THE CAUCHY-CROFTON FORMULA AND THE WHITNEY ARC PROPERTY FOR DEFINABLE SETS

ELISA VASQUEZ RIFO

Abstract. We use the Cauchy-Crofton formula to show that every \(\mathbb{Q} \)-bounded definable cell in an O-minimal expansion of a field \(F \supseteq \mathbb{R} \) satisfies the Whitney arc property.

1. Introduction.

The purpose of this paper is to apply the Cauchy-Crofton formula to prove that a cell in an O-minimal expansion of an ordered field \(F \) satisfies an analog of the Whitney arc property. A subset \(A \subseteq \mathbb{R}^n \) satisfies the Whitney arc property if there is a \(K \in \mathbb{R}_{>0} \) such that for all \(x, y \in A \) there is a curve \(\gamma \) in \(A \) joining \(x \) and \(y \) with length(\(\gamma \)) \(\leq K|x - y| \) (Whitney, [7]).

Kurdyka shows in [4] that subanalytic subsets of \(\mathbb{R}^n \) have a stratification such that each strata is built out of Lipschitz functions. A consequence is that each strata satisfies the Whitney arc property. The author’s thesis [6] contains an analogous result for definable sets in an O-minimal expansion of an ordered field, and Pawlucki [5] proves that every definable set has a decomposition into subsets which, after a permutation of the coordinates, are cells built from Lipschitz functions.

By combining the results of this paper with the cell decomposition theorem we obtain a new, conceptually simpler proof that definable sets have decompositions into pieces which satisfy the Whitney arc property; moreover, any cell decomposition will do, and the curves witnessing the Whitney arc property may be chosen so that they vary definably with their endpoints (theorem 5.6). Berarducci and Otero’s work [1] allows one to define the length of a \(\mathbb{Q} \)-bounded definable curve.

Acknowledgements. I would like to thank Patrick Speissegger for suggesting the questions that became the topic of my dissertation [6] and inspired this work.

2. Preliminaries.

2.1. The Berarducci-Otero measure in an o-minimal structure. We fix an O-minimal expansion of an ordered field extension \(F \) of \(\mathbb{R} \). A set \(A \subseteq F^d \) is \(\mathbb{Q} \)-bounded if there is a \(q \in \mathbb{Q} \) such that \(A \subseteq [-q, q]^d \).

We give a description of the real-valued additive measure defined in [1]. This measure is defined on a Boolean algebra of of subsets of \(F^n \) which includes the definable \(\mathbb{Q} \)-bounded subsets of \(F^n \).

Definition 2.1. \(B \subseteq F^d \) is a polyrectangle of dimension \(d \) if \(B \) is a finite union of rectangles \([q_1, r_1) \times \cdots \times [q_d, r_d) \) with rational coordinates \(q_i, r_i \). The set \(\mathcal{PR}^{(d)}(F) \) is the set of polyrectangles of dimension \(d \) of \(F \). The volume of a rectangle \([q_1, r_1) \times \cdots \times [q_d, r_d) \) is

\[
\mu([q_1, r_1) \times \cdots \times [q_d, r_d]) = \prod_{i=1}^{d} (r_i - q_i).
\]

If a polyrectangle \(P \) is the disjoint union of rectangles \(R_i, \ i = 1, \ldots, m, \) then \(\mu(P) := \sum_{i=1}^{m} \mu(R_i) \).

Definition 2.2. Let \(A \subseteq F^d \) be a \(\mathbb{Q} \)-bounded set. The outer measure of \(A \) is:

\[
\mu^*(A) := \inf \{ \mu(P) : P \supseteq A, P \in \mathcal{PR}^{(d)}(F) \}.
\]
The inner measure of A is:
\[\mu_*(A) := \sup \{ \mu(P) : P \subset A, P \in \mathcal{P}R^{(d)}(\mathbb{F}) \}. \]

Here the infimum and supremum are taken in \mathbb{R}.

A \mathbb{Q}-bounded set A is measurable if $\mu_*(A) = \mu^*(A)$, and in this case the measure of A is defined as $\mu(A) := \mu_*(A) = \mu^*(A)$. One of the main results in [1] is the following

Theorem 2.3. Let A be a \mathbb{Q}-bounded definable subset of \mathbb{F}^d. Then A is measurable. Moreover, if $\dim(A) < d$ then $\mu(A) = 0$.

Let $A \subset \mathbb{F}^d$ be \mathbb{Q}-bounded. For $f : \mathbb{F}^d \to \mathbb{F}_{\geq 0}$, we define
\[\int_A f := \mu([0, f)_A), \]
provided that $[0, f)_A := \{(x, y) : x \in A, 0 \leq y < f(x)\}$ is measurable. For general $f : \mathbb{F}^d \to \mathbb{F}$, we put
\[\int_A f := \int_A f^+ - \int_A f^-, \]
provided both terms on the right exist, where f^+ and f^- are, respectively, the positive and negative part of f.

