Escherichia coli K-12 Survives Anaerobic Exposure at pH 2 without RpoS, Gad, or Hydrogenases, but Shows Sensitivity to Autoclaved Broth Products

Joan Slonczewski
Kenyon College, slonczewski@kenyon.edu

Daniel P. Riggins
Kenyon College

Maria J. Narvaez
Kenyon College

Keith A. Martinez
Kenyon College

Mark M. Harden
Kenyon College

Follow this and additional works at: https://digital.kenyon.edu/biochem_publications

Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons

Recommended Citation
Riggins, D.P.,* M. J. Narvaez,* K. A. Martinez, M. M. Harden,* and Joan L. Slonczewski. 2013. Escherichia coli K-12 survives anaerobic exposure at pH 2 without RpoS, Gad, or hydrogenases, but shows sensitivity to autoclaved broth products.

This Article is brought to you for free and open access by the Biochemistry and Molecular Biology at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact noltj@kenyon.edu.
Escherichia coli K-12 Survives Anaerobic Exposure at pH 2 without RpoS, Gad, or Hydrogenases, but Shows Sensitivity to Autoclaved Broth Products

Daniel P. Riggins, Maria J. Narvaez, Keith A. Martinez, Mark M. Harden, Joan L. Slonczewski

Department of Biology, Kenyon College, Gambier, Ohio, United States of America

Abstract

Escherichia coli and other enteric bacteria survive exposure to extreme acid (pH 2 or lower) in gastric fluid. Aerated cultures survive via regulons expressing glutamate decarboxylase (Gad, activated by RpoS), cyclopropane fatty acid synthase (Cfa) and others. But extreme-acid survival is rarely tested under low oxygen, a condition found in the stomach and the intestinal tract. We observed survival of *E. coli* K-12 W3110 at pH 1.2–pH 2.0, conducting all manipulations (overnight culture at pH 5.5, extreme-acid exposure, dilution and plating) in a glove box excluding oxygen (10% H₂, 5% CO₂, balance N₂). With dissolved O₂ concentrations maintained below 6 μM, survival at pH 2 required Cfa but did not require GadC, RpoS, or hydrogenases. Extreme-acid survival in broth (containing tryptone and yeast extract) was diminished in media that had been autoclaved compared to media that had been filtered. The effect of autoclaved media on extreme-acid survival was most pronounced when oxygen was excluded. Exposure to H₂O₂ during extreme-acid treatment increased the death rate slightly for W3110 and to a greater extent for the rpoS deletion strain. Survival at pH 2 was increased in strains lacking the anaerobic regulator fnr. During anaerobic growth at pH 5.5, strains deleted for fnr showed enhanced transcription of acid-survival genes gadB, cfa, and hdeA, as well as catalase (katE). We show that *E. coli* cultured under oxygen exclusion (<6 μM O₂) requires mechanisms different from those of aerated cultures. Extreme acid survival is more sensitive to autoclave products under oxygen exclusion.

Citation: Riggins DP, Narvaez MJ, Martinez KA, Harden MM, Slonczewski JL (2013) *Escherichia coli* K-12 Survives Anaerobic Exposure at pH 2 without RpoS, Gad, or Hydrogenases, but Shows Sensitivity to Autoclaved Broth Products. PLoS ONE 8(3): e56796. doi:10.1371/journal.pone.0056796

Editor: Partha Mukhopadhyay, National Institutes of Health, United States of America

Received September 18, 2012; **Accepted** January 14, 2013; **Published** March 8, 2013

Copyright: © 2013 Riggins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The funding is from grant MCB-1050080 from the National Science Foundation (http://www.nsf.gov/). M. Narvaez received a summer stipend from the National Science Foundation STEM DUE-0965895 to Kenyon College, and M. Harden received a summer stipend from Kenyon College. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: slonczewski@kenyon.edu

† These authors contributed equally to the work.

