THE SPIN OF THE BLACK HOLE IN THE X-RAY BINARY NOVA MUSCAE 1991

ZHIAN CHEN, LIJUN GOU, JEFFREY E. MCCLINTOCK, JAMES F. STEINER, JIANFENG WU, WEIWEI XU, JEROME A. OROSZ, and YANMEI XIANG

1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
2 University of Chinese Academy of Sciences, Beijing 100012, China
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4 Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
5 Department of Astronomy, Key Laboratory of Astroparticle Physics of Yunnan Province, Yunnan University, Kunming, 650091, China

Received 2015 December 26; revised 2016 April 11; accepted 2016 April 14; published 2016 June 27

ABSTRACT

The bright soft X-ray transient Nova Muscae 1991 was intensively observed during its entire eight-month outburst using the Large Area Counter on board the Ginga satellite. Recently, we obtained accurate estimates of the mass of the black hole primary, the orbital inclination angle of the system, and the distance. Using these crucial input data and Ginga X-ray spectra, we have measured the spin of the black hole using the continuum-fitting method. For four X-ray spectra of extraordinary quality we have determined the dimensionless spin parameter of the black hole to be $a_b = 0.63^{+0.16}_{-0.10}$ (1σ confidence level), a result that we confirm using 11 additional spectra of lower quality. Our spin estimate challenges two published results: it is somewhat higher than the value predicted by a proposed relationship between jet power and spin; and we find that the spin of the black hole is decidedly prograde, not retrograde as has been claimed.

Key words: X-rays: binaries

1. INTRODUCTION

On 1991 January 8, a bright X-ray nova was discovered independently using the Ginga and Granat X-ray satellites by Kitamoto et al. (1992) and Brandt et al. (1992) who named the source GS 1124–683 and GRS 1124–68, respectively. Located in the constellation Musca, the X-ray source is also known as X-ray Nova Muscae 1991 (hereafter, NovaMus). After the system returned to quiescence, optical observations revealed an orbital period of 10.4 hr and a large mass function (Remillard et al. 1992), which established that the system is one of about a dozen short-period X-ray binaries ($P_{\text{orb}} < 12$ hr) whose compact X-ray source is a dynamically confirmed black hole. The prototype of this subclass of black hole binaries is A0620–00. Other well-studied short-period systems include GRO J0422+32, XTE J1118+480, XTE J1859+228, and GS 2000+25.

During the past decade, the spins of many black holes have been estimated using two methods: fitting the profile of the Fe K line (Fabian et al. 1989; Reynolds 2014) and fitting the thermal continuum spectrum (Zhang et al. 1997; McClintock et al. 2014). It is the continuum-fitting method that we employ here in measuring the spin of NovaMus, and that our group has developed and used to measure the spins of 10 stellar-mass black holes (Gou et al. 2014; McClintock et al. 2014; Steiner et al. 2014).

In the continuum-fitting method, the spin of a black hole with known mass and distance is estimated by fitting the thermal component of emission to a corrected version of the thin-disk model of Novikov and Thorne (Li et al. 2005) while employing an advanced treatment of spectral hardening (Davis et al. 2005; Davis & Hubeny 2006). For the successful application of the method, it is essential to consider only those spectra that contain a dominant thermal component (Steiner et al. 2009a) and for which the Eddington-scaled, bolometric disk luminosity is moderate, $L/L_{\text{Edd}} < 0.3$ (McClintock et al. 2006).

The robustness of the continuum-fitting method has been demonstrated by the very many independent and consistent measurements of spin that have been obtained for several black holes (e.g., Steiner et al. 2010); by extensive theoretical studies of the thin-disk model (Shafee et al. 2008; Penna et al. 2010; Kulkarni et al. 2011; Noble et al. 2011; Zhu et al. 2012); and through careful consideration of a wide range of systematic errors (McClintock et al. 2014; and references therein). In applying the method, one must usually make the weakest tested assumption that the spin of the black hole is closely aligned with the angular momentum vector of the inner disk (Fragos et al. 2010; Steiner & McClintock 2012).

A crucial requirement of the continuum-fitting method is that one have accurate estimates of three system parameters: the black hole mass M, the disk inclination i, and the source distance D. Using optical dynamical data of unprecedented quality and published light curves, we have obtained definitive measurements of these parameters for NovaMus: $M = 11.0^{+2.1}_{-1.4} M_{\odot}$, $i = 43.2^{+1.0}_{-2.7}$, $D = 4.95^{+0.69}_{-0.65}$ kpc (Wu et al. 2015a). With the values of these key parameters in hand, in the following sections we fit X-ray data obtained during the 1991 outburst of NovaMus, estimate the spin of its black hole, and present and discuss our results.

We earlier estimated the spin of the black hole in the prototype of the short-period systems, A0620–00, and found it to be exceptionally low $a_b = 0.12 \pm 0.19$ (Gou et al. 2010). Another notable feature of this study of A0620–00 was the extreme dominance of the thermal disk component: The Compton component contributed <1% of the total flux, a situation that contrasts sharply, for example, with the case of Cyg X-1 where the Compton component is always unfavorably high (>10%; Gou et al. 2011, 2014). For NovaMus, we analyze 15 spectra, 4 of which we refer to as our “gold” spectra because their Compton component is minuscule, contributing...
<0.05% of the total emission. In this circumstance, how one chooses to model the nonthermal component of emission is completely irrelevant, the analysis is simple, and the results are particularly robust. Our estimate of spin for NovaMus is based entirely on our analysis of these four gold spectra, a result we confirm by analyzing the remaining 11 “silver” spectra whose Compton component is in the range 0.4%–7%.

