Frequency of ADS-B Equipped Manned Aircraft Observed by the OpenSky Network

Andrew Weinert, Marc Brittain, Randal Guendel

OpenSky Network Symposium

October 30, 2020

Sponsored by FAA AUS-300 UAS Integration Office
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

This document is derived from work done for the FAA (and possibly others), it is not the direct product of work done for the FAA. The information provided herein may include content supplied by third parties. Although the data and information contained herein has been produced or processed from sources believed to be reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability, or usefulness of any information, conclusions or recommendations provided herein. Distribution of the information contained herein does not constitute an endorsement or warranty of the data or information provided herein by the Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal Aviation Administration nor the U.S. Department of Transportation shall be held liable for any improper or incorrect use of the information contained herein and assumes no responsibility for anyone’s use of the information. The Federal Aviation Administration and U.S. Department of Transportation shall not be liable for any claim for any loss, harm, or other damages arising from access to or use of data information, including without limitation any direct, indirect, incidental, exemplary, special or consequential damages, even if advised of the possibility of such damages. The Federal Aviation Administration shall not be liable for any decision made or action taken, in reliance on the information contained herein.

© 2020 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.
Identify Manned Aircraft Intruders

Objective: Identify types of manned aircraft that a sUAS may encounter, particularly at low altitudes below 1200 or 500 feet AGL

- The low altitude airspace needs to be characterized and modeled to quantify airborne collision risk

- Airborne collision risk is dependent on the size and speed of encountered aircraft
 - Encounter models based on speed and dynamics of aircraft
 - New encounter models use aircraft type as a surrogate for size

- Characterizing the type and size of low altitude aircraft can inform surveillance requirements and the simulations to estimate the likelihood of a collision

- Leveraging crowdsourced ADS-B reports, aircraft registries, and open datasets to identify low altitude aircraft
• Overview

• Data Source and Processing
 • Distributions Given Airspace Class and Altitude Layer
 • Distributions Given Aircraft Seats

• Summary
Data Source: OpenSky Network

- Community-based receiver network which continuously collects air traffic surveillance
 - Archives raw data and makes it accessible to researchers
 - Eight trillion+ ADS-B and Mode S messages collected from more than 1000 global sensors
 - 40 million+ daily worldwide ADS-B messages

MIT LL Collected Data Available for Processing

Example Temporal Distribution
The OpenSky Network weekly makes easily accessible the abstracted raw data from the previous Monday (UTC) with observations at least 10 seconds apart. Only the last 10-15 Mondays are made the easily most accessible. MIT LL has aggregated data on the LLSC since 2018, but not continuously. Raw data available in hourly segments, although no guarantee all 24 hours of a day were made available.

89 Mondays Processed

2018-02-05	2018-04-23	2018-10-22	2019-01-07	2019-03-18	2019-06-03
2018-02-12	2018-05-14	2018-10-29	2019-01-14	2019-03-25	2019-06-10
2018-02-19	2018-05-21	2018-11-05	2019-01-21	2019-04-01	2019-06-17
2018-02-26	2018-09-03	2018-11-12	2019-01-28	2019-04-08	2019-06-24
2018-03-05	2018-09-10	2018-11-26	2019-02-04	2019-04-15	2019-07-01
2018-03-12	2018-09-17	2018-12-03	2019-02-11	2019-04-22	2019-07-08
2018-03-19	2018-09-24	2018-12-10	2019-02-18	2019-04-29	2019-07-15
2018-03-26	2018-10-01	2018-12-17	2019-02-25	2019-05-06	2019-07-22
2018-04-02	2018-10-08	2018-12-24	2019-03-04	2019-05-13	2019-07-29
2018-04-09	2018-10-15	2018-12-31	2019-03-11	2019-05-20	2019-08-05
2018-04-16					
Analysis Scope

• Analysis scoped based on administrative boundaries and altitude
 – Only considered observations over the United States, Puerto Rico, and Virgin Islands
 – Limited observations to altitudes below 18,000 feet AGL and MSL

• Considered barometric and geometric altitudes and data from 2018 and 2019
 – No statistical difference between barometric and geometric altitude-based results
 – No statistical difference between years
 – Presented results focus on processed barometric altitude from 2019

• Identify aircraft type using the ICAO24 address
 – Use registries from multiple civil aviation authorities*
 – Leverage registries from multiple years

 Analyzed 380,000+ flight hours below 18,000 feet MSL with 52,000+ flight hours
 at altitudes of 50 – 1,200 feet AGL
• Overview

