Nectar and pollen sources for honeybees in Kafrelsheikh province of northern Egypt

El-Kazafy A. Taha a,b,*, Reda A. Taha c, Saad N. AL-Kahtani b

aEconomic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
bArid Land Agriculture Department, Faculty of Agriculture & Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
cHoneybee Research Section, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt

1. Introduction

The main honey flow seasons in Egypt are citrus during March and April, Egyptian clover during May and June, summer seed watermelon (Citrullus lanatus var. coelothynthoides L.) during June and July, and cotton (Gossypium spp.) during July and August (Taha, 2005). In addition, two secondary honey flow seasons: loofah during June to October (Taha et al., 2006), and banana during August and September (Taha, 2007) were recorded in Kafrelsheikh province. Long gaps in the availability of bee floral resources between the flow seasons affect the growth and productivity of bee colonies (Taha, 2000, 2005). During such floral dearth periods, particularly when pollen is not available, colonies gradually use up stored resources within the combs in their nests, while the queens stop laying eggs and the colonies become weak (Manning, 2008; Taha and Al-Kahtani, 2013). Such colonies use up a major part of nectar and pollen collected directly after the dearth for buildup of colony population. For beekeepers, this process is destructive for their business. Honeybee colonies should be populous in order to store surplus nectar, which is then harvested (Taha and Al-Kahtani, 2013). Beekeepers usually provide their colonies with artificial feeding including sugar syrup and pollen substitutes/supplements during dearth periods (Taha, 2015c). However, no artificial feeds have been found equivalent to nectar and pollen (Mohanna, 1989). The knowledge on the major floral resources lead beekeepers to maintain colony strength, economize the cost of feeding, and harvest good honey yield (Carol, 1999; Taha, 2005, 2015a).

In tropical and sub-tropical areas, bee floral resources are available around the year, and the activity of honeybee colonies in gathering nectar and/or pollen is continued throughout the year (Neupane and Thapa, 2005). However, the foraging activities of honeybees for pollen are greatly influenced by weather factors and availability of pollen (Taha and Al-Kahtani, 2013; Taha, 2014). It is very useful for beekeepers to have a knowledge on nectar and/or pollen floral resources in their areas, that’s could help...
them to plan for managing their colonies, and they may be decided to move it to another area rich with nectar and pollen floral resources during certain periods to have good honey yield, producing bee swarms, or queen production (Taha, 2005, 2015a).

Studies on nectar and/or pollen plants for honeybees were conducted in Brazil (Luz and Barth, 2012); in Costa Rica (Freitas, 1994); in Bulgaria (Atanassova and Lazarova, 2010); in Egypt (Taha, 2000; Halal et al., 2003; Fathy, 2008; Ismail et al., 2013; Abou-Shaara, 2015; Esmael et al., 2016); in Germany (Köppler et al., 2007; Beil et al., 2008); in India (Singh, 2003); in Iran (Mossadegh, 1990); in Italy (Fortunato et al., 2006); in Mexico (Villanueva, 1989); in Nilb (Paudyal and Gautam, 2011); in Nigeria (Dukku, 2003); in Palestine (Reyahi, 1999); in Philippines (Payawal et al., 1991); in Poland (Wróblewska et al., 2010); in Saudi Arabia (Taha, 2013, 2015a,b; Taha et al., 2016; Adgaba et al., 2017, Al-Kahtani et al., 2017; Taha et al., 2019); in Spain (Seijo et al., 1994); in Turkey (Blisik et al., 2008); in USA (Baum et al., 2011).

The present study aimed to survey major and minor sources of nectar and/or pollen for honeybees in Kaferelsheikh province, northern Egypt throughout the year. The second goal was to throw light on the periods in which beekeepers can harvesting honey resources during certain periods to have good honey yield, producing bee swarms, or queen production (Taha, 2005, 2015a).

2. Materials and method

The present study was carried out at the apiary of the Beekeeping Research Section at Sakha Agricultural Research Station, ARC, Kafrelsheikh, and other apiaries in Kafrelsheikh province, northern Egypt throughout two successive years, from January 2015 to December 2016. Kafrelsheikh lies at latitude 31°06′42″N and longitude 30°56′45″E at an altitude of 17 m above sea level. It comprises 10 cities: Metoubes, Sidi Salem, Fuwwah, Desouk, Qallin, Kafrelsheikh, El-Reyad, Beila, El-Hamou, and Baltim.

