Pembrolizumab-Associated CD8+ Vasculitic Mononeuritis Multiplex in a Patient With Mesothelioma

Michaela C. Baldauf, MD, Monika Kapauer, MD, Markus Joerger, MD, Lukas Flatz, MD, Regulo Rodriguez, MD, Stephan Frank, MD, Ansgar Felbecker, MD, Susanne Hartmann-Fussenegger, MD, and Thomas Hundsberger, MD

Neurol Neuroimmunol Neuroinflamm 2021;8:e993. doi:10.1212/NXI.0000000000000993

Immune checkpoint inhibitor (ICI) therapy has revolutionized cancer treatment and achieves unexpectedly durable tumor remission. However, therapeutic efficacy comes along at the cost of a wide spectrum of immune-related adverse events (irAEs). Immune checkpoints, such as the programmed cell death 1 (PD-1) receptor, PD-1 ligand (PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4), inhibit T-cell activation and are used by tumor cells to escape the immune surveillance. Physiologically, immune checkpoints are important for maintaining self-tolerance during T and B-cell maturation. Thus, their inhibition can trigger de novo or preexisting autoimmune and paraneoplastic disorders. The most common ICI-associated irAEs involve the skin, the gut, and the endocrine organs. Neurologic side effects and ICI-associated vasculitis are rare, the latter affecting mostly large and medium vessels. ICI-associated vasculitic peripheral neuropathy (VPN) and ICI-associated perinuclear antineutrophil cytoplasmatic antibody (p-ANCA)-positive mononeuritis multiplex have only been reported once, but without histologic verification. We report an ICI-associated, ANCA-negative mononeuritis multiplex diagnosed by neuromuscular ultrasound and histology.

Case Description

A 61-year-old woman suffering from a pleural mesothelioma (cT3cN0cM0) was initially treated with carboplatin/pemetrexed followed by maintenance therapy with the anti-PD-1 inhibitor pembrolizumab (timeline shown in figure, A). After 1 year, pembrolizumab was ceased because of suspected but not confirmed ICI-related colitis. After first progression (rib metastasis), pembrolizumab was readministered (3-weekly, 15 cycles) until multiple cutaneous petechiae developed. A skin biopsy demonstrated perivascular lymphocyte infiltrates, suggesting a late-stage small vessel vasculitis (not shown). Suspecting a pembrolizumab-associated cutaneous irAE, treatment was stopped. After 2 weeks, she presented with a bilateral foot drop syndrome and paresis in the distribution of the right ulnar nerve. Clinical examination additionally revealed concomitant hypoesthesia/allodynia of the feet, the right hand, and the left thumb.

Motor nerve conduction studies (NCS) demonstrated severe axonal damage (reduced amplitudes, preserved distal latencies, and velocities) in the right median and ulnar nerves as well as both peroneal and tibial nerves. Sensory NCS of the sural and peroneal superficial nerves were absent, and axonal sensory impairment of the right ulnar and the radial superficial nerve was also shown (reduced amplitudes and preserved velocities). EMG (of the right dorsal interosseous muscle and right tibial anterior muscle) demonstrated acute axonal damage. Nerve ultrasound revealed multifocal fascicular nerve swelling (in both sural and ulnar nerves), raising suspicion of a vasculitic neuropathy (figure,
B). The laboratory, CSF, and urine analyses were normal. The clinical phenotype, electrophysiology, and neurosonographic findings were suggestive of a nonsystemic vasculitic mononeuritis multiplex (NSVM) in which an accompanying chemotherapy-induced polyneuropathy may have contributed to the sensory impairment.

High-dose methylprednisolone with subsequent oral tapering was initiated, and an ultrasound-guided biopsy of the sural nerve was performed. Histology confirmed small vessel vasculitis (figure, C and D). The infiltrate showed a predominance of CD8+ T cells over CD4+ T and B lymphocytes (figure, E).
Because steroids failed to alleviate symptoms, immunosuppression was escalated with IV cyclophosphamide (6 cycles, every 4 weeks). However, severe allodynia persisted, and treatment with pregabalin, amitriptylin, and methadone showed only moderate efficacy.

Discussion

We are describing a case of histologically proven pembrolizumab-associated sensorimotor NSVM, occurring in a patient with malignant mesothelioma. The clinical hallmark was a painful mononeuritis multiplex preceded by a cutaneous vasculitis. Normal laboratory results (autoantibodies, CSF, and urine) without involvement of visceral organs made a systemic vasculitis with neurologic manifestation unlikely. Chemotherapy-induced polyneuropathy caused by platinum compounds is not inflammatory and mostly sensory because of dorsal root ganglion impairment, which may have contributed to the sensory deficit. A paraneoplastic origin was also unlikely due to the late onset of the neurologic symptoms in the absence of tumor progression, the concomitant irAE to the skin, and the general low incidence of paraneoplastic neurologic symptoms in malignant mesothelioma.

