Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns

Jonathan L. Larson
University of Kentucky, jonathan.larson90@gmail.com

Carl T. Redmond
University of Kentucky, carl.redmond@uky.edu

Daniel A. Potter
University of Kentucky, dapotter@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Larson, Jonathan L.; Redmond, Carl T.; and Potter, Daniel A., "Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns" (2013). *Entomology Faculty Publications*. 18.
https://uknowledge.uky.edu/entomology_facpub/18

This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Assessing Insecticide Hazard to Bumble Bees Foraging on Flowering Weeds in Treated Lawns

Jonathan L. Larson, Carl T. Redmond, Daniel A. Potter*
Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America

Abstract
Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171 ± 44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees.

Introduction
Native bee and honey bee populations are declining due to habitat loss and fragmentation, disease, and other stresses [1–5]. Bees in cities and suburbs survive by gathering nectar and pollen from flowering plants in lawns, gardens, and patches of semi-natural habitat [2–6]. In the United States, where about one million hectares of farmland and natural habitat are converted to urban areas each year [6], turf grasses now cover about 164,000 km², an area three times larger than any agricultural crop [7]. Most (>75%) of that turf is comprised of residential, commercial, and institutional lawns, many of which are treated with insecticides by homeowners or commercial lawn care providers [8,9].

Neonicotinoids, systemic insecticides that move via sap throughout treated plants, are potent selective agonists of nicotinic acetylcholine receptors in insects [10]. Imidacloprid, clothianidin, and thiamethoxam are widely used on lawns [8]. Typically applied as sprays or granules in spring and leached into the soil by irrigation or rainfall, they provide several months of residual control of root-feeding grubs and other pests [8]. Despite label precautions stating not to apply neonicotinoids to plants in bloom, applications are sometimes made when lawn weeds such as dandelions and white clover are flowering. These weeds are attractive to native pollinators, especially bumble bees, and to managed and feral honey bees [11–13].

Although residue levels in nectar and pollen of neonicotinoid-treated crops tend to be below acute toxicity levels for bees [14–16], lethal and sublethal effects of dietary exposure including impaired learning, memory, and navigational abilities of honey bees [5,16–19] and reduced foraging, colony growth, and queen production by bumble bees [20–23] have been described. Most of the evidence, however, comes from studies in which doses of the insecticide were fed to bees in sugar water or pollen, and in some such trials, dosages typical of those found in seed-treated crops had no apparent adverse effects [24,25]. Some field studies in which bees were exposed to crops grown from neonicotinoid-treated seeds failed to detect detrimental effects on colony health [26,27]. Bumble bee colonies exposed to dry spray residues of imidacloprid on weedy turf gained less weight and produced fewer workers, brood chambers, and honey pots compared to controls, but when spray residues were watered into the soil, or the insecticide was applied in granular form, no adverse effects on those measures of colony health were observed [12]. The extent to which trace dietary neonicotinoids impact bees in field settings remains controversial and requires studies with relevant exposure and duration to resolve [16,28].
Antranilic diamides are a relatively new class of insecticides that activate insect ryanodine receptors by stimulating release of calcium stores from muscle cells causing lethal paralysis in sensitive species [29]. They have low vertebrate toxicity, low use rates, and 3–5 month residual activity in soil, as well as low impact on non-target invertebrates [29–31]. Chlorantraniliprole, the first antranilic diamide lawn insecticide, received reduced-risk status from the US Environmental Protection Agency [8]. Compared to neonicotinoids, it has similar efficacy against root-feeding scarab grubs and weevil larvae, better activity against caterpillar pests, but is less active against clinch bugs [8]. Chlorantraniliprole has low acute bee toxicity [29] but its potential reproductive effects on bees with realistic field exposure have not been evaluated. If benign, it and other antranilic diamides could be a more bee-friendly option for insect control in lawns, gardens, and other settings where bees are active.

We exposed colonies of the bumble bee *Bombus impatiens* to turf intermixed with white clover where clothianidin or chlorantraniliprole had been applied at label rates to test the hypothesis that the latter is relatively less hazardous to colonies foraging on flowering weeds in treated lawns. Several scenarios were used to assess the insecticides’ respective impacts on colony health and queen production. Our results showed that colonies foraging on the neonicotinoid-treated turf had higher worker and brood mortality, reduced honey pot production, delayed weight gain, and impaired queen production compared to controls, but also suggested that the hazard is reduced after blooms present at the time of application are removed by mowing. The antranilic diamide appears to be non-hazardous to bumble bees even when used on lawns where flowering weeds are present.