• Data Source and Processing

• Distributions Given Airspace Class and Altitude Layer

• Distributions Given Aircraft Seats

• Summary
Airspace Class and Altitude Layer

- Airspace class discretized into four categories: Class B, Class C, Class D, Other
 - Same discretization as MIT LL uncorrelated encounter models*
 - Other includes controlled Class E and uncontrolled Class G airspaces

- Altitude reports discretized into 100 feet intervals
 - Smaller interval than used by MIT LL encounter models*
 - Assessed barometric and geometric altitude, although results agnostic to altitude source

- Analysis an aggregation of altitude reports across the entire time window
 - No conclusions can be drawn about the distribution at a specific location
 - Initial networks of previous MIT LL encounter models have a similar constraint
ADS-B Equipped Fixed-Wing Multi-Engine Processed Barometric Altitude Reports in 2019

- Fixed-wing multi-engine aircraft tend to operate at higher altitudes.
- Substantial observations across altitudes in Class B airspace.
- Distributions reflect altitude ceilings of different airspace classes.

Aircraft Frequency - AGL = Above Ground Level
AJW 10/30/20
ADS-B Equipped Fixed-Wing Single Engine Processed Barometric Altitude Reports in 2019

Limited observations in terminal airspaces

Observations less frequent as AGL altitude increases

AGL – Above Ground Level
ADS-B Equipped Rotorcraft Processed Barometric Altitude Reports in 2019

Majority of rotorcraft observations were outside of terminal airspace

Majority of rotorcraft observations below 2000 feet AGL

AGL – Above Ground Level
• Altitude distribution is strongly dependent on aircraft type

• All aircraft types have sufficient observations below 500 feet AGL
 – Majority of rotorcraft observed below 3000 feet AGL
 – Fixed-wing single engine rarely observed in controlled terminal airspace
 – Fixed-wing multi-engine have the most relative observations in Class B airspace

• Analysis indicates that, across the aggregate, smaller UAS can expect to encounter all three different manned aircraft types at low altitudes

• This analysis did not consider the size of the aircraft potentially encountered
 – Fixed-wing multi-engine can vary in size by over a hundred feet
 – Speeds and behaviors of aircraft vary based on airspace and altitude
Overview

Data Source and Processing

Distributions Given Airspace Class and Altitude Layer

Distributions Given Aircraft Seats

Summary
Aircraft Size Frequency Analysis
Organized by Number of Seats, Not Individual Aircraft Models

- Aircraft size can be identified by correlating an aircraft’s ICAO 24-bit address with aircraft registries to find aircraft manufacturer and model
 - Reduce number of unknown aircraft by using annual registries from United States, Canada, Ireland, and the Netherlands
 - Calculate average number of seats across all instances of the same aircraft model

- Aircraft registries have good quality control on aircraft type and number of seats, but aggregating aircraft manufacturer and aircraft models is challenging
 - Inconsistent data or similar variants: “Cessna 172” vs. “Textron C172” vs. Cessna 172s
 - Natural language processing techniques applied to improve aircraft registries
 - Further registry processing can be improved as future work

- Distribution of size is more important than relative frequency between different models
 - Aircraft size tends to increase with the quantity of seats
 - Probability of detecting an aircraft is dependent upon the aircraft’s size
 - Selecting aircraft for flight tests is easier based on seats, than seeking specific aircraft
ADS-B Equipped Fixed-Wing Multi-Engine

83%+ had greater than 10 seats and subject to a TCAS mandate*

Table:

Year	Altimeter	? Seats	[1,10] Seats	[11,31] Seats	[32, ∞] Seats
2018	Barometric	6.9×10^7 (0.3%)	5.1×10^8 (21.9%)	3.9×10^9 (17.0%)	1.4×10^{10} (60.7%)
2018	Geometric	6.9×10^7 (0.3%)	5.0×10^8 (21.9%)	3.9×10^9 (17.0%)	1.4×10^{10} (60.7%)
2019	Barometric	1.2×10^8 (0.3%)	7.3×10^9 (17.5%)	6.2×10^9 (14.9%)	2.8×10^{10} (67.2%)
2019	Geometric	1.2×10^8 (0.3%)	7.3×10^9 (17.6%)	6.2×10^9 (14.9%)	2.8×10^{10} (67.2%)
2018	Barometric	1.2×10^7 (1.0%)	2.6×10^8 (22.6%)	1.9×10^8 (16.7%)	7.0×10^8 (59.6%)
2018	Geometric	9.7×10^6 (0.9%)	2.5×10^8 (22.4%)	1.8×10^8 (16.5%)	6.8×10^8 (60.3%)
2019	Barometric	1.2×10^7 (0.6%)	3.6×10^8 (18.7%)	3.0×10^8 (15.3%)	1.2×10^9 (65.4%)
2019	Geometric	1.1×10^7 (0.6%)	3.5×10^8 (18.6%)	2.8×10^8 (15.0%)	1.2×10^9 (65.8%)

