THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS–METALLICITY RELATION

H. J. Zahid1, F. Bresolin1, L. J. Kewley1, A. L. Coil2, and R. Dave3

1 Institute for Astronomy, University of Hawaii, Manoa 2680 Woodlawn Dr., Honolulu, HI 96822, USA
2 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Dr., La Jolla, CA 92039, USA
3 Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA

Received 2011 November 29; accepted 2012 February 29; published 2012 April 24

ABSTRACT

In this investigation, we quantify the metallicities of low-mass galaxies by constructing the most comprehensive census to date. We use galaxies from the Sloan Digital Sky Survey (SDSS) and DEEP2 survey and estimate metallicities from their optical emission lines. We also use two smaller samples from the literature that have metallicities determined by the direct method using the temperature sensitive [O iii]λλ4363 line. We examine the scatter in the local mass–metallicity (MZ) relation determined from ~20,000 star-forming galaxies in the SDSS and show that it is larger at lower stellar masses, consistent with the theoretical scatter in the MZ relation determined from hydrodynamical simulations. We determine a lower limit for the scatter in metallicities of galaxies down to stellar masses of $M_*/10^7 M_\odot$ which is only slightly smaller than the expected scatter inferred from the SDSS MZ relation and significantly larger than what has been previously established in the literature. The average metallicity of star-forming galaxies increases with stellar mass. By examining the scatter in the SDSS MZ relation, we show that this is mostly due to the lowest metallicity galaxies. The population of low-mass, metal-rich galaxies have properties that are consistent with previously identified galaxies that may be transitional objects between gas-rich dwarf irregulars and gas-poor dwarf spheroidals and ellipticals.

Key words: galaxies: abundances – galaxies: dwarf – galaxies: evolution – galaxies: ISM

Online-only material: color figures

1. INTRODUCTION

The metallicity of a galaxy is a key physical parameter for understanding its history and evolution. Starting with Pagel et al. (1979), the practice of estimating gas-phase abundances from optical emission lines has allowed for significant advances in the study of galaxy evolution. Metals are produced in stars and returned to the interstellar medium (ISM) through stellar mass loss. In this way, the metallicity provides a record of the star formation history. However, the gas-phase abundance is modulated by gas flows where feedback processes can drive enriched gas out of galaxies and accretion of both primordial and enriched material can influence the gas-phase abundance. Observations of the relation between metallicity and other physical properties of galaxies and the evolution of these relations can place important constraints on the physical processes governing galaxy evolution.

The mass–metallicity (MZ) and luminosity–metallicity (LZ) relation was first observed by Lequeux et al. (1979) using nearby dwarf galaxies. Using ~50,000 galaxies from the Sloan Digital Sky Survey (SDSS), Tremonti et al. (2004) have established the relation for the local population of star-forming galaxies down to stellar masses of $M_*/10^8 M_\odot$ which is similar to the results of the SDSS MZ relation determined from atomic and ionized hydrogen (H I) observations. The MZ relation has also been observed at higher redshifts (Erb et al. 2006; Cowie & Barger 2008; Lamareille et al. 2009; Mannucci et al. 2009; Zahid et al. 2011, among others). From the scatter in the MZ and LZ relation, many authors conclude that the fundamental correlation is between stellar mass and metallicity, such that lower mass galaxies have lower metallicity (e.g., Tremonti et al. 2004; Zahid et al. 2011). Tremonti et al. (2004) attribute this effect to stellar-wind-driven mass loss enabled by the shallow potential wells in low-mass galaxies. However, Dalcanton et al. (2004) argue that observations of the local MZ relation are also consistent with metal-poor infall of gas.

Several authors have suggested that gas flows alone cannot explain the MZ relation. Using smoothed particle hydrodynamical simulations, Brooks et al. (2007) have argued that in addition to mass loss driven by UV heating and supernova feedback, a mass-dependent star formation efficiency can help to explain the origin and evolution of the MZ relation. In this scenario, due to lower star formation efficiencies, low-mass galaxies have yet to convert much of their gas reservoir into stars and therefore are less metal-rich. Alternatively, K"oppen et al. (2007) suggest that the MZ relation may result from variations of the initial mass function (IMF). They argue that in low-mass galaxies the IMF does not extend to high stellar masses due to the low levels of star formation, thus resulting in fewer massive stars forming and less chemical enrichment.

The metallicities of low-mass galaxies ($M_* \lesssim 10^{8.5} M_\odot$) may provide important clues to the origin of the MZ relation which may help to distinguish between the various proposed scenarios. Many authors have investigated the metallicities of nearby dwarf galaxies (Searle & Sargent 1972; Skillman et al. 1989; Kennicutt & Skillman 2001; Lee et al. 2003; Hidalgo-Gámez et al. 2003; van Zee & Haynes 2006; Zhao et al. 2010, among others) but few have focused on the MZ relation (Tamura et al. 2001; Lee et al. 2006; Vaduvescu et al. 2007). Lee et al. (2006) extend the MZ relation by 2.5 orders of magnitude in stellar mass. Their main conclusion is that the scatter in the MZ relation is similar over 5 orders of magnitude.

Recent observations of low-mass, metal-rich galaxies present a challenge to this conclusion (Gu et al. 2006; Dellenbusch et al. 2007; Peeples et al. 2008; Petropoulou et al. 2011). In particular, Peeples et al. (2008) focus on a population of metal-rich dwarf galaxies from the SDSS which they consider outliers to the MZ relation. They identify these galaxies as objects nearing the end of their star formation activity and transitioning from dwarf spirals and irregulars to dwarf spheroidals and
ellipticals, consistent with the scenario discussed by Grebel et al. (2003). However, citing possible systematic overestimates in the derived metallicities, Berg et al. (2011) refute this result. Due to the small number of observations, it remains unclear whether there is a population of low stellar mass, metal-rich galaxies. A population of galaxies, such as these, would present an important new test for chemical evolution models and cosmological simulations while providing stronger constraints for the physical mechanisms governing the MZ relation and galaxy evolution.

Here, we examine the metallicities in galaxies spanning stellar masses from $10^6 \lesssim M_*/M_\odot \lesssim 10^{10}$. In Section 2 we present the data and selection criteria used, and in Section 3 we discuss our determination of stellar mass from photometry and metallicity from optical spectra. We examine the scatter in the MZ relation determined from $\sim 20,000$ SDSS galaxies in Section 4, and in Section 5 we focus on the metallicities of low-mass galaxies. In Section 6, we investigate systematic uncertainties in our mass and metallicity determinations. We present the main results of this study, the scatter in the MZ relation at low stellar masses, in Section 7. The physical properties of these galaxies are examined in Section 8 and in Section 9 we provide a discussion. We give a summary of our results in Section 10. When necessary we adopt the standard cosmology ($H_0, \Omega_m, \Omega_\Lambda = (70 \text{ km s}^{-1} \text{ Mpc}^{-1}, 0.3, 0.7)$.

2. DATA SAMPLE

2.1. The SDSS Sample

The SDSS DR7 consists of $\sim 900,000$ galaxies spanning a redshift range of $0 < z < 0.7$ (Abazajian et al. 2009). The survey has a Petrosian magnitude limit of $r_p = 17.8$ and the spectra cover the nominal range of 3900–9100 Å. For each object five bands of photometry, $ugriz$, are available (Stoughton et al. 2002). We use the publicly available emission line fluxes measured by the MPA–JHU group. We determine the local MZ relation from $\sim 20,000$ galaxies using the sample selection of Zahid et al. (2011). Hereafter, we refer to this relation as the SDSS MZ relation.

We first distinguish star-forming galaxies from active galactic nuclei (AGNs) using the scheme of Kewley et al. (2006). In order to avoid aperture effects, we require a g-band fiber aperture covering fraction $>30\%$ and impose a lower redshift limit of 0.04 (Kewley et al. 2005). The median covering fraction for the selected sample is 38%. Kewley et al. (2006) find that the SDSS sample is incomplete at higher redshifts and in order to minimize evolutionary effects we impose an upper limit redshift cutoff of $z = 0.1$

We require that the $S/N_{H\beta} > 3$, $\sigma_{R23} < 2$ and equivalent width of Hβ be greater than 4 Å. Here, σ_{R23} is the error in the $R23$ parameter which is the sum of the flux in the $[O\,\text{iii}]\lambda 4959, 5007 + [O\,\text{ii}]\lambda 3727$ divided by the Hβ flux. We find that the measured relation is not strongly dependent on the values adopted for these cuts and we select in this manner to be consistent with previous studies. In the selected sample, the median S/N of Hα and Hβ are 37 and 21, respectively.

Figure 1 shows the distribution of redshift, $U-B$ color, absolute B-band magnitude, and stellar mass for our selected sample. This particular selection gives us a pure star-forming galaxy sample in a narrow redshift range. It covers two orders of magnitude in stellar mass and has a color distribution consistent with blue star-forming galaxies.

2.2. Dwarf Galaxies Sample

Many measurements of metallicities of dwarf galaxies can be found in the literature. We use the samples of Lee et al. (2006), see references therein), Gil de Paz et al. (2003), and Peeples et al. (2008). Lee et al. (2006) extend the SDSS MZ relation by 2.5 decades in stellar mass. Their sample is taken from the literature and consists of 27 dwarf galaxies. Using the models of Bell & de Jong (2001), they derive masses from the B–K color and scale them to a Chabrier (2003) IMF. In this study, we use the 21 galaxies in the Lee et al. (2006) sample for which there are metallicities determined by the direct method and we adopt their stellar mass determination.

