SUFFICIENT CONDITIONS FOR HOLOMORPHIC LINEARISATION

FRANK KUTZSCHEBAUCH, FINNUR LÁRUSSON, GERALD W. SCHWARZ

Abstract. Let G be a reductive complex Lie group acting holomorphically on Stein manifolds X and Y. When is there a G-equivariant biholomorphism of X and Y? The categorical quotients Q_X and Q_Y have canonical Luna stratifications, where the strata correspond to the slice representations of closed orbits in X and Y. Then a necessary condition is that Q_X and Q_Y are biholomorphic and that the biholomorphism sends the Luna stratum of Q_X corresponding to any given slice representation isomorphically onto the Luna stratum of Q_Y corresponding to the same slice representation. Suppose that $Y = V$ is a G-module. Then we show that, for most V, the necessary condition is sufficient. We also show that, for any V, we get the desired result if the biholomorphism of Q_X and Q_V locally lifts to G-biholomorphisms.

Contents

1. Introduction 1
2. Background 3
3. Proof of Theorem 4
4. Proof of Theorem 6
5. Small representations 8
References 9

1. Introduction

We first recall some of our earlier work on the linearisation problem appearing in [KLSb]. Throughout the paper, G will be a reductive complex Lie group. Let X and Y be Stein manifolds (always taken to be connected) on which G acts holomorphically. The categorical quotients Q_X and Q_Y are normal Stein spaces. Assume that there is a biholomorphism $\tau : Q_X \to Q_Y$ that locally lifts to G-equivariant biholomorphisms between G-saturated open subsets of X and Y. We use τ to identify the quotients.

Date: 7 January 2015.

2010 Mathematics Subject Classification. Primary 32M05. Secondary 14L24, 14L30, 32E10, 32M17, 32Q28.

Key words and phrases. Oka principle, geometric invariant theory, Stein manifold, complex Lie group, reductive group, categorical quotient, Luna stratification, linearisable action, linearisation problem.

F. Kutzschebauch was partially supported by Schweizerischer Nationalfond grant 200021-140235/1. F. Lárusson was partially supported by Australian Research Council grants DP120104110 and DP150103442. F. Lárusson and G. W. Schwarz would like to thank the University of Bern for hospitality and financial support and F. Kutzschebauch and G. W. Schwarz would like to thank the University of Adelaide for hospitality and the Australian Research Council for financial support.
and call the common quotient Q with quotient maps $p : X \to Q$ and $r : Y \to Q$. Our assumption, then, is that there is an open cover $(U_i)_{i \in I}$ of Q and G-equivariant biholomorphisms $\varphi_i : p^{-1}(U_i) \to r^{-1}(U_i)$ over U_i (meaning that φ_i descends to the identity map of U_i). We express the assumption by saying that X and Y are locally G-biholomorphic over a common quotient.

We need one more assumption. We assume that the set of closed orbits with trivial isotropy group is open in X and that the complement, a closed subvariety of X, has complex codimension at least two. We say that X is generic (equivalently, Y is generic).

For justification of the term “generic” see [KLSb, Remark 5] or Remark 2.1 below. Now assume that $Y = V$ is a G-module. From [KLSb, Corollary 14] we have:

Theorem 1.1. Suppose that X and V satisfy the following conditions.

1. X and V are locally G-biholomorphic over a common quotient.
2. X and V are generic.

Then X and V are G-biholomorphic.

Corollary 1.2. Suppose that $X = \mathbb{C}^n$ and that (1) and (2) hold for some V. Then the G-action on \mathbb{C}^n is linearisable, that is, there is a holomorphic automorphism Φ of \mathbb{C}^n such that $\Phi \circ g \circ \Phi^{-1}$ is linear for every $g \in G$.

The problem of linearising actions of reductive groups on \mathbb{C}^n has attracted much attention both in the algebraic and holomorphic settings ([Huc90], [Kra96]). The first counterexamples for the algebraic linearisation problem were constructed by Schwarz [Sch89] for $n \geq 4$. His examples are holomorphically linearisable. Derksen and Kutzschebauch [DK98] show that for G nontrivial, there is $N_G \in \mathbb{N}$ such that there are nonlinearisable actions of G on \mathbb{C}^n, for every $n \geq N_G$. Their method was to construct actions whose stratified quotients cannot be isomorphic to the stratified quotient of a linear action. We will show that this is essentially the only way to get a counterexample to linearisation.

