Incidental gallbladder cancer after routine cholecystectomy: when should we suspect it preoperatively and what are predictors of patient survival?

Yongchel Ahn, Cheon-Soo Park, Shin Hwang, Hyuk-Jai Jang, Kun-Moo Choi, Sung-Gyu Lee

Departments of Hematology-Oncology and Surgery, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

INTRODUCTION

Gallbladder (GB) cancer is the fifth most common malignancy of the gastrointestinal tract, with an incidence of 0.8%–1.2%, and is the most common malignancy of the biliary tract [1]. Occasionally, GB malignancy is found on pathologic reports after routine cholecystectomy. Recent studies have reported an increase in incidental GB cancer (iGBC), with approximately 50%–58% of all new GBC cases [2,3]. Some authors have reported incidence of iGBC after laparoscopic cholecystectomy (LC) was approximately 0.2%–2.1% [4-6].

When iGBC is detected after cholecystectomy, additional procedures such as liver resection, lymph node dissection, and/or bile duct resection (BDR) may be performed depending
on pathologic and imaging findings. Glenn and Hays [7] first introduced ‘radical cholecystectomy’ (Glenn operation), a radical resection technique with regional lymphadenectomy. Pack et al. [8] and Fahim et al. [9] have also reported combined hepatectomy and portal lymph node dissection in pT1b or more advanced GBC.

In general, it is difficult to anticipate GB malignancy in most routine cholecystectomies for preoperative diagnosis of benign GB diseases. Additionally, surgeons often encounter the concerns of tumor spread in perioperative GB perforation and of reoperation extent. To date, there have been few reports on the predictive factors of iGBC. A recently published article described old age, female gender, Asian or African American, elevated serum ALP and conversion to open cholecystectomy as risk factors in LC patients [10].

In this retrospective study, we reviewed the clinicopathological characteristics of iGBC compared with benign GB diseases and sought to find predictive risk factors. We also analyzed prognostic factors affecting recurrence and survival in iGBC patients.

METHODS

In our institution, 4,629 patients received cholecystectomy between January 1998 and March 2014. Seventy-three patients (1.6%) were confirmed to have iGBC on final pathology. Demographics and clinical characteristics of these patients were retrospectively retrieved and were compared to those of 4,556 benign patients. For continuous variables, Student t-test was used for comparisons. Categorical variables were analyzed with the chi-square test or Fisher exact test. And multiple logistic regression models for a dichotomous outcome were developed, and odds ratios were utilized to evaluate preoperative iGBC risk factors.

Seventeen patients were excluded from further survival analysis: 8 due to confirmed metastasis or seeding during operation; 4 were lost to follow up; and 5 as a result of death by other diseases (3 cases of primary lung cancer, 1 acute myocardial infarction, 1 brain infarction) (Fig. 1). Disease-free and overall survival (OS) was calculated by the Kaplan-Meier method. Prognostic factors were analyzed by the univariate Kaplan-Meier method and compared by the log-rank test to identify the predictors for survival. Multivariate regression analysis was performed using the Cox proportional hazards model to identify the independent prognostic factors for survival. A P-value less than 0.05 was considered statistically significant. All Statistical calculations were performed with IBM SPSS Statistics ver. 19.0 (IBM Co., Armonk. NY, USA).

RESULTS

Clinical features and predictive risk factors

A total of 73 patients were identified as iGBC cases and the other 4,556 were benign GB diseases. The mean age of iGBC patients was older than that of benign ones (68.4 ± 11.5 years vs. 57.7 ± 15.8 years, P = 0.001). The hemoglobin levels differed significantly between the two groups (iGBC vs. benign, 12.5 ± 1.7 g/dL vs. 13.2 ± 1.9 g/dL; P = 0.007). But levels of total bilirubin, AST, ALT, ALP, WBC, and platelet counts were not significantly different. In addition, more iGBC patients were on antihypertensive medications (P = 0.047) (Table 1).