Gil de Paz et al. (2003) compile a sample of blue compact dwarf (BCD) galaxies. These galaxies are selected on basis of color, morphology, and luminosity such that: $\mu_B - \mu_R < 1$, $\mu_B < 22$ mag arcsec$^{-2}$, and $M_K > -21$ mag. Here, μ_B and μ_R are the peak surface brightness in B and R bands, respectively, and M_K is the K-band magnitude. Zhao et al. (2010) investigate the LZ relation for BCDs using B- and R-band photometry from this compilation with additional K_s-band photometry obtained from several sources (Jarrett et al. 2000; Noeske et al. 2003, 2005; Vaduvescu et al. 2007). We determine, for the first time, the stellar masses from the photometry as described in Section 3.2. Of the 80 galaxies in the Zhao et al. (2010) sample, we select 66 with detections of $[O\,\text{iii}]\lambda 4363$, allowing for metallicities to be determined using direct method. Similar to Lee et al. (2006), the metallicities of the Zhao et al. (2010) sample are compiled from the literature and may suffer from aperture effects. However, by comparing abundances measured from several different sources in a subsample of the galaxies, Zhao et al. (2010) conclude that the effect is small. Both these samples with metallicities determined from the direct method reveal a population of low mass, metal-poor galaxies (see Section 5.1).

4 http://www.mpa-garching.mpg.de/SDSS/DR7/
Peeples et al. (2008) examine the outliers from the MZ relation. Their sample consists of 41 metal-rich dwarf galaxies from the SDSS. We use the Peeples et al. (2008) sample but adopt the flux values of Berg et al. (2011) for the four galaxies they re-examined. Given the strict selection criteria of Peeples et al. (2008), the “very low mass” sample of galaxies (which have log(M_\odot) < 9) only consists of 17 galaxies. In order to investigate possible systematic effects in the determination of metallicities of low stellar mass galaxies, we supplement the Peeples et al. (2008) sample of 17 galaxies with 56 low-mass, metal-rich galaxies taken from the SDSS sample described in Section 2.1. We refer to these 56 galaxies as the supplemental SDSS sample. These galaxies have stellar masses <10^{8.8} M_\odot and have high metallicities determined by three different diagnostics, making them outliers from the SDSS MZ relation. We use several independent methods of metallicity determination (i.e., Yin et al. 2007; Kobulnicky & Kewley 2004; Kewley & Dopita 2002, see Section 3.1) in order to mitigate systematic effects that may result in overestimates of the metallicity with any one method.

Figure 2 shows the distribution of redshift, U−B color, absolute B-band magnitude, and stellar mass for the dwarf galaxies sample.

2.3. The DEEP2 Sample

We probe significantly fainter objects than is possible with the SDSS by analyzing galaxies from the DEEP2 survey (Davis et al. 2003). This allows us to probe deeper to find low stellar mass objects otherwise not observed in shallow broadband surveys. The majority of galaxies in our parent sample come from observations of the Extended Groth Strip. The DEEP2 team used the DEIMOS multi-object spectrograph on the 10 m Keck telescope to target galaxies in four fields covering 3.5 deg^2 down to a limiting magnitude of R_{AB} = 24.1. They primarily target galaxies in the redshift range of 0.7 < z < 1.4. In order to maximize efficiency of finding high-redshift galaxies, a color pre-selection approximately given by B−R < 2.35 \times (R−I) − 0.45, R−I > 1.15, or B−R < 0.5 was applied for galaxies in fields 2–4. Galaxies in the Extended Groth Strip region (field 1) were targeted without a photometric redshift color pre-selection (Coil et al. 2004).

The moderately high-resolution (R ~ 5000) spectra have a nominal spectral coverage of 6500–9100 Å, BRI-band photometry for these galaxies was obtained by the DEEP2 team using the CFH12K camera on the 3.6 m Canada–France–Hawaii Telescope (Coil et al. 2004) and for 54% of our selected sample of galaxies K_s-band photometry is available from the Hale telescope at Mt. Palomar (Bundy et al. 2006). In this study, we use the third release of the data.5

In order to estimate metallicities, we use the [N ii]λ6584 and H\alpha emission lines. These lines are observed in the DEEP2 data in the redshift range of 0 < z < 0.38. We measure the uncalibrated flux of these emission lines by taking the area of a least-square Gaussian fit. In many cases, the [N ii] line can be very weak (S/N < 3), so we simultaneously fit two Gaussians with a single Gaussian line width to both emission lines. We use the same method to measure the [S ii]λ6717, 6731 lines. We also measure the equivalent widths using the method outlined in the appendix of Zahid et al. (2011). The error in the fitted line flux and equivalent width comes from propagating the measurement uncertainties in the spectrum. The median signal-to-noise ratio (S/N) in our sample for H\alpha is 22.

From the parent sample of 2065 galaxies within the requisite redshift range, we select 777 galaxies for this analysis. In our selected sample, 695 are found in the Extended Groth Strip (field 1). By examining the photometric imaging, we find that 51 of the sources are star-forming knots in larger galaxies; these sources are removed from the sample. We select galaxies that have a reduced \chi^2 of the fit less than 2 and an S/N of H\alpha greater than 3. We also require that the 68% confidence interval of our stellar mass estimate be smaller than 0.3 dex. These selections remove 1172 galaxies from the parent sample. Initially, we apply no S/N cut on the [N ii]λ6584 line in order to avoid biasing against low metallicity objects. We remove five galaxies from the sample that have log([N ii]/H\alpha) greater than maximum star-forming ratio of −0.3 (e.g., Kewley et al. 2006). Following Weiner et al. (2007) who suggest that a substantial fraction of red emission line galaxies in the DEEP2 survey may be AGN contaminated, we remove 60 red galaxies using the blue and red galaxy color division for DEEP2 galaxies from Willmer et al. (2006).

Figure 3 shows the properties of the parent (gray histogram) and selected sample (black histogram). The redshift range of the parent and selected sample are comparable. Similar to our selection of SDSS galaxies, our selection of the DEEP2 data picks out the late-type blue star-forming galaxies, which are generally less bright and less massive than early-type red galaxies. The U−B, M_B, and mass distributions in Figure 3 reflects our selection.

3. METHODS

3.1. Mass Determination

We estimate galaxy stellar masses by comparing photometry with stellar population synthesis models in order to determine the mass-to-light ratio which we use to scale the observed luminosity (Bell et al. 2003; Fontana et al. 2004). Magnitudes are synthesized from the stellar templates of Bruzual & Charlot

5 http://deep.berkeley.edu/DR3/
Our selection picks out the bluer (top right), less-luminous (bottom left), and more-blue (top left) of the selected sample is roughly consistent with the parent sample. Distribution of the parent (gray histogram) and selected (black curve) samples from the DEEP2 survey. Our selection picks out the bluer (top right), less-luminous (bottom left), and less-massive (bottom right) galaxies as compared to the parent sample.

(2003) and an IMF described by Chabrier (2003). The 27 models span seven exponentially decreasing star formation models \((SFR \propto e^{-t/\tau}) \) with \(\tau = 0.1, 0.3, 1, 2, 3, 5, 10, 15, \) and 30 Gyr and two metallicities (0.4 and 1 \(Z_\odot \)). The stellar population ages range from 0 to 13 Gyr and we apply the extinction law of Calzetti et al. (2000) allowing \(E(B-V) \) to range from 0 to 0.6. The median statistical error for the derived stellar masses, determined from propagating the uncertainty in the photometry, is 0.15 dex. Though systematic effects can be significant (Drory et al. 2004; Conroy et al. 2009), in all the samples except for the 21 galaxies from Lee et al. (2006), we have consistently measured the stellar masses, giving us a robust relative measure. The \(U\) - and \(B\)-band absolute magnitudes for galaxies in the SDSS, DEEP2, and Zhao et al. (2010) samples are synthesized using this same procedure.

Emission line contributions are accounted for by taking the Kennicutt (1998) relation between the SFR and the UV luminosity which is synthesized as part of the mass determination procedure. In our sample, making no correction for the emission line contributions does not alter our mass determinations significantly. We adopt the median of the mass distribution and take the 68% confidence interval as a measure of the error. In Zahid et al. (2011) we compare this method with the one used by the MPA/JHU group to determine stellar masses of the SDSS galaxies. We find that the results differ by a constant offset of \(\sim 0.2 \) dex and that the dispersion between the two methods is 0.14 dex.

3.2. Metallicity Determination

The galaxies used in this study are not homogeneously observed. We therefore require several methods for determination of metallicities which we discuss here. Furthermore, different systematic uncertainties are associated with the various methods of metallicity determination, so when possible we use several methods for the same galaxy in order to assess and mitigate these uncertainties (see Section 6.2).

Metallicities for the dwarf galaxies sample from Lee et al. (2006) and Zhao et al. (2010) are determined using the direct method (Section 3.2.1). For the SDSS and DEEP2 galaxies we determine metallicities using the empirically calibrated method of Yin et al. (2007, Section 3.2.2). To address systematic bias and uncertainties we apply both empirically (Section 3.2.2) and theoretically (Section 3.2.3) calibrated methods in determining the scatter in the metallicities of local star-forming galaxies from SDSS. We also derive empirical corrections for metallicities determined from the \([\text{N} \text{ii}]\lambda 6584\) using the empirically calibrated N/O ratio (Sections 3.2.4 and 6.2.2).

