Combined thoracic endovascular aortic repair and endovascular aneurysm repair and the long-term consequences of altered cardiovascular haemodynamics on morbidity and mortality: case series and literature review

Sherif Sultan 1,2*, Yogesh Acharya 1,2, Mohiey Hazima 1, Hiba Salahat 2, Juan Carlos Parodi 3, and Niamh Hynes 2

1Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland, Newcastle Road, Galway H91 YR71, Ireland; 2Department of Vascular and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland and the National University of Ireland, Galway Affiliated Hospital, Ireland; and 3Department of Vascular Surgery and Biomedical Engineering Department, Alma mater, University of Buenos Aires, Wake Forest University, Washington University in St. Louis, and Trinidad Hospital, Buenos Aires, Argentina

Received 23 March 2021; first decision 18 May 2021; accepted 13 August 2021; online publish-ahead-of-print 15 September 2021

Background
Thoracic and abdominal aortic stent grafts are firmer and more rigid than the native aorta. Aortic implanted devices have been implicated in the development of acute systolic hypertension, elevated pulse pressure, and reduced coronary perfusion.

Case summary
We report four cases of staged thoracic endovascular aortic repair (TEVAR) and then endovascular aneurysm repair (EVAR). All patients had TEVAR first for thoracic aortic aneurysm and later on developed infra-renal abdominal aortic aneurysm (AAA) that required EVAR. There were three males and one female with a median age of 74.5 years (range 67.5–78.5). None of the patients developed aortic-related major clinical adverse effects or required any aortic intervention during their follow-up. However, within 2 years, all patients developed symptomatic left ventricular hypertrophy with diastolic dysfunction. All patients had bilateral lower limb oedema, with on and off chest pain and shortness of breath (SOB), necessitating coronary angiograms, which showed no evidence of coronary artery disease. Three patients died from cardiovascular-related morbidities, and the fourth patient is still complaining of SOB despite a normal coronary angiogram.

Discussion
Aortic-endograft compliance mismatch is an invisible enemy, with troubling consequences for the aorta proximal and distal to the endograft. Aortic stiffness due to vascular endograft could lead to cardiovascular adverse events, even in the absence of direct aortic-related complications. After combined TEVAR and EVAR, the compliance mismatch and elasticity loss are even more pronounced than with TEVAR alone, which necessitates patient monitoring for the development of cardiovascular complications.

Keywords
Aortic aneurysm • Thoracoabdominal • Stents • Vascular capacitance • Cardiovascular complications • Case report

* Corresponding author. Tel: +35391720122, Email: profsherifsultan@icloud.com, sherif.sultan@nuigalway.ie
Handling Editor: Andrew Peter Vanezis
Peer-reviewers: Amr Idris and Diego Araiza-Garaygordobil
Compliance Editor: Daniel Tardo
Supplementary Material Editor: Anthony Paulo sunjaya
© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Learning points

- Lining the aorta with metallic stent-grafts creates stress on the aortic wall with subsequent left ventricular hypertrophy, diastolic dysfunction, and systolic hypertension refractive to antihypertensive medication.
- Non-occlusive coronary artery ischaemia can lead to chest pain post-thoracic endovascular aortic repair (TEVAR)/endovascular aneurysm repair.
- Patients who have TEVAR must be monitored for the development of distal abdominal aortic aneurysm and congestive cardiac failure.

Introduction

Thoracic and abdominal aortic stent-grafts are firmer and more rigid than the native aorta. Even the best available aortic graft designs alter the function of the native aorta considerably, regardless of the underlying aortic disease.1–3

Thoracic endovascular aortic repair (TEVAR) and aortic endovascular aneurysm repair (EVAR) correlate with reduced early peri-operative morbidity and mortality compared to open surgical repair. However, this gain is diminished at long-term follow-up, primarily due to an increase in cardiovascular complications, the risk of development of which is enhanced by arterial stiffening, mainly related to the stent-graft materials.1

Aortic implanted devices have been implicated in the development of acute systolic hypertension, elevated pulse pressure, and reduced coronary perfusion.2 However, there is no insight in the cardiovascular community about cardiac remodelling after aortic stenting, and interventionalists have focused on the endograft morphological adaptation to the aortic wall. Post-endovascular aortic surveillance is therefore concentrated on maintaining endograft position and avoidance of expansion of the aortic sac. These objectives are maintained even if that results in further intervention with implantation of additional endograft components, stents, and coils, which further increases aortic wall stress and harm cardiac, cerebral, renal, and mesenteric perfusion.1–3

This case series demonstrates some of the consequences of enhancing aortic wall stress post-TEVAR, with subsequent development of infrarenal abdominal aortic aneurysm (AAA), which, when managed by EVAR, induces further cardiac injury, with high cardiovascular morbidity and mortality.

