Performance Enhancement of Microstrip UWB Patch Antenna with SRR for Wireless Body Area Networks

S. Sessa Vidhya, D. Rukmani Devi, K.G. Shanthi, S. Venkatesan

Abstract—This paper presents a square shape Split Ring Resonator (SRR) loaded with micro strip patch antenna operating in UWB (Ultra Wide Band) range (3.1GHz -10.6GHz) for Bio-medical applications. The Ultra-Wideband is a wireless technology which is used to send large data over a wide range of frequencies by using very narrow pulses at low PSD (Power Spectral Density). UWB provides wireless transmission of audio, video and data with wide bandwidth. The proposed antenna specifically operates at 4.1GHz and is designed on a 23.19mm x 23.19mm x 1.35mm board of Arlon AD1000 substrate. This SRR antenna has been simulated using High-Frequency Structure Simulator (HFSS) software. The results show enhanced performance in terms of high gain, return loss (<10dB), Voltage Standing Wave Ratio (VSWR)<2, low Specific Absorption Rate (SAR), high Directivity, high radiation Efficiency.

Keywords— PSD (Power Spectral Density), SRR (Split Ring Resonator), UWB (Ultra-Wideband), WBAN (Wireless Body Area Networks), SAR (Specific Absorption Rate).

I. INTRODUCTION

In the recent years, the Wireless Body Area Networks (WBAN) field has grown extensively, sustaining an outsized number of applications, including custom-made health care systems, patient monitoring systems, rescue systems etc.,

Several frequency bands have been allocated by FCC (Federal Communications commission) to commercialize WBAN communication systems, which include the Medical Implantable Communication Systems band (402–405 MHz), Industrial Scientific Medical (ISM) band (2.40–2.48 GHz), and UWB (3.1GHz -10.6GHz). For best possible performance, the antennas intended for WBAN applications are required to be compact, lightweight, low power consumption, mechanically robust, and preferably comfortable while being worn [1].

The performance of an antenna may demean drastically while working in close proximity with the human body. Due to the near field coupling with the body, antenna’s surface currents may be affected which in turn affects the impedance matching of the antenna. Exclusively, for narrowband operation, the main cause of the body proximity is a shift of the resonance frequency. This causes a mismatch at the intended frequency of operation resulting in a considerable degradation of the total radiation efficiency (Power radiated/Power incident). Designing a short band wearable antenna with a high radiation efficiency is a tough task, as it is expected to have low profile, low power consumption, lightweight and conformal characteristics.

UWB technology has gained enormous recognition in recent research and industrial areas due to its higher data rate wireless communication capability. The performance of body worn antennas is of greater concern in terms of maximum allowable Specific Absorption Rate (SAR) parameter.

II. BACKGROUND

A compact EBG-backed planar monopole antenna [2] designed on a 68 x 38 x1.57 mm3 board of semiflexible RT/Duroid 5880 substrate, operating at 2.45 GHz in ISM band which yields 6.88 dBi as gain and SAR of 0.244W/Kg is presented.

Disc-Like Antenna [3] for Body-Centric Communication operating at 61 GHz, with a size of (5x200x200) mm3 is depicted by Jan Puskely et al., that was not comfortable to wear due to its size, had lower efficiency of 25% and gain of 5.2dB. The slotted patch antenna [4] operating in Ultra Wide Band (UWB) frequency band was portrayed. It offered a bandwidth of more than 2GHz and reflection coefficient of less than -10dB. But designed to operate only in lower abdominal region. The 40 x 40 x 1.44mm3, Micro strip Line fed antenna [5] operating at 5.93GHz with FR4 as substrate has been presented with higher fidelity and lower sensitivity to angular misalignment. But it had size constraints and restrictions on data exchange capacity.

Wireless performance evaluation of Off-body antenna in a housing environment [6] operating at 2.4GHz is presented. The size of the antenna is too big to be considered as wearable device. The reconfigurable wearable antenna [7] is designed at 2.4GHz, fabricated on textile material.
A shoelace antenna [8] is portrayed for Blind people to avoid collision. The loosening and tightening influences the performance of an antenna and resonates at 2.43 GHz.

The Flower shaped patch [9] structured antenna with two ports and four capacitive coupled feeds is presented. A Cavity structure was introduced to improve gain of the antenna. One of the most important elements of meta-material is the split ring resonator [10] to attain negative permeability in a certain frequency range. Marques et al.,[11] proved that an edge and broadside attached split ring resonators can be used for the design of small antennas for RF and wireless communication systems.

In this paper, we present the design of a square shape Split Ring Resonator (SRR) loaded with micro strip patch antenna operating at 4.1 GHz. The main purpose of this design is to enhance the gain, directivity which in turn enhances the radiation efficiency of the antenna and also to minimize the SAR.