3.2.1. Electron Temperature Method

The “direct” or electron temperature \((T_e) \) method relies on measurements of the temperature sensitive auroral lines e.g., \([\text{O} \text{iii}]\lambda 4363 \) and \([\text{N} \text{ii}]\lambda 5755\). These lines provide tight constraints on the electron temperature and allow for straightforward determination of the gas-phase abundance. The metallicities are calculated using the iterative scheme presented by Izotov et al. (2006). Due to temperature fluctuations and gradients, the \(O^+ \) and \(O^{2+} \) ions reside in different zones of the \(\text{H} \text{ii} \) region. \(T_e([\text{O} \text{iii}]) \) is determined for the \(O^{2+} \) ion from the \([\text{O} \text{ii}]\lambda 4363 \) line and a linear conversion is applied to determine the temperature in the region of \(O^+ \), \(T_e([\text{O} \text{ii}]) \). Contributions from higher ionization states are considered negligible and the gas-phase abundance is taken as the sum of the abundance in the two zones.

This method suffers from several drawbacks, making its use impractical in many cases. The \([\text{O} \text{ii}]\lambda 4363 \) line on the order of 100 times weaker than the strong oxygen emission lines e.g., \([\text{O} \text{iii}]\lambda 3727 \) and \([\text{O} \text{iii}]\lambda 5007 \) observed in optical spectra thus necessitating high S/N measurements. In most cases, this method can only be applied to nearby galaxies where high S/N spectra are available. Due to efficient cooling of \(\text{H} \text{ii} \) regions by metals, the line can only be observed in low metallicity \(\text{H} \text{ii} \) regions (<0.5 \(Z_\odot \)). Finally, in the presence of temperature gradients and fluctuations within \(\text{H} \text{ii} \) regions, several authors have argued that the \(T_e \) method may lead to underestimates of the metallicity (e.g., Stasińska et al. 2002; 2005; Bresolin et al. 2006; Peña-Guerrero et al. 2012), although recent work by Bresolin et al. (2009), and has shown good agreement between direct abundances of extragalactic \(H \text{ii} \) regions and stellar metallicities for blue supergiants (see also Kudritzki et al. 2012).

3.2.2. Empirically Calibrated Method

Semiempirically calibrated methods rely on calibrating strong-line ratios to metallicities determined from the combination of the \(T_e \) method along with detailed photoionization modeling. The \([\text{N} \text{ii}]\lambda 6584 \) to \(\text{H} \alpha \) ratio is shown to be strongly correlated to gas-phase oxygen abundance. Pettini & Pagel (2004) have calibrated this ratio to nearby \(H \text{ii} \) regions. They have parameterized the linear relation as

\[
12 + \log(O/\text{H} \alpha) = 8.90 + 0.57 \times N_2, \tag{1}
\]

where \(N_2 = \log([\text{N} \text{ii}]\lambda 6584/\text{H} \alpha) \). This relation is valid in the range of \(-2.5 < N_2 < -0.3 \) and has 1σ intrinsic scatter of 0.18 dex.

The linear relation between \(N_2 \) and metallicity parameterized by Pettini & Pagel (2004) is poorly constrained at metallicities below \(12 + \log(O/\text{H} \alpha) \approx 7.7 \). Yin et al. (2007) place stronger constraints at lower metallicities on the relation between metallicity and \(N_2 \) by using a sample ~700 galaxies from the SDSS along with values found in the literature using only metallicities determined from the \(T_e \) method, thus providing a purely
empirical calibration. They parameterize the linear relation as
\[12 + \log(O/H) = 9.263 + 0.836 \times N2. \]
(2)
Their relation is valid in the range of \(-2.5 < N2 < -0.5\) and has a 1\(\sigma\) intrinsic scatter of 0.16 dex. In this study, we are investigating low-mass galaxies in the local universe and therefore find it desirable to have a metallicity diagnostic appropriately constrained at low metallicities. When determining metallicities from \(N2\), we adopt the parameterization of Yin et al. (2007). In the Appendix, we compare this parameterization with Pettini & Pagel (2004) at low stellar masses.

3.2.3. Theoretically Calibrated Method
A third class of metallicity diagnostics relies solely on calibration of strong-line ratios using photoionization models. These methods are not susceptible to observational limitations imposed by empirical calibrations relying on the faint \([\text{O} \text{ii}]\lambda4363\) line. Therefore, the model metallicities are well constrained and the parameterization is well defined over a broad range.

The methods of Kobulnicky & Kewley (2004) and Kewley & Dopita (2002) calibrate strong-line ratios to metallicities determined using photoionization models. Kobulnicky & Kewley (2004) rely on the \(R23\) diagnostic, which is the sum of the flux of \([\text{O} \text{ii}]\lambda\lambda3727, 3729\) and \([\text{O} \text{iii}]\lambda\lambda4959, 5007\) normalized to the \(H\beta\) flux. Though Kobulnicky & Kewley (2004) apply explicit corrections for the ionization parameter variations, there still may be some systematic effects that are uncorrected. Therefore, we also use the Kewley & Dopita (2002) method which relies on the \(N2/O2\) ratio, which is the \([\text{N} \text{ii}]\lambda6584 / [\text{O} \text{ii}]\lambda\lambda3727, 3729\) flux ratio. This diagnostic is shown to be independent of the ionization parameter. Finally, for the SDSS sample of galaxies we also use the Tremonti et al. (2004) method which relies on fitting theoretical models of integrated galaxy spectra to the most prominent optical lines. For a review of these methods, we refer the reader to the Appendix of Kewley & Ellison (2008). We provide conversions between two commonly used \(R23\) diagnostics and the direct method in the Appendix of this paper.

3.2.4. Nitrogen to Oxygen Ratio
In order to investigate the effect of enhanced nitrogen enrichment with respect to oxygen, we measure the nitrogen abundance from emission line fluxes. \(N/\text{O}\) is empirically calibrated using star-forming galaxies in the SDSS with direct measurements of ionic abundances by Amorín et al. (2010). The calibration is given by
\[\log(N/O) = -0.86 + 1.94 \times N2S2 + 0.55 \times N2S2^2, \]
(3)
where
\[N2S2 = \log \left(\frac{[\text{N} \text{ii}]\lambda6584}{[\text{S} \text{ii}]\lambda\lambda6717, 6731} \right). \]
(4)
\([\text{S} \text{ii}]\) is strongly correlated to \([\text{O} \text{ii}]\) and due to less uncertainty in the reddening correction, the relation between \(N/\text{O}\) and \([\text{N} \text{ii}] / [\text{S} \text{ii}]\) shows less dispersion (\(\sim 0.1\) dex) than the relation between \(N/\text{O}\) and \([\text{N} \text{ii}] / [\text{O} \text{ii}]\).

3.3. Ionization Parameter
The ionization parameter characterizes the level of ionization of the gas in an \(\text{H} \text{ii}\) region. The ionization parameter is defined as
\[q = \frac{F_i}{n}, \]
(5)
where \(F_i\) is the flux of ionizing photons per unit area and \(n\) is the number density of hydrogen atoms. The ionization parameter has units of velocity and can be thought of as the maximum velocity attainable by an ionization front driven by the local radiation field. The ionization parameter can best be constrained observationally by comparing two ionization states of single species. A commonly used diagnostic for measuring the ionization parameter is the \(O32\) parameter defined as
\[O32 = \log \left(\frac{[\text{O} \text{iii}]\lambda\lambda4959, 5007}{[\text{O} \text{ii}]\lambda\lambda3727, 3729} \right). \]
(6)
However, Kewley & Dopita (2002) have shown that the \([\text{O} \text{iii}] / [\text{O} \text{ii}]\) ratio is not only dependent on the ionization parameter, but is also sensitive to metallicity.

Conversely, many of the strong-line diagnostics are sensitive to the ionization parameter. One approach to disentangling the relationship between metallicity and the ionization parameter is to assign an initial guess of the metallicity in order to constrain the ionization parameter. Using this estimate of the ionization parameter, a second, more accurate estimate of the metallicity can be obtained. This process can be iterated until the values of both the ionization parameter and metallicity converge.

We measure the ionization parameter and metallicity using the Kobulnicky & Kewley (2004) diagnostic. This method uses the iterative scheme described above. The ionization parameter is determined from the \(O32\) line ratio and the metallicity is determined from the \(R23\) line ratio, defined as
\[R23 = \log \left(\frac{[\text{O} \text{iii}]\lambda\lambda4959, 5007 + [\text{O} \text{ii}]\lambda\lambda3727, 3729}{H\beta} \right). \]
(7)
For details of how metallicity and ionization parameter are determined see the Appendix of Kewley & Ellison (2008).

3.4. Star Formation Rates
The star formation rates (SFRs) for the SDSS samples were made available in the DR7. These SFRs are measured using the technique of Brinchmann et al. (2004) who empirically correct for aperture effects. Salim et al. (2007) found that in galaxies with low-level star formation, the SFRs were overestimated using this technique. Salim et al. (2007) correct this overestimate and this has been applied to the SFRs provided in the DR7.