Case series

Out of 18 791 aortic referrals to our tertiary referral centre, we performed 1480 aortic interventions over 20 years.

Ninety-six interventions were TEVAR/branched endovascular aortic repair (BEVAR), of which 19 were hybrid aortic repair (HAR); 910 EVAR ± Iliac Branch Device, of which 44 were HAR; 213 open aortic interventions, of which 51 were HAR; and 261 aorto-iliac revascularizations for severe aorto-iliac occlusive disease, of which 73 were HAR.

We report four cases of TEVAR, which subsequently required EVAR. (Timeline, Figures 1, 2, 3, 4, 5, and 6). All patients had TEVAR first for thoracic aortic aneurysm (TAA) and later on developed infra-renal AAA that required EVAR.

Two patients presented in close succession who developed AAA reaching the threshold for intervention within an exceptionally short time since their TEVAR. This forced us to audit our TEVAR cases and, in particular, identify if other TEVAR patients required subsequent intervention for AAA. We identified the two additional patients, which constituted the current series.

Cardiovascular risks factors are almost ubiquitous among patients with degenerative aneurysms and while cardiovascular risk factors are implicated in aneurysm progression in general, what distinguishes this series of patients is the rapid progression of the abdominal aortic disease subsequent to TEVAR implantation, which could not be explained by the underlying cardiovascular risk factors alone.

There were three males and one female patient with a median age of 74.5 years (range 67.5–78.5). None of the patients developed aortic-related major clinical adverse effects or required aortic intervention (i.e. rupture, dissection, endoleak, sac expansion, or device migration) directly related to their primary TEVAR during the follow-up.

For TEVAR, we utilized two Valiant thoracic aortic devices (Medtronic, Minneapolis, MN, USA) (Figures 1 and 5) and two cTAG devices (Gore Medical, Flagstaff, AZ, USA) (Figures 3 and 6). All TEVARs were executed using two pieces each.

For EVAR, we used three AFX endografts (Endologix, Irvine, CA, USA) (Figures 1, 5, and 6) and one Excluder (Gore Medical, Flagstaff, AZ, USA) (Figure 3).

Mean pre-operative D-Dimer was 5790 ng/mL (range 1198–9801), and it did not vary postoperatively. Pre-operative FEVI and predicted FEVI/FVC were all above 75%.

Median pre-operative antihypertensive tablets per patient were 1.75 (range 1–2) that increased to 4.25 (range 3–5) postoperatively. Median pre-operative eGFR was 75 mL/min/1.73 m² (range 57–84.5), while the post-operative median eGFR was 74 mL/min/1.73 m² (range 46.4–85). All our patients had a reasonable pre-operative echocardiogram (ECHO) (normal ventricular size and function, left ventricular ejection fraction >55%, no atrial dilatation, and no valvular disease) with median pro-BNP of 401 pg/mL (range 206.5–717.85), however, post-operative median pro-BNP had risen to 3053 pg/mL (range 1426.5–5686.5).

Median pre-operative troponin was 2 ng/mL (range 1–6.5) that increased to 46.5 ng/mL (range 16.5–106.5) following the procedure. All patients were hypertensive, and postoperatively all of them developed wide pulse pressure with sustained high systolic pressure (above 160 mmHg) and low diastolic pressure (below 55 mmHg).

