Entropy, chaos and excited-state quantum phase transitions in the Dicke model

C. M. López and A. Relaño

1 Departamento de Física Aplicada I and GISC, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain

We study non-equilibrium processes in an isolated quantum system—the Dicke model—focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos and the excited-state quantum phase transition is more clear for the entanglement entropy. On the contrary, the heat dissipated by the process is affected neither by the onset of chaos, nor by the excited-state quantum phase transition.

PACS numbers: 05.70.Ln, 89.70.Cf, 05.45.Mt, 05.30.Rt

I. INTRODUCTION

The relation between statistical mechanics and the underlying microscopic dynamics is still object of discussion. During the last couple of years, the development of experimental techniques allowing to manipulate isolated quantum systems with high degree of accuracy and control has spurred on the fundamental research both experimentally and theoretically [1, 2]. In particular, the consequences of performing a quench—a sudden change in the external parameters of the Hamiltonian—have been largely explored, focusing on different fundamental open questions: the process of thermalization [3–8], the irreversibility arising from non-equilibrium dynamics [9–11], or the consequences of crossing critical points [10–12], just to cite a few. This paper follows the same line of research. We rely on the paradigmatic Dicke model [13] to study how entropy and entanglement are produced by a quench, when the dynamics is affected by the onset of chaos and the presence of excited-state quantum phase transitions (ESQPTs). Our main conclusion is that all these phenomena are closely connected. Entropy production and entanglement are enhanced by the emergence of chaos and, though in a less clear way, by the presence of an ESQPT. On the other hand, the energy dissipated or lost by the quench is affected by none of these phenomena.

In the macroscopic realm, irreversibility, the corresponding increase of entropy, and a number of statements about the work lost as a consequence of a process are equivalent [14]. However, the situation is totally different in a (small) isolated quantum system following unitary time evolution. The energy dissipated or lost by a non-equilibrium process can be univocally calculated (see below for details). But the von Neumann entropy of the system, \(S = -\text{Tr}\rho \log \rho \), is always constant: it does not provide a microscopic basis for the Second Law. In other words, any time-dependent process \(H(t) \) in any isolated quantum system keeps all the information about the initial state, and hence no entropy is produced as a consequence of it.

A number ways have been recently explored to solve this problem. One consistent alternative relies on the diagonal entropy \(S_d \). If the time-dependent wavefunction of a system following a non-equilibrium process is written \(|\psi(t)\rangle = \sum_n C_n(t) |E_n(t)\rangle \), where \(|E_n(t)\rangle \) are the instantaneous eigenstates of the system, \(H(t) |E_n(t)\rangle = E_n(t) |E_n(t)\rangle \), the diagonal entropy is defined \(S_d = -\sum_n |C_n(t)|^2 \log |C_n(t)|^2 \). It can be understood as a natural consequence of the equilibration process that any isolated quantum system experiments after a change in its external parameters—the process after which the state \(|\psi(t)\rangle \) relaxes to an equilibrium mixed state \(\rho_{eq} = \lim_{T \to \infty} \int_0^T dt |\psi(t)\rangle \langle \psi(t)| \), around which it fluctuates during the majority of the time [16]. As a consequence of the long-time average, the non-diagonal elements of \(\rho_{eq} \) vanish, and hence \(\rho_{eq} \) reduces to a diagonal mixed state, \(\rho_{eq} = \sum_n |C_n|^2 |E_n\rangle \langle E_n| \). So, the diagonal entropy can be understood as the von Neumann entropy of this effective equilibrium state, resulting from dephasing. This entropy shares a number of important properties with the thermodynamic entropy. For example, in a time-dependent process \(H(t) \), \(S_d \) only remains constant in the adiabatic limit; the adiabatic theorem forbids transitions between the different instantaneous eigenstates, so the coefficients \(C_n(t) \) only acquire phases during the whole process. Furthermore, it is expected to provide a good description of any experiment performed over the system; if the system thermalizes, the effective equilibrated state, \(\rho_{eq} \), is expected to reproduce the expected values of physical observables, \(\langle \mathcal{O} \rangle \sim \text{Tr}[\mathcal{O} \rho_{eq}] \). Unfortunately, it also suffers from some important limitations. For example, it changes immediately after a sudden quench \(H(\lambda_i) \rightarrow H(\lambda_f) \), being \(\lambda \) an external control parameter of the Hamiltonian—it changes as soon as the quench is completed, not after the corresponding relaxation time. Hence, if the system experiments a very fast cycle \(H(\lambda_i) \rightarrow H(\lambda_f) \rightarrow H(\lambda_i) \), with a characteristic time much shorter that the relaxation time, this entropy first increases after the forward part of the cycle, and then decreases again after the backward. The reason is that the diagonal entropy \(S_d \) is equal to de von Neumann...
entropy of the effective equilibration state \(\rho_{\text{eq}} \), so it implicitly assumes that the relaxation has been completed.

Another relevant alternative lays on the entanglement between the system under study and its environment [17]. The most distinctive feature of entanglement, the fact that none of the parts of an entangled system exists as an individual subsystem, has been resorted to link the Second Law and the unitary quantum evolution [13–20]. Let’s consider that we deal with a global pure state, describing what we call the universe, that evolves unitarily under a certain global Hamiltonian \(H \). All the information about this global state is conserved by the time evolution, and thus it has no entropy —despite it remains close to the effective relaxed state \(\rho_{\text{eq}} \) during the majority of the time. However, being this true, all the possible experiments we can perform over this global state are restricted to a small part of it —what we call the system. And due to the entanglement between the different parts of the global pure state, this fact entails that we lack a relevant piece of information regarding the possible outcomes of our experiments, information that is encoded in the (inaccessible) correlations between the system and the rest of the universe —what we call the environment. Therefore, from the results of all our possible experiments we infer that our system is in a mixed state, follows a non-unitary time-evolution and has a (thermodynamic) entropy growing in time. In other words, quantum correlations between the system and its environment entail an objective and unavoidable loss of information about the state of the system, and thus they can be the ultimate responsible of the Second Law. Indeed, these quantum correlations have been shown to be under the emergence of canonical states in small parts of large and globally isolated quantum systems [18, 20]. Also, entanglement between the different parts of such systems has been pointed as the mechanism leading to thermalization [13, 20]. And the corresponding entanglement entropy has been shown to split in irreversible contributions, the last of which grows as a consequence of the unitary evolution, provided that the initial condition is a separable mixed state [7]. So, as a promising alternative for the thermodynamical entropy, we can consider the reduced density matrix of the system, after tracing out all the environmental degrees of freedom, \(\rho_S(t) = \text{Tr}_E |\psi(t)\rangle \langle \psi(t)| \), and its corresponding von Neumann entropy, \(S_{\text{ent}} = -\text{Tr}_S \rho_S(t) \), which always depends explicitly on time.

