THE COVERING NUMBER OF THE DIFFERENCE SETS IN PARTITIONS OF G-SPACES AND GROUPS

TARAS BANAKH AND MIKOLAJ FRĄCZYK

ABSTRACT. We prove that for every finite partition \(G = A_1 \cup \cdots \cup A_n \) of a group \(G \) either \(\text{cov}(A_i A_i^{-1}) \leq n \) for all cells \(A_i \) or else \(\text{cov}(A_i A_i^{-1}, A_i) < n \) for some cell \(A_i \) of the partition. Here \(\text{cov}(A) = \min\{|F| : F \subset G, \ G = FA\} \) is the covering number of \(A \) in \(G \). A similar result is proved also of partitions of \(G \)-spaces. This gives two partial answers to a problem of Protasov posed in 1995.

This paper was motivated by the following problem posed by I.V. Protasov in Kourovka Notebook [3].

Problem 1. (Protasov, 1995). Is it true that for any partition \(G = A_1 \cup \cdots \cup A_n \) of a group \(G \) some cell \(A_i \) of the partition has \(\text{cov}(A_i A_i^{-1}) \leq n \)?

Here for a non-empty subset \(A \subset G \) by

\[
\text{cov}(A) = \min\{|F| : F \subset G, \ G = FA\}
\]

we denote the covering number of \(A \).

In fact, Protasov’s Problem can be posed in a more general context of ideal \(G \)-spaces. Let us recall that a \(G \)-space is a set \(X \) endowed with an action \(G \times X \to X, (g, x) \mapsto gx \), of a group \(G \). An ideal \(G \)-space is a pair \((X, \mathcal{I})\) consisting of a \(G \)-space \(X \) and a \(G \)-invariant Boolean ideal \(\mathcal{I} \subset \mathcal{B}(X) \) in the Boolean algebra \(\mathcal{B}(X) \) of all subsets of \(X \). A Boolean ideal on \(X \) is a proper subfamily \(\mathcal{I} \subset \mathcal{B}(X) \) such that for any \(A, B \in \mathcal{I} \) any subset \(C \subset A \cup B \) belongs to \(\mathcal{I} \). A Boolean ideal \(\mathcal{I} \) is \(G \)-invariant if \(\{gA : g \in G, \ A \in \mathcal{I}\} \subset \mathcal{I} \). A Boolean ideal \(\mathcal{I} \subset \mathcal{B}(G) \) on a group \(G \) will be called \(\mathcal{I} \)-invariant if \(\{xAy : x, y \in G, \ A \in \mathcal{I}\} \subset \mathcal{I} \). By \([X]^{<\omega} \) and \([X]^{\leq \omega} \) we denote the families of all finite and countable subsets of a set \(X \), respectively. The family \([X]^{<\omega} \) (resp. \([X]^{\leq \omega} \)) is a Boolean ideal on \(X \) if \(X \) is infinite (resp. uncountable).

For a subset \(A \subset X \) of an ideal \(G \)-space \((X, \mathcal{I}) \) by

\[
\Delta(A) = \{g \in G : gA \cap A \neq \emptyset\} \quad \text{and} \quad \Delta_\mathcal{I}(A) = \{g \in G : gA \cap A \notin \mathcal{I}\}
\]

we denote the difference set and \(\mathcal{I} \)-difference set of \(A \), respectively.

Given a Boolean ideal \(\mathcal{J} \) on a group \(G \) and two subsets \(A, B \subset G \) we shall write \(A = \mathcal{J} B \) if the symmetric difference \(A \Delta B = (A \setminus B) \cup (B \setminus A) \) belongs to the ideal \(\mathcal{J} \). For a non-empty subset \(A \subset G \) put

\[
\text{cov}_\mathcal{J}(A) = \min\{|F| : F \subset G, \ FA = \mathcal{J} G\}
\]

be the \(\mathcal{J} \)-covering number of \(A \). For the empty subset we put \(\text{cov}_\mathcal{J}(\emptyset) = \infty \) and assume that \(\infty \) is larger than any cardinal number.

Observe that for the left action of the group \(G \) on itself we get \(\Delta(A) = AA^{-1} \) for every subset \(A \subset G \). That is why Problem 1 is a partial case of the following general problem.

Problem 2. Is it true that for any partition \(X = A_1 \cup \cdots \cup A_n \) of an ideal \(G \)-space \((X, \mathcal{I}) \) some cell \(A_i \) of the partition has \(\text{cov}(\Delta_\mathcal{I}(A_i)) \leq n \)?

This problem has an affirmative answer for \(G \)-spaces with amenable acting group \(G \), see [3, 4.3]. The paper [3] gives a survey of available partial solutions of Protasov’s Problems 1 and 2. Here we mention the following result of Banakh, Ravsky and Slobodianuk [1].

Theorem 1. For any partition \(X = A_1 \cup \cdots \cup A_n \) of an ideal \(G \)-space \((X, \mathcal{I}) \) some cell \(A_i \) of the partition has

\[
\text{cov}(\Delta_\mathcal{I}(A_i)) \leq \max_{0 \leq k \leq n} \sum_{p=0}^{n-k} k^p \leq n!
\]

In this paper we shall give another two partial solutions to Protasov’s Problems 1 and 2.