Patients’ cardiac function was classified according to the New York Heart Association (NYHA) Functional Classification. All had pre-operative functional capacity II and objective assessment B. Post-operatively, 50% of patients moved up one category, while the other 50% moved to functional capacity IV with objective assessment D. All patients developed prolonged Q-T interval with resultant new-onset atrial fibrillation during follow-up.
Case	Age/Sex	Figures	Co-morbidities	Thoracic endovascular aortic repair (TEVAR)	Endovascular aneurysm repair (EVAR)	Remarks				
One	61/M	1A–D; 2AB	Hypertension (HTN), hyperlipidaemia, chronic obstructive pulmonary disease (COPD), Smoker (2.0 pack years)	6 cm descending thoracic aortic aneurysm (TAA) (No evidence of infrarenal abdominal aneurysm)	Valiant thoracic aortic devices (Medtronic, Minneapolis, MN, USA) (2 pieces)	2007 Date	2009 Date	5.5 cm (Infrarenal)	AFX endografts (Endologix, Irvine, CA, USA) (3 pieces)	Death due to fatal cardiac arrhythmia 9 years following TEVAR, 7 years following EVAR Q-T interval prolongation with atrial fibrillation (AF) with normal coronary angiogram
Two	76/M	3A–C; 4A,B	HTN, COPD, asthma, hypothyroidism, Smoker (35 pack years)	Type B aortic dissection (TBAD) + Extent I 7.3 cm TAA (No evidence of infrarenal abdominal aneurysm)	cTAG devices (Gore Medical, Flagstaff, AZ, USA) (2 pieces)	2016 Date	2017 Date	5.8 cm (Infrarenal, ? sequelae of HTN or stent induced new entry)	Excluder (Gore Medical, Flagstaff, AZ, USA) (1 piece)	Death due to congestive cardiac failure and myocardial ischaemia 4 years following TEVAR Q-T interval prolongation with AF with normal coronary angiogram
Three	73/M	5A–D	HTN, chronic kidney disease, Smoker (25 pack years)	Proximal TBAD + 6.6 cm aneurysmal false lumen	Valiant Thoracic Aortic devices (Medtronic, Minneapolis, MN, USA) (2 pieces)	2010 Date	2010 Date	5.5 cm (Infrarenal)	AFX endografts (Endologix, Irvine, CA, USA) (3 pieces)	Death due to congestive cardiac failure and myocardial ischaemia 2 years following TEVAR Q-T interval prolongation with AF with normal coronary angiogram
Four	81/F	6A–C	HTN, hyperlipidaemia, right superficial femoral artery (SFA)/popliteal/tibial angioplasty and SFA stenting, Smoker (30 pack years)	Saccular descending TAA	cTAG devices (Gore Medical, Flagstaff, AZ, USA) (2 pieces)	2015 Date	2018 Date	4.9 cm (Infrarenal, saccular AAA)	AFX endografts (Endologix, Irvine, CA, USA) distally (3 pieces) and Gore cTAG (Gore Medical, Flagstaff, AZ, USA) proximally (1 piece)	Patient is alive; however, she is suffering from cardiovascular complications with shortness of breath. Q-T interval prolongation with AF with normal coronary angiogram
All patients who had TEVAR as the first step did not have an infra-renal aneurysm at the index procedure but developed AAA after TEVAR in a median of 9 months (range 4.5–24).

Within 2 years, all patients had developed symptomatic left ventricular hypertrophy with diastolic dysfunction as documented on ECHO. All patients had bilateral lower limb oedema, with on and off chest pain and shortness of breath (SOB), necessitating coronary angiograms (Figures 2, 4, 5, and 6), which showed no evidence of coronary artery disease (CAD).

Three patients died from cardiovascular-related causes over 15 years of follow-up (Timeline). One patient had a fatal cardiac arrhythmia, and two died following progressive cardiac failure and

Figure 1 A 61-year-old male presented with a 6cm descending thoracic aortic aneurysm (TAA) and underwent thoracic endovascular aortic repair (TEVAR) in 2007. Within 21 months, he developed an abdominal aortic aneurysm (AAA) of 55 mm with the right common iliac artery aneurysm. Endovascular aneurysm repair (EVAR) was performed in 2009 with an uneventful post-operative course. His past medical history included hypertension, hyperlipidemia, chronic obstructive pulmonary disease (COPD) and smoking (20 pack-years). He died from cardiovascular-related complications nine years after his first TEVAR/EVAR. (A) A 3D-computed tomography angiography (CTA) follow-up of TEVAR at six weeks, showing 29 mm aorta. (B) A 3D-CTA at 29 months depicts 55 mm infrarenal AAA. (C) A 3D-CTA follow-ups at five years with two Valiant (Medtronic, Minneapolis, MN) endografts proximally and three pieces of AFX (Endologix, Irvine, CA) in the abdomen (main body 28mm with two 34mm proximal extensions). (D) A 3D-CTA follow-ups at eight years, showing no evidence of aneurysmal related endograft problems.
myocardial ischaemia. The fourth patient is still complaining of SOB despite a normal coronary angiogram. The patient has been fully investigated, however, the patient has normal pulmonary function tests and haemoglobin, and no other cause of SOB has been identified.

