Basolateral and central amygdala orchestrate how we learn whom to trust

Ronald Sladky1,4✉, Federica Riva1,4, Lisa Anna Rosenberger1, Jack van Honk2,3 & Claus Lamm1✉

Cooperation and mutual trust are essential in our society, yet not everybody is trustworthy. In this fMRI study, 62 healthy volunteers performed a repeated trust game, placing trust in a trustworthy or an untrustworthy player. We found that the central amygdala was active during trust behavior planning while the basolateral amygdala was active during outcome evaluation. When planning the trust behavior, central and basolateral amygdala activation was stronger for the untrustworthy player compared to the trustworthy player but only in participants who actually learned to differentiate the trustworthiness of the players. Independent of learning success, nucleus accumbens encoded whether trust was reciprocated. This suggests that learning whom to trust is not related to reward processing in the nucleus accumbens, but rather to engagement of the amygdala. Our study overcomes major empirical gaps between animal models and human neuroimaging and shows how different subnuclei of the amygdala and connected areas orchestrate learning to form different subjective trustworthiness beliefs about others and guide trust choice behavior.
Human societies are built on cooperation and mutual trust. On the individual level, trusting another person entails potential rewards, but also risks if the other person is abusing our trust to our own disadvantage. Thus, learning to distinguish the trustworthiness of an interaction partner is important for successful social interactions. Research on rodents suggests an essential role of the basolateral amygdala (BLA) in learning from social experiences. In line with this, we showed in a previous study that human participants with selective bilateral BLA damage failed to adapt their trust behavior towards trustworthy vs. untrustworthy interaction partners in a repeated trust game. However, functional reorganization after degenerative brain damage might prevent the generalizability of these findings to neurotypical populations. Neuroimaging in neurotypical populations indeed did not consistently report involvement of the amygdala in trust behavior. This might be explained by difficulties in differentiating between the amygdala’s structurally and functionally different subnuclei, i.e., the BLA and central amygdala (CeA), which have even antagonistic features particularly in trust behavior.

The amygdala is widely regarded as paramount for social cognition, but it has been investigated as a uniform structure in the majority of human neuroimaging studies. While this approach may be due to the limited spatial specificity of functional MRI particularly in the ventral brain, it ignores the structural and functional heterogeneity of this brain area and its subnuclei. Here, we overcame the limitations of previous research by using an acquisition protocol optimized for imaging ventral brain areas in combination with a multiband EPI sequence with high spatial and temporal resolution, allowing for time-resolved analysis of amygdalar subnuclei.

Our aims were to derive what role the different amygdala subnuclei play for different aspects relevant in learning whom to trust, and to link them to neural activation in other subcortical regions that are highly connected with the amygdala. This means, the primary goal of our analyses was to investigate task-dependent BLA and CeA function and how BOLD response changes (a) during the different task phases that require different cognitive functions, (b) over the course of the experiment where participants learn the task with varying degrees of success, and (c) how it is affected by differences in trust behavior and subjective trustworthiness ratings. The secondary and more explorative goal of our analyses was to determine the involvement of other highly relevant subcortical brain regions. More specifically, nucleus accumbens (NAc) was chosen due to its relevance in reward learning and social decision making in conjunction with two dopaminergic midbrain regions, the substantia nigra and the ventral tegmental area (SN/VTA). Additionally, the bed nucleus of the stria terminals (BST) is considered a part of the extended amygdala complex and could play an antagonistic role in this task, given its involvement in threat encoding mechanisms. Finally, the septal area of the basal forebrain could be of particular relevance during trust decisions.

Results
Participants played the repeated trust game inside the MRI scanner, ostensibly with what turned out to be one trustworthy and one untrustworthy player. In reality, the two players were both simulated, with their returns following a preprogrammed response schedule. Within one session and run, in total, participants played 20 rounds with each of the two players (2 × 20 rounds). In general, participants were able to adapt their trust behavior, i.e., investments in the trust game, to the trustworthy and the untrustworthy player. However, there was a marked variability within our study sample, which allowed for a partition into a learner and non-learner subgroup (Fig. 1). The task consisted of four different task phases (i.e., the preparation, investment, waiting, and outcome phase). A detailed time-resolved analysis of the BLA and CeA revealed that activation changed over the course of the different task phases. We found maximum BLA activation in the outcome evaluation phase and maximum CeA activation in the preparation phase. Yet, there was no overall BLA and CeA activation difference between the trustworthy or untrustworthy player in any of the task phases (Fig. 2).

