Microbiological Evaluation and Antibiotic Susceptibility Pattern of Bacterial Isolates Associated with Some Contaminated Edible Fruits and Vegetables

Mallikarjun Gundappa1, C. Prabharajeshwar2, Sarfaraz Ahmed3, H.M. Navya2, M. Vijayasarathy4, Shanmugam Velayuthaprabhu1

ABSTRACT

Background: The present study was undertaken to study the percentage of pathogenic bacteria present in different fruit and vegetable samples available in the market in and around Kalaburagi, Karnataka, South India.

Methods: A total of 940 different samples were collected from Kalaburagi, out of which 390 (23.84%) were fruits and 550 (35.27%) were vegetables. The pathogenic bacteria were isolated, by enrichment culture method using peptone water. The bacterial isolates were identified by conventional microbial identification procedures.

Result: Antibiotic resistant testing by disc diffusion method performed for E. coli, Salmonella and Shigella. Among the pathogens, E. coli (86.50%) of the isolates were resistant to Nalidixic acid while Imipenem and Trimethoprim-Sulfamethoxazole has the lowest resistance (19.84%), Salmonella (86.66%) isolates were resistant to Ciprofloxacin while Norfloxacin has the lowest resistance (4.76%) and Shigella (80.35%) isolates were resistant to Vancomycin while Amoxicillin has the lowest resistant (3.57%). Multiple drug resistance (MDR) was seen in E. coli at (38.88%), Salmonella at (26.66%) and Shigella at (10.71%) accordingly. The study therefore shown that E. coli, Salmonella and Shigella occur in Fruits and vegetables which collected from market place in Kalaburagi, Karnataka India, As per the results, adequate precaution should be taken while handling these fruits and vegetables. The antimicrobial resistance pattern shown by the isolates is an indication that adequate measurement needs to be taken to regulate the drug use in both humans and animals in order to minimize the risk of increasing antimicrobial resistance.

Key words: Antibiogram fruits and vegetables, E.coli, Salmonella, Shigella.

INTRODUCTION

Fresh fruits and vegetables provide mankind with an abundance of benefits. They give the necessary vitamins, fats, minerals and oil to the body in the right proportion for human growth and development. These play an important role in health and have the ability to prevent many diseases such as heart disease, cancers and diabetes (Liu, 2003; Pandey and Rizvi 2009). Fruits and vegetables play a major role worldwide and have more attention in Kalaburagi of south India as a major diet probably due to its health benefits, low cost availability and active promotion of fresh Fruits and vegetables as a part of a healthy diet (Mallikarjun and Gaddad, 2016; Mallikarjun and Gaddad, 2016).

Over the years, there has been increase in the need to identify and isolate the microorganisms associated with the spoilage as a way of finding a means of controlling it (Akinsele and Akinkunmi, 2012). Fresh fruits and vegetables are essential components of the human diet and there is considerable evidence of the health and nutritional benefits associated with this consumption. Despite the benefits derived from fruits and vegetables, they are major sources of food borne diseases (Robinson et al., 2000).

Recent improvement of the standard of life in India is associated with diversification of food needs including availability of fresh food produced everywhere throughout the year. All these require proper transport and storage facility.

India is the second largest producer of fruits and vegetables in the world and accounts for about 15% of the world's total production. Fruits and vegetables plays key role in growth and development of body and in prevention of many diseases due to high nutritive value. The majority of diseases associated with fresh fruits and vegetables are primarily those...
transmitted by the faecal-oral route and therefore, a result of contamination at some point in the process (De Rover, 1988).

Incidences of disease associated with bacteria have been attributed mainly to *Escherichia coli*, *Salmonella*, *Listeria*, *Shigella*, *Bacillus*, *Aeromonas*, *Clostridium* and *Campylobacter* (Beuchat, 1995). Fruits and vegetable samples examined in Kalaburagi were contaminated with *Salmonella*, *shigella* and *E. coli* (Mallikarjun and Gaddad, 2016). A study conducted in India on salad vegetables, revealed the presence of *E. coli*, *Enterobacter aerogenes*, *Pseudomonas* spp., *S. aureus*, *Salmonella* spp. and *Shigella* spp., (Fain, 1996). Further, WHO reports that leafy green vegetables are of great concern in terms of microbiological hazards (WHO, 2008).

