Research

An enhanced RNA alignment benchmark for sequence alignment programs
Andreas Wilm, Indra Mainz and Gerhard Steger*

Address: Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

Email: Andreas Wilm - wilm@biophys.uni-duesseldorf.de; Indra Mainz - mainzi@biophys.uni-duesseldorf.de; Gerhard Steger* - steger@biophys.uni-duesseldorf.de

* Corresponding author

Abstract

Background: The performance of alignment programs is traditionally tested on sets of protein sequences, of which a reference alignment is known. Conclusions drawn from such protein benchmarks do not necessarily hold for the RNA alignment problem, as was demonstrated in the first RNA alignment benchmark published so far. For example, the twilight zone – the similarity range where alignment quality drops drastically – starts at 60 % for RNAs in comparison to 20 % for proteins. In this study we enhance the previous benchmark.

Results: The RNA sequence sets in the benchmark database are taken from an increased number of RNA families to avoid unintended impact by using only a few families. The size of sets varies from 2 to 15 sequences to assess the influence of the number of sequences on program performance. Alignment quality is scored by two measures: one takes into account only nucleotide matches, the other measures structural conservation. The performance order of parameters – like nucleotide substitution matrices and gap-costs – as well as of programs is rated by rank tests.

Conclusion: Most sequence alignment programs perform equally well on RNA sequence sets with high sequence identity, that is with an average pairwise sequence identity (APSI) above 75 %. Parameters for gap-open and gap-extension have a large influence on alignment quality lower than APSI ≤ 75 %; optimal parameter combinations are shown for several programs. The use of different 4 × 4 substitution matrices improved program performance only in some cases. The performance of iterative programs drastically increases with increasing sequence numbers and/or decreasing sequence identity, which makes them clearly superior to programs using a purely non-iterative, progressive approach. The best sequence alignment programs produce alignments of high quality down to APSI > 55 %; at lower APSI the use of sequence+structure alignment programs is recommended.

Background

Correctly aligning RNAs in terms of sequence and structure is a notoriously difficult problem.
Results and discussion

At first we established an extended RNA alignment database for benchmarking (BRAliBase 2.1) as described in Methods. The datasets are based on (hand-curated) seed alignments of 36 RNA families taken from Rfam version 7.0 [24,23]. Thus, the BRAliBase 2.1 contains in total 18,990 aligned sets of sequences; the individual sets consist of 2, 3, 5, 7, 10, and 15 sequences, respectively (see Table 1), with $20 \leq \text{APSI} \leq 95\%$.

To test the performance of an alignment program or the influence of program parameters on performance, we removed all gaps from the datasets, realigned them by the program to be tested, and scored the new alignments by a modified sum-of-pairs score (SPS) and the structure conservation index (SCI). The SPS' scores the identity between test and reference alignments, whereas the SCI scores consensus secondary structure information; for details see Methods. Both scores were multiplied to yield the final RNA alignment score, termed BRALISCORE. For the ranking of program parameters and options of individual programs, or of different programs we used Friedman rank sum and Wilcoxon tests; for details see Methods. Different program options or even different programs resulted in only small differences in alignment quality for datasets of APSI above 80 %, which is in accordance with the previous benchmark results [22]. Because the alignment problem seems to be almost trivial at these high identities and in order to reduce the number of alignments that need to be computed, we report all results only on datasets with APSI $\leq 80\%$.

no. aln.	k2	k3	k5	k7	k10	k15	total
	8976 (118)	4835	2405 (481)	1426	845	504	18990
SCI	0.95 (1.05)	0.92	0.91 (0.87)	0.90	0.89	0.89	0.93

Values for the previously used data-set [22] are given in brackets.
Optimizing gap costs

With the existence of reference alignments specifically compiled for the purpose of RNA alignment benchmarks, program parameters can be specifically optimized for RNA alignments.

Parameters for MAFFT version 5 [25] have been optimized by K. Katoh using BRAliBase II's data-set1 [22]. The gap-cost values of MAFFT version 4 (gap-open penalty $op = 0.51$ and gap-extension penalty $ep = 0.041$) turned out to be far too low. Applying the improved values ($op = 1.53$ and $ep = 0.123$; these are the default in versions ≥ 5.667) to the new BRAliBase 2.1 datasets results in a dramatic performance gain (exemplified in Figure 1 for alignment sets with five sequences). Similarly, parameters for MUSCLE [16,26] have been optimized by its author.