Results

Colonies exposed to clothianidin-treated weedy turf showed reduced foraging activity and increased worker mortality in the hives within five days (Fig. 1). They also gained weight more slowly after being moved to an insecticide-free site where they were left to openly forage for six more weeks (Fig. 2). Although statistically significant differences were no longer detected by analysis of variance by the time the hives were dissected, there remained consistent trends for fewer live adults (workers and males), honey pots, and reduced colony weight of clothianidin-exposed colonies compared to the controls (P = 0.052, 0.09, 0.058, respectively; pre-planned linear contrasts, Table 1). More importantly, clothianidin-exposed colonies failed to produce new queens (Fig. 3). Chlorantraniliprole-exposed colonies showed no impairment in weight gain or reductions in other indicators of colony health, including new queen production, compared to the controls (Fig. 3, Table 1).

Nectar extracted by centrifugation from 100-flower samples of clover flowers from the clothianidin-treated plots one week after application in 2012 contained 171 ± 44 ppb clothianidin (mean ± SE; range 89–319; n = 5), whereas nectar samples from flowers in open, non-treated areas contained no detectable insecticides. Nearly all of the flowers under the enclosures on non-treated or clothianidin-treated plots had been mown to remove the original flower heads, and new flowers had formed (Table 3). Hives that had been confined on chlorantraniliprole-treated turf in fact had significantly higher numbers of live adult workers than did the untreated controls (two-tailed Dunnett’s test, P = 0.02; Table 3).

Neither bumble bees nor honey bees avoided foraging on white clover in turf that had been treated with either insecticide. Similar numbers of bumble bees, honey bees, and total bees were observed on clover blooms on each set of plots (Fig. 4).

Discussion

This study shows with field exposure that clothianidin, a representative neonicotinoid, has the potential to impair queen production by bumble bee colonies foraging for less than a week on flowering weeds in recently-treated lawns. United States Environmental Protection Agency (EPA) label precautionary statements specify not to apply clothianidin, or other neonicotinoids, to blooming nectar-producing plants if bees are visiting the treatment area, but such exposures nevertheless may occur, especially when lawns are treated in spring for preventive grub control. Our results validate those EPA label precautions. They
also confirm the results of other recent studies that showed acute mortality and impaired queen production when bees ingested neonicotinoid-spiked food [21–23], demonstrating similar effects from a plausible field exposure. Notably, no adverse effects were seen on bee colonies exposed to residues of chlorantraniliprole, a selective ryanodine receptor agonist, under the same conditions.

The concentrations of clothianidin we detected in clover nectar are higher than those that typically occur from systemic transfer of neonicotinoids into nectar of seed-treated crops [5,14,15], and also much higher than lab-fed oral dosages of imidacloprid shown to adversely affect individual and colony-level traits, including reproduction, in bees [19–23,28]. A literature search found nothing on spatial or temporal translocation of neonicotinoids from roots into nectar or pollen of clover or similar small plants. Thus, while we can suggest several plausible ways that a lawn spray application might contaminate such nectar, the precise mechanisms by which it occurred in our study remain largely unknown.

The equipment with which we applied the insecticides, a lawn care spray gun and a multiple-nozzle boom sprayer, delivered similar pressure, droplet size, and spray volume as sprayers used in the turf care industry. It is likely that the sprays directly contact and ingestion. Neonicotinoids are mainly acropetally transported in the xylem [15,16,33]. Given clothianidin’s prolonged (>9 month) half-life from field dissipation in soil [34], it is unlikely that, in just three weeks, degradation of residues in the root zone can explain the lack of acute effects on bees foraging on clover that bloomed after mowing. Clothianidin is the least water-soluble neonicotinoid used on turf [34]. Sorption of neonicotinoids to soil organic components reduces the amount that is translocated [33,35]. Translocation is driven by transpiration and plant growth, processes likely to be greater for foliage than for floral tissues and nectar. Neonicotinoid uptake via roots typically deposits the highest concentrations in the oldest foliage, with limited mobilization from mature to new leaves [33,35], so in a mixed stand of turfgrass and flowering weeds, the competing grass could possibly act as a sink until being removed by mowing.