Fresh flowers were collected from the plants as buds before anthesis, and reference slides were prepared according to Louveaux et al. (1978). The anthers were washed out 3 times in a watch glass filled with ether and then were dried. The pollen grains were transferred to a slide and spread out. A drop of fructose solution (20 g fructose + 0.5 g crystallized phenol in 100 ml of distilled water) was added to facilitate the transferring, and accelerate the swelling of the pollen grains. The preparation was dried on a warming plate at 40 °C and mounted with glycerine gelatine. This procedure was done for the pollen grains of each plant species. The prepared reference slides were stored in a refrigerator.

Five colonies (each 10 combs) of hybrid Carniolan (Apis mellifera carnica Polemann) honeybees were selected in each city to study the fluctuation of collected bee-pollen throughout the year in Kafrelsheikh province. All colonies were approximately in the same strength (brood combs, stored food, and adult bee population). Pollen traps with efficiency of 25% were fitted on the entrance of the hives in each city. Pollen loads were collected from pollen traps every two days. Pollen loads were dried at room temperature in a shady place for two hrs to make the separation easy. The pollen loads were hand-sorted according to their color and appearance, then referred to their sources, and were weighted using an electrical balance. Microscopical examinations were conducted to identify the floral origin of pollen grains according to their shape and size by comparing with the previously prepared reference pollen slide.

Recording of all plant species which were observed to be visited by honeybee workers was done throughout the year in the ten regions represented Kafrelsheikh province. Unidentified plant species were collected, transferred to the laboratory, then were identified and recorded. Each source was identified by its scientific name and botanical family. Average date of the blooming period of each plant and the value for bees as a source of nectar and/or pollen were recorded.

Data were statistically analyzed by the analysis of variance (ANOVA) using PROC GLM ver. 9.1.3 SAS® software computer program (SAS Institute, 2003). Means of monthly collected bee-pollen were compared using Least Significant Difference (LSD) test (α: 0.05).

3. Results

Data listed in Table 1 showed that 110 plant species belonging to 39 plant families were recorded as pollen and/or nectar floral resources in Kafrelshiekh province throughout 2015 and 2016. Ninty seven plant species belonging to 33 families were recorded as nectar sources and 82 plant species belonging to 36 families were recorded as pollen sources during the whole year. The most important species for honeybees in Kafrelshiekh province were faba bean (Vicia faba L.), flax (Linum usitatissimum L.), peach (Prunus persica L.) citrus (Citrus spp.), date palm (Phoenix dactylifera L.), Egyptian clover (Trifolium alexandrinum L.), guava (Psidium guajava L.), summer seed watermelon (Citrullus lanatus var. colocynthoides L.), loofoah (Luffa aegyptiaca Mill.), maize (Zea mays L.), cotton (Gossypium spp.), sunflower (Helianthus annuus L.), banana (Musa spp.). The highest numbers (64 spp.) of blooming species were recorded during March, while the lowest numbers (7 spp.) were recorded during January.

As shown in Table 2 faba bean, Egyptian clover, summer seed watermelon, and cotton were recorded as major nectar floral resources in all regions of Kafrelshiekh province. Faba bean, Egyptian clover, summer seed watermelon, and maize were recorded as major pollen floral resources in all regions of Kafrelshiekh province. Citrus was recorded as a major nectar, and minor pollen floral resource in Metoubes, Fuwwah, and Desouk regions. Banana was recorded as a honey plant in Fuwwah, and Desouk regions. Loofah was recorded as a major floral resource of nectar and pollen in Metoubes region. In Metoubes and Baltim regions, guava was recorded as a major nectar and pollen floral resource, while date palm was recorded as a major pollen floral resource. Sunflower was recorded as a major source of nectar and pollen in Sidi Salem, Qallin and Kafrelsheikh regions, and as a minor source in the others regions.

The average yearly amounts of collected bee-pollen were 2.866 and 2.780 kg/colony in 2015 and 2016, respectively. Significant (P < 0.01) variations were found among amounts of trapped pollen loads during months throughout the year. The largest amounts of collected bee-pollen were obtained during May (440.77 and 425.33 g/colony), followed by August (327.73 and 335.62 g/colony), then March (305.33 and 284.80 g/colony), while the lowest amounts of trapped pollen loads were obtained during January (131.92 and 115.66 g/colony), followed by December (136.36 and 125.65 g/colony) in 2015 and 2016, respectively (Fig. 1).

