Factors influencing harmonized health data collection, sharing and linkage in Denmark and Switzerland: A systematic review

Lester Darryl Geneviève¹*, Andrea Martani¹, Maria Christina Mallet², Tenzin Wangmo¹, Bernice Simone Elger¹,³

¹ Institute for Biomedical Ethics, University of Basel, Basel, Switzerland, ² Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland, ³ University Center of Legal Medicine, University of Geneva, Geneva, Switzerland

* These authors contributed equally to this work.
* lester.genevieve@unibas.ch

Abstract

Introduction

The digitalization of medicine has led to a considerable growth of heterogeneous health datasets, which could improve healthcare research if integrated into the clinical life cycle. This process requires, amongst other things, the harmonization of these datasets, which is a prerequisite to improve their quality, re-usability and interoperability. However, there is a wide range of factors that either hinder or favor the harmonized collection, sharing and linkage of health data.

Objective

This systematic review aims to identify barriers and facilitators to health data harmonization—including data sharing and linkage—by a comparative analysis of studies from Denmark and Switzerland.

Methods

Publications from PubMed, Web of Science, EMBASE and CINAHL involving cross-institutional or cross-border collection, sharing or linkage of health data from Denmark or Switzerland were searched to identify the reported barriers and facilitators to data harmonization.

Results

Of the 345 projects included, 240 were single-country and 105 were multinational studies. Regarding national projects, a Swiss study reported on average more barriers and facilitators than a Danish study. Barriers and facilitators of a technical nature were most frequently reported.
Conclusion

This systematic review gathered evidence from Denmark and Switzerland on barriers and facilitators concerning data harmonization, sharing and linkage. Barriers and facilitators were strictly interrelated with the national context where projects were carried out. Structural changes, such as legislation implemented at the national level, were mirrored in the projects. This underlines the impact of national strategies in the field of health data. Our findings also suggest that more openness and clarity in the reporting of both barriers and facilitators to data harmonization constitute a key element to promote the successful management of new projects using health data and the implementation of proper policies in this field. Our study findings are thus meaningful beyond these two countries.

Introduction

Technological advances made over the past few years have increased the digitalization of medicine, thus leading to a considerable growth of clinical, research and public health datasets. These data sources are increasingly related to the big data environment and they include, amongst others, genomics and other-omics related-data collections, electronic health records (EHRs), patient registries, medical imaging, administrative data and clinical trials data [1, 2]. However, a good part of such datasets are often kept and analysed in silos and not adequately shared [3]. If properly integrated into the clinical life cycle, such collections of data stand to offer a unique opportunity to drive scientific discoveries and improve healthcare research. For example, they may allow a better understanding of the aetiology of illnesses and subsequently help in improving the management, prevention and treatment of diseases [1, 2]. This is even more promising in the framework of learning healthcare systems, where clear boundaries between research and care are dissolving and the same data are used both for improving scientific knowledge and providing better care [4].

In this context, developing the harmonization of health data—described as the sum of all “efforts to combine data from different sources and provide users with a comparable view of data from different studies” [5]—is crucial to improve clinical research and practice. Such standardized approach requires not only better quality, re-usability and interoperability of data, but also more open and collaborative communication between the different stakeholders active in the health data environment [6]. The fact that a good percentage of healthcare spending are being wasted as a consequence of under-exploiting data potential in several healthcare systems around the world [7–9] should be considered as one important factor urging for such changes to happen. Harmonized health datasets are also laying the foundation of a new era of biomedical research, where three concepts are currently converging, namely precision medicine, learning healthcare systems and implementation science [7, 10].

The harmonization of health data is a complex procedure which involves significant changes in how data are collected, shared and linked. Harmonization can be either prospective, when modifications occur in the study design to subsequently render the pooling of data more straightforward, or retrospective, when pooling is performed with data collected previously according to different study designs [11]. In practical terms, harmonization can be achieved through two distinct but complementary approaches, namely a “stringent” and a “flexible one” [12]. By means of a “stringent” approach, data are harmonized through the use of standard collection tools and standard operating procedures, implementable only in a
prospective way. With the “flexible” approach, on the contrary, different data collection tools might be used, as long as operating procedures are standardized [12].

In achieving the harmonization of health data, careful consideration needs to be given to already well-known as well as novel challenges related to the processes of collection, sharing and linkage. Such challenges are drastically intensified by the vastness and the hyper-connectedness of data at present time [13], which may result in unforeseen connections or cross-referencing between datasets, drastically increasing re-identification risks for data subjects [14]. The presence of these challenges has resulted in the emerging of several barriers to the effective use and sharing of health-related data [2, 15]. Although these have been categorized as technical, motivational, economic, political, socio-cultural, ethical and legal [1, 2, 15–17], a more precise mapping of the exact content of such barriers, and of the solutions that have been elaborated to mitigate them, is lacking.

Within this framework, the aim of this systematic review is to identify more precisely some of the barriers and facilitators encountered in the effort to achieve harmonization of health data—including the processes of data sharing and linkage—by a comparative analysis of studies conducted in two countries having different healthcare systems and data infrastructures, namely Denmark and Switzerland. These countries where chosen because, although they both offer high quality healthcare, they have two very diverse healthcare systems and two different data infrastructure models for healthcare. Denmark has a Beveridge-based national healthcare system [18] and a long tradition of data linkage in health through its nationwide registries [19]. On the contrary, Switzerland is based on a federalist Bismarckian organization of healthcare [20, 21] and started much later to develop strategies in the field of Health Information Exchange [22]. In this perspective, this review seeks to identify past and current studies related to the field of harmonized health data collection, sharing and linkage in these two countries and list the barriers encountered and the facilitators that make these projects successful. Furthermore, the review aims to provide some insights on the complexities associated with the use of health data that can be of relevance also in the broader international context.

Methodology

Search strategy and study selection

This study conformed to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [23], and its protocol was registered on January 3rd 2018 on PROSPERO (CRD42018081424). A systematic literature search was performed on four search engines and electronic bibliographic databases namely PubMed, Web of Science (all databases), EMBASE (no Medline) and CINAHL for publications with dates ranging from 1st January 2008 to 31st December 2017. The time period is aligned with the adoption of the Swiss national eHealth Strategy in 2007, with the aim of introducing electronic patient records at national level [24]. The search was repeated for the period of 1st January 2018 to 31st March 2019 to include additional publications and to ensure that our systematic review is up-to-date. Reference lists of included publications were screened to identify other potential harmonized health data collection, sharing or linkage projects. A search strategy was developed for each electronic database. The literature search included Medical Subject Headings (MeSH) terms and free applicable text to health data collection, sharing and linkage. The search strategy consisted of three components, namely (1) types of health data, (2) keywords for data collection, sharing and linkage and (3) country of interest. For instance, the search strategy for Switzerland on PubMed was: (“Administrative Claims, Healthcare”[Mesh] OR “Health Records, Personal”[Mesh] OR “Clinical Coding”[Mesh] OR “Patient Discharge Summaries”[Mesh] OR “Clinical Trials as Topic”[-Mesh]) AND (“Databases as Topic”[Mesh] OR “Data Collection”[Mesh] OR “Medical
Informatics”[Mesh] OR "Medical Record Linkage”[Mesh] OR "Information Dissemination”[Mesh] OR "Data Integration” OR "Data Sharing”) AND (“Switzerland”[Mesh]) [filters used are Articles types (Clinical Study, Clinical Trials (including controlled and Phases I to IV), Comparative Study, Evaluation Studies, Journal Article, Multicenter Study, Observational Study, Pragmatic Clinical Trial, Randomized Control Trial, Technical Report and Validation Studies), language (Danish, English, French and German) and species (Human Studies)]. We did not include harmonization as an imperative component in our search strategy since the exact boundaries of this concept are still controversial [25] and the addition of the term “harmonization” as an imperative component drastically reduced the number of publications for each country.

Eligibility criteria for this study were: (i) publications based on health data collection, sharing or linkage projects. There was no restriction on study design and type, i.e. qualitative, quantitative or mixed method studies, and clinical or observational studies were included; systematic reviews were excluded; (ii) there were no restriction on age, gender, disease and ethnic group of participants involved in these studies; (iii) the studies had to involve some health data collection, sharing or linkage at cross-institutional, cross-national or cross-regional levels in at least one of the two countries; (iv) only English, French, German and Danish language articles were included, and (v) publication year of articles ranged from January 2008 to March 2019.

Data extraction and quality assessment

The literature search results were catalogued on EndNote® X8, a reference manager software. The titles and abstracts of all articles were screened independently by two authors (LDG and AM). The full-texts of the included publications were reviewed by LDG and AM to ensure that they met the eligibility criteria to be included in the systematic review. LDG and AM performed independently the data extraction from the included articles through a standard data extraction form developed progressively by the authors of this review. Additional publications gathered through reference screening went through title and abstract, and independent full-text screenings and data extraction by MCM. Another review author, TW, validated randomly twenty percent of the publications reviewed by LDG, AM and MCM, to assess the quality of the data extraction process. A disagreement level of less than 10% for the data entries was considered acceptable.

The data extraction form included (i) study information (author(s) and publication year), (ii) sources of health data, (iii) cross-institutional or cross-national nature of the study, (iv) presence or absence of primary and secondary health data collection, analysis and sharing, and lastly (v) the categorization of barriers and facilitators to harmonized health data collection, sharing and linkage. The sources of health data were categorized as having three standard origins, namely health services, public health and research [26]. Other sources of health data falling outside these three categories were classified in a residual category (“Other”).

LDG and AM performed a categorization of the identified barriers and facilitators separately, and came to consensus on the final categorization of these elements for accuracy and inclusiveness. Disagreements were solved with the mediation of TW. The identified barriers and facilitators to harmonized health data collection, sharing and linkage were subsequently clustered into main categories, which were then sub-clustered into smaller categories to highlight the most common barriers and facilitators in these main categories (the full clustering/sub-clustering of barriers and facilitators is shown in Table 1). For the purpose of this systematic review, we defined harmonization techniques as methods which would allow the coherent pooling of different data sources, involving health data collected either prospectively, retrospectively or both. Examples include the use of standard case report forms or data dictionaries,
a central review of the collected data, training provided to researchers/stakeholders and leadership role by one of the partners for coordinating data collection, sharing or linkage activities.

Analysis

A narrative synthesis of included publications was carried out [27]. This step involved the categorization of health data collection, sharing and linkage projects based on their national or cross-national dimension, their source of health data, and barriers and facilitators identified in these publications. This step was important to highlight similarities and differences between projects in Denmark and Switzerland. The statistical software, STATA® version 15.0, was used for the different analyses.

Results

A total of 1928 papers were initially retrieved from the search engines and electronic bibliographic databases for the period of January 2008 to December 2017. The search was repeated...
for the period of January 2018 to March 2019 (upon request of the journal) resulting in a total of 425 additional papers. The result of the two searches were combined for each stage of the PRISMA resulting in an overall total of 2353 papers retrieved for the period of January 2008 to March 2019 (Fig 1). Duplicates (n = 170) were removed either automatically using ENDNOTE X8 or manually after reviewing abstracts and their titles. The remaining 2183 papers went through title and abstract screening, which resulted in the exclusion of 1789 papers. In-depth full-text screening was performed for 394 papers, and 115 more papers were excluded for not meeting the inclusion criteria (see Fig 1 for reasons). Reference screening of the 279 included papers, resulted in the identification and inclusion of 66 additional papers which met the eligibility criteria for this systematic review (Fig 1).

The 345 included papers are summarized in Table 2, where they are categorized based on their national (n = 240) or cross-national (n = 105) dimension, their sources of health data and the total number of barriers and facilitators reported for each project. We identified 200 Danish and 40 Swiss national projects, and 105 cross-national projects. Among these cross-national projects, 14 projects involved the use of health data from both Denmark and Switzerland, 51 and 40 projects involved a Danish partner and a Swiss partner respectively. Overall, the number of projects which involved primary health data collection, sharing and analysis were 106 (30.7%), 92 (26.7%) and 106 (30.7%) respectively. Comparatively, the number of projects which involved secondary health data collection and analysis were 283 (82.0%; if a study collected both primary health data and secondary health data, it was counted for both). Of the 345 projects, 199 used health data from health services, 211 from public health sector, 94 from research and 62 from other health data sources.
Table 2. Characteristics of included projects (n = 345) with the total number of identified barriers and facilitators per project.

Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Aabakke et al. 2014 [28]	DK	National	Health Services; Public Health; Other	4	5
Adam et al. 2010 [29]	CH	National	Research	5	7
Aggergaard et al. 2017 [30]	DK	National	Health Services	3	6
Agetn et al. 2017 [31]	CH	National	Public Health	1	3
Ammundsen et al. 2012 [32]	DK	National	Health Services; Research	3	6
Andersen et al. 2011 [33]	DK	National	Health Services; Public Health	4	8
Andersen et al. 2014 [34]	DK	National	Health Services; Public Health	2	4
Andres et al. 2018 [35]	CH	National	Public Health	4	3
Annahaim et al. 2018 [36]	CH	National	Health Services; Other	5	3
Antonsen et al. 2011 [37]	DK	National	Public Health; Research	2	2
Antonsen et al. 2016 [38]	DK	National	Health Services; Public Health; Research	2	12
Arboe et al. 2016 [39]	DK	National	Health Services; Public Health; Other	0	14
Arking et al. 2014 [40]	CH	Cross-national	Research	0	4
Atladottir et al. 2012 [41]	DK	National	Health Services; Public Health; Other	1	4
Aubert et al. 2016 [42]	CH	National	Health Services	0	5
Auer et al. 2014 [43]	CH	National	Health Services; Public Health	0	9
Avillach et al. 2013 [44]	DK	Cross-national	Health Services; Public Health	5	12
Avlund et al. 2018 [45]	DK	National	Health Services; Public Health	1	8
Bachelet et al. 2016 [46]	DK	Cross-national	Health Services; Public Health; Research	2	7
Baker et al. 2009 [47]	DK	National	Health Services	3	2
Baldur-Felskov et al. 2013 [48]	DK	National	Health Services; Research	2	5
Balgobind et al. 2009 [49]	DK	Cross-national	Health Services; Research	0	1
Bay-Nielsen et al. 2008 [50]	DK	National	Public Health	0	2
Beduneau et al. 2017 [51]	CH	Cross-national	Health Services; Public Health	1	6
Begre et al. 2010 [52]	CH	National	Other	2	4
Bendixen et al. 2019 [53]	DK	National	Health Services; Public Health; Research; Other	0	3
Beretta-Piccoli et al. 2017 [54]	CH	National	Health Services; Public Health	3	8
Binderup et al. 2018 [55]	DK	National	Health Services; Research; Other	2	5
Bisgaard et al. 2013 [56]	DK	National	Health Services; Research	0	5
Bjerregaard and Larsen 2011 [57]	DK	National	Health Services; Public Health	0	11
Bjornholt et al. 2015 [58]	DK	National	Health Services; Public Health; Research	1	9
Blaha et al. 2016 [59]	DK	Cross-national	Health Services	2	6
Blenstrup and Knudsen 2011 [60]	DK	National	Health Services; Research	1	3
Blickert-Toft et al. 2008 [61]	DK	National	Health Services; Public Health; Research	0	3
Bodin et al. 2018 [62]	DK	Cross-national	Health Services; Public Health	3	6
Boje et al. 2014 [63]	DK	National	Public Health	1	3
Brenner et al. 2011 [64]	CH	National	Public Health	1	6
Brink et al. 2018 [65]	DK	National	Research	5	6
Burgstaller et al. 2016 [66]	CH	National	Health Services; Research	0	6
Cainzos-Achirca et al. 2018 [67]	DK	Cross-national	Health Services	4	5
Calhaz-Jorge et al. 2017 [68]	DK	Cross-national	Public Health; Other	2	4
Calvet et al. 2014 [69]	CH	Cross-national	Research	2	3
Carstensen et al. 2008 [70]	DK	National	Health Services	0	4
Caspersen et al. 2008 [71]	DK	National	Health Services; Public Health	0	7
Chaigne et al. 2017 [72]	CH	National	Health Services	0	5
Chesnaye et al. 2014 [73]	DK	Cross-national	Public Health	1	2

(Continued)
Table 2. (Continued)

Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Chmiel et al. 2011 [74]	CH	National	Health Services	3	10
Christensen et al. 2011 [75]	DK	National	Health Services; Public Health; Research	0	2
Christensen et al. 2011b [76]	DK	National	Public Health	0	11
Christensen et al. 2011c [77]	DK	National	Health Services; Public Health	1	5
Christensen et al. 2014 [78]	DK	National	Health Services; Public Health; Other	1	8
Christensen et al. 2016 [79]	DK	National	Public Health	1	6
Christensen et al. 2016b [80]	DK	National	Health Services; Public Health	1	6
Christiansen et al. 2008 [81]	DK	National	Public Health; Research	1	5
Christiansen et al. 2008b [82]	DK	National	Health Services; Public Health	1	3
Christoffersen et al. 2015 [83]	DK	National	Health Services; Public Health; Other	1	5
Coleman et al. 2011 [84]	DK	Cross-national	Public Health	2	13
Coloma et al. 2011 [85]	DK	Cross-national	Health Services	5	9
Corraini et al. 2017 [86]	DK	National	Public Health	1	6
Costantino et al. 2018 [87]	DK	Cross-national	Health Services; Other	4	6
Cotter et al. 2013 [88]	CH	Cross-national	Health Services; Research	1	3
Czauderna et al. 2016 [89]	CH	Cross-national	Research	4	9
Dalgaard et al. 2010 [90]	DK	Cross-national	Research	0	0
Damgaard et al. 2013 [91]	DK	National	Public Health	1	3
Darby et al. 2013 [92]	DK	Cross-national	Health Services; Public Health	1	4
Dastani et al. 2012 [93]	CH	Cross-national	Research	0	4
De Angelis et al. 2009 [94]	Both	Cross-national	Research	5	7
De Groot et al. 2014 [95]	DK	Cross-national	Health Services; Public Health; Research	4	1
della Torre et al. 2012 [96]	CH	National	Health Services	0	5
Dencker et al. 2016 [97]	DK	National	Public Health	1	1
De Vos Andersen et al. 2017 [98]	DK	National	Health Services; Public Health; Other	2	9
Diel et al. 2010 [99]	CH	National	Health Services	3	7
Disanto et al. 2016 [100]	CH	National	Public Health	0	11
Donia et al. 2017 [101]	DK	National	Public Health; Research	2	0
Downs et al. 2016 [102]	DK	Cross-national	Public Health; Other	1	2
Dreyer et al. 2015 [103]	DK	Cross-national	Public Health; Other	2	7
Edgren et al. 2015 [104]	DK	Cross-national	Health Services; Public Health; Other	1	6
Ehlers et al. 2009 [105]	DK	National	Public Health; Other	0	3
Ekelund et al. 2015 [106]	DK	National	Health Services; Public Health	1	12
El-Galaly et al. 2015 [107]	DK	Cross-national	Public Health	1	5
Elliott et al. 2017 [108]	DK	National	Health Services	1	2
Engelberger et al. 2015 [109]	CH	National	Health Services; Public Health	0	6
Erdem et al. 2015 [110]	DK	Cross-national	Health Services; Other	1	2
Erichsen et al. 2010 [111]	DK	National	Health Services; Public Health; Research	0	13
Erichsen et al. 2011 [112]	DK	National	Health Services; Public Health	1	4
Erlangsen et al. 2008 [113]	DK	National	Public Health	1	5
Escala-Garcia et al. 2019 [114]	DK	Cross-national	Research	2	2
Escott-Price et al. 2014 [115]	CH	Cross-national	Research	0	0
Fagó-Olsen et al. 2012 [116]	DK	National	Public Health	0	1
Fahrner et al. 2014 [117]	CH	National	Health Services	4	2
Fedder et al. 2013 [118]	DK	National	Public Health	2	5
Fenger et al. 2016 [119]	DK	National	Public Health; Other	1	5

(Continued)
Table 2. (Continued)

Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Fieten et al. 2018 [120]	CH	Cross-national	Research	3	3
Flee et al. 2018 [121]	DK	National	Health Services; Other	1	4
Frandsen et al. 2014 [122]	DK	National	Health Services; Public Health	2	5
Frary et al. 2016 [123]	DK	National	Health Services; Public Health	0	5
Freiberg et al. 2017 [124]	Both	Cross-national	Health Services; Public Health	0	3
Friis et al. 2009 [125]	DK	National	Health Services; Public Health; Other	1	4
Funcze et al. 2016 [126]	CH	Cross-national	Health Services; Public Health	1	7
Furtwängler et al. 2018 [127]	CH	Cross-national	Health Services; Research	1	4
Gammelager et al. 2012 [128]	DK	National	Health Services; Public Health	1	7
Garcia-Etienne et al. 2019 [129]	CH	Cross-national	Health Services	1	4
Gatta et al. 2017 [130]	CH	Cross-national	Research	1	1
Gatzios et al. 2016 [131]	CH	Cross-national	Research	0	4
Geissbühler 2013 [132]	CH	National	Health Services	16	15
Gith et al. 2012 [133]	DK	National	Research; Other	2	7
Gjerstorff 2011 [134]	DK	National	Public Health	1	7
Glinborg et al. 2011 [135]	DK	National	Health Services; Public Health	2	5
Godballe et al. 2009 [136]	DK	National	Public Health	0	5
Gorski et al. 2015 [137]	CH	Cross-national	Research	1	6
Goutaki et al. 2017 [138]	Both	Cross-national	Health Services	2	14
Goutaki et al. 2019 [139]	CH	National	Health Services; Research	4	10
Gradel et al. 2008 [140]	DK	National	Health Services; Public Health	0	5
Gran et al. 2011 [141]	DK	National	Health Services; Public Health	1	6
Gratwohl et al. 2015 [142]	CH	Cross-national	Research	0	4
Gregersen et al. 2016 [143]	DK	National	Public Health	3	6
Griffin et al. 2011 [144]	DK	Cross-national	Health Service; Research; Other	2	3
Gromov et al. 2014 [145]	DK	National	Health Services	0	5
Gruber et al. 2018 [146]	CH	Cross-national	Health Services	0	2
Gudbrandsdottir et al. 2012 [147]	DK	National	Health Services; Other	1	1
Gulmmer et al. 2009 [148]	DK	National	Health Services; Public Health	0	4
Gylvin et al. 2017 [149]	DK	National	Health Services; Research; Other	1	3
Hallas et al. 2012 [150]	DK	National	Health Services; Public Health	3	6
Hallas and Pottegard 2017 [151]	DK	National	Health Services; Public Health	1	5
Halmin et al. 2017 [152]	DK	Cross-national	Public Health	0	4
Hansen et al. 2008 [153]	DK	National	Health Services; Public Health	1	8
Hansen et al. 2012 [154]	DK	National	Health Services; Public Health	2	4
Hansen and Jacobsen 2014 [155]	DK	National	Health Services; Research	1	6
Hansen et al. 2018 [156]	DK	National	Health Services; Research; Other	2	4
Harshman et al. 2012 [157]	DK	Cross-national	Health Services; Public Health	1	2
Hatz et al. 2011 [158]	CH	National	Public Health	1	6
Hauers et al. 2012 [159]	CH	Cross-national	Research	1	4
Havelin et al. 2009 [160]	DK	Cross-national	Public Health	3	6
Head et al. 2013 [161]	DK	Cross-national	Health Services; Other	3	5
Helgstrand et al. 2010 [162]	DK	National	Health Services; Public Health	0	7
Helgstrand et al. 2012 [163]	DK	National	Health Services; Public Health; Other	0	3
Helqvist et al. 2012 [164]	DK	National	Health Services; Public Health	0	3
Helweg-Larsen 2011 [165]	DK	National	Public Health; Other	1	3

(Continued)
Table 2. (Continued)

Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Hemkens et al. 2017 [166]	CH	National	Research	0	5
Henningsen et al. 2011 [167]	DK	National	Public Health	0	4
Henningsen et al. 2011b [168]	DK	Cross-national	Public Health	4	8
Henriksen et al. 2013 [169]	DK	National	Public Health	0	3
Herzberg et al. 2012 [170]	DK	National	Health Services	1	3
Hettan 2011 [171]	DK	National	Health Services; Other	5	16
Holland-Bill et al. 2014 [172]	DK	National	Health Services; Public Health	1	8
Horsdal et al. 2012 [173]	DK	National	Health Services; Public Health	2	5
Hyldig et al. 2019 [174]	DK	National	Health Services; Public Health; Research; Other	1	5
Ingeholm et al. 2016 [175]	DK	National	Health Services; Public Health; Other	2	6
Ittermann et al. 2018 [176]	DK	Cross-national	Research	1	4
Jacobs et al. 2014 [178]	CH	Cross-national	Research	0	11
Jakobsen et al. 2017 [179]	DK	National	Public Health	2	2
Jensen et al. 2009 [180]	DK	National	Health Services; Public Health	1	6
Jensen et al. 2010 [181]	DK	National	Health Services; Public Health	1	0
Jensen et al. 2011 [182]	DK	National	Health Services	2	6
Jensen et al. 2016 [183]	DK	National	Public Health	1	7
Jensen et al. 2017 [184]	DK	National	Public Health	1	1
Jeppesen et al. 2016 [185]	DK	National	Health Services; Public Health	2	5
Johannesdottir et al. 2012 [186]	DK	National	Health Services; Public Health	3	9
Jørgensen et al. 2018 [187]	DK	National	Health Services; Public Health	1	6
Joshi et al. 2015 [188]	Both	Cross-national	Research	1	6
Kachuri et al. 2018 [189]	DK	Cross-national	Research	0	2
Kalthof et al. 2009 [190]	DK	National	Health Services; Public Health	2	3
Karkov et al. 2010 [191]	DK	National	Health Services; Public Health; Other	2	5
Kent et al. 2015 [192]	DK	National	Health Services; Public Health; Other	1	13
Khanna et al. 2008 [193]	CH	National	Research	1	1
Khatami et al. 2016 [194]	Both	Cross-national	Health Services	2	14
Kiderlen et al. 2012 [195]	CH	Cross-national	Public Health	3	2
Kildemoes et al. 2011 [196]	DK	National	Health Services; Public Health	1	8
Kirwan et al. 2008 [197]	Both	Cross-national	Research	2	12
Klein et al. 2012 [198]	DK	National	Health Services; Public Health	1	1
Knudsen et al. 2013 [199]	DK	National	Health Services	0	1
Kowalska et al. 2011 [200]	DK	Cross-national	Health Services; Other	4	4
Kronborg et al. 2009 [201]	DK	National	Public Health; Other	1	6
Laenholm et al. 2018 [202]	DK	National	Health Services; Public Health	0	8
Laguna et al. 2009 [203]	CH	Cross-national	Health Services	0	3
Landolt et al. 2016 [204]	CH	Cross-national	Research	0	3
Lang et al. 2019 [205]	CH	Cross-national	Research	2	3
Lange et al. 2017 [206]	DK	National	Health Services; Other	0	5
Laoaudi et al. 2018 [207]	DK	Cross-national	Public Health; Other	1	6
Larsen et al. 2016 [208]	DK	National	Public Health; Research	2	3
Larsen et al. 2016b [209]	DK	National	Health Services; Public Health	3	5
Laursen et al. 2018 [210]	DK	National	Health Services; Public Health; Research	1	5

(Continued)
Table 2. (Continued)

Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Leboeuf-Yde et al. 2012	DK	National	Research; Other	1	1
Lehnert et al. 2018	DK	National	Public Health	1	3
Lildballe et al. 2014	DK	National	Health Services; Public Health	0	2
Linauskas et al. 2018	DK	National	Public Health	7	4
Lindhardsen et al. 2011	DK	National	Health Services	1	7
Lindhardsen et al. 2012	DK	National	Health Services; Other	2	8
Linnet et al. 2009	DK	National	Health Services; Public Health; Other	2	7
Liu et al. 2016	DK	National	Health Services; Public Health; Research	1	7
Lund et al. 2018	DK	National	Public Health	4	8
Lundstrom et al. 2009	DK	National	Public Health	3	5
Luta et al. 2018	CH	National	Research	0	6
Lydiksen et al. 2014	DK	National	Health Services; Public Health	0	3
Lyne et al. 2011	DK	National	Health Services	3	4
Maeng et al. 2008	DK	National	Health Services	1	4
Mahajan et al. 2018	DK	Cross-national	Research	2	6
Majholm et al. 2012	DK	National	Health Services; Public Health	3	3
Mareri et al. 2011	Both	Cross-national	Research	0	4
Margulis et al. 2017	DK	Cross-national	Public Health	2	5
May et al. 2014	CH	Cross-national	Research	3	6
Mejdahl et al. 2013	DK	National	Public Health; Other	2	3
Mellernkjær et al. 2014	DK	National	Health Services; Public Health	0	1
Messerli et al. 2016	CH	National	Public Health; Research	0	6
Mikkelsen et al. 2015	DK	National	Health Services; Other	2	4
Minnerup et al. 2015	CH	Cross-national	Health Services	0	1
Modvig et al. 2017	DK	National	Public Health	0	5
Möhring et al. 2019	CH	Cross-national	Research	1	7
Møller et al. 2008	DK	National	Public Health	2	6
Mors et al. 2011	DK	National	Health Services; Public Health	0	9
Mortensen et al. 2011	DK	National	Public Health; Research	1	3
Mortensen et al. 2013	DK	National	Health Services	0	2
Mueller et al. 2015	CH	Cross-national	Research	0	7
Mukai et al. 2013	DK	National	Health Services; Public Health	1	2
Müller et al. 2012	CH	National	Other	1	4
Munk et al. 2012	DK	National	Public Health; Other	0	6
Narath et al. 2016	CH	Cross-national	Health Services; Research	0	7
Neelon et al. 2015	DK	National	Public Health	1	2
Nickenig et al. 2014	Both	Cross-national	Health Services	2	4
Nielsen et al. 2012	DK	National	Health Services; Public Health	1	3
Nielsen et al. 2015	DK	National	Health Services; Public Health	2	2
Nielsen et al. 2015b	DK	National	Health Services; Public Health	2	3
Nielsen and Nordestgaard	DK	National	Health Services; Public Health; Other	1	3
Nilsson et al. 2014	DK	National	Health Services; Public Health	3	5
Nolan-Kenney et al. 2019	CH	Cross-national	Research	4	8
Norskov et al. 2015	DK	National	Public Health	1	4
Norskov et al. 2017	DK	National	Public Health; Research	1	4

(Continued)
Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Nyholm et al. 2015 [256]	DK	National	Health Services; Public Health	2	3
Olsen et al. 2008 [257]	DK	National	Health Services; Public Health; Other	3	4
Olsen et al. 2013 [258]	DK	National	Public Health	1	5
Orsted et al. 2011 [259]	DK	National	Public Health	2	5
Özcan et al. 2016 [260]	DK	National	Health Services	2	10
Pacurarui et al. 2015 [261]	DK	Cross-national	Public Health	5	2
Pagh et al. 2013 [262]	DK	National	Health Services; Other	1	2
Palnum et al. 2012 [263]	DK	National	Health Services; Public Health; Other	2	6
Pasternak et al. 2014 [264]	DK	National	Health Services; Public Health	1	5
Patadia et al. 2018 [265]	DK	Cross-national	Health Services; Research	1	2
Pattaro et al. 2016 [266]	Both	Cross-national	Research	1	7
Paulsen et al. 2013 [267]	DK	National	Public Health	1	6
Pechmann et al. 2019 [268]	CH	Cross-national	Research	1	12
Pedersen et al. 2010 [269]	DK	Cross-national	Health Services	0	2
Pedersen 2011 [270]	DK	National	Health Services; Public Health	2	6
Pedersen et al. 2011 [271]	DK	National	Health Services; Public Health; Other	0	4
Perera et al. 2018 [272]	DK	Cross-national	Public Health	3	1
Perregaard et al. 2015 [273]	DK	National	Public Health	2	3
Petersen et al. 2018 [274]	DK	National	Public Health	3	2
Petersen et al. 2018b [275]	DK	National	Health Services; Public Health; Other	1	3
Piazza et al. 2010 [276]	CH	Cross-national	Health Services	0	1
Piltoft et al. 2017 [277]	DK	National	Public Health; Other	0	4
Pinborg et al. 2015 [278]	DK	National	Public Health	0	4
Pironi et al. 2017 [279]	DK	Cross-national	Health Services	2	5
Plüss-Suard et al. 2013 [280]	CH	National	Health Services	1	3
Pommergaard et al. 2014 [281]	DK	National	Health Services; Public Health	3	3
Pottegard et al. 2014 [282]	DK	National	Public Health	0	9
Pottegard et al. 2015 [283]	DK	National	Public Health	2	6
Poulsen et al. 2012 [284]	DK	National	Health Services	2	4
Poulsen et al. 2016 [285]	DK	National	Health Services; Public Health	1	4
Poulsen et al. 2018 [286]	DK	National	Health Services; Public Health	1	6
Preston et al. 2014 [287]	DK	National	Public Health	0	5
Prins et al. 2018 [288]	DK	Cross-national	Research	0	6
Pukkala et al. 2009 [289]	DK	Cross-national	Public Health	2	6
Radovanovic and Erne 2010 [290]	CH	National	Health Services	3	12
Ramlau-Hansen et al. 2009 [291]	DK	National	Health Services; Public Health	2	3
Rasmussen et al. 2012 [292]	DK	National	Public Health	1	2
Rasmussen and Tennesen 2016 [293]	DK	National	Public Health; Other	1	7
Rasmussen et al. 2017 [294]	DK	National	Public Health; Other	2	7
Rathe 2015 [295]	DK	National	Health Services; Public Health	0	7
Reyes et al. 2016 [296]	DK	Cross-national	Public Health	0	4
Ringdal et al. 2011 [297]	Both	Cross-national	Research; Other	6	8
Roberto et al. 2016 [298]	DK	Cross-national	Health Services; Public Health; Research	2	8
Rudin et al. 2008 [299]	CH	National	Research	0	5
Rungby et al. 2017 [300]	DK	National	Health Services; Public Health	2	6

(Continued)
Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Russell et al. 2018 [301]	DK	Cross-national	Research	2	5
Schaefer et al. 2013 [302]	CH	National	Health Services	0	4
Schäfer et al. 2018 [303]	CH	Cross-national	Research; Other	2	6
Schatlo et al. 2012 [304]	CH	National	Health Services; Research	0	4
Schatorjé et al. 2014 [305]	CH	Cross-national	Research	4	6
Schmaa et al. 2017 [306]	CH	Cross-national	Health Services	1	6
Schmidt et al. 2010 [307]	DK	National	Public Health; Other	0	4
Schmidt et al. 2010b [308]	DK	National	Public Health	0	8
Schmidt et al. 2011 [309]	DK	National	Public Health	0	4
Schmidt et al. 2012 [310]	DK	National	Public Health	0	5
Schmidt et al. 2012b [311]	DK	National	Public Health	2	5
Schmidt et al. 2014 [312]	DK	National	Public Health; Other	1	11
Schmidt et al. 2018 [313]	DK	National	Health Services	1	11
Schneeberger et al. 2013 [314]	Both	Cross-national	Health Services	0	3
Schoos et al. 2015 [315]	DK	National	Public Health; Other	0	4
Schroll et al. 2012 [316]	DK	National	Health Services	1	4
Schuemie et al. 2012 [317]	DK	Cross-national	Health Services; Public Health	2	6
Sejbaek et al. 2013 [318]	DK	National	Public Health; Research	0	4
Skyum et al. 2018 [319]	DK	National	Health Services; Other	3	4
Skyum et al. 2019 [320]	DK	Cross-national	Health Services; Research	2	7
Soerensen et al. 2014 [321]	DK	National	Health Services; Public Health	1	7
Sommer et al. 2018 [322]	CH	National	Research	2	6
Soerensen et al. 2009 [323]	DK	National	Public Health	1	1
Soerensen et al. 2013 [324]	DK	National	Health Services; Public Health	1	6
Spoerri et al. 2010 [325]	CH	National	Public Health	1	3
Stahl Madsen et al. 2014 [326]	DK	National	Health Services	0	3
Steenholdt et al. 2014 [327]	DK	National	Public Health; Research	1	6
Stewardsen et al. 2016 [328]	CH	Cross-national	Health Services	1	9
Strasser et al. 2016 [329]	CH	National	Research	1	7
Streit et al. 2014 [330]	CH	National	Health Services	2	4
Strnad et al. 2016 [331]	CH	Cross-national	Research	0	6
Stukalin et al. 2018 [332]	DK	Cross-national	Health Services; Public Health	1	3
Sürder et al. 2013 [333]	CH	National	Research	1	4
Suttorp et al. 2018 [334]	CH	Cross-national	Research	0	6
Svendsen et al. 2013 [335]	DK	National	Health Services; Public Health	0	2
Talman et al. 2008 [336]	DK	National	Health Services; Public Health	0	3
Thillemann et al. 2009 [337]	DK	National	Public Health	0	4
Thomsen et al. 2008 [338]	DK	National	Health Services; Public Health	0	5
Thornqvist et al. 2014 [339]	DK	National	Health Services; Public Health	2	6
Thostesen et al. 2015 [340]	DK	National	Public Health; Research; Other	0	4
Thygesen et al. 2011 [341]	DK	National	Health Services; Public Health	0	5
Tollanes et al. 2016 [342]	DK	Cross-national	Health Services; Public Health; Research	2	7
Trabert et al. 2014 [343]	DK	Cross-national	Research	4	4
Tutolo et al. 2019 [344]	CH	Cross-national	Health Services	1	3
Tvedskov et al. 2011 [345]	DK	National	Health Services; Public Health	2	5
Tvedskov et al. 2015 [346]	DK	National	Health Services; Public Health	1	5

(Continued)
Overview of barriers

Barriers of an ethical nature were reported 19 times in the included records and they concerned mainly issues related to privacy (n = 9) and respect for autonomy of study participants (n = 6) (Table 3). As to legal barriers, these were reported 17 times and they included issues associated with national data protection regulations (n = 4), differences in national legislations concerning data security and privacy (n = 4) and “Other” (n = 9) (e.g. legal uncertainty concerning health data collection or sharing, market restriction, etc.). Overall, the type of barriers that were more often reported, however, were those of a technical nature. In the records, 416 technical barriers were mentioned and they were classified as data quality issues (e.g. data incompleteness, potential misclassification of data, etc.) (n = 234), lack of data standards (data structure and semantics, e.g. ambiguous terminologies, temporal evolution of data standards, etc.) (n = 151), limited technical capabilities (e.g. no unique identifier, etc.) (n = 21) and “Other” (n = 10) (e.g. time constraints on physicians preventing the use of standard procedures for data collection). Financial barriers were also reported, but only a limited amount of times (n = 9), and they were principally referring to the unavailability or inadequacy of

Table 2. (Continued)

Reference	Country	Partnership Type	Source of health data	Total Identified Barriers, n	Total Identified Facilitators, n
Ulff-Moller et al. 2018	DK	National	Health Services; Public Health; Research; Other	2	6
Underbjerg et al. 2013	DK	National	Health Services; Public Health	2	6
Underbjerg et al. 2015	DK	National	Public Health	0	5
Ungaro et al. 2019	DK	Cross-national	Public Health	3	6
Usyvat et al. 2013	Both	Cross-national	Health Services	8	4
Vach et al. 2018	CH	National	Health Services; Research; Other	2	4
Van Hedel et al. 2018	CH	Cross-national	Health Services	3	7
Van Stralen et al. 2011	Both	Cross-national	Research	1	3
Vasan et al. 2016	DK	Cross-national	Public Health	0	5
Vester-Andersen et al. 2014	DK	National	Health Services; Public Health	0	6
Vest-Hansen et al. 2014	DK	National	Public Health	1	5
Viberg et al. 2018	DK	National	Health Services; Public Health	0	5
Villadsen et al. 2011	DK	National	Health Services; Public Health	2	3
Walters et al. 2013	DK	Cross-national	Public Health	5	4
Weber et al. 2013	CH	National	Health Services	11	5
Weigang et al. 2010	CH	Cross-national	Health Services	1	3
Wiegand et al. 2014	CH	Cross-national	Research	1	6
Wildgaard et al. 2011	DK	National	Health Services; Public Health	1	2
Winterfeld et al. 2013	Both	Cross-national	Health Services	1	4
Wurtzen et al. 2013	DK	National	Health Services; Research	0	6
Ylijoki-Sorensen et al. 2014	DK	Cross-national	Public Health	4	4
Zalfani et al. 2012	CH	National	Health Services; Public Health	0	4
Zecca et al. 2018	CH	National	Health Services	2	4
Zellweger et al. 2014	CH	National	Health Services; Other	2	5
Zellweger et al. 2019	CH	National	Public Health	1	5
Zwisler et al. 2016	DK	National	Health Services; Public Health	0	10

* DK: Denmark

 CH: Switzerland

https://doi.org/10.1037/journal.pone.0226015.t002
Only 13 political barriers were found and they comprised institutional/constitutional organization issues (n = 6), mistrust between stakeholders (n = 3), data ownership issues (n = 2) and “Other” (n = 2) (e.g. no official guidelines for data sharing). Studies also reported some motivational barriers, including lack of research incentives (n = 17) (including additional workload imposed on physicians/researchers), data re-use prevented by stakeholders as they are deemed unfit for secondary use (n = 2), stakeholders’ competing interests (n = 2) and additional barriers of a diversified content, thus labelled as “Other” (n = 4) (e.g. study participants not showing up for part of the study). Finally, 6 socio-cultural barriers were reported in the included records, half of which were related to a “cultural clash” (n = 3), which we defined as issues resulting from different cultures in data collection, sharing and linkage of the partners involved in the project.