Introduction

Extreme-acid resistance (or acid survival) is defined as the ability of neutralophilic bacteria such as *Escherichia coli* to survive at pH levels too acidic to permit growth; for *E. coli* K-12, this is typically pH 2 [1–3]. In aerated cultures of *E. coli*, acid resistance involves numerous acid response systems such as the amino acid-dependent glutamate and arginine decarboxylases [4–6]. Most of these acid resistance systems are up-regulated during growth in moderate acid (pH 5.5) and require specific media components and conditions [1,7–10]. Acid-stress regulons include oxidative stress regulators such as *rpoS*, which activates the Gad acid resistance regulon [4,8].

Acid survival is rarely tested under conditions excluding oxygen [9,11]. Noguchi et al. (2010) show a contribution of hydrogenases, particularly hydrogenase-3, for extreme-acid survival using sealed screw-cap tubes, but the assays involve dilution and plating in media exposed to oxygen. We decided to test acid survival under conditions in which culture growth, acid exposure, dilution, and plating were conducted in a chamber excluding oxygen (dissolved oxygen concentrations below 6 μM).

Under aeration, acid survival requires the glutamate-dependent acid response (gad) system and the sigma factor σ³ subunit of RNA polymerase (*rpoS*) [4,8]. In the Gad system, glutamate decarboxylase consumes a proton from the bacterial cytoplasm to convert glutamate into γ-butyric acid (GABA) and carbon dioxide. GABA is exported to the periplasm by the antipporter in exchange for new glutamate [12,13]. The net consumption of protons raises the cytoplasmic pH to a level that maintains viability [4]. Other factors contributing to acid stress response include the arginine and lysine decarboxylases [14,15] as well as up-regulation of cyclopropene fatty acids (Cfa) which modifies membrane phospholipids so as to enhance acid resistance [16].

In the human gastrointestinal tract, enteric bacteria experience variable oxygen levels. The rectal region maintains a fairly stable range of oxygen concentration at or below 3 μM O₂ (1.5% saturation) [17]. The stomach, however, undergoes transient fluctuations in O₂ concentration as well as low pH, owing to the periodic input of oxygenated food. Despite intermittent increases in O₂ levels, the gastric epithelium harbors obligate anaerobes such as *Clostridium* and *Veillonella* species, as well as many facultative anaerobes [18,19]. *Helicobacter pylori*, which primarily occupies the lower stomach gastric lining, grows optimally in a microaerobic environment (6–15 μM O₂) [20]. Exclusion of oxygen has been proposed to enhance acid survival, because anaerobic growth...
increases expression of acid stress mechanisms such as lysine and arginine decarboxylases [21].

Much of the *E. coli* response to decreasing O₂ concentrations is mediated by the FNR regulon. When dissolved oxygen levels fall below 10 µM, FNR monomers begin to dimerize as the iron-sulfur centers oxidize [22,23], and the cell’s metabolism transitions to anaerobiosis [24,25]. FNR-induced genes encode alternative terminal electron acceptors, hydrogenase maturation proteins, periplasmic chaperones, and functional replacement proteins for components of aerobic metabolism. Aerobic genes, including those providing protection from reactive oxygen species (ROS), are down-regulated.

ROS stress is an important factor for the acid stress response under anaerobic conditions [26]. Anaerobic growth at low pH up-regulates ROS stress genes, suggesting that low pH amplifies ROS stress [9,10]. One source of oxidative stress under laboratory conditions is the Maillard reaction, which occurs in broth medium during autoclaving [27]. In the Maillard reaction, amino acids react with sugar to produce ketosamines and other potentially toxic products, as well as hydrogen peroxide [28]. In well aerated cultures, hydrogen peroxide is eliminated by catalases including KatE, KatG and AhpC [29,30] but the effects of other Maillard reaction products are uncertain. Under low oxygen, catalases are down-regulated by anaerobic regulators such as FNR.

In this report, we excluded oxygen during the entire extreme-acid experiment (overnight culture, extreme-acid exposure, dilution, and plating), using a controlled atmosphere chamber maintained at <6 µM O₂. We found that the major genes required for acid resistance under aeration are not required when oxygen is excluded. We also revealed a role for autoclave-generated toxic products in acid resistance.