Fig. 1 Behavioral results. a Investment vs. trustworthiness. Behavioral trust (Δ investment) correlates with post-experiment subjective ratings (Δ trustworthiness rating), $r_s = 0.39$, $p = 0.002$. b Participants’ investment behavior. In total, participants invested more in the trustworthy player. The difference between the investment into the trustworthy and untrustworthy player (Δ investment) was used to median-split the population into a subgroup that learned to differentiate (learners, magenta color) and those who did not (non-learners, cyan color). c Participants’ investment behavior over time. After a few rounds, learners adapted their investment behavior to favor the trustworthy player. This differentiation was reduced in non-learners. Plot displays mean and SEM.
substantia nigra and ventral tegmental area (SN/VTA), and bed nucleus of the stria terminalis (BST) activity was increased for the trustworthy player during outcome evaluation, there was no group difference between learners and non-learners (Fig. 4).

Behavioral results. Marked trust differences emerged across the whole sample in the investment behavior towards the trustworthy as opposed to the untrustworthy player, with participants generally investing more in the trustworthy player on average, and increasingly so over the course of the repeated rounds of the task (Fig. 1b & c). Moreover, we find that individual differences in behavioral trust (Δ investment = investment_{trustworthy} − investment_{untrustworthy}) showed a positive correlation with subjective trustworthiness ratings (Δ trustworthiness = trustworthiness_{trustworthy} − trustworthiness_{untrustworthy}),...
rs = +0.39, p = 0.002 (Fig. 1a). On the subjective level, the trustworthy player was rated as significantly more trustworthy, fairer, and more intelligent than the untrustworthy player (all p < 0.05, Bonferroni corrected), but not as more attractive (n.s., after Bonferroni correction).

Neuroimaging results. We find that different subnuclei of the amygdala engaged in the trust game show increased activation during different phases of the task paradigm. This suggests that they are supposedly related to different aspects and processes required by the formation of trust. The two subnuclei that played the most specific role (Fig. 2b) were the BLA and the CeA. Notably, the activation differences in these subnuclei and the validity of our analysis approach are supported by differences in their functional connectivity profiles, determined in our data. While the BLA connected to sensory integration areas and lateral PFC, the CeA connected to the ventral striatum, including the nucleus accumbens, and areas in the medial PFC (Supplementary Fig. 2). The role of these subnuclei in the different task phases is as follows.

In the BLA, there was no significant (at p < 0.05 Bonferroni-corrected) activation during the introduction (PSC ± 95% CI = −0.00 ± 0.03, t61 = 0.2, p = 0.8530, d = 0.0) and the investment phases (PSC ± 95% CI = −0.04 ± 0.04, t61 = 2.2, p = 0.0293, d = 0.3), but significant deactivation during the waiting (PSC ± 95% CI = −0.07 ± 0.03, t61 = 5.2, p < 0.0001, d = 0.7) and significant activation during the outcome phases (PSC ± 95% CI = +0.11 ± 0.02, t61 = 9.8, p < 0.0001, d = 1.3) (Fig. 2c). In the CeA, there was significant activation during the introduction phase (PSC ± 95% CI = +0.04 ± 0.02, t61 = 3.2, p = 0.0021, d = 0.4), significant deactivation during the investment (PSC ± 95% CI = −0.12 ± 0.03, t61 = 6.6, p < 0.0001, d = 0.8) and waiting phases (PSC ± 95% CI = −0.10 ± 0.03, t61 = 6.8, p < 0.0001, d = 0.9) but no significant effect during the outcome phase (PSC ± 95% CI = −0.01 ± 0.02, t61 = 1.1, p = 0.2972, d = 0.1) (Fig. 2d). All p-values reported as significant survive Bonferroni correction for multiple comparisons (at p < 0.05 Bonferroni-corrected).

