Moy-Prasad maps for SL(2) over extensions of \mathbb{Q}_2

Terence Joseph Kivran-Swaine
The New York City College of Technology
The City University of New York
New York, NY 11201
tkivran-swaine@citytech.cuny.edu

9/27/2011

Abstract

A parametrization for characters of abelian quotients of compact subgroups of $G := \text{SL}_2(F)$ is constructed for F an algebraic extension of \mathbb{Q}_2 that corresponds to the Moy-Prasad maps of fields of odd residual characteristic.

In his Ph.D. thesis, [11], Joseph Shalika established that the representations of Weil ([13]) form an exhaustive list of irreducible, cuspidal representations over $G := \text{SL}_2(F)$ for F a local field of odd residual characteristic. To that end, Shalika employs a now classical filtration of the compact subgroups of G and then lists the possible characters on compact subgroups of G contained in such representations to count the representations of G of a particular “level”. In his 1972 paper, [1], Casselman extended this technique to construct the irreducible cuspidal representations which occur in the construction of Weil for $\text{SL}_2(F)$ with F of even residual characteristic. In 1976, Nobs establish that exactly four “exceptional” representations for $\text{SL}_2(\mathbb{Q}_2)$ existed outside the construction of Weil. Later that year, Nobs along with Wolfart identified these representations in [9] by using tensor products of other representations.

In his 1978 papers, [3] and [4], Kutzko built on the parametrization of Shalika to explicitly construct cuspidal representations of $\text{GL}_2(F)$ for arbitrary residual characteristic. An alternate presentation of this approach can be found in Kutzko’s 1972 Ph.D. Thesis, [5]. His parametrization became know as the theory of cuspidal types.

This technique was modified back to $\text{SL}_2(F)$ of odd residual characteristic by Manderscheid in his 1984 papers, [6] and [7]. In 1994 Moy and Prasad proved that a more general approach for classifying irreducible representations could be employed for arbitrary reductive groups over arbitrary p. While their approach differed from that of Kutzko, they rely on the implicit existence of a parametrization of characters corresponding to that used in Shalika’s thesis. [8].
The functions underlying the parametrization of characters employed by Moy and Prasad became known as Moy-Prasad maps. They provide an G-isomorphism to certain characters of compact subgroups of G from quotients of fractional ideals in the Lie Algebra corresponding to G. Recently they have been employed in work by Yu, [14] and in the exposition the harmonic analysis of $SL_2(F)$ for $p \neq 2$ by Adler, Debacker, Sally and Spice, [2].

As presented in the literature, these G-isomorphisms factors through a p-adic Killing form on the Lie Algebra in question. As the killing form on the trace zero matrices $\mathbb{Z}/2\mathbb{Z}$ is known to be degenerate, the traditional formulation of Moy-Prasad maps does not freely transfer to $SL_2(F)$ for F of residual characteristic two. In this note I develop a counterpart for Moy-Prasad maps for the case where $p = 2$.

This work is a generalization of a portion of my dissertation, [12] and is the first in a sequence of papers which will develop the representation theory and harmonic analysis of $SL_2(F)$ where $p = 2$, employing the methods of Kutzko and Mandersheid.

Notation. I will use l, m and n to denote integers. Here is some notation I will employ:

- Let F be an algebraic extension of \mathbb{Q}_2 of ramification index e.
- Let $G = SL_2(F)$.
- Let \mathfrak{o} denote the ring of integers of F.
- Let p be the prime ideal of \mathfrak{o}.
- Let ϖ be a local uniformizing parameter that generates p.
- Denote the valuation of x in F^\times by $v(x)$.
- Let K denote a maximal compact subgroup of G, namely $SL_2(\mathfrak{o})$.
- For $n, m \geq 0$, let K_n^m denote the compact subgroup of G which consists of elements of the form,

$$1_2 + \begin{pmatrix} p^n & p^{n+m} \\ p^{n+m} & p^n \end{pmatrix}.$$ (1)

In this paper I offer the following results.

