Abstract

It is important to understand how the outcome of an election can be modified by an agent with control over the structure of the election. Electoral control has been studied for many election systems, but for all studied systems the winner problem is in P, and so control is in NP. There are election systems, such as Kemeny, that have many desirable properties, but whose winner problems are not in NP. Thus for such systems control is not in NP, and in fact we show that it is typically complete for Σ^p_2 (i.e., NP^{NP}, the second level of the polynomial hierarchy). This is a very high level of complexity. Approaches that perform quite well for solving NP problems do not necessarily work for Σ^p_2-complete problems. However, answer set programming is suited to express problems in Σ^p_2, and we present an encoding for Kemeny control.

Introduction

The study of elections often deals with trade-offs for different properties that an election system satisfies. Elections have a wide range of applications from voting in political elections to applications in artificial intelligence (see, e.g., Brandt et al. [11]). And given the role of elections in multiagent system settings, it is important that we study the computational properties of election systems.

Attacks on the structure of an election, referred to as control, were introduced by Bartholdi, Tovey, and Trick [4] and model natural scenarios where an agent, with control over the structure of an election, modifies the structure (e.g., by adding candidates) to ensure that their preferred candidate wins. It is important to study how these types of attacks on the structure of an election can affect the outcome and how computationally difficult it is to determine if such an attack exists.

The complexity of electoral control has been studied for many different natural elections systems and has been an important line of research in computational social choice (see, e.g., Faliszewski and Rothe [21]). However, for all of those systems the winner problems are in P, and so the standard control problems are in NP. To go beyond what can easily be encoded for SAT solvers, we need to look at election systems with harder winner problems. But even for election systems whose winner problems are in NP, the most common control problems are still in NP.
There are election systems that have many desirable social-choice properties, but whose winner problems are not in NP (assuming NP ≠ coNP). One important example is the Kemeny rule [33], whose winner problem is \(\Theta_2^p \)-complete (i.e., complete for parallel access to NP) [31] and so the complexity of the standard control problems for Kemeny are all \(\Theta_2^p \)-hard and thus also not in NP. For election systems with \(\Theta_2^p \)-complete winner problems, control is in \(\Sigma_2^p \) (i.e., \(NP^{NP} \), the second level of the polynomial hierarchy), and we show that control is typically \(\Sigma_2^p \)-complete for such systems.

This is a very high level of complexity. And so a natural question to ask is how Kemeny control can be solved. We mention here that there has been a long line of work that considers ways to solve hard election problems. This includes work on computing Kemeny winners (see, e.g., [14, 6, 2, 5]) and on solving election-attack problems (see, e.g., Rothe and Schend [40]). The work on solving hard election-attack problems has been restricted to problems in NP, and such approaches do not work for \(\Sigma_2^p \)-complete problems. Answer set programming (ASP) is an approach that has been recently applied for winner determination in voting, including for systems with hard winner problems [13]. ASP is suited to express \(\Sigma_2^p \) problems. However, encoding \(\Sigma_2^p \)-complete problems in ASP requires the use of more advanced techniques than encoding computationally easier problems. We present an encoding of Kemeny control using these advanced techniques and discuss other related approaches.

We make the following main contributions.

- We obtain the first natural \(\Sigma_2^p \)-completeness results for elections.
- We define several new natural and simple \(\Sigma_2^p \)-complete graph problems to prove our results, and these problems compare favorably in naturalness and simplicity to other \(\Sigma_2^p \)-complete problems, and so in usefulness as problems to reduce from.
- We show for the most commonly-studied election systems with \(\Theta_2^p \)-complete winner problems, including the Kemeny rule, that control is typically \(\Sigma_2^p \)-complete.
- We build upon recent work on combining ASP with voting [13] by encoding our \(\Sigma_2^p \)-complete control problems using advanced ASP techniques.

Preliminaries

An election consists of a set of candidates \(C \), and a set of voters \(V \), where each voter has a vote that strictly ranks each candidate from most to least preferred. An election system, \(E \), maps an election \((C, V)\) to a set of winners, where the winner set can be any subset of the candidate set. The winner problem for an election system, \(E \)-Winner, is defined in the following way. Given an election \((C, V)\) and a candidate \(p \in C \), is \(p \) a winner of the election using election system \(E \)?

We consider the most important election systems with \(\Theta_2^p \)-complete winner problems: Kemeny, Young, and Dodgson.

A candidate is a Kemeny winner if it is the most-preferred candidate in a Kemeny consensus [33], which is a total order “\(\succ \)” that minimizes the sum of Kendall’s Tau distances (i.e., number of pairwise disagreements) with the voters in an election, i.e., minimizes \(\sum_{a,b \in C, a \succ b} \| \{ v \in V \mid b \succ_v a \} \| \), where \(\succ_v \) denotes the preference of voter \(v \).

A candidate is a Young winner if it can become a weak Condorcet winner (a candidate that beats-or-ties every other candidate pairwise) by deleting the fewest voters [48].

A candidate is a Dodgson winner if it can become a Condorcet winner (a candidate that beats every other candidate pairwise) with the fewest swaps between adjacent candidates in the voters’ rankings [16].
Electoral control models the actions of an agent, referred to as the election chair, who modifies the structure of the election (e.g., the voters) to ensure that their preferred candidate wins (in the constructive case) [4] or that their despised candidate does not win (in the destructive case) [30].\(^1\) (These two papers define the standard control actions.) We formally define constructive control by adding candidates (CCAC) below, which models the real-world scenario of an election chair adding spoiler candidates to an election to ensure that their preferred candidate wins.

Name: \(\mathcal{E}\)-CCAC

Given: A set of registered candidates \(C\), a set of unregistered candidates \(D\), a set of voters \(V\) having preferences over \(C \cup D\), an addition limit \(k\), and a preferred candidate \(p \in C\).

Question: Does there exist a set \(D' \subseteq D\) such that \(\|D'\| \leq k\) and \(p\) is a winner of \((C \cup D', V)\) using election system \(\mathcal{E}\)?

Computational Complexity

Our results concern the complexity classes \(\Theta_2^p\) and \(\Sigma_2^p\). The class \(\Theta_2^p\) was introduced in [39], named in [46], and shown to be equivalent to \(\text{P}^{\text{NP}}\), the class of problems that can be solved by a polynomial-time machine with parallel access to an NP oracle, in [28]. \(\Sigma_2^p = \text{NP}^{\text{NP}}\) is the class of problems solvable by a nondeterministic polynomial-time machine with access to an NP oracle, and is the second level of the polynomial hierarchy [38, 45]. Note that \(\text{NP} \cup \text{coNP} \subseteq \Theta_2^p \subseteq \text{NP}^{\text{NP}} \subseteq \Sigma_2^p\).

Complexity Results

In this section we show that control problems for Kemeny, Young, and Dodgson elections are typically \(\Sigma_2^p\)-complete.

Observation 1 For an election system \(\mathcal{E}\), the complexity of each standard control action is in \(\text{NP}^{\mathcal{E}-\text{Winner}}\).

It is easy to see that the above observation holds. For a given election, guess the control action of the chair (e.g., the set of candidates to be added) and then use the oracle to check that the preferred candidate is a winner (or that the despised candidate is not a winner). In the case of partition control, which will not be discussed further in this paper, the oracle will also be used to determine which candidates participate in the runoff.

The winner problems for Kemeny, Young, and Dodgson are each in \(\Theta_2^p\), and so the complexity of each standard control action is in \(\text{NP}^{\Theta_2^p} = \Sigma_2^p\).\(^2\)

Corollary 2 For Kemeny, Young, and Dodgson elections, the complexity of each standard control action is in \(\Sigma_2^p\).

As mentioned in Brandt et al. [10], these control problems inherit \(\Theta_2^p\)-hardness from their winner problems.

We will now show that these control problems are typically \(\Sigma_2^p\)-complete. Our \(\Sigma_2^p\)-completeness results are summarized in Table 1 and we conjecture that for Kemeny, Young, and Dodgson elections, the complexity of each standard control action is \(\Sigma_2^p\)-complete.\(^3\)

\(^1\)We mention here that early work that considered electoral control generally used the unique winner model whereas we allow multiple winners. This rarely makes a difference in the complexity for concrete systems.

\(^2\)Note that \(\Sigma_2^p = \text{NP}^{\text{NP}} \subseteq \text{NP}^{\Theta_2^p} \subseteq \text{NP}^{\text{NP}^{\text{NP}}} = \text{NP}^{\text{NP}^{\text{NP}}} = \Sigma_2^p\).

\(^3\)De Haan [15] shows \(\Sigma_2^p\)-hardness for control by adding/deleting issues for an analogue of Kemeny for judgment aggregation. Since our setting is much more restrictive, this lower bound does not at all imply our lower bound.
Table 1: Summary of our Σ^p_2-completeness results for control. Kemeny’ refers to a natural variant of Kemeny defined in [17] and (*) refers to the variant of control where the chair can delete only certain candidates.

Voters	Adding	Deleting
Young	Young (Thm 10)	Young (Thm 9)
Kemeny'	Kemeny' (Thm 7)	Kemeny' (Thm 5)
Candidates	Kemeny (Thm 6)	Kemeny (*) (Thm 5)
Dodgson	Dodgson (Thm 11)	Dodgson (Thm 11)

We mention here that there are far fewer completeness results for Σ^p_2 than there are for NP (see Schaefer and Umans [43, 44] for a list of completeness results in the polynomial hierarchy). An important reason why proving Σ^p_2-hardness is difficult is the scarcity of “simple” Σ^p_2-complete problems to reduce from. For example, scoring versions of Kemeny, Young, and Dodgson are proven NP-hard by reductions from simple NP-complete problems such as Vertex-Cover, but prior to this paper there were no Σ^p_2-complete simple versions of Vertex-Cover that were suitable to show that related control-by-adding problems are Σ^p_2-hard.

Below we define simple and natural Σ^p_2-complete versions of Vertex-Cover (and the analogous Independent-Set versions are also Σ^p_2-complete). We will see that these problems are particularly useful to show that our control problems are Σ^p_2-hard. Of course, we need to show that our new simple problems are Σ^p_2-hard proofs for multiple other problems.

The following problem (and its closely related Independent-Set analogue) is particularly useful to reduce to control-by-adding problems. For example, we will see that this problem quite easily reduces to Kemeny-CCAC and that the Independent-Set analogue of this problem reduces quite easily to Young-CCAV (control by adding voters).

Name: Vertex-Cover-Member-Add

Given: Graph $G = (V, E)$, set of addable vertices V', addition limit k, and vertex $\hat{v} \in V$.

Question: Does there exist a set $W \subseteq V'$ of at most k addable vertices such that \hat{v} is a member of a minimum vertex cover of $(V \cup W, E)$?

Theorem 3 Vertex-Cover-Member-Add is Σ^p_2-complete.

To show the essence of the argument of the proof of Theorem 3 and avoid some of the more finicky details of the proof, we prove that Vertex-Cover-Member-Select is Σ^p_2-complete, and then briefly discuss how this proof can be adapted for Vertex-Cover-Member-Add.\(^5\)

Name: Vertex-Cover-Member-Select

Given: Graph $G = (V, E)$, a set $V' \subseteq V$ of deletable vertices, delete limit k, and vertex $\hat{v} \in V$.

Question: Does there exist a set $W \subseteq V'$ of at most k deletable vertices such that \hat{v} is a member of a minimum vertex cover of $G - W$?\(^6\)

\(^4\)A vertex cover of a graph is a set of vertices such that every edge is incident with at least one vertex in the set.

\(^5\)We can easily prove Vertex-Cover-Member-Select Σ^p_2-hard by reducing the Σ^p_2-complete problem Generalized-Node-Deletion to it, in which we are given a graph, and two integers k and ℓ, and we ask if we can delete at most k vertices such that the remaining graph does not contain $K_{\ell+1}$, a clique of size $\ell + 1$ [42]. For the reduction, simply output $(H, V(H), k, \hat{v})$, where H is the graph $(G \cup \{\hat{v}\}, \emptyset) \times K_{\ell+1}$.

However, this proof does not generalize to Vertex-Cover-Member-Add. In particular, the “adding” analogue of Generalized-Node-Deletion in which we ask if we can add up to k vertices such that the resulting graph does not have a clique of size $\ell + 1$, is in P (since it is best to add nothing). And the version where we ask if there is a clique of size $\ell + 1$ after adding is in NP.

