State-of-the-art review: preventing child and youth pedestrian motor vehicle collisions: critical issues and future directions

Marie-Soleil Cloutier, Emilie Beaulieu, Liraz Fridman, Alison K Macpherson, Brent E Hagel, Andrew William Howard, Tony Churchill, Pamela Fuselli, Colin Macarthur, Linda Rothman

ABSTRACT

Aim To undertake a comprehensive review of the best available evidence related to risk factors for child pedestrian motor vehicle collision (PMVC), as well as identification of established and emerging prevention strategies.

Methods Articles on risk factors were identified through a search of English language publications listed in Medline, Embase, Transport, SafetyLit, Web of Science, CINHAL, Scopus and PsycINFO within the last 30 years (~1989 onwards).

Results This state-of-the-art review uses the road safety Safe System approach as a new lens to examine three risk factor domains affecting child pedestrian safety (built environment, drivers and vehicles) and four cross-cutting critical issues (collaboration and exposure data, evaluation of interventions, evidence-based policy and intersectoral collaboration).

Conclusions Research conducted over the past 30 years has reported extensively on child PMVC risk factors. The challenge facing us now is how to move these findings into action and intervene to reduce the child PMVC injury and fatality rates worldwide.

INTRODUCTION

The health, social and economic burden of road traffic injuries and deaths is extremely high. Each year there are approximately 1.35 million road traffic deaths worldwide. There is significant variation in rates across countries, however, with low/middle-income countries (LMIC) accounting for 90% of all road traffic deaths according to the 2018 WHO Global Status Report on Road Safety.1 Vulnerable road users, including pedestrians and cyclists, make up a substantial proportion of those deaths. Efforts to reduce pedestrian and cyclist casualties have been less successful than for motor vehicle occupants.2

Child and youth pedestrians (2–20 years) are at particular risk of a pedestrian motor vehicle collision (PMVC) because of their limited developmental capacity to perceive road and traffic threats. Children are also vulnerable to severe injury and fatalities because of their small stature. In 2016, there were approximately 72 000 pedestrian fatalities among children and youth (0–20 years) worldwide.2

According to the Global Burden of Disease Study, there has been substantial success in decreasing the population-level rates of child (<20 years) pedestrian fatalities worldwide from 1990 to 2017, calculated in the absence of pedestrian exposure (age, number of trips, total distance) data.3 However, there is variation, with greater decreases seen in high-income countries (75% decline from 3.2/100 000 to 0.8/100 000), compared with low-income countries (57% decline from 10.5/100 000 to 4.5/100 000). The rate ratio for child pedestrian fatalities (low-income countries vs high-income countries) has increased from threefold to sixfold between 1990 and 2017. Child pedestrian fatalities as a proportion of all-cause fatalities have also decreased by 42% in high-income countries over the same time period, whereas, it has increased by 15.5% in low-income countries. These data suggest that there may have been greater success in managing other causes of death (other than those due to pedestrian collisions) in low-income countries. Alternatively, these findings may be related to increased levels of motorisation in low-income countries along with a higher proportion of unsafe roadways according to the International Road Assessment Programme.4 Further, progress in reducing child (<20 years) PMVC in high-income countries has stalled in recent years; 0.89/100 000 in 2012 and 0.78/100 000 in 2017.4 The burden of child PMVC worldwide highlights the need for a comprehensive review of the best available evidence related to risk factors for child PMVC, as well as identification of established and emerging prevention strategies to reduce the enormous worldwide burden.

Safe System approaches and PMVC

The Vision Zero and Sustainable Safety, also known as Safe System approaches, first introduced more than 20 years ago in Sweden and the Netherlands, respectively, represented a turning point in the way countries and cities viewed road safety.5 As the Organisation for Economic Co-operation and Development (OECD’s) International Transport Forum stated in their Towards Zero report: ‘a Safe System approach implies a greater level of vision, together with a greater level of individual and societal commitment to safety in the road transport system’ (p. 111).7 In fact, while road
users—motorists, motorcyclist, cyclists and pedestrians—have long carried the burden of traffic safety, jurisdictions adopting this approach agree that road transport system designers are accountable for the level of safety within the system.9 This is even more relevant in the case of children and youth, who historically carry this burden inequitably by being blamed for their own injuries and by having restrictions on their independent mobility because of traffic.9 It aims to reverse the principle of liability in the event of a collision. In other words, road users are responsible for following the rules of the roads, but they may sometimes fail to obey these rules either intentionally (eg, speeding) or due to human error (eg, lack of knowledge or ability). In such situations, the road system should be ready to counteract such human failures and thus help avoid injuries or deaths through design.10 In short, the foundation of this paradigm shift is to intervene upstream, at the level of the road design, in order to avoid crashes at their source. This approach aims to ensure a safe system for all road users.

Adopting a Safe System approach is especially important for child pedestrians. Children’s greater vulnerability due to their size and developmental limitations calls for interventions directed towards pedestrian environments rather than education, that is, transferring the responsibility of road safety from the individual to the transportation system.11 Figure 1 summarises risk factors and critical issues emerging from the child PMVC literature, adapted from the typical Safe System approach scheme.12 Safe active transport for children and safe speed are at the centre of this figure given that both are critical to the reduction of child PMVC and both are also influenced by the three main domains: built environment, drivers and vehicles. These domains are also cross-cut by four critical issues (see figure 1). These cross-cutting issues are essential to the prevention of child pedestrian injuries: the availability of reliable collision and exposure data enables the evaluation of interventions, which can then inform evidence-based policy applied through intersectoral collaboration. This article is framed around the figure: background on active transport and speed are presented first, evidence on risk factors and related interventions for child PMVC are reviewed, followed by a discussion of critical issues.