Theorem 2. For any partition \(X = A_1 \cup \cdots \cup A_n \) of an ideal \(G \)-space \((X, \mathcal{I}) \) either

- \(\text{cov}(\Delta_\mathcal{I}(A_i)) \leq n \) for all cells \(A_i \), or else

1991 Mathematics Subject Classification. 05E15, 05E18, 28C10.

Key words and phrases. \(G \)-space, difference set, covering number, compact right topological semigroup, minimal measure, idempotent measure, quasi-invariant measure.
For any subset A for every μ cells

Proof. By Theorem 2 either $\text{cov}(\Delta_2(A_i)) \leq n$ for all cells A_i or else $\text{cov}(\Delta_2(A_i) \cdot \Delta_2(A_i)) < n$ for some cell A_i. The Zorn's Lemma combined with the compactness of the orbits implies that the orbit $I(A_i)$ contains a minimal measure. For any partition G considered as G-spaces endowed with the left action of G on itself, we can prove a bit more:

Theorem 3. Let G be a group and I be an invariant Boolean ideal on G with $|G|^{|\omega|} \not\subset I$. For any partition $G = A_1 \cup \cdots \cup A_n$ of G either

- $\text{cov}(\Delta_2(A_i)) \leq n$ for all cells A_i or else
- $\text{cov}(\Delta_2(A_i)) < n$ for some cell A_i and for some G-invariant Boolean ideal $J \not\subset A_i^{-1}$ on G.

Corollary 2. For any partition $G = A_1 \cup \cdots \cup A_n$ of a group G either $\text{cov}(A_iA_i^{-1}) \leq n$ for all cells A_i or else $\text{cov}(A_iA_i^{-1}A_i) < n$ for some cell A_i of the partition.

Proof. On the group G consider the trivial ideal $I = \{\emptyset\}$. By Theorem 3 either $\text{cov}(A_iA_i^{-1}) \leq n$ for all cells A_i or else $\text{cov}(A_iA_i^{-1}) < n$ for some cell A_i and some G-invariant ideal $J \not\subset A_i^{-1}$ on G. In the first case we are done. In the second case choose a finite subset $F \subset G$ of cardinality $|F| < n$ such that the set $FA_iA_i^{-1} \in J$. Since $A_i^{-1} \in J$, for every $x \in G$ the set xA_i^{-1} intersects $FA_iA_i^{-1}$ and hence $x = FA_iA_i^{-1}$. Therefore $\text{cov}(A_iA_i^{-1}A_i) < |F| < n$.

Taking into account that the ideal J appearing in Theorem 3 is G-invariant but not necessarily invariant, we can ask the following question.

Problem 3. Is it true that for any partition $G = A_1 \cup \cdots \cup A_n$ of a group G some cell A_i of the partition has $\text{cov}(A_iA_i^{-1}) \leq n$ for some invariant Boolean ideal J on G?

1. Minimal measures on G-spaces

Theorems 2 and 3 will be proved with help of minimal probability measures on X and right quasi-invariant idempotent measures on X.

For a G-space X by $P(X)$ we denote the (compact Hausdorff) space of all finitely additive probability measures on X. The action of the group G on X extends to an action of the convolution semigroup $P(G)$ on $P(X)$: for two measures $\mu \in P(G)$ and $\nu \in P(X)$ their convolution is defined as the measure $\mu * \nu \in P(X)$ assigning to each bounded function $\varphi : X \to \mathbb{R}$ the real number

$$\mu * \nu(\varphi) = \int_X \varphi(x) \, d\nu(x) \, d\mu(g).$$

The convolution map $* : P(G) \times P(X) \to P(X)$ is right-continuous in the sense that for any fixed measure $\nu \in P(X)$ the right shift $P(G) \to P(X)$, $\mu \mapsto \mu * \nu$, is continuous. This implies that the $P(G)$-orbit $P(G) * \nu = \{\mu * \nu : \mu \in P(G)\}$ of ν coincides with the closure $\text{cov}(G * \nu)$ of the convex hull of the G-orbit $G * \nu$ of ν in $P(X)$.

A measure $\mu \in P(X)$ will be called minimal if for any measure $\nu \in P(G) * \mu$ we get $P(G) * \nu = P(G) * \mu$. The Zorn's Lemma combined with the compactness of the orbits implies that the orbit $P(G) * \mu$ of each measure $\mu \in P(X)$ contains a minimal measure.

It follows from Day's Fixed Point Theorem [8, 114] that for a G-space X with amenable acting group G each minimal measure μ on X is G-invariant, which implies that the set $\text{cov}(G * \mu)$ coincides with the singleton $\{\mu\}$.

For an ideal G-space (X, I) let $P_1(X) = \{\mu \in P(X) : \forall A \in I \mu(A) = 0\}$.

Lemma 1. For any ideal G-space (X, I) the set $P_1(X)$ contains some minimal probability measure.