\(^6\)Let $G = (V(G), E(G))$ and define $G - W = (V(G) - W, \{(v, w) \mid \{v, w\} \in E(G) \land v, w \in V(G) - W\})$.
Lemma 4 Vertex-Cover-Member-Select is Σ_2^p-complete.

Proof. Membership in Σ_2^p is easy to see: Guess at most k deletable vertices to delete, then guess a vertex cover containing $\hat{\psi}$ and use the NP oracle to check that the guessed vertex cover is a minimum vertex cover.

To show hardness, we reduce from the following Σ_2^p-complete problem, QSAT$_2$ [45, 47]: all true formulas of the form $\exists x_1 \cdots \exists x_n \neg(\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n))$, where ϕ is a formula in 3cnf.\(^7\)

We first recall the standard reduction from 3SAT to Vertex-Cover [32]. Let G be the graph constructed by this reduction on $\phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$, where ϕ is in 3cnf. Let $\phi = \psi_1 \land \psi_2 \land \cdots \land \psi_m$ and for each $i, 1 \leq i \leq m$, $\psi_i = c_{i,1} \lor c_{i,2} \lor c_{i,3}$. Graph G consists of $4n + 3m$ vertices: a vertex for each x_i, $\overline{x_i}$, y_i, and $\overline{y_i}$ and for each clause $i, 1 \leq i \leq m$, three vertices $c_{i,1}$, $c_{i,2}$, and $c_{i,3}$, and the following edges:

- for each $i, 1 \leq i \leq n$, the edges $\{x_i, \overline{x_i}\}$ and $\{y_i, \overline{y_i}\}$,
- for each $i, 1 \leq i \leq m$, the edges $\{c_{i,1}, c_{i,2}\}$, $\{c_{i,1}, c_{i,3}\}$, and $\{c_{i,2}, c_{i,3}\}$, (i.e., the complete graph on three vertices),
- and for each vertex $c_{i,j}$ we have an edge to its corresponding vertex candidate (e.g., if $c_{i,j} = x_t$ in ϕ then we have the edge $\{c_{i,j}, x_t\}$).

An example of this construction will follow.

Note that every vertex cover of G contains at least one of each $\{x_i, \overline{x_i}\}$, at least one of each $\{y_i, \overline{y_i}\}$, and at least two of each $\{c_{i,1}, c_{i,2}, c_{i,3}\}$, so G does not have a vertex cover of size less than $2n + 2m$. The properties below follow immediately from the proof from [32].

1. If X is a vertex cover of size $2n + 2m$, then $X \cap \{x_i, \overline{x_i}, y_i, \overline{y_i} \mid 1 \leq i \leq n\}$ corresponds to a satisfying assignment for ϕ.

2. If α is a satisfying assignment for ϕ, then there is a vertex cover X of size $2n + 2m$ such that $X \cap \{x_i, \overline{x_i}, y_i, \overline{y_i} \mid 1 \leq i \leq n\}$ corresponds to this assignment.

Below we include an example of this construction given the formula $\phi = (x_1 \lor x_1 \lor y_1) \land (\overline{x_1} \lor \overline{y_1} \lor y_1) \land (\overline{x_1} \lor y_1 \lor y_1)$.

In the figure above vertices that are in a minimum vertex cover are shaded in gray, and this corresponds to the satisfying assignment $x_1 = 0$, $y_1 = 1$ for ϕ.

For the reduction from QSAT$_2$ to Vertex-Cover-Member-Select, we construct the graph H, which is a modified version of the graph G. For each clause $i, 1 \leq i \leq m$, instead of the complete graph on three vertices, $\{c_{i,1}, c_{i,2}, c_{i,3}\}$, we add an extra vertex d_i and have the complete graph on four vertices, $\{c_{i,1}, c_{i,2}, c_{i,3}, d_i\}$, and we connect the fourth vertex d_i of each clause gadget to a special new vertex $\hat{\psi}$. So our graph H consists of $4n + 4m + 1$ vertices and the edges as just described. Below we give the graph corresponding to the same formula as the previous example.

\(^7\)Note that we have the same number of variables in each quantified block (we can simply pad to get this). Also, we pull the negation out of the formula so that the formula is in 3cnf and not in 3dnf.
Note that every vertex cover of H contains at least one of each $\{x_i, \overline{x_i}\}$, at least one of each $\{y_i, \overline{y_i}\}$, and at least three of each $\{c_{i,1}, c_{i,2}, c_{i,3}, d_i\}$. So H does not have a vertex cover of size less than $2n + 3m$, and there is a vertex cover of size $2n + 3m + 1$ that includes \hat{v}. Note that H has the following properties.

1. If X is a vertex cover of size $2n + 3m$, then $\hat{v} \notin X$ and $X \cap \{x_i, \overline{x_i}, y_i, \overline{y_i} \mid 1 \leq i \leq n\}$ corresponds to a satisfying assignment for ϕ.

2. If α is a satisfying assignment for ϕ, then there is a vertex cover of size $2n + 3m$ such that $X \cap \{x_i, \overline{x_i}, y_i, \overline{y_i} \mid 1 \leq i \leq n\}$ corresponds to this assignment.

Below we include an example of this construction given the formula $\exists x_1 \neg (\exists y_1 \phi(x_1, y_1))$, where as before $\phi = (x_1 \lor x_1 \lor y_1) \land (\overline{x_1} \lor \overline{x_1} \lor \overline{y_1}) \land (\overline{x_1} \lor y_1 \lor y_1)$.

![Graph](image)

Note that in the figure when $\overline{x_1}$ is removed (i.e., setting $x_1 = 0$) a minimum-size vertex cover (shaded in gray) is of size $n + 3m = 10$ and that $\phi(0, y_1)$ is satisfied with $y_1 = 1$.

We have repeated the same graph below, except now the vertex x_1 is removed (i.e., setting $x_1 = 1$).

![Graph](image)

The vertices shaded in gray above correspond to a minimum-size vertex cover of size $n + 3m + 1 = 11$. Note that $\phi(1, y_1)$ is not satisfiable and that this vertex cover includes \hat{v}.

We will show that $\exists x_1 \cdots \exists x_n \neg (\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n))$ if and only if we can delete at most n vertices in $\{x_i, \overline{x_i} \mid 1 \leq i \leq n\}$ such that \hat{v} is a member of a minimum vertex cover of H-after-deletion.

From the listed properties of H and the above example, it is not too hard to see that the statement above holds as long as the vertices deleted from H correspond to an assignment to the x-variables. However, it is possible for the set of deleted vertices to contain neither or both of $\{x_i, \overline{x_i}\}$. We handle these cases below.

Suppose that W is a set of at most n vertices from $\{x_i, \overline{x_i} \mid 1 \leq i \leq n\}$ such that \hat{v} is a member of a minimum vertex cover of $H - W$. Let $\hat{n} \leq n$ be the number of $\{x_i, \overline{x_i}\}$ pairs that are undeleted, i.e., for which $\{x_i, \overline{x_i}\} \cap W = \emptyset$. Note that the size of a vertex cover of $H - W$ is at least $\hat{n} + n + 3m$,
and that vertex covers of that size do not include \(\hat{v} \). Since \(\hat{v} \) is a member of a minimum size vertex cover of \(H - W \), it follows that \(H - W \) does not have a vertex cover of size \(\hat{n} + n + 3m \).

Let \(\alpha \in \{0, 1\}^n \) be an assignment to \(x_1 \cdots x_n \) that is consistent with \(W \), in the sense that for all \(i, 1 \leq i \leq n \), if \(W \cap \{x_i, \overline{x_i}\} = \{x_i\} \), then \(\alpha_i = 1 \) and if \(W \cap \{x_i, \overline{x_i}\} = \{\overline{x_i}\} \), then \(\alpha_i = 0 \). To complete the proof, suppose for a contradiction that \(\phi(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_n) \) is satisfiable. Then \(H \) has a vertex cover \(X \) of size \(2n + 3m \) such that \(X \cap \{x_i, \overline{x_i}\} \cap \{\overline{x_i}\} \) corresponds to \(\alpha \). Note that \(X - W \) is a vertex cover of \(H - W \). But \(\| X \cap W \| = n - \hat{n} \), and so \(\| X - W \| = 2n + 3m - (n - \hat{n}) = \hat{n} + n + 3m \), which is a contradiction.

To prove Theorem 3, we use a similar reduction to show that Vertex-Cover-Member-Add is \(\Sigma^p_2 \)-complete. The main difference is that we need an edge and two vertices for each \(x_i \) and for each \(\overline{x_i} \). For the proof, see the appendix.

Vertex-Cover-Member-Select reduces to the corresponding Kemeny control problem Kemeny-CCDC*.

Name: \(\mathcal{E} \)-CCDC*

Given: An election \((C, V) \), a set of deletable candidates \(D \subseteq C \), a delete limit \(k \), and a preferred candidate \(p \in C \).

Question: Does there exist a set \(D' \subseteq D \) of at most \(k \) deletable candidates such that \(p \) is a winner of \((C - D', V) \) using election system \(\mathcal{E} \)?

Note that \(\mathcal{E} \)-CCDC* is more structured than \(\mathcal{E} \)-CCDC (where the set of deletable candidates is \(C \)), since the chair can only delete from a subset of \(C \).

Theorem 5 Kemeny-CCDC* is \(\Sigma^p_2 \)-complete.\(^8\)

Proof Sketch. Kemeny-Score was shown to be NP-hard by a reduction from Feedback-Arc-Set\(^9\) by Bartholdi, Tovey, and Trick [3], which was shown to be NP-hard by Karp [32] by a reduction from Vertex-Cover. Both these reductions are straightforward. To show the \(\Theta^p_2 \)-hardness of Kemeny-Winner, Hemaspaandra, Spakowski, and Vogel [31] define \(\Theta^p_2 \)-complete versions of Vertex-Cover and Feedback-Arc-Set, namely Vertex-Cover-Member and Feedback-Arc-Set-Member. They show that Vertex-Cover-Member is \(\Theta^p_2 \)-complete. They then show that Vertex-Cover-Member reduces to Feedback-Arc-Set-Member, which then reduces to Kemeny-Winner. These two reductions are similar to the NP reductions and also straightforward. The same happens in our \(\Sigma^p_2 \) case: Vertex-Cover-Member-Select easily and straightforwardly reduces to Feedback-Arc-Set-Member-Select, which easily and straightforwardly reduces to Kemeny-CCDC*.

Vertex-Cover-Member-Add easily and similarly reduces to Feedback-Arc-Set-Member-Add (defined in the appendix) and then to Kemeny-CCAC.

Theorem 6 Kemeny-CCAC is \(\Sigma^p_2 \)-complete.

When we try to similarly show that Kemeny-CCAV is \(\Sigma^p_2 \)-complete, it is easy to show that Feedback-Arc-Set-Member-Add-Arcs, where we add arcs instead of vertices, is \(\Sigma^p_2 \)-complete. The problem is that in the reduction from Feedback-Arc-Set to Kemeny-Score, each arc corresponds to two voters. However, we were able to show this result for what we here call Kemeny’, the natural variant of Kemeny from [17] where the voters do not necessarily list all of the candidates in their votes and unlisted candidates in a vote do not contribute to the distance to the Kemeny consensus and so do not increase the Kemeny score. In this case, one arc will correspond to one voter.

\(^8\)This result holds even for four voters, using the construction from Dwork et al. [17]. For details, see the appendix.

\(^9\)A feedback arc set of a directed graph is a set of arcs such that deleting this set makes the graph acyclic.
Theorem 7 Kemeny′-CCAV is Σ^P_2-complete.

We now turn to Young elections. We will explain how Independent-Set-Member-Delete, the Independent-Set analogue of Vertex-Cover-Member-Delete, which is also Σ^P_2-complete, is useful to show Young-CCDV is Σ^P_2-complete.

Name: Independent-Set-Member-Delete

Given: Graph $G = (V, E)$, delete limit k, and vertex $\hat{v} \in V$.

Question: Does there exist a set $W \subseteq V$ such that $|W| \leq k$ and \hat{v} is a member of a maximum independent set of $G - W$?

Theorem 8 Independent-Set-Member-Delete is Σ^P_2-complete.