The paper is organized as follows. We discuss our data selection and their reduction in Section 2. In Section 3 we describe our methods of data analysis and present our results, first for the 4 gold spectra, and then for the full sample of 15 gold and silver spectra. In Section 4 we show both for our selected data and the complete data sample the evolution of the disk luminosity and inner disk radius during the entire eight-month period that the source was active. Sections 5 and 6 are devoted respectively to a comprehensive error analysis of the 4 gold spectra, and then to the complete sample of 15 spectra. In Section 7 we discuss and summarize our results.

2. DATA REDUCTION AND SELECTION

The X-ray data we consider for NovaMus are those presented in Ebisawa et al. (1994; hereafter EB94), which were obtained using the Large Area Counter (LAC) on board the Japanese X-ray astronomy satellite Ginga. The LAC was comprised of eight identical proportional counter detectors with a total effective area of 4000 cm² covering the energy range from 2.0 to 37 keV.

We have strictly followed the procedures described in the manual ABC Guide to the Ginga Data Analysis. The data were first cleaned and then the spectra were extracted using the software package ISAS. Among the three methods of extracting the spectra—the Simple Method, the SUD-sort Method, and the Hayashida Method—we chose the latter mainly because the approach is straightforward. Hayashida et al. (1989) developed an accurate model of the background that reproduces the background rate for each energy channel, thereby making it unnecessary to extract separate background spectra. This approach is particularly well suited in the case of a bright source like NovaMus, which reached a peak 1–6 keV X-ray intensity of ~8 Crab (Kitamoto et al. 1992). The extracted spectra were saved in ASCII format and (in order to be compatible with XSPEC) were converted to FITS format using the ftool lac2xspec, which was also used to calculate the relevant response files. As customary, we added a 2% systematic error in each channel in quadrature with the statistical error. In addition, we binned the spectra to contain at least 25 counts per channel to ensure the validity of the χ² statistic.

Because the continuum-fitting method relies on an accurate estimate of luminosity, we corrected the effective area of the LAC using the spectrum of the Crab Nebula as a standard source by the method described in Steiner et al. (2010). Specifically, we analyzed one LAC spectrum of the Crab obtained near the time of the observations in question; compared the fit parameters obtained to those of our reference Crab spectrum of Toor & Seward (1974; Γ = 2.1 and N = 9.7 photons s⁻¹ cm⁻² keV⁻¹); and computed a pair of correction factors: a normalization correction, CTS = 1.164 ± 0.024 (the ratio of the fitted normalization to that of Toor & Seward) and a correction to the slope of the power law, ΔΓTS = 0.022 ± 0.009 (the difference between the observed value of the power-law index and that of Toor & Seward). These corrections were applied in all of our analysis work to each spectrum using the customized XSPEC multi-particle model crabcor.

Initially, 18 spectra, which are described in Table 1, were selected from among the 51 spectra listed in Table 2 of EB94 based on the luminosity of their thermal component. A lower limit on the Eddington-scaled disk luminosity of $L/L_{\text{Edd}} > 0.02$ was adopted to remove any hard-state data for which the disk is likely truncated beyond the radius of the innermost stable circular orbit (ISCO; Esin et al. 1997). The standard upper limit of $L/L_{\text{Edd}} < 0.3$ was imposed to ensure the applicability of the thin-disk model (McCointock et al. 2014). The disk luminosities were computed using the relativistic model described below. Of the 18 spectra, 3 were rejected because they individually contain <10⁶ counts. Table 2 lists our final sample of 15 time-ordered spectra with the 4 gold spectra (SP1–SP4) listed first, followed by the 11 silver spectra (SP5–SP15).

3. DATA ANALYSIS AND RESULTS

All data analysis and model fits were performed using XSPEC version 12.8.2 (Arnaud 1996). The spectra were fitted over the energy range 2.0–25.0 keV. Because of the detector’s limited low-energy response, we were unable to fit for the hydrogen column density N_H. We estimate this parameter using two published measurements of reddening, which are consistent within 0.25σ: $E(B-V) = 0.287 ± 0.004$ (Cheng et al. 1992) and 0.30 ± 0.05 (Shrader & Gonzalez-Riestra 1993). Adopting this latter value and its uncertainty, and assuming $A_V/E(B-V) = 3.1$ and $N_H/A_V = (2.21 ± 0.09) 	imes 10^{21}$ mag⁻¹ cm⁻² (Güver & Özel 2009), we estimate the column density to be $N_H = (0.206 ± 0.035) 	imes 10^{22}$ cm⁻². Throughout the paper, we use