4. Discussion

The survey of bee plants in Kafrelshiekh province showed that 110 plant species were visited by honeybees (A. mellifera L.); worker bees can collect nectar from 97 species, and can collect pollen from 82 floral resources during the whole year. Previous studies in Egypt showed that, there were 39 bee forages belonging to 15 families in Kafrelshiekh region (Taha, 2005), 26 pollen species in 15 families in Dakahlia (Fathy, 2008), 24 pollen sources belonging to 16 families at Fayoum (Ismail et al., 2013), and 65 bee plants...
Latin name	Common name	Family	Flowering period	Source	Nectar	Pollen
Vicia faba L.	Faba bean	Fabaceae	January–March	++	++	
Lupinus albus L.	White lupin	Fabaceae	January–March	+	+	
Trigonella foenum-graecum L.	Fensgreek	Fabaceae	January–March	+	+	
Linum usitatissimum	Flax	Linaceae	January–March	++	++	
Ocimum spp.	Basil	Lamiaceae	January–December	+	+	
Prunus persica L.	Peach	Rosaceae	February–March	++	++	
Prunus armeniaca L.	Apricot	Rosaceae	February–March	+	+	
Anagallis arvensis	Scarlet pimpernel	Myrsinaceae	February–March	+	+	
Citrus limon (L.) Osbeck	Eureka lemon	Rutaceae	February–March	+	+	
Citrus latifolia (Yu.Tanaka) Tanaka	Persian Lime	Rutaceae	February–March	+	+	
Pisum sativum L.	L. Pea	Fabaceae	February–March	+	+	
Avena fatua L.	Wild oat.	Poaceae	February–March	+	+	
Setaria viridis (L.) P.Beauv	Green foxtail	Poaceae	February–March	+	+	
Miscanthus sinensis	Tall grass	Poaceae	February–March	++	++	
Citrus reticulata Blanco	Mandarin orange	Rutaceae	February–March	++	++	
Citrus sinensis Osbeck	Orange	Rutaceae	March–April	++	++	
Citrus aurantium Linn	Sour orange	Rutaceae	March–April	++	++	
Pyrus malus	Apple	Rosaceae	March–April	+	+	
Pyrus communis L.	Pear	Rosaceae	March–April	+	+	
Citrus reticulata Blanco	Mandarin orange	Rutaceae	March–April	++	++	
Citrus aurantifolia Swingle	Key lime	Rutaceae	March–April	+	+	
Citrus latifolia (Yu.Tanaka) Tanaka	Persian Lime	Rutaceae	March–April	+	+	
Capsicum annuum	Chili pepper	Solanaceae	March–April	+	+	
Capsicum annuum var. glabriusculum Dunal	Chiltepin	Solanaceae	March–April	+	+	
Zantedeschia aethiopica (L.) Spreng.	Arum lily	Araceae	April–May	+	+	
Allium sativum	Garlic	Liliaceae	April–May	+	+	
Allium cepa	Onion	Liliaceae	April–May	+	+	
Solanum melongena L.	Eggplant	Solanaceae	March–December	+	+	
Capsicum annuum	Chili pepper	Solanaceae	March–December	+	+	
Euphorbia tirucalli	Spurge	Euphorbiaceae	April–May	+	+	

Table 1

Nectar and pollen floral resources in Kafrelsheikh province during 2015 and 2016 years.
Major nectar and/or pollen floral resources in Kafrelsheikh province in 2015 and 2016 were visited by the bees (Villanueva, 1989). In Saudi Arabia, 79 species were visited by A. cerana as nectar and/or pollen sources in Al-Ahsa province (Taha, 2015a), meanwhile 182 species from 49 plant families were identified as bee forages in Al-Baha region (Adgaba et al., 2017).

Of the total 110 species were recorded, 76 (69.10%) were herbs, 29 (26.36%) trees, and 5 (4.54%) shrubs. The main 5 sources of bee forages in Al-Baha region (Adgaba et al., 2017).

In Iran, 173 bee plants belonging to 32 families were identified as nectar and five species were sources for pollen (Nehru et al., 2018). In India, more than 60 plant species belonging to 25 plant families in Alexandria and El-Beheira provinces (Esmael et al., 2016). In India, more than 60 plant species were studied by A. cerana, five species were potential sources of nectar and five species were sources for pollen (Nehru et al., 1988).

