Rationality of some Gromov-Witten varieties
and application to quantum K-theory

P.-E. Chaput, N. Perrin

May 27, 2009

Abstract

We show that for any minuscule or cominuscule homogeneous space X, the Gromov-Witten varieties of degree d curves passing through three general points of X are rational or empty for any d. Applying techniques of A. Buch and L. Mihalcea [BuMi08] to constructions of the authors together with L. Manivel [ChMaPe08], we deduce that the equivariant K-theoretic three points Gromov-Witten invariants are equal to classical equivariant K-theoretic invariants on auxiliary spaces again homogeneous under Aut(X).

Introduction

To compute Gromov-Witten invariants in cominuscule Grassmannians of classical type, A. Buch, A. Kresch, and H. Tamvakis proved a comparison formula which they called “quantum to classical principle” [Buc03, BuKrTa03]. This formula compares Gromov-Witten invariants on a homogeneous space G/P with classical intersection numbers on an auxiliary homogeneous space under the same group G. In [ChMaPe08], L. Manivel and us gave a uniform treatment of their results in order to include the two exceptional homogeneous spaces E_6/P_1 and E_7/P_7. This “quantum to classical principle” was further generalised by A. Buch and L. Mihalcea to the K-theoretic invariants in [BuMi08], in the case of Grassmannians. In this paper we show such a principle for all cominuscule homogeneous spaces: see Corollary 3.6.

As it is explained in [BuMi08], such a result is a consequence of the fact that the locus $GW_d(x_1, x_2, x_3)$ of curves of degree d passing through three generic points x_1, x_2, x_3 is rational. Denoting d_{max} the minimal integer d such that there passes a curve of degree d through any two points in X, they made the following conjecture:

Conjecture 0.1 (Buch-Mihalcea) Let X be a cominuscule variety and let $d > d_{\text{max}}$. If x_1, x_2, x_3 are general points in X, then the Gromov-Witten variety $GW_d(x_1, x_2, x_3)$ is rational.

This conjecture is true in type A (already if $d \geq d_{\text{max}}$) by [BuMi08, Corollary 2.2], and we show that it is true for any cominuscule space except exactly in the case where $X = E_6/P_1$ and $d = 3$. To cover this case we introduce the following notation: let $X_d^{(3)} \subset X^3$ denote the subvariety of triples of points $\langle x_1, x_2, x_3 \rangle$ such that there exists a stable curve of degree d through x_1, x_2, x_3. Proposition 3.4 contains in particular:

Key words: quantum cohomology of homogeneous spaces, quantum to classical principle.
Mathematics Subject Classification: 14M15, 14N35
Theorem 0.2 Let X be a cominuscule variety, and d be any integer. Then for (x_1, x_2, x_3) generic in $X_d(3)$, the Gromov-Witten variety $GW_d(x_1, x_2, x_3)$ is rational.

As a consequence, we obtain a “quantum to classical” principle for the equivariant quantum K-theory as follows. We define (see Section 3) for each degree d a space Y_d homogeneous under the group $\text{Aut}(X)$ and consider the incidence diagram

$$
\begin{array}{ccc}
Z_d & \xrightarrow{p} & X \\
\downarrow q & & \downarrow \\
Y_d & &
\end{array}
$$

Denoting by $I_d^T(\alpha, \beta, \gamma)$ the equivariant K-theoretic Gromov-Witten invariant and using the general framework developed in [BuMi08], we obtain the following:

Theorem 0.3 For X a cominuscule homogeneous space and d any non-negative integer, we have the following formula:

$$I_d^T(\alpha, \beta, \gamma) = \chi_{Y_d}(q_*p^*\alpha \cdot q_*p^*\beta \cdot q_*p^*\gamma)$$

where $\chi_{M_d} : K_T(M_d) \to K_T(\text{pt})$ is the T-equivariant Euler characteristic and where α, β and γ are three classes in $K_T(X)$.

We now explain our techniques to get rationality. By [ChMaPe 08, Proposition 3.17, Fact 3.18], for $d \leq d_{\text{max}}$, this Gromov-Witten variety is one point. On the other hand, the cases of type A have already been proved in [BuMi08]. Thus we stick to the other cases.

We have two different arguments, each of them being not enough alone to cover all the cases. On the one hand, we explain that the quadrics, the symplectic Grassmannians of type C, the spinor varieties of even type D_{2n}, and the exceptional case E_7/P_7, share some common geometric properties which imply that the restriction to X of the projection with center an osculating space is a birational morphism to a projective space, and that we can describe the set of curves in this projective space which are the projection of some curve in X (Proposition 1.5). From this follows an explicit birational description of the Gromov-Witten varieties, and in particular the fact that they are rational.

On the other hand, if the Dynkin diagram of X has a cominuscule node which is not the marked node (which occurs in all cases but the odd quadrics, the symplectic Grassmannians and E_7/P_7), then we can apply results of [Per02] to show that a big open subset of Y is the total space of a globally generated vector bundle E on a smaller homogeneous space Y. It follows that a dense open subset of the space of rational curves of degree d in Y is a vector bundle over the space of rational curves of degree d in X. We then show that on a generic rational curve of degree d in Y the restriction of E is the vector bundle $\oplus \mathcal{O}_{\mathbb{P}^1}(a_i)$ with $a_i \geq 2$ for all i, which implies the rationality of the Gromov-Witten locus by induction.

At the end of Section 2, we also explain how the above vector bundle technique allows us to prove some rationality results for Gromov-Witten varieties for non cominuscule homogeneous spaces and large degrees (this question was also raised in [BuMi08]). We deal with orthogonal Grassmannians and adjoint varieties (see Proposition 2.18 and Proposition 2.19).

Contents

1 The case of generalised Veronese curves

3
1.1 Generalised Veronese curves .. 3
1.2 Projection from osculating spaces ... 5

2 Rationality by the vector bundle technique 6
2.1 Inductive birational realisation of homogeneous varieties 6
2.2 Passing rationality of Gromov-Witten varieties through vector bundles 7
2.3 Proof of the rationality .. 8
2.3.1 Orthogonal Grassmannians ... 8
2.3.2 The Cayley plane .. 10
2.4 Some more rationality results .. 14

3 Quantum to classical principle for equivariant K-theory 16
3.1 Conditional results of A. Buch and L. Mihalcea 16
3.2 Unconditional results .. 17

1 The case of generalised Veronese curves

In this section we prove that Gromov-Witten varieties are rational for a class of homogeneous spaces that share common geometric properties and that we call, after Mukai [Muk98], generalised Veronese curves. These homogeneous spaces are: the quadrics, the Lagrangian Grassmannians $G_\omega(n,2n)$, the Grassmannians $G(n,2n)$, the “even” spinor varieties $G_Q(2n,4n)$, and E_7/P_7.

More precisely, let $a \geq 1$ and $n \geq 2$ be integers. Assume that $a \in \{1,2,4,8\}$ if $n = 3$, and that $a \in \{1,2,4\}$ if $n \geq 4$. We define a variety $X(n,a)$ by the following:

n	a	Variety
2	arbitrary	\mathbb{Q}^a
≥ 3	$a = 1$	$G_\omega(n,2n)$
≥ 3	$a = 2$	$G(n,2n)$
≥ 3	$a = 4$	$G_Q(2n,4n)$
3	$a = 8$	E_7/P_7

Remark 1.1 Let X be a cominuscule homogeneous space (see [ChMaPe08] for more about cominuscule homogeneous spaces). Denote d_{max} the smallest integer such that through any two points of X there passes a rational curve of degree d_{max}. The varieties $X(n,a)$ are all the cominuscule homogeneous spaces X such that through any three points passes a rational curve of degree d_{max}.

1.1 Generalised Veronese curves

To prove that $X(n,a)$ has rational Gromov-Witten loci, we give a parametrisation of the set of curves in $X(n,a)$ of a given degree passing through a point $x \in X(n,a)$. To this end our first task is to show that the projection from an osculating space to x at order $n - 2$ is a birational map to a projective space, by interpreting $X(n,a)$ as a generalised rational normal curve of degree n.

More precisely, let $G(n,a)$ be the fundamental covering of the automorphism group of $X(n,a)$, $V(n,a)$ the representation of $G(n,a)$ where $X(n,a)$ is minimally embedded, $L(n,a)$ the derived group of a Levi factor of the parabolic subgroup of $G(n,a)$ stabilising a point in $X(n,a)$, and $T(n,a)$ a tangent space of $X(n,a)$, which is a representation of $L(n,a)$. We display the above
defined groups and representations in the following array.

n	a	$G(n,a)$	$V(n,a)$	$L(n,a)$	$T(n,a)$
2	arbitrary	$Spin_{a+2}$	\mathbb{C}^{a+2}	$Spin_{a}$	\mathbb{C}^{a}
$n \geq 3$	1	Sp_{2n}	$(\wedge^{n}\mathbb{C}^{2n})_\omega$	SL_n	$S^2\mathbb{C}^{n}$
$n \geq 3$	2	SL_{2n}	$\wedge^{n}\mathbb{C}^{2n}$	$SL_n \times SL_n$	$\mathbb{C}^{n} \otimes \mathbb{C}^{n}$
$n \geq 3$	4	$Spin_{4n}$	\mathbb{S}_8	SL_{2n}	$\wedge^{2}\mathbb{C}^{2n}$
3	8	E_7	V^{27}	E_6	V^{27}

(S$^+$ denotes a spinor representation of $Spin_{4n}$)

Moreover let $Z(n,a)$ be the center of a Levi factor of a parabolic subgroup of $G(n,a)$ stabilising a point in $X(n,a)$: we have $Z(n,a) \cong \mathbb{C}^*$. This group induces a decomposition

$$V(n,a) = V_{-n} \oplus V_{-n+2} \oplus \cdots \oplus V_{n-2} \oplus V_n$$

as a $L(n,a)$-representation, where V_i is the i-th eigenspace of $Z(n,a)$. For example, for $a = 8$ we have $V^{56} = \mathbb{C} \oplus V^{27} \oplus V^{27} \oplus \mathbb{C}$, which is known as the Zorn-matrix expression for elements in V^{56} (see for example [Gar01, Example 2.3 and Theorem 4.15]). The other cases can be checked directly. The following fact is an easy exercise on plethysm:

Fact 1.2 For $2 \leq i \leq n$ the space of $L(n,a)$-equivariant maps of degree i from $T(n,a)$ to V_{-n+2i} is isomorphic to \mathbb{C}.

