Carbon metabolism and transcriptional variation in response to salt stress in the genome shuffled *Candida versatilis* and a wild-type salt tolerant yeast strain†

Wei Qi,abc Wen-Tao Zhangd and Fu-Ping Lu*abc

The carbon metabolism and molecular mechanisms of adaptation response when exposed to conditions causing osmotic stress in strains of a wild-type of *Candida versatilis* (WT) and S3–5 were investigated. The levels of glucose, glycerol and ethanol, as well as transcriptional variation of eight genes that encoded hexokinase (*HXK1*), mitogen-activated protein kinase (*HOG1*), glycerol-3-phosphate dehydrogenase (*GPD1*), aquaglyceroporin (*FPS1*), pyruvate kinase (*PYK1*), pyruvate decarboxylase (*PDC1*), aldehyde dehydrogenase (*ALD6*), alcohol dehydrogenase (*ADH1*) in short-term response to salt stress were determined. The results showed that an increase in salt concentration negatively affected glucose consumption and ethanol production in *C. versatilis*. In contrast, glycerol produced by *C. versatilis* was positively affected by salt addition. The results showed that *HXK1* contributes to rerouting glycolytic flux towards higher glycosylation. The glycerol production generated by S3–5 was higher as compared to WT, which is ascribed to the up-regulated expression of *GPD1* and *HOG1* genes and down-regulated expression of the *FPS1* gene after the initiation of stress treatment.

Introduction

Candida versatilis, a salt-tolerant yeast, is widely used in the fermentation of soy sauce, soybean paste and miso. It could contribute in a positive manner to the flavour development through a series of metabolic activities, such as formation of 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) and 4-ethyl guaiacol (4-EG). During the fermentation process, yeast is subjected to a high salt osmotic stress which would affect its viability and fermentation efficiency. Dynamic changes occur in the complex biological networks which would provide insight into the link between the genome-expression, proteins and metabolites, etc.

Various studies have been performed to investigate salt-tolerant yeast responses and adaptation stress mechanisms by which cells adapt to ‘adverse’ conditions in the fermentation, including (1) its transport systems for adjusting ion homeostasis and counteracting the toxic effects caused by sodium ions, such as plasma membrane H⁺-ATPase and Na⁺/H⁺ antiporter; (2) synthesis and accumulation compatible solutes, such as glycerol, trehalose, mannitol, which stabilize the activity and structure of diverse proteins and membranes; (3) regulation membrane fluidity and permeability by changing lipid components; (4) multiple signalling pathways to perceive and to quickly respond to altered osmolarity, such as high osmolarity glycerol (HOG) response pathway.

Cells adapt to rapid and drastic environmental changes by turning ‘on’ and ‘off’ specific subsets of genes and proteins. From a molecular point of view, it is important to obtain information of signal transduction and the transcriptional response on the yeast adaptation during stress-responsive phase. The cellular mechanisms of adaptation to salt stress in strains of a wild type of *C. versatilis* (WT) and S3–5, genome shuffling strains of *C. versatilis* with improving tolerance to salt, has been well conducted in the previous research. However, there have been very few studies on this topic by rapidly shifting *Candida versatilis* cells from a medium without salt to stressful conditions. *C. versatilis* growing exponentially on glucose produces glycerol and ethanol, the both compounds can be used as single carbon and energy sources. Moreover, glycerol...
have been implicated as potential stress protectants that accumulate in yeasts during various stress conditions. In the present study, glucose, glycerol and ethanol metabolism as well as expression of related genes (underlined in Fig. 1) was analyzed by the treatment of NaCl. The investigation of such molecular responses will help us to understand the molecular mechanisms by which cells adapt to fermentation conditions.

Materials and methods

Chemicals
Analytical grade chemicals and solvents were purchased from Tianjin Chemical Reagent Research Institute (Tianjin, China). Chromatographic grade (HPLC) acetonitrile were obtained from Merck (Darmstadt, Germany). Double-distilled water for the dilution of samples was purified using a Milli-Q system (Millipore, Bedford, MA, USA).

Yeast strains
Yeast strains C. versatilis wild-type (WT) and S3–5 used in this work were kept in our laboratory. The genome shuffled strain S3–5 was derived from the WT yeast strain C. versatilis, initially isolated for improved tolerance to salt.

