The Incidence and Associated Factors of Sudden Death in Patients on Hemodialysis: 10-Year Outcome of the Q-Cohort Study

Hiroto Hiyamuta¹, Shigeru Tanaka², Masatomo Taniguchi³, Masanori Tokumoto², Kiichiro Fujisaki¹, Toshiaki Nakano¹, Kazuhiko Tsuruya⁴ and Takanari Kitazono¹

¹Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
²Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
³Fukuoka Renal Clinic, Fukuoka, Japan
⁴Department of Nephrology, Nara Medical University, Nara, Japan

Aim: The incidence of sudden death and its risk factors in patients on hemodialysis remain unclear. This study aimed to clarify the incidence of sudden death and its risk factors in Japanese patients on hemodialysis.

Methods: A total of 3505 patients on hemodialysis aged ≥ 18 years were followed for 10 years. Multivariate-adjusted hazard ratio (HR) with 95% confidence interval (95% CI) of each risk factor of sudden death were calculated using a Cox proportional hazards model.

Results: During the 10-year follow-up, 1735 patients died, including 227 (13%) sudden deaths. The incidence rate of sudden death was 9.13 per 1000 person-years. In multivariable-adjusted Cox analysis, male sex (HR 1.67; 95% CI 1.20–2.33), age (HR 1.44; 95% CI 1.26–1.65 per 10-year higher), the presence of diabetes (HR 2.45; 95% CI 1.82–3.29), history of cardiovascular disease (HR 1.85; 95% CI 1.38–2.46), cardiothoracic ratio (HR 1.21; 95% CI 1.07–1.39 per 5% higher), serum C-reactive protein (HR 1.11; 95% CI 1.03–1.20 per 1-mg/dL higher), and serum phosphate (HR 1.15; 95% CI 1.03–1.30 per 1-mg/dL higher) were independent predictors of sudden death. A subgroup analysis stratified by sex or age showed that lower serum corrected calcium levels, not using vitamin D receptor activators in women, and a shorter dialysis session length in men or older people (≥ 65 years) increased the risk for sudden death.

Conclusions: This study clarified the incidence of sudden death and its specific predictors in Japanese patients on hemodialysis.

Key words: Sudden death, Cardiovascular disease, End-stage kidney disease, Hemodialysis, Associated factors

Introduction/Aim

The mortality rate in patients undergoing hemodialysis remains higher compared with that in the non-dialysis population¹. Cardiovascular disease (CVD) is the most common cause of death in patients on dialysis².³. Sudden death, which is defined as sudden and unexpected natural death within a short period (generally between 1 and 24 hours) after the onset of symptoms is a serious problem. Most sudden deaths are due to CVD, such as cardiac disease, stroke, and aortic dissection, according to a previous autopsy report⁴. A previous report showed that chronic kidney disease is an independent risk factor for sudden death⁵. According to the United States Renal Data System, sudden death is the most common cause of death in patients on hemodialysis, accounting for 28% of all deaths⁶. Another report on Japanese patients on hemodialysis showed that 16% of all deaths were due to sudden death⁷. A recent meta-analysis showed that the incidence of sudden death in patients on hemodialysis widely varies and is inconclusive⁸. Accurate evaluation of the frequency of sudden death in patients on hemodialysis based on a clear
definition is required.

Patients on hemodialysis may be predisposed to various factors affecting the onset of sudden death compared with the general population9). Nevertheless, there have only been a few reports that evaluated risk factors of sudden death in patients undergoing hemodialysis10-12). Furthermore, these reports were limited to the Western population, and they had a small sample size and a short-term follow-up. We believe that the establishment of robust predictors of sudden death would be useful for better survival of patients on hemodialysis. In this study, we analyzed a 10-year follow-up data of sudden death using a large-scale cohort of patients on hemodialysis in Japan. The present study aimed to clarify the precise incidence of sudden death and its risk factors.

Methods

Study Population

The Q-Cohort Study was a multicenter, longitudinal, and observational study of patients who underwent maintenance hemodialysis in Japan. The details of this study have been previously described13). A total of 3598 outpatients aged 18 years or older who underwent maintenance hemodialysis at 39 dialysis facilities in Fukuoka and Saga Prefectures in the northern region of Kyushu Island were enrolled from December 2006 to December 2007. Participants were followed until December 2016. Patients without demographic data or patients whose outcomes were missing were excluded (n=93). The remaining 3505 patients were analyzed in this study. The study protocol was approved by the Clinical Research Ethics Committee of the Institutional Review Board at Kyushu University (Approval Number: 20-31) and was registered in the clinical trial registry (University Hospital Medical Information Network, UMIN000000556). All of the patients provided written informed consent before participation in the study. The present study was performed according to the Ethics of Clinical Research (Declaration of Helsinki). The ethics committee of all participating institutions granted approval to waive the requirement for written informed consent for the additional follow-up survey from 2011 to 2016 because of the retrospective nature of the current study.

Covariates

The details of the risk factor measurements were previously published13). Data of baseline characteristics and potential confounders (age, sex, dialysis vintage, presence of diabetes mellitus, history of CVD, pre-dialysis systolic blood pressure, serum levels of albumin, ferritin, corrected calcium, phosphate, intact parathyroid hormone, total cholesterol, and C-reactive protein [CRP], Kt/V, body mass index, and use of a vitamin D receptor activator [VDRA]) were collected by reviewing medical records. History of CVD included coronary artery disease, congestive heart failure, and peripheral arterial disease, whereas stroke was excluded. The corrected serum calcium concentration was based on Payne’s formula as follows: corrected calcium (mg/dL) = observed total calcium (mg/dL) + (4.0 – serum albumin concentration (g/dL))14).

Outcomes

The primary outcome was the incidence of sudden death. Sudden death was defined as a witnessed death within 24 hours after the onset of acute symptoms, and an unwitnessed unexpected death within the interval between dialysis sessions, excluding trauma, suicide, and suffocation. This definition was also referred to in a previous study15). The patients’ health status was examined annually by local physicians at each dialysis facility. When patients moved to other dialysis facilities where a collaborator of this study was not present, we enquired about the information of the patients’ condition by telephone or mail. Death events were collected from the patients’ medical records.

Statistical Analysis

Baseline characteristics are expressed as mean± standard deviation or median (interquartile range) for continuous variables and as percentages for categorical variables. Statistical significance of the difference between sudden death cases and non-sudden death cases was tested using the Student’s t-test or Mann–Whitney U test for continuous variables and the chi-square test for categorical variables. Multivariable-adjusted hazard ratio (HR) with 95% confidence intervals (CI) of each risk factor for sudden death were calculated using the Cox proportional hazards model. Furthermore, the total cohort was stratified by age, sex, and dialysis vintage to evaluate the interaction for the association between risk factors and sudden death. Statistical calculations were performed using JMP, version 13 software program (SAS Institute Inc. Tokyo, Japan). P<0.05 was considered statistically significant.