Table 3 shows the distribution of barriers’ sub-clusters in national and cross-national Danish and Swiss projects. As such, single-country and multi-national countries are not differentiated.

Cluster	Sub-cluster	Denmark N² = 251	Switzerland N = 80	Both countries N = 14
Ethical	Privacy	6 (0.02)	3 (0.04)	- (N/A)
	Respect for Autonomy	3 (0.01)	3 (0.04)	- (N/A)
	Other	3 (0.01)	1 (0.01)	- (N/A)
Legal	Data Protection Regulations	2 (0.01)	1 (0.01)	1 (0.07)
	Divergence in National Legislations for Data Security and Privacy	2 (0.01)	- (N/A)	2 (0.14)
	Other	5 (0.02)	3 (0.04)	1 (0.07)
Technical	Lack of Data Standards	104 (0.41)	33 (0.41)	14 (1.00)
	Data Quality Issues	181 (0.72)	44 (0.55)	9 (0.64)
	Limited Technical Capabilities	11 (0.04)	9 (0.11)	10 (0.07)
	Other	8 (0.03)	2 (0.03)	- (N/A)
Financial	Lack of Funding	4 (0.02)	3 (0.04)	1 (0.07)
	Other	1 (0.00)	- (N/A)	- (N/A)
Political	Mistrust between stakeholders	- (N/A)	3 (0.04)	- (N/A)
	Data Ownership	2 (0.01)	- (N/A)	- (N/A)
	Institutional/constitutional organization issues	2 (0.01)	4 (0.05)	- (N/A)
	Other	- (N/A)	2 (0.03)	- (N/A)
Motivational	Lack of research incentives	6 (0.02)	9 (0.11)	2 (0.14)
	Stakeholder restricts access for re-use of data as deemed unfit for secondary use	2 (0.01)	- (N/A)	- (N/A)
	Stakeholder competing interests	1 (0.00)	1 (0.01)	- (N/A)
	Other	1 (0.00)	3 (0.04)	- (N/A)
Sociocultural	Cultural clash for data collection/sharing/linkage	1 (0.00)	2 (0.03)	- (N/A)
	Other	1 (0.00)	2 (0.03)	- (N/A)

Table 3 shows the distribution of barriers’ sub-clusters in national and cross-national Danish and Swiss projects. As such, single-country and multi-national countries are not differentiated.

* N is the total number of projects in each country category

b n is the total number of reported barriers per sub-cluster
c–is the absence of reported barriers per sub-cluster

N/A–Not Applicable

https://doi.org/10.1371/journal.pone.0226015.t003
Overview of facilitators

Facilitators of an ethico-legal nature were reported 582 times in total, and they were classified as official/legal approval of study (e.g. Danish Data Protection Agency) (n = 148), ethical approval by a REC/IRB (n = 135), legislation permitting to proceed with health data collection, sharing and linkage without consent or REC/IRB approval (n = 79), obtaining informed consent from participants (n = 69), health data anonymization (n = 58), the presence of legislation requiring mandatory reporting (n = 41), confidentiality measures (e.g. data security audits), project done according to international laws and regulations (n = 8), data access rights for patients (n = 4), clear legislation for data collection, sharing or linkage (n = 3) and “Other” (n = 8) (e.g. study data made available by researchers upon request). Facilitators of a technical nature were reported 981 times in total, which were grouped in three categories, namely techniques for data harmonization (n = 798), data linkage (n = 155) and “Other” (n = 28) (e.g. study allowed the creation of optional and mandatory datasets, whereby a minimum of data are classified as mandatory). Facilitators of a financial nature, especially explaining how funding was successfully secured, were mentioned 12 times. These referred, for example, to public-private partnerships, where both partners would gain some benefits from the collaboration, as a solution for funding issues (n = 3). 169 facilitators related to politics were reported. These referred to the structure of the health system as an advantage for harmonized health data collection, sharing and linkage (n = 139), data access control by the players (n = 11), the presence of a data sharing agreement between the stakeholders (n = 9), building and maintaining stakeholders’ trust for collaboration (n = 7) and “other” (n = 4). There were 14 motivational facilitators, which included monetary incentives to incite researchers/stakeholders to abide by standardized procedures for data handling and management (n = 7), improved data collection tool to ease the workload of researchers/stakeholders for data collection/sharing (n = 3), a memorandum of understanding between partners to ensure collaboration till end of study (n = 2) and “other” (n = 2). Lastly, there were 8 socio-cultural facilitators, which included data subjects controlling access to their data (n = 4) and “Other” (n = 4) (e.g. transparent policies for the participants). Country-wise distribution for all six facilitators categories are presented in Table 4.

Barriers and facilitators identified in national Danish and Swiss projects

When considering only national projects (n = 240) involving either Denmark (N = 200) or Switzerland (N = 40) alone, there were 323 identified barriers and 1234 facilitators. Technical barriers and facilitators were most frequently reported. For comparison purposes and compensation for the imbalances in the number of national projects identified in each country, the absolute numbers and the number of barriers and facilitators per 1,000 national projects for each country are illustrated in Table 5.

Interestingly, the only identified category of barriers which was comparatively almost equally reported in Swiss and Danish single-country projects was that of technical barriers. Otherwise, ethical, legal, financial, motivational and socio-cultural barriers were reported 5.0, 3.3, 3.3, 5.7 and 10.0 times more in Swiss projects than in Danish projects respectively. On the contrary, a Swiss project reported on average more facilitators than a Danish one (only financial facilitators were reported equally in both countries). Ethico-legal, technical, motivational and socio-cultural facilitators were reported 1.2, 1.3, 4.2 and 1.3 times more in Swiss projects than in Danish projects respectively. Only facilitators related to politics were reported 4.5 times more in Danish projects than Swiss projects.

Barriers and facilitators identified in cross-national Danish and Swiss projects

With respect to cross-national projects (n = 105), there were 182 identified barriers and 532 identified facilitators. Technical barriers and facilitators were more frequently reported than...
For comparison purposes and compensation for the imbalances in the number of cross-national projects involving each country, the number of barriers and facilitators per 1,000 cross-national projects was calculated (excluding cross-national projects involving both countries) and illustrated in Table 6.

Table 4 shows the distribution of facilitators’ sub-clusters in national and cross-national Danish and Swiss projects. As such, single-country and multi-national countries are not differentiated.

Facilitators	Sub-cluster	Countries involved in projects		
	Denmark N\(^a\) = 251	Switzerland N = 80	Both countries N = 14	
	n\(^b\) (mean no. of facilitators per project)	n (mean no. of facilitators per project)	n (mean no. of facilitators per project)	
Ethico-Legal\(^c\)	Ethical approval by REC/IRB	73 (0.29)	55 (0.69)	7 (0.50)
	Health Data Anonymization	31 (0.12)	22 (0.28)	5 (0.36)
	Obtaining informed Consent	29 (0.12)	34 (0.43)	6 (0.43)
	Patient data access rights	3 (0.01)	1 (0.01)	- (N/A)
	Confidentiality measures taken	22 (0.09)	6 (0.08)	1 (0.07)
	Clarity of legislation for health data collection/sharing/linkage	2 (0.01)	1 (0.01)	- (N/A)
	Official/legal approval of project	140 (0.56)	7 (0.09)	1 (0.07)
	Project done according to international laws and regulations	6 (0.02)	1 (0.01)	1 (0.07)
	Legislation allows project without consent or REC approval	66 (0.26)	12 (0.15)	1 (0.07)
	Legislation requires mandatory reporting	40 (0.16)	1 (0.01)	- (N/A)
	Other	6 (0.02)	2 (0.03)	- (N/A)
Technical	Data harmonization techniques	488 (1.94)	251 (3.14)	59 (4.21)
	Data Linkage techniques	146 (0.58)	6 (0.08)	3 (0.21)
	Other	24 (0.10)	3 (0.04)	1 (0.07)
Financial	Securing funding	6 (0.02)	1 (0.01)	1 (0.07)
	Public-Private partnership	1 (0.00)	2 (0.03)	- (N/A)
	Other	1 (0.00)	- (N/A)	- (N/A)
Political	Data Sharing Agreement	1 (0.00)	5 (0.06)	3 (0.21)
	Building and maintaining stakeholder trust	1 (0.00)	4 (0.05)	2 (0.14)
	Data access control	9 (0.04)	2 (0.03)	- (N/A)
	Health System Structure	138 (0.55)	1 (0.01)	- (N/A)
	Other	3 (0.01)	- (N/A)	- (N/A)
Motivational	Monetary Incentive	5 (0.02)	2 (0.03)	- (N/A)
	Easing workload through improvement of data collection	1 (0.00)	2 (0.03)	- (N/A)
	Memorandum of understanding to ensure collaboration until end of study	- (N/A)	2 (0.03)	- (N/A)
	Other	- (N/A)	1 (0.01)	1 (0.07)
Sociocultural	Participant data access control	2 (0.01)	1 (0.01)	1 (0.07)
	Other	4 (0.02)	- (N/A)	- (N/A)

\(^a\) N is the total number of projects in each country category
\(^b\) n is the total number of reported facilitators per sub-cluster
\(^c\) Ethical and legal facilitators were merged as reported solutions had both an ethical and a legal dimension
\(^d\) – is the absence of reported facilitators per sub-cluster
N/A – Not Applicable

https://doi.org/10.1371/journal.pone.0226015.t004
Concerning cross-national projects, we observed a reverse tendency as compared to national projects. Studies involving a collaboration with a Swiss partner have, on average, reported 1.8 times less barriers than those involving a Danish partner. More in detail, projects including Switzerland reported 4.7, 1.9, 1.6, 3.1 times less barriers of an ethical, technical, financial and political nature respectively, than those with a Danish partner. However, cross-national projects involving a Swiss partner, reported 2.1 times more barriers of a motivational nature than those with a Danish partner. Comparatively, cross-national collaboration involving either a Swiss or Danish partner reported almost the same number of facilitators. Ethico-legal and political facilitators were identified 1.1 and 2.4 times more in cross-national projects with a Danish partner as opposed to cross-national projects involving a Swiss one. However,

Table 5. Distribution of barriers and facilitators in national Danish and Swiss projects.

Barrier category	Denmark N = 200	Switzerland N = 40	Facilitator category	Denmark N = 200	Switzerland N = 40
	n (no. of barriers per 1,000 projects)	n (no. of barriers per 1,000 projects)	Ethico-legal	n (no. of facilitators per 1,000 projects)	n (no. of facilitators per 1,000 projects)
Ethical	6 (30)	6 (150)	Ethico-legal	331 (1655)	82 (2050)
Legal	6 (30)	4 (100)			
Technical	216 (1080)	51 (1275)	Technical	523 (2615)	132 (3300)
Financial	3 (15)	2 (50)	Financial	8 (40)	2 (40)
Political	- (N/A)	8 (200)	Political	134 (670)	6 (150)
Motivational	7 (35)	8 (200)	Motivational	6 (30)	5 (125)
Sociocultural	2 (10)	4 (100)	Sociocultural	4 (20)	1 (25)
Total	240	83	Total	1006	228
Mean	1.20	2.08	Mean	5.03	5.70

a N is the total number of projects in each country category
b n is the total number of identified barriers or facilitators per cluster
c–is the absence of identified barriers and facilitators per cluster
N/A–Not Applicable

https://doi.org/10.1371/journal.pone.0226015.t005

Table 6. Distribution of barriers and facilitators in cross-national Danish and Swiss projects.

Barrier category	Denmark N = 51	Switzerland N = 40	Both countries N = 14	Facilitator category	Denmark N = 51	Switzerland N = 40	Both countries N = 14
	n (Number of barriers per 1,000 projects)	n (Number of barriers per 1,000 projects)	Ethico-legal	n (Number of facilitators per 1,000 projects)	n (Number of facilitators per 1,000 projects)		
Ethical	6 (118)	1 (25)	- c Ethico-legal	87 (1706)	60 (1500)	22	
Legal	3 (59)	- (N/A)		4			
Technical	88 (1725)	37 (925)	24 Technical	135 (2647)	128 (3200)	63	
Financial	2 (39)	1 (25)	1 Financial	- (N/A)	1 (25)	1	
Political	4 (78)	1 (25)	- Political	18 (353)	6 (150)	5	
Motivational	3 (59)	5 (125)	2 Motivational	- (N/A)	2 (50)	1	
Sociocultural	- (N/A)	- (N/A)	- Sociocultural	2 (39)	- (N/A)	1	
Total	106	45	Total	242	197	93	
Mean	2.08	1.13	Mean	4.75	4.93	6.64	

a N is the total number of projects in each country category
b n is the total number of identified barriers or facilitators per cluster
c–is the absence of identified barriers and facilitators per cluster
N/A–Not Applicable

https://doi.org/10.1371/journal.pone.0226015.t006
Discussion

This systematic review provides a comprehensive overview of projects from either Denmark or Switzerland which involved the collection, linking or sharing of data and of the barriers and facilitators related to the usage of health data therein reported. Our study includes a broad range of projects relying on data from different sources and contexts (health services, public health, research and other) and it confirms that studies involving the harmonization, linking or sharing of health data still encounter a high number of obstacles, but also underscores that barriers have prompted the development of numerous solutions. We will here address and discuss the findings related to barriers and facilitators of each cluster that was identified.

Ethico-legal barriers and facilitators

Although ethico-legal factors are often described as some of the most problematic elements when it comes to linking and sharing health-related data [9, 373, 374], our results show that barriers of this nature are rarely reported. The small amount of ethico-legal barriers identified might either mean that such barriers were rarely present or that they were present but underreported. In our view, the latter option is more probable for at least two reasons. Firstly, as the records included in this review were all published articles, the explicit mentioning of ethico-legal complications might have been avoided to bypass problems related to publication. Secondly, ethico-legal factors are often less tangible and transparent in comparison—for example—with technical ones [15] and they are thus more likely to be superseded. Moreover, underreporting would confirm that ethico-legal aspects related to processing of health data are still underappreciated, which is a major obstacle to the final success of research projects [2]. This also suggests that there is some resistency by authors to openly disclose and discuss ethico-legal problematics. For the future, a less cautious approach would be much more beneficial, since it would allow new research projects to build on the issues encountered by old ones.

Ethico-legal facilitators were more widely mentioned. Results show that Swiss projects are still predominantly anchored to the “consent or anonymise” approach, according to which the solution to solve ethico-legal problematics concerning health data is to either anonymize information or to require explicit authorization by data subjects [1]. Differently, Danish projects have made vaster use of alternative solutions, such as relying on specific confidentiality tools, and, more importantly, exploiting regulation that allows—upon certain conditions—to share and link health-related data without the need of obtaining consent by data subjects or REC approval. This demonstrates that the development of proper regulations to facilitate the harmonization and linking of health data offers practical solutions that projects developers are then willing to use. In this framework, another important finding concerns the role of the data protection authority. Whereas in Switzerland this public office—although existing—does not play a defined role with respect to research, results show that Danish studies have a more active interaction with the Data Protection Agency, as they need to apply for permission to use health data. The nature of the application to the national Data Protection Agency that Danish projects need to file is not explicitly described in the records reviewed, but it has been presented elsewhere [375, 376] as a less demanding procedure, resembling a simple duty of notification. Thus, many Danish projects dealing exclusively with health data—in accordance with national regulation—do not need to apply for full ethical review from a REC or IRB, an often demanding and lengthy process, but simply have to obtain clearance from the Data Protection Agency. This institutionalized interaction with the public authority responsible to ensure compliance...
with data processing rules can be an important factor helping project developers, since it incentivizes to proactively tackle privacy concerns. This interaction could thus be considered as a model to inspire changes in the regulatory framework in Switzerland.

Technical barriers and facilitators

In this systematic review, data quality issues were the most commonly reported barriers, followed by the lack of data standards and limited technical capabilities. Although Denmark has a developed health data infrastructure, numerous identified projects described that data quality problems still affect health services, public health and research datasets [38, 79, 86, 98, 119, 143, 149, 151]. This is confirmed by other studies, such as a review on the Danish National Patient Registry (DNRP) where the authors concluded that data incompleteness and heterogeneous validation methods of data limited the research potential of this registry [377]. Although relevant, data quality issues can be mitigated in a system like the Danish one, since linkage between data from different registries can be easily performed using the personal identification number (CPR) provided to all Danish citizens at birth and to stable residents [270]. Comparatively, Swiss projects and projects involving a Swiss partner also reported slightly more issues related to data quality than to data standards. However, in comparison to their Danish counterparts which reported almost twice more issues related to data quality than data standards, the difference in reporting of data standards and data quality issues was smaller in Swiss projects. This more equivalent reporting could imply that data standard issues are considered as important as data quality issues for the success of Swiss projects. Indeed, the high levels of data-heterogeneity in the Swiss healthcare context might stem from the fragmented nature of the healthcare system, where each of the 26 cantons [federal states] has a high degree of autonomy and where more than 55 health insurers are active [378].

These findings underline how technical issues are interconnected with the context where projects are carried out, and that also external systemic factors—and not simply internal complications of the projects themselves—affect the emerging of these barriers. In Denmark, for example, the presence of nation-wide registries fosters the development of studies relying on secondary use of routinely collected data, where researchers are more likely faced with issues about the quality of data, since the latter was originally collected for a different purpose. On the contrary, in a country like Switzerland—where data are more often prospectively collected—issues about the absence of common standards because of fragmentation are also likely to be evident, on top of data quality issues.

Our findings suggest therefore that even technical issues concerning data are strongly embedded in the surrounding where projects are conceived. This should induce project developers to communicate and learn from each others, since the barriers they will encounter and the solutions they will find are more likely to be dependent also on the context where they act, and not only on the specific features of their research. For example, since Switzerland’s healthcare sector does not use a universal personal identification number because of privacy concerns [379], linkage of data will almost certainly represent a technical challenge, regardless of the features the single project or the data that it aims at using.

Motivational and financial barriers and facilitators

With respect to motivational and financial factors, our findings are partly in line with the literature. Previous research had underscored that the key motivational and financial aspects concerned the lack of research incentives from resource-limited institutions, the fears of being ‘robbed’ of data before publication or of losing reputation because others might identify errors in the data, the reluctance to facilitate access due to potential inappropriateness of further uses,
the need to secure resources for data sharing activities and the necessity to make arrangements between institutions for data management costs [15, 380, 381].

