Pairing in fermionic systems: A quantum information perspective

Christina V. Kraus¹, Michael M. Wolf¹,², J. Ignacio Cirac¹ and Géza Giedke¹

(1) Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany.
(2) Niels-Bohr–Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

(Dated: October 27, 2008)

The notion of "paired" fermions is central to important condensed matter phenomena such as superconductivity and superfluidity. While the concept is widely used and its physical meaning is clear there exists no systematic and mathematical theory of pairing which would allow to unambiguously characterize and systematically detect paired states. We propose a definition of pairing and develop methods for its detection and quantification applicable to current experimental setups. Pairing is shown to be a quantum correlation different from entanglement, giving further understanding in the structure of highly correlated quantum systems. In addition, we will show the resource character of paired states for precision metrology, proving that the BCS states allow phase measurements at the Heisenberg limit.

I. INTRODUCTION

The notion of pairing in fermionic systems is at least as old as the seminal work of Bardeen, Cooper and Schrieffer explaining superconductivity [1]. The formation of fermionic pairs with opposite spin and momentum is not only the source for the vanishing resistance in solid state systems, but it can also explain many other interesting phenomena, like superfluidity in helium-3 or inside a neutron star.

For instance, with recent progress in the field of ultracold quantum gases fermionic pairing has gained again a lot of attention [2, 3, 4, 5, 6, 7, 8, 9]. These experiments allow an excellent control over many parameters inherent to the system, offering a unique testing ground for existing theories and an exploration of new and exotic phases. However, the notion of pairing in these systems is less clear and sometimes even controversial. Recent experiments on the BEC-BCS crossover have caused a heated debate whether or not the obtained data was in agreement with pairing [2, 10, 11, 12]. In addition, pairing without superfluidity [12] has been observed in these experiments, raising fundamental questions on quantum correlations in fermionic many-body systems.

Motivated by these exciting experiments and the central role pairing plays in many physical phenomena, and by the perceived lack of accepted criteria to verify the presence of pairing in a quantum state, we propose a clear and unambiguous definition of pairing intended to capture its two-particle nature and to allow a systematic study of the set of paired states and its properties. We employ methods and tools from quantum information theory to gain a better understanding of the set of fermionic states that display pairing. In particular, we develop tools for the systematic detection and for the quantification of pairing, which are applicable to current experiments. Our approach is inspired by concepts and methods from entanglement theory, thus building a bridge between quantum information science and condensed matter physics.

Since they contain non-trivial quantum correlations, paired states belong to the set of entangled many-body states. However, pairing will turn out to be not equivalent to any known concept of entanglement in systems of indistinguishable particles [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] but to represent a particular type of quantum correlation of its own. We will show that these correlations can be exploited for quantum phase estimation. Hence pairing constitutes a resource in state estimation using fermions as much as entangled states with spins.

This article is organized as follows: After the introduction of the language necessary for the description of fermionic systems in Sec. II we will introduce the general framework of pairing theory in Sec. III. This part includes our definition of pairing and methods for its detection and quantification. In order to fill the theory with life we will apply it to two different classes of fermionic states in Secs. IV and V. We start out with pairing in fermionic Gaussian states in Sec. IV. The interest in this family of states is two-fold. First, the pairing problem can be solved completely in this case, so that Gaussian states are particularly interesting from a conceptual point of view. Second, there exists a relation between pure fermionic Gaussian states and the BCS states of superconductivity (see Sec. II D for the details) which are examples of paired states par excellence. This enables us to translate methods developed for the detection and quantification of pairing for Gaussian states to the BCS-states. The reader interested in the application of our pairing theory to experimental application is referred to Sec. V. There we study pairing for number conserving states, i.e. states commuting with the number operator. This class includes the states appearing in the BEC-BCS crossover, and we will develop tools for the detection of pairing tailored for these systems. In VI we will show that certain classes of paired states constitute a resource for quantum phase estimation, proving that pairing is a resource similar to entanglement.
II. FERMIONIC STATES

In this chapter we review the basic concepts needed for the understanding of fermionic systems. We start out with some notation used for the description of fermionic systems in second quantization in Sec. II.A. As pairing is a special sort of correlation, we continue with a review on quantum correlations and entanglement in systems of indistinguishable particles in Sec. II.B. This general part is followed by the introduction of fermionic Gaussian states and number conserving states in Secs. II.C and II.D. The latter includes the introduction of BCS-states and their relation to the Gaussian states. As this part is sometimes a description using the 2n modes, which satisfy the canonical anti-commutation relations (CAR) \(\{ c_k, c_l^\dagger \} = 0 \) and \(\{ c_k^\dagger, c_l^\dagger \} = \delta_{kl} \). We say \(a_j^\dagger \) creates a particle in mode \(j \) (or single particle state) \(\epsilon_j \), where \(\{ \epsilon_j \} \subset \mathbb{C}^M \) denotes the canonical orthonormal basis of \(\mathcal{H} \). In general, for any normalized \(f \in \mathcal{H} \), we define \(a_f \equiv \sum_k f_k a_k \), the annihilation operator for mode \(f \).

Sometimes a description using the 2M hermitian Majorana operators \(c_{2j-1} = a_j^\dagger + a_j \), \(c_{2j} = (-i)(a_j^\dagger - a_j) \), which satisfy \(\{ c_k, c_l \} = 2\delta_{kl} \), is more convenient.

The Hilbert space of the many-body system, the antisymmetric Fock space over \(M \) modes, \(\mathcal{A}_M \), is spanned by the orthonormal Fock basis defined by

\[
| n_1, \ldots, n_M \rangle = \left(a_{1}^\dagger \right)^{n_1} \cdots \left(a_{M}^\dagger \right)^{n_M} | 0 \rangle,
\]

where the vacuum state \(| 0 \rangle \) fulfills \(a_j | 0 \rangle = 0 \) \(\forall j \). The \(n_j \in \{ 0, 1 \} \) are the eigenvalues of the mode occupation number operators \(n_j = a_j^\dagger a_j \). The \(N \)-particle subspace spanned by vectors of the form \(\prod \Pi \) satisfying \(\sum_j n_j = N \) is denoted by \(\mathcal{A}_M^{(N)} \). The set of density operators on the Hilbert space \(\mathcal{H} = \mathcal{A}_M, \mathcal{A}_M^{(N)} \) is denoted by \(S(\mathcal{H}) \).

Linear transformations of the fermionic operators which preserve the CAR are called canonical transformations. They are of the form \(c_k \mapsto c_k^\prime = \sum_l O_{kl} c_l \), where \(O \in O(2M) \) is an element of the real orthogonal group. These transformations can be implemented by unitary operators \(U_O \) on \(\mathcal{A}_M \) which are (for \(det O = 1 \)) generated by quadratic Hamiltonians in the \(c_j \) (see, e.g. [30]).

The subclass of canonical operations which commute with the total particle number \(N_{op} = \sum_j n_j \) are called passive transformations. They take a particularly simple form in the complex representation \(a_k \mapsto a_k^\prime = U_{kl} a_l \), where \(U \) is unitary on the single-particle Hilbert space \(\mathcal{H} \), i.e., they describe (quasi)free time-evolution of independent particles. Canonical transformations which do not commute with \(N_{op} \) are called active. They mix creation and annihilation operators.

B. Quantum correlations of fermionic states

The notion of "pairing" used in the description of superconducting solids, superfluid liquids, baryons in nuclei, etc. is always associated with a correlated fermionic system. The subject of quantum correlations in fermionic systems is vast [31]. In recent years, there has been renewed interest from the perspective of quantum information theory. There quantum correlations (aka entanglement) of distinguishable systems (qubits) play a crucial role as a resource enabling certain state transformations or information processing tasks. The detailed quantitative analysis of quantum correlations motivated by this has proven to be valuable also in the understanding of condensed matter systems (see [32] for a review).

In contrast to the usual quantum information setting which studies the entanglement of distinguishable particles, the indistinguishable nature of the fermions is of utmost importance in the settings of our interest. The existing concepts for categorizing entanglement in systems of indistinguishable particles fall into two big classes: Entanglement of modes [14, 15, 16, 17, 18, 19, 20, 21, 22] and entanglement of particles. Entanglement of particles has been considered e.g. in [23, 24, 25, 26, 27, 28, 29], leading to the concept of Slater rank [24, 25], being the generalization of the Schmidt rank to indistinguishable particles. We show in Sec. III that our definition of pairing does not coincide with any of the existing ideas. We refrain from giving an exhaustive review on the existing concepts referring the interested reader to the mentioned literature and references therein, and restrict to the following definition:

Definition II.1. A pure fermionic state \(\rho_p^{(N)} = | \Psi_p^{(N)} \rangle \langle \Psi_p^{(N)} | \in S(\mathcal{A}_M^{(N)}) \) is called a product state, if there exists a passive transformation \(a_k \mapsto a_k^\prime \) such that

\[
| \Psi_p^{(N)} \rangle = \prod_{j=1}^N a_j^\dagger | 0 \rangle.
\]

A state \(\rho_s \) is called separable, if it can be written as the convex combination of product states, i.e.

\[
\rho_s = \sum_{p=1}^K \lambda_p \rho_p^{(N_p)},
\]

where \(\sum_{p=1}^K \lambda_p = 1, \lambda_p \geq 0 \) and all \(\rho_p^{(N_p)} \in S(\mathcal{A}_M^{(N_p)}) \) are product states. All other states are said to have "Slater number larger than 1" and are called entangled (in the sense of [24, 25]).
We denote the set of all separable states by S_{sep} and by $S_{\text{sep}}^{(N)} = S_{\text{sep}} \cap \mathcal{S}(A_M^{(N)})$ the set of all separable states of particle number N.

Note that the sets $S_{\text{sep}}, S_{\text{sep}}^{(N)}$ of separable states are convex and invariant under passive transformations. Both properties will be useful later on.

Separable states have only correlations resulting from their anti-symmetric nature and classical correlations due to mixing. In the terminology of Refs. [24,25] they have Slater number one and describe unentangled particles. These states will certainly not contain correlations associated with pairing. (Note that they can be mode-entangled for an appropriate partition of modes.)

Besides basis change, there are other operations, which do not create quantum correlations and it is useful to see that the set of separable states is invariant under them.

Lemma II.2. Let $\rho \in S_{\text{sep}}$ be a separable state. Then the state after measuring the particle number $n_h = a_h^\dagger a_h$ in some mode h is separable for both possible outcomes $n_h = 0,1$. Furthermore, $\rho_h \equiv \text{tr}_{a_h}[\rho]$, the reduced state obtained by tracing out the mode a_h, is also separable.

Proof. As S_{sep} is convex, it is sufficient to prove the claim for product states ρ. Let $|\Psi\rangle = \prod_{j=1}^{N} a_j^\dagger |0\rangle$ be the vector in Hilbert space corresponding to ρ. Our aim is to show that $|\Psi\rangle = |\Psi_0\rangle + |\Psi_1\rangle$, where $|\Psi_j\rangle$ are product states and $n_h = l$ eigenstates of the occupation number operator n_h. If h is in the span of $\{ f_{1\leq k \leq N} \}$ or orthogonal to it, the state already is a n_h eigenstate and we are done. Otherwise, define f_{N+1} orthogonal to the $f_{k \leq N}$ such that $h \in \text{span}\{ f_{1\leq k \leq N+1} \}$ and define another orthonormal basis $\{ g_j \}$ for the span with $g_1 = h$ and $g_2 \propto f_{N+1} - (h \cdot f_{N+1}) f_1$ (here $h \cdot f_{N+1}$ denotes the inner product on the single particle Hilbert space). Then we can write $|\Psi\rangle = \prod_{j=1}^{N} a_j^\dagger |0\rangle = (x a_{g_1} + y a_{g_2}) \prod_{j=1}^{N+1} a_j^\dagger |0\rangle$ for some $x,y \in \mathbb{C}$. Hence, $|\Psi\rangle = |\Psi_0\rangle + |\Psi_1\rangle$ with $|\Psi_0\rangle = x \prod_{j=2}^{N} a_j^\dagger |0\rangle$ and $|\Psi_1\rangle = -ya_{g_2} \prod_{j=3}^{N+1} a_j^\dagger |0\rangle$ which both clearly are product states. The reduced state $\text{tr}_h[|\Psi\rangle \langle \Psi|]$ is the statistical mixture of $|\Psi_0\rangle$ and $|\Psi_1\rangle$ and therefore clearly separable.

C. Fermionic Gaussian states

Fermionic Gaussian states are represented by density operators that are exponentials of a quadratic form in the Majorana operators. A general multi-mode Gaussian state is of the form

$$\rho = K \exp \left[-\frac{i}{4} c^T G c \right], \tag{4}$$

where $c = (c_1, \ldots, c_{2M})$, K is a normalization constant and G is a real anti-symmetric $2M \times 2M$ matrix. Every anti-symmetric matrix can be brought to a block diagonal form

$$OGOT = \bigoplus_{j=1}^{M} \begin{pmatrix} 0 & -\beta_j \\ \beta_j & 0 \end{pmatrix} \tag{5}$$

by a special orthogonal matrix $O \in SO(2M)$. From eq. (11) it is clear that Gaussian states have an interpretation as thermal (Gibbs) states corresponding to a Hamiltonian H that is a quadratic form in the c_k, i.e., $H = \frac{1}{2} c^T G c = \frac{1}{2} \sum_{k,l} g_{kl} c_k c_l$ and the form eq. (4) shows that every Gaussian state has a normal-mode decomposition in terms of M single-mode “thermal states” of the form $\sim \exp(-\beta a^\dagger a)$. From this one can see that the state is fully determined by the expectation values of quadratic operators $a_i a_j$ and $a_i^\dagger a_j$. These are collected in a convenient form in the real and anti-symmetric covariance matrix Γ which is defined via

$$\Gamma_{kl} = \frac{i}{2} \text{tr} (\rho |c_k c_l\rangle \langle c_l c_k|). \tag{6}$$

It can be brought into block diagonal form by a canonical transformation:

$$O \Gamma O^T = \bigoplus_{i=1}^{M} \begin{pmatrix} 0 & \lambda_i \\ -\lambda_i & 0 \end{pmatrix}. \tag{7}$$

For every valid density operator, $\lambda_j \in [-1,1]$, and the eigenvalues of Γ are given by $\pm \lambda_j$. Hence, every Γ corresponding to a physical state has to fulfill $\Gamma \leq \mathbb{1}$ or, equivalently, $\Gamma \Gamma^\dagger \leq \mathbb{1}$ and to each such Γ corresponds a valid Gaussian density operator where the relation between G and Γ is given by $\lambda_j = \tanh(\beta_j/2)$. The covariance matrix of the ground state of H is obtained in the limit $|\beta_j| \to \infty$ i.e., $\lambda_j \to \text{sign}(\beta_j)$. In fact, this shows that every pure Gaussian state is the ground state to some quadratic Hamiltonian. The purity of the state can be easily determined from the covariance matrix as a Gaussian state is pure if and only if $\Gamma^2 = \mathbb{1}$ (see, e.g., [33]).

As mentioned, Gaussian states are fully characterized by their covariance matrix and all higher correlations can be obtained from Γ by Wick’s theorem (see, e.g., [33]) via

$$i^p \text{tr} [\rho c_{j_1} \cdots c_{j_{2p}}] = \text{Pf}(\Gamma_{j_1, \ldots, j_{2p}}), \tag{8}$$

where $1 \leq j_1 < \ldots < j_{2p} \leq 2M$ and $\Gamma_{j_1, \ldots, j_{2p}}$ is the corresponding $2p \times 2p$ submatrix of Γ. $\text{Pf}(\Gamma_{j_1, \ldots, j_{2p}})^2 = \det(\Gamma_{j_1, \ldots, j_{2p}})$ is called the Pfaffian.

