Idiopathic Intracranial Hypertension: An Unusual Cause of Headache in a Patient With Sickle Cell Disease

Toby Terwilliger, MD1,2, Mary Ann Kirkconnell Hall, MPH2, and Eric Galante, MD3

Abstract

Idiopathic intracranial hypertension (IIH) is a rare cause of headache and visual disturbance with no known association with sickle cell disease (SCD). We present a patient with SCD with gradual onset of a severe headache and visual changes. Brain magnetic resonance imaging, angiography, and venography were nondiagnostic. Lumbar puncture established a diagnosis of IIH, and the patient had rapid improvement with large-volume lumbar puncture and acetazolamide. To our knowledge, this is the first case of IIH in a nonobese adult with SCD taking hydroxyurea, suggesting an association between SCD or hydroxyurea use and IIH. Furthermore, her clinical course demonstrates the complexities of treating IIH in patients with SCD.

Keywords

idiopathic intracranial hypertension, case report, sickle cell disease, headache

Background

Headache is a common complaint in individuals with sickle cell disease (SCD), with more than one-third reporting headache at least weekly; headache types in SCD mirror the general population, with tension and migraine being the most common.1 In addition, persons with SCD may experience headache secondary to obstructive sleep apnea, bone infarction, and medication overuse, as well as higher acuity causes such as cerebral infarction, dural venous sinus thrombosis, intracranial hemorrhage, posterior reversible encephalopathy syndrome, and moyamoya disease.2

Idiopathic intracranial hypertension (IIH) is a rare cause of headache and visual disturbance in the general population, and there is no known association with SCD. The most well-recognized risk factor for IIH is obesity; in fact, IIH is exceedingly rare in nonobese individuals, with >90% of cases occurring in those with a body mass index \(\geq 30 \text{ kg/m}^2 \).3,4 To date, 4 case reports of IIH involving 8 patients with SCD (7 pediatric and 1 obese adult) have been published.5-8 This report represents the first case, to our knowledge, of intracranial hypertension in a nonobese adult with SCD.

Case Presentation

Our patient was a 22-year-old woman with a history of hemoglobin SS SCD and well-controlled migraine headaches, who presented with gradual progression of headache over 3 days. Previous complications from her SCD included vaso-occlusive pain episodes, avascular necrosis of the bilateral hips and shoulders, and gallstones. She had never had a stroke or other central nervous system manifestation of her SCD. Her only medications were hydroxyurea 1500 mg daily and folic acid 1 mg daily. Her headache was intermittent, holocranial, exacerbated by positional changes, and not typical of her previous migraines. She experienced intermittent blurred vision and tinnitus concomitant with headache. Her symptoms became unremitting and increased in severity, prompting her to present to the emergency department. Table 1 includes a detailed timeline of her case.

Received October 5, 2022. Revised October 29, 2022. Accepted November 2, 2022.

Corresponding Author:
Toby Terwilliger, MD, Division of Hospital Medicine, Emory University School of Medicine, 49 Jesse Hill Junior Drive Northeast, Atlanta, GA 30303, USA.
Email: toby.terwilliger@emory.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Clinical Findings

The patient was afebrile with normal vital signs. Her body mass index was 27.28 kg/m^2. She did not appear in any distress. Neurologic examination did not reveal any neurologic deficits. Dilated fundoscopic examination revealed bilateral papilledema, which raised concern for increased intracranial pressure (ICP).

Diagnostic Assessment and Therapeutic Intervention

Computed tomography (CT) of the brain did not reveal any obstructing mass lesions. Given concern for elevated ICP, a lumbar puncture (LP) was performed; the opening pressure was elevated at 45 cm H2O (normal, 6-26 cm H2O). 15 mL of clear cerebrospinal fluid was removed with immediate relief of headache and a closing pressure of 22 cm H2O. Acetazolamide was started at a dose of 250 mg twice a day.

