Completeness of classical ϕ^4 theory on 2D lattices

Vahid Karimipour 1 Mohamamd Hossein Zarei 2

Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran

Abstract

We formulate a quantum formalism for the statistical mechanical models of discretized field theories on lattices and then show that the discrete version of ϕ^4 theory on 2D square lattice is complete in the sense that the partition function of any other discretized scalar field theory on an arbitrary lattice with arbitrary interactions can be realized as a special case of the partition function of this model. To achieve this, we extend the recently proposed quantum formalism for the Ising model [1] and its completeness property [2] to the continuous variable case.

1 Introduction:

The understanding that a single partition function can describe different phases of matter, is rather recent and indeed as late as 1930’s, there was not a consensus among physicists that a partition function can give a sharp phase transition. The works of Kramers, Wannier, Onsager [3, 4, 5] and others gradually established beyond doubt that in the thermodynamic limit, singular behavior and phase transition can arise from a single partition function based on a single model Hamiltonian. For example the Ising Hamiltonian can describe both the ordered phase of a ferromagnet and the disordered phase of a paramagnet. Near the point of second order phase transition, even the details of the model Hamiltonian do not matter and only some general properties like symmetries are important.

Decades of works on statistical mechanics models, inspired by the above general understanding, has revealed even further fruitful relations between different models. Besides the well-known duality relations between the low and high temperature phases of the Ising model, one can also mention the so-called vertex models, which reduce to other models in different limits.

One can ask if there are certain statistical mechanical models which are complete, in the sense that their partition function reduce to the partition function of any other model in a suitable limit? If this turns out to be the case, then we can imagine a very large space of coupling constants and one single Hamiltonian, i.e. the Ising model with inhomogeneous couplings, so that when we move through this space, we meet new phases and new models which at present are thought to be completely unrelated.

1 email: vahid@sharif.edu
2 email: mhzarei@physics.sharif.edu
This will then be another forward in the unification program mentioned above.

It seems that the answer to the above question may be positive. Recent results \cite{1,2,6,8,7,9,10,11,12,13} brought about by merging of ideas from statistical mechanics and quantum information theory, give positive clues in favor of the above idea. These investigations \cite{1,2} have been made possible by establishing a link between statistical mechanics and quantum information on the one hand and the new paradigm of Measurement-based Quantum Computation (MQC) and the universality of cluster states for MQC on the other \cite{14,15,16,17,18,19,20,21,22,23}.

In a series of recent works, it has been shown that the Ising model on two dimensional square lattices with complex inhomogeneous nearest-neighbor interactions, is complete in the sense that the partition function of all other discrete models with general k-body interactions on arbitrary lattices can be realized as special cases of the partition function of Ising model on a square lattice which is polynomially or exponentially larger than the original lattice. The starting point of these developments was the observation in \cite{1} that the partition function of any given discrete model can be written as a scalar product,

$$Z_G(J) = \langle \alpha | \Psi_G \rangle,$$

where $\langle \alpha |$ is a product state encoding all the coupling constants J and $| \Psi_G \rangle$ is an entangled graph state, defined on the vertices and edges of a graph, and encoding the geometry of the lattice. The core concept of completeness is the fact that the 2D cluster state is universal. More concretely we know that the graph state $| \Psi_G \rangle$ corresponding to a graph G can be obtained from an appropriate cluster state $| \Psi_\Box \rangle$ corresponding to a rectangular lattice (denoted by \Box), through a set of adaptive single-qubit measurements M. The measurements being single-qubit can be formally written as $| \alpha_M \rangle \langle \alpha_M |$, where $| \alpha_M \rangle$ is a product state encoding the qubits the bases and the results which have been measured. Thus the totality of measurements M transforms the cluster state as follows

$$| \Psi_\Box \rangle \rightarrow | \alpha_M \rangle \langle \alpha_M | \Psi_\Box \rangle = | \alpha_M \rangle \otimes | \Psi_G \rangle,$$

which shows that after disregarding the states of the measured qubits $| \alpha_M \rangle$, what is left is an appropriate graph state

$$| \Psi_G \rangle = \langle \alpha_M | \Psi_\Box \rangle.$$

Combination of this relation with \cite{1}, leads to the completeness result mentioned above. That is one writes

$$Z_G(J) \equiv \langle \alpha | \Psi_G \rangle = \langle \alpha, \alpha_M | \Psi_\Box \rangle,$$

and notes that $\langle \alpha, \alpha_M |$ now encodes a set of generally inhomogeneous pattern of interactions on the cluster state. Therefore one has

$$Z_G(J) \equiv Z_\Box(J, J').$$

In this way it has been shown that the 2D Ising model with complex inhomogeneous couplings is complete \cite{2}.

Like any completeness result, an interesting question is whether there are other complete models. The situation is reminiscent of results on NP completeness of certain problems in computer science \cite{24}. In this direction it has been shown in \cite{6,7} that the four dimensional Z_2 lattice gauge theory, with real couplings, is complete for producing any spin model in any dimension. This result was extended in \cite{8} to show that the four dimensional $U(1)$ lattice gauge theory with real couplings can produce, to arbitrary precision, a large number of continuous models (those whose Hamiltonian allow a finite Fourier series). Certainly there may be many other complete models which can be converted to each other. Exploration of the set of complete models certainly will add to our insight and to our
power in connecting different models with each other.

In this paper we show that the discrete form of ϕ^4 field theory, on a two dimensional rectangular lattice is also complete in the sense that the partition function of any continuous model on any graph with any type of interaction can be obtained, to arbitrary precision, from a ϕ^4 model with inhomogeneous complex couplings on an enlarged 2D lattice.

The structure of this paper is as follows: First we gather the necessary ingredients for our analysis in section (2), i.e. elementary facts about Continuous Variable (CV) states, operators and measurements. We then reconsider in a new language three types of continuous variable stabilizer states, namely the CV Kitaev states, the CV extended Kitaev states and the ordinary graph states and the relations between them. In section (4) we introduce the quantum formalism for scalar field models on arbitrary graphs and investigate properties of these models, properties which are made transparent by using the quantum formalism and are otherwise not easy to unravel. Then in section (6), we show that the free field theory on two dimensional rectangular lattice is complete for free theories in the sense that from its partition function, every other free field theory on any graph can be obtained as a special case. Finally we show that the ϕ^4 field theory on 2D rectangular lattice is complete, in the sense that its partition function reduces to the partition function of any interacting model on any graph. As in the Ising case, the price that one pays is that the coupling constants of the complete model should be inhomogeneous and complex.

2 Preliminaries:

In this section we collect the preliminary materials necessary for generalization of the quantum formalism to the Continuous Variable (CV) case [25, 26, 27, 28]. First we review the definition of Heisenberg-Weyl group, and the way a unitary operator can be performed on CV state (a qumode) by measurements of an appropriate graph state. We end this section with a note on decomposition of CV unitary operators.

