Solitary Ruptured Aneurysm of the Spinal Artery of Adamkiewicz with Subarachnoid Hemorrhage

Seong Son, M.D., Sang-Gu Lee, M.D., Cheol-Wan Park, M.D.
Department of Neurosurgery, Gachon University, Gil Hospital, Incheon, Korea

Spinal subarachnoid hemorrhage (SAH) due to solitary spinal aneurysm is extremely rare. A 45-year-old female patient visited the emergency department with severe headache and back pain. Imaging studies showed cerebral SAH in parietal lobe and spinal SAH in thoracolumbar level. Spinal angiography revealed a small pearl and string-like aneurysm of the Adamkiewicz artery at the T12 level. One month after onset, her back pain aggravated, and follow-up imaging study showed arachnoiditis. Two months after onset, her symptoms improved, and follow-up imaging study showed resolution of SAH. The present case of spinal SAH due to rupture of dissecting aneurysm of the Adamkiewicz artery underwent subsequent spontaneous resolution, indicating that the wait-and-see strategy may provide adequate treatment option.

Key Words: Subarachnoid hemorrhage · Aneurysm · Spine.
of back pain and radiating pain of both legs, and follow-up lumbar MRI showed decreased hematoma and developed arachnoiditis of cauda equina (Fig. 3).

Two months after the initial onset, her symptoms improved completely, and follow-up lumbar MRI showed resolution of SAH with septated intradural fluid collection and remaining signal void lesion at the T12 level. The patient's subsequent clinical follow-up of five months was uneventful (Fig. 4).

DISCUSSION

Solitary aneurysms of spinal arteries are rare, and especially, solitary aneurysms of Adamkiewicz artery are extremely rare. Only 7 cases of ruptured solitary aneurysm of Adamkiewicz artery, including the present case, have been reported (Table 1).

Several pathogenesis of solitary spinal artery aneurysms, including inflammatory processes, arterial dissections, and intimal defects, have been proposed as potential etiologies for these rare isolated lesions. Although, the exact etiology of this aneurysm remains speculative, in the present case, according to morphology of fusiform aneurysm, we hypothesized that dissection, as primary event, resulted in the formation of a pseudoaneurysm with subsequent hemorrhage. This aneurysm could have been primarily classified as pseudoaneurysm or dissecting aneurysm.

Spinal aneurysms differ from intracranial aneurysms in several ways. In most cases, intracranial aneurysms that rupture are saccular or berry aneurysms occurring at bifurcation points along the intracranial arterial tree. Otherwise, most spinal artery aneurysms are small with diameter of <3 mm, and although both saccular and fusiform aneurysms have been identified, the latter are more frequent.

Fusiform aneurysms indicate dissecting dilatations of spinal artery and usually lack a clear neck. In addition, solitary spinal aneurysms tend to occur along the intradural portion of the radicular artery as it courses to their spinal cord rather than branch point. The majority of spinal aneurysms involve either the artery of Adamkiewicz or the thoracolumbar radicular branches. The
Spinal aneurysms associated with hemodynamic flow states, such as AVM or AVF, have been successfully treated using endovascular and surgical techniques. These types of aneurysms are more amenable to treatment because they are typically associated with robust collateral flow to the anterior spinal artery. However, no standard therapy has been established because of the infrequency of SAH from a ruptured isolated spinal artery aneurysm. Therefore, the controversy on clipping and trapping or coil embolization or conservative treatment is not resolved.

Surgical treatment of spinal artery aneurysms may be required, depending on whether or not blood flow is present distal to the lesion, and offers the potential advantage of preservation of the nearby perforators, as well as the possibility of vascular bypass. The mass effect of aneurysms or surrounding blood clots may be the indication of surgical treatment. The anterior spinal artery and the artery of Adamkiewicz must be preserved, and the aneurysm can be resected. However, in general, because these aneurysms are fusiform and lack a surgical neck, direct clipping is usually not possible. If there is no evidence of flow distal to the aneurysm, the parent vessel can be sacrificed and the aneurysm can be resected without risk. If there is evidence of distal blood flow at surgery and the aneurysm cannot be directly clipped, the lesion can be wrapped and dip reinforced to minimize the risks of recurrence. When the bulk of the aneurysm makes wrapping impossible, direct microvascular reconstruction can be attempted. The position of the aneurysm with respect to the spinal cord—anterior, lateral, or posterior—is a key determinant of the surgical approach. If the aneurysm is located anterolateral or posterior to the spinal cord, a traditional posterior laminotomy can be used. Sectioning the dentate ligament improves exposure from a posterior approach and also can be used to retract the spinal cord. If the aneurysm is located in the midline, anterior to the spinal cord in the lower thoracic region, anterior approach can be used. During the operation, somatosensory and motor evoked potentials must be recorded.