This integral can be used to define the length of a definable C^1 curve $\gamma : (a, b) \to \mathbb{F}^n$, with (a, b) and $\text{Im}(\gamma')$ \mathbb{Q}-bounded, by
\[\text{length}(\gamma) := \int_{(a, b)} |\gamma'(x)|. \]

2.2. The Cauchy-Crofton Formula. Let $C_c(M)$ be the collection of compactly supported continuous real valued functions on a manifold M. A measure on M is an \mathbb{R}-linear mapping $C_c(M) \to \mathbb{R}$ such that: for each compact $K \subset M$, there is a constant m_K such that for every continuous f with compact support contained in K,
\[\int_M f \leq m_K \sup_{x \in M} |f(x)|. \]

Let M be a manifold together with a left action of a Lie group G. A measure in M is G-invariant if for all $g \in G$ and $f \in C_c(M)$,
\[\int_M f = \int_M f \circ L_g, \]
where $L_g : M \to M$ denotes the left action by g, that is $L_g(m) = g \cdot m$.

Let G be the group of isometries of \mathbb{R}^n. Let $AGr_{n-1}(\mathbb{R}^n)$ be the affine Grassmannian of hyperplanes in \mathbb{R}^n, that is, $AGr_{n-1}(\mathbb{R}^n)$ is the collection of all affine hyperplanes in \mathbb{R}^n. The group G acts on $AGr_{n-1}(\mathbb{R}^n)$ in a canonical way, and $AGr_{n-1}(\mathbb{R}^n)$ has a measure which is invariant under the action by G. Furthermore, a G-invariant measure in $AGr_{n-1}(\mathbb{R}^n)$ is unique up to a constant factor.

The Cauchy-Crofton formula expresses the length of a compact, embedded curve in \mathbb{R}^n as the average number of points of intersection of the curve with a hyperplane in \mathbb{R}^n.

Theorem 2.4. Let G be the group of motions of \mathbb{R}^n. Then there is a G invariant measure dL on $AGr_{n-1}(\mathbb{R}^n)$ such that for any compact embedded 1-dimensional submanifold γ of \mathbb{R}^n,
\[\text{length}(\gamma) = \int_{AGr_{n-1}(\mathbb{R}^n)} |\gamma \cap L| dL, \]
where for $L \in AGr_{n-1}(\mathbb{R}^n)$, $|\gamma \cap L|$ is the number of points of intersection of γ with L.

See [3] 3.18 for a proof.
3. The length of a definable \mathbb{Q}-bounded curve.

We prove in Theorem 3.3 that any definable \mathbb{Q}-bounded curve can be reparametrized by a definable, piecewise map with finite first and second derivatives.

An element x of \mathbb{F}^n is finite if it is bounded in magnitude by some natural number, infinite otherwise and infinitesimal if $|x| < r$ for every $r \in \mathbb{R}_{>0}$; in the last case we write $x \approx 0$. For a finite $x \in \mathbb{F}$ the monad of x, denoted by $\mu(x)$, consists of all $y \in \mathbb{F}$ with $y - x \approx 0$, we write $y \approx x$ for $y \in \mu(x)$ and we say that y is infinitesimally close to x. For finite $x \in \mathbb{F}$ the standard part of x is $st(x) := \sup\{r \in \mathbb{R} : r < x\}$. If $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$ is finite, $st(x) := (st(x_1), \ldots, st(x_n))$.

Lemma 3.1. Let $f : (a, b) \to (c, d)$ be a definable and twice differentiable function, where $(a, b), (c, d) \subset \mathbb{F}$ are \mathbb{Q}-bounded. Then \overline{f} is finite outside a finite union of monads.

Proof. For $r \in \mathbb{F}_{>0}$, let $A_r := \{x \in (a, b) : |f'(x)| > 1/r\}$. The family $\{A_r\}_{r \in \mathbb{F}_{>0}}$ is a definable family of sets. Let $r \approx 0$. By the mean value theorem (see (2)), any interval contained in A_r is of infinitesimal length. Since A_r is definable, it follows from \mathbb{O}-minimality that A_r is contained in a finite union of monads; let n_r be the minimum number of monads containing A_r. By cell decomposition, there is an $N \in \mathbb{N}$ such that for every $r \in \mathbb{F}_{>0}$ the set A_r is a union of at most N disjoint intervals and points. Let $s \approx 0$ be such that

$$n_s = \max_{r \approx 0} n_r,$$

and let A be the finite union of the n_s monads containing A_s. For $r < s$, $A_r \subset A_s$ so $A_r \subset A$. For $r > s$, $r \approx 0$, $A_s \subset A_r$ so n_r is at most n_s; since n_s is maximal, $n_r = n_s$ and therefore A_r must be contained in A. \overline{f}' is finite away from A.

