RELATIVE UNITARY RZ-SPACES AND THE ARITHMETIC FUNDAMENTAL LEMMA

ANDREAS MIHATSCH

Rheinische Friedrich-Wilhelms-Universitat Bonn, Mathematisches Institut, Endenicher Allee 60, Bonn, 53115, Germany (mihatsch@math.uni-bonn.de)

(Received 21 May 2019; revised 10 February 2020; accepted 14 February 2020; first published online 24 March 2020)

Abstract We prove a comparison isomorphism between certain moduli spaces of p-divisible groups and strict \mathcal{O}_K-modules (RZ-spaces). Both moduli problems are of PEL-type (polarization, endomorphism, level structure) and the difficulty lies in relating polarized p-divisible groups and polarized strict \mathcal{O}_K-modules. We use the theory of relative displays and frames, as developed by Ahsendorf, Lau and Zink, to translate this into a problem in linear algebra. As an application of these results, we verify new cases of the arithmetic fundamental lemma (AFL) of Wei Zhang: The comparison isomorphism yields an explicit description of certain cycles that play a role in the AFL. This allows, under certain conditions, to reduce the AFL identity in question to an AFL identity in lower dimension.

Keywords: moduli space; p-divisible group; display; arithmetic fundamental lemma

2010 Mathematics subject classification: Primary 11G18
 Secondary 14G35

Contents

1 Introduction 242

I Relative unitary RZ-spaces 247
 2 The moduli spaces $\mathcal{N}_{E_0/K,(r,s)}$ 247
 3 Comparison of moduli spaces 254
 4 Cycles on unitary RZ-spaces 262

II Application to the arithmetic fundamental lemma 268
 5 The fundamental lemma 268
 6 The arithmetic fundamental lemma 271
 7 Orbital integrals as lattice counts 275
1. Introduction

In [23], Wei Zhang introduces his so-called arithmetic fundamental lemma (AFL) conjecture. This is a conjectural identity between certain derivatives of orbital integrals on p-adic symmetric spaces and certain intersection products in unitary Rapoport–Zink spaces (RZ-spaces). The AFL is proven in the case of dimension $n \leq 3$; see [23]. In the subsequent work [18], Rapoport, Terstiege and Zhang verify the AFL for arbitrary n and the so-called minuscule group elements g. Their proof was later simplified by Li and Zhu [12, 13] and He, Li and Zhu [8].

In the present paper, we verify more cases of the AFL for arbitrary n but under restrictive conditions on g. These computations rely on a certain recursion formalism which involves comparison isomorphisms between different RZ-spaces. More precisely, we will compare two PEL moduli problems, one for p-divisible groups and one for strict formal O-modules. This comparison relies on the theory of display as developed by Zink [25], Lau [10] and Ahsendorf [1, 2].

There is some resemblance of our comparison isomorphism with the one from Rapoport and Zink in the Drinfeld case; see [20]. However, our moduli problems involve a polarization which adds an additional twist. The reason is that a polarization of a strict formal O-module is not the same as a polarization of the underlying p-divisible group. We treat this problem in the appendix.

Let us briefly mention the following papers around the AFL. First, the AFL is related to an arithmetic Gan–Gross–Prasad conjecture (GGP conjecture) which can be seen as a higher-dimensional generalization of the Gross–Zagier formula; see [6]. We refer to the survey [24] and also to [17, 23] for these global aspects. Second, the AFL from [23] is formulated for an unramified quadratic extension. See [15] and [16] for variants in the ramified situation.

1Throughout this work, we assume $p \neq 2$.
Part I: Relative unitary RZ-spaces

We now describe our main results on unitary RZ-spaces. Let E/E_0 be an unramified quadratic extension of p-adic local fields with rings of integers $\mathcal{O}_{E_0} \subset \mathcal{O}_E$ and Galois conjugation σ. We denote by \tilde{E} the completion of a maximal unramified extension of E with ring of integers $\mathcal{O}_{\tilde{E}}$ and residue field \mathbb{F}.

Definition 1.1. Let S be a scheme over $\text{Spf} \mathcal{O}_{\tilde{E}}$. A hermitian \mathcal{O}_E-module over S is a triple (X, ι, λ) where X/S is a supersingular strict \mathcal{O}_{E_0}-module, $\iota: \mathcal{O}_E \rightarrow \text{End}(X)$ an action and $\lambda: X \sim X^\vee$ a compatible principal polarization; see Definition 2.2.

The hermitian \mathcal{O}_E-module (X, ι, λ) is of signature (r, s) if, for all $a \in \mathcal{O}_E$,

$$\text{charpol}(\iota(a) | \text{Lie}(X))(T) = (T - a)^r(T - \sigma(a))^s \in \mathcal{O}_S[T].$$

It follows from Dieudonné theory that, up to quasi-isogeny, there is a unique hermitian \mathcal{O}_E-module $(X_{E_0,(r,s)}, \iota_X, \lambda_X)$ of signature (r, s) over \mathbb{F}.

Definition 1.2. For an \mathcal{O}_E-scheme S, we denote by $\overline{S} := S \otimes_{\mathcal{O}_E} \mathbb{F}$ its special fiber. Let $N_{E_0,(r,s)}$ be the following set-valued functor on the category of schemes over $\text{Spf} \mathcal{O}_{\tilde{E}}$. To any S, it associates the set of isomorphism classes of quadruples $(X, \iota, \lambda, \rho)$, where (X, ι, λ) is a hermitian \mathcal{O}_E-module of signature (r, s) and where

$$\rho: X \times_S \overline{S} \rightarrow X_{E_0,(r,s)} \times_{\text{Spec} \mathbb{F}} \overline{S}$$

is an E-linear quasi-isogeny such that $\rho^* \lambda_X = \lambda$.

Proposition 1.3 [19, Theorem 2.16], Proposition 2.17. The functor $N_{E_0,(r,s)}$ is representable by a formal scheme which is locally formally of finite type and formally smooth of dimension rs over $\text{Spf} \mathcal{O}_{\tilde{E}}$.

For arithmetic intersection theory and for the AFL, the case $(r,s) = (1,n-1)$ is of particular interest. The formal scheme $N_{\mathbb{Q}_p,(1,n-1)}$ has been studied in detail by Vollaard–Wedhorn in [21]. Cho [4] extended their results to the general case. We remark that, if $E_0 = \mathbb{Q}_p$, then the moduli problem is of PEL-type in the sense of Rapoport and Zink; see [19, Section 3.17]. By contrast, if $E_0 \neq \mathbb{Q}_p$, then this moduli problem is not covered by their book. This is due to the polarization λ, which is a polarization as a strict \mathcal{O}_{E_0}-module; see Definition 11.6. We call $N_{E_0,(r,s)}$ a relative RZ-space since the underlying moduli problem is formulated in strict \mathcal{O}_{E_0}-modules as opposed to p-divisible groups.

The last observation motivates our main result on unitary RZ-spaces, which we now state in a rather informal way. See Theorem 3.1 for the precise statement.

Theorem 1.4. There exists an RZ-space $N_{E_0/\mathbb{Q}_p,(r,s)}$ of PEL-type in the sense of [19] together with an isomorphism

$$N_{E_0/\mathbb{Q}_p,(r,s)} \cong N_{E_0,(r,s)}$$

which is equivariant with respect to the unitary groups acting on both sides.

2That is, an $\mathcal{O}_{\tilde{E}}$-scheme such that p is locally nilpotent in \mathcal{O}_S.
Part II: Application to the arithmetic fundamental lemma

We now describe the application of Theorem 1.4 to the AFL. For this, we briefly recall the AFL conjecture in the inhomogeneous group formulation from [23]. In the main text, we will also consider the AFL in the Lie algebra formulation. We refer the reader to [15] for the homogeneous group formulation.

Let us fix an integer \(n \geq 2 \) and let \(W_0 \) be an \((n-1)\)-dimensional \(E_0 \)-vector space. Set \(W := E \otimes_{E_0} W_0 \) and \(V := W \oplus E u \). We embed \(\text{GL}(W) \) into \(\text{GL}(V) \) as \(h \mapsto \text{diag}(h, 1) \). In this way, \(\text{GL}(W) \) acts by conjugation on \(\text{End}(V) \). An element \(\gamma \in \text{End}(V) \) is said to be regular semi-simple, if its stabilizer for this action is trivial and if its orbit is Zariski-closed.

Let \(S(E_0) \) denote the symmetric space

\[
S(E_0) := \{ \gamma \in \text{End}(V) \mid \gamma \overline{\gamma} = 1 \}.
\]

It is stable under the action of \(\text{GL}(W_0) \). We denote its regular semi-simple elements by \(S(E_0)_{rs} \) and form the set-theoretic quotient \([S(E_0)_{rs}] := \text{GL}(W_0) \setminus S(E_0)_{rs} \).

For a regular semi-simple element \(\gamma \in S(E_0)_{rs} \), for a test function \(f \in C_c^\infty(S(E_0)) \) and for a complex parameter \(s \in \mathbb{C} \), we define the orbital integral

\[
O_{\gamma}(f, s) := \int_{\text{GL}(W_0)} f(h^{-1} \gamma h) \eta(\det h) |\det h|^s \, dh,
\]

where \(\eta : E_0^\times \to \{ \pm 1 \} \) is the quadratic character associated with \(E/E_0 \) by local class field theory and where \(|\cdot| := q_{E_0}^{v(\cdot)} \) is the normalized absolute value of \(E_0 \). We consider the special value \(O_{\gamma}(f) := O_{\gamma}(f, 0) \) and the derived orbital integral

\[
\partial O_{\gamma}(f) := \left. \frac{d}{ds} \right|_{s=0} O_{\gamma}(f, s).
\]
Note that $O_E(f)$ transforms with $\eta \circ \det$ under the action of $GL(W_0)$ on γ. The so-called transfer factor $\Omega(\gamma) \in \{\pm 1\}$, see Definition 5.6, is η-invariant as well, making the product $\Omega(\gamma)O_E(f)$ descend to the quotient $[S(E_0)_{rs}]$.

Now let J^b_0 (resp. J^b_i) be a hermitian form with discriminant of even (resp. odd) valuation on W. For $i = 0, 1$, we extend J^b_i to a form J_i on V by defining $J_i(u, u) = 1$ and $u \perp W$. The unitary group $U(J^b_i)$ acts by conjugation on the regular semi-simple elements $U(J)_{rs}$ and we define the quotient

$$[U(J)_{rs}] := U(J^b_i) \setminus U(J)_{rs}.$$

Definition 1.5. Two elements $\delta \in U(J)_{rs}$ and $\gamma \in S(E_0)_{rs}$ are said to match, if they are conjugate under $GL(W)$ within $End(V)$.

Lemma 1.6 [23, Lemma 2.3]. The matching relation induces a bijection

$$\alpha : [S(E_0)_{rs}] \cong [U(J)_{rs}] \cup [U(J)_{rs}].$$

Let Y_{E_0} (resp. $X_{E_0,(1,n-2)}$) be a hermitian O_E-module over \mathbb{F} of signature $(0, 1)$ (resp. of signature $(1, n-2)$). Define $X_{E_0,(1,n-1)} := X_{E_0,(1,n-2)} \times Y_{E_0}$, which has signature $(1, n-1)$, and consider the associated RZ-spaces $N_{E_0,(1,n-2)}$ and $N_{E_0,(1,n-1)}$. Note that there is a unique deformation Y_{E_0} of Y_{E_0} to $Spf \, O_E$ by Proposition 1.3 which defines a closed immersion

$$\delta : N_{E_0,(1,n-2)} \rightarrow N_{E_0,(1,n-1)}$$

$$X \mapsto X \times Y_{E_0}.$$

Its image can be identified with the Kudla–Rapoport divisor $Z(u)$ associated with the homomorphism $u := (0, id) : Y_{E_0} \rightarrow X_{E_0,(1,n-2)} \times Y_{E_0}$; see [9].

We can identify the group $\text{Aut}(X_{E_0,(1,n-2)})$ with $U(J^b_i)$. Then $U(J^b_i)$ acts on $N_{E_0,(1,n-2)}$ by composition in the framing, $g(X, \lambda, \iota, \rho) = (X, \lambda, \iota, g\rho)$. Similarly, we may identify $\text{Aut}(X_{E_0,(1,n-1)})$ with $U(J_1)$ and we can even choose the identification in such a way that δ becomes equivariant with respect to the embedding $U(J^b_i) \subset U(J_1)$.

Definition 1.7. (1) For an element $g \in U(J_1)$, we denote by $Z(g) \subset N_{E_0,(1,n-1)}$ the closed formal subscheme of (X, ρ) with $\rho^{-1}g\rho \in End(X)$; see [19, Proposition 2.9]. It only depends on the O_E-algebra spanned by g, $O_E[g] \subset End^0(X_{E_0,(1,n-1)})$.

(2) An element $g \in U(J_1)$ is called artinian if the intersection $\text{Im}(\delta) \cap Z(g)$ is an artinian scheme.

(3) For artinian g, we define the intersection number

$$\text{Int}(g) := \text{len}_{O_E} O_{\text{Im}(\delta) \cap Z(g)}.$$

Zhang defines an intersection product more generally for all regular semi-simple elements $g \in U(J_1)_{rs}$. Then the schematic intersection $\text{Im}(\delta) \cap Z(g)$ may be higher-dimensional and higher Tor-terms appear; see Definition 6.2. But note that the results of this paper only apply to the artinian case.
We are now ready to state the AFL conjecture for artinian elements. Let \(A_0 \subset W_0 \) be some lattice and set \(\Lambda := (A_0 \otimes_{E_0} \mathcal{O}_E) \oplus \mathcal{O}_E u \). Define \(\mathcal{S}(\mathcal{O}_{E_0}) := S(E_0) \cap \text{End}(\Lambda) \) and denote its characteristic function by \(1_{\mathcal{S}(\mathcal{O}_{E_0})} \).

Conjecture 1.8 (AFL, [23, Conjecture 2.9]). For every element \(\gamma \in S(E_0)_{rs} \) that matches an artinian element \(g \in U(J_1)_{rs} \), there is an equality

\[
\Omega(\gamma) \partial \mathcal{O}_\gamma(1_{\mathcal{S}(\mathcal{O}_{E_0})}) = -\text{Int}(g) \log(q). \quad (\text{AFL}_{E_0,(V,J_1),u,g})
\]

Here, the indexing quadruple \((E/E_0, (V, J_1), u, g)\) is chosen in such a way that it allows an unambiguous reconstruction of the terms involved in the identity \(\text{AFL}_{E_0,(V,J_1),u,g} \).

Our main result on the AFL in the group version is a simplification of the AFL identity for elements \(g \) of the so-called inductive type; cf. Theorem 1.10.

Definition 1.9. An element \(g \in U(J_1)_{rs} \) is of inductive type if there exists a non-trivial étale algebra \(A_0/E_0 \) and, setting \(A := A_0 \otimes_{E_0} E \), an inclusion

\[\mathcal{O}_A \subset \mathcal{O}_E[g] \]

that is equivariant for the Galois conjugation of \(A/A_0 \) and the Rosati involution on \(\mathcal{O}_E[g] \).

Let us fix such a \(g \) and let us, for simplicity, also assume that \(A \) is a field. Then \(V \) becomes an \(A \)-vector space and we set \(n' := \dim_A(V) \). Let \(\vartheta_A \) be a generator of the inverse different of \(A_0/E_0 \) and let \(J_1^A \) be the unique \(A \)-valued hermitian form such that

\[J_1 = \text{tr}_{A/E}(\vartheta_A J_1^A). \]

We assume for simplicity that \(J_1^A(u, u) = 1 \); see Section 9.1 for variants.

Theorem 1.10. For \(g \) of inductive type as above, there is an equivalence

\[(\text{AFL}_{E_0,(V,J_1),u,g}) \iff (\text{AFL}_{A/A_0,(V,J_1^A),u,g}) \]

Since the AFL has been proven for \(n \leq 3 \), we get the following corollary.

Corollary 1.11. Let \(g \) be of inductive type as above with \(n' \leq 3 \). Then the AFL identity for \(g \), \((\text{AFL}_{E_0,(V,J_1),u,g}) \), holds.

The proof of the theorem relies on a comparison of the \(g \)-fixed points on \(N_{E_0,(1,n-1)}^g \) with the \(g \)-fixed points on \(N_{A_0,(1,n'-1)}^g \). For better distinguishability, we write \(g^A \) for the endomorphism \(g \), viewed as \(A \)-linear endomorphism. We denote by \(\mathcal{Z}(\mathcal{O}_A) \subset N_{E_0,(1,n-1)}^g \) the closed formal subscheme of \((X, \rho) \) such that \(\rho^{-1} \mathcal{O}_A \subset \text{End}(X) \). Then \(\mathcal{Z}(g) \subset \mathcal{Z}(\mathcal{O}_A) \).

We also let \(f \) denote the inertia degree of \(A/E \).

Theorem 1.12. There is an isomorphism of formal schemes,

\[\mathcal{Z}(\mathcal{O}_A) \cong \bigcap_{i=1}^f N_{A_0,(1,n'-1)}^g, \]
which is compatible with the formation of $Z(g)$ in the following sense. It induces an identification

$$Z(g) \cong \prod_{i=1}^{f} Z(g^A).$$

This result follows from the comparison isomorphism Theorem 1.4. Namely, the moduli description of the cycle $Z(O_A)$ corresponds precisely to an RZ-space $N_{A_0/E_0,(1,n'-1)}$ which (the relative variant of) Theorem 1.4 identifies with $N_{A_0,E_0,(1,n'-2)}$; see Corollary 9.2. It is worth pointing out that all considered cases are corollaries of the Theorems 9.1 and 9.5. These theorems are formulated uniformly for the AFL in the group and the Lie algebra version for artinian elements. We introduce this uniform treatment in Section 8.

Part I

Relative unitary RZ-spaces

2. The moduli spaces $N_{E_0/K,(r,s)}$

In this chapter, we formulate a moduli problem of PEL-type where the PEL-datum is given over a finite extension K of \mathbb{Q}_p. It generalizes the moduli problem of Vollaard and Wedhorn [21] in that it is also associated with the basic Frobenius-conjugacy class in a unitary group for an unramified quadratic extension. If $K = \mathbb{Q}_p$, then the moduli problem is a special case of the PEL-formalism of Rapoport and Zink [19].

2.1. Skew-hermitian E-K-modules

Let $p > 2$ be a prime and fix finite extensions $\mathbb{Q}_p \subset K \subset E_0 \subset E$, where E/E_0 is unramified quadratic. Let $d := [E_0 : K]$ with $d = ef$, where e denotes the ramification index and f the inertia degree. We denote the Galois conjugation of E/E_0 by σ and the rings of integers by $O_K \subset O_{E_0} \subset O_E$. We also fix a uniformizer $\pi_K \in O_K$.

Definition 2.1. A skew-hermitian E-K-module (V, \langle , \rangle) is an E-vector space together with a perfect alternating K-bilinear pairing $\langle , \rangle : V \times V \rightarrow K$ such that $\langle a , \rangle = \langle , a^\sigma \rangle$ for all $a \in E$. An isomorphism of skew-hermitian E-K-modules (V, \langle , \rangle) and (V', \langle , \rangle) is an E-linear isometry $V \cong V'$. We denote by $U(V)$ the group of automorphisms of (V, \langle , \rangle).

For every n, there exist two isomorphism classes of skew-hermitian E-K-modules (V, \langle , \rangle) of dimension n. We say that V is even if there exists a self-dual O_E-lattice in V. Otherwise, we call V odd. This distinguishes the two isomorphism classes. Note
that \((V, \langle , \rangle)\) is even (resp. odd) if and only if the index \([M^\vee : M]\) is even (resp. odd) for every \(\mathcal{O}_K\)-lattice \(M \subset V\). Here, \(M^\vee := \{v \in V \mid \langle M, v \rangle \in \mathcal{O}_K\}\) is the lattice dual to \(M\).

The category of skew-hermitian \(E\)-\(K\)-modules is endowed with the \textit{adjoint involution} \(*\). If \(V_1\) and \(V_2\) are two such modules, then this is the isomorphism

\[
* : \text{Hom}_E(V_1, V_2) \cong \text{Hom}_E(V_2, V_1)
\]

\[
f \mapsto f^* : V_2 \cong V_2^\vee \xrightarrow{f^\vee} V_1^\vee \cong V_1,
\]

where the identifications \(V_1 \cong V_1^\vee\) and \(V_2 \cong V_2^\vee\) are induced by the alternating pairings.

2.2. Hermitian \(O_E\)-\(O_K\)-modules

As usual, \(\bar{K}\) denotes the completion of a maximal unramified extension of \(K\). We denote by \(E^u \subset E\) the maximal subfield which is unramified over \(K\) and define \(\Psi := \text{Hom}_K(E^u, \bar{K})\). We choose a decomposition \(\Psi = \Psi_0 \sqcup \Psi_1\) such that \(\sigma(\Psi_0) = \Psi_1\) and we fix an element \(\psi_0 \in \Psi_0\). Finally, we define \(\bar{E} := E \otimes_{E^{u, \psi_0}} \bar{K}\) which is the completion of a maximal unramified extension of \(E\).

We denote the ring of integers in \(\bar{K}\) (resp. in \(\bar{E}\)) by \(\mathcal{O}_{\bar{K}}\) (resp. \(\mathcal{O}_{\bar{E}}\)). Let \(\mathbb{F}\) be their residue field and let \(x \mapsto Fx\) denote the Frobenius on \(\bar{K}\). There is a natural identification

\[
\mathcal{O}_E \otimes_{\mathcal{O}_K} \mathcal{O}_{\bar{K}} = \prod_{\psi \in \Psi} \mathcal{O}_{\bar{E}}
\]

such that the Frobenius \(1 \otimes F\) is homogeneous and acts simply transitive on the indexing set.

In the following, the notions of height, slope, Dieudonné crystal, polarization (with respect to the fixed uniformizer \(\pi_K\)), etc. are always used in the relative sense for strict formal \(\mathcal{O}_K\)-modules. We recall some of these definitions in Section 11.

Definition 2.2. Let \(S\) be a scheme over \(\text{Spf}\mathcal{O}_{\bar{K}}\). A \textit{hermitian} \(\mathcal{O}_E\)-\(\mathcal{O}_K\)-\textit{module} over \(S\) is a triple \((X, \iota, \lambda)\) where \(X/S\) is a supersingular\(^3\) strict formal \(\mathcal{O}_K\)-module together with an action \(\iota : \mathcal{O}_E \rightarrow \text{End}(X)\) and a principal polarization \(\lambda : X \xrightarrow{\sim} X^\vee\) such that

\[
\lambda^{-1}(a)^\vee \lambda = \iota(a^\sigma).
\]

An \textit{isomorphism} (resp. \textit{quasi-isogeny}) of two hermitian \(\mathcal{O}_E\)-\(\mathcal{O}_K\)-modules \((X, \iota, \lambda)\) and \((X', \iota', \lambda')\) is an \(\mathcal{O}_E\)-linear isomorphism (resp. quasi-isogeny) \(\mu : X \rightarrow X'\) of the underlying strict formal \(\mathcal{O}_K\)-modules such that \(\mu^* \lambda' = \lambda\). The hermitian \(\mathcal{O}_E\)-\(\mathcal{O}_K\)-module \((X, \iota, \lambda)\) is \textit{of rank} \(n\) if the height of \(X\) is \(2nd\). This implies \(\dim X = nd\). By \textit{hermitian} \(\mathcal{O}_E\)-\textit{module}, we mean a hermitian \(\mathcal{O}_E\)-\(\mathcal{O}_{E_0}\)-module.

Definition 2.3. The category of hermitian \(\mathcal{O}_E\)-\(\mathcal{O}_K\)-modules over a scheme \(S\) is endowed with the \textit{Rosati involution} \(*\). If \((X_1, \iota_1, \lambda_1)\) and \((X_2, \iota_2, \lambda_2)\) are two such modules, then

\(^3\)Meaning that the slopes of \(X\) are \(1/2\).
this is defined as the isomorphism
\[* : \text{Hom}_{\mathcal{O}_E}(X_1, X_2) \xrightarrow{\cong} \text{Hom}_{\mathcal{O}_E}(X_2, X_1) \]
\[f \mapsto f^* := \lambda_1^{-1} \circ f \circ \lambda_2. \]

Definition 2.4. A skew-hermitian \(E\)-\(K \)-isocrystal is a tuple \((N, \langle , \rangle, F, \iota) \) where \(N \) is a finite \(\bar{K} \)-vector space, \(\langle , \rangle : N \times N \to \bar{K} \) is an alternating perfect pairing, \(F : N \to N \) is an \(F \)-linear isomorphism with all slopes \(1/2 \) such that \(\langle F \cdot, F \cdot \rangle = \pi_K F \langle \cdot, \cdot \rangle \) and \(\iota : E \to \text{End}(N, F) \) is an action of \(E \) such that \(\langle a \cdot, \cdot \rangle = \langle \cdot, a^\sigma \rangle \) for all \(a \in E \). For two skew-hermitian \(E \)-isocrystals \(N_1, N_2 \), the adjoint involution \(* : \text{Hom}_E(N_1, N_2) \cong \text{Hom}_E(N_2, N_1) \) is defined as in the case of skew-hermitian \(E\)-\(K \)-modules.

By Dieudonné theory, the category of hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-modules up to quasi-isogeny over \(\text{Spec} \mathbb{F} \) is equivalent to the category of skew-hermitian \(E\)-\(K \)-isocrystals.

