Distribution of Meiobenthic Arthropod Communities in the Hyporheic Zone of Nakdonggang

Chi-Woo Lee and Jong-Geun Park*

Department of Science Education Graduate School, Daegu University, Gyeongbuk 38453, Korea

*Correspondent: gogun@daegu.ac.kr

The hyporheic zone is an ecologically important area for investigating habitat biodiversity. However, only a few studies have been conducted on this aspect in Korea. This study aimed to investigate the distribution of arthropod communities in the hyporheic zone of Nakdonggang River between 2012 and 2013. The meiobenthic arthropod communities found in the hyporheic zone were identified using a stereomicroscope and classified into 9 taxonomic groups. The abundance of arthropod communities was higher in the hyporheic zones of streams having well-formed sandbanks and gravelly areas. The arthropod communities found along the Nakdonggang River differed depending on the conditions of levees and the regions of the river from where they were collected. The frequency of species of the order Harpacticoida was high in the Nakdonggang main stream and western downstream region. The abundance of species belonging to Cyclopidae was high in the upstream region, midstream region, and eastern downstream region of the river. The frequency of species of the order Bathynellacea was high in the riverside parks or cement levees, but that of species belonging to Cyclopidae was high in the natural levees and gabion levees. Our findings suggested that arthropod communities preferred natural levees.

Keywords: arthropod, hyporheic zone, meiobenthos, Nakdonggang

© 2016 National Institute of Biological Resources
DOI:10.12651/JSR.2016.5.1.157
ground water in an aquifer (Hyun and Kim 2013). However, such studies have mainly focused on quantitatively securing water resources and overlooked the ecological aspects, which are important for sustainable development (Hyun and Kim 2013).

Although many international studies have investigated the diverse organisms inhabiting the hyporheic zone (Barlocher and Murdoch 1989; Robertson et al. 2000; Dumas et al. 2001), local studies in this regard are insufficient except for those conducted by the National Institute of Biological Resources, Korea, and by Hyun and Kim (2013).

Meiobenthic arthropod communities are mostly found in sediments. Because they require a stable environment for inhabitation and have a short generation time, they are sensitive to environmental changes, unlike macrozoobenthos (Sandulli and De Nicola-Giudici 1990). In Europe, zoobenthos are used to derive the index of stream by determining their level of response to environmental disturbances (Borja et al. 2000). Furthermore, biocenosis inhabiting streams are known to affect the ecosystem (Yoon et al. 1992).

This study aimed to investigate the distribution and population of meiobenthic arthropod communities inhabiting the Nakdonggang hyporheic zone. Kim et al. (2009) stressed on the importance of waterside soil; hence, we determined the biomass and population distribution of these communities according to the form of levees present at the investigation sites. Our findings might increase the awareness regarding hyporheic zones that harbor various species and the importance of their management and provide useful data for conducting local studies on this aspect. Moreover, our data might be used for establishing environmental policies that advocate ecosystem preservation, such as stream maintenance project that focuses on ecologically sustainable development.

MATERIALS AND METHODS

1. Investigation period and study site

The investigation was conducted between March 2012 and October 2013 at 38 sites around Nakdonggang (Fig. 1); the geographic information of each site is shown in Table 1. For the survey, Nakdonggang River was divided into main stream and upstream, midstream, western downstream, and eastern downstream regions. This stratification was necessary to investigate the communities of meiobenthic arthropod inhabiting the hyporheic zone because Kim et al. (2011) showed that the water quality and characteristics at Nakdonggang vary across different regions due to the effluent water from the upstream dam, which contaminates the midstream regions such as Gumi and Daegu, and the influence and stagnation caused by Namgang dam and estuary banks in the downstream region. The river basins in Nakdonggang and names of each region are shown in Table 2. Specimens were collected from 7 rivers and streams - Banbyoncheon, Yongjeoncheon, Naeseongcheon, Weechon, Byeongseongcheon, Ssanggyecheon, and Yeonggang - from the upstream region of Nakdonggang; 3 rivers and streams - Gamcheon, Hoecheon, and Geumhogang - in the midstream region; 2 rivers - Hwanggang and Namgang - in the western downstream region; and 3 rivers and streams - Cheongdocheon, Yangsancheon, and Miryanggang - from the eastern downstream region.