Theorem 1. If $e, n \geq m$, then K_n^m is a normal subgroup of K.

Theorem 2. If $m \leq e$, then the set of characters of the quotient K_n^m/K_2n as a G-set is parametrized by matrices of the form

$$\begin{pmatrix} p^{-2n-e}/p^{-n-e} & p^{-2n-m}/p^{-n-m} \\
 p^{-2n-m}/p^{-n-m} & p^{-2n-e}/p^{-n-e} \end{pmatrix}.$$
Proof of Theorem 1

Notation. In both this proof and the next I will denote \(u = \frac{e^c}{2} \). Note that \(u \in o^\times \).
I recall two famous subgroups of \(K \).

- For \(n \geq 1 \), let \(K_n \) be the kernel in \(K \) of the map induced by the natural homomorphism \(o \to o/p^n \) and let \(K_0 = K \).
- For \(n \geq 1 \), let \(B_n \) be the preimage in \(K \) of the group of upper triangular matrices of the map induced by the natural map \(o \to o/p^n \) and let \(B_0 = K \).

For \(n \geq 0 \), I will also denote by \(\left[\begin{array}{c} x \\ y \end{array} \right]_n \), the homothety class of \((x, y) \in o \times o \) in the projective line over \(o/p^n \). For my purposes, the projective line over \(o/p^0 \) is a singleton set.

Note that for the calculations that follow, one may consider \(\left[\begin{array}{c} x \\ y \end{array} \right]_n \) as a vertex on the Bruhat-Tits tree that is distance \(n \) from the vertex stabilized by \(K \) as in [10]. While this perspective can be insightful with respect to Theorem 1, it is not necessary for purposes of proof.

I consider the transitive action of \(K \) on the projective line over \(o/p^n \):
\[
\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left[\begin{array}{c} x \\ y \end{array} \right]_n = \left[\begin{array}{c} ax + by \\ cx + dy \end{array} \right]_n
\]

It is well known and easily verified that the stabilizer of the projective point \(\left[\begin{array}{c} 1 \\ 0 \end{array} \right]_n \) is none other than \(B_n \). Consequently, for \(\gamma \in K \) the conjugate \(B_n \gamma \) is the stabilizer of \(\gamma^{-1} \left[\begin{array}{c} 1 \\ 0 \end{array} \right]_n \).

I now consider the group of matrices:
\[
B_{n+m} \cap K_n = 1_2 + \left(\begin{array}{c} p^n \\ p^{n+m} \end{array} \right)
\]

Lemma 1. If \(n, e \geq m \), the group \(K_n^m \) is the intersection of each of the conjugates of \(B_{n+m} \cap K_n \) under \(K \).

Proof. First it is easy to observe that \(K_n^m \) is the intersection of \(B_{n+m} \cap K_n \) with the stabilizer of \(\left[\begin{array}{c} 1 \\ 0 \end{array} \right]_{n+m} \), since the latter is precisely the group of determinant-one matrices of the form
\[
\left(\begin{array}{cc} o^\times & p^{m+n} \\ o & o^\times \end{array} \right).
\]

To show that is a subset of the other conjugates of \(B_{n+m} \cap K_n \) and hence the intersection of all conjugates of \(B_{n+m} \cap K_n \), I compute the action of \(K_n^m \) on
an arbitrary point of the projective line, illustrating that it is trivial.

\[
\begin{bmatrix}
1 + \varpi^n a & \varpi^{n+m} b \\
\varpi^{n+m} c & 1 + \varpi^n d
\end{bmatrix}
\begin{bmatrix} x \\ 1 \end{bmatrix}
= \begin{bmatrix}
1 + \varpi^n a & 0 \\
0 & (1 + \varpi^n a)^{-1}
\end{bmatrix}
\begin{bmatrix} x \\ 1 \end{bmatrix}
= \begin{bmatrix}
(1 + \varpi^n a)x \\
(1 + \varpi^n a)^{-1}1
\end{bmatrix}
= \begin{bmatrix}
(1 + 2\varpi^n a + \varpi^{2n} a^2)x \\
1
\end{bmatrix}
= \begin{bmatrix}
(1 + \varpi^{n+c} a + \varpi^{2n} a^2)x \\
1
\end{bmatrix}
\]

because \(e, n \geq m \).

\[\square \]

Theorem 1 is a direct consequence of the preceding lemma.

