CONCOMITANT FACTORS
AFFECTING GESTATION LENGTH AND PERINATAL MORTALITY IN HOLSTEIN-FRIESIAN COWS

N. M. Bogas¹, A. V. Sherasiya², J. C. Simões³

¹ Veterinarian, The Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, e-mail: neca.smb@gmail.com

² Veterinarian, Ex-Veterinary Officer, Wankaner, India, e-mail: sherasiyaanjum@gmail.com; ORCID ID 0000-0002-1598-1820

³ PhD, The Veterinary and Animal Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, e-mail: jsimoes@utad.pt; ORCID ID 0000-0002-4997-3933

SUMMARY
The objective of this study was to identify and quantify factors presenting simultaneous moderate or strong influence on gestation length and perinatal mortality (until 4 days postpartum) in Holstein-Friesian dams. The overall gestation length least square mean was 278.2 ± 0.2 days (n = 962). According to the multivariate model (p < 0.001), a shorter gestation length was observed in Holstein-Friesian (–2.0 days) and Red Holstein-Friesian (–3.9 days) breeds whereas Brown Swiss (2.0 days) and Aberdeen-Ange (2.3 days) breeds showed a longer gestation length. Primiparous cows and twin pregnancies, as well calving in June and July, shortened gestation length in –1.4, –4.0, –1.9 and –1.8 days, respectively. The perinatal mortality incidence was 7.4% (n = 72) and was more likely to occur in twin pregnancies (p < 0.01) than in pregnancies carrying female (odds ratio = 8.1) or male (odds ratio = 7.9) singletons, as well as in primiparous (odds ratio = 2.6) than multiparous dams (p < 0.05). In conclusion, parity and twinning were the major factors which influenced simultaneously gestation length of dams and perinatal mortality incidence. Nevertheless, all studied factors had a significant impact on gestation length and should be considered for reproductive management programs of dairy herds.

Key words: breed sire, dairy cows, herd health, perinatal mortality, pregnancy, twinning.
INTRODUCTION
The calving represents an important step in dairy farms due to their influence on the immune status, health and welfare of the dam, calf survival and the following lactation. During the periparturium period, a significant immune suppression of the dam, with emphasis for lymphocytes and neutrophils depression activity, increasing the susceptibility to infectious diseases [24]. Also several herd health management practices, such as vaccination, mastitis control, dry cow procedures, and nutritional assessment in dry cow period need be taken into consideration while estimating the gestation length (GL). The determination of GL is one major key to estimate the date of calving. This GL estimation can increase some days of the lactating period and reduces the dry cow period without negative impact on the next lactation [8], representing an improved revenue and reducing puérperal diseases prevalence of dam and offspring. It has been reported that intermediate GL was related with more productive dairy cows [28] presenting fewer problems during the next lactation [25, 27]. Moreover, A. Kok et al. [8] observed that dairy cows presenting a short dry period (3 to 5 weeks) produces less 1.2 kg of milk per day than in normal dry period (6 to 8 weeks). So, despite the hormonal (e.g., progesterone, estrogens) and immunological (e.g., major histocompatibility complex I, pro-inflammatory cytokines) influences on the pregnancy maintenance and/or term [16, 18, 19, 26], environmental (e.g., sex of calf, parity of dam, climate) and genetic factors (e.g., breed) causing strong GL variation should be evaluated in different worldwide regions according to the herd management and environmental factors.

In other hand, some studies also reported the association between shorter (foetal immaturity) and longer offspring. It has been reported that intermediate GL was the most important predictor of stillbirth occurrence [4, 29]. Despite dystocia, GL was considered the direct association with perinatal mortality [21, 29] and the incidence [4, 29]. Despite dystocia, GL was considered the most important predictor of stillbirth occurrence [23]. Nevertheless, some phenotypic and genetic factors which affect the GL (e.g., parity, fetal sex and twinning) also have a direct association with perinatal mortality [21, 29] and the risks also should be evaluated and quantified.

Our study aimed to evaluate and quantify the main factors which moderately or strongly affect, in simultaneous, GL and perinatal mortality in (Portuguese) Holstein-Frisian dairy cows.

