Some new characterizations of \textit{PST}-groups

Xiaolan Yi
Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, P.R.China
E-mail: yixiaolan2005@126.com

Alexander N. Skiba
Department of Mathematics, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let H and B be subgroups of a finite group G such that $G = N_G(H)B$. Then we say that H is \textit{quasipermutable} (respectively \textit{S-quasipermutable}) in G provided H permutes with B and with every subgroup (respectively with every Sylow subgroup) A of B such that $(|H|,|A|) = 1$. In this paper we analyze the influence of \textit{S}-quasipermutable and quasipermutable subgroups on the structure of G. As an application, we give new characterizations of soluble \textit{PST}-groups.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover p is always supposed to be a prime and π is a subset of the set \mathbb{P} of all primes; $\pi(G)$ denotes the set of all primes dividing $|G|$.

A subgroup H of G is said to be \textit{quasinormal} or \textit{permutable} in G if H permutes with every subgroup A of G, that is, $HA = AH$; H is said to be \textit{S-permutable} in G if H permutes with every Sylow subgroup of G.

A group G is called a \textit{PT-group} if permutability is a transitive relation on G, that is, every permutable subgroup of a permutable subgroup of G is permutable in G. A group G is called a \textit{PST-group} if S-permutability is a transitive relation on G.

As well as T-groups, PT-groups and PST-groups possess many interesting properties (see Chapter 2 in [1]). The general description of PT-groups and PST-groups were firstly obtained by Zacher [2] and Agrawal [3], for the soluble case, and by Robinson in [4], for the general case. Nevertheless,

\begin{itemize}
 \item Keywords: finite group, quasipermutable subgroup, PST-group, Hall subgroup, supersoluble group, Gaschütz subgroup, Carter subgroup, saturated formation.
 \item Mathematics Subject Classification (2010): 20D10, 20D15, 20D20
\end{itemize}
in the further publications, the authors (see for example recent papers \[5\]– \[16\]) have found out and described many other interesting characterizations of soluble PT and PST-groups.

In this paper we give new "Hall"-characterizations of soluble PST-groups on the basis of the following

Definition 1.1. We say that a subgroup \(H\) is **quasipermutable** (respectively **S-quasipermutable**) in \(G\) provided \(H\) permutes with \(B\) and with every subgroup (respectively with every Sylow subgroup) \(A\) of \(B\) such that \((|H|, |A|) = 1\).

Examples and some applications of quasipermutable subgroups were discussed in our papers \[17\] and \[18\] (see also remarks in Section 5 below). In this paper, we give the following result, which we consider as one more motivation for introducing the concept of quasipermutability.

Theorem A. Let \(D = G^N\) and \(\pi = \pi(D)\). Then the following statements are equivalent:

(i) \(D\) is a Hall subgroup of \(G\) and every Hall subgroup of \(G\) is quasipermutable in \(G\).

(ii) \(G\) is a soluble PST-group.

(iii) Every subgroup of \(G\) is quasipermutable in \(G\).

(iv) Every \(\pi\)-subgroup of \(G\) and some minimal supplement of \(D\) in \(G\) are quasipermutable in \(G\).

In the proof Theorem A we use the next three our results.

A subgroup \(S\) of \(G\) is called a **Gaschütz subgroup** of \(G\) (L.A. Shemetkov \[19, IV, 15.3\]) if \(S\) is supersoluble and for any subgroups \(K \leq H\) of \(G\), where \(S \leq K\), the number \(|H : K|\) is not prime.

Theorem B. The following statements are equivalent:

(I) \(G\) is soluble, and if \(S\) is a Gaschütz subgroup of \(G\), then every Hall subgroup \(H\) of \(G\) satisfying \(\pi(H) \subseteq \pi(S)\) is quasipermutable in \(G\).

(II) \(G\) is supersoluble and the following hold:

(a) \(G = DC\), where \(D = G^N\) is an abelian complemented subgroup of \(G\) and \(C\) is a Carter subgroup of \(G\);

(b) \(D \cap C\) is normal in \(G\) and \((p, |D/D \cap C|) = 1\) for all prime divisors \(p\) of \(|G|\) satisfying \((p - 1, |G|) = 1\).

