HOLOMORPHIC INJECTIVE EXTENSIONS OF
FUNCTIONS IN \(P(K) \) AND ALGEBRA GENERATORS

RAYMOND MORTINI

ABSTRACT. We present necessary and sufficient conditions on planar compacta \(K \) and continuous functions \(f \) on \(K \) in order that \(f \) generates the algebras \(P(K), R(K), A(K) \) or \(C(K) \). We also unveil quite surprisingly simple examples of non-polynomial convex compacta \(K \subseteq \mathbb{C} \) and \(f \in P(K) \) with the property that \(f \in P(K) \) is a homeomorphism, but for which \(f^{-1} \notin P(f(K)) \). As a consequence, such functions do not admit injective holomorphic extensions to the interior of the polynomial convex hull \(\hat{K} \). On the other hand, it will be shown that the restriction \(f^*|_G \) of the Gelfand-transform \(f^* \) of an injective function \(f \in P(K) \) is injective on every regular, bounded complementary component \(G \) of \(K \). A necessary and sufficient condition in terms of the behaviour of \(f \) on the outer boundary of \(K \) is given in order \(f \) admits a holomorphic injective extension to \(\hat{K} \). We also include some results on the existence of continuous logarithms on punctured compacta containing the origin in their boundary.

23.9.2014

INTRODUCTION

Let \(K \) be a compact set in the complex plane \(\mathbb{C} \). As usual, \(P(K) \) denotes the set of complex-valued continuous functions on \(K \) that can be uniformly approximated by polynomials. Endowed with the usual algebraic operations and the supremum norm, \(P(K) \) is a uniformly closed subalgebra of \(C(K) \). By definition, the monomial \(z \) is a generator for \(P(K) \). We recall the following definition:

Definition 0.1. If \(A \) is a commutative unital Banach algebra and \(S \) a subset of \(A \), then the smallest closed subalgebra of \(A \) containing \(S \) is denoted by \([S]_{\text{alg}} \). We also say that \([S]_{\text{alg}} \) is the algebra generated by \(S \).

Note that \([S]_{\text{alg}} \) is the norm-closure of the set of all polynomials of the form \(\sum a_{ij} f_1^{n_1} \cdots f_j^{n_j} \), where \(f_k \in S, i = (n_1, \ldots, n_j) \in \mathbb{N}^j \) and \(j \in \mathbb{N}^* \).

We are interested in the following question: which functions are generators for \(P(K) \)? We also consider the associated algebras

\[
A(K) = \{ f \in C(K) : f \text{ holomorphic in the interior } K^o \text{ of } K \},
\]

1991 Mathematics Subject Classification. Primary 46J15, Secondary 30H50; 30E10.
and $R(K)$, the uniform closure of the set $R_0(K)$ of rational functions without poles on K.

We present in Section 1, which represents the motivational part of this paper, the answer to this question. The description in the case of the algebra $P(K)$ leads to the following problem: if $f \in P(K)$ is a homeomorphism, is the unique holomorphic extension f^* of f to the polynomial convex hull \hat{K} of K injective?

In the case where K is the unit circle \mathbb{T}, a classical result, known under the name of the Darboux-Picard theorem (see [3, p. 310]) tells us that f^* actually is injective on the closed unit disk D. Generalizations in various directions had been established (see [3]). The general situation, however, does not seem to have been solved. We give a nice example showing that the answer to the preceding question is negative. Our main goal then will be achieved in Section 2, namely a proof of the following result: if $f \in P(K)$ then the Gelfand transform, f^*, of f is injective on \hat{K} if and only if f maps the outer boundary of K onto the outer boundary of $f(K)$. Our method involves Eilenberg’s representation theorem for zero-free functions on compacta as well as a homotopic variant of Rouché’s theorem. As a corollary we obtain that for every injective function $f \in P(K)$, the restriction $f^*|G$ of f^* to a regular hole G of K is injective. Here a hole G of K is called regular if G is the only hole of its boundary. In particular, if K has a connected complement and a connected interior, then f^* is injective on K if and only if $f \in P(\partial K)$ is injective.

In Section 3 we deal with a feature not covered by Eilenberg’s theorem: under which conditions on K with $0 \in \partial K$ does there exist a continuous branch of the logarithm on $K \setminus \{0\}$? (In Eilenberg’s theorem 0 belongs to the complement of K).

1. Algebra Generators

Theorem 1.1. Let $K \subseteq \mathbb{C}$ be compact and $\varphi \in C(K, \mathbb{C})$. The following assertions are equivalent:

1. φ is a generator for $C(K, \mathbb{C})$; that is $C(K, \mathbb{C}) = [\varphi]_{\text{alg}}$;
2. φ is a homeomorphism of K onto $\varphi(K)$, $K^0 = \emptyset$ and $\mathbb{C} \setminus K$ is connected.

Proof. It is clear that every generator for $C(K, \mathbb{C})$ is point separating. Hence, φ must be a homeomorphism of K onto its image. Let $f \in C(K, \mathbb{C})$. We first show that $f \in [\varphi]_{\text{alg}}$ if and only if $f \circ \varphi^{-1} \in P(\varphi(K))$. In fact, $f \in [\varphi]_{\text{alg}}$ if and only if $p_n(\varphi) \to f$ uniformly on K for some sequence of polynomials $p_n \in \mathbb{C}[z]$. But

$$\max_{z \in K} |p_n(\varphi(z)) - f(z)| \to 0 \iff \max_{w \in \varphi(K)} |p_n(w) - f(\varphi^{-1}(w))| \to 0.$$

This in turn is equivalent to $f \circ \varphi^{-1} \in P(\varphi(K))$. Next we observe that every $h \in C(\varphi(K), \mathbb{C})$ writes as $f \circ \varphi^{-1}$ for some $f \in C(K, \mathbb{C})$; just put
\[f = h \circ \varphi. \] We conclude that the assumption \(C(K, \mathbb{C}) = [\varphi]_{\text{alg}} \) is equivalent to the assumption \(C(\varphi(K), \mathbb{C}) = P(\varphi(K)) \), whenever \(\varphi \) is an homeomorphism. By Lavrentiev’s theorem [2, p. 192], this happens if and only if \(\varphi(K)^\circ = \emptyset \) and \(\mathbb{C} \setminus \varphi(K) \) is connected. Now \(\varphi(K)^\circ = \emptyset \) if and only if \(K^\circ = \emptyset \). Moreover, the number of connected components of the complement of a compact set in \(\mathbb{C} \) is invariant under homeomorphisms (see [3, p. 99]). Hence condition (2) is necessary and sufficient for \(C(K, \mathbb{C}) \) to be singly generated by \(\varphi \). \(\square \)

Remark 1.2. Let \(K \subseteq \mathbb{R} \) be compact and \(\varphi \in C(K, \mathbb{R}) \). The following assertions are equivalent:

(1) \(\varphi \) is a generator for \(C(K, \mathbb{R}) \); that is \(C(K, \mathbb{R}) = [\varphi]_{\text{alg}} \);

(2) \(\varphi \) is a homeomorphism of \(K \) onto \(\varphi(K) \).