Fig. 3 Activation differences between untrustworthy and trustworthy player in the preparation phase. BLA activation differences (contrast: untrustworthy–trustworthy) were higher for learners (magenta) vs. non-learners (cyan) (a), correlated with investment differences (b) and post-experiment subjective trustworthiness rating differences (c). The same relationship was found for CeA (d, f), except the correlation with investment differences was not significant (e). An exploratory analysis of the basal forebrain showed a similar relationship (g–i).
As a next step, we aimed to pinpoint how the engagement of the amygdala was related to differential evaluations of trustworthiness, and the resulting trust behavior toward the two players. Individual difference analyses showed a relationship between BLA and the CeA activation in the preparation phase and subjective trustworthiness and behavioral trust measures. More specifically, we first used a median split of Δ investment (Fig. 1b) to distinguish learners from non-learners (i.e., those who adjusted their investment behavior less to the trustworthiness of the player), and then assessed how they differed in their amygdala activations. A Mann–Whitney U-test showed that during the preparation phase, the activation difference between untrustworthy–trustworthy player was significantly larger in learners than in non-learners in the BLA (Δ PSC ± 95% CI = +0.11 ± 0.03, U = 686, p = 0.002, d = 0.8, Fig. 3a) and in the CeA (Δ PSC ± 95% CI = +0.05 ± 0.03, U = 611, p = 0.0336, d = 0.5, Fig. 3d). Moreover, the BLA activation differences between untrustworthy vs. trustworthy players in this phase correlated positively with behavioral trust (Δ investment), r = +0.28, p = 0.0255 (Fig. 3b) and subjective trustworthiness (Δ trustworthiness), r = +0.138, p = 0.0026 (Fig. 3c). CeA activation differences correlated with subjective trustworthiness ratings, Δ trustworthiness, r = +0.51, p = 0.0138 (Fig. 3d), but not with behavioral trust, Δ investment (Fig. 3e). While considering whether to trust or distrust a player, the CeA in learners thus seems primarily linked to evaluations of trustworthiness, whereas the BLA is additionally relevant for the actual behavioral outcome as well as whether someone efficiently learns to adapt behavior to the actually reciprocated trust or not. Moreover, these relationships are driven by stronger engagement for rounds with the untrustworthy (compared to the trustworthy) player, suggesting that what is coded is rather the absence than the presence of trust. Finally, an exploratory analysis of the forebrain showed a similar activation difference between the trustworthy and untrustworthy player for learners vs. non-learners (Δ PSC ± 95% CI = +0.06 ± 0.02, U = 640, p = 0.0126, d = 0.6, Fig. 3g) that, like the CeA, correlated with Δ trustworthiness, r = +0.33, p = 0.0084 (Fig. 3i) but not Δ investment (Fig. 3h).

The neural responses in the preparation phase mainly provide insights into how the acquired information about a player’s trustworthiness drives the decisions of participants. The activation in the outcome evaluation phase, on the other hand, tells us about how this information is acquired and possibly updated. As outlined above, we observed overall activation in the BLA during the outcome evaluation phase (Fig. 2), and this may be linked to reward processing.19 Surprisingly, though, we did not find differences between the trustworthy and untrustworthy player in the BLA or CeA in the outcome phase, and neither did we find correlations with trust behavior and trustworthiness rating. We thus extended our analyses to subcortical regions with particularly strong anatomical and functional connections to the amygdala. These were the nucleus accumbens (NAC), as well as the dopaminergic midbrain, comprising substantia nigra and the ventral tegmental area (SN/VTA), relevant for encoding reward, and the bed nucleus of the stria terminalis (BST), relevant for encoding threat.21

When the outcome of the player decision was presented, higher activations were observed for the trustworthy compared to the untrustworthy player in the NAc (Δ PSC ± 95% CI = +0.11 ± 0.03, t = +6.3, p < 0.0001, d = 0.8), SN/VTA (Δ PSC ± 95% CI = +0.05 ± 0.03, t = +3.7, p = 0.0005, d = 0.5), BST (Δ PSC ± 95% CI = +0.08 ± 0.04, t = 4.0, p = 0.0002, d = 0.5), and the basal forebrain (Δ PSC ± 95% CI = +0.03 ± 0.03, t = 2.1, p = 0.0361, d = 0.3) (Fig. 4). Moreover, the gain or loss (i.e., back-transfer - investment amount) correlated with NAC (r = +0.19, p < 0.0001) and BST (r = +0.10, p < 0.0001), but this was irrespective of the activation difference between trustworthy and untrustworthy player.
Discussion

Our previous study in BLA-damaged participants highlighted that the BLA is indispensable for learning to differentiate between trustworthy and untrustworthy players in the trust game. This has important implications for our understanding of social decision-making in humans and, most likely, other mammals. However, extending these findings to the neural networks connected to the amygdala in healthy, neurotypical, human participants is of the essence. Here we confirmed the relevance of the BLA for distinguishing between trustworthy and untrustworthy players based on previous experience and how, in conjunction with the CeA, it plays a role in the guiding of trust behavior. Specifically, BLA activity was increased during the processing of the outcome of the player’s behavior but unselectively for trustworthy vs. untrustworthy player. Instead, we found increased activation in the NAc, BST, and SN/VTA for the trustworthy vs. untrustworthy player during outcome processing. Importantly, here we did not observe an activation difference between learners and non-learners. This could indicate that learners and non-learners processed the outcome in a similar fashion, suggesting that their understanding of the task and motivation were comparable. This further highlights the central role of the BLA for trust learning.