2.1 The Heisenberg-Weyl Group

The definition of CV stabilizer states starts with generalization of the Pauli group to the continuous setting [29, 30, 31, 32, 33]. For one qumode, (a term which replaces qubit in the continuous setting) the resulting group is called Heisenberg-Weyl group W, whose algebra of generators is spanned by the coordinate and momentum operators satisfying $[\hat{Q}, \hat{P}] = iI$. Thus modulo $U(1)$ phases, the group W is the group of unitary operators of the form $w(t, s) = e^{it\hat{Q} + is\hat{P}}$. Since the two unitary operators

$$\hat{X}(s) = e^{-is\hat{P}} \quad \text{and} \quad \hat{Z}(t) = e^{it\hat{Q}},$$

have the simple relation

$$\hat{Z}(t)\hat{X}(s) = e^{ist}\hat{Z}(s)\hat{X}(t),$$

multiplication of any two elements of W can be recast in the form $X(t)Z(s)$ modulo a phase. The Heisenberg-Weyl group can be represented on the Hilbert space of one particle, spanned by the basis states $|y\rangle_q$ (eigenstates of \hat{Q}) or $|y\rangle_p$ (eigenstates of \hat{P}). On these states, the operators X and Z act as follows:

$$\hat{Z}(t)|y\rangle_q = e^{isy}|y\rangle_q, \quad \hat{X}(s)|y\rangle_p = e^{-isy}|y\rangle_p,$$

$$\hat{Z}(t)|y\rangle_p = |y + t\rangle_p, \quad \hat{X}(s)|y\rangle_q = |y + s\rangle_q.$$

3
Remark: Hereafter we denote the states $|y\rangle_q$ simply as $|y\rangle$ and use $|y\rangle_p$ for eigenstates of \hat{P} as above. The CV Hadamard operator is a unitary non-Hermitian operator defined as

$$\hat{H} := \int |y\rangle_p \langle y| \, dy = \frac{1}{\sqrt{2\pi}} \int e^{ixy} |x\rangle \, dxdy,$$

from which we obtain

$$\hat{H}\hat{Q}\hat{H}^{-1} = \hat{P}, \quad \hat{H}^{-1}\hat{P}\hat{H} = \hat{Q}.\tag{10}$$

Moreover from (9) we find

$$\hat{H}^2 := \int dx \langle -x| x\rangle,$$

which leads to $\hat{H}^4 = I$. Therefore the square Hadamard operator acts as the parity operator. This means that

$$\hat{H}^2\hat{Q}\hat{H}^{-2} = -\hat{Q}, \quad \hat{H}^{-2}\hat{P}\hat{H}^2 = -\hat{P}.\tag{12}$$

The n-mode Heisenberg-Weyl group is the tensor product of n copies of W, i.e. $W_n := W^\otimes n$ and all the above properties are naturally and straightforwardly extended to n modes. Of particular interest is the continuous variable CZ operator which is defined as $\hat{CZ}|x,y\rangle = e^{ixy}|x,y\rangle$, with the operator expression

$$\hat{CZ} := e^{i\hat{Q}\otimes\hat{Q}},\tag{13}$$

and satisfying the relation

$$(\hat{X}(t) \otimes I)\hat{CZ} = \hat{CZ}(\hat{X}(t) \otimes \hat{Z}(t)).\tag{14}$$

We will also need a more general operator \hat{CZ}, namely $\hat{CZ}(s) = e^{is\hat{Q}\otimes\hat{Q}}$ which has the following relation

$$(\hat{X}(t) \otimes I)\hat{CZ}(s) = \hat{CZ}(s)(\hat{X}(t) \otimes \hat{Z}(st)).\tag{15}$$

2.1.1 Single mode unitary operators induced by measurements

In this subsection, we review how a CV unitary operator can be induced on a mode by measuring a suitable graph state. Here we restrict ourselves to operators diagonal in the coordinate basis, since this is the only type of operators which we encounter in our analysis. We also use the basic result of MQC that certain states are complete, in the sense that by a suitable sequence of adaptive single-site measurements on them, any other state can be reached.

Consider a very simple two-mode graph state as shown in figure (1). The first mode is in an arbitrary state $|\phi\rangle_1 = \int dx \phi(x)|x\rangle$, the second mode is in the state $|0\rangle_p := \frac{1}{\sqrt{2\pi}} \int dy |y\rangle$, the two modes have been joined by a CZ operator (shown by a line in figure (1)) and so the two mode state is

$$|\Psi\rangle_{12} = (CZ|\phi\rangle_1|0\rangle_2 = \int dx dy e^{ixy}\phi(x)|x,y\rangle_{1,2} \tag{16}$$

where the indices 1 and 2 refer to the modes from left to right in figure (1). Now we project the first mode on the zero momentum state $|0\rangle_p \stackrel{[33,34,35,36,37,38,39]}{\longrightarrow}$. The state of the second mode will be

$$|\phi'\rangle_2 =_1 \langle 0_p|\Psi\rangle_12 = \frac{1}{\sqrt{2\pi}} \int dy e^{ixy}\phi(x)|y\rangle_2 = H|\phi\rangle.\tag{17}$$

Thus projection of the first mode onto a zero momentum state is equivalent to the action of the Hadamard operator on the state $|\phi\rangle$ and putting it on the second mode. This is shown in figure (1), where projection is depicted by a downward arrow and the result is depicted by an upward arrow.
Figure 1: (Color online) Projection of the left mode on the zero momentum state is equivalent to the action of Hadamard operator on the right mode. Projection on the state $\langle g |$ is equivalent to the action of the operator $H g(\hat{Q})$ on the right mode. A downward arrow means projection on a state, an upward arrow means the resulting state.

$\langle 0 | \quad H | \phi \rangle \quad \langle g | \quad H g(\hat{Q}) | \phi \rangle$

$| \phi \rangle \quad | \phi \rangle \quad | \phi \rangle \quad | \phi \rangle$

Figure 2: (Color online) The measurement pattern which enacts the operator $g(\hat{Q})$ on the right-most mode.

Suppose now that we project mode 1 onto the state $\langle g | := \frac{1}{\sqrt{2\pi}} \int dy g(y) \langle y |$. If we note that $\langle g | = \frac{1}{\sqrt{2\pi}} \int dy g(y) \langle y | = \langle 0_p | g(\hat{Q})$, (18)

and note that $g(\hat{Q}_1)$ commutes with $(CZ)_{12}$, we find that projecting the first mode on the state $\langle g |$ is equivalent to the action of the operator $H g(\hat{Q})$ on the state $| \phi \rangle$ and putting it on the second mode. This is shown in figure 1. We can write this symbolically as

$P_0 \rightarrow H, \quad P_g \rightarrow H g(\hat{Q})$, (19)

where in the left hand side we show the projections and in the right hand side we show the resulting action on the state. In order to enact the operator $g(\hat{Q})$, i.e. remove H from $H g(\hat{Q})$, we need to enact the operator H three times. Thus using the symbols in equation (19), we have

$P_0 P_0 P_0 P_g \rightarrow H^3(H g(\hat{Q})) = g(\hat{Q})$, (20)

which is shown in figure 2.

We are now in a position to state a basic theorem [40, 41, 42, 43] in this section.

