Construction of a Multi-Functional cDNA Library Specific for Mouse Pancreatic Islets and Its Application to Microarray

Motoi Nishimura,† Norihide Yokoi, Takashi Miki, Yukio Horikawa, Hirokazu Yoshioka, Jun Takeda, Osamu Ohara, and Susumu Seino

Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan, Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan, Kakengeneqs Corporation, 439-1 Matsuhidai, Matsudo 270-2214, Japan, Department of Endocrinology, Diabetes and Rheumatology, Division of Bioregulatory Medicine, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan, Department of Human Gene Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan, and Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, 1-7-22 Suchiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

(Received 19 January 2004; revised 24 August 2004)

Abstract

We have constructed a high-quality and multi-applicable cDNA library specific for mouse pancreatic islets. This is the first pancreatic islet cDNA library created using a recombination-based method, which can readily be converted into other applications including yeast two-hybrid and mammalian expression libraries. Based on sequence data of the library, we constructed a sequence database specific for mouse pancreatic islets. Among the 8882 non-redundant clones, 5799 were classified into specific functional categories using a classification system designed by the Gene Ontology Consortium, 10% of which were “molecular function unknown” genes. We also developed cDNA microarray membranes with 8108 non-redundant clones. Analyses of expression profiles of three different cell lines and of MIN6 cells with or without overexpression of transcription factor NeuroD1 established the usefulness and applicability of our microarrays. The mouse pancreatic islet cDNA library, sequence database, set of clones, and microarrays developed in this study should be useful resources for studies of pancreatic islets and related diseases including diabetes mellitus.

Key words: cDNA library; microarray; pancreatic islet; recombination-based method; sequence database

1. Introduction

Pancreatic islets are small inner parts of pancreata, and play the central role in glucose homeostasis. The majority of islet cells are β-cells, which secrete the hypoglycemic hormone insulin; other islet cells (α-cells, δ-cells and PP cells) also secrete hormones affecting glucose homeostasis. Impairment of pancreatic β-cell function readily causes disorders of glucose homeostasis such as diabetes. Studies of knockout mice and a subtype of human diabetes have revealed that impairment of the transcription network in pancreatic β-cells is involved in the pathogenesis of diabetes. In these models, diabetes occurs due to disruptions or mutations in transcription factors that regulate gene expression in pancreatic β-cells. Thus, construction of a gene expression database for pancreatic islets and comprehensive analysis of expression profiles in the pancreatic islets might provide valuable information on the molecular mechanisms of the disease.

To investigate the molecules involved in normal function of pancreatic islets, several groups have constructed cDNA libraries from human pancreatic islets and sequenced clones from the libraries (In the GenBank database (www.ncbi.nlm.nih.gov/), nucleotide sequences of 4559 clones were deposited by...
Table 1. Characteristics of the mouse pancreatic islet cDNA library.

Fraction by insert size	1	2	3	4	5	6
Proportion of chimeric clones (%)	4.23	2.76	4.60	6.45	1.84	1.10
Proportion of clones with full ORFs (%)	64	56	48	76	72	52

1) Insert sizes of the fractions are: 1, >8 kbp; 2, 6–8 kbp; 3, 4–6 kbp; 4, 3–4 kbp; 5, 1.5–3 kbp; 6, <1.5 kbp.
2) Proportions of chimeric clones are calculated on the analysis of 3264 clones sequenced from both ends.
3) Proportions of clones with full ORFs are estimated from 25 randomly selected clones from each fraction.

Bell and colleagues, Chicago University, and those of 2055 clones by the I.M.A.G.E. consortium). As mice are widely used as experimental animals in studies of pancreatic islets, a cDNA library specific for mouse pancreatic islets should be useful. Recently, a recombination-based method for cDNA library construction has been developed. With size fractionation of the cDNA inserts, this method provides several improvements. The characteristics of the library are a high degree of complexity, an abundance of full-length sequences, and multiple applications. Libraries constructed by this method can readily be converted into other libraries including yeast two-hybrid and mammalian expression libraries.

In the present study, we constructed a recombination-based cDNA library specific for mouse pancreatic islets. Based on the sequence data of the library, we built a mouse pancreatic islet sequence database, and also developed cDNA microarray membranes.

