Introduction

According to the American Cancer Society, about 142,820 people will be diagnosed with colorectal cancer and almost 51,000 people will die of the disease in 2013. 1 Cruciferous vegetables such as broccoli, Brussels sprouts, cabbage, cauliflower and watercress protect against colorectal cancer and other leading causes of cancer-related death. 2 The beneficial effects of cruciferous vegetables have been attributed, at least in part, to their content of isothiocyanates (ITCs). 3 Dietary ITCs and their metabolites act via multiple mechanisms, including epigenetic changes at the level of DNA methylation and histone modifications. 5,6 Histone deacetylase (HDAC) activity and chromatin remodeling affect DNA damage and repair pathways. 7,9 HDACs are chromatin modifiers that alter gene expression, but also exert a broader range of functions by deacytlayating non-histone proteins. 7,10 HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. 8 HDAC inhibitors such as trichostatin A (TSA), suberoylaldehyde hydroxamic acid (SAHA) and valproic acid (VPA) trigger
cancer cell death by removing the protective effects of HDACs on DNA.7,11-13 Open chromatin can provide greater access to genotoxins, while DNA repair mechanisms may be inhibited due to the altered acetylation status of key repair proteins.

Sulforaphane (SFN) and related ITCs inhibit HDAC activity and cause histone hyperacetylation in cancer cells.14-19 Recently, we showed that SFN decreased HDAC protein expression in human colon cancer cells, with HDAC3 identified as an early “sentinel” HDAC.20 Here, we sought to examine the structure-activity relationship among ITCs with respect to HDAC changes and DNA damage/repair pathways in human colon cancer cells, including the role of CtBP-interacting protein (CtIP). The latter protein is a key player in homologous recombination,21 it influences cellular tolerance to anti-cancer drugs,22 and recent evidence points to acetylation as a critical regulator of CtIP activity.7,9 Our findings provide clear evidence for a differential effect of ITCs toward DNA repair events in colon cancer cells vs. non-cancer cells, with implications for improving upon current therapeutic strategies.

Results

ITCs inhibit HDAC activity and expression. ITCs that occur naturally in mustard, broccoli, wasabi and watercress were examined for effects on HDAC activity and expression (Fig. 1). HDAC activity was reduced significantly in whole cell lysates of HCT116 colon cancer cells after treatment with SFN, 6-SFN and 9-SFN, the potency increasing with alkyl chain length (Fig. 1A). When ITCs were added directly to HeLa nuclear extracts, HDAC activity was not affected (Fig. 1A). Loss of HDAC activity was dose- and time-dependent (Fig. S1). Immunoblotting of whole cell lysates revealed a marked loss of HDAC3 and HDAC6 (Fig. 1B), with little or no changes in other class I and II HDACs. The positive
with that observed in the HDAC activity (Fig. 1; Fig. S2 for the corresponding DAPI counterstaining of nuclei).

To better understand the time-course of ITC-induced DNA damage, effector kinases were examined by immunoblotting (Fig. 2C). Increased phosphorylation of ATR was observed at around 6 h post-treatment with SFN, 6-SFN and 9-SFN, followed by H2AX phosphorylation at 6–12 h and then checkpoint kinase (Chk2) phosphorylation at 12–24 h. Notably, AITC, which had little effect on HDAC activity (Fig. 1), also had minimal impact on ATR, H2AX or Chk2 phosphorylation status under the same assay conditions (Fig. 2C). Similar results were obtained in other colon cancer cell lines (data not shown); the SFN-induced DNA damage response was augmented in p21−/− cells but was decreased in p53−/− cells, compared with wild type (Fig. S3).

ITCs induce cell cycle arrest and apoptosis. ITCs decreased the viability of HCT116 cells (Fig. 3A), with SFN, 6-SFN and 9-SFN being highly significant (p < 0.001). Loss of cell viability...
was observed in other colon cancer cell lines treated with ITCs (Table S1). Fluorescence-activated cell sorting revealed no significant impact of AITC on cell cycle kinetics, compared with the vehicle controls (Fig. 3B, lower left). However, HCT116 cells treated for 24 h with SFN were arrested in G2/M, as reported.20,29 Interestingly, 6-SFN and 9-SFN also increased the proportion of cells in G2/M, but to a lesser degree than SFN (43.1% and 49.4% vs. 79.8%, respectively). Notably, 6-SFN- and 9-SFN-treated cells had increased multi-caspase activity and PARP cleavage, indicative of greater apoptosis (Fig. 3C).

