MORPHOLOGY AND ENVIRONMENTALLY PERSISTENT FREE RADICALS ON BIOCHARS: A REVIEW

Author
Bornes C. Mosonik

Email: bornes2000@gmail.com

Kabarak University, Kenya.

Cite this article in APA
Mosonik, B. C. (2022). Morphology and environmentally persistent free radicals on biochars: A review. *Journal of environmental sciences and technology*, 1(1), 16-27. https://doi.org/10.51317/jest.v1i1.30

Abstract
This study sought to investigate the need for alternative renewable, clean and sustainable energy resource arise. Biomass-derived fuels offer the best alternative to fossil fuels. Pyrolysis is one of the techniques used to produce biofuel from biomass. However, the thermal decomposition of biomass in a limited supply of oxygen leads to emissions of complex matrices that affect biofuel utilisation and stability. The major by-products from biomass pyrolysis include liquid oil, biochar and gases depending on operating conditions such as temperature, particle size, heating rate and reactor configuration. Biochars generated tend to find their use majorly in industry, agriculture and cleaning of industrial waste. Nonetheless, biochars may contain organic compounds such as furans, aldehydes, polyaromatic hydrocarbons (PAHS) and environmentally persistent free radicals, which are toxic, carcinogenic, cause oxidative stress and mutagenic. This review, therefore, focuses on the characteristics of biochar in terms of morphology and the nature of persistent free radicals embedded on the surface of the biochar. Notably, the information on optimum conditions for producing biochars free of persistent free radicals is scanty, if any. This review recommends further research on the effects of EPFRs on biological systems and optimum conditions for the formation of biochars with almost nil radicals.

Key terms: Biodiesel, morphology, environmentally persistent free radicals, particulate matter, and pyrolysis.
1.0 INTRODUCTION
Biomass is a renewable energy resource that comes from plants and animals. Major Biomass feed stocks which have been used over decades include agricultural crop residues, forestry residues, algae, wood processing residues, municipal waste, and wet waste (Demirbas, 2011; Demirbaş, 2001; Duku, Gu, & Hagan, 2011; Ghosh, 2016; Perlack & Stokes, 2011; Yu et al., 2021). Thermal biomass degradation in the absence or limited supply of air results in the formation of biochars, as well as other by-products such as organic volatiles, liquid oil, tar and non-condensable gases such as CO, CO₂, CH₄ and H₂ (Ranzi et al., 2014; Sfakiotakis & Vamvuka, 2018; Tripathi et al., 2016). Biochar is a porous carbonaceous solid with embedded molecular functional groups that have a high degree of aromaticity and are resistant to decomposition (Akhil et al., 2021; Dey & Adhikary, 2020; Richard et al., 2016).

Biochar has piqued the researchers’ interest due to its widespread use in agriculture, the environment, and industry ((Lehmann et al., 2006; Rehman et al., 2021; Sutar et al., 2022). The major properties investigated in the use of biochars in various sectors are adsorption power, char morphology (porosity and surface area), and surface functional groups (Suliman et al., 2016; Zhao, Ta, & Wang, 2017). For example, biochars’ adsorption capacity in soil improves soil pH, hydrological properties, and soil nutrients (thereby increasing crop yield)(Ahmed et al., 2016; Alkharabsheh et al., 2021; Ding et al., 2016; El-Naggar et al., 2019; Meng et al., 2021). Furthermore, functional and charged groups on the surface of biochars are used in the remediation of greenhouse gases, as pollutant sorbent for polycyclic aromatic hydrocarbons (PAHs) and heavy metals ((Mandal et al., 2016; Qadeer et al., 2017; Qambrani et al., 2017; Shrestha et al., 2010; Singh et al., 2020). Biochars can also be used as industrial catalysts (Bolan et al., 2021; Cheng & Li, 2018; Lee et al., 2017; Velusamy et al., 2021). Regardless of its many benefits, biochars may contain organic compounds such as furans, aldehydes, polyaromatic hydrocarbons (PAHS) and environmentally persistent free radicals, which are great environmental pollutants (Godlewska et al., 2021; Tao et al., 2020; Zheng et al., 2019). This review, therefore, discusses the recent research developments on the morphology, persistent free radicals, functional groups and particulate matter embedded on the surface of biochar.

