Overexpression of Bcl-2 Enhances LIGHT- and Interferon-γ-mediated Apoptosis in Hep3B2T2 Cells*

Received for publication, April 18, 2000, and in revised form, August 17, 2000

Mei-Chieh Chen‡, Tsui-Ling Hsu‡, Tien-Yau Luh§, and Shie-Liang Hsieh‡¶

From the ‡Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan, the §Department of Chemistry, National Taiwan University, Taipei 11211, Taiwan, and the ¶Immunology Research Center, National Yang-Ming University, Taipei 11221, Taiwan

LIGHT is a member of the tumor necrosis factor superfamily and is the ligand for LT-βR, HVEM, and decoy receptor 3. LIGHT has a cytotoxic effect, which is further enhanced by the presence of interferon-γ (IFN-γ). Although LIGHT/IFN-γ can activate caspase activity, neither benzylxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone nor benzylxycarbonyl-Val-Ala-Asp-fluoromethylketone can completely inhibit LIGHT/IFN-γ-mediated apoptosis. Moreover, overexpression of Bcl-2 further enhances LIGHT/IFN-γ-mediated apoptosis. It appears that LIGHT and IFN-γ act synergistically to activate caspase-3, with the resultant cleavage of Bcl-2, removal of the BH4 domain, leading to conversion of Bcl-2 from an antiapoptotic to a proapoptotic form in p53-deficient hepatocellular carcinoma Hep3B2T2 cells. Thus, LIGHT seems to be able to override the protective effect of Bcl-2 and induce cell death. Although benzylxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone and benzylxycarbonyl-Val-Ala-Asp-fluoromethylketone can prevent the cleavage of Bcl-2 by LIGHT/IFN-γ, they only partially inhibit apoptosis in Hep3B2T2 cells that are overexpressing Bcl-2. In contrast, both LIGHT/IFN-γ-mediated apoptosis and Bcl-2 cleavage are inhibited by free radical scavengers, indicating that free radicals may play an essential role in LIGHT/IFN-γ-mediated apoptosis at a step upstream of caspase-3 activation. These results suggest that LIGHT signaling may diverge into multiple, separate processes.

Members of the tumor necrosis factor (TNF) superfamily are known to be potent mediators of immune responses (1). These proteins include TNF-α, TNF-β (LT-α), LT-β, FasL, 7-(methoxycoumarin-4-yl)acetyl-Asp-Glu-Val-Ala-Pro-Lys(DNP)-OH; MCA-DEVD.APK (DNP), 7-(methoxycoumarin-4-yl)acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(DNP)-OH; MCA-YVAD.APK (DNP), 7-(methoxycoumarin-4-yl)acetyl-Val-Ala-Asp-fluoromethylketone; z-VAD-FMK, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone; z-DEVD-FMK, benzyloxycarbonyl-Asp-Glu-Val-Ala-Asp-fluoromethylketone; CHAPS, 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid; PIPES, 1,4-piperazinediethanesulfonic acid; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Ac-YVAD-CMK, acetyl-Tyr-Val-Ala-Asp-chloromethylketone; z-DEVD-FMK, benzyloxycarbonyl-Asp-Glu-Val-Ala-Asp-fluoromethylketone; VEGI/TL1, VEGF/TL1; TWEAK (4), RANKL/TRANCE/ODF/OPGL (5–9), APRIL/TALL-2 (10, 11), AITRL (12), VEGF/TL1 (13, 14), and BAPF/TALL-1/THANK/Blys (15, 16–17). With the exception of LT-α, all members of the TNF superfamily are type II membrane proteins that can exist as soluble cytokines following release by membrane metalloproteases. A recently identified member of the TNF superfamily, named LIGHT2 by Mauri et al. (18), has been shown to be 33 and 30% identical to FasL and LT-β, respectively. Further studies indicated that LIGHT can bind to lymphotixin-β receptor (LT-βR) and herpesvirus entry mediator (HVEM)/TR2/ATAR (18–21). LT-βR is the receptor for membrane-bound LT-α/LT-β trimers (22) and is involved in the development of peripheral lymph nodes and spleen architecture (23, 24). Activation of LT-βR induces secretion of the chemokines interleukin-8 and RANTES from several tumor cell lines, indicating a role in neutrophil recruitment during an inflammatory response (25). HVEM has been shown to be the receptor for LT-α and herpes simplex virus envelope glycoprotein D (18), suggesting a potential role in the regulation of the immune response to viral infection. Recently, it has been further demonstrated that LIGHT can bind to soluble FasL decoy receptor 3 (DeR3)/TR6 (26, 27), which is amplified in many tumor cells and is able to neutralize the cytotoxic effects of FasL and LIGHT.

