CUT-OFF FUNCTION LEMMA IN \mathbb{P}^k

TAEYONG AHN

Abstract. In this note, we compute a cut-off function over \mathbb{P}^k. Let sufficiently small $\delta > 0$ be given. When we are given a compact set K in \mathbb{P}^k and a prescribed open neighborhood K_δ of K, we find a smooth cut-off function $\chi_\delta \equiv 1$ over K and $\text{supp}(\chi_\delta) \subseteq K_\delta$, where K_δ denotes the set of points whose distance to K is less than δ with respect to the Fubini-Study metric of \mathbb{P}^k. Moreover, we estimate the bound of the derivatives of χ_δ in terms of δ. It seems to be well-known, but we want to provide detailed computations. They are very elementary.

1. Introduction

In this note, our space is \mathbb{P}^k and we assume that the distance is measured with respect to the Fubini-Study metric if we do not specify.

Let $\delta_0 > 0$ be given. We consider $0 < \delta < \delta_0$. Let $K \subseteq \mathbb{P}^k$ be compact and K_δ a δ-neighborhood of K, that is, the set of points whose distance to K is less than δ with respect to the Fubini-Study metric. We want to prove the following lemma:

Lemma 1.1. There exists a smooth cut-off function $\chi_\delta : \mathbb{P}^k \to [0, 1]$ such that $\chi_\delta \equiv 1$ over K and $\text{supp}(\chi_\delta) \subseteq K_\delta$. Moreover, $\|\chi_\delta\|_{C^\alpha} \lesssim |\delta|^{-\alpha}$ as δ varies.

Here, $\|\cdot\|_{C^\alpha}$ denotes the C^α-norm of the function. The idea is simply to smooth out a characteristic function by convolution (of the Lie group of automorphisms over \mathbb{P}^k).

2. Family of Local Coordinate Charts of \mathbb{P}^k

It suffices to prove the lemma for a fixed family of local coordinate charts. Thus, we will fix one as follows.

For \mathbb{P}^k, we can find k natural affine coordinate charts covering \mathbb{P}^k of the form $\{[z_0 : \ldots : z_{i-1} : z_{i+1} : \ldots : z_k] | j \in \mathbb{C} \text{ for } j \neq i \}$ for $i = 0, \ldots, k$, which we will call the Z_i-coordinate chart. For this chart, there is a natural coordinate map $\zeta_i : Z_i \to \mathbb{C}^i \times \{1\} \times \mathbb{C}^{k-i}$ defined by $\zeta_i([z_0 : \ldots : z_{i-1} : 1 : z_{i+1} : \ldots : z_k]) = (z_0, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_k)$.

We defined a norm $\|\cdot\|_i$ defined by

$$\|(z_0, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_k)\|_i = (|z_0|^2 + \ldots + |z_{i-1}|^2 + |z_{i+1}|^2 + \ldots + |z_k|^2)^{\frac{1}{2}}$$

for each $\mathbb{C}^i \times \{1\} \times \mathbb{C}^{k-i}$.
3. Automorphism group of \mathbb{P}^k

The group $\text{Aut}(\mathbb{P}^k) = \text{PGL}(k+1, \mathbb{C})$ of automorphisms of \mathbb{P}^k is a complex Lie group of complex dimension $k^2 + 2k$. An element of $\text{Aut}(\mathbb{P}^k)$ can be understood as an equivalence class of the complex $(k+1) \times (k+1)$ matrix group under the equivalence relation given by scaling.

Without loss of generality, we may consider a point $z \in \mathbb{Z}$ and its coordinates $\zeta \in \{1\} \times \mathbb{C}^k$. Let $h = \{0, h_1, h_2, ..., h_k\}$ with $|h_i| < \epsilon$ for sufficiently small $\epsilon > 0$. Then $\zeta + h \in \{1\} \times \mathbb{C}^k$ is a very close point near $\zeta \in \{1\} \times \mathbb{C}^k$, where the addition is coordinatewise and we can find a unique linear map $G_h : \{1\} \times \mathbb{C}^k \rightarrow \{1\} \times \mathbb{C}^k$ defined by

$$G_h = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ h_1 & 1 & 0 & \cdots & 0 \\ h_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_n & 0 & 0 & \cdots & 1 \end{pmatrix}$$

such that $G_h(\zeta) = \zeta + h$. Note that $G_h \circ G_{-h} = G_{-h} \circ G_h = \text{Id}$.

