The importance of the presence of aggregatibacter actinomycetemcomitans in sulcus gingivalis of patients with cardiovascular diseases

Michal Straka¹ABDF, Jan Kazar²ABD, Michal R. Pijak¹CEF, Jan Gasparovic²BC, Ladislava Wsolova²C, Viera Mongiellova²BEG

¹ Faculty of Medicine, Slovak Medical University, Bratislava, Slovak Republic
² Research Base of the Slovak Medical University, Bratislava, Slovak Republic

Source of support: The study was supported by the Science and Technology Assistance Agency under contract No. 21-O35702

Summary

Background: Over-replication of periodontal pathogens in the periodontium induces production of proinflammatory cytokines and C-reactive protein that can stimulate systemic inflammatory status and can initiate atherosclerosis and its consequences. In our pilot study we examined whether periodontal status and serum levels of interleukin-6 and C-reactive protein are associated with the presence of Aggregatibacter actinomycetemcomitans in the periodontium of patients with cardiovascular diseases (CVD).

Material/Methods: We randomly selected 38 of 166 outpatients with CVD, of which 21 patients had chronic ischemic heart disease (IHD) only and 17 had both IHD and essential hypertension (HT). The presence of Aggregatibacter actinomycetemcomitans (A.a.) in the periodontium evaluated by PCR was compared with the values of periodontal indices, namely probe depth (PD) and Community Periodontal Index of Treatment Need (CPITN), as well as with interleukin-6 (IL-6) and CRP serum levels.

Results: When comparing A.a-positive and A.a-negative groups of patients, no statistically significant differences were noticed as to the age and values of PD and CPITN, respectively. However, the proportion of CRP and IL-6 positive values was significantly higher (p≤0.001) among A.a-positive than in A.a-negative patients.

Conclusions: The presence of A.a in patients with CVD may be associated with significantly higher serum levels of some proinflammatory markers.

Key words: cytokines, CRP, periodontal indexes, periodontal diseases

Full-text PDF: http://www.medscimonit.com/fulltxt.php?ICID=882050

Word count: 1287

Tables: 1

Figures: –

References: 24

Author’s address: Michal Straka, Department of Stomatology, Slovak Medical University, Limbova 14 Str., 83303 Bratislava, Slovak Republic, e-mail: mudrstraka@r3.roburnet.sk, amadeo10@centrum.sk
BACKGROUND

The different forms of periodontitis are mostly chronic inflammations caused by specific anaerobic infections of the subgingival environment [1]. However, destruction of periodontal tissue contributes to proteolytic and osteolytic components of immunological and inflammatory reactions of the host, induced by persisting bacteria in the periodontium [2]. Apart from classic periodontal Gram-negative bacteria such as A.a., Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Eikenella corrodens [3], mammalian herpetic viruses can be also of importance [4]. In addition, human cytomegalovirus (CMV) is indicated as a potential etiological factor in atherosclerosis (5).

A.a. is one of the dominant periodontal pathogens with virulence factors that cause oral and non-oral infections [6]. It occurs in 30–100% of cases of different forms of periodontitis [7]. A.a. was also detected in aneurysms and atheromas of patients with cardiovascular diseases [8–10]; however, in some studies the presence of A.a. in atheromas was not confirmed [11]. Systemic infection with A.a. can initiate and accelerate inflammation in atherosclerotic plaque of the aortic sinus in hyperlipidemic mice [12,13]. Endothelial dysfunction can be induced by chronic bacterial infection of the periodontal tissues and is considered not only an initiatory subclinical stage of the atherosclerotic process, but also a measurable clinical predictive factor of cardiovascular risk [14]. Moreover, A.a. and especially its lipopolysaccharide endotoxin significantly participates in the stimulation of production of different components of non-specific immune response (eg, increased aggregation of platelets, activation of B-lymphocytes, monocytes and macrophages, and stimulation of production of proinflammatory cytokines (IL-1, IL-6, IL-8) and CRP, whose increased serum levels were found to be associated with periodontitis and cardiovascular diseases [14–19].

MATERIAL AND METHODS

We randomly selected 38 of 166 outpatients with CVD, of which 21 patients had chronic ischemic heart disease (IHD) and only 17 had both IHD and essential hypertension (HT). We thought it would be useful to differentiate the group of patients with IHD +HT from those with IHD only, because other studies showed only a weak association between periodontitis and hypertension. Other clinical characteristics for the whole group of patients and in the control group, including age, sex, smoking history, hypercholesterolemia, diabetes mellitus and hypertension, were described in our previous study [24].

