Modeling and simulation of a fuzzy heat distribution controlled high-voltage DC resistive divider

Serhat Yilmaz and Sadettin Burak Kilici

Abstract
In order to improve quality in manufacturing, the measuring instruments used in production process should regularly be monitored and corrected according to international or national standards. Calibration of high-voltage equipment and precise measurements of DC high voltages are accomplished by standard voltage divider. Self-heating effect is the main error source of measurement in high-voltage DC resistive dividers. Therefore, precise control systems should be designed to keep stability of the ambient temperature and to regulate the heat distribution along the high-voltage DC resistive divider. For this purpose, a heat controlled resistive divider whose input voltage (V_{in}) is up to 5 kV was designed. This study is focused on heat convention and the dissipation model of the resistive divider and executes some control simulations under various conditions that aim to find the appropriate control method. Responses of the high-voltage DC resistive divider model are compared with and are validated by the responses of the designed actual system. The model provides us faster analyze and design solutions for novel methods. In this way, analyzing and controlling higher voltage dividers, such as 100 kV, will reduce just into a parameter change on the model. The fuzzy control method is suggested since the system dynamic has non-linear characteristics. Fuzzy temperature difference controller keeps temperature at a certain degree where fuzzy vertical temperature gradient controller keeps vertical temperature gradient around zero. Actual system and model responses for the fuzzy control are compared and interpreted.

Keywords
High-voltage DC resistive divider, self-heating, measurement uncertainty, heat control, fuzzy controller, heat and mass transfer model

Introduction
Resistive self-heating effects cause measurement uncertainties in high-voltage DC resistive divider (HVDC-ResDiv) systems.1,2 Calibration of equivalent measurement devices and precise measurements of DC HVs are realized by standard HVDC-ResDiv.3-5 HVDC-ResDiv designed for calibration of other reference systems should have a measurement uncertainty of less than 0.002%. Therefore, resistor modules’ thermal coefficients should be lowest, and temperature gradient caused by the self-heating should be reduced to reasonable levels.6 Power dissipation results in temperature difference (TD) in overall resistors and vertical temperature gradient (VTG) along the resistor block and significantly threatens precise measurements.7,8 Individual contribution of TD and VTG to the measurement uncertainties is emphasized in literature.1,3,7-10

In this purpose, several TD control techniques are proposed in order to reduce TD errors.1,8,10 By means of a shielded structure of the resistors and TD control, a 2-ppm measurement uncertainty is achieved.10 Effects of noise rejection techniques and partial discharge measurements on HVDC cables should be investigated.11 Small-signal model of an HVDC system with angle control and an HVDC system with constant DC voltage control are proposed.12 Improvement in stability of HVDC systems by convenient control strategies is essential for providing standards.13,14

Engineering Faculty, Department of Electronics and Communication Engineering, Kocaeli University, Izmit, Turkey

Corresponding author:
Serhat Yilmaz, Engineering Faculty, Department of Electronics and Communication Engineering, Kocaeli University, Umuttepe Campus, 41000 Izmit, Kocaeli, Turkey.
Email: serhaty@kocaeli.edu.tr

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Mathematical modeling and simulation of heat and mass transfer offers definitely appropriate controller designs.15,16 Control method is getting important to maintain uncertainty arisen from heating around ppm levels.1,10 However, literature mention on neither TD nor VTG control methods. For this reason, an HVDC-ResDiv, which adjusts its TD and VTG by controllers and provides a consistent measurement, is realized.17

Physical description and numerical calculation of a system’s heat and mass transfer characteristics under influence of temperature gradients allow us critical values of the temperature gradients and critical velocities of the convection. In the organization of complex systems, mathematical modeling and simulation are required.21 In this way, analyzing dissimilar operational modes could be possible, and statement of potential errors and their adjustment is achieved without additional costs of real conditions.22 Heat conduction model is commonly employed in analysis and designing of nano transistors. Simulations and improvements in the layer parameters could allow reducing self-heating effect and provide a considerable enhancement in the temperature performance of metal–oxide–semiconductor field-effect transistors (MOSFETs).23 Modeling HVDC systems provides more rapid and accurate designs that overcome the deficiencies, or combining and observing the advantages, of the previous systems.24–26

Artificial intelligence is widely used as a method of self-heating control, feature extraction or classification of internal-corona-surface discharges in HVDC applications.27 Fuzzy-based systems provide effective controllers for uncertain non-linear systems.28 Application of fuzzy logic–based controllers on first- and second-order unknown non-linear systems is one of the state-of-art research studies on control theory.29,30

In this study, heat conduction–convection and mass transfer model of the 5-kV HVDC-ResDiv is extracted: Heat conduction and energy equations are determined. General expression of system’s dynamic equations is given in terms of state-space equations and is converted to Simulink equivalent block model. A series of control simulations are realized under various conditions that aim to find the appropriate control method.

In the control of TD and VTG, fuzzy and proportional–integral–derivative (PID) methods are addressed. The study lies heavily on fuzzy inference systems (FISs) in order to satisfy non-linear relations31 of the HVDC-ResDiv control system. Fuzzy TD and fuzzy VTG controllers are developed, and the results for the actual system and the model are compared and interpreted.

Because of the non-linear system structure, proposed fuzzy control provides a contribution to accurate measurement of HVDCs. Each control experiment and returning of the system to initial conditions takes half of the hours of attendance. Modeling and simulation of the system accelerates design and parameter changes and allows rapid application of new control methods.

Heat distribution controlled HVDC-ResDiv platform

Heat distribution control of the system is ensured by keeping TD at a constant degree and by reducing VTG around zero. In this purpose, a system composed of two chambers filled with transformer oil, a motor pump, Peltier effect heat pump (PHT) and their control software is designed (Figure 1). Transfer of the heat through the HVDC-ResDiv is carried out with both forced convection and conduction.32 Total resistors (TRs) are kept in heat producer cylinder tank (HPCyT) on the left, where \(Q_P \) (W), origin of TD, \(C \), and VTG, \(C \), is removed from cooling tank (CoT) on the right: circulation pump (CP) forces heated oil and convects \(Q_P \) to CoT and PHTs and cooling fans on the CoT transfer it to the outer ambiance.