Remark 1.3. Assume that X and V are locally G-biholomorphic over a common quotient Q. Then there is an open cover $\{U_i\}$ of Q and G-biholomorphisms $\psi_i : p^{-1}(U_i) \to r^{-1}(U_i)$ inducing the identity on U_i. The maps $\psi_j \circ \psi_i^{-1}$ give us an element of $H^1(Q, \mathcal{F})$, where for U open in Q, $\mathcal{F}(U)$ is the group of G-biholomorphisms of $r^{-1}(U)$ which induce the identity on U. Theorem 1.1 says that the cohomology class associated to X is trivial. On the other hand, given any element of $H^1(Q, \mathcal{F})$ one constructs a corresponding X (which is not a priori Stein). Our proof does not use that X is Stein, hence our theorem is equivalent to the statement that $H^1(Q, \mathcal{F})$ is trivial.

Our goal in this paper is to present two strengthenings of Theorem 1.1.

Theorem 1.4. Suppose that X is a Stein G-manifold, V is a G-module and X and V are locally G-biholomorphic over a common quotient. Then X and V are G-biholomorphic.

We have removed the assumption of genericity in Theorem 1.1. The proof constructs a vector field on X which is analogous to the Euler vector field on V. The flows of these vector fields are used to reduce Theorem 1.4 to [KLSa, Theorem 1.1], which we now
state. Let Y be a Stein G-manifold as above and let $\Phi: X \to Y$ be a G-diffeomorphism inducing the identity on the common quotient Q. We say that Φ is strict if its restriction to the reduced fibers of the quotient maps is biholomorphic. Then we have [KLSa, Theorem 1.1]:

Theorem 1.5. Let X and Y be Stein G-manifolds with common quotient Q. Suppose that there is a strict G-diffeomorphism Φ of X and Y. Then Φ is homotopic, through strict G-diffeomorphisms, to a G-biholomorphism of X and Y.

Now we find a condition that implies that X and V are locally G-biholomorphic over a common quotient. Let $X_{(n)}$ denote the subset of X with isotropy group of dimension n. We say that X is 2-large if it is generic and $\text{codim} \ X_{(n)} \geq n + 2$ for $n \geq 1$. For other conditions equivalent to 2-largeness see [Sch95, Section 9]. We say that a biholomorphism $\tau: Q_X \to Q_V$ is strata preserving or preserves the Luna stratification if it sends the Luna stratum of Q_X corresponding to any slice representation onto the Luna stratum of Q_V corresponding to the same slice representation (see Section 2).

Theorem 1.6. Suppose that X is a Stein G-manifold and V is a G-module satisfying the following conditions.

1. There is a biholomorphism τ from Q_X to Q_V which preserves the Luna stratifications.
2. V is 2-large.

Then, by perhaps changing τ, one can arrange that X and V are locally G-biholomorphic over $Q_X \simeq Q_V$, hence X and V are G-biholomorphic.

Our proof of the theorem again uses the flows of the Euler vector field on V and an analogous vector field on X to show that X and V admit local G-biholomorphisms covering $\tau: Q_X \to Q_V$. Then we can apply Theorem 1.1. Our proofs of Theorems 1.4 and 1.6 essentially use the fact that we have a smooth deformation retraction of $Q_X \simeq Q_V$ to a point which is covered by G-equivariant retractions of X and V to fixed points.

Let X and Y be Stein G-manifolds with quotients Q_X and Q_Y. In [KLSa, Theorems 1.1 and 1.2] we give sufficient conditions for a strata preserving biholomorphism $\tau: Q_X \to Q_Y$ to lift to a G-biholomorphism. The nature of the sufficient conditions is to assume the existence of a strict G-diffeomorphism or a special kind of G-homeomorphism lifting τ. What is nice about Theorem 1.6 is that we do not have to assume the existence of any kind of liftings of τ.

One can ask if assumption (2) of Theorem 1.6 can be removed. In Section 3 we show that one has no problem if $\dim Q \leq 1$ or $G = \text{SL}(2, \mathbb{C})$. We would be surprised if there is a counterexample to Theorem 1.6 with (2) omitted.