N	Time (1991 UT)	Exposure Time (s)	Counts	L/L_{Edd}	
1	2/13	5:06–6:23	391	10265400	0.201
2	2/13	6:40–6:57	412	10236100	0.197
3	2/13	8:14–8:34	598	14826300	0.196
4	2/14	4:36–4:53	219	5208070	0.189
5	2/14	5:30–5:34	31	739773	0.191
6	2/20	23:31–23:37	83	1619840	0.163
7	2/21	0:23–0:30	166	3212070	0.162
8	3/08	18:04–18:22	472	5285530	0.103
9	3/10	16:56–17:17	321	3303930	0.093
10	3/20	12:56–13:17	532	5175480	0.090
11	3/28	9:37–9:43	140	1607220	0.103
12	3/29	5:54–6:06	457	5251350	0.104
13	3/30	8:36–8:54	655	7187840	0.099
14	4/02	5:04–5:30	934	10122400	0.099
15	4/19	21:06–21:20	31	179975	0.064
16	5/17	3:12–3:20	291	664975	0.031
17	5/17	7:40–8:10	978	2387950	0.033
18	5/18	5:25–5:52	1330	3368750	0.031

Note. All the spectra analyzed by EB94 with Eddington-scaled luminosities between 2% and 30% are listed here. In our analysis, we ignore three of these spectra (Nos. 5, 15, and 16) because they each contain <10⁶ counts.

www.darts.isas.jaxa.jp/astro/ginga/analysis.html
Table 2
Fit Results for Nova Muscae 1991

	SIMPLR	KERRBB2						
	Γ	f_{SC}	α_*	M	χ^2/dof	f	L/L_{Edd}	
SP1	11	1.63 ± 0.46	0.00034 ± 0.00024	0.62 ± 0.01	1.70 ± 0.03	1.70/23	1.63	0.103
SP2	12	1.90 ± 0.67	0.00022 ± 0.00024	0.61 ± 0.01	1.74 ± 0.03	0.98/24	1.63	0.104
SP3	13	1.63 ± 0.47	0.00016 ± 0.00012	0.64 ± 0.01	1.60 ± 0.03	0.82/27	1.63	0.099
SP4	14	1.96 ± 0.30	0.00041 ± 0.00020	0.62 ± 0.01	1.65 ± 0.03	1.07/28	1.63	0.099
SP5	1	2.24 ± 0.05	0.057 ± 0.0048	0.72 ± 0.02	2.30 ± 0.08	1.14/27	1.68	0.201
SP6	2	2.11 ± 0.05	0.034 ± 0.0030	0.63 ± 0.02	2.66 ± 0.08	0.81/27	1.67	0.190
SP7	3	2.00 ± 0.04	0.026 ± 0.0022	0.65 ± 0.02	2.62 ± 0.09	1.72/27	1.67	0.190
SP8	4	2.38 ± 0.06	0.034 ± 0.0038	0.47 ± 0.03	3.32 ± 0.13	1.62/27	1.67	0.190
SP9	6	2.23 ± 0.09	0.022 ± 0.0043	0.54 ± 0.03	2.70 ± 0.12	0.45/27	1.66	0.166
SP10	7	2.39 ± 0.05	0.032 ± 0.0028	0.53 ± 0.02	2.71 ± 0.10	0.66/27	1.66	0.165
SP11	8	2.37 ± 0.38	0.004 ± 0.0037	0.55 ± 0.02	1.86 ± 0.07	0.99/27	1.63	0.104
SP12	9	2.71 ± 0.54	0.004 ± 0.0055	0.53 ± 0.02	1.73 ± 0.07	0.73/24	1.62	0.093
SP13	10	2.94 ± 0.68	0.005 ± 0.0073	0.61 ± 0.01	1.53 ± 0.04	0.94/25	1.62	0.090
SP14	17	2.35 ± 0.05	0.033 ± 0.0040	0.54 ± 0.02	0.67 ± 0.03	1.02/27	1.52	0.033
SP15	18	2.35 ± 0.04	0.066 ± 0.0063	0.62 ± 0.02	0.55 ± 0.03	0.81/27	1.52	0.032

Note. From left to right, and for the model components indicated, the columns contain (1) the name of the spectrum; (2) the corresponding index number from Table 1; (3) photon power-law index; (4) scattering fraction; (5) spin parameter; (6) mass accretion rate in units of 10^{19} g s$^{-1}$; (7) reduced chi-square and degrees of freedom; (8) spectral hardening factor; and (9) bolometric Eddington-scaled X-ray luminosity of the thermal component. For the silver spectra SP5–SP15 (which include a reflection component modeled using REFLECT and KERRDISK), the values of additional fit parameters are given in Table 4.

Table 3
Influence of Disk Temperature on the Spin Parameter

	T_1 (KeV)	T_2 (KeV)	Relative Difference	$a_0(T_1)$	$a_0(2T_1)$	$a_0(0.5T_1)$
SP1	0.713	0.716	0.4%
SP2	0.719	0.720	0.1%
SP3	0.727	0.733	0.8%
SP4	0.720	0.716	0.5%
SP5	0.831	0.810	2.6%	0.7134	0.7143	0.7130
SP6	0.800	0.784	2.0%	0.6338	0.6340	0.6311
SP7	0.844	0.795	6.2%	0.6447	0.6443	0.6450
SP8	0.777	0.757	2.6%	0.5131	0.5144	0.5126
SP9	0.762	0.740	3.0%	0.5735	0.5735	0.5729
SP10	0.760	0.735	3.4%	0.5422	0.5438	0.5416
SP11	0.702	0.707	0.7%	0.5634	0.5633	0.5634
SP12	0.674	0.678	0.5%	0.5434	0.5434	0.5435
SP13	0.674	0.702	4.0%	0.6166	0.6165	0.6169
SP14	0.506	0.502	0.8%	0.5428	0.5445	0.5426
SP15	0.510	0.497	2.6%	0.6282	0.6302	0.6278

Note. T_1 is our fitted value of temperature and T_2 is the value reported by EB94; N is the index number given in Table 1.

this value of N_H and the photoelectric absorption model TBABS with the abundances set using the command abund wilm (Wilms et al. 2000).