The choice of a specific such map does not really matter, but to fix the ideas we denote ν_i one degree i map from $T(n,a)$ to V_{-n+2i}. In the case $n \geq 3$ and $a = 2$, we have $T(n,a) = \mathbb{C}^n \otimes \mathbb{C}^n$ and $V_{-n+2i} = \wedge^i\mathbb{C}^n \otimes \wedge^i\mathbb{C}^n$, thus we denote $\nu_i(x)$ the element given by the $i \times i$ minors of the matrix $x \in \mathbb{C}^n \otimes \mathbb{C}^n$. By restriction to symmetric matrices we also define ν_i in case $a = 1$. For skew-symmetric matrices (case $a = 4$), we define $\nu_i(x)$ for $x \in \wedge^2\mathbb{C}^{2n}$ as the collection of the Pfaffians of the symmetric $2i \times 2i$ minors of x.

The interpretation of $X(n,a)$ as a generalised Veronese curve of degree n comes from the following proposition which is proved in [LaMa02, Section 3.1]:

Proposition 1.3 Let $v \in V(n,a)$ and denote $v = (v_k)$ according to the above decomposition $V(n,a) = \bigoplus_k V_k$. Assume that $v_{-n} = 1$, then the class of v in $PV(n,a)$ belongs to $X(n,a)$ if and only if $v_{-n+2i} = \nu_i(v_{-n+2})$ for $2 \leq i \leq n$.

Proof. For self-completeness we include a quick elementary proof of this result which is part of the general construction performed in [LaMa02]. When $n = 2$ this result is obvious, and when $n = 3$ and $a = 8$ it is proved in [Muk98]. Thus we assume $n \geq 3$ and $a \in \{1,2,4\}$. Let us first consider the case when $a = 2$. Consider a base $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ of \mathbb{C}^{2n} and a completely decomposable form $v \in \wedge^n\mathbb{C}^{2n}$, i.e. the class of v in $\mathbb{P} \wedge^n\mathbb{C}^{2n}$ is an element of the Grassmannian $G(n,2n)$, and write $v = (v_k)$ in the decomposition $V = \bigoplus_k V_k$. Denoting E resp. F the subspace of \mathbb{C}^{2n} generated by the e_i’s resp. the f_i’s, we have $\mathbb{C}^{2n} = E \oplus F$ and $V_{-n+2i} = \wedge^{n-i}E \otimes \wedge^iF$. Since by assumption $v_{-n} \neq 0$, the coordinate of $v \in \wedge^n\mathbb{C}^{2n}$ on $e_1 \wedge \cdots \wedge e_n$ does not vanish, and thus v can be written as $(e_1 + \varphi(e_1)) \wedge \cdots \wedge (e_n + \varphi(e_n))$, where $\varphi : E \to F$ is a linear map. The element v_{-n+2} is then

$$\sum_i e_1 \wedge \cdots \wedge \varphi(e_i) \wedge \cdots \wedge e_n;$$
this element in \(\wedge^{n-1} E \otimes F \) identifies with \(\varphi \in \text{Hom}(E, F) \). The element \(v_{-n+4} \) is given by

\[
\sum_{i<j} e_i \wedge \cdots \wedge \varphi(e_i) \wedge \cdots \wedge \varphi(e_j) \wedge \cdots \wedge e_n:
\]

it corresponds to the element in \(\text{Hom}(\wedge^2 E, \wedge^2 F) \) given by the 2 by 2 minors of \(\varphi \), namely \(\nu_2(v_{-n+2}) \). Similarly we have \(v_{-n+2i} = \nu_i(v_{-n+2}) \) for any \(i \). Thus the proposition is proved in the case of Grassmannians.

The case \(a = 1 \) follows using the injections \(S^2\mathbb{C}^n \subset \mathbb{C}^n \otimes \mathbb{C}^n \) and \(X(n,1) \subset X(n,2) \). The case \(a = 4 \) also follows from the injections \(\wedge^2\mathbb{C}^{2n} \subset \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \) and \(\mathbb{G}Q(2n,4n) \subset \mathbb{G}(2n,4n) \), recalling that the Plücker embedding \(\mathbb{G}Q(2n,4n) \subset \mathbb{P} \wedge^{2n} \mathbb{C}^{4n} \) is the second Veronese embedding of \(\mathbb{G}Q(2n,4n) \subset \mathbb{P}V(n,a) \), and that the squares of the Pfaffians of the symmetric submatrices are the minors. \(\square \)

1.2 Projection from osculating spaces

Let \(x \in \mathbb{P}V(n,a) \) resp. \(y \in \mathbb{P}V(n,a) \) be the projectivisation of the highest resp. lowest weight line, these are points in \(X(n,a) \). Moreover we can assume that \(x \) resp. \(y \) is the class in \(\mathbb{P}V(n,a) \) of \((1,0,\ldots,0)\) resp. \((0,\ldots,0,1)\) in the decomposition \(V(n,a) = \oplus_k V_k \). From Proposition 1.3 we get immediately the following corollary:

Corollary 1.4 We have \(T_{x}^{-2}X = \bigoplus_{i \leq n-2} V_{-n+2i} \) and \(T_{y}^{1}X = V_{n-2} \oplus V_n \). Moreover, the restriction to \(X \) of the projection to \(\mathbb{P}T_{y}^{1}X \) with center \(\mathbb{P}T_{x}^{n-2}X \) is birational.

We denote \(Y \subset \mathbb{P}V_{n-2} \subset \mathbb{P}T_{y}^{1}X \) the closed \(L(n,a) \)-orbit in \(\mathbb{P}V_{n-2} \). It has dimension \((n-1)a\). This corollary enables one to caracterise the curves in \(\mathbb{P}T_{y}^{1}X \) which are projections of curves in \(X \):

Proposition 1.5 A rational curve of degree \(d-n+1 \) in \(\mathbb{P}T_{y}^{1}X \) is the projection of a rational curve of degree \(d \) in \(X \) passing through \(x \) if and only if it passes through \(d-n \) points in \(Y \subset \mathbb{P}T_{y}^{1}X \).

Proof. We denote \(p : \mathbb{P}V(n,a) \to \mathbb{P}T_{y}^{1}X \) the projection of Corollary 1.4. Let \(C \subset X \) be a rational curve of degree \(d \) passing through \(x \); we show that \(p(C) \) is a rational curve of degree \(d-n+1 \) which passes through \(d-n \) points in \(Y \). In fact, since \(x \in C \subset X \) and \(T_{x}^{-2}X \) is the \((n-2)\)-th osculating space, the intersection \(C \cap T_{x}^{-2}X \) has multiplicity at least \(n-1 \), and generically exactly \(n-1 \), hence \(p(C) \) has degree \(d-n+1 \).

On the other hand, the intersection of \(C \) with the hyperplane \(T_{x}^{-1}X \) has length \(d \), and the multiplicity of \(x \) is \(n \); thus there are \(d-n \) other intersection points of \(C \) with \(T_{x}^{-1}X \). Let \(z \) be any of these points and write \(z = (z_i) \) with \(z_k \in V_k \). If \(C \) is generic then \(z_{-n} \neq 0 \), so that we can assume that \(z_{-n} = 1 \), and Proposition 1.3 implies that \(\nu_{a}(z_{-n+2}) = z_{n} = 0 \) and \(z_{n-2} = \nu_{a-1}(z_{n+2}) \). Thus it follows that \([z_{n-2}] \in Y \). Thus for \(C \) a generic curve \(p(C) \) meets \(Y \) along at least \(d-n \) points, and therefore this holds for any \(C \).

Observe now that the space of curves of degree \(d-n+1 \) passing through \(d-n \) points in \(Y \) is irreducible. In fact, we can specify such a curve by choosing any \(d-n \) points on \(Y \) and then a curve of degree \(d-n+1 \) in \(\mathbb{P}T_{y}^{1}X \) passing through these points. Since the space of curves of degree \(d-n+1 \) through \(d-n \) fixed points in a projective space is non empty and irreducible, the claim is proved.

To finish the proof of the proposition, it is enough to show that a generic curve of degree \(d-n+1 \) passing through \(d-n \) points in \(Y \) is the projection of a curve of degree \(d \) in \(X \). To this end a dimension count argument is enough. Note that we have \(c_{1}(X) = an + 2 - a \) and
Theorem 1.6 Let $X = X(n,a)$ be a generalised Veronese curve and d an integer. The space of rational curves of degree d passing through 3 fixed points in X is empty for $d < n$ and rational for $d \geq n$.

Proof. For $d < n$ an easy dimension count proves the result.

For $d \geq n$, by Proposition 1.5, a generic curve of degree of d passing through 3 fixed points in X corresponds to a generic curve of degree $d - n + 1$ passing through 2 fixed points in $\mathbb{P}T^1_yX$ and passing moreover through $d - n$ points in Y. Thus it is enough to show that this latter space is rational.