Clearly, more needs to be known about the movement and longevity of surface-applied neonicotinoids in clover and other small flowering plants to better interpret our results. Nevertheless, the results of our trial in which colonies were confined on treated weedy turf before or after the stand had been mowed, and earlier work showing absence of acute effects on bumble bees when a granular formulation of imidacloprid was applied to weedy turf and watered in [12], suggest that once the residues are leached into the soil by watering or rainfall, translocation via the roots is unlikely to pose a prolonged systemic hazard to bees.

Neither bumble bees nor honey bees avoided foraging on flowering clover contaminated with residues of clothianidin or chlorantraniliprole. That finding is consistent with previous studies showing bumble bees’ non-avoidance of flowering clover in lawn grass that had been sprayed with imidacloprid [12], and bees’ ready ingestion of syrup or plant guttation water containing toxic
levels of neonicotinoids [22,36]. Thus, worker bees from colonies in non-treated landscapes may be exposed to insecticide residues when foraging on treated lawns. If such bees acquire a lethal dose they will not return to the colony, reducing its workforce. Even sublethal neonicotinoid exposure can impair workers’ foraging efficiency, leading to food shortage and decreased colony success [22]. Workers that bring contaminated nectar or pollen back to the colony could potentially affect development and survival of nest-mates. Bumble bee colonies are annual and only the new queens produced will survive the winter. In the spring, when queens are foraging and subsequently when colonies are small and delayed in switching from worker to queen production increases the chances of colony failure due to pathogens, predators, weather-related stress, or other factors. Moreover, queens produced later in the growing season are less likely to survive than are earlier-produced queens [37–39].

It is possible, had we not sacrificed them, that clothianidin-exposed colonies could have recovered from the initial stress and produced queens later in the summer or autumn. However, any delay in switching from worker to queen production increases the chances of colony failure due to pathogens, predators, weather-related stress, or other factors. Moreover, queens produced later in the growing season are less likely to survive than are earlier-produced queens [37–39]. Without timely investment in reproductive output, the potential loss of queen production due to neonicotinoid exposure could lead to lower local populations of bumble bees over successive years.

Besides mowing to remove flower heads before or immediately after application, bee exposure to pesticide residues on lawns could be reduced by controlling flowering weeds with herbicides or by delaying applications until after bloom of spring-flowering weeds. Such practices, however, may be difficult to ensure or may not always be practical, especially in high-volume commercial lawn care [8].

Anthranilic diamides, including clothianidin, show high selectivity for insect ryanodine receptors (RyRs) when compared to mammalian RyRs [29,40]. Chlorantraniliprole is active against caterpillars and some dipteran and coleopteran pests, mainly by ingestion and secondarily by contact [29,30]. It appears to have little or no activity against predatory, parasitic, and social wasps, solitary and social bees, and ants [29–31]. The basis for that selectivity is not yet understood but may involve differences in channel properties between RyRs of sensitive species and those of the aforementioned types of Hymenoptera [40].

Bumble bees and other native bees provide pollination services to urban and suburban gardens and landscapes [2–5,13]. With their populations imperiled by habitat loss, diseases, parasites, and other stresses, reducing hazards posed to them by insecticides is important [1–5]. When neonicotinoids are applied to lawns,

Table 1. Condition of Bombus impatiens colonies that had been exposed to insecticide-treated turf with flowering white clover for 6 days, after which they were moved to an insecticide-free site to openly forage for 6 weeks before this evaluation.

Treatment	Adults (workers and males) per hive	Immatures per hive	Total wt (g) of live adults	Hive wt (g)				
	Live	Dead	% dead	Live	Dead	Honey pots		
Clothianidin	173±39	33±7	11.1±1	84±15	9±3	36±12	28.2±6.9	709±59
Chlorantraniliprole	199±31	35±14	17.9±4	45±10	17±5	51±10	31.4±4.8	826±35
Untreated	271±30	54±16	25.9±5	65±14	27±12	77±22	42.9±5.6	857±56

The turf was lightly irrigated after insecticide application; the surface had thoroughly dried before bees were introduced.