Figure 1. Acid survival of mutant strains. Single-gene mutants of *E. coli* K-12 strain W3110 were constructed as described under Methods. Strains defective for *gadC*, *rpoS*, *cfa*, *hypF*, and *fnr* were cultured overnight and exposed to pH 2.0 for 2 hours before being diluted 1:80,000 and 1:400,000 under anaerobic and aerated conditions, respectively. Dilutions were then plated allowing colonies to grow up overnight at 37°C. The number of colonies per plate was log transformed and a ratio of acidic exposure – control (pH 7.0) and a percentage was calculated from that ratio. Extreme acid medium was autoclave sterilized (Light bars); or filter sterilized (dark bars). Error bars indicate SEM (n = 5 or 6). * denotes undetectable colony counts on dilution plates and a corresponding survival of <1%.

doi:10.1371/journal.pone.0056796.g001
Methods

Bacterial strains and growth

E. coli K-12 derivative W3110 [31] was used as the background for all mutant strains. Gene deletion alleles with kanamycin resistance cassettes were transduced from Keio collection strains into W3110 via P1 phage transduction [32]. Bacteria were cultured on Luria Bertani agar with 7.45 g/l potassium chloride (LBK) and 50 \(\mu \)g/ml kanamycin. Single gene knockout mutant strains included: JLS0807 (W3110 *gadC*), JLS9405 (W3110 *rpoS*), JLS1034 (W3110 *cfa*), JLS0925 (W3110 *hypF*), and JLS1115 (W3110 *fnr*). Bacterial strain freezer stocks were sampled no more than 5 times, to avoid loss of acid resistance associated with thawing and refreezing.

Acid survival assays

The conditions for testing acid resistance (survival in extreme acid) were based on those described previously [11] with modifications. Cultures were grown overnight in LBK buffered with 100 mM 2-(N-morpholino)ethanesulfonic acid (MES) at pH 5.5 to up-regulate acid response systems [1]. Cultures were exposed to extreme acid (LBK pH 1.2–2.0) for 2 h in a 1:200 (aerated) or 1:400 (oxygen exclusion) dilution, and then were serially diluted in M63 minimal media (pH 7.0) to a final dilution of 1:400,000 (aerated) or 1:80,000 (oxygen exclusion). 50 \(\mu \)L of the final dilutions were spread onto agar plates. Colonies from these dilutions were grown up at 37°C then counted and log transformed. A control was completed in the same manner as for acid exposure. Cells from the overnight cultures were diluted in M63 minimal media pH 7.0. The final dilution of control cells was the same as that of pH 2.0 exposure under both aerated and oxygen exclusion conditions. Colony counts for each replicate were log transformed and a log ratio of average log values from the replicates of each condition from pH 2 to pH 7 was used to calculate percent survival. The standard error of the mean (SEM) was calculated from the log ratios of daily replicates (n = 5 or 6). Two-tailed, unpaired heteroscedastic t-Tests were completed on each strain to compare the effects of different strains or exposure conditions.

Oxygen exclusion

Oxygen was excluded by use of a controlled atmosphere chamber (Plas Labs). External atmosphere was initially purged from the chamber 9 times with a vacuum pump. Following each purge, a gas mixture of 5% CO\(_2\), 10% H\(_2\), and 85% N\(_2\) was introduced to restore neutral pressure. Remaining O\(_2\) was catalytically removed by a palladium canister affixed atop a heating unit that maintained temperature at 37°C. Liquid media and materials to be used were placed in the chamber for at least 18 hours before use; agar plates were introduced at least 4 hours before use. Dissolved oxygen concentration was measured using an Oakton Hand-held Dissolved Oxygen Meter (DO110) with the electrode immersed in distilled water. The oxygen level in the chamber was maintained below <6 \(\mu \)M.

