Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review

Cesar Aldeoça¹, Juan V. Llau², Xavier Nuvials³ and Antonio Artigas⁴*

Abstract

The endothelial glycocalyx comprises a complex layer of membrane-bound proteoglycans, secreted glycosaminoglycans, glycoproteins, glycolipids and bound plasma proteins such as albumin and antithrombin associated with the endothelial surface. The glycocalyx plays an important role in vascular homeostasis, regulating vascular permeability and cell adhesion, and acts as a mechanosensor for hemodynamic shear stresses; it also has antithrombotic and anti-inflammatory functions. Plasma proteins such as albumin are physiologically bound within the glycocalyx, thus contributing to stability of the layer. Albumin is the major determinant of plasma colloid osmotic pressure. In addition, albumin transports sphingosine-1-phosphate which has protective endothelial effects, acts as a free radical scavenger, and has immunomodulatory and anti-inflammatory effects. This review examines the physiological function of the endothelial glycocalyx and the role of human albumin in preserving glycocalyx integrity and the microcirculation.

Keywords: Endothelial cell, Glycocalyx, Albumin, Microcirculation, Sepsis

The endothelial glycocalyx

Composition and structure of the endothelial glycocalyx

The endothelial glycocalyx is a complex carbohydrate-rich gel-like layer lining the luminal surface of blood vessels [1]; it functions as a barrier between the blood and vessel wall [2, 3]. The glycocalyx layer is composed of membrane-bound proteoglycans, secreted glycosaminoglycans (GAGs), sialic acid-containing glycoproteins, and glycolipids associated with the endothelial surface (Fig. 1) [4]. The main proteoglycans of the endothelial glycocalyx are membrane-spanning syndecans and glycosylphosphatidylinositol-linked glypicans which carry the two main GAGs, heparan sulfate and chondroitin sulfate, through covalent attachment to the protein core. Syndecans carry both GAGs, while glypicans carry only heparan sulfate. Table 1 summarizes the characteristics of core proteoglycans in the glycocalyx [5]. A third major GAG, hyaluronan, is secreted by endothelial cells but is not covalently linked to a core protein; it binds to cell surface adhesion receptors such as CD44. Plasma proteins such as albumin and antithrombin are also bound within the glycocalyx [4, 6–9].

The term endothelial surface layer is sometimes used to describe the intimal surface of blood vessels comprising the endothelial glycocalyx and associated components derived from endothelial cells and plasma [3, 10]. The thickness of the glycocalyx/endothelial surface layer (Fig. 2) [11] varies depending on the method used for measurement [9]. Intravital microscopy and orthogonal polarization spectral imaging are techniques which indirectly measure the endothelial glycocalyx in vivo, and the glycocalyx can be measured indirectly ex vivo using microparticle image velocimetry. The glycocalyx can be measured directly in vitro using transmission electron microscopy, confocal laser scanning microscopy and atomic force microscopy, and ex vivo using two-photon laser scanning microscopy [12, 13]. In humans,
the mean microvascular glycocalyx thickness estimated using orthogonal polarization spectral imaging was about 0.5 µm (range 0.3 to 0.75 µm) [14].

Physiological function of the endothelial glycocalyx
The outermost layer of the microvasculature serves as a regulatory barrier of vascular permeability. It participates in mechanotransduction by sensing fluid shear forces and regulating the vascular tone. The endothelial glycocalyx, which has an important role in maintaining vascular homeostasis [9], also has several anti-adhesive and antithrombotic effects on the surface of endothelial cells and can protect endothelial cells from oxidative stress [3, 6–9, 15, 16].

Regulation of vascular permeability and barrier function
Starling’s original model of transvascular fluid exchange, which depends on a balance between hydrostatic and oncotic pressure gradients in semi-permeable capillaries, fails to explain the clinical responses observed after fluid
resuscitation. A revised Starling model, first proposed by Levick and Michel [17] which incorporates the effect of the endothelial glycocalyx, basement membrane and extracellular matrix on fluid exchange, provides a better explanation of fluid transvascular interchanges and a patient’s response to fluid resuscitation because the effect of the glycocalyx in reducing fluid extravasation was unknown. Consequently, in Starling’s original model, the observed extracellular volume distribution following fluid resuscitation was not predicted by the model [2, 16–19]. Starling’s original principle and the revised Starling equation and glycocalyx model are compared in Additional file 1: Table S1 [18] and shown in Fig. 3 [2].

The revised Starling model proposes that the endothelial glycocalyx is the key determinant of hydrostatic and oncotic pressure gradients between the capillary lumen and the interstitium. Important Starling forces are the transendothelial pressure difference \( (P_c - P_i) \) and colloid osmotic pressure difference between plasma and the subglycocalyx \( (\pi_p - \pi_{sg}) \). This oncotic pressure difference explains the failure of the interstitial protein concentration to influence fluid movement [2, 17, 18].

Under physiological conditions, the glycocalyx acts as a barrier against the shift of albumin and other circulating plasma components (mainly other proteins) across the endothelium [20, 21].

**Mechanosensory function**

Mechanical forces on endothelial cells generated by blood flow evoke biochemical responses that modulate endothelial structure and function through a process known as mechanotransduction. The glycocalyx acts as a cytoskeleton for endothelial cells. Mechanical distortion of 'bush-like' clusters of proteoglycans projecting from anchor points in the endothelial cell cytoskeleton generates forces which can deform the cytoskeleton. An associated increase in the expression of endothelial nitric oxide (NO) synthase catalyzes the production of NO, dilating vessels and reducing stress [2, 22, 23].

**Rheological function**

The glycocalyx has a vasculo-protective role by repelling red blood cells and by physically inhibiting the interaction of endothelial cell adhesion molecules (e.g., integrins and members of the immunoglobulin superfamily) with circulating platelets and leukocytes [9, 10].