Let $(a, b) \subset \mathbb{F}$. We define $(a, b)_{\mathbb{R}} := (a, b) \cap \mathbb{R}$. For a function $f : (a, b) \to \mathbb{F}^n$ with \mathbb{Q}-bounded image we define $\overline{f} : (a, b)_{\mathbb{R}} \to \mathbb{R}$ by $\overline{f}(x) = st(f(x))$. Similarly, if $A \subset \mathbb{F}^m$ and $f : A \to \mathbb{F}^n$ maps finite elements into finite elements, we define $\overline{f} : A_{\mathbb{R}} \to \mathbb{R}^n$ by $\overline{f}(x) = st(f(x))$ where $A_{\mathbb{R}} := A \cap \mathbb{R}^m$.

Lemma 3.2. Let $f : (a, b) \to (c, d)$ be a definable and twice differentiable function, where $(a, b), (c, d) \subset \mathbb{F}$ are \mathbb{Q}-bounded. Suppose that for $x \not\approx a, b$ both f' and f'' are finite. Then \overline{f} is differentiable on the interior of $(a, b)_{\mathbb{R}}$ and for $x \in (a, b)$ with $st(x) \in \text{Int}((a, b)_{\mathbb{R}})$, $st(f'(x)) = \overline{f}'(st(x))$.

Proof. We first consider the case where $0 \in (a, b)$ but $0 \not\approx a, b$, $f(0) = 0$, and $f'(0) = 0$. Let $\epsilon \in \mathbb{R}_{>0}$. If $\delta \approx 0$ and $\delta > 0$, then $\left|\frac{f(h)}{h}\right| < \epsilon$ whenever $|h| < \delta$. Otherwise there would be a $\delta > 0$, $\delta \approx 0$ and $h \in (a, b)$, $|h| < \delta$ with

$$|\frac{f(h)}{h}| > \epsilon,$$

thus by the mean value theorem there is an x between 0 and h such that $|f'(x)| = \left|\frac{f(h)}{h}\right| > \epsilon$, and a z between 0 and x with $|f''(z)| = \left|\frac{f'(x)}{x}\right|$, but this last fraction is infinite. This shows that the set

$$\{\delta \in \mathbb{F}_{>0} : \text{ for all } h \in (a, b), |h| < \delta \implies \left|\frac{f(h)}{h}\right| < \epsilon/2\}$$

contains all positive infinitesimals. This set is also definable, so by the cell decomposition theorem it is a finite union of intervals and points and therefore it must contain a positive real δ. This shows that \overline{f} is differentiable at 0 and $\overline{f}'(0) = 0$.

For x_0 in (a, b) with $st(x_0) \in \text{Int}((a, b)_{\mathbb{R}})$, consider the function

$$g(x) := f(x_0 - x) - f(x_0) - f'(x_0)x.$$

Since $g(0) = 0$, $g'(0) = 0$ and 0 is not infinitesimally close to the endpoints of $\text{Dom}(g)$, \overline{g} is differentiable at 0 and $\overline{g}'(0) = 0$. It follows that \overline{f} is differentiable at $st(x_0)$ with derivative $st(f'(x_0))$. \qed
Lemma 3.2 shows that for the restriction with $C_{0} = 0$ and points the intermediate value theorem shows that Lemma 4.1. Let $\gamma : (a, b) \to \mathbb{F}^{n}$ be a definable curve with Q-bounded image. Then, there are $a_{0} = a < \cdots < a_{k} = b$ such that each restriction $\gamma|_{(a_{i}, a_{i+1})}$ is either constant or has a reparametrization σ with σ' finite, $\sigma''(x)$ finite for $x \neq a_{i}, a_{i+1}$, and with $\overline{\sigma}$ an embedded C^{1}-curve in \mathbb{R}^{n}.

Proof. By the C^{1}-cell decomposition theorem γ is piecewise C^{1}, so without loss of generality we can assume that γ is C^{1}. Also $\gamma' = 0$ in a finite union of intervals and points, and γ is constant on those intervals where $\gamma' = 0$; thus we may assume that $\gamma' \neq 0$. Similarly we can assume that γ is injective.