The aim of this work is to explore the behavior of both diagonal and entanglement entropies, in the paradigmatic Dicke model [13]. As we have pointed before, it is reasonable to expect that both the effective equilibrated state, \(\rho_{\text{eq}} \), from which we obtain the diagonal entropy \(S_d \), and the reduced density matrix, \(\rho_S \), giving rise to the entanglement entropy \(S_{\text{ent}} \), provide a good description of the experiments performed over the system (see below for a precise description about what we call system and what we call environment), so it is logical to expect that both entropies account for the irreversibility inherent to a non-equilibrium process. We have chosen the Dicke model for the following reasons: i) it is experimentally accessible, both by means of a superfluid gas in an optical cavity [21], and by means of superconducting circuits [22]; ii) it is naturally splitted in two parts: a finite number of atoms (the system) and an infinite number of photons (the environment); and iii) its spectrum has a very rich structure, showing both quantum phase transitions (QPTs) and excited-state quantum phase transitions (ESQPTs) [23, 22], and a transition from integrability to chaos as a function of the energy [26, 27].

After a stringent numerical study, we obtain the following conclusions. First, the energy dissipated by the quench, \(Q \), is totally oblivious of the presence of critical phenomena and the onset of chaos. For almost any quench \(\lambda_1 \rightarrow \lambda_f \) (see below for details), the dissipated energy is proportional to the quench size \(\Delta \lambda = \lambda_f - \lambda_1 \), \(Q \sim 2 (\Delta \lambda)^2 \), no matters whether the final Hamiltonian has a coupling constant \(\lambda \) above or below the critical, \(\lambda_c \), and whether the final energy \(E \) is below or above the corresponding to the onset of chaos and the critical energy \(E_c \) of the ESQPT. This means that the structure of the spectrum is irrelevant from a practical point of view: the energy that a machine operating between \(\lambda_1 \) and \(\lambda_f \) will lose as a consequence of irreversibility only depends on the size of the quench, neither on the chaotic or regular nature of the dynamics, nor on the presence of an ESQPT. On the contrary, both diagonal and entanglement entropies are abruptly increased in the surroundings of \(E_c \), a region in which the system transits from almost integrable to fully chaotic dynamics. A possible explanation is that a number of approximately conserved quantities holding below the onset of chaos restrict the dynamics of the system, making the entropy increase less than expected in this region. It is also worth to stress that diagonal and entanglement entropies do not behave in the same way. A tiny quench is enough to increase the first one; non-adiabatic transitions resulting from the quench spread the final energy distribution over many different eigenstates and give rise to a large value of the diagonal entropy, no matters the approximated conservation rules holding below the onset of chaos. On the contrary, entanglement is almost zero until the system approaches the critical energy of the ESQPT and enters in the region in which the chaotic behavior starts. So, the behavior of these entropies is determined by different physical mechanisms. Diagonal entropy responds to any non-adiabatic transition between energy levels, providing a good estimate of irreversibility after the system is equilibrated in its final state. Entanglement entropy is more sensitive to structural changes in the eigenstates of the final Hamiltonian, and in particular to the mechanisms expected to lead the system to a final thermal state. Hence, from a thermodynamic point of view, diagonal entropy is more adequate because is the only which captures the consequences of all the non-adiabatic transitions between energy levels; however, as we have pointed above, it is not useful to derive a time-dependent entropy \(S(t) \), support-
ing the Second Law. On the other hand, entanglement entropy does increase in time, at least for quenches large enough; but it does not account for all the irreversible changes.

The rest of the paper is organized as follows. In section II we present the Dicke model, discuss its main features, and describe the process from which we obtain the results. In section III we show the main results of the paper. Finally, in section IV we summarize our main conclusions.

II. MODEL AND PROTOCOL

The Dicke model [12] describes the interaction of N two-level atoms of splitting ω_0 with a single bosonic mode of frequency ω, by means of a coupling parameter λ,

$$\hat{H} = \omega_0 J_z + \omega a^\dagger a + \frac{2\lambda}{\sqrt{N}} J_x (a^\dagger + a).$$

(1)

In this representation, a^\dagger and a are the creation and annihilation operators of photons, and $J = (J_x, J_y, J_z)$ is the total angular momentum. This Hamiltonian has two main conserved quantities. First, J^2, which divides the Hamiltonian in diagonal blocks; in this paper we restrict ourselves to $J = N/2$, which is enough to deal with the recent experimental realizations [21, 22]. Second, due to the invariance of \hat{H} under $J_x \rightarrow -J_x$ and $a \rightarrow -a$, $\Pi = \exp \left(i \pi \left[J_x + a^\dagger a \right] \right)$ is also a conserved quantity. As this is a discrete symmetry, Π has only two different eigenvalues, $\Pi | E_i, \pm \rangle = \pm | E_i, \pm \rangle$, and it is usually called parity.

The Dicke Hamiltonian undergoes a second-order QPT at $\lambda_c = \sqrt{\omega_0 \omega}/2$, which separates the so-called normal phase ($\lambda < \lambda_c$) from the superradiant phase ($\lambda > \lambda_c$) [28, 31]. This transition has been linked to a singular behavior of the entanglement between the atoms and the radiation field [32], implying that an adiabatic evolution from the ground state of the system results in an abrupt increase of the entanglement at the critical coupling. It has also been related to the emergence of chaos [28]. The region corresponding to the superradiant phase displays an ESQPT at $E_c = -J \omega_0$. In the thermodynamic limit, if $\lambda > \lambda_c$ and $E < E_c$, all the energy levels are doubly degenerate, and therefore parity can be spontaneously broken [29, 33, 36]. It has been suggested that the ESQPT induces the development of chaos [29, 37], but the current results are far from conclusive [27].

All the results we show in this paper are based on the same procedure. We consider the ensemble of atoms as the system, $H_S = \omega_0 J_z$; the radiation field, as the environment $H_E = \omega a^\dagger a$; and an interaction between them given by $H_{int} = 2\lambda J_x (a^\dagger + a)/\sqrt{N}$. The unitary time-evolution of any pure state $|\psi(0)\rangle$ is given by $|\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle$, where $\hat{U}(t)$ is the unitary evolution operator, that can be obtained from Eq. (1). Exact calculations are accessible for current computational capabilities up to $N \sim 50$, and hence both diagonal and entanglement entropies can be numerically obtained. For the first one, we only require to write the time-dependent wavefunction in the instantaneous eigenbasis, $|\psi(t)\rangle = \sum_n C_n(t) |E_n(t)\rangle$, and taking $S_d = -\sum_n |C_n(t)|^2 \log |C_n(t)|^2$. The entanglement entropy is obtained by tracing out the photonic degrees of freedom, $S_{\rho_S(t)} = -Tr[|\psi(t)\rangle \langle \psi(t)| \log |\rho_S(t)|]$, and taking $S_{ent}(t) = -Tr[|\rho_S(t)| \log |\rho_S(t)|]$. It is worth to stress that, due to the correlations between atoms and photons, $\rho_S(t)$ does not follows an unitary time evolution, and thus $S_{ent}(t)$ is explicitly time-dependent. Furthermore, this entropy has been shown to behave in the same qualititative way as other entanglement measures, at least for the ground state of this system [32].