Proof. Let U be any ultrafilter on X, which contains the filter $\mathcal{F} = \{F \subset X : X \setminus F \in I\}$. This ultrafilter U can be identified with the 2-valued measure $\mu_U : B(X) \to \{0, 1\}$ such that $\mu_U(\emptyset) = 1$. It follows that $\mu_U(A) = 0$ for any subset $A \in I$. In the $P(G)$-orbit $P(G) * \mu_U$ choose any minimal measure $\mu = \nu * \mu_U$ and observe that for every $A \in I$ the G-invariance of the ideal I implies $\mu(A) = \int_G \mu_U(x^{-1}A) \, d\nu(x) = 0$. So, $\mu \in P_1(X)$. For a subset A of a group G put

$$I_{12}(A) = \inf_{\mu \in P(G)} \sup_{y \in G} \mu(Asy).$$
Lemma 2. If a subset A of a group G has $ls_1(A) = 1$, then $\text{cov}(G \setminus A) \geq \omega$.

Proof. It suffices to show that $G \neq F(G \setminus A)$ for any finite set $F \subset G$. Consider the uniformly distributed measure $\mu = \frac{1}{|F|} \sum_{x \in F} \delta_{x^{-1}}$ on the set F^{-1}. Since $ls_1(A) = 1$, for the measure μ there is a point $y \in G$ such that $1 - \frac{1}{|F|} < \mu(Ay) = \frac{1}{|F|} \sum_{x \in F} \delta_{x^{-1}}(Ay)$, which implies that $\mu(Ay) = 1$ and $\text{supp}(\mu) = F^{-1} \subset Ay$. Then

$F^{-1}y^{-1} \cap (G \setminus A) = \emptyset$ and $y^{-1} \notin F(G \setminus A)$. \hfill \Box

Remark 1. By Theorem 3.8 of [2], for every subset A of a group G we get $ls_1(A) = 1 - is_2(G \setminus A)$ where

$$is_2(B) = \inf_{\mu \in P_\nu(G)} \sup_{x \in G} \mu(xB)$$

for $B \subset G$ and $P_\nu(G)$ denotes the set of finitely supported probability measures on G.

For a probability measure $\mu \in P(X)$ on a G-space X and a subset $A \subset X$ put

$$\tilde{\mu}(A) = \sup_{x \in G} \mu(xA).$$

2. A density version of Theorem 2

In this section we shall prove the following density theorem, which will be used in the proof of Theorem 2 presented in the next section.

Theorem 4. Let (X, \mathcal{I}) be an ideal G-space and $\mu \in P_\nu(X)$ be a minimal measure on X. If some subset $A \subset X$ has $\tilde{\mu}(A) > 0$, then the \mathcal{I}-difference set $\Delta_\mathcal{I}(A)$ has \mathcal{J}-covering number $\text{cov}_\mathcal{J}(\Delta_\mathcal{I}(A)) \leq 1/\tilde{\mu}(A)$ for some G-invariant ideal $\mathcal{J} \not\supset \Delta_\mathcal{I}(A)$ on G.

Proof. By the compactness of $P(G) * \mu = \text{conv}(G \cdot \mu)$, there is a measure $\mu' \in P(G) * \mu \subset P_\nu(X)$ such that

$$\mu'(A) = \sup_{\nu \in P(G) * \mu : \nu(A)} = \tilde{\mu}(A).$$

We can replace the measure μ by μ' and assume that $\mu(A) = \tilde{\mu}(A)$. Choose a positive ϵ such that $|\frac{1}{\mu(A)} - 1| = |\frac{1}{\mu(A)} - 1|$, where $|r| = \max\{n \in \mathbb{Z} : n \leq r\}$ denotes the integer part of a real number r.

Consider the set $L = \{x \in G : \mu(xA) > \tilde{\mu}(A) - \epsilon\}$ and choose a maximal subset $F \subset L$ such that $\mu(xA \cap yA) = 0$ for any distinct points $x, y \in L$. The additivity of the measure μ implies that $1 \geq \sum_{x \in F} \mu(xA) > |F|/(\tilde{\mu}(A) - \epsilon)$ and hence $|F| \leq |\frac{1}{\mu(A)}| = |\frac{1}{\mu(A)}|$. By the maximality of F, for every $x \in L$ there is a $y \in L$ such that $\mu(xA \cap yA) > \tilde{\mu}(A) - \epsilon$. Then $xA \cap yA \notin \mathcal{I}$ and $y^{-1}x \in \Delta_\mathcal{I}(A)$. It follows that $x \in y \cdot \Delta_\mathcal{I}(A) \subset F \cdot \Delta_\mathcal{I}(A)$ and $L \subset F \cdot \Delta_\mathcal{I}(A)$.