The errors considered in this section are those due solely to counting statistics. The dominant errors due to the uncertainties in the input parameters $M, i, D,$ and N_H are considered in the following two sections.

As in our earlier work on black hole spin (e.g., Gou et al. 2009, 2010), before embarking on the relativistic analysis we performed a preliminary nonrelativistic analysis of the spectra as a check that we have extracted them properly. To this end, for NovaMus we compare our results to those of EB94. Our model is $\text{TBABS*CRABCOR*SIMPL*DISKBB}$. The convolution model SIMPL is an empirical model of Comptonization with two fit parameters, the familiar photon index Γ and the scattering fraction—the fraction f_{SC} of the seed photons that are scattered into the power-law tail—which is a straightforward measure of the strength of the Compton component (Steiner et al. 2009b). We use the same nonrelativistic thin-disk model as EB94, namely DISKBB. In Table 3, we give for each of the 15 spectra our estimate of the inner disk temperature T_1 and compare our values to those obtained by EB94 (denoted in the table as T_2). Our results are consistent with those of EB94 to within about 4%. It is likely that the small differences in temperature result from using different models for the Compton component: We used SIMPL and EB94 used POWERLAW. Support for this view is provided by the results for the four gold spectra (SP1–SP4), which are essentially uncontaminated by power-law emission; for these spectra, the temperature differences are <1%.

Now, we turn to the relativistic analysis of our four gold spectra. Replacing DISKBB by our workhorse relativistic disk model KERRBB, our complete model becomes

\[\text{TBABS} \ast \text{CRABCOR} \ast (\text{SIMPL} \otimes \text{KERRBB2}) \]

The components TBABS, CRABCOR, and SIMPL are described above. The key component of the model is KERRBB2, a thin-accretion-disk model that includes all relativistic effects, self-irradiation of the disk, limb darkening, and the effects of spectral hardening (Li et al. 2005; McClintock et al. 2014). The two fit parameters of KERRBB2 are the spin parameter \(a_\ast \) and the mass accretion rate \(M \). The effect of spectral hardening is incorporated into the parent model KERRBB via a pair of look-up tables for the hardening factor \(f \) corresponding to two representative values of the viscosity parameter: \(\alpha = 0.01 \) and 0.1. The entries in the table were computed using a second relativistic disk model \(\text{MSPEC} \) (Davis et al. 2005; Davis & Hubeny 2006). In fitting, we turned on the effects of self-irradiation of the disk (rflag = 1) and limb darkening (lflag = 1).

In this section, we fix the three external input parameters at their best-fit values: \(M = 11.0 \, M_\odot \), \(i = 43^\circ \) and \(D = 4.95 \, \text{kpc} \) (Wu et al. 2015a). An inspection of Table 2 shows that the fits to the four gold spectra are good, the scattering fraction negligible, the luminosity \(\approx 10\% \) of the Eddington limit, and the spin parameter is very precisely determined and lies in a narrow range, \(a_\ast = 0.61-0.64 \), which is the principal result of this section. The much larger error in the spin parameter due to uncertainties in the parameters \(M, i, D, \) and \(N_0 \) is considered in the following section.

We now confirm our estimate of \(a_\ast \) by presenting results for the silver spectra (SP5–SP15). Although these spectra are strongly dominated by the thermal component and quite suitable for application of the continuum-fitting method, obtaining good fits requires that we add a minor reflection component. The complete model we employ is

\[\text{TBABS} \ast \text{CRABCOR} \ast (\text{SIMPLR} \otimes \text{KERRBB2}) \]

\[+ \text{KERRDISK} \ast (\text{IREFLECT} \otimes \text{SIMPLC}) \ast \text{KERRDISK}. \]

While more complex, the model is similar to the one used in analyzing the gold spectra. The thin-disk model KERRBB2 is again decidedly the main component. The two multiplicative models out front are the same as before. Likewise, the first term in parenthesis is the same except that SIMPL has been replaced by SIMPLR, a variant of SIMPL that computes the Compton component to accommodate a nonzero reflection fraction, and that has the ability to isolate the Compton component (Steiner et al. 2011).

The second and third additive terms in parenthesis model the reprocessed emission from the disk that results from its illumination by the power-law component. The model for the illuminating power-law component itself (the term on the far right) is SIMPLC, which is equivalent to SIMPLR \(\otimes \) KERRBB2 minus the unscattered thermal component. The component IREFLECT acts solely on the power-law component to generate the reflection continuum with absorption edges; key parameters of IREFLECT are the disk ionization parameter \(\xi \) and the disk temperature \(T \). We fix the value of the emissivity index, \(q = 3 \).

