Enzyme immunoassays for the detection of mycotoxins in plant-based milk alternatives: pitfalls and limitations

Christina Rehagel1 · Ronald Maul2 · Kim Lara Gütkow2 · Ömer Akineden1

Received: 22 July 2022 / Revised: 15 August 2022 / Accepted: 16 August 2022 / Published online: 2 September 2022
© The Author(s) 2022

Abstract
Plant-based milk alternatives (PBMAs) are a potential source of mycotoxin uptake. To ensure food safety, simple and rapid testing methods of PBMAs for mycotoxins are therefore required. This study investigated the applicability of enzyme immunoassay (EIA) methods for direct testing of PBMAs without sample extraction. Mycotoxin analyses included aflatoxin B1 (AFB1), sterigmatocystin (STC), ochratoxin A (OTA), deoxynivalenol (DON), and T-2/HT-2-toxin (T-2/HT-2). It was found that the PBMA matrix negatively affected the EIA to varying degrees, thus affecting the reliability of the results. A dilution of PBMAs of at least 1:8 was necessary to overcome matrix interference. This resulted in calculated detection limits of 0.4 µg/L (AFB1), 2 µg/L (STC), 0.08 µg/L (OTA), 16 µg/L (DON), and 0.4 µg/L (T-2/HT-2). After analysis of 54 PBMA products from German retail stores, positive results in at least one test system were obtained for 23 samples. However, most positive results were near the calculated detection limit. Control analyses of selected samples by LC–MS/MS for AFB1, STC, and OTA qualitatively confirmed the presence of trace amounts of STC in some samples, but quantitative agreement was poor. It was concluded that the high diversity of ingredients used in PBMAs led to a highly variable degree of sample matrix interference even in a 1:8 dilution. Since the use of higher dilutions conflicts with the need to achieve low detection limits, the application of EIA for routine mycotoxin analysis in PBMA for mycotoxins requires further study on the development of a feasible sample preparation method.

Keywords Mycotoxins · Plant-based milk alternatives · Immunoassay · Matrix interferences

Introduction
The consumption of plant-based milk alternatives (PBMAs) has increased in Germany and other industrialised countries around the world in recent years. In addition to being “vegan”, these products are commonly advertised with claims regarding health, animal welfare, and sustainable agriculture. (Janssen et al. 2016). Persistence Market Research (PMR) reported that the global market for PBMAs is currently estimated at US$ 12.1 billion and is expected to reach US$ 29.5 billion by 2031, growing with a compound annual growth rate of 9.5% (PMR 2021). In 2020, the revenue for PBMAs in Germany was US$ 452 million, which corresponds to a total consumption of around 250 million km (Statista 2021). Further forecasts showed that German consumption of PBMAs will increase to nearly 535 million km by 2026 (Statista 2021). Considering this rapidly increasing consumption, it is of great importance to ensure the food safety of these products. However, PBMA are not specifically addressed by European Union regulation (EC) No. 1881/2006 which lays down maximum levels (MLs) for mycotoxins (EC 2006).

PBMA are presently available from the German market are an aqueous slurry of various plant materials; the main ingredients are cereals, pseudo cereals, legumes, nuts and seeds, but some also contain sugar, cocoa, or edible oil. Some products additionally contain additives (stabilisers, emulsifiers) and flavours (McClements et al. 2019; Sethi et al. 2016).

In addition to control of raw materials, a rapid and sensitive system of analysis for finished PBMA is required.
to verify the safety of such products. Published surveys on contaminants in PBMAs in general are scarce. All contaminants typical for the raw products, i.e. heavy metals or environmental and natural toxins in general, need to be considered also for PBMAs. So far, there are only a few published studies, all with very limited sample size, which report investigations of PBMAs for mycotoxins. Although no study specific for the German market exists, data from other European countries clearly demonstrate that PBMAs may be contaminated by multiple mycotoxins belonging to different chemical groups including trichothecenes and aflatoxins (Arroyo-Manzanares et al. 2019; Hamed et al. 2017, 2019; Juan et al. 2022; Miró-Abella et al. 2017).

Published studies on the occurrence of mycotoxins in PBMAs exclusively utilised liquid chromatography coupled with either tandem mass spectrometry or fluorescence detection. While these methods are convenient in a laboratory environment, they are less suitable for rapid on-site quality control at the production site. For liquid food materials, EIA appear to be a suitable tool for rapid on-site testing and have been used for decades for the analysis of aflatoxin M1 in cow’s milk (Pecorelli et al. 2020). Therefore, this study aimed at exploring the possibility to employ a set of in-house EIA methods for different mycotoxins, analysing PBMAs directly without any sample preparation.