The proof of the above theorem can be found in the appendix. We reduce this problem to Young-CCDV to get the following result.

Theorem 9 Young-CCDV is Σ^P_2-complete.

The proof of the above theorem can be found in the appendix. The same construction as used in this proof gives a reduction to Young-CCAV.

Theorem 10 Young-CCAV is Σ^P_2-complete.

Previous complexity results for Dodgson elections do not reduce from problems related to Vertex-Cover or Independent-Set. However, in Dodgson there is more flexibility in how to construct the voters in a reduction, and so we were able to directly reduce QSAT$_2$ to Dodgson-CCDC and Dodgson-CCAC, though the constructions are quite involved. The proofs can be found in the appendix.

Theorem 11 Dodgson-CCDC and CCAC are Σ^P_2-complete.

Encoding Control Problems with ASP

When faced with a computationally difficult problem at the NP level there are several different possible ways to encode the problem to harness the power of solvers for hard problems. For example, problems in NP are often encoded for Boolean satisfiability solvers. When a problem is Σ^P_2-complete there are far fewer tools to use. However, we can encode our program for an answer set programming (ASP) solver.

Answer set programming is a paradigm for encoding computationally difficult problems in a declarative way (see, e.g., Brewka et al. [12]). Using modern ASP input languages like the one in the Gringo grounder [24], which extends conventional ASP with aggregates functions like #sum and #count, we can use variable names and predicates. A descriptive naming scheme usually leads to natural encodings of problems when compared to other approaches such as encoding into Boolean satisfiability problems.

Using ASP to solve computational problems in voting was first proposed by Konczak [34]. Recent work by Charwat and Pfandler [13] provides winner-problem encodings for many election systems, including systems with hard winner problems, and mentions encoding control problems as future work. The predicates used in their encodings are arguably self-explanatory and the use of aggregates provides succinct representations of the different voting rules they consider.

Since encoding a problem in ASP can lead to natural encodings of a problem and since ASP can encode problems in Σ^P_2 [18], we discuss how to encode our control problems in ASP and present
our complete encoding for Kemeny-CCAC. However, we mention here that although ASP encodings for NP problems (and in fact even P^{NP} problems) are fairly straightforward and common in the literature, encoding problems in Σ₂^p typically requires more advanced (and less intuitive) techniques such as saturation [19]. We consider how this saturation technique can be used for our problems and present an ASP encoding of Kemeny-CCAC that uses saturation. We also discuss and compare other encoding approaches for problems at this high level of complexity.

Preliminaries on Answer Set Programming

We briefly state the relevant definitions from ASP for our encoding. (See Gebser et al. [25] for more detailed definitions.) A *disjunctive logic program* is comprised of a finite set of rules of the form \(a_1 | ... | a_h \leftarrow b_1, b_2, ..., b_m, \neg b_{m+1}, ..., \neg b_n \) where each of \(a_1, ..., a_h, b_1, ..., b_n \) are atoms and each atom is a constant or a predicate of the form \(p(t_1, ..., t_k) \) such that \(k \geq 1 \) and each \(t_i \) is a constant or a variable. We indicate that \(p \) is a \(k \)-ary predicate by writing \(p/k \). The left side of the “\(\leftarrow \)” is the head of the rule and the right side is the body of the rule. In the rule, “\(|\)” denotes disjunction, “\,” denotes conjunction, and “\(\neg \)” refers to default negation. Uppercase characters are used to denote variables. A *ground* program is a program that contains no variables. A subset \(S \) of the ground atoms satisfies a rule if \(\{b_1, ..., b_m\} \subseteq S \) and \(\{b_{m+1}, ..., b_n\} \cap S = \emptyset \) implies \(\{a_1, ..., a_h\} \subseteq S \) for some 1 \(\leq i \leq h \). A *model* is a subset of the ground atoms that satisfies each rule. An *answer set* is a minimal model with respect to set inclusion.

A *fact* is a rule with no body and an *integrity constraint* is a rule with no head. So, a fact occurs in every answer set, and an integrity constraint eliminates answer sets where its body is satisfied. We additionally use choice rules with cardinality constraints, which can be used to generate subsets of ground atoms within a given bound, and aggregates such as \#count and \#sum that count/sum ground atoms in a statement.

It is customary to encode a decision problem as a logic program such that the answer sets of this program correspond to certificates for “yes” answers to the problem. Under this approach, a “no” answer is certified by the lack of an answer set. However, there are circumstances in which a “no” answer must be certified by an answer set (e.g., problems in coNP). The saturation technique (see, e.g., Eiter et al. [19]) achieves this by designing a logic program that has a unique answer set including a special token atom if and only if the answer to the original decision problem is “no.” This answer set also contains the set \(S \) of all atoms that would be candidate certificates for “yes” answers. Rules are added so that every time the token atom is generated, all atoms in \(S \) are generated as well, thus “saturating” the model. Informally, this allows us to encode a “coNP check” into our program, which along with an “NP guess,” allows us to encode problems in Σ₂^p.

Encoding Kemeny-CCAC in ASP

We assume that the input to our problem is given as a list of facts. For \(\mathcal{E} \)-CCAC, our input consists of a fact for the number of registered candidates, the number of unregistered candidates, the addition limit, the preferred candidate, and facts that describe the voters. For the voters, we follow the approach used in Democratix [13], where each distinct vote \((c_1 >_i \cdots >_i c_m)\) is represented by \(m \) atoms of the form \(p(i, j, c) \) meaning candidate \(c \) is the \(j \)-th preferred candidate by vote \(i \). The corresponding count is represented by votecount\((i, k)\), meaning \(k \) voters have vote \(i \).

We present our complete encoding for Kemeny-CCAC by presenting all of the rules of the encoding, split into “guess,” “check,” and “saturate” parts, and explaining the crucial aspects of each part. Informally, the guess part will guess a subset of unregistered candidates to add and a consensus
such that the preferred candidate wins. The check part (along with the saturate part) ensures that for the guessed set of added candidates, no candidate beats the preferred candidate.

Figure 1: Rules of the guess part of Kemeny-CCAC.

Figure 1 shows guess part of Kemeny-CCAC that assumes an input as described in Democratix [13], but extended with predicates for the control problem. We start by guessing (with a choice rule) a subset of at most K of the unregistered candidates to add to the election and we update the number of candidates (candnum). We then define predicates wrank and wrankC to define the number of times that a candidate is ranked “worse” than another in the given election, and we guess a consensus. This generally follows what is done in Democratix [13]. Specifically, we follow the naming conventions for different predicates, and rules 6, 7, 19, and 21 are from Democratix. However, our rules to guess a consensus (gpref) are more involved, since we use a head disjunction.

Figure 2 shows the rules of the check part of Kemeny-CCAC. The check part essentially checks that given the added candidates from the guess, there is no candidate that beats the preferred candidate. Note that this is quite similar to the guess part (Figure 1). However what were integrity constraints there are now rules that generate the special saturation token sat. We describe two important aspects of the check part below.

In the check part, we start by guessing a possible consensus. This is done in the same way as the guess part of Kemeny-CCAC. In line 33 we use a $\#\text{sum}$ aggregate that generates the saturation atom.
% Guess another consensus.
gpref′(X, C) | ungpref′(X, C) ← position(X), candidate(C). (23)
sat ← gpref′(X, C), gpref′(Y, C), X ≠ Y. (24)
sat ← gpref′(X, C), gpref′(X, D), D ≠ C. (25)
% Loop checks if all possible positions for a given cand. are in ungpref′.
sat ← gpref′(X, C), ungpref′(X, C).
countTo′(C, 1) ← ungpref′(1, C). (26)
countTo′(C, X) ← countTo′(C, Y), npos(Y, X), ungpref′(X, C).
% Saturate if all possible positions for a given candidate are in ungpref′,
% which means a candidate is not ranked in the guess.
sat ← countTo′(C, X), candidate(C), candnum(X). (29)
% In the guessed consensus C > D.
rank′(C, D) ← gpref′(X, C), gpref′(Y, D), X < Y. (30)
% Number of votes that disagree on C and D.
gwrackC′(C, D, N) ← rank′(C, D), wrankC(C, D, N).
sat ← #sum{M, C1, C2, pos : gwrackC′(C1, C2, M);
− N, D1, D2, neg : gwrackC(D1, D2, N)} >= 0. (32)
sat ← preferredCand(X), gpref′(1, X). (34)

Figure 2: Rules of the check part of Kemeny-CCAC.

if a candidate other than the preferred candidate has a lower Kemeny score. Note that the use of saturation-dependent aggregates may causes undesirable behavior in the check part of an encoding and the interpretation of aggregates is solver dependent. However, the interpretation of aggregates in Clingo 4 (see Harrison et al. [27]) allows us to use the #sum aggregate in this way. We mention that our use of aggregates here follows how they are used in the saturation encodings in Abseher et al. [1].

gpref′(X, C) ← position(X), candidate(C), sat. (35)
un gpref′(X, C) ← position(X), candidate(C), sat. (36)
possibleCount(0..X) ← voternum(X). (37)
gwrackC′(C, D, N) ← candidate(C), candidate(D),
possibleCount(N), sat. (38)
r ank′(C, D) ← candidate(C), candidate(D), sat. (39)
countTo′(C, N) ← candidate(C), position(N), sat.
← not sat. (41)

Figure 3: Rules of the saturation part of Kemeny-CCAC.

The final part of our encoding is the saturation step. Figure 3 shows the rules that ensure that an “incorrect” guess for the check program will cause all of the predicates that depend on the guessed consensus gpref’/2 to have all possible values in the stable model, thus saturating the solution.

Combining the guess, check, and saturate parts we obtain our complete ASP program that is satisfiable if and only if there is a subset of unregistered candidates that can be added such that the preferred candidate is a winner.
Table 2: Details on some of the Preflib instances we were able to solve. The times reported were obtained on AMD Opteron(tm) 6180 SE (†) and AMD Opteron(tm) 6282 SE (‡) processors.

Instance	# Reg.	# Unreg.	# Voters	Seconds	Control Possible
ED-9-2	5	2	153	1.79†	No
ED-9-1	7	2	146	368.036	No
ED-15-48	8	2	4	193.133	Yes
ED-15-78	9	3	4	78.132‡	Yes
ED-6-4	11	3	9	3.619‡	No

The above encoding for Kemeny-CCAC is not as straightforward as ASP encodings for problems at the NP level, but we still have a close relationship to the definition of the problem and retain easy adaptability to minor changes in the problem description. For example, it is not difficult to change the above encoding to work for Kemeny-CCDC.

As with many declarative problem solving tools, there is a trade-off between expressibility and performance. In our tests using Clingo 4.5.4 and Preflib [35] (the standard dataset of real-world preference data), we noticed the above encoding suffers from the so-called “grounding bottleneck.” That is, even on instances of Kemeny-CCAC with around 10 candidates, we are faced with prohibitively large programs after all variables are instantiated. This is in part due to the use of loops in saturation (which is the standard way to replace default negation, the use of which is limited in saturation), which were found in related work on encoding \(\Sigma_2^P \)-complete problems in ASP to have a strong negative impact on performance [23]. For a preliminary test of our encoding, we attempted to solve the Kemeny-CCAC problem for all elections with 4 or more candidates having complete strict order votes\(^\text{10}\) making the first candidate the preferred candidate and holding out the last fifth of the candidates as unregistered with an add limit equal to one third of the number of unregistered candidates. There were 215 elections in total, and we were able to solve 114 of them using a timeout of 1 hour and a limit of 16GB of memory. Some noteworthy instances we could solve are summarized in Table 2. Of the 101 instances that we were not able to solve, 56 ran out of memory and the rest timed out. Despite its limitations, our encoding is an important starting point for future optimization and comparison of techniques. In particular, we are interested in how techniques for overcoming the grounding bottleneck such as rewriting large rules [7] can improve the performance of our encoding.

Related Encoding Approaches

We presented an encoding of Kemeny-CCAC using the saturation technique since it is the standard technique to encode \(\Sigma_2^P \)-complete problems in ASP and a starting point for exploring how these problems can be encoded. There are alternatives to our approach.

