On the time-dependent grade-two model for the
magnetohydrodynamic flow: 2D case

I. Kondrashuk, E.A. Notte-Cuello, M. Poblete-Cantellano and M. A. Rojas-Medar

June 3, 2015

Abstract

In this paper we discuss the MHD flow of a second grade fluid, in particular we prove the existence and uniqueness of a weak solution of a time-dependent grade two fluid model in a two-dimensional Lipschitz domain. We follow the methodology of [3], i.e., we use a constructive method which can be adapted to the numerical analysis of finite-element schemes for solving this problem numerically.

Mathematics Subject Classification 2000: 35Q35, 76N10, 35Q30, 76D05.

Keywords: Second grade fluid equations, magnetohydrodynamics.

1 Introduction

A fluid of grade two is a non-Newtonian fluid of differential type introduced by Rivlin and Ericksen in [8]. An analysis in [1] shows that the equation of a fluid of grade two is given by

\[\frac{\partial}{\partial t}(u - \alpha \Delta u) - \nu \Delta u + \sum_j (u - \alpha \Delta u)_j \nabla u_j - u \cdot \nabla (u - \alpha \Delta u) = -\nabla p + f \]

\[\text{div } u = 0 \]

*Grupo de Matemática Aplicada, Dpto. de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán, Chile. E-mail: igor.kondrashuk@ubiobio.cl. I. K. was supported by Fondecyt (Chile) Grants Nos. 1040368, 1050512 and 1121030, by DIUBB (Chile) Grants Nos. 102609 and 121909 GI/C-UBB.

†Dpto de Matemáticas, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile. E-mail: enotte@userena.cl. This author’s work was partially supported by project DIULS PR14151.

‡Dpto. de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó, Chile. E-mail: mpoblete@mat.uda.cl. This author’s work was partially supported by Universidad de Atacama, project DIUDA-22256.

§Grupo de Matemática Aplicada, Dpto. de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán, Chile. E-mail: marko@ueubiobio.cl. This work was partially supported by project MTM2012-32325, Spain, Grant 1120260, Fondecyt-Chile and 121909 GI/C-UBB.

1
where $\alpha \geq 0$ is a constant of material, $\nu > 0$ is the viscosity of the fluid, u is the velocity field, and p is pressure. For $\alpha = 0$ the classical Navier-Stokes equation is obtained.

On the other hand, in several situations the motion of incompressible electrical conducting fluid can be modeled by the magnetohydrodynamic equation, which correspond to the Navier-Stokes equations coupled with the Maxwell equations. In presence of a free motion of heavy ions, not directly due to the electrical field (see Schluter [4] and Pikelner [3]), the MHD equation can be reduced to

$$
\frac{\partial u}{\partial t} - \frac{\nu}{\rho_m} \Delta u + u \cdot \nabla u - \frac{\mu}{\rho_m} h \cdot \nabla h = f - \frac{1}{\rho_m} \nabla (p^* + \frac{\mu}{2} h^2)
$$

$$
\frac{\partial h}{\partial t} - \frac{1}{\mu\sigma} \Delta h + u \cdot \nabla h - h \cdot \nabla u = -\text{grad } \omega
$$

(1)

$$
\text{div } u = \text{div } h = 0
$$

with

$$
u \big|_{\partial \Omega} = h \big|_{\partial \Omega} = 0.
$$

Here, u and h are respectively the unknown velocity and magnetic field; p^* is the unknown hydrostatic pressure; ω is an unknown function related to the heavy ions (in such way that the density of electric current, j_0, generated by this motion satisfies the relation $\text{rot } j_0 = -\sigma \nabla \omega$) is the density of mass of the fluid (assumed to be a positive constant); $\mu > 0$ is the constant magnetic permeability of the medium; $\sigma > 0$ is the constant electric conductivity; $\nu > 0$ is the constant viscosity of the fluid; f is a given external force field.

In the case the MHD equation coupled with the equation of an incompressible second grade fluid, the model can be write as

$$
\frac{\partial (u - \alpha \Delta u)}{\partial t} - \nu \Delta u + \text{curl } (u - \alpha \Delta u) \times u - (h \cdot \nabla) h = f - \nabla (p^* + h^2)
$$

$$
\frac{\partial h}{\partial t} - \Delta h + (u \cdot \nabla) h - (h \cdot \nabla) u = -\text{grad } \omega
$$

(3)

$$\text{div } u = \text{div } h = 0$$

with

$$
u \big|_{\partial \Omega} = h \big|_{\partial \Omega} = 0.
$$

(4)

Note that when $\alpha = 0$ we recover the model (1).

One of the first mathematical results for this model type appears in [2], they prove the existence and uniqueness of solutions for a small time and global existence of solutions for small initial data in a conducting domain of \mathbb{R}^3, based on the iterative scheme where discretization is performed in the spatial variables. In this paper we discuss the MHD flow of a second grade fluid, in particular we prove the existence and uniqueness of a weak solution of a time-dependent
grade two fluid model in a two-dimensional Lipschitz domain, where we follow the methodology of [3], i.e., we use semi-discretization in time and the work is in a domain of \mathbb{R}^2.

\section{Preliminary results}

\subsection{Notation}

Let (k_1,k_2) denote a pair of non-negative integers, set $|k| = k_1 + k_2$ and define the partial derivative ∂^k by

$$\partial^k v = \frac{\partial|k|v}{\partial x_1^{k_1} \partial x_2^{k_2}}.$$

Then, for any non-negative integer m and number $r \geq 1$, recall the classical Sobolev space

$$W^{m,r}(\Omega) = \left\{ v \in L^r(\Omega); \partial^k v \in L^r(\Omega) \forall |k| \leq m \right\},$$

equipped with the seminorm

$$|v|_{W^{m,r}(\Omega)} = \left[\sum_{|k|=m} \int_\Omega |\partial^k v|^r \, dx \right]^{1/r},$$

and norm (for which it is a Banach space)

$$\|v\|_{W^{m,r}(\Omega)} = \left[\sum_{0 \leq |k| \leq m} \int_\Omega |v|_{W^{k,r}(\Omega)}^r \right]^{1/r},$$

with the usual extension when $r = \infty$. When $r = 2$, this space is the Hilbert space $H^m(\Omega)$. The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with the following modification for the norms in the non-Hilbert case. Let $u = (u_1,u_2)$; then we set

$$\|u\|_{L^r(\Omega)} = \left[\int_\Omega \|u(x)\|^r \right]^{1/r},$$

where $\|\cdot\|$ denotes the Euclidean vector norm.

For functions that vanish on the boundary, we define for any $r \geq 1$,

$$W^{1,r}_0(\Omega) = \left\{ v \in W^{1,r}(\Omega); v|_{\partial\Omega} = 0 \right\},$$

and recall Poincaré’s inequality, there exists a constant P such that

$$\forall v \in H^1_0(\Omega), \quad \|v\|_{L^r(\Omega)} \leq P \|v\|_{H^1(\Omega)}. \tag{5}$$

More generally, recall the inequalities of Sobolev embeddings in two dimension, for each $r \in [2,\infty)$, there exists a constant S_r such that

$$\forall v \in H^1_0(\Omega), \quad \|v\|_{L^r(\Omega)} \leq S_r \|v\|_{H^1(\Omega)}. \tag{6}$$
The case $r = \infty$ is excluded and is replaced by, for any $r > 2$ there exists a constant M_r such that

$$\forall v \in W^{1,r}_0(\Omega), \quad \|v\|_{L^\infty(\Omega)} \leq M_r |v|_{W^{1,r}(\Omega)},$$

(7)

Owing to (5), we use the seminorm $|\cdot|_{H^1(\Omega)}$ as a norm on $H^1_0(\Omega)$ and we use it to define the norm of the dual space $H^{-1}(\Omega)$ of $H^1_0(\Omega)$:

$$\|f\|_{H^{-1}(\Omega)} = \sup_{v \in H^1_0(\Omega)} \frac{\langle f, v \rangle}{|v|_{H^1(\Omega)}}.$$

In addition to the H^1 norm, it will be convenient to define the following norm with the parameter α:

$$\|v\|_\alpha = \left(\|v\|^2_{L^2(\Omega)} + \alpha |v|^2_{H^1(\Omega)} \right)^{1/2}.$$

In the following, we denote by $\| \cdot \|$ the L^2 norm.

We shall also use the standard space for incompressible flow:

$$H(\text{div}; \Omega) = \{ v \in L^2(\Omega)^2; \text{div} \, v \in L^2(\Omega) \}$$

$$H(\text{curl}; \Omega) = \{ v \in L^2(\Omega)^2; \text{curl} \, v \in L^2(\Omega) \}$$

$$V = \{ v \in H^1_0(\Omega)^2; \text{div} \, v = 0 \text{ in } \Omega \}$$

$$V^\perp = \{ v \in H^1_0(\Omega)^2; \forall w \in V, \langle \nabla v, \nabla w \rangle = 0 \}$$

$$L^2_0(\Omega) = \{ v \in L^2(\Omega); \int_\Omega q \, dx = 0 \}$$

and the space transport:

$$X_v = \{ f \in L^2(\Omega); v \cdot \nabla f \in L^2(\Omega) \},$$

where v is a given velocity in $H^1(\Omega)^2$.

