An Oka principle for equivariant isomorphisms

Gerald W. Schwarz

Brandeis University

June 17, 2014
Stein spaces and Oka principle

- With F. Kutzschebauch and F. Lárusson.
- Let X be a complex manifold. Then X is Stein iff X is biholomorphic to a closed complex submanifold of some \mathbb{C}^n.
- Holomorphic analogue of smooth complex affine variety.
- Can also define when a complex space is Stein. Analogue of complex affine variety.

Oka Principle

On reduced Stein spaces, there are only topological obstructions to solving holomorphic problems that can be formulated cohomologically.
Let G be a complex Lie group and X a reduced Stein space.

Theorem (Grauert)

Inclusion induces an isomorphism between isomorphism classes of holomorphic principal G-bundles on X and topological principal G-bundles on X.

Note that isomorphism classes of principal G-bundles are given by a certain cohomology set $H^1(X, \mathcal{G})$ where \mathcal{G} is maps of open sets of X to G.

Theorem of Grauert is an Oka principle.

Equivariant version due to Heinzner and Kutzschebauch.
Want an Oka principle for equivariant maps.

Let X be a connected Stein manifold with holomorphic action of the complex reductive Lie group G.

We have the quotient space $Z = X \sslash G$, a reduced Stein space.

The space Z has points corresponding to the closed G-orbits in X and the pull-back of the structure sheaf on Z is the sheaf of G-invariant holomorphic functions on X.

Let $x \in X$ such that Gx is closed. Then G_x is reductive and the representation of G_x on $T_x(X)/T_x(Gx)$ is called the slice representation at x.

Z has a stratification $Z(H)$ where the points in $Z(H)$ correspond to the closed orbits with isotropy group conjugate to the reductive subgroup H of G.
The stratification $Z_{(H)}$ is a locally finite stratification of Z by locally closed smooth subvarieties of Z.

Example. Let $G = \mathbb{C}^*$ and $V = \mathbb{C}^2$ where $t(a, b) = (ta, t^{-1}b)$, $t \in \mathbb{C}^*$, $(a, b) \in V$. Let x and y be the coordinate functions. Then $O(V)^G$ is generated by xy.

Let $\pi = xy : V \rightarrow Z = \mathbb{C}$. Then $\pi^*\mathcal{H}(Z) = \mathcal{H}(V)^G$.

Nonzero closed orbits Gx have $G_x = \{e\}$. The origin has isotropy group G. Then the strata of $Z = \mathbb{C}$ are $\mathbb{C} \setminus \{0\}$ and $\{0\}$.
• Let \(Y \) be another Stein \(G \)-manifold with quotient mapping \(\pi_Y : Y \to Z \). Same quotient space as \(X \).
• We say that \(X \) and \(Y \) are **locally isomorphic over \(Z \)** if there are \(G \)-biholomorphisms \(\psi_i : \pi_X^{-1}(U_i) \cong \pi_Y^{-1}(U_i) \) which induce the identity on \(U_i \) for an open cover \(\{U_i\} \) of \(Z \).
• Hoped for Oka principle: \(X \) and \(Y \) are \(G \)-biholomorphic (over \(\text{Id} : Z \to Z \)) iff a topological condition is satisfied.
• For \(U \subset Z \) let \(F(U) \) denote the \(G \)-equivariant biholomorphisms of \(\pi_X^{-1}(U) \) inducing \(\text{Id} : U \to U \). Sheaf of groups.
• Then \(\psi_{ij} := \psi_i^{-1} \circ \psi_j \) is in \(F(U_i \cap U_j) \) and \(\{\psi_{ij}\} \in H^1(Z, F) \).

There is an equivariant biholomorphism \(\varphi : X \to Y \) over the identity of \(Z \) iff \(\{\psi_{ij}\} \) is a coboundary.
• Example. Let X and Y be holomorphic principal G-bundles over the Stein manifold Z

• Then $X//G = Y//G = Z$ and X and Y, as Stein G-manifolds, are locally isomorphic over Z.