We claim that $ls_1(L) = 1$. Given any measure $\nu \in P(G)$, consider the measure $\nu^{-1} \in P(G)$ defined by $\nu^{-1}(B) = \nu(B^{-1})$ for every subset $B \subset G$. By the minimality of μ, we can find a measure $\eta \in P(G)$ such that $\eta \ast \nu^{-1} \ast \mu = \mu$. Then

$$\tilde{\mu}(A) = \mu(A) = \eta \ast \nu^{-1} \ast \mu(A) = \int_G \mu(x^{-1}A) d\eta \ast \nu^{-1}(x) \leq$$

$$\leq (\tilde{\mu}(A) - \epsilon) \cdot \eta \ast \nu^{-1}(\{x \in G : \mu(x^{-1}A) \leq \tilde{\mu}(A) - \epsilon\}) + \tilde{\mu}(A) \cdot \eta \ast \nu^{-1}(\{x \in G : \mu(x^{-1}A) > \tilde{\mu}(A) - \epsilon\}) \leq$$

$$\leq \eta \ast \nu^{-1}(1 - \eta \ast \nu^{-1}(L^{-1})) + \tilde{\mu}(A) \cdot \eta \ast \nu^{-1}(L^{-1}) \leq \tilde{\mu}(A)$$

implies that $\eta \ast \nu^{-1}(L^{-1}) = 1$. It follows from

$$1 = \eta \ast \nu^{-1}(L^{-1}) = \int_G \nu^{-1}(y^{-1}L^{-1}) d\eta(y)$$

that for every $\delta > 0$ there is a point $y \in G$ such that $\nu(Ly) = \nu(y^{-1}L^{-1}) > 1 - \delta$. So, $ls_1(L) = 1$.

By Lemma 2 the family $\mathcal{J} = \{B \subset G : \exists E \in [G]^{<\omega} B \subset E(G \setminus L)\}$ is a G-invariant ideal on G, which does not contain the set $L \subset F \cdot \Delta_\mathcal{I}(A)$ and hence does not contain the set $\Delta_\mathcal{I}(A_i)$. It follows that $\text{cov}_\mathcal{J}(\Delta_\mathcal{I}(A_i)) \leq |F| \leq 1/\tilde{\mu}(\mathcal{A}_i)$. \hfill \Box

3. Proof of Theorem 2

Let $X = A_1 \cup \cdots \cup A_n$ be a partition of an ideal G-space (X, \mathcal{I}). By Lemma 1 there exists a minimal probability measure $\mu \in P(X)$ such that $\mathcal{I} \subset \{A \in B(G) : \mu(A) = 0\}$.

For every $i \in \{1, \ldots, n\}$ consider the number $\tilde{\mu}(A_i) = \sup_{x \in G} \mu(xA_i)$ and observe that $\sum_{i=1}^n \tilde{\mu}(A_i) \geq 1$. There are two cases.

1) For every $i \in \{1, \ldots, n\}$ $\tilde{\mu}(A_i) \leq \frac{1}{n}$. In this case for every $x \in G$ we get

$$1 = \sum_{i=1}^n \mu(xA_i) \leq \sum_{i=1}^n \tilde{\mu}(A_i) \leq n \cdot \frac{1}{n} = 1$$

and hence $\mu(xA_i) = \frac{1}{n}$ for every $i \in \{1, \ldots, n\}$. For every $i \in \{1, \ldots, n\}$ fix a maximal subset $F_i \subset G$ such that $\mu(xA_i \cap yA_i) = 0$ for any distinct points $x, y \in F_i$. The additivity of the measure μ implies that
1 \geq \sum_{x \in F_i} \mu(xA_i) \geq |F_i|/n$ and hence $|F_i| \leq n$. By the maximality of F_i, for every $x \in G$ there is a point $y \in F_i$ such that $\mu(xA_i \cap yA_i) > 0$ and hence $xA_i \cap yA_i \notin \mathcal{I}$. The G-invariance of the ideal \mathcal{I} implies that $y^{-1}x \in \Delta_{\mathcal{I}}(A_i)$ and so $x \in y^{-1}\Delta_{\mathcal{I}}(A_i) \subset F_i \cdot \Delta_{\mathcal{I}}(A_i)$. Finally, we get $G = F_i \cdot \Delta_{\mathcal{I}}(A_i)$ and $\text{cov}(\Delta_{\mathcal{I}}(A_i)) \leq |F_i| \leq n$.

2) For some i we get $\bar{\mu}(A_i) > 1/n$. In this case Theorem guarantees that $\text{cov}(\Delta_{\mathcal{I}}(A_i)) \leq 1/\bar{\mu}(A_i) < n$ for some G-invariant ideal $\mathcal{J} \neq \Delta_{\mathcal{I}}(A_i)$ on G.

4. Applying idempotent quasi-invariant measures

In this section we develop a technique involving idempotent right quasi-invariant measures, which will be used in the proof of Theorem presented in the next section.

A measure $\mu \in P(G)$ on a group G will be called right quasi-invariant if for any $y \in G$ there is a positive constant $c > 0$ such that $c \cdot \mu(Ay) \leq \mu(A)$ for any subset $A \subset G$.