ITCs enhance CtIP acetylation and turnover. HDAC inhibitors alter the acetylation status of key DNA repair proteins,8 including CtIP, Ku70 and RAD51. Under the same experimental conditions as in Figure 1, SFN increased the acetylation status of CtIP at 6 h without affecting Ku70 or RAD51 acetylation (Fig. 4A). Interestingly, the HDAC inhibitors TSA and sodium butyrate increased Ku70 acetylation, without affecting CtIP or RAD51 acetylation levels (Fig. 4A). 6-SFN and 9-SFN also increased the acetylation of CtIP, whereas AITC lacked this activity (Fig. 4B). CtIP immunoprecipitation followed by immunoblotting for acetyl-lysine confirmed these findings (data not shown). Loss of CtIP protein expression was not observed at 6 h, except in the case of 9-SFN treatment (Fig. 4C, left panel), whereas SFN, 6-SFN and 9-SFN attenuated CtIP levels at 24 h (Fig. 4C, right panel), without affecting Ku70 expression.

HDAC3 levels influence CtIP acetylation and turnover. To study the role of HDAC3 in SFN-induced DNA damage and repair processes, HDAC3 knockdown experiments were performed (Fig. 5A). Reduced HDAC3 expression following siRNA treatment recapitulated ITC effects with respect to pH2AX induction, CtIP acetylation and attenuated CtIP protein levels. On the other hand, HDAC3 overexpression rescued cells from ITC-induced CtIP acetylation and turnover (Fig. S4). Knockdown of GCN5, a histone acetyltransferase (HAT) involved in CtIP acetylation,7 also rescued the ITC-induced acetylation of CtIP (Fig. 5B). Interestingly, GCN5 knockdown did not restore CtIP protein expression to the levels seen in vehicle-treated scrambled siRNA controls (Fig. 5B); suggesting additional CtIP turnover pathways were activated independent of acetylation.

Autophagy in ITC-treated cells. SFN has been reported to cause autophagy,10 which plays a role in CtIP turnover following acetylation.7 Electron microscopy studies revealed that 6-SFN and 9-SFN strongly induced the appearance of autophagosomes (Fig. 6A). In addition to numerous double-membrane vacuoles,
Differential responses of cancer and non-cancer cells. HCT116 colon cancer cells were more sensitive to SFN-induced phenotypic changes, such as cell rounding and colony formation, than CCD841 non-cancer colon epithelial cells (Fig. 7A). Constitutive HDAC3 levels were higher in cancer cells than in non-cancer cells, and in the former case HDAC3 protein expression was reduced by continuous or discontinuous SFN treatment (Fig. 7B). Continuous SFN treatment for 18 h led to CtIP loss was evident in the presence and absence of 3-MA (Fig. 6B).

Figure 4. ITC-induced CtIP acetylation and loss of CtIP protein expression. (A and B) HCT116 cells were incubated with 15 μM ITC, 10 mM sodium butyrate (NaB) or 1 μM TSA for 6 h and whole cell lysates were immunoprecipitated with anti-acetyl lysine antibody, followed by immunoblotting for CtIP, Ku70, RAD51 or histone H4, as indicated. IgG was used occasionally as a loading control. (C) Nuclear lysates (no acetyl-lysine IP step) were immunoblotted directly for CtIP and Ku70 at 6 h and 24 h, with β-actin as loading control.

some of which contained cellular debris, swollen mitochondria and ER were abundant in cells treated with 6-SFN and 9-SFN, and to a lesser extent SFN. Treatment with 3-methyladenine (3-MA), an inhibitor of autophagy, partially or completely blocked cleavage of the autophagy marker LC3B and attenuated ITC-induced CtIP turnover (Fig. 6B) and cell growth inhibition (Fig. 6C). HDAC3 loss was evident in the presence and absence of 3-MA (Fig. 6B).
negative siRNA controls. Collectively, these findings provide evidence both at the morphological and molecular level that DNA repair was compromised in cancer cells but not in non-cancer cells following ITC treatment.

