Robustness Analysis and Controller Design Based on a Generalized Model of Nonisolated Multiphase DC–DC Converter

WEN YAN1, LI WEI1, (SOCIETY MEMBER, IEEE), DIFU ZHAN1, DAN SU1, Mingrui Zhang1.

1Department of Electrical Engineering, Tongji University, Shanghai, China
Corresponding author: Li Wei (e-mail: weili@tongji.edu.cn).

This work was supported fully by the National Natural Science Foundation of China under Grant 51777141.

ABSTRACT The nonisolated multiphase dc–dc converter (NMDC) has important research value and broad application prospect in fields such as smart grid and new energy vehicles because of its high power density and low output ripple. However, with the increase of the phase number, the parameter inconsistency among each phase will make the NMDC model quite complex. Moreover, parameter uncertainty and quadratic nonlinearity in the small-signal model can degrade control system performance, leading to a big challenge in controller design. In this paper, the generalized robust control model and the method of robust controller designing of NMDC concerning parameter uncertainty and quadratic nonlinearity is developed. Firstly, parameter uncertainty is described by convex polyhedra model. Secondly, the Lyapunov theorem is applied to solve the linear and quadratic nonlinearity of the control model. Finally, with the method of Linear Matrix Inequality (LMI) region pole configuration, the analytical solution of the control model is achieved. Based on the proposed model, the independent control of NMDC with reduced sensors, including current sharing, flexible power distribution and robust control of the NMDC are realized. Both simulation and experimental results verify the effectiveness of the controller. Compared with traditional controller, the controller proposed in this paper can be stable in more complicated working conditions, and has a faster adjustment time, suitable for multiple topologies as well.

INDEX TERMS nonisolated multiphase dc–dc converter (NMDC), parameter uncertainty, quadratic nonlinearity, convex polyhedron, robust control

I. INTRODUCTION

WITH the rapid development of smart grid and new energy vehicles, high-power density DC-DC converter has become a research hotspot in the field of power electronics. The nonisolated multiphase dc–dc converter (NMDC) not only breaks the power limit of a single device, but also effectively reduces the demand for capacitance and inductance, thus increasing the power density. In addition, lower output ripple, more controllable components and design margin improve the control flexibility and reliability of the DC-DC converter. Therefore, NMDC has important research significance and application value [1]–[6].

However, there are some challenges in the development of NMDC. First of all, the NMDC has a complex structure and many components, which make it difficult to derive the generalized model by the traditional segmentation method, especially when the number of phases exceeds 3 and if non-ideal factors are taken into account. In [1], a three-phase DC-DC converter is analyzed, but the model is only limited to a specific topology and cannot be used for other DC-DC converters with different phase number. The method proposed in [7]–[9] overcomes the topology limitation, but only if the phases are ideally symmetric. In [10] and [11], stray parameters and asymmetry of NMDC are considered, but only steady-state analysis is performed. The main challenge of NMDC modeling is that it is difficult to derive the generalized model by the traditional segmentation method, especially when the number of phases exceeds 3 and if non-ideal factors are taken into account.

Secondly, the parameter uncertainty and quadratic nonlinearity of the NMDC affect the stability and reliability of the control. In the design of single-phase DC-DC converters, when the controller based on the linear model changes at the operating point, the deviation of the model parameters and
the quadratic nonlinearity will result in reduced system stability and reliability. This problem also exists in NMDC and is more complicated. In [12], [13], the robust control problem of single-phase boost converter is described in detail, and a set of complete solutions is given under the parameter uncertainty and the quadratic nonlinearity. In [14]–[16], the H_∞ method is used to strengthen the anti-interference ability of DC-DC converter. In [17], [18], by establishing a convex polyhedron model with uncertain parameters, the redundant elements of the system are eliminated and the complexity of modeling is reduced. However, the above methods have only considered single-phase or two-phase circuit topologies, which lack applicability analysis for more phases or a general topology.

In [19], a novel switching period averaging method proposed by our research team proposed a NMDC model. This method makes full use of the linear characteristics of the circuit differential function. Without sacrificing accuracy, the modeling process is greatly simplified, and steady-state solution and dynamic small-signal model are derived. Based on result of [19] and robust control theory, the NMDC generalized robust control model and the method of robust controller designing are proposed in this paper. On the basis of general small signal model of NMDC, parameter uncertainty is described by convex polyhedra model, then the Lyapunov theorem is applied to solve the linear and quadratic nonlinearity of the control model. With the method of Linear Matrix Inequality (LMI) region pole configuration, the analytical solution of the control model is achieved.

The novelty of this paper is summarized as follows:

1) A generalized robust control model of NMDC and the method of robust controller design that comprehensively considers parameter uncertainty, disturbance input, and quadratic nonlinearity are proposed.

2) The designed controller has a greater range of stability than other controllers and can cope with more complex working conditions, since the parameter uncertainties are covered in the model, such as duty cycle, output load, input voltage.

3) The designed controller can achieve both current sharing control and flexible power distribution with reduced sensors.

4) The controller model is a generalized model, the designed controller is suitable for single-phase boost, multi-phase boost, multi-phase inductively coupled, multi-phase magnetically integrated and other topologies.

The structure of this paper is as follows: The general model of the NMDC is introduced in Section II. The robust control of the system is analyzed in Section III. The robust controller design method of the NMDC is given in Section IV. Section V verifies that the method has good robust stability and robust performance through simulation and experiments. Finally, Section VI is the conclusion of this paper.

II. GENERALIZED MODEL OF NMDC

According to [19], the structure of the multi-coupling inductor NMDC shown in Fig. 1 is a general structure, M is the number of coupled inductor groups, N is the number of phases of each group, L_{mi} ($i = 1, 2, \ldots, M$) is the mutual inductance of group i. When M, N, L_{mi} change, it can transform into a variety of DC-DC converter structures as shown in Table I.

![Figure 1](image-url)

TABLE I. TOPOLOGIES WITH DIFFERENT M, N AND L_{mi}.