Tupper and Tlower sensors of the HPCyT determine TD and VTG values (Figure 2), (equation (2)).

Features of the mentioned HVDC-ResDiv system are listed:17
- \(V_{in} \) is up to 5 kV
- TR is \(10 \, \text{M} \Omega \): \(9 \times 1 \, \text{M} \Omega \) + \(9 \times 100 \, \text{k} \Omega \) + \(10 \times 10 \, \text{k} \Omega \)
- HV arm resistors: 9990 kΩ
- Low-voltage (LV) arm (output) resistor: \(R_{low} \): 10 kΩ
- Voltage division ratio (VDR): 1000:1
- Max \(V_o \): 5 V.

One of the most critical assisting tools in the analysis and design of measurement systems and measuring instrumentation is the mathematical modeling.33
Heat conduction and convention model of the 5-kV HVDC-ResDiv

Extraction of mathematical model and its simulation, which allows analysis and evolution of various operating modes and behaviors of systems, is essential in the design of complex installations.34,35

Heat conduction and energy equations

Q_P is about 2.5 W, and a trivial amount is stored in the resistors, and the rest is transferred to the liquid (Figure 1). When the temperature of the outer ambiance is cooler than the inner ambiance of the HPCyT, a certain part of the heat is transferred to the outer ambiance through the lateral surface of the tank. Another part of the heat is stored on the cylinder tank (CyT) and on the liquid. The rest is brought to the CoT by means of the CP. Similarly, the heat which arrived is stored in the liquid of the CoT and on its aluminum body. The rest is transferred from the system by means of PHTs. Heat is thrown from the heated surface of the PHT by forced convection which uses cooling fans. Related temperatures are given in the nomenclature.

The temperatures and heat conduction in the temperature controlled 5-kV HVDC-ResDiv system are illustrated in Figure 2.

General heat equation describes energy exchanges as follows (equation (1))

$$E_s = E_i - E_o + E_p$$ (1)

Assumptions:

1. In the experiments, T_{OCyT} is accepted as average of T_{Upper} and T_{Lower} sensorial results (Figure 1). Thus

$$T_{Upper} + T_{Lower} = 2 \times T_{OCyT}$$ (2)

2. Referring to the experimental observations of the system (Figure 3), relation between difference of T_{Upper} and T_{Lower} and V_m and V_p is as follows (Figure 3).

According to observations given in Figure 3, a linear empiric approximation of T_{Upper}/T_{Lower} as a function of V_m and V_p which provides the behavior of the $T_{Upper} - T_{Lower}$ dynamic is as follows

$$T_{Upper} - T_{Lower} \approx f(V_m, V_p)$$

$$= \left[(-0.15 \times V_m + 1) + (0.08 \times V_p - 0.56)\right] / 2$$ (3)

Solution of equations 2 and 3 yields

$$T_{Upper} = T_{OCyT} + \frac{f(V_m, V_p)}{2}$$ (4)

$$T_{Lower} = T_{OCyT} - \frac{f(V_m, V_p)}{2}$$ (5)

Heat distribution in the HPCyT. All heat expressions in this section refer to the quantity of heat in a unit time (W)

$$Q_P \approx 2.5$$ (6)

$$Q_{C1} = \frac{T_{S1} - T_{OCyT}}{R_1}$$ (7)

Referring to the direction of the motor pump, HPCyT will remove the heat Q_{OCyT} and receives a heat of colder oil mass, Q_{NOyT} (Figure 2). Let us define the net heat as
Heat distribution in the CyT

\[Q_{net} = Q_{EOCyT} - Q_{ICyT} \]

\[Q_{C2} = \frac{T_{OCyT} - T_{S2}}{R_2} \]

\[Q_{EOCyT} = mc(T_{Lower} - T_{OCyT}) \]

\[Q_{ICyT} = mc(T_{OCyT} - T_{Upper}) \]

\[Q_{ICyT} = mc\left(\frac{f(V_m, V_p)}{2} - T_{OCyT}\right) \]

\[Q_{net} = mc\left(\frac{f(V_m, V_p)}{2} - T_{OCyT}\right) \]

\[-mc\left(T_{OCyT} - T_{OCyT} - \frac{f(V_m, V_p)}{2}\right) \]

\[Q_{net} = 2mc\left(T_{OCyT} - T_{OCyT}\right) \]

\[Q_{C3} = \frac{T_{S3} - T_{m}}{R_3} \]

\[Q_{t4} = \frac{T_{OCyT} - T_{S4}}{R_4} \]

\[Q_{t5} = \frac{T_k - T_{m}}{R_k} \]

\[Q_{t, c} = \frac{T_{S5} - T_C}{R_{2t, c}} \]

\[Q_{c} = P_{in} + Q_{C} \]

\[Q_{c} = Q_{max}\left(1 - \frac{T_h - T_c}{\Delta T_{max}}\right) \]

Therefore

\[C_{CyT} \frac{dT_{CyT}}{dt} = \frac{T_{OCyT} - T_{S2}}{R_2} = \frac{T_{S3} - T_{m}}{R_3} \]

Heat distribution in the CyT. The net heat entering CoT will be equal to heat stored in the CyT and the heat removed from the HPCyT by forced convection. Stored heat of the fluid inside the CyT is described by the equation (28)

\[C_{OCyT} \frac{dT_{OCyT}}{dt} = Q_{net} - Q_{t4} \]

\[C_{OCyT} \frac{dT_{OCyT}}{dt} = 2mc(T_{OCyT} - T_{OCyT}) - \frac{T_{OCyT} - T_{S4}}{R_4} \]

- Heat stored in the body of the CyT is expressed by equation (30)

\[C_{CyT} \frac{dT_{CyT}}{dt} = Q_{t4} - Q_{t, c} \]

where

\[C_{CyT} \frac{dT_{CyT}}{dt} = \frac{T_{OCyT} - T_{S4}}{R_4} - \frac{T_{S5} - T_C}{R_{2t, c}} \]

Because \(R_{t, c} \) is too low, \(T_{S5} \cong T_C \) assumption could be acceptable. All the heat in the outer surface of CyT is completely transferred from \(T_c \) to \(T_k \). For this reason, \(Q_{c} \) can be used directly instead of the thermal load \(Q_{t, c} \) drawn by the Peltier from the system. \(Q_{t, c} \) is found in the catalog details of the Peltier (W).