Follow-up and Outcomes

The patient followed up with ophthalmology, neurology, and hematology. Her optic disc edema resolved. Her IIH remained in remission on acetazolamide. The patient adjusted her regimen to 1 week on, 1 week off acetazolamide (500 mg twice a day) due to an increase in vaso-occlusive pain episodes while on medication. She continued topiramate 50 mg twice a day.

Discussion

In this case, we discuss a nonobese adult female with SCD taking hydroxyurea who presented with headache, tinnitus, vision changes, and was diagnosed with IIH. The diagnosis of IIH is made according to the updated modified Dandy criteria, which require an elevated ICP on LP with normal CSF composition and no structural etiologies for elevated ICP on neuroimaging. Many risk factors for IIH have been established, including medication use (tetracycline antibiotics, retinoids) and medical disease (endocrinopathies, leukemia, iron deficiency anemia), but the link between SCD or hydroxyurea use and IIH remains unclear. Among all previously published cases of IIH in patients with SCD, the patients have been either prepubertal or obese.

Table 1. Case Timeline.

Hospital day	Significant event
0	Hospital admission
	Computed tomography of the head showed empty sella turcica, but no other abnormalities
1	Patient complained of worsening vision in bilateral eyes
	Ophthalmology performed dilated fundoscopic examination, which demonstrated grade 1 (mild) disc edema (ie, papilledema)
	Lumbar puncture was performed with opening pressure of 45 cm H2O (normal, 6-25 cm H2O); 15 mL of clear cerebrospinal fluid was removed with immediate relief of headache and a closing pressure of 22 cm H2O
	Acetazolamide was started at a dose of 250 mg twice a day
2	Magnetic resonance imaging of the brain showed a partially empty sella turcica and tortuous optic nerve with enlargement of the nerve sheath
	Magnetic resonance angiography and venography were negative for arterial or venous abnormalities
	Topiramate was started at a dose of 25 mg daily
3	The patient was discharged home on acetazolamide 500 mg twice a day and topiramate with a scheduled titration up to 50 mg twice a day with resolution of headache and visual complaints

Table 2. CSF Results [Normal Values].

Appearance	Colorless
Opening pressure (cm H2O)	45 [6-26]
Closing pressure (cm H2O)	22 [6-26]
Protein (mg/dL)	29 [15-45]
Glucose (mg/dL)	65 [50-80]
RBC (cells/µL)	568
WBC (cells/µL)	7 [0-10]
Neutrophils (%)	33
Lymphocytes (%)	62
Monocytes (%)	4
Eosinophils (%)	1

Abbreviations: CSF, cerebrospinal fluid; RBC, red blood cells; WBC, white blood cells.
The pathophysiology of IIH is poorly understood but is thought to involve decreased blood flow through and subsequent absorption of CSF into the arachnoid granulations. Any disease process that disrupts this normal flow through arachnoid granulations can result in increased ICP. The propensity of sickled cells to aggregate and cause vascular damage offers a theoretical link between IIH and SCD. In addition, hydroxyurea increases red blood cell mass and blood viscosity, which may predispose to IIH. Whether SCD or hydroxyurea use should be considered risk factors for IIH has not yet been established.

Carbonic anhydrase inhibitors (CAIs) such as acetazolamide remain the cornerstone of treatment for IIH. Carbonic anhydrase inhibitors are thought to exert their effect by decreasing CSF production in the choroidal plexus. The optimal dose of acetazolamide in IIH is a total daily dose (TDD) of 2 to 4 g. Consequences of CAI use include volume depletion and metabolic acidosis, which have been linked to an increased risk for vaso-occlusive episodes in SCD. Our patient had to reduce her dose of acetazolamide due to an increase in vaso-occlusive episodes once starting the medication, resulting in a TDD lower than the 2-4 g target. While off-label use of alternative CAIs such as topiramate and methazolamide in IIH is common, evidence for their safety and efficacy in the SCD population is lacking.

