COEFFECTIVE COHOMOLOGY OF SYMPLECTIC ASPHERICAL MANIFOLDS

HISASHI KASUYA

ABSTRACT. We prove a generalization of the theorem which is proved by Fernandez, Ibanez, and de Leon. By this result, we give examples of non-Kähler manifolds which satisfy the property of compact Kähler manifolds concerning the coeffective cohomology.

1. INTRODUCTION

Let (M, ω) a compact $2n$-dimensional symplectic manifold. Denote $A^*(M)$ the de Rham complex of M. We call a differential form $\alpha \in A^*(M)$ coeffective if $\omega \wedge \alpha = 0$, and denote the sub-DGA

$$A^*_{\text{coE}}(M) = \{ \alpha \in A^*(M) | \omega \wedge \alpha = 0 \}.$$

We call the cohomology $H^*(A^*_{\text{coE}}(M))$ the coeffective cohomology of M. We also denote

$$\tilde{H}^*(A^*(M)) = \{ [\alpha] \in H^*(A^*(M)) | \omega \wedge [\alpha] = 0 \}.$$

Theorem 1.1. (3) Let (M, ω) be a compact Kähler manifold. For $p \geq n + 1$, we have an isomorphism

$$H^p(A^*_{\text{coE}}(M)) \cong \tilde{H}^p(A^*(M)).$$

However for general symplectic manifolds, the isomorphisms $H^p(A^*_{\text{coE}}(M)) \cong \tilde{H}^p(A^*(M))$ does not hold. In fact counter examples are given in [5]. So far we have hardly found examples of non-Kähler manifolds such that isomorphisms $H^p(A^*_{\text{coE}}(M)) \cong \tilde{H}^p(A^*(M))$ hold. The purpose of this paper is to compute the coeffective cohomology of some class of symplectic manifolds by using of finite dimensional cochain complex, and give non-Kähler examples such that isomorphisms $H^p(A^*_{\text{coE}}(M)) \cong \tilde{H}^p(A^*(M))$ hold.

2. Preliminary: Coeffective cohomology of sub-complex

Let (M, ω) be a compact $2n$-dimensional symplectic manifold.

Proposition 2.1. (3, 11) Then the map $\omega \wedge : A^p(M) \to A^{p+2}(M)$ is injective for $p \leq n - 1$ and surjective for $p \geq n - 1$.

By this proposition we have $H^p(A^*_{\text{coE}}(M)) = \{ 0 \}$ for $p \leq n - 1$ and so it is sufficient to consider $H^p(A^*_{\text{coE}}(M))$ for $p \geq n$. Since ω is closed, we have the short exact sequence of cochain complexes

$$0 \to A^*_{\text{coE}}(M) \to A^*(M) \to \omega \wedge A^*(M) \to 0,$$

where we consider $\omega \wedge A^*(M)$ the cochain complex which is graded as $(\omega \wedge A^*(M))^p = \omega \wedge A^p(M)$. By this sequence we have the long exact sequence of cohomology

$$H^{p-1}(A^*(M)) (\omega \wedge)^* \to H^{p+1}(\omega \wedge A^*(M)) \to H^p(A^*_{\text{coE}}(M)) \to H^p(A^*(M)) (\omega \wedge)^*.$$

By Proposition 2.1 we have $\omega \wedge A^{p-1}(M) = A^{p+1}(M)$ for $p \geq n$ and so the exact sequence is given by

$$H^{p-1}(A^*(M)) (\omega \wedge)^* \to H^{p+1}(A^*(M)) \to H^p(A^*_{\text{coE}}(M)) \to H^p(A^*(M)) (\omega \wedge)^*.$$

2010 Mathematics Subject Classification. 53D05.

Key words and phrases. Symplectic manifold, solvmanifold, polycyclic group, coeffective cohomology.
Proposition 2.2. Let $A^* \subset A^*(M)$ be a sub-complex such that the inclusion $\Phi : A^* \to A^*(M)$ induces a cohomology isomorphism. Assume $\omega \in A^*$ and the map $\omega^\wedge : A^p \to A^{p+2}$ is surjective for $p \geq n-1$. Denote $A^*_{coE} = \ker(\omega^\wedge)|_{A^*}$. Then the inclusion $\Phi : A^*_{coE} \to A^*(M)$ induces an isomorphism

$$H^p(A^*_{coE}) \cong H^p(A^*(M))$$

for $p \geq n$.