Let $Gr_{1}(\mathbb{F}^{n})$ be the Grassmannian of 1-dimensional subspaces of \mathbb{F}^{n}. Then $Gr_{1}(\mathbb{F}^{n})$ is the disjoint union of the definable sets

$$A_{i} := \{ l \in Gr_{1}(\mathbb{F}^{n}) : l = \langle v \rangle, \ |v_{i}| \geq |v_{j}| \text{ for } j \geq i \},$$

Let $\phi : (a, b) \to Gr_{1}(\mathbb{F}^{n})$ be the Gauss map of γ, that is $\phi(t) = (\gamma'(t))$. The sets $\phi^{-1}(A_{i})$ are definable, and therefore are a union of intervals and points. Suppose that I is one of these intervals and let $J := \gamma_{I}(I)$. Since $\gamma'_{I} \neq 0$ on I, J contains an interval; and since J is a finite union of intervals and points the intermediate value theorem shows that J is a single interval. Moreover, J is Q-bounded. We define $\sigma_{I} : J \to \mathbb{F}^{n}$ as $\sigma_{I} := \gamma_{I} \circ \gamma_{I}^{-1}$. Then σ_{I} is a C^{1} function since γ_{I}^{-1} is invertible with C^{1} inverse. Moreover, σ_{I}' is finite: for $x \in J$, $\sigma_{I}'(x)$ generates the line $\langle \gamma'(\gamma_{I}^{-1}(x)) \rangle \in A_{i}$ thus $(\sigma_{I})'_{j}(x) \geq (\sigma_{I})'_{j}(x)$, but $(\sigma_{I})'_{j}(x) = 1$.

By the cell decomposition theorem and Lemma 3.1, there are points b_{0}, \ldots, b_{k} such that $J = \langle b_{0}, b_{k} \rangle$, σ_{I}' and σ_{I}'' exist on $\langle b_{i}, b_{i+1} \rangle$ and are finite except possibly on the monads of b_{i} and b_{i+1}. Lemma 3.2 shows that for the restriction σ of σ_{I} to one of this subintervals $\overline{\sigma}, \overline{\sigma}'$ and $\overline{\sigma}''$ are differentiable and $\overline{\sigma}' = st(\sigma')$, $\overline{\sigma}'' = st(\sigma'')$. Since $st(\sigma') = \overline{\sigma}'$ it follows that $\overline{\sigma}$ is twice differentiable. Finally, $(\overline{\sigma})_{i}(t) = t$, therefore for $(c, d) \subseteq \text{Dom}(\overline{\sigma})$ we have

$$\overline{\sigma}(c, d) = \{ x \in \mathbb{R}^{n} : c < x_{i} < d \} \cap \text{Im}(\overline{\sigma})$$

showing that $\overline{\sigma}$ is an open map and therefore an embedding.

□

4. The Cauchy-Crofton formula for the Berarducci-Otero length

We prove that for a Q-bounded, injective, definable curve γ in \mathbb{F}^{n}, the length of γ is the average number of points of intersection of γ with an affine hyperplane defined over \mathbb{R}. The proof is a reduction to the standard Cauchy-Crofton formula for the length of a curve in \mathbb{R}^{n}. The main point is that the number of points of intersection of γ with a hyperplane L defined over the reals is the same as the number of points of intersection of the standard part of γ, namely $\overline{\gamma}$, with the real points of L, as long as L is not tangent to the curve $\overline{\gamma}$.

Lemma 4.1. Let $f : B \to [0, q]$ be a definable function, where $B \subset \mathbb{F}^{n}$ is a Q-bounded box and $q \in Q$, then \overline{f} is Riemann integrable, and

$$\int_{B} f = \int_{B_{\mathbb{R}}} \overline{f}.$$

Proof. Let P be a polyrectangle. If $P \supset [0, f)$, then $P \supset [0, \overline{f})$. Thus, $\mu^{*}([0, f)) \geq \mu^{*}([0, \overline{f}))$. Also, if $P \subseteq [0, f)$ then $P \subseteq [0, \overline{f})$. Thus $\mu_{*}([0, f)) \leq \mu_{*}([0, \overline{f}))$. Since $[0, f)$ is μ-measurable we get

$$\mu^{*}([0, \overline{f})) \leq \mu([0, f)) \leq \mu([0, \overline{f})).$$

But $\mu^{*}([0, \overline{f})) \geq \mu_{*}([0, \overline{f}))$, thus $[0, \overline{f})$ is μ-measurable, so \overline{f} is Riemann integrable. Moreover,

$$\int_{B_{\mathbb{R}}} \overline{f} = \mu([0, f)) = \int_{B} f.$$

□
Let $\gamma : [0, 1] \rightarrow \mathbb{R}^n$ be a definable curve with \mathbb{Q}-bounded image γ' finite and $\gamma''(x)$ finite for $x \neq 0, 1$. We will assume that $\overline{\gamma}$ is an embedded C^1 curve in \mathbb{R}^n.