(c) For any non-empty set \(\pi\) of primes, every \(\pi\)-element of any Carter subgroup of \(G\) induces a power automorphism on the Hall \(\pi'\)-subgroup of \(D\).

(III) Every Hall subgroup of \(G\) is quasipermutable in \(G\).

Let \(\mathcal{F}\) be a class of groups. If \(1 \in \mathcal{F}\), then we write \(G^\mathcal{F}\) to denote the intersection of all normal subgroups \(N\) of \(G\) with \(G/N \in \mathcal{F}\). The class \(\mathcal{F}\) is said to be a **formation** if either \(\mathcal{F} = \emptyset\) or \(1 \in \mathcal{F}\) and every homomorphic image of \(G/G^\mathcal{F}\) belongs to \(\mathcal{F}\) for any group \(G\). The formation \(\mathcal{F}\) is said to be **saturated** if \(G \in \mathcal{F}\) whenever \(G/\Phi(G) \in \mathcal{F}\). A subgroup \(H\) of \(G\) is said to be an \(\mathcal{F}\)-**projector** of \(G\) provided \(H \in \mathcal{F}\) and \(E = E^\mathcal{F}H\) for any subgroup \(E\) of \(G\) containing \(H\). By the Gaschütz’s theorem
VI, 9.5.4 and 9.5.6], for any saturated formation \(\mathcal{F} \), every soluble group \(G \) has an \(\mathcal{F} \)-projector and any two \(\mathcal{F} \)-projectors of \(G \) are conjugate.

Theorem C. Let \(\mathcal{F} \) be a saturated formation containing all nilpotent groups. Suppose that \(G \) is soluble and let \(\pi = \pi(C) \cap \pi(G^\mathcal{F}) \), where \(C \) is an \(\mathcal{F} \)-projector of \(G \). If every maximal subgroup of every Sylow \(p \)-subgroup of \(G \) is \(S \)-quasipermutable in \(G \) for all \(p \in \pi \), then \(G^\mathcal{F} \) is a Hall subgroup of \(G \).

Theorem D. Let \(\mathcal{F} \) be a saturated formation containing all supersoluble groups and \(\pi = \pi(F^*(G^\mathcal{F})) \). If \(G^\mathcal{F} \neq 1 \), then for some \(p \in \pi \) some maximal subgroup of a Sylow \(p \)-subgroup of \(G \) is not \(S \)-quasipermutable in \(G \).

In this theorem \(F^*(G^\mathcal{F}) \) denotes the generalized Fitting subgroup of \(G^\mathcal{F} \), that is, the product of all normal quasinilpotent subgroups of \(G^\mathcal{F} \).

The main tool in the proofs of Theorems C and D is the following our result.

Proposition. Let \(E \) be a normal subgroup of \(G \) and \(P \) a Sylow \(p \)-subgroup of \(E \) such that \(|P| > p \).

(i) If every number \(V \) of some fixed \(M_{\phi}(P) \) is \(S \)-quasipermutable in \(G \), then \(E \) is \(p \)-supersoluble.

(ii) If every maximal subgroup of \(P \) is \(S \)-quasipermutable in \(G \), then every chief factor of \(G \) between \(E \) and \(O_p(E) \) is cyclic.

(iii) If every maximal subgroup of every Sylow subgroup of \(E \) is \(S \)-quasipermutable in \(G \), then every chief factor of \(G \) below \(E \) is cyclic.

In this proposition we write \(M_{\phi}(G) \), by analogy with [21], to denote a set of maximal subgroups of \(G \) such that \(\Phi(G) \) coincides with the intersection of all subgroups in \(M_{\phi}(G) \).

Note that Proposition may be independently interesting because this result unifies and generalize many known results, and in particular, Theorems 1.1–1.5 in [21] (see Section 5). In Section 5 we discuss also some further applications of the results.

All unexplained notation and terminology are standard. The reader is referred to [19], [22], or [23] if necessary.