Thus, the modified form of equation (30) is as follows

\[C_{CyT} \frac{dT_{CyT}}{dt} = Q_{t4} - Q_{C} \]

\[C_{CyT} \frac{dT_{CyT}}{dt} = \frac{T_{OCyT} - T_{S4}}{R_4} - \frac{T_{S5} - T_C}{R_{2t, c}} \]

- Heat stored in the cooling fins

\[C_{k} \frac{dT_k}{dt} = Q_{k} - Q_{t5} \]

\[C_{k} \frac{dT_k}{dt} = P_{in} + Q_{max}\left(1 - \frac{T_h - T_c}{\Delta T_{max}}\right) - \frac{T_k - T_{m}}{R_k} \]

Expression of heat transitions in terms of state equations for the system is as follows.

Assumptions

\[x_1 = \frac{T_{TR} \cong T_{S1}}{R_1} \]

\[x_2 = T_{OCyT} \]
\[x_3 = T_{CTY} \cong T_{S2} \cong T_{S3} \]
(38)
\[x_4 = T_{OCaT} \]
(39)
\[x_5 = T_{COT} \cong T_{S4} \cong T_{S5} \cong T_c \]
(40)
\[x_6 = T_h \cong T_k \]
(41)

and the empiric equation for the temperature gradient is

\[x_7 = T_{upper} - T_{lower} \]
\[= \left[(-0.15 \ast V_m + 1) + (0.08 \ast V_p - 0.56) \right] / 2 \]
(42)

HPCyT and CoT equations are expressed in terms of state variables, respectively

\[\dot{x}_1 = \frac{Q_p}{C_{TR}} - \frac{x_1}{R_1 C_{TR}} + \frac{x_2}{R_1 C_{TR}} \]
(43)
\[\dot{x}_2 = \frac{x_1}{R_1 C_{OCT}} - \frac{x_2}{C_{OCT}} \left(\frac{1}{R_1} + \frac{1}{R_2} + 2m_{CO} \right) x_2 + \frac{x_3}{R_2 C_{OCT}} \frac{2m_{CO} x_4}{C_{OCT}} \]
(44)
\[\dot{x}_3 = -\frac{x_2}{R_3 C_{CTY}} - \frac{1}{R_3} \left(\frac{1}{R_2} + \frac{1}{R_3} \right) \frac{x_3}{C_{CTY}} + \frac{T_\infty}{R_3 C_{CTY}} \]
(45)

And CoT equations become

\[\dot{x}_4 = \frac{x_3}{R_3 C_{CTY}} - x_4 \frac{Q_{max}}{C_{OCT}} \]
(46)
\[\dot{x}_5 = \frac{x_4}{R_4 C_{CTY}} - \frac{x_5}{R_4 C_{CTY}} \frac{Q_{max}}{C_{OCT}} \left(1 - \frac{x_6 - x_5}{\Delta T_{max}} \right) \]
(47)
\[\dot{x}_6 = \frac{P_m}{C_k} + \frac{Q_{max}}{C_k} \left(1 - \frac{x_6 - x_5}{\Delta T_{max}} \right) \]
(48)

Here, general expression of system’s dynamic equations is

\[\dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + Du(t) \]
(49)

For convenience in representation of the Matlab Simulink blocks, state-space equations of the heat model are modified as follows

\[\dot{x}_1 = \frac{1}{C_{TR}} \left[Q_p - \frac{1}{R_1} (x_1 - x_2) \right] \]
(50)
\[\dot{x}_2 = \frac{1}{C_{OCT}} \left[\frac{1}{R_1} (x_1 - x_2) - \frac{1}{R_2} (x_2 - x_3) - 2m_{CO} (x_2 - x_4) \right] \]
(51)
\[\dot{x}_3 = \frac{1}{C_{CTY}} \left[\frac{1}{R_2} (x_2 - x_3) + \frac{1}{R_3} (T_\infty - x_3) \right] \]
(52)
\[\dot{x}_4 = \frac{1}{C_{COaT}} \left[2m_{CO} (x_2 - x_4) - \frac{1}{R_4} (x_4 - x_5) \right] \]
(53)
\[\dot{x}_5 = \frac{1}{C_{COaT}} \left[\frac{1}{R_4} (x_4 - x_5) + Q_{max} \left(1 - \frac{x_6 - x_5}{\Delta T_{max}} \right) \right] \]
(54)
\[\dot{x}_6 = \frac{1}{C_k} \left[-\frac{Q_{max}}{\Delta T_{max}} (x_6 - x_5) - \frac{1}{R_6} (x_6 - T_\infty) + P_m + Q_{max} \right] \]
(55)

The \(P_m \) power is applied to the Peltiers. Resistors of the Peltiers are about 5.57Ω. \(V_p \) varies between 0 and 14V. Thus, \(P_m \) is between 0 and 78W. The motor’s mass flow rate \(m \) is taken as the input variables, and the outer ambiance temperature \(T_\infty \) and the heat generated in the resistances \(Q_p \) are constants. In addition, \(T_{upper} - T_{lower} \) is defined by the empiric equation (equation (3)).