Proposition 2.5. There is an equivalence of categories
\[\{ \text{skew-hermitian } E\)-\(K \)-modules \((V, \langle , \rangle) \} \cong \{ \text{skew-hermitian } E\)-\(K \)-isocrystals \((N, \langle , \rangle, F, \iota) \} \]
that is compatible with the adjoint involutions on both sides. In particular, for a given rank \(n \), there are precisely two hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-modules over \(\mathbb{F} \) up to quasi-isogeny.

Definition 2.6. A skew-hermitian \(E\)-\(K \)-isocrystal is called even (resp. odd) if it corresponds to an even (resp. odd) skew-hermitian \(E\)-\(K \)-module under the above equivalence of categories.

Proof. Given a skew-hermitian \(E\)-\(K \)-module \((V, \langle , \rangle) \), the associated skew-hermitian \(E\)-\(K \)-isocrystal is defined as follows. Let \(N := V \otimes_K \bar{K} \) be the scalar extension and extend both the pairing \(\langle , \rangle \) and the \(E \)-action in the \(\bar{K} \)-(bi)linear way to \(N \). Note that \(N \) is a module over \(E \otimes_K \bar{K} \) and hence graded according to (2.1),
\[N = \prod_{\psi \in \Psi} N_{\psi}. \]

The pairing satisfies
\[\langle , \rangle|_{N_{\psi} \times N_{\psi'}} \equiv 0 \quad \text{if } \psi' \neq \psi \sigma \quad (\ast) \]
and the \(F \)-linear operator \(\alpha := \text{id}_V \otimes F \) is homogeneous in the sense that \(\alpha(N_{\psi}) = N_{F \psi} \).

Let \(\alpha_\psi : N_{\psi} \to N_{F \psi} \) denote the \(\psi \)-component of \(\alpha \) and define a supersingular Frobenius \(F := \prod F_{\psi} \) on \(N \) as
\[[F_{\psi} : N_{\psi} \to N_{F \psi}] := \begin{cases} \pi_K \alpha_{\psi} & \text{if } \psi \in \Psi_0 \\ \alpha_{\psi} & \text{if } \psi \in \Psi_1. \end{cases} \quad (2.2) \]

Then \((N, F)\) is supersingular since \(F^{2f} = \pi_K^f \alpha^{2f} \). In particular, there exists a \(\mathcal{O}_{\bar{K}} \)-lattice \(M \subset N \) such that \(F^{2f} M = \pi_K^f M \). Furthermore, the previously defined pairing \(\langle , \rangle \) is a
polarization of \((N, F)\) since, for \((x, y) \in N_\psi \times N_{\psi \sigma}\),

\[
(Fx, Fy) = \pi_K \langle \alpha x, \alpha y \rangle = \pi_K ^F (\langle x, y \rangle).
\]

(For the first equality, we used that precisely one out of \(\{\psi, \psi \sigma\}\) lies in \(\Psi_0\).)

The \(E\)-action on \(N\) is compatible with \((\langle \ , \rangle)\) and commutes with \(F\), so \((N, \langle \ , \rangle, i, \lambda)\) defines a skew-hermitian \(E-K\)-isocrystal. Since the scalar extension from \(K\) to \(\tilde{K}\) is functorial and commutes with taking duals, this defines a functor as asserted in the proposition. To prove that it is an equivalence, we give the inverse construction.

For a skew-hermitian \(E-K\)-isocrystal \((N, \langle \ , \rangle, F, i)\), define the \(F\)-linear operator \(\alpha = \prod \alpha_\psi\) as

\[
[\alpha_\psi : N_\psi \longrightarrow N_{\psi \sigma}] := \begin{cases}
\pi_K^{-1} F_\psi & \text{if } \psi \in \Psi_0 \\
F_\psi & \text{if } \psi \in \Psi_1.
\end{cases} \tag{2.3}
\]

Set \(V := N^{\alpha = 1}\) and restrict the form \((\langle \ , \rangle)\) to \(V\). Note that \(\alpha\) is isoclinic of slope 0 since \(N\) is supersingular. Relation \((\ast)\) holds for any skew-hermitian \(E-K\)-isocrystal and thus

\[
\langle \alpha, \alpha \rangle = \pi_K^{-1} \langle F, F \rangle = \pi_K ^F (\langle \ , \rangle).
\]

So the form \(\langle \ , \rangle|_V\) takes values in \(K = \tilde{K} ^F = 1\). Finally, the \(E\)-action commutes with \(\alpha\), and, hence, \(E\) acts on \(V\). Then \((V, \langle \ , \rangle)\) defines a skew-hermitian \(E-K\)-module with \(V \otimes_K \tilde{K} \cong N\).

\[\square\]

2.3. Moduli of hermitian \(O_E-O_K\)-modules

Let \(r, s \in \mathbb{Z}_{\geq 0}\) and set \(n := r + s\).

Definition 2.7. For \(a \in E\), we define the following polynomials:

\[
P_{(0,1)}(a; t) := \prod_{\psi \in \Psi_1} \psi(\text{charpol}_{E/E^u}(a; t)) \in \tilde{K}[t].
\]

\[
P_{(1,0)}(a; t) := P_{(0,1)}(a; t) (t - a)(t - a^\sigma)^{-1} \in \tilde{E}[t].
\]

\[
P_{(r,s)}(a; t) := P_{(1,0)}(a; t)^r P_{(0,1)}(a; t)^s \in \tilde{E}[t].
\]

If \(X\) is a hermitian \(O_E-O_K\)-module over a \(\text{Spf}O_{\tilde{K}}\)-scheme \(S\), then its Lie algebra is \(\Psi\)-graded,

\[
\text{Lie}(X) = \bigoplus_{\psi \in \Psi} \text{Lie}_\psi (X), \tag{2.4}
\]

where \(\text{Lie}_\psi (X)\) is the direct summand on which \(O_{E^u}\) acts via the embedding \(\psi : O_{E^u} \longrightarrow O_{\tilde{K}}\). By definition,

\[
O_E = O_E \otimes_{O_{E^u}, \psi_0} O_{\tilde{K}}
\]

and we consider any \(\text{Spf}O_E\)-scheme as an \(O_E\)-scheme via the first and as a \(O_{\tilde{K}}\)-scheme via the second projection.

Definition 2.8. Let \(S\) be a scheme over \(\text{Spf}O_E\). A hermitian \(O_E-O_K\)-module \((X, i, \lambda)\) of rank \(n\) over \(S\) is of signature \((r, s)\) if the following two conditions hold:
We claim that

\[P_{(r,s)}(a; t) = \text{charpol}(\ell(a) \mid \text{Lie}(X); t) \quad \forall a \in \mathcal{O}_E. \]

(ii) \((\ell(a) - a) \mid \text{Lie}_{\psi_0}(X) = 0 \) \quad \forall a \in \mathcal{O}_E.\]

Here in (i), we view \(P_{(r,s)}(a; t) \) as an element of \(\mathcal{O}_S[t] \) via the structure morphism. Condition (ii) means that \(\mathcal{O}_E \) acts on \(\text{Lie}_{\psi_0}(X) \) via the structure morphism.

Remark 2.9. In the case \(\mathbb{Q}_F = K = E_0, \) our definition of signature agrees with the one from Vollaard–Wedhorn [21]. Moreover, in the case of an unramified extension \(E_0/K, \) condition (ii) is automatically satisfied.

Lemma 2.10. A hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-module \((X, \iota, \lambda)/S\) is of signature \((r, s)\) if and only if it satisfies (ii) from Definition 2.8 and the following rank condition.

(i') The ranks of the summands in Equation (2.4) are as follows:

\[
\text{rk}_{\mathcal{O}_S} \text{Lie}_{\psi}(X) = \begin{cases}
0 & \text{if } \psi \in \Psi_0 \setminus \{\psi_0\} \\
r & \text{if } \psi = \psi_0 \\
 \text{ne} & \text{if } \psi \in \Psi_1 \setminus \{\psi_0 \sigma\} \\
 ne-r & \text{if } \psi = \psi_0 \sigma.
\end{cases}
\]

To prove the lemma, we first introduce the so-called local model. Let \(D \) be the \(\mathcal{O}_{\bar{E}} \)-module \(D := (\mathcal{O}_E \otimes_{\mathcal{O}_K} \mathcal{O}_{\bar{E}})^n \) and let \(\langle , , \rangle : D \times D \to \mathcal{O}_{\bar{E}} \) be a perfect alternating \(\mathcal{O}_{\bar{E}} \)-bilinear pairing such that \(\langle a \otimes 1, r \rangle = \langle \iota(\ell(a) - r), a^0 \otimes 1 \rangle \) for all \(a \in \mathcal{O}_E. \) The pair \((D, \langle , , \rangle)\) is unique up to isomorphism since the form is automatically split in the sense that \(D \) has a grading \(D = \prod_{\psi \in \Psi} D_{\psi} \) such that \(\langle D_{\psi'}, D_{\psi}\rangle = 0 \) if \(\psi' \neq \psi \sigma. \) Let \(Gr_{dn}(D) \to \text{Spec} \mathcal{O}_{\bar{E}} \) be the Grassmannian of \(dn \)-dimensional subspaces of \(D, \) viewed as \(\mathcal{O}_{\bar{E}} \)-module. Denote by \(G \subset Gr_{dn}(D) \) the closed subscheme of \(\mathcal{O}_{\bar{E}} \)-stable isotropic subspaces,

\[
G(S) := \left\{ F \in Gr_{dn}(D)(S) \mid F^\perp = F, \ O_E \cdot F = F \right\}.
\]

Definition 2.11. The local model is the closed subfunctor \(M_{E_0/K, (r,s)}^{\text{loc}} \subset G \) of those \(F \) such that the \(\mathcal{O}_E \)-action on the quotient \(Q(F) := D \otimes_{\mathcal{O}_E} \mathcal{O}_S/F \) satisfies conditions (i) and (ii) (where \(\text{Lie}(X) \) is replaced by \(Q(F) \)).

Proposition 2.12. The local model \(M_{E_0/K, (r,s)}^{\text{loc}} \) is smooth over \(\text{Spec} \mathcal{O}_{\bar{E}} \) of relative dimension \(rs. \) It can be equivalently described as the subfunctor \(M' \subset G \) of those \(F \) such that the \(\mathcal{O}_E \)-action on \(Q(F) \) satisfies conditions (i') and (ii) (again with \(\text{Lie}(X) \) replaced by \(Q(F) \)).

Proof. We claim that \(M' \subset G \) is a closed subscheme, isomorphic to

\[
Gr_{\iota(\ell(\psi_0 \otimes_{\mathcal{O}_E} \psi_0 \mathcal{O}_{\bar{E}} \otimes_{\mathcal{O}_E} \mathcal{O}_E \otimes_{\mathcal{O}_E} \mathcal{O}_{\bar{E}})}^{r} \to \text{Spec} \mathcal{O}_{\bar{E}}.
\]
Indeed, a subbundle $\mathcal{F} = \prod_{\psi \in \Psi} \mathcal{F}_\psi \in G(S)$ lies in $M'(S)$ if and only if

$$
\begin{aligned}
\mathcal{F}_\psi &= D_\psi \otimes_{\mathcal{O}_E} \mathcal{O}_S & \text{if } \psi \in \Psi_0 \setminus \{\psi_0\} \\
\mathcal{F}_\psi &= 0 & \text{if } \psi \in \Psi_1 \setminus \{\psi_0\sigma\} \\
\mathcal{F}_{\psi_0}\text{ rank } r \text{ quotient of } D_{\psi_0} \otimes_{\mathcal{O}_E} \otimes_{\mathcal{O}_{E_{\Psi_0}}} \mathcal{O}_S & \mathcal{O}_S \\
\mathcal{F}_{\psi_0}\text{ rank } r \text{ quotient of } D_{\psi_0} \otimes_{\mathcal{O}_E} \otimes_{\mathcal{O}_{E_{\Psi_0}}} \mathcal{O}_S & \mathcal{O}_S
\end{aligned}
$$

In particular, M' is integral and smooth over \mathcal{O}_E. Evaluating (i) on elements of \mathcal{O}_{E^u} shows that $M'_{E_0/K,(r,s)} \subset M'$. Moreover, their generic fibers are equal, which implies equality. \hfill \Box

Proof of Lemma 2.10. Let D_X be the covariant Dieudonné crystal of X on the \mathcal{O}_K-crystalline site of S (see [2, Chapter 3]). It comes with an action of \mathcal{O}_E and a skew-hermitian perfect pairing $D_{E_0} \otimes \mathcal{O}_E \otimes \mathcal{O}_{E_{\Psi_0}} \mathcal{O}_S \otimes \mathcal{O}_S$. The crucial point is to show that this fiber is free of rank 2nd over \mathcal{O}_{E_0}.

Lemma 2.13. For any \mathcal{O}_K-pd-thickening $S \hookrightarrow S'$, $D_X(S')$ is locally on S' isomorphic to $D \otimes_{\mathcal{O}_{E_0}} \mathcal{O}_{S'}$.

Proof. The crucial point is to show that $D_X(S')$ is locally free over $\mathcal{O}_E \otimes \mathcal{O}_K \mathcal{O}_{S'}$. If this is done, then one can construct such an isomorphism, e.g., by choosing $\mathcal{O}_E \otimes \mathcal{O}_{E_{\Psi_0}} \otimes \mathcal{O}_{S'}$-bases of the $D_X(S')_\psi$ for $\psi \in \Psi_0$ and taking the dual bases of the $D_X(S')_\psi$ for $\psi \in \Psi_1$, at least locally on S'.

The sheaf $D_X(S')$ is locally free of rank 2nd as $\mathcal{O}_{S'}$-module. For $s \in S$ with residue field $\kappa(s)$, there is a canonical identification

$$
D_X(S') \otimes \mathcal{O}_{S'} \kappa(s) \cong D_{X \times_S \text{Spec } \kappa(s)}(\text{Spec } \kappa(s)).
$$

It follows from considering the Dieudonné module for the base change to the perfection $X \times_S \text{Spec } \kappa(s)_{\text{perf}}$ that this fiber is free of rank n over $\mathcal{O}_E \otimes \mathcal{O}_K \kappa(s)$. Lifting generators in a neighborhood $U' \subset S'$ of s yields a map

$$(\mathcal{O}_E \otimes \mathcal{O}_K \mathcal{O}_{U'})^n \longrightarrow D_X(U')$$

which is surjective in the fiber over s. Since both modules are also locally free of the same rank over $\mathcal{O}_{U'}$, the map is an isomorphism in a neighborhood of s. \hfill \Box

We now consider the Hodge filtration $\mathcal{F}_X \subset D_X(S)$. Working locally on S, we choose an isomorphism as in Lemma 2.13. Then \mathcal{F}_X defines an element in $G(S)$. Applying Proposition 2.12 finishes the proof. \hfill \Box

Lemma 2.14. Consider the quasi-isogeny class of a hermitian $\mathcal{O}_E \otimes \mathcal{O}_K$-module over F corresponding to a skew-hermitian E-K-module $(V, (\cdot, \cdot))$ of rank n. There exists a formal hermitian $\mathcal{O}_E \otimes \mathcal{O}_K$-module (X, i, λ) of signature (r,s) in this class if and only if the parity of V coincides with the parity of r.

We prepare the proof with the following lemma, where the operator α is as in Equation (2.3).
Lemma 2.15. Let V be a skew-hermitian E-K-module and let $N := V \otimes_K \tilde{K}$ be the induced skew-hermitian E-K-isocrystal. Then there is a bijection

$$\{\text{self-dual } \mathcal{O}_E \text{-lattices } \Lambda \subset V\} \cong \begin{cases}
\text{self-dual } \mathcal{O}_E \text{-stable Dieudonné-lattices} &
\text{if } M \text{ in } N \text{ of signature } (0, n)
\end{cases}$$

given by $\Lambda \mapsto \Lambda \otimes \mathcal{O}_K \mathcal{O}_{\tilde{K}}$ and $M \mapsto M^\alpha = \text{id}$.

Proof. The map $\Lambda \mapsto M(\Lambda) := \Lambda \otimes \mathcal{O}_K \mathcal{O}_{\tilde{K}}$ is an injective map from self-dual \mathcal{O}_E-lattices to self-dual \mathcal{O}_E-stable $\mathcal{O}_{\tilde{K}}$-lattices. Each $M(\Lambda)$ is F-stable and of signature $(0, n)$ by definition of F; see (2.2). Conversely, a Dieudonné-lattice M of signature $(0, n)$ is stable under α. \hfill \square

Proof of Lemma 2.14. We first prove the existence of hermitian \mathcal{O}_E-\mathcal{O}_K-modules for all signatures. It is enough to do this in the cases of signature $(0, 1)$ and $(1, 0)$. Taking direct products then settles the general case. The case of signature $(0, 1)$ is taken care of by Lemma 2.15, so we let with the case $(1, 0)$.

Let $(V, (\cdot, \cdot))$ be any odd skew-hermitian E-K-module of rank 1. Let $(N, F, i, (\cdot, \cdot))$ be the associated isocrystal. Fix a uniformizer $\pi_E \in E$ and an \mathcal{O}_E-lattice $\Lambda \subset V$ such that $\Lambda^\vee = \pi_E^{-1} \Lambda$. Let $M := \Lambda \otimes \mathcal{O}_K \mathcal{O}_{\tilde{K}}$ be the associated \mathcal{O}_E-stable $\mathcal{O}_{\tilde{K}}$-lattice. It decomposes as

$$M = \bigoplus_{\psi \in \Psi} M_\psi.$$

Define $M' := \bigoplus_{\psi \in \Psi} M'_\psi$ as

$$M'_\psi := \begin{cases}
M_\psi & \text{if } \psi \in \{F^{\psi_0}, F^{\psi_0}, \ldots, F^{\psi_0}\}
\pi_E^{-1} M_\psi & \text{otherwise.}
\end{cases}$$

This lattice is self-dual, stable under \mathcal{O}_E, stable under F, stable under $\pi_K F^{-1}$ and of signature $(1, 0)$; so existence is proved.

Now let $(X, \iota, \lambda)/F$ of signature (r, s) be given. Let $N = \prod_{\psi \in \Psi} N_{\psi}$ be the isocrystal of X together with the alternating pairing (\cdot, \cdot) induced by λ. For any \mathcal{O}_E-lattice $L_{\psi_0} \subset N_{\psi_0}$, we denote by $L_{\psi_0}^\vee \subset N_{\psi_0}^\sigma$ the dual lattice with respect to the form (\cdot, \cdot).

Let X correspond to the \mathcal{O}_E-lattice $M \subset N$. It is self-dual and thus $M_{\psi_0}^\vee = M_{\psi_0 \sigma}$. The signature condition for M implies that

$$[\alpha^f M_{\psi_0} : M_{\psi_0}^\vee] = r.$$

It follows that for every \mathcal{O}_E-lattice $L_{\psi_0} \subset N_{\psi_0}$, $[\alpha^f L_{\psi_0} : L_{\psi_0}^\vee] \equiv r \text{ mod } 2$. By Proposition 2.5, there are precisely two quasi-isogeny classes of formal hermitian \mathcal{O}_E-\mathcal{O}_K-modules over F. In particular, formal hermitian \mathcal{O}_E-\mathcal{O}_K-modules X and X' over F of signatures (r, s) and (r', s'), respectively, are quasi-isogeneous if and only if $r \equiv r' \text{ mod } 2$. By Lemma 2.15, r and V have the same parity. \hfill \square

For every signature (r, s), we fix a hermitian \mathcal{O}_E-\mathcal{O}_K-module $X_{E_0/K,(r,s)}$ over F of that signature. \footnote{It would be enough to fix any triple (X, ι, λ) quasi-isogeneous to a hermitian \mathcal{O}_E-\mathcal{O}_K-module of signature (r, s).}
A. Mihatsch

Definition 2.16. Let \(\mathcal{N}_{E_0/K,(r,s)} \) denote the following set-valued functor on schemes over \(\text{Spf} \mathcal{O}_E \): It associates to \(S \) the set of isomorphism classes of quadruples \((X, \iota, \lambda, \rho)\) where \((X, \iota, \lambda)\) is a hermitian \(\mathcal{O}_E - \mathcal{O}_K \)-module of signature \((r, s)\) over \(S \) and where

\[
\rho : X \times_S \tilde{S} \longrightarrow X_{E_0/K,(r,s)} \times \text{Spec} \mathcal{O}_E \tilde{S}
\]

is a quasi-isogeny of hermitian \(\mathcal{O}_E - \mathcal{O}_K \)-modules. Here, \(\tilde{S} = S \times \text{Spf} \mathcal{O}_E \text{Spec} \mathcal{O}_E \). The quasi-isogeny \(\rho \) is called the **framing** and \(X_{E_0/K,(r,s)} \) is called the **framing object**. As a matter of notation, we set

\[
\mathcal{N}_{E_0,(r,s)} := \mathcal{N}_{E_0/K,(r,s)}.
\]

Proposition 2.17. The functor \(\mathcal{N}_{E_0/K,(r,s)} \) is representable by a formal scheme which is locally formally of finite type over \(\text{Spf} \mathcal{O}_E \) and formally smooth over \(\text{Spf} \mathcal{O}_E \) of relative dimension \(rs \).

Proof. The representability is proven in [19]. We prove the formal smoothness which follows from the Grothendieck–Messing Theorem. Consider a point \(X \in \mathcal{N}_{E_0/K,(r,s)}(S) \) and an \(\mathcal{O}_X \)-pd-thickening \(S \hookrightarrow S' \) (e.g., a square-zero thickening). Working locally on \(S' \), we choose an \(\mathcal{O}_E \)-linear isometry of \(D_X(S') \) with \(D \otimes \mathcal{O}_E \mathcal{O}_{S'} \) as in Lemma 2.13. Then deforming \(X \) becomes equivalent to lifting the Hodge filtration

\[
[\mathcal{F}_X \subset D_X(S)] \in M_{E_0/K,(r,s)}^\text{loc}(S)
\]

to \(S' \). This deformation problem is formally smooth of rank \(rs \) over \(\mathcal{O}_E \) by Proposition 2.12. \(\square \)

3. Comparison of moduli spaces

Let \((V, \langle , \rangle)\) be a skew-hermitian \(E-\mathbb{Q}_p \)-module as in Definition 2.1. Let \(K \) be an intermediate field \(\mathbb{Q}_p \subset K \subset E_0 \) and choose a generator \(\vartheta_K \) of the inverse different of \(K/\mathbb{Q}_p \). There exists a unique non-degenerate \(K \)-bilinear alternating form

\[
\langle , \rangle_K : V \times V \longrightarrow K
\]

such that \(\text{tr}_{K/\mathbb{Q}_p}(\vartheta_K \langle , \rangle_K) = \langle , \rangle \). It is still \(E \)-hermitian in the sense that

\[
\langle a , \rangle_K = \langle , a^\sigma \rangle_K, \quad a \in E.
\]

So \((V, \langle , \rangle_K)\) is a skew-hermitian \(E-K \)-module and the groups of \(E \)-linear isometries of \(\langle , \rangle \) and \(\langle , \rangle_K \) are then identical. Note that a lattice \(\Lambda \subset V \) is self-dual with respect to the lifted form \(\langle , \rangle_K \) if and only if it is self-dual for the original form \(\langle , \rangle \).

For every such intermediate field \(K \), we fix a uniformizer \(\pi_K \in \mathcal{O}_K \) in order to talk about polarizations of strict formal \(\mathcal{O}_K \)-modules; see Remark 11.11. We make \(N := (V, \langle , \rangle_K) \otimes_K \tilde{K} \) into a polarized \(K \)-isocrystal as in the proof of Proposition 2.5. By Lemma 2.14, if \(r \) and \(V \) have the same parity, then \(V \) gives rise to a whole family of framing objects

\[
\{X_{E_0/K,(r,s)}\}_{Q_0 \subset K \subset E_0},
\]

which all come with an action (by quasi-isogenies) of the unitary group \(U(V) \). Our main result in this section is that the corresponding RZ-spaces are all isomorphic.
Theorem 3.1. Let \((V, \langle \cdot, \cdot \rangle)\) be a skew-hermitian \(E\)-module and let \(r\) have the same parity as \(V\). For any intermediate field \(\mathbb{Q}_p \subset K \subset E_0\), there is a \(U(V)\)-equivariant isomorphism
\[
c : \mathcal{N}_{E_0/K,(r,s)} \cong \mathcal{N}_{E_0,(r,s)}.
\]
In particular, the formal scheme \(\mathcal{N}_{E_0/K,(r,s)}\) is independent of the choice of the decomposition \(\Psi = \Psi_0 \cup \Psi_1\).

The proof relies on the following equivalence of categories. We consider the category \(\text{Sch}/\text{Spf} \mathcal{O}_E\) of locally noetherian schemes over \(\text{Spf} \mathcal{O}_E\) together with the Zariski topology.

Definition 3.2. We denote by \(\mathcal{O}_E-\mathcal{O}_K\)-Herm the stack of hermitian \(\mathcal{O}_E-\mathcal{O}_K\)-modules \((X, \iota, \lambda)\) that have a signature over \(\text{Sch}/\text{Spf} \mathcal{O}_E\). By the condition, we mean that locally for the Zariski topology, the hermitian \(\mathcal{O}_E-\mathcal{O}_K\)-module is of signature \((r, s)\) for some integers \(r, s \in \mathbb{Z}_{\geq 0}\). The morphisms in this category are the \(\mathcal{O}_E\)-linear morphisms of \(p\)-divisible groups. We also write \(\mathcal{O}_E\)-Herm for the stack of hermitian \(\mathcal{O}_E\)-modules.

