Biofertilizers in the coffee crop: application in the leaves and drip in the soil

Biofertilizantes na cultura do café: aplicação nas folhas e gotejamento no solo

DOI:10.34117/bjdv6n5-525

Recebimento dos originais: 13/04/2020
Aceitação para publicação: 26/05/2020

Roberta Camargos de Oliveira
Formação acadêmica: Doutora em Agronomia (Fitotecnia)
Instituição: Universidade Federal de Uberlândia
Endereço: Universidade Federal de Uberlândia - Instituto de Ciências Agrárias, BR 050 km 78, sala 1C212, Campus Glória, 38410-337, Uberlândia-MG-Brasil
E-mail: robertacamargoss@gmail.com

Bruno Cassio Borges
Formação acadêmica: Eng. Agrônomo pela Universidade Federal de Uberlândia
Instituição: Okuyama
Endereço: Rodovia MG 235 km 89,693, 38800-000, São Gotardo-MG-Brasil
E-mail: brunocassioborges@yahoo.com.br

José Magno Queiroz Luz
Formação acadêmica: Doutor em Fitotecnia pela Universidade Federal de Lavras
Instituição: Universidade Federal de Uberlândia
Endereço: Universidade Federal de Uberlândia - Instituto de Ciências Agrárias, BR 050 km 78, sala 1C212, Campus Glória, 38410-337, Uberlândia-MG-Brasil
E-mail: jmagno@ufu.br

Regina Maria Quintão Lana
Formação acadêmica: Doutora em Agronomia (Solos e Nutrição de Plantas) pela Universidade Federal de Viçosa
Instituição: Universidade Federal de Uberlândia
Endereço: Universidade Federal de Uberlândia - Instituto de Ciências Agrárias, BR 050 km 78, sala 1C212, Campus Glória, 38410-337, Uberlândia-MG-Brasil
E-mail: rmqlana@hotmail.com

Mara Lúcia Martins Magela
Formação acadêmica: Mestre em Agronomia (Fitotecnia)
Instituição: Universidade Federal de Uberlândia
Endereço: Universidade Federal de Uberlândia - Instituto de Ciências Agrárias, BR 050 km 78, sala 1C212, Campus Glória, 38410-337, Uberlândia-MG-Brasil
E-mail: maralumm@hotmail.com
ABSTRACT
Coffee is a commodity important in economic and social terms. In order to obtain high yields and excellent quality products, more studies involving nutrient use efficiency and fertilizer sources need to be developed which offer new management options to producers, potentially providing more sustainable and better agricultural inputs and resources utilization. The aim of the study was to evaluate the application of biofertilizers (OM) in only leaf application and leaf and drip application, in growth, production and fruit quality of coffee cultivated under Savannah conditions (Araguari-MG), compared with conventional chemical coverage fertilization. The experiment was conducted with a randomized block design with three treatments and seven replications. The OM were used in leaf and leaf + drip applications, while the control treatment did not receive any OM application. The OM in leaf and in leaf + drip applications promote higher coffee tree height growth. The OM showed better results than control in 80.3 and 28.4%, in leaf application and leaf + drip application, respectively. However, further investigations need to be developed in order to find out the interference of organic constituents in plant physiology and nutrients dynamics.

Keywords: *Coffea Arabica*. Drip. Organomineral fertilizer.

RESUMO
O café é uma commodity de grande importância em termos econômicos e sociais. No intuito de obter altas produtividades e produtos de excelente qualidade mais estudos envolvendo eficiência no aproveitamento de nutrientes e fontes de fertilizantes precisam ser desenvolvidas, oferecendo respostas aos produtores quanto a manejo mais sustentáveis e melhor aproveitamento de insumos e recursos agrícolas. Neste sentido, objetivou-se avaliar a aplicação de biofertilizantes (OM), somente via foliar e via foliar mais gotejo, no crescimento vegetativo, na produção e na qualidade do café, cultivado em condições de cerrado (Araguari-MG), comparando com a adubação química convencional de cobertura. O delineamento experimental utilizado foi o de blocos casualizados, com três tratamentos e sete repetições. Os OM foram aplicados: via foliar e via foliar + gotejo. O tratamento testemunha não recebeu aplicação de OM. A aplicação de OM via adubação foliar e gotejo promove maior crescimento em altura do cafeeiro. Os OM se sobressaíram à testemunha em 28,4 e 80,3%, em aplicações foliar + gotejo e aplicação foliar, respectivamente. Contudo, maiores investigações precisam ser desenvolvidas no intuito de averiguar a interferência dos constituintes orgânicos na fisiologia e dinâmica vegetal.

