Computation of stress concentration factor of tubular joints for the fatigue analysis of steel structures

M Althaf, K Muhammed Navvar, Gowtham Prakash, Noel Varghese and C A Navaneeth

Department of Civil Engineering, TKM College of Engineering, Kollam, Kerala, India
E-mail: noelvarghese07@gmail.com

Abstract. The offshore structures are welded tubular structures which are continuously subjected to cyclic environmental loads like waves, winds, currents, earthquakes etc. These cyclic environmental loads (predominantly wave loads) will induce time varying cyclic stresses on the offshore structures causing fatigue damages even at very low nominal stress levels. Fatigue failure is defined as the tendency of a material to fracture by means of progressive brittle cracking under repeated alternating or cyclic stresses of intensity considerably below the normal strength. Fatigue is very critical at the welded joints, because the stresses at the welded regions are several times higher than the nominal stress. Stress Concentration Factors (SCFs) converts the nominal stress into higher stresses known as hot spot stresses. These SCFs are very sensitive in the computation of fatigue life of steel structures. A small difference in SCFs can cause a huge difference in fatigue life of steel structures. Different empirical methods give different values of SCFs for the same element, hence different fatigue life. This study aims to investigate the stress concentration factor of different configurations of tubular joints numerically using Finite Element Analysis (ANSYS) under certain boundary conditions and compare the result with the SCF obtained from empirical method (using parametric equations).

1. Introduction

The Tubular joint structures are widely used in every steel construction varying from stadiums, bridges and airports to commercial purposes like setup of offices, showrooms, malls and service camps. Offshore structures are also welded tubular structures, constantly subjected to environmental loads like the waves; winds may fracture even at very low nominal stress levels. The environmental loads (predominantly wave loads) are cyclic and therefore is the reason for the failure of the structure. Majority of the failures that occur in these structures are caused due to the action of fatigue. It is reported that the fatigue was the major contributor to failure of the offshore structure in the North Sea (Staney and Sharp, 2007) [1]. The failure of Alexander L. Kielland platform in the North Sea was also due to fatigue. This fatal accident took place in March of 1980. Critical investigation studies into the cause of failure suggested that the accident was due to failure of brace due to fatigue cracking followed by unstable fracture. The failure of this brace led to a chain effect causing the other supporting braces of the same column to fail as well. This accident took 123 human lives out of 212 men on board. Fatigue is very critical at the welded joints, because the stresses at the welded regions, known as ‘Hot spot stress’, are several times higher than the nominal stress.

Stress Concentration Factor (SCF) is defined as the ratio of hot spot stress to normal stress. Hot spot stress is the stress at the joints or points of discontinuity. Stress Concentration Factors (SCFs) converts the nominal stress into higher stresses known as hot spot stresses. Hot spot stress or structural
stress method is a method which uses this concept and evaluates the stresses around the circumference of intersection between the brace and the chord. These stresses are used for the fatigue life estimation of the structure.

Stress Concentration Factor can be computed using empirical formulas, finite element analysis such as ANSYS, etc. However, the stress concentration factor (SCF) calculated using these methods shows variation in value, and this in turn results in different values of fatigue life for the same element. Parametric equations are widely used for the determination of stress concentration factors. These equations are either based on experimental testing employing steel or sometimes acrylic models or are based on the Finite Element Analysis (FEA). The parametric equation in either of the cases is derived using regression analysis. These methods provide sufficiently accurate results in the majority of cases, but are also reported to deviate in some cases.

As of now, the fatigue life of structures is determined using different empirical methods which vary from the true value. A small difference in SCF can cause a huge difference in fatigue life of steel structures. This study aims to investigate the stress concentration factor of different configuration of tubular joints numerically using industry standard finite element software ANSYS under certain boundary conditions and compare the result with empirical method.

2. Methodology

Due to the difference in relative stiffness of the brace and the chord, the local stress near the welded connection between the chord and the brace is several times the nominal stress. Here, the stress concentration factor (SCF) is determined using the empirical equations and finite element modelling of local joint geometry (tetrahedral meshing is used). The empirical equation used depend upon the non-dimensional geometric parameters ($\alpha=2L/D$, $\beta=d/D$, $\gamma=D/2T$, $\tau=t/T$). This study focuses on two empirical equations; Efthymiou equations [2] and Hellier’s equations [3]. The stress concentration factor for selected models were determined for three loading cases; axial loading, in-plane bending and out-of-plane bending.