Theorem: Let $V(\hat{Q})$ be a polynomial of \hat{Q} with real coefficients and $| \phi \rangle$ be an arbitrary state of an appropriate chain of a cluster state. Then by projecting the modes of this cluster state on the following three types of states,

$\langle \beta_1(t) | := \int dy e^{-ity} \langle y |, \quad \langle \beta_2(t) | := \int dy e^{-ity^2} \langle y |, \quad \langle \beta_4(t) | := \int dy e^{-ity^4} \langle y |, (21)$

we can enact any operator of the form $e^{-iV(\hat{Q})}$ on the state $| \phi \rangle$, to any desired precision. The state will appear on the un-projected modes of the chain.
Proof: First we note that enacting the operator H comes for free by projecting on the zero momentum state $\langle 0|p\rangle$. Second we use the operator identity
\[e^{tA}e^{tB}e^{-tA}e^{-tB} \approx e^{t^2[A,B]+o(t^2)}. \] (22)
From projection on the states $\langle \beta_i(t) \rangle$ we find that the operators $e^{-it\hat{Q}}, e^{-it\hat{Q}^2}$ and $e^{-it\hat{Q}^4}$ can be obtained. In view of the existence of the Hadamard operator, the algebra of anti-Hermitian operators in the exponential is generated by the set \{ $iQ, iQ^2, iQ^4, iP, iP^2, iP^4$ \}. It is now easy to see that this algebra contains all monomials of Q. To show this we first note that
\[[iP,iQ^4] \sim iQ^3, \] (23)
where \sim means that we have ignored numerical factors. We then note that
\[[iP,[iP^2,iQ^4]] \sim i(PQ^2+Q^2P). \] (24)
The latter operator now acts as a raising operator for powers of monomials, since
\[[i(PQ^2+Q^2P),iQ^n] \sim iQ^{n+1}, \] (25)
which completes the proof. In this way we can generate any unitary operator of the form $e^{-iV(Q)}$, where V is a real polynomial of Q.

3 Three Classes of Continuous Variable States

Let $G = (V, E)$ be a graph, where V and E respectively denote the set of vertices and edges. The graph is supposed to admit an orientation. In other words, G is the triangulation of an orientable manifold. This means that all the simplexes of G inherit the orientation of the original manifold in a consistent way. The number of vertices and edges are respectively given by $|V|$ and $|E|$.

In this section we define three closely related continuous variable states pertaining to a given graph G, which we call the Kitaev state $|K_G\rangle$ [44], the extended Kitaev state $|\tilde{K}_G\rangle$ and the graph state $|\Psi_G\rangle$ [45, 46]. We will then determine the mutual relationships of these states, which will play an important role in our proof of completeness. These are the generalizations of known states in the qubit case, where they have been possibly named differently in other works. For example in the qubit case, extended Kitaev states have been called pseudo graph states [2], however in view of their explicit construction and stabilizers, we think that the name Kitaev or extended Kitaev states are more appropriate for them.

The crucial difference between the continuous and qubit case is the fact that the operators $\hat{X}(t)$, $\hat{Z}(t)$, CZ and \hat{H} are not equal to their inverses. Therefore a consistent and unambiguous description of these states on a graph, requires that the graphs be decorated with weights and/or orientations. We emphasize the difference between orientation, which is a Z_2 variable and weight which is a real variable. We will meet the necessity of each as we go along in our definitions.

3.1 Kitaev States

Consider an oriented graph $G = (V, E, \sigma)$, where σ means that arbitrary orientations have been assigned to the edges. Any collection of arbitrary orientations on the edges is called a decoration of
the graph. We assume that modes live only on the edges E and there are no modes on the vertices V of this graph. The CV Kitaev state is then defined
\[|K_G\rangle = \int d\phi_1 d\phi_2 \cdots d\phi_N \bigotimes_{e_{ij}} |\phi_i - \phi_j\rangle, \] (26)
where e_{ij} is the edge which goes from the vertex i to the vertex j.

It is easily verified that this state is stabilized by the following set of operators: for each vertex $i \in V$, we have
\[A_v(t) := \prod_{e \in E_v} X^\pm_e(t), \] (27)
where E_v denotes the set of edges incident on the vertex v and the $-\text{ and } +\text{ signs are used for edges going into and out of a vertex respectively.}$ The reason that A_v stabilizes the state $|\phi_1 - \phi_2\rangle$ is that it simply shifts the variable ϕ_v which will be neutralized under the integration. Also for each face of the graph, we have
\[B_f(s) := \prod_{e \in \partial f} Z^\pm_e(s), \] (28)
where ∂f denotes the set of edges in the boundary of f and the $+\text{ and } -\text{ signs are used respectively when the orientation of a link is equal or opposite to us when we traverse a face in the counter-clockwise sense.}$ Note that traversing all the plaquettes in this sense is meaningful for an orientable triangulation. Here also the effect of $B_p(s)$ on the state inside the integral is to multiply it by a unit factor since the phases acquired by all the edges add up to zero for a closed loop.

As an example, we have for the graph G in figure (3),
\[|K_G\rangle = \int Dx |\phi_1 - \phi_2, \phi_2 - \phi_3, \phi_4 - \phi_3, \phi_4 - \phi_1, \phi_4 - \phi_2\rangle_{a,b,c,d,e}, \] (29)
where the subscripts a to e, determine the position of modes in the state. The stabilizers of this state are then given by (27,28) as follows:
\[A_1 := X^{-1}_d X_a, \quad A_2 := X^{-1}_a X^{-1}_e X_b, \quad A_3 := X^{-1}_b X^{-1}_c, \quad A_4 := X_c X_d X_e \] (30)
and
\[B_I := Z_c Z^{-1}_a Z^{-1}_d, \quad B_{II} := Z_c Z^{-1}_b Z^{-1}_e. \] (31)

Finally we note that all Kitaev states on a given graph, corresponding to different decorations are related to each other by local unitary actions. In fact if we switch the arbitrary orientation on a link
it means that the term $| \cdots \phi_i - \phi_j, \cdots \rangle$ in (26) changes to $| \cdots \phi_j - \phi_i, \cdots \rangle$ where the remaining parts of the state will remain intact. In view of (11), this switching is achieved by a local action of the square Hadamard operator H^2 on the edge e. We can thus write

$$|K_{G^{\sigma'}}\rangle = \left(\bigotimes_{e: \sigma(e) \neq \sigma'(e)} H^2_e \right) |K_{G^\sigma}\rangle. \quad (32)$$

Therefore all the Kitaev states with different decorations belong to the same class of states modulo local actions of square Hadamard operations.

In view of the shift invariance $\phi_i \rightarrow \phi_i + \eta$, the Kitaev state has a hidden multiplicative factor which is in fact infinite. This symmetry can be removed by fixing a gauge (in the discrete case this is a finite factor which causes no problem). Therefore we will define the gauge-fixed Kitaev state, denoted by $|K_0^G\rangle$ as follows:

$$|K_0^G\rangle = \int d\phi_1 d\phi_2 \cdots d\phi_N \prod_{e_{ij} \in E} \prod_{i \in V} |\phi_i - \phi_j\rangle. \quad (33)$$

This gauge-fixed Kitaev state has still the same set of stabilizers. The same reasoning for the Kitaev state $|K_G\rangle$ also works here.

