Review on Anti-Rheumatoid Arthritis Potential of Medicinal Plants

Anjana Goel¹, Sunanda Kulshrestha²

¹Associate Professor, Department of Biotechnology, GLA University, Mathura, U.P, India; ²PhD Scholar, Department of Biotechnology, GLA University, Mathura, U.P, India.

ABSTRACT

Autoimmunity is an immunological disorder in which immune response against self-antigens is provoked. Rheumatoid arthritis (RA) is one of its kinds of chronic autoimmune disorder causing inflammation and infiltration of immune cells around the synovial membrane, which leads to destruction and degradation of cartilages. Steroidal and non-steroidal allopathic therapies available so far cannot cure or prevent the disease. Besides their severe side effects, they can only provide temporary relief by suppressing and reducing the pain in the joints. Detailed search for the related literature has been carried out using multiple searches with words ‘rheumatoid arthritis’; ‘plants for rheumatoid arthritis’ etc. with the help of search engines. PubMed, Research Gate, Google Scholar have been used for more authentic information support. Alternative medicinal approaches for the treatment of Rheumatoid arthritis, as a holistic approach, can be used in a better way for making life much better for the sufferer and restricting the progression of the disease. Some of the approaches carrying ethnotherapeutic and ethnobotanical importance have been discussed in the review article and tried to assemble all possible plants that show Anti-Rheumatoid Arthritis activity. These approaches are giving some hope for the treatment of RA. The experimental model for investigating the effects of drugs on RA has also been discussed. This could draw a new pathway for future researches as well.

Key Words: Arthritis, Autoimmunity, Ayurveda, Immunological disorder

INTRODUCTION

Rheumatoid arthritis affects almost 0.5-1% of the population worldwide¹ and in case of the Indian population, more than 20% of the population suffers from any of the forms of arthritis.² It is a multifunctional immune disorder with a known cause. Some factors which may influence RA are a genetic factor, age, hormones, environmental factors, smoking etc. Different strategies for the study of RA have been used. Experimental animal model, which elucidate the onset and progression of the disease as well as evaluate the drugs that can reduce or prevent the disease, can be studied. An ideal model should have close similarities with human disease pathogenesis and symptoms. The use of an ideal animal model contributes significantly to the evaluation of therapeutic molecules against RA.³

Causes

RA is believed to be an autoimmune disorder, although the real cause and etiology of the disease are still unknown. The frequency of appearance is three times more in the females rather than the males.⁴ RA sometimes also leads to diffused inflammations in the lungs, pleura and sclera, nodular lesions, and most commonly in the subcutaneous tissue, this is the most severe type of RA. Autoimmunity is known to be the major prognostic factor behind RA and plays important role in its progression towards severity. Inflammations in synovial joints are caused by many kinds of immune-mediated compounds.⁵ The cause is still not clear but the destruction of articular cartilage due to inflammatory responses is the major cause of RA.⁶

Symptoms

Symptoms for the same includes, joint pain and swelling, stiffness in joints, sleeplessness, fatigue, loss of weight and having flu kind of symptoms. Abnormal antibodies IgG have been found in the blood of a person suffering from rheumatoid arthritis. They react to antigens leading to the formation of antigen-antibody complex that leads to inflammation and pain of the synovial membrane.⁷
Diagnosis for RA involves the use of clinical methods of imaging and laboratory tests. Laboratory testing methods include anaemia, presence of rheumatoid factor, antibodies against the cyclic citrullinated peptides and elevation in erythrocyte sedimentation rate. While symptomatic detection of stiffness and pain for a long time in the morning gives some clue about the disease. X-rays also help in detecting the RA but at times they can’t differentiate in early arthritis too. MRI and ultrasounds are also done to look at the progress of the RA in the patients. No such highly specified test has been developed for validation of the disease.\(^8\ 9\)

GENERAL TREATMENT FOR RHEUMATOID ARTHRITIS AND ITS LIMITATION

Management of pain, prevention of long-term damage to the joints and reduction in inflammation are major problematic area to deal with while treating RA. For these, disease-modifying anti-rheumatic drugs (DMARDs) and non-steroidal anti-inflammatory drugs (NSAIDs) have been used as the major approaches to deal with the symptoms and after-effects of the disease. Other steroidal drugs that are used to treat inflammation by RA are corticosteroids, an anti-inflammatory hormone released from adrenal glands. An ideal steroid should meet the requirement of meeting the need at a low dosage and avoid side effects. Both the steroidal and non-steroidal drugs although control the symptoms but in long term, they cannot cure the disease or prevent it. Apart from all this, more severe side effects can be seen in the patients in terms of effects on kidney, liver and heart due to prolonged use to such medicines. Shortness of breath, nausea, infections and allergic reactions have also been noticed as the short-term side effects. This in turns marks the major limitation and issue while dealing with steroidal drugs for curing rheumatoid arthritis.\(^4\ 10\) They don’t work effectively progression of the disease and cure it of its roots. They are just meant to deal with the symptoms like pain, inflammation, swelling etc. which are the main symptoms as discussed before.

AYURVEDIC PERSPECTIVE OF RHEUMATOID ARTHRITIS

Ayurveda is one of the forms of alternative treatment of medicine. It is typically based on three dosa: Vata, pitta and Kapha. Amavata, an ayurvedic condition has similarities with RA.\(^11\ 12\) Amavata is associated with the production of ‘Ama’ in the gut. Ama is produced due to the disturbed metabolism.\(^13\ 14\) It is pro-inflammatory and creates toxicity in the gut and imbalance of Vata in the body. According to Ayurveda the people with Vata dosa are more prone to develop this disorder.\(^11\) Thus it can be cured by taking the diet which is rich in grains, legumes, green leafy vegetables, buttermilk etc. Spices like ginger, garlic and turmeric aid the digestion process and anti-inflammatory, thus recommended. Lukewarm water is always preferred for the digestion in Ayurveda. Ginger roots, boiled in water, also remove toxins from the body and help in the digestion process. The commonly used plants used to treat and mitigate the symptoms of RA have been summed up in table 1.

NEED OF NATURAL REMEDIES

Since time immemorial, the natural remedies used by the population has been helpful to meet the symptoms of any diseases or even used till date by many folks, tribal and traditional medicinal practitioners for treatment. According to WHO, 80% of the population still rely on herbal treatments. Plants and herbs have been taken in form of infusion, raw or juice form and have worked efficiently as per observation in the patients. Just with the inclusion of such plants with medicinal properties in daily diet made a tremendous change in the disease while benefiting the sufferer. This directly indicates that there is a world to explore in the field of phytoconstituents of plants that have been used traditionally for curing RA.

POSSIBLE MECHANISM OF ACTION OF HERBAL DRUGS

Many researchers have tried to elaborate a particular pathway of mechanism that the herbal drugs follow to hit the causative factors that are responsible for symptoms of RA and cure the disease from inside. As the disease progress via different mechanisms and pathways, therefore multi-pathway effects have been noticed by the herbal remedies by many researchers and some of them have been discussed below.