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)

qRT-PCR based on the method of Refs. [9] and [15]. *E. coli* K-12 W3110 and JLS1115 (W3110 *fnr*) were cultured in the controlled atmosphere chamber with LBK buffered with 100 mM MES at pH 5.5. Bacterial RNA was stabilized by rapid addition of an ice-cold solution of 10% phenol in ethanol, a procedure that avoids induction of acid-stress genes. The RNA

| Table 1. Statistical analysis of survival assays for Figure 1. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Anaerobic | Aerated | | |
| Strain | p-value | Strain | p-value | |
| W3110 | 0.040 | W3110 | 0.002 | |
| *gadC* | 0.009 | *gadC* | N/A | |
| *rpoS* | 0.009 | *rpoS* | N/A | |
| *cfa* | 0.003 | *cfa* | 0.194 | |
| *hypF* | 0.005 | *hypF* | 0.981 | |
| *fnr* | 0.620 | *fnr* | 0.278 | |

doi:10.1371/journal.pone.0056796.t001

Figure 2. *E. coli* survives at pH lower than pH 2.0. Overnight cultures of *E. coli* K-12 strain W3110 were grown in LBK 100 mM MES pH 5.0. These cultures were exposed to medium at pH 1.2; 1.6; and 2.0, respectively, for two hours. Dilutions from exposed cells were completed as in Fig. 1. Strains were exposed in autoclave-sterilized medium (light bars) and in filtered medium (dark bars). Error bars indicate SEM (n = 5 or 6).

doi:10.1371/journal.pone.0056796.g002
was then purified using the RNeasy Kit (Qiagen) followed by DNase treatment (Ambion). Targeted primer sequences were designed using Primer Express (Applied Biosystems) and supplied by Invitrogen. The SYBR Green PCR One-Step Protocol was used so that reverse transcription of RNA and the amplification of transcripts took place simultaneously (Applied Biosystems). Reactants included: 0.1 nM forward primer, 0.1 nM reverse primer, and 50 ng of target RNA, 52% SYBR Green (v/v). Cycling conditions were: reverse transcription for 30 min at 48 °C and 10 min at 95 °C, 40 cycles of 15 s denaturation at 92 °C, and extension for 1 min at 60 °C. Gene expression was normalized to the total RNA in each reaction, in order to avoid dependence on “housekeeping” genes that are depressed by acid [9]. For each gene, the average cycle time (Ct) value was determined from three biological replicates run in triplicate. No-template and no-reverse transcriptase controls were performed for each gene.

Results

Extreme-acid survival without oxygen

Under aeration (215±5 μM O₂), the gad and rpoS regulons are required for acid survival [1]. We observed the survival of rpoS (JLS9405) and gadC (JLS0807) deletion mutants in extreme acid cultured with aeration or in the chamber, where oxygen levels were measured at less than 6 μM (Fig. 1). Under aeration, rpoS and gadC strains showed less than 1% survival after exposure for 2 hours in LBK pH 2.0. Anaerobic cultures of the same strains survived at pH 2.0 at levels comparable to those of the parent strain. Anaerobic cultures of W3110 strains also survived 50–90% in M63 minimal medium pH 2.5, with or without 1.5 mM glutamate (data not shown). Thus, glutamate and the Gad regulon were not required for extreme-acid resistance under oxygen exclusion; nor was RpoS, which induces Gad expression.

Cyclopropane fatty acid biosynthesis has a reported role in acid resistance [16,33]. In our experiments, cfa deletion plates showed nearly complete survival under aeration and showed no inhibition by autoclaved or filtered exposure media (t-test, p-values >0.2, n=4). Under oxygen exclusion, the cfa strain had a significantly lower survival rate in autoclaved medium (<10% survival, p-value <0.05, n=5), though in filtered medium the survival percentage was within the range considered acid resistant (>10%). A hypF deletion strain showed no loss of survival in extreme acid (Fig. 1). HypF is required for maturation of all the E. coli hydrogenase complexes (Hya, Hyb, and Hyc) [9,34,35]. Thus, none of the E. coli hydrogenases were essential for anaerobic extreme-acid survival.