Discussion

The best designed aortic graft is four times less compliant than the native aorta. The failure of synthetic grafts to emulate the elastomechanical qualities of the native aorta is due to insufficient...
Aortic-endograft compliance mismatch has injurious consequences for the aorta proximal and distal to the endograft (Figure 7A,B). The aorta is a reservoir for 50% of the left ventricular stroke volume during systole. In diastole, the stored elastic forces of the aorta continuously thrust blood forward to the peripheral circulation. The interface between the emitted blood volume and the aorta’s compliance is referred to as the Windkessel effect (Figure 7A,B).

The Windkessel theory essentially analogizes the distensibility of the aorta to a reservoir, which, if existing in an electrical circuit would act as a capacitor that stores energy. The walls of the aorta and other large elastic arteries contain elastin fibres which allow these arteries to distend when the blood pressure rises during systole and recoil when the blood pressure falls during diastole. Due to peripheral resistance, the rate of blood entering these elastic arteries exceeds that of leaving them. Therefore, there is net storage of blood in the aorta and large arteries during systole, which discharges during diastole.

The functional role of the aorta in the circulatory system, particularly its consequent effect on left ventricular function, has been studied in basic science, animal, and human clinical studies. Evidence from these studies supports the Windkessel theory and relates aortic capacitance to ventricular size and function.

With TEVAR, Fenestrated EVAR, BEVAR, ChEVAR (EVAR with Chimney stents), and complex EVAR, the stented portion of the aorta loses its elasticity, and there is a consistent failure of the Windkessel effect.

The loss of the Windkessel effect and alteration of the pulse wave propagation, and its reflection, translate into a substantial workload for the left ventricle and has implications for the aortic valve’s functioning. This ultimately results in adaptive hypertrophy due to failure in ventricular-arterial coupling.
Arterial stiffening yields higher systolic blood pressure and lower diastolic blood pressure, ensuring an increase in left ventricle afterload with coronary mal-perfusion. These changes also result in fatigue of arterial wall tissues.9–16

The resultant decline in ventricular pump effectiveness, due to negative impedance at the point of transition from the native aorta to endograft, leads to a loss of diastolic systemic blood pressure augmentation with reduced coronary flow leading to myocardial ischemia. Hence myocardial ischemia occurs even in the absence of coronary artery stenosis.9,12

Cardiac dysfunction was evident on the postoperative echocardiograms of our four cases, which showed mild to moderate left ventricular hypertrophy with a degree of diastolic dysfunction. The significant rise in proBNP indicates increased secretion of the hormone by cardiomyocytes in the ventricles of the heart in response to stretching caused by increased ventricular blood flow.
volume. It is, therefore, a reflection of increased ventricular workload.

The significant elevation in troponin indicates cardiac muscle ischaemia due to reduced coronary blood flow. In these patients, the reduction in blood flow was not due to coronary artery stenosis, as confirmed by coronary angiography, but rather due to under perfusion of the coronary vessels due to reduced diastole pressure.

The integrity of the aorta has been shown to adversely affect cardiovascular outcomes. Late rehospitalization following discharge in acute aortic syndrome is attributed to cardiovascular complications in about one-third of the patients. Weiss et al. have shown a two- to three-fold higher risk of non-aortic cardiovascular death, including the new occurrence of non-fatal cardiovascular event and penetrating aortic ulcer. These results emphasize the need for long-term cardiovascular follow-up and management.

After combined TEVAR and EVAR, the compliance mismatch and loss of elasticity are even more pronounced than with TEVAR alone. A compensatory mechanism results, whereby, the endograft adapts by altering its fabric’s yarn architecture. This compensation has been demonstrated following open surgical repair, after which graft material adaptations result in gradual dilatation at 3.2% per year post-implantation. This is accredited to the constant strain and the excessive stress on the suture lines of the noncompliant grafts, with subsequent development of pseudoaneurysms. None of our cases developed pseudoaneurysm post-TEVAR, but they did develop infrarenal AAA that required repair with EVAR.

