Ultrasound detection of iatrogenic injury during peribulbar eye block: a cadaveric study

Amy Sadler,1 Graeme McLeod,1,2 Paul G McHardy,3 Tracey Wilkinson

ABSTRACT

Background Ophthalmic eye blocks, such as retrobulbar, peribulbar and sub-Tenon’s, are traditionally conducted “blind”. Complications are rare but potentially devastating. Life-threatening complications include brain stem anesthesia and local anesthetic toxicity, whereas sight-threatening complications include globe perforation, optic nerve damage and ocular muscle damage. Ultrasound permits a view of orbital structures and can be used to guide needle placement. The ultrasound appearances of unintended local anesthetic injection into vital orbital structures have not been documented. This study aimed to record the ultrasound appearances of unintended injection locations.

Methods The spherical shape of the eyeballs of three soft-fix Thiel embalmed human cadavers were restored using glycerol. Iatrogenic injury in peribulbar block was then simulated through injection of printers’ ink mixed with Thiel emulsifying fluid. Ultrasound was used to guide the needles and the tips were redirected to lie within the globe, lateral rectus and optic nerve. Ultrasound images were recorded during injection. The orbital cavities were then dissected via a superior approach to record the location and extent of injectate spread.

Results Real-time globe rupture, ocular muscle injection and optic nerve injection were visible using ultrasound. Characteristic appearances were identified in each case. Dissection confirmed needle and injection placement.

Conclusions The ultrasound appearance of block complications is important to document and should be an integral part of regional anesthesia training. This study is the first to provide such images for ophthalmic nerve blocks. It offers ophthalmic anesthetists and ophthalmologists the potential to diagnose severe complications rapidly and accurately with a potential impact on patient safety.

INTRODUCTION

Ophthalmic surgery is routinely performed under regional anesthesia eye block. Three blocks are used in practice (retrobulbar, peribulbar and sub-Tenon’s), but most are conducted “blind”. Operators use surface landmarks and tissue feedback in order to guide needles to target areas. Complications are rare but potentially devastating, and account for 5% of regional anesthesia malpractice claims.1 Life-threatening complications include brain stem anesthesia and local anesthetic induced convulsions, whereas sight-threatening complications include globe perforation, optic nerve damage, ocular muscle damage and retrobulbar hemorrhage.2 For example, globe perforation occurs in 1 in 12 000 patients during retrobulbar block and 1 in 16 000 patients during peribulbar block.3 4

In order to improve the safety profile of ocular blocks, peribulbar and sub-Tenon’s blocks have largely superseded retrobulbar block. Retrobulbar and peribulbar blocks differ according to the site of local anesthetic injection and volume of local anesthetic.5 A retrobulbar block entails the direct injection of local anesthetic into the ocular muscle cone, whereas a peribulbar block depends on spread of higher volumes from the peribulbar to the retrobulbar compartment.6 A recent meta-analysis comparing both blocks showed no difference in side effects and the quality of anesthesia.7 Sub-Tenon’s block has a different pattern of spread.8 Local anesthetic is injected into the potential episcleral space between Tenon’s capsule and the sclera, and thus avoids introduction of a sharp needle into the orbit.9

Ultrasound guidance has been used to conduct retrobulbar, peribulbar and sub-Tenon’s blocks because it provides a view of the globe, optic nerve and extraocular muscles.10 Successful anesthesia was associated, on ultrasound images, with accurate needle tip placement11 12 and, in the case of peribulbar block, good local anesthetic spread.6 12 13

To date, however, the ultrasound appearance of unintended local anesthetic injection into vital structures of the orbit has not been documented. Therefore, the aim of this study was to document the ultrasound appearance of simulated unintended injection into the globe, optic nerve and lateral rectus muscle.

