Association between Tissue Characteristics of Coronary Plaque and Distal Embolization after Coronary Intervention in Acute Coronary Syndrome Patients: Insights from a Meta-Analysis of Virtual Histology-Intravascular Ultrasound Studies

Song Ding, Longwei Xu, Fan Yang, Lingcong Kong, Yichao Zhao, Lingchen Gao, Wei Wang, Rende Xu, Heng Ge, Meng Jiang, Jun Pu*, Ben He*

From Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Abstract

Background and Objectives: The predictive value of plaque characteristics assessed by virtual histology-intravascular ultrasound (VH-IVUS) including fibrous tissue (FT), fibrofatty (FF), necrotic core (NC) and dense calcium (DC) in identifying distal embolization after percutaneous coronary intervention (PCI) is still controversial. We performed a systematic review and meta-analysis to summarize the association of pre-PCI plaque composition and post-PCI distal embolization in acute coronary syndrome patients.

Methods: Studies were identified in PubMed, OVID, EMBASE, the Cochrane Library, the Current Controlled Trials Register, reviews, and reference lists of relevant articles. A meta-analysis using both fixed and random effects models with assessment of study heterogeneity and publication bias was performed.

Results: Of the 388 articles screened, 10 studies with a total of 872 subjects (199 with distal embolization and 673 with normal flow) met the eligibility of our study. Compared with normal flow groups, significant higher absolute volume of NC [weighted mean differences (WMD): 5.79 mm³, 95% CI: 3.02 to 8.55 mm³; p < 0.001] and DC (WMD: 2.55 mm³, 95% CI: 0.22 to 4.88 mm³; p = 0.03) were found in acute coronary syndrome patients with distal embolization. Further subgroup analysis demonstrated that the predictive value of tissue characteristics in determining distal embolization was correlated to clinical scenario of the patients, definition of distal embolization, and whether the percutaneous aspiration thrombectomy was applied.

Conclusion: Our study that pooled current evidence showed that plaque components were closely related to the distal embolization after PCI, especially the absolute volume of NC and DC, supporting further studies with larger sample size and high-methodological quality.

Introduction

Rationale

Distal embolization (DE) is a common complication after percutaneous coronary intervention (PCI), particularly in the setting of acute coronary syndrome (ACS) or vein graft intervention, which may result in microvascular obstruction and no-reflow phenomenon [1,2]. This undesirable side effect of PCI has been confirmed to be associated with increased post-procedural myocardial infarction, in-hospital mortality, and long-term adverse events [3–5]. However, there is no effective strategy for prediction and prevention of DE, which is an important issue for interventional cardiology.
Although several studies using grayscale intravascular ultrasound (IVUS) have indicated that plaque characteristics identified by pre-interventional IVUS (i.e., a large plaque burden, a lipid-pool-like image, and positive remodeling) maybe associated with the angiographic no-reflow phenomenon in ACS patients [6–10], gray-scale IVUS is dependent on the simple interpretation of acoustic reflections and of limited value for identifying specific plaque components [11]. Recently, some new methods able to assess both plaque morphology and tissue characteristics, such as virtual histology-IVUS (VH-IVUS), have become clinically available. VH-IVUS is based on spectral and amplitude analysis of IVUS backscattered radiofrequency that allows for characterization of in-vivo atherosclerotic plaque into four types: fibrous (FT), fibrofatty (FF), necrotic core (NC), and dense calcium (DC) [12–23]. However, whether pre-PCI plaque characteristics of culprit lesion assessed by VH-IVUS could predict post-PCI angiographic DE, and which plaque components are associated with no-reflow phenomenon remain debated. We therefore performed a systematic review that pooled current evidence to investigate the relationship between pre-PCI plaque composition characteristics assessed by VH-IVUS and post-PCI DE phenomenon in ACS patients.

Methods

Search strategy
PubMed, Ovid, EMBASE, and the Cochrane Library databases were searched in their entirety from January 2002 to April 2013. Complex search strategies were formulated using the following MESH terms and text words: intravascular ultrasound, virtual histology, IVUS, VH-IVUS, plaque component, plaque composition, plaque characteristic, no reflow, DE, microembolization, and obstruction. In order to identify any studies missed by the literature searches, we had searched reference lists of all eligible studies and relevant review articles. In addition, we searched from published and ongoing trials in clinical trial registries (Clinical-Trials.gov, Controlled-trials.com and the WHO International Clinical Trials Registry Platform). Searches were not restricted by language, time published, or publication status. Duplicate reports were eliminated (Appendix S1).