2.0 LITERATURE REVIEW
Because of the presence of these volatile organic compounds and stable free radicals, biochar is unsuitable for agricultural use and other applications (Hussain et al., 2017; Nidheesh et al., 2021; Wu et al., 2021). As a result, elemental analysis and characterisation are required. The particle size of the biochars varies, ranging from ultrafine to coarse particulates (Maienza et al., 2017). The ultrafine and fine particulates with aerodynamic diameters ranging from 1nm to 100 um are hazardous to human health and are known to be among the precursors of respiratory illnesses and cancer (Camatini et al., 2017; Dubey et al., 2018). When compared to coarse (10 m) particulates, ultrafine (0.01 m) and fine (2.5 m) particulates are known to travel deep into respiratory tissues and are difficult to clear (Li et al., 2016).

3.0 METHODOLOGY
The procedure were adopted from Mosonik et al. (2018). In order to determine the surface radical immobilization on biochar, approximately 5 mg sample of biochar particulates were analyzed using a Bruker EMX-20/2.7 X-band EPR spectrometer comprising of dual cavities, modulation and microwave frequencies of 100 kHz and 9.298 GHz respectively (Khachatryan et al., 2010). The typical parameters were: sweep width of 200 G, EPR microwave power of 1–20 mW, and modulation amplitude of ≤ 6 G. The time constant was set at 16 sec while the sweep time was set at 30 sec. The g-factor was computed using Bruker’s WINPEPR program, which is a comprehensive line of software allowing control of the Bruker EPR
spectrometer, data-acquisition, automation routines, tuning, and calibration programs on a Windows-based PC (Eaton et al., 2010; Kibet et al., 2012). The exact g-value for the key spectrum was determined by comparison with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) standard (Adounkpe et al., 2008). The EPR runs were conducted in 3 replicates.

4.0 RESULTS AND DISCUSSION
Morphology of Biochar
Scanning electron microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX) are techniques used to generate biochars’ surface morphology and elemental analysis. Thermal degradation of biomass at very high temperatures in the absence of limited oxygen produces biochar as one by-product (Crombie et al., 2013). Biochar is an acronym for biomass charcoal. Biochars are known to be highly carbonaceous, porous surfaces (figure 1) and have high adsorption properties, therefore, making them be used in soil ameliorate and catalyst in industries (Ahmed & Najmi, 2018; Khorram et al., 2016; Weber & Quicker, 2018). Biochars are perfect in Soil amelioration, not in adding carbon, but its porous structure allows retention of water in the soil hence increasing the water holding capacity of the soil (Sun & Lu, 2014). Additionally, biochar morphology has active negative sites (functional groups) which bind nutrients such magnesium, calcium and potassium (Archanjo et al., 2017; Tong et al., 2011). This leads to improvement of soil pH, which is favourable to most plants (Oliveira et al., 2017). Further, biochar is used as a bio-sorbent in the remediation of inorganic and organic water contaminants (Awad et al., 2017).

A study on characteristics of biochar produced from rapeseed straws and poplar tree shavings at a temperature ranging from 300 degrees Celsius to 800 degrees Celsius indicated that an increase in temperature increased the porosity of the biochar (Gheorghe-Bulmau et al., 2021). In addition, biochar characterisation from wooden biomass (soft and hard) showed that surface morphology had a highly distinctive honeycomb structure with a very small pore diameter (Bamdad & Hawboldt, 2016). This is a significant feature of biochars that can be applied in the gas sorption process.
Chemical Composition of Pyrolytic Biochars

Biochars being by-products of biomass pyrolysis at very high temperatures is majorly carbonaceous with the absence of polyaromatic compounds (PAHs); hence, it is safe for use (Agarwal et al., 2015). On the other hand, biochars are known to have high carbon content that depends on the biomass used and low content of hydrogen and oxygen (Cha et al., 2016). The levels of these elements, in particular biochar, are majorly dependent on the pyrolysis temperatures, the type of pyrolysis, whether slow or fast and biomass feed used (Dhyani and Bhaskar, 2018).

