PREQUANTIZATION OF THE MODULI SPACE OF FLAT PU(p) BUNDLES
WITH PRESCRIBED BOUNDARY HOLOMOMIES

DEREK KRESPKI

Abstract. Using the framework of quasi-Hamiltonian actions, we compute the obstruction to prequantization for the moduli space of flat PU(p)-bundles over a compact orientable surface with prescribed holonomies around boundary components, where p > 2 is prime.

1. Introduction

Let \(G \) be a compact connected simple Lie group and \(\Sigma \) a compact oriented surface with \(s \) boundary components. Given conjugacy classes \(C_1, \ldots, C_s \), let \(\mathcal{M} = M_G(\Sigma; C_1, \ldots, C_s) \) denote the moduli space of flat \(G \)-bundles on \(\Sigma \) with prescribed boundary holonomies in the conjugacy classes \(C_j \). Recall that \(\mathcal{M} \) is a (possibly singular) symplectic space, where the symplectic form is defined by a choice of invariant inner product on the Lie algebra \(\mathfrak{g} \) of \(G \) [4]. This paper considers the obstruction to the existence of a prequantization of \(\mathcal{M} \) (i.e. prequantum line bundle \(L \to \mathcal{M} \)), by expressing the corresponding integrality condition on the symplectic form in terms of the choice of inner product on the simple Lie algebra \(\mathfrak{g} \), which is hence a certain multiple \(k \) of the basic inner product.

If the underlying structure group \(G \) is simply connected, the moduli space \(\mathcal{M} \) is connected and the obstruction to prequantization is well known—a prequantization exists if and only if \(k \in \mathbb{N} \) and each conjugacy class \(C_j \) corresponds to a level \(k \) weight (e.g. see [2, 5, 13]). If \(G \) is not simply connected, \(\mathcal{M} \) may have multiple components. Moreover integrality of \(k \) is not sufficient to guarantee a prequantization even in the absence of markings/prescribed boundary holonomies: if \(\Sigma \) is closed and has genus at least 1, then \(k \) must be a multiple of an integer \(l_0(G) \) (computed in [10] for each \(G \)). If \(\Sigma \) has boundary with prescribed holonomies, only the case \(G = \text{SO}(3) \cong \text{PU}(2) \) has been fully resolved [12].

In this paper, we describe the connected components of \(\mathcal{M} \) for non-simply connected structure groups \(G/Z \) in Corollary 4.2 and Proposition 4.3 (where \(G \) is simply connected and \(Z \) is a subgroup of the centre of \(G \)). The decomposition into components makes use of an action of the centre \(Z(G) \) on a fundamental Weyl alcove \(\Delta \) in \(\mathfrak{t} \), the Lie algebra of a maximal torus. The action is described concretely in [17] for classical groups and Appendix A records the action for the two remaining exceptional cases.

Finally, we compute the obstruction to prequantization in Theorem 5.6 in the case \(G = \text{PU}(p) \) (\(p > 2 \), prime) for any number of boundary components \(s \). We work within the theory of quasi-Hamiltonian group actions with group-valued moment map [1], where the moduli space \(\mathcal{M} \) is a central example. In quasi-Hamiltonian geometry, quantization is defined as a certain element of the twisted \(K \)-theory of \(G \) [14], analogous to \(\text{Spin}^c \) quantization for Hamiltonian group actions on symplectic manifolds. In this context, the obstruction to the existence of a prequantization is a cohomological obstruction (see Definition 5.1). The obstruction for other cases of non-simply connected structure group does not follow from the approach here (see Remark 5.5) and will be considered elsewhere.

Date: August 4, 2014.
Acknowledgements. A portion of this work is a revised version of (previously unpublished) results from the author’s Ph. D. thesis [11], supervised by E. Meinrenken and P. Selick. I remain grateful for their guidance and support.

2. Preliminaries

Notation. Unless otherwise indicated, G denotes a compact, simply connected, simple Lie group with Lie algebra \mathfrak{g}. We fix a maximal torus $T \subset G$ and use the following notation:

- \mathfrak{t} - Lie algebra of T;
- \mathfrak{t}^* - dual of the Lie algebra of T;
- $W = N(T)/T$ - Weyl group;
- $I = \ker \exp_T$ - integer lattice;
- $P = I^* \subset \mathfrak{t}^*$ - (real) weight lattice;
- $Q \subset \mathfrak{t}^*$ - root lattice;
- $Q^\vee \subset \mathfrak{t}$ - coroot lattice;
- $P^\vee \subset \mathfrak{t}$ - coweight lattice.

Recall that since G is simply connected, $I = Q^\vee$. Moreover, the coroot lattice and weight lattice are dual to each other, as are the root lattice and coweight lattice. A choice of simple roots $\alpha_1, \ldots, \alpha_l$ (with $l = \text{rank}(G)$) spanning Q, determines the fundamental coweights $\lambda_1^\vee, \ldots, \lambda_l^\vee$ spanning P^\vee, defined by $\langle \alpha_i, \lambda_j^\vee \rangle = \delta_{i,j}$.

We let $\langle -,- \rangle$ denote the basic inner product, the invariant inner product on \mathfrak{g} normalized to make short coroots have length $\sqrt{2}$. With this inner product, we will often identify $\mathfrak{t} \cong \mathfrak{t}^*$.

Given a subgroup Z of the centre $Z(G)$ of G, we shall abuse notation and denote by $q : G \to G/Z$ the resulting covering(s).

Finally, let $\{e_1, \ldots, e_n\}$ denote the standard basis for \mathbb{R}^n, equipped with the standard inner product that will also be denoted with angled brackets $\langle -,- \rangle$.

Quasi-Hamiltonian group actions. We recall some basic definitions and facts from [1]. (For the remainder of this section, we may take G to be any compact Lie group with invariant inner product $\langle -,- \rangle$ on \mathfrak{g}.) Let θ^L, θ^R denote the left-invariant, right-invariant Maurer-Cartan forms on G, and let $\eta = \frac{1}{12} \langle \theta^L, [\theta^L, \theta^L] \rangle$ denote the Cartan 3-form on G. For a G-manifold M, and $\xi \in \mathfrak{g}$, let ξ^t denote the generating vector field of the action. The Lie group G is itself viewed as a G-manifold for the conjugation action.