Seventeen patients were excluded from further survival analysis: 8 due to confirmed metastasis or seeding during operation; 4 were lost to follow up; and 5 as a result of death by other diseases (3 cases of primary lung cancer, 1 acute myocardial infarction, 1 brain infarction) (Fig. 1). Disease-free and overall survival (OS) was calculated by the Kaplan-Meier method. Prognostic factors were analyzed by the univariate Kaplan-Meier method and compared by the log-rank test to identify the predictors for survival. Multivariate regression analysis was performed using the Cox proportional hazards model to identify the independent prognostic factors for survival. A P-value less than 0.05 was considered statistically significant. All Statistical calculations were performed with IBM SPSS Statistics ver. 19.0 (IBM Co., Armonk. NY, USA).

Recurrence and survival outcomes of iGBC

Fifty-six eligible patients underwent different operations for iGBC according to pathologic and imaging findings (Table 2). The most common curative reoperation for advanced GBC was EC with BDR. We defined EC as cholecystectomy in-
including wedge resection of the GB fossa with a rim of normal hepatic tissue (approximately 2 cm in thickness or more), or segmentectomy of liver segments (IVb and V) with regional lymph node dissection. EC after primary cholecystectomy was usually performed for (1) pT2 or pT3, (2) suspicious lymph node enlargement on postoperative CT scan, and (3) positive cystic duct resection margin. And BDR was considered in situations of (2) and (3) in our institution. In fact, additional surgical procedures were not strictly protocol-driven and eighteen patients received only cholecystectomy because of patient refusal, comorbid medical conditions and so on.

Univariate analysis revealed that older age (≥65 years), higher serum level of CA 19-9 (≥50 U/mL), acute cholecystitis, and GB empyema on preoperative diagnosis were adverse clinical factors of recurrence and survival. Also, in perioperative GB perforation subset, early recurrence was significantly greater and their 6-month, 1-year, and 3-year DFS rates compared with nonperforation group were 58% vs. 79%; 44% vs. 65%; and 36% vs. 59%, respectively (P = 0.04). However, OS was not significantly different between perforation and nonperforation.

| Table 1. Clinical features of incidental gallbladder (GB) cancer and benign gallbladder diseases |
|----------------|----------------|----------------|----------------|
| Variable | Benign GB disease (n = 4,556) | iGB cancer (n = 73) | P-value |
| Age (yr) | 57.66 ± 15.82 | 68.41 ± 11.53 | 0.001 |
| Sex | | | 0.582 |
| Male | 2,173 (47.7) | 32 (43.8) | 0.124 |
| Female | 2,383 (52.3) | 41 (56.2) | 0.047 |
| Diabetes | | | 0.245 |
| Yes | 793 (17.4) | 19 (26.0) | 0.160 |
| No | 3,763 (82.6) | 54 (74.0) | 0.315 |
| Hypertension | | | 0.849 |
| Yes | 1,508 (33.1) | 39 (53.4) | 0.119 |
| No | 3,048 (66.9) | 34 (46.6) | 0.007 |
| HBV | | | 0.364 |
| Yes | 159 (3.5) | 5 (6.8) | 0.062 |
| No | 4,397 (96.5) | 68 (93.2) | 0.174 |
| HCV | | | 0.454 |
| Yes | 27 (0.6) | 2 (2.7) | 0.124 |
| No | 4,529 (99.4) | 71 (97.3) | 0.288 |
| Alcohol | | | 0.001 |
| Yes | 1,007 (22.1) | 12 (16.4) | 0.319 |
| No | 3,549 (77.9) | 61 (83.6) | 0.319 |
| Smoking | | | 0.364 |
| Yes | 793 (17.4) | 12 (16.4) | 0.364 |
| No | 3,763 (82.6) | 61 (83.6) | 0.174 |
| Symptoms | | | 0.062 |
| Yes | 3,545 (77.8) | 50 (68.5) | 0.062 |
| No | 1,011 (22.2) | 23 (31.5) | 0.062 |
| Hemoglobin (g/dL) | 13.19 ± 1.88 | 12.49 ± 1.73 | 0.634 |
| WBC (counts/µL) | 9,065.77 ± 4,437.02 | 8,761.79 ± 4,856.75 | 0.634 |
| Platelet (×1,000 counts/µL) | 237.76 ± 89.58 | 244.68 ± 76.27 | 0.174 |
| CA 19-9 (U/mL) | Not checked | 53.64 ± 189.81 | N/A |
| AST (IU/L) | 44.09 ± 86.26 | 77.83 ± 195.56 | 0.174 |
| ALT (IU/L) | 46.72 ± 74.90 | 66.25 ± 149.01 | 0.454 |
| ALP (IU/L) | 320.47 ± 282.03 | 291.67 ± 257.06 | 0.288 |
| Total bilirubin (mg/dL) | 0.93 ± 0.68 | 1.06 ± 1.25 | 0.001 |
| Hospital day (day) | 6.36 ± 5.44 | 11.41 ± 8.91 | 0.001 |