Discussion

HDAC inhibitor drugs are thought to activate epigenetically-silenced genes by altering the acetylation of histone proteins. However, these agents also affect the acetylation of non-histone proteins, including those with critical roles in DNA damage recognition and repair. The terms lysine deacetylase and “DAC inhibition” have been applied in situations where there is loss of activity and/or expression of deacetylase enzymes, regardless of the final outcomes for histones and chromatin remodeling.

Our original working hypothesis was that SFN metabolites bind to the HDAC pocket and inhibit HDAC activity. A subsequent study identified turnover of HDACs at the protein level.
in particular HDAC3 and HDAC6. However, this model does not account for the results with TSA and butyrate, which despite their known binding to the HDAC pocket failed to similarly induce CtIP acetylation (Fig. 4A). A possible clue came from molecular modeling studies of HDAC3 in association with its co-repressor partner SMRT. Thus, whereas TSA and ITC metabolites docked favorably within the HDAC3 pocket, a second site between HDAC3 and SMRT also demonstrated good affinity for ITC metabolites, but not TSA (Table S2). The –NAC metabolites of AITC, SFN, 6-SFN and 9-SFN interacted most favorably with the allosteric site, longer-chain ITCs having greater affinity (Fig. 8). To our knowledge, this is the first report to model such interactions with the allosteric site, providing new insights into the dissociation of HDAC3/SMRT complexes in colon cancer cells.

We speculate that binding of ITC metabolites to the allosteric site weaken interactions between HDAC3 and SMRT, which facilitates complex dissociation and GCN5 (HAT) recruitment on CtIP.

ITC-NAC metabolites oriented into the binding cleft with the negative-charged carboxylate group pointing toward the positively-charged surface between HDAC3 and SMRT (Fig. 8A–D). The basic residues Lys 474 and Lys 475 (part of SMRT) were involved in hydrogen bonding. The binding site at the interface between the two proteins is mainly positively charged, and this surface attracted -S = O groups in the tail of SFN, 6-SFN and 9-SFN (Fig. 1A). Increasing chain length generally enhanced interactions and produced additional favorable enthalpy. Future experiments will define the relative levels of AITC, SFN, 6-SFN and 9-SFN metabolites in cancer cells and normal cells and their possible contributions to allosteric site interactions.

HDACs have been implicated in DNA damage and/or repair, and HDAC3 knockdown recapitulated some of the changes associated with DNA damage. Notably, pH2AX induction occurred within 6 h, the same timeframe as HDAC3 turnover in SFN-treated colon cancer cells. Sirtuin activity assays (data not shown) prompted immunoblotting studies of class III HDACs and the novel finding of nuclear SIRT6 turnover by SFN and other ITCs (Fig. S6). CtIP acetylation was evident following SIRT6 knockdown, as reported, and this was enhanced by SIRT6+HDAC3 double knockdown (Fig. S7). Under the same conditions, Ku70 acetylation was not increased (Fig. S7).

We are now studying the relative contributions of SIRT6 and HDAC3 toward CtIP stability and turnover, including protein-protein interactions and the key residues for post-translational modifications. A genetic screen provided initial insights into the genes required for ITC-induced DNA damage signaling (manuscript in preparation).
One hallmark of cancer is genomic instability. Therapeutic approaches have sought to exploit the differences in DNA damaging signaling between cancer cells and non-cancer cells, often with mixed results. Because colon cancer cells overexpress HDAC3, we hypothesized that ITCs might preferentially target DNA damage/repair pathways in cancer cells, leaving non-cancer colonic epithelial cells less affected. In agreement with this hypothesis, ITCs reduced HDAC3 and CtIP levels and induced significant DNA damage which accumulated over time, whereas CCD841 non-cancer cells had little or no such damage (Fig. 7B).

Defects in double-strand break resection related to ITC-induced HDAC inhibition/turnover and CtIP loss might explain the low levels of pRPA32 in cancer cells, which were strongly increased in non-cancer cells, indicative of active DNA repair (Fig. 7C).

Based on the collective results from this investigation, we propose a model for the differential effects in cancer cells vs. non-cancer cells of DAC inhibition and DNA damage/repair signaling following ITC treatment (Fig. S8). Further studies are needed to clarify the precise role of acetylation and other post-translational modifications in DNA damage response.
changes induced by dietary ITCs in non-histone proteins, including CtIP. A clear understanding of such effects should help to clarify the role of dietary ITCs as potential chemosensitizers. Preliminary findings (Fig. S9) showed synergy between low dose SFN and the DNA damaging agent Mitomycin C, with inhibition of HDAC3, decreased CtIP and enhanced apoptosis in colon cancer cells.