3.2 Extended Kitaev States

Let $G = (V, E, \sigma)$ be defined as in previous subsection. Now in addition to the modes on the edges, there are also modes on vertices, as in figure [4]. On such a graph, there are thus two different sets of vertices, which we denote by V (the ones on the nodes) and V_E (the ones on the edges). Then the state $|K_G\rangle$ is given by

$$|K_G\rangle = \int d\phi_1 d\phi_2 \cdots d\phi_N \bigotimes_{e_{ij} \in E} |\phi_i - \phi_j\rangle \bigotimes_{i \in V} |\phi_i\rangle, \quad (34)$$

where e_{ij} is the edge which goes from vertex i to j. As an example for the graph in figure [4], we have

$$|K_G\rangle = \int D\phi |\phi_1 - \phi_2, \phi_2 - \phi_3, \phi_4 - \phi_3, \phi_4 - \phi_1, \phi_4 - \phi_2\rangle_{a,b,c,d,e} \otimes |\phi_1, \phi_2, \phi_3, \phi_4\rangle_{1,2,3,4}. \quad (35)$$

The stabilizers of this extended Kitaev state are completely different from the simple Kitaev state. In fact they are: For each vertex $v \in V$,

$$C_v := X_v \prod_{e \in E_v} X_e^\pm, \quad (36)$$

where the convention for the \pm signs is the same as in Kitaev state and for each edge $e \in E$ which goes from v_1 to v_2,

$$D_e := Z_e^{-1} Z_{v_1} Z_{v_2}^{-1}, \quad (37)$$

where again we have suppressed the continuous arguments of these stabilizers for ease of notation.

For the example given in figure [4], some of the stabilizers are:

$$C_1 = X_1 X_a X_d^{-1}, \quad C_2 = X_2 X_a^{-1} X_e^{-1} X_b, \quad D_a = Z_1 Z_a^{-1} Z_2^{-1}, \quad D_b = Z_2 Z_b^{-1} Z_3, \cdots \quad (38)$$
3.3 Weighted Graph States

Finally we come to the definition of continuous variable weighted graph states. Here as in the qubit case we start with an initial product state of the form $|\Omega\rangle = |0\rangle^\otimes V$. However there is an important difference in that on each edge, instead of the simple CZ operator, we can act by the $CZ(J)$ operator where the real parameter J may depend on the edge. Therefore we obtain what we call a weighted graph state. Denoting the collection of all weights by J, we have

$$|\Psi(G(J))\rangle = \bigotimes_{e \in E} (CZ(J_e))|\Omega\rangle,$$

where $|\Omega\rangle = |0\rangle^\otimes V$. The explicit form of the state will then be given by

$$|\Psi_G(J)\rangle = \int D\phi e^{\sum_{<i,j>} J_{ij}\phi_i\phi_j}|\phi_1,\ldots,\phi_N\rangle,$$

where N is the number of vertices and $<i,j>$ denotes the edge connecting the vertices i and j carrying weight J_{ij}. Note that in contrast to a decorated edge which is denoted by e_{ij} (going from i to j), a weighted edge is denoted by the symmetric symbol $\langle i,j \rangle$. According to (15), the stabilizers of this state will be of the form

$$K_i(t) := X_i(t) \prod_{j \in N_i} Z_j(J_{ij}t), \quad \forall i \in V,$$

where in the left hand side we have suppressed the dependence on the weights for simplicity.

We emphasize that definition of the Kitaev states and extended Kitaev states require the underlying graph to be decorated, while a graph state needs only a weighted graph for its unambiguous definition. We are now left with an important question of whether there is a simple relation between the above three kinds of states or not. The answer turns out to be positive and is explained in the next subsection.

3.4 Relations between the above three states

Consider the extended Kitaev state corresponding to a decorated graph $G = (V,E,\sigma)$. The explicit form of the state is shown in (34). From (34) it is clear that if we project all the vertices in V on the zero-momentum basis, we will arrive at the Kitaev state for the same graph. More explicitly we have

$$\langle \Omega|K_{G^*}\rangle = \frac{1}{\sqrt{(2\pi)^V}}|K_{G^*}\rangle,$$

where K_{G^*} is the stabilizer of the Kitaev state for the graph G^*. This relation allows us to relate the three states in a straightforward manner.

Figure 4: (Color online) The graph G_0 for which the extended Kitaev state is as in (35).
where \(|\Omega\rangle = |0\rangle^\otimes V\), and we have explicitly indicated the decoration \(\sigma\).

It is instructive to understand this in an alternative way, that is by showing that measurement in the momentum basis actually transforms the stabilizer set of the extended Kitaev state, i.e. \(S(|\overline{K_G}\rangle)\) to the stabilizer set of the Kitaev state, \(S(|K_G\rangle)\). From the stabilizer formalism we know that measurement of a state \(|\Psi\rangle\) in the basis of an operator \(M\), removes all the operators which do not commute with \(M\) from the set \(S(|\Psi\rangle)\) and leaves us with a smaller subset. This subset is generated by all the original generators or their products thereof which commute with \(M\). Having this in mind, it is straightforward to see that measurement in the momentum (the \(X\) basis) leaves all the vertex stabilizers \(C_v\) intact (except of course removing the vertex \(X_v\) from it), hence changing it to \(A_v\) as in (27). However since \(X_v\) does not commute with \(Z_v\), measurements of all the vertices remove all the generators \(D_e\). The only combinations which survive this elimination will be their product around any faces. These are nothing but the operators \(B_f\) for all faces, which are just the right stabilizers of \(|K_G\rangle\).

Let us now study the relation between the extended Kitaev states and graph states. It turns out that there is a simple relation between the two only if the weights of the edges incident on each vertex add up to zero, that is, if
\[
\sum_j J_{ij} = 0, \quad \forall i. \quad (43)
\]

Since \(J_{ij} = J_{ji}\), this means also that \(\sum_i J_{ij} = 0\). In such a case we can convert an extended Kitaev state to a weighted graph state on the same graph by suitable measurements on the edges. To this end we proceed as follows: Let us project each edge \(e_{ij}\) of the extended Kitaev state on the state \(|\beta_2(t_{ij})\rangle\) defined in (21). Let \(\langle \beta_2(\mathbf{t}) \rangle := \prod_{e_{ij}} \langle \beta_2(t_{ij}) \rangle\), then we have
\[
\langle \beta_2(\mathbf{t}) | \overline{K_G}\rangle = \int D\phi e^{-i\sum e_{ij} t_{ij} - i t_{ij} (\phi_i - \phi_j)^2} |\phi_1, \ldots, \phi_N\rangle. \quad (44)
\]

If we choose the parameters \(t_{ij}\) of quadratures so that \(\sum_i t_{ij} = \sum_j t_{ij} = 0\), we find
\[
\langle \beta_2(\mathbf{t}) | \overline{K_G}\rangle = \int D\phi e^{\sum_{<i,j>} i t_{ij} \phi_i \phi_j} |\phi_1, \ldots, \phi_N\rangle =: |\Psi_G(\mathbf{t})\rangle, \quad (45)
\]
which is a weighted graph state with weights \(it_{ij}\) assigned to each edge \(\langle i, j \rangle\).