Theorem 3.3. There is an isomorphism of stacks on \(\text{Sch}/\text{Spf} \mathcal{O}_E\)
\[
\mathcal{C} : \mathcal{O}_E-\mathcal{O}_K\text{-Herm} \cong \mathcal{O}_E\text{-Herm}
\]
that satisfies the following properties. It is equivariant for the Rosati involution and it sends objects of signature \((r, s)\) to objects of signature \((r, s)\).

This section is devoted to the proof of these two theorems.

3.1. The unramified case

Proposition 3.4. Consider an intermediate field \(\mathbb{Q}_p \subset K \subset E_0\) and let \(E_0^u \subset E_0\) be the maximal subfield which is unramified over \(K\). Then there is an isomorphism of stacks
\[
\mathcal{C} : \mathcal{O}_E-\mathcal{O}_K\text{-Herm} \cong \mathcal{O}_E-\mathcal{O}_{E_0^u}\text{-Herm}
\]
that is equivariant for the Rosati involutions and sends objects of signature \((r, s)\) to objects of signature \((r, s)\).

Proof. We will construct the functor \(\mathcal{C}\) and its quasi-inverse. Let \(S = \text{Spec} \, R\) be an affine scheme over \(\text{Spf} \mathcal{O}_E\) and let \((X, \iota, \lambda)\) be a hermitian \(\mathcal{O}_E-\mathcal{O}_K\)-module of signature \((r, s)\) over \(R\). Let \((P, Q, F, \hat{F})\) be the \(\mathcal{O}_K\)-display of \((X, \iota, \lambda)\). We denote by \(\langle \cdot, \cdot \rangle : P \times P \to W_{\mathcal{O}_K}(R)\) the perfect alternating form induced by the polarization \(\lambda\).

Recall that \(\Psi = \text{Hom}_K(E^u, K)\) and note that there exists a natural morphism \(\mathcal{O}_{E^u} \to W_{\mathcal{O}_K}(R)\) of \(\mathcal{O}_K\)-algebras that lifts the morphism \(\mathcal{O}_{E^u} \to R\); see [5, Section 1.2]. This morphism induces gradings
\[
P = \prod_{\psi} P_\psi, \quad Q = \prod_{\psi} Q_\psi \quad \text{with} \quad Q_\psi = Q \cap P_\psi.
\]

For \(\psi \notin \{\psi_0, \psi_0\sigma\}\), we define the Frobenius-linear isomorphism
\[
[F_\psi : P_\psi \to P_{F\psi}] := \begin{cases}
\hat{F}_\psi & \text{if } \psi \in \Psi_0 \setminus \{\psi_0\} \\
F_\psi & \text{if } \psi \in \Psi_1 \setminus \{\psi_0\sigma\}.
\end{cases}
\]
Here we used that \((X, \iota, \lambda)\) has a signature, which implies \(Q_\psi P_\psi\) whenever \(\psi \in \Psi_0 \setminus \{\psi_0\}\). We set \(P' := P_\psi \oplus P_{\psi_0}\sigma\) with submodule \(Q' := Q_{\psi_0} \oplus Q_{\psi_0}\sigma\) and define the \(f\)-linear operators \(F', \hat{F}'\) on \(P'\) and \(Q'\) as
\[
F' := \mathbf{F}^{f^{-1}} \circ F, \quad \hat{F}' := \mathbf{F}^{f^{-1}} \circ \hat{F}.
\]
Then \(\mathcal{P}' := (P', Q', F', \hat{F}')\) defines an \(f\)-\(O\)-display in the sense of Ahsendorf [2]. There is an induced \(O_E\)-action and a \(W_{O_K}(R)\)-valued alternating pairing \(\langle \cdot, \cdot \rangle' := \langle \cdot, \cdot \rangle_{\mathcal{P}'}\) on \(P'\).

Note that \(f\)-\(O_K\)-displays are the same as windows over the \(O_{E_0'}\)-frame
\[
\mathcal{A}_{O_{E_0'}/O_K}(R) := (W_{O_K}(R), I_{O_K}(R), f^f, f^{f^{-1}}V^{-1}).
\]
In our case, the pairing \(\langle \cdot, \cdot \rangle'\) takes values in \(\mathcal{A}_{O_{E_0'}/O_K}(R)\) in the sense that
\[
(\hat{F}', \hat{F}') := \mathbf{F}^{f^{-1}}V^{-1}\langle \cdot, \cdot \rangle'
\]
which follows immediately from the identities \(\langle F', \hat{F}' \rangle = \langle \hat{F}', F' \rangle = \hat{F}' \langle \cdot, \cdot \rangle\) for the pairing \(\langle \cdot, \cdot \rangle\) on \(\mathcal{P}\). In other words, the pairing defines a principal polarization of the \(f\)-\(O_K\)-display \(\mathcal{P}'\); see Proposition 11.5.

As explained in the appendix, (11.2), base change along the natural strict morphism of \(O_{E_0'}\)-frames
\[
\mathcal{A}_{O_{E_0'}/O_K}(R) \longrightarrow (W_{O_{E_0'}}(R), I_{O_{E_0'}}(R), f^f, f^{f^{-1}}V^{-1})
\]
defines a principally polarized strict formal \(O_{E_0'}\)-module \(C(X)\) together with a compatible \(O_E\)-action. This module is of signature \((r, s)\) and hence an element of \(O_E\)-\(O_{E_0'}\)-Herm(S).

Construction of a quasi-inverse of \(C\): Let \(\mathcal{P}' := (P', Q', F', \hat{F}')\) be the \(f\)-\(O_K\)-display associated with a hermitian \(O_E\)-\(O_{E_0'}\)-module \((X, \iota, \lambda)\) over \(S\). By functoriality, it comes with an \(O_E\)-action and a compatible principal polarization. To construct the associated hermitian \(O_E\)-\(O_K\)-module, we apply a slightly modified version of the construction from the proof of Proposition 13.2.

The \(O_E\)-action induces a bigrading, \(P' = P'_0 \oplus P'_1\), \(Q' = Q'_0 \oplus Q'_1\). We set
\[
P_{\psi_0} := P'_0, \quad P_{\psi_0}\sigma := P'_1, \quad Q_{\psi_0} := Q'_0, \quad Q_{\psi_0}\sigma := Q'_1.
\]
For \(i = 0, \ldots, f - 2\), we define
\[
P_{f^{i+1}\psi_0} := P_{f^{i}\psi_0}^{(F)}, \quad P_{f^{i+1}\psi_0}\sigma := P_{f^{i}\psi_0}\sigma^{(F)}.
\]
The signature condition forces us to set, for \(\psi \notin \{\psi_0, \psi_0\sigma\}\),
\[
Q_\psi = \begin{cases}
P_\psi & \text{if } \psi \in \Psi_0 \setminus \{\psi_0\}
I_{O_K}(R)P_\psi & \text{if } \psi \in \Psi_1 \setminus \{\psi_0\sigma\}.
\end{cases}
\]
The display structure is defined by giving a normal decomposition. Let \((P' = L' \oplus T', \phi)\) be a normal decomposition of \(P'\). Then we define a normal decomposition \((P = L \oplus T, \Phi)\) as

\[
L = L_{\psi_0} \oplus L_{\psi_0 \sigma} \bigoplus_{\psi \in \psi_0 \setminus \{\psi_0\}} P_{\psi},
\]

\[
T = T_{\psi_0} \oplus T_{\psi_0 \sigma} \bigoplus_{\psi \in \psi_1 \setminus \{\psi_0 \sigma\}} P_{\psi}
\]

and the \(F\)-linear operator

\[
\Phi = \begin{pmatrix} 1 & \phi \\ \\ & \ddots & \ddots \\ & & 1 \end{pmatrix}
\]

with respect to the decomposition \(P = (P_{\psi_0} \oplus P_{\psi_0 \sigma}) \oplus (P_{\psi_0} \oplus P_{\psi_0 \sigma})^{(F)} \oplus \ldots \oplus (P_{\psi_0} \oplus P_{\psi_0 \sigma})^{(F^{f-1})}\). This already defines an \(f\)-\(O_K\)-display \(P := (P, Q, F, \hat{F})\) equipped with an \(O_E\)-action of the correct signature.

We now construct the polarization (as \(O_K\)-display) on \(P\). Recall that we have a perfect pairing \(\langle \cdot, \cdot \rangle_{\psi_0} : P_{\psi_0} \times P_{\psi_0 \sigma} \to W_{O_K}(R)\).

There is at most one way to extend it to a pairing \(\langle \cdot, \cdot \rangle\) on all of \(P\) such that the relations of a polarization are satisfied. Let us explain this for the direct summand \(P_{\hat{F}_{\psi_0}} \oplus P_{\hat{F}_{\psi_0 \sigma}}\). If \(l + t \in L_{\psi_0} \oplus T_{\psi_0}\) and \(l' + t' \in L_{\psi_0 \sigma} \oplus T_{\psi_0 \sigma}\), then we have to set

\[
\langle \Phi(l + t), \Phi(l' + t') \rangle := \langle \hat{F}(l) + F(t), \hat{F}(l') + F(t') \rangle = V^{-1}\langle l, l' \rangle_{\psi_0} + F\langle l, l' \rangle_{\psi_0} + F\langle l, l' \rangle_{\psi_0} + \pi_K F\langle t, t' \rangle_{\psi_0}.
\]

Since \(\Phi\) is a Frobenius-linear isomorphism, this is well defined and extends in a unique way to all of \(P_{\hat{F}_{\psi_0}} \oplus P_{\hat{F}_{\psi_0 \sigma}}\). We apply the same formulas to define \(\langle \cdot, \cdot \rangle\) on \(P_{\hat{F}_{\psi_0}} \oplus P_{\hat{F}_{\psi_0 \sigma}}\) for \(i = 1, \ldots, f - 1\). Note that due to the special form of the normal decomposition at these indices, we get

\[
\langle \cdot, \cdot \rangle|_{P_{\hat{F}_{\psi_{i+1}}}} \oplus P_{\hat{F}_{\psi_{i+1} \sigma}} = \langle \cdot, \cdot \rangle|_{P_{\hat{F}_{\psi_{i+1}}}} \oplus P_{\hat{F}_{\psi_{i+1} \sigma}}.
\]

We leave it to the reader to check that this defines a principal polarization on \(P\) which finishes the proof.

Remark 3.5. Note that we did not use the assumption of \(R\) being noetherian. We will only need this assumption in the ramified situation.

3.2. The totally ramified case

Proposition 3.6. Let \(\mathbb{Q}_p \subset K \subset E_0\) be an intermediate field such that \(E_0/K\) is totally ramified. There is an isomorphism of stacks over \(\text{Sch}/\text{Spf} O_{\hat{E}}\)

\[
\mathcal{C} : O_E \cdot O_K \cdot \text{Herm} \xrightarrow{\cong} O_E \cdot \text{Herm}
\]
that is equivariant for the Rosati involution and that sends objects of signature \((r, s)\) to objects of signature \((r, s)\).

Proof. The proof consists of three main steps. First, we will construct the functor \(C\). Second, we will prove that \(C\) is an equivalence on reduced \(\mathcal{O}_E\)-schemes in characteristic \(p\). Finally, we will prove that \(C\) identifies the deformation theories of \(X\) and \(C(X)\). Together with the restriction to locally noetherian schemes, this will imply the statement.

First step: Construction of the functor \(C\).

Let \(S = \text{Spec} \, R\) be a scheme over \(\text{Spf} \, \mathcal{O}_E\). We begin by briefly spelling out the properties of the \(\mathcal{O}_K\)-display of a hermitian \(\mathcal{O}_E\)-}\(\mathcal{O}_K\)-module \((X, \iota, \lambda)\) of signature \((r, s)\) over \(S\). For this and in the following, we identify \(\Psi\) with \(\{0, 1\}\) such that \(\psi_0\) corresponds to 0.

Let \(P := (P, Q, F, \tilde{F})\) be the \(\mathcal{O}_K\)-display of \(X\). The action \(\iota\) of \(\mathcal{O}_E\) on \(X\) induces an action of \(\mathcal{O}_E\) on the display. This makes \(P\) and \(Q\) into \(\mathcal{O}_E \otimes_{\mathcal{O}_K} \mathcal{O}_K\)-modules with \(P\) being projective by [2, Prop. 2.22]. Both \(F\) and \(\tilde{F}\) are \(\mathcal{O}_E\)-linear. The action of the unramified part induces bigradings \(P = P_0 \oplus P_1\) and \(Q = Q_0 \oplus Q_1\) such that both \(F\) and \(\tilde{F}\) are homogeneous of degree 1.

The signature condition implies that \(P_0/Q_0\) is projective of rank \(r\) over \(R\) and that \(P_1/Q_1\) is projective of rank \(n - r\) over \(R\). Furthermore, \(\mathcal{O}_E\) acts on \(P_0/Q_0\) via the structure morphism. In other words,

\[
J_{\mathcal{O}_E_0}(R)P_0 \subset Q_0,
\]

where \(J_{\mathcal{O}_E_0}(R) := \ker(\mathcal{O}_0 \otimes \mathcal{O}_K \mathcal{O}_K(R) \to R)\). The polarization induces a perfect alternating form \(\langle \cdot, \cdot \rangle : P \times P \to \mathcal{O}_K(R)\) which satisfies \(\langle a, \cdot \rangle = \langle a, a^\sigma \rangle\) for all \(a \in \mathcal{O}_E\).

In particular, \(P_0\) and \(P_1\) are maximal isotropic subspaces of \(P\) which are put into duality by \(\langle \cdot, \cdot \rangle\). Furthermore, \(\langle Q, Q \rangle \subset I_{\mathcal{O}_K}(R)\) and the pairing satisfies \(\langle \tilde{F}, \tilde{F} \rangle = \psi^{-1}(\cdot, \cdot)\). In other words, the pairing takes values in the Witt \(\mathcal{O}_K\)-frame from Definition 11.7,

\[
\mathcal{W}_{\mathcal{O}_K}(R) = (\mathcal{W}_{\mathcal{O}_K}(R), I_{\mathcal{O}_K}(R), R^*, F^*, V^{-1}).
\]

Construction of \(C(X)\): Let \((X, \iota, \lambda)/S\) and \(P\) be as above. As an intermediate step, we construct a polarized window \(P' = (P', Q', F', \tilde{F}')\) with \(\mathcal{O}_E\)-action over a Lubin–Tate frame over \(R\); see Definition 12.7.

Let \(\vartheta_{E_0}\) be a generator of the inverse different of \(E_0/K\). Consider the \(\mathcal{W}_{\mathcal{O}_K}(R)\)-linear extension of the trace

\[
\text{tr} : \mathcal{O}_{E_0} \otimes \mathcal{O}_K \mathcal{W}_{\mathcal{O}_K}(R) \to \mathcal{W}_{\mathcal{O}_K}(R)
\]

\[
a \otimes w \mapsto \text{tr}_{E_0/K}(\vartheta_{E_0} a) w.
\]

Since \(\langle \cdot, \cdot \rangle\) is \(\mathcal{O}_{E_0}\)-equivariant, it has a unique lifting to a perfect \(\mathcal{O}_{E_0} \otimes \mathcal{O}_K \mathcal{W}_{\mathcal{O}_K}(R)\)-bilinear alternating form \(\langle \cdot, \cdot \rangle : P \times P \to \mathcal{O}_{E_0} \otimes \mathcal{O}_K \mathcal{W}_{\mathcal{O}_K}(R)\) such that

\[
\langle \cdot, \cdot \rangle = \text{tr} \circ (\cdot, \cdot).
\]

We set \(P' := P\) with its given \(\mathcal{O}_E\)-action. Again, \(P'\) is bigraded and we set \(Q'_0 := Q_0\). The form \(\langle \cdot, \cdot \rangle\) automatically satisfies \(\langle a, \cdot \rangle = (\cdot, a^\sigma)\), and, hence, \(Q'_0\) is totally isotropic. We define

\[
Q'_1 := \{p_1 \in P_1 \mid (p_1, Q'_0) \subset J_{\mathcal{O}_{E_0}}(R)\}.
\]
Note that \((\cdot, \cdot)\) induces a perfect pairing \((P/J_{O_{E_0}}(R)P) \times (P/J_{O_{E_0}}(R)P) \rightarrow R\) by base change. Then \(Q'_1\) is the inverse image of \((Q_0/J_{O_{E_0}}(R)P_0)^{-}\) under the projection \(P_1 \rightarrow P_1/J_{O_{E_0}}(R)P_1\). In particular, \(P_1/Q'_1\) is a projective \(R\)-module of rank \(s = n - r\).

Let \(\theta \in O_{E_0} \otimes_{O_K} W_{O_K}(O_{E_0})\) be an element such that

\[\theta J_{O_{E_0}}(O_{E_0}) \subset O_{E_0} \otimes_{O_K} I_{O_K}(O_{E_0})\]

and such that the image of \(\theta\) in \(O_{E_0} \otimes_{O_K} W_{O_K}(O_{E_0}/\pi_{E_0}) \cong O_{E_0}\) is of valuation \(e - 1\). Its existence is given by Lemma 12.5.

Lemma 3.7. There is an inclusion

\[\theta Q'_1 \subset Q_1.\]

Proof. By definition, \(Q_1 = \{p_1 \in P_1 \mid \langle p_1, Q_0 \rangle \subset I_{O_K}(R)\}\). So given \(q_1 \in Q'_1\), we need to verify that

\[\langle \theta q_1, Q_0 \rangle = \text{tr} (\langle \theta q_1, Q_0 \rangle) = \text{tr} (\theta (q_1, Q_0)) \subset I_{O_K}(R).\]

For the second equality, we used that \((\cdot, \cdot)\) is \(O_{E_0} \otimes_{O_K} W_{O_K}(R)\)-bilinear. It is enough to show

\[\text{tr}(\theta J_{O_{E_0}}(R)) \subset I_{O_K}(R),\]

which follows from the fact that

\[\theta J_{O_{E_0}}(R) \subset O_{E_0} \otimes_{O_K} I_{O_K}(R).\]

In particular, we can define \(\hat{\tilde{F}}'_1: Q'_1 \rightarrow P_0\) as \(\hat{\tilde{F}}'_1(q_1) := \hat{\tilde{F}}_1(\theta q_1)\). Then \(\hat{\tilde{F}}'_1\) is a Frobenius-linear epimorphism, which can be checked at closed points of \(S\). On \(Q'_0\), we set \(\hat{\tilde{F}}'_0 = \hat{\tilde{F}}_0\).

Let \(\mathcal{L}_{O_{E_0}/O_{K,K}}(R)\) be the so-called Lubin–Tate \(O_{E_0}\)-frame

\[\mathcal{L}_{O_{E_0}/O_{K,K}}(R) := (O_{E_0} \otimes_{O_K} W_{O_K}(R), J_{O_{E_0}}(R), R, \sigma, \hat{\sigma})\]

where \(\hat{\sigma}(\xi) = V^{-1} (\theta \xi)\); see Example 12.9 (2). The unit \(\kappa \in O_{E_0} \otimes_{O_K} W_{O_K}(R)\) is the element \(\hat{\sigma} (\pi_{E_0} \otimes 1 - 1 \otimes [\pi_{E_0}])\). We define the Frobenius \(F' : P \rightarrow P\) through the relation

\[F'(x) = \kappa^{-1} \hat{\tilde{F}}'(\pi_{E_0} \otimes 1 - 1 \otimes [\pi_{E_0}] x).\]

The reader may check that this defines the structure of a \(\mathcal{L}_{O_{E_0}/O_{K,K}}(R)\)-window \(\mathcal{P}' = (P', Q', F', \hat{\tilde{F}}').\)

Lemma 3.8. The pairing \((\cdot, \cdot)\) is a principal polarization of the \(\mathcal{L}_{O_{E_0}/O_{K,K}}(R)\)-window \(\mathcal{P}'\).

Proof. By definition of \(Q'\), the pairing satisfies \((Q', Q') \subset J_{O_{E_0}}(R)\). We verify for \(q_0 \in Q'_0, q_1 \in Q'_1\) that

\[\langle \hat{\tilde{F}}' q_0, \hat{\tilde{F}}' q_1 \rangle = \langle \hat{\tilde{F}} q_0, \hat{\tilde{F}} (\theta q_1) \rangle = V^{-1} (q_0, \theta q_1) = V^{-1} (\theta (q_0, q_1)) = \hat{\sigma} (q_0, q_1).\]
Here, the second equality holds since it does for the pairing (\cdot, \cdot). The third equality used the \mathcal{O}_{E_0}-bilinearity of the pairing (\cdot, \cdot).

By Proposition 12.10, there is a strict morphism of \mathcal{O}_{E_0}-frames,

$$\mathcal{L}_{\mathcal{O}_{E_0}/\mathcal{O}_K, \kappa}(R) \rightarrow \mathcal{L}_{\mathcal{O}_{E_0}/\mathcal{O}_K, \kappa}(R).$$

Base change along this morphism defines a supersingular strict \mathcal{O}_{E_0}-module with \mathcal{O}_E-action and a principal polarization with values in the \mathcal{O}_{E_0}-frame $\mathcal{L}_{\mathcal{O}_{E_0}/\mathcal{O}_K, \kappa}(R)$.

The identity on $W_{\mathcal{O}_{E_0}}(R)$ defines a κ/u-isomorphism to the Witt \mathcal{O}_{E_0}-frame

$$\mathcal{L}_{\mathcal{O}_{E_0}/\mathcal{O}_K, \kappa}(R) \rightarrow W_{\mathcal{O}_{E_0}}(R),$$

where u is the unit $u = V_{\pi_{E_0}}^{-1}(\pi_{E_0} - [\pi_{E_0}])$. There exists a unit $\varepsilon \in W_{\mathcal{O}_{E_0}}(\mathcal{O}_E)$ such that

$$\sigma(\varepsilon)\varepsilon^{-1} = \kappa/u.$$

Scaling the polarization by ε, see Lemma 11.2, we get a principally polarized \mathcal{O}_{E_0}-display $\mathcal{P}'' = (P'', Q'', F'', \hat{F}'')$ with \mathcal{O}_E-action. The corresponding strict formal \mathcal{O}_{E_0}-module is then the hermitian \mathcal{O}_E-module $\mathcal{C}(X)$ we wanted to construct. It is of signature (r, s).

The construction we made is functorial (in R) and compatible with the Rosati involutions.

Second step: \mathcal{C} is an equivalence over reduced schemes in characteristic p.

We will construct a quasi-inverse. Let R be a reduced Spf \mathcal{O}_E-scheme and let $\mathcal{P}' = (P', Q', F', \hat{F}')$ be the $\mathcal{L}_{\mathcal{O}_{E_0}/\mathcal{O}_K, \kappa}(R)$-window equipped with an \mathcal{O}_E-action ι and a principal polarization λ associated with a hermitian \mathcal{O}_E-module over R. We assume that \mathcal{P}' is of signature (r, s). Here, κ is the unit $V^{-1}(\theta(\pi_{E_0} \otimes 1 - 1 \otimes [\pi_{E_0}]))$ from the previous paragraph.

The \mathcal{O}_E-action induces gradings $P' = P_0' \oplus P_1'$ and $Q' = Q_0' \oplus Q_1'$. We set $P := P'$ together with its \mathcal{O}_E-action.

The polarization λ induces a perfect pairing

$$(\cdot, \cdot) : P_0 \times P_1 \rightarrow \mathcal{O}_{E_0} \otimes \mathcal{O}_K W_{\mathcal{O}_K}(R)$$

such that

$$Q_1' = \{p_1 \in P_1 \mid (p_1, Q_0') \subset J_{\mathcal{O}_{E_0}}(R)\}.$$

We set $Q_0 := Q_0'$ and

$$Q_1 := \{p_1 \in P_1 \mid (p_1, Q_0) \subset \mathcal{O}_{E_0} \otimes \mathcal{O}_K I_{\mathcal{O}_K}(R)\}.$$

Claim: $Q_1 = \theta Q_1' + I_{\mathcal{O}_K}(R)P_1$.

The relation \geq is clear, so we only need to check that $Q_1 \subseteq \theta Q_1' \mod I_{\mathcal{O}_K}(R)P_1$. Let us denote by \overline{P}_0, \overline{Q}_0, etc. the quotients of the various modules by $I_{\mathcal{O}_K}(R)P$. Then the pairing (\cdot, \cdot) induces a perfect pairing

$$\overline{P}_0 \times \overline{P}_1 \rightarrow \mathcal{O}_{E_0} \otimes \mathcal{O}_K R \cong \mathcal{O}_{E_0}/\pi_K \otimes \mathcal{O}_K/\pi_K R.$$

Here, we used that $\pi_K = 0$ in R. We have

$$\pi_{E_0} \overline{P}_0 \subset \overline{Q}_0 \subset \overline{P}_0$$

and

$$\pi_{E_0} \overline{P}_1 \subset \overline{Q}_1 \subset \overline{P}_1.$$
Then by definition, \overline{Q}_1 is the orthogonal complement of \overline{Q}_0. In particular, it is projective of rank r over R and locally a direct summand of \overline{P}_1. Let $\overline{\theta}$ be the image of θ in $O_{E_0} \otimes_{O_K} O_K / \pi_K \cong O_{E_0} / \pi_K$. Then $\overline{\theta} \neq 0$, $\pi_{E_0}\overline{\theta} = 0$ and multiplication by $\overline{\theta}$ induces an isomorphism

$$O_{E_0} / \pi_{E_0} \otimes_{O_K} R \cong (\pi_{E_0}^{e-1}) / (\pi_K) \otimes_{O_K} R.$$

Thus, $\overline{\theta} \overline{Q}_1$ is also of rank r over R and locally a direct summand of \overline{P}_1. The claim follows from the relation $\overline{\theta} \overline{Q}_1 \subseteq \overline{Q}_1$.