Media and growth conditions
C. versatilis cells were grown in 10 ml YPD at 30 °C with rotary shaking (at 180 rpm). After 24 h incubation, the culture was transferred to 250 ml flask containing 100 ml of YPD (1% yeast extract, 2% peptone, 2% glucose). The yeast was incubated to its early stationary phase (OD 1.0 (600 nm)). Cells in early stationary phase were inoculated at 10% (v/v) in YPD containing 0, 2 M and 4 M NaCl and incubated at 30 °C.

Analytical methods and data analysis
5 ml culture was undertaken at 0, 0.5, 1, 2, 4, 6 h and filtered using a 0.45 μm membrane filter (Millipore, France) under a pump-applied vacuum. The clarified supernatant was used for determination of extra-cellular glucose, glycerol and ethanol, and the filtrate was used for dry biomass assay.

Dry biomass
The filtrate was oven-dried at 105 °C for 4 h to constant mass.

Intra- and extra-cellular concentrations of glucose and glycerol
Cells (5 ml culture) were collected by centrifugation (5000 rpm, 4 °C, 5 min) and washed twice with double-distilled water and heated in a constant temperature water bath at 95 °C for 15 min. After centrifugation as mentioned previously, the supernatant was used to measure the internal glucose and glycerol.

The glucose and glycerol was performed using a Shimadzu 20AB (Shimadzu, Japan), with a refractive index detector after separation in an Aminex HPX-87H column. The column oven and RID were set to 30 °C and 35 °C respectively. The acetonitrile–water (70%, v/v) mix was used as the eluent at a flow rate of 1 ml min⁻¹. The intra-cellular glucose and glycerol content was expressed as a percentage of dry biomass.

The content of external ethanol
The ethanol was analyzed by headspace solid phase micro-extraction (HS-SPME) gas chromatography spectrometry as De Martinis described. The GC analysis was performed using a Shimadzu GC with flame ionization detector (GC-FID) and equipped with a DB-5MS fused silica column (30 m × 0.25 mm × 0.25 μm, J&W Scientific, Folsom, CA). The oven temperature was maintained at 60 °C for 10 min and increased to 240 °C at a rate of 5 °C min⁻¹. The injector and transfer-line temperatures were 250 °C and 280 °C, respectively. Helium was used as carrier gas (about 47 ml min⁻¹, 30 kPa) and the compounds were detected via a flame-ionization detector.

RNA isolation and real-time PCR analysis
Total RNA prepared using the MiniBEST Universal RNA Extraction Kit (Takara, Dalian, China). Three biological replicates were prepared for each accession and salt combination. RNA was quantified by Nanodrop (ND-2000, NanoDrop Technologies, USA); quality was assessed by agarose gel analyses and 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Ten micrograms of total RNA from each sample was converted to double-stranded cDNA using the PrimeScript™ RT reagent Kit (Perfect Real Time) (TaKaRa, Dalian, China).

Primers (Table S1†) were designed using primer premier 5.0 (Premier, Canada) and provided by Sangon Biotech Co., Ltd. (Shanghai, China).

Real-time PCR analysis was performed in Eppendorf mastercycler ep realplex® (Eppendorf, Germany) using SYBR Green. Reactions were performed in a volume of 20 μl containing 2 μl cDNA, 0.8 μl forward and reverse primers, and 10 μl SYBR®
Premix Ex Taq™ II (Takara, Dalian, China). Duplicates of each sample and negative controls were included in the analysis. The amplification conditions were as follow: 95 °C for 30 s; 40 cycles of 95 °C for 5 s, 55 °C for 30 s. Each sample was repeated three times. Data were analyzed by the $2^{-\Delta\Delta Ct}$ method.

Statistical analysis

Statistical significance was determined using the SAS statistical analysis program, Version 8.01 (North Carolina State University, USA).