2.2 Auxiliary theoretical results

To analyze, we shall use the following results. The first theorem concerns the divergence operator in any dimension d. Its proof can be found for instance in Girault and Raviart [4].

Theorem 1 Let Ω be a bounded Lipschitz-continuous domain of \mathbb{R}^d. The divergence operator is an isomorphism from V^\perp onto $L^2_0(\Omega)$ and there exists a constant $\beta > 0$ such that for all $f \in L^2_0(\Omega)$, there exists a unique $v \in V^\perp$ satisfying

$$\text{div} \, v = f \text{ in } \Omega \quad \text{and} \quad \|v\|_{H^1(\Omega)} \leq \frac{1}{\beta} \|f\|.$$

The second result concerns the regularity of the Stokes operator in two dimensions, see [6].
Theorem 2 Let Ω be a bounded polygon in the plane.

1. For each $r \in [1, 4/3[$, the Stokes operator is an isomorphism from
\[
\left[(W^{2,r}(\Omega))^2 \cap V \right] \times \left[W^{1,r}(\Omega) \cap L^2_0(\Omega) \right] \text{ onto } L^r(\Omega)^2,
\]
i.e. for each $f \in L^r(\Omega)^2$, there exists a constant C_r and a unique pair
\[(u, p) \in \left[(W^{2,r}(\Omega))^2 \cap V \right] \times \left[W^{1,r}(\Omega) \cap L^2_0(\Omega) \right]\]
such that
\[-v\Delta u + \nabla p = f, \quad \text{div } u = 0 \text{ in } \Omega, u = 0 \text{ on } \partial \Omega,
\]
and
\[|u|_{W^{2,r}(\Omega)} + |p|_{W^{1,r}(\Omega)} \leq C_r \|f\|_{L^r(\Omega)}.
\]

2. If in addition, Ω is a convex polygon, then the Stokes operator is an isomorphism from
\[
\left[(H^2(\Omega))^2 \cap V \right] \times \left[H^1(\Omega) \cap L^2_0(\Omega) \right] \text{ onto } L^2_0(\Omega)^2.
\]
Furthermore, there exists a real number $r > 2$, depending on the largest inner angle of $\partial \Omega$ such that for all $t \in [2, r]$, the Stokes operator is an isomorphism from \[
\left[(W^{2,t}(\Omega))^2 \cap V \right] \times \left[W^{1,t}(\Omega) \cap L^2_0(\Omega) \right] \text{ onto } L^t(\Omega)^2.
\]

The next result concerns the unique solvability of the steady transport equation in any dimension d, see [5].

Theorem 3 Let Ω be a bounded Lipschitz-continuous domain of \mathbb{R}^d and let u be a given velocity in V.

1. For every f in $L^2(\Omega)$ and every constant $\gamma > 0$, the transport equation
\[z + \gamma u \cdot \nabla z = f \quad \text{ in } \Omega,
\]
has a unique solution $z \in X_u$ and
\[\|z\| \leq \|f\|.
\]

2. The following Green's formula holds:
\[\forall z, \theta \in X_u, \quad (u \cdot \nabla z, \theta) = - (u \cdot \nabla \theta, z).
\]

Finally, the last result establishes compact embeddings in space and time. Its proof, due to Simon, see [9].

Theorem 4 (Simon) Let X, E, Y be three Banach spaces with continuous embeddings: $X \subset E \subset Y$, the imbedding of X into E being compact. Then for any number $q \in [1, \infty]$, the space
\[
\left\{ v \in L^q(0, T; X); \frac{\partial v}{\partial t} \in L^1(0, T; Y) \right\}
\]
is compactly imbedded in $L^q(0, T; E)$.

2.3 Formulation of the problem

Let \([0,T]\) be a time interval for some positive time \(T\), let \(\Omega\) be an domain in two dimensions, with a Lipschitz-continuous boundary \(\partial \Omega\) and let \(\mathbf{n}\) denote the unit normal to \(\partial \Omega\), pointing outside \(\Omega\). Let \(\mathbf{f} \in L^2(0,T; H(\text{curl}; \Omega))\), the initial velocities \(\mathbf{u}_0, \mathbf{h}_0 \in V\) with \(\text{curl} (\mathbf{u}_0 - \alpha \Delta \mathbf{u}_0) \in L^2(\Omega)\), and we expect the velocity \(\mathbf{u} \in L^\infty(0,T; V)\) with \(\partial \mathbf{u}/\partial t \in L^2(0,T; V)\), the magnetic field \(\mathbf{h} \in L^\infty(0,t; V)\) with \(\partial \mathbf{h}/\partial t \in L^2(0,T; V)\), and the pressures \(p, \omega \in L^2(0,T; L_0^2(\Omega))\).

The system (3) can be rewritten by introducing the auxiliary variable \(z = \text{curl} (\mathbf{u} - \alpha \Delta \mathbf{u})\), as

\[
\begin{align*}
\frac{\partial}{\partial t} (\mathbf{u} - \alpha \Delta \mathbf{u}) - \nu \Delta \mathbf{u} + z \times \mathbf{u} - (\mathbf{h} \cdot \nabla) \mathbf{h} &= \mathbf{f} - \nabla (p^* + \mathbf{h}^2) \\
\frac{\partial \mathbf{h}}{\partial t} - \Delta \mathbf{h} + (\mathbf{u} \cdot \nabla) \mathbf{h} - (\mathbf{h} \cdot \nabla) \mathbf{u} &= -\text{grad} \omega \\
\text{div} \mathbf{u} &= \text{div} \mathbf{h} = 0
\end{align*}
\]

(11)

(12)

where we have used the fact that \(\text{curl} (z \times \mathbf{u}) = \mathbf{u} \cdot \nabla z\), valid in two dimensions. Considering the above equation, we can rewrite the system (11) as follows:

\[
\begin{align*}
\frac{\partial}{\partial t} (\mathbf{u} - \alpha \Delta \mathbf{u}) - \nu \Delta \mathbf{u} + z \times \mathbf{u} &= \mathbf{f} + (\mathbf{h} \cdot \nabla) \mathbf{h} - \nabla (p^* + \mathbf{h}^2) \\
\frac{\partial \mathbf{h}}{\partial t} - \Delta \mathbf{h} + (\mathbf{u} \cdot \nabla) \mathbf{h} - (\mathbf{h} \cdot \nabla) \mathbf{u} &= -\text{grad} \omega \\
\alpha \frac{\partial z}{\partial t} + \nu z + \alpha (\mathbf{u} \cdot \nabla) z &= \text{curl} (\mathbf{h} \cdot \nabla) \mathbf{h} + \text{curl} \mathbf{f} - \text{curl} \nabla (p^* + \mathbf{h}^2)
\end{align*}
\]

(13)

\[
\text{div} \mathbf{u} = \text{div} \mathbf{h} = 0.
\]

Semi-discretization in time

Let \(N > 1\) be an integer, define the time step \(k\) by

\[
k = \frac{T}{N}
\]

and the subdivision points \(t^n = nk\). For each \(n \geq 1\), we approximate \(\mathbf{f}(t^n)\) by the average defined almost everywhere in \(\Omega\) by

\[
f^n(x) = \frac{1}{k} \int_{t^{n-1}}^{t^n} f(x,s)ds.
\]
We set
\[u^0 = u_0, \quad h^0 = h_0 \text{ and } z^0 = \text{curl} (u_0 - \alpha \Delta u_0). \]

Then, our semi-discrete problem reads: Find sequences \((u^n)_{n \geq 1}, (h^n)_{n \geq 1}, (z^n)_{n \geq 1}, (p^n)_{n \geq 1}\) and \((\omega^n)_{n \geq 1}\) such that \(u^n, h^n \in V, z^n \in L^2(\Omega), \) and \(p^n, \omega^n \in L^2_0(\Omega),\) solution of:

\[
\begin{align*}
\frac{1}{k}(u^{n+1} - u^n) - \frac{1}{k} \Delta (u^{n+1} - u^n) - \nu \Delta u^{n+1} + z^n \times u^{n+1} &= f^{n+1} + h^{n+1} \cdot \nabla h^{n+1} - \nabla (p^{n+1} + (h^{n+1})^2), \\
\frac{1}{k}(h^{n+1} - h^n) - \Delta h^{n+1} + u^{n+1} \cdot \nabla h^{n+1} - h^{n+1} \cdot \nabla u^{n+1} &= -\text{grad} \omega^{n+1}, \\
\frac{\alpha}{k}(z^{n+1} - z^n) + \nu z^{n+1} + \alpha u^{n+1} \cdot \nabla z^{n+1} &= \nu \text{curl} u^{n+1} + \text{curl} f^{n+1} + \text{curl} (h^{n+1} \cdot \nabla h^{n+1}) - \text{curl} \nabla (p^{n+1} + (h^{n+1})^2),
\end{align*}
\]

(14)

Now, we will make some estimates for \(u^i, h^i, z^i, p^i\) and \(\omega^i\). Multiplying the first Eq. of (14) by \(2k u^{i+1}\), the second Eq. of (14) by \(2kh^{i+1}\) and the third Eq. of (14) by \(2kz^{i+1}\) and observing that \(\text{curl} \nabla F = 0\), for any vector field \(F\), we obtain

\[
\begin{align*}
2 (u^{i+1} - u^i, u^{i+1}) - 2\alpha (\Delta (u^{i+1} - u^i), u^{i+1}) - 2k\nu (\Delta u^{i+1}, u^{i+1}) &= 2k (f^{i+1}, u^{i+1}) + 2k (h^{i+1} \cdot \nabla h^{i+1}, u^{i+1}), \\
2 (h^{i+1} - h^i, h^{i+1}) - 2k (\Delta h^{i+1}, h^{i+1}) &= 2k (h^{i+1} \cdot \nabla u^{i+1}, h^{i+1}), \\
2 (z^{i+1} - z^i, z^{i+1}) + \frac{2\nu k}{\alpha} (z^{i+1}, z^{i+1}) &= 2k (\text{curl} f^{i+1}, z^{i+1}) + \text{curl} (h^{i+1} \cdot \nabla h^{i+1}) \cdot z^{i+1},
\end{align*}
\]

(15)

where we used that fact that \((u^{i+1}, h^{i+1}, h^{i+1}) = 0\).