For an ideal G-space (X, \mathcal{I}) and a measure $\mu \in P(X)$ consider the set

$$P_\mu(G; \mu) = \{\lambda \in P(G) : \forall y \in G \; \lambda \ast \delta_y \ast \mu \in P_\mu(X)\}$$

and observe that it is closed and convex in the compact Hausdorff space $P(G)$.

Lemma 3. Let (X, \mathcal{I}) be an ideal G-space with countable acting group G. If for some measure $\mu \in P(X)$ the set $P_\mu(G; \mu)$ is not empty, then it contains a right quasi-invariant idempotent measure $\nu \in P_\mu(G; \mu)$.

Proof. Choose any strictly positive function $c : G \to [0, 1]$ such that $\sum_{g \in G} c(g) = 1$ and consider the σ-additive probability measure $\lambda = \sum_{g \in G} c(g) \delta_{g^{-1}} \in P(G)$. On the compact Hausdorff space $P(G)$ consider the right shift $\Phi : P(G) \to P(G)$, $\Phi(\nu) = \nu \ast \lambda$.

We claim that $\Phi(P_\mu(G; \mu)) \subset P_\mu(G; \mu)$. Given any measure $\nu \in P_\mu(G; \mu)$ we need to check that $\Phi(\nu) = \nu \ast \lambda \in P_\mu(G; \mu)$, which means that $\nu \ast \lambda \ast \delta_x \ast \mu \in P_\mu(X)$ for all $x \in G$. It follows from $\nu \in P_\mu(G; \mu)$ that $\nu \ast \delta_{g^{-1}} \ast \mu \in P_\mu(X)$. Since the set $P_\mu(X)$ is closed and convex in $P(X)$, we get

$$\nu \ast \lambda \ast \delta_x \ast \mu = \sum_{g \in G} c(g) \cdot \nu \ast \delta_{g^{-1}} \ast \delta_x \ast \mu = \sum_{g \in G} \nu \ast g \delta_{g^{-1}} \ast \mu \in P_\mu(X).$$

So, $\Phi(P_\mu(G; \mu)) \subset P_\mu(G; \mu)$ and by Schauder Fixed Point Theorem, the continuous map Φ on the non-empty compact convex set $P_\mu(G; \mu) \subset P(G)$ has a fixed point, which implies that the closed set $S = \{\nu \in P_\mu(G; \mu) : \nu \ast \lambda = \nu\}$ is not empty. It is easy to check that S is a semigroup of the convolution semigroup $(P(G), \ast)$. Being a compact right-topological semigroup, S contains an idempotent $\nu \in S \subset P_\mu(G; \mu)$ according to Ellis Theorem. Since $\nu \ast \lambda = \nu$, for every $A \subset G$ and $x \in G$ we get

$$\nu(A) = \nu \ast \lambda(A) = \sum_{g \in G} c(g) \cdot \nu \ast \delta_{g^{-1}}(A) = \sum_{g \in G} c(g) \cdot \nu(Ag) \geq c(x) \cdot \nu(Ax),$$

which means that ν is right quasi-invariant.

Remark 2. Lemma does not hold for uncountable groups, in particular for the free group F_α with uncountable set α of generators. This group admits no right quasi-invariant measure. Assuming conversely that some measure $\mu \in P(F_\alpha)$ is right quasi-invariant, fix a generator $a \in \alpha$ and consider the set A of all reduced words $w \in F_\alpha$ that end with a^n for some $n \in \mathbb{Z} \setminus \{0\}$. Observe that $F_\alpha = Aa \cup A$ and hence $\mu(A) > 0$ or $\mu(Aa) > 0$. Since μ is right quasi-invariant both cases imply that $\mu(A) > 0$ and then $\mu(\mathbb{F}b) > 0$ for any generator $b \in \alpha \setminus \{a\}$. But this is impossible since the family $(A\mathbb{F})_{b \in \alpha \setminus \{a\}}$ is disjoint and uncountable.

In the following lemma for a measure $\mu \in P(X)$ we put $\bar{\mu}(A) = \sup_{x \in G} \mu(xA)$.

Lemma 4. Let (X, \mathcal{I}) be an ideal G-space and $\mu \in P(X)$ be a measure on X such that the set $P_\mu(G; \mu)$ contains an idempotent right quasi-invariant measure λ. For a subset $A \subset X$ and numbers $\delta \leq \varepsilon < \sup_{x \in G} \lambda \ast \mu(xA)$ consider the sets $M_\delta = \{x \in G : \mu(xA) > \delta\}$ and $L_\varepsilon = \{x \in G : \lambda \ast \mu(xA) > \varepsilon\}$. Then:

1. $\lambda(gM_\delta^{-1}) > (\varepsilon - \delta)/(\bar{\mu}(A) - \delta)$ for any point $g \in L_\varepsilon$;
2. the set M_δ does not belong to the G-invariant Boolean ideal $\mathcal{J}_\delta \subset P(G)$ generated by $G \setminus L_\delta$;
3. $\text{cov}(\delta)(\Delta_{\mathcal{I}}(A)) < 1/\delta$.

Proof. Consider the measure $\nu = \lambda \ast \mu$ and put $\bar{\nu}(A) = \sup_{x \in G} \nu(xA)$ for a subset $A \subset X$.

