	41135	23459	2.33
\(T_1N_2\)	1505	7054	45137	26842	2.47
\(T_1N_3\)	1650	7198	49497	31058	2.68
\(T_2N_1\)	1809	7297	54271	35213	2.85
\(T_2N_2\)	1863	7372	55882	36681	2.91
\(T_2N_3\)	2000	7485	60003	40183	3.03
\(T_3N_1\)	976	3769	29615	11939	1.68
\(T_3N_2\)	1145	3881	34741	16446	1.90
\(T_3N_3\)	1245	4035	37925	19486	2.06
\(T_1N_1F_1\)	1371	6951	41135	23459	2.33
\(T_1N_1F_2\)	1505	7054	45137	26842	2.47
\(T_1N_2F_1\)	1650	7198	49497	31058	2.68
\(T_1N_3F_1\)	1809	7297	54271	35213	2.85
\(T_1N_2F_2\)	1863	7372	55882	36681	2.91
\(T_1N_3F_2\)	2000	7485	60003	40183	3.03
\(T_2N_1F_1\)	976	3769	29615	11939	1.68
\(T_2N_1F_2\)	1145	3881	34741	16446	1.90
\(T_2N_2F_1\)	1245	4035	37925	19486	2.06
\(T_2N_2F_2\)	1407	4144	42495	23437	2.23
\(T_2N_3F_1\)	1521	4308	46254	27053	2.41
\(T_2N_3F_2\)	1680	4476	50813	30993	2.56
\(T_3N_1F_1\)	794	2963	24273	6597	1.37
\(T_3N_1F_2\)	974	3052	29195	10900	1.60
\(T_3N_2F_1\)	1066	3218	32339	13900	1.75
\(T_3N_2F_2\)	1097	3313	33001	13943	1.73
\(T_3N_3F_1\)	1187	3445	35937	16736	1.87
\(T_3N_3F_2\)	1285	3528	38865	19045	1.96
SEm ±	17.8	11.6	686	686	0.035
CD (5%)	55	36	2112	2112	0.11
TxN	SEm ±				
SEm ±	6.2	9.2	339	339	0.019
CD (5%)	19	NS	1007	1007	NS
TxN F	SEm ±				
SEm ±	6.2	9.2	339	339	0.019
CD (5%)	19	NS	NS	NS	NS
TxN NxF	SEm ±				
SEm ±	10.8	15.9	587	587	0.033
CD (5%)	32	NS	NS	NS	NS
production and seed yield with early sown crop at higher nutrient dose resulted in higher seed yield leading to higher economic returns. With regard to the interaction, significantly highest gross and net returns were due to earliest sowing receiving foliar spray of NAA (25 ppm) and DAP (2 per cent) at 60 and 80 DAS (T,F,) because of high seed yield with this interaction.

It can be concluded that rabi redgram gives optimum yield and economic returns if sown during II FN of September with 30-60-20 kg N, P2O5 and K2O ha⁻¹ along with foliar spray of NAA (25 ppm) and DAP (2 per cent) twice at 60 and 80 DAS.

REFERENCES

Dixit, P.M and Elamathi, S. (2007). Effect of foliar application of DAP, micronutrients and NAA on growth and yield of greengram (Vigna radiata L.). Legume Research. 30 (4): 305-307.

Kantwa, S.R., Ahlawat, I.P.S and Gangaiah, B. (2005). Effect of land configuration, post-monsoon irrigation and phosphorus on performance of sole and intercropped pigeonpea (Cajanus cajan). Indian Journal of Agronomy. 50 (4): 278-280.

Laxminarayana, P. (2003). Response of rabi redgram to dates of sowing and row spacings. Annals of Agricultural Research. 24 (1): 187-189.

Meena, B.K., Hulihalli, U.K and Sumeriya, H.K. (2013). Effect of fertility levels and planting geometry on growth and yield of medium duration pigeonpea hybrid ICPH-2671. Crop Research. 46 (1, 2 and 3): 79-83.

Mishra, A., Raj, G., Singh, V.S and Swarnkar, G.B. (2006). Performance of ridge planted pigeonpea varieties under different dates of sowing. Indian Journal of Pulses Research. 19 (2): 257-258.

Padhi, A.K. (1995). Effect of sowing date and planting geometry on yield of redgram genotypes. Indian Journal of Agronomy. 40 (1): 72-76.

Patel, J.R and Patel, Z.G. (1995). Effect of post-monsoon irrigation, rhizobium inoculation and nitrogen on yield and yield attributes of pigeonpea (Cajanus cajan). Indian Journal of Agronomy. 40 (2): 220-222.

Ram, H., Singh, G., Shekon, H.S and Khanna, V. (2011). Effect of sowing time on the performance of pigeonpea genotypes. Journal of Food Legumes. 24 (3): 207-210.

Rani, B.P and Reddy, D.R. (2010). Performance of pigeonpea in sole and intercropping system in vertisols of Krishna-Godavari Zone in Andhra Pradesh. Indian Journal of Agricultural Research. 44 (3): 225-228.

Umesh, M.R., Shankar, M.A and Ananda, N. (2013). Yield, nutrient uptake and economics of pigeonpea (Cajanus cajan L.) genotypes under nutrient supply levels in dryland alfisols of Karnataka. Indian Journal of Agronomy. 58 (4): 554-559.