The second and third additive terms in parenthesis model the reprocessed emission from the disk that results from its illumination by the power-law component. The model for the illuminating power-law component itself (the term on the far right) is SIMPLC, which is equivalent to SIMPLR \(\otimes \) KERRBB2 minus the unscattered thermal component. The component IREFLECT acts solely on the power-law component to generate the reflection continuum with absorption edges; key parameters of IREFLECT are the disk ionization parameter \(\xi \) and the disk temperature \(T \). We fix the value of the emissivity index, \(q = 3 \).
Shown for each spectrum are the data, the model components, and the total model. An inspection of the gold spectrum (left panel) reveals at a glance the total dominance of the thermal component that constrains the spin parameter; there is no evidence of reflection, and how one chooses to model the power-law component is unimportant. By comparison, for the three silver spectra (especially SP9, and SP10) both the power-law and reflected components contribute significantly in the Wien tail to the total flux.

Figure 2 shows three fits to the gold spectrum SP3. The best-fit spectrum in the center panel is identical to that shown in Figure 1. The left and right panels show respectively the effect on the fit of fixing the spin parameter at -3σ and 3σ from its best-fit value of $a_*=0.64$. The lower quality of these latter fits is evident from an inspection of the fit residuals and from the values of reduced χ^2 given in the upper panels.

An inspection of Table 2 shows that the spin parameter for the 11 silver spectra is quite precisely determined. However, its value ranges rather widely from 0.47 to 0.72, while its average value is $a_* = 0.58 \pm 0.02$ (standard deviation), which is in good agreement with the value found for the gold spectra. The luminosity for the silver spectra likewise ranges widely, from 3% to 20% of the Eddington limit.

The results given in Table 2 for all 15 spectra are for our baseline value of the viscosity parameter, $\alpha = 0.1$. For our other fiducial value, $\alpha = 0.01$, the spin increases slightly and systematically, as we show in Section 5, and as we have found to be consistently the case in measuring the spins of other black holes. We assume throughout the paper that the metallicity of
Figure 3. Top: the Eddington-scaled luminosity of the accretion disk vs. time for the full eight-month outburst cycle. Our selected gold and silver data are plotted in red as filled and open circles, respectively. Rejected data are plotted as black crosses. As discussed in the text, all our selected data lie in the unshaded region with disk luminosities in the range $0.02 < L/LEdd < 0.3$. The three rejected data points in this region correspond to spectra with $<10^5$ counts or an unsuitably strong Compton component ($f_{SC} > 25\%$; Steiner et al. 2009a). Bottom: the stability of the inner disk radius for the selected data over time is apparent despite large changes in luminosity.

This plot is of the same form as Figure 1 in Steiner et al. (2010) that shows results for 766 spectra of LMC X-3. The purpose of our Figure 3 is to show the stability of R_{ISCO}/M—and hence the spin parameter a_\ast—for the selected data: despite an order-of-magnitude variation in luminosity, R_{ISCO}/M remains constant to better than 11.4% for the 15 selected spectra and varies $<4.4\%$ for the 4 gold spectra.

5. COMPREHENSIVE ERROR ANALYSIS: GOLD SPECTRA

We now estimate the error in a_\ast resulting from the uncertainties in the input parameters M, i, D, and N_H, which dominate the error budget (including uncertainties in the model) in measuring spin via the continuum-fitting method (see McClintock et al. 2014 and references therein). We first quantitatively explore for each parameter separately the effect of its uncertainty on the fitted value of the spin parameter. Then, for the four gold spectra we describe our standard Monte Carlo (MC) error analysis and present our adopted final results. We perform our MC analysis on each spectrum separately, which is our usual approach, and we also fit the four gold spectra jointly.

5.1. Effect of Varying the Input Parameters Individually

In turn, we fixed three of the input parameters M, i, D, and N_H and varied the fourth in order to assess its effect on the best-fit value of a_\ast. The results, which are shown in Figure 4, demonstrate that the value of the spin parameter is most sensitive to uncertainties in the distance, followed in succession by uncertainties in mass and inclination. As expected, the uncertainty in N_H is relatively unimportant because the column density is modest and the detector is unresponsive below 2 keV (Section 2).
One can qualitatively understand the dependence of \(a_\ast \) shown in Figure 4 on the key parameters \(M, i, \) and \(D \). A useful starting point is the familiar fact that one can estimate the solid angle subtended by a star using measurements of its flux and temperature. In the continuum-fitting method one likewise uses the X-ray flux and temperature to estimate the solid angle of the source, \((R_{\text{ISCO}}/D)^2 \cos^2 i \). Meanwhile, \(a_\ast \) is inversely related to \((R_{\text{ISCO}}/D) \) by the Bardeen equation (Section 4), varying monotonically from \(-1\) to \(0\) to \(+1\) as \(R_{\text{ISCO}}/M \) varies from \(9\) to \(6\) to \(1\), respectively. Thus, from the expression for the solid angle it is clear that larger values of either \(D \) or \(i \) imply smaller values of \(a_\ast \). Meanwhile, the inverse relation between \(a_\ast \) and the dimensionless radius \(R_{\text{ISCO}}/M \) also implies that larger values of \(M \) imply in turn larger values of \(a_\ast \).

5.2. MC Error Analysis: Individual Fits

The MC method has long been our standard approach to error analysis (Liu et al. 2008; Gou et al. 2009, 2010). Here, we

Figure 4. Dependence of the spin parameter \(a_\ast \) on each of the four input parameters considered individually. The difference between the value of a given parameter and its fiducial value is expressed in standard deviations. The jaggedness of the lines is an artifact of the MC sampling.