Proof. As above, if \(\varphi \) is a homeomorphism of \(K \) onto its image, the assumption \(C(K, \mathbb{R}) = [\varphi]_{\text{alg}} \) is equivalent to the assumption \(C(\varphi(K), \mathbb{R}) = P_{\mathbb{R}}(\varphi(K)) \). \(^1 \) This is always true, though, by Weierstrass’ approximation theorem. \(\square \)

Theorem 1.3. Let \(K \subseteq \mathbb{C} \) be compact and \(\varphi \in A(K) \). The following assertions are equivalent:

(1) \(\varphi \) is a generator for \(A(K) \); that is \(A(K) = [\varphi]_{\text{alg}} \);

(2) \(\varphi \) is a homeomorphism of \(K \) onto \(\varphi(K) \) and \(\mathbb{C} \setminus K \) is connected.

Proof. As in the previous theorem, we obtain that the assumption \(A(K) = [\varphi]_{\text{alg}} \) is equivalent to the assumption \(A(\varphi(K)) = P(\varphi(K)) \) whenever \(\varphi \in A(K) \) is an homeomorphism. Note that \(\varphi^{-1} \in A(\varphi(K)) \). By Mergelyan’s theorem [9], this happens if and only if \(\mathbb{C} \setminus K \) is connected. \(\square \)

The proof of the corresponding result for \(R(K) \) and \(P(K) \) needs an additional argument:

Lemma 1.4. Let \(K \subseteq \mathbb{C} \) be compact and \(\varphi \in C(K) \). The following assertions hold:

(1) If \(\varphi \in R(K) \), then \(h \in R(\varphi(K)) \) implies that \(f := h \circ \varphi \in R(K) \).

(2) If \(\varphi \in P(K) \), then \(h \in P(\varphi(K)) \) implies that \(f := h \circ \varphi \in P(K) \).

Proof. (1) Let \((r_n(w)) \) denote a sequence of rational functions without poles on \(\varphi(K) \) converging uniformly on \(\varphi(K) \) to \(h(w) \). Then

\[\max_{z \in K} |r_n(\varphi(z)) - h(\varphi(z))| \to 0. \]

Next, let \((\varphi_n(z)) \) be a sequence of rational functions without poles on \(K \) converging uniformly on \(K \) to \(\varphi(z) \). We claim that the following assertions hold:

i) For every \(n \) there exists \(j_n > n \) such that \(r_n \circ \varphi_{j_n} \) is a rational function without poles on \(K \).

ii) \((r_n \circ \varphi_{j_n}) \) converges uniformly on \(K \) to \(h \circ \varphi \).

\(^1 \) This is, per definition, the uniform closure of the set of real polynomials on \(\varphi(K) \).
In fact, since it is obvious that $r_n \circ \varphi_j$ is a rational function again, it remains to prove for i) that $j \geq n$ can be chosen so that $r_n \circ \varphi_j$ has no poles on K. To see this, we observe that r_n has no poles in the closure of an open neighborhood U_n of $\varphi(K)$. Let $\varepsilon_n = \text{dist}(\varphi(K), \mathbb{C} \setminus U_n)$. The compactness of $\varphi(K)$ implies that $\varepsilon_n > 0$. Since $||\varphi_j - \varphi||_K \to 0$, $\text{dist}(\varphi_j(z), \varphi(K)) < \varepsilon_n/2$ for every $z \in K$ and $j \geq j_n^* > n$. Thus, for all $z \in K$ and $j \geq j_n^*$, $\varphi_j^*(z) \in U_n$. Hence $r_n \circ \varphi_j$ has no poles on K when $j \geq j_n^*$. This gives i).

ii) Fix n. Since r_n is uniformly continuous on U_n, we may choose $j_n \geq j_n^*$ so big that

$$||r_n \circ \varphi_{j_n} - r_n \circ \varphi||_K < 1/n.$$

Then ii) is a consequence of the following estimations:

$$|r_n \circ \varphi_{j_n} - h \circ \varphi| \leq |r_n \circ \varphi_{j_n} - r_n \circ \varphi| + |r_n \circ \varphi - h \circ \varphi|$$

$$\leq 1/n + \varepsilon/2 < \varepsilon$$

for $n \geq n_0$. We conclude that $h \circ \varphi \in R(K)$.

(2) This works as in part ii) above, where rational functions are replaced by polynomials. Note that i) is irrelevant here.

\textbf{Theorem 1.5.} Let $K \subseteq \mathbb{C}$ be compact and $\varphi \in R(K)$. The following assertions are equivalent:

1. φ is a generator for $R(K)$; that is $R(K) = [\varphi]_{\text{alg}}$;
2. φ is a homeomorphism of K onto $\varphi(K)$ and $\mathbb{C} \setminus K$ is connected.

\textbf{Proof.} As usual, we see that for homeomorphic maps φ and $f \in R(K)$ one has $f \in [\varphi]_{\text{alg}}$ if and only if $f \circ \varphi^{-1} \in P(\varphi(K))$.

(1) \implies (2) Let $h \in R(\varphi(K))$. Since, by assumption, $\varphi \in R(K)$, we deduce from Lemma 1.4 that $f := h \circ \varphi \in R(K)$. Hence $h = f \circ \varphi^{-1} \in P(\varphi(K))$ if φ is a generator for $R(K)$. Thus $P(\varphi(K)) = R(\varphi(K))$. By Runge’s theorem, $\varphi(K)$ has connected complement, and so the same is true for K.

(2) \implies (1) If K (and so $\varphi(K)$), has connected complement, then by Mergelyan’s Theorem, see [9], $P(\varphi(K)) = R(\varphi(K)) = A(\varphi(K))$. Consider any $f \in R(K)$ and let $h := f \circ \varphi^{-1}$. Then $h \in A(\varphi(K))$. Hence $f \circ \varphi^{-1} = h \in P(\varphi(K))$. Thus $f \in [\varphi]_{\text{alg}}$. Consequently, $R(K) = [\varphi]_{\text{alg}}$.

\textbf{Corollary 1.6.} If $A = C(K)$, $A(K)$ or $R(K)$ is singly generated, then K is polynomially convex and $A = P(K)$.

\textbf{Proof.} This follows from the previous Theorems which imply that under the given assumption, K is polynomially convex. Hence, by Mergelyan’s Theorem, $P(K) = R(K) = A(K)$, and in the remaining case, the additional condition $K^c = \emptyset$ implies that $C(K) = P(K)$.

\textbf{Theorem 1.7.} Let $K \subseteq \mathbb{C}$ be compact and $\varphi \in P(K)$. The following assertions are equivalent:

1. φ is a generator for $P(K)$; that is $P(K) = [\varphi]_{\text{alg}}$;
(2) \(\varphi \) is a homeomorphism of \(K \) onto \(\varphi(K) \) and \(\varphi^{-1} \in P(\varphi(K)) \).