A standard calibrated probe was used to measure the depth of periodontal sulci of individual sextants for each tooth, thus evaluating a mean depth of periodontal sulcus of each tooth. From the values obtained, a mean value for each patient and then for the whole group of patients was calculated. Determination of Community Periodontal Index of Treatment Needs (CPITN) and Periodontal Depth (PD) were determined by measurement of CPITN probes and Williams periodontological probes.

Samples of A.a. detection were collected with the use of sterile paper points from the periodontal pocket of the teeth 11, 16, 26, 36 and 46 of each individual patient. In parallel, blood of patients was collected and buffy coats were examined for the presence of A.a., CMV and Chlamydia pneumoniae. After DNA extraction from each sample, PCR analysis was performed using the primers specific for given microorganism.

In parallel, sera of patients were examined for the concentration of IL-6 and CRP. Detection of IL-6 was performed by IL-6 ELISA kit (Immunotech, France) with a positive value ≥3 ng/L. CRP was detected by C-reactive protein ELISA kit (Immunodiagnostik, Germany) with a positive value ≥3 mg/L. Both ELISA analyses were performed and calculated according to the manufacturers’ instructions.

Cholesterol levels were evaluated by a standard method on biochemical analyser Vitros-250 with a positive value ≥4.5 mmol/L.

In statistical analysis, Student’s test, Mann-Whitney’s test, and chi-square test were employed. All tests were performed at the significance level α=0.05, with the use of statistical software SPSS 15.02022 for Windows.

RESULTS

A.a. detection in the gingival sulcus by PCR, along with the age, sex, depth of periodontal pockets, CRP and IL-6 positivity in relation to the IHD only and IHD+HT is shown in Table 1. Of 38 examined patients, the presence of A.a. was confirmed in 17 (44.7%) – 6 with IHD only and 11 with IHD+HT. The mean age was similar in both groups of patients, irrespective of whether they were A.a.-positive or A.a.-negative. Sex of patients was also evenly distributed, except for higher proportion of females in the group of A.a.-positive IHD patients. The numbers of CRP- and IL-6-positive patients among males and females was very similar.

No significant difference in the indices of the probe depth in relation to the presence of A.a. in the periodontal pockets or CVD presentation was observed (ie, the mean values of PD and CPITN in A.a.-negative patients were 2.80 and 2.32 mm, respectively, as compared to 2.77 and 2.48 mm in A.a.-positive patients [p=0.729 for PD and p=0.445 for CPITN]).

There was also no significant difference in the cholesterol levels and smoking habits in the followed CVD patients (data not presented). Both CRP and IL-6 occurred in significantly higher proportions of A.a.-positive than A.a.-negative CVD patients (p<0.001 for both CRP and IL-6), regardless of whether they were recruited from the group of those with IHD only or those with both IHD+HT.

Using the same DNA extraction procedure and PCR analysis, we detected CMV in 6 patients: 4 were A.a.-positive (3 with IHD+HT and 1 with IHD only) and 2 were A.a.-negative (both with IHD only). C. pneumoniae in the followed patients was not detected.

DISCUSSION

The presence of bacterial and viral pathogens in the periodontium induces a whole scale of inflammatory and immunological reactions. Several products of Gram-negative
Table 1. Some atherosclerosis risk factors in A.a.-positive and A.a.-negative cardiovascular patients.

Patients No.	A.a.	Age	Gender	PD	CPITN	CMV	CRP	
IHD only 6	Posit.	66±5.9	5 F, 1 M	3.00±0.60	2.42±0.62	83.3%	66.6%	4
IHD+HT 11	Posit.	57±10.4	5 F, 6 M	2.65±0.45	2.51±0.47	81.8%	81.8%	9
Total 17		60±9.9	10 F, 7 M	2.77±0.52	2.48±0.51	82.3%	76.5%	13
IHD only 14	Negat.	57±7.5	7 F, 7 M	2.84±0.59	2.41±0.74	21.4%	14.3%	2
IHD+HT 6	Negat.	60±4.4	2 F, 4 M	2.68±0.67	2.12±0.57	16.6%	1 –	0
Total 20		58±6.8	9 F, 11 M	2.80±0.60	2.32±0.69	20.0%	10.0%	2

P-values for PD, CPITN, IL-6, CRP and presence/absence of A.a. are given in section Results.

Conclusions

The presence of A.a. in patients with CVD was associated with significantly higher serum levels of some proinflammatory markers. These findings support the hypothesis that the presence of A.a. added to other periodontal pathogens of the gingival sulcus (pocket) of patients with CVD can initiate and stimulate inflammatory process in atherosclerosis. Results of this study support the importance of individual and professional oral hygiene procedures in cardiac patients. However, the results should be interpreted with caution because this was only a pilot study with small sample sizes. Larger scale studies of patients are warranted to examine the role of A.a. and other periodontopathic bacteria in etiopathogenesis of atherosclerosis.