Definition 2.1. [1] A quasi-Hamiltonian G-space is a triple (M, ω, Φ) consisting of a G-manifold M, a G-invariant 2-form ω on M, and an equivariant map $\Phi : M \to G$, called the moment map, satisfying:

\begin{enumerate}
\item $d\omega + \Phi^* \eta = 0$,
\item $\iota_{\xi^t} \omega + \frac{1}{2} \Phi^* ([\theta^L + \theta^R] \cdot \xi) = 0$ for all $\xi \in \mathfrak{g}$,
\item at every point $x \in M$, $\ker \omega_x \cap \ker d\Phi_x = \{0\}$.
\end{enumerate}

We will often denote a quasi-Hamiltonian G-space (M, ω, Φ) simply by the underlying space M when ω and Φ are understood from the context.

The fusion product of two quasi-Hamiltonian G-spaces M_j with moment maps $\Phi_j : M_j \to G$ ($j = 1, 2$) is the product $M_1 \times M_2$, with the diagonal G-action and moment map $\Phi : M_1 \times M_2 \to G$ given by composing $\Phi_1 \times \Phi_2$ with multiplication in G.

The symplectic quotient of a quasi-Hamiltonian G-space is the symplectic space $M//G = \Phi^{-1}(1)/G$, which is a symplectic orbifold whenever the group unit 1 is a regular value. If 1 is a singular value, then the symplectic quotient is a singular symplectic space as defined in [15].

The conjugacy classes $C \subset G$, with moment map the inclusion into G, are basic examples of quasi-Hamiltonian G-spaces. Another important example is the double $D(G) = G \times G$, equipped with diagonal G-action and moment map $\Phi(g,h) = ghg^{-1}h^{-1}$, the group commutator. These two
families of examples form the building blocks of the moduli space of flat G-bundles over a surface Σ with prescribed boundary holonomies. (See Section 1 for a sketch of this construction.)

3. Conjugacy classes invariant under translation by central elements

This section describes the set of conjugacy classes in G that are invariant under translation by a subgroup of the centre $Z(G)$ of G. We begin with a Lemma that relates the central subgroups leaving conjugacy classes (of G) invariant with conjugacy classes in G/Z with $Z \subset Z(G)$.

Lemma 3.1. Let Z be a subgroup of the centre $Z(G)$ of G and let $\mathcal{C} \subset G/Z$ be a conjugacy class. For any conjugacy class $\mathcal{D} \subset G$ covering \mathcal{C}, the restriction $q|_{\mathcal{D}} : \mathcal{D} \to \mathcal{C}$ is the universal covering projection and hence the fundamental group $\pi_1(\mathcal{C}) \cong \mathcal{Z}_D = \{z \in Z : z\mathcal{D} = \mathcal{D}\}$.

Proof. The inverse image $q^{-1}(\mathcal{C})$ is a disjoint union of conjugacy classes in G that cover \mathcal{C}. Since conjugacy classes in a compact simply connected Lie group are simply connected and Z_D acts freely on \mathcal{D}, the lemma follows. □

Recall that every element in G is conjugate to a unique element $\exp \xi$ in T where ξ lies in a fixed (closed) alcove $\Delta \subset t$ of a Weyl chamber. Therefore, the set of conjugacy classes in G is parametrized by Δ. Since the $Z(G)$-action commutes with the conjugation action, we obtain an action $Z(G) \times \Delta \to \Delta$. Next we identify this description of the action of $Z(G)$ on an alcove Δ with a more concrete description of a $Z(G)$-action on Δ given in [17, Section 4.1]. (See also [6, Section 3.1] for a similar treatment.)

Let $\{\alpha_1, \ldots, \alpha_i\}$ be a basis of simple roots for t^*, with highest root $\tilde{\alpha} = -\alpha_0$. Let $\Delta \subset t$ be the alcove

$$\Delta = \{\xi \in t : \langle \xi, \alpha_j \rangle \geq 0, \langle \xi, \tilde{\alpha} \rangle \leq 1\}.$$

Recall that the centre $Z(G) \cong P^\vee/Q^\vee$ (induced by the exponential map), and that the non-zero elements of the centre have representatives $\lambda^\vee_i \in P^\vee$ given by minimal dominant coweights. By [17, Lemma 2.3] the non-zero minimal dominant coweights λ^\vee_i are dual to the special roots α_i, which are those roots with coefficient 1 in the expression $\tilde{\alpha} = \sum m_i \alpha_i$. In Proposition 4.1.4 of [17], Toledano-Laredo provides a $Z(G)$-action on Δ defined by

$$z \cdot \xi = w_i \xi + \lambda^\vee_i$$

where $z = \exp \lambda^\vee_i$, and $w_i \in W$ is a certain element of the Weyl group. The element $w_i \in W$ is the unique element that leaves $\Delta \cup \{\alpha_0\}$ invariant (i.e. induces an automorphism of the extended Dynkin diagram) and satisfies $w_i(\alpha_0) = \alpha_i$ (see [17, Proposition 4.1.2]). The following Proposition shows these actions coincide.

Proposition 3.2. The translation action of $Z(G)$ on G induces an action $Z(G) \times \Delta \to \Delta$ and is given by the formula $z \cdot \xi = w_i \xi + \lambda^\vee_i$, where $z = \exp \lambda^\vee_i$ and w_i is the unique element in W that leaves $\Delta \cup \{\alpha_0\}$ invariant and satisfies $w_i(\alpha_0) = \alpha_i$.

Proof. Observe that for any element w in W, $w\lambda^\vee_i - \lambda^\vee_i \in I = Q^\vee$ since $w \exp \lambda^\vee_i = \exp \lambda^\vee_i$. Therefore, $w_i \xi + \lambda^\vee_i = w_i(\xi + \lambda^\vee_i + (w_i^{-1}(\lambda^\vee_i - \lambda^\vee_j)))$. In other words, $w_i \xi + \lambda^\vee_i = \hat{w}(\xi + \lambda^\vee_i)$ for some \hat{w} in the affine Weyl group. Letting $z = \exp \lambda^\vee_i$, this shows that $z \cdot \xi = \exp(\xi + \lambda^\vee_i)$ is conjugate to $\exp(w_i \xi + \lambda^\vee_i)$, which proves the Proposition. □

In fact, as the next Proposition shows, the automorphism of the Dynkin diagram induced by w_i encodes the resulting permutation of the vertices of the alcove Δ.

