Cartan Maps and Projective Modules

Ming-chang Kang
Department of Mathematics
National Taiwan University
Taipei, Taiwan
E-mail: kang@math.ntu.edu.tw

Guangjun Zhu
School of Mathematical Sciences
Soochow University
Suzhou, China
E-mail: zhuguangjun@suda.edu.cn

Abstract. Let R be a commutative ring, π be a finite group, $R\pi$ be the group ring of π over R. Then the Cartan map $c : K_0(R\pi) \to G_0(R\pi)$ is injective. Suppose that R is a Dedekind domain with char $R = p > 0$ and π is a p-group. Then every finitely generated projective $R\pi$-module is isomorphic to $F \oplus A$ where F is a free module and A is a projective ideal of $R\pi$. Moreover, R is a principal ideal domain if and only if every finitely generated projective $R\pi$-module is isomorphic to a free module. Let R be a commutative noetherian ring with total quotient ring K, A be an R-algebra which is a finitely generated R-projective module. Suppose that I is an ideal of R such that R/I is artinian. Let $\{M_1, \ldots, M_n\}$ be the set of all maximal ideals of R containing I. Assume that the Cartan map $c_i : K_0(A/M_iA) \to G_0(A/M_iA)$ is injective for all $1 \leq i \leq n$. If P and Q are finitely generated A-projective modules with $KP \simeq KQ$, then $P/IP \simeq Q/IQ$.

2010 Mathematics Subject Classification. 20C05, 16S34, 18G05, 20C12.
Keywords and phrases. Cartan maps of left artinian rings, projective modules of finite groups, group rings, the Grothendieck groups.

The second-named author is supported by the National Natural Science Foundation of China (11271275) and by Foundation of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents.
§1. Introduction

Throughout this note, \(R\pi \) denotes the group ring where \(\pi \) is a finite group and \(R \) is a commutative ring; all the modules we consider are left modules. The present article arose from an attempt to understand the following theorem of Swan.

Theorem 1.1 (Swan [Sw1]) Let \(R \) be a Dedekind domain with quotient field \(K \) and \(\pi \) be a finite group. Assume that \(\text{char} R = 0 \) and no prime divisor of \(|\pi|\) is a unit in \(R \). If \(P \) is a finitely generated projective \(\mathbb{R} \pi \)-module, then \(K \otimes R P \) is a free \(K \pi \)-module and \(P \) is isomorphic to \(F \oplus A \) where \(F \) is a free \(\mathbb{R} \pi \)-module and \(A \) is a left ideal of \(\mathbb{R} \pi \). Moreover, for any non-zero ideal \(I \) of \(R \), we may choose \(A \) such that \(I + (R \cap A) = R \).

Several alternative approaches to the proof of some parts of Theorem 1.1 were proposed; see, for examples, [Ba1], [Gi], [Ri2], [Ha], [Gr, page 20], [Sw3, page 57, Theorem 4.2]; also see [Sw2, page 171, Theorem 11.2]. Using the injectivity of the Cartan map (see Definition 2.4), Bass recast a crucial step of the proof of Theorem 1.1 as follows.

Theorem 1.2 (Bass [Ba1, Theorem 1]) Let \(R \) be a commutative noetherian ring with total quotient ring \(K \) and denote by \(m - \text{spec}(R) \) the space of all the maximal ideals of \(R \) (under Zariski topology) with \(d = \dim(m - \text{spec}(R)) \). Let \(A \) be an \(R \)-algebra which, as an \(R \)-module, is a finitely generated projective \(R \)-module. Suppose that \(P \) is a finitely generated projective \(A \)-module satisfying that (i) \(K \otimes R P \) is a free \(K A \)-module of rank \(r \), and (ii) the Cartan map \(c_\mathcal{M} : K_0(A/\mathcal{M}A) \to G_0(A/\mathcal{M}A) \) is injective for any \(\mathcal{M} \in m - \text{spec}(R) \). Then \(P \) is isomorphic to \(F \oplus Q \) where \(F \) is a free \(A \)-module of rank \(r' \) and \(Q/\mathcal{M}Q \) is a rank \(d' \) free module over \(A/\mathcal{M}A \) for any \(\mathcal{M} \in m - \text{spec}(R) \) with \(d' = \min\{d, r\} \) and \(r' = r - d' \).

Note that the assumption about the Cartan map in Theorem 1.2 is valid when \(A = R\pi \) where \(\pi \) is a finite group, thanks to the following theorem of Brauer and Nesbitt.

Theorem 1.3 (Brauer and Nesbitt [BN1, BN2, Br, CR, page 442]) Let \(k \) be a field, \(\pi \) be a finite group. Then the Cartan map \(c : K_0(k\pi) \to G_0(k\pi) \) is injective.

It is known that the Cartan map \(c : K_0(A) \to G_0(A) \) is an isomorphism if the (left) global dimension of \(A \) is finite [Ei, Proposition 21; Sw2, page 104, Corollary 4.7]. However, it is possible that the global dimension of \(A \) is infinite while the Cartan map is injective. By Lemma 2.11 the global dimension of the group ring \(k\pi \) (\(k \) is a field) is infinite if \(\text{char} k = p > 0 \) and \(p \mid |\pi| \). Thus Theorem 1.3 provides plenty of
such examples. For examples other than the group rings, see [EIN, Section 5], [La3, Example 5.76], [BFVZ] and also [La1, Theorem 2.4; St].

In this article we will prove the following result which generalizes Theorem 1.3.

Theorem 1.4 Let R be a commutative artinian ring and π be a finite group. Then the Cartan map $c : K_0(R\pi) \to G_0(R\pi)$ is injective.

The main idea of the proof of Theorem 1.4 is to use the Frobenius functors as in Lam’s paper [La1]. For a generalization of this theorem, see Theorem 1.3.

We will also study a variant of Theorem 1.1, i.e. finitely generated $R\pi$-projective modules where R is a Dedekind domain with char $R = p > 0$. One of our results is the following (see Theorem 3.1 and Theorem 3.3).

Theorem 1.5 Let R be a Dedekind domain with quotient field K such that char $R = p > 0$. Let π be a finite group with $p \mid |\pi|$, and π_p be a p-Sylow subgroup of π.

1. Let M be a finitely generated $R\pi$-module. Then

 M is a projective $R\pi$-module,

 \Leftrightarrow The restriction of M to $R\pi_p$ is a projective $R\pi_p$-module,

 \Leftrightarrow The restriction of M to $R\pi'$ is a projective $R\pi'$-module where π' is any elementary abelian subgroup of π_p.

2. If π is a p-group and P is a finitely generated projective $R\pi$-module, then $K \otimes_R P$ is a free $K\pi$-module and P is isomorphic to $F \oplus A$ where F is a free module and A is a projective ideal of $R\pi$. Moreover, for any non-zero ideal I of R, we may choose A such that $I + (R \cap A) = R$.

In the situation of Part (2) of the above theorem, we will show in Theorem 3.5 that R is a principal ideal domain if and only if every finitely generated $R\pi$-projective module is free. For more cases, see Lemma 3.6, Lemma 4.6 and Lemma 4.9.

Terminology and notations. For the sake of brevity, a projective module over a ring A will be called an A-projective module (or simply A-projective). A projective ideal A of A is a left ideal of the ring A such that A is A-projective. An A-module M is called indecomposable if $M \cong M_1 \oplus M_2$ implies either $M_1 = 0$ or $M_2 = 0$; similarly for indecomposable projective modules. If A is a ring we will denote by rad(A) the Jacobson radical of A. If A is an R-algebra where R is a commutative ring with total quotient K, we denote $KA := K \otimes_R A$, $KM := K \otimes_R M$ if M is an A-module; similarly, R_M denotes the localization of R at the maximal ideal M and $M_M := R_M \otimes_R M$ if M is an A-module.
An $R\pi$-lattice M is a finitely generated $R\pi$-module which is an R-projective module as an R-module (see Definition 2.6). Two $R\pi$-lattices M and N belong to the same genus if $R_M \otimes_R M$ is isomorphic to $R_M \otimes_R N$ for any maximal ideal M of R [CR page 643].

If M is an $R\pi$-module and π' is a subgroup of π, then we may regard M as an $R\pi'$-module through the ring homomorphism $R\pi' \rightarrow R\pi$; such an $R\pi'$-module is called the restriction of M to $R\pi'$ and is denoted by $M_{\pi'}$. On the other hand, if N is an $R\pi'$-module and π' is a subgroup of π, then the $R\pi$-module $R\pi \otimes_{R\pi'} N$ is called the induced module of N and is denoted by N^{π}. For details, see [CR page 228].