2. Materials and Methods

2.1. Construction of a cDNA library specific for mouse pancreatic islets

All animal procedures were approved by the Chiba University Animal Care Committee. Pancreatic islets were isolated from 8- to 10-week-old male C57BL/6 mice by hand-picking under the microscope and collagenase digestion method as described previously. Poly(A)+ RNA was obtained from the islets using RNeasy Mini kit (Qiagen GmbH, Hilden, Germany) and µMACS mRNA isolation kit (Miltenyi Biotech, Bergisch Gladbach, Germany). Two micrograms of poly(A)+ RNA was isolated from approximately 5000 islets, from which cDNA synthesis was carried out as described previously. The synthesized cDNA was size-fractionated by agarose gel electrophoresis into three segments (<1.5, 1.5–3, and >3 kbps, respectively), and subjected to recombination reaction with BP Clonase (Invitrogen, Carlsbad, CA) and plasmid attP pSP73. Recombined plasmids were introduced into Escherichia coli cells (ElectroMAX DH10B cells, Invitrogen) by electroporation.

2.2. Plasmid preparation and DNA sequencing

Plasmids for sequencing the cDNA inserts and spotting on microarray membranes were prepared with MAG-NIA robot (TOYOBO, Osaka, Japan). With ABI3700 sequencers (Applied Biosciences, Mountain View, CA), 21,018 plasmid clones were successfully sequenced with T3 sequencing primer, and 3,264 clones were sequenced with T7 sequencing primer after elimination of redundant clones.

2.3. Construction of a sequence database

The sequence data obtained using T3 or T7 primers were subjected to BLAST search against the GenBank/DDBJ/EMBL nucleotide sequence database (www.ncbi.nlm.nih.gov/genbank/index.html) with a threshold E-value of 1.0e−50. The sequences were also subjected to BLAST search against the Ensembl mouse genome database (www.ensembl.org) to determine their locations on mouse chromosomes. All the sequence data were submitted to the DDBJ/EMBL/GenBank nucleotide sequence database (Accession nos. BP753069-BP777127), and are available from the ftp site at ftp://ftp.kazusa.or.jp/pub/pancreas/. The summary of the homology searches and the genome mapping data of the analyzed cDNAs are also available (Supplemental Information 1, http://www.dna-res.kazusa.or.jp/
11/5/01/supplemental/information1.html).

2.4. cDNA microarray analysis

The method of cDNA microarray analysis was described previously. A total of 8108 cDNA clones were spotted on the microarray membranes. For single microarray analysis, 10 µg of total RNA from each sample was reverse-transcribed in the presence of SuperScriptII Reverse Transcriptase (Invitrogen), [35S]dCTP, oligo(dT)12-18, and oligo(dT)25. The signal intensities in each analysis were normalized against the housekeeping gene Gapd, and the average signal intensities were calculated from more than two independent experiments.

2.5. Cell culture and recombinant adenoviruses

Mouse pancreatic islet \(\beta\)-cell line MIN6 cells were cultured as described previously. Mouse ES cell line R1 cells were cultured on mitomycin C-treated embryonic fibroblasts in a gelatinized dish with complete ES medium: high-glucose Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 20% fetal calf serum (FCS) (Invitrogen), 2 mM L-glutamine (Invitrogen), 1× nonessential amino acids (Invitrogen), 1 µM 2-mercaptoethanol (Invitrogen), 100 µg/ml streptomycin sulfate, 60.5 µg/ml penicillin G (Invitrogen), and 1000 U/ml leukemia inhibitory factor (Chemicon, Temecula, CA). Mouse pituitary cell line AtT-20 cells were grown in Ham’s F10 medium (Invitrogen) with 5% FBS (Sigma, St. Louis, MO), and 15% heat-inactivated horse serum (Invitrogen).

Neurogenic differentiation 1 (NeuroD1/BETA2) recombinant adenovirus (Ad.CMVNeuroD1) and LacZ recombinant adenovirus (Ad.CMVLacZ) were constructed to express human NeuroD1 mRNA or E. coli LacZ (β-galactosidase) mRNA under cytomegalovirus (CMV) promoter, using an adenovirus expression vector kit (Takara Bio Inc., Otsu, Japan). MIN6 cells were infected with Ad.CMVNeuroD1 or Ad.CMVLacZ at a range of 5, 10, 30 and 50 multiplicity of infections (MOI), and cultured for another 2 days. Expression of NeuroD1 was confirmed by immuno blot analysis using antibodies specific for NeuroD1/BETA2 (Santa Cruz Biotechnology, Santa Cruz, CA) (Ishizuka et al. unpublished data), and expression of LacZ was confirmed using a galactosidase reporter gene staining detection kit (Sigma).