In Iran, 173 bee plants belonging to 32 families were recorded: 89 plants produce surplus honey and 28 species as major pollen sources (Mossadegh, 1990). In Mexico, 102 plant species were visited by the bees (Villanueva, 1989). In Saudi Arabia, 79 bee plant species belonging to 24 botanical families were recorded as nectar and/or pollen sources in Al-Ahsa province (Taha, 2015a), meanwhile 182 species from 49 plant families were identified as bee forages in Al-Baha region (Adgaba et al., 2017).
et al. (2013), Esmael et al. (2016) in Egypt, and Taha (2015a) in the Al-Ahsa oasis of eastern Saudi Arabia. Kafrelsheikh is an agricultural province, that’s could explains why all of major floral resources of nectar and/or pollen in this province were classified as cultivated plants. There were some wild plants visited by bees, but none of them is major source either of nectar or pollen.

Of the total 110 species were recorded as bee plants only five species (Citrus spp., T. alexdrinum, L. aegyptiaca, Gossypium spp., and Musa spp.) represented 4.55% of the identified plants produced surplus honey in Kafrelsheikh province. This percentage is higher than that (3.30%) for bee plants in Al-Baha region (Adgaba et al., 2017), and that (3.80%) in Al-Ahsa province (Taha, 2015a) in Saudi Arabia, and that (1.6%) of world bee plants (Crane, 1990), while our percentage is too low compared with that (51.44%) of Villanueva (1989) in Iran. Beekeepers in Kafrelsheikh province usually harvest honey yield during the blooming seasons of Citrus spp., T. alexdrinum and Gossypium spp. (Taha, 2000, 2005), L. aegyptiaca (Taha et al., 2006) and Musa spp. (Taha, 2007). In Saudi Arabia, Medicago sativa L., Ziziphus spp. and Citrus spp. were the dominant sources of nectar, while Cucurbita pepo Thunb, Ph. dactylifera L., Helianthus annuus L., M. sativa L. and Brassica napus L. were the main sources of pollen in Al-Ahsa province (Taha, 2015a,b). Besides, the major sources of nectar in Al-Baha region were Z. spina-christi L., Acacia tortilis (Forssk) Hayne, A. asak, Lavandula dentata L., and Hypoestes forskoalii (Adgaba et al., 2017). In USA, 7 bee plants non-Lamiaceae and nine Lamiaceae species were recorded as nectar-producing plants (Widrlechner and Senechal, 1992).

Faba bean and flax were bloomed during the period from January to March in most parts of Kafrelsheikh province. Their flowers were produced much pollen and nectar. The extra-floral nectaries of faba bean were produced nectar before flowering starts and this continues through and to the end of flowering (Kirk, 2004). Peach was bloomed during early spring, and honeybees were collected nectar and pollen from flowers. These plants did not produce surplus honey, but they are very important for building up the colonies and swarms production. Date palm was flowered during March and April, male trees produced more pollen. It considered an important source of pollen in Metobues (Taha, 2005) and Baltim regions. Summer seed watermelon was bloomed during a dearth period between Egyptian clover and cotton flow seasons so, it was served on maintaining the colony strength and economizing the cost of feeding during this period (Taha and Bayomi, 2009). Guava was bloomed from May to July and considered good source of nectar and pollen in Metobues and Baltim regions. Sunflower and sesame were bloomed during July and August. They were good sources of nectar and pollen during this period. These results are in line with the findings of Hussein et al. (1992) in Assiut, Taha (2000, 2005) in Kafrelsheikh, Fathy (2008) in Dakahilia, Ismail et al. (2013) in Fayoum, Esmael et al. (2016) in Alexandria and El-Beheira provinces.