Safe active transport

There has been a recent focus on walking to school and other active modes of transportation as a means to increase physical activity in children. Children who walk to school and use other forms of active transportation have higher levels of physical activity.13 14 Regular physical activity has established health benefits such as reducing the risk of obesity and other chronic disease conditions.15 Walking has also been associated with increased cardiorespiratory fitness and healthier body composition.16 In addition, there are transportation benefits such as less traffic congestion, lower fuel costs, and shorter and more reliable travel times. Despite these established benefits, there have been declining rates in walking or bicycling to school in North America over the last 50 years.17 18 A recent article examining pedestrian fatality trends over 40 years in the USA (1977–2016) confirms this steady decline in child pedestrian activity in the national travel survey data: pedestrian trips decreased by 48% from 1977 to 1990 (age 5–15), and by 34% from 2001 to 2017 (age 6–15).19 Only a third of Canadian children use active school transportation modes with declines seen after age 10.20 Increased walking, however, leads to increased exposure to road traffic, which must be considered when promoting active transportation. Road traffic exposure is poorly understood as it relates to pedestrian volume and collisions, particularly for children. A ‘safety in numbers’ effect has been reported in population-based studies of adult pedestrians where higher pedestrian volumes have a protective effect on the risk of PMVC21 22 and on the number of interactions between child pedestrians and vehicles.23 In contrast, studies specific to children have shown that more children walking is associated with a higher risk of PMVC, particularly when walking to school.24–26 This may indicate that environmental conditions that ensure safe walking may be different for children and adults. Optimal conditions for safe walking for children must be defined, because if poorly planned, interventions to increase walking may have the potential to increase the risk of injury in children. This also aligns with research showing that child pedestrian collisions are more strongly associated with the built environment than with volumes of children walking to school. Therefore, safety concerns relate primarily to the built environment and road environment.27

Safe speed

Traffic speed has been identified by The WHO as the core of the road traffic injury problem worldwide28 because of the influence of speed on risk of a crash and injury severity. Once the physical impact occurs, speed determines the energy of the impact that crash participants are exposed to. Greater PMVC impact speed, regardless of the speed limit, increases the risk of pedestrian fatalities: pedestrian fatality risk reaches 10% at 37 km/h, 50% at 59 km/h and 90% at 80 km/h.29 The ability to stop and avoid a crash is substantially reduced at higher speeds: 13 m is generally required to stop when a car is travelling 30 km/h, whereas only 8.5 m is required at 40 km/h.30 These statistics are even worse for child pedestrians, with a threefold increase in the likelihood of injury when posted speeds are over 45 km/h.31 32 Speed limit zones of 20 mph (32 km/h) have shown a 70% reduction in child pedestrian fatalities in the UK compared with higher speed limit zones.33 A case–control study found that child PMVC was significantly associated with a twofold increase at speeds >50

Figure 1 A Safe System approach to child and youth pedestrian injuries.

km/h compared with \(\leq 50 \text{ km/h} \) (OR=2.1, 95% CI: 1.3 to 3.2).\(^{34}\) Addressing the issue of speed through lower speed limits and appropriate road design is critical, especially in areas where there is the potential for many child pedestrian activities, such as around schools and parks. Accordingly, the recent Stockholm Declaration, following the Third Global Ministerial Conference on Road Safety, is calling for default 30 km/h speed limits on urban streets.\(^{35}\) Parents tend to not allow their children to walk where there are higher speed roadways. Cities have a role to play in this, and the increase of 30 km/h zones (20 mph) around the world is promising.\(^{36}\)

METHODS

Articles on risk factors were identified through a search of English language publications listed in Medline, Embase, Transport, SafetyLit, Web of Science, CINHAL, Scopus and PsycINFO within the last 30 years (~1989 onwards). Online supplemental table 1 details the search terms for each of the domains. Online supplemental table 2 illustrates the result of the search using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram with a total of 9897 documents initially retrieved. After a first screening to remove duplicates, only reviews (including reports, \(n=14 \)), systematic reviews (\(n=12 \)) and meta-analyses (\(n=6 \)) were selected and reviewed, including articles found by hand search in the reference list of the selected papers. No specific quality assessment was done. A few individual manuscripts (\(n=9 \)) were also assessed when there were limited articles in the domain. A total of 41 articles were reviewed to assess risk factors (RF) and interventions (I) related to child pedestrian characteristics (\(n=9 \) RF and \(n=3 \) I) and the three domains presented in figure 1: built environment (\(n=7 \) RF and \(n=4 \) I); drivers (\(n=6 \) RF and \(n=1 \) I) and vehicles (\(n=5 \) RF and \(n=6 \) I). Type, subtopic, age range and main findings of each article are summarised in online supplemental table 3 (risk factors) and online supplemental table 4 (interventions).

RISK FACTORS AND INTERVENTIONS FOR CHILD PMVC

As presented in figure 1, critical issues related to child PMVC can be grouped under three domains around children’s characteristics (including age, sex, socioeconomic status and location of residence): characteristics related to the built environment where the child or youth lives, plays and travels; characteristics related to driver behaviours (including distraction) and characteristics of the vehicle or fleet. Online supplemental table 3 (risk factors) and online supplemental table 4 (interventions) summarise the literature for each of these four domains.