Palavras-chave: *Coffea Arabica*. Fertirrigação. Fertilizante organomineral.

1 INTRODUCTION

Coffee is one of the most consumed beverages in the world. In the USA and Brazil, the two largest consumers worldwide, it loses only to water (SILVA et al., 2017, NICOLOPOULOS et al., 2020). This preference is related to the aroma, taste, flavor and the presence of caffeine that improve physical performance and increases energy availability, alertness and concentration (CHENG et al., 2016). In addition, coffee beans are important source of antioxidants and compounds that benefit human health (TRINH et al., 2020).

The crop plays a central economic role in several countries where it is produced and exported.
Brazil is the largest exporter and in 2015 it was responsible for more than a third of the overall world-scale coffee production (ABIC, 2016, TOLEDO et al., 2017).

Coffee quality results from interaction among many different factors including genotype, environmental and management factors (SUNARHARUM et al., 2014, CHENG et al., 2016). Among management issues, plant nutrition stands out (QUINTELA et al., 2011) because the amount of fertilizers applied in coffee is twice the amount needed for the crops of soybean and corn (DOMINGHETTI et al., 2014).

The indiscriminate use of chemical fertilizers has imposed dependence, environment pollution, ecological balance disturbances and effects upon animal health as well. This scenario has encouraged the industries to find alternatives for a more sustainable agriculture (BHARDWAJ et al., 2014, TOMER et al., 2017).

The association of minerals with organic compounds form organominerals (OM), available in the market place in various combinations, with a wide range of products that can fit the needs of each culture and increases the possibilities for farmers. OM also help reduce nutrient losses by increasing the proliferation of microorganisms and therefore the use of fertilizer in the soil, which represents a significant reduction in costs (MOREIRA et al., 2017).

These products have been studied in several crops such as soybeans and corn (BORGES et al., 2015), vegetables such as tomato (COIMBRA et al., 2013) and lettuce (MONTEIRO FILHO et al., 2014) and in perennial plants such as olive (CARVALHO et al., 2015) and coffee (FERNANDES et al., 2007).

The nutrient content of the plants depends on the efficiency of the roots to absorb them and the ability to translocation/utilization of the nutrients by the plants. These aspects will determine the development, quantity and quality of fruit production (AMARAL et al., 2011). Leaf application may be a mechanism to improve nutrient use efficiency through leaf absorption (MANASA et al., 2015). The drip also can be an extraordinary alternative to nutrient use efficiency. Both allow the installment of fertilizers throughout the growing cycle.

Thus, knowledge about new fertilizers and application forms in Brazilian coffee growing can provide valuable information on the management, productivity, as well as agronomic and organoleptic characteristics of coffee (EVANGELISTA et al., 2013).

This informations guides producers to rationalize resource use, increase their incomes by improving the quality of the product and consequently adding value to the product at the commercialization phase. Consumers in developed countries are willing to pay significant premiums for
the certification of sustainability standards (MINTEM et al., 2018).

With the use of methods such as fertirrigation or foliar fertilization, OM products in liquid form can be used. However, because the practice is recent and the information still not clear, especially related to how these products act and influence the production of plants, in the productivity, in the quality of the vegetables and in the dynamics of absorption (SOUZA et al., 2017).

The objective of this study was to evaluate the application of organomineral fertilizers, via drip and leaf, in the growth, production and quality of coffee compared to conventional chemical cover fertilization.

2 MATERIAL AND METHODS

The experiment was conducted in the Amanhece district, municipality of Araguari- MG, situated at 18°38'56" south latitude and 48°11'13" longitude west and altitude average 1013 m above sea level. It presents tropical climate of altitude Cwa according to a classification of Köppen. The soil is classified as Red Latosol (EMBRAPA, 1999).