Results

During the 10-year follow-up period, 1735 (50%) patients died from any cause. Fig. 1 shows the causes of death of all decedents. A total of 227 deaths were attributed to sudden death, which comprised
cases. Sudden death cases were more likely to be men ($P=0.03$) and to have a higher prevalence of diabetes ($P<0.001$) and CVD ($P<0.001$) compared with non-sudden death cases. Sudden death cases also had higher serum albumin levels ($P<0.001$), serum hemoglobin levels ($P<0.01$), and body mass index ($P=0.01$) than in non-sudden death cases. With regard to serum parameters related to chronic kidney disease-related bone-mineral disorders, sudden death cases had lower corrected calcium levels ($P<0.001$), higher

13% of all deaths. The incidence rate of sudden death was 9.13 per 1000 person-years. Fig. 2 shows the distribution of sudden death by the day of the week. Sudden death is observed most frequently on Monday. The distribution of sudden death in dialysis vintage is shown in Fig. 3. The onset of sudden death is most common between 9 to 10 years from the start of hemodialysis. Table 1 shows the characteristics of this study population and comparison of the characteristics of sudden death cases with non-sudden death cases. Sudden death cases were more likely to be men ($P=0.03$) and to have a higher prevalence of diabetes ($P<0.001$) and CVD ($P<0.001$) compared with non-sudden death cases. Sudden death cases also had higher serum albumin levels ($P<0.001$), serum hemoglobin levels ($P<0.01$), and body mass index ($P=0.01$) than in non-sudden death cases. With regard to serum parameters related to chronic kidney disease-related bone-mineral disorders, sudden death cases had lower corrected calcium levels ($P<0.001$), higher

Fig. 1. Cause of death in all decedents ($n=1735$)

The rate of sudden death was 13% of all deaths.

Fig. 2. Distribution of deaths according to day of the week

Fig. 3. Histogram of dialysis vintage at death
Table 1. Characteristics of the study participants, stratified by mode of death

Characteristics	All participants (n = 3505)	Non-sudden death (n = 1508)	Sudden death (n = 227)	P values
Age (years)	63.5 ± 12.8	70.4 ± 10.1	66.3 ± 10.4	<0.001*
Male (%)	59.2	60.4	67.8	0.03*
Hemodialysis vintage (years)	5.3 (2.1-11.3)	5.2 (2.2-11)	4.6 (1.7-9.9)	0.06
Presence of diabetes (%)	29.2	35.6	47.6	<0.001*
History of CVD (%)	22.4	31.2	37	0.08
Dialysis session length (hr)	4.7 ± 0.6	4.6 ± 0.6	4.7 ± 0.6	0.46
Systolic BP (mmHg)	153.0 ± 23.3	153.4 ± 24.6	155.9 ± 24.3	0.11
Cardiothoracic ratio (%)	50.5 ± 5.51	51.7 ± 5.73	51.2 ± 6.0	0.19
Hemoglobin (g/dL)	10.5 ± 1.2	10.4 ± 1.2	10.6 ± 1.1	0.01*
Serum ferritin (ng/dL)	163 (69-303)	176 (85-337)	163 (71-281)	0.60
Serum albumin (g/dL)	3.8 ± 0.4	3.7 ± 0.5	3.9 ± 0.4	<0.001*
Serum corrected calcium (mg/dL)	9.4 ± 0.8	9.4 ± 0.8	9.2 ± 0.7	<0.001*
Serum phosphorus (mg/dL)	4.9 ± 1.2	4.7 ± 1.2	5.1 ± 1.2	<0.001*
Serum total cholesterol (mg/dL)	152 (131-178)	148 (127-173)	152 (131-178)	0.09
Serum CRP (mg/dL)	0.13 (0.06-0.3)	0.2 (0.1-0.5)	0.14 (0.08-0.36)	0.009*
Serum intact PTH (pg/mL)	106 (48-215.9)	96 (41.3-197.5)	113.6 (56-240)	0.01*
Body mass index (kg/m²)	20.8 ± 3.1	20.8 ± 3.1	21.4 ± 2.9	0.01*
Kt/V for urea	1.57 ± 0.3	1.57 ± 0.3	1.53 ± 0.3	0.08
dose of ESA (U/week)	3,000 (1,500-4,500)	4,000 (1,500-6,000)	3,000 (1,500-4,500)	0.02*
Use of VDRAs (%)	70	65.4	66.5	0.74
Use of antihypertensive agent (%)	62.5	61.3	73.6	0.002*
Use of iron supplementation (%)	37.3	37.3	38.8	0.67
Use of phosphate-binders (%)	81.1	73.2	82.8	0.008*

Data are presented as mean (standard deviation), median (interquartile range), or percentage for categorical measures. Abbreviations: CI, confidence interval; CVD, cardiovascular disease; BP, blood pressure; CRP, C-reactive protein; PTH, parathyroid hormone; ESA, erythropoiesis-stimulating agents; VDRA, vitamin D receptor activator.

* Sudden death versus non-sudden death (P < 0.05)

serum phosphate levels (P < 0.001), and higher intact parathyroid hormone levels (P = 0.01) than non-sudden death cases did. The dosage of erythropoiesis-stimulating agents was lower (P = 0.02), and the frequency of use of antihypertensive drugs (P = 0.002) and phosphate-binders (P = 0.008) was higher in sudden death cases than in non-sudden death cases.

Risk Factors Associated with the Incidence of Sudden Death

We examined the risk factors associated with sudden death at baseline (Table 2). Multivariable-adjusted Cox proportional hazards analysis showed that male sex (HR 1.67; 95% CI 1.20–2.33), age (HR 1.44; 95% CI 1.26–1.65 per 10-year higher), the presence of diabetes (HR 2.45; 95% CI 1.82–3.29), a history of CVD (HR 1.85; 95% CI 1.38–2.46), the cardiothoracic ratio (HR 1.21; 95% CI 1.07–1.39 per 5% higher), serum CRP levels (HR 1.11; 95% CI 1.03–1.20 per 1-mg/dL higher), and serum phosphate levels (HR 1.15; 95% CI 1.03–1.30 per 1-mg/dL higher) were independently associated with the incidence of sudden death. To investigate whether there is a difference of risk factor of sudden death in the follow-up period, we have prepared a new table of multivariable Cox proportional HRs for sudden death based on a 4-year outcome (Supplemental Table 1). The risk factors for sudden death based on a 4-year outcome were substantially similar to a 10-year outcome.