Results and discussion

The level of glucose of the salt-tolerant yeast Candida versatilis under stress conditions

Glucose was transported by facilitated diffusion via carrier protein transporter in Candida versatilis. Extra-cellular glucose was absorbed and consumed by C. versatilis to maintain energy metabolism and central carbon metabolism (Fig. 2B and D). The level of intra-cellular glucose of C. versatilis after NaCl treatment was higher than that in cells treated without stressing agent (Fig. 2A and C). Our result also indicated that glucose was uptaked and utilized by S3–5 was higher as compare to WT (Table 1). The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Prior research pointed out that three genes, SNF3, HXT1 and HXT2, encode three different glucose transporters, and the rate of sugar uptake in yeast cells is controlled by changes in affinity of the corresponding transporters as well as by an irreversible inactivation that affects their V_{max}. But the mechanisms involved in glucose transport processes of Candida versatilis are unknown at present.

Glycerol accumulation of the salt-tolerant yeast Candida versatilis under stress conditions

As shown in Fig. 3A and C, intra-cellular glycerol after treatment of NaCl was obviously more than control group, moreover, the intra-cellular glycerol by the treatment of 2 M NaCl was higher than that by 4 M NaCl. The similar phenomenon has also been observed. Salt stress was accompanied by an increase in the intracellular level of glycerol, which could decrease the intracellular water potential, restore water influx and consequently restore cell volume and turgor pressure. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. In yeasts, salt-tolerant yeast Debaryomyces hansenii and Saccharomyces cerevisiae, exposed to strong osmotic stress the intracellular glycerol concentration can reach molar levels.

Table 1 Summary of salt-tolerant yeast Candida versatilis: expressing the carbon metabolism enzymes in response to salt stress

Strains	NaCl (g L$^{-1}$)	Dry cell mass (g L$^{-1}$)	Glucose consumption rate (mg L$^{-1}$ h$^{-1}$)	Glycerol productivity (g L$^{-1}$ h$^{-1}$)	Ethanol productivity (g L$^{-1}$ h$^{-1}$)
WT	0	3.84	3.49	0.28	11.40
	90	3.02	2.05	1.42	9.08
	180	1.49	2.81	2.04	1.65
S3–5	0	4.46	4.63	0.59	11.75
	90	3.20	3.77	2.26	9.21
	180	1.73	3.47	3.81	1.88

Fig. 2. The content of glucose of the salt-tolerant yeast Candida versatilis: (A) intracellular glucose of WT, (B) extracellular glucose of WT, (C) intracellular glucose of S3–5, (D) extracellular glucose of S3–5.
Extra-cellular glycerol level of *C. versatilis* after treatment of NaCl was significantly higher than salt-free group, and extra-cellular glycerol increased with increasing salt concentration in the medium (Fig. 3B and D). The intra-, extra-cellular glycerol of S3–5 was higher than that of WT. The level of intra-cellular glycerol produced by S3–5 increased 17.2% than WT at 6 h,
and extra-cellular glycerol level of S3–5 increased by 57.6% than WT at the same time.

There are two different types of active-transport systems for glycerol transport, \(\text{Na}^+/\text{glycerol} \) and \(\text{H}^+/\text{glycerol} \) symports,\(^{26} \) and glycerol of \(\textit{Candida versatilis} \) transported by proton symport.\(^{3} \) The previous conclusion that the salt tolerance of S3–5 was higher than WT ascribed to the higher glycerol production, have verified by the experimental results.\(^{6} \)

Ethanol accumulation of the salt-tolerant yeast \textit{Candida versatilis} under stress conditions

The extra-cellular ethanol was affected by the level of salt (Fig. 4). At the beginning process, the level of ethanol was relatively lower under stress cultivated, which because intermediate of glucose metabolism was consumed to yield glycerol. The ethanol became increased until the yeast adapt to the salt stress. The level of ethanol produced by S3–5 increased at 2 h, while in that of WT elevated until 4 h.
The results obtained by analysis of glucose, glycerol and ethanol showed that salt pressure contributes to rerouting glycolytic flux towards higher glycolysis and osmoadaptation prioritizes the redox and energy balance in glycolysis while rerouting flux from biomass to glycerol production.

The glucose metabolic pathway and the stress response
Glucose uptake occurs which is mediated by hexose transporters. The main pathway of yeast carbon metabolism is Embden–Meyerhof–Parnas pathway (EMP), in which glucose was catalyzed by hexokinase encoded by \textit{HXK1} gene (hexose transporter gene) to glucose-6-phosphate. The expression level of \textit{HXK1} gene increased with increasing salt concentration in the medium (Fig. 5A–C), the expression level of the \textit{HXK1} gene of S3–5 was higher than that of WT (Fig. 5D).