As seen above *Salmonella* and *Shigella* species have been associated with food borne diseases with significant morbidity and mortality rate in people of all ages. In the U.S. between 1995 and 1998, there were 9 outbreaks of food borne illnesses caused by *Salmonella, E. coli* 0157:H7 due to consumption of fresh vegetable sprouts (Martin et al., 2003). There have been an increasing number of outbreaks of food poisoning linked to the consumption of vegetables and fruit in Westernised countries. The number of reported outbreaks in the USA more than doubled from the period 1973-1987 to the period 1988-1991 (Tauxe et al., 1997). Recently, association between fresh vegetables and outbreaks of food borne infections has led to a greater concern about contamination of vegetables with a pathogenic bacterium like *E. coli*, *Vibrio*, *Salmonella*, *Norovirus*, *Shigella*, *Listeria* etc (Mahima et al., 2013).

These fruits and vegetables can also get contaminated with pathogenic microbes during harvesting, transportation, storage and retailers handling. These are the wide range sources of microbial contamination to different varieties of fruits and vegetables (Ray and Bhunia, 2007).

Moreover, the availability of potable water for proper washing of fruits and vegetables is also lacking in different areas. As a result of which dirty or contaminated water is used for washing, which could lead to further increasing the microbial load on these vegetables which some people buy and eat without further washing. Previous report revealed that *Listeria monocytogenes* and *Salmonella* spp. have been isolated from raw vegetables making them potential threat to consumers (Biniam and Moggessie, 2010).

Most of the reported outbreaks of gastrointestinal disease linked to the fresh produce have been associated with bacterial contamination, particularly with members of the *Enterobacteriaceae* family (Hamilton et al., 2006). Occasional reports of multistate outbreaks of *Salmonellosis* in the United States associated with contaminated fresh fruits and vegetables have coincided with increased consumption of fresh produce in recent years due to changing consumer preferences, greater selections, wider distribution and year-round availability (Hedberg et al., 1994).

Excessive and misuse of antimicrobials to control pathogens in animals and crops led to antibiotic resistance and transfer to human through contaminated food. These are consistent with earlier reports which shown that antibiotic resistant bacteria also may be ingested with vegetables (Kilonzo et al., 2009). Vegetables such as corn, green onion and cabbage absorb antibiotics when grown in soil fertilized with livestock antibiotics contaminated manure (Kumar et al., 2005).

Microbiological studies from many developing countries carried out on street vended food articles. These studies have revealed that a high bacteria count on the edible fruits and vegetables. *Salmonella* species, *S. aureus* and members of the family, *Enterobacteriaceae* were common pathogens found in such food items (Bryan et al., 1997). Enteric pathogens such as *E. coli* and *Salmonella* are among the greatest concerns during food related outbreaks (Buck et al., 2003).

Food contamination with antibiotic resistant bacteria can be a major threat to public health, as the antibiotic resistance determinants can be transferred to other pathogenic bacteria potentially compromising the treatment of severe bacterial infections. The prevalence of antimicrobial resistance among food pathogens has increased during recent decades (Davis et al., 1999). Thus the present study was under taken for antibiotic susceptibility of pathogenic bacteria such as *E. coli* spp., *Salmonella* spp. and *Shigella* spp., from fruits and vegetables from vending market at Kalaburagi (Karnataka, India).

MATERIALS AND METHODS

Sample collection
A total 940 mixed fruits and vegetable were collected irrespective of verity from different super market in Kalaburagi, Kanni markets and Timmapuri (Karnataka) during October 2013- November 2015. Among the 940 samples, 390 were belongs to fruits and 550 were belongs to vegetables. The fruits and vegetables samples were collected in sterile polythene bags and transported to the laboratory within 2 hours of collection under aseptic conditions.