Motivated by the successful optimizations of MAFFT and MUSCLE parameters, we searched for optimal gap-costs of CLUSTALW [27,28]. We varied gap-open (go) and gap-extension (ge) penalties from 7.5 to 22.5 and from 3.33 to 9.99, respectively (default values of CLUSTALW for RNA/DNA sequences are $go = 15.0$ and $ge = 6.66$, respectively). Ranks derived by Friedman tests are averaged over all alignment sets, i.e. consisting of 2, 3, 5, 7, 10, and 15 sequences. Table 2 summarizes the results. Alignments created with higher gap-open penalties score significantly better. A combination of $go = 22.5$ and $ge = 0.83$ is optimal for the tested parameter range. It should be noted that this performance gain results mainly from a better SCI, whereas the SPS remains almost the same.

Similarly we optimized gap values for the recently published PRANK [29]. Average ranks can be found in Table 3. Default values ($go = 0.025$ and $ge = 0.5$) are too high. Due to time reasons we did not test all parameter combinations; optimal values found so far are 10 times lower than the default values. One should bear in mind that Friedman rank tests do not indicate to which degree a particular program or option works better, but that it consist-

Figure 1

MAFFT (FFT-NS-2) and ClustalW performance with optimized and old parameters. PROALIGN (earlier identified to be a good aligner [22]) is included as a reference. Performance is measured as BRALISCORE vs. reference APSI and exemplified for $k = 5$ sequences. MAFFT version 5.667 was used with optimized parameters, which are default in version 5.667, and with (old) parameters of version 4, respectively; CLUSTALW was used either with default parameters or with optimized parameters (see Table 2 and text).
ently performs better. The actual performance gain can be visualized by plotting BRALISCORE vs. reference APSI (see Figure 1). For MAFFT the new options result in an extreme performance gain whereas CLUSTALW gap parameter optimization only yields a modest improvement indicating that CLUSTALW default options are already near optimal. In both cases the influence of optimized parameters has its greatest impact at sequence identities \(\leq 55\% \) APSI.

Choice of substitution matrices

Each alignment program has to use a substitution matrix for replacement of characters during the alignment process. Traditionally these matrices differentiate between transitions (purine to purine and pyrimidine to pyrimidine substitutions) and transversions (purine to pyrimidine and vice versa), but more complex matrices have been described in the literature. An example for the latter are the RIBOSUM matrices [30] used by RSEARCH to score alignments of single-stranded regions. To address the question whether incorporating RIBOSUM matrices results in a significant performance change, we used the RIBOSUM 85–60 4 x 4 matrix as substitution matrix for CLUSTALW, ALIGN-M and POA, as these programs allow an easy integration of non-default substitution matrices via command line options. Since gap-costs and substitution matrix values are interdependent we adjusted the original RIBOSUM values to the range of the default values. We applied Wilcoxon tests to test whether using the RIBOSUM matrix (instead of the simpler default matrices) yields a statistical significant performance change. Results are summarized in Table 4. POA and ALIGN-M perform significantly better, only CLUSTALW’s performance suffers from RIBOSUM utilization. The reason for CLUSTALW’s performance loss is not obvious to us; it might be that CLUSTALW’s dynamic variation of gap penalties in a position and residue specific manner [27] works optimally only with CLUSTALW’s default matrix. Furthermore, the RIBOSUM 4 x 4 matrix is based on nucleotide substitutions in single-stranded regions whereas we used it as a general substitution matrix. Other matrices, based on base-paired as well as loop regions from a high-quality alignment of ribosomal RNA [31], gave, however, no significantly different results (data not shown).

Effect of sequence number on performance

A major improvement of the BRAliBase 2.1 datasets compared to BRAliBase II is the increased range of sequence numbers per set. This allows, for example, to test the influence of sequence number on performance. The Friedman rank sum tests for prank’s gap parameter optimization yielded significant results for go and ge penalty combinations at APSI \(\leq 80\% \). The default option for PRANK version 1508b is given in bold-face. Values for sets \(k_2 \) and \(k_3 \) are missing because PRANK crashed repeatedly with these sets, but we needed all values to compute the Friedman tests.
ence of sequence number on performance of alignment programs.