The glycerol metabolic pathway and the stress response
Glycerol, as a primary osmoregulatory solute, is formed from the glycolytic intermediate dihydroxyacetone phosphate in two steps: firstly, dihydroxyacetone phosphate is reduced to glycerol-3-phosphate as catalysed by glycerol-3-phosphate dehydrogenase (GPD) encoded by the \textit{GPD1} gene (there is only one \textit{C. versatilis GPDH} gene), and glycerol-3-phosphate then yields glycerol. A hyperosmotic challenge, intracellular glycerol levels are increased, as a combined result of the diminished efflux and the enhanced synthesis, an additional Hog1-independent mechanism retains intracellular glycerol for adaptation.

The expression of the \textit{GPD1} gene (Fig. 6A–D) and \textit{HOG1} gene (Fig. 6E–H) were induced by NaCl. The expression levels of \textit{GPD1} gene increased rapidly after the initiation of stress treatment, similar to the expression pattern of \textit{HOG1}. The previous research suggested that the response of yeast to osmotic stress
Also regulated by transmembrane transport through the glyceraldehyde-3-phosphate dehydrogenase (ALD) encoded by the ADH5 gene. ADH5 forms from aldehyde catalysed by acetaldehyde dehydrogenase (ALD). The result was also observed by Silva-Graca that glycerol-3-phosphate is reduced to ethanol catalysed by alcohol dehydrogenase (and probably acetate formation) increases, taking into account the demand of NADH for glycerol formation.4

Analysis of the data from PYK1, PDC1, ADH1 and ALD6 genes involved in ethanol metabolism of C. versatilis indicated that PDC1 and ADH1 genes were transcribed at low levels after salt stress, and PYK1 and ALD6 genes at high levels by the treatment of NaCl, which is in accordance with the extra-cellular ethanol detected previously.

Kinetic parameters of salt-tolerant yeast Candida versatilis expressing the carbon metabolism enzymes in response to salt stress were summarized in Table 1. For cell growth, final dry cell mass was decreased by 20% and 60% after 2 M and 4 M NaCl treatment as compare to control, respectively.

Glycerol productivity of S3–5 by the treatment of 2 M and 4 M NaCl were 59% and 86% higher than WT. During glucose fermentation, most of the metabolic flux goes to ethanol known as the Crabtree effect, our data showed that improved the concentration of stressing agent could reroute glycolytic flux towards glycerol metabolism.

Conclusions

Analysis of carbon metabolism and transcriptional variation in response to salt stress in the genome shuffled C. versatilis 3–5 and a wild-type salt tolerant yeast strain. The level of glucose consumption, glycerol and ethanol production was affected by salt. The expression level of HXXK1 gene of S3–5 was higher than WT, which contributes to rerouting glycolytic flux towards higher glycolysis. Genome shuffling strains C. versatilis 3–5 with improving tolerance to salt might be caused by glycerol accumulation, as the genes involved in glycerol synthesis were found to be highly expressed under these stress conditions, such as up-regulated expression of GPDI gene and HOG1 gene, and down-regulated expression of FPS1 gene.

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (31501449, 2015IM102).