It has been observed that TLRs (toll-like receptors) play a major role in inflammation in RA and stimulate the cellular activity of NF-κβ mediated by adapter molecules like myeloid differentiation primary-response gene 88 (MyD88) at the onset of disease. The process of phosphorylation of cytoplasmic IκBs is carried by TLR2/6, TLR4, or TLR5 agonist which in turn stimulate target cells and macrophages. After degradation of this complex, NF-κβ translocated into the nucleus where the promoter regions of inflammatory genes like iNOS, COX-2, IL-6 bind to NF-κβ for transcriptional activation. Augmentation in COX-2 and other pro-inflammatory cytokines modulate the metabolism of arachidonic acid which results in the formation of prostaglandins-E2 and turn leads to suppression of leukocytes apoptosis and even stimulate proliferation of leukocyte which leads to the pathological condition of hyperplasia and pannus formation at the site. Therefore, it could be inferred why inhibition of NF-κβ would act as a major target for dealing with RA.\(^15\)
Apart from this, cytokines and other pro-inflammatory factors play a protagonist progression of the disease. TNF-α, IL-1β and IL-6 are the major pro-inflammatory cytokines which activate the collagenase and other proteases to degrade the collagen thus increases the degradation of cartilage. It also leads to an increase in the infiltration of T cell, B cell and macrophages causing synovial inflammation. It implies that the herbal drug should be capable to inhibit and inactivate such pathways and complexes. Many herbal drugs have shown to down-regulate these pro-inflammatory cytokines and reduce oxidative stress.

In this row plants like Saraca asoca, which is a commonly used plant having traditional use in RA has shown major anti-inflammatory activities in vivo model showing the reduced level of pro-inflammatory cytokines. Ocimum, which already holds many therapeutic potentials to its glory also acts on RA by showing anti-inflammatory activity by inhibition of arachidonate metabolism and anti-histaminic activity. Eugenol (1-hydroxy-2-methoxy-4-allylbenzene), which is one of the most active bioactive molecules of Ocimum, is playing a major role. Cannabis sativum, a notorious plant is known for its addictive properties is also been tested for RA and gave results in favour of it. The cannabidiol, a major constituent of the plant is shown to act for anti-inflammatory by inhibiting COX-2 in mice model. Similar activity of suppression of NF-kB pathway and COX-2 has been seen by aerial parts of Cassia plant which has also been one of the important traditional medicine for treating RA. The leaves have been found experimentally to show results for swelling, improvement in cartilage degradation and leucocyte infiltration in synovial fluid in the rat model study. Similar activities have been noted in Zingiber officinale which seen to possess a bioactive constituent 6-gingerol, that blocks the NF-kB and PKC (protein kinase C) pathway and induce anti-inflammatory activity. Another remedy used Semecarpus Anacardium which is a tree from the sub-Himalayan region is seen to be effective in RA and has anti-oxidant potential proved by inhibition of ROS in the body. The flavonoids also induce anti-inflammatory action by inhibition of phospholipase A2 that reduces the production of PGE2 and also reduce the level of TNF-α and NO. This all helps in preventing the rupture and release of lysosomal enzyme and help in synovial erosion.

Artemisia absinthium, a Persian plant is also used as a traditional plant for curing RA and is seen to suppress inflammatory diseases by following multiple pathways. It acts by reducing the release of NO and PGE2 which inhibits the iNOS expression. Also, another pathway followed includes inhibition of COX-2 expression by scoparone, a bioactive compound found in the plant. Similar multi-path action is also exhibited by A. sylvatica Maxim aerial parts. Experimental studies have also supported the use of Curcuma longa, a widely used spice containing curcumin. It inhibits the arachidonic acid cascade by the mode of inhibition of catalytic activities of phospholipases and blocking the catabolic effect of IL-1 β induced upregulation of MMP-3, and IL-1β-induced decrease in type II collagen synthesis which is a contributing factor in RA progression. Other plants including Moringa oleifera which shows anti-inflammatory effect by lowering down serum levels of Rheumatoid Factor (RF) and levels of the cytokines, TNF-α and IL-1, Nyctanthes arbor-tristis which lowers down the inflammatory cytokines IL-1, TNF-α in blood serum in experimental set up, Swertia chirayita, works in similar style and lowers down the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 in experimental arthritis have been found to act effectively on RA following multiple pathways.

Minimal or no side effects by these remedies are the best part of the approach. After prolonged use of allopathic drugs, many side effects have been observed in the patients of RA as listed above. Hence, herbal therapies could act as effective approaches towards the treatment of such diseases. Today, uses of many phytomedical plants have been observed by experimental methods and are under scientific observations to develop as a natural way for healing. Goals of natural therapy includes a reduction in joint pains, prevention of deformity, prevention of erosion, prevention from progression, control on extra-articular manifestations while maintaining the quality of life as well. Medicinal plants which have been tested experimentally and proven their efficacy are represented in tabular form in table 2. Using suitable experimental protocols related to in vitro and in vivo validations of anti-inflammatory effects, positive results has been observed that supports the ethnobotanical importance of herbal remedies for dealing with rheumatoid arthritis and lays an important source for future researches as well.

CONCLUSION

Rheumatoid arthritis is an autoimmune disease and well known for causing deformities and pain due to inflammations in the joints of the sufferer. Conventionally, the allopathic approaches used to treat RA comprise on disease-modifying anti-rheumatic drugs, Non-steroidal anti-inflammatory drugs and corticosteroids, which relieve the pain and inflammation till a limited time when they are in action. They are also accountable for some side effects in the patients and never show or promise to cure the disease from within. Looking at all the perspectives, the herbal approach can be thought of as an alternative approach for the treatment of RA. Our folk and indigenous treasure of knowledge hold many secrets to cure any diseases without causing any side effects. At present herbal remedies carrying anti-arthritic activities have been developed and potentials of their phytochemicals continuously have been validated. More than 450 species of plants have been listed that promise anti-arthritic activity
in humans ranging from various plant families. The article summarizes data regarding plants that could help and motivate researches in future.

ACKNOWLEDGEMENTS

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references to this manuscript.