2.1. Validation Process.

For validation, the study conducted in [4] has been emulated in ANSYS and the results obtained are compared. The structure and corresponding dimensions (see Table 1), the properties of the ordinary steel composing the T-joint (see Table 2) and all notations are the same as those presented in [4]: the purpose herein is to draw comparisons between our results and those derived by the other authors, and verify the validity of these results. The result of axial loading shows a difference of 0.07, 0.09 in case of in-plane bending and 1.3 in case of out-of-plane bending.

Table 1. Dimensions of the tubular T-joint[4]
$L=4130\text{mm}$
$D=406\text{mm}$
$T=9.5\text{mm}$
$d/D=0.8$
$t/T=0.75$

Table 2. Properties of the ordinary steel used for the T-joint
$E = 207 \text{ GPa}$
$m = 0.3$
$q = 7.8 \times 10^{-6} \text{ kg/mm}^3$
$\sigma_e = 248 \text{ MPa}$
2.2. Modelling and Analysis.
Models of different configurations (see Table 3) were modelled in Solid Works and exported to ANSYS, where the analysis was carried out. Welds of appropriate sizes for each model were also modelled in SolidWorks using fillet bead tool [5]. The models were designed such that its geometric parameters fell within the validity range and then the meshing was provided. Tetrahedral solid mesh was used for analysis of the models. Element size of 2.5e-003 m was adopted within the sphere of influence of 0.2 m around the joint (Fig. 1 and Fig. 2). Then, different loading conditions were applied such as axial loading (Fig. 4), In-plane loading (Fig. 5) and Out-of-plane loading (Fig. 6), and determined the stress at the joints. And the results from these two were compared.

Table 3. Dimensions of the 16 tubular T-joints

Sample No	Brace Diameter d (mm)	Chord Diameter D (mm)	Brace Thickness t (mm)	Chord Thickness T (mm)	Chord Length L (mm)
1	88.9	114.3	3.2	3.6	1140
2	76.1	114.3	3.2	3.6	1140
3	60.3	114.3	2.9	3.6	1140
4	88.9	114.3	3.2	4.5	1140
5	88.9	114.3	4.0	4.5	1140
6	76.1	114.3	3.2	4.5	1140
7	76.1	114.3	3.6	4.5	1140
8	60.3	114.3	2.9	4.5	1140
9	60.3	114.3	3.6	4.5	1140
10	60.3	88.9	2.9	3.2	1140
11	76.1	88.9	3.2	4.0	1140
12	76.1	88.9	3.6	4.0	1140
13	60.3	88.9	2.9	4.0	1140
14	60.3	88.9	3.6	4.0	1140
15	60.3	76.1	2.9	3.2	1140
16	60.3	76.1	2.9	3.6	1140

![Figure 1. Meshed T-Joint](image1.png) ![Figure 2. Sphere of influence](image2.png)
3. Results
The results obtained from the use of parametric equations (Efthymiou equations and Hellier’s equations) are compared with the results obtained from finite element analysis.

The following observations are made from the comparison.

- Under axial loading, the SCF values obtained from the Hellier’s parametric equations shows larger deviation with respect to the values obtained from FEA when compared to that of Efthymiou equations.
- Under in-plane bending, SCF values obtained from Hellier’s parametric equations and Efthymiou equations are very close to the SCF values obtained from FEA except for a few cases on the chord side.
- Under out-of-plane bending, SCF values obtained from FEA (Brace) are larger than that of SCF values obtained from Efthymiou equations (Brace). SCF values obtained from Hellier’s parametric equations are nearly the same except in some cases on the brace side.
Table 4. Comparing the SCF Values Obtained from FEA and Parametric equations in Axial loading