TOPOLOGY	M	N	L_{mi}
Single-phase Converter	1	1	0
Typical Multiphase Converter	1	>1	0
Coupled Inductor Converter	1	>1	≠0
Paralleled Coupled Inductor Converter	>1	>1	≠0

For the boost converter with the above topologies, according to kirchoff’s law, the circuit differential equation is as follows:

$$\left(L_{i_{ij}} + L_{mi} \right) \frac{dI_{i_{ij}}(t)}{dt} - L_{mi} \sum_{k=1, k \neq j}^{N} \frac{dI_{i_{kj}}(t)}{dt} = v_g(t) - [1 - s_{ij}(t)] [v_c(t) + v_D]$$

$$- \{ R_{Li_{ij}} + s_{ij}(t) R_{ON_{ij}} + [1 - s_{ij}(t)] R_{Di_{ij}} \} i_{Li_{ij}}(t)$$

$$C_i \frac{dv_c(t)}{dt} = \sum_{i=1}^{M} \sum_{j=1}^{N} \left\{ i_{Li_{ij}}(t) \left[1 - s_{ij}(t) \right] \right\} - \frac{v_c(t)}{R} - i_o(t)$$

(1)

where, j, j are integers, $i \in [1, M], j \in [1, N]$, and the parameters are defined as shown in Table II.

Choose all inductor currents and capacitor voltages as state vector:

$$x = [i_{L11}(t), \ldots, i_{L1N}(t), i_{L21}(t), \ldots, i_{L2N}(t), v_c(t)]^T$$

(2)

take input voltage, output current and diode forward voltage drop as interference input vector, whose definition is shown in (3):

$$w = [v_g(t), i_o(t), v_D]^T$$

(3)
TABLE II. Parameter definition.

parameter	definition
L_{ij}	leakage inductance of phase j, group i
L_{m}	mutual inductance of group i
$i_{L_{ij}}(t)$	inductor current of phase j, group i
v_{ds}	power source voltage
v_{D}	diode forward voltage drop
$v_{c}(t)$	voltage of output capacitor
R_{Di}	diode resistance of phase j, group i
$R_{ON_{ij}}$	switch conduct resistance of phase j, group i
$R_{ESR_{ij}}$	inductor ESR of phase j, group i
R	load resistance
C_f	output capacitance
i_o	output current
$s_{ij}(t)$	switching state of phase j, group i (0 for ON, 1 for OFF)

and combine on-off resistance of MOSFET, on-off resistance of diode and equivalent series resistance into resistive parameter:

$$R_{ij}(d_{ij}) = R_{L_{ij}} + R_{ON_{ij}}d_{ij} + (1 - d_{ij})R_{Di}$$ (4)

With the conclusion of [19], the general small signal model of the NMDC can be obtained:

$$K \frac{d\hat{x}(t)}{dt} = \hat{A}\hat{x}(t) + \hat{H}\hat{D}(t) + \hat{B}\hat{w}(t)$$ (5)

where $D(t)$ is defined as (6), and the definition of matrix A, B, H is in Appendix A. Note that \hat{A} is the steady-state value of A, and \hat{A} is the ac small signal of A, other variables are all the same.

$$D(t) = [d_{11}(t), \ldots, d_{1N}(t), d_{21}(t), \ldots, d_{MN}(t)]^T$$ (6)

III. ROBUST CONTROL ANALYSIS OF NMDC

In practical application, quadratic nonlinearity exists objectively and affects the control performance of the system. Therefore, based on the independent control mode of each group, this section deduces the NMDC control model with quadratic nonlinearity, and analyzes the robust control of the control model.

We modify the dynamic part of the model and retain the second-order nonlinear components:

$$K\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}\hat{w} + \hat{H}\hat{D} + \hat{\bar{H}}\hat{D}$$ (7)

As the asymmetry between phases of each coupled inductor group is usually not big, here we take the way of independent control of each group, as shown in Fig. 2, where CompM is the outer loop compensator, CompS1 to CompSn are inner loop compensators. The frequency response of the inner loop compensator is generated by the outer loop compensator, and duty cycle of each phase in a group is the same. In this way, it can not only achieve current sharing or current prorate control, but also reduce the use of the current sensor.

Based on the above structure, using the method of traditional PID controller design, and increasing M+1 system variables, ξ_i (i=1,...,M) is the input of inner loop compensator, ξ_{M+1} is the input of outer loop compensator:

$$\begin{align*}
\dot{\xi}_1 &= \xi_{M+1} - \hat{I}_{L_1} \\
\dot{\xi}_2 &= \xi_{M+1} - \hat{I}_{L_2} \\
\ddots & \quad \ddots \\
\dot{\xi}_M &= \xi_{M+1} - \hat{I}_{L_M} \\
\dot{\xi}_{M+1} &= \hat{v}_{ref} - \hat{v}_c
\end{align*}$$ (8)

turn (8) into vector form:

$$\dot{\xi} = k_1\hat{x} + k_2\hat{\xi} + k_3\hat{v}_{ref}$$ (9)

then the NMDC with added control variables can be described by the state space form in (10):

$$\dot{\hat{x}}' = A\hat{x}' + B_1\hat{u} + B_2\hat{r} + B_2\hat{w} + \hat{B}_d\hat{u}$$ (10)

where the definition of each matrix and vector is shown in (11).

It can be seen from (10) that the control model of the NMDC includes an ideal linear model $A\hat{x} + B_1\hat{u} + B_2\hat{r}$, an interference input $B_2\hat{w}$, and a second-order nonlinear component $\hat{B}_d\hat{u}$. Therefore, the following issues need to be considered when designing a NMDC controller:

- Although $A\hat{x} + B_1\hat{u} + B_2\hat{r}$ is an ideal linear model of the system, the relevant parameters in each coefficient matrix are related to the static operating point and device parameters of the converter. The theoretical values are often different from the actual values, therefore, the parameter uncertainty should be considered in closed-loop control system;
- $B_2\hat{w}$ is the interference input of the system, including the changes of input voltage and load current of NMDC;
- $\hat{B}_d\hat{u}$ is a second-order nonlinear component, which is usually ignored in traditional linearization modeling. However, the second-order nonlinear component often leads to deterioration of control performance.