MATERIAL AND METHODS
Study area. This retrospective study was carried out in a typical Portuguese small and familiar dairy herd (Lat. 41°32’58.2” N and Long. 8°33’48.7” W). According to the Köppen-Geiger climate classification [38], in this region, the climate is considered temperate with dry and mild summer and mild winter with rainfall (Mediterranean Csb).

Animals and dairy herd. All complete records were taken into consideration from June 2000 to April 2017. According the milk yield records for 962 Holstein-Friesian cows in the dairy herd, the 305-day standardized varied from less than 8000 kg (year 2000) to more than 10,000 kg (year 2017; Pearson correlation r = 0.31; n = 962; p < 0.001). The main purpose of this herd was milk production, but economic revenues were complemented with meat production. At present, a total of 105 producing cows (Holstein-Frisian and some Red Holstein-Frisian, Jersey, Montbeliarde, Brown Swiss, and dairy crossbreeding breeds), 65 heifers for self-replacement and 50 steers and heifers for meat production. In 2016 (the last complete studied year), 79 dairy cows were dried in this herd. At national level, in 2016, a total of 1676 herds presenting an average size of 52 dairy cows (reaching the dry period) per herd were evaluated for official milk recording. The 305-day standardized milk production was, in average, 9450 kg. For artificial insemination purposes, 198 sires from 8 breeds were used throughout the studied period.

Records. The following information was retrieved from the herd database from each calving throughout the studied period: 1) breed sires (Holstein-Friesian, Brown Swiss, Aberdeen-Angus, Jersey, Red Holstein-Friesian, Montbeliarde, Limousine and Belgian Blue); 2) pregnancy type and sex (twin pregnancy, single pregnancy with female singleton and single pregnancy with male singleton); 3) parity (primiparous vs multiparous cows); 4) month of calving, and; 5) year of calving.

The GL was calculated considering the difference between calving and artificial insemination dates.

The perinatal mortality incidence was calculated considering at calf mortality, including stillborn, until 4 days. For twins, the presence of mortality was considered when at least one calf died.

Statistical analysis. A full least squares model was build to test fixed effects on GL by the following formula:

\[Y_{i,k} = \mu + H_i + W_j + S_k + T_m + P_n + \varepsilon_{ijklmno} \]

where

- \(Y_{i,k} \) = GL;
- \(\mu \) = overall mean;
- \(H_i \) = fixed effect due to \(i \)-th breed sires;
- \(W_j \) = fixed effect due to \(j \)-th pregnancy type and sex;
- \(S_k \) = fixed effect due to \(k \)-th parity;
- \(T_m \) = fixed effect due to \(m \)-th month;
- \(P_n \) = fixed effect due to \(n \)-th year;
- \(\varepsilon_{ijklmno} \) = random error.

A multivariable logistic model was also made using the Hosmer and Lemeshow method [17] to test the effect of the five dependent variables on perinatal mortality incidence. In a first step, univariate association of each one variable and the perinatal mortality incidence was tested and included on a full model if p-value < 0.25. Non-significant variables, at 0.05 level for likelihood ratio tests, were successively removed and the full model was compared with the previous one. Finally, only the significant variables were considered at 0.05 level for Wald test and respective odd ratios were calculated.

The JMP11 package [36] was used for all evaluations.

RESULTS AND DISCUSSION
The estimated least square mean of GL was 278.2 ± 0.2 (± S.E.) days and 95% interval of confidence from 277.9 to 278.6 days and was influenced by all studied factors (Fig.).