The study was performed with a coffee crop of the Topázio cultivar, eight years old, spaced on 3.80 m between rows and 0.70 m between plants. Soil chemical analysis performed before treatment application at 0-20 cm depth showed the following results: P = 8.72 mg dm\(^{-3}\); K = 70 mg dm\(^{-3}\), pH = 5.3; Ca\(^{2+}\) = 1.50 cmol\(_c\) dm\(^{-3}\); Mg\(^{2+}\) = 0.20 cmol\(_c\) dm\(^{-3}\); Al\(^{3+}\) = 0.1 cmol\(_c\) dm\(^{-3}\); T: 7.6 cmol\(_c\) dm\(^{-3}\) e SB = 1.88 cmol\(_c\) dm\(^{-3}\).

The experimental design was a randomized block design with three treatments and seven replications. Each plot was composed of 42 rows, the useful area being the seven central rows. The treatments used were: control (without OM fertilizers application), leaf fertilization and leaf fertilization associated with drip irrigation. The rates of OM used are shown in Table 1.

DAH	TOC\(^1\)	N\(^2\)	K\(^3\)	Ca\(^4\)	S\(^5\)	Zn\(^6\)	Mo\(^7\)	Cu\(^8\)	B\(^9\)	Mn\(^{10}\)
0	103.5	115	11.5	5.75						17.25
15 and 45	126.5	126.5	--	273.5	150.8	130	2.6	13	66.7	130
90	51.75	5.75	5.75	203	150.8	288	2.6	13	61	8.63
140	78	--	780	--	--	--	--	--	--	--

Table 1 - Composition of liquid organomineral used in leaf application at days after harvest (DAH)

\(^1\)Total Organic Carbon; \(^2\)Nitrogen; \(^3\)Potassium; \(^4\)Calcium; \(^5\)Sulfur; \(^6\)Zinc; \(^7\)Molybdenum; \(^8\)Copper; \(^9\)Boron; \(^{10}\)Manganese
In the treatment leaf fertilization associated with drip irrigation, in addition to the nutrients mentioned in the Table 1 were applied weekly 540; 310.5; 241.5 and 23 g ha\(^{-1}\) of Total Organic Matter; Total Organic Carbon; Nitrogen and Potassium, respectively.

For the analysis of the macro and micronutrient contents of the plants, twenty leaves of ten plants of each plot were obtained randomly in productive branches of the third and fourth pairs, located in the middle height of the plant on two sides of the coffee line, according to methodology EMBRAPA (1999). The leaf samples were stored in paper bags, identified and transported to the laboratory for analysis.

Spraying was performed with a 20 L sprayer with working pressure of 4 Kgf, and a drip irrigation application was performed with the aid of a fertilizer injector Venturi type. Phytosanitary control was made with insecticides and fungicides recommended for coffee, when required.

The plants’ vegetative growth, the height and the diameter of the skirt of the coffee tree were measured with tape measure. The mean diameter of the skirt was obtained with the two-way reading of the plant, line and street, in the larger diameter portion, at the end of the harvest, obtaining the average of the two readings for analysis purposes.

The coffee beans were harvested manually, in ten randomized plants per plot, when the percentage of green beans was less than 5%. After the collection, the grains were placed in a cement yard for the coffee bean drying process. After reaching a value close to 12% moisture, the grains were peeled and weighed in an analytical balance.

For the estimation of liters of coffee per plant, the weight has been transformed into sixty kilogram bags, using the harvest income factor (ratio of the amount of grains harvested to the amount of grains after processing).

The results were submitted for variance analysis and means were compared by the Tukey test using the software SISVAR (FERREIRA, 2011).

3 RESULTS AND DISCUSSION

Leaf associated with drip fertilization stimulated coffee height development and was 38% higher than control. The skirt diameter did not present significant differences between the OM fertilizers applications (Table 2).

Nutrients and other components that stimulate plant development enter through the flow of water available to the plant. Therefore, the supply of the dissolved mineral elements in the irrigation water is interesting because they are readily available for absorption, which allows the translocation and action
at the specific points of the plant metabolism and explains the better results related to the drip.

