Central neurocytoma of the third ventricle: Case report and treatment review

Mehjabeen Marria, Iftikhar Ahmad, Khushnaseeb Ahmad, Zoonish Ashfaq

A Center for Nuclear Medicine and Radiotherapy (CENAR), Quetta, Pakistan
b Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan

Article info

Article history:
Received 28 February 2017
Received in revised form 14 July 2017
Accepted 28 July 2017
Available online 8 August 2017

Keywords:
Neurocytoma
Radiotherapy
Sub-total tumor resection
Craniotomy

Abstract

Central neurocytoma is a rare tumor of neuronal differentiation which is typically seen in young adults. Here, we report a case of a 25 years old female patient who presented with central neurocytoma of the third ventricle. Sub-total resection of the tumor was carried out via left parieto-occipital craniotomy. Afterwards, the patient received conventional radiotherapy (i.e., 54 Gy/27 fractions). We observed marked improvement in terms of tumor size reduction (i.e., from 5.2 × 4.8 cm² to 3.4 × 2.1 cm²; ~71%) and patient performance status.

Introduction

Central neurocytomas (CN) are rare tumors of neuronal differentiation which are typically seen in young adults. Such tumors when located within the ventricles of the brain are called intraventricular while those arising/present in the cerebral hemispheres and spinal cord are called extraventricular neurocytomas. Having a relatively good prognosis, early recognition of these tumors is crucial towards more favorable treatment outcomes. Radiological studies, in particular magnetic resonance imaging (MRI), provides the first step in diagnosis of these tumors [1]. However, histopathology ascertains the definite diagnosis. The prominent features of these tumors have been elucidated [2,3], which, among others, include: morphology comprising cells with uniform round contours, round nuclei with fine speckled chromatin, cell clusters with nuclear free fibrillary areas mimicking neurophil and delicate arborizing capillaries and foci of calcification. At the therapeutic end, total surgical resection is considered as the treatment of choice [3–5]; nevertheless, radiotherapy [3–7] and chemotherapy are sometimes used in adjuvant settings [3,8,9], particularly when total resection is not possible.

Herein, we present a case of intraventricular neurocytoma (IVN), assess the response of our treatment protocol (i.e., sub-total tumor resection followed by conventional radiotherapy) and review the treatment options from the available literature. Specifically, we report a case of 25 years old female diagnosed with IVN. The patient showed marked improvement to sub-total tumor resection followed by radiotherapy.

Case report

A 25-year-old female presented to the radiology department with the complaints of headache for three months duration. The patient was blind from both eyes. The Eastern Cooperative Oncology Group (ECOG) performance status of the patient was one at the time of presentation. Magnetic resonance (MR) images of the brain demonstrated tumor in the lateral ventricular region (Fig. 1). Specifically, MR images revealed moderately enhancing abnormal signal intensity area involving the septum pellucidum and affecting the anterior part of both lateral ventricles, as presented in Fig. 1. Moderate dilation of posterior parts of lateral ventricles was also noted. No further differential diagnostic or therapeutic work up was done for nine months, due to patient negligence. After nine months, the patient again presented to the radiology department; repeat MR study illustrated a large heterogeneously enhancing mass of size 5.1 × 3.8 cm² in the midline region, with bulk of mass at the left. Specifically, the mass occupied the region of third ventricle. Further, mild communicating hydrocephalus was also noted. The mass also affected adjacent ventricles. However, posterior fossa of the brain stem was normal (Fig. 1). Sub-total resection...
of the tumor was implemented via left parieto-occipital craniotomy.

Histopathology revealed fragments of a neoplastic lesion (size = 2 × 1.5 cm²) composed of small to intermediate sized cells arranging in the form of sheets seen around arborizing blood vessels (Fig. 2). The individual neoplastic cells had scant cytoplasm and pleomorphic nuclei with open coarse chromatin showing few (approximately 1/10 HPF) mitoses. In foci, fibrillary nuclear free zones were seen. However, definite necrosis was not identified. Immunohistochemical stains showed following patterns; GFAP and EMA were negative, synaptophysin was diffuse positive and Ki 67 (Mib-1) was low. These features favored central neurocytoma, WHO grade II, according to WHO classification of central nervous system (CNS) neoplasms [10]. The summary of clinical, radiological and histopathological features has been presented in Table 1.

MR study after one month of craniotomy demonstrated evidence of mass (size = 5.2 × 4.8 cm²) in the septum pellucidum and frontal horn of third left lateral ventricle. It was isointense on T1 and intermediate signal on T2 and FLAIR images. Moreover, there was evidence of minimal dilatation of all the ventricles (Fig. 3). Re-surgery was refused by the surgeon at this stage.

