Visible wave spectrometric features of scots pine seeds: the basis for designing a rapid analyzer

Artur I Novikov
Faculty of Forestry, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 8 Timiryazeva Street, Voronezh 394087 Russian Federation
E-mail: arthur.novikov@vgltu.vrn.ru

Abstract. The study is intended for engineers and small-scale forestry farmers because it offers a simple solution for forest seeds quality improvement by selection before sowing (especially aerial sowing). For coniferous trees seeds VIS spectroscopy is a very important tool that determines the energy of radiation, indicating viability and origin. However, despite many suggestions of potential for practical use, there are no specific recommendations given. Visible diffuse reflectance spectra of single seeds were scanned with spectrometer USB 4000 (Ocean Optics Inc., USA) from 450 to 1000 nm at 1 nm intervals. It is found that in the range from 660 to 715 nm the spectral allocate of seed coat color classes has three non-intersecting characteristic groups differing in the magnitude of the diffuse reflection and forming a possible grading zone. The results of this study are limited to this specific sample and cannot be interpreted for seeds of all coniferous species. There is a need for design of a device for rapid analysis of seeds by spectrometric parameters, which will have a practical application and which will allow a comprehensive sequential studies following the "spectrogram - germination - growth in the nursery-growth in the field" path.

1. Introduction
Non-destructive seed quality control [1] plays an important role in the purchase of seeds for use in small-scale forestry in contemporary reforestation. Also an important methodical factor specific to forestry is the portable design of devices which can used on field and low costs for the implementation. Table 1 illustrates the possibility of using different methods to analysis of forest seeds [2-15].

For example, the TTC-test has a high destructive effect on the seed coat and is now «can be used to successfully estimate viability for very dormant species or for other hard-to-germinate species» [6]. IDS-method includes the process of moisture absorption by seeds, where it is difficult to control the involuntary germination, drying and separation. It has a relatively high cost of operation due to the use of additional devices, so «mainly used as a presowing separation to eliminate seeds that have lost viability during storage» [16]. The NMR-method allows to determine, in addition to viability, in the composition of metabolites of seeds, while there is no «the need for metabolite extraction from plant tissues, a process that can result in alteration of metabolites» [17].

For forest seeds VIS and NIR spectroscopy is a very important tool that determines the energy of radiation not only their viability [18,19], but also the provenance [10]. Studies of seed coat in the infrared range and the absorption spectra have proved the possibility of optical separation of seeds [20]. Moreover, it is confirmed that the seeds of pine have several layers of coat, as well as hydroxyl
groups, which can be used as an indicator of viability. However, all researchers suggest the possibility of its use in practice, but do not give specific recommendations.

Table 1. Comparison of methods reported for the forest seeds analysis.

| Methods                                           | Analysis   | Non-destructive | Use of reagents | Portability | Cost    |
|---------------------------------------------------|------------|-----------------|-----------------|-------------|---------|
| Topographical tetrazolium chloride (TTC) test [2]  | Quantitative | No              | Yes             | Yes         | Medium  |
| Flotation [3]; Incubation-Drying-Separation (IDS) [4] | Quantitative | No              | No              | No          | High    |
| Air Grading; modified specific gravity (MSG) separation [5] | Quantitative | No              | No              | No          | High    |
| Sieve [6] and non-sieve grading [7]                | Quantitative | No              | No              | No          | High    |
| PREVAC [8]                                        | Qualitative | No              | No              | No          | High    |
| Machine Vision [9]                                 | Qualitative | Yes             | No              | No          | Medium  |
| NIR [10]                                           | Qualitative | Yes             | No              | No          | Medium  |
| FT-IR [11]                                        | Qualitative | Yes             | No              | No          | Medium  |
| Hyperspectral imaging [12]                         | Qualitative | Yes             | No              | No          | Medium  |
| Thermal imaging [13]                               | Qualitative | Yes             | No              | No          | High    |
| X-Ray [14]                                         | Qualitative | Yes or No¹      | No              | No          | High    |
| Nuclear magnetic resonance (NMR) [15] spectroscopy   | Qualitative | Yes or No¹      | No              | No          | High    |

Notes: 1. High energies of the above radiation can generate valent or deformation changes in the internal structure of the samples, therefore, we consider the non-destructive method rather conditionally.