Note that from the Kitaev state for the rectangular lattice \(|K_G\rangle\), the Kitaev state for any other graph \(|K_G\rangle\) can be obtained simply by measurement of the edge modes in the momentum or coordinate bases. In fact projecting an edge mode on the zero-momentum state \(|0\rangle_p\) removes that link from the graph while projecting it on the zero coordinate state \(|0\rangle_q\) merges the two endpoints of that edge. These are shown in figure 5 and are proved as follows: Let
\[
|\psi\rangle = \int d\phi_1 d\phi_2 D\phi |\phi_1 - \phi_2\rangle \prod_{i \in L} |\phi_1 - \phi_i\rangle \prod_{j \in R} |\phi_2 - \phi_j\rangle \cdots,
\]
where \(\cdots\) denotes all the edges which involve neither the vertex 1 nor 2. Projecting this state on the state \(\rho_1|0\rangle\) on the edge \(\langle 1, 2 \rangle\), leaves us with
\[
|\psi_\rho\rangle = \int d\phi_1 d\phi_2 D\phi |\phi_1 - \phi_2\rangle \prod_{i \in L} |\phi_1 - \phi_i\rangle \prod_{j \in R} |\phi_2 - \phi_j\rangle \cdots, \quad (46)
\]
Figure 5: (Color online) The effect of measurements of an edge in an extended Kitaev state. Measuring in the momentum (X) basis (i.e. projecting onto the $p\langle 0\rangle$) removes the edge, while measurements in the coordinate (Z) basis (i.e. projecting onto the $p\langle 0\rangle$), merges the two end points of that edge.

Figure 6: (Color online) The Kitaev state on the rectangular lattice, when specific edges are measured in the X or Z bases, will turn into the Kitaev state on the Hexagonal or Triangular lattices.

which is nothing but the same Kitaev state with the edge $\langle 1, 2\rangle$ totally removed. On the other hand projecting $|\psi\rangle$ on the state $q\langle 0\rangle$ on the edge $\langle 1, 2\rangle$, leaves us with

$$ |\psi_q\rangle = \int d\phi_1 d\phi_2 D'\phi \delta(\phi_1 - \phi_2) \prod_{i \in L} |\phi_1 - \phi_i\rangle \prod_{j \in R} |\phi_2 - \phi_j\rangle \cdots $$

$$ = \int d\phi_1 D'\phi \prod_{i \in L} |\phi_1 - \phi_i\rangle \prod_{j \in R} |\phi_1 - \phi_j\rangle \cdots , \tag{47} $$

which means that the two endpoints of the edge $\langle 1, 2\rangle$ have been merged together. With these two simple rules of deleting and merging one can obtain the Kitaev state of any graph starting from the one on the rectangular lattice. Figure 6 shows an important example in which measurements of some of the edges in the momentum basis (and hence removing them), transforms $|K_{\square}\rangle$ to the Kitaev state on the hexagonal lattice $|K_{H}\rangle$. Measurement of the same edges in the coordinate basis (and hence merging the two endpoints) produces a uniform lattice whose faces are triangles, hence a triangular lattice. This is in accord with the fact that the Hexagonal and Triangular lattice are dual to each other, a subject which will be explored further in the sequel.
Finally we use the well-known universality of cluster states proved in the context of measurement-
based quantum computation [33, 34, 35, 36, 37, 38, 39] to state that both the Kitaev state $|K_G⟩$ and
the extended Kitaev state $|\bar{K}_G⟩$ can be obtained by Gaussian measurements from a sufficiently
large cluster state $|\Psi⟩$. The fact that the measurements need only be Gaussian is due to the fact that all
these kinds of states are stabilized by subgroups of W_n and hence they can be converted to each other
by unitary operators belonging to the Clifford group. Using the well-known fact from MQC, that
Clifford operators can be implemented by Gaussian measurements, we arrive at the proof of the above
statement.

4 Quantum formalism for the partition functions

In this section we show how the partition function of a classical model defined by a Hamiltonian on a
continuous variables on an arbitrary graph, can be expressed in the quantum formalism. First consider
the case where there is no local term or on-site interaction, that is the Hamiltonian is of the form

$$H = \sum_{\langle i,j \rangle} V_{ij}(\phi_i - \phi_j),$$ \hspace{1cm} (48)$$

where $V_{ij}(x)$ is an arbitrary function. We allow for the function V_{ij} to depend on the edge e_{ij} in order
to cover also the inhomogeneous cases. The partition function of this model is,

$$Z(G, \{V\}) = \int D\phi N e^{-i \sum_{\langle i,j \rangle} V_{ij}(\phi_i - \phi_j)},$$ \hspace{1cm} (49)$$

where N is number of vertices and we have absorbed the parameter $\beta \equiv \frac{1}{k_B T}$ in the Hamiltonian. We
will do this in all expressions of partition functions which follow.

Remark: We have defined the partition function in the form (49), in order to be able to deal with
unitary operators in the measurement based quantum computation. Dealing with non-unitary opera-
tors does not pose any problem in the Ising model [2], since states like $|\alpha⟩ = e^{-\beta J}|0⟩ + e^{\beta J}|1⟩$ are
normalizable states. In the continuous case the analogue of the above state may be non-normalizable,
rendering the projection to such states problematic. Instead we resort to partition functions of the type
(70) with the understanding that the final results, like dualities, and completeness can be analytically
continued to the whole complex plane.

Due to the shift invariance of the Hamiltonian $\phi_i \rightarrow \phi_i + \xi$, the above partition function is
infinite, so we have to modify the partition function by fixing a gauge, which we will do later on. For
the present we deal with the above partition function as it is. Defining the product state

$$|\alpha⟩ = \bigotimes_{e_{ij}} |\alpha_{ij}⟩,$$ \hspace{1cm} (50)$$

where

$$|\alpha_{ij}⟩ = \int dx e^{-iV_{ij}(\alpha)}|x⟩$$

is defined on the edge e_{ij}, one can then write the partition function (49) in the quantum formalism as

$$Z'(G, \{V\}) = \langle \alpha |K_G⟩,$$ \hspace{1cm} (51)$$

where $|K_G⟩$ is the Kitaev state on the graph G (26). In this way, as in the qubit case, the pattern of
interactions is encoded in the entangled Kitaev state and the strength of interactions (including the
temperature) are encoded into the product state $\langle \alpha \rangle$. To fix the shift invariance we define a gauge-fixed partition function as

$$Z(G, \{V\}) = \int D\phi \delta\left(\sum_i \phi_i\right) e^{-i\sum_{i,j} V_{ij}(\phi_i - \phi_j)}. \quad (52)$$

Note that other forms of gauge fixing terms are possible, but we will deal with this simple one. Also note that the shift invariance is also present in discrete models, however in those cases the multiplicative factor is finite and not divergent, hence gauge fixing is not necessary. Using the gauge-fixed Kitaev state, we can write this in the quantum formalism as

$$Z(G, \{V\}) = \langle \alpha | K_0^G \rangle. \quad (53)$$

Let us now consider an edge e and insert the operator \hat{Q}_e inside the inner product (53). In view of (50) and (53) we will have

$$\langle \alpha | \hat{Q}_e | K_0^G \rangle \langle \alpha | K_0^G \rangle = \langle \phi_i - \phi_j \rangle, \quad (54)$$

where by $\langle \rangle$, we mean the statistical thermal average. Similarly by acting the momentum operator on the state $\langle \alpha \rangle$, we find,

$$\langle \alpha | \hat{P}_e | K_0^G \rangle \langle \alpha | K_0^G \rangle = -i \langle V'_{ij}(\phi_i - \phi_j) \rangle, \quad (55)$$

where by $'$ we mean derivative with respect to the argument. We will later see an important application of these equations when they are combined with the topological properties of the Kitaev states.