This in turn follows from the fact Y is rational and that in any projective space the space of rational curves of degree δ ($\delta = d - n + 1$) passing through $\delta + 1$ fixed points is non empty and rational. \hfill \Box

2 Rationality by the vector bundle technique

2.1 Inductive birational realisation of homogeneous varieties

In this subsection, we recall some results of [Per02] that we shall use in the sequel. Let Q be a parabolic subgroup of G containing B. Let w_0 be the longest element of the Weyl group. Consider the subvariety $Z = Q^{w_0}/Q^{w_0} \cap P$ of G/P where Q^{w_0} denotes the conjugate of Q under w_0. Because Q^{w_0} contains the opposite Borel subgroup B^-, the subvariety Z is open in X. Furthermore, denoting by i the Weyl involution, one easily checks (for more details see [Per02, Proposition 6]) that the complement of Z has codimension at least 2 as soon as the sets of simple roots $\Sigma(P)$ and $i(\Sigma(Q))$ are disjoint.

Let us consider the Levi decomposition of Q given by $Q = U_Q \rtimes L_Q$ where U_Q is the unipotent radical of Q and L_Q is a section of the quotient Q/U_Q. This decomposition induces a decomposition of Q^{w_0} as follows $Q^{w_0} = U_Q^{w_0} \rtimes L_Q^{w_0}$. Let us denote by Y the quotient $L_Q^{w_0}/L_Q^{w_0} \cap P$, we have a natural morphism $p : Z \rightarrow Y$ induced by the projection of Q^{w_0} to $L_Q^{w_0}$. As a consequence of [Per02, Proposition 5] we have the

Proposition 2.1 Let Q be a maximal parabolic subgroup such that $\Sigma(Q)$ is a cominuscule root, then the map p realises Z as the vector bundle over $L_Q^{w_0}/L_Q^{w_0} \cap P$ defined by the representation of $L_Q^{w_0} \cap P$ in $U_Q^{w_0}/U_Q^{w_0} \cap P$.

Proof. This statement is contained in [Per02, Proposition 5] with the exception that p is in general an affine bundle. However, as explained at the end of the proof of [Per02, Proposition 5], this affine bundle is an actual vector bundle as soon as the unipotent subgroup $U_Q^{w_0}$ is abelian. This is the case as soon as $\Sigma(Q)$ is a cominuscule root. \hfill \Box

Remark 2.2 As explained in [Per02, Proposition 5], the above vector bundle $p : Z \rightarrow Y$ is globally generated.
2.2 Passing rationality of Gromov-Witten varieties through vector bundles

In this subsection, we let \(p : X \to Y \) be the vector bundle defined in the previous subsection and we explain how to deduce the rationality of Gromov-Witten varieties in \(Z \) from the rationality of Gromov-Witten varieties in \(Y \) under simple hypothesis on the vector bundle. Let us denote by \(E \) the locally free sheaf on \(Y \) defined by taking local sections of the vector bundle \(p : Z \to Y \). Let us assume that the Picard group of \(Y \) and hence of \(Z \) is \(\mathbb{Z} \).

Proposition 2.3 Let \(x, y \) and \(z \) be three points in general position in \(Z \) and assume that \(d \) is a non negative integer such that there exists a degree \(d \) morphism \(f : \mathbb{P}^1 \to Y \) with \(H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_p(−3)) = 0 \).

Assume that the Gromov-Witten variety of degree \(d \) rational curves in \(Y \) passing through \(p(x), p(y) \) and \(p(z) \) is rational, then the Gromov-Witten variety of degree \(d \) rational curves in \(Z \) passing through \(x, y \) and \(z \) is also rational.

Proof. The ideas for the proof are partially already contained in the proof of [Per02, Proposition 3]. Indeed, the map \(p \) induces by composition a morphism \(q : \text{Mor}_d(\mathbb{P}^1, Z) \to \text{Mor}_d(\mathbb{P}^1, Y) \) which is according to [Per02, Proposition 3] an affine bundle and in our situation a vector bundle. More precisely define the morphisms \(\text{pr} \) and \(\text{ev} \) by the following diagram

\[
\begin{array}{ccc}
\text{Mor}_d(\mathbb{P}^1, Y) \times \mathbb{P}^1 & \xrightarrow{\text{ev}} & Y \\
\downarrow \text{pr} & & \\
\text{Mor}_d(\mathbb{P}^1, Y).
\end{array}
\]

Then, according to the proof of [Per02, Proposition 3] the vector bundle defined by \(q \) is associated to the locally free sheaf \(\text{ev}^*\text{pr}_*E \).

Let \(f : \mathbb{P}^1 \to Y \) be an element in \(\text{Mor}_d(\mathbb{P}^1, Y) \) and consider the vector bundle \(Z_f \to \mathbb{P}^1 \) obtained by pull-back. The associated locally free sheaf is \(f^*E \). The fibre \(q^{-1}(f) \) is the set of global sections \(H^0(\mathbb{P}^1, f^*E) \). Now if we take \(f \) passing through \(p(x), p(y) \) and \(p(z) \), then a section \(s \) passes through \(x, y, z \) if \(\text{ev}(s) = (e_x, e_y, e_z) \), where \(\text{ev} : H^0(\mathbb{P}^1, f^*E) \to E_{p(x)} \times E_{p(y)} \times E_{p(z)} \) is the evaluation at \(f^{-1}(p(x)), f^{-1}(p(y)), f^{-1}(p(z)) \) and \(e_x \in E_{p(x)}, e_y \in E_{p(y)}, e_z \in E_{p(z)} \) are some fixed elements determined by \(x, y, z \). By hypothesis there exists a morphism \(f \) such that all factors of \(f^*E \) have degree at least 2. By semi-continuity this is the case for a general morphism (the space of morphisms \(\text{Mor}_d(\mathbb{P}^1, Y) \) is irreducible, see for example [Per02]). In this case \(\text{ev} \) is surjective and \(q^{-1}(f) \) is an affine subspace of \(H^0(\mathbb{P}^1, f^*E) \). The result follows.

To prove rationality results with the vector bundle technique, it is therefore enough to produce morphisms \(f : \mathbb{P}^1 \to Y \) such that the cohomology group \(H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_p(−3)) \) vanishes. Using the following lemma, we will only need to prove this for small degree morphisms.

Lemma 2.4 Assume that for a general morphism \(f : \mathbb{P}^1 \to Y \) of degree \(d \), the cohomology group \(H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_p(−3)) \) vanishes. Then for any \(d' \geq d \), and a general morphism \(g : \mathbb{P}^1 \to Y \) of degree \(d' \), the cohomology group \(H^1(\mathbb{P}^1, g^*E \otimes \mathcal{O}_p(−3)) \) vanishes.

Proof. Let \(f : \mathbb{P}^1 \to Y \) a degree \(d \) morphism such that the cohomology group \(H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_p(−3)) \) vanishes. Denote \(y_1, y_2, y_3 \) the element \(f(0) \) resp. \(f(1), f(\infty) \). Let \(g \) be a stable morphism \(\mathbb{P}^1 \cup \mathbb{P}^1 \to Y \) of degree \(d' \) obtained as the map \(f \) on the first factor and a map \(f' : \mathbb{P}^1 \to Y \) of degree \(d' - d \) whose image is not passing through \(y_1, y_2 \) or \(y_3 \) but meets \(f(\mathbb{P}^1) \) in one point say \(y_4 \). For
the curve $g(\mathbb{P}^1 \cup \mathbb{P}^1)$ we have the exact sequence $0 \to f^*(E(-y_4)) \to g^*E \to f^*E \to 0$ and because the points y_1, y_2 and y_3 are not on $f'(\mathbb{P}^1)$ we get the exact sequence

$$0 \to f^*(E(-y_4)) \to g^*(E(-y_1 - y_2 - y_3)) \to f^*(E(-y_1 - y_2 - y_3)) \to 0.$$

Because E is globally generated (see Remark 2.2), we get the vanishing of $H^1(\mathbb{P}^1, f^*(E(-y_4))) = 0$ and by hypothesis we have $H^1(\mathbb{P}^1, f^*(E(-y_1 - y_2 - y_3))) = H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_{\mathbb{P}^1}(-3)) = 0$. We deduce the condition $H^1(\mathbb{P}^1 \cup \mathbb{P}^1, g^*(E(-y_1 - y_2 - y_3))) = 0$. By semi-continuity the same holds for a general degree d' stable map $g : \mathbb{P}^1 \to Y$ with three marked points 0, 1 and ∞ i.e. we have $H^1(\mathbb{P}^1, g^*E \otimes \mathcal{O}_{\mathbb{P}^1}(-3)) = 0$. The result follows. Remark that we used the irreducibility of the space of space maps in Y (see for example [Tho98]).

2.3 Proof of the rationality

In this subsection we prove the rationality of certain Gromov-Witten varieties using Proposition 2.1 and 2.3. We shall deal with the following homogeneous spaces X: the Grassmannians $G_Q(n, 2n)$ of maximal isotropic subspaces in an even dimension vector space with a non degenerate quadratic form and the Cayley plane E_6/P_1. We denote by $\text{GW}_d(X)$ the Gromov-Witten variety of degree d curves passing through three general points in X.

2.3.1 Orthogonal Grassmannians

Let us start with $X = G_Q(n, 2n) = G/P$ with P the maximal parabolic subgroup with $\Sigma(P) = \{\alpha_n\}$ with notation as in [Bou54]. Take Q to be the maximal parabolic subgroup such that $\Sigma(P) \cup i(\Sigma(Q)) = \{\alpha_{n-1}, \alpha_n\}$. The open subset Z of X defined by Q as above has complementary of codimension at least two since $i(\Sigma(Q)) \cap \Sigma(P)$ is empty. Furthermore, by Proposition 2.1, the morphism $p : Z \to Y$ defined above is a vector bundle. The variety Y is easily seen to be isomorphic to \mathbb{P}^{n-1} and the locally free sheaf E associated to p is $\Lambda^2T_{\mathbb{P}^{n-1}}(-1)$. We conclude by Proposition 2.3 for $d \geq n - 1$ using the following

Proposition 2.5 For $d \geq n - 1$, there exists a degree d morphism $f : \mathbb{P}^1 \to Y$ such that the cohomology group $H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_{\mathbb{P}^1}(-3))$ vanishes.