Proof. As above, we have the exact sequence of cochain complex

$$0 \longrightarrow A^*_{coE} \longrightarrow A^* \overset{\omega^\wedge}{\longrightarrow} \omega \wedge A^* \longrightarrow 0.$$

By the assumption, for $p \geq n$ we have the long exact sequence of cohomology

$$\cdots \longrightarrow H^{p-1}(A^*) \overset{(\omega^\wedge)^*}{\longrightarrow} H^{p+1}(A^*) \longrightarrow H^p(A^*_{coE}) \longrightarrow H^p(A^*) \overset{(\omega^\wedge)^*}{\longrightarrow} \cdots.$$

By the inclusion $\Phi : (\wedge_{coE} A^*)^T \to A^*_{coE}(M)$, we have the commutative diagram

$$\begin{array}{cccc}
H^{p-1}(A^*(M)) & \overset{(\omega^\wedge)^*}{\longrightarrow} & H^{p+1}(A^*(M)) & \longrightarrow H^p(A^*_{coE}(M)) & \longrightarrow H^p(A^*(M)) & \overset{(\omega^\wedge)^*}{\longrightarrow} & H^{p+2}(A^*(M)) \\
\Phi^* \downarrow & & \Phi^* \downarrow & & \Phi^* \downarrow & & \Phi^* \downarrow \\
H^{p-1}(A^*) & \overset{(\omega^\wedge)^*}{\longrightarrow} & H^{p+1}(A^*) & \longrightarrow H^p(A^*_{coE}) & \longrightarrow H^p(A^*) & \overset{(\omega^\wedge)^*}{\longrightarrow} & H^{p+2}(A^*).
\end{array}$$

By the assumption $\Phi^* : H^*(A^*) \to H^*(A^*(M))$ is an isomorphism and so by this diagram $\Phi^* : H^p(A^*_{coE}) \to H^p(A^*(M))$ is an isomorphism.

\[\square\]

3. Background: Fernandez-Ibanez-de Leon’s theorem

Let G be a simply connected Lie group with a lattice (i.e. a cocompact discrete subgroup of $G \backslash \Gamma$). We call G/Γ a nilmanifold (resp. solvmanifold) if G is nilpotent (resp. solvable). Let \mathfrak{g} be the Lie algebra of G and $\wedge \mathfrak{g}^*$ be the cochain complex of \mathfrak{g} with the differential which is induced by the dual of the Lie bracket. As we regard $\wedge \mathfrak{g}^*$ as the left-invariant forms on G/Γ, we consider the inclusion $\wedge \mathfrak{g}^* \subset A^*(G/\Gamma)$. Let $\omega \in \wedge^2 \mathfrak{g}^*$ be a left-invariant symplectic form. Then the map $\omega^\wedge : \wedge^p \mathfrak{g}^* \to \wedge^{p+2} \mathfrak{g}^*$ is surjective for $p \geq n-1$ (see [3]). In [13] Nomizu showed that if G is nilpotent then the inclusion $\wedge \mathfrak{g}^* \subset A^*(G/\Gamma)$ induces an isomorphism of cohomology. Hence by Proposition 2.2, we have the following theorem which was noted in [5] and [6].

Theorem 3.1. Let G be a simply connected nilpotent Lie group with a lattice Γ and a left-invariant symplectic form ω. Then the inclusion $\wedge \mathfrak{g}^* \subset A^*(G/\Gamma)$ induces an isomorphism

$$H^p(\wedge_{coE} \mathfrak{g}^*) \cong H^p(A^*_{coE}(G/\Gamma))$$

for $p \geq n$ where $\wedge_{coE} \mathfrak{g}^* = \{ \alpha \in \wedge \mathfrak{g}^* | \omega \wedge \alpha = 0 \}$.

In [8] Hattori showed that the isomorphism $H^*(\wedge \mathfrak{g}^*) \cong H^*(A^*(G/\Gamma))$ also holds if G is completely solvable (i.e. G is solvable and for any $g \in G$ the all eigenvalues of the adjoint operator Ad_g are real). Thus we can extend this theorem for completely solvmanifolds. However for a general solvmanifold G/Γ, the isomorphism $H^*(\wedge_{coE} \mathfrak{g}^*) \cong H^*(A^*_{coE}(G/\Gamma))$ does not hold and we can’t compute the coeffective cohomology by using of $\wedge \mathfrak{g}^*$.