Bacterial isolation and characterization
From each collected vegetable and fruit sample, 0.5g was aseptically weighed and 5ml of peptone water was added and keep it for 6hours in incubator shaker at 37°C. After 6 hour, samples were enriched and then streaked on specific media like XLD, MacConkey and EMBagar the isolates were further identified on the basis of cultural, morphological and biochemical tests (Whitman, 2015, Mallikarjun and Gundappa 2016). The dehydrated readymade media were obtained from Himedia Limited, Mumbai India. The various morphological characteristics of isolates viz., colony morphological (Colour, Shape, Arrangement and Gram staining) were observed and analysed. The various biochemical tests like Indole test, Methyl Red, Voges-Proskauer test, Citrate Utilization test and triple sugar iron
test (TSI) were done, for identification of isolates as per the procedure described earlier (Poonam, 2013).

Antibiotic susceptibility testing

The antibiotic susceptibility of the isolated *E. coli*, *Salmonella* and *Shigella* against the antimicrobials was determined by Kirby-Bauer disc diffusion method in Mueller-Hinton agar (Bauer et al., 1996). The inoculums were prepared at a density adjusted to a 0.5 McFarland turbidity standard solution. Three to five well isolated colonies of isolated bacteria were transferred into 5mL Brain Heart Infusion broth (BHI, Oxoid) and incubated at 37°C for 18 to 24 hr. The overnight broth culture was diluted using sterile distilled water to a turbidity equivalent to 0.5 McFarland standard (approximately 10⁸ cfu/ml) and inoculated onto the entire surface of a dried Mueller-Hinton Agar (MHA, Oxoid) plate creating a lawn of the culture. The inoculated Muller Hinton Agar plates were allowed to dry at room temperature before placing the antibiotic discs followed by incubation. After incubation for 24 hours at 37°C, the diameter (in mm) of the zone around each disk was measured and interpreted in accordance with the Clinical and Laboratory Standards guidelines as described previously (CLSI, 2011).

The antibiotic resistant of bacterial isolates were assessed against the following antiboitucs, Ampicillin (10 μg), Gentamicin (10 μg), Ceftriaxone (30 μg), Ciprofloxacin (5 μg), Norfloxacin(30μg), Imipenem (30μg), Vancomycin (30μg), Trimethoprim-Sulfamethoxazole (25μg), Piperacillin (10μg), Amoxicillin (10μg), Chloramphenicol (10μg), Nalidixic acid (30μg).

Minimum inhibition concentration (MIC) assay

Minimum concentration of each antibiotic inhibitory to the growth of 50 per cent (MIC₅₀) and 90 per cent (MIC₉₀) of each isolates were determined on MHA in a 90 mm plate. The agar contained concentration ranges of the antibiotics prepared by two-fold serial dilution according to the National Committee for Clinical Laboratory Standards (NCCLS, 1999).

RESULTS AND DISCUSSION

A total 940 samples (both fruits and vegetables) were collected from supermarket in and around Kalaburagi (Karnataka, India) of which 390 were (23.84%) fruits of different verities and 550 (35.27%) were mixture of different types of vegetables. Among 390 fruits and 550 vegetable samples, 93 (23.84%) and 194 (35.27%) were showed cultural positivity for the pathogenic bacteria respectively (Table 1). The number of isolated microbial colonies from different fruits and vegetables were represented in (Table 1) and (Fig 1 and 2).

Further, out of 93 positive samples, it is identified that 36.56% (34 out of 93) of *Salmonella* spp., 7.53% (7 out of 93) of *Shigella* spp. and 55.91% (52 out of 93) of *E. coli* were isolated from fruit samples. Similarly, 35.60% of *Salmonella* spp., 25.26% of *Shigella* spp. and 38.14% *E. coli* was isolated from vegetable samples (Table 1). This clearly indicates that high level of pathogenic bacteria contamination found in food samples. Among the three pathogenic bacteria, the *E. coli* was found to be more prevalent (13.49%) when compared to that of *Salmonella*(11.24%) and *Shigella* (5.99%) in the present study.