*Data are means (± SE). ANOVA (df = 2, 18): live, F = 2.31, P = 0.13; dead, F = 0.92, P = 0.42; % dead, F = 0.93, P = 0.41; wt live adults, F = 1.8, P = 0.19; live immature, F = 2.45, P = 0.12; dead immature, F = 0.90, P = 0.42; honey pots, F = 2.31, P = 0.13, hive wt, F = 2.27, P = 0.13. P-values from pre-planned linear contrasts between clothianidin versus untreated were 0.053, 0.23, 0.27, 0.20, 0.09, and 0.058, respectively. For chlorantraniliprole versus untreated, they were 0.15, 0.29, 0.95, 0.29, 0.51, 0.27, 0.18, and 0.67, respectively.

aAll adults (other than original queen) were workers as there would not have been time for males to emerge from the brood (K. Skyrm, Koppert Biological Systems, personal communication).

Table 2. Condition of Bombus impatiens colonies that were evaluated immediately after being exposed to insecticide-treated turf with flowering white clover for 2 wk.

Treatment	Adult workers per hive	Immatures per hive	Total weight (g) of live adults	Hive weight (g)				
	Live	Dead	% dead	Live	Dead	Honey pots		
Clothianidin	59±12*	26±5*	12±3*	21±8	13±2*	33±5*	7.7±1.4*	580±17
Chlorantraniliprole	99±12	6±2	4±1	31±9	4±1	47±5	12.2±1.5	599±11
Untreated	106±8	7±3	10±3	17±10	4±1	51±4	12.8±1.6	602±6

Plots were treated June 1; bee colonies were introduced the following day.

Data are means (± SE). ANOVA (df = 2, 22): live, F = 4.57, P = 0.05; dead, F = 9.88, P = 0.01; wt live workers, F = 3.46, P = 0.05; live immature, F = 0.57, P = 0.57; dead immature, F = 9.25, P = 0.01; honey pots, F = 3.56, P = 0.05; hive wt, F = 0.69, P = 0.51.

*denotes means significantly higher or lower than colonies on untreated turf (Dunnett’s test, α = 0.05).

aAll adults (other than original queen) were workers as there would not have been time for males to emerge from the brood (K. Skyrm, Koppert Biological Systems, personal communication).

bLarvae, pupae, and fully-formed workers still enclosed in the pupal exoskeleton within the cell.

cAdult workers and original queen.
systemic hazard to bees through flowering weeds appears to be transitory and direct hazard can be mitigated by strict adherence to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole appears to be a good fit for industry initiatives to reduce the impacts of turf and landscape management on pollinators.

Table 3. Absence of acute adverse effects on Bombus impatiens colonies after 2 weeks’ exposure to turf with flowering white clover that had bloomed after the sward was mown to remove flowers present at the time of treatment.

Treatment	Adult workers per hive*	Immature bees per hive*	Total weight (g) of live adultsc	Hive weight (g)
Clothianidin	Live: 93 ± 9	Dead: 11 ± 4	Live: 12 ± 8	
			Dead: 6 ± 1	52 ± 6
			Honey pots: 63 ± 2	130 ± 1.3
Chlorantraniliprole	130 ± 12*	7 ± 2	8 ± 4	62 ± 6
Untreated	81 ± 8	7 ± 2	0	56 ± 3

Insecticide application, mowing, and introduction of bee colonies were on June 1, 15, and 22, respectively.

ANOVA (df = 2, 19): live, F = 0.97, P = 0.40; dead, F = 1.08, P = 0.31; honey pots, F = 3.31, P = 0.08; live immature, F = 1.60, P = 0.25; dead immature, F = 0.54, P = 0.62; male, F = 1.85, P = 0.17; hive wt, F = 1.93, P = 0.20.