The variability of the seed coat color may be associated with genetic diversity, as well as with the signs of the disease, which, in turn, in different interpretations depend on the geographical location, soil conditions and other specific criteria. The possibility of precision automatic separation of seeds by the coat color without injuring would lead to the creation of new mobile devices working on a completely different principle than existing separators and sorters.
The design of mobile devices for quality control and grading of seeds based on the photonics principles requires big data for the implementation of the identification algorithm. The seed coat color of the coniferous trees is a qualitative indicator that is individual, hereditary stable [20–22] and due to the number and localization of phenolic pigments [23]. Separate direct seeding [24], especially aerial sowing [25], having different seed coat color, can provide cut costs due to the different seeds germination and growth intensity of seedlings [26,27]. To accumulate data on the spectrometric properties of seeds, it is necessary to design an analyzer that automates the process of seed supply, seed measurement and information processing.

In this study, we have tried to answer the following questions, related to design of mobile devices for practical application of visible spectroscopy in assessing the quality of Pinus sylvestris seeds. Is there a relationship between the number of seed coat color fractions and the seed engineer properties for separation? Is there a relationship between seed position and seed spectrometric properties? Is there a need to design a seed analyzer and create a database of spectrometric properties of seeds?

2. Materials and methods

Cones of Pinus sylvestris L. were collected from trees, in natural forest in autumn of 2017, located in the Pavlovsky district of the Voronezh region, Russian Federation (Latitude 50.462169; Longitude 40.096446, Altitude 83 m). Seeds were extracted from cones and further processed (pre-cleaning, extraction, de-winging) using the standard procedures and equipment (BCC AB, Landskrona, Sweden) at the Voronezh containerized forest nursery, Russian Federation (Latitude 51.567094; Longitude 39.243006, Altitude 105 m asl). Original seedlot was placed in a storage facility in a glass bottle at +5±2°C and humidity of 60%.

Seeds sampling for the study from storage was made as follows. From the original seedlot, three random samples of 0.5 kg were extracted in May of 2018. The samples were kept for 24 hours at +20±2°C and humidity of 75%. From each samples we selected three seed coat color classes in using an organoleptic test: black, brown and white. Three representative samples (figure 1) were taken from each seed-color classes. Additionally, these seeds were classified in the Munsell [21] color system (table 2) using the digital camera Canon Digital IXUS 100 IS 12.1 MPix (Canon Inc., Tokyo, Japan) for obtaining images and for image processing Digital Color Guide android-software (DIC Corp., Tokyo, Japan).

| Seed color group | Seed color (Munsell system) |
|------------------|-----------------------------|
| 1 – Black (K)    | N 0.8                       |
| 2 – Brown (B)    | 3.5 YR 3.0/5.3              |
| 3 – White (W)    | 0.1 Y 8.3/3.0               |

Visible diffuse reflectance spectra of single seed samples were scanned with spectrometer USB 4000 (Ocean Optics Inc., USA) from 450 to 1000 nm at 1 nm intervals. Spectrometer has a high sensitivity in the medium-wave part of the visible spectrum (from 490 to 750 nm). Every seed was placed in a special holder, oriented about the axis in four different positions. Such positions simulate the seed orientation in the vertical pipeline of the rapid analyzer. The average spectrum from 32 scans (8 for each position) was obtained for further analysis.

The optical radiation reflected from the seed passes through the integrating sphere FOIS-1 (Ocean Optics Inc., USA), the fiber-optic cable P400-2-VIS-NIR (Ocean Optics Inc., USA) to the entrance slit of the spectrometer. At the output of the optical system, a voltage proportional to the light intensity was generated using a CCD line. The reflectance spectra as a dependence of the reflected radiation intensity R (in percentage) from wavelength λ (in nanometers) was obtained by analog-digital conversion. The results were processed on a personal computer using Spectra Suite application software.
3. Results and discussion

Figure 1 shows that used organoleptic test can be classified in three specific color groups of Scots pine seeds as black (figure 1a), brown (figure 1b) and white (figure 1c). Baldwin (1942) classified seeds into four colour classes (“dark, brown, black or gray with mottling” [21]), Tillman-Sutela and Kauppi (1995) into three colour classes (“dark, light and mixed” [23]) Mukassabi et al. (2012) into two colour classes (“dark and light, light seeds are divided into 4 sub ranks” [27]).