Study selection
We included studies when the following criteria were met: (1) Plaque characteristics were assessed by VH-IVUS; (2) VH-IVUS was performed before coronary intervention in ACS patients; and (3) DE was defined according to angiographic evidence or clinical relevancy. Studies without normal flow (NF) group were excluded from our analysis.

Data extraction
Two reviewers (D. S. and P. J.) assessed the eligibility of studies using a standardized form developed for this purpose in duplicate and independently. Disagreements were adjudicated by review by consensus. Data extraction was completed by the same observers using a standardized data extraction form developed for this study. The following information was extracted from each study: sample size, mean age, gender distribution, risk factors, clinical scenario, definition of DE, and the volume (mm³) and percentage of each tissue component of plaque (including FT, FF, NC, and DC). Several studies met our inclusion criteria but were...
Table 1. Basical characteristics of studies included in meta-analysis (Normal flow vs. distal embolization).

Study	Study interval	Location	Sample size (n)	Design	Clinical scenario	PAT	Definition of distal embolization
Bae 2008	NR	Daejeon, South Korea	45/12	RSC	AMI	Yes	TIMI flow grade ≤2
Higashikuni 2008	2005.6–2006.4	Tokyo, Japan	40/9	RSC	ACS (AMI and UA)	Yes	Decrease of at least 1 grade in TIMI
Hong 2009	NR	Washington DC, United States	42/38	RSC	UA	No	cTnI elevation >3X the ULN
Hong 2011	2006.2–2008.1	Gwangju, South Korea	166/24	RSC	ACS (STEMI, NSTEMI and UA)	No	TIMI flow grade ≤2
Kawaguchi 2007	2005.8–2006.12	Gunma, Japan	60/11	PSC	AMI (STEMI)	Yes	ST-segment re-elevation
Nakamura 2007	2006.1–2006.3	Saitama, Japan	42/8	PSC	AMI (STEMI)	Yes	Decrease in TIMI flow grade
Ohshima 2009	2007.1–2007.12	Ehime, Japan	24/20	PSC	AMI (STEMI)	Yes	TIMI flow grade ≤2
Ohshima 2011	NR	Ehime, Japan	19/34	RSC	AMI (STEMI)	Yes	TIMI flow grade ≤2
Shin 2011	NR	Ulsan, South Korea	90/22	RSC	UA	No	CK-MB elevation >1X the ULN
Zhao 2013	2010.9–2011.11	Zhengzhou, China	145/21	RSC	UA	Yes	TIMI flow grade ≤2

ACS, acute coronary injury; AMI, acute myocardial infarction; NR, not reported; NSTEMI, non ST-segment elevation myocardial infarction; PAT, percutaneous aspiration thrombectomy; PSC, prospective single center; RSC, retrospective single center; STEMI, ST-segment elevation myocardial infarction; ULN, upper limit of normal.

doi:10.1371/journal.pone.0106583.t001

Table 2. Clinical characteristics of studies included in meta-analysis (Normal flow vs. distal embolization).

Study	Mean age (years)	Males (%)	Comorbidities	Pre-PCI use of Aspirin (%)	Use of Statins	Use of GP IIb/IIIa inhibitor	Use of Statins	Use of distal protection devices	
			HT (%)	DM (%)	HL (%)	NR	0/0	NR	No
Bae 2008	56.2/67.5	82.2/66.7	40.0/33.3	13.3/33.3	31.1/25.0	100/100	NR	NR	No
Higashikuni 2008	66.6/60.6	92.5/77.8	70.0/55.6	30.0/55.6	65.0/8	30.0/44.4	22.5/22.2	22.5/22.2	No
Hong 2009	65/63	47.6/76.3	64.3/73.7	23.8/31.6	NR	92.9/86.8	14.3/10.5	NR	No
Hong 2011	60.5/60.1	65.7/58.3	52.4/70.8	19.3/25	NR	NR	23.5/29.2	NR	No
Kawaguchi 2007	NR	NR	68.3/81.8	41.7/91	45.0/81.8	NR	0/0	NR	No
Nakamura 2007	65.3/58.5	85.7/87.5	42.9/25.0	23.8/37.5	61.9/62.5	100/100	NR	NR	No
Ohshima 2009	66.0/74.0	83.3/65.0	58.3/75.0	54.2/60.0	62.5/45.0	100/100	NR	NR	No
Ohshima 2011	73/67	68.4/63.5	78.8/70.6	26.3/38.2	47.4/61.8	100/100	NR	NR	No
Shin 2011	61.4/65.5	61.1/50.0	51.1/72.7	32.2/22.7	53.3/63.6	100/100	21.1/27.3	0/0	No
Zhao 2013	51/49	66.2/66.6	59.3/61.9	26.9/47.6	NR	100/100	98.6/95.2	NR	No

DM, diabetes mellitus; HT, hypertension; HL, hyperlipidaemia; NR, not reported.

doi:10.1371/journal.pone.0106583.t002
missing data vital to our analysis; in these cases, we contacted the authors to obtain raw data whenever possible.