METHODS

Three human cadavers embalmed using the Thiel soft-fix method were provided by the Centre for Anatomy and Human Identification, Dundee. Thiel cadavers are immersed in tanks containing a mixture of monopropylene glycol, ammonium nitrate, potassium nitrate, sodium sulphite, boric acid, and chlorocresol for 6 months during the embalming process.14 On removal, Thiel cadavers are flexible, soft, durable, and exhibit similar tissue elasticity and strain displacement to patients. They therefore provide excellent simulation for regional anesthesia training.15

Hypotonic Thiel solution deflates the eyes of cadavers, so the elasticity of the eyes was restored by performing two injections: first, a 22g needle was inserted into the globe and 1–2 mL Thiel fluid injected; then, 5 mL glycerol solution was injected through a 10g needle and the puncture sealed with
Loctite superglue. Full inflation of each eye was confirmed by manual pressure.

A Zonare Z-one ultrasound machine (Zonare, Palo Alto, California) with a 4–10 MHz linear transducer was used to take images of the eye. The transducer was covered with a sterile sleeve and lubricated with gel (Optilube, Optimum Medical, UK). Stimuplex 22 g 50 mm ultrasound needles with extension set (BBraun, Sheffield, UK) were used for the injections.

Each eye was scanned with the ultrasound probe placed gently and transversely over the globe. A caudad tilt allowed visualization of the floor of the orbit. An initial scan was performed to identify major anatomical structures contained within the orbit—the globe, the lateral and medial rectus muscles and the retrobulbar space containing the optic nerve. The ultrasound needle was inserted out of plane using a standard peribulbar approach at the junction of the lateral and medial thirds of the inferior orbital rim and then directed superomedially towards the muscle cone. It was further directed to lie either peribulbar or within the globe, lateral rectus or optic nerve. The exact positioning of the needle was carried out as follows:

1. Globe: the needle tip was positioned as for a standard peribulbar injection under ultrasound guidance, then redirected superomedially into the globe.
2. Lateral rectus: following positioning of the needle as for a standard peribulbar injection, the needle was guided deeper and more medially toward the orbital cone until the tip was seen located within the lateral rectus muscle.
3. Optic nerve: the needle tip was inserted as for a standard peribulbar injection, then placed superomedially through the orbital cone until the tip was seen within the optic nerve.

Once placement was acceptable, a 5 mL mixture of Thiel solution and green printers’ ink was injected. Ultrasound images were recorded throughout.

At the end of the experiment, the orbit was dissected via the cranial cavity and through the roof of the orbit in order to visualize the location and spread of injectate. After removal of the meninges, the orbital plate of the frontal bone was carefully chiseled away to expose the orbital fascia, which was then removed. Reflection of the levator palpebrae superioris and superior rectus allowed visualization of the optic nerve sheath, which was transected to view the optic nerve.

RESULTS

Three eyes were used to optimize the injection technique and three eyes to conduct the study. The globe, optic nerve and lateral rectus muscle were readily identified using ultrasound.

DISCUSSION

The study demonstrated real-time globe rupture, optic nerve injection and ocular muscle injection using ultrasound, with the location of the needle tip and spread of injectate identified at all times. The ultrasound characteristics of each injection were location specific.

The glycerol-based globe inflation technique allowed sustained pressure from the ultrasound probe without leakage, and provided images similar to those seen in patients. However, the principal limitation, common to all types of cadaver, was

Figure 2 (A) Ultrasound image of globe perforation and fluid injection. (B) Ultrasound image with labeling of fluid injected (I), lateral rectus (LR) and optic nerve (ON). (C) Following perforation, the globe was dyed green. (D) Dissection revealed a green-stained globe (G) with unstained ON. (figure 1A,B). The appearance of each was similar to that of a patient eye.

Globe perforation

A slight “give” was felt as the globe was punctured. Injection into the globe was rapid and clearly visualized on ultrasound (figure 2A,B). Resistance increased over the course of the injection until the superglue seal on the eye broke, when resistance suddenly decreased. The entire globe was stained green (figure 2C), with some external leakage reflecting loss of the seal. On dissection and lifting of the orbital conjunctiva, the dye was visualized within the globe (figure 2D).