The number of available bee plants throughout the months of the year could be arranged in a descending order: March and April > May > February > June > July and August > September > October > November > December > January. Seven nectar and pollen floral resources were bloomed during January; faba bean and flax were the most important plants for honeybees. During February, 34 pollen and 27 nectar floral resources were recorded; faba bean, flax, and peach were the most beneficial plants for honeybees in this period. Sixty-four bee forage plants were recorded during March and April. The most important sources during March were citrus, faba bean, date palm, peach, and flax. Similar results were recorded by Hussein et al. (1992) in Assiut province, and by Taha (2005) in Kafrelsheikh province. Unfortunately, most of the bloomed plants in April were dried before mid-April. Citrus was the predominant bee flora in April. These results confirmed the findings of Taha (2005). During May, 46 nectar and pollen floral resources were recorded; Egyptian clover was recorded as a major nectar and pollen floral resource. These results are in agreement with those obtained by Hussein et al. (1992) in Assiut, Esmael et al. (2016) in El-Beheira, and Taha (2005) in Kafrelsheikh province. During June, 33 pollen and/or nectar floral resources were recorded. The most abundant species were Egyptian clover, guava, and loofah. Twenty-nine pollen and/or nectar floral resources were recorded throughout July and August; the most abundant species were watermelon, guava, loofah, cotton, banana, sunflower, and maize. These results are in harmony with those obtained by Hussein et al. (1992) in Assiut, and Taha (2005) in Kafrelsheikh province. Twenty-two bee forage plants were recorded during September; loofah, and maize were the most important species. Nineteen taxa were bloomed in October; loofah, and maize were the major sources in this period. Although, 12 plant species flowered in November, and 10 plants in December, it considered dearth period because all of these plants are minor sources of nectar and/or pollen.

The most represented families were Fabaceae (15 spp.), Asteraceae (12 spp.), Brassicaceae and Malvaceae (7 spp.), Cucurbitaceae, Poaceae, Rosaceae and Rutaceae (6 spp.), and solanaceae (5 spp.). They contributed by 63.64% of total bee flora in Kafrelsheikh province. These results are in agreement with those obtained by Zoratti et al. (1995) in Italy, Taha (2005) and Esmael et al. (2016) in Egypt, and Taha (2015a) and Adgaba et al. (2017) in Saudi Arabia, they reported that the most represented families were Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, Rosaceae. Besides, the most abundant species in Nigerian honey samples were from Asteraceae and Arecaceae (Adekunmobi and Ogundipe, 2009), Apiaceae, Lamiaceae, and Myrtaceae were represented by 3 spp. The following families: Anacardiaceae, Convolvulaceae, Euphorbiaceae, Moraceae, and Verbenaceae each was represented by two plant species. Moreover, 22 families (Arecaceae, Aizoaceae, Apocynaceae, Araceae, Bignoniaceae, Boraginaceae, Cactaceae, Casuarinaceae, Geraniaceae, Lauraceae, Linaceae, Lythraceae, Musaceae, Myrsinaceae, Papaveraceae, Pedaliaceae, Polygonaceae, Portulacaceae, Oleaceae, Oxalidaceae, Salicaceae, and Urticaceae) were represented by one nectar and/or pollen floral resource.

The monthly weight of trapped pollen loads reflects the activity of honey bee colonies in gathering pollen. Pollen collection is a continuous process throughout the year. The colonies started their activities in pollen collection during January, then significant (P < .01) increasing occurred during February and reached the first peak during March. Decreasing in pollen collection occurred during April, then increased significantly (P < .01) and formed the second and the major peak during May coincided with the flowering period of Egyptian clover, then significant (P < .01) decrease occurred during June. Gradually increase occurred during July, and formed the third peak in August, then gradually and significantly (P < .01) decrease occurred from September to December. These
results are confirmed by the findings of Shawer (1987), Fathy (1996), Shawer et al. (2003), Taha (2005) in Egypt, Taha and Al-Kahtani (2019) in Saudi Arabia, and Al-Humyarie et al. (1999) in Yemen who recorded the maximum area of stored pollen during May. Besides, Sattigi and Lingappa (1993) found the maximum area of stored pollen during March in India. Three peaks of pollen collection were recorded during March, May and August in the Al-Ahsa oasis of eastern Saudi Arabia (Taha and Al-Kahtani, 2013; Taha, 2014, 2015a). On contrary, the maximum area of stored pollen was recorded during September in the Island of Hawaii (Arita and Fujii, 1992). April considered a dearth period in Kafrelsheikh province because of the shortage of pollen and nectar floral resources, as a result of dried of most flowering plants during the flowering periods of faba bean (January to March), loofah (June to October), and maize (June to November). Egyptian clover (April to June), summer seed watermelon (June during the flowering periods of faba bean (January to March), loofah (June to October), and maize (June to November). Egyptian clover (April to June), summer seed watermelon (June to November), and banana (August and September). They can trap pollen loads during the flowering periods of faba bean (January to March), Egyptian clover (April to June), summer seed watermelon (June and July), loofah (June to October), and maize (June to November).