1. Fix a point $g \in L_\varepsilon$ and observe that

$$\varepsilon < \lambda \ast \mu(gA) = \int_{G} \mu(x^{-1}gA)d\lambda(x) \leq \lambda(\{x \in G : \mu(x^{-1}gA) \leq \delta\}) + \bar{\mu}(A) \cdot \lambda(\{x \in G : \mu(x^{-1}gA) > \delta\}) = \delta \cdot (1 - \lambda(gM_\delta^{-1})) + \bar{\mu}(A)\lambda(gM_\delta^{-1}) = \delta + (\bar{\mu}(A) - \delta)\lambda(gM_\delta^{-1})$$
which implies \(\lambda(gM_\delta^{-1}) > \gamma := \frac{-\varepsilon - \delta}{\mu(A) - \delta} \).

2. To derive a contradiction, assume that the set \(M_\delta \) belongs to the \(G \)-invariant ideal generated by \(G \setminus L_\delta \) and hence \(M_\delta \in E(G \setminus L_\delta) \) for some finite subset \(E \subset G \). Then

\[
M_\delta \subset E(G \setminus L_\delta) = G \setminus \bigcap_{\varepsilon \in E} eL_\delta.
\]

Choose an increasing sequence number sequence \((\varepsilon_k)_{k=0}^\infty \) such that \(\delta < \varepsilon \leq \varepsilon_0 \) and \(\lim_{k \to \infty} \varepsilon_k = \nu(A) \). For every \(k \in \omega \) fix a point \(g_k \in L_{\varepsilon_k} \). The preceding item applied to the measure \(\nu \) and set \(L_\delta \) (instead of \(\mu \) and \(M_\delta \)) yields the lower bound

\[
\lambda(g_kL_\delta^{-1}) > \frac{\varepsilon_k - \delta}{\nu(A) - \delta}
\]
for every \(k \in \omega \). Then \(\lim_{k \to \infty} \lambda(g_kL_\delta^{-1}) = 1 \) and hence \(\lim_{k \to \infty} \lambda(z_kL_\delta^{-1}g) = 1 \) for every \(g \in G \) by the right quasi-invariance of the measure \(\lambda \). Choose \(k \) so large that \(\lambda(z_kL_\delta^{-1}g)^{-1} > 1 - \frac{1}{|G|} \gamma \) for all \(g \in E \). Then the set \(\bigcap_{g \in E} z_kL_\delta^{-1}g^{-1} \) has measure \(> 1 - \gamma \) and hence it intersects the set \(z_kM_a^{-1} \) which has measure \(\lambda(z_kM_a) \geq \gamma \). Consequently, the set \(M_a^{-1} \) intersects \(\bigcap_{g \in E} gL_\delta^{-1} \), and the set \(M_a \) intersects \(\bigcap_{g \in E} gL = G \setminus (E(G \setminus L_\delta)) \), which contradicts the choice of the set \(E \).

Corollary 3. Let \((X, \mathcal{I})\) be an ideal \(G \)-space with countable acting group \(G \) and \(\mu \in P(X) \) be a measure on \(X \) such that the set \(P_2(G; \mu) \) is not empty. For any partition \(X = A_1 \cup \cdots \cup A_n \) of \(X \) either:

1. \(\text{cov}(\Delta(A_i)) \leq n \) for all cells \(A_i \) or else
2. \(\text{cov}(\Delta(A_i)) < n \) for some cell \(A_i \) and some \(G \)-invariant Boolean ideal \(\mathcal{J} \subset \mathcal{P}(G) \) such that \(\{ x \in G : \mu(xA_i) > \frac{1}{n} \} \notin \mathcal{J} \).

Proof. By Lemma 8 the set \(P_2(G; \mu) \) contains an idempotent right quasi-invariant measure \(\lambda \). Then for the measure \(\nu = \lambda \ast \mu \in P_2(X) \) two cases are possible:

- Every cell \(A_i \) of the partition has \(\nu(A_i) = \sup_{x \in G} \nu(xA_i) \leq \frac{1}{n} \). In this case we can proceed as in the proof of Theorem 2 and prove that \(\text{cov}(\Delta(A_i)) \leq n \) for all cells \(A_i \) of the partition.
- Some cell \(A_i \) of the partition has \(\nu(A_i) > \frac{1}{n} \). In this case Lemma 2 guarantees that \(\text{cov}(\Delta(A_i)) < n \) for the \(G \)-invariant Boolean ideal \(\mathcal{J} \subset \mathcal{P}(G) \) generated by the set \(\{ x \in G : \nu(xA_i) \leq \frac{1}{n} \} \), and the set \(M = \{ x \in G : \mu(xA_i) > \frac{1}{n} \} \) does not belong to the ideal \(\mathcal{J} \).