In Fig. 1, all strains exposed at pH 2 in autoclaved medium showed significantly lower survival than in filter-sterilized medium when exposed under oxygen exclusion, with the exception of the fnr deletion strain. Differences between autoclaved and filtered

Figure 3. rpoS mutant survival is affected by low concentrations of H₂O₂. Overnight cultures of W3110 and our rpoS mutant were exposed to filter sterilized LBK pH 2.0, with and without 2 mM H₂O₂ under both oxygen exclusion and aeration and were serially diluted to final dilutions of 1:80,000 and 1:400,000, respectively. Error bars indicate SEM (n=5 or 6).

doi:10.1371/journal.pone.0056796.g003

Figure 4. FNR deletion enhances anaerobic acid resistance in autoclaved medium. Cultures of W3110 and JLS1115 (W3110 fnr) were grown in LBK buffered with 100 mM MES at pH 5.5. Bacterial cultures were exposed to LBK pH 2.0 for 2 hours. Exposure tubes were serially diluted 1:400,000 and 1:80,000 aerobically and anaerobically, respectively, and plated. Viable colonies on each of 6 replicate plates were counted and log transformed. The log ratios (pH 2.0– pH 7.0) were then used to calculate the percentage of cells surviving in comparison to a pH 7.0 exposure control. The survival response of W3110 and JLS1115 were compared in autoclaved medium (light bars) and filtered medium (dark bars). Error bars indicate SEM (n=5 or 6).

doi:10.1371/journal.pone.0056796.g004
exposure media were determined to be statistically significant if their t-test yielded p-values < 0.05 (Table 1). With aeration the difference between autoclaved versus filtered medium at pH 2 was small or insignificant.

The effect of autoclaving on acid survival was tested further at pH values below 2.0, comparing acid exposure with aeration versus oxygen exclusion (Fig. 2). In anaerobic filtered media at pH 1.6 and 2.0, a small difference in acid survival was seen (65% and 75% respectively). Aerated cultures survived above 55% in filtered media at pH 1.2, 1.6, and 2.0. At pH values lower than pH 2.0, autoclaved medium showed lower \(E. \ coli \) survival than filtered medium. Overall, at pH 1.6 or 1.2, both aerated and anaerobic cultures showed decreased survival in autoclaved medium.

We hypothesized that the sensitivity to autoclaved medium at pH 2 was due to the production of \(\text{H}_2\text{O}_2 \) during the Maillard reaction. To test this possibility, we repeated our extreme-acid survival assays in filtered medium with added \(\text{H}_2\text{O}_2 \). In the anaerobic chamber, 2 mM \(\text{H}_2\text{O}_2 \) had a small effect on extreme-acid survival of strain W3110, and decreased extreme-acid survival of \(\text{rpoS} \) to below 10% (Fig. 3). Thus, \(\text{rpoS} \) strain showed greater sensitivity to \(\text{H}_2\text{O}_2 \) than the parental strain (t-test, p-value < 0.01), although the effect of autoclaved medium showed no significant difference between the two strains.

Deletion of \(\text{fnr} \) eliminates sensitivity to autoclaved medium

The \(\text{fnr} \) deletion strain showed little or no difference between extreme-acid survival in autoclaved versus filtered medium (Fig. 1). The enhanced acid resistance with the \(\text{fnr} \) strain was confirmed in experiments pairing the mutant with the parent strain W3110, using freshly autoclaved medium in which volatile components would be maximally retained. A representative experiment is shown in Fig. 4, in which autoclave-product sensitivity appeared only for W3110 exposed at pH 2. The effect of autoclaved medium was greater under oxygen exclusion (<6 \(\mu\text{M} \text{O}_2 \)).

Because FNR is activated only below 10 \(\mu\text{M} \text{O}_2 \) [22,23], we measured the oxygen levels in our aerated cultures in order to assess the possibility that FNR-dependent expression occurs. The actual availability of oxygen in the cytoplasm depends upon the \(\text{O}_2 \) concentration in the solution, the diffusion rate into the cell, and the rate of consumption by metabolism. While diffusion does not generally limit oxygen availability, oxygen consumption is a major limiting factor for growing cells, even during vigorous aeration [36]. We measured dissolved oxygen concentrations under conditions of exponential growth in baffled flasks rotated at 160 rpm at 37°C (Fig. 5). An overnight culture of \(E. \ coli \) W3110 was diluted 200-fold into fresh buffered LBK. The initial oxygen concentration range was between 130–180 \(\mu\text{M} \), already somewhat limiting.