Four breed sires were found to influence significantly the GL on Holstein-Friesian dams. These findings are in agreement with the reported by H. D. Norman et al. [14] for both dairy breed sires. A longer GL on Holstein-Friesian inseminated with Belgian Blue (2.3 days) and Aberdeen Angus (2.6 days) was observed by A. M. Fitzgerald et al. [12] using a gestational age model prediction based on ultrasonography technique. R. Fouz et al. [33] also observed a significant longer GL on Holstein dams when served by Limousine (5.3 days), Belgian Blue (1.6 days) and Gallician Blonde (4.5 days) than by Holstein breed sires. Even if non-significant values on GL were observed for Belgian Blue and Limousine breed sires of our study, and probably due to the low samples number of these breeds, the GL profile of crossbreeding between Holstein-Friesian and
Term	Scaled Estimate	Std Error	Lower 95%	Upper 95%	P value
Intercept	277.5	0.5	276.6	278.4	<0.001
Breed sire					
Aberdeen-Angus (n=28)	2.3	1.0	0.4	4.2	0.02
Belgian Blue (n=12)	0.5	1.3	-2.1	3.2	0.68
Holstein-Friesian (n=817)	-2.0	0.4	-2.9	-1.2	<0.001
Red Holstein-Friesian (n=19)	-3.9	1.1	-6.0	-1.8	<0.001
Jersey (n=21)	-0.1	1.1	2.2	2.0	0.92
Limousine (n=13)	1.7	1.3	-0.9	4.2	0.20
Montbeliarde (n=16)	-0.4	1.2	-2.7	1.9	0.72
Brown Swiss (n=36)	2.0	0.8	0.3	3.6	0.02
Pregnancy /sex					
Single [female] (n=451)	1.3	0.3	0.7	1.9	<0.001
Twins (n=42)	-4.0	0.5	-5.1	-3.0	<0.001
Single [male] (n=469)	2.8	0.3	2.2	3.4	<0.001
Parity					
Multiparous (n=278)	1.4	0.2	1.0	1.7	<0.001
Primiparous (n=675)	-1.4	0.2	-1.7	-1.0	<0.001
Month					
Jan (n=96)	1.3	0.5	0.4	2.3	0.01
Fev (n=76)	0.1	0.6	-1.0	1.1	0.92
Mar (n=83)	0.2	0.5	-0.8	1.3	0.69
Apr (n=90)	1.2	0.5	0.2	2.2	0.02
Mai (n=79)	-0.5	0.5	-1.5	0.6	0.39
Jun (n=62)	-1.9	0.6	-3.0	-0.7	0.002
Jul (n=75)	-1.8	0.6	-2.9	-0.7	0.001
Aug (n=93)	-0.7	0.5	-1.7	0.3	0.19
Set (n=71)	0.2	0.6	-0.9	1.3	0.71
Oct (n=84)	-0.3	0.5	-1.4	0.7	0.53
Nov (n=76)	1.1	0.6	0.0	2.2	0.05
Dec (n=77)	1.0	0.5	0.1	2.1	0.07
Year					
2000 (n=26)	0.1	0.9	-1.7	2.0	0.88
2001 (n=49)	1.7	0.7	0.3	3.1	0.01
2002 (n=65)	2.2	0.6	1.0	3.5	<0.001
2003 (n=62)	0.4	0.6	-0.8	1.7	0.48
2004 (n=54)	-0.2	0.7	-1.5	1.2	0.82
2005 (n=49)	1.9	0.7	0.6	3.3	0.005
2006 (n=49)	0.2	0.7	-1.1	1.6	0.74
2007 (n=57)	0.8	0.7	-0.5	2.1	0.20
2008 (n=61)	-0.4	0.7	-1.7	0.9	0.51
2009 (n=59)	-1.3	0.6	-2.5	0.0	0.05
2010 (n=50)	-0.9	0.7	-2.2	0.5	0.21
2011 (n=56)	-0.3	0.7	-1.6	1.0	0.64
2012 (n=49)	-0.6	0.7	-2.0	0.7	0.36
2013 (n=53)	-0.2	0.7	-1.5	1.2	0.79
2014 (n=63)	-0.5	0.6	-1.7	0.7	0.38
2015 (n=67)	-0.7	0.6	-1.9	0.5	0.25
2016 (n=77)	-1.2	0.6	-2.3	-0.1	0.04
2017 (n=16)	-1.3	1.2	3.7	1.2	0.31

Fig. Effects of major factors on gestation length of Holstein-Friesian cows
The shorter GL observed in primiparous cows are probably A. Vieira-Neto et al. [2] also suggested a slowest development of hypothalamic-pituitary-adrenal axis activity in males during the last days of pregnancy. In our study, primiparous showed shorter GL than multiparous cows, in agreement with other studies [2, 14, 25]. The shorter GL observed in primiparous cows are probably related to the calf weight [15] which increase quickly in the last two weeks of gestation [37].

