TiO2 coated Si nanowire electrodes for electrochemical double layer capacitors in room temperature ionic liquid

F Konstantinou1,2, A Shougee1,2, T Albrecht1 and K Fobelets2

1 Department of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
2 Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London, United Kingdom

E-mail: k.fobelets@imperial.ac.uk

Received 26 June 2017, revised 28 July 2017
Accepted for publication 18 August 2017
Published 21 September 2017

Abstract
Three TiO2 deposition processes are used to coat the surface of Si nanowire array electrodes for electrochemical double layer capacitors in room temperature ionic liquid [Bmim][NTf2]. The fabrication processes are based on wet chemistry only and temperature treatments are kept below 450 °C. Successful TiO2 coatings are found to be those that are carried out at low pressure and with low TiO2 coverage to avoid nanowires breakage. The best TiO2 coated Si nanowire array electrode in [Bmim][NTf2] showed energy densities of 0.9 Wh·kg⁻¹ and power densities of 2.2 kW·kg⁻¹ with a nanowire length of ~10 µm.

Keywords: silicon nanowires, TiO2 nanoparticles, ionic liquid, supercapacitor electrode

(Some figures may appear in colour only in the online journal)
Si surface, the use of room temperature ionic liquids (RTILs) as electrolyte can also increase the stability of the system [4, 12, 14, 15]. Their appeal in electrochemical applications is due to their wide operating potential window, high chemical and electrochemical stability, wide operating temperature range, high thermal stability, negligible volatility, non-flammability and relative environmental friendliness. Challenges, on the other hand, include their hygroscopicity (dissolved water reduces the potential operating window) and comparatively high viscosity (increasing the solution resistivity).

Research on alternative electrode materials, such as MWCNTs, has shown improvements of the electrode performance with TiO\(_2\) NP coatings [16–18]. Therefore, we explore TiO\(_2\) coated Si nanowire array (NWA) electrodes in this work.

In the fabrication process, the use of vacuum technology is avoided in preference of wet chemistry for ease of application and cost competitiveness, and temperatures are kept below 450 °C. The Si nanowire fabrication process is based on metal-assisted electrochemical etching (MACE) using AgNO\(_3\) for the Ag NP nucleation process [19, 20]. The use of the low temperature, wet chemical process together with TiO\(_2\) NPs coatings which are low cost, environmentally friendly and available in abundance, makes the Si-based electrode a green energy candidate.

In this work, we present three different TiO\(_2\) coating processes applied to p-type MACE fabricated Si NWAs in the RTIL [B\(_{14}\)mim][NTf\(_2\)]. The capacitance of the resulting electrodes is extracted using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronopotentiometry (CP).

2. Experiments

2.1. Preparation of the Si NWA electrode

(100) p-type silicon wafers with resistivity, \(\rho = 0.01–0.02\ \Omega\ \text{cm} \) (B-doped, \(N_A \approx 10^{18}\ \text{cm}^{-3}\) ) and 525 \(\mu\text{m}\) thickness were purchased from Si-Mat, Kaufering, Germany. Bulk p-Si samples measuring \(2\times2\) cm were cleaned by sonication in DI water. Si NW As were etched using a 2-step MACE process. First, Ag NPs are nucleated in a solution of 0.005 M AgNO\(_3\) and 5 M HF for 2 min [20]. After a DI water rinse the samples are transferred to a solution of 0.005 M AgNO\(_3\) and 4.9 M HF and etched for 60 min. After another DI water rinse, the Ag NPs are removed in a concentrated HNO\(_3\) mixture (1:1 v/v) with DI water for 3 min and subsequently rinsed, followed by gentle drying using a dry-air gun. The length and density of Si NWs are \(\sim10\ \mu\text{m}\) and \(\sim10^9\ \text{NWs}\cdot\text{cm}^{-2}\), respectively [10].

The average diameter of the NWs is \(\sim150\ \text{nm}\) varying between \(\sim20\) nm and \(\sim250\) nm. The back of the samples is protected with DI water for 3 min and subsequently rinsed, followed by gentle drying using a dry-air gun. The length and density of Si NWs are \(\sim10\ \mu\text{m}\) and \(\sim10^9\ \text{NWs}\cdot\text{cm}^{-2}\), respectively [10].