§2. The Cartan map

Recall the definitions of the Grothendieck groups $K_0(A)$ and $G_0(A)$. Let A be a ring. Then $K_0(A)$ is the abelian group defined by generators $[P]$ where P is a finitely generated A-projective module, with relations $[P] = [P'] + [P'']$ whenever there is a short exact sequence of projective A-modules $0 \rightarrow P' \rightarrow P \rightarrow P'' \rightarrow 0$. In a similar way, if A is a left noetherian ring, then $G_0(A)$ is the abelian group defined by generators $[M]$ where M is a finitely generated A-module, with relations $[M] = [M'] + [M'']$ whenever an exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ exists. For details, see [Sw3, Chapter 1].

Definition 2.1 ([Sw2, page 86]) Let A be a ring, I be a two-sided ideal of A. We say that A is I-complete if the natural map $A \rightarrow \lim_{\leftarrow n \in \mathbb{N}} A/I^n$ is an isomorphism.

Lemma 2.2 ([Sw2, page 89, Theorem 2.26]) If I is a two-sided ideal of a ring A such that A is I-complete, then there is a one-to-one correspondence between the isomor-
H"older composition series of finitely generated \(A\)-projective modules and the isomorphism classes of finitely generated \(A/I\)-projective modules given by \(P \mapsto P/IP\).

Lemma 2.3 Let \(A\) be a left artinian ring with Jacobson radical \(J\). Then \(K_0(A)\) and \(G_0(A)\) are free abelian groups of the same rank. In fact, it is possible to find finitely generated indecomposable projective \(A\)-modules \(P_1, P_2, \ldots, P_n\) and simple \(A\)-modules \(M_1, M_2, \ldots, M_n\) such that, for \(1 \leq i \leq n\), \(M_i \simeq P_i/JP_i\) and \(K_0(A) = \bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot [P_i]\), \(G_0(A) = \bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot [M_i]\). Moreover, each \(P_i\) is a left ideal generated by some idempotent element of \(A\).

Proof. Since \(J\) is a nilpotent ideal [La2 page 56], \(A\) is \(J\)-complete. On the other hand, if \(M\) is a simple \(A\)-module, then \(J \cdot M = 0\) [La2 page 54]; thus the family of simple \(A\)-modules is identical to that of \(A/J\)-modules.

Note that \(A/J\) is left artinian and \(\text{rad}(A/J) = 0\). It is semisimple by the Artin-Wedderburn Theorem [La2 page 57]. Since any \(A/J\)-module is projective [La2 page 29], a simple \(A/J\)-module is an indecomposable \(A/J\)-projective module. If \(Q\) is a finitely generated indecomposable \(A/J\)-projective module, then \(Q \oplus Q' \simeq (A/J)^{(t)}\) for some module \(Q'\) and some integer \(t\). By the Krull-Schmidt-Azumaya Theorem [CR, page 128], \(Q\) is isomorphic to some minimal left ideal of \(A/J\). It follows that every finitely generated indecomposable \(A/J\)-projective module is isomorphic to a minimal left ideal of \(A/J\) (which is generated by some idempotent of \(A/J\)). Thus the family of simple \(A/J\)-modules is identical to that of finitely generated indecomposable \(A/J\)-projective modules.

Apply the correspondence of Lemma 2.2. Since \(A\) is \(J\)-complete, any idempotent in \(A/J\) can be lifted to one in \(A\) [Sw2 page 86, Proposition 2.19], which gives rise to an indecomposable \(A\)-projective module. \(\blacksquare\)

Definition 2.4 Let \(A\) be a left artinian ring. The Cartan map \(c : K_0(A) \to G_0(A)\) is defined as follows. For any finitely generated \(A\)-projective module \(P\), find a Jordan-H"older composition series of \(P\): \(M_0 = P \supset M_1 \supset M_2 \supset \cdots \supset M_t = \{0\}\), where each \(M_i/M_{i+1}\) is a simple \(A\)-module. Define \(c([P]) = \sum_{0 \leq i \leq t-1} [M_i/M_{i+1}] \in G_0(A)\). It is easy to see that \(c\) is a well-defined group homomorphism.

By Lemma 2.3, write \(K_0(A) = \bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot [P_i]\), \(G_0(A) = \bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot [M_i]\). If \(c([P_i]) = \sum_{1 \leq j \leq n} a_{ij}[M_j]\) where \(a_{ij} \in \mathbb{Z}\), the matrix \((a_{ij})_{1 \leq i, j \leq n}\) is called the Cartan matrix. Clearly the Cartan map is injective if and only if \(\det(a_{ij}) \neq 0\).

In general, the Cartan map \(c : K_0(A) \to G_0(A)\) may be defined for a left noetherian ring \(A\) by sending \([P] \in K_0(A)\) (where \(P\) is a finitely generated \(A\)-projective module) to \([P] \in G_0(A)\) by regarding \(P\) as a finitely generated \(A\)-module. As noted before, if \(A\) is a left noetherian ring with finite global dimension, then the Cartan map \(c : K_0(A) \to \)
$G_0(A)$ is an isomorphism [Sw2, page 104]. In this article we will restrict our attention only to Cartan maps of left artinian rings.

Lemma 2.5 Let A be a left artinian ring with Jacobson radical J. Then A contains finitely many indecomposable projective ideals, P_1, P_2, \ldots, P_n, satisfying the following properties,

(i) $P_i \neq P_j$ if $i \neq j$;
(ii) each P_i is generated by an idempotent element of A;
(iii) every finitely generated A-projective module is isomorphic to $\bigoplus_{1 \leq i \leq n} P_i^{(m_i)}$ for some non-negative integers m_i;
(iv) $\{P_i/JP_i : 1 \leq i \leq n\}$ forms the family of all the isomorphism classes of simple A-modules. In fact, P_i is the projective cover of P_i/JP_i.

Proof. The proofs of (i), (ii) and (iii) are implicit in the proof of Lemma 2.3. As to the definition of projective covers, see [Sw2, page 88]. The proof of (iv) follows from [Sw2, page 89, Corollary 2.25].

For the proof of Theorem 1.4 recall the definitions of $G_0^R(R\pi)$ and Frobenius functors. Note that the definition of Frobenius functors in Definition 2.7 is that given in [Sw3] and is slightly different from that in [La1].

Definition 2.6 ([Sw3, page 2]) Let R be a commutative ring, A be an R-algebra which is a finitely generated R-module. Define $G_0^R(A)$ to be the abelian group with generators $[M]$ where M is a finitely generated A-module which is R-projective as an R-module, with relations $[M] = [M'] + [M'']$ whenever there is a short exact sequence of A-modules $0 \to M' \to M \to M'' \to 0$ such that M', M, M'' are R-projective as R-modules. Note that $G_0^R(R\pi)$ is a commutative ring if π is a finite group [Sw3, page 7].

Definition 2.7 ([La1, Sw3, page 15]) Let π be a finite group, Grp_π be the category whose objects are all the subgroups of π with morphisms $\text{hom}(\pi_1, \pi_2)$ consisting of the unique injection if $\pi_1 \subset \pi_2 \subset \pi$ with the understanding that $\text{hom}(\pi_1, \pi_2) = \emptyset$ if $\pi_1 \not\subset \pi_2$. Let Ring be the category of commutative rings. A Frobenius functor consists of the following data,

(i) for each subgroup π' of π, there corresponds a commutative ring $F(\pi')$,
(ii) for subgroups $\pi_1 \subset \pi_2 \subset \pi$ and the injection $i : \pi_1 \to \pi_2$, there exist the ring homomorphism $i^* : F(\pi_2) \to F(\pi_1)$ and the additive group homomorphism $i_* : F(\pi_1) \to F(\pi_2)$ satisfying the properties that $i^* : \text{Grp}_\pi \to \text{Ring}$ is a contravariant functor and i_* from finite groups to abelian groups is a covariant functor,
(iii) (Frobenius identity) for each injection \(i : \pi_1 \to \pi_2 \), if \(x \in F(\pi_1), \ y \in F(\pi_2) \), then
\[i_*(x) \cdot y = i_*(x \cdot (i^*y)). \]

It is not difficult to see that \(\pi' \mapsto G^R_0(R\pi') \) is a Frobenius functor where \(R \) is a commutative ring and \(G^R_0(R\pi') \) is defined in Definition [2.6].