Table 2 - Coffee height and diameter of cv. Topazio according to OM fertilizers applications

Treatments	Height (cm)	Diameter (cm)
Leaf application	24.57 b	17.28 a
Leaf and drip application	40.42 a	23.14 a
Control	29.14 b	11.85 a
CV (%)	16.93	19.93

¹Means followed by the same letter do not differ statistically by the Tukey test at 5% probability

Fertilization associated with irrigation as observed in the present study improved coffee growth. Several studies corroborate the data presented (COSTA et al., 2010, REZENDE et al., 2010, ASSIS et al., 2015). Magiero et al. (2017) reported even reductions in the fertilization standard rate.

Fertilizer addition to the soil temporarily change the availability and leaching of nutrients, according to the solution dynamics, by the chemical balance between the solid and liquid phases (TEIXEIRA et al., 2014). This fact reflects on what will be absorbed by the roots of the plants. According to this study, it was observed that the application form interferes in the absorption efficiency, which reflects in the plants’ growth.

Gomes (2007), in a study with the cultivar Rubi, during five years, observed greater vegetative growth when the coffee was drip compared to another treatment without drip. Therefore, the nutrients application associated with irrigation brings satisfactory results to the coffee (SCALCO et al., 2014) and shoot growth (AQUINO et al., 2012), including, as observed in this experiment, with incorporation of OM in the system.

Arantes et al. (2006) did not observe differences between drip levels in coffee vegetative growth. However, the plant height, the number of internodes, and the canopy diameter were linearly increased with increasing irrigation depths. This emphasizes the essentiality of water in plant metabolism and development.

Fagundes (2006) also verified that liquid fertilizers added to the crop lead to positive responses in coffee vegetative development. For Resende et al. (2010), drip is a good alternative to be used in the formation of coffee plants since they have advantages over conventional fertilization. In the present work, the association between liquid OM applications and the drip process was a potential alternative for coffee
management.

The macro and micronutrients: N, P, Ca, S, B, Cu, Fe, Zn showed no significant differences between the treatments (Table 3).

The potassium (K) content presented a significant difference in relation to the control. The leaf fertilization and leaf associated with drip showed no significant differences between them, with K levels of 30 g kg\(^{-1}\) and 29 g kg\(^{-1}\), respectively (Table 3). The K content was significant possibly because of its ease in being absorbed through the leaf. Folegatti (1999) stated that the use of this nutrient could reach 90% when applied in liquid form, an interesting result, since, according to Silva et al. (2001), the application of K responds in coffee production.

For the Magnesium (Mg), the control showed a significant difference in relation to the other treatments, with 3.0 g kg\(^{-1}\) (Table 3). Probably the result can be related to the ratio of K/Mg and Mg/Ca. According to Laviola et al. (2007), the concentrations of these nutrients in leaves and grains are influenced not only by the fertilization levels, but also by factors that determine the rate of mineral distribution in coffee plants, such as the pending grain load.

The Manganese (Mn) provided a content of 109.50 mg kg\(^{-1}\) in the coffee leaves and it was significant for the leaf associated with drip (Table 3). According to Freitas et al. (2007) the plant response to nutrients is also influenced by the fertilization season. The leaf fertilization is convenient to maximize productivity, if applied many times during the crop cycle. A staggered supply of nutrients minimizes losses of natural resources and optimizes nutrients uptake (DOMINGHETTI et al., 2014), which leads to improvements in the management and ecosystem sustainability.

Table 3 - Macronutrients and micronutrients in leaves of coffee cv. Topázio according to OM fertilizers applications

Treatments	N (g kg\(^{-1}\))	P (mg kg\(^{-1}\))	Ca	Mg	S	B	Cu	Fe	Mn	Zn	CV
Control	27.8 a 0.0 a 0.0 a 0.0 a 0.0 a	9.4 a 23.5 a 00.0 a 3.9 a									
Leaf and drip application	8.5 a 0.9 a 0.0 a 0.0 a 0.0 a	34.9 a 8.0 a 81.0 a 09.5 a 5.1 a									
Leaf fertilization	8.2 a 0.9 a 0.0 a 0.0 a 0.0 a	34.7 a 9.5 a 23.5 a 00.0 a 3.9 a									
Control (%)	97.7 97.7 96.9 97.6 97.9	97.6 79.6 98.1 4.1									

1Means followed by the same letter do not differ statistically by the Tukey test at 5% probability.