3. Results and Discussion

3.1. Construction of a mouse pancreatic islet cDNA library based on a recombination-based method

To construct a high quality cDNA library specific for normal mouse pancreatic islets, we applied a recombination-based method for library construction. Using 2 µg of poly(A)+ RNA extracted from approximately 5000 mouse pancreatic islets, we successfully constructed a cDNA library having a complexity of more than \(1.32 \times 10^7\) without amplification (Table 1). The library consists of six size fractions, which minimizes the size-bias effect on the population of cDNAs and results in improved variety. The library is also characterized by an abundance of full-length cDNA clones and fewer chimeric clones. Since each cDNA insert has specific sequences for recombination (compatible with Invitrogen GATEWAY™ system) at both ends, the library can readily be converted into other libraries such as mammalian expression and yeast two-hybrid libraries. This is the first pancreatic islet cDNA library created based on a recombination-based method, and should be a useful tool for pancreatic islet studies.

3.2. Construction of a cDNA sequence database specific for mouse pancreatic islets

We then sequenced a portion of the cDNA library to construct a sequence database specific for mouse pancreatic islets. We collected 4608 plasmid clones from each fraction, resulting in a total of 27,648 clones, and successfully sequenced 21,018 clones from the 3' region of the cDNAs. This raw sequence data contained about 13.7% of insulin 1 or 2 (Ins1/2) sequences and only 0.03% anylase sequences (representative gene of exocrine pancreas), indicating that the library was constructed primarily from pancreatic islets.

After eliminating redundant clones, we obtained a total of 8882 non-redundant clones (Supplemental Information 2, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information2.html). Among them, we also sequenced 3264 clones from the 5’ region of the cDNAs, and detected only 114 chimeric clones by comparison with the Ensembl mouse genome database (www.ensemble.org). By analyzing 150 randomly selected clones, we found that about 60% of the clones contained full open reading frames (ORFs) (Table 1). We collected these results and built a mouse pancreatic islet sequence database.

We compared 8882 non-redundant sequence data with the “all genes” database (www.allgenes.org), and found that 261 had no match in the database. Of 8621 sequences, 5799 were classified into specific functional categories using a classification system designed by the Gene Ontology (GO) Consortium (www.geneontology.org) (Fig. 1, Table 2 and Supplemental Information 3, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information3.html), while 2822 have no GO annotation, suggesting that these were derived from non-coding RNAs or rare transcripts. Of the 5799 sequences having GO annotation, about 42% belong to the largest category “binding,” which includes nucleic acid binding and peptide/protein binding. The second category “catalytic activity” comprises about 25%, and the third, “molecular function un-
3.1. Mouse Pancreatic Islets cDNA Library

3.2. Functional classification of the mouse pancreatic islet cDNA clones. Out of 8882 non-redundant clones, 5799 were classified into specific functional categories using a classification system designed by the Gene Ontology Consortium. Representative genes for each functional category are listed in Table 2. A complete list is available in Supplemental Information 3, http://www.dna-res.kazusa.or.jp/11/5/03/supplemental/information3.html.

3.3. Application to microarray analyses

We then applied our cDNA library to microarray analyses. We selected a total of 8108 cDNA clones from 8882 non-redundant clones and spotted them on microarray membranes with 12 control clones (Supplemental Information 2, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information2.html). To estimate the reproducibility of our microarray analyses, we compared membranes of different lots hybridized with the same probe. Scattered plot analysis showed very similar signal intensities from the two different membranes, indicating that our microarray analyses are reproducible (Supplemental Information 4A, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information4.html).

To evaluate the usefulness and applicability of our microarray membranes, we performed the following two experiments. First, we compared the expression profiles of three cell lines: MIN6 cells (mouse insulin-secreting pancreatic islet β-cell line), mouse embryonic stem (ES) cells, and AtT-20 cells (mouse pituitary endocrine cell line), representing endocrine pancreatic islet cells, undifferentiated cells,
Table 2. A list of functional classifications of the mouse pancreatic islet cDNA clones.