Materials and Methods

Cells and test compounds. HCT116, HT29, SW48 and SW480 (colon cancer cells) and CCD841 (non-cancer colonic epithelial cells) from ATCC were cultured in GIBCO-BRL growth medium containing 10% FBS/1% penicillin-streptomycin. Cell lines were authenticated and tested for mycoplasma by IDEXX RADILL. HCT116 p21−/− and p53−/− cells were courtesy of Bert Vogelstein and Kenneth W. Kinzler (Johns Hopkins University). Sulforaphane (SFN), 6-methylsulfinylhexyl isothiocyanate (6-SFN) and 9-methylsulfinylanil isothiocyanate (9-SFN) were from LKT laboratories. Allyl isothiocyanate (AITC), TSA, Mitomycin C and 3-methyladenine (3-MA) were from Sigma. Aliquots of the stock solutions were stored at −20°C and thawed for single use before each experiment. AITC was prepared directly in growth medium, whereas other ITCs (50 mM in DMSO) were diluted in growth medium and added to cells at a final concentration of 15 μM, unless indicated otherwise.

HDAC activity. HDAC activity of whole cell lysate was measured using the Fluor-de-Lys assay, as reported earlier.20 Incubations were performed with whole-cell extract (10 μg protein) of HCT116 cells following treatment with DMSO/ITCs or with HeLa nuclear extract (cell free assays), using Fluor-de-Lys substrate in HDAC assay buffer for 30 min at 37°C followed by addition of developer for 30 min. Fluorescence was detected using a Spectra MaxGemini XS fluorescence reader (Molecular Devices), and results were expressed as AFU.

Flow cytometry. Cell cycle analysis was performed as reported before.20 Briefly, cells in the exponential growth phase were seeded at 0.1 × 10⁶ cells/60-mm culture dish and treated with vehicle or ITC test compounds. Adherent and non-adherent cells were collected at 24 h in cold PBS, fixed in 70% ethanol and stored at 4°C for at least 48 h. Fixed cells were washed with PBS and resuspended in propidium iodide (PI)/Triton X-100 staining solution containing RNaseA. Samples were incubated in the dark for 30 min at 37°C and analyzed by flow cytometry.

Figure 8. Molecular docking of ITCs in the site between HDAC3 and its co-repressor. (A) AITC-NAC, (B) SFN-NAC, (C) 6-SFN-NAC and (D) 9-SFN-NAC were docked into human HDAC3/SMRT inositol tetraphosphate binding pocket (ICM v3.5–1p). Docked ligands are displayed as sticks and colored by atom type, with carbon atoms in orange; residues K474 and K475 are colored in black; protein displayed as Connolly Surface, solid mode and colored by electro potential (ICM v3.5–1p).
Cell growth. Cells in the exponential growth phase were plated at a cell density of 5,000 cells per well in 96-well tissue culture plates. After attachment overnight, cells were treated with ITCs for the indicated times. Cell viability was determined using the CCK-8 assay (Dojindo). The colorimetric CCK-8 assay assesses cell viability based on the ability of living cells to reduce soluble WST-8 to formazan.

Caspase activity. HCT116 cells (0.1 × 10⁶) were treated with either DMSO (vehicle) or ITC and harvested after 24 h. Cell number was counted using a Neubauer chamber and adjusted to 5 × 10⁴ cells/ml in 1× Apoptosis Wash Buffer, prior to assays using the MultiCaspase Detection Kit (Guava Technologies). Percent SR-VAD-FMK(+) cells, representing the total apoptotic population, was plotted for each treatment.