Values are presented as mean ± standard deviation or number (%).

| Table 2. Operations according to the pathologic T-stage |
|----------------|----------------|----------------|
| Variable | pT1a | pT1b | pT2 | pT3 | P-value |
| Cholecystectomy | 6 (75.0) | 2 (50.0) | 17 (45.9) | 1 (14.3) | 0.319 |
| EC+ BDR | 2 (25.0) | 1 (25.0) | 14 (37.8) | 5 (71.4) | 0.454 |
| Other | 0 (0) | 1 (25.0) | 6 (16.2) | 1 (14.3) | 0.288 |
| Total | 8 | 4 | 37 | 7 | 0.001 |

Values are presented as number (%).
EC, extended cholecystectomy; BDR, bile duct resection.
subgroups (Table 3). In a subgroup analysis of EC with BDR (n = 22), GB perforation was not statistically significant in DFS (P = 0.127) and OS (P = 0.113). And advanced pT stage, advanced pN stage, positive resection margin, moderate or poor differentiation, positive perineural invasion, and positive lymphovascular invasion were also risk factors of recurrence and survival on univariate analysis. However, tumor size and types of operation did not affect patients’ outcome (Table 4, Fig. 2). In subgroup analysis for those who received EC with BDR (n = 22), cumulative OS curves based on pathologic T staging and pathologic N staging are respectively shown (Fig. 3A, B).

On a multivariate analysis of all iGBC patients, age more than 65 years, positive lymph node, moderately or poorly differentiated tumor, and presence of lymphovascular invasion were statistically significant predictors of poor prognosis. But in EC with BDR subgroup analysis, elderly age (hazard ratio [HR], 107.7; 95% CI, 2.812–4,132.1; P = 0.012), lymph node involvement (HR, 10.88; 95% CI, 1.004–117.9; P = 0.049), lymphovascular invasion (HR, 33.62; 95% CI, 2.444–462.401; P = 0.009) were identified as adverse prognostic factors. Depth of

Table 3. Clinical prognostic factors of recurrence and survival in patients with incidental gallbladder cancer (n = 56)

Variable	DFS (%)	OS (%)	P-value	DFS (%)	OS (%)	P-value		
	6 mo	1 yr	3 yr	P-value	6 mo	1 yr	3 yr	P-value
Age (yr)								
<65	90	74	68	0.030	100	100	74	0.004
≥65	63	50	39	0.729	72	60	37	0.858
Sex								
Male	82	62	56	0.787	78	78	52	0.967
Female	67	57	50	0.822	85	72	50	0.836
Diabetes								
Yes	68	61	54	0.822	81	74	52	0.836
No	75	58	52	0.791	82	74	50	0.791
Hypertension								
Yes	67	63	57	0.822	76	63	53	0.836
No	77	56	48	0.791	87	83	49	0.791
Hepatitis B virus								
Yes	80	27	27	0.822	80	27	27	0.836
No	72	61	54	0.822	82	74	53	0.836
Hepatitis C virus								
Yes	50	50	50	0.961	100	50	50	0.827
No	74	59	52	0.961	81	75	51	0.649
Alcohol								
Yes	75	45	45	0.319	75	75	45	0.649
No	73	61	53	0.319	83	74	52	0.653
Smoking								
Yes	69	46	46	0.872	69	69	46	0.653
No	73	60	53	0.872	84	75	52	0.653
Symptoms								
Yes	67	55	51	0.508	75	64	48	0.228
No	84	67	56	0.508	95	95	57	0.228
CA 19-9 (U/mL)								
<50	80	67	59	0.003	85	78	58	0.032
≥50	43	26	26	0.003	65	51	17	0.027
Preoperative Dx								
Stone	76	63	55	0.011	82	82	50	0.027
Polyp	93	93	85	0.011	93	93	83	0.027
Stone & polyp	100	100	100	0.011	100	100	100	0.027
Cholecystitis	61	38	30	0.041	81	54	27	0.074
Other	59	39	31	0.041	77	56	25	0.074
GB perforation								
Yes	58	44	36	0.041	65	52	36	0.074
No	79	65	59	0.041	90	84	58	0.074

DFS, disease free survival; OS, overall survival; SR, survival rate; GB, gallbladder; Dx, diagnosis.
tumor (T-stage), however, was not a significant prognostic factor in both all-iGBC patients group and EC with BDR subgroup (Table 5).