Since R is reduced, $W_{O_K}(R)$ is π_K-torsion-free. Also, there exists an inclusion $R \hookrightarrow \prod_{i \in J} k_i$ into a product of perfect fields, and, hence, $\sigma(\theta)$ is not a zero divisor in $O_{E_0} \otimes_{O_K} W_{O_K}(R)$. It follows from the claim that $\hat{F}'|_{\overline{Q}_1}$ is divisible by $\sigma(\theta)$. So we can define a σ-linear epimorphism $\hat{F} : Q_0 \oplus Q_1 \longrightarrow P_1 \oplus P_0$ as

$$\hat{F} = \hat{F}'|_{Q_0} \oplus \sigma(\theta)^{-1} \hat{F}'|_{Q_1}.$$

We leave it to the reader to check that (P, Q, F, \hat{F}) is an O_K-display with O_E-action of signature (r, s) and that $(\quad, \quad) := \text{tr} \circ (\quad, \quad)$ defines a principal polarization, compatible with the O_E-action. This finishes the construction of the quasi-inverse.

Third step: Identifying the deformation theories of X and $C(X)$.

Denote by \mathcal{D} (resp. \mathcal{D}'') the O_K-crystal of X (resp. the O_{E_0}-crystal of $C(X)$) on the category of O_K-pd-thickenings of S (resp. on the category of O_{E_0}-pd-thickenings of S).

Note that both crystals are bigraded by the O_K-pd-thickenings of S (resp. on the category of O_{E_0}-pd-thickenings of S). We denote by D the contraction of the crystal \mathcal{D},

$$\mathcal{D}(\tilde{S}) := \mathcal{D}(\tilde{S}) \otimes_{O_E} O_{\tilde{S}} \otimes_{O_S} O_\tilde{S},$$

for any O_K-pd-thickening $S \longrightarrow \tilde{S}$ over $O_{\tilde{E}}$. Let J be the kernel of the projection $O_E \otimes_{O_K} O_S \longrightarrow O_S$ so that we have $\mathcal{D}(S) = \mathcal{D}_0(\tilde{S}) / J \mathcal{D}_0(S)$. By the signature condition, there is an inclusion $J \mathcal{D}_0(S) \subset \mathcal{F}_0 \subset \mathcal{D}_0(S)$ which defines a filtration $\mathcal{F}_0 / J \mathcal{D}_0(S) \subset \mathcal{D}(S)$. We call it the Hodge filtration on $\mathcal{D}(S)$.

Lemma 3.9. Let $S \longrightarrow \tilde{S}$ be a square-zero thickening. There is an O_E-linear identification of the contraction \mathcal{D} of the crystal of X and the 0-component of the crystal of $C(X)$ evaluated at \tilde{S},

$$\mathcal{D}(\tilde{S}) \cong \mathcal{D}_0''(\tilde{S}).$$

This identification is functorial in X. In the case $S = \tilde{S}$, the Hodge filtrations on both sides agree.

Corollary 3.10. Let $S \longrightarrow \tilde{S}$ be a square-zero thickening and let X be a hermitian O_E-O_K-module of signature (r, s) over S. Then there is a natural bijection between deformations of X to \tilde{S} and deformations of $C(X)$ to \tilde{S}.

Furthermore, let $r', s' \in \mathbb{Z}_{\geq 0}$ and let Y be an O_E-O_K-module of signature (r', s') over S. Let \tilde{X}, \tilde{Y} be deformation of the two modules to \tilde{S}. Then an O_E-linear homomorphism $\tilde{f} : X \longrightarrow Y$ lifts to $\tilde{X} \longrightarrow \tilde{Y}$ if and only if $C(\tilde{f})$ lifts to $C(\tilde{X}) \longrightarrow C(\tilde{Y})$.

A. Mihatsch

Proof. We first do the case $\tilde{S} = S$. Keeping the notation from Step 1, by construction,

$$D(S) = (P_0/J_{E_0}(R)P_0) = (P_0'/J_{E_0}(R)P_0') = P_0''/I_{E_0}(R)P_0'' = D''(S).$$

The submodule $Q_0'' \subset P_0''$ was defined as the inverse image of the Hodge filtration

$$(Q_0 + J_{E_0}(R)P_0)/I_{E}(R)P_0 \subset P_0/I_{E}(R)P_0,$$

and, hence, the Hodge filtrations on both sides agree.

For a non-trivial square-zero thickening $S \rightarrow \tilde{S}$, we argue as follows. Locally on S, we can deform X to a hermitian O_E-O_K-module \tilde{X} of signature (r, s) on \tilde{S}. Then $\mathcal{C}(\tilde{X})$ is a deformation of $\mathcal{C}(X)$. The values $D(S)$ and $D''(S)$ can then be computed from the displays of \tilde{X} and $\mathcal{C}(\tilde{X})$ and the above arguments apply.

The corollary is now an immediate application of Grothendieck–Messing deformation theory. Namely as explained in the proof of Proposition 2.17, deformations of X (resp. of $\mathcal{C}(X)$) are in bijection with liftings of the Hodge filtration in $D(S)$ (resp. of the Hodge filtration in $D''(S)$). A similar result holds for homomorphisms.

End of Proof: Let R be a noetherian O_E-algebra in which p is nilpotent and set $n := \ker(R \rightarrow R_{\text{red}})$. Then Step 2 applies to R_{red}. Applying Corollary 3.10 to the successive quotients $R/n^{i+1} \rightarrow R/n^i$, we get both the essential surjectivity and full faithfulness of \mathcal{C} on R-valued points. This finishes the proof of the proposition and hence of Theorem 3.3. ✷

3.3. Proof of Theorem 3.1

We fix a quasi-isogeny on framing objects, which is possible by Proposition 2.5 and Lemma 2.14,

$$\alpha : \mathcal{C}(\mathbb{X}_{E_0/K,(r,s)}) \cong \mathbb{X}_{E_0,(r,s)}. \quad (3.2)$$

Alternatively, we choose $\mathcal{C}(\mathbb{X}_{E_0/K,(r,s)})$ as the framing object in the definition of $\mathcal{N}_{E_0,(r,s)}$. Together with \mathcal{C}, this induces a morphism

$$c : \mathcal{N}_{E_0/K,(r,s)} \rightarrow \mathcal{N}_{E_0,(r,s)}$$

which is an isomorphism by Theorem 3.3. Furthermore, c is equivariant with respect to the isomorphism

$$U(\mathbb{X}_{E_0/K,(r,s)}) \rightarrow U(\mathcal{C}(\mathbb{X}_{E_0/K,(r,s)})) \rightarrow U(\mathbb{X}_{E_0,(r,s)})$$

$$g \mapsto C(g) \mapsto \alpha C(g)\alpha^{-1}. \quad \Box$$

4. Cycles on unitary RZ-spaces

4.1. Definitions and compatibility with \mathcal{C}

Let $\mathbb{Q}_p \subset K \subset E_0$ be finite extensions and let E/E_0 be an unramified quadratic extension. We choose uniformizers $\pi_K \in O_K$ and $\pi_{E_0} \in O_{E_0}$ in order to make sense of polarizations of strict O_K-modules (resp. strict O_{E_0}-modules). Let $\mathbb{X}_{E_0/K,(r,s)}$ over K be the framing object for $\mathcal{N}_{E_0/K,(r,s)}$. Recall that $\text{End}^0_E(\mathbb{X}_{E_0/K,(r,s)}) \cong M_n(E)$ is isomorphic to a matrix ring over E; see Proposition 2.5.
Definition 4.1. (1) For a quasi-endomorphism \(x \in \text{End}_E^0(\mathcal{X}_{E_0/K,(r,s)}) \), we denote by \(\mathcal{Z}(x) \subseteq \mathcal{N}_{E_0/K,(r,s)} \) the closed formal subscheme of points \((X, \rho)\) such that the quasi-endomorphism \(\rho^{-1}x\rho \) is an actual endomorphism; see [19, Proposition 2.9].

(2) For a subring \(R \subseteq \text{End}_E^0(\mathcal{X}_{E_0/K,(r,s)}) \), we denote by \(\mathcal{Z}(R) \subseteq \mathcal{N}_{E_0/K,(1,n-1)} \) the closed formal subscheme of points \((X, \rho)\) such that \(\rho^{-1}R\rho \subseteq \text{End}(X) \). In other words,

\[
\mathcal{Z}(R) = \bigcap_{x \in R} \mathcal{Z}(x).
\]

Remark 4.2. Note that \(\mathcal{Z}(x) = \mathcal{Z}(x^*) \), where \(* \) denotes the Rosati involution; see Definition 2.3. Also, \(\mathcal{Z}(x) \) only depends on the \(\mathcal{O}_E \)-algebra \(\mathcal{O}_E[x] \) spanned by \(x \). In particular, there are equalities \(\mathcal{Z}(x) = \mathcal{Z}(\mathcal{O}_E[x, x^*]) \) and \(\mathcal{Z}(R) = \mathcal{Z}(\mathcal{O}_E[R, R^*]) \).

The second kind of cycle we want to consider is defined as follows. Let \(\mathcal{Y}_{E_0/K} \) be a hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-module over \(\mathbb{F} \) of signature \((0, 1)\). Such an object is even unique up to isomorphism which can be checked with Dieudonné theory. Let \(\mathcal{Y}_{E_0/K} \) be a deformation of it to \(\text{Spf} \mathcal{O}_E \). Such a deformation is unique up to isomorphism according to Proposition 2.17. Via base change, \(\mathcal{Y}_{E_0/K} \) is defined on any \(\text{Spf} \mathcal{O}_E \)-scheme. We also set \(\mathcal{Y}_0 := \mathcal{Y}_{E_0/E_0} \) and \(\mathcal{Y}_{E_0} := \mathcal{Y}_{E_0/E_0} \).

Definition 4.3. For a quasi-homomorphism \(j \in \text{Hom}_E^0(\mathcal{Y}_{E_0/K}, \mathcal{X}_{E_0/K,(r,s)}) \), we denote by \(\mathcal{Z}(j) \subseteq \mathcal{N}_{E_0/K,(r,s)} \) the closed formal subscheme of points \((X, \rho)\) such that the quasi-homomorphism

\[
\rho^{-1}j : \mathcal{Y}_{E_0/K} \longrightarrow X
\]

is an actual homomorphism.

Again, the existence of such a closed formal subscheme follows from [19, Proposition 2.9]. As above, \(\mathcal{Z}(j) = \mathcal{Z}(j^*) \) where \(j^* : \mathcal{X}_{E_0/K,(r,s)} \longrightarrow \mathcal{Y}_{E_0/K} \) is the Rosati adjoint of \(j \) and where \(\mathcal{Z}(j^*) \) denotes the locus of \((X, \rho)\) such that \(j^*\rho : X \longrightarrow \mathcal{Y}_{E_0/K} \) is a homomorphism. Also, \(\mathcal{Z}(j) \) only depends on the span \(\mathcal{O}_E j \). The case of interest for the cycles \(\mathcal{Z}(j) \) is that of signature \((1, n-1)\). In this case, \(\mathcal{Z}(j) \subseteq \mathcal{N}_{E_0/K,(1,n-1)} \) is a divisor whenever \(j \neq 0 \). These divisors were first considered by Kudla and Rapoport; see [9].

Remark 4.4. Let \(\mathcal{C} \) be the functor from Theorem 3.3 and fix a quasi-isogeny (\(E \)-linear, preserving the polarization)

\[
\alpha : \mathcal{C}(\mathcal{X}_{E_0/K,(r,s)}) \xrightarrow{\simeq} \mathcal{X}_{E_0,(r,s)}
\]

and an isomorphism (\(E \)-linear, preserving the polarization)

\[
\beta : \mathcal{C}(\mathcal{Y}_{E_0/K}) \xrightarrow{\simeq} \mathcal{Y}_{E_0}.
\]

It then follows from Theorem 3.3 and the construction of \(c \) in Theorem 3.1 that

\[
c : \mathcal{Z}(x) \cong \mathcal{Z}(\alpha \mathcal{C}(x) \alpha^{-1})
\]

and

\[
c : \mathcal{Z}(j) \cong \mathcal{Z}(\alpha \mathcal{C}(j) \beta^{-1}).
\]
4.2. The cycle $Z(O_A)$ for A/E a field extension

From now on, we restrict to the case of signature $(1, n-1)$. Our aim is to study the formal scheme $Z(R)$, $R \subset \text{End}^{0}(X_{E_0/K,(1,n-1)})$ in the special case that R is the ring of integers in a field extension A/E whose image in $\text{End}^{0}(X_{E_0/K,(1,n-1)})$ is stable under the Rosati involution. By the previous results, we may assume $K = E_0$. Let $A_0 := A^{* = \text{id}}$ and $d := [A_0 : E_0]$ which divides n, say $n = dn'$. Since $*$ acts non-trivially on the residue field, A/A_0 is unramified quadratic and the inertia degree f of A_0/E_0 is odd.

Let $A^u \subset A$ be the maximal subfield that is unramified over E_0. Set $\Psi := \text{Hom}_{E_0}(A^u, \tilde{E}) = \Psi_0 \cup \Psi_1$ as the unique extension of the decomposition $\{0, 1\} = \{0\} \cup \{1\}$ for E/E_0. Together with the action of O_A, $X_{E_0,(1,n-1)}$ becomes a framing object for $\mathcal{N}_{A_0/E_0,(1,n'-1)}$. Recall that in the definition of the signature condition 2.8, we also had to choose an element $\psi_0 \in \Psi_0$. We now deviate slightly from the previous setting by letting ψ_0 vary and denote the associated moduli problem by $\mathcal{N}^{\psi_0}_{A_0/E_0,(1,n'-1)}$. Then forgetting the A-action induces a morphism

$$\mathcal{N}^{\psi_0}_{A_0/E_0,(1,n'-1)} \to \mathcal{N}_{E_0,(1,n-1)}$$

which is a closed immersion.

Theorem 4.5. The above forgetful map induces an isomorphism

$$\coprod_{\psi_0 \in \Psi_0} \mathcal{N}^{\psi_0}_{A_0/E_0,(1,n'-1)} \cong Z(O_A).$$

Proof. Clearly, the map is a monomorphism with image contained in $Z(O_A)$. So we only have to show $Z(O_A) \subset \coprod \mathcal{N}^{\psi_0}_{A_0/E_0,(1,n'-1)}$ which we do on S-valued points with S connected. Let $(X, t, \lambda, \rho) \in Z(O_A)(S)$. Then the O_{A^u}-action induces a decomposition of the Lie algebra as

$$\text{Lie}(X) = \bigoplus_{\psi \in \Psi} \text{Lie}(X)_{\psi}$$

which extends the bigrading from the O_E-action. Since X has signature $(1, n-1)$, there is a unique index $\psi_0 \in \Psi_0$ (among the indices in Ψ_0) such that $\text{Lie}(X)_{\psi_0} \neq 0$. This summand is then a line bundle on S. The O_{A^u}-action on $\text{Lie}(X)_{\psi_0}$ induces a morphism

$$S \to \text{Spf} O_A \otimes_{O_{A^u}} O_{\tilde{E}} = \text{Spf} \tilde{A}.$$

(This explains why we restricted ourselves to the case of signature $(1, n-1)$.) Then by definition, X is an S-valued point of $\mathcal{N}^{\psi_0}_{A_0/E_0,(1,n'-1)}$. \qed

Remark 4.6. The identification is compatible with the formation of the cycle $Z(R)$ in the following sense. Assume that $R \subset \text{End}^{0}(X_{E_0,(1,n-1)})$ is such that $O_A \subset R$. Then

$$Z(R) \subset Z(O_A)$$

and

$$c : \coprod_{\psi_0 \in \Psi_0} Z(R)^{\psi_0} \cong Z(R).$$
Here, the sources are the cycles in the RZ-spaces \(\mathcal{N}_{A_0/E_0,(1,n'-1)}^{\psi_0} \). Furthermore, the \(\mathcal{Z}(R)^{\psi_0} \) are all isomorphic which can be seen by identifying the \(\mathcal{N}_{A_0/E_0,(1,n'-1)}^{\psi_0} \) with \(\mathcal{N}_{A_0,(1,n'-1)} \) and using Remark 4.4.

We fix a generator \(\vartheta_A \) of the inverse different of \(A_0/E_0 \) which induces an \(\mathcal{O}_{A_0} \)-linear isomorphism

\[
\phi : \mathcal{O}_{A_0} \to \text{Hom}_{\mathcal{O}_{E_0}}(\mathcal{O}_{A_0}, \mathcal{O}_{E_0}), \quad \phi(a)(-) : = \text{tr}_{A_0/E_0}(\vartheta_A a -).
\]

Definition 4.7. To any hermitian \(\mathcal{O}_E \)-module \((Y, \iota, \lambda) \), we associate a hermitian \(\mathcal{O}_A \cdot \mathcal{O}_{E_0} \)-module \((\mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} Y, \iota', \lambda') \) as follows. The \(\mathcal{O}_{E_0} \)-module \(\mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} Y \) is given by the Serre tensor construction. The \(\mathcal{O}_A = \mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{O}_E \)-action \(\iota' \) is given by the natural \(\mathcal{O}_{A_0} \)-action on the first factor and \(\lambda' \) is defined as

\[
\lambda'(a \otimes y) := \phi(a) \otimes \lambda(y).
\]

Let \(j \in \text{Hom}^0(\mathcal{Y}_{E_0}, \mathcal{X}_{E_0,(1,n-1)}) \) be a quasi-homomorphism with associated divisor \(\mathcal{Z}(j) \subset \mathcal{N}_{E_0,(1,n-1)} \).

Lemma 4.8. There is an isomorphism of hermitian \(\mathcal{O}_A \cdot \mathcal{O}_{E_0} \)-modules over \(F \),

\[
\mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0} \cong \mathcal{Y}_{A_0/E_0}.
\]

Similarly for their deformations to \(\text{Spf} \mathcal{O}_E \),

\[
\mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0} \cong \mathcal{Y}_{A_0/E_0}.
\]

Proof. Up to isomorphism, there is a unique \(\mathcal{O}_A \cdot \mathcal{O}_{E_0} \)-module of signature \((0, 1)\) over \(F \). So the statement reduces to the fact that \(\mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0} \) has signature \((0, 1)\) which follows from

\[
\text{Lie}(\mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0}) = \mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \text{Lie}(\mathcal{Y}_{E_0}).
\]

Lemma 4.9. Let \(\mathcal{N}_{A_0/E_0,(1,n'-1)}^{\psi_0} \to \mathcal{N}_{E_0,(1,n-1)} \) be the embedding from (4.1). Then

\[
\mathcal{Z}(j) \cap \mathcal{N}_{A_0/E_0,(1,n'-1)}^{\psi_0} = \mathcal{Z}(\iota \otimes j),
\]

where \(\iota \otimes j \) is the homomorphism

\[
\mathcal{Y}_{A_0/E_0} \cong \mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0} \xrightarrow{\iota \otimes j} \mathcal{X}_{E_0,(1,n-1)} \cong \mathcal{X}_{A_0/E_0,(1,n'-1)}.
\]

Proof. The universal \(\mathcal{O}_{E_0} \)-module over \(\mathcal{N}_{A_0/E_0,(1,n'-1)}^{\psi_0} \) has an \(\mathcal{O}_{A_0} \)-action, which implies the relation \(\subseteq \). Conversely, if \(\iota \otimes j : \mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0} \to \mathcal{X}_{A_0/E_0,(1,n'-1)} \) lifts, then so does its composition with

\[
\mathcal{Y}_{E_0} \xrightarrow{1 \otimes \text{id}} \mathcal{O}_{A_0} \otimes \mathcal{O}_{E_0} \mathcal{Y}_{E_0}.
\]
4.3. The cycle \(\mathcal{Z}(\mathcal{O}_A) \) for \(A/E \) an étale algebra

We first define a variant of \(\mathcal{N}_{E_0/K,(0,n)} \) for a split quadratic extension \(E = E_0 \times E_0 \). Set \(\mathcal{E} := \mathcal{E}_0 \). As in the non-split case, we choose a decomposition \(\Psi := \text{Hom}_K(\mathcal{E}^0, \mathcal{E}) = \Psi_0 \sqcup \Psi_1 \) such that \(\sigma(\Psi_0) = \Psi_1 \). A hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-module over an \(\text{Spf} \mathcal{O}_{\mathcal{E}} \)-scheme \(S \) is a triple \((X, \iota, \lambda)\), where \(X/S \) is a supersingular strict \(\mathcal{O}_K \)-module, \(\iota : \mathcal{O}_E \to \text{End}(X) \) is an action and \(\lambda : X \to X^\vee \) is a principal polarization whose Rosati involution is the Galois conjugation on \(\iota(\mathcal{O}_E) \). It is of signature \((0,n)\) if, in the notation of Lemma 2.10,

\[
\text{rk}_{\mathcal{O}_S} \text{Lie}_\psi(X) = \begin{cases}
0 & \text{if } \psi \in \Psi_0 \\
1 & \text{if } \psi \in \Psi_1.
\end{cases}
\]

Such hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-modules exist if and only if the inertia degree of \(E_0/K \) is even and exactly half of the elements of \(\Psi_0 \) factor over the first component \(E^0 \to E_0^0 \times 0 \).

From now on, we assume that these conditions are satisfied. Again, we fix a hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-module \((\mathcal{X}_{E/E_0/K}, \iota, \lambda)\) of signature \((0,n)\) over \(\mathbb{F} \), and as in the non-split case, such a choice is unique up to quasi-isogeny.

Definition 4.10. The functor \(\mathcal{N}_{E/E_0/K,(0,n)} \) on schemes over \(\text{Spf} \mathcal{O}_{\mathcal{E}} \) associates to \(S \) the set of isomorphism classes of quadruples \((X, \iota, \lambda, \rho)\), where \((X, \iota, \lambda)\) is a supersingular hermitian \(\mathcal{O}_E-\mathcal{O}_K \)-module of signature \((0,n)\) and where

\[
\rho : X \times_S \overline{S} \to \mathcal{X}_{E/E_0/K,(0,n)} \times_{\text{Spec} \mathbb{F}} \overline{S}
\]

is an \(\mathcal{O}_E \)-linear quasi-isogeny which preserves the polarizations.

Proposition 4.11. The functor \(\mathcal{N}_{E/E_0/K,(0,n)} \) is representable by a formal scheme which is étale over \(\text{Spf} \mathcal{O}_{\mathcal{E}} \). Let \(U := U(\mathcal{X}_{E/E_0/K,(0,n)}) \) (resp. \(H \)) denote the group of \(E \)-linear quasi-isogenies (resp. isomorphisms) of the framing object that preserve the polarization. Then there is an \(U \)-equivariant isomorphism of formal schemes

\[
\mathcal{N}_{E/E_0/K,(0,n)} \cong \bigsqcup_{U/H} \text{Spf} \mathcal{O}_{\mathcal{E}}.
\]

Proof. Representability follows from [19]. The formal scheme is étale since the Hodge filtration is already uniquely determined by the signature condition. The group \(U \) acts on \(\mathcal{N}_{E/E_0/K,(0,n)} \) by composition in the framing,

\[
g.(X, \rho) = (X, g \rho).
\]

The stabilizer of the \(\mathbb{F} \)-valued point \((\mathcal{X}_{E/E_0/K,(0,n)}, \text{id})\) is the subgroup \(H \subset U \). The action of \(U \) is transitive on \(\mathbb{F} \)-points, which is analogous to Lemma 2.15. The result follows from the étaleness of \(\mathcal{N}_{E/E_0/K,(0,n)} \) over \(\text{Spf} \mathcal{O}_{\mathcal{E}} \). \(\square \)

We now apply this to the study of \(\mathcal{Z}(\mathcal{O}_A) \) as in the previous section but where now \(A/E \) is allowed to be an étale algebra. Let again \(A^0 := A^{*, \text{id}} \) which is finite étale over \(E_0 \). Let

\[
A_0 := \prod_{i \in I} A_{0,i}
\]
be its decomposition into fields and set \(A_i := A_{0,i} \otimes_{E_0} E \). Then \(A = \prod_i A_i \) and each factor is stable under the Rosati involution. The isocrystal \(N := N(X_{E_0}(1,n-1)) \) of \(X_{E_0}(1,n-1) \) becomes an \(A \)-module and hence decomposes, \(N = \prod_{i \in I} N_i \). This decomposition is preserved by the Frobenius and is orthogonal with respect to the skew-hermitian \(\tilde{E}_0 \)-valued form on \(N \). So each factor \(N_i \) is a skew-hermitian \(A_i \)-isocrystal, and we set \(n_i := \text{rk}_{A_i \otimes_{E_0} E_0} (N_i) \).

Definition 4.12. An index \(i \in I \) is called odd if \(A_i/A_{0,i} \) is a field extension and if \(N_i \) is an odd skew-hermitian \(A_i \)-isocrystal; see Proposition 2.5. Otherwise, there exists a self-dual and Frobenius-stable \(\mathcal{O}_{A_i} \otimes_{E_0} \tilde{E}_0 \)-lattice of signature \((0, n_i)\) in \(N_i \) and we call \(i \) even.

An equivalent way to define the parity of an index is as follows. Let \(\alpha \) be the operator from (2.3) and let \(V := N^{\alpha = 1} \). Then \(V \) is a skew-hermitian \(A \)-\(E_{0} \)-module and there is a decomposition \(V = \prod_{i \in I} V_i \) such that each \(V_i \) is a skew-hermitian \(A_i \)-module. Then an index \(i \) is called even (resp. odd) if there exists (resp. does not exist) a self-dual \(\mathcal{O}_{A_i} \)-lattice in \(V_i \). Since \(N \) itself is odd, there is an odd number of odd indices.

