Constants in Markov’s and Bernstein inequality on a finite interval in \mathbb{R}

Grzegorz Sroka

Received: 3 August 2021 / Revised: 14 January 2022 / Accepted: 7 July 2022 / Published online: 1 October 2022
© The Author(s) 2022

Abstract
In this paper we demonstrate the constants in the pointwise Bernstein inequality

$$|P^{(\alpha)}(x)| \leq \left(\frac{2n}{\sqrt{(x-a)(b-x)}} \right)^{\alpha} ||P||_{[a,b]},$$

for the $\alpha-$th derivative of an algebraic polynomial in $L^\infty-$norms on an interval in \mathbb{R}, where $\alpha \geq 3$. This result was obtained using the tools of theory of pluripotential and we apply it to get the main result which is a new generalization of V. A. Markov’s type inequalities

$$||P^{(\alpha)}||_p \leq C^{1/p} \left(\frac{2}{b-a} \right)^{\alpha} ||T_n^{(\alpha)}||_{[-1,1]} n^{2/p} ||P||_p,$$

for the $\alpha-$th derivative of an algebraic polynomial in L^p norms, where $p \geq 1$. In particular, we show that for any $\alpha \geq 3$ the constant C in the V. A. Markov inequality satisfies the condition $C \leq 8 \left(\frac{32 \cdot 3,94741 \cdot \pi M a^2}{3 \sqrt{3}} \right)^{1/p}$.

Keywords Bernstein inequality · V. A. Markov’s inequality · Siciak’s extremal function · Constant in polynomial inequality

1 Introduction

Let $\mathbb{R}[x]$ be the ring of algebraic polynomials in one real variable and $\mathbb{R}_n[x] = \{ P \in \mathbb{R}[x] : \deg P \leq n \}$. We set

\[\mathbb{R}_n[x] = \{ P \in \mathbb{R}[x] : \deg P \leq n \} \]
\[\|P\|_{[a,b]} := \max_{x \in [a,b]} |P(x)|, \quad P \in \mathbb{R}[x], \quad [a, b] \subset \mathbb{R}. \]

\[\|P\|_p = \|P\|_{L^p([a,b])} := \left(\int_a^b |P(x)|^p dx \right)^{1/p}, \quad 1 \leq p < \infty. \]

The Bernstein inequality (cf. [25]) holds for the interior points of the interval \([a, b]\) and is of the following form

\[|P'(x)| \leq \frac{n}{\sqrt{(x-a)(b-x)}} \cdot \|P\|_{[a,b]} \quad (1) \]

The inequality is exact in the sense that for any fixed point \(x \in (a, b)\) as \(n \to \infty\) the formula (cf. [25])

\[\sup_{P \in \mathbb{R}[x], \ p \neq 0} \frac{|P'(x)|}{\|P\|_{[a,b]} \cdot \sqrt{(x-a)(b-x)}} = n(1 + o(1)) \]

is satisfied.

For sets on the real line the general form of the Bernstein’s inequality is given in (cf. [7]) and (cf. [36–38]). Let \(E \subset \mathbb{R}\) be a compact set, then we get

\[|P'(x)| \leq n\pi \omega_E(x) \cdot \|P\|_E, \quad x \in \text{Int}(E), \quad (2) \]

for algebraic polynomials \(P\) of degree at most \(n = 1, 2, \ldots\) Let \(E \subset \mathbb{R}\) and \(\omega_E(x)\) be the density of \(\mu_E\) with respect to Lebesgue measure wherever it exists. The measure \(\mu_E\) is called the equilibrium measure of \(E\) (cf. [18, 38]). In a special case when \(E = [-1, 1]\) the inequality (1) becomes the original Bernstein inequality:

\[|P'(x)| \leq \frac{n}{\sqrt{1-x^2}} \cdot \|P\|_{[-1,1]} \quad (3) \]

because \(\omega_{[-1,1]}(x) = \frac{1}{\pi \sqrt{1-x^2}}\).

Let us recall some well known results on Markov’s inequality.

By the Markov theorem (cf. [22]) we obtain that for any polynomial \(P\)

\[\|P'\|_{[a,b]} \leq \frac{2}{b-a} n^2 \cdot \|P\|_{[a,b]}. \quad (4) \]

For the Chebyshev polynomial of the form

\[T_n(x) = \cos \left[n \arccos \left(\frac{2x - a - b}{b - a} \right) \right] \]

we get an equality.
V. A. Markov (cf. [24], p.141.) generalized A. A. Markov’s inequality to derivatives of an arbitrary order $P^{(\alpha)}(x)$. He proved that for any P and any $\alpha = 1, \ldots, n$

$$\|P^{(\alpha)}\|_{[a,b]} \leq \left(\frac{2}{b-a}\right)^{\alpha} \|T_n^{(\alpha)}\|_{[-1,1]} \cdot \|P\|_{[a,b]} = \left(\frac{2}{b-a}\right)^{\alpha} T_n^{(\alpha)}(1) \cdot \|P\|_{[a,b]}$$

$$= \left(\frac{2}{b-a}\right)^{\alpha} \cdot \left(\frac{(n^2-1^2) \cdots (n^2-(\alpha-1)^2)}{(2\alpha-1)!!}\right) \|P\|_{[a,b]}.$$ (5)

Furthermore, in this case, the extremal polynomial is the Chebyshev polynomial $T_n(x)$.

Inequality (4) was generalized by Schwab (cf. [23, 29]) who proved that for a polynomial P of total degree n, on a finite interval, we have

$$\|P'\|_{L^2} \leq 2\sqrt{3} \frac{n^2}{|b-a|} \|P\|_{L^2}.$$

The exact constant in the univariate Markov inequality in L^2–norm was investigated in (cf. [27]). The authors of this article proved that for any polynomial P of total degree $n = 1, 2, 3, 4$, :

$$\|P'\|_{L^2} \leq \frac{2\sqrt{C_n}}{b-a} \|P\|_{L^2},$$

where $C_1 = 3$, $C_2 = 15$, $C_3 = \frac{45+\sqrt{1605}}{2}$ and $C_4 = \frac{105+3\sqrt{805}}{2}$.