Figure 5. Histograms of the distribution of the spin parameter computed using the MC method for our gold spectra SP1–SP4 (Table 2). The histograms plotted using a thin solid line and a dashed line were computed for \(\alpha = 0.1 \) and \(\alpha = 0.01 \), respectively. The summation of these two histograms is shown as a bold solid line. The histograms were computed for 3000 parameter sets for each spectrum and for each of the values of the viscosity parameter, for a total of 24,000 data points. The estimate of the spin parameter given is our final, adopted value.
consider only the four gold spectra and the effects of uncertainties in the four parameters M, i, D, and N_H. In our analysis, we assumed that N_H is Gaussian distributed, and we used the log-normal function to describe the asymmetric distributions of the parameters M, i, and D. We first fixed the viscosity parameter to our baseline value, $\alpha = 0.1$. Following the prescription described in Gou et al. (2009, 2010), for each of the four spectra (SP1–SP4 in Table 2) we (1) generated 3000 sets of the four parameters assuming that they are independent and normally distributed; (2) computed for each set of input parameters the KerrBB2 look-up table for the spectral hardening factor f; and (3) fitted the spectrum to determine a_\ast.

We then performed the MC analysis for $\alpha = 0.01$ following precisely the same procedures. The resultant histograms for $\alpha = 0.01$ and $\alpha = 0.1$ showing the number of occurrences versus the spin parameter, and a summation of the two histograms, are presented in Figure 5 by a dashed line, a thin solid line and a thick solid line, respectively. Clearly, the effect of varying the viscosity parameter is slight. Adopting the summed histogram, we arrive at our final adopted estimate of the spin parameter: $a_\ast = 0.63^{+0.16}_{-0.19}$ (1σ level of confidence). Uncertainty ranges at three other levels of confidence are summarized in Table 5. The effect on the spin parameter of varying individually the four input parameters is illustrated in Figure 6.

5.3. MC Error Analysis: Joint Fit

We now show that the alternative approach of fitting the four gold spectra simultaneously produces results that are essentially identical to our adopted results (which were obtained by fitting the spectra individually). In this case, we allowed all of the parameters to vary freely except the parameter of interest.
namely, the spin parameter, which has a unique physical value. Repeating the MC analysis using exactly the same procedures described above, we arrived at precisely the same estimate of spin as before at the 1σ level of confidence: $a_*=0.63_{-0.19}^{+0.16}$. Meanwhile, as summarized in the rightmost column of Table 5, the uncertainty ranges at other levels of confidence differ very slightly from our adopted results.

6. COMPREHENSIVE ERROR ANALYSIS: COMPLETE SAMPLE OF 15 SPECTRA

In order to confirm our prime result for the 4 gold spectra, we performed an MC error analysis on our complete sample of 15 spectra employing exactly the same procedures described in Section 5.2. The spectra were analyzed individually. Their histograms are shown in Figure 7. The final result is the

![Figure 7](image-url)

Figure 7. Results of our MC error analysis for the complete sample of 15 spectra. The histogram in each panel is a summation of a pair of histograms, one computed for $\alpha=0.1$ and the other for $\alpha=0.01$, as in Figure 5.

![Figure 8](image-url)

Figure 8. Histograms of the distribution of spins generated by our MC error analysis for the complete sample of 15 spectra. For a description of this figure, see Figure 5.
summed histogram in Figure 8 plotted as a heavy solid line, which is to be compared directly to its counterpart histogram in Figure 5. In this case, the uncertainty in the spin parameter is slightly less, but the central value is essentially unchanged, which confirms our adopted result for the four gold spectra.

Figure 9 (like Figure 6 for the gold spectra) shows the effect on the spin parameter of varying individually the four input parameters.

7. DISCUSSION AND CONCLUSIONS

Based on a sample of four sources, Narayan & McClintock (2012; hereafter NM12) proposed a relationship between jet power and black hole spin that is consistent with the prediction of the B–Z jet model (Blandford & Znajek 1977). Steiner et al. (2013) confirmed the relation with a fifth source and used the NM12 model to predict the spins for an additional six black holes including NovaMus. The expression for the dimensionless jet power is

$$P_{\text{jet}} = \left(\frac{\nu}{5 \, \text{GHz}} \right) \left(\frac{S_{\nu,0}^{\text{tot}}}{\text{Jy}} \right) \left(\frac{D}{\text{kpc}} \right)^2 \left(\frac{M}{M_\odot} \right)^{-1},$$

where $S_{\nu,0}^{\text{tot}}$ is the beaming-corrected flux,

$$S_{\nu,0}^{\text{tot}} = S_{\nu,\text{obs}} \times \delta^{k-3},$$

ν is the observing frequency, D the distance, M the black hole mass, and δ the beaming correction factor. The parameter k is the radio spectral index whose value for NovaMus is 0.5 (Ball et al. 1995). For the approaching and receding jets, $\delta = (\Gamma(1 - \beta \cos i))^{-1}$ and $\delta = (\Gamma(1 + \beta \cos i))^{-1}$, respectively (Mirabel & Rodríguez 1999).