2. Study methods

Among the hyporheic zones, sites with well-formed sandbanks and gravelly areas were selected, and water was sampled using two methods. First, a 1 × 1 m pit was dug at the selected collection sites 5-10 m away from the stream by using a shovel, and the water flowing out from the ground was collected. Second, a 1-m sampling core was mounted in the same location by using a hammer, and water was collected using a manual pump. The sampling core was a device for sampling water from the hyporheic zone; the dimensions of this device are shown...
Table 1. Administrative region, latitude, longitude, and altitude of study sites.

Site	Latitude (N)	Longitude (E)	Altitude (m)
st.1	36°33'27"	128°43'32"	91
st.2	36°31'50"	128°21'54"	59
st.3	36°21'22"	128°18'3"	40
st.4	36°11'43"	128°22'1"	30
st.5	35°48'49"	128°28'30"	13
st.6	35°32'24"	128°21'10"	4
st.7	35°23'37"	128°27'5"	6
st.8	35°22'4"	128°43'12"	6
st.9	36°40'37"	128°27'35"	96
st.10	36°28'13"	129°2'2"	177
st.11	36°47'56"	128°37'1"	135
st.12	36°39'36"	128°3'23"	153
st.13	36°40'54"	129°7'15"	259
st.14	36°28'16"	129°15'6"	177
st.15	36°34'55"	129°19'51"	62
st.16	36°44'0"	128°37'14"	114
st.17	36°34'59"	128°17'27"	60
st.18	36°10'32"	128°42'59"	120
st.19	36°23'54"	128°10'12"	55
st.20	36°20'36"	128°7'29"	69
st.21	36°15'4"	128°41'1"	92
st.22	36°18'37"	128°36'9"	63
st.23	35°54'33"	128°51'24"	59
st.24	36°11'6"	128°13'26"	63
st.25	36°14'13"	128°17'26"	50
st.26	36°9'45"	128°11'34"	53
st.27	35°40'49"	128°20'13"	16
st.28	35°41'20"	128°19'38"	26
st.29	35°33'56"	128°45'43"	43
st.30	35°36'39"	128°46'1"	55
st.31	35°24'11"	129°3'24"	29
st.32	35°29'28"	129°5'3"	123
st.33	35°40'28"	128°52'3"	80
st.34	35°15'54"	1273'34'3"	77
st.35	35°45'6"	1275'0'9"	337
st.36	35°28'59"	1274'8'29"	126
st.37	35°32'45"	128'6'33"	39
st.38	35°34'20"	128'20'30"	8

Gh = Gyeongsangbuk-do, Gn = Gyeongsangnam-do

in Figure 2. Next, 30 L of sampled water was concentrated per tube by installing a 50-mL capped tube (SPL Lifesciences, Korea) having a 50-μm net.

The pH, electrical conductivity, and temperature of the collected samples were measured using a multi-purpose water quality analyzer (Thermo 5 ORION Star, Thermo Electron Corporation, USA). Then it was transferred to the laboratory, substituted with 70% ethanol, and kept at 4°C before microscopic examination. For microscopic examination and classification of meiobenthic arthropod fauna in the concentrated specimen, stereomicroscope (Nikon SMZ 800, Japan) was used with 10-63× magnification. Classified organisms were stored in 70% ethanol for each group.

The classification criteria by Thorp and Covich (2009) were followed.

RESULTS AND DISCUSSION

1. Distribution of meiobenthic arthropod communities in the hyporheic zone of Nakdonggang

Meiobenthic arthropod communities were found at all the 38 sites of the hyporheic zone in Nakdonggang. The identified organisms belonged to Arthropoda and were classified into 9 taxonomic groups (Table 3). Among them, Ostracoda was classified up to the class level; Harpacticoida, Amphipoda, Isopoda, and Acari, up to the order level; Parabathyellidae, Bathynellidae, and Cycloidae, up to the family level; and Parastenocaris, up to the genus level. The composition rates of these organisms are shown in Figure 3.
2. Biotic communities of the Nakdonggang mainstream

In all, 75 organisms were found in Nakdonggang mainstream (sites 1, 2, 3, 4, 5, 6, 7, and 8). Their composition rates are shown in Figure 4. In the Nakdonggang mainstream, Cyclopidae were low in number, and its total biomass was also lower than that at the other collection sites. You (2013) showed that the construction of stank had greater influence on living organisms than by the physical quality of water; the stank at Nakdonggang has likely affected the organisms inhabiting the hyporheic zone.

3. Biocenosis in each region of Nakdonggang

1) Organisms in the Nakdonggang upstream region

In all, 4,286 organisms were collected from the Nakdonggang upstream region. Their composition rates are shown in Figure 5. Cyclopidae showed the highest composition rate at 42.3%. The second and third highest were two families belonging to Bathynellacea (combined rate, 49.0%). The composition rate of Harpacticoida was 6.6%, and that of Isopoda, Amphipoda, Acari, and Ostracoda was less than 2.0%.