For the DEEP2 and Zhao et al. (2010) samples we use the conversion of Kennicutt (1998) to determine SFRs from \(H\alpha\) luminosities. This is given by
\[\text{SFR} (M_{\odot} \text{ yr}^{-1}) = 4.6 \times 10^{-42} L_{H\alpha} \text{ (erg s}^{-1}), \]
(8)
where \(L_{H\alpha}\) is the \(H\alpha\) luminosity and the pre-factor has been scaled down by a factor 1.7 to convert from a Salpeter (1955) to a Chabrier (2003) IMF. For the DEEP2 data we scale the uncalibrated \(H\alpha\) fluxes to the photometry and for the Zhao et al. (2010) sample, \(H\alpha\) luminosities are determined by Gil de Paz et al. (2003) from narrowband \(H\alpha\) filter images. We correct for dust extinction in both these samples using the \(E(B-V)\) derived from the SED fit when determining stellar mass.

4. THE SDSS MZ RELATION AND ITS SCATTER
We determine the SDSS MZ relation from \(\sim 20,000\) galaxies with metallicities determined using the \(N2\) method given by Equation (2). In Figure 4, we show the MZ relation and its scatter. We note that throughout this paper, when referring to the
scatter in metallicities, we explicitly mean to refer to the range of observed metallicities at a fixed stellar mass. The relation is determined by sorting the data into 50 equally populated bins of stellar mass and taking the median mass and metallicity in each bin. The relation is plotted by the black squares and the scatter is shown by the solid and dotted gray curves which are the 68% and 95% contours of the distribution, respectively. For galaxies at fixed stellar masses $<10^{9.5} \, M_\odot$, the scatter is symmetric. At higher stellar masses, the distribution is skewed toward lower metallicity galaxies (with a skewness near -1). A large part of this skewness can be attributed to the saturation of strong-line methods at high metallicities (Kewley & Dopita 2002). Additional skewness may also be the result of a physical upper limit to the metallicity attainable by a galaxy, though this is not well established and separating out these two effects is beyond the scope of this work.

The dashed line in Figure 4 is a linear fit to the data. The turnover observed in Figure 4 is due to a combination of a real turnover in metallicities as a function of stellar mass and saturation of the $N2$ parameter at high metallicities. We only fit to the linear portion of the SDSS MZ relation below the turnover ($12 + \log(O/H) \lesssim 8.8$). The fit is performed by minimizing the square of the residuals and is parameterized as

$$12 + \log(O/H) = (8.585 \pm 0.003) + (0.47 \pm 0.01)X_\star. \quad (9)$$

Here, $X_\star = \log(M_\star) - 9$ and M_\star is the stellar mass in solar mass units. We fix the zero point at a stellar mass of $10^9 \, M_\odot$ in order to reduce the covariance between the slope and intercept. The errors in the fit are assessed by bootstrapping the sample. We note that we consider this fitted MZ relation as the fiducial relation for later comparisons with the data.

Lee et al. (2006) examine the MZ relation for 27 low-mass galaxies and conclude that the scatter is similar over five decades of stellar mass. However, using $\sim 20,000$ galaxies from SDSS (Figure 4), it becomes clear that the scatter increases substantially for lower stellar mass galaxies down to stellar mass of $\sim 10^{8.5} \, M_\odot$. We test whether the larger scatter at lower stellar masses is real or an artifact of the method used in determining metallicities. We examine the scatter as a function of stellar mass using several diagnostic methods of metallicity determination. We quantify the scatter in the MZ relation as the magnitude of the interval containing 95% of the data for a given stellar mass bin.

Figure 5 shows the scatter as a function of stellar mass for several diagnostics. Tremonti et al. (2004) determine the MZ relation from $\sim 50,000$ galaxies in the SDSS. The solid black line is the scatter in their determination of the MZ relation. We have subtracted 0.2 dex from their mass determination for consistency with our measurements of stellar mass (Zahid et al. 2011). The green dot-dashed, red triple dot-dashed, and blue dotted curves are the scatter for the MZ relation, with the Zahid et al. (2011) selection, determined using the diagnostics of Kobulnicky & Kewley (2004), Yin et al. (2007), and Kewley & Dopita (2002), respectively. The blue long-dashed curve is the theoretical scatter determined from cosmological hydrodynamical simulations (Davé et al. 2011a; more details in Section 9).

Strong-line methods, in particular diagnostics using $N2$, are known to saturate at high metallicities. This is partly responsible for the low scatter observed at high stellar masses for the MZ relations determined from the $N2$ diagnostic (red curve). However, the trend of decreasing scatter in the MZ relation is continuous and is observed across all stellar masses, in particular at lower stellar masses where the strong-line diagnostics are not saturated. The mean relative errors in the $N2$, $N2O2$, and $R23$ line ratios used in the Yin et al. (2007), Kewley & Dopita (2002), and Kobulnicky & Kewley (2004) diagnostics are 0.02, 0.05, and 0.04 dex, respectively. The observational uncertainties of the $N2O2$ and $R23$ line ratios increase with stellar mass due to the diminishing line strength of the oxygen lines at higher metallicity. Even at high stellar masses, the observational uncertainties are substantially smaller than the observed scatter and we note that for SDSS galaxies, systematic uncertainties associated with strong-line methods dominate over the observational uncertainties (Kewley & Ellison 2008). In general, the magnitude of the observed scatter in Figure 5 is significantly larger than either the observational or systematic uncertainties and we attribute this to intrinsic scatter in metallicities of galaxies at a fixed stellar mass.

In Figure 4 we see that the reason the scatter is larger at lower stellar mass is due to the fact that the metallicity of the most
enriched galaxies in any given stellar mass bin decreases with a much more shallow slope than the least enriched galaxies. When comparing the high-mass end to the low-mass end of the MZ relation in Figure 4, we see that the metallicities of the most enriched galaxies only decrease by ~0.2 dex over 2 decades of stellar mass, whereas the metallicities of the least enriched galaxies decrease by ~1 decade.

5. METALLICITIES OF LOW-MASS GALAXIES

In this section, we extend our study of the scatter in the MZ relation to low-mass galaxies. Because different methods have been applied in determining the metallicities of metal-poor and metal-rich galaxies, we present them separately in Sections 5.1 and 5.2, respectively.

5.1 Metal-poor Dwarf Galaxies

We plot the mass and metallicity of the sample of dwarf galaxies taken from Lee et al. (2006) and Zhao et al. (2010) in Figure 6. The metallicities for this sample have been determined using the direct method (see Section 3.2.1). The fiducial MZ relation is plotted as the dashed line. In Figure 6, we linearly extrapolate the 68% (solid line) and 95% (dotted line) contours to lower masses by fitting the contours in the linear portion of the fiducial relation (8.5 \(\lesssim \log(M_*) \lesssim 9.4 \)). We extrapolate the observed scatter to investigate whether at the low-mass end the scatter is consistent with the expectation from the fiducial relation.

The slope of the MZ relation determined from this sample alone is 0.27 \(\pm 0.02 \). The fit and error have been determined by a bootstrapping method. The slope differs significantly (9\(\sigma \)) from the slope of the fiducial relation (0.47 \(\pm 0.01 \); see Equation (9)) determined from the N2 method as shown in Figure 4. We note that the N2 method used in determining the fiducial relation is calibrated to be on the same absolute scale as the direct method. The metallicities of the 87 dwarf galaxies plotted in Figure 6 deviate strongly from the distribution inferred from the SDSS MZ relation such that no low-mass, metal-rich galaxies are observed. The smaller scatter observed in low stellar mass galaxies was noted by Lee et al. (2006).

The small scatter observed in these data could be a result of selection bias attributable to the direct method of metallicity determination. The [O\textsc{iii}]\(\lambda4363 \) line becomes too weak to observe at \(\sim 0.5 Z_0 (12 + \log(O/H) \sim 8.5) \) and above. This is because the [O\textsc{iii}]\(\lambda4363 \) line strength is anti-correlated to metallicity, such that lower metallicity objects have stronger emission. These observational effects could lead to an artificial suppression of the scatter. In particular, the fact that all the galaxies in the sample have \(12 + \log(O/H) \lesssim 8.5 \) and that the highest metallicity galaxy observed at a given stellar mass is a strong function of stellar mass likely results from observational biases associated with the direct method.

5.2 Metal-rich Galaxies from SDSS and DEEP2

In Figure 7, we plot the masses and metallicities of the DEEP2 galaxies along with the sample from Peeples et al. (2008) and our supplemental SDSS sample. The metallicities for these galaxies are determined from the N2 calibration of Yin et al. (2007) given in Equation (2). For 31% (240/770) of the DEEP2 sample of galaxies, [N\textsc{ii}]\(\lambda6584 \) is not detected at a 3\(\sigma \) level. For these galaxies we adopt a 3\(\sigma \) upper limit value for [N\textsc{ii}]\(\lambda6584 \) when determining the metallicity. The dashed line is the extension of the fit to the linear portion of the SDSS MZ relation as seen in Figure 6. The 68% (solid line) and 95% (dotted line) contours of the fiducial relation have been extrapolated for stellar masses below \(\log(M_*) \lesssim 8.5 \). The median observational uncertainty in the metallicities of the detected DEEP2 galaxies is 0.05 and for the Peeples et al. (2008) and SDSS supplemental sample it is 0.008 dex.

Opposite to the behavior of the [O\textsc{iii}]\(\lambda4363 \) line, the [N\textsc{ii}]\(\lambda6584 \) line becomes stronger at higher metallicities. The fixed magnitude limit of the DEEP2 survey means that at lower stellar masses only the strongest [N\textsc{ii}]\(\lambda6584 \) emitters will be detected. This effect can be seen in Figure 7 where the lowest metallicity object observed at a given mass increases in metallicity with decreasing stellar mass. This is opposite to the observational bias present in the samples of Lee et al. (2006) and Zhao et al. (2010), which have direct method metallicities.