In some cases it is more appropriate to use a different ordering of the Majorana operators, the so-called q-p-ordering $c = (c_1, c_3, \ldots, c_{2M-1}; c_2, c_4, \ldots, c_{2M})$, opposed to the mode-ordering introduced at the beginning. When using the q-p-ordering, the relation between the real and complex representation is given by

$$c^T = \Omega a^T, \quad \Omega = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}. \tag{9}$$
where $a = (a_1, \ldots, a_M, a_1^\dagger, \ldots, a_M^\dagger)$. The transformation matrix Ω fulfills $\Omega^\dagger = 2\Omega$.

In the q-p-ordering the covariance matrix obtains the following block structure:

\[
\hat{\Gamma} = \begin{pmatrix}
\Gamma_q & \Gamma_{qp} \\
-\Gamma_{qp}^\dagger & \Gamma_p
\end{pmatrix}.
\]

(10)

Finally, for some purposes it is more convenient to use the complex representation, where the covariance matrix is of the form

\[
\Gamma_c = \frac{1}{4} \Omega^\dagger \tilde{\Omega} = \begin{pmatrix} Q & R \\ R & Q \end{pmatrix},
\]

(11)

where $Q_{kl} = (i/2)[a_k, a_l]$ and $R_{kl} = (i/2)[a_k, a_l^\dagger]$ and Q denotes the complex conjugate. Note that $R^\dagger = -R$ and $Q^\dagger = -Q$ and hence $\Gamma_c^T_c = -\Gamma_c$. The condition $\hat{\Gamma}^\dagger\hat{\Gamma} \leq 1$ takes the form $4\Gamma_c \leq 1$.

The description of ρ by its covariance matrix is especially convenient to describe the effect of canonical transformations, i.e. time evolutions generated by quadratic Hamiltonians: if $c_k \rightarrow \sum_\ell O_{k\ell} c_\ell$ in the Heisenberg picture then $\Gamma \rightarrow OTO^T$ in the Schrödinger picture. For a passive transformation $a_k \rightarrow a_k^\prime = \sum_\ell U_{k\ell} a_\ell$, the q-p-ordered Majorana operators transform as

\[
e^T \rightarrow e^T = O_p e^T, \quad O_p = \begin{pmatrix} X & Y \\ -Y & X \end{pmatrix},
\]

(12)

where $X = \text{Re}(U)$ is the real part of the unitary U, and $Y = \text{Im}(U)$ the imaginary part. Note that O_p is both orthogonal and symplectic. The behaviour of Γ_c under a passive transformation is particularly simple: Q and R transform according to $Q \rightarrow UQU^T$ and $R \rightarrow URU^T$.

Passive transformations can be used to transform pure fermionic states to a simple standard form, the so-called Bloch-Messiah reduction [34]. The q-p ordered CM Γ_{BCS} takes the form (10) where

\[
\Gamma_q = -\Gamma_p = \bigoplus_k \begin{pmatrix} 0 & -2\text{Im}(u_k v_k^\dagger) \\ 2\text{Im}(u_k v_k^\dagger) & 0 \end{pmatrix},
\]

(13)

\[
\Gamma_{qp} = \bigoplus_k \begin{pmatrix} |u_k|^2 - |v_k|^2 & 2\text{Re}(u_k v_k^\dagger) \\ -2\text{Re}(u_k v_k^\dagger) & |u_k|^2 - |v_k|^2 \end{pmatrix}.
\]

(14)

In Hilbert space, the state in standard form is given by

\[
|\Psi_{\text{Gauss}}^{(\bar{N})}\rangle = \prod_k (u_k + v_k a_k^\dagger a_{-k}^\dagger)|0\rangle,
\]

(15)

where $u_k, v_k \in \mathbb{C}$, $|u_k|^2 + |v_k|^2 = 1$, $\bar{N} = \sum_k (a_k^\dagger a_k) = 2 \sum_k |v_k|^2$. This comprises the kind of “paired” states appearing in the BCS theory of superconductivity [1] with $k \equiv \langle \vec{k}, \uparrow \rangle$, $-k \equiv \langle -\vec{k}, \downarrow \rangle$. We will refer to these states as Gaussian BCS states. We would like to stress the fact that every pure Gaussian state is a Gaussian BCS state in some basis.

D. Number conserving fermionic states

For the application to physical systems we are interested in states for which the particle number is a conserved quantity. We call ρ a number conserving state if $\langle \rho, N_{\text{op}} \rangle = 0$ where N_{op} denotes the total number operator. Thus, the density operator of a number conserving state can be written as a mixture of N_{op}-eigenstates. In particular, all separable states as defined in Def. [13] are number conserving.

The Gaussian BCS wave function (15) is not number conserving (except for the case $\sum_k |u_k v_k| = 0$ that either u_k or v_k vanishes for every mode), but a relation to these states can be established via the identity

\[
|\Psi_{\text{BCS}}^{(\bar{N})}\rangle = \sum_{N=0}^{2M} \lambda_N |\Psi_{\text{BCS}}^{(N)}\rangle,
\]

(16)

where the number conserving $2N$-particle BCS state is given by

\[
|\Psi_{\text{BCS}}^{(N)}\rangle = C_N \left(\sum_{k=1}^{M} \alpha_k P_k^\dagger \right)^N |0\rangle,
\]

(17)

where we have introduced the pair creation operator $P_k^\dagger = a_k^\dagger a_{-k}^\dagger$. The coefficients α_k are related to u_k and v_k via $\alpha_k = v_k / u_k$, C_N is a normalization constant which is seen to be

\[
C_N = \left((N!)^2 \sum_{j_1 < \cdots < j_N} |\alpha_{j_1}|^2 \cdots |\alpha_{j_N}|^2 \right)^{-1/2}
\]

by rewriting Eq. (17) as

\[
C_N N! \sum_{j_1 < \cdots < j_N} \alpha_{k_1} \cdots \alpha_{k_N} P_{k_1}^\dagger \cdots P_{k_N}^\dagger |0\rangle,
\]

(18)

The coefficients $\lambda_N = \langle \prod_k u_k \rangle / (N! C_N)$ can be interpreted as the probability amplitude of being in state $|\Psi_{\text{BCS}}^{(\bar{N})}\rangle$ since $\sum_{N} |\lambda_N|^2 = 1$. We will in general drop the term number conserving and refer to states of the form (17) as BCS states. Whenever the distribution of the λ_N is sharply peaked around some average particle number \bar{N}, expectation values of relevant observables for the number conserving BCS states $|\Psi_{\text{BCS}}^{(N)}\rangle$ are approximated well by the expectation values of the Gaussian BCS state. This relation will turn out very useful later on, as results on Gaussian states can be translated into results on number conserving BCS states.

III. PAIRING THEORY

In this section we introduce a precise definition of pairing as a property of quantum states.
A. Motivation and statement of the definition

The simplest system in which we can find pairing consists of two particles and four modes\footnote{For three modes, all pure two-particle states are of product form.}. The prototypical paired state, for example the spin-singlet of two electrons with opposing momenta, is of the form

\[|\Phi \rangle = \frac{1}{\sqrt{2}} \left(a_1^\dagger a_2^\dagger + a_3^\dagger a_4^\dagger \right) |0\rangle. \tag{19} \]

The states describing many Cooper pairs in BCS theory are generalizations of \(|\Phi \rangle \).

The state \(|\Phi \rangle \) describes correlations between the two particles that cannot be reproduced by any uncorrelated state and it can be completely characterized by one- and two-particle expectations (consisting of no more than two creation and annihilation operators each). This is a characteristic of the two-particle property “pairing” that we propose to make the central defining property of paired states in the general case of many modes, many particle and mixed states. Since, moreover, we would call the state \(|\Phi \rangle \) paired no matter what basis the mode operators \(a_i \) refer to and we want it to comprise all BCS states, we are led to the following list of requirements that a sensible definition of pairing should fulfill:

1. States that have no internal quantum correlation must be unpaired. These are the separable states \(\rho \semb \).
2. Pairing must reveal itself by properties related to one-and two-particle expectations only.
3. Pairing should be a basis-independent property.
4. The standard ”paired” states appearing in the description of solid state and condensed matter systems, i.e., the BCS states with wave function \(|\Phi \rangle \) must be captured by our definition.

Further, it would be desirable that there exist examples of paired states that are a resource for some quantum information application.

Let us define:

Definition III.1. The set of all operators \(\{ \mathcal{O}_\alpha \}_\alpha \) on \(\mathcal{A}_M \) which are the product of at most two creation and two annihilation operators is called the set of two-particle operators. We denote it by \(A_2 \).

These operators capture all one- and two-particle properties of a state \(\rho \) and should therefore contain all information about pairing. We will call a state \(\rho \) paired, if it can be distinguished from separable states by looking at observables in \(A_2 \) alone. This is formalized in the following definition:

Definition III.2. A fermionic state \(\rho \) is called paired if there exists a set of operators \(\{ \mathcal{O}_\alpha \}_\alpha \subseteq A_2 \) such that the expectation values \(\{ \text{tr}[\rho \mathcal{O}_\alpha] \} \) cannot be reproduced by any separable state \(\rho \semb \in \mathcal{S}_{\text{sep}} \).

States that are not paired are called unpaired.

This definition automatically fulfills our first two requirements by definition. The third, basis independence, clearly holds, since the set of separable states is invariant under passive transformations. We will show that the last requirement is met, both for Gaussian and number conserving BCS states, i.e. all of them are paired (see Lemma V.3 and Subsec. IV B). Moreover, in Sec VI we can show that there exist paired states that are a resource for quantum metrology.

For states with a fixed particle number, i.e. \(\rho \in \mathcal{S}(\mathcal{A}_M^{(N)}) \) it is sufficient to compare with expectation values on \(N \)-particle separable states \(\rho \semb \in \mathcal{S}_{\text{sep}}^{(N)} \), as for all other states the expectation values of \(\left(\sum_i n_i \right) \) and \(\left(\sum_i n_i^2 \right) \) differ due to the particle number constraint. For number conserving states, only number conserving observables lead to non-vanishing expectation values and one can thus restrict to linear combinations of \(a_i^\dagger a_j, a_i^\dagger a_j^\dagger a_k, a_k \).

For Gaussian states pairing must reveal itself by properties of the covariance matrix, as all higher correlations can be obtained from it via Eq. \(\mathcal{S} \). This important fact enables us to give a complete solution of the pairing problem for fermionic Gaussian states, which we present in Sec. VI.

B. Relation of pairing and entanglement

Paired states are fermionic states exhibiting non-trivial quantum correlations. In particular, by definition paired states are inseparable i.e., entangled in the sense of \([23, 24]\). This raises immediately the question: Is pairing equivalent to entanglement? Below, we provide examples of entangled, but unpaired states that demonstrate that pairing is not equivalent to entanglement (of particles) but represents a special type of quantum correlation\footnote{Note that our basis-independent definition clearly has no relation to entanglement of modes, which is basis-dependent. The product states of Def. III.1 can be mode-entangled for some choice of partition of modes, e.g. \(\frac{1}{\sqrt{2}}(a_1^\dagger + a_2^\dagger)|0\rangle \) is entangled in modes \(a_1^\dagger \) and \(a_2^\dagger \).}.

Lemma III.3. There exist states that are entangled according to the Slater rank concept, but not paired.

Proof. Consider the state \(|\Psi_4 \rangle = \frac{1}{2} (a_1^\dagger a_2^\dagger a_3^\dagger a_4^\dagger + a_5^\dagger a_6^\dagger a_7^\dagger a_8^\dagger) |0\rangle \), which is entangled according to the Slater rank definition. However, one sees immediately that...
the one-and two-particle expectations for $|\Psi_4\rangle$ are the same as for $\rho_s^{(4)} = \frac{1}{2}|\Psi_1\rangle\langle\Psi_1| + \frac{1}{2}|\Psi_2\rangle\langle\Psi_2|$, where $|\Psi_1\rangle = a_1^\dagger a_2^\dagger a_3^\dagger a_4^\dagger|0\rangle$, $|\Psi_2\rangle = a_1^\dagger a_2^\dagger a_5^\dagger a_6^\dagger|0\rangle$. Since $\rho_s^{(4)}$ is a product state, $|\Psi_4\rangle$ is not paired. One can construct further examples in a similar manner using e.g. other states with higher Slater rank.

Since pairing is defined via expectation values of one-and two-particle operators only, one might wonder whether pairing is related to entanglement of the two-particle reduced state. To study this relation, we recall the definition of the two-particle reduced density matrix and the closely related two-particle density matrix (see eg. [35]):

Definition III.4. Let ρ be the density operator of a fermionic state. Then $O_{(ij)(kl)}^{(\rho)} = \text{tr}[\rho a_i^\dagger a_j^\dagger a_k a_l]^{(\rho)}$ is called the two-particle reduced density matrix (RDM). It is usually not normalized and fulfills $\text{tr}[O^{(\rho)}] = \langle N_s^2 \rangle - \langle N_{op} \rangle$. The operator $\rho_2 = O^{(\rho)}/\text{tr}[O^{(\rho)}]$ is called reduced two-particle density operator (RDO).

Note the crucial difference between the two-particle RDM and the RDO. While the RDM contains all two-particle correlations of ρ, the RDO corresponds to the two-particle state of any two particles when the rest of the system is discarded. We would like to emphasize, that pairing is not equivalent to entanglement of the RDO, and therefore it is a property of the one- and two-particle expectations:

Lemma III.5. Let $|\Psi_{BCS}^{(N)}\rangle$ be a number conserving BCS state as defined in (17) with $\alpha_k = 1 \forall k = 1,\ldots,M$. Then its two-particle RDO (see Def. III.4) $\rho_{BCS,2}^{(N)}$ is always paired. However, $\rho_{BCS,2}^{(N)}$ is entangled if and only if $M > 3N - 2$.

The proof is given in Appendix E.

We would like to stress the point that Lemma III.5 shows the existence of paired states that are not entangled. Having assured that our definition of pairing does not coincide with entanglement, we now turn to methods of detecting and quantifying pairing.

C. Methods for detecting pairing

Taking Def. III.2 we aim at finding tools that can be used for the detection and quantification of pairing. These will be applied to systems of Gaussian states and number conserving states in Secs. IV and V respectively. In this section, we exploit the convexity of the set of unpaired states to introduce witness operators and obtain a geometrical picture of the set. The quantification of pairing via pairing measures will be discussed in Sec. III.D.

Given a fermionic density operator, we are interested in an operational method to determine whether it is paired or not. As in the case of separability, this simple-sounding question will turn out to be rather difficult to answer in general.

Starting from Def. III.2 it is clear that the set of unpaired states is convex. This suggests the use of the Hahn-Banach separation theorem as a means to certify that a given density operator is not in the set of paired states. In analogy to the entanglement witnesses in quantum information theory [34] we define

Definition III.6. A pairing witness W is a Hermitian operator that fulfills $\text{tr}[W \rho_\alpha] \geq 0$ for all unpaired states ρ_α, and for which there exists a paired state ρ such that $\text{tr}[W \rho] < 0$. We then say that W detects the paired state ρ.

The witness defines a hyperplane in the space of density operators such that the convex set of unpaired states lies wholly on that side of the plane characterized by $\text{tr}[W \rho] > 0$. According to the Hahn-Banach theorem [37], for every unpaired state there exists a witness operator which detects it. In principle, a witness operator can be an operator involving an arbitrary number of creation and annihilation operators. However, since definition of pairing refers only to expectation values of operators in A_2, it is enough to restrict to operators from that set. This represents a significant simplification both mathematically (witness operators from a finite dimensional set) and experimentally, since operators involving more than two-body correlations are typically very difficult to measure.

The construction of entanglement witnesses detecting all entangled states is an unsolved problem in entanglement theory, and we will not be able to give a complete solution to the problem of finding all pairing witnesses either. However, in Section V we will construct witnesses for a large subclass of BCS-states by using the correspondence between F number conserving and Gaussian BCS states.

