Buczyński, Jarosław; Januszkiewicz, Tadeusz; Jelisiejew, Joachim; Michałek, Mateusz
Constructions of k-regular maps using finite local schemes. (English)
J. Eur. Math. Soc. (JEMS) 21, No. 6, 1775-1808 (2019).

Summary: A continuous map $\mathbb{R}^m \to \mathbb{R}^N$ or $\mathbb{C}^m \to \mathbb{C}^N$ is called k-regular if the images of any k points are linearly independent. Given integers m and k a problem going back to Chebyshev and Borsuk is to determine the minimal value of N for which such maps exist. The methods of algebraic topology provide lower bounds for N, but there are very few results on the existence of such maps for particular values m and k. Using methods of algebraic geometry we construct k-regular maps. We relate the upper bounds on N with the dimension of the locus of certain Gorenstein schemes in the punctual Hilbert scheme. The computations of the dimension of this family is explicit for $k \leq 9$, and we provide explicit examples for $k \leq 5$. We also provide upper bounds for arbitrary m and k.

MSC:
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related n-spaces
57R42 Immersions in differential topology
14C05 Parametrization (Chow and Hilbert schemes)
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)

Keywords:
k-regular embeddings; secants; punctual Hilbert scheme; finite Gorenstein schemes

Full Text: DOI arXiv