1. \(V_m \) range is between 0 and 12V and the corresponding \(m \) is between 0 and 0.228 kg/s. The transformation coefficient is as follows:

\[K18 = 0.228/12 = 0.019. \]
Thus, \(m = 0.019 \) \(V_m \)
(56)

2. \(P_m = 7.84V_p \)
(57)

\[Q_{max} = 0.52P_m = 4.0768V_p \]
(58)

Thus, equations are reinterpreted as

\[\dot{x}_1 = \frac{1}{C_{TR}} \left[Q_p - \frac{1}{R_1} (x_1 - x_2) \right] \]
(59)
\[\dot{x}_2 = \frac{1}{C_{OCT}} \left[\frac{1}{R_1} (x_1 - x_2) - \frac{1}{R_2} (x_2 - x_3) - 0.038C_O V_m (x_2 - x_4) \right] \]
(60)
\[\dot{x}_3 = \frac{1}{C_{CTY}} \left[\frac{1}{R_2} (x_2 - x_3) + \frac{1}{R_3} (T_\infty - x_3) \right] \]
(61)
\[\dot{x}_4 = \frac{1}{C_{COaT}} \left[0.038C_O V_m (x_2 - x_4) - \frac{1}{R_4} (x_4 - x_5) \right] \]
(62)
\[\dot{x}_5 = \frac{1}{C_{COaT}} \left[\frac{1}{R_4} (x_4 - x_5) + 4.0768V_p \left(1 - \frac{x_6 - x_5}{\Delta T_{max}} \right) \right] \]
(63)
\[\dot{x}_6 = \frac{1}{C_k} \left[-4.0768V_p (x_6 - x_2) - \frac{1}{R_6} (x_6 - T_\infty) + 7.84V_p + 4.0768V_p \right] \]
(64)
As output, the temperature of the oil in HPCyT where the resistances are found is taken as T_2, and the TD along the resistances is taken as $T_{upper} - T_{lower}$. The Simulink model based on the equations provides viability of the model in terms of prescription blocks that illustrate the physical relations between the variables. The Simulink equivalent block model is shown in Figure 4.

The coefficient values of the equivalent block diagram are given in Table 1.

Control methods

PID and fuzzy methods carry out the process to determine the suitable control for the system.
PID (three terms) control method

The PID control algorithm is composed of three parameters: Proportional (P) + Integral (I) + Derivative (D) terms. The P parameter defines return to mentioned error where the I defines the response to the sum of recent errors and the D defines the reaction to the error rate. Total reaction of the PID adjusts the output of the system to the desired value.

Fuzzy control method

Fuzzy control generally deals with control of complex non-linear systems, which are hard to express by accurate mathematical models. FIS is a linguistic instruction-orientated system which is composed of fuzzification, fuzzy decision-making (conjunction of the antecedent propositions refers to their supporting degrees and implication of consequent results), aggregation of the results in a output set and defuzzification of the output fuzzy set (Figure 5). Outputs of the FIS systems command both the V_p and the V_m.

Design of the controllers

TD controller adjusts V_p between 0 and 14.5 V and yields an amount of Q_c between 0 and 136 W. VTG controller regulates V_m between 0 and 12 V and convects oil within a rate of v between 0 and 0.228 kg/s. Reduced VTG and TD allows appropriate conditions for precise measurements.

Design of TD controller

In the first stage, η_c should be determined: η_c (equation (2)) could vary within $0-0.65$ rates, and together with TD, they determine V_p.

$$\eta_c = \frac{Q_c}{P_{Peltiers}}$$ \hspace{1cm} (65)
Table 2. Rule base that determines relation between \(\eta_{\text{Total}} \) and its factors.

Rule	Condition	Output
1	If \(V_m \) is L AND \(T_h - T_c \) is ZG THEN \(\eta_c \) is H	
2	If \(V_m \) is L AND \(T_h - T_c \) is L THEN \(\eta_c \) is H	
3	If \(V_m \) is L AND \(T_h - T_c \) is M THEN \(\eta_c \) is M	
4	If \(V_m \) is L AND \(T_h - T_c \) is B THEN \(\eta_c \) is L	
5	If \(V_m \) is H AND \(T_h - T_c \) is ZG THEN \(\eta_c \) is ZG	
6	If \(V_m \) is H AND \(T_h - T_c \) is L THEN \(\eta_c \) is H	
7	If \(V_m \) is H AND \(T_h - T_c \) is M THEN \(\eta_c \) is M	
8	If \(V_m \) is H AND \(T_h - T_c \) is B THEN \(\eta_c \) is L	

L: low; H: high; M: medium; B: big; ZG: zero grade.

Since \(R_{\text{Peltiers}} \approx 1087 \, \text{\Omega} \) then

\[
P_{\text{Peltiers}} \approx V_p^2
\]

In order to reduce TD around zero, necessary voltage will be about

\[
V_p = \sqrt{\frac{(mc_0 TD)}{\eta_c}}
\]

\(\eta_c \) is a function of the Peltiers \(T_h - T_c \) and \(\Delta T_{\text{max}} \) is 67 °C\(^{-3}\).

\[
\eta_c = 0.65 \left(1 - \frac{T_h - T_c}{\Delta T_{\text{max}}} \right)
\]

PID TD controller design for the system is proposed in detail.\(^{17}\)

Fuzzy TD controller design. The empirical interpretations of the experiments point out that \(\eta_c \) is a non-linear characterization of \(v \) and \(T_h - T_c \), where \(T_m = 24 \, ^\circ\text{C} \) and \(Q_m = 2.5 \, \text{W}. \)\(^{17}\) Processing regions of \(V_m \) and its corresponding \(v \) are 4–8 V and 0.076–0.152 kg/s, respectively. Higher speed results in rising of heat caused by increasing friction. \(\eta_c \) should be revised as \(\eta_{\text{Total}} \) after taking \(Q_h \) and \(Q_m \) effects into account (Figure 6).

Instead of the linear relation given in equation (26), the empirical relation can be realized by means of fuzzy rules.

Therefore, a fuzzy rule base, which describes the non-linear relation, could be derived based on Figure 6 as shown in Table 2. The relation between controller output \(V_p \), and inputs \(\eta_{\text{Total}} \) and TD is given in Table 3.

When we interpret the first rule, “If TD is Zero Grade AND \(\eta_{\text{Total}} \) is High (This means \(V_m \) is Low AND \(T_h - T_c \) is Zero Grade) THEN \(\eta_c \)”

Table 5 is derived by means of locating Table 2 in Table 3. Input variables concerned with the TD controller are given in Figure 7. Corner membership functions (MFs) are represented by means of trapezoidal functions, where interiors are represented by means of triangles. Input variables TD, \(V_m \) and \(T_h - T_c \) are composed of four, two and four MFs, respectively.

Operating band, B, for the controller is optional but generally selected as 1 °C out of where it operates in on-off mode.