2 Basic Propositions

Let \(H \) be a subgroup of \(G \). Then we say, following [17], that \(H \) is *propermutable* (respectively \(S \)-propermutable) in \(G \) provided there is a subgroup \(B \) of \(G \) such that \(G = N_G(H)B \) and \(H \) permutes with all subgroups (respectively with all Sylow subgroups) of \(B \).

Proposition 2.1. Let \(H \leq G \) and \(N \) a normal subgroup of \(G \). Suppose that \(H \) is quasipermutable (\(S \)-quasipermutable) in \(G \).

(1) If either \(H \) is a Hall subgroup of \(G \) or for every prime \(p \) dividing \(|H| \) and for every Sy-
low \(p \)-subgroup \(H_p \) of \(H \) we have \(H_p \not\subseteq N \), then \(HN/N \) is quasipermutable (\(S \)-quasipermutable, respectively) in \(G/N \).

(2) If \(\pi = \pi(H) \) and \(G \) is \(\pi \)-soluble, then \(H \) permutes with some Hall \(\pi' \)-subgroup of \(G \).

(3) \(H \) permutes with some Sylow \(p \)-subgroup of \(G \) for every prime \(p \) dividing \(|G| \) such that \((p, |H|) = 1 \).

(4) \(|G : N_G(H \cap N)|\) is a \(\pi \)-number, where \(\pi = \pi(N) \cup \pi(H) \).

(5) If \(H \) is propermutable (\(S \)-propermutable) in \(G \), then \(HN/N \) is propermutable (\(S \)-propermutable, respectively) in \(G/N \).

(6) If \(H \) is \(S \)-propermutable in \(G \), then \(H \) permutes with some Sylow \(p \)-subgroup of \(G \) for any prime \(p \) dividing \(|G| \).

(7) Suppose that \(G \) is \(\pi \)-soluble. If \(H \) is a Hall \(\pi \)-subgroup of \(G \), then \(H \) is propermutable (\(S \)-propermutable, respectively) in \(G \).

Proof. By hypothesis, there is a subgroup \(B \) of \(G \) such that \(G = N_G(H)B \) and \(H \) permutes with \(B \) and with all subgroups (with all Sylow subgroups, respectively) \(A \) of \(B \) such that \((|H|, |A|) = 1 \).

(1) It is clear that

\[
G/N = (N_G(H)N/N)(BN/N) = N_{G/N}(HN/N)(BN/N).
\]

Let \(K/N \) be any subgroup (any Sylow subgroup, respectively) of \(BN/N \) such that \((|HN/N|, |K/N|) = 1 \). Then \(K = (K \cap B)N \). Let \(B_0 \) be a minimal supplement of \(K \cap B \cap N \) to \(K \cap B \). Then \(K/N = (K \cap B)N/N = B_0(K \cap B \cap N)/N = B_0N/N \) and \(K \cap B \cap N \cap B_0 = N \cap B_0 \leq \Phi(B_0) \).

Therefore \(\pi(K/N) = \pi(K \cap B/K \cap B \cap N) = \pi(B_0) \), so \((|HN/N|, |B_0|) = 1 \). Suppose that some prime \(p \in \pi(B_0) \) divides \(|H| \), and let \(H_p \) be a Sylow \(p \)-subgroup of \(H \). We shall show that \(H_p \not\subseteq N \).

In fact, we may suppose that \(H \) is a Hall subgroup of \(G \). But in this case, \(H_p \) is a Sylow \(p \)-subgroup of \(G \). Therefore, since \(p \in \pi(B_0) \subseteq \pi(G/N) \), \(H_p \not\subseteq N \). Hence \(p \) divides \(|HN/N| \), a contradiction. Thus \((|H|, |B_0|) = 1 \), so in the case, when \(H \) is quasipermutable in \(G \), we have \(HB_0 = B_0H \) and hence \(HN/N \) permutes with \(K/N = B_0N/N \). Thus \(HN/N \) is quasipermutable in \(G/N \).