Definition 2.8 Given a finite group \(\pi \) and a Frobenius functor \(F : \text{Grp}_\pi \to \text{Ring} \), a Frobenius module \(M \) over \(F \) consists of the data

(i) for each subgroup \(\pi' \) of \(\pi \), there corresponds an \(F(\pi') \)-module \(M(\pi') \);

(ii) for each injection \(i : \pi_1 \to \pi_2 \), there exist the contravariant additive functor
\(i^* : M(\pi_2) \to M(\pi_1) \) and the covariant additive functor \(i_* : M(\pi_1) \to M(\pi_2) \) such that if \(x \in F(\pi_2), \ u \in M(\pi_2) \), then \(i^*(x \cdot u) = i^*(x) \cdot i^*(u) \);

(iii) for any injection \(i : \pi_1 \to \pi_2 \) and \(x \in F(\pi_1), \ v \in M(\pi_2), \) then
\[i_*(x) \cdot v = i_*(x \cdot i^*(v)) ; \]
if \(y \in F(\pi_2), \ u \in M(\pi_1) \), then
\[y \cdot i_*(u) = i_*(i^*(y) \cdot u). \]

Let \(R \) be a commutative ring, \(\pi \) be a finite group. Let \(F \) be the Frobenius functor defined by \(\pi' \mapsto G^R_0(R\pi') \). It is easy to show that \(\pi' \mapsto G_0(R\pi') \) and \(\pi' \mapsto K_0(R\pi') \) are Frobenius modules over \(F \).

The morphism of Frobenius modules over a given Frobenius functor can be defined in an obvious way. For details, see [Sw3, pages 16–18]. If \(M_1 \) and \(M_2 \) are Frobenius modules over a Frobenius functor \(F \) and \(\varphi : M_1 \to M_2 \) is a morphism over \(F \), then \(\text{Ker}(\varphi) \) and \(\text{Coker}(\varphi) \), defined in the obvious way, are also Frobenius modules over \(F \).

If \(R \) is a commutative artinian ring, the Cartan map of Definition [2.3] defined by
\(K_0(R\pi') \to G_0(R\pi') \) is a morphism of Frobenius modules over the Frobenius functor
\(\pi' \mapsto G^R_0(R\pi') \).

Definition 2.9 ([Sw3, pages 22–23]) Let \(\pi \) be a finite group, \(\mathcal{C} \) be a class of certain subgroups of \(\pi \). If \(F : \text{Grp}_\pi \to \text{Ring} \) is a Frobenius functor and \(M \) is a Frobenius module over \(F \). We define
\[
F(\pi)_\mathcal{C} = \sum_{\pi' \in \mathcal{C}} i_*(F(\pi')),
\]
\[
M(\pi)_\mathcal{C} = \sum_{\pi' \in \mathcal{C}} i_*(M(\pi')),
\]
\[
M(\pi)^\mathcal{C} = \bigcap_{\pi' \in \mathcal{C}} \text{Ker}\{i^* : M(\pi) \to M(\pi')\}.
\]

It can be shown that \(F(\pi)_\mathcal{C} \) is an ideal of \(F(\pi) \), \(M(\pi)_\mathcal{C} \) and \(M(\pi)^\mathcal{C} \) are submodules of \(M(\pi) \) over \(F(\pi) \), both of \(M(\pi)/M(\pi)_\mathcal{C} \) and \(M(\pi)^\mathcal{C} \) are modules over \(F(\pi)/F(\pi)_\mathcal{C} \), (see [Sw3, pages 22-23, Lemma 2.6 and Lemma 2.7]).
Now we turn to the proof of Theorem 1.4. Our proof is an adaptation of the proof in [Sw3, page 36, Theorem 2.20].

Suppose that R is a commutative artinian ring and π is a finite group. We will show that the Cartan map $c_\pi : K_0(R\pi) \to G_0(R\pi)$ is injective.

Step 1. We claim that if $c_{\pi'}$ is injective for any cyclic subgroup π' of π, then c_π is injective for the group π.

Consider the Frobenius functor $F : \text{Grp}_\pi \to \text{Ring}$ defined by $F(\pi') = G_0^R(R\pi')$ where π' is any subgroup of π. Note that the Cartan map $c_{\pi'} : K_0(R\pi') \to G_0(R\pi')$ is a morphism of Frobenius modules $K_0(R\pi') \to G_0(R\pi')$ over the Frobenius functor F. Define a Frobenius module by $M(\pi') = \text{Ker}\{c_{\pi'} : K_0(R\pi') \to G_0(R\pi')\}$. Note that $M(\pi') = 0$ if π' is a cyclic subgroup by the assumption at the beginning of this step.

Let \mathcal{C} be the class of all the cyclic subgroups of π. Thus $M(\pi)^\mathcal{C} = M(\pi)$ since $M(\pi') = 0$ if π' is cyclic.

Let $|\pi| = n$. Then $n^2 \cdot (G_0^R(R\pi)/G_0^R(R\pi)^{\mathcal{C}}) = 0$ by Artin’s induction theorem [Sw3, page 24, Corollary 2.12]. Since $M(\pi)^\mathcal{C}$ is a module over $G_0^R(R\pi)/G_0^R(R\pi)^{\mathcal{C}}$, it follows that $n^2 \cdot M(\pi)^\mathcal{C} = 0$ by [Sw3, page 23, Lemma 2.10].

As $M(\pi)^\mathcal{C} = M(\pi)$ and $M(\pi)$ is a subgroup of $K_0(R\pi)$ which is a free abelian group of finite rank by Lemma 2.3, we find that $M(\pi)^\mathcal{C}$ is a torsion subgroup of $K_0(R\pi)$. It follows that $M(\pi)^\mathcal{C} = 0$.

Note that the above arguments was formalized in [La1, Corollary 3.5].

Step 2. It remains to show that $c_\pi : K_0(R\pi) \to G_0(R\pi)$ is injective if π is a cyclic group.

Without loss of generality, we may assume that R is a commutative artinian local ring. Write $R = (R, \mathcal{M})$ where \mathcal{M} is the maximal ideal of R and $k = R/\mathcal{M}$ is the residue field.

Let $\pi = \langle \sigma \rangle$ be a cyclic group of order m. We may write $k\pi = k[\sigma] \simeq k[X]/(X^m - 1)$ where $k[X]$ is the polynomial ring. Note that $\text{rad}(R) = \mathcal{M}$ and $\text{rad}(R) \cdot R\pi \subset \text{rad}(R\pi)$ (see, for examples, [La2, page 74, Corollary 5.9; Sw2, page 170, Lemma 11.1]). Thus

$$\frac{R\pi/ \text{rad}(R\pi)}{\text{rad}(R\pi)/R\pi} \simeq \frac{R\pi/ \mathcal{M} \cdot R\pi}{\text{rad}(R\pi)/R\pi} \simeq \frac{k\pi}{\text{rad}(k\pi)} \simeq k[X]/\langle f(X) \rangle$$

with $f(X) = \prod_{1 \leq i \leq t} f_i(X)$ where $f_1(X), \ldots, f_t(X)$ are all the distinct monic irreducible factors of $X^m - 1$ in $k[X]$.

It follows that $S_i = k[X]/\langle f_i(X) \rangle$, $1 \leq i \leq t$, are all the simple modules over $k[X]/\langle f(X) \rangle \simeq R\pi/ \text{rad}(R\pi)$. By Lemma 2.3, S_1, \ldots, S_t are all the non-isomorphic simple $R\pi$-modules and their projective covers P_1, \ldots, P_t are all the non-isomorphic indecomposable $R\pi$-projective modules. Consequently, $K_0(R\pi) = \bigoplus_{1 \leq i \leq t} \mathbb{Z} \cdot [P_i]$ and $G_0(R\pi) = \bigoplus_{1 \leq i \leq t} \mathbb{Z} \cdot [S_i]$. We will consider the Cartan map $c_\pi : K_0(R\pi) \to G_0(R\pi)$.

8
Write $J = \text{rad}(R\pi)$. For $1 \leq i \leq t$, consider the filtration $P_i \supset JP_i \supset J^2P_i \supset \cdots \supset J^sP_i = \{0\}$ (note that J is a nilpotent ideal). Each quotient module $J^jP_i/J^{j+1}P_i$ can be regarded as a module over $R\pi/J \simeq k[X]/\langle f_i(X) \rangle$. Note that $\bar{f}_i \cdot J^jP_i/J^{j+1}P_i = 0$ because $0 = \bar{f}_i \cdot S_i \simeq \bar{f}_i \cdot P_i/JP_i$ (remember that $R\pi$ is a commutative ring as π is cyclic). Thus $J^jP_i/J^{j+1}P_i$ becomes a module over $k[X]/\langle f_i(X) \rangle$. It follows that the only simple $R\pi$-module which may arise as a Jordan-Hölder composition factor of P_i is $S_i = k[X]/\langle f_i(X) \rangle$. We conclude that $c_\pi([P_i]) = a_i[S_i]$ for some positive integer a_i. Hence the determinant of the Cartan matrix is non-zero.

Example 2.10 Let R be a commutative artinian ring, π be a finite group. By Lemma 2.5 every finitely generated projective $R\pi$-module is a direct sum of projective ideals generated by some idempotent of $R\pi$. If P and Q are finitely generated $R\pi$-projective modules, we will show that $P \simeq Q$ if and only if P and Q have the same composition factors. For, if $[P] = [Q]$ in $G_0(R\pi)$, then $c([P] - [Q]) = 0$ where $c : K_0(R\pi) \to G_0(R\pi)$ is the Cartan map. By Theorem 1.4 $[P] = [Q]$ in $K_0(R\pi)$. Thus $P \oplus F \simeq Q \oplus F$ for some free $R\pi$-module F of finite rank. By the Krull-Schmidt-Azumaya Theorem [CR, page 128], we find that $P \simeq Q$.