Sample No	Efthymiou SCF	FEA SCF	Diff	Efthymiou SCF	FEA SCF	Diff	Hellier’s SCF	FEA SCF	Diff	Hellier’s SCF	FEA SCF	Diff
1	12.700	11.59	1.106	8.546	10.381	1.835	13.901	11.59	2.307	11.402	10.381	1.021
2	14.591	14.15	0.440	9.802	10.936	1.134	17.542	14.15	3.391	13.215	10.936	2.279
3	13.889	13.75	0.144	9.998	10.744	0.746	16.79	13.75	3.045	13.564	10.744	2.82
4	7.949	7.23	0.722	6.462	7.3414	0.8794	7.892	7.23	0.665	8.256	7.3414	0.9146
5	10.16	9.94	0.225	7.097	8.7983	1.7013	11.635	9.94	1.700	9.929	8.7983	1.1307
6	9.132	9.25	0.115	7.356	8.6812	1.3252	10.159	9.25	0.912	9.618	8.6812	0.9368
7	10.395	8.83	1.564	7.739	8.0106	0.2716	12.298	8.83	3.467	10.583	8.0106	2.5724
8	8.693	9.05	0.362	7.496	8.5183	1.0223	10.054	9.05	0.999	9.922	8.5183	1.4037
9	11.027	11.71	0.685	8.233	10.275	2.042	13.904	11.71	2.192	11.749	10.275	1.474
10	12.889	13.48	0.588	8.908	10.359	1.451	16.233	13.48	2.756	12.297	10.359	1.938
11	6.705	6.08	0.624	5.359	5.6796	0.3206	6.531	6.08	0.450	7.27	5.6796	1.5904
12	8.774	7.64	1.133	5.615	6.2486	0.6336	8.118	7.64	0.477	8.017	6.2486	1.7684
13	8.073	7.51	0.564	6.72	7.5388	0.8188	9.123	7.51	1.614	8.865	7.5388	1.3262
14	10.241	9.40	0.844	7.365	8.875	1.51	13.088	9.40	3.691	10.549	8.875	1.674
15	9.467	10.4	0.933	6.843	8.0004	1.1574	11.041	10.4	0.641	9.536	8.0004	1.5356
16	8.33	9.40	1.067	5.934	7.0564	1.1224	7.934	9.40	1.463	7.976	7.0564	0.9196

Table 5. Comparing the SCF Values Obtained from FEA and Parametric equations in In-plane bending

Sample No	In-plane bending (Chord)	In-plane bending (Brace)	In-plane bending (Chord)	In-plane bending (Brace)								
	Efthymiou SCF	FEA SCF	Diff	Efthymiou SCF	FEA SCF	Diff	Hellier’s SCF	FEA SCF	Diff	Hellier’s SCF	FEA SCF	Diff
1	3.753	2.962	0.791	2.875	2.454	0.421	4.660	2.962	1.698	2.920	2.454	0.467
2	3.966	4.203	0.237	3.037	3.111	0.074	4.649	4.203	0.446	3.270	3.111	0.159
3	3.748	3.168	0.580	3.083	2.518	0.564	4.215	3.168	1.047	3.424	2.518	0.906
Sample No	Out-of-plane bending (Chord)	Out-of-plane bending (Brace)	Out-of-plane bending (Chord)	Out-of-plane bending (Brace)								
-----------	-----------------------------	-----------------------------	-----------------------------	-----------------------------								
	Efthymiou SCF	FEA SCF	Diff									
1	13.24	11.99	1.249	8.030	9.593	1.562	12.56	11.99	0.568	11.804	9.593	2.212
2	13.06	12.84	0.216	8.397	8.784	0.387	12.51	12.84	0.330	11.280	8.784	2.495
3	10.43	10.65	0.221	7.638	7.724	0.086	11.22	10.65	0.569	9.371	7.724	1.648
4	8.47	7.98	0.496	5.863	7.061	1.198	7.89	7.98	0.085	7.796	7.061	0.735
5	10.59	11.10	0.510	6.496	8.754	2.258	9.86	11.10	1.237	9.652	8.754	0.898
6	8.36	8.84	0.481	6.131	7.213	1.082	7.86	8.84	0.975	7.450	7.213	0.237
7	9.40	8.30	1.108	6.472	6.455	0.017	8.85	8.30	0.552	8.339	6.455	1.884
8	6.67	7.28	0.605	5.576	6.071	0.495	7.05	7.28	0.230	6.189	6.071	0.118
9	8.29	9.19	0.905	6.159	7.287	1.128	8.75	9.19	0.440	7.612	7.287	0.325
10	11.72	10.64	1.077	7.455	7.874	0.419	11.20	10.64	0.558	10.485	7.874	2.611
11	7.92	7.01	0.919	4.998	6.686	1.687	7.80	7.01	0.791	8.099	6.686	1.413
12	8.92	6.88	2.036	5.276	6.379	1.103	8.77	6.88	1.892	9.065	6.379	2.686
13	7.50	7.47	0.034	5.443	5.931	0.489	7.04	7.47	0.428	6.925	5.931	0.994
14	9.31	9.22	0.086	6.012	7.197	1.185	8.74	9.22	0.487	8.517	7.197	1.320
15	10.06	9.04	1.017	6.082	7.493	1.411	9.57	9.04	0.536	9.661	7.493	2.168
16	7.94	7.71	0.236	5.151	6.416	1.265	7.49	7.71	0.217	7.761	6.416	1.344