Dukku, U.H., 2003. Acaia ataxacantha: a nectar plant for honeybees between two dearth periods in the sudan savanna of northern Nigeria. Bee World 84, 32–33. Esmel, M.E., Salem, M.H., Mahgoub, M.S., El-Barbary, N.S., 2016. Photographer guide of pollen grains collected from apiaries in Alexandria and El-Behira Governors (West Nile Delta, Egypt). Alex. J. Agric. Sci. 61, 267–290.

Fathy, D.M., 2008. Types and quantities of pollen grains collected by honeybee Apis mellifera L. with reference to brood rearing activity Unpublished M.Sc. Thesis. Fac. Agric. Mansoura Univ., Egypt.

Fathy, H.M., 1996. Honeybee colony population in relation to brood rearing and stored pollen. Apiacta 31, 36–44.

Fortunato, L., Gazzoli, R., Barbattini, R., 2006. A study on the pollen sources for honeybees in Udon province (northern Italy). Bull. Insectol. 59, 39–43.

Freitas, B.M., 1994. Pollen identification of pollen and nectar loads collected by Africane honebees in the state of Ceara, Brazil. In: Proc. 5th Int. Conf. Apic. Tropical Climates, Trinidad & Tobago, 7–12 Sep, pp. 73–79.

Helal, R.M., El-Dakhakhni, T.N., Shaver, M.B., Taha, E.A., 2003. Effect of moving the apiary on activities of honeybee colonies. 1-Gathering and storing pollen, brood area and honey yield. J. Apic. Res. 26, 43–46.

Hussein, M.H., Mannaa, S.H., Omer, M.O., Mostafa, A.M., 1992. Species composition of collected pollen loads by honeybee (Apis mellifera L), pollen flora and floral calendar of Assiut region. In: Proc. 4th Nat. Conf. Pests Dis. Veg. & Fruits in Egypt, pp. 177–195.

Ismail, A.M., Oways, A.A., Mohannay, K.M., Salem, R.A., 2013. Evaluation of pollen collected by honeybee, Apis mellifera L colonies at Fayoum Governorate, Egypt. Part 1: Botanical origin. J. Saudi Soc. Agric. Sci. 12, 129–135.

Kirk, W., 2004. Faba bean (Vicia faba). Bee World 85, 66–68.

Köppler, K., Vorwohl, G., Koeiger, N., 2007. Comparison of pollen spectra collected by beekeepers on activity of honey bee colonies. 2-Flight activity, gathering of nectar and sugar concentration contents and honey. J. Agric. Res. Tanta Univ. 29, 268–284.

Luz, C.F., Barth, O.M., 2012. Pollen analysis of honey and bee bread derived from Brazilian manngroves. Brazil. J. Botany 35, 79–85.

Manning, R., 2008. The effect of high and low fat pollen on honeybee longevity. RIRDC Publication No. 08/031. Dept. Agric., Western Australia.

Mohanna, N.E., 1989. An important source of nectar and pollen during the dearth period in Egypt. Alex. J. Agric. Res. 34, 173–182.

Mossadeq, M.S., 1990. Honey and pollen sources in Lorestan, Iran. Bee World 71, 35–37.

Neupane, K.R., Thapa, R.B., 2005. Pollen collection and brood production by honeybees (Apis mellifera L) under Chitwan condition of Nepal. J. Inst. Agric. Anim. Sci. 26, 143–148.

Paudyal, K.N., Gautam, I., 2011. Scanning Electron Microscopic studies on surface pattern of the pollen loads from Apis cerana in Jarkajrat district. Nepal J. Sci. Technol. 12, 340–349.

Payawal, P.C., Ilde, T.C., Manimitim, A.L., 1991. Year round pollen sources of Italian honeybees (Apis mellifera L) in the Philippines III. Selected areas. Philippine Agricult. 54, 503–509.

Reyahi, B.A., 1999. Melliferous flora of Palestine: some important species with reference to brood rearing activity Unpublished M.Sc. Thesis. Fac. Agric. Mansoura Univ., Egypt.