Our main objective is to explore the consequences of a highly non-equilibrium process, by suddenly changing the external parameter from λ_i to λ_f. This procedure is very easy to simulate, because the corresponding Hamiltonian does not depend explicitly on time; the exact time evolution comes directly from the final value of the coupling constant λ_f, $|\psi(t)\rangle = e^{i\hat{H}(\lambda_f) t} |\psi(0)\rangle$, where the initial condition $|\psi(0)\rangle$ is the ground state of the system at the initial value of the coupling constant λ_i. We consider $\omega = \omega_0 = \hbar = 1$ throughout all this paper. Also we always take $\lambda_i > \lambda_f > \lambda_c$, in order to explore the complete phase diagram of the Dicke model (see [34] for details).

Another advantage of this procedure is that the ground state is very well described by a separable coherent state, $|\mu, \nu\rangle = |\mu\rangle \otimes |\nu\rangle$ [38], where

$$|\mu\rangle = (1 + \mu^2)^{-J/2} \exp(\mu J_+ |J, -J\rangle, \quad (2)$$

$$|\nu\rangle = \exp(\nu^2/2) \exp(\nu a^\dagger) |0\rangle,$$

(3)

correspond to the atomic and the bosonic parts of the state, respectively. The precise values of both parameters for a certain coupling constant λ_i are obtained minimizing the energy surface $H(\lambda_i) |\mu, \nu\rangle$,

$$\mu = \pm \sqrt{\frac{\lambda_f^2 - \lambda_c^2}{\lambda_f^2 + \lambda_c^2}}, \quad \nu = \pm \sqrt{\frac{2J}{\lambda} \sqrt{\lambda_f^2 - \lambda_c^2}},$$

(4)

considering that we are always in the superradiant phase $\lambda_i > \lambda_c$. Furthermore, as in this phase ($\lambda > \lambda_c$) the ground state is always degenerate, any linear combination of the previous coherent states is also a valid ground state,

$$|\mu, \nu\rangle = \alpha |\mu_+\rangle \otimes |\nu_+\rangle \pm \beta |\mu_-\rangle \otimes |\nu_+\rangle / \sqrt{|\alpha|^2 + |\beta|^2},$$

(5)

where the subindex $+$ ($-$) indicate the positive (negative) values in [4]. Throughout all this work we restrict ourselves to the case $\alpha = 1$, $\beta = 0$. As this is a product state, all the entanglement observed in the final equilibrium state is produced by the non-equilibrium process. Similar qualitative results are obtained for other
values for α and β (not shown). The only difference is that the generic state in (5) is yet entangled, and thus its initial value for S_{ent} is not zero; a straightforward calculation shows that $S_{\text{ent}}(0) = \log \left(\frac{1}{|\alpha|^2 + |\beta|^2} \right) - \frac{1}{|\alpha|^2 + |\beta|^2} \left(|\alpha|^2 \log |\alpha|^2 + |\beta|^2 \log |\beta|^2 \right)$. Initial states with $\alpha = 1/\sqrt{2}$ and $\beta = \pm 1/\sqrt{2}$ are particularly interesting because have well-defined positive or negative parity; in both cases $S_{\text{ent}}(0) = \log 2$. Note that for all these situations, $S_{\text{ent}}(0) = 0$, since we always start the time evolution from the ground state.

A thermodynamic description of the process is done in the following terms. As the complete system remains always thermally isolated, we consider the external parameter λ, the internal energy E and the entropy S, as the thermodynamic variables. Any quench with $\lambda_i > \lambda_f$ requires a certain amount of mechanical work (see [34] for details), which entails an increase of the internal energy $\Delta E = \langle \psi(0) | H(\lambda_f) | \psi(0) \rangle - \langle \psi(0) | H(\lambda_i) | \psi(0) \rangle$. To determine which part of this energy is lost as a consequence of the irreversibility of the process, we can consider that any (differential) energy change can be split in two terms, $dE = \sum_n P_n dE_n + E_n dP_n$, where E_n are the eigenvalues of the system, and P_n the probabilities of obtaining each one in an energy measurement [39, 40]. The first term in the sum is identified as the (reversible) work done by the quench, $W = \sum_n P_n dE_n$, and the second one as the heat dissipated by the quench, $Q = \sum_n E_n dP_n$. As it is stated by the adiabatic theorem, if the process is completed slowly enough there are no transitions between different energy levels, implying $Q = 0$ and $\Delta E = W$. On the contrary, irreversible protocols entail non-adiabatic transitions between energy levels, and therefore $Q > 0$. Hence, Q can be understood as the mechanical work lost by the protocol. It comes from a simple (and reversible) mechanical change $\lambda_i \to \lambda_f$, but entails a large number of microscopic transitions between energy levels, that cannot be retrieved without a precise microscopic knowledge of the wavefunction.

The aim of this paper is to study how diagonal and entanglement entropies increase as a consequence of a quench, and hence if they provide good microscopic basis for the thermodynamic entropy.

III. NUMERICAL RESULTS

First, we study the behavior of the system with $N = 30$ atoms, and different values of the final coupling constant. In Fig. 1 we show the results for the dissipated energy. Symbols show the numerical results for $\lambda_f = 0.9, 1.2, 1.5, 2.0, 2.5$, and 3.0 (see caption of Fig. 1 for details). The most representative fact is that the dissipated energy is the same for all the cases; Q depends just on the size of the quench, $\Delta \lambda = \lambda_i - \lambda_f$, independently of the final coupling constant λ_f. Although not shown, similar results are obtained for $\lambda_f < \lambda_c$. The dashed line on the

![FIG. 1. Dissipated energy Q for a system with $N = 30$ atoms and different values for the final coupling constants, λ_f. Results are shown as a function of the size of the quench, $\Delta \lambda = \lambda_i - \lambda_f$. Open symbols display the numerical results: squares (red online), $\lambda_f = 0.9$; circles (green online), $\lambda_f = 1.2$; upper triangles (blue online), $\lambda_f = 1.5$; lower triangles (magenta online), $\lambda_f = 2.0$; diamonds (cyan online), $\lambda_f = 2.5$; and crosses (yellow online), $\lambda_f = 3.0$. Dashed line represents $Q = 2(\Delta \lambda)^2$. This result comes from the following facts: First, the final energy for a quench $\lambda_i \to \lambda_f$ (see [34] for details) is,](image)

$$
E(\lambda_i, \lambda_f) = \frac{2\lambda_i (\lambda_i - 2\lambda_f)}{\omega} + \frac{(2\lambda_f - 3\lambda_i) \omega_0^2}{8\lambda_f^4}, \quad (6)
$$

expression valid for $\lambda_i > \lambda_c$. Second, the ground state energy of the final Hamiltonian is

$$
\frac{E_0}{J} = -\frac{\omega_0 \omega_0}{4\lambda_f^2} - \frac{2}{\omega} \frac{16\lambda_f^4 - \omega^2 \omega_0^2}{16\lambda_f^2}, \quad (7)
$$

provided that $\lambda_f > \lambda_c$. From these expressions we obtain,

$$
\frac{Q(\lambda_i, \lambda_f)}{J} = \frac{(\lambda_i - \lambda_f)^2}{8\omega} \left[16 + \frac{2\lambda_f + \lambda_i \omega_0^2}{\lambda_f^4} \right]. \quad (8)
$$

So, considering $\omega = \omega_0 = 1$ and defining $x \equiv \lambda_i - \lambda_f$, the dissipated energy reads,

$$
\frac{Q(x, \lambda_f)}{J} = 2x^2 + \frac{x^2}{8} \frac{3\lambda_f + x}{\lambda_f^4 (\lambda_f + x)^3}. \quad (9)
$$

The main trend of this result is $Q = 2x^2 = 2(\Delta \lambda)^2$, that is, the corresponding to the dashed line in Fig. 1. The second term in the sum provides a small correction, negligible for medium and large values of $\Delta \lambda$.