Eiter and Polleres [20] address the issue of having to use advanced techniques, like saturation, when writing ASP encodings of \(\Sigma_2^P \) problems by providing a template “meta-interpreter” and a transformation of ASP programs that can, together, be used to integrate a program that guesses a solution to the \(\Sigma_2^P \) problem with a program that checks whether the guessed solution is incorrect. Their combination amounts to a “guess and check” encoding of a \(\Sigma_2^P \) problem.\(^\text{11}\) However, this approach does not support ASP programs with aggregates (e.g., \#count), which leads to more complex and somewhat less intuitive programs. To work around this issue, one could use the \texttt{lp2normal} tool [9], which transforms ASP programs with aggregates into equivalent ASP programs without aggregates.

\(^{10}\)http://www.preflib.org/data/format.php#soc
\(^{11}\)Note this is different and much more involved than the guess and check technique for NP problems from, e.g., Eiter et al. [19].
The work by Gebser et al. [26] also addresses ASP encodings for problems with complexity higher than NP with a different metaprogramming approach that does support aggregates by using optimization rules.

The framework of stable-unstable semantics by Bogaerts et al. [8] provides a similar “guess and check” strategy for solving problems in \(\Sigma^p_2 \). They point out that an advantage of the stable-unstable semantics is they can be easily extended to represent problems at any level of the polynomial hierarchy. In their implementation guess and check programs are each normalized, essentially discarding aggregates altogether.

It is an interesting direction for future work to determine how the performance of the above techniques and alternative paradigms for constraint satisfaction compare with saturation encodings for very hard control problems in terms of implementation and adaptability.

Future Work

In addition to the future work on ASP described at the end of the previous section, it will be interesting to see if our newly-defined simple \(\Sigma^p_2 \)-complete problems will be useful in proving other problems \(\Sigma^p_2 \)-hard, in particular the remaining control cases and other election-attack problems such as manipulation for systems with hard winner problems.

Acknowledgments: We thank Andreas Pfandler for helpful conversations and we thank the referees for their helpful comments and suggestions. This work was supported in part by an NSF Graduate Research Fellowship under grant no. DGE-1102937.

References

[1] M. Abscher, B. Bliem, G. Charwat, F. Dusberger, and S. Woltran. Computing secure sets in graphs using answer set programming. *Journal of Logic and Computation*, 2015.

[2] A. Ali and M. Meil˘ a. Experiments with Kemeny ranking: What works when? *Mathematical Social Sciences*, 64(1):28–40, 2012.

[3] J. Bartholdi, III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to tell who won the election. *Social Choice and Welfare*, 6(2):157–165, 1989.

[4] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is it to control an election? *Mathl. Comput. Modelling*, 16(8/9):27–40, 1992.

[5] N. Betzler, R. Bredereck, and R. Niedermeier. Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation. *JAAMAS*, 28(5):721–748, 2014.

[6] N. Betzler, M. Fellows, J. Guo, R. Niedermeier, and F. Rosamond. Fixed-parameter algorithms for Kemeny scores. In *AAIM-08*, pages 60–71, June 2008.

[7] M. Bichler, M. Morak, and S. Woltran. The power of non-ground rules in answer set programming. *TPLP*, 16(5-6):552–569, 2016.

[8] B. Bogaerts, T. Janhunen, and S. Tasharrofi. Stable-unstable semantics: Beyond NP with normal logic programs. *TPLP*, 16(5-6):570–586, 2016.

[9] J. Bomanson, M. Gebser, and T. Janhunen. Improving the normalization of weight rules in answer set programs. In *JELIA-14*, pages 166–180, Sept. 2014.

[10] F. Brandt, M. Brill, E. Hemaspaandra, and L. Hemaspaandra. Bypassing combinatorial protections: Polynomial-time algorithms for single-peaked electorates. *JAIR*, 53:439–496, 2015.
[11] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia. *Handbook of Computational Social Choice*. Cambridge University Press, 2016.

[12] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance. *CACM*, 54(12):92–103, 2011.

[13] G. Charwat and A. Pfandler. Democratix: A declarative approach to winner determination. In *ADT-15*, pages 253–269, Sept. 2015.

[14] V. Conitzer, A. Davenport, and J. Kalagnanam. Improved bounds for computing Kemeny rankings. In *AAAI-06*, pages 620–626, July 2006.

[15] R. de Haan. Complexity results for manipulation, bribery and control of the kemeny judgment aggregation procedure. In *AAMAS-17*, pages 1151–1159, May 2017.

[16] C. Dodgson. A method of taking votes on more than two issues. Pamphlet printed by the Clarendon Press, Oxford, and headed “not yet published”, 1876.

[17] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In *WWW-01*, pages 613–622, Mar. 2001.

[18] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. *ACM Transactions on Database Systems*, 22(3):364–418, 1997.

[19] T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A primer. In *Reasoning Web*, pages 40–110, Aug/Sep 2009.

[20] T. Eiter and A. Polleres. Towards automated integration of guess and check programs in answer set programming: A meta-interpreter and applications. *TPLP*, 6(1-2):23–60, Jan. 2006.

[21] P. Faliszewski and J. Rothe. Control and bribery in voting. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors, *Handbook of Computational Social Choice*, pages 146–168. Cambridge University Press, 2016.

[22] Z. Fitzsimmons and E. Hemaspaandra. High-multiplicity election problems. In *AAMAS-18*, pages 1558–1566, July 2018.

[23] S. Gaggl, N. Manthey, A. Ronca, J. Wallner, and S. Woltran. Improved answer-set programming encodings for abstract argumentation. *TPLP*, 15(4-5):434–448, 2015.

[24] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub. Abstract Gringo. *TPLP*, 15:449–463, July 2015.

[25] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. *Answer Set Solving in Practice*. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.

[26] M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set programming. *TPLP*, 11(4-5):821–839, 2011.

[27] A. Harrison, V. Lifschitz, and F. Yang. The semantics of Gringo and infinitary propositional formulas. In *KR-14*, pages 32–41, July 2014.

[28] L. Hemachandra. The strong exponential hierarchy collapses. *JCSS*, 39(3):299–322, 1989.

[29] E. Hemaspaanda, L. Hemaspaanda, and J. Rothe. Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. *JACM*, 44(6):806–825, 1997.

[30] E. Hemaspaanda, L. Hemaspaanda, and J. Rothe. Anyone but him: The complexity of precluding an alternative. *AIJ*, 17(5–6):255–285, 2007.

[31] E. Hemaspaanda, H. Spakowski, and J. Vogel. The complexity of Kemeny elections. *TCS*, 349(3):382–391, 2005.
Appendix

Kemeny

Proof of Theorem 5: Kemeny-CCDC* is Σ^p_2-complete

Kemeny-Score was shown to be NP-hard by a reduction from Feedback-Arc-Set by Bartholdi, Tovey, and Trick [3], which in turn was shown to be NP-hard by Karp [32]. The complete proof of the NP-hardness of Kemeny-Score can be viewed as consisting of the following three steps.

1. Vertex-Cover is NP-hard [32].
2. Vertex-Cover \leq^p_m Feedback-Arc-Set [32].
3. Feedback-Arc-Set \leq^p_m Kemeny-Score [3].
Kemeny-Winner was shown to be \(\Theta^p_2 \)-hard by a chain of three reductions, basically a “lifted” version of the NP-hardness proof for Kemeny-Score. For the lifted-to-\(\Theta^p_2 \) version, Hemaspaandra, Spakowski, and Vogel [31] define suitable \(\Theta^p_2 \)-complete equivalent problems, and show the following:

1. Vertex-Cover-Member is \(\Theta^p_2 \)-hard.
2. Vertex-Cover-Member \(\leq^p_m \) Feedback-Arc-Set-Member.
3. Feedback-Arc-Set-Member \(\leq^p_m \) Kemeny-Winner.

In order to show that Kemeny-CCDC* is \(\Sigma^p_2 \)-hard, we lift the reductions to \(\Sigma^p_2 \). We already defined an appropriate \(\Sigma^p_2 \)-complete analogue of Vertex-Cover and below we define an appropriate \(\Sigma^p_2 \)-complete analogue of Feedback-Arc-Set, and we show the following.

1. Vertex-Cover-Member-Select is \(\Sigma^p_2 \)-hard (Lemma 4).
2. Vertex-Cover-Member-Select \(\leq^p_m \) Feedback-Arc-Set-Member-Select (Lemma 12).
3. Feedback-Arc-Set-Member-Select \(\leq^p_m \) Kemeny-CCDC* (Lemma 13).

The \(\Sigma^p_2 \)-complete analogue of Feedback-Arc-Set is defined as follows.

Name: Feedback-Arc-Set-Member-Select

Given: Irreflexive and antisymmetric directed graph \(G = (V, A) \), a set \(V' \subseteq V - \{\hat{v}\} \) of deletable vertices, delete limit \(k \), and vertex \(\hat{v} \in V \).

Question: Does there exist a set \(W \subseteq V' \) of at most \(k \) deletable vertices such that some minimum size feedback arc set of \(G - W \) contains all arcs entering \(\hat{v}' \)?

The second and third parts of the lifting use similar constructions as in the NP, \(\Theta^p_2 \), and \(\text{P}^\text{NP} \) cases. As we saw previously in the proof Lemma 4, the proof that Vertex-Cover-Member-Select is \(\Sigma^p_2 \)-hard requires significantly more work.

Lemma 12 Vertex-Cover-Member-Select \(\leq^p_m \) Feedback-Arc-Set-Member-Select.

Proof. Given a graph \(G \), define digraph \(f(G) = (\hat{V}, A) \) as in the standard reduction from Vertex-Cover to Feedback-Arc-Set from [32].

1. \(\hat{V} = \{v, \hat{v}' \mid v \in V\} \).
2. \(A = \{(v, v') \mid v \in V \} \cup \{(v', w), (w', v) \mid \{v, w\} \in E\} \).

We know from [31, Lemma 4.8] that for every graph \(G' \) and vertex \(\hat{v} \) in \(G' \), \(G' \) has a minimum size vertex cover containing \(\hat{v} \) if and only if \(f(G') \) has a minimum size feedback arc set containing \((\hat{v}, \hat{v}') \), which is the only arc entering \(\hat{v}' \).

Our reduction from Vertex-Cover-Member-Select to Feedback-Arc-Set-Member-Select maps \((G, V', k, \hat{v}) \) to \((H, V' - \{\hat{v}\}, k, \hat{v}') \), where \(H = f(G) \). Let \(W \subseteq V' - \{\hat{v}\} \). Then from [31, Lemma 4.8], \(G - W \) has a minimum size vertex cover containing \(\hat{v} \) if and only if \(f(G - W) \) has a minimum size feedback arc set containing \((\hat{v}, \hat{v}') \), which is the only arc entering \(\hat{v}' \).

Now consider \(H \). Note that if we delete a vertex \(v \), we do not have any cycles going through \(v' \) and so \(A' \) is a minimum feedback arc set of \(H - W \) if and only if \(A' \) is a minimum feedback arc set...
of $H - W - \{v' \mid v \in W\}$. Since $H - W - \{v' \mid v \in W\} = f(G - W)$, it follows that $G - W$ has a minimum size vertex cover containing \hat{v} if and only if $H - W$ has a minimum size feedback arc set containing $(\hat{v}, \hat{v'})$, which is the only arc entering \hat{v}'. $rown$

Lemma 13 Feedback-Arc-Set-Member-Select \leq^p_m Kemeny-CCDC*.

Proof. We use the construction from [3]. Given an irreflexive and antisymmetric digraph $G = (C, A)$, let C be the set of candidates and use McGarvey’s construction [36] to construct in polynomial time a set of voters such that for every arc (v, w) in A, there are exactly two more voters who prefer v to w than who prefer w to v and if there are no arcs between v and w then the same number of voters prefer v to w as w to v. From the proof of Lemma 4.2 of [31], it holds that for every $C' \subseteq C$ and for every $c \in C'$ that some minimum feedback arc set of $(C', A \cap (C' \times C'))$ contains all arcs entering c if and only if c is a Kemeny winner of (C', V). This then shows that Feedback-Arc-Set-Member-Select reduces to Kemeny-CCDC*.

This completes the proof that Kemeny-CCDC* is Σ^p_2-complete.