Conflict of Interest: Nil

Source of Funding: Nil

REFERENCES

1. Gabriel SE, Kaleb M. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res Ther 2009;11:29.
2. Patwardhan SK, Bodas KS, Gundewar SS. Effect of Facial Joint Mobilization In Lumbar Spondylosis. Int J Pharm 2010;10:216-218.
3. Mohanad JK, Hameed IH, Kaizal AF. Medicinal Plants Used for Treatment of Rheumatoid Arthritis: A Review. Int J Pharma Clin Res 2016;8:1685-1694.
4. http://arthritis.ca/getmedia/6c39edce-5b2d-498d-bd60-28d33f3e1850/Rheumatoid-Arthritis-Causes-Symptoms-and-Treatments.pdf?ext=.pdf
5. Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med 2007;120:936-939.
6. Smolen JS, Steiner G. Therapeutic strategies for Rheumatoid arthritis. Nature Rev Drug Discov 2003;2:473-488.
7. Shivandan P. Arthritis an autoimmune disorder: Demonstration of In-vivo anti-arthritis Activity. Int J Pharm Life Sci 2010;1:38-43.
8. Rindfleisch JA, Muller D. Diagnosis and management of rheumatoid arthritis. Am Fam Physician 2005;72:1037-1047.
9. Nadkarni KM, Nadkarni AK. Indian materia medica: with Ayurvedic, Unani-Tibbi, Siddha, allopathic, homeopathic, naturopathic & home remedies, appendices & indexes. Bombay, India, Poupular Pakashan Pvt. Ltd. 2009.
10. Chandrasekar R, Chandrasekar S. Natural herbal treatment for Rheumatoid Arthritis – A review. Int J Pharma Sci and Res 2017;8:368-384.
11. Srikantha MR, Madihava N. (roga vinisayaka) of Madhavakara (English translation). Chikitsa Sthana, Chapter 28. Delhi: Chaukhambha Orientalia 1993.
12. MOHFW. Department of Indian Systems of Medicine and Homeopathy. Ayurvedic Pharmacopeia of India, , Ministry of Health and Family Welfare, Government of India, 2001 (1).
13. Sharma PV. Charaka Samhitâ (English translation). Chikitsa Sthana, Chapter 28. Delhi: Chaukhambha Orientalia 1994.
14. Chopra A, Sachu M, Pillu G. Ayurveda-modern medicine interface: a critical appraisal of studies of Ayurvedic medicines to treat osteoarthritis and rheumatoid arthritis. J Ayur Integra Med 2010;1:190–198.
15. Shen H, Tesar BM, Walker WE and Goldstein DR. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunology 2008;3:1849–1858.
16. Saravanan S, Prakash B, Pandikumar P, Ignacimuthu S. Therapeutic effect of Saraca asoca (Roxb.)Wilde on lysosomal enzymes and collagen metabolism in adjuvant induced arthritis. Inflammopharmacology 2011;19:317–25.
17. Goel A, Singh DK, Kumar S, Bhatia AK. Immunomodulating property of Ocimum sanctum by regulating the IL-2 production and its mRNA expression using rat’s splenocytes. Asian Pac J Trop Med 2010;3:8-12.
18. Rathore B, Mahdi AA, Paul BN, Saxena PN, Das SK. Indian herbal medicines: possible potent therapeutic agents for rheumatoid arthritis. J Clin Biochem 2007;41:17-9.
19. Lewis, A. and Levy, A. Anti-inflammatory activities of Cassia alata leaf extract in complete Freund’s adjuvant arthritis in rats. West Indian Med J. 2011;60:615– 21.
20. Al-Nahain A, Jahan R, Rahmatullah M. Zingiber officinale: A Potential Plant against Rheumatoid Arthritis. Arthritis Research 2014;15:9089:8.
21. Pandey P, Tiwari S. Therapeutic Potential of Indian Plants for the Treatment of Rheumatoid Arthritis. J Pharmacog Phytochem 2018;7:37-41
22. Tripathy S, Pradhan D, Anjana M. Antiinflammatory and antiarthritic potential of Ammania baccifera Linn. Int J Pharma Bio Sci 2010;1:1-7.
23. Kumar M. Complementary and alternative medicine use in rheumatoid arthritis: proposed mechanism of action and efficacy of commonly used modalities. Rheumatol Int 2010;30:571–586.
24. Mahajan SG, Mehta AA. Immunosuppressive activity of ethanolic extract of seeds of Moringa oleifera Lam. in experimental immune inflammation. J Ethnopharmacol 2010;130(1):183–186.
25. Paul BN, Saxena AK. Depletion of TNF-α in mice by Nyctanthes arbor-tristis. J Ethnopharmacol 1997;56:153.
26. Kumar IV, Paul BN, Asthana A, Saxena A, Mehrotra S, Rajan G. Swertia chirayita mediated modulation of IL-1β, IL-6, IL-10, IFN-γ and TNF-α in arthritis mice. Immunopharmacol Immunotoxicol 2003;25:573–83.
27. Sharma J, Paimuli RM. Plants used for the treatment of Rheumatism by the Bhoja tribe of Dis-trict Dehradun, Uttarakhand, India. Int J Med Arom Plants 2011;1:28-32.
28. Rathore B, Mahdi AA, Paul BN, Saxena PN, Das SK. Indian herbal medicines: possible potent therapeutic agents for rheumatoid arthritis. J Clin Biochem 2007;41:17-9.
29. Vijaykumar M K, Ajay G. Namdeo antiarthritic effect of gala-bati (<i>Aristolochia caliculata</i> (Wall.)Parker leaf Extract in mice. Afr J Pharm Pharmacol 2009;3:282-6.
30. Usmani A, Khushatar M, Arif M, Mohd. Siddiqui AS, Singh SP, Md M. Pharmacognostic and phytopharmacology study of <i>Anacyclus pyrethrum</i>: An insight. J App Pharma Sci 2016;6:144-150.
31. Mokarrarn M, Biva II, Jahangir R and Mynol IV. Central nervous system depressant and analgesic Activity of <i>Aphananitis polysutachya</i> (Wall.)Parker leaf Extract in mice. Afr J Pharm Pharmacol 2009;3:282-6.
32. Rahman H, Eswaraiah M C, Dutta AM. Anti-arthritic activity of leaves of <i>Aquilaria agallocha</i>. Saudi J Life Sci 2016;1:34-3.
33. Rajvaidhya, S, Nagori BP, Singh, GK, Dubey BK, Desai, P and Jain S. A review on <i>Argemone mexicana</i> Linn. An Indian medicinal plant. Int J Pharma Sci Res 2012;3:2494-2501.
34. Yadav V, Jayalakshmi S, Patra A, Singla RK, Patra A, Khan S. Assessment of anti-inflammatory and analgesic activities of <i>Callicarpa macrophylla</i> Vahl. roots extracts. Web Med Central Pharmacol 2012;3:WMC003366.
35. Marwat SK, Fazal UR, Usman K, Khakwani AA, Gulam S, Anwar N, Sadiq M & Khan SJ. Medico-Ethnobotanical
Studies of Edible Wild Fruit Plant Species from the Flora of North-Western Pakistan, D.I. Khan District. J Med Plant Res 2011;5:3679-3686.

36. Venkatesh Babu KC and Krishnakumari S. Cardiospernum halicacabum suppress the production of TNF-alpha and Nitric oxide by Human Peripheral Blood Mononuclear Cells. Afr J Biomed Res 2006;9:95-9.

37. Ramachandran J, Thilagar S, Angappan R, Lakshmanan DK. Anti-arthritic activity of the Indian leafy vegetable Cardiospermum halicacabum in Wistar rats and UPLC-QTOF-MS/MS identification of the putative active phenolic components. Inflamm Res 2013;62:115–126.

38. Jun MS, Ha YM, Kim HS, Jang HJ, Kim YM, Lee YS, et al. Anti-12. Inflammatory action of methanol extract of Carthamus tinctorius involves in heme oxygenase-1 induction. J Ethnopharmacol 2011;133:524-530.

39. Jinous ANK. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chinese J Integrative Med 2013;19:153–159.

40. Sheikh NW, Patel RD, Upwar NI, Mahobia NK, Seth PMV. Analgesic study of methyl alcohol extract of Cassia fistula Pod. J Pharm Res 2010;3:2218-2229.

41. Varadharajan M, Sunkam Y, Magadi G, Rajamanickam De, Deepti R, Vedavathi A. Pharmacognostical studies on the root bark and stem bark of Catunarega Spinosa (Thunb.) Tiruv. (Madinapalala) – an Ayurvedic drug. Sputula DD 2014;4:89-9.

42. Akhzari M, Mirghiasi SM, Vassaf M, Bidgoli MSM, Tari ZS. The Effect of Citrullus Colocynthis on the Reduction of Inflammatory Agents in Osteoarthritis. Mol Biol 2015;4(4):1000147.

43. Shen T, Li GH, Wang XN, Lou RX The genus Commiphora: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2012;142:319-30.

44. Prema S, Suman B, Kamboj S. Pharmacognostic and Phytochemistry of Oleo-Gum Resin of Commiphora wightii (Guggulu). Scientifica 2015;138039:

45. Shahapurkar AA, Jayantith Drug. neomycin release from Coridio dichotoma transdermal film and anti-inflammatory activity. Int Res J Pharm 2011;2:107–109.

46. Sheikh NPV, Suganthi VGS. Evaluation of anti-inflammatory activity in ethanolic extract of Jatropha curcas Linn. Pharmacogn Rev 2008;2:57-66.

