On twin edge colorings of the direct product of paths

Huan YANGa, Shuang Liang TIANb, Lang Wang Qing SUOc
Mathematics and computer institute, Northwest Minzu University, Lanzhou, Gansu 730030, China
ayanghuan082@126.com, bsl_tian@163.com(corresponding author), c971653292@qq.com

Abstract. Let be a proper k-edge coloring of a simple connected graph of order at the latest 3, where the set of colors is. If a proper edge coloring of a graph that induces vertex coloring is a proper vertex coloring, then is called a twin edge k-coloring of a graph. the twin chromatic number of a graph is the least value k of colors of a graph, and denote it by. In this paper, we obtains the twin chromatic number of infinite paths and finite paths.

1. Introduction
Let be a simple connected graph. The maximum degree of is the maximum vertex degree in , denoted by Δ(G); the degree of a vertex of is the number of edges incident to , denoted by .

A k-edge coloring of a graph is a proper k-edge coloring if no two adjacent edges have the same color, where is an assignment of k colors to the edges of . The edge chromatic number, , of is the minimum k such that has a proper k-edges coloring.

A twin edge-coloring of a graph is a proper edge coloring of with the elements of the set such that the induced vertex coloring in which the color of a vertex in is the sum of the colors of the edges incident with is a proper vertex coloring. The twin chromatic number of is the least number of colors set of , denoted by .

Andrews [1] put forward the concept of twin edge colorings of a graph , and received the twin edge chromatic index of a path, a cycle, a complete graph and a complete bipartite graph.

Inspired by the concepts of the twin edge-coloring of described above, to determine the twin chromatic indexes of a simple connected graph , the following Lemmas are established clearly.

Lemma 1.1 If a simple connected graph has two adjacent vertices of maximum degree , then .

Lemma 1.2 For any connected graph , we have .

Lemma 1.3 If a k-regular graph exist an adjacent vertex distinguishing edge-coloring, we have .

The concept that is closely related to the twin edge-coloring of a graph is an adjacent vertex distinguishing edge-coloring of a graph . An adjacent vertex distinguishing edge-coloring [2] of a simple graph is a proper edge-coloring of such that no two adjacent vertices has the same set of colors in which . The minimum number of colors of is the adjacent vertex-distinguishing...
chromatic number, denoted by $\chi'_c(G)$. Few is known about adjacent vertex distinguishing edge-coloring. In 2006, Baril [3] prove that the adjacent vertex-distinguishing chromatic number of the multidimensional mesh and the hypercube both are equal to the maximal degree of the both graphs plus 1. In 2007, Balister [2] prove for bipartite graphs with maximum degree $\Delta(G) = 3$, it have $\chi'_c(G) \leq \Delta(G)+2$. In 2009, Dai [4] prove that a connected graph G for a upper bound on the adjacent vertex-distinguishing chromatic index of graph is $3\Delta-1$. In 2010, Wang [5] investigate the chromatic number of a graph G for the bounded in relation to the maximum average degree and the maximum degree. In 2011, Frigerio [6] research that the adjacent vertex-distinguishing edge-coloring of a regular graph, or a path, or a cycle, and obtained the adjacent vertex-distinguishing chromatic number of the regular graph, the path, or the cycle. In 2012, Yan [7] obtain that the adjacent vertex-distinguishing chromatic number of a planar graph G is less than maximal degree plus 2 with girth at least 4 and maximum degree at least 6. In 2013, Hocquard [8] prove that the adjacent vertex-distinguishing chromatic number is equal to $\chi(G)+1$ for any graph G with maximal degree is more than or equal 5 and the maximum average degree is less than $3\Delta-2\Delta$. In 2014, Zhang [9] prove that the adjacent vertex-distinguishing chromatic number is less than or equal $5(\Delta(G)+2)/2$ for any graph G having maximum degree $\Delta(G)$ and isolated edges.

For more results about the adjacent vertex distinguishing edge coloring, the readers may refer to [10-25].