2. Background

We start with some background. For more information, see [Lun73] and [Sno82, Section 6]. Let X be a normal Stein space with a holomorphic action of a reductive complex Lie group G. The categorical quotient $Q_X = X//G$ of X by the action of G is the set of closed orbits in X with a reduced Stein structure that makes the quotient
map $p: X \to Q_X$ the universal G-invariant holomorphic map from X to a Stein space. When X is understood, we drop the subscript X in Q_X. Since X is normal, $Q = Q_X$ is normal. If U is an open subset of Q, then $\mathcal{O}_X(p^{-1}(U))^G \cong \mathcal{O}_Q(U)$. We say that a subset of X is G-saturated if it is a union of fibres of p. If X is a G-module, then Q is just the complex space corresponding to the affine algebraic variety with coordinate ring $\mathfrak{o}_{\text{alg}}(X)^G$.

If Gx is a closed orbit, then the stabiliser (or isotropy group) G_x is reductive. We say that closed orbits Gx and Gy have the same isotropy type if G_x is G-conjugate to G_y. Thus we get the isotropy type stratification of Q with strata whose labels are conjugacy classes of reductive subgroups of G.

Assume that X is smooth and let Gx be a closed orbit. Then we can consider the slice representation which is the action of G_x on $T_xX/T_x(Gx)$. We say that closed orbits Gx and Gy have the same slice type if they have the same isotropy type and after arranging that $G_x = G_y$, the slice representations are isomorphic representations of G_x. The stratification by slice type (the Luna stratification) is finer than the isotropy type stratification, but the Luna strata are unions of irreducible components of the isotropy type strata [Sch80, Proposition 1.2]. Hence if the isotropy strata are irreducible, the Luna strata and isotropy type strata are the same. This occurs for the case of a G-module [Sch80, Lemma 5.5], hence in Theorem 1.6 one could replace “Luna stratification” by “isotropy type stratification.” Alternatively, one can show directly that in a G-module, the isotropy group of a closed orbit determines the slice representation (see [Sch80, proof of Proposition 1.2]).

There is a unique open stratum $Q_{\text{pr}} \subset Q$, corresponding to the closed orbits with minimal stabiliser. We call this the principal stratum and the closed orbits above Q_{pr} are called principal orbits. The isotropy groups of principal orbits are called principal isotropy groups. Then X is generic when the principal isotropy groups are trivial and the closed subvariety $p^{-1}(Q \setminus Q_{\text{pr}})$ has codimension at least 2 in X. Recall that X is 2-large if it is generic and codim $X(n) \geq n + 2$ for $n \geq 1$.

Remark 2.1. If G is simple, then, up to isomorphism, all but finitely many G-modules V with $V^G = 0$ are 2-large [Sch95, Corollary 11.6 (1)]. The same result holds for semisimple groups but one needs to assume that every irreducible component of V is a faithful module for the Lie algebra of G [Sch95, Corollary 11.6 (2)]. A “random” \mathbb{C}^*-module is 2-large, although infinite families of counterexamples exist. More precisely, a faithful n-dimensional \mathbb{C}^*-module without zero weights is 2-large if and only if it has at least two positive weights and at least two negative weights and any $n - 1$ weights are coprime. Finally, X is 2-large if and only if every slice representation is 2-large and the property of being 2-large only depends upon the Luna stratification of Q.

3. **Proof of Theorem 1.4**

We are assuming that the Stein G-manifold X and the G-module V are locally G-biholomorphic over a common quotient Q.

The scalar action of \mathbb{C}^* on V descends to a \mathbb{C}^*-action on Q (see below), hence we have an action of $\mathbb{R}^{++} = \{ u \in \mathbb{R} \mid u > 0 \}$ on Q. The idea is to lift the \mathbb{R}^{++}-action to
Let \mathcal{A}_Q denote the sheaf of holomorphic vector fields on Q (derivations of \mathcal{O}_Q) and let $\mathcal{A}(Q)$ denote the global sections. Similarly we have the sheaf of holomorphic vector fields \mathcal{A}_X on X. Let U be open in Q and let $\mathcal{A}_X^G(U)$ denote $\mathcal{A}_X(p^{-1}(U))^G$. Then \mathcal{A}_X^G is a coherent sheaf of \mathcal{O}_Q-modules as is \mathcal{A}_Q. We have $p_*: \mathcal{A}_X(p^{-1}(U))^G \to \mathcal{A}_Q(U)$ where $p_*(A)(f) = A(p^*(f))$ for $f \in \mathcal{O}_Q(U) \simeq \mathcal{O}_X(p^{-1}(U))^G$. Then $p_*: \mathcal{A}_X^G \to \mathcal{A}_Q$ is a morphism of coherent sheaves of \mathcal{O}_Q-modules. Hence the kernel \mathcal{M} of p_* is coherent.