For feedback controller, the following feedback control model is generally used:

$$\hat{u} = K'\hat{x}'$$ (12)

The key to the robust control of the NMDC is to ensure the stability of the control system and certain control performance in the presence of interference input, nonlinear components, and parameter uncertainty by properly selecting the controller parameters.

IV. ROBUST CONTROLLER DESIGN OF NMDC

Compared with pole configuration [20], PID control, sliding mode control, optimal control, robust control is more adaptable and practical when the system has parameter uncertainty, robust control has therefore attracted widespread attention in the design of power electronic device controllers [17], [21], [22]. PID control is simple and effective, but it is very difficult to find the appropriate control coefficient value for a complex topology like NMDC [23]. Sliding mode control is highly robust, however, the chattering problem in sliding
mode control is difficult to eliminate [24]. Optimal control has good output performance, but it is easy to fall into a local optimal solution, and it is less applied to engineering fields that consider stability and reliability [25], [26].

In this section, the robust controller design of NMDC is discussed. Firstly, the convex polyhedron model is used to describe the parameter uncertainty, and then the control method of NMDC is introduced from three aspects: the linear part of the system, the interference input, and the quadratic nonlinearity. Finally, under a certain LMI region of control performance, the algorithm derivation of feedback control parameters is given (Fig. 3).

\[
\begin{align*}
\{ & k_1 = \begin{bmatrix} -1 & \cdots & -1 \\ \vdots & \ddots & \vdots \\ -1 & \cdots & -1 \end{bmatrix},
\begin{bmatrix} 0 & 0 & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix},
\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} K^{-1}A & 0 \\ k_1 & k_2 \end{bmatrix},
B_1 = \begin{bmatrix} K^{-1}H \\ 0 \end{bmatrix},
B_r = \begin{bmatrix} 0 \\ k_3 \end{bmatrix},
B_2 = \begin{bmatrix} K^{-1}B \\ 0 \end{bmatrix},
\bar{B}_d = \begin{bmatrix} K^{-1}\bar{H} \\ 0 \end{bmatrix},
\bar{x}' = \begin{bmatrix} \bar{x} \\ \bar{\xi} \end{bmatrix},
\bar{r} = \bar{v}_{ref} \\
\end{align*}
\]

(11)

FIGURE 2. Controller structure of each group independently controlled. Each group of coupled inductors share a current sensor and an inner loop compensator.

FIGURE 3. Control algorithm flow. The algorithm flow consists of two parts, model building and model solving. Firstly, derive the conditions that need to be met for NMDC robust control from three aspects, and then solve these inequalities.

A. UNCERTAIN PARAMETERS AND CONVEX POLYHEDRON MODEL

In robust control theory, convex polyhedron model is mainly used to describe the parameter uncertainty. Convex polyhedron model means that all possible models are included in a convex polyhedron. Any real system model can be represented by the linear combination of each vertex of the convex polyhedron [27].

It can be seen from (11) that there is no uncertain parameter in Br, because \(k_3 \) is a constant or constant matrix in general control system, and the parameter uncertainty of \(A \) and \(B_1 \) mainly comes from \(K^{-1}A \) and \(K^{-1}\bar{H} \).

The maximum parameter uncertainty in the matrix \(K^{-1}A \) comes from \(\bar{d}_i = \bar{d}_i - 1 \) (the duty of each group of coupled inductors is the same, \(\bar{d}_{ij} = \bar{d}_i \) when \(j = 1, \ldots, N \), the...
value of which varies greatly, and the load $\frac{1}{R}$ also changes in a large range between light and heavy loads. In addition, R_{ij}, $\frac{1}{L_{ij}+L_{ji}}$ as well as $\frac{1}{L}$ can be changed with the heat, operating conditions of the NMDC. Actually, the value of capacitance and inductance generally do not change more than 5% during the operation of the converter, which is obviously not as drastic as duty cycle and load resistance. Therefore, they are often ignored.

The range of matrix $K^{-1}H$ elements is difficult to determine directly, but it can be estimated. As both $R_{L_{ij}}$ and $R_{ON_{ij}}$ are stray parameters, the value of $(R_{L_{ij}} + R_{ON_{ij}}) I_{L_{ij}}$ is much smaller than V_g, they can be incorporated into the range of V_g. As for $I_{L_{ij}}$, it can be approximated by the conservation of energy shown in (14).

$$
(V_c + v_D) - (R_{ON_{ij}} - R_{D_{ij}}) I_{L_{ij}} = \frac{v_g -(R_{L_{ij}}+R_{ON_{ij}})I_{L_{ij}}}{1-d_i} \approx \frac{v_g}{d_i} \tag{13}
$$

$$
I_{L_{ij}} = MN - \frac{v_c}{R} = MN - \frac{V_g}{Rd_i^2} \tag{14}
$$

In summary, the vector of uncertain parameters can be simplified as:

$$\theta = [\vec{d}_{i1} \cdots \vec{d}_{iM}, \vec{d}_{i1-1} \cdots \vec{d}_{iM-1}, \vec{d}_{i1-2} \cdots \vec{d}_{iM-2}, \frac{1}{R_i}, V_g] \tag{15}
$$

Since \vec{d}_{i1}, \vec{d}_{i1-1} and \vec{d}_{i1-2} are not independent from each other, the convex model has a certain degree of conservativeness. In order to reduce the conservativeness, the method proposed by Olalla C et al. and Maccari L et al. in [13] and [28] is used in this paper. Find several points on the curve and increase the number of tangents, so that the enclosed area is obviously smaller than the original one, as shown in Fig. 4.