The antibiotic sensitivity for the three bacterial isolates was assessed using different antibiotics. High resistance for *E. coli* spp. *Salmonella* spp. and *Shigella* spp. to nalidixic acid (86.50%), ciprofloxacin (86.66%) and vancomycin (80.35%) was observed respectively. However, respond *E. coli*, *Salmonella* and *Shigella* spp., showed a resistance to

![Fig 1: Plate showing the Bacterial isolates (A, E.coli, B, Salmonella and C, Shigella spp., on XLD agar media).](image1)

![Fig 2: Plate showing the differential Biochemical test (Triple Sugar Iron test) for Bacterial isolates (E.coli, Salmonella and Shigella spp.).](image2)
Microbiological Evaluation and Antibiotic Susceptibility Pattern of Bacterial Isolates Associated with Some Contaminated ... different antibiotics at different percentage level (Table 2, 3) and (Fig 3a and b).

We further evaluated the MIC values for *E. coli*, *Salmonella* and *Shigella* isolates. Among the three isolates, *E. coli* has shown highest MIC value to gentamicin (4-16 μg/ml). Astonishingly, *Salmonella* has the higher MIC value to ceftriaxone (8-64 μg/ml) and imipenem (4-16 μg/ml). Similarly, *Shigella* isolates were shown highest to ampicillin (8-32 μg/ml) and nalidixic acid (13-32 μg/ml), when compared to that of other antibiotics (Table 4).

This study provides clear evidence of contamination of fresh Fruits and vegetables from common food-borne pathogens including *E. coli*, *Salmonella* and *Shigella* spp are important food-borne pathogen and its prevalence in fresh food poses a threat to human. The increase in demand and consumption of fruits and vegetables has resulted in a rise in food-borne related illnesses and outbreaks. Fresh fruits and vegetables have been reported to anchor potential food-borne pathogens including *E. coli*, *Salmonella* and *Shigella* spp., (Malikarjun and Gundappa, 2016; Harris et al., 2003; CDC, 2009). *E. coli* has showed (54.55%) to Nalidixic acid, similar Ampicillin and gentamicin (36.36 %,) Amoxicillin and ciprofloxacin were only (9.09%) [29], *Salmonella* showed (42%) to Ampicillin and *Shigella* (79%) (Biniam and Mogessie, 2010). The previous study was conducted on microbiological contamination in the Dhaka metropolis Bangladesh mainly for *E. coli*, it was observed that the % of ABR for trimethoprim-sulfamethoxazole combination as (46.03%) compared to the past results of % ABR for same combination on *E. coli*. Similarly, it was found a steep decline in % of ABR for amoxicillin from (46.2%) (past research) to (35.71%) (as per our results) similarly, indicating rise in microbial resistance to this antibiotic. However, there is a

![Fig 3a: Antibiotic Sensitivity Pattern of Bacterial isolates.](image1)

![Fig 3b: Antibiotic Resistance Pattern of Bacterial isolates.](image2)
Microbiological Evaluation and Antibiotic Susceptibility Pattern of Bacterial Isolates Associated with Some Contaminated

Table 3: Multiple drug resistance of E.coli, Salmonella and Shigella isolates isolated from fruits and vegetables.

Number of resistant E. coli isolates(n=49)	Drugs resisted
7	AMP/CEF/IPM
3	AMP/ NB/VAN/ AMO/
9	AMP/GEN/CEF/NALI
4	AMP/CEF/ NB/ TMP-SLU/AMO
6	AMP/CIP/ NB/VAN/P/IP/NALI
8	AMP/GEN/CEF/VAN/P/IP/CHL

Number of resistant Salmonella isolates(n=28)	Drugs resisted
8	AMP/CIP/ AMO
1	CIP/ NB/TMP-SLU
2	GEN/CIP/PM/CHL
6	GEN/CEF/CHL/NALI
7	AMP/CEF/CIP/IPM/VAN/CHL

Number of resistant Shigella isolates(n=6)	Drugs resisted
1	CIP/VAN/NALI
1	AMP/CEF/VAN
1	AMP/VAN/NALI
2	AMP/NB/ IPM/VAN

Multiple drug resistance (MDR) was seen in E. coli 49 (38.88%), Salmonella 28 (26.66%) and Shigella 6 (10.71%), isolates respectively.