Proposition 3.3. Let v_0, \ldots, v_l denote the vertices of Δ with v_j opposite the facet parallel to $\ker \alpha_j$. Then $\exp \lambda^\vee_i \cdot v_j = v_k$ whenever $w_i \alpha_j = \alpha_k$, where w_i is as in Proposition 3.2.
Proof. Let v_0, \ldots, v_l denote the vertices of Δ where the vertex v_j is opposite the facet (codimension 1 face) parallel to $\ker \alpha_j$. That is, $v_0 = 0$ and for $j \neq 0$, v_j satisfies:

$$\langle \alpha_0, v_j \rangle = -1, \quad \text{and} \quad \langle \alpha_r, v_j \rangle = 0 \quad \text{if and only if} \quad 0 \neq r \neq j.$$

(Hence, for $j \neq 0$ we have $\langle \alpha_j, v_j \rangle = \frac{1}{m_j}$ where m_j is the coefficient of α_j in the expression $\hat{\alpha} = \sum m_i \alpha_i$.)

Suppose that $w_i \alpha_0 = \alpha_i$ and let $w_i \alpha_j = \alpha_k$ (where k depends on j).

Consider $\exp \lambda_i^\vee \cdot v_0$. Since $\langle \alpha_0, w_i v_0 + \lambda_i^\vee \rangle = \langle \alpha_0, \lambda_i^\vee \rangle = -1$, and (for $r \neq 0$) $\langle \alpha_r, w_i v_0 + \lambda_i^\vee \rangle = \langle \alpha_r, \lambda_i^\vee \rangle = \delta_{r,k}$ we have $\exp \lambda_i^\vee \cdot v_0 = v_i$.

Next, consider $\exp \lambda_i^\vee \cdot v_j = w_i v_j + \lambda_i^\vee$ where $j \neq 0$. If $k = 0$ so that $w_i \alpha_j = \alpha_0$ then $\alpha_j = w_i^{-1} \alpha_0$ is a special root (i.e. $m_j = 1$) since $w_i^{-1} = w_j$. Therefore, $\langle \alpha_0, w_i v_j + \lambda_i^\vee \rangle = \langle w_i^{-1} \alpha_0, v_j \rangle - 1 = \langle \alpha_j, v_j \rangle - 1 = 0$. And if $r \neq 0$,

$$\langle \alpha_r, w_i v_j + \lambda_i^\vee \rangle = \langle w_i^{-1} \alpha_r, v_j \rangle + \langle \alpha_r, \lambda_i^\vee \rangle.$$

If $r \neq i$, $w_i^{-1} \alpha_r$ is a simple root other than α_j; therefore, each term above is 0. Moreover, if $r = i$, then the above expression becomes $\langle \alpha_0, v_j \rangle + \langle \alpha_i, \lambda_i^\vee \rangle = -1 + 1 = 0$. Hence we have $\exp \lambda_i^\vee \cdot v_j = v_0$ whenever $w_i \alpha_j = \alpha_0$.

On the other hand, if $k \neq 0$ so that $w_i \alpha_j = \alpha_k$ is a simple root, then $\langle \alpha_0, w_i v_j + \lambda_i^\vee \rangle = \langle w_i^{-1} \alpha_0, v_j \rangle + \langle \alpha_0, \lambda_i^\vee \rangle = 0 - 1 = -1$ since the simple root $w_i^{-1} \alpha_0 \neq \alpha_j$. And if $r \neq 0$, we consider again the expression (1) and find (for the same reason as above) that (1) is trivial whenever $r \neq k$. If $r = k$, (1) becomes $\langle \alpha_k, w_i v_j + \lambda_i^\vee \rangle = \langle w_i^{-1} \alpha_k, v_j \rangle + \langle \alpha_k, \lambda_i^\vee \rangle = \langle \alpha_j, v_j \rangle \neq 0$. Hence we have that $\exp \lambda_i^\vee \cdot v_j = v_k$, as required.

The $Z(G)$-action on Δ is explicitly described in [17] for all classical groups. (In Appendix A we record the action of the centre on the alcove for the exceptional groups E_6 and E_7, the remaining compact simple Lie groups with non-trivial centre.)

Conjugacy classes in $SU(n)$. We now specialize to the case $G = SU(n)$ and consider the action of the centre on the alcove. Identify $t \cong t^* \subset \mathbb{R}^n$ as the subspace $\{x = \sum x_j e_j; \sum x_j = 0\}$ and recall that the basic inner product coincides with (the restriction of) the standard inner product on \mathbb{R}^n. The roots are the vectors $e_i - e_j$ with $i \neq j$. Taking the simple roots to be $\alpha_i = e_i - e_{i+1}$ ($i = 1, \ldots, n-1$) and the resulting highest root $\hat{\alpha} = e_1 - e_n$ gives the alcove

$$\Delta = \{x \in t; x_1 \geq x_2 \geq \cdots \geq x_n, x_1 - x_n \leq 1\}.$$

Its vertices are

$$v_0 = 0 \quad \text{and} \quad v_j = \sum_{i=1}^{j} e_i - \frac{j}{n} \sum_{i=1}^{n} e_i \quad (j = 1, \ldots, n).$$

The centre $Z(SU(n)) \cong \mathbb{Z}/n\mathbb{Z}$ is generated by (exp of) the minimal dominant coweight $\lambda_i^\vee = e_1 - \frac{1}{n} \sum_{i=1}^{n} e_i$ corresponding to the special root $\alpha_1 = e_1 - e_2$. Since the element w_1 inducing an automorphism of the extended Dynkin diagram for $SU(n)$ satisfies $w_1 \alpha_0 = \alpha_1$, by Proposition 3.3 the permutation of the vertices of Δ induced by the action of exp λ_1^\vee is the n-cycle $(v_0, v_1 \cdots v_{n-1})$ (since v_j is the vertex opposite the facet parallel to $\ker \alpha_j$).

It follows that the only point in Δ fixed by the action of $Z(G)$ is the barycenter

$$\zeta_s = \frac{1}{n} \sum_{j=0}^{n-1} v_j = \frac{n - 1}{2n} e_1 + \frac{n - 3}{2n} + \cdots + \frac{1 - n}{2n} e_n.$$

Hence there is a unique conjugacy class in $SU(n)$ that is invariant under translation by the centre—namely, matrices in $SU(n)$ with eigenvalues z_1, \ldots, z_n, the distinct n-th roots of $(-1)^{n+1}$. As the next Proposition shows, however, restricting the action to a proper subgroup $Z \cong \mathbb{Z}/\nu\mathbb{Z}$ ($\nu|n$) of the centre results in larger Z-fixed point sets in Δ.