Whether a state ρ is paired or not can be determined from a finite set of real numbers, namely the expectation values of a hermitian basis $\{O_\alpha\}$ of A_2. This allows us to reformulate the pairing problem as a geometric question on convex sets in finite-dimensional Euclidean space, describe a complete set of pairing witnesses, and deduce a relation to the ground state energies of quadratic Hamiltonians.

Consider a set $\{O_\alpha, \alpha = 1,\ldots,K\} \subset A_2$ of hermitian operators in A_2 that are not necessarily a basis. Denote by O the vector with components O_α. We define the set of all expectation values of O for separable states

$$C_\Omega = \left\{ v = \text{tr}[O \rho_s] : \rho_s \in S_{sep} \right\} \subset \mathbb{R}^K. \quad (20)$$

For a state ρ let $v_\rho \equiv \text{tr}[O \rho]$. By definition, ρ is paired if $v_\rho \notin C_\Omega$. As the set of separable states is convex, so is C_Ω. Hence, we can use a result of convex analysis to check if $v_\rho \notin C_\Omega$ (see e.g. [38]):
Lemma III.7. Let \(C \subset \mathbb{R}^N \) be a closed convex set, and let \(\vec{v} \in \mathbb{R}^N \). Then
\[
\vec{v} \in C \iff \forall \vec{r} \in \mathbb{R}^N : \vec{v} \cdot \vec{r} \geq E(\vec{r}) = \inf_{\vec{w} \in C} \vec{w} \cdot \vec{r}. \tag{21}
\]

For our purposes, this translates in the following result:

Lemma III.8. For a vector of observables \(\vec{O} = (O_1, \ldots, O_K) \) let \(H(\vec{r}) = \vec{r} \cdot \vec{O} \) and \(E(\vec{r}) = \inf_{\rho \in S_N} \{ \text{tr}(H(\vec{r})\rho) \} \). Then \(W(\vec{r}) = H(\vec{r}) - E(\vec{r}) \) is a pairing witness, whenever \(E(\vec{r}) \neq \inf_\rho \{ \text{tr}(\rho H(\vec{r})) \} \).

If \(\{ O_o \} \) form a basis of \(A_2 \), then \(W(\vec{r}) \) is a complete set of witnesses in the sense that all paired states are detected by some \(W(\vec{r}) \), i.e., \(\rho \) is unpaired iff \(\text{tr}[W(\vec{r})\rho] \geq 0 \forall \vec{r} \).

Proof. The witness property of \(W(\vec{r}) \) is obvious from the definition of \(E(\vec{r}) \).

For the second part, “if” is clear and “only if” is seen as follows: By Lemma III.7 if \(\text{tr}[W(\vec{r})\rho] \geq 0 \forall \vec{r} \) then \(\vec{v}_\rho \in C \), i.e. the expectation values can be reproduced by a separable state. But since all expectation values of operators in \(A_2 \) can be computed from \(\vec{v}_\rho \), this implies all two-particle expectations of \(\rho \) can be thus reproduced, i.e. \(\rho \) is unpaired.

For an \(M \)-mode system with annihilation operators \(a_i \), a standard choice of \(O_o \) is, e.g., given by the real and imaginary parts of \(\{ (a_i^\dagger a_j a_{k}^\dagger a_l), (a_i^\dagger a_j a_k^\dagger a_l^\dagger), (a_i^\dagger a_{j}^\dagger a_k a_l^\dagger) \} \), i.e., the dimension of \(A_2 \) (as a real vector space) is \(K = M^2(M-1)^2/2 + 2M^2 \).

Thus Lemma III.8 gives a necessary and sufficient criterion of pairing and provides a geometrical picture of the pairing problem. While the proof that a state is unpaired will in general be difficult as it requires knowledge of all \(E(\vec{r}) \) and experimentally the measurement of a complete set of observables, practical sufficient conditions for pairing can be obtained by restricting to a subset \(\mathcal{O} \subset A_2 \). We will show in Sec. \ref{sec:pairing} that for a certain choice of \(\{ O_o \} \subset A_2 \) the set \(C_\mathcal{O} \) has a very simple form and allows a good visualization of the geometry of paired states and the detection of all BCS states up to passive transformations.

To provide a way to determine \(E(\vec{r}) \) used in Lemma III.8 we point out an interesting connection to the covariance matrices \(\Gamma_c \) (cf. Eq. \ref{eq:gamma}) of Gaussian states: even for number conserving states, \(E(\vec{r}) \) is given by a quadratic minimization problem in terms of \(\Gamma_c \).

Lemma III.9. Let \(E(\vec{r}) \) and \(H(\vec{r}) \) be as in Lemma III.8, and let \(\vec{O} = \{ a_i^\dagger a_j a_{k} a_l^\dagger \} \) and group the components of \(\vec{r} \) in two subsets \(\vec{r}_{ijkl} \) and \(\vec{r}_{ij} \) corresponding to the one- and two-particle observables, respectively. Then \(E(\vec{r}) \) is given by a quadratic minimization problem over complex covariance matrices Eq. \ref{eq:gamma}, in particular the off-diagonal block \(R \) of \(\Gamma_c \). We have
\[
E(\vec{r}) = \inf_{\vec{r}_{ijkl}, \vec{r}_{ij}} \left\{ \vec{r}^T M(\vec{r}) \vec{r} + w(\vec{r})^T \vec{r} \right\}, \tag{22}
\]
where \((\vec{r})_{kl} = \langle a_i^\dagger a_j \rangle = -iR_{ik} + \frac{1}{2} \delta_{kl} \) and the \(\vec{r} \)-dependent quantities are \([M(\vec{r})]_{ijkl} = -\vec{r}_{ijkl} + \vec{r}_{ijkl} \) and \([w(\vec{r})]_{kl} = \vec{r}_{kl} \).

The minimization can be extended over all (not necessarily pure separable) CMs without changing the result.

Proof. The minimum \(\min_{\rho \in S_N} \{ \langle H(\vec{r}) \rangle \rho \} \) is attained for pure separable states, i.e., product states. All pure fermionic product states are Gaussian; then by Wick’s theorem the expectation values of the \(O_{ijkl} = a_i^\dagger a_j a_k a_l^\dagger \) factorize as \(\langle a_i^\dagger a_j a_k a_l^\dagger \rangle = \langle a_i^\dagger a_j \rangle \langle a_k a_l^\dagger \rangle = \langle a_i^\dagger a_j \rangle \langle a_k a_l^\dagger \rangle + \langle a_i^\dagger a_l^\dagger \rangle \langle a_k a_j \rangle \). Since product states are also number conserving, the first term vanishes. For the other two we use that \(\langle a_i^\dagger a_l^\dagger \rangle = -iR_{il} + \frac{1}{2} \delta_{il} \), i.e., they only depend on the off-diagonal block \(R \). The pure state condition \(\Gamma^2 = -1 \) translates into \(4R^2 = -1 \) for product states \(Q = 0 \). We could extend over all CMs \(\gamma \) since only the block \(R \) appears in the expression to be minimized over and since if \(\Gamma_c(Q, R) \) is a valid CM then so is \(\Gamma_c(0, R) \).

This lemma provides a systematic way to construct pairing witnesses.

D. Pairing measures

It would be desirable if a theory of pairing not only answers the question whether a state is paired or not, but also quantifies the amount of pairing inherent in a state. For this purpose, we introduce the notion of a pairing measure:

Definition III.10. Let \(\rho \) be an \(M \)-mode fermionic state. A pairing measure is a map
\[
\mathcal{M} : \rho \mapsto \mathcal{M}(\rho) \in \mathbb{R}_+,
\]
which is invariant under passive transformations and fulfills \(\mathcal{M}(\rho) = 0 \) for every unpaired state \(\rho \).

In addition, it is often useful to normalize \(\mathcal{M} \) such that \(\mathcal{M}(\rho_0) = 1 \) defines the “unit of pairing”. The pair state \(\ket{\Phi} \) of Eq. \ref{eq:pair} would be an obvious choice for this unit, but as we see in Sec. \ref{sec:pairing} for Gaussian states a different unit is more natural, therefore we do not include normalization in the above definition.

In the geometric picture of the previous section, a candidate for a pairing measure that immediately comes to mind is the distance of \(\vec{v}_\rho \) from the set \(C \). This measure is positive, and it is invariant under passive transformations, as those correspond to a basis change in the space of expectation vectors.

The computation of this distance is, in general, very difficult and there is no evident operational meaning to this quantity. In the following sections we will introduce a different measure that can be computed for relevant families of states and allow a physical interpretation in terms of quantifying a resource for precision measurements.
IV. PAIRING FOR GAUSSIAN STATES

In this section we study pairing of fermionic Gaussian states. We start with the construction of pairing witnesses in Sec. IV A which will later be a useful guideline for the construction of pairing witnesses for number conserving states. Then we derive a simple necessary and sufficient criterion for pairing of Gaussian states. In Sec. IV C we show how pure fermionic Gaussian states can be connected to an $SU(2)$ angular momentum representation. This picture will guide us to the construction of a pairing measure.

A. Pairing witnesses for Gaussian states

Pairing witnesses for pure Gaussian states emerge naturally from the property that every such state is the ground state of a quadratic Hamiltonian (see Sec. II C). This leads to the following theorem:

Theorem IV.1. Let $0 < \epsilon < 1$ and let $0 \leq |v_k|^2 \leq 1 - \epsilon$ and $\sum_k |v_k|^2 > 0$. Then the operator

\[
H = \sum_{k=1}^{M} (1 - |v_k|^2)(n_k + n_{-k}) - 2v_k u_k^* P_k^\dagger - 2v_k^* u_k P_k
\]

is a pairing witness, detecting

\[
|\Psi_{Gauss}\rangle = \prod_k (u_k + v_k P_k^\dagger)|0\rangle.
\]

Proof. Every Gaussian state is the ground state of a quadratic Hamiltonian. In particular, $|\Psi_{Gauss}\rangle$ is seen to be the ground state of

\[
H_0 = \sum_{k=1}^{M} (|v_k|^2 - |v_k|^2)(n_k + n_{-k} - 1) - 2v_k u_k^* P_k^\dagger - 2v_k^* u_k P_k
\]

with the help of (13)-(14), as the Hamiltonian matrix of H_0 and Γ can be brought simultaneously to the standard forms (5) resp. (7). Subtracting the minimal energy for separable states, $E_{\text{min}}^\text{sep} = -(1 - 2\epsilon) \sum_k (n_k + n_{-k}) - (|v_k|^2 - |v_k|^2)$ (note that $\langle P_k \rangle = 0$ for separable states), we arrive at the Hamiltonian (23). For separable states ρ, the expectation values of $P_k^\dagger P_k$ vanish, so that $\text{tr}[H\rho] \geq 0$. For the Gaussian BCS state, however, $\langle \Psi_{Gauss}|H|\Psi_{Gauss}\rangle = -4\epsilon \sum_k |v_k|^2 < 0$. □

B. Complete solution of the pairing problem for fermionic Gaussian states

Every Gaussian state is completely characterized by its covariance matrix, so that the solution of the pairing problem must be related to it. The pairing problem is completely solved by the following theorem:

Theorem IV.2. Let ρ be the density operator of a fermionic Gaussian state with covariance matrix Γ_c defined in (11). Then ρ is paired iff $Q \neq 0$.

Proof. First, note that the condition $Q = 0$ is independent of the choice of basis. If ρ is not paired, then there exists a separable state having the same covariance matrix as ρ. This implies $Q = 0$, as separable states are convex combinations of states with fixed particle number, and thus $\langle i/2[a_k, a_l]\rangle = 0$.

Now, let Γ_c be the covariance matrix of a paired Gaussian state, and assume that $Q = 0$. As R is anti-hermitian, there exists a passive transformation such that $R_{ij} = r_i \delta_{ij}$, and $Q = 0$ is unchanged. But such a covariance matrix can be realized by a separable state fulfilling $\langle n_i \rangle = r_i$ in contradiction to the assumption. □

Note that Thm. IV.2 implies that a Gaussian state is unpaired iff it is number conserving.

C. Angular momentum algebra for Gaussian states

In this section we will show that pairing of Gaussian states can be understood in terms of an $SU(2)$ angular momentum algebra. The expectation values of the angular momentum operators can be visualized using a Bloch sphere, giving us further understanding of the structure of pairing in Gaussian states. It later leads to the construction of a pairing measure for these states. Define

\[\langle j_k^{(x,y,z)}\rangle\]
the operators $^{39,40}

\begin{align*}
 j_k^{(x)} &= \frac{1}{2} \left(P_k^i + P_k \right), \\
 j_k^{(y)} &= \frac{i}{2} \left(P_k^i - P_k \right), \\
 j_k^{(z)} &= \frac{1}{2} \left(1 - n_k - n_{-k} \right).
\end{align*}

They fulfill $[j_k^{(a)}, j_k^{(b)}] = i\varepsilon_{abc} j_k^{(c)}$, $a, b, c \in \{x, y, z\}$, forming an SU(2) angular momentum algebra. For pure Gaussian states in the standard form 15, the expectation values of the angular momentum operators are given by $\langle j_k^{(x)} \rangle = \text{Re}(u_k \bar{v}_k)$, $\langle j_k^{(y)} \rangle = \text{Im}(u_k \bar{v}_k)$, and $\langle j_k^{(z)} \rangle = \frac{1}{2}(1 - 2|v_k|^2)$. As $j_k^2 = \sum_{i=x,y,z} (\langle j_k^{(i)} \rangle)^2 = 1/4$ independent of u_k and v_k, the expectation values for every pure Gaussian state lie on the surface of a sphere with radius $1/2$. As we have shown in Thm. $^{IV.2}$ every unpaired state ρ_u fulfills $\langle j_k^{(x)} \rangle_{\rho_u} = \langle j_k^{(y)} \rangle_{\rho_u} = 0$, so that these states are located on the z-axis. The states on the equator have $\langle j_k^{(x)} \rangle^2 + \langle j_k^{(y)} \rangle^2 = 1/4$, i.e. they correspond to $|v_k|^2 = |u_k|^2 = 1/2$. The situation is depicted in Fig. 1. Referring to the states on the equator as maximally paired is suggested by the fact that they have maximal distance from the set of separable states. This intuitive picture is further borne out by two observations: first, the states on the equator display maximal entanglement between the involved modes 39. Second, they have the property 4 that they achieve the minimal expectation value of any quadratic witness operator (up to basis change). To see this, recall from Sec. II that any quadratic Hamiltonian of two modes k, k' is (up to a common factor and basis change) of the form $\alpha I + \sin \theta (n_k + n_{-k}) + \cos \theta (P_k^i + P_{k'})$. It is a witness (i.e., has positive expectation for all product states), if $\alpha \geq |\max\{0, 2\sin \theta\}|$ and does detect some paired state as long as $\sin \theta > -1$. The minimal eigenvalue is $\sin \theta - 1 + \alpha$ and the minimum $\text{tr}(W \rho) = -1$ is attained for $\rho = \frac{1}{2}(1 + P_k)\rho(0)\rho(0)(1 + P_k)$.

The pairing measure which is the topic of the next section will confirm the characterization as maximally paired.

D. A pairing measure for Gaussian states

The angular momentum representation of paired states depicted in Fig. 1 suggests the introduction of a pairing measure via a quantity related to $|\langle j_k^{(x)} \rangle_{\rho_G}|^2 + |\langle j_k^{(y)} \rangle_{\rho_G}|^2 = |\langle \Phi_k^{(+)} | \Phi_k^{(-)} \rangle_{\rho_G}|^2$:

Definition IV.3. Let ρ be a fermionic state, and let $Q_{kl} = i/2 \text{tr}(\rho [a_k, a_l])$. Then we define

$$
M_G(\rho) = 2||Q||_2^2 = 2 \sum_{kl} |Q_{kl}|^2,
$$

(24)

Lemma IV.4. M_G as defined in Eq. (IV.3) is a pairing measure fulfilling $M_G(\rho) \leq M$ for every M-mode Gaussian state.