1) Robust stability of linear model

Considering the linear part, according to lyapunov theory, the system should satisfy the quadratic stability of convex polyhedron model. Based on the feedback control of (12), the robust stable inequality (16) of linear model can be obtained, the derivation process is shown in Appendix B.

$$WA_i^T + A_iW + Y^TB_i^T + B_iY < 0, \quad \forall i \tag{16}
$$

After solving linear matrix inequality (16), the controller gain can be obtained by $K = YW^{-1}$.

2) Robust stability of interference input

Under the feedback control shown in (12), the influence of the norm-bounded external interference input w on the system output must be minimized(Fig. 5), that is to make the H_∞ norm of the closed-loop transfer function of the interference input to the system output smaller than the given positive number γ [29].

$$\|G\|_\infty = \sup_{\|u\|_2 \neq 0} \frac{\|y\|_2}{\|u\|_2} \tag{17}
$$

According to the real bounded lemma, assuming that the change of the reference input $\bar{r} = 0$ and the quadratic nonlinearity is ignored, when the system output is $y = Cx$, if positive definite symmetric matrices W and Y can satisfy inequality (18) at all vertices of the convex polyhedron, $\|G\|_\infty < \gamma$ can be achieved, and controller gain can be calculated by $K = YW^{-1}$ [13], [28].

$$\begin{bmatrix}
A_iW + WA_i^T + B_iY + Y^TB_i^T & B_2 & WC^T \\
B_2 & -\gamma I & 0 \\
C^T & 0 & -\gamma I
\end{bmatrix} < 0 \tag{18}
$$

In actual design, the parameter γ needs to be iteratively optimized because a larger γ value often results in no solution of (18), in this case, it is necessary to gradually reduce the value of γ until a numerical solution exists in (18).

3) Robust stability of quadratic nonlinearity

Tarbouriech S et al. in [30] proposed a control method to stabilize the quadratic nonlinearity, which has the characteristics of small conservatism and large-scale stability. Based
on this method, robust control inequality (19) with quadratic nonlinearity is derived, the derivation process is shown in Appendix C.

\[(AW + WA^T + (B_1 + [N_1v_j, \ldots, N_Mv_j])Y + Y^T(B_1 + [N_1v_j, \ldots, N_Mv_j])^T) < 0\] (19)

4) Robust performance of LMI area

A good control system requires not only good robust stability, but also good robust performance, that is, the pole of the system needs to be located in the designated area. In the problem of pole area allocation, linear matrix inequality can also be useful.

The area that can be expressed by a linear matrix inequality on the complex plane is called the Linear Matrix Inequality (LMI) area. The LMI area \(S(\sigma, \theta, r)\) used in this paper is shown in Fig. 6.

Assuming that the system output is \(y = Cx\), when the change of the reference input \(r = 0\) and the quadratic nonlinearity is ignored, if positively definite symmetric matrices \(W\) and \(Y\) can satisfy linear matrix inequality (20-22) at all vertices of the convex polyhedron, all poles of the convex polyhedron system are located in the LMI region \(S(\sigma, \theta, r)\), the controller gain can be calculated by \(K = Y^{-1}W^{-1}\).

\[A_iW + WA_i^T + B_iY + Y^T B_i^T + 2\sigma W < 0\] (20)

\[
\begin{bmatrix}
-rW & A_iW + B_iY \\
WA_i^T + Y^T B_i^T & -rW
\end{bmatrix} < 0
\] (21)

Above all, in a given LMI area of control performance, if there are a minimum \(\gamma\) and the corresponding symmetric positive definite symmetric matrix \(W\) and matrix \(Y\) that satisfy the linear matrix inequality (16), (18), (19) and (20-22), then the NMDC control system using the feedback control law of (12) is progressively stable, and feedback control coefficient can be obtained by solving \(K = YW^{-1}\).

V. VERIFICATION

Aiming to verify the design method of the robust controller of the NMDC proposed in the fourth part, simulation and experiment are carried out in this part. The parameters of the converter are shown in Table III and IV.

Table III. Range of uncertainty parameters.

Parameter	Maximum	Minimum
\(d^1\)	0.8	0.5
\(R^{-1}\)	1/12	1/20
\(V_y\)	80	60
\(V_c\)	120	100

According to the method of reducing conservativeness of correlation variables introduced in Section IV, if the tangent of the endpoint is taken, the corresponding convex polyhedron has 16 vertices, as shown in Table V.

Table IV. Simulation parameters.

Parameter	Value	Parameter	Value	Parameter	Value
\(L_{11}\)	28\(\mu H\)	\(L_{12}\)	28\(\mu H\)	\(L_{13}\)	28\(\mu H\)
\(L_{21}\)	28\(\mu H\)	\(L_{22}\)	7.7\(\mu H\)	\(L_{23}\)	7.7\(\mu H\)
\(R_{11}\)	29\(\Omega\)	\(R_{12}\)	21\(\Omega\)	\(R_{13}\)	23\(\Omega\)
\(R_{21}\)	32\(\Omega\)	\(v_p\)	0.937V	\(R_{ON1}\)	34.5\(\Omega\)
\(R_{ON2}\)	34.5\(\Omega\)	\(R_{ON21}\)	34.5\(\Omega\)	\(R_{ON22}\)	34.5\(\Omega\)
\(R_{D11}\)	10\(\Omega\)	\(R_{D12}\)	10\(\Omega\)	\(R_{D13}\)	10\(\Omega\)
\(R_{D21}\)	10\(\Omega\)	\(C_f\)	52\(\mu F\)	\(R\)	2.232\(\Omega\)

Table V. The vertices of the parameter uncertainty model.