Proposition 3.4. Let $n = \nu m$ and consider the subgroup $\mathbb{Z}/\nu\mathbb{Z} \subset \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}(\text{SU}(n))$. The $\mathbb{Z}/\nu\mathbb{Z}$-fixed points in the alcove Δ for $\text{SU}(n)$ consist of the convex hull of the barycenters of the faces spanned by the orbits of the vertices v_0, \ldots, v_{m-1} of Δ.

Proof. Write $x = \sum t_i v_i$ in Δ in barycentric coordinates (with $t_i \geq 0$ and $\sum t_i = 1$). Then a generator of $\mathbb{Z}/\nu\mathbb{Z}$ sends x to $\sum t'_i v_i$, with $t'_i = t_i - m \mod n$. Therefore x is fixed if and only if $t_i = t'_i - m \mod n$, and in this case we may write,

$$x = t_0 \nu^1 \sum_{j=0}^{\nu-1} v_{jm} + t_1 \nu^1 \sum_{j=0}^{\nu-1} v_{1+jm} + \cdots + t_m \nu^1 \sum_{j=0}^{\nu-1} v_{m-1+jm}$$

which exhibits a fixed point in the desired form. □

To illustrate, consider the subgroup $Z \cong \mathbb{Z}/2\mathbb{Z}$ of the centre $\mathbb{Z}(\text{SU}(4)) \cong \mathbb{Z}/4\mathbb{Z}$, which acts by transposing the vertices $v_0 \leftrightarrow v_2$ and $v_1 \leftrightarrow v_3$. The barycenters ζ_0, ζ_1 of the edges $v_0 v_2$ and $v_1 v_3$, respectively, are fixed and thus the Z-fixed points are those on the line segment joining ζ_0 and ζ_1. (See Figure 1).

![Figure 1. Alcove for SU(4). The indicated line segment through the barycenter parametrizes the set of conjugacy classes invariant under translation by $\mathbb{Z}/2\mathbb{Z} \subset \mathbb{Z}(\text{SU}(4))$.](image)

4. Components of the moduli space with markings

In this section we recall the quasi-Hamiltonian description of the moduli space of flat bundles over a compact orientable surface with prescribed boundary holonomies. We refer to the original article [1] for the details regarding the construction sketched below.

Let Σ be a compact, oriented surface of genus h with s boundary components. For conjugacy classes C_1, \ldots, C_s in G/Z, let $M_{G/Z}(\Sigma; C_1, \ldots, C_s)$ be the moduli space of flat G/Z-bundles over Σ with prescribed boundary holonomies lying in the conjugacy classes C_j ($j = 1, \ldots, s$). Points in $M_{G/Z}(\Sigma; C_1, \ldots, C_s)$ are (gauge equivalence classes of) principal G/Z-bundles over Σ equipped with a flat connection whose holonomy around the j-th boundary component lies in the conjugacy class C_j. This moduli space is an important example in the theory of quasi-Hamiltonian group actions, where it is cast a symplectic quotient of a fusion product,

$$M_{G/Z}(\Sigma; C_1, \ldots, C_s) = (D(G/Z)^h \times C_1 \times \cdots \times C_s) /\! / (G/Z),$$

which may have several connected components if Z is non-trivial. Extending the discussion in [12, Section 2.3], we describe the connected components of (2) as symplectic quotients of an auxiliary quasi-Hamiltonian G-space.
As in [12] Section 2.2, given a quasi-Hamiltonian G/Z-space N with group-valued moment map $\Phi : N \to G/Z$, let \tilde{N} be the fibre product defined by the Cartesian square,

\[
\begin{array}{ccc}
\tilde{N} & \xrightarrow{\Phi} & G \\
\downarrow & & \downarrow \\
N & \xrightarrow{\Phi} & G/Z
\end{array}
\]

Then \tilde{N} is naturally a quasi-Hamiltonian G-space with moment map Φ. The following Proposition from [12] and its Corollary summarize some properties of this construction.

Proposition 4.1. [12 Prop. 2.2] Let \tilde{N} be the fibre product defined by (3) where $\Phi : N \to G/Z$ is a group-valued moment map.

(i) We have a canonical identification of symplectic quotients $\tilde{N}/G \cong N/(G/Z)$.

(ii) For a fusion product $N = N_1 \times \cdots \times N_r$ of quasi-Hamiltonian G/Z-spaces, the space \tilde{N} is a quotient of $N_1 \times \cdots \times N_r$ by the group $\{(c_1, \ldots, c_r) \in \mathbb{Z}^r \mid \prod_{j=1}^r c_j = e\}$.

(iii) If $\Phi : N \to G/Z$ lifts to a moment map $\Phi' : N \to G$, thus turning N into a quasi-Hamiltonian G-space then $\tilde{N} = N \times Z$.

Corollary 4.2. Let \tilde{N} be the fibre product defined by (3) where $\Phi : N \to G/Z$ is a group-valued moment map, and write $\tilde{N} = \bigsqcup X_j$ as a union of its connected components. Then the components of $N/(G/Z)$ can be identified with the symplectic quotients X_j/G.

Proof. The restrictions $\tilde{\Phi}_j = \Phi|_{X_j}$ are G-valued moment maps whose fibres are connected by [11 Theorem 7.2]. Since $\tilde{\Phi}_j^{-1}(e) = \bigcup \tilde{\Phi}_j^{-1}(e)$, it follows that $\tilde{N}/G = \Phi^{-1}(e)/G = \bigcup \tilde{\Phi}_j^{-1}(e)/G = \bigsqcup X_j/G$. The result follows from Proposition 4.1 (i). □

Hence to identify the components of (2), it suffices to identify the components of \tilde{N}/G, where $N = D(G/Z)^h \times C_1 \times \cdots \times C_s$—namely, X_j/G where X_j ranges over the components of \tilde{N}. With this in mind, choose conjugacy classes $D_j \subset G$ covering C_j ($j = 1, \ldots, s$) and let

$$\tilde{N} = D(G)^h \times D_1 \times \cdots \times D_s.$$

Let

$$\Gamma = \{(\gamma_1, \ldots, \gamma_s) \in Z_{D_1} \times \cdots \times Z_{D_s} : \prod \gamma_j = 1\} \subset \mathbb{Z}^s$$

(cf. Lemma 3.1). We show next that the components of \tilde{N} are all homeomorphic to $\tilde{N}/(Z^{2h} \times \Gamma)$.