**Anticoagulation function**

Several important anticoagulant mediators bind to GAGs located in the glycocalyx. These include antithrombin which binds via heparan sulfate to inhibit thrombin and activated factors IX and X; heparin cofactor II which is activated by dermatan sulfate; and tissue factor pathway inhibitor which binds via heparan sulfate to inhibit factors VIIa and Xa. Thrombomodulin, an endogenous anticoagulant produced by endothelial cells, interacts with thrombin to activate the protein C anticoagulant pathway [2].

**Protective function against free radicals**

Glycocalyx binding of enzymes such as extracellular superoxide dismutase protects endothelial cells against oxidative stress from reactive oxygen species (ROS) while maintaining NO availability, thus preventing endothelial dysfunction [9, 24].

**Physiological role of endogenous albumin**

Although albumin has a net negative charge, its amphoteric nature promotes tight binding to the glycocalyx with the net effect of reducing hydraulic conductivity across the vascular barrier, resisting glycocalyx degradation (i.e., protecting against shedding) and thereby contributing to maintenance of vascular integrity and normal capillary permeability, and facilitating transmission of shear stress [2, 15, 23, 25].

Under physiological conditions, the concentration of intravascular albumin is the major determinant of plasma colloid osmotic pressure [18].

Exposed thiol groups on the albumin molecule act as a scavenger for ROS such as superoxide \((\mathrm{O}_2^-)\) and hydroxyl \((\cdot\mathrm{OH})\) radicals and reactive nitrogen species, e.g., peroxynitrite radicals. Albumin has an additional anti-oxidant effect through binding to free copper ions \((\text{Cu}^{2+})\) which are known to accelerate the production of free radicals [26, 27].

Albumin also has immunomodulatory and anti-inflammatory effects through binding of bacterial products, modulation of antigen-presenting cell function,
modulation of cytokine production, and reducing hypoxia-inducible factor-1α gene expression which is upregulated in response to low oxygen concentrations [25].

Along with lipoproteins, albumin has an important role in delivering sphingosine-1-phosphate (S1P) to the endothelial cell surface where it functions in maintaining normal vascular permeability [28]. S1P protects endothelial cells by suppressing the activity of metalloproteinases, stabilizes the glycocalyx by reducing GAG degradation and shedding [21, 22], and regulates barrier function by modulating the expression of vascular endothelial-cadherin and β-catenin at endothelial cell–cell contact regions [29].

Post-translational modifications of human serum albumin include glycation, cysteinylation, S-nitrosylation, S-guaneryl and S-transnitrosation which can affect the binding of some exogenous drugs [30]. In addition, advanced glycation end (AGE)-modified albumin can induce proinflammatory signaling through activation of AGE receptors [31]. This was illustrated in a murine model of peritonitis and sepsis where administration of therapeutic infusion solutions containing high concentrations of AGE-modified albumin reduced survival [32].

### Alterations of the endothelial glycocalyx

#### Pathologies/interventions associated with glycocalyx alterations

Glycocalyx and endothelial cell damage, or endotheliopathy as it is known [33], occur in several clinical situations including ischemia–reperfusion injury, hypoxia/reoxygenation, inflammation, sepsis, hemorrhagic shock, hypervolemia, hyperglycemia, excessive shear stress and coronary artery bypass surgery [23, 34]. These injuries determine pathological changes in the endothelial glycocalyx such as impaired mechanotransduction, increased egress of leukocytes, loss of coagulation control, loss of anti-oxidant defense, loss of deposited growth factors, and increased vascular permeability (Fig. 4) [10, 35]. In a clinical context, disruption of the endothelial glycocalyx layer can lead to development of interstitial edema in some patients, notably those with inflammatory conditions such as sepsis [36].

#### Ischemia–reperfusion injury

Ischemia–reperfusion injury results in tissue damage following disruption of the glycocalyx [37]. Microvascular endothelial cell dysfunction produces organ dysfunction locally or systemically, including systemic inflammatory response syndrome [38]. Cardiac ischemia–reperfusion injury may occur during procedures such as coronary artery bypass grafting,

---

**Fig. 4** Pathologies/interventions associated with glycocalyx alterations. Reproduced with permission from [10]. ecSOD extracellular superoxide dismutase; MMP matrix metalloproteinase; NO nitric oxide. Sulodexide is a highly purified glycosaminoglycan mixture of low molecular weight heparin plus dermatan sulfate [30].
percutaneous coronary angioplasty, and heart transplant surgery [39], with cardiac surgery per se also producing glycocalyx damage [40].

Sepsis
Glycocalyx shedding is a feature of inflammation, trauma and sepsis, and is mediated by pro-inflammatory agents including tumor necrosis factor-α, C-reactive protein, adenosine, bradykinin, histamine, platelet-activating factor, and bacterial lipopolysaccharide. Glycocalyx shedding leads to increased vascular permeability, tissue edema and relative hypovolemia [41–43].

Many features of endothelial dysfunction in sepsis are shared with aging and with numerous chronic diseases such as hypertension, dyslipidemia, diabetes mellitus (DM), cardiovascular disease (CVD), cerebrovascular disease, chronic kidney disease (CKD), chronic pulmonary disease, liver disease, and cancer. Common features include glycocalyx degradation and shedding; increased oxidative stress and systemic inflammation; intercellular junction disassembly; endothelial cell death and blood–tissue barrier disruption; enhanced leukocyte adhesion and extravasation; and induction of procoagulant and antifibrinolytic pathways [43].

Hemorrhagic shock
Endothelial glycocalyx shedding has been shown in rodent models of hemorrhagic shock, although the underlying mechanism is unknown [44–46]. Recent results in rats subjected to non-traumatic hemorrhagic shock showed glycocalyx degradation, which was independent of increased vascular barrier permeability [46].

Hyperglycemia
Evidence from rodent models [47] and clinical studies in volunteers [48] suggests that acute and chronic hyperglycemia can cause glycocalyx damage. The link between DM and CVD is well established with CVD being the most common cause of morbidity and mortality in diabetic patients [49]. A role for heparan sulfates in the development of widespread vascular endothelial damage leading to albuminuria and associated complications in patients with type 1 DM was suggested by Deckert and colleagues who formulated the ‘Steno hypothesis’ which proposes that albumin leakage results from extensive vascular damage [50]. Exposure of vascular endothelial cells to hyperglycemia and advanced glycosylation end products causes glycocalyx disintegration with increased leukocyte egress and release of human protease activated receptor 2 agonists, together with endothelial NO synthase uncoupling, resulting in reduced NO availability and increased vascular permeability [51].