Proof. Under a passive transformation $Q \rightarrow UQUT$, and hence $||Q||_2^2$ is invariant. Further, we know by Thm. $^{IV.2}$ that $Q = 0$ for unpaired states. It remains to show that for an M-mode Gaussian state ρ we have $M_G(\rho) \leq M$. Let Γ_G be the $2M \times 2M$ covariance matrix of ρ defined in 11. We show first that $M_G(\rho)$ is maximized for pure Gaussian states. To do so, recall that an admissible covariance matrix for a Gaussian state in the real representation has to fulfill $i\Gamma \leq 1$ with equality iff Γ is the covariance matrix of a pure Gaussian state. This translates into $\Gamma_G I^4 \leq 1$ with equality iff Γ_G belongs to a pure Gaussian state. Using the form of Γ_G given in 11, this implies $2\text{tr}(QQ^T + RR^T) \leq \text{tr}(I) = 2M$. Hence, $||Q||_2^2 \leq M - ||R||_2^2$. It follows that for fixed value of $||R||_2$ the value of $||Q||_2^2$ is maximal for a pure Gaussian state. Further, the standard form 15 implies that for every value of $||R||$ such a state exists, and that the maximal value is given by $||Q||_2^2 = 2 \sum_{k=1}^M |u_k|^2 |v_k|^2 \leq M/2$, as $|u_k|^2 + |v_k|^2 = 1$.

Hence, for every pure Gaussian state with standard form 15 the value of the pairing measure is given by $M_G(\rho) = 4 \sum_{k=1}^M |u_k|^2 |v_k|^2$. Since $|v_k|^2 = 1 - |u_k|^2$ the measure attains its maximum value for $|u_k|^2 = |v_k|^2 = 1/2$, i.e., for the states already identified as maximally paired.

$M_G(\rho)$ will appear again when we study the use of paired states for metrology applications, linking the pairing measure to the usefulness of a state for quantum phase estimation and giving support to the “resource” character of paired states.

V. PAIRING OF NUMBER CONSERVING STATES

In the last section we gave a complete solution to the pairing problem for fermionic Gaussian states. There, Wick’s theorem lead to a reduction of the problem to properties of the covariance matrix. For number conserving systems, the situation is more complicated, as now also operators of the form $a_k^\dagger a_{-k}^\dagger a_k a_l$ have to be taken into account. However, we will derive pairing witnesses capable of detecting all number conserving BCS states in Sec. $^{V.A}$ using the concept of convex sets. For certain classes of BCS states we will construct a family of improved witnesses using the analogy to the Gaussian states. Witnesses have the drawback that they depend on the choice of basis. I.e. even if a witness detects ρ, 11.
it does not detect all states related to ρ by a passive transformation. We will show that the eigenvalues of the reduced two-particle density matrix can be used to obtain a sufficient criterion for pairing in Sec. V.B which is basis independent. We close the section with the construction of a pairing measure in Sec. V.C.

A. Pairing of all BCS states and geometry of paired states

In a realistic physical setup it may not be practical to perform all the measurements needed according to Lemma III.8 to check the necessary and sufficient condition for pairing. Having access only to a restricted set of measurements, necessary criteria for pairing can be derived. In this section we consider the simplest case of a symmetric measurement involving four modes, i.e. we are looking at the following vector of operators:

$$\vec{O}_3 = \left(\begin{array}{ccc} n_k + n_{-k} + n_l + n_{-l} \\ n_k n_{-k} + n_l n_{-l} \\ a_k a_{-k} a_l a_{-l} + h.c. \end{array} \right).$$ \hspace{1cm} (25)

Remarkably, these expectation values will turn out to be sufficient to detect all BCS states as paired.

We are interested in $C_{O_3}^{\text{unpaired}} = \{ \text{tr}(\vec{O}_3 \rho) : \rho \text{ separable} \}$, the set of all expectation values of \vec{O}_3 which correspond to separable states. If for some ρ the vector $\vec{v}_\rho = \text{tr}(\vec{O}_3 \rho)$ is found outside of $C_{O_3}^{\text{unpaired}}$ then it follows from Lemma III.8 that ρ is paired. Membership in $C_{O_3}^{\text{unpaired}}$ can be easily checked by the following Lemma.

Lemma V.1. A number conserving state ρ has expectation values of \vec{O}_3 (see Eq. (23)) compatible with separability if and only if $\text{tr}(H_{k \pm}^{(p)} \rho) \geq 0$ for $k = 1, 2, 3$, where

$$H_{1 \pm}^{(p)} = \frac{1}{2} (n_k + n_{-k} + n_l + n_{-l}) - (n_k n_{-k} + n_l n_{-l}) \pm (a_k a_{-k} a_l a_{-l} + h.c.),$$ \hspace{1cm} (26)

$$H_{2 \pm}^{(p)} = (n_k n_{-k} + n_l n_{-l}) \pm (a_k a_{-k} a_l a_{-l} + h.c.),$$ \hspace{1cm} (27)

$$H_{3 \pm}^{(p)} = 1 - \frac{1}{2} (n_k + n_{-k} + n_l + n_{-l}) \pm \frac{1}{2} (n_k n_{-k} + n_l n_{-l}) \pm \frac{1}{2} (a_k a_{-k} a_l a_{-l} + h.c.).$$ \hspace{1cm} (28)

Hence, the extremal points of the set $C_{O_3}^{\text{unpaired}}$ are given by $\text{tr}(H_{k \pm}^{(p)} \rho) = 0$ for three of the witnesses 26-28. The faces of $C_{O_3}^{\text{unpaired}}$ consist of points for which at least one of the expectation values $\text{tr}(H_{k \pm}^{(p)} \rho)$ vanishes. $H_{1 \pm}^{(p)}$ and $H_{3 \pm}^{(p)}$ are also pairing witnesses, while $H_{2 \pm}^{(p)}$ is non-negative on all number conserving states.

Lemma V.2. Every number conserving fermionic state fulfills $\text{tr}(H_{k \pm} \rho) \geq 0$, where

$$H_1 = \frac{1}{2} (n_k + n_{-k} + n_l + n_{-l}) - (n_k n_{-k} + n_l n_{-l})$$ \hspace{1cm} (29)

$$H_{2 \pm} = (n_k n_{-k} + n_l n_{-l}) \pm (a_k a_{-k} a_l a_{-l} + h.c.)$$ \hspace{1cm} (30)

$$H_{3 \pm} = 2 - \frac{1}{2} (n_k + n_{-k} + n_l + n_{-l}) \pm (a_k a_{-k} a_l a_{-l} + h.c.).$$ \hspace{1cm} (31)

The extremal points of the set $C_{O_3}^{\text{all}} = \{ \text{tr}(\vec{O}_3 \rho) : \rho \in S(A_N^{N}) : M, N \in \mathbb{N} \}$ are given by $\text{tr}(H_{k \pm} \rho) = 0$ for three of the witnesses 29-31. The faces of $C_{O_3}^{\text{all}}$ consist of points for which at least one of the expectation values $\text{tr}(H_{k \pm} \rho)$ vanishes.

The proofs of the two lemmas can be found in Appendix B. We denote by $C_{O_3}^{\text{unpaired}}$ and $C_{O_3}^{\text{all}}$ the polytopes containing all expectation vectors \vec{v}_ρ corresponding to unpaired states or all number conserving states, respectively. They are bounded by 6 resp. 5 planes defined through the witnesses given in Lemmas V.1 and V.2. The situation is depicted in Fig. 2.

The witnesses $H_{k \pm}^{(p)}$ given in Eqs. 26 allow to detect all number conserving BCS states as paired:

Lemma V.3. The number conserving BCS state $|\Psi_{BCS}^{(N)}\rangle$ given in Eq. (17) is (except for the trivially unpaired cases $\alpha_k = \delta_{kko}$ and $N = M$) detected by the witness $H_{k \pm}^{(1)}$ by choosing any two modes (k, l).

Proof. The first two terms in $H_{k \pm}^{(p)}$ are designed such that their expectation value vanishes for states such as $|\Psi_{BCS}^{(N)}\rangle$: Since we either have a pair or no particles
in the modes \((k, -k)\) we are in an eigenstate with eigenvalue 0 of the operators \(n_k + n_{-k} - 2n_k n_{-k}\). The expectation value of the third term is found using the representation Eq. (18) as
\[
|CN|^2 N^2 \text{Re} \langle \alpha_k \alpha_i^\dagger \rangle \sum_{j < i} \langle \alpha_j |^2 \ldots | \alpha_{jN-1} |^2 ,
\]
which is nonzero unless \(N = M\) or all but one \(\alpha_k \neq 0\). The sign can be adjusted by a passive transformation to give \((H_{\alpha_{-1}}(N))_{BCS} < 0\).

This shows that indeed all BCS states are paired, as desired.

The witnesses \(H_{\alpha}^{(1)}\) while detecting every BCS state as paired, are in general far from optimal. As the number conserving BCS states appear in many physical setting, like in the BEC-BCS crossover \[42\], it is desirable to construction improved witnesses tailored for this class of states. For BCS states realized in nature it is often appropriate to assume some symmetry of the wave function. Let us sketch the idea of this construction leading to Thm. V.4, and give the details in the appendix. We have shown in Sec. \[11\] the connection of the Gaussian wave function and the number conserving wave function via \(\Psi_{\text{Gauss}}(N) = \sum_{k=1}^N \lambda_k N \Psi_{\text{BCS}}^{(N)}(\alpha_k)\). Consider a number conserving observable \(O\) and denote by \(\langle O \rangle_{\text{Gauss}}\) and \(\langle O \rangle_{\text{N}}\) its expectation value for the Gaussian and \(2N\)-particle BCS states respectively. If the distribution of \(\lambda_k\) is sharply peaked around some average particle number \(\bar{N}\) with width \(\Delta\), then \(\langle O \rangle_{\text{Gauss}} \approx \langle O \rangle_{\text{N}}\) for any integer \(N \in [\bar{N} - \Delta, \bar{N} + \Delta]\). In Thm. V.4, we have constructed witnesses \(H\) for all Gaussian BCS states. As these witnesses are optimal, they suggest to constitute an improved witness detecting the corresponding number conserving BCS state. But \(H\) includes terms of the form \(P_k^\dagger\) that do not conserve the particle number. Hence, this witness cannot be applied directly to the number conserving case. Using Wick’s theorem, \(\langle P_k^\dagger P_{k+M} \rangle_{\text{Gauss}} = \bar{u}_k v_k \langle \alpha_k^\dagger \rangle\) holds under our symmetry assumption. This suggests that we replace the non-number conserving operator \(\bar{u}_k v_k P_k^\dagger\) by the number conserving operator \(P_k^\dagger P_{k+M}\). We define operators

\[
H_k = 2(1 - e - |v_k|^2)N_k - 4(P_k^\dagger P_{k+M} + h.c.),
\]

\[
N_k = n_k + n_{-k} + n_{k+M} + n_{-(k+M)},
\]

where \(0 \leq |v_k|^2 \leq 1 - e\) for \(e > 0\). Further, we introduce the notation \(\alpha_k = v_k / \sqrt{1 - |v_k|^2}\), \(N = \sum_{k=1}^M |v_k|^2\) and we denote by \(N\) the biggest integer fulfilling \(N - N \geq 0\). Then the following holds:

Theorem V.4. Let \(M, \tilde{N} \in N\) and let \(1 \ll N \ll 2M\). If \(1 > e > 18 / \sqrt{\pi N}\) the Hamiltonian \(H(\{\tilde{v}_k\}) = \sum_{k=1}^M H_k\) is a pairing witness detecting
\[
|\Psi_{\tilde{N}}^{(N)}(\alpha_k)\rangle = \bar{C}_N \left(\sum_{k=1}^M \alpha_k (P_k^\dagger + P_{k+M}^\dagger) \right)^N |0\rangle.
\]

The proof is given in Appendix \[C\].

B. Eigenvalues of the two-particle reduced density matrix

In this section we derive a basis independent condition for detecting pairing. The two-particle reduced density matrix \(O\) contains all two-particle correlations. As a change of basis, \(a_i^\dagger \mapsto \sum_k U_{ik} a_k^\dagger\) leaves the spectrum of \(O\) unchanged since
\[
O(\rho)(ij,kl) \rightarrow (U \otimes U)(ij,mn) O(\rho)(mn,pq) (U \otimes U)^\dagger (pq,kl),
\]
we are lead to the following theorem:

Theorem V.5. Let \(\rho\) be an unpaired state, and let \(O\) be its two-particle RDM \(O\). Then \(\lambda_{\text{max}}(O) \leq 2\), where \(\lambda_{\text{max}}\) denotes the maximal eigenvalue.

Proof. If \(\rho\) is unpaired, then there exists a separable state \(\rho_s \in \mathcal{S}_{\text{sep}}\) having the same two-particle RDM. Any separable state is of the form \(\rho_s = \sum_{\alpha} \mu_\alpha \rho(\alpha)\), where \(\rho(\alpha) = |\psi_\alpha(\alpha)\rangle \langle \psi_\alpha(\alpha)|\), \(|\psi_\alpha(\alpha)\rangle = \prod_{\alpha_i} a_{\alpha_i}^\dagger |0\rangle\) and \(\sum_{\alpha} \mu_\alpha = 1\). Here, \(\{a_{\alpha_i}\}_i\) denotes some basis of mode operators. The RDM is of the form \(O(\rho) = \sum \mu_\alpha O(\alpha)\), where \(O(\alpha)\) is the RDM for the state \(\rho(\alpha)\). The RDM is calculated in the basis \(\{a_i^\dagger\}_i\), and the different bases are related by a unitary transformation \(a_i = \sum_j U_{ij} a_j^\dagger\), so that \(O(\alpha)(ij,kl) = \text{tr}[\rho(\alpha)a_j^\dagger a_k^\dagger a_i a_l]\). The expectation value \(\langle a_{\alpha_i} a_{\alpha_j} a_{\alpha_k} a_{\alpha_l} |\rho(\alpha)\rangle\) of the simple form \(\langle a_{\alpha_i} a_{\alpha_j} a_{\alpha_k} a_{\alpha_l} |\rho(\alpha)\rangle\) is \(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}\). Hence, the spectrum of the \(O(\alpha)\) is given by \(\text{spec}(O(\alpha)) = \{0, 2\} \forall \alpha\). The two-particle RDM is hermitian if \(O(\alpha)(ij,kl) = O(\alpha)(kl,ij)\). Then Weyl’s theorem \[43\] implies \(\lambda_{\text{max}}(\alpha) \leq \lambda_{\text{max}}(O) \leq 2\).

An example of a state detected as paired via criterion is the BCS-state \(\{\tilde{v}_k\}\) with \(N = 2, M = 3\) and all \(\alpha_k\) equal. The largest eigenvalue of its two-particle RDM is given by \(\lambda_{\text{max}} = 8/3\).
C. A pairing measure for number conserving states

In Sec. [IV.D] we have derived a pairing measure for Gaussian states. The correspondence with number conserving BCS states will be a guideline to derive a measure for number conserving states. However, the measure of Def. [IV.3] involves expectation values of the form $\langle a_i^\dagger a_{-i}^\dagger \rangle$ that vanish for states with fixed particle number. Yet, Wick’s theorem suggests that a quantity involving expectation values of the form $(P_i^\dagger P_i)$ will lead to a pairing measure. This is indeed the case, which is the content of the following theorem:

Theorem V.6. Let ρ be a number conserving pure fermionic state. Then the following quantity defines a pairing measure:

$$\mathcal{M}(\rho) = \min \sum_i p_i \mathcal{M}(\rho_i), \quad (35)$$

where the minimum is taken over all possible decompositions of $\rho = \sum_i p_i \rho_i$ into pure states ρ_i.