In a previous study, we showed that LIGHT is cytotoxic to tumor cells that express both LT-βR and HVEM (28). However, LIGHT is not cytotoxic to hematopoietic cells that only express TR2/HVEM, such as peripheral blood lymphocytes, Jurkat cells, or CD8+ tumor-infiltrating lymphocytes. It was also revealed that introduction of TR2/HVEM into PC-3 cells, which only express LT-βR, converts PC-3 cells from a LIGHT-resistant to a LIGHT-sensitive phenotype (28). This suggests that LIGHT triggers distinct biological responses based on the expression patterns of its receptors on the target cells. LIGHT can enhance the secretion of IFN-γ by activated T cells, and IFN-γ can dramatically enhance LIGHT-mediated apoptosis in human breast cancer cells (MDA-MB-231) as well as the p53-deficient human adenocarcinoma, HT-29. Furthermore, LIGHT induces apoptosis in the caspase-3-deficient tumor cell line MCF-7 (28), indicating that LIGHT is able to induce cell apoptosis in the absence of caspase-3 activation. However, the underlying mechanism of LIGHT-mediated apoptosis has not been elucidated. Recently, LIGHT was reported to be a CD28-independent co-stimulatory molecule in T cell growth and differentiation. Moreover, blockade of the LIGHT signaling pathway by LT-βRFc fusion protein can suppress the onset of graft
versus host disease in mouse models (29). Thus, LIGHT is a pleiotropic molecule that initiates diverse biological functions depending on the receptor expression profile of target cells and the cytokines secreted by T cells.

Bcl-2 is one of the key regulators of apoptosis, which is the cell suicide program critical for development, tissue homeostasis, prevention of cancer growth, and protection against pathogens. Bcl-2 promotes cell survival by inhibiting the adapters needed for activation of the proteases (caspases) that dismantle the cell (30). Bcl-2 resides predominantly on the outer mitochondrial membrane, the endoplasmic reticulum, and the nuclear membrane through the insertion of its hydrophobic C terminus into the membrane. Bcl-2 exerts broad antiapoptotic effects by inhibiting the production of reactive oxygen species (ROS) and enhancing the steady state of mitochondrial transmembrane functions (reviewed in Refs. 31 and 32). In addition, Bcl-2 can protect cells from various death-inducing agents, such as UV light (33), ceramide (34), nitric oxide (35), and TNF-mediated apoptosis (36). Furthermore, Bcl-2 has been implicated in the prevention of cell death via a caspase-independent mechanism (37). Therefore, it is important to determine whether LIGHT-mediated apoptosis can be inhibited by Bcl-2.

Here we report that LIGHT and IFN-γ act synergistically to activate caspases to digest Bcl-2 within its loop region, thus removing the BH4 domain and converting Bcl-2 from an antiapoptotic to a proapoptotic form. Although caspase inhibitors cannot prevent Bcl-2 cleavage and block its enhanced sensitivity to LIGHT/IFN-γ-mediated apoptosis, wild type and Bcl-2-overexpressing Hep3B cells are still susceptible to LIGHT/IFN-γ-induced cell death in the presence of caspase inhibitors. In addition, hepatocellular carcinoma Hep3B cells overexpressing caspase-resistant Bcl-2 are also susceptible to LIGHT/IFN-γ-mediated apoptosis, suggesting that the apoptotic signals triggered by LIGHT/IFN-γ might bypass Bcl-2 to induce cell death. In contrast, a potent free radical scavenger, the C3 form of carboxyfullerene (C60), inhibits both Bcl-2 cleavage and LIGHT/IFN-γ-mediated cell death in a dose-dependent manner. This indicates that free radicals are involved in the early stage of LIGHT/IFN-γ-mediated apoptosis, and LIGHT/IFN-γ might be able to bypass mitochondria to mediate caspase-independent cell death.

EXPERIMENTAL PROCEDURES

Cell Culture—The human hepatoma cell line Hep3B (kindly provided by Dr. C.-K. Chou) was maintained in Dulbecco’s modified Eagle’s medium (Life Technologies, Inc.), supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Life Technologies) supplemented with 10% (v/v) heat-inactivated fetal bovine serum and 0.01 mg/ml bovine insulin (Life Technologies). The human breast cancer cell line MCF-7 (ATCC number HTB22) provided by Dr. C.-K. Chou) was maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Life Technologies). Bcl-2 resides predominantly on the outer mitochondrial membrane, the endoplasmic reticulum, and the nuclear membrane through the insertion of its hydrophobic C terminus into the membrane. Bcl-2 exerts broad antiapoptotic effects by inhibiting the production of reactive oxygen species (ROS) and enhancing the steady state of mitochondrial transmembrane functions (reviewed in Refs. 31 and 32). In addition, Bcl-2 can protect cells from various death-inducing agents, such as UV light (33), ceramide (34), nitric oxide (35), and TNF-mediated apoptosis (36). Furthermore, Bcl-2 has been implicated in the prevention of cell death via a caspase-independent mechanism (37). Therefore, it is important to determine whether LIGHT-mediated apoptosis can be inhibited by Bcl-2.