Materials and methods

Chemicals and reagents

Mycotoxin standards of OTA, AFB1, STC, and DON were obtained from Sigma-Aldrich (Taufkirchen, Germany); T-2 toxin was from Biopure (Tulln, Austria). After dissolving the mycotoxin standards in methanol (OTA, AFB1, DON, T-2) or acetonitrile (STC), the concentration and purity of all stock solutions (except T-2) were checked by UV spectroscopy (Shimadzu, Duisburg, Germany), using published data (Cole and Schweikert 2003; Cole et al. 2003) for comparison and calculation. 13C-labelled standard solutions for AFB1, STC, and OTA were obtained from Biopure™ (Romer Labs Deutschland GmbH, Butzbach, Germany). All other reagents and chemicals used were at least of analytical grade. Methanol (LC–MS grade) and acetonitrile (ACN) (LC–MS grade) were purchased from Supelco® (Merck KGaA, Darmstadt, Germany). n-Heptane, dimethylsulfoxide (DMSO), ACN (HPLC grade), and anhydrous magnesium sulphate (MgSO4) were purchased from Carl Roth GmbH & Co. KG (Karlsruhe, Germany), while ammonium formate (NH4HCOOH) and acetic acid (HAc) were from Merck KGaA (Darmstadt, Germany). Formic acid (FA) was from VWR International GmbH (Darmstadt, Germany). Ultrapure water was obtained through the use of a water purification device (PURELAB flex 3, ELGA LabWater, Veolia Water Technologies Deutschland GmbH, Celle Germany). AflaTest wb SR+ immunoaffinity columns (IAC) were purchased from VICAM (Milford, USA) and contained monoclonal antibodies that specifically bind aflatoxins (B1, B2, G1, G2, M1, M2) and STC. According to the manufacturer, the column capacity was 1000 ng for total aflatoxins and recovery for B1, B2, G1, and G2 was ≥ 90% for spiking level of 2 ng and 500 ng.

Sample materials

A total of 54 samples of various PBMAs, with the majority (n = 34) of these labelled as of “organic produce”, were purchased from retail shops and specialised “organic food” stores in the area of Giessen, Hesse, Germany, in 2020. All products were purchased as offered, in original packaging. According to product information, the products originated from 17 different manufacturers from eight countries in Europe; the majority was from German producers (n = 28). The main ingredients were water and vegetable raw materials of a content ranging from 8.7 to 17% for cereal-based or pseudocereal-based PBMAs (oat, rice, spelt, millet, buckwheat), 2.3–8.4% for nut-based products (hazelnut, almond, coconut, cashew), 4–10% for products based on legumes (soy bean, pea, lupine), 3% for hemp-based products, and 4.9–21% for PBMAs consisting of ingredient mixtures (oat + almond, rice + almond, rice + coconut, rice + coconut + cashew). In addition, a few products contained minor amounts of sunflower or rape-seed oil, cocoa, sugar, and salt. Most of the PBMAs without claims of organic produce contained stabilisers and emulsifiers. All products were heat-treated, mostly by ultra-high temperature treatment (> 135 °C); a few were pasteurised. The remaining shelf life of ultra-high temperature-treated PBMAs was > 4 months and for pasteurised PBMAs products > 2 weeks at the time of purchase.

EIA analysis

Sample pretreatment

Before opening, each package of PBMAs was manually shaken to mobilise sedimented particles. Then, a portion for follow-up analyses of about 50 mL was transferred into plastic test tubes and frozen at −18 °C. Material from products containing stabilisers or emulsifiers was centrifuged (3000×g, 10 min, 20 °C). Then, sample material was diluted with EIA buffer solution as required for each test system, and dilutions ranging from 1:2 to 1:20. For AFB1, T-2/HT-2, and STC analysis, sample dilutions and toxin standard curves were prepared in phosphate buffered saline (PBS; 0.01 mol/L; pH 7.2) containing 10% methanol. For DON analysis, samples were diluted in PBS (pH 7.2). For
OTA analysis, samples were diluted with aqueous NaHCO₃ solution (0.13 mol/L).

Effect of sample matrix on EIA standard curve

Since no certified toxin-negative PBMA material was available, the extent of sample matrix interference was assessed by comparing toxin standard curves made in EIA buffer solution with toxin standard curves made with diluted PBMA. For this series of experiments, one sample each from every major product group was selected. The minimal dilution which yielded standard being congruent with the buffer solution standard curve was then used for analyses of the remaining sample materials.

Analysis of artificially contaminated sample material

As an additional quality control, six PBMA materials were artificially contaminated with the mycotoxins under study by adding 20–100 µL of toxin standard solution per millilitre of sample at appropriate concentrations (OTA 0.2–0.8 µg/L; AFB₁, T-2/HT-2 1–4 µg/L; STC 4–16 µg/L; DON 30–120 µg/L). Four replicates of all standard and sample solutions were analysed, and each PBMA sample was analysed in a single dilution.