Proof. The positivity of \mathcal{M} and its invariance under passive transformations follow directly from the definition. It remains to show that \mathcal{M} is zero for separable states. We will prove in Lemma [D.1] Appendix D that any separable state of $2N$ particles fulfills $\sum_{ijkl} |\langle P_i^\dagger P_j \rangle| \leq N$, and that this bound can always be achieved, which concludes the proof.

We close the section by calculating the value of the pairing measure for two easy examples. Let

$$|\Psi_s\rangle = \bigotimes_{k=1}^{N} \frac{1}{\sqrt{2}} (P_k^\dagger + P_{-k}^\dagger) |0\rangle, \quad (36)$$

$$|\Psi^{(N,M)}_{BCS}\rangle = C_N \left(\sum_{k=1}^{M} P_k \right)^N |0\rangle, \quad (37)$$

the tensor product of N spin-singlet states and the BCS state with equal weights, respectively. These states have a pairing measure $\mathcal{M}(|\Psi_s\rangle) = N \text{ resp. } \mathcal{M}(|\Psi^{(N,M)}_{BCS}\rangle) = N(M-N)$. Thus, for the spin singlet the pairing measure has in addition the property that it is normalized to 1 and additive, while it is subadditive for $|\Psi^{(N,M)}_{BCS}\rangle$. Further, this example suggests that the pairing of $\mathcal{M}(|\Psi^{(N,M)}_{BCS}\rangle) = N(M-N)$ is stronger than for $|\Psi_s\rangle$. We will see indeed in Subsec. [VI.B] that states of the form $|\Psi_s\rangle$ allow interferometry at the Heisenberg limit.

VI. INTERFEROMETRY

The goal of quantum phase estimation is to determine an unknown parameter ϕ of a Hamiltonian $H_\phi = \phi H$ at highest possible accuracy. The value of ϕ is inferred by measuring an observable O on a known input state that has evolved under H_ϕ. In a region where the expectation value $\langle O(\phi) \rangle$ is bijective, ϕ can be inferred by inverting $\langle O(\phi) \rangle$. In a realistic setup, however, $\langle O(\phi) \rangle$ cannot be determined, as this would require an infinite number of measurements. Instead, one uses the mean value of the measurement results, \bar{O}, as an estimate of $\langle O(\phi) \rangle$. This will result in an error $\delta \phi$ for the parameter to be estimated, as for a given value of ϕ we have $\langle O(\phi) \rangle = \bar{O} \pm \sqrt{\text{Var}(\bar{O})}$. Linearizing around the real value of ϕ, it follows that the uncertainty of ϕ is given by

$$\langle (\delta \phi)^2 \rangle = \frac{\text{Var}(\bar{O})}{\langle O(\phi) \rangle} \langle \phi \rangle^2, \quad (38)$$

where $\text{Var}(\bar{O}) = \langle O^2 \rangle - \langle O \rangle^2$, and we have used the fact that $\langle O(\phi) \rangle = \text{Var}(\bar{O})$. Further, it can be shown that the minimal uncertainty of ϕ is bounded by

$$\langle (\delta \phi)^2 \rangle \langle \phi \rangle \langle H \rangle \geq \frac{1}{2}, \quad (39)$$

where ν is the number times the estimation is repeated. Eq. (39) derives from the Cramér-Rao bound and is asymptotically achievable in the limit of large ν.

For a given measurement scheme, i.e. for a given input state and a given observable O, the uncertainty in ϕ can be reduced by using N identical input states and average over the N measurement outcomes. As the preparation of a quantum state is costly, a precision gain which has a strong dependence on N is highly desirable. If these probe states are independent of each other, the precision scales like $1/\sqrt{N}$. This is the so-called standard quantum limit (SQL). Using distinguishable or bosonic systems, this limit can be beaten by a factor of \sqrt{N} by using number-squeezed input states $[48, 49, 50, 51]$. N-particle NOON states or maximally entangled GHZ-states $[46, 47]$.

Achieving this so-called Heisenberg-limit is the big goal of quantum metrology.

Less is known for fermionic states where number squeezing and coherent N-particle states are prohibited by statistics. Nevertheless, there exist fermionic N-particle state which can achieve the Heisenberg limit for phase measurements in a Mach-Zehnder interferometer setup $[52]$. Taking the existence of such states as a starting point, we show that paired fermionic states can be used as a resource for phase estimation beyond the SQL. We will consider two different settings. The first setting will be the standard Ramsey-interferometer setup of metrology, where the coupling Hamiltonian is proportional to the number operator. Here, we will see that paired states lead to a precision gain of a factor of 2.
In the next section we will derive the best possible precision obtainable by using unpaired states, and compare this result to the precision achievable by using paired states. It will turn out that already at two-particle level paired states have more power than the unpaired states for our setup.

2. *Bound on unpaired states for the standard interferometer*

In this section we derive a lower bound on the phase sensitivity when using an unpaired state of $2N$ particles as input states.

Theorem VI.1. For the Ramsey interferometer described above the phase sensitivity is bounded by

$$ (\delta \varphi)^2 \geq \frac{1}{2\nu N} ,$$

when an unpaired state of $2N$ particles is used as input state.

Proof. We will use (39) to derive the bound. Hence, we have to estimate an upper bound for the variance of the Hamiltonian H_N defined in (42). As H_N as well as H_N^2 contain operators from the set A_2 only, it is sufficient to proof the bound for product states, as for every unpaired state there exists a product state having the same expectations. In Lemma A.2 of Appendix A we have shown that for pure separable states $\langle P \rangle = |P| - \text{Tr}(P_0 H) + P_0 \delta_{P_0}$, where $P \in C^{4M \times 4M}$ is a projector of rank $2N$. We arrange the indices as $-l_M, \ldots, l_M, -k_M, \ldots, k_M$ and partition the projector P such that $P = \left(\begin{array}{cc} A & B \\ B^\dagger & C \end{array} \right)$, where $A, B, C \in C^{2M \times 2M}$. Then

$$ \text{Var}(H_N) = \sum_{i=1}^{2M} A_{ii} - \sum_{i,j=1}^{2M} |A_{ij}|^2 = \text{Tr}[BB^\dagger], $$

as H_N only involves the modes $-l_M, \ldots, l_M$. In the last step we have used $P^2 = P$, implying $A - A^2 = BB^\dagger$. As rank(P) = $2N$, there exists some unitary U such that $P = U \text{Id}_{2N} U^\dagger$, where $U \in C^{4M \times 4M}$.

Partitioning the unitary $U = \left(\begin{array}{cc} U_{11} & U_{12} \\ U_{21} & U_{22} \end{array} \right)$, where $U_{ij} \in C^{2M \times 2M}$, $i, j = 1, 2$, the projector P is of the form

$$ P = \left(\begin{array}{cc} U_{11} \text{Id}_{2N} U_{11}^\dagger & U_{11} \text{Id}_{2N} U_{21}^\dagger \\ U_{21} \text{Id}_{2N} U_{11}^\dagger & U_{21} \text{Id}_{2N} U_{21}^\dagger \end{array} \right) .$$

Using the the above representation of P and the cyclicity of the of the trace, we can write $\text{Var}(H_N) = \text{Tr}[^{\dagger}AB]$ with hermitian matrices $A = \text{Id}_{2N} U_{11}^\dagger \text{Id}_{2N}, B = \text{Id}_{2N} U_{21}^\dagger \text{Id}_{2N}$. The trace can be interpreted as a scalar product maximized for linearly dependent A and B. Exploiting the unitarity of U, one sees immediately that

$$ \langle P \rangle = \frac{1}{2}, $$

and therefore

$$ (\delta \varphi)^2 \geq \frac{1}{2\nu N} , $$

as desired.
the Ramsey interferometer, the optimal phase sensitivity \(\sum |c| = c/(1 + c)\text{Id}_{2N} \), \(\hat{B} = 1/(1 + c)\text{Id}_{2N} \) for some constant \(c \). Hence, \(\text{Var}(H_N) \leq c/(1 + c)^2 \text{tr}[\text{Id}_{2N}] \leq N/2 \). Inserting this into eq. (42), we find that \((\delta \varphi)^2 \geq \frac{1}{2N} \).

\section{Interferometry with two particles}

In this section we will show that already a two-particle paired state can beat the bound for the phase sensitivity using unpaired states \([16]\). Hence pairing manifests itself as useful quantum correlation already at the two-particle level. We show the following:

\textbf{Theorem VI.2. Using the paired state}

\[|\Psi_{\text{in}}^{(2)}\rangle = \left(\sum_{j=1}^{M} \alpha_j a_{\downarrow}^j a_{\uparrow}^j + \beta_j a_{\downarrow}^j a_{\uparrow}^j \right) |0\rangle, \quad (48) \]

with normalization \(\sum_{j} |\alpha_j|^2 + |\beta_j|^2 = 1 \) as input state for the Ramsey interferometer, the optimal phase sensitivity is given by

\[(\delta \varphi)^2_{\text{min}} = \frac{1}{2 \left(1 + 2 \sum_{j=1}^{M} \text{Re}(\alpha_j \beta_j) \right)} \geq \frac{1}{4}. \quad (49) \]

\textbf{Proof.} Take \(|\Psi_{\text{in}}^{(2)}\rangle \) as the input state. After an application of the beam splitter transformation \([16]\) and an evolution under the Hamiltonian \([12]\), the measurement outcome of the parity operator is calculated to be

\[\langle P \rangle = 1 - \sin^2 \varphi \left(1 + 2 \sum_{j=1}^{M} \text{Re}(\alpha_j \beta_j) \right). \quad (50) \]

Using eq. (44), we obtain (49). The bound of 1/4 can be obtained for a state where \(\alpha_k = \beta_k \forall k \).

Thm. VI.2 shows that there exist two-particle paired states exceeding the bound on product states \([16]\).

\section{Interferometry with 2N-particle BCS states}

Generalizing the result obtained in the last section, it follows immediately that states of the form \(|\Psi_{\text{in}}^{(2)}\rangle^{\otimes N} \), will lead to a phase sensitivity \((\delta \varphi)^2_{\text{min}} = 1/\left(2N(1 + 2 \sum_{j=1}^{M} \text{Re}(\alpha_j \beta_j)) \right) \). In this section we will show that the same result can be achieved using BCS states.

\textbf{Theorem VI.3. Let the paired state}

\[|\Psi_{\text{in}}^{(2N)}\rangle = c' \left(\sum_{j=1}^{M} \alpha_j a_{\downarrow}^j a_{\uparrow}^j + \beta_j a_{\downarrow}^j a_{\uparrow}^j \right)^N |0\rangle, \quad (51) \]

where we use the normalization condition \(\sum_j |\alpha_j|^2 + |\beta_j|^2 = 1 \) be the input state for the Ramsey type interferometer defined above. Then the optimal phase sensitivity is given by

\[(\delta \varphi)^2 = \frac{1}{2N(1 + 2 \sum_j \text{Re}(\alpha_j \beta_j))}. \quad (52) \]

\textbf{Proof.} Like in previous sections we will use the correspondence to the Gaussian state

\[|\Psi_{\text{in, Gauss}}^{(2N)}\rangle = c \exp \left[\sum_{j=1}^{M} \alpha_j a_{\downarrow}^j a_{\uparrow}^j + \beta_j a_{\downarrow}^j a_{\uparrow}^j \right] |0\rangle, \]

where \(|N - N| \ll N \) for the calculation. After the state has passed through the interferometer, the expectation value of the parity operator is readily computed to be \(\langle P \rangle_{\text{Gauss}} = \prod_j (1 - |\alpha_j + \beta_j|^2 \sin^2 \varphi) \). As only number operators are involved, \(\langle P \rangle_{\text{Gauss}} \approx \langle P \rangle_N \), where \(\langle \ldots \rangle_N \) denotes the expectation value of \(P \) for the state \(|\Psi_{\text{in}}^{(2N)}\rangle \). Expanding (44) for small value of \(\varphi \) and using \(N = |\alpha|^2 \sum_k |\alpha_k|^2 + |\beta|^2 = |\alpha|^2 \), one obtains (52), which has minimal value \((\delta \varphi)^2 = 1/(4N) \). This result is obtained when \(\alpha_j = \beta_j \forall j \).

The above result shows that paired states result in a precision gain of up to a factor of 2 compared to the best precision obtainable for unpaired states \([16]\). The pairing measure derived in Sec. IV.3 quantifies the precision gain obtainable by the use of paired states. To see this, denote by \(|\Psi_{\text{in, Gauss}}^{(2N)}\rangle \) the state after the beam splitter transformation. Then the pairing measure \(IV.3 \) for this state evaluates to

\[M_C(|\Psi_{\text{in, Gauss}}^{(2N)}\rangle) = \frac{N^2}{2} \left(1 + 2 \sum_{j} \text{Re}(\alpha_j \beta_j) \right), \]

so that

\[(\delta \varphi)^2 = \frac{\bar{N}}{4M_C(|\Psi_{\text{in, Gauss}}^{(2N)}\rangle)}. \quad (53) \]

The above relation demonstrates that \(M \) is indeed quantifying a useful resource present in paired states. Whether this interpretation can be extended to mixed states will not be explored here.

\section{Interferometry involving a pair-interaction Hamiltonian}

So far we have seen that paired states lead to a gain of a factor of 2 in precision compared to unpaired states in a Ramsey-type interferometer. This section will show that paired states are even more powerful and can lead to a precision gain of a factor of \(N \) when measuring the phase of a pair-interaction Hamiltonian.
We consider a setup where two fermionic states enter the ports A and B of an interferometer. The particles entering port A can occupy the modes \(a^+_k \) and \(b^+_k \) evolve under the complex coupling Hamiltonian \(H \) (for the detailed form of \(H \) refer to the text). In the end particle numbers are measured.

We define pair operators \(P^+_M = \sum_{k=1}^{M} a^+_k a^+_{-k} \) and \(Q^+_M = \sum_{k=1}^{M} b^+_k b^+_{-k} \) and their equally weighted superpositions

\[
p^+_M = \frac{1}{\sqrt{M}} \sum_{k=1}^{M} P^+_k, \quad q^+_M = \frac{1}{\sqrt{M}} \sum_{k=1}^{M} Q^+_k.
\]

The operators \(p^+_M \) and \(q^+_M \) fulfill the commutation relations

\[
[p^+_M, p_M] = -1 + \frac{1}{M} N_a, \quad [q^+_M, q_M] = -1 + \frac{1}{M} N_b,
\]

where \(n_k = a^+_k a_k \) so that \(N_a = \sum_k (n_k + n_{-k}) \), and \(N_b = \sum_k (m_k + m_{-k}) \) with \(n_k = a^+_k a_k \) and \(m_k = b^+_k b_k \) being the number operators for particles in modes \(a^+_k \) and \(b^+_k \) respectively.

We will compare the power of paired states over unpaired ones for two different settings. We start by introducing some basic notation:

1. **Prerequisites**

 We define pair operators \(P^+_M = a^+_k a^+_{-k} \) and \(Q^+_M = b^+_k b^+_{-k} \) and their equally weighted superpositions

\[
p^+_M = \frac{1}{\sqrt{M}} \sum_{k=1}^{M} P^+_k, \quad q^+_M = \frac{1}{\sqrt{M}} \sum_{k=1}^{M} Q^+_k.
\]

 The operators \(p^+_M \) and \(q^+_M \) fulfill the commutation relations

\[
[p^+_M, p_M] = -1 + \frac{1}{M} N_a, \quad [q^+_M, q_M] = -1 + \frac{1}{M} N_b,
\]

where \(n_k = a^+_k a_k \) so that \(N_a = \sum_k (n_k + n_{-k}) \), and \(N_b = \sum_k (m_k + m_{-k}) \) with \(n_k = a^+_k a_k \) and \(m_k = b^+_k b_k \) being the number operators for particles in modes \(a^+_k \) and \(b^+_k \) respectively.