The organisms found in the 7 streams of the upstream region of Nakdonggang are shown in Table 4. The abun-

Table 2. Composition of Nakdonggang mainstream and the 4 regions.

Region	Riverbasin	Location
Nakdonggang	mainstream I	Andong
mainstream II	Gumi	
mainstream III	Goa, Seongju,	
mainstream IV	Dalseong	
mainstream V	Changnyeong, Namji	
mainstream VI	Bugok, Namji	
Nakdonggang	upstream	
Imhadam	Yeongyang,	
Naeseongcheon	Cheongsong	
Yeonggang	Yeongju, Bonghwa,	
Byeongseongcheon	Sangju	
Ssanggyecheon	Uiseong	
Wicheon	Gunwi	
Nakdonggang	midstream	
Gamcheon	Gimpcheon	
Geumthugang	Yeongcheon, Daegu	
Hoecheon	Goryeong	
Nakdonggang	downstream western	
Hwanggang	Geochang, Hapcheon	
Namgang	Sancheong	
Nakdonggang	downstream eastern	
Cheongdocheon	Cheongdo	
Miryanggang	Miryang	
Yangsancheon	Yangsan	

Table 3. Taxonomic groups at the 38 hyporheic zone sites.

Kingdom	Phylum	Class	Order	Family	Genus
Animalia	Arthropoda	Malacostraca	Bathynellacea	Bathynellidae	Parabathynellidae
			Bathynellacea	Isopoda	
				Parastenocaridae	Parastenocaris
		Maxillopoda	Cyclopoida	Parastenocaridae	
			Harpactoida		
				Ostracoda	
			Ostracoda		
dance of Cyclopidae was the highest or the second highest at all the 7 streams. Although NIBR (2010) showed Weechon and Byeongseongcheon were the most frequent species in Nakdonggang. Weechon (site 18), Byeongseongcheon (sites 19 and 20), and Ssanggyecheon (sites 21 and 22) were found in the least frequency in the upstream region in this study. This could be attributed to the fact that these 3 streams have undergone or are currently undergoing construction from 2011. Naeseongcheon (sites 9, 11, 15, 16, and 17) showed the presence of all 9 taxonomic groups and had the highest number of organisms among all regions. Most parts of the stream in Naeseongcheon consist of sand, and there are no artificial structures (Park et al. 2005). Furthermore, no constructions were ongoing around the stream during the investigation. Thus, the Naeseongcheon hyporheic zone might have become a suitable habitat for living organisms.

2) Organisms found in the Nakdonggang midstream region

In all, 1,422 organisms were found in the midstream region of Nakdonggang. Their composition rates are shown in Figure 5. Cyclopidae showed the highest composition rate (80.0%), followed by Harpacticoida (11.6%), Bathynellacea (5.1%), and Isopoda (2.7%). The following organisms were detected at a rate of less than 1.0%: Amphipoda (0.2%), Acari (0.2%), and Ostracoda (0.1%).

The organisms found in the 3 streams in the midstream region are shown in Table 4. Cyclopidae showed the highest appearance in Gamcheon (sites 24, 25, and 26) and Hoecheon (sites 27 and 28). Gamcheon (sites 24, 25, and 26) showed the presence of all 9 taxonomic groups and was considered to be a desirable habitat for organisms. However, Geumhogang (site 23) did not show any appearance of arthropod communities. This could be because the average index of biological integrity (IBI) of Geumhogang obtained for fish was either “poor” or “very poor” (Yeom et al. 2000), although the habitat environment and food sources are different between fish and meiobenthic arthropod communities. This suggests the importance of controlling the interface of surface water and ground water as revealed by Kim et al. (2008).

Fig. 3. Composition rate of meiobenthic faunal groups found at the 38 sites in the hyporheic zone of Nakdonggang.

Fig. 4. Composition of meiobenthic faunal groups in the hyporheic zone of Nakdonggang main stream.