Proposition 5 The sequence \((u^n)_{n \geq 1}\) and \((h^n)_{n \geq 1}\) satisfy the following uniform a priori estimates:

\[
\begin{align*}
\sum_{i=0}^{n-1} k \|\nabla u^{i+1}\|^2_{\alpha} &\leq C \frac{2C}{\nu^2} \|f\|^2_{L^2(\Omega, \chi \omega_i)} + \frac{1}{\nu} \|u_0\|^2_{\alpha} + \frac{1}{\nu} \|h_0\|^2, \\
\sum_{i=0}^{n-1} k \|\nabla h^{i+1}\|^2 &\leq C \frac{2C}{2\nu} \|f\|^2_{L^2(\Omega, \chi \omega_i)} + \frac{1}{2} \|u_0\|^2_{\alpha} + \frac{1}{2} \|h_0\|^2, \\
2 \|\nabla h^{i+1}\|^2 &+ \sum_{j=1}^{i} \left(\|\nabla h^{j+1} - \nabla h^j\|^2 + \frac{k}{\mu \sigma} \|A h^{j+1}\|^2 \right) \leq \|\nabla h_0\|^2.
\end{align*}
\]

(16)
Proof: Multiplying the first Eq. of (14) by $2u^{i+1}$ and the second Eq. of (14) by $2h^{i+1}$, we obtain
\[
\frac{2}{k} (u^{i+1} - u^i, u^{i+1}) - \frac{\alpha}{k} \Delta (u^{i+1} - u^i, u^{i+1}) - 2\nu (\Delta u^{i+1}, u^{i+1})
\]
\[
= 2 (f^{i+1}, u^{i+1}) + 2 (h^{i+1} \cdot \nabla h^{i+1}, u^{i+1}),
\]
\[
\frac{2}{k} (h^{i+1} - h^i, h^{i+1}) - 2 (\Delta h^{i+1}, h^{i+1}) - 2 (h^{i+1} \cdot \nabla u^{i+1}, h^{i+1}) = 0
\]
where we should note that
\[
(z^i \times u^{i+1}, u^{i+1}) = 0, \quad \left(\nabla \left(\nu^{i+1} + (h^{i+1})^2 \right), u^{i+1} \right) = 0,
\]
\[
(\nabla \omega^{i+1}, h^{i+1}) = 0, \quad (u^{i+1} \cdot \nabla h^{i+1}, h^{i+1}) = 0.
\]
Using the formula
\[
2(a - b, a) = ||a||^2 - ||b||^2 + ||a - b||^2,
\]
that is true in any Hilbert space, and adding the above equations, adding from $i = 0$ to $n - 1$ and making use the telescopic property, we have
\[
\frac{1}{k} ||u^n||^2 + \frac{1}{k} ||h^n||^2 + \frac{1}{k} \sum_{i=0}^{n-1} \left[||u^{i+1} - u^i||^2 \right] + \frac{1}{k} \sum_{i=0}^{n-1} ||h^{i+1} - h^i||^2
\]
\[
+ 2\nu \sum_{i=0}^{n-1} ||\nabla u^{i+1}||^2 + 2 \sum_{i=0}^{n-1} ||\nabla h^{i+1}||^2
\]
\[
\leq 2C \sum_{i=0}^{n-1} ||f^{i+1}|| ||u^{i+1}|| + \frac{1}{k} ||u_0||^2 + \frac{1}{k} ||h_0||^2.
\]
Now taking into account that
\[
2C ||f^{i+1}|| ||u^{i+1}|| \leq
\]
\[
4C^2 \frac{\delta}{2} ||f^{i+1}||^2 + \frac{1}{2\delta} ||u^{i+1}||^2 \leq 4C^2 \frac{\delta}{2} ||f^{i+1}||^2 + \frac{C}{2\delta} ||\nabla u^{i+1}||^2,
\]
than from equation (18) we can write
\[
2\nu \sum_{i=0}^{n-1} ||\nabla u^{i+1}||^2 + 2 \sum_{i=0}^{n-1} ||\nabla h^{i+1}||^2 \leq
\]
\[
\sum_{i=0}^{n-1} \left(4C^2 \frac{\delta}{2} ||f^{i+1}||^2 + \frac{C}{2\delta} ||\nabla u^{i+1}||^2 \right) + \frac{1}{k} ||u_0||^2 + \frac{1}{k} ||h_0||^2
\]
then, putting $\delta = C/2\nu$, we obtain
\[
\nu \sum_{i=0}^{n-1} ||\nabla u^{i+1}||^2 + 2 \sum_{i=0}^{n-1} ||\nabla h^{i+1}||^2 \leq \frac{C^2C}{\nu k} ||f||^2_{L^2(\Omega, \times \omega^1, \nu^1)} + \frac{1}{k} ||u_0||^2 + \frac{1}{k} ||h_0||^2.
\]
On the other hand, to obtain estimates of the $\|\nabla h^{n+1}\|^2$, we multiply the second equation in (14) by $2Ah^{i+1}$, then we obtain (after applying the projection operator P)

$$\frac{2}{k} (\nabla h^{i+1} - \nabla h^i, \nabla h^{i+1}) + \frac{2}{\mu \sigma} \|Ah^{i+1}\|^2 = -2 (u^{i+1} \cdot \nabla h^{i+1}, Ah^{i+1}) + 2 (h^{i+1} \cdot \nabla u^{i+1}, Ah^{i+1}),$$

then bounded each of terms, we have

$$\frac{2}{k} (\nabla h^{i+1} - \nabla h^i, \nabla h^{i+1}) = \frac{1}{k} \|\nabla h^{i+1}\|^2 - \frac{1}{k} \|\nabla h^i\|^2 + \frac{1}{k} \|\nabla h^{i+1} - \nabla h^i\|^2,$$

$$|2 (u^{i+1} \cdot \nabla h^{i+1}, Ah^{i+1})| \leq 2 \|u^{i+1}\|_{L^6} \|\nabla h^{i+1}\|_{L^3} \|Ah^{i+1}\|^2 \leq 2 \|\nabla u^{i+1}\|^2 \|\nabla h^{i+1}\|^{1/2} \|Ah^{i+1}\|^{3/2} \leq 2C_\varepsilon \|\nabla u^{i+1}\|^4 \|\nabla h^{i+1}\|^2 + 2\varepsilon \|Ah^{i+1}\|^2,$$

$$|2 (h^{i+1} \cdot \nabla u^{i+1}, Ah^{i+1})| \leq 2 \|h^{i+1}\|_{L^\infty} \|\nabla u^{i+1}\| \|Ah^{i+1}\| \leq 2C \|\nabla h^{i+1}\|^{1/2} \|Ah^{i+1}\|^{3/2} \|\nabla u^{i+1}\| \leq 2CC_\varepsilon \|\nabla u^{i+1}\|^4 \|\nabla h^{i+1}\|^2 + 2C\varepsilon \|Ah^{i+1}\|^2,$$

where we use the estimate of interpolation $\|h^{i+1}\|_{L^\infty} \leq C \|\nabla h^{i+1}\|^{1/2} \|Ah^{i+1}\|^{1/2}$. From above estimates and taking into account that $\|\nabla u^{i+1}\|$ is bounded, we have

$$\|\nabla h^{i+1}\|^2 + \|\nabla h^{i+1} - \nabla h^i\|^2 + \frac{2k}{\mu \sigma} \|Ah^{i+1}\|^2$$

$$\leq k (2C_\varepsilon + 2CC_\varepsilon) \|\nabla h^{i+1}\|^2 + k (2\varepsilon + 2C\varepsilon) \|Ah^{i+1}\|^2 + \|\nabla h^i\|^2$$

then, there is k and ε such that (for a sufficiently large N) $1 - k (2C_\varepsilon + 2CC_\varepsilon) = 1/2$ and $2k/\mu \sigma - k (2\varepsilon + 2C\varepsilon) = k/\mu \sigma$, thus, from the above inequality we can write

$$2 \|\nabla h^{i+1}\|^2 + \|\nabla h^{i+1} - \nabla h^i\|^2 + \frac{k}{\mu \sigma} \|Ah^{i+1}\|^2 \leq \|\nabla h^i\|^2,$$

from which we get (using the lemma 3.14 pg. 131 in [11] with $\eta = \gamma_i = \xi = 0$)

$$2 \|\nabla h^{i+1}\|^2 + \sum_{j=1}^i \left(\|\nabla h^{i+1} - \nabla h^j\|^2 + \frac{k}{\mu \sigma} \|Ah^{i+1}\|^2 \right) \leq \|\nabla h_0\|^2.$$

\[\square\]