Shape of the output MFs plays fewer roles on the output than input MFs, rules and defuzzification methods.\(^{22}\) Therefore, output variable is composed of four singleton MFs which make our program\(^{33}\) simpler.

Rules agreed in Table 5 given in “Appendix 2” are set by means of experimental try-and-faults to

Verbal

Rule	Condition	Output
1	If VTG is NG AND \(\Delta \text{VTG} \) is NG THEN \(V_m \) is L	
2	If VTG is NG AND \(\Delta \text{VTG} \) is ZG THEN \(V_m \) is L	
3	If VTG is NG AND \(\Delta \text{VTG} \) is P THEN \(V_m \) is L	
4	If VTG is ZG AND \(\Delta \text{VTG} \) is NG THEN \(V_m \) is L	
5	If VTG is ZG AND \(\Delta \text{VTG} \) is ZG THEN \(V_m \) is L	
6	If VTG is ZG AND \(\Delta \text{VTG} \) is P THEN \(V_m \) is L	
7	If VTG is PM AND \(\Delta \text{VTG} \) is NG THEN \(V_m \) is L	
8	If VTG is PM AND \(\Delta \text{VTG} \) is ZG THEN \(V_m \) is L	
9	If VTG is PM AND \(\Delta \text{VTG} \) is P THEN \(V_m \) is L	
10	If VTG is PB AND \(\Delta \text{VTG} \) is NG THEN \(V_m \) is M	
11	If VTG is PB AND \(\Delta \text{VTG} \) is ZG THEN \(V_m \) is M	
12	If VTG is PB AND \(\Delta \text{VTG} \) is P THEN \(V_m \) is M	

M: medium; L: low; P: positive; PM = positive medium; PB = positive big; VTG: vertical temperature gradient; NG: negative; ZG: zero grade.
accomplish the results of the non-linear behavior. In this way, the fuzzy TD controller determines a convenient control V_p (Figure 7).

Fuzzy VTG controller design

Length of the TR block and amount of the self-heating effect determines the VTG. In this study, VTG is reduced by controlling the V_m which provides a forced convection against natural convection of the O_{CyT} caused by the Q_R. Lesser v below 0.076 kg/s, natural convection dominates the forced convection and rises T_{upper} (Figure 8). Contrariwise, v over 0.152 kg/s reverses the convection and O_{CyT} cooled by the Peltiers dominates on T_{upper} and brings VTG about negative values.

The v should operate within the mentioned values, and their corresponding voltages are within 4–8 V. Variation curves for VTG versus V_m and V_p are depicted in Figure 3 which commented and guided to fuzzy rules. For example, for lower V_ps around 2–4 V, V_m is reduced to maintain VTG around zero. On the other hand, for increased V_p within 6–14 V range, just medium V_m could minimize the VTG. Proposed input and output fuzzy variables for the VTG controller are shown in Figures 9–11.

Fuzzy rules are established due to status of the variables: VTG and its derivative (ΔVTG). VTG input has four and ΔVTG input has three MFs. Output variable is composed of two singletons (Figure 17). Rules are given in Table 4.

Programs developed for the system

Fuzzy and PID control program is developed in Delphi 5.0. Programs and their flowcharts are explained in previous studies in detail. Simulation programs are developed in Matlab Simulink. In the fuzzy program, min functions are used for AND and IMPLICATION operators. Sum function is preferred for simplicity in AGGREGATION operations and center of gravity is used as DEFUZZIFICATION method.

Simulation model of the control process

The experimental results of the control processes are thoroughly discussed. Scope of the study is heat and mass transfer modeling of the system and comparison of its performance with that of the real-time results: Both PID and fuzzy control methods are applied to the system and to the model. Simulink block diagram (Figure 4) is embedded as a subsystem to the control system model given in Figure 12. The model allows switching between PID and fuzzy control methods. However, the study is focused on fuzzy control results of the actual system and the simulation results of the
model. Fuzzy control blocks are essentially attached to Matlab Simulink models and allow design process being shorter.47

Results and discussion

Fuzzy control software prepared uses the sum-min method as a fuzzy inference method (OR and AND methods, respectively) and the center of gravity method for defuzzification processes. Minimum and maximum functions are utilized for implication and aggregation methods, respectively.46 The same methods and parameters are used both in experimental and simulation applications.

In the fuzzy TD controller, eight rules are inherently active at the same time, and their defuzzification results determines and drives V_p. Similarly, four rules are simultaneously active for the VTG controller and drives V_m. The set value of the TD is 19.5°C, and set value of the VTG is 0°C.

Actual and simulation of fuzzy control results of the TOCyT is shown in Figure 13. Actual system and the model reach to the set value in 60 and 35 min, respectively. Around 0.2°C of steady-state error occurred in the model response.

Actual system yields an undershoot around 82nd minute, which is arisen from unpredictable turbulences in the circulation of the oil against natural convection. However, model follows general trend of the actual system. Actual TOCyT is obtained by average of measured data from T_{upper} (Figure 18) and T_{lower} (Figure 19) sensors (equation (2)) where the simulation model yields TOCyT in reference to its differential estimation, x_2 (integration of equation (60) in Figure 4).

Since TOCyT should follow an average trend similar to as that of T_{upper} and T_{lower}, their graphics are given

Figure 8. Illustration of convection loop of heat and its corresponding VTG refer to v.

Figure 9. Membership functions of the input variable VTG.

Figure 10. Membership functions of the input variable ΔVTG.

Figure 11. Membership functions of the output variable V_m.
in the Appendix 2: Information acquired from T_{upper} and T_{lower} sensors is monitored in Figures 18 and 19, respectively. It is clear that the turbulence is originated around the T_{upper} sensor, which forced convected OCoT from the CoT, faced of heated OCyT risen by natural convection in the CyT.

Simulation results of T_{upper} and T_{lower} are shown in Figures 18 and 19. T_{upper} and T_{lower} values are important for determination of VTG and for adjusting the V_p. The results, which indicate the heat and mass transfer behavior, are approximately imitated by the proposed model.