In Fig. 2 we show the results for the diagonal entropy (panel a) and the entanglement entropy (panel b), for the same cases than in Fig. 1 plotted with the same symbols (see captions for details). Both entropies show
significant differences with respect to the dissipated heat, plotted in Fig. 1. In all the cases, the diagonal entropy \(S_d \) fastly increases from \(S_d = 0 \) (limit for quenches small enough to avoid non-adiabatic transitions), showing that a large number of energy levels become populated after small or moderate quenches; note that the entropy generated is the same for all the cases. Then, a second region appears. Above \(\Delta \lambda \sim 0.4 \), the curves for the different cases follow different paths. The entropy generated by the quench ending at \(\lambda_f = 0.9 \) continues growing with the same trend, whereas the increase of the others slow down, showing a sort of plateau. This plateau ends at a different value of \(\Delta \lambda \) for each case, giving rise to a second fastly-growing region. The last part of all the cases consists of another slowly-growing region, starting at different values of \(\Delta \lambda \) for each case: the larger the \(\lambda_f \), the larger \(\Delta \lambda \). Summarizing, the diagonal entropy grows following a complex path which depends on the final value of the coupling constant, \(\lambda_f \).

Results for the entanglement entropy (panel b of Fig. 2) also show a complex pattern. The first part of the plots consist of a region in which \(S_{\text{ent}} \sim 0 \), that is, a region in which atoms and photons remain unentangled. The size of this region depends on \(\lambda_f \): the larger \(\lambda_f \), the larger the quench \(\Delta \lambda \) at which the entanglement entropy becomes significantly different from zero. Then, a fastly-growing region starts, very similar to the fastly-growing region of \(S_d \) after the intermediate plateau. In all the cases, \(S_{\text{ent}} \) grows from almost zero to almost its maximum value; in other words, atoms and photons change from almost pure to almost maximally entangled states in a narrow band of quench sizes. After this fastly-growing region, we reach a final regime in which the entanglement entropy is approximately constant and close to its maximum possible value, \(S_{\text{ent}} = \log 31 \).

From these results, we infer the following conclusions. First, the energy lost by the quench, \(Q \), only depends on its size, \(\Delta \lambda \). This entails that the efficiency of a machine operating between \(\lambda_i \) and \(\lambda_f \) would depend neither on the final coupling \(\lambda_f \), nor on the final value of the energy \(E = \langle \psi(0)|H|\psi(0) \rangle \). On the contrary, the entropy produced by the same process dramatically depends on \(\lambda_f \). As paradigmatic examples, we can compare the cases with \(\lambda_f = 0.9 \) and \(\lambda_f = 3.0 \). In the first case, \(S_{\text{ent}} \) is roughly at its maximum for \(\Delta \lambda \sim 1 \), but entailing a small dissipated energy, \(Q/J \sim 2 \). In the second one, the same quench size and the same amount of dissipated energy make atoms and photons remain almost unentangled, \(S_{\text{ent}} \sim 0 \). Furthermore, the differences between \(S_d \) and \(S_{\text{ent}} \) are also significant. For example, the quench \(\Delta \lambda \sim 1 \) for the case \(\lambda_f = 3.0 \), entails \(S_d \sim 3.5 \), whereas \(S_{\text{ent}} \sim 0 \). So, we conjecture that the entropy growth is not directly related to the dissipated energy, but to structural changes in the spectrum; and that the entanglement entropy is more sensitive to this changes.

In the superradiant phase (\(\lambda > \lambda_c \)) two main structural changes occur above the ground state: the onset of chaos and an ESQPT. Recent results suggest that both phenomena are related (see [26] for the Dicke model, and [37] for an atom-molecule gas), but it seems that they do not take place at the very same energy [27]. In any case, the distance between the ground state and the region in which both the ESQPT and the onset of chaos take place [26, 27, 34] increases with \(\lambda_f \), indicating that the size of a quench \(\Delta \lambda \) leading to this region also increases. Hence, it is logical to look for a connection between the fastly-growing region for both \(S_d \) and \(S_{\text{ent}} \), the onset of chaos and the ESQPT.

A. Onset of chaos

Quantum chaos can be detected by means of several procedures. The majority of them are related to spectral statistics, that is, to the statistical properties of the sequence of energy levels [41]. An alternative approach has been used during the last couple of years to study how the degree of chaos changes with the excitation energy, a problem which is closely related to the one we are dealing with [42]. It was proposed around 30 years ago by Peres [43]. Basically, it consists of drawing the expected value of a representative observable [44] in every eigenstate, in terms of the corresponding energy. If the system is fully chaotic, the plot shows no structure. On the contrary, if the system is integrable the plot is ordered in a regular lattice, due to the underlying integrals of motion. Such kind of plots are usually called Peres lattices.

In Fig. 3 we represent a Peres lattice for a case with \(N = 30 \) and \(\lambda_f = 2.5 \). We have chosen the number of photons, \(a \), as a representative observable. Together with the numerical points, we plot the critical energy of the ESQPT (\(E_c/J = -1 \)), as a vertical dashed (green
points in the corresponding bands. These lines are obtained by means of linear fit to the points in the corresponding band.

Below $E/J \sim -4$, the lattice is regular. The values $\langle \langle E_n | a^\dagger a | E_n \rangle \rangle$ are distributed in bands, each one following a different linear trend. Dotted lines in Fig. 3 represent these linear trends, obtained by least-squares fits to the corresponding sets of points. Around $E/J \sim -4$ some bands start to deviate from their linear trends, and above the critical energy of the ESQPT, $E/J = -1$, all the points distribute randomly. Thus, we can conclude that the transition from integrability to chaos happens in this interval.