Do we always get this jump from a Θ^p_2-complete winner problem to a Σ^p_2-complete control problem? Dwork et al. [17] show that Kemeny-Winner is already NP-hard if we have four voters. And Fitzsimmons and Hemaspaandra [22] show that Kemeny-Winner for four voters is still Θ^p_2-complete. Certainly the voter control cases for Kemeny with four voters are still in Θ^p_2, and the control by adding voters and control by deleting voters cases are clearly Θ^p_2-complete. What about the candidate control cases?

Theorem 14 Kemeny-CCDC* is Σ^p_2-complete, even for four voters.

Proof. To show hardness, we argue as in the proof that Kemeny-Winner for four voters is Θ^p_2-hard from [22].

Given an irreflexive and antisymmetric digraph $G = (V, A)$ and vertex $\hat{v} \in V$, we first compute an irreflexive and antisymmetric digraph \hat{G} as done in [17]. $\hat{G} = (\hat{V}, \hat{A})$ such that $\hat{V} = V \cup A$ and $\hat{A} = \{(v, (v, w)), ((v, w), w) \mid (v, w) \in A\}$. Let $W \subseteq V - \{\hat{v}\}$. Note that $G - W$ has a feedback arc set of size ℓ that contains all arcs entering \hat{v} if and only if $\hat{G} - W$ has a feedback arc set of size ℓ that contains all arcs entering \hat{v}. It follows that (G, V', k, \hat{v}) is in Feedback-Arc-Set-Member-Select if and only if $(\hat{G}, V', k, \hat{v})$ is in Feedback-Arc-Set-Member-Select. Now apply the reduction from Feedback-Arc-Set-Member-Select to Kemeny-CCDC* from Lemma 13 to $(\hat{G}, V', k, \hat{v})$. The construction from Dwork et al. [17] shows that we need only four voters in the election. $rown$

Proof of Theorem 6: Kemeny-CCAC is Σ^p_2-complete

Membership follows from Corollary 2. The proof of hardness is similar to the proof of hardness for CCDC*: We define suitable Σ^p_2-complete versions of Vertex-Cover and Feedback-Arc-Set and show the following.

1. Vertex-Cover-Member-Add is Σ^p_2-hard.
2. Vertex-Cover-Member-Add \leq^p_m Feedback-Arc-Set-Member-Add.
3. Feedback-Arc-Set-Member-Add \leq^p_m Kemeny-CCAC.
We will modify the construction of the proof of Lemma 4, which showed that \(\Sigma \{ y \mid a \text{ vertex cover of size 2} \} \) is \(\Sigma^p_2 \)-complete.

Given: Graph \(G = (V \cup V', E) \), set of addable vertices \(V' \), addition limit \(k \), and vertex \(\hat{v} \in V \).

Question: Does there exist a set \(W \subseteq V' \) of at most \(k \) addable vertices such that \(\hat{v} \) is a member of a minimum vertex cover of \((V \cup W, E)\)?

Name: Feedback-Arc-Set-Member-Add

Given: Irreflexive and antisymmetric directed graph \(G = (V \cup V', A) \), a set \(V' \) of addable vertices, addition limit \(k \), and vertex \(\hat{v} \in V \).

Question: Does there exist a set \(W \subseteq V' \) of at most \(k \) addable vertices such that some minimum size feedback arc set arc of \((V \cup W, A)\) contains all arcs entering \(\hat{v} \)?

The proof that Vertex-Cover-Member-Add reduces to Feedback-Arc-Set-Member-Add is similar to the proof of Lemma 12 and the proof that Feedback-Arc-Set-Member-Add reduces to Kemeny-CCAC is similar to the proof of Lemma 13. This leaves the following lemma to prove.

Lemma 15 Vertex-Cover-Member-Add is \(\Sigma^p_2 \)-complete.

Proof. The upper bound is immediate. For the lower bound, we will again reduce from QSAT\(_2\). We will modify the construction of the proof of Lemma 4, which showed \(\Sigma^p_2 \)-hardness for Vertex-Cover-Member-Select. Let \(H \) be the graph from the proof of Lemma 4. We add an addable vertex \(x'_i \) connected only to \(x_i \) and an addable vertex \(\overline{x'_i} \) connected only to \(\overline{x_i} \). So, \(V = V(H), V' = \{x'_i, \overline{x'_i} \mid 1 \leq i \leq n\} \), and \(E = E(H) \cup \{\{x_i, x'_i\}, \{\overline{x_i}, \overline{x'_i}\} \mid 1 \leq i \leq n\} \).

Let \(W \subseteq V' \). Let \(H' = (V \cup W, E) \). Some relevant properties of \(H' \) are as follows.

1. If \(X \) is a vertex cover, then \(X \) is still a vertex cover if we replace \(x'_i \) by \(x_i \) and \(\overline{x'_i} \) by \(\overline{x_i} \). In particular, this implies that there is a minimum vertex cover that does not contain any vertex in \(W \).

2. Every vertex cover of \(H' \) contains at least one of \(\{x_i, \overline{x_i}\} \), at least one of \(\{y_i, \overline{y_i}\} \), at least three of \(\{a_j, b_j, c_j, d_j\} \), at least one of \(\{x_i, x'_i\} \) for \(x'_i \in W \), and at least one of \(\{\overline{x_i}, \overline{x'_i}\} \) for \(\overline{x'_i} \in W \).

3. If \(X \) is a vertex cover of size \(2n + 3m \), then \(\hat{v} \notin X \) and \(V' \cap X = \emptyset \) and \(X \cap \{x_i, \overline{x_i}, y_i, \overline{y_i} \mid 1 \leq i \leq n\} \) corresponds to a satisfying assignment for \(\phi \).

4. If \(\alpha \) is a satisfying assignment for \(\phi \), then there is a vertex cover \(X \) of size \(2n + 3m \) of \((V, E)\) such that \(X \cap \{x_i, \overline{x_i}, y_i, \overline{y_i} \mid 1 \leq i \leq n\} \) corresponds to this assignment.

5. If for all \(i, 1 \leq i \leq n \), \(\{x'_i, \overline{x'_i}\} \not\subseteq W \), then there is a vertex cover of size \(2n + 3m + 1 \) that includes \(\hat{v} \) and that does not contain any vertex in \(W \).

We will show that \(\exists x_1 \cdots \exists x_n \neg (\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)) \) if and only if there exists a set \(W \subseteq V' \) of at most \(n \) addable vertices such that \(\hat{v} \) is a member of a minimum vertex cover of \((V \cup W, E)\).

First assume that \(\exists x_1 \cdots \exists x_n \neg (\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)) \). Let \(\alpha \in \{0, 1\}^n \) be an assignment to \(x_1 \cdots x_n \) such that \(\phi(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_n) \) is not satisfiable. Let \(W \) be the set of vertices in \(V' \) corresponding to \(\alpha \), i.e., \(W = \{x'_i \mid \alpha_i = 1\} \cup \{\overline{x'_i} \mid \alpha_i = 0\} \). Then \((V \cup W, E)\) does not have a vertex cover of size \(2n + 3m \) (by 3), and \((V \cup W, E)\) does have a vertex cover of size \(2n + 3m + 1 \) that includes \(\hat{v} \) (by 5).

13 We slightly abuse notation by writing \((V \cup W, E)\) instead of \((V \cup W, E')\), where \(E' \) is the restriction of \(E \) to \(V \cup W \).

14 We cannot simply use \(H \) with the \(x \)-vertices as addable vertices, since in that case \(d \) would be a member of a minimum vertex cover after adding any nonempty set of vertices that corresponds to an assignment.
For the converse, suppose that \(W \) is a set of at most \(n \) vertices from \(\{x'_i, \overline{x}_i \mid 1 \leq i \leq n\} \) such that \(\hat{v} \) is a member of a minimum vertex cover of \((V \cup W, E)\). If \(W \) corresponds to an assignment \(\alpha \), it is easy to see that \(\phi(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_n) \) is not satisfiable. But \(W \) does not necessarily correspond to an assignment, since it is possible for \(W \) to contain neither or both of \(\{x'_i, \overline{x}_i\} \). Let \(\hat{n} \) be the number of \(\{x'_i, \overline{x}_i\} \) pairs that are unadded, i.e., for which \(\{x'_i, \overline{x}_i\} \cap W = \emptyset \). Note (by 2) that the size of a vertex cover of \((V \cup W, E)\) is at least \(||W|| + \hat{n} + n + 3m \), and that vertex covers of that size do not include \(\hat{v} \). Since \(\hat{v} \) is a member of a minimum size vertex cover of \((V \cup W, E)\), it follows that \((V \cup W, E)\) does not have a vertex cover of size \(||W|| + \hat{n} + n + 3m \).

Let \(\alpha \in \{0, 1\}^n \) be an assignment to \(x_1 \cdots x_n \) that is consistent with \(W \), in the sense that for all \(i, 1 \leq i \leq n \), if \(W \cap \{x'_i, \overline{x}_i\} = \{x'_i\} \), then \(\alpha_i = 1 \) and if \(W \cap \{x'_i, \overline{x}_i\} = \{\overline{x}_i\} \), then \(\alpha_i = 0 \). To complete the proof, suppose for a contradiction that \(\phi(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_n) \) is satisfiable. Then (by 4) \((V, E)\) has a vertex cover \(X \) of size \(2n + 3m \) such that \(X \cap \{x_i, \overline{x}_i \mid 1 \leq i \leq n \} \) corresponds to \(\alpha \). Clearly, \(X \cup \{x_i \mid x'_i \in W \} \cup \{\overline{x}_i \mid \overline{x}_i \in W\} \) is a vertex cover of \((V \cup W, E)\). Since \(||X \cap \{x_i \mid x'_i \in W \} \cup \{\overline{x}_i \mid \overline{x}_i \in W\}|| = n - \hat{n} \), the size of this vertex cover is \(||W|| + ||X|| - (n + \hat{n}) = ||W|| + \hat{n} + n + 3m \), which implies that \((V \cup W, E)\) has a vertex cover of size \(||W|| + \hat{n} + n + 3m \), which is a contradiction. \(\square \)

Proof of Theorem 7: Kemeny’-CCA is \(\Sigma_2^p \)-complete

Note that in the reduction from feedback arc set problems to Kemeny control problems, vertices correspond to candidates and arcs roughly correspond to voters. Also note that arc \((v, v')\) in Feedback-Arc-Set-Member-Add basically correspond to vertex \(v \). And so we can easily define a version of Feedback-Arc-Set-Member-Add where we add arcs instead of vertices.

Name: Feedback-Arc-Set-Member-Add-Arcs

Given: Irreflexive and antisymmetric directed graph \(G = (V, A \cup B) \), a set \(B \) of addable arcs, addition limit \(k \), and vertex \(\hat{v} \in V \).

Question: Does there exist a set \(B' \subseteq B \) of at most \(k \) addable arcs such that some minimum size feedback arc set of \((V, A \cup B')\) contains all arcs entering \(\hat{v} \)?

It is easy to see that Vertex-Cover-Member-Add \(\leq_m \) Feedback-Arc-Set-Member-Add-Arcs: Given a graph \(G = (V \cup W, E) \), define digraph \(f(G) = (\hat{V}, A \cup B) \) as in the standard reduction from Vertex-Cover to Feedback-Arc-Set from [32], with the set of addable arcs \(B \) being the arcs corresponding to the addable vertices \(W \).

1. \(\hat{V} = \{v, v' \mid v \in V \cup W\} \).
2. \(A = \{(v, v') \mid v \in V \} \cup \{(v', w), (w', v) \mid \{v, w\} \in E\} \).
3. \(B = \{(v, v') \mid v \in W\} \).

Our reduction from Vertex-Cover-Member-Add to Feedback-Arc-Set-Member-Add-Arcs maps \((G, W, k, \hat{v})\) to \(((\hat{V}, A \cup B), B, k, \hat{v})\).

As mentioned previously, in the reduction from feedback arc set problems to Kemeny control problems, vertices correspond to candidates and arcs roughly correspond to voters. If the voters vote with total orders, each arc corresponds to two voters: arc \(a \rightarrow b \) corresponds to a voter voting \(a > b > C - \{a, b\} \) and a voter voting \((C - \{a, b\})^c > a > b \) [36].

There exist variations of Kemeny where the voters do not necessarily list all of the candidates in their votes. Dwork et al. [17] consider a natural variant of Kemeny, which we here call Kemeny’, where unlisted candidates in a vote do not contribute to the distance to the Kemeny consensus and so do not increase the Kemeny score. (The Kemeny consensus is still a complete total order.) So, in
this model, a voter voting $a > b$ corresponds exactly to an arc $a \rightarrow b$. This gives a straightforward reduction from Feedback-Arc-Set-Member-Add-Arcs to Kemeny'-CCAV.