Proposition 6 The sequence $(u^n)_{n \geq 1}$ and $(h^n)_{n \geq 1}$ satisfy the following uniform a priori estimates, for $1 \leq n \leq N$

$$\|u^n\|_{\alpha}^2 + \sum_{i=0}^{n-1} \|u^{i+1} - u^i\|_{\alpha}^2 \leq \frac{C^2}{2\nu} \|f\|_{L^2(\Omega \times (0, t^n))}^2 + \|u_0\|_{\alpha}^2 + \|h_0\|^2,$$ \hspace{1cm} (19)

$$\|h^n\|_{2}^2 + \sum_{i=0}^{n-1} \|h^{i+1} - h^i\|_{2}^2 \leq \frac{C^2}{2\nu} \|f\|_{L^2(\Omega \times (0, t^n))}^2 + \|u_0\|_{\alpha}^2 + \|h_0\|^2,$$ \hspace{1cm} (20)
\textbf{Proof:} Estimates (19) and (20) are derived by adding the first and second equations of (15) and using the formula (17),
\begin{align*}
&\left\|u^{i+1}\right\|^2 - \left\|u^i\right\|^2 + \left\|u^{i+1} - u^i\right\|^2 + \left\|h^{i+1}\right\|^2 \\
&\quad - \left\|h^i\right\|^2 + \left\|h^{i+1} - h^i\right\|^2 - 2\alpha \left(\Delta (u^{i+1} - u^i), u^{i+1} - u^i\right) \\
&\quad - 2\alpha \left(\Delta (u^{i+1} - u^i), u^i\right) - 2k\nu \left\|\nabla u^{i+1}\right\|^2 + 2k \left\|\nabla h^{i+1}\right\|^2 = 2k \left(f^{i+1}, u^{i+1}\right)
\end{align*}
then adding from $i = 0$ to $i = n - 1$ and making use of the telescopic property, and again using the formulae (17), we have
\begin{align*}
\left\|u^n\right\|^2 - \left\|u_0\right\|^2 + \sum_{i=0}^{n-1} \left\|u^{i+1} - u^i\right\|^2 + \left\|h^n\right\|^2 \\
- \left\|h_0\right\|^2 + \sum_{i=0}^{n-1} \left\|h^{i+1} - h^i\right\|^2 + 2\alpha \sum_{i=0}^{n-1} \left\|\nabla (u^{i+1} - u^i)\right\|^2 \\
+ 2k \sum_{i=0}^{n-1} \left\|\nabla h^{i+1}\right\|^2 &\leq \frac{C^2}{2\nu} \sum_{i=0}^{n-1} \left\|f^{i+1}\right\|^2,
\end{align*}
now, drooping $2\alpha \sum_{i=0}^{n-1} \left\|\nabla (u^{i+1} - u^i)\right\|^2$ and $2k \sum_{i=0}^{n-1} \left\|\nabla h^{i+1}\right\|^2$ we have
\begin{align*}
\left\|u^n\right\|^2 + \sum_{i=0}^{n-1} \left\|u^{i+1} - u^i\right\|^2 + \left\|h^n\right\|^2 + \sum_{i=0}^{n-1} \left\|h^{i+1} - h^i\right\|^2 \\
&\leq \frac{C^2}{2\nu} \left\|f\right\|^2_{L^2(\Omega, t, L^2)} + \left\|u_0\right\|^2 + \left\|h_0\right\|^2,
\end{align*}
where $\sum_{i=0}^{n-1} \left\|f^{i+1}\right\|^2 = \left\|f\right\|^2_{L^2(\Omega, t, L^2)}$. From which we get the result.

\[\square\]

\textbf{Remark 7} From (21) we have
\begin{equation}
2\alpha \sum_{i=0}^{n-1} \left\|\nabla (u^{i+1} - u^i)\right\|^2 + 2k \sum_{i=0}^{n-1} \left\|\nabla h^n\right\|^2 \leq \frac{C^2}{2\nu} \left\|f\right\|^2_{L^2(\Omega, t, L^2)} + \left\|u_0\right\|^2 + \left\|h_0\right\|^2.
\end{equation}

\textbf{Estimate for z^n}
Before obtaining an estimate for z^n, we will show the following corollary

\textbf{Corollary 8} Give the sequence $(h^n)_{n \geq 1}$ we have the following uniform a priori estimates
\[\|Ah^n\| \leq C \quad \text{and} \quad \|\nabla (h^n \cdot \nabla h^n)\| \leq C \quad \forall n \in \mathbb{N}.\]
\textbf{Proof}: Applying the projector \(P \) to the second equation of (14) we obtain
\[Ah^{n+1} = -P \left(u^{n+1} \cdot \nabla h^{n+1} \right) + P \left(h^{n+1} \cdot \nabla u^{n+1} \right) - \frac{1}{k} P \left(h^{n+1} - h^{n} \right) \]
then
\[\| Ah^{n+1} \| \leq \| u^{n+1} \cdot \nabla h^{n+1} \| + \| h^{n+1} \cdot \nabla u^{n+1} \| + \frac{1}{k} \| h^{n+1} - h^{n} \| \] (23)
thus, each term can be estimated as follows:

\[\text{a) } \]
\[\| u^{n+1} \cdot \nabla h^{n+1} \| \leq \| u^{n+1} \|_{L^6(\Omega)} \| \nabla h^{n+1} \|_{L^3(\Omega)} \]
\[\leq C \| \nabla u^{n+1} \| \| \nabla h^{n+1} \|^{1/2} \| Ah^{n+1} \|^{1/2} \]
\[\leq C_{\varepsilon_1} + \varepsilon_1 \| Ah^{n+1} \| \text{ for } \varepsilon_1 > 0 \text{ small} \]
here was used \(H^1 \hookrightarrow L^6 \) and a result of interpolation.

\[\text{b) } \]
\[\| h^{n+1} \cdot \nabla u^{n+1} \| \leq \| h^{n+1} \|_{L^\infty(\Omega)} \| \nabla u^{n+1} \| \]
\[\leq C \| h^{n+1} \|_{L^\infty(\Omega)} \]
\[\leq C \| h^{n+1} \|^{1/2} \| Ah^{n+1} \|^{1/2} \]
\[\leq C \| Ah^{n+1} \|^{1/2} \]
\[\leq C_{\varepsilon_2} + \varepsilon_2 \| Ah^{n+1} \|. \]
Finally, substituting in (23) we obtain
\[(1 - \varepsilon_1 - \varepsilon_2) \| Ah^{n+1} \| \leq C_{\varepsilon_1} + C_{\varepsilon_2} + C \]
and considering \((1 - \varepsilon_1 - \varepsilon_2) > 0\) we obtain
\[\| Ah^{n+1} \| \leq C, \] (24)
where the constant \(C \) is generic.

Now, taking into account the equation (24) and usual estimates, we have
\[\| \nabla (h^{n+1} \cdot \nabla h^{n+1}) \| \]
\[\leq C_1 \| \nabla h^{n+1} \cdot \nabla h^{n+1} \| + C_2 \| h^{n+1} \cdot \nabla^2 h^{n+1} \| \]
\[\leq C_3 \| \nabla h^{n+1} \|_{L^3(\Omega)} \| \nabla h^{n+1} \|_{L^6(\Omega)} + C_4 \| h^{n+1} \|_{L^\infty(\Omega)} \| \nabla^2 h^{n+1} \| \]
\[\leq C_5 \| Ah^{n+1} \| \| Ah^{n+1} \| + C_6^{1/2} \| Ah^{n+1} \|^{1/2} \| Ah^{n+1} \| \]
\[\leq C, \]
another consequence of (24) is $\|h^n \cdot \nabla h^{n+1}\| \leq C$. □

Proposition 9 The sequence $(z^n)_{n \geq 1}$ satisfy the following uniform a priori estimates

$$\|z^n\|^2 + \sum_{i=0}^{n-1} \|z^{i+1} - z^i\|^2 \leq \left(\frac{C^2 C}{\alpha} \|f\|^2_{L^2(\Omega \times [0,T^n])} + \frac{\nu}{2\alpha} \|u_0\|^2_{\alpha} + \frac{1}{\alpha} \|h_0\| \right)$$

$$+ \frac{2\alpha k}{\nu} \|\text{curl } f\|^2_{L^2(\Omega \times (0,T^n))} + \frac{2\alpha}{\nu} CT + \|z_0\|^2.$$