Here we address a natural extension of the very nice work by Jaradat [26] in which the chromatic number of products of graph were studied. The product we are taking is the usual direct product. The vertex set of $G \times H$ is the direct product $V(G \times H) = V(G) \times V(H)$ of the vertex sets of G and H and the edge set $E(G \times H) = \{(u,v) \mid u_1v_2 \in E(G) \text{ and } v_1u_2 \in E(H)\}$.

Let P_m, P_n be a finite path, and $V(P_m) = \{0,1,\cdots,m-1\}$, $V(P_n) = \{0,1,\cdots,n-1\}$ are the vertex set of a finite path P_m, P_n, severally, where two vertices x and y are adjacent for every $x \in \{0,1,\cdots,n-1\}$, $y \in \{0,1,\cdots,m-1\}$ if and only if $|x-y| = 1$. And let $G = P_n \times P_m$ be the direct product of finite path P_m, P_n, clearly, the vertex set of G may be denoted $\{(x,y) \mid x = 0,1,\cdots,n-1, y = 0,1,\cdots,m-1\}$.

Let P_∞ be a infinite path, and $V(P_\infty) = \mathbb{Z}$ is vertex set of a infinite path P_∞, where two vertices x and y are adjacent for every $x,y \in \mathbb{Z}$ if and only if $|x-y| = 1$. And let $Dp(d)$ be the direct product of d infinite path, denoted by $Dp(d) = P_\infty \times P_\infty \times \cdots \times P_\infty$. Then the vertex set of $Dp(d)$ may be denoted $V(Dp(d)) = \{(x_1,x_2,\cdots,x_d) \mid x_i \in \mathbb{Z}\}$, where $d \geq 2$.

In this paper, we research that the twin edge-coloring of finite path and infinite path. Our thought here is to depict a somewhat general way to the twin edge-coloring, and acquires the chromatic number of finite path and infinite path. We refer to the books [27,28] for graph theory terminology and notation not defined in this paper.

2. The twin edge coloring of finite paths

For the twin edge coloring of the direct product of finite path P_m, P_n, we have the following result.

Theorem 2.1 For any $m = 2$ and $n \geq 3$, if $n \equiv 2 \mod 3$, we have $\chi'_t(P_m \times P_n) = 3$.

Proof Let G be a graph of the direct product of finite path P_m, P_n. By Lemma 1.1, we know that $\chi'_t(G) = \chi'_t(P_m \times P_n) \geq 3$. To prove that $\chi'_t(G) \leq 3$, we construct the twin edge 3-coloring of G.

Assumed that the color set is $\{0,1,2\}$, and for any $x = 0,1,\cdots,n-1$, $y = 0,1$, and $y \equiv 0 \mod 2$, command that

$$\sigma((x,y)(x+1,y+1)) = x \mod 3.$$

It can be easily seen that the chromatic number of G is equal to 3.

In the first place, we proved that σ is a proper edge coloring of G. For a vertex $(x,0)$ of G,
where $x = 0, 1, \ldots, n - 1$, by the definition of the coloring σ, we have

$$\sigma((x - 1, 1)(x, 0)) = (x - 1) \mod 3, \quad \sigma((0, 0)(x + 1, 1)) = x \mod 3.$$

By definition of the coloring σ, $\sigma((x - 1, 1)(x, 0)) = \sigma((x, 0)(x + 1, 1))$ is equivalent to $2 \equiv 0 \mod 3$, which is done by contradiction. Therefore, the set of colors of the edges incident to $(x, 0)$ assigned the different color. Similarly, the set of colors of the edges incident to $(x, 1)$ assigned the different color.

From the above analysis, the coloring σ is a proper edge coloring of G.

In the next place, we prove that a proper edge coloring σ of a graph G that induces vertex coloring σ' is a proper vertex coloring. For any vertex $(x, 0), x = 1, 2, \ldots, n - 2$, by definition of the coloring σ and σ', we have

$$\sigma'(x, 0) = ((x - 1) \mod 3 + x \mod 3) \mod 3, \quad \sigma'(x - 1, 1) = ((x - 1) \mod 3 + (x - 2) \mod 3) \mod 3.$$

Clearly, $\sigma'(x, 0) = \sigma'(x - 1, 1)$ and $\sigma'(x, 0) = \sigma'(x + 1, 1)$ is equivalent to $0 \equiv 1 \mod 3$ and $2 \equiv 1 \mod 3$, which is impossible. Otherwise, when $x = 0$ or $x = n - 1$, by definition of the coloring σ and σ', we have $\sigma'(0, 0) = 0, \sigma'(1, 1) = 0; \sigma'(n - 1, 0) = (n - 2) \mod 3, \sigma'(n - 2, 0) = (n - 2 - 2) \mod 3 \mod 3$.

