The Most Common Vitamin D Receptor Polymorphisms (ApaI, FokI, TaqI, BsmI, and BglII) in Children with Dental Caries: A Systematic Review and Meta-Analysis

Masoud Sadeghi 1,2*, Amin Golshah 3, Mostafa Godiny 4, Roohollah Sharifi 4, Atefeh Khavid 5, Nafiseh Nikkerdar 5 and Santosh Kumar Tadakamadla 6,*

Abstract: Vitamin D participates in the calcification of enamel and dentin and the appropriate immune responses to oral microbial infections. We aimed to assess the association between the most common vitamin D receptor (VDR) polymorphisms (ApaI, FokI, TaqI, BsmI, and BglII) and the risk of dental caries in children. Methods: PubMed/MEDLINE, Cochrane Library, Web of Science, and Scopus databases were comprehensively searched until 19 January 2021. Meta-analysis with odds ratios as the effect estimate along with 95% confidence intervals and subgroup analysis were conducted using Review Manager 5.3 software. Publication bias and sensitivity analyses were conducted by Comprehensive Meta-Analysis, version 2.0 software. Results: Seventy-eight studies were retrieved from the databases, with nine studies included in the final analysis. Based on five genetic models, there was no association between the VDR polymorphism and the risk of dental caries, except for the FokI (rs10735810) polymorphism. Conclusion: Among the VDR polymorphisms considered, an association was found between the FokI (rs10735810) polymorphism and the risk of dental caries, with a protective role of the f allele and ff genotype.

Keywords: dental caries; tooth decay; polymorphism; vitamin D; meta-analysis

1. Introduction

Dental caries is considered a complex and multifactorial disease as well as one of the most common diseases in industrialized and developing countries [1]. In the world, early childhood caries is considered to be the most common oral health problem in children [2] and is the most common childhood disease [3]. The age-standardized prevalence of dental caries in deciduous and permanent teeth was 7.8% and 29.4% and the number of prevalent cases was 532 and 2302 million in 2017, respectively [4]. In most developed countries, the prevalence of dental caries is declining sharply, while in developing countries, it is increasing [1]. Several genes such as genes included in enamel development, immune response, and saliva function can be associated with susceptibility to caries [5]. A genome-wide meta-analysis [6] showed that consideration of the environment and aggregate genetic
effects is more significant than specific genetic variants. A genome-wide association scan [7] reported that several genomic regions showed suggestive evidence for association with dental caries. The heritability of dental caries varies between 40 and 60% [8–10]. Vitamin D is a fat-soluble steroid that is essential for maintaining the body’s mineral balance [11], and it plays an important role in the calcification of enamel and dentin and the immune response to microbial infections of the mouth [12–15]. The function and biological activity of vitamin D are modulated by its interaction with the vitamin D receptor (VDR) protein [16], and the activity of the VDR protein is affected by polymorphisms of the VDR gene [17]. More than 200 polymorphisms of the VDR gene have been reported [18,19]. The VDR gene was found to impact the activity of a major metabolite of vitamin D, which participates in the formation of tooth enamel [18,20], which demonstrates its potential implication for dental caries risk [21–23]. The most common functional VDR polymorphisms found to be potentially involved in oral and systemic conditions are BsmI, FokI, TaqI, BglI, and ApaI [24]. BsmI, TaqI, and ApaI polymorphisms were found to influence VDR protein structure, with FokI also influencing the transcriptional activity translation [25]. The aim of this meta-analysis is to evaluate the association between these VDR polymorphisms (ApaI, FokI, TaqI, BsmI, and BglI) and susceptibility to dental caries in children.

2. Materials and Methods

This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocols [26].

2.1. Data Sources and Literature Search

Searches in PubMed/MEDLINE, Cochrane Library, Web of Science, and Scopus databases were comprehensively performed until January 19, 2021, without any restrictions. The search strategies for each database are shown in Table 1. The titles and abstracts were checked by two authors (M.S. and S.K.T.) and any disagreement was resolved by consensus with a third author (A.G.). We also checked the references of all included studies to ensure no study was missed.

Database	Search
PubMed	(“Vit D”[Title/Abstract] OR “Vitamin D” [Title/Abstract] OR “calciferol”[Title/Abstract] OR “VDR”
	[Title/Abstract]) AND (“dental caries” [Title/Abstract] OR “caries”[Title/Abstract] OR “decay”[Title/Abstract]) AND (“gene”[Title/Abstract] OR “polymorphism”[Title/Abstract] OR “variant”[Title/Abstract] OR “allele”[Title/Abstract] OR “genetic”[Title/Abstract])
Cochrane Library	(“Vit D”:ti,ab,kw OR “Vitamin D”:ti,ab,kw OR “calciferol”:ti,ab,kw OR “VDR”:ti,ab,kw) AND (“dental caries”:ti,ab,kw OR “caries”:ti,ab,kw OR “decay”:ti,ab,kw) AND (“polymorphism*”:ti,ab,kw OR “variant*”:ti,ab,kw OR “genotype*”)
Web of Science	TS = (“Vit D” OR “Vitamin D” OR “calciferol” OR “VDR”) AND TS = (“dental caries” OR “caries” OR “decay”) AND TS = (“polymorphism*” OR “variant*” OR “allele*” OR “genotype*”)
Scopus	TITLE-ABS-KEY(“Vit D”) OR TITLE-ABS-KEY(“Vitamin D”) OR TITLE-ABS-KEY(“calciferol”) OR TITLE-ABS-KEY(“VDR”) AND (TITLE-ABS-KEY (“dental caries”) OR TITLE-ABS-KEY (“caries”) OR TITLE-ABS-KEY (“polymorphism*”) OR TITLE-ABS-KEY (“variant*”) OR TITLE-ABS-KEY (“allele*”) OR TITLE-ABS-KEY(“genotype*”))

2.2. Eligibility Criteria and Study Selection

The inclusion criteria were: (1) case–control studies focusing on the association between VDR polymorphisms and the risk of dental caries; (2) studies reporting VDR polymorphisms (ApaI (rs7975232), FokI (rs10735810), TaqI (rs731236), BsmI (rs1544410), FokI (rs2228570), and BglI (rs739837)) in children (age < 18 years); (3) dental caries confirmed by clinical examinations; (4) studies reporting the frequencies of alleles or genotypes; and (5) a control group with no tooth decay. Reviews, conference papers, and studies with no control group or those among adults or reporting other polymorphisms of VDR were
excluded. The data from published studies were retrieved independently by two authors (M.S. and R.S.) to retrieve the necessary information. In case of discrepancies between the data extracted by the two authors, a duplicate data extraction was performed by a third author (M.G.).

2.3. Quality Assessment

Three reviewers (M.S., A.K., and N.N.) independently assessed the quality of the selected studies by scoring them according to Table 2. We developed a quality assessment tool specifically for this study, which consisted of 7 criteria. The range of scores varies from 0 to 11, with higher scores indicating better study quality.

Table 2. Criteria for quality assessment.