These data for the first time reveal a population of low-mass, metal-rich galaxies down to stellar masses of \(\sim 10^6 M_\odot \). By combining two methods in determining metallicity which have the opposite observational bias, we find a significantly higher scatter in the metallicities of low-mass galaxies than previously reported. Because of incompleteness and sample bias, we cannot reliably determine the MZ relation or quantify its scatter at low stellar masses. In Section 7, we derive a lower limit for the observed scatter in the metallicities of low stellar mass galaxies.

6. SYSTEMATIC UNCERTAINTIES IN MASS AND METALLICITY

6.1 Stellar Mass Estimates

Our apparently low-mass, metal-rich objects could be higher mass galaxies with systematically underestimated stellar masses. This could possibly result from heavy obscuration due to dust. For our sample of 94 metal-rich galaxies from SDSS, we determine the extinction from the Balmer decrement. The mean \(E(B - V) \) for our sample is 0.29 \(\pm 0.12 \). We do not observe H\(\beta \) in our DEEP2 sample and therefore determine the extinction from the SED fit. The mean \(E(B - V) \) for our DEEP2 sample is 0.26 \(\pm 0.16 \). Our metal-rich sample of galaxies have values of extinction consistent with star-forming galaxies in the local universe (e.g., Jansen et al. 2001) and are not found to suffer from heavy extinction. Moreover, our method for determining stellar masses corrects for extinction and we remove galaxies.
The velocity dispersion of a galaxy has been shown to correlate with the stellar mass with some scatter (e.g., Kassin et al. 2007). Therefore, low velocity dispersion can be taken as an indication of low stellar mass. The line-of-sight velocity dispersion for the DEEP2 sample is given by Weiner et al. (2006) as

$$\sigma_{\text{disp}} = \frac{c}{\lambda_{\text{obs}}} (\sigma_{\text{obs}} - \sigma_{\text{inst}})^{1/2},$$

where σ_{disp} is the velocity dispersion given in km s$^{-1}$, λ_{obs} is the observed wavelength, and σ_{obs} and σ_{inst} are the observed line width and instrumental resolution, respectively. For the DEEP2 sample, the velocity dispersion is primarily determined from the Hα emission line. For the DEEP2 data the instrumental resolution is 0.56 Å (Weiner et al. 2006). The velocity dispersion becomes unreliable when $\sigma_{\text{disp}} > c\sigma_{\text{inst}}/\lambda_{\text{obs}}$ due to the fact that small errors in the line width translate to large errors in the velocity dispersion (Weiner et al. 2006).

Figure 8 shows that the stellar mass is correlated to the velocity dispersion, as expected. The median velocity dispersion of our DEEP2 sample is 26 km s$^{-1}$. Below \sim25 km s$^{-1}$, shown by the vertical dashed line, galaxies have unreliable determination of the velocity dispersion due to their small line widths but are still consistent with low stellar masses. We are not able to perform the same comparison for our sample of galaxies from SDSS because of the lower instrumental resolution of that survey.

6.2. Metallicity Estimates

Recently, Berg et al. (2011) have re-examined four of the metal-rich galaxies from the sample of Peeples et al. (2008). Using new spectroscopic observations along with detailed comparisons with photoionization models, Berg et al. (2011) conclude that the metallicities of the four galaxies have been overestimated. They attribute this overestimate of the oxygen abundance to high N/O and to low ionization.

6.2.1. The Ionization Parameter

We gain a handle on the ionization level of the gas by examining the ionization parameter (see Section 3.3 for derivation). In Figure 9, we have plotted the ionization parameter as a function of stellar mass. The red points plot the sample from Peeples et al. (2008) with the four galaxies investigated by Berg et al. (2011) circled. For half of the Peeples et al. (2008) sample, the [O II] doublet is not observed. For these data we have used the [S II] λ6717, 6731 line as a proxy. The [S II] flux is strongly correlated to the [O II] flux owing to their similar ionization potential and primary origin. We derive a linear relation between the [S II] and [O II] dereddened line flux from \sim20,000 galaxies.
in the Zahid et al. (2011) sample and use this to infer the [O III] line flux when only [S II] is observed. The rms in the relation is 0.16 dex. These objects are shown by the red stars in Figure 9. The dashed black curve is the ionization parameter for the SDSS sample binned by stellar mass and the gray solid and dotted curves are the 68% and 95% contours, respectively.

We are not able to ascertain the distribution of ionization parameter for our DEEP2 sample due to inability to measure the same line at two ionization stages (e.g., [O III] and [O II]). It may be that our sample of DEEP2 galaxies have low ionization, though this is not a general feature of low-mass, metal-rich galaxies. Future observations may shed light on this issue.

Consistent with the findings of Berg et al. (2011), we find that three of the four galaxies that they investigated have ionization parameters that are lower than the larger SDSS sample. However, many of the galaxies in the supplemental SDSS sample (blue points) and the sample of Peeples et al. (2008, red points) appear to have ionization parameters consistent with the larger SDSS sample from Zahid et al. (2011). This suggests that though low ionization may be an issue for some of the low-mass, metal-rich galaxies, it is not generally the case.

6.2.2. Empirical Correction for Nitrogen Enhancement

For our metal-rich sample we use the [N II]λ6584 line to measure the oxygen abundance. Nitrogen is known to have a primary component, formed mostly in massive stars, and a secondary component, formed in low- and intermediate-mass stars. Oxygen on the other hand is a primary element. Oxygen abundances inferred from N2 line ratio are known to depend on nitrogen to oxygen ratio (N/O; Storchi-Bergmann et al. 1994; Denicoló et al. 2002; Pérez-Montero & Contini 2009). The secondary production of nitrogen is dependent on the amount of oxygen already present in the star through the CNO cycle, producing a larger N/O at higher metallicity. Similarly, this dependence leads to a low dispersion in the N/O ratio at low metallicities (Edmunds & Pagel 1978; Allain et al. 1979) with the dispersion increasing at higher metallicities (Pérez-Montero & Contini 2009).

We determine N/O using Equation (3). For the DEEP2 sample we do not have flux calibrated data, so we substitute in the equivalent widths of [N II] and [S II] lines when determining N/S2. Kobulnicky & Phillips (2003) and Zahid et al. (2011) have demonstrated that substituting equivalent widths for line fluxes when measuring line ratios does not introduce significant errors. Figure 10 shows the N/O plotted as a function of stellar mass. The nitrogen abundances of the Peeples et al. (2008) and supplemental SDSS samples are elevated relative to the DEEP2 sample. This is consistent with the generally higher metallicities of the Peeples et al. (2008) and supplemental SDSS samples as compared to the DEEP2 sample (see Figure 7) and due to metallicity dependency of secondary production, an independent measure of these galaxies having high metallicities.

We derive an empirical correction for enhanced nitrogen abundance by comparing the difference between direct method metallicities with those measured using the strong-line method. We select all star-forming galaxies in the SDSS sample that have S/N > 5 detections of [O II]λ3727, 3729, [O III]λ4363, 4959, 5007, Hβ, and [S II]λ6717, 6731. There are 627 galaxies that meet this criteria. We measure the oxygen abundance using the strong-line calibration of Yin et al. (2007), the direct method as parameterized by Izotov et al. (2006) and N/O using the calibration of Amorín et al. (2010). In Figure 11, we plot the difference in metallicity between the strong-line method and the direct method as a function of N/O. The strong-line method increasingly overestimates the metallicity with respect to the direct method as a function of N/O for this sample.

We have determined the errors in Δlog(O/H) by adding in quadrature the errors from the strong line and direct method metallicities. The median error in Δlog(O/H) and N/O is 0.09 and 0.03 dex, respectively. The direct method metallicities dominate the errors in Δlog(O/H) owing to the weakness of the [O II]λ4363 line. We fit a linear relationship to the data using the MPFITEXY routine which takes into account errors in both coordinates (Williams et al. 2010). The MPFITEXY routine depends on the MPFIT package (Markwardt 2009).
Figure 11. Difference in metallicity between the strong-line method and the direct method plotted against N/O. The sample is 627 galaxies from the SDSS DR7 with emission lines of interest detected with an S/N > 5. The red line is a linear fit to the data taking into account errors in both coordinates. The median error in the metallicity difference and N/O is 0.09 and 0.03 dex, respectively. (A color version of this figure is available in the online journal.)

linear fit is given by

$$\Delta \log(O/H) = (0.64 \pm 0.03) + (0.42 \pm 0.02) \times \log(N/O) \quad (11)$$

and is plotted by the red line in Figure 11. The rms of the fit to the data is 0.11 dex, with 0.07 dex attributable to the observational uncertainties.

6.2.3. Correction Overestimates

In making the correction for N/O, we have assumed that the direct method provides the most reliable metallicity estimate and therefore have corrected our strong-line metallicities. We offer some words of caution in making this type of correction. The correction has been derived as a function of N/O. The galaxies used in deriving the empirical correction mostly lie in the region between $-2.0 < \log(N/O) < -1.0$ (see Figure 12). We have extrapolated the correction for galaxies with $\log(N/O) > -1.0$, where most of the galaxies from the Peeples et al. (2008) and our supplemental SDSS sample lie.