Proof of Theorem 2

The parametrization of characters referenced implicitly in Theorem 2 is defined as follows.

\[\chi_A(X) := \chi(\text{tr} \ ((X - 1)A)). \tag{2} \]

The proof of Theorem 2 is a consequence of the following three lemmas.

Lemma 2. The pairing \(\langle A, B \rangle = \text{tr} (AB) \) of trace-zero matrices,

\[
\begin{bmatrix}
p^n & p^{n+m} \\
p^{n+l} & p^n
\end{bmatrix}
\times
\begin{bmatrix}
p^{m-n-e} & p^{m-n-l} \\
p^{n-m} & p^{m-n-e}
\end{bmatrix}
\rightarrow \mathfrak{a}, \tag{3}
\]

is bilinear and non-degenerate in the sense that if \(\langle B, A \rangle \in \mathfrak{p} \) for every trace-zero matrix, \(B \in \begin{bmatrix}
p^n & p^{n+m} \\
p^{n+l} & p^n
\end{bmatrix} \), then

\[A \in \mathfrak{p} \cdot \begin{bmatrix}
p^{m-n-e} & p^{m-n-l} \\
p^{n-m} & p^{m-n-e}
\end{bmatrix} \]

Proof. This follows from direct calculation.

\[
\text{tr}
\begin{pmatrix}
\varpi^n & \varpi^{m} a_2 \\
\varpi^{n+m} a_3 & -a_1
\end{pmatrix}
\varpi^n
\begin{pmatrix}
\varpi^{m} b_1 & \varpi^{m} b_2 \\
-\varpi^{m} b_3 & -\varpi^{m} b_1
\end{pmatrix}
= \text{tr}
\begin{pmatrix}
a_1 & \varpi^{m} a_2 \\
\varpi^{n+m} a_3 & -a_1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{u} b_1 & \frac{1}{u} b_2 \\
\frac{1}{u} b_3 & -\frac{1}{u} b_1
\end{pmatrix}
= \frac{1}{2u} a_1 b_1 + a_2 b_2 + a_3 b_3 + \frac{1}{2u} a_1 b_1
= \frac{1}{u} a_1 b_1 + a_2 b_2 + a_3 b_3
\]

4
If \(v(b_i) = 0 \) setting \(a_i = 1 \) and \(a_j = 0 \) for \(j \neq i \) ensures that \(\langle B, A \rangle \not\in p \).

This is a bilinear pairing since \(\text{tr}(xBA) + \text{tr}(yCA) = \text{tr}((xB + yC)A) \) and similarly in the right-hand argument.

Lemma 3. The map \(A \mapsto \chi_A \) is a group homomorphism and a map of G-sets. That is,

\[
\chi_A^g(X) := \chi_A(X^g) = \chi_{A^g}(X).
\]

Proof. First note that by Lemma 2,

\[
\chi_A(X) \cdot \chi_B(X) = \chi(\langle X, A \rangle) \chi(\langle X, B \rangle)
= \chi(\langle X, A + B \rangle) = \chi_A + \chi_B(X).
\]

Employing the fact that the trace of a matrix is invariant under conjugation, I calculate that

\[
\chi_A^g(X^g) = \chi(\langle X^g - 1, A \rangle)
= \chi(\langle (X - 1)^g, A \rangle)
= \chi(\text{tr}((X - 1)^gA))
= \chi(\text{tr}((X - 1)A^g))
= \chi_{A^g}(X),
\]

which illustrates the preservation of the G-action.