G. Sroka (cf. [35]) showed the following important result:

$$\|P^{(\alpha)}\|_{L^p(-1,1)} \leq (C_\alpha (p+1)\alpha^2)^{1/p} \|T_n^{(\alpha)}\|_{[-1,1]} \|P\|_{L^p(-1,1)}, \quad P \in \mathbb{R}_n[x],$$

where constants C_α are bounded and $T_n(x) = \cos(n \arccos x)$ ($x \in [-1, 1]$) are the Chebyshev polynomials of the first kind. Furthermore, he proved that $C_\alpha \leq \frac{12}{\sqrt{2}} e^2$ for $\alpha \geq 3$.

Recently, M. Baran and P. Ozorka (see P. Ozorka’s PhD thesis) or (cf. [1]) obtained, applying different methods, the inequality:

$$\|P^{(\alpha)}\|_{L^p(-1,1)} \leq B_p \|T_n^{(\alpha)}\|_{L^p(-1,1)} \frac{n^2}{\alpha} \|P\|_{L^p(-1,1)},$$

which is sharp for $\alpha \geq 3$ with B_p independent of n, and $P \in \mathbb{R}_n[x]$, for $1 \leq p \leq 2$.

It is worth mention that the problem of the V. Markov inequality in L^p norms is a special case of the general question of calculating the constant $C(p, q, \alpha, n)$ in

$$\|P^{(\alpha)}\|_{L^p([-1,1])} \leq C(p, q, \alpha, n) \|P\|_{L^q([-1,1])}, \quad P \in \mathbb{R}_n[x].$$

This research area was considered by many mathematicians, e.g., Glazyrina (cf. [17]), Simonov (cf. [33]), L. Białas-Cież and G. Sroka (cf. [11]), G. Sroka (cf. [35]) and M. Baran, P. Ozorka (cf. [1]).
In (cf. [14]) P. Borvein and V. Totik extended Markov and Bernstein inequalities (for \(\alpha = 1 \)) to arbitrary subsets of \([-1, 1]\) and \([-\pi, \pi]\), respectively. In (cf. [15]) P. Borwein generalized the inequality (1) and (3) on disjoint intervals. In addition, in papers (cf. [26, 34]), an estimation of the constant in the Markov’s inequality for a simplex using minimal polynomials were introduced as a novel benchmark problem. Markov’s-type polynomial inequalities (or inverse inequalities), as well as Bernstein inequalities, are often found in many areas of applied mathematics, including popular numerical solutions of differential equations. Proper estimates of optimal constants in both types of inequalities can help to improve the bounds of numerical errors. More information on this topic can be found in the papers by M. Oszust, G. Sroka (cf. [26]), M. Baran and L. Biaś-Cież (cf. [3]) and references.

2 The crucial tools

First let us recall some well known theorems and examples.

Siciak’s ekstremal function on a compact subset \(E \) of \(\mathbb{C} \) is defined by:

\[
\Phi(E, z) := \sup \left\{ \frac{|P(z)|^{1/n}}{\|P\|_E^{1/n}} : P \in \mathbb{R}_n[x], \deg P = n \geq 1, P|_E \not\equiv 0 \right\}, \ z \in \mathbb{C},
\]

\(\| \cdot \|_E \) is the maximum norm on \(E \).

We refer to (cf. [4–6, 8, 9, 12, 19, 30–32]) for definitions and basic properties connected with this important tool in pluripotential theory and its applications to approximation theory.

Theorem A (cf. [4, 19, Lemma 5.4.2]) For any \(z \in \mathbb{C} \), we have such a formula for Siciak’s extremal function in this case on the interval \([-1, 1]\):

\[
\Phi([-1, 1], z) = h \left(\frac{1}{2} |z - 1| + \frac{1}{2} |z + 1| \right),
\]

(6)

where \(h(t) = t + \sqrt{t^2 - 1} \) for \(t \geq 1 \).

Before we continue, we remind Cauchy’s inequality.

Let \(\tilde{D}(x_0, r) \) be a closed circle centered at the point \(x_0 \) and radius \(r > 0 \).

Theorem B Let \(P \in \mathbb{R}_n[x] \). Then for any \(x_0 \in \mathbb{C} \) and for \(1 \leq \alpha \leq n, r > 0 \)

\[
\left| P^{(\alpha)}(x_0) \right| \leq \alpha! \| P \|_{\tilde{D}(x_0, r)} \frac{1}{r^\alpha}.
\]

(7)

We will use the following well known Bernstein–Walsh’s inequality.

Proposition 1 For any \(x_0 \in \mathbb{C} \), \(P \in \mathbb{R}_n[x] \), and \(r > 0 \)

\[
\| P \|_{\tilde{D}(x_0, r)} \leq \left(\sup_{\|z - x_0\|_\infty \leq r} \Phi\left([a, b], z\right) \right)^n
\]
\[\| P \|_{[a,b]} = \left(\sup_{\| z-x_0 \|_\infty \leq r} \Phi \left(\left[-1, 1 \right], \frac{2}{b-a} z - \frac{b+a}{b-a} \right) \right)^n \| P \|_{[-1,1]} . \] (8)

Observation 1 Considering the inequality: \(\Phi([−1, 1], z) \leq \Phi(\bar{B}, z) \) (cf. [8], Proof of theorem 1.3, the fact (2.7)), we can notice that in case of a closed Euclidean unit ball \(\bar{B} \subset \mathbb{R}^2 \) the result concerning Bernstein inequality will be the same as in case of interval \([−1, 1]\).