Overall, national and cross-national Swiss projects combined reported more frequently motivational and financial facilitators than their Danish counterparts. This suggests that in a country with a less institutionalised system of data sharing and where studies often have a prospective design, more strategies are elaborated to deal with financial and motivational issues related to data, since—with a lower systemic support—single project developers have to make a greater effort. In contrary, in a context like Denmark—with the high prevalence of studies with retrospective design and the reliance on secondary uses of routinely collected health data—the need for financial and motivational facilitators might be lower. In fact, when health data harmonization is prevalently retrospective, a lower number of actors is involved [382]—since primary data collectors are rarely included—thus reducing the urgency to create motivational or financial incentives for a large number of collaborators.

Another important finding related to financial aspects is that the presence of economic constraints can be the source of additional barriers related to data harmonization, such as data quality issues. For instance, the Swiss project AMIS Plus—concerning a register for acute coronary syndrome—could not envisage systematic site visits to assess data quality or more in-depth questionnaires due to resource limitation [290]. In Denmark, similarly, with the Copenhagen School Health Records Register—a health examination register for schoolchildren containing data on more than 350,000 individuals—financial constraints made it impossible for the authors to computerize the entire health card, thus limiting the understanding of potential confounding variables [47]. This indicates even more that barriers of different natures are interconnected and that new projects need to acknowledge this interconnectedness of the barriers to successfully address them.

Political barriers and facilitators

Danish national projects did not report any barriers of a political nature, whereas cross-national collaborations mentioned a few, such as data ownership and organizational issues [44, 85, 95]. This suggests that an institutionalization of data processing practices, similar to what occurs in Denmark [383], helps to remove political obstacles. Moreover, the presence of a centralized healthcare system structure also proves helpful, because it reduces the number of actors involved and thus the presence of competing interests. Political issues, however, might re-emerge when projects are cross-national and thus abandon the relatively safe-haven created at the national level.

In a context like the Swiss one, on the contrary, political barriers seem to be more relevant for national projects, because these fuel internal conflicts related to the diversity of interests within healthcare and to the difficulty of implementing uniform and centralized policies [132]. In fact, the two most mentioned political facilitators in Switzerland—building trust amongst stakeholders [132, 361] and stakeholders retaining control over data access [132, 290]—are both related to the attempt to coordinate the numerous different parties operating in the health data field and accommodate their competing interests. This might also explain why less political barriers are reported for Swiss cross-national projects. In fact, when projects from a context like the Swiss one go to a supra-national level, the chances of disputes related to in-country political antagonism to emerge is lower.

Our results are thus in line with the literature, where mistrust between stakeholders, absence of comprehensive guidelines for data sharing and lack of legal accountability were identified as major political issues [2, 7, 15]. However, our results further show that the incidence of political barriers seems quite different in single-country studies if compared to cross-
national ones. This finding is particularly important since it underlines that sometimes the choice of a national or cross-national design might have an impact on the number of political issues encountered.

Socio-cultural barriers and facilitators

Barriers and facilitators of a socio-cultural nature were rarely mentioned in the included records. Comparatively, the incidence of cultural barriers seems to be higher for Switzerland, where cultural clashes were mentioned more often than for Danish projects. Such difference could be due to the higher degree of fragmentation of the Swiss healthcare system in comparison to the Danish one, which is centralized and state-funded [18]. In fact, one Swiss study [132] reported that the choice for a distributed model in the managing of data was based on prior failures to implement centralized systems of health data and public mistrust towards the concept of centralization. Socio-cultural facilitators were mostly related to the involvement of data-subjects by allowing them to retain control of data access. For instance, the Swiss project reported that data subjects had the possibility to decide which part of their medical records could be considered “stigmatizing”, and thereafter blinded to healthcare professionals, other than their designated and trusted physician [132]. The designated and trusted physician would have access to the full record.

It is naturally impossible to determine whether socio-cultural barriers were actually overlooked or simply not reported. In either case, the limited mentioning of these factors signals an underappreciation of their importance. On the contrary, socio-cultural aspects should be carefully considered by project developers, since the harmonization of health data cannot ignore the cultural peculiarities of the single contexts from where data are pooled [384]. Harmonization, linking and sharing do not happen in a vacuum and opening up the dialogue between data processors and society at large can be an important success factor for the harmonization of health data in the long run.

Limitations

The limitations of this systematic review include choices that we made regarding the number of databases used for our search, the fact that we did search using English key words, and that only 20 percent of included papers went through double checking for data extraction consistency. We could have thus missed valuable studies that were published only in Danish, French, and German which we could have found if key words had been in those languages. Given the high number of papers included and resources related constraints, we were unable to double check for all information recorded, but in light of low discrepancies found in the portion of records which were double-checked, we are confident in our output. A reporting bias of barriers and facilitators identified in the included papers cannot be excluded as published papers are focused mostly on the effectiveness of their interventions rather than on the implementation phase. It is possible that our results are thus biased towards barriers and facilitators more likely to be reported in the papers (e.g. those of a technical nature). Given the low numbers of certain types of reported barriers and facilitators, it is difficult to compare the situation in the two countries without under- or over-exaggerating their presence or absence in the two countries. However, the main objective of this systematic review was to identify barriers and facilitators to harmonized health data collection, sharing and linkage in Denmark and Switzerland. Causal inference was not part of this review’s primary objectives.

Conclusion

This systematic review gathered evidence from Switzerland and Denmark to map and describe barriers and facilitators concerning data harmonization, sharing and linkage. Given the focus
of this review on Switzerland and Denmark, part of the findings has specific relevance for these two countries. In particular, for Switzerland it has emerged that fragmentation in the health data environment is a key challenge for harmonizing, sharing and linking of data. Since the implementation of more centralized governance systems—which are of great use in Denmark—might not be a viable option for Switzerland because of the political structure of the country, a distributed governance model, which emphasises interoperability of health data, seems to be the preferable way forward. The introduction of Blockchain technology for patient records, which insures security and respects decentralization [385, 386], is reportedly an auspicious technology as its use in the Estonian healthcare system described by Mettler [387] suggests. This review outlined that the existing data infrastructure at the national level in Denmark incentivizes the completion of retrospective registry-based studies relying on data reuse. Although barriers are still reported, the existence and comprehensiveness of this data infrastructure confirms that past efforts to improve the health data framework have proven successful. For the future, efforts should focus on easing projects involving cross-national collaborations.

However, other findings are meaningful well beyond the borders of the two countries specifically considered. In particular, in this review it has emerged that, although a great number of barriers and facilitators are mentioned by the projects involving health data harmonization, sharing and linking, reporting focuses predominantly on specific aspects—above all technical ones. Whereas technical aspects are certainly important, the reluctance to mention also issues of other natures is detrimental to the more general effort of the scientific community to favour the harmonization of health data. Referring more openly to the difficulties encountered at the ethico-legal level, for example, might be of help both for new projects to develop appropriate approaches and for policy makers to gather evidence on which regulatory interventions are needed. The under-appreciation of ethico-legal, socio-cultural and other context-specific complexities is a faux-pas, since the trust of both data-subjects and society at large is indispensable for the success a community in improving the health data context, like the experience of Iceland has demonstrated in the past [388]. There, the project to build a national "health sector database" with health information of all citizens imported from their medical records failed also due to the underappreciation of ethico-legal issues (e.g. informed consent and privacy). Specifically, the population complained that inclusion of personal medical records into the database was supposed to happen without consent by individuals or the possibility to opt out. This was felt like a violation of privacy, because of the risk of re-identification and also due to the fact that the database was supposed to be run by a private company [389]. A privacy complaint was brought in front of the national high court, who ruled against the project to build the database. For this reason, the project was definitely aborted [390].

In summary, the success of current and future projects is likely to depend on a better understanding and appreciation of the complexities associated with harmonizing, sharing and linking health data. In the same line, proposed solutions to harmonization issues should not underestimate the contextual particularities of the country, in which such health data processes occur.

Supporting information

S1 Text. PRISMA checklist.

(DOCX)

Acknowledgments

The authors acknowledge the financial support received from the Swiss National Science Foundation (SNF NRP-74 Smarter Health Care, grant number 407440_167356). The SNSF is
not involved in any other aspect of this review and the views expressed are those of the authors and not necessarily those of the funder. This systematic review is part of a broader project funded by the SNSF titled “Advancing Smart solutions and eliminating barriers for the Acquisition, Analysis and Sharing of Health data in Switzerland (SMAASH)”. MCM was an independent researcher when the work for this systematic review was carried out and she is currently affiliated with the Institute for Social and Preventive Medicine (ISPM) at the University of Bern.

Author Contributions

Conceptualization: Tenzin Wangmo, Bernice Simone Elger.

Data curation: Lester Darryl Geneviève, Andrea Martani, Maria Christina Mallet.

Formal analysis: Lester Darryl Geneviève.

Funding acquisition: Bernice Simone Elger.

Investigation: Lester Darryl Geneviève, Andrea Martani, Maria Christina Mallet.

Methodology: Lester Darryl Geneviève, Andrea Martani, Tenzin Wangmo.

Project administration: Tenzin Wangmo, Bernice Simone Elger.

Resources: Bernice Simone Elger.

Supervision: Tenzin Wangmo, Bernice Simone Elger.

Validation: Tenzin Wangmo.

Visualization: Lester Darryl Geneviève.

Writing – original draft: Lester Darryl Geneviève, Andrea Martani, Tenzin Wangmo, Bernice Simone Elger.

Writing – review & editing: Lester Darryl Geneviève, Andrea Martani, Maria Christina Mallet, Tenzin Wangmo, Bernice Simone Elger.

References

1. Mostert M, Bredenoord AL, Biesaart MC, van Delden JJ. Big Data in medical research and EU data protection law: challenges to the consent or anonymise approach. Eur J Hum Genet. 2016; 24 (7):1096.

2. Auffray C, Balling R, Barroso I, Bencze L, Benson M, Bergeron J, et al. Making sense of big data in health research: Towards an EU action plan. Genome Med. 2016; 8(1).

3. de Carvalho EC, Batilana AP, Simkins J, Martins H, Shah J, Rajgor D, et al. Application description and policy model in collaborative environment for sharing of information on epidemiological and clinical research data sets. PloS one. 2010; 5(2):e9314. https://doi.org/10.1371/journal.pone.0009314 PMID: 20174560

4. Largent EA, Joffe S, Miller FG. Can research and care be ethically integrated? The Hastings Center report. 2011; 41(4):37–46. https://doi.org/10.1002/j.1552-146x.2011.tb00123.x PMID: 21845922

5. NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development. Data Harmonization 2019 [Internet]. Available from: https://www.icpsr.umich.edu/icpsrweb/content/DSDR/harmonization.html.

6. Institute of Medicine (US). Standardization to Enhance Data Sharing. Sharing Clinical Research Data: Workshop Summary: National Academies Press (US); 2013.

7. Blasimme A, Fadda M, Schneider M, Vayena E. Data Sharing For Precision Medicine: Policy Lessons And Future Directions. Health Aff (Millwood). 2018; 37(5):702–9.

8. OECD. New Health Technologies2017.

9. IOM (Institute of Medicine). Sharing Clinical Research Data: National Academies Press (US); 2013.
10. Chambers DA, Feero WG, Khoury MJ. Convergence of Implementation Science, Precision Medicine, and the Learning Health Care System: A New Model for Biomedical Research. JAMA. 2016; 315(18):1941–2. https://doi.org/10.1001/jama.2016.3867 PMID: 27163980

11. Burton PR, Fortier I, Deschênes M, Hansell A, Palmer LJ. Biobanks and biobank harmonisation. An Introduction to Genetic Epidemiology. Bristol, UK: The Policy Press; 2011. p. 155–74.

12. Fortier I, Doiron D, Burton P, Raina P. Invited Commentary: Consolidating Data Harmonization—How to Obtain Quality and Applicability? Am J Epidemiol. 2011; 174(3):261–4. https://doi.org/10.1093/aje/kwr194 PMID: 21749975

13. Zwitter A. Big Data ethics. Big Data & Society. 2014; 1(2):2053951714559253.

14. Mittelstadt BD, Floridi L. The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts. Sci Eng Ethics. 2016; 22(2):303–41. https://doi.org/10.1007/s11948-015-9652-2 PMID: 26002496

15. van Panhuis WG, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, et al. A systematic review of barriers to data sharing in public health. BMC Public Health. 2014; 14:1144. https://doi.org/10.1186/1471-2458-14-1144 PMID: 25377061

16. Edwards A, Hollin I, Barry J, Kachnowski S. Barriers to cross-institutional health information exchange: a literature review. JHIM. 2010; 24(3):22–34. PMID: 20677469

17. Vest JR, Gamm LD. Health information exchange: persistent challenges and new strategies. J Am Med Inform Assoc. 2010; 17(3):288–94. https://doi.org/10.1136/jamia.2010.003673 PMID: 20442146

18. Hoeyer K. Denmark at a Crossroad? Intensified Data Sourcing in a Research Radical Country. In: Mittelstadt BD, Floridi L, editors. The Ethics of Biomedical Big Data. Cham: Springer International Publishing; 2016. p. 73–93.

19. Meier-Abt PJ, Lawrence AK, Selter L, Vayena E, Schwede T. The Swiss approach to precision medicine. Swiss Med Wkly. 2018.

20. Schmidt B-M, Colvin CJ, Hohlfeld A, Leon N. Defining and conceptualising data harmonisation: a scoping review protocol. Syst Rev. 2018; 7(1):226. https://doi.org/10.1186/s13643-018-0890-7 PMID: 30522527

21. Vayena E, Dzenowagis J, Brownstein JS, Sheikhi A. Policy implications of big data in the health sector. Bull World Health Organ. 2018; 96(1):66–8. https://doi.org/10.2471/BLT.17.197426 PMID: 29403102

22. Popay JR, H. M.; Sowden A.; Petticrew M.; Arai L.; Rodgers M.; Britten N. Guidance on the conduct of narrative synthesis in systematic reviews. 2006.

23. Schmidt B-M, Colvin CJ, Hohlfeld A, Leon N. Defining and conceptualising data harmonisation: a scoping review protocol. Syst Rev. 2018; 7(1):226. https://doi.org/10.1186/s13643-018-0890-7 PMID: 30522527

24. Vayena E, Dzenowagis J, Brownstein JS, Sheikhi A. Policy implications of big data in the health sector. Bull World Health Organ. 2018; 96(1):66–8. https://doi.org/10.2471/BLT.17.197426 PMID: 29403102

25. Popay JR, H. M.; Sowden A.; Petticrew M.; Arai L.; Rodgers M.; Britten N. Guidance on the conduct of narrative synthesis in systematic reviews. 2006.
53. Bendixen M, Kronborg C, Jorgensen OD, Andersen C, Licht PB. Cost-utility analysis of minimally invasive surgery for lung cancer: a randomized controlled trial. Eur J Cardio-thorac Surg. 2019.

54. Beretta-Piccoli BT, Stirnimann G, Cerny A, Semela D, Hessler R, Helbing B, et al. Geoepidemiology of Primary Biliary Cholangitis: Lessons from Switzerland. Clin Rev Allergy Immunol. 2017.

55. Binderup MLM, Stendell AS, Galanakis M, Møller HU, Kilgaard JF, Bisgaard ML. Retinal hemangioblastoma: Prevalence, incidence and frequency of underlying von Hippel-Lindau disease. Br J Ophthalmol. 2018; 102(7):942–7. https://doi.org/10.1136/bjophthalmol-2017-310884 PMID: 28972023

56. Bisgaard H, Vissing NH, Carson CG, Bischoff AL, Folsgaard NV, Kreiner-Møller E, et al. Deep phenotyping of the unselected COPSAC2010 birth cohort study. Clin Exp Allergy. 2013; 43(12):1384–94. https://doi.org/10.1111/cea.12213 PMID: 24118234

57. Bjerregaard B, Larsen OB. The Danish Pathology Register. Scand J Public Health. 2011; 39(7 Suppl):72–4. https://doi.org/10.1177/1403494810399356 PMID: 21775357

58. Bjornholt SM, Kjaer SK, Nielsen TSS, Jensen A. Risk for borderline ovarian tumours after exposure to fertility drugs: results of a population-based cohort study. Hum Reprod. 2015; 30(1):222–31. https://doi.org/10.1093/humrep/deu297 PMID: 25376453

59. Blaha J, Barteczko-Grajek B, Berezowicz P, Charvat J, Chvojka J, Grau T, et al. Space GlucoseControl system for blood glucose control in intensive care patients—a European multicentre observation study. BMC Anesthesiol. 2016; 16(1).

60. Blenstrup LT, Knudsen LB. Danish registers on aspects of reproduction. Scand J Public Health. 2011; 39(7 Suppl):79–82. https://doi.org/10.1177/1403494811399957 PMID: 21775359

61. Blichert-Toft M, Christiansen P, Mouridsen HT. Danish Breast Cancer Cooperative Group—DBC G:smw.2011. 13169 PMID: 21374529

62. Bjærgø Jørgensen OD, Andersen C, Licht PB. Cost-utility analysis of minimally invasive surgery for lung cancer: a randomized controlled trial. Eur J Cardio-thorac Surg. 2019.

63. Bodin CR, Rasmussen MM, Tabor A, Westborn L, Tiblad E, Ekelund CK, et al. Ultrasound in Prenatal Radiotherapy parameters from a national data bank versus manual reporting. Acta Oncol. 2018; 57(4):497–505. https://doi.org/10.1080/028418608020686615 PMID: 18465316

64. Bodin CR, Rasmussen MM, Tabor A, Westborn L, Tiblad E, Ekelund CK, et al. Ultrasound in Prenatal Diagnostics and Its Impact on the Epidemiology of Spina Bifida in a National Cohort from Denmark with a Comparison to Sweden. Biomed Res Int. 2018.

65. Boje CR, Dalton SO, Primdahl H, Kristensen CA, Andersen E, Johansen J, et al. Evaluation of comorbidity in 9388 head and neck cancer patients: A national cohort study from the DAHANCA database. Radiother Oncol. 2014; 110(1):91–7. https://doi.org/10.1016/j.radonc.2013.11.009 PMID: 24412015

66. Brenner R, Waeber B, Alleman Y. Medical treatment of hypertension in Switzerland. The 2009 Swiss Hypertension Survey (SWISSHYPE). Swiss Med Wkly. 2011; 141:w13169. https://doi.org/10.4414/smw.2011.13169 PMID: 21374529

67. Brenner R, Waeber B, Alleman Y. Medical treatment of hypertension in Switzerland. The 2009 Swiss Hypertension Survey (SWISSHYPE). Swiss Med Wkly. 2011; 141:w13169. https://doi.org/10.4414/smw.2011.13169 PMID: 21374529

68. Brenner R, Waeber B, Alleman Y. Medical treatment of hypertension in Switzerland. The 2009 Swiss Hypertension Survey (SWISSHYPE). Swiss Med Wkly. 2011; 141:w13169. https://doi.org/10.4414/smw.2011.13169 PMID: 21374529

69. Carstensen B, Kristensen JK, Ottosen P, Borch-Johnsen K. The Danish National Diabetes Register: trends in incidence, prevalence and mortality. Diabetologia. 2008; 51(12):2187–96. https://doi.org/10.1007/s00125-008-1156-z PMID: 18815769

70. Caignez-Achirica M, Varas-Lorenzo C, Pottegard A, Asmar J, Plana E, Rasmussen L, et al. Methodological challenges when evaluating potential off-label prescribing of drugs using electronic health care databases: A case study of dabigatran etexilate in Europe. Pharmacoeconomics Drug Saf. 2018; 27(7):713–23.