Criteria	Score
1. Representativeness of cases	
Consecutive/randomly selected from case population with clearly defined sampling frame	2
Consecutive/randomly selected from case population without clearly defined sampling frame or with extensive inclusion/exclusion criteria	1
Not described	0
2. Source of controls	
Population- or community-based	2
Hospital-based	1
Not described	0
3. Ascertainment of dental caries	
Clinical examination	2
Diagnosis of caries by patient medical record	1
Not described	0
4. Sample size	
>1000	2
200–1000	1
<200	0
5. Age and sex were matched between cases and controls	
Yes	1
No/Not described	0
6. Quality control of genotyping methods	
Repetition of partial/total tested samples	1
Not described	0
7. Hardy–Weinberg equilibrium in control subjects	
Hardy–Weinberg equilibrium	1
Hardy–Weinberg disequilibrium	0

2.4. Statistical Analysis

The association between polymorphisms and dental caries susceptibility was calculated by odds ratios (ORs) with 95% confidence intervals (CIs) based on five genetic models (allele, homozygote, heterozygote, recessive, and dominant models). To calculate heterogeneity, a chi-square-based Q test and the I^2 statistic were used \cite{27,28}. A p-value of > 0.10 and $I^2 < 50\%$ indicated that there was no heterogeneity between the studies. However, considering the diversity in the effect sizes and populations between the studies, we used a random effects model in all analyses. Subgroup analysis (based on ethnicity and genotyping method) and sensitivity analysis (“one study removed” and “cumulative analysis”) were applied to find the effect of subgroups on the overall results and the stability of results, respectively. Funnel plots were used to determine publication bias. The p-value of (two-sided) < 0.05 was considered significant, but the size of the effect was also taken into consideration to determine the association between the polymorphism and dental caries. The forest plots and subgroup analysis were conducted by Review Manager 5.3 (RevMan 5.3) software, while publication bias and sensitivity analyses were performed using Comprehensive Meta-Analysis version 2.0 (CMA 2.0) software. The polymorphisms
(Apal (rs7975232), FokI (rs10735810), TaqI (rs731236), BsmI (rs1544410), FokI (rs2228570), and BglI (rs739837)) were demonstrated to not be in strong linkage disequilibrium (LD) with each other ($r^2 < 1$) using the LDlink online tool (https://ldlink.nci.nih.gov) (accessed on 6 November 2020) [29], and therefore all polymorphisms were included in the present meta-analysis.

3. Results

3.1. Study Selection

Seventy-eight studies were retrieved from the databases (Figure 1). After removing and excluding duplicate and irrelevant records, 14 full texts were evaluated for eligibility. Then, five full-text articles were excluded for different reasons: one article was a systematic review, one article had no control group, one article reported other VDR polymorphisms, and two articles reported VDR polymorphisms in adults. At last, nine studies were included in the qualitative and quantitative analysis.

Figure 1. Flowchart of the study selection. * One article was a systematic review. One article had no control group. One article reported other vitamin D receptor (VDR) polymorphisms. Two articles reported VDR polymorphisms in adults.

3.2. Quality Assessment

The seven criteria used for quality assessment are shown in Table 2. The maximum possible score was 11, while the minimum was 0.
3.3. Characteristics of Studies

Table 3 shows the characteristics of nine studies included in the meta-analysis [21,30–37]. Out of nine studies, three each were reported from China [21,36,37] and Brazil [31,33,35], and one each from Turkey [32], Czech Republic [34], and India [30]. There were three studies each on Caucasian, Asian, and mixed ethnic participants. The source of the control was population-based/school-based in all studies.

Table 3. Background characteristics of studies included in the meta-analysis.

First Author, Publication Year	Country	Ethnicity	Source of Control	Genotyping Method	Quality Score
Cogulu, 2016 [32]	Turkey	Caucasian	Population-based	PCR-RFLP	7
Holla, 2017 [34]	Czech Republic	Caucasian	Population-based	TaqMan	9
Kong, 2017 [21]	China	Asian	School-based	PCR	8
Yu, 2017 [37]	China	Asian	School-based	PCR-RFLP	10
Qin, 2019 [36]	China	Asian	Population-based	TaqMan	10
Aribam, 2020 [30]	India	Caucasian	Population-based	PCR	9
Barbosa, 2020 [31]	Brazil	Mixed	School-based	Real-Time PCR	8
Fatturi, 2020 [33]	Brazil	Mixed	School-based	Real-Time PCR	10
Madalena, 2020 [35]	Brazil	Mixed	School-based	Real-Time PCR	9

Abbreviations: PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism.

The prevalence of alleles and genotypes of six polymorphisms is shown in Table 4. In addition, the p-value of the Hardy–Weinberg equilibrium (HWE) for controls is reported.

Table 4. Prevalence of alleles and genotypes of the polymorphisms in cases and controls.

First Author, Publication Year	Groups (N)	ApaI (rs7975232)	FokI (rs10735810)	TaqI (rs731236)	BsmI (rs1544410)	p-Value of HWE								
		AA	Aa	aa	FF	Ff	ff	TT	Tt	Tt	BB	Bb	bb	
Cogulu, 2016 [32]	Case (112)	-	-	-	35	46	31	-	-	-	152	97	0.132	
	Control (38)	-	-	-	15	14	9	-	-	-	60	71	0.615	
Holla, 2017 [34]	Case (235)	-	-	-	95	87	118	112	48	230	19	0	0.011	
	Control (153)	-	-	-	51	85	17	-	-	-	152	97	0.037	
Kong, 2017 [21]	Case (249)	44	87	118	69	132	48	230	19	0	152	97	0.011	
	Control (131)	18	43	70	34	63	34	120	11	0	60	71	0.615	
Yu, 2017 [37]	Case (200)	33	85	82	86	96	18	171	29	0	0	36	164	0.210
	Control (200)	24	79	97	65	86	49	158	42	0	0	31	169	0.097
Qin, 2019 [36]	Case (304)	17	129	158	98	160	46	1	274	29	0	28	276	0.895
	Control (245)	21	100	124	75	119	51	1	207	37	1	31	213	<0.001
Aribam, 2020 [30]	Case (60)	-	-	-	-	22	25	13	-	-	-	0.158		
	Control (60)	-	-	-	-	26	23	11	-	-	-	0.71		

First Author, Publication Year	Groups (N)	FokI (rs2228570)	BglII (rs739837)	p-Value of HWE				
Barbosa, 2020 [31]	Case (164 and 163)	19	64	81	29	82	52	0.691
	Control (179 and 188)	17	80	82	43	87	58	0.347
Fatturi, 2020 [33]	Case (204 and 213)	22	85	97	63	101	49	0.435
	Control (132 and 121)	13	63	56	36	58	27	0.692
Madalena, 2020 [35]	Case (138 and 99)	19	60	59	13	52	34	0.649
	Control (19 and 12)	2	7	10	1	6	5	0.665

Abbreviation: HWE, Hardy–Weinberg equilibrium. AA, FF, TT, BB—homozygous dominant; Aa, Ff, Tt, Bb—heterozygous; aa, ff, bb—homozygous recessive.

3.4. Meta-Analysis

Table 5 shows the pooled analysis of the association between the ApaI (rs7975232) polymorphism and the risk of dental caries. The pooled ORs for allele, homozygote, heterozygote, recessive, and dominant were 0.89 (95%CI: 0.70, 1.13; p = 0.34; I² = 52%), 0.86 (95%CI: 0.49, 1.50; p = 0.59; I² = 57%), 0.83 (95%CI: 0.42, 1.62; p = 0.58; I² = 69%), 0.91 (95%CI: 0.55, 1.50; p = 0.71; I² = 50%), and 0.87 (95%CI: 0.69, 1.10; p = 0.24; I² = 8%), re-
spectively. These results indicate that there was no association between the Apal (rs7975232) polymorphism and susceptibility to dental caries.