Proof. (1) \(\Rightarrow \) (2) As usual, if \(\varphi \) is a generator, then \(\varphi \) is point separating, hence a homeomorphism of \(K \) onto \(\varphi(K) \). Note also that for \(f \in P(K) \), \(f \in [\varphi]_{\text{alg}} \) if and only if \(f \circ \varphi^{-1} \in P(\varphi(K)) \). In particular, if \(f(z) = z \) then \(\varphi^{-1} \in P(\varphi(K)) \).

(2) \(\Rightarrow \) (1) Let \(f \in P(K) \). By Lemma 1.4 (2) applied to the inverse function, the assumption \(\varphi^{-1} \in P(\varphi(K)) \) implies that \(f \circ \varphi^{-1} \in P(\varphi(K)) \). Hence \(f \in [\varphi]_{\text{alg}} \) and so \(P(K) = [\varphi]_{\text{alg}} \). \(\square \)

It is now a natural question to ask whether the condition \(\varphi^{-1} \in P(\varphi(K)) \) is redundant or not? The following example shows that it is not.

Example 1.8. Let \(K = \{ z \in \mathbb{C} : |z + 1| = 1 \} \cup \{ z \in \mathbb{C} : |z - 2| = 2 \} \) (see figure 1).

\[\begin{align*}
\text{Figure 1. No injective extension} \\
\text{Then the function } f(z) &= -z \text{ for } |z + 1| = 1 \text{ and } f(z) = z \text{ for } |z - 2| = 2 \text{ is injective on } K \text{ and belongs to } P(K), \text{ because } f \text{ has a holomorphic extension to the polynomial convex hull } \\
\hat{K} &= \{ z \in \mathbb{C} : |z + 1| \leq 1 \} \cup \{ z \in \mathbb{C} : |z - 2| \leq 2 \} \\
of K \text{ and so, by Mergelyan’s theorem, } f \text{ can be uniformly approximated on } \hat{K} \text{ by polynomials.}
\end{align*} \]

The image \(f(K) \) of \(K \) under \(F \) coincides with the set
\[\{ w \in \mathbb{C} : |w - 1| = 1 \} \cup \{ w \in \mathbb{C} : |w - 2| = 2 \}. \]
Moreover, \(f^{-1}(w) = -w \) on \(D_1 := \{ w \in \mathbb{C} : |w - 1| = 1 \} \) and \(f^{-1}(w) = w \) on \(D_2 := \{ w \in \mathbb{C} : |w - 2| = 2 \} \). It is clear that this function does not belong to \(P(f(K)) \), because otherwise, \(f^{-1}|_{D_2} \) would have a holomorphic extension to the polynomial convex hull \(\hat{D}_2 \) of \(D_2 \). Since this extension can
only be \(w \) itself, it does not coincide with \(f^{-1}|_{D_1}(w) = -w \) on \(D_1 \subseteq \hat{D}_2 \). Note also, that \(f \) does not admit a holomorphic injective extension to \(\hat{K} \).

Proposition 1.9. Let \(f \in P(K) \) be a homeomorphism and suppose that \(f \) has an injective, holomorphic extension to the interior of the polynomial convex hull, \(\hat{K} \), of \(K \). \(^2\) Then \(f^{-1} \in P(f(K)) \).

Proof. If \(f^* \) denotes this extension, then \(f^* \) coincides with the Gelfand transform \(\hat{f} \) of \(f \) (in fact, \(f^* \) and \(\hat{f} \) belong to \(A(\hat{K}) \) and \(f^* = \hat{f} = f \) on the Shilov boundary of \(A(\hat{K}) \), which coincides with \(\partial K \)). Now \((f^*)^{-1} \in A(f^*(\hat{K})) \). Since \(\hat{K} \) has connected complement, the invariance theorem 2.5(4) implies that \(S := f^*(\hat{K}) \) has connected complement, too. Hence, by Mergelyan’s Theorem, \((f^*)^{-1} \in P(S) \). Restricting to \(f(K) \subseteq S \) yields that \(f^{-1} = (f^*)^{-1}|_{f(K)} \in P(f(K)) \), because any sequence of polynomials converging uniformly on \(S \) to \((f^*)^{-1} \) converges a fortiori uniformly on \(f(K) \). \(\square \)

2. Injective Extensions

Example 1.8 shows that \(P(K) \)-functions which are injective on \(K \) do not necessarily have an injective holomorphic extension to the polynomial convex hull of \(K \). A positive result in this direction is known, though:

Theorem 2.1 (Darboux-Picard). [3, p. 310], [8] Let \(f \in A(\mathbb{D}) \) and suppose that \(f \) is injective on \(\partial \mathbb{D} \). Then \(f \) is injective on \(\mathbb{D} \).

In the following we shall deal with the general case of arbitrary compacta. Recall that a **hole** of a compact set \(K \) is a bounded component of \(\mathbb{C} \setminus K \) and that the **outer boundary**, \(S_\infty \), of \(K \) is the boundary of the polynomial convex hull \(\hat{K} \) of \(K \). We need Eilenberg’s theorem (see below) and the following homotopic variant of Rouché’s theorem, the proof of which is based on an areal analogue of the argument principle (see [7, p. 105]). Here, as usual, the maps \(f, g \in C(X,Y) \), defined on Hausdorff spaces \(X \) and \(Y \), are said to be **homotopic** in \(C(X,Y) \) if there exists a continuous map \(H : X \times [0,1] \to Y \) such that \(H(x,0) = f(x) \) and \(H(x,1) = g(x) \) for every \(x \in X \).

Definition 2.2. For a compact set \(K \subseteq \mathbb{C} \), let \(M(K) \) denote the set of continuous functions on \(K \) that are meromorphic in \(K^\circ \).

Thus, a function in \(M(K) \) has only a finite number of poles in \(K^\circ \) and none on the boundary. Of course, \(A(K) \subseteq M(K) \). Finally, for a function \(f \in M(K) \), \(n_K(f) \) denotes the number of zeros (possibly infinite) of \(f \) in \(K^\circ \) and \(p_K(f) \) the number of poles of \(f \) in \(K^\circ \) (including multiplicities).

Theorem 2.3 (Rouché for homotopic maps). Let \(K \subseteq \mathbb{C} \) be compact and let \(f, g \in M(K) \) be zero-free on \(\partial K \). Suppose that \(f \) and \(g \) are homotopic in \(C(\partial K, \mathbb{C}^\ast) \). Then \(n_K(f) - p_K(f) = n_K(g) - p_K(g) \).

