The Maximal A-regular Submodule of Module

Mad Kh Salman and Nuhad S. Almothafar

Department Mathematic, Collage of science University of Baghdad, Raq
E-mail:sarra.87.obady@gmail.com

Abstract. Let \(R \) be commutative ring with identity and all module are (left) unitary \(R \)-module. An \(R \)-module \(M \) is said to be almost regular (for short A-regular) module if every submodule is almost pure (for short A-pure) submodule of \(M \). In this paper we show that each unitary \(R \)-module has unique maximal A-regular submodule which is denoted by \(L(M) \), means a submodule of \(M \) which contains every A-regular submodule of \(M \). Wei proved that if \(M \) is an \(R \)-module and \(N \) is a submodule of \(M \), then \(L(N) = N \cap L(M) \).

Keyword: regular module, almost pure submodule, almost regular module, maximal regular submodule.

1. Introduction

Let \(R \) be a commutative ring with identity and all modules are (left) unitary \(R \)-module. Unless otherwise stated. Recall that an element \(r \in R \) is said to be regular if there exist \(t \in R \) such that \(rtr = r \); a ring \(R \) is called regular if and only if each element of \(R \) is regular. An ideal \(I \) of a ring \(R \) is regular if each of its elements is regular in \(R \); indeed, a regular ideal \(J \) of \(R \) is itself a regular ring [1]. Brown and McCoy proved in [1] that each ring \(R \) contains a unique maximal regular ideal \(M(R) \) which satisfies the well-known radical properties. The ideal \(M(R) \) is called the regular radical of \(R \). The concept of regularity was extended to modules in several ways and in [2] the notion of Fi-regular modules (in the sense of Fieldhouse [3]) was generalized to GF-regular modules. Let \(A \) be an \(R \)-module, an element \(a \in A \) is said to be GF-regular if for each \(r \in R \) there exist \(t \in R \) and a positive integer \(n \) such that \(r^n tr^n a = r^n a \). An \(R \)-module \(A \) is called GF-regular if and only if all its elements are GF-regular; in [2] that each module contains a “unique maximal GF-regular submodule”. An \(R \)-module \(M \) is said to be A-regular module if for each nonzero element \(x \) of \(M \) and for each \(r \in J(R) \), there exist \(t \in R \) such that \(rx = rtrx \). An \(R \)-module \(N \) is called A-regular if every submodule of \(N \) is A-pure. Also, the concept of A-pure submodule has been introduced. A submodule \(N \) of an \(R \)-module \(M \) is called an A-pure if \(N \cap J(R)M = J(R)N \), i.e. for an ideal \(I \) of a ring \(R \) is said to be A-pure if \(I \cap J(R) = J(R)I \). where \(J(R) \) is the Jacobson radical of \(M \) [4]. In this paper, we show that each module contain a “unique maximal A-regular submodule,” which we dented by \(L(M) \), and we show that \(L(M) \) satisfies some but not all of the usual radical properties Among other results over a principal ideal ring \(R \) in this paper we have:

- Let \(M \) be a \(R \)-module and \(N \) be a submodule of \(M \), then \(L(N) = N \cap L(M) \).
- Let \(M \) be an \(R \)-module, then \(L(R)M \subseteq L(M) \).
- If \(M \) is A-regular \(R \)-module, then \(J(M) = J(R).J(M) \) if and only if \(J(M) = J(R).M \).
2. The Maximal A-regular submodule of Module

In this paper is devoted to study the maximal A-regular submodule. Some results are analogous to that of maximal regular submodule which was introduced and studied in [5], the show that each unitary R-module \(B \) contains a unique maximal regular submodule is denoted \(M (B) \) and satisfied some of the properties of radicals. Many results of maximal regular submodules are generalized to maximal A-regular submodules.

Definition (2.1): Let \(M \) be an \(R \)-module. We define the maximal A-regular submodule of \(M \) denoted by \(L(M) \) (if exist) is the submodule containing every A-regular submodule of \(M \), that is an A-regular submodule which not contain properly in any A-regular submodule.

Remark and Examples (2.2):

1. If \(M = r \), then \(L(M) \) is an ideal of \(R \).
2. It is clear \(M \) is A-regular \(R \)-module if and only if \(L(M) = M \).
3. The module \(Z \) as \(Z \)-module, then \(L(Z) = Z \) by remark (2).
4. The module \(Q \) as \(Z \)-module is not A-regular, hence \(L(Q) = 0 \), suppose not, the \(L(Q) = A \) for some submodule \(A \) of \(Q \) implies that \(A \) is A-regular as \(Z \)-module, take any element \(x \in A \), \(x = \frac{a}{b} \) where \(a \) and \(b \) are two non-zero element in \(Z \).