On the other hand, let A be a left artinian ring such that the Cartan map $c : K_0(A) \to G_0(A)$ is not injective (such an artinian ring does exist by [BFVZ, Lemma 2]). By Lemma 2.3 choose indecomposable A-projective modules P_1, P_2, \ldots, P_n and simple A-modules M_1, M_2, \ldots, M_n such that, for $1 \leq i \leq n$, $M_i \simeq P_i/JP_i$. Then there is some $1 \leq i \leq n$ such that M_j arises in the composition factor of P_i for some $j \neq i$; otherwise, the determinant of the Cartan matrix would be positive. In general the Cartan matrix is a diagonal matrix (as in the proof of the Theorem 1.4) if and only if $\text{Hom}_A(P_i, P_j) = 0$ for any $1 \leq i, j \leq n$ with $i \neq j$ by [La2, page 325, Proposition (21.19)].

The following lemma is a folklore among experts (see, for example, [La3, page 190]). We include it here for completeness.

Lemma 2.11 Let k be a field, π be a finite group.

(i) If $\text{char } k = 0$ or $\text{char } k = p > 0$ with $p \nmid |\pi|$, then the global dimension of $k\pi$ is zero.

(ii) If $\text{char } k = p > 0$ with $p \mid |\pi|$, then the global dimension of $k\pi$ is infinite.

Proof. (i) $k\pi$ is semisimple by Maschke’s Theorem. Thus every $k\pi$-module is projective [La2, page 29].

(ii) $k\pi$ is right self-injective by [La3, page 420, Exercise 14]. Hence it is right Kasch [La3, page 411]. By [La3, page 189, Corollary 5.74] the global dimension of $k\pi$ is either zero or infinite.
Now suppose that \(\text{char } k = p > 0 \) and \(p \mid |\pi| \). Once we find a \(k\pi \)-module which is not projective, then we are done (because of the assertion of the above paragraph).

Define \(u = \sum_{\sigma \in \pi} \sigma \in k\pi \). Then \(u^2 = 0 \) and \(u \) belongs to the center of \(k\pi \).

Write \(I = k\pi \cdot u \), the ideal generated by \(u \). We claim that \(k\pi/I \) is not a projective \(k\pi \)-module.

Otherwise, \(I \) is a direct summand of \(k\pi \). It follows that \(I = k\pi \cdot e \) for some idempotent \(e \) of \(k\pi \). Write \(e = \alpha u \) where \(\alpha \in k\pi \). Then \(e = e^2 = (\alpha u)(\alpha u) = \alpha^2 u^2 = 0 \).

This is impossible. \(\blacksquare \)

§3. Projective modules

Theorem 3.1 Let \(R \) be a Dedekind domain with \(\text{char } R = p > 0 \). Let \(\pi \) be a finite group, \(M \) be an \(R\pi \)-module. Assume that \(p \mid |\pi| \) and choose a \(p \)-Sylow subgroup \(\pi_p \) of \(\pi \). Then \(M \) is an \(R\pi \)-projective module. \(\iff \) The restriction of \(M \) to \(R\pi_p \) is an \(R\pi_p \)-projective module. \(\iff \) The restriction of \(M \) to \(R\pi' \) is an \(R\pi' \)-projective module where \(\pi' \) is any elementary abelian subgroup of \(\pi_p \).

Proof. Suppose \(M \) is an \(R\pi_p \)-projective module. We will show that \(M \) is a projective module over \(R\pi \). Since \([\pi : \pi_p] \) is a unit in \(R \), it follows that \(M \) is \((\pi, \pi_p) \)-projective and \(M \) is a direct summand of \((M_{\pi_p})^\pi \) by [CR, page 452, Proposition 19.5] (where \(M_{\pi_p} \) is the restriction of \(M \) to \(R\pi_p \), and \((M_{\pi_p})^\pi := R\pi \otimes_{R\pi_p} (M_{\pi_p}) \)).

Since \(M_{\pi_p} \) is an \(R\pi_p \)-projective module, it follows that \((M_{\pi_p})^\pi \) is an \(R\pi \)-projective module. So is its direct summand \(M \).

Now assume that \(M \) is an \(R\pi' \)-projective module for all elementary abelian \(p \)-group \(\pi' \) of \(\pi_p \). By [Ch, Corollary 1.1], \(M \) is an \(R\pi_p \)-projective module.

Note that, by a theorem of Rim [R1, Proposition 4.9], a module \(M \) is \(R\pi \)-projective if and only if so is it when restricted to all the Sylow subgroups of \(\pi \). But the situation of our theorem requires that \(\text{char } R = p > 0 \); thus only a \(p \)-Sylow subgroup is sufficient to guarantee the projectivity over \(R\pi \). \(\blacksquare \)

Remark. If \(\pi \) is a \(p \)-group, recall the definition of the Thompson subgroup of \(\pi \), which is denoted by \(J(\pi) \) [Is, page 202]: \(J(\pi) \) is the subgroup of \(\pi \) generated by all the elementary abelian subgroups of \(\pi \).

With the definition of \(J(\pi) \), we may rephrase Chouinard’s theorem [Ch, Corollary 1.1] as follows: Let \(\pi \) be a \(p \)-group and \(M \) be an \(R\pi \)-module where \(R \) is any commutative ring. Then \(M \) is an \(R\pi \)-projective module if and only if so is its restriction to the group
ring of \(J(\pi) \) over \(R \). Similarly, Theorem 3.1 may be formulated via the Thompson subgroup of \(\pi_p \).

Recall the following well-known lemma, which will be used in the sequel.

Lemma 3.2 ([Ba1, Lemma 2.4; Sw3, page 13]) Let \(A \) be a ring, \(I \) be a two-sided ideal of \(A \) with \(I \subset \text{rad}(A) \). If \(P \) and \(Q \) are finitely generated \(A \)-projective modules satisfying that \(P/IP \cong Q/IQ \), then \(P \cong Q \).

Theorem 3.3 Let \(p \) be a prime number, \(\pi \) be a \(p \)-group, and \(R \) be a Dedekind domain with quotient field \(K \) such that \(\text{char}(R) = p \). If \(P \) is a finitely generated \(R\pi \)-projective module, then \(KP \) is a free \(K\pi \)-module, and \(P \cong F \oplus A \) where \(F \) is a free \(R\pi \)-module and \(A \) is a projective ideal of \(R\pi \). Moreover, for any non-zero ideal \(I \) of \(R \), we may choose \(A \) such that \(I + (R \cap A) = R \).

On the other hand, if it is assumed furthermore that \(R \) is semilocal, then every finitely generated \(R\pi \)-projective module \(P \) is a free module.

Proof. By [CR, page 114, Theorem 5.24] \(\text{rad}(K\pi) = \sum_{\lambda \in \pi} K \cdot (\lambda - 1) \). Thus \(K\pi/\text{rad}(K\pi) \cong K \). By Lemma 2.2 (with \(I = \text{rad}(K\pi) \)), all the finitely generated \(K\pi \)-projective modules are free modules, because all the finitely generated projective modules over \(K\pi/\text{rad}(K\pi) \) are the free modules \(K^{(n)} \).

Consequently, if \(P \) is a finitely generated \(R\pi \)-projective module, then \(KP \) is a free \(K\pi \)-module. Thus we may apply Theorem 1.2 to \(P \) because the second assumption of Theorem 1.2 is valid by Theorem 1.3 (note that \(\dim(m \text{- spec}(R)) \leq 1 \)). Thus \(P \cong F \oplus A \) where \(F \) is a free \(R\pi \)-module and \(A \) satisfies that, for any maximal ideal \(\mathcal{M} \) of \(R \), \(A/\mathcal{M}A \) is isomorphic to \(R'\pi \) where \(R' = R/\mathcal{M} \). In case \(R \) is semilocal, then \(\dim(m \text{- spec}(R)) = 0 \) and therefore finitely generated \(R\pi \)-projective modules are free by Theorem 1.2. We remark that the result when \(R \) is semilocal may be deduced also from Theorem 3.5.

From \(P \cong F \oplus A \), we find that \(KF \oplus KA \cong KP \) is \(K\pi \)-free. By the Krull-Schmidt-Azumaya’s Theorem [CR, page 128] it follows that \(KA \cong K\pi \). Thus \(A \) is a projective ideal of \(R\pi \). It remains to show that \(A \) may be chosen such that \(I + (R \cap A) = R \) for any non-zero ideal \(I \) of \(R \).