Proof. By Lemma 2.4, we only need to construct a degree $n - 1$ morphism $f : \mathbb{P}^1 \to Y$ with $H^1(\mathbb{P}^1, f^*E \otimes \mathcal{O}_{\mathbb{P}^1}(-3)) = 0$. But for a general degree $n - 1$ morphism $f : \mathbb{P}^1 \to Y$ we have $f^*(T_{\mathbb{P}^{n-1}}(-1)) = \mathcal{O}_{\mathbb{P}^1}(1)^{\otimes n-1}$ and the result follows by taking the second exterior power. □

Using the fact that the Gromov-Witten variety of curves passing through three points in \mathbb{P}^n is rational and Proposition 2.3, we obtain:

Corollary 2.6 The Gromov-Witten varieties of degree d curves passing through three general points in $G_Q(n, 2n)$ is rational for $d \geq n - 1$.

For $d < n/2$, we know by dimension counting, that there is no degree d curve passing through three general points in $G_Q(n, 2n)$. For n even and $d = n/2$, then by a result of A. Buch, A. Kresch and A. Tamvakis [BuKrTa03], there is a unique degree d curve passing through 3 general points in $G_Q(n, 2n)$. We are left to deal with curves of degree d with $n/2 < d < n - 1$. For this we will describe more precisely the geometry of the curves through three fixed points. We first make the following remark:
Remark 2.7 Let F be a proper closed subset of $\text{Mor}_d(\mathbb{P}^1, X)$. Given $x, y, z \in X$ three generic points, denote by $\text{Mor}_d(\mathbb{P}^1, X, \{x, y, z\})$ the subscheme of morphisms f such that $f(0) = x$, $f(1) = y$, $f(\infty) = z$, and assume it is not empty. By Kleiman’s transversality Theorem [Kle74], the scheme $\text{Mor}_d(\mathbb{P}^1, X, \{x, y, z\})$ is equidimensional of dimension $dc_1(X) - 2 \dim X$ and $\text{Mor}_d(\mathbb{P}^1, X, \{x, y, z\}) \cap F$ is empty or equidimensional of dimension $dc_1(X) - 2 \dim X - \text{codim} F$. Therefore in any irreducible component of $\text{Mor}_d(\mathbb{P}^1, X, \{x, y, z\})$ there exist elements outside F.

Using this remark and because we want to prove the rationality of the Gromov-Witten variety, we will only need to study general degree d morphisms. In particular, we may assume that for f such a morphism the decomposition of f^*K, where K is the tautological subbundle in X, is the general decomposition. This decomposition is given in the following:

Lemma 2.8 Let K be the tautological subbundle on $G_Q(n, 2n)$, then for a general morphism $f : \mathbb{P}^1 \to G_Q(n, 2n)$ of degree $d = n - a$ we have $f^*K = \mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2a} \oplus \mathcal{O}_{\mathbb{P}^1}(-2)^{\oplus n-2a}$.

Proof. To prove this result, we decompose the vector space \mathbb{C}^{2n} as a direct sum $\oplus_i V_i$ of mutually orthogonal vector spaces such that the restriction of the quadratic form is non degenerate on V_i and such that V_i as dimension $2n_i$ equal to 4 or 6. We remark that we may define an embedding:

$$
\prod_i G_Q(n_i, 2n_i) \to G_Q(n, 2n)
$$

by taking the direct sum of the subspaces in each subspace V_i. The pull-back of the tautological subbundle is the direct sum of the tautological subbundles of each factor $G_Q(n_i, 2n_i)$. Now because $G_Q(n_i, 2n_i)$ is isomorphic to \mathbb{P}^1 or \mathbb{P}^3 and the tautological subbundle K_i is $\mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2}$ or $\mathcal{O}_{\mathbb{P}^3}(1)$, we know the decomposition on \mathbb{P}^1 of the pull-back of a degree d_i morphism $f_i : \mathbb{P}^1 \to G_Q(n_i, 2n_i)$. In particular, we may assume that f^*K_i has only factors of the form $\mathcal{O}_{\mathbb{P}^1}(-1)$ or $\mathcal{O}_{\mathbb{P}^1}(-2)$ and the result follows from the fact that the degree of K on $G_Q(n, 2n)$ is -2.

Proposition 2.9 For $n/2 < d < n - 1$ and x, y and z three general points in $G_Q(n, 2n)$, the variety of degree d morphisms $f : \mathbb{P}^1 \to G_Q(n, 2n)$ with $f(0) = x$, $f(1) = y$ and $f(\infty) = z$ is rational.

Proof. Let us set $d = n - a$. By the previous Lemma we know that, for a fixed non degenerate quadratic form on \mathbb{C}^{4a} (resp. on \mathbb{C}^{2n-4a}), there exists a map $\mathcal{O}_{\mathbb{P}^1}(-1)^{2a} \to \mathcal{O}_{\mathbb{P}^1} \otimes \mathbb{C}^{4a}$ (resp. $\mathcal{O}_{\mathbb{P}^1}(-2)^{n-2a} \to \mathcal{O}_{\mathbb{P}^1} \otimes \mathbb{C}^{2n-4a}$) defining a degree a (resp. $n - 2a$) morphism $f_1 : \mathbb{P}^1 \to G_Q(2a, 4a)$ (resp. $f_2 : \mathbb{P}^1 \to G_Q(n - 2a, 2n - 4a)$). Taking \mathbb{C}^{2n} as the orthogonal direct sum of \mathbb{C}^{4a} and \mathbb{C}^{2n-4a} we obtain a map $\mathcal{O}_{\mathbb{P}^1}(-1)^{2a} \oplus \mathcal{O}_{\mathbb{P}^1}(-2)^{n-2a} \to \mathcal{O}_{\mathbb{P}^1} \otimes \mathbb{C}^{2n}$ defining a degree $n - a$ morphism $f : \mathbb{P}^1 \to G_Q(n, 2n)$ and such that the following diagram commutes

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{P}^1}(-1)^{2a} & \to & \mathcal{O}_{\mathbb{P}^1} \otimes \mathbb{C}^{4a} \\
\mathcal{O}_{\mathbb{P}^1}(-1)^{2a} \oplus \mathcal{O}_{\mathbb{P}^1}(-2)^{n-2a} & \to & \mathcal{O}_{\mathbb{P}^1} \otimes \mathbb{C}^{2n} \\
\mathcal{O}_{\mathbb{P}^1}(-2)^{n-2a} & \to & \mathcal{O}_{\mathbb{P}^1} \otimes \mathbb{C}^{2n-4a}.
\end{array}
$$

By Remark 2.7, we may assume that a general f in the Gromov-Witten variety satisfies the above conditions. In particular, such a map f defines a $4a$-dimensional subspace \mathbb{C}^{4a} of \mathbb{C}^{2n} such
that the restriction of the quadratic form is non degenerate and any subspace \(f(t) \) meets \(\mathbb{C}^{4a} \) in dimension \(2a \). In particular \(\mathbb{C}^{4a} \) meets the three subspaces corresponding to \(x, y \) and \(z \) in dimension \(2a \) defining therefore three points \(x', y' \) and \(z' \) in \(\mathbb{G}_Q(2a, 4a) \). The map \(f \) induces a degree \(a \) morphism \(f_1 : \mathbb{P}^1 \to \mathbb{G}_Q(2a, 4a) \) passing through \(x', y' \) and \(z' \). We already know that there is a unique such morphism. By projection with respect to \(\mathbb{C}^{4a} \) the morphism \(f \) defines a degree \(n - 2a \) morphism \(f_2 : \mathbb{P}^1 \to \mathbb{G}_Q(n - 2a, 2n - 4a) \) passing through the images, say \(x'', y'' \) and \(z'' \), of \(x, y \) and \(z \) under the projection. By Corollary 2.6 (here the degree is \(D = n - 2a \geq n - 1 = n - 2a - 1 \) in \(\mathbb{G}_Q(N, 2N) \)), we know that the variety of such maps is rational. We are therefore left to prove that the variety \(W \) of \(4a \)-dimensional subspaces \(W \) of \(\mathbb{C}^{2n} \) meeting the three points \(x, y \) and \(z \) in dimension \(2a \) is rational.

For this, we need to discuss on the parity of \(n \). If \(n \) is even, then the variety \(W \) is birational to the Grassmannian \(\mathbb{G}(2a, n) \). Indeed, if a \(4a \)-dimensional subspace \(W \) is given, its intersection with \(x \) defines a subspace \(x' \) of dimension \(2a \) in \(x \) (which is of dimension \(n \)). Conversely, if we have a subspace \(x' \) of dimension \(2a \) in \(x \), then by projection with respect to \(x' \), we send \(y \) and \(z \) to subspaces of dimension \(n \) (this is because as \(n \) is even, the space \(x \), and therefore \(x' \), does not meet \(y \) and \(z \) in \(\mathbb{C}^{2n}/x' \) which is of dimension \(2n - 2a \). The images of \(y \) and \(z \) meet in dimension \(2a \) and taking the inverse image of this subspace we obtain the desired \(4a \)-dimensional subspace.