Table 5. The results of pooled analysis for association between Apal (rs7975232) polymorphism and dental caries risk based on five genetic models.

Genetic Model	First Author, Publication Year	Case Events	Total	Control Events	Total	Weight	Odds Ratio (M-H, Random, 95%CI)
a vs. A	Kong, 2017 [21]	323	498	183	262	30.3%	0.80 [0.58, 1.10]
	Yu, 2017 [37]	249	400	273	400	33.4%	0.77 [0.57, 1.03]
	Qin, 2019 [36]	445	608	348	490	36.4%	1.11 [0.85, 1.45]
Subtotal (95%CI)		1506	1152			100.0%	0.89 [0.70, 1.13]
Total events		1017	804				
Heterogeneity:	Tau^2 = 0.02; Chi^2 = 4.19, df = 2 (p = 0.12); I^2 = 52%; Test for overall effect: Z = 0.95 (p = 0.34)						
aa vs. AA	Kong, 2017 [21]	118	162	70	88	33.9%	0.69 [0.37, 1.29]
	Yu, 2017 [37]	82	115	97	121	34.8%	0.61 [0.34, 1.12]
	Qin, 2019 [36]	158	175	124	145	31.3%	1.57 [0.80, 3.11]
Subtotal (95%CI)		452	354			100.0%	0.86 [0.49, 1.50]
Total events		358	291				
Heterogeneity:	Tau^2 = 0.14; Chi^2 = 4.68, df = 2 (p = 0.10); I^2 = 57%; Test for overall effect: Z = 0.54 (p = 0.59)						
Aa vs. AA	Kong, 2017 [21]	87	164	43	61	33.7%	0.47 [0.25, 0.89]
	Yu, 2017 [37]	85	118	79	103	34.4%	0.78 [0.43, 1.44]
	Qin, 2019 [36]	129	146	100	121	31.8%	1.59 [0.80, 3.18]
Subtotal (95%CI)		428	285			100.0%	0.83 [0.42, 1.62]
Total events		301	222				
Heterogeneity:	Tau^2 = 0.24; Chi^2 = 6.50, df = 2 (p = 0.04); I^2 = 69%; Test for overall effect: Z = 0.55 (p = 0.58)						
aa + Aa vs. AA	Kong, 2017 [21]	205	249	113	131	34.0%	0.74 [0.41, 1.34]
	Yu, 2017 [37]	167	200	176	200	35.6%	0.69 [0.39, 1.22]
	Qin, 2019 [36]	287	304	224	245	30.4%	1.58 [0.82, 3.07]
Subtotal (95%CI)		753	576			100.0%	0.91 [0.55, 1.50]
Total events		659	513				
Heterogeneity:	Tau^2 = 0.10; Chi^2 = 4.03, df = 2 (p = 0.13); I^2 = 50%; Test for overall effect: Z = 0.37 (p = 0.71)						
aa vs. AA + Aa	Kong, 2017 [21]	118	249	70	131	28.2%	0.78 [0.51, 1.20]
	Yu, 2017 [37]	82	200	97	200	33.4%	0.74 [0.50, 1.10]
	Qin, 2019 [36]	158	304	124	245	38.5%	1.06 [0.75, 1.48]
Subtotal (95%CI)		753	576			100.0%	0.87 [0.69, 1.10]
Total events		358	291				
Heterogeneity:	Chi^2 = 2.16, df = 2 (p = 0.34); I^2 = 8%; Test for overall effect: Z = 1.18 (p = 0.24)						

Table 6 demonstrates that the f allele (0.58 (95%CI: 0.38, 0.88); p = 0.01; I^2 = 85%), homozygote (0.52 (95%CI: 0.29, 0.92; p = 0.02; I^2 = 66%), and dominant models (0.53 (95%CI: 0.33, 0.87; p = 0.01; I^2 = 64%) of the FokI (rs10735810) ff genotype polymorphism had a protective role for the risk of dental caries, and the likelihood of caries in the individuals with these polymorphisms was approximately half that of those without these polymorphisms. The pooled ORs for other genetic models of FokI (rs10735810) polymorphisms (heterozygote and recessive) were not significant and the effect estimate was nearer to 1. There was no association between the TaqI (rs731236) polymorphism and susceptibility to dental caries based on the five genetic models (Table 7).

Table 8 shows that the pooled ORs for allele, homozygote, heterozygote, recessive, and dominant were 0.92 (95%CI: 0.58, 1.46; p = 0.73; I^2 = 68%), 3.89 (95%CI: 0.16, 95.85; p = 0.41), 2.71 (95%CI: 0.11, 69.34; p = 0.55), 3.74 (95%CI: 0.15, 92.12; p = 0.42), and 0.86 (95%CI: 0.48, 1.54; p = 0.61; I^2 = 76%), respectively. Although the effect estimates for homozygote, heterozygote, and recessive models were >1, these estimates were derived from only one study each, and wider confidence intervals indicate that the sample sizes in these studies were very small. These findings indicate that there was no association between the BsmI (rs1544410) polymorphism and susceptibility to dental caries.
Table 6. Meta-analysis for association between FokI (rs10735810) polymorphism and dental caries risk based on five genetic models.

Genetic Model	First Author, Publication Year	Case Events	Control Events	Weight	Odds Ratio M-H, Random, 95% CI
f vs. F	Kong, 2017 [21]	228	131	262	32.7% 0.84 [0.63, 1.14]
	Yu, 2017 [37]	132	184	400	33.1% 0.58 [0.43, 0.77]
	Qin, 2019 [36]	152	221	490	34.2% 0.41 [0.31, 0.52]
Subtotal (95% CI)		1506	1152		100.0% 0.58 [0.38, 0.88]
Total events		512	536		

Heterogeneity: Tau² = 0.12; Chi² = 13.37, df = 2 (P = 0.001); F = 85%; Test for overall effect: Z = 2.56 (p = 0.01)

ff vs. FF

First Author, Publication Year	Case Event	Control Event	Weight	Odds Ratio M-H, Random, 95% CI
Kong, 2017 [21]	48	34	68	32.3% 0.70 [0.38, 1.27]
Yu, 2017 [37]	18	49	114	31.3% 0.28 [0.15, 0.52]
Qin, 2019 [36]	46	51	126	36.4% 0.69 [0.42, 1.14]
Subtotal (95% CI)		365	308	100.0% 0.52 [0.29, 0.92]
Total events		112	134	

Heterogeneity: Tau² = 0.17; Chi² = 5.91, df = 2 (P = 0.05); I² = 66%; Test for overall effect: Z = 2.24 (p = 0.02)

Ff vs. FF

First Author, Publication Year	Case Event	Control Event	Weight	Odds Ratio M-H, Random, 95% CI
Kong, 2017 [21]	132	63	97	23.3% 1.03 [0.62, 1.72]
Yu, 2017 [37]	96	86	151	35.5% 0.84 [0.55, 1.30]
Qin, 2019 [36]	160	144	258	41.2% 0.69 [0.42, 1.14]
Subtotal (95% CI)		641	442	100.0% 0.96 [0.75, 1.24]
Total events		388	268	