It has already been shown that iterative alignment strategies generally perform better than progressive approaches on protein alignments [10]. The same is true for RNA alignments: with increasing number of sequences and decreasing sequence homology iterative programs perform relatively better compared to non-iterative approaches. Figure 2 demonstrates this for PRRN – a representative for an iterative alignment approach – and CLUSTALW as the standard progressive, non-iterative alignment program. The effect is again most notable in the low sequence identity range (APSI < 0.55). In this range, alignment errors occur that can be corrected during the refinement stage of iterative programs. The same can be demonstrated for other iterative vs. non-iterative program combinations like MAFFT or MUSCLE vs. POA or PROALIGN etc. (see supplementary plots on our website [32]).

Relative performance of RNA sequence alignment programs

To find the sequence alignment program that performs best under all non-trivial situations (e.g. reference APSI ≤ 80 %), we did a comparison of all those programs previously identified [22] to be top ranking. If available we used the newest program versions and optimized parameters. In the comparison we included the RNA version of PROBCONS [33] (PROBCONSRNA; see [34]) whose parameters have been estimated via training on the BRAliBase II datasets. We applied Friedman rank sum tests to each alignment set with a fixed number of sequences. Results are summarized in Table 5. MAFFT version 5 [25] with the option "G-INS-i" ranks first throughout all test sets. This option is suitable for sequences of similar lengths, recommended for up to 200 sequences, and uses an iterative (COFFEE-like [35]) refinement method incorporating global pairwise alignment information. This option clearly outperforms the default option "FFT-NS-2", which uses only a progressive method for alignment. MUSCLE and PROBCONS RNA rank second and third place.

Conclusion

We have extended the previous "Benchmark RNA Alignment dataBase" BRAliBase II by a factor of 30 in terms of the alignment number and with respect to the range of sequences per alignment. With the new datasets of BRAliBase 2.1 we tested several sequence alignment programs. Obviously it is not possible to test all available programs; here we concentrated on well-known sequence alignment programs and those already identified as good aligners in our first study [22]. Additionally we showed that gap parameters can be (easily) optimized and tested whether the incorporation of RNA-specific substitution matrices results in a performance change.

From these tests, in comparison with the previous one [22], several conclusions can be drawn:

- While testing the performance of several programs, as for example published in [36], with the k5 datasets of BRAliBase II and of BRAliBase 2.1, we found no statistically significant difference of results obtained by the use of these (data not shown); that is, there exists no bias due to the smaller alignment number and the restricted number of RNA families used in BRAliBase II.

- Gap parameter optimization has previously been done only for protein alignment programs. The first BRAliBase benchmark enabled several authors [25] to optimize parameters of their programs for RNA alignments. For example the performance of the previously lowest ranking program MAFFT increased enormously: the new version 5 including optimized parameters [25] is now top ranking.

This result can be generalized: At least the gap costs are critical parameters especially in the low-homology range, but program’s default parameters are in most cases not optimal for RNA (e.g. see Tables 2 and 3).

- A further critical parameter set is the nucleotide substitution matrix. We compared the RIBOSUM 85–60 matrix with the default matrix of three programs (see Table 4). The performance of ALIGN-M and POA was either

Program	k2	k3	k5	k7	k10	k15
ALIGN-M	/	+	+	+	/	/
CLUSTALW	-	-	-	-	-	-
POA	+	+	+	/	/	/

If the use of the RIBOSUM 85–60 matrix resulted in a statistically significant performance increase in comparison to use of the default matrix this is indicated with a ""; "-" indicates that the default matrix scores significantly better. If no statistical significance was found this is indicated with a "/".*
unchanged or improved; however, CLUSTALW performed worse with this RIBOSUM matrix.

- The relative performance of iterative programs (e.g., MAFFT, MUSCLE, PRRN) improves with an increasing number of input sequences and/or decreasing sequence identity. The non-iterative, progressive programs show the opposite trend. With increasing number of sequences and decreasing sequence identity the progressive alignment approach is more likely to introduce errors, which cannot be corrected at a later alignment stage ("once a gap, always a gap" [37]). These errors are corrected by iterative programs during their refinement stage.