71. Calvez D, Mas JL, Algra A, Becquemin JP, Bonati LH, Dobson J, et al. Carotid stenting: Is there an operator effect? A pooled analysis from the carotid stenting trialists' collaboration. Stroke. 2014; 45(2):527–32. https://doi.org/10.1161/STROKEAHA.113.003526 PMID: 24347422

72. Chaigne B, Chizzolini C, Permege T, Trendelenburg M, Huynh-Do U, Dayer E, et al. Impact of disease activity on health-related quality of life in systemic lupus erythematosus—a cross-sectional analysis of
the Swiss Systemic Lupus Erythematosus Cohort Study (SSCS). BMC Immunol. 2017; 18(1):17. https://doi.org/10.1186/s12865-017-0200-5 PMID: 28351341

73. Chesnaye N, Bonthuis M, Schafer F, Groothoff JW, Verrina E, Heaf JG, et al. Demographics of paediatric renal replacement therapy in Europe: a report of the ESPN/ERA–EDTA registry. Pediatr Nephrol. 2014; 29(12):2403–10. https://doi.org/10.1007/s00467-014-2884-6 PMID: 25039018

74. Chmiel C, Bhend H, Senn O, Zoller M, Rosemann T. The FIRE project: a milestone for research in primary care in Switzerland. Swiss Med Wkly. 2011; 140:w13142. https://doi.org/10.4414/smw.2011.13142 PMID: 21279858

75. Christensen BO, Overgaard J, Kettner LO, Damsgaard TE. Long-term evaluation of postmastectomy breast reconstruction. Acta Oncol. 2011; 50(7):1053–61. https://doi.org/10.3109/0284186X.2011.584554 PMID: 21745130

76. Christensen AS, Roed C, Omland LH, Andersen PH, Obel N, Andersen AB. Long-term mortality in patients with tuberculous meningitis: a Danish nationwide cohort study. PLoS one. 2011; 6(11):e27900. https://doi.org/10.1371/journal.pone.0027900 PMID: 22132165

77. Christensen S, Johansen MB, Tonnesen E, Larsson A, Pedersen L, Lemeshow S, et al. Preadmission beta-blocker use and 30-day mortality among patients in intensive care: a cohort study. Critical Care. 2011;15(2).

78. Christensen AS, Roed C, Andersen PH, Andersen AB, Obel N. Long-term mortality in patients with pulmonary and extrapulmonary tuberculosis: a Danish nationwide cohort study. Clin Epidemiol. 2014; 6:405–21. https://doi.org/10.2147/CLEP.S65331 PMID: 25419160

79. Christensen DH, Rungeby J, Thomsen RW. Nationwide trends in glucose-lowering drug use, Denmark, 1999–2014. Clin Epidemiol. 2016; 8:381–7. https://doi.org/10.2147/CLEP.S113211 PMID: 27789974

80. Christiansen TD, Skjoth F, Nielsen PB, Maegaard M, Grove EL, Larsen TB. Self-Management of Anticoagulant Therapy in Mechanical Heart Valve Patients: A Matched Cohort Study. Ann Thorac Surg. 2016; 101(4):1494–9. https://doi.org/10.1016/j.athoracsur.2015.09.084 PMID: 26572254

81. Christiansen P, Bjerve K, Al-Suliman N, Heaf JG, Maigaard M, Rosemann T. The FIRE project: a milestone for research in primary care in Switzerland. Swiss Med Wkly. 2011; 140:w13142. https://doi.org/10.4414/smw.2011.13142 PMID: 21279858

82. Christiansen JD, Rungby J, Thomsen RW. Nationwide trends in glucose-lowering drug use, Denmark, 1999–2014. Clin Epidemiol. 2016; 8:381–7. https://doi.org/10.2147/CLEP.S113211 PMID: 27789974

83. Christoffersen MW, Brandt E, Oehlenschlager J, Rosenberg J, Helgstrand F, Jorgensen LN, et al. No difference in incidence of port-site hernia and chronic pain after single-incision laparoscopic cholecystectomy versus conventional laparoscopic cholecystectomy: a nationwide prospective, matched cohort study. Surgical Endoscopy and Other Interventional Techniques. 2015; 29(11):3239–45. https://doi.org/10.1007/s00464-015-4066-4 PMID: 25612547

84. Corraini P, Heide-Jorgensen U, Schiodt M, Norholt SE, Acquavella J, Sorensen HT, et al. Osteonecrosis of the jaw and survival of patients with cancer: a nationwide cohort study in Denmark. Cancer Med. 2017; 6(10):2271–7. https://doi.org/10.1002/cam4.1173 PMID: 28941210

85. Costantino G, Ruwald MH, Quinn J, Camargo CA Jr., Dalgaard F, Gislason G, et al. Prevalence of Pulmonary Embolism in Patients With Syncope. JAMA Intern Med. 2018; 178(3):356–62. https://doi.org/10.1001/jamainternmed.2017.8175 PMID: 29379959

86. Cotter AG, Vrouwenraets S, Costello RA, Mitra S, Fotopoulou A, Egan A, et al. Pre-empting the 2019 coronavirus: lessons from SARS-CoV-2. Lancet. 2020; 395(10227):513–514. https://doi.org/10.1016/S0140-6736(20)30476-X

87. Cotter AG, Vrouwenraets S, Brady JJ, Wit FW, Fux CA, Furrer H, et al. Impact of switching from co-trimoxazole to trimethoprim in HIV-1-infected patients enrolled in the PREPARE substudy of the TECHEP project. J Antimicrob Chemother. 2014; 69(9):2201–9. https://doi.org/10.1093/jac/dkt438 PMID: 24502151

88. Cotter AG, Vrouwenraets SM, Brady JJ, Wit FW, Fux CA, Furrer H, et al. Impact of switching from co-trimoxazole to trimethoprim in HIV-1-infected patients enrolled in the PREPARE substudy of the TECHEP project. J Antimicrob Chemother. 2014; 69(9):2201–9. https://doi.org/10.1093/jac/dkt438 PMID: 24502151

89. Cotter AG, Vrouwenraets S, Brady JJ, Wit FW, Fux CA, Furrer H, et al. Impact of switching from co-trimoxazole to trimethoprim in HIV-1-infected patients enrolled in the PREPARE substudy of the TECHEP project. J Antimicrob Chemother. 2014; 69(9):2201–9. https://doi.org/10.1093/jac/dkt438 PMID: 24502151

90. Dalgaard A, Bjerre K, Ring-Larsen H, Verbaan H. In patients with HCV genotype 2 or 3 infection and RVR 14 weeks treatment is noninferior to 24 weeks. Pooled analysis of two Scandinavian trials. Eur J
112. Erlangsen A, Canudas-Romo V, Conwell Y. Increased use of antidepressants and decreasing suicide rates: a population-based study using Danish register data. J Epidemiol Community Health. 2008; 62(5):448–54. https://doi.org/10.1136/jech.2007.061580 PMID: 18413459

113. Escala-García M, Guo Q, Dörk T, Canisius S, Keenan R, Dennis J, et al. Genome-wide association study of germline variants and breast cancer-specific mortality. Br J Cancer. 2019; 120(6):647–57. https://doi.org/10.1038/s41416-019-0393-x PMID: 30787463

114. Escott-Price V, Bellenguez C, Wang LS, Choi SH, Harold D, Jones L, et al. Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PLoS one. 2014; 9(6).

115. Fagó-Olsen CL, Ottesen B, Kehlet H, Markauskas A, Mosgaard BJ, Ottosen C, et al. Neoadjuvant chemotherapy as ovarian cancer treatment: ever more used with major regional differences. Dan Med J. 2012; 59(8).

116. Fehrner R, Malinka T, Klasen J, Candinas D, Beldi G. Additional surgical procedure is a risk factor for surgical site infections after laparoscopic cholecystectomy. Langenbeck Arch Surg. 2014; 399(5):595–9.

117. Fedder J, Loft A, Parner ET, Rasmussen S, Pinborg A. Neonatal outcome and congenital malformations in children born after ICSI with testicular or epididymal sperm: a controlled national cohort study. Hum Reprod. 2013; 28(1):230–40. https://doi.org/10.1093/humrep/des377 PMID: 23154066

118. Fenger AQ, Helvind NM, Pomergaard H-C, Burcharth J, Rosenberg J. Fibrin sealant for mesh fixation in laparoscopic groin hernia repair does not increase long-term recurrence. Surgical Endoscopy and Other Interventional Techniques. 2016; 30(3):986–92. https://doi.org/10.1007/s00464-015-4280-0 PMID: 26092012

119. Frits S, Poulsen AH, Sorensen HT, Tjonneland A, Overvad K, Vogel U, et al. Aspirin and other non-steroidal anti-inflammatory drugs and risk of colorectal cancer: A Danish cohort study. Cancer Causes Control. 2009; 20(5):731–40. https://doi.org/10.1007/s10552-008-9286-7 PMID: 19122977

120. Frøyen EC, Gad D, Bastholt L, Hess S. The role of FDG-PET/CT in preoperative staging of sentinel lymph node biopsy-positive melanoma patients. EJNMMI Res. 2016; 6.

121. Freiberg FJ, Brynskov T, Munk MR, Sørensen TL, Wolf S, Wirth MA, et al. Low endophthalmitis rates after intravitreal anti-vascular endothelial growth factor injections in an operating room: A Retrospective Multicenter Study. Retina. 2017.

122. Funcke S, Sander M, Goeppert MS, Groesdonk H, Heringlake M, Hirsch J, et al. Practice of hemodynamic monitoring and management in German, Austrian, and Swiss intensive care units: the multicenter cross-sectional ICU-CardioMan Study. Ann Intensive Care. 2016; 6(1).

123. Furtwängler R, Kager L, Melchior P, Rübe C, Ebinger M, Nourkami-Tut bulbs N, et al. High-dose treatment for malignant rhabdoid tumor of the kidney: No evidence for improved survival-The Gesellschaf für Pädiatrische Onkologie und Hämatologie (GPOH) experience. Pediatr Blood Cancer. 2018; 65(1):n/a-1.
128. Gammelager H, Christiansen CF, Johansen MB, Borre M, Schoonen M, Sorensen HT. Quality of urological cancer diagnoses in the Danish National Registry of Patients. Eur J Cancer Prev. 2012; 21(6):545–51. https://doi.org/10.1097/CEJ.0b013e328351c680 PMID: 22433631

129. Garcia-Etienne CA, Mansel RE, Tomatis M, Hei J, Biganzoli L, Ferrari A, et al. Trends in axillary lymph node dissection for early-stage breast cancer in Europe: Impact of evidence on practice. Breast. 2019; 45:89–96. https://doi.org/10.1016/j.breast.2019.03.002 PMID: 30925382

130. Gatta G, Trama A, Capocaccia R, Group RAW. Epidemiology of rare cancers and inequalities in oncologic outcomes. Eur J Surg Oncol. 2017.

131. Gatzioufas Z, Raiskup F, O’Brart D, Spoerl E, Panos GD, Hafezi F. Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg. 2016; 32(6):372–7. https://doi.org/10.3928/1081597X-20160428-02 PMID: 27304600

132. Geissbuhler A. Lessons learned implementing a regional health information exchange in Geneva as a pilot for the Swiss national eHealth strategy. Int J Med Inform. 2013; 82(5):e118–e24. https://doi.org/10.1016/j.ijmedinf.2012.11.002 PMID: 23332387

133. Ghith N, Ammari ABH, Rasmussen M, Frølich A, Cooper K, Tønnesen H. Impact of compliance on quit rates in a smoking cessation intervention: population study in Denmark. Clin Health Promot. 2012; 2:111–19.

134. Gjerstorff ML. The Danish Cancer Registry. Scand J Public Health. 2011; 39(7 Suppl):42–5. https://doi.org/10.1177/1403494810393562 PMID: 21775350

135. Glintborg B, Ostergaard M, Dreyer L, Krogh NS, Tarp U, Hansen MS, et al. Treatment Response, Drug Survival, and Predictors Thereof in 764 Patients With Psoriatic Arthritis Treated With Anti-Tumor Necrosis Factor alpha Therapy Results From the Nationwide Danish DANBIO Registry. Arthritis Rheum. 2011; 63(2):382–90. https://doi.org/10.1002/art.30117 PMID: 21279995

136. Godballe C, Madsen AR, Pedersen HB, Sorensen CH, Pedersen U, Frisch T, et al. Post-thyroidectomy hemorrhage: a national study of patients treated at the Danish departments of ENT Head and Neck Surgery. Eur Arch Otorhinolaryngol. 2009; 266(12):1945–52. https://doi.org/10.1007/s00405-009-0949-0 PMID: 19301027

137. Gorski M, Tin A, Garnaas M, McMahon GM, Chu AY, Tayo BO, et al. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int. 2015; 87(5):1017–29. https://doi.org/10.1038/ki.2014.361 PMID: 25493955

138. Goutaki M, Maurer E, Halbeisen FS, Amirav I, Barbato A, Behan L, et al. The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. Eur Respir J. 2017; 49(1).

139. Goutaki M, Eich O, Halbeisen F, Barben J, Casaulta C, Clarenbach C, et al. The Swiss Primary Ciliary Dyskinesia registry: objectives, methods and first results. Swiss Med Wkly. 2019; 149.

140. Gradel KO, Dethlefsen C, Schønheyder HC, Nielsen H. Magnitude of bloodstream infection associated with increased mortality in non-typhoid salmonellosis: A one-year follow-up study. APMIS. 2008; 116(2):147–53. https://doi.org/10.1111/j.1600-0463.2008.00886.x PMID: 18321366

141. Grann AF, Erichsen R, Nielsen AG, Frøslev T, Thomsen RW. Existing data sources for clinical epidemiology: The clinical laboratory information system (LABKA) research database at Aarhus University, Denmark. Clin Epidemiol. 2011; 3:133–8. https://doi.org/10.2147/CLEP.S17901 PMID: 21487452

142. Gratwohl A, Pasquini MC, Aljurf M, Atsuta Y, Baldomero H, Foeken L, et al. One million haematopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015; 2(3):e91–e100. https://doi.org/10.1016/S2352-3026(15)00028-9 PMID: 26687803

143. Gregersen R, Andresen K, Burcharth J, Pommergaard HC, Rosenberg J. Short-term mortality, readmission, and recurrence in treatment of acute diverticulitis with abscess formation: a nationwide register-based cohort study. Int J Colorectal Dis. 2016; 31(5):983–90. https://doi.org/10.1007/s00384-016-2568-8 PMID: 27029799

144. Griffin SJ, Borch-Johnsen K, Davies MJ, Khunti K, Rutten GE, Sandbaek A, et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet. 2011; 378(976):156–67. https://doi.org/10.1016/S0140-6736(11)60698-3 PMID: 21705063

145. Gromov K, Brix M, Kallemose T, Troelsen A. Early results and future challenges of the Danish Fracture Database. Dan Med J. 2014; 61(6).

146. Gruber P, Zeller S, Garcia-Esporon C, Berberat J, Anon J, Diepers M, et al. Embolus Retriever with Interlinked Cages versus other stent retrievers in acute ischemic stroke: an observational comparative study. J Neurointerv Surg. 2018; 10(12):E31→. https://doi.org/10.1136/neurintsurg-2018-013838 PMID: 29773715
147. Gudbrandsdottir S, Frederiksen H, Hasselbalch H. Thrombopoietin-receptor agonists in haematological disorders: The Danish experience. Platelets. 2012; 23(6):423–9. https://doi.org/10.3109/09537104.2011.634931 PMID: 22185370

148. Gulmez SE, Lassen AT, Aalykke C, Dall M, Andries A, Andersen BS, et al. Do statins protect against upper gastrointestinal bleeding? Br J Clin Pharmacol. 2009; 67(4):460–5. https://doi.org/10.1111/j.1365-2125.2009.03362.x PMID: 19371320

149. Gylvin SH, Jørgensen CC, Fink-Jensen A, Johansson PI, Kehlet H, Jørgensen CC, et al. Psychopharmacologic treatment and blood transfusion in fast-track total hip and knee arthroplasty. Transfusion. 2017; 57(4):971–6. https://doi.org/10.1111/trf.13992 PMID: 28145024

150. Hallas J, Christensen R, Andersen M, Friis S, Bjerrum L. Long term use of drugs affecting the renin-angiotensin system and the risk of a cancer: a population-based case-control study. Br J Clin Pharmacol. 2012; 74(1):180–8. https://doi.org/10.1111/j.1365-2125.2012.04170.x PMID: 22243442

151. Hallas J, Pottegard A. Performance of the High-dimensional Propensity Score in a Nordic Healthcare Model. Basic Clin Pharmacol Toxicol. 2017; 120(3):312–7. https://doi.org/10.1111/bcpt.12716 PMID: 27889951

152. Halmin M, Rostgaard K, Lee BK, Wikman A, Norda R, Nielsen KR, et al. Length of Storage of Red Blood Cells and Patient Survival After Blood Transfusion A Binational Cohort Study. Ann Intern Med. 2017; 166(4):248+. https://doi.org/10.7326/M16-1415 PMID: 27992899

153. Hansen CT, Kehlet H, Møller C, March L, Utzon J, Ottesen B. Timing of heparin prophylaxis and bleeding complications in hysterectomy a nationwide prospective cohort study of 9,949 Danish women. Acta Obstet Gynecol Scand. 2008; 87(10):1039–47. https://doi.org/10.1080/00016340802419384 PMID: 18792841

154. Hansen MB, Jensen ML, Carstensen B. Causes of death among diabetic patients in Denmark. Diabetes. 2012; 61(2):2016–2022. https://doi.org/10.1016/j.diabres.2012.04.016 PMID: 22877847

155. Hatz C, Beck B, Steffen R, Genton B, d’Acremont V, Loutan L, et al. Real-life versus package insert: A study of rivaroxaban in patients with venous thromboembolism and atrial fibrillation. J Thromb Haemost. 2015; 13(1):154–61. https://doi.org/10.1111/jth.12894 PMID: 25290054

156. Haueis P, Russmann S, Zorina OI, Grohmann R, Kullak-Ublick GA, Jaquenoud Sirot E, et al. Copre-scription of levodopa with antipsychotics in a population of 84,596 psychiatric inpatients from 1994 to 2008. Pharmacopsychiatry. 2012; 45(4):127–32. https://doi.org/10.1055/s-0031-1291348 PMID: 22086741

157. Havelin LI, Fenstad AM, Salomonsson R, Mehner F, Furnes O, Overgaard S, et al. The Nordic Arthroplasty Register Association A unique collaboration between 3 national hip arthroplasty registries with 280,201 THRs. Acta Orthop. 2009; 80(4):393–401. https://doi.org/10.3109/1745367090339544 PMID: 19513887

158. Head SJ, Howell NJ, Osnabrugge R, Bridgewater B, Keogh BE, Kinsman R, et al. The European association for cardio-thoracic surgery (EACTS) database: An introduction. Eur J Cardiothorac Surg. 2013; 44(3):e157–80. https://doi.org/10.1093/ejcts/ezt033 PMID: 23786918

159. Helgstrand F, Rosenberg J, Bay-Nielsen M, Friis-Andersen H, Wara P, Jorgensen LN, et al. Establishment and initial experiences from the Danish Ventral Hernia Database. Hernia. 2010; 14(2):131–5. https://doi.org/10.1007/s10029-009-0592-0 PMID: 19937076

160. Helgqvist L, Erichsen R, Gammelager H, Johansen M, Sørensen HT. Quality of ICD-10 colorectal cancer diagnosis codes in the Danish National Registry of Patients. Eur J Cancer Care. 2012; 21(6):722–7. https://doi.org/10.1117/1403494811399958 PMID: 21775346
166. Hemkens LG, Saccilotto R, Reyes SL, Glinz D, Zumbrunn T, Grollimund O, et al. Personalized prescription feedback using routinely collected data to reduce antibiotic use in primary care a randomized clinical trial. JAMA Intern Med. 2017; 177(2):176–83. https://doi.org/10.1001/jamainternmed.2016.8040 PMID: 28027333

167. Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, Andersen AN. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling- cohort study. Fertil Steril. 2011; 95(3):959–63. https://doi.org/10.1016/j.fertnstert.2010.07.1075 PMID: 20813399

168. Henningsen A-KA, Romundstad LB, Gissler M, Nygren K-G, Lidegaard O, Skjaerven R, et al. Infant and maternal health monitoring using a combined Nordic database on ART and safety. Acta Obstet Gynecol Scand. 2011; 90(7):683–91. https://doi.org/10.1111/j.1600-0412.2011.01145.x PMID: 21477001