Heterogeneity: Chi² = 0.54, df = 2 (P = 0.76); I² = 0%; Test for overall effect: Z = 0.29 (p = 0.77)

ff + Aa vs. FF

First Author, Publication Year	Case Event	Control Event	Weight	Odds Ratio M-H, Random, 95% CI
Kong, 2017 [21]	48	34	68	33.6% 0.91 [0.57, 1.48]
Yu, 2017 [37]	18	49	200	29.9% 0.67 [0.41, 1.09]
Qin, 2019 [36]	46	51	126	36.6% 0.68 [0.44, 1.05]
Subtotal (95% CI)		753	576	100.0% 0.93 [0.65, 1.53]
Total events		388	268	

Heterogeneity: Chi² = 2.09, df = 2 (P = 0.35); I² = 4%; Test for overall effect: Z = 1.66 (p = 0.10)

ff vs. FF + Ff

First Author, Publication Year	Case Event	Control Event	Weight	Odds Ratio M-H, Random, 95% CI
Kong, 2017 [21]	48	34	68	33.6% 0.68 [0.41, 1.09]
Yu, 2017 [37]	18	49	200	29.9% 0.67 [0.41, 1.09]
Qin, 2019 [36]	46	51	126	36.6% 0.68 [0.44, 1.05]
Subtotal (95% CI)		753	576	100.0% 0.93 [0.65, 1.53]
Total events		388	268	

Heterogeneity: Chi² = 2.56, df = 2 (P = 0.01); I² = 0%; Test for overall effect: Z = 2.56 (p = 0.01)

Abbreviation: CI, confidence interval.

Table 7. Association between TaqI (rs731236) polymorphism and dental caries risk based on five genetic models.

Genetic Model	First Author, Publication Year	Case Events	Control Events	Weight	Odds Ratio M-H, Random, 95% CI
t vs. T	Cogulu, 2016 [32]	108	32	76	7.3% 1.28 [0.76, 2.16]
	Holla, 2017 [34]	170	119	306	27.3% 0.89 [0.66, 1.20]
	Kong, 2017 [21]	19	11	262	4.1% 0.91 [0.57, 1.48]
	Yu, 2017 [37]	29	42	400	11.6% 0.67 [0.41, 1.09]
	Qin, 2019 [36]	332	281	490	42.0% 0.89 [0.70, 1.14]
Subtotal (95% CI)		753	576	100.0% 0.53 [0.33, 0.87]	
Total events		709	530		

Heterogeneity: Chi² = 4.47, df = 5 (P = 0.48); I² = 0%; Test for overall effect: Z = 1.03 (p = 0.30)

tt vs. T

First Author, Publication Year	Case Events	Control Events	Weight	Odds Ratio M-H, Random, 95% CI
Cogulu, 2016 [32]	31	9	24	22.2% 1.48 [0.57, 3.85]
Holla, 2017 [34]	30	17	68	53.1% 0.95 [0.48, 1.88]
Kong, 2017 [21]	0	0	120	Not estimable
Yu, 2017 [37]	0	0	158	Not estimable
Qin, 2019 [36]	13	11	37	3.4% 0.78 [0.05, 13.07]
Aribam, 2020 [30]	13	11	37	21.3% 1.40 [0.52, 3.73]
Subtotal (95% CI)		657	440	100.0% 1.15 [0.72, 1.86]
Total events		703	530	

Heterogeneity: Chi² = 0.79, df = 3 (P = 0.85); I² = 0%; Test for overall effect: Z = 0.58 (p = 0.56)
Table 7. Cont.

Genetic Model	First Author, Publication Year	Case	Control	Weight	Odds Ratio		
		Events	Total	Events	Total	M-H, Random, 95%CI	
Tt vs. TT	Cogulu, 2016 [32]	46	81	14	29	7.6%	1.41 [0.60, 3.30]
	Holla, 2017 [34]	110	205	85	136	40.5%	0.69 [0.45, 1.08]
	Kong, 2017 [21]	19	249	11	131	11.4%	0.90 [0.42, 1.96]
	Yu, 2017 [37]	29	200	42	200	30.7%	0.64 [0.38, 1.07]
	Qin, 2019 [36]	274	275	207	208	0.7%	1.32 [0.08, 21.29]
	Aribam, 2020 [30]	25	47	23	49	9.0%	1.28 [0.58, 2.86]
Subtotal (95% CI)		1057	753				0.81 [0.62, 1.07]
	Total events	503	382				

Heterogeneity: Chi² = 4.36, df = 5 (P = 0.50); I² = 0%; Test for overall effect: Z = 1.49 (p = 0.14)

tt + Tt vs. TT	Cogulu, 2016 [32]	77	112	23	38	8.7%	1.43 [0.67, 3.08]
	Holla, 2017 [34]	140	235	102	153	40.5%	0.74 [0.48, 1.13]
	Kong, 2017 [21]	19	249	11	131	10.8%	0.90 [0.42, 1.96]
	Yu, 2017 [37]	29	200	42	200	29.1%	0.64 [0.38, 1.07]
	Qin, 2019 [36]	303	304	244	245	0.7%	1.24 [0.08, 19.96]
	Aribam, 2020 [30]	38	60	34	60	10.1%	1.32 [0.63, 2.75]
Subtotal (95% CI)		1160	827				0.85 [0.66, 1.11]
	Total events	606	456				

Heterogeneity: Chi² = 4.89, df = 5 (P = 0.43); I² = 0%; Test for overall effect: Z = 1.21 p = 0.23

tt vs. TT + Tt	Cogulu, 2016 [32]	31	112	9	38	13.2%	1.23 [0.52, 2.90]
	Holla, 2017 [34]	30	235	17	153	24.5%	1.17 [0.62, 2.21]
	Kong, 2017 [21]	0	249	0	131	Not estimable	
	Yu, 2017 [37]	29	200	37	245	50.5%	0.59 [0.35, 1.00]
	Qin, 2019 [36]	13	60	11	60	11.7%	1.23 [0.50, 3.02]
	Aribam, 2020 [30]	152	152	60	60	11.7%	1.23 [0.50, 3.02]
Subtotal (95% CI)		1160	827				0.93 [0.62, 1.40]
	Total events	103	74				

Heterogeneity: Chi² = 4.14, df = 3 (P = 0.25); I² = 28; Test for overall effect: Z = 0.72 (p = 0.35)

Table 8. The results of meta-analysis exploring the association between BsmI (rs1544410) polymorphism and dental caries risk based on five genetic models.