\(^2\) in the sense that there is \(g \in C(\hat{K}) \) such that \(g \) is holomorphic in \(\hat{K}^\circ \) and injective on \(\hat{K} \).
Proof. For a proof where f and g have no poles, that is in the case where $f, g \in A(K)$, we refer to [6]. Now suppose that $f, g \in M(K)$. Since f and g have only a finite number of poles and zeros in K, we may write them as

$$f(z) = \prod_{j=1}^{p}(z - a_j)^{n_j} \bar{f}(z), \quad g(z) = \prod_{j=1}^{q}(z - b_j)^{m_j} \bar{g}(z),$$

where $\bar{f}, \bar{g} \in A(K)$ are zero-free and $m_j, n_j, p_j, q_j \in \mathbb{N}^*$. Note that a zero of g may be a pole or zero of f and vice versa. Put

$$h(z) := \prod_{j=1}^{p}(z - z_j)^{p_j} \prod_{j=1}^{q}(z - w_j)^{q_j}$$

and consider the functions $F := hf$ and $G := hg$.

Then $F, G \in A(K)$ and F and G are homotopic in $K(\partial K, \mathbb{C}^*)$ (note that if $H(z, t)$ is a homotopy between f and g, then

$$\tilde{H}(z, t) := h(z) H(z, t)$$

is a homotopy in $K(\partial K, \mathbb{C}^*)$ between F and G). Hence, by the homotopic version of Rouché’s theorem for holomorphic functions [6], $n_K(F) = n_K(G)$; that is

$$\sum_{j=1}^{n} n_j + \sum_{j=1}^{q} q_j = \sum_{j=1}^{m} m_j + \sum_{j=1}^{p} p_j.$$

In other words, $n_K(f) - p_K(f) = n_K(g) - p_K(g)$. \hfill \square

Here is a variant of the preceding result. For a bounded open set G in \mathbb{C}, let $MC(G)$ denote the set of functions continuous on \overline{G} and meromorphic in G^*. Note that, in general, $MC(G)$ cannot be represented as $M(K)$ for some compact space K. For example, if $E \subseteq \mathbb{D}$ is a compact, nowhere dense set having positive Lebesgue measure, then the planar integral

$$f(z) = \int \int_{E} \frac{1}{w - z} d\sigma_2(w)$$

belongs to $MC(\mathbb{D} \setminus E)$, but not to $M(\mathbb{D})$.

Corollary 2.4. For a bounded open set $G \subseteq \mathbb{C}$, suppose that $f, g \in MC(G)$ are homotopic in $C(\partial G, \mathbb{C}^*)$. Then $n_G(f) - p_G(f) = n_G(g) - p_G(g)$.

Proof. By assumption, f and g have no zeros and poles on ∂G. Hence, there are open neighborhoods U and V of ∂G with $\partial G \subseteq U \subseteq \overline{U} \subseteq V$ such that $f, g \in M(\overline{G} \setminus U)$ and f and g are homotopic in $C(V \cap \overline{G}, \mathbb{C}^*)$ (for this latter point see [6]). The assertion now follows from Theorem 2.3 if we set $K := \overline{G} \setminus U$. \hfill \square

A proof of the next Theorem is in [3, p. 97-101].

Theorem 2.5 (Eilenberg). Let $K \subseteq \mathbb{C}$ be compact and for each bounded component C of $\mathbb{C} \setminus K$, let $a_C \in C$.

(1) Suppose that \(f : K \to \mathbb{C} \setminus \{0\} \) is continuous. Then there exist finitely many bounded components \(C_j \) of \(\mathbb{C} \setminus K \), integers \(s_j \in \mathbb{Z} \) \((j = 1, \ldots, n)\), and \(L \in \mathbb{C}(K) \) such that for all \(z \in K \)
\[
f(z) = \prod_{j=1}^{n} (z - a_{C_j})^{s_j} e^{L(z)}.
\]
(2) If for some \(f \in \mathbb{C}(K) \), \(0 \) belongs to the unbounded component of \(\mathbb{C} \setminus f(K) \), then \(f \) has a continuous logarithm on \(K \).
(3) Suppose that \(C_1, \ldots, C_n \) are distinct holes for \(K \) and that for some \(s_j \in \mathbb{Z} \) \((j = 1, \ldots, n)\), the function
\[
f(z) = \prod_{j=1}^{n} (z - a_{C_j})^{s_j}, \quad (z \in K)
\]
has a continuous logarithm on \(K \). Then \(s_1 = \cdots = s_n = 0 \).
(4) If \(f : K \to \mathbb{C} \) is a homeomorphism, then the number of holes of \(K \) and \(f(K) \) coincide.

Proposition 2.6. Let \(K \subseteq \mathbb{C} \) be a compact set for which \(\mathbb{C} \setminus K \) is connected and let \(G \) be a bounded component of \(\mathbb{C} \setminus \partial K \). The following assertions hold:

1. \(G \) is simply connected.
2. \(\partial G = \partial \hat{G} \).
3. \(\overline{G} = G \).

Item (1) and the equivalence of (2) with (3) for non-void open sets in general topological spaces are well known. We include a proof of (1) and (2) for the reader’s convenience.

Proof. (1) Let \(\mathcal{H} := \{G_n : n \in I\} \) be the set of holes of \(\partial K \) and let \(C := (\mathbb{C} \setminus K) \cup \partial K \). Let \(n_0 \in I \) be chosen so that \(G = G_{n_0} \). Note that \(G_{n_0} \) is an open set and that for every \(n \), \(\partial G_n \subseteq \partial K \subseteq C \). Hence
\[
\mathbb{C} \setminus G_{n_0} = C \cup \bigcup_{n \in I \setminus n_0} G_n = C \cup \bigcup_{n \in I \setminus n_0} \overline{G_n}.
\]
Since \(C = \overline{C \setminus K} \), the assumption of the connectedness of \(\mathbb{C} \setminus K \) implies that \(C \) is connected. Moreover, \(\overline{G_n} \) is connected for every \(n \) and \(\overline{G_n} \cap C \neq \emptyset \). Hence the union of all of these connected sets is connected; that is \(C \setminus G_{n_0} \) is connected. Thus \(G_{n_0} \) is a simply connected domain.

(2) First we note that for any set \(M \) in any topological space, \(\partial \overline{M} \subseteq \partial M \). The reverse inclusion now is a specific property of the set \(G \). So let \(x \in \partial G \) and \(U \) a neighborhood of \(x \). Since the connectivity of \(\mathbb{C} \setminus K \) implies that \(\partial K = \partial \hat{K} \) we deduce from \(\partial G \subseteq \partial K \) that \(U \) meets the unbounded component of \(\mathbb{C} \setminus \hat{K} \). Since \(\overline{G} = G \cup \partial G \subseteq \hat{K} = K \), \(U \) cannot be entirely contained in \(\overline{G} \). Hence \(U \) meets the complement of \(\overline{G} \) as well as \(\overline{G} \). That is \(x \in \partial \overline{G} \). We conclude that \(\partial \overline{G} = \partial G \). \(\square \)
Here is now the main result of this paper. Recall that if \(f \in P(K) \), then the Gelfand transform \(f^* \) of \(f \) is the unique continuous extension of \(f \) to \(\hat{K} \) that is holomorphic in \(\hat{K}^\circ \). In particular, if \(K \neq \hat{K} \), then every function \(f \in P(K) \) is holomorphic in a neighborhood of each “inner-boundary” point \(z_0 \in \partial K \cap \hat{K}^\circ \) (whenever they exist).