Table 6. Comparing the SCF Values Obtained from FEA and Parametric equations in Out-of-plane bending
4. Conclusion
The SCFs obtained from the Efthymiou’s parametric equations were found to be generally higher than that estimated with FEA. The variations in the SCFs determined may be due to the fact that the FEA analysis used in this study is an advanced form of finite element analysis with solid elements used for modelling of joints.

The variations can also be due to the fact that the joints considered in this study have β value (β = d/D) nearer to the extreme validity range of Efthymiou equations. Under In-plane bending Efthymiou’s equation gives good results for SCF. The SCFs obtained from the Hellier’s parametric equations were found to be generally higher than that estimated with FEA.

The SCFs on the chord side were larger than the SCFs on the brace side, for most of the considered joints when determined from empirical equations. Also, SCFs on the chord side were larger than SCFs on the brace side when estimated using FEA. This is due to the fact that for joints with β value near to 0.9, the empirical equations are not able to predict the behaviour accurately.

From the study, it is recommended that greater care should be made while selecting the method for SCF determination, as small variations in SCFs can lead to large variations in the fatigue life estimates. The FEA is preferable in case of joints having β value near to 0.9 (close to boundary of validity range), as the parametric equations are not able to predict the behaviour correctly because the validity range of β value is 0.2 to 1.0. As the FE analysis is very costly and time consuming, suitable modifications in parametric equations shall be made so that it can predict the behaviour of the joints having β value near to 0.9.

References
[1] Stancey A and J Sharp 2007 Safety factor requirements for the offshore industry, Engineering Failure Analysis, 14442-458
[2] Efthymiou M and S Durkin 1985 Stress concentrations in T/Y and gap/overlap K-joints, Proceedings of the 4th International Conference on Behaviour of Offshore Structures, Delft, The Netherlands.
[3] Hellier A K, M P Connolly and W D Dover 1990 Stress concentration factors for tubular Y- and T-joints, International journal of Fatigue, 12 13-23.
[4] N'Diaye, S Hariri and G Pluvinage 2009 Stress concentration factor analysis for welded, notched T-joints under combined axial, bending and dynamic loading
[5] K Hectors, W De Waele 2020 Influence of weld geometry on stress concentration factor distributions in tubular joints, Journal of constructional steel research 176 2020 106376.
[6] Kuang J G, A B Potvin and R D Leick 1977 Stress concentration in tubular joints, Offshore Technology Conference, Houston, 2205-2225.
[7] Chang E 1999 Prediction of stress distributions along the intersection of tubular Y and T- joints, International Journal of Fatigue, 21 (4) 361-381.
[8] Ahmadi H, L Yaghin and M Aminfar 2011 Distribution of weld toe stress concentration factors on the central brace in two-planar CHS DKT-connections of steel offshore structures, Thin-Walled Structures, 49 (10) 1225-1236.
[9] Ahmadi H, L Yaghin, S Yong-Bo and M Aminfar 2012 Parametric study and formulation of outer-brace geometric stress concentration factors in internally ring-stiffened tubular KT-joints of offshore structure, Applied Ocean Research, 38 74-91.
[10] Ahmadi H, L Yaghin and S Yong-Bo 2013 Chord-side SCF distribution of central brace in internally ring-stiffened tubular KT-joints: A geometrically parametric study, Thin-Walled Structures, 7093-105.
[11] Ahmadi H and L Yaghin 2015 Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation, Applied Ocean Research, 51 54-66.
[12] Ghanameh, M Fathi and A Zeghloul 2004 Stress concentration offshore welded tubular joints subjected to combined loading, Journal of Materials Science and Technology, 20 35-37.
[13] OTH 354, Stress concentration factors for simple tubular joints, Health and Safety Executive - offshore technology report, London 1997.