If $\sigma'(0, 0) = \sigma'(1, 1)$, then $0 = 1$, therefore, $\sigma'(0, 0) \neq \sigma'(1, 1)$; If $\sigma'(n - 1, 0) = \sigma'(n - 2, 1)$, then $0 \equiv 2 \mod 3$ since $n \equiv 2 \mod 3$, therefore, $\sigma'(n - 1, 0) \neq \sigma'(n - 2, 1)$. In the same way, for any vertex $(x, 1), x = 1, 2, \ldots, n - 2$, we have the same results. Thus, It is clear that the coloring σ' is a proper vertex colorings of G.

We can see from the above analysis, σ is 3-twin edge colorings of G. Thus, $\chi'_pt(P_n \land P_m) = 3$.

If a graph G exist two adjacent vertices of maximal degree $\Delta(G)$, we have $\chi'_pt(G) = \chi'_pt(G) \geq \Delta(G) + 1$. According to Theorem 2.1, for $n \geq m \geq 2$, we have $\chi'_pt(G) = \chi'_pt(G) = \Delta(G) + 1$.

3. The twin edge coloring of infinite paths

For the twin edge coloring of the direct product of infinite paths, we have the following result.

Theorem 3.1 $\chi'_pt (Dp(2)) = 5$.

Proof Clearly, $\chi'_pt (Dp(2)) = 4$. Therefore, $\chi'_pt (Dp(2)) \geq 5$. To prove that $\chi'_pt (Dp(2)) \leq 5$, we construct the twin edge 5-coloring of $Dp(2)$.

Assumed that the color set is $\{0, 1, 2, 3, 4\}$, and for any vertex (x, y), command that

$$\sigma((x, y)(x + 1, y + \theta)) = (x - \theta + 1) \mod 5,$$

where $\theta = \pm 1$.

It can be easy to see that the chromatic number of $Dp(2)$ is equal to 5.

In the first place, we proved that the coloring σ is a proper edge coloring of $Dp(2)$. For any vertex (x, y) of $Dp(2)$, where $x = 0, 1, \ldots, m - 1, y = 0, 1, \ldots, n - 1$, by the definition of the coloring σ, we have

$$\sigma((x, y)(x + 1, y + \theta_1)) = (x - \theta_1 + 1) \mod 5, \quad \sigma((x, y)(x - 1, y + \theta_2)) = (x + \theta_2) \mod 5, \quad \theta_1 = \pm 1, \quad \theta_2 = \pm 1.$$

Obviously, when $\theta_1 = -1, \theta_1 = 1, \sigma((x, y)(x + 1, y - 1)) = \sigma((x, y)(x + 1, y + 1))$ is equivalent to $2 \equiv 0 \mod 5$, which is impossible. when $\theta_2 = -1, \theta_2 = 1, \sigma((x, y)(x - 1, y - 1)) = \sigma((x, y)(x + 1, y + 1))$ is equivalent to $4 \equiv 1 \mod 5$, which is contradictory. Analogously, when $\theta_1 = 1, \theta_1 = -1, \text{ or } \theta_2 = 1, \theta_2 = -1, \sigma((x, y)(x + 1, y + \theta_1)) = \sigma((x, y)(x - 1, y + \theta_2))$ is equivalent to $\theta_1 + \theta_2 = -1 = 3,4$. Thus, the coloring σ is a proper edge coloring of $Dp(2)$.