\(v_1\)	0.5000	2.0000	4.0000	0.0833	60.0000
\(v_2\)	0.5000	2.0000	4.0000	0.0500	60.0000
\(v_3\)	0.5000	2.0000	4.0000	0.0833	60.0000
\(v_4\)	0.5000	2.0000	4.0000	0.0500	80.0000
\(v_5\)	0.6047	1.5814	2.3256	0.0833	60.0000
\(v_6\)	0.6047	1.5814	2.3256	0.0500	60.0000
\(v_7\)	0.6047	1.5814	2.3256	0.0500	60.0000
\(v_8\)	0.6047	1.5814	2.3256	0.0500	60.0000
\(v_9\)	0.6047	1.7384	2.3256	0.0833	60.0000
\(v_{10}\)	0.6047	1.7384	2.3256	0.0833	80.0000
\(v_{11}\)	0.6047	1.7384	2.3256	0.0500	60.0000
\(v_{12}\)	0.6047	1.7384	2.3256	0.0500	80.0000
\(v_{13}\)	0.8000	1.2500	1.5625	0.0833	60.0000
\(v_{14}\)	0.8000	1.2500	1.5625	0.0833	80.0000
\(v_{15}\)	0.8000	1.2500	1.5625	0.0500	60.0000
\(v_{16}\)	0.8000	1.2500	1.5625	0.0500	80.0000

Assuming that performance parameter \(S(\sigma, \theta, r)\) is \((10000, 50^\circ, 1\times 105)\), then we need to find \(W\) and \(Y\) satisfying linear matrix inequalities (16), (18) and (20-22) at 16 vertices, a total of \(16 \times 5 = 80\) inequalities.

In addition, the quadratic nonlinearity of the model should be considered. According to the principle of the previous section, we need to find a \(\mu\) which can contain the maximum quadratic nonlinear range. The minimum input current of the converter is 500w/80v = 6.25A, maximum input current is 1200w/60v = 20A, both of which are divided into two roads, then, the range of current variation in each group is \(\pm 6.875\) A, the range of output voltage variation is \(\pm 20\)V. So the circuit model of quadratic nonlinearity can be expressed in \(\mu = [6.875, 6.875, 20]^T\), and the nonlinear convex polyhedron model corresponding to (19) as shown in Table VI has 8 vertices.

Based on the 16 vertices of the parameter uncertainty model in Table V, each quadratic nonlinear vertex needs to satisfy the linear matrix inequality (19), thus a total of \(16 \times 8 = 128\) linear matrix inequalities need to be satisfied to ensure the quadratic stability of the system. Coupled with 80 linear matrix inequalities that satisfy the performance robustness of convex polyhedron, the entire optimization is composed of 208 linear matrix inequalities, that is, the robust control of NMDC is to find the minimum \(\gamma\) and the corresponding matrices \(W\) and \(Y\) that can satisfy 208 linear matrix inequalities. Calculated by MATLAB LMI toolbox, we get \(\gamma = 49.1089\), and the corresponding feedback gain is show in (23).
\[
\begin{bmatrix}
(A_iW + W A_i^T + B_iY + Y^T B_i^T) \sin \theta & (A_iW - W A_i^T + B_iY - Y^T B_i^T) \cos \theta \\
(-A_iW + W A_i^T - B_iY + Y^T B_i^T) \cos \theta & (A_iW + W A_i^T - B_iY - Y^T B_i^T) \sin \theta
\end{bmatrix}
< 0 \quad (22)
\]

\[
G = \begin{bmatrix}
-0.0708 & -0.0215 & -0.0446 & 149.4235 & -116.5710 & 830.7025 \\
-0.0215 & -0.0708 & -0.0446 & -116.5710 & 149.4235 & 830.7025
\end{bmatrix} \quad (23)
\]

Figure 6. Complex LMI area of $S(\sigma, \theta, r)$

Table VI. Polyhedron Vertices with Quadratic nonlinearity.

v_1	\tilde{e}_2	\tilde{i}_L_1	\tilde{i}_L_2
v1	20	6.875	6.875
v2	20	6.875	-6.875
v3	20	-6.875	6.875
v4	20	-6.875	-6.875
v5	-20	6.875	6.875
v6	-20	6.875	-6.875
v7	-20	-6.875	6.875
v8	-20	-6.875	-6.875

A. SIMULATION

Building the NMDC simulation model with MATLAB/Simulink tool, and in order to verify the effectiveness of the control algorithm proposed in this paper, here we compare it with the conventional PID control, the simulation results are shown in Fig. 7, 8, 9, where (a) is the waveform of robust control proposed in this paper, and (b) is the waveform of PID control.

Under various operating conditions, the output voltage caused by a wide range of load and input voltage changed does not exceed 5%, and the system has a good followability when the given changes widely, in which robust control and PID control are equally good. In addition, the adjustment time of robust control is less than 0.5 ms, the currents of the two groups of coupled inductors are balanced. Conventional PID regulation does not perform very well in this case, as we can see from the waveforms, the regulation time of PID is about 5ms, which is ten times longer than that of robust control. And as shown in 7 (b) and 8 (b), when load changes or output voltage changes, periodic fluctuations in PID control’s current occur, which can affect the stability of...
the system.

B. EXPERIMENT

To verify the effectiveness of the proposed control method, we developed a four-phase parallel boost converter (Fig. 11), and two phases making a group share a coupled inductor and a current sensor. The control circuit is based on the structure of DSP+FPGA. The experimental setup (as shown in Fig. 10) consists of a programmable power supply, an auxiliary dc power supply for the control circuit, and the experimental prototype. The components used in this paper are listed in Table VII.

The experimental results are shown in Fig. 12, 13, 14. Fig. 12 and Fig 13 are experimental waveforms for sudden changes in input voltage and in output voltage respectively. When the input voltage changes abruptly, the output voltage hardly changes. When the given voltage jumps, the output voltage follows quickly, and the adjustment time is around 1ms, the currents of the two groups of coupled inductors are balanced. Fig. 14 is the experimental waveforms with two-phase power distribution ratio of 1:2, from which we can tell the current ratio of two phases with one current sensor is 1:2, and the system can flexibly distribute the power of each phase according to the requirements, and at the same time stays stable.

TABLE VII. Components used in the prototype of this paper.