Materials and Methods

Insecticide impacts on foraging, colony health and queen production

This trial evaluated the scenario of resident bees foraging on flowering weeds in a newly-treated lawn for six days before the turf was mowed. The exposure phase was done at the A.J. Powell Turf Research Center, University of Kentucky, near Lexington, KY in a 1-ha sward of Kentucky bluegrass (Poa pratensis L.) with about 30% cover by visual estimate) of flowering white clover (Trifolium repens L.). Plots (3.35 x 3.35 m; 10 replicates of each insecticide) were situated on areas with similar clover density and were at least 2 m apart. Treatments were clothianidin (Arena 50 WDG; Valent, Walnut Creek, CA), chlorantraniliprole (Acelepryn, 18.4% active ingredient (AI); Dupont, Wilmington, DE), and the untreated check. Both products were applied as they would be for scarab grub control at their high label rates, 0.45 and 0.23 kg AI ha⁻¹ for clothianidin and chlorantraniliprole, respectively. The applications were made on 14 May 2012. We used a portable CO₂ spray tank (R and D Sprayers, Opelousas, LA) equipped with a 1.8 m handheld boom with four Spraying System 8004 Tee Jet nozzles (Spraying Systems, Wheaton, IL) that delivered a pressure of 2109 g cm⁻². Spray volume was 468 L ha⁻¹, applied by making two passes in opposite directions over each plot. Separate spray bottles were used for each treatment. Residues were lightly watered in (30.3 liters per plot) from sprinkling cans about 1 h after application.

Screen enclosures (3.05 x 3.05 m; Instant Screen Shelters, Coleman; Wichita, KS) were erected on each plot 24 h after application. Commercial Bombus impatiens colonies (Research Mini-hives; Koppert, Howell, MI), one per enclosure (10 per treatment), were randomly assigned to the treatments after being blocked by colony size. Each colony was housed within a plastic hive within an outer cardboard box and started with 20 workers and a fertilized queen. Colonies were shipped with a syrup food sack within an outer cardboard box and started with 20 workers and a fertilized queen. Colonies were shipped with a syrup food sack within an outer cardboard box and started with 20 workers and a fertilized queen. Colonies were shipped with a syrup food sack within an outer cardboard box and started with 20 workers and a fertilized queen. Colonies were shipped with a syrup food sack within an outer cardboard box and started with 20 workers and a fertilized queen.
colonies (Research Mini-hives; Koppert, Howell, MI) of the same flowers present at the time of treatment. One week later (22 June), colonies were left to forage in the enclosures for two weeks before described above, was introduced to each enclosure that evening. A colony consisting of 20 workers and a fertilized queen as were either allowed to dry on the surface, simulating what typically and after mowing

Acute effects of exposure to insecticide residues before and after mowing

This study was done on a 2.5 ha sward of non-irrigated Kentucky bluegrass intermixed with white clover at the University of Kentucky's intramural sport field complex. Plots (3.7 × 3.7 m) were treated with clothianidin or chlorantraniliprole at label rates on 23 May 2012, using the portable CO$_2$ sprayer described earlier. Those treatments, plus untreated plots, were arranged in a randomized complete block with five replicates per treatment (i.e. 15 plots in total). Untreated borders (2.44 m) surrounded each plot. Residues were not watered in, and there was no rainfall during the trial. Bee counts were taken daily for 1 week between 10:30 and 16:00 by slowly walking around each plot, staying in the border, and counting honey bees (_Apis mellifera_) and bumble bees (_Bombus_ spp.) foraging on the clover. Each plot was observed for 1 minute, and after all plots had been inspected, the census was repeated, starting at the first plot, providing two counts within a 45-minute period. Bees moved from plot to plot, and between border areas and plots, so each count represented a snapshot of bees on a plot at that time.

Statistical Analyses

Numbers of foraging workers in field enclosures, final colony weights, and parameters measured during dissections were compared among treatments by analysis of variance (ANOVA), followed by pre-planned linear contrasts to compare each of the individual insecticides to the untreated control. We used the angular transformation for percentages and square root or log transformations for those data sets where treatment variances were non-homogeneous. Non-parametric tests were used for number of new queens where ANOVA assumptions were not met. Colony weights over time were compared using repeated measure ANOVAs. Counts of bees observed in the avoidance trial plots were totaled across census dates and analyzed by two-way ANOVA. All data are given as original means ± SE. Statistix 9 [42] was used for analyses.

Permissions

No specific permissions were required for the work at the A.J. Powell Turf Research Center which is part of the Kentucky Agricultural Experiment Station’s Spindletop Research Farm. Ryan Martin (Director of Horticulture, Gainesway Farm, Lexington, KY) granted access to the pesticide-free site for the bees to forage on the horse farm, and D. Davis (UK Facilities Management) granted access to the avoidance trial site. None of the field studies involved endangered or protected species.