Lateral rectus injection

There was significant resistance to injection in this location. On ultrasound, flow could be seen within the muscle with clear medial displacement of the retrobulbar structures including bending of the optic nerve (figure 3A,B). On dissection, dye was visible in the orbital fascia with the lateral rectus most deeply stained (figure 3C).

Intraneural injection

On injection, there was significant resistance, with ultrasound showing rapid distortion of optic nerve architecture (figure 4A,B). On dissection, staining was seen in the orbital fascia with the darkest areas at the apex of the orbit. Both the optic nerve sheath and the optic nerve were dyed green (figure 4C).
reduction in periorbital subcutaneous tissue. Globes lie deep in the orbital cavity, so that ultrasound transducers had to be placed on the globe rather than the lower eyelid, and tended to contact the orbital rim, impeding maneuverability. This meant that although all the intended ultrasound images were obtained, scanning proved more challenging than in patients.

The wet properties of the Thiel cadaver risked seepage of dye into other tissue spaces, so cadaver position was maintained for 3 days before dissection in order to check that this did not occur. In fact, it was found that dye distribution was limited to anatomical spaces, with injection points retaining the highest concentration of staining. Observations in this study suggest that little fluid movement occurred post injection.

Manipulation of the needle shaft could be challenging. For example, globe injection was easy to achieve, whereas optic nerve insertion required considerable dexterity. The operator had to displace the globe anteriorly in order to obtain a suitable anterolateral angle for needle advancement.

Dissection through the superior orbit seemed arduous at first, but proved to be ideal, as eye movement and tissue disruption were minimized.

The sub-Tenon’s block has become the most commonly used block in ophthalmic regional anesthesia practice in the UK. Given the lower incidence of serious sight-threatening complications with the sub-Tenon’s technique, this study may be seen as less relevant to current practice. However, globe rupture, optic nerve injection and optic muscle damage have all been reported following sub-Tenon’s block. The sub-Tenon’s block is also not suitable for all patients; it should be avoided in patients with thin sclera, scleral scarring or chronic eye inflammation and in situations where chemosis, conjunctival hemorrhoma or disruption are undesirable.

The Thiel cadavers represent an important resource for medical simulation. Their usefulness for training in ultrasound-guided regional anesthesia elsewhere in the body has been demonstrated, but no literature currently exists investigating their role in ophthalmic anesthesia training. The recognized obstacle is that the embalming process leaves the globes deflated with potentially reduced realism. However, the glycerol-based injection technique used in this study proved robust and realistic, and allowed repeated ultrasound assessment and needle insertion.

Translation of these results to clinical practice may present challenges to anesthetists keen to undertake eye anesthesia. The orbit has ideal properties for scanning, but a high frequency transducer is needed that sits comfortably on the eyelid and has sufficient resolution to identify orbital contents and needles accurately. Moreover, it is important to purchase an ultrasound device that limits heat energy transfer to the eye.

When performing peribulbar and retrobulbar nerve blocks, the anesthetist uses specific equipment, meticulous technique and indirect observations to help reduce complications. This includes having the patient’s head in a neutral position with a plane parallel to the ground to ensure the needle is directed in the appropriate planes, using a needle of appropriate length, and looking for signs of needle trespass into muscle or the globe, which would include tugging of the eyeball as the needle is advanced, a rapid change in compliance during injection and evidence of rapid vis-a-tergo or anterior movement of the eye with injection. The eye can also be balloted for changes in compliance during and after injection. It follows that ultrasound imaging can add...
a further layer of patient safety by enabling accurate needle tip placement,11 12 visualization of local anesthetic spread6 12 13 and, as demonstrated in this study, aiding diagnosis of injection in an unintended location.

In conclusion, this study has demonstrated that ultrasound can show real-time globe rupture, optic nerve injection and ocular muscle injection in the Thiel embalmed cadaver. The ultrasound appearance of block complications is important to document and should be an integral part of regional anesthesia training. This study is the first to provide such images for ophthalmic nerve blocks and should be valuable in offering ophthalmic anesthetists and ophthalmologists sufficient knowledge to diagnose severe complications accurately and rapidly. Early recognition of such complications with ultrasound could have an impact on patient safety.