Table 4: Minimum inhibitory concentrations (MICs) of antimicrobial agents for E.coli, Salmonella and Shigellapp.

Antimicrobial drugs	E.coli	Salmonella	Shigella			
	MIC₅₀ (µg/ml)	MIC₉₀ (µg/ml)	MIC₅₀ (µg/ml)	MIC₉₀ (µg/ml)	MIC₅₀ (µg/ml)	MIC₉₀ (µg/ml)
Ampicillin	8-32	16	32	8-32	16	32
Gentamicin	4-16	8	64	4-16	8	32
Ceftriaxone	8-16	16	32	8-64	16	64
Ciprofloxacin	1-2	2	4	1-4	3	9
Norfloxacin	4-8	8	16	8-16	16	32
Imipenem	1-4	2	4	4-16	16	64
Vancomycin	4-32	8	16	2-16	4	8
Trimethoprim-	2/38			2/38		
Sulfamethoxazole	2/38	4/76	8/156	-4/76	4/76	8/152
Piperacillin	4-16	8	16	4-16	16	21
Amoxyccin	4-8	8/16	32	13-32	16	32
Chloramphenicol	2-8	4	8	8-16	16	32
Nalidixic acid	8-32	16	32	13-32	8	16

‘steep rise’ in % of ABR for antibiotics such as impenem (from 0% to 19.84%), gentamicin (from 0% to 32.53%) and ceftriaxone (from 0% to 69.04%) confirmed by these results. Therefore, our results indicating that the microbe i.e. E coli have acquired ‘less antibiotic resistance to the above series of antibiotics’ (Khatib et al., 2015).

A number of surveys have attempted to detect E. coli O157:H7 in fresh fruits and vegetables, in a study that included 3,200 vegetables, no O157:H7 positive sample was detected and in another survey of 890 fruits and vegetables, this pathogen could not be found either (Johannessen et al., 2000). Salmonella resistance against ampicillin (55.5%-31.4%), gentamicin (0%-5%), ciprofloxacin (6.5%-13.7%), vancomycin (100%-100%), trimethoprim-sulfamethoxazole (51%-51%), chloramphenicol (3.2%-0%) and nalidixic acid (0%-5.9%), against isolates from cabbage and spinach respectively (Isoken, 2015). Salmonellapp. showed resistance against ampicillin (100%), gentamicin (0%), ciprofloxacin (50%), trimethoprim-sulfamethoxazole (6.3%), Amoxyccin (81.3%), chloramphenicol (6.3%) and nalidixic acid (12.5%) (Najwa et al., 2015). E.coli, Salmonella and Shigella spp., showed resistance against, gentamicin (60%), etc.
ciprofloxacin (0%), Norfloxacin (10%), amoxicillin (70%), chloramphenicol (30%), Salmonella gentamicin (7.7%), ciprofloxacin (0%), Norfloxacin (0%), amoxicillin (77%), chloramphenicol (92.3%) and Shigella showed resistance against gentamicin (0%), ciprofloxacin (0%), Norfloxacin (0%), amoxicillin (30%), chloramphenicol (0%), (Poonam, 2013). E. coli, Salmonella and Shigella spp., showed resistance against ampicillin (25%), ceftriaxone (67%), ciprofloxacin (60%), trimethoprim-sulfamethoxazole (20%), piperacillin (30%), amoxicillin (33%), chloramphenicol (45%), nalidixic acid (85%), Salmonella ampicillin (100%), gentamicin (0%), ceftriaxone (0%), ciprofloxacin (100%), trimethoprim-sulfamethoxazole (0%), amoxicillin (0%), chloramphenicol (0%), nalidixic acid (0%), Shigella ampicillin (100%), gentamicin (0%), ceftriaxone (0%), ciprofloxacin (0%), vancomycin (100%), trimethoprim-sulfamethoxazole (0%), amoxicillin (100%), chloramphenicol (100%), nalidixic acid (100%), (Nour et al., 2013). E. coli has been used as the reference indicator for faecal contamination and a number of surveys have reported its isolation from fresh fruits and vegetables (Jay, 2000). However, in the present study E. coli was found in (26.8%) of conventional fresh vegetables in Lebanon, this result is consistent with the prevalence of (25%) this bacterium in ready-to-use lettuce (Soriano et al., 2000).