Biochar mainly contains C, H, N, S, O and other trace elements depending on the feedstock used and pyrolysis conditions (Lehmann et al., 2011; Kim et al., 2013; Kwak et al., 2019). The elemental quantification of carbon, hydrogen and nitrogen in biochars helps in understanding its quality (Yuan et al., 2022). The elemental analysis is determined from their corresponding oxides, CO₂, H₂O and NO₂ respectively (Enders et al., 2017). The carbon content for most biochars is quite (> 80%), while hydrogen is found to be almost constant at 1.4 per cent, and nitrogen and other organic materials are in trace amounts (Kim et al., 2013). For example, a study carried out of various biomass-derived char (wood maize and meadow grass) showed that nitrogen content is below 2 per cent by wt, the hydrogen content is more or less 2 per cent. In contrast, oxygen content varies between 13 per cent and 23 per cent and carbon content varies between 44 per cent and 64 per cent (Břendová et al., 2012).

Biochars are very stable in the soil environment and can remain unbleached for very many years (Chen et al., 2019). This property of biochars has been explored for use in soil sequestration. Additionally, the level of metals such as K, Na, Ca, Mg, and Al in biochar vary with the type of biomass used (Nanda et al., 2013; Tong et al., 2011). The composition of biomass and pyrolysis temperatures tend to affect the morphology and Physiochemical properties of biochars—table 1. Biochars formed at high temperatures above 600 °C have been shown to have higher Cation exchange capacity, surface area, and micro porosity and stronger buffering capacity, and thus are more promising to improve soil fertility remediation heavy metals in the environment (Antonangelo et al., 2021; Yuan et al., 2022) and as industrial adsorbents. In addition, previous research has biochar can be a promising biofertiliser as it contains macronutrients (Suman et al., 2017; Tong et al., 2011, 2021).

Table 1. Composition of Biomass-Derived Biochar

Author/year	feedstock	Thermal procedure	Operating temp. °C	Surface functionality of biochar
Tong et al., 2011	straws of peanut, soybean and canola	pyrolysis	400	Cations of Ca²⁺, Mg²⁺, K⁺, and Na⁺ and non-metals total P, N and C were found in biochars
Bamdad & Hawboldt,	rapeseed straws and poplar tree	Fast pyrolysis	450	High carbon content and aromatic functional groups in biochar than a metal-organic framework. Porous
Biomass decomposition starts at temperatures slightly above 200 °C, subject to the nature of char and gaseous pathways in the reactor (Hoang et al., 2021).

Environmental Persistent Free Radicals (EPFRs) on Biochars

The availability and environmentally compatibility of biochar have made it to be utilised in the remediation of environmental pollutants and soil sequestration. Recent advances in biochar chemistry have shown the presence of environmentally persistent free radicals on its surface structure (Zhao et al., 2018; Yuan et al., 2022). The presence of EPFRs on biochars’ surfaces is one of the chemical properties that give them cation exchange capacity and can be used to remediation of heavy metals in soil and water (Yuan et al., 2022).

Past research has demonstrated that free radicals have caused inhibition of germination and damage of plasma membrane in plants (Liao et al., 2014).

Thermochemical transformation of biomass generates free radical intermediates in the gas phase (Melkior et al., 2012). However, stable radicals are usually immobilised on the solid matter – thermal char and/or particulate emissions (Chelangat, 2020). This review aimed at establishing the type of free radicals emitted during the pyrolysis production of biochar. This is of great significance as it determines the safety in their diverse applications.

Free radicals are the main precursors of reactive oxygen species (ROS) production in biological systems (Dellinger et al., 2001; Shi et al., 2021; Zhao et al., 2022). Reactive oxygen species, including lipids, proteins, and deoxyribonucleic acid (DNA), can contribute to severe oxidative stress within cells through the formation of oxidised cellular macromolecules (Moridani et al., 2004). For example, EPR studies on rice husks biochar showed the presence of hydroquinone-Quinone moieties on biochar (Zhang et al., 2018).

Year	Feedstock	Process	Temperature	Products
2016	shavings			carbonaceous
(Suman et al., 2017)	Sugarcane bagasse and wheat husk	pyrolysis	800	Minerals K, Mg, Si, and P with rich micropores
Mara et al., 2018	Olive mill waste	pyrolysis	300-1000	Highly porous with complete absence of organic compounds at temperatures > 500 °C
Antonangelo et al., 2019	Switch grass & poultry litter	pyrolysis	350 & 700	Presence of hydroxyl groups, aromatic rings, phosphate-containing functional groups, organic azides, ketenes
Qin et al., 2020	Pine nutshells	pyrolysis	400-700	Phenols, alcohols, carboxylic groups, basic acidic and lactonic compounds
Vilakazi, 2021	Potato peels, cull potato & pine bark	pyrolysis	350 & 650	Alkaline with P and K
The generation of stable free radicals is initiated by primary thermal cracking reactions. The organic matter is further broken down into small unstable radical fragments that reside on carbon char surfaces (Tian et al., 2009). A model of radical immobilisation was done by Kibet et al., 2018 – scheme 1.