Besides the identification of quantum chaos, Peres lattices are also interesting to study the process of thermalization in isolated quantum systems. The eigenstate thermalization hypothesis (ETH) states that an isolated quantum system thermalizes if the expected values of physical observables are approximately the same in all the states within a small energy window ΔE. This fact entails that the expected value of any physical observable in a single eigenstate equals the microcanonical average, and therefore the system behaves like in thermal equilibrium independently of its actual probability distribution $P(E_n)$. In our case, this requirement is not fulfilled for $E/J < -4$; $\langle \langle E_n | a^\dagger a | E_n \rangle \rangle$ dramatically changes from band to band, and hence we cannot expect a thermal behavior in this region. On the contrary, above the critical energy of the ESQPT $\langle \langle E_n | a^\dagger a | E_n \rangle \rangle$ randomly fluctuates around its average value. The width of the corresponding distribution is large, but we can expect that its relative size decreases with the number of atoms N, giving rise to thermalization in larger systems.

A quantitative analysis is presented in Fig. 4, which has been constructed in the following way. First, we compute the distance d between every point $\langle \langle E_n | a^\dagger a | E_n \rangle \rangle$ in the lattice and its closest linear trend. Second, we average the distances obtained over a fixed number of eigenstates, Δ. Finally, we represent the averaged d versus the average energy of the corresponding eigenstates. The results provide a measure of how ordered is the lattice in the neighborhood of a given energy E. If d is close to zero, the lattice shows a very regular pattern, and hence the system is almost integrable at the corresponding energy; if it is clearly different from zero, the system is far from integrability. Results plotted in Fig. 4 have been obtained with $\Delta = 100$. The distance d remains very close to zero up to energies around $E/J \sim -4$. Then, it fastly increases up to its maximum, which remarkably happens around the critical energy of the ESQPT, $E/J \sim -1$. Finally, the distance d decreases a bit and oscillates around a certain value. So, we conclude that chaos emerges clearly below E_c, as it was pointed in [27], but the critical energy still plays a prominent role — results in Fig. 4 suggest that the system is fully chaotic above the ESQPT. It is worth to note that the distance d behaves in a similar way that the entropies shown in Fig. 2 specially S_{ent}: both d and S_{ent} remain close to zero within a certain range, and then experiment an abrupt increase. Though we do not show numerical results, we have checked that this parallelism also holds for other values of the final coupling constant λ_f; for example, if $\lambda_f = 0.9$ the transition to chaos starts at very low excitation energies. Therefore, it is logical to expect a sort of link between the entropy generated by a quench, and the development of chaos in the Dicke model.

With the aim of going deep into this possible link, we study the dynamical consequences of chaos in the Dicke model. We first analyze how the shape of the final energy distribution is affected by the onset of chaos. In Fig. 3 we plot the final energy distribution for a system with $N = 30$ and $\lambda_f = 2.5$, after different quenches (see caption for details). Panels (a) and (b) are representative of small quenches, keeping the final energy distribution in the low-lying part of the spectrum, that is, in the non-chaotic ordered region (see Figs. 3 and 4). Together with the distribution, we plot the ener-
The region in which there exists only one band (between \(E/J \)) entails qualitative changes in the energy distributions. In panels (a) and (b), we show the energies corresponding to the start, as vertical dashed lines (green online); in panels (c) and (d), \(\lambda_t = 4.8 \). Vertical dashed lines (green online) show the energies at which the different bands of Fig. 3 start. Vertical solid line (blue online), shows the critical energy of the ESQPT, \(E/J = -1 \).

![Energy distributions](image)

FIG. 5. Energy distributions \(P(E_n) \) for a system with \(N = 30 \) and \(\lambda_f = 2.5 \), resulting from different quenches: panel (a), \(\lambda_i = 3.4 \); panel (b), \(\lambda_i = 3.6 \); panel (c), \(\lambda_i = 4.5 \); panel (d), \(\lambda_i = 4.8 \). Vertical dashed lines (green online) show the energies at which the different bands of Fig. 3 start. Vertical solid line (blue online), shows the critical energy of the ESQPT, \(E/J = -1 \).

Energies at which the different bands displayed in Fig. 3 start, as vertical dashed lines (green online); in panels (a) and (b) we show the energies corresponding to the second, \(E_2/J \sim -10.9 \), and the third \(E_3/J \sim -9.4 \), bands. We can see that the appearance of these bands entails qualitative changes in the energy distributions. In the region in which there exists only one band (between \(E/J \sim -12.5 \) and \(E/J \sim -10.9 \)), all the eigenstates become populated after the quench. On the contrary, both panels (a) and (b) show that only one every two eigenstates become populated in the region with two bands (between \(E/J \sim -10.9 \) and \(E/J \sim -9.4 \)). Finally, in panel (b) we can also see that only one every three eigenstates become populated in the region with three bands (above \(E/J \sim -9.4 \)). This suggests that a sort of approximated conservation rule holds: as our initial state is the ground state of the same system with \(\lambda_i > \lambda_f \), only the eigenstates belonging to the first band are populated as a consequence of the quench; transitions between different bands are approximately forbidden by this conservation law.

Results for large quenches, shown in panels (c) and (d), are different. The structure of the final eigenstate distribution is still regular in panel (c), though the approximated conservation rule suggested above is not so clearly seen. In fact, very small peaks appear around \(E/J \sim -4.5 \), giving rise to a secondary structure suggesting that the approximated conservation rule starts to disappear. In panel (d), the distribution becomes erratic. In this case, the quench leads the system to the chaotic region. We can see that the complexity of the final distribution increases with energy, becoming random for energies above \(E_c \). The secondary structure foreseen in panel (c) also appears around \(E/J \sim -4 \), and becomes much more relevant around \(E/J \sim -3 \). After \(E/J \sim -1.5 \) we cannot distinguish between the main and the secondary structures, and the total distribution becomes totally erratic for energies above \(E_c \). These results suggest that the approximated conservation rules, responsible of the regular behavior shown in panels (a) and (b), are destroyed by chaos. When the quench leads the system to the fully chaotic region, non-adiabatic transitions between all the energy levels are possible.