Finally, suppose that \(H \) is \(S \)-quasipermutable in \(N \). In this case, \(B_0 \) is a \(p \)-subgroup of \(B \), so for some Sylow \(p \)-subgroup \(B_p \) of \(B \) we have \(B_0 \leq B_p \) and \((|H|, p) = 1 \). Hence \(K/N = B_0N/N \leq B_pN/N \), which implies that \(K/N = B_pN/N \). But \(H \) permutes with \(B_p \) by hypothesis, so \(HN/N \) permutes with \(K/N \). Therefore \(HN/N \) is \(S \)-quasipermutable in \(G/N \).

(2) By \([20]\), VI, 4.6], there are Hall \(\pi' \)-subgroups \(E_1 \), \(E_2 \) and \(E \) of \(N_G(H) \), \(B \) and \(G \), respectively, such that \(E = E_1E_2 \). Then \(H \) permutes with all Sylow subgroups of \(E_2 \) by hypothesis, so

\[
HE = H(E_1E_2) = (HE_1)E_2 = (E_1H)E_2 = E_1(HE_2) = E_1(E_2H) = (E_1E_2)H = EH
\]
by [22] A, 1.6).

(3) See the proof of (2).

(4) Let p be a prime such that $p \notin \pi$. Then by (3), there is a Sylow p-subgroup P of G such that $HP = PH$ is a subgroup of G. Hence $HP \cap N = H \cap N$ is a normal subgroup of HP. Thus p does not divide $|G : N_G(H \cap N)|$.

(5) See the proof of (1).

(6) See the proof of (2).

(7) Since G is π-soluble, B is π-soluble. Hence by [20] VI, 1.7, $B = B_\pi B_\pi'$ where B_π is a Hall π-subgroup of B and B_π' is a Hall π'-subgroup of B. By [20] VI, 4.6, there are Hall π-subgroups N_π, B_π and G_π of $N_G(H)$, B and G, respectively, such that $G_\pi = N_\pi B_\pi$. But since $H \leq N_\pi$, N_π is a Hall π-subgroup of G. Therefore $G_\pi = N_\pi B_\pi = N_\pi$, so $B_\pi \leq N_\pi$. Hence $G = N_G(H)B = N_G(H)B_\pi B_\pi' = N_G(H)B_\pi'$, so H is propermutable (S-propermutable, respectively) in G.

A group G is said to be a C_π-group provided G has a Hall π-subgroup and any two Hall π-subgroups of G are conjugate.

On the basis of Proposition 2.1 the following two results are proved.

Proposition 2.2. Let H be a Hall S-quasipermutable subgroup of G. If $\pi = \pi(|G : H|)$, then G is a C_π-group.

Proposition 2.3. Let E be a normal subgroup of G and H a Hall π-subgroup of E. If H is nilpotent and S-quasipermutable in G, then E is π-soluble.

3 Groups with a Hall quasipermutable subgroup

A group G is said to be π-separable if every chief factor of G is either a π-group or a π'-group. Every π-separable group G has a series

$$1 = P_0(G) \leq M_0(G) < P_1(G) < M_1(G) < \ldots < P_t(G) \leq M_t(G) = G$$

such that

$$M_i(G)/P_i(G) = O_{\pi'}(G/P_i(G))$$

$(i = 0, 1, \ldots, t)$ and

$$P_{i+1}(G)/M_i(G) = O_\pi(G/M_i(G))$$

$(i = 1, \ldots, t)$

The number t is called the π-length of G and denoted by $l_{\pi}(G)$ (see [34] p. 249]).

One more result, which we use in the proof of our main results, is the following
Theorem 3.1. Let H be a Hall subgroup of G and $\pi = \pi(H)$. Suppose that H is quasipermutable in G.

(I) If $p > q$ for all primes p and q such that $p \in \pi$ and q divides $|G : N_{G}(H)|$, then H is normal in G.

(II) If H is supersoluble, then G is π-soluble.

(III) If H is π-separable, then the following hold:

(i) $H' \leq O_{\pi}(G)$. If, in addition, $N_{G}(H)$ is nilpotent, then $G' \cap H \leq O_{\pi}(G)$.

(ii) $l_{\pi}(G) \leq 2$ and $l_{\pi'}(G) \leq 2$.

(iii) If for some prime $p \in \pi'$ a Hall π'-subgroup E of G is p-supersoluble, then G is p-supersoluble.