Safe child pedestrians

Risk factors

Children are at higher risk of pedestrian injuries because of their developing cognitive ability and their small size, which makes them both less visible and more vulnerable to injury and death in collisions.\(^{1,3,11,37}\) In theory, children 5–9 years are particularly vulnerable, given their emerging independence yet still limited abilities. However, the variability in the populations studied and comparisons between age subgroups across studies currently preclude strong conclusions regarding the relationship between age and child pedestrian injury risk.\(^{19,21}\) Child pedestrian injuries are more frequent in boys than girls, which may be the result of different risk taking behaviours and exposure to traffic. This may be explained by temperament and personality, but also by gender expectations, including social acceptability of greater freedom for boys to explore their environment.\(^{31,38,39}\) Similarly, research in social psychology also found that gender differences in risk taking among 12–16 years old pedestrians are due more to sex-stereotype conformity (ie, level of masculinity) than to biological sex.\(^{40,41}\) Finally, boys may also be more likely to leave the house and travel further for outdoor activities and, in some countries, for work.\(^{39}\) Indigenous children and those from ethnic minorities also experience higher hospital admissions and death rates, which is likely the result of a variety of social inequities.\(^{42–44}\) The literature consistently shows that children facing challenging social and economic conditions of life, including low family income, low parental education, crowding, family disruption and sole parenthood are disproportionately represented in child pedestrian injuries.\(^{11,38,44}\)

Interventions

Many interventions focus on behavioural interventions to improve child pedestrian safety. In a review of 15 randomised controlled trials of safety education programmes for pedestrians, including 13 targeting children between 3 and 13 years old, Duperrex et al\(^{45}\) found that educational interventions can change pedestrian behaviours. Another systematic review by Schwebel et al\(^{46}\) that summarised 25 studies found a relationship between behavioural interventions and pedestrian behaviours, immediately after training and several months later. Individualised or small-group training, outside on the street and sidewalks, tends to be the most effective intervention strategy to change behaviour compared with classroom training, computer-based/virtual reality training, board-games/peer group activities, videos and/or multiple intervention strategies combined.\(^{46}\) Children’s traffic clubs using material to promote parental teaching also seem to change parents’ and children’s behaviours at least in the short term.\(^{47}\) However, there is no evidence that education or behavioural interventions carry over to a reduction in actual PMVCs, and such interventions may contribute to a ‘victim blaming’ narrative where the responsibility for PMVC lies in children’s behavioural mistakes rather than on drivers or unsafe street environments. While the literature has identified numerous child PMVC risk factors including sex/gender, age, ethnic minorities and social vulnerability,\(^{48}\) it is evident from our review of the literature that many of these variables are not addressed in current interventions, which may further limit programme effectiveness even further.

Built environment

Risk factors

Factors related to the environments in which children and youth live, including location of residence (urban, suburban, rural), neighbourhood socioeconomic status, road characteristics and traffic, influence the risk of pedestrian injury.\(^{18}\) Children living in low-income countries face especially high rates of pedestrian injuries likely due to limited funding allocated for pedestrian infrastructure and law enforcement, which increases the potential for high-speed traffic.\(^{39}\) Children living in socioeconomically deprived areas are particularly susceptible to child pedestrian injuries likely because of increased exposure.\(^{39,46}\) In other words, these children often walk more and live in neighbourhoods with more cars on the roads.\(^{24,49}\) Similarly, neighbourhoods with a high percentage of multifamily dwellings and subsidised housing are associated with increased risk of child pedestrian injuries.\(^{11,12}\) Rural areas are at higher risk, even more so in LMIC, where more pedestrians face hazardous environmental conditions, higher driving speeds and delayed access to and lower usage of trauma centres.\(^{39}\) Conversely, high-income countries have
identified urban locations as injury creating environments, due to the higher population density, therefore more pedestrians, and increased traffic volume. Large and straight roads that make crossing difficult, greater traffic volume, poor visibility and low-light conditions are other road-related characteristics associated with more child pedestrian collisions.

Interventions
Traffic calming measures are the only built environment factors consistently associated with fewer PMVC in children. Traffic calming measures can reduce traffic speed and volume, which effectively reduces child PMVC. Measures such as speed humps and roundabouts, and reduced speed limits (20 mph or 30 km/h) are associated with both walkability and a reduction in pedestrian injury incidence. However, results related to the presence of parks and playground are contradictory. A recent study found that the risk of child pedestrian fatalities is up to 2.23 times higher around parks than around schools and up to 1.81 times higher around parks than any other citywide crossing. A systematic review on built environment and safe walking, however, found that recreation/parks areas and playground presence were consistently associated with lower pedestrian injury incidence. This finding might be explained by difference in road characteristics within school zones, a common situation worldwide. Appropriate traffic calming measures are necessary in areas close to schools but also in areas where there are many child pedestrians, such as parks and playgrounds, so that the increased exposure to road traffic does not increase injuries. Unfortunately, inequities in terms of the road environment exist, with, for example, lower densities of traffic calming measures found in lower socioeconomic areas.