Next, we extend Corollary 3 to \(G \)-spaces with arbitrary (not necessarily countable) acting group \(G \). Given a \(G \)-space \(X \) denote by \(\mathcal{H} \) the family of all countable subgroups of the acting group \(G \). A subfamily \(\mathcal{F} \subset \mathcal{H} \) will be called

- **closed** if for each increasing sequence of countable subgroups \(\{ H_n \}_{n \in \omega} \subset \mathcal{F} \) the union \(\bigcup_{n \in \omega} H_n \) belongs to \(\mathcal{F} \);
- **dominating** if every countable subgroup \(H \in \mathcal{H} \) is contained in some subgroup \(H' \in \mathcal{F} \);
- **stationary** if \(\mathcal{F} \cap \mathcal{C} \neq \emptyset \) for every closed dominating subset \(\mathcal{C} \subset \mathcal{H} \).

It is known (see [4], 4.3) that the intersection \(\bigcap_{n \in \omega} C_n \) of any countable family of closed dominating sets \(C_n \subset \mathcal{H}, n \in \omega \), is closed and dominating in \(\mathcal{H} \).

For a measure \(\mu \in P(X) \) and a subgroup \(H \in \mathcal{H} \) let

\[
P_2(H; \mu) = \{ \lambda \in P(H) : \forall x \in H \quad \lambda \ast \delta_x \ast \mu \notin P_2(X) \}.
\]

Theorem 5. Let \((X, \mathcal{I})\) be an ideal \(G \)-space and \(\mu \in P(X) \) be a measure on \(X \) such that the set \(\mathcal{H}_X = \{ H \in \mathcal{H} : P_2(H; \mu) \neq \emptyset \} \) is stationary in \(\mathcal{H} \). For any partition \(X = A_1 \cup \cdots \cup A_n \) of \(X \) either:

1. \(\text{cov}(\Delta(A_i)) \leq n \) for all cells \(A_i \) or else
2. \(\text{cov}(\Delta(A_i)) < n \) for some cell \(A_i \) and some \(G \)-invariant Boolean ideal \(\mathcal{J} \subset \mathcal{P}(G) \) such that \(\{ x \in G : \mu(xA_i) > \frac{1}{n} \} \notin \mathcal{J} \).

Proof. Let \(\mathcal{H}_\nu = \{ H \in \mathcal{H}_X : \forall i \leq n \quad \text{cov}(H \cap \Delta(A_i)) \leq n \} \) and \(\mathcal{H}_\delta = \mathcal{H}_X \setminus \mathcal{H}_\nu \). It follows that for every \(H \in \mathcal{H}_\nu \) and \(i \in \{1, \ldots, n\} \) we can find a subset \(f_i(H) \subset H \) of cardinality \(|f_i(H)| \leq n \) such that \(H \subset f_i(H) \cdot \Delta(A_i) \). The assignment \(f_i : H \mapsto f_i(H) \) determines a function \(f_i : \mathcal{H}_\nu \to [G]^{<\omega} \) to the family of all finite subsets of \(G \).

The function \(f_i \) is regressive in the sense that \(f_i(H) \subset H \) for every subgroup \(H \in \mathcal{H}_\nu \).
By Corollary 3 for every subgroup $H \in \mathcal{H}_3$, there are an index $i_H \in \{1, \ldots, n\}$ and a finite subset $f(H) \subset H$ of cardinality $|f(H)| < n$ such that the set $J_H = H \setminus \left(f(H) \cdot (H \cap \Delta_\mathcal{I}(A_{i_H})) \right)$ generates the H-invariant ideal $\mathcal{J}_H \subset \mathcal{P}(H)$ which does not contain the set $M_H = \{ x \in H : \mu(x_{A_{i_H}}) > \frac{1}{n} \}$.

Since $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_3$ is stationary in \mathcal{H}, one of the sets \mathcal{H}_1 or \mathcal{H}_3 is stationary in \mathcal{H}.

If the set \mathcal{H}_1 is stationary in \mathcal{H}, then by Jech’s generalization [3, 8, 4.4] of Fodor’s Lemma, the stationary set \mathcal{H}_1 contains another stationary subset $S \subset \mathcal{H}_1$ such that for every $i \in \{1, \ldots, n\}$ the restriction $f_i|S$ is a constant function and hence $f_i(S) = \{ F_i \}$ for some finite set $F_i \subset G$ of cardinality $|F_i| \leq n$. We claim that $G = F_i \cdot \Delta_\mathcal{I}(A_i)$. Indeed, given any element $g \in G$, by the stationarity of S there is a subgroup $H \subset S$ such that $g \in H$. Then $g \in H \subset f_i(H) \cdot \Delta_\mathcal{I}(A_i) = F_i \cdot \Delta_\mathcal{I}(A_i)$ and hence $\text{cov}(\Delta_\mathcal{I}(A_i)) \leq |F_i| \leq n$ for all i.