Component	Model	Manufacturer
Driver power	WRB1215ZP-3WR2	MORNSUN
Driver chip	UCC27201A-Q1	TI
Mosfet	FDBL86366-F085	ONSEMI
DSP	TMS320F28335	TI
FPGA	A3PN125	Micosemi

The experimental results are shown in Fig. 12, 13, 14. Fig. 12 and Fig 13 are experimental waveforms for sudden changes in input voltage and in output voltage respectively. When the input voltage changes abruptly, the output voltage hardly changes. When the given voltage jumps, the output voltage follows quickly, and the adjustment time is around 1ms, the currents of the two groups of coupled inductors are balanced. Fig. 14 is the experimental waveforms with two-phase power distribution ratio of 1:2, from which we can tell the current ratio of two phases with one current sensor is 1:2, and the system can flexibly distribute the power of each phase according to the requirements, and at the same time stays stable.

FIGURE 10. Experimental platform

FIGURE 11. The four-phase converter with two coupled inductors.

FIGURE 12. Current and voltage waveforms of input voltage mutation under various operating conditions. The output voltages of (a), (b) are 100V and 120V, the loads are 20Ω and 12Ω respectively. Channel 1 and 4 are the current of the two groups of coupled inductors, channel 2 is the output voltage, channel 3 is the total input current of the converter. The supply voltage changes from 60V to 80V.

FIGURE 13. Current and voltage waveforms of output voltage mutation under various operating conditions. The input voltages of (a), (b) are 60V and 80V, the loads are 20Ω and 12Ω respectively. Channel 1 and 4 are the current of the two groups of coupled inductors, channel 2 is the output voltage, channel 3 is the total input current of the converter. The output voltage changes from 100V to 120V.

C. DISCUSSION

With the controller structure and control algorithm proposed in Section IV, the NMDC has good robust stability and per-
formance. Besides, by adopting independent control method, current sharing control and flexible power distribution with reduced sensors are well realized. It can be seen from the simulation and experimental results that the current change of the experiment is slower than that of the simulation, which is the result of slow step response of the power supply voltage used in experiment and the discretization of control algorithm. However, compared with the adjustment time of tens millisecond of traditional control methods such as PID, the method proposed in this paper has a faster response, moreover, robust control is also more stable against sudden changes.

VI. CONCLUSION

In this paper, based on the generalized DC-DC model proposed in [19], a generalized robust control model of NMDC and the method of robust controller design with parameter uncertainty, system interference input and quadratic nonlinearity are proposed. The designed robust controller not only realize current sharing control with reduced sensors, but also can flexibly distribute power among phases of coupled inductors, and has good stability in the whole operating condition. Compared with traditional control methods, it has a faster dynamic adjustment time, higher stability for large changes in working condition, and moreover, it can be extended to multi-phase converters with multiple structures.

This paper only deduces and designs the robust controller for boost topology. Although the specific formulas are different, the topological modeling process of other NMDC is the same. With the design process and method in this paper, controllers for other topologies can also be implemented.

APPENDIX A DEFINITION OF MATRICES K, A, B AND \dot{H}

$$B = \begin{bmatrix} 1 & 0 & d_{11} - 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & d_{MN} - 1 \\ 0 & -1 & 0 \end{bmatrix},$$

and

$$A = \begin{bmatrix} -A_1 & -C_1 \\ \vdots & \vdots \\ -A_M & -C_M \\ C_1^T & \ldots & C_M^T & \frac{1}{R} \end{bmatrix}.$$

Empty elements are zero. The block matrix elements A_i and C_i are defined as

$$A_i = \begin{bmatrix} R_{i1}(d_{i1}) \\ \vdots \\ R_{iN}(d_{iN}) \end{bmatrix},$$

$$C_i = [1 - d_{i1} \ldots 1 - d_{iN}]^T.$$

The structure of matrix K is

$$K = \begin{bmatrix} K_1 \\ \vdots \\ K_M \\ C_f \end{bmatrix},$$

Empty block elements are zero. The block element K_i on diagonal is

$$K_i = \begin{bmatrix} L_{i11} + L_{m_1} \\ \vdots \\ L_{iN+1} + L_{m_1} \end{bmatrix},$$

and empty elements are $-L_{m_1}$. The derivation of \dot{H} is

$$\dot{A}(t)\bar{x} + \dot{B}(t)\bar{w} = \{A[\dot{D} + \bar{D}(t)] - A(\bar{D})\}\bar{x} + \{B[\dot{D} + \bar{D}(t)] - B(\bar{D})\}\bar{w} = \dot{H}\bar{D}(t)$$

and

$$\dot{H} = \begin{bmatrix} V_{11} & \cdots & V_{1N} \\ \vdots & \ddots & \vdots \\ V_{i1} & \cdots & V_{iN} \\ -I_{L_{11}} & \cdots & -I_{L_{i1}} \\ \vdots & \ddots & \vdots \\ -I_{L_{N1}} & \cdots & -I_{L_{iN}} \\ \vdots & \ddots & \vdots \\ -I_{L_{MN}} \end{bmatrix},$$

where

$$V_{ij} = V_e - (R_{ON_{ij}} - R_{D_{ij}})I_{L_{ij}} + v_D$$

V_e and $I_{L_{ij}}$ are steady-state solutions calculated by (1).
APPENDIX C DERIVATION OF INEQUALITY (19)
The quadratic nonlinear model is shown below
\[\dot{x} = (A + B_1 K)x \] (B.1)

Select the quadratic lyapunov function \(V = x^T P x \), we can get
\[\dot{V} = \dot{x}^T P \dot{x} + x^T P \dot{x} \]
\[= x^T \left[(A + B_1 K)^T P + P (A + B_1 K) \right] x \] (B.2)

Considering the parameter uncertainty of the system, the sufficient condition for the asymptotic stability of the system is that all vertices of the convex polyhedron satisfy \(\dot{V} < 0 \), that is, there is a positive definite matrix \(P \) that satisfies
\[[A(\theta_i) + B_1(\theta_i)K]^T P + P [A(\theta_i) + B_1(\theta_i)K] < 0 \] (B.3)

For convenience, we use \(A_i \) instead of \(A(\theta_i) \), \(B_i \) instead of \(B_1(\theta_i) \). Multiplying \(W = P^{-1} \) on both sides, we get
\[WA_i^T + A_i W + (KW)^T B_i^T + B_i KW < 0, \quad \forall i \] (B.4)

where
\[W = P^{-1}, \quad Y = KW \Leftrightarrow K = YW^{-1} \] (B.5)

The quadratic nonlinear components usually change near a certain operating point, so \(\chi(\tilde{x}) \) is a range that's symmetric about the origin as shown in (C.6):
\[\chi(\tilde{x}) = \{ \tilde{x} \in R^n; -\mu \leq \tilde{x} \leq \mu \} \] (C.6)

where \(\mu > 0 \).