Scheme 1: A model of free radicals immobilised on the surface of croton char particulate and possible channels in the generation of reactive oxygen species (ROS) in bio systems (Mosonik et al., 2018).

Electron Spin Resonance Spectroscopy and Radical Characteristics

The electron paramagnetic resonance refers to the resonance absorption of the electromagnetic radiation by electronic systems that possess permanent magnetic moments due to the orbital as well as the spin angular momentum of electrons, which are paramagnetic (Dellinger, 2015; Weil & Bolton, 2007; Lancaster, 1967). The stability of EPFRs embedded in biochar has indicated that the radicals’ decay rate is very low because of the presence of resonance stabilised Pi systems in their structures. Consequently, they tend to be available in the environment for longer periods causing a lot of harm in the end. This fact has attracted the researcher’s attention as opposed to short-lived radicals such as hydroxyl and oxygen.

Electron spin resonance spectroscopy (EPR) study was conducted on original wood, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures up to 1400 °C showed high radical concentrations in the decay stage (7.1 × 10^{16} and 1.5 × 10^{18} spins/g) (Trubetskaya et al., 2016) and there was no correlation existing between the nature of feedstock and concentration of radicals. Biochars generated from the combustion of *Croton megalocarpus* biofuel indicated high concentrations of radicals after 80 days of generation, as in Table 2.

Table 2: The EPR Parameters for the Thermal char Formed from the Co-pyrolysis of the Binary Mixture of Biodiesel and Conventional Diesel.

Char/Run	Time (days)	g/cm	spins/cm	spins/g
BCD (1)	20	0.0022	3.84 × 10^{17}	9.18 × 10^{19}
BCD (2)	50	0.0022	3.63 × 10^{17}	8.03 × 10^{19}
BCD (3)	60	0.0022	3.55 × 10^{17}	7.88 × 10^{19}

Journal url: https://journals.editononline.com/
Legend: BCD- Binary mixture of biodiesel and conventional diesel (Kibet et al., 2018)

EPFRs are stable and relatively unreactive radicals due to the presence of resonance stability. Radicals have been classified according to g-factor; Carbon-centred has g-factors similar to the ones of free electron (g<2.003), carbon centred radicals with an adjacent oxygen atom (g=2.003-2.004) and oxygen centred (g>2.004) radicals (Dellinger et al., 2007) -scheme 2.

Scheme 2: EPFR formation and free radical generation mechanisms on biochar (adapted from Odinga et al., 2020).

The oxygen-centred radicals are more stable in an atmospheric environment less reactive, whereas carbon-centred radicals are prone to oxidation in the atmosphere (Wan et al., 2020) due to conjugation via pi systems in the aromatic compound. For instance, semi Quinone radicals has g-factor >2.0045 indicating oxygen-centred, while cyclopentadienyls are carbon centred radicals (g<2.003)(Wan et al., 2020).

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusion: Biochar being a highly porous and carbonaceous material has found its use in various sectors globally, ranging from the agriculture sector to environmental remediation of pollutants. However, its boast myriad applications, it suffers from immobilised persistent free radicals that threaten human health and plants. EPFRs has been seen to induce the formation of reactive oxygen species, which are known to cause oxidative stress on biological systems.

Recommendation: This review recommends further research on the effects of EPFRs on biological systems and optimum conditions for the formation of biochars with almost nil radicals.
6.0 REFERENCES

1. Ahmed, A., Kurian, J., & Raghavan, V. (2016). Biochar influences on agricultural soils, crop production, and the environment: a review. Environmental Reviews, 24(4), 495-502.

2. Ahmed, W., & Najmi, A. (2018). Developing and analysing framework for understanding the effects of GSCM on green and economic performance: the perspective of a developing country. Management of Environmental Quality: An International Journal.

3. Akhil, D., Lakshmi, D., Kartik, A., Vo, D. ’V. N., Arun, J., & Gopinath, K. P. (2021). Production, characterisation, activation and environmental applications of engineered biochar: a review. Environmental Chemistry Letters, 19(3), 2261-2297.

4. Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993.