Let r_1, \ldots, r_m be homogeneous generators of $\mathcal{O}_{alg}(V)^G$, where r_i has degree d_i. Then $(r_1, \ldots, r_m): V \to \mathbb{C}^m$ induces a map $f: Q \to \mathbb{C}^m$ which is an algebraic isomorphism of Q onto the image of f. Hence we can think of the quotient map $r: V \to \mathbb{C}^m$ as the polynomial map with entries r_i. Note that we have an induced \mathbb{C}^*-action on Q where $t \in \mathbb{C}^*$ sends $(q_1, \ldots, q_m) \in Q$ to $(t^{d_1}q_1, \ldots, t^{d_m}q_m)$. We have the Euler vector field $E = \sum x_i\partial/\partial x_i$ on V, where the x_i are the coordinate functions on V. Let y_1, \ldots, y_m be the usual coordinate functions on \mathbb{C}^m. Then $r_*(E) = \sum d_iy_i\partial/\partial y_i \in \mathcal{A}(Q)$.

Definition 3.1. Let B be a holomorphic vector field on Q. We say that a G-equivariant holomorphic vector field A on X is a lift of B if $A(p^*f) = p^*B(f)$ for every $f \in \mathcal{O}(Q)$.

Lemma 3.2. Let $B = r_*E$. Then B lifts to a G-invariant holomorphic vector field A on X.

Proof. Let U be open and G-saturated in V and let $\Phi: U \to \Phi(U) \subset X$ be a G-biholomorphism inducing the identity on $r(U)$. Let A_U denote the image of $E|_U$ in $\mathcal{A}_X(\Phi(U))^G$ under the action of Φ. Then A_U is a lift of $B|_{r(U)}$. The various A_U differ by elements in the kernel \mathcal{M} of p_*, hence a global lift of B is obstructed by an element of $H^1(Q, \mathcal{M})$, which vanishes by Cartan’s Theorem B. Hence A exists.

Choose a lift A of B and let ψ_t denote the flow of A on X. From [Sch14, proof of Theorem 3.4] we have:

Lemma 3.3. The flow ψ_t exists for all $t \in \mathbb{R}$.

Remark 3.4. Since everything in sight is real analytic, ψ_t is real analytic in t and extends to be holomorphic in a neighborhood of \mathbb{R} in \mathbb{C} near any $x \in X$. One can show that ψ_t exists for all complex t but we do not need this.

We need to find retractions of Q, X and V. Choose positive integers c_i such that $d_ie_i = d$ is independent of $i = 1, \ldots, m$. For $q = (q_1, \ldots, q_m) \in Q$ let $\rho(q) = \sum_i |q_i|^{c_i}$. Choose $u \in \mathbb{R}^+$ and set $Q_u = \{q \in Q \mid \rho(q) < u\}$. Let $h: [0, \infty) \to [0, u)$ be a diffeomorphism which is the identity in a neighborhood of 0. Set

$$a(q) = \left(\frac{h(\rho(q))}{\rho(q)}\right)^{1/d} \quad \text{and} \quad \alpha(q) = a(q) \cdot q, \quad q \in Q.$$

Here $a(q) \cdot q$ denotes the \mathbb{C}^*-action. Now α is a diffeomorphism of Q with Q_u with inverse

$$\beta(q) = b(q) \cdot q \quad \text{where} \quad b(q) = \left(\frac{h^{-1}(\rho(q))}{\rho(q)}\right)^{1/d}, \quad q \in Q_u.$$

Proof of Theorem 1.4. For $u > 0$, let X_u denote $p^{-1}(Q_u)$ and let V_u denote $r^{-1}(Q_u)$. Choose $u > 0$ so that we have a local G-biholomorphism $\Phi: X_u \to V_u$ inducing the
identity on Q_u. Let ρ_t be the flow of the Euler vector field on V. Then we have a G-diffeomorphism σ of V with V_u which sends $v \in V$ to $\rho_{\ln a(r(v))}(v)$. Using the flow ψ_t of the vector field A that we constructed on X, we have a G-diffeomorphism τ of X with X_u which sends $x \in X$ to $\psi_{\ln a(p(x))}(x)$. By construction, σ and τ map fibers G-biholomorphically to fibers and $\sigma^{-1} \circ \Phi \circ \tau$ is a strict G-diffeomorphism of X and V. By Theorem 1.5, X and V are G-biholomorphic. □

Remark 3.5. We used the fact that X and V are locally G-biholomorphic over Q to construct our special vector field A. But given any A lifting $B = r_s E$, we can construct our strict G-diffeomorphism, as long as we have a G-biholomorphism of neighborhoods of $p^{-1}(r(0))$ and $r^{-1}(r(0))$ inducing the identity on Q.