Consider now the case where there are on-site interactions, then the Hamiltonian will be

$$H = \sum_{(i,j)} V_{ij}(\phi_i - \phi_j) + \sum_i W_i(\phi_i), \quad (56)$$

and the above formalism will be extended as follows:

$$Z(G, \{V\}, \{W\}) = \langle \pi | K_G^0 \rangle, \quad (57)$$

where

$$|\pi\rangle = \bigotimes_{e_{ij}} |\alpha_{ij}\rangle \bigotimes_{i \in V} |\alpha_i\rangle, \quad (58)$$

in which

$$|\alpha_i\rangle = \int dx e^{-iW_i(x)} |x\rangle.$$

5 Applications of the quantum formalism

Let us now try to understand some of the properties of a continuous variable statistical model through the quantum formalism. Certainly the results that we will find, like duality, can also be derived by other means, without resorting to the quantum formalism, however this scheme make these properties and their derivation much more transparent.
5.1 Correlation functions

Consider a graph \(G = (V, E) \) and a Hamiltonian \(H_0 \) defined on it without local potentials, \(W_i(\phi) = 0 \). Let \(W^\pm_C \) be a closed loop on the dual graph, which is homologically trivial, (figure 7) i.e. it is the boundary of an area. Since \(W^\pm_C \) can be written as a product of operators \(A_s \), for \(s \) inside the loop \(C \), we have

\[
W^\pm_C |K^0_G\rangle = |K^0_G\rangle,
\]

or equivalently

\[
\sum_{e \in \tilde{C}} \hat{P}_e |K^0_G\rangle = 0.
\]

Then in view of (55), this means that

\[
\sum_{e_{i,j} \in \tilde{C}} \langle V'_{ij} (\phi_i - \phi_j) \rangle = 0.
\]

This is a general non-trivial relation which is valid for any kind of interaction \(V \) and without using the quantum formalism, it would have been difficult to obtain it. Note that the other kind of loop operator, \(W^z_C \) defined as \(W^z_C := \prod_{i \in C} Z_i \) where \(C \) is a loop in the graph, doesn’t lead to a non-trivial relation since in view of (54), insertion of this operator into the inner product leads to the quantity \(\sum_{e_{i,j}} (\phi_i - \phi_j) \) which identically vanishes.

5.2 Duality

Denote the dual graph by \(\tilde{G} \). The vertices, edges and faces of \(G \) are in one to one correspondence with the faces, edges and vertices of \(\tilde{G} \) respectively. For an oriented graph we should also choose a convention for choosing the orientations. We choose the convention that for each edge \(e \) the dual \(\tilde{e} \) be such that the pair \((e, \tilde{e})\) form a right handed frame, as in figure (8). In view of the form of stabilizers of the Kitaev states (27,28) and the relations (10), and the normalization of the state \(|K_G\rangle \), we see that

\[
|K_{\tilde{G}}\rangle = (2\pi)^{|E|} H^\otimes E |K_G\rangle.
\]

Note that contrary to the qubit case the duality relation is not an involution, that is, as shown in figure (5), the dual of the dual of an oriented graph is not the original graph, but the original graph with all the orientations reversed. This is in accord with the fact that \(H^2 \neq I \) and indeed the action of \(H^2 \) on
all edges reverse their orientations. Consider now the partition function on G, with βH as in (48).
We have
$$Z(G, \{V\}) = \langle \alpha | K_G \rangle = \left(\frac{1}{2\pi}\right)^{|E|} \langle \alpha | H^{\otimes E} | K_{G} \rangle = \left(\frac{1}{2\pi}\right)^{|E|} \langle \tilde{\alpha} | K_{\tilde{G}} \rangle,$$
(63)
where
$$|\tilde{\alpha}\rangle = H|\alpha\rangle = H \int dx e^{-iV(x)} |x\rangle = \left(\frac{1}{\sqrt{2\pi}}\right)^{|E|} \int dx dy e^{ixy-iV(x)} |y\rangle = \int dy e^{-i\tilde{V}(y)} |y\rangle,$$
(64)
where
$$e^{-i\tilde{V}(y)} = \left(\frac{1}{\sqrt{2\pi}}\right)^{|E|} \int dx e^{ixy-iV(x)}.$$
(65)
This gives the following duality relation
$$Z(G, \{V\}) = \left(\frac{1}{2\pi}\right)^{|E|} Z(\tilde{G}, \{\tilde{V}\}),$$
(66)
where $e^{-i\tilde{V}}$ is the Fourier transform of e^{-iV}, as given in (65). An example of interest is when
$$V_{ij}(x) = \frac{1}{2} k_{ij} x^2,$$
(67)
which leads to the following duality relation
$$Z(G, \{k_{ij}\}) = \left(\frac{1}{2\pi}\right)^{|E|} \frac{1}{\prod_{ij} k_{ij}} Z(\tilde{G}, \{\frac{1}{k_{ij}}\}).$$
(68)

6 Completeness of two dimensional ϕ^4 model for all discrete scalar field theories

In this section we use the quantum formalism to show that the discrete form of two dimensional ϕ^4 field theory is complete. Before proceeding we should make precise the meaning of the above statement. By the two dimensional discrete ϕ^4 theory, we mean the following Hamiltonian on a two dimensional square lattice with periodic boundary conditions
$$H_c = \sum_{(r,s)} K_{r,s} (\phi_r - \phi_s)^2 + \sum_r h_r \phi_r + m_r \phi_r^2 + q_r \phi_r^4,$$
(69)
where \(K_{r,s} \in \{i,-i\}, i = \sqrt{-1} \) and the real parameters \(h_r, m_r \) and \(q_r \) denote respectively the inhomogeneous external field, the quadratic (mass term) and quartic coupling strengths. The linear terms \(\{h_r\} \) are also necessary for completeness. Denote the partition function of this model by

\[
Z(\square, \{h\}, \{m\}, \{q\}) := \int D\phi e^{-iH_c},
\]

(70)

where \(\square \) is a 2D square lattice of size \(N \), and \(\{h\}, \{m\} \) and \(\{q\} \) denote the totality of all the inhomogeneous coupling strengths. By completeness we mean that the partition function of any other model

\[
H = \sum_{r,s} V_{r,s}(\phi_r - \phi_s) + \sum_r W_r(\phi_r),
\]

(71)

on any graph \(G = (V,E) \) is equal to the partition function for the Hamiltonian \(H_c \) on the 2D square lattice, for some specifically chosen sets \(\{h\}, \{m\} \) and \(\{q\} \).

Note that the interaction terms in the Hamiltonian \(H \) are not necessarily of nearest neighbor type. In fact as we will show in the proof, \(H \) can even contain \(k \) body interactions, as long as \(k \) is bounded above by a finite constant independent of \(|V| \).