Lemma 4.2. Let $f : AGr_{n-1}(\mathbb{F}^n) \rightarrow \mathbb{F}$ be the function

$$f(L) = \begin{cases} \lvert \gamma \cap L \rvert & \text{if } \lvert \gamma \cap L \rvert \text{ is finite} \\ 0 & \text{otherwise.} \end{cases}$$

Let $f_0 := f|_{AGr_{n-1}(\mathbb{R}^n)}$, and let $g : AGr_{n-1}(\mathbb{R}^n) \rightarrow \mathbb{R}$ be the function

$$g(L) = \begin{cases} \lvert \overline{\gamma} \cap L \rvert & \text{if } \lvert \overline{\gamma} \cap L \rvert \text{ is finite} \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\int_{AGr_{n-1}(\mathbb{R}^n)} g = \int_{AGr_{n-1}(\mathbb{R}^n)} f_0.$$

Proof. Let $L \in AGr_{n-1}(\mathbb{F}^n) \subset AGr_{n-1}(\mathbb{R}^n)$, and denote by $L_{\mathbb{R}}$ the set of \mathbb{R}-points of L. Suppose that $L_{\mathbb{R}}$ intersects γ transversely and let $p \in \gamma \cap L$. Then there are $t_0 < t_1$ such that $\gamma_{[t_0, t_1]} \cap L = \{p\}$ and $\overline{\gamma(t_0), \gamma(t_1)}$ lie on opposite sides of L. Then $\gamma(t_0), \gamma(t_1)$ must lie on opposite sides of L, so there is a $t \in (t_0, t_1)$ such that $\gamma(t) \in L$. Since $t \approx st(t)$ and γ' is finite, $\gamma(st(t)) \approx \gamma(t)$. Thus $st(\gamma(st(t))) = st(\gamma(t)) \in st(L) = L_{\mathbb{R}}$, i.e. $\overline{\gamma(st(t))} \subset L$. But L intersects γ only at p when the parameter runs in $[t_0, t_1]$ and $st(t) \in [t_0, t_1]$ so $\gamma(st(t)) = p$, in particular $\gamma(t) \approx p$. It follows that $g(L) \leq f(L)$ whenever L is transverse to $\overline{\gamma}$.

On the other hand, if $f(L) > g(L)$ then there are two infinitesimally close points of γ in L, that is, there are $\gamma(t_0), \gamma(t_1) \in L$ with $\gamma(t_0) \approx \gamma(t_1)$ and say $t_0 < t_1$. Since γ is injective, we have $t_0 \approx t_1$. Assume $t_0 \neq 0, 1$. By Lemma 3.2 for all $s, t \approx t_0$, and $i = 1, \ldots, n$, we have $\gamma_i'(s) \approx \gamma_i'(t)$. By the mean value theorem, there are $u_1, \ldots, u_n \in (t_0, t_1)$ such that $\gamma_i'(u_i)(t_1 - t_0) = \gamma_i(t_1) - \gamma_i(t_0)$, therefore for all $t \approx t_0$,

$$\gamma'(t) \approx \frac{1}{t_1 - t_0} (\gamma(t_1) - \gamma(t_0)).$$

This means that $st(\gamma'(t))$ is parallel to $st(\frac{1}{t_1 - t_0} (\gamma(t_1) - \gamma(t_0)))$, in other words, if l is the secant line through $\gamma(t_0), \gamma(t_1)$, we must have $st(l)$ tangent to γ at $st(t_0)$. In particular, we have that L is tangent to $\overline{\gamma}$ at some point of γ. Thus $f(L) \leq g(L)$ whenever L is transverse to $\overline{\gamma}$ and not infinitesimally close to $\gamma(0), \gamma(1)$. We have shown that $f|_{AGr_{n-1}(\mathbb{R}^n)}$ and g agree almost everywhere, thus the conclusion follows.

Corollary 4.3. Let $\gamma : [0, 1] \rightarrow \mathbb{F}^n$ be a definable curve with \mathbb{Q}-bounded image, γ' finite and $\gamma''(x)$ finite for $x \neq 0, 1$. Suppose that $\overline{\gamma}$ is an embedded C^1 curve in \mathbb{R}^n. Then,

$$\text{length}(\gamma) = \int_{AGr_{n-1}(\mathbb{R}^n)} \lvert \gamma \cap L \rvert dL.$$

Proof. $\overline{\gamma}$ is an embedded curve, so by the Cauchy-Crofton formula

$$\text{length}(\overline{\gamma}) = \int_{AGr_{n-1}(\mathbb{R}^n)} \lvert \overline{\gamma} \cap L \rvert dL.$$

By Lemma 4.1, length(γ) = length($\overline{\gamma}$), so the corollary follows immediately from lemma 4.2.