Using the exponential map of Lie algebra to Lie group, we can find holomorphic coordinates $\psi : \text{sl}(k+1, \mathbb{C}) \rightarrow \text{PGL}(k+1, \mathbb{C})$ near $\text{Id} \in \text{PGL}(k+1, \mathbb{C})$ where $\text{sl}(k+1, \mathbb{C})$ is the special linear Lie algebra, which is the set of $(k+1) \times (k+1)$ matrices with zero trace. Near the $\text{Id} \in \text{PGL}(k+1, \mathbb{C})$, we can also find a representation $\text{PGL}(k+1, \mathbb{C}) \rightarrow \text{GL}(k+1, \mathbb{C})$ by picking a $(k+1) \times (k+1)$ matrix with the $(1,1)$-component being 1. Let ϕ denote this representation. We consider the following diagram

$$\begin{array}{ccc} \text{sl}(k+1, \mathbb{C}) & \rightarrow^{H_h} & \text{sl}(k+1, \mathbb{C}) \\ \psi \downarrow & & \psi \downarrow \\ \text{PGL}(k+1, \mathbb{C}) & \rightarrow^{[G_h]} & \text{PGL}(k+1, \mathbb{C}) \\ \phi \downarrow & & \phi \downarrow \\ \text{GL}(k+1, \mathbb{C}) & \rightarrow^{\overline{G_h}} & \text{GL}(k+1, \mathbb{C}) \end{array}$$

where in the second line, $[]$ means the equivalence class that contains the inside element, $[G_h][A] = [A \cdot G_h]$ for $[A] \in \text{PGL}(k+1, \mathbb{C})$, and $\overline{G_h}$ is defined as follows:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k+1} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,k+1} \\ a_{3,1} & a_{3,2} & \cdots & a_{3,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+1,1} & a_{k+1,2} & \cdots & a_{k+1,k+1} \end{pmatrix}$$

$$\downarrow \overline{G_h}$$

$$\begin{pmatrix} 1 & a_{1,2} & \cdots & a_{1,k+1} \\ a_{2,1} + \sum_{i=2}^{k+1} a_{2,i} \cdot h_{i-1} & a_{2,2} & \cdots & a_{2,k+1} \\ a_{3,1} + \sum_{i=2}^{k+1} a_{3,i} \cdot h_{i-1} & a_{3,2} & \cdots & a_{3,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+1,1} + \sum_{i=2}^{k+1} a_{k+1,i} \cdot h_{i-1} & a_{k+1,2} & \cdots & a_{k+1,k+1} \end{pmatrix}$$
Note that \(H_h, [G_h]\) and \(\overline{G_h}\) in the diagram are not defined over the entire space. However, there exists a sufficiently small \(\epsilon > 0\) such that for all \(\{h_i\}_{i=1}^n\) with \(|h_i| < \epsilon\) for \(i = 1, \ldots, n\), \(\overline{G_h}\) is well-defined over all \(A \in \text{GL}(n + 1, \mathbb{C})\) with \(\|A - \text{Id}\| < \epsilon\) and with the \((1,1)\)-component of \(A\) being 1, where \(\|\cdot\|\) is the standard matrix norm. Since \(\phi\) and \(\psi\) are local biholomorphisms, we can also find corresponding subsets in \(\text{PGL}(k + 1, \mathbb{C})\) and \(sl(k + 1, \mathbb{C})\).

We identify \(sl(k + 1, \mathbb{C})\) with \(\mathbb{C}^{k^2 + 2k}\) and the set of representations of \(\text{PGL}(k + 1, \mathbb{C})\) with \(\mathbb{C}^{k^2 + 2k}\). For convenience, we use \(x = (x_1, \ldots, x_{k^2 + 2k})\) for \(sl(k + 1, \mathbb{C})\) and \(\xi = (\xi_1, \ldots, \xi_{k^2 + 2k})\) for the other. Then

\[
\mathbb{C}^{k^2 + 2k} \xrightarrow{\psi} \mathbb{C}^{k^2 + 2k} \quad \text{with \(\psi\)} \quad \text{and \(\psi\downarrow\)}
\[
PGL(k + 1, \mathbb{C}) \xrightarrow{[\Phi]} PGL(k + 1, \mathbb{C}) \quad \text{with \(\Phi\)} \quad \text{and \(\phi\downarrow\}}
\]

\[
PGL(k + 1, \mathbb{C}) \xrightarrow{\Phi^{-1} \circ \overline{G_h} \circ \Phi} \mathbb{C}^{k^2 + 2k}.
\]