In the second place, For any two vertices $u = (x, y), v = (x', y'),$ where $v = (x + 1, y \pm 1)$ or $v = (x - 1, y \pm 1)$. By the definition of the coloring σ and σ', we have

$$\sigma'(u) = (4x + 2) \mod 5, \quad \sigma'(v) = (4x + 1) \mod 5 \text{ or } \sigma'(v) = (4x + 3) \mod 5.$$
If $\sigma'(u) = \sigma'(v)$, then $2 \equiv 1 \mod 5$ or $2 \equiv 3 \mod 5$, consequently, $\sigma'(u) \neq \sigma'(v)$. It is clear that the coloring σ' is a proper vertex colorings of $D_p(2)$.

We can see from the above analysis, the coloring σ is 5-twin edge colorings of $D_p(2)$, hence $\chi'_s(D_p(2)) = 5$.

Theorem 3.2 $\chi'_s(D_p(d)) = 2^d + 1$.

Proof We use mathematics induction to show them. When $d = 2$, by Theorem 3.1, the Theorem 3.2 to be true. Supposed that the Theorem 3.1 to be true when $2 \leq l \leq d$, that is to say $\chi'_s(D_p(l)) = 2^l + 1$. Let's prove $\chi'_s(D_p(l+1)) = 2^{l+1} + 1$. By the definition of the direct product, $\Delta(D_p(l+1)) \geq 2^{l+1} + 1$. Because $D_p(l)$ has two adjacent vertices of maximum degree vertex, then $\chi'_s(D_p(l+1)) \geq 2^{l+1} + 1$.

Now prove $\chi'_s(D_p(l+1)) \leq 2^{l+1} + 1$. Denote $H = D_p(l), G = P_2 \times H = D_p(l+1)$, and the edge disjoint subgraphs of G is $H_{i,i+1} = P_2(l) \times H$, where $V(P_2(l)) = \{i,i+1\}$. Let the color set $C = A_0 \cup A_1$ and $A_0 \cup A_1 \neq \phi$, where $|A_0| = 2^l + 1$, $|A_1| = 2^l$. For any integer i, by induction, if $i = 0 \mod 2$, we determine a proper edge coloring of A_0 by using the $2^l + 1$ colors assigned by C to the $H_{i,i+1}$. if $i = 1 \mod 2$, we determine a proper edge coloring of A_1 by using the 2^l colors assigned by C to the $H_{i,i+1}$. The edges $H_{i,i+1}$ are the pairs $(i,i), (i,i+l)$ and $(i,i+1), (i,i)$, where s,t are adjacent vertices of H. It is noteworthy that $H_{i,i+1}$ is bipartite, it is nonconnected and consists of two components isomorphic to H if and only if H is bipartite.

In any case, the maximal degree of $H_{i,i+1}$ coincides with the maximal degree of H, thus, as H is regular of degree d, $H_{i,i+1}$ is regular of degree d and G has maximum degree 2^d. there are adjacent vertices of degree 2^d and $\chi'_s(D_p(d)) \geq 2^d + 1$, and then $\chi'_s(D_p(d)) \geq 2^d + 1$ due to Lemma 1.2.

If a k-regular graph G has an adjacent vertex distinguishing edge-coloring, we have $\chi'_s(G) \leq \chi'_s(G) = k + 1$. In accordance with the results of Theorem 3.1 and Theorem 3.2, we have $\chi'_s(D_p(d)) = \chi'_s(D_p(d)) = k + 1$.

4. Conclusion

This work was financially supported by Key Laboratory of Streaming Data Computing Technologies and Applications, State Ethnic Affairs Commission of China (No.12XBZ006), Social Science Planning Project in Gansu Province (No.13YD031), State Ethnic Affairs Commission of China (No.14XBZ018) and Innovative Team Subsidize of Northwest Minzu University.

References

[1] Andrews, Helenius E, Johnsto L, et al. On twin Edge Colorings of Graphs[J]. Discussions Mathematicae Graph Theory, 2016,63(3):613-627

[2] Balister P N, Lehel J, Schelp R H. Adjacent Vertex Distinguishing Edge-Colorings[J]. Siam Journal on Discrete Mathematics, 2007, 21(1): 237-250

[3] Baril J L, Kheddouci H, Togni O. Adjacent vertex distinguishing edge-colorings of meshes and hypercubes[J]. Australasian Journal of Combinatorics, 2006, 35(1): 237-250

[4] Dai Y, Bu Y. A Upper On The Adjacent Vertex-Distinguishing Chromatic Number of Graph[J]. Mathematics in Economics, 2009, 26(1):107-110

[5] Wang W, Wang Y. Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree[J]. Journal of Combinatorial Optimization, 2010, 19(4):471-485.