To obtain a more quantitative analysis of the transition from a regular pattern to a random behavior in the eigenstate distribution after the quench, we proceed as follows. First, we select an intermediate quench, \(\lambda_i = 4.0 \), with the aim of spreading the wavefunction over both regular and chaotic eigenstates. Second, we calculate the logarithm of the corresponding final energy distribution at \(\lambda_f = 2.5 \), obtaining a series \(x_n = \log_{10} P(E_n/J) \). The logarithmic scale makes possible to study patterns and periodicities in the final energy distribution even for very low occupation probabilities. The result is shown in panel (a) of Fig. 6 together with the energies at which the different bands start (as vertical dashed lines, green online), and the critical energy of the ESQPT (as a vertical solid line, blue online). We see a clearly regular pattern for the low-lying eigenstates, as expected. But it is also worth to note that the previously discussed conservation rules are only approximated: all the bands are significantly populated \([45]\), though only the population of the eigenstates in the first band is relatively large, within a window around the expected final energy. Furthermore, we can see the first signatures of an irregular behavior between \(E/J = -4 \) and \(E/J = -3 \), though the plot becomes clearly noisy only above \(E/J \sim -1.5 \). From this plot, we get a quantitative analysis of regularities and patterns in the dynamics after the quench in the following way. We divide the series \(x_n \equiv \log_{10} P(E_n/J) \) in different sequences, each one corresponding to a different region in panel (a) of Fig. 6 \(x^{(1)}_n \) is the logarithm of the probability \(P(E_n) \) of the eigenstates in the region with just one band, \(-12.5 \leq E/J \leq -10.9 \); \(x^{(2)}_n \), the same for the eigenstates in the region with two bands, \(-10.9 \leq E/J \leq -9.4 \), and so on. Finally, we obtain the square modulus of the Fourier Transform of the sequences \(x^{(i)}_n \). Results are also plotted in Fig. 6 for \(x^{(2)}_n, x^{(4)}_n, x^{(6)}_n, x^{(8)}_n, x^{(10)}_n \), and \(x^{(11)}_n \) (see caption for details). In panels (b)-(e) we see that the number of peaks in the Fourier Transform of \(x^{(i)}_n \) co-
incidence with the number of bands in the corresponding region of the spectrum. This fact is a consequence of the regular structure shown in panel (a) of the same figure. $x_n^{(2)}$ oscillates between the first (upper set of points) and the second (lower set of points) bands, and therefore, the corresponding Fourier Transform shows a peak in $k = 0$ and a second peak related to the frequency of these oscillations, which is more or less the same for the complete subsequence. Something similar happens with $x_n^{(4)}$. In this case, the signal oscillates between four different points, entailing three different frequencies, and the peak at $k = 0$. This scenario is broken in the last two panels. Panel (f) lays in the region transiting from integrability to fully developed chaos, $-2.0 \lesssim E/J \lesssim -1.0$. Despite a number of peaks can be still distinguished, the signal is noisy. Finally, panel (g) show the results for levels above the critical energy of the ESQPT, $-1.0 \lesssim E/J \lesssim 1.0$. In this case, we find no traces of peaks; the signal is compatible with a white noise, that is, with an uncorrelated sequence. These facts entail that the probability distribution $P(E_n)$ transits from a periodic structure, coming from the approximated conservation rules holding in the low-lying region of the spectrum, to a totally uncorrelated one, occurring in the fully chaotic region.

All these results show that dynamics is strongly affected by the development of chaos; the final energy distribution, which is directly correlated with the diagonal entropy S_d, dramatically changes from the almost integrable to the fully chaotic regimes. The effects in the entropy generated by a quench are studied in Fig. 6. There, we show the diagonal entropy (panel a), and the entanglement entropy (panel b), for $N = 30$ and $\lambda_f = 2.5$, as a function of the final energy E/J. We also show the energies at which chaos starts, $E/J \sim -4$, as a vertical dashed line (green online), and the critical of the ESQPT, $E/J = -1$, as a vertical solid line (blue online). From the results, we can infer a neat correlation between the onset of chaos and the increase of both S_d and S_{ent}. In particular, this correlation is remarkable for the entanglement entropy S_{ent}; we can see impressive similarities between Fig. 4 and panel (b) of Fig. 7. Hence, from the comparison of these two figures we can conclude that: i) atoms and photons remain unentangled for quenches keeping the system in the almost-integrable region, characterized by a number of approximated conservation rules that prevent the majority of the non-adiabatic transitions between energy levels; ii) the entanglement fastly increases.

FIG. 6. Panel (a), logarithm of the final probability distribution, $P(E_n/J)$ for $\lambda_f = 2.5$ and $N = 30$. Panels (b)-(g), square modulus of the Fourier Transform of the following sequence: panel (b), $x_n^{(2)}$, corresponding to eigenstates in the region with two bands, $-10.9 \lesssim E/J \lesssim -9.4$; panel (c), $x_n^{(4)}$, corresponding to eigenstates in the region with four bands, $-8.0 \lesssim E/J \lesssim -6.7$; panel (d), $x_n^{(6)}$, corresponding to eigenstates in the region with six bands, $-5.6 \lesssim E/J \lesssim -4.5$; panel (e), $x_n^{(8)}$, corresponding to eigenstates in the region with eight bands, $-3.6 \lesssim E/J \lesssim -2.7$; panel (f), $x_n^{(10)}$, corresponding to eigenstates in the region with ten or more bands, $-2.0 \lesssim E/J \lesssim -1.0$; panel (g), $x_n^{(11)}$, corresponding to eigenstates above the critical energy of the ESQPT, $-1.0 \lesssim E/J \lesssim 1.0$.

FIG. 7. Diagonal entropy S_d (panel a) and entanglement entropy S_{ent} (panel b), for a system with $N = 30$ atoms and different values for the final coupling constants, λ_f, as a function of the final energy E/J.

in the region transiting from integrability to chaos; and
iii) atoms and photons are almost yet maximally entan-
gled after the system crosses the ESQPT and enters in
the fully chaotic regime. It is worth to mention that
these facts reinforce the link between entanglement and
thermalization [10]. \(S_{\text{ent}} \) starts to grow when the or-
dered pattern in (a) starts to disappear, that is, when the
conditions for the ETH start to hold. We can ex-
pect that quenches leading the system to the low-lying
region is reached, a lot of non-adiabatic transitions
become possible, spreading the final energy distribution
in a very narrow energy window; hence, the fact that the final energy distribution lays. This value has been selected to
identify the point at which the system touches the crit-
ical energy
\(E_{95\%} = 1.5 \); hori-
izontal dashed line, the maximum possible value for the von
Neumann entropy, \(S = \log 2 \). The inset shows a zoom of the
same results around \(E/J = -1 \).

B. ESQPT
Results in previous sections suggest that the emergence
of chaos plays a prominent role in the entanglement be-
tween the atomic and the photonic part of the Dick
model. Notwithstanding, the ESQPT seems to be im-
portant too. Results shown in Figs. 4 and 7 suggest that the system becomes fully chaotic after crossing the
critical energy of the ESQPT, atoms and photons become
maximally entangled roughly at the same point, and also
the fast-growing region of the diagonal entropy approxi-
mately ends at the same value. Since the results for \(S_{\text{ent}} \)
are more clear than for \(S_d \) (the entanglement entropy
grows from zero to almost its maximum possible value in a
very narrow energy window), we explore now the possible links between this magnitude and the ESQPT.