169. Henriksen NA, Helgstrand F, Vogt KC, Jorgensen LN, Bisgaard T, Danish Hemia D, et al. Risk factors for incisional hernia repair after aortic reconstructive surgery in a nationwide study. J Vasc Surg. 2013; 57(6):1524–+. https://doi.org/10.1016/j.jvs.2012.11.119 PMID: 23548175

170. Herzberg G, Boeckstyns M, Sorensen AI, Axelsson P, Kroener K, Liverneau P, et al. Remotion total wrist arthroplasty: Preliminary results of a prospective international multicenter study of 215 cases. J Wrist Surg. 2012; 1(1):17–22. https://doi.org/10.1055/s-0032-1323642 PMID: 23904975

171. Hetland ML. DANBIO-powerful research database and electronic patient record. Rheumatology. 2011; 50(5):69–77. https://doi.org/10.1093/rheumatology/keq309 PMID: 21148154

172. Holland-Bill L, Xu H, Sorensen HT, Acquavella J, Svaerke C, Gammelager H, et al. Positive predictive value of primary inpatient discharge, diagnoses of infection among cancer patients in the Danish National Registry of Patients. Ann Epidemiol. 2014; 24(8):599–7. https://doi.org/10.1016/j.annepidem.2014.05.011 PMID: 25084702

173. Horsdal HT, Mehrert F, Rungby J, Johnsen SP. Type of Preadmission Antidiabetic Treatment and Outcome among Patients with Ischemic Stroke: A Nationwide Follow-up Study. J Stroke Cerebrovasc Dis. 2012; 21(8):717–25. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.03.007 PMID: 21536457

174. Hyldig N, Joergensen JS, Wu C, Billie C, Vinter CA, Sorensen JA, et al. Cost-effectiveness of incisional negative pressure wound therapy compared with standard care after caesarean section in obese women: a trial-based economic evaluation. BJOG. 2019; 126(5):619–27. https://doi.org/10.1111/1471-0528.15573 PMID: 30507022

175. Ingeholm P, Gogenur I, Iversen LH. Danish Colorectal Cancer Group Database. Clin Epidemiol. 2016; 8:465–B. https://doi.org/10.2147/CLEP.S99481 PMID: 27822086

176. Ittermann T, Schipf S, Dorr M, Thuesen BH, Jorgensen T, Volzke H, et al. Hyperthyroxinemia is positively associated with prevalent and incident type 2 diabetes mellitus in two population-based samples from Northeast Germany and Denmark. Nutr Metab Cardiovasc Dis. 2018; 28(2):173–9. https://doi.org/10.1016/j.numecd.2017.10.016 PMID: 29239740

177. Iversen LH, Green A, Ingeholm P, Osterling K, Gogenur I. Improved survival of colorectal cancer in Denmark during 2001-2012-The efforts of several national initiatives. Acta Oncol. 2016; 55:10–23. https://doi.org/10.3109/0284186X.2015.1131331 PMID: 26859340

178. Jacobs L, Thijs L, Jin Y, Zannad F, Mebazaa A, Rouet P, et al. Heart ‘omics’ in AGEding (HOMAGE): design, research objectives and characteristics of the common database. J Biomed Res. 2014; 28(5):349–59. https://doi.org/10.7555/JBR.28.20140045 PMID: 25332706

179. Jakobsen KD, Wallach-Kildemoes H, Bruhn CH, Hashemi N, Pagsberg AK, Fink-Jensen A, et al. Adverse events in children and adolescents treated with quetiapine: an analysis of adverse drug reaction reports from the Danish Medicines Agency database. Int Clin Psychopharm. 2017; 32(2):103–6.

180. Jensen A, Sharif H, Frederiksen K, Kjaer SK. Use of fertility drugs and risk of ovarian cancer: Danish Population Based Cohort Study. BMJ. 2009; 338:b249. https://doi.org/10.1136/bmj.b249 PMID: 19196744

181. Jensen LH, Altal F, Harting H, Jensen M, Laurberg S, Lindegaard JC, et al. Clinical outcome in 520 consecutive Danish rectal cancer patients treated with short course preoperative radiotherapy. Eur J Surg Oncol. 2010; 36(3):237–43. https://doi.org/10.1016/j.ejso.2009.10.008 PMID: 19880268

182. Jensen HI, Ammentorp J, Årding H. Withholding or withdrawing therapy in Danish regional ICUs: Frequency, patient characteristics and decision process. Acta Anaesthesiol Scand. 2011; 55(3):344–51. https://doi.org/10.1111/j.1399-6576.2010.02375.x PMID: 21288218

183. Jensen KK, Krakup P-M, Schieke T, Jorgensen LN, Mynter T. Incisional hernias after open versus laparoscopic surgery for colonic cancer: a nationwide cohort study. Surgical Endoscopy and Other Interventional Techniques. 2016; 30(10):4469–79. https://doi.org/10.1007/s00464-016-4779-z PMID: 26895908
184. Jensen KK, Oma E, Harling H, Krarup P-M. Type of incision does not predict abdominal wall outcome after emergency surgery for colonic anastomotic leakage. Int J Colorectal Dis. 2017; 32(6):865–73. https://doi.org/10.1007/s00384-017-2810-z PMID: 28391448

185. Jeppesen MM, Jensen PT, Hansen DG, Iachina M, Mogensen O. The nature of early-stage endometrial cancer recurrence—A national cohort study. Eur J Cancer. 2016; 69:51–60. https://doi.org/10.1016/j.ejca.2016.09.033 PMID: 27816832

186. Johannesdottir SA, Horvath-Puho E, Ehrenstein V, Schmidt M, Pedersen L, Sørensen HT. Existing data sources for clinical epidemiology: The Danish National Database of Reimbursed Prescriptions. Clin Epidemiol. 2012; 4:303–13. https://doi.org/10.2147/CLEP.S37587 PMID: 23204870

187. Jørgensen JB, Bondevenn P, Iversen LH, Laurberg S, Pedersen BG. Pelvic insufficiency fractures frequently occur following preoperative chemoradiotherapy for rectal cancer—a nationwide MRI study. Colorectal Dis. 2018; 20(10):873–80. https://doi.org/10.1111/codi.14224 PMID: 29673038

188. Joshi PK, Esko T, Mattsson H, Eklund N, Gandin I, Nutile T, et al. Directional dominance on stature and cognition in diverse human populations. Nature. 2015; 523(7561):459–62. https://doi.org/10.1038/nature14618 PMID: 23204870

189. Kachuri L, Saarela O, Bojesen SE, Davey Smith G, Liu G, Landi MT, et al. Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. Int J Epidemiol. 2018.

190. Kaltoft A, Jensen LO, Maeng M, Tilsted HH, Thaysen P, Bottcher M, et al. 2-Year Clinical Outcomes After Implantation of Sirolimus-EIuting, Paclitaxel-EIuting, and Bare-Metal Coronary Stents Results From the WDHR (Western Denmark Heart Registry). J Am Coll Cardiol. 2009; 53(8):658–64. https://doi.org/10.1016/j.jacc.2008.09.058 PMID: 19232897

191. Karkov LL, Schytte-Hansen S, Haugbølle LS. Discrepancies between sources providing the medication histories of acutely hospitalised patients. Pharm World Sci. 2010; 32(4):449–54. https://doi.org/10.1007/s11096-010-9390-0 PMID: 20446111

192. Kent P, Kongsted A, Jensen TS, Albert HB, Schiottz-Christensen B, Manniche C. SpineData—a Danish clinical registry of people with chronic back pain. Clin Epidemiol. 2015; 7:369–79. https://doi.org/10.2147/CLEP.S83630 PMID: 26316820

193. Khanna N, Opravil M, Furrer H, Cavassini M, Vernazza P, Bernasconi E, et al. CD4(+) T cell count recovery in HIV type 1-infected patients is independent of class of antiretroviral therapy. Clin Infect Dis. 2008; 47(8):1093–101. https://doi.org/10.1086/592113 PMID: 18783328

194. Khatami R, Luca G, Bauman CR, Bassetti CL, Bruni O, Canellas F, et al. The European Narcolepsy Network (EU-NN) database. J Sleep Res. 2016; 25(3):356–64. https://doi.org/10.1111/jsr.12374 PMID: 26809504

195. Kiderlen M, Bastiaannet E, Walsh PM, Keating NL, Schrodi S, Engel J, et al. Surgical treatment of early stage breast cancer in elderly: an international comparison. Breast Cancer Res Treat. 2012; 132(2):675–82. https://doi.org/10.1007/s10549-011-1892-5 PMID: 22119939

196. Kildemoes HW, Sorensen HT, Hallas J. The Danish National Prescription Registry. Scand J Public Health. 2011; 39(7 Suppl):38–41. https://doi.org/10.1177/1403494810394717 PMID: 21775349

197. Kirwan BA, Lubsen J, Brouwer Sd, van Dalen FJ, Pocock SJ, Clayton T, et al. Quality management of a large randomized double-blind multi-centre trial: The ACTION experience. Contemp Clin Trials. 2008; 29(2):259–69. https://doi.org/10.1016/j.cct.2007.10.001 PMID: 18029294

198. Klein M, Gogenur I, Rosenberg J. Postoperative use of non-steroidal anti-inflammatory drugs in patients with anastomotic leakage requiring reoperation after colorectal resection: cohort study based on prospective data. BMJ. 2012;345.

199. Knudsen ST, Mosbech TH, Hansen B, Konig E, Johnsen PC, Kamper A-L. Difficulties in reaching therapeutic goals for hypertension and dyslipidaemia in patients with type 2 diabetes in general practice. Dan Med J. 2013; 60(12).

200. Kowalska JD, Friis-Møller N, Kirk O, Bannister W, Mocroft A, Sabin C, et al. The Coding Causes of Death in HIV (CoDe) Project Initial Results and Evaluation of Methodology. Epidemiology. 2011; 22(4):516–23. https://doi.org/10.1097/EDE.0b013e31821b5332 PMID: 21522013

201. Kronborg CN, Hallas J, Jacobsen IA. Prevalence, awareness, and control of arterial hypertension in Denmark. J Am Soc Hypertens. 2009; 3(1):19–24.e2. https://doi.org/10.1016/j.jshx.2008.08.001 PMID: 20409941

202. Laenskoldh A-V, Jensen M-B, Eriksen JO, Buckingham W, Ferree S, Nielsen TO, et al. The ability of PAM50 risk of recurrence score to predict 10-year distant recurrence in hormone receptor-positive postmenopausal women with special histological subtypes. Acta Oncol. 2018; 57(1):44–50. https://doi.org/10.1080/0284186X.2017.1403044 PMID: 29202609
203. Laguna MP, Beemster P, Kumar P, Klingler HC, Wyler S, Anderson C, et al. Perioperative Morbidity of Laparoscopic Cryoablation of Small Renal Masses with Ultrathin Probes: A European Multicentre Experience. Eur Urol. 2009; 56(2):355–62. https://doi.org/10.1016/j.eururo.2009.05.002 PMID: 19467771

204. Landolt K, Roessler W, Ajdacic-Gross V, Derks EM, Libiger J, Kahn RS, et al. Predictors of discontinuation of antipsychotic medication and subsequent outcomes in the European First Episode Schizophrenia Trial (EUFEST). Schizophr Res. 2016; 172(1–3):145–51. https://doi.org/10.1016/j.schres.2016.01.046 PMID: 26922655

205. Lang PZ, Hafezi NL, Khandelwal SS, Torres-Netto EA, Hafezi F, Randleman JB. Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea. 2019; 38(4):433–41. https://doi.org/10.1097/ICO.0000000000001878 PMID: 30681515

206. Lange J, Troelsen A, Solgaard S, Otte KS, Jensen NK, Søballe K. Cementless One-Stage Revision in Chronic Periprosthetic Hip Joint Infection. Ninety-One Percent Infection Free Survival in 56 Patients at Minimum 2-Year Follow-Up. J Arthroplasty. 2017.

207. Laouali N, Pilorget C, Cyr D, Neri M, Kaerlev L, Sabroe S, et al. Occupational exposure to organic solvents and risk of male breast cancer: a European multicenter case–control study. Scand J Work Environ Health, Supplement. 2018; 44(3):310–22.

208. Larsen JR, Siersma VD, Davidsen AS, Waldorff FB, Reventlow S, de Fine Olivarius N. The excess mortality of patients with diabetes and concurrent psychiatric illness is markedly reduced by structured personal diabetes care: A 19-year follow up of the randomized controlled study Diabetes Care in General Practice (DCGP). Gen Hosp Psychiatry. 2016; 38:42–52. https://doi.org/10.1016/j.genhosppsych.2015.10.001 PMID: 26602087

209. Larsen TB, Skjofth F, Grove EL, Nielsen PB, Christensen TD. Effectiveness of self-managed oral anticoagulant therapy in patients with recurrent venous thromboembolism A propensity-matched cohort study. Thromb Haemostasis. 2016; 116(3):524–9.

210. Laursen PN, Holmvang L, Lonborg J, Kober L, Hofsten DE, Helqvist S, et al. Comparison between patients included in randomized controlled trials of ischemic heart disease and real-world data. A nationwide study. Am Heart J. 2018; 204:128–38. https://doi.org/10.1016/j.ahj.2018.05.018 PMID: 30103092

211. Leboeuf-Yde C, Jensen RK, Axén I. Absence of low back pain in patients followed weekly over one year with automated text messages. Chiropr Man Ther. 2012;20.

212. Lehnert P, Lange T, Møller CH, Olsen PS, Carlsen J. Acute Pulmonary Embolism in a National Danish Cohort: Increasing Incidence and Decreasing Mortality. Thromb Haemostasis. 2018; 118(3):539–46.

213. Lindhardsen J, Ahlehoff O, Gislason GH, Madsen OR, Olesen JB, Svendsen JH, et al. Risk of atrial fibrillation and stroke in rheumatoid arthritis: Danish nationwide cohort study. BMJ. 2012; 344:e1257. https://doi.org/10.1136/bmj.e1257 PMID: 22403267

214. Linnet KM, Wisborg K, Secher NJ, Hove Thomsen P, Obel C, Dalsgaard S, et al. Coffee consumption during pregnancy and the risk of hyperkinetic disorder and ADHD: a prospective cohort study. Acta Paediatr. 2009; 98(1):173–9. https://doi.org/10.1111/j.1651-2227.2008.00980.x PMID: 18764862

215. Lund H, Vyberg M, Eriksen HH, Grove A, Jensen AA, Sundl H. Hydatidiform mole: Validity of the registration in the danish national patient registry, the danish cancer registry, and the danish pathology registry 1999–2009. Clin Epidemiol. 2018; 10:1223–31. https://doi.org/10.2147/CLEP.S169657 PMID: 30271218

216. Lundstrøm LH, Møller AM, Rosenstock C, Astrup G, Gatto MR, Wetterslev J, et al. Avoidance of neuromuscular blocking agents may increase the risk of difficult tracheal intubation: a cohort study of 103
Factors influencing harmonized health data collection, sharing and linkage in Denmark and Switzerland

812 consecutive adult patients recorded in the Danish Anaesthesia Database. Br J Anaesth. 2009; 103(2):283–90. https://doi.org/10.1093/bja/aep124 PMID: 19457894

221. Luta X, Hayoz S, Krause CG, Sommerhalder K, Roos E, Strazzullo P, et al. The relationship of health/food literacy and salt awareness to daily sodium and potassium intake among a workplace population in Switzerland. Nutr Metab Cardiovasc Dis. 2018; 28(3):270–7. https://doi.org/10.1016/j.numecd.2017.10.028 PMID: 29310971

222. Lydkesen L, Jensen-Fangel S, Blaakaer J. Is it possible to define an optimal time for chemotherapy after surgery for ovarian cancer? Gynecol Oncol. 2014; 133(3):454–9. https://doi.org/10.1016/j.ygyno.2014.04.004 PMID: 24726613

223. Lyng E, Sandegaard JL, Rebolj M. The Danish National Patient Registry. Scand J Public Health. 2011; 39(7 Suppl):30–3. https://doi.org/10.1177/1403494811401482 PMID: 21775347

224. Maeng M, Jensen LO, Kaltoft A, Hansen HHT, Bottcher M, Lassen JF, et al. Comparison of stent thrombosis, myocardial infarction, and mortality following drug-eluting versus bare-metal stent coronary intervention in patients with diabetes mellitus. Am J Cardiol. 2008; 102(2):165–72. https://doi.org/10.1016/j.amjcard.2008.03.034 PMID: 18602515

225. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018; 50(11):1505–13. https://doi.org/10.1038/s41588-018-0241-6 PMID: 30297969

226. Majholm B, Bartholdy J, Christoffersen JK, Engbaek J, Möller AM. Poor agreement between data from the National Patient Registry and the Danish Patient Insurance Association. Dan Med J. 2012; 59(6):A4430. PMID: 22677234

227. Mareri M, Filippetti M, Ghirardini A, Vespasiano F, Di Ciaccio P, Costa AN. The EUROCET network: Support for coding, Vigilance and Surveillance. Transfus Med Hemother. 2011; 38(6):352–6.

228. Margulis AV, Houben E, Hallas J, Overbeek JA, Pottegard A, Torp-Pedersen T, et al. Ophthalmic nepafenac use in the Netherlands and Denmark. Acta Ophthalmol. 2017; 95(5):509–17. https://doi.org/10.1111/aos.13468 PMID: 28493461

229. May MT, Ingle SM, Costagliola D, Justice AC, de Wolf F, Cavassini M, et al. Cohort profile: Antiretroviral therapy cohort collaboration (ART-CC). Int J Epidemiol. 2014; 43(3):691–702. https://doi.org/10.1093/ije/dyt010 PMID: 23599235

230. Møller S, Jensen MB, Ejlertsen B, Bjerre KD, Larsen M, Hansen HB, et al. The clinical database and the treatment guidelines of the Danish Breast Cancer Cooperative Group (DBC); its 30-years experience and future promise. Acta Oncol. 2008; 47(4):506–24. https://doi.org/10.1080/02841860802059259 PMID: 18465317

231. Möhring T, Karch A, Falk CS, Laue T, D’Antiga L, Debray D, et al. Immune status in children before liver transplantation—a cross-sectional analysis within the ChilsSFreemulticentre cohort study. Front Immunol. 2019; 10(JAN).

232. Mikkelsen S, Krueger AJ, Zwiers ST, Brochner AC. Outcome following physician supervised prehospital resuscitation: a retrospective study. BMJ Open. 2015; 5(1).

233. Minnerup J, Trinczek B, Storck M, Hohenberger M, Wilpsbäumer S, Abdul-Rahim AH, et al. Feasibility platform for stroke studies: An online tool to improve eligibility criteria for clinical trials. Stroke. 2015; 46 (11):843–8. https://doi.org/10.1161/STROKEAHA.114.007124 PMID: 25395412

234. Modvig L, Vase M, d’Amore F. Clinical and treatment-related factors determining the risk of late relapse in patients with diffuse large B-cell lymphoma. Br J Haematol. 2017; 179(1):75–82. https://doi.org/10.1111/bjh.14822 PMID: 28653321

235. Möllering T, Karch A, Falk CS, Laue T, D’Antiga L, Debray D, et al. Immune status in children before liver transplantation—A cross-sectional analysis within the ChilsSFree multicentre cohort study. Front Immunol. 2019; 10(JAN).