GO function group	(subgroup)	annotation	GENBANK accession No (gb)	gene index (gi)	unigene cluster (ug)
Binding	Nucleic acid binding	Mm#S2205607 Mus musculus, H2B histone family, member A, clone MGC:19269 IMAGE:398962, mRNA, complete cds	gb=BC011440	gi=15030325	ug=Mm.21579
		Mm#S937714 Mus musculus H3 histone, family 3A (H3a3a), mRNA	gb=NM_008210	gi=6680158	ug=Mm.89136
		Mm#S937247 Mus musculus poly A binding protein, cytoplasmic 1 (Pabpc1), mRNA	gb=NM_008774	gi=6679196	ug=Mm.2642
		Mm#S2608854 Mus musculus dicer-like protein (Dicer1) mRNA, complete cds	gb=AF430845	gi=20385912	ug=Mm.31523
		Mm#S978931 Mus musculus poly(rC) binding protein 2 (Pcbp2), mRNA	gb=NM_011042	gi=6997238	ug=Mm.111
	Peptide/ Protein binding	Mm#S1985421 Mus musculus Ran binding protein 5 mRNA, partial cds	gb=AF204327	gi=12034715	ug=Mm.151329
		Mm#S2204674 Mus musculus, TAP binding protein, clone MGC:13789 IMAGE:423292, mRNA, complete cds	gb=BC015074	gi=15929261	ug=Mm.14097
		Mm#S939589 Mus musculus syntaxin binding protein 2 (Stxbp2), mRNA	gb=NM_011503	gi=7575867	ug=Mm.7247
		Mm#S937219 Mus musculus nuclear receptor-binding SET-domain protein 1 (Nsd1), mRNA	gb=NM_008739	gi=6679137	ug=Mm.12964
Others binding		Mm#S1660484 Mus musculus piccolo (presynaptic cytomatrix protein) (Pico1), mRNA	gb=NM_011995	gi=15273339	ug=Mm.40996
Catalytic activity	hydrolase activity	Mm#S937421 Mus musculus protein tyrosine phosphatase, non-receptor type 2 (Ptpn2), mRNA	gb=NM_008977	gi=6679552	ug=Mm.985
		Mm#S937616 Mus musculus acid beta glucosidase (Gba), mRNA	gb=NM_008594	gi=6679554	ug=Mm.5031
		Mm#S979159 Mus musculus carboxypeptidase E (Cpe), mRNA	gb=NM_013494	gi=7304972	ug=Mm.31959
		Mm#S979344 Mus musculus proprotein convertase subtilisin/kexin type 1 (Pcsk1), mRNA	gb=NM_013628	gi=703570	ug=Mm.1333
		Mm#S979263 Mus musculus proprotein convertase subtilisin/kexin type 2 (Pcsk2), mRNA	gb=NM_008792	gi=6679228	ug=Mm.1247
Ligase activity		Mm#S1658986 Mus musculus cytidine 5'-triphosphate synthase 2 (Ctps2), mRNA	gb=NM_018737	gi=9055197	ug=Mm.2065
		Mm#S2003048 Mus musculus propionyl-Coenzyme A carboxylase, beta polypeptide (Pccb), mRNA	gb=NM_025835	gi=13385309	ug=Mm.21079
		Mm#S2003110 Mus musculus methionine adenosyltransferase E (Mae), mRNA	gb=NM_025939	gi=13383453	ug=Mm.182931
		Mm#S2534128 Mus musculus, glutamate-cysteine ligase, catalytic subunit, clone MGC:30487 IMAGE:4195425, mRNA, complete cds	gb=BC019374	gi=18043914	ug=Mm.4386
		Mm#S2551407 Mus musculus, similar to alanyl-tRNA synthetase (H. sapiens), clone MGC:37368 IMAGE:4976684, mRNA, complete cds	gb=CT026613	gi=20072364	ug=Mm.24174
Oxidoreductase activity		Mm#S1660039 Mus musculus NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1 (Ndufa1), mRNA	gb=NM_019443	gi=9506910	ug=Mm.34869
