Correction of ‘The Kellogg property and boundary regularity for \(p \)-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications’

Anders Björn

Department of Mathematics, Linköping University, Linköping, Sweden

ABSTRACT

We fill in a gap in the proofs of Theorems 1.1–1.4 in ‘The Kellogg property and boundary regularity for \(p \)-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications’, to appear in *Complex Var. Elliptic Equ.*, doi:10.1080/17476933.2017.1410799.

ARTICLE HISTORY

Received 29 October 2018
Accepted 20 November 2018

COMMUNICATED BY

D. Mitrea

KEYWORDS

Boundary regularity; Mazurkiewicz boundary; split nicely

AMS SUBJECT CLASSIFICATIONS

Primary: 31C45; Secondary: 31E05; 35J66; 35J92; 49Q20

It has come to my attention that there is a gap in the argument showing that every boundary point \(x_0 \in \partial \Omega \) splits nicely with respect to the Mazurkiewicz boundary if \(\Omega \) is as in Theorems 1.1–1.4 in [1] (i.e. \(\Omega \subset X \) is a bounded domain which is finitely connected at the boundary, where \(X \) is a complete metric space equipped with a doubling measure supporting a \(p \)-Poincaré inequality, \(1 < p < \infty \)). This fact is mentioned after Definition 6.1, tacitly assuming that \(\Phi^{-1}(x_0) \) is at most countable. However, \(\Phi^{-1}(x_0) \) can be uncountable even under the assumptions in Theorems 1.1–1.4 in [1], see Example 7.5 in Björn et al. [2]. Nevertheless, \(x_0 \) does split nicely in this case.

To see this, let \(\hat{x} \in \Phi^{-1}(x_0) \) and let \(V \) be a Mazurkiewicz neighbourhood of \(\hat{x} \). (The Mazurkiewicz metric is always defined with respect to \(\Omega \).) Then there is \(r > 0 \) so that \(V \supset B^M(\hat{x}, 3r) := \{ x \in \overline{\Omega}^M : d_M(x, \hat{x}) < 3r \} \). Let \(G \) be the component of \(\Omega \cap B(x, r) \) which has \(\hat{x} \) in its Mazurkiewicz closure, and let

\[
U = \overline{G}^M \setminus \Phi^{-1}(\{ x \in \overline{\Omega} : d(x, x_0) = r \}),
\]

which is an open Mazurkiewicz neighbourhood of \(\hat{x} \). As \(G \) is connected, we see that \(d_M(x, y) \leq \text{diam}G \leq 2r \) whenever \(x, y \in G \). Thus

\[
B^M(\hat{x}, r) \subset U \subset B^M(\hat{x}, 3r) \subset V.
\]
Moreover, if $x' \in \overline{U}^M \setminus U$, then $d(\Phi(x'), x_0) = r$ and in particular $\Phi(x') \neq x_0$. Hence x_0 splits nicely.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

The author was supported by the Swedish Research Council [grant number 2016-03424].

ORCID

Anders Björn
http://orcid.org/0000-0002-9677-8321

References

[1] Björn A. The Kellogg property and boundary regularity for p-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications. Complex Var Elliptic Equ. 64 (2019), 40–63.

[2] Björn A, Björn J, Li X. Sphericalization and p-harmonic functions on unbounded domains in Ahlfors regular metric spaces. J. Math. Anal. Appl. doi:10.1016/j.jmaa.2019.01.071