- An APSI of 55 % seems to be a critical threshold where the performance boost of (i) iterative programs and of (ii) programs with optimized parameters becomes obvious.

- Given the CPU and memory demand of structure (or sequence+structure) alignment programs, which is mostly above $O(n^4)$ with sequence length n and two sequences, the use of BRAliBase 2.1 is too time consuming. Benchmarks with structure alignment programs are possible, however, with a restricted subset of BRAliBase 2.1 or with BRAliBase II (e.g. see [36] and [38]).

Based upon these results we now provide recommendations to users on the current state of the art for aligning homologous sets of RNAs:

1. Align the sequence set with a (fast) program of your choice.

2. Check the sequence identity in the preliminary alignment:
 - if APSI \geq 75 %, the preliminary alignment is already of high quality;
 - if 55 % < APSI < 75 %, realign with a good sequence alignment program; at present we recommend MAFFT (G-INS-i) (see Table 5);
 - if APSI \leq 55 %, sequence alignment programs might not be sufficient; structure alignment programs might be of

Figure 2
Performance of Prrn compared to ClustalW in dependence on sequence number per alignment. The plot shows the difference of the scores of PRRN as a representative of an iterative alignment approach and CLUSTALW (standard options) as a representative of a progressive approach.
help (e.g. STEMLOC [5], FOLDALIGN [3], etc.), but be aware of memory and CPU usage.

We hope that the BRAliBase 2.1 reference alignments constitute a testing platform for developers, similarly as the BRAliBase II was already used for parameter optimization/training of MAFFT [25], MUSCLE [16,26], PROBCONSRNA [33], STRAL [36], and TLARA [39]. In the future we will try to provide a web interface, to which program authors may upload alignments created with their programs, that are than automatically scored and their performance plotted.

Methods
The database, which consists of 18,990 sequence set files plus their reference alignments, and scripts used for benchmarking are available [32]. Plots showing BRALISCORE, SCI, and SPS versus APSI for all alignment sets \(k \in \{2, 3, 5, 7, 10, 15\}\) and for all programs given in Table 5 can also be found there.

Reference alignments
For the construction of reference alignments we used "seed" alignments from the Rfam database version 7.0 [24,23]. In most cases these alignments are hand-curated and thus of higher quality than Rfam’s "full" alignments generated automatically by the INFERNAL RNA profile package [40]. Alignments with less than 50 sequences were discarded to increase the possibility for creation of subalignments (see below). The SCI (see below) for scoring of structural alignment quality is based on a combination of thermodynamic and covariation measures. Thermodynamic structure prediction becomes increasingly inaccurate with increasing sequence length – e.g. due to kinetic effects – but is widely regarded as sufficiently accurate for sequences not exceeding 300 nt in length [41,42]. Thus we excluded alignments with an average sequence length above 300 nt to ensure proper thermodynamic scoring.

To each remaining seed alignment we applied a "naive" combinatorial approach that extracts sub-alignments with \(k \in \{2, 3, 5, 7, 10, 15\}\) sequences for a given average pairwise sequence identity range (APSI; a measure for sequence homology computed with ALISTAT from the squid package [43]). Therefore we computed identities for all sequence pairs from an alignment and selected those pairs possessing the desired APSI ± 10 %. From the remaining list of sequences we randomly picked \(k\) unique sequences. Additionally we dropped all alignments with an SCI below 0.6 to assure the structural quality of the alignments and to make sure that the SCI can be applied later to score the test alignments. This way we generated overall 18,990 reference alignments with an average SCI of 0.93; the data-set used in [22] consists of only 388 alignments with an average SCI of 0.89. For further details see Tables 1 and 6.

Scores
Just as in the previous BRAliBase II benchmark [22] we used the SCI [44] to score the structural conservation in alignments. The SCI is defined as the quotient of the consensus minimum free energy plus a covariance-like term (calculated by RNAALIFOLD; see [45]) to the mean minimum free energy of each individual sequence in the alignment. A SCI \(\approx 0\) indicates that RNAALIFOLD does not find a consensus structure, whereas a set of perfectly conserved structures has SCI = 1; a SCI \(\geq 1\) indicates a perfectly conserved secondary structure, which is, in addition, supported by compensatory and/or consistent mutations. The SCI can, for example, be computed by means of RNAZ [44]. To speed up the SCI calculation we implemented a program, SCIF, which is based upon RNAZ but computes only the SCI. SCIF was linked against RNAlib version 1.5 [46,47].