Proposition 4.3. Let $N = D(G/Z)^h \times C_1 \times \cdots \times C_s$ for conjugacy classes $C_j \subset G/Z$ ($j = 1, \ldots, s$) and let \tilde{N} be the fibre product defined by (3). Then \tilde{N} may be written as a union of its connected components,

$$\tilde{N} \cong \bigsqcup_{Z/(Z_{D_1} \cdots Z_{D_s})} D(G/Z)^h \times (D_1 \times \cdots \times D_s)/\Gamma$$

where $D_j \subset G$ are conjugacy classes covering C_j ($j = 1, \ldots, s$) and Γ is as in (4).

Proof. This is a straightforward application of the properties (3) and (3) listed in Proposition 4.1. By property (3), $D(G/Z)^h = D(G/Z)^h \times Z$, and by Lemma 3.1, $\hat{C}_j = D_j \times Z/Z_{D_j}$. Therefore, by property (3),

$$\tilde{N} \cong D(G/Z)^h \times (Z \times D_1 \times Z/Z_{D_1} \times \cdots \times D_s \times Z/Z_{D_s})/\Lambda$$

where $\Lambda = \{(c_0, \ldots, c_s) \in \mathbb{Z}^{s+1} : c_0 \cdots c_s = 1\}$. Since

$$(Z \times D_1 \times Z/Z_{D_1} \times \cdots \times D_s \times Z/Z_{D_s})/\Lambda \cong (Z \times D_1 \times \cdots \times D_s)/\Gamma'$$
where $\Gamma' = \{(\gamma_0, \ldots, \gamma_s) \in Z \times Z_{D_1} \times \cdots \times Z_{D_s} : \prod \gamma_j = 1\}$, we see that the components of \bar{N} are in bijection with $Z/(Z_{D_1} \cdots Z_{D_s})$.

Consider the component corresponding to $\bar{z} \in Z/(Z_{D_1} \cdots Z_{D_s})$ in which each point is of the form $(\bar{g}, [(z, x_1, \ldots, x_s)]_{r'})$, where $\lfloor \] \rfloor$ denotes a Γ'-orbit. (Note that there is always a representative of this form with z in the first coordinate.) This component is homeomorphic to $D(G/Z)^h \times (D_1 \times \cdots D_s)/\Gamma$ by the map $(\bar{g}, [(z, x_1, \ldots, x_s)]_{r'}) \mapsto (\bar{g}, [(z, x_1, \ldots, x_s)]_{r'})$.

For the case $G/Z = SU(p)/(\mathbb{Z}/p\mathbb{Z}) = PU(p)$, where p is prime, the decomposition above simplifies. In particular, there is only one conjugacy class $\mathcal{D}_s = SU(p) \cdot \exp \zeta_s$, corresponding to the barycenter $\zeta_s \in \Delta$, invariant under the action of the centre. Let $\mathcal{C}_s = q(\mathcal{D}_s)$ be the corresponding conjugacy class in $PU(p)$. Therefore, we obtain the following Corollary (cf. [12, Lemma 2.3]).

Corollary 4.4. Let p be prime and let $N = D(PU(p))^h \times C_1 \times \cdots \times C_s$ for conjugacy classes $\mathcal{C}_j \subset PU(p)$ ($j = 1, \ldots, s$) and let \bar{N} be the fibre product defined by (3). Then,

$$\bar{N} \cong \begin{cases} D(PU(p))^h \times (D_1 \times \cdots \times D_s)/\Gamma & \text{if } \exists j: \mathcal{C}_j = \mathcal{C}_s; \\ D(PU(p))^h \times D_1 \times \cdots \times D_s \times Z & \text{otherwise.} \end{cases}$$

where $\mathcal{D}_j \subset SU(p)$ are conjugacy classes covering \mathcal{C}_j ($j = 1, \ldots, s$) and Γ is as in (4).

In particular, if (after re-labelling) $\mathcal{C}_j = \mathcal{C}_s$ for all $j \leq r$ ($r > 0$), then we obtain

$$\bar{N} \cong D(PU(p))^h \times (D_s)^r / \Gamma \times D_{r+1} \times \cdots \times D_s,$$

where, in this case, $\Gamma = \{(\gamma_1, \ldots, \gamma_r) \in Z^r : \prod \gamma_j = 1\}$.

5. **Obstruction to prequantization**

5.1. **Prequantization for quasi-Hamiltonian group actions.** We recall some definitions and properties regarding prequantization of quasi-Hamiltonian group actions. Recall that the Cartan 3-form $\eta \in \Omega^3(G)$ is integral—in fact, $[\eta] \in H^3(G; \mathbb{R})$ is the image of a generator $x \in H^3(G; \mathbb{Z}) \cong \mathbb{Z}$ under the coefficient homomorphism induced by $\mathbb{Z} \to \mathbb{R}$. Condition (1) in Definition 2.1 says that the pair (ω, η) defines a relative cocycle in $\Omega^3(\Phi)$, the algebraic mapping cone of the pull-back map $\Phi^*: \Omega^*(G) \to \Omega^*(M)$, and hence a cohomology class $[(\omega, \eta)] \in H^3(\Phi; \mathbb{R})$. (See [7] Ch. I, Sec. 6) for the definition of relative cohomology.)

Definition 5.1. [10,14] Let $k \in \mathbb{N}$. A level k prequantization of a quasi-Hamiltonian G-space (M, ω, Φ) is an integral lift $\alpha \in H^3(\Phi; \mathbb{Z})$ of the class $k[(\omega, \eta)] \in H^3(\Phi; \mathbb{R})$.

The definition of prequantization in 5.1 uses the assumption in this paper that G is simply connected. The general definition of prequantization [14, Definition 3.2] (with G semi-simple and compact) requires an integral lift in $H^2(\Phi; \mathbb{Z})$ of an equivariant extension of the class $k[(\omega, \eta)]$. When G is simply connected, [10, Proposition 3.5] shows that the definition above is equivalent.

We list some basic properties level k prequantizations that we shall encounter.

(a) If M_1 and M_2 are pre-quantized quasi-Hamiltonian G-spaces at level k, then their fusion product $M_1 \times M_2$ inherits a prequantization at level k. Conversely, a prequantization of the product induces prequantizations of the factors. See [10, Proposition 3.8].

(b) A level k prequantization of M induces a prequantization of the symplectic quotient $M//G$, equipped with the k-th multiple of the symplectic form.

(c) The long exact sequence in relative cohomology gives a necessary condition $k\Phi^*(x) = 0$ for the existence of a level k-prequantization. If $H^2(M; \mathbb{R}) = 0$, $k\Phi^*(x) = 0$ is also sufficient [10, Proposition 4.2] to conclude a level k-prequantization exists.