Figure 10 is a revised version of Figure 1 from Steiner et al. (2013) that shows jet power versus spin for two typical values of Γ. Ignoring the point for NovaMus (red open square), the difference between our figure and the one of Steiner et al. is that we use for GRS 1915+105 new estimates of the key parameters: $M = 12.4 M_\odot$, $D = 8.6$ kpc, $i = 60^\circ$, and $a_\theta = 0.98^{+0.04}_{-0.02}$ (Reid et al. 2014). Using these data and the relations above, we re-estimated the jet power for GRS 1915+105 and updated the corresponding data point in Figure 10. We then re-fitted the data for the five sources (blue filled circles) using the least χ^2 method; the resultant relation...
describing the model curves in Figure 10 is

\[P_{\text{jet}} = \left(\frac{a_*}{1 + \sqrt{1 - a_*^2}} \right)^2 \times \begin{cases} \text{Exp}(3.9 \pm 0.5) & (\Gamma = 2) \\ \text{Exp}(6.9 \pm 0.5) & (\Gamma = 5) \end{cases} \]

In estimating the jet power of NovaMus, for the 5 GHz flux we use values that range from 0.2 to 1.0 Jy (see Footnote 1 of Table 1 in Steiner et al. 2013), which we take to be a 1σ range. As the central value, we adopt the geometric mean of these two values, namely 0.45 Jy. The flux is therefore \(S_{\nu, \text{obs}} = 0.45^{+0.55}_{-0.25} \) Jy or, equivalently, \(\log(S_{\nu, \text{obs}}/\text{Jy}) = -0.35 \pm 0.35 \). Using the equations above, the corresponding values of jet power are \(0.35^{+0.43}_{-0.15} \) for \(\Gamma = 2 \) and \(3.5^{+4.3}_{-1.9} \) for \(\Gamma = 5 \). Using these estimates of jet power and our MC estimate of spin for NovaMus, we added a sixth data point to Figure 10. Considering the uncertainties in both the model and the data, the point for NovaMus lies off the model curves by 1.9σ for \(\Gamma = 2 \) and 2.1σ for \(\Gamma = 5 \).

Morningstar et al. (2014, M14) reported a retrograde spin for the black hole in NovaMus: \(a_* = -0.25^{+0.05}_{-0.04} \) (90% confidence level). As discussed in detail by Fragos & McClintock (2015), this is a surprising result. In contrast, we find a moderately high value of spin, \(a_* = 0.63^{+0.16}_{-0.10} \), and rule strongly against a retrograde value: \(a_* > 0.17 \) (2σ or 95.4% confidence level).

We and M14 analyzed the same Ginga X-ray data and we both used the continuum-fitting method. Ignoring the crudeness of M14’s error analysis and treatment of spectral hardening, the crucial difference between our study and theirs is the choice of the key input parameters: The values they gleaned from the literature were \(M = 7.24 \pm 0.07 \) \(M_\odot \), \(i = 54 \pm 1^\circ \), and \(D = 5.89 \pm 0.26 \) kpc. Meantime, our adopted values are \(M = 11.0^{+2.1}_{-1.4} \) \(M_\odot \), \(i = 43.2^{+2.1}_{-2.7}^\circ \), and \(D = 4.95^{+0.69}_{-0.85} \) kpc (Wu et al. 2015a). As Figure 4 and the text in Section 5.1 make clear, each of M14’s input parameters considered individually—specifically, their 50% lower mass, 10.8 higher inclination, and 16% greater distance—is responsible for driving their spin estimate downward, and for their conclusion that the spin is retrograde.

The principal reference M14 cite for the values of \(M, i, \) and \(D \) they adopt is a one-page conference paper (Gelino 2004), which in turn is based on Gelino et al. (2001). This latter paper, which arrives at an inflated estimate of the inclination, and hence low value for the mass, is based on a flawed analysis of the ellipsoidal light curves that ignores a substantial contribution of light from the accretion disk (see Sections 3 and 5 in Wu et al. 2015b).

Suleimanov et al. (2008, p. 275) estimated the spin of NovaMus using “an analytic model of an externally truncated accretion \(\alpha \)-disk.” They obtained a value slightly lower than ours. By inspection of their Figure 9, and adopting our best-fit value of black hole mass \((M = 11.0 \) \(M_\odot \)), one infers that their estimate of the spin is \(a_* < 0.4 \).

The X-ray data we have used in estimating the spin of NovaMus via the continuum-fitting method are of extraordinary quality. In particular, despite the excellent performance of the Ginga LAC detectors at high energies, the four gold spectra show essentially no evidence of a power-law component. These pure thermal spectra, which are ideal for application of the continuum-fitting method, our accurate estimates of \(M, i, \) and \(D, \) and the demonstrated robustness of the continuum-fitting method provide a firm estimate of the spin of the black hole in NovaMus: \(a_* = 0.63^{+0.16}_{-0.10} \). This result is confirmed by our analysis of eleven additional spectra of lower quality.

We thank the anonymous referee for several helpful criticisms and comments. L.G. is supported by the Strategic Priority Research Program “The Emergence of Cosmological
Structures” of CAS grant XDB09000000, NSFC grant 11333005, and NAOC grant Y234031001.