Theorem 1 For any \(x_0 \in (a, b) \) and \(r \in \mathbb{R}_+ := (0, +\infty) \), we have:

\[\sup_{\| z \|_\infty \leq r} \Phi ([a, b], z + x_0) \leq h \left(1 + \frac{\sqrt{r^2}}{(x_0-a)(b-x_0)} \right) \]

\[= \frac{r}{\sqrt{(x_0-a)(b-x_0)}} + \sqrt{1 + \frac{r^2}{(x_0-a)(b-x_0)}} . \] (9)

Proof From (6) it follows that:

\[\sup_{\| z \|_\infty \leq r} \Phi ([a, b], z + x_0) = \sup_{\| z \|_\infty \leq r} h \left(\frac{1}{b-a} |z + x_0 - b| + \frac{1}{b-a} |z + x_0 - a| \right) . \]

We denote

\[L = \frac{1}{b-a} |z + x_0 - b| + \frac{1}{b-a} |z + x_0 - a| \]

\[= \frac{1}{b-a} \sqrt{(x+x_0-b)^2 + y^2} + \frac{1}{b-a} \sqrt{(x+x_0-a)^2 + y^2} \]

for \(z = x + iy \). If \(|z| \leq r \) then \(x^2 + y^2 \leq r^2 \).

Hence we get \(L \leq \frac{1}{b-a} \sqrt{r^2 + 2x(x_0-b) + (x_0-b)^2} + \frac{1}{b-a} \sqrt{r^2 + 2x(x_0-a) + (x_0-a)^2} \). Let

\[f(x) = \frac{1}{b-a} \sqrt{r^2 + 2x(x_0-b) + (x_0-b)^2} + \frac{1}{b-a} \sqrt{r^2 + 2x(x_0-a) + (x_0-a)^2} \]

Then \(f'(x) = \frac{1}{b-a} \left(\frac{x_0-a}{\sqrt{(x_0-a)^2 + 2(x_0-a)x + r^2}} + \frac{x_0-b}{\sqrt{(x_0-b)^2 + 2(x_0-b)x + r^2}} \right) \).

If we solve the equation \(f'(u) = 0 \), we obtain \(u = \frac{(a+b-2x_0)r^2}{2(a-x_0)(b-x_0)} \).

We observe that the domain of the function \(f \) (for \(x_0 \in (a, b) \) and \(r > 0 \)) is the interval \(\left[\frac{-r^2-(x_0-a)^2}{2(x_0-a)}, \frac{-r^2-(x_0-b)^2}{2(x_0-b)} \right] \). Thus if \(u \) belongs to the domain of \(f \), then

\[f \left(\frac{(a+b-2x_0)r^2}{2(a-x_0)(b-x_0)} \right) = 1 + \frac{r^2}{(x_0-a)(b-x_0)} \]

for \(x_0 \in (a, b) \).
It is easy to check that the values of the function \(f \) at the endpoints of the interval are
\[
\inf_{x_0 \in (a, b)} \frac{x_0^2 + r^2 - ab + x_0 (a+b)}{(a-b)(x_0-a)}
\]
respectively and for \(x_0 \in (a, b) \) we have
\[
\sqrt{1 + \frac{x_0^2 + r^2 - ab + x_0 (a+b)}{(a-b)(x_0-a)}} \geq 0
\]
Combining the last inequality with (11) for \(r = t \sqrt{(x_0-a)(b-x_0)} \) in (9), we have
\[
\sup_{\|z\| \leq t \sqrt{(x_0-a)(b-x_0)}} \Phi([a, b], z) \leq t + \sqrt{1 + t^2}
\]
for every \(t > 0 \).

Combining the last inequality with (11) for \(r = t \sqrt{(x_0-a)(b-x_0)} \) we obtain the assertion of the theorem.

\[\Box\]

Theorem 2 Let \(P \in \mathbb{R}_n[x] \). Then for every \(x_0 \in (a, b) \) and for every \(1 \leq \alpha \leq n \),
\[
\left| P^{(\alpha)}(x_0) \right| \leq \alpha! \left(\frac{1}{\sqrt{(x_0-a)(b-x_0)}} \right)^{\alpha} \inf_{t > 0} \left\{ \left(t + \sqrt{1 + t^2} \right)^n t^{-\alpha} \right\} \| P \|_{[a,b]}.
\]
(10)

Proof Applying Cauchy’s (7) and Bernstein–Walsh’s (8) inequalities, we get
\[
\left| P^{(\alpha)}(x_0) \right| \leq \frac{\alpha!}{\sqrt{\pi}} \left(\sup_{\|z-x_0\| \leq r} \Phi([a, b], z) \right)^n \| P \|_{[a,b]}.
\]
(11)

Notice that putting \(r = t \sqrt{(x_0-a)(b-x_0)} \) in (9), we have
\[
\sup_{\|z\| \leq t \sqrt{(x_0-a)(b-x_0)}} \Phi([a, b], z + x_0) \leq t + \sqrt{1 + t^2}
\]
for every \(t > 0 \).

Combining the last inequality with (11) for \(r = t \sqrt{(x_0-a)(b-x_0)} \) we obtain the assertion of the theorem.

\[\Box\]

Lemma 1 For any \(t > 0 \),
\[
\inf_{t > 0} \left\{ \left(t + \sqrt{1 + t^2} \right)^n t^{-\alpha} \right\} = \begin{cases}
2^\alpha & \text{for } \alpha = n, \\
\left(\frac{\alpha}{\sqrt{\pi}} \right)^\alpha \left(1 + \frac{\alpha}{n} \right) \left(\frac{1}{\sqrt{1 - \frac{\alpha^2}{n^2}}} \right)^n \left(\sqrt{1 - \frac{\alpha^2}{n^2}} \right)^\alpha & \text{for } 1 \leq \alpha \leq n-1.
\end{cases}
\]
Proof Let \(f(t) = \left(t + \sqrt{t^2 + 1} \right)^n t^{-\alpha} \), where \(1 \leq \alpha \leq n - 1 \). Then

\[
f'(t) = t^{-\alpha-1} \left(t + \sqrt{t^2 + 1} \right)^{n-1} \left[nt \left(1 + \frac{t}{\sqrt{t^2 + 1}} \right) - \alpha \left(t + \sqrt{t^2 + 1} \right) \right].
\]