References

1. Y. Zhu and J. Tramper, Biotechnol. Adv., 2013, 31, 1448–1457.
2. C. van der Sluis, J. Tramper and R. H. Wijffels, Trends Food Sci. Technol., 2001, 12, 322–327.
3. M. Silva-Garca and C. Lucas, FEMS Yeast Res., 2003, 3, 247–269.
4. M. Silva-Graça, L. Neves and U. Lucas, FEMS Yeast Res., 2003, 3, 347–362.
5. Y. Watanabe, K. Nagayama and Y. Tama, Yeast, 2008, 25, 107–116.
6. W. Qi, Z. C. Fan, C. L. Wang, L. H. Hou, X. H. Wang, J. F. Liu and X. H. Cao, Eur. Food Res. Technol., 2014, 238, 675–682.
7. A. Rodriguez-Navarro and B. Benito, Biochim. Biophys. Acta, Biomembr., 2010, 1798, 1841–1853.
8. Y. Watanabe, M. Yamaguchi, J. Sakamoto and Y. Tamai, Yeast, 1993, 9, 213–220.
9 Y. Watanabe, H. Akita, Y. Higuchi, R. Tsujimatsu, T. Kaneta and Y. Tamai, Biosci., Biotechnol., Biochem., 2008, 72, 1005–1014.
10 L. Pribylova, J. de Montigny and H. Sychrova, Yeast, 2007, 24, 171–180.
11 M. Lenassi, J. Zajc, C. Gostincar, A. Gorjan, N. Gunde-Cimerman and A. Plemenitas, Fungal Biol., 2011, 115, 959–970.
12 H. B. Kwon, E. T. Yeo, S. E. Hahn, S. C. Bae, D. Y. Kim and M. O. Byun, FEMS Yeast Res., 2003, 3, 433–440.
13 D. Araiza-Olivera, J. G. Sampedro, A. Mujica, A. Pena and S. Uribe-Carvajal, FEMS Yeast Res., 2010, 10, 282–289.
14 T. C. Dakal, L. Solieri and P. Giudici, Int. J. Food Microbiol., 2014, 185, 140–157.
15 J. H. Parmar, S. Bhartiya and K. V. Venkatesh, Mol. BioSyst., 2011, 7, 1138–1148.
16 S. Galafassi, M. Toscano, I. Vigentini, J. Piskur and C. Compagno, Food Microbiol., 2013, 36, 316–319.
17 L. Li, Y. Ye, L. Pan, Y. Zhu, S. Zheng and Y. Lin, Biochem. Biophys. Res. Commun., 2009, 387, 778–783.
18 X. Cao, L. Hou, M. Lu and C. Wang, Int. J. Food Sci. Technol., 2010, 45, 17–22.
19 F. Mo, H. Zhao, H. Lei and M. Zhao, Appl. Biochem. Biotechnol., 2013, 171, 1339–1350.
20 B. S. De Martinis and C. C. S. Martin, Forensic Sci. Int., 2002, 128, 115–119.
21 E. Petelenz-Kurdziel, C. Kuehn, B. Nordlander, D. Klein, K. K. Hong, T. Jacobson, P. Dahl, J. Schaber, J. Nielsen, S. Hohmann and E. Klipp, PLoS Comput. Biol., 2013, 9, e1003084.
22 R. Lagunas, FEMS Microbiol. Rev., 1993, 10, 229–242.
23 N. A. Abdel and E. I. Moghaz, Adv. Biomed. Res., 2010, 1, 169–176.
24 T. You, P. Ingram, M. D. Jacobsen, E. Cook, A. McDonagh, T. Thorne, M. D. Lenardon, A. P. de Moura, M. C. Romano, M. Thiel, M. Stumpf, N. A. Gow, K. Haynes, C. Grebogi, J. Stark and A. J. Brown, BMC Res. Notes, 2012, 5, 258.
25 M. J. Taherzadeh, L. Adler and G. Lidén, Enzyme Microb. Technol., 2002, 31, 53–66.
26 F. Lages, M. Silva-Graca and C. Lucas, Microbiology, 1999, 145, 2577–2585.
27 E. Vaudano, A. Costantini, O. Noti and E. Garcia-Moruno, Food Microbiol., 2010, 27, 802–808.
28 S. Hohmann, Microbiol. Mol. Biol. Rev., 2002, 66, 300–372.
29 X. M. Tang, G. Kayingo and B. A. Pior, Yeast, 2005, 22, 571–581.
30 J. Philips and I. Herskowitz, J. Cell Biol., 1997, 138, 961–974.
31 O. de Smidt, J. C. du Preez and J. Albertyn, FEMS Yeast Res., 2012, 12, 33–47.
32 J. Lian, T. Si, N. U. Nair and H. Zhao, Metab. Eng., 2014, 24, 139–149.
33 T. Hirasawa, K. Yamada, K. Nagahisa, T. N. Dinh, C. Furusawa, Y. Katakura, S. Shioya and H. Shimizu, Process Biochem., 2009, 44, 647–653.
34 S. E. Park, H. M. Koo, Y. K. Park, S. M. Park, J. C. Park, O. K. Lee, Y. C. Park and J. H. Seo, Bioresour. Technol., 2011, 102, 6033–6038.