Let $\gamma : [0, 1] \rightarrow \mathbb{F}^n$ be a definable, injective curve with \mathbb{Q}-bounded image. Suppose that $0 = a_0 < \cdots < a_k = 1$ is a partition of $[0, 1]$ such that:

Each restriction $\gamma_{[a_i, a_{i+1})}$, $i = 0, \ldots, k - 1$, has a reparametrization α_i with α'_i finite, $\alpha''_i(x)$ finite for $x \neq 0, 1$, and $\overline{\alpha}_i$ an embedded C^1 curve in \mathbb{R}^n (theorem 3.3) guarantees that such a partition
always exists). Then
\[
\sum_{i=0}^{k-1} \int_{\text{Gr}_{n-1}(\mathbb{R}^n)} |\alpha_i \cap L| dL = \int_{\text{Gr}_{n-1}(\mathbb{R}^n)} |\gamma \cap L| dL.
\]
Therefore we can define
\[
\text{length}(\gamma) := \sum_{i=0}^{k-1} \text{length}(\alpha_i),
\]
and this is independent of the partition and reparametrization chosen. We thus have:

Corollary 4.4. *(Cauchy-Crofton formula for the Berarducci-Otero length)* Let \(\gamma : [0, 1] \to \mathbb{F}^m \) be a definable, injective curve with \(\mathbb{Q} \)-bounded image. Then,
\[
\text{length}(\gamma) = \int_{\text{Gr}_{n-1}(\mathbb{R}^n)} |\gamma \cap L| dL.
\]

5. LENGTH IN DEFINABLE FAMILIES OF CURVES

We now prove that there is a bound on the lengths of the curves in a \(\mathbb{Q} \)-bounded definable family. We conclude by using this result to prove that cells have the Whitney arc property.

Definition 5.1. Let \(A \subset \mathbb{F}^n, B \subset \mathbb{F}^m \) be definable sets. Let \(\lambda \subset A \times ([0, 1] \times B) \subset \mathbb{F}^n \times \mathbb{F}^{1+m} \) be a definable set such that for every \(x \in A \), the fiber over \(x \)
\[
\lambda_x := \{ y \in [0, 1] \times B : (x, y) \in \lambda \}
\]
is a curve \(\lambda_x : [0, 1] \to B \). We view \(\lambda \) as describing the family of curves \(\{\lambda_x\}_{x \in A} \). Such a family is a definable family of curves (in \(B \), parametrized by \(A \)).

Definition 5.2. A definable \(\mathbb{Q} \)-bounded set \(A \subset \mathbb{F}^n \) satisfies the Whitney arc property if there is a number \(K \in \mathbb{R}_{\geq 0} \) such that for every \(x, y \in A \) there is a definable curve \(\gamma : [0, 1] \to A \) with \(\gamma(0) = a, \gamma(1) = b \) and \(\text{length}(\gamma) \leq K |x - y| \).

Proposition 5.3. If \(A \subset \mathbb{F}^m \) is definable and definably connected, then there is a definable family ofinjective curves \(\lambda \subset A^2 \times ([0, 1] \times A) \) such that for every \(a, a' \in A \), \(\lambda_{(a,a')}((0) = a, \lambda_{(a,a')}((1) = a' \), and \(\lambda_{(a,a')} \) is piecewise \(C^1 \).

Proof. We use induction on \(m \). The case \(m = 1 \) is trivial. For \(m > 1 \), assume first that \(A \) is a cell. By induction, we may assume that \(A \) is an open cell in \(\mathbb{F}^m \), for, if \(A \) itself is not open, then \(A \) is the graph of a function \(g : U \to \mathbb{F}^l, U \subset \mathbb{F}^{m-1} \), and we may lift the paths in \(U \) to paths in \(A \) by using \(g \). Let \(C \) be the projection of \(A \) into \(\mathbb{F}^{m-1} \) so that \(A = (f, g)_C \) for some definable functions \(f, g \) on \(C \). By induction there is a definable family of curves \(\Lambda \) in \(C \) with the required property. Assume that \(f, g \) take values in \(\mathbb{F} \) (the other cases are handled similarly). Let \((y, r), (z, s) \in A \) with \(y, z \in C \). We first connect \((y, r) \) to \((y, (f(y) + g(y))/2) \) by a vertical path in \(A \). The path \(\Lambda_{(y,z)} \) in \(C \) connecting \(y \) and \(z \) lifts to the path
\[
t \to (\Lambda_{(y,z)}(t), (f(\Lambda_{(y,z)}(t)) + g(\Lambda_{(y,z)}(t)))/2)
\]
connecting \((y, (f(y) + g(y))/2) \) to \((z, (f(z) + g(z))/2) \). The last point can be connected to \((z, s) \) by a vertical path in \(A \). Concatenating these three paths, we get a path \(\lambda_{(y,r),(z,s)} \) in \(A \) connecting \((y, r) \) and \((z, s) \). The collection of these paths constitutes the required definable family.