In [22] we used the BALISCORE, which computes the fraction of identities between a trusted reference alignment and a test alignment, where identity is defined as the aver-

Table 5: Ranks determined by Friedman rank sum tests for all top-ranking programs.

Program/Option	k2	k3	k5	k7	k10	k15
CLUSTALW (default)	8	7	8	8	7	7
CLUSTALW (optimized)	6	6	7	7	6	6
MAFFT (FFT-NS-2)	2	4	4	4	5	5
MAFFT (G-INS-i)	1	1	1	1	1	1
MUSCLE	3	3	2	2	2	2
PCMA	9	10	10	10	10	10
POA	7	8	9	9	9	9
PROALIGN	5	5	6	6	8	8
PROBCONSRNA	4	2	3	3	4	4
PRRN	10	9	5	5	4	3

Programs were ranked according to BRALISCORE averaged over all alignment sets with \(k \in \{2, 3, 5, 7, 10, 15\}\) sequences and APSI \(\leq 80\%\). MAFFT (G-INS-i) is the top performing program on all test sets. For program versions and options see Methods.
aged sequence identity over all aligned pairs of sequences. Because the original BALISCORE program has certain limitations and peculiarities, e.g. skips all alignment columns with more than 20% gaps, we instead used a modified version of COMPALIGN [43] called COMPALIGNP, which also calculates the fractional sequence-identity between a trusted alignment and a test alignment. Curve progressions for scores computed by BALISCORE and COMPALIGNP are only marginally shifted. The COMPALIGNP score is called SPS’ throughout the manuscript.

As both scores complement each other and are correlated, we use the product of both throughout this work and term this new score BRALISCORE.

Statistical methods

The software package R [48] offers numerous methods for statistical and graphical data interpretations. We used R version 2.2.0 to carry out the statistical analyses and visualizations of program performances. For a given APSI value, the scores of the alignments are distributed over a wide range (see for example, in Figure 3 the BRALISCOREs range from 0.0 to 1.2 at APSI = 0.45). Furthermore, the alignments are not evenly spaced on the APSI axis. Thus we used the non-parametric loess function (locally weighted scatter plot smooth) of R to fit a curve through the data points. The loess function is a locally weighted linear regression, which also takes into consideration horizontally neighbouring values to smooth a data point. The range in which data points are considered is

RNA family	k2	k3	k5	k7	k10	k15	Σ
SS_rRNA	112	568	288	150	90	50	2308
5S_rRNA	76	45	17	5	3	0	146
Cobalamin	188	61	15	4	0	0	268
Entero_5_CRE	48	32	19	10	8	5	122
Entero_CRE	65	38	20	13	8	4	148
Entero_OvR	49	31	17	11	8	4	120
gcvT	167	67	22	12	3	1	272
Hammerhead_1	53	32	9	1	0	0	95
Hammerhead_3	126	99	52	32	17	12	338
HCV_SLIV	98	63	36	26	16	10	249
HCV_SLVII	51	33	19	13	10	7	133
HepC_CRE	45	29	18	11	7	3	113
Histone3	84	59	27	11	7	6	194
HIV_FE	733	408	227	147	98	56	1669
HIV_GSL3	786	464	246	151	95	61	1803
HIV_PBS	188	124	76	55	38	25	506
Intron_gpll	181	82	35	22	11	4	335
IRES_HCV	764	403	205	146	83	47	1648
IRES_Picorna	181	117	75	53	35	25	486
K-chan_RES	124	40	2	0	0	0	166
Lysine	80	48	30	17	7	3	185
Retroviral_psi	89	57	34	24	17	11	232
SECIS	114	67	33	16	11	6	247
sno_14q_II	44	14	1	0	0	0	59
SRP_bact	114	76	39	19	12	7	267
SRP_euk_arch	122	94	42	21	12	6	297
S_box	91	51	25	12	7	2	188
T-box	18	8	0	0	0	0	26
TAR	286	165	92	62	42	28	675
THI	321	144	69	32	17	5	588
tRNA	2039	1012	461	267	143	100	4022
U1	82	65	26	16	6	0	195
U2	112	83	38	22	14	7	276
U6	30	21	14	7	1	0	73
UnaL2	138	71	43	20	7	0	279
ybP-koY	127	64	33	18	12	8	262