Vehicles
Risk factors
Vehicle design has been recognised to be both part of the problem and the solution when it comes to pedestrian injuries. There is little information specific to child pedestrians regarding vehicle-specific risks, except that children are more vulnerable to head injuries—the usual cause of fatality—because of their shorter stature. Accordingly, light truck vehicles and sport utility vehicles (SUVs) are now under scrutiny for the greater risk they pose to adult pedestrians compared with conventional cars since their mass makes it harder to brake quickly and vehicle height leads to more upper body injuries. Of even greater concern, a recent technical report from the NHTSA found that vehicles sold globally (including European and US variants) offer more pedestrian safety than vehicle models marketed only in the USA and that US pickup trucks and large SUV models performed the worst of all vehicles. Connected and automated vehicles (CAV) represent a great opportunity, but also a potential threat to pedestrians. With these newer technologies, collision risk may decrease as the majority of collisions are related to human error. However, recent reviews highlight the great uncertainty related to the interaction of CAV with pedestrians in that the reliability of the technology (sensors, algorithm and so on) has not been firmly established. Both pedestrian reaction to CAVs, given the lack of interpersonal communication with the (non)-drivers, and the drivers’ reaction when faced with a pedestrian remain unknown. In this era of new mobility technology, there remain more questions than answers.

Interventions
Safety standard improvements around the globe have contributed to the decrease in the burden of car crashes, especially for vehicle passengers. Several passive (eg, front-end design) and active (eg, automated emergency braking system) safety designs are known to prevent pedestrian collisions or decrease the severity of injuries if a crash occurs. For example, an automatic braking system that engages immediately at a time to collision of 1.5 s may reduce fatality risk by 84% for pedestrians struck in frontal impacts, a scenario that accounts for about 70% of pedestrian fatalities in the USA. Empirical data from non-fatal pedestrian collisions in Sweden suggested that 60%–70% of pedestrian crashes would be avoided if cars had mandatory pedestrian detection and automated emergency braking systems.

CRITICAL ISSUES: RECOMMENDATIONS AND FUTURE DIRECTIONS
This section summarises critical issues related to child PMVC, highlighted by the review of the literature, and suggests future directions.
Reliable collision and exposure data
According to the US Federal Highway Administration, critical data in road safety include crashes, traffic volume and road characteristics.80 All three represent a challenge when it comes to PMVC.81 The burden of PMVC deaths and injuries is likely underestimated because of the lack of accurate data. For example, estimating the numerator for rate calculations can be challenging because of limitations in data sources such as misclassification or inaccuracies in crash location and time.82 Police reports and hospital records are the two main sources of data to measure PMVC, including those involving children. However, under-reporting is well documented for police reports, particularly for collisions involving less severe injuries.83 84 Moreover, in several jurisdictions, police reports and hospital files do not record the collision location, which is crucial information for prevention.85 86 The situation in LMIC is even more challenging, with under-reporting of crashes being a major issue: road fatalities are not uniformly reported to official sources for a variety of reasons, including under-resourced police, differing definitions of fatalities, varying legal requirements to report crashes and paperwork and recording issues.87 88

Another important data challenge relates to identifying accurate denominators. Pedestrian volume data related specifically to child PMVC rarely exist at the street level and household travel surveys, an alternative source of data for pedestrian volumes, are available only at a larger scale. Vehicle volume and speed data are collected more frequently, but are mostly available at intersections with traffic signals or on major roadways where children tend not to walk.89 Novel methods for the measurement of exposure data (vehicle and pedestrian volumes) are required to accurately estimate child pedestrian risk. The use of ‘big data’ may be promising, via GPS data streams as well as artificial intelligence/machine learning algorithms.89 90 However, these sources need to be further developed to be applicable to child pedestrians.91 Because of these general data collection issues, exposure to traffic or distance walked (ie, risk per journey) is frequently not considered when assessing child pedestrian injury risk. Instead, area child population is used as the denominator to calculate rates (ie, risk per person). This can result in inconsistencies in research evaluating the scope of the problem or the impact of the road environment. A review of methodological considerations in the context of child PMVC has been published as a companion paper to this review.91

Finally, measuring risky driving behaviours including speeding, distraction, and alcohol and drug impairment pose many challenges when it comes to data collection. The lack of social desirability of these behaviours limits the use of respondent surveys, especially around schools where most drivers are parents. Novel methods and standardisation of roadside testing for alcohol and drugs are needed, as are studies assessing the relationship between drug impaired driving and child PMVC, especially given the legalisation of cannabis in some countries. Distraction is not currently evaluated or reported in a standardised way across studies, thus limiting the conclusions that can be drawn. Quantifying distraction properly is particularly challenging, as it relies on surrogates such as visual and cognitive inattention. Surrogate outcomes currently used (eg, decrements in lateral and longitudinal vehicle control for cognitive inattention, glances at roadway vs secondary device for visual inattention) are still poor proxies for relative safety.92

Evaluation of interventions
Evaluation of interventions with rigorous study designs is needed to support evidence-based decision-making. Historically, road safety strategies were formulated around the three ‘Es’ (engineering, education, enforcement). Lately, several other ‘Es’ have emerged, including ‘Evaluation’, which has been a much-neglected piece. Road safety strategies must be based on data, but there remains insufficient high-quality systematic evaluation of road safety interventions and their effect on child pedestrian injuries.93 Although there have been some studies done of the effectiveness of built environment interventions on motor vehicle collisions, few studies have examined the relationship with PMVC and even fewer are specific to environments where there are many child pedestrians.94

Rigorous evaluation of built environment interventions examining their effect on both active transportation and pedestrian injuries are needed, such as randomised controlled trials, quasi-experimental and controlled pre-post studies.95 A recent review found that child transportation injury prevention research is generally observational or descriptive, with only 25% of studies being experimental.96 Of these experimental studies, the majority evaluated educational interventions, despite evidence that these are largely ineffective in reducing injury. Further research investigating the effect of engineering and enforcement interventions on child PMVC is required. Among built environment interventions evaluated for their effects on adult PMVC, only a few have been evaluated for their specific effects on child PMVC. Results for adults might not be generalisable to children since differences in injury incidence, road knowledge and behaviour between adult and child pedestrians is well-documented.97