In applying this correction, we have assumed that the direct method provides the most reliable metallicity measure. However, temperature fluctuations and gradients in H\textsc{ii} regions may lead to underestimates of the metallicity with the direct method (Stasińska 2002, 2005; Bresolin et al. 2006). The [O\textsc{iii}]$\lambda4363$ line strength increases with temperature. In the presence of fluctuations or gradients the inferred temperature may be biased toward higher temperatures in which case it would not be representative of the H\textsc{ii} regions, especially in global spectra (Kobulnicky et al. 1999).

7. SCATTER IN MZ RELATION AT LOW MASSES

In Figure 12, we apply our derived empirical correction for enhanced nitrogen enrichment to the data. Even with the correction for enhanced N/O, low-mass, metal-rich galaxies remain.

Figure 12. Metallicity plotted against stellar mass. For the DEEP2 (black dots and gray arrows), Peeples et al. (2008, red squares), and supplemental (blue squares) sample we have determined metallicities using the N2 diagnostic. We apply an empirical correction to these data for enhanced nitrogen enrichment given in Equation (11). We also plot the samples of Lee et al. (2006, red triangles) and Zhao et al. (2010, green stars) for which metallicities have been determined using the direct method. (A color version of this figure is available in the online journal.)
overcorrecting for N\textsubscript{2} in color. The Peeples et al. (2008) galaxies (red squares) appear of SDSS galaxies (black contours) and tend to be slightly bluer the SDSS MZ relation. The sample to understand their physical nature. from SDSS appear to have colors that are consistent with the galaxies from the DEEP2 survey and the supplemental sample to be the reddest galaxies of all the samples. The metal-rich low-mass, metal-rich galaxies have overestimated metallicities However, the same analysis applied to the rest of the galaxies 7.9 < \text{E}W_{H\alpha} < 8.4. Our analysis supports this conclusion. However, the same analysis applied to the rest of the galaxies in this study also supports the conclusion that not all of the low-mass, metal-rich galaxies have overestimated metallicities.

For galaxies above 10^{10} M_\odot, Figure 12 suggests that we may be overcorrecting for N/O. Because of this potential overcorrection and the fact that the sample is incomplete, the scatter at low stellar masses could only be larger than what we observe. We consider Figure 12 to display a lower limit to the intrinsic scatter in metallicities as a function of stellar mass. The observed scatter down to 10^{7} M_\odot is only slightly lower than what is inferred from the SDSS MZ relation.

8. PHYSICAL PROPERTIES

We explore some of the physical properties of the low-mass galaxies and compare them with typical galaxies in the SDSS sample to understand their physical nature.

8.1. Galaxy Colors, SFRs and Equivalent Widths

The color–magnitude diagram is shown in Figure 13. The low-mass galaxies have lower luminosities than the main sample of SDSS galaxies (black contours) and tend to be slightly bluer in color. The Peeples et al. (2008) galaxies (red squares) appear to be the reddest galaxies of all the samples. The metal-rich galaxies from the DEEP2 survey and the supplemental sample from SDSS appear to have colors that are consistent with the galaxies from the sample of Zhao et al. (2010), which are BCD galaxies selected on the basis of their color. The gray contours are for \sim 200,000 galaxies from SDSS selected to be non-AGNs using the method outlined in Kewley et al. (2006) and have \text{z} < 0.1. The red sequence is shown by the locus of galaxies in the top right of the figure. Some of the galaxies of Peeples et al. (2008) have colors consistent with the red sequence, supporting the conclusion that these are transitional objects.

In Figure 14, we examine the SFRs as a function of stellar mass. High-mass galaxies tend to have higher SFRs. The SFRs of Peeples et al. (2008) sample generally are lower than the other samples, consistent with their redder colors. The distribution of SFRs for the DEEP2, Zhao et al. (2010), and supplemental SDSS samples appear to be similar. The black dashed curve is the SFRs for \sim 140,000 star-forming galaxies in the SDSS sorted into 100 stellar mass bins. These data are selected to have an S/N > 5 in H\alpha and H\beta, \text{z} < 0.1 and are required to be classified as star forming in the BPT diagram. In general, the data used in this study appear to be biased toward higher SFRs relative to the local galaxies from SDSS. For the DEEP2 data, this is partly a result of redshift evolution in the SFRs as these data have \text{z} \lesssim 0.4. This plot illustrates some of the biases in the samples used in this study. A more complete sample is required to probe galaxies with lower SFRs.

In Figure 15, we plot the metallicities of our galaxies against the equivalent width of H\alpha (EW H\alpha). Here we have not applied our correction for elevated N/O as this may be an overestimate and does not affect the interpretation. The EW H\alpha is a measure of the H\alpha line flux divided by the underlying continuum. The flux of H\alpha is a proxy of star formation and the underlying continuum is dominated by the emission of the older, low- and intermediate-mass stars. This population probed by the underlying continuum of H\alpha dominates the stellar mass of a galaxy. The EW H\alpha represents a measure of the amount of star formation normalized to stellar mass and therefore changes with time. We choose to plot EW H\alpha instead of specific SFR because it is a directly observable quantity and is not subject to the uncertainties in stellar mass and SFR. There appears to be a trend in each of the samples separately such that galaxies with lower EW H\alpha tend to have higher metallicities.

8.2. Physical Nature of Low-mass Galaxies

The blue colors observed the low-mass galaxies are typical of dwarf galaxies. Schombert et al. (1995) find that their sample of
respectively. The Peeples et al. (2008) and the supplemental low-mass, metal-rich samples from SDSS are plotted in black dots and green stars, respectively. The median metallicity in 50 bins of EW Hα for the SDSS sample taken from Zahid et al. (2011) is plotted by the dashed black curve. The 68% and 95% contours are shown by the solid and dotted gray curves. The equivalent width is observed to strongly decrease with increasing metallicity.

(A color version of this figure is available in the online journal.)

Figure 15. Metallicity as a function of the equivalent width of Hα (EW Hα). The DEEP2 and Zhao et al. (2010) sample are plotted in black dots and green stars, respectively. The Peeples et al. (2008) and the supplemental low-mass, metal-rich samples from SDSS are plotted by the red and blue squares, respectively. The median metallicity in 50 bins of EW Hα for the SDSS sample taken from Zahid et al. (2011) is plotted by the dashed black curve. The 68% and 95% contours are shown by the solid and dotted gray curves. The equivalent width is observed to strongly decrease with increasing metallicity.

(Dwarf spiral galaxies have colors that are bluer than the normal early-type spirals despite their low SFRs (see also Hidalgo-Gámez 2004). These colors are also consistent with those observed in quiescent gas-rich dwarf galaxies (van Zee et al. 1997). Peeples et al. (2008) sample of galaxies are, in general, the reddest galaxies. This is consistent with the lower SFRs observed in those galaxies. Blue colors are a general property observed in star-forming galaxies. Blue colors imply a population of young, high-mass stars which tend to dominate the luminosity output of a galaxy. The fact that blue colors are observed in these dwarf galaxies even though many exhibit low levels of star formation as inferred from the Hα line luminosity suggests that even low levels of localized star formation in low stellar mass systems can dominate the color. Peeples et al. (2008) observe that many of their galaxies are dominated by blue cores. In the supplemental SDSS sample, a few galaxies also have blue cores, though in the majority of galaxies star formation appears to be more widespread.

One of the most interesting features of our sample of galaxies is the relation between metallicity and EW Hα as seen in Figure 15. A similar trend is observed in the DEEP2, SDSS, and Zhao et al. (2010) sample such that the highest metallicity objects in each sample have the lowest EWs. However, though the three samples have a similar range in EWs, they are somewhat segregated in metallicity such that they cluster into what appears to be distinct populations. In Figure 15, there appears to be a continuum between the DEEP2 and SDSS data, but a gap in metallicity between the Zhao et al. (2010) sample. We hypothesize that a complete census of low-mass galaxies cover the full range of observed metallicities and EW Hα.

The low and high metallicity sample of galaxies investigated in this study have similar masses, colors, SFRs, and EW Hα. This implies that these galaxies likely have similar stellar populations. Under this assumption, the most straightforward interpretation of Figure 15 would be that the differing metallicities in the samples is due to the gas content of the galaxies, such that the lower metallicity galaxies at a given EW Hα are more gas rich. This is consistent with the interpretation of Dellenbusch et al. (2007) and Peeples et al. (2008).

9. DISCUSSION

Understanding and quantifying the scatter in the MZ relation is crucial to uncovering the origin of the MZ relation. Observations of low-mass, metal-rich galaxies help shed light on this issue but also present us with a recently discovered population of galaxies requiring further investigation and characterization.

The MZ relation at low stellar masses has only been studied by a few authors (Tamura et al. 2001; Lee et al. 2006; Vaduvescu et al. 2007; Petropoulou et al. 2011). These studies have been hampered by a small number of observations owing to the faintness of low stellar mass galaxies and selection biases. Lee et al. (2006) conclude that MZ relation extends to lower metallicities with no increase in the scatter. We have shown that the scatter in the MZ relation increases substantially (~0.4 dex) over the two decades of stellar mass observed in the SDSS MZ relation (Figure 5). By examining data from the DEEP2 and SDSS surveys, we are able to identify low-mass, metal-rich galaxies that appear to be consistent with the increasing scatter implied by the SDSS MZ relation (Figure 4). The observations of low-mass, metal-rich galaxies challenge the notion that the MZ relation extends to low stellar masses with no increase in the scatter as found by Lee et al. (2006). Furthermore, given their low stellar masses and shallow potential wells implied by the velocity dispersion (see Figure 8), it is difficult to understand these galaxies in the context of the canonical explanation for the MZ relation which argues that shallow potential wells in lower mass galaxies prevent them from enriching due to loss of metals through galactic scale outflows (e.g., Tremonti et al. 2004).