4. Proof of Theorem 1.6

Assume for now that we have a biholomorphism $\varphi: Q_X \to Q_V$ which preserves the Luna stratifications. Note that X^G is smooth and closed in X. We may identify X^G with its image in Q_X and similarly for V^G. Then φ induces a biholomorphism (which we also call φ) from X^G to V^G. We have $V = V^G \oplus V'$ where V' is a G-module. Since $X^G \cong V^G$ is contractible, the normal bundle $\mathcal{N}(X^G) = (TX|_{X^G})/T(X^G)$ is trivial G-vector bundle [HK95] and we have an isomorphism $\Phi: \mathcal{N}(X^G) \to V^G \times V'$ (viewing the latter as the G-vector bundle $V^G \times V' \to V^G$). Since $TX|_{X^G}$ is also G-trivial, we may think of $\mathcal{N}(X^G)$ as a subbundle of $TX|_{X^G}$. Note that Φ restricts to φ on the zero section.

Proposition 4.1. Let $\varphi: X^G \to V^G$ and Φ be as above. Then there is a G-saturated neighborhood U of X^G in X and a G-saturated neighborhood U' of V^G in V and a G-biholomorphism $\Psi: U \to U'$ whose differential induces Φ on $\mathcal{N}(X^G)$.

Proof. Let v_1, \ldots, v_k be a basis of V' and let A_1, \ldots, A_k denote the corresponding constant vector fields on V. Let X_1, \ldots, X_k denote their inverse images under Φ. Then the X_i are holomorphic vector fields defined on X^G and they extend to global vector fields on X, which we also denote as X_i. Let $\rho_i^{(p)}$ denote the complex flow of X_i, $i = 1, \ldots, k$. For $(v, v') \in V^G \oplus V'$, $v' = \sum a_i v_i$, let

$$F(v, v') = \rho_{a_1}^{(1)} \rho_{a_2}^{(2)} \cdots \rho_{a_k}^{(k)}(\varphi^{-1}(v)).$$

Then F is defined and biholomorphic on a neighborhood of $V^G \times \{0\}$ and the derivative of F along $V^G \times \{0\}$ is Φ^{-1}. The inverse of F gives us a biholomorphism $\Psi: U \to U'$ with the following properties:

1. U is a neighborhood of X^G in X and U' is a neighborhood of V^G in V.
2. Ψ restricts to φ on X^G.
3. $d\Psi$ restricted to $\mathcal{N}(X^G)$ gives Φ.

Let K be a maximal compact subgroup of G. Averaging Ψ over K gives us a new holomorphic map (also called Ψ) which still satisfies the conditions above, perhaps with respect to smaller neighborhoods U_0 and U'_0. Shrinking we may assume that U_0 and U'_0 are K-stable. It follows from [HK95, Section 5, Lemma 1, Proposition 1 and Corollary 1] that shrinking further we may achieve the following:
(4) The restriction of Ψ to U_0 extends to a G-equivariant map on $U = G \cdot U_0$.
(5) The restriction of Ψ^{-1} to U'_0 extends to a G-equivariant map Θ on $U' = G \cdot U'_0$.

We can reduce to the case that X^G is connected and then reduce to the case that U and U' are connected. Then it is clear that $\Psi \circ \Theta$ and $\Theta \circ \Psi$ are identity maps. Removing $p^{-1}(p(X \setminus U))$ from U we can arrange that it is G-saturated, and similarly for U'.

Note that our Ψ only induces φ on X^G. Let ψ denote the biholomorphism of $U/\!/G$ and $U'/\!/G$ induced by Ψ and let τ denote $\varphi \circ \psi^{-1}$. Then τ is a strata preserving biholomorphism of a neighborhood of V^G in Q_ℓ which is the identity on V^G. We now show that τ has a local G-biholomorphic lift to V if we modify φ and Ψ (hence ψ).