Statistical analysis

Statistical analysis in this study was carried out using RevMan software version 5.2 (The Cochrane Collaboration). Results were summarized as weighted mean differences (WMD) with their associated 95% confidence intervals (CI) using both fixed and random effects models, the latter was more conservative where heterogeneity beyond that expected by chance alone was encountered. In addition, the odds ratio (OR) was calculated for baseline comorbidities. Heterogeneity between studies was analyzed by the Q statistic and the I² statistic. A p value of the Q statistic <0.1 was defined as an indicator of heterogeneity, and an I² <50% indicated that the magnitude of the heterogeneity might not be significant. Funnel plots were plotted to investigate possible small study effects/publication bias by using Revman 5.2. Planned subgroup analyses were conducted based on the clinical scenario, definition of DE, and whether percutaneous aspiration thrombectomy was applied.

Quality assessment

Methodological quality was assessed independently by 2 reviewers (D. S. and P. J.) using the Newcastle-Ottawa Scale.

Results

Search result

After initial literature search, we identified 388 potential studies, of which 357 studies were excluded based on the title and abstracts, because they were unrelated papers, reviews, editorials, letters, case reports or animal studies. The remaining 31 articles were considered of interest and examined in full-text. Of these, 19 studies those were not IVUS-based were excluded. Of the remainder, 2 studies without DE data were excluded [12,13]. Therefore, 10 observational studies were included in our final meta-analysis [14–23]. Figure 1 shows the study selection process.

Characteristics of included studies

Table 1 and 2 summarize the main features of the included studies. A total of 872 patients (199 patients in DE group and 673 patients in NF group) were enrolled in the 10 studies, and the sample sizes were 44–190 in each study. Among the included studies, 5 studies involved AMI patients [14,18–21] (4 of them only involved STEMI patients), 3 studies enrolled unstable angina (UA) patients [16,22,23], and the remaining 2 studies involved ACS (including both AMI and UA) patients [15,17]. Percutaneous aspiration thrombectomy was performed before IVUS examinations in 7 studies [14,15,18–21,23]. There were no significant differences between DE and NF groups in age and gender of patients. Moreover, there was no significant difference in the incidence of hypertension (OR: 1.36, 95% CI: 0.95 to 1.95, \(p = 0.10 \)), diabetes (OR: 1.36, 95% CI: 0.94 to 1.96, \(p = 0.10 \)) and hyperlipidaemia (OR: 1.44, 95% CI: 0.89 to 2.31, \(p = 0.13 \)) between the two groups. A Funnel plot for NC volume outcome data was used to assess any potential small study effects or publication bias (Figure 2). The Funnel plot was roughly symmetrical as to the mean-effect size line.

Moreover, we evaluated the quality of primary studies using the Newcastle–Ottawa Scale, a validated technique for assessing the quality of observational and non randomized studies. As shown in Table 3, all observational studies were intermediate to low intermediate bias risk as assessed by the Newcastle-Ottawa Scale for quality assessment risk evaluation of adequacy of selection, comparability of study groups, and assessment of outcome or exposure.

Relationship between coronary plaque characteristics and DE

As shown in Table 4, Figure 3 and 4, the absolute volume and percentage of four different plaque compositions through the entire culprit lesion were assessed. Compared with NF group, the overall pooled results with random-effects analysis showed DE group had significant higher absolute volume of NC (WMD: 5.79 mm³; 95% CI: 3.02 to 8.55 mm³; \(p < 0.001 \)) and DC (WMD: \(p < 0.001 \)).
2.55 mm3, 95% CI: 0.22 to 4.88 mm3; $p = 0.03$). The difference between the two groups was not statistically significant with respect to percentage of NC (WMD: 4.35%, 95% CI: −1.44% to 10.15%; $p = 0.14$) and DC (WMD: 0.81%, 95% CI: −1.20% to 2.82%; $p = 0.43$). In addition, there were no significant differences in absolute volume and percentage of FT and FF at the entire culprit lesions between the two groups. Substantial statistical heterogeneity was detected in all of the comparisons among these trials, except for the absolute volume of FT ($I^2 = 0\%$).