Conventional radiotherapy alone was decided at the therapeutic end. Specifically, 54 Gy in 27 fractions was delivered via two lateral opposing portals. Chemotherapy was not included in the treatment protocol. The tumor was re-assessed radiologically after three months of radiotherapy completion. Post-radiotherapy MR images illustrated mass in the frontal horn of left lateral ventricle with
reduction in the size of tumor (size = 3.4 × 2.1 cm²; ~71%). The patients have no complaints, including headache, and being kept on follow up. It may be of interest that the patient, after radiotherapy, was being pregnant and normally delivered a healthy twin recently.

Discussion

Neurocytoma is a group of rare brain tumors with characteristic indolent growth [11], usually seen in adolescents and young adults. The typical clinical symptoms of neurocytomas include hydrocephalus, headache, vision problems, weakness, memory loss, nausea/vomiting, paresthesias, balance problems, decreased consciousness and occasional intraventricular hemorrhage [3]; the first six symptoms were also presented by our patient.

The primary therapeutic option for neurocytoma tumors is the complete surgical resection (with minimal neurologic impairment) that markedly diminishes the chance of recurrence [3]. Such resection essentially relieves the intracranial pressure developed by the tumor and also restores cerebrospinal fluid (CSF) channels [12]. However, the extent of surgical resection is typically defined by multiple parameters such as tumor size and location, invasion to surrounding critical structures, tumor vascularity, and expertise of the surgeon [4]. In addition, typical IVN do not invade surrounding parenchyma, facilitating total tumor resection (TTR) particularly with microsurgical resection techniques such as transcortical- and transcallosal- transventricular approaches [12,13]. Indeed, TTR has been reported in one-third to one-half of patients [14], which markedly increase the chance for local control of the tumor, as compared to sub-total resection (STR). For instance, three and five year local control for TTR was 95% and 85% against 55% and 46% for STR, respectively [15]. Similar results have been found in other meta-analysis studies [16]. Moreover, STR has been demonstrated as the only parameter associated with poor treatment outcomes. In our patient, STR of the tumor was performed, which might have delayed the improvement of patient status. Furthermore, minimally invasive approach based on endoscopic assisted total resection of central neurocytoma tumor has been successfully demonstrated. It is claimed that no further treatment was required; no residual or recurrent tumor was seen at 36-month follow-up [17]. In summary, TTR remains the treatment of choice for neurocytomas and offers significantly (p < 0.001) superior outcomes compared to STR [16].

Although the role of radiotherapy (RT) to the tumor bed after surgical resection has been debatable; nevertheless it has been implemented in many cases with the aim of preventing tumor progression and recurrence, particularly in patients with incomplete resection. Specifically, RT after STR improved local control (i.e., from 39% to 94%) and 10 years survival (i.e., from 82% to 100%) [16]. Reduction in Mib-1 index from 5.6% to 0.2% has also been reported with RT (i.e., 58 Gy) [18]. Moreover, various RT dose regimes for central neurocytoma after STR have been estimated [19]. Specifically, the 5 years local control for equivalent dose in 2-Gy fractions was significantly (p = 0.0066) improved (98% vs. 69%) for higher doses (i.e., 54.0–62.2) as compared to lower doses (i.e., 40.0–53.6 Gy); at 10 years, the local control was 89% vs. 65%.

Most neurocytomas do not infiltrate the surrounding tissues; thereby necessitating RT to the tumor bed only, while the surrounding parenchyma should be spared. This would minimize the chance for radiations induced toxicities including necrosis (a factor suspected to correlated with radiation mortality) in the sensitive brain tissue [20]. Previously, development of radiation induced anaplastic astrocytoma has been reported after 8 years of implementing STR followed RT for neurocytoma treatment [21]. However, it has been suggested that radiation induced adverse effects can be minimized by limiting the dose below 60 Gy [22]. Moreover, RT alone (i.e., without surgery and chemotherapy) has not been comprehensively assessed for treatment of neurocytomas; nevertheless, it may be offered to patients not fit for surgical resection or in case of non-availability of other treatment modalities [23].