* 14 CFR § 135.180
Percentages organized by row
ADS-B Equipped Fixed-Wing Single Engine

Majority had 6 or less seats

Year	Altimeter	Seats	[1,6] Seats	[7,10] Seats	[11, ∞] Seats
2018	Barometric	6.3×10^7 (0.5%)	1.1×10^{10} (86.8%)	6.2×10^8 (4.8%)	1.0×10^9 (7.9%)
2018	Geometric	6.3×10^7 (0.5%)	1.1×10^{10} (86.9%)	6.2×10^8 (4.8%)	1.0×10^9 (7.8%)
2019	Barometric	2.3×10^8 (1.0%)	1.9×10^{10} (84.9%)	1.1×10^9 (5.2%)	2.0×10^9 (8.9%)
2019	Geometric	2.3×10^8 (1.0%)	1.9×10^{10} (85.0%)	1.1×10^9 (5.2%)	2.0×10^9 (8.8%)
2018	Barometric	1.8×10^7 (0.9%)	1.9×10^9 (95.1%)	4.4×10^7 (2.2%)	3.5×10^7 (1.8%)
2018	Geometric	1.7×10^7 (0.9%)	1.8×10^9 (95.3%)	4.1×10^7 (2.1%)	3.1×10^7 (1.7%)
2019	Barometric	6.6×10^7 (1.8%)	3.2×10^9 (91.6%)	1.3×10^8 (3.9%)	9.9×10^7 (2.7%)
2019	Geometric	6.5×10^7 (1.9%)	3.2×10^9 (91.6%)	1.3×10^8 (3.9%)	9.2×10^7 (2.6%)

Percentages organized by row
ADS-B Equipped Rotorcraft

Majority of had 5, 6, 7, or 8 seats

Year	Altimeter	Seats	[1,4] Seats	[5,8] Seats	[9, ∞] Seats
2018	Barometric	3.5×10^7 (1.4%)	5.3×10^8 (21.9%)	1.5×10^9 (63.0%)	3.3×10^8 (13.6%)
2018	Geometric	3.5×10^7 (1.4%)	5.3×10^8 (21.9%)	1.5×10^9 (62.9%)	3.3×10^8 (13.7%)
2019	Barometric	8.5×10^7 (1.8%)	7.3×10^8 (15.9%)	3.2×10^9 (70.4%)	5.4×10^8 (11.9%)
2019	Geometric	8.5×10^7 (1.8%)	7.4×10^8 (16.0%)	3.2×10^9 (70.3%)	5.5×10^8 (11.9%)
2018	Barometric	1.3×10^7 (0.8%)	4.4×10^8 (25.3%)	1.1×10^9 (62.6%)	1.9×10^8 (11.3%)
2018	Geometric	1.2×10^7 (0.7%)	4.4×10^8 (25.7%)	1.0×10^9 (62.4%)	1.9×10^8 (11.3%)
2019	Barometric	3.3×10^7 (1.0%)	6.3×10^8 (19.7%)	2.2×10^9 (69.5%)	3.1×10^8 (9.8%)
2019	Geometric	3.3×10^7 (1.0%)	6.4×10^8 (19.7%)	2.2×10^9 (69.7%)	3.1×10^8 (8.8%)
Most Observed ADS-B Equipped Aircraft in 2019
\(\leq 18,000 \text{ feet AGL and All Airspace Classes} \)

Type	Manufacturer	Model	# Seats (Mean)	Flight Hours (\(\leq 18,000 \text{ ft AGL} \))	Flight Hours (\(\leq 1200 \text{ ft AGL} \))
Fixed-Wing Multi-Engine	Boeing	737	164	12,485	657
Fixed-Wing Multi-Engine	Embraer	ERJ-170	86	11,646	563
Fixed-Wing Multi-Engine	Airbus	A320	198	8,223	406
Fixed-Wing Multi-Engine	Airbus	A321	304	7,578	332
Fixed-Wing Multi-Engine	Bombardier	CL-600	54	7,175	285
Fixed-Wing Multi-Engine	Airbus	A319	161	6,027	318
Fixed-Wing Single Engine	Cessna	172s	4	4,488	1,012
Fixed-Wing Multi-Engine	Embraer	EMB-145LR	55	4,239	122
Fixed-Wing Multi-Engine	Bombardier	DHC-8	59	3,682	196
Fixed-Wing Single Engine	Cessna	172r	4	2,683	616