47. Papiya B, Faraz S. Anti-inflammatory and anti-arthritic effect of triterpene fraction isolated from Euphorbia nervifolia L. leaf. J Ethnobiol Trad Med 2015;241:1007-17.

48. Papiya B, Rana AC. A Comprehensive Phyto-pharmacological Review of Euphorbia nervifolia. Linn. Pharmacogn Rev 2010;4:57-66.

49. P Deka, KK Nath SK Borthakur. Ethioatrical uses of Euphorbia antiquorum L. and E. ligularia Roxb. in Assam. Indian J Tradit Know 2008;7:466-468.

50. Bhardwaj MK, Chandru KK, Sharma US. Evaluation of Anti-arthritic activity of Ficus benghalensis Linn. root extracts on Freund’s adjuvant-induced Arthritis in rats. J Phytopharmacol 2016;5:10-14.

51. Shah WA, Mir TA, Ahmad A. Antiproliferative and Antioxidant potential of different extracts of Fritillaria roylei. World J Pharm Sci 2014;2:386-389.

52. Mohammed R, Rownak J, Azad AK, Syeda S, Mahbubur R, Anita RC, Rahima B, Dilruba N, Zubaieda K, Muhammad SH, Afzana K, Emaduddlah M. A randomized survey of medicinal plants used by folk medicinal practitioners in six districts of Bangladesh to treat rheumatoid arthritis. Adv Nat Appl Sci 2010;4:124-127.

53. Indian medicinal plants: a compendium of 500 species. 3rded. Orient Longman Ltd; 2001. Pg 100-103.

54. Osungunna, MO and Adejei KA. Phytochemical and antimicrobial screening of methanol extract of Heliotropium Indicum leaf. J Microbiol Antimicrobial 2011;3:213-216.

55. Ganguly A. Normalization of Varus/Valgus Deformities in Osteoarthritis by External Application of Phytoconstituents: Confirmed With Anatomical Observations and Biochemical Profiles and Radiological Images. Anat Physiol 2016;6:224.

56. Santanu S and Subrahmanyam EVS. Evaluation of Anti-Inflammatory Activity of Ethanolic Extract of Seeds of Holarrhena Pubescens (buch.-ham.). Int J Pharm Pharm Sci 2013;5:915-9.

57. Dattatrya N, Shreekant M, Mishra D. Kokilaksha: A potential Ayurvedic Herb. Int J Res Ayur Pharm 2012;3:780-782.

58. Billore KV, Yelne MB. Denis T J. Database on Medicinal Plants Used in Ayurveda. New Delhi: Central Council for Research in Ayurveda & Siddha 2005;7:320.

59. Wang GW, Hu WT, Huang BK, Qin LP. Illicium verum: A Review on its botany, traditional use, chemistry and pharmacology. J Ethnopharmacol 2011;136:10-20.

60. Arumugam P, Murugan M T. Evaluation of anti-inflammatory and analgesic effects of the aqueous extract obtained from root powder of Inula Racemosa Hook. f. J Medi Plants Res 2012;6:2801-2806.

61. Ferreira AA, Amaral FA, Duarte IDG, Oliveira PM, Alves RB, Silveira D, Avevedo AO, Raslan DS, Castro MS. Antiinflammatory effect from Ipomoea cairica extract. J Ethnopharmacol 2006;105:148-153.

62. Yan WX, Zhang JH, Zhang Y, Meng DL, Yan D. Anti-inflammatory activity studies on the stems and roots of Jasminum lanceolarium Roxb. J Ethnopharmacol 2015;2:335-341.

63. Rachmani BS. Jatropha curcas leaves exert anti-arthritic activity on adjuvant-induced arthritis in rats. Universal Med 2014;33:1-8.

64. Lokar LC, Poldini L. Herbal remedies in the traditional medicine of the Venezia Giulia Region (North-East Italy). J Ethnopharmacol 1988;22:231–279.

65. Hosseinzadeh H, Zarei H, Taghiabadi E. Antinociceptive, Anti-Inflammatory and Acute Toxicity Effects of Juglans Regia L. Leaves in Mice. Iran Red Crescent Med J 2011;13:27-33.

66. Paval J. Anti-Arthritic Potential of the Plant Justicia Gandhassua. Burn F Clinics 2009;64:357-360.

67. Umar MI. Bioactivity-guided Isolation of Ethyl-acetate fraction of Cardiospermum halicacabum. J Ethnopharmacol 2010;5:217-224.

68. Rohit G, Sheeba DSH, Ramesh C. Evaluation of Anti-Arthritic Effects of Jantana camera var linn. Using Acute Model on Albino Rats. Int J Adv Pharm Sci 2012;3:277-277.

69. Kore KI, Shete RV, Desai NV. Anti-Arthritic activity of Hydroalcoholic extract of Lawsonia Innermis var linn. New Delhi: Deep Publications. 1991.

70. Prashanth S, Kumbar AA, Madhub B and Yennamaneni PK. Antihyperglycemic and antioxidant activity of ethanolic extract of Madhuca longifolia bark. Int J Pharm Sci Res 2010;5:89-94.

71. Hasbarinda BH. Chemical constituents of the twigs of Mangifera indica. Indo Am J 2008;23:1-3.

72. Vaidhyrathnam PV. Indian medicinal plants compendium of 500 species, Arya vaidya sala, Kottakkal, 4, 1996,882.

73. Roshan P, Naveen M, Nitin U, Naheed W, Hetal T, Zalak P. Antiglycemic and antipyretic activities of Momordica charantia. Fruits. J Adv Pharma Tech Res 2010;1:415-418.
Suszek A, Obminska-Mrukowicz B. Influence of polysaccharide fractions isolated from Capparisspinosa L. on the cellular immune response in collagen-induced arthritis (CIA) in mice. A comparison with methotrexate. J Ethnopharmacology 2013;145:109-117.

125. Wu SQ, Otero M, Unger FM, Goldring MB, Phutivirapongkul A, Chiari C, et al. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J Ethnopharmacology 2011;138:364-372.

126. Saratha V, Subramanian SP, Lupeol, a triterpenoid isolated from Calotropis gigantea latex ameliorates the primary and secondary complications of FCA induced adjuvant disease in experimental rats. Inflammopharmacology 2012;20:27-37.

127. Kumar VL, Roy S. Calotropis procera latex extract affords protection against inflammation and oxidative stress in Freund’s complete adjuvant-induced monoarthritis in rats. Mediators Inflamm 2007;47:5253.

128. Suszko A, Obminska-Mrukowicz B. Influence of polysaccharide fractions isolated from Calthapalustris L. on the cellular immune response in collagen-induced arthritis (CIA) in mice. A comparison with methotrexate. J Ethnopharmacology 2013;145:109-117.

129. Mafait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci 2000;97:9561.

130. Danquah AC, Woode E, Boakye-Gyasi E. Anti-arthritic effects of an ethanolic extract of Capparisspinosa L. Isert roots in Freund’s adjuvant-induced arthritis in rats. J Pharmaco Toxicol 2011;6:201-207.
An anti-inflammatory and anti-arthritic potential of aqueous extract of \textit{Phyllanthus amarus} in Freund's complete adjuvant-induced arthritis. Biomed Aging Pathol 2011;1:85-190.

Kumar SN, Kishore G, Kumar SG, Sindhu PE. In vitro anti-inflammatory and anti-arthritic activity of leaves of \textit{Physalis angulata} L. Int J Pharm Ind Res 2011;1:211-3.