Table 2. Primers used for qRT-PCR.

Primer	Sequence
cfa-forward	GAGAACCAACTCCTCCCATCA
cfa-reverse	ACGACGGGCCGCCATCA
frdB-forward	CGGGAGCTGAGCGCTTACATCA
frdB-reverse	GACGGTGGTCCGCAGATCA
gadB-forward	GCGATGGGGCATGAA
gadB-reverse	GTTGGCGCTGAGCTGACATC
hdeA-forward	TCCTGCTGCGACATGACATC
hdeA-reverse	AGCGCGTCCGCAAAACCATCA
katE-forward	GCGCAGGTTTTTGTACATC
katE-reverse	CGCTGCGTTTTGAGATCATC
sdhC-forward	CGGGATGGCGCTATTCT
sdhC-reverse	CCACGTGCCAAAGATGTACCA

The effect of autoclaving on acid survival at pH 2 was due to the production of \(\text{H}_2\text{O}_2 \) during the Maillard reaction. To test this possibility, we repeated our extreme-acid survival assays in filtered medium with added \(\text{H}_2\text{O}_2 \). In the anaerobic chamber, 2 mM \(\text{H}_2\text{O}_2 \) had a small effect on extreme-acid survival of strain W3110, and decreased extreme-acid survival of \(\text{rpoS} \) to below 10% (Fig. 3). Thus, \(\text{rpoS} \) strain showed greater sensitivity to \(\text{H}_2\text{O}_2 \) than the parental strain (t-test, p-value < 0.01), although the effect of autoclaved medium showed no significant difference between the two strains.
less than that of air-saturated distilled water (215 μM). As the bacteria grew, the dissolved oxygen level declined steadily to 10 μM as the culture reached OD₆₀₀ values of between 1.2–1.8, and ultimately fell below 3 μM (the lower limit of detection by our meter). The decline of oxygen as a function of culture density was similar for cultures buffered at pH 7.0 or at pH 5.5, the pH at which bacteria were cultured to induce genes for extreme-acid survival. Thus, it is likely that all our aerated cultures showed some FNR-dependent gene expression as they entered stationary phase.

Some of the genes down-regulated by FNR for anaerobic metabolism may actually enhance survival in extreme acid in the presence of H₂O₂ or other substances generated during autoclaving [25,37–39]. We investigated whether the absence of FNR might relieve its repression of genes known to contribute to acid resistance (Fig. 6). RT-PCR was performed on W3110 and JLS1115 (W3110 fnr) cultured excluding oxygen at pH 5.5, conditions typical of those for the extreme-acid test. Known aerobic acid-resistance genes (cfa, gadB, hdeA) showed up-regulation in the fnr strain. KatE was up-regulated 2-fold in the fnr mutant. The sdhC (succinate dehydrogenase) and fdhB (lumurate reductase) are shown for comparison; these genes are not repressed by Fnr, and are not known to contribute to acid resistance but served as null and negative controls, respectively. These observations of FNR-mediated differential expression are consistent with previous reports of FNR regulation in cultures grown at pH 7 [24].

Discussion

We show that when oxygen is excluded from *E. coli* cultures, key genes for aerobic extreme-acid survival are not required. The lack of effect of *tpsS* deletion was particularly remarkable, as RpoS is considered essential for both acid and base resistance [1,3]. Even hydrogenase 3 was not required for acid survival without oxygen, considered essential for both acid and base resistance [1,3]. Even cyclopropane fatty acids protects especially in autoclaved medium. Increased production of continuum of concentration, on a log scale analogous to that of Mn⁺ in the culture reached OD₆₀₀ values of between 1.2–1.8, the dissolved oxygen level declined steadily to Mn⁺ as the culture reached OD₆₀₀ values of between 1.2–1.8, and ultimately fell below 3 μM (the lower limit of detection by our meter). The decline of oxygen as a function of culture density was similar for cultures buffered at pH 7.0 or at pH 5.5, the pH at which bacteria were cultured to induce genes for extreme-acid survival. Thus, it is likely that all our aerated cultures showed some FNR-dependent gene expression as they entered stationary phase.