The previous microbiological studies have illustrated to evaluate microbiological safety in various regions of Vidarbha through various ‘antibiotic-microbial assays’. In the present study, it was been analyzed and compared antibiotic resistance (ABR) property in microbes such as ‘E. coli, Salmonella and Shigella’ using several antibiotics. It was found that the antibiotic resistance of E.coli to norfloxacin is almost (36.5%) when compared to the past studies performed by others for studying same antibiotic resistance using same norfloxacin, where it was observed that only (10%) of antibiotic resistance in E.coli. Similarly, previous reportshave got high antibiotic resistance for amoxicillin (70%)but it was observed the ‘antibiotic resistance for same amoxicillin’ lesser % of resistance (35.71%). Similarly, the other researchers have observed antibiotic resistance using gentamicin (60%)but we found lesser % of resistance (32.53%), where it was observeda huge variation in this antibiotic-resistance property for gentamicin. However, it was nearly ABR for chloramphenicol is (23.80%) that slightly lesser than other researcher’s result for ABR, where other reportsgot (30%) whereas in present study ABR value (53.93%) for ciprofloxacin compared to the past research results for same antibiotic, where ABR value was (0%). Here, it was clearly observed more ABR for ciprofloxacin compared to the past results (Soriano et al., 2000).

It was observed ABR for norfloxacin on Shigella spp., approx. (26.78%) compared to the past results by other researchers where it was observed only 0% of ABR on same species for same antibiotic. Similarly, we have observed lesser percentage of ABR for amoxicillin approx. (3.57%) when compared to the past researcher’s result of ABR, which is nearly (70%) on same Shigella species. There is a huge variation in ABR results that could be due to the microbial ability to acquire resistance to amoxicillin antibiotic. It was found that the percentage of ABR for gentamicin increased from 0% (as per past research) to (3.57%) (as per our results) whereas the percentage of ABR is nearly same and unchanged (0% for both past and our present work) for chloramphenicol on same Shigella species. Therefore, there is a ‘steep rise’ in percentage of ABR for ciprofloxacin from percentage (as per past research) to (17.85%) (as per results) (Soriano et al., 2000).

We have significantly observed that the percentage of ABR for norfloxacin on Salmonella spp. steeply ‘reduced’ from 30.8% (past research) to (4.76%) (as per our results) whereas the percentage of ABR for ciprofloxacin steeply ‘increased’ from percentage (past research) to (44.76%) as per our results. Similarly, it is clearly observed with our results that the % of ABR for amoxicillin is (3.80%), where past researchers have got (69.2%) indicating ‘high microbial resistance’ to this antibiotic. In the meanwhile, the percentage of ABR results for gentamicin is (9.52%) whereas the past research has illustrated that the percentage ABR for same antibiotic is (84.6%). It was observed that percentage ABR for chloramphenicol on Salmonella spp. (79.40%) indicating a steep decline in ABR compared to the past results (92.3%). Therefore, the microbial resistance patterns for this species on these antibiotics are quiet variable (Soriano et al., 2000; Poonam, 2013).

The present study provided valuable information regarding pathogenic bacteria species such as, E. coli, Salmonella and Shigella contamination of fruits or vegetables collected from various markets in Kalaburagi region. This data can facilitate the effective assessment of risk of contamination by E. coli, Salmonella and Shigella spp., in consumable non-processed fruits or vegetables in Kalaburagi region suggesting potential public health hazard.