Evidence-based policies
It is essential that evidence-based policies take a systems approach and consider the interplay between road safety policy, transportation planning, environmental design and health in order to achieve continued progress in child PMVC prevention. As noted earlier, policies to promote walking and those to improve pedestrian safety, should not be enacted in isolation. Interventions need to take an environmental design approach to create ‘human error-tolerance in the road system’, that is, a road system that is forgiving to human error.98 For example, presence of playgrounds and recreation areas have been identified as factors consistently associated with both more walking and less PMVC injury.99 100 Integrating road safety into broader urban policies is essential and should involve collaboration between decision makers, multidisciplinary practitioners and researchers. Decision making related to child pedestrian safety strategies should be both data-driven and evidence-informed. Appropriate governmental organisations should constantly review their policies and guidelines to ensure that they meet the highest standard and take into account recent innovations.96 Road safety policies should be integrated and take a long-term view involving consultation and consensus with all stakeholders, citizens and governing politicians. However, this long-term goal is often in conflict with the political need for short-term results.

Intersectoral collaboration
Multidisciplinary collaboration between researchers and practitioners is the key to success. As for many other public health issues, collaboration between researchers, decision makers and practitioners is essential to achieve success in injury reduction. Moreover, a Safe System approach requires collaboration across sectors and across disciplines.77 Broad collaboration is also essential to plan and implement an evaluation process early into intervention projects. However, the decision-making process related to road safety is often heavily influenced by public opinion.
Road safety management will be most effective if policy makers are involved in the research process from the beginning and vice versa. Research on the role of evidence in policy has shown that while evidence is necessary, it is not sufficient to bring about change. Policy makers cite other factors, including having a ‘champion for the change’, strong relationships with researchers, a united opinion and professional group consultation as being enablers to implement policy.

CONCLUSION
The large-scale nature of the challenge, the breadth and depth of domains, the broad collaboration required, and the political will have to be involved to lower the burden of child PMVC. Success will require political leadership, financial commitment and public engagement. A major impediment to change is the so-called ‘war on cars’ rallying call, and a vocal resistance to change of ‘car-centric’ built environments. This rhetoric creates animosity between road-users and impedes the ultimate goal of keeping child pedestrians safe. Since World War II, transportation policies have focused on moving automobiles efficiently and on improvements to the driving environment, with a few exceptions in Europe where the needed shift from a focus on moving cars to a focus on moving people has occurred over the past few decades. The current need is to put the spotlight onto pedestrian health and safety and to refocus road safety on more vulnerable road users.

Many countries have committed to the Vision Zero framework with the goal of zero road traffic fatalities and serious injuries. The Vision Zero framework is fluid in that it is constantly evolving to include new road environment conditions and new areas of focus on transport safety. The ultimate goal of eliminating road traffic fatalities and serious injuries can be achieved by creating a proactive and integrated plan with the aim of protecting vulnerable road users. Child pedestrians and other vulnerable road users should be separated in time and space from motor vehicles, and where this is not possible, traffic speeds should be capped at 30 km/hr reflecting crash survivability. It is now the time for a systematic translation of the evidence on prevention of child PMVC into concrete actions worldwide.

REFERENCES
1 World Health Organization. Global status report on road safety 2018 Geneva, Switzerland, 2018. Available: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ [Accessed 21 Aug 2020].
2 Canadian Council of Motor Transport Administrators (CCMTA). Countermeasures to improve pedestrian safety in Canada, 2013. Available: http://ccmta.ca/images/publications/pdf/CCMTA_Pedestrian_Report_Eng_FINAL.pdf [Accessed 21 Aug 2020].
3 Stevenson M, Sleet D, Ferguson R. Preventing child pedestrian injury: a guide for practitioners. Am J Lifestyle Med 2015;9:442–50.
4 Institute for Health Metrics and Evaluation (IHME). Global burden of disease deaths Seattle: IHME, University of Washington, 2017. Available: https://vizhub.healthdata.org/gbd-compare/ [Accessed 31 Jul 2020].
State of the art review

Mwakalonge J, Siuhi S, White J. Distracted walking: examining the extent to pedestrian safety problems. *J Traffic Transp Eng* 2015;2:327–37.

Desapriya E, Subzwan S, Sage D, et al. Do light truck vehicles (LTV) impose greater risk of pedestrian injury than passenger cars? A meta-analysis and systematic review. *Traffic Inj Prev* 2010;11:48–56.

Hu J, Klinich KD. Toward designing pedestrian-friendly vehicles. *Int J Veh Saf* 2015;8:22–54.

Paulozzi LJ. United States pedestrian fatality rates by vehicle type. *Inj Prev* 2005;11:232–6.

Suntay B, Stammen J, Martin P. Pedestrian protection—assessment of the US vehicle fleet. United States. Department of Transportation. National Highway Traffic Safety Administration, 2019. Available: https://rosap.nt.bts.gov/view/dot/41841 [Accessed 21 Aug 2020].

Elliott D, Keen W, Miao L. Recent advances in connected and automated vehicles. *J Traffic Transp Eng* 2019;6:109–31.

Stanciu SC, Eby DW, Molnar LJ, et al. Pedestrians/Bicyclists and autonomous vehicles: how will they communicate? *Transp Res Rec* 2018;2672:58–66.

Beza AD, Zefreh MM. Potential effects of automated vehicles on road transportation: a literature review. *Transp Telecom: J* 2019;20:269–78.