5. Antonangelo, J. A., Sun, X., & Zhang, H. (2021). The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 277, 111443.

6. Archanjo, B., Mendoza, M., Albu, M., Mitchell, D. R., Hagemann, N., Mayrhofer, C., Behrens, S. (2017). Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 294, 70-79.

7. Agarwal, A. K., Gupta, T., Shukla, P. C., & Dhar, A. (2015). Particulate emissions from biodiesel fuelled CI engines. Energy Conversion and Management, 94, 311-330.

8. Awad, Y. M., Lee, S.-E., Ahmed, M. B. M., Vu, N. T., Farooq, M., Kim, I. S., & Al-Wabel, M. (2017). Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production, 156, 581-588.

9. Bamdad, H., & Hawboldt, K. (2016). Comparative study between physicochemical characterization of biochar and metal organic frameworks (MOFs) as gas adsorbents. The Canadian Journal of Chemical Engineering, 94(11), 2114-2120.

10. Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., & Kirkham, M. (2021). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 1-51.

11. Břendová, K., Tlustoš, P., Száková, J., & Habart, J. (2012). Biochar properties from different materials of plant origin. European Chemical Bulletin, 1(12), 535-539.

12. Camatini, M., Gualtieri, M., & Sancini, G. (2017). Impact of the Airborne Particulate Matter on the Human Health. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate, 597-643.

13. Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15.

14. Chelangat, M. B. (2020). Molecular products, thermal emissions, and radical kinetics from the thermal degradation of croton megalocarpus biodiesel and binary transport fuels. Egerton University.

15. Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1(1), 75-87.

16. Cheng, F., & Li, X. (2018). Preparation and application of biochar-based catalysts for biofuel production. Catalysts, 8(9), 346.

Journal url: https://journals.editononline.com/
17. Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy, 5(2), 122-131.

18. Dellinger, B., Lomnicki, S., Khachatryan, L., Maskos, Z., Hall, R. W., Adounkpe, J., & Truong, H. (2007). Formation and stabilisation of persistent free radicals. Proceedings of the Combustion Institute, 31(1), 521-528.

19. Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280-1287.

20. Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357-1378.

21. Dey, D., & Adhikary, T. (2020). A Preview on the Production Technologies of Biochar. Biotica Research Today, 25(5 Spl.), 210-213.

22. Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.

23. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36(2), 1-18.

24. Dubey, B., Pal, A. K., & Singh, G. (2018). Airborne particulate matter: source scenario and their impact on human health and environment. In Climate Change and Environmental Concerns: Breakthroughs in Research and Practice 447-468: IGI Global.

25. Duku, M. H., Gu, S., & Hagan, E. B. (2011). A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable and Sustainable Energy Reviews, 15(1), 404-415.

26. El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554.

27. Enders, A., Sohi, S., Lehmann, J., & Singh, B. (2017). Total elemental analysis of metals and nutrients in biochar. Biochar: A Guide to Analytical Methods, 1st edn. CSIRO Publishing, Clayton South, Melbourne Victoria, 95-108.

28. Gheorghe-Bulmau, C., Volceanov, A., Stanciulescu, I., Ionescu, G., Marculescu, C., & Radoiu, M. (2021). Production and properties assessment of biochars from rapeseed and poplar waste biomass for environmental applications in Romania. Environmental Geochemistry and Health, 1-14.

29. Ghosh, S. K. (2016). Biomass & bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environmental Sciences, 31, 31-39.

30. Godlew ska, P., Ok, Y. S., & Oleszczuk, P. (2021). The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of hazardous materials, 403, 123-833.

31. Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., & Siddique, K. H. (2017). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17(3), 685-716.

32. Khorram, M. S., Zhang, Q., Lin, D., Zheng, Y., Fang, H., & Yu, Y. (2016). Biochar: a review of its impact on pesticide behaviour in soil environments and its potential applications. Journal of environmental sciences, 44, 269-279.

33. Kibet, J. K., Mosonik, B. C., Ngari, S. M., & Nyamori, V. O. (2018). Free radicals and ultrafine particulate emissions from the co-pyrolysis of Croton megalocarpus biodiesel and fossil diesel. Chemistry Central Journal. https://doi.org/10.1186/s13065-018-0458-6.