Immunoblotting. Whole cell extracts were prepared and immunoblotted as described previously. Equal amounts of protein (20 μg/lane) were separated by SDS-PAGE on 4–12% Bis-Tris gel or 3–8% TRIS-acetate gel for larger proteins (NuPAGE, Invitrogen) and transferred to nitrocellulose membranes (Invitrogen). Membranes were saturated with 2% BSA for 1 h, followed by overnight incubation at 4°C with primary antibodies for HDAC1 (#7872), HDAC2 (#7899), HDAC3 (#11417), HDAC6 (#11420), pH2AX Ser139 (#101696), H2AX (#54607), CtrP (#22838), RAD-51 (#8349) and p53 (#126) from Santa Cruz; pATR Ser428 (#28533), pH2AX Thr68 (#2661), ATR (#2790), CHK2 (#2662), p21WAF1 (#2947), PARP (#9542), GCN5 (#3305) and cleaved caspase-3 (#9661) from Cell Signaling; Ku70 (#K4763), LC3B (#L7543) and β-actin (#A5441) from Sigma; SIRT1 (#39353) and SIRT6 (#39911) from Active Motif; SIRT3 (#2860–1), SIRT4 (#T1295) and SIRT5 (#T1296) from Epitomics; and pRPAS2 S4/S8 (#A300–245A) from Bethyl Labs. After washing, membranes were incubated with hors eradish peroxidase-conjugated secondary antibodies (Bio-Rad) for 1 h. Bands were visualized using Western Lightning Plus-ECL Enhanced Chemiluminescence Substrate (Perkin Elmer, Inc.) and detected using FluorChem-8800 chemiluminescent imager (Alpha Innotech).

Immunoprecipitation (IP). The IP methodology was performed as reported earlier. Whole cell extracts from adherent and non-adherent cells were prepared as previously described. Cell extract (500 μg) was pre-cleared with 100 μl Protein A Sepharose CL-4B beads (GE Healthcare Life sciences) on a rotator at 4°C for 2 h. Pre-cleared supernatant was subjected to overnight IP with anti-acetyl lysine antibody (10 μg/mg protein, #AB3879, Millipore). Samples were incubated with 100 μl of beads on a rotator at 4°C for 2 h and acetylated proteins bound to the beads were washed 3 times with PBST, denatured in standard loading buffer and examined by immunoblotting with primary antibodies for CtrP (Santa Cruz, #22838), RAD-51 (Santa Cruz, #8349), Ku70 (Sigma, #K4763) and histone H4 (Cell Signaling, #2592) as described above.

Single cell gel electrophoresis. “Comet” assays were performed as reported earlier. In brief, -10⁶ cells were mixed with low melting agarose to form a cell suspension. Slides were immersed in cold lysis solution (2.5 M NaCl, 100 mM Na₂EDTA, 10 mM Tris, pH 10.0, 1% sodium sarcosinate, 1% Triton X-100, 10% DMSO) overnight at 4°C followed by electrophoresis at 0.8 V/cm for 30 min. After rinsing at 4°C to neutralize excess alkali, slides were stained with ethidium bromide. Fifty randomly chosen nuclei per slide were analyzed using a Nikon E400 fluorescence microscope linked to Comet Assay III software (Perspective Instruments).

Immunofluorescence. Cells grown on glass coverslips (#1.5, VWR), pre-coated with poly-L-Lysine (Sigma, #P1399), were treated with vehicle or ITCs in 6-well plates. Following treatment, cells were fixed with 2% buffered formalin (10 min) and permeabilized with 0.5% Tween 20, 2.1% citric acid (10 min) at room temperature. Samples were blocked in 1% BSA and incubated overnight with pH2AX Ser139 antibody (Cell Signaling, #9718), followed by incubation with secondary antibody coupled to AlexaFluor 488 (1:250, Molecular Probes) for 1 h. DAPI (Prolong Gold antifade reagent, Molecular Probes) was used to counterstain the nuclei. Fluorescent images were captured on a Zeiss Axiointer 100S Widefield Microscope and MetaMorph Imaging Software (Zeiss) was used for image acquisition and analysis.

Electron microscopy. Cells treated with either DMSO (control) or ITCs were collected at 24 h and processed for transmission electron microscopy (TEM). Briefly, cells were fixed in 2.5% glutaraldehyde, 1% formaldehyde in 0.1 M cacodylate acid (pH 7.4) for 1.5 h at room temperature. Samples were rinsed with PBS and post-fixed in 2% osmium tetroxide in 0.1 M cacodylate acid (pH 7.4), dehydrated in acetone and embedded in Spurr’s resin polymerized at 60°C for 24 h. Ultrathin sections (65 nm) were stained with uranyl acetate and lead citrate and examined at 60 kV with a Philips CM12 TEM at ×10,000 and ×35,000 magnification.