Tsubata M, Takagaki K, Hirano I, Iwutani K, Abe C. Effects of flavangenol, an extract of French maritime pine bark on collagen-induced arthritis in rats. J Nutr Sci Vitaminol (Tokyo) 2011;57:251-7.

Pandey A, Bani S, Dutt P, Suri KA. Modulation of Th1/Th2 cytokines and inflammatory mediators by hydroxychavicol in adjuvant-induced arthritis. Cytokine 2010;49:114-21.

Chauhan K, Solanki R, Patel A, Macwan C, Patel M. Phytochemical and therapeutic potential of \textit{Piper longum} Linn: A review. Int J Res Ayur Pharm 2011;2:157-61.

Elumalai A, Prakash YG. Evaluation of the anti-arthritic activity of ethanolic extract of \textit{Pisonia grandis} R.Br. Asian J Pharm Clin Res 2012;2:91-93.

Kyet S, Koffuor GA, Boampong JN. Antiarthritic effect of aqueous and ethanolic leaf extracts of \textit{Pistia stratiotes} in adjuvant-induced arthritis in Sprague-Dawley rats. J Exp Pharma col 2012;4:41-51.

Rajendran R, Krishnakumar E. Anti-arthritic activity of \textit{Premna serratifolia} linn. wood against adjuvant induced arthritis. Avicenna J Med Biotechnol. 2010;2:101-6.

Georgewill AO, Georgewill UO. Antiarthritic activity of \textit{Pseu docorea} kotschyi in albino rats. Afr J Appl Zool Environ Biol 2008;10:70-72.

Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008;24:733-743.

Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonolrich RVHXR from \textit{Rhus verniciflua} stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and \textit{in vivo} models. Int Immunopharmacol 2009;9:268-276.

Ratheesh M, Shyni GL, Sindhu G, Helen A. Protective effects of isolated polyphenolic and alkaloid fractions of \textit{Ruta graveolens} L. on acute and chronic models of inflammation. Inflammation 2010;33:18-24.

Sekiguchi Y, Mano H, Nakatani S, Shimizu J, Kobata K, Wada M. Anti-proliferative effects of \textit{Ephedra sinica} Ti-arthritic effects of \textit{Salvia fruticosa} kotschyi against adjuvant-induced arthritis tissues. Cytokine 2010;49:114-21.

Chauhan K, Solanki R, Patel A, Macwan C, Patel M. Phytochemical and therapeutic potential of \textit{Piper longum} Linn: A review. Int J Res Ayur Pharm 2011;2:157-61.

Elumalai A, Prakash YG. Evaluation of the anti-arthritic activity of ethanolic extract of \textit{Pisonia grandis} R.Br. Asian J Pharm Clin Res 2012;2:91-93.

Kyet S, Koffuor GA, Boampong JN. Antiarthritic effect of aqueous and ethanolic leaf extracts of \textit{Pistia stratiotes} in adjuvant-induced arthritis in Sprague-Dawley rats. J Exp Pharmacol 2012;4:41-51.

Rajendran R, Krishnakumar E. Anti-arthritic activity of \textit{Premna serratifolia} linn. wood against adjuvant induced arthritis. Avicenna J Med Biotechnol. 2010;2:101-6.

Georgewill AO, Georgewill UO. Antiarthritic activity of \textit{Pseudocorea} kotschyi in albino rats. Afr J Appl Zool Environ Biol 2008;10:70-72.

Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008;24:733-743.

Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonolrich RVHXR from \textit{Rhus verniciflua} stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and \textit{in vivo} models. Int Immunopharmacol 2009;9:268-276.

Ratheesh M, Shyni GL, Sindhu G, Helen A. Protective effects of isolated polyphenolic and alkaloid fractions of \textit{Ruta graveolens} L. on acute and chronic models of inflammation. Inflammation 2010;33:18-24.

Sekiguchi Y, Mano H, Nakatani S, Shimizu J, Kobata K, Wada M. Anti-proliferative effects of \textit{Salvia fruticosa} kotschyi against adjuvant-induced arthritis tissues. Cytokine 2010;49:114-21.

Chauhan K, Solanki R, Patel A, Macwan C, Patel M. Phytochemical and therapeutic potential of \textit{Piper longum} Linn: A review. Int J Res Ayur Pharm 2011;2:157-61.

Elumalai A, Prakash YG. Evaluation of the anti-arthritic activity of ethanolic extract of \textit{Pisonia grandis} R.Br. Asian J Pharm Clin Res 2012;2:91-93.

Kyet S, Koffuor GA, Boampong JN. Antiarthritic effect of aqueous and ethanolic leaf extracts of \textit{Pistia stratiotes} in adjuvant-induced arthritis in Sprague-Dawley rats. J Exp Pharmacol 2012;4:41-51.

Rajendran R, Krishnakumar E. Anti-arthritic activity of \textit{Premna serratifolia} linn. wood against adjuvant induced arthritis. Avicenna J Med Biotechnol. 2010;2:101-6.

Georgewill AO, Georgewill UO. Antiarthritic activity of \textit{Pseudocorea} kotschyi in albino rats. Afr J Appl Zool Environ Biol 2008;10:70-72.

Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008;24:733-743.

Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonolrich RVHXR from \textit{Rhus verniciflua} stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and \textit{in vivo} models. Int Immunopharmacol 2009;9:268-276.

Ratheesh M, Shyni GL, Sindhu G, Helen A. Protective effects of isolated polyphenolic and alkaloid fractions of \textit{Ruta graveolens} L. on acute and chronic models of inflammation. Inflammation 2010;33:18-24.

Sekiguchi Y, Mano H, Nakatani S, Shimizu J, Kobata K, Wada M. Anti-proliferative effects of \textit{Salvia fruticosa} kotschyi against adjuvant-induced arthritis tissues. Cytokine 2010;49:114-21.

Chauhan K, Solanki R, Patel A, Macwan C, Patel M. Phytochemical and therapeutic potential of \textit{Piper longum} Linn: A review. Int J Res Ayur Pharm 2011;2:157-61.

Elumalai A, Prakash YG. Evaluation of the anti-arthritic activity of ethanolic extract of \textit{Pisonia grandis} R.Br. Asian J Pharm Clin Res 2012;2:91-93.

Kyet S, Koffuor GA, Boampong JN. Antiarthritic effect of aqueous and ethanolic leaf extracts of \textit{Pistia stratiotes} in adjuvant-induced arthritis in Sprague-Dawley rats. J Exp Pharmacol 2012;4:41-51.

Rajendran R, Krishnakumar E. Anti-arthritic activity of \textit{Premna serratifolia} linn. wood against adjuvant induced arthritis. Avicenna J Med Biotechnol. 2010;2:101-6.

Georgewill AO, Georgewill UO. Antiarthritic activity of \textit{Pseudocorea} kotschyi in albino rats. Afr J Appl Zool Environ Biol 2008;10:70-72.

Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008;24:733-743.

Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonolrich RVHXR from \textit{Rhus verniciflua} stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and \textit{in vivo} models. Int Immunopharmacol 2009;9:268-276.
183. Mukhopadhyay MK, Nath D. Phytochemical screening and toxicity study of *Saraca asoca* bark methanolic extract. Int J Phytomed 2011;3:498-405.

184. Saleem TS, Lokanath N, Prasanthi A, Madhavi M, Mallika G, Vishnu MN. Aqueous extract of *Sauurea lappa* root ameliorates oxidative myocardial injury induced by isoproterenol in rats. J Adv Pharm Technol Res 2013;4:94-100.