Acknowledgments

We thank A. Kesheimer, E. Dobbs, and S. Marksbury for field assistance, D. Williams and R. Martin for site access, R. Bessin for statistical advice, Ernie Deaton (Barley Belt Lawn Care) for helping with the insecticide applications, and J. Chamberlin, K.F. Haynes, J. Obrycki, and R. Pail for critical feedback on earlier drafts. We also thank James Cresswell (University of Exeter) and two other anonymous referees for their very helpful suggestions. This is paper no. 12-08-109 of the Kentucky Agricultural Experiment Station.

Acute effects of exposure to insecticide residues before and after mowing

This study was done on a different part of the same sward used for the exposure phase of the previously-described trial, using similar methods, except as follows. The treatments were made by a professional care applicator, supervised by the authors, on 1 June 2011. The insecticides were diluted in water and applied with a lawn spray gun (model 11-857-00 Mag 2000; 7.6 liters/min nozzle; GNC Industries, Pocahontas, AR) powered by an electric pump (FlqJet model 4300-405; FlqJet, Irvine, CA) at their label rates for grub control. Spray volume was 410 L ha$^{-2}$. Residues were either allowed to dry on the surface, simulating what typically occurs with commercial lawn applications, or were watered in as described earlier. The open-bottom screened enclosures were erected on each plot 24 h later, and a commercial _B. impatiens_ colony consisting of 20 workers and a fertilized queen as described above, was introduced to each enclosure that evening. Colonies were left to forage in the enclosures for two weeks before the hives were closed and brought to the lab for evaluation. The world then was moved (2.5 cm cutting height) to remove clover flowers present at the time of treatment. One week later (22 June), after new blooms had formed, another set of freshly-shipped bee colonies (Research Mini-hives; Koppert, Howell, MI) of the same size and age as those used for the initial challenge was introduced and left to forage in the enclosures for two weeks, after which the hives were closed and brought to the lab for evaluation. Initially there were five replicates for each combination of insecticide and watering regime, plus untreated controls, but because the irrigation main effect was non-significant for all dependent variables, data from irrigated and non-irrigated plots were combined for analysis.
Lawn Insecticide Impacts on Bumble Bee Colonies

Author Contributions
Conceived and designed the experiments: JL CR DP. Performed the experiments: JL CR DP. Analyzed the data: JL DP. Contributed reagents/materials/analysis tools: JL CR DP. Wrote the paper: JL DP.