Lemma 4. If \(n \geq 1 \) and \(l, m \geq -1 \), the map \(X \mapsto X - 1 \) induces an isomorphism from a multiplicative quotient of determinate-one matrices to an additive quotient of trace-zero matrices:

\[
\frac{(12 + \left(\frac{p^n}{p^{n+l}}, \frac{m^{n+m}}{p^n}\right))/(12 + \left(\frac{p^{2n}}{p^{2n+l}}, \frac{p^{2n+m}}{p^{2n}}\right))}{(12 + \left(\frac{p^n}{p^{n+l}}, \frac{p^{n+m}}{p^n}\right))}
\]

Proof. First note that so long as the constraints of \(l, m, \) and \(n \) are respected, the set of determinant one matrices of the form

\[
\left(\frac{12 + \left(\frac{p^n}{p^{n+l}}, \frac{m^{n+m}}{p^n}\right)}{(12 + \left(\frac{p^n}{p^{n+l}}, \frac{p^{n+m}}{p^n}\right))}
\]

is a group. Namely it is the intersection of \(K_n, B_{n+l} \) and the stabilizer of \([\frac{p}{p^{n+m}}]_{n+m} \).

\footnote{Note that the second and third lemmas hold even when \(F \) is an algebraic extension of \(\mathbb{Q}_p \) with \(p \neq 2 \).}
Again I calculate:

\[(1 + \varpi^n (a_1 \varpi^m a_2) + (a_1 \varpi^m b_2) + \varpi^{2n} (b_1 \varpi^m b_3)) \equiv (1 + \varpi^n (a_1 + b_1 \varpi^m (a_2 + b_3)) + \varpi^{2n} (x_1 \varpi^m x_2)) \equiv (1 + \varpi^n (a_1 + b_1 \varpi^m (a_2 + b_3)) + \varpi^{2n} (d - (a_1 + b_1))).\]

Where \(x_i\) are the appropriate linear combinations of the \(a_j, b_k\), \(d\) is the difference between \(a_4 + b_4\) and \(-a_1 - b_1\) and \(r\) is a remainder in \((\varpi^{2n+1} \varpi^{2n+m})\).

I must verify that \(d \in \varpi^{2n}\). To complete the proof I observe that

\[(1 + \varpi^n a_1) + \varpi^n a_4 - \varpi^{2n+m+1} a_2 a_3 = 1,
\]

so

\[a_4 + a_1 = \varpi^{2n}(\varpi^{m+1} a_2 a_3 - a_1 a_4).\]

An identical calculation for \(b_4 + b_1\) places \(d\) clearly within \(\varpi^{2n}\).

\[\square\]

I now can prove a slightly more general theorem than Theorem 2.

Theorem 2'. If \(n \geq 1\) and \(-1 \leq l, m \leq e\), then the set of characters of the quotient of determinant-one matrices

\[
\begin{pmatrix}
1 + \left(\frac{\varpi^n}{\varpi^{n+1}} \varpi^{n+m}\right) \\
1 + \left(\frac{\varpi^{2n}}{\varpi^{2n+1}} \varpi^{2n+m}\right)
\end{pmatrix}
\]

as a \(G\)-set is parametrized by trace-zero matrices of the form

\[
\begin{pmatrix}
\varpi^{-2n-e} / \varpi^{-n-e} \\
\varpi^{-2n-m} / \varpi^{-n-m}
\end{pmatrix}
\]

by the map

\[A \mapsto \chi_A.\]

Proof. Consider the function \(\chi_A\) factored into three parts:

\[\chi_A = X \mapsto (X - 1) \mapsto \text{tr} ((X - 1)A) \mapsto \chi(\text{tr} ((X - 1)A)).\]

As each factor of \(\chi_A\) is a group homomorphism (Lemmas 2 and 3 and 4), \(\chi_A\) is indeed a character.