Here we report that LIGHT and IFN-γ act synergistically to activate caspases to digest Bcl-2 within its loop region, thus removing the BH4 domain and converting Bcl-2 from an antiapoptotic to a proapoptotic form. Although caspase inhibitors cannot prevent Bcl-2 cleavage and block its enhanced sensitivity to LIGHT/IFN-γ-mediated apoptosis, wild type and Bcl-2-overexpressing Hep3B cells are still susceptible to LIGHT/IFN-γ-induced cell death in the presence of caspase inhibitors. In addition, hepatocellular carcinoma Hep3B cells overexpressing caspase-resistant Bcl-2 are also susceptible to LIGHT/IFN-γ-mediated apoptosis, suggesting that the apoptotic signals triggered by LIGHT/IFN-γ might bypass Bcl-2 to induce cell death. In contrast, a potent free radical scavenger, the C3 form of carboxyfullerene (C60), inhibits both Bcl-2 cleavage and LIGHT/IFN-γ-mediated cell death in a dose-dependent manner. This indicates that free radicals are involved in the early stage of LIGHT/IFN-γ-mediated apoptosis, and LIGHT/IFN-γ might be able to bypass mitochondria to mediate caspase-independent cell death.
FIG. 1. Bcl-2 enhances LIGHT-mediated cell death but protects against TGF-β1-mediated apoptosis in Hep3B2 cells. A and B, synergistic effect of LIGHT/IFN-γ-induced cell death. Hep3B2 cells (A) and Hep3B2 cells overexpressing Bcl-2 (clone 8) (B) were treated with LIGHT, IFN-γ, or LIGHT/IFN-γ at different concentrations. The synergistic effects can be observed in the combined treatments. C, Hep3B2 cells or Hep3B2 cells overexpressing Bcl-2 (clones 1, 7, and 8) were incubated with IFN-γ (100 units/ml) and/or LIGHT (50 ng/ml) for 72 h. D, Hep3B2 or Hep3B2/Bcl-2 cells (clones 1 and 7) were cultured in serum-free medium for 48 h and then incubated with TGF-β1 at various concentrations as indicated for 48 h. Cell viability was determined by MTT assays, while the percentage of cell survival was determined by measurement of absorbance (A570) for cells treated with cytokines compared with cells cultured in medium alone.

at the same level (data not shown), while a cleaved 23-kDa Bcl-2 was observed after the addition of LIGHT (50 ng/ml) for 72 h (Fig. 2A). In the presence of IFN-γ (100 units/ml), Bcl-2 (26 kDa) was cleaved to a 23-kDa species with a concomitant decrease in levels of procaspase-3 after 24-h treatment (Fig. 2A). In contrast, Bcl-2 remains intact in the case of TGF-β1-mediated apoptosis (data not shown). To confirm the activation of caspase-3, fluorescent caspase substrates were incubated with LIGHT/IFN-γ-treated Hep3B2 cell lysates. We found that fluorescence increased significantly when lysates of cells treated for 4 h with LIGHT/IFN-γ were incubated with the caspase-3 substrate, MCA-DEVD-AKP (DNP), but not when incubated with the caspase-1 substrate, MCA-YVAD-AKP (DNP) (Fig. 2B). This demonstrated that a caspase-3-like enzyme, but not a caspase-1-like enzyme, is activated by LIGHT/IFN-γ. To confirm the correlation between Bcl-2 cleavage and caspase-3 activation, membrane-permeable caspase inhibitors were added to cells. We found that both the caspase-3-like enzyme inhibitor, z-DEVD-FMK, and general caspase inhibitor, z-VAD-FMK, inhibited the cleavage of Bcl-2 (Fig. 2C, lanes 6 and 8), while the caspase-1-like enzyme inhibitor, YVAD-FMK, had no effect on Bcl-2 cleavage (Fig. 2C, lane 4). In addition, various specific protease inhibitors, such as leupep-