If \(n \) is odd, we first remark that \(P = x \cap y, Q = x \cap z \) and \(R = y \cap z \) are of dimension one. Denote by \(U \) the isotropic 3-dimensional subspace generated by \(P, Q \) and \(R \). Let us first prove that \(P, Q \) and \(R \) are contained in \(W \) therefore \(U \subset W \). Indeed let, as above, be \(x' \) the \(2a \)-dimensional intersection \(x \cap W \) and consider the projection \(p_{x'} \) by \(x' \). Then \(p_{x'}(W) \) is a \(2a \)-dimensional subspace and \(p_{x'}(y) \) (resp. \(p_{x'}(z) \)) is a subspace of dimension \(n - 1 \) or not according to the fact that \(P \) (resp. \(Q \)) is contained in \(x' \) or not. If we define \(y' = y \cap W \) and \(z' = z \cap W \), then \(p_{x'}(y') \) (resp. \(p_{x'}(z') \)) is a subspace of dimension \(2a - 1 \) or \(2a \) according to the fact that \(P \) (resp. \(Q \)) is contained in \(x' \) or not. An easy dimension count shows that we have \(p_{x'}(y) \cap p_{x'}(z) = p_{x'}(y') \cap p_{x'}(z') \) and is therefore contained in \(p_{x'}(W) \). In particular we have \(p_{x'}(R) \in p_{x'}(W) \), therefore \(R \) is in \(W \). By symmetry the result follows.

Let us now consider \((W \cap U^{-1})/U \subset (\mathbb{C}^{2n} \cap U^{-1})/U \). These spaces are of dimension \(4a - 6 \) and \(2n - 6 \) and the spaces \((x \cap U^{-1})/U, (y \cap U^{-1})/U \) and \((z \cap U^{-1})/U \) are of dimension \(n - 3 \). Therefore to determine \((W \cap U^{-1})/U \) we only have to apply the even case. Now we need to determine \(W \) containing \(W \cap U^{-1} \). For this we project with respect to \(W \cap U^{-1} \). The space \(W \) becomes a 3-dimensional subspace of \(\mathbb{C}^{2n}/W \cap U^{-1} \) (which is of dimension \(2n + 3 - 4a \)) and the image of \(W \) has to meet the image of \(x \), of \(y \) and of \(z \) in dimension 1. These images are the subspaces \(x/(x \cap W \cap U^{-1}), y/(y \cap W \cap U^{-1}) \) and \(z/(z \cap W \cap U^{-1}) \) and are of dimension \(n + 1 - 2a \). To determine \(W \) we only need to pick one point in each of the spaces \(\mathbb{P}(x/(x \cap W \cap U^{-1})), \mathbb{P}(y/(y \cap W \cap U^{-1})) \) and \(\mathbb{P}(z/(z \cap W \cap U^{-1})) \) and take the inverse image by the projection with respect to \(W \cap U^{-1} \) of the 3-dimensional subspace obtained as the span of these 3 points. \(\square \)

2.3.2 The Cayley plane

In this subsection \(X \) is the Cayley plane, that is the variety \(G/P \) with \(G \) of type \(E_6 \) and \(\Sigma(P) = \{ \alpha_1 \} \) (again with notation as in [Bou54]). Let us take \(Q = P \). We have \(\Sigma(P) \cap i(\Sigma(P)) = \emptyset \). With the notation of Section 2.1, we have a vector bundle \(p : \mathbb{Z} \to Y \). Let us denote by \(E \) the locally free sheaf on \(Y \) corresponding to this vector bundle.

Lemma 2.10 We have \(Y = Q^8 \) and \(E \) is the spinor bundle on \(Y \).

By a spinor bundle on a smooth quadric \(Q^{2d} \) we mean the vector bundle given by a spinor representation of \(Spin_{2d-2} \), the semi-simple quotient of the parabolic subgroup of \(Spin_{2d} \) stabilising a
point in Q^{2d}.

Proof. The fact that Y is a 8-dimensional quadric follows from the definition of Y and the fact that the Levi subgroup $L_P^{U_5}$ of P^{U_5} (resp. $L_P^{U_5} \cap P$) is isomorphic to a group of type D_5 (resp. to a parabolic subgroup of $L_P^{U_5}$ corresponding to the root α_1 in D_5).

For the vector bundle E, we know that it is given by the representation of $L \cap P$ on $U_P^{U_5}/(U_P^{U_5} \cap P)$ where $U_P^{U_5}$ is the unipotent radical in P^{U_5}. This vector space has for weight under the maximal torus of G (of type E_6) the highest root of G. Therefore it has the weight ϖ_5 for the group $L_P^{U_5}$ of type D_5. By dimension count $U_P^{U_5}/(U_P^{U_5} \cap P)$ has to be the irreducible representation of highest weight ϖ_5 and the result follows. □

Lemma 2.11 Let Q be a smooth quadric and $E \to Q$ a spinor bundle. For $d \geq 4$, there exists a degree d morphism $f : \mathbb{P}^1 \to Q$ such that the cohomology group $H^1(\mathbb{P}^1, f^* E \otimes \mathcal{O}_{\mathbb{P}^1}(-3))$ vanishes.

Proof. Let us first consider the case when Q is even-dimensional and denote by 2δ its dimension. By Lemma 2.4, we only need to prove this result for $d = 4$. For this we will prove that for a general degree 2 morphism $f : \mathbb{P}^1 \to \mathbb{P}^{2d}$, we have $f^* E = \mathcal{O}_{\mathbb{P}^1}(1)^{2\delta - 1}$, and take its double. Consider in the root system of $Spin_{2\delta}$ the two orthogonal roots θ and α_1 where θ is the highest root. We set $x = x_0 + x_{\alpha_1}$ where for α root of $Spin_{2\delta}$, the element x_α is a non zero element in the root space corresponding to α. Take $y = y_0 + y_{\alpha_1}$ where for α a root of $Spin_{2\delta}$, y_α is the element with weight $-\alpha$ and such that $[x_\alpha, y_\alpha] = \alpha^\vee$. For $h = [x, y] = \theta^\vee + \alpha_1^\vee$, the triple (x, h, y) is a sl_2-triple. Denote by $SL_2(\theta + \alpha_1)$ the associated subgroup of $Spin_{2\delta}$. The orbit of the projectivisation of the highest weight line under $SL_2(\theta + \alpha_1)$ is a degree 2 curve and, since $\langle \theta^\vee + \alpha_1^\vee, \alpha_2 \rangle = 0$, all the weights of the spinor representation evaluated on $\theta^\vee + \alpha_1^\vee$ are equal to one. The result follows.

For odd-dimensional quadrics, we may either reproduce a similar argument or use the facts that the restriction of a spinor bundle on $Q^{2\delta}$ to $Q^{2\delta - 1}$ is a spinor bundle on $Q^{2\delta - 1}$ and that a rational curve of degree 4 in a smooth quadric is included in a smooth quadric of dimension 3. □

By the previous two Lemmas and Proposition 2.3 we get:

Proposition 2.12 For $d \geq 4$ and x, y and z three general points in E_6/P_1, the variety of degree d morphisms $f : \mathbb{P}^1 \to E_6/P_1$ with $f(0) = x, f(1) = y$ and $f(\infty) = z$ is rational.

We are left with dealing with morphisms of degree $d \leq 3$. We prove the

Proposition 2.13 There is no curve of degree 3 passing through 3 general points in X.

Proof. If such a curve exists, then the variety of all these curves has dimension 4. In particular, by the same proof as Proposition 3.2 in [Deb01], there exists a non irreducible degree 3 rational curve through the same three general points. This is not possible by the following Lemma 2.14. □

Lemma 2.14 There is no reducible curve of degree 3 in X passing through 3 general points.

Proof. Let x, y, z be the three general points. Up to a permutation, we can assume that there is a curve C of degree 2 through x and y and a line l through z meeting C. To get a contradiction we consider the representation V of E_6 in which X is embedded ($\dim V = 27$). Recall that V identifies with the space of order three hermitian matrices with octonionic coordinates and X with the variety of matrices with rank one (see [Cha06]). We show that for the particular choice

\[
x = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad y = \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad z = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}
\]
the existence of C and l leads to a contradiction.

In fact, the union of all conics through x and y is the quadric lying in the linear subspace given by the matrices of the form A below, thus C is included in this space. On the other hand l must be included in the tangent space at X to z, which is the linear subspace of the matrices of the form B below:

$$A = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix}.$$

Thus l and C do not meet. \hfill \Box

We will however prove that there is a quantum to classical K-theoretic principle showing the following results: for a general curve C of degree 3 in E_6/P_1, there is a unique element $\mu \in E_6/P_4$ such that C is included in the 6-dimensional Schubert variety S_μ corresponding to μ. There exists a curve of degree 3 passing through 3 generic points in S_μ and the space of such curves is rational.

Let us first recall some facts about μ-orbits in $X \times X$, which is proved for example in [ChMaPe08, Proposition 3.16]. First of all a point $\lambda \in E_6/P_6$ defines a hyperplane section H_λ of X, singular along a smooth 8-dimensional quadric that we denote $\mathcal{O}P_\lambda^1$. There are three E_6-orbits in X^2: the pairs (x,y) such that $x = y$, the pairs such that the line through x and y in \mathbb{P}^1 is included in X (or equivalently $y \in T_x X$), or the generic pairs. If (x,y) is a generic pair then there is a unique $\lambda = \lambda(x,y)$ such that $x, y \in \mathcal{O}P_\lambda^1$. When x is fixed, the map $y \mapsto \lambda(x,y)$, with image the smooth 8-dimensional quadric of elements $\lambda \in E_6/P_6$ such that $x \in \mathcal{O}P_\lambda^1$, identifies with the projection $X \dashrightarrow \mathbb{P}^5$ with center $T_x X$. We denote $\mathcal{O}P_{\lambda}(x,y) := \mathcal{O}P_{\lambda}^1(x,y)$.

Similarly there are three E_6-orbits in $(E_6/P_6)^2$: for generic (λ, λ') the intersection $\mathcal{O}P_{\lambda}^1 \cap \mathcal{O}P_{\lambda'}^1$ is transverse and is one point, and for special (λ, λ'), with $\lambda \neq \lambda'$, this intersection is a maximal isotropic subspace in both quadrics $\mathcal{O}P_{\lambda}^1$ and $\mathcal{O}P_{\lambda'}^1$; thus it is isomorphic to \mathbb{P}^4.