The same was observed by Fernandes (2007) evaluating the cultivar Catuaí Vermelho IAC 144, in
an analysis of the mineral and organomineral fertilizers efficiency on vegetative growth and coffee production, cultivated under Savannah conditions. The researcher also did not observe any difference between macro and micronutrient contents.

The nutrient leaf content of coffee plants depends on root absorption, which is influenced by external and internal factors (ARAUJO et al., 2007). Organic compounds in organominerals, for example, may aid in cation availability, such as K\(^+\), Ca\(^{2+}\) and Mg\(^{2+}\). Thus, they may interfere with nutrient concentration and competitive effects at the absorption sites.

The leaf OM fertilizers applications reflect a higher coffee roasted and productivity, compared with control (Table 4). For productivity, the OM showed better results than control in 80.3 and 28.4 % in leaf application and leaf + drip application, respectively.

Table 4 - Roasted coffee, yield (liters of coconut coffee per bag of 60 kg) and average productivity (sacks benefited per hectare) of coffee cv. Topazio according to OM fertilizers application

Treatments	Coffee roasted (kg ha\(^{-1}\)) \(^1\)	Productivity (sc ha\(^{-1}\)) \(^1\)
Leaf application	4092.86 a	33.25 a
Leaf and drip application	2952.86 ab	23.67 ab
Control	2430.00 b	18.44 b
CV (%)	15.38	16.80

\(^1\)Means followed by the same letter do not differ statistically by the Tukey test at 5% probability

Oliveira et al. (2010) observed a distinct response of the present study in the city of Lavras (MG), where drip in the coffee crop was economically feasible due to the increase in productivity (33.48%). The authors drew attention to the fact that the costs are not related to the implementation of the irrigation system, but to variable costs such as labor and energy.

The dynamics between the constituents of the products change with the metabolism of the plants. It is important to understand that the effects of the organic components are revealed in the long term because their performance in the soils is gradual. Therefore, they are hardly reflected in initial evaluations (FERNANDES et al., 2013, MAZEIKA et al., 2016). According to Fernandes (2007), it is possible to notice any evident income difference only after some years of cultivation.

The organic matter of organic and OM fertilizers can increase fertility, improve soil biological quality and physical characteristics, and promote beneficial effects on soil aggregation, porosity, retention and infiltration (RODRIGUES et al., 2013).

It has been observed that the form of application can determine plant assimilation due to the
dynamic interaction between the ecosystem factors. Finally, more studies on the application of organominerals in drip are necessary since it favored vegetative development but left also an open question as to the effectiveness in the productivity.

4 CONCLUSIONS

The OM in leaf application and in leaf + drip promotes higher coffee tree height growth.

The OM showed better results than control in 80.3 and 28.4%, in leaf application and leaf + drip application, respectively.

Further investigations need to be developed in order to find out the interference of organic constituents in plant physiology and nutrients dynamics.

5 DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.

ACKNOWLEDGEMENTS

The authors wish to thanks the Aminoagro, farmer Sérgio Bronzi, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the support this research.

REFERENCES

ABIC- Associação Brasileira da Indústria De Café – Indicadores Da Indústria De Cafê No Brasil, 2016.

AMARAL, J. F. T.; MARTINEZ, H.E.P.; LAVIOLA, B.G.; FERNANDES FILHO, E.I.; CRUZ, C.D. Eficiência de utilização de nutrientes por cultivares de cafeeiro. Ciência Rural, v. 41, n. 4, p. 621-629, 2011. http://dx.doi.org/10.1590/S0103-84782011005000027

ARANTES, K. R.; ARANTES, S.A.C.M.; FARIA, M.A.; REZENDE, F.C. Desenvolvimento do cafeeiro (Coffea arabica L.) podado sob irrigação. Revista de Ciências Agro-Ambientais, v. 4, n. 1, p. 75-86, 2006.