After solving the equation \(f'(x) = 0 \) we get \(x = \frac{\alpha}{\sqrt{n^2 - \alpha^2}} = \sqrt{\frac{n}{1 - (\frac{n}{\alpha})^2}} \). Since at \(x = \frac{\alpha}{\sqrt{n^2 - \alpha^2}} \) \(f' \) changes sign from negative to positive, \(f(t) \) has a local minimum, at this point, equal to

\[
\inf_{t>0} \left\{ (t + \sqrt{1 + t^2})^n t^{-\alpha} \right\} = f \left(\frac{\sqrt{\alpha}}{\sqrt{1 - (\frac{n}{\alpha})^2}} \right) = \left(\frac{n}{\alpha} \right)^\alpha \left[(1 + \frac{\alpha}{n}) \cdot \frac{1}{\sqrt{1 - (\frac{n}{\alpha})^2}} \right]^n
\]

\[
\left(\frac{\sqrt{1 - (\frac{n}{\alpha})^2}}{\frac{n}{\alpha}} \right)^\alpha = e^{\frac{\alpha}{\alpha^2}}.
\]

Corollary 1 If \(\alpha \geq 1 \) is fixed, then \(\lim_{n \to \infty} n^{-\alpha} \left(\frac{n}{\alpha} \right)^\alpha \left[(1 + \frac{\alpha}{n}) \cdot \frac{1}{\sqrt{1 - (\frac{n}{\alpha})^2}} \right]^n \]

\[
\left(\frac{\sqrt{1 - (\frac{n}{\alpha})^2}}{\frac{n}{\alpha}} \right)^\alpha = e^{\frac{\alpha}{\alpha^2}}.
\]

Lemma 2 Let \(m(t) = t + \sqrt{1 + t^2} \). Then for any \(t \in (0, 1] \), we obtain

\[
\left(t + \sqrt{1 + t^2} \right)^{1/t} \leq e
\]

which is equivalent to the inequality \(t + \sqrt{1 + t^2} \leq e^t \), for \(t \in (0, 1] \).

Proof Let consider the following function \(f(t) = \left(t + \sqrt{1 + t^2} \right)^{1/t} - e \). Observe that the interval \((0, 1]\) is contained in the domain of the function \(f \). We prove that the function \(f \) is decreasing on the interval \((0, 1]\). To this end, \(f(t) = \left(\frac{\sqrt{1 + t^2}}{1 + t^2} \right)^{1/t} \left(t - \sqrt{1 + t^2} \ln \left(\frac{1 + t^2}{1 + t^2} \right) \right) / t^2 \sqrt{1 + t^2} \). Let define \(g(t) = t - \sqrt{1 + t^2} \ln \left(\frac{1 + t^2}{1 + t^2} \right) \). We have \(g(0) = 0 \), \(g'(t) = -\frac{t \ln \left(\frac{1 + t^2}{1 + t^2} \right)}{\sqrt{1 + t^2}} < 0 \) for \(t \in (0, \infty) \). This implies that \(f'(t) < 0 \) for \(t \in (0, 1] \), so the function \(f \) is decreasing on the interval \((0, 1]\). On the other hand, using de l’Hospital’s rule we easily see that \(\lim_{t \to 0^+} \left(t + \sqrt{1 + t^2} \right)^{1/t} = e \). Therefore \(f(t) < 0 \) for \(t \in (0, 1] \), this concludes the proof of the inequality.

Lemma 3 For any \(\alpha \geq 3 \), we have

\[
e^{\alpha + 1} < 4^\alpha.
\]

Proof As \(e < 2.8 \), therefore \(e^{\alpha + 1} < (2.8)^{\alpha + 1} \). We will prove that for \(\alpha \geq 3 \), \((2.8)^{\alpha + 1} < 4^\alpha \) which is equivalent to inequality 2. \(\left(\frac{4}{2.8} \right)^\alpha \) for \(\alpha \geq 3 \). As the
function \(f(\alpha) = \left(\frac{4}{\pi^8}\right)^\alpha \) is increasing, it suffices to show that \(2.8 < \left(\frac{4}{\pi^8}\right)^3 \) which is clearly true, because \(\left(\frac{4}{\pi^8}\right)^3 \approx 2.9. \)

\[\square \]

3 On Bernstein inequality for the line segment \([a, b] \subseteq \mathbb{R}\)

By (10) we are able to deduce the following result of this paper:

Theorem 3 Let \(P \in \mathbb{R}_n[x] \). Then for any \(x_0 \in (a, b) \) and for any \(\alpha \geq 3 \) we obtain

\[
\left| P^{(\alpha)}(x_0) \right| \leq \frac{\alpha!}{\alpha^\alpha} \left(\frac{\alpha}{n} + \sqrt{1 + \left(\frac{\alpha}{n} \right)^2} \right)^n \left(\frac{n}{\sqrt{(x_0 - a)(b - x_0)}} \right)^\alpha \| P \|_{[a,b]}
\]

\[
\| P \|_{[a,b]} \leq \left(\frac{2n}{\sqrt{(x_0 - a)(b - x_0)}} \right)^\alpha \| P \|_{[a,b]}
\]

Proof From Lemma 2 for \(\alpha \leq n \) we get

\[
\left(\frac{\alpha}{n} + \sqrt{1 + \left(\frac{\alpha}{n} \right)^2} \right)^n = \left(\frac{\alpha}{n} + \sqrt{1 + \left(\frac{\alpha}{n} \right)^2} \right)^{n/\alpha} \leq e^{\alpha/\alpha}.
\]