The characteristic composition of immune cell infiltrates in vasculitis is controversially discussed. No data exist so far on ICI-related vasculitis. In giant cell arteritis, in-vasculitis is controversially discussed. No data exist so far for this neurologic irAE remains speculative.3

Whether the preceding neurotoxic chemotherapy might have been a trigger for this neurologic irAE remains speculative.3 Optimal treatment in ICI-associated NSVM remains to be defined. ICI-associated Guillain-Barré–like syndrome (GBS) resembles the phenotype of classical cases, but steroids are the mainstay of treatment, in contrast to classical GBS. We also treated the patient with high-dose steroids and escalated with cyclophosphamide, which was reasonable according to the irAE treatment guidelines and treatment of NSVM. Careful evaluation and reporting of rare side effects broaden the knowledge and understanding of the complex immune network and the pathogenesis of neurologic ICI-related side effects.

Study Funding

The authors report no targeted funding.

Disclosure

The authors report no relevant disclosures. Go to Neurology.org/NN for full disclosures.

Publication History

Received by Neurology: Neuroimmunology & Neuroinflammation November 25, 2020. Accepted in final form February 22, 2021.

Appendix Authors

Name	Location	Contribution
Michaela C. Baldauf, MD	Department of Neurology, Cantonal Hospital, St. Gallen, Switzerland	Neurologic treatment of patient, wrote article and created figure
Monika Kapauer, MD	Department of Neurology, Cantonal Hospital, St. Gallen, Switzerland	Neurologic treatment of patient, nerve ultrasound
Markus Joerger, MD	Department of Hematology and Medical Oncology, Cantonal Hospital, St. Gallen, Switzerland	Oncologic treatment of patient
Lukas Flatz, MD	Department of Dermatology, Cantonal Hospital, St. Gallen, Switzerland	Dermatologic treatment of patient regarding skin vasculitis
Regulo Rodriguez, MD	Department of Pathology, Cantonal Hospital, St. Gallen, Switzerland	Histopathologic analysis of skin biopsy
Stephan Frank, MD	Department of Pathology, University Hospital, Basel, Switzerland	Histopathologic analysis of nerve biopsy
Ansgar Felbecker, MD	Department of Neurology, Cantonal Hospital, St. Gallen, Switzerland	Nerve ultrasound
Susanne Hartmann-Fussenegger, MD	Department of Neurology, Cantonal Hospital, St. Gallen, Switzerland	Patient treatment, pain management
Thomas Hundsberger, MD	Department of Neurology and Department of Hematology and Oncology, Cantonal Hospital, St. Gallen, Switzerland	Neurologic and oncolgic patient treatment, wrote article

References

1. Heinecker L, de Toni E, Schott G, Hundtsofian G, Zimmer L. Checkpoint-Inhibitoren. Deutsches Arzteblatt International Deutscher Arzte-Verlag GmbH, 2019:119–126.
2. Duxiu A, Cronin K, Sree AG. Vasculitis Associated with immune checkpoint inhibitors—A systematic review. Clinical Rheumatology Springer London; 2018:2579–2584.
3. Astaras C, de Micheli R, Moura B, Hundsberger T, Hottinger AF. Neurological adverse events associated with immune checkpoint inhibitors: diagnosis and management. Curr Neurol Neurosci Rep. 2018:18:3.
4. Dubey D, David WS, Amato AA, et al. Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology. 2019;93:e1093–e1103.
5. Watanabe R, Zhang H, Berry G, Goronyj JJ, Weyand CM. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am J Physiol Heart Circ Physiol. 2017:12:H1052–H1059.
6. Kobayashi M, Ogawa E, Okuyama R, Kanno H. In–vasculitis of small muscular arteries, without involvement of visceral organs made a systemic vasculitis. A inflammatory and mostly sensory because of dorsal root ganglion impairment, which may have contributed to the sensory deficit. A paraneoplastic origin was also unlikely due to the late onset of the neurologic symptoms in the absence of tumor progression, the concomitant irAE to the skin, and the general low incidence of paraneoplastic neurologic symptoms in malignant mesothelioma. Normal laboratory results (autoantibodies, CSF, and urine) without involvement of visceral organs made a systemic vasculitis with neurologic manifestation unlikely.
7. Touat M, Maisonobe T, Knauss S, et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology. 2018;91:e985–e994.
Pembrolizumab-Associated CD8⁺ Vasculitic Mononeuritis Multiplex in a Patient With Mesothelioma

Michaela C. Baldauf, Monika Kapauer, Markus Joerger, et al.

Neurol Neuroimmunol Neuroinflamm 2021;8;
DOI 10.1212/NXI.0000000000000993

This information is current as of April 6, 2021

Updated Information & Services	including high resolution figures, can be found at: http://nn.neurology.org/content/8/4/e993.full.html
References	This article cites 5 articles, 0 of which you can access for free at: http://nn.neurology.org/content/8/4/e993.full.html##ref-list-1
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s):
	All Oncology http://nn.neurology.org/cgi/collection/all_oncology
	Peripheral neuropathy http://nn.neurology.org/cgi/collection/peripheral_neuropathy
	Ultrasound http://nn.neurology.org/cgi/collection/ultrasound
	Vasculitis http://nn.neurology.org/cgi/collection/vasculitis
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://nn.neurology.org/misc/about.xhtml#permissions
Reprints	Information about ordering reprints can be found online: http://nn.neurology.org/misc/addir.xhtml#reprintsus

Neurol Neuroimmunol Neuroinflamm is an official journal of the American Academy of Neurology. Published since April 2014, it is an open-access, online-only, continuous publication journal. Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2332-7812.