Other
High-density lipoprotein cholesterol (HDL-C) may have a role as a causal contributor to sepsis survival [52, 53]. Low HDL-C levels have been shown to be a strong predictor of organ dysfunction or death in patients with suspected sepsis [54]. As HDL-C is able to bind and sequester pathogenic lipids (e.g., endotoxins), its modification might be a novel therapeutic strategy for treating sepsis [55].

Potential effects of fluid therapy
Hypervolemia and type of fluid administered
A direct comparison of the hemodynamic effects of resuscitation fluids showed that colloids significantly increased plasma volume, cardiac index, and central venous pressure compared with crystalloids (p < 0.05), despite infusion of a higher volume of crystalloids (median 1800 vs 1500 mL) [55]. This is relevant because the duration of fluid infusion in fluid challenge significantly influences fluid responsiveness [56]. Fluid responsiveness does not equate with fluid requirement. Excess volume in the circulation is compensated by redistribution between stressed and unstressed volume and, in the worst cases, by a leak to the interstitial space worsening tissue oxygenation [57]. A recently reported randomized trial found no differences between a slow (180 min) or rapid (30 min) infusion of 5% albumin on plasma volume expansion in patients following major abdominal surgery, and the rapid infusion had no effect on vascular leak [59].

As the type of fluid infused has an important effect on the glycocalyx, differences between albumin and crystalloids on glycocalyx function have been described.

In in vivo experiments of anesthetized rats subjected to hemorrhagic shock followed by fluid resuscitation, administration of normal saline failed to restore endothelial glycocalyx thickness and plasma levels of syndecan-1 (indicating failure to repair the glycocalyx), leading to a marked increase in vascular permeability and leukocyte rolling/adhesion. In contrast, albumin stabilized permeability and leukocyte rolling/adhesion, effects which were comparable to fresh frozen plasma. Albumin partially restored endothelial glycocalyx thickness, and lowered plasma syndecan-1 to baseline levels [60].

A recent review of commonly used resuscitation fluids for use in the critically ill highlighted the need to consider not only the oncotic properties of a fluid, but also its relative ability to protect and restore the endothelial glycocalyx. In this regard, evidence from observational and pre-clinical in vitro and in vivo studies indicates that albumin and fresh frozen plasma are superior to crystalloids and artificial colloids [61], although prospective studies are needed to confirm these findings.
Markers of endothelial damage

Biomarkers of endothelial damage have been developed with most applied prognostically for conditions of systemic inflammation and sepsis [43, 62–71] (Box 1). In patients with septic shock, increased plasma angiopoietin-2 levels were associated with higher fluid overload, hepatic and coagulation dysfunction, acute kidney injury, mortality, and plasma cytokines, likely as the result of increased vascular leakage [72].

Assessment of glycocalyx damage using a variety of biomarkers has provided evidence of glycocalyx degradation in a range of clinical conditions including trauma, CKD, myeloid leukemia, acute decompensated heart failure, and Crohn’s disease [5].

### Box 1. Biomarkers of endothelial damage

| Function                                      | Biomarker                                      | Reference |
|-----------------------------------------------|------------------------------------------------|-----------|
| Markers of endothelial glycocalyx degradation | Urinary GAGs (heparan sulfate, chondroitin sulfate, hyaluronan and syndecan) | [62]      |
| Markers of endothelial cell activation        | Endocan                                        | [63]      |
| Cell adhesion molecules                       | Selectins                                       | [68]      |
| Vasoactive peptides                           | Mid-regional pro-adrenomedullin                | [69]      |
| Natural anticoagulants                        | Mid-regional pro-ANP                           | [70]      |
| Polypeptides with vasoconstrictor and vasoconstrictor activity | Thrombomodulin                                 | [70]      |
| Growth factors                                | Vascular endothelial growth factor (VEGF)      | [68]      |
| Vascular damage                               | Circulating endothelial cells                  | [71]      |

**ANP** atrial natriuretic peptide, **GAGs** glycosaminoglycans

Role of human albumin in maintaining glycocalyx integrity

Pre-clinical studies of the effect of human albumin on the glycocalyx and microcirculation

Pre-clinical studies which illustrate the mechanism of action of albumin, and its effects in models of hemorrhagic shock, endotoxemia, vascular permeability and ischemia are summarized in Table 2 [13, 14, 60, 73–87]. Results from in vitro, in vivo, and ex vivo experiments illustrate the multifunctional nature of albumin including maintaining glycocalyx integrity and partially restoring impaired vascular permeability via release of S1P from RBCs; anti-inflammatory and anti-oxidative effects; improvement of the microcirculation and hemodynamics following hemorrhagic shock or endotoxemia; and acting as an effective plasma volume expander.

Clinical studies on the effect of human albumin in the glycocalyx and microcirculation

A recent study of patients with septic shock (n = 30) reported that, compared with saline, albumin improved skin endothelial cell function, improving microcirculatory blood flow. These beneficial effects may be independent of the oncotic properties of albumin as neither cardiac output nor skin blood flow differed between albumin- and saline-treated patients [88].

Conclusions and expert opinion

The endothelial glycocalyx plays an important role in regulating vascular permeability. Glycocalyx and endothelial cell damage occurs in several clinical situations including sepsis, hemorrhagic shock, hypervolemia, and hyperglycemia. Albumin is physiologically bound within the glycocalyx, protecting against shedding and contributing to the maintenance of vascular integrity and normal capillary permeability. Owing to these properties, albumin has the potential to improve outcomes in clinical scenarios characterized by damaged glycocalyx. Based on our review and interpretation of the available literature, we provide an opinion on the most suitable applications for albumin and highlight areas which require additional research.