Some of the genes down-regulated by FNR for anaerobic metabolism may actually enhance survival in extreme acid in the presence of H₂O₂ or other substances generated during autoclaving [25,37–39]. We investigated whether the absence of FNR might relieve its repression of genes known to contribute to acid resistance (Fig. 6). RT-PCR was performed on W3110 and JLS1115 (W3110 fnr) cultured excluding oxygen at pH 5.5, conditions typical of those for the extreme-acid test. Known aerobic acid-resistance genes (cfa, gadB, hdeA) showed up-regulation in the fnr strain. KatE was up-regulated 2-fold in the fnr mutant. The sdhC (succinate dehydrogenase) and fdhB (lumurate reductase) are shown for comparison; these genes are not repressed by Fnr, and are not known to contribute to acid resistance but served as null and negative controls, respectively. These observations of FNR-mediated differential expression are consistent with previous reports of FNR regulation in cultures grown at pH 7 [24].

References

1. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2: 890–907.
2. Krudwich TA, Sacho G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9: 330–343.
3. Słoneczewski JL, Fujitawa M, Dopson M, Krudwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55: 1–79.
4. Castané-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in *Escherichia coli*. J Bacteriol 181(11): 3525–3535.
5. Liu J, Lee IS, Froy J, Słoneczewski JL, Foster JW (1995) Comparative analysis of extreme acid survival in *Salmonella typhimurium*, *Shigella flexneri*, and *Escherichia coli*. J Bacteriol 177: 4097–4104.
6. Price SB, Wright JC, DeGraves EJ, Castané-Cornet M-P, Foster JW (2004) Acid resistance systems required for survival of *Escherichia coli* O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70: 4792–4799.
7. Maurer LM, Yohannes E, BonDurant SS, Radlocher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in *Escherichia coli* K-12. J Bacteriol 187(1): 304–319.
8. Small PLC, Blankenhorn D, Wehy D, Zinner E, Slonczewski JL (1994) Acid and base resistance in *Escherichia coli* and *Shigella flexneri*: role of *tpsS* and growth pH. J Bacteriol 176(6): 1729–1737.
9. Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, et al. (2006) Oxygen limitation modulates pH regulation of catabolism and hydroxylases, multidrug transporters, and envelope composition in *Escherichia coli* K-12. BMC Microbiol 6: 89.
10. Stanicak LM, Stancik DM, Schmidt B, Barnhart DM, Yancheva YN, et al. (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in *Escherichia coli*. J Bacteriol 184(15): 4246–4250.

Author Contributions

Conceived and designed the experiments: JLS DPR MJN KAM. Performed the experiments: DPR MJN KAM MMH. Analyzed the data: JLS DPR MJN KAM MMH. Wrote the paper: JLS DPR KAM.
11. Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE 5(4): e10132.

12. Ma Z, Gong S, Richard H, Tucker DL, Conway T, et al. (2003) GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49(3): 1309–1320.

13. Smith DK, Kassman T, Singh B, Elliott JF (1992) Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174: 5280–5286.

14. Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine:agmatine antipporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185(15): 4402–4409.

15. Meng SY, Bennett GN (1992) Regulation of the K^{-} limitation response in the Escherichia coli cad operon: location of a site required for acid induction. J Bacteriol 174(4): 2670–2678.

16. Chang YY, Cronan Jr J (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33(2): 249–259.

17. Due V, Bondé J, Kain T, Perez A (2003) Extremely low oxygen tension in the rectal lumen of normal human subjects. Acta Anaesthesiol Scand 47: 372.

18. Moore WEC, Cato EP, Holdeman LV (1969) Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections. J Infect Dis 119: 641–649.

19. Zillberstein B, Quintanilha AG, Santos MAA, Pajecki D, Moura EG, et al. (2007) Digestive tract microflora in healthy volunteers. Clinico 62: 47–54.