 If we take an ideal \(n > 0 \) of where \(n \) is greater than one then by the same argument of (every non zero cyclic submodule of the \(Z \)-module \(Q \) is not A-pure submodule) of the non-zero cyclic submodule generated by \(a/b \) is not A-pure in \(A \), \(J(r) \cap A \cap \frac{a}{b} \neq J(r) \) which is a contradiction since \(A \) is A-regular.

5. If \(n \) is an A-regular submodule of an \(R \)-module \(M \), then it is not necessary that \(N \) is an A-pure submodule of \(M \). For example, consider the module \(Z_8 \) as \(Z \)-module. It is easily to see that the regular submodule of \(Z_8 \) are \(\{ 0, 2, 4, 6 \} \equiv Z_4 \) is A-regular but \(N \) is not A-pure submodule of \(Z_8 \), see remark (3.2) (1). Moreover the submodule \(\{ 0, 4 \} \equiv Z_2 \) is A-regular module and hence the maximal A-regular module of \(Z_8 \) is \(L(Z_8) = \{ 0, 4 \} \).

6. Let \(M \) be an \(R \)-module and \(L'(M) \) be the maximal regular submodule of \(M \) then it may be \(L'(M) \neq L(M) \).

Proposition (2.3): Let \(M \) be an \(R \)-module and \(N \) be a submodule of \(M \), then \(L(N) \cap Li(M) \).

Proof: Let \(N \) be a submodule of \(M \), then \(L(iN) \subseteq iN \) and \(L(iM) \subseteq iM \) implies \(L(iN) \subseteq iN \cap L(iM) \).

Let \(x \in iN \cap iM \), then \(x \in N \) and \(x \in iM \), thus for each \(r \in f(R) \), \(rx = rtx \) for some \(t \in R \) by proposition [4]. Then \(x \in L(iN) \) implies \(Ni \cap Li(M) \subseteq L(Ni) \). Thus \(L(Ni) = Ni \cap Li(M) \).

Proposition (2.4): Let \(M \) and \(N \) be an \(R \)-homomorphism and \(f: M \rightarrow N \) be an \(R \)-homomorphism, then \(f(L(M)) \subseteq L(N) \).

Proof: Let \(f: M \rightarrow N \) be an \(R \)-homomorphism and \(y \in f(L(M)) \), then \(y = f(x) \) where \(0 \neq x \in L(M) \) implies for each \(r \in f(R) \), \(rx = rtx \) for some \(t \in R \) by proposition [4]. Hence \(f(rx) = f(rtx) = rtf(x) \). That is \(ry = rty \), therefore \(y \in f(L(N)) \).

Proposition (2.5): Let \(M = M_1 \oplus M_2 \) be an \(R \)-module, where \(M_i \) be a submodule of \(M \) for each \(i = 1, 2 \), then \(L(M_1 \oplus M_2) = L(M_1) \oplus L(M_2) \).

Proof: Let \((x, y) \in L(M_1 \oplus M_2) \) where \(x \in M_1 \) and \(y \in M_2 \). Then for each \(r \in f(R) \), \(r(x, y) = rtr(x, y) \) for some \(t \in R \) implies \(rx = rtx \) and \(ry = rty \). Therefore \(x \in L(M_1) \) and \(y \in L(M_2) \), hence \((x, y) \in L(M_1) \oplus L(M_2) \). For the reverse inclusion, let \((x, y) \in L(M_1) \oplus L(M_2) \), \(x \in L(M_1) \) and \(y \in L(M_2) \). Then for each \(r \in f(R) \), \(rx = rtrx \) and \(ry = rty \) for some \(t_1, t_2 \in R \). If we choose \(t = t_1 + t_2 - rt_1 t_2 \) then easily to see that \(rx = rtx \) and
where for every finitely generated R-module M, if I M = M, implies M = < 0 >, [7].

Lemma (2.11): Let r ∈ R, such that J (r) = < r >. If N is finitely generated A-pure submodule of an R-module M such that N ⊆ < r > M, then M = < 0 >.

Proof: Since N ⊆ < r > M, then by lemma (2.9), we get N = < r > N, then by Nakayama’s lemma, M = < 0 >.

Proposition (2.12): Let M be an R-module. If L (M) is A-pure submodule of M, then L (M) ∩ J (r) M = = < 0 >.

Proof: Let xi ∈ L (M) ∩ J (r) M, then x ∈ L (M) and x ∈ J (r) M. Let N be the cyclic submodule generated by x. Thus N ⊆ L (i M), but L (M) is A-regular R-module. Hence N is A-pure in L (i M), since L (M) is A-pure in M implies N is A-pure in M by proposition (2.9). But N is finitely generated, x ∈ J (r) M and N = (x) then N ⊆ J (r) M, therefore by lemma (2.11) N = 0. That is L (M) ∩ J (r) M = = < 0 >.

Recall that the trace ideal of an R-module M denoted by T is defined to be T = \(\sum_{f \in \text{Hom}(M, R)} f(M) \). Clearly T is an ideal of R, [8].
If M is regular R-module. And the trace ideal $T = R$, then Ris regular. For Ai-regular Ri-module we have the following:

Proposition (2.13): Let M be A-regular R-module. If the trace ideal $T = R$, then Ris Ai-regular.