ARAÚJO, J.B.S.; CARVALHO, G.J.; GUIMARÃES, R.J.; CARVALHO, J.G. Composto orgânico e biofertilizante na nutrição do cafeeiro em formação no sistema orgânico: teores foliares. Coffee Science, v. 2, n. 1, p. 20-28, 2007.
AQUINO, L.A. de A.; AQUINO, R.F.B.A.; SILVA, T.C.; SANTOS, D.F. dos; BERGER, P.G. Aplicação do fósforo e da irrigação na absorção e exportação de nutrientes pelo algodoeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, p. 355-361, 2012. http://dx.doi.org/10.1590/S1415-43662012000400004

ASSIS, G. A.; GUIMARÃES, R. J.; COLOMBO, A.; SCALCO, M. S.; DOMINGHETTI, W. Critical ranges for leaf nitrogen and potassium levels in coffee fertigated at the production phase. Revista Ciência Agronômica, v. 46, n. 1, p. 126-134, 2015. http://dx.doi.org/10.1590/S1806-66902015000100015

BHARDWAJ, D.; ANSARI, M.W.; SAHOO, R. K.; TUTEJ, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, p. 13-66, 2014. http://dx.doi.org/10.1186/1475-2859-13-66

BORGES, R. E.; MENEZES, J. F. S.; SIMON, G. A.; BENITES, V. Eficiência da adubação com organomineral na produtividade de soja e milho. Global Science and Technology, v. 8, n. 1, p. 177-184, 2015.

CARVALHO, R. P.; MOREIRA, R. A.; CRUZ, M. C. M.; OLIVEIRA, A. F.; FAGUNDES, M. C. P. Comportamento nutricional de oliveiras com a aplicação de fertilizante organomineral. Comunicata Scientiae, v. 6, n. 2, p. 224-233, 2015.

CHENG, B.; FURTADO, A.; SMYTH, H. E.; HENRY, R. J. Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, v. 57, p. 20-30, 2016. https://doi.org/10.1016/j.tifs.2016.09.003

COIMBRA; K.G.; PEIXOTO, J.R.; SANTIN, M.R.; NUNES, M.S. Efeito de produtos alternativos no desempenho agronômico de tomate rasteiro. Bioscience Journal, v. 29, n. 1, p. 1508-1513, 2013.

COSTA, A. R.; REZENDE, R.; FREITAS, P. S. L.; FRIZZONE, J. A.; JÚNIOR, C. H. Número de ramos plagiotrópicos e produtividade de duas cultivares de cafeeiro utilizando irrigação por gotejamento. Revista Ciência Agronômica, v. 41, n. 4, p. 571-581, 2010.

DOMINGHETTI, A. W.; SCALCO, M. S.; GUIMARÃES, R. J.; SILVA, D. R. G.; CARVALHO, J. P. S.; PEREIRA, V. A. Doses de fósforo e irrigação na nutrição foliar do cafeeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 12, 2014. http://dx.doi.org/10.1590/1807-1929/agriambi.v18n12p1235-1240
EMBRAPA. Manual de análise química dos solos, plantas e fertilizantes. Embrapa Solos, 1999. 370p.

EVANGELISTA, A. W. P.; ALVES JÚNIOR, J.; MELO, P. C. Resposta do cafeeiro à aplicação de níveis de irrigação e adubação com Alfertil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 4, p. 392-396, 2013. http://dx.doi.org/10.1590/S1415-43662013000400006

FAGUNDES, A. V. Adubação líquida na implantação da lavoura cafeeira (Coffea arabica L.). 2006. 52f. Dissertação (Mestrado em Fitotecnia). Universidade Federal de Lavras, Lavras. 2006.

FERNANDES, A. L. T.; SANTINATO, R.; DRUMOND, L.C.D; OLIVEIRA, C.B. Avaliação do uso de fertilizantes organominerais e químicos na fertirrigação do cafeeiro irrigado por gotejamento. Revista Brasileiro de Engenharia Agrícola e Ambiental, v. 11, n. 2, p. 159-166, 2007. http://dx.doi.org/10.1590/S1415-43662007000200005

FERNANDES, A. L. T.; SANTINATO, F.; FERREIRA, R. T.; SANTINATO, R. Adubação orgânica do cafeeiro, com uso do esterco de galinha, em substituição à adubação mineral. Coffee Science, v. 8, n. 4, p. 486-499, 2013.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Revista Ciência agrotecnologia, v.35, n. 6, p. 1039-1042, 2011.