FIG. 2. Caspase-3-like protease-mediated cleavage of Bcl-2 in LIGHT-induced cell death. A, cleavage of Bcl-2 in LIGHT-induced cell death. Hep3B2/Bcl-2 cells were incubated with IFN-γ (100 units/ml) and LIGHT (50 ng/ml) for various time intervals as indicated, and then the cell lysates were fractionated on SDS-PAGE for Western blot analysis using anti-Bcl-2 monoclonal antibody (upper panel) or anti-CPP32 polyclonal antibody (lower panel) as probe. B, activation of caspase-3-like proteases in LIGHT/IFN-γ-mediated cell death. Hep3B2 cells overexpressing Bcl-2 were incubated with IFN-γ (100 units/ml) and LIGHT (50 ng/ml), and the activities of caspase-1- and caspase-3-like proteases were determined by incubating the cell lysates with MCA-YVAD-AKP (DNP) or MCA-DEVD-AKP (DNP), respectively, as described under “Experimental Procedures.” C, inhibition of Bcl-2 cleavage by caspase inhibitors. Hep3B2/Bcl-2 cells were pretreated with 50 μM YVAD-FMK (lanes 3 and 4), z-DEVD-FMK (lanes 5 and 6), or z-VAD-FMK (lanes 7 and 8) at 37 °C for 1 h and then cultured in medium supplemented with IFN-γ (100 units/ml) and LIGHT (50 ng/ml) (lanes 2, 4, 6, and 8) for 48 h. Data shown are representative of three independent experiments.

tin, phenylmethylsulfonfluoride, pepstatin, and aprotinin, were also tested, but none of these had any effect on Bcl-2 cleavage (data not shown). This suggested that caspase-3-like proteases are responsible for Bcl-2 cleavage. Furthermore, we transfected Bcl-2 into a caspase-3-deficient (43), LIGHT/IFN-γ-sensitive human breast cancer cell line, MCF-7, and then incubated the transfected cells with LIGHT/IFN-γ. In contrast to what we observed in Hep3B2, Bcl-2 was not cleaved in MCF-7 cells after LIGHT/IFN-γ treatment for up to 4 days (Fig. 3C, lane 2). Thus, we concluded that caspase-3 is responsible for the Bcl-2 cleavage induced by LIGHT/IFN-γ in Hep3B2 cells.

Mapping of Bcl-2 Cleavage Site—Two putative caspase recognition sites, 28YEWD31 and 31DAGD34, have been found in the loop region of Bcl-2. These sequences are typical of caspase-1 and caspase-3 recognition sites, respectively. To determine the cutting site of Bcl-2, we mutated Asp31 and Asp34 to Glu31 (Bcl-2-31E) and Glu34 (Bcl-2-34E), respectively, as described under “Experimental Procedures.” C, inhibition of Bcl-2 cleavage by caspase inhibitors. Hep3B2/Bcl-2 cells were pretreated with 50 μM YVAD-FMK (lanes 3 and 4), z-DEVD-FMK (lanes 5 and 6), or z-VAD-FMK (lanes 7 and 8) at 37 °C for 1 h and then cultured in medium supplemented with IFN-γ (100 units/ml) and LIGHT (50 ng/ml) (lanes 2, 4, 6, and 8) for 48 h. Data shown are representative of three independent experiments.

Mapping of Bcl-2 Cleavage Site—Two putative caspase recognition sites, 28YEWD31 and 31DAGD34, have been found in the loop region of Bcl-2. These sequences are typical of caspase-1 and caspase-3 recognition sites, respectively. To determine the cutting site of Bcl-2, we mutated Asp31 and Asp34 to Glu31 (Bcl-2-31E) and Glu34 (Bcl-2-34E), respectively, as described under “Experimental Procedures.” C, inhibition of Bcl-2 cleavage by caspase inhibitors. Hep3B2/Bcl-2 cells were pretreated with 50 μM YVAD-FMK (lanes 3 and 4), z-DEVD-FMK (lanes 5 and 6), or z-VAD-FMK (lanes 7 and 8) at 37 °C for 1 h and then cultured in medium supplemented with IFN-γ (100 units/ml) and LIGHT (50 ng/ml) (lanes 2, 4, 6, and 8) for 48 h. Data shown are representative of three independent experiments.
were incubated with IFN-γ cells overexpressing wild type Bcl-2 or Bcl-2 mutants (31E and 34E) putative caspase cleavage sites in the Bcl-2 loop region. Bcl-2 mediated apoptosis. As shown in Fig. 4D, the caspase-1 inhibitor, YVAD-FMK, had no effect on the survival of Hep3BT2/Bcl-2 cells, while the caspase-3 inhibitors z-DEVD-FMK and z-VAD-FMK increased their survival rate from 45 to 75%, which is similar to the survival rate (~75%) of Hep3BT2 overexpressing Bcl-2-31E and Bcl-2-34E mutants (Fig. 4B). However, neither z-DEVDFMK nor z-VAD-FMK could further increase the survival rate of Hep3BT2 cells (Fig. 4C). The failure of caspase inhibitors to protect Hep3BT2 cells cannot be attributed to their inability to penetrate cell membrane, since we have shown that caspase inhibitors can inhibit Bcl-2 cleavage (Fig. 2C) and protect Hep3BT2 cells from TGF-β1-mediated apoptosis (~70% survival) under the same assay conditions (Fig. 4E). These results support our hypothesis that LIGHT and IFN-γ act synergistically to activate a caspase-3-like protease to cleave Bcl-2, thus converting its activity from antiapoptotic to proapoptotic. The inhibition of caspase-3-like activity by z-VAD-FMK or mutation of the caspase-3 cleavage site in Bcl-2 (mutants Bcl-2-31E and Bcl-2-34E) can restore the survival rate of Bcl-2-overexpressing Hep3BT2 cells to the same level as that of wild type Bcl-2.