Stereotactic radiosurgery (SRS) has emerged as a potential treatment tool in the management of neurocytomas, due to its favorable features such as rapid dose fall-off and shorter treatment time, as compared to conventional RT [24,25]. SRS appear to offer superior results in terms of diminishing tumor recurrences and...
radiation-associated complications. Post-operative (i.e., STR) 5 years local tumor control was 100% with SRS as compared to 87% with conventional RT [26]. Further, executing gamma knife radiosurgery in adjuvant setting, mean tumor volume reduction in 14 patients after mean follow up of 70 months was 69% (ranging from 47 to 87%) with no tumor progression [7]. Moreover, linear accelerator based radiosurgery has revealed promising results. Specifically, residual lesion treated with this modality showed no evidence of recurrence for follow up of 51 months [27]. Furthermore, it is noteworthy that the IVN's offer an ideal location for SRS, presumably due to absorption of excess radiation by the CSF, minimizing radiation dose delivered to normal surrounding tissues [28]. However, further studies with long term follow up are required as recurrences typically occur later in life [29].

In addition to RT, chemotherapy has been used in a limited number of studies as adjunctive therapy to surgery [8,30,31]. Chemotherapy is particularly advantageous in patients having large tumor bed where it can avoid the long-term radiation toxicity of large radiation fields [31]. Although, the agreement on the optimal combination of chemotherapy agents seems scarce, reported studies have used various chemotherapy agents such as topotecan, carmustine, ifosfamide, prednisone, etoposide, carboplatin,
lomustine, cyclophosphamide, vincristine, cisplatin, etc. [13]. For instance, neurocytoma treated with (STR followed by) chemotherapy regime of PCV (i.e., procarbazine, CCNU, vincristine) remained stable for 16 months [31]. Further, a patient with spinal cord drop metastasis from recurrent neurocytoma was treated with three cycles of chemotherapy (i.e., topotecan (0.5 mg/m²) and carboplatin (250 mg/m²) days 1–3; and ifosfamide (1,800 mg/m²) days 1–5, every 21 days); the patient showed complete response without severe complications [9]. Nevertheless, further studies with large sample cohort are needed to compare various regimes of chemotherapy towards establishing any chemotherapy-specific recommendations in management of neurocytoma.

Conclusion

Neurocytoma is a rare tumor of neuronal differentiation which is typically seen in young adults. Herein, we presented a case of third ventricle neurocytoma. The patient showed marked improvement in terms of tumor size reduction (i.e., from 5.2 × 4.8 cm² to 3.4 × 2.1 cm²; ~71%) and patient performance status to the treatment protocol pertaining to sub-total resection of the tumor followed by conventional radiotherapy (i.e., 54 Gy/27 fractions). The available literature shows that total resection of the tumor remains the treatment of choice, offering the most favorable treatment outcomes. Radiotherapy, particularly radiosurgery, to the tumor bed has been used in tandem with sub-total resection (i.e., adjuvant setting). Chemotherapy seems to have limiting role in the management of neurocytomas.