Fig. 5. The relative importance of the 4 regions for the occurrence of the major meiobenthic organisms in Nakdonggang. (Par = Parabathyellidae, Bat = Bathynellidae, Cyc = Cyclopidae, Har = Harpacticoida, Pss = Parastenocaris, Am = Amphipoda, Iso = Isopoda, Ac = Acari, Ost = Ostracoda.)
3) Organisms found in the western downstream region of Nakdonggang

In all, 777 organisms were found in the western downstream region of Nakdonggang. Their composition rates are shown in Figure 5. Harpacticoida showed the highest composition rate (89.4%), followed by Cyclopidae with (9.9%), Isopoda (0.4%), and Acari and Amphipoda (0.1%). No species of Bathynellacea were found in this region. The organisms found in the 2 streams of this region are shown in Table 4. In Cheongdocheon (sites 30 and 33) and Yangsancheon (sites 31 and 32), the composition rate of Cyclopidae was the highest. The number of organisms or taxonomic groups was relatively lower in this region than in the other regions. Interestingly, not a single organism was observed in Miryanggang (site 29). Because meiobenthic arthropod communities are extremely sensitive to environmental pollution, they can be used for investigating the degree of pollution and developing measures to reduce pollution (Lee et al. 2002). The water system at Miryanggang was unstable due to various construction activities (Park and Park 2000), which likely resulted in the absence of Cyclopidae and Harpacticoida.

4. Relationship between biocenosis and environmental factors around the hyporheic zone

The biocenosis in the habitat around the hyporheic zone was investigated by classifying the levees at the hyporheic zone at the investigation site into waterside parks or cement, gabion, and natural levees. Comparison of the number of organisms that were found at each site among the 3 levees showed that 11 individuals were present in the waterside park or cement levee; 129, in the gabion levee; and 480, in the natural levee (Fig. 6). Further, 102 individuals from 5 of the 9 taxonomic groups were found in the waterside park or cement levee (Fig. 7). Harpacticoida was the highest number of species at the park or cement levee (42.2%), followed by Bathynellacea (32.4%), Cyclopidae (19.6%), and Isopoda (5.9%). In all, 2,437 organisms were found in the gabion levee. Cyclopidae showed the highest composition rate (38.3)

Table 4. Biomass and composition rate (%) at the hyporheic zone of Nakdonggang.

Four regions at Nakdonggang	Riverbasin	Number	Par	Bat	Cyc	Har	Pss	Am	Iso	Ac	Ost
Nakdonggang upstream region	Naeoseongcheon	3715	38.0	17.9	37.3	2.5	3.3	0.1	0.7	0.1	0.2
	Yeonggang	18	5.6	27.8	27.8	16.7	5.6	5.6	5.6	5.6	5.6
	Banbyeoncheon	269	–	6.3	67.7	4.1	19.0	1.1	1.1	0.7	–
	Yongjeoncheon	70	–	7.1	61.4	–	–	12.9	15.7	2.9	–
	Ssanggyecheon	203	–	0.5	93.6	–	2.5	3.4	–	–	–
	Byeongseoncheon	5	–	–	40.0	20.0	–	–	40.0	–	–
	Wicheon	6	–	–	66.7	–	–	16.7	16.7	–	–
Nakdonggang midstream region	Gamcheon	691	4.6	1.4	69.3	12.2	10.7	0.1	1.0	0.4	0.1
	Hocheon	731	0.3	4.0	90.2	1.0	–	0.3	4.4	–	–
	Geumhogang	–	–	–	–	–	–	–	–	–	–
Nakdonggang downstream	Hwanggang	761	–	–	10.0	24.4	65.2	0.1	0.3	–	–
western region	Namgang	16	–	–	6.3	81.3	–	–	6.3	6.3	–
Nakdonggang downstream	Cheongdocheon	268	6.3	1.9	80.6	1.9	–	4.5	4.5	–	0.4
eastern region	Yangsancheon	27	3.7	3.7	66.7	22.2	–	–	3.7	–	–
	Miryanggang	–	–	–	–	–	–	–	–	–	–

Par = Parabathynellidae, Bat = Bathynellidae, Cyc = Cyclopidae, Har = Harpacticoida, Pss = Parastenocaris, Am = Amphipoda, Iso = Isopoda, Ac = Acari, Ost = Ostracoda.
%, followed by Harpacticoida (35.5%), Bathynellacea (3.2%), and Isopoda (2.2%). The following organisms showed less than 1% of appearance: Amphipoda (0.5%), Arachnida (0.2%), and Ostracoda (0.1%).

In all, 4,316 organisms were found in the natural levee. Cyclopidae showed the highest composition rate (42.2%), followed by Bathynellacea (49.1%), Harpacticoida (6.5%), and Isopoda (1.2%). Amphipoda, Arachnida, and Ostracoda showed less than 1% of appearance.