While IIH is an uncommon diagnosis in those with SCD, all previously reported cases of IIH in SCD adults occurred in those with comorbid obesity. The diagnosis of IIH in a nonobese SCD adult taking hydroxyurea raises the possibility that SCD or associated hydroxyurea use may be risk factors for IIH. Moreover, treatment of IIH in patients with SCD may be complicated by CAI-induced volume depletion and acidosis, leading to an increase in vaso-occlusive episodes. If unrecognized or untreated, IIH can have devastating consequences including permanent vision loss. Treatment should be guided by a multidisciplinary team of neurologists, hematologists, and ophthalmologists to maximize therapeutic benefit while reducing impact on SCD symptom burden.

Acknowledgments
The authors wish to thank Sherri Bogard, MD; Jasmah Hanna, MS; and Manpreet Malik, MD for their support and assistance. The authors also wish to acknowledge the Emory University Division of Hospital Medicine Open Access Publishing Fund for supporting dissemination of this work.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: No specific funding was received for the clinical conduct or writing of this work. The Emory University Division of Hospital Medicine Open Access Publishing Fund provided funding for open access publication.

Ethics Approval
Our institution does not require ethical approval for reporting individual cases or case series.

Informed Consent
Written informed consent was obtained from the patient for her anonymized information to be published in this article.

ORCID iD
Toby Terwilliger https://orcid.org/0000-0001-9860-4061

References
1. Niebanck AE, Pollock AN, Smith-Whitley K, et al. Headache in children with sickle cell disease: prevalence and associated factors. J Pediatr. 2007;151(1):67-72.e1. doi:10.1016/j.jpeds.2007.02.015
2. Vgontzas A, Charleston L, Robbins MS. Headache and facial pain in sickle cell disease. Curr Pain Headache Rep. 2016;20(3):20. doi:10.1007/s11916-016-0546-z
3. Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15(1):78-91. doi:10.1016/S1474-4422(15)00298-7
4. Chen J, Wall M. Epidemiology and risk factors for idiopathic intracranial hypertension. Int Ophthalmol Clin. 2014;54(1):1-11. doi:10.1097/IIO.0000000000000114
5. Millichap JG. Pseudotumor cerebri and sickle cell disease. Pediatr Neurol. 2004;18(3):17-18. doi:10.15844/npdneurbriefs-18-3-1
6. Henry M, DriscollMC, MillerM, ChangT, MinnitiCP. Pseudotumor cerebri in children with sickle cell disease: a case series. Pediatrics. 2004;113(3, pt 1):e265-e269. doi:10.1542/peds.113.3.e265
7. Segal L, Discepolo M. Idiopathic intracranial hypertension and sickle cell disease: two case reports. Can J Ophthalmol. 2005;40(6):764-767. doi:10.1016/S0008-4182(05)80097-3
8. Gowda B, Sahi S. Idiopathic intracranial hypertension in sickle cell disease: a paediatric case report. Neurosci Med. 2013;4(4):215. doi:10.4236/nm.2013.44033
9. Kilic K, Korsbek JJ, Jensen RH, et al. Diagnosis of idiopathic intracranial hypertension—the importance of excluding secondary causes: a systematic review. Cephalalgia. 2022;42:524-541. doi:10.1177/03331024211056580
10. Manwani D, Frenette PS. Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood. 2013;122(24):3892-3898. doi:10.1182/blood-2013-05-498311
11. McCarthy KD, Reed DJ. The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroidplexus carbonic anhydrase activity. J Pharmacol Exp Ther. 1974;189(1):194-201.
12. Piper RJ, Kalyvas AV, Young AM, et al. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst Rev. 2015;2015(8):CD003434. doi:10.1002/14651858.CD003434.pub3
13. Ebied AM, Gracey S. Acetazolamide-induced sickle cell crisis. Ann Pharmacother. 2018;52(10):1047-1048. doi:10.1177/1060028018782479
14. Walton W, Von Hagen S, Grigorian R, et al. Management of traumatic hyphema. Surv Ophthalmol. 2002;47(4):297-334. doi:10.1016/s0039-6257(02)00317-x