Theorem 2.7. Let \(K \subseteq \mathbb{C} \) be compact. Suppose that \(f \in P(K) \) is injective. Then \(f^* \) is injective on \(\hat{K} \) if and only if the outer boundary \(S_\infty \) of \(K \) is mapped under \(f \) onto the outer boundary of \(f(K) \). Moreover, in that case, \(f^*(\hat{K}) = \hat{f(K)} \) and each hole of \(f(S_\infty) \) is the image under \(f^* \) of a unique hole of \(S_\infty \).

Let us mention that Example 1.8 provides an injective function \(f \in P(K) \) that does not map the outer boundary to the outer boundary.

Proof. (1) Let \(f^* \) be injective on \(\hat{K} \). Note that \(S_\infty = \partial \hat{K} \subseteq \partial K \) and that the outer boundary of \(f(K) \) coincides with \(\partial \hat{f(K)} \). It remains to show that
\[
\partial \hat{f(K)} = \partial f^*(\hat{K}) = f^*(\partial \hat{K}).
\]
Here the second equality is satisfied due to the assumption that \(f^* \) is a homeomorphism between \(\hat{K} \) and \(f^*(\hat{K}) \). Now \(\hat{K} \) is polynomially convex. Hence, by Theorem 2.5 (4), \(f^*(\hat{K}) \) has no holes. Consequently, \(\partial f^*(\hat{K}) \) is the outer boundary of \(f^*(\hat{K}) \) and the polynomial convexity of \(f^*(\hat{K}) \) implies that
\[
\hat{f(K)} \subseteq f^*(\hat{K}).
\]
But we also have the reverse inclusion. In fact, let \(\hat{w} = f^*(\hat{z}) \in f^*(\hat{K}) \), where \(\hat{z} \in \hat{K} \). Since \(p \circ f \in P(K) \) for every polynomial \(p \in \mathbb{C}[z] \), we conclude from
\[
\max_{\hat{K}} |h| = \max_\hat{K} |h^*|
\]
for every \(h \in P(K) \), that
\[
|(p \circ f)^*(\hat{z})| \leq \max_{\hat{z} \in \hat{K}} |(p \circ f)(\hat{z})|.
\]
Hence
\[
|p(\hat{w})| \leq \max\{|p(y)| : y \in f(K)\}.
\]
In other words, \(\hat{w} \in \hat{f(K)} \). This implies that
\[
f^*(\hat{K}) \subseteq \hat{f(K)}. \tag{2.2}
\]
(Note that (2.2) holds independently of \(f^* \) being injective or not.) Thus
\[
f^*(\hat{K}) = f(\hat{K}), \tag{2.3}
\]
and therefore \(\partial \hat{f(K)} = \partial f^*(\hat{K}) \), which establishes (2.1).

(2) Next we prove the converse. We may assume that \(K \) is not polynomially convex, otherwise there is nothing to show. In particular, \(\hat{K}^\circ \neq \emptyset \). So suppose that \(\partial \hat{f(K)} = f(\partial \hat{K}) \).
Step 1 We show that $f^*|G$ is injective for every hole G of $\partial \hat{K}$.

Let $M := f(\partial G)$ and $S := \hat{f}(\hat{K})$. Then ∂S is the outer boundary of $f(K)$, and

$$M = f(\partial G) \subseteq f(\partial \hat{K}) = \partial \hat{f}(\hat{K}) = \partial S.$$

Let a belong to the unbounded component, Ω_∞, of $\mathbb{C} \setminus M$. Then 0 belongs to the unbounded component of $\mathbb{C} \setminus (f - a)(\partial G)$. By Theorem 2.5(2), $f(z) - a = e^{L(z)}$ for some $L \in C(\partial G, \mathbb{C})$. Hence $f - a$ is homotopic in $C(\partial G, \mathbb{C}^*)$ to 1. Since $\partial G = \partial \hat{G}$, (Proposition 2.6) we conclude from Theorem 2.3 that $f^* - a$ has no zeros in \hat{G}^o. Hence

$$f^*(G) \subseteq \hat{M}.$$ \hfill (2.4)

Next, we claim that $f^*(G) \cap \partial S = \emptyset$. To see this, let us suppose that there exists $z \in G$ with $f^*(z) \in \partial S$. Since f^* is holomorphic in G (and due to the injectivity on the boundary, not constant on G), we conclude that f^* is an open map on G. Hence a whole disk $D(f^*(z), \varepsilon)$ belongs to $f^*(G)$. Thus $f^*(G)$ meets the unbounded component C_∞, of $\mathbb{C} \setminus S$ (note that S is polynomially convex). This is a contradiction because $C_\infty \subseteq \Omega_\infty$ and no point in Ω_∞ belongs to $f^*(G)$, as was shown above. Consequently, $f^*(G) \cap \partial S = \emptyset$.

Because $\hat{M} = f(\partial G) \subseteq f(\hat{K}) = S$, we then conclude from (2.4) that $f^*(G) \subseteq \hat{M} \setminus \partial S \subseteq S \setminus \partial S$. But $S^o \neq \emptyset$, since the open set $f^*(G)$ is contained in $f^*(\hat{K})$ (2.2), $\hat{f}(\hat{K}) = S$. Hence $S \setminus \partial S$ is a non-void open set.

Because $\mathbb{C} \setminus S$ is connected, $S \setminus \partial S$ consists of the union of all holes of ∂S. Thus the connected set $f^*(G)$ is contained in a unique hole, H, of ∂S.

Next we show that every point in H is taken once by f^* on G. For technical reasons, we suppose that $0 \in G$ (otherwise we use an appropriate translation).