185. Ramprasath VR, Shanthi P, Sachdanandam P. Immunomodulatory and anti-inflammatory effects of *Semeccurus Anacardium* Linn. Nut milk extract in experimental inflammatory conditions. Biol Pharm Bull 2006;29:693-700.

186. Gupta SR, Nirmal SA, Patil RY, Asane GS. Anti-arthritic activity of various extracts of *Sida rhombifolia* aerial parts. Nat Prod Res 2009;23:689-695.

187. Liu L, Buchner E, Beitze D, Schmidt-Weber CB, Kaever V, Emmrich F, et al. Amelioration of rat experimental arthritides by treatment with the alkaloid sinomenine. Int J Immunopharmacol 1996;18:529-543.

188. Endale M, Lee WM, Kwak YS, Kim NM, Kim BK, Kim SH, et al. Torilin ameliorates type II collagen-induced arthritis in a mouse model of rheumatoid arthritis. Int Immunopharmacol 2013;16:232-242.

189. Patil CR, Gadekar AR, Patel PN, Rambhade A, Surana SJ, Gaushal MH. Dual effect of *Toxicodendron pubescens* on Caragenean induced paw edema in rats. Homeopathy 2009;98:88-91.

190. Singh V, Patel H, Suwagiya V, Singh K. Some traditionally used antiarthritic herbs a review. Int Res J Pharm 2011;2:43-45.

191. Patil MV, Kandhare AD, Bhise SD. Anti-arthritic and anti-inflammatory activity of *Xanthium srtumarium* L. ethanolic extract in Freund’s complete adjuvant induced arthritis. Biomed Aging Pathol 2012;2:6-15.

192. Cheeke PR, Picente S, Oleszek W. Anti-inflammatory and anti-arthritic effects of *Yucca schidigera*: A review. J Inflamm (Lond) 2006;3:6.

Table 1: Traditionally used plants for treating Rheumatoid Arthritis

Name of plant	Part used	Mode of use	Function	References
Alpinia galangal	Rhizomes	The paste of rhizome taken orally	Gives relief in pain	29
Anacyclus pyrethrum	Roots	Infusion drink is taken like tea of roots	Anti-rheumatic & Anti-arthritic	30
Aphanamixis polystachya	Bark	Oil applied on joints to help in pain	Act as analgesic	31
Aquilaria agallocha	Wood	Decoction taken of wood and oil applied to help in pain	Relieve pain and inflammation.	32
Argemone mexicana	The whole plant, Latex	The oil used to help in pain	Cure rheumatologic.	33
Callicarpa macrophylla	Flowers and fruits	Decoction taken	Anti-inflammatory, analgesic and antipyretic effects	34
Capparis deciduas	Roots	Powder of infusion taken	Treats rheumatism and fever.	35
Cardiospermum halicacabum	Roots	The oil used to relieve pain and powder taken orally	Treats infection in joints by trophic organisms.	36,37
Carthamus tinctorium	Seed	Infusion took orally	Anti-inflammatory and Analgesic.	38,39
Cassia fistula	Fruits	Infusion or paste of fruit taken orally	Analgesic	40
Catunaregum Spinosa	Bark	Paste or oil used	It is useful in rheumatism.	41
Citrlullus colocynthis	Roots	Powder of fruits taken orally	Anti-inflammatory.	42
Commiphora myrrha	Gum	Oil used for helping in pain and taken gum taken orally	Relive in pain and anti-inflammatory.	43
Commiphora wightii	Leaves	Taken orally or infusion	Relive in pain and Anti-inflammatory.	44
Goel et al: Review on anti-rheumatoid arthritis potential of medicinal plants

Table 1: (Continued)

Name of plant	Part used	Mode of use	Function	References
Cordia dichotoma	Fruits	Taken orally or in form of powder	Anti-rheumatic.	45
Coriandrum sativum	Fruits and leaves	Taken orally	Relive in pain and Anti-inflammatory	46
Euphorbia neriifolia	Leaf	Taken in form of juice orally	Relieve pain in rheumatism	47
Euphorbia ligularia	Whole plant	Taken in the form of juice or infusion	Used in the treatment of rheumatism.	48,4
Ficus bengalensis	Latex	Taken as juice	Used in the treatment of rheumatism.	50
Fritillaria roylei	Bulbs	Taken in form of powder or juice	Used in the treatment of rheumatism.	51
Glycosmis Arborea	Roots	Taken in powder form	Useful in the treatment of arthritis.	52
Gossypium herbaceum	Leaves	Taken in powder form, juice or infusion	Relive in pain and Anti-inflammatory.	53
Heliotropium Indicum	Whole plant	The oil used for joint pain externally and other parts are taken in powder form	Gives positive results against use for joint inflammations	54
Hiptage bengalensis	Barks, Leaves and Flowers	Taken in powder form	Treatment of chronic rheumatism	55
Holarrhena pubescens	Barks, Seeds and Leaves	Taken in powder form	Relive in pain and Anti-inflammatory.	56
Hygrophiila auriculata	Roots, Leaves and Seeds	Taken in powder form	Relive in pain and Anti-inflammatory.	57
Hyoscyamus niger	Leaves and Seeds	Taken in powder form	Relive in pain and Anti-inflammatory.	58
Illicium verum	Fruits	Taken in powder form, juice	Relive in pain and Anti-inflammatory.	59
Inula racemosa	Roots	Taken orally in powder form	Relive in pain and Anti-inflammatory.	60
Ipomoea cairica	Seeds	The oil used for pain	Relive in pain and Anti-inflammatory.	61
Jasminum lanceolarium	Leaves and Flowers	Taken in powder form, juice	Shows effective results against rheumatism and fever. On the other hand, the leaves have anti-inflammatory properties and relieve pain.	62
Jatropha curcas	Oil	The oil used for joint pain externally	Relive in pain and Anti-inflammatory.	63
Juglans regia	Fruits	Taken in powder form, juice	Relive in pain and Anti-inflammatory.	64,65
Justicia gendarussa	Roots and Leaves	Taken in powder form, juice	Relive in pain and Anti-inflammatory.	66
Table 1: (Continued)

Name of plant	Part used	Mode of use	Function	References
Kaempferia galangal	Rhizomes and Leaves	Taken orally in powder form or juice	Relieve in pain and Anti-inflammatory.	67
Lantana Camara	Fruits	Taken orally	Used traditionally for the treatment of RA	68
Lawsonia inermis	Leaves	Taken orally in powder form or infusion	Used in arthritic disorder.	69
Lilium polyphyllum	Bulb	Taken orally in powder form or infusion	Relieve in pain and Anti-inflammatory.	70
Madhuca longifolia	Oil	The oil used for joint pain externally	Relieve in pain and Anti-inflammatory.	71
Mangifera indica	Roots and Barks	Taken in powder form	Relieve in pain and Anti-inflammatory.	72
Mimosa pudica	Whole plant	Taken orally	Helps to deal with the symptoms of rheumatoid arthritis.	73
Momordica charantia	Fruits	Taken orally if different forms or as juice	Relieve in pain and Anti-inflammatory.	74
Myxopyrum serratum	Leaves	Taken in powdered form	Relieve in pain and Anti-inflammatory.	75
Naravelia zeylanica	Whole plant	Taken in powder form	Relieve in pain and Anti-inflammatory.	76
Nilgiranthus ciliatus	Roots	Taken in powder form	Relieve in pain and Anti-inflammatory.	77
Ocimum basilicum	Whole plant	Taken in form of infusion, powder or leaves taken raw orally	Relieve in pain and Anti-inflammatory.	78
Oroxylum Indicum	Roots	Taken in powder form	The plant possesses anti-inflammatory activity.	79
Pandanus odoratissimus	Oil	The oil used for joint pain externally	Relieve in pain and Anti-inflammatory.	80
Piper betel	Whole Plant	Orally in powdered form	Shown effective results in inflammation treatment.	81
Piper nigrum	Fruits	Raw fruit used in cooking or taken in powdered form	Relieve in pain and Anti-inflammatory.	82
Plumeria Rubra	Milky juice	Applied externally to relieve pain	Shown positive results in inflammation treatment.	83
Pongamia pinnata	Leaves	Taken in powder form	Helps in painful rheumatic joints.	84
Premna corymbosa	Leaves	Taken in powder form	Relieve in pain and Anti-inflammatory	85
Premna serratifolia	Whole plant	Taken orally	Relieve in pain and Anti-inflammatory	86
Ricinus communis	Leaves	Taken in powder form	Relieve in pain and Anti-inflammatory	87
Rubia cordifolia	Roots	Taken in powder form	Relieve in pain and Anti-inflammatory	88
Table 1: (Continued)