Lemma 4.13. If there is more than one odd index, then \(Z(\mathcal{O}_A) = \emptyset \).

Proof. Using the idempotents in \(\mathcal{O}_A = \prod_{i \in I} \mathcal{O}_{A_i} \), any point \((X, \iota, \lambda) \in Z(\mathcal{O}_A)(S) \) has an orthogonal decomposition

\[
(X, \iota, \lambda) = \prod_{i \in I} (X_i, \iota, \lambda),
\]

where each factor \((X_i, \iota, \lambda)\) is a supersingular hermitian \(\mathcal{O}_{A_i} \)-\(\tilde{E}_0 \)-module. Also, assuming that \(S \) is connected, each factor has a well-defined signature \((r_i, s_i)\) and these signatures add up to \((1, n - 1)\). In particular, there is exactly one index \(i_0 \in I \) with \(r_{i_0} = 1 \) and \(r_i = 0 \) for all \(i \neq i_0 \). Then \(N_{i_0} \) is odd and all other indices are even by Lemma 2.14.

From now on, we assume that there is a unique odd index \(i_0 \). We denote by \(U_{A_i}(N_i) \) the group of \(A_i \)-linear automorphisms of \(N_i \) which preserve the polarization. Similarly, \(U_A(N) = \prod_{i \in I} U_{A_i}(N_i) \) denotes the group of \(A \)-linear automorphisms of \(N \) which preserve the polarization. For even \(i \), we also fix some self-dual \(\mathcal{O}_{A_i} \)-stable Dieudonné lattice \(M_i \subset N_i \) of signature \((0, n_i)\) and denote by \(H_i \subset U_{A_i}(N_i) \) its stabilizer. At the index \(i_0 \), we choose the decomposition

\[
\Psi := \text{Hom}_{E_0}(A^{n}_{i_0}, \tilde{E}_0) = \Psi_0 \sqcup \Psi_1
\]

that extends the decomposition from \(E/E_0 \). Proposition 4.11 and the proof of Lemma 4.13 imply the following result.

Proposition 4.14. There is an \(U_A(N) \)-equivariant isomorphism of formal schemes over \(\text{Spf} \mathcal{O}_{\tilde{A}_{i_0}} \),

\[
Z(\mathcal{O}_A) \cong \bigsqcup_{\psi_0 \in \Psi_0} \left(N^{\psi_0}_{A_{0,i_0}/E_0(1,n_{i_0} - 1)} \right) \times \prod_{i \neq i_0} U_{A_i}(N_i)/H_i.
\]
By Theorem 1.4, each connected component can be identified with $N_{A_0,i_0,(1,n_0-1)}$.

Part II

Application to the arithmetic fundamental lemma

In the following two sections, we recall the Jacquet–Rallis fundamental lemma (FL) and the AFL in both the group and the Lie algebra version. In Section 7, we recall the description of the various orbital integrals in terms of lattices from [18]. We use these results to reformulate the FL and the AFL uniformly for group and Lie algebra, at least in the artinian case. Finally, we will prove our main result, see Theorems 9.1 and 9.5, together with their corollaries.

5. **The fundamental lemma**

5.1. **Symmetric space side**

Let $p > 2$ be a prime and let E/E_0 be an unramified quadratic extension of p-adic local fields. We denote their rings of integers by $O_{E_0} \subset O_E$. Let q be the cardinality of the residue field of O_{E_0} and let σ or $a \mapsto \bar{a}$ denote the Galois conjugation on E. Let v be the normalized valuation on E_0 and let $| \cdot | = q^{-v(\cdot)}$ be the associated absolute value. Let $\eta : E_0^\times \to \{ \pm 1 \}$, $a \mapsto (-1)^{v(a)}$ be the quadratic character associated with E/E_0 by local class field theory.

We fix an E_0-vector space W_0 of dimension $n - 1$ with $n \geq 2$ and set $W := E \otimes_{E_0} W_0$. We also form $V_0 := W_0 \oplus E_0 u$ and $V := E \otimes_{E_0} V_0$, where u is some additional vector. Via the embedding

$$GL(W) \hookrightarrow GL(V), \quad g \mapsto \begin{pmatrix} \gamma & \varepsilon \\ 0 & 1 \end{pmatrix},$$

$GL(W)$ acts by conjugation on $End(V)$.

Definition 5.1. An element $\gamma \in End(V)$ is regular semi-simple (with respect to the decomposition $V = W \oplus Eu$) if its stabilizer in $GL(W)$ is trivial and if its orbit is Zariski-closed. For a subset $X \subset End(V)$, we denote by X_{rs} the regular semi-simple elements in X.

Lemma 5.2 [23, Lemma 2.1]. The element $\gamma \in End(V)$ is regular semi-simple if and only if

$$\{ \gamma^i u \}_{i \geq 0} \quad \text{and} \quad \{(u^{\vee})\gamma^i u \}_{i \geq 0}$$

generate V (resp.

V^{\vee}). Here, $u^{\vee} : W \oplus Eu \to E$ is the linear form $(w, \lambda u) \mapsto \lambda$. \square

Let $S(E_0)$ be the symmetric space

$$S(E_0) := \{ \gamma \in GL(V) \mid \gamma \bar{\gamma} = 1 \}.$$
It is stable under the action of $GL(W_0)$. We form the set-theoretic quotient for the conjugation action,

$$[S(E_0)_{rs}] := GL(W_0)/S(E_0)_{rs}.$$

Let us fix some O_{E_0}-lattice $\Lambda_0 \subset W_0$ and set $\Lambda := (O_E \otimes_{O_{E_0}} \Lambda_0) \oplus O_{E}u$. We normalize the Haar measure on $GL(W_0)$ such that the volume of $GL(\Lambda_0)$ is 1.

For a regular semi-simple element $\gamma \in S(E_0)_{rs}$, for a test function $f \in C_r^\infty(S(E_0))$ and for a complex parameter $s \in \mathbb{C}$, we define the orbital integral

$$O_\gamma(f, s) := \int_{GL(W_0)} f(h^{-1} \gamma h) \eta(\det h) |\det h|^s \, dh,$$

with special value $O_\gamma(f) := O_\gamma(f, 0)$ and derivative

$$\partial O_\gamma(f) := \frac{d}{ds} \bigg|_{s=0} O_\gamma(f, s).$$

These integrals converge absolutely. Note that $O_\gamma(f)$ transforms with $\eta \circ \det$ under the action of $GL(W_0)$ on γ.

Definition 5.3. For $\gamma \in End(V)_{rs}$, we define $l(\gamma) := [\text{span}\{\gamma^i u\}_{i=0}^{n-1} : \Lambda] \in \mathbb{Z}$ to be the relative index of the two O_E-lattices $\text{span}\{\gamma^i u\}$ and Λ. We define the transfer factor (with respect to Λ_0) $\Omega : End(V)_{rs} \to \{\pm 1\}, \Omega(\gamma) := (-1)^{l(\gamma)}$. It is $\eta \circ \det$-invariant, and, hence, the product $\Omega(\gamma)O_\gamma(f)$ descends to the quotient $[S(E_0)_{rs}]$.

We also introduce a tangent space version of the notions defined so far. Let

$$\mathfrak{s}(E_0) := \{y \in End(V) \mid y + \overline{y} = 0\}$$

be the tangent space at 1 of $S(E_0)$. Again we form the quotient by the $GL(W_0)$-action,

$$[\mathfrak{s}(E_0)_{rs}] := GL(W_0)\backslash \mathfrak{s}(E_0)_{rs}.$$

For $y \in \mathfrak{s}(E_0)_{rs}$, for a test function $f \in C_r^\infty(\mathfrak{s}(E_0))$ and for a complex parameter $s \in \mathbb{C}$, we define the orbital integrals $O_y(f, s)$, $O_y(f)$ and $\partial O_y(f)$ by the same formulas as above. Again, $y \mapsto \Omega(y)O_y(f)$ descends to the quotient $[\mathfrak{s}(E_0)_{rs}]$.

5.2. Unitary side and orbit matching

Let J_0^\flat and J_1^\flat be two hermitian forms on W such that J_0^\flat is even and such that J_1^\flat is odd. By this, we mean that there exists a self-dual lattice for J_0^\flat, respectively, no self-dual lattice for J_1^\flat. Equivalently, we assume that $\eta(\det(J_0^\flat)) = 1$ and $\eta(\det(J_1^\flat)) = -1$. For $i = 0, 1$, we extend the form J_i^\flat to a form J_i on V by setting $J_i(u, u) = 1$ and $u \perp W$. Let $U(J_i^\flat)$ (resp. $U(J_i)$) be the associated unitary group and $u(J_i^\flat)$ (resp. $u(J_i)$) its Lie algebra. Then $U(J_i)$ and $u(J_i)$ are subsets of $End(V)$ and our definition of regular semi-simple applies to them. The group $U(J_i^\flat)$ acts by conjugation and we form the quotients

$$[U(J_i)_{rs}] := U(J_i^\flat)\backslash U(J_i)_{rs}$$

and

$$[u(J_i)_{rs}] := U(J_i^\flat)\backslash u(J_i)_{rs}.$$
Definition 5.4. Two elements $\gamma \in S(E_0)_{rs}$ and $g \in U(J_{rs})$ (resp. $y \in s(E_0)_{rs}$ and $x \in u(J_{rs})$) are said to match if they are conjugate under $\text{GL}(W)$ in $\text{End}(V)$.

Lemma 5.5 [23, Lemma 2.3]. The matching relation induces bijections

$$\alpha : [S(E_0)_{rs}] \cong [U(J_{rs})] \cup [U(J_{rs})]$$

and

$$\alpha : [s(E_0)_{rs}] \cong [u(J_{rs})] \cup [u(J_{rs})].$$

To normalize the Haar measure on $U(J_{rs}^0)$, we fix a self-dual lattice $L \subset (W, J_{rs}^0)$ and give volume 1 to its stabilizer $K_{rs}^0 \subset U(J_{rs}^0)$. The normalization of the Haar measure on $U(J_{rs}^0)$ is not important for us.

For a test function $f' \in C_c^\infty(U(J_i))$ (resp. $f' \in C_c^\infty(u(J_i))$) and a regular semi-simple element $g \in U(J_{rs})$ (resp. $x \in u(J_{rs})$), we define the orbital integral

$$O_g(f') := \int_{U(J_i)} f'(h^{-1}gh) \, dh, \quad \text{resp.} \quad O_x(f') := \int_{U(J_i)} f'(h^{-1}xh) \, dh.$$

For fixed f', this function is invariant under the conjugation action of $U(J_i^0)$ on g (resp. on x) and hence descends to the quotient $[U(J_i)_{rs}]$ (resp. $[u(J_i)_{rs}]$).

Definition 5.6. A function $f \in C_c^\infty(S(E_0))$ and a pair of functions (f'_0, f'_1) in $C_c^\infty(U(J_0)) \times C_c^\infty(U(J_1))$ are said to be transfers of each other if, for all $\gamma \in S(E_0)_{rs}$, there is an equality

$$\Omega(\gamma)O_\gamma(f) = \begin{cases}
O_g(f'_0) & \text{if } \gamma \text{ matches } g \in U(J_0)_{rs} \\
O_g(f'_1) & \text{if } \gamma \text{ matches } g \in U(J_1)_{rs}.
\end{cases}$$

Similarly, a function $f \in C_c^\infty(s(E_0))$ and a pair of functions $(f'_0, f'_1) \in C_c^\infty(s(J_0)) \times C_c^\infty(s(J_1))$ are said to be transfers of each other if, for all $y \in s(E_0)_{rs}$, there is an equality

$$\Omega(y)O_y(f) = \begin{cases}
O_x(f'_0) & \text{if } y \text{ matches } x \in u(J_0)_{rs} \\
O_x(f'_1) & \text{if } y \text{ matches } x \in u(J_1)_{rs}.
\end{cases}$$

5.3. Jacquet–Rallis fundamental lemma

Recall that for the definition of the transfer factor, Definition 5.3, we fixed some \mathcal{O}_{E_0}-lattice $\Lambda_0 \subset W_0$ and formed the lattice $\Lambda \subset V$. We define $S(\mathcal{O}_{E_0}) := S(E_0) \cap \text{End}(\Lambda)$ and $s(\mathcal{O}_{E_0}) := s(E_0) \cap \text{End}(\Lambda)$. Also, let $K_0 \subset U(J_0)$ denote the stabilizer of $L \oplus \mathcal{O}_{E(u)}$ where L is some self-dual lattice in (W, J_0^0). Similarly, we define $u(J_0)(\mathcal{O}_{E_0}) := u(J_0) \cap \text{End}(L \oplus \mathcal{O}_{E(u)})$.

Theorem 5.7 (Jacquet–Rallis fundamental lemma). The function $1_{S(\mathcal{O}_{E_0})}$ and the pair $(1_{K_0}, 0)$ are transfers of each other. Equivalently, for all $\gamma \in S(E_0)_{rs}$,

$$\Omega(\gamma)O_\gamma(1_{S(\mathcal{O}_{E_0})}) = \begin{cases}
O_g(1_{K_0}) & \text{if } \gamma \text{ matches } g \in U(J_0) \\
0 & \text{if } \gamma \text{ matches } g \in U(J_1).
\end{cases} \quad (\text{FL}_{E_0, (V, J_0), u, g})$$
The proof of this theorem was completed by Beuzart-Plessis [3] recently. More precisely, he proves the Lie algebra version (cf. below) which, by [22, Section 2.6], implies the group version. Previously, the equal characteristic analogue of the theorem was known by Yun [22] in the case \(p > n \), from which Gordon [7] deduced the \(p \)-adic case for \(p \) sufficiently large.

Remark 5.8. (1) Note that the left-hand side does not depend on the choice of the lattice \(\Lambda_0 \). Namely, if we replace it by \(h\Lambda_0, h \in \text{GL}(W_0) \), then \(\Omega \) is changed by the sign \((-1)^{v(\det h)} \). But also
\[
O_y(F(1_{hS(O_{E_0})h^{-1}}) = O_{h^{-1}yh}(1_{S(O_{E_0})}) = (-1)^{v(\det h)}O_y(1_{S(O_{E_0})}).
\]

(2) The quadruple \((E/E_0,(V,J_0),u,g)\) (in the case \(g \in U(J_0) \)) is sufficient to formulate the corresponding FL identity. Namely, we can define \(W := u^{\perp} \) with form \(J_0 := J_0|_W \). The form \(J_1^b \) can be chosen arbitrarily since it does not play a role in the identity. Finally, the left-hand side of \((\text{FL}_{E/E_0,(V,J_0),u,g})\) does not depend on the chosen \(E_0 \)-structure \(W_0 \subset W \), which will follow from Corollary 7.3.

Theorem 5.9 (Jacquet–Rallis fundamental lemma, Lie algebra version, [3, Theorem 1]). The function \(1_s(O_{E_0}) \) and the pair \((1_{u(J_0)(O_{E_0})},0)\) are transfers of each other. Equivalently, for all \(y \in s(E_0) \),
\[
\Omega(y)O_y(1_{s(O_{E_0})}) = \begin{cases}
O_x(1_{u(J_0)(O_{E_0})}) & \text{if } y \text{ matches } x \in u(J_0) \\
0 & \text{if } y \text{ matches } x \in u(J_1).
\end{cases}
\]

As with the group version, the left-hand side does not depend on the choice of \(\Lambda_0 \). Similarly, the quadruple \((E/E_0,(V,J_0),u,x)\) is enough to formulate the identity \((\text{FL}_{E/E_0,(V,J_0),u,x})\), for \(x \in u(J_0) \). Both orbital integrals appearing in the FL can be expressed in terms of lattices. We formulate this now for the unitary side. For the symmetric space side, see Corollaries 7.3 and 7.5. We denote by \(\Lambda^\vee \) the \(J_0 \)-dual of a lattice \(\Lambda \subset V \).

Lemma 5.10 [18, Lemma 7.1]. (1) Let \(g \in U(J_0) \) be regular semi-simple and let \(L = \mathcal{O}_E[g]u \subset V \) be the \(g \)-stable lattice spanned by \(u \). Then
\[
O_g(1_{K_0}) = \left| \{ \Lambda \subset V \mid L \subset \Lambda \subset L^\vee, g\Lambda = \Lambda, \Lambda^\vee = \Lambda \} \right|.
\]

(2) Let \(x \in u(J_0) \) be regular semi-simple and let \(L = \mathcal{O}_E[x]u \subset V \) be the \(x \)-stable lattice spanned by \(u \). Then
\[
O_x(1_{u(J_0)(O_{E_0})}) = \left| \{ \Lambda \subset V \mid L \subset \Lambda \subset L^\vee, x\Lambda \subset \Lambda, \Lambda^\vee = \Lambda \} \right|.
\]

Proof. Part (1) is precisely [18, Lemma 7.1] and part (2) is proved in the same way. □

6. The arithmetic fundamental lemma

6.1. Intersection numbers

Let \(n \geq 2 \) and let \(\mathcal{N}_{E_0, (1,n-2)} \) be the RZ-space from Definition 2.16 with framing object \(X_{E_0, (1,n-2)} \). Let \(Y_{E_0} := X_{E_0, (0,1)} \) be the hermitian \(\mathcal{O}_E \)-module of signature (0, 1) over \(F \).
and take $X_{E_0,(1,n-1)} := X_{E_0,(1,n-2)} \times \mathcal{Y}_{E_0}$ as the framing object for $\mathcal{N}_{E_0,(1,n-1)}$. We make $\text{Hom}^0(\mathcal{Y}_{E_0}, X_{E_0,(1,n-2)})$ into a hermitian E-vector space with form h defined by

$$h(x, y) \text{id}_{\mathcal{Y}_{E_0}} = \lambda_{\mathcal{Y}_{E_0}}^{-1} \circ x^\vee \circ \lambda_{X_{E_0,(1,n-2)}} \circ y;$$

see [9, Definition 3.1]. Let $V(\mathcal{Y}_{E_0})$ resp. $V(X_{E_0,(1,n-2)})$ denote the hermitian E-vector spaces corresponding to the hermitian O_E-modules under the equivalence from Proposition 2.5. Then $V(\mathcal{Y}_{E_0})$ is even one-dimensional and $V(X_{E_0,(1,n-2)})$ is odd $(n-1)$-dimensional by Lemma 2.14. It follows that h is odd and we fix an isometry

$$(\text{Hom}^0(\mathcal{Y}_{E_0}, X_{E_0,(1,n-2)}), h) \cong (W, J_1^0)$$

which we extend to an isometry

$$\text{Hom}^0(\mathcal{Y}_{E_0}, X_{E_0,(1,n-1)}) = \text{Hom}^0(\mathcal{Y}_{E_0}, X_{E_0,(1,n-2)}) \times E \cdot \text{id}_{\mathcal{Y}_{E_0}} \cong W \oplus Eu = V$$

by sending $(0, \text{id}_{\mathcal{Y}_{E_0}})$ to u. Then $\text{End}^0(\mathcal{X}_{E_0,(1,n-1)})$ acts on V which induces an identification

$$\text{End}^0(\mathcal{X}_{E_0,(1,n-1)}) \cong \text{End}(V)$$

(6.1)

that is equivariant for the Rosati involution on the left and the adjoint involution of J_1 on the right. The product decompositions $\mathcal{X}_{E_0,(1,n-1)} = \mathcal{X}_{E_0,(1,n-2)} \times \mathcal{Y}_{E_0}$ and $V = W \times Eu$ give rise to projection (resp. inclusion) operators to (resp. from) the vector spaces $\text{End}^0(\mathcal{X}_{E_0,(1,n-2)}), \text{Hom}(\mathcal{Y}_{E_0}, \mathcal{X}_{E_0,(1,n-2)}), \text{End}(W), \text{Hom}(Eu, W)$, etc. The identification in (6.1) is compatible with all these homomorphisms. Finally, the isomorphism (6.1) identifies the unitary group $U(J_1^0)$ (resp. $U(J_1)$) with the group of quasi-isogenies of $\mathcal{X}_{E_0,(1,n-2)}$ (resp. $\mathcal{X}_{E_0,(1,n-1)}$). From now on, we will take the identification from (6.1) as self-evident.

By Proposition 2.17, there is a unique deformation \mathcal{Y}_{E_0} of the hermitian O_E-module \mathcal{Y}_{E_0} to $\text{Spf} O_E$. We define \mathcal{Y}_{E_0} on every $\text{Spf} O_E$-scheme by base change. This induces a closed immersion

$$\delta : \mathcal{N}_{E_0,(1,n-2)} \hookrightarrow \mathcal{N}_{E_0,(1,n-1)}, \quad X \mapsto X \times \mathcal{Y}_{E_0}$$

(6.2)

which is equivariant with respect to the inclusion $U(J_1^0) \hookrightarrow U(J_1)$. Here, the groups act on the RZ-spaces by composition in the framing, $g.(X, \rho) := (X, g\rho)$. We consider the graph of δ,

$$\Delta : \mathcal{N}_{E_0,(1,n-2)} \longrightarrow \mathcal{N}_{E_0,(1,n-2)} \times \text{Spf} O_E \cdot \mathcal{N}_{E_0,(1,n-1)}.$$

By abuse of notation, we denote its image also by Δ. Note that the source is regular of dimension $n-1$, while the target is regular of dimension $2(n-1)$. Hence, Δ defines a cycle in middle dimension. For $g \in U(J_1)$, we denote by

$$\Delta_g := (1, g)\Delta$$

its translate under g.

Lemma 6.1 [23, Lemma 2.8]. For regular semi-simple $g \in U(J_1)_{\text{rs}}$, the schematic intersection $\Delta \cap \Delta_g$ is a projective scheme over $\text{Spf} O_E$.
Remark 6.3. All spaces occurring in the definition of $\text{Int}(g)$ are regular. So if the schematic intersection $\Delta \cap \Delta_g$ is zero-dimensional, then there is an equality

$$\text{Int}(g) = \text{len}_{\mathcal{O}_E} \mathcal{O}_{\Delta \cap \Delta_g},$$

see [18, Proposition 4.2].

Definition 6.4. A quasi-endomorphism $x \in \text{End}^0_E(\mathcal{X}_{E_0,(1,n-1)})$ is called artinian (with respect to the quasi-homomorphism $u \in \text{Hom}^0(\mathcal{Y}_{E_0}, \mathcal{X}_{E_0,(1,n-1)})$), if the intersection $\mathcal{Z}(x) \cap \mathcal{Z}(u)$ is an artinian scheme. For artinian x, we define

$$\text{Int}(x) := \text{len}_{\mathcal{O}_E} \mathcal{O}_{\mathcal{Z}(x) \cap \mathcal{Z}(u)}.$$
It is also possible to give a moduli description of $Z(x) \cap Z(u)$ in the smaller space $Z(u) = \delta(N_{E_0,(1,n-2)})$. If x has the form

$$x = \left(x^b \mid v \mid d \right) \in \text{End}^0(\mathcal{X}_{E_0,(1,n-2)} \times \mathcal{Y}_{E_0}),$$

then

$$Z(x) \cap Z(u) = \begin{cases} \emptyset & \text{if } d \notin O_E \\ Z(x^b) \cap Z(v) \cap Z(w^*) & \text{otherwise} \end{cases} \quad (6.4)$$

where $w^* : \mathcal{Y}_{E_0} \rightarrow \mathcal{X}_{E_0,(1,n-2)}$ is the Rosati adjoint of w; see Definition 2.3.

Remark 6.6. If $x \in u(J_1)$, then x has the form

$$x = \left(x^b \mid j \right)$$

with $x^b \in u(J_1)$ and $\tilde{d} = -d$. So in this case,

$$\Delta \cap \Delta_x \simeq \begin{cases} \emptyset & \text{if } d \notin O_E \\ Z(x^b) \cap Z(j) & \text{otherwise}. \end{cases}$$

6.2. The arithmetic fundamental lemma

The FL gives an expression of the orbital integral function $O_\gamma(1_{S(O_{E_0})})$ on the unitary side. By contrast, the AFL conjecturally expresses the derivative $\partial O_\gamma(1_{S(O_{E_0})})$ on the unitary side whenever γ matches an element $g \in U(J_1)$. Note that for such γ, the orbital integral $O_\gamma(1_{S(O_{E_0})})$ vanishes, and, thus, $\partial O_\gamma(1_{S(O_{E_0})})$ is $\eta \circ \det$-invariant.

Conjecture 6.7 (Arithmetic fundamental lemma, group version, [23]). Let $\gamma \in S(E_0)$ be a regular semi-simple element that matches an element $g \in U(J_1)$. Then there is an equality

$$\Omega(\gamma) \partial O_\gamma(1_{S(O_{E_0})}) = -\text{Int}(g) \log(q). \quad (\text{AFL}_{E/E_0,(V,J_1),u,g})$$

For the Lie algebra version, we have to restrict to artinian elements since we defined the intersection product only in this case; see Definition 6.4.

Conjecture 6.8 (Arithmetic fundamental lemma, Lie algebra version). For any $y \in s(E_0)$ matching an artinian element $x \in u(J_1)$, there is an equality

$$\Omega(y) \partial O_y(1_{s(O_{E_0})}) = -\text{Int}(x) \log(q). \quad (\text{afl}_{E/E_0,(V,J_1),u,x})$$

Remark 6.9. Just as in the case of the FL, see Remark 5.8, the left-hand side of the AFL identities does not depend on the chosen lattice Λ_0. Also, it does not depend on
the chosen E_0-structure $W_0 \subset W$, which will follow from Corollaries 7.3 and 7.5. Hence, the quadruples $(E/E_0, (V, J_1), u, g)$ and $(E/E_0, (V, J_1), u, x)$ are sufficient to formulate the respective identity.