Hence from Theorem 2 for \(t = \alpha/n \) we get the estimates

\[
\left| P^{(\alpha)}(x_0) \right| \leq \frac{\alpha!}{\alpha^\alpha} \left(\frac{\alpha}{n} + \sqrt{1 + \left(\frac{\alpha}{n} \right)^2} \right)^n \left(\frac{n}{\sqrt{(x_0 - a)(b - x_0)}} \right)^\alpha \| P \|_{[a,b]}
\]

\[
\leq \frac{\alpha!}{\alpha^\alpha} e^{\alpha/\alpha} \left(\frac{n}{\sqrt{(x_0 - a)(b - x_0)}} \right)^\alpha \| P \|_{[a,b]}
\]

Finally, using inequality \(\alpha! < e \left(\frac{\alpha}{2} \right)^\alpha \) for any \(3 \geq \alpha \in \mathbb{N} \) and Lemma 3, we obtain

\[
\left| P^{(\alpha)}(x_0) \right| \leq \frac{\alpha!}{\alpha^\alpha} e^{\alpha/\alpha} \left(\frac{n}{\sqrt{(x_0 - a)(b - x_0)}} \right)^\alpha \| P \|_{[a,b]}
\]

\[
< \left(\frac{2n}{\sqrt{(x_0 - a)(b - x_0)}} \right)^\alpha \| P \|_{[a,b]},
\]

and the proof is complete. \(\square \)

Remark 1 In P. Borwein’s and T. Erdélyi book (cf. [13]) (p. 258-260), we can find a sketch of the proof that is a slightly weaker version of P. Bernstein’s inequality on \([-1, 1]\) for \(\alpha \)–th derivatives based on the M. A. Lachance’a argument from 1984 (cf.
His method is based on Bernstein–Szegö’s inequality and Bernstein’s inequality for trigonometric polynomials.

Remark 2 Bernstein’s pointwise inequality (cf. [13]) for \(\alpha \)-th derivatives was used in article (cf. [11]) to show V.A. Markov’s inequality in \(L^p \) norms with Jacobi’s weighs. Such an inequality was also applied in the manuscript (cf. [35]) to show the main result concerning transferring the classic V.A. Markov’s inequality into the case of integral norms. In the manuscript (cf. [28]) the authors use Bernstein’s inequality (3) to prove that Gauss-Jacobi (-Lobatto) nodes of suitable order are \(L^\infty \)-norming meshes for algebraic polynomials, in a wide range of Jacobi parameters. In (cf. [39]) it is shown that finite-dimensional univariate function spaces satisfying a Bernstein-like inequality admit norming meshes.

Remark 3 Theorem 3 is a special case of the Bernstein’s inequality for \(\alpha \)-th derivatives for convex bodies (compact sets, convex with nonempty interior) in \(\mathbb{R} \). For example, if we set \(\alpha = -b \) in the Theorem 3 then we have a central-symmetric body convex (i.e. its interior contains 0). If we assume \(0 < a < b \), in the Theorem 3 we get a non central-symmetric convex body. It is worth mention that A. Kroó and S. Révész (cf. [20]) etc. investigated Bernstein and Markov inequalities in uniform norms for convex bodies.

4 Auxiliary lemma

In this section we show a result which will be needed in the proof of the main result. A crucial idea is a factorization of operator of \(\alpha \)-th derivative from \((\mathbb{R}_n[x], || \cdot ||) \) to itself by the space \((\mathbb{R}_n[x], || \cdot ||_{[a,b]}) \).

We begin with the following inequality.

Example 1 The numerical computations carried out using Mathematica programs imply that the constant \(J \) in the inequality:

\[
\int_0^1 \left[t(1-t) \right]^{\frac{p}{2}} + n^{p\alpha} [(2\alpha - 1)!]^p \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} dt \leq J
\]

should be between 1 and 3, 94741.

Lemma 4 For each \(p \geq 1 \) such that \(p\alpha > 1 \) and for an arbitrary \(P \in \mathbb{R}_n[x] \), we have the inequality

\[
\left\| P^{(\alpha)} \right\|_p \leq B(\alpha, n, p) \left\| P \right\|_{[a,b]},
\]

where

\[
B(\alpha, n, p) := 2^{\alpha+1/p} (b - a)^{1/p-\alpha} J^{1/p}
\]
\[
\frac{n^2(n^2 - 1) \ldots (n^2 - (\alpha - 1)^2)}{[n^2(n^2 - 1) \ldots (n^2 - (\alpha - 1)^2)]^{\frac{2}{\alpha p}} \sin \left(\frac{2\pi}{\alpha p}\right)} \leq \frac{2^p}{\pi^p} \frac{(2\alpha - 1)!!}{[(2\alpha - 1)!!]^p}.
\]

Proof Let us recall that
\[
\min(A, B) \leq 2 \left[\frac{1}{A} + \frac{1}{B}\right]^{-1}, A, B > 0.
\] (12)

Applying a version of Bernstein’s inequality from Theorem 3 and V. A. Markov’s inequality (5), we get the following inequality (for \(x \in (a, b)\))
\[
\left|P^{(\alpha)}(x)\right|^p \leq \min \left[\left(\frac{2n}{\sqrt{(x-a)(b-x)}}\right)^{\alpha p}, \left(\frac{2}{b-a}\right)^{\alpha p}, \left(T_n^{(\alpha)}(1)\right)^p\right] \cdot \|P\|_{[a,b]}^p.
\]

This reduces to
\[
\left|P^{(\alpha)}(x)\right|^p \leq \min \left[\left(\frac{2n}{\sqrt{(x-a)(b-x)}}\right)^{\alpha p}, \left(\frac{2}{b-a}\right)^{\alpha p}, \left(n^2(n^2 + 1) \ldots (n^2 + (\alpha - 1)^2)\right)^{\alpha p} \frac{(2\alpha - 1)!!}{[(2\alpha - 1)!!]^p}\right] \cdot \|P\|_{[a,b]}^p.
\]