Then the vertices of the convex polyhedron can be represented by the combination of \(\tilde{x} \)’s upper and lower bounds, such as (C.7):
\[v_j = \Delta_j \mu \] (C.7)

where \(\Delta_j \) is a diagonal matrix composed of all possible combinations of ±1.

In summary, the quadratic nonlinear components of the NMDC can be expressed as (C.8):
\[[N_1 \tilde{x}, \ldots, N_M \tilde{x}] \bar{D} = \left\{ \sum_{j=1}^{k} \beta_j [N_1 v_j, \ldots, N_M v_j] \right\} \bar{D} \] (C.8)

Next, according to Lyapunov’s theorem, building the controller of the NMDC with quadratic nonlinear components.

Selecting \(\dot{V}(\tilde{x}) = \tilde{x}^T P \tilde{x} \) as the quadratic lyapunov function, then its derivative expression under the feedback control law in (12) is as shown in (C.9).
\[\dot{V}(\tilde{x}) = \tilde{x}^T (PA + AT P) \tilde{x} + \tilde{x}^T [P (B_1 + [N_1 \tilde{x}, \ldots, N_M \tilde{x}])] K + K^T (B_1 + [N_1 \tilde{x}, \ldots, N_M \tilde{x}])^T P \tilde{x} \] (C.9)

\[(PA + AT P + P (B_1 + [N_1 v_j, \ldots, N_M v_j])) K + K^T (B_1 + [N_1 v_j, \ldots, N_M v_j])^T P < 0, \quad j = 1, \ldots, k \] (C.10)

According to the derivation of quadratic stability of linear part, it is obvious that as long as positive definite symmetric matrix \(P \) and control gain \(K \) satisfy (C.10), (C.9) can be guaranteed.

Finally, the robust control matrix inequality (19) with quadratic nonlinearity is obtained by transformation like (B.5).

REFERENCES
[1] S. Chandrasekaran and L. U. Godkere, “Integrated magnets for interleaved dc-dc boost converter for fuel cell powered vehicles,” in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), vol. 1, 2004, pp. 356–361 Vol.1.
[2] J. Czogalla, Jieli Li, and C. R. Sullivan, “Automotive application of multiphase coupled-inductor dc-dc converter,” in 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003., vol. 3, 2003, pp. 1524–1529 vol.3.
[3] Po-Wa Lee, Yim-Shu Lee, D. K. W. Cheng, and Xiu-Cheng Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 787–795, 2000.
[4] S. Prabhakaran, C. R. Sullivan, T. O’Donnell, M. Brunet, and S. Roy, “Microfabricated coupled inductors for dc-dc converters for microprocessor power delivery,” in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), vol. 6, 2004, pp. 4467–4472 Vol.6.
[5] Wenkai Wu, Nai-Chi Lee, and G. Schuellein, “Multi-phase buck converter design with two-phase coupled inductors,” in Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC ’06, pp. 6 pp.–.

[6] W. Yu, H. Qian, and J. Lai, “Design of high-efficiency bidirectional dc–dc converter and high-precision efficiency measurement,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 650–658, 2010.

[7] W. Du, H. H. C. Iu, W. Wang, and C. Wang, “Modeling and implementation of a digitally controlled multiphase dc–dc converter,” in 2009 Australasian Universities Power Engineering Conference, 2009, pp. 1–6.

[8] H. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved dc/dc converter for fuel cell hybrid electric vehicles,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4445–4458, 2012.

[9] Y. Su, W. Chen, Y. Huang, Y. Lee, K. Chen, and H. Luo, “Pseudo-ramp current balance (prcb) technique with offset cancellation control (occ) in dual-phase dc–dc buck converter,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2192–2205, 2014.

[10] S. Zhang and X. Yu, “A unified analytical modeling of the interleaved pulse width modulation (pwm) dc–dc converter and its applications,” IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5147–5158, 2013.

[11] R. L. Andersen and I. Barbi, “A zvs-pwm three-phase current-fed push–pull dc–dc converter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 838–847, 2013.

[12] C. Olalla, I. Queinnec, R. Leyva, and A. El Aroudi, “Optimal state-feedback control of bilinear dc–dc converters with guaranteed region of stability,” IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3868–3880, 2012.

[13] C. Olalla, R. Leyva, I. Queinnec, and D. Maksimovic, “Robust gain-scheduled control of switched-mode dc–dc converters,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 3006–3019, 2012.

[14] A. Qamar, A. U. Awan, K. F. A. Khan, and M. Liaquat, “Scenario based approach for control design for dc–dc buck converter,” in 2015 International Conference on Control, Automation and Robotics, 2015, pp. 97–102.

[15] G. Rigatos, P. Siano, and C. Cecati, “An h-infinity feedback control approach for three-phase voltage source converters,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 1227–1232.

[16] L. A. Maciel, V. F. Montagner, and A. A. Ferreira, “A linear quadratic control applied to buck converters with h-infinity constraints,” in 2013 Brazilian Power Electronics Conference, 2013, pp. 339–344.

[17] M. A. Bolender, “An overview on dynamics and controls modelling of hypersonic vehicles,” in 2009 American Control Conference, 2009, pp. 2507–2512.