Trang NHHD, Hong TK, Dibley MJ. Active commuting to school among adolescents in Ho Chi Minh City, Vietnam: change and predictors in a longitudinal study, 2004 to 2009. *Am J Prev Med* 2012;42:120–8.

Van Kampen LTB. Effectiveness and cost of front end design for pedestrian injury prevention and the problem of conflicting requirements: a literature review, 1991. Available: https://www.swov.nl/sites/default/files/publications/report091-16.pdf [Accessed 21 Aug 2020].

ASME. Effect of vehicle front end profile on pedestrian kinematics and biomechanical responses using a validated numerical model. ASME international mechanical engineering Congress and exposition, proceedings (IMECE), 2015.

Haus SH, Sheryon R, Gabler HC. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States. *Traffic Inj Prev* 2019;20:517–6.

Edwards M, Nathanson A, Carroll J, et al. Assessment of integrated pedestrian protection systems with autonomous emergency Braking (AEB) and passive safety components. *Traffic Inj Prev* 2015;16 Suppl 1:S2–11.

Strandbro J, Stemlund S, Lie A, et al. Correlation between Euro NCAP pedestrian test results and injury severity in injury crashes with pedestrians and bicyclists in Sweden. *Stapp Car Crash J* 2014;58:213–31.

Sundstrom C. Road safety fundamentals, unit 3: measuring safety. North Carolina: Federal Highway Administration, Office of Safety Research and Development, 2017.

World Health Organization. Pedestrian safety: a road safety manual for decision-makers and practitioners Geneva, Switzer/nd, 2013. Available: https://apps.who.intiris/bitstream/handle/10665/79733/9789241505352_eng.pdf?sequence=1 [Accessed 21 Aug 2020].

Imrikuo M, Quddus M. Crash data quality for road safety research: current state and future directions. *Accid Anal Prev* 2019;130:84–90.

Janstrup KH, Kaplan S, Hels T, et al. Understanding crash under-reporting: linking police and medical records to individual and crash characteristics. *Traffic Inj Prev* 2016;17:580–4.

Doggett S, Ragland DR, Felschundneff G. Evaluating research on data linkage to assess underreporting of pedestrian and Bicyclist injury in police crash data, 2018. Available: https://escholarship.org/content/qt0sj5shd5/srtq0j5shd5.pdf [Accessed 21 Aug 2020].

Austin K, Tight M, Kirby H. The use of geographical information systems to enhance road safety analysis. *Transportation Planning and Technology* 1997;20:249–66.

Ahmadi M, Valinejad A, Goodari A, et al. Geographic information system (GIS) capabilities in traffic accident information management: a qualitative approach. *Electron Physician* 2017;8:4533–40.

Peden M, Toroyan I. Counting road traffic deaths and injuries: poor data should not detract from doing something! *Ann Emerg Med* 2005;46:158–60.

Heydari S, Hickford A, McIlroy R, et al. Road safety in low-income countries: state of knowledge and future directions. *Sustainability* 2019;11:6249.

Yin L, Cheng Q, Wang Z, et al. ‘Big data’ for pedestrian volume: exploring the use of Google street view images for pedestrian counts. *Appl Geogr* 2015;63:337–45.

Nordback K, Kothuri S, Petriotsch T, et al. Exploring pedestrian counting procedures: a review and compilation of existing procedures, good practices, and recommendations: report No. FHWA-HPL-16-026, 2016.

Fridman L, Rothman L, Howard A, et al. Methodological challenges in motor vehicle collision epidemiological research. *Inj Prev*.

Stavrinos D, Pope CN, Shen L, et al. Distracted walking, bicycling, and driving: systematic review and meta-analysis of mobile technology and youth crash risk. *Child Dev* 2018;89:118–28.

Rothman L, Clemens T, Macanthur C. Prevention of unintentional childhood injury: a review of study designs in the published literature 2013-2016. *Prev Med Rep* 2019;15:100918.

Wegman F, Berg H-Y, Cameron I, et al. Evidence-based and data-driven road safety management. *IATSS research* 2015;39:19–25.

The Royal Society for the Prevention of Accidents (RoSPA). Pedestrian safety policy paper. 2018. Available: https://www.rospa.com/ropaweb/docs/advice-services/road-safety/pedestrians/pedestrian-policy-paper.pdf [Accessed 21 Aug 2021].

Muhlrad N. A short history of pedestrian safety policies in Western Europe, 2007. Available: https://www.researchgate.net/profile/Muhlrad_Nicole/publication/228815417_A_SHORT_HISTORY_OF_PEDESTRIAN_SAFETY_POLICIES_IN_WESTERN_EUROPE/links/00463532ad2032b753000000/A-SHORT-HISTORY-OF-PEDESTRIAN-SAFETY-POLICIES-IN-WESTERN-EUROPE.pdf [Accessed 21 Aug 2020].

Rothman L, Pike I, Belton K, et al. Barriers and enablers to enacting child and youth related injury prevention legislation in Canada. *Int J Environ Res Public Health* 2016;13:656.