References
1. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, et al. (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25: 345–355.
2. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53: 191–218.
3. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, et al. (2011) Patterns of widespread decline in North American bumble bees. Proc Nat Acad Sci 108: 527–532.
4. Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities Environ 2(1): 1–15.
5. Hopwood J, Vaughan M, Shepherd M, Biddinger D, Mader E, et al. Are neonicotinoids killing bees? Available: http://www.xerces.org/neonicotinoids-and-bees/. Accessed 2012 Nov 25.
6. McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129: 372–382.
7. Milet C, Running SW, Ekhide CD, Dieter JT, Tuttle ET, et al. (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36: 426–438.
8. Held DW, Potter DA (2012) Prospects for managing turfgrass pests with reduced chemical inputs. Annu Rev Entomol 57: 329–354.
9. Blaine TW, Clayton S, Robbins P, Grewal PS (2012) Homeowner attitudes and ecosystem services in turfgrass. Pest Manag Sci 68: 740–748.
10. Tomizawa M, Casida JE (2005) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 49: 359–364.
11. Morse R, Camazine S, Ferracane M, Minacci P, Nosovgrodski R, et al. (1990) The population-density of feral colonies of honey bees (Hymenoptera, Apidae) in a city in upstate New York. J Econ Entomol 83: 81–83.
12. Geis JA, Held DW, Potter DA (2002) Hazards of insectsicides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J Econ Entomol 95: 722–728.
13. Tenhaken R, Higo HA, Winston ML (2004) Bee diversity and abundance in an urban setting. Can Entomol 136: 851–869.
14. Roubik DW, Milet C, Running SW, Ekhide CD, Dieter JT, Tuttle ET, et al. (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36: 426–438.
15. Hopwood J, Vaughan M, Shepherd M, Biddinger D, Mader E, et al. Are neonicotinoids killing bees? Available: http://www.xerces.org/neonicotinoids-and-bees/. Accessed 2012 Nov 25.
16. McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129: 372–382.
17. Milet C, Running SW, Ekhide CD, Dieter JT, Tuttle ET, et al. (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36: 426–438.
18. Held DW, Potter DA (2012) Prospects for managing turfgrass pests with reduced chemical inputs. Annu Rev Entomol 57: 329–354.
19. Blaine TW, Clayton S, Robbins P, Grewal PS (2012) Homeowner attitudes and ecosystem services in turfgrass. Pest Manag Sci 68: 740–748.
20. Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, et al. (2010) Risk assessment of sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Manag Sci 56: 784–788.
21. Franklin MT, Winston ML, Moranlini LA (2004) Effects of clothianidin on Bombus impatiens (Hymenoptera: Apidae) colony health and foraging ability. J Econ Entomol 97: 369–373.
22. Tasei JN, Ripault G, Rivault E (2003) Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidae) when applied to sunflower. J Econ Entomol 96: 623–627.
23. Cresswell JE (2011) A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Environ Entomol 40: 149–159.
24. Cordova D, Benner EA, Sacher MD, Rahi JJ, Sopaet JS, et al. (2006) Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pest Biochem Physiol 84: 196–214.
25. Tasei JN, Lerin J, Ripault G (2000) Sub-lethal effects of imidacloprid on associative learning in honeybees Apis mellifera. J Insect Physiol 46: 559–564.
26. Tasei JN, Lerin J, Ripault G (2001) Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidae) colony health and foraging ability. J Econ Entomol 94: 623–627.
27. Larson JL, Redmond CT, Potter DA (2012) Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag Sci 68: 740–748.
28. Cresswell JE, Potter DA (2012) Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag Sci 68: 740–748.
29. Jakobsen HB, Kristjansson K (1994) Influence of temperature and forage age on nectar secretion in Trifolium repens L. Ann Bot 74: 327–334.
30. Brugger KE, Cole PG, Newman JC, Parker N, Scholz B, et al. (2010) Selectivity of chlorantraniliprole to parasitoid wasps. Pest Manag Sci 66: 1075–1081.
31. Larson JL, Redmond CT, Potter DA (2012) Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag Sci 68: 740–748.
32. Jakobsen HB, Kristjansson K (1994) Influence of temperature and forage age on nectar secretion in Trifolium repens L. Ann Bot 74: 327–334.
33. Buchholz A, Nauen R (2001) Translocation and transaminar bioavailability of two neonicotinoid insecticides after foliar application to cabbage and cotton. Pest Manag Sci 58: 10–16.
34. U.S. Environmental Protection Agency (2003) EPA Pesticide Fact Sheet: Clothianidin. Available: http://www.epa.gov/oppp0001/chem_search/reg_65/registration/fc/PC/04/30/May-03.pdf. Accessed 2013 Jan 26.
35. Byrne JF, Urena A, Robinson LJ, Krieger RI, Docolla J, et al. (2012) Evaluation of neonicotinoid, organophosphate and avermectin trunk injections for the management of avocado thrips in California avocado groves. Pest Manag Sci 68: 811–817.
36. Girolami V, Mazzon I, Squarzan A, Mori N, Marzano M, et al. (2010) Translocation of neonicotinoid residues from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102: 1808–1815.
37. Muller CB, Schmid-Hempel P (1992) Correlates of reproductive success among field colonies of Bombus terrestris (Hymenoptera: Apidae): the importance of growth and parasites. Ecolog Entomol 17: 343–353.
38. Schmid-Hempel P (2001) On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumble bees and their parasites. Naturwissenschaften 88: 147–158.
39. Gerloff CU, Schmid-Hempel P (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae). Oikos 111: 67–80.
40. Wang J, Xanuqiyi N, Han Z, Zhu Y, Xie Z, et al. (2012) Molecular characterization of a ryanodine receptor gene in the rice leafhopper, Cnaphalocrocis medinalis (Guenée). PLOS One 7(5) article no. e35623. 10.1371/journal.pone.0035623.
41. Payá P, Anastasiades M, Mack D, Sigalova I, Tsenden B, et al. (2007) Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (Q.E.C.E.R.S) pesticide multimedia method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 389: 1697–1714.
42. Analytical Software (2008) Statistik version 9.0, User’s manual. Analytical Software, Tallahassee, FL.