FOLEGATTI, M. V. (Coord.). Fertirrigação: Citrus, flores, hortaliças. Guaíba: Agropecuária, 1999. 458 p.

FREITAS, R. B.; ALVES, J. D.; MAGALHÃES, M. M.; GOULART, P. F. P.; NASCIMENTO, M. N.; FRIES, D. D. Coffee tree fertilization with potassium nitrate via leaf and soil, in autumn-winter and spring-summer: effects on nitrate reductase activity, on plant growth and production. Ciência e Agrotecnologia, v. 31, n. 4, p. 945-952, 2007. http://dx.doi.org/10.1590/S1413-70542007000400001

GOMES, N. M.; LIMA, L. A.; CUSTÓDIO, A. A. P. Crescimento vegetativo e produtividade do cafeeiro irrigado no sul do estado de Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 11, n. 6, p. 564-570, 2007. http://dx.doi.org/10.1590/S1415-43662007000600003

LA VIOLA, B. G.; MARTINEZ, H. E. P.; SOUZA, R. B.; ALVAREZ, V. V. H. Dinâmica de cálcio em folhas e frutos de cafeeiro arábico em três níveis de adubação. Revista Brasileira de Ciências do Solo, v. 1, p. 319-329, 2007.

MAGIERO, M.; BONOMO, R.; PARTELLI, F. L.; SOUZA, J. M. Crescimento vegetativo do cafeeiro
Conilon fertirrigado com diferentes parcelamentos e doses de nitrogênio e potássio. Revista Agroambiente, v. 11, n. 1, p. 31-39, 2017.

MANASA, V., HEBSUR, N. S., MALLIGAWAD L. H., KUMAR, L. S.; RAMAKRISHNA, B. Effect of water soluble fertilizers on uptake of major and micro nutrients by groundnut and post harvest nutrient status in a vertisol of northern transition zone of Karnataka. The Ecoscan, v. 9, n. 1-2, p. 01-05, 2015.

MAZEIKA, R.; STAU GAITIS, G.; BAL TRUSAITIS, J. Engineered Pelletized Organo-Mineral Fertilizers (OMF) from Poultry Manure, Diammonium Phosphate and Potassium Chloride. ACS Sustainable Chemistry & Engineering, v. 4, n. 4, p. 2279–2285, 2016. http://dx.doi.org/10.1021/acssuschemeng.5b01748

MINTEN, B.; DEREJE, M.; ENGIDA, E.; TAMRUC, S. Tracking the Quality Premium of Certified Coffee: Evidence from Ethiopia, World Development, v. 101, p. 119-132, 2018. https://doi.org/10.1016/j.worlddev.2017.08.010

MONTEIRO FILHO, A. F.; PEREIRA, G. L.; AZEVEDO, M. R. Q. A.; FERNANDES, J. D.; AZEVEDO, C. A. V. Cultivo hidropônico de cultivares de alface em soluções nutritivas organominerais otimizadas com a ferramenta SOLVER. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 4, p. 417-424, 2014. http://dx.doi.org/10.1590/S1415-43662014000400009

MOREIRA, R. A.; CRUZ, M. C. M.; OLIVEIRA, J.; OLIVEIRA, A. F. Effect of reducing chemical fertilizer and using organomineral fertilization on nutritional behavior and vegetative growth of olive trees. Bioscience Journal, v. 33, n. 5, p. 1155-1165, 2017.