Monitoring the microcirculation and endothelial damage

Several techniques are available to monitor the microcirculation and endothelial damage. These include: intravital microscopy in in vivo animal models for visualization of vascular dynamic events such as microvascular permeability, vasotone and blood flow [89] or the glycocalyx [90, 91]; assessment of the microcirculation with potential to measure the glycocalyx in critically ill patients [92]; application of near-infrared spectroscopy to measure tissue oxygenation [93, 94]; measuring skin mottling over the anterior surface of the knee [94]; measuring microalbuminuria [95]; biomarkers of acute kidney injury [96]; measuring protein concentrations in alveolar fluid lavage; and hemostasis-related biomarkers, e.g., factor VIII, von Willebrand factor, International Normalized Ratio, partial thromboplastin time and platelet count.

Intravital microscopy using sidestream darkfield (SDF) imaging is a non-invasive method increasingly used to analyze the sublingual microcirculation. The technique visualizes erythrocytes within the microvasculature due
| Preclinical model                                                                 | Main findings                                                                                           | Reference |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|
| **Mechanism of action (MoA)**                                                    |                                                                                                         |           |
| Rat perfused venular microvessel                                                 | Primary MoA of albumin in maintaining vascular permeability is release of S1P from RBCs               | [73]      |
| Rat experimentally induced hypovolemic shock                                    | Albumin infusion partially restored the measured thickness of the endothelial glycocalyx and restored microvascular permeability. Restored permeability may be due to delivery of S1P to the endothelium and not wholly dependent on glycocalyx recovery | [74]      |
| In vitro human uterine vein endothelial cells exposed to LPS and TNF-α          | Human serum albumin (4%) inhibited inflammatory and oxidative stress pathways induced by endotoxins    | [75]      |
| In vitro model of inflammatory vascular injury using bovine aortic endothelial cells | Human serum albumin had modest intrinsic non-thiol-dependent anti-inflammatory effects                  | [76]      |
| In vitro artificial semipermeable membrane                                      | Albumin decreased water permeability of ultrafiltration membranes in a concentration dependent manner. Effects were mediated by plugging of the capillary pore and solute–solvent exchange at the capillary membrane surface | [77]      |
| Atomic force microscopy and reflectance interference contrast microscopy of bovine lung endothelial cells | Albumin (0.1% and 4%) increased the thickness and produced softening of the glycocalyx compared with 1% albumin. Albumin produced glycocalyx softening in a concentration-dependent manner | [13]      |
| **Models of hemorrhagic shock**                                                 |                                                                                                         |           |
| Anesthetized rats subjected to hemorrhagic shock                                | Albumin partially restored endothelial glycocalyx thickness and stabilized permeability and leukocyte rolling/adhesion | [60]      |
| Awake hamsters subjected to hemorrhagic shock                                   | Albumin improved the microcirculation in correcting metabolic disorders (improving arterial base excess and oxygen extraction ratio) more effectively than RBC infusion | [78]      |
| Rat intravital microscopy of the mesenteric microcirculation                    | Albumin improved microcirculation and global hemodynamics following hemorrhagic shock and attenuated the inflammatory response to reperfusion | [79]      |
| **Models of endotoxemia**                                                       |                                                                                                         |           |
| Mouse experimentally induced endotoxemia                                         | Human serum albumin (4%) increased survival of endotoxemic mice compared with saline                  | [75]      |
| Rat experimentally induced endotoxemia                                          | Human serum albumin (4% or 20%) increased perfused vessel density and blood flow velocity and decreased flow heterogeneity to control values | [80]      |
| Rat experimentally induced endotoxemia                                          | Albumin (20%) improved hemodynamic parameters and microcirculatory perfusion; association with recovery of some glycocalyx components | [81]      |
| **Models of vascular permeability**                                             |                                                                                                         |           |
| Ex vivo perfused isolated guinea pig heart                                      | HES infusion, but not albumin infusion, significantly decreased net coronary fluid filtration            | [82]      |
| Rat experimentally induced hemorrhage or sepsis                                 | Following hemorrhage or cecal ligation and incision, plasma volumes after albumin or crystalloid infusions were similar | [83]      |
| Ex vivo perfused isolated guinea pig heart                                      | Glycocalyx integrity was maintained with 1% human albumin and crystalloid, but functional breakdown of the vascular barrier was observed with 0.5% albumin and crystalloid | [84]      |
| Rat anaphylactic shock                                                           | Under conditions of increased microvascular permeability, albumin (5%) was the most effective plasma volume expander compared with gelatin (4%), HES (6%) or saline | [85]      |
| **Models of ischemia**                                                           |                                                                                                         |           |
| Ex vivo perfused isolated guinea pig heart                                      | Albumin was more effective than HES or saline in preventing cardiac fluid extravasation with ischemia–reperfusion injury | [86]      |
| Rat transient focal cerebral ischemia                                           | Compared with saline, albumin reperfusion had a neuroprotective effect, significantly increasing arteriolar diameter and improving venular and capillary erythrocyte perfusion with increased erythrocyte flow velocity | [87]      |