The heat stress seems to play an important role in GL in temperate and hot climates. In our study, a shorter GL was observed in June (~1.9) and July (~1.8) whereas in several months in fall and winter the GL was longer. Similar profile findings were observed in other studies [25, 30, 32, 34]. In our study, the GL was improved by single pregnancies carrying males (2.8 days) and females (1.3 days) and agree with longer GL (1.1 to 1.8 days) observed in other studies [25, 31, 34]. It is known that the median litter size is negatively correlated with GL in species carrying multiple foetuses [10, 11, 31] due to several factors, such as endocrine and physical patterns. In cows, A. Vieira-Neto et al. [2] also suggested a slowest development of hypothalamic-pituitary-adrenal axis activity in males during the last days of pregnancy.

In our study, primiparous showed shorter GL than multiparous cows in agreement with other studies [2, 14, 25]. The shorter GL observed in primiparous cows are probably related to the calf weight [15] which increase quickly in the last two weeks of gestation [37].

The heat stress seems to play an important role in GL in temperate and hot climates. In our study, a shorter GL was observed in June (~1.9) and July (~1.8) whereas in several months in fall and winter the GL was longer. Similar profile findings were observed in other studies [25, 30, 32, 34]. Probably, the heat stress improves the foetal stress [9, 35], which increase the GL in overall. All these results indicate a strong influence of genetic breed sire on GL.

A strong shorter GL was also observed in twins pregnancies and indicated that these two effects are the major effects which should be considered to estimate the GL. Shorter GL of twins than single pregnancies were also observed by H. D. Norman et al. [14] (~4.6 days), R. Tomasek et al. [34] (~5.2 days) and S. E. Echternkamp et al. [7] (~5.7 days). Moreover, significant differences between twins pregnancies carrying two males (277.3 ± 0.6 days) than carrying two females (274.3 ± 0.7 days) or one male and one female (273.6 ± 0.5 days) were also observed by A. Vieira-Neto et al. [2]. In our study, the GL was improved by single pregnancies carrying males (2.8 days) and females (1.3 days) and agree with longer GL (1.1 to 1.8 days) observed in other studies [25, 31, 34]. It is known that the median litter size is negatively correlated with GL in species carrying multiple foetuses [10, 11, 31] due to several factors, such as endocrine and physical patterns. In cows, A. Vieira-Neto et al. [2] also suggested a slowest development of hypothalamic-pituitary-adrenal axis activity in males during the last days of pregnancy.

In our study, primiparous showed shorter GL than multiparous cows, in agreement with other studies [2, 14, 25]. The shorter GL observed in primiparous cows are probably related to the calf weight [15] which increase quickly in the last two weeks of gestation [37].

Groups	level 1 (reference)	level 2	Odds ratio (95% CI)	p-value
Single pregnancy carrying female singleton	Primiparous	8.1 (2.5–26.0)	0.001	
Single pregnancy carrying male singleton	Primiparous	7.9 (2.5–25.2)	0.002	
Multiparous cows	Twinning	2.6 (1.2–5.9)	0.02	
Twinning X parity interaction			0.78	

| 95% CI: 95% interval confidence |
6. Dystocia, stillbirth, gestation length, and birth weight in Holstein, Jersey, and reciprocal crosses from a plan of experiment / K. M. Olson, B. G. Cassell, A. J. McAllister, S. P. Washburn // J. Dairy Sci. – 2009. – Vol. 92 (12). – P. 6167–6175; DOI: 10.3168/jds.2009-2260.

7. Echternkamp S. E., Gregory K. E. Effects of twinning on gestation length, retained placenta, and dystocia // J. Anim. Sci. – 1999. – Vol. 77 (1). – P. 47-57; DOI: 10.2527/1997.77139x.

8. Effect of dry period length on milk yield over multiple lactations / A. Kok, A. T. M. van Kneqsel, C. E. van Middelaar [et al.] // J. Dairy Sci. – 2017. – Vol. 100 (1). – P. 739–749; DOI: 10.3168/jds.2016-10963.