Free Radicals Are Involved in the Upstream of Caspase-3 Activation—ROS have been shown to participate in TNF-α-mediated apoptosis (44–47) and other apoptotic events (48–50), so we tested whether free radical inhibitors could protect cells from LIGHT/IFN-γ-mediated apoptosis. We found that the potent, water-soluble C3 form of carboxyfullerene (C60), which has been shown to be a very effective neuroprotective antioxidant both in vitro and in vivo (51), inhibited apoptosis of both Hep3BT2 and Hep3BT2/Bcl-2 cells. In contrast, the relatively less cell-permeable D3 form of C60 only had a partial protective effect against LIGHT/IFN-γ-mediated apoptosis (Fig. 5, A and B). A similar protective effect is also observed in another LIGHT/IFN-γ-sensitive cell line, HT-29 (data not shown). Neither the superoxide dismutase mimetic, MnTBAP, nor the inducible nitric-oxide synthetase inhibitor, L-NAME, had a significant protective effect against LIGHT/IFN-γ-induced apoptosis in both wild type and Bcl-2-overexpressing Hep3BT2 cells, although MnTBAP has partial protective effect against LIGHT/IFN-γ-induced apoptosis in HT-29 adenocarcinoma cells (data not shown). To further clarify the stage at which free radicals contribute to LIGHT/IFN-γ-mediated apoptosis, we examined whether carboxyfullerenes could inhibit Bcl-2 cleavage by caspase-3. As shown in Fig. 5C, carboxyfullerenes could inhibit the cleavage of Bcl-2 (Fig. 5C, lanes 3 and 4) and the activation of caspase-3-like activity (Fig. 5D), indicating that the production of free radicals occurs upstream of caspase-3 activation. Thus, we concluded that ROS play critical roles in LIGHT/IFN-γ-induced apoptosis.

DISCUSSION

Previous studies have shown that LIGHT can transduce CD28-independent costimulatory signals that enhance IFN-γ secretion by preactivated T cells and further increase cytotoxic T lymphocytes activity (28, 29). Although LIGHT alone is not a potent cytotoxic factor for tumors in vitro, tumor cells transfected with LIGHT are rejected in vivo. We speculated that the cytotoxic effect of LIGHT observed in vivo might result from its ability to enhance IFN-γ secretion by preactivated T cells, thus allowing LIGHT to act synergistically with IFN-γ in tumor cell killing. This speculation is supported by the observation that LIGHT alone has little cytotoxic effect to induce Hep3BT2 cell apoptosis, while IFN-γ can synergistically proceed apoptotic processes with LIGHT on Hep3BT2 cells and Bcl-2-overexpressing cells (Fig. 1, A and B). This phenomenon is consistent with previous observation in other tumor cell lines, such as...
Bcl-2 Cleavage Enhances Apoptosis

MDA-MB-231 and HT29 (28).

To elucidate the mechanisms of LIGHT/IFN-γ-mediated apoptosis, we tested the protective effect of Bcl-2 and caspase inhibitors on several tumor cells. We demonstrated that overexpression of Bcl-2 enhances the cytotoxic effect of LIGHT/IFN-γ in hepatocellular carcinoma Hep3B2T cells. This enhanced cytotoxicity occurs via the activation of caspase-3, which cleaves Bcl-2 to remove its BH4 domain. This observation is accorded with previous observations that Bcl-2 is the substrate of caspase-3, and recombinant caspase-3 can cleave Bcl-2 at the loop region to remove BH4 domain in vitro (55). In addition, it has been reported that the BH4 domains of Bcl-2-like proteins are critical for the inhibition of apoptosis and for interaction with CED-4 (52) or Bax (53), and the BH4-domain-deficient Bcl-2 has been shown to translocate to mitochondria and promote release of cytochrome c to induce cell apoptosis (54). Thus, all of the evidence supports the argument that the enhanced cytotoxicity in Bcl-2-overexpressing Hep3B2T cells is via the cleavage of Bcl-2 by caspase-3, thus converting Bcl-2 from antiapoptotic to proapoptotic.