The levee with the lowest biomass was park or site constructed with cement. Only 5 taxonomic groups were observed at such sites. Gabion levee also had lower number of organisms than those found in natural levee.

Shin et al. (2014) showed that construction of levees reduces the space of stream and causes discontinuation of ecosystem connectivity, thereby decreasing the environmental function of the stream. While building parks, cement or gabion levees are introduced around the stream; this might affect the environment at the hyporheic zone in which organisms inhabit. In addition, Jeon (2011) reported that, although levees are necessary for the prevention of floods and regulating water flow, concrete levees might restrict the migration of living organisms. In other words, construction of levees on streams is likely to negatively affect biodiversity. This is because extraneous water in the hyporheic zone enters through streams and ground water from adjacent regions, and levees made of cement or gabion prevent such inflow. Therefore, the analysis of the biomass at the 3 kinds of levees suggests that natural levees are desirable for the growth of meio-benthic arthropod communities in the hyporheic zone of streams.

Summary

The hyporheic zones of streams had well-established sandbanks or gravelly areas. We found that the environments at each stream varied across the regions, and sandbanks and gravelly areas disappeared toward the downstream region of the river and streams. Furthermore, they were absent at sites that had levees around the streams. This affected the biomass composition at the 38 sites of hyporheic zones in Nakdonggang. The number of organisms per region with levees around the stream was markedly lower than that in regions without levees. In all, 480 organisms per site were found in regions with natural levees, whereas 11 organisms per site were found in regions with parks or cement levees. This suggests that construction around streams largely affects the inhabitation of meio-benthic arthropod communities in the hyporheic zone. Moreover, the total number of organisms...
at the 8 investigation sites in Nakdonggang mainstream was 75, which was very low. Most of these sites had ongoing constructions. Our findings suggest that organisms inhabiting hyporheic zone are affected by the construction of artificial structures around streams.

REFERENCES

Appelo, C.A.J. and D. Postma. 2005. Geochemistry, groundwater and pollution. CRC Press, London.

Asselman, N.E., H. Middelkoop and P.M. Van Dijk. 2003. The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrological Processes 17(16):3225-3244.

Barlocher, F. and J.H. Murdoch. 1989. Hyporheic biofilms - a potential food source for interstitial animals. Hydrobiology 184(1-2):61-67.

Borja, A., J. Franco and V. Pérez. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40(12):1100-1114.

Bronstert, A., D. Niehoff and G. Bürger. 2002. Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. Hydrological Processes 16(2):509-529.

Brunke, M. and T.O.M. Gonser. 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater biological 37(1):1-33.

Chang, H. 2003. Basin hydrologic response to changes in climate and land use: the Conestoga River basin, Pennsylvania. Physical Geography 24(3):222-247.

Chapelle, F. 2001. Ground-water microbiology and geochemistry. John Wiley & Sons, New York.

Dumas, P., C. Bou and J. Gibert. 2001. Groundwater macrocrustaceans as natural indicators of the Ariege alluvial aquifer. International Review of Hydrobiology 86(6):619-633.

Evans, E.C. and G.E. Petts. 1997. Hyporheic temperature patterns within riffles. Hydrological Sciences Journal 42(2):199-213.

Ewen, J. and G. Parkin. 1996. Validation of catchment models for predicting land-use and climate change impacts. Journal of Hydrology 175(1):583-594.

Hancock, P.J. 2002. Human impacts on the stream-groundwater exchange zone. Environmental Management 29(6):763-781.

Hyun, Y.J., H.J. Kim, S.S. Lee and K.K. Lee. 2011. Characterizing streambed water fluxes using temperature and head data on multiple spatial scales in Munsan stream, South Korea. Journal of Hydrology 402(3):377-387.

Hyun, Y.J. and Y.S. Kim. 2013. Environmental aspects and management of hyporheic zones. Korea Environment Institute.

Jeon, D.S. 2011. Assessment of Riparian naturalness and establishment of measures for its restoration. Master Thesis, Chungang University, Seoul.

Kil, H.K., D.G. Kim, S.W. Jung, Y.H. Jin, J.M. Hwang, K.S. Bae and Y.J. Bae. 2010. Impacts of impoundments by low-head and large dams on benthic macroinvertebrate communities in Korean Streams and Rivers. Korean Journal of Limnology 43(2):190-198.

Kim, H.J., J.Y. Lee and K.K. Lee. 2012. Partial correlation between hydrological, geochemical and microbiological processes in groundwater-stream water mixing zone in a rural area. Journal of Korean Wetlands Society 14(4):489-502.