Indeed, we found the BLA to be most active during outcome evaluation, i.e., when participants learned whether their trust was reciprocated or not, suggesting that it plays an important role in acquiring beliefs about the trustworthiness of others. It appears, however, that the BLA was not directly involved in building specific outcome expectations during the waiting and evaluation phase. The BOLD response in the BLA was not modulated by the trustworthiness or the players’ back-transfer amount, unlike activity in the NAc, SN, and BST. This highlights that the BLA, although indispensable for learning whom to trust, as indicated by our previous research, is only a component of a complex brain network for reward processing and social evaluation.

In addition, we found that while participants prepared for their next investment, the BLA together with the CeA exhibited increased activation for the untrustworthy player. Importantly, this activation difference was only found in those participants who learned to differentiate between the players, indicating its role in (1) guiding trust behavior as BLA activation differences directly precede the participant’s investment behavior and also (2) in trustworthiness evaluation, as BLA and CeA BOLD responses correlated with the subjective rating after the experiment.

Nowadays, it is a well-established finding that a sub-population of BLA’s neurons selectively respond to reward, whereas other sub-populations either only respond to aversive stimuli, or selectively increase their firing rate when the rewarding or aversive stimulus was unexpected, i.e., not predicted (which means that something novel has to be learned about the environment). In the context of our findings, this view supports the notion that the BLA is relevant for encoding both the rewarding behavior of the trustworthy player and the aversive behavior of the untrustworthy player. Additionally, we can speculate that optimal performance in the trust game does not only rely on reward learning and threat detection, but also on predicting affective consequences based on abstract information. Supporting evidence for this theory can be found in a recent study in a patient with acquired complete bilateral amygdala lesions (patient SM, 49 years old, female), who showed impairments in making good predictions about what kind of written statements will induce fear.

The fact that we did not observe any habituation in any of the amygdala subregions (Supplementary Fig. 3) indicates that the BLA not only responds to novel stimuli but is relevant for the continuous encoding and updating of information of social experiences. In the light of the recent debate on amygdala BOLD signal habituation, this finding could be important for the development of additional tasks that robustly activate the amygdala.

While BLA’s activation during outcome evaluation suggests its involvement in discriminating and tracking outcome-specific effects, the CeA is involved in general motivational aspects of reward-related events and, thus, might not play a role in the actual learning process in the outcome phase. Instead, we found it active during the preparation phase, which immediately preceded the investment phase. This could indicate that the CeA was regulated by the BLA output, which has been demonstrated before for a different task in a cross-species model. As CeA activity was increased before the participant’s investment, it might play a role in controlling trust behavior. More importantly, CeA activity during the preparation phase correlated with the subjective rating of trustworthiness of the player, indicating that it could be relevant for encoding the affective value attached to the player.

During outcome evaluation, we observed increased activation in the bed nucleus of the stria terminalis (BST), which, together with the CeA, is considered the extended amygdala complex. The BST has been suggested to play a role in both reward processing and social cognition and exhibits strong connections to the NAc. While the CeA is associated with fast fear responses (e.g., startle reflex), the BST is responsible for slower effective learning processes and has been linked to adaptive and maladaptive responses to sustained stress and threat. Of note, the BST plays a particular role in dealing with unpredictable threat, which could be the case in an uncertain social investment. However, these two views are still part of ongoing debates. Most recently, the BST was shown to be more involved in fear-related anticipation processes, whereas the CeA was linked to threat confrontation. In this study, we found the BST to be involved in the outcome evaluation phase. Based on the literature, it could be expected that the BST would show more activation for the aversive untrustworthy player, which was not the case. Instead, we observed that the BOLD responses of BST and NAc were both more activated by the trustworthy player. The NAc and other striatal areas are known to be involved in evaluating the players’ trustworthiness based on their back-transfer behavior and amygdala to NAc coactivation are relevant for social decision making. Rodent research has shown that BLA to NAc connections mediate reward learning. Importantly, stimulus-evoked excitation of NAc neurons depends on input from the BLA and is required for dopamine to enhance the stimulus-evoked firing of NAc neurons, ultimately, leading to reward-seeking behavior. This could mean that both regions might engage in a synergetic fashion, where the NAc would be particularly relevant for tracking rewards. The BST, on the other hand, could be responsible for increasing arousal as generous investments in the trustworthy player also entail a potential threat of betrayal. These findings suggest a functional dissociation between reward and risk evaluation based on the observed outcome of one’s behavior, which appeared to be comparable in non-learners, and the mechanisms of trust learning. Finally, the observed difference in the septal area of the basal forebrain during outcome evaluation could indicate its involvement in updating beliefs about the other players’ trustworthiness. This would be in line with previous research that suggested that this region encodes the participant’s volatility beliefs (i.e., an estimator for expected uncertainty) in both social and non-social learning tasks. In the context of our study, we also observed an involvement during the introduction phase, showing more activation in learners relative to non-learners for the untrustworthy relative to the trustworthy.
trustworthy player. It has been shown before that the basal forebrain is involved in trust decisions and its differential activity during outcome evaluation (higher for the trustworthy player) and the introduction phase (higher for the untrustworthy player in learners) highlights its potentially crucial role in trust learning.