Endovascular treatment may be an appropriate choice, especially if surgery is difficult considering the location of the lesion or the condition of the patient. The use of the small-size catheter may prevent undirected local occlusion and spasm of spinal artery. Endovascular procedures can be used to occlude only aneurysm or occlude the parent vessel when there is little or no flow distal to the lesion.

Alternative to surgical or endovascular treatment, limited to isolated spinal dissecting aneurysm with the small size of artery and the presence of distal flow, spontaneous healing of the dissection and obliteration of the aneurysm may be the possible approach. In 2005, Berlis et al. proposed a wait-and-see strategy for these aneurysms. Our patient had classical fusiform aneurysm with no surgical neck and with blood flow distal to the lesion. Surgical clipping of aneurysm or trapping of parent artery carries high risk of injury of Adamkiewicz artery during the procedure. Also, endovascular treatment was not amenable due to the inaccessibility of the anterior spinal artery and risk of hemorrhage can be identified or when the SAH is limited to the lobe causing headache and nausea.

Table 1. Reported cases of ruptured solitary spinal artery aneurysms of the Adamkiewicz artery

Author (year)	Sex/Age	Location	Clinical symptoms	Treatment	Glasgow Outcome Scale
Garcia et al.	F/34	T6	Paraplegia, headache	Not available	1 (death)
Vishteh et al.	M/30	T11	Headache, back pain	Surgery (wrapping)	5 (good)
Berlis et al.	M/48	T12	Abdominal pain, back pain	Wait and see	5 (good)
Masa et al.	F/60	T11	Back pain, paresthesia	Surgery (wrapping)	5 (good)
Iihoshi et al.	F/60	T12	Back pain, lower limb pain	Wait and see	5 (good)
Present case	F/45	T12	Headache, back pain	Wait and see	5 (good)
occlusion of Adamkiewicz artery during intervention. As a result, in our case, conservative therapy may be preferred because of the small size of the artery and the presence of distal flow. If surgical intervention is delayed for any reason or if emergency surgery is not needed, repeat angiography should be considered before initiation of any delayed intervention, because spontaneous regression is likely.

CONCLUSION

We have described a patient who suffered severe headache and back pain following spinal SAH due to rupture of dissecting aneurysm of radiculomedullary branch of the Adamkiewicz artery. In any patient with acute severe back pain with SAH, spinal vascular disease should be considered. Also, subsequent spontaneous resolution of spinal SAH indicates that the wait-and-see strategy may provide adequate treatment option.

References
1. Berlis A, Scheufler KM, Schmahl C, Rauer S, Götz E, Schumacher M: Solitary spinal artery aneurysms as a rare source of spinal subarachnoid hemorrhage: potential etiology and treatment strategy. AJNR Am J Neuroradiol 26: 405-410, 2005
2. Garcia CA, Dulcey S, Dulcey J: Ruptured aneurysm of the spinal artery of Adamkiewicz during pregnancy. Neurology 29: 394-398, 1979
3. Gonzalez LE, Zabramski JM, Tabrizi P, Wallace RC, Massand MG, Spetzler RF: Spontaneous spinal subarachnoid hemorrhage secondary to spinal aneurysms: diagnosis and treatment paradigm. Neurosurgery 57: 1127-1131; discussion 1127-1131, 2005
4. Hino H, Maruyama H, Inomata H: [A case of spinal artery aneurysm presenting transverse myelopathy associated with coarctation of the aorta]. Rinsho Shinkeigaku 29: 1009-1012, 1989
5. Iihoshi S, Miyata K, Murakami T, Kaneko T, Koyanagi I: Dissection aneurysm of the radiculomedullary branch of the artery of Adamkiewicz with subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 51: 649-652, 2011
6. Kawamura S, Yoshida T, Nonoyama Y, Yamada M, Suzuki A, Yasui N: Ruptured anterior spinal artery aneurysm: a case report. Surg Neurol 51: 608-612, 1999
7. Lavoie P, Raymond J, Roy D, Guilbert E, Weill A: Selective treatment of an anterior spinal artery aneurysm with endosaccular coil therapy. Case report. J Neurosurg Spine 6: 460-464, 2007
8. Massand MG, Wallace RC, Gonzalez LE, Zabramski JM, Spetzler RF: Subarachnoid hemorrhage due to isolated spinal artery aneurysm in four patients. AJNR Am J Neuroradiol 26: 2415-2419, 2005
9. Moore DW, Hunt WE, Zimmerman JE: Ruptured anterior spinal artery aneurysm: repair via a posterior approach. Neurosurgery 10: 626-630, 1982
10. Vishteh AG, Brown AP, Spetzler RF: Aneurysm of the intradural artery of Adamkiewicz treated with muslin wrapping: technical case report. Neurosurgery 40: 207-209, 1997