Let us now explain how a general curve C of degree 3 in X determines an element $\mu(C)$ in E_6/P_4. Let $x, y \in C$ be general points. These are general points in X. Thus they define an element $\lambda(x,y) \in E_6/P_6$. In this way we get a rational map $\mathbb{P}^2 = S^2 \mathbb{P}^1 = S^2 C \dashrightarrow E_6/P_6$. In fact this rational map has degree one, as one can see by restricting the lines in $\mathbb{P}^2 = S^2 \mathbb{P}^1$ where one element is fixed, say $x = x_0$. In fact, the elements $\lambda(x_0,y)$ for $y \in C$ are the elements of the image of C under the projection with center $T_{x_0} X$, which is a curve of degree 1. It follows that this rational map is in fact a linear embedding of \mathbb{P}^2, and C determines a \mathbb{P}^2 in E_6/P_6, or an element $\mu(C) \in E_6/P_4$.

For a given $\mu \in E_6/P_4$, there are four Schubert varieties homogeneous under the stabiliser of μ (a parabolic subgroup conjugated to P_4); these Schubert varieties have dimension 13,10,6,2, and we denote them accordingly $S^1_{\mu}, S^2_{\mu}, S^6_{\mu}, S^{10}_{\mu}$. Each smaller Schubert variety is the singular locus of the bigger one. Remark that μ determines also a plane in E_6/P_4: this is S^2_{μ}. The variety S^1_{μ} is the intersection of all the H_λ for $\lambda \in \mathbb{P}^2_{\mu} \subset E_6/P_6$. Similarly, S^6_{μ} is the union of the $\mathcal{O}P_{\lambda}^1$ for $\lambda \in \mathbb{P}^2_{\mu} \subset E_6/P_6$. The variety S^{10}_{μ} is the singular locus of S^{10}_{μ}.

Lemma 2.15 We have the inclusion $C \subset S^{60}_{\mu(C)}$.

Note that we cannot have $C \subset S^2_{\mu}$ since otherwise C would only span a \mathbb{P}^2.

Proof. Let $\mu = \mu(C)$ and let $x \in C$. By definition of μ, if $y \in C$ then $\lambda(x,y) \in \mathbb{P}^2_{\mu}$ and therefore $\mathcal{O}P_{\lambda}(x,y) \subset S^{10}_{\mu}$. Thus in particular $x \in S^{10}_{\mu}$ and $C \subset S^{10}_{\mu}$. But let us see that moreover x lies in
the singular locus of S^6_{μ}. In fact since $\mathcal{O}_P^1(x,y) \subset S^6_{\mu}$ we deduce $T_x \mathcal{O}_P^1(x,y) \subset T_x S^6_{\mu}$. For $y' \in C$ another element, we also have $T_x \mathcal{O}_P^1(x,y') \subset T_x S^6_{\mu}$. Moreover $T_x \mathcal{O}_P^1(x,y)$ and $T_x \mathcal{O}_P^1(x,y')$ meet along $T_x (\mathcal{O}_P^1(x,y) \cap \mathcal{O}_P^1(x,y'))$ and $\mathcal{O}_P^1(x,y) \cap \mathcal{O}_P^1(x,y')$ is a linear space of dimension 4, thus the linear span of $T_x \mathcal{O}_P^1(x,y)$ and $T_x \mathcal{O}_P^1(x,y')$ has dimension 12. Thus x is a singular point of S^6_{μ}. \hfill \square

In the following we denote S^6_{μ} simply by S_{μ} and we denote $w = s_2s_6s_5s_4s_3s_1$. The Picard group of S_{μ} has rank 1; however, the group of Weil divisors has rank two. Recall that a basis of the group of Weil divisors is given by the Schubert divisors. We denote $D_6 = X(s_6w)$ the singular one and $D_2 = X(s_2w)$ the divisor isomorphic to \mathbb{P}^5. Therefore, for a curve in S_{μ} not meeting the singular locus of S_{μ}, we may define a bidegree (a, b) by intersecting with the Weil divisors D_6 and D_2. The total degree of the curve is $a + b$ since the ample generator of the Picard group is $D_6 + D_2$ (see for example [Per07] for more on Cartier and Weil divisors on minuscule Schubert varieties).

Lemma 2.16 A generic degree 3 curve C in X does not meet the singular locus $S^2_{\mu(C)}$ of $S^6_{\mu(C)}$ and has bidegree $(1, 2)$. The element $\mu(C)$ is the only element μ such that $C \subset S_{\mu}$.

Proof. Let us first apply few facts on the space of morphisms from \mathbb{P}^1 to S_{μ}. The irreducible components of the scheme of morphisms from \mathbb{P}^1 to S_{μ} are indexed by the pairs (a, b) of integers such that $a + b = d$: indeed a generic curve in the component indexed by (a, b) does not meet the singular locus of S_{μ} and has bidegree (a, b).

Let us now consider the incidence variety I of couples (C, μ) where $\mu \in E_6/P_4$ and $C \subset S_{\mu}$ is a curve of degree 3. The projection on the second factor $I \rightarrow E_6/P_4$ is locally trivial and has fibers above μ given by the degree 3 curves in S_{μ}. Thus there are four irreducible components in I, according to the bidegree of C in S_{μ}; we denote $I_{(a,b)}$ (where $a + b = 3$) these components. According to [Per05], the canonical sheaf on S_{μ} is $5D_2 + 6D_6$ and the space of curves of bidegree (a, b) on S_{μ} has dimension $5a + 6b + 6 = 21 + b$, thus $I_{(a,b)}$ has dimension $50 + b$.

The set M of couples of the form $(C, \mu(C))$ with C a generic curve of degree 3 is the graph of the rational map μ from $\text{Mor}_3(\mathbb{P}^1, X)$ to E_6/P_4 and thus irreducible. It is included in I, by Lemma 2.15. Let (a, b) be a pair of integers such that $M \subset I_{(a,b)}$. We first prove that $(a, b) \neq (0, 3)$. Indeed, this would mean that C is contained in the divisor D_2, which is a \mathbb{P}^5. This would imply that the span of C is included in X, which is not the case for a generic curve C.

Since $M \subset I_{(a,b)}$, we have $52 \leq 50 + b$, thus $(a, b) = (1, 2)$. By irreducibility of $I_{(1,2)}$, M is dense in $I_{(1,2)}$, thus $C \mapsto (C, \mu(C))$ is a rational section of the projection $p : I_{(1,2)} \rightarrow \text{Mor}_3(\mathbb{P}^1, X)$, which says that for a generic curve C, $\mu(C)$ is the only element μ such that $C \subset S_{\mu}$, and implies that C does not meet the singular locus of $S_{\mu(C)}$.

We now show that the Gromov-Witten variety of S_{μ} is rational:

Lemma 2.17 Let $\mu \in E_6/P_4$ and let x_1, x_2, x_3 be three generic points in S_{μ}. Then the space of curves of bidegree $(1,2)$ in S_{μ} which pass through x_1, x_2 and x_3 is rational.

Proof. We use the technique developed in Subsection 2.1. We may assume that μ is the B-stable point in E_6/P_4, thus that S_{μ} admits a P_4-action. It follows that S_{μ} contains the open subset $P^w_4/(P_1 \cap P^w_4)$, where w denotes the element $s_1s_3s_4s_5s_6s_2$. This subset admits a morphism to $P^w_4/(P_1 \cap P^w_4, R_a(P^w_4))$, which is also $L^w_4/(P_1 \cap L^w_4)$.

Now P_4 is stable under s_2, s_6, s_5, thus we have $P^w_4 = P_4^{s_1s_3s_4}$. The roots of P^w_4 resp. L^w_4 are thus of the form

$$
\beta = s_1s_3s_4(a) = s_1s_3s_4 \left(\begin{array}{cccc}
abla & a & c & d \\
\varepsilon & f & -c & \varepsilon & d
\end{array} \right) = \left(\begin{array}{cccc}
d + f - c & a & d + f - c & b + d + f - c
\end{array} \right),
$$
with α a root and $c \geq 0$ resp. $c = 0$.

Let us compute the roots of $P_1 \cap L_4^w$. In this case we have $c = 0$, and, since α is root, either $f = 0$ or $d = 0$. Moreover since β must be a root of P_1 we have $d + f \geq 0$, thus $d \geq 0$ and $f \geq 0$. It follows that $L_4^w/(P_1 \cap L_4^w)$ is isomorphic to $(S_1 \times S_2 \times S_3)/(S_1 \times P_2 \times P_3)$, with S_1, S_2 resp. S_3 isomorphic to SL_3, SL_3 resp. SL_2, and P_2 resp. P_3 parabolic subgroups of S_2 resp. S_3 stabilising a line in \mathbb{C}^2 resp. \mathbb{C}^3. Therefore $L_4^w/(P_1 \cap L_4^w)$ is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^2$.

Let us now compute the roots in $R_a(P_4^w)/(P_1 \cap R_a(P_4^w))$. Let β be such a root, and write again $\beta = s_1 s_3 s_4(\alpha)$ with α a root of $R_a(P_4)$. Since α is a positive root, we have $d \geq 0$ and $f \geq 0$. Since β is not a root of P_1, it is a negative root and thus $d \leq 0$ and $f \leq 0$. We have $d = f = 0$; since $c > 0$ ($\alpha \in R_a(P_4)$), it follows that $c = 1$, and α is one of the roots

$$
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}.
$$

It follows that the fibration $P_4^w/(P_1 \cap P_4^w) \rightarrow P_4^w/(P_1 \cap P_4^w, R_a(P_4^w))$ is isomorphic to the total space of the vector bundle $V_1 \otimes \mathcal{O}(1,1) \rightarrow (S_1 \times S_2 \times S_3)/(S_1 \times P_2 \times P_3)$, where V_1 is the 3-dimensional natural representation of $S_1 \simeq SL_3$. In other words it is the vector bundle $E := \mathcal{O}(1,1)^{\otimes 3}$ on $\mathbb{P}^2 \times \mathbb{P}^1$.