Across all altitudes, majority of observed aircraft were fixed-wing multi-engine.
Most Observed Low Altitude ADS-B Equipped Aircraft in 2019 ≤ 1200 feet AGL and All Airspace Classes

Type	Manufacturer	Model	# Seats (Mean)	Flight Hours (≤ 18,000 ft AGL)	Flight Hours (≤ 1200 ft AGL)
Fixed-Wing Single Engine	Cessna	172s	4	4,488	1,012
Rotorcraft	Airbus	AS-350b3	7	970	814
Rotorcraft	All American	AS-350b2	6	850	669
Fixed-Wing Multi-Engine	Boeing	737	164	12,485	657
Fixed-Wing Single Engine	Cessna	172n	4	2,465	630
Fixed-Wing Single Engine	Cessna	172r	4	2,683	616
Fixed-Wing Single Engine	Beech	172s	4	2,637	602
Rotorcraft	All American	AS-350b3	6	724	574
Fixed-Wing Multi-Engine	Embraer	ERJ-170	86	11,646	563
Fixed-Wing Single Engine	Blue Diamond	DA20-C1	2	1,957	548

Majority of observed ADS-B equipped aircraft at low altitudes had 7 or less seats
Discussion on Distributions Based on Seats

Negligible variation in results between altitude source and year

- Similar distributions between comparing all altitude reports and just at low altitude.
- Observations of fixed-wing single engine skewed to six seats or less at low altitudes
 - Assumes non-transponding aircraft at low altitudes will also generally have six or less seats
 - Size of fixed-wing single engine and rotorcraft at low altitudes may be independent of transponder equipage
- Cessna 172 fixed-wing single engine variants were some of the most observed ADS-B equipped aircraft
- Results can inform simulations based on aircraft size
 - Supports an extension of J.W. Andrews on air-to-air visual acquisition*
 - Enables weighting simulations based on aircraft size and subsequent probability of detection

Distributions inform the size of ADS-B equipped aircraft encountered at low altitudes
• Overview
• Data Source and Processing
• Distributions Given Airspace Class and Altitude Layer
• Distributions Given Generalized Operational Regions
• Distributions Given Aircraft Seats
• Summary
Summary

• The continuing integration of unmanned aircraft systems operations into the NAS requires development of regulations and technology to maintain safety

• To support development and evaluation of UAS DAA systems, the low altitude airspace needs to be characterized and modeled

• Airborne collision risk is dependent on the size and speed of encountered aircraft

• Observations of ADS-B equipped aircraft by the OpenSky Network were analyzed based on three different factors
 – Airspace class and altitude layer
 – Number of seats on the aircraft

• Results inform aircraft types used in DAA simulations and testing
Thank You!

Questions?
Feedback?

Presenter: Andrew Weinert
Contributors (alphabetical): Marc Brittain, Randal Guendel
Homeland Protection and Air Traffic Control Division
Email: andrew.weinert@ll.mit.edu
Most Observed ADS-B Equipped Aircraft in 2019
Fixed-Wing Multi-Engine

Ranking	Manufacturer	Model	# Seats	Flight Hours (All)	Flight Hours (Low)
1	Boeing	737	164	12,485	657
2	Embraer	ERJ-170	86	11,646	563
3	Airbus	A320	198	8,223	406
4	Airbus	A321	304	7,578	332
5	Airbus	A319	161	6,027	318
6	Bombardier	CL-600	54	7,175	285
7	Bombardier	DHC-8	59	3,682	196
8	New Piper	PA-44	4	1,536	162
9	Embraer	EMB-145LR	55	4,239	122
10	Boeing	757	190	2,592	113
11	Bombardier	BD-100	8	1,472	83
12	Embraer	ERJ-190	24	2,061	81
13	Boeing	717	100	1,838	71
14	Embraer	EMB-505	9	1,291	70
15	Boeing	777	439	1,354	69
16	Embraer	EMB-135KL	37	1,762	68
17	Boeing	767	237	1,473	65
18	Embraer	EMB-145XR	55	2,024	59
19	McDonnell Douglas	MD-88	142	1,515	29
20	Cessna	402c	10	1,253	27
Most Observed ADS-B Equipped Aircraft in 2019
Fixed-Wing Single Engine