Subgroup analysis

Planned subgroup analyses were conducted based on the different clinical scenario, definition of DE, and whether percutaneous aspiration thrombectomy was applied (Table 5 and 6). Subgroup analysis by different clinical scenario showed that patients with DE had significantly higher absolute volume and percentage of NC (WMD: 6.61 mm3, 95% CI: 4.11 to 9.12 mm3; $p < 0.001$ and WMD: 8.64%, 95% CI: 5.29% to 11.99%; $p < 0.001$) in subgroup of UA patients.

In order to assess the impact of the definition of DE in determining DE on our analyses, subgroup analysis by angiographic or clinical relevance definition was performed. The results showed that there was significantly higher absolute volume of NC (WMD: 7.13 mm3, 95% CI: 4.40 to 9.87 mm3; $p = 0.04$) in subgroup of DE in clinical relevance definition.

In order to investigate whether percutaneous aspiration thrombectomy would affect the outcomes, trials were divided into two subgroups according to whether thrombectomy was applied. The results showed that in the subgroup without thrombectomy, patients with DE had significantly higher absolute volume and percentage of NC (WMD: 7.47 mm3, 95% CI: 4.25 to 10.69 mm3; $p < 0.001$ and WMD: −7.45%, 95% CI: 4.38% to 10.53%; $p < 0.001$), and significantly lower absolute volume of FF (WMD: −7.38 mm3, 95% CI: −9.86 to −4.90 mm3; $p < 0.001$).

Discussion

The present meta-analysis that pooled all currently available published data indicated that, among four phenotypes of coronary plaque composition assessed by VH-IVUS, absolute volume of NC components was closely related to the DE after PCI in ACS patients. Besides, absolute volume of DC component might also be related to the DE after PCI. Further subgroup analysis revealed that the predictive value of VH-IVUS plaque characteristics in determining DE was correlated to the clinical scenario of the patients, the definition of DE, and whether percutaneous aspiration thrombectomy was applied.

Two recent review/meta-analyses [24,25] that investigated the relationship between plaque characteristics and DE after PCI have also reported that the extent of NC was larger in patients with DE. The meta-analysis by Jang et al. [24] evaluated the effect of plaque characteristics on embolization after PCI by grayscale-IVUS and VH-IVUS, and found that the morphologic characteristics of plaque derived from grayscale-IVUS (i.e., eccentric plaque, ruptured plaque, and attenuated plaque) and the NC component derived from VH-IVUS are closely related to the DE phenomenon after PCI. The systematic review by Claessen et al. [25] summarized the published data on the use of plaque composition assessment by VH-IVUS to predict the occurrence of DE, and found that the NC component was associated with DE in all but 2 of the 11 reviewed studies. In the present study, we performed a systematic review that pooled all the currently available published data investigating the relationship between pre-PCI plaque composition characteristics assessed by VH-IVUS and post-PCI
Table 4. Composition of plaque by VH-IVUS.