We denote \(\phi \circ \psi\) by \(\Phi\). Then, \(\xi_i = \Phi_i(x_1, \ldots, x_{k^2 + 2k})\) for \(i = 1, \ldots, k^2 + 2k\) and the map \(H_h = \Phi^{-1} \circ \overline{G_h} \circ \Phi\) is a map from \(\mathbb{C}^{k^2 + 2k}\) to \(\mathbb{C}^{k^2 + 2k}\). Note that in our case, \(\psi, \phi\) are smooth and \(\overline{G_h}\) is smooth with respect to \(h\).

\[\text{4. Measures on } sl(k + 1, \mathbb{C})\]

Recall that \(x\) is used for \(sl(k + 1, \mathbb{C})\). Let \(\lambda\) denote the standard Euclidean measure on \(sl(k + 1, \mathbb{C})\). We assign the standard matrix norm \(|x|_s\) to each \(x \in sl(k + 1, \mathbb{C})\). We consider a smooth radial probability measure \(\mu\) over the coordinate \(sl(k + 1, \mathbb{C})\) centered at \(O \in sl(k + 1, \mathbb{C})\) with its support \(|x|_s < \sigma\) for sufficiently small \(\sigma > 0\), which makes \(\Phi\left(\{||x||_s < \sigma\}\right) \subseteq \{||A - \text{Id}\| < \epsilon\}\). Then, \(d\mu = M(x)d\lambda\) where \(M\) is a smooth function defined on \(sl(k + 1, \mathbb{C})\) and has support in \(|x|_s < \sigma\).

Let \(h_{\theta} : sl(k + 1, \mathbb{C}) \longrightarrow sl(k + 1, \mathbb{C})\) be a scaling map by \(\theta\) for \(|\theta| \leq 1\). We define \(\mu_{\theta} := (h_{\theta})_*(\mu)\). Then, \(\mu_{\theta}\) is a smooth measure for \(\theta \neq 0\) and a Dirac measure at \(O \in sl(k + 1, \mathbb{C})\) for \(\theta = 0\). Note that the support of \(\mu\) is in \(\{||x||_s \leq \theta\sigma\} \subseteq \{||x||_s \leq \sigma\}\).

For the better terminology, by the derivatives of \(\mu_{\theta}\), we mean the derivatives of the Radon-Nikodym derivative of \(\mu_{\theta}\) with respect to the standard Euclidean measure \(\lambda\).

\[\text{5. Regularization}\]

In this section, we define a regularization of a bounded function and provide the estimate of the regularity.

Let \(f\) be a bounded complex-valued function over \(\mathbb{P}^k\) with compact support. Without loss of generality, we may assume that \(0 \leq |f| \leq 1\). Then, we define the \(\theta\)-regularization \(f_{\theta}\) of \(f\) as being

\[f_{\theta}(z) = \int_{\text{Aut}(\mathbb{P}^k)} ((\tau_x)_*)f)(z)d\mu_{\theta}(x)\]
Without loss of generality, we may assume that \(z \in \mathbb{Z}_0 \). Let \(\zeta \in \{1\} \times \mathbb{C}^k \) be the coordinates of \(z \) and \(F \) the representation of \(f \) with respect to \(\{1\} \times \mathbb{C}^k \). With respect to the coordinate \(\{1\} \times \mathbb{C}^k \), we have the following representation:

\[
F_\theta(\zeta + h) = \int_{s\mathcal{I}(k+1,\mathbb{C})} ((\Phi(x))_s F)(G_h(\zeta))d\mu_\theta(x)
\]

Note that \(H_h \) is holomorphic and injective over the support of the measure \(\mu_\theta \). By change of coordinates, we have

\[
F_\theta(\zeta + h) = \int_{s\mathcal{I}(k+1,\mathbb{C})} ((\Phi(H_h(x)))_s F)(\zeta)d\mu_\theta(x)
\]

With \(\zeta \) fixed, the differentiation of the right hand side with respect to \(h_i \)'s makes sense since the measure is smooth. By the direct application of the definition of the derivative, the partial derivative of \(F_\theta(\zeta) \) with respect to \(\zeta_i \) at \(\zeta \) is the same as the partial derivative of \(F_\theta(\zeta + h) \) with respect to \(h_i \) at 0. Thus, we can see that \(F_\theta \) is smooth. Moreover, we can estimate its regularity.