The materials used for wet TiO\(_2\) deposition are: TiCl\(_4\) 2THF (97%), Ti(OCH\(_2\)(CH\(_3\))\(_2\))\(_x\) (97%) and Ti foil (0.25 mm thickness, 99.7% trace metals) from Sigma-Aldrich. Acetylacetone (99%) was purchased from Merck. H\(_2\)SO\(_4\) (95%), H\(_2\)O\(_2\) (30%), HF (50%), HNO\(_3\) (68%) and HCl (37%) are from VWR International Ltd.

The Si NWAs were coated with TiO\(_2\) using three alternative coating procedures.

(a) TiCl\(_4\) treatment [21]: The Si NWAs (length \(\sim15\ \mu\text{m}\) ) were immersed in 10 ml of 0.04 M aqueous solution of titanium (IV) chloride tetrahydrofuran complex (TiCl\(_4\) 2THF) and heated at 70 °C for 30 min in the oven. Afterwards the samples were rinsed with DI water and baked at 450 °C for 30 min. EDS analysis gives large variations of the weight percentages of Ti, O and Si across the area: 0–0.12%, 8% and 92–91.88%, respectively. No Cl signal was found.

(b) Ti-dip process [22]: The Si NWAs (length \(\sim10\ \mu\text{m}\) ) were immersed in 10 ml of 0.2 M titanium (IV) isopropoxide (Ti(OCH\(_2\)(CH\(_3\))\(_2\))\(_x\)), 0.4 M acetylacetone and 12 M absolute ethanol solution for 15 min, followed by immersion in DI water for 5 min and baked at 450 °C for 30 min in the oven. This procedure was repeated two more times in order to achieve a more uniform coating (3 × Ti-dip process). In a 1 dip process, EDS analysis gives weight percentages of 2%, 10% and 88% for Ti, O and Si, respectively, increasing to respectively 4.5%, 13%, 82% when the dipping process is done 3 times.

(c) Ti autoclave [23]: The Si NWAs (length \(\sim10\ \mu\text{m}\) ) were immersed into 30 ml of 0.1 M HCl solution and along with 0.1 g Ti foil placed into an autoclave. The autoclave was heated at 180 °C for 4 h. Afterwards, the samples were rinsed in DI water and baked at 450 °C for 30 min.

SEM images of the TiO\(_2\) treated Si NWAs are given in figure 1. These show wide variations in material structure as a result of the applied process.

Figure 1(a) shows the catastrophic effect of the autoclave process, resulting in dramatically shortened NWs (\(\sim3\ \mu\text{m}\) ) covered with a discontinuous layer of TiO\(_2\) (see inset figure 1(a)). The sudden release of the high pressure in the autoclave at the end of the process caused the layer of TiO\(_2\), attached to the Si NWs to fracture, breaking the Si NWs. This led to a large reduction in effective surface area. The 3 × Ti-dip process maintained the integrity of the Si NWA better. The TiO\(_2\) particles are not homogeneously distributed (see SEM figure 1(b)) within the NWA and some circular TiO\(_2\) NPs (diameter \(\sim135\ \text{nm}\) ) appear on the surface (see inset figure 1(b)). Although the EDS shows very low density of TiO\(_2\), the SEM shows that locally high concentrations of deposited TiO\(_2\) can be seen covering the space in between the NWs. Figure 1(c) shows increased TiO\(_2\) deposition using the TiCl\(_4\) process. The Si NWA however became very brittle due to large densities of TiCl\(_4\) 2THF-related material filling the regions between the NWs in the array, which upon expansion during the thermal process puts the Si NWs under stress. There is a large size distribution of particles, with diameters measured between \(\sim40\) nm and \(\sim550\) nm. Figure 1(d) gives an untreated SiNWA.