![Figure 1](image)

**Figure 1.** Representative selected samples for the organoleptic test in K (a), B (b) and W-color (c) groups.

The seed coat color is correlated with the seeds germination and seedlings growth, with the majority of research shows that “the darker the seed the better the germination” [21,27] and growth [27]. The author’s own research [26] carried out with seeds from the same original seedlot established the highest growth in transplanted seedlings produced from light seeds. The fact of better seedling growth from seeds of opposite color may be associated with geographical variability [20], genetic diversity [28] and may depend on the abrasion [21] of the outer layer of the seed coat obtained in the process of extraction and purification. Brown seed resulted in the lowest survival rate [26], much lower than black and white seed. Frequent mention in studies of light, brown and dark seeds justifies the separation of seeds by color of the predominant pigment. However, the organoleptic method of determining color is quite subjective and depends on the perception and characteristics of the human eye. To confirm the technological possibility of seeds separation by color into three groups, we will carry out spectrometric measurements of samples from K, B and W-color groups (see table 2).

Figure 2 illustrates the diffuse reflectance spectra of all seed color groups. In the spectral field under consideration, the reflectivity of the samples is allocated as it decreases in the order of the seed coat color: «white – brown – black». Let’s divide the spectrogram into three areas: short-wave (from 450 to 500 nm), medium-wave (from 500 to 750 nm) and long-wave (from 750 to 1000 nm). The high level of spectral lines oscillation is observed in all color groups in the short-wave (from 450 to 500 nm) and long-wave (from 900 to 1000 nm) range, which is characterized by low sensitivity of the device in these areas.

In the field of average wavelengths from 500 to 750 nm, the bandwidths are as follows: for seeds with white peel a flat growing line, for seeds with brown peel a wave-like curve, and for seeds with black peel a straight line parallel to the abscissa axis, to a value of 700 nm, then a growing concave curve. Least variability fluctuations of spectral bands within color classes have a seed coat of white color (the blue line in figure 2) and seed coat of black color (the black line in figure 2), the highest – seed coat of brown color (the red line in figure 2). It should be noted that the spectral line of the brown seed coat in the range from 500 to 550 nm is superimposed on the spectral line of the black seed coat, and in the range from 725 nm and above – on the spectral line of the white seed coat.

The nature of the change in the intensity of the reflected radiation in the field from 660 to 715 nm indicates the possibility of a conditional grade of the spectrum of seed coats into three intervals: from 35 to 45 %, from 50 to 65 %, from 70 to 85 %. The separation of the seeds into three fractions by the organoleptic test is confirmed by the spectrogram on figure 1, where the dark seeds correspond to the
spectrum with the lowest reflectivity, light seeds with the highest reflectivity. On figure 1, three grouped spectrograms are distinguished, which confirms in one case the feasibility of dividing this original batch of seeds into three color groups in another case, there is no significant difference in the orientation of the seed in space when performing the analysis.

Figure 2. Diffuse reflection spectra samples of *Pinus sylvestris* seeds.

However, there is an evidence of bimodal color [29] in coniferous seeds, so the results of the study can only give specific data on specific seeds and they cannot be interpreted for all coniferous seeds. Therefore, it is necessary to systematize and collect data for seeds collected from different sources.

### 4. Conclusion

For Scots pine seeds collected in Pavlovsk district of Voronezh region, Russia can be divided by the color of the seed coat in the wavelength range from 660 to 715 nm. To design mobile devices for determining the seeds quality and their subsequent sorting, it is necessary to create a data Bank including characteristic spectrograms of seeds of different growing conditions, as well as information about the germination and growth of seedlings from the same seeds. To do this, it is necessary to design a device for rapid analysis of seeds by spectrometric parameters and to plan comprehensive sequential studies "spectrogram - germination - growth in the nursery - growth in the field".

### Acknowledgments

The research was carried out with the support of the internal grant in Voronezh State University of Forestry and Technologies named after G.F. Morozov (VSUFT).

The author acknowledge the research help of Department of General and Applied Physics. Special thanks are to Prof. N. Matveev (VSUFT), Dr. A. Mynakov (Voronezh State University), and Dr. A. Ageev (SmartGrade) for their constructive feedback.