Genetic Model	First Author, Publication Year	Case	Control	Weight	Odds ratio		
		Events	Total	Events	Total	M-H, Random, 95%CI	
b vs. B	Kong, 2017 [21]	346	498	202	262	38.6%	0.68 [0.48, 0.96]
	Yu, 2017 [37]	364	400	369	400	31.1%	0.85 [0.51, 1.40]
	Qin, 2019 [36]	580	608	457	490	30.3%	1.50 [0.89, 2.51]
Subtotal (95% CI)		1506	1506	1152	1152	100.0%	0.92 [0.58, 1.46]
	Total events	1290	1028				

Heterogeneity: Tau² = 0.11; Chi² = 6.24, df = 2 (P = 0.04); I² = 68%; Test for overall effect: Z = 0.34 (p = 0.73)

bb vs. BB	Kong, 2017 [21]	97	97	71	71	Not estimable	
	Yu, 2017 [37]	164	164	169	169	Not estimable	
	Qin, 2019 [36]	276	276	213	214	100.0%	3.89 [0.16, 95.85]
Subtotal (95% CI)		537	454				3.89 [0.16, 95.85]
	Total events	537	453				

Heterogeneity: Not applicable; Test for overall effect: Z = 0.83 (p = 0.41)

Bb vs. BB	Kong, 2017 [21]	152	152	60	60	Not estimable	
	Yu, 2017 [37]	36	36	31	31	Not estimable	
	Qin, 2019 [36]	28	28	31	32	100.0%	2.71 [0.11, 69.34]
Subtotal (95% CI)		216	216	123	123	100.0%	2.71 [0.11, 69.34]
	Total events	216	122				

Heterogeneity: Not applicable; Test for overall effect: Z = 0.60 (p = 0.55)

Abbreviation: CI, confidence interval. tt– homozygous recessive.
Table 8. Cont.

Genetic Model	First Author, Publication Year	Case Events	Case Total	Control Events	Control Total	Weight M-H, Random, 95% CI	Odds Ratio	95% CI
bb + Bb vs. BB	Kong, 2017 [21]	249	249	131	131	Not estimable	3.74	[0.15, 92.12]
	Yu, 2017 [37]	200	200	200	200	Not estimable	3.74	[0.15, 92.12]
	Qin, 2019 [36]	304	304	244	245	100.0%	3.74	[0.15, 92.12]
Subtotal (95%CI)		753	756			100.0%	3.74	[0.15, 92.12]

Heterogeneity: Not applicable; Test for overall effect: Z = 0.81 (p = 0.42)

Total events 753 576 100.0% 3.74 [0.15, 92.12]

Table 9 demonstrates that there was no association between the FokI (rs2228570) polymorphism and susceptibility to dental caries and there was a lack of heterogeneity between the studies (I^2 = 0%) in all five genetic models. The odds ratio for most of these models was closer to 1, with narrow confidence intervals indicating no association.

Table 9. Results exploring the association between FokI (rs2228570) polymorphism and dental caries risk based on five genetic models.

Genetic Model	First Author, Publication Year	Case Events	Case Total	Control Events	Control Total	Weight M-H, Random, 95% CI	Odds Ratio	95% CI
f vs. F	Barbosa, 2020 [31]	226	328	244	358	46.3%	1.04	[0.75, 1.43]
	Fatturi, 2020 [33]	279	408	175	264	42.9%	1.10	[0.79, 1.53]
	Madalena, 2020 [35]	178	276	27	38	10.8%	0.74	[0.35, 1.56]
Subtotal (95%CI)		683	1012			100.0%	1.03	[0.83, 1.28]

Heterogeneity: Chi^2 = 0.91, df = 2 (P = 0.63); I^2 = 0%; Test for overall effect: Z = 0.29 (p = 0.77)

Total events 1012 660 100.0% 1.03 [0.83, 1.28]

ff vs. FF | Barbosa, 2020 [31] | 81 | 100 | 82 | 99 | 47.5% | 0.88 | [0.43, 1.82] |
	Fatturi, 2020 [33]	97	119	56	69	39.7%	1.02	[0.48, 2.19]
	Madalena, 2020 [35]	59	78	10	12	12.8%	0.62	[0.32, 1.09]
Subtotal (95%CI)		297	297			100.0%	0.91	[0.55, 1.50]

Heterogeneity: Chi^2 = 0.32, df = 2 (P = 0.85); I^2 = 0%; Test for overall effect: Z = 0.37 (p = 0.71)

Total events 297 180 100.0% 0.91 [0.55, 1.50]

ff vs. FF + Ff | Barbosa, 2020 [31] | 145 | 164 | 162 | 179 | 48.2% | 0.72 | [0.34, 1.49] |
	Fatturi, 2020 [33]	182	204	119	132	41.4%	0.90	[0.44, 1.86]
	Madalena, 2020 [35]	119	138	17	19	10.9%	0.74	[0.16, 3.45]
Subtotal (95%CI)		209	209			100.0%	0.77	[0.46, 1.27]

Heterogeneity: Chi^2 = 0.08, df = 2 (P = 0.96); I^2 = 0%; Test for overall effect: Z = 1.04 (p = 0.30)

Total events 209 150 100.0% 0.77 [0.46, 1.27]

ff vs. FF + Ff | Barbosa, 2020 [31] | 145 | 164 | 162 | 179 | 47.7% | 0.80 | [0.40, 1.60] |
	Fatturi, 2020 [33]	182	204	119	132	41.4%	0.90	[0.44, 1.86]
	Madalena, 2020 [35]	119	138	17	19	10.9%	0.74	[0.16, 3.45]
Subtotal (95%CI)		386	386			100.0%	0.84	[0.52, 1.35]

Heterogeneity: Chi^2 = 0.09, df = 2 (P = 0.96); I^2 = 0%; Test for overall effect: Z = 0.73 (p = 0.46)

Total events 386 298 100.0% 0.84 [0.52, 1.35]

Abbreviation: CI, confidence interval.
The pooled ORs for allele, homozygote, heterozygote, recessive, and dominant were 1.06 (95%CI: 0.86, 1.31; \(p = 0.61\); \(I^2 = 0\%\)], 1.15 (95%CI: 0.75, 1.75; \(p = 0.53\); \(I^2 = 0\%\)], 1.15 (95%CI: 0.79, 1.67; \(p = 0.48\); \(I^2 = 0\%\)], 1.14 (95%CI: 0.80, 1.62; \(p = 0.46\); \(I^2 = 0\%\)], and 1.02 (95%CI: 0.73, 1.42; \(p = 0.91\); \(I^2 = 0\%\)], respectively (Table 10). There was no association between the BglII (rs739837) polymorphism and susceptibility to dental caries.

Table 10. The results from meta-analysis of the association between BglII (rs739837) polymorphism and dental caries risk based on five genetic models.