| Σ | 8976| 4835| 2405| 1426| 845 | 503 | 18990|

Table 6: Number of reference alignments for each RNA family
defined by the smoothing factor. The curve in Figure 3 was computed by a smoothing factor of 0.3, which means that a range of 30% of all data points surrounding the value to smooth are involved.

For statistical analyses we computed the BRALISCORE for each alignment. To rate the alignment programs or program options, we ranked these scores after averaging over all datasets. Because the score distributions cannot be assumed to be either normal or symmetric, we used as non-parametric tests the Friedman rank sum and the Wilcoxon signed rank test. R's Friedman test was accommodated to calculate the ranking. Afterwards the Wilcoxon test determined which programs or options pairwisely differ significantly. As already shown in [22] programs generally perform equally well above sequence similarity of about 80%; that is, with such a similarity level the alignment problem becomes almost trivial. To avoid introduction of a bias due to the large number of high-homology alignments with a reference APSI > 80%, we only used alignments with a reference APSI ≤ 80% for the statistical analyses.

Programs and options
The following program versions and options were used:

ClustalW : version 1.83[27]

default: -type=dna -align

gap-opt: -type=dna -align -pgapopen=GO -gapopen=GO -pgapext=GE -gapext=GE

Figure 3
Lowess smoothing. The plot shows the scattered data points, each corresponding to one alignment, exemplified by the performance of PROALIGN with k = 7 sequences per alignment. The curve is the result of a lowess smoothing with a smoothing factor of 0.3.
MAFFT: version 5.667 [25]
default: fftns
old: fftns --op 0.51 --ep 0.041
old: ginsi --op 0.51 --ep 0.041
MUSCLE: version 3.6 [16,26]
-seqtype rna
PCMA: version 2.0 [49]
POA: version 2 [50]
-do_global -do_progressive MATRIX
prank: version 270705b - 1508b[29]
-gaprate=GR -gapextent=GE
ProAlign: version 0.5a3 [51]
java -Xmx256m -bwidth = 400 -jar ProAlign_0.5a3.jar
ProbConsRNA: version 1.10 [33]
Prrn: version 3.0 (package scc) [52]

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
A.W. developed the BRAliBase 2.1 and performed the benchmark; I.M. developed the ranking tests. All authors participated in writing the manuscript.

Acknowledgements
We are especially grateful to Paul P. Gardner for extensive discussions. A.W. was supported by the German National Academic Foundation.