Fix $b \in H$. Let $g : \partial S \to S_\infty \subseteq K$ be the restriction to ∂S of the inverse of f (here we have used the hypothesis that f maps the outer boundary S_∞ of K onto the outer boundary S of $f(K)$). Note that g does not take the value 0 because, by assumption, $0 \in \mathbb{C} \setminus \partial \hat{K}$. By Theorem 2.5(4), ∂S and S_∞ have the same number of holes. Let $\mathcal{H} := \{H_j : j \in I\}$ be the set of holes of ∂S. We may assume that $H_1 = H$. Fix in each hole H_j of ∂S a point b_j, $(j \in I \subseteq \mathbb{N}^*)$, where we take $b_1 = b$. By Eilenberg’s Theorem 2.5, there exists $n \in \mathbb{N}$, $L \in C(\partial S, \mathbb{C})$ and $s_j \in \mathbb{Z}$ such that

$$g(w) = \prod_{j=1}^n (w - b_j)^{s_j} e^{L(w)} \text{ for every } w \in \partial S.$$

If $z := g(w)$ (or equivalently $w = f(z)$), then $z \in \partial \hat{K} = S_\infty \subseteq \partial K$ and

$$z = \prod_{j=1}^n (f(z) - b_j)^{s_j} e^{L(f(z))} \text{ for these } z.$$ \hfill (2.5)
In particular

\[H(z,t) := \prod_{j=1}^{n} (f(z) - b_j)^{s_j} e^{tL(f(z))} \]

is a homotopy in \(C(\partial G, \mathbb{C}^*) \) between the function \(\prod_{j=1}^{n} (f(z) - b_j)^{s_j} \) and the identity function \(z \). Now, for \(z \in \hat{K} \),

\[\psi(z) := \prod_{j=1}^{n} (f^*(z) - b_j)^{s_j} \]

is a meromorphic function in \(M(\hat{K}) \). Also, \(\partial G = \partial \hat{G} \) and \(\overline{C}^\circ = G \) (Proposition 2.6). Hence, by Theorem 2.3, \(n_G(\psi) - p_G(\psi) = 1 \). Since \(f^*(G) \subseteq H_1 \), \(\psi(G)(z) = (f^*(z) - b_1)^{s_1} R(z) \), where \(R \) is zero-free and holomorphic on \(G \).

We conclude that \(s_1 = 1 \) and \(f^*(z_1) = b_1 \) for a unique \(z_1 \in G \). Hence \(f^* \) is a bijection of \(G \) onto \(H_1 \). Since \(f(\partial G) \subseteq \partial S \), \(f^* \) actually is a bijection from \(\overline{G} \) onto \(\overline{H_1} \).

Step 2 We claim that \(f^* \) is injective on \(\hat{K} \). It only remains to show that \(f^*(G) \cap f^*(C) = \emptyset \) whenever \(G \) and \(C \) are two different holes of \(S_\infty = \partial \hat{K} \).

To see this, suppose that \(f^*(G) \cap f^*(C) \neq \emptyset \). Since the images of \(G \) and \(C \) under \(f^* \) are holes of \(\partial S \), we conclude that \(f^*(C) = f^*(G) = H_1 \). Moreover,

\[f^*(\partial G) = \partial f^*(G) = \partial f^*(C) = f^*(\partial C) \]

The injectivity of \(f \) on \(\partial K \) and the fact that \(\partial C \cup \partial G \subseteq \partial K \) now imply that \(\partial G = \partial C \). Moreover, \(\partial \overline{C} = \partial C \). Since \(0 \in G \neq C \), we conclude from (2.5) and Theorem 2.3 that \(n_C(\psi) - p_C(\psi) = 0 \). On the other hand, since \(f^*(C) \subseteq H_1 \), \(\psi|_C(z) = (f^*(z) - b_1)^{s_1} R(z) \), where \(R \) is zero-free and holomorphic on \(C \). Now \(s_1 = 1 \) implies that \(p_C(\psi) = 0 \). Hence \(n_C(\psi) = 0 \), too. This is contradiction, though, because \(f^*(C) = H_1 \) and \(b_1 \in H_1 \). Thus we have shown that \(f^* \) is a bijection of \(\hat{K} \) onto \(f^*(\hat{K}) \).

(3) If \(f^* \) is a homeomorphism of \(\hat{K} \) onto its image \(f^*(\hat{K}) \), then we have already shown that \(f^*(\hat{K}) = \hat{f}(\hat{K}) \) (see 2.3). Hence, we conclude from the preceding paragraphs (applied to \((f^*)^{-1} \)) that each hole \(H \) of \(\partial \hat{f}(\hat{K}) = f(S_\infty) \) writes as \(H = f^*(G) \) for some uniquely determined hole \(G \) of \(S_\infty = \partial \hat{K} \).

A natural question is whether a compactum \(K \) with a single hole has the so-called extension property, that is if \(f \in P(K) \) is injective, then \(f^* \) is injective on \(\hat{K} \). A slight modification of Example 1.8 shows that this is not true, either:

Example 2.8. Let

\[K_1 = \{ z \in \mathbb{C} : |z + 1| \leq 1 \} \cup \{ z \in \mathbb{C} : |z - 2| = 2 \} \]

(see figure 2).
Then the function \(f(z) = -z \) for \(|z + 1| \leq 1 \) and \(f(z) = z \) for \(|z - 2| = 2 \) belongs to \(P(K_1) \), but of course, by the same reasoning as in Example 1.8 \(f^* \) is not injective on \(\bar{K}_1 \).

So let us modify the question a little bit: let \(G \) be a hole of \(K \) and suppose that \(f \in P(K) \) is injective. Is \(f^*|_G \) injective? See figure 2 for several examples. In the following, a positive answer will be given for a special class of holes.

Definition 2.9. Let \(K \subseteq \mathbb{C} \) be compact and \(G \) a hole of \(K \). Then \(G \) is called a regular hole if \(G \) is the only hole of its boundary \(\partial G \); that is if \(\partial G = \overline{G} = G \cup \partial G = \bar{G} \).

In figure 2, the holes of \(K_1 \) and \(K_2 \) are regular as well as the hole \(G_2 \) of \(K_3 \), but \(G_1 \) is not regular. A more interesting class of non-regular holes is provided by Example 2.10. It has the additional property that \(G_1 \) is a component of the interior of a polynomially convex set \(K \).

Example 2.10. There is a compact set \(K \subseteq \mathbb{C} \) with connected complement such that some hole \(G_1 \) of \(\partial K \) has the property that \(G_1 \) is not the unique hole of \(\partial G_1 \).

Proof. Let \(K \) be the union of the closed unit disk with a “thick” spiral \(S \) surrounding the unit circle infinitely often and clustering exactly at every point of \(\mathbb{T} \) (see figure 3). Then \(\mathbb{C} \setminus K \) is connected, and the holes of \(\partial K \) are the components of \(K^\circ \); these are the interior \(G_1 \) of the spiral \(S \) and the open unit disk, denoted here by \(G_2 \). Then \(\partial G_1 = \partial K \); hence \(G_1 \) and \(G_2 \) are the holes of the boundary of the hole \(G_1 \) of \(\partial K \). \(\square \)

This example also shows that the closure \(\overline{G_1} \) of the component \(G_1 \) of the polynomial convex set \(K \), may have a disconnected complement, although \(G_1 \) itself is simply connected.

It actually can happen that two, or even infinitely many, holes of a compactum may have the same boundary. These sets are known under the name “lakes of Wada”, first discovered by L.E.J. Brouwer [1], see also [5, p. 138].
Figure 3. A p.c. compactum with a boundary hole whose boundary induces two holes.