First we will show that \(A \) and the free module \(R\pi \) belong to the same genus. For any maximal ideal \(\mathcal{M} \) of \(R \), consider the projective \(R\mathcal{M}\pi \)-modules \(A_{\mathcal{M}} \) and \(R_{\mathcal{M}}\pi \). As \(\mathcal{M}R_{\mathcal{M}}\pi \subset \text{rad}(R_{\mathcal{M}}\pi) \) by [La2, page 74, Corollary 5.9] and \(A_{\mathcal{M}}/\mathcal{M}A_{\mathcal{M}} \cong A/\mathcal{M}A \cong R_{\mathcal{M}}\pi/\mathcal{M}R_{\mathcal{M}}\pi \), we may apply Lemma 3.2. It follows that \(A_{\mathcal{M}} \) and \(R_{\mathcal{M}}\pi \) are isomorphic.
Once we know that A and R_{π} belong to the same genus, we may apply Roiter’s Theorem [Sw3, page 37]. Thus we have an exact sequence of R_{π}-modules $0 \to A \to R_{\pi} \to X \to 0$ such that $I + \text{Ann}_{R}X = R$ where $\text{Ann}_{R}X = \{r \in R : r \cdot X = 0\}$. Note that $R \cap A = \text{Ann}_{R}R_{\pi}/A$ and $R_{\pi}/A \cong X$. Hence the result.

Remark. The assumption that no prime divisor of $|\pi|$ is a unit in R is crucial in the above Theorem 3.3 and in Theorem 1.1. In fact, if some prime divisor of $|\pi|$ is invertible in R, then R_{π} contains a non-trivial idempotent element (and thus KP will not be a free K_{π}-module for some projective module P); Coleman shows that the converse is true also [CR, page 678].

The following theorem, due to S. Endo, provides an alternative proof of Theorem 3.3.

Theorem 3.4 Let R be a Dedekind domain with $\text{char } R = p > 0$, and π be a p-group. If P is a finitely generated R_{π}-projective module, then P is isomorphic to $R_{\pi} \otimes_{R} P_{0}$ for some R-projective module P_{0}, and is also isomorphic to a direct sum of a free module and a projective ideal of the form $R_{\pi} \otimes_{R} I$ where I is some non-zero ideal of R. Moreover, for any non-zero ideal I' of R, the ideal I may be chosen so that $I + I' = R$.

Proof. Let $\phi : R_{\pi} \to R$ be the augmentation map defined by $\phi(\lambda) = 1$ for any $\lambda \in \pi$. Let J be the kernel of ϕ. Define $J_{0} = \sum_{\lambda \in \pi} R \cdot (\lambda - 1)$. Then $J = J_{0} \cdot R_{\pi}$.

Let K be the quotient field of R. Then $\text{rad}(K_{\pi}) = J_{0} \cdot K_{\pi}$ by [CR, page 114]. Since $\text{rad}(K_{\pi})$ is nilpotent, so is the ideal J of R_{π}. It follows that R_{π} is J-complete and $J \subset \text{rad}(R_{\pi})$.

Apply Lemma 2.2 to get a one-to-one correspondence of finitely generated projective modules over R_{π} and over R. For any finitely generated projective module P over R_{π}, define $P_{0} = P/JP$. Since both P and $R_{\pi} \otimes_{R} P_{0}$ descend to P_{0}, it follows that P is isomorphic to $R_{\pi} \otimes_{R} P_{0}$.

Every finitely generated projective R-module is isomorphic to $R^{(n)} \oplus I$ where n is a non-negative integer and I is a non-zero ideal of R (see [Sw3, page 219, Theorem A15]). Thus a finitely generated projective R_{π}-module is isomorphic to a direct sum of a free module and a projective ideal of the form $R_{\pi} \otimes_{R} I$. If I' is any non-zero ideal of R, we can find a non-zero ideal I_{0} of R such that $I \cong I_{0}$ and $I_{0} + I' = R$ by [Sw3, page 218, Theorem A12].

A corollary of Theorem 3.4 is the following.

Theorem 3.5 Let R be a Dedekind domain with $\text{char } R = p > 0$, and π be a p-group. Then R is a principal ideal domain if and only if every finitely generated R_{π}-projective module is isomorphic to a free module.
The following lemma is a partial generalization of Theorem 3.3 from p-groups to finite groups π with $p \mid |\pi|$.

Lemma 3.6 Let R be a Dedekind domain with char $R = p > 0$ and with quotient field K. Let π be a finite group such that $p \mid |\pi|$, and π_p be a p-Sylow subgroup of π. Let P be a finitely generated $R\pi$-projective module, P_{π_p} be the restriction of P to $R\pi_p$, and $(P_{\pi_p})^\pi := R\pi \otimes_{R\pi_p} (P_{\pi_p})$ be the induced module of P_{π_p}. Then $K(P_{\pi_p})^\pi$ is $K\pi$-free and $(P_{\pi_p})^\pi$ is isomorphic to $F \oplus A$ where F is a free $R\pi$-module and A is a projective ideal of $R\pi$.

Proof. If $K(P_{\pi_p})^\pi$ is $K\pi$-free, then we may apply Theorem 1.2 to finish the proof. It remains to show that $K(P_{\pi_p})^\pi$ is $K\pi$-free.

By Theorem 3.3, $K P_{\pi_p}$ is $K\pi_p$-free. It follows that $K(P_{\pi_p})^\pi$ is $K\pi$-free. Done.

Note that P is a direct summand of $(P_{\pi_p})^\pi$ by [CR, pages 449-450].

Example 3.7 A different proof of Theorem 1.1 other than that in [Sw1] is given in [Gr, Lecture 4]. It is proved first that, if R is a semilocal Dedekind domain with char $R = 0$ and no prime divisor of $|\pi|$ is a unit in R, then every finitely generated $R\pi$-projective module is a free module [Gr] page 21,Theorem 4.7).

We remark that we may derive the above result directly from Theorem 1.1. For, if all the maximal ideals of R are $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_t$, define $I = \mathcal{M}_1 \cap \mathcal{M}_2 \cap \cdots \cap \mathcal{M}_t$ and apply Theorem 1.1. Then every finitely generated $R\pi$-projective module P is isomorphic to $F \oplus A$ where F is free and A is a projective ideal of $R\pi$ with $I + (R \cap A) = R$. It follows that $R \cap A = R$, i.e. $1 \in A \subset R\pi$. Thus $A = R\pi$ is also a free module.

Note that, when $\pi = \{1\}$ is the trivial group, the similar statement as the above result (for semilocal rings) is not true in general. It is well-known that projective modules over a quasi-local ring are free modules (Kaplansky’s Theorem; see [Sw2, page 82, Corollary 2.14] for the case of finitely generated projective modules).

When R is a commutative ring with only finitely many maximal ideals (e.g. a semilocal ring) having no non-trivial idempotent elements, then every projective R-module (which may not be finitely generated) is a free module, an analogy of Kaplansky’s Theorem proved by Hinohara [Hi]; a similar result for finitely generated R-projective modules was proved independently by S. Endo.

Thus if R is a commutative ring with only finitely many maximal ideals, say, t is the number of distinct maximal ideals, we will show that there are at most t primitive idempotents in R. Write $R/\text{rad}(R) = \prod_{1 \leq i \leq t} K_i$ where each K_i is a field (and is indecomposable). If $R = \prod_{1 \leq j \leq s} R_j$, from $\text{rad}(R) = \prod_{1 \leq j \leq s} \text{rad}(R_j)$, we find that $R/\text{rad}(R)$ has at least s maximal ideals and therefore $s \leq t$. Thus we may write $R = \prod_{1 \leq j \leq s} R_j$ where each R_j has no non-trivial idempotent elements; obviously $s \leq t$. 13
Although a projective R-module is not necessarily free, it is isomorphic to a direct sum of free modules over these R_j's by applying Hinohara's Theorem.

Example 3.8 We remind the reader that Theorem 3 in [Ba1, page 533] is generalized as Theorem 8.2 in [Ba2, page 24] (see also [Sw2, page 171, Theorem 11.2]). We reproduce these two theorems as follows.

Theorem A ([Ba1, Theorem 3]) Let R be a commutative noetherian ring, A be an R-algebra which is a finitely generated R-module and $d = \dim(m\text{-}\text{spec}(R))$. Let P be a finitely generated A-projective module such that there is an integer r such that $P/M \simeq (A/MA)^{(r)}$ for all maximal ideals M in R, then $P \simeq F \oplus Q$ where F is a free module of rank r', $Q/M \simeq (A/MA)^{(d')}$ for all maximal ideals M in R with $d' = \min\{d, r\}$ and $r' = r - d'$.