In the controller section, V_p determines T_{OCoT}. In this purpose, efficiency, η, of the Peltiers as a function of $T_h - T_c$ is required. T_h of the actual system is
acquired by sensors mounted between the hot surface of the Peltiers and the fins (Figure 14).

\(T_h \) in the simulation model is derived from equation (60) (Figure 14(b)). Following an equilibrium situation, \(T_h \) follows a trend corresponding the TD fuzzy logic controller (FLC) voltage, \(V_p \), which is acquired from DAC card of the computer (Figure 15(a)) and drives the Peltiers. When TD exceeds 0–1 °C band, the controller behaves as on-off.

TD FLC of the model behaves similar to the actual system. Second FLC controller feeds back \(T_{upper} - T_{lower} \) VTG (Figure 16(a)). Referring to the acquired VTG and its derivative, \(V_{vtg} \) is controlled (Figure 17(a)). By means of the FLC VTG controller, VTG does not exceed ±0.5 °C.

Similarly, simulation model keeps VTG around zero (Figure 16(b)). Actual and simulation outputs of \(V_{vtg} \) are given in Figures 17(a) and (b), respectively.

The comparison of experimental results and modeling outputs is shown in the figures above. When these mappings are examined carefully, their results signify that the system is modeled considerably realistic.

Conclusion

Heat and mass transfer model interprets high voltages in terms of heat, which means higher voltages correspond to higher heats. Once the model is validated, it could be directly applied to higher voltages such as 100 and 200 kW. Since the backbone of the system is extracted, changes or annexes on the hardware could easily be adapted to the model as a mathematical expression.

Uncertainties arisen from both TD and VTG could be determined by a certain function. Minimization of TD and VTG directly results in decreasing uncertainty and allows accurate HVDC measurements.

Experimental tests for HVDC systems with temperature control last for hours. Cooling of the oil and then returning of the system to initial conditions takes
almost 4–5 h. Hence, modeling and simulation of such systems are unavoidable.

In this study, fuzzy control method is applied to the model. However, the proposed model could be used in performance comparison of new control methods. Application of new control methods and parameter changes will take considerably short time in the simulations compared to actual control applications.

Acknowledgements

Authors have special thanks for Hasan DİNÇER, İbrahim EKSIN, Özcan KALENDERLI, Dilber ÖZBAY, Serkan YAMAN and Reem ALMADHAJI for their valuable assistance on former studies that set light and refer to our current researches.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

ORCID iD

Sadettin Burak Kilci https://orcid.org/0000-0002-6583-8379

References

1. Ziegler NF. Dual highly stable 150-kV divider. IEEE Trans Instrum Meas 1970; 19(4): 281–285.
2. D’Emilio S, Gabbana F, La Paglia G, et al. Calibration of DC voltage dividers up to 100 kV. IEEE Trans Instrum Meas 1985; 34(2): 224–227.
3. Park JH. Special shielded resistor for high-voltage DC measurements. J Nall Bureau Stand-C Eng Instrument 1962; 66C: 19–24.
4. Deacon TA. Intercomparison measurement of the ratios of a 100 Kilovolt DC voltage divider (BCR Information Applied Metrology, EUR10787EN), Brussels; pp. 1–23.
5. Li Y, Rungis J, Kim KT, et al. Interlaboratory comparison of high direct voltage resistor dividers. IEEE Trans Instrum Meas 1999; 48(2): 158–161.
6. Elg A-P, Bergman A, Hallström J, et al. Traceability and characterization of a 1000 kV HVDC reference divider. IEEE Trans Instrum Meas 2015; 64(6): 1709–1715.
7. Wu SL and Schon K. Investigation into the self-heating effect of HV DC dividers. In: Proceedings of the fifth international symposium on high voltage engineering, Braunschweig, 24–28 August 1987.
8. Childers CB, Dziuba R and Lee L. A resistive ratio standard for measuring direct voltages to 10 kV. IEEE Trans Instrum Meas 1976; 25(4): 505–508.
9. Peier D and Graetsch V. A 300 KV DC measuring device with high accuracy. In: Proceedings of the third international symposium on high voltage engineering, Milan, 28–31 August 1979.
10. Marx R. New concept of PTBs standard divider for direct voltages of up to 100 kV. IEEE Trans Instrum Meas 2001; 50: 426–429.
11. Elben AD, Fechner T, Lei X, et al. Modern noise rejection methods and their applicability in partial discharge measurements on HVDC cables. In: Proceedings of the IEEE international conference on high voltage engineering and application (ICHVIE), 10–13 September 2018, Athens, pp. 1–4. New York: IEEE.
12. Zheng A, Guo C, Cui P, et al. Comparative study on small-signal stability of LCC-HVDC system with different control strategies at the inverter station. IEEE Access 2019; 7: 34946–34953.
13. Zhao C and Sun Y. Study on control strategies to improve the stability of multi-infeed HVDC systems applying VSC-HVDC. In: Canadian conference on electrical and computer engineering, Ottawa, ON, Canada, 7–10 May 2006, pp. 2253–2257. New York: IEEE.
14. Li M, Guo Z, Cai D, et al. Operating characteristic analysis of multi-terminal hybrid HVDC transmission system with different control strategies. In: International conference on power system technology, Gunagzhou, 6–8 November 2018, pp. 2616– 2621. New York: IEEE.
15. Lalouni S and Rekioua D. Modeling and simulation of a photovoltaic system using fuzzy logic controller. In: Second international conference on developments in eSystems engineering, Abu Dhabi, 14–16 December 2009, pp. 23–28. New York: IEEE.
16. Shvidkiy VS, Fatkhutdinov AR and Spirin NA. Automatic control system thermal operation of mine fuel furnace. In: International Russian automation conference (RusAutoCon), Sochi, 9–16 September 2018, pp. 1–4. New York: IEEE.
17. Yilmaz S, Dincer H, Eksin I, et al. Heat control in HVDC resistive divider by PID and NN controllers. Energ Convers Manage 2007; 48: 2739–2748.
18. Prokudina LA. Numerical simulation of effect of temperature gradients on flow of liquid film in heat and mass transfer devices. In: Global smart industry conference (GloSIC), Chelyabinsk, 13–15 November 2018, pp. 1–6. New York: IEEE.
19. Rassudov L. Non-adiabatic heating effects of a variable speed electric drive. In: 26th international workshop on electric drives: improvement in efficiency of electric drives (IWED), Moscow, 30 January–2 February 2019, pp. 1–3. New York: IEEE.
20. Horyna V, Hanuš O and Smid R. Virtual mass flow rate sensor using a fixed-plate recuperator. IEEE Sens J 2019; 19: 5760–5768.
21. Prakash J and Ilangkumaran M. An investigation of various actuation mechanisms in robot arm. Meas Control 2019; 52: 1299–1307.
22. Mandel R, Arie M, Shooohstari A, et al. A heat spreading model for double-sided cross-flow manifold-microchannel heat exchangers. In: 17th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITHERM), San Diego, CA, 29 May–1 June 2018, pp. 147–155. New York: IEEE.
23. Belkhiri M, Echouchene F and Mejri H. Nanoscale heat transfer in MOSFET transistor with high-k dielectrics using a nonlinear DPL heat conduction model. In: The 9th international renewable energy congress (IREC), Hammamet, Tunisia, 20–22 March 2018, pp. 1–6. New York: IEEE.
24. Gao S, Zhu H, Zhang B, et al. Modeling and simulation analysis of hybrid bipolar HVDC system based on LCC-HVDC and VSC-HVDC. In: IEEE 3rd advanced information technology electronic and automation control conference (IAEAC), Chongqing, 12–14 October 2018, pp. 1448–1452. New York: IEEE.