Proof: Multiplying the third equation of (14) by $\frac{2k}{\alpha} z^{i+1}$, we get

$$2(z^{i+1} - z^i, z^{i+1}) + \frac{2k\nu}{\alpha} (z^{i+1}, z^{i+1}) = \frac{2k\nu}{\alpha} (\text{curl } u^{i+1}, z^{i+1})$$

$$+ 2k (\text{curl } f^{i+1}, z^{i+1}) + 2k (h^{i+1} \cdot \nabla h^{i+1}, z^{i+1})$$

then, using the formula (17), we obtain

$$\|z^{i+1}\|^2 - \|z^i\|^2 + \|z^{i+1} - z^i\|^2 \leq \frac{2k\nu}{\alpha} \|\nabla u^{i+1}\| \|z^{i+1}\| + 2k \|\text{curl } f^{i+1}\| \|z^{i+1}\|$$

$$+ 2k \|\nabla (h^{i+1} \cdot \nabla h^{i+1})\| \|z^{i+1}\|$$

$$\leq \frac{2k\nu}{\alpha} \left(C_{\varepsilon_1} \|\nabla u^{i+1}\|^2 + \varepsilon_1^2 \|z^{i+1}\|^2 \right) + 2k C_{\varepsilon_2} \|\text{curl } f^{i+1}\|^2$$

$$+ 2k \varepsilon_2 \|z^{i+1}\|^2 + 2kC \|z^{i+1}\|$$

$$\leq \frac{2k\nu}{2\alpha \varepsilon_1} \|\nabla u^{i+1}\|^2 + \frac{k\nu \varepsilon_1}{\alpha} \|z^{i+1}\|^2 + 2 \frac{2k}{2\varepsilon_2} \|\text{curl } f^{i+1}\|^2$$

$$+ k \varepsilon_2 \|z^{i+1}\|^2 + \frac{k}{\varepsilon_3} + k \varepsilon_3 \|z^{i+1}\|^2.$$

Now adding to $i = 0$ to $n - 1$ we obtain

$$\sum_{i=0}^{n-1} \left(\|z^{i+1}\|^2 - \|z^i\|^2 \right) \leq \sum_{i=0}^{n-1} \|z^{i+1} - z^i\|^2$$

$$+ \left(\frac{2k\nu}{\alpha} - \frac{k\nu \varepsilon_1}{\alpha} - k \varepsilon_2 - kC \varepsilon_3 \right) \sum_{i=0}^{n-1} \|z^{i+1}\|^2$$

$$\leq \frac{k\nu}{\alpha \varepsilon_1} \sum_{i=0}^{n-1} \|\nabla u^{i+1}\|^2 + \frac{k}{\varepsilon_2} \sum_{i=0}^{n-1} \|\text{curl } f^{i+1}\|^2 + C \frac{T}{\varepsilon_3}.$$
Where the term \(\frac{k}{\varepsilon_3} \sum_{i=0}^{n-1} C \leq \frac{k}{\varepsilon_3} C n \leq \frac{k}{\varepsilon_3} C \frac{T}{k} = C \frac{T}{\varepsilon_3} \). Now considering \(\varepsilon_1 = 1 \) and \(\varepsilon_2 = \varepsilon_3 = \nu/2\alpha \) the above equation can be written as

\[
\sum_{i=0}^{n-1} \left(\|z^{i+1}\|^{2} - \|z^{i}\|^{2} \right) + \sum_{i=0}^{n-1} \|z^{i+1} - z^{i}\|^{2} \leq \frac{k\nu}{\alpha} \sum_{i=0}^{n-1} \|\nabla u^{i+1}\|^{2} + \frac{2\alpha k}{\nu} \sum_{i=0}^{n-1} \|\text{curl} f^{i+1}\|^{2} + \frac{2\alpha C T}{\nu},
\]

consequently,

\[
\|z^{n}\|^{2} + \sum_{i=0}^{n-1} \|z^{i+1} - z^{i}\|^{2} \leq \left(\frac{C^2 C}{\alpha} \|\mathbf{f}\|_{L^2(\Omega, \times [0, t^n])}^{2} \frac{\nu}{\alpha^{2}} \|u_0\|^{2} + \frac{\nu}{2\alpha} \|h_0\|^{2} \right) + \frac{2\alpha k}{\nu} \|\text{curl} f\|_{L^2(\Omega \times [0, t^n])}^{2} + \frac{2\alpha C T}{\nu} + \|z_0\|^{2}.
\]

\[\square\]

Proposition 10 Let

\[C_2 = \sup_{0 \leq n \leq N-1} \|z^{n}\|^{2} \]

The sequences \((u^{n+1} - u^{n})/k\)_{n \geq 1} and \((h^{n+1} - h^{n})/k\)_{n \geq 1}, satisfy the following uniform a priori estimates:

\[
\sum_{i=0}^{n-1} \frac{1}{2k} \|u^{i+1} - u^{i}\|_{\alpha}^{2} \leq \frac{(C_1 \nu + C_2 S^2_{\alpha})^{2}}{2\alpha} \left(\frac{C^2 C}{\nu} \|\mathbf{f}\|_{L^2(\Omega, \times [0, t^n])}^{2} \right) + \frac{1}{\nu} \|u_0\|_{\alpha}^{2} + \frac{1}{\nu} \|h_0\|^{2} + C_2 \|\mathbf{f}\|_{L^2(\Omega, \times [0, t^n])}^{2} + DT
\]

\[
\sum_{i=0}^{n-1} \frac{1}{2k} \|h^{i+1} - h^{i}\|_{\alpha}^{2} \leq \frac{(C_1 \nu + C_2 S^2_{\alpha})^{2}}{2\alpha} \left(\frac{C^2 C}{\nu} \|\mathbf{f}\|_{L^2(\Omega, \times [0, t^n])}^{2} \right) + \frac{1}{\nu} \|u_0\|_{\alpha}^{2} + \frac{1}{\nu} \|h_0\|^{2} + C_2 \|\mathbf{f}\|_{L^2(\Omega, \times [0, t^n])}^{2} + DT.
\]

Proof: Multiplying the first Eq. (14) by \((u^{i+1} - u^{i})\) and the second Eq. of (14) by \((h^{i+1} - h^{i})\), we obtain

\[
\frac{1}{k} \left(u^{i+1} - u^{i}, u^{i+1} - u^{i} \right) - \frac{\alpha}{k} \Delta \left(u^{i+1} - u^{i}, u^{i+1} - u^{i} \right) - \nu \left(\Delta u^{i+1}, u^{i+1} - u^{i} \right)
\]

\[
+ \left(z^{i} \times u^{i+1}, u^{i+1} - u^{i} \right) = (f^{i+1}, u^{i+1} - u^{i}) + (h^{i+1} \cdot \nabla h^{i+1}, u^{i+1} - u^{i}) + (u^{i+1} \cdot \nabla h^{i+1}, h^{i+1} - h^{i})
\]

\[
- (h^{i+1} \cdot \nabla u^{i+1}, h^{i+1} - h^{i}) = 0,
\]

(26)
then adding the above equations and using that
\[|(e^i \times u^{i+1}, u^{i+1} - u^i)| \leq C_z S_4^2 \|u^{i+1}\|_{H^1(\Omega)} \|u^{i+1} - u^i\|_{H^1(\Omega)}, \]
we have
\[
\frac{1}{k} \|u^{i+1} - u^i\|^2 + \frac{1}{k} \|h^{i+1} - h^i\|^2 \\
\leq (C_1 \nu + C_z S_4^2)^2 \frac{\varepsilon_1}{2\alpha} \|u^{i+1}\|^2_{H^1(\Omega)} + \frac{\alpha}{2C_1} \|u^{i+1} - u^i\|^2_{H^1(\Omega)} \\
+ \frac{C_2^2 \varepsilon_2}{2} \|f^{i+1}\|^2 + \frac{1}{2\varepsilon_2} \|u^{i+1} - u^i\|^2 + \frac{C_2^2 k \varepsilon_3}{2} \|h^{i+1} \cdot \nabla h^{i+1}\|^2 \\
+ \frac{1}{2k \varepsilon_3} \|u^{i+1} - u^i\|^2 + \frac{C_4^2 k \varepsilon_4}{2} \|Ah^{i+1}\|^2 \\
+ \frac{1}{2k \varepsilon_4} \|h^{i+1} - h^i\|^2 + \frac{C_5^2 \varepsilon_5}{2} \|u^{i+1} \cdot \nabla h^{i+1}\|^2 \\
+ \frac{1}{2k \varepsilon_5} \|h^{i+1} - h^i\|^2 + \frac{C_6^2 k \varepsilon_6}{2} \|h^{i+1} \cdot \nabla u^{i+1}\|^2 + \frac{1}{2k \varepsilon_6} \|h^{i+1} - h^i\|^2,
\]
then put \(\varepsilon_1 = 1, \varepsilon_2 = 2, \varepsilon_3 = 2, \varepsilon_4 = 2, \varepsilon_5 = 4 \) and \(\varepsilon_7 = 4 \), of the above equation can be written
\[
\frac{1}{2k} \|u^{i+1} - u^i\|^2 + \frac{1}{2k} \|h^{i+1} - h^i\| \\
\leq (C_1 \nu + C_z S_4^2)^2 \frac{k}{2\alpha} \|u^{i+1}\|^2_{H^1(\Omega)} + C_2^2 k \|f^{i+1}\|^2 + C_3^2 k \|h^{i+1} \cdot \nabla h^{i+1}\|^2 \\
+ C_4^2 k \|Ah^{i+1}\|^2 + 2C_5^2 k \|u^{i+1} \cdot \nabla h^{i+1}\|^2 \leq 2C_6^2 k \|h^{i+1} \cdot \nabla u^{i+1}\|^2.
\]
On the other hand, recalling the Corollary 7, we have
\[
\|h^{i+1} \cdot \nabla h^{i+1}\|^2 \leq d_1, \quad \|Ah^{i+1}\|^2 \leq d_2 \\
\|u^{i+1} \cdot \nabla h^{i+1}\|^2 \leq d_3, \quad \|h^{i+1} \cdot \nabla u^{i+1}\|^2 \leq d_4
\]
and summing from \(i = 0 \) to \(n-1 \) in (27), we obtain
\[
\sum_{i=0}^{n-1} \frac{1}{2k} \|u^{i+1} - u^i\|^2 + \sum_{i=0}^{n-1} \frac{1}{2k} \|h^{i+1} - h^i\| \\
\leq \sum_{i=0}^{n-1} (C_1 \nu + C_z S_4^2)^2 \frac{k}{2\alpha} \|u^{i+1}\|^2_{H^1(\Omega)} + C_2^2 \sum_{i=0}^{n-1} k \|f^{i+1}\|^2 \\
+ \sum_{i=0}^{n-1} Dk,
\]
where $D = C_3^2 d_1 + C_4^2 d_2 + 2C_5^2 d_3 + 2C_6^2 d_4$, then observed $n \leq N = T/k$ we can write $\sum_{i=0}^{n-1} Dk = Dnk \leq DT$, then from the above inequality we obtain