Young

Proof of Theorem 8

Proof. Independent-Set-Member-Delete is clearly in Σ_2^p. We will show that Independent-Set-Member-Delete is Σ_2^p-complete by reducing the Σ_2^p-complete problem Generalized-Node-Deletion to it, in which we are given a graph G, and two integers k and ℓ, and we ask if we can delete at most k vertices such that the remaining graph does not contain a clique $K_{\ell+1}$, a clique of size $\ell + 1$ [42]. For the reduction, simply output (H, k, \hat{v}), where H is the graph $G \times K_\ell$, and \hat{v} is a vertex in K_ℓ.

If we can delete at most k vertices in G such that the remaining graph does not contain a clique of size $\ell + 1$, then G after deletion does not contain an independent set of size $\ell + 1$. It follows that after deletion, K_ℓ is a largest independent set in H and \hat{v} is an element of this independent set.

For the converse, suppose we delete at most k vertices from H such that \hat{v} is a member of a largest independent set. This independent set has size at most ℓ, and so after deletion, G does not have an independent set of size $\ell + 1$.

Proof of Theorem 9

Proof. For G a graph, $\alpha(G)$ is the independence number of G, i.e., the size of a maximum independent set of G. For v a vertex, $\alpha_v(G)$ is the size of a maximum independent set of G that contains v.

Given a graph $G = (V, E)$, a delete limit $k \leq \|V\|$, and a vertex $\hat{v} \in V$, below we construct an election with two special candidates p and q such that our instance is a positive instance of Independent-Set-Member-Delete if and only if we can make the Young score of p at least 2 and at least as high as the Young score of q by deleting at most k voters.

This is not quite the same as making p a Young winner, since other candidates could have higher scores and since it is also possible for a Young winner to have a score below 2. However, this can easily be handled as follows: We can use the trick from [41] to change the election such that the Young scores of p and q remain the same, the Young scores of all other candidates are at most 2, and such that there is a candidate with a Young score of at least 2.

We use candidate q to witness the size of a maximum independent set. The main idea on how to do this is implicit in the construction from Rothe, Spakowski, and Vogel [41]. The new twist is to use candidate p to witness the size of a maximum independent set containing \hat{v}. In order to do so, we make sure that all voters corresponding to vertices connected to \hat{v} are not in a set of voters that realizes the Young score of p, by making these voters maximally unattractive to p, by ranking p last.

Given a graph $G = (V, E)$, a delete limit $k \leq \|V\|$, and a vertex $\hat{v} \in V$, without loss of generality assume that G has no isolated vertices and that for every set W of at most k vertices, $\alpha(G - W) \geq 3$ (the latter property can for example be ensured by adding two $(k+1)$-cliques to G). Let the candidate set be $E \cup \{a, p, q\}$ and let the voter set consist of:

Type IA For each $v \in V$ such that $\{v, \hat{v}\} \not\in E$, one voter corresponding to v voting $(\{e \in E \mid v \in e\} > a > q > p > \cdots)$.

15The Young score of a candidate is the size of a largest subset of the voters that make it a weak Condorcet winner. A Young winner is a candidate with highest Young score.
Young score of \(q \)

Young score is realized by a set of voters whose Type-I voters are all of Type-IA and correspond to weak Condorcet winners in the set of voters that consists of the voters corresponding to vertices corresponding to the Type-I voters in \(X \) or voter of Type II, and vertices corresponding to the voters of Type I in \(\hat{W} \). Let \(\alpha \) be the set of voters such that after deletion, \(\hat{v} \) is in a maximum independent set of \(G - W \). We will show that the Young score of \(p \) is at least 2 and at least as high as the Young score of \(q \) by deleting at most \(k \) voters.

Let \(W \subseteq V \) be a set of at most \(k \) vertices such that \(\hat{v} \) is in a maximum independent set of \(G - W \). Delete the voters corresponding to \(W \). We will show that the Young score of \(p \) is at least 2 and at least as high as the Young score of \(q \). Let \(\hat{W} \) be a maximum independent set of \(G - W \) such that \(\hat{v} \in \hat{W} \). Then all the voters corresponding to \(\hat{W} \) are of Type IA. It is easy to see that \(p \) and \(q \) are weak Condorcet winners in the set of voters that consists of the voters corresponding to \(\hat{W} \), the voter of Type II, and \(||\hat{W}|| - 1 \) voters of Type III. It follows that the Young scores of \(p \) and \(q \) are at least \(2\alpha(G - W) \). It also follows from the argument from [41, Lemma 2.4] that the Young score of \(q \) is at most \(2\alpha(G - W) \).

For the converse, suppose \(X \) is a set of at most \(k \) voters such that after deletion, \(p \)'s Young score is at least 2 and at least as high as \(q \)'s Young score. Then \(X \) does not contain the voter of Type II. Let \(W \) be the set of vertices corresponding to the Type-I voters in \(X \). Then the Young score of \(q \) is \(2\alpha(G - W) \). Let \(\hat{X} \) be a set of voters of size \(2\alpha(G - W) \) such that \(p \) is a weak Condorcet winner of \(\hat{X} \). Without loss of generality, assume that \(\hat{X} \) does not contain voters of Type IB (if it does, we can replace such a voter by a voter of Type III). In order for \(p \) to be a weak Condorcet winner, the vertices corresponding to the voters of Type I in \(\hat{X} \) form an independent set of \(G - W \). Since all voters in \(\hat{X} \) of Type I are of Type IA, this independent set contains no vertices connected to \(\hat{v} \) and so we can safely add \(\hat{v} \) to this independent set, giving us an independent set containing \(\hat{v} \) of size at least \(\alpha(G - W) \).

Dodgson Elections

In this section we consider the complexity of control for Dodgson elections [16]. Recall that the Dodgson score of a candidate \(c \) using the Dodgson election system is the minimum number of swaps between adjacent candidates in votes such that \(c \) is a Condorcet winner and that the candidate(s) with the minimum score are the winner(s) of the Dodgson election. We will use the notation DodgsonScore(\(c \)) to denote the Dodgson score of a candidate \(c \) in a given election. As we did with Kemeny, we first consider the complexity of CCDC*.
Theorem 16 Dodgson-CCDC* is Σ_2^p-complete.

Proof. In our hardness proofs for control for Kemeny and Young elections, our approach was to define a new simple Σ_2^p-complete analogue of Vertex-Cover or Independent-Set (the problems used to show NP-hardness for the score problems) to then reduce to a control problem. Dodgson score was originally shown NP-hard by a reduction from Exact-Cover-by-3-Sets [3]. [29] provides a reduction from Three-Dimensional-Matching (3DM) as part of the proof of Θ_2^p-completeness of the winner problem. There does exist a simple Σ_2^p-complete analogue of 3DM [37]. However, this analogue does not straightforwardly reduce to Dodgson control problems.

Fortunately, in Dodgson there is a lot of flexibility in how to construct the voters in a reduction, and so we will directly reduce QSAT2 to Dodgson-CCDC*, though the construction is quite involved. To better understand our reduction, it helps to first consider a reduction from 3SAT to the Dodgson problem. An example of this construction is given in Example 1 below. We begin by showing the core parts of the construction (Blocks I and II).

Let $\phi(z_1, \ldots, z_n)$ be a Boolean formula in 3cnf, where $\phi = \psi_1 \land \psi_2 \land \cdots \land \psi_m$ and for each $i, 1 \leq i \leq m$, $\psi_i = \ell_{i,1} \lor \ell_{i,2} \lor \ell_{i,3}$. Without loss of generality, let $n \geq 1$ and $m \geq 1$. We now construct an instance of the Dodgson problem. An example of this construction is given in Example 1 below. We begin by showing the core parts of the construction (Blocks I and II).

Let $C = \{\hat{z}_1, \ldots, \hat{z}_n\} \cup \{c_1, \ldots, c_m\} \cup \{c_{i,1}, c_{i,2}, c_{i,3}, \ldots, c_{m,1}, c_{m,2}, c_{m,3}\} \cup \{q, b\}$. Let there be the following voters. Note that “…” in a vote denotes that the remaining candidates are strictly ranked in an arbitrary, fixed, and easy to compute order. Similarly, a set in a vote denotes that the candidates in that set are strictly ranked with respect to that order.

Block I

For each $i, 1 \leq i \leq m$ and $j, 1 \leq j \leq 3$,

- One voter voting: $(c_i > c_{i,j} > q > \cdots)$.

Block II

For each $t, 1 \leq t \leq n$,

- One voter voting: $(\hat{z}_t > \{c_{i,j} \mid \ell_{i,j} = z_t\} > q > \cdots)$.
- One voter voting: $(\hat{z}_t > \{c_{i,j} \mid \ell_{i,j} = \overline{z}_t\} > q > \cdots)$.

The above election can be easily padded so that the following properties hold.

- q needs one vote over each c_i, each $c_{i,j}$, and each \hat{z}_i, and no votes over b.
- One swap in votes other than the Block I and Block II votes does not give q a vote over any of the c_i, $c_{i,j}$, or \hat{z}_i candidates, i.e., one swap in votes other than Block I and Block II votes is useless.

Note that for each $c_{i,j}$ candidate, $2n + 3m - 2$ (of the $2n + 3m$) voters in Blocks I and II prefer q to $c_{i,j}$, that for each \hat{z}_i candidate, $2n + 3m - 2$ voters in Blocks I and II prefer q to \hat{z}_i, and that for each c_i candidate, $2n + 3m - 3$ of the voters in Blocks I and II prefer q to c_i. We can ensure that q needs one vote over each of these candidates (by making q tie pairwise with each of these candidates) by adding the following $2n + 3m - 4$ voters. We use the buffer candidate “b” to ensure that one swap outside of Blocks I and II does not give q a vote over any of the c_i, $c_{i,j}$, or \hat{z}_i candidates.

Block III

- One voter voting: $(\cdots > b > q > \{c_1, \ldots, c_m\})$.
- $2n + 3m - 5$ voters voting: $(\cdots > b > q)$.
We will show in Lemma 17 that ϕ is satisfiable if and only if $\text{DodgsonScore}(q) \leq 4m + n$.

Before proving the correctness of this construction, let’s first consider the following example, which will show how assignments to variables correspond to swaps between adjacent candidates.

Example 1 Given the formula $\phi(z_1, z_2) = (z_1 \lor \overline{z_2} \lor z_1) \land (\overline{z_2} \lor \overline{z_1} \lor z_2)$, our construction gives the following election.

$C = \{c_1, c_2, c_{1,1}, c_{1,2}, c_{1,3}, c_{2,1}, c_{2,2}, c_{2,3}, \hat{z}_1, \hat{z}_2, q, b\}$, and we have the following voters. (We do not name the voters in Block III since we do not need to swap q in these votes.)

Block I

- v_1 voting: $(c_1 > c_{1,1} > q > \cdots)$.
- v_2 voting: $(c_1 > c_{1,2} > q > \cdots)$.
- v_3 voting: $(c_1 > c_{1,3} > q > \cdots)$.
- v_4 voting: $(c_1 > c_{2,1} > q > \cdots)$.
- v_5 voting: $(c_1 > c_{2,2} > q > \cdots)$.
- v_6 voting: $(c_1 > c_{2,3} > q > \cdots)$.

Block II

- v_7 voting: $(\hat{z}_1 > c_{1,1} > c_{1,3} > q > \cdots)$.
- v_8 voting: $(\hat{z}_1 > c_{2,2} > q > \cdots)$.
- v_9 voting: $(\hat{z}_2 > c_{2,3} > q > \cdots)$.
- v_{10} voting: $(\hat{z}_2 > c_{1,2} > c_{2,1} > q > \cdots)$.

Block III

- **One voter voting:** ($\cdots > b > q > c_1 > c_2$).
- **Five voters voting:** ($\cdots > b > q$).

It is easy to see that the assignment $z_1 = 1, z_2 = 0$ is a satisfying assignment for ϕ. We will now show that this implies that $\text{DodgsonScore}(q) \leq 10$.