In [2] Baues constructed compact aspherical manifolds M_T such that the class of these aspherical manifolds contains the class of solvmanifolds and showed that the de Rham cohomology of these aspherical manifolds can be computed by certain finite dimensional cochain complexes. In next section by using of Baues’s results, we will show a generalization of Theorem 3.1.
4. Main results: Coeffective cohomology of symplectic aspherical manifolds with torsion-free virtually polycyclic fundamental groups

4.1. Notation and conventions. Let k be a subfield of \mathbb{C}. A group G is called a k-algebraic group if G is a Zariski-closed subgroup of $GL_n(\mathbb{C})$ which is defined by polynomials with coefficients in k. Let $G(k)$ denote the set of k-points of G and $U(G)$ the maximal Zariski-closed unipotent normal k-subgroup of G called the unipotent radical of G. If G consists of semi-simple elements, we call G a d-group. Let $U_n(k)$ denote the $n \times n$ k-valued upper triangular unipotent matrix group.

4.2. Baues’s results. A group Γ is called polycyclic if it admits a sequence

$$\Gamma = \Gamma_0 \supset \Gamma_1 \supset \cdots \supset \Gamma_k = \{e\}$$

of subgroups such that each Γ_i is normal in Γ_{i-1} and Γ_{i-1}/Γ_i is cyclic. We denote rank $\Gamma = \sum_{i=1}^{k}$ rank Γ_{i-1}/Γ_i. We define an infra-solvmanifold as a manifold of the form G/Δ where G is a simply connected solvable Lie group, and Δ is a torsion free subgroup of Aut(G). If G is a compact subgroup of Aut(G) such that the projection $p : \text{Aut}(G) \ltimes G \to \text{Aut}(G)$ $p(\Delta)$ is contained in a compact subgroup of Aut(G). By a result of Mostow in [12], the fundamental group of an infra-solvmanifold is virtually polycyclic (i.e., it contains a finite index polycyclic subgroup). In particular, a lattice Γ of a simply connected solvable Lie group G is a polycyclic group with rank $\Gamma = \dim G$ (see [15]).

Let k be a subfield of \mathbb{C}. Let Γ be a torsion-free virtually polycyclic group. For a finite index polycyclic subgroup $\Delta \subset \Gamma$, we denote rank $\Gamma = \text{rank} \Delta$.

Definition 4.1. We call a k-algebraic group H_Γ a k-algebraic hull of Γ if there exists an injective group homomorphism $\psi : \Gamma \to H_\Gamma(k)$ and H_Γ satisfies the following conditions:

1. $\psi(\Gamma)$ is Zariski-dense in H_Γ.
2. $Z_{H_\Gamma}(U(H_\Gamma)) \subset U(H_\Gamma)$, where $Z_{H_\Gamma}(U(H_\Gamma))$ is the centralizer of $U(H_\Gamma)$.
3. $\dim U(H_\Gamma) = \text{rank} \Gamma$.

Theorem 4.2. ([2] Theorem A.1) There exists a k-algebraic hull of Γ and a k-algebraic hull of Γ is unique up to k-algebraic group isomorphism.

Let Γ be a torsion-free virtually polycyclic group and H_Γ the \mathbb{Q}-algebraic hull of Γ. Denote $H_\Gamma = H_\Gamma(\mathbb{R})$. Let U_Γ be the unipotent radical of H_Γ and T a maximal d-subgroup. Then H_Γ decomposes as a semi-direct product $H_\Gamma = T \ltimes U_\Gamma$; see cite[Proposition 2.1]B. Let u be the Lie algebra of U_Γ. Since the exponential map $u \to \exp u$ is a diffeomorphism, U_Γ is diffeomorphic to \mathbb{R}^n such that $n = \text{rank} \Gamma$. For the semi-direct product $H_\Gamma = T \ltimes U_\Gamma$, we denote $\phi : T \to \text{Aut}(U_\Gamma)$ the action of T on U_Γ. Then we have the homomorphism $\alpha : H_\Gamma \to \text{Aut}(U_\Gamma) \ltimes U_\Gamma$ such that $\alpha(t, u) = (\phi(t), u)$ for $(t, u) \in T \ltimes U_\Gamma$. By the property (2) in Definition 4.1 ϕ is injective and hence α is injective.