The \(C^\alpha \)-norm of \(F_\theta \) completely depends on the value of \(F \) near \(\zeta \) and the derivatives of the measure with respect to \(h \). It is not hard to see that \((H_h)_s [(h_\theta)_s] d\lambda = |\theta|^{-2k^2-4k} d\lambda \). Indeed, \(\Phi \) is a coordinate change map and \(G_h \) is a linear shear map. Thus, it remains to estimate the \(C^\alpha \)-norm of \(M \). So, since \((H_h)_s [(h_\theta)_s] M = M((\frac{1}{2}\Phi^{-1} o G_h o \Phi)) \), the \(C^\alpha \)-norm of \((H_h)_s [(h_\theta)_s] M \) is bounded by the product of \(|\theta|^{-\alpha} \) and a constant multiple of \(C^\alpha \)-norms of \(M, \Phi \) and \(\Phi^{-1} \). Note that the latter is independent of \(\theta \).

Putting all together, since \(F \) is bounded, the support of the measure is \(||x|| \leq \theta \sigma \) and \(dim_{\mathcal{I}} \mathcal{I}(k+1,\mathbb{C}) = k^2 + 2k \),

\[
f_\theta C^\alpha \lesssim |\theta|^{-2k^2-4k-\alpha} |\theta|^{2k^2+4k} \|f\|_{C^\alpha} = |\theta|^{-\alpha} \|f\|_{C^\alpha}.
\]

Note that it can be more precise when we estimate the absolute value at a point in terms of its neighborhood with compact closure.

6. MAIN CUT-OFF FUNCTION LEMMA

We consider two kinds of open balls in \(\{1\} \times \mathbb{C}^k \). One is induced from the Fubini-Study metric of \(\mathbb{P}^k \) and the other is from the standard Euclidean metric \(||\cdot||_0 \). The open ball centered at \(\zeta \in \{1\} \times \mathbb{C}^k \) and of radius \(r > 0 \) of first kind is denoted by \(B_F(\zeta, r) \) and that of second kind is denoted by \(B_E(\zeta, r) \). Then, by comparison of the infinitesimal versions of the two metrics, we know that \(B_E(\zeta, \frac{r}{2} ||\zeta||_0) \subseteq B_F(\zeta, r) \).

The proof of Lemma [1.7]. Note that \(\Phi \) is holomorphic near the closure of the neighborhood of \(\{||x||_s < \sigma\} \), we can find a constant \(C > 0 \) such that \(\frac{1}{C} ||\Phi(x) - Id|| < ||x||_s < C ||\Phi(x) - Id|| \) for \(\{||x||_s < \sigma\} \). Here, \(C \) is independent of \(\delta \) and \(\theta \). Recall that \(||\Phi(x)(\zeta) - \zeta||_0 \leq ||\Phi(x) - Id|| ||\zeta||_0 \). We take a \(\theta \) such that \(|\theta| \leq 1 \) and such
that $C\theta \sigma \leq \frac{\delta_0}{4}$. Let $C' := \frac{C\theta \sigma}{\delta_0/4} \leq 1$. Then, for all $0 < \delta < \delta_0$, we take its corresponding θ to satisfy $C\theta \sigma = C' \frac{\delta}{4}$. Note that C' is fixed with respect to θ and δ. Then, for each $0 < \delta < \delta_0$ and for its θ, we have that for $\{\|x\|_s < \sigma\}$,

\begin{equation}
\|\Phi(x)(\zeta) - \zeta\|_0 \leq \|\Phi(x) - Id\| \|\zeta\|_0 \leq C \|x\|_s \|\zeta\|_0 \leq C\theta \sigma \|\zeta\|_0 = \frac{C'\delta}{2} \frac{\|\zeta\|_0}{2} \leq \frac{\delta}{2} \frac{\|\zeta\|_0}{2}.
\end{equation}

Consider $K \subseteq K_\frac{\delta}{2} \subseteq K_\delta$. Let χ_K be the characteristic function whose support is exactly $K_\frac{\delta}{2}$. Then $(\chi_K)_\theta$ is the desired function with the desired estimate. Indeed, the estimate is straightforward by plugging-in $C\theta \sigma = C' \frac{\delta}{4}$ into Estimate 5.1. Equation 6.1 proves the support of the function and its region over which the function is identically 1.

So far, we have considered over Z_0 only. The above argument can be directly applied to each Z_i for $i = 0, ..., k$ in the exactly same way. Indeed, we use the same measure on $\text{Aut}(\mathbb{P}^k)$ and the same constants C, C' and θ to Z_i for $i = 1, ..., k$ as in the case of Z_0. Thus, we have just proved the lemma.

\begin{flushright}
□
\end{flushright}