Lemma 2.11. Let $G \subseteq \mathbb{C}$ be a bounded domain with $\overline{G} = G$ and
$$
\hat{\partial}G = G \cup \partial G.
$$
If $f : \partial G \to \mathbb{C}$ is a continuous injective map, then $f(\partial G)$ is the boundary of a bounded domain H with $\overline{H} = H$ and
$$
\hat{\partial}H = H \cup \partial H.
$$

Proof. By Theorem 2.5(4), $E := f(\partial G)$ has a single hole, too. Let us denote this hole by H. Since $\partial H \subseteq \partial E$, we have
$$
(2.7) \quad \hat{E} = E \cup H = E \cup \overline{\Pi}.
$$

Note that $\partial \overline{\Pi} \subseteq \partial H \subseteq E$. We claim that $\partial \overline{\Pi} = E$. Suppose, to the contrary, that $S := \partial \overline{\Pi} \subset E$, the inclusion being strict. Let $F := f^{-1}(S)$. Then F is a proper, closed subset of ∂G. Since $\partial G \setminus F$ is relatively open in the closed set ∂G, there is $\xi \in \partial G$ and a disk $D = D(\xi, \varepsilon)$ such that $D \cap F = \emptyset$. Let
$$
U := G \cup (\mathbb{C} \setminus \overline{G}) \cup D.
$$
By hypothesis, $\hat{\partial}G = \overline{G}$. Hence $\mathbb{C} \setminus \overline{G}$ is connected (because it coincides with the unbounded complementary component of the polynomially convex set $\hat{\partial}G$).

Because the hypothesis $\overline{G} = G$ implies that $\partial G = \partial \overline{G}$, we conclude that D meets G as well as $\mathbb{C} \setminus \overline{G}$. Hence, U is an unbounded open connected set contained in the open set $\mathbb{C} \setminus F$. Thus U is contained in the unbounded component of $\mathbb{C} \setminus F$. Since the remaining part $(\mathbb{C} \setminus F) \setminus U \subseteq \partial G \setminus F$ of $\mathbb{C} \setminus F$ is small in the sense that it does not contain interior points, $\mathbb{C} \setminus F$ does not have a bounded component. In other words, F has no holes. This

3 In other words, G is the only hole of ∂G.
is a contradiction, because F has the same number of holes as S; that is at least one hole. Thus we have shown that $\partial \overline{P} = \partial H = E$. The identity $\hat{E} = E \cup H$ (see (2.7)) now implies that $\hat{\partial H} = \partial H \cup H$.

Theorem 2.12. Let $K \subseteq \mathbb{C}$ be compact and suppose that $f \in P(K)$ is injective. If G is a hole of the outer boundary S_∞ of K, then the restriction $f^*|_G$ of the Gelfand transform f^* of f to G is injective whenever G is the only hole of ∂G.

Example 2.10 shows that the strange condition “whenever G is the only hole of ∂G” is not always satisfied.

Proof. Because G is the only hole of ∂G, we have $\hat{\partial G} = G \cup \partial G = \overline{G}$. Thus $M := \overline{G}$ is polynomially convex. Hence, the outer boundary of M coincides with $\partial M = \partial \overline{G}$. Moreover, since G is a hole of the boundary S_∞ of the polynomially convex set \hat{S}_∞, we obtain from Proposition 2.6 that $\partial G = \partial \overline{G}$ and that $\hat{\partial G} = \partial \overline{G}$.

Since ∂M has a single hole, namely, $G = \overline{G}^o$, and since f is injective on ∂M, $E := f(\partial M)$ has a single hole, too. Let H be that hole. By Lemma 2.11, $\hat{\partial H} = H \cup \partial H$ and $\partial H = \partial \overline{H} = E$. We conclude that f maps the outer boundary ∂M of M onto the outer boundary E of $\hat{f}(\partial M)$. By Theorem 2.7, f^* is injective on $M = \overline{G}$. \qed

Example 1.8 shows that, in general, f^* is not injective on the union of two bounded components G_j of $\mathbb{C} \setminus S_\infty$. However, we don’t know whether $f^*|_G$ is injective in case G is not a regular hole of S_∞.

Corollary 2.13. Let $X \subseteq \mathbb{C}$ be compact and H a hole of X. Suppose that $f \in P(X)$ is injective. Under each of the following conditions f^* is injective on \overline{P}:

1. $(\partial \overline{P}, f)$ satisfies the condition of Theorem 2.7 with $K = \partial \overline{P}$.
2. H is contained in a hole G of the outer boundary of X which has the property that G is the only hole of ∂G.
3. H is a regular hole of X.

Proof. (1) and (2) are clear.

(3) Let $M = \overline{P}$. By hypothesis, $\hat{\partial H} = H \cup \partial H$. Thus M is polynomially convex. Since $H \subseteq \overline{P}^o \subseteq \overline{P}$, we conclude from the connectedness of H that $G := \overline{P}^o$ is connected. Hence G is the only hole of $\partial \overline{P}$. Since $\partial \overline{P}$ is the outer boundary of \overline{H}, it follows that $\partial \overline{P} = \partial G$ and $\overline{G} = \overline{H}$. In particular, $\hat{\partial G} = \partial G \cup G$. By Theorem 2.12, $f^*|_\overline{G}$ is injective. \qed

Corollary 2.14. Let $K \subseteq \mathbb{C}$ be compact. Suppose that $\mathbb{C} \setminus K$ and K^o are connected. Then ∂K has the extension property.

Proof. If $K^o = \emptyset$, then the polynomial convexity of K implies that $\hat{K} = K = \partial K$. Hence the assertion is trivial. So let us assume that $K^o \neq \emptyset$. Let
$M = \overline{K^\circ}$. We claim that M is polynomially convex. In fact,

$$\overline{K^\circ} \subseteq \hat{\overline{K^\circ}} \subseteq \hat{K} = K.$$

If $\overline{K^\circ}$ would be a strict subset of $\hat{\overline{K^\circ}}$, then $\overline{K^\circ}$ would have a hole H. Hence

$$\overline{K^\circ} \cup H \subseteq \hat{\overline{K^\circ}} \subseteq K.$$

Consequently, $K^\circ \cup H \subseteq K^\circ$; this is an obvious contradiction. We conclude that

$$\partial K^\circ = \hat{\overline{K^\circ}} = \overline{K^\circ} = K^\circ \cup \partial K^\circ.$$

Thus K° is a regular hole for ∂M. The conclusion now follows from Corollary 2.13. □

Examples 2.8 and 1.8 (this latter for the full disks) show that neither of the conditions $C \setminus K$ connected or K° connected implies that ∂K has the extension property.

Now let $K \subseteq \mathbb{C}$ be a compact set for which ∂K has the extension property (for $P(K)$-functions). If $f \in R(K)$ is injective on ∂K, does this imply that f is injective on K? The following example shows that this is not necessarily the case:

Example 2.15. Let $K = \{z \in \mathbb{C} : r \leq |z| \leq R \}$ where $0 < r < 1 < R$ and $rR \neq 1$. Then the function f, given by $f(z) = z + \frac{1}{z}$ belongs to $R(K)$, is injective on ∂K, but not on K. In fact, $f(z) = f(w)$ implies that $z - w = (w - z)/zw$. Since on ∂K, $zw \neq 1$, we have $z = w$. On the other hand, $f(i) = f(-i) = 0$.