Now assume that the family \mathcal{H}_3 is stationary in \mathcal{H}. In this case for some $i \in \{1, \ldots, n\}$ the set $\mathcal{H}_i = \{ H \in \mathcal{H}_3 : i_H = i \}$ is stationary in \mathcal{H}_3. Since the function $f : \mathcal{H}_3 \to [G]^{<\omega}$ is regressive, by Jech’s generalization [3, 8, 4.4] of Fodor’s Lemma, the stationary set \mathcal{H}_i contains another stationary subset $S \subset \mathcal{H}_i$ such that the restriction $f_i|S$ is a constant function and hence $f_i(S) = \{ F_i \}$ for some finite set $F \subset G$ of cardinality $|F| < n$. We claim that the set $J = G \setminus (F \cdot \Delta_\mathcal{I}(A_i))$ generates a G-invariant ideal \mathcal{J}, which does not contain the set $M = \{ x \in G : \mu(x_{A_i}) > \frac{1}{n} \}$. Assume conversely that $M \in \mathcal{J}$ and hence $M \subset EJ$ for some finite subset $E \subset G$. By the stationarity of the set S, there is a subgroup $H \subset S$ such that $E \cap H \subset H$. It follows $H \cap J = H \setminus (F \cdot (H \cap \Delta_\mathcal{I}(A_i))) = H \setminus (f(H) \cdot (H \cap \Delta_\mathcal{I}(A_i))) = J_H$ and $M_H = \{ x \in H : \mu(x_{A_i}) > \frac{1}{n} \} = H \cap M \subset H \cap EJ = EJ_H \in \mathcal{J}_H$, which contradicts the choice of the ideal \mathcal{J}_H. □

5. PROOF OF THEOREM 3

Theorem 3 is a simple corollary of Theorem 5. Indeed, assume that $G = A_1 \cup \cdots \cup A_n$ is a partition of a group and $\mathcal{I} \subset \mathcal{P}(G)$ is an invariant ideal on G which does not contain any countable subset and hence does not contain any countable subgroup $H_0 \subset G$. Let \mathcal{H} be the family of all countable subgroups of G and $\mu = \delta_1$ be the Dirac measure supported by the unit 1 of the group G. We claim that that for every subgroup $H \subset \mathcal{H}$ that contains H_0 the set $P_\mu(H; \mu)$ is not empty. It follows from $H_0 \not\in \mathcal{I}$ that the family $\mathcal{H}_I = \{ H \cap A : A \in \mathcal{I} \}$ is an invariant Boolean ideal on the group H. Then the family $\{ H \cap A : A \in \mathcal{I} \}$ is a filter on H, which can be enlarged to an ultrafilter \mathcal{U}_H. The ultrafilter \mathcal{U}_H determines a 2-valued measure $\mu_H : \mathcal{P}(H) \to \{0, 1\}$ such that $\mu_H(1) = \mathcal{U}_H$. By the right invariance of the ideal \mathcal{I}, for every $A \in \mathcal{I}$ and $x \in H$ we get $\mu_H \ast \delta_1 \ast \mu(A) = \mu_H(Ax) = 0$, which means that $\mu_H \in P_\mu(H; \mu)$. So, the set $\mathcal{H}_I = \{ H \in \mathcal{H} : P_\mu(H; \mu) \not= \emptyset \} \supset \{ H \in \mathcal{H} : H \supset H_0 \}$ is stationary in \mathcal{H}. Then by Theorem 5 either

(1) $\text{cov}(\Delta_\mathcal{I}(A_i)) \leq n$ for all cells A_i or else
(2) $\text{cov}_{\mathcal{I}}(\Delta_\mathcal{I}(A_i)) < n$ for some cell A_i and some G-invariant Boolean ideal $\mathcal{J} \subset \mathcal{P}(G)$ such that $A_i^{-1} = \{ x \in G : \delta_1(x_{A_i}) > \frac{1}{n} \} \not\in \mathcal{J}$.

REFERENCES

[1] T. Banakh, O. Ravsky, S. Slobodianiuk, On partitions of G-spaces and G-lattices, preprint (http://arxiv.org/abs/1303.1427).
[2] T. Banakh, Extremal densities and submeasures on groups and G-spaces and their combinatorial applications, preprint (http://arxiv.org/abs/1312.5078).
[3] T. Banakh, I. Protasov, S. Slobodianiuk, Densities, submeasures and partitions of groups, preprint (http://arxiv.org/abs/1303.3612).
[4] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1972/73), 165–198.
[5] T. Jech, Stationary sets. in: Handbook of set theory. Vol.1, 93–128, Springer, Dordrecht, 2010.
[6] N. Hindman, D. Strauss, Algebra in the Stone-Cech compactification, Walter de Gruyter & Co., Berlin, 1998.
[7] V.D. Mazurov, E.I. Khukhro, (eds.) Unsolved problems in group theory: the Kourovka notebook, Thirteenth augmented edition. Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995. 120 pp.
[8] A. Paterson, Amenability, Amer. Math. Soc. Providence, RI, 1988.

T. Banakh: Ivan Franko National University of Lviv (UKRAINE) AND Jan Kochanowski University in Kielce (POLAND)
E-mail address: t.o.banakh@gmail.com

M. Frączyk: Institute of Mathematics, Jagiellonian University, Kraków (POLAND) AND Institut Galilée, Université Paris 13, Paris (FRANCE)
E-mail address: mikolaj.fraczky@gmail.com