Subgroup Analysis by Sex, age, and Dialysis Vintage

The results of the subgroup analysis by sex, age, and dialysis vintage are shown in Tables 3-5. In the male group, a shorter dialysis session length (<5 hours) (HR 1.43; 95% CI 1.01–2.03) was associated with sudden death, whereas lower serum corrected calcium levels (HR 1.88; 95% CI 1.36–2.63 per 1-mg/dL lower) and not using VDRAs (HR 2.08; 95% CI 1.30–3.40) were significant predictors of sudden death.
Table 2. Multivariable hazard ratios for sudden death

Variables	HR (95% CI)
Male	1.67 (1.20-2.33)*
Age (per 10 years higher)	1.44 (1.26-1.65)*
Presence of diabetes	2.45 (1.82-3.29)*
History of CVD	1.85 (1.38-2.46)*
Hemodialysis vintage (per 5 years higher)	1.02 (0.91-1.15)
Dialysis session length (<5 hr)	1.19 (0.89-1.59)
Systolic BP (per 10 mmHg higher)	0.99 (0.94-1.06)
Cardiothoracic ratio (per 5% higher)	1.21 (1.07-1.39)*
Hemoglobin, (per 1 g/dL higher)	1.01 (0.90-1.14)
Serum albumin (per 1 g/dL higher)	1.23 (0.86-1.74)
Serum total cholesterol (per 10 mg/dL higher)	1.00 (0.99-1.01)
Body mass index (per 1 kg/m² higher)	0.98 (0.93-1.03)
Serum CRP (per 1 mg/dL higher)	1.11 (1.03-1.20)*
Serum ferritin (per 10 ng/dL higher)	1.00 (0.99-1.00)
Serum intact PTH (per 10 pg/mL higher)	1.00 (0.99-1.01)
Serum corrected calcium (per 1 mg/dL lower)	1.17 (0.98-1.43)
Serum phosphorus (per 1 mg/dL higher)	1.15 (1.03-1.30)*
Kt/V (per 0.1 higher)	0.99 (0.94-1.06)
Non-use of VDRAs	1.15 (0.86-1.52)

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; BP, blood pressure; CRP, C-reactive protein; PTH, parathyroid hormone; ESA, erythropoiesis-stimulating agents; VDRA, vitamin D receptor activator

*P<0.05

Table 3. Multivariable hazard ratios for sudden death stratified by sex

Variables	Male (HR 95% CI)	Female (HR 95% CI)	p for interaction
Age (per 10-year higher)	1.46 (1.24-1.72)	1.50 (1.17-1.93)	0.94
Presence of diabetes	2.30 (1.65-3.28)	2.75 (1.57-4.81)	0.71
History of CVD	1.86 (1.31-2.61)	2.06 (1.20-3.45)	0.38
Hemodialysis vintage (per 5-year higher)	0.94 (0.80-1.10)	1.06 (0.90-1.26)	0.41
Dialysis session length (<5 hours)	1.43 (1.01-2.02)	0.72 (0.41-1.24)	0.04*
Systolic BP (per 10 mmHg higher)	1.01 (0.94-1.10)	0.94 (0.85-1.04)	0.20
Cardiothoracic ratio (per 5% higher)	1.20 (1.01-1.42)	1.25 (1.01-1.55)	0.67
Hemoglobin, (per 1 g/dL higher)	0.99 (0.86-1.15)	1.01 (0.83-1.26)	0.93
Serum albumin (per 1 g/dL higher)	1.51 (0.99-2.30)	0.81 (0.44-1.51)	0.25
Serum total cholesterol (per 10 mg/dL higher)	1.00 (0.98-1.02)	1.01 (0.94-1.07)	0.86
Body mass index (per 1 kg/m² higher)	0.96 (0.90-1.02)	0.99 (0.92-1.07)	0.60
Serum CRP (per 1 mg/dL higher)	1.06 (0.92-1.22)	1.11 (1.01-1.22)	0.32
Serum ferritin (per 10 ng/dL higher)	1.00 (0.99-1.00)	1.00 (0.99-1.00)	0.88
Serum intact PTH (per 10 pg/mL higher)	1.00 (0.99-1.01)	1.00 (0.99-1.00)	0.89
Serum corrected calcium (per 1 mg/dL lower)	1.07 (0.85-1.33)	1.88 (1.36-2.63)	<0.001*
Serum phosphorus (per 1 mg/dL higher)	1.17 (1.01-1.34)	1.09 (0.88-1.36)	0.35
Kt/V (per 0.1 higher)	0.98 (0.90-1.06)	1.04 (0.94-1.14)	0.19
Non-use of VDRAs	0.78 (0.53-1.14)	2.08 (1.29-3.39)	<0.001*

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; BP, blood pressure; CRP, C-reactive protein; PTH, parathyroid hormone; VDRA, vitamin D receptor activator

*P for interaction < 0.05
Table 4. Multivariable hazard ratios for sudden death stratified by age

Age (No. of Sudden Death/No. of Patients)	<65 years	≥ 65 years	\(p \) for interaction
Variables	HR (95% CI)	HR (95% CI)	
Male	1.64 (0.99-2.78)	1.56 (1.01-2.44)	0.77
Presence of diabetes	4.34 (2.69-7.09)	1.69 (1.15-2.47)	0.001*
History of CVD	2.32 (1.48-3.58)	1.73 (1.19-2.50)	0.05
Hemodialysis vintage (per 5-year higher)	1.02 (0.86-1.20)	1.06 (0.91-1.25)	0.20
Dialysis session length (<5 hours)	1.15 (0.71-1.93)	1.51 (1.03-2.21)	0.01*
Systolic BP (per 10 mmHg higher)	0.99 (0.91-1.10)	0.98 (0.91-1.07)	0.19
Cardiothoracic ratio (per 5% higher)	1.53 (1.27-1.85)	1.06 (0.88-1.26)	0.01*
Hemoglobin, (per 1 g/dL higher)	1.06 (0.89-1.27)	0.98 (0.84-1.16)	0.53
Serum albumin (per 1 g/dL higher)	1.51 (0.86-2.68)	1.13 (0.71-1.81)	0.26
Serum total cholesterol (per 10 mg/dL higher)	1.00 (0.94-1.06)	1.00 (0.99-1.01)	0.63
Body mass index (per 1 kg/m^2 higher)	0.99 (0.93-1.06)	0.95 (0.89-1.02)	0.17
Serum CRP (per 1 mg/dL higher)	1.10 (0.97-1.24)	1.15 (1.03-1.29)	0.34
Serum ferritin (per 10 mg/dL higher)	1.00 (0.99-1.01)	1.00 (0.99-1.00)	0.82
Serum intact PTH (per 10 pg/mL higher)	1.00 (0.99-1.01)	1.00 (0.99-1.01)	0.89
Serum corrected calcium (per 1 mg/dL lower)	1.31 (0.99-1.75)	1.11 (0.87-1.42)	0.11
Serum phosphorus (per 1 mg/dL higher)	1.11 (0.94-1.32)	1.13 (0.96-1.32)	0.77
Kt/V (per 0.1 higher)	1.04 (0.95-1.15)	0.97 (0.89-1.05)	0.55
Non-use of VDRAs	1.03 (0.67-1.65)	1.25 (0.86-1.81)	0.56