2. **Bosonic limit**

 In this section we will consider the scenario \(M \to \infty \), i.e. we are in the bosonic limit, where the limit is taken for the expectation values of the operators. We will consider a coupling of the form \(H_c = \varphi H_\infty \) where

\[
H_\infty = \frac{1}{2} (a^+_\infty b_\infty + a_\infty b^+\infty),
\]

with normalization constant \(c^{(M)}_N = (NM! / M^N)^{-\frac{1}{2}} \), while the separable states are given by

\[
|\Phi_N\rangle = |\phi^{(2N)}_a\rangle |\phi^{(2N)}_b\rangle,
\]

where \(|\phi^{(2N)}_a\rangle, |\phi^{(2N)}_b\rangle \) are separable states in the modes \(a^+_k \) and \(b^+_k \) respectively.

After the input state has evolved under the Hamiltonian \(H \) into the state \(|\Psi^{(M)}_N\rangle = e^{iH_c \varphi} |\Psi^{(M)}_N\rangle \) an observable \(O \) is used as an estimator to determine the parameter \(\varphi \) to a precision given by \(\frac{\delta \varphi}{\varphi} \). Instead of working in the Schrödinger picture of state evolution it turns out to be more convenient to tackle the problem in the Heisenberg picture, where \(O \) evolves according to

\[
O(\varphi) = O - i \varphi [H_c, O] - \frac{1}{2} \varphi^2 [H_c^2 O + OH_c^2 - 2H_c OH_c] + O(\varphi^3).
\]

If the input state \(|\Psi^{(M)}_N\rangle \) is an eigenvector of \(O \) with eigenvalue \(0 \), we obtain the following simple expressions for \(\langle O \rangle \) and \(\text{Var}(O) \)

\[
\begin{align*}
\left| \frac{\partial}{\partial \varphi} \langle O \rangle \right|^2 &= 4 \varphi^2 \langle [H_c, O]^2 \rangle + O(\varphi^3), \\
\text{Var}(O) &= \varphi^2 \langle [H_c O^2 H_c]^2 \rangle + O(\varphi^3),
\end{align*}
\]

so that the phase fluctuation \(\langle \delta \varphi^2 \rangle \) simplifies to

\[
\langle \delta \varphi^2 \rangle = \frac{\langle H O^2 H \rangle}{4\langle [H, O]^2 \rangle^2} + O(\varphi)
\]

An observable fulfilling this property is \(O = (n^{(-)}_M)^2 \), where \(n^{(-)}_M = \frac{1}{2} (p^+_M p_M - q^+_M q_M) \).

The commutation relations for \(p^+_M \) and \(q^+_M \) imply that in the limit of infinitely many modes \(M \to \infty \) the operators \(p^+_M \) and \(q^+_M \) become bosonic. We will thus start out with a scenario where the input states are in the bosonic limit and then turn our attention to a setting which is far from the bosonic limit.
and measure \((n_{\infty}^{-})^2\).

We start deriving the best precision for unpaired states using \((63)\). We will use a finite \(M\) for input state, coupling Hamiltonian and measurement and then take the limit \(M \to \infty\). To be precise, the calculation will be done for \(H_M = \frac{1}{2} (a_M^\dagger b_M + a_M b_M^\dagger)\) and \((n_{\infty}^{-})^2\).

Then \(\lim_{M \to \infty} \langle \phi_{a,b} | H_M | \phi_{a,b} \rangle = 0\) due to the conservation of particle number. Hence, \(\lim_{M \to \infty} \text{Var}(H_M) = \lim_{M \to \infty} (H_M^2) = \lim_{M \to \infty} (\langle p_M^\dagger p_M \rangle + \langle q_M^\dagger q_M \rangle)^2 = 0\), as \(\langle p_M^\dagger p_M \rangle = \frac{1}{2} \sum_{k,l} (|P_k^1 P_l^1|)^2 \leq N/M\), where the last inequality results from the bound of the pairing measure on unpaired states Thm. [V.6]. The same holds for \(\langle q_M^\dagger q_M \rangle\).

Hence, in the limit \(M \to \infty\) the variance of \(H_\infty\) vanishes. For the setting of paired states, however, we can obtain the following result:

Theorem VI.4. For paired input states, the interferometer depicted in Fig. [4] allows to estimate the coupling parameter \(\varphi\) to a precision

\[
(\delta \varphi)^2_{\text{inf}} = \frac{1}{2N^2}. \tag{65}
\]

Proof. Consider an interferometric setup depicted in Fig. [4] where the 2N-particle input state and the coupling Hamiltonian are defined in eqs. [67] and [64] respectively. We will again use a finite \(M\) for input state, coupling Hamiltonian and measurement and then take the limit \(M \to \infty\), i.e. we use \(|\Psi_{(a)}\rangle = |N\rangle_a^{(M)} |N\rangle_b^{(M)}\), \(H_M = \frac{1}{2} (a_M^\dagger b_M + a_M b_M^\dagger)\) and \((n_{\infty}^{-})^2\).

Making use of the relations

\[
\begin{align*}
p_M |N\rangle_a^{(M)} &= \alpha_N |N-1\rangle_a^{(M)} \tag{66} \\
p_M^\dagger |N\rangle_a^{(M)} &= \alpha_{N+1} |N+1\rangle_a^{(M)} \tag{67}
\end{align*}
\]

where \(\alpha_N = \sqrt{N(N-1)/M}\), a lengthy but straightforward calculation leads to \((\delta \varphi)^2_M = \frac{1}{2} \sum_{k,l} (1)/a_k^\dagger a_l^\dagger + O(\varphi)\) using \((68)\). Taking the limit \(M \to \infty\) leads to the result of the theorem. \(\square\)

3. **Interferometry far from the bosonic limit**

In the preceding section we have studied the power of paired states in the bosonic limit. As the power of bosonic particles for interferometry has been known for quite a while, the use of paired states where the fermionic nature of the particles survives might be a more interesting question. In this section we will show that even far from the bosonic limit paired states can achieve a precision gain of order \(N\) for quantum metrology.

We will study a coupling Hamiltonian of the form \(H_c = \varphi H_F\) where

\[
H_F = \sum_{k=1}^{\infty} P_k^1 Q_k + P_k Q_k^1. \tag{68}
\]

First, we will give a bound for the phase sensitivity achievable by using product states at the input:

Theorem VI.5. Using product states of \(2N\) particles as input states for the interferometric setting depicted in Fig. [4] the phase \(\varphi\) of the coupling Hamiltonian \(H_c = \varphi H_F\), where \(H_F\) is defined in \((68)\) can be measured to a precision \((\delta \varphi)^2 \geq 1/(16N)\).

Proof. For every product state of the form \((57)\) \(\langle H_F^2 \rangle = 0\) due to particle number conservation. Hence, \(\text{Var}(H_F) = \langle H_F^2 \rangle\). We will bound this expectation value:

\[
\langle H_F^2 \rangle = \sum_{k \neq l} \langle P_k^1 P_l^1 | Q_k^1 Q_k \rangle + C.C. + \sum_k \langle P_k^1 P_l^1 | Q_k^1 Q_k \rangle^2 \leq 2 \left(\sum_{k \neq l} |\langle P_k^1 P_l^1 |\rangle| \right)^{1/2} \left(\sum_{k \neq l} |\langle Q_k^1 Q_k \rangle|^2 \right)^{1/2} + \sum_k \langle P_k^1 P_k | Q_k Q_k \rangle + C.C.
\]

From Lemma [D.1] we know that \(\left(\sum_{k \neq l} |\langle P_k^1 P_l^1 |\rangle| \right)^{1/2} \leq \sqrt{N}\). Further, \(\langle P_k^1 P_k^\dagger \rangle = (1 - (n_k - n_{-k})^2)\) and \(\sum_k \langle P_k^1 P_k \rangle \leq N\). Thus \(\text{Var}(H_{pq}) \leq 2 \sqrt{N} \sqrt{N + 2N = 4N}\) which leads immediately to our result via \((63)\). \(\square\)

This bound can be beaten by a factor of \(\sqrt{N}\) using paired states. A lengthy but straightforward calculation leads to the following result:

Theorem VI.6. Using paired states of the form \((57)\) as input states for the interferometric setting depicted in fig. [4] the phase \(\varphi\) of the coupling Hamiltonian \(H_c = \varphi H_F\), where \(H_F\) is defined in \((68)\) can be measured to a precision

\[
(\delta \varphi)^2 = \frac{M(M-1)}{8N(M-N)(M+1+MN-N^2)}. \tag{69}
\]

This theorem implies \((\delta \varphi)^2 \sim 1/N^2\) for all \(M \geq 2N\).

In conclusion we have shown that paired states are a resource for quantum metrology. Theorem VI.6 is the main result of this section. We have remarked already at the beginning of this chapter that it has been proven before that the Heisenberg limit can be achieved using fermionic particles \((57)\). However, these states were constructed in an abstract way, while we prove that the BCS states that can be created easily in an experimental setup are a very powerful resource for quantum metrology.

VII. APPLICATION TO EXPERIMENTS AND CONCLUSION

In summary, we have developed a pairing theory for fermionic states. We have given a precise definition of pairing based on a minimal list of natural requirements. We have seen that pairing is not equivalent to entanglement of the whole state nor of its two-particle reduced density operator but represents a different kind of
quantum correlation. Within the framework of fermionic Gaussian states we could solve the pairing problem completely. For number conserving states we have given sufficient conditions for the detection of pairing that can be verified by current experimental techniques, e.g., via spatial noise correlations and prescribed a systematic way to construct complete families of pairing witnesses.

To shed some light on the pairing debate, we would need access to the proportionality factor linking the quantity plotted in Fig. 4 of to the local pair correlation correlation function $G_2(r, r) = \langle \Psi_i^\dagger(r) \Psi_i(r) \Psi_j(r) \Psi_j(r) \rangle$.

Another important point of our work is the utility of fermionic states for quantum metrology. While it has been shown that, in principle, fermionic states can be verified by current experimental techniques, e.g., via number basis for the subspace $| n \rangle$, we would need access to the proportionality factor linking the quantity plotted in Fig. 4 of to the local pair correlation correlation function $G_2(r, r) = \langle \Psi_i^\dagger(r) \Psi_i(r) \Psi_j(r) \Psi_j(r) \rangle$.

Another important point of our work is the utility of fermionic states for quantum metrology. While it has been shown that, in principle, fermionic states can be verified by current experimental techniques, e.g., via number basis for the subspace $| n \rangle$, we would need access to the proportionality factor linking the quantity plotted in Fig. 4 of to the local pair correlation correlation function $G_2(r, r) = \langle \Psi_i^\dagger(r) \Psi_i(r) \Psi_j(r) \Psi_j(r) \rangle$.

Further important object in the theory of entanglement is the set of LOCC operations (local operations and classical communication), i.e., the operations that cannot create entanglement. In the case of pairing, the analogous set would contain passive operations and discarding modes. Are there other physical transformations that cannot create pairing? Do paired states, then, possibly allow to implement such transformations similar to entanglement enabling non-LOCC operations?

Acknowledgments

We acknowledge support by the Elite Network of Bavaria QCCC, the DFG within SFB 631, the DFG Cluster of Excellence Munich-Centre for Advanced Photonics, QUANTOP and the Danish Natural Science Research Council (FNU).

APPENDIX A: USEFUL PROPERTIES OF SEPARABLE STATES

We give two technical lemmas which involve useful properties of product states.

1. Bound of $a_1^a a_j^a k_a l + h.c.$ on separable states

In this section we prove a bound of a some special two-body operator on product states:

Lemma A.1. Let $\rho \in S_{\text{sep}}$ be a separable state. Then

$$|\text{tr}[a_1^a a_j^a k_a l + h.c.]\rho_s]| \leq 1/2 \tag{A1}$$

Proof. Let \mathcal{H}_{ijkl} be the Hilbert space spanned by $a_1^a, a_j^a, a_k^a, a_l^a$ and define $A_{ijkl} = a_1^a a_j^a k_a l + h.c.$.

Then $\text{tr}[A_{ijkl}\rho] = \text{tr}[\rho(ijkl) A_{ijkl}]$, where $\rho(ijkl) = \sum_{nm=1}^4 \beta_{ijkl}(n) \langle n | \rho | m \rangle$ is a mixed separable state according to Lemma and $| n \rangle$ denotes the occupation number basis for the subspace \mathcal{H}_{ijkl}. It is easily checked that A_{ijkl} can have non-vanishing expectation value only for the two-particle state $|2\rangle = \left(\sum_{r=i,j,k,l} \mu_r a_r^\dagger \left(\sum_{s=i,j,k,l} \nu_s a_s \right) |0\rangle\right)$. Using $|2\text{Re}(ab)| \leq$
show the positivity for pure separable states, as the result for mixed states follows from convexity. From now on, let \(\rho \in S_\text{sepr}^{(N)} \).

\[\text{tr}[H] \geq 0 \]

In Lemma A.2 (see Appendix A), we have shown that the expectation values of number conserving one-and two-body operators can be expressed in terms of matrix elements of projectors. Let \(P \) be the rank \(N \) projector such that \(\langle a | a \rangle = (P \otimes P)(\langle i | k \rangle (l | j) - (P \otimes P)(\langle i | k) (l | j)\rangle) \). Let \(\langle n \rangle = P_{ii} \) and let \(\tilde{P} = P_{k-k,l-l} \) the 4 × 4 principal submatrix of \(P \) where the indices run over \(k, -k, l, -l \). Then we have the following inequalities:

\[\langle n_k n_{-k} \rangle = P_{kk} P_{k-k} - |P_{k-k}|^2 \]

\[\leq \frac{1}{2} (|P_{kk}|^2 + |P_{k-k}|^2) - |P_{k-k}|^2, \quad (B1) \]

\[|\langle a_k | a_{-l} \rangle| = 2 |\text{Re}(P_{kl} P_{k-l} - P_{k-l} P_{kl})| \]

\[\leq 2(|P_{kl}|^2 + |P_{k-l}|^2 - |P_{k-l}|^2)^2 \quad (B2) \]

These results imply

\[\text{tr}[\rho H_{\pm}^{(p)}] \geq \frac{1}{2} \text{tr}[\tilde{P} - \tilde{P}^2] + |P_{k-k}|^2 + |P_{l-l}|^2 \quad (B4) \]

We use the inclusion principle [43], stating that the eigenvalues of a \(r \times r \) principal submatrix \(M_r \) of a \(n \times n \) Hermitian matrix \(M \) fulfill \(\lambda_k(M) \leq \lambda_k(M_r) \leq \lambda_{k+n-r}(M) \), where the eigenvalues are arranged in increasing order. As \(P \) is a projector, we have \(0 \leq \lambda_k(P) \leq \lambda_k(\tilde{P}) \leq 1 \).

\[\text{tr}[H_{\pm}^{(p)}] \geq 0 \]

Define \(O_1 = n_k n_{-k} + n_{l} n_{-l} \geq 0 \). Then \(H_{\pm}^{(p)} = O_1 O_{25}^\pm \), and as \([O_1, O_{25}^\pm] = 0 \) we conclude that \(H_{\pm}^{(p)} = O_1 O_{25}^\pm \geq 0 \).

\[\text{tr}[H_{\pm}^{(p)}] \geq 0 \]

We will need the lemma A.2 \(\text{tr}[H_{3 \pm}^{(p)}] = \text{tr}[H_{3 \pm}^{(p)} \rho_{kl}] \), where \(\rho_{kl} = \sum_{n=0}^{4} \beta_n |n \rangle \langle n| \), \(\beta_n \geq 0 \), \(\sum_{n=0}^{4} \beta_n = 1 \) and \(|n \rangle, n = 0, \ldots , 4 \) are separable \(n \)-particle states. Let \(\langle H_{3 \pm}^{(p)} \rangle_n = \langle n | H_{3 \pm}^{(p) \ast} | n \rangle \). Then a straightforward calculation leads to \(\langle H_{3 \pm}^{(p)} \rangle_0 = 0, \langle H_{3 \pm}^{(p)} \rangle_1 = \frac{1}{2}, \langle H_{3 \pm}^{(p)} \rangle_2 = \frac{1}{2}, \langle H_{3 \pm}^{(p)} \rangle_3 = 0 \) and \(\langle H_{3 \pm}^{(p)} \rangle_4 = 0 \). Linearity of the trace implies \(\text{tr}[H_{3 \pm}^{(p)} \rho] \geq 0 \).