[18] H. Sartipi-Zadeh and T. Vincent, “A new robust mpc using an approximate convex hull,” Automatica, vol. 92, pp. 115–122, 06 2018.

[19] D. Zhan, L. Wei, Y. Zhang, and Y. Yao, “A generalized model of non-isolated multiphase dc–dc converter based on novel switching period averaging method,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5811–5819, 2015.

[20] V. Chapparaya, P. Dwivedi, and S. Bose, “Multi-phase dc–dc boost converter: Introduction to controller design,” in Transactions on Engineering Technologies, S.-I. Ao, H. K. Kim, O. Castillo, A. H.-s. Chan, and H. Katagiri, Eds., Singapore: Springer Singapore, 2020, pp. 39–53.

[21] H. Sartipi-Zadeh and F. Harirchi, “Robust model predictive control of dc–dc floating interleaved boost converter under uncertainty,” in 2017 Ninth International IEEE Green Technologies Conference (GreenTech), 2017, pp. 320–327.

[22] M. Aguirre, S. Kouro, J. Rodriguez, and H. Abu-Rub, “Model predictive control of interleaved boost converters for synchronous generator wind energy conversion systems,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 2295–2301.

[23] Y. Adachi, Y. Mochizuki, K. Higuchi, K. Jirasereamornkul, and K. Channthai, “Design of approximate 2df digital controller for interleaved pfc boost converter,” in 2014 International Electrical Engineering Congress (IEEECON), 2014, pp. 1–4.

[24] A. Cid-Pastor, R. Giral, J. Calvente, V. I. Utkin, and L. Martinez-Salamero, “Interleaved converters based on sliding-mode control in a ring configuration,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2566–2577, 2011.

[25] S. Banerjee, A. Ghosh, and N. Rana, “An improved interleaved boost converter with pso-based optimal type-iii controller,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 323–337, 2017.

[26] S. Banerjee, A. Ghosh, and N. Rana, “Design and fabrication of closed loop two-phase interleaved boost converter with type-iii controller,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 3331–3336.

[27] C. Olalla, R. Leyva, A. E. Aroudi, P. Garces, and I. Queinnec, “Lmi robust control design for boost pwm converters,” IET Power Electronics, vol. 3, no. 1, pp. 75–85, 2010.

[28] L. A. Maccari, J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira, and V. F. Montagner, “Lmi-based control for grid-connected converters with lcl filters under uncertain parameters,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3776–3785, 2014.

[29] M. Chilali and P. Gahinet, “Hinf /lmi infin design with pole placement constraints: An lmi-based approach,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 358–367, 1996.

[30] S. Tarbouriech, I. Queinnec, T. R. Callierro, and P. L. D. Peres, “Control design for bilinear systems with a guaranteed region of stability: An lmi-based approach,” in 2009 17th Mediterranean Conference on Control and Automation, 2009, pp. 809–814.

WEN YAN. received the B.S. degree in ocean resource developing technology from Tongji University, Shanghai, China, in 2019, where he is currently working toward the M.S. degree in electrical engineering.

His research interests include R&D of high power density converter for electric vehicle, including modeling and control of converters, multi-phase parallel technique.

LI WEI. received the B.S. degree in electrical engineering and Ph.D. degree in control theory and control engineering from Tongji University, Shanghai, China, in 2004 and 2010, respectively. She has been with Tongji University since 2000, where she is currently an associate professor in electrical engineering in the school of electronics and information engineering. From 2007 to 2008, she was a visiting Ph.D student at Ecole des Mines de Paris, Sophia Antipolis, France. She was a visiting scientist in RWTH Aachen University, Aachen, Germany from 2014 to 2015. In 2019, she is a visiting scientist at Aalborg University, Aalborg, Denmark. She received Green Talents Award from the German Federal Ministry of education and Research in 2014.

Her current research interests include high power density DC/DC converter for fuel cell vehicle and energy storage application.

DIFU ZHAN. graduated from Tongji University in July, 2011 with B.S. degree. The major was electrical engineering and automation. Then he continued study at Tongji University majoring in control theory and engineering. He acquired Ph.D. degree of engineering in 2016. His research field during Ph.D. period includes the design and control of high power DC/DC converters for fuel cell vehicles. After that, he joined Bosch Group as a system engineer in Bosch (China) Investment Ltd. In 2018, he became team expert on vehicle power net system development, including high voltage system engineering for new energy vehicles, redundancy low voltage power supply system engineering for highly automatic driving vehicles and onboard electrical energy management. Since 2021, he joined HydraV as a director of power electronics.
DAN SU. received the B.S. and M.S. degree in electrical engineering and from Tongji University, Shanghai, China, in 2005 and 2008, respectively. He has worked in Murata Power Solution from 2008 to 2011, as electrical engineer and and developed several standard DC-DC Board Mounted Power supplies in telecom application. Then he worked as Lead engineer in GE Power from 2011 to 2014, and developed standard or customized DC-DC converter for telecom and Transportation application. After that, Dan Su went to Microchip in 2015 and works as Sr.Application engineer on Digital Power Supply design and training, with his background and many years’ experience in power supply, he help many customers develop their own digital power supply very quickly and successfully. From 2016 Dan Su has joined New Energy and Electrical Apparatus Lab of Tongji University, and been responsible for design and manufacture of DC-DC converters used in EV and FCEV. And now, he is studying as PhD student in Power and Energy of Tongji University. His current research interests include digital control of high power DC-DC converter in FCEV and energy storage and application of wide band semiconductors.

MINGRUI ZHANG. received the B.S., M.S., and Ph.D. degrees in electrical engineering from Tongji University, Shanghai, China, in 1994, 2003, and 2008, respectively. He is currently a professor of the department of electrical engineering, Tongji university. From 2009 to 2010, he was a visiting scholar at Arizona State University, Tucson, AZ, USA, funded by the China scholarship council. His current research interests include distributed generation and micro-grids, energy management and optimized operation of electric power systems, and rail transit power systems.