		Mm#S1660493 Mus musculus pyruvate-5-carboxylate synthase (pyruvate-ketolase), mRNA	gb=NM_019698	gi=9790060	ug=Mm.29751
		Mm#S2002811 Mus musculus sterol-C4-methyl oxidase-like (Sc4mol), mRNA	gb=NM_025436	gi=13384833	ug=Mm.30119
		Mm#S2534582 Mus musculus cytochrome c oxidase, subunit VIIC (Cox6c), mRNA	gb=NM_053071	gi=16716342	ug=Mm.548
		Mm#S936625 Mus musculus stearyl-Coenzyme A desaturase 2 (Scd2), mRNA	gb=NM_009128	gi=6677862	ug=Mm.193096
Transferase activity		Mm#S1437353 Mus musculus histone acetyltransferase (Morf-pending), mRNA	gb=NM_017479	gi=8563735	ug=Mm.30998
		Mm#S1660190 Mus musculus mfa methyltransferase (Mfa-pending), mRNA	gb=NM_019721	gi=9790046	ug=Mm.36983
		Mm#S1985402 Mus musculus prenylcytochrome b5 methyltransferase mRNA, partial cds	gb=AF209926	gi=12082482	ug=Mm.29356
		Mm#S2545982 Mus musculus, transglutaminase 2, C polypeptide, clone MGC:6152 IMAGE:1256943, mRNA, complete cds	gb=BC016492	gi=16741319	ug=Mm.18843
		Mm#S2003650 Mus musculus glycogen synthase 1, muscle (Gys1), mRNA	gb=NM_030678	gi=13507598	ug=Mm.185247
Molecular function unknown		Mm#S1971846 Mus musculus adult male hippocampus CDNA, RIKEN full-length enriched library, clone:290059A22:DlGeorge syndrome chromosome region 6, full insert sequence	gb=AK0119346	gi=12859501	ug=Mm.27155
		Mm#S1973121 Mus musculus 8 days embryo whole body CDNA, RIKEN full-length enriched library, clone:5730433K22:unclassifiable, full insert sequence	gb=AK017611	gi=12856941	ug=Mm.158400
GO function group	(subgroup)	annotation	GENBANK accession No (gb)	gene index (gi)	unigene cluster (ug)
------------------	-----------	------------	---------------------------	----------------	---------------------
transcription regulator activity		Mm#S937155 Mus musculus myelin transcription factor 1 (Myr1), mRNA	gb=NM_008665	gi=667899	ug=Mm.2098
structural molecule activity		Mm#S121804 Tubulin, alpha 2, mRNA	gb=M13446	gi=202209	ug=Mm.1975
transporter activity		Mm#S979102 Mus musculus ATP-binding cassette, sub-family A (ABC1), member 1 (Abca1), mRNA	gb=NM_013454	gi=730484	ug=Mm.369
obsolete molecular function		Mm#S1660236 Mus musculus SEC23B (S. cerevisiae) (Sec23b), mRNA	gb=NM_019741	gi=978996	ug=Mm.3415
signal transducer activity		Mm#S939854 Mus musculus growth hormone receptor (Ghr), mRNA	gb=NM_019787	gi=979021	ug=Mm.2870
enzyme regulator activity		Mm#S939211 Mus musculus neutral sphingomyelinase (N-SMase) activation associated factor (Nsmaf), mRNA	gb=NM_010945	gi=675487	ug=Mm.3059
chaperone activity		Mm#S1997753 Mus musculus heat shock 70kD protein 5 (Gluc-78kD) (Hsp78), mRNA	gb=NM_022310	gi=1616248	ug=Mm.918