Abbreviations: HR, hazard ratio; CI, confidence interval; CVD, cardiovascular disease; BP, blood pressure; CRP, C-reactive protein; PTH, parathyroid hormone; VDRA, vitamin D receptor activator

\(^*p \) for interaction < 0.05

Table 5. Multivariable hazard ratios for sudden death stratified by dialysis vintage

Dialysis vintage (No. of Sudden Death/No. of Patients)	<5 years	≥ 5 years	\(p \) for interaction
Variables	HR (95% CI)	HR (95% CI)	
Male	1.76 (1.10-2.86)	1.87 (1.13-3.13)	0.68
Age (per 10-year higher)	1.03 (1.01-1.05)	1.31 (1.10-1.57)	0.1
Presence of diabetes	2.05 (1.40-3.04)	2.94 (1.88-4.54)	0.2
History of CVD	2.04 (1.36-3.01)	1.59 (1.03-2.43)	0.85
Dialysis session length (<5 hours)	1.39 (0.93-2.06)	1.00 (0.64-1.56)	0.81
Systolic BP (per 10 mmHg higher)	1.00 (0.92-1.09)	0.97 (0.88-1.06)	0.62
Cardiothoracic ratio (per 5% higher)	1.29 (1.07-1.55)	1.15 (0.95-1.41)	0.59
Hemoglobin, (per 1 g/dL higher)	0.96 (0.81-1.13)	1.05 (0.86-1.26)	0.81
Serum albumin (per 1 g/dL higher)	1.29 (0.81-2.08)	1.18 (0.69-2.02)	0.18
Serum total cholesterol (per 10 mg/dL higher)	1.02 (0.97-1.08)	0.99 (0.97-1.00)	0.26
Body mass index (per 1 kg/m^2 higher)	1.00 (0.94-1.07)	0.93 (0.86-1.01)	0.16
Serum CRP (per 1 mg/dL higher)	0.99 (0.79-1.23)	1.17 (1.07-1.28)	0.14
Serum ferritin (per 10 mg/dL higher)	1.00 (0.99-1.01)	1.00 (0.99-1.00)	0.9
Serum intact parathyroid hormone (per 10 pg/mL higher)	1.00 (0.99-1.01)	1.00 (0.99-1.01)	0.62
Serum corrected calcium (per 1 mg/dL lower)	1.41 (1.08-1.85)	0.96 (0.74-1.22)	0.05
Serum phosphorus (per 1 mg/dL higher)	1.17 (1.00-1.37)	1.18 (0.99-1.40)	0.5
Kt/V (per 0.1 higher)	1.02 (0.94-1.07)	0.99 (0.90-1.09)	0.83
Non-use of VDRAs	1.06 (0.71-1.54)	1.22 (0.79-1.86)	0.48

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; BP, blood pressure; CRP, C-reactive protein; PTH, parathyroid hormone; VDRA, vitamin D receptor activator

\(^*p \) for interaction < 0.05
in the female group. Furthermore, the presence of diabetes (HR 4.34; 95% CI 2.69–7.09) and a high cardiothoracic ratio (HR 1.53; 95% CI 1.27–1.85 per 5% higher) were more strongly related to sudden death in the younger group than in the older group. A shorter dialysis session length (<5 hours) (HR 1.51; 95% CI 1.03–2.21) increased the risk of sudden death in the older group. Table 5 indicates that there are no interactions of risk factors among dialysis vintage.

Discussion

Our study showed the incidence of sudden death and its risk factors in Japanese patients on hemodialysis during a 10-year, longitudinal follow-up. A total of 13% of all-cause deaths was attributed to sudden death. Additionally, we identified several independent risk factors for sudden death. Male sex, older age, the presence of diabetes, a history of cardiovascular disease (CVD), a higher cardiothoracic ratio, and higher serum phosphate and C-reactive protein (CRP) levels were associated with an increased risk of sudden death. To the best of our knowledge, this is the first study to evaluate the risk factors for sudden death in Asian patients on hemodialysis.

The incidence rate of sudden death observed in our cohort was approximately 25-fold higher compared with that in the Japanese general population\(^{16}\), and not significantly different from a previous study of Japanese patients on hemodialysis\(^{7, 8}\). However, our rate of sudden death was lower than that in reports of patients on hemodialysis in the United States\(^{6}\) and Europe\(^{8, 10}\). There are some explanations for the difference in incidence rates of sudden death in patients on hemodialysis among countries. First, Japanese patients on hemodialysis have a lower rate of cardiovascular disease (CVD) complications, which are associated with sudden death, such as coronary artery disease, congestive heart failure, and left ventricular hypertrophy, compared with Europe and the United States\(^{15}\). Second, the blood flow rate was lower, and the dialysis session length is longer in Japan compared with those countries\(^{18}\). We speculate that these conditions in daily dialysis may reduce its effect on circulatory dynamics and a shift in minerals, and thus reduce the risk of developing sudden death. Third, the rates of routine measurement of CRP levels, routine examination of chest radiographs, and yearly screening for vascular calcification are highest in Japan\(^{18}\). This routine evaluation of patients may lead to early treatment and prevent the onset and progression of CVD, including sudden death.

Although we have no information of the dialysis schedule (Monday, Wednesday, and Friday or Tuesday, Thursday, and Saturday), we confirmed sudden death is observed most frequently on Monday, which is similar to a previous study\(^{19}\). Large weight gains or increases in serum potassium in the weekend may cause volume overload or hyperkalemia and sudden death on Monday. The onset of sudden death is most common between 9 to 10 years from the start of hemodialysis. This result was inconsistent with a previous study, which reported that the high incident rate of sudden death is found in the first year of hemodialysis\(^{20}\), probably due to a small number of participants who are enrolled in the first year in our study.