$$\sum_{i=0}^{n-1} \frac{1}{2k} \|u^{i+1} - u^i\|^2_\alpha + \sum_{i=0}^{n-1} \frac{1}{2k} \|h^{i+1} - h^i\|^2$$

$$\leq \sum_{i=0}^{n-1} \left(C_1 \nu + C_2 S_4^2 \right)^2 \frac{k}{2\alpha} \|u^{i+1}\|^2_{H^1(\Omega)} + C_2^2 \sum_{i=0}^{n-1} k \|f^{i+1}\|^2 + DT.$$

Indeed, from (16) we obtain

$$\sum_{i=0}^{n-1} \frac{1}{2k} \|u^{i+1} - u^i\|^2_\alpha + \sum_{i=0}^{n-1} \frac{1}{2k} \|h^{i+1} - h^i\|^2$$

$$\leq \frac{(C_1 \nu + C_2 S_4^2)^2}{\alpha} \left(\frac{C_2^2 C}{\nu^2} \|f\|^2_{L^2(\Omega, \times [0, t^m])} + \frac{1}{\nu} \|u_0\|^2 + \frac{1}{\nu} \|h_0\|^2 \right)$$

$$+ 2C_2^2 \|f\|^2_{L^2(\Omega, \times [0, t^m])} + 2DT.$$

From which we get the result. □

Proposition 11 The sequence $(p^n)_{n \geq 1}$ and $(\omega^n)_{n \geq 1}$ satisfy the following uniform a priori estimates:

$$\sum_{i=0}^{n-1} \left[k \|p^{i+1}\|^2 + k \|\omega^{i+1}\|^2 \right] \leq$$

$$\left[\frac{(C_1 \nu + C_2 S_4^2)^2 L}{\alpha} + 4C_2^2 S_4^4 \right] \left(\frac{C_2^2 C}{\nu^2} \|f\|^2_{L^2(\Omega, \times [0, t^m])} + \frac{1}{\nu} \|u_0\|^2 + \frac{1}{\nu} \|h_0\|^2 \right)$$

$$+ \left[4C_2^2 C + 2C_2^2 L \right] \|f\|^2 + (\mathcal{D} + 2LD)T, \quad 1 \leq n \leq N.$$

Proof: Let $v_1, v_2 \in V^\perp = \{ v \in H_0^1(\Omega) ; \forall w \in V, (\nabla v, \nabla w) = 0 \}$ such that div $v_1 = p^{i+1}$ and grad $v_2 = \omega^{i+1}$. Then by multiplying the first and second eq.(14) by v_1 and v_2 respectively, and adding the results, we have

$$\frac{1}{k} (u^{i+1} - u^i, v_1) + (z^i \times u^{i+1}, v_1) + (p^{i+1}, p^{i+1})$$

$$- (h^{i+1} \cdot \nabla h^{i+1}, v_1) + \frac{1}{k} (h^{i+1} - h^i, v_2) + (u^{i+1} \cdot \nabla h^{i+1}, v_2)$$

$$- (h^{i+1} \cdot \nabla u^{i+1}, v_2) + (\omega^{i+1}, \omega^{i+1}) = (f^{i+1}, v_1).$$
where, we consider that $v_1, v_2 \in V^\perp$. Thus, we can write

$$
k \|p_{i+1}\|^2 + k \|\omega_{i+1}\|^2 \leq C_1 \frac{\delta_1}{2} \|u_{i+1} - u^i\|^2 + \frac{1}{2\delta_1} \|v_1\|^2
$$

$$+ kC_z^2 \delta_4 \frac{\delta_2}{2} \|u_{i+1}\|_{H^1}^2 + \frac{k}{2\delta_2} \|v_1\|_{H^1}^2 + kC_3^2 \delta_3 \frac{\delta_2}{2} \|h_{i+1} \cdot \nabla h_{i+1}\|^2
$$

$$+ \frac{k}{2\delta_3} \|v_1\|^2 + C_3 \frac{\delta_4}{2} \|h_{i+1} - h^i\|^2 + \frac{1}{2\delta_4} \|v_2\|^2
$$

$$+ kC_4^2 \delta_7 \frac{\delta_2}{2} \|u_{i+1} \cdot \nabla h_{i+1}\|^2 + \frac{k}{2\delta_5} \|v_2\|^2 + kC_6 \frac{\delta_7}{2} \|h_{i+1} \cdot \nabla u_{i+1}\|^2
$$

$$+ \frac{k}{2\delta_6} \|v_2\|^2 + kC_6^2 \frac{\delta_7}{2} \|f_{i+1}\|^2 + \frac{k}{2\delta_7} \|v_1\|^2.
$$

Now, considering that $H^1 \hookrightarrow L^2$, i.e.,

$$
\|v_1\| \leq C \|\nabla v_1\| = C \|p_{i+1}\|
$$

and

$$
\|v_2\| \leq C \|\nabla v_2\| = C \|w_{i+1}\|.
$$

From which, we obtain

$$
k \|p_{i+1}\|^2 + k \|\omega_{i+1}\|^2 \leq C_1 \frac{\delta_1}{2} \|u_{i+1} - u^i\|^2 + \frac{C}{2\delta_1} \|p_{i+1}\|^2
$$

$$+ kC_z^2 \delta_4 \frac{\delta_2}{2} \|u_{i+1}\|_{H^1}^2 + \frac{k}{2\delta_2} \|p_{i+1}\|_{H^1}^2 + kC_3^2 \delta_3 \frac{\delta_2}{2} \|h_{i+1} \cdot \nabla h_{i+1}\|^2
$$

$$+ \frac{Ck}{2\delta_3} \|p_{i+1}\|^2 + C_3 \frac{\delta_4}{2} \|h_{i+1} - h^i\|^2 + \frac{C}{2\delta_4} \|\omega_{i+1}\|^2
$$

$$+ kC_4^2 \delta_7 \frac{\delta_2}{2} \|u_{i+1} \cdot \nabla h_{i+1}\|^2 + \frac{Ck}{2\delta_5} \|\omega_{i+1}\|^2 + kC_6^2 \frac{\delta_7}{2} \|h_{i+1} \cdot \nabla u_{i+1}\|^2
$$

$$+ \frac{Ck}{2\delta_6} \|\omega_{i+1}\|^2 + kC_6^2 \frac{\delta_7}{2} \|f_{i+1}\|^2 + \frac{Ck}{2\delta_7} \|p_{i+1}\|^2,
$$

then, taking $\delta_1 = 4C/k$, $\delta_2 = 4$, $\delta_3 = \delta_7 = 4C$ and $\delta_4 = 2C/k$, $\delta_5 = \delta_6 = 4C$, adding from $i = 0$ to $n - 1$ and multiplying by 2, we have

$$
\sum_{i=0}^{n-1} \left[k \|p_{i+1}\|^2 + k \|\omega_{i+1}\|^2 \right] \leq 4C_1^2 C \sum_{i=0}^{n-1} \frac{1}{k} \|u_{i+1} - u^i\|^2
$$

$$+ 4C_z^2 \delta_4 \sum_{i=0}^{n-1} k \|u_{i+1}\|_{H^1}^2 + 2C_3^2 C \sum_{i=0}^{n-1} \frac{1}{k} \|h_{i+1} - h^i\|^2 + 4C_5^2 C \|f\|^2_{L^2(\Omega, T)}
$$

$$+ \sum_{i=0}^{n-1} \left(4C_2 C d_1 + 4C_2^2 C d_3 + 4C_5^2 C d_4 \right) k,
$$
thus, put $D = 4C_2^2 C_1 + 4C_2^2 C_2 + 4C_5^2 C_4$, noting that $n \leq T/k$ and using the inequalities (28) and (16), we have

$$
\sum_{i=0}^{n-1} \left[k \|p_i^{i+1}\|^2 + k \|\omega^{i+1}\|^2 \right] \leq
$$

$$
\frac{(C_1 \nu + C_5 S_1^2)^2 L}{\alpha} + 4C_2^2 S_4^4 \left(\frac{C_2 C}{\nu^2} |f|^2_{L^2(\Omega \times [0, t^n])} + \frac{1}{\nu} \|u_0\|^2 + \frac{1}{\nu} \|h_0\|^2 \right)
$$

$$+ \left[4C_2^2 + 2C_2^2 L \right]|f|^2_{L^2(\Omega \times [0, T])} + |D + 2LD| T.$$

where $L = \max \{4C_2^2 C, 4C_5^2 C\}$

\square

2.4 Existence of solutions

Here, it is convenient to transform the sequence $(u^n), (h^n), (p^n), (\omega^n)$ and (z^n) into functions. Since $(u^n), (h^n)$ and (z^n) need to be differentiated, we define the piecewise linear functions in time:

$$\forall t \in [t^n, t^{n+1}], \quad u_k(t) = u^n + \frac{t - t^n}{k} (u^{n+1} - u^n), \quad 0 \leq n \leq N - 1$$

$$\forall t \in [t^n, t^{n+1}], \quad h_k(t) = h^n + \frac{t - t^n}{k} (h^{n+1} - h^n), \quad 0 \leq n \leq N - 1$$

$$\forall t \in [t^n, t^{n+1}], \quad z_k(t) = z^n + \frac{t - t^n}{k} (z^{n+1} - z^n), \quad 0 \leq n \leq N - 1.$$