Consider a general Hamiltonian of the form (71). The partition function of this model can be written in the quantum formalism as

\[
Z(G, \{V\}, \{W\}) = \langle \alpha | \mathcal{K}_G | \alpha \rangle,
\]

(72)

where

\[
\langle \alpha | = \bigotimes_{e_{i,j}} \langle \alpha_{i,j} | \bigotimes_i | \alpha_i \rangle,
\]

(73)

and

\[
\langle \alpha_{i,j} | = \int dy e^{-iV_{i,j}(y)} |y\rangle, \quad \langle \alpha_i | = \int dy e^{-iW_i(y)} |y\rangle.
\]

(74)

Note that \(\langle \alpha_{i,j} | \) lives on the edge vertex \(v(e_{i,j}) \) and \(\langle \alpha_i | \) lives on the vertex \(i \). Rewriting the above states in the form

\[
\langle \alpha_{i,j} | = \int dy |y\rangle e^{-iV_{i,j}(\tilde{Q})} = \langle 0_p | e^{-iV_{i,j}(\tilde{Q})}, \quad \langle \alpha_i | = \int dy |y\rangle e^{-iW_i(\tilde{Q})} = \langle 0_p | e^{-iW_i(\tilde{Q})},
\]

(75)

where \(\langle 0_p | \) is the zero momentum eigenstate, we find an equivalent form for the partition function, namely

\[
Z(G, \{V\}, \{W\}) = \langle 0_p | \bigotimes_{e_{i,j}} e^{-iV_{i,j}(\tilde{Q})} \bigotimes_i e^{-iW_i(\tilde{Q})} | \mathcal{K}_G \rangle,
\]

(76)

where \(\langle 0_p | = \bigotimes_{e_{i,j}} \langle 0_p | \bigotimes_i \langle 0_p | \) is the product of all zero-momentum states on the edge vertices and ordinary vertices of the graph \(G \). We now note that according to (21), we can approximate the unitary operators \(e^{-iV_{i,j}(\tilde{Q})} \) and \(e^{-iW_i(\tilde{Q})} \) to any degree of precision by a product of the operators \(H (\text{the Hadamard}) , e^{-it\tilde{Q}}, e^{-it\tilde{Q}^2} \text{ and } e^{-it\tilde{Q}^3} \). As explained in (2.1.1), implementation of these operators on a state is effected by suitable possibly non-Gaussian measurements (i.e. projections of vertex modes on the states \(\langle \beta_i(t) | i = 1, 2, 4 \rangle \) of an appropriate enlargement of that state, i.e. one simply adds necessary nodes, glued them by \(CZ \) operators and measures the additional nodes as exemplified in figure (2) to affect a desired unitary gate on the original qnode of the lattice. Let us denote this intermediate graph by \(G' \), its associated state by \(|\Psi_{G'}\rangle \), and the collection of all necessary measurements on it by \(\{\beta_{1,2,4}\} \), then we will have

\[
\bigotimes_{e_{i,j}} e^{-iV_{i,j}(\tilde{Q})} \bigotimes_i e^{-iW_i(\tilde{Q})} | \mathcal{K}_G \rangle = \langle \beta_{1,2,4} | \Psi_{G'} \rangle,
\]

(77)
The configuration of the graph G' may be complicated, but the important point is that $|\Psi_{G'}\rangle$ is nothing but a stabilizer state and hence in principle it can be obtained from a cluster state by Gaussian measurements $\langle \beta_i(t) \rangle (i = 1, 2)$. Therefore we have

$$|\Psi_{G'}\rangle = \langle \beta_{1,2} | \Psi_\square \rangle. \quad (78)$$

Note that up to now all the projections have been performed on the vertices of the cluster state. The cluster state $|\Psi_\square\rangle$ can be a weighted cluster state where the weights of all edges are ± 1 and for each vertex the weights of all edges add up to 0. Such a cluster state can be obtained from an extended Kitaev state on the rectangular lattice by projecting all the edge-vertices on the states $\langle \beta_2(\pm 1) \rangle = \int dy e^{\pm iy^2} \langle y \rangle$ according to whether the weights of the edges are $+1$ or -1.

This is the only place where projections are made on the edge vertices, and in fixed directions (i.e. eigenstates of $XZ^{\pm 1}$). We write this symbolically in the form

$$|\Psi_\square\rangle = \langle \pm | K_\square \rangle. \quad (79)$$

Combining (77), (78) and (79) we finally arrive at

$$Z(G, \{V\}, \{W\}) = \langle 0_m | \langle \beta_{1,2,4}, \pm_e | K_\square \rangle), \quad (80)$$

where \pm_e encapsulates all the measurements XZ^\pm which are performed on the edges of the extended Kitaev state, and $\langle \beta_{1,2,4} \rangle$ represents all the projections $\langle \beta_i \rangle$ for $i = 1, 2, 4$ on the vertices. Putting all this together we finally arrive at the result that

$$Z(G, \{V\}, \{W\}) = Z(\square, \{h\}, \{m\}, \{q\}). \quad (81)$$

It is important to note that since the edge vertices are measured in the ZX^\pm bases and the resulting edge is projected on the eigenstates $|\pm\rangle \propto \int e^{\pm iy^2} |y\rangle dy$, the interactions between neighboring vertices in the complete model is restricted to be of the type $\pm i (\phi_1 - \phi_2)^2$. In this way all the couplings in the original model have been transferred to the mass and potential terms on the vertices.

As a byproduct this argument shows that when the original model has only quadratic couplings (i.e. it is free field), then there is no linear or quartic coupling in the model on the rectangular lattice which reduces to this model by Gaussian measurements. This means that the free field theory on the 2D rectangular lattice is complete and can produce any other field theory on any lattice.

It is a simple matter to show that the ϕ^4 theory can also reproduce models with $k-$body interactions. We know from [8], that the 4D $U(1)$ lattice gauge theory is complete. Therefore it is enough to show that ϕ^4 theory can reduce to 4D $U(1)$ lattice gauge theory. The Hamiltonian of the latter model is given by

$$H = -\sum_p J_p \cos(\phi_1 - \phi_2 - \phi_3 + \phi_4), \quad (82)$$

where p denotes a plaquette, J_p denotes the coupling constant on p, and ϕ_i’s are the continuous variables around p. The indices 1, 2, 3 and 4 denotes the edges of p when traversed in clockwise direction. The point is that the partition function of such a model can again be written as a scalar product $Z = \langle \alpha | G \rangle = \langle \alpha |$, with $\langle \alpha |$ a product state over all plaquettes,

$$\langle \alpha | = \otimes_p | \alpha |_p, \quad \langle \alpha |_p := \int dy e^{-i J_p \cos y} |y\rangle \quad (83)$$

and $|G\rangle$ a new stabilizer state,

$$|G\rangle = \int dx | \cdots, (x_1 - x_2 - x_3 + x_4)_p, \cdots \rangle. \quad (84)$$
If we now note that $\langle \alpha |_p$ can be written as $\langle \alpha |_p = \langle 0 |_p e^{-iJ_p \cos Q}$ and the latter operator can indeed be expanded to any desired accuracy in terms of $e^{-it\hat{Q}^2}$ and $e^{-it\hat{Q}^4}$, the assertion will be proved along the same line as indicated above.