In hemodialysis patients, sudden death could be induced by various factors such as the presence of cardiac disease, rapid fluid and electrolyte shifts, and sympathetic overactivity\(^{21}\). This study showed some risk factors for sudden death. Male sex, older age, and the presence of diabetes were also independent predictors of sudden death in our study, which is consistent with previous reports\(^{10-12}\). These are traditional risk factors of CVD including coronary artery disease, which contributed to 60% of sudden death in the general population\(^{22}\). Coronary artery disease induces proarrhythmic effect and is associated with the persistence of ventricular arrhythmias during and after the treatment\(^{20}\). Apart from these factors, a higher cardiothoracic ratio and higher levels of serum CRP and phosphate were associated with an increased risk of sudden death. Few studies have shown a direct relationship between the cardiothoracic ratio and sudden death in patients on hemodialysis. Because a higher cardiothoracic ratio reflects volume overload, cardiac dysfunction, and left ventricular hypertrophy\(^{23}\), which are strong predictors of sudden death\(^{24}\), we suggest that the cardiothoracic ratio could potentially be a convenient means of predicting sudden death. The relationship between serum CRP levels and sudden death in our study is consistent with previous studies\(^{10, 25}\). Inflammation is associated with atherosclerotic CVD, such as coronary heart disease\(^{26}\) and critical ischemic limb\(^{27}\), due to the development of unstable plaque, and left ventricular hypertrophy due to the elevation of fibroblast growth factor-23 levels (FGF-23) levels\(^{28}\), which might result in sudden death. Additionally, inflammation directly induces fatal arrhythmia because of factors such as sympathetic overactivity and myocardial fibrosis even in the absence of atherosclerosis\(^{21}\). Although a previous report showed an association between serum phosphate levels and sudden death\(^{29}\), the mechanism has not been fully determined. Phosphate overload induces vascular, valvular, and myocardial calcification\(^{30, 31}\), leading to the alteration of microcirculatory hemodynamics and impaired myocardial perfusion. Hyperphosphatemia also increases serum FGF-23,
which induce left ventricular hypertrophy and cardiac fibrosis32. These structural change of vascular system and myocardium could be associated with fatal arrhythmia via localized conduction disturbance and spiral reentry33. Moe et al. reported that lowering FGF-23 levels with cinacalcet was associated with a reduction of the incidence of sudden death34. This study suggests that management of chronic kidney disease-related bone-mineral disorders is important for preventing sudden death.

Subgroup analysis stratified by sex showed that lower corrected serum calcium levels were independently associated with sudden death only in the female group. Most studies have suggested that lowering serum calcium concentrations leads to a risk of critical arrhythmia like torsades de pointes due to prolongation of the QT interval35. In addition, hypocalcemia is related to left ventricular diastolic dysfunction36, leading to sudden death. A recent study reported that hypocalcemia increased sudden cardiac arrest in the general population37. However, a few studies have shown an association between hypocalcemia and sudden death in patients on hemodialysis. The reason why there was a difference between sexes regarding the association between serum calcium levels and sudden death in this study is unclear. Several studies have shown that women have a longer QT interval than men do, mainly by differences in sex hormones38. Furthermore, recent studies have shown that the incidence of torsades de pointes arrhythmia due to QT prolongation is higher in women than in men39. We speculate that hypocalcemia in women may increase the risk of the development of critical arrhythmia and sudden death by a sex-specific pathogenetic mechanism. Further studies are required to prove this association.

Non-use of VDRAs was also a significant predictor of sudden death in the female group in our study. Vitamin D has been shown to affect electrophysiology and contractility of the heart40, and its deficiency could be linked to arrhythmia and sudden death. A previous study suggested that vitamin D deficiency is an independent risk for sudden death in patients on hemodialysis with diabetes41 and severe secondary hyperparathyroidism42. On the other hand, another study showed that patients treated with a VDRA did not have an increased risk for cardiovascular mortality, even in low serum 25-hydroxyvitamin D levels43. Although a recent randomized controlled trial in Japanese hemodialysis patients suggested that oral VDRA did not reduce the risk of cardiovascular events, including sudden death44, the proportion of sudden death among all cardiovascular events is small (18 of 188), and the effect of VDRA on different genders is not analyzed. The association between treatment with VDRA and sudden death might be unclear. A previous study showed that supplementation of a VDRA reduced a prolonged QT interval and regressed left ventricular hypertrophy45. Furthermore, a recent study showed that low serum 25-hydroxyvitamin D levels were associated with an increased risk for myocardial infarction46 and cardiovascular mortality47 in women, but not in men, probably due that sex hormones contributed to differential responsiveness to vitamin D between men and women. These results support our view that female patients on hemodialysis who are not treated with VDRAs have an increased risk of sudden death. Because we cannot fully exclude the possibility of indication bias, further well-conducted clinical trials are required to confirm sex differences in the beneficial effect of VDRAs.

A shorter dialysis session length (<5 hours) increased the risk of sudden death in the male and older (≥65 years) groups in this study. Data on the relationship between dialysis session length and sudden death is limited12. A shorter dialysis session length implies insufficient removal of fluid and uremic toxins, including indoxyl sulfate, which is a significant predictor of CVD48 and requires higher ultrafiltration rates. Rapid fluid removal during hemodialysis, which is associated with increased all-cause and cardiovascular mortality49 could contribute to hypotension, tissue ischemia, circulatory collapse, arrhythmia, and sudden death50. Therefore, the development of sudden death being dependent on dialysis session length is not surprising. Additionally, we recently reported that a shorter dialysis session length (<5 hours) was associated with all-cause mortality, especially in older Japanese patients on hemodialysis who were ≥80 years old50. Therefore, the finding that sudden death develops more frequently in populations with shorter dialysis session length (<5 hours) is unsurprising. Our findings suggest that males and older populations especially require sufficient uremic toxin removal and/or slower ultrafiltration to avoid sudden death.

There are several limitations to the present study. First, sudden death, based on our definition, included both cardiac death (e.g., arrhythmia and myocardial infarction) and non-cardiac death (e.g., cerebral hemorrhage, pulmonary embolism, and aortic dissection). Because we did not perform an autopsy in all patients, the cause of sudden death was difficult to determine. Second, we only used baseline clinical parameters to evaluate associations with sudden death and did not take into account the changes in these parameters such as the fluctuation of blood pressure or humoral factors on the onset of sudden death. Third, some parameters that could be important for understanding sudden...
death were not evaluated. In particular, serum potassium levels, which could be a strong contributor of sudden death, other dialysis parameters, except for dialysis session length and Kt/V (e.g., blood flow rate and ultrafiltration rate), nutritional parameters, except albumin and body mass index, echocardiographic, and electrocardiographic data (e.g., ejection fraction, left ventricular hypertrophy, and QT interval), cardiac biomarker data, (e.g., troponins and atrial/brain natriuretic peptides), and data of commodity such as sleep apnea syndrome, which is one of the important causes of sudden death \(^{51}\), and medical treatment (e.g., anti-platelet agents and β-blockers) were missing. Finally, the detailed timing of sudden death (i.e., if deaths occurred in the hours before or after dialysis) is unclear. Despite these limitations, we believe that our study provides helpful information that could lead to a better understanding of sudden death in patients on maintenance hemodialysis.

Conclusion

The incidence rate of sudden death was also high in Japanese patients on hemodialysis. Therapeutic factors such as body fluid volume, serum calcium/phosphate, inflammation, dialysis session length, and use of VDRAs might be important to determine the incidence of sudden death. Moreover, the effects of these risk factors on sudden death may vary, depending on age and sex. For a better understanding, future studies focusing on the effect of these factors on sudden death should be conducted.