Study	Absolute volume (mm³)	Percentage (%)							
	FT	FF	DC	NC	FT	FF	DC	NC	
Bae 2008	Reflow	83.8 (66.8)	18.0 (18.6)	12.7 (13.9)	28.8 (26.0)	NR	NR	NR	NR
	No reflow	119.6 (61.7)	36.7 (25.5)	9.3 (8.9)	26.1 (21.0)	NR	NR	NR	NR
Higashikuni 2008	Reflow	NR	NR	NR	NR	68.3 (10.2)	15.5 (7.1)	4.8 (3.6)	11.7 (7.9)
	No reflow	NR	NR	NR	NR	59.6 (11.2)	12.0 (9.7)	4.7 (3.3)	22.1 (9.3)
Hong 2009	Reflow	33.9 (14.2)	16.9 (11.6)	3.2 (3.0)	7.9 (4.4)	55.0 (11.6)	27.5 (13.0)	4.8 (3.4)	12.8 (8.4)
	No reflow	NR	NR	NR	NR	55.7 (13.1)	19.0 (9.3)	5.5 (3.9)	19.8 (10.4)
Hong 2011	Reflow	77 (75.4)	20 (25.4)	10 (11.5)	16 (16.9)	61 (9.9)	16 (9.9)	9 (6.8)	14 (8.0)
	No reflow	76 (50.0)	15 (18.5)	19 (20.0)	30 (23.8)	55 (14.0)	9 (6.1)	14 (8.0)	22 (11.0)
Kawaguchi 2007	Reflow	68.2 (35.3)	13.2 (11.4)	9.6 (13.9)	20.4 (19.2)	NR	NR	NR	NR
	No reflow	67.1 (30.7)	9.8 (10.4)	12.2 (8.6)	32.9 (14.1)	NR	NR	NR	NR
Nakamura 2007	Reflow	NR	NR	NR	NR	67.0 (1.5)	17.0 (1.1)	4.8 (0.6)	11.2 (1.2)
	No reflow	NR	NR	NR	NR	68.3 (2.1)	23.1 (3.5)	2.6 (0.6)	6.3 (1.0)
Ohshima 2009	Reflow	56.6 (21.8)	8.6 (5.2)	6.5 (5.3)	12.0 (7.4)	67.8 (10.2)	10.1 (3.9)	7.8 (5.2)	14.3 (6.7)
	No reflow	56.2 (32.6)	14.2 (11.4)	10.3 (7.6)	14.1 (6.7)	57.5 (10.7)	14.5 (9.6)	11.8 (8.9)	15.8 (7.4)
Ohshima 2011	Reflow	57.0 (33.3)	14.7 (11.5)	9.3 (6.0)	13.7 (6.7)	57.5 (11.0)	14.8 (9.7)	11.3 (8.0)	15.8 (7.6)
	No reflow	67.5 (29.7)	15.0 (11.7)	11.0 (8.8)	16.8 (10.0)	61.2 (10.8)	13.4 (8.1)	10.2 (7.2)	15.3 (6.0)
Shin 2011	Reflow	NR	NR	NR	NR	68.3 (2.1)	23.1 (3.5)	2.6 (0.6)	6.3 (1.0)
	No reflow	NR	NR	NR	NR	59.24 (6.72)	17.90 (3.21)	8.36 (3.13)	14.50 (5.48)
Zhao 2013	Reflow	NR	NR	NR	NR	50.26 (8.72)	15.29 (2.83)	9.53 (2.99)	24.92 (10.04)

Data are presented as mean (SD)

FT, fibrous tissue; FF, fibrofatty; NC, necrotic core; DC, dense calcium.

doi:10.1371/journal.pone.0106583.t004
DE phenomenon in ACS patients, and we updated the meta-analysis by adding two VH-IVUS studies [22,23] that did not include in the previous meta-analysis by Jang et al. [24]. We found that absolute volume of NC component, but not percentage of NC component, was closely related to the DE after PCI in ACS patients, confirming the findings of previous review/meta-analyses. In addition, our analysis that pooled all current evidence found that besides NC volume, absolute DC volume was also closely related to the DE phenomenon after PCI. There is some evidence which indicated that DC might be related to DE. For example, pathologic studies revealed that coronary calcification is related to the total plaque burden, NC component, plaque erosion or rupture that is responsible for coronary thrombosis [26–29]. In addition, some studies have also reported that coronary calcium

Figure 3. Absolute volume comparison of four different plaque compositions through the entire culprit lesion between the normal flow group and the distal embolization group. (A) Absolute fibrous volume comparison; (B) Absolute fibrofatty volume comparison; (C) Absolute dense calcium volume comparison; (D) Absolute necrotic core volume comparison; doi:10.1371/journal.pone.0106583.g003

DE phenomenon in ACS patients, and we updated the meta-analysis by adding two VH-IVUS studies [22,23] that did not include in the previous meta-analysis by Jang et al. [24]. We found that absolute volume of NC component, but not percentage of NC component, was closely related to the DE after PCI in ACS patients, confirming the findings of previous review/meta-analyses. In addition, our analysis that pooled all current evidence found that besides NC volume, absolute DC volume was also closely related to the DE phenomenon after PCI. There is some evidence which indicated that DC might be related to DE. For example, pathologic studies revealed that coronary calcification is related to the total plaque burden, NC component, plaque erosion or rupture that is responsible for coronary thrombosis [26–29]. In addition, some studies have also reported that coronary calcium

Figure 3. Absolute volume comparison of four different plaque compositions through the entire culprit lesion between the normal flow group and the distal embolization group. (A) Absolute fibrous volume comparison; (B) Absolute fibrofatty volume comparison; (C) Absolute dense calcium volume comparison; (D) Absolute necrotic core volume comparison; doi:10.1371/journal.pone.0106583.g003