Kim, J.B. 2013. Development of a sustainable water use program in technology education of middle school. Master Thesis, Korea National University of Education, Chung-Buk, Korea.

Kim, M.A., D.G. Seo and S.Y. Bae. 2011. Water quality modeling of the Nakdong River due to restoration project. Proceedings of the Korea Water Resources Association Conference. pp. 218-218.

Kim, N.W., S.Y. Yoo, I.M. Chung and J.W. Lee. 2008. The precise analysis on the watershed based river-groundwater interaction. Proceedings of the Korea Water Resources Association Conference. pp. 1919-1923.

Kim, N.W., I.M. Chung, J.T. Kim, J.W. Lee and S.Y. Yoo. 2009. Analysis of surface-groundwater interaction according to land use change in riparian zone. Proceedings of the Korea Water Resources Association Conference pp. 1332-1336.

Kim, Y.J. and H.J. Kang. 2009. Biogeochemical reactions in hyporheic zone as an ecological hotspot in natural streams. Journal of Korean Wetlands Society 11(1):123-130.

Lee, K.S. and E.S. Chung. 2007. Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed. Hydrological Processes 21(22):3046-3056.

Lee, W.C., S.J. Song and J.S. Lee. 2002. Current researches on the diversity of the marine benthic copepods and the prospects. Korean Journal of Environmental Biology 20(1):1-9.

Legesse, D., C. Vallely-Coumb and F. Gasse. 2003. Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. Journal of Hydrology 275(1):67-85.

NIBR (National Institute of Biological Resources), Biological Resources Research Department. 2010. Survey of Species Diversity in Strategic Regions. National Institute of Biological Resources.

NWMC (Nakdong River Watershed Management Commission). 2004. Guidelines for Action to Save, Study, and Use Nakdong River Ecosystem Sustainably and Equitably.
Orghidan, T. 1959. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol 55(3): 392-414.

Park, B.J., J.I. Shin and K.S. Jung. 2005. The evaluation of river naturalness for biological habitat restoration:II. Application of evaluation method. Journal of Korea Water Resources Association 38(1):49-57.

Park, Y.K. and H.C. Park. 2000. Community structure of aquatic Insects in Miryang-dam water system. Journal of Korean Wetlands Society 2(2):133-146.

Robertson, A.L., S.D. Rundle and J.M. Schmid-Araya. 2000. Putting the meio-into stream ecology: current findings and future directions for lotic meiofaunal research. Freshwater Biology 44(1):177-183.

Sandulli, R. and M. De Nicola-Giudici. 1990. Pollution effects on the structure of meiofaunal communities in the Bay of Naples. Marine Pollution Bulletin 21(3):144-153.

Schwoerbel, J. 1961a. Über die lebensbedingungen und die besiedlung des hyporheischen lebensraumes. Archiv fur Hydrobiologie Supplement 25:182-214.

Schwoerbel, J. 1961b. Subterrane Wassermilben (Acari: Hydrachnellae, Porohalacaridae und Stygothrombiidae), ihre Ökologie und Bedeutung für die Abgrenzung eines aquatischen Lebensraumes zwischen Oberfläche und Grundwasser. Archiv fur Hydrobiologie Supplement 25: 242-306.

Shin, H.S., I. Hong, J.S. Kim and K.H. Kim. 2014. A study on variation of land-use in river area caused by levee construction. Journal of the Korea Academia-Industrial cooperation Society 15(4):2419-2427.

Storey, R.G., R.R. Fulthorpe and D.D. Williams. 1999. Perspectives and predictions on the microbial ecology of the hyporheic zone. Freshwater Biology 41(1):119-130.

Thorp, J.H and A.P. Covich. 2009. Ecology and classification of North American freshwater invertebrates (3rd ed.). Academic Press, San Diego.

Yeom, D.H., K.G. An, Y.P. Hong and S.K. Lee. 2000. Assessment of an index of biological integrity (IBI) using fish assemblages in Keum-Ho River, Korea. Korean Journal of Environmental Biology 18(2):215-226.

Yoon, I.B., D.S. Kong and J.K. Ryu. 1992. Studies on the biological evaluation of water quality by benthic macroinvertebrates (I)-saprobic valency and indicative value. Korean Journal of Environmental Biology 10(1):24-39.

You, K.A. 2013. Initial effects of large artificial structure construction on river ecosystem. A dissertation written for the degree of Ph.D., Konkuk University.

Submitted: September 15, 2015
Revised: October 14, 2015
Accepted: February 16, 2016