25. Nanou S and Papathanassiou S. Generic average-value modeling of MMC-HVDC links considering submodule capacitor dynamics. In: 2nd international universities power engineering conference (UPEC), Heraklion, 28–31 August 2017, pp. 1–5. New York: IEEE.

26. Gouda OE, Ibrahim DH and Soliman A. Parameters affecting the arcing time of HVDC circuit breakers using black box arc model. IET Gener Transm Dis 2019; 13(4): 461–467.

27. Karimi M, Majidi M, MirSaedi H, et al. A novel application of deep belief networks in learning partial discharge patterns for classifying corona surface and internal discharges. IEEE Trans Indus Elec. Epub ahead of print 9 April 2019. DOI: 10.1109/TIE.2019.2908580.

28. Jing Y-H and Yang G-H. Adaptive fuzzy output feedback fault-tolerant compensation for uncertain nonlinear systems with infinite number of time-varying actuator failures and full-state constraints. IEEE Trans Cybernets. Epub ahead of print 29 March 2019. DOI: 10.1109/TCYB.2019.2904768.

29. Chen J, Li J and Yuan X. Global fuzzy adaptive consensus control of unknown nonlinear multi-agent systems. IEEE Trans Fuzzy Syst. Epub ahead of print 1 April 2019. DOI: 10.1109/TFUZZ.2019.2908771.

30. Hossen MB and Ghosh BC. Performance analysis of a PMBLDC motor drive based on ANFIS controller and PI controller. In: International conference on electrical computer and communication engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019, pp. 1–6. New York: IEEE.

31. Eksin I and Erol OK. A fuzzy identification method for nonlinear systems. Turk J Electr Eng Comp Sci 2000; 8(2): 125–137.

32. Mills AF. Basic heat and mass transfer, 2nd ed. Sydney, Australia: Prentice Hall, 1998.

33. Khan SH and Finkelstein L. Mathematical modelling in measurement and instrumentation. Meas Control 2011; 44(9): 277–282.

34. Neacă MI and Neacă AM. Mathematical model for resistive tubular heater. In: International Conference on Applied and Theoretical Electricity (ICATE), Craiova, 6–8 October 2016, pp. 1–6. New York: IEEE.

35. Arora H, Singh R and Brar GS. Thermal and structural modelling of arc welding processes: a literature review. Meas Control 2019; 52(7–8): 955–969.

36. https://docs-emea.rs-online.com/webdocs/001b/0900766b8001b623.pdf (accessed 15 April 2019).

37. Kalaiarassan G and Krishnamurthy K. Digital hydraulic single-link trajectory tracking control through flow-based control. Meas Control 2019; 52(7–8): 775–787.

38. Neacă MI. Simulink model for resistive tubular heater. In: International conference on applied and theoretical electricity (ICATE), Craiova, 4–6 October 2018, pp. 1–6. New York: IEEE.

39. Franklin GF, Powel JD and Naeini AE. Feedback control of dynamic systems, 6th ed. Boston, MA: Pearson, 2010.

40. Jun L, Shouyong X, Chong C, et al. A spintronic memristor crossbar array for fuzzy control with application in the water valves control system. Meas Control 2019; 52(5–6): 418–431.

41. Kosko B. Neural networks and fuzzy systems. Upper Saddle River, NJ: Prentice Hall, 1992.

42. Nguyen HT, Prasad NR, Walker CL, et al. A first course in fuzzy and neural control. Boca Raton, FL: Chapman & Hall/CRC, 2003.

43. Yilmaz S and Dincer H. Development of a fuzzy control program to reduce uncertainty in the measurement of dc HV resistive dividers. In: Proceedings of the third international conference on electrical and electronics engineering, 3–7 December 2003, Bursa, pp. 310–314.

44. Calver C. Delphi unleashed. Istanbul: Sams Publishing, 1997.

45. Yilmaz S. New approaches to reduce measurement uncertainty in HVDC resistive dividers. PhD Thesis, Kocaeli University Institute of Science and Engineering, Kocaeli, 2003.

46. Ross T. Fuzzy logic with engineering applications. London: John Wiley, 2004.

47. Uysal A, Gokay S, Soylu E, et al. Fuzzy proportional-integral speed control of switched reluctance motor with MATLAB/Simulink and programmable logic controller communication. Meas Control 2019; 52(7–8): 1137–1144.