The MZ relation is observationally well established in both the local (e.g., Tremonti et al. 2004) and high redshift universe (e.g., Erb et al. 2006; Mannucci et al. 2009). The MZ relation shows that the median (or mean) metallicity of star-forming galaxies increases as a function of stellar mass. Our results suggest that in the local universe this is largely driven by a more rapid decline in the metallicity of the most metal-poor galaxies relative to metal-rich galaxies at lower stellar masses (see Figures 7 or 12). This observed trend puts stronger constraints on theoretical chemical evolution models attempting to reproduce the MZ relation.

In Figure 5, we have compared the scatter in the MZ relation from several diagnostics with the theoretical scatter taken from the smoothed particle hydrodynamical simulations of Davé et al. (2011a, 2011b). Davé et al. (2011a) investigate the MZ relation using several prescriptions for winds. Their simulations include a no wind model, two constant wind models (with velocities of 340 and 680 km s⁻¹), and a momentum-driven wind such that the wind speed scales with the velocity dispersion of the galaxy. The constant wind models have considerably higher scatter at low stellar masses than the observations and the no wind model generally shows less scatter than the observations. The momentum-driven wind model best characterizes the observational data and the scatter predicted by this model is shown in Figure 5. The overall normalization is a free parameter in the models but in addition to the scatter, the shape and slope of the local MZ relation (from Tremonti et al. 2004) are also well fit by this model (Davé et al. 2011a; see their Figure 1). The predicted scatter in the models deviates most strongly at lower stellar masses. Therefore, the scatter in the MZ relation at lower masses will provide important tests.
for theoretical models of chemical evolution. However, current simulations (e.g., Davé et al. 2011a, 2011b) do not resolve galaxies with stellar masses below \(10^9 M_\odot\) and we await higher resolution simulations to make this comparison.

From their simulations, Davé et al. (2011a) argue that galaxies evolve around an equilibrium MZ relation. Large-scale gas flows perturb galaxies from equilibrium and the scatter in the MZ relation is a quantitative measure of the time it takes to return to equilibrium which, in their simulations, is re-established through infall of gas. They argue if the dilution time of the gas (gas mass divided by inflow rate) is small compared to the dynamical time of the galaxy (at the virial radius), then the scatter will be small. Within this framework, our observations suggest that the timescales for galaxies to equilibrate once they are perturbed are longer at lower stellar masses (i.e., the dilution time is longer than the dynamical time at lower stellar masses).

In the local universe, the SFRs of star-forming galaxies are (anti-)correlated to the metallicity in the sense that the higher metallicity objects at a given stellar mass have lower SFRs (Ellison et al. 2008; Mannucci et al. 2010; Davé et al. 2011a). For our low-mass samples, this trend is only weakly present in the data (see Figure 14). Specifically, the scatter in the MZ relation at low stellar masses can be slightly reduced if SFRs are accounted for in the manner presented in Mannucci et al. (2010). However, the SDSS supplemental sample and some of the DEEP2 galaxies appear to have both high metallicities and SFRs, inconsistent with the observed trend at higher stellar masses. The full implication of this correlation is still not well understood, though it is probably related to the gas content which regulates both the gas-phase abundance and the SFR. The fact that this effect is relatively weak in lower mass galaxies suggests that the relative contribution of various physical mechanisms governing the metallicities of low-mass galaxies may differ from higher mass galaxies.

Our analysis supports the conclusion that the sample of low-mass, metal-rich galaxies appear to be “transitional” dwarf galaxies nearing the end of their star formation (Grebel et al. 2003; Peeples et al. 2008). This interpretation suggests that metal-rich galaxies have low gas fractions relative to other dwarf galaxies of similar stellar mass and the low gas fractions are largely responsible for the high gas-phase oxygen abundance observed. Dellenbusch et al. (2007) come to similar conclusions for their smaller sample of low-luminosity, metal-rich galaxies. In this evolutionary scenario, these galaxies would represent the link between the gas-rich dwarf irregulargalaxies and the gas-deficient dwarf spheroidals and ellipticals. The bluer galaxies in the supplemental SDSS sample would be at an earlier evolutionary stage in this transition, where star formation is more widespread than the Peeples et al. (2008) sample but gas content is lower than their low metallicity counterparts. Accurate determinations of the gas content of low-mass, metal-rich galaxies are important to test and establish this scenario.

The environment of these low-mass galaxies may play a crucial role in determining their chemical properties. Both observations and simulations have suggested that galaxies in dense environments tend to have metallicities over and above those expected from the correlation of stellar mass and the environment (Cooper et al. 2008; Davé et al. 2011a). Moreover, the stripping away of gas from low-mass galaxies in high-density environments, either through ram pressure stripping or interactions, has been cited as the possible explanation for high metallicities (Boselli et al. 2008; Petropoulou et al. 2011). However, Peeples et al. (2008) conclude that their galaxies are fairly isolated and the DEEP2 and supplemental SDSS sample of galaxies, at least in projection, do not appear to be in high-density environments though further investigation into the environments of low-mass, metal-rich galaxies is necessary.

In order for ram pressure stripping to occur effectively it is estimated that \(P_{\text{ram}} \sim \rho_{\text{IGM}} u^2 > \sigma^2 \rho_{\text{gas}} / 3\) (Gunn & Gott 1972). Here, \(P_{\text{ram}}\) is the ram pressure, \(\rho_{\text{IGM}}\) is the gas density of the intergalactic medium (IGM), \(u\) is the velocity of the galaxy through the IGM, \(\sigma\) is the velocity dispersion, and \(\rho_{\text{gas}}\) is the gas density of the galaxy. Typical IGM densities (\(n_H < 10^{-5} \text{ cm}^{-3}\)) are likely not sufficient to remove significant amounts of gas. However, as Grebel et al. (2003) argue, a combination of tidal effects along with ram pressure stripping as dwarf galaxies pass near giant galaxies or dense regions of the IGM (if the medium is inhomogeneous) is the most plausible mechanism for gas removal. In this scenario, even if dwarf galaxies are not currently found in high-density environments, previous encounters could remove gas from the ISM and any subsequent star formation would lead to elevated levels of enrichment due to the low gas fractions.

The blue cores and low SFRs of many of the metal-rich galaxies suggest that star formation is not widespread throughout the galaxy. Localized star formation opens up the possibility that the high metallicities observed in some of these galaxies may be a result of the nebular emission dominated by individual H II regions. In this case, the inferred metallicity may not be indicative of the global metallicity of the galaxy. Gu et al. (2006) were the first to observe a metal-rich dwarf galaxy. From detailed photometric and spectral analysis of IC 225, they find that there are two photometric cores in this galaxy that are spatially separated; the off-nuclear core being bluer than the blue nucleus. From the redshifts of the line emission and absorption, they conclude that the line emission originates from the off-nuclear core. Follow-up kinematic study of the nuclear region of IC 225 using integral field spectroscopy have confirmed this result (Miller & Rudie 2008).

In most star-forming galaxies, the gas-phase oxygen abundance is determined from emission lines integrated over many star-forming regions and hence considered to reflect the global metallicity. If, in these low-mass systems, the emission lines are dominated by a single region, the metallicity determined from these lines may not reflect the global gas-phase abundance. Spatially resolved spectroscopic studies of the metal-rich dwarf galaxies will help to establish whether the high metallicities observed are representative of global metallicities or are localized to individual H II regions. If the latter is true, determining at what stellar masses this effect becomes pronounced and the systematic effects this has on metallicity studies of galaxies is crucial.

10. SUMMARY

In this contribution, we have investigated the metallicities of low-mass galaxies. Our data come from culling the literature and from identifying low-mass galaxies in the SDSS and DEEP2 survey. We summarize our main findings as follows.

1. We examine the scatter in the local stellar MZ relation determined from \(\sim 20,000\) galaxies in the SDSS. We find that the scatter increases with decreasing stellar mass. We observe this trend using several diagnostic methods of metallicity determination mitigating the systematic effects and uncertainties associated with any particular diagnosis. The theoretical scatter taken from smoothed particle
The low stellar mass MZ relation derived from galaxies with metallicities determined using the direct method shows a smaller range of metallicities than the SDSS MZ relation. We attribute this lower observed scatter to selection bias in galaxies with metallicities determined by the direct method. Using the N2 strong-line diagnostic method, we provide observations of low-mass, metal-rich galaxies. We examine systematic uncertainties of enhanced nitrogen enrichment and variations in the ionization parameter to help establish the metal-richness of these low-mass galaxies. The results challenge the notion that the scatter in the low stellar MZ relation is small and constant with stellar mass. Due to incompleteness of our sample and the possibility that our empirical correction for elevated N/O is overcorrecting the data, we give a lower limit to the scatter at low stellar masses (see Figure 12).

3. Low-mass, metal-rich objects have been identified in the literature as the transitional objects between gas-rich dwarf irregulars and gas-poor dwarf spheroidals and ellipticals (Dellenbusch et al. 2007; Peeples et al. 2008). We examine the physical properties of these low-mass galaxies and find that they are generally consistent with this scenario.

Further observations are required to understand these recently discovered population of galaxies. In particular, accurate gas mass determinations will help to establish these low-mass, metal-rich galaxies as gas poor. Spatially resolved spectroscopy of individual galaxies will help to determine if the metallicities inferred from the emission lines are indicative of the global metallicities. The effects that nitrogen enhancement and low ionization parameter have on metallicities are not well understood. A firm observational basis is required for deriving empirical corrections. Finally, detailed investigations into the environments of these galaxies may shed light on physical mechanisms leading to their ostensibly high metallicities and their roles within the sequence of galaxy evolution.