Genetic Model	First Author, Publication Year	Case Events	Control Events	Weight	Odds Ratio 95% CI	M-H, Random, 95% CI
b vs. B	Barbosa, 2020 [31]	186	326	48.1%	1.13 [0.84, 1.53]	
	Fatturi, 2020 [33]	199	426	45.2%	1.02 [0.74, 1.40]	
	Madalena, 2020 [35]	120	198	6.7%	0.77 [0.31, 1.88]	
Subtotal (95%CI)		495	642	100.0%	1.06 [0.86, 1.31]	
Total events		505	331			
Heterogeneity: Chi² = 0.74, df = 2 (\(p = 0.69\); \(I^2 = 0\%\)]; Test for overall effect: Z = 0.51 (\(p = 0.61\)						
b vs. BB	Barbosa, 2020 [31]	52	81	45.8%	1.33 [0.73, 2.43]	
	Fatturi, 2020 [33]	49	112	48.1%	1.04 [0.56, 1.93]	
	Madalena, 2020 [35]	34	47	6.1%	0.52 [0.06, 4.91]	
Subtotal (95%CI)		147	170	100.0%	1.15 [0.75, 1.75]	
Total events		185	240			
Heterogeneity: Chi² = 0.80, df = 2 (\(p = 0.67\); \(I^2 = 0\%\)]; Test for overall effect: Z = 0.63 (\(p = 0.53\)						
Bb vs. BB	Barbosa, 2020 [31]	82	111	40.7%	1.40 [0.80, 2.44]	
	Fatturi, 2020 [33]	101	164	55.1%	1.00 [0.59, 1.68]	
	Madalena, 2020 [35]	52	65	4.2%	0.67 [0.07, 6.03]	
Subtotal (95%CI)		235	231	100.0%	1.15 [0.79, 1.67]	
Total events		235	231			
Heterogeneity: Chi² = 1.00, df = 2 (\(p = 0.61\); \(I^2 = 0\%\)]; Test for overall effect: Z = 0.71 (\(p = 0.48\)						
bb vs. BB + Bb	Barbosa, 2020 [31]	134	163	40.9%	1.37 [0.81, 2.32]	
	Fatturi, 2020 [33]	150	213	54.7%	1.01 [0.62, 1.64]	
	Madalena, 2020 [35]	86	99	4.4%	0.60 [0.07, 5.05]	
Subtotal (95%CI)		475	321	100.0%	1.14 [0.80, 1.62]	
Total events		475	321			
Heterogeneity: Chi² = 1.06, df = 2 (\(p = 0.59\); \(I^2 = 0\%\)]; Test for overall effect: Z = 0.73 (\(p = 0.46\)						
bb vs. BB	Barbosa, 2020 [31]	52	163	53.1%	1.05 [0.67, 1.65]	
	Fatturi, 2020 [33]	49	213	38.4%	1.04 [0.61, 1.77]	
	Madalena, 2020 [35]	34	99	8.5%	0.73 [0.22, 2.48]	
Subtotal (95%CI)		135	90	100.0%	1.02 [0.73, 1.42]	
Total events		135	90			
Heterogeneity: Chi² = 0.30, df = 2 (\(p = 0.86\); \(I^2 = 0\%\)]; Test for overall effect: Z = 0.11 (\(p = 0.91\)						

Abbreviation: CI, confidence interval.

3.5. Subgroup Analysis

As there was an adequate number of studies on the TaqI (rs731236) polymorphism, subgroup analyses in relation to ethnicity and genotyping were conducted (Table 11). The overall effect still remained insignificant with none of the subgroups demonstrating any association between the TaqI (rs731236) polymorphism and susceptibility to dental caries across the five genetic models.

Table 11. Subgroup analyses based on ethnicity and genotyping method for TaqI (rs731236) polymorphism.

Variable (N)	t vs. T OR (95%CI), \(p, I^2\)	t vs. TT OR (95%CI), \(p, I^2\)	Tt vs. TT OR (95%CI), \(p, I^2\)	tt vs. Tt vs. TT OR (95%CI), \(p, I^2\)	tt vs. TT + Tt OR (95%CI), \(p, I^2\)
Ethnicity					
Caucasian (3)	1.02 (0.81, 1.29), 0.86, 2%	1.17 (0.72, 1.89), 0.53, 0%	0.96 (0.59, 1.56), 0.87, 36%	1.02 (0.64, 1.61), 0.94, 39%	1.20 (0.77, 1.87), 0.42, 0%
Asian (3)	0.85 (0.69, 1.05), 0.13, 0%	0.75 (0.05, 13.07), 0.87	0.72 (0.47, 1.10), 0.13, 0%	0.72 (0.47, 1.10), 0.13, 0%	0.59 (0.35, 1.00), 0.05
Genotyping method					
PCR (4)	0.99 (0.71, 1.37), 0.95, 27%	1.44 (0.72, 2.85), 0.30, 0%	0.91 (0.62, 1.33), 0.63, 14%	0.96 (0.64, 1.43), 0.83, 28%	1.23 (0.66, 2.29), 0.51, 0%
TaqMan (2)	0.89 (0.74, 1.08), 0.23, 0%	0.94 (0.48, 1.82), 0.85, 0%	0.71 (0.46, 1.09), 0.12, 0%	0.75 (0.49, 1.14), 0.17, 0%	0.81 (0.42, 1.58), 0.54, 62%

Abbreviations: OR, odds ratio; CI, confidence interval.
3.6. Sensitivity Analysis

We conducted “cumulative analysis” and “one study removed” analyses to evaluate the stability of the findings related to six polymorphisms. The results show that the results were consistent/stable for the six polymorphisms. Additionally, for the **TaqI (rs731236)** polymorphism, we removed two studies [34,36] reporting an HWE deviation in the control group and found that the pooled ORs still remained the same.

3.7. Publication Bias

The funnel plots (Figure 2) and \(p > 0.05 \) for both Egger’s and Begg’s tests demonstrate a lack of publication bias with regard to all six polymorphisms considered in this review.

Figure 2. Funnel plots for association between six polymorphisms of vitamin D receptor (**VDR**) and dental caries risk based on five genetic. (A): **ApaI** (rs7975232). (B): **FokI** (rs10735810). (C): **TaqI** (rs731236). (D): **BsmI** (rs1544410). (E): **FokI** (rs2228570). (F): **BglI** (rs739837).
4. Discussion

The present meta-analysis evaluated the association between VDR polymorphisms (Apal (rs7975232), FokI (rs10735810), TaqI (rs731236), BsmI (rs1544410), FokI (rs2228570), and BglII (rs739837)) and the risk of dental caries in children. None of the polymorphisms were associated with the risk of dental caries, except for the FokI (rs10735810) polymorphism, with the f allele and ff genotype of this polymorphism having a protective role in dental caries occurrence.

The role of genetic factors in the risk of dental caries is still largely unknown despite numerous studies. Dental caries is a multifactorial disease caused by interactions between environmental factors, behavioral factors, several genetic factors, and gene–environment interactions [31]. Advances in transcriptional research have provided a variety of data on the interaction between VDR and other transcriptionally active proteins, demonstrating the potential of VDR to exert a wide range of biological reactions [38]. Vitamin D is known as a modulator of calcium homeostasis and plays an important role in regulating electrolytes and blood pressure. Evidence has shown that the most active metabolite of this vitamin can regulate the immune response and also has anti-inflammatory activity [39]. VDR gene polymorphisms have been shown to be strongly related to mineral density [32,40,41] and a meta-analysis [42] confirmed this. Although results from individual studies remain inconsistent, a meta-analysis of controlled clinical trials showed that early vitamin D supplementation could reduce the risk of dental caries by 47–54% [20]. Although the mechanism of action is unknown, VDR gene polymorphisms could modulate the effect of vitamin D supplementation. For instance, one study found some VDR polymorphisms to modify the association of vitamin D supplementation with the risk of a specific type of cancer [43]. The role of VDR polymorphisms in modifying the effect of vitamin D supplementation on dental caries needs further exploration.

VDR plays an important role in regulating the expression of genes associated with the immune response, calcium homeostasis, and cell differentiation and proliferation [18]. The distribution of VDR polymorphisms could show different patterns based on ethnicities and age [44–47]. Research has shown ethnic differences in vitamin D status and their correlation to hormonal homeostasis and bone phenotype, as well as the influence of environmental factors such as lifestyle, diet, and sun exposure [17,18]. However, we could not find any differences based on ethnicities in this meta-analysis.