References

[1] Chen C-L, Shen C, Wang J, Lu C, Lee H. Central neurocytoma: a clinical, radiological and pathological study of nine cases. Clin Neurol Neurosurg 2008;110:129–36.
[2] Li Y, Ye X, Qian G, Yin Y, Pan Q. Pathologic features and clinical outcome of central neurocytoma: analysis of 15 cases. Chinese J Cancer Res 2012;24(4):284–90.
[3] Patel DM, Schmidt RF, Liu JK. Update on the diagnosis, pathogenesis, and treatment strategies for central neurocytoma. J Clin Neurosci 2013;20(9):1193–9.
[4] Choudhari KA, Kaliaperumal C, Jain A, Sarkar C, Soo MYS, Rades D, et al. Central neurocytoma: a multi-disciplinary review. Br J Neurosurg 2009;23(6):585–95.
[5] Leenstra JI, Rodriguez FJ, Frechette CM, Giannini C, Stafford SJ, Pollock BE. Central neurocytoma: management recommendations based on a 35-year experience. Int J Radiat Oncol Biol Phys 2007;67(4):1145–54.
[6] Park H, Chang SD. Stereotactic radiosurgery for central neurocytoma: a quantitative systematic review. J Neurol Oncol 2012;108:115–21.
[7] Chen M, Pan DH, Chung W, Liu K, Yen Y-S, Chen M-T, et al. Gamma knife radiosurgery for central neurocytoma: retrospective analysis of fourteen cases with a median follow-up period of sixty-five months. Stereotact Funct Neurosurg 2011;89:185–93.
[8] Buchbinder D, Danielpour M, Yong WH, Salamon N, Lasky J. Treatment of atypical central neurocytoma in a child with high dose chemotherapy and autologous stem cell rescue. J Neurooncol 2010;97:429–37.
[9] Amini E, Roffidal T, Lee A, Fuller GN, Mahajan A, Ketonen L, et al. Central neurocytoma responsive to topotecan, ifosfamide, carboplatin. Pediatr Blood Cancer 2008;51:137–40.
[10] Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016;131(5):803–20.
[11] Hallock A, Hamilton B, Ang LC, Tay KY, Meygesi JF, Fisher BJ, et al. Neurocytomas: long-term experience of a single institution. J Neurooncol 2011;113(9):943–9.
[12] Schmidt MH, Gottfried ON, Von Kochs, Chang SM, Mcdermott MW. Central neurocytoma: a review. J Neurooncol 2004;66:377–84.
[13] Sharma MC, Deb P, Sharma S, Sarkar C. Neurocytoma: a comprehensive review. Neurosurg Rev 2006;29:270–85.
[14] Bertalanffy A, Roessler K, Kopper K, Gelpi E, Prayer D, Knosp E. Recurrent central neurocytomas. Cancer 2005;104(1):135–42.
[15] Rades D, Fehlauer F. Treatment options for central neurocytoma. Neurology 2002;59:1268–70.
[16] Rades D, Schild SE. Treatment recommendations for the various subgroups of neurocytomas. J Neurol Oncol 2006;77:305–9.
[17] Romano A, Chibbaro S, Makiese O, Marsella M, Mainini P, Benercetti E. Endoscopic removal of a central neurocytoma from the posterior third ventricle. J Clin Neurosci 2009;16(2):312–6.
[18] Fujimaki T, Matsuno A, Sasaki T, Toyoda T, Matsuura R, Ogi M, et al. Proliferative activity of central neurocytoma: measurement of tumor volume doubling time, MB-1 staining index and bromodeoxyuridine labeling index. J Neurooncol 1997;32:103–9.
[19] Rades D, Schild SE, Ikezaki K, Fehlauer F. Defining the optimal dose of radiation after incomplete resection of central neurocytomas. Int J Radiat Oncol Biol Phys 2003;55(2):373–7.
[20] Schild SE, Scheithauer BW, Haddock MG, Schiff D, Burger PC, Wong WW, et al. Central neurocytomas. Cancer 1997;79(4):790–5.
[21] Utsunomiy A, Uenoohara H, Suzuki S, Nishimura S, Nishino A, Arai H, et al. Suzuki A case of anaplastic astrocytoma arising 8 years after initial treatment by partial resection and irradiation for central neurocytoma. No To Shinkei 2001;53(8):747–51.
[22] Rades D, Fehlauer F, Lamszus K, Schild SE, Hagel C, Westphal M, et al. Well-differentiated neurocytoma: what is the best available treatment? J Neurol Oncol 2005;7:77–83.
[23] Kulkarni V, Rajeshkhar V, Haran RP, Chandi SM. Long-term outcome in patients with central neurocytoma following stereotactic biopsy and radiotherapy. Br J Neurosurg 2002;16(2):126–32.
[24] Tyler-Kabara E, Kondziolka D, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for residual neurocytoma. J Neurosurg 2001;95:879–82.
[25] Xi C-Y, Paek SH, Jeong SS, Chung H-T, Han JH, Park C-K, et al. Gamma knife radiosurgery for central neurocytoma. Cancer 2007;110(10):2276–84.
[26] Rades D, Schild SE. Value of postoperative stereotactic radiosurgery and conventional radiotherapy for incompletely resected typical neurocytomas. Cancer 2006;106(5):1140–3.
[27] Kim DG, Paek SH, Kim H, Chi JG, Jung H, Han DH, et al. Central neurocytoma: the role of radiation therapy and long term outcome. Cancer 1997;79(10):1995–2002.
[28] Bertalanffy A, Roessler K, Dietrich W, Achiholzer M, Prayer D, Ertl A, et al. Gamma knife radiosurgery of recurrent central neurocytomas: a preliminary report. J Neurol Neurosurg Psychiatry 2001;70:489–93.
[29] Cook DJ, Christie SD, Macaulay RJB, Rheuma DE, Holness RO. Fourth ventricular neurocytoma: case report and review of the literature. Can J Neurol Sci 2004;31(4):558–64.
[30] Brandes AA, Amista P, Gardiman M, Volpin L, Danieli D, Guglielmi B, et al. Chemotherapy in patients with recurrent and progressive central neurocytoma. Cancer 2000;88(1):169–74.
[31] von Kochs CS, Schmidt MH, Uyehara-lock JH, Berger MS, Chang SM. The role of PCV chemotherapy in the treatment of central neurocytoma: illustration of a case and review of the literature. Surg Neurol 2003;60:560–5.