Let s_1, \ldots, s_n denote homogeneous invariant polynomials generating $\mathcal{O}_{\text{alg}}(V')^G$, where δ_i is the degree of s_i, $i = 1, \ldots, n$. Let $s = (s_1, \ldots, s_n): V' \to \mathbb{C}^n$. We can identify $Q' = V'/\!/G$ with the image of s and we can identify Q_ℓ with $V^G \times Q'$. We have an action of \mathbb{C}^* on Q' where $t \in \mathbb{C}^*$ sends $(q_1, \ldots, q_n) \in Q'$ to $(t^{\delta_1}q_1, \ldots, t^{\delta_n}q_n)$.

Let $\text{Aut}_{q}(Q')$ denote the quasilinear automorphisms of Q', that is, the automorphisms which commute with the \mathbb{C}^*-action. An element of $\text{Aut}_{q}(Q')$ is determined by its (linear) action on the invariant polynomials of degrees δ_i, $i = 1, \ldots, n$. Hence $\text{Aut}_{q}(Q')$ is a linear algebraic group. Let σ be a germ of a strata preserving automorphism of Q' at $s(0)$. Then $\sigma(s(0)) = s(0)$. Let σ_t denote the automorphism of Q' which sends y to $t^{-1}\cdot \sigma(t\cdot y)$, $t \in \mathbb{C}^*$, $y \in Q'$. It is not automatic that the limit of σ_t exists as $t \to 0$. One needs to have the vanishing of certain terms of the Taylor series of σ (see [Sch14, Section 2]). But this occurs in the case that V is 2-large (equivalently V' is 2-large) [Sch14 Theorem 2.2], which we now assume. Let us denote the limit of the σ_t as σ_0.

Consider our automorphism τ of a neighborhood of V^G in $Q_\ell \simeq V^G \times Q'$. Write $\tau = (\tau_1, \tau_2)$, where τ_1 takes values in V^G and τ_2 in Q'. Then $\tau_1(v, s(0)) = v$ and $\tau_2(v, s(0)) = s(0)$ for all $v \in V^G$. It follows from the inverse function theorem that $\tau_2(v, \cdot)$ is a germ of a strata preserving automorphism of Q'. Thus we have an isotopy $\tau_2(v, \cdot)_t$ with $\tau_2(v, \cdot)_0 = \text{Aut}_{q}(Q')$. Set $\tau_1(v, q)_t = \tau_1(v, t\cdot q)$. Then

$$\tau_t(v, q) = (\tau_1(v, q)_t, \tau_2(v, q)_t)$$

is an isotopy connecting τ with τ_0 where $\tau_0(v, q) = (v, \tau_2(v, q))$. The isotopy is holomorphic in $v \in V^G$. The connected component of $\text{Aut}_{q}(Q')$ containing τ_2 is independent of v. Let $\rho \in \text{Aut}_{q}(Q')$ denote any of the τ_2, say $\tau_{2,0}$, which we can consider as an automorphism of Q_ℓ. Change our original φ by ρ^{-1}, which we are allowed to do, and we find ourselves in the case where τ_2 lies in the identity component of $\text{Aut}_{q}(Q')$ for every $v \in V^G$. Now the identity component of $\text{Aut}_{q}(Q')$ is the image of $\text{GL}(V')^G$ [Sch14 Proposition 2.8]. Thus there is a G-saturated neighborhood of $0 \in V$ on which we have lifts of the τ_2 to elements of $\text{GL}(V')^G$. Hence shrinking U and U' and changing our map Ψ we can arrange that τ_0 is the identity of $U'/\!/G$. Thus τ_t is an isotopy. It is obtained by integrating a time-dependent vector field on Q. Since V is 2-large, the time dependent vector field lifts to a G-equivariant time dependent vector field on U ([Sch95 Theorem 0.4] and [Sch13 Remark 2.4]). As in Lemma 3.3 we can integrate to get an isotopy whose value Θ at time 1 is a G-automorphism of U' which covers τ. Then $\Theta \circ \Psi$
is a G-equivariant biholomorphism inducing φ sending a G-saturated neighborhood U_X of $r^{-1}(r(0))$ onto a G-saturated neighborhood U_V of $0 \in V$.