In the general case, since \(A \) is definably connected, we can write it as the union of cells \(C_1, \ldots, C_k \), where for \(i < k \) either \(C_i \) intersects the closure of \(C_{i+1} \), or \(C_{i+1} \) intersects the closure of \(C_i \) (see Theorem 3.27). By definable choice (see Chapter 6, (1.2)), we can definably pick an element \(e(C_i, C_{i+1}) \) in \(C_i \cap \mathbb{F}^{i+1} \) (if \(C_i \cap \mathbb{F}^{i+1} \neq \emptyset \)) and a definable curve \(\gamma_i : [0, e] \to C_{i+1} \) such that \(\lim_{t \to 0} \gamma_i(t) = e(C_i, C_{i+1}) \). Combining this with the fact that the result was already proved for cells we get the desired family \(\lambda \). □
Lemma 5.4. Let $\lambda \subset A \times ([0, 1] \times B) \subset \mathbb{F}^n \times \mathbb{F}^{m+1}$ be a definable and \mathbb{Q}-bounded family of injective curves. Then there is a $K \in \mathbb{R}_{>0}$ such that for any $x \in A$, length$(\lambda_x) \leq K$.

Proof. Let $\lambda \subset A \times ([0, 1] \times B) \subset \mathbb{F}^n \times \mathbb{F}^{m+1}$ be a definable family of curves. By Proposition 3.6, there is a natural number N such that for any affine $(m - 1)$-plane $L \subset \mathbb{F}^m$ and $x \in A$, if $L \cap \lambda_x$ is finite then it contains at most N points. Let

$$A := \bigcup_{x \in A} \lambda_x([0, 1]).$$

Take $x \in A$, then by Corollary 4.4,

$$\text{length}(\lambda_x) = \int_{A Gr_{m-1}(\mathbb{F}^n)} |\lambda_x| dL \leq \int_{L \cap \lambda_x \neq \emptyset} N dL = N \int_{L \cap \Lambda \neq \emptyset} dL.$$

The last integral is finite since λ is \mathbb{Q}-bounded, thus

$$K := N \int_{L \cap \Lambda \neq \emptyset} dL$$

is the required constant. \hfill \square

Corollary 5.5. If $A \subset \mathbb{F}^n$ is definable, \mathbb{Q}-bounded, and definably connected, then there is a definable family of injective curves $\lambda \subset A^2 \times ([0, 1] \times A)$ and $K \in \mathbb{R}_{>0}$ such that for any pair of points $x, y \in A$, $\lambda(x, y)$ is a piecewise C^1 curve in A joining x and y with length$(\lambda(x, y)) \leq K$.

For $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, and $\alpha = (\alpha_1, \ldots, \alpha_n) \in (0, \infty)^n$. The α- box centered at a is the open box

$$B(a, \alpha) := \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : x_i \in (a_i - \alpha_i, a_i + \alpha_i) \right\}.$$

In what follows we use the max norm in \mathbb{F}^n, that is for $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$, $|x| := \max\{|x_i| : i = 1, \ldots, n\}$.

Theorem 5.6. Let $A \subset \mathbb{F}^n$ be a cell. If A is \mathbb{Q}-bounded, then there is a $K \in \mathbb{R}_{>0}$ and a definable family of injective curves $\gamma \subset A^2 \times [0, 1] \times A$ such that for $x, y \in A$, $\gamma_x(y)(0) = x$, $\gamma_x(y)(1) = y$, and length$(\gamma(x, y)) \leq K|x - y|$. In particular A has the Whitney arc property.

Proof. For $\lambda \subset \mathbb{F}^n$ and $a \in \mathbb{F}^n$ let $f_{a, \lambda} : \mathbb{F}^n \rightarrow \mathbb{F}^n$ be the dilation about a, that is $f_{a, \lambda}(x) = \lambda(x - a) + a$. Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in (0, 1)^n$. For every $a \in A$ and $\delta \in (0, 1) \subset \mathbb{F}$, the set $B(a, \delta) \cap A$ is a cell and therefore is definably connected. For $a \in A$ and $\delta \in (0, 1)$ define

$$B_{\delta, a} := f_{a, 1/\delta}(B(a, \delta) \cap A).$$

This set is \mathbb{Q}-bounded. Also, $B_{\delta, a}$ is definably connected since $B(a, \delta) \cap A$ is. By Proposition 5.3 there is a definable family of curves $\lambda^{\delta, a} \subset B_{\delta, a}^2 \times ([0, 1] \times B_{\delta, a})$ such that for $b, b' \in B_{\delta, a}$, $\lambda^{\delta, a}_{b, b'}$ is piecewise C^1, $\lambda^{\delta, a}_{b, b'}(0) = b$ and $\lambda^{\delta, a}_{b, b'}(1) = b'$. Consider

$$\lambda := \left\{ (\delta, a, x, y, \epsilon, z) \in (0, 1) \times A \times (\mathbb{F}^n)^2 \times ([0, 1] \times \mathbb{F}^n) : (x, y, \epsilon, z) \in \lambda^{\delta, a}_{b, b'} \right\}.$$