The following examples relate to the moduli space of flat bundles with prescribed boundary holonomies.
Example 5.2. The double \(D(G) = G \times G \) with moment map \(\Phi : D(G) \to G \) equal to the group commutator admits a prequantization at all levels \(k \in \mathbb{N} \). For non-simply connected groups, the double \(D(G/Z) \) with moment map \(\Phi : D(G/Z) \to G \) the canonical lift of the group commutator admits a level \(k \)-prequantization if and only if \(k \) is a multiple of \(l_0 \in \mathbb{N} \), where \(l_0 \) is a positive integer depending on \(G/Z \) computed for all compact simple Lie groups in \([10]\). For \(G/Z = \text{PU}(n) \), \(l_0 = n \).

Example 5.3. Conjugacy classes \(D \subset G \) admitting a level \(k \)-prequantization are those \(D = G \cdot \exp \xi (\xi \in \Delta) \) with \((k\xi)^t \in P \) \([13]\), where \((k\xi)^t = (k\xi, -) \) (i.e. a level \(k \) weight). For simply laced groups (such as \(G = \text{SU}(n) \)), under the identification \(t \cong t^* \), \(P^\vee \cong P \). Therefore, in this case, \(D \) admits a level \(k \)-prequantization if and only if \(k\xi \in P^\vee \). Since \(\exp^{-1} Z(G) = P^\vee \), we see that \(D \) admits a level \(k \)-prequantization if and only if \(g^k \in Z(G) \) for all \(g \in D \). (So in particular if \(k \) is a multiple of the order of \(D \) \([5]\) Definition 5.76), then \(D \) admits a level \(k \) prequantization.)

5.2. The obstruction to prequantization for the moduli space of \(\text{PU}(p) \) bundles, \(p \) prime.

Let \(p \) be an odd prime. In this section we obtain the obstruction to prequantization for the quasi-Hamiltonian \(\text{SU}(p) \)-space \(\hat{N} \), where \(N = D(\text{PU}(p))^h \times \mathcal{C}_1 \times \cdots \times \mathcal{C}_s \) for conjugacy classes \(\mathcal{C}_j \subset \text{PU}(p) \) \((j = 1, \ldots, s) \). Let \(M \subset \hat{N} \) be a connected component (by Corollary \([4,4]\)),

\[
M = D(\text{PU}(p))^h \times (\mathcal{D}_1 \times \cdots \times \mathcal{D}_s) / \Gamma
\]

where \(\Gamma \) is as in \([4]\). As we shall see in the proof of Theorem 5.6 we will find Property (a) in Section 5.1 very useful in order to proceed ‘factor by factor,’ using the decomposition \([5]\).

To begin, we establish the following Proposition which allows us to use Property (c) in Section 5.1 to compute the obstruction to prequantization for the factor \((\mathcal{D}_s)^r/\Gamma \) in \([4]\).

Proposition 5.4. Let \(\mathcal{D}_s \subset \text{SU}(p) \) denote the conjugacy class of the barycenter \(\zeta_* \) of the alcove \(\Delta \) and let \(\Gamma = \{ (\gamma_1, \ldots, \gamma_r) \in Z^r : \prod \gamma_j = 1 \} \) with \(r > 1 \). Then \(H^2((\mathcal{D}_s)^r/\Gamma; \mathbb{R}) = 0 \).

Proof. Since \((\mathcal{D}_s)^r \to (\mathcal{D}_s)/\Gamma \) is a covering projection, \(H^2((\mathcal{D}_s)^r/\Gamma; \mathbb{R}) \cong H^2((\mathcal{D}_s)^r; \mathbb{R})^\Gamma \). By the Küneth Theorem, \(H^2((\mathcal{D}_s)^r; \mathbb{R}) \cong \bigoplus H^2(\mathcal{D}_s; \mathbb{R}). \) Since the \(\Gamma \)-action factors through \(Z^m \), \(H^2((\mathcal{D}_s)^r; \mathbb{R})^\Gamma = \bigoplus H^2(\mathcal{D}_s; \mathbb{R})^Z \).

Recall that since \(\zeta_* \) lies in the interior of the alcove, the centralizer \(\text{SU}(p)_{\exp \zeta_*} = T \) and hence \(\mathcal{D}_s \cong \text{SU}(p)/T \). Moreover, we have \(H^*(\mathcal{D}_s; \mathbb{R}) \cong \mathbb{R}[t_1, \ldots, t_p]/(\sigma_1, \ldots, \sigma_p) \), where \(\sigma_i \)'s are the elementary symmetric polynomials. In particular, we may write

\[
H^2(\mathcal{D}_s; \mathbb{R}) \cong (\mathbb{R}t_1 \oplus \cdots \oplus \mathbb{R}t_p)/(t_1 + \cdots + t_p = 0).
\]

The \(Z \)-action on \(\mathcal{D}_s \) corresponds to an action on \(\text{SU}(p)/T \) by a cyclic subgroup of the Weyl group (e.g. see the proof of Proposition 5.2). Since the Weyl group (i.e. symmetric group \(\Sigma_p \)) acts by permuting the \(t_i \), \(Z \) acts by a \(p \)-cycle on the \(t_i \). Therefore, \(H^2(\mathcal{D}_s; \mathbb{R})^Z = 0 \), which establishes the result.

Remark 5.5. The analogue of Proposition 5.4 for the factors \((\mathcal{D}_1 \times \cdots \times \mathcal{D}_s)/\Gamma \) that appear in the decomposition in Proposition 4.3 need not hold when considering other non-simply connected structure groups \(G/Z \).

Theorem 5.6. The quasi-Hamiltonian \(\text{SU}(p) \)-space \(M = D(\text{PU}(p))^h \times (\mathcal{D}_1 \times \cdots \times \mathcal{D}_s) / \Gamma \) admits a level \(k \)-prequantization if and only if the following conditions are satisfied:

(i) If \(h \geq 1 \), then \(k \in p\mathbb{N} \);

(ii) \(g^k \in Z(\text{SU}(p)) \) for every \(g \in \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_s \).

Proof. By Property (a) in Section 5.1 \(M \) admits a level \(k \)-prequantization if and only if each factor does. Since \(D(\text{PU}(p)) \) admits a level \(k \)-prequantization if and only if Condition (i) is satisfied (see Example 5.2), we may assume from now on \(h = 0 \).
We first verify the necessity of Condition (ii). A prequantization of $M = (D_1 \times \cdots \times D_s)/\Gamma$ induces a prequantization of its universal cover $\tilde{M} = D_1 \times \cdots \times D_s$, and hence each D_j must admit a prequantization, which is equivalent to condition (ii).