Government Offices of Sweden. Renewed commitment to vision zero: intensified efforts for transport safety in Sweden Stockholm, Sweden, 2016. Available: https://www.govt.se/a4a80bb/contentassets/b38a99b2571e4116b816da5eb2ae71traffiksakerhet_160927_webny.pdf [Accessed 24 Feb 2020].
Domain	Concept #1 term(s)	Concept #2 term(s)	Concept #3 term(s)
CHILD PEDESTRIAN	Pedestrian	Child* Youth Teen, adolesc*	Socioeconomic Factors Age Sex or gender Ethnicity Culture Employment, unemployment Education Income Deprivation, disparit*, social class, inequalit* Single, lone Parent Separation, divorce Social Support, cohesion Isolation, loneliness, lonely
BUILT ENVIRONMENT	Pedestrian	Child* Youth Teen, adolesc*	Built environment Urban Rural Road, street, lane Traffic, volume of traffic Traffic calming measures Speed School zone Density Lighting Visibility
MOTOR VEHICLES	Pedestrian	Vehicle Car	Design Size Fleet Type Automated emergency braking (AEB) Crash imminent braking (CIB) Passenger car Truck, heavy vehicle Sport utility vehicle (SUV) Autonomous vehicle Smart car Crash test Self-driving car
DRIVERS	Pedestrian	Drivers Driving	Speed, speeding Impaired, drunk, drinking Distraction Behavior Risk, risky, reckless Road rage, aggressive
Table 2: Number of Articles According to Database Searched

Domains	Medline	Embase	TransPort	Dissertations	SafetyLit	Web of Science	CINHAL	ScoPus	PyscINFO
Child pedestrian	216	341	30	1	24	136	168	44	67
characteristics									
Built environment	212	311	34	2	15	123	164	20	54
Driver behaviors	261	425	500	N/A	588	201	93	177	269
Vehicle characteristics	274	313	1337	115	430	1058	87	1737	70

| Total 9,897 | | | | | | | | | |

Screening
- Child pedestrians = 85
- Built environment = 85
- Drivers’ behaviors = 26
- Vehicles = 29

Full-text retrieved and reviewed
- Child pedestrians = 10
- Built environment = 9
- Drivers’ behaviors = 4
- Vehicles = 11

Hand search
- Child pedestrians = 2
- Built environment = 2
- Drivers’ behaviors = 3
- Vehicles = 0

Articles included for risk factors and intervention sections
- Child pedestrians = 12
- Built environment = 11
- Driver behaviors = 7
- Vehicles = 11

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Inj Prev, et al. Cloutier M-S

doi: 10.1136/injuryprev-2020-043829

Inj Prev 2020;0:1–8. doi: 10.1136/injuryprev-2020-043829
Author	Article Type	Jurisdiction	Age range	Subtopic	Risk factor(s) associated with child PMVC
CHILD PEDESTRIAN CHARACTERISTICS					
Mannocci et al. (2019)	Systematic review and meta-analysis	Worldwide	10-19 years old	Individual characteristics	Age (mixed findings according to age groups), male
Stoker et al. (2015)	Review article	Worldwide	Children (undefined age range)	Individual characteristics	Younger age, male, low socio-economic status
Moller et al. (2013)	Systematic review	Worldwide	0-19 years old	Individual characteristics	Indigeneity (compared with non-Indigenous children)
Thomson et al. (2001)	Review report	Worldwide	Children (undefined age range)	Individual characteristics	Ethnic minorities
Laflamme et al. (2000)	Review article	Worldwide	Children (undefined age range)	Individual characteristics	Non-white inhabitants, family disruption, crowding, low family income, sole parenthood Age (mixed findings according to age groups), male, low family income, crowding, low parental education
Wazana et al. (1997)	Review article	Worldwide	2-18 years old	Individual characteristics	Emerging developmental abilities at younger age
Schieber et al. (1996)	Review article	Undefined	Children (undefined age range)	Developmental stages	Cognitive development, perceptual development, distraction, social influence (parent and peers) Sex-stereotype conformity (effect on internalizing traffic rules and risky behaviour)
Schwebel et al. (2012)	Review article	Worldwide	4-12 years old	Behavioural factors	
Granié (2009)	Observational study	France	12-16 years old	Behavioural factors	
BUILT ENVIRONMENT

Study	Type	Location	Age Group	Built Environment	
Mannocci et al. (2019)	Systematic review and meta-analysis	Worldwide	10-19 years old	High population density, high moving traffic, rural areas, deprived socioeconomic areas	
Stoker et al. (2015)	Review article	Worldwide	Children (undefined age range)	High population density (dependant on vehicle miles traveled), urban areas (involvement in collisions), rural areas (injury and fatality rates), High traffic speed, wide street lanes, poor visibility, low-lighting, high traffic volume	
Rothman et al. (2014)	Systematic review	Highly motorised countries (Australia, Japan, New Zealand, North America and Western Europe)	4-12 years old	High road density/length, higher number of cross-walks, higher pedestrian volume, high population density, higher number of schools, land use mix and proximity of services	
Kim et al. (2012)	Systematic review	Canada, USA	0-17 years old	Rural vs urban areas (mixed findings)	
Laflamme et al. (2000)	Review article	Worldwide	Children (undefined age range)	Poorest income quintile or highly deprived neighborhoods, (based on income, unemployment, crowding, family problems, multifamily dwelling, subsidized housing)	
Dimaggio et al. (2012)	Systematic review and meta-analysis	Worldwide	0-15 years old	High population density; fast moving traffic; absence of parks; higher distance from town center	
Wazana et al. (1997)	Review article	Worldwide	2-18 years old	High volume of traffic, higher speed limits, multi-lane roads, predominance of multi dwelling apartments	
Study (Year)	Methodology	Location	Age Group	Behavior	Findings
-------------	-------------	----------	-----------	----------	----------
Fridman et al. (2019)	Modified quasi-induced exposure approach	Calgary, Alberta, Canada	Child pedestrian (undefined age range)	Impairment	16-24 years old drivers, driving in the evening (18:00-24:00); no seat-belt use; child passenger in the car at the time of the collision, and impairment (substance use, fatigued, medical defect)
Stavrinos et al. (2018)	Systematic Review and Meta-Analysis	Worldwide	0-24 years old	Distraction	Teen drivers, mobile technology use: interacting with phone or talking on the phone (associated with more risk in general)
Rothman et al. (2017)	Cross-sectional observational study	Toronto, Ontario, Canada	Junior kindergarten to grade 6	Dangerous Driving Behaviours	Double parking, drop-offs on the opposite side of the school
Dultz et al. (2013)	Review article	Worldwide	All ages	Impairment	Alcohol use
Retting et al. (2003)	Review article	Worldwide	All ages	Speed	High vehicle travel speeds
Wazana et al. (1997)	Review article	Worldwide	2-18 years old	Speed	High vehicle travel speeds
MOTOR VEHICLES CHARACTERISTICS (ALL AGES)