Appendix I

Notation

Notation	Description
K_d	derivative coefficient
K_i	integral coefficient
m	mass flow rate (kg/s) between 0 and 0.228 kg/s.
MO	maximum overshoot
$OCoT$	oil in the cooling tank
P_{iu}	power applied to the Peltiers
$P_{Peltiers}$	power of Peltiers
ppm	parts per million
$Q_{Cooling}$	power applied to Peltiers
t_d	delay time
t_r	rise time
t_s	settling time
V_{in}	input voltage of the HVDC-ResDiv
V_{m}	motor voltage
V_{o}	output voltage of the HVDC-ResDiv
V_{p}	voltage applied to the Peltiers
η_c	rate of cooling amount
v	mass flow rate (kg/s)
v_{max}	maximum flow rate
v_{min}	minimum flow rate

Temperatures

Temperature	Description
T_{CT}	temperature of the polyamide body of the HPCyT (°C),
T_e	temperature of the Peltier’s cold surface (°C)
T_{CoT}	temperature of the CoT (°C),
T_F	temperature of the cooler fins (°C)
T_h	temperature of the Peltier’s hot surface (°C)
Specific heats:

- C_{o}: Specific heat of the oil (J/kg K)
- C_{TR}: Thermal capacity that is stored on the total resistors.
- C_{CyT}: Thermal capacity of the polyamide side walls of HPCyT

Energy and heat definitions:

- E_i: Heat energy entered to the system
- E_o: Heat energy exited from the system
- E_p: Heat energy produced in the system
- E_s: Heat energy stored in the system
- Q_C: Heat transferred from the Peltiers (deg C)
- Q_{C1}: Heat transferred from the resistors to the fluid by means of conduction (W)
- Q_{C2}: Heat transferred from the fluid from the side wall (W)
- Q_{C3}: Exit heat of HPCyT from side wall (deg C)
- Q_{EOCyT}: Exit heat of the HPCyT (deg C)
- Q_h: Total heat passed to the hot side of the Peltier (W)
- Q_{ICyT}: Inlet heat to the HPCyT from the neighbor tank (deg C)
- Q_{max}: Maximum heat transfer capacity of the Peltier under ideal conditions.
- Q_{net}: Heat removed by forced convection from HPCyT (W)
- Q_p: Heat produced by the resistor.
- $Q_{L,c}$: Heat transferred to cold surface contacting the Peltier from the outer surface of CoT.
- Q_{S1}: Heat transferred to CoT from the fluid inside by convection (W)
- Q_{S2}: Total heat transferred from the fin to the outer ambience (W)

Temperature resistances:

- R_{thermal}: Thermal resistance between fins and the outer ambience (K/W)
- R_{C}: Thermal resistance between total resistance and the fluid (OCyT) (K/W)
- $R_{c,e}$: Thermal resistance between the outer surface of the CoT and the outer side of the Peltier (K/W)
- R_{3}: Thermal resistance between outer surface of the HPCyT and the outer ambience (K/W)

Appendix 2:

Table 5. Rule base of the TD controller.

Rule	Condition	Action
1	IF TD is ZG AND V_{in} is L AND T_{c} - T_{r} is ZG THEN V_{p} is ZG	
2	IF TD is ZG AND V_{in} is L AND T_{c} - T_{r} is L THEN V_{p} is ZG	
3	IF TD is ZG AND V_{in} is L AND T_{c} - T_{r} is M THEN V_{p} is ZG	
4	IF TD is ZG AND V_{in} is M AND T_{c} - T_{r} is ZG THEN V_{p} is S	
5	IF TD is ZG AND V_{in} is M AND T_{c} - T_{r} is L THEN V_{p} is ZG	
6	IF TD is ZG AND V_{in} is M AND T_{c} - T_{r} is M THEN V_{p} is ZG	
7	IF TD is ZG AND V_{in} is M AND T_{c} - T_{r} is B THEN V_{p} is ZG	
8	IF TD is ZG AND V_{in} is M AND T_{c} - T_{r} is B THEN V_{p} is ZG	
9	IF TD is S AND V_{in} is L AND T_{c} - T_{r} is ZG THEN V_{p} is S	
10	IF TD is S AND V_{in} is L AND T_{c} - T_{r} is L THEN V_{p} is S	
11	IF TD is S AND V_{in} is L AND T_{c} - T_{r} is M THEN V_{p} is S	
12	IF TD is S AND V_{in} is L AND T_{c} - T_{r} is B THEN V_{p} is S	
13	IF TD is S AND V_{in} is M AND T_{c} - T_{r} is ZG THEN V_{p} is M	
14	IF TD is S AND V_{in} is M AND T_{c} - T_{r} is L THEN V_{p} is S	
15	IF TD is S AND V_{in} is M AND T_{c} - T_{r} is M THEN V_{p} is S	
16	IF TD is S AND V_{in} is M AND T_{c} - T_{r} is B THEN V_{p} is S	
17	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is ZG THEN V_{p} is M	
18	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is L THEN V_{p} is M	
19	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is M THEN V_{p} is M	
20	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is B THEN V_{p} is M	
21	IF TD is M AND V_{in} is M AND T_{c} - T_{r} is ZG THEN V_{p} is B	
22	IF TD is M AND V_{in} is M AND T_{c} - T_{r} is L THEN V_{p} is M	
23	IF TD is M AND V_{in} is M AND T_{c} - T_{r} is M THEN V_{p} is M	
24	IF TD is M AND V_{in} is M AND T_{c} - T_{r} is B THEN V_{p} is M	
25	IF TD is B AND V_{in} is M AND T_{c} - T_{r} is ZG THEN V_{p} is B	
26	IF TD is B AND V_{in} is M AND T_{c} - T_{r} is L THEN V_{p} is B	
27	IF TD is B AND V_{in} is M AND T_{c} - T_{r} is M THEN V_{p} is B	
28	IF TD is B AND V_{in} is M AND T_{c} - T_{r} is B THEN V_{p} is B	
29	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is ZG THEN V_{p} is B	
30	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is L THEN V_{p} is B	
31	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is M THEN V_{p} is B	
32	IF TD is M AND V_{in} is L AND T_{c} - T_{r} is B THEN V_{p} is B	

B: Big; M: Medium; S: Small; L: Low; TD: Temperature difference; ZG: Zero grade.
Figure 18. T_{upper} time response for actual and simulation of the system control.

Figure 19. T_{lower} time response for actual and simulation of the system control.