Shawer, M.B., 1987. Major pollen sources in Kafrelsheikh, Egypt and the effect of pollen supply on brood area and honey yield. J. Apic. Res. 26, 43–46. Shaver, M.B., El-Dakhakhni, N.M., Helal, R.M., Taha, E.A., 2003. Effect of moving the apiary on activities of honeybee colonies. 1-Gathering and storing pollen, brood rearing and wax secretion. J. Agric. Res. Tanta Univ. 29, 250–267. Singh, R.K., 2003. Studies on pollen and nectar sources to honeybees at Behduran, Uttarakhand. India Bee J. 5, 129–138. Taha, E.A., 2000. Effect of transferring the apiaries on activity of honeybee colonies Unpublished M.Sc. Thesis. Fac. Agric. Tanta Univ., Egypt. Taha, E.A., 2005. Studies on honeybee (Apis mellifera L) Unpublished Ph.D. Thesis. Fac. Agric. Tanta Univ., Egypt. Taha, E.A., 2007. Importance of banana Musa sp. (Musaceae) for honeybee Apis mellifera L. (Hymenoptera: Apidae) in Egypt. Bull. Ent. Soc. Egypt 52, 123–135. Taha, E.A., 2013. Survey of nectar and pollen sources in Al-Ahsa district, Saudi Arabia. In: Proc. 43rd Interal. Apic. Cong. 29–Sept–4 Oct Kyiv, Ukraine P 247. Taha, E.A., 2014. Seasonal variation of foraging activity, pollen collection and growth of honeybee colonies in Al-Ahsa. Saudi Arabia. Bull. Ent. Soc. Egypt 91, 163–175. Taha, E.A., 2015a. A study on nectar and pollen sources for honeybee Apis mellifera L in Al-Ahsa, Saudi Arabia. J. Entomol.d ZoolSt. 3, 272–277. Taha, E.A., 2015b. Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanic origin. J. Apic. Sci. 59, 75–81.
Taha, E.A., 2015c. The impact of feeding certain pollen substitutes on maintaining the strength and productivity of honeybee colonies (*Apis mellifera* L.). Bull. Ent. Soc. Egypt, Econ. Ser. 41, 63–74.

Taha, E.A., Bayoumi, Y.A., 2009. The value of honeybee (*Apis mellifera* L.) as pollinator of summer seed watermelon (*Citrullus lanatus* colothynthoides L.: Cucurbitaceae) in Egypt. Acta Biol. Szeg. 53, 33–37.

Taha, E.A., Al-Kahtani, S.N., 2013. Relationship between population size and productivity of honeybee colonies. J. Entomol. 10, 163–169.

Taha, E.A., Al-Kahtani, S.N., 2019. Comparison of the activity and productivity of Carniolan (*Apis mellifera carnica* Pollmann) and Yemeni (*Apis mellifera jemenitica* Ruttner) subspecies under environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. Saudi J. Biol. Sci. 26 (4), 681–687.

Taha, E.A., Nour, M.E., Shawer, M.B., 2006. Loofah, *Luffa aegyptiaca* Mill. (Cucurbitaceae), a source of nectar and pollen for honeybee *Apis mellifera* L. (Hymenoptera: Apidae) in Egypt. Bull. Ent. Soc. Egypt 83, 337–345.

Taha, E.A., Al-Abdulsalam, M., Al-Kahtani, S.N., 2016. Insect pollinators and foraging behavior of honeybees on alfalfa (*Medicago sativa* L.) in Saudi Arabia. J. Kansas Entomol. Soc. 89, 92–99.

Taha, E.A., Al-Kahtani, S.N., Taha, R., 2019. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 26 (2), 232–237.

Villanueva, R.G., 1989. Important plant species for Apiculture in Ejido plan Del Rio, Veracruz, Mexico. In: Proc. 4th Inter. Conf. Apic. Tropical Climates, Cairo, Egypt, pp. 138–145.

Widrlechner, M.P., Senechal, N.P., 1992. Relationships between nectar production and honeybee preference. Bee World 73, 119–127.

Wróblewska, A., Warakomska, Z., Kaminska, M., 2010. The pollen spectrum of beebread from the Lublin region (Poland). J. Apic. Sci. 54, 81–89.

Zoratti, M.L., Barbatini, R., Frill, F., 1995. Bee flora in the Codroipo area (Italy). Ape Nostra Amica 17, 5–14.