DISCUSSION

Cholecystectomy is one of the most commonly performed surgical treatments around the world. As the safety and feasibility of LC have been demonstrated, it is being performed with increasing frequency even in elderly patients [11]. And technical advances in ultrasonography and computed tomography have contributed to earlier detection of GB cancer, preoperatively. Still, incidental GB malignancy is reported in 0.2%–2.1% of all routine cholecystectomy for benign GB diseases [4-6]. In our cohort, seventy-three (1.57%) iGBC cases were verified.

The importance of preoperative suspicion of malignancy

Table 4. Pathological and surgical prognostic factors of recurrence and survival in patients with incidental gallbladder cancer (n = 56)

Variable	DFS	OS		
	Median ± SD	P-value	Median ± SD	P-value
T stage				
T1a	Not reached	0.001	Not reached	0.001
T1b	Not reached			
T2	18.30 ± 5.47	<0.001	24.50 ± 6.58	<0.001
T3	9.10 ± 0.39		22.70 ± 6.61	
N stage				
N0	Not reached	<0.001	Not reached	<0.001
N1	7.70 ± 1.59		18.50 ± 5.13	
Resection margin		0.003		<0.001
Positive (R1, R2)	7.70 ± 3.33		11.30 ± 2.29	
Negative (R0)	Not reached		Not reached	
Tumor size (cm)		0.078		0.300
<2	Not reached			
≥2	19.10 ± 6.69		25.30 ± 13.50	
Differentiation		0.034		0.001
Well	Not reached		Not reached	
Moderate	14.00 ± 2.27		22.70 ± 3.38	
Poor	2.30 ± 1.14		4.00 ± 0.33	
Other	Not reached		6.80	
Perineural invasion		<0.001	<0.001	
Yes	3.90 ± 1.57		9.10 ± 5.37	
No	Not reached		Not reached	
Lymphovascular invasion		0.001	<0.001	
Yes	9.10 ± 3.88		11.10 ± 2.86	
No	Not reached		Not reached	
Operation		0.242	0.591	
Cholecystectomy	Not reached		Not reached	
EC + BDR	16.70		24.30 ± 15.17	
Other	16.60 ± 23.09		25.10	

DFS, disease free survival; OS, overall survival; SD, standard deviation; R0, no residual tumor; R1, microscopic residual tumor; R2, macroscopic residual tumor; EC, extended cholecystectomy; BDR, bile duct resection.
cannot be emphasized enough. Prior to surgery, patients at an increased risk for iGBC need to be identifiable in clinical practice. Even though several GBC risk factors have been proposed, many of them are based on epidemiology, image findings, or small size of cohorts in advanced tumors. Unfortunately, few reports on predictors of iGBC are available in the English literature until now. Some investigators suggested iGBC was more likely found in elderly patients, dilated bile duct, and thickened GB wall [12]. Another retrospective study revealed that advanced age, female sex, Asian or African American ethnicity, an elevated ALP, and converted open cholecystectomy as risk factors [10]. We found that iGBC patients tend to be older, anemic, and on hypertensive medication compared with benign GB diseases. But an age 65 years or older was the only independent predictor in our study. In the literature review, an advanced age has been consistently a major risk for iGBC but there is no consensus on the other factors. This is because incidence of iGBC is relatively rare, thus most studies are retrospective in study design. Also, sensitivity and specificity of imaging modalities can be inaccurate to forecast tumorous conditions, especially in severe cholecystitis or empyema accompanied by GB wall thickening.