Table 2. Continued.
Table 2. Continued.

GO function (subgroup)	annotation	GENBANK accession No (gb)	gene index (gi)	unigene cluster (ug)
antioxidant activity	Mm#5937966 Mus musculus peroxiredoxin 3 (Prdx3), mRNA	gb=NM_007452	gi=6680689	ug=Mm.29821
	Mm#1437442 Mus musculus peroxiredoxin 4 (Prdx4), mRNA	gb=NM_016764	gi=7948998	ug=Mm.19127
	Mm#993659 Mus musculus thioredoxin 1 (Trx1), mRNA	gb=NM_011660	gi=6755910	ug=Mm.1275
	Mm#1660289 Mus musculus thioredoxin 2 (Trx2), mRNA	gb=NM_019913	gi=9903608	ug=Mm.3533
	Mm#2455825 Mus musculus glutaredoxin 1 (thioltransferase) (Glrx1), mRNA	gb=NM_053108	gi=16716404	ug=Mm.29728

cell adhesion molecule activity

annotation	GENBANK accession No (gb)	gene index (gi)	unigene cluster (ug)	
Mm#5979051 Mus musculus integrin alpha 6 (Ig6a), mRNA	gb=NM_008397	gi=7110658	ug=Mm.25232	
Mm#541562	Marine mRNA for integrin beta subunit, mRNA	gb=Y00769	gi=52721	ug=Mm.4712
Mm#308025	Procollagen, type I, alpha 1, mRNA	gb=U08020	gi=475073	ug=Mm.22621
Mm#208041	Procollagen, type IV, alpha 1, mRNA	gb=J04694	gi=556296	ug=Mm.738
Mm#244281	Procollagen, type XV, mRNA	gb=AF011450	gi=2558824	ug=Mm.4352

Out of 8882 non-redundant clones, 5799 were classified into specific functional categories using a classification system designed by the Gene Ontology Consortium. Representative genes for each functional category are listed in this table. A complete list is available in Supplemental Information 3, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information3.html.

Figure 2. Comparison of expression profiles in MIN6, ES and AtT-20 cells. Genes with signal intensity of one-tenth or more of the housekeeping gene Gapd were compared in the three cell lines. Numbers of genes are shown in this diagram. A complete list of the expressed genes is available in Supplemental Information 5, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information5.html.

Out of 8882 non-redundant clones, 5799 were classified into specific functional categories using a classification system designed by the Gene Ontology Consortium. Representative genes for each functional category are listed in this table. A complete list is available in Supplemental Information 3, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information3.html.

We used a threshold signal intensity of one-tenth that of the housekeeping gene Gapd, and compared the expressed genes in the three cell lines (Fig. 2). A list of the expressed genes is available (Supplemental Information 5, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information5.html). Among a total of 879 genes, 738 (84.0%) were expressed in MIN6 cells, while only 319 (36.3%) and 359 (40.8%) were expressed in AtT-20 and ES cells, respectively.

Comparison of expression profiles of three cell lines revealed both differentially and similarly expressed genes. A subset of 135 genes was expressed in both MIN6 and AtT-20 cells but not in ES cells. As both MIN6 and AtT-20 cells were derived from endocrine cells and preserve regulated exocytotic ability, the genes involved should be expressed in both endocrine cell types. Indeed, well-known endocrine-specific genes such as chromogranins,23,24 prohormone convertase 1/3,25 and carboxypeptidase E26,27 were in this subset (Fig. 2 and Supplemental Information 5, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information5.html). In addition, 28 genes with unknown functions were contained in this subset, suggesting they may have other roles in regulated exocytosis.

By contrast, a subset of 356 genes was found to be expressed only in MIN6 cells. This subset included known pancreatic β-cell-specific genes, such as Ins1/2, Iapp, and Pdx1 as well as many uncharacterized genes (Supplemental Information 5, http://www.dna-res.kazusa.or.jp/11/5/01/supplemental/information5.html) that may be involved in phenomena specific to pancreatic β-cells such as insulin synthesis. Thus, comparison of the mRNA expression patterns of various cell types should be useful in investigating the biological function of the clones newly identified in our cDNA library.

As the second experiment, we compared expression profiles between MIN6 cells and those infected with aden-
Table 3. A list of genes upregulated by overexpression of NeuroD1 in MIN6 cells.

Signal intensity No.	+LacZ 1)	+NeuroD1 1)	Ratio	Gene name 3) / GenBank accession number
1	4.70	84.31	17.9324	gi: 26101046 / AK083076
2	14.59	251.26	17.2207	Neurod1 (NeuroD1) 0) / NM_010894
3	3.60	24.37	6.7660	gi: 38328296 / BC062185
4	1.61	7.60	4.7122	Scnn1b / NM_011325
5	4.26	18.02	4.2319	Ipfl (Pdx1) / NM_008814
6	16.42	62.79	3.8232	Cdkn1a (p21) / NM_007669
7	2.07	7.51	3.6218	Jund1 / NM_010592
8	7.48	24.16	3.2285	Ddx5 / BC009142
9	5.25	15.33	2.9198	Rangap1 / NM_011241
10	4.98	14.42	2.8952	gi: 12833685 / AK003180
11	4.47	12.80	2.8639	Atp2a2 / NM_009722
12	2.65	7.53	2.8440	Scly / NM_016717
13	7.50	19.71	2.6274	gi: 17391148 / BC018486
14	6.66	17.30	2.5976	Actn4 / NM_021895

Signal intensities are normalized by two independent experiments.