The group and the Lie algebra version of the AFL are related by the following result.

Proposition 6.10 [14]. Assume that $q \geq n + 2$. Then the AFL for all artinian elements $g \in U(J_1)_{rs}$ is equivalent to the AFL in the Lie algebra formulation for all artinian $x \in u(J_1)_{rs}$.

The AFL conjecture has been verified for $n \leq 3$ in [23]. Note that if $n \leq 3$, then any regular semi-simple element $g \in U(J_1)_{rs}$ is artinian. There exists a slight simplification of this computation in [14] which relies on Proposition 6.10.

More cases of the AFL for any n, but under restrictive conditions on g, have been verified by Rapoport, Terstiege and Zhang in [18]. Note that in these cases, g is also artinian. Their proof was subsequently simplified by Li and Zhu [12, 13] and He, Li and Zhu [8].

Before we continue, we would like to modify the AFL for Lie algebras slightly. Namely, let $y \in s(E_0)_{rs}$ match $x \in u(J_1)$ of the form

$$x = \left(\begin{array}{c} x^b \vspace{1mm} \\ -j^* \end{array} \right).$$

Then d is also the lower right entry of the matrix y. If $d \notin O_E$, then it is easy to see that both sides of $(\text{AFl}_{E/E_0, (V, J_1), u, x})$ vanish. If, instead, $d \in O_E$, then we can replace y by $y - d \cdot \text{id}_V$ and x by $x - d \cdot \text{id}_V$ without changing either side of $(\text{AFl}_{E/E_0, (V, J_1), u, x})$. Furthermore, $y - d \cdot \text{id}_V$ lies in $s(E_0)_{rs}$ and matches $x - d \cdot \text{id}_V \in u(J_1)_{rs}$.

Definition 6.11. We define

$$s(E_0)^0 := \left\{ \left(\begin{array}{c} x^b \\ u \\ d \end{array} \right) \in s(E_0) \ | \ d = 0 \right\} \quad \text{and}$$

$$u(J)^0 := \left\{ \left(\begin{array}{c} x^b \\ -j^* \\ d \end{array} \right) \in u(J) \ | \ d = 0 \right\}.$$

Then the matching relation induces a bijection

$$[s(E_0)^0_{rs}] \cong [u(J)^0_{rs}] \cup [u(J_1)^0_{rs}]$$

and it is enough to consider the Lie algebra formulation of the AFL for $x \in u(J_1)^0$.

7. Orbital integrals as lattice counts

In this section, we recall the expression of the orbital integrals $O_{\gamma}(1_K)$ and $\partial O_{\gamma}(1_K)$ in terms of lattices from [18, Section 7]. We deduce analogous results for the Lie algebra formulation.

5 In [14], it is specified for which x one needs $(\text{AFl}_{E/E_0, (V, J_1), u, x})$ to obtain $(\text{AFl}_{E/E_0, (V, J_1), u, x})$ and conversely.
7.1. Orbital integrals on S_n

Let $\gamma \in S(E_0)_{rs}$ match the element $g \in U(J_0)_{rs} \sqcup U(J_1)_{rs}$. From now on, we consider V with the hermitian form $J \in \{J_0, J_1\}$ determined by g. Recall that $V = W \oplus Eu$ with $(u, u) = 1$ and note that $u, gu, \ldots, g^{n-1}u$ is a basis of V since g is regular semi-simple.

We define a σ-linear involution $\tau : V \to V$ by $\tau(g^iu) = g^{-i}u$ for $i = 0, \ldots, n-1$.

Remark 7.1. The involution τ can also be defined as follows. The vector u defines an isomorphism of $E[g]$-modules, $E[g] \cong E[u] = V$. Under this isomorphism, τ corresponds to the adjoint involution with respect to the hermitian form J on $E[g] \subset \text{End}(V)$.

Let $L := O_E[g]u$ be the g-stable lattice spanned by u and denote by L^\vee its dual with respect to J. Let

$$M := \{ \Lambda \subset V \mid L \subset \Lambda \subset L^\vee, \ g\Lambda \subset \Lambda, \ \Lambda^\tau = \Lambda \}$$

and, for $i \in \mathbb{Z}$,

$$M_i := \{ \Lambda \in M \mid \text{len}(\Lambda/L) = i \}.$$

Lemma 7.2 [18, Proof of Corollary 7.3].

$$\Omega(\gamma)O_{\gamma}(1_{S(O_{E_0})}, s) = \sum_{i \in \mathbb{Z}} (-1)^i |M_i| q^{-(l + l(\gamma))s}.$$

(Here, $l(\gamma)$ was defined in Definition 5.3.) Taking the value at $s = 0$, respectively, taking the derivative at $s = 0$ yields the following.

Corollary 7.3 [18, Corollary 7.3].

$$\Omega(\gamma)O_{\gamma}(1_{S(O_{E_0})}) = \sum_{i \in \mathbb{Z}} (-1)^i |M_i|$$

and, in the case $J = J_1$,

$$\Omega(\gamma)\partial O_{\gamma}(1_{S(O_{E_0})}) = - \log(q) \sum_{i \in \mathbb{Z}} (-1)^i |M_i| \quad (7.1)$$

7.2. Orbital integrals on s_n

Let $y \in s(E_0)_{rs}^0$ match the element

$$x = \left(\begin{array}{cc} x^b & j \\ -j^* & j \end{array} \right) \in u(J_0)_{rs}^0 \sqcup u(J_1)_{rs}^0$$

and let $J \in \{J_0, J_1\}$ be the hermitian form determined by x. Again, $\tau : V \to V$ is the adjoint involution on $V = E[x]u \subset \text{End}(V)$, i.e., $\tau x^iu = (-1)^i x^j u$ for $i = 0, \ldots, n-1$. Let $L := O_E[x]u$ be the x-stable lattice spanned by u and denote by L^\vee its dual. Let

$$M := \{ \Lambda \subset V \mid L \subset \Lambda \subset L^\vee, \ x\Lambda \subset \Lambda, \ \Lambda^\tau = \Lambda \}$$
and, for $i \in \mathbb{Z}$,
\[M_i := \{ \Lambda \in M \mid \text{len}(\Lambda/L) = i \}. \]
Then the same formula for the orbital integral applies. Its proof is completely analogous to the one for the group version.

Lemma 7.4. There is an equality
\[\Omega(y)O_y(1_{s(\mathcal{O}_{E_0})}, s) = \sum_{i \in \mathbb{Z}} (-1)^i |M_i|q^{-i+1(y)s}. \]

Corollary 7.5. The value and the derivative of the orbital integral at $s = 0$ have the expressions
\[\Omega(y)O_y(1_{s(\mathcal{O}_{E_0})}) = \sum_{i \in \mathbb{Z}} (-1)^i |M_i| \]
and, in the case $J = J_1$,
\[\Omega(y)\partial O_y(1_{s(\mathcal{O}_{E_0})}) = -\log(q) \sum_{i \in \mathbb{Z}} (-1)^i i|M_i|. \] (7.2)

Let us define $L^b := \mathcal{O}_E[x^b]j \subset W$. We denote the orthogonal projection $V \rightarrow W$ by pr and denote by pr_u the projection to Eu.

Proposition 7.6. There is an equality of sets of lattices in $V = W \oplus Eu$,
\[M = \{ \Lambda^b \oplus \mathcal{O}_Eu \mid L^b \subset \Lambda^b \subset L^{b,\vee}, x^b\Lambda^b \subset \Lambda^b, (\Lambda^b)^\vee = \Lambda^b \}. \] (7.3)

We first note the following formula for $v \in V$,
\[xv = x^b v + (v, u)j - (j, v)u. \] (7.4)

Lemma 7.7. Let $\Lambda \subset V$ be any lattice such that $u \in \Lambda$ and $pr_j(\Lambda) = \mathcal{O}_Eu$. Then $\Lambda = (\Lambda \cap W) \oplus \mathcal{O}_Eu$ and $\Lambda \cap W = pr(\Lambda)$. Moreover, $pr(\Lambda^\vee) = pr(\Lambda)^\vee$.

Proof. This is immediate.

Lemma 7.8. The inclusion $L \subset L^\vee$ holds if and only if $L^b \subset L^{b,\vee}$. In this case, $L^b = pr(L)$ and $L^{b,\vee} = pr(L^\vee)$.

Proof. We first assume that $L \subset L^\vee$. Then $L = pr(L) \oplus \mathcal{O}_Eu$ and $pr(L)^\vee = pr(L^\vee)$ by the previous lemma. Hence, it is enough to show that $L^b = pr(L)$. Since also $j \in pr(L)$, we get $L^b \subset pr(L)$. To prove the opposite inclusion, we prove $pr(x^iu) \subset L^b$ by induction.

The case $i = 0$ is clear. Then we use formula (7.4),
\[pr(x^{i+1}u) = x^b x^i u + j(x^i u, u). \]

The first summand lies in L^b by induction and by the fact that L^b is x^b-stable. The second summand lies in L^b since $j \in L^b$ and $(x^i u, u) \in \mathcal{O}_E$ by the assumption $L \subset L^\vee$.

Conversely, let us assume that $L^b \subset L^{b,\vee}$. We need to show that $(x^i u, x^j u) \in \mathcal{O}_E$ for all i, j. Since x is from the unitary Lie algebra, it is enough to prove $(x^i u, u) \in \mathcal{O}_E$ for all i. Again we prove this by induction, the cases $i = 0$ and 1 being clear. We compute

$$-(x^{i+1} u, u) = (x^i u, j) = (x^b x^{i-1} u, j) + ((x^{i-1} u, u) j, j) - ((j, x^{i-1} u) u, j).$$

The first summand is integral by assumption on L^b. In the second summand, the pairing $(x^{i-1} u, u)$ is integral by induction. Hence, the second summand is integral by assumption on L^b. The third summand vanishes.

Proof of Proposition 7.6. Let $\Lambda \in M$. By Lemma 7.7, it is a direct sum, $\Lambda = \Lambda^b \oplus \mathcal{O}_E u$, where $\Lambda^b = \text{pr}(\Lambda)$. If $\lambda^b \in \Lambda^b$, then

$$x^b \lambda^b = x \lambda^b + (j, \lambda^b) u \in \Lambda,$$

and, hence, Λ^b is x^b-stable. Furthermore, $L^b \subset \Lambda^b \subset L^{b,\vee}$ since this is just the projection of the relation $L \subset \Lambda \subset L^{\vee}$. Finally, note that τ commutes with the projection pr. Hence, Λ^b has all the properties from (7.3).

Conversely, let us now assume that Λ^b satisfies all properties from (7.3). We want to show that $\Lambda := \Lambda^b \oplus \mathcal{O}_E u \in M$. By Lemma 7.7, $L \subset \Lambda \subset L^{\vee}$. Furthermore, Λ is τ-stable since both summands are. It is easy to prove that Λ is also stable under x which concludes the proof.

8. Uniform version of FL and AFL

8.1. Adjoint-stable pairs

The results of the previous section allow us to treat the AFL (resp. the FL) for groups and for Lie algebras at the same time. In this section, V is endowed with either of the two hermitian forms, say $J \in \{ J_0, J_1 \}$. In particular, the adjoint involution $\text{End}(V) \ni x \mapsto x^*$ and the dual lattice $\Lambda \mapsto \Lambda^\vee$ are taken with respect to this form.

Definition 8.1. (1) A pair $(x, j) \in \text{End}_E(V) \times V$ is called regular semi-simple if $E[x] j = V$. (2) The pair (resp. the element x) is called adjoint-stable if $\mathcal{O}_E[x] = \mathcal{O}_E[x^*].$

Remark 8.2. (1) Note that any element $x \in u(J)$ is adjoint-stable. An element $g \in U(J_1)$ is adjoint-stable if and only if $g^* = g^{-1} \in \mathcal{O}_E[g]$, which is equivalent to g having integral characteristic polynomial. (2) Let $x \in \text{End}_E(V)$ be such that $E[x] = E[x^*]$ and let (x, j) be regular semi-simple. Then also $E[x] \cdot (j, j) = V^{\vee}$. In particular, if $x \in u(J)$ or $x \in U(J)$, then x is regular semi-simple in the sense of Lemma 5.2 if and only if (x, u) is a regular semi-simple pair.

Definition 8.3. Let (x, j) be a regular semi-simple and adjoint-stable pair. Then we denote by $L(x, j) := \mathcal{O}_E[x] j$ the x-stable lattice generated by j.

(1) We define the σ-linear involution $\tau(x, j) : V \to V$ as follows: The element j induces an isomorphism $\phi : E[x] \cong E[x] j = V$ and we set $\tau(x, j)(v) = \phi(\phi^{-1}(v^*)$. This is possible since $E[x] = E[x]^n$ by assumption.
Relative unitary RZ-spaces and the arithmetic fundamental lemma

279

(2) We define the sets
\[M(x, j) := \{ \Lambda \subset V \mid L(x, j) \subset \Lambda \subset L(x, j)^\vee, x\Lambda \subset \Lambda, \tau(x, j)\Lambda = \Lambda \} \]
\[M(x, j)_i := \{ \Lambda \in M \mid \text{len}_{E_\mathcal{E}}(\Lambda/L(x, j)) = i \}, \quad i \in \mathbb{Z}. \]

(3) For \(s \in \mathbb{C} \), we define the following numbers:
\[O(x, j; s) := \sum_{i \in \mathbb{Z}} (-1)^i |M(x, j)_i| q^{-is} \]
\[O(x, j) := O(x, j; 0) = \sum_{i \in \mathbb{Z}} (-1)^i |M(x, j)_i| \]
\[\partial O(x, j) := \log(q)^{-1} d \left| \frac{d}{ds} O(x, j; s) \right|_{s=0} = -\sum_{i \in \mathbb{Z}} (-1)^i i |M(x, j)_i|. \]

We will now consider the two possibilities for \(J \) separately.

8.2. The fundamental lemma

In this section, \(J = J_0 \) is the even form.

Definition 8.4. Let \((x, j) \) be a regular semi-simple and adjoint-stable pair. We define
\[I(x, j) := |\{ \Lambda \subset V \mid L(x, j) \subset \Lambda \subset L(x, j)^\vee, x\Lambda \subset \Lambda, \Lambda^\vee = \Lambda \}|. \]

Conjecture 8.5 (Fundamental lemma, uniform version). Let \((x, j) \in \text{End}_E(V) \) be a regular semi-simple and adjoint-stable pair. Then
\[I(x, j) = O(x, j). \] (FL(\(x, j \))

In the rest of this subsection, we explain some cases of the uniform version that are equivalent to the group and Lie algebra versions of the FL. We do not know in general if the uniform version can be directly deduced from the FL.

Lemma 8.6. Let \((x, j) \) be an adjoint-stable pair with \(x \in u(J_0) \). We set \(V' := V \oplus Eu' \) with form \(J'_0 := J_0 \oplus 1 \) and we define
\[x' := \left(\begin{smallmatrix} x & \sigma \end{smallmatrix} \right) \in u(J'_0). \]
Then \((x, j) \) is regular semi-simple if and only if \(x' \) is regular semi-simple with respect to \(V' = V \oplus Eu' \) in the sense of Definition 5.1. In the regular semi-simple case, (FL(\(x, j \))) is equivalent to (FL(\(x, j \), \(x', u' \))).

Proof. This follows from Lemmas 5.2 and 5.10 and Corollary 7.5. \(\square \)

Lemma 8.7. Let \((g, j) \) be an adjoint-stable pair with \(g \in U(J_0) \) and \(J_0(g, j) \in O_{E_0} \). Then \((g, j) \) is regular semi-simple if and only if \(g \) is regular semi-simple with respect to \(V = j^+ \oplus Ej \) in the sense of Definition 5.1. In the regular semi-simple case, (FL(\(g, j \))) is equivalent to (FL(\(E_0, V, J_0, j, g \))).
We now assume that $J_0(j, j) \notin \mathcal{O}_{E_0}$. Then both sides of (FL$(g, j)$) vanish.

Proof. If $J_0(j, j) \notin \mathcal{O}_{E_0}$, then $L(x, j) \not\in L(x, j)^\vee$.

Construction 8.9. Let (g, j) be an adjoint-stable pair with $g \in U(J_0)$ and $v(J_0(j, j)) \geq 1$. We also assume that $q_{E_0} + 1 > n$. Then we define $V' := V \oplus E\tilde{u}$ and $u' := \tilde{u} + j$. We extend J_0 to J_0' on V' by setting $\tilde{u} \perp V$ and $J_0'(u', u') = 1$. We define $W' := (u')^\perp$, which is an even hermitian space.

Let $P(t) \in \mathcal{O}_{E}[t]$ be the characteristic polynomial of g. Note that $q_{E_0} + 1$ is the number of residue classes mod π_E of $E^1 := \{a \in E \ | \ Nm_{E/E_0}(a) = 1\}$. By assumption, this number is larger than $\deg(P)$, and, hence, there exists $a \in E^1$ such that $P(a) \not\equiv 0$ mod π_E. We define

$$g' := (\begin{smallmatrix} g & a \\ 0 & \end{smallmatrix}) \in U(J_0')$$

where the block matrix decomposition is with respect to $V' = W \oplus E\tilde{u}$.

Lemma 8.10. Let (g, j) be an adjoint-stable pair with $g \in U(J_0)$ and $v(J_0(j, j)) \geq 1$. We also assume that $q_{E_0} + 1 > n$. Let V', u' and g' be as above. Then (g, j) is regular semi-simple if and only if g' is regular semi-simple with respect to $V' = W' \oplus Eu'$ in the sense of Definition 5.1. In the regular semi-simple case, (FL(g, j)) is equivalent to (FL$_{E/E_0}(V', J_0', u', g')$).

Proof. As explained in Lemma 8.7, (g', u') is regular semi-simple if and only if g' is regular semi-simple with respect to $V' = W' \oplus Eu'$ in the sense of Definition 5.1. In this case, (FL$_{E/E_0}(V', J_0', u', g')$) is equivalent to (FL$(g', u')$). So we have to prove that (g', u') is regular semi-simple if and only if (g, j) is and that, in this case, (FL(g', u')) is equivalent to (FL(g, j)).

Due to our special choice of a, there is a decomposition $\mathcal{O}_E[g'] = \mathcal{O}_E[g] \times \mathcal{O}_E$. Its action on $V' = V \oplus E\tilde{u}$ is then a factor-wise action. This already proves the claim about the regular semi-simplesness. We leave it to the reader to check that there is a bijection

$$M(g, j) \cong M(g', u'), \quad \Lambda \mapsto \Lambda \oplus \mathcal{O}_E\tilde{u}.$$

Then $\text{len}(\Lambda/L(g, j)) = \text{len}((\Lambda \oplus \mathcal{O}_E\tilde{u})/L(g', u'))$ and hence $O(g', u') = O(g, j)$. Similarly, one gets that $I(g', u') = I(g, j)$.

8.3. The arithmetic fundamental lemma

We now assume that $J = J_1$ is the odd hermitian form. In particular, $x \mapsto x^*$, the dual lattice $\Lambda \mapsto \Lambda^\vee$ and M are now defined with respect to this form.

Lemma 8.11. For all regular semi-simple and adjoint-stable pairs (x, j), there is an equality

$$O(x, j) = 0.$$
Proof. The argument is taken from [18, Corollary 7.3]. Let us assume that \(L(x, j) \subset L(x, j)^\vee \) since otherwise \(M(x, j) = \emptyset \) and hence \(O(x, j) = 0 \). Let us also define \(l := [L(x, j)^\vee : L(x, j)] \) which is odd since \(J_1 \) is the odd form. Then \(\Lambda \mapsto \Lambda^\vee \) induces an involution on the set \(M(x, j) \) which is fixed point free since it interchanges \(M(x, j)_i \) and \(M(x, j)_{l-i} \). Thus, \(|M(x, j)_i| = |M(x, j)_{l-i}| \) and the two summands \((-1)^i|M(x, j)_i|\) and \((-1)^{l-i}|M(x, j)_{l-i}|\) in the definition of \(O(x, j) \) cancel. \(\square \)

Definition 8.12. The pair \((x, j)\) is called artinian, if the schematic intersection \(Z(x) \cap Z(j) \subset N_{E_0, (1, n-1)} \) is an artinian scheme. In this case, we define

\[
\text{Int}(x, j) := \text{len}_{E}(OZ(x) \cap Z(j)).
\]

Conjecture 8.13 (Arithmetic fundamental lemma). Let \((x, j)\) be a regular semi-simple, adjoint-stable and artinian pair. Then

\[
\partial O(x, j) = -\text{Int}(x, j). \quad \text{(AFL}(x, j))
\]

Again, we explain the relation of this uniform version with the AFL from Section 7. This will be very similar to the explanations for the case \(J = J_0 \).

Lemma 8.14. Let \((x, j)\) be an adjoint-stable pair with \(x \in u(J_1) \). We set \(V' := V \oplus Eu' \) with form \(J'_1 := J_1 \oplus 1 \) and we define

\[
x' := \left(\begin{array}{c}
\begin{array}{c}
x' \\
\end{array}
\end{array} \right) \in u(J'_1)^0.
\]

Then \((x, j)\) is regular semi-simple and artinian if and only if \(x' \) is regular semi-simple with respect to \(V' = V \oplus Eu' \) in the sense of Definition 5.1 and artinian with respect to \(u' \) in the sense of Definition 6.4. In the regular semi-simple and artinian case, \(\text{(AFL}(x, j)) \) is equivalent to \(\text{af}l_{E/E_0, (V, J'_1), u', x'} \).

Proof. This follows from Lemma 5.2, Remark 6.6 and Corollary 7.5. \(\square \)

Lemma 8.15. Let \((g, j)\) be an adjoint-stable pair with \(g \in U(J_1) \) and \(J_1(j, j) \in O_{E_0}^X \). Then \((g, j)\) is regular semi-simple and artinian if and only if \(g \) is regular semi-simple with respect to \(V = j^\perp \oplus Ej \) in the sense of Definition 5.1 and artinian with respect to \(j \) in the sense of Definition 6.4. In the regular semi-simple and artinian case, \(\text{(AFL}(g, j)) \) is equivalent to \(\text{af}l_{E/E_0, (V, J_1), j, g} \).

Proof. This follows from Lemma 5.2, Remark 6.3 and Corollary 7.3. \(\square \)

Lemma 8.16. Let \((g, j)\) be a regular semi-simple, adjoint-stable and artinian pair such that \(J_1(j, j) \notin O_{E_0} \). Then both sides of \(\text{(AFL}(x, j)) \) vanish.

Proof. If \(J_1(j, j) \notin O_{E_0} \), then \(Z(j) = \emptyset \). Namely, if \(X \in N_{E_0, (1, n-1)} \) is such that \(j : Y_{E_0} \rightarrow X_{E_0, (1, n-1)} \) lifts to a homomorphism \(Y_{E_0} \rightarrow X \), then also the composition \(j^* j \in \text{End}_{E}(Y_{E_0}) \) lifts to \(Y_{E_0} \). But \(\text{End}(Y_{E_0}) = O_E \) and \(j^* j = J_1(j, j) \).

Also, if \(J_1(j, j) \notin O_{E_0} \), then \(L(g, j) \subset L(g, j)^\vee \), and, thus, \(M(g, j) = \emptyset \). \(\square \)
Construction 8.17. Let \((g, j)\) be an adjoint-stable pair with \(g \in U(J_1)\) and \(v(J_1(j, j)) \geq 1\). We also assume that \(q_{E_0} + 1 > n\). Then we define \(V' := V \oplus E\tilde{u}\) and \(u' := \tilde{u} + j\). We extend \(J_1\) to \(J'_1\) on \(V'\) by setting \(\tilde{u} \perp V\) and \(J'_1(u', u') = 1\). We define \(W' := (u')^\perp\), which is an odd hermitian space.

As explained in Section 8.2, there exists \(a \in E^1\) such that \(P(a) \neq 0\ mod \pi_E\) where \(P\) is the characteristic polynomial of \(g\). We define

\[
g' := \left(\begin{smallmatrix} g \\ a \end{smallmatrix}\right) \in U(J'_1)
\]

where the block matrix decomposition is with respect to \(V' = W \oplus E\tilde{u}\).

Lemma 8.18. Let \((g, j)\) be an adjoint-stable pair with \(g \in U(J_1)\) and \(v(J_1(j, j)) \geq 1\). We also assume that \(q_{E_0} + 1 > n\). Let \(V', u'\) and \(g'\) be as above. Then \((g, j)\) is regular semi-simple andartinian if and only if \(g'\) is regular semi-simple with respect to \(V' = W' \oplus Eu'\) in the sense of Definition 5.1 andartinian with respect to \(u'\) in the sense of Definition 6.4. In the regular semi-simple andartinian case, the identity \((AFL(g, j))\) is equivalent to \((AFL_{E/E_0, (V', J'_1), u', g'})\).

Proof. By Lemma 8.15, \((g', u')\) is regular semi-simple andartinian if and only if \(g'\) is regular semi-simple with respect to \(V' = W' \oplus Eu'\) andartinian with respect to \(u'\). In this case, \((AFL_{E/E_0, (V', J'_1), u', g'})\) is equivalent to \((AFL(g', u'))\). So we have to prove that \((g', u')\) is regular semi-simple andartinian if and only if \((g, j)\) is and that, in this case, the two identities \((AFL(g', u'))\) and \((AFL(g, j))\) are equivalent.