The prognosis of GB cancer is poor and large studies have shown only 2.7%–15% 5-year OS rate in advanced stages [13,14]. Many prognostic factors have been reported and the depth of tumor and lymph node metastasis remain the best among GBC experts [13-16]. Recently, a Japanese multicenter study determined that age ≥70 years, female sex, tumor stage, and operative procedures were independent prognostic factors [16]. Nevertheless, little evidence is available regarding survival outcome of unsuspected GB malignancy. And it is not clear whether iGBC patients have a better or similar prognosis when compared with the same stage of nonincidental cases. In a meta-analysis, conversion to radical surgery warranted a survival benefit in pT2 or more advanced iGBC, although additional surgical procedures were not uniform [17].

A comprehensive decision of subsequent radical surgery is the most important clinical issue for both surgeons and patients. In our study, reoperations were not always protocol-driven for various reasons. Seventeen pT2 patients and one pT3 received only cholecystectomy. Because of advanced age (median, 75 years) and concomitant comorbidities, 16 of them refused reoperations. Another 2 patients were on palliative chemotherapy for other primary malignancies. Since data from these exceptive patients can cause a selection bias, we did further subgroup analysis on patients who received following EC with BDR. In addition, 2 pT1a patients were included: 1 patient with lymph node enlargement on postoperative CT scan and the other with positive cystic duct resection margin.

The types of operation did not influence the all-iGBC patients’ survival. This finding was probably confounded by nodal status. First, reoperations for pT2 or more advanced were not routinely performed as mentioned above, so patients with positive lymph node could have been included in cholecystectomy only group. Second, even in patients who received EC with BDR, survival outcomes were strongly affected by the presence of node metastasis. Our study demonstrated age ≥65 years,
positive lymph node, and lymphovascular invasion were independent prognostic factors for survival in EC with BDR subgroup. Differentiation of tumor played a prognostic role in our preliminary analysis and in other studies [18,19], but was not statistically significant in EC with BDR patients. Unlike a Chinese study [4], tumor depth was not correlated with survival in our cohorts. These incoherent results from previous reports and our study may originate from the inevitable limitations of retrospective analysis for the relatively small and heterogeneous population. Even though our result is based on a small number of patients, findings from the homogeneous EC with BDR subgroup can provide clinicians with background information for future clinical trials.

Many authors reported that perforated GB during surgery is a prognostic factor for recurrence or survival [20-24]. Ouchi et al. [22] mentioned that GB perforation during LC was up to 20% of patients, and the incidence was irrespective of depth of cancer invasion. In our study, intraoperative perforation was noted in 17 out of 56 (30.4%). Perforation was frequently observed in preoperative diagnoses of cholecystitis (6 of 16, 37.5%) and empyema (4 of 5, 80%); and 10 perforated patients (58.8%) received only cholecystectomy because of patient refusal and other reasons. To control a selection bias, we performed subgroup (EC with BDR) analysis wherein perforation (n = 5) did not affect recurrence (P = 0.127) and OS (P = 0.113) in our study. However, in cases of preoperatively assumed severe cholecystitis or GB empyema, surgical procedures need to be performed with caution, if possible, to avoid GB perforation.

Our study has some limitations. First, the number of the iGBC patients was relatively small, hence this study was designed in a retrospective manner. Second, surgical procedures were not always protocol-driven for various clinical reasons. Therefore, a large multicenter study should be conducted to overcome the limitations of our findings.