Name of plant	Part used	Mode of use	Function	References
Ruta chalepensis	Oil	The oil used for joint pain	Analgesic, antipyretic, anti-inflammatory and relieves rheumatic pain.	89
Sida cordifolia	Roots and Leaves	Taken in powder form	Used for treating rheumatism.	90
Solanum nigrum	Whole Plant	Taken in powder form	Relieve in pain and Anti-inflammatory	91
Spondias pinnata	Roots	Taken in powder form	Relieve in pain and Anti-inflammatory and helps in muscular pain in rheumatism	92
Stereospermum colais	Leaves	Taken in powder form	Relieve in pain and Anti-inflammatory	93
Tectona grandis	Wood	Taken in powder form, the	Used in treating inflammatory swelling.	94
Trachyspermum Ammi	Fruits	Taken in powder or juice	Relieve in pain and Anti-inflammatory	95
Tribulus Terrestris	Whole Plant	used for joint pain externally	Used for external application in rheumatic-arthritis.	96
Vatteria indica	Oil	The oil used for joint pain	Relieve in pain and Anti-inflammatory	97
Vitex negundo	Roots	Taken in powder form	Relieve in pain and Anti-inflammatory	98
Vitis vinifera	Stem	Taken in powder form or	Relieve in pain and Anti-inflammatory	99

Table 2: Experimentally proven plants for Rheumatoid Arthritis

Name of the plant	Common name	Type of Extract used	Activity observed	Reference
Achyranthes Aspera	Apamaraga	Ethanol	Prevented the recruitment of leukocytes	100,101
Aconitum vilmorinianum	Wolf’s-bane,	Ethanol	Improvement of joint swelling and vascular permeability	102
Ajuga bracteosa	Ground pine	Ethanol	COX-1 and COX-2 inhibition	103
Ajuga decumbens	Bugle weed	Ethanol	Regulates the balance between bone formation and bone resorption	104
Alstonia boonei	Cheese wood	Methanol	Relief in early and late phase of pain	105
Alstonia scholaris	devil tree	Ethanol	Shown activity in Reduction of total leukocyte, lymphocytes and monocytes/	106
			macrophages migration	
Ammania bracifera	tooth cup	Aqueous Alcoholic Petroleum	Decrease the ESR and WBC count	107
		Ether, Chloroform, Methanol		
Aristolochia bracteata	Kidamari	Petroleum Ether, Chloroform	It maintains vascular permeability and synovial membrane and with inhibition of cytokines and leukotriene infiltration	108
Table 2: (Continued)

Name of the plant	Common name	Type of Extract used	Activity observed	Reference
Argyreia speciosa	Elephant	Methanol, Ethanol	Prevented the recruitment of leukocytes	100, 109
Arisaema rhizomatum	Jack in the pulp it	Ethanol	Have shown result against pro-inflammatory cytokines and RA factor secretion	110
Arnebia euchroma	Pink arnebia	Ethanol (95%)	Suppression of IL-1β and TNF-α levels	111
Artocarpus tonkinensis	Chay	Ethyl acetate	Apoptosis induction in activated T-cells	112
Asystasia dalzelliana	Violet asystasia	Ethanol	Decreasing synthesis/release of T-cell mediators	113
Baccharis genistelloides	Carqueja	Aqueous	Suppresses synovial fibroblast proliferation and induced production of progelatinase B and PGE2	114
Bacopa monniera	Herpestis monniera	Methanol	Stabilizing action on lysosomal membranes	115
Barleria lupulina	Hophead	Methanol	Assisting cell mediated immune responses	116
Barleria prionitis	Katsareya	Hydro-ethanolic	Lowers the ESR level and have an immuno-modulatory activity	117
Bauhinia variegata	Kachnar	Ethanol	Alteration in antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase	118,119
Bergenia stracheyi	Paashaanbhed	Petroleum Ether, Chloroform	Potential Th1/Th2 cytokine balancing activity	120
Boerhaavia diffusa	Punarnava	Petroleum Ether	Inhibition of inflammatory 7 inhibitor	121
Boswellia carterii	Olibanum	n-Hexane	Formation of LTB4 leukotriene is reduced	122
			As well as infiltration of leukocytes altered	
Butea monosperma	Palash	Petroleum Ether	Hemoglobin and RBC level was increased while; WBC, ESR level were suppressed	123,124
Caesalpinia sappan	Sapanwood	Ethanol	Showed Inhibitory the expression of TNF-α and pro-inflammatory cytokines IL-1ß	125
Calotropis gigantean	Milkweed	Petroleum Ether	Pro-inflammatory cytokines are reduced	126
Calotropis procera	Sodom apple	Methanol	Inhibit cellular influx and vascular permeability	127
Caltha palustris	Kingcup	Methanol	Absolute count and percentage of splenic T-regulatory cells CD4+CD25+FOXP3 was reduced	128
Cannabis sativum	Ganja	Alcoholic	Diminished IFN-γ production	129
Table 2: (Continued)