Next, in view of the other terms in (14), we define the step functions:

$$\forall t \in [t^n, t^{n+1}] \quad \text{and} \quad 0 \leq n \leq N - 1;$$

$$f_k(t) = f^{n+1}, \quad w_k(t) = u^{n+1}, \quad g_k(t) = h^{n+1}, \quad p_k(t) = p^{n+1},$$

$$\omega_k(t) = \omega^{n+1}, \quad \zeta_k(t) = z^{n+1}, \quad \lambda_k(t) = z^n.$$

Then we have the following convergences.

Proposition 12 The exist functions $u, h \in L^\infty(0, T; V)$ with $\partial u/\partial t, \partial h/\partial t \in L^2(0, T; V), p, \omega \in L^2(0, T; \text{L}^2_0(\Omega))$ and $z \in L^\infty(0, T; L^2(\Omega))$ such that a subsequence of k, still denoted by k, satis-
\[
\begin{align*}
\lim_{k \to 0} u_k &= \lim_{k \to 0} w_k = u \quad \text{weakly \ast in } L^\infty(0, T; V), \\
\lim_{k \to 0} h_k &= \lim_{k \to 0} g_k = h \quad \text{weakly \ast in } L^\infty(0, T; V), \\
\lim_{k \to 0} z_k &= \lim_{k \to 0} \zeta_k = \lim_{k \to 0} \lambda_k = z \quad \text{weakly \ast in } L^\infty(0, T; L^2(\Omega)), \\
\lim_{k \to 0} p_k &= p \quad \text{weakly in } L^2(0, T; L^2_0(\Omega)), \\
\lim_{k \to 0} \omega_k &= \omega \quad \text{weakly in } L^2(0, T; L^2_0(\Omega)), \\
\lim_{k \to 0} \frac{\partial}{\partial t} u_k &= \frac{\partial}{\partial t} u \quad \text{weakly in } L^2(0, T; V), \\
\lim_{k \to 0} \frac{\partial}{\partial t} h_k &= \frac{\partial}{\partial t} h \quad \text{weakly in } L^2(0, T; V). \\
\end{align*}
\]

Furthermore,
\[
\begin{align*}
\lim_{k \to 0} u_k &= \lim_{k \to 0} w_k = u \quad \text{strongly in } L^\infty(0, T; L^4(\Omega)^2), \\
\lim_{k \to 0} h_k &= \lim_{k \to 0} g_k = h \quad \text{strongly in } L^\infty(0, T; L^4(\Omega)^2)
\end{align*}
\]

Proof: Due to the uniform estimates given in Propositions 5 -10, we can extract a subsequence (still denoted by \(k\)) such that:
\[
\begin{align*}
\lim_{k \to 0} u_k &= u; \quad \lim_{k \to 0} h_k = h \quad \text{weakly \ast in } L^\infty(0, T; V), \\
\lim_{k \to 0} z_k &= z \quad \text{weakly \ast in } L^\infty(0, T; L^2(\Omega)), \\
\lim_{k \to 0} p_k &= p; \quad \lim_{k \to 0} w_k = w \quad \text{weakly in } L^2(0, T; L^2_0(\Omega)), \\
\lim_{k \to 0} \frac{\partial}{\partial t} u_k &= \frac{\partial}{\partial t} u; \quad \lim_{k \to 0} \frac{\partial}{\partial t} h_k = \frac{\partial}{\partial t} h \quad \text{weakly in } L^2(0, T; V), \\
\lim_{k \to 0} w_k &= w; \quad \lim_{k \to 0} g_k = g \quad \text{weakly \ast in } L^\infty(0, T; V), \\
\lim_{k \to 0} \zeta_k &= \zeta; \quad \lim_{k \to 0} \lambda_k = \lambda \quad \text{weakly in } L^2(0, T; L^2(\Omega)).
\end{align*}
\]
As far as the function \(w, g, \zeta \) and \(\lambda \) are concerned, observe that

\[
\forall t \in [t^n, t^{n+1}], \quad w_k(t) - u_k(t) = \frac{t^{n+1} - t}{k} (u^{n+1} - u^n), \quad 0 \leq n \leq N - 1
\]

\[
\forall t \in [t^n, t^{n+1}], \quad g_k(t) = h_k(t) = \frac{t^{n+1} - t}{k} (h^{n+1} - h^n), \quad 0 \leq n \leq N - 1
\]

\[
\forall t \in [t^n, t^{n+1}], \quad \zeta_k(t) - z_k(t) = \frac{t^{n+1} - t}{k} (z^{n+1} - z^n), \quad 0 \leq n \leq N - 1
\]

\[
\forall t \in [t^n, t^{n+1}], \quad \lambda_k(t) - z_k(t) = \frac{t^{n+1} - t}{k} (z^{n+1} - z^n), \quad 0 \leq n \leq N - 1.
\]

Therefore

\[
\| w_k - u_k \|^2_{L^2(0,T;V)} = \frac{k}{3} \sum_{n=0}^{N-1} \| u^{n+1} - u^n \|^2_{H^1(\Omega)},
\]

\[
\| g_k - h_k \|^2 = \frac{k}{3} \sum_{n=0}^{N-1} \| h^{n+1} - h^n \|^2_{H^1(\Omega)}, \tag{30}
\]

\[
\| \zeta_k - z_k \|^2_{L^2(\Omega \times [0,T])} = \| \lambda_k - z_k \|^2_{L^2([0,T])} = \frac{k}{3} \sum_{n=0}^{N-1} \| z^{n+1} - z^n \|^2.
\]

Then, using the estimates (19),(20),(25) and the uniqueness of the limit, we have \(w = u, g = h \) and \(\zeta = \lambda = z \). It remains to prove the strong convergence (29). In view of (30), it suffices to prove the strong convergence of \(u_k \) and \(h_k \). Note that, \((u_k) \) and \((h_k) \) are bounded uniformly in the space

\[
\left\{ v \in L^2(0,T;H_0^1(\Omega)^2); \frac{\partial v}{\partial t} \in L^2(0,T;L^4(\Omega)^2) \right\},
\]

and as the imbedding of \(H^1(\Omega) \) into \(L^4(\Omega) \) is compact, the Simon’s theorem implies that \(u_k \) and \(h_k \) converges strongly to \(u \) and \(h \) respectively in \(L^2(0,T;L^4(\Omega)^2) \).

\[\square \]

Theorem 13 Let \(\Omega \) be a bounded Lipschitz-continuous domain in two dimensions. Then for any \(\alpha > 0, \nu > 0, f \in L^2(0,T;H(\text{curl};\Omega)) \) and \(u_0, h_0 \in V \) with \(\text{curl} (u_0 - \alpha \Delta u_0) \in L^2(\Omega) \), problem (11) has at least one solution \(u, h \in L^\infty (0,T;V) \) with \(\frac{\partial u}{\partial t}, \frac{\partial h}{\partial t} \in L^2(0,T;V) \) and \(p, \omega \in L^2(0,T;L^2(\Omega)) \).
Proof: Let \(k \) be a subsequence satisfying the convergences of above Proposition. It is easy to check that the functions \(u_k, h_k, z_k, p_k, \omega_k, w_k, g_k, \zeta_k \) and \(\lambda_k \) satisfy the following formulations:

\[
\forall v \in H_0^1(\Omega), \forall \varphi \in C^0([0, T]), \quad \int_0^T \left[\left(\frac{\partial}{\partial t} u_k(t), v \right) + \alpha \left(\nabla u_k(t), \nabla v \right) \right] + v \left(\nabla w_k(t), \nabla v \right) + (\lambda_k(t) \times w_k(t), \varphi) - (p_k(t), \text{div} v) \right] \varphi(t) dt
\]

\[
+ \int_0^T (g_k(t) \cdot \nabla v, g_k(t)) \varphi(t) dt = \int_0^T (f_k(t), v) \varphi(t) dt,
\]

\[
\forall g \in H_0^1(\Omega), \forall \phi \in C^0([0, T]), \quad \int_0^T \left[\left(\frac{\partial}{\partial t} h_k(t), g \right) + (\nabla g_k(t), \nabla g) \right] - (w_k(t) \cdot \nabla g, g_k(t)) + (g_k(t) \cdot \nabla g, w_k(t)) - (w_k, \text{div} g) \phi(t) dt = 0,
\]

\[
\forall \theta \in W^{1,4}(\Omega), \forall \psi \in C^1([0, T]) \text{ with } \psi(T) = 0,
\]

\[
- \alpha \int_0^T (z_k(t), \theta) \frac{\partial}{\partial t} \psi(t) dt + \int_0^T \left[\left(\frac{\partial}{\partial t} \zeta_k(t), \theta \right) - \alpha (w_k(t) \cdot \nabla \theta, \zeta_k(t)) \right] \psi(t) dt
\]

\[
- (z_0, \theta) \psi(0) = \int_0^T \left[\left(\text{curl} w_k(t), \theta \right) + \alpha (\text{curl} f_k(t), \theta) \right] \psi(t) dt
\]

\[
+ \int_0^T \alpha (\text{curl} (g_k(t) \cdot \nabla g_k(t)), \theta) \psi(t) dt,
\]

where we note that

\[
\frac{\partial}{\partial t} u_k = \frac{\partial}{\partial t} \left[u^n + \frac{t - t^n}{k} (u^{n+1} - u^n) \right] = \frac{1}{k} (u^{n+1} - u^n)
\]