References
1. Sankoff D: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 1985, 45:810-825.
2. Mathews DH: Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 2005, 21:2246-2253.
3. Havgaard JH, Lyngso RB, Stormo GD, Gorodkin J: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 2005, 21:1815-1824.
4. Hofacker IL, Bernhart SHF, Stadler PF: Alignment of RNA base pairing probability matrices. Bioinformatics 2004, 20:2222-2227.
5. Holmes I: Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 2005, 6:73.
6. Luck R, Graf S, Steger G: ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res 1999, 27:4208-4217.
7. Jeon YS, Chung H, Park S, Hur I, Lee JH, Chun J: jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005, 21:3171-3173.
8. Griffiths-Jones S: RALEE-RNA ALignment Editor in Emacs. Bioinformatics 2005, 21:257-259.
9. Andersson E, Lind-Thomsen A, Krudsen B, Kristensen S, Høvgaard J, Sestoft P, Kjems J, Gorodkin J: Detection and editing of structural groups in RNA families. 2006 in press.
10. Thompson J, Plewniak F, Poch O: A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res 1999, 27:2682-2690.
11. Thompson J, Plewniak F, Poch O: BALiBASE: a benchmark alignment database for the evaluation of multiple alignment programs. Bioinformatics 1999, 15:87-88.
12. Bahr A, Thompson JD, Thierry JC, Poch O: BALiBASE (Benchmark Alignment database) version 2.0: enhancements for repeats, transmembrane sequences and circular permutations. Nucleic Acids Res 2001, 29:323-326.
13. Thompson JD, Koehl P, Ripp R, Poch O: BALiBASE 3.0: Latest developments of the multiple sequence alignment benchmark. Proteins: Structure, Function, and Bioinformatics 2005, 61:127-136.
14. Mizuguchi K, Deane CM, Blundell TL, Overington JP: HOMSTRAD: A database of protein structure alignments for homologous families. Protein Sci 1999, 8:2469-2471.
15. Raghava G, Searle S, Audley P, Barber J, Barton G: OXBench: A benchmark for evaluation of protein multiple sequence alignment accuracy. BMC Bioinformatics 2003, 4:47.
16. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:D28-D36.
17. Van Walle I, Lasters I, Wyns L: SABMark-a benchmark for sequence alignment that covers the entire known fold space. Bioinformatics 2005, 21:1267-1268.
18. Letunic I, Copley RR, Schmidt S, Ciechanowicz J, Doerks T, Schultz J, Ponting CP, Bork P: SMART 4.0: towards genomic data integration. Nucleic Acids Res 2004, 32:D142-D144.
19. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J: SS Ribosomal RNA Database. Nucleic Acids Res 2005, 33:D171-D174.
20. Rosenblad MA, Gorodkin J, Knudsen B, Zwieb C, Samuelsson T: SRPDB: Signal Recognition Particle Database. Nucleic Acids Res 2003, 31:363-364.
21. Sprinzl M, Vassilenko KS: Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 2005, 33:D139-D140.
22. Gardner PP, Wilm A, Washietl S, A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 2005, 33:2433-2439.
23. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Pfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005, 33:D121-D124.
24. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Pfam: an RNA family database. Nucleic Acids Res 2003, 31:439-441.
25. Katoh K, Kuma KI, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:159-168.
26. Edgar R: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113.
27. Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
28. Chenna R, Sugawara H, Koike T, Lopez R, Gibson T, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31:3497-3500.
29. Loytynoja A, Goldman N: An algorithm for progressive multiple alignment of sequences with insertions. PNAS 2005, 102:10557-10562.
30. Klein R, Eddy S: RSEARCH: Finding homologs of single structured RNA sequences. BMC Bioinformatics 2003, 4:44.
31. Lescoat E, Leontis NB, Massire C, Westhof E: Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments. Nucleic Acids Res 2005, 33:2395-2409.
32. BRAliBase 2.1 [http://www.biophys.uni-duesseldorf.de/bralibase/]
33. Do C, Mahabhashyam M, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Research 2005, 15:330-340.
34. Do C, Mahabhashyam M, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple alignment of amino acid sequences. 2006 [http://probcons.stanford.edu/download.html].
35. Notredame C, Holm L, Higgins D: COFFEE: an objective function for multiple sequence alignments. Bioinformatics 1998, 14:407-422.
36. Dalli D, Wilm A, Mainz I, Steger G: StrAl: Progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time. Bioinformatics 2006, 22:i593-i599.
37. Feng D, Doolittle R: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 1987, 25:351-360.
38. Tabei Y, Tsuda K, Kin T, Assai K: SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments. Bioinformatics 2006, 22:1723-1729.
39. Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999, 288:911-940.
40. Doshi K, Cannone J, Cobaugh C, Gutell R: Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 2004, 5:105.
41. Eddy S: SQUID – C function library for sequence analysis. 2005 [http://selab.wustl.edu/cgi-bin/selab.pl?mode=software#squid].
42. Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of noncoding RNAs. Proc Nat Acad Sci USA 2005, 102:2454-2459.
43. Hofacker I, Fekete M, Stadler P: Secondary structure prediction for aligned RNA sequences. J Mol Biol 2002, 319:1059-1066.
44. Hofacker I, Fontana W, Stadler P, Bonhoeffer S, Tacker M, Schuster P: Fast folding and comparison of RNA structures. Monatsh Chem 1994, 125:167-188.
45. Gotoh O: Significant Improvement in Accuracy of Multiple Protein Sequence Alignments by Iterative Refinement as Assessed by Reference to Structural Alignments. J Mol Biol 1996, 264:823-838.