Acknowledgements Fraser Cullen, Medical Student, University of Dundee.

Contributors AS and GM: conducted study and wrote paper. PGM: designed study and contributed to paper. TW: supervised study, provided facilities, contributed to paper.

Funding Permission was granted by Tracey Wilkinson at CAHID as Licensed Anatomist at the University of Dundee for the research session to be completed. The embalmed cadavers used in the research project were obtained and used in accordance with all applicable laws and regulations including, without limitation, the Anatomy Act 1984 (as amended) and the Human Tissue (Scotland) Act 2006. In compliance with these acts, fully informed consent was received from all donors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

ORCID iD

Paul G McHardy http://orcid.org/0000-0001-6061-7502

REFERENCES

1 Lee LA, Posner KL, Domino KB, et al. Injuries associated with regional anesthesia in the 1980s and 1990s: a closed claims analysis. Anesthesiology 2004;101:143–52.
2 Eke T, Thompson JR. Serious complications of local anaesthesia for cataract surgery: a 1 year national survey in the United Kingdom. Br J Ophthalmol 2007;91:470–7.
3 Duker JS, Belmont JB, Benson WE, et al. Inadvertent globe perforation during retrobulbar and peribulbar anesthesia. patient characteristics, surgical management, and visual outcome. Ophthalmology 1991;98:519–26.
4 Kumar CM, Dowd TC. Complications of ophthalmic regional blocks: their treatment and prevention. Ophthalmoiogica 2006;20:723–82.
5 Ripart J, Lefrant JY, La Coussaye JE, et al. Peribulbar versus retrobulbar anesthesia for ophthalmic surgery: an anatomical comparison of extraconal and intracanal injections. Anesthesiology 2001;94:56–62.
6 Luyet C, Eng KT, Kertes PJ, et al. Real-Time evaluation of diffusion of the local anesthetic solution during peribulbar block using ultrasound imaging and clinical correlates of diffusion. Reg Anesth Pain Med 2012;37:455–9.
7 Alhassan MB, Kyari F, Ejere HOD. Peribulbar versus retrobulbar anaesthesia for cataract surgery. Cochrane Database Syst Rev 2015;CD004083.
8 Guise PA. Sub-Tenon anaesthesia: a prospective study of 6,000 blocks. Anesthesiology 2003;98:964–8.
9 Kumar CM, Dodds C. Evaluation of the Greenbaum sub-Tenon’s block. Br J Anaesth 2001;87:631–3.
10 Luyet C, Eichenberger U, Moriggl B, et al. Real-Time visualization of ultrasound-guided retrobulbar blockade: an imaging study. Br J Anaesth 2008;101:855–9.
11 Carneiro HM, Teixeira KISS, de Ávila MP, et al. Comparison of needle path, anesthetic dispersion, and quality of anesthesia in retrobulbar and peribulbar blocks. Reg Anesth Pain Med 2016;41:37–42.
12 Winder S, Walker SB, Atta HR. Ultrasonic localization of anesthetic fluid in sub-Tenon’s, peribulbar, and retrobulbar techniques. J Cataract Refract Surg 1999;25:56–9.
13 Najman IE, Meirelles R, Ramos LB, et al. A randomised controlled trial of periconal eye blockade with or without ultrasound guidance. Anesthesia 2015;70:571–6.
14 Eisma R, Lamb C, Soames RW. From formalin to Thiel embalming: what changes? one anatomy department’s experiences. Clin Anat 2013;26:564–71.
15 Kumar CM, Eid H, Dodds C. Sub-Tenon’s anaesthesia: complications and their prevention. Eye 2011;25:694–703.
16 Munirama S, Etima R, Columb M, et al. Physical properties and functional alignment of soft-embalmed Thiel human cadaver when used as a simulator for ultrasound-guided regional anaesthesia. Br J Anaesth 2016;116:699–707.