Due to our special choice of \(a\), there is a decomposition \(O_E[g'] = O_E[g] \times O_E\). Its action on \(V' = V \oplus E\tilde{u}\) is then a factor-wise action. This already proves the claim about the regular semi-simpleness. Note that \(J'_1(\tilde{u}, \tilde{u}) \in O_{E_0}^\times\). We leave it to the reader to check that there is a bijection

\[
M(g, j) \cong M(g', u'), \quad \Lambda \mapsto \Lambda \oplus O_E\tilde{u}.
\]

Then \(\text{len}(\Lambda/L(g, j)) = \text{len}(\Lambda \oplus O_E\tilde{u})/L(g', u'))\) and hence \(\partial O(g', u') = \partial O(g, j)\). We still have to show \(\text{Int}(g', u') = \text{Int}(g, j)\) which follows from an identification of formal schemes, \(Z(g) \cap Z(u) = Z(g') \cap Z(u')\).

Namely, note that because of the decomposition \(O_E[g'] = O_E[g] \times O_E\), there is an inclusion

\[
Z(g') \subset Z(\tilde{u})
\]

which identifies the cycle \(Z(g') \subset Z(\tilde{u}) \cong \mathcal{N}_{E_0,(1,n-1)}\) with \(Z(g)\). Moreover,

\[
Z(\tilde{u}) \cap Z(u') = Z(\tilde{u}) \cap Z(j)
\]

since the intersection only depends on the spanned module

\[
O_E\tilde{u} + O_Eu' \subset \text{Hom}^0(Y_{E_0}, \mathcal{X}_{E_0,(1,n-1)} \times Y_{E_0}).
\]

Thus,

\[
Z(g') \cap Z(u') = Z(g') \cap Z(\tilde{u}) \cap Z(u') \cong Z(g) \cap Z(j).
\]
9. The AFL in the presence of additional multiplication

We now study the AFL for pairs \((x, j)\) such that there exists a maximal order \(O_A \subset O_E[x]\) as in Section 4. We first do this for field extensions \(A/E\) which uses the main result about cycles, Theorem 4.5. In the subsequent section, we deal with the case of an étale algebra \(A/E\). Here, the FL is needed as an additional input.

9.1. Multiplication by a field extension \(A/E\)

Let \(A_0/E_0\) be a field extension of degree \(d\) such that \(A := A_0 \otimes_{E_0} E\) is also a field. Then \(A/A_0\) is an unramified quadratic extension and we denote its Galois conjugation also by \(\sigma\). Let \(A \hookrightarrow \text{End}_E(V)\) be an embedding that is equivariant for the Galois conjugation \(\sigma\) on \(A\) and the adjoint involution of \(J_1\) on \(\text{End}(V)\). In other words,

\[
J_1(a, \sigma(a)) = J_1(a, \sigma(a)), \quad a \in A.
\]

Let \(\theta_A\) be a generator of the inverse different of \(A_0/E_0\) and let \(J_1^A : V \times V \to A\) be the \(A/A_0\)-hermitian form characterized by the property that

\[
\text{tr}_{A/E} \circ \theta_A J_1^A = J_1.
\]

Note that for an \(O_A\)-lattice \(\Lambda \subset V\), the dual lattice \(\Lambda^\vee\) with respect to the form \(J_1\) is also the dual of \(\Lambda\) with respect to \(J_1^A\). In particular, \((V, J_1^A)\) is an odd hermitian space.

The action of \(A\) by quasi-endomorphisms on \(X_{E_0, (1,n-1)}\) makes it into a framing object \(X_{A_0/E_0, (1,n-1)}\) for \(N_{A_0/E_0, (1,n-1)}\), where \(n = dn'\). We also define \(X_{A_0, (1,n'-1)} := \mathcal{C}(X_{A_0/E_0, (1,n'-1)})\), where \(\mathcal{C}\) is the functor from Theorem 3.3. We set \(Y_{A_0/E_0} := \text{O}_A \otimes \text{O}_{E_0}\)

\[
Y_{A_0, (1,n'-1)} := \mathcal{C}(X_{A_0, (1,n'-1)}).
\]

There is an isomorphism

\[
\text{Hom}^0_E(Y_{E_0}, X_{E_0, (1,n-1)}) \cong \text{Hom}^0_A(Y_{A_0/E_0}, X_{A_0, (1,n'-1)}), \quad j \mapsto \text{id}_{A_0} \otimes j
\]

which is an isometry with respect to \(J_1^A\) on the left and the natural form on the right. Via \(\mathcal{C}\), these hermitian spaces are also isometric to \(\text{Hom}^0_A(Y_{A_0}, X_{A_0, (1,n'-1)})\).

The point is now that any regular semi-simple, adjoint-stable and artinian pair \((x, j) \in \text{End}_E(V) \times V\) such that \(x\) is \(A\)-linear gives rise to two AFL identities, one for the base field \(E_0\) and one for \(A_0\). We denote by \((\text{AFL}(x, j)_{E_0})\) the one for \(N_{E_0, (1,n-1)}\) where the \(A\)-action does not play a role. We denote by \((\text{AFL}(x, j)_{A_0}) := (\text{AFL}(\mathcal{C}(x), \mathcal{C}(\text{id}_{A_0} \otimes j)))\) the one for \(N_{A_0, (1,n'-1)}\). Our main result is the following theorem and its corollaries.

Theorem 9.1. Let \((x, j) \in \text{End}_E(V) \times V\) be a regular semi-simple, adjoint-stable and artinian pair such that \(O_A \subset O_E[x]\). Then \((x, j)\) is also regular semi-simple, adjoint-stable and artinian when viewed over \(A_0\) and the two identities \((\text{AFL}(x, j)_{E_0})\) and \((\text{AFL}(x, j)_{A_0})\) are equivalent.

Proof. Let us keep the notation \(L(x, j), \tau(x, j), M(x, j), \partial O(x, j), \text{Int}(x, j), \) etc. for the setting over \(E_0\). We denote by \(L(x, j)^A, \tau(x, j)^A, M(x, j)^A, \partial O(x, j)^A, \text{Int}(x, j)^A, \) etc. the respective notions for the setting over \(A_0\). It is clear that \((x, j)\) is also regular semi-simple and adjoint-stable when viewed over \(A_0\) since \(O_A[x]j = O_E[x]j\) by assumption.
Comparison of the analytic sides of \((AFL(x, j)_{E_0})\) and \((AFL(x, j)_{A_0})\):
Any \(x\)-stable \(\mathcal{O}_E\)-lattice \(\Lambda \subset V\) is automatically an \(\mathcal{O}_A[x]\)-lattice. In particular, \(L(x, j) = L(x, j)^A\). Similarly, the involutions \(\tau(x, j)\) and \(\tau(x, j)^A\) agree since they only depend on the Rosati involution on \(E[x] = A[x]\) and \(j\). This implies that
\[
M(x, j) = M(x, j)^A.
\]
Let \(f\) be the inertia degree of \(A_0/E_0\). Then \(M(x, j)_i = \emptyset\) if \(f \nmid i\) and \(M(x, j)_{f_i} = M(x, j)^A_{f_i}\). Note that \(f\) is odd since we assumed that \(A_0 \otimes_{E_0} E\) is a field. In particular, \((-1)^i = (-1)^{f_i}\) and hence
\[
\partial\mathcal{O}(x, j) = \sum_{i \in \mathbb{Z}} (-1)^i i|M(x, j)_i| = f \sum_{i \in \mathbb{Z}} (-1)^i i|M(x, j)^A_{f_i}| = f \cdot \partial\mathcal{O}(x, j)^A.
\]

Comparison of the geometric sides of \((AFL(x, j)_{E_0})\) and \((AFL(x, j)_{A_0})\):
By Remark 4.6, the cycle \(Z(x) \subset \mathcal{N}_{E_0,(1,n-1)}\) can be identified with \(f\) copies of \(Z(x)^A\), where \(Z(x)^A := Z(C(x))\) is the corresponding cycle in \(\mathcal{N}_{A_0,(1,n'-1)}\). By Remark 4.4, this identification is compatible with the formation of KR-divisors and hence
\[
Z(x) \cap Z(j) \cong \bigsqcup_{i=1}^f Z(x)^A \cap Z(j)^A,
\]
where again \(Z(j)^A = Z(C(id_{A_0} \otimes j))\) is the respective cycle in \(\mathcal{N}_{A_0,(1,n'-1)}\). It follows that \((x, j)\) is also artinian when viewed over \(A_0\) and
\[
\text{Int}(x, j) = f \text{Int}(x, j)^A.
\]
The theorem follows. \(\square\)

We now translate this back into statements about the AFL in the original formulation from Sections 6 and 7.

Corollary 9.2. Let \(x \in u(J_1)^0_{rs}\) be regular semi-simple and artinian of the form
\[
x = \left(\begin{array}{c} x \v \n \\
- j^* \end{array} \right).
\]

Let \(A_0/E_0\) be a field extension such that \(A := A_0 \otimes_{E_0} E\) is again a field, together with an embedding \(\mathcal{O}_A \hookrightarrow \mathcal{O}_E[x^\v]\) that is equivariant for the Galois conjugation \(\sigma\) on \(\mathcal{O}_A\) and the adjoint involution \(*\) on \(\mathcal{O}_E[x^\v]\). Let \(V^A := W \oplus A u^A\) be the hermitian \(A\)-vector space with form \(J_1^A := J_1^{*,A} \oplus 1\).

1. Then \(x\) can also be viewed as an element of \(u(J_1)^0_{rs}\) and there is an equivalence
\[
(afl_{E/E_0,(V,J_1),u,x}) \leftrightarrow (afl_{A/A_0,(V^A,J_1^A),u^A,x}).
\]

2. In particular, if \(\dim_A(W) \leq 2\), then \((afl_{E/E_0,(V,J_1),u,x})\) holds.

Proof. Part (1) is a combination of Lemma 8.14 and Theorem 9.1. Part (2) follows since the AFL has been proven for \(n \leq 3\). \(\square\)

The same arguments imply an analogous result for the group version.
Corollary 9.3. Let \(g \in U(J_1^{A})_{rs} \) be regular semi-simple and artinian with integral characteristic polynomial.\(^6\) Let \(A_0/E_0 \) be a field extension such that \(A := A_0 \otimes_{E_0} E \) is again a field, together with an embedding \(\mathcal{O}_A \hookrightarrow \mathcal{O}_E[g] \) that is equivariant for the Galois conjugation on \(A \) and the adjoint involution on \(\mathcal{O}_E[g] \). We assume that \(J_1^{A}(u,u) \in \mathcal{O}^{\times}_A \), where \(J_1^{A} \) is the lifted hermitian form.

(1) Then \(g \) is also an element of \(U(J_1^{A})_{rs} \) and there is an equivalence

\[
\text{AFL}_{E_0,(V,J_1),u,g} \iff \text{AFL}_{A_0,(V,J_1^{A}),u,g}.
\]

(2) In particular, if \(\dim_A(V) \leq 3 \), then the AFL for \(g \), \(\text{AFL}_{E_0,(V,J_1),u,g} \), holds.

Let us now formulate the variant for \(v(J_1^{A}(u,u)) \geq 1 \). As in Lemma 8.18, we raise the dimension by 1 for this.

Corollary 9.4. Assume that \(q_{A_0} + 1 > n \). Let \(g, A_0, A \) and the embedding \(\mathcal{O}_A \hookrightarrow \mathcal{O}_E[g] \) be as in the previous corollary, but let \(v(J_1^{A}(u,u)) \geq 1 \). Let \(V^{A} := V \oplus A\tilde{u} \), where \(u^{A} := u + \tilde{u} \) and extend \(J_1^{A} \) to a hermitian form \(J_1^{A,\sharp} \) on \(V^{A} \) by defining \(\tilde{u} \perp V \) and \(J_1^{A,\sharp}(u^{A},u^{A}) = 1 \).

Let \(P \in A[1] \) be the characteristic polynomial of \(g \) as \(A \)-linear endomorphism of \(V \) and let \(a = A^{1} \) be such that \(P(a) \neq 0 \) modulo \(\pi_{A} \), where \(\pi_{A} \) is a uniformizer of \(A \). Define \(g^{A} \in U(J_1^{A,\sharp}) \) as

\[
g^{A} := \left(\begin{array}{cc} g & \tilde{u} \\ \tilde{u} & \end{array} \right) \in \text{End}(V^{A}).
\]

(1) Then \(g^{A} \in U(J_1^{A,\sharp})_{rs} \) is regular semi-simple with respect to \(V^{A} = (u^{A})^{\perp} \oplus Au^{A} \), artinian with respect to \(u^{A} \) and there is an equivalence

\[
\text{AFL}_{E_0,(V,J_1),u,g} \iff \text{AFL}_{A_0,(V,A^{1},J_1^{A,\sharp}),u^{A},g^{A}}.
\]

(2) In particular, if \(\dim_A(V) \leq 2 \), then the AFL for \(g \), \(\text{AFL}_{E_0,(V,J_1),u,g} \), holds.

Proof. Part (1) is a combination of Lemma 8.18 and Theorem 9.1. Part (2) follows since the AFL has been proven for \(n \leq 3 \).

\[\] 9.2. Multiplication by an étale algebra \(A/E \)

Theorem 9.5. Let \((x,j) \in \text{End}_E(V) \times V \) be a regular semi-simple, adjoint-stable and artinian pair. Assume that there exists a product decomposition \(\mathcal{O}_E[x] = R_0 \times R_1 \) that is stable under \(^{*} \). Let \(V = V_0 \times V_1 \) be the corresponding decomposition of \(V \) and let \((x_0,j_0) \) respectively \((x_1,j_1) \) denote the components of \((x,j) \) in \(V_0 \) respectively \(V_1 \). We assume that \(J_1|_{V_0} \) is even, which implies that \(J_1|_{V_1} \) is odd.

Then the two identities \((\text{FL}(x_0,j_0)) \) and \((\text{AFL}(x_1,j_1)) \) imply the identity \((\text{AFL}(x,j)) \).

Proof. Computation of the analytic side of \((\text{AFL}(x,j)) \): Any \(x \)-stable lattice \(\Lambda \subset V \) is a product \(\Lambda = \Lambda_0 \times \Lambda_1 \) where \(\Lambda_i \subset V_i \) is an \(x_i \)-stable lattice. A special case is \(L(x,j) = \)

\[\]\(^6\)This ensures that \(\mathcal{O}_E[g] \) is stable under the adjoint involution. Note that both sides of \((\text{AFL}_{E_0,(V,J_1),u,g}) \) vanish if the characteristic polynomial of \(g \) is not integral. So this is not a serious restriction.
Furthermore, \(\tau(x, j) = \tau(x_0, j_0) \times \tau(x_1, j_1) \), and, hence, there is a bijection

\[M(x_0, j_0) \times M(x_1, j_1) \xrightarrow{\cong} M(x, j) \]

\[(\Lambda_0, \Lambda_1) \mapsto \Lambda_0 \times \Lambda_1 \]

which induces a bijection

\[\prod_{k+l=m} M(x_0, j_0)_k \times M(x_1, j_1)_l \cong M(x, j)_m. \]

This implies the relation

\[O(x, j; s) = O(x_0, j_0; s) \cdot O(x_1, j_1; s). \] (9.1)

Taking the derivative and using the vanishing part of the FL, Lemma 8.11, we get

\[\partial O(x, j) = O(x_0, j_0) \cdot \partial O(x_1, j_1). \]

Computation of the geometric side of \((\text{AFL}(x, j))\): Let \(\mathcal{O}_E \times \mathcal{O}_E \subset \mathbb{R}_0 \times \mathbb{R}_1 \) be the \(\mathcal{O}_E \)-algebra generated by the non-trivial idempotent. Using Proposition 4.14, we get

\[\mathcal{Z}(\mathcal{O}_E \times \mathcal{O}_E) \cong \left(\bigsqcup_{\{\Lambda_0 \subset V_0 \mid \Lambda_0^* = \Lambda_0\}} \text{Spf} \mathcal{O}_E \right) \times_{\text{Spf} \mathcal{O}_E} \mathcal{N}_{E_0,(1,n_1-1)}, \]

where \(n_1 = \dim_{E}(V_1) \). By Remarks 4.4 and 4.6, this description is compatible with the formation of \(\mathcal{Z}(x) \) and \(\mathcal{Z}(j) \), and we get

\[\mathcal{Z}(x) \cap \mathcal{Z}(j) = \left(\bigsqcup_{\{\Lambda_0 \mid \Lambda_0^* = \Lambda_0, x_0 \in \Lambda_0, j_0 \in \Lambda_0\}} \text{Spf} \mathcal{O}_E \right) \times_{\text{Spf} \mathcal{O}_E} (\mathcal{Z}(x_1) \cap \mathcal{Z}(j_1)). \]

This implies

\[\text{Int}(x, j) = I(x_0, j_0) \cdot \text{Int}(x_1, j_1) \]

which finishes the proof of the theorem. \(\square \)

Remark 9.6. Let us assume that the characteristic polynomial of \(x \) is integral. Then an inclusion \(\mathcal{O}_E \times \mathcal{O}_E \hookrightarrow \mathcal{O}_E[x] \) exists if and only if this polynomial has two different prime factors modulo \(p \). Implicitly, this was already used in [18, Section 8].

We conclude this paper with three corollaries. For this, we take up the notation from Sections 6 and 7.

Corollary 9.7. Let \(x \in u(J_1)^0_{rs} \) be regular semi-simple and artinian, of the form

\[x = \begin{pmatrix} \lambda & \mu \\ -\mu & \lambda \end{pmatrix}. \]

Assume that there exists an embedding \(\mathcal{O}_E \times \mathcal{O}_E \hookrightarrow \mathcal{O}_E[x^b] \) that is equivariant for the factor-wise Galois conjugation and the adjoint involution of \(J_1^b \). Let \(W = W_0 \times W_1 \) be the
corresponding decomposition of \(W \) and assume that \(J_1|_{W_0} \) is even. Let \(x^b_0, x^b_1, j_0 \) and \(j_1 \) be the components of \(x^b \) and \(j \). For \(i = 0, 1 \), form the vector space \(V_i := W_i \oplus E u_i \), where \(u_i \) is some additional vector. We extend the form \(J^b_i|_{W_i} \) to a form \(J_{1,i} \) on \(V_i \) by defining \((u_i, u_i) = 1 \) and \(u_i \perp W_i \).

Then the element

\[
x_i = \left(\begin{array}{c} x^b_i \\ j_i \\ -j_i^* \\ \end{array} \right)
\]

lies in \(u(J_{1,i})_{rs}^0 \) and the identity \((\text{AFL}_{E_0}/(V, J_{1,i}), a, x) \) implies the identity \((\text{AFL}_{E_0}/E_0, (V, J_{1,i}), a, x) \).

Proof. The FL \((\text{FL}(x^b_0, j_0)) \) holds by Lemma 8.6. Then \((\text{AFL}(x^b_1, j_1)) \) implies \((\text{AFL}(x^b_0, j_0)) \) by Theorem 9.5. Lemma 8.14 yields the translation into the Lie algebra version of the AFL.

Corollary 9.8. Let \(g \in U(J_{1})_{rs} \) be regular semi-simple and artinian. Assume that there exists an embedding \(\mathcal{O}_E \times \mathcal{O}_E \hookrightarrow \mathcal{O}_E[g] \) that is equivariant for the factor-wise Galois conjugation and the adjoint involution of \(J_1 \). Let \(V = V_0 \times V_1 \) be the corresponding decomposition of \(V \) and assume that \(J_1|_{V_0} \) is even. Let \(g_0 \) and \(g_1 \) be the components of \(g \) and let \(u_0 \) and \(u_1 \) be the components of \(u \). Assume that the identity \((\text{FL}(g_0, j_0)) \) holds.

1. If \(J_1(u_1, u_1) \in \mathcal{O}_E^g \), then the identity \((\text{AFL}_{E_0}/(V_0, J_{1|V_0}), u_1, g_1) \) implies the AFL for \(g_1 \), \((\text{AFL}_{E_0}/(V_1, J_{1|V_1}), u_1, g_1) \). In particular, \((\text{AFL}_{E_0}/E_0, (V, J_{1|V}), a, g) \) holds if \(\dim V_1 \leq 3 \) or if \(g_1 \) is minuscule in the sense of [18].

2. Assume that \(q_{E_0} + 1 > n \) and that \(q(J_1(u_1, u_1)) \geq 1 \). We define \(V_1' := V_1 \oplus E \tilde{u}_1 \) and \(u'_1 := u_1 + \tilde{u}_1 \). We extend \(J_1|_{V_1} \) to a hermitian form \(J'_1 \) on \(V_1' \) by defining \(\tilde{u}_1 \perp V_1 \) and \((u'_1, u'_1) = 1 \). We choose an element \(a \in E^1 \) such that \(P(a) \equiv 0 \) modulo \(p \), where \(P \) denotes the characteristic polynomial of \(g_1 \) on \(V_1 \). We set

\[
g_1' := \left(\begin{array}{c} g_1 \\ a \end{array} \right) \in U(J'_1)
\]

where the block matrix decomposition is with respect to \(V_1' = V \oplus E \tilde{u}_1 \).

Then \((\text{AFL}_{E_0}/E_0, (V_1', J'_1), u'_1, g'_1) \) implies \((\text{AFL}_{E_0}/(V, J_{1|V}), a, g) \). In particular, \((\text{AFL}_{E_0}/E_0, (V, J_{1|V}), a, g) \) holds if \(\dim V_1 \leq 2 \).

Proof. Part (1) follows from Theorem 9.5 and Lemma 8.15 and the fact that the AFL has been proven in the minuscule case and in the case \(n \leq 3 \).

Part (2) follows from Theorem 9.5 and Lemma 8.18.

The case of a general finite étale \(A_0/E_0 \) follows with an inductive argument. We decompose \(A_0 \) into fields

\[
A_0 := \prod_{i \in I} A_{0,i}
\]

and set \(A := A_0 \otimes_{E_0} E \) as well as \(A_i := A_{0,i} \otimes_{E_0} E \), all with Galois conjugation \(\sigma := \text{id} \otimes \sigma \). Let \(\mathcal{O}_A \) be the ring of integral elements in \(A \).
Any embedding $A \hookrightarrow \text{End}(V)$ that is equivariant for the Galois conjugation of A and the adjoint involution of J_1 on V induces an orthogonal decomposition $V = \prod_{i \in I} V_i$. Just as in Definition 4.12, we call an index i even if there exists a self-dual \mathcal{O}_A-lattice in V_i. Otherwise, we call i odd. Note that since V itself is odd, there is an odd number of odd indices. Also note that if i is odd, then A_i is necessarily a field.

Corollary 9.9. Let $g \in U(J_1)_{rs}$ be regular semi-simple and artinian. Assume that there exists an embedding $\mathcal{O}_A \hookrightarrow \mathcal{O}_E[g]$ that is equivariant for the Galois conjugation and the adjoint involution of J_1. Let $V = \prod_{i \in I} V_i$ be the corresponding decomposition of V and let $(g_i)_{i \in I}$ and $(u_i)_{i \in I}$ be the components of g and u.

1. If there is more than one odd index, then both sides of $(\text{AFL}_{E/E_0}, (V, J_1), u, g)$ vanish.
2. Otherwise, let $i_0 \in I$ be the unique odd index and let us assume that $(\text{FL}(g_i, u_i))$ holds for $i \neq i_0$. Let us take up the notation from Theorem 9.1 for the factor V_{i_0}. Then

$$(\text{AFL}(g_{i_0}, u_{i_0}))_{A_{i_0}} \Rightarrow (\text{AFL}_{E/E_0}, (V, J_1), u, g).$$

3. Under the assumption $J_1^{A_{i_0}}(u_{i_0}, u_{i_0}) \in \mathcal{O}_{A_{i_0}}^\times$, we get

$$(\text{AFL}_{A_{i_0}/A_{i_0}}, (V_{i_0}, J_1|_{V_{i_0}}, u_{i_0}, g_{i_0})) \Rightarrow (\text{AFL}_{E/E_0}, (V, J_1), u, g).$$

Proof. First note that $(\text{AFL}_{E/E_0}, (V, J_1), u, g)$ is equivalent to $(\text{AFL}(g, u))$ by Lemma 8.15 and we work with this simpler version. We first prove Part (1). For the geometric side, note that $Z(g) \subset Z(\mathcal{O}_A)$. So if there is more than one odd index, then $Z(g) \subset N_{E_0, (1, \pi - 1)}$ is empty by Lemma 4.13.

On the analytic side, we use the idempotents $\prod_{i \in I} \mathcal{O}_E \subset \mathcal{O}_A \subset \mathcal{O}_E[g]$ to get a product decomposition just as in formula (9.1),

$$O(g, u; s) = \prod_{i \in I} O(g_i, u_i; s).$$

Taking the derivative and using the vanishing part of the FL, Lemma 8.11, we get that $\partial O(g, u) = 0$ if there is more than one odd index.

Part (2) follows from Theorem 9.5 by an induction argument and from Theorem 9.1.

Part (3) is then an application of Lemma 8.15.