Acknowledgments and Notice of Grant Support

We would like to express our appreciation to the participants in the Q-Cohort Study, and members of the Society for the Study of Kidney Disease. The following personnel (institutions) participated in the study: Takashi Ando (Hakozaki Park Internal Medicine Clinic), Takashi Ariyoshi (Ariyoshi Clinic), Koiichiro Goto (Goto Clinic), Fumitada Hattori (Nagao Hospital), Harumichi Higashi (St Mary's Hospital), Tadashi Hirano (Hakujyuji Hospital), Kei Hori (Munakata Medical Association Hospital), Takashi Inenaga (Eksaikai Moji Hospital), Hidetoshi Kanai (Kokura Memorial Hospital), Shigemi Kiyama (Kiyama Naika), Tetsuo Komota (Komota Clinic), Hiromasa Kuma (Kuma Clinic), Toshiro Maeda (Kozenkai-Maeda Hospital), Junichi Makino (Makino Clinic), Dai Matsuo (Hirao Clinic), Chiaki Miishima (Miishima Clinic), Koji Mitsuiki (Japanese Red Cross Fukuoka Hospital), Kenichi Motomura (Motomura Naika Clinic), Sadatoshi Nakamura, Hidetoshi Nakamura (Kokura Daiichi Hospital), Koichi Nakashima (Ohashi Internal Circulatory Clinic), Nobumitsu Okita (Shiroishi Kyoritsu Hospital), Shinichiro Osato (Osato Jin Clinic), Sakura Sakamoto (Fujiyamato Spa Hospital), Keiko Shigematsu (Shigematsu Clinic), Kazumasa Shimamatsu (Shimamatsu Naika Iin), Yoshito Shogakiuchi (Shin-Ai Clinic), Hiroaki Taka- mura (Hara Hospital), Kazuhito Takeda (Iizuka Hospital), Asuka Terai (Chidoribashi Hospital), Hideyoshi Tanaka (Mojiko-Jin Clinic), Suguru Tomooka (Hako- zaki Park Internal Medicine Clinic), Jiro Toyonaga (Fukuoka Renal Clinic), Hiroshi Tsukata (Steel Memorial Yawata Hospital), Ryutaro Yamaguchi (Shi- seikai Hospital), Taihei Yanagida (Saiseikai Yahata General Hospital), Tetsuro Yanase (Yanase Internal Medicine Clinic), Tetsuhiko Yoshida (Hamanomachi Hospital), Takahiro Yoshimitsu (Gofukumachi Kidney Clinic, Harasanshin Hospital), and Koji Yoshitomi (Yoshitomi Medical Clinic).

We thank Ellen Knapp, PhD, from the Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

This study was supported by the Kidney Foundation (H19 JKFB 07-13, H20 JKFB 08-8, H23 JKFB 11-11) and the Japan Dialysis Outcome Research Foundation (H19-076-02, H20-003). The funders of this study had no role in study design, collection, analysis, interpretation of data, writing the report, and the decision to submit the report for publication.

Conflicts of Interest

The authors report no conflicts of interest.