Our meta-analysis showed a protective role of the FokI (rs10735810) polymorphism on dental caries. This might be due to its interactions with co-transcription factors [18] and its location (Figure 3) [18,48].

![Figure 3. The location of vitamin D receptor (VDR) polymorphisms reported in the meta-analysis.](image-url)
The meta-analysis has several limitations and strengths. Limitations include the presence of fewer published reports on this topic hindering the performance of any meta-regression analysis, studies with small sample sizes, and clinical and statistical heterogeneity between the studies. Some studies included in the meta-analysis did not match cases with controls, used genotyping methods different from other studies, and had controls with a deviation of the HWE. It also needs mentioning that we could not conduct any analysis to adjust the effect of multiple testing or multiplicity within the included studies. Despite the limitations, this review demonstrates several strengths in the form of the lack of publication bias, the suitable quality of all the included studies, and the use a population-based source for recruiting controls in all the studies. More studies on larger sample sizes and different ethnicities will help to explore the influence of different VDR polymorphisms on the risk of dental caries.

5. Conclusions

Out of the six VDR polymorphisms explored in this meta-analysis, an association was only observed between the FokI (rs10735810) polymorphism and the risk of dental caries, with the f allele and ff genotype demonstrating a protective role in the occurrence of dental caries.

Author Contributions: Conceptualization, M.S.; methodology, M.S. and S.K.T.; validation, M.S. and S.K.T.; formal analysis, M.S.; investigation, M.S.; resources, M.S.; data curation, M.S.; writing—original draft preparation, S.K.T.; writing—review and editing, M.S., A.G., M.G., R.S., A.K. and N.N.; visualization, S.K.T.; supervision, A.G., M.G. and R.S.; project administration, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Santosh Kumar Tadakamadla acknowledges the support of NHMRC Early Career Fellowship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Petersen, P.E. The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century—The approach of the WHO Global Oral Health Programme. *Community Dent. Oral Epidemiol.* 2003, 31, 3–24. [CrossRef] [PubMed]
2. Petersen, P.E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C. The global burden of oral diseases and risks to oral health. *Bull. World Health Organ.* 2005, 83, 661–669.
3. Selwitz, R.; Ismail, A.; Pitts, N. Dental caries. *Lancet* 2007, 369, 51–59. [CrossRef]
4. Collaborators, G.O.D.; Bernabe, E.; Marcenes, W.; Hernandez, C.; Bailey, J.; Abreu, L.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: A systematic analysis for the global burden of disease 2017 study. *J. Dent. Res.* 2020, 99, 362–373. [CrossRef] [PubMed]
5. Vieira, A.R.; Modesto, A.; Marazita, M.L. Caries: Review of human genetics research. *Caries Res.* 2014, 48, 491–506. [CrossRef] [PubMed]
6. Haworth, S.; Shungin, D.; Van Der Tas, J.T.; Vucic, S.; Medina-Gomez, C.; Yakimov, V.; Feenstra, B.; Shaffer, J.R.; Lee, M.K.; Standl, M. Consortium-based genome-wide meta-analysis for childhood dental caries traits. *Hum. Mol. Genet.* 2018, 27, 3113–3127. [CrossRef] [PubMed]
7. Shaffer, J.; Wang, X.; Feingold, E.; Lee, M.; Begum, F.; Weeks, D.; Cuenco, K.; Barrmada, M.; Wendell, S.; Crosslin, D. Genome-wide association scan for childhood caries implicates novel genes. *J. Dent. Res.* 2011, 90, 1457–1462. [CrossRef] [PubMed]
8. Chapple, I.L.; Bouchard, P.; Cagetti, M.G.; Campus, G.; Carra, M.C.; Cocco, F.; Nibali, L.; Hujoel, P.; Laine, M.L.; Lingström, P. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. *J. Clin. Periodontol.* 2017, 44, S39–S51. [CrossRef]
9. Wang, X.; Shaffer, J.; Weyant, R.; Cuenco, K.; DeSensi, R.; Crout, R.; McNeil, D.; Marazita, M. Genes and their effects on dental caries may differ between primary and permanent dentitions. *Caries Res.* 2010, 44, 277–284. [CrossRef]
10. Wendell, S.; Wang, X.; Brown, M.; Cooper, M.; DeSensi, R.; Weyant, R.; Crout, R.; McNeil, D.; Marazita, M. Taste genes associated with dental caries. *J. Dent. Res.* 2010, 89, 1198–1202. [CrossRef]
11. Randev, S.; Kumar, P.; Guglani, V. Vitamin D supplementation in childhood—A review of guidelines. *Indian J. Pediatrics* 2018, 85, 194–201. [CrossRef] [PubMed]

12. Chhonkar, A.; Gupta, A.; Arya, V. Comparison of vitamin D level of children with severe early childhood caries and children with no caries. *Int. J. Clin. Pediatric Dent.* 2018, 11, 199. [CrossRef]

13. Deane, S.; Schroth, R.J.; Sharma, A.; Rodd, C. Combined deficiencies of 25-hydroxyvitamin D and anemia in preschool children with severe early childhood caries: A case–control study. *Paediatr. Child Health* 2018, 23, e40–e45. [CrossRef] [PubMed]

14. Gyll, J.; Ridell, K.; Öhlund, I.; Åkesson, P.K.; Johansson, I.; Holgerson, P.L. Vitamin D status and dental caries in healthy Swedish children. *Nutr. J.* 2018, 17, 1–10. [CrossRef] [PubMed]

15. Kim, I.-J.; Lee, H.-S.; Ju, H.-J.; Na, J.-Y.; Oh, H.-W. A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children. *BMC Oral Health* 2018, 18, 1–6. [CrossRef] [PubMed]

16. Sutton, A.L.; MacDonald, P.N. Vitamin D: More than a “bone-a-fide” hormone. *Mol. Endocrinol.* 2018, 30, 302–311. [CrossRef] [PubMed]

17. Aribam, V.G.; Aswath, N.; Ramanathan, A. Single-nucleotide polymorphism in Vitamin D receptor gene and its association with Vitamin D related disease states. *Mol. Endocrinol.* 2003, 17, 777–791. [CrossRef]

18. Uitterlinden, A.G.; Van Meurs, J.B.; Pols, H.A. Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states. *J. Steroid Biochem. Mol. Biol.* 2004, 89, 187–193. [CrossRef]

19. Hujoel, P.P. Vitamin D and dental caries in controlled clinical trials: Systematic review and meta-analysis. *Nutr. Rev.* 2013, 71, 88–97. [CrossRef] [PubMed]

20. Kong, Y.-Y.; Zheng, J.-M.; Zhang, W.-J.; Jiang, Q.-Z.; Yang, X.-C.; Yu, M.; Zeng, S.-J. The relationship between vitamin D receptor gene polymorphism and deciduous tooth decay in Chinese children. *BMC Oral Health* 2017, 17, 1–6. [CrossRef] [PubMed]

21. Patir, A.; Seymen, F.; Yildirim, M.; Deeley, K.; Cooper, M.; Marazita, M.; Vieira, A. Enamel formation genes are associated with high caries experience in Turkish children. *Caries Res.* 2008, 42, 394–400. [CrossRef]

