Abstract. Background/Aim: While netrin-4 plays a vital role in the vascular system, the role of netrin-1 in osteoblast differentiation is not well understood. In this study we explored whether netrin-4 has functional roles in osteoblasts.

Materials and Methods: Quantitative reverse-transcriptase polymerase chain reaction (PCR), RNA interference, the generation of plasmids, transfections, measurement of alkaline phosphatase activity, a mineralization assay, a migration assay and a cell proliferation assay were performed. Results: Netrin-4 expression was up-regulated during osteoblast differentiation and an RNA interference experiment showed that small interfering RNA used to silence netrin-4 inhibited osteoblast differentiation. Recombinant mouse netrin-4 promoted alkaline phosphatase (ALP) activity of osteoblasts and enhancement of calcium deposits. Moreover, we constructed a vector containing the netrin-4 gene on the basis of the plasmid pcDNA3.1/V5-His. Overexpression of netrin-4 enhanced differentiation of osteoblasts. Finally, recombinant mouse netrin-4 promoted cell migration of osteoblasts. Conclusion: Netrin-4 promotes differentiation and migration of osteoblasts.

Bone homeostasis refers to the balance between the formation by osteoblasts and the degradation by osteoclasts (1). The function of these cells is regulated by several factors which other organs produce to communicate with bones. Indeed, the vessels and nerves inside bones are essential for bone development and remodeling (2-4). Previous studies have demonstrated that neural and vascular regulation factors, such as semaphorins and netrins, orchestrate bone metabolism. For instance, semaphorin 3A not only promotes osteoblast differentiation, but also inhibits osteoclast differentiation and semaphorin 7A is capable of increasing the migration of osteoblasts (5, 6). Semaphorin 4D, derived from osteoclasts, potently inhibits osteoblast differentiation (7). Moreover, a recent study showed that netrin-1 plays a crucial role in osteoclast differentiation (8, 9).

Mammalian netrins including the secreted proteins (netrin-1, netrin-3, netrin-4 and netrin-5) and membrane-bound proteins (netrin-G1 and netrin-G2) are involved in the regulation of both axon guidance and angiogenesis (10). Among these netrins, netrin-4 (Ntn4) has several functions, such as promoting neurite extension, regulating pulmonary airway branching, vasculogenesis patterning, endothelial proliferation in pathological angiogenesis, and negative regulation of vascular branching in the retina (11-13). A recent study using human samples demonstrated that Ntn4 expression is an independent predictor of improved outcome in breast cancer (14). We have previously demonstrated that Ntn4, that is derived from vascular endothelial cells, inhibits osteoclast differentiation (15). As the remodeling of bone tissue is regulated by osteoclasts and osteoblasts, the question whether Ntn4 affects cellular function in osteoblasts has been raised. However, little is known about

This article is freely accessible online.

Correspondence to: Prof. Tsuyoshi Sato, Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
Tel/Fax: +81 492761859, e-mail: tsato@saitama-med.ac.jp

Key Words: Netrin-4, osteoblast, differentiation, migration.
the role of Ntn4 in osteoblasts. In this study, we explored whether Ntn4 affects the function of osteoblasts.

Materials and Methods

Reagents. Recombinant mouse Ntn4 (1132-N4) was purchased from R&D systems (Minneapolis, MN, USA).

Cell culture. The mouse pre-osteoblastic cell line MC3T3-E1 which was kindly provided from Dr. Toru Ogasawara (Department of Oral and Maxillofacial Surgery, The University of Tokyo, Japan) was maintained in α-modified minimum essential medium (α-MEM) (WAKO, Osaka, Japan) with 10% fetal bovine serum (FBS) (BioWest, Nuaillé, France). For osteoblastic differentiation assay, cells were cultured in the medium containing ascorbic acid (50 μg/mL) and β-glycerophosphate (10 mM). The medium was changed every 3 days. All cultures were maintained at 37˚C in humidified air including 5% CO₂.