DE phenomenon in ACS patients, and we updated the meta-analysis by adding two VH-IVUS studies [22,23] that did not include in the previous meta-analysis by Jang et al. [24]. We found that absolute volume of NC component, but not percentage of NC component, was closely related to the DE after PCI in ACS patients, confirming the findings of previous review/meta-analyses. In addition, our analysis that pooled all current evidence found that besides NC volume, absolute DC volume was also closely related to the DE phenomenon after PCI. There is some evidence which indicated that DC might be related to DE. For example, pathologic studies revealed that coronary calcification is related to the total plaque burden, NC component, plaque erosion or rupture that is responsible for coronary thrombosis [26–29]. In addition, some studies have also reported that coronary calcium
was associated with coronary event including myocardial infarction or death in symptomatic/asymptomatic persons [30–33].

In our analysis, we noted a considerable degree of heterogeneity among the included trials. Thus, we performed further subgroup analyses and tried to appraise the possible sources of differences and heterogeneity among trials. Our results suggested that the clinical scenario of the patients, the definition of DE and the use of thrombectomy may influence the correlation between tissue characteristics of coronary plaque and DE. When analyzed in the context of clinical scenario, increased absolute volume of NC was found in DE group in studies including UA patients, but not in those including AMI patients. This phenomenon might be

Figure 4. Percentage comparison of four different plaque compositions through the entire culprit lesion between the normal flow group and the distal embolization group. (A) Fibrous percentage comparison; (B) Fibrofatty percentage comparison; (C) Dense calcium percentage comparison; (D) Necrotic core percentage comparison. doi:10.1371/journal.pone.0106583.g004

In our analysis, we noted a considerable degree of heterogeneity among the included trials. Thus, we performed further subgroup analyses and tried to appraise the possible sources of differences and heterogeneity among trials. Our results suggested that the clinical scenario of the patients, the definition of DE and the use of thrombectomy may influence the correlation between tissue characteristics of coronary plaque and DE. When analyzed in the context of clinical scenario, increased absolute volume of NC was found in DE group in studies including UA patients, but not in those including AMI patients. This phenomenon might be
Table 5. Subgroup analyses of the association of the absolute volume of plaque components with the onset of distal embolization.

Subgroup	FT		FF		DC		NC	
	WMD (95% CI, mm³)	p						
Clinical scenario								
AMI	5.21 (–4.93, 15.35)	0.31	3.17 (–3.25, 9.59)	0.33	1.81 (–0.81, 4.44)	0.18	3.56 (–0.37, 7.50)	0.08
Unstable angina	4.50 (–2.91, 11.91)	0.23	−3.80 (–8.51, 0.91)	0.11	2.77 (–1.73, 7.27)	0.23	6.61 (4.11, 9.12)	<0.001
Definition of distal embolization								
Angiographic evidence	5.62 (–4.83, 16.07)	0.29	3.11 (–3.77, 10.00)	0.38	2.44 (–1.34, 6.22)	0.21	3.88 (–0.62, 8.38)	0.09
Clinical relevancy	3.84 (–3.12, 10.80)	0.28	−3.67 (–7.54, 0.20)	0.06	2.71 (–0.88, 6.29)	0.14	7.13 (4.40, 9.87)	<0.001
Thrombectomy								
With thrombectomy	−4.36 (–10.42, 1.71)	0.16	0.80 (–3.89, 5.49)	0.74	0.06 (–2.17, 2.30)	0.96	3.56 (–0.37, 7.50)	0.08
Without thrombectomy	−2.57 (–9.14, 3.99)	0.44	−7.38 (–9.86, −4.90)	<0.001	2.59 (–1.60, 6.77)	0.23	7.47 (4.25, 10.69)	<0.001

FT, fibrous tissue; FF, fibrofatty; NC, necrotic core; DC, dense calcium; WMD, weighted mean differences; AMI, acute myocardial infarction.
doi:10.1371/journal.pone.0106583.t005

Table 6. Subgroup analyses of the association of the percentage of plaque components with the onset of distal embolization.