[6] Frigerio L, Lastaria F, Salvi N Z. Adjacent vertex distinguishing edge colorings of the direct
product of a regular graph by a path or a cycle [J]. Discussiones Mathematicae Graph Theory, 2011(3): 547-557

[7] Yan C C, Huang D J, Wang W F. Adjacent Vertex Distinguishing Edge-colorings of Planar Graphs with Girth at Least Four[J]. Journal of Mathematical Study, 2012, 45(4): 331-341

[8] Hocquard H, Montassier M. Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ[J]. Journal of Combinatorial Optimization, 2013, 26(1): 152-160

[9] Zhang L, Wang W, Lih K W. An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph[J]. Discrete Applied Mathematics, 2014, 162(C):348-354

[10] Baril J L, Kheddouci H, Togni O. Adjacent vertex distinguishing edge-colorings of meshes and hypercubes[J]. Australasian Journal of Combinatorics, 2006, 35(1): 237-250

[11] Shiu W C, Chan W H, Zhang Z, et al. On the adjacent vertex-distinguishing acyclic edge coloring of some graphs[J]. Applied Mathematics-A Journal of Chinese Universities, 2011, 26(4): 439-452

[12] Axenovich M, Harant J, Przybyło J, et al. A note on adjacent vertex distinguishing colorings of graphs[J]. Discrete Applied Mathematics, 2016, 205: 1-7

[13] Bu Y, Lih K W, Wang W. Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six[J]. Discussiones Mathematicae Graph Theory, 2011, 31(3): 429-439

[14] Hulgan J. Concise proofs for adjacent vertex-distinguishing total colorings[J]. Discrete Mathematics, 2009(309): 2548-2550

[15] Tian S L, Chen P, Shao Y B, Wang Q. Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs. Numerical algebra, control and optimization, 2014, 4(1): 49-58

[16] Yu X, Qu C, Wang G, et al. Adjacent vertex distinguishing colorings by sum of sparse graphs[J]. Discrete Mathematics, 2016, 339(1):62-71

[17] Wang Y, Cheng J, Luo R, et al. Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs[J]. Journal of Combinatorial Optimization, 2016, 31(2):874-880

[18] Bonamy M, Bousquet N, Hocquard H. Adjacent vertex-distinguishing edge coloring of graphs[M]// The Seventh European Conference on Combinatorics, Graph Theory and Applications. Scuola Normale Superiore, 2013:313-318

[19] Li J W, Wang C, Wang Z W. On the adjacent vertex-distinguishing equitable edge coloring of graphs[J]. Acta Mathematicae Applicatae Sinica English, 2013, 29(3):615-622

[20] Yan L H, Wang Z W, Zhang Z F. On The Adjacent Vertex Distinguishing Equitable Edge Coloring of Some Join Graphs[J]. Journal of Shanxi Normal University, 2008, 50(2):197-204

[21] Liu G. On the adjacent vertex distinguishing edge colourings of graphs[J]. International Journal of Computer Mathematics, 2010, 87(4):726-732

[22] Chen M, Guo X. Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes ☆[J]. Information Processing Letters, 2009, 109(12):599-602

[23] Liu B, Liu G. On the adjacent vertex distinguishing edge colourings of graphs[M]. Taylor & Francis, Inc. 2010

[24] Hatami H. Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number[J]. Journal of Combinatorial Theory, 2006, 95(2):246-256

[25] Wang W, Wang Y. Adjacent vertex-distinguishing edge colorings of K4-minor free graphs[J]. Applied Mathematics Letters, 2011, 24(12): 2034-2037

[26] Jaradat M M M. On the edge coloring of graph products[J]. International Journal of Mathematics & Mathematical Sciences, 2007, 2005(16):296-301

[27] Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: American Elsevier, 1976

[28] Diestel R. Graph Theory[M]. Springer-Verlag Heidelberg, New York, 2005