1) Signal intensities from MIN6 cells infected with Ad.CMVLacZ.
2) Signal intensities from MIN6 cells infected with Ad.CMVNeuroD1.
3) gi (gene index number in GenBank) or Gene name registered in NCBI Entrez Gene database.
4) Signal intensity of NeuroD1 from MIN6 cells infected with Ad.CMVNeuroD1 was influenced by the exogenous introduction of NeuroD1.

oviral vector to express the transcription factor NeuroD1 exogenously. Because NeuroD1 is critical in pancreatic islet β-cell development and β-cell functions, and a mutation in the human NeuroD1 gene is responsible for maturity-onset diabetes of the young (MODY6), we overexpressed NeuroD1 in MIN6 cells to evaluate the usefulness of our microarray analyses in the search for novel target genes. So far, Pdx1, p21, and Sur1 have been reported to be transactivated by NeuroD1.

Infection of the adenoviral vector with a range of 5 or 10 MOI did not alter the expression profiles, but infection with 30 or 50 MOI caused significant alterations (data not shown). The results of infection with 50 MOI are shown in Table 3 and Supplemental Information 4D, http://www.dna-res. kazusa.or.jp/11/5/01/supplemental/information4.html. We confirmed that the genes known to be induced by NeuroD1, including Pdx1 and p21 were upregulated, and also found that expression levels of another 11 genes increased significantly. None of these genes has previously been associated with NeuroD1, and all are candidates for transactivation by NeuroD1. This second experiment shows that our microarray analyses will be useful in the search for novel molecular targets of various β-cell transcription factors and in investigations of pancreatic islets and related diseases including diabetes.

Acknowledgements: We thank Y. Murahashi for assistance with computational analysis of nucleotide sequences. We also thank T. Watanabe and T. Hirano for technical assistance in constructing the mouse pancreatic islet library and in the microarray analysis. This work was supported by Grants-in-Aid for Specially Promoted Research and for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan; by a Grant from the Ministry of Economy, Trade and Industry, Japan, and the Futaba Electronics Memorial Foundation.

References

1. Kahn, C. R., Gordon, C., Weir, G. C. et al. 1994, *Joslin’s Diabetes Mellitus*, 13th Ed., Lippincott Williams & Wilkins, Philadelphia, PA.
2. Jonsson, J., Carlsson, L., Edlund, T., Edlund, H. 1994, Insulin-promoter-factor 1 is required for pancreas development in mice, *Nature*, 13, 606–609.
3. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K., and Edlund, H. 1998, Beta-cell-specific inactivation of the mouse Lpfl/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes, *Genes Dev.*, 12, 1763–1768.
4. Lee, Y. H., Sauers, B., and Gonzalez, F. J. 1998, Laron dwarfism and non-insulin-dependent diabetes mellitus in the Hnf-1alpha knockout mouse, *Mol Cell Biol.*, 18, 3059–3068.
5. Shih, D. Q., Screenan, S., Munoz, K. N. et al. 2001, Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism, *Diabetes*, **50**, 2472–2480.

6. Naya, F. J., Huang, H. P., Qu, Y. et al. 1997, Diabetes, defective pancreatic morphogenesis, and abnormal endoenteroendocrine differentiation in BETAG2/NeuroD-deficient mice, *Genes Dev.*, **11**, 2323–2334.

7. Stoffers, D. A., Ferrer, J., Clarke, W. L., and Habener J. F. 1997, Early-onset type-II diabetes mellitus (MODY4) linked to IPF1, *Nat Genet.*, **17**, 138–139.

8. Yamagata, K., Oda, N., Kaisaki, P. J. et al. 1996, Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY4) linked to IPF1, *Nat Genet.*, **17**, 138–139.

9. Yamagata, K., Furuta, H., Oda, N. et al. 1996, Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1), *Nature*, **384**, 455–458.

10. Horikawa, Y., Iwasaki, N., Haral, M. et al. 1997, Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY, *Nat Genet.*, **17**, 384–385.

11. Malecki, M. T., Jhala, U. S., Antonellis, A. et al. 1999, Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus, *Nat Genet.*, **23**, 323–328.