Swapping q over a $c_{1,i}$ candidate in its Block I vote will correspond to that clause literal being true and swapping q over a $c_{i,j}$ candidate in its Block II vote will correspond to that clause literal being false. Since z_1 is true, swap q with $c_{1,1}$ in v_1 and $c_{1,3}$ in v_3 (these correspond to positive z_1-literals in ϕ) and then in Block II swap q with $c_{2,2}$ and \hat{z}_1 in v_8 (this vote corresponds to the negated z_1-literals). Similarly, since z_2 is false, swap q with $c_{1,2}$ in v_2, swap q with $c_{2,1}$ in v_4, and then in Block II swap q with $c_{2,3}$ and \hat{z}_2 in v_9. This takes eight swaps for q to gain one vote over each of the \hat{z}_i and $c_{i,j}$ candidates.

Note that since ϕ is satisfiable, for each clause there exists at least one true literal, and we just swapped q over the true clause literals in Block I. So, to gain one vote over c_1, swap q with c_1 in v_1 (we already swapped q with $c_{1,1}$) and to gain one vote over c_2, swap q with c_2 in v_2 (we already swapped q with $c_{1,2}$). This takes exactly two swaps. Thus the Dodgson score of q is ≤ 10.

We will now show the following lemma.

Lemma 17 ϕ is satisfiable if and only if $\text{DodgsonScore}(q) \leq 4m + n$.
Proof. First suppose that $\phi(z_1, \ldots, z_n)$ is satisfiable. Fix an assignment $\alpha \in \{0,1\}^n$ for ϕ. We argue as in Example 1.

Recall that q needs one vote over each z_t, each c_i, and each $c_{i,j}$ candidate. For each $t, 1 \leq t \leq n$ if z_t is false in the assignment (i.e., $\alpha_t = 0$) then for each $c_{i,j}$ such that $\ell_{i,j} = z_t$, swap q with $c_{i,j}$ in the corresponding votes in Block I and swap q up to the top in the corresponding z_t vote in Block II, and if z_t is true in the assignment (i.e., $\alpha_t = 1$) then for each $c_{i,j}$ such that $\ell_{i,j} = \overline{z_t}$, swap q with $c_{i,j}$ in the corresponding votes in Block I and swap q up to the top in the corresponding $\overline{z_t}$ vote in Block II. For example, if z_t is false in the satisfying assignment do the following.

- Swap q with $c_{i,j}$ in each Block I vote ($c_i > c_{i,j} > q > \cdots$) for which $\ell_{i,j} = \overline{z_t}$ to get ($c_i > q > c_{i,j} > \cdots$).

- Swap q up to the top in the Block II vote ($\overline{z_t} \in \{c_{i,j} \mid \ell_{i,j} = z_t\}$) to get ($q > \overline{z_t} > \{c_{i,j} \mid \ell_{i,j} = z_t\} > \cdots$).

This takes $3m + n$ swaps.

Since α is a satisfying assignment for ϕ we know that for each clause there exists a clause literal that is true. In our election, this means that for each $i, 1 \leq i \leq m$, there exists an $a_j, 1 \leq j \leq 3$, such that q has been swapped in the vote ($c_i > c_{i,j} > q > \cdots$) to get ($c_i > q > c_{i,j} > \cdots$). So with a total of m swaps q can gain one vote over each clause candidate c_i. This all takes a total of $4m + n$ swaps.

For the converse, suppose that DodgsonScore(q) $\leq 4m + n$. The Dodgson score of q will always be at least $4m + n$, since q must gain one vote over $4m + n$ candidates (each c_i, each $c_{i,j}$, and each $\overline{z_t}$ candidate). To avoid “wasting” swaps, q must swap only with these candidates and only in Block I and Block II, since these are the only votes were q is directly adjacent to these candidates. Since each swap must gain a necessary vote, for each $t, 1 \leq t \leq n$, we either swap q up in the Block II vote ($\overline{z_t} \in \{c_{i,j} \mid \ell_{i,j} = z_t\}$) to get ($q > \overline{z_t} > \{c_{i,j} \mid \ell_{i,j} = z_t\}$) or swap q up in the Block II vote ($\overline{z_t} \in \{c_{i,j} \mid \ell_{i,j} = \overline{z_t}\}$) to get ($q > \overline{z_t} > \{c_{i,j} \mid \ell_{i,j} = \overline{z_t}\}$). Note that this is the only way for q to gain one vote over $\overline{z_t}$ without wasting swaps. In the first case set z_t to false and in the second case set z_t to true. This gives us a satisfying assignment for ϕ since for each $i, 1 \leq i \leq m$, q must also swap with the clause candidate c_i, which implies that for some $j, 1 \leq j \leq 3$, q swaps with $c_{i,j}$ in Block I, and since q only swaps over each of these candidates exactly once, q did not swap with this $c_{i,j}$ in Block II. So $c_{i,j}$ corresponds to a true literal in the constructed satisfying assignment.

We will now use the idea from the reduction above to show that Dodgson-CCDC* is Σ_2^p-complete.

Membership in Σ_2^p follows from Corollary 2. To show hardness, we reduce from QSAT and recall that it is defined as all true formulas of the form $\exists x_1 \cdots \exists x_n = (\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n))$, where ϕ is a formula in 3cnf, where $\phi = \psi_1 \land \psi_2 \land \cdots \land \psi_m$ and for each $i, 1 \leq i \leq m$, $\psi_i = \ell_{i,1} \lor \ell_{i,2} \lor \ell_{i,3}$. Let $X = \{x_1, \ldots, x_n\}$ and $\overline{X} = \{\overline{x_1}, \ldots, \overline{x_n}\}$ denote the positive and negative x-literals and let $Y = \{y_1, \ldots, y_n\}$ and $\overline{Y} = \{\overline{y_1}, \ldots, \overline{y_n}\}$ denote the positive and negative y-literals. Without loss of generality, let $n > m$ and $n > 6$. Let \tilde{m} be the number of occurrences of y-literals, i.e., $\tilde{m} = \|\{(i,j) \mid 1 \leq i \leq m, 1 \leq j \leq 3, \text{ and } \ell_{i,j} \in Y \cup \overline{Y}\}\|$. Note that $\tilde{m} \leq 3m$.

We now construct an instance of Dodgson-CCDC*. Let the candidate set C consist of the x-variable candidates $\{\tilde{x}_1, \ldots, \tilde{x}_n\}$, the y-variable candidates $\{\tilde{y}_1, \ldots, \tilde{y}_n\}$, the clause candidates $\{c_1, \ldots, c_m\}$, a clause-literal candidate for each occurrence of a y-literal $\{c_{i,j} \mid 1 \leq i \leq m, 1 \leq j \leq 3, \text{ and } \ell_{i,j} \in Y \cup \overline{Y}\}$ (note that there are \tilde{m} clause-literal candidates), the buffer candidates $\{b_1, b_2, b_3, b_4\}$, the positive and negated x-literal candidates $X \cup \overline{X}$ and the candidates p, q, and d. Let p be the preferred candidate of the chair, let $X \cup \overline{X}$ be the set of deletable candidates, and let
the delete limit be 2n (i.e., we can delete any subset of \(X \cup \overline{X} \); this will be useful when we look at CCAC). We have the following 16\(n \) + 8\(m \) + 2\(\hat{m} \) − 8 voters.

Block IA For each \(i, 1 \leq i \leq m \), and \(j, 1 \leq j \leq 3 \), such that \(\ell_{i,j} = y_t \) or \(\overline{y_t}

- One voter voting: \((c_i > c_{i,j} > q > b_1 > p > d > \cdots)\).

Block IB For each \(i, 1 \leq i \leq m \), and \(j, 1 \leq j \leq 3 \), such that \(\ell_{i,j} = x_t \) or \(\overline{x_t}

- If \(\ell_{i,j} = x_t \), one voter voting: \((c_i > x_t > q > b_1 > p > d > \cdots)\).
- If \(\ell_{i,j} = \overline{x_t} \), one voter voting: \((c_i > \overline{x_t} > q > b_1 > p > d > \cdots)\).

Block II For each \(t, 1 \leq t \leq n \),

- One voter voting: \((\hat{y}_t \{c_{i,j} \mid \ell_{i,j} = y_t\} > q > b_1 > p > d > \cdots)\).
- One voter voting: \((\hat{y}_t \{c_{i,j} \mid \ell_{i,j} = \overline{y_t}\} > q > b_1 > p > d > \cdots)\).

Block III For each \(t, 1 \leq t \leq n \),

- One voter voting: \((\hat{x}_t > x_t > p > q > d > \cdots)\).
- One voter voting: \((\hat{x}_t > \overline{x_t} > p > q > d > \cdots)\).

Block IV

- One voter voting: \((d > \cdots > b_2 > \{c_1, \ldots, c_m\} > \{\hat{y}_1, \ldots, \hat{y}_n\} > p > b_1 > q)\).
- One voter voting: \((d > \cdots > b_2 > \{\hat{x}_1, \ldots, \hat{x}_n\} > q > b_1 > b_3 > p)\).

Block V

- One voter voting: \((d > \cdots > b_2 > p > q > \{c_1, \ldots, c_m\})\).
- 2\(n \) + 3\(m \) − 6 voters voting: \((d > \cdots > b_2 > p > b_1 > q)\).

Block VI

- 4\(n \) + \(m + \hat{m} \) − 2 voters voting: \((p > q > d > \cdots)\).
- 2\(n \) + 3\(m \) − 4 voters voting: \((\cdots > b_3 > q > b_4 > d > p > b_1 > b_2 > X \cup \overline{X})\).
- 4\(n \) − 1 voters voting: \((d > \cdots > b_2 > q > b_1 > p > b_3 > b_4 > X \cup \overline{X})\).
- Two voters voting: \((\cdots > b_3 > d > p > b_4 > q > b_1 > b_2 > X \cup \overline{X})\).

Note the following about the election above.

1. \(q \) needs one vote over each \(\hat{x}_i \), each \(\hat{y}_i \), each \(c_i \), each \(c_{i,j} \), and \(p \), and no votes over other candidates. Note that DodgsonScore\((q) \geq 2n + m + \hat{m} + 1\).

2. The votes in Block IA and the Block II votes function in the same way to determine (part of) the score of \(q \) as in the Dodgson score reduction above. And \(q \) can only gain a vote over any of the \(\hat{y}_i \), \(c_i \), or \(c_{i,j} \) candidates without wasting a swap in Block I and Block II.
3. p needs one vote over each \hat{x}_i, each \hat{y}_i, each c_i, each $c_{i,j}$, and q, and no votes over other candidates. p needs at least two swaps to gain one vote over q and to accomplish this p needs to swap over a buffer candidate. Note that $\text{DodgsonScore}(p) \geq 2n + m + \hat{m} + 2$.

4. d needs $2n + m + \hat{m} - 1$ votes over q, 3 votes over p, and no votes over other candidates. Note that regardless of which candidates in $X \cup \overline{X}$ are deleted, $\text{DodgsonScore}(d) = 2n + m + \hat{m} + 2$.

5. Each candidate in $C - \{p, q, d\}$ needs at least $2n + m + \hat{m} + 2$ votes over d. So regardless of which candidates in $X \cup \overline{X}$ are deleted, for each $c \in C - \{p, q, d\}$, $\text{DodgsonScore}(c) \geq 2n + m + \hat{m} + 2$.

Let’s consider the Dodgson score of p. It is easy to see for every $X' \subseteq X \cup \overline{X}$, in the election $(C - X', V)$, p can gain each needed vote over the \hat{y}_i, c_i, and $c_{i,j}$ candidates in the Block IV vote and then use two more swaps to gain one vote over q. What remains is to show how p can gain one vote over each of the \hat{x}_i candidates. When at least one of the $\{x_i, \overline{x}_i\}$ candidates is deleted, p can gain one vote over the corresponding \hat{x}_i candidate in Block III, using one swap. So, we can state the following observation.

Observation 18 For every $X' \subseteq X \cup \overline{X}$,

1. The Dodgson score of p with X' removed is $\geq 2n + m + \hat{m} + 2$.
2. The Dodgson score of p with X' removed is $2n + m + \hat{m} + 2$ if and only if for each $i, 1 \leq i \leq n$, at least one of each x_i or \overline{x}_i in is X'.

We now consider the Dodgson score of q.

