Supporting information

Supplementary tables

Table S1: Yeast strains used in this paper.

Strains	Description	Reference
WT	BY4742 MATa hisΔI leu2Δ0 lys2Δ0 ura3Δ0	
Δpex3	BY4742 Δpex3::KanMX4	Euroscarf collection
Δpex5	BY4742 Δpex5::KanMX4	Euroscarf collection
Δpex6	BY4742 Δpex6::KanMX4	Euroscarf collection
Δ3’pex5	BY4742 Δ3’pex5::KanMX4	this study
Δpot1	BY4742 Δpot1::KanMX4	Euroscarf collection
Δtgl3	BY4742 Δtgl3::KanMX4	Euroscarf collection
Δpex3Δpot1	BY4742 Δpex3::KanMX4 Δpot1::NatMX4	this study
Δpex7	BY4742 Δpex7::KanMX4	Euroscarf collection
WT GFP.SKL	BY4742 pMET25-GFP.SKL/Zeo^8	this study
Δatg1	BY4741 Δatg1::KanMX4	Euroscarf collection
Δatg1Δpex3	BY4741 Δpex3::KanMX4 Δatg1::NatMX4	this study
Δpex5/PEX5	BY4742 Δpex5::KanMX4 pRS316-PEX5	this study
Primers	Sequence 5’-3’	
----------	--	
Pex5UP	TATGCAAAGGTTCATAAAACGGAGAACCACCTGATCGATGATAAAAGAAGA-	
	A-CAGCTGAAGCTTTCGTACGC	
Pex5DN	CTCTCTTCAAAGTCTCTTATAACAGTATCTTTGATACGTATTCAAGAGAGAT-GCATAGGCCACTAGTGGATCTG	
Pex5.1	GGCGTCTTTAATGAGAGTGCACT	
Pex5.2	ATGGCCTGCTTCACTTCTTGG	
Pex5.5	ATCCGCTCAGAGATATCTTGG	
Pex5.6	TCCATGTCTTTCTCCCTGATAAAG	
Pex5.A	GCTTGGCTTATTTTACCTGATGTAT	
Pex5.B	GAGAGCTTTTTTCTCTCCCTGATAACA	
Pot1.1	CTACAGCTGCTAAACGCTACACCGACCAA	
Pot1.2	CTTAGGATCCCTGTACTCAGAGCCACAAG	
Pot1.3	CTAAGTCTGCCGCGCCACATCTT	
Pot1.4	CTACCGCGGCAGTACCTGATAGTATGGCTATCG	
Pot1.5	GAGGATGCACTTCCGATATA	
Pot1.6	AATTCAACGCTGCTTGAGG	
Pot1.7	GACATCATCTGCCCAGATGC	
Pot1.8	TGGAGGGGAAGAAGGATGAGG	
GFP SKL-3	TATCCGCGCGCGCGCAATTAACCTCA	
GFP SKL-4	TATGCGGCGCGCGGTAACGCACGGTGGTTTT	
MET25.1	GGCGTCAAGATTTAGGTGAT	
ATG1up	TTCAATCTCTCTTTTACAACACCAGACGAGAAATTAAGAAAGAGACGGATCCCCGGGATTATTA	
ATG1down	GGTCAATTCTACTAATAAGAAACCATTATGTCATCGACGCGCTGTAACGAGAGCCGCTTAA	
Atg1.1	CTGGGGGAACAGAGAAGACGT	
Supplementary experimental procedures

Construction of Δatg1Δpex3 strains

ATG1 gene was deleted in Δpex3 cells by replacing the open reading frame with nourseothricin resistance gene [Goldstein, 1999 #32]. The atg1::NatMX4 DNA fragment was amplified with ATG1up and ATG1down primers (Table S2) using pAG25 [Goldstein, 1999 #32] as template and transformed into Δpex3 cells. Correct insertion by homologous recombination was confirmed by colony PCR using Atg1.1 and Pot1.6 primers (Table S2).

Chronological aging experiment on peroxisome induction medium for pex mutants

Overnight cultures were grown in MM medium containing 0.5% glucose and required amino acids. Those cultures were then diluted twice at OD$_{600\text{ nm}}$ = 0.1 in fresh MM containing 0.3% glucose and grown for 8 hours. After the last pre-cultivation step, cells were diluted in MM containing 0.25% ammonium sulfate, 0.05% yeast extract, 0.1% oleic acid and 0.05% Tween 80 and 0.1% glucose. Cultures were incubated at 30°C, 200 rpm. Survival was assayed by counting colony-forming units (CFUs) after 2 days of incubation at 30°C on YPD agar plates. 24 hours after the last dilution (D1) was considered as 100% of survival. The results shown are mean values and standard error of mean. Statistical analyses were determined using two-way ANOVA. A p value of less than 0.05 was considered as a significant difference.