This is a definable and \mathbb{Q}-bounded family of curves. Thus by Lemma 5.4 there is a $K_1 \in \mathbb{R}_{>0}$ such that for every $\delta \in (0, 1)$, $a \in A$, and $b, b' \in B_{\delta, a}$, length$(\lambda^{\delta, a}_{b, b'}) \leq K_1$.

Similarly, by Corollary 5.3 there is a definable family of curves $\Lambda \subset A^2 \times ([0, 1] \times A)$ and $K_2 \in \mathbb{R}_{>0}$ such that for each $x, y \in A$, $\Lambda_{x, y} : [0, 1] \rightarrow A$ is a piecewise C^1 curve in A joining x and y, and length$(\Lambda_{x, y}) \leq K_2$.

Now let x, y be distinct points in A, and assume that $|x - y| < \min\{\alpha_j/3\}$. Let

$$\delta := \frac{3|x - y|}{\min\{\alpha_j\}}, \quad y' := f_{x, 1/\delta}(y) = \frac{1}{\delta}(y - x) + x.$$
Then $\delta \in (0,1)$ and for any j,

$$|x_j - y_j| < \frac{3}{2} \frac{\alpha_j}{\min\{\alpha_j\}} |x - y| = \frac{\delta \alpha_j}{2}.$$

Thus, $y \in B(x, \delta \alpha)$, that is, $y' \in B_{\delta,x}$. Consider the curve $\lambda_{x,y}^{\delta,x}$ in $B_{\delta,x}$, joining x and y', and let $\gamma_{x,y} : [0,1] \to \mathbb{R}^n$ be defined by

$$\gamma_{x,y}(t) := f_{x,\delta}(\lambda_{x,y}^{\delta,x}(t)) = \delta (\lambda_{x,y}^{\delta,x}(t) - x) + x.$$

Then $\gamma_{x,y}(t)$ is a curve in A joining x and y, and moreover,

$$\text{length}(\gamma_{x,y}) = \delta \text{length} \left(\lambda_{x,y}^{\delta,x} \right) \leq \delta K_1 = \frac{3K_1}{\min\{\alpha_j\}} |x - y|.$$

Now assume that $|x - y| \geq \frac{1}{3} \min\{\alpha_j\}$, and let $\gamma_{x,y} := \Lambda_{x,y}$. Then γ is a curve in A joining x and y and

$$\text{length}(\gamma_{x,y}) \leq K_2 \frac{K_2}{|x - y|} |x - y| \leq \frac{3K_2}{\min\{\alpha_j\}} |x - y|.$$

The collection of curves $\gamma_{x,y}$ constitutes the required definable family.

$$K := \frac{3 \max\{K_1, K_2\}}{\min\{\alpha_j\}},$$

is the required constant. \qed

As an immediate consequence we have:

Corollary 5.7. Let $A \subset \mathbb{R}^n$ be a definable and \mathbb{Q}-bounded set. Then any cell in a cell decomposition of A satisfies the Whitney arc property.

References

[1] A. Berarducci, M. Otero. An additive measure in o-minimal expansions of fields. The Quarterly Journal of Mathematics 55 (2004), no. 4, 411–419.

[2] L. van den Dries, *Tame Topology and o-minimal Structures*, no. 248 in LMS Lecture Note Series, Cambridge University Press, 1998.

[3] R. Howard. The kinematic formula in Riemannian homogeneous spaces. Memoirs of the American Mathematical Society, no. 509.

[4] K. Kurdyka. On a subanalytic stratification satisfying a Whitney property with exponent 1. Real algebraic geometry proceedings (Rennes, 1991), 316–322, Lecture Notes in Math., 1524, Springer, Berlin, 1992.

[5] W. Pawlucki. Lipschitz Cell Decomposition in O-Minimal Structures. I. RAAG preprint server 2007. http://www.maths.manchester.ac.uk/raag/

[6] E. Vasquez Rifo, Geometric partitions of definable sets and the Cauchy-Crofton formula, Ph.D. thesis, University of Wisconsin-Madison, Madison, WI 53704, August 2006.

[7] H. Whitney. Functions differentiable on the boundaries of regions. Ann. of Math. (2) 35 (1934), no. 3, 482–485.

Department of Mathematics, University of Minnesota, Minneapolis, MN 55455,
E-mail address: evasquez@math.umn.edu