34. Kibet, J. K., Khachatryan, L., & Dellinger, B. (2015). Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. Chemosphere, 138, 259-265. doi:10.1016/j.chemosphere.2015.06.003
Kim, K. H., Kim, T.-S., Lee, S.-M., Choi, D., Yeo, H., Choi, I.-G., & Choi, J. W. (2013). Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. *Renewable Energy, 50*, 188-195.

Kwak, J.-H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., & Chang, S. X. (2019). Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. *Chemosphere, 231*, 393-404.

Lancaster, G. (1967). Electron Paramagnetic Resonance (A Review). *Journal of Materials Science, 25*, 489-495. doi:10.1007/bf00562955

Lee, J., Kim, K.-H., & Kwon, E. E. (2017). Biochar as a catalyst. *Renewable and Sustainable Energy Reviews, 77*, 70-79.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. *Soil Biology and Biochemistry, 43*(9), 1812-1836.

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—a review. *Mitigation and adaptation strategies for global change, 11*(2), 403-427.

Liao, S., Pan, B., Li, H., Zhang, D., & Xing, B. (2014). Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. *Environmental Science & Technology, 48*(15), 8581-8587.

Maienza, A., Genesio, L., Acciai, M., Miglietta, F., Pusceddu, E., & Vaccari, F. P. (2017). Impact of biochar formulation on the release of particulate matter and on short-term agronomic performance. *Sustainability, 9*(7), 1131.

Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., & Spokas, K. (2016). Designing advanced biochar products for maximising greenhouse gas mitigation potential. *Critical Reviews in Environmental Science and Technology, 46*(17), 1367-1401.

Melkior, T., Jacob, S., Gerbaud, G., Hediger, S., Le Pape, L., Bonnefois, L., & Bardet, M. (2012). NMR analysis of the transformation of wood constituents by torrefaction. *Fuel, 92*(1), 271-280.

Meng, Y., Wang, Y., Wang, C., Wang, B., Feng, D., & Ren, J. (2021). Nutrient adsorption characteristics and water retention capacity of polyurethane–biochar crosslinked material modified filler soil in stormwater treatment. *Journal of Water Process Engineering, 44*, 102347.

Moridani, M. Y., Pourahmad, J., Bui, H., Siraki, A., & O’Brien, P. J. (2003). Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. *Free Radical Biology and Medicine, 34*(2), 243-253.

Mason, B. C., Kibet, J. K., Ngari, S. M., & Nyamori, V. O. (2018). Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel. *Environmental Science and Pollution Research, 25*(25), 24807-24817.

Nanda, S., Mohanty, P., Pant, K. K., Naik, S., Kozinski, J. A., & Dalai, A. K. (2013). Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. *Bioenergy Research, 6*(2), 663-677.

Nidheesh, P., Gopinath, A., Ranjith, N., Akre, A. P., Sreedharan, V., & Kumar, M. S. (2021). Potential role of biochar in advanced oxidation processes: a sustainable approach. *Chemical Engineering Journal, 405*, 126582.

Odinga, E. S., Waigi, M. G., Gudda, F. O., Wang, J., Yang, B., Hu, X., . . . Gao, Y. (2020). Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. *Environment International, 134*, 105172.

Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017). Environmental application of biochar: Current status and perspectives. *Bioresource Technology, 246*, 110-122.
52. Perlack, R. D., & Stokes, B. (2011). US billion-ton update: biomass supply for a bioenergy and bioproducts industry. ORNL/TM-2011/224, 227.

53. Qadeer, S., Anjum, M., Khalid, A., Waqas, M., Batool, A., & Mahmood, T. (2017). A dialogue on perspectives of biochar applications and its environmental risks. Water, Air, & Soil Pollution, 228(8), 1-26.

54. Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255-273.

55. Ranzi, E., Corbetta, M., Manenti, F., & Pierucci, S. (2014). Kinetic modelling of the thermal degradation and combustion of biomass. Chemical Engineering Science, 110, 2-12.

56. Mohanty, P., Pant, K. K., Naik, S., Kozinski, J. A., & Dalai, A. K. (2013). Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Research, 6(2), 663-677.

57. Rehman, A., Arif, M. S., Tufail, M. A., Shahzad, S. M., Farooq, T. H., Ahmed, W., . . . Shakoor, A. (2021). Biochar potential to relegate metal toxicity effects is more soil-driven than plant system: A global meta-analysis. Journal of Cleaner Production, 316, 128276.

58. Richard, S., Rajadurai, J. S., & Manikandan, V. (2016). Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites. International journal of polymer analysis and characterisation, 21(6), 462-477.