Theorem B ([Ba2, page 24, Theorem 8.2]) Let R, A, d be the same as above. Let P be a finitely generated A-projective module such that P_M contains a direct summand isomorphic to $A_M^{(d+1)}$ for all maximal ideals M in R. Then $P \simeq A \oplus Q$ for some projective module Q.

Let P be a finitely generated A-projective module in Theorem A. Note that the assumption for P (in the above Theorem A and also in Theorem 1.2) that $P/M \simeq (A/MA)^{(r)}$ for all maximal ideals M in R is equivalent to the assumption that P and $A^{(r)}$ are locally isomorphic, i.e. $P_M \simeq (A_M)^{(r)}$ for any maximal ideal M in R. The proof is the same as that in Theorem 3.3 for the projective ideal A. Thus P satisfies the assumption of Theorem B.

When $r \geq d+1$, we find $P \simeq A \oplus Q$ by Theorem B. Since A_M is a (non-commutative) semilocal ring, the cancelation law is valid for finitely generated projective A_M-modules [Sw2, page 176]. Thus $Q_M \simeq A_M^{(r-1)}$ for any maximal ideal M in R. Proceed by induction on r to obtain the conclusion of Theorem A.

§4. A local criterion

Finally we will discuss the following question. Let R be a commutative noetherian ring with total quotient ring K, A be an R-algebra which is a finitely generated projective R-module. Let P and Q be finitely generated A-projective modules. If $KP \simeq KQ$, under what situation, can we conclude that $P \simeq Q$?
The prototype of this question is a theorem of Brauer and Nesbitt [BN1 page 12, Theorem 2; CR, page 424, Corollary 17.10]: Let \((R, \mathcal{M})\) be a discrete valuation ring with quotient field \(K\) such that \(\text{char}(\overline{R}/\mathcal{M}) = p > 0\). If \(\pi\) is a finite group, \(M\) and \(N\) are \(R\pi\)-lattices with \(KM \simeq KN\), then \([M/\mathcal{M}M] = [N/\mathcal{M}N]\) in \(G_0(\overline{R}/\mathcal{M}\pi)\). A generalization of this theorem by Swan is given in [Sw1 Corollary 6.5]; see [CR page 436, Corollary 18.16] also.

The above results of Brauer-Nesbitt and Swan are generalized furthermore by Bass as follows.

Theorem 4.1 (Bass [Ba1 Theorem 2; Sw3, page 12, Theorem 1.10; CR, page 671])

Let \((R, \mathcal{M})\) be a local ring with total quotient ring \(K\), \(A\) be an \(R\)-algebra which is a finitely generated \(R\)-projective module. Assume that the Cartan map \(c : K_0(A/\mathcal{M}A) \to G_0(A/\mathcal{M}A)\) is injective. If \(P\) and \(Q\) are finitely generated \(A\)-projective modules such that \(KP \simeq KQ\), then \(P \simeq Q\).

Proof. Step 1. Let \(S = R \setminus \bigcup_{1 \leq i \leq n} \mathcal{M}_i\), \(J = \bigcap_{1 \leq i \leq n} \mathcal{M}_i\). Then \(S^{-1}R\) is a semilocal ring with maximal ideals \(S^{-1}\mathcal{M}_1, S^{-1}\mathcal{M}_2, \ldots, S^{-1}\mathcal{M}_n\). Consider the projective modules \(S^{-1}P\) and \(S^{-1}Q\) over the algebra \(S^{-1}A\). We will show that \(S^{-1}P/S^{-1}J\) is injective in \(S^{-1}Q/S^{-1}JQ\). In Step 2. Assume this result (which will be proved in Step 2). Then we apply Lemma 3.2 (note that \(S^{-1}JA \subset \text{rad}(S^{-1}A)\) by [La2 page 74, Corollary 5.9]). We get \(S^{-1}P \simeq S^{-1}Q\), and therefore \(S^{-1}P/S^{-1}IP \simeq S^{-1}Q/S^{-1}IQ\).

Write the primary decomposition of \(I\) as \(I = \bigcap_{1 \leq i \leq n} I_i\) where \(I_i\) is an \(\mathcal{M}_i\)-primary ideal. Then \(S^{-1}I = \bigcap_{1 \leq i \leq n} S^{-1}I_i\). For \(1 \leq i \leq n\), since \(\langle S, I_i \rangle = R\), it follows that \(S^{-1}(R/I_i) \simeq R/I_i\). Thus \(S^{-1}(A/I_iA) \simeq A/I_iA\) and \(S^{-1}(P/I_iP) \simeq P/I_iP\), \(S^{-1}(Q/I_iQ) \simeq Q/I_iQ\). Since \(R/I = \bigcap_{1 \leq i \leq n} R/I_i\), we get \(P/IP \simeq \bigoplus_{1 \leq i \leq n} P/I_iP\), \(S^{-1}P/S^{-1}IP \simeq \bigoplus_{1 \leq i \leq n} S^{-1}P/S^{-1}IP\) and similarly for \(Q\) and \(S^{-1}Q\).

Now we have \(P/IP \simeq \bigoplus_{1 \leq i \leq n} P/I_iP \simeq \bigoplus_{1 \leq i \leq n} S^{-1}(P/I_iP) \simeq S^{-1}P/S^{-1}IP\) and \(Q/IQ \simeq S^{-1}Q/S^{-1}IQ\). Because we have shown that \(S^{-1}P/S^{-1}IP \simeq S^{-1}Q/S^{-1}IQ\), we find that \(P/IP \simeq Q/IQ\). If \(R\) is semilocal with \(I \subset \text{rad}(R)\), then \(P \simeq Q\) by Lemma 3.2.
In summary, define $S = R \setminus \bigcup_{1 \leq i \leq n} M_i$, $J = \bigcap_{1 \leq i \leq n} M_i$ and consider the $S^{-1}A$-projective modules $S^{-1}P$ and $S^{-1}Q$. In the next paragraph, we will show that the assumption $KP \simeq KQ$ carries over to the ring $S^{-1}A$.

Let K_S be the total quotient ring of $S^{-1}R$ and let $\phi : R \to S^{-1}R$ be the canonical ring homomorphism. For any element $a \in R$, if a is not a zero-divisor, then $\phi(a)$ is not a zero-divisor in $S^{-1}R$. Thus the map ϕ may be extended to $K \to K_S$. It follows that $K_S \otimes_{S^{-1}R} S^{-1}P \simeq K_S \otimes_R P \simeq K_S \otimes_K KP$. Similarly, $K_S \otimes_{S^{-1}R} S^{-1}Q \simeq K_S \otimes_K KQ$. Since $KP \simeq KQ$ by assumption, it follows that $K_S \otimes_{S^{-1}R} S^{-1}P$ is also isomorphic to $K_S \otimes_{S^{-1}R} S^{-1}Q$.

It remains to prove that $S^{-1}P/S^{-1}JP \simeq S^{-1}Q/S^{-1}JQ$.

Step 2. To simplify the notation, we may assume, without loss of generality, that R is a semilocal ring with maximal ideals M_1, \ldots, M_n and $J = \bigcap_{1 \leq i \leq n} M_i$. Let K be the total quotient ring of R. If $KP \simeq KQ$, we will prove that $P/JP \simeq Q/JQ$.

Define $S_i = R \setminus M_i$ for $1 \leq i \leq n$. Let the total quotient ring of $S_i^{-1}R$ be K_i and $\phi_i : R \to S_i^{-1}R$ be the canonical ring homomorphism. As in the last two paragraphs of Step 1, the map ϕ_i may be extended to a map $K \to K_i$ and we obtain an isomorphism of $K_i \otimes_{S_i^{-1}R} S_i^{-1}P$ with $K_i \otimes_{S_i^{-1}R} S_i^{-1}Q$.

Now we may apply Theorem 4.1 to the projective modules $S_i^{-1}P$ and $S_i^{-1}Q$ over the algebra $S_i^{-1}A$ for $1 \leq i \leq n$.

We find that $S_i^{-1}P \simeq S_i^{-1}Q$. Thus $S_i^{-1}P/S_i^{-1}JP \simeq S_i^{-1}Q/S_i^{-1}JQ$ for $1 \leq i \leq n$.

The remaining proof is analogous to that in Step 1. Note that $R/M_i \simeq S_i^{-1}(R/M_i)$. Thus $P/JP \simeq \bigoplus_{1 \leq i \leq n} P/M_i P \simeq \bigoplus_{1 \leq i \leq n} S_i^{-1}P/S_i^{-1}M_i P \simeq \bigoplus_{1 \leq i \leq n} S_i^{-1}P/S_i^{-1}JP \simeq \bigoplus_{1 \leq i \leq n} S_i^{-1}Q/S_i^{-1}JQ \simeq \cdots \simeq Q/JQ$.

Remark. When R is a semilocal ring and A is a maximal R-order, an analogous result of Theorem 4.1 can be found in [Sw3, page 102, Corollary].