The conversion of Bcl-2 to a Bax-like death effector also can be triggered by Fas-mediated apoptosis (55), alphavirus infection (56), interleukin-2 deprivation (57), and chemotherapeutic agents (57, 68). Our observations provide evidence of another route by which Bcl-2 can be converted to a proapoptotic form, via the actions of LIGHT/IFN-γ. Although mutation of Asp31 and Asp34 to glutamic acids (Bcl-2-31E, Bcl-2-34E) prevents cleavage of Bcl-2 and abrogates alphavirus-induced apoptosis (56), these caspase-resistant Bcl-2 mutants only abolish the enhanced cytotoxic effect of wild type Bcl-2 and still cannot protect cells against LIGHT/IFN-γ-mediated apoptosis (Fig. 4B).

Two principal pathways for caspase activation have been demonstrated. One pathway requires the participation of mitochondria and the assembly of apoptosome complex after cytochrome c release (the intrinsic pathway), while other signals can bypass mitochondria and activate caspases directly by recruiting adaptor proteins to death receptors (the extrinsic pathway) (70–72). Bcl-2 can block the activation of caspase cascade initiated by cytochrome c release from mitochondria (73, 74) but not other death receptor-mediated caspase activation independent of cytochrome c release (75, 76). In this study, we found that caspase-resistant Bcl-2 mutants cannot inhibit LIGHT/IFN-γ-mediated apoptosis (Fig. 4B). In addition, the endogenous Bcl-2 is undetectable in wild type Hep3B2T cells (data not shown); thus, the cytotoxic effect mediated by LIGHT/IFN-γ does not result from the cleavage of endogenous Bcl-2 by caspase-3. Therefore, we speculated that the apoptotic signals triggered by LIGHT/IFN-γ might bypass mitochondria to induce cell death uninhibitable by Bcl-2.

FIG. 4. Effects of Bcl-2 mutants and caspase inhibitors in LIGHT/IFN-γ-mediated apoptosis. A, both Bcl-2-31E and Bcl-2-34E mutants protect Hep3B2T cells from TGF-β1-mediated apoptosis. Hep3B2T, Hep3B2T/Bcl-2, Hep3B2T/Bcl-2-31E, or Hep3B2T/Bcl-2-34E cells were serum-starved for 48 h and then cultured in Dulbecco’s modified Eagle’s medium supplemented with 50 pM TGF-β1 for a further 48 h. Cell viability was determined by MTT assay, and the percentage of survival for cells in each treatment was compared with that for the cells cultured in the absence of TGF-β1. B, partial protective effect of Bcl-2-31E and Bcl-2-34E mutants against LIGHT-mediated cell death. Hep3B2T, Hep3B2T/Bcl-2, Hep3B2T/Bcl-2-31E, or Hep3B2T/Bcl-2-34E cells were cultured in medium supplemented with 100 units/ml IFN-γ and 50 ng/ml LIGHT for 72 h. Cell viability was determined by MTT assay. C and D, failure of caspase inhibitors to protect Hep3B2T cells from LIGHT/IFN-γ-mediated apoptosis. Hep3B2T (C) and Hep3B2T/Bcl-2 cells (D) were pretreated with DEVD-FMK, z-VAD-FMK, or YVAD-FMK for 1 h and then cultured in medium supplemented with 100 units/ml IFN-γ and 50 ng/ml LIGHT for 72 h. Cell viability was determined by MTT assay. E, caspase inhibitor z-VAD-FMK can protect Hep3B2T cells from TGF-β1-induced apoptosis. Hep3B2T cells were cultured in serum-free medium for 48 h and then incubated with z-VAD-FMK before the addition of TGF-β1 (25 pM). Data shown are representative of three independent experiments.
During the preparation of this manuscript, a novel member of the TNF receptor family, TAJ, which lacks the death domain in the cytoplasm, has also been reported to mediate caspase-independent cell death (77). Thus, it will be interesting to ask whether other members of TNF receptor superfamily, which lack the death domain in the cytoplasm, also induce cell death independent of caspase activation.