In sum, we confirm that the BLA was indeed involved in learning whom to trust and that observations from amygdala-lesioned participants can be translated to healthy neurotypical participants. Additionally, our fine-grained, time-resolved analyses of the amygdala subnuclei and the functionally-connected brain areas provided important insights into different cognitive mechanisms involved in trust learning. We found that the BLA was relevant for discriminating between trustworthy and untrustworthy players based on previous experience and for optimizing trust behavior. Only in those participants who learned to optimize their investments, we found selectively more activation in the BLA during the planning of a new investment that required trust. The BLA was also active during outcome evaluation suggesting its involvement in the process of belief formation based on the players’ back-transfer amount. As we did not observe a difference between the trustworthy or untrustworthy player, we can assume that encoding of potential rewards and risks is mediated by the NAc and BST, respectively, which showed a selectively increased activity for the trustworthy player or an increased investment. Finally, the CeA is known to receive inputs from the BLA and BST, and exhibited the largest BOLD response during the planning phase. CeA activity did not correlate with the participant’s trust behavior, however, there was a correlation with the participant’s subjective belief of the players’ trustworthiness. This suggests that the CeA could encode subjective value, possibly also indirectly affecting trust behavior via the BLA. Taken together, our work suggests that there is a high demand for translational tasks and a sample of older adults, which are not reported in the current article. Participants were first invited to a screening session where they performed a group-level approach for visual inspection of the whole brain results. As nuisance regressors to account for residual head motion effects. Second-level analyses of the data were implemented using nipype and performed on a Skyra 3 Tesla MRI scanner (Siemens Healthineers, Erlangen, Germany) using the manufacturer’s 32 channel head coil at the MR Center of the University of Vienna. In a single session, one run of the repeated trust game was performed by the participant while we functional MRI using a gradient echo T2*-weighted echo planar image sequence with the following parameters: MB-EPI factor = 4, TR/TE = 704/34 ms, 2.2 x 2.2 x 3.5 mm3, 96 x 92 x 32 voxels, flip angle = 50°, n = 2400 volumes. Preprocessing comprised slice-time correction using the participant’s default on visual psychometric scales and transformed off-line to a numerical range between −10 and +10. Behavioral data analysis. It is commonly understood that participants’ investment behavior is a behavioral expression of how they judged the players’ trustworthiness and changes reflect the extent to which they updated their beliefs.47,48 This objective measure of trust was used to distinguish between learners and non-learners (i.e., participants that used the median as reference) and for a Spearman correlation analysis between the subjective ratings (trustworthiness, fairness, attractiveness, and intelligence) and the BOLD response in the amygdala.

Materials and methods

Participants. Sixty two healthy, neurotypical volunteers (age = 23.83 ± 3.15 years, female = 31/31), mostly undergraduate students from Vienna, Austria were recruited. Exclusion criteria were standard MRI exclusion criteria (e.g.: pregnancy, claustrophobia, and MRI-incompatible implants, clinically significant somatic diseases), a history of psychiatric or neurological disorders, substance abuse, psycho-pharmacological medication, less than nine years of education, as well as not being task-naïve (e.g., having already participated in a similar study or being a psychology student). All participants provided written informed consent in accordance with the Declaration of Helsinki and were compensated for their participation. The study was approved by the ethics committee of the Medical University of Vienna (EK Nr. 1499/2015).

Procedure and task. This study was part of a bigger project including two additional tasks and a sample of older adults, which are not reported in the current article. Participants were first invited to a screening session where they performed some cognitive tasks and filled in some self-reported measures of psychological traits. The main session was usually conducted within two weeks from the screening session. Participants were welcomed to the MRI facility (University of Vienna MR Center) together with two other participants, who were in fact two confederates of the experimenter invited to play the players’ role. After having signed the consent form and filled in the MR safety questionnaire, participants and confederates were introduced to the protocol of the whole session. Afterwards, they went through the training of the three tasks, including the trust game. At the end of the training, participants were required to answer some questions in order to make sure they understood the task. Participants were finally placed into the MR scanner, while the confederates were putatively playing the task in the computer room next to the scanner room.