12. Bell G. I. and Polonsky, K. S. 2001, Diabetes mellitus and genetically programmed defects in beta-cell function, *Nature*, **414**, 788–791.

13. Ohara, O. and Temple, G. 2001, Directional cDNA library construction assisted by the in vitro recombination reaction, *Nucleic Acids Res.*, **29**, E22.

14. Ohara, O., Nagase, T., Mitsui, G. et al. 2002, Characterization of size-fractionated cDNA libraries generated by the in vitro recombination-assisted method, *DNA Res.*, **9**, 47–57.

15. Nakayama, M., Kikuno, R., and Ohara, O. 2002, Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs, *Genome Res.*, **12**, 1773–1784.

16. Miki, T., Nagashima, K., Tashiro, F. et al. 1998, Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice, *Proc. Natl. Acad. Sci. USA*, **95**, 10402–10406.

17. Mitsui, G., Mitsui, K., Hirano, T., Ohara, O., Kato M., and Niwano, Y. 2003, Kinetic profiles of sequential gene expressions for chemokines in mice with contact hypersensitivity, *Immunol. Lett.*, **86**, 191–197.

18. Kawaki, J., Nagashima, K., Tanaka, J. et al. 1999, Unresponsiveness to glibenclamide during chronic treatment induced by reduction of ATP-sensitive K⁺ channel activity, *Diabetes*, **48**, 2001–2006.

19. Suzuki, M., Mizutani-Koseki, Y., Fujimura, Y. et al. 2002, Involvement of the Polycomb-group gene Ring1B in the specification of the anterior-posterior axis in mice, *Development*, **129**, 4171–4183.

20. Buonassisi, V., Sato, G., and Cohen, A. 1962, Hormone-producing cultures of adrenal and pituitary tumor origin, *Proc. Natl. Acad. Sci. USA*, **48**, 1184–1190.

21. Scearce, L. M., Brestelli, J. E., McWeeney, S. K. et al. 2002, Functional genomics of the endocrine pancreas: the pancreas clone set and PancChip, new resources for diabetes research, *Diabetes*, **51**, 1997–2004.

22. Kaestner, K. H., Lee, C. S., Scearce, L. M. et al. 2003, Transcriptional program of the endocrine pancreas in mice and humans, *Diabetes*, **52**, 1604–1610.

23. Ehrhart, M., Grube, D., Bader, M. F., Aunis, D., and Gratzi, M. 1986, Chromogranin A in the pancreatic islet: cellular and subcellular distribution, *J. Histochem. Cytochem.*, **34**, 1673–1682.

24. Iacangelo, A., Affolter, H. U., Eiden, L. E., Herbert, E., and Grimes, M. 1986, Bovine chromogranin A sequence and distribution of its messenger RNA in endocrine tissues, *Nature*, **323**, 82–86.

25. Zhu, X., Zhou, A., Dey, A. et al. 2002, Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects, *Proc. Natl. Acad. Sci. USA*, **99**, 10293–10298.

26. Fricker, L. D., Adelman, J. P., Douglass, J., Thompson, R. C., von Strandmann, R.P., and Hutton, J. 1989, Isolation and sequence analysis of cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme, *Mol. Endocrinol.*, **3**, 666–673.

27. Nagert, J. K., Fricker, L. D., Vuralamon, O. et al. 1995, Hyperinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity, *Nat. Genet.*, **10**, 135–142.

28. Huang, H. P., Chu, K., Nemza-Gaillard, E., Elberg, D., and Tsai, M. J. 2002, Neogenesis of beta-cells in adult BETAG2/NeuroD-deficient mice, *Mol. Endocrinol.*, **16**, 541–551.

29. Kojima, H., Fujimura, M., Matsumura, K. et al. 2003, NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice, *Nat. Med.*, **9**, 596–603.

30. Mutoh, H., Naya, F. J., Tsai, M. J., and Leiter, A. B. 1998, The basic helix-loop-helix protein BETAG2 interacts with p300 to coordinate differentiation of secretin-expressing enteroendocrine cells, *Genes Dev.*, **12**, 820–830.

31. Kim J. W., Seghers V., Cho J. H., et al. 2002, Transactivation of the mouse sulfonylurea receptor 1 gene by BETAG2/NeuroD, *Mol. Endocrinol.*, **16**, 1097–1107.