2.2. Experimental set-up for electrochemical measurements

For electrochemical measurements, the back of the Si NWA surface was plasma etched first in a mixture of Ar
(25 sccm)–O₂ (10 sccm) at 200 W for 5 min at 20 °C for removal of the coating layer, followed by CHF₃ (25 sccm)–Ar (25 sccm)–O₂ (2 sccm) at 200 W for 5 min at 20 °C to remove any oxide growth. The plasma etch step is immediately followed by a ~100 nm Al deposition using thermal evaporation. The back contacts were annealed at 200 °C for 1 min under Ar atmosphere.

A 3-electrode setup is used, with the Si NWA as the working electrode, a Pt coil wire as the counter electrode and an Ag wire as the pseudo-reference electrode. The electrochemical measurements were conducted in a custom-built electrochemical cell constructed of two Teflon sections that clamp the working electrode. The projected surface area, i.e. the working electrode surface area in contact with the electrolyte solution, is \( A = 1.327 \text{cm}^2 \). All extracted areal capacitances presented in this work will be calculated using the projected surface area defined by the electrochemical cell.

All the electrochemical measurements were conducted with a CHI760C potentiostat. The RTIL [Bmim][NTf₂] (BASF, purity ≥98%) composed of 1-butyl-3-methylimidazolium cations and bis(trifluoromethanesulfonyl) imide anions is used as electrolyte. The operating potential window (EW) for the quasi-rectangular shaped CVs is determined from the potential range where the maximum current \( I_{\text{max}} = 3 \times i \) with \( i \) determined in the middle of the EW [10]. The EW for the CV plots with peaks is calculated from the voltage range constrained to where the maximum current \( I_{\text{max}} = 3/2 (i_a + i_c) \), with \( i_a, c \) anodic and cathodic current peak, respectively. The EW for dry ionic liquid, with a 11 ppm water content as determined by Karl–Fischer titration, using a Au electrode, Au/ [Bmim][NTf₂] is 4.4 V.

3. Results and discussions

The CVs of an uncoated and a SiO₂-coated B-doped Si NWA in [Bmim][NTf₂] are shown in figure 2(a). The thin SiO₂ coating is achieved by oxidising the Si NWA in 90 °C HNO₃ [10]. It is clear that the thin (<2 nm) SiO₂ coating increases the EW of the system by nearly a factor of 2.
Figure 2. Cyclic voltammograms of (a) uncoated (black line) and SiO2 coated (red line) Si NW A and (b) Si NW A coated by TiCl4 treatment (black line), 3× Ti-dip (red line) and Ti-autoclave (blue line), all in [Bmim][NTf2] at scan speed, $v = 50 \text{ mV s}^{-1}$.

Figure 2(b) shows the cyclic voltammograms of the Si NWAs in [Bmim][NTf2] coated by the three different TiO2 coating processes. The CV of the uncoated and TiCl4-treated Si NW A has current peaks. These are strongly correlated with the presence of NWs since no peaks are observed for bulk material in the same set-up and RTIL. Our hypothesis is that these redox peaks are related to deep level surface traps in the Si NWs created in the MACE process [24]. Although the dynamics of charging and discharging of the traps into a thin H2O layer surrounding the NWs adds to the overall capacitance values, measurements have demonstrated a stronger degradation of their capacitance upon repeated cycling of the capacitor. The EW, anodic current and areal capacitance for all samples are given in table 1.

The areal capacitance, $C$, is calculated from the CV plots by:

$$C = \frac{i}{dV/dr} \frac{1}{A},$$  

(1)

where $i = i_a - i_c$, with $i_a$ the anodic and $i_c$ the cathodic current, respectively defined from the voltammogram at their minimum absolute value (approximately in the middle of the CV plot), $dV/dr$ is the experiment's scan rate and $A$ is the projected surface area.

The variation of the extracted capacitance between the different techniques is mainly due to the additional redox reactions occurring at the surface of the Si NWs. This leads to much higher CV values than those calculated by the CV technique and to EIS values that are dependent on the bias point (here reported for $V = 0 \text{ V}$).