Next we verify that Condition (ii) is sufficient for a level k-prequantization of M (with $h = 0$). As in the decomposition (5), write (possibly after re-labelling)

$$M = (D_s \times \cdots \times D_s)/\Gamma \times D_{r+1} \times \cdots \times D_s$$

Using Property (a) in Section 5.1 again, it suffices to consider the case $1 < r = s$. (Note that if $s = r = 1$, Γ is trivial.) In this case, Condition (ii) is simply that D_s admit a level k-prequantization. Since D_s consists of matrices in $SU(p)$ conjugate to

$$\exp \zeta_s = \text{diag}(\exp(\frac{p-1}{p} \pi \sqrt{-1}), \exp(\frac{p-3}{p} \pi \sqrt{-1}), \cdots, \exp(\frac{1-p}{p} \pi \sqrt{-1}))$$

D_s admits a level k-prequantization if and only if $(\exp \zeta_s)^k$ is a scalar matrix; and only if k is a multiple of p. By Property (c) in Section 5.1 and Proposition 5.4, it suffices to show that $p \cdot \Phi^*_w = 0$, where $\Phi : M \to SU(p)$ is the group-valued moment map.

By Corollary 7.6 in [3], $h^\vee \Phi^*_w = W_3(M)$, the third integral Stiefel-Whitney class, where h^\vee denotes the dual Coxeter number. Recall that $W_3(M) = \beta w_2(M)$, where $\beta : H^2(M; \mathbb{Z}/2\mathbb{Z}) \to H^3(M; \mathbb{Z})$ is the (integral) Bockstein homomorphism and $w_2(M)$ is the second Stiefel-Whitney class. Since Γ has odd order, $H^2(M; \mathbb{Z}/2\mathbb{Z}) \cong H^2((D_8)^c; \mathbb{Z}/2\mathbb{Z})^T$, which is trivial (by an argument similar to the proof of Proposition 5.4). Since $h^\vee = p$, this completes the proof.

\[\square\]

Appendix A. The action of the centre on the alcove of exceptional Lie groups

Below we record the action of the centre $Z(G)$ on an alcove for the exceptional Lie groups $G = E_6$ and $G = E_7$. (The action for classical groups appears in [17].)

The vertices of the alcove were obtained using polymake [9], which outputs the vertices of a polytope presented as an intersection of half-spaces. The relevant Weyl group element from Proposition 3.2—one which gives an automorphism of the extended Dynkin diagram—was found with the help of John Stembridge’s coxeter-weyl package for Maple [16]; a direct calculation then shows that this element has the desired properties in Proposition 3.2.

Let $\{e_1, \ldots, e_8\}$ denote the standard basis in \mathbb{R}^8, equipped with the usual inner product. Given a vector α in \mathbb{R}^8, $s_\alpha : \mathbb{R}^8 \to \mathbb{R}^8$ denotes reflection in the subspace orthogonal to α, $s_\alpha(v) = v - \frac{2\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$. The notation used below is consistent with that found in [3, Planches V-VI].

$G = E_6$. Let $t^* \cong t^* \cong \{(x_1, \ldots, x_8) \in \mathbb{R}^8 : x_6 = x_7 = -x_8\}$. The simple roots $\alpha_1, \ldots, \alpha_6$ and highest root α determine the half-spaces whose intersection is the alcove $\Delta \subset t^*$. The vertices of Δ (opposite the facets parallel to the corresponding root hyperplanes) are given in Table 11.

The non-zero elements of the centre $Z(E_6) = \mathbb{Z}/3\mathbb{Z}$ are given by $(\exp \text{of})$ the minimal dominant coweights $\lambda_7^\vee = \frac{3}{2}(e_8 - e_7 - e_6)$ and $\lambda_6^\vee = e_5 + \frac{3}{2}(e_8 - e_7 - e_6)$. The corresponding elements w_1 and w_6 of the Weyl group (as in Proposition 3.2), inducing automorphisms of the extended Dynkin diagram are:

$$w_1 = s_{\alpha_1} s_{\alpha_3} s_{\alpha_4} s_{\alpha_5} s_{\alpha_6} s_{\alpha_5} s_{\alpha_4} s_{\alpha_6} s_{\alpha_5} s_{\alpha_6} s_{\alpha_5} s_{\alpha_6};$$
$$w_6 = s_{\alpha_5} s_{\alpha_5} s_{\alpha_5} s_{\alpha_4} s_{\alpha_2} s_{\alpha_3} s_{\alpha_5} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5} s_{\alpha_5} s_{\alpha_5} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5} s_{\alpha_2} s_{\alpha_5}.$$

The permutation of the vertices induced by the action of $\exp(\lambda_7^\vee)$ (encoded by the automorphism w_1 of the underlying extended Dynkin diagram) is shown schematically in Figure 2.
facets parallel to the corresponding root hyperplanes) are given in Table 1.

\[
\begin{array}{c|c}
\text{Simple or dominant root} & \text{Opposite vertex} \\
\hline
\alpha_1 = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) & v_1 = (0, 0, 0, 0, 0, -\frac{2}{3}, -\frac{2}{3}) \\
\alpha_2 = (1, 1, 0, 0, 0, 0, 0) & v_2 = \left(\frac{1}{4}, 1, 1, 1, 1, 1, -\frac{1}{4}, -\frac{1}{4}\right) \\
\alpha_3 = (-1, 1, 0, 0, 0, 0, 0) & v_3 = (-\frac{1}{4}, 1, 1, 1, 1, 1, -\frac{5}{12}, -\frac{5}{12}) \\
\alpha_4 = (0, -1, 1, 0, 0, 0, 0) & v_4 = (0, 0, 1, 1, 1, -\frac{1}{3}, -\frac{1}{3}) \\
\alpha_5 = (0, 0, -1, 1, 0, 0, 0) & v_5 = (0, 0, 0, 1, -\frac{1}{3}, -\frac{1}{3}) \\
\alpha_6 = (0, 0, 0, -1, 1, 0, 0) & v_6 = (0, 0, 0, 0, 1, -\frac{1}{3}, -\frac{1}{3}) \\
\tilde{\alpha} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) & v_0 = 0 \\
\end{array}
\]

\textbf{Table 1. Alcove data for } E_6.