Note that, the weak convergences of the proposition above, imply the convergences of all the linear terms in (31),(32) and (33) and the terms involving \(f \) also converge, from standard integration results. Thus, it suffices to check the convergence of the non-linear terms. Then, for all indices \(i \) and \(j, 1 \leq i, j \leq 2, \)

\[
\lim_{k \to 0} (w_k)_i v_j \varphi = u_i v_j \varphi; \quad \lim_{k \to 0} (g_k)_i g_j \phi = h_i g_j \phi \quad \text{strongly in} \ L^2(\Omega \times [0, T])
\]

and

\[
\lim_{k \to 0} \lambda_k = z \quad \text{weakly in} \ L^2(\Omega \times [0, T]),
\]
then, we have
\[
\lim_{k \to 0} \int_0^T (\lambda_k(t) \times w_k(t), \varphi(t)) dt = \int_0^T (\lambda(t) \times u(t), \varphi(t)) dt,
\]
\[
\lim_{k \to 0} \int_0^T (g_k(t) \cdot \nabla v, g_k(t)) \varphi(t) dt = \int_0^T (h(t) \cdot \nabla v, h(t)) \varphi(t) dt,
\]
\[
\lim_{k \to 0} \int_0^T (w_k(t) \cdot \nabla g, g_k(t)) \phi(t) dt = \int_0^T (u(t) \cdot \nabla g, h(t)) \phi(t) dt,
\]
\[
\lim_{k \to 0} \int_0^T (g_k(t) \cdot \nabla g, w_k(t)) \phi(t) dt = \int_0^T (h(t) \cdot \nabla g, u(t)) \phi(t) dt.
\]

Similarly
\[
\lim_{k \to 0} (w_k \cdot \nabla \psi) = (u \cdot \nabla \psi) \quad \text{strongly in } L^2(\Omega \times]0,T[)
\]
\[
\lim_{k \to 0} (g_k \cdot \nabla \text{curl} \theta) = (h \cdot \nabla \text{curl} \theta) \quad \text{strongly in } L^2(\Omega \times]0,T[)
\]

Therefore
\[
\lim_{k \to 0} \int_0^T (w_k \cdot \nabla \psi, \zeta_k) \psi(t) dt = \int_0^T (u \cdot \nabla \psi, z(t)) \psi(t) dt,
\]
\[
\lim_{k \to 0} \int_0^T (g_k \cdot \nabla \text{curl} \theta, g_k) \psi(t) dt = \int_0^T (h \cdot \nabla \text{curl} \theta, h) \psi(t) dt.
\]

Hence we can pass to the limit in (31), (32) and (33) and we obtain
\[
\forall v \in H^1_0(\Omega), \forall \varphi \in C^0([0,T]), \quad \int_0^T \left[\left(\frac{\partial}{\partial t} u(t), v \right) + \alpha \left(\frac{\partial}{\partial t} \nabla u(t), \nabla v \right)
\right.
\]
\[
+ \nu (\nabla u(t), \nabla v) + (z(t) \times u(t), v) - (p(t), \text{div} v) \right] \varphi(t) dt
\]
\[
+ \int_0^T (h(t) \cdot \nabla v, h(t)) \varphi(t) dt = \int_0^T (f(t), v) \varphi(t) dt,
\]
\[
\forall g \in H^1_0(\Omega), \forall \phi \in C^0([0,T]), \quad \int_0^T \left[\left(\frac{\partial}{\partial t} h(t), g \right) + (\nabla h(t), \nabla g)
\right.
\]
\[
- (u(t) \cdot \nabla g, h(t)) + (h(t) \cdot \nabla g, u(t)) - (\omega, \text{div} g) \right] \phi(t) dt = 0,
\]
\[
\forall \theta \in W^{1,4}(\Omega), \forall \psi \in C^1([0,T]) \quad \text{with } \psi(T) = 0,
\]
\[
- \alpha \int_0^T (z(t), \theta) \frac{\partial}{\partial t} \psi(t) dt + \int_0^T \left[\nu (z(t), \theta) - \alpha (u(t) \cdot \nabla \theta, z(t)) \right] \psi(t) dt
\]
\[
- (z^0, \theta) \psi(0) = \int_0^T \left[\nu (\text{curl} u(t), \theta) + \alpha (\text{curl} f(t), \theta) \right] \psi(t) dt
\]
\[
+ \int_0^T \alpha (\text{curl} (h(t) \cdot \nabla h(t)), \theta) \psi(t) dt.
\]
By choosing \(v, g \in D(\Omega)^2 \), \(\phi, \psi \) and \(\theta \in D(\Omega) \), we easily recover (13). It remains to recover the initial data, for this note for any \(g \in L^2(\Omega)^2 \) and any \(\phi \in H^1(0, T) \) satisfying \(\phi(T) = 0 \), and used the formula \(h_k(t) = h^n + \frac{t-n}{n} (h^{n+1} - h^n) \) we have

\[
\int_0^T \left(\frac{\partial}{\partial t} h_k(t), g \right) \phi(t) dt = -\int_0^T (h_k(t), g) \frac{\partial}{\partial t} \phi(t) dt - (h^0, g) \varphi(0)
\]

Passing to the limit in the equality above, we have

\[
\int_0^T \left(\frac{\partial}{\partial t} h(t), g \right) \phi(t) dt = -\int_0^T (h(t), g) \frac{\partial}{\partial t} \phi(t) dt - (h^0, g) \varphi(0).
\]

On the other hand, we have

\[
\int_0^T \left(\frac{\partial}{\partial t} h(t), g \right) \phi(t) dt = -\int_0^T (h(t), g) \frac{\partial}{\partial t} \phi(t) dt - (h(0), g) \varphi(0)
\]

where we conclude that \(h^0 = h(0) \), similarly we obtain \(u^0 = u(0) \) and \(z^0 = z(0) \). \(\square \)

With respect to the uniqueness it is possible to show an analogous to the [3]. In fact, we have

\textbf{Theorem 14} Assume that \(\Omega \) is a convex polygon. Then for any \(\alpha > 0, \nu > 0, f \) in \(L^2(0, T; H(\text{curl}; \Omega)) \) and \(u_0 \in V, h \in V \) with \(\text{curl}(u_0 - \alpha \Delta u_0) \in L^2(\Omega) \), problem (3)-(4) has exactly one solution \((u, h, p, \omega) \in W \).

\textbf{References}

[1] Dunn, J.E., Fosdick, R.L., Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Rational Mech. Anal. 56 (1974) 191-252.

[2] Hamdache, K., Jaffal-Mourtada, B., Existence and uniqueness of solutions for the magneto-hydrodynamic flow of a second grade fluid. Mathematical Methods in the Applied Sciences, 36 (2013), 478-496.

[3] Girault, V., Saadouni, M., On the time-dependent grade-two fluid model in the two dimensions. Computers and Mathematics with Applications 53 (2007) 347-360.

[4] Girault, V., Raviart, P.A., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, in SCM, vol. 5, Springer,Berlin, 1986.

[5] Girault, V., Scott, L.R., Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (10) (1999) 981-1011.
[6] Grisvard, P., *Elliptic Problems in Nonsmooth Domain*, in: Pitman Monographs and Studies in Mathematics, vol. 24, Pitman, Boston, MA, 1985.

[7] Pikelner, S.B., *Fundamentals of Cosmic Electrodynamics* [in Russian], Fizmatgiz, Moscow; Pikelner, S.B. (1964) *Fundamentals of Cosmic Electrodynamics*, NASA technical translation, Washington DC, NASA

[8] Rivlin, R.S., Ericksen, J.L., *Stress-deformation relations for isotropic materials*, J. Rational Mech. Anal. 4 (1955) 323-425.

[9] Simon, J., *Compact sets in the space* $L^p(0,T;B)$. Ann. Math. Pures Appl. 146 (1990) 1093-1117.

[10] Schluter, A., *Dynamik des plasmas-I - grundgleichungen, plasma in gekreuzten feldern*, Zeitschrift für Naturforschung / A 5 (1950) pp. 72-78; *Dynamik des plasmas-II - plasma mit neutralgas*, Zeitschrift für Naturforschung / A 6 (1951) pp. 73-79

[11] Varnhorn, W., *The Stokes Equations*, Mathematical Research, 76. Akademie-Verlag, Berlin, 1994.