The small EW indicates a low electrochemical stability of the uncoated Si NW A even in RTIL. Coating the Si NWs with a thin SiO2 layer fabricated in boiling nitric acid at 90 °C is demonstrating much improved Si NW A performance in RTIL [10]. The coating process with TiO2 also improves the performance of the Si NW A in two cases out of three, the TiCl4 treatment and Ti-dip process. The reduced performance of the autoclave sample is due to the very short NW lengths. The relatively large voltage window suggests good TiO2 coverage of the Si NWs though. The capacitance of the TiCl4-treated sample has an EW inferior to the other processes due to the inhomogeneous coverage. The currents are higher, mainly caused by the additional redox reactions that occur at the Si NW A surface and the slightly higher NW length. In the case of 3× Ti-dip, the highest EW and highest current $i$ is achieved. This shows the success of the simple 3× Ti-dip process to increase the electrochemical stability of the Si NW A it coats.

Overall, the thin TiO2 coating has increased the electrochemical stability of the Si NW A as demonstrated by the increased EW.

For CP in a three-electrode configuration, a constant current is applied between the working and the counter electrodes and the potential of the working electrode is measured as function of time with respect to the reference electrode. The current is cycled between 7.5 · 10⁻⁴ A and $-7.5 \cdot 10^{-4}$ A whilst the voltage is limited by the EW given by the CV measurement (see figure 3(a)). The areal capacitance is then calculated as in equation (1) with $dV/dr$ the average slope of the potential versus time plots.

EIS measurements are carried out in a frequency range of 1 Hz < $f$ < 10⁵ Hz using an ac voltage amplitude of 5 mV at a DC voltage where the minimum absolute value of the anodic/cathodic current is found in the CV plot (see figure 3(b)). A simplified Randles circuit consisting of an electrolyte resistance ($R_s$) in series with the parallel connection of the double layer capacitance ($C_{DL}$) and the charge transfer resistance ($R_{CT}$), was used to fit the Nyquist plots $|Z'|$ as a function of $Z'$ with the total impedance $Z = Z' + jZ''$.
Figure 3 gives the EIS and CP plots of the 3 × Ti dip and the TiCl₄ sample.

The CP plot of the 3 × Ti dipped electrode shows good triangular potential variations with an ESR (equivalent series resistance) of approximately 347 Ω. In contrast, the TiCl₄ treated electrode shows strong non-ideality, consistent with the strong peaks in the CV plot. Its ERS is 267 Ω. The EIS measurements shown were carried out at −0.4 V for the 3 × Ti dipped electrode and at −0.5 V for the TiCl₄ treated sample, the voltage where the anodic current is minimum. The resistance, $R_S + R_{CT}$ at $\omega = 10^5$ Hz is approximately 125 and 89 Ω, respectively (see inset figure 3(b)). The high frequency inset also shows small semicircles. Since their diameter is small, the charge transfer resistance $R_{CT}$ is small, indicating good ionic conduction and electrolyte diffusion through the nanowire structure. The slope of the straight line in the low frequency region is highest for the 3 × Ti dip process indicating purer capacitive behaviour.

4. Conclusions

Si NW A electrodes were fabricated using 2-step MACE and coated with TiO₂ NPs using 3 different techniques. The length of the NWs was ~10–15 μm. All samples covered with TiO₂ showed improved EWs. The NW electrodes treated in the autoclave broke due to high pressure change but the 3 × Ti-dip process by immersion in a Ti[OCH₂(CH₃)₂]₄:acetylacetone:ethanol solution was most successful. It gave the best areal capacitance of 386 μF·cm⁻² based on the CP technique. This high capacitance value is the result of the increase of the effective surface area and the larger EW due to an increase in chemical robustness. Its cyclic voltamogram did not show redox peaks, giving improved cyclability. The extracted energy density is 0.9 Wh·Kg⁻¹ and power density is 2228 W·kg⁻¹, placing the TiO₂ coated Si NWA using a 3 × Ti dip process well within the supercapacitor range on the Ragone plot.

Acknowledgment

AS acknowledges funding from the EEE department for his PhD research. KF thanks Dr T Tate and Dr X Li for their help with EDS and the autoclave experiment, respectively.

Acknowledgment

AS acknowledges funding from the EEE department for his PhD research. KF thanks Dr T Tate and Dr X Li for their help with EDS and the autoclave experiment, respectively.