Pulse wave velocity (PWV) correlates with arterial stiffness; the higher the PWV, the greater the arterial stiffness. Pulse wave velocity < 9.4 m/s is associated with a routine cardiovascular risk, whereas a PWV of 9.4–12 m/s has a five-fold increased risk, and PWV above 12 m/s has a six-fold increased risk of cardiovascular morbidity and mortality. The increase in PWV can occur within a few hours of implanting a TEVAR or EVAR. Blacher et al. acknowledged that each PWV increase of 1 m/s double the rate of all-cause mortality. TEVAR increases the PWV 2–5 m/s, EVAR increases the PWV by 1–3 m/s, whereas a combined TEVAR and EVAR will increase PWV by 3–8 m/s, which has a negative determinant effect on cardiovascular morbidity and mortality. All of our patients developed adaptive left ventricular hypertrophy with diastolic dysfunction, manifested clinically with bilateral lower limb oedema, shortness of breath, and chest pain. Although one would expect cardiac dysfunction to relate to CAD and be a consequence of the risk factor these patients have which predispose them to CAD, all of these patients had a coronary angiogram which demonstrated normal coronary arteries.

Endovascular aneurysm repair for AAA differs from TEVAR vis-à-vis the immediate increase in aortic stiffness. The Windkessel effect is attenuated by TEVAR combined with EVAR, as the elastic
properties are removed from both arterial segments. Currently, all commercially available endografts are noncompliant.6,21 Three of our patients developed a AAA after having TEVAR in infrarenal aortas, which were not aneurysmal before TEVAR implantation (Figures 1A, 3A, 5B, and 6A). Abdominal aortic aneurysm development is likely a consequence of amplified aortic wall stress and the activation of aortic cell molecular dysfunction.

The Liapis group22 demonstrated that polyester-based aortic endografts cause a threefold increase in PWV compared to PTFE-based platforms. All four patients in the current series had PTFE-based EVAR technologies (one Gore Excluder and three Powerlink Pro/AFX Endologix) to prevent further increase in PWV.

This is an isolated series of four patients and while the rate at which they developed abdominal aortic disease progression was alarming, worsening hypertension, and late cardiovascular complications could be due to their underlying cardiovascular risk factors. To substantiate the theory that TEVAR/EVAR causes hypertension and cardiovascular complications late after placement, future studies will need to be undertaken which specifically address cardiovascular complications. It is likely that evidence already exists within large-scale registries, which could be interrogated with propensity matched-controls, for example.

Conclusion

All of our four cases developed cardiac dysfunction following TEVAR/EVAR. This vicious circle of events could be attributed to the adverse haemodynamic effects of the aorta’s excessive metallic lining. The consequent aortic stiffness leads to cardiovascular adverse events, even in the absence of direct aortic-related complications.

Lead author biography

Prof. Sherif Sultan is a pioneering vascular/endovascular surgeon and the founder of the Western Vascular Institute, Ireland, a charitable research foundation committed to vascular research, technical innovation, and education. He is the current president of the International Society of Vascular Surgery and the American Society of Angiology, Irish chapter. He has pioneered the techniques of sub-intimal angioplasty, DRESS technique for complex EVAR, Kinetic elephant trunk for pan aortic dissection,
TIGER protocol for infra-diaphragmatic aortic dissection, triple neuroprotection for patients with acute vascular stroke post the 24 h opportunity window, and Art-assist for critical limb ischaemia patients.

Supplementary material

Supplementary material is available at European Heart Journal—Case Reports online.

Slide sets: A fully edited slide set detailing these cases and suitable for local presentation is available online as Supplementary data.

Consent: The authors confirm that written consent for submission and publication of this case report, including images and associated text, has been obtained from the patients in line with COPE guidance.

Conflict of interest: None declared.

Funding: None declared.