In [2] Baues constructed a compact aspherical manifold $M_\Gamma = \alpha(\Gamma)\backslash U_\Gamma$ with $\pi_1(M_\Gamma) = \Gamma$. We call M_Γ a standard Γ-manifold.

Theorem 4.3. ([2] Theorem 1.2, 1.4) A standard Γ-manifold is unique up to diffeomorphism. A compact infra-solvmanifold with the fundamental group Γ is diffeomorphic to the standard Γ-manifold M_Γ. In particular, a solvmanifold G/Γ is diffeomorphic to the standard Γ-manifold M_Γ.

Let $A^*(M_\Gamma)$ be the de Rham complex of M_Γ. Then $A^*(M_\Gamma)$ is the set of the Γ-invariant differential forms $A^*(U_\Gamma)^T$ on U_Γ. Let $(\bigwedge u^*)^T$ be the left-invariant forms on U_Γ which are fixed by T. Since $\Gamma \subset H_\Gamma = U_\Gamma \cdot T$, we have the inclusion

$$(\bigwedge u^*)^T = A^*(U_\Gamma)^H \subset A^*(U_\Gamma)^T = A^*(M_\Gamma).$$

Theorem 4.4. ([2] Theorem 1.8) This inclusion induces a cohomology isomorphism.

4.3. Main results. Let $\omega \in (\bigwedge u^*)^T$ be a symplectic form. Denote

$$\bigwedge_{coE} u^* = \{\alpha \in \bigwedge u^* | \omega \wedge \alpha = 0\}$$

and

$$\mathcal{H}^*(\bigwedge u^*) = \{[\alpha] \in H^*(\bigwedge u^*^T) ||\omega \wedge [\alpha] = 0\}. $$
By Theorem 1.4 we have $\tilde{H}^*((\bigwedge u^*)^T) \cong \tilde{H}^*(A^*(M_Γ))$.

Lemma 4.5. For $p \geq n-1$, the linear map $ω∧ : (\bigwedge^p u^*)^T \rightarrow (\bigwedge^{p+2} u^*)^T$ is surjective.

Proof. First we notice that the map $ω∧ : \bigwedge^p u^* \rightarrow \bigwedge^{p+2} u^*$ is surjective (see [2] Lemma 2.1). Since T is d-group, for $t \in T$ the t-action on $\bigwedge u^*$ is diagonalizable (see [2]). Hence we have a decomposition

$$\bigwedge^p u^* = A^p \oplus B^p$$

such that A^p is the subspace of t-invariant elements and B^p is its complement. Since the t-action is diagonalizable, we have a basis $\{x_1, \ldots, x_{2n}\}$ of $u^* \otimes \mathbb{C}$ such that the t-action is represented by a diagonal matrix. Then we have

$$A^p \otimes \mathbb{C} = \langle x_{i_1} \wedge \cdots \wedge x_{i_p} | 1 \leq i_1 < \cdots < i_p \leq 2n, \ t \cdot (x_{i_1} \wedge \cdots \wedge x_{i_p}) = x_{i_1} \wedge \cdots \wedge x_{i_p} \rangle,$$

and

$$B^p \otimes \mathbb{C} = \langle x_{i_1} \wedge \cdots \wedge x_{i_p} | 1 \leq i_1 < \cdots < i_p \leq 2n, \ t \cdot (x_{i_1} \wedge \cdots \wedge x_{i_p}) = \alpha_{i_1, \ldots, i_p}(t)x_{i_1} \wedge \cdots \wedge x_{i_p}, \ t \cdot x_{i_1} \wedge \cdots \wedge x_{i_p} \neq 0 \rangle.$$

By $ω \in (\bigwedge u^*)^T$, we have $ω = \sum a_{k\ell}x_k \wedge x_\ell$ such that if $a_{k\ell} \neq 0$, then $x_k \wedge x_\ell \in A^p \otimes \mathbb{C}$. Then for $x_{i_1} \wedge \cdots \wedge x_{i_p} \in B^p \otimes \mathbb{C}$ we have

$$ω \wedge x_{i_1} \wedge \cdots \wedge x_{i_p} = \sum a_{k\ell}x_k \wedge x_\ell \wedge x_{i_1} \wedge \cdots \wedge x_{i_p}.$$

If $a_{k\ell} \neq 0$, we have

$$t \cdot (x_k \wedge x_\ell \wedge x_{i_1} \wedge \cdots \wedge x_{i_p}) = \alpha_{i_1, \ldots, i_p}(t)x_k \wedge x_\ell \wedge x_{i_1} \wedge \cdots \wedge x_{i_p}.$$

Thus $ω \wedge x_{i_1} \wedge \cdots \wedge x_{i_p} \in B^{p+2} \otimes \mathbb{C}$. By this we have $(ω \wedge B^p) \subset B^{p+2}$. Since T acts semi-simply on $\bigwedge^p u^*$, we consider the decomposition

$$\bigwedge^p u^* = (\bigwedge u^*)^T \oplus C^p$$

such that C^p is a complement of $(\bigwedge^p u^*)^T$ for T-action. By the above argument we have $(ω \wedge C^p) \subset C^{p+2}$. Clearly we have $(ω \wedge (\bigwedge^p u^*)^T) \subset (\bigwedge^{p+2} u^*)^T$. Since for $p \geq n-1$ the map $ω∧ : \bigwedge^p u^* \rightarrow \bigwedge^{p+2} u^*$ is surjective, we have

$$\bigwedge^{p+2} u^* = (\bigwedge u^*)^T \oplus C^p = ω \wedge \bigwedge^p u^* = (ω \wedge (\bigwedge u^*)^T) \oplus (ω \wedge C^p).$$

Thus we have $ω \wedge (\bigwedge^p u^*)^T = (\bigwedge^{p+2} u^*)^T$. Hence the lemma follows. \[\square\]

By this lemma and Proposition 2.2 we have:

Theorem 4.6. Let $Γ$ be a torsion-free virtually polycyclic group and $M_Γ$ the standard $Γ$-manifold with a symplectic form $ω$ such that $ω \in (\bigwedge u^*)^T$. Then for $p \geq n$, the inclusion $Φ : (\bigwedge_{coE} u^*)^T \rightarrow A^*_{coE}(M_Γ)$ induces an isomorphism $Φ^* : H^*((\bigwedge_{coE} u^*)^T) \cong H^*(A^*_{coE}(M_Γ)).$

Remark 1. In [10], the author showed that if there exists $|ω| \in H^2(M_Γ, \mathbb{R})$ such that $|ω|^\frac{1}{2} \dim M_Γ \neq 0$, then an invariant form $ω \in (\bigwedge u^*)^T$ represents the cohomology class $|ω|$ is a symplectic form on $M_Γ$. Hence if $M_Γ$ is cohomologically symplectic(i.e. there exists $|ω| \in H^2(M_Γ, \mathbb{R})$ such that $|ω|^\frac{1}{2} \dim M_Γ \neq 0$), then $M_Γ$ admits a symplectic form $ω$ such that $ω \in (\bigwedge u^*)^T$.

Corollary 4.7. Under the same assumption of Theorem 4.6, if $U_Γ$ is abelian, then for $p \geq n$ we have an isomorphism

$$H^p(A^*_{coE}(M_Γ)) \cong \tilde{H}^p(A^*(M_Γ)).$$

Proof. If $U_Γ$ is abelian, then the differential of $\bigwedge u^*$ is 0. Hence we have

$$H^*(A^*(M_Γ)) \cong H^*((\bigwedge u^*)^T) = (\bigwedge u^*)^T$$

and

$$H^*((\bigwedge u^*)^T) = (\bigwedge u^*)^T.$$
This gives
\[\tilde{H}^*(A^*(M_G)) \cong \tilde{H}^*((\bigwedge u^*)^T) = \{ \alpha \in (\bigwedge u^*)^T | \alpha \wedge \omega = 0 \} = (\bigwedge u^*)^T = H^*((\bigwedge u^*)^T). \]

Hence by the above theorem the corollary follows. \(\square \)

In [9] the author showed the following theorem.

Theorem 4.8. ([9]) Let \(\Gamma \) be a torsion-free virtually polycyclic group. Then the following two conditions are equivalent:

1. \(U_\Gamma \) is abelian.
2. \(\Gamma \) is a finite extension group of a lattice of a Lie group \(G = \mathbb{R}^n \ltimes \phi \mathbb{R}^m \) such that the action \(\phi : \mathbb{R}^n \to \text{Aut}(\mathbb{R}^m) \) is semi-simple.

Hence we have:

Corollary 4.9. Under the same assumption of Theorem 4.6 if \(\Gamma \) satisfies the condition (2) in Theorem 4.8 then for \(p \geq n \) we have an isomorphism
\[H^p(A^*_{coE}(M_G)) \cong \tilde{H}^p(A^*(M_G)). \]

Remark 2. In fact by Arapura and Nori’s theorem ([1]) a virtually polycyclic group \(\Gamma \) must be virtually abelian if the standard \(\Gamma \)-manifold is Kähler. Therefore \(G/\Gamma \) is finitely covered by a torus and the assumptions of 4.8 are satisfied. By Arapura and Nori’s theorem, if a solvmanifold \(G/\Gamma \) admits a Kähler structure, then \(G \) is (I)-type (i.e. for any \(g \in G \) all eigenvalues of the adjoint operator \(\text{Ad}_g \) have absolute value 1). Thus in the above corollary if \(G \) is not (I)-type, then \(M_G \) does not admit a Kähler structure. The author gave such non-Kähler examples in [9].

5. **Examples**

Example 1. First we give examples of solvmanifolds such that \(H^p(A^*_{coE}(M_G)) \cong \tilde{H}^p(A^*(M_G)) \) by using of Corollary 4.9. We notice that if a solvmanifold \(G/\Gamma \) has a symplectic form \(\omega \) then we have a closed two form \(\omega_0 \in (\bigwedge u^*)^T \) which is homologous to \(\omega \) and \(\omega_0 \) is also a symplectic form as we note in Remark 1. Let \(G = \mathbb{C} \ltimes \phi \mathbb{C}^2 \) with \(\phi(x) = \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix} \). Then it is known that \(G \) has a left-invariant symplectic form and a lattice \(\Gamma \) (see [13]). Thus we have a symplectic form \(\omega \in (\bigwedge u^*)^T \) and by Corollary 4.9 we have an isomorphism \(H^*(A^*_{coE}(G/\Gamma)) \cong \tilde{H}^*(A^*(G/\Gamma)) \).

Remark 3. \(G \) is not completely solvable. In fact the de Rham cohomology of \(G/\Gamma \) varies according to a choice of a lattice \(\Gamma \). Thus it is not easy to compute the coeffective cohomology of \(G/\Gamma \) by using of \(\bigwedge \mathfrak{g}^* \).

Remark 4. \(G \) is not (I)-type and hence \(G/\Gamma \) does not admit a Kähler structure.

Example 2. We give an example of a symplectic manifold \(M_G \) such that the isomorphism \(H^p(A^*_{coE}(M_G)) \cong \tilde{H}^p(A^*(M_G)) \) holds but \(U_\Gamma \) is not abelian. Let \(\Gamma = \mathbb{Z} \ltimes \phi \mathbb{Z}^2 \) such that for \(t \in \mathbb{Z} \)
\[\phi(t) = \begin{pmatrix} (-1)^t & (-1)^t t \\ 0 & (-1)^t \end{pmatrix}. \]

Then we have \(H^*_\Gamma = \{ \pm 1 \} \ltimes U_3(\mathbb{R}) \) such that
\[(-1) \cdot \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x & (-1)z \\ 0 & 1 & (-1)y \\ 0 & 0 & 1 \end{pmatrix} \]
(see [9] Section 7)). The dual space of the Lie algebra \(\mathfrak{u} \) of \(U_\Gamma \) is given by \(u^* = \langle x_1, x_2, x_3 \rangle \) such that the differential is given by
\[dx_1 = dx_2 = 0, \ dx_3 = -x_1 \wedge x_2. \]
The action of \(\{ \pm 1 \} \) on \(U_\Gamma \) is given by
\[(-1) \cdot x_1 = x_1, \ (-1) \cdot x_2 = -x_2, \ (-1) \cdot x_3 = -x_3. \]
Then we have \((\bigwedge u^*)^\pm 1\) = \(\bigwedge (x_1, x_2 \wedge x_3)\). By this the differential on \((\bigwedge u^*)^\pm 1\) is 0. We consider the product \(M_\Gamma \times M_\Gamma\) for this \(\Gamma\). Then by the cochain complex \((\bigwedge u^*)^\pm 1\) \(\otimes (\bigwedge u^*)^\pm 1\) = \(\bigwedge (x_1, x_2 \wedge x_3) \otimes \bigwedge (y_1, y_2 \wedge y_3)\) we can compute the de Rham cohomology and coefficient cohomology of \(M_\Gamma \times M_\Gamma\) where we denote \(y_1, y_2, y_3\) the copy of \(x_1, x_2, x_3\). We have a symplectic form
\[
\omega = x_1 \wedge y_1 + x_2 \wedge x_3 + y_2 \wedge y_3
\]
on \(M_\Gamma \times M_\Gamma\). Then we have:

Proposition 5.1. For \(p \geq n\) we have an isomorphism
\[
\hat{H}^p(A^\ast_{coE}(M_\Gamma \times M_\Gamma)) \cong \hat{H}^p(A^\ast(M_\Gamma \times M_\Gamma)).
\]

Proof. Since the differential on \((\bigwedge u^*)^\pm 1\) \(\otimes (\bigwedge u^*)^\pm 1\) is not 0 as above, the proposition follows as the proof of Corollary [47].

Remark 5. \(M_\Gamma\) is finitely covered by a quotient of \(U_3(\mathbb{R})\) by a lattice. Thus \(M_\Gamma \times M_\Gamma\) is finitely covered by the product of such nilmanifolds. The de Rham cohomology and coefficient cohomology of this covering space are computed by \(\bigwedge u^* \otimes \bigwedge u^*\). This space does not satisfy the isomorphism as this proposition. Indeed \(x_1 \wedge x_2 \wedge y_2 \wedge y_3\) is effective and its coefficient cohomology class is not 0. But we have \(d(x_1 \wedge y_2 \wedge y_3) = x_1 \wedge x_2 \wedge y_2 \wedge y_3\) and hence its de Rham cohomology class is 0. Thus we have
\[
H^4(A^\ast_{coE}((U_3(\mathbb{R})/\Gamma') \times (U_3(\mathbb{R})/\Gamma'))) \not\cong \hat{H}^4(A^\ast((U_3(\mathbb{R})/\Gamma') \times (U_3(\mathbb{R})/\Gamma')))\]

Acknowledgements.

The author would like to express his gratitude to Toshitake Kohno for helpful suggestions and stimulating discussions. This research is supported by JSPS Research Fellowships for Young Scientists.

References

[1] D. Arapura, M. Nori, Solvable fundamental groups of algebraic varieties and Kähler manifolds. Compositio Math. 116 (1999), no. 2, 173–188.
[2] O. Baues, Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups. Topology 43 (2004), no. 4, 903–924.
[3] A. Borel, Linear algebraic groups 2nd ed. Springer-Verlag (1991).
[4] T. Bouche, La cohomologie coeffective d’une variété symplectique. Bull. Sci. Math. 114 (1990), no. 2, 115–122.
[5] M. Fernandez, R. Ibanez, M. de Leon, A Nomizu’s theorem for the coefficient cohomology. Math. Z. 226 (1997), no. 1, 11–23.
[6] M. Fernandez, R. Ibanez, M. de Leon, Coeffective and de Rham cohomologies of symplectic manifolds. J. Geom. Phys. 27 (1998), no. 3-4, 281–296.
[7] K. Hasegawa, A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43 (2006), no. 1, 131–135.
[8] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 18 (1960), 289–331 (1960).
[9] H. Kasuya, Formality and hard Lefschetz properties of aspherical manifolds. http://arxiv.org/abs/0910.1175.
[10] H. Kasuya Cohomologically symplectic solvmanifolds are symplectic. http://arxiv.org/abs/1005.1157 to appear in J. Symplectic. Geom.
[11] P. Libermann, Ch. M. Marle, Symplectic Geometry and Analytical Mechanics. Reidel/Kluwer, Dordrecht (1987).
[12] G. D. Mostow, On the fundamental group of a homogeneous space, Ann. of Math. (2) 66 (1957), 249–255.
[13] I. Nakamura, Complex parallelisable manifolds and their small deformations. J. Differential Geometry 10 (1975), 85–112.
[14] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math. (2) 59, (1954). 531–538.
[15] M. S. Raghunathan, Discrete subgroups of Lie Groups, Springer-Verlag, New York, 1972.

(H.Kasuya) Graduate School of Mathematical Science University of Tokyo Japan

E-mail address: khsc@ms.u-tokyo.ac.jp