H.J.Z. and L.J.K. gratefully acknowledge support by NSF Early Career Award AST07-48559. F.B. gratefully acknowledges the support from the National Science Foundation Grants AST-0707911 and AST-1008798. We thank Kevin Bundy for generously sharing his K-band photometry and Yinghe Zhao for providing their data. We also thank Ben Weiner, Dan Weisz, and Danielle Berg for useful discussion, and Danielle Berg for providing their line flux measurements that were not published. We are grateful to Stephane Arnout and Olivier Ilbert for making their photo-z code available for use in estimating galaxy stellar mass. We acknowledge the cultural significance Mauna Kea has for the Hawaiian community and with all due respect say mahalo for its use in this work.

We thank the DEEP2 team for making their data publicly available. The analysis pipeline used to reduce the DEIMOS data was developed at UC Berkeley with support from NSF Grant AST-0071048.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

Figure 16. Comparison of the N2 metallicity diagnostic with the direct method determination using the [O iii]λ4363 temperature sensitive line (Izotov et al. 2006). We have determined the metallicities using the strong-line diagnostics calibrated by Pettini & Pagel (2004, left) and Yin et al. (2007, right). The top panels show metallicities derived for individual H II regions. The bottom panels show global metallicities. The red triangles are 20 dwarf irregular galaxies from Lee et al. (2006). For these galaxies we sum individual spectra for a given galaxy to obtain an integrated measure. The green stars are 60 compact blue galaxies with metallicities taken from Zhao et al. (2010) and the N2 values are taken from their paper. The solid line in each plot is the one-to-one agreement and the dashed line is a linear bisector fit.

(A color version of this figure is available in the online journal.)

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

APPENDIX

A.1. Comparison of N2 Diagnostics

In Figure 16, we compare the diagnostics of Pettini & Pagel (2004, left panels) and Yin et al. (2007, right panels). In the top panels we compare data compiled from the literature taken from the objects investigated by Lee et al. (2006). The compiled data are emission line measurements for individual H II regions. Only H II regions where the [O iii]λ4363, [N ii]λ6584, and Hα lines are measured are included. In the bottom panels, the comparison between the methods is made for galaxies taken from the samples of Lee et al. (2006) and Zhao et al. (2010). For the Lee et al. (2006) sample, the integrated flux is determined by summing the flux from individual H II regions. The T_e metallicities were calculated using the iterative scheme presented by Izotov et al. (2006).

In Figure 16, the solid line in each plot is the one-to-one agreement. The data are independent and have errors in both the
x- and y-directions. We perform a linear bisector fit using the routine robust_linefit.pro in IDL in order to assess how well the data derived from the diagnostically agree with the direct metallicity determination. The dashed lines are a linear bisector fit in each case. A scatter between the relation of the direct and strong-line method of 0.30, 0.35, 0.23, and 0.24 dex are observed in the top left, top right, bottom left, and bottom right panels, respectively. The greater slope in the Yin et al. (2007) calibration as compared to the Pettini & Pagel (2004) calibration leads to a slightly larger scatter (compare Equations (1) and (2)). Though the Pettini & Pagel (2004) metallicities match the direct determinations reasonably well, the Yin et al. (2007) metallicities provide a more consistent calibration at lower metallicities.

A.2. Conversion of R23 to T, Metallicities

We give the conversions required to make metallicities from two commonly used calibrations of R23 consistent with the direct method at low metallicities. The left and right panel of Figure 17 show the metallicities for the same H\textsc{ii} regions as Figure 16 determined from the calibrations of McGaugh (1991) and Kobulnicky & Kewley (2004), respectively. The prime quantities are those diagnostics linearly converted to be consistent with the direct method metallicities determined from the iterative scheme of Izotov et al. (2006). This is also consistent with the N2 line ratio metallicity calibration determined by Yin et al. (2007). We note that these conversions should only be used when the metallicities are known to be on the lower metallicity branch of R23.

Figure 17. Metallicities determined from R23 compared with the direct method. The left and right panel show the metallicity determined using the McGaugh (1991) and Kobulnicky & Kewley (2004) metallicity diagnostics, respectively. The solid line is the one-to-one correspondence and the dashed line is a linear bisector fit to the data.

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Alloin, D., Collin-Souffrin, S., Joly, M., & Vigroux, L. 1979, A&A, 78, 200
Amorín, R. O., Pérez-Montero, E., & Vilchez, J. M. 2010, ApJ, 715, L128
Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJ, 585, L117
Berg, D. A., Skillman, E. D., & Marble, A. R. 2011, ApJ, 738, 2
Boselli, A., Boisier, S., Cortese, L., & Gavazzi, G. 2008, ApJ, 674, 742
Bresolin, F., Gieren, W., Kudritzki, R.-P., et al. 2009, ApJ, 700, 309
Bresolin, F., Pietrzyński, G., Urbanśka, M. A., et al. 2006, ApJ, 648, 1007
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151
Brooks, A. M., Governato, F., Booth, C. M., et al. 2007, ApJ, 655, L17
Brunda, G., & Charlot, S. 2003, MNRAS, 344, 1000
Bundy, K., Ellis, R. S., Conselice, C. J., et al. 2006, ApJ, 651, 120
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Chabrier, G. 2003, PASP, 115, 763
Coil, A. L., Newman, J. A., Kaiser, N., et al. 2004, ApJ, 617, 765
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486
Cooper, M. C., Newman, J. A., Weiner, B. J., et al. 2008, MNRAS, 383, 1058
Cowie, L. L., & Barger, A. J. 2003, ApJ, 606, 72
Dalcanton, J. J., Youchim, P., & Bernstein, R. A. 2004, ApJ, 608, 189
Davé, R., Finlator, K., & Oppenheimer, B. D. 2011A, MNRAS, 415, 11
Davé, R., Oppenheimer, B. D., & Finlator, K. 2011b, MNRAS, 416, 1354
Davis, M., Faber, S. M., Newman, J., et al. 2003, Proc. SPIE, 4834, 161
Dellensbusch, K. E., Gallagher, J. S., III, & Knezek, P. M. 2007, ApJ, 655, L29
Denicoló, G., Terlevich, R., & Terlevich, E. 2002, MNRAS, 330, 69
Drory, N., Bender, R., & Hopp, U. 2004, ApJ, 616, L103
Edmunds, M. G., & Pagel, B. E. J. 1978, MNRAS, 185, 77P
Ellison, S. L., Patton, D. R., Simard, L., & McNamahie, A. W. 2008, ApJ, 672, L107
Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, ApJ, 644, 813
Fontana, A., Pozzetti, L., Donnarumma, I., et al. 2004, ApJ, 615, 424
Grebel, E. K., Gallagher, J. S., III, & Harbeck, D. 2003, AJ, 125, 1926
Gu, Q., Zhao, Y., Shi, L., Peng, Z., & Luo, X. 2006, AJ, 131, 806
Gunn, J. E., & Gott, J. R., III 1972, ApJ, 176, 1
Hidalgo-Gámez, A. M. 2004, RevMexAA, 40, 37
Hidalgo-Gámez, A. M., Sánchez-Salcedo, F. J., & Olofsson, K. 2003, A&A, 399, 63
Izotov, Y. I., Stasinska, G., Meynet, G., Guseva, N. G., & Thuan, T. X. 2006, A&A, 448, 955
Jansen, R. A., Frans, M., & Fabricant, D. 2001, ApJ, 515, 825
Jarrett, T. H., Chester, T., Cutri, R., et al. 2000, AJ, 119, 2498
Kassin, S. A., Weiner, B. J., Faber, S. M., et al. 2007, ApJ, 660, L35
Kennicutt, R. C., Jr., & Skillman, E. D. 2001, AJ, 121, 1461
Kewley, L. J., & Dopita, M. A. 2002, ApJ, 142, 35
Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183
Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961
Kewley, L. J., Jansen, R. A., & Geller, M. J. 2005, PASP, 117, 227
Kobulnicky, H. A., Kennicutt, R. C., Jr., & Pizagno, J. L. 1999, ApJ, 514, 544
Kobulnicky, H. A., & Kewley, L. J. 2004, ApJ, 617, 240
Kobulnicky, H. A., & Phillips, A. C. 2003, ApJ, 599, 1031
Köppen, J., Weidner, C., & Kroupa, P. 2007, MNRAS, 375, 673
Kudritzki, R.-P., Urbanśka, M. A., Gazak, Z., et al. 2012, ApJ, 747, 15
Lamareille, F., Brinchmann, J., Contini, T., et al. 2009, A&A, 495, 53
Lee, H., Grebel, E. K., & Hodge, P. W. 2003, A&A, 401, 141
Lee, H., Skillman, E. D., Cannon, J. M., et al. 2006, ApJ, 647, 970
Lequeux, J., Peimbret, M., Rayo, J. F., Serrano, A., & Torres-Peimbret, S. 1979, A&A, 80, 155
Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115
Mannucci, F., Cresci, G., Maiolino, R., et al. 2009, MNRAS, 398, 1915
Markwardt, C. B. 2009, in ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohleider, D. Durand, & P. Dowler (San Francisco, CA: ASP), 251
McGaugh, S. S. 1991, ApJ, 380, 140.