References

1) Daratha KB, Short RA, Corbett CF, Ring ME, Alicic R, Choka R, Tuttle KR: Risks of subsequent hospitalization and death in patients with kidney disease. Clin J Am Soc Nephrol, 2012; 7: 409-416
2) Ortiz A, Covic A, Fliser D, Fouque D, Goldsmith D, Kanbay M, Mallamaci F, Massy ZA, Rossignol P, Vanholder R, Wiseck A, Zoccali C, London GM; Board of the EURECA-m Working Group of ERA-EDTA: Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet, 2014; 24: 1831-1843
3) Masakane I, Nakai S, Ogata S, Kimata N, Hanafusa N, Hamano T, Wakai K, Wada A, Nitta K. An Overview of Regular Dialysis Treatment in Japan (As of 31 December 2013). Ther Apher Dial, 2015; 19: 540-574
4) Takeda K, Harada A, Okuda S, Fujimi S, Oh Y, Hattori F, Motomura K, Hirakata H, Fujishima M: Sudden death in chronic dialysis patients. Nephrol Dial Transplant, 1997;
12: 952-955
5) Pun PH, Smarz TR, Honeycutt EF, Shaw LK, Al-Khatib SM, Middleton JP: Chronic kidney disease is associated with increased risk of sudden cardiac death among patients with coronary artery disease. Kidney Int, 2009; 76: 652-658
6) Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Aynanian J, Bragg-Gresham J, Balkrishnan R, Chen JL, Cope E, Eggers PW, Gillen D, Gipson D, Halpern SM, Hall YN, He K, Herman W, Heung M, Hirth RA, Hutton D, Jacobsen SJ, Kalantar-Zadeh K, Kovesdy CP, Lu Y, Molnar MZ, Morgenstern H, Nallamothu B, Nguyen DV, O’Hare AM, Plattern B, Pisoni R, Port FK, Rao P, Rhee CM, Sakhua A, Schaubel DE, Selewski DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, White S, Woodside K, Hirth RA: US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2016; 67 (suppl 1): S1-S305
7) Moroi M, Tamaki N, Nishimura M, Haze K, Nishimura T, Kusano E, Akiba T, Sugimoto T, Hase H, Hara K, Nakata T, Kumita S, Nagai Y, Hashimoto A, Momose M, Miyakoda K, Hasebe N, Kikuchi K: Association between abnormal myocardial fatty acid metabolism and cardiac-derivated death among patients undergoing hemodialysis: results from a cohort study in Japan. Am J Kidney Dis, 2013; 61: 466-475
8) Ramesh S, Zalucky A, Hemmelgarn BR, Roberts DJ, Ahmed SB, Wilton SB, Jun M: Incidence of sudden cardiac death in adults with end-stage renal disease: a systematic review and meta-analysis. BMC Nephrol, 2016; 17: 78
9) Makar MS, Pun PH: Sudden Cardiac Death Among Hemodialysis Patients. Am J Kidney Dis, 2017; 69: 684-695
10) Genovesi S, Valsecchi MG, Rossi E, Pogliani D, Acquastapa S, De Cristofaro V, Stella A, Vincenti A: Sudden death and associated factors in a historical cohort of chronic haemodialysis patients. Nephrol Dial Transplant, 2009; 24: 2529-2536
11) Shastri S, Tangri N, Tighiouart H, Beck GJ, Vlagopoulos P, Ornt D, Eknayan G, Kusek JW, Herzog C, Cheung AK, Sarnak MJ: Predictors of sudden cardiac death: a competing risk approach in the hemodialysis study. Clin J Am Soc Nephrol, 2012; 7: 123-130
12) Jadoul M, Thumma J, Fuller DS, Tentori F, Li Y, Morgansten H, Mendelssohn D, Tomo T, Ethier J, Port F, Robinson BM: Modifiable practices associated with sudden death among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Clin J Am Soc Nephrol, 2012; 7: 765-774
13) Eriguchi R, Taniguchi M, Ninomiya T, Hirakata H, Fujimi S, Tsuruya K, Kitazono T: Hyporesponsiveness to erythropoiesis-stimulating agent as a prognostic factor in Japanese hemodialysis patients: the Q-Cohort study. J Nephrol, 2015; 28: 217-225
14) Payne RB, Little AJ, Williams RB, Milner JR: Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J, 1973; 4: 643-646
15) Cheung AK, Sarnak MJ, Yan G, Berkoben M, Heyka R, Kaufman A, Lewis J, Rocco M, Toto R, Windus D, Ornt D, Levey AS; HEMO Study Group: Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int, 2004; 65: 2380-2309
16) Maruyama M, Ohira T, Imano H, Kitamura A, Kiyama M, Okada T, Maeda K, Yamagishi K, Noda H, Ishikawa Y, Shimamoto T, Iso H: Trends in sudden cardiac death and its risk factors in Japan from 1981 to 2005: the Circulatory Risk in Communities Study (CIRCS). BMJ Open, 2012; 2: e000573
17) Goodkin DA, Bragg-Gresham JL, Koenig KG, Wolfe RA, Akiba T, Andreucci VE, Saito A, Rayner HC, Kurokawa K, Port FK, Held PJ, Young EW; Association of Comorbid Conditions and Mortality in Hemodialysis Patients in Europe, Japan, and the United States: The Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol 2003; 14: 3270-3277
18) Robinson BM, Akizawa T, Jager KJ, Kerr PG, Saran R: Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. The Lancet, 2016; 388: 294-306
19) Bleyer AJ, Russell GB, Satko SG: Sudden and cardiac death rates in hemodialysis patients. Kidney Int, 1999; 55: 1553-1559
20) Eckardt KU, Gillespie IA, Kronenberg F, Richards S, Stenvinkel P, Anker SD, Wheeler DC, de Francisco AL, Marcelli D, Froissart M, Floege J; ARO Steering Committee: High cardiovascular event rates occur within the first weeks of starting hemodialysis. Kidney Int, 2015; 1117-1125
21) Di Lullo L, Rivera R, Barbera V, Bellasi A, Cozzolino M, Russo D, De Pascalis A, Banerjee D, Floccari F, Ronco C: Sudden cardiac death and chronic kidney disease: From pathophysiology to treatment strategies. Int J Cardiol, 2016; 217: 16-27
22) Rahimi R, Singh MKC, Noor NM, Omar E, Noor SM, Mahmood MS, Abdullah N, Nawawi HM: Manifestation of Coronary Atherosclerosis in Klang Valley, Malaysia: An Autopsy Study. J Atheroscler Thromb, 2018; 25: 405-409
23) Rayner BL, Goodman H, Opie LH: The chest radiograph. A useful investigation in the evaluation of hypertensive patients. Am J Hypertens, 2004; 17: 507-510
24) Paolotti E, Specchia C, Di Maio G, Bellino D, Damasio B, Cassottana P, Cannella G: The worsening of left ventricular hypertrophy is the strongest predictor of sudden cardiac death in haemodialysis patients: a 10 year survey. Nephrol Dial Transplant, 2004; 19: 1829-1834
25) Parekh RS, Plantinga LCA, Kao WH, Meoni LA, Jaar BG, Fink NE, Powe NR, Coresh J, Klag MJ: The association of sudden cardiac death with inflammation and other traditional risk factors. Kidney Int, 2008; 74: 1335-1342
26) Arima H, Kubo M, Yonemoto K, Doi Y, Ninomiya T, Tanizaki Y, Hata J, Matsumura K, Iida M, Kiyohara Y, Miura K, Nakamura J, Bragg-Gresham J, Balkrishnan R, Chen JL, Cope E, Eggers PW, Gillen D, Gipson D, Hailpern SM, Haller J, Kaufman A, Lewis J, Rocco M, Toto R, Windus D, Ornt D, Levey AS; HEMO Study Group: Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int, 2004; 65: 2380-2309
27) Ito R, Kumada H, Ishii H, Kamoi D, Sakakibara, Takashi, Umemoto, Norio, Takahashi, H, Murihara, T: Clinical Outcomes after Isolated Infrapopliteal Revascularization in Hemodialysis Patients with Critical Limb Ischemia. J

Sudden Death in Hemodialysis Patients
Atheroscler Thromb, 2018; 25: 799-807

28) Yan L, MA Bowman: Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23. Inflamm Cell Signal, 2014; 1: e279

29) Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK: Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol, 2001; 12: 2131-2138

30) Palaion NJ, Giachelli CM: A current understanding of vascular calcification in CKD. Am J Physiol Renal Physiol, 2014; 307: 891-900

31) El Hussein D, Boulanger MC, Fournier D, Mahmut A, Bossé Y, Pibarot P, Mathieu P: High expression of the Pi-transporter SLC20A1/Pit1 in calcific aortic valve disease promotes mineralization through regulation of Akt-1. PLoS One, 2013; 8: e53393

32) Fau C, Amaral AP, Oskoei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Krentrop D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M: FGF23 induces left ventricular hypertrophy. J Clin Invest, 2011; 121: 4393-4408

33) Nishimura M, Tokoro T, Takatani T, Sato N, Hashimoto M, Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Nishizawa Y, Ogawa T, Ohta K, Ohtake T, Okamura M, Okuno S, Minakuchi J, Mitsuiki K, Nakatani T, Negi S, Nishi S, Nishikawa M, Ogawa T, Ohta K, Ohtake T, Okamura M, Okuno S, Shigematsu T, Sugimoto T, Suzuki M, Tahara H, Take-moto Y, Tanaka K, Tominaga Y, Tsubakihara Y, Tsujimoto Y, Tsuruya K, Ueda S, Watanabe Y, Yamagata K, Yamaka-ta W, Yano S, Yokoyama K, Yorioka N, Yoshimura Y, Nishizawa Y: Effect of Oral Alfacalcidol on Clinical Outcomes in Patients Without Secondary Hyperparathyroidism Receiving Maintenance Hemodialysis: The J-DAVID Investigators. Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators. Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators: Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation, 2015; 132: 27-39

34) Kim ED, Pakreh RS: Calcium and Sudden Cardiac Death in End-Stage Renal Disease. Semin Dial, 2015; 28: 304-350

35) Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, Drüeke TB, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Stolina M, Dehmel B, Goodman WG, Floege J: Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators. Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators: Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation, 2015; 132: 27-39

36) Port FK: Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol, 2001; 12: 2131-2138