Subgroup	FT		FF		DC		NC	
	WMD (95% CI, %)	p						
Clinical scenario								
AMI	−1.48 (–8.40, 5.44)	0.68	3.49 (–0.68, 7.66)	0.10	−0.18 (–3.89, 3.53)	0.92	−1.67 (–6.04, 2.70)	0.45
Unstable angina	−4.34 (–13.81, 5.14)	0.37	−5.06 (–10.75, 0.63)	0.08	0.97 (–0.07, 2.02)	0.07	8.64 (5.29, 11.99)	<0.001
Definition of distal embolization								
Angiographic evidence	−4.60 (–9.87, 0.67)	0.09	−0.61 (–4.91, 3.70)	0.78	0.87 (–1.49, 3.24)	0.47	3.91 (–2.30, 10.11)	0.22
Clinical relevancy	0.70 (–4.75, 6.15)	0.80	−8.50 (–13.42, −3.58)	<0.001	0.70 (–0.91, 2.31)	0.39	7.00 (2.83,11.17)	0.001
Thrombectomy								
With thrombectomy	5.21 (–4.93, 15.35)	0.31	3.17 (–3.25, 9.59)	0.33	1.81 (–0.81, 4.44)	0.18	3.07 (–3.45,9.59)	0.36
Without thrombectomy	3.98 (–3.07, 11.04)	0.27	−4.09 (–8.19, 0.01)	0.05	3.85 (–0.46, 8.17)	0.08	7.45 (4.38, 10.53)	<0.001

FT, fibrous tissue; FF, fibrofatty; NC, necrotic core; DC, dense calcium; WMD, weighted mean differences; AMI, acute myocardial infarction.
doi:10.1371/journal.pone.0106583.t006
explained by the rupture and migration of NC plaque in AMI patients. In addition, VH-IVUS is limited to detecting thrombus (in fact, thrombus appears as either fibrotic or fibrofatty plaque depending on the age of the thrombus) [34]. Moreover, large amount of NC may have migrated into the distal coronary bed before or during primary PCI in AMI patients [14]. An unexpected finding in our analysis was that no association was found between plaque components and DE in the subgroup of angiographically defined DE. Although angiography has been commonly used as a gold standard for assessing DE, TIMI flow grade is a subjective method to assess epicardial blood flow. As suggested by published literatures, the qualitative nature of TIMI grade renders it somewhat dependent on the technical skill of the observer, and significant differences were found in inter-observer variabilities among different reports, particularly for TIMI 2 grade. Therefore further studies with larger sample size and high-methodological quality are needed.

Supporting Information

Appendix S1 Search strategy. (DOC)

Checklist S1 Meta-Analysis on Genetic Association Studies Checklist. (DOCX)

Acknowledgments

The authors gratefully acknowledge the authors of the original studies.

Author Contributions

Conceived and designed the experiments: SD LX RX JP BH. Performed the experiments: SD LX RX JP BH. Analyzed the data: SD LX FY YZ LG WW RX. Contributed reagents/materials/analysis tools: SD LX HG MJ JP BH. Wrote the paper: SD LX RX JK JP BH.

References

1. Morishima I, Sone T, Okumura K, Tsobis H, Kondo J, et al. (2000) Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol 36: 1202–1209.

2. Gruentzig RF, Cox DA, Stone GW, Garcia E, Mattos LA, et al. (1995) Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group, N Engl J Med 331: 1949–1956.

3. Park Y, Shaik P, Ding S, Qiao Z, Jiang L, et al. (2011) Gender differences in epicardial and tissue-level reperfusion in patients undergoing primary angioplasty for acute myocardial infarction. Atherosclerosis 215: 203–208.

4. Cura FA, L’Allier PL, Kapadia SR, Houghtaling PL, Dipaola LM, et al. (2001) Prediction and prognosis of suboptimal coronary blood flow after primary coronary angioplasty in patients with acute myocardial infarction. Am J Cardiol 88: 124–128.

5. Ding S, Pu J, Qiao ZQ, Shan P, Song W, et al. (2010) TIMI myocardial perfusion frame count: a new method to assess myocardial perfusion and its predictive value for short-term prognosis. Catheter Cardiovasc Interv 75: 722–732.

6. Ijima R, Shinji H, Ikekka N, Itaya H, Makino K, et al. (2006) Comparison of coronary arterial finding by intravascular ultrasound in patients with “transient no-reflow” versus “reflow” during percutaneous coronary intervention in acute coronary syndrome. Am J Cardiol 97: 29–33.

7. Ohshima K, Ikekka S, Kadota H, Yamane K, Izumi N, et al. (2013) Impact of culprit plaque volume and composition on myocardial microcirculation following primary angioplasty in patients with ST-segment elevation myocardial infarction: virtual histology intravascular ultrasound analysis. Int J Cardiol 167: 1000–1005.

8. Kosana I, Hibi K, Kosuge M, Noucha N, Ozaki H, et al. (2007) Impact of plaque rupture on infarct size in ST-segment elevation anterior acute myocardial infarction. J Am Coll Cardiol 50: 1230–1237.