Name of the plant	Common name	Type of Extract used	Activity observed	Reference
Capparis erythrocarpus	Flamingo	Ethanol	Inhibit the release of pro-inflammatory cytokines	130
Capparis spinosa	Flinders rose	Hydro-alcoholic	Counteract the effects of IL-1	131
Cardiospermum halicacabum	Ballon plant	Ethanol	CFA Histamine and prostaglandin synthesis inhibition	132
Cayaponia tayuya	Tayuya	Hydro-alcoholic	Modify the expression of both COX-2 and nitric oxide synthase-2. Decreases production of IL-1β & TNF-α in lymphocytes	133
Cassia uniflora	One leaf senna	Methanol, Petroleum Ether, Ethyl Acetate	Reduction of CRP and RF levels in the serum	134
Celastrus aculeatus	Gua shan fena	Ethanol	CFA down regulate the biochemical and immunological mediator	135
Centella asiatica	Brahmi	Methanol	Have inhibitory activity against protein denaturation and membrane stabilization	136
Cinnamomomum zeylcanium	Dalchini	Aqueous	Inhibition of leukocyte emigration	137
Cissampelos pareira	Butua	50% aqueous:ethanol	Acid phosphatase and N-acetyl glucosaminidase were reduced while hexose and sialic acid increased.	138
Chelidonium majus	Tetterwort	Methanol	Decreased number of CD4+T cells in lymph node and spleen, immunosuppression by lowering the CD4+T-cells and enhance CD8+T-cells.	139
Cleome gyandra	Shone cabbage	Ethanol	CFA modifying the lysosomal membrane thus Inhibiting lysosomal enzymes release	140
Coriandrum sativum	Cilantro	Hydro-alcoholic	Inhibit the secretion of pro-inflammatory cytokines including TNF-α	141
Costus speciosus	Keukand	Methanol	Suppression of inflammatory mediators	142
Curcuma longa	Turmeric	n-Hexane	Activation of genes critical to articular inflammation	143
Curcuma zeodaria	White turmeric	Chloroform, Petroleum Ether	Decrease the latency time to explore	144
Delonix elata	Gulmohar	Petroleum Ether, Chloroform, Hydroalcoholic	Blocking the action of COX, LO and AT and thus preventing the generation of mediators	145
Dipsacus asperoides	Japanese teasel	Aqueous	Reduced the levels of anti-CII IgG2a antibody, PGE2, TNF-α and IL-1β	146
Drynaria quercifolia	Oak	Aqueous	Inhibition of ROS release	147
Elaeacarpus sphaericus	Blue marble	Ethanol	Inhibition of leukocytes migration at the site of inflammation	148
Name of the plant	Common name	Type of Extract used	Activity observed	Reference
---------------------------	----------------	----------------------	---	-----------
Ephedra sinica	Ma Haung	Aqueous	Expressions of TNF-α and IL-6 genes restored to normal levels in experimental arthritis	149
Euphorbia antiquorum	Antique spurge	Methanol	Arachidonic metabolites and cell-mediated immunity was suppressed	150
Ficus bengalensis	Banyan tree	Methanol	Inhibition of the early phase of inflammation	151
Ginkgo biloba	Maiden hair tree	Methanol	Macrophages infiltrated to the inflamed site was inhibited for NO production	152
Glycosmis pentaphylla	Orange berry	Ethanol	Increased in haematological parameters like RBC count, Hb level and the ESR	153
Glycyrrhiza glabra	Liquorice	Methanol	Lysosomal membrane stability increased and inhibiting leukocyte migration	154
Hedera helix	European ivy	Ethanol, hydro-ethanolic	Reduction in arthritic symptoms	155
Hemidesmus indicus	Indian Sarsaparilla	Hydro-ethanolic	Inhibition of bradykinin, caragenin and serotonin concentration in inflammation	156
Hippocratea excels	Mata piojo	Ethanol	Shows activity against both the proliferative phase and exudative phase of inflammation	157
Hybanthus enneaspermus	Humpback flower	Aqueous, Ethanol	Inhibits the release of proinflammatory cytokines (IL-1β and TNF-α) and decrease GM-CSF, PDGF and IFN-γ production	158
Justicia gendarussa	Willow leaved justice	Ethanol	Inhibition of migration of leukocytes	159
Lantana camara	Ethanol	Ethanol	Lipoxygenase and/or cyclooxygenase Inhibition	160
Laportea bulbifera	Mukago-irakusa	Ethanol	Decreased production of IFN-γ and IL-2, and increased production of IL-10 and TGF-β	161
Lawsonia inermis	Henna	70% aqueous ethyl alcohol	Decrease in inflammatory mediators to suppress both acute and chronic phase of inflammation	162
Leucas aspera	Thumbai	n-hexane, Chloroform, Ethyl Acetate, Ethanol	Decreased levels of CRP, TNF-α and IL-2 And the complete formation of cartilage	163
Linum usitatissimum	Flax	Petroleum Ether	FIA Inhibitory effect on arachidonate metabolism	164
Lonicera japonica	Japanese honey Suckle	Methanol	Suppress T-cell proliferation	165
Merremia emarginata	Kupit-kupit	Ethanol	Restores body weight and Improves ESR, hemoglobin values	166
Name of the plant	Common name	Type of Extract used	Activity observed	Reference
---------------------------	-------------	----------------------	--	-----------
Operculina turpethum	Turpeth	Ethanol	Inhibit the denaturation of proteins	167
Panax ginseng	Ginseng	Ethanol	Suppressed TPA-induced acute inflammation	168
Phyllanthus amarus	Chanca	Aqueous	ALT and iT levels were reduced	169
Physalis angulate	Fisalia	Aqueous, Ethanol, Methanol	Inhibit the denaturation of proteins	170
Pinus maritime	Maritime pine	Hydro-ethanolic	Inhibits acute and chronic inflammatory lesions	171
Piper betle	Tambula	Hydro-ethanolic	Reduced levels of CD4+T cell specific IFN-γ in splenocytes.	82, 172
Piper longum	Pippali	Aqueous	Neutrophils adherence to endothelial monolayer was inhibited due to TNF-α induced ICAM-1, VCAM-1 and E-selectin expression inhibition and also reduced activation of NF-κB	173
Pisonia grandis	Devil's-claws	Ethanol	IFN, GM-CSF and PGDF cytokines are suppressed in CFA induced mediators	174
Pistia stratiotes	Water lettuce	Aqueous, Ethanol	Low levels of C-reactive proteins and ESR	175
Premna serratifolia	Agnimantha	Ethanol	Suppression of migration of leukocytes	176
Pseudocdrea kotschyi	Hard cedar	Aqueous	Reduction in inflammation due to mediators suppression	177
Punica granatum	Pomegranate	Aqueous	Inhibition of the spectrum of the signal transduction pathway	178
Rhus verniciflua	Chinese lacquer Tree	n-hexane	In IL-1β-stimulated RA, inflammatory cytokines/chemokines and angiogenic factor were suppressed	179
Ruta graveolens	Rue	Aqueous	Reduces cell influx, the release of mediators, lipid peroxidation and oxidative stress	180
Salacia reticulate	Khothala himbutu	Ethanol	Inhibitory affect against regulation of mRNA expression and IL-1β - activated cell proliferation	181
Salix nigra	Black willow	Methanol	Inhibition of pro inflammatory inhibitor	182
Saraca asoca	Ashoka	Methanol	Stabilizing effect on lysosomal membrane, this reduced acid hydrolase release. Have Antagonistic action to the pro-inflammatory cytokines	183
Saussurea lappa	Kuth	Ethanol	InLPS-stimulated murine macrophage cell line, TNF-α release was inhibited	184
Table 2: (Continued)

Name of the plant	Common name	Type of Extract used	Activity observed	Reference
Semecarpus Anacardium	Bhallatak	Aqueous, Ethanol	Inhibition of cytokine production	185
Sida rhombifolia	Cuban jute	Methanol, Petroleum Ether	Generation of reactive oxygen species was suppressed	186
Sinomenium acutum	Tudurafuji	Alcoholic	Inhibition of lymphocyte proliferation and macrophage	187
Torilis japonica	Upright hedge Parsley	Methanol	Inhibitory effects on CD4 T-cells immune cell trafficking.	188
Toxicodendron pubescens	Atlantic poison	Aqueous	Immunosuppressant activity	189
Trigonella foenum	Fenugreek	Aqueous	Reduces cell influx, mediators release and oxidative stress	190
Urtica pilulifera	Roman nettle	Methanol	Suppress the activation of NF-kB	191
Vernonia cinerea	Bitter leaf ndole	Ethanol	Membrane stability-modulating effect	192
Withania somnifera	Indian winter Cherry	Hydro-alcoholic	Inhibiting the release of inflammatory mediators	193
Xanthium srtuarium	Datura	Ethanol	Inflammatory mediators were inhibited, NO level decreased and infiltration of urinary hydroxyproline and neutrophil	194
Yucca schidigera	Spanish dagger	Hydro-alcoholic	Inhibition of NFkB activation	195

Graphical Abstract