Lemma 19 For every $X' \subseteq X \cup \overline{X}$,

1. The Dodgson score of q with X' removed is $\geq 2n + m + \hat{m} + 1$.
2. The Dodgson score of q with X' removed is $2n + m + \hat{m} + 1$ if and only if ϕ with x-literals in X' set to true and x-literals not in X' set to false is satisfiable.

Proof.

1. Clearly the Dodgson score of q with X' removed is $\geq 2n + m + \hat{m} + 1$, since q needs one vote over each \hat{x}_i, each \hat{y}_i, each c_i, each $c_{i,j}$, and p, and does not need any votes over other candidates.

2. Suppose that q can be made a Condorcet winner in the election $(C - X', V)$ with exactly $2n + m + \hat{m} + 1$ swaps. This means that every swap must gain a necessary vote, since q needs one vote each over $2n + m + \hat{m} + 1$ candidates. With the exception of candidate p and the \hat{x}_i candidates, q is only ever not separated from candidates it needs votes over by a buffer candidate in Block I and Block II. So $n + m + \hat{m}$ of these swaps must occur there. Note that q can easily swap over p (in Block III), and the \hat{x}_i candidates (in Block IV) with exactly $n + 1$ swaps.

Consider the candidates deleted in X'. If $\ell_{i,j} = x_i (\overline{x}_i)$ then q can gain one vote over c_i in the corresponding Block I vote with only one swap. This will correspond to setting x_i to true (false) in the corresponding assignment and setting $x_i (\overline{x}_i)$ to true means that the ith clause is true.

Now let’s consider the y-literals. Since the Dodgson score of q is $2n + m + \hat{m} + 1$, q can swap over the \hat{y}_i, c_i, and $c_{i,j}$ candidates without wasting swaps. It follows from a similar argument.
as in the proof of Lemma 17 that since \(q \) can swap over the remaining \(n + m + \hat{m} \) candidates without wasting a swap, \(\phi \) with the \(x \)-literals in \(X' \) set to true and \(x \)-literals not in \(X' \) set to false is satisfiable.

For the other direction, consider a fixed satisfying assignment for \(y \)-variables in \(\phi \), where the assignment to the \(x \)-literals is set by the deleted candidates \(X' \). For each \(t \), \(1 \leq t \leq n \), if \(y_t \) is true (false) in the satisfying assignment, swap \(q \) up over the \(c_{i,j} \) candidates and \(\tilde{y}_t \) in the \(\overline{y}_t(y_t) \) vote in Block II. Then for each \(t \), \(1 \leq t \leq n \), if \(y_t \) is true (false) \(q \) swap with \(c_{i,j} \) in the corresponding \(\ell_{i,j} = y_t (\overline{y}_t) \) Block I votes. This takes \(n + m \) swaps and handles the \(c_{i,j} \) and \(\tilde{y}_t \) candidates. Since we are looking at a satisfying assignment, for all \(i \), \(1 \leq j \leq 3 \) such that \(c_i > c_{i,j} > q \) has been swapped to \(c_i > q > c_{i,j} \) or \(x_i(\overline{x}_i) \) has been deleted so that \(c_i > q \). With \(k \) extra swaps, \(p \) beats \(c_i \) pairwise for all \(i \). \(q \) must additionally gain one vote over \(p \) and one vote over each \(\tilde{x}_i \) candidate and it is clear to see how this can be accomplished with \(n + 1 \) swaps. This all takes \(2n + m + \hat{m} + 1 \) swaps.

We will now show that \(\exists x_1 \cdots \exists x_n \neg(\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)) \in QA \) if and only if there exists \(X' \subseteq X \cup \overline{X} \) such that \(p \) is a Dodgson winner of \((C - X', V) \).

Suppose that \(\exists x_1 \cdots \exists x_n \neg(\exists y_1 \cdots \exists y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)) \in QA \). Fix an assignment \(\alpha \in \{0, 1\}^n \) for the \(x \)-literals such that \(\phi \) is not satisfiable. Let the candidates deleted be \(X' = \{ x_i \mid \alpha_i = 1 \} \cup \{ \overline{x}_i \mid \alpha_i = 0 \} \). We know from Observation 18 that the Dodgson score of \(p \) with \(X' \) deleted is \(2n + m + \hat{m} + 2 \) and by Lemma 19 we know that DodgsonScore(\(q \)) = \(2n + m + \hat{m} + 2 \). And as stated in the list of properties given after the construction, the Dodgson score of each candidate in \(C - \{ p, q, d \} \) is at least \(2n + m + \hat{m} + 2 \). Additionally, the Dodgson score of \(d \) is \(2n + m + \hat{m} + 2 \) regardless of which candidates in \(X \cup \overline{X} \) are deleted. It follows that \(p \) is a Dodgson winner of \((C - X', V) \).

Suppose that there exists an \(X' \subseteq X \cup \overline{X} \) such that \(p \) is a winner. Regardless of which candidates in \(X \cup \overline{X} \) are deleted, DodgsonScore(\(d \)) = \(2n + m + \hat{m} + 2 \) and DodgsonScore(\(p \)) = \(2n + m + \hat{m} + 2 \). Since \(p \) is a winner, DodgsonScore(\(p \)) = \(2n + m + \hat{m} + 2 \) and it follows from Observation 18 that \(X' \) contains at least one of each \(\{ x_i, \overline{x}_i \} \). Let \(\alpha \in \{0, 1\}^n \) be an assignment to the \(x \)-literals that is consistent with the candidates in \(X' \), that is, for all \(1 \leq i \leq n \), if \(\alpha_i = 1 \), then \(x_i \in X' \) and if \(\alpha_i = 0 \), then \(\overline{x}_i \in X' \). Suppose that \(\phi(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_n) \) is satisfiable. Then by Lemma 19, DodgsonScore(\(q \)) = \(2n + m + \hat{m} + 1 \). However, since DodgsonScore(\(p \)) = \(2n + m + \hat{m} + 2 \), \(p \) is not a winner, which is a contradiction. It follows that \(\phi(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_n) \) is not satisfiable.

The analogous result for CCAC follows almost immediately.

Theorem 20 Dodgson-CCAC is \(\Sigma_2^p \)-complete.

Proof. Membership in \(\Sigma_2^p \) follows from Observation 1. To show hardness, we reduce from QSAT2 and use the same construction as for the case of the proof of Theorem 16, with the obvious modification that the set of deletable candidates \((X \cup \overline{X}) \) is now the set of unregistered candidates and the delete limit is now the addition limit of \(2n \). Note that \(p \) can be a winner by deleting a set of candidates \(\hat{X} \subseteq X \cup X' \) from \((C, V) \) if and only if \(p \) can be made a winner by adding \((X \cup X') - \hat{X} \) to \((C - (X \cup X'), V) \), which immediately gives the result.

The construction used for the proof of Dodgson-CCDC* can be adapted to show the following.

Theorem 21 Dodgson-CCDC is \(\Sigma_2^p \)-complete.
Proof Sketch. Membership in Σ_p^2 follows from Corollary 2. We will adapt the construction used in the proof of Theorem 16. Set the delete limit to n. Our main challenge is to ensure that the arguments from the previous proof still go through when we delete up to n arbitrary candidates. We start with Blocks I, II, III, and IV and do the following.

1. To ensure that the buffer candidates function in the same way, we replace each buffer candidate by $n + 1$ copies of that candidate.

2. We also replace the candidate “d,” which in the Dodgson-CCDC∗ proof, regardless of which candidates in $X \cup \overline{X}$ are deleted, always has Dodgson score equal to the minimum-possible Dodgson score of p, by $n + 1$ copies: $\{d_1, \ldots, d_{n+1}\}$. And we replace each occurrence of d in the construction by $d_1 > d_2 > \cdots > d_{n+1}$. This will ensure that regardless of which candidates in $C - \{q\}$ are deleted, the Dodgson score of the first d_i that is not deleted is the minimum-possible Dodgson score of p. (We will mention why we do not delete q later.)

3. We now will make sure that the candidates deleted correspond to an assignment. In the Dodgson-CCDC∗ proof, this was accomplished by the Block III votes and the \hat{x}_i candidates.

Old Block III For each $t, 1 \leq t \leq n$,
- One voter voting: $(\hat{x}_t > x_t > p > \cdots)$.
- One voter voting: $(\hat{x}_t > \overline{x}_t > p > \cdots)$.

In our new construction we create $2n$ of each of the \hat{x}_i candidates: $\{\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n\}$ and we make sure that p needs one vote over each of these $2n^2$ variables. We then change Block III to be the following $4n^2$ votes.

New Block III For each $t, 1 \leq t \leq n$, and $s, 1 \leq s \leq 2n$,
- One voter voting: $(\hat{x}_t^i > x_t > p > \cdots)$.
- One voter voting: $(\hat{x}_t^i > \overline{x}_t > p > \cdots)$.

Now for each x_i or \overline{x}_i deleted, p can gain the necessary vote over each of the at least n non-deleted \hat{x}_i candidates without wasting swaps, and so one such deletion decreases the Dodgson score of p by at least n. Note that if for an $i, 1 \leq i \leq n$, both of x_i and \overline{x}_i were deleted, or if a candidate in $C - (X \cup \overline{X})$ was deleted, then the Dodgson score of p would decrease by at most 1.

In order for p to tie with “d” by deleting at most n candidates, we need to delete exactly one of each $\{x_i, \overline{x}_i\}$, which corresponds to an assignment. Note that this also implies that we do not delete q.

4. In the Dodgson-CCDC∗ proof, to get its needed vote over q, p needs to waste a swap over q and does this by swapping over a buffer candidate. Since there are now $n + 1$ copies of each buffer candidate, we need to modify the votes so that p still wastes exactly one swap to gain its vote over q. Recall the Block II votes from the Dodgson-CCDC∗ proof.

Old Block II For each $t, 1 \leq t \leq n$,
- One voter voting: $(\hat{y}_t > \{c_{i,j} \mid \ell_{i,j} = \hat{y}_t\} > q > b_1 > p > d > \cdots)$.
- One voter voting: $(\overline{\hat{y}_t} > \{c_{i,j} \mid \ell_{i,j} = \overline{\hat{y}_t}\} > q > b_1 > p > d > \cdots)$.

In our new construction, we replace the buffer candidate with candidates from $X \cup \overline{X}$ in the following way.
New Block II For each \(t, 1 \leq t \leq n \),

- One voter voting: \((\bar{y}_t > \{c_{i,j} | \ell_{i,j} = y_t\} > q > \{x_t, \overline{x_t}\} > p > d > \cdots) \).
- One voter voting: \((\bar{y}_t > \{c_{i,j} | \ell_{i,j} = \overline{y}_t\} > q > \{x_t, \overline{x_t}\} > p > d > \cdots) \).

Since from above we know that an assignment must be deleted, we know that one of each \(\{x_t, \overline{x_t}\} \) remains after deletion, and so to gain one vote over \(q \), \(p \) swaps over a remaining \(x \)-literal candidate in a New Block II vote to then swap over \(q \). Note that in votes outside of Block II where \(p \) is ranked below \(q \), \(p \) is separated from \(q \) by at least \(n + 1 \) buffer candidates.

5. We must then pad the above construction (Blocks I-IV) so that the following hold.

- \(q \) needs one vote over each \(\overline{x}_i^j \), each \(\bar{y}_i \), each \(c_i \), each \(c_{i,j} \), and \(p \), and no votes over other candidates.
- \(q \) can only gain a vote over any of the \(\bar{y}_i \), \(c_i \), or \(c_{i,j} \) candidates without wasting a swap in Block I and Block II.
- \(p \) needs one vote over each \(\overline{x}_i^j \), each \(\bar{y}_i \), each \(c_i \), each \(c_{i,j} \), and \(q \), and no votes over other candidates. \(p \) wastes a swap to gain a vote over \(q \).
- Each \(d_i \in D \) needs \(2n^2 + n + m + \hat{m} + 2 \) votes in total over \(p \) and \(q \), and no votes over candidates in \(C - (\{p, q\} \cup D) \). \(d_1 \) can gain these \(2n^2 + n + m + \hat{m} + 2 \) votes without wasting swaps.
- Each candidate in \(C - (\{p, q\} \cup D) \) needs at least \(2n^2 + n + m + \hat{m} + 2 \) votes over the candidates in \(D \).