The aspartate-specific cysteine proteases, known as caspases, are widely recognized as key players in initiation or effector steps of apoptosis. However, caspases are not the only molecules that mediate apoptosis, and several reports have demonstrated the existence of other apoptotic pathways (58–60). For example, it has been shown that the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp can block caspase activity and inhibit Fas-mediated apoptosis but not BAX-induced death (61). Furthermore, the caspase-3-deficient cell line, MCF-7, is sensitive to TNF and staurosporine-induced apoptosis (62), and NO-induced apoptosis cannot be inhibited by caspase inhibitors (37). Thus, LIGHT/IFN-γ-induced apoptosis may involve an unidentified caspase-independent pathway. However, we cannot completely rule out the possibility that LIGHT/IFN-γ-mediated apoptosis occurs via the activation of other unidentified caspases, which are not inhibited by z-VAD-FMK and z-DEVD-FMK.

Recently, several groups have reported that cell apoptosis, which cannot be rescued by caspase inhibitors, can be inhibited by the overexpression of manganese superoxide dismutase (47) or by the oxygen free radical scavenger, N-acetyl-L-cysteine (63). ROS-mediated apoptosis has also been demonstrated in many model systems (44, 45, 64, 65). In this study, we observed that LIGHT/IFN-γ-induced apoptosis may involve an unidentified caspase-independent pathway. However, we cannot completely rule out the possibility that LIGHT/IFN-γ-mediated apoptosis occurs via the activation of other unidentified caspases, which are not inhibited by z-VAD-FMK and z-DEVD-FMK.
fullerenes (Fig. 5, A and B), but not by 1-NAME, an inducible nitric-oxide synthetase inhibitor (data not shown). This indicated that reactive oxygen species, but not nitric oxide, are responsible for LIGHT/IFN-γ-induced apoptosis. Moreover, superoxide dismutase mimetic, MnTBAP, has a partial protective effect on HT-29 cells, but not Hep3B2T2; thus, superoxide also contributes to LIGHT/IFN-γ-induced apoptosis in HT-29 cells (data not shown). Furthermore, production of ROS seems to occur upstream of caspase-3 activation, since inhibition of free radical production also prevents the activation of caspase-3 (Fig. 5D). This is in accordance with a previous observation that overexpression of Mn2+-superoxide dismutase can suppress the activation of caspase-3 and inhibit apoptosis induced by TNF-α (47). However, previous studies showed that Bcl-2 cleavage enhances apoptosis (53). This might interfere with the generation or action of ROS and protect cells from apoptosis (48). In contrast, we found that ROS scavenger, but not Bcl-2, rescued cells from apoptosis, suggesting that the apoptotic signals induced by LIGHT/IFN-γ bypass the protective effect of Bcl-2.

Result from this study demonstrated that apoptosis induced by LIGHT/IFN-γ occurs via a novel pathway. First, caspases may not be instrumental in this process because caspase inhibitors cannot inhibit cell apoptosis. Second, ROS induced by LIGHT/IFN-γ is generated at a relatively early step of apoptosis and bypasses the protective effect of Bcl-2. Third, ROS are not by-products but appear as potent mediators to induce cell death mediated by LIGHT/IFN-γ, as that observed in TNF-α apoptotic signaling cascades (78–80). Even the superoxide radicals are produced mostly at the mitochondrial electron transport chain when oxygen is reduced by a single electron; the superoxides can also be produced by other organelles, such as the endoplasmic reticulum and nuclear and plasma membranes. ROS produced at sites other than mitochondria have been also reported to be involved in some apoptotic systems (69). Therefore, it will be interesting to clarify the source(s) of ROS induced by LIGHT/IFN-γ in the future.

The finding that LIGHT can bind to both LT-βR and TR2/ HVEM/ATAR (18–21) further complicates the mechanism of LIGHT/IFN-γ-mediated apoptosis, since knowledge of the downstream signaling pathways associated with both LT-βR and TR2/HVEM/ATAR is still very limited. The relationships between ROS production and the apoptosis cascades that occur downstream of receptor signaling remain to be elucidated.

Acknowledgements—We thank Dr. Caroline Milner and Dr. Jeffrey J.-Y. Yen for critical review of the manuscript. Special thanks go to Yu-Lun Huang, Dr. Chen-Kung Chou, and Dr. Chen-Pou Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript. Special thanks go to Y.-L. Huang, D. C. Chou, and C.-P. Hu for providing materials and reagents for the apoptosis assay. We are grateful to J.-Y. Yen for critical review of the manuscript.
Bcl-2 Cleavage Enhances Apoptosis

38801

49. Kane, D. J., Sarafian, T. A., Anten, R., Hahn, H., Gralla, E. B., Valentine, J. S., Ord, T., and Bredesen, D. E. (1993) Science 262, 1274–1277