Proof of Theorem 1.6. We use ideas of the proof of Theorem 1.4. Let E denote the Euler vector field on V. Then by [Sch95, Theorem 0.4], [Sch13, Remark 2.4] we can lift the vector field r_*E to a G-invariant vector field A on X. Recall the G-equivariant flows ρ_t of E on V and ψ_t of A on X. Let X_u and V_u be as before, $u > 0$. Let $\Phi: U_X \rightarrow U_V$ be a G-biholomorphism inducing φ as above. Then there is t such that $\psi_t(X_u) \subset U_X$ and $\rho_t(V_u) \subset U_V$. The composition $\rho_{-t} \circ \psi_t$ is a G-biholomorphism of X_u with V_u which induces φ. Hence X and V are locally G-biholomorphic over a common quotient and we can apply Theorem 1.4. \hfill \Box

5. Small representations

Suppose that we have a strata preserving biholomorphism $\tau: Q_X \rightarrow Q_V$ as in Theorem 1.6. We know that X and V are G-equivariantly biholomorphic if V is 2-large. In this section we investigate “small” G-modules V which are not 2-large and see if we can still prove that X and V are G-equivariantly biholomorphic. The proof of Theorem 1.6 goes through if we can establish the following two statements where $Q = V//G$ and $V^G = (0)$:

1. Let $\varphi: Q \rightarrow Q$ be a strata preserving automorphism and let $\varphi_t = t^{-1} \circ \varphi \circ t$.

Then $\lim_{t \rightarrow 0} \varphi_t$ exists.

2. Let B be a holomorphic vector field on Q which preserves the strata, that is, $B(s) \in T_s(S)$ for every $s \in S$, where S is any stratum of Q. Then B lifts to a G-invariant holomorphic vector field on V.

Remark 5.1. Suppose that the minimal homogeneous generators of $\mathcal{O}_{\text{alg}}(V)^G$ have the same degree. Then $\varphi_0 = \varphi'(0)$ exists.

The following theorem is one of the results in [Jia92].

Theorem 5.2. Suppose that $\dim Q \leq 1$. Then X and V are G-biholomorphic.

Proof. The case $\dim Q = 0$ is an immediate consequence of Luna’s slice theorem, so let us assume that $\dim Q = 1$. Then $\mathcal{O}_{\text{alg}}(V)^G$ is normal of dimension one, hence regular, and it is graded. Thus $\mathcal{O}_{\text{alg}}(V)^G = \mathbb{C}[f]$, where f is homogeneous and $Q \simeq \mathbb{C}$. First suppose that Q has one stratum. Then the closed orbits in V are the fixed points and Proposition 1.1 gives the required biholomorphism. The remaining case is where the strata of Q are $\mathbb{C} \setminus \{0\}$ and $\{0\}$. Then (1) follows from Remark 5.1. As for (2), our vector field is of the form $h(z)z\partial / \partial z$ where $h(z)$ is holomorphic. The vector field lifts to an invariant holomorphic function times the Euler vector field on V. \hfill \Box

Theorem 5.3. Suppose that $G = \text{SL}_2(\mathbb{C})$. Then X and V are G-biholomorphic.

Proof. We may assume that $V^G = (0)$. Let R_d denote the representation of G on $S^d \mathbb{C}^2$. Then the representations which are not 2-large are [Sch95, Theorem 11.9]

1. kR_1, $1 \leq k \leq 3$.
2. R_2, $2R_2$, $R_2 \oplus R_1$.
3. R_3, R_4.

8
In all cases the quotient is \mathbb{C}^k for some $k \leq 3$. The cases $R_1, 2R_1, R_2, R_3$ have quotient of dimension at most 1, hence they present no problem. Suppose that $V = 3R_1$. Then the generating invariants are determinants of degree 2, so we have (*). Let z_{ij} be the variable on $Q = \mathbb{C}^3$ corresponding to the ith and jth copy of \mathbb{C}^2. Then the strata preserving vector fields are generated by the $z_{ij}\partial/\partial z_{kl}$. Thus we have 9 generators. But we have a canonical action of $GL(3, \mathbb{C})$ on V commuting with the action of G and the image of $\mathfrak{gl}(3, \mathbb{C})$ is the span of the 9 generators. Hence we have (**). For the case of $2R_2$ we have (*) because the generators are polynomials of degree 2 and we have (**) because $2R_2$ is an orthogonal representation [Sch80, Theorems 3.7 and 6.7].