236. Möller S, Jensen MB, Ejlertsen B, Bjerré KD, Larsen M, Hansen HB, et al. The clinical database and the treatment guidelines of the Danish Breast Cancer Cooperative Group (DBC): its 30-years experience and future promise. Acta Oncol. 2008; 47(4):506–24. https://doi.org/10.1080/02841860802059259 PMID: 18465317

237. Mors O, Perto GP, Mortensen PB. The Danish Psychiatric Central Research Register. Scand J Public Health. 2011; 39(7 Suppl):54–7. https://doi.org/10.1177/14034948114035825 PMID: 21775352

238. Mortensen FV, Jensen LS, Sorensen HT, Pedersen L. Cause-specific mortality associated with leukoreduced, buffy coat-depleted, or no blood transfusion after elective surgery for colorectal cancer: a posttrial 15-year follow-up study. Transfusion. 2011; 51(2):259–63. https://doi.org/10.1111/j.1537-2995.2010.02825.x PMID: 20804531
Factors influencing harmonized health data collection, sharing and linkage in Denmark and Switzerland

240. Mortensen HR, Jensen K, Grau C. Aspiration pneumonia in patients treated with radiotherapy for head and neck cancer. Acta Oncol. 2013; 52(2):270–6. https://doi.org/10.3109/0284186X.2012.742205 PMID: 23173758

241. Mueller DR, Schmidt SJ, Roder V. One-year randomized controlled trial and follow-up of integrated neurocognitive therapy for schizophrenia outpatients. Schizophr Bull. 2015; 41(3):604–16. https://doi.org/10.1093/schbul/sbu223 PMID: 25713462

242. Mukai TO, Bro F, Olesen F, Vedsted P. To test or not: A registry-based observational study of an online decision support for prostate-specific antigen tests. Int J Med Inform. 2013; 82(10):973–9. https://doi.org/10.1016/j.ijmedinf.2013.06.010 PMID: 23850383

243. Müller R, Cieza A, Geyh S. Rasch analysis of the Hospital Anxiety and Depression Scale in spinal cord injury. Rehabil Psychol. 2012; 57(3):214–23. https://doi.org/10.1037/a0029287 PMID: 22946609

244. Mukai TO, Olesen F, Liaw KL, Kjae SK. Genital warts in men: A large population-based cross-sectional survey of Danish men. Sex Transm Infect. 2012; 88(8):640–4. https://doi.org/10.1136/sextrans-2012-050512 PMID: 22941865

245. Narath SH, Mautner SI, Svehlikova E, Schultes B, Pieber TR, Sinner FM, et al. An untargeted metabolomics approach to characterize short-term and long-term metabolic changes after bariatric surgery. PloS one. 2016; 11(9).

246. Neelon SEB, Andersen CS, Morgen CS, Kamper-Jorgensen M, Oken E, Gillman MW, et al. Early child care and obesity at 12 months of age in the Danish National Birth Cohort. Int J Obes. 2015; 39(1):33–8.

247. Nickenig G, Estevez-Loureiro R, Franzen O, Tamburino C, Vanderheyden M, Lüscher TF, et al. Percutaneous mitral valve edge-to-edge Repair: In-hospital results and 1-year follow-up of 628 patients of the 2011–2012 pilot European Sentinel Registry. J Am Coll Cardiol. 2014; 64(9):875–84. https://doi.org/10.1016/j.jacc.2014.06.1166 PMID: 25169171

248. Nielsen J, Nielsen RE, Correll CU. Predictors of Clozapine Response in Patients With Treatment-Resistant Schizophrenia Results From a Danish Register Study. J Clin Psychopharmacol. 2012; 32(5):678–83. https://doi.org/10.1097/JCP.0b013e318267b3cd PMID: 22926603

249. Nielsen J, Jensen SOW, Friis RB, Valentin JB, Correll CU. Comparative Effectiveness of Risperidone Long-Acting Injectable vs First-Generation Antipsychotic Long-Acting Injectables in Schizophrenia: Results From a Nationwide, Retrospective Inception Cohort Study. Schizophr Bull. 2015; 41(3):627–36. https://doi.org/10.1093/schbul/sbu128 PMID: 25180312

250. Nielsen PB, Larsen TB, Skjoth F, Gorst-Rasmussen A, Rasmussen LH, Lip GYH. Restarting Anticoagulant Treatment After Intracranial Hemorrhage in Patients With Atrial Fibrillation and the Impact on Recurrent Stroke, Mortality, and Bleeding A Nationwide Cohort Study. Circulation. 2015; 132(6):517–25. https://doi.org/10.1161/CIRCULATIONAHA.115.015735 PMID: 26059010

251. Nielsen SF, Nordestgaard BG. Negative statin-related news stories decrease statin persistence and increase myocardial infarction and cardiovascular mortality: a nationwide prospective cohort study. Eur Heart J. 2016; 37(6):517–26. https://doi.org/10.1093/eurheartj/ehv641 PMID: 26643266

252. Nilsson H, Grove EL, Larsen TB, Nielsen PB, Skjoth F, Maegaard M, et al. Sex Differences in Treatment Quality of Self-Managed Oral Anticoagulant Therapy: 6,900 Patient-Years of Follow-Up. PloS one. 2014; 9(11).

253. Nolan-Kenney RC, Liu M, Akhand O, Calabrese PA, Paul F, Petzold A, et al. Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Ann Neurol. 2019; 85(5):618–29. https://doi.org/10.1002/ana.25482 PMID: 30851125

254. Nørskov AK, Rosenstock CV, Wetterlevj J, Astrup A, Afshari A, Lundstrom LH. Diagnostic accuracy of anaesthesiologists’ prediction of difficult airway management in daily clinical practice: a cohort study of 188 064 patients registered in the Danish Anaesthesia Database. Anaesthesia. 2015; 70(3):272–81. https://doi.org/10.1111/anae.13545 PMID: 25511370

255. Nørskov AK, Wetterlevj J, Rosenstock CV, Afshari A, Astrup G, Jakobsen JC, et al. Prediction of difficult mask ventilation using a systematic assessment of risk factors vs. existing practice—a cluster randomised clinical trial in 94,006 patients. Anaesthesia. 2017; 72(3):296–308. https://doi.org/10.1111/anae.13701 PMID: 27882541

256. Nyholm AM, Gromov K, Palm H, Brix M, Kallemose T, Troelsen A. Time to Surgery Is Associated with Thirty-Day and Ninety-Day Mortality After Proximal Femoral Fracture: A Retrospective Observational Study on Prospectively Collected Data from the Danish Fracture Database Collaborators. J Bone Joint Surg Am. 2015; 97(16):1333–9. https://doi.org/10.2106/JBJS.O.00029 PMID: 26290084

257. Olsen JH, Friis S, Poulsen AH, Fryzek J, Harving H, Tjonneland A, et al. Use of NSAIDs, smoking and lung cancer risk. Br J Cancer. 2008; 98(1):232–7. https://doi.org/10.1038/sj.bjc.6604151 PMID: 18087276
258. Olsen J, Berdeaux G, Skov J. Glaucoma costs in Denmark in treatment naive patients. Acta Ophthalmol. 2013; 91(1):25–31. https://doi.org/10.1111/j.1755-3788.2011.02212.x PMID: 21834919

259. Orsted DD, Bojesen SE, Nielsen SF, Nordestgaard BG. Association of Clinical Benign Prostate Hyperplasia with Prostate Cancer Incidence and Mortality Revisited: A Nationwide Cohort Study of 3 009 258 Men. Eur Urol. 2011; 60(4):691–8. https://doi.org/10.1016/j.eururo.2011.06.016 PMID: 21705134

260. Özcan C, Juel K, Flenssted Lassen J, von Kappelgaard LM, Mortensen PE, Gislason G. The Danish Heart Registry. Clin Epidemiol. 2016; 8:503–8. https://doi.org/10.2147/CLEP.S99475 PMID: 27822091

261. Pacurarui AC, Straus SM, Trifirò O, Olsen J, Berdeaux G, Skov J, et al. Useful Interplay Between Spontaneous ADR Reports and Electronic Healthcare Records in Signal Detection. Drug Saf. 2015; 38(12):1201–10. https://doi.org/10.1007/s40264-015-0341-5 PMID: 26370104

262. Pagh A, Vedtofte T, Lynggaard CD, Rubek N, Lonka M, Johansen J, et al. The value of routine follow-up after treatment for head and neck cancer. A National Survey from DAHANCA. Acta Oncol. 2013; 52(2):277–84. https://doi.org/10.3109/0284186X.2012.741324 PMID: 23320772

263. Palnum KH, Mehnert F, Andersen G, Ingeman A, Krog BR, Bartels PD, et al. Use of Secondary Medical Prophylaxis and Clinical Outcome Among Patients With Ischemic Stroke A Nationwide Follow-Up Study. Stroke. 2012; 43(3):802–9. https://doi.org/10.1161/STROKEAHA.111.635342 PMID: 22207506

264. Pasternak B, Svanstrom H, Melbye M, Hviid A. Association of Treatment With Carvedilol vs Metoprolol Succinate and Mortality in Patients With Heart Failure. JAMA Intern Med. 2014; 174(10):1597–604. https://doi.org/10.1001/jamainternalmed.2014.3258 PMID: 25173681

265. Patadia VK, Schuemie MJ, Coloma PM, Herings R, Petersen N, Duricova D, Lenicek M, Elkjaer M, Bortlik M, Andersen PS, et al. Infliximab dependency is related to decreased surgical rates in adult Crohn’s disease patients. Eur J Gastroenterol Hepatol. 2010; 22(10):1196–203. https://doi.org/10.1097/MEG.0b013e32833de2e PMID: 20793896

266. Pedersen CB. The Danish Civil Registration System. Scand J Public Health. 2011; 39:22–5. https://doi.org/10.1177/1403494810387965 PMID: 21775345

267. Pedersen N, Duricova D, Lenicek M, Elkjaer M, Bortlik M, Andersen PS, et al. Infliximab dependency is related to decreased surgical rates in adult Crohn’s disease patients. Eur J Gastroenterol Hepatol. 2010; 22(10):1196–203. https://doi.org/10.1097/MEG.0b013e32833de2e PMID: 20793896

268. Pedersen EG, Hallas J, Hansen K, Jensen PEH, Gaist D. Identifying Patients with Myasthenia for Epidemiological Research by Linkage of Automated Registers. Neuroepidemiology. 2011; 37(2):120–8. https://doi.org/10.1159/000331481 PMID: 21986220

269. Perera G, Pedersen L, Ansel D, Alexander M, Arrighi HM, Avillach P, et al. Dementia prevalence and incidence in a federation of European Electronic Health Record databases: The European Medical Informatics Framework resource. Alzheimer’s Dement. 2018; 14(2):130–9. https://doi.org/10.1016/j.jalz.2017.06.2270 PMID: 28734783

270. Perregaard H, Aronson JK, Dalhoff K, Hellebæk A. Medication errors detected in non-traditional databases: Types of errors in methotrexate dating as listed in different Danish registers. Eur J Clin Pharmacol. 2015; 71(11):1375–9. https://doi.org/10.1007/s00228-015-1910-3 PMID: 26257248

271. Petersen KU, Pedersen JE, Bonde JP, Ebbehøj NE, Hansen J. Mortality in a cohort of Danish firefigh ters; 1970–2014. Int Arch Occup Environ Health. 2018; 91(6):759–66. https://doi.org/10.1007/s00420-018-1323-6 PMID: 29808435

272. Petersen PB, Kehlet H, Jorgensen CC, Lundbeck Fdn Ctr Fast Track H. Myocardial infarction following fast-track total hip and knee arthroplasty-incidence, time course, and risk factors: a prospective cohort study of 24,862 procedures. Acta Orthop. 2018; 89(6):803–9. https://doi.org/10.1080/17453674.2018.1517487 PMID: 30326755

273. Piazza N, Wenausweser P, van Gameren M, Pilgrim T, Tsikas A, Otten A, et al. Relationship between the logistic EuroSCORE and the Society of Thoracic Surgeons Predicted Risk of Mortality score in patients implanted with the CoreValve ReValving System-A Bern-Rotterdam Study. Am Heart J. 2010;159(2).
277. Piltoft JS, Larsen SB, Johansen C, Baker JL, Cederkvist L, et al. Early life risk factors for testicular cancer: a case-cohort study based on the Copenhagen School Health Records Register. Acta Oncol. 2017; 56(2):220–4. https://doi.org/10.1080/0284186X.2016.1266085 PMID: 28080187

278. Pinborg A, Ortoft G, Loft A, Rasmussen SC, Ingerslev HJ. Cervical conization doubles the risk of pre-term and very preterm birth in assisted reproductive technology twin pregnancies. Hum Reprod. 2015; 30(1):197–204. https://doi.org/10.1093/humrep/deu260 PMID: 25358346

279. Pironi L, Konrad D, Brandt C, Joly F, Wanten G, Agostini F, et al. Clinical classification of adult patients with chronic intestinal failure due to benign disease: An international multicenter cross-sectional survey. Clin Nutr. 2017.

280. Pluss-Suard C, Pannatier A, Kronenberg A, Muhlemann K, Zanetti G. Impact of antibiotic use on carbapenem resistance in Pseudomonas aeruginosa: Is there a role for antibiotic diversity? Antimicrob Agents Chemother. 2013; 57(4):1709–13. https://doi.org/10.1128/AAC.01348-12 PMID: 23357763

281. Pommergaard HC, Klein M, Burchardt J, Rosenberg J, Dahl JB. Variation in postoperative non-steroidal anti-inflammatory analgesic use after colorectal surgery: A database analysis. BMC Anesthesiol. 2014; 14. https://doi.org/10.1186/1471-2253-14-14

282. Pottegard A, Christensen R, Houj A, Christiansen CB, Paulsen MS, Thomsen JL, et al. Primary non-adherence in general practice: a Danish register study. Eur J Clin Pharmacol. 2014; 70(6):757–63. https://doi.org/10.1007/s00228-014-1677-y PMID: 24756147

283. Pottegard A, Garcia Rodriguez LA, Poulsen FR, Hallas J, Gaist D. Antithrombotic drugs and subarachnoid haemorrhage risk. A nationwide case-control study in Denmark. Thromb Haemost. 2015; 114(5):1064–75. https://doi.org/10.1160/TH15-04-0316 PMID: 26202836

284. Poulsen E, Christensen HW, Overgaard S, Hartvigsen J. Prevalence of hip osteoarthritis in chiropractic practice in Denmark: A descriptive cross-sectional and prospective study. Journal of Manipulative and Physiological Therapeutics. 2012; 35(4):263–71. https://doi.org/10.1016/j.jmpt.2012.01.010

285. Poulsen FR, Halle B, Pottegard A, Garcia Rodriguez LA, Hallas J, Gaist D. Subdural hematoma cases identified through a Danish patient register: diagnosis validity, clinical characteristics, and preadmission antithrombotic drug use. Pharmacoepidem Dr S. 2016; 25(11):1253–62.

286. Poulsen LO, Yilmaz MK, Ljungman K, Jespersen N, Wille-Jorgensen P, Petersen LN, et al. Local recurrence rate in a national Danish patient cohort after curative treatment for rectal cancer. Acta Oncol. 2018; 57(12):1639–45. https://doi.org/10.1080/0284186X.2018.1497299 PMID: 30169998

287. Preston MA, Riis AH, Ehrenstein V, Breau RH, Batista JL, Olumi AF, et al. Metformin Use and Prostate Cancer Risk. Eur Urol. 2014; 66(6):1012–20. https://doi.org/10.1016/j.eururo.2014.04.027 PMID: 24857538

288. Prins BP, Mead TJ, Brody JA, Sveinbjornsson G, Ntarla I, Bluhmeyer NA, et al. Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biol. 2018; 19(1).

289. Puukala E, Martinsen JI, Lynge E, Gunnarsdottir HK, Sparen P, Tryggvadottir L, et al. Occupation and cancer—follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009; 48(5):646–790. https://doi.org/10.1080/02841860902913546 PMID: 19925375

290. Radovanovic D, Erme P. AMIS Plus: Swiss registry of acute coronary syndrome. Heart. 2010; 96(12):917–21. https://doi.org/10.1136/hrt.2009.192302 PMID: 20538666

291. Ramlau-Hansen CH, Olesen AV, Parner ET, Sorensen HT, Olsen J. Perinatal markers of estrogen exposure and risk of testicular cancer: follow-up of 1,333,873 Danish males born between 1950 and 2002. Cancer Causes Control. 2009; 20(9):1587–92. https://doi.org/10.1007/s10552-009-9403-2 PMID: 19636804

292. Rasmussen M, Ammari ABH, Pedersen B, Tønnesen H. Smoking cessation intervention activities and outcome before, during and after the national Healthcare Reform in Denmark. Clin Health Promot. 2012; 2:26–35.

293. Rasmussen M, Tønnesen H. The Danish smoking cessation database. Clin Health Promot. 2016. 6 (2):36–41.

294. Rasmussen M, Fernandez E, Tønnesen H. Effectiveness of the Gold Standard Programme compared with other smoking cessation interventions in Denmark: a cohort study. BMJ Open. 2017; 7(2).

295. Rathe JO. The effect of generic switching on concerns about medicine and non-persistence among Danish adults in a general practice setting. Dan Med J. 2015; 62(10).

296. Reyes C, Pottegard A, Schwarz P, Javaid MK, Van Staa TP, Cooper C, et al. Real-Life and RCT Participants: Alendronate Users Versus FITs’ Trial Eligibility Criterion. Calcif Tissue Int. 2016; 99(3):243–9. https://doi.org/10.1007/s00223-016-0141-7 PMID: 27099132
Factors influencing harmonized health data collection, sharing and linkage in Denmark and Switzerland

297. Ringdal KG, Lossius HM, Jones JM, Lauritsen JM, Coats TJ, Palmer CS, et al. Collecting core data in severely injured patients using a consensus trauma template: An international multicentre study. Critical Care. 2011; 15(5).

298. Roberto G, Leal I, Sattar N, Loomis AK, Avillach P, Egger P, et al. Identifying cases of type 2 diabetes in heterogeneous data sources: Strategy from the EMIF project. PloS one. 2016; 11(8).