REFERENCES

Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby, & J. Barnes (San Francisco, CA: ASP), 17

Ball, L., Kesteven, M. J., Campbell-Wilson, D., Turtle, A. J., & Hjellming, R. M. 1995, MNRAS, 273, 722

Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347

Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433

Brandt, S., Castro-Tirado, A. J., Lund, N., et al. 1992, A&A, 254, L39

Brenneman, L. W., & Reynolds, C. S. 2006, ApJ, 652, 1028

Cheng, F. H., Horne, K., Koyama, K., Awaki, H., & Takano, S. 1989, PASJ, 41, 373

Davis, S. W., Blaes, O. M., Hubeny, I., & Turner, N. J. 2005, ApJ, 621, 372

Davis, S. W., & Hubeny, I. 2006, ApJS, 164, 530

Ebisawa, K., Ogawa, M., Aoki, T., et al. 1994, PASJ, 46, 375

Esin, A. A., McClintock, J. E., & Narayan, R. 1997, ApJ, 489, 865

Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729

Fragos, T., & McClintock, J. E. 2015, ApJ, 800, 17

Fragos, T., Tremmel, M., Rantsiou, E., & Belczynski, K. 2010, ApJL, 719, L79

Gelino, D. M. 2004, in RMxAA Conf. Ser. 27, Vol. 20, ed. G. Tovmassian, & E. Sion, 214

Gelino, D. M., Harrison, T. E., & McNamara, B. J. 2001, AJ, 122, 971

Gou, L., McClintock, J. E., & Narayan, R., et al. 2010, ApJL, 718, L122

Gou, L., McClintock, J. E., Liu, J., et al. 2009, ApJ, 701, 1076

Gou, L., McClintock, J. E., Reid, M. J., et al. 2011, ApJ, 742, 85

Gou, L., McClintock, J. E., Remillard, R. A., et al. 2014, ApJ, 790, 29

Güver, T., & Özel, F. 2009, MNRAS, 400, 2050

Hayashida, K., Inoue, H., Koyama, K., Awaki, H., & Takano, S. 1989, PASJ, 41, 373

Kitamoto, S., Tsunemi, H., Miyamoto, S., & Hayashida, K. 1992, ApJ, 394, 609

Kulkarni, A. K., Penna, R. F., Shcherbakov, R., et al. 2011, MNRAS, 414, 1183

Li, L.-X., Zimmerman, E. R., Narayan, R., & McClintock, J. E. 2005, ApJS, 157, 335

Liu, J., McClintock, J. E., Narayan, R., Davis, S. W., & Orosz, J. A. 2008, ApJL, 679, L37

McClintock, J. E., Narayan, R., & Steiner, J. F. 2014, SSRv, 183, 295

McClintock, J. E., Shafee, R., Narayan, R., et al. 2006, ApJ, 652, 518

Mirabel, I. F., & Rodríguez, L. F. 1999, ARA&A, 37, 409

Morningstar, W. R., Miller, J. M., Reis, R. C., & Ebisawa, K. 2014, ApJL, 784, L18

Narayan, R., & McClintock, J. E. 2012, MNRAS, 419, L69

Noble, S. C., Krolik, J. H., Schnittman, J. D., & Hawley, J. F. 2011, ApJ, 743, 115

Penna, R. F., McKinney, J. C., Narayan, R., et al. 2010, MNRAS, 408, 752

Reid, M. J., McClintock, J. E., Steiner, J. F., et al. 2014, ApJ, 796, 2

Remillard, R. A., McClintock, J. E., & Bailyn, C. D. 1992, ApJL, 399, L145

Reynolds, C. S. 2014, SSRv, 183, 277

Ross, R. R., Fabian, A. C., & Young, A. J. 1999, MNRAS, 306, 461

Shafee, R., McKinney, J. C., Narayan, R., et al. 2008, ApJL, 687, L25

Shrader, C. R., & Gonzalez-Riestra, R. 1993, A&A, 276, 373

Steiner, J. F., & McClintock, J. E. 2012, ApJ, 745, 136

Steiner, J. F., McClintock, J. E., & Narayan, R. 2013, ApJ, 762, 104

Steiner, J. F., McClintock, J. E., Orosz, J. A., et al. 2014, ApJL, 793, L29

Steiner, J. F., McClintock, J. E., Remillard, R. A., Narayan, R., & Gou, L. 2009a, ApJL, 701, L83

Steiner, J. F., McClintock, J. E., Remillard, R. A., et al. 2010, ApJL, 718, L117

Steiner, J. F., Narayan, R., McClintock, J. E., & Ebisawa, K. 2009b, PASP, 121, 1279

Steiner, J. F., Reis, R. C., McClintock, J. E., et al. 2011, MNRAS, 416, 941

Suleimanov, V. F., Lipunova, G. V., & Shakura, N. I. 2008, A&A, 491, 267

Toor, A., & Seward, F. D. 1974, AJ, 79, 995

Wilms, J., Allen, A., & McCray, R. 2000, ApJL, 542, 914

Wu, J., Orosz, J. A., McClintock, J. E., et al. 2015a, ApJ, 825, 46

Wu, J., Orosz, J. A., McClintock, J. E., et al. 2015b, ApJ, 806, 92

Zhang, S. N., Cui, W., & Chen, W. 1997, ApJL, 482, L155

Zhu, Y., Davis, S. W., Narayan, R., et al. 2012, MNRAS, 424, 2504

Zimmerman, E. R., Narayan, R., McClintock, J. E., & Miller, J. M. 2005, ApJL, 618, 832