59. Sfakiotakis, S., & Vamvuka, D. (2018). Study of co-pyrolysis of olive kernel with waste biomass using TGA/DTG/MS. Thermochimica Acta, 670, 44-54.

60. Shrestha, G., Traina, S. J., & Swanston, C. W. (2010). Black carbon’s properties and role in the environment: A comprehensive review. Sustainability, 2(1), 294-320.

61. Singh, C., Tiwari, S., & Singh, J. S. (2020). Biochar: a sustainable tool in soil pollutant bioremediation. In Bioremediation of industrial waste for environmental safety (pp. 475-494): Springer.

62. Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A.-M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37-48.

63. Suman, S., Panwar, D. S., & Gautam, S. (2017). Surface morphology properties of biochars obtained from different biomass waste. Energy Sources, Part A: Recovery, Utilisation, and Environmental Effects, 39(10), 1007-1012.

64. Sun, F., & Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26-33.

65. Sutar, S., Patil, P., & Jadhav, J. (2022). Recent advances in biochar technology for textile dyes waste water remediation: A review. Environmental Research, 112841.

66. Tao, W., Yang, X., Li, Y., Zhu, R., Si, X., Pan, B., & Xing, B. (2020). Components and persistent free radicals in the volatiles during pyrolysis of lignocellulose biomass. Environmental Science & Technology, 54(20), 13274-13281.

67. Tian, Y., Li, J., Wei, W., Zong, P., Zhang, D., Zhu, Y., & Qiao, Y. (2021). Parametric effect of biomass partial hydropyrolysis process in a downer reactor to co-produce high-quality tar and syngas. Bioresource technology, 320, 124401.

68. Tong, X.-j., Li, J.-y., Yuan, J.-h., & Xu, R.-k. (2011). Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2-3), 828-834.
69. Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467-481.

70. Trubetskaya, A., Jensen, P. A., Jensen, A. D., Glarborg, P., Larsen, F. H., & Andersen, M. L. (2016). Characterisation of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. Biomass and Bioenergy, 94, 117-129.

71. Velusamy, K., Devanand, J., Kumar, P. S., Soundarajan, K., Sivasubramanian, V., Sindhu, J., & Vo, D.-V. N. (2021). A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel, 306, 121632.

72. Vilakazi, S. P. (2021). Characterisation of potato waste biochars and effect on carbon dioxide emission, liming potential and availability of primary macro-nutrients of two amended contrasting soils.

73. Wan, Z., Sun, Y., Tsang, D. C., Hou, D., Cao, X., Zhang, S., Ok, Y. S. (2020). Sustainable remediation with an electroactive biochar system: mechanisms and perspectives. Green Chemistry, 22(9), 2688-2711.

74. Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261.

75. Weil, J. A., & Bolton, J. R. (2007). Electron paramagnetic resonance: elementary theory and practical applications. John Wiley & Sons.

76. Wu, W., Zhu, S., Huang, X., Wei, W., Jin, C., & Ni, B.-J. (2021). Determination of Instinct Components of Biomass on the Generation of Persistent Free Radicals (PFRs) as Critical Redox Sites in Pyrogenic Chars for Persulfate Activation. Environmental Science & Technology, 55(11), 7690-7701.

77. Yu, S., Sun, J., Shi, Y., Wang, Q., Wu, J., & Liu, J. (2021). Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environmental Science and Ecotechnology, 5, 100077.

78. Yuan, J., Wen, Y., Dionysiou, D. D., Sharma, V. K., & Ma, X. (2022). Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review. Chemical Engineering Journal, 429, 132313.

79. Zhang, K., Sun, P., Faye, M. C. A., & Zhang, Y. (2018). Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon, 130, 730-740.

80. Zheng, H., Liu, B., Liu, G., Cai, Z., & Zhang, C. (2019). Potential toxic compounds in biochar: Knowledge gaps between biochar research and safety. In Biochar from biomass and waste (pp. 349-384): Elsevier.

81. Zhao, N., Yin, Z., Liu, F., Zhang, M., Lv, Y., Hao, Z., & Zhang, J. (2018). Environmentally persistent free radicals mediated removal of Cr (VI) from highly saline water by corn straw biochars. Bioresource Technology, 260, 294-301.

82. Zhao, S.-X., Ta, N., & Wang, X.-D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293.