EIA test procedure

For mycotoxin analysis of PBMA samples, EIA were performed using microtiter plates (MaxiSorp, Nunc, Roskilde, Denmark) as described earlier for AFB₁ (Gathumbi et al. 2001), STC (Wegner et al. 2016), OTA (Schneider et al. 2001), DON (Curtui et al. 2003), and T-2/HT-2 (Esgin et al. 1989). All EIA were performed based on competitive direct test format, using the double antibody method for DON and STC (Wegner et al. 2016), DON (Curtui et al. 2003), and T-2/HT-2 (Esgin et al. 1989). For mycotoxin analysis of PBMA samples, EIA were performed using microtiter plates (MaxiSorp, Nunc, Roskilde, Denmark) as described earlier for AFB₁ (Gathumbi et al. 2001), STC (Wegner et al. 2016), OTA (Schneider et al. 2001), DON (Curtui et al. 2003), and T-2/HT-2 (Esgin et al. 1989). All EIA were performed based on competitive direct test format, using the double antibody method for DON and T-2/HT-2. The EIA absorbance values at 450 nm were measured using a microplate reader (Tecan Sunrise, Crailsheim, Germany) and evaluated by Magellan calculation software (Tecan, Crailsheim, Germany). EIA absorbance values of standard concentrations were normalised by dividing the mean absorbance values of the standard or diluted sample solution (B) by the absorbance value of the blank (B₀) and then multiplying by 100 (B/B₀ × 100).

Control analyses for AFB₁, STC, and OTA by LC–MS/MS

Sample pretreatment

For the control analyses, five samples which had yielded highly positive results in EIA were selected for LC–MS/MS analysis for AFB₁, STC, and OTA. Four of these samples (MA11, MA25, MA31, MA54) contained cocoa in addition to their main ingredient, and one sample contained black rice (MA48). For these series of experiments, extracts for AFB₁ and STC analyses were prepared by liquid–liquid partitioning (LLP) of a 10-mL test portion twice with each 40 mL of ethyl acetate. The two organic phases from each sample were collected and combined, the solvent removed in a rotary evaporator at 50 °C, then the residue dissolved with 10 mL of methanol. One millilitre of the extract was transferred to a conical flask and evaporated at 50 °C in a rotary evaporator. The residue was dissolved in 2 mL of PBS containing 10% methanol and analysed by EIA. The calculated limit of detection (LOD) in LLP extracts was 0.1 µg/L for AFB₁ and 0.2 µg/L for STC, respectively.

Further purification of the LLP extracts was done using IAC columns. A 5-mL portion of the LLP extract was diluted with 20 mL PBS (pH 7.2), solid particles removed by centrifugation (3000 × g, 10 min, 20 °C), then the supernatant was filtered through a paper filter. The filtered solution was passed through an IAC column, following the manufacturers’ instructions. Toxins were eluted from the column with two, and consecutively added 1.5-mL portions of methanol. The methanolic eluate was collected in a conical flask and 1 mL was used for LC–MS/MS analysis. The remaining solvent (2 mL) was removed in a rotary evaporator at 50 °C and the residue dissolved with 2 mL of 10% methanol/PBS for EIA analysis. Based on the cut-off value of the EIA standard curves, the calculated LOD for IAC extracts was 0.04 µg/L for AFB₁ and 0.06 µg/L for STC, respectively.

LC–MS/MS analysis

The analysis was performed on a 1290 Infinity II LC system (Agilent Technologies Germany GmbH & Co. KG, Waldbronn, Germany). Analytes were separated on a Gemini reversed phase C18 analytical column, 100 × 3.0 mm, 5.0 µm (Phenomenex®, Aschaffenburg, Germany), at an oven temperature of 35 °C, while the injection volume was 4 µL. LC separation was performed using a gradient elution of water (with 0.1% formic acid, 300 mg/L ammonium formate) and methanol (with 0.1% formic acid, 300 mg/L ammonium formate) and a flow rate of 0.5 mL/min. The gradient programme started at 5% organic solvent for 0.8 min, raising to 50% by minute 1.5, to 55% by minute 2.5, to 70% by minute 5.5, to 76 by minute 6.5, and to 95% by minute 15.5. Starting from minute 17.0, the organic percentage reverted to the starting conditions of 5% by minute 17.5 and was kept until the end of the run at 19.5 min. MS detection was conducted using a triple quadrupole MS (QTRAP 6500+, Sciex Germany GmbH, Darmstadt, Germany) operating in both positive and negative electro spray ionisation (ESI) mode and measuring in multiple reaction mode (MRM) with the following settings: curtain gas 40, collision gas medium, temperature 350 °C, the positive ion spray voltage 4500 V, nebuliser
gas flow of 50, heater gas flow of 45, and dwell time var-
ied. The analytical parameters for AFB1, STC, and OTA are
shown in Table 1.

