Atomic and electronic structures of ternary iron arsenides $A\text{Fe}_2\text{As}_2$ (001) surfaces ($A=$Ba, Sr, or Ca)

Zhong-Yi Lu

Department of Physics, Renmin University, Beijing, China

By the first-principles electronic structure calculations, we find that energetically the most favorable cleaved $A\text{Fe}_2\text{As}_2$ (001) surface ($A=$Ba, Sr, or Ca) is A-terminated with $(\sqrt{2} \times \sqrt{2})R45^\circ$ or (1×2) order. The (1×2) ordered structure yields a (1×2) dimerized STM image as the experiment observed. The A atoms are found to diffuse on the surface with a small energy barrier so that the cleaving process may destroy the A atoms ordering. At the very low temperatures this may result in an As-terminated surface with the A atoms in randomly assembling. The As-terminated BaFe_2As_2 surface in orthorhombic phase is buckled with $(\sqrt{2} \times \sqrt{2})R45^\circ$ order, giving rise to a switchable $(\sqrt{2} \times \sqrt{2})R45^\circ$ STM pattern upon an applied bias. No any reconstruction is found for the other As-terminated surfaces. There are surface states nearby the Fermi energy found in the As-terminated and (1×2) A-terminated surfaces. A unified physical picture is thus established to help understand the cleaved $A\text{Fe}_2\text{As}_2$ (001) surfaces.