CONCLUSION
Antibiotic resistance patterns among the three major Enterobacteriaceae pathogens such as, E. coli, Salmonella spp. and Shigella spp., isolates from fruits, vegetable samples in Kalaburagi region has been evaluated and analyzed. Multi drug resistance (MDR) status has been found to be more prevalent predominantly among E. coli isolates than the other two pathogens thus calls for monitoring hygienic conditions in growing, processing and marketing of the consumable fruits and vegetables to prevent the risks of human health.

Conflict of interest statement
We declare that no conflict of interest.

Authors contribution
First author is responsible for carrying out the research work, data analysis and optimization of experimental work and Corresponding author is responsible for research planning executing and providing valuable inputs and in writing manuscript.
REFERENCES

Akinyele, B.J and Akinkunmi, C.O. (2012). Fungi associated with the spoilage of berry and their reaction to magnetic field. Journal of Yeast and Fungal Research, 3(4): 49-57.

Bauer, A.W., Kirby, M., Sherris, J.C. and Turck, M. (1966). The American Journal of Clinical Pathology, copyright@1966 by the Williams and Wilkins Co. 45(4).

Beuchat, L.R. (1995). Pathogenic microorganisms associated with fresh produce. Journal of Food Protection. 59: 204-216.

Biniam, G. Mogessie, A. (2010). Microbial load prevalence and antibiogram of Salmonella and Shigella in lettuce and green peppers. Ethiopian Journal of Health Sciences. 20: 41-48.

Bryan, F.L, Jermini M, Schmitt R, Chilufya EN, Mwanza M, Matoba A, Mlume E, Chibiya H. (1997). Hazards associated with holding and reheating foods at vending sites in a small town in Zambia. Journal of Food Protection. 60: 391-398.

Buck, J.W, Walcott R.R, Beuchat L.R. (2003). Recent trends in microbiological safety of fruits and vegetables. Plant Health Progress. 10: 1094.

Cappuccino, J.G., Sherman, N. (2005). Microbiology: A Laboratory Manual. New York. pp. 125-79.

CDC. (2009). Surveillance for food-borne disease outbreaks-United States, Centers for Disease Control and Prevention. Morb Mortal Weekly Report. 58: 609-15.

CLSI. (2011). Clinical and Laboratory Standard Institute Standards Guidelines.

Dahiru, M., Enabulele, O.I., Musa, J., Sharfadi, R.S., Ibrahim, A., Yahaya, H. (2015). Antibiogram of pre-harvest Escherichia coli 0157:H7 on cabbage irrigated with wastewater, International Journal of Public Health Research. 3(1): 44-48.

Davis, M.A., Hancock, D.D., Besser, T.E, Rice, D.H., Gay, J.M., Gay, C., Gearhart, L., Difiacomo, R. (1999). Changes in antimicrobial resistance among Salmonella enterica serovar. Infectious Diseases. 5: 802-806.

De Rover, C. (1998). Microbial Safety Evaluations and Recommendation on Fresh Produce. Food Control. 9(6): 321-347.

Fain, A.R. (1996). A review of the microbiological safety of fresh salads. Dairy Food Environmental Sanitation Journal. 16: 146-149.

Hamilton, A.J, Stagnitti F, Premier R., Boland, A.M., Hale G. (2006). Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Applied and Environmental Microbiology. 72: 3284-3290.

Harris, L.J., Farber J.N., Beuchat, L.R., Parish, M.E., Suslow, T.V., Garrett, E.H. and Basta, F.F. (2003). Outbreaks associated with fresh produce: Incidence, growth and survival of pathogens in fresh and fresh cut produce. Comprehensive Reviews in Food Science and Food Safety. 2: 78-141.

Hedberg, C.W., MacDonald, K.L., Osterholm, M.T., (1994). Changing epidemiology of food-borne diseases: A Minnesota perspective. Clin. Infect. Dis. 18: 67-682.

Isoken, H. (2015). Igbionosa Biofilm formation of Salmonella species isolated from fresh cabbage and spinach. Journal of Applied Science and Environmental Management. March, Environmental Man.