Through 3 points in $\mathbb{P}^2 \times \mathbb{P}^1$ there passes a rational 2-dimensional family of curves of bidegree $(2,1)$, and the restriction of E to such a curve is the vector bundle $\mathcal{O}(3)^{\otimes 3}$, so that the space of curves passing through 3 points is rational of dimension 5.

\[\square\]

2.4 Some more rationality results

In this subsection we adress the following natural question raised in [BuMi08]: is the Gromov-Witten variety $GW_d(X)$ rational for X a homogeneous space and d large enough? As we have seen, in the cominuscule case, this is always true since $GW_d(X)$ is even either empty or rational.

We quickly explain how, using the previous techniques, one can prove such results for some rational homogeneous spaces. We only deal with very simple cases where the vector bundles obtained in Proposition 2.1 are well understood.

Proposition 2.18 Let X be an orthogonal Grassmannian, then $GW_d(X)$ is rational for large d.

Proof. We start with orthogonal Grassmannians, so let G be semi-simple of type B_n or D_n and let P be a maximal parabolic subgroup of G. By what we already proved, we may assume that $X = G/P$ is not a quadric and therefore $X = G_Q(p, N)$ with $p > 1$ and $N = 2n + 1$ or $2n$. We can choose the parabolic Q used in Proposition 2.1 to be maximal and associated to the first simple root (with notation as in [Bou54]). We get an open subset Z of X with complement of codimension at least two and a map $p : Z \rightarrow Y$ where $Y = G'/P'$ with G' of the same type as G with rank one less and P' maximal. In other words Y is an orthogonal Grassmannian $G_Q(p - 1, N - 2)$. The vector bundle E associated to $p : Z \rightarrow Y$ given by Proposition 2.1 is the tautological quotient bundle on Y.

Then we know that for a general morphism $f : \mathbb{P}^1 \rightarrow Y$ of degree at least $N - p - 1$, there is no proper vector subspace of the $N - 1$ dimensional space containing all the subspaces $f(t)$ for $t \in \mathbb{P}^1$. This implies that f^*E has a decomposition in direct sum of line bundles with positive degrees. In particular if we take a double covering g of f we get that g^*E has a decomposition in direct sum of line bundles with degrees at least 2 and we may conclude by induction on the rank of the group and Proposition 2.3. We therefore have the sufficient bound $d \geq 2(N - p - 1)$ for the rationality of $GW_d(X)$.

\[\square\]
Recall that a rational homogeneous space with automorphism group G is called *adjoint* if it is isomorphic to the closed orbit of the (adjoint) action of G on the projectivisation of its Lie algebra. The adjoint variety for groups of type A_n is isomorphic to the point-hyperplane incidence and has therefore Picard group of rank two. We will exclude this case. We also exclude the case of groups of type G_2 for which the method will not work.

Proposition 2.19 Let X be an adjoint variety for a group G of type different from A and G_2, then $\text{GW}_d(X)$ is rational for large d.

Proof. We prove this by case by case analysis. Let us remark that for classical groups, the result follows from the previous proposition and the rationality results for cominuscule varieties. We therefore only need to deal with the exceptional cases.

We first remark, by a simple weight computation, that for all adjoint varieties X such that in the Dynkin diagram of $\text{Aut}(X)$ there is a cominuscule vertex (corresponding to a cominuscule root), if we look at the open subset Z of X and the vector bundle $p: Z \to Y$ given by Proposition 2.1, then the associated locally free sheaf E on Y is a (non trivial) extension

$$0 \to T_Y^\vee(1) \to E \to \mathcal{O}_Y(1) \to 0$$

where T_Y is the tangent bundle of Y. To prove the result we only need to prove that there exist morphisms $f: \mathbb{P}^1 \to Y$ of large degree such that $f^*(T_Y^\vee(1))$ has a decomposition as a direct sum of line bundles of positive degrees. For this we only deal with types E_6 and E_7 as there is no cominuscule vertex in the Dynkin diagram of the other exceptional groups.

In the first case, the variety Y is a 10-dimensional spinor variety. Its tangent bundle is $\Lambda^2 K^\vee$ where K is the tautological subbundle. If we take a general degree 5 morphism $f: \mathbb{P}^1 \to Y$, then $f^*(K^\vee) = \mathcal{O}_{\mathbb{P}^1}(2)^5$ thus $f^* T_Y = \mathcal{O}_{\mathbb{P}^1}(4)^{10}$ and $f^*(T_Y^\vee(1)) = \mathcal{O}_{\mathbb{P}^1}(1)^{10}$. Therefore we may apply Proposition 2.3 as soon as $d \geq 10$ (by taking a double covering of f as in the proof of the previous proposition).

In the second case, the variety Y is isomorphic to E_6/P_1. If we take a general morphism $f: \mathbb{P}^1 \to Y$ of degree 4, then $f^* T_Y = \mathcal{O}_{\mathbb{P}^1}(2)^{16}$ (in fact, from the equality $[pt]^3 = q^4$ in the quantum cohomology, see [ChMaPe08], it follows that there is a unique morphism of degree 4 passing through 4 general points, which implies the claim). We get $f^*(T_Y^\vee(1)) = \mathcal{O}_{\mathbb{P}^1}(1)^{16}$. Therefore we may apply Proposition 2.3 as soon as $d \geq 8$.

For type E_8 groups, E_8/P_8 has dimension 57 and anticanonical class 29. We choose for Q the maximal parabolic subgroup associated to the simple root α_1. This root is not cominuscule therefore the construction explained before Proposition 2.1 gives a tower of two morphims $Z \xrightarrow{p} W \xrightarrow{q} Y$, where Y is isomorphic to a 12-dimensional quadric, W is the total space of a vector bundle E over Y, and Z is an affine bundle over W whose associated direction vector bundle is of the form $q^* F$ with F a vector bundle on Y (see [Per02, Proposition 5]). These vector bundles are given by the ascendent central filtration of the unipotent radical of Q. An easy check on weights gives us two vector bundles E and F where F is as above (therefore of rank 13 and is the tautological quotient bundle on the quadric, of first Chern class 1) and E is a spinor vector bundle (of rank 32 and first Chern class 16).

We can conclude if we know that for a given integer d, and for a generic degree d morphism $f: \mathbb{P}^1 \to Y$, we have $H^1(\mathbb{P}^1, f^* E) = H^1(\mathbb{P}^1, f^* F) = 0$. For the vector bundle F, we argue as in the proof of Proposition 2.18. For E, this was in proved in Lemma 2.11.

Finally, in the case of F_4, we choose the maximal parabolic subgroup associated to α_4. The argument is very similar to the E_8-case: a big open subset of F_4/P_4 (of dimension 15 and anticanonical class 8) is the total space Z of a tower of affine bundles $Z \xrightarrow{p} W \xrightarrow{q} Y$. Here Y is a
5-dimensional quadric, and, with the same notations as above, F is the tautological quotient bundle on the quadric Y (of rank 6 and first Chern class 1) and E is the spinor bundle on Y (of rank 4 and first Chern class 2). Then we conclude as for the type E_8-case. □

3 Quantum to classical principle for equivariant K-theory

3.1 Conditional results of A. Buch and L. Mihalcea

In this section, we will explain a quantum to classical principle for the equivariant quantum K-theory of a cominuscule homogeneous space X. For this, we will follow the ideas of A. Buch and L. Mihalcea [BuMi08] who proved such results for the Grassmannian varieties and any degree d, and for cominuscule varieties and $d \leq d_{\text{max}}$, using a construction in [ChMaPe08]. Their technique is valid for any equivariant quantum K-theoretic invariant (i.e. $d \geq d_{\text{max}}$) as soon as the following conjecture is true:

Conjecture 3.1 (Buch-Mihalcea) Let X be a cominuscule variety and let $d > d_{\text{max}}$. If x_1, x_2, x_3 are general points in X, then the Gromov-Witten variety $GW_d(x_1, x_2, x_3)$ is rational.

We have proved this conjecture in all cases except for one cominuscule homogeneous space (namely $X = E_6/P_1$) and one degree (namely $d = 3$) for which the variety $GW_d(x_1, x_2, x_3)$ is not rational but empty (see Proposition 2.13). In particular, we will deduce from the general presentation in [BuMi08] a quantum to classical principle for all equivariant quantum K-theoretic invariants in all these cases except maybe for E_6/P_1 and $d = 3$. In Subsection 2.3.2, we also managed to apply their techniques in that case and therefore obtain a general quantum to classical principle.

Before stating our result, let us recall the general picture where the techniques of A. Buch and L. Mihalcea [BuMi08] may apply. We shall assume the following statement about rational curves on the homogeneous space X:

Statement 3.2 Let d be a non negative integer, there exists an element w_d in W^P such that

- for a general degree d morphism $f : \mathbb{P}^1 \to X$, there exists a unique translate of the Schubert variety $X(w_d)$ containing f;

- for three general points in $X(w_d)$ the variety of degree d morphisms $f : \mathbb{P}^1 \to X(w_d)$ passing through these points is rational.

Once we know that Statement 3.2 is true we can, after A. Buch and L. Mihalcea, make the following construction. First remark that the stabiliser of the Schubert variety $X(w_d)$ is a parabolic subgroup, say Q_d, and therefore the variety parametrising the translates of the Schubert variety $X(w_d)$ is the homogeneous space $Y_d = G/Q_d$. We shall denote by Z_d the incidence variety between X and Y_d. We have the following diagram

\[
\begin{array}{c}
Z_d \\ p \downarrow \\
q \\ Y_d \\
\end{array} \rightarrow \begin{array}{c}
X \\
p \\
q \\
\end{array}
\]
and for $\mu \in Y_d$, the Schubert variety S_μ obtained as the translate of $X(w_d)$ by μ is the fiber $q^{-1}(\mu)$.