Cell proliferation assay. The cells were incubated with recombinant Ntn4 at the indicated concentration for 3 days. The sample cells were quantified using a Cell Titer 96 Aqueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA), according to the manufacturer’s instructions. The measurements are represented by the means of at least three independent experiments, with each data point based on six replicates.

Measurement of alkaline phosphatase (ALP) activity. Cells were plated at a density of 2×10⁴ cells in 24-well plates. After reaching confluence, cells were incubated with ascorbic acid and β-glycerophosphate. We found that Ntn4 expression during osteoblast differentiation induced by ascorbic acid and β-glycerophosphate. We hypothesized that Ntn4 plays a vital role for osteoblast differentiation in vitro. To examine this hypothesis, we conducted qPCR to investigate the change of Ntn4 expression during osteoblast differentiation induced by ascorbic acid and β-glycerophosphate. We found that Ntn4
expression was up-regulated during osteoblast differentiation (Figure 1A). We next performed RNA interference of Ntn4 in MC3T3-E1. As seen in Figure 1B, we confirmed that the efficacy of gene knock-down by si-Ntn4 in MC3T3-E1 was almost 80~90% by qPCR analysis. Interestingly, RNA interference-mediated knock-down of Ntn4 in MC3T3-E1 significantly inhibited mRNA expression of ALP (Figure 1C). These results indicate that Ntn4 is essential for osteoblast differentiation.

Ntn4 treatment promotes both ALP activity and calcification and Ntn4 overexpression enhances ALP expression. To assess whether treatment of Ntn4 affects osteoblast differentiation, we added recombinant mouse Ntn4 to the culture of conditioned medium. Ntn4 promoted ALP activity of MC3T3-E1 (Figure 2A). Enhancement of calcium deposits was observed by adding Ntn4 to the culture (Figure 2B). To confirm that the increase of calcification is not due to the promotion of cell proliferation, we assessed whether Ntn4
affected cell proliferation in MC3T3-E1 cells. Ntn4 did not affect cell proliferation of MC3T3-E1 cells (Figure 2C).

We next examined whether Ntn4 overexpression affects osteoblast differentiation, we constructed a vector containing the Ntn4 gene on the basis of the plasmid pcDNA3.1/V5-His. As seen in Figure 3A, we confirmed that Ntn4 was significantly overexpressed in MC3T3-E1 cells by qPCR analysis. Overexpression of Ntn4 promoted ALP mRNA expression in the conditioned medium (Figure 3B). These results suggest that Ntn4 promotes osteoblast differentiation.

Ntn4 treatment promotes migration of osteoblasts. Finally, we investigated whether treatment of Ntn4 affects osteoblast migration because Ntn4 enhances migration in human
lymphatic endothelial cells (13). To establish if Ntn4 has an ability to promote cell migration, we conducted in vitro migration assay. Ntn4 treatment dramatically increased the number of MC3T3-E1 cells in the area after 12 h compared to the control (Figure 4) but did not affect proliferation (Figure 2C), suggesting that Ntn4 promotes migration of osteoblasts.

Discussion

The relationship between netrin receptor and bone morphogenetic protein. The present study demonstrates that Ntn4 plays a vital role not only in differentiation but also in migration of osteoblasts. Osteoblast differentiation is partly controlled by bone morphogenetic protein (BMP) (18). Recent studies have shown that BMP is the key molecule connecting netrin with osteoblastic differentiation. Neogenin, which belongs to one of the netrin receptors, is involved in the regulation of BMP-induced Smad signaling and endochondral bone formation (19). Their studies provide evidence that neogenin may regulate chondrocyte maturation by promoting BMP induced BMP receptor association with lipid rafts, thus enhances effective BMP receptor concentration or BMP binding affinity and increases Smad phosphorylation and Runx2 induction by using neogenin deficient mice, suggesting that neogenin promotes chondrogenesis in vitro and in vivo. However, a controversial result has been reported. Hagihara et al. reported that neogenin negatively regulates the functions of BMP and that this effect of neogenin is mediated by the activation of RhoA (20). However, it is conjectured that the inhibition of osteoblast differentiation by BMP via the activation of neogenin may not occur under physiological conditions.