Molecular modeling. The 3D coordinates of human HDAC3 bound to co-repressor SMRT in the presence of inositol tetraphosphate was based on a recent publication and was available from the Protein Data Bank (PDB 4A69). The model was energetically refined in the internal coordinate space using the program Molsoft ICM. Docking protocols were initially validated by docking inositol tetraphosphate into the binding site of interest and reproducing the crystallographic orientation. For molecular docking, five types of interaction potentials were represented: (1) van der Waals potential for a hydrogen atom probe; (2) van der Waals potential for a heavy-atom probe (generic carbon of 1.7 Å radius); (3) optimized electrostatic term; (4) hydrophobic terms; and (5) loan-pair-based potential, which reflects directional preferences in hydrogen bonding. The energy terms were based on the Merck Molecular Force Field (MMFF) to account for solvation free energy and entropic contributions. Modified intermolecular terms such as soft van der Waals and hydrogen-bonding, as well as a hydrophobic term were added. Conformational sampling was based on the biased probability Monte Carlo (BPMC) procedure, which randomly selects a conformation in the internal coordinate space and then makes a step to a new random position independent of the previous one, but according to a predefined continuous probability distribution. It
has also been shown that after each random step, full local minimization greatly improves the efficiency of the procedure. In the ICM-VLS (Molsoft ICM) screening procedure, the ligand scoring was optimized to obtain maximal separation between the binders and non-binders. Each compound was assigned a score according to fit within the receptor; this ICM score accounted for continuum and discrete electrostatic, hydrophobic and entropy parameters.55-59 The binding energies were determined as reported previously.50

Statistics. Results are representative of at least three independent assays unless otherwise indicated and expressed as mean ± SD. Differences between groups were determined by ANOVA followed by Bonferroni’s Multiple Comparison Test using GraphPad Prism™ software version 5.04. Statistical significance was indicated in the figures as follows: p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***)

References
1. American Cancer Society. Cancer Facts & Figures 2012. Atlanta: American Cancer Society, 2013.
2. Herr I, Buchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 2010; 36:377-83; PMID:20172656; http://dx.doi.org/10.1016/j.ctvr.2010.01.002.
3. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 2007; 55:224-36; PMID:17317210; http://dx.doi.org/10.1016/j.phrs.2007.01.009.
4. Keum YS, Jeong WS, Kong ANT. Chemoprevention of homologous recombination DNA repair genes controlled through the E2F1 transcription factor. PLoS One 2010; 5:e11208; PMID:20585447; http://dx.doi.org/10.1371/journal.pone.0011208.
5. Nakamura K, Kogame T, Oshima H, Shinohara A, Sumimoto Y, Agama K, et al. Collaborative action of Bcr1 and Gfi1 in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLoS Genet 2010; 6:e1000828; PMID:20107609; http://dx.doi.org/10.1371/journal.pgen.1000828.
6. Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, et al. Histone deacetylation 3 (HDAC3) and other class I HDACs regulate colonic cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 2006; 281:13548-58; PMID:16538312; http://dx.doi.org/10.1074/jbc.M510023200.
7. Godman CA, Joshi R, Tierney BR, Greenspan E, Rasmussen TP, Wang FFW, et al. HDSC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol Ther 2008; 7:1570-80; PMID:18769117; http://dx.doi.org/10.14611/cbt.7.10.6561.
8. Bhaskar S, Knutsson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010; 18:436-47; PMID:2075309; http://dx.doi.org/10.1016/j.ccc.2010.10.022.
9. Bhaskar S, Chylia BJ, Amann JM, Knutsson SK, Conner D, Sun ZW, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 2008; 30:61-72; PMID:18406327; http://dx.doi.org/10.1016/j.molcel.2008.02.030.
10. Conni C, Leo E, Eichler GS, Sorret O, Martin MM, Fan A, et al. Inhibition of histone deacetylation in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 2010; 70:4470-80; PMID:20460513; http://dx.doi.org/10.1158/0008-5472.CAN-09-3028.
11. Pappu G, Bartsh H, Gerhaiser C. Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line, Mol Nutr Food Res 2007; 51:977-84; PMID:17628879; http://dx.doi.org/10.1002/mnfr.200700115.
12. Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 2006; 66:5828-35; PMID:16740722; http://dx.doi.org/10.1158/0008-5472.CAN-06-0139.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
Supported by US National Institutes of Health grants CA090890, CA65525, CA122906, CA122959, CA80176 and ES00210. We thank Teresa Sawyer for help with EM, Andrew Hau for autophagy antibodies and the Cell Imaging and Analysis Core for assistance with immunochemistry.