In summary, iGBC should be preoperatively suspected, especially in old-aged patients. An age older than 65 years, lymph node metastasis, and lymphovascular invasion are important prognostic factors in iGBC patients who received subsequent EC with BDR.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30.
2. Butte JM, Matsuo K, Gonen M, D’Angelica MI, Waugh E, Allen PJ, et al. Gallbladder cancer: differences in presentation, surgical treatment, and survival in patients treated at centers in three countries. J Am Coll Surg 2011;212:50-61.
3. Shih SP, Schulick RD, Cameron JL, Lillemoe KD, Pitt HA, Choti MA, et al. Gallbladder cancer: the role of laparoscopy and radical resection. Ann Surg 2007;245:893-901.
4. Zhang WJ, Xu GF, Zou XP, Wang WB, Yu JC, Wu GZ, et al. Incidental gallbladder carcinoma diagnosed during or after laparoscopic cholecystectomy. World J Surg 2009;33:2651-6.
5. Yamamoto H, Hayakawa N, Kitagawa Y, Katohno Y, Sasaya T, Takara D, et al. Unsuspected gallbladder carcinoma after laparoscopic cholecystectomy. J Hepatobiliary Pancreat Surg 2005;12:391-8.
6. Kwon AH, Imamura A, Kitade H, Kamiyama Y. Unsuspected gallbladder cancer diagnosed during or after laparoscopic cholecystectomy. J Surg Oncol 2008;97:241-5.
7. Glenn F, Hays DM. The scope of radical surgery in the treatment of malignant tumors of the extrahepatic biliary tract. Surg Gynecol Obstet 1954;99:529-41.
8. Pack GT, Miller TR, Brasfield RD. Total right hepatic lobectomy for cancer of the gallbladder: report of three cases. Ann Surg 1955:142:6-16.
9. Fahim RB, McDonald JR, Richards JC, Ferris DO. Carcinoma of the gallbladder: a study of its modes of spread. Ann Surg 1962:156:1-14.
10. Potter SC, Jinn LX, Hall BL, Strasberg SM, Pitt HA. Incidental gallbladder cancer at cholecystectomy: when should the surgeon be suspicious? Ann Surg 2014;260:128-33.
11. Lee SI, Na BG, Yoo YS, Mun SP, Choi NK. Clinical outcome for laparoscopic cholecystectomy in extremely elderly patients. Ann Surg Treat Res 2015;88:145-51.
12. Koshenkov VP, Koru-Sengul T, Franceschi D, Dipasco PJ, Rodgers SE. Predictors of incidental gallbladder cancer in patients undergoing cholecystectomy for benign gallbladder disease. J Surg Oncol 2013;107:118-23.
13. Manfredi S, Benhamiche AM, Isambert N, Prost P, Jouve JL, Faivre J. Trends in incidence and management of gallbladder carcinoma: a population-based study in France. Cancer 2000;89:757-62.
14. Donohue JH. Present status of the diagnosis and treatment of gallbladder carcinoma. J Hepatobiliary Pancreat Surg 2001;8:330-4.
15. Donohue JH, Stewart AK, Menck HR. The National Cancer Data Base report on carcinoma of the gallbladder, 1989-1995. Cancer 1998;83:2618-28.
16. Kayahara M, Nagakawa T, Nakagawara H, Kitagawa H, Ohta T. Prognostic factors for gallbladder cancer in Japan. Ann Surg 2008;248:807-14.

17. Choi KS, Choi SB, Park P, Kim WB, Choi SY. Clinical characteristics of incidental or unsuspected gallbladder cancers diagnosed during or after cholecystectomy: a systematic review and meta-analysis. World J Gastroenterol 2015;21:1315-23.

18. Mazer LM, Losada HF, Chaudhry RM, Velazquez-Ramirez GA, Donohue JH, Kooby DA, et al. Tumor characteristics and survival analysis of incidental versus suspected gallbladder carcinoma. J Gastrointest Surg 2012;16:1311-7.

19. Choi SB, Han HJ, Kim CY, Kim WB, Song TJ, Suh SO, et al. Incidental gallbladder cancer diagnosed following laparoscopic cholecystectomy. World J Surg 2009;33:2657-63.

20. Z'graggen K, Birrer S, Maurer CA, Wehrli H, Klaiber C, Baer HU. Incidence of port site recurrence after laparoscopic cholecystectomy for preoperatively unsuspected gallbladder carcinoma. Surgery 1998;124:831-8.

21. Lundberg O. Port site metastases after laparoscopic cholecystectomy. Eur J Surg Suppl 2000;(585):27-30.

22. Ouchi K, Mikuni J, Kakugawa Y. Organizing Committee. The 30th Annual Congress of the Japanese Society of Biliary Surgery. Laparoscopic cholecystectomy for gallbladder carcinoma: results of a Japanese survey of 498 patients. J Hepatobiliary Pancreat Surg 2002;9:256-60.

23. Suzuki K, Kimura T, Ogawa H. Is laparoscopic cholecystectomy hazardous for gallbladder cancer? Surgery 1998;123:311-4.

24. Yamaguchi K, Chijiiwa K, Ichimiyama H, Sada M, Kawakami K, Nishikata F, et al. Gallbladder carcinoma in the era of laparoscopic cholecystectomy. Arch Surg 1996;131:981-4.