For sample preparation, 62 µL of the IS mixture was
added to 1 mL of the PBMA sample, and the samples were
extracted with 938 µL of ACN containing 0.1% FA. After
shaking for 10 min (IKA-VIBRAX VXR, IKA®-Werke
GmbH & CO. KG, Staufen, Germany), 0.1 g NaCl and 0.4 g
MgSO4 were added and shaken for another 5 min. The sam-
ples were centrifuged at 10,000 × g for 7 min at room tem-
perature (Avanti JXN-30, Beckman Coulter GmbH, Krefeld,
Germany). A total of 0.8 mL of supernatant was trans-
fused in a tube and 0.8 mL of n-heptane added. After shaking
for 5 min (IKA-VIBRAX_VXR, IKA®-Werke GmbH &
CO. KG, Staufen, Germany), the n-heptane phase was dis-
carded. ACN phase was transferred into a 2-mL reagent tube
containing 100 µL DMSO as keeper solvent and the ACN
was evaporated until only the DMSO proportion remained
(Concentrator plus, Eppendorf AG, Hamburg, Germany).
A total of 200 µL ACN with 0.1% FA were added to the
residual liquid and vortexed. After additional sonicating for
10 min (Trasonic 460, Elma Schmidbauer GmbH, Singen,
Germany), 300 µL of H2O was added and the samples were
sonicated again for 10 min and vortexed afterwards. The
extracts were filtered using a regenerated cellulose 0.45-µm
syringe filter unit (ProSense B.V., Munich, Germany). The
LLP and IAC extracts were diluted 1/1 with water before the
LC–MS/MS analysis.

Results and discussion

Given their high sensitivity, EIA seem to be a convenient
tool for mycotoxin testing in liquid sample materials such as
PBMA. However, it was observed that the highly variable
composition of PBMA and their high content of non-soluble
material exerted the matrix influence which did effect each
different test system to varying degrees. This study was
also impeded by the fact that no defined reference material,
either mycotoxin-free or with certified mycotoxin content,
is available for PBMA or comparable matrices. Therefore,
we first subjected a larger number (n = 54) of PBMA prod-
ucts to EIA analyses at different dilutions with buffer solu-
tion. Selected materials from each major group of products
were then used to establish toxin standard curves in matrix
(Fig. 1). PBMA up to a dilution of 1:4 yielded strongly left-
shifted standard curves with depressed B0 values, indicating
that false-positives and overestimation of the toxin content
were major issues. Except for the STC-EIA, toxin standards
prepared in 1:8 diluted PBMA matrix resulted in standard
curves which were nearly identical with the buffer solution
standard curve, observed for all different matrices. Therefore,
a minimum dilution factor of 8 was applied for all subsequent
analyses. In the STC-EIA, an even higher dilution (1:20) was
required to eliminate left-shifted standard curves. The neces-
sity to dilute PBMA for EIA analyses negatively affected the
achievable, calculated detection limit in sample matrix. The
LOD summarised in Table 2 were considered to be still in a
relevant concentration range for DON and T-2/HT-2 while
for AFB1, STC, and OTA, they were probably insufficient.

Adding toxin standard solution to PBMA material
before dilution yielded results which were still quite vari-
able, depending on both type of matrix and spiking level
(Table 3). This indicates that even at a 1:8 dilution (STC-
EIA: 1:20), some remaining matrix interference could cause
up to 50% deviation from the nominal value. A possible rea-
son for these matrix interferences are the proteins contained
in PBMA. For example, Wang et al. (2015) investigated the
influence of fish proteins on competitive indirect EIA and
demonstrated that fish proteins interfere with immunological
reactions by binding to both primary antibodies and enzyme-
labelled secondary antibodies.

When the EIA results of mycotoxin analysis for all 54
samples were grouped according to the main ingredients

Analyte	Precursor ion (m/z)	Product ions (m/z)	DPa (V)	CEb (eV)	CXPc (V)
AFB1	313.0	285.0	111	33	16
C-Aflatoxin B1	330.0	301.0	111	33	16
STC	325.0	310.0	96	33	18
C-Sterigmatocystin	343.0	297.0	96	49	32
OTA	404.0	239.1	31	29	14
C-Ochratoxin A	424.1	250.1	31	29	14

aDP declustering potential
bCE collisions energy
cCXP collision cell exit potential