Figure 3. Ntn4 overexpression enhances osteoblast differentiation. MC3T3-E1 cells were transfected with plasmid Ntn4 (pNtn4) or an empty vector (MOCK) at 3 days estimated by qPCR analysis: (left panel) Ntn4, (right panel) ALP. Data are calculated from three repeated experiments. #p<0.05; ##p<0.01. Data are expressed as the means±S.E.M.

Figure 4. Recombinant Ntn4 enhances osteoblast migration. Effect of rNtn4 (0.5 and 2 μg/ml) on cell migration of osteoblastic cells at 12 h estimated by cell migration assay: (upper panel) Ntn4, (lower panel) ALP. Data are calculated from three repeated experiments. Control, CTL. #p<0.05. Data are expressed as the means±S.E.M.
The differentiation in various cells is associated with Ntn4. Ntn4 also has a functional role in the differentiation process of other cells. Vascular and ductal cells in the developing human pancreas produce Ntn4 to maintain islet differentiation (21). We have previously demonstrated that Ntn4, that is derived from vascular endothelial cells, inhibits osteoclast differentiation (15). Osteoblasts are essentially involved in the differentiation of osteoclasts through a mechanism involving cell-to-cell contact between osteoblasts and osteoclast precursors (22). We speculate that Ntn4 derived from osteoblasts may play a role as a brake of osteoclast differentiation through cell-to-cell contact.

The migration in various cells is associated with Ntn4. Ntn4 is involved in the migration of various cells. Ntn4 promotes mural cell adhesion and recruitment to endothelial cells (23). In Müller cells, the MAP kinase pathway is essential for the migration by Ntn4 which contributes to angiogenesis in the retina (24). Ntn4-stimulated phosphorylation of the Src kinase family, effectors of endothelial cell migration, is also abolished by α6 or β1 inhibition (25). Ntn4 induces proliferation, migration and survival of lymphatic endothelial cells through activation of p42/p44 MAP kinase, Akt/PI3kinase and mTor signaling pathways (13). In osteoblasts, TGF-β stimulates vascular endothelial growth factor synthesis which promotes the migration (26) and Nck (noncatalytic region of tyrosine kinase), that is a member of the signaling adaptors that control remodeling of the actin cytoskeleton, regulates cell migration (27). In this study, for the first time, we showed that Ntn4 promotes cell migration of osteoblasts. We speculate that Ntn4 may play a role at the site of bone remodeling or modeling in order to maintain homeostasis.

The relationship between other netrins and bone metabolism. Togari et al. showed that netrin-1 (Ntn1), netrin-2-like protein, and netrin-3 mRNA were expressed by osteoblasts and also found that netrin-3 mRNA was expressed by osteoclasts (28). Yagami et al. found that the expression of Ntn1 was decreased in the process whereby mesenchymal cells differentiate into osteoblasts by BMP (29).

It has been reported that Ntn1 is involved in regulating bone remodeling. Mediero et al. demonstrated that Ntn1, which is produced by osteoclasts, enhanced osteoclast differentiation by autocrine/paracrine manner and Ntn1 deficient mice have markedly diminished osteoclasts, as well as increased cortical and trabecular bone density and volume compared with wild type mice, suggesting that Ntn1 is a negative regulator of bone metabolism (8). In contrast, Maruyama et al. reported that Ntn1 suppresses osteoclast multineculation, but not osteoclast differentiation and protected mice against autoimmune bone destruction in vivo, indicating that Ntn1 is a positive regulator in bone metabolism (9).

Recently, we found that Ntn1 inhibits osteoblast differentiation and the combination of two netrin receptors is essential for regulating osteoblast differentiation by Ntn1 (30). Further investigations will be required to clarify the role of netrins in bone metabolism.

In conclusion, we found that Ntn4 promotes differentiation and migration of osteoblasts.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (15K20556 to Yuichiro Enoki).