Finally, we want to present the following problem: suppose that $f \in C(\partial K, \mathbb{C})$ is injective. Under which conditions f admits a continuous injective extension to \hat{K} or even \mathbb{C}? Note that if K is the closure of a Jordan domain, then the Schoenflies theorem guarantees the existence of a homeomorphism of \mathbb{C} extending f.

3. Continuous logarithms on compact sets containing the origin on their boundary

Eilenberg’s Theorem 2.5(2) shows that if 0 belongs to the unbounded complementary component of a compact set K in \mathbb{C}, then there exists a continuous branch of the logarithm of z on K. On the other hand, by 2.5(3), if 0 belongs to a bounded complementary component of K, then there does not exist a continuous function h on K such that $e^{h(z)} = z$ for every $z \in K$. We will investigate now the case when 0 belongs to the boundary of K. Does there exist a continuous branch of $\log z$ on $K \setminus \{0\}$? The answer is “not necessarily”\(^4\).

\(^4\)This refutes statements and invalidates the associated “proofs” in [10, p. 62] and its verbatim copy in [4, p. 348]
Proposition 3.1. There exists a compact set K in \mathbb{C} with $0 \in \partial K$ and connected complement such that no continuous branch of $\log z$ can be defined on $K \setminus \{0\}$.

Proof. Let E be the disk $\{z \in \mathbb{C} : |z + 1| \leq 1\}$ and S a spiral starting at 1 and surrounding E infinitely often and clustering at every point on the boundary of E; for example one may describe S as the half-open curve

$$z(t) = -1 + \left(1 + \frac{1}{1+t}\right) e^{it}, \quad 0 \leq t < \infty.$$

Let $K = E \cup S$. Then K is compact and polynomially convex. Note also that $S \cap E = \partial E$. Moreover, 0 is a boundary point of K. We show that there does not exist a continuous branch of $\log z$ on $K \setminus \{0\}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{spiral.png}
\caption{A spiral clustering at a circle}
\end{figure}

In fact, since S is a connected set surrounding 0 infinitely often, any continuous determination of the argument of z when z runs through the spiral S has to be unbounded. This can be seen by geometric intuition or by the following analytic argument:

If we look at $w(t) := \exp(-it)z(t) = 1 + 1/(1+t) - \exp(-it)$, $0 \leq t < \infty$, then $\Re w(t) \geq 1/(1+t) > 0$. Hence $w(t)$ belongs to the right half-plane. Let $L(z) = \log z$ be the principal branch of the logarithm on the right half-plane and set $h(t) := L(w(t))$. Then

$$\exp(-it)z(t) = \exp(h(t)).$$

Therefore, $z(t) = \exp(it + h(t))$. Because $|\Im h(t)| \leq \pi/2$,

$$\arg z(t) = \Im (it + h(t))$$

behaves as t for large t. Thus the imaginary part of $\log z$ is unbounded, for $z \in S$.

Since the spiral S clusters at every point of the circle $C := \{|z + 1| = 1\}$ and $C \subseteq S \subseteq K$, $\log z$ cannot be continuous on $K \setminus \{0\}$. \qed
Next we give a sufficient condition for the existence of such logarithms.

Definition 3.2. A boundary point z_0 of a compact set K is said to be accessible, if there is a Jordan arc $\gamma :]0,1[\to \mathbb{C} \setminus K$ coming from infinity and ending at z_0 (that is $\lim_{t \to 0} \gamma(t) = \infty$ and $\lim_{t \to 1} \gamma(t) = z_0$).

We note that it is well known that the set of accessible boundary points for K is dense in the boundary ∂K of K.

Theorem 3.3. Let K be a compact set in \mathbb{C} and suppose that $0 \in \partial K$. If 0 is an accessible boundary point, then there is a continuous branch of $\log z$ on $K \setminus \{0\}$.

Proof. Let $J = \gamma([0,1])$ be a Jordan arc in the complement of K, joining ∞ with 0; in particular, $\lim_{t \to 0} \gamma(t) = \infty$ and $\lim_{t \to 1} \gamma(t) = 0$. Note that $J = J \cup \{0\}$. Then $\Omega := \mathbb{C} \setminus J$ is a simply connected domain in \mathbb{C} with $0 \notin \Omega$. Hence there is a holomorphic branch of $\log z$ in Ω. Because $K \setminus \{0\} \subseteq \Omega$, we have obtained the desired logarithm.

For example if K is the union of $\{0\}$ with the spiral parametrized by

$$z(t) = \left\{ \frac{1}{1 + t}e^{it} : 0 \leq t < \infty \right\},$$

then 0 is an accessible boundary point of $K = \partial K$ and $\log z(t) = it - \log(1+t)$ is a continuous branch of the logarithm on $K \setminus \{0\}$.

Figure 5. A spiral ending at the origin

It is not known at present, whether accessibility characterizes the compact sets under discussion.

Acknowledgements
I thank Robert Burckel for his comments on section 3, Lee Stout for some helpful comments on a preliminary version of this work and for reference [1], Rainer Brück for reference [8] in connection with Theorem 2.1 and Jérôme...
Noël for drawing figure 3. I also thank Rudolf Rupp for his contribution to Theorems 1.1 and 1.3.

REFERENCES

[1] L.E.J. Brouwer, Zur Analysis situs, Math. Ann. 68 (1909), 422–434. 12, 17
[2] A. Browder. Introduction to Function Algebras, W.A. Benjamin, Inc. New York, (1969). 3
[3] R. B. Burckel, An Introduction to Classical Complex Analysis, Birkhäuser, Basel+Stuttgart, 1979. 2, 3, 6, 7
[4] K.P. Chi, Kallin’s Lemma for rational convexity, Acta Math. Vietnamica 34 (2009), 345–350. 15
[5] B. Gelbaum, J. Olmsted, Countereexamples in Analysis, Dover Publ., New York, 2003 12
[6] R. Mortini, R. Rupp, The symmetric versions of Rouché’s theorem via $\bar{\partial}$-calculus, J. Complex Analysis 2014, Article ID 260953, 1-9. 7
[7] R. Narasimhan, Complex analysis in one variable, Birkhäuser, Boston, 1985. 6
[8] C. Pommerenke. Univalent functions, Vandenhoek & Ruprecht, Götingen, 1975. 6, 17
[9] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New York, 1986 3, 4
[10] E.L. Stout, Polynomial Convexity, Birkhäuser, Boston 2007. 15

Université de Lorraine, Département de Mathématiques et Institut Élie Cartan de Lorraine, UMR 7502, Ile du Saulcy, F-57045 Metz, France
E-mail address: raymond.mortini@univ-lorraine.fr