299. Rudin C, Burri M, Shen Y, Rode R, Nadal D, Pediat Infectious Dis Grp S, et al. Long-term safety and effectiveness of ritonavir, neffinavir, and lopinavir/ritonavir in antiretroviral-experienced HIV-infected children. Pediatr Infect Dis J. 2008; 27(5):431–7. https://doi.org/10.1097/INF.0b013e3181646d5a PMID: 18382386

300. Rungby J, Schou M, Warrer P, Ytte L, Andersen GS. Prevalence of cardiovascular disease and evaluation of standard of care in type 2 diabetes: a nationwide study in primary care. Cardiovasc Endocrinol. 2017; 6(4):145–51. https://doi.org/10.1097/XCE.0000000000000135 PMID: 29276653

301. Russell RJ, Chachi L, FitzGerald JM, Backer V, Olivenstein R, Titlestad IL, et al. Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Respir Med. 2018; 6(7):499–510. https://doi.org/10.1016/S2213-2600(18)30201-7 PMID: 29793857

302. Schaefeler HH, de Villiers JD, Lotze U, Sivukhina E, Burnier M, Noll G, et al. Patients with Non-Insulin Dependent Diabetes Mellitus and Metabolic Syndrome Are Suboptimal Treated in Swiss Primary Care. Clin Exp Hypertens. 2013; 35(7):496–505. https://doi.org/10.3109/10641963.2012.759275 PMID: 23031512

303. Schäfer R, Strnad V, Polgár C, Uter W, Hildebrandt G, Ott OJ, et al. Quality-of-life results for accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation in early breast cancer after breast-conserving surgery (GEC-ESTRO): 5-year results of a randomised, phase 3 trial. Lancet Oncol. 2018; 19(6):834–44. https://doi.org/10.1016/S1470-2045(18)30195-5 PMID: 29695348

304. Schatlo B, Fung C, Fathi A-R, Sailer M, Winkler K, Daniel RT, et al. Introducing a nationwide registry: the Swiss study on aneurysmal subarachnoid haemorrhage (Swiss SOS). Acta Neurochir. 2012; 154(12):2173–8. https://doi.org/10.1007/s00701-012-1500-4 PMID: 23035275

305. Schatorje` EJH, Gathmann B, Van Hout RWNM, De Vries E, Alsina L, Baumann U, et al. The PedPAD study: Boys predominate in the hypogammaglobulinaemia registry of the ESID online database. Clin Exp Immunol. 2014; 176(3):387–93. https://doi.org/10.1111/cei.12281 PMID: 24506305

306. Schmaal L, Hibar DP, Sámann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatr. 2017; 22(6):900–9.

307. Schmidt M, Antonsen S, Hansen B, Moller J, Thordal C, Sorensen HT. Mortality following acute medical admission in Denmark: a feasibility study. Clin Epidemiol. 2010; 2:137–44. https://doi.org/10.2147/clep.s10190 PMID: 20865111

308. Schmidt M, Antonsen S, Hansen B, Moller J, Thordal C, Sorensen HT. Mortality following acute medical admission in Denmark: a feasibility study. Clin Epidemiol. 2010; 2:195–203. https://doi.org/10.2147/clep.s12171 PMID: 21042551

309. Schmidt M, Pedersen L, Maeng M, Lassen JF, Lash TL, Nielsen TT, et al. Nonsteroidal Antiinflammatory Drug Use and Cardiovascular Risks After Coronary Stent Implantation. Pharmacotherapy. 2011; 31(5):458–68. https://doi.org/10.1592/phco.31.5.458 PMID: 21923427

310. Schmidt M, Jacobsen JB, Lash TL, Botker HE, Sorensen HT. 25 year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study. BMJ. 2012; 344:e356. https://doi.org/10.1136/bmj.e356 PMID: 22279115

311. Schmidt M, Horvath-Puho E, Thomsen RW, Smeth L, Sorensen HT. Acute infections and venous thromboembolism. J Intern Med. 2012; 271(6):608–18. https://doi.org/10.1111/j.1365-2796.2011.02473.x PMID: 22026462

312. Schmidt M, Pedersen L, Sorensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014; 29(8):541–9. https://doi.org/10.1007/s10654-014-9930-3 PMID: 24965263

313. Schmidt M, Maeng M, Madsen M, Sorensen HT, Jensen LO, Jakobsen C-J. The Western Denmark Heart Registry Its Influence on Cardiovascular Patient Care. J Am Coll Cardiol. 2018; 71(11):1259–72. https://doi.org/10.1016/j.jacc.2017.10.110 PMID: 29544611

314. Schneeberger D, Tyndall A, Kay J, Sendergaard AH, Carreira PE, Morgel E, et al. Systemic sclerosis without antinuclear antibodies or Raynaud's phenomenon: A multicentre study in the prospective EULAR scleroderma trials and research (EUSTAR) database. Rheumatology. 2013; 52(3):560–7. https://doi.org/10.1093/rheumatology/kes315 PMID: 23221323
315. Schoos MM, Sejersten M, Baber U, Treschow PM, Madsen M, Hvelplund A, et al. Outcomes of Patients Calling Emergency Medical Services for Suspected Acute Cardiovascular Disease. Am J Cardiol. 2015; 115(1):13–20. https://doi.org/10.1016/j.amjcard.2014.09.042 PMID: 25456866

316. Schroll H, Thomsen JL, Andersen M, Frigborg S, Søndergaard J. The Danish model for improvement of diabetes care in general practice: impact of automated collection and feedback of patient data. International Journal of Family Medicine. 2012; 2012.

317. Schuemie MJ, Coloma PM, Straatman H, Herings RMC, Trifirò G, Matthews JN, et al. Using electronic health care records for drug safety signal detection: A comparative evaluation of statistical methods. Medical Care. 2012; 50(10):890–7. https://doi.org/10.1097/MLR.0b013e31825f63bf PMID: 22929992

318. Sejbaek CS, Hageman I, Pinborg A, Hougaard CO, Schmidt L. Incidence of depression and influence of depression on the number of treatment cycles and births in a national cohort of 42,880 women treated with ART. Hum Reprod. 2013; 28(4):1100–9. https://doi.org/10.1093/humrep/des442 PMID: 23300199

319. Skyum F, Andersen V, Chen M, Pedersen C, Mogensen CB. Infectious gastroenteritis and the need for strict contact precaution procedures in adults presenting to the emergency department: A Danish register-based study. J Hosp Infect. 2018; 98(4):391–7. https://doi.org/10.1016/j.jhin.2017.11.001 PMID: 29128345

320. Skyum F, Pedersen C, Andersen V, Chen M, Franke A, Petersen D, et al. Risk factors for contagious gastroenteritis in adult patients with diarrhoea in the emergency department—A prospective observational multicentre study. BMC Infect Dis. 2019; 19(1).

321. Soerensen AV, Donskov F, Hermann GG, Jensen NV, Petersen A, Spliid H, et al. Improved overall survival after implementation of targeted therapy for patients with metastatic renal cell carcinoma: Results from the Danish Renal Cancer Group (DARENCA) study-2. Eur J Cancer. 2014; 50(3):553–62. https://doi.org/10.1016/j.ejca.2013.10.010 PMID: 24215846

322. Sommer C, Zuccolin D, Amrana V, Schmitz N, Adolfsson P, Colombo N, et al. Building clinical trials around patients: Evaluation and comparison of decentralized and conventional site models in patients with low back pain. Contemp Clinical Trials Commun. 2018; 11:120–6.

323. Sørensen J, Davidsen M, Gudex C, Pedersen KM, Bronnum-Hansen H. Danish EQ-5D population norms. Scand J Public Health. 2009; 37(5):467–74. https://doi.org/10.1177/1403494809105286

324. Sørensen AV, Donskov F, Hermann GG, Jensen NV, Petersen A, Spliid H, et al. Improved overall survival after implementation of targeted therapy for patients with metastatic renal cell carcinoma: Results from the Danish Renal Cancer Group (DARENCA) study-2. Eur J Cancer. 2014; 50(3):553–62. https://doi.org/10.1016/j.ejca.2013.10.010 PMID: 24215846

325. Stahl Madsen M, Bakgaard N. Treatment of varicose veins in Denmark. Dan Med J. 2014; 61(10):A4929–A. PMID: 25283621

326. Steenholdt C, Brynskov J, Thomsen OO, Munck LK, Fallingborg J, Christensen LA, et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: a randomised, controlled trial. Gut. 2014; 63(6):919–27. https://doi.org/10.1136/gutjnl-2013-305279 PMID: 23878167

327. Stewardson AJ, Alligual J, Beyersmann J, Graves N, Schumacher M, Meyer R, et al. The health and economic burden of bloodstream infections caused by antimicrobial-susceptible and non-susceptible Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: A multicentre retrospective cohort study. Euro Surveill. 2016; 21(33).

328. Stinstra V, Ott OJ, Hildebrandt G, Kauer-Dorné D, Knauerhasé H, Major T, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: A randomised, phase 3, non-inferiority trial. Lancet. 2016; 387(10015):229–38. https://doi.org/10.1016/S0140-6736(15)00471-7 PMID: 26944115

329. Stukalin I, Connor Wells J, Fraccon A, Pasini F, Porta C, Lalani AKA, et al. Fourth-line therapy in metastatic renal cell carcinoma (mRCC): Results from the international mRCC database consortium (IMDC). Kidney Cancer. 2018; 2(1):31–6.
Svendsen LB, Jensen LS, Holm J, Kofoed SC, Pilegaard H, Preisler L, et al. Differences in the pattern of Toll
Thomsen RW, Riis A, Kornum JB, Christensen S, Johnsen SP, Sorensen HT. Preadmission Use of Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sorensen HT. The predictive value of ICD-
Talman M-LM, Rasmussen BB, Andersen J, Christensen IJ. Estrogen receptor analyses in the Danish Thillemann TM, Pedersen AB, Møhner F, Johnsen SP, Soballe K. Use of diuretics and risk of implant Suttorp M, Schulze P, Glauche I, Göhring G, Von Neuhoff N, Metzler M, et al. Front-line imatinib treat-
Thornqvist C, Gislason GH, Kober L, Jensen PF, Torp-Pedersen C, Andersson C. Body mass index and risk of perioperative cardiovascular adverse events and mortality in 34,744 Danish patients undergoing hip or knee replacement. Acta Orthop. 2014; 85(5):456–62. https://doi.org/10.3109/17453674.2014.934184 PMID: 24954493
Thilstedsen LM, Nissen TN, Kjaergaard J, Pihl GT, Birk NM, Benn CS, et al. Bacillus Calmette-Guérin immunisation at birth and morbidity among Danish children: A prospective, randomised, clinical trial. Contemp Clin Trials. 2015; 42:213–8. https://doi.org/10.1016/j.cct.2015.04.006 PMID: 25896113
Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sorensen HT. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med Res Methodol. 2011; 11:83. https://doi.org/10.1186/1471-2288-11-83 PMID: 21619668
Toliánès MC, Strandberg-Larsen K, Forthun I, Petersen TG, Moster D, Andersen A-MN, et al. Cohort profile: cerebral palsy in the Norwegian and Danish birth cohorts (MOBAND-CP). BMJ open. 2016; 6(9):e012777–e. https://doi.org/10.1136/bmjopen-2016-012777 PMID: 27591025
Trabert B, Ness RB, Lo-Ciganic W-H, Murphy MA, Goode EL, Poole EM, et al. Aspirin, Nonaspirin Nonsteroidal Anti-inflammatory Drug, and Acetaminophen Use and Risk of Invasive Epithelial Ovarian Cancer: A Pooled Analysis in the Ovarian Cancer Association Consortium. J Nat Cancer Inst. 2014; 106(2).
Tutolo M, Cornu JN, Bauer RM, Ahyai S, Bozzini G, Heesakers J, et al. Efficacy and safety of artificial urinary sphincter (AUS): Results of a large multi-institutional cohort of patients with mid-term follow-up. NeuuroUrol Urodynam. 2019; 38(2):710–8.
Tvedsvik TF, Jensen MB, Balslev E, Ejertsen B, Kromann N. Stage migration after introduction of sentinel lymph node dissection in breast cancer treatment in Denmark: a nationwide study. Eur J Cancer. 2011; 47(6):872–8. https://doi.org/10.1016/j.ejca.2010.11.022 PMID: 21194922
Tvedsvik TF, Jensen MB, Ejertsen B, Christiansen P, Balslev E, Kromann N. Prognostic significance of axillary dissection in breast cancer patients with micrometastases or isolated tumor cells in sentinel nodes: a nationwide study. Breast Cancer Res Treat. 2015; 153(3):599–606. https://doi.org/10.1007/s10549-015-3560-7 PMID: 26341752
Ulf-Moller CJ, Svendsen AJ, Viemose LN, Jacobsen S. Concordance of autoimmune disease in a nationwide Danish systemic lupus erythematosus twin cohort. Semin Arthritis Rheum. 2018; 47(4):538–44. https://doi.org/10.1016/j.semarthritis.2017.06.007 PMID: 28755788
Underberg L, Sikjaer T, Mosekilde L, Rejmark L. Cardiovascular and renal complications to postsurgical hypoparathyroidism: a Danish nationwide controlled historic follow-up study. J Bone Miner Res. 2013; 28(11):2275–87. https://doi.org/10.1002/jbmr.1979 PMID: 23661265
Underberg L, Sikjaer T, Mosekilde L, Rejmark L. The Epidemiology of Nonsurgical Hypoparathyroidism in Denmark: A Nationwide Case Finding Study. J Bone Miner Res. 2015; 30(9):1738–44. https://doi.org/10.1002/jbmr.2501 PMID: 25753591
Ungaro RC, Limketkai BN, Jensen CB, Allin KH, Agrawal M, Ullman T, et al. Stopping 5-aminosalicylates in patients with ulcerative colitis starting biologic therapy does not increase the risk of adverse clinical outcomes: analysis of two nationwide population-based cohorts. Gut. 2019; 68(6):977–84. https://doi.org/10.1136/gutjnl-2018-317021 PMID: 30420398
351. Usyvat LA, Haviv YS, Etter M, Kooman J, Marcelli D, Marelli C, et al. The MONitoring dialysis outcomes (MONDO) initiative. Blood Purif. 2013; 35(1–3):37–48. https://doi.org/10.1159/000345179 PMID: 23343545

352. Vach W, Saxer P, Holsgaard-Larsen A, Overgaard S, Farin-Gliattacker E, Bless N, et al. Rationale and methods of an observational study to support the design of a nationwide surgical registry: the MIDAS study. Swiss Med Wkly. 2018; 148.

353. Van Hedel HJA, Severini G, Scarton A, O’Brien A, Reed T, Gaebler-Spira D, et al. Advanced Robotic Therapy Integrated Centers (ARTIC): An international collaboration facilitating the application of rehabilitation technologies. J Neuroeng Rehab. 2018; 15(1).

354. van Stralen KJ, Emma F, Jager KJ, Verrina E, Schaef er F, Laube GF, et al. Improvement in the renal prognosis in nephropathic cystinosis. Clin J Am Soc Nephrol. 2011; 6(10):2485–91. https://doi.org/10.2215/CJN.02000311 PMID: 21868618

355. Vasan SK, Rostgaard K, Majeed A, Ullum H, Titestad KE, Pedersen OBV, et al. ABO Blood Group and Risk of Thromboembolic and Arterial Disease: A Study of 1.5 Million Blood Donors. Circulation. 2016; 133(15):1449–57. https://doi.org/10.1161/CIRCULATIONAHA.115.017563 PMID: 26939588

356. Vester-Andersen MK, Vind I, Prosberg MV, Bengtsson BG, Blixt T, Munkholm P, et al. Hospitalisation, surgical and medical recurrence rates in inflammatory bowel disease 2003-2011-A Danish population-based cohort study. J Crohns Colitis. 2014.

357. Vest-Hansen B, Riis AH, Sorensen HT, Christiansen CF. Acute admissions to medical departments in Denmark: diagnoses and patient characteristics. Eur J Intern Med. 2014; 25(7):639–45. https://doi.org/10.1016/j.ejim.2014.06.017 PMID: 24997487

358. Viberg B, Gundtoft PH, Schonnemann J, Pedersen L, Andersen LR, Titestad K, et al. Introduction of national guidelines for restrictive blood transfusion threshold for hip fracture patients-a consecutive cohort study based on complete follow-up in national databases. J Orthop Surg Res. 2018;13. https://doi.org/10.1186/s13018-018-0719-z

359. Villadsen MJ, Sorensen CH, Godballe C, Nygaard B. Need for thyroidectomy in patients treated with radioactive iodide for benign thyroid disease. Dan Med Bull. 2011; 58(12).

360. Walters S, Mari ng C, Butler J, Brier ley JD, Rachet B, Coleman MP. Comparability of stage data in cancer registries in six countries: Lessons from the International Cancer Benchmarking Partnership. Int J Cancer. 2013; 132(3):676–85. https://doi.org/10.1002/ijc.27651 PMID: 22623157

361. Weber R, Ruppl ik M, Rickenbach M, Spoerri A, Furrer H, Battegay M, et al. Decreasing mortality and changing patterns of causes of death in the Swiss HIV Cohort Study. HIV Med. 2013; 14(4):195–207. https://doi.org/10.1111/1468-1293.2012.01051.x PMID: 22998068

362. Weigang E, Conzelmann LO, Kallenbach K, Da punt O, Karck M. German Registry for Acute Aortic Dissection Type A (GERAAD A)—Lessons Learned from the Registry. Thorac Cardiovasc Surg. 2010; 58(3):154–8. https://doi.org/10.1055/s-0029-1240806 PMID: 20376725

363. Wiegand S, Keller KM, Lob-Corzi lius T, Pott W, Reinhe r T, Robl M, et al. Predicting weight loss and maintenance in overweight/obese pediatric patients. Horm Res Paediatr. 2014; 82(6):380–7. https://doi.org/10.1159/000368963 PMID: 25531074

364. Wildgaard K, Ravn J, Nikolajsen L, Jakobsen E, Jensen TS, Kehlet H. Consequences of persistent pain after lung cancer surgery: a nationwide questionnaire study. Acta Anaesthesiolog Scand. 2011; 55 (1):60–8. https://doi.org/10.1111/j.1399-6576.2010.02357.x PMID: 21077845

365. Winterfeld U, Alligno n A, Panchaud A, Rickenback M, Spoerri A, Furrer H, Battegay M, et al. Pregnancy outcome following maternal exposure to statins: A multicentre prospective study. BJOG. 2013; 120(4):463–71. https://doi.org/10.1111/1471-0528.12066 PMID: 23194157

366. Wurtzen H, Dalton SO, Andersen KK, Ells ass P, Flyger HL, Sumbundu A, et al. Who participates in a randomized trial of mindfulness-based stress reduction (MBSR) after breast cancer? A study of factors associated with enrollment among Danish breast cancer patients. Psychooncolgy. 2013; 22(5):1180–5. https://doi.org/10.1002/pon.3094 PMID: 22592966

367. Ylijoki-Sorens en S, Sajantila A, Lalu K, Boggild H, Boldsen JL, Boel LW. Coding ill-defined and unknown cause of death is 13 times more frequent in Denmark than in Finland. Forensic Sci Int. 2014; 244:289–94. https://doi.org/10.1016/j.forsciint.2014.09.016 PMID: 25300069

368. Zalfani J, Freslev T, Olsen M, Ben Ghezala I, Gammelager H, Arendt JFB, et al. Positive predictive value of the international classification of diseases, 10th edition diagnosis codes for anemia caused by bleeding in the Danish National Registry of Patients. Clin Epidemiol. 2012; 4(1):327–31.

369. Zecca C, Roth S, Findling O, Perriard G, Bachmann V, Pless ML, et al. Real-life long-term effectiveness of fingolimod in Swiss patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2018; 25(5):762–7. https://doi.org/10.1111/ene.13594 PMID: 29431876
370. Zellweger U, Bopp M, Holzer BM, Djalali S, Kaplan V. Prevalence of chronic medical conditions in Switzerland: exploring estimates validity by comparing complementary data sources. BMC Public Health. 2014; 14(1):1157.

371. Zellweger U, Junker C, Bopp M, Egger M, Spoerri A, Zwahlen M, et al. Cause of death coding in Switzerland: evaluation based on a nationwide individual linkage of mortality and hospital in-patient records. Popul Health Metr. 2019; 17.

372. Zwisler AD, Rossau HK, Nakano A, Foghmar S, Eichhorst R, Prescott E, et al. The Danish Cardiac Rehabilitation Database. Clin Epidemiol. 2016; 8:451–6. https://doi.org/10.2147/CLEP.S99502 PMID: 27822083

373. Shabani M, Borry P. Rules for processing genetic data for research purposes in view of the new EU General Data Protection Regulation. Eur J Hum Genet. 2018; 26(2):149–56. https://doi.org/10.1038/s41431-017-0045-7 PMID: 29187736

374. Siu LL, Lawler M, Haussler D, Knoppers BM, Lewin J, Vis DJ, et al. Facilitating a culture of responsible and effective sharing of cancer genome data. Nat Med. 2016; 22:464. https://doi.org/10.1038/nm.4089 PMID: 27149219

375. Copenhagen Healthcare Cluster. Better use of health data. 2018. [Internet] Available from: https://www.cphhealthtech.com/~media/cht/downloads/pdf/data%20redder%20liv%20cases/better-use-of-health-data-report-english-version.aspx?la=en

376. Statistik Denmark. Step-by-step practices for national register-based research projects at Statistics Denmark. 2018. [Internet] Available from: https://www.dst.dk/en/TilSalg/Forskningsservice

377. Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sorensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015; 7:449–90. https://doi.org/10.2147/CLEP.S91125 PMID: 26604824

378. Federal Office of Public Health (FOPH). Directories of approved health insurers and reinsurers. 2018. [Internet] Available from: https://www.bag.admin.ch/bag/en/home/versicherungen/krankenversicherung/krankenversicherung-versicherer-aufsicht/verzeichnisse-krankenundrueckversicherer.html.

379. Basin D. Risk Analysis on Different Usages of the Swiss AHV Number. 2017. [Internet] Available from: https://www.bj.admin.ch/bj/de/home/publiserv/publikationen/externe/2017-09-27.html

380. Carr D, Littler K. Sharing Research Data to Improve Public Health: A Funder Perspective. J Empir Res Hum Res. 2015; 10(3):314–6.

381. Mettler M. Blockchain technology in healthcare: The revolution starts here. e-Health Networking, Applications and Services (Healthcom), 2016 IEEE 18th International Conference on; 2016: IEEE.