Supplemental Materials
Supplemental materials may be found here: www.landesbioscience.com/journals/epigenetics/article/24710

www.landesbioscience.com/journals/epigenetics/article/24710
31. Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A 2010; 107:20003-8; PMID:21037108; http://dx.doi.org/10.1073/pnas.1013754107.

32. Fimognari C, Tiurini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2012; 750:107-31; PMID:22178957; http://dx.doi.org/10.1016/j.mrres.2011.12.001.

33. Sharma R, Sharma A, Chaudhary P, Pearce V, Vatsyayan R, Singh SV, et al. Role of lipid peroxidation in cellular responses to D,L-sulfuraphane, a promising cancer chemopreventive agent. Biochemistry 2010; 49:3191-202; PMID:20205397; http://dx.doi.org/10.1021/bi100104c.

34. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009; 30:2-10; PMID:18978338; http://dx.doi.org/10.1093/carcin/bgp250.

35. Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, Jaulin C. Histone deacetylase inhibitors and genomic instability. Cancer Lett 2009; 274:169-76; PMID:18635312; http://dx.doi.org/10.1016/j.canlet.2008.06.009.

36. Doyle K, Fitzpatrick FA. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. J Biol Chem 2010; 285:17417-24; PMID:20385506; http://dx.doi.org/10.1074/jbc.M109.092550.

37. Rosetto D, Tsunan AW, Kron SJ, Côté J. Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res 2010; 16:4543-52; PMID:20823147; http://dx.doi.org/10.1158/1078-0432.CCR-10-0513.

38. Subramanian C, Opiyapi AW Jr, Bian X, Castle VP, Kwok RPS. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005; 102:4842-7; PMID:15778293; http://dx.doi.org/10.1073/pnas.0408551102.

39. Zhang JX, Li DJ, He AR, Motwani M, Vasiliev V, Eswaran J, et al. Synergistic inhibition of hepato-cellular carcinoma growth by cotargeting chromatin modifying enzymes and poly (ADP-ribose) polymerases. Hepatology 2012; 55:1840-51; PMID:22223166; http://dx.doi.org/10.1002/hep.25566.

40. Sekine-Suzuki E, Yu D, Kubota N, Okaya M, Anzai K. Sulfuraphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells. Biochem Biophys Res Commun 2008; 377:341-5; PMID:18854174; http://dx.doi.org/10.1016/j.bbrc.2008.09.150.

41. Chernikova SB, Game JC, Brown JM. Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 2012; 13:61-8; PMID:22336907; http://dx.doi.org/10.4161/cbt.13.2.18872.

42. Cazaux C. Genetic instability as a driver for oncogenesis. Bull Cancer 2010; 97:1241-51; PMID:21084240.

43. Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW, Giardina C. HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog 2008; 47:137-47; PMID:17849419; http://dx.doi.org/10.1002/mc.20373.

44. Wang W, Jariyasopit N, Schulz J, Jia Y, Tao S, Yu TW, et al. Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environ Sci Technol 2011; 45:6887-95; PMID:21766847; http://dx.doi.org/10.1021/es20443z.

45. Watson PJ, Fairall L, Santos GM, Schwabe JWR. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012; 481:335-40; PMID:22320954.

46. Cardoso T, Torrov M, Abagyan R. Homology modeling by the ICM method. Proteins 1995; 23:403-14; PMID:8710833; http://dx.doi.org/10.1002/prot.340230314.

47. Torrov M, Abagyan R. Protein-Ligand Docking as an Energy Optimization Problem. In: Raffa RB, ed(s). Drug-Receptor Thermodynamics: Introduction and Experimental Applications. Vol 1, New York: John Wiley & Sons, 2001: 603-24.

48. Abagyan R, Torrov M, Kuznetsov D. ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994; 15:488-506; http://dx.doi.org/10.1002/jcc.540150503.

49. Bisson WH, Koch DC, O’Donnell EF, Khalil SM, Kerkvliet NI, Tanguay RL, et al. Modeling of the aryl hydrocarbon receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands. J Med Chem 2009; 52:5635-41; PMID:19719119; http://dx.doi.org/10.1021/jm900199u.