Results shown in Fig. 7 are not conclusive regarding
the possible link between entanglement and the ESQPT.
The development of chaos occurs within a quite wide en-
ergy window; hence, the fact that the final energy distri-
bution is also wide does not constitute a problem. On
the contrary, the ESQPT is a critical phenomenon, tak-
ing place at a precise value of the energy, \(E_c/J = -1 \);
thus, we can expect that its dynamical consequences be-
come blurred if the final energy distribution is wide. To
avoid this problem we recalculate the consequences of the
same quenches, though for a smaller system with \(N = 20 \)
to have more numerical points), and we study the en-
tanglement entropy \(S_{\text{ent}} \) in terms of \(E_{95\%} \). This is the
energy value which fulfills \(F(E \leq E_{95\%}) = 0.95 \), be-
ing \(F(E) \) the cumulative probability distribution for the
energy in a measurement. In other words, we plot the
results versus the energy below which the 95% of the en-
ergy distribution lays. This value has been selected to
identify the point at which the system touches the crit-
ical point, that is, the point at which the normal phase
starts to be significantly populated [10]. In Fig. 8 we
plot the corresponding results for different values of the
final coupling constant, \(\lambda_f \) (see caption of Fig. 8 for de-
tails). In the inset, we plot a zoom of the same curves,
centered at the critical energy \(E_{95\%}/J = -1 \). The main
conclusion is that all the five curves cross at the critical
point \(E_{95\%}/J \sim -1 \), suggesting that this point plays a
significant role in the dynamics of the entanglement en-
tropy. Notwithstanding, this result is not as conclusive
as the obtained regarding the onset of chaos. More work
is needed to separate the consequences of chaos and the
ESQPT.

C. Entropy growth
As it is discussed in the introduction, one of the main
differences between diagonal \(S_d \) and entanglement \(S_{\text{ent}} \)
entropies is that the first one changes immediately after
the quench, while the second one has a non-trivial time

\[S = \log 2 \]
dependence, which can be related to the Second Law. We explore here this time dependence.

In Fig. 9 we plot how the entanglement entropy S_{ent} grows after the quench. All the results are numerically obtained with $N = 20$ atoms and $\lambda_f = 2.5$. For the sake of clarity, we have selected a set of representative cases which give rise to final states with the following properties: panel (a), with $\lambda_i = 3.0$, show a case in which only the first band of levels is populated; panel (b), with $\lambda_i = 4.0$, is clearly below the onset of chaos, though more of one band is populated; in panel (c), with $\lambda_i = 4.7$, levels within the transition from integrability to chaos are yet populated, though almost all the energy distribution is below the critical energy of the ESQPT, $E/J = -1$; panel (d), with $\lambda_i = 4.9$, shows a case in which the final energy distribution touches the critical energy, and almost all is within the transiting region; in panel (e), with $\lambda_i = 5.5$, the energy distribution is roughly centered at the critical energy $E/J = -1$, and panel (f), with $\lambda_i = 7.0$, shows a case in which almost all the energy distribution is in the normal phase. In panel (a), S_{ent} is periodic in time, oscillating from zero to a very small value. Panel (b) is very similar, though we can foresee a very small entropy growth. As both cases correspond to a final state in the low-lying regular region of the spectrum, we can conclude that almost no entanglement is produced under these circumstances, and that the time dependence of the corresponding entropy is not related with the irreversibility produced by the quench. As we can see in both panels, the final energy distribution is wide, implying that a number of non-adiabatic transitions have occurred. Results plotted in panel (a) of Fig. 7 show that S_d is significantly larger than zero under these circumstances. So, these results make evident the different roles played by entanglement and diagonal entropies. Though the atomic part of the system remains almost pure, entailing no entanglement entropy, the non-zero value of the diagonal entropy indicates that we cannot revert the process. The system enters in the region transiting from integrability to chaos in panel (c). In this case, we can see that the main trend of S_{ent} is clearly increasing; in other words, the purity of the atomic system decreases in time. The qualitative behavior of panel (d) is very similar, though the final equilibrium value for S_{ent} is clearly larger, because the final energy distribution lays in the transiting region. There is an abrupt increase of such equilibrium values between panels (d) and (e), that is, when the final energy distribution crosses the critical energy, and enters in the totally chaotic region. Note that the curve in panel (e) reach its final equilibrium value clearly earlier than the curve in panel (d), and that the relative weight of its fluctuations is much smaller. Finally, when almost all the energy distribution lays in the normal phase and in the fully chaotic region, panel (f), fluctuations are even smaller, but the main trend of S_{ent} is very similar to the previous case.

From these results we conclude that S_{ent} shows a main trend qualitatively, but not quantitatively, compatible with the Second Law. Besides fluctuations, which are large due to the small sizes accessible to current computational capabilities, S_{ent} grows in time, in a similar way than in recent theoretical calculations for other systems and experiments. Starting from a separable state, and for quenches large enough, the atomic part of the system changes from a pure to a mixed state. However, this growth is only significant above the onset of chaos. When the state of the system remains within the low-lying regular part of the spectrum, the resulting entanglement entropy is very low, or even periodic in time, despite the final energy distribution has a finite width. In other words, below the onset of chaos the non-adiabatic transitions resulting from the quench do not correlate the atomic and the photonic parts of the system. So, the entanglement entropy is not enough to characterize all the irreversible processes taking place in a globally isolated quantum system.

IV. CONCLUSIONS

In this paper we have studied the entropy generated by a quench in an isolated quantum many-body system, the Dicke model, describing the interaction between a set of two-levels atoms with a monochromatic radiation field. We have dealt with different magnitudes: the diagonal entropy, S_d, which can be understood as the von Neumann entropy of the final equilibrium state, ρ_{eq}, and the entanglement entropy, S_{ent}, which is the von Neumann entropy of the atomic part of the system, obtained by
tracing out the photonic degrees of freedom. We have computed numerically the exact time-evolution of the complete system, and we have derived both entropies from these exact results. We have obtained the following main conclusions.

First, there is no direct link between the energy dissipated by the quench and the increase of both kind of entropies. We have numerically and analytically shown that the dissipated heat Q just depends on the size of the quench $\Delta \lambda = \lambda_i - \lambda_f$, independently of the final value of the coupling constant, λ_f. On the contrary, both kind of entropies largely depend on this parameter. We have shown that the same amount of dissipated energy Q can entail an entropy production either very large (for small values of λ_f), or very small (for large values of λ_f). Hence, despite the dissipated heat just depends on the size of the quench $\Delta \lambda$, the entropy production dramatically depends on the structure of the spectrum of the final Hamiltonian.

Second, the entropy production is largely increased by chaos. Small quenches, keeping the system in an almost-integrable regime, entail a small value for the diagonal entropy S_d, and an almost-zero value for the entanglement entropy S_{ent}. On the contrary, large quenches, leading the system to a fully chaotic regime, entail very large values for both entropies. In particular, S_{ent} changes from almost-zero to almost its maximum possible value in the same regime in which the final Hamiltonian changes from almost-integrable to fully chaotic. It is worth to mention that this fact is closely related to the transition from non-thermal to thermal behavior. In the almost-integrable regime the conditions of the Eigenstate Thermalization Hypothesis (ETH), the mechanism responsible for thermalization in isolated quantum systems, does not hold, so we cannot expect that the system behaves according to standard thermodynamics. On the contrary, ETH holds when the dynamics becomes fully chaotic, so we can expect that the system forgets all the details about its initial condition in this regime, giving rise to a thermal final equilibrium state. We have shown that the transition in the entanglement entropy S_{ent} is highly correlated with the transition from non-ETH to ETH scenarios. This result is compatible with recent experiments, showing that the entanglement between different parts of a (small) quantum system is behind thermalization [20].