9. Tanaka A, Kawarabayashi T, Nishibori Y, Sano T, Nishida Y, et al. (2002) No-reflow phenomenon and lesion morphology in patients with acute myocardial infarction. Circulation 105: 2148–2152.

10. Katayama T, Kubo N, Takagi Y, Funayama H, Ikekka N, et al. (2006) Relation of atherothrombosis burden and volume detected by intravascular ultrasound to angiographic no-reflow phenomenon during stent implantation in patients with acute myocardial infarction. Am J Cardiol 97: 301–304.

11. Pu J, Mintz GS, Brilakis ES, Barenec J, Abdel-Karim AR, et al. (2012) In vivo characterization of coronary plaques: novel findings from comparing greyscale lumen and site over the whole lesion, these measurements were not usually reported uniformly in the individual studies involved in our study. Thirdly, although our pooled analysis found that besides NC volume, absolute DC volume was also closely related to the DE phenomenon after PCI, more evidence should be obtained to confirm this finding because only two of the studies included in our meta-analysis reported statistically significant association between DC component and post-PCI DE. Finally, all of the involved trials were non-randomized studies and of small sample sizes, which might have brought some bias. Therefore further studies with larger sample size and high-methodological quality are needed.

Supporting Information

Appendix S1 Search strategy. (DOC)

Checklist S1 Meta-Analysis on Genetic Association Studies Checklist. (DOCX)

Acknowledgments

The authors gratefully acknowledge the authors of the original studies.

Author Contributions

Conceived and designed the experiments: SD LX RX JP BH. Performed the experiments: SD LX RX JP BH. Analyzed the data: SD LX FY YZ LG WW RX. Contributed reagents/materials/analysis tools: SD LX HG MJ JP BH. Wrote the paper: SD LX RX JK JP BH.
22. Shin ES, Garcia-Garcia HM, Gang S, Park J, Kim SJ, et al. (2011) The assessment of Shin’s method for the prediction of creatinine kinase-MB elevation after percutaneous coronary intervention: an intravascular ultrasound study. Int J Cardiovasc Imaging 27: 883–892.

23. Zhao XY, Wang SF, Li K, Zhang JY, Yu Y, et al. (2013) Plaque characteristics and serum pregnancy-associated plasma protein A levels predict the no-reflow phenomenon after percutaneous coronary intervention. J Int Med Res 41: 307–316.

24. Jang JS, Jin HY, Seo JS, Yang TH, Kim JK, et al. (2013) Meta-analysis of plaque composition by intravascular ultrasound and its relation to distal embolization after percutaneous coronary intervention. Am J Cardiol 111: 968–972.

25. Claessen BE, Maehara A, Fahy M, Xu K, Stone GW, et al. (2012) Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention. JACC Cardiovasc Imaging 5: S11–S18.

26. Taylor AJ, Burke AP, O’Malley PG, Farb A, Malcom GT, et al. (2000) A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation 101: 1243–1248.

27. Pu J, Mintz GS, Biro S, Lee JB, Sum ST, et al. (2014) Insights into echo attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments. J Am Coll Cardiol 63: 2220–2233.

28. Schmermund A, Schwartz RS, Adamzik M, Sangiorgi G, Pfeifer EA, et al. (2001) Coronary atherosclerosis in unheralded sudden coronary death under age 50: histo-pathologic comparison with ‘healthy’ subjects dying out of hospital. Atherosclerosis 153: 499–508.

29. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 1262–1275.

30. Kesavan PC, Bialik LF, Ashai K, Jamoum LS, Dranias AE, et al. (2001) Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 104: 412–417.

31. Shaw IJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228: 826–833.

32. Detrano R, Hsiai T, Wang S, Puentes G, Fallavollita J, et al. (1996) Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 27: 285–290.

33. Raggi P, Cooil B, Shaw IJ, Aboulhosn J, Takasu J, et al. (2003) Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol 92: 827–829.

34. Maehara A, Mintz GS, Weissman NJ (2009) Advances in intravascular imaging. Circ Cardiovasc Interv 2: 402–490.

35. Steigen TK, Claudio C, Abbot D, Schulze M, Burton J, et al. (2008) Angiographic core laboratory reproducibility analyses: implications for planning clinical trials using coronary angiography and left ventriculography end-points. Int J Cardiovasc Imaging 24: 453–462.

36. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr., Alexander B Jr., et al. (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93: 879–888.