Let \mathcal{M} and \mathcal{N} be non-empty formations. Then the product $\mathcal{M}\mathcal{N}$ of these formations is the class of all groups G such that $G^{\mathcal{N}} \in \mathcal{M}$. It is well-known that such an operation on the set of all non-empty formations is associative (Gaschütz). The symbol \mathcal{M}^{t} denotes the product of t copies of \mathcal{M}.

We shall need following well-known Gaschütz-Shemetkov’s theorem [26, Corollary 7.13].

Lemma 3.2. The product of any two non-empty saturated formations is also a saturated formation.

In the proof of Theorem 3.1 we use the following

Lemma 3.3. The class \mathcal{F} of all π-separable groups G with $l_{\pi}(G) \leq t$ is a saturated formation.

Proof. It is not difficult to show that for any non-empty set $\omega \subseteq \mathfrak{P}$ the class \mathcal{G}_{ω} of all ω-groups is a saturated formation and that $\mathcal{F} = (\mathcal{G}_{\pi'}\mathcal{G}_{\pi})^{t}\mathcal{G}_{\pi'}$. Hence \mathcal{F} is a saturated formation by Lemma 3.2.

Lemma 3.4. Suppose that G is separable. If Hall π-subgroups of G are abelian, then $l_{\pi}(G) \leq 1$.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G. Since G is π-separable, N is a π-group or a π'-group. It is clear that the hypothesis holds for G/N, so $l_{\pi}(G/N) \leq 1$ by the choice of G. By Lemma 3.3, the class of all π-soluble groups with $l_{\pi}(G) \leq 1$ is a saturated formation. Therefore N is a unique minimal normal subgroup of G, $N \nsubseteq \Phi(G)$ and N is not a π'-group. Hence N is a π-group and $N = C_{G}(N)$ by [22, A, 15.2]. Therefore $N \leq H$, where H is a Hall π-subgroup of G. But since H is abelian, $N = H$ is a Hall π-subgroup of G. Hence $l_{\pi}(G) \leq 1$.

A group G is called π-closed provided G has a normal Hall π-subgroup.

Lemma 3.5. Let H be a Hall π-subgroup of G. If G is π-separable and $H \leq Z(N_{G}(H))$, then G is π'-closed.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then $G \neq H$. The class \mathcal{F} of all π'-closed groups coincides with the product $\mathcal{G}_{\pi'}\mathcal{G}_{\pi}$. Hence \mathcal{F} is a saturated formation by Lemma 3.2. Let N be a minimal normal subgroup of G. Since G is π-separable, N is a π-group or a π'-group. Moreover, G is a C_{π}-group by [34, 9.1.6]), so the hypothesis holds for
G/N. Hence G/N is π′-closed by the choice of G. Therefore N is the only minimal normal subgroup of G, N \not\leq \Phi(G) and N is a π-group. Therefore N \leq H and N = C_G(N) by [22, A, 15.2]. Since H \leq Z(N_G(H)) and H is a Hall π-subgroup of G, N = H. Therefore N \leq Z(G), which implies that N = H = G. This contradiction completes the proof of the lemma.

4 Proof of Theorem A

Recall that G is a PST-group if and only if G = D \rtimes M, where D = G^N is abelian Hall subgroup of G and every element x \in M induces a power automorphism on D [3]. Therefore the implication (i) \Rightarrow (ii) is a direct corollary of Theorem B.

Now suppose that G = D \rtimes M, where D = G^N, is a soluble PST-group. Let H be any subgroup of G and S a Hall π′-subgroup of H. Since G is soluble, we may assume without loss of generality that S \leq M. Hence H = (D \cap H)(M \cap H) = (D \cap H)S and D \cap H is normal in G. Let π_1 = π(S).

Let A be a Hall π_1-subgroup of M and E a complement to A in M. Then E \leq C_G(S). Therefore G = DM = DAE = N_G(H)(DA) and every subgroup L of DA satisfying (|H|, |L|) = 1 is contained in D. Thus H is quasipermutable in G. Thus (ii) \Rightarrow (iii).