Study	Study Type	Location	Age Range	Key Findings
Beza et al. (2019)	Review article	Worldwide	All ages	Reduction of human driver errors (associated to a reduction in collisions in general)
				Pedestrian interaction with CAVs and pedestrian safety (mixed findings due to unknown future mobility pattern)
				Reduction of human driver errors (associated to a reduction in collisions in general)
				Inclement weather, low light (negative association to sensors detection capabilities)
				Comprehension of messages during communication between a driver and a pedestrian is influenced by several factors including culture, context, and experience.
Elliott et al. (2019)	Review article	Worldwide	All ages	Connected and automated vehicles (CAV)
Stanciu et al. (2018)	Review article	Worldwide	All ages	Connected and automated vehicles (CAV)
Desapriya et al. (2010)	Systematic Review and Meta-Analysis	Worldwide	All ages	Light truck vehicles (LTV)
Paolozzi (2005)	Fatality rates by vehicle type	USA	0-14 years old	Vehicle type Buses, motorcycles (positive association to child PMVC)
TABLE 4: INTERVENTIONS ADDRESSED IN THE REVIEWED LITERATURE

Author	Article Type	Jurisdiction	Age range	Subtopic	Intervention associated with outcomes (child behavioral changes, PMVC, others)
Mannocci et al. (2019) \(^{35}\)	Systematic review and meta-analysis	Worldwide	10-19 years old	Training- children’s knowledge, behaviors	Community-based programs (mixed findings on child behavioral changes); effectiveness proportional to the complexity of the strategies implemented, resources available, commitment of individuals, etc. Individualized and small-group training (positive association with child behavioral changes)
Schwebel et al. (2014) \(^{40}\)	Systematic review and meta-analysis	Worldwide	3-11 years old	Training-children’s behaviors	Virtual reality, boardgames, classroom training, video training (mixed findings on child behavioral changes)
Dowswell et al. (2002) \(^{42}\)	Systematic Review	Low-income areas	0-14 years old	Training- children’s behaviors	Practical roadside pedestrian training (positive association to child behavioral changes)
BUILT ENVIRONMENT

Study	Study Type	Location	Age Group	Intervention	Outcome
Staton et al. (2016)	Systematic review and qualitative meta-analysis	Low- and Middle-Income countries	All ages	Speed control	Speed bumps (associated to a reduction in PMVC)
Cairns et al. (2015)	Systematic review	Worldwide	All ages	Speed control	20 mph traffic speed reduction zones (associated to a reduction in PMVC)
					Safe community interventions: legislative action, construction of separate pedestrian and cyclist roads, enforcement of lowered speed limits, mass media campaigns, targeted education of children and targeted counselling of parents (associated to a reduction in child PMVC)
Turner et al. (2004)	Systematic review	Worldwide	0-14 years old	Community-based interventions	
Retting et al. (2003)	Review article	Worldwide	All ages	Speed	Traffic calming (associated with a reduction in PMVC)

DRIVERS’ BEHAVIORS

Study	Study Type	Location	Age Group	Intervention	Outcome
Quistberg et al. (2018)	Before-and-after evaluation	Seattle	All ages	Speed	Automated enforcement cameras near schools (associated to a decrease in speed violation rates, maximum violation speed and mean hourly speeds)
Reference	Type of Study	Region	Age Group	Main Findings	
-----------	---------------	--------	-----------	---------------	
Haus et al. (2019)	Modelling (injury risk)	U.S.A.	All ages	Vehicle design	
Edwards et al. (2015)	Modelling (cost/benefit)	Europe	All ages	Vehicle design	
Hu & Klinich (2015)	Review report	Worldwide	All ages	Vehicle design	
Gupta et al. (2015)	Simulation study (numerical model)	n/a	All ages	Vehicle design	
Strandroth et al. (2014)	Crash tests	Europe	All ages	Vehicle design and standards	
Van Kampen (1991)	Review article (report)	Worldwide	All ages	Vehicle design	

Automated emergency braking system (associated to a reduction in fatality and injury risk)
Automated emergency braking system and passive safety such as A-pillar airbag (associated to a reduction in injury cost)
Deployable passive safety design: pop-up hoods, windshield airbags, and active safety designs: brake-assist and autonomous-braking system (associated to a reduction in PMVC)
Primary and secondary pedestrian head impact location, therefore injury severity (associated to the front end design type)
Front end Euro NCAP standards (poor rating associated to pedestrian injury severity)
Front end design safety standards (associated to a reduction in PMVC)