*HES hydroxyethyl starch; LPS lipopolysaccharide; MoA mechanism of action; RBC red blood cell; S1P sphingosine-1-phosphate; TNF-α tumor necrosis factor alpha*
to light emitted by a light emitting diode probe which is
reflected by hemoglobin and detected by a SDF camera
[97]. Total vessel density, perfused vessel density, propor-
tion of perfused vessels and microvascular flow index are
traditionally estimated by offline computer analysis
although, more recently, point-of-care approaches using
validated automated software platforms have been
described [98, 99]. SDF imaging detection of RBCs is
used as a marker of microvascular perfusion, and measure-
ment of the perfused boundary region (PBR) as an
indirect marker for endothelial glycocalyx barrier dimen-
sions. In a large study of overweight and obese individu-
als, the PBR and presence of RBCs in the microvascular
circulation were markedly associated [100]. Hand-held
intravital microscopy showed that sublingual microvas-
cular blood flow alterations are common in patients with
sepsis, with blood flow abnormality related to disease
severity [92, 101]. Furthermore, sublingual microvascular
glycocalyx is damaged in critically ill patients, espe-
cially those with sepsis [102, 103], but also after cardiac
surgery with cardiopulmonary bypass [104, 105] and in
emergency room and intensive care unit patients [106].
However, in patients with sepsis, there was no asso-
ciation of PBR and syndecan-1 values with established
microcirculatory parameters [102], likely indicating that
both alterations occur independently. These data should
be treated with caution as the reproducibility of three
sublingual microcirculation parameters (vascular den-
sity, RBC filling and PBR) estimated by SDF imaging is
controversial and large studies are required to achieve
statistically significant effects [107]. However, some stud-
ies have shown good reproducibility with the method if
consecutive measurements are averaged [106, 108, 109].
The accuracy of in vivo glycocalyx measurement has
been analyzed further with an in vitro approach using
atomic force microscopy [102, 110]. Consensus European
Society of Intensive Care Medicine guidelines provide 15
recommendations for acquisition and interpretation of
microcirculatory images obtained with hand-held vital
microscopes for assessment of the microcirculation in
critically ill patients [92].

According to our clinical and scientific judgement, bio-
markers of endothelial damage and/or evaluation of the
sublingual microcirculation may have a role in identifying
subgroups of patients at risk of morbidity and mortality.

We consider that albumin should be used in accepted
indications in which it has a proven positive risk:benefit
balance, mainly in septic patients (for initial resuscita-
tion after adequate crystalloid infusion and hypoalbumine-
mic septic shock), for burn shock resuscitation and fluid
maintenance, and in some cases of liver insufficiency.
The benefits of albumin may relate to its ability to restore
function to damaged glycocalyx, although further studies
are required to confirm this relationship and identify
thresholds for optimal benefit. The mechanism of action
of these restorative effects also needs to be elucidated.

Further research
As the lung and kidney are the organs most affected by
septic shock, pre-clinical investigation of the effects of
albumin on permeability disorders of these organs should
be conducted. The development of non-invasive imaging-
based analysis tools to assess changes in permeability,
diameter, and blood flow of vessels in response to specific
stimuli is beginning to benefit research in both pre-clin-
ical and clinical areas. It is likely that patients’ response
to albumin may differ depending on localization of the
blood vessel under investigation.

Detailed studies of the effect of albumin on oxidative
stress are required and could be assessed using in vitro
models (e.g., cultures of human endothelial cells and
glycocalyx components), as these are more reproducible
than pre-clinical animal studies.

The main objective of clinical studies of albumin
should not be to evaluate its effect on overall mortality,
but rather on more specific endpoints such as organ dys-
function. Investigating the economic impact of albumin
and its long-term consequences is also advised. Studies
should accrue biological information, i.e., justification for
the selected objectives. Smaller studies with homogene-
ous populations are preferred to large multicenter studies
of patients with clinical heterogeneity.

In summary, additional research needs to be conducted
to clarify the role of albumin as a protector or restorer of
damaged glycocalyx, with the aim of identifying clinical
applications.

Supplementary information
Supplementary information accompanies this paper at https://doi.
gen/10.1186/s13613-020-00697-1.

Additional file 1: Table S1. Comparison of Starling's original principle
and the revised Starling equation and glycocalyx model. Adapted from
[18].

Acknowledgements
Writing assistance was provided by Rob Furlong and Kerry Dechant on behalf
of Content Ed Net (Madrid, Spain) with funding from Grifols S.A. (Barcelona,
Spain). Grifols is a manufacturer of albumin.

Authors’ contributions
All authors contributed to writing and editing the manuscript. All authors read
and approved the final manuscript.

Funding
Funding received from Grifols.

Availability of data and materials
Not applicable.
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Cesar Aldecoa has received payment for lectures and travel expenses from Fresenius, and Octapharma. Juan V Llau has received payment for lectures or participation in educational activities, or travel expenses from Cardinal, CSL Behring, Pfizer, Octapharma, Rovi, Sanex, and Wpr Pharma. Xavier Nuals has received payment for lectures, and travel expenses from Astellas, Gilead, MSD, and Pfizer. Antonio Artigas has received research grants from Fisher & Paykel, Grifols, and Hill-Rom; has participated in scientific advisory boards for Global Sepsis Alliance, Grifols, and Lilly Foundation; has received payment for lectures or participation in educational activities from Astute, Edwards, and Grifols.

Author details
1 Department of Anaesthesiology and Surgical Critical Care, Hospital Universitario Rio Hortega, c/Dulzaina 2, 47012 Valladolid, Spain. 2 Department of Anaesthesiology and Surgical Critical Care, Hospital Universitario Dr. Peset, Universitat de València, c/Gaspar Aguilar 90, 46017 Valencia, Spain. 3 Intensive Care Unit, and SCODIR Research Group, Vall d’Hebron Institut de Recerca (VHIBR), Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain. 4 Critical Care Center, Corporacion Sanitaria Universitaria Parc Taulí, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Parc Taulí 1, 08028 Sabadell, Spain.