The repeated trust game was adapted from our previous study and programmed in z-Tree (version 3.3.756). The script of this trust game is deposited online. In short, two players per round, an investor and a player, exchange monetary units with the aim to maximize their monetary outcome. In total, 40 rounds were played and the participant always played the role of the investor, while the two players were allegedly played by the two confederates in a randomized order. In reality, the actions taken by the two players were preprogrammed in a way that one of the confederates was behaving in a trustworthy and the other one in an untrustworthy way. Confederates/players were of similar age and the same gender as the participant. At the beginning of each round, both trustworthy players (i.e., 20 per trustworthy condition and 20 per untrustworthy condition) both players received an endowment of 10 monetary units. Then each round encompasses four phases. In the preparation phase, participants are presented with the picture of the player’s face they are playing with in the current round. In the phase, participants play with the patient’s face as the player (of their endowment) and the investment is tripled and then transferred to the player. During the waiting phase, the players ostensibly perform their back-transfers. Finally, during the outcome phase, participants are presented with the back-transfer outcome. In the first two rounds, both the trustworthy and untrustworthy players back-transferred the same amount of the money invested to the participants. In the following rounds, the trustworthy player always back-transferred as much or more than the money invested by the player, whereas the untrustworthy player always back-transferred less than or as much as the money invested by the investor. The sums invested by the participants were considered as a measure of trust given to the two players by the participants and used as the main variable of interest. Points earned throughout the task were transformed to Euros and added to the participants’ compensation. At the end of the task, participants were presented with the players’ picture and were asked to rate them on four adjectives: trustworthiness, fairness, attractiveness, and intelligence (original German: Wie vertrauenswürdig/attraktiv/intelligent/fair halten Sie den/die Teilnehmer/in wahrnehmen?). Ratings were provided on visual analog scales and transformed off-line to a numerical range between −10 and +10.

Functional MRI Data acquisition, processing, and analyses. MRI acquisitions were performed on a Skyra 3 Tesla MRI scanner (Siemens Healthineers, Erlangen, Germany) using the manufacturer’s 32 channel head coil at the MR Center of the University of Vienna. In a single session, one run of the repeated trust game was performed by the participant while we functional MRI using a gradient echo T2*-weighted echo planar image sequence with the following parameters: MB-EPI factor = 4, TR/TE = 704/34 ms, 2.2 x 2.2 x 3.5 mm3, 96 x 92 x 32 voxels, flip angle = 50°, n = 2400 volumes. Preprocessing comprised slice-time correction using the participant’s default on visual psychometric scales and transformed off-line to a numerical range between −10 and +10. Behavioral data analysis. It is commonly understood that participants’ investment behavior is a behavioral expression of how they judged the players’ trustworthiness and changes reflect the extent to which they updated their beliefs.47,48 This objective measure of trust was used to distinguish between learners and non-learners (i.e., participants that used the median as reference) and for a Spearman correlation analysis between the subjective ratings (trustworthiness, fairness, attractiveness, and intelligence) and the BOLD response in the amygdala.
analyses were Bonferroni-corrected. Comparisons between learners and non-learners were performed using two-sample t-tests and Spearman correlations of investments (i.e., trust behavior) and subjective trustworthiness ratings. Habituation was investigated using a different model, where each phase and each round was modeled individually (Supplementary Material). Using paired t-tests we investigated the differences in the BOLD response between the trustworthy and untrustworthy player in the other volumes of interest based on the percent signal changes as estimated by the GLM. In these secondary, exploratory analyses, no correction for multiple comparison was used. However, note that these regions, except the basal forebrain, would survive conservative Bonferroni correction.

An additional functional connectivity analysis was performed to verify that the specificity of the BOLD signal is sufficient for differentiating between the BLA and CeA. To this end, task fMRI data were corrected for white matter and CSF signal and task effects using regression before estimation of the functional connectivity maps of the BLA and CeA seeds.

Statistics and reproducibility. In sum, the sample of this study consisted of 62 healthy, neurotypical volunteers (age 23.83 ± 3.15 years, f/m = 31/31). Data were processed and analyzed using SPM (SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and the Python projects nipype (http://nipype.org/nipype) and nilearn (http://nilearn.github.io). Additional statistical analyses were performed using nummy and scipy; for visualization matplotlib and nilearn were used. Code and data required to reproduce our results and figures are publicly available on https://github.com/scanunit.