Table 1 Analytical parameters of quantitative determination of the analytes and their isotopically labelled internal standards with the HPLC–MS/MS; ESI (+) mode; multiple reaction monitoring mode; the second product ion was used as a qualifier for the confirmation of identity for each analyte; for all analytes, compound optimisation with the LC–MS was performed
(Table 4), it became clear that the EIA for DON and T-2/HT-2 in general yielded results which were plausible in view of the trichothecene frequency in cereals. However, with regard to T-2/HT-2, there were two exceptions: one soy-based sample and one hemp-based sample showing a weak positive result for T-2/HT-2. The fact that no studies on the occurrence of mycotoxins in hemp seeds are currently available makes a plausibility assessment difficult in this case. Even though the occurrence of T-2/HT-2 in soy is not common, it cannot be completely excluded. Other study results show that, in addition to cereals susceptible to T-2/HT-2, these toxins can also occur in soybean from Argentina (Barros et al. 2011). With these two exceptions, trichothecene mycotoxins were detected in cereal-containing PBMAs only. The levels measured for these samples corresponded well with contamination data for oats specifically (EFSA 2017; Curtui et al. 2009), and for cereals in general (Gottschalk et al. 2009). Furthermore, they are in good agreement with the results reported by Miró-Abella et al. (2017). Considering that the total amount of solids in these products typically ranged from 5 to 10%, the
concentration of these toxins in the cereal ingredients should be about 10–20-fold higher, in a range roughly between 100 and 800 µg/kg for DON, and between 4 and 80 µg/kg for T-2/HT-2. This would be well within the range of reported data for these toxins in European oat.

The AFB1-EIA showed a positive result for AFB1 in one sample based on black whole grain rice, in addition to three pea- or oat-based products with cocoa. On the other hand, almonds are known to potentially contain aflatoxins (Kanik and Kabak 2019), but the AFB1-EIA gave negative results for this group of products. The reason for these findings could be that the LOD for this toxin in these matrices did not allow sufficiently sensitive analysis. Assuming that the raw materials complied with European Union regulation 1881/2006, the aflatoxin levels which could be expected in PBMA based on soy or almonds would probably be below 0.4 µg/L, which is the calculated LOD of the AFB1-EIA. A similar situation was observed for the STC-EIA (LOD 2 µg/L), which gave positive results in just one soy-based PBMA and in two oat-based products. The few positive results in the OTA-EIA (LOD 0.08 µg/L) for PBMA based on soy or oat were found for the same samples. All these three products contained cocoa, in addition to the main ingredient. Furthermore, a weakly positive result for OTA was found in the sample based on black whole grain rice.

Further work on elucidation of matrix effects therefore focussed on products containing cocoa as an ingredient and the product based on black whole grain rice. In fact,

Test system	Known relevant cross-reactions
AFB1	AFB1/2, AFG1/2, AFM1, AFB2a, AFG2a, AFP1, AFQ1, Aflatoxicol (Gathumbi et al. 2001)
STC	O-methylsterigmatocystin (Wegner et al. 2016)
OTA	OTA, OTB (Schneider et al. 2001)
DON	DON and its 8-ketotrichothecene analogues (Curtui et al. 2003)
T-2/HT-2	T-2, HT-2 (Esgin et al. 1989)

Test system	Toxin added, µg/L	Soy	Oat	Almond	Coconut	Mean	RSDa, %
AFB1	1	80	133	119	83	104	26
	2	90	86	133	128	109	25
	4	97	83	88	156	106	34
STC	4	123	89	148	107	117	25
	8	115	92	142	94	111	23
	16	127	89	142	92	113	26
OTA	0.2	146	85	84	61	94	36
	0.4	114	75	77	69	84	20
	0.8	124	89	91	83	97	18
DON	30	76	104	110	65	89	22
	60	89	133	117	100	110	19
	120	88	129	113	94	106	19
T-2/HT-2	1	64	103	84	63	79	19
	2	79	101	64	66	78	17
	4	87	65	57	56	66	14

*aRelative standard deviation
these products yielded the highest results in the AFB1-EIA, STC-EIA, or OTA-EIA. Two products were oat-based, one was based on soy, and another was based on peas, but all contained cocoa according to package labels. Although cocoa is known to be susceptible to aflatoxins and OTA contamination (Copetti et al. 2011; Gilmour and Lindblom 2008; Raters and Matissek 2003), it seemed unlikely that the high levels in the EIA were caused by the low percentage of cocoa (<1.5%) in the product; for this reason, these samples were additionally analysed by LC–MS/MS. In an initial attempt to improve the detection limit by lowering the sample dilution factor, extracts were prepared by LLP of these samples with ethyl acetate, followed by a further clean-up step on IAC columns. The results of this comparison analysis (Table 5) showed virtually no agreement between EIA and LC–MS/MS. Furthermore, the EIA results for diluted sample and sample extracted by LLP or IAC also gave fully inconsistent results. LLP extracts were

| Table 4 EIA results for four categories of PBMA (n=54) |
|----------------|----------------|----------------|----------------|
| | Soy (n=7) | Almond (n=7) | Oat (n=14) | Single* and mixed* ingredients (n=26) |
| AFB1 | n positive/n | 0/7 | 0/7 | 2/14 | 2/26 |
| Range | - | - | - | 0.6–0.8 |
| STC | n positive/n | 1/7 | 0/7 | 2/14 | 0/26 |
| Range | - | - | - | - |
| OTA | n positive/n | 1/7 | 0/7 | 2/14 | 1/26 |
| Range | - | - | - | 0.2–0.4 |
| DON | n positive/n | 0/7 | 0/7 | 3/14 | 2/26 |
| Range | - | - | - | 16–22 |
| T-2/HT-2 | n positive/n | 1/7 | 0/7 | 12/14 | 8/26 |
| Range | - | - | - | 0.4–4 |