Received: 17 January 2020 Accepted: 5 June 2020
Published online: 22 June 2020

References
1. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67. https://doi.org/10.1146/annurev.bioeng.9.060906.151959.
2. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69:777–84. https://doi.org/10.1111/anae.12661.
3. Sieve I, Münster-Kühnel AK, Hilfler-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol. 2018;100:26–33. https://doi.org/10.1016/j.vph.2017.09.002.
4. Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105:687–701. https://doi.org/10.1007/S00395-010-0118-Z.
5. Uchimido R, Schmidt EP, Shapiro NL. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019;23:16. https://doi.org/10.1186/s13054-018-2292-6.
6. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210. https://doi.org/10.1093/cvr/cvq082.
7. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94. https://doi.org/10.1093/bja/aer515.
8. Ferrer R, Mateu X, Mesa de E, Vilabois JC, Aldecoa C, De Haro C, Ruiz-Rodriguez JC, Gamacho-Montero J. Non-organic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert Rev Clin Pharmacol. 2018;11:125–37. https://doi.org/10.1080/17425255.2017.135125.
9. Behrouzi, Egan T, Baranov, A, Dull RO. The biomechanical effects of resuscitation colloids on the compromised lung endothelial glycocalyx. Anesth Analg. 2016;123:382–93. https://doi.org/10.1213/ane.0000000000001284.
10. Nieuwdorp M, Meeuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, Stroes ES, Vink H. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol. 1985;80(104):845–52. https://doi.org/10.1152/japplphysiol.00440.2007.
11. Cesar Aldecoa, D. Chappell, D. Bruegger, D. Annecke T. Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87:300–10. https://doi.org/10.1093/cvr/cvq137.
12. Kang H, Deng X. The endothelial glycocalyx: visualization and measurement. J Biomed. 2017;2:120–3. https://doi.org/10.7150/bjm.20986.
13. Job KM, O’Callaghan R, Hlady V, Baranovana A, Dull RO. The biomechanical effects of resuscitation colloids on the compromised lung endothelial glycocalyx. Anesth Analg. 2016;123:382–93. https://doi.org/10.1213/ane.0000000000001284.
14. Nieuwdorp M, Meeuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, Stroes ES, Vink H. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol. 1985;80(104):845–52. https://doi.org/10.1152/japplphysiol.00440.2007.
15. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87:300–10. https://doi.org/10.1093/cvr/cvq137.
16. Chignalia AZ, Yetimakman F, Christiaans SC, Unal S, Bayrakci B, Wagener BM, Russell RT, Kerby JD, Pittet JF, Dull RO. The glycocalyx and trauma: implications. Anesth Analg. 2016;123:382–93. https://doi.org/10.1213/ANE.0000000000001284.
17. Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Vasc Res. 2014;51:289–95. https://doi.org/10.1080/1741826711398179.
18. Evans TW. Review article: albumin as a drug—biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther. 2002;16(Suppl 5):6–11. https://doi.org/10.1046/j.1365-3036.2002.00190.x.
19. Lee P, Wu X. Review: modifications of human serum albumin and AGE receptors. Adv Clin Chem. 2015;72:205–75. https:// doi.org/10.1016/ba.2015.07.005.
32. Humpert PM, Lukic IK, Thorpe SR, Hofer S, Awad EM, Andramy S, Deemer ER, Kasper M, Schlescher E, Schwaninger M, Weigand MA, Navrath P, Bierhaus A. AGE-modified albumin containing infusion solutions boosts sepsis and inflammation in experimental peritonitis. J Leukoc Biol. 2009;86(5):589–97. https://doi.org/10.1189/jlb.0809464.

33. Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness—a unifying pathophysiologic mechanism. Crit Care. 2017;21:25. https://doi.org/10.1186/s13054-017-1605-5.

34. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth. 2017;119:69–79. https://doi.org/10.1093/bja/aes171.

35. Lauver DA, Lucchesi BR. Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev. 2006;24:214–26. https://doi.org/10.1007/s11228-006-0022-4.

36. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2007;357:1911–1918. https://doi.org/10.1056/NEJMe071911.

37. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2007;357:1911–1918. https://doi.org/10.1056/NEJMe071911.

38. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190:255–66. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH725>3.0.CO;2-J.

39. Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006;101:359–72. https://doi.org/10.1007/s00395-006-0615-2.

40. Bruegger D, Rehm M, Abicht J, Paul JO, Stoeckelhuber M, Pfirrmann M, Zlotnikov I, Gisselbrecht B, Bentzer P. Albumin infusion rate and plasma volume expansion: a randomized clinical trial in postoperative patients after major surgery. Crit Care. 2019;23:191. https://doi.org/10.1186/s13054-019-2477-7.

41. Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. Crit Care. 2017;21:160. https://doi.org/10.1186/s13054-017-1745-7.

42. Milford EM, Reade MC. Resuscitation fluid choices to preserve the glycocalyx. JAMA. 2018;319:71–2. https://doi.org/10.1001/jama.2017.11801.

43. Bermejo-Martin JF, Martin-Fernandez M, Lopez-Mestanza C, Duque P, Almanza R. Shared features of endothelial dysfunction between sepsis and its preceding risk factors (aging and chronic disease). J Clin Med. 2018. https://doi.org/10.3390/jcm7110400.

44. Golforsky MS. Vascular endothelium in diabetes. Am J Physiol Renal Physiol. 2017;312:F266–75. https://doi.org/10.1152/ajprenal.00473.2016.

45. Trinder M, Genga KR, Kong HJ, Blauw LL, Lo C, Li X, Cirstea M, Wang Y, Rensen PCN, Russell JA, Walley KR, Boyd JH, Brunham LR. Cholesterol ester transfer protein influences high-density lipoprotein levels and survival in sepsis. Am J Respir Crit Care Med. 2019;199:854–62. https://doi.org/10.1164/rccm.201806-117OC.

46. Jones TK, Wong HR, Meyer NJ. HDL cholesterol: a ‘pathogen lipid sink’ for sepsis? Am J Respir Crit Care Med. 2019;199:812–4. https://doi.org/10.1164/rccm.201911-2084ED.

47. Cirstea M, Walley KR, Russell JA, Brunham LR, Genga KR, Boyd JH. Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis. J Crit Care. 2017;38:289–94. https://doi.org/10.1016/j.jcrc.2016.11.041.

48. van der Heijden M, Verheij J, van Nieuw Amerongen GP, Groeneveld AB. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med. 2009;37:1275–81. https://doi.org/10.1097/CCM.0b013e31819cedfd.

49. Toscani L, Aya HD, Antonakaki D, Bastoni D, Watson X, Arulkumaran N, Rhodes A, Cecconi M. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017;21:207. https://doi.org/10.1186/s13054-017-1796-9.

50. Funk DJ, Jacobsohn E, Kummer A. The role of venous return in critical illness and shock-part I: physiology. Crit Care Med. 2013;41:255–62. https://doi.org/10.1097/CCM.0b013e3182772ab6.