• Then X is G-biholomorphic to Y over Z if and only if the two holomorphic principal bundles are isomorphic if and only if the principal bundles are G-homeomorphic (Grauert) if and only if X is G-homeomorphic to Y over Z.
Generic actions

- There is a unique open stratum $Z_{pr} \subset Z$, called the principal stratum. Let $X_{pr} = \pi_X^{-1}(Z_{pr})$.
- We say that X is generic if X_{pr} consists of closed orbits with trivial isotropy group and $\text{codim } X \setminus X_{pr} \geq 2$.
- X is generic iff every slice representation is generic.
- $X_{pr} \to Z_{pr}$ is a principal G-bundle.
- For a fixed simple group H and H-modules W with $W^H = (0)$, up to isomorphism, only finitely many W are not generic!
- Similar statement for H semisimple. Thus “almost any” X is generic.
Special automorphisms

- Let $\psi : X \to X$ be holomorphic, equivariant, induce identity on Z. Say ψ is special if there is a holomorphic map $\gamma : X \to G$ such that $\psi(x) = \gamma(x) \cdot x$.

Lemma

If X is generic, then every holomorphic ψ is special. Moreover, we have that $\gamma(gx) = g\gamma(x)g^{-1}$.

- Let \mathcal{G} be the sheaf on Z corresponding to equivariant holomorphic $\gamma : \pi_X^{-1}(U) \to G$, U open in Z.
- If X is generic, then $\mathcal{F} \simeq \mathcal{G}$, by the Lemma.
• Let \mathcal{G}_c be the sheaf of groups corresponding to continuous equivariant maps to G.

Theorem (HK)

The natural map $H^1(Z, \mathcal{G}) \to H^1(Z, \mathcal{G}_c)$ is an isomorphism.

Corollary

$X \simeq Y$ over Z, equivariantly, iff a topological condition is satisfied.
G-finite functions

- Now we see what a topological condition should be.
- G acts on $\mathcal{H}(X)$, $f \mapsto g \cdot f$ where $(g \cdot f)(x) = f(g^{-1}x)$, $x \in X$.

Definition

$f \in \mathcal{H}(X)$ is G-finite if $\{g \cdot f \mid g \in G\}$ spans a finite-dimensional G-module.

- The G-finite functions are an $\mathcal{H}(X)^G$-module.
- Let V_i be a finite-dimensional G-module and let $\mathcal{H}(X)_{V_i}$ denote the sum of the subspaces of G-finite functions that transform by V_i. Covariants.
- Assume \exists collection of irreducible representations V_i such that the $\mathcal{H}(X)_{V_i}$ generate the algebra of G-finite functions on X and that the $\mathcal{H}(X)_{V_i}$ are finitely generated $\mathcal{H}(X)^G$-modules. (True locally over \mathbb{Z}).
Strongly continuous maps

- Let \(\psi : X \to X \) be equivariant biholomorphic over \(Z \). Let \(f_1, \ldots, f_n \) generate the \(\mathcal{H}(X)_{\mathcal{V}_i} \). Then

\[
\psi^* f_i = \sum a_{ij}(z)f_j \quad \text{where the } a_{ij}(z) \in \mathcal{H}(Z).
\]

- \(\psi \) is determined by the \(a_{ij} \).
- Let \(\varphi : X \to X \) be a \(G \)-equivariant homeomorphism.

Definition

We say that \(\varphi \) is strongly continuous if \(\varphi^* f_i = \sum a_{ij}(z)f_j \) where the \(a_{ij}(z) \) are continuous.
\[\varphi^* f_i = \sum_{ij} a_{ij}(z)f_j. \]

- The fibers of \(\pi \) are affine \(G \)-varieties and the \(\mathcal{H}(X)_V \) generate \(\mathcal{O}(\pi_X^{-1}(z)) \).
- Hence \(\varphi \) induces a \(G \)-automorphism of \(\pi_X^{-1}(z) \). So \(\varphi \) is a continuous family of \(G \)-isomorphisms of the fibers of \(\pi_X \).
- Strongly continuous maps are the natural kinds of topological maps one should consider.
- Suppose that \(\mathcal{F} \) is represented by a group scheme \(\tilde{\mathcal{F}} \) over \(Z \), i.e., the fibers of \(\tilde{\mathcal{F}} \to Z \) are groups and \(\mathcal{F}(U) \cong \Gamma(U, \tilde{\mathcal{F}}) \). Then the continuous sections of \(\tilde{\mathcal{F}} \) are the strongly continuous homeomorphisms.
Let \(\varphi: X \to Y \) be a \(G \)-homeomorphism over \(Z \). Then \(\varphi \) is strongly continuous if \(\psi_i^{-1} \circ \varphi: \pi^{-1}_X(U_i) \to \pi^{-1}_X(U_i) \) is strongly continuous for all \(i \). Recall \(\psi_i: \pi^{-1}_X(U_i) \cong \pi^{-1}_Y(U_i) \) over \(U_i \).