*Spelt, millet, rice, buckwheat, hazelnut, cashew, pea (with/without cocoa), lupin, hemp
*Oat + almond, rice + almond, rice + coconut, rice + coconut + cashew

| Table 5 Comparison of EIA and LC–MS/MS results for AFB1, STC, and OTA in diluted sample, in extracts after liquid–liquid partitioning (LLP), and in LLP extracts plus IAC clean-up for five selected PBMA samples |
|----------------|----------------|----------------|----------------|
| Sample no. | Sample description | AFB1, µg/L | STC, µg/L | OTA, µg/L |
| | EIA | LC–MS/MS | EIA | LC–MS/MS | EIA | LC–MS/MS |
| MA11 | Sample (soy drink cocoa) | <0.4 | <0.002 | 2 | <0.005 | 0.7 | <0.288 |
| MA11 LLP extract | 0.3 | <0.002 | 2 | <0.002 | n.a | <0.288 |
| MA11 IAC extract | <0.04 | <0.002 | 0.09 | <0.002 | n.a | <0.288 |
| MA25 Sample (oat drink cocoa) | 0.5 | <0.002 | 3 | <0.002 | 0.4 | <0.288 |
| MA25 LLP extract | 0.3 | <0.002 | 2 | <0.002 | n.a | <0.288 |
| MA25 IAC extract | <0.04 | <0.002 | 0.08 | <0.002 | n.a | <0.288 |
| MA31 Sample (oat drink cocoa) | 0.5 | <0.002 | 3 | <0.002 | 0.2 | <0.288 |
| MA31 LLP extract | 0.4 | <0.002 | 2 | <0.002 | n.a | <0.288 |
| MA31 IAC extract | <0.04 | <0.002 | 0.07 | <0.002 | n.a | <0.288 |
| MA48 Sample (black whole grain rice) | 0.6 | <0.002 | <2 | <0.002 | 0.1 | <0.288 |
| MA48 LLP extract | 0.2 | <0.002 | 1 | <0.002 | n.a | <0.288 |
| MA48 IAC extract | <0.04 | <0.002 | 0.1 | <0.002 | n.a | <0.288 |
| MA54 Sample (pea drink cocoa) | 0.8 | <0.002 | <2 | 0.06 | <0.08 | <0.288 |
| MA54 LLP extract | 0.2 | <0.002 | 2 | <0.002 | n.a | <0.288 |
| MA54 IAC extract | <0.04 | <0.002 | 0.2 | <0.002 | n.a | <0.288 |

n.a. not analysed, LOD limit of detection (EIA for samples: AFB1, 0.4 µg/L; STC, 2 µg/L; OTA, 0.08 µg/L; EIA for LLP extracts: AFB1, 0.1 µg/L; STC, 0.2 µg/L; EIA for IAC extracts: AFB1, 0.04 µg/L; STC, 0.06 µg/L; LC–MS/MS for sample preparation as described above in LC–MS/MS analysis: AFB1, 0.002 µg/L; STC, 0.002 µg/L; OTA, 0.288 µg/L), LOQ limit of quantification (LC–MS/MS for sample preparation, calculated for the conventional clean up without LLP or IAC, as described above in LC–MS/MS analysis: AFB1, 0.008 µg/L; STC, 0.005 µg/L; OTA, 0.95 µg/L)
still positive, albeit at lower levels, in the tests for AFB₁ and STC. IAC extracts were all EIA negative for AFB₁, but still weakly positive for STC. Sample MA54, which had been negative in diluted sample material, were tested positive for STC by EIA in LLP and IAC extracts. This indicates that at least for cocoa-containing samples, the EIA are not applicable to PBMA without significant improvement of the sample preparation method. Further work will study on a broader sample matrix basis, whether similar discrepancies are to be expected for other PBMA products. The costlier

![Fig. 2](image)

