The complete chloroplast genome of Zanthoxylum piasezkii Maxim. (Rutaceae) and its phylogenetic analysis

Chong Sun\(^a\), Xia Liu\(^a\), Peng Dong\(^b\), Mi Kuang\(^b\) and Zexiong Chen\(^a\)

\(^a\)College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China; \(^b\)The Agricultural Technology Extension Station of Chongqing, Chongqing, China

ABSTRACT
Zanthoxylum piasezkii Maxim. is a widely distributed species of edible medicinal plant in China. It has been used for traditional spicy condiment and medicinal ingredients for quite a long time. In this study, the complete chloroplast genome sequence of \(Z.\) piasezkii was first reported and characterized from sequencing data. The complete chloroplast genome was determined to be 158,728 bp in length, consisting of a large single-copy (LSC) region (85,918 bp) and a small single copy (SSC) region (17,612 bp), which were separated by a pair of 27,599 bp inverted repeat (IR) regions. The chloroplast genome is predicted to contain 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content of cpDNA is 38.4%. The phylogenetic analysis of 12 complete chloroplast genomes reveals that \(Z.\) piasezkii is mostly related to the congeneric \(Z.\) bungeanum.
whole cp genome sequences of *Z. piasezkii* will pave the foundation for future research to understand the chloroplasts genomic information of the genus *Zanthoxylum* and conservation genetics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the National Natural Science Foundation of China [31901324], Natural Science Foundation general Project of Chongqing Science and Technology Bureau [cstc2019jcyj-msxmX0693], and Technology Innovation and Application Development special key Project of Chongqing Science and Technology Bureau [cstc2019jxcx-gksbX0110].

Data availability statement

The raw sequencing data is deposited in the SRA database with the accession number SRX9591236 (https://www.ncbi.nlm.nih.gov/sra/?term=SRX9591236).

References

Alexandros S. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9): 1312–1313.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19(1):11–15.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X. 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 13:713.

Yang CH, Cheng MJ, Chiang MY, Kuo YH, Wang CJ, Chen IS. 2008. Dihydrobenzo[c]phenanthridine alkaloids from stem bark of *Zanthoxylum nitidum*. J Nat Prod. 71(4):669–673.

Zhang QA, Zhang CK, Xiang Y, Tu ZB. 2001. Chemical constituents from *Zanthoxylum piasezkii*. Chin Tradit Herbal Drugs. 32(5): 399–400.