NICOL OPOULOS, K.; MULUGETA, A.; ZHOU, A.; HYPPÖNEN, E. Association between habitual coffee consumption and multiple disease outcomes: A Mendelian randomisation phenome-wide association study in the UK Biobank. Clinical Nutrition, 13 March, 2020. https://doi.org/10.1016/j.clnu.2020.03.009

OLIVEIRA, E. L.; FARI A, M. A.; REIS, R. P.; SILVA, M. L. O. Manejo e viabilidade econômica da irrigação por gotejamento na cultura do cafeeiro acaí considerando seis safras. Engenharia Agrícola, v. 30, n. 5, p. 887-896, 2010. http://dx.doi.org/10.1590/S0100-69162010000500011

QUINTELA, M. P.; SILVA, T. J. A.; BOMFIM-SILVA, E. M.; SILVA, E. F. F.; BEBE, F. V. Parâmetros produtivos e nutricionais do cafeeiro submetido adubação nitrogenada na região de garanhuns. Revista...
REZENDE, R.; JÚNIOR, C. H.; SOUZA, R. S.; ANTUNES, F. M.; FRIZZONE, J. A. Crescimento inicial de duas cultivares de cafeeiro em diferentes regimes hídricos e dosagens de fertirrigação. Engenharia Agrícola, v. 30, n. 3, p. 447-458, 2010. http://dx.doi.org/10.1590/S0100-69162010000300009

RODRIGUES, J. F.; REIS, J. M. R.; REIS, M. A. Utilização de estercos em substituição a adubação mineral na cultura do rabanete. Revista Trópica: Ciências Agrárias e Biológicas, v. 7, n. 2, p. 160–168, 2013.

SCALCO, M. S.; ALVARENGA, L. A.; GUIMARÃES, R. J.; DOMINGHETTI, A. W.; COLOMBO, A.; ASSIS, G. A.; ABREU, G. F. Teores foliares de fósforo e zinco, rodutividade e crescimento de café irrigado. Pesquisa Agropecuária Brasileira, v. 49, n. 2, p. 95-101, 2014. http://dx.doi.org/10.1590/S0100-204X2014000200003

SILVA, E. B.; NOGUEIRA, F. D.; GUIMARAES, P. T. G.; FURTINI NETO, A. E. Adubação potássica do cafeeiro: produção, faixas críticas de nutrientes no solo e nas folhas. Ciência e Agrotecnologia, v. 25, n. 4, p. 801-811, 2001.

SILVA, E. C.; AZEVEDO, A. S.; CASTRO JUNIOR, L. G. Medidas sustentáveis no mercado de café em dose única sustainable measures in single-serve coffee Market. E-xacta, v. 10, n. 2, p. 57-71, 2017. http://dx.doi.org/10.18674/exacta.v10i2.2117

SOUZA, B. U.; OLIVEIRA, R. C.; LUZ, J. M. Q.; MACHADO, D. L. M.; AGUILAR, A. S. Eficiência agronômica de fertilizantes organominerais líquidos em batateira, cultivar Asterix. Revista Brasileira de Ciências Agrárias, v. 12, n. 4, p. 405-409, 2017. http://dx.doi.org/10.5039/agraria.v12i4a5466.

SUNARHARUM, W. B.; WILLIAMS, D. J.; SMYTH, H. E. Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, v. 62, p. 315-325, 2014. https://doi.org/10.1016/j.foodres.2014.02.030

TEIXEIRA, W. G.; SOUSA, R. T. X.; KORNDÖRFER, G. H. Resposta da cana-de-açúcar a doses de fósforo fornecidas por fertilizante organomineral. Bioscience Journal, v. 30, n. 6, p. 1729-1736, 2014.

TOLEDO, P. R. A. B.; MELO, M. M. R.; PEZZA, H. R.; TOCI, A. T.; PEZZA, L.; SILVA, C. M. Discriminant analysis for unveiling the origin of roasted coffee samples: A tool for quality control of
coffee related products. Food Control, v. 73, p. 164-174, 2017.
https://doi.org/10.1016/j.foodcont.2016.08.001

TOMER, S.; SUYAL, D. C.; GOEL, R. Biofertilizers: A Timely Approach for Sustainable Agriculture. Plant-Microbe Interaction: An Approach to Sustainable Agriculture, p. 375-395, 2017. https://doi.org/10.1007/978-981-10-2854-0_17

TRINH, L. T. K.; HU, A. H.; LAN, Y. C.; CHEN, Z. H. Comparative life cycle assessment for conventional and organic coffee cultivation in Vietnam. International Journal of Environmental Science and Technology, v. 17, p. 1307–1324, 2020. doi:10.1007/s13762-019-02539-5