Fig. 2 LC–MS/MS chromatograms in ESI (+) mode of an AFB₁, a, STC b, and OTA c reference and of a STC positive soy-based PBMA sample (MA11) containing cocoa (d-f). Extract ion chromatograms in the multiple reaction monitoring mode (MRM) showing mass transitions (m/z) a, d 313.0 → 285.0; b, e 325.0 → 310.0; and c, f 404.0 → 239.1.
and time-consuming LC–MS/MS analysis achieves lower LOQ. Thus, traces of STC were detected in the comparative LC–MS/MS analysis in some samples (Fig. 2), indicating that the further work is warranted to clarify the contamination situation. Although LC–MS/MS analysis revealed the presence of a peak showing both typical mass transitions for OTA in some PBMAs, OTA contamination could not be confirmed. Due to the small retention time shift of 0.2 min compared to the OTA standard, the peak was caused by a matrix interference (Fig. 2). Additionally, an OTA adduct can be out-ruled as the mass spectrum does not show the typical pattern for a chlorine-containing compound (data not shown).

Our data suggest that there is the possibility of a mycotoxin contamination in PBMA that can contribute to the overall mycotoxin exposure. This finding might be of interest for consumer groups that consume particularly high amounts of these drinks. However, currently, there are no PBMA consumption data available for Germany. Thus, an estimation of the contribution to the overall exposure is not feasible at this point.

In conclusion, this study showed that the PBMA matrix is highly complex and presents a challenge for EIA methods, although not all test systems were found to be equally susceptible to matrix interference. In any case, careful study of the effectiveness of sample treatment is required for each EIA and should be followed by broad validation studies. Before EIA could be recommended for general routine screening of PBMAs, such studies should include all relevant varieties of composition and all product groups. Unlike milk, analysis of PBMA after dilution with buffer has a high risk of false-positive or false-negative results.

Acknowledgements We thank Margit Kessler and Renate Stampf for their excellent technical assistance.

Author contribution Conceptualisation: Christina Rehagel; formal analysis and investigation: Christina Rehagel, Ronald Maul, Kim Lara Gützkow; writing—original draft preparation: Christina Rehagel, Ronald Maul, Kim Lara Gützkow; writing—review and editing: Christina Rehagel; Ömer Akineden; validation: Christina Rehagel; visualisation: Christina Rehagel, Kim Lara Gützkow; supervision: Ömer Akineden, Ronald Maul; project administration: Ömer Akineden.

Declarations

Conflict of interest All authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arroyo-Manzanares N, Hamed AM, García-Campaña AM, Gámiz-Gracia L (2019) Plant-based milks: unresolved source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC–MS/MS. Food Addit Contam Part B 12:296–302. https://doi.org/10.1080/19393210.2019.1663276

Barros G, García D, Oviedo M, Ramírez M, Torres A, Lattanzio V, Pascale M, Chulze S (2011) Survey of T-2 and HT-2 toxins in soybeans and soy meal from Argentina using immunoaffinity clean-up and high performance liquid chromatography. World Mycotoxin J 4:189–197. https://doi.org/10.3920/WMJ2010.1272

Cole RJ, Schweikert MA (2003) Handbook of secondary fungal metabolites, vol 1. Academic Press, New York

Cole RJ, Jarvis BB, Schweikert MA (2003) Handbook of secondary fungal metabolites, vol 3. Academic Press, New York

Copetti MV, Iamanaka BT, Pereira JL, Fungaro MH, Taniwaki MH (2011) Aflatoxigenic fungi and aflatoxin in cocoa. Int J Food Microbiol 148:141–144. https://doi.org/10.1016/j.ijfoodmicro.2011.05.020

Curtui V, Seidler C, Dietrich R, Märtlbaier E, Schneider E, Usleber E (2003) Bestimmung von Deoxynivalenol in Brot und Bier. Mycotoxin Res 19:144–148

Curtui V, Usleber E, Trebstain A, Lauber U, Hocke K, Dietrich R, Märtlbaier E, Majerus P, Zimmer M, Klafke H, Gareis M, Betsche T, Langenkämper G (2009) Improvement and validation of analytical methods for type A trichothecenes (T-2 toxin and HT-2 toxin) and occurrence of these mycotoxins in foods from the German market. Bundesanstalt für Landwirtschaft und Ernährung (BLE). Available from: https://service.ble.de/ptdb/index2.php?detail_id=88841&site_key=145&stichw=trichothecene&zeilenzahl_zahl=4#newContent. (Accessed on 04 Jul 2022)

EC – European Commission (2006) Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L 364/5. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF. (Accessed on 26 Jan 2022)

EFSA – European Food Safety Authority (2017) Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J 15(8):4972. https://doi.org/10.2903/j.efsa.2017.4972

Esgin S, Märtlbaier E, Terplan G (1989) Entwicklung und Anwendung eines enzymimmunologischen Verfahrens zum Nachweis von T-2 Toxin in Milch. Arch Lebensm Hyg 40:109–112