50. Sandstrom, P. A., Mannie, M. D., and Buttke, T. M. (1994) J. Leukocyte Biol. 55, 221–226

51. Dugan, L. L., Turetsky, D. M., Du, C., Lohner, D., Wheeler, M., Almli, C. R., Shen, C. K.-F., Loh, T.-Y., Choi, D. W., and Lin, T.-S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9434–9439

52. Huang, D. C., Adams, J. M., and Cory, S. (1994) EMBO J. 13, 1029–1039

53. Hirotani, M., Zhang, Y., Fujita, N., Naito, M., and Tsuruo, T. (1999) J. Biol. Chem. 274, 20415–20420

54. Kirsch, D. G., Doseff, A., Chau, B. N., Lim, D. S., de Souza-Pinto, N. C., Hansford, R., Kastan, M. B., Lazebnik, Y. A., and Hardwick, J. M. (1999) J. Biol. Chem. 274, 21155–21161

55. Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., Ueno, K., and Hardwick, J. M. (1999) Science 278, 1966–1968

56. Grandgirard, D., Studer, E., Monney, L., Belser, T., Fellay, I., Borner, C., and Michel, M. R. (1998) EMBO J. 17, 1268–1278

57. Fujita, N., Nagahashi, A., Nagashima, K., Rokudai, S., and Tsuruo, T. (1998) Oncogene 17, 1295–1304

58. Deas, O., Dumont, C., MacFarlane, M., Rouleau, M., Hebib, C., Harper, F., Hirsch, P., Charpentier, B., Cohen, G. M., and Senik, A. (1998) J. Immunol. 161, 3375–3383

59. Susin, S. A., Lorenzo, H. K., Zanazzi, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotet, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999) Nature 397, 441–446

60. Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998) J. Biol. Chem. 273, 7770–7777

61. Xiang, J., Chao, D. T., and Korsmeyer, S. J. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14559–14563

62. Janicke, R. U., Sprengart, M. L., Wati, M. R., and Porter, A. G. (1998) J. Biol. Chem. 273, 9357–9360

63. Tanabe, K., Nakaniishi, H., Maeda, H., Nishikou, T., Hashimoto, K., Liou, S. Y., Akamine, A., and Yamamoto, K. (1999) J. Biol. Chem. 274, 15725–15731

64. Hildeman, D. A., Mitchell, T., Teague, T. K., Henson, P., Day, B. J., Kappler, J., and Marrack, P. C. (1999) Immunity 10, 735–744

65. Szczepański, W., Wu, C. C., Loh, T. Y., Chou, C. K., Han, S. H., and Lai, M. Z. (1998) Blood 91, 2658–2663

66. Huang, Y. L., Shen, C. K., Loh, T. Y., Yang, H. C., Hwang, K. C., and Chou, C. K. (1998) Eur. J. Biochem. 254, 38–43

67. Wang, I. C., Tai, L. A., Lee, D. D., Kanakammad, P. P., Shen, C. K., Loh, T. Y., Cheng, C. H., and Hwang, K. C. (1999) J. Med. Chem. 42, 4614–4620

68. Fadool, B., Hassan, Z., Hellstrom-Lindberg, E., Henter, J. I., Orrenius, S., and Zhivotovsky, B. (1999) Leukemia 13, 719–728

69. Gottlieb, E., Vonder Heiden, M. G., and Thompson, C. B. (2000) Mol. Cell. Biol. 20, 5680–5689

70. Zheng, T. S., and Flavell, R. A. (2000) Nat. Biotechnol. 18, 717–718

71. Vaux, D. L., and Korsmeyer, S. J. (1999) Cell 96, 245–254

72. Ashkenazi, A., and Dixit, V. M. (1998) Science 281, 1305–1308

73. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Janssen, B., and Corner, C. (1998) Nature 391, 496–499

74. Brustugun, O. T., Fladmark, K. E., Deskeland, S. O., Orrenius, S., and Zhivotovsky, B. (1998) Cell Death Differ. 5, 660–668

75. Scaffidi, C., Schmitz, I., Zha, J., Korsmeyer, S. J., Krammer, P. H., and Peter, M. E. (1999) J. Biol. Chem. 274, 22532–22538

76. Scaffidi, C., Furlan, S., Costantini, P., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998) EMBO J. 17, 1675–1687

77. Eby, M. T., Jasmin, A., Kumar, A., Sharma, K., and Chaudhary, P. M. (2000) J. Biol. Chem. 275, 15336–15342

78. Goossens, V., Grooten, J., De Vos, K., and Fiers, W. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8115–8119

79. Talley, A. K., Chao, D. T., and Korsmeyer, S. J. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14559–14563

80. Siddiqui, C., Rinehov, V., Risier, Y., Magnotte, B., and Vayssiere, J. L. (1998) Oncogene 17, 1639–1651