The following theorem is communicated to us by S. Endo. It provides a generalization of Theorem 1.4 (with the aid of Theorem 1.3).

Theorem 4.3 Let (R, \mathcal{M}) be a commutative artinian local ring, A be an R-algebra which is a finitely generated free R-module. Then the Cartan map $K_0(A) \to G_0(A)$ is injective if and only if so is the Cartan map $K_0(A/\mathcal{M}A) \to G_0(A/\mathcal{M}A)$.

Proof. Since R satisfies the ACC condition and the DCC condition on ideals, we can find a filtration of ideals of R as follows: $R = J_0 \supset J_1 \supset \ldots \supset J_t = 0$ where t is some positive integer and $J_{i-1}/J_i \simeq R/\mathcal{M}$ for $1 \leq i \leq t$.

As A is a free R-module, every finitely generated A-projective module P is also R-free. Tensor the exact sequence $0 \to J_i \to J_{i-1} \to R/\mathcal{M} \to 0$ with P over R. Note
that \(J_i \otimes_R P \simeq J_i P \) as \(A \)-modules (because we may tensor the injection \(0 \to J_i \to R \) with \(P \)). It follows that we obtain a filtration of \(A \)-modules \(P = P_0 \supset P_1 = J_1 \supset \ldots \supset P_t = J_t P = 0 \) where \(P_{t-1}/P_t \simeq P/MP \). We conclude that \([P] = t[P/MP] \) in \(G_0(A) \).

By Lemma \(2.3 \) find projective \(A \)-modules \(P_1, P_2, \ldots, P_n \) and simple \(A \)-modules \(M_1, M_2, \ldots, M_n \) such that \(K_0(A) = \bigoplus_{1 \leq i \leq n} Z \cdot [P_i] \) and \(G_0(A) = \bigoplus_{1 \leq i \leq n} Z \cdot [M_i] \). The same simple \(A \)-modules \(M_i \) satisfies that \(G_0(A/MA) = \bigoplus_{1 \leq i \leq n} Z \cdot [M_i] \). Moreover, \(K_0(A/MA) = \bigoplus_{1 \leq i \leq n} Z \cdot [P_i/MP] \) by Lemma \(2.2 \).

Now if \([P_i/MP_i] = \sum_{1 \leq j \leq n} a_{ij} [M_j] \) in \(G_0(A/MA) \) where \(a_{ij} \) are some integers, then \([P_i] = \sum_{1 \leq j \leq n} t a_{ij} [M_j] \) in \(G_0(A) \) (note that \(G_0(A/MA) \) is naturally isomorphic to \(G_0(A) \) by [Sw2] page 94, Theorem 3.4). Thus the determinant of the Cartan matrix \((a_{ij})_{1 \leq i, j \leq n} \) is non-zero if and only if so is that of \((t a_{ij})_{1 \leq i, j \leq n} \).

The following theorem of Rim is a generalization of Theorem 4.1. However, its proof was omitted in [Ri2]. For the convenience of the readers, we supply a proof of it as an application of Theorem 4.2 and Theorem 4.3.

Theorem 4.4 (Rim [Ri2] Theorem 7) Let \(R \) be a commutative noetherian ring with total quotient ring \(K \), \(A \) be an \(R \)-algebra which is a finitely generated \(R \)-projective module. Suppose that \(I \) is an ideal of \(R \) such that \(R/I \) is artinian. Assume that the Cartan map \(c : K_0(A/IA) \to G_0(A/IA) \) is injective. If \(P \) and \(Q \) are finitely generated \(A \)-projective modules with \(KP \simeq KQ \), then \(P/IP \simeq Q/IQ \).

Proof. Write the primary decomposition of \(I \) as \(I = \bigcap_{1 \leq i \leq n} I_i \) where \(I_i \) is an \(M_i \)-primary ideal and each \(M_i \) is a maximal ideal of \(R \). Then \(A/IA \simeq \prod_{1 \leq i \leq n} A/I_i A \). It follows that this isomorphism induces isomorphisms \(K_0(A/IA) \simeq \bigoplus_{1 \leq i \leq n} K_0(A/I_i A) \) and \(G_0(A/IA) \simeq \bigoplus_{1 \leq i \leq n} G_0(A/I_i A) \). Note that, for \(1 \leq i \leq n \), \(A/I_i A \) is a \(R/I_i \)-free module and the Cartan map \(K_0(A/I_i A) \to G_0(A/I_i A) \) is injective. Apply Theorem 4.3. We find that the Cartan map \(K_0(A/MA) \to G_0(A/MA) \) is injective. Now we may apply Theorem 4.2 to finish the proof.

Example 4.5 With the aid of Theorem 4.1, we will show that Theorem 3.8 of Example 3.8 implies Theorem 1.2. Let \(A, R \) and \(d \) be given as in Theorem 1.2 and \(P \) be a finitely generated \(A \)-projective module. Suppose \(KP \) is free of rank \(r \). For any maximal ideal \(M \) in \(R \), consider \(P_M \). Now the (new!) base ring is the local ring \(R_M \). We will compare \(P_M \) with \(P^r = A^r_M \).

Let \(\phi : R \to R_M \) be the canonical ring homomorphism, and let \(K_M \) be the total quotient ring of \(R_M \). For any element \(a \in R \), if \(a \) is not a zero-divisor, then \(\phi(a) \) is not a zero-divisor in \(R_M \). Thus the map \(\phi \) may be extended to \(K \to K_M \). It follows
that $K_M \otimes_{R_M} P_M \simeq K_M \otimes_K K P$ is a free module and $K_M \otimes_{R_M} P_M$ is isomorphic to $K_M \otimes_{R_M} P'$.

Apply Theorem 4.1. We find that $P_M \simeq P' = A(r)^M$. Since P is locally free, we may apply Theorem 3 of Example 3.8 so that $P \simeq A \oplus Q$ where Q is locally free of rank $r - 1$ if $r \geq d + 1$ as in Example 3.8. The proof of Theorem 1.2 is finished by induction on r.

In general, a finitely generated $R\pi$-projective module may be written as a direct sum of indecomposable $R\pi$-projective modules. The following lemma tells what an indecomposable $R\pi$-projective module looks like in case $|\pi|$ is invertible in R.

Lemma 4.6 Let R be a Dedekind domain with quotient field K, π be a finite group such that $|\pi|$ is invertible in R. If P is a finitely generated indecomposable $R\pi$-projective module, then P is isomorphic to a projective ideal of $R\pi$; moreover, there is some projective ideal A generated by a primitive idempotent of $R\pi$ such that P and A belong to the same genus.

Proof. Note that $R\pi$ becomes a maximal R-order because $|\pi|$ is invertible in R [CR, page 582]. As such, it is known that (i) $R\pi$ is left hereditary; (ii) a finitely generated $R\pi$-module P is $R\pi$-projective if and only if it is an $R\pi$-lattice; (iii) the module P is an indecomposable $R\pi$-projective module if and only if $K P$ is a simple $K\pi$-module [CR, page 565].

Now we come to the proof. By a theorem of Kaplansky every projective module over a left hereditary ring is a direct sum of projective ideals (see [CE, page 13, Theorem 5.3]). Since the projective module P we consider is indecomposable, it is isomorphic to a projective ideal of $R\pi$. It remains to find some projective ideal A such that A is a direct summand of $R\pi$ satisfying that P and A belong to the same genus. Since $K P$ is a simple $K\pi$-module, it is isomorphic to a minimal left ideal V of $K\pi$ by the Artin-Wedderburn Theorem. Since $K\pi$ is semi-simple, write $K\pi = V \oplus V'$ where V' another left ideal of $K\pi$.

From the embedding $R\pi \to K\pi$, define $A = R\pi \cap V$ and define A' by the exact sequence $0 \to A \to R\pi \to A' \to 0$. Hence $K A = V$ and A' is R-torsion free. It follows that A' is $R\pi$-projective and the exact sequence $0 \to A \to R\pi \to A' \to 0$ splits. Thus A is generated by an idempotent element u of $R\pi$. This idempotent element u is primitive because A is indecomposable (remember that $K A = V$ which is a simple $K\pi$-module).

Note that, if $i : P \to R\pi \cap V$ ($= A$) is the embedding of P via Kaplansky’s Theorem and $K P \simeq V$ (see the proof of [CE, page 13, Theorem 5.3]), it is not true in general that $i(P)$ should be equal to A. 18
Finally we will show that P and A belong to the same genus. Both KP and KA are isomorphic to V. Because $R\pi$ is a maximal order, we may apply [CR, page 643, Proposition 31.2] to finish the proof. Note that this result may be proved alternatively by applying Theorem 4.1.