### References

[1] Novikov A I and Novikova T P 2018 Non-destructive quality control of forest seeds in globalization: problems and prospects of output innovative products *Globalization and Its Socio-Economic Consequences* (Rajecke Teplice, Slovakia: Univ Zilina) p 1260

[2] Clemensson-Lindell A 1994 Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: applications and limitations *Plant Soil* **159** 297
[3] Daneshvar A, Tigabu M, Karimidoost A and Oden P C 2017 Flotation techniques to improve viability of Juniperus polycarpos seed lots J. For. Res. 28 231
[4] Bergsten U 1988 Invigoration and IDS-sedimentation of Pinus sylvestris seeds from northern Finland Silva Fenn. 22 323
[5] Copeland L O and McDonald M B 1999 Principles of Seed Science and Technology (Boston, MA: Springer US)
[6] USDA 2008 The Woody Plant Seed Manual ed F T Bonner, R P Karrfalt and R G Nisley (Washington: USDA Forest Service)
[7] Novikov A I 2017 Disc Separators in Forest Seed Production [in Russian] (Voronezh: VSUFT)
[8] Lestander T and Bergsten U 1985 PREVAC - A method for removal of mechanically damaged seeds Sverige Skogsvårdsförbunds Tidskr. 1 35
[9] Linskens H F and Jackson J F 1992 Seed Analysis eds H F Linskens and J F Jackson (Berlin, Heidelberg: Springer Berlin Heidelberg)
[10] Farhadi M, Tigabu M, Pietrzykowski M, Danusevičius D and Odén P C 2017 Application of near infrared spectroscopy for authentication of Picea abies seed provenance New For. 48 629
[11] Novikov A I and Saushkin V V 2018 Infrared range spectroscopy: the study of the pine seed coat parameters For. Eng. J. [in Russian - Lesotekhnicheskiy Zhurnal] 3 30
[12] Mo C, Kim G, Lee K, Kim M S, Cho B K, Lim J and Kang S 2014 Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging Sensors 14 7489
[13] Dumont J, et al. 2015 Thermal and hyperspectral imaging for Norway spruce (Picea abies) seeds screening Comput. Electron. Agr. 116 118
[14] Simak M and Gustafsson Å 2010 X-ray photography and sensitivity in forest tree species Hereditas 39 458
[15] Elias S G, Copeland L O, McDonald M B and Baalbaki R Z 2012 Seed Testing: principles and practices (Michigan State University Press)
[16] Schmidt L 2007 Tropical Forest Seed ed D Czeschlik (Berlin, Heidelberg: Springer Berlin Heidelberg)
[17] Kermode A R 2011 Seed Dormancy ed A R Kermode (Totowa, NJ: Humana Press)
[18] Farhadi M, Tigabu M and Odén P 2015 Near Infrared Spectroscopy as non-destructive method for sorting viable, petrified and empty seeds of Larix sibirica Silva Fenn. 49 1340
[19] Farhadi M, Tigabu M, Stener L-G and Oden P C 2016 Feasibility of visible plus near infrared spectroscopy for non-destructive verification of European x Japanese larch hybrid seeds New For. 47 271
[20] Pravdin L F 1960 The main regularities of the geographical variability of Scots pine (Pinus sylvestris L.) [in Russian] (Moscow: Forestry Publ.) p. 245
[21] Baldwin H I 1942 Forest Tree Seedof The North Temperate Regions (Waltham: Chronica Botanica Company)
[22] Tikhonova I V, Tarakanov V V, Tikhonova N A, Barchenko A P and Ekart A K 2014 Population variability of cones and seeds of Scots pine by phenes of color and traits-indices in the south of Siberia Contemp. Probl. Ecol. 7 60
[23] Tillman-Sutela E and Kauppi A 1995 The morphological background to imbibition in seeds of Pinus sylvestris L. of different provenances Trees 9 123
[24] Grossnickle S C and Ivetić V 2017 Direct seeding in reforestation – a field performance review Reforesta 4 94
[25] Novikov A I and Ersson B T 2019 Aerial seeding of forests in Russia: A selected literature analysis IOP C. Ser. Earth Env. preprint
[26] Novikov A I and Ivetić V 2019 The effect of seed coat color grading on height of one-year-old container-grown Scots pine seedlings planted on post-fire site IOP C. Ser. Earth Env.
preprint

[27] Mukassabi T A, Polwart A, Coleshaw T and Thomas P A 2012 Does Scots pine seed colour affect its germination? Seed Sci. Technol. 40 155

[28] Ivetić V, Devetaković J, Nonić M, Stanković D and Šijačić-Nikolić M 2016 Genetic diversity and forest reproductive material – from seed source selection to planting iForest - Biogeosciences For. 9 801

[29] Lev-Yadun S and Ne’eman G 2013 Bimodal colour pattern of individual Pinus halepensis Mill. seeds: a new type of crypsis Biol. J. Linn. Soc. 109 271