22. Shariifi, R.; Jahedi, S.; Mozaffari, H.R.; Imani, M.M.; Sadeghi, M.; Golshah, A.; Moradpoor, H.; Safaei, M. Association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility: A meta-analysis. *BMC Oral Health* 2020, 20, 1–11. [CrossRef] [PubMed]

23. Triantos, C.; Aggepetopoulou, I.; Kalafateli, M.; Spantidea, P.I.; Vourli, G.; Diamantopoulou, G.; Taprati, D.; Michalaki, M.; Manolakopoulos, S.; Gogos, C. Prognostic significance of vitamin D receptor (VDR) gene polymorphisms in liver cirrhosis. *Sci. Rep.* 2018, 8, 1–14. [CrossRef]

24. Zhang, P.; Li, Q.; Qi, J.; Lv, Q.; Zheng, X.; Wu, X.; Gu, J. Association between vitamin D receptor gene polymorphism and ankylosing spondylitis in Han Chinese. *Int. J. Rheum. Dis.* 2017, 20, 1510–1516. [CrossRef]

25. Deane, S.; Schroth, R.J.; Sharma, A.; Rodd, C. Combined deficiencies of 25-hydroxyvitamin D and anemia in preschool children with severe early childhood caries: A case–control study. *Paediatr. Child Health* 2018, 23, e40–e45. [CrossRef] [PubMed]

26. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Int. J. Surg.* 2010, 8, 336–341. [CrossRef] [PubMed]

27. Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. *Stat. Med.* 2002, 21, 1539–1558. [CrossRef] [PubMed]

28. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. *BMJ* 2003, 327, 557–560. [CrossRef] [PubMed]

29. Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. *Bioinformatics* 2015, 31, 3555–3557. [CrossRef] [PubMed]

30. Aribam, V.G.; Aswath, N.; Ramanathan, A. Single-nucleotide polymorphism in Vitamin D receptor gene and its association with dental caries in children. *J. Indian Soc. Pedod. Prev. Dent.* 2020, 38, 8. [CrossRef]

31. Barbosa, M.C.; Lima, D.C.; Reis, C.L.; Reis, A.L.; Rigo, D., Jr.; Segato, R.A.; Storrer, C.L.; Küchler, E.C.; de Oliveira, D.S. Vitamin D receptor FokI and BglI genetic polymorphisms, dental caries, and gingivitis. *Int. J. Paediatr. Dent.* 2020, 30, 642–649. [CrossRef]

32. Cogulu, D.; Onay, H.; Ozdemir, Y.; Aslan, G.I.; Ozkinay, F.; Eronat, C. The role of vitamin D receptor polymorphisms on dental caries. *J. Clin. Pediatric Dent.* 2016, 40, 211–214. [CrossRef] [PubMed]

33. Fatturi, A.L.; Menoncin, B.L.; Reyes, M.T.; Meger, M.; Sciaroti, R.; Branche, J.A.; Küchler, E.C.; Feltrin-Souza, J. The relationship between molar incisor hypomineralization, dental caries, socioeconomic factors, and polymorphisms in the vitamin D receptor gene: A population-based study. *Clin. Oral Investig.* 2020, 24, 3971–3980. [CrossRef]

34. Holla, L.I.; Linhartova, P.B.; Kastovsky, J.; Bartosova, M.; Musilova, K.; Kukla, L.; Kukletova, M. Vitamin D receptor TaqI gene polymorphism and dental caries in Czech children. *Caries Res.* 2017, 51, 7–11. [CrossRef] [PubMed]

35. Madalena, I.R.; Xavier, T.A.; Cruz, G.V.; Branche, J.A.; da Silva, L.A.B.; Paza, A.O.; Segato, R.A.B.; Küchler, E.C. Evaluation of vitamin D receptor genetic polymorphisms with dental caries and developmental defects of enamel in Brazilian children. *Pediatric Dent.* 2020, 30, 161–166. [CrossRef]

36. Qin, X.; Shao, L.; Zhang, L.; Ma, L.; Xiong, S. Investigation of Interaction between Vitamin D Receptor Gene Polymorphisms and Environmental Factors in Early Childhood Caries in Chinese Children. *Biomol. Res. Int.* 2019, 2019. [CrossRef] [PubMed]

37. Yu, M.; Jiang, Q.-Z.; Sun, Z.-Y.; Kong, Y.-Y.; Chen, Z. Association between single nucleotide polymorphisms in vitamin D receptor gene polymorphisms and permanent tooth caries susceptibility to permanent tooth caries in Chinese adolescent. *Biomol. Res. Int.* 2017, 2017. [CrossRef]

38. Ryan, J.W.; Anderson, P.H.; Morris, H.A. Pleiotropic activities of vitamin D receptors—adequate activation for multiple health outcomes. *Clin. Biochem.* Rev. 2015, 36, 53. [CrossRef]
40. Amano, Y.; Komiyama, K.; Makishima, M. Vitamin D and periodontal disease. *J. Oral Sci.* **2009**, *51*, 11–20. [CrossRef]

41. Demay, M.B. Mechanism of vitamin D receptor action. *Ann. N. Y. Acad. Sci.* **2006**, *1068*, 204–213. [CrossRef] [PubMed]

42. Cooper, G.S.; Umbach, D.M. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. *J. Bone Miner. Res.* **1996**, *11*, 1841–1849. [CrossRef] [PubMed]

43. Barry, E.L.; Peacock, J.L.; Rees, J.R.; Bostick, R.M.; Robertson, D.J.; Bresalier, R.S.; Baron, J.A. Vitamin D receptor genotype, vitamin D3 supplementation, and risk of colorectal adenomas: A randomized clinical trial. *JAMA Oncol.* **2017**, *3*, 628–635. [CrossRef] [PubMed]

44. Karasneh, J.A.; Ababneh, K.T.; Taha, A.H.; Al-Abbadi, M.S.; Marzouka, N.A.d.S.; Jaradat, S.M.; Thornhill, M.H. Association of vitamin D receptor gene polymorphisms with chronic and aggressive periodontitis in Jordanian patients. *Eur. J. Oral Sci.* **2013**, *121*, 551–558. [CrossRef]

45. Sarkissyan, M.; Wu, Y.; Chen, Z.; Mishra, D.K.; Sarkissyan, S.; Giannikopoulos, I.; Vadgama, J.V. Vitamin D receptor FokI gene polymorphisms may be associated with colorectal cancer among African American and Hispanic participants. *Cancer* **2014**, *120*, 1387–1393. [CrossRef]

46. Vanessa, O.; Asani, F.F.; Jeffery, T.J.; Saccone, D.S.; Bornman, L. Vitamin D receptor gene expression and function in a South African population: Ethnicity, vitamin D and Fok I. *PLoS ONE* **2013**, *8*, e67663.

47. Nelson, D.; Vord, P.V.; Wooley, P. Polymorphism in the vitamin D receptor gene and bone mass in African-American and white mothers and children: A preliminary report. *Ann. Rheum. Dis.* **2000**, *59*, 626–630. [CrossRef] [PubMed]

48. Tanaka, K.; Miyake, Y.; Hanioka, T.; Arakawa, M. VDR gene polymorphisms, interaction with smoking and risk of periodontal disease in Japanese women: The Kyushu Okinawa maternal and child health study. *Scand. J. Immunol.* **2013**, *78*, 371–377. [CrossRef]