20. Andersen LP, Wadstrom T (2001) Chapter 4 Basic Bacteriology and Culture. In: Mobley HL, T. Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and Genetics. Washington (DC): ASM Press.

21. Auger EA, Redding KE, Plumb T, Childs LG, Meng SY, et al. (1989) Construction of lac fusions to the inducible arginine- and lysine decarboxylase genes of Escherichia coli K12. Mol Microbiol 3(5): 609–620.

22. Becker S, Holighaus G, Gabrielczyk T, G (1996) O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol 178(15): 4515–4521.

23. Unden G, Schirawski J (1997) The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Mol Microbiol 25(2): 285–291.

24. Kang Y, Weber KD, Qiu Y, Kiley PJ, Blasser FR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187(3): 1113–1160.

25. Shalel-Levanon S, San KY, Bennett GN (2005) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol Bioeng 92: 147–159.

26. Imlay JA (2008) How obligatory is anaerobicism? Mol Microbiol 68(4): 801–804.

27. Schroeder LJ, Iacobelli M, Smith AH (1955) The influence of water and pH on the reaction between amino compounds and carbohydrates. J Biol Chem 212(2): 973–983.

28. Hegelé J, Munch G, Pischetsrieder M (2009) Identification of hydrogen peroxide as a major cytotoxic component in Maillard reaction mixtures and coffee. Mol Nutr Food Res 53: 760–769.

29. Battesti A, Majdalani N, Gottman S (2011) The rpoS-mediated general stress response in Escherichia coli. Ann Rev Microbiol 65: 189–213.

30. Inlay JA (2008) Cellar defense against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776.

31. Smith MW, Neidhardt FC (1983) Proteins induced by anaerobiosis in Escherichia coli. J Bacteriol 154: 336–343.

32. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97(12): 6640–6645.

33. Shabala L, Ross T (2008) Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H$^+$ and enhanced ability to extrude H$^+$. Res Microbiol 159(6): 458–461.

34. Lutz S, Jacobi A, Schlemm V, Böhn R, Sauers G, et al. (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5: 123–133.

35. Paschos A, Bauer A, Zimmermann A, Zehelein E, Böck A (2002) HypE, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277: 49495–49501.

36. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on a flux distribution in the respiratory chain of Escherichia coli. J Bacteriol 184(5): 1402–1406.

37. Kumar R, Shimiin K (2011) Transcriptional regulation of main metabolic pathways of cyd, cyoB, fur, and fur gene knockout Escherichia coli in N-limited aerobic continuous cultures. Microbial Cell Factories 10(3).

38. Shalel-Levanon S, San KY, Bennett GN (2005) Effect of oxygen on the activity of the hydrogenase isoenzymes in Escherichia coli. J Bacteriol 178(15): 4515–4521.

39. Tolla DA, Savageau MA (2011) Phenotypic repertoire of the FNR regulatory network in Escherichia coli. Mol Microbiol 79(1): 149–163.

40. Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Starvation-stressed and low-temperature-stressed Escherichia coli O157 cells by H_2O$_2$-degrading compounds. Arch Microbiol 172(1): 63–67.

41. Bogosian G, Aardema ND, Bournief EV, Morris PJL, O'Neil JP (2000) Recovery of hydrogen peroxide-sensitive culturable cells of Fibrobacter succinogenes gives the appearance of resuscitation from a viable but nonculurable state. J Bacteriol 182(18): 5070–5075.

42. Mizuoe Y, Wai SN, Takeda A, Yoshida S (1999) Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli O157 cells by using H_2O_2-degrading compounds. Arch Microbiol 172(1): 63–67.

43. Morris JJ, Johnson ZI, Szul MJ, Keller M, Zinner ER (2011) Dependence of the cyanobacterium Psychrosphaera on hydrogen peroxide-scavenging microbes for growth at the ocean's surface. PLoS ONE 6(2): e16805.

44. Gergis HS, Harris K, Tavaosez S (2012) Large mutational target size for rapid emergenc of bacterial persisntence. Proc Natl Acad Sci 109(31): 12740–12745.

45. Hansen S, Lewis K, Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8): 2718–2726.