By the linearity of the pairing \(\langle B, A \rangle\) (Lemma 2), if \(\chi_A = \chi_A', \) then

\[\chi_A / \chi_A' = \chi_{A - A'} = 1\] (Lemma 5). In such a case \(A - A' \in \left(\varpi^{-n-e} / \varpi^{-n-e}, \varpi^{-2n-m} / \varpi^{-n-m}\right)\),
by the non-degeracy of the pairing $\langle B, A \rangle$ (Lemma 2). Hence, the map is 1-to-1. Since the factor $X \mapsto X - 1$ induces an isomorphism to an abelian groups (Lemma 4), Pontryagin duality implies that the characters of the multiplicative quotient are in one-to-one correspondence with the elements of the quotient itself.

The map is onto since:

$$\left| \begin{pmatrix} p^n/p^{2n} & p^{n+m}/p^{2n+m} \\ p^{n+l}/p^{2n+l} & p^n/p^{2n} \end{pmatrix} \right| = \left| \begin{pmatrix} p^{-2n-e}/p^{-n-e} & p^{-2n-l}/p^{-n-l} \\ p^{-2n-m}/p^{-n-m} & p^{-2n-e}/p^{-n-e} \end{pmatrix} \right| .$$

\[\square \]

References

[1] W. Casselman. On the representations of $SL_2(k)$ related to binary quadratic forms. *American Journal of Mathematics*, 94(3):810–834, Jul. 1972.

[2] Paul J. Sally Jr, Jefferey D. Adler, Stephen DeBacker and Loren Spice. Supercuspidal characters of SL_2 over a p-adic field. In Loren Spice Robert S. Doran, Paul J. Sally Jr., editor, *Harmonic Analysis on Reductive, p-adic Groups*, pages 19–70. Amer. Math. Soc., 2011. AMS special session, harmonic analysis and representations of reductive, p-adic groups, January 16, 2010.

[3] P.C. Kutzko. On the supercuspidal representations of GL_2. *American Journal of Mathematics*, 100(1):43–60, February 1978.

[4] P.C. Kutzko. On the supercuspidal representations of GL_2, II. *American Journal of Mathematics*, 100(4):705–716, August 1978.

[5] Phillip Caesar Kutzko. *The Characters of the Binary Modular Congruence Group*. PhD thesis, University of Wisconsin, January 1972.

[6] D. Manderscheid. On the supercuspidal representations of SL_2 and its two-fold cover. I. *Math. Ann.*, 266:287–295, 1984.

[7] D. Manderscheid. On the supercuspidal representations of SL_2 and its two-fold cover. II. *Math. Ann.*, 266:297–305, 1984.

[8] Allen Moy and Gopal Prasad. Unrefined minimal k-types for p-adic groups. *Invent. Math.*, 116(no. 13):393408, 1994.

[9] Alexander Nobs and Jurgen Wolfart. Die irreduziblen darstellungen der gruppen $SL_2(Z_p)$, insbesondere $SL_2(Z_2)$ II. *Comment. Math. Helv.*, 51:491526, 1976.

[10] Jean-Pierre Serre. *Trees*. Springer Monographs in Mathematics. Springer-Verlag, first english edition, 2003, 1980. Translation of *arbres, Amalgames,SL_2*. Astérisque no. 46, from the French by John Stillwell.

[11] Joseph A. Shalika. *Representation of the Two by Two Unimodular Group Over Local Fields*. PhD thesis, Johns Hopkins University, 1966.

[12] Terence Joseph Kıvran Swaine. *The Admissible Dual of SL(2) of the Dyadic Numbers*. PhD thesis, The City University of New York, May 2011.

[13] André Weil. Sur certains groupes dopérateurs unitaires. *Acta. Math.*, 111:14321, 1964.

[14] Jiu-Kang Yu. Construction of tame supercuspidal representations. *J. Amer. Math. Soc.*, 14(3):579–622, 2001. electronic.