Data availability
The data needed to reproduce the results and figures are published on our lab’s public github page (https://github.com/scanunit).

Code availability
The code needed to reproduce the results and figures are published on our lab’s public github page (https://github.com/scanunit).

Received: 22 May 2021; Accepted: 20 October 2021; Published online: 25 November 2021

References

1. Hernandez-Lallement, J., van Wingerden, M., Schäible, S. & Kalenscher, T. Basolateral amygdala lesions abolish mutual reward preferences in rats. *Neurobiol. Learn. Mem.* 127, 1–9 (2016).

2. Rosenberger, L. A. et al. The human basolateral amygdala is indispensable for social experiential learning. *Curr. Biol.* https://doi.org/10.1016/j.cub.2019.08.078 (2019).

3. van Honk, J., Eisenegger, C., Terburg, D., Stein, D. J. & Morgan, B. Generous social experiential learning. *Neurosci. Biobehav. Rev.* 119, 41–62 (2010).

4. Gupta, R., Koscik, T. R., Bechara, A. & Tranel, D. The amygdala and decision-making. *Neuropsychologia* 49, 760–766 (2011).

5. Sladky, R. et al. Increased neural habituation in the amygdala and orbitofrontal cortex in social anxiety disorder revealed by fMRI. *PLoS ONE* 7, e50050 (2012).

6. Corbit, L. H. & Balleine, B. W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian instrumental transfer. *J. Neurosci.* 25, 962–970 (2005).

7. Ballein, B. W. & Killcross, S. Parallel incentive processing: an integrated view of amygdala function. *Trends Neurosci.* 29, 272–279 (2006).

8. Armony, J. L. et al. The human basolateral amygdala underlies individual differences in prosocial and individualistic economic choices. *J. Cogn. Neurosci.* 26, 1861–1870 (2014).

9. Alheid, G. & Heimer, L. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloïd, and corticopedal components of substantia innominata. *Neuroscience* 27, 1–39 (1988).

10. de Olmos, J. S. & Heimer, L. The concepts of the ventral striatopallidal system and extended amygdala. *Annu. N. Y. Acad. Sci.* 877, 1–32 (1999).

11. Avery, S. N., Clauss, J. A. & Blackford, J. U. The human BNST: functional role in anxiety, addiction and depression. *Neuropsychopharmacolgy* 41, 126–141 (2016).

12. Clauss, J. A., Avery, S. N., Benningfield, M. M. & Blackford, J. U. Social anxiety is associated with BNST response to unpredictable threat. *Depression Anxiety* 36, 666–675 (2019).

13. Siminskis, N. et al. BNST and amygdala activation to threat: effects of temporal predictability and threat mode. *Behav. Brain Res.* 112883 (2020).

14. Krueger, F. et al. Neural correlates of trust. *Proc. Natl Acad. Sci.* 104, 20084 (2007).

15. Lüthi, A. & Lüscher, C. Pathological circuit function underlying addiction and anxiety disorders. *Nat. Neurosci.* 17, 1635–1643 (2014).

16. O’Connell, L. A. & Hofmann, H. A. Evolution of a vertebrate social decision-making network. *Science* 336, 1154–1157 (2012).

17. Bryce, C. R. Comparative evidence for the importance of the amygdala in regulating reward salience. *Cogn. Opin. Behav. Sci.* 22, 76–81 (2018).

18. Belova, M. A., Paton, J. J., Morrison, S. E. & Salzman, C. D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. *Neuron* 55, 970–984 (2007).

19. Cardinale, E. M. et al. Bilateral amygdala damage linked to impaired ability to predict others’ fear but preserved moral judgments about causing others fear. *Proc. Royal Soc. B* 288, 20202651 (2021).

20. Plichta, M. M. et al. Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. *Neuroimage* 60, 1748–1758 (2012).

21. Infantolino, Z. P., Luking, K. R., Sauder, C. L., Curtin, J. J. & Hajcak, G. Robust is not necessarily reliable: from within-subjects fMRI contrasts to between-subjects comparisons. *Neuroimage* 173, 146–152 (2018).

22. Geissberger, N. et al. Reproducibility of amygdala activation in facial emotion processing at 7T. *Neuroimage* 211, 116585 (2020).

23. McDermott, T. J. & Visual cortical regions show sufficient test-retest reliability while salience regions are unreliable during emotional face processing. *Neuroimage* 220, 117077 (2020).