ORCID iDs

K Fobelets @ https://orcid.org/0000-0001-5607-8243

References

[1] Beidaghi M and Gogotsi Y 2014 Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors Energy Environ. Sci. 7 867–84
[2] Zhai Y, Dou Y, Zhao D, Fulvio P F, Mayes R T and Dai S 2011 Carbon materials for chemical capacitive energy storage Adv. Mater. 23 4828–50
[3] Frackowiak E and Béguin F 2001 Carbon materials for the electrochemical storage of energy in capacitors Carbon 39 937–50
[4] Simon P and Gogotsi Y 2008 Materials for electrochemical capacitors Nat. Mater. 7 845–54
[5] Lee J Y, Liang K, An K H and Lee Y H 2005 Nickel oxide/ carbon nanotubes nanocomposite for electrochemical capacitance Synth. Met. 150 153–7
[6] Boukhalfa S, Evanoff K and Yushin G 2012 Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes Energy Environ. Sci. 5 6872–9
[7] Manikandan K, Dhanuskodi S, Mahesware N and Muralidharan G 2016 SnO₂ nanoparticles for supercapacitor application AIP Conf. Proc. 1731 050048
[8] Wang D, Li Y, Wang Q and Wang T 2012 Nanostructured Fe₃O₄–graphene composite as a novel electrode material for supercapacitors J. Solid State Electrochem. 12 2095–102
[9] Eskasson J, Rauwel P, Nerat J and Jännes A 2016 A hybrid capacitor based on FeO₃–graphene nanocomposite/few-layer graphene in different aqueous electrolytes J. Electrochem. Soc. 163 A2768–75
[10] Qiao L, Shougee A, Albrecht T and Fobelets K 2016 Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid Electrochim. Acta 210 32–7

[11] Thissandier F, Le Comte A, Crosnier O, Gentile P, Bidan G, Hadji E, Brousse T and Sadki S 2012 Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications Electrochem. Commun. 25 109–11

[12] Berton N, Brachet M, Thissandier F, Bideau J L, Gentile P, Bidan G, Brousse T and Sadki S 2014 Wide-voltage-window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte Electrochim. Commun. 41 31–4

[13] Alper J P, Vincent M, Carraro C and Maboudian R 2012 Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor Appl. Phys. Lett. 100 2012

[14] Armand M, Endres F, MacFarlane D R O H and Scrosati B 2009 Ionic-liquid materials for the electrochemical challenges of the future Nat. Mater. 8 621–9

[15] McEwen A B, Ngo H L, LeCompte K and Goldman J L 1999 Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications J. Electrochem. Soc. 146 1687–95

[16] Jiang L-C and Zhang W-D 2009 Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing Electroanalysis 21 988–93

[17] Kim H-I, Kim H-J, Morita M and Park S-G 2010 Preparation and electrochemical performance of CNT electrode with deposited titanium dioxide for electrochemical capacitor Bull. Korean Chem. Soc. 31 423–8

[18] Mirmohseni A, Dorraji M S S and Hosseini M G 2012 Influence of metal oxide nanoparticles on pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers Electrochim. Acta 70 182–92

[19] Huang Z, Geyer N, Werner P, de Boor J and Gösele U 2011 Metal-assisted chemical etching of silicon: a review Adv. Mater. 23 285–308

[20] Xu B and Fobelets K 2014 Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators J. Appl. Phys. 115 214306

[21] Kumar A, Madaria A R and Zhou C 2010 Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells J. Phys. Chem. C 114 7787–92

[22] Ntais S, Dracopoulos V and Siokou A 2004 TiCl4(THF), impregnation on a flat SiO2/Si(1 0 0) and on polycrystalline Au foil: determination of surface species using XPS J. Mol. Catal. A 220 199–205

[23] Wang X, Wu G, Zhou B and Shen J 2013 Optical constants of crystallized TiO2 coatings prepared by sol-gel process Materials 6 2819–30

[24] Guo W, Xu C, Wang X, Wang S, Pan C, Lin C and Wang Z L 2012 Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells J. Am. Chem. Soc. 134 4437–41

[25] Shougee A, Konstantinou F, Albrecht T and Fobelets K 2017 Cyclic voltammetry peaks due to deep level traps in Si nanowire array electrodes in preparation