Gathumbi JK, Usleber E, Märtlbaier E (2001) Production of ultra-sensitive antibodies against aflatoxin B1. Lett Appl Microbiol 32:349–351. https://doi.org/10.1046/j.1472-765X.2001.00914.x

Gilmour M, Lindblom M (2008) Management of ochratoxin A in the cocoa supply chain: a summary of work by the CAOBISCO/ECA/PCC working group on ochratoxin A. In: Leslie JF, Bandypadhyay R, Visconti A (eds) Mycotoxins: Detection Methods. Management, Public Health and Agricultural Trade, CABL, Wallingford, pp 231–243

Gottschalk C, Barthel J, Engelhardt G, Bauer J, Meyer K (2003) Bestimmung von Deoxynivalenol in Brot und Bier. Mycotoxin Res 19:144–148

Hamed AM, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L (2017) Determination of Fusarium toxins in functional.
vegetable milks applying salting out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry. Food Addit Contam Part A 34:2033–2041. https://doi.org/10.1080/19440049.2017.1368722

Hamed AM, Abdel-Hamid M, Gámiz-Gracia L, García-Campaña AM, Arroyo-Manzanares N (2019) Determination of aflatoxins in plant-based milk and dairy products by dispersive liquid-liquid microextraction and high-performance liquid chromatography with fluorescence detection. Anal Lett 52:363–372. https://doi.org/10.1080/00032719.2018.1467434

Janssen M, Busch C, Rödiger M, Hamm U (2016) Motives of consumers following a vegan diet and their attitudes towards animal agriculture. Appetite 105:643–651. https://doi.org/10.1016/j.appet.2016.06.039

Juan C, Mañes J, Juan-García A, Moltó JC (2022) Multimycotoxin analysis in oat, rice, almond and soy beverages by liquid chromatography-tandem mass spectrometry. Appl Sci 12:3942. https://doi.org/10.3390/app12083942

Kanik T, Kabak B (2019) Aflatoxins in almonds: monitoring and exposure assessment. J Food Saf 39:e12646. https://doi.org/10.1111/jfs.12646

McClements DJ, Newman E, McClements IF (2019) Plant-based milks: a review of the science underpinning their design, fabrication, and performance. Compr Rev Food Sci Food Saf 18:2047–2067. https://doi.org/10.1111/1541-4337.12505

Miro-Abella E, Herrero P, Canela N, Arola L, Borrull F, Ras R, Fontanals N (2017) Determination of mycotoxins in plant-based beverages using QaEChERs and liquid chromatography-tandem mass spectrometry. Food Chem 229:336–372. https://doi.org/10.1016/j.foodchem.2017.02.078

Pecorelli I, Guarducci N, von Holst C, Bibi R, Pascale M, Ciasca B, Logricco AF, Lattanzio VMT (2020) Critical comparison of analytical performances of two immunoassay methods for rapid detection of aflatoxin M1 in milk. Toxins 12:270. https://doi.org/10.3390/toxins12040270

PMR - Persistence Market Research (2021) Plant-based milk market outlook (2021–2031). Available online: https://www.persistencemarketresearch.com/market-research/plant-based-milk-market.asp. (Accessed on 03 May 2022)

Raters M, Matissek R (2003) Neue Studien zur Analytik und zum Vorkommen von Ochratoxin A in Kakao und kakaohaltigen Erzeugnissen Abschlussbericht Projektzeitraum: 01.07.2000–31.12.2002 Projekt Nr. 33 der Stiftung der Deutschen Kakao-und Schokoladenwirtschaft. Available online: http://www.yumpu.com/de/document/view/5973570/neue-studien-zur-analytik-und-zum-vorkommen-von-ochratoxin-a-in-. (Accessed on 12 May 2022)

Sethi S, Tyagi SK, Anurag RK (2016) Plant-based milk alternatives an emerging segment of functional beverages: a review. J Food Sci Technol 53:3408–3423. https://doi.org/10.1007/s13197-016-2328-3

Statista (2021) Statista consumer market outlook. Total consumption of milk substitutes in Germany from 2013 to 2026. Available online: https://www.statista.com/forecasts/1277954/milk-substitute-germany-consumption. (Accessed on 03 May 2022)

Wang X, Lin H, Cao L, Zhang X, Sui J (2015) The matrix interference to the immunoassay of food samples: the effect of some proteins in aquatic products. Food Agr Immunol 27:230–241. https://doi.org/10.1108/09540105.2015.1086317

Wegner S, Bauer JI, Dietrich R, Mörlbauer E, Usleber E, Gottschalk C, Gross M (2016) A highly specific competitive direct enzyme immunoassay for sterigmatocystin as a tool for rapid immunochemotaxonomic differentiation of mycotoxigenic Aspergillus species. Lett Appl Microbiol 64:124–130. https://doi.org/10.1111/lam.12702

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.