Hence, by (12), we obtain
\[
\left|P^{(\alpha)}(x)\right|^p \leq 2^{p\alpha + 1} n^{p\alpha} \left[\left((x-a)(b-x)\right)^{\alpha p} + n^{p\alpha} (b-a)^{p\alpha} \frac{(2\alpha - 1)!!}{[(2\alpha - 1)!!]^p}\right]^p \cdot \left(\frac{n^2(n^2 - 1) \ldots (n^2 - (\alpha - 1)^2)}{(2\alpha - 1)!!}\right)^{\alpha p} \cdot \|P\|_{[a,b]}^p.
\]

Integrating both sides of the last inequality gives one
\[
\|P^{(\alpha)}(x)\|^p_{[a,b]} \leq 2^{p\alpha + 1} n^{p\alpha} \int_{a}^{b} \left[\left((x-a)(b-x)\right)^{\alpha p} + n^{p\alpha} (b-a)^{p\alpha} \frac{(2\alpha - 1)!!}{[(2\alpha - 1)!!]^p}\right]^p \cdot \left(\frac{n^2(n^2 - 1) \ldots (n^2 - (\alpha - 1)^2)}{(2\alpha - 1)!!}\right)^{\alpha p} \cdot \|P\|_{[a,b]} d x.
\]

Now, by using the substitution \(x = a + (b-a)t, t \in [0, 1]\) we obtain
\[
\|P^{(\alpha)}(t)\|^p_{[a,b]} \leq 2^{p\alpha + 1} n^{p\alpha} (b-a)^{1-p\alpha} \int_{0}^{1} \left[\left((1-t)(b)\right)^{\alpha p} + n^{p\alpha} [(2\alpha - 1)!!]^p \cdot \left(\frac{n^2(n^2 - 1) \ldots (n^2 - (\alpha - 1)^2)}{(2\alpha - 1)!!}\right)^{\alpha p}\right]^{-1} \cdot \|P\|_{[a,b]} d t.
\]

hence we have
\[
\|P^{(\alpha)}(t)\|^p_{[a,b]} \leq 2^{p\alpha + 1} n^{p\alpha} (b-a)^{1-p\alpha} \int_{0}^{1} \]
\[
\left[t^{p\alpha/2} + n^{p\alpha} \left(2\alpha - 1\right)!! \right]^p \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} \right]^{-1} dt \left\| P \right\|_{[a,b]}^p.
\]

Now, by using the substitution \(y = t^{\alpha/2}n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \) we calculate
\[
\int_0^1 \left[t^{p\alpha/2} + n^{p\alpha} \left(2\alpha - 1\right)!! \right]^p \cdot \left[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2) \right]^{-p} \right]^{-1} dt
= \frac{n^{2p} (n^2 - 1)^p \cdots (n^2 - (\alpha - 1)^2)^p}{[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1))^2]^{\frac{2}{\alpha}}} \cdot \frac{\alpha}{\alpha} \cdot \frac{1}{n^{2p} (2\alpha - 1)!! \alpha^{\frac{2}{\alpha}}} \leq \frac{n^{2p} (n^2 - 1)^p \cdots (n^2 - (\alpha - 1)^2)^p}{[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1))^2]^{\frac{2}{\alpha}}} \sin \left(\frac{2\pi}{p\alpha}\right) \left\| P \right\|_{[a,b]}.
\]
as claimed
\[
\left\| P^{(\alpha)} \right\|_p \leq 2^{\alpha+1/p} \left(b - a \right)^{1/p - \alpha} \frac{n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2)}{[n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1))^2]^{\frac{2}{p\alpha}}} \left(\frac{\frac{2\pi}{p\alpha}}{\sin \left(\frac{2\pi}{p\alpha}\right)}\right)^\frac{1}{\alpha} \n^2 \left[(2\alpha - 1)!! \right]^{\frac{\alpha}{p\alpha}} \left\| P \right\|_{[a,b]}.
\]

Observation 2 For fixed \(n \in \mathbb{N} \) and \(\alpha \geq 1 \) we have
\[
\lim_{p \to \infty} B(n, \alpha, p) = \left(\frac{2}{b - a} \right)^\alpha \cdot \frac{n^2(n^2 - 1) \cdots (n^2 - (\alpha - 1)^2)}{2\alpha - 1}.
\]

Remark 4 The Bojanov conjecture (cf. [10]) asserts that for \(\alpha \) th derivative it should be true that
\[
\left\| P^{(\alpha)} \right\|_{L^p([-1,1])} \leq \left\| T_n^{(\alpha)} \right\|_{L^p([-1,1])} \left\| P \right\|_{[-1,1]}, \quad P \in \mathbb{R}_n[x], \quad p \geq 1.
\]

Applying the method of proof of Lemma 4 we can derive (for \(\alpha = 1 \)) inequalities equivalent to the Bojanov’s inequalities (13), which are true in this case.
Theorem 4 (cf. [16]) Suppose that $1 \leq p \leq q \leq \infty$ and that $E = [a, b]^N$. Then there is a universal constant M such that:

$$||D^\alpha P||_{L^q(E)} \leq 8^N \left(\frac{Mn^2}{b-a} \right)^{|\alpha|+N \left(\frac{1}{p} - \frac{1}{q} \right)} ||P||_{L^p(E)}$$

for all polynomials $P \in \mathbb{R}_n[x]$, with $n \geq 1$. In case $p = q$, the factor 8^N may be replaced by 1.

5 On V. A. Markov inequality for the line segment $[a, b] \subset \mathbb{R}$

Applying Lemma 4 and Nikol’skii inequality for $q = \infty$, $N = 1$, $\alpha = 0$, we get the following result.