Hence, all separable states lie within the set bounded by the planes defined by the witness operators \(H_{3 \pm}^{(p)}, H_{3 \pm}^{(p)}, H_{3 \pm}^{(p)} \).

Next, we show that each point within the polytope
C^{unpaired} corresponds to a separable state. As S_{sep} is convex, it is sufficient to check that for every extreme point of C^{unpaired} there exists a separable state. This is indeed the case: The extreme points of C^{unpaired} are $(0, 0, 0)$, $(2, 0, 0)$, $(4, 2, 0)$, $(2, 1, 2/\pm 1/2)$ which correspond for example to the separable states $|0\rangle, a_k a_k^\dagger |0\rangle, a_k a_{-k}^\dagger a_{-k}^\dagger |0\rangle$ and $(a_k^\dagger + a_{-k}^\dagger)(a_k^\dagger - a_{-k}^\dagger)/2|0\rangle$ respectively.

It remains to show that $H^{(p)}_{1\pm}$ and $H^{(p)}_{3\pm}$ are pairing witnesses. Define $|\Psi\rangle = \frac{1}{\sqrt{2}}(a_k a_{-k}^\dagger + a_{-k} a_k^\dagger)|0\rangle$. Then $\text{tr}[H^{(p)}_{1\pm} |\Psi\rangle \langle |\Psi\rangle] = \text{tr}[H^{(p)}_{3\pm} |\Psi\rangle \langle |\Psi\rangle] = -1$.

2. Proof of Lemma V.2

Proof. It is sufficient to prove the lemma for $\rho \in S(A_N)$, as the result for a general number conserving state follows from convexity.

\[\text{tr}[H_1 \rho] \geq 0 \]

$H_1 = \frac{1}{2}(n_k - n_{-k})^2 + \frac{1}{2}(n_l - n_{-l})^2 \geq 0$

shown in the proof of Thm. V.2.

\[\text{tr}[H_{2\pm} \rho] \geq 0 \]

Let $\rho_{kl} = \sum_{n=1}^4 \beta_n |n\rangle \langle n|$ be the reduced density operator in the modes $\pm k, \pm l$. We can rewrite $H_{2\pm}$ in the form

$H_{2\pm} = 2 \frac{1}{\sqrt{2}}(n_k - n_{-k} + n_l - n_{-l})(1 \mp (a_k^\dagger a_{-k} + a_{-k}^\dagger a_k + h.c.)).$

Defining $O_{2\pm} = 1 \mp (a_k^\dagger a_{-k} + a_{-k}^\dagger a_k + h.c.)$, we obtain $\langle O_{2\pm} \rangle_0 = (O_{2\pm} \langle 1 = 1 \rangle_{O_{2\pm}} = 1, (O_{2\pm})_2 \geq 2$. This implies $\text{tr}[\rho H_{2\pm}] \geq 4 - (\beta_1 + 2\beta_2 + 3\beta_3 + 4\beta_4) \geq 4 - \sum_{n=0}^4 n \beta_n = 4 - \text{tr}((n_k - n_{-k} + n_l - n_{-l}) \rho_{kl}) \geq 0$.

As in the proof of Lemma V.1 it remains to show that the extreme points of C^{all} correspond to some fermionic state. It has been shown in the proof of Lemma V.1 that $(0, 0, 0), (2, 0, 0)$ and $(4, 2, 2)$ can be reached by some separable state. The remaining two points, $(2, 1, \pm 1)$ correspond for example to the state $\frac{1}{\sqrt{2}}(a_k a_{-k}^\dagger + a_{-k} a_k^\dagger)|0\rangle$.

2.2. Appendix C: Proof of Thm. V.4

In this section we will provide all the details leading to Thm. V.4 starting with the bound on separable states:

Lemma C.1. Let $\rho \in S_{\text{sep}}$ with $\text{tr}[N_{\text{sep}} \rho] = N$ and let $H(\{v_k\})$ be as in Thm. V.4. Then $\text{tr}[H(\{v_k\}) \rho] \geq 0$.

Proof. The operator H_k acts non-trivially only on the modes $a_k^\dagger, a_{-k}^\dagger, a_{-k}^\dagger a_{-k}^\dagger, a_{-k}^\dagger a_k^\dagger$. Denote by ρ_k the reduced density operator obtained when tracing out all but these four modes. According to Lemma II.2, $\rho_k = \sum_{n=1}^4 \beta_n |n\rangle \langle n|$ is a convex combination of separable n-particle states $|n\rangle \langle n|$. We proved in Lemma A.1 that $|\text{tr}[P_k H_{k+m} + h.c.] \rho_k]| \leq 1/2$. Hence $(H(\{v_k\})) \geq 2N(1 - \epsilon) - 2 \sum_{k=1}^M \langle v_k |2 \langle N_k \rangle + \beta_k^{(2)} \rangle$. Now $2\beta_k \leq \langle N_k \rangle \leq 4$ and $|v_k|^2 \leq 1 - \epsilon$ so that $|v_k|^2 \langle N_k \rangle + \beta_k^{(2)} \leq 4$.

Due to the particle number constraint $\sum_{k=1}^M \langle N_k \rangle = N$ this value can be taken for $k = 1, \ldots, N/4$. Hence, $-2 \sum_{k=1}^M (|v_k|^2 \langle N_k \rangle + \beta_k^{(2)}) \geq -2 \cdot 4(1 - \epsilon)N/4$ so that $\langle H(\{v_k\}) \rangle \geq 0$.

To show the witness character of $H(\{v_k\})$ we also have to prove that there exists a BCS state that is detected by the Hamiltonian. We will need the following theorem about the distribution described by the $|\lambda_N|^2$ in (10):

Theorem C.2. Let $|\Psi_{\text{Gauss}}\rangle = \sum_{N=0}^M \langle M \rangle_{N} |\Psi_N(\nu)\rangle$ like in (15), (17). If $\sum_{k=1}^M |v_k|^2 |\langle N_k \rangle|^2 = O(N^7)$ for some $\gamma > 0$, then in the limit $N \to \infty$ the $|\lambda_N|^2$ converge to a normal distribution,

$|\lambda_N|^2 = \frac{1}{2\sigma_N^2} \exp \left[- \frac{(N - \bar{N})^2}{2 \sigma_N^2} \right], \tag{C1}$

where $2\bar{N} = 2 \sum_{k=1}^M |v_k|^2$ is the mean particle number for the variational state, and the variance is given by $\sigma_N^2 = 4 \sum_{k=1}^M |v_k|^2 |\langle N_k \rangle|^2$.

Proof. For the proof we will need a theorem from probability theory known as Lyapunov’s central limit theorem [60].

Theorem C.3. (Lyapunov’s central limit theorem) Let X_1, X_2, \ldots be independent random variables with distribution functions F_1, F_2, \ldots respectively, such that $EX_n = \mu_n$ and $\text{Var}(X_n) = \sigma_n^2 < \infty$, with at least one $\sigma_n > 0$. Let $S_n = X_1 + \cdots + X_n$ and $s_n = \sqrt{\text{Var}(S_n)} = \sqrt{\sigma_1^2 + \cdots + \sigma_n^2}$. If the Lyapunov condition

$\frac{1}{s_{n+1}^2} \sum_{k=1}^n n E|X_k - \mu_k|^2 \delta \to \infty$ as $n \to \infty$

is satisfied for some $\delta > 0$ then the normalized partial sums S_n/s_n converge in distribution to a random variable with normal distribution $N(0, 1)$.

Consider the observables $X_k = n_k - n_{-k}, k = 1, \ldots, M$, where $n_{\pm k} = 0, 1$ is the number of particles with quantum numbers $\pm k$ respectively. The X_k can be considered as classical random variables since they commute mutually. In the variational BCS-state the random variable $S_M = \sum_{k=1}^M X_k$ is distributed according to the probability distribution

\[P(S_M = 2N) = \sum_{k_1 < \cdots < k_M = 1}^M |v_{k_1}|^2 \cdots |v_{k_N}|^2 |v_{k_{N+1}}|^2 \cdots |v_{k_M}|^2 \]

\[= \prod_{k} |v_k|^2 \sum_{k_1 < \cdots < k_M = 1}^M |v_{k_1}|^2 \cdots |v_{k_N}|^2 \] \tag{C2}

\[= \frac{|C|^2}{(N!)^2 |C_N|^2} = |\lambda_N|^2. \tag{C3} \]
With the help of Thm. C.2 applied to the random variable S_M we can now complete the proof of Thm. C.2, i.e. show that $\lambda^{(M)}_N$ converges to a normal distribution for large M. We start calculating the expectation value μ_k of X_k. For a BCS-state, $X_k = 0$, as particles with quantum numbers $\pm k$ always appear in pairs. As $P(X_k = 0) = |u_k|^2$, $P(X_k = 2) = |v_k|^2$, we get $\mu_k = 2|v_k|^2$ and $E(S_M) = 2 \sum_k |v_k|^2 = 2N$. For calculating the variance, note that $X_k^2 = u_k^2 + n^2 - 2kn_k = 0, 4$, and $P(X_k^2 = 0) = |u_k|^2$, $P(X_k^2 = 4) = |v_k|^2$. Hence

$$\text{Var}(X_k) = 4|u_k|^2|v_k|^2,$$

and

$$s^2_M = 4 \sum_k |u_k|^2|v_k|^2. \quad \text{(C4)}$$

To apply the central limit theorem, we consider $E(|X_k - \mu_k|^4)$. Using $P(|X_k - \mu_k|^4 = |u_k|^2)$, $P(|X_k - \mu_k|^4 = (2 - \mu_k)^4 = |v_k|^2)$, we arrive at

$$E(|X_k - \mu_k|^4) = 16|u_k|^2|v_k|^2(|u_k|^6 + |v_k|^6) \leq 16|u_k|^2|v_k|^2(|u_k|^2 + |v_k|^2) = 16|u_k|^2|v_k|^2. \quad \text{(C5)}$$

Setting $\delta = 2$ in the Lyapunov condition, we obtain

$$\frac{1}{s_M} \sum_{k=1}^M E(|X_k - \mu_k|^4) \leq \frac{4}{s_M} = O(N^{-\gamma}) \to 0, \quad \text{(C6)}$$

where we have applied the assumption of the theorem $\sum_k |v_k|^2|u_k|^2 = O(N^7)$ in the last step. The central limit theorem implies that S_M converges to a normal distribution with expectation values $2N = 2 \sum_k |v_k|^2$ and variance $\sigma^2_N = 4 \sum_k |v_k|^2|u_k|^2$.

With this result at hand we can prove the following:

Lemma C.4. Let $H(\{v_k\})$ and $\Psi^{(N)}_{\text{BCS}}$ be defined as in Thm. V.4. If $\epsilon > 18/\sqrt{\pi N}$, then

$$\langle \Psi^{(N)}_{\text{BCS,sym}} | H(\{v_k\}) | \Psi^{(N)}_{\text{BCS,sym}} \rangle < 0.$$

Proof. We will use the correspondence of variational and number conserving BCS states, deriving first a bound for $||H(\{v_k\})||_{\gamma} - \langle H(\{v_k\}) \rangle_N$, where $||W_{\text{Gauss}}|| = \sum_{k=1}^M \lambda_n |\Psi^{(n)}_{\text{BCS,sym}}| \text{ with } |\Psi^{(n)}_{\text{BCS,sym}}\rangle$ like in Thm. V.4. To do so, we need that the $|\lambda_n|^2$ are normally distributed. From $|u_k|^2 = 1 - |v_k|^2 \geq \epsilon$ where $\epsilon > 18/(\sqrt{2\pi N})$ and $\sum_{k=1}^M |v_k|^2 = N$, it follows that $\sigma^2_N = \sum_{k=1}^M |v_k|^2|u_k|^2 \geq \epsilon N = O(\sqrt{N})$. Hence, we know from Thm. C.2 that the $|\lambda_n|^2$ describe a normal distribution around $N \approx N$ with standard deviation σ_N^N.

Now, write $H(\{v_k\}) = H_0 - 2W + (2 - 1) \sum_{k=1}^M N_k$, where

$$H_0 = -2 \sum_{k=1}^M |v_k|^2 N_k,$$

$$W = 2 \sum_k P_k P_{k+M} + P_k P_{k+M} P_k.$$

We start with a bound for $|\langle H_0 \rangle_{\text{var}} - \langle H_0 \rangle_N| \leq T_1 + T_2$, where

$$T_1 = \sum_{\Delta \in [0, \sigma_N^N]} |\lambda_{N+\Delta}|^2 \langle \langle H_0 \rangle_N + \Delta - \langle H_0 \rangle_N \rangle,$$

$$T_2 = \sum_{\Delta \in [-\sigma_N^N, 0)} |\lambda_{N+\Delta}|^2 \langle \langle H_0 \rangle_N + \Delta - \langle H_0 \rangle_N \rangle \quad \text{(C7)}$$

A bound for T_2 can be easily derived noting that

$$|\langle H_0 \rangle_n - \langle H_0 \rangle_{n'}| = 8 \sum_k |v_k|^2 (|\langle n_k \rangle_n - \langle n_k \rangle_{n'}|), \quad \text{(C8)}$$

and for $n = N + \Delta > N$ we have $\sum_k |v_k|^2 (|\langle n_k \rangle_n - \langle n_k \rangle_{n'}|) \leq \sum_k |v_k|^2 (|\langle n_k \rangle_n| \leq n$, as $|v_k|^2 \leq 1$. Hence,

$$T_2 \leq 16 \sum_{|\Delta| \leq N} |\lambda_{N+\Delta}|^2 |N + \Delta| \leq 8 \frac{\sigma_N^N e^{-\sigma_N^N/4N}}{2\pi} + 4N (1 - \text{Erf}(\sigma_N/\sqrt{2})) \leq 8 \frac{\sigma_N^N e^{-\sigma_N^N/4N}}{2\pi} + 4N (1 - \text{Erf}(\sigma_N/\sqrt{2})), \quad \text{(C9)}$$

where we have approximated the sum by an integral in the second step. For bounding T_1, we will show first that for $n = N + \Delta$ where $\Delta \in [-\sigma_N^N, 0)$ we have $\langle \langle n_k \rangle_n - \langle n_k \rangle_{n-1} \geq 0$. Expanding the BCS wave function

$$|\Psi^{(n)}_{\text{BCS,sym}}\rangle = C_n n! \sum_{j_1 < \ldots < j_n=1}^{2M} \alpha_{j_1} \ldots \alpha_{j_n} P_{j_1} \ldots P_{j_n} |0\rangle, \quad \text{(C10)}$$

the expectation value of the number operator is easily calculated to be $\langle n_k \rangle_n = |C_n|^2 (n!)^2 |\alpha_k|^2 S^{(n-1)}_k$, where

$$S_k^{(n)} = \sum_{j_1 < \ldots < j_n=1}^{2M} |\alpha_{j_1}|^2 \ldots |\alpha_{j_n}|^2. \quad \text{(C11)}$$