Remark. In the above lemma, KA is not free if $|\pi| > 1$. In case KP is free, the following result is known: Let R be a Dedekind domain with quotient field K and π be a finite group. If $\gcd(|\pi|, \text{char } R) = 1$ and P is a finitely generated $R\pi$-projective module such that KP is free, then $P \simeq F \oplus A$ where F is a free module and A is some projective ideal (see [Sw1, Theorem 7.2]).

Lemma 4.7 (Villamayor [Vi]) Let π be a finite group and R be a commutative ring such that $\text{rad}(R) = 0$ and $|\pi|$ is a unit in R. Then $\text{rad}(R\pi) = 0$.

Proof. This theorem is proved essentially in [Vi, page 626, Theorem 3]; as noted in [Vi, page 627, Remark 1], if R is a commutative ring such that $|\pi|$ is a unit in R, the proof of Theorem 3 in [Vi, page 626] remains valid (as π is a finite group). Be aware that, according to the convention of [Vi, page 621], a ring A is called semisimple if $\text{rad}(A) = 0$. Villamayor’s Theorem can be found also in [Pa, page 278]; it is easy to check that the proof of this theorem in [Pa, page 278] works as well so long as R is any commutative ring such that $|\pi|$ is a unit in R (in other words, the assumption that R is a field may be relaxed).

Example 4.8 Let π be a finite group. Choose a Dedekind domain R such that R is not semilocal and $|\pi|$ is a unit in R. Then $\text{rad}(R) = 0$. Thus $\text{rad}(R\pi) = 0$ by Villamayor’s Theorem. It follows that $R\pi/\text{rad}(R\pi) \simeq R\pi$ is not left artinian. Hence $R\pi$ is not semiperfect [La2, page 346]. By Theorem (25.3) of [La2, page 371], any finitely generated indecomposable projective module over a semiperfect ring is isomorphic to a projective ideal generated by a primitive idempotent (compare this result with Lemma 4.6).

Lemma 4.9 Let R be a commutative noetherian integral domain with $\text{char } R = p > 0$, π be a finite group such that $p \mid |\pi|$. Assume that the p-Sylow subgroup π_p is normal in π. Write $\pi' = \pi/\pi_p$.

1. Define a right ideal $I := \sum_{\lambda \in \pi_p} (\lambda - 1) \cdot R\pi$. Then I is a nilpotent two-sided ideal of $R\pi$, $R\pi/I \simeq R\pi'$, and $\text{rad}(R\pi) = (I, \text{rad}(R))$.

2. There is a one-to-one correspondence between the isomorphism classes of finitely generated $R\pi'$-projective modules and the isomorphism classes of finitely generated $R\pi'$-projective modules given by $P \leadsto P/IP$ where I is defined in (1). Note that $|\pi'|$ is a unit in R.

19
Proof. Step 1. For any $\sigma \in \pi$ and any $\lambda \in \pi_p$, $\sigma(\lambda - 1)\sigma^{-1} \in I$, because π_p is a normal subgroup of π. Thus I is a two-sided ideal of $R\pi$. Clearly $R\pi/I \simeq R\pi'$.

Let K be the quotient field of R. As in the proof of Theorem 3.3, we find that $\text{rad}(K\pi_p) = \sum_{\lambda \in \pi_p} K \cdot (\lambda - 1)$. Since $\text{rad}(K\pi_p)$ is nilpotent, so is the ideal $I_0 := \sum_{\lambda \in \pi_p} R \cdot (\lambda - 1)$ in $R\pi_p$. It follows that $I = I_0 \cdot R\pi$ and $I^n = I_0^n \cdot R\pi$. Thus I is nilpotent and is contained in $\text{rad}(R\pi)$. Note that $|\pi'|$ is a unit in R.

Using the fact that $|\pi'|$ is a unit in R, we will show that $\text{rad}(R\pi') = \text{rad}(R) \cdot R\pi'$. Because $\text{rad}(R) \cdot R\pi' \subset \text{rad}(R\pi')$, the fact that $\text{rad}(R\pi') = \text{rad}(R) \cdot R\pi'$ is equivalent to $\text{rad}(R'\pi') = 0$ where $R' = R/\text{rad}(R)$. The latter assertion is true by Lemma 4.7. Hence $\text{rad}(R\pi') = \text{rad}(R) \cdot R\pi'$.

From $\text{rad}(R\pi/I) \simeq \text{rad}(R\pi')$ and $\text{rad}(R\pi/I) = \text{rad}(R\pi)/I$ [La2 page 55], we find that $\text{rad}(R\pi) = \langle I, \text{rad}(R) \rangle$.

Step 2. Since I is nilpotent, $R\pi$ is I-complete. Apply Lemma 2.2 to get the one-to-one correspondence of finitely generated projective modules over $R\pi$ and $R\pi'$.

Remark. Let the notations be the same as the above lemma. Assume furthermore that the group extension $1 \to \pi_p \to \pi \to \pi' \to 1$ splits. Then the composite of the imbedding $R\pi' \to R\pi$ and the canonical projection $R\pi \to R\pi'$ is the identity map on $R\pi'$. By the same idea of Theorem 3.4, it can be shown that every finitely generated $R\pi$-projective module is of the form $R\pi \otimes_{R\pi'} P_0$ for some $R\pi'$-projective module P_0. 20
References

[Ba1] H. Bass, *Projective modules over algebras*, Ann. Math. 73 (1961), 532–542.

[Ba2] H. Bass, *K-theory and stable algebra*, Publ. Math. IHES 22 (1964), 5–60.

[BFVZ] W. D. Burgess, K. R. Fuller, E. R. Voss and B. Zimmermann-Huisgen, *The Cartan matrix as an indicator of finite global dimension for artinian rings*, Proc. Amer. Math. Soc. 95 (1988), 157–161.

[BN1] R. Brauer and C. Nesbitt, *On the modular representation of groups of finite order I*, Univ. of Toronto Studies, Math. Ser. #4, 1937; also in “Collected Papers of Richard Brauer, vol. 1”, MIT Press, 1980.

[BN2] R. Brauer and C. Nesbitt, *On the modular characters of groups*, Ann. Math. 42 (1941), 556–590.

[Br] R. Brauer, *On the Cartan invariants of groups of finite order*, Ann. Math. 42 (1941), 53–61.

[Ch] L. G. Chouinard, *Projectivity and relative projectivity over group rings*, J. Pure Appl. Algebra 7 (1976), 287–302.

[CE] H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, 1956, Princeton.

[CR] C. W. Curtis and I. Reiner, *Methods of representation theory vol. 1*, John Wiley & Sons, Inc. 1981, New York.

[Ei] S. Eilenberg, *Algebras of cohomologically finite dimension*, Comm. Math. Helv. 28 (1954), 310–319.

[EIN] S. Eilenberg, M. Ikeda and T. Nakayama, *On the dimension of modules and algebras I*, Nagoya Math. J. 8 (1955), 49–57.

[Gi] I. Giorgiutti, *Modules projectifs sur algèbres de groupes finis*, C. R. Acad. Sci. Paris 250 (1960), 1419–1420.

[Gr] K. W. Gruenberg, *Relation modules of finite groups*, CBMS Regional Conference Series in Math. vol. 25, Amer. Math. Soc., 1976, Providence.

[Ha] A. Hattori, *Rank element of a projective module*, Nagoya Math. J. 25 (1965), 113–120.
[Hi] Y. Hinohara, *Projective modules over semilocal rings*, Tohoku Math. J. 14 (1962), 205–211.

[Is] I. M. Isaacs, *Finite group theory*, Amer. Math. Soc., Providence, 2008.

[La1] T. Y. Lam, *Induction theorems for Grothendieck groups and Whitehead groups of finite groups*, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 91–148.

[La2] T. Y. Lam, *A first course in noncommutative rings*, GTM vol. 131, Springer-Verlag, Berlin, 1991.

[La3] T. Y. Lam, *Lectures on modules and rings*, GTM vol. 189, Springer-Verlag, 1999, New York.

[Pa] D. S. Passman, *The algebraic structure of group rings*, John Wiley & Sons, 1977, New York.

[Ri1] D. S. Rim, *Modules over finite groups*, Ann. Math. 69 (1959), 700–712.

[Ri2] D. S. Rim, *On projective class groups*, Trans. Amer. Math. Soc. 98 (1961), 459–467.

[St] J. R. Strooker, *Faithfully projective modules and clean algebras*, Ph. D. dissertation, Univ. Utrecht, 1965.

[Sw1] R. G. Swan, *Induced representations and projective modules*, Ann. Math. 71 (1960), 552–578.

[Sw2] R. G. Swan, *Algebraic K-theory*, LNM vol. 76, Springer-Verlag, 1968, Berlin.

[Sw3] R. G. Swan, *K-theory of finite groups and orders*, LNM vol. 149, Springer-Verlag, Berlin, 1970.

[Vi] O. E. Villamayor, *On the semisimlicity of group algebras*, Proc. Amer. Math. Soc. 9 (1958), 621–627.