Jay, J. (2000). Modern food microbiology, 6th ed. Aspen Publishers, Gaithersburg.

Johannessen, G., Loncarevic, S. and Kruse, H. (2000). Bacteriological analysis of fresh produce in Norway. International Journal of Food Microbiology. 77: 199-204.

Khatib, A. Olama Z and Khawaja G.1. (2015). Shiga Toxin-Producing E. coli (STEC) Associated with Lebanese Fresh Produce, International Journal of current Microbiology and Applied Sciences. 4(2): 481-496.

Kilonzo, N.A., Rotich, E. and Thompson, C. (2009). Antibiotic-resistant bacteria isolated from organic and conventional fresh produce. National Institute of Food Technology.

Kumar, K., Gupta, S.C., Baidoo, S.K., Chander, Y and Rosen, C.J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of Environmental Quality. 34: 2082-2085.

Liu, R.H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical Nutrition. 78(3): 517-520.

Mahima, Verma, A.K., Tiwari, R., Karthik, K., Chakraborty, S., Deb, R. and Dhama, K. (2013). Nutraceuticals from fruits and vegetables at a glance: A review. Journal of Biological Sciences. 13(2): 38-47.

Mallikarjun Gundappa and Gaddad, M. (2016). Prevalence of Enteric Pathogens In The Fruits of Super Markets In Kalaburagi Region, Karnataka, India. International Journal of Agriculture and Food Science. 6(1): 1-5.

Mallikarjun Gundappa and Gaddad, M. (2016). Prevalence of Salmonella, Shigella and E. coli in vegetables of various markets in Kalaburagi (India). Indian Journal of Natural Sciences. 6(35): ISSN: 0976-0997.

Martin, D.L., Mead, P.S, Suarez, L., Shuster, L. (2003). Food related illness and death in the United States. Emerging Infectious Diseases. 5: 607-625.

Najwa, M.S., Rukayadi, Y., Ubong, A., Loo, Y.Y., Chang, W.S., Lye, YL et al. (2015). Quantification and antibiotic susceptibility of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in raw vegetables (ulam), International Food Research Journal. 22(5): 1761-1769.

National Committee of Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing: eighth international supplement. (1999). Wayne, PA: National Committee for Clinical Laboratory Standards, (NCCLS document no. M100-S8).

Nour, F., Mrityunjoy, A., Rashed, N., Khatib, A. Olama Z and Khawaja G.1. (2015). Shiga Toxin-Producing E. coli (STEC) Associated with Lebanese Fresh Produce, International Journal of current Microbiology and Applied Sciences. 4(2): 481-496.

National Committee of Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing: eighth international supplement. (1999). Wayne, PA: National Committee for Clinical Laboratory Standards, (NCCLS document no. M100-S8).

Pandey, K.B. and Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2: 270-8.

Poonam, U. Sharma, (2013). Bacteriological analysis of street vended fruit juices available in Vidarbha. International Journal of Current Microbiology and Applied Sciences. 2(5): 178-183.
Ray, B and Bhunia, A.K. (2007). Fundamental Food Microbiology. 4th edn. CRC Press, USA. 492.
Robinson, R.K, Batt, C.K, Patel, C.D, (2000). Raw fruits and vegetables as sources foodborne diseases. Encyclopedia of food microbiology, Academic Press, San Diego. Pp. 706-788.
Soriano, J., Rico, M., Molto, J. (2000). Assessment of the microbiological quality and wash treatments of lettuce served in University restaurants. International Journal of Food Microbiology. 58: 123-128.
Tauxe, R., Kruse, H., Hedberg, C., Potter, M., Madden, J., Wachsmuth, K. (1997). Microbial hazards and emerging issues associated with produce. A preliminary report to the national advisory committee on microbiological criteria for foods. Journal of Food Protection. 60: 1400-1408.
Whitman, W.B. (2015). Bergey's manual of systematic of Archaea and Bacteria. New York: Wiley.
World Health Organization (WHO). (2008). Microbiological hazards in fresh fruits and vegetables. Microbiological risk assessment series.