If $0 < |v_k|^2 \leq 1 - \epsilon$, there exists a lower bound on the coefficients $|\alpha_k|^2 = |v_k|^2/\sqrt{1 - |v_k|^2} \geq b \forall k$. Then $S_k^{(n-1)}$ and $S_k^{(n-2)}$ are related via

$$S_k^{(n-1)} \geq b \frac{2M - (n-1)}{n-1} S_k^{(n-2)}.$$
In the proof of Thm. [C.2] we show that
\[
\frac{|\lambda_n|}{|\lambda_{n-1}|} = \frac{|C_{n-1}|^2((n-1)!)}{|C_n|^2(n!)^2},
\]
resulting in
\[
\langle n_k \rangle_n - \langle n_k \rangle_{n-1} \geq \left(\frac{2M - (n - 1)}{n - 1} - \frac{|\lambda_n|^2}{|\lambda_{n-1}|^2}\right) |C_n|^2(n!)^2|\alpha|^2S_k^{(n-2)}.
\]
(C13)

For $n = N + \Delta$ and $\Delta \in [-\sigma_N^2, \sigma_N^2]$ the normal distribution of the $|\lambda_n|^2$ implies $|\lambda_n|^2/|\lambda_{n-1}|^2 = \exp[(2\Delta - 1)/(2\sigma_N^2)] \leq e$. Hence, $b = 2M - (n - 1) - \frac{|\lambda_n|^2}{|\lambda_{n-1}|^2} \geq 0 \Leftrightarrow b \geq e^{2M - (n - 1)} > 3^{2M - (n - 1)}$. For $M = q(n - 1)$, this is equivalent to $|\alpha|^2 \geq 3/(2q - 1)$, which can be achieved for $q \gg 1$. The last condition is satisfied, as we are considering dilute systems, where $M \gg N$. Thus, $(n_k)_n - (n_k)_{n-1} \geq 0$, implying $\sum_k |v_k|^2(n_k)_n - (n_k)_{n-1} \leq 1$, as $|v_k|^2 \leq 1$. Using (C8) and a telescope sum, we conclude that
\[
T_1 \leq 8 \sum_{\Delta \in [-\sigma_N, \sigma_N]} (|\lambda_n + \Delta|^2|\Delta|) \leq 8 \sum_{\Delta} (|\lambda_n + \Delta|^2|\Delta|) = 16 \frac{\sigma_N}{\sqrt{2\pi}}.
\]
(C14)

Next, we derive the bound for the operator W. Its expectation value is given by
\[
\langle W \rangle_n = |C_n|^2(n!)^2 \sum_k |\alpha_k|^2 \sum_{j_1, \cdots, j_{n-1}} |\alpha_{j_1}|^2 \cdots |\alpha_{j_{n-1}}|^2.
\]
(C15)

For $n \in [N - \Delta, N + \Delta]$, we use the same argumentation as we have used for bounding $(n_k)_n - (n_k)_{n-1}$, to obtain
\[
\langle W \rangle_n - \langle W \rangle_{n-1} \leq 2.
\]
(C16)

Further, $(n_k)_n = (P_k^+ P_k^M + h.c.)_n/2 + (n_k n_k + M)_n$ due to the symmetry $\alpha_k = \alpha_{k+M}$. Hence, $(W)_n \leq 2n$. Thus, up to a factor of 2 we obtain the same bound as for H_0. Putting all the pieces together we find that
\[
\langle H \{v_k \} \rangle_{\text{var}} \leq 2(1 - \epsilon) + \frac{\sigma_N}{\sqrt{2\pi}} + 12N \left(1 - \text{Erf}(\sigma_N/\sqrt{2})\right).
\]
(C17)

In the limit of large x, the error function $\text{Erf}(x/\sqrt{2\pi})$ can be approximated by the following formula:
\[
1 - \text{Erf}(x/\sqrt{2}) = 2\frac{\exp[-x^2/2]}{\sqrt{2\pi}}(x^{-1} - x^{-3} + \ldots).
\]
(C18)

As $\sigma_N = O(\sqrt{N})$, we conclude
\[
12N(1 - \text{Erf}(\sigma_N/\sqrt{2})) \leq 24\sigma_N \exp[-\sigma_N^2/2]/(\sqrt{2\pi}) \to 0
\]
for $N \gg 1$. A straightforward calculation results in $\langle H \{v_k \} \rangle_{\text{var}} = -4N\epsilon$, leading immediately to the statement of the theorem.

\[\square\]

APPENDIX D: PROOF OF THM. [V.6]

Lemma D.1. Every pure separable state $\rho \in S(\mathcal{A}_N)$ fulfills $\sum_{k,l=1}^M |\langle P_k^1 P_l^1 \rangle \rho| \leq N/2$, and this bound is tight.

Proof. Using Lemma [A.2] we obtain
\[
\sum_{k,l=1}^M |\langle P_k^1 P_l^1 \rangle| = \sum_{k,l=1}^M |P_{kl} P_{-k-l} - P_{-k-l} P_{kl}|.
\]
(D1)

where $P = P^2 = P^1$ and $\text{tr}[P] = N$. Using the triangle-inequality we get
\[
\sum_{k,l=1}^M |\langle P_k^1 P_l^1 \rangle| \leq \frac{1}{2} \sum_{k,l} (|P_{kl}|^2 + |P_{-k-l}|^2 + |P_{k-l}|^2 + |P_{-k-l}|^2) = \frac{1}{2} \text{tr}[P^2] = N/2.
\]

In the last step we have used the property that the sum of the squares of a normal matrix is equal to the sum of squares of its eigenvalues. Taking the square root we obtain the bound of our claim.

The bound is tight, as $P = \mathbb{1}_{2N}$ implies $\sum_{k,l} |\langle P_k^1 P_l^1 \rangle| = N/2$ which is obtained for $|\Phi\rangle = \prod_{i=1}^N a_i^0|0\rangle$.

\[\square\]

APPENDIX E: PROOF OF LEMMA III.5

Proof. Let $|i, j\rangle = a_i^0 a_j^0|0\rangle$ and consider the subspace spanned by the states $\{|k, -k\}, |l, -l\}, |k, l\}, |k, -l\}, |l, -k\}$, $|k, l\rangle$. In this basis, the two-particle RDO $\rho_2^{(N)}$ of $|\Psi_{\text{BCS}}^{(N)}\rangle$ is of the form
\[
\rho_2^{(N)} = \frac{1}{4 + 2a_1} \begin{pmatrix} a_1 & a_2 & 0 & 0 \\ a_2 & a_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},
\]
(E1)

where $a_1 = (M-1)/(N-1), a_2 = (M-N)/(N-1)$. The witness operator $H_{\text{th}}^{(p)}$ of Thm. [V.4] has a negative expectation value on $\rho_2^{(N)}$, hence the state is paired in these modes.

For solving the entanglement question we will use the following theorem [23] applicable to mixed fermionic states of two particles each living in a single-particle Hilbert space of dimension four:
Theorem E.1. Let the mixed state acting on A_d have a spectral decomposition $\rho = \sum_{i=1}^{r} |\Psi_i\rangle \langle \Psi_i|$, where r is the rank of ρ, and the eigenvectors $|\Psi_i\rangle$ belonging to nonzero eigenvalues λ_i are normalized as $\langle \Psi_i | \Psi_j \rangle = \delta_{ij} \lambda_i$. Let $|\Psi_i\rangle = \sum_{a,b} w_{ab} \omega_{a}^i \omega_{b}^j (0)$ in some basis, and define the complex symmetric $r \times r$ matrix C by

$$C_{ij} = \sum_{abcd} \epsilon^{abcd}_{\omega_{a}^i \omega_{b}^j} w_{ab} w_{cd}, \quad (E2)$$

which can be represented using a unitary matrix as $C = U C_d U^T$, with $C_d = \text{diag}[c_1, \ldots, c_r]$ diagonal and $|c_1| \geq |c_2| \geq \ldots \geq |c_r|$. The state has Slater number 1 if and only if

$$|c_1| \leq \sum_{i=2}^{r} |c_i|. \quad (E3)$$

The spectral decomposition of $\rho_2^{(N)}$ is given by

$$\rho_2^{(N)} = |\Psi_+\rangle \langle \Psi_+| + |\Psi_-\rangle \langle \Psi_-| + |\Psi_{kl}\rangle \langle \Psi_{kl}| + |\Psi_{k-l}\rangle \langle \Psi_{k-l}| + |\Psi_{-kl}\rangle \langle \Psi_{-kl}| + |\Psi_{-k-l}\rangle \langle \Psi_{-k-l}|$$

where $|\Psi_{+}\rangle = \sqrt{\frac{a_{+}^{\dagger} a_{-}^{\dagger}}{a_{+}^{\dagger} a_{+}}}|\psi_{+}\rangle$, $|\Psi_{-}\rangle = \sqrt{\frac{1}{a_{+}^{\dagger} a_{+}}}|\psi_{-}\rangle$ and $|\Psi_{\pm, \pm}\rangle = \sqrt{\frac{a_{\pm}}{a_{+}^{\dagger} a_{+}}}|\psi_{\pm}\rangle$ (\pm k, \pm l)$. Here $|\psi_{\pm}\rangle = \frac{1}{\sqrt{2}}(k, -k) \pm (l, -l)$ and $a_{+} = (2M - N - 1)/(N - 1)$. Defining $\gamma^2 = 1/(5 + a_{+})$, one obtains

$$C = \gamma^2 \begin{pmatrix} a_+ & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}, \quad (E4)$$

with spectrum $\text{spec}(C) = \gamma^2 \{a_{+}, 1, 1, -1, -1, -1\}$. For $M \leq N$ the state $|\Psi_{BC}^{(N)}\rangle$ is separable, so we can take $M > N$. Hence, $a_{+}\gamma^2$ is the eigenvalue with biggest absolute value. According to Thm. E.1, the reduced state in the subspace of the four modes is entangled iff $|c_1| \leq \sum_{i=2}^{r} |c_i|$. For our example, this holds iff $M > 3N - 2$. \hfill \square

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[2] M. Greiner, C. Regal, and D. Jin, Nature 426, 537 (2003).
[3] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendi, S. Riedl, C. Chin, J. H. Dennislag, and R. Grimm, Science 302, 2101 (2003).
[4] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).
[5] M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. Schunck, and W. Ketterle, Nature 435, 1047 (2005).
[6] M. Zwierlein, C. Schunck, A. Schirotzek, and W. Ketterle, Nature 442, 154 (2005).
[7] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, Physical Review Letters 95, 020404 (pages 4) (2005).
[8] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Physical Review Letters 92, 120403 (pages 4) (2004).
[9] C. A. Regal, M. Greiner, and D. S. Jin, Physical Review Letters 92, 040403 (pages 4) (2004).
[10] G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet, Science 27, 1240403 (2006).
[11] M. W. Zwierlein and W. Ketterle, Science 314, 54a (2006).
[12] G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet, Science 314, 54b (2006).
[13] C. Schunck, Y. Shin, A. Schirotzek, M. Zwierlein, and W. Ketterle, Science 316, 867 (2007).
[14] P. Zanardi, Phys. Rev. A 65, 042101 (2002).
[15] P. Zanardi and X. Wang, J. Phys. A:Math. Gen. 35, 7947 (2002).
[16] D. Larsson and H. Johannesson, Physical Review A (Atomic, Molecular, and Optical Physics) 73, 042320 (pages 4) (2006).
[17] M. M. Wolf, Physical Review Letters 96, 010404 (pages 4) (2006).
[18] D. Gioev and I. Klich, Physical Review Letters 96, 100503 (pages 4) (2006).
[19] M. Cramer, J. Eisert, and M. B. Plenio, Physical Review Letters 98, 220603 (pages 4) (2007).
[20] Y. Shi, Phys. Rev. A 67, 024301 (2003).
[21] R. Paskauskas and L. You, Phys. Rev. A 64, 042310 (2001).
[22] M.-C. Banuls, J. I. Cirac, and M. M. Wolf, Physical Review A (Atomic, Molecular, and Optical Physics) 76, 022311 (pages 13) (2007).
[23] H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 097902 (2003).
[24] H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 007902 (2003).
[25] J. Schlemm, J. I. Cirac, M. Kuš, M. Lewenstein, and D. Loss, Phys. Rev. A 64, 022303 (2001).
[26] K. Eckert, J. Schlemm, D. Bruss, and M. Lewenstein, Annals of Physics 299, 88 (2002).
[27] M. R. Dowling, A. C. Doherty, and H. M. Wiseman, Physical Review A (Atomic, Molecular, and Optical Physics) 73, 052323 (pages 12) (2006).
[28] J. Schlemm, D. Loss, and A. H. MacDonald, Phys. Rev. B 63, 085311 (2001).
[29] N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. A 70, 042310 (2004).
[30] N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 92, 087904 (2004).
[31] S. Bravyi, Quantum Inf. and Comp. 5, 216 (2005).
[32] G. D. Mahan, Many-Particle Physics (Kluwer Academic, 2000), 3rd ed.
[32] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (pages 60) (2008), URL http://link.aps.org/abstract/RMP/v80/p517
[33] V. Bach, E. Lieb, and J. Solovej, Journal of Statistical Physics 76, 3 (1994).
[34] C. Bloch and A. Messiah, Nuclear Physics 39, 95 (1962).
[35] A. Coleman and V. Yukalov, Reduced Density Matrices (Springer-Verlag, 2000).
[36] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996), quant-ph/9605038.
[37] W. Rudin, Functional Analysis (McGraw-Hill, 1991), 2nd ed.
[38] R. Rockafellar, Convex Analysis (Princeton University Press, 1970).
[39] P. W. Anderson, Phys. Rev. 112, 1900 (1958).
[40] R. A. Barankov and L. S. Levitov, Phys. Rev. Lett. 93, 130403 (2004).
[41] R. A. Bertlmann, K. Durstberger, B. C. Hiesmayr, and P. Krammer, Physical Review A (Atomic, Molecular, and Optical Physics) 72, 052331 (pages 9) (2005), URL http://link.aps.org/abstract/PRA/v72/e052331
[42] A. Leggett, Modern Trends in the Theory of Condensed Matter (A. Pekalsky, R. Przystawa (Springer-Verlag, Berlin), 1980).
[43] R. Horn and C. Johnson, Matrix Analysis (Cambridge University Press, 1985).
[44] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994).
[45] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996).
[46] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
[47] S. L. Braunstein, C. M. Caves, and G. Milburn, Annals of Physics 247, 135 (1996).
[48] K. Eckert, P. Hyllus, D. Bruss, U. V. Poulson, M. Lewenstein, C. Jentsch, T. Muller, E. M. Rasel, and W. Ertmer, Physical Review A (Atomic, Molecular, and Optical Physics) 73, 013814 (pages 10) (2006).
[49] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033 (1986).
[50] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).
[51] P. Bouyer and M. A. Kasevich, Phys. Rev. A 56, R1083 (1997).
[52] C. C. Gerry, Phys. Rev. A 61, 043811 (2000).
[53] W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein, Phys. Rev. A 66, 023819 (2002).
[54] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
[55] B. Yurke, Phys. Rev. Lett. 56, 1515 (1986).
[56] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70, 013603 (2004).
[57] T. Rom, T. Best, D. van Oosten, U. Schneider, S. Foelling, B. Paredes, and I. Bloch, Nature 444, 733 (2006).
[58] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Physical Review Letters 94, 110401 (pages 4) (2005).
[59] S. Riedl, E. R. S. Guajardo, C. Kostantti, A. Altmeyer, M. J. Wright, J. H. Denschlag, R. Grimm, G. M. Bruun, and H. Smith (2008), arXiv:0809.1814v1 [cond-mat.other].
[60] P. Billingsley, Probability and Measure (Wiley-Interscience, 1995), 3rd ed.