The paper is ordered as follows; Third section represents the design and structure of Antenna. Fourth section presents the simulated output and analysis. Finally, the conclusion is presented in fifth section.

III. ANTENNA DESIGN AND STRUCTURE

The antennas designed for bio medical applications should have a substrate with relative permittivity ranging between 2.15-12.8. To meet this specification, the following materials can be used for bio medical applications such as FR4(4.4), Cotton (1.5), RT Duroid (2.2), Arlon (10.2).

First a square CRR (Closed Ring Resonator) loaded on the Microstrip patch antenna is designed using Arlon AD1000 as substrate that has a relative permittivity of 10.2. This CRR Microstrip patch antenna is designed using HFSS software to operate at 4.1GHz and has overall dimensions of 23.19mm x 23.19mm x 1.35mm. The antenna with CRR is depicted in Figure.1. The simulated results of CRR antenna are as follows: Gain of 8.5dB, VSWR of 1.89, Return Loss of -12.15dB, Directivity of 8.14, SAR of 0.178 and Efficiency of 95.76%.

To improve the performance of the patch antenna with the same specifications and dimensions, the Split Ring Resonator (SRR) is loaded on one part of the antenna. The resulting capacitance effect due to SRR allows the alternating current to pass. The SRR loaded with micro strip patch antenna operating at 4.1 GHz is shown in figure 2.

As the size of the proposed SRR antenna is much less when correlated with EBG structure [2] antenna, it is more compact to wear. The type of the feed used in this antenna is microstrip feed that offers good input impedance. The added advantage is that it also allows the current to be dominant at the mid area and least at the corners.

IV. SIMULATION AND ANALYSIS

The proposed SRR antenna is simulated using HFSS and its performance is analyzed in terms of the free space parameters. The return loss (S_{11}) response of the antenna designed antenna with SRR is presented in Figure 3. It is experiential that SRR antenna resonates at 4.1 GHz with a return loss of -11.7 dB.

The ground length (L_g) is 33.25mm and its width (W_g) is 33.25mm. The length of the substrate (L_s) is 23.19mm and width of the substrate is (W_s) is 23.19mm. The height of the antenna is 1.35mm. The patch length (L_p) is 15.19mm and the patch width (W_p) is 15.19mm. The feed length (L_f) is 4.1mm, the feed width (W_f) is 5mm.

The gain of the designed antenna is 8.9 dB when operated at 4.1GHz as portrayed in figure 4. The directivity of this antenna is 8.7dB as depicted in Figure 5.
The radiation efficiency of the antenna is found to be 97.75%. The VSWR of the antenna is found to be 1.69 at 4.1GHz as shown in Figure 6.

The SAR value of proposed antenna is 0.163W/Kg over a volume of 1 g of tissue as shown in figure 8.

Table- I: Comparison of Performance Metrics

Antenna Parameters	With CRR	With SRR
Gain	8.5dB	8.9Db
VSWR	1.89	1.69
Return Loss	-12.15 dB	-11.7 dB
Directivity	8.14	8.7
SAR	0.178	0.163
Efficiency	95.76%	97.75%

V. CONCLUSION

This paper elucidates the design of square SRR antenna for Bio-medical applications. The performance metrics of square SRR antenna is compared with a square CRR antenna. The proposed SRR antenna yielded a gain of 8.9dB, efficiency of 97.75% and SAR of 0.163W/Kg over a volume of 1 g of tissue. The compact size and less back radiation of the proposed SRR antenna permits it to be more appropriate for wearable Bio-medical applications.

REFERENCES

1. S. Sesha Vidhya, S. Rukmani Devi and K. G. Shanthi, "Design Trends in Ultra Wide Band Wearable Antennas for Wireless On-Body Networks", ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 9, May 2017 ISSN 1819-6608.
Performance Enhancement of Microstrip UWB Patch Antenna with SRR for Wireless Body Area Networks

2. Muhammad Ali Babar Abbasi, Symeon (Simos) Nikolaou, Marco A. Antoniadis, Marija Nikolić Stevanović and Photos Vryonis, “Compact EBG-Backed Planar Monopole for BAN Wearable Applications”, IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, February 2017.

3. Jan Puskely, Michal Pokorny Jaroslav Lacik, and Zbynek Raida, “The Wearable Disc-Like Antenna for Body-Centric Communication”, IEEE Antennas and Wireless Propagation Letters, Vol. 14, 2015.

4. Enrique Micles, Carlos Andreu, Marta Cabedo-Frärés, Miguel Ferrando-Bataller and Jose F. Monserr, “UWB on-body Slotted Patch Antennas for In-Body Communications”, IEEE 2017, 11th European Conference on Antennas and Propagation (EUCAP).