Regarding the diagonal entropy, we have shown that a similar transition also takes place, though the change is not so abrupt as for S_{ent}. We conclude that the process becomes more irreversible when the system enters in the fully chaotic regime, because in the almost-integrable regime there are a number of approximated conservation rules, limiting the amount of non-adiabatic transitions between energy levels.

Third, there is a subtle link between the entanglement entropy, S_{ent}, and the presence of an excited-state quantum phase transition (ESQPT). We have shown that the critical energy of the ESQPT, E_c, is also a singular point regarding the entanglement entropy production. However, this link is clearly weaker than the previous one, and requires further research.

Finally, we have shown that the time dependence of S_{ent} qualitatively agrees with a thermodynamical entropy supporting the Second Law, but this agreement is not quantitatively correct. When the final state lays in the almost-integrable regime, atoms and photons remain almost unentangled, though the process is irreversible, a certain amount of energy is dissipated, and the diagonal entropy S_d is significantly larger than zero. It is worth to remark that this occurs in a regime in which thermalization is not expected, that is, in a regime in which standard thermodynamics does not work.

Summarizing, we have found a clear link between irreversibility and chaos in the Dicke model. Also, we have found some traces pointing a weaker link between entropy production and crossing the critical point of an ESQPT. In any case, we conclude that the dissipated energy is directly correlated neither with the diagonal nor with the entanglement entropy generated by a quench. Hence, the recently proposed link between the growth of entanglement between a system and its environment and the Second Law [18] has to be worked with some caution.

V. ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Minec Grant No. FIS2012-35316. C. M. L. is supported by the Spanish MECD Program ‘Becas de Colaboración’. A. R. thanks R. Puebla for enlightening discussions. C. M. L. thanks A. Alsina and D. Mendez-Gonzalez for useful advices that clarified the meaning of several topics.

VI. REFERENCES

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalator, Rev. Mod. Phys. 83, 863 (2011).
[3] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[4] M. Srednicki, Phys. Rev. E 50, 88 (1994).
[5] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
[6] J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics, Lect. Notes Phys. 657 (Springer, Berling Heidelberg 2005).
[7] M. Esposito, K. Lindenberg, and C. Van den Broeck, New Jour. Phys. 12, 013013 (2010).
[8] A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005).
[9] R. Puebla and A. Relaño, Phys. Rev. E 92, 012101 (2015).
[10] A. Polkovnikov, Phys. Rev. B 72, R161201 (2005).
[11] W. H. Zurek, U. Dorner, and P. Zoeller, Phys. Rev. Lett. 95, 105701 (2005).
[12] C. De Grandi and A. Polkovnikov, arXiv:0910.2216 (2009).
[13] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[14] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, (John Willey & sons, Inc. 1985).
[15] A. Polkovnikov, Ann. Phys. (N. Y.) 326, 486 (2011).
[16] P. Reimann and M. Kastner, New. J. Phys. 10, 043020 (2012).
[17] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009); L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).
[18] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 5, 754 (2006).
[19] S. Khlebnikov and M. Kruczenski, Phys. Rev. E 90, 050101(R) (2014).
[20] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. S. Preissm and M. Greiner, arXiv:1603.04409 (2016).
[21] K. Baumann, C. Guerlin, F. Bennecke, and T. Esslinger, Nature 464, 1301 (2010).
[22] A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo, E. Solano, and L. Lamata, arXiv:1405.581 (2014).
[23] P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobes, J. Phys. A 39, L515 (2006).
[24] M. A. Caprio, P. Cejnar, and F. Iachello, Ann. Phys. (N. Y.) 323, 1106 (2008).
[25] P. Stránský, M. Macek, and P. Cejnar, Ann. Phys. (N. Y.) 345, 73 (2014).
[26] P. Pérez-Fernández, A. Relaño, J. M. Arias, P. Cejnar, J. Dukelsky, and J. E. García-Ramos, Phys. Rev. E 83, 046208 (2011).
[27] M. A. Bastarrachea-Magnani, S. Lerna-Hernández, and J. G. Hirsch, Phys. Rev. A 89, 032102 (2014).
[28] C. Emary and T. Brandes, Phys. Rev. Lett. 90, 044101 (2003); Phys. Rev. E 67, 066203 (2003).
[29] K. Hepp and E. H. Lieb, Ann. Phys. (NY) 76, 360 (1973).
[30] Y. K. Wang and F. T. Hoie, Phys. Rev. A 7, 831 (1973).
[31] H. J. Carmichael, C. W. Gardiner, and D. F. Walls, Phys. Lett. A 46, 47 (1973).
[32] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92, 073602 (2004).
[33] P. Pérez-Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E. García-Ramos, and A. Relaño, Phys. Rev. A 83, 033802 (2011).
[34] R. Puebla, J. Retamosa, and A. Relaño, Phys. Rev. A 87, 023819 (2013).
[35] R. Puebla and A. Relaño, Europhys. Lett. 104, 50007 (2013).
[36] T. Brandes, Phys. Rev. E 88, 03213 (2013).
[37] A. Relaño, J. Dukelsky, J. M. Arias, and P. Pérez-Fernández, Phys. Rev. E 90, 042139 (2014).
[38] W.- M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
[39] H. T. Quan, P. Zhang, and C. P. Sun, Phys. Rev. E 72, 056110 (2005).
[40] A. Polkovnikov, Phys. Rev. Lett. 101, 220402 (2008).
[41] J. M. G. Gómez, K. Kar, V. K. B. Kota, R. A. Molina, A. Relaño, and J. Retamosa, Phys. Rep. 499, 103 (2011).
[42] P. Stránský, P. Hruska, and P. Cejnar, Phys. Rev. E 79, 066201 (2009).
[43] A. Peres, Phys. Rev. Lett. 53, 1711 (1984).
[44] The original method by Peres is devoted to the study of the transition from integrability to chaos, by perturbing an integrable Hamiltonian H_0, giving rise to $H(\lambda) = H_0 + \lambda V$. If $\lambda = 0$ there exists at least one non-trivial integral of motion I commuting with the Hamiltonian, $[H, I] = 0$. This entails that, in this case, the plot of $\langle E_n \rangle$ versus the corresponding energy is regular. On the contrary, if $\lambda \neq 0$, I is no longer an integral of motion, and hence the order in the same plot is destroyed. For this reason, in the original Peres Lattices the chosen observable has to be an integral of motion in a certain limit, $\lambda = 0$. It is worth to note that the observable we have chosen in Fig. 3 the number of photons $a^\dagger a$ is an integral of motion if $\lambda = 0$.
[45] As calculations are performed in double precision, coefficients up to $10^{-15} - 10^{-16}$ in the expansion of the wavefunction in the eigenbasis of the final Hamiltonian λI are significant, entailing probabilities up to $10^{-30} - 10^{-32}$.
[46] The choice of $E_{0.95}$ is arbitrary; we could choose $E_{0.99}$, $E_{0.999}$, or any other value representing the tail of the distribution. We can understood that the 95% is somehow equivalent to a statistical significance $p = 0.05$.