References

1. Delaisse JM: The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bone Key Rep 3: 561, 2014.
2. Maes C: Role and regulation of vascularization processes in endochondral bones. Calcif Tissue Int 92: 307-323, 2013.
3. Houweling P, Kulkarni RN and Baldock PA: Neuronal control of bone and muscle. Bone 80: 95-100, 2015.
4. Fukuda T, Takeda S, Xu R, Ochi H, Sumamura S, Sato T, Shibata S, Yoshida Y, Gu Z, Kimura A, Ma C, Xu C, Bando W, Fujita K, Shinomiya K, Hirai T, Asou Y, Enomoto M, Okano H, Okawa A and Itoh H: Sema3A regulates bone-mass accrual through sensory innervations. Nature 497: 490-493, 2013.
5. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A and Takayanagi H: Osteoprotection by semaphorin 3A. Nature 485: 69-74, 2012.
6. Delorme G, Saltel F, Bonnelye E, Jurdic P and Machuca-Gayet I: Expression and function of semaphorin 7A in bone cells. Biol Cell 97: 589-597, 2005.
7. Negishi-Koga T, Shinhara M, Komatsu N, Bito H, Kodama T, Friedel RH and Takayanagi H: Nat Med 17: 1473-1480, 2011.
8. Mediero A, Ramkelwelon B, Perez-Aso M, Moore KJ and Cronstein BN: Netrin-1 is a critical autocrine/paracrine factor for osteoclast differentiation. J Bone Miner Res 30: 837-854, 2015.
9. Maruyama K, Kawasaki T, Hamaguchi M, Hashimoto M, Furu M, Ito H, Fujii T, Takemura N, Karuppuchamy T, Kondo T, Fukasaka M, Misawa T, Saitoh T, Suzuki Y, Martino MM, Kumagai Y and Akira S: Bone-protective Functions of Netrin 1 Protein. J Biol Chem 291: 23854-23868, 2016.
10. Rajasekharan S and Kennedy TE: The netrin protein family. Genome Biol 10: 239, 2009.
11. Eveno C, Contreres JO, Hainaud P, Nemeth J, Dupuy E and Pocard M: Netrin-4 overexpression suppresses primary and metastatic colorectal tumor progression. Oncol Rep 29: 73-78, 2013.
12. Kociok N, Crespo-Garcia S, Liang Y, Klein SV, Nürnberg C, Reichhart N, Skosryski S, Moritz E, Maier AK, Brunken WJ, Strauß O, Koch M and Joussen AM: Lack of netrin-4 modulates pathologic neovascularization in the eye. Sci Rep 6: 18828, 2016.
13. Larrieu-Lahargue F, Welm AL, Thomas KR and Li DY: Netrin-4 induces lymphangiogenesis in vivo. Blood 115: 5418-5426, 2010.
Enoki Y, Sato T, Tomaru Y, Koshikiya N, Nojima J, Kokabu S, Sakata Y, Kobayashi A and Yoda T: Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res Commun 377: 126-130, 2008.

Kokabu S, Nguyen T, Ohse S, Sato T, Katagiri T, Yoda T and Rosen V: TLE3, transducing-like enhancer of split 3, suppresses osteoblast differentiation of bone marrow stromal cells. Biochem Biophys Res Commun 438: 205-210, 2013.

Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4: 16009, 2016.

Zhou Z, Xie J, Lee D, Liu Y, Jung J, Zhou L, Xiong S, Mei L and Xiong WC: Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev Cell 19: 90-102, 2010.

Hagihara M, Endo M, Hata K, Higuchi C, Takaoka K, Yoshikawa H and Yamashita T: Neogenin, a receptor for bone morphogenetic proteins. J Biol Chem 286: 5157-5165, 2011.

Yebra M, Diaferia GR, Montgomery AM, Kaido T, Brunken WJ, Koch M, Hardiman G, Crisa L and Cirulli V: Endothelium-derived Netrin-4 supports pancreatic epithelial cell adhesion and differentiation through integrins α2β1 and α3β1. PLoS One 6: e22750, 2011.

Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ and Suda T: Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL, but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25: 517-523, 1999.

Received May 16, 2017
Revised May 27, 2017
Accepted May 29, 2017.