Theorem 5 Let $P \in \mathbb{R}_n[x]$. Then for arbitrary $p \geq 1$ and for all $\alpha \geq 3$ we have

$$\|P^{(\alpha)}\|_p \leq C(\alpha, n, p) \|P\|_p,$$

where

$$C(\alpha, n, p) = B(\alpha, n, p)D(\alpha, n, p)$$

$$= 2^{\alpha+1/p} (b-a)^{1/p-\alpha} \frac{n^2(n^2-1) \ldots (n^2-(\alpha-1)^2)}{[n^2(n^2-1) \ldots (n^2-(\alpha-1)^2)]^{1/p}} \frac{2\pi}{\sin \left(\frac{2\alpha \pi}{\alpha p} \right)} n^{2/p} \left[\frac{(2\alpha-1)!!}{(2\alpha-1)!!} \right]^{2/p} 8J^{1/p} \left(\frac{Mn^2}{b-a} \right)^{1/p},$$

for $D(\alpha, n, p) = 8J^{1/p} \left(\frac{Mn^2}{b-a} \right)^{1/p}$ and

$$\lim_{p \to \infty} C(\alpha, n, p) = \lim_{p \to \infty} B(\alpha, n, p)D(\alpha, n, p) = 8 \cdot \left(\frac{2}{b-a} \right)^{\alpha} \frac{n^2(n^2-1) \ldots (n^2-(\alpha-1)^2)}{(2\alpha-1)!!}. $$

Corollary 2 For an arbitrary $\alpha \geq 3$ and for all $p \geq 1$ we have bound

$$C(\alpha, n, p) \leq B_p||T^{(\alpha)}_n||_{[-1,1]} n^{2/p},$$

where we can take

$$B_p([a, b]) = \left(\frac{2}{b-a} \right)^{\alpha} \left(\frac{16\alpha^2 MJ \sqrt{8p\pi}}{3\sqrt{3}} \right)^{1/p}.$$
Proof We have

\[
C(\alpha, n, p) \leq (2MJ 8^p)^{\frac{1}{p}} \left(\frac{2}{b-a}\right)^\alpha n^{-\frac{2}{2p} \cdot \alpha} n^{\frac{4}{p}} \left(\frac{2\pi}{\alpha p}\right)^{\frac{1}{p}} \left[(2\alpha - 1)!!\right]^{\frac{2}{\alpha p}} \left|T_n^{(\alpha)}\right|_{[-1,1]}
\]

Since \(\frac{2}{\alpha} \leq \frac{2\pi}{\alpha p} \leq \frac{2\pi}{3}\) for \(\alpha \geq 3, p \geq 1\), we get

\[
\frac{2\pi}{\alpha p} \leq \sup_{t \in (0, \frac{2\pi}{3})} \frac{t}{\sin(t)} = \frac{4\pi}{3\sqrt{3}}
\]

Hence, we obtain

\[
C(\alpha, n, p) \leq \left(\frac{2}{b-a}\right)^\alpha \left(\frac{8n^2MJ 8^p\pi}{3\sqrt{3}}\right)^{1/p} \cdot \left(2^\alpha \alpha^!\right)^{\frac{2}{\alpha p}} \left|T_n^{(\alpha)}\right|_{[-1,1]}
\]

\[
\leq \left(\frac{2}{b-a}\right)^\alpha \left(\frac{32n^2MJ 8^p\pi}{3\sqrt{3}}\right)^{1/p} \cdot \alpha^{\frac{2}{\alpha p}} \left|T_n^{(\alpha)}\right|_{[-1,1]}
\]

\[
\leq \left(\frac{2}{b-a}\right)^\alpha \left(\frac{32\alpha^2MJ 8^p\pi}{3\sqrt{3}}\right)^{1/p} \cdot \left|T_n^{(\alpha)}\right|_{[-1,1]}
\]

\[
\leq \left(\frac{2}{b-a}\right)^\alpha \cdot \left(\frac{32\alpha^2MJ 8^p\pi}{3\sqrt{3}}\right)^{1/p} n^{2/p} \left|T_n^{(\alpha)}\right|_{[-1,1]}
\]

\[
= B_p([a, b]) n^{2/p} \left|T_n^{(\alpha)}\right|_{[-1,1]}
\]

\[
\square
\]

Corollary 3 For an arbitrary \(\alpha \geq 3\) and for all \(p \geq 1\) we have the bound

\[
C(\alpha, n, p) \leq B_p n^{2/p} \left(\frac{n^{2\alpha}}{(2\alpha - 1)!!}\right) \leq B_p n^{2/p} \left(\frac{n^{2\alpha}}{\alpha!}\right),
\]

where we can take

\[
B_p([a, b]) = \left(\frac{2}{b-a}\right)^\alpha \cdot \left(\frac{32\alpha^2MJ 8^p\pi}{3\sqrt{3}}\right)^{1/p}.
\]
The next, a non-obvious, corollary follows from Corollary 1 and earlier results by M. Baran, P. Ozorka (cf. [1]), and M. Baran, A. Kowalska, P. Ozorka (cf. [3] and was discussed mainly in the case $p = 2$). This indicates that in the case of L^p norm the line segment $[a, b] \subset \mathbb{R}$ possesses the V. A. Markov property in the sense considered nad M. Baran, L. Białas-Cież (cf. [2, 5]).