37) Genovesi S, Rossi E, Nava M, Viganò MR, Pieruzzi F, Stella A, Valsecchi MG, Stramba-Badiale M: A case series of chronic haemodialysis patients: mortality, sudden death, and QT interval. EP Europace, 2013; 15: 1025-1033

38) James AF, Choisy SC, Hancox JC: Recent advances in understanding sex differences in cardiac repolarization. Prog Biophys Mol Biol, 2007; 94: 265-319

39) Pilz S, Tomashitz A, Drechsler C, Dekker JM, März W: Vitamin D deficiency and myocardial diseases. Mol Nutr Food Res, 2010; 54: 1103-1113

40) Drechsler C, Pilz S, Obermayer-Pietsch B, Verduijn M, Tomashitz A, Krane V, Espe K, Dekker F, Brandenburg V, März W, Ritz E, Wanner C: Vitamin D deficiency is associated with sudden cardiac death, combined cardiovascular events, and mortality in haemodialysis patients. Eur Heart J, 2010; 31: 2253-2261

41) Deo R, Katz R, Shlipak MG, Sotoodehnia N, Psaty BM, Sarnak MJ, Fried LF, Chonchol M, de Boer IH, Enquo-bahrie S, Siscovick D, Kestenbaum B: Vitamin D, parathyroid hormone, and sudden cardiac death: results from the Cardiovascular Health Study. Hypertension, 2011; 58: 1021-1028

42) Wolf M, Shah A, Gutierrez O, Ankers E, Monroy M, Tamez H, Steele D, Chang Y, Camargo CA Jr, Tonelli M, Thadhani R: Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int, 2007; 72: 1004-1013

43) J-DAVID Investigators, Shoji T, Inaba M, Fukagawa M, Ando R, Emoto M, Fujimori A, Fukui M, Hase H, Hashimoto T, Hirakata H, Honda H, Hosoya T, Ikari Y, Inaguma D, Inoue T, Isaka Y, Iseki K, Ishimura E, Itami N, Ito C, Kakuta T, Kawai T, Kawanishi H, Kobayashi S, Kumagai J, Maekawa K, Masakane I, Minakuchi J, Mitsuiki K, Mizuguchi T, Morimoto S, Murohara T, Nakatani T, Nishi S, Nishishita S, Ogawa T, Ohta K, Ohtake T, Okamura M, Okuno S, Shimematsu T, Sugimoto T, Suzuki M, Tahara H, Take-moto Y, Tanaka K, Tominaga Y, Tsubakihara Y, Tsujimoto Y, Tsutuya K, Ueda S, Watanabe Y, Yamagata K, Yamakawa T, Yano S, Yokoyama K, Yorioka N, Yoshimura Y, Nishizawa Y: Effect of Oral Alfacalcidol on Clinical Outcomes in Patients Without Secondary Hyperparathyroidism Receiving Maintenance Hemodialysis: The J-DAVID Randomized Clinical Trial. JAMA, 2018; 320: 2325-2334

44) Kim HW, Park CW, Shin YS, Kim SY, Shin SJ, Kim YS, Choi EJ, Chang YS, Bang BK: Calcitriol regresses cardiac hypertrophy and QT dispersion in secondary hyperparathyroidism on hemodialysis. Nephron Clin Pract, 2006; 102: 21-29

45) Karakas M, Thorand B, Zierer A, Huth C, Meisinger C, Zierer A, Huth C, Meisinger C: Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23. Inflamm Cell Signal, 2014; 1: e279

46) Port FK: Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol, 2001; 12: 2131-2138

47) Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, Drüeke TB, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Stolina M, Dehmel B, Goodman WG, Floege J: Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators. Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators: Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation, 2015; 132: 27-39

48) Pilz S, Tomashitz A, Drechsler C, Dekker JM, März W: Vitamin D deficiency and myocardial diseases. Mol Nutr Food Res, 2010; 54: 1103-1113

49) Deo R, Katz R, Shlipak MG, Sotoodehnia N, Psaty BM, Sarnak MJ, Fried LF, Chonchol M, de Boer IH, Enquo-bahrie S, Siscovick D, Kestenbaum B: Vitamin D, parathyroid hormone, and sudden cardiac death: results from the Cardiovascular Health Study. Hypertension, 2011; 58: 1021-1028

50) Wolf M, Shah A, Gutierrez O, Ankers E, Monroy M, Tamez H, Steele D, Chang Y, Camargo CA Jr, Tonelli M, Thadhani R: Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int, 2007; 72: 1004-1013
and mortality. Kidney Int, 2011; 79: 250-257
50) Fujisaki K, Tanaka S, Taniguchi M, Matsukuma Y, Matsumi K, Hirakata H, Kitazono T, Tsuruya K: Study on Dialysis Session Length and Mortality in Maintenance Hemodialysis Patients: The Q-Cohort Study. Nephron, 2018; 139: 305-312
51) Yoshihisa A, Takeishi Y: Sleep Disordered Breathing and Cardiovascular Diseases. J Atheroscler Thromb, 2019; 26: 315-327
Supplemental Table 1. Multivariable hazard ratios for sudden death (4-year outcome)

Variables	HR (95% CI)
Male	1.60 (0.98-2.61)
Age (per 10-year higher)	1.57 (1.26-1.96) *
Presence of diabetes	2.63 (1.66-4.17) *
History of CVD	2.14 (1.38-3.34) *
Hemodialysis vintage (per-5 year higher)	1.16 (0.98-1.38)
Dialysis session length (< 5 hr)	1.18 (0.76-1.85)
Systolic BP (per 10 mmHg higher)	1.00 (0.91-1.09)
Cardiotoracic ratio (per 5% higher)	1.29 (1.06-1.56) *
Hemoglobin, (per 1 g/dL higher)	1.14 (0.94-1.38)
Serum albumin (per 1 g/dL higher)	1.46 (0.89-2.40)
Serum total cholesterol (per 10 mg/dL higher)	0.99 (0.95-1.04)
Body mass index (per 1 kg/m² higher)	0.98 (0.92-1.06)
Serum CRP (per 1 mg/dL higher)	1.18 (1.07-1.30) *
Serum ferritin (per 10 ng/dL higher)	1.00 (0.99-1.01)
Serum intact PTH (per 10 pg/mL higher)	1.00 (0.99-1.01)
Serum corrected calcium (per 1 mg/dL lower)	1.01 (0.77-1.34)
Serum phosphorus (per 1 mg/dL higher)	1.23 (1.03-1.46) *
Kt/V (per 0.1 higher)	1.01 (0.92-1.12)
Non-use of VDRAs	0.74 (0.45-1.18)

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; BP, blood pressure; CRP, C-reactive protein; PTH, parathyroid hormone; ESA, erythropoiesis-stimulating agents; VDRA, vitamin D receptor activator

*P<0.05