51. Spiegel R. Stressed vs. unstressed volume and its relevance to critical care practitioners. Clin Exp Emerg Med. 2016;3:52–4. https://doi.org/10.15444/ceem.16.128.

52. Stakheevic S, Bonnevie J, Fisher J, Bark BP, Larsson E, Øberg CM, Tingstedt B, Bentzer P. Albumin infusion rate and plasma volume expansion: a randomized clinical trial in postoperative patients after major surgery. Crit Care. 2019;23:191. https://doi.org/10.1186/s13054-019-2477-7.

53. Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. Crit Care. 2017;21:160. https://doi.org/10.1186/s13054-017-1745-7.

54. Milford EM, Reade MC. Resuscitation fluid choices to preserve the endothelial-glycocalyx. Crit Care. 2019;23:77. https://doi.org/10.1186/s13054-019-2369-x.

55. Schmidt EP, Overdier KH, Sun X, Lin L, Liu X, Yang Y, Ammons LA, Hiller BC, Sufita MA, Yu Y, Chen Y, Zhang F, Cothren Burke CL, Edelstein CL, Douglas IS, Linhardt RJ. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2016;194:439–49. https://doi.org/10.1164/rccm.201511-2281OC.

56. Hsiao SY, Kung CT, Tsai NW, Su CM, Huang CC, Lai YR, Wang HC, Cheng BC, Su YJ, Lin WC, Chiang YF, Lu CH. Concentration and value of endothelial microparticles in critically ill patients after systemic inflammatory response syndrome. Crit Care Med. 2016;194:439–49. https://doi.org/10.1164/rccm.201511-2281OC.

57. Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, Himmelfarb J, Liles WC, Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit Care Med. 2011;39:702–10. https://doi.org/10.1097/CCM.0b013e3182e6d285.

58. Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, Himmelfarb J, Liles WC, Wurfel MM. Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLoS ONE. 2015;10:e0141251. https://doi.org/10.1371/journal.pone.0141251.

59. Mikacenic C, Price BL, Harju-Baker S, O'Mahony DS, Robinson-Cohen C, Radella F, Hahn WO, Katz R, Christiani DC, Himmelfarb J, Liles WC, Wurfel MM. A two-biomarker model predicts mortality in the critically ill with sepsis. Am J Respir Crit Care Med. 2017;196:1004–11. https://doi.org/10.1164/rccm.201611-237OC.

60. Reilly JP, Wang F, Jones TK, Palakashappa JA, Anderson BJ, Shashaty MGS, Dunn TG, Johansson ED, Riley TR, Lim B, Abbott J, Tinner CAG, Cantu E, Lin X, Mikacenic C, Wurfel MM, Christiani DC, Calfee CS, Matthy MA, Drepper J, Jiang J, Jiang H, Zhang F, Cothren Burke CL, Edelstein CL, Douglas IS, Linhardt RJ. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2016;194:439–49. https://doi.org/10.1164/rccm.201511-2281OC.
Aldecoa et al. Ann. Intensive Care  (2020) 10:85

Christie JD, Feng R, Meyer NJ. Plasma angiopeptin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med. 2018;44:1849–58. https://doi.org/10.1007/s00134-018-5528-0.

68. Paulus P, Lennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can we help you deciphering systemic inflammation and sepsis? Biomarkers. 2011;16(Suppl 1):S1-11. https://doi.org/10.3109/1354750X.2011.587893.

69. Andaluz-Ojeda D, Nguyen HB, Meunier-Beillard N, Cicuéndez R, Quenot JP, Calvo D, Dargent A, Zarca E, Andréis C, Nogales L, Eiros JM, Tamayo E, Bermejo-Martín JF, Charles PE. Superior accuracy of mid-regional proadrenomedullin for mortality prediction in sepsis with varying levels of illness severity. Ann Intensive Care. 2017;7:15. https://doi.org/10.1186/s13613-017-0238-9.

70. Walczak M, Suraj K, Kaj K, Zakrzewska A, Chlopicki S. Towards a comprehensive endothelial biomarkers profiling and endothelium-guided pharmacotherapy. Pharmacol Rep. 2015;67:771–7. https://doi.org/10.1016/j.pharep.2015.06.008.

71. Burger D, Touyz RM. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J Am Soc Hypertens. 2012;6:85–99. https://doi.org/10.1016/j.jash.2011.11.003.

72. Fisher J, Douglas JJ, Linder A, Boyd JH, Walley KR, Russell JA. Elevated plasma angiopeptin-2 levels are associated with fluid overload, organ dysfunction, and mortality in human septic shock. Crit Care Med. 2016;44:2018–27. https://doi.org/10.1097/CCM.0000000000001853.

73. Adamson RH, Clark JF, Radeva M, Kheirolomoom A, Ferrara KW, Curry FE. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. Am J Physiol Heart Circ Physiol. 2013;306:H1011–7. https://doi.org/10.1152/ajpheart.00006.2016.

74. Torres Filho IR, Torres LN, Salgado C, Dubick MA. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am J Physiol Heart Circ Physiol. 2016;310:H1468–78. https://doi.org/10.1152/ajpheart.00006.2016.

75. Kremer H, Baron-Menguy C, Tesse A, Gallois Y, Mercat A, Henrion JP, Calvo D, Andriantsitohaina R, Asfar P, Meziani F. Human serum albumin improves endothelial dysfunction and survival during experimental endotoxemia: concentration-dependent properties. Crit Care Med. 2011;39:1414–22. https://doi.org/10.1097/CCM.0b013e318211f67a.

76. Lang JD Jr, Figueroa M, Chumley P, Aslan M, Hurt J, Tarpey MM, Alvarez B, Bodi N, Dumas G, Baudel JL, Maury E, Guedt B, Ait-Oufella H. Albumin infusion improves endothelial function in septic shock patients: a pilot study. Intensive Care Med. 2018;44:669–71. https://doi.org/10.1007/s00137-018-5075-2.