Efficiency: It is shown in [1] that simulating the partition function of any Ising or Potts type model on an arbitrary graph can be done on the Ising model on a square lattice with only a polynomial overhead in the number of spins. For more general models however, an exponential overhead may be needed. A similar statement is true also in our case, namely for simulating the partition function of a model with nearest neighbor interactions on a graph with N vertices, we need a ϕ^4 model on a cluster state with $P(N)$ vertices where $P(N)$ is a polynomial of N. This result is a combination of the universality result of cluster states which by only a polynomial overhead can produce any other quantum state and the fact that any quantum unitary $e^{iv}\phi^4$ can be decomposed to a product of polynomial number of unitaries of the form $e^{it\hat{q}^n}$, with $n = 1, 2, 4$ to any degree of precision. This result is also true when each site interacts with a finite number k of its neighbors, where k is independent of N. For more general models, an exponential overhead in the number of sites, will be necessary like the case of Ising model.

7 Discussion

The concept of completeness of certain statistical models is very fascinating. The idea that in principle a single complete model, like the 2D Ising model in its rich phase structure, various phases of all the other models, regardless of their lattice structure, type of order statistical variables and order parameter, and the interactions, is an idea which needs much exploration in the future. One of the basic questions is that what other types of models are complete. In this paper we have shown that the ϕ^4 field theory is a complete model. Like the case of Ising model [2] or the $U(1)$ lattice gauge theory [3], our proof is an existence proof at present. The next step in such a program will be to show how other specific models can be obtained from these complete models and what insight about them can be obtained. Like the existence proof itself, this step relies also heavily on techniques from quantum information theory, notably the measurement-based quantum computation. In particular it will be very desirable to formulate an algorithmic approach for deriving any specific model (its graph structure and coupling strengths) from a complete model. In this way apparently unrelated models will be linked to each other and the insight gained from this approach will have far reaching consequences in statistical mechanics, exactly solvable models and critical phenomena.

Acknowledgements: The authors would like to thank A. Rezakhani, L. Memarzadeh for valuable discussions. V. K. would also like to thank Abdus Salam ICTP for partial support through the regular associate award.

References

[1] M. Van den Nest, W. Dur and H. J. Briegel, Phys. Rev. Lett. 98, 117207 (2007).

[2] Van den Nest, W. Dur and H. J. Briegel, Phys. Rev. Lett. 100 110501 (2008) (Preprint arXiv:0708.2275).

[3] L. Onsager, Phys. Rev. 65 117-149 (1944).

[4] H. A. Kramers, G. H. Wannier. Phys. Rev. 60 252-262, 263-276 (1941).
[5] B. Kaufman, L. Onsager, Phys. Rev. 76 1232-1243 (1949).

[6] De las Cuevas, Dur, Briegel and Martin-Delgado, Phys. Rev. Lett. 102 230502 (2009) (Preprint arXiv:0812.3583).

[7] G. De las Cuevas, W. Dur, H. J. Briegel and Martin-Delgado, New J. Phys. 12 043014 (2010) (Preprint arXiv:0911.2096).

[8] Y. Xu, G. De las Cuevas, W. Dur, H. J. Briegel, M. A. Martin-Delgado, J. Stat. Mech. P02013 (2011).

[9] G. De las Cuevas, W. Dur, M. Van den Nest and H. J. Briegel, J. Stat. Mech. P07001 (2009) (Preprint arXiv:0812.2368).

[10] M. Van den Nest, W. Dur, R. Raussendorf and H. J. Briegel, Phys. Rev. A 80 052334 (2009) (Preprint arXiv:0805.1214).

[11] R. Hubener, M. Van den Nest, W. Dur and H. J. Briegel, J. Math. Phys. 50 083303 (2009) (Preprint arXiv:0812.2127).

[12] S. Bravyi, R. Raussendorf, Phys. Rev. A 76, 022304 (2007).

[13] M. Van den Nest, W. Dur, G. Vidal, H. J. Briegel, Phys. Rev. A 75, 012337 (2007).

[14] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

[15] D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007).

[16] D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, Phys. Rev. A 76, 052315 (2007).

[17] D. Gross and J. Eisert, Phys. Rev. A 82, 040303(R) (2010).

[18] G. K. Brennen and A. Miyake, Phys. Rev. Lett. 101, 010502 (2008).

[19] X. Chen, B. Zeng, Z. C. Gu, B. Yoshida, and I. L. Chuang, Phys. Rev. Lett. 102, 220501 (2009).

[20] C. E. Mora, M. Piani, A. Miyake, M. Van den Nest, W. Dur, and H. J. Briegel, Phys. Rev. A 81, 042315 (2010).

[21] J. M. Cai, W. Dur, M. Van den Nest, A. Miyake, H. J. Briegel, Phys. Rev. Lett. 103, 050503 (2009).

[22] Jianming Cai, Akimasa Miyake, Wolfgang Dur, Hans J. Briegel, Phys. Rev. A 82, 052309 (2010).

[23] Wei-Bo Gao, Xing-Can Yao, Jian-Ming Cai, He Lu, Ping Xu, Tao Yang, Chao-Yang Lu, Yu-Ao Chen, Zeng-Bing Chen, Jian-Wei Pan, Nature Photonics 5, 117 (2011).

[24] F. Barahona, J. Phys. A 15, 3241 (1982).

[25] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

[26] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, Phys. Rev. A 68, 042319 (2003).

[27] J. Zhang and S. L. Braunstein, Phys. Rev. A 73, 032318 (2006).

[28] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).

[29] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).
[30] R. L. Barnes, e-print arXiv:quant-ph/0405064.

[31] P. van Loock, C. Weedbrook, and M. Gu, Phys. Rev. A 76, 032321 (2007).

[32] E. Hostens, J. Dehaene, B. De Moor, Phys. Rev. A 71, 042315 (2005).

[33] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, Phys. Rev. lett. 88, 097904 (2002).

[34] Nicolas C. Menicucci et al, Phys. Rev. Lett. 97, 110501 (2006).

[35] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. vanLoock, Phys. Rev. A. 79, 062318 (2009).

[36] Dan Browne and Hans Briegel, arXiv:0603226v2 (2006).

[37] N. C. Menicucci, S. T. Flammia, and O. Pfister, Phys. Rev. Lett. 101, 130501 (2008).

[38] S. T. Flammia, N. C. Menicucci, and O. Pfister, J. Phys. B 42, 114009 (2009).

[39] R. Ukai, J.-I. Yoshikawa, N. Iwata, P. van Loock, and A. Furusawa, Phys. Rev. A 81, 032315 (2010).

[40] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

[41] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).

[42] A. T. Sornborger and E. D. Stewart, Phys. Rev. A 60, 1956 (1999).

[43] S. Sefi and P. van Loock, arXiv:1104.1148 (2011).

[44] A. Kitaev, Ann. Phys. 303 (2003).

[45] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311 (2004).

[46] M. Van den Nest, A. Miyake, W. Dur, and H. J. Briegel, Phys. Rev. Lett. 97, 150504 (2006).