9. Effect of heat stress during late gestation on immune function and growth performance of calves: isolation of altered colostral and calf factors / A. P. Monteiro, T. S. Tao, I. M. Thompson, G. E. Dahl // J. Dairy Sci. – 2014. – Vol. 97 (10). – P. 6426–6439; DOI: 10.3168/jds.2013-7891.

10. Factors affecting days open, gestation length, and calving interval in Florida dairy cattle / H. M. Silva, C. J. Wilcox, W. W. Thatcher [et al.] // J. Dairy Sci. – 1992. – Vol. 75 (1). – P. 288–293; DOI: 10.3168/jds.1992-0302(92)77764-9.

11. Factors affecting gestation duration in the bitch / B. E. Elts, A. P. Davidson, G. Hosgood [et al.] // Theriogenology. – 2004. – Vol. 64 (2). – P. 242–251; DOI: 10.1016/j.theriogenology.2004.11.007.

12. Fitzgerald A. M., Ryan D. P., Berry D. P. Factors associated with the differential in actual gestational age and gestational age predicted from transrectal ultrasonography in pregnant dairy cows // Theriogenology. – 2015. – Vol. 84 (3). – P. 358–364; DOI: 10.1016/j.theriogenology.2015.03.023.

13. Genetic and environmental causes of variation in gestation length of Jersey crossbred cattle / A. Kumar, A. Mandal, A. K. Gupta, P. Ratan // Vet. World. – 2016. – Vol. 9 (4). – P. 351–355; DOI: 10.14202/vetworld.2016.351-355.

14. Genetic and environmental factors that affect gestation length in dairy cattle / H. D. Norman, J. R. Miller, J. W. Hutchison [et al.] // J. Dairy Sci. – 2009. – Vol. 92 (5). – P. 2259–2269; DOI: 10.3168/jds.2007-0982.

15. Gestation length in Danish Holsteins has weak genetic associations with stillbirth, calving difficulty, and calf size / M. Hansen, M. S. Lund, J. Pedersen, L. G. Christensen // Livest. Prod. Sci. – 2004. – Vol. 91 (1–2). – P. 23–33; DOI: 10.1016/j.livprodsci.2004.06.007.

16. Hansen P. J. Physiology and Endocrinology Symposium: maternal immunological adjustments to pregnancy and parturition in ruminants and possible implications for postpartum uterine health: is there a prepartum-postpartum nexus? // J. Anim. Sci. – 2013. – Vol. 91 (4). – P. 1639–1649; DOI: 10.2527/jas.2012-5934.

17. Hosmer D. W., Lemeshow S. Applied logistic regression. – 2nd ed. – USA: Wiley. 1989. – 320 p.

18. Investigations into the mechanisms controlling parturition in cattle / S. Shenavari, S. Preissing, B. Hoffmann [et al.] // Reproduction. – 2012. – Vol. 144 (2). – P. 279–292; DOI: 10.1530/REP-11-0471.

19. Kimura K., Reinhardt T. A., Goff J. P. Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle // J. Dairy Sci. – 2006. – Vol. 89 (7). – P. 2588–2595; DOI: 10.3168/jds.2005-2035;2006.72335-9.

20. Lopez-Gatius F., Hunter R. H. F. Puncture and drainage of the sub-mammary abscess in dairy cows // J. Dairy Sci. – 2011. – Vol. 94 (2). – P. 843–850; DOI: 10.3168/jds.2010-3776.

21. Mee J. F., Berry D. P., Cromie A. R. Risk factors for calving assistance and dystocia in pasture-based Holstein-Friesian heifers and cows in Ireland // Vet. J. – 2011. – Vol. 187 (2). – P. 189–194; DOI: 10.1016/j.tvjl.2009.11.018.

22. Mee J. F., Sánchez-Miguel C., Doherty M. Influence of modifiable risk factors on the incidence of stillbirth/perinatal mortality in dairy cattle // Vet. J. – 2014. – Vol. 199 (1). – P. 19–23; DOI: 10.1016/j.tvjl.2013.08.004.