Part III

Appendix on strict formal \mathcal{O}-modules

10. Introduction

Let \mathcal{O} be the ring of integers in a p-adic local field with uniformizer π. Let R be a π-adic \mathcal{O}-algebra. In [1], Ahsendorf constructs an equivalence of categories

$$\{\text{strict formal } \mathcal{O}\text{-modules over } R\} \cong \{\text{nilpotent } \mathcal{O}\text{-displays over } R\}. \quad (10.1)$$
We refer to [2] for more information. By Lau [11], there is a good notion of duality on the right-hand side. This defines good notions of duality and polarization on the left-hand side. By definition, there is also an equivalence

\[\{\text{strict formal } \mathcal{O}\text{-modules over } R\} \cong \{\text{nilpotent displays over } R \text{ with strict } \mathcal{O}\text{-action}\}.\] (10.2)

This equivalence has the advantage that one can forget the \(\mathcal{O}\text{-action} \) on both sides to read off the underlying \(p \)-divisible group and its display. This is not possible in (10.1). The aim of this appendix is to identify the correct notion of duality on the right-hand side of (10.2).

More precisely, our results are the following. For each finite and totally ramified extension \(\mathcal{O} \subset \mathcal{O}' \) of rings of integers in \(p \)-adic local fields, we define the Lubin–Tate \(\mathcal{O}'\text{-frame} \) \(L_{\mathcal{O}'/\mathcal{O}}(R) \) and prove the equivalence

\[\{\text{strict formal } \mathcal{O}'\text{-modules over } R\} \cong \{\text{nilpotent } L_{\mathcal{O}'/\mathcal{O}}(R)\text{-windows}\}.\]

Depending on the existence of certain units, this equivalence is compatible with duality; see Lemma 11.2. To prove this compatibility, we reinterpret the construction of Ahsendorf in [2, Definition 2.24] as a base change along a morphism of frames

\[L_{\mathcal{O}'/\mathcal{O}}(R) \longrightarrow L_{\mathcal{O}'/\mathcal{O}'}(R).\]

11. Strict \(\mathcal{O} \)-modules and duality

11.1. Windows and duality

We work with the definitions of \(\mathcal{O} \)-frames and \(\mathcal{O} \)-windows from [2, Section 3] but keep the terminology of Lau [11] concerning strict and not necessarily strict morphisms of frames. We now recall the definition of the dual \(\mathcal{O} \)-window.

Let \(\mathcal{A} = (S, I, R, \sigma, \dot{\sigma}) \) be an \(\mathcal{O} \)-frame and let \(\mathcal{P} = (P, Q, F, \dot{F}) \) be an \(\mathcal{A} \)-window. Choose a normal decomposition \(P = L \oplus T, Q = L \oplus IT \) and consider the linearization

\[F := (\dot{F} \oplus F)^\#: S \otimes_{\sigma, S} (L \oplus T) \longrightarrow P.\] (11.1)

Let \(P^\vee := \text{Hom}_S(P, S) \) and \(Q^\vee := \{\phi \in P^\vee \mid \phi(Q) \subset I\} \). We define the \(\mathcal{A} \)-window

\[\mathcal{P}^\vee = (P^\vee, Q^\vee, F^\vee, \dot{F}^\vee)\]

through the operator \((F^\vee)^{-1}\) and the normal decomposition \(P^\vee = L^\vee \oplus T^\vee, Q^\vee = IL^\vee \oplus T^\vee \); see [2, Lemma 3.6].

Definition 11.1. The \(\mathcal{A} \)-window \(\mathcal{P}^\vee \) is the **dual \(\mathcal{A} \)-window** of \(\mathcal{P} \).

It is clear that dualizing is an anti-equivalence of the category of \(\mathcal{A} \)-windows and that there is a canonical identification \((\mathcal{P}^\vee)^\vee \cong \mathcal{P}\) coming from the canonical identification \((P^\vee)^\vee \cong P\).

Let

\[\alpha : \mathcal{A} \longrightarrow \mathcal{A}' := (S', I', R', \sigma', \dot{\sigma}')\]
be a \(u\)-morphism of frames for some unit \(u \in S'\), i.e., \(u \alpha \circ \hat{\sigma} = \hat{\sigma}' \circ \alpha\). If \(u = 1\), i.e., if \(\alpha\) is a strict morphism, and if \(\mathcal{P} = (P, Q, F, \hat{F})\) is an \(\mathcal{A}\)-window, then
\[
\alpha_\ast(\mathcal{P}^\vee) \cong (\alpha_\ast \mathcal{P})^\vee,
\]
(11.2)
up to the identification \(P^\vee \otimes_S S' \cong (P \otimes_S S')^\vee\). To treat the case of general \(u\), first recall that the base change along the \(u\)-morphism
\[
(S, I, R, \sigma, \hat{\sigma}) \rightarrow (S, I, R, \sigma, u \hat{\sigma})
\]
is given by
\[
(P, Q, F, \hat{F}) \mapsto (P, Q, u F, \hat{F}).
\]

Lemma 11.2. Let \(\alpha : \mathcal{A} = (S, I, R, \sigma, \hat{\sigma}) \rightarrow (S', I', R', \sigma', \hat{\sigma}')\) be a \(u\)-isomorphism and let \(\varepsilon \in S^\times\) be a unit such that \(\sigma(\varepsilon)\varepsilon^{-1} = u\). Let \(\mathcal{P} = (P, Q, F, \hat{F})\) be an \(\mathcal{A}\)-window. Then multiplication by \(\varepsilon\) defines an isomorphism
\[
\alpha_\ast(\mathcal{P}^\vee) \cong (\alpha_\ast \mathcal{P})^\vee.
\]

Proof. Choose a normal decomposition \(P = L \oplus T\), \(Q = L \oplus IT\) and consider the linearization \(F\) as in (11.1). Then the window \(\alpha_\ast(\mathcal{P}^\vee)\) (resp. \((\alpha_\ast \mathcal{P})^\vee\)) corresponds to the normal decomposition \(P^\vee = L^\vee \oplus T^\vee\), \(Q^\vee = IL^\vee \oplus T^\vee\) and the operator
\[
\left(\begin{array}{c}
\alpha(F)^{-1} \\
\alpha_\ast F
\end{array}\right).
\]
It is clear that multiplication by \(\varepsilon\) defines an isomorphism. \(\square\)

Definition 11.3. Let \(\mathcal{P}_i = (P_i, Q_i, F_i, \hat{F}_i)\), for \(i = 1, 2, 3\), be three \(\mathcal{A}\)-windows. We define
\[
\BiHom(\mathcal{P}_1 \times \mathcal{P}_2, \mathcal{P}_3)
\]
to be the set of \(S\)-bilinear forms \((,) : P_1 \times P_2 \longrightarrow P_3\) such that \((Q_1, Q_2) \subset Q_3\) and such that
\[
(\hat{F}_1 q_1, \hat{F}_2 q_2) = \hat{F}_3(q_1, q_2), \quad q_1 \in Q_1, q_2 \in Q_2.
\]

Note that \(\mathcal{A}\) (or rather just the quadruple \((S, I, \sigma, \hat{\sigma})\)) is an \(\mathcal{A}\)-window over itself.

Lemma 11.4. Let \(\mathcal{P} = (P, Q, F, \hat{F})\) be an \(\mathcal{A}\)-window. Then the canonical pairing \((,) : P \times P^\vee \longrightarrow S\) defines an element in \(\BiHom(\mathcal{P} \times \mathcal{P}^\vee, \mathcal{A})\).

Proof. This can be checked after choosing a normal decomposition \(P = L \oplus T\), \(Q = L \oplus IT\). Let \(F\) be the linearization of \(\hat{F} \otimes F\) as in (11.1). The relation \((Q, Q^\vee) \subset I\) holds by definition of \(Q^\vee\). Now, e.g., if \(q \in L\) and \(\xi q^\vee \in IL^\vee\), then
\[
\langle \hat{F}(q), \hat{F}^\vee(\xi q^\vee) \rangle = (F(q), \hat{\sigma}(\xi)(F^{-1})^\vee(q^\vee))
\]
\[
= \hat{\sigma}(\xi)\sigma((q, q^\vee))
\]
(11.3)
The other cases for \(q\) and \(q^\vee\) are checked analogously. \(\square\)
Proposition 11.5. Let $\mathcal{P}_i = (P_i, Q_i, F_i, \hat{F}_i)$, for $i = 1, 2$, be two A-windows. Then pullback of the canonical pairing defines an isomorphism

$$\text{Hom}(\mathcal{P}_1, \mathcal{P}_2^\vee) \cong \text{BiHom}(\mathcal{P}_1 \times \mathcal{P}_2, A).$$

This isomorphism is functorial in both \mathcal{P}_1 and \mathcal{P}_2 and compatible with base change along morphisms of O-frames $A \to A'$.

Proof. The canonical map is injective since it is induced from the analogous isomorphism on underlying S-modules,

$$\text{Hom}_S(P_1, P_2^\vee) \cong \text{BiHom}_S(P_1 \times P_2, S).$$

To prove surjectivity, we consider a homomorphism $f : P_1 \to P_2^\vee$ such that the induced bilinear form $(\ , \) : P_1 \times P_2 \to S$ lies in $\text{BiHom}(P_1 \times P_2, A)$. We claim that f is a homomorphism of A-windows.

The relation $f(Q_1) \subset Q_2^\vee$ follows immediately from the relation $(Q_1, Q_2) \subset I$. We still have to show $f(\hat{F}_1 q_1) = \hat{F}_2^\vee(f(q_1))$ for all $q_1 \in Q_1$. For this, we compute for all $q_2 \in Q_2$,

$$\langle f(\hat{F}_1 q_1), \hat{F}_2 q_2 \rangle = \langle \hat{F}_1 q_1, \hat{F}_2 q_2 \rangle = \hat{\sigma}(q_1, q_2) = \hat{\sigma}(f(q_1), q_2) = \langle \hat{F}_2^\vee f(q_1), \hat{F}_2 f(q_2) \rangle.$$ (11.4)

Now $\hat{F}_2 : Q_2 \to P_2$ is a σ-linear epimorphism and $(\ , \)$ is S-bilinear. This implies

$$\langle f(\hat{F}_1 q_1), p_2 \rangle = \langle \hat{F}_2^\vee(f(q_1)), p_2 \rangle, \quad p_2 \in P_2,$$

which proves $\hat{F}_2^\vee f(q_1) = f(\hat{F}_1 q_1)$. \hfill \Box

In terms of the pairings, the isomorphism from Lemma 11.2 corresponds to scaling the form $\alpha_* (\ , \)$ by ε^{-1}.

Definition 11.6. Let $\mathcal{P} = (P, Q, F, \hat{F})$ be an A-window. A principal polarization is an isomorphism $\lambda : \mathcal{P} \to \mathcal{P}^\vee$ such that $\lambda^\vee : \mathcal{P} = (\mathcal{P}^\vee)^\vee \to \mathcal{P}^\vee$ equals $-\lambda$. Equivalently, a polarization is an alternating perfect pairing $\lambda(\ , \) \in \text{BiHom}(\mathcal{P} \times \mathcal{P}, A)$.

11.2. Strict O-modules and duality

Let us fix a uniformizer $\pi \in O$. We refer to [5, Section 1.2] for the definition and properties of the relative Witt vectors.

Definition 11.7. For any O-algebra R, we define the Witt O-frame

$$\mathcal{W}_O(R) = (W_O(R), I_O(R), F, V)$$

over R as follows. The ring $W_O(R)$ is the ring of relative O-Witt vectors of R with respect to π. The ideal $I_O(R)$ is the augmentation ideal

$$I_O(R) := \ker(W_O(R) \to R)$$

\footnote{There is no need to write the Verschiebung as a superscript in the appendix.}
and F (resp. V) denotes the Frobenius (resp. the Verschiebung with respect to π). Windows over $W_\mathcal{O}(R)$ are also called \mathcal{O}-displays over R; see [2].

Definition 11.8. Let R be an \mathcal{O}-algebra. A strict \mathcal{O}-module over $S = \text{Spec } R$ is a pair (X, ι) where X/S is a p-divisible group and $\iota: \mathcal{O} \to \text{End}(X)$ an action such that \mathcal{O} acts on $\text{Lie}(X)$ via the structure morphism $\mathcal{O} \to \mathcal{O}_S$. A strict \mathcal{O}-module is called formal if the underlying p-divisible group is formal.

Recall that, by Zink [25] and [10] (in the absolute case $\mathcal{O} = \mathbb{Z}_p$) and the extension by Ahsendorf [2] (in the general case), there is an equivalence of categories

$$\{\text{strict formal } \mathcal{O}\text{-modules}/S\} \cong \{\text{nilpotent } \mathcal{O}\text{-displays}/S\}$$

whenever π is nilpotent in R.

Definition 11.9. Let $X = (X, \iota)$ be a strict formal \mathcal{O}-module over S with associated \mathcal{O}-display \mathcal{P}.

(i) X is called biformal if the dual \mathcal{O}-display \mathcal{P}^\vee is also nilpotent.\(^8\)

(ii) The dual of a biformal strict \mathcal{O}-module X is the strict \mathcal{O}-module associated with the dual of its \mathcal{O}-display \mathcal{P}^\vee.

(iii) A polarization (resp. principal polarization) of the biformal strict \mathcal{O}-module X is an isogeny (resp. an isomorphism) $\lambda : X \to X^\vee$ such that $\lambda^\vee = -\lambda$.

Remark 11.10. The restriction to biformal strict \mathcal{O}-modules is necessary since we only work with \mathcal{O}-displays instead of Dieudonné \mathcal{O}-displays. See [2, Section 4] for the definition of the dual group in the general case.

Remark 11.11. Note that the definition of the Verschiebung V on $W_\mathcal{O}(R)$, and hence the definition of the dual \mathcal{O}-display (resp. the dual strict \mathcal{O}-module), depends on the choice of the uniformizer π.

Recall the following results from [2, Section 3]. To any strict formal \mathcal{O}-module, there is associated a crystal \mathbb{D}_X on the category of \mathcal{O}-pd-thickenings. We denote by $\mathbb{D}_X(S')$ its value at an \mathcal{O}-pd-thickening $S \to S'$. As in the case of p-divisible groups, there is a Hodge filtration $\mathcal{F} \subset \mathbb{D}_X(S)$, and deformations of X along \mathcal{O}-pd-thickenings are in bijection with liftings of the Hodge filtration.

Now assume that X is biformal. It follows from the definitions that there is a perfect pairing

$$\mathbb{D}_X(S') \times \mathbb{D}_X^\vee(S') \to \mathcal{O}_{S'}.$$

Furthermore, the Hodge filtration $\mathcal{F} \subset \mathbb{D}_X(S)$ is the orthogonal complement of the Hodge filtration $\mathcal{F}^\vee \subset \mathbb{D}_X^\vee(S)$ of the dual \mathcal{O}-module. In particular, if $\lambda : X \to X^\vee$ is a principal polarization, then the induced bilinear form on \mathbb{D}_X is alternating and the Hodge filtration

\(^8\)Being biformal is equivalent to the slopes 0 and 1 not occurring in the slope filtration of (the relative \mathcal{O}-isocrystal of) X at every geometric point of S.
\[\mathcal{F} \subset \mathbb{D}_X(S) \] is a Lagrangian subspace. Deformations of \((X, \lambda)\) along an \(\mathcal{O}\)-pd-thickening are then in bijection with liftings of the Hodge filtration as a Lagrangian subspace.

12. The totally ramified case

12.1. Lubin–Tate frames

Let \(\mathcal{O}'/\mathcal{O}\) be a finite, integrally closed and totally ramified extension of degree \(e\) and choose a uniformizer \(\pi' \in \mathcal{O}'\). For any \(\mathcal{O}'\)-algebra \(R\), we consider the ring \(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\). We denote the \(\mathcal{O}'\)-linear extension of the Frobenius by \(\sigma := \text{id}_\mathcal{O}' \otimes F\). We also define

\[J_{\mathcal{O}'}(R) := \ker(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R) \to R). \]

Our aim now is to define a \(\sigma\)-linear epimorphism \(\hat{\sigma} : J_{\mathcal{O}'}(R) \to \mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\) that makes

\[(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R), J_{\mathcal{O}'}(R), R, \sigma, \hat{\sigma}) \]

into an \(\mathcal{O}'\)-frame such that strict formal \(\mathcal{O}'\)-modules over \(R\) are equivalent to windows over that frame.

Definition 12.1. Let \(R\) be a \(\pi\)-adic \(\mathcal{O}'\)-algebra. A Lubin–Tate \(\mathcal{O}\)-display over \(R\) (for the extension \(\mathcal{O}'\)) is an \(\mathcal{O}\)-display \((P, Q, F, \hat{F})\) over \(R\) equipped with a strict \(\mathcal{O}'\)-action such that \(P\) is free of rank 1 over \(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\).

The strictness implies that \(Q = J_{\mathcal{O}'}(R) P\). We will usually choose a generator of \(P\) and hence consider \(\mathcal{O}\)-displays of the form

\[(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R), J_{\mathcal{O}'}(R), F, \hat{F}). \]

Here, \(\mathcal{O}'\) acts naturally on \(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\) and both \(F\) and \(\hat{F}\) are \(\sigma\)-linear.

Remark 12.2. (1) The definition could be extended to \(P\) being only locally free of rank 1 over \(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\). But we will not need this.

(2) Let \(u \in \mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\) be a unit and let \((P, Q, F, \hat{F})\) be a Lubin–Tate \(\mathcal{O}\)-display over \(R\). Then also \((P, Q, uF, u\hat{F})\) is a Lubin–Tate \(\mathcal{O}\)-display.

(3) Let \(\hat{F} : J_{\mathcal{O}'}(R) \to \mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\) be any \(\sigma\)-linear epimorphism. Then there is at most one way to define a \(\sigma\)-linear endomorphism \(F\) of \(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\) which satisfies the identity

\[\hat{F}(\xi x) = V^{-1}(\xi) F(x), \quad \xi \in \mathcal{O}' \otimes \mathcal{O} I_{\mathcal{O}}(R), \quad x \in \mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R), \]

where \(V\) denotes the \(\mathcal{O}'\)-linear extension of the \(\pi\)-Verschiebung to \(\mathcal{O}' \otimes \mathcal{O} W_\mathcal{O}(R)\). It is given by

\[F(x) = \hat{F}(V(1)x) \]

and it is now a condition that the so-defined \(F\) satisfies the relation (12.1) for all \(\xi\). It is enough to check this for \(x = 1\) in which case the condition becomes

\[\hat{F}(\xi) = V^{-1}(\xi) F(1) = V^{-1}(\xi) \hat{F}(V(1)), \quad \xi \in \mathcal{O}' \otimes \mathcal{O} I_{\mathcal{O}}(R). \]
Proposition 12.3. Let R be any π-adic O'-algebra.
(1) For any Lubin–Tate O'-display
$$(O' \otimes_{O} W_{O}(R), J_{O}(R), F, \hat{F}),$$
the element $\kappa := \hat{F}(\pi' \otimes 1 - 1 \otimes [\pi'])$ is a unit.
(2) For every unit $\kappa \in O' \otimes_{O} W_{O}(R)$, there exists a unique Lubin–Tate O'-display
$$(O' \otimes_{O} W_{O}(R), J_{O}(R), F, \hat{F})$$
such that $\hat{F}(\pi' \otimes 1 - 1 \otimes [\pi']) = \kappa$.

Zink [25, Proposition 26] proves part (2) in the case $O = \mathbb{Z}_p$ and π-torsion-free R. The proof carries over to the case of general O. Applying this result with $R = O'$ and using base change, we get the existence of Lubin–Tate O'-displays for all π-adic O'-algebras R. Applying (2) of Remark 12.2, we get the existence for all units κ. So we are left with proving (1) and the uniqueness assertion from (2).

Proof of Proposition 12.3, part (1). Let us show that κ is a unit. For this, recall the following lemma from [25]. It follows from the fact that $W_{O}(R)$ is $I_{O}(R)$-adically complete.

Lemma 12.4. Let R be a π-adic O'-algebra. Then an element $u \in O' \otimes_{O} W_{O}(R)$ is a unit if and only if its image in
$$(O'/\pi') \otimes_{O'} (R/\pi')$$
is.

In particular, we can check that κ is a unit at geometric points $R/\pi' \rightarrow k$. But then
$$O' \otimes_{O} W_{O}(k) \cong W_{O'}(k)$$
is a complete discrete valuation ring with uniformizer π' and residue field k. The element $\pi' \otimes 1 - 1 \otimes [\pi']$ maps to a generator of $J_{O}(k) = \pi' W_{O'}(k)$. In particular, it is sent to a unit by (the base change to k) of \hat{F}. This finishes the proof of part (1).

Lemma 12.5. There exists an element $\theta \in O' \otimes_{O} W_{O}(O')$ with the following two properties:

(i) $\theta J_{O'}(O') \subset O' \otimes_{O} I_{O}(O')$.

(ii) The image of θ under $O' \otimes_{O} W_{O}(O') \rightarrow O' \otimes_{O} W_{O}(O'/\pi') \cong O'$ has valuation $e - 1$.

Proof. First note that for any π-adic O'-algebra R, the ring $O' \otimes_{O} W_{O}(R)$ has the $W_{O}(R)$-basis
$$1 \otimes 1, (\pi')^{i} \otimes 1 - 1 \otimes [\pi']^{i}, \quad i = 1, \ldots, e - 1.$$ In particular,
$$J_{O'}(R) = O' \otimes_{O} I_{O}(R) + (\pi' \otimes 1 - 1 \otimes [\pi'])O' \otimes_{O} W_{O}(R).$$
Thus, the first condition is equivalent to $\theta (\pi' \otimes 1 - 1 \otimes [\pi']) \in O' \otimes_{O} I_{O}(O')$. If $\overline{\theta}$ denotes the image of θ in $O' \otimes_{O} O'$, then this is equivalent to
$$\overline{\theta}(\pi' \otimes 1 - 1 \otimes \pi') = 0.$$
Informally, we define $\tilde{\theta}$ as the fraction
\[
\frac{N\pi' \otimes 1 - 1 \otimes N\pi'}{\pi' \otimes 1 - 1 \otimes \pi'} \in O' \otimes_O O',
\]
where $N\pi'$ denotes the norm of π' with respect to the ring extension O'/O. This does not make sense as stated since the numerator vanishes and the denominator is a zero divisor. The precise definition is as follows. Let
\[
(\pi')^e + a_{e-1}(\pi')^{e-1} + \cdots + a_1\pi' + (-1)^eN\pi' = 0
\]
be the Eisenstein equation of π'. Then we set
\[
(-1)^e\tilde{\theta} := -\frac{(\pi')^e \otimes 1 - 1 \otimes (\pi')^e}{\pi' \otimes 1 - 1 \otimes \pi'} - \sum_{i=1}^{e-1} a_i \frac{(\pi')^i \otimes 1 - 1 \otimes (\pi')^i}{\pi' \otimes 1 - 1 \otimes \pi'}
\]
where each summand is understood as a geometric series. Let $\theta \in O' \otimes_O W_O(O')$ be any lift of $\tilde{\theta}$. Then θ satisfies (i) by construction and we are left with verifying (ii).

Consider the quotient
\[
\beta : O' \otimes_O W_O(O') \rightarrow O' \otimes_O W_O(O'/\pi') \rightarrow O' \otimes_O (W_O(O'/\pi')/\pi).
\]
Then θ satisfies (ii) if and only if $\beta(\theta) \neq 0$ and $\pi'\beta(\theta) = 0$. Now note that $\beta(O' \otimes_O I_O(O')) = 0$, and, hence, β factors through $O' \otimes_O O'$. It is easy to see that the image of $\tilde{\theta}$ in $O' \otimes_O (W_O(O'/\pi')/\pi)$ satisfies these two properties.

Lemma 12.6. Let θ be an element as in Lemma 12.5 and let V denote the O'-linear extension of the Verschiebung to $O' \otimes_O W_O(R)$. Then
\[
V^{-1}(\theta(\pi' \otimes 1 - 1 \otimes [\pi']))
\]
is a unit in $O' \otimes_O W_O(O')$.

Proof. This can be checked in $O' \otimes_O W_O(O'/\pi') \cong O'$. But here, the Verschiebung V is multiplication by π. Using property (ii) from Lemma 12.5, we get the result. □

Proof of Proposition 12.3, part (2). We now prove the uniqueness of a Lubin–Tate O-display structure
\[
(O' \otimes_O W_O(R), J_{O'}(R), F, \hat{F})
\]
with $\hat{F}(\pi' \otimes 1 - 1 \otimes [\pi']) = \kappa$.

Note first that κ determines \hat{F} on $(\pi' \otimes 1 - 1 \otimes [\pi'])O' \otimes_O W_O(R)$ by σ-linearity. Since
\[
J_{O'}(R) = O' \otimes_O I_O(R) + (\pi' \otimes 1 - 1 \otimes [\pi'])O' \otimes_O W_O(R),
\]
we are left with showing that κ determines \hat{F} on $O' \otimes_O I_O(R)$. By the relation (12.2), it is enough to show that $F(1)$ is determined by κ.

Let θ be as in Lemma 12.5 and set $a := \theta(\pi' \otimes 1 - 1 \otimes [\pi']) \in O' \otimes_O I_O(R)$. Then
\[
\hat{F}(a) = \hat{F}(\theta(\pi' \otimes 1 - 1 \otimes [\pi'])) = \sigma(\theta)\kappa
\]
and also
\[
\hat{F}(a) = V^{-1}(a)F(1).
\]
By Lemma 12.6, $V^{-1}(a)$ is a unit and hence $F(1)$ is determined by κ. □
A. Mihatsch

Definition 12.7. Let R be a π-adic O'-algebra. A Lubin–Tate O'-frame over R is an O'-frame of the form

$$(O' \otimes_{O} W_{O}(R), J_{O}(R), R, \sigma, \dot{\sigma}),$$

where $\dot{\sigma}$ is a σ-linear epimorphism satisfying the relation analogous to (12.2),

$$\dot{\sigