Increased Behavioral and Neuronal Responses to a Hallucinogenic Drug in PACAP Heterozygous Mutant Mice

Keisuke Hazama1, Atsuko Hayata-Takano2*, Kazuki Uetsuki1, Atsushi Kasai1,3, Naoki Encho1, Norihiito Shintani1, Kazuki Nagayasu1,4, Ryota Hashimoto2,5, Dora Reglodi6, Tsuyoshi Miyakawa7, Takanobu Nakazawa4, Akemichi Baba8, Hitoshi Hashimoto1,2,4,*

1 Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, 2 Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan, 3 Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan, 4 IPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, 5 Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, 6 Department of Anatomy, PTE-MTA “Lendület” PACAP Research Team, University of Pécs, Faculty of Medicine, Pécs, Hungary, 7 Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan, 8 School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan

Abstract

Accumulating evidence from human genetic studies implicates the pituitary adenylate cyclase-activating polypeptide (PACAP) gene as a risk factor for psychiatric disorders, including schizophrenia and stress-related diseases. Mice with homozygous disruption of the PACAP gene display profound behavioral and neurological abnormalities that are ameliorated with the atypical antipsychotic and dopamine D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin; however, the underlying mechanisms remain unknown. Here, we investigated if PACAP heterozygous mutant (PACAP+/−) mice, which appear behaviorally normal, are vulnerable to aversive stimuli. PACAP+/− mice were administered a 5-HT2 receptor agonist, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI), a hallucinogenic drug, and their responses were compared with the littermate wild-type mice. After DOI injection, PACAP+/− mice showed increased head-twitch responses, while their behavior was normal after saline. DOI induced deficits in sensorimotor gating, as determined by prepulse inhibition, specifically in PACAP+/− mice. However, other 5-HT2 receptor-dependent responses, such as corticosterone release and hypothermia, were similarly observed in PACAP+/− and wild-type mice. c-Fos expression analysis, performed in various brain regions, revealed that the DOI-induced increase in the number of c-fos-positive cells was more pronounced in 5-HT2A receptor-negative cells in the somatosensory cortex in PACAP+/− mice compared with wild-type mice. These results indicate that PACAP+/− mice exhibit specific vulnerability to DOI-induced deficits in cortical sensory function, such as exaggerated head-twitch responses and sensorimotor gating deficits. Our findings provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated.

Citation: Hazama K, Hayata-Takano A, Uetsuki K, Kasai A, Encho N, et al. (2014) Increased Behavioral and Neuronal Responses to a Hallucinogenic Drug in PACAP Heterozygous Mutant Mice. PLoS ONE 9(2): e89153. doi:10.1371/journal.pone.0089153

Editor: Hubert Vaudry, University of Rouen, France, France

Received August 26, 2013; Accepted January 16, 2014; Published February 20, 2014

Copyright: © 2014 Hazama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (B), Grant numbers 21390069 (A.B.), 23790295, 25460100 (A.H.T), Grant-in-Aid for JSPS Fellows, Grant number 11J03702 (KH), and the Funding Program for Next Generation World-Leading Researchers, Grant number 22LS0810 (HH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The co-author Ryota Hashimoto serves as an Editorial Board Member for this journal. However, this does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: hasimoto@phs.osaka-u.ac.jp

† These authors contributed equally to this work.

Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with multiple roles, including neurotransmitter, neuromodulator and neurotrophic factor [1]. Our recent studies have suggested that PACAP is associated with psychiatric disorders, including schizophrenia. Genetic variants of the PACAP gene that are overrepresented in schizophrenia patients are associated with reduced hippocampal volume and impaired memory performance [2]. A copy number gain of the PACAP gene due to a partial trisomy has been shown to cause severe mental retardation [3]. PACAP-deficient mice exhibit remarkable behavioral changes related to psychosis, memory impairment and depression that can be treated with the atypical antipsychotic and mixed D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin [4–9]. In addition, Vacic et al. [10] found a significant association of copy number gains at chromosome 7q36.3 with schizophrenia, which results in increased expression of the common VIP and PACAP receptor VPAC2 in cultured lymphocytes. Furthermore, Ressler et al. [11,12] demonstrated a sex-specific association of post-traumatic stress disorder (PTSD) with PACAP and the PACAP-selective receptor
PAC1 in females. These studies provide convergent evidence for psychiatric implications of the PACAP signaling system; however, the underlying mechanisms remain unknown.

There is a great deal of evidence implicating 5-HT2 receptors in various neurological and psychiatric conditions. Hallucinogenic drug-induced activation of 5-HT2 receptors is closely related to their reinforcing and/or aversive effects [13]. Impaired 5-HT2A receptor signaling plays a major role in schizophrenic episodes. Almost all available atypical antipsychotic drugs are 5-HT2A receptor inverse agonists, as well as dopamine D2 receptor antagonists or partial agonists [14]. The attenuation of extrapyramidal symptoms by atypical antipsychotic drugs has been proposed to be mediated by dopamine release in the striatum induced by 5-HT2A antagonism [15]. Furthermore, in a study using 5-HT2A conditional knockout mice, a specific role for cortical 5-HT2A receptor function in the modulation of conflict anxiety was observed, consistent with the hypothesized “top-down” control model of anxiety-related processes [16].

To provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated, we examined if PACAP mutant (PACAP+/−) mice, which appear behaviorally normal, are vulnerable to aversive stimuli; in this case, injection of the hallucinogenic 5-HT2 receptor agonist (+)-2,5-dimethoxy-4-iodoamphetamine (DOI). We also performed c-Fos expression analysis to identify brain regions with an altered response to DOI in PACAP+/− mice.

Materials and Methods

Animals

All animal care and handling procedures were performed according to the Guidelines for the Care and Use of Laboratory Animals approved by the Japanese Pharmacological Society, and were approved by the Animal Care and Use Committee of the Graduate School of Pharmaceutical Sciences, Osaka University. All efforts were made to minimize the number of animals used.

Wild-type control (PACAP+/+) and PACAP+/− mice were obtained by crossing female PACAP+/+ or PACAP+/− mice on the C57BL/6J mouse background, and male PACAP+/− mice on the 129S6/SvEvTac background. The generation of PACAP+/− mice by gene targeting has been reported previously [5]. These mice were backcrossed at least 10 times with C57BL/6J or 6 times with 129S6/SvEvTac, which are statistically expected to be >99.90% and 98.44% congeneric, respectively [6]. C57BL/6J mice were purchased from Shimizu Laboratory Supplies (Kyoto, Japan), and 129S6/SvEvTac mice were purchased from Taconic (Germantown, NY). All experiments were conducted with naive 8–9-week-old male mice, group-housed (4–5 per cage) with a 12-h light–dark cycle (light on at 8:00 am) at controlled room temperature (22±1°C). Pelleted food (CMF, Oriental Yeast, Osaka, Japan) and water were available ad libitum.

Behavioral Analysis

Each behavioral study was performed using a separate cohort of mice. For assessment of the head-twitch response, mice were individually placed in observation cages (19×10×11 cm) for a 60-min habituation period. They were then intraperitoneally injected with either saline or DOI (Sigma-Aldrich, Tokyo, Japan), which were prepared just before use, and recordings were made for a duration of 60 min. Scoring began immediately after injection by trained blind observers. The head-twitch response is a distinctive paroxysmal head-twitching behavior that is easily distinguished from head-bobbing, lateral movements of the head and grooming.

Acoustic startle responses for the prepulse inhibition (PPI) experiment were measured in a startle chamber (SR-LAB; San Diego Instruments, San Diego, CA) using standard methods described previously [17]. Animals were placed in the startle chamber 5 min after intraperitoneal injection of DOI (1.0 mg/kg). The testing session started with 5 min of acclimatization to the startle chamber in the presence of 65 dB background broadband (white) noise. Testing consisted of forty 120 dB pulses alone and 10...
Figure 2. DOI-induced PPI deficits in PACAP^{+/−} mice. Effects of DOI on PPI (A) and acoustic startle response (B) were examined in PACAP^{+/+} (+/+) and PACAP^{+/−} (+/−) mice. DOI (1 mg/kg) was injected intraperitoneally 5 min before the experiments. Values are expressed as the mean ± SEM (n = 6–9). Differences were assessed with repeated three-way ANOVA with post hoc Tukey-Kramer test. *p<0.05, **p<0.01 vs. saline.

doi:10.1371/journal.pone.0089153.g002

Figure 3. Effect of DOI on c-Fos expression. The number of c-Fos-positive cells in the mPFC (A), SSCx (B), VL-CPu (C), MD (D), BLA (E) and PVN (F) were determined in PACAP^{+/+} (+/+) and PACAP^{+/−} (+/−) mice after injection of DOI (3 mg/kg) or saline. Values are expressed as the mean ± SEM (n = 5–6). Statistically significant differences were assessed with two-way ANOVA with post hoc Tukey-Kramer test. *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0089153.g003
pulses preceded (100 ms) by a prepulse of 68, 71 or 74 dB. Pulses were randomly presented with an average interval of 15 s between pulses. Twelve no-stimulus trials were included to assess spontaneous activity during testing. PPI was calculated as a percentage score: PPI (%) = ({\text{startle response for pulse with prepulse}}/{\text{startle response for pulse alone}})×100.

Immunohistochemistry and Quantitative Analysis

Immunohistochemistry for c-Fos was performed as described previously [18]. Briefly, mice were intraperitoneally injected with DOI and placed back into their home cages. Two hours after injection, mice were deeply anesthetized with 50 mg/kg pentobarbital, and perfused transcardially with saline followed by 4% paraformaldehyde in phosphate-buffered saline. Whole brains were dissected and postfixed in the same fixative overnight at 4°C. Then, brain blocks were cryoprotected in 20% sucrose in m, 3 positions), dorsolateral caudate putamen (DL-CPu; 500 μm x 500 μm), ventrolateral caudate putamen (VL-CPu; 500 μm x 500 μm), ventral pallidum (VP; 500 μm x 200 μm), basolateral nuclei of the amygdala (BLA; 300 μm x 100 μm), lateral globus pallidus (LGP; 700 μm x 300 μm), mediodorsal thalamic nucleus (MD; 200 μm x 200 μm), paraventricular hypothalamic nucleus (PVN; 100 μm x 100 μm, 3 positions), the CA1 field of the hippocampus (CA1; 300 μm x 75 μm, 3 positions), granule cell layer of the dentate gyrus (GrDG; 150 μm x 75 μm, 3 positions), polymorph layer of the dentate gyrus (PoDG; 300 μm x 75 μm) and substantia nigra pars reticulata (SNR; 500 μm x 200 μm). Both right and left hemispheres of three sections for each region selected were examined for counting c-Fos-positive cells in the areas of interest.

For double-immunofluorescence staining, sections were incubated with anti-c-Fos goat polyclonal antibody (1:1 000 dilution; Santa Cruz) and anti-5-HT2A receptor rabbit polyclonal antibody (1:300 dilution; Abcam, Cambridge, MA), and then with Alexa Fluor 488-conjugated anti-goat IgG (1:1 000 dilution; Invitrogen, Eugene, OR) and Alexa Fluor 594-conjugated donkey anti-rabbit IgG (H+L) (1:500 dilution; Invitrogen). Double-immunofluorescence-stained slices were photographed using a fluorescence microscope (Biozero BZ-9000; Keyence, Osaka, Japan), and positive cells were counted by experienced observers blinded to mouse genotype and treatment.

Statistics

All data are expressed as the mean ± standard error of the mean (S.E.M.). Student’s t-test, one-way analysis of variance (ANOVA) followed by Dunnett’s test, or two-way ANOVA followed by the Tukey-Kramer test were used to assess statistical significance as appropriate. For data open field test and head-twitch response were analyzed using two-way ANOVA for genotype as the intersubject factor and repeated measures with time as the intrasubject factor. Data for PPI were analyzed using three-way ANOVAs (genotype and treatment as the intersubject factors, and prepulse intensity as the intrasubject factors). Multiple comparisons were performed using the Student-Newman-Keuls test. A p-value lower than 0.05 was considered statistically significant. The statistical analyses were performed using a software package (StatView® 5.0 for Windows; SAS Institute, Cary, NC).

Table 1. Effects of DOI on c-Fos expression in various brain regions in PACAP+/− mice on the C57BL/6J x 129S6/SvEvTac hybrid background.

Region	Saline	DOI (10 mg/kg)	p value
mPFC	14.4±4.0	41.6±6.5	0.008
Acb core	12.4±3.4	27.5±8.3	0.15
Acb shell	9.9±2.4	20.6±4.6	0.10
SSCx	4.7±2.8	58.6±14.2	0.012
DL-CPu	1.4±0.6	3.1±1.6	0.39
VM-CPu	14.4±4.9	25.3±6.1	0.21
VP	7.1±2.2	12.2±3.0	0.30
BLA	9.0±2.9	25.6±3.9	0.015
LGP	0.8±0.4	1.9±0.6	0.26
MD	10.6±3.1	23.2±2.8	0.020
PVN	28.5±18.4	212±17.0	0.001
CA1	7.3±3.6	10.1±5.3	0.68
GrDG	7.5±3.2	7.5±3.1	0.99
PoDG	10.8±4.5	29.5±21.4	0.43
SNR	0.5±0.3	1.2±0.4	0.17

The regions are indicated in Figure S1. Data shows mean ± SEM of 4–6 mice. Statistically significant differences vs. saline were assessed with the t-test. doi:10.1371/journal.pone.0089153.t001

Results

Behavioral Abnormalities in PACAP+/− Offspring from Maternal PACAP+/− Mating, not from Maternal PACAP+/− Mating

Because genetic background may account for behavioral variation [19], we first investigated locomotor activity in PACAP+/− mice on the C57BL/6J x 129S6/SvEvTac F1 mixed genetic background (B6-129S6) in the open field test. To obtain B6–129S6 F1 mice, male PACAP+/− mice on the 129S6/SvEvTac background were mated with female PACAP+/− or PACAP−/− mice on the C57BL/6J background. F1 PACAP+/− mice from PACAP+/− dams did not exhibit hyperactivity or differences in rearing time or time spent in the center of the field in the open field (Fig. S2A, C, E). Repeated two-way ANOVA revealed no significant main effect of genotype [F(1, 295) = 0.005, p = 0.95]. In contrast, F1 PACAP+/− mice from PACAP+/− dams did not exhibit hyperactivity or differences in rearing time or time spent in the center of the field compared with PACAP+/− littermates (Fig. S2B). Repeated two-way ANOVA revealed a significant main effect of genotype [F(1, 170) = 5.93, p<0.05]. Concomitant with the increase in locomotor activity, F1 PACAP+/− mice from PACAP+/− dams showed significant increases in rearing time and time spent in the center of the field compared with PACAP+/− littermates (Fig. S2D, F).

Vulnerabilities to Hallucinogen in PACAP+/− Mice

Due to the potential for PACAP+/− mice to exhibit increased reactivity to hallucinogens, we investigated whether these mice were more sensitive than 129S6/SvEvTac F1 mice to acute intraperitoneal injection of DOI. F1 mice from PACAP+/− dams did not exhibit hyperactivity or differences in the prepulse inhibition test. A p-value lower than 0.05 was considered statistically significant. The statistical analyses were performed using a software package (StatView® 5.0 for Windows; SAS Institute, Cary, NC).
Figure 4. Number of c-Fos-positive/5-HT2A receptor-negative cells is increased in the SSCx in PACAP+/− mice. (A and B) Representative c-Fos immunofluorescence images (A) and quantitative data (B) in PACAP+/+ and PACAP+/− mice. (C and D) Representative double-immunofluorescence images showing the co-localization of DOI-induced c-Fos and 5-HT2A receptor immunoreactivity (C) and quantitative data (D) in PACAP+/+ and PACAP+/− mice. Arrows indicate representative cells double-labeled for c-Fos and 5-HT2A receptor, and arrowheads indicate those positive for c-Fos and negative for 5-HT2A receptor. Values are expressed as the mean ± SEM (n = 4). Statistically significant differences were assessed with two-way ANOVA with post hoc Tukey-Kramer test. **p<0.01.

doi:10.1371/journal.pone.0089153.g004
Altered Behavioral Response to the 5-HT\textsubscript{2A} Agonist DOI in PACAP+/− Mice

To investigate the mechanisms by which susceptibility genes alter neural responses, we used PACAP+/− mice obtained from PACAP+/− dams, which display behaviors undistinguishable from their PACAP+/− littersmates, for the experiments that follow. To examine whether the behavioral response to external stimuli is altered in PACAP+/− mice, we examined the DOI-induced head-twitch response, which is a characteristic head-shaking movement induced by the hallucinogenic drug via stimulation of 5-HT\textsubscript{2A} receptors [20]. The total number of head-twitch responses induced by DOI during a 60-min period was significantly increased in both genotypes in a dose-dependent manner, but the response in PACAP+/− mice occurred significantly more frequently than in their PACAP+/− littermates with doses of DOI (1.0 or 3.0 mg/kg) (Fig. 1A). Two-way ANOVA revealed a significant main effect of genotype [F(1, 20)] = 39.6, \(p < 0.001 \) and DOI dose [F(4, 20) = 55.8, \(p < 0.001 \)], and there was a significant interaction between genotype and treatment [F(4, 20) = 14.1, \(p < 0.001 \)]. The maximal head-twitch response induced by 1.0 mg/kg DOI was elicited within approximately 20 minutes in both PACAP+/− and PACAP+/− mice (Fig. 1B).

PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia across species [21]. DOI is known to disrupt PPI via 5-HT\textsubscript{2A} receptors in rodents [22]. We therefore examined PPI in PACAP+/− and PACAP+/− mice treated with or without DOI. There was no difference in PPI levels between the two genotypes of mice following saline injection (Fig. 2A). Although 1.0 mg/kg DOI had no effect in wild-type mice, it evoked PPI deficits in PACAP+/− mice (Fig. 2A). Three-way ANOVA revealed a significant main effect of genotype [F(1, 33) = 3.38, \(p < 0.05 \)] and treatment [F(1, 33) = 10.0, \(p < 0.01 \)], a significant interaction between treatment and genotype [F(1, 33) = 4.35, \(p < 0.05 \)], and no significant dBgenotype×treatment interaction [F(2, 60) = 0.719, \(p = 0.49 \)]. Multiple comparisons revealed that DOI (1 mg/kg) did not affect PPI in PACAP+/− mice, whereas it significantly disrupted PPI compared with saline in PACAP+/− mice (Fig. 2A). There were no significant differences in startle amplitudes between the four groups (PACAP+/− and PACAP+/− injected with saline or DOI) (Fig. 2B).

As it has been reported that stimulation of 5-HT\textsubscript{2A} receptors activates hypothalamic neurons to increase the secretion of several hormones, such as corticosterone, and induces hypothermia [23,24], we examined the effect of DOI on plasma corticosterone and body temperature in both genotypes. Although DOI dose-dependently increased the level of plasma corticosterone, there was no difference between the two genotypes (Fig. 3A). Repeated two-way ANOVA revealed a significant main effect of treatment [F(1, 23) = 21.6, \(p < 0.0001 \)], but not genotype [F(1, 23) = 0.011, \(p = 0.92 \)]. Similarly, there was no difference in DOI-induced hypothermia between the two genotypes (Fig. 3B). Repeated two-way ANOVA revealed a significant main effect of treatment [F(3, 39) = 16.6, \(p < 0.001 \)], but not genotype [F(3, 39) = 0.193, \(p = 0.66 \)].

Identification of Brain Regions with an Altered Response to DOI in PACAP+/− Mice

To identify the brain regions that may underlie the differences in behavioral response to DOI, we first examined DOI-induced changes in c-Fos protein expression in 16 brain regions known to be involved in the regulation of the head-twitch response, in PPI, in the release of corticosterone and the regulation of body temperature [23–26] in PACAP+/− mice on the C57BL/6J×129S6/SvEvTac hybrid background (Fig. S1). Among the brain regions examined, significant differences in c-Fos expression were observed only in six; the mPFC, SS\textsubscript{x}, VL-CP\textsubscript{u}, MD, BLA and PVN (Table 1). Therefore, we subsequently examined DOI-induced c-Fos expression in these six regions in PACAP+/− mice. Representative photomicrographs of c-Fos staining in these regions are shown in Fig. S4. Interestingly, the number of c-Fos-positive cells was significantly increased specifically in the SS\textsubscript{x} in PACAP+/− mice compared with PACAP+/− mice in response to DOI (Fig. 3 and S4). Two-way ANOVA revealed a significant main effect of treatment [F(1, 10) = 54.2, \(p < 0.001 \) and genotype [F(1, 10) = 6.47, \(p < 0.05 \)], and a significant interaction between genotype and treatment for the SS\textsubscript{x} [F(1, 10) = 6.46, \(p < 0.05 \)]. In the remaining five regions (mPFC, VL-CP\textsubscript{u}, MD, BLA and PVN), there was no statistically significant difference in the number of c-Fos-positive cells after DOI injection between the two genotypes (Fig. 3).

Increase in the Number of c-Fos-positive Cells Among 5-HT\textsubscript{2A} Receptor-negative Cells in the SS\textsubscript{x} of PACAP+/− Mice Injected with DOI

We next examined whether the difference between PACAP+/− and PACAP+/− mice in the molecular response of SS\textsubscript{x} neurons to DOI was dependent on the expression levels of the 5-HT\textsubscript{2A} receptor. 5-HT\textsubscript{2A} receptor protein levels in the SS\textsubscript{x} were similar in both genotypes as measured by Western blot analysis (Fig. S5).

The types of neurons activated by DOI in the SS\textsubscript{x} were then examined using double immunostaining for c-Fos and the 5-HT\textsubscript{2A} receptor. The number of c-Fos-positive cells among 5-HT\textsubscript{2A} receptor-positive cells was not changed in either genotype. However, the number of c-Fos-positive/5-HT\textsubscript{2A} receptor-negative cells was significantly increased in the SS\textsubscript{x} in PACAP+/− mice compared with PACAP+/− mice (Fig. 4). Two-way ANOVA revealed a significant main effect of genotype [F(1, 12) = 18.6, \(p < 0.001 \)], but not 5-HT\textsubscript{2A} co-expression [F(1, 12) = 3.73, \(p = 0.078 \)]. There was a significant interaction between genotype and 5-HT\textsubscript{2A} co-expression [F(1, 12) = 4.98, \(p < 0.05 \)].

Discussion

In this study, we obtained four major findings. First, PACAP+/− mice injected with DOI exhibit exaggerated head-twitch responses and PPI deficits, while PACAP+/− mice with the same treatment show significantly reduced head-twitch responses and normal levels of PPI. Second, other 5-HT-induced responses mediated by 5-HT\textsubscript{2A} receptor stimulation, such as increased corticosterone levels and hypothermia, did not significantly differ between PACAP+/− and PACAP+/− mice. Third, the DOI-induced increase in the number of c-Fos-positive cells was more pronounced in 5-HT\textsubscript{2A} receptor-negative cells in the SS\textsubscript{x} in PACAP+/− mice compared with PACAP+/− mice. Fourth, F\textsubscript{1} PACAP+/− mice from PACAP+/− dams, but not from PACAP+/− dams, show significant increases in locomotor activity, rearing time and time spent in the center of the open field compared with PACAP+/− littersmates.

We previously reported that PACAP−/− mice exhibit an increased head-twitch response to an intermediate dose of DOI, 0.25 mg/kg body weight [4]. In addition, they display PPI deficits without receiving DOI injection [8]. In PACAP−/− mice, we have not yet observed any appreciable behavioral changes. However, impaired long-term potentiation has been observed in the dentate gyrus in PACAP−/− mice and in mice with altered expression of the PAC\textsubscript{A} receptor [7], which have approximately 25% of the [125I]-PACAP27 binding density (due to a targeted deletion of...
In conclusion, we demonstrate that PACAP+/− mice show specific vulnerability to the hallucinogenic drug DOI, which impacts cortical sensory function and results in exaggerated head-twitch responses and sensorimotor gating deficits. These findings suggest that the PACAP signaling pathway is critically involved in 5-HT2 receptor-dependent cortical processing. PACAP+/− mice provide a promising model to investigate the neural and molecular mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are involved.

Supporting Information

Figure S1 Diagrammatic representation of the brain regions examined for c-Fos expression. The areas examined for counting c-Fos-positive cells include mPFC, Acb core, Acb shell, SSCx, DL-CPu, DM-CPu, VL-CPu, VP, BLA, LGP, MD, PVN, CA1, GrDG, PoDG and SNR (produced from Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates, 3rd Edition with permission of Elsevier).

Figure S2 Effect of maternal genotype on PACAP+/− mouse behavior in the open-field test. Distance travelled (A, B), the number of rearings (C, D) and time spent in the center of the field (E, F) were determined as described in Methods S1 and are shown for PACAP+/− (open circles) and PACAP−/− (closed circles) mice. The mice were obtained from the intercross of male 129S6/SvEvTac PACAP+/− and female C57BL/6J PACAP+/− (A, C, E; n = 12–21) or PACAP+/− (B, D, F; n = 20–32) mice. Values are expressed as the mean ± SEM. Statistically significant differences were assessed with two-way ANOVA followed by Tukey-Kramer test. *p<0.05, **p<0.01.

Figure S3 Effect of DOI on plasma corticosterone levels and body temperature in PACAP+/− and PACAP−/− mice. (A) Plasma corticosterone levels were determined (see Methods S1) in PACAP+/− (open circles) and PACAP−/− (closed circles) mice treated with the indicated doses of DOI or saline 30 min before the experiment. Values are expressed as the mean ± SEM (n = 4–7). (B) Body temperature was determined (see Methods S1) in PACAP+/− (open columns) and PACAP−/− (closed columns) mice treated with the indicated doses of DOI or saline. Changes in body temperature are indicated as the area under the curve. Corticosterone levels and body temperature were determined as described in Methods S1. Values are expressed as the mean ± SEM (n = 4–9). Statistically significant differences were assessed with two-way ANOVA with post hoc Tukey-Kramer test. *p<0.05, **p<0.01 vs. saline.

Figure S4 Representative c-Fos immunohistochemistry images for PACAP+/− and PACAP−/− mice. Representative images of c-Fos immunohistochemistry in the mPFC (A), SSCx (B), VL-CPu (C), MD (D), BLA (E), and PVN (F). Scale bars, 100 μm.

Figure S5 5-HT2A receptor protein levels in the SSCx are similar in both genotypes. Expression levels of the 5-HT2A receptor in the SSCx were determined using Western blot analysis as described in Methods S1.

Methods S1.

Author Contributions

Conceived and designed the experiments: AHT NS AB HH. Performed the experiments: KH AHT KU NE NS TM. Analyzed the data: KH AHT AK KN RH DR TN AB HH. Contributed reagents/materials/analysis tools: TM. Wrote the paper: KH AK HH.
References

1. Vaudry D, Falhou-Morel A, Bourgault S, Basille M, Burel D, et al. (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61: 203–257.

2. Hashimoto R, Hashimoto H, Shintani N, Chiba S, Hattori S, et al. (2006) Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Mol Psychiatry 12: 1036–1039.

3. Freson K, Hashimoto H, Thyss C, Wittervongel C, Danlo S, et al. (2004) The pituitary adenylate cyclase-activating polypeptide is a physiological inhibitor of platelet activation. J Clin Invest 113: 905–912.

4. Hashimoto H, Hashimoto R, Shintani N, Tanaka K, Yamamoto A, et al. (2009) Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem 110: 595–602.

5. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, et al. (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98: 13353–13360.

6. Hattori S, Takao K, Tanda K, Toyama K, Shintani N, et al. (2012) Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci 6: 58.

7. Matsuyama S, Matsumoto A, Hashimoto H, Shintani N, Baba A (2003) Impaired long-term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase-activating polypeptide (PACAP) or PACAP type 1 receptor-mutant mice. Neuroreport 14: 2095–2098.

8. Tanaka K, Shintani N, Hashimoto H, Kawaiishi N, Ago Y, et al. (2006) Psychostimulant-induced attenuation of hyperactivity and prepulse inhibition deficits in Adcyap1-deficient mice. J Neurosci 26: 5091–5097.

9. Gaszner B, Kormos V, Kozicz T, Hashimoto H, Reglodi D, et al. (2012) The behavioral phenotype of pituitary adenylate cyclase-activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience 202: 283–299.

10. Vacic V, McCarthy S, Mallotra D, Murray F, Chou HH, et al. (2011) Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471: 499–503.

11. Resler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, et al. (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470: 492–497.

12. Alnkin LM, Mercer KB, Kerley K, Feng H, Bradley B, et al. (2013) ADCYCAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am J Med Genet B Neuropsychiatr Genet 162B: 262–272.

13. Mori T, Yoshizawa K, Shihashi M, Suzuki T (2012) Discriminatory stimulus effects of hallucinogenic drugs: a possible relation to reinforcing and aversive effects. J Pharmacol Sci 120: 70–76.

14. Melzner HY (2012) Serotonergic mechanisms as targets for existing and novel antidepressants. Handb Exp Pharmacol: 87–124.

15. Melzner HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11: 59–67.

16. Weistub NY, Zhou M, Lira A, Lambe E, Gonzalez-Maeso J, et al. (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313: 536–540.

17. Sakae M, Ayo Y, Baba A, Matsuda T (2003) The 5-HT1A receptor agonist MKC-242 reverses isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology (Berl) 170: 73–79.

18. Tsukiyama N, Saidi Y, Kakuda M, Shintani N, Hayata A, et al. (2011) PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14: 360–375.

19. Crabbe JC, Walthen D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284: 1670–1672.

20. Darmani NA, Shadly J, Gerdes CF (1996) Differential ontogenesis of three DOI-induced behaviors in mice. Physiol Behav 60: 1955–1960.

21. Swerdlow NR, Weber M, Qiu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199: 331–381.

22. Halberstadt AL, Geyer MA (2010) LSD but not lixivium disrupts prepulse inhibition in rats by activating the 5-HT2A receptor. Psychopharmacology (Berl) 208: 179–189.

23. Fox MA, Brench HT, LaPorte JL, Blacker AR, Murphy DL (2010) The serotonin 5-HT2A receptor agonist TCK-2: a behavioral and neurophysiological analysis. Psychopharmacology (Berl) 212: 13–23.

24. Van de Kar LD, Javed A, Zhang Y, Serres F, Raap DK, et al. (2001) 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 21: 3572–3579.

25. Herman JP, Collin WE (1997) Neurocircuitry of stress: central control of the hypothalmo-pituitary-adrenocortical axis. Trends Neurosci 20: 78–84.

26. Willis DL, Melzner HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282: 699–706.

27. Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156: 194–215.

28. Takahashi K, Nagai T, Kamei H, Mareda K, Matsuya T, et al. (2007) Neural circuits containing pallidodentate GABAergic neurons are involved in the prepulse inhibition of the startle reflex in mice. Biol Psychiatry 62: 148–157.

29. Hashimoto H, Shintani N, Nishino A, Okabe M, Ikawa M, et al. (2000) Mice with markedly reduced PACAP (PAC(1)) receptor expression by targeted deletion of the signal peptide. J Neurosci 20: 1010–1017.

30. Ohkita H, Nakamachi T, Doku K, Aizawa Y, Takaki A, et al. (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci U S A 103: 7481–7493.

31. Scruggs JL, Patel S, Bubser M, Deutch AY (2000) DOI-induced activation of the cortex: dependence on 5-HT2A heteroreceptors on thalamocortical glutamatergic neurons. J Neurosci 20: 8186–8192.

32. Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, et al. (2006) Transcription fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23: 8336–8343.

33. Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, et al. (2006) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 432: 93–97.

34. Ayo Y, Hiramatani N, Ishihama T, Hazama K, Hayata-Takama A, et al. (2013) The selective metabotropic glutamate 2/3 receptor agonist MSG0028 reverses psychomotor abnormalities and recognition memory deficits in mice lacking the pituitary adenylate cyclase-activating polypeptide. Behav Pharmacol 24: 74–77.

35. Moreno JL, Kurita M, Hiramatsu T, Muroya T, Yamada K (2012) D-Serine ameliorates neonatal PolyI:C treatment-induced emotional and cognitive impairments in adult mice. J Pharmacol Sci 120: 213–227.