References

1. Sultan S, Barrett N, Tawfick W, Parodi JC, Hynes N. Contemporary abdominal aortic aneurysm devices, three decades of research and development with big data. Why has the best graft not been produced yet? A missed opportunity. Ital J Vasc Endovasc Surg 2019;26:121–134.
2. Morris L, Stefanov F, Hynes N, Dietrich EB, Sultan S. An experimental evaluation of device/arterial wall compliance mismatch for four stent-graft devices and a multi-layer flow modulator device for the treatment of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2016;51:44–455.
3. Lejay A, Geny B, Kolb P, Chalé N. Effects of aortic graft implantation on heart and downstream vessels: an artery is not a rigid pipe. Eur J Vasc Endovasc Surg 2019;58:477–478.
4. Sultan S, Acharya Y, Hynes N. The 4-D in management of complex aortic pathology. Ital J Vasc Endovasc Surg 2020;27:105–107.
5. Rong LQ, Palumbo MC, Rahouma M, Meineri M, Arguelles GR, Kim J et al. Immediate impact of prosthetic graft replacement of the ascending aorta on circumpolar strain in the descending aorta. Eur J Vasc Endovasc Surg 2019;58:521–528.
6. van Bakel TMJ, Arthurs CJ, Nauta FJH, Eagle KA, van Herwaarden JA, Moll FL et al. Cardiac remodelling following thoracic endovascular aortic repair for descending aortic aneurysms. Eur J Cardiothorac Surg 2019;55:1061–1070.
7. Wang J, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a Windkessel and wave system. Am J Physiol Heart Circ Physiol 2003;284:H1358–68.
8. Pucci G, Hametner B, Battista F, Wasserteiner S, Schillaci G. Pressure-independent relationship of aortic characteristic impedance with left ventricular mass and geometry in untreated hypertension. J Hypertens 2015;33:153–160.
9. Spadaccio C, Nappi F, Al-Attar N, Sutherland FW, Acar C, Nenna A et al. Old myths, new concerns: the long-term effects of ascending aorta replacement with Dacron grafts. Not all that glitters is gold. J Cardiovasc Transl Res 2016;9:334–342.
10. Kolb P, D’Onorio V, Lambermont B, Gerard P, Gommes C, Limet R. Increased aortic compliance maintains left ventricular performance at lower energetic cost. Eur J Cardiothorac Surg 2000;17:272–278.
11. Ikonomidou I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail 2019;21:402–424.
12. Vlachopoulos C, Aznaouridis K, Stefanidis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010;55:1318–1327.
13. Laurent S, Boutouyrie P. Arterial stiffness: a new surrogate endpoint for cardiovascular disease? J Nephrol 2007;20 Suppl 12:545–50.
14. Takami Y, Tajima K, Kato W, Fujii K, Hibino M, Munakata H et al. Long-term size follow-up of knitted Dacron grafts (GelsealTM) used in the ascending aorta. Interact Cardiovasc Thorac Surg 2012;14:529–531.
15. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999;99:2434–2439.
16. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 2011;57:1511–1522.
17. D’Onria M, Sen I, Day CN, Mandrekar J, Weiss S, Bower TC et al. Burden and causes of readmissions following initial discharge after aortic syndromes. J Vasc Surg 2021;73:836–843. e3.
18. Weiss S, Sen I, Huang Y, Killian JM, Harmsen WS, Mandrekar J et al. Cardiovascular morbidity and mortality after aortic dissection, intramural hematoma, and penetrating aortic ulcer. J Vasc Surg 2019;70:724–731.e1.
19. Ben-Shlomo Y, Spears M, Bousted C, May M, Anderson SG, Benjamin DJ et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 2014;63:636–646.
20. Marketou M, Papadopoulos G, Kontopoulos N, Patranakos A, Nakou E, Maragoudakis S et al. Early left ventricular global longitudinal strain deterioration after aortic aneurysm repair: impact of aortic stiffness. J Endovasc Ther 2020;15:26602820976636.
21. Goto T, Ohto N, Fukuta H, Wakami K, Tani T, Kimura G. Relationship between effective arterial elastance, total vascular resistance, and augmentation index at the ascending aorta and left ventricular diastolic function in older women. Circ J 2013;77:123–129.
22. Kadoglou NP, Moulaikis KG, Papadakis I, Ikonomidou I, Alepaki M, Spathis A et al. Differential effects of stent-graft fabrics on arterial stiffness in patients undergoing endovascular aneurysm repair. J Endovasc Ther 2014;21:850–858.