Ranking	Manufacturer	Model	# Seats	Flight Hours (All)	Flight Hours (Low)
1	Cessna	172s	4	4,488	1,012
2	Cessna	172n	4	2,465	630
3	Cessna	172r	4	2,683	616
4	Beechcraft*	172s	4	2,637	602
5	Blue Diamond	DA20-C1	2	1,957	548
6	Cessna	152	2	1,638	472
7	Cessna	172m	4	1,473	376
8	New Piper	PA-28	4	1,798	354
9	Cessna	172p	4	1,585	306
10	Blue Diamond	DA40	5	1,349	239
11	Aero Design	SR-20	4	1,444	228
12	Cessna	182t	4	617	79
13	Aero Design	SR-22t	5	1,288	70
14	Aero Design	SR-22	4	1,096	55
15	Cessna	208b	12	2,133	48
16	Homekit	Homekit	11	1,156	44
17	Homekit	Homekit	12	1,162	40
18	Cessna	T206h	6	622	36
19	Beechcraft	A36	6	673	25
20	New Piper	PA-46	6	572	14

#1: **Cessna 172 Skyhawk**
#5: **Blue Diamond DA20-C1**
Most Observed ADS-B Equipped Aircraft in 2019

Rotorcraft

Ranking	Manufacturer	Model	# Seats	Flight Hours (All)	Flight Hours (Low)
1	Airbus	AS-350b3	7	970	814
2	All American	AS-350b2	6	850	669
3	All American	AS-350b3	6	724	574
4	BHI Helicopters	R-44	4	656	544
5	Bell	407	8	855	541
6	All American	EC-130	7	934	467
7	Bell	206b	5	459	427
8	Airbus	EC-130	8	917	407
9	Bell	369ff	4	413	407
10	All American	EC-120b	5	330	316
11	All American	AS-350b2	7	377	276
12	Bell	206L4	7	353	258
13	BHI Helicopters	R-22 Beta	2	299	254
14	Bell	429	9	324	220
15	Bell	407	7	264	191
16	All American	AS-350b3	7	255	176
17	Eurocopter	MBBK-117	8	270	170
18	Eurocopter	EC-135p2	7	292	157
19	BHI Helicopters	R-66	5	166	127
20	Bell	206L3	7	193	67

#1: Eurocopter AS350 (Now Airbus Helicopters H125)

#14: Bell 429
Imagery Sources

- http://photozou.jp/photo/photo_only/2952079/260435384?size=1024#content
- https://en.wikipedia.org/wiki/De_Havilland_Canada_DHC-6_Twin_Otter#/media/File:WinAir_De_Havilland_Canada_DHC-6-300_Twin_Otter_Breidenstein.jpg
- https://commons.wikimedia.org/wiki/File:Boeing_787_Dreamliner_N787BX.jpg
- https://commons.wikimedia.org/wiki/File:VH-SRL_Cirrus_SR20-G2_(9171867338).jpg
- https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Privateways_QUEST_Kodiak_100_D-FBHI_JadeWeserAirport.jpg/1280px-Privateways_QUEST_Kodiak_100_D-FBHI_JadeWeserAirport.jpg
- https://commons.wikimedia.org/wiki/File:Cessna.208b.n208nj.arp.jpg
- https://commons.wikimedia.org/wiki/File:Robinson_R44_Il_(cropped).jpg
- https://commons.wikimedia.org/wiki/File:G-WLTS_Bell_429_Helicopter_Wiltshire_Air_Ambulance.jpg
- https://commons.wikimedia.org/wiki/File:F-WWPB_(8970723436).jpg
- https://commons.wikimedia.org/wiki/File:EGLF_-_Boeing_737_Max_-_N720IS_(41646299740).jpg
- https://en.wikipedia.org/wiki/Piper_PA-44_Seminole#/media/File:Piper-pa-44.jpg
- https://commons.wikimedia.org/wiki/File:Malmim_Ilmailkuerho,_OH-SRH,_Cessna_172S_Skyhawk_2_(28651984438).jpg
- https://commons.wikimedia.org/wiki/File:Private,_G-BYMB,_Diamond_DA_20-C1_Katana_(16825996625).jpg
- https://en.wikipedia.org/wiki/Eurocopter_AS350_%C3%8Cureuil#/media/File:RAN_squirrel_helicopter_at_melb_GP_08.jpg
- https://upload.wikimedia.org/wikipedia/commons/0/04/PNP_Bell_429-1.jpg