Corollary 4 For a fixed $p \geq 1$ there exists a constant C_p such that for all $\alpha \geq 3$ we obtain a Vladimir Markov’s type inequality:

$$||P^{(\alpha)}||_p \leq C_p \frac{\alpha 2^{\alpha}}{\alpha !} ||P||_p, \quad P \in \mathbb{C}[x].$$

Declarations

Conflicts of interest The authors declare that they have no competing interests

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baran, M., Ozorka, P.: On Vladimir Markow type inequality in L^p norms on the interval $[-1, 1]$. Sci, Tech. Innov. 7(4), 9–12 (2019)
2. Baran, M., Białas-Cież, L.: On the behaviour of constants in some polynomial inequalities. ANN POL MATH 123, 43–60 (2019)
3. Baran, M., Kowalska, A., Ozorka, P.: Optimal factors in Vladimir Marov’s inequality in L^2 norm. Sci, Tech. Innov. 2(1), 64–73 (2018)
4. Baran, M.: Polynomial inequalities in Banach spaces. Banach Center Publ. 107, 23–42 (2015)
5. Baran, M., Białas-Cież, L.: Hölder continuity of the pluricomplex Green function and Markov brothers’ inequality. Constr. Approx. 40, 121–140 (2014)
6. Baran, M., Białas-Cież, L.: Product property for capacities in C^N. ANN POL MATH 106, 19–29 (2012)
7. Baran, M.: Bernstein type theorems for compact sets in \mathbb{R}^n. J. Approx. Theory 69, 156–166 (2012)
8. Baran, M.: Plurisubharmonic extremal function and complex foliations for the complement of a convex subset of \mathbb{R}^n. Michigan Math. J. 39, 395–404 (2012)
9. Baran, M.: Siciak’s extremal function of convex sets in C^n. Ann. Polon. Math. 48, 275–280 (1995)
10. Bojanov, B.: An extension of the Markov inequality. J. Approx. Theory 35(2), 181–190 (1982)
11. Białas-Cież, L., Sroka, G.: Polynomial inequalities in L^p norms with generalized Jacobi weights. MATH INEQUAL APPL 22, 261–274 (2019)
12. Białas-Cież, L.: Siciak’s extremal function via Bernstein and Markov constants for compact sets in C^N. ANN POL MATH 106, 41–51 (2012)
13. Borwein, P., Erdélyi, T.: Polynomials and Polynomials Inequalities. Springer Graduate Texts in Mathematics, vol. 161. Springer-Verlag, New York (1995)
14. Borwein, P., Totik, V.: Markov and Bernstein type inequalities on subsets of $[-1, 1]$ and $[-\pi, \pi]$. Acta Mathematica Hungarica 65, 189–194 (1994)
15. Borwein, P.: Markov’s and Bernstein’s inequalities on disjoint intervals. Canad. J. Math. 33, 201–209 (1981)
16. Bos, L.P., Milman, P.D.: Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains. Geometric and Functional Analysis 5(6), 915–923 (1995)
17. Glazyrina, P.Yu.: The Sharp Markov-Nikol’skii Inequality for Algebraic Polynomials in the Spaces L_q and L_0 on a Closed Interval. Mathematical Notes 84(1), 3–22 (2007)
18. Kalmykov, S., Nagy, B., Totik, V.: Bernstein- and Markov type inequalities. Surveys in Approx. Theory 9, 1–17 (2021)
19. Klimek, M.: Pluripotential theory. Clarendon Press, England (1991)
20. Kroó, A., Révész, S.: On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies. J. Approx. Theory 99(1), 134–152 (1999)
21. Lachance, M.A.: Bernstein and Markov inequalities for constrained polynomials. In: Rational Approximation and Interpolation, Lecture Notes in Mathematics, vol. 1045, pp. 125–135. Springer, Berlin (1984)
22. Markov, A.A.: A question of D. I. Mendeleev. SPB. IAN 62, 1–24 (1889)
23. Migliorati, G.: Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets. J. Approx. Theory 189, 137–159 (2015)
24. Natanson, I.P.: Constructive Theory of Function. Gostekhizdat, Moscow (1949). ([in Russian])
25. Nikolski, S.M.: A method of covering a domain and inequalities for polynomials in many variables $S(2)$, 345–356 (1966)
26. Oszust, M., Sroka, G., Cymerys, K.: A hybridization approach with predicted solution candidates for improving population-based optimization algorithms. Information Sciences 574, 133–161 (2021)
27. Ozisik, S., Riviere, B., Warburton, T.: On the Constants in Inverse Inequalities in L^2. (2010), https://hdl.handle.net/1911/102161
28. Piazzon, F., Vianello, M.: Jacobi norming meshes. Math. Inequal. Appl. 19, 1089–1095 (2016)
29. Schwab, C.: p and ph – Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, USA (1998)
30. Siciak, J.: On some extremal functions and their applications in the theory of analytic functions of several complex variables. Trans. Amer. Math. Soc. 105, 322–357 (1962)
31. Siciak, J.: Extremal plurisubharmonic functions in \mathbb{C}^N. Ann. Polon. Math. 39, 175–211 (1981)
32. Siciak, J.: Extremal Plurisubharmonic Functions and Capacities in \mathbb{C}^N, Sophia Kokyuroku in Math. 14, Sophia Univ, Tokyo (1982)
33. Simonov, I.E.: Sharp Markov Brothers Type Inequality in the Spaces L_p and L_1 on a Closed Interval. Proc. Steklov Inst. of Math. 277(Suppl. 1), S161–S170 (2012)
34. Sroka, G., Oszust, M.: Approximation of the Constant in a Markov-Type Inequality on a Simplex Using Meta-Heuristics. Mathematics 9, 264 (2021). https://doi.org/10.3390/math9030264
35. Sroka, G.: Constants in V.A.Markov’s inequality in L^n norms. J.Approx. Theory 194, 27–34 (2015)
36. Totik, V.: The polynomial inverse image method. Approximation Theory XIII: San Antonio 2010, Springer Proceedings in Mathematics, 13, M. Neamtu and L. Schumaker (eds.), pp. 345-367
37. Totik, V.: The polynomial inverse images and polynomial inequalities. Acta Math. 187, 139–160 (2001)
38. Totik, V.: Polynomial Inequalities and Green’s Functions, Constructive Theory of Functions, pp. 221-239, (2020)
39. Vianello, M.: Norming meshes by Bernstein-like inequalities. Math. Inequal. Appl. 17, 929–936 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.