Suppose that $V = R_4$. Then V is orthogonal, so (** holds. The quotient Q is isomorphic to the quotient of \mathbb{C}^2 by S_3, and it is known that strata preserving automorphisms have local lifts [Lya83], [KLM03, Theorem 5.4], hence we certainly have (*). Finally, there is the case $V = R_2 \oplus R_1$. Then there are generating invariants homogeneous of degrees 2 and 3 and the zeroes of the degree three invariant define the closure of the codimension one stratum. Thus we may think of Q as \mathbb{C}^2 with coordinate functions z_2 and z_3 where z_i has weight i for the action of \mathbb{C}^*. A strata preserving φ has to send z_3 to a multiple of z_3 (and fix the origin), so that $\varphi = (\varphi_2, \varphi_3)$ where $\varphi_3(z_2, z_3) = \alpha(z_2, z_3)z_3$. It follows easily that φ_0 exists and we have (*). The strata preserving vector fields must all vanish at the origin and preserve the ideal of z_3, so they are generated by $z_3\partial/\partial z_3, z_2\partial/\partial z_2$ and $z_3\partial/\partial z_2$. Since V is self dual, we can change the differentials of the generators f_2 and f_3 into invariant vector fields A_2 and A_3, and one can see that our three strata preserving vector fields below are in the span of the images of A_2, A_3 and the Euler vector field. Hence we have (**).

□

References

[DK98] Harm Derksen and Frank Kutzschebauch, *Nonlinearizable holomorphic group actions*, Math. Ann. 311 (1998), no. 1, 41–53.

[HK95] Peter Heinzner and Frank Kutzschebauch, *An equivariant version of Grauert’s Oka principle*, Invent. Math. 119 (1995), no. 2, 317–346.

[Huc90] Alan T. Huckleberry, *Actions of groups of holomorphic transformations*, Several complex variables, VI, Encyclopaedia Math. Sci., vol. 69, Springer, Berlin, 1990, pp. 143–196.

[Jia92] Mingchang Jiang, *On the holomorphic linearization and equivariant Serre problem*, Ph.D. thesis, Brandeis University, 1992.

[KLM03] Andreas Kriegl, Mark Losik, and Peter W. Michor, *Tensor fields and connections on holomorphic orbit spaces of finite groups*, J. Lie Theory 13 (2003), no. 2, 519–534.

[KLSa] Frank Kutzschebauch, Finnur Lárusson, and Gerald W. Schwarz, *Homotopy principles for equivariant isomorphisms*, preprint.

[KLSb] ______, *An Oka principle for equivariant isomorphisms*, J. reine und angew. Math. (Crelle), to appear.

[Kra96] Hanspeter Kraft, *Challenging problems on affine n-space*, Astérisque (1996), no. 237, Exp. No. 802, 5, 295–317, Séminaire Bourbaki, Vol. 1994/95.

[Lun73] Domingo Luna, *Slices étales*, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81–105. Bull. Soc. Math. France, Paris, Mémoire 33.

[Lya83] O. V. Lyashko, *Geometry of bifurcation diagrams*, Current problems in mathematics, Vol. 22, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 94–129.

[Rob86] Mark Roberts, *A note on coherent G-sheaves*, Math. Ann. 275 (1986), no. 4, 573–582.
[Sch80] Gerald W. Schwarz, *Lifting smooth homotopies of orbit spaces*, Inst. Hautes Études Sci. Publ. Math. (1980), no. 51, 37–135.

[Sch89] ———, *Exotic algebraic group actions*, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 2, 89–94.

[Sch95] ———, *Lifting differential operators from orbit spaces*, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 253–305.

[Sch13] ———, *Vector fields and Luna strata*, J. Pure and Applied Algebra 217 (2013), 54–58.

[Sch14] ———, *Quotients, automorphisms and differential operators*, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 169–193.

[Sno82] Dennis M. Snow, *Reductive group actions on Stein spaces*, Math. Ann. 259 (1982), no. 1, 79–97.

Frank Kutzschebauch, Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

E-mail address: frank.kutzschebauch@math.unibe.ch

Finnur Lárusson, School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia

E-mail address: finnur.larusson@adelaide.edu.au

Gerald W. Schwarz, Department of Mathematics, Brandeis University, Waltham MA 02454-9110, USA

E-mail address: schwarz@brandeis.edu