5. Akash Biswas, Akib Jayed Islam, Abdullah Al-Faruk and Sadman Shahriar Alam, “Design and Performance Analysis of A Microstrip Line-fed On-body Matched Flexible UWB Antenna for Biomedical Applications”, IEEE International Conference on Electrical, Computer and Communication Engineering (ECCE), February 16-18, 2017, Cox’s Bazar, Bangladesh.

6. Sema Dumanli, Lawrence Sayer, Evangelos Mellios, Xenofon Fafoutis, Member, IEE, Geoffrey S. Hilton, and Ian J. Craddock, Fellow, IEE, “Off-Body Antenna Wireless Performance Evaluation in a Residential Environment”, IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, November 2017.

7. Sen Yan and Guy A. E. Vandenbosch, Fellow, IEE, “Radiation Pattern-Reconfigurable Wearable Antenna Based on Metamaterial Structure”, IEEE Antennas and Wireless Propagation Letters, Vol. 15, 2016.

8. Gaosheng Li, Zhihao Tian, Gui Gao, Liang Zhang, Meng Fu, and Yuwei Chen, “A Shoelace Antenna for the Application of Collision Avoidance for the Blind Person”, IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, September 2017.

9. R. Soorya and K. Ramprakash, “UWB Microstrip Patch Antenna with Flower shaped patch and Cavity Structure”, IEEE WISPNET 2016 Conference.

10. J.B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transaction Microwave Theory Tech., Vol. 47, 2075-2084, 1999.

11. R. Marques, F. Mesa, J. Martel, and F. Median, “Comparative analysis of Edge and Broadside coupled Split ring Resonators for metamaterial design,” IEEE Transactions on Antennas and Propagation, Vol. 51, 2572-2581, 2003.

AUTHORS PROFILE

S. Sesha Vidyha obtained her B.E degree from University of Madras in the year 2000, M.E degree in Applied Electronics from Anna University in the year 2007 and she is currently pursuing Ph.D in the field of Antennas at Anna University. She has 17 years of teaching experience. She is working as Associate Professor in the Department of Electronics Communication and Engineering, Chennai. She has published 14 research papers in National/International Journal and Conferences. She filed one Patent. She is a member of ISTE (Indian Society for Technical Education), ISRD (International Association of Engineers), IACSIT (International Association of Computer Science and Information Technology) and NSPE (National Society of Professional Engineers). She has received Dr. APJ Abdul Kalam Award for Teaching Excellence in the year 2017 from Marina Labs, Chennai. Her area of interest is Antenna Design and Wireless Sensor Networks for Bio-medical applications.

Dr. Rukmani Devi obtained her B.E degree from Bharathiyar University in the year 1992, M.E degree from Anna University in the year 2006 and Ph.D from Anna University in the year 2013. She has 25 years of teaching experience in both Undergraduate and Postgraduate level. She is working as Professor in the Department of Electronics and Communication Engineering, Chennai. She has published 24 research papers in National/International Journal and Conferences. She is guiding 13 Ph.D research scholars. One candidate has completed Ph.D under her supervision. Her areas of interest include VLSI, Embedded, image and video processing and networks. She has published papers in ten international journals. She has published books on VLSI Design, Embedded and Real time systems, Wireless Networks and Digital Signal Processing. She is a Life member of many professional societies like ISTE (Indian Society for Technical Education), SCIEI (Science and Engineering Institute), CSTA (Computer Science Teachers Association), ISRD (Universal Association of Computer and Electronics Engineers), ACM (Association for Computing Machinery), IAENG (International Association of Engineers), IIRIC (i-Explore International Research Journal Consortium) and IACSIT (International Association of Computer Science and Information Technology). She has received Service Excellence Award from R.M.K. Engineering College.

Dr. K. G. Shanthi obtained her B.E degree from University of Madras in the year 1996, M.E degree from Anna University in the year 2005 and Ph.D in VLSI Design from Anna University in the year 2015. She has 18 years of teaching experience. She is working as Professor in the Department of Electronics Communication and Engineering, Chennai. She has published 29 research papers in National/International Journal and Conferences. She filed one Patent. She has published books on Transmission Lines and Waveguides, Antenna and Wave Propagation. She is a life member of many professional societies like ISTE (Indian Society for Technical Education), IACSIT (International Association of Computer Science and Information Technology) and NSPE (National Society of Professional Engineers). She has received Young Women Scientist Award from Dr. Kalam Educational Trust in the year 2017 and Student Project of the Year 2017-18 from IEAE (Institute for Exploring Advances in Engineering). Her area of interest includes VLSI Design, Antenna Design and Wireless Sensor Networks.