\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{alcove}\caption{Permutation induced by action of } \exp \lambda^V_1 \text{ on the vertices of the alcove for } E_6.\end{figure}

\(G = E_7. \) Let \(t \cong t^* \cong \{ (x_1, \ldots, x_8) \in \mathbb{R}^8 : x_7 = -x_8 \}. \) The simple roots \(\alpha_1, \ldots, \alpha_7 \) and highest root \(\tilde{\alpha} \) determine the half-spaces whose intersection is the alcove \(\Delta \subset t. \) The vertices of \(\Delta \) (opposite the facets parallel to the corresponding root hyperplanes) are given in Table \[1\]

\[
\begin{array}{c|c}
\text{Simple or dominant root} & \text{Opposite vertex} \\
\hline
\alpha_1 = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) & v_1 = (0, 0, 0, 0, 0, 0, -\frac{1}{2}, \frac{1}{2}) \\
\alpha_2 = (1, 1, 0, 0, 0, 0, 0) & v_2 = \left(\frac{1}{4}, 1, 1, 1, 1, 1, \frac{1}{4}, -\frac{1}{4}\right) \\
\alpha_3 = (-1, 1, 0, 0, 0, 0, 0) & v_3 = (-\frac{1}{4}, 1, 1, 1, 1, 1, -\frac{1}{4}, -\frac{1}{4}) \\
\alpha_4 = (0, -1, 1, 0, 0, 0, 0) & v_4 = (0, 0, 1, 1, 1, -\frac{1}{2}, -\frac{1}{2}) \\
\alpha_5 = (0, 0, -1, 1, 0, 0, 0) & v_5 = (0, 0, 0, 1, -\frac{1}{2}, -\frac{1}{2}) \\
\alpha_6 = (0, 0, 0, -1, 1, 0, 0) & v_6 = (0, 0, 0, 0, 1, -\frac{1}{2}, -\frac{1}{2}) \\
\alpha_7 = (0, 0, 0, 0, -1, 1, 0) & v_7 = (0, 0, 0, 0, 0, 1, -\frac{1}{2}, -\frac{1}{2}) \\
\tilde{\alpha} = (0, 0, 0, 0, 0, 0, -1, 1) & v_0 = 0 \\
\end{array}
\]

\textbf{Table 2. Alcove data for } E_7.
The non-zero element of the centre $Z(E_7) \cong \mathbb{Z}/2\mathbb{Z}$ is given by \((\exp \text{ of})\) the minimal dominant coweight $\lambda_7^\vee = e_6 + \frac{1}{2}(e_8 - e_7)$. The corresponding element w_7 of the Weyl group (as in Proposition 3.2), inducing an automorphism of the extended Dynkin diagram is:

$$w_7 = s_{\alpha_7}s_{\alpha_6}s_{\alpha_5}s_{\alpha_4}s_{\alpha_3}s_{\alpha_1}s_{\alpha_4}s_{\alpha_2}s_{\alpha_5}s_{\alpha_3}s_{\alpha_1}s_{\alpha_7}s_{\alpha_6}s_{\alpha_5}s_{\alpha_4}s_{\alpha_3}s_{\alpha_2}s_{\alpha_4}s_{\alpha_2}s_{\alpha_5}s_{\alpha_6}s_{\alpha_7}.$$

The permutation of the vertices induced by the action of $\exp(\lambda_7^\vee)$ (encoded by the automorphism w_7 of the underlying extended Dynkin diagram) is shown schematically in Figure 3.

Figure 3. Permutation induced by action of $\exp \lambda_7^\vee$ on the vertices of the alcove for E_7.

References

[1] A. Alekseev, A. Malkin, and E. Meinrenken, *Lie group valued moment maps*, J. Differential Geom., 48 (1998), pp. 445–495.

[2] A. Alekseev, E. Meinrenken, and C. Woodward, *The Verlinde formulas as fixed point formulas*, J. Symplectic Geom., 1 (2001) no. 1, pp. 1–46.

[3] A. Alekseev and E. Meinrenken, *Dirac structures and Dixmier-Douady bundles*, Int. Mat. Res. Not., 4 (2012), pp. 904–956.

[4] M. F. Atiyah and R. Bott, *The Yang-Mills equations over Riemann surfaces*, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), pp. 523–615.

[5] J. M. Bismut and F. Labourie, *Symplectic geometry and the Verlinde formulas*, Surveys in Differential Geometry: differential geometry inspired by string theory, Int. Press. Boston, MA, 1999, pp. 97–311.

[6] A. Borel, R. Friedman, and J. Morgan, *Almost Commuting Elements in Compact Lie Groups*, Memoirs of the Amer. Math. Soc., Vol. 157, Number 747, 2002.

[7] R. Bott and L. Tu, *Differential Forms in Algebraic Topology*, Graduate Texts in Mathematics, Vol. 82, Springer, 1982.

[8] N. Bourbaki, *Groupes et Algèbres de Lie*, Chapitres 4, 5 et 6, Masson, Paris, 1981.

[9] E. Gawrilow and M. Joswig, *polymake: a framework for analyzing convex polytopes* in Polytopes–Combinatorics and computation (Oberwolfach, 1997) Vol. 29 of DMV Sem. pp. 43-73, Birkhäuser, Basel, 2000.

[10] D. Krepski, *Prequantization of the moduli space of flat G-bundles over a surface*, J. Geom. Phys., 58 (2008), pp. 1624–1637.

[11] D. Krepski, Ph. D. Thesis, University of Toronto, 2009.

[12] D. Krepski and E. Meinrenken, *On the Verlinde formulas for SO(3)*, Quart. J. Math., 64 (2013), pp. 235–252.

[13] E. Meinrenken, *The basic gerbe over a compact simple Lie group*, Enseign. Math. (2), 49 (2003), pp. 307–333.

[14] E. Meinrenken, *Twisted K-homology and group valued moment maps*, Int. Mat. Res. Not. 20 (2012), pp. 4563–4618.

[15] E. Meinrenken and R. Sjamaar, *Singular reduction and quantization*, Topology 38 (1999), pp. 699–763.

[16] J. Stembridge, *A Maple package for root systems and finite coxeter groups*, 2004, http://www.math.lsa.umich.edu/~jrs/maple.html#coxeter

[17] V. Toledano-Laredo, *Positive energy representations of the loop groups of nonsimply connected Lie groups*, Comm. Math. Phys., 207 (1999) pp. 307–339.

Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada

E-mail address: Derek.Krepski@umanitoba.ca

URL: http://server.math.umanitoba.ca/~dkrepski/