References:

1. Wolf L, Dahlen G, Aeppli D: Bacteria as a risk markers for periodontitis. J Periodontol, 1994; 64: 408–410.
2. Genco RJ, Slots J: Host response in periodontal disease. J Dent Res, 1984; 63: 441–451.
3. Padilla C, Lobos O, Hubert E et al: Periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis. J Periodontol Res, 2006; 41: 350–353.
4. Contreras A, Slots J: Mannulian viruses in human periodontitis. Oral Microbiol Immunol, 1996; 11: 388–392.
5. Melnick JL, Adam E, Debakey ME: Cytomegalovirus and atherosclerosis. Europ Heart J, 1993; 14(Suppl.K): 30–38.
6. Dietrich T, Jimenez M, Krall Kaye EA et al: Age-dependent association between chronic periodontitis/edentulism and risk of coronary heart disease. Circulation, 2008; 13: 1668–74.
7. Slots J: Update on Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal diseases. J Nat Acad Periodontol, 1999; 4: 121–126.
8. Ishikawa K, Nabuchi A, Ito R et al: Correlation between detection rates of periodontopathic bacterial DNA in carotid stenotic artery plaque samples. J Clin Microbiol, 2004; 42: 1015–1019.
9. Liehn N-E, Larsen T, Christiansen N et al: Identification of periodontal pathogens in atheromatous vessels. J Periodontol, 2005; 76: 731–736.
10. Pucar FA, Milasin A, Lekovic J et al: Correlation between atherosclerosis and periodontal putative pathogenic bacterial infections in coronary and internal mammary arteries. J Periodontol, 2007; 78: 677–682.
11. Aimetti M, Romano F, Nesi F: Microbiologic analysis of periodontal pockets and carotid atheromatous plaques in advanced chronic periodonitis patients. J Periodontol, 2007; 78: 1728–1733.
12. Zhang T, Kurita-Ochiai T, Hashizume T et al: Aggregatibacter actinomycetemcomitans accelerates atherosclerosis with an increase in atherogenic factors in spontaneously hyperlipidemic mice. FEBS Immunol and Med Microbiol, 2010; 59: 145–151.
13. Leopoldo AP, Campos DH, Leopoldo AS et al: Diet-induced obesity causes metabolic, endocrine and cardiac alternations in spontaneously hypertensive rats. Med Sci Monit, 2010; 16(12): BR367–173.
14. Tsutsumi T, Nakashima K, Isoda T et al: Involvement of adhesion molecule in vivo plaque-like formation of macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide. J Periodontol Res, 2010; 45: 550–556.
15. Pizzo G, Lo D, Piscopo MR et al: Genetic disorders and periodontal health: a literature review. Med Sci Monit, 2009; 15(6): RA167–178.
16. Beck JD, Eke P, Heiss G et al: Periodontal disease and heart disease. A reappraisal of the exposure. Circulation, 2005; 112: 19–24.
17. Pussinen P, Tuomisto K, Joussali-Poujol F et al: Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol, 2007; 27: 1435–1439.
18. Schrader LI, Kinzebaw DA, Johnson AW et al: IL-6 deficiency protects against angiotensin II-induced endothelial dysfunction and hypertrophy. Arterioscler Thromb Vasc Biol, 2007; 27: 2576–81

19. Ridker PM, Silvertown JD: Inflammation, c-reactive protein and atherothrombosis. J Periodontol, 2008; 79: 1544–51

20. Wiederman CHJ, Kiechl S, Dunzendorfer S: Association of endotoxemia with carotid atherosclerosis and cardiovascular disease. J A Coll Cardiol, 2009; 34: 1975–81

21. Pussinen PJ, Nyyssonen K, Alfthan G et al: Serum antibody levels to Actinobacillus actinomycetemcomitans predict the risk for coronary heart disease. Arterioscler Thromb Vasc Biol, 2005; 25: 833–88

22. Spahr A, Klein E, Khuseinova N et al: Periodontal infections and coronary heart disease. Role of periodontal bacteria and importance of total pathogen burden in the coronary event and periodontal disease / CORODONT/ study. Arch Intern Med, 2006; 166: 554–59

23. Kazar J, Kovacova E, Koncova K et al: Chlamydia pneumoniae antibodies and markers of inflammation in patients with cardiovascular diseases. Bratisl Ik Lysty, 2005; 106: 341–44.

24. Kazar J, Kovacova E, Mongiellova V et al: Anti-cytomegalovirus antibodies and other atherosclerotic factors in patients with cardiovascular diseases. J Ger Cardiol, 2007; 4: 131–35