(iv) \Rightarrow (ii) By Theorems C and D, G is supersoluble and D is a Hall subgroup of G. Therefore G = D \rtimes W, where W is a Hall π′-subgroup of G. By hypothesis, W is quasipermutable in G. Now arguing similarly as in the proof of Theorem B one can show that D is abelian and every subgroup of D is normal in G. Therefore G is a PST-group.

5 Final remarks

1. The subgroup S_3 is quasipermutable, S-propermutable and not propermutable in S_4. If H is the subgroup of order 3 in S_3, then H is S-quasipermutable and not quasipermutable in S_4.

2. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.1. Suppose that G is soluble and let π = π(G^N). Then G is a PST-group if and only if every subnormal π-subgroup and a Hall π′-subgroup of G are propermutable in G.

3. If G is metanilpotent, that is G/F(G) is nilpotent, then for every Hall subgroup E of G we have G = N_G(E)F(G). Therefore, in this case, every characteristic subgroup of every Hall subgroup of G is S-propermutable in G. In particular, every Hall subgroup of every supersoluble group is S-propermutable. This observation makes natural the following question: What is the structure of G under the hypothesis that every Hall subgroup of G is propermutable in G? Theorem B gives an answer to this question.
4. Every maximal subgroup of a supersoluble group is quasipermutable. Therefore, in fact, Theorem A shows that the class of all soluble groups in which quasipermutability is a transitive relation coincides with the class of all soluble PST-groups.

5. We say that G is a SQT-group if S-quasipermutability is a transitive relation in G. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.2. A soluble group G is an SQT-group if and only if $G = D \rtimes M$ is supersoluble, where D and M are Hall nilpotent subgroups of G and the index $|G : DN_G(H \cap D)|$ is a $\pi(H)$-number for every subgroup H of G.

6. A subgroup H of G is called SS-quasinormal (semi-normal) in G provided G has a subgroup B such that $HB = G$ and H permutes with all Sylow subgroups (H permutes with all subgroups, respectively) of B.

It is clear that every SS-quasinormal subgroup is S-propermutable and every semi-normal subgroup is propermutable. Moreover, there are simple examples (consider, for example, the group $C_7 \rtimes \text{Aut}(C_7)$, where C_7 is a group of order 7) which show that, in general, the class of all S-propermutable subgroups of G is wider than the class of all its SS-quasinormal subgroups and the class of all propermutable subgroups of G is wider than the class of all its semi-normal subgroups. Therefore Proposition covers main results (Theorems 1.1–1.5) in [21].

7. Theorem 3.1 is used in the proof of Theorem B. From this result we also get

Corollary 5.3 (See [35] Theorem 5.4]). Let H be a Hall semi-normal subgroup of G. If $p > q$ for all primes p and q such that p divides $|H|$ and q divides $|G : H|$, then H is normal in G.

Corollary 5.4 (See [36] Theorem 3]). Let P be a Sylow p-subgroup of G. If P is semi-normal in G, then the following statements hold:

(i) G is p-soluble and $P' \leq O_p(G)$.

(ii) $l_p(G) \leq 2$.

(iii) If for some prime $q \in \pi'$ a Hall p'-subgroup of G is q-supersoluble, then G is q-supersoluble.

Corollary 5.5 (See [37] Theorem 3]). If a Sylow p-subgroup P of G, where p is the largest prime dividing $|G|$, is semi-normal in G, then P is normal in G.

References

[1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin, New York, 2010.

[2] G.Zacher, I gruppi risolubili finiti, in cui i i sottogruppi di compositione coincidono con i sottogruppi quasi-normali, *Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur.*, (8) 37 (1964), 150–154.
[3] R. K. Agrawal, *Proc. Amer. Math. Soc.*, **47** (1975), 77–83.

[4] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, *J. Austral. Math. Soc.*, **70** (2001), 143–159.

[5] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, *J. London Math. Soc.*, **40** (1989), 244–256.

[6] J.C. Beidleman, B. Brewster and D.J.S. Robinson, Criteria for permutability to Be Trastransitive in Finite Groups, *J. Algebra*, **222** (1999), 400–412.