We denote by $Z_d^{(3)}$ the triple fiber product $Z_d \times_{Y_d} Z_d \times_{Y_d} Z_d$, we denote by M_d the moduli space of degree d stable maps with three marked points from a rational curve to X and we define $B\ell_d$ by

$$B\ell_d = \{(f, S_\mu) f \in M_d, \mu \in Y_d / f \text{ is contained in } S_\mu\}.$$

As in [BuMi08], we have the following diagram:

$$\begin{array}{cccccc}
\mathcal{B}_d \mathcal{Z}_d \mathcal{X} \mathcal{P} \mathcal{Q} \\
\pi \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
\phi \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
M_d \mathcal{P} \mathcal{Q} \mathcal{X} \mathcal{P} \mathcal{Q} \\
\check{\mathcal{P}} \mathcal{Q} \mathcal{X} \mathcal{P} \mathcal{Q} \\
\mathcal{Y}_d
\end{array}$$

where the map π is just the projection on the first factor, the map ϕ forgets f but not the three marked points which become points on S_μ, the map ev_i for $i = 1, 2$ or 3 are the three evaluation maps and \check{e}_i for $i = 1, 2$ or 3 is the map forgetting the two points in S_μ of index different from i.

Theorem 3.3 Assume that Statement 3.2 holds, then we have the following formula:

$$\chi_{M_d}(ev_1^* \alpha \cdot ev_2^* \beta \cdot ev_3^* \gamma) = \chi_{Y_d}(q_* \alpha \cdot q_* \beta \cdot q_* \gamma)$$

where $\chi_{M_d} : K_T(M_d) \to K_T(pt)$ is the T-equivariant Euler characteristic and where α, β and γ are three classes in $K_T(X)$.

Proof. Remark that if Statement 3.2 holds, then π is birational, because of the uniqueness of the translate of $X(w_d)$ containing a general curve. The variety $Z_d^{(3)}$ is a locally trivial fibration above Y_d with fibres $X(w_d)^3$; since Schubert varieties have rational singularities, $Z_d^{(3)}$ therefore also has rational singularities. Finally the second point of Statement 3.2 says that a general fibre of ϕ is rational. Thus we may simply reproduce the proof of Theorem 4.2 in [BuMi08]. \qed

3.2 Unconditional results

Let us now explain how to apply the general framework of the previous subsection. We have:

Proposition 3.4 Statement 3.2 is true for X a cominuscule homogeneous space and any degree d.

Proof. The first point of Statement 3.2 was proved for any cominuscule variety when $d \leq d_{\max}$ in [BuKrTa03, ChMaPe08] and one can find in loc.cit. a description of the integers d_{\max}, the Schubert varieties $X(w_d)$, and the varieties Y_d. The remaining results have been proved in this article. In fact, let us denote by D_{\max} the minimal degree for a rational curve to pass through three general points of X. We can compute d_{\max} and D_{\max} as follows:

Type	X	d_{\max}	D_{\max}
A_{n-1}	$\mathbb{G}(k, n)$	$\min(p, n-p)$	$\max(p, n-p)$
B_n, D_n	\mathbb{G}^m	2	2
C_n	$\mathbb{G}_m(n, 2n)$	$n+1$	$n+1$
D_{2n}	$\mathbb{G}_Q(2n, 4n)$	n	n
D_{2n+1}	$\mathbb{G}_Q(2n + 1, 4n + 2)$	n	$n+1$
E_6	E_6/P_1	2	4
E_7	E_7/P_7	3	3
For $d \geq D_{\text{max}}$, the varieties $X(w_d)$ and Y_d are easy to compute: $X(w_d)$ is simply X while Y_d is a point. In particular the first point of Statement 3.2 is trivially true. The only left cases are described in the following array (the results come from [BuMi08] for the Grassmannian variety and Lemmas 2.15 and 2.17 for the E_6/P_1) where we assume that $d \in [d_{\text{max}} + 1, D_{\text{max}} - 1]$:

Type	X	d	$X(w_d)$	Y_d
A_{n-1}	$\mathbb{G}(k,n)$	$d_{\text{max}} < d < D_{\text{max}}$	$\mathbb{G}(d_{\text{max}},d)$	$\mathbb{G}(d+d_{\text{max}},n)$
E_6	E_6/P_1	$d = 3$	$X(s_6s_5s_4s_3s_1s_2)$	E_6/P_1

The first point of Statement 3.2 is proved in [BuKrTa03] in the case of Grassmannians and is contained in Lemma 2.16 in the case of E_6/P_1.

For the second point of Statement 3.2, namely the rationality of the Gromov-Witten varieties, we observe that when $d \leq d_{\text{max}}$ this variety is one point, by [BuKrTa03, ChMaPe08], so assume $d > d_{\text{max}}$. The case of Grassmannians of type A was done in [BuMi08]. The case of spinor varieties is done by Corollary 2.6 and Proposition 2.9. The case of symplectic Grassmannians is covered by Theorem 1.6. For E_6/P_1, we use Lemma 2.17 for $d = 3$ and Lemma 2.11 for $d \geq 4$. □

By Theorem 3.3, we thus get:

Theorem 3.5 For X a cominuscule homogeneous space and d any non negative integer, we have the following formula:

$$\chi_{M_d}(ev_1^*\alpha \cdot ev_2^*\beta \cdot ev_3^*\gamma) = \chi_{Y_d}(q_*p^*\alpha \cdot q_*p^*\beta \cdot q_*p^*\gamma)$$

where $\chi_{M_d} : K_T(M_d) \to K_T(\text{pt})$ is the T-equivariant Euler characteristic and where α, β and γ are three classes in $K_T(X)$.

As by definition, the equivariant quantum K-theoretic Gromov-Witten invariant $I^T_d(\alpha, \beta, \gamma)$ is $\chi_{M_d}(ev_1^*\alpha \cdot ev_2^*\beta \cdot ev_3^*\gamma)$, we deduce the equivariant K-quantum to classical principle:

Corollary 3.6 Let X be a cominuscule homogeneous space and d any integer. We have the formula $I^T_d(\alpha, \beta, \gamma) = \chi_{Y_d}(q_*p^*\alpha \cdot q_*p^*\beta \cdot q_*p^*\gamma)$.

For $d \geq D_{\text{max}}$, since Y_d is a point, $Z^{(3)}_d$ is equal to $X \times X \times X$, and we get (compare with Consequence 7.2 in [BuMi08]):

Corollary 3.7 For $d \geq D_{\text{max}}$, we have the formula $I^T_d(\alpha, \beta, \gamma) = \chi_X(\alpha) \cdot \chi_X(\beta) \cdot \chi_X(\gamma)$.

References

[Bus] Bourbaki, N., *Groupes et algèbres de Lie*. Hermann 1954.

[Buc03] Buch, A.S., *Quantum cohomology of Grassmannians*, Compositio Math. 137 (2003), no. 2, 227–235.

[BuKrTa03] Buch, A.S., Kresch, A., Tamvakis, H., *Gromov-Witten invariants on Grassmannians*. J. Amer. Math. Soc. 16 (2003), no. 4.

[BuMi08] Buch, A.S., Mihalcea, L.C., *Quantum K-theory of Grassmannians*. Preprint available at arXiv:0810.0981.
[Cha06] Chaput, P.-E., *Geometry over composition algebras: projective geometry*. J. Algebra 298 (2006), no. 2, 340–362

[ChMaPe08] Chaput, P.-E., Manivel, L., Perrin, N., *Quantum cohomology of minuscule homogeneous spaces*. Transform. Groups 13 (2008), no. 1, 47–89.

[Deb01] Debarre, O., *Higher-dimensional algebraic geometry*. Universitext. Springer-Verlag, New York, 2001.

[Gar01] Garibaldi, R.S., *Structurable algebras and groups of type E_6 and E_7*. J. Algebra 236 (2001), no. 2, 651–691.

[Kle74] Kleiman, S.L., *The transversality of a general translate*. Compositio Math. 28 (1974) 287–297.

[LaMa02] Landsberg, J.M., Manivel, L., *Construction and classification of complex simple Lie algebras via projective geometry*. Selecta Math. 8 (2002), no. 1, 137–159.

[Muk98] Mukai, S., *Simple Lie algebra and Legendre variety*. Preprint available at the url http://www.kurims.kyoto-u.ac.jp/~mukai/paper/warwick15.pdf

[Per02] Perrin, N., *Courbes rationnelles sur les variétés homogènes*. Ann. Inst. Fourier 52 (2002), no. 1, 105–132.

[Per05] Perrin, N., *Rational curves on minuscule Schubert varieties*. J. Algebra 294 (2005), no. 2, 431–462.

[Per07] Perrin, N., *Small resolutions of minuscule Schubert varieties*. Compos. Math. 143 (2007), no. 5, 1255–1312.

[Tho98] Thomsen, J.F., *Irreducibility of $\overline{M}_{0,n}(G/P,\beta)$*. Internat. J. Math. 9 (1998), no. 3.

[Zak93] Zak, F.L., *Tangents and secants of algebraic varieties*. Translations of Mathematical Monographs, 127. American Mathematical Society, Providence, RI, 1993.

Pierre-Emmanuel CHAPUT,
Laboratoire de Mathématiques Jean Leray, UMR 6629 du CNRS, UFR Sciences et Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France and
Hausdorff Center for Mathematics, Universität Bonn, Villa Maria, Endenicher Allee 62, 53115 Bonn, Germany.

e-mail: pierre-emmanuel.chaput@math.univ-nantes.fr

Nicolas PERRIN,
Hausdorff Center for Mathematics, Universität Bonn, Villa Maria, Endenicher Allee 62, 53115 Bonn, Germany and
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France.

e-mail: nicolas.perrin@hcm.uni-bonn.de