77. Honkura N, Richards M, Lavína B, Sáinz-Jaspeado M, Betsholtz C, Claesson-Welsh L. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat Commun. 2018;9:2746. https://doi.org/10.1038/s41467-018-04929-8.

78. Margraf A, Herter JM, Kühne K, Stadtmann A, Ermert T, Wenk M, Meersch M, Van Aken H, Zarbock A, Rossaint J. 6% Hydroxyethyl starch (HES 130/0.4) diminishes glycocalyx degradation and decreases vascular permeability during systemic and pulmonary inflammation in mice. Crit Care. 2018;22(1):111. https://doi.org/10.1186/s13054-017-1846-3.

79. Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, Ravenstäd H, Rovas A, Hesse B, Goerge T, Kumpers P. Endothelial glycocalyx breakdown is mediated by angiopeptin-2. Cardiovasc Res. 2017;113(6):671–80. https://doi.org/10.1093/cvr/cvx023.

80. Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, Pinsky MR, Artigas A, Teboul JL, Reiss K, Aldecoa C, Huchtings SD, Donati A, Maggioni M, Taccone FS, Hernandez G, Payen D, Tibboel D, Martin DS, Zarbock A, Monnet X, Dubin A, Bakker J, Vincent JL, Scheeren TWL. Cardiovascular Dynamics Section of the ESICM. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–99. https://doi.org/10.1007/s00137-018-5070-7.

81. Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 2001;11:213–22. https://doi.org/10.1034/j.1600-0838.2001.110404.x.

82. Charlton M, Sims M, Coats T, Thompson JP. The microcirculation and its measurement in sepsis. Intensive Care Soc. 2017;18:221–7. https://doi.org/10.1177/175143716678638.

83. Redon J. Measurement of microalbuminuria—which the nephrologist should know. Nephrol Dial Transplant. 2006;21:573–6. https://doi.org/10.1093/ndt/gfl014.

84. Kashani K, Al-Khafaji A, Aridles T, Artigas A, Baghav SM, Bell M, Bhora C, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Fori LN, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmelé T, Shapper N, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkenon RG, Zacharowski K, Kellum JA. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(2):R32. https://doi.org/10.1186/cc12503.

85. Goedhart PT, Khalilzada M, Bezemier M, Merja Z, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring imaging imaging
modality for clinical assessment of the microcirculation. Opt Express. 2007;15(23):15101–14. https://doi.org/10.1364/oe.15.015101.

98. Tanaka S, Harrois A, Nicolai C, Flores M, Hamada S, Vicaut É, Duranteau J. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care. 2015;19:358. https://doi.org/10.1186/s13054-015-1106-3.

99. Naumann DN, Mellis C, Hosheer SL, Hopkins R, Bishop J, Midwinter MJ, Hutchings SD. Real-time point of care microcirculatory assessment of shock: design, rationale and application of the point of care microcirculation (POEM) tool. Crit Care. 2016;20(1):310. https://doi.org/10.1186/s13054-016-1492-1.

100. Lee DH, Danil, van den Berg BM, Boels MG, van Teeffelen JW, de Mutsert R, den Heijer M, Rosendaal FR, van der Vlag J, van Zonneveld AJ, Vink H, Reberink TJ, NEO study group. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS ONE. 2014;9:e96477. https://doi.org/10.1371/journal.pone.0096477.

101. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. https://doi.org/10.1164/rccm.200109-016oc.

102. Rovas A, Seidel LM, Vink H, Plokkötter T, Pavenstädt H, Kümpers P. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care. 2019;23:260. https://doi.org/10.1186/s13054-019-2542-2.

103. Donati A, Damiani E, Domizi R, Romano R, Adrario E, Belaia P, Ince C, Singer M. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc Res. 2013;90:86–9. https://doi.org/10.1016/j.mvr.2013.08.007.

104. Koning NJ, Vonk AB, Vink H, Boer C. Side-by-side alterations in glycocalyx thickness and perfused microvascular density during acute microcirculatory alterations in cardiac surgery. Microcirculation. 2016;23(1):69–74. https://doi.org/10.1111/micc.12260.

105. Dekker NAM, Veerhoek D, Koning NJ, van Leeuwen ALJ, Elbers PWG, van den Bree ME, van den Bree ME, van den Bree ME, van den Bree ME. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesiology. 2019;74:609–18. https://doi.org/10.1111/anae.14577.

106. Rovas A, Lukasz AH, Vink H, Urban M, Sackarnd J, Pavenstädt H, Kümpers P. Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit - the GlycoNurse study. Scand J Trauma Resusc Emerg Med. 2018;26:16. https://doi.org/10.1186/s13054-018-0483-4.

107. Vink H, Peters RJ, Zwinderman AH, Pinto-Sietsma SJ. Reproducibility of sublingual microcirculation parameters obtained from sidestream darkfield imaging. PLoS ONE. 2019;14(3):e0213175. https://doi.org/10.1371/journal.pone.0213175.

108. Weissgerber TL, Garcia-Valencia O, Milic NM, Codi E, Cubro H, Rath MG, White-WM, Rath KA, Garovic VD. Early onset preeclampsia is associated with glycocalyx degradation and reduced microvascular perfusion. J Am Heart Assoc. 2019;8(4):e0186647. https://doi.org/10.1161/JAHA.118.010647.

109. Bol ME, Beurskens DMH, Delnoij TSR, Reutelingsperger CPJ, Delhaas T, Van de Poll MCG, Sels JEM, Nicolaes GA. Variability of microcirculatory measurements in critically ill patients. Shock. 2019. https://doi.org/10.1097/SHK.0000000000001470 (Epub ahead of print).

110. Drost CC, Rovas A, Kusche-Vihrog K, Van Slyke P, Kim H, Hoang VC, Maynes J, Wemmann DO, Pavenstädt H, Linke W, Lukasz A, Hesse B, Kumpers P. Tie2 activation promotes protection and reconstitution of the endothelial glycocalyx in human sepsis. Thromb Haemost. 2019;119(11):1827–38. https://doi.org/10.1055/s-0039-1695786.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.