[7] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutabile subnormal subgroups, *J. Algebra*, **251** (2002), 727–738.

[8] A. Ballester-Bolinches, J.C. Beidleman, and H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, *Illinois J. Math.*, **47** (2003), 63-69.

[9] A. Ballester-Bolinches, J.C. Beidleman, and H. Heineken, A local approach to certain classes of finite groups, *Comm. Algebra*, **31** (2003), 5931–5942.

[10] M. Asaad, Finite groups in which normality or quasinormality is transitive, *Arch. Math (Basel)*, **83** (4) (2004), 289–296.

[11] A. Ballester-Bolinches, J. Cossey, Totally permutabile products of finite groups satisfying SC or PST, *Minatsh. Math.*, **145** (2005), 89–93.

[12] K. Al-Sharo K.J. C. Beidleman J C, Heineken H, et al. Some Characterizations of Finite Groups in which Semipermutability is a Transitive Relation, *Forum Math.*, **22** (2010), 855–862.

[13] V.O. Lukyanenko, A.N. Skiba, Finite groups in which τ-quasinormality is a transitive relation, *Rend. Semin. Univ. Padova*, **124** (2010), 231-246.

[14] J. C. Beidleman, M. F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, *Central Eur. J. Math.*, **9**(4) (2011), 915–921.

[15] Ballester-Bolinches A, Beidleman J C, Feldman A D, Heineken H, et al. Finite solvable groups in which semi-normality is a transitive relation. Beitr.Algebra Geom, DOI 10.1007/s13366-012-0099-1

[16] Ballester-Bolinches A, Beidleman J C, Feldman A D. Some new characterizations of solvable PST-groups. Ricerche mat. DOI 10.1007/s11587-012-0130-8

[17] Xiaolan Yi, Alexander N. Skiba, On S-propermutable subgroups of finite groups, *Bull. Malays. Math. Sci. Soc. (2) 34*(2) (2011), (in Press).
[18] Xiaolan Yi, A. N. Skiba, On some generalizations of permutability and S-permutability, Problems of Physics Mathematics and Techniques, 2013, 2 (15).

[19] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978.

[20] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.

[21] Shirong Li, Zhencai Shen, Jianjun Liu, Xiaochun Liu, The influence of SS-quasinormality of some subgroups on the structure of finite group, J. Algebra, 319 (2008), 4275-4287.

[22] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.

[23] Ballester-Bolinches A, Ezquerro L M. Classes of Finite groups. Dordrecht: Springer, 2006.

[24] B.N. Knyagina, V.S. Monakhov, On π'-properties of finite group having a Hall π-subgroup, Siberian. Math. J. (2011), 52 (2), 298-309.

[25] O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90-93.

[26] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989.

[27] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, Evanston, London, 1968.

[28] V.S. Monakhov, Product of supersoluble and cyclic or primary groups, Finite Groups, Proc. Gomel Sem., Gomel, 1975–1977 (in Russian), "Nauka i Tekhni"a", Minsk, 1978, 50–63.

[29] A. N. Skiba, On the J-hypercentre and the intersection of all J-maximal subgroups of a finite group, Journal of Pure and Applied Algebra (2011), doi:10.1016/j.jpaa.2011.10.006.

[30] M. Weinstein, Between Nilpotent and Solvable, Polygonal Publishing House, 1982.

[31] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, New York, 1982.

[32] W. Guo, A.N. Skiba, On Φ*-hypercentral subgroups of finite groups, J. Algebra, 372 (2012), 285-292.

[33] H. Su, Semi-normal subgroups of finite groups, Math. Mag., 8 (1988), 7–9.

[34] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

[35] W. Guo W, K P Shum, A. N. Skiba, X-semipermutable subgroups of finite groups, J Algebra, 315 (2007), 31–41.

[36] W. Guo, Finite groups with semi-normal Sylow subgroups, Acta Math Sinica, English Series, 24 (2008), 1751–1758.

[37] V. V. Podgornaja, Seminormal subgroups and supersolubility of finite groups, Vesci NAN Belarus, Ser Phis Math Sciences, 4 (2000), 22–25.