24. Sladky, R. et al. Increased neural habituation in the amygdala and orbitofrontal cortex in social anxiety disorder revealed by fMRI. *PLoS ONE* 7, e50050 (2012).

25. Corbit, L. H. & Balleine, B. W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian instrumental transfer. *J. Neurosci.* 25, 962–970 (2005).

26. Terburg, D. et al. The basolateral amygdala is essential for rapid escape: a human and rodent study. *Cell 175*, 723–735 (2018). e716.

27. O’Connell, L. A. & Hofmann, H. A. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. *J. Comp. Neurol.* 519, 3599–3639 (2011).

28. Armony, J. L. et al. BNST neurocircuity in humans. *Neuroimage* 91, 311–323 (2014).

29. Gewirtz, J. C., Mcnish, K. A. & Davis, M. Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* 22, 625–648 (1998).

30. Somerville, L. H. et al. Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. *Cereb. Cortex* 23, 49–60 (2013).

31. Goode, T. D., Ressler, R. L., Acca, G. M., Miles, O. W. & Marren, S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. *Elife* 8, e45625 (2019).

32. Shackman, A. J. & Fox, A. S. Contributions of the central extended amygdala to fear and anxietycontributions of the central extended amygdala to fear and anxiety. *J. Neurosci.* 36, 8050–8063 (2016).

33. Pedersen, W. S., Mülfuter, L. T. & Larson, C. L. A high-resolution fMRI investigation of BNST and centromedial amygdala activity as a function of affective stimulus predictability, anticipation, and duration. *Soc. Cogn. Affect. Neurosci.* 14, 1167–1177 (2019).

34. Delgado, M. R., Frank, R. H. & Phelps, E. A. Perceptions of moral character modulate the neural systems of reward during the trust game. *Nat. Neurosci.* 8, 1611–1618 (2005).

35. King-Casas, B. et al. Getting to know you: reputation and trust in a two-person economic exchange. *Science* 308, 78–83 (2005).

36. Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U. & Fehr, E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. *Neuron* 58, 639–650 (2008).

37. Ambroggi, F., Ishikawa, A., Fields, H. L. & Nicola, S. M. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. *Neuron* 59, 648–661 (2008).
44. Diaconescu, A. O. et al. Hierarchical prediction errors in midbrain and septum during social learning. Soc. Cogn. Affect. Neurosci. 12, 618–634 (2017).
45. Iglesias, S. et al. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron 80, 519–530 (2013).
46. Fischbacher, U. z-Tree: Zurich toolbox for ready-made economic experiments. Exp. Econ. 10, 171–178 (2007).
47. Chang, L. J., Doll, B. B., van’t Wout, M., Frank, M. J. & Sanfey, A. G. Seeing is believing: trustworthiness as a dynamic belief. Cogn. Psychol. 61, 87–105 (2010).
48. Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B. & Krueger, F. Neural signatures of trust in reciprocity: a coordinate-based meta-analysis. Hum. Brain Mapp. 38, 1233–1248 (2017).
49. Sladky, R. et al. Slice-timing effects and their correction in functional MRI. NeuroImage 58, 588–594 (2011).
50. Calhoun, V. D. et al. The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Hum. Brain Mapp. 38, 5331–5342 (2017).
51. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011).
52. Tyszka, J. M. & Pauli, W. M. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template. Hum. Brain Mapp. 37, 3979–3998 (2016).
53. Torrisi, S. et al. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum. Brain Mapp. 36, 4076–4088 (2015).
54. Ganger, S. et al. Comparison of continuously acquired resting state and extracted analogues from active tasks. Hum. Brain Mapp. 36, 4053–4063 (2015).

Acknowledgements
The authors thank Helena Hartmann for her help in collecting the data. This work was funded by the Austrian Science Fund FWF (P29150). Claus Lamm and Lisa Rosenberger also acknowledge partial funding from the Vienna Science and Technology Fund (WWTF VRG13-007).

Author contributions
Conceptualization and methodology, R.S., F.R., L.R., J.v.H., C.L.; Investigation, F.R.; Formal analysis, R.S., F.R.; Writing—original draft, R.S., F.R., L.R., J.v.H., C.L.; Writing—review and editing, R.S., F.R., L.R., J.v.H., C.L.; Funding acquisition, C.L.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-02815-6.

Correspondence and requests for materials should be addressed to Ronald Sladky or Claus Lamm.

Peer review information Communications Biology thanks Roland Zahn and the other anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editors: Enzo Tagliazucchi and Karli Montague-Cardoso. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021