Proof: Since M is Ai-regular, then $L_i(M) = M_i$, hence $f(M) = f(L_i(M)) \subseteq (L(R)$ by proposition (2.4) where $f \in Hom(M, R)$. Thus $R = T = \sum_{f \in Hom(M, R)} f(M) \subseteq L(R)$. Therefore R is A-regular.

Proposition (2.14): Let M be A-regular R-module, then $L(M) = M$. Thus $L(M) = L(M) = < 0 >$.

Remark (2.15): For any R-module M, $L(M) = < 0 >$ in general. For example, the module Z as Z-module, then $L(M) = L(M)$.

Recall that a submodule N of a R-module is said to be stable if $f(N) \subseteq N$ for each R-homomorphism $f: N \rightarrow M$, [9].

Proposition (2.16): For any R-module M, then $L(M)$ is stable submodule of M.

Proof: Let $f \in Hom_R(L(M))$. By Proposition (2.4), $f(L(M)) \subseteq L(M)$. But $L(f)(L(M)) = L(M)$ since $L(M)$ is A-regular. Thus $f(L(M)) = f(L(L(M))) \subseteq L(M)$. Therefore $L(M)$ is stable submodule.

Recall that non-zero submodule N of an R-module M is said to be dense in M if N generates M, that is $M = \sum_{f \in Hom(N, M)} f(N)$, [10].

Proposition (2.17):

Let M be an R_i-module and $L(M)$ be a dense submodule in M, then M is A-regular module.

Proof: Since $L(M)$ is dense in $M = \sum_{f \in Hom(L(M), M)} f(L(M))$. But $L(M)$ is stable submodule of M by the previous Proposition (2.16), thus $f(L(M)) \subseteq L(M)$ implies $\sum_{f \in Hom(L(M), M)} f(L(M)) \subseteq L(M)$. Then $L_i = L_i(M)$, therefore M is A-regular.

Recall that the Jacobson Radical of an R-module M that denoted by $J(M)$ is defined to be $J(M) = \sum_{i}$ of all small submodules of M.

A submodule N of an R-module M is called small submodule of M if for any submodule L of M such that $M = N + L$ implies $L = M$. It is well-known that if M is finitely generated, then $J(M)$ is small submodule of M, [11, p.218].

Proposition (2.18): Let M be a finitely generated R-module and $L(M) + J(M) = M$ implies M is A-regular.

Proof: Since M is finitely generated, then $J(M)$ is small submodule of M, but $L(M) + J(M)$, therefore $L_i(M) = M$ and hence M is A-regular.

Remark (2.19): For any R-module M, $L(M) + J(M) \neq M$ in general. For example, the module Z as Z-module where $L(Z) + J(Z) = < 2 > + < 2 > = < 2 > \neq Z$.

Recall that a submodule N of an R-module M is called an essential submodule of M if foreach submodule L of M with $N \cap L = 0$ implies $L = 0$, [6].

We have the following:

Proposition (2.20): Let M be an R-module and N be an essential submodule of M. If $L(N) = 0$, then $L(M) = 0$.

Proof: Since $L(N) = N_i \cap L(M)$ by Proposition (2.3). Then $0 = N \cap L(M)$.

But N is an essential submodule of M, thus $L(M) = 0$.

Reference:
[1] Brown B and McCoy N H 1950. The maximal regular ideal of a ring. *Proceedings of the American Society*, vol. 1, pp. 165-171.

[2] Abduldam A M and Chen S 2013. GF-regular modules,” *Journal of Applied Mathematics*, vol., Article ID 630285, 7 pages.

[3] Fieldhouse D J 1967. purity and flatness. Ph.D. thesis, McGill University, Montreal, Canada.

[4] Salman I Kh and Almuthafar N S 2019. Almost Pure Ideals(Submodules) And Almost Regular Rings(Modules), *Raqi Journal of science* in Vol. 60, No. (8), pp. 1814-1819.

[5] Naoum A G and Yaseen S M 1995. The Regular submodule of a Module”, Ann.Soc.Math., Polona,.

[6] Lam T Y 1998. *Lecture on Modules and Rings”, Berkely California*.

[7] Anderson E W and Fuller K R 1992. *Rings and Categories of Modules*. (Springer-Verlage, New York).

[8] Jondrup S and Trosbory P J 1974. A Remark on Pure Ideals and Projective Modules. *Math. Scand.*, 35 16-20.

[9] Abbas M S 1991. On Fully Stable Modules. Ph.D. Thesis, University of Baghdad.

[10] AL-Alwan F H 1993. Dedikind Modules and the Problem of Embeddedability. Ph.D. Thesis, Universcity of Baghdad.

[11] Kash F 1982. *Modules and Rings*. (Acad.Press,London).