Let \(\varphi: X \to Y \) be strongly continuous where \(X \) and \(Y \) are generic. Then there is an equivariant biholomorphism \(\varphi': X \to Y \).
Proof of Theorem

- Let $x \in X$, Gx closed and let (W, H) be the slice representation. (So $H = Gx$.) There is an H-saturated open set $0 \in B \subset W$ such that $\sigma_X : \pi_X^{-1}(U) \simeq G \times^H B$ where U is a neighborhood of $z = \pi_X(x)$. Slice theorem.

- We similarly have a $\sigma_Y : \pi_Y^{-1}(U) \simeq G \times^H B$.

- Then $\varphi_U := \sigma_Y \circ \varphi \circ \sigma_X^{-1} : G \times^H B \to G \times^H B$.

- For $t \in \mathbb{C}^*$ let $t \cdot [g, w] = [g, tw]$ for $[g, w] \in G \times^H B$. We can assume that $G \times^H B$ is stable under this action for $|t| \leq 1$.

Lemma

Let $\varphi_t([g, w]) = t^{-1}\varphi([g, tw])$. Then $\varphi_0 := \lim_{t \to 0} \varphi_t$ exists and is special, where the associated map γ is continuous.

- Using induction and a partition of unity argument, one can show that there is a homotopy φ_t with $\varphi_1 = \varphi$ and φ_0 special.

- Now $\{\psi_{ij}\} \in H^1(Z, \mathcal{F}) = H^1(Z, \mathcal{G}) \simeq H^1(Z, \mathcal{G}_c)$ where the existence of φ_0 shows that the class in $H^1(Z, \mathcal{G}_c)$ is trivial. QED.
• The proof does not actually show that φ is homotopic to a G-biholomorphism of X and Y over Z.

• What about actions that are not generic?

Latest Theorem

Suppose that $\varphi : X \to Y$ is strongly continuous. Then there is a homotopy φ_t with $\varphi_1 = \varphi$ and φ_0 a G-biholomorphism of X and Y over Z.

• Can’t reduce to HK. Go through Cartan’s version of Grauert’s original theorem and modify everything to fit our situation.
Preliminary step. Let $\varphi : X \to X$ be strongly continuous. Then, after a homotopy, we can arrange the following.

Let $z \in Z$. Then there is a neighborhood U_z of z and $\psi_z \in \mathcal{F}(U_z)$ which agrees with φ on $\pi^{-1}_X(z)$. Moreover, the family $\Psi(x, x') = \psi_{\pi_X(x)}(x')$ is smooth in x and x'.

We can apply the Grauert proof to the φ which admit an extension Ψ. (They form a sheaf of groups.)
• How can G act on \mathbb{C}^n? Can we holomorphically change coordinates such that the action of G is linear? Say G-action is linearizable.
• Derksen-Kutzschebauch: For every $G \neq \{e\}$ there is a d and a nonlinearizable action of G on \mathbb{C}^n for $n \geq d$. The quotients $\mathbb{C}^n//G$ are rather horrible.

Theorem

Suppose that V is a G-module and that X and V are locally isomorphic over a common quotient. Then X is equivariantly biholomorphic to V.
Theorem

Suppose that V is not too “small” and suppose that $X \parallel G$ and $V \parallel G$ are biholomorphic by a mapping which preserves the Luna strata. Then X is G-biholomorphic to V.

- For any simple Lie group G, only finitely many V with $V^G = (0)$ are too small. Similarly for G-semisimple.
- The Luna stratification is finer than the stratification by conjugacy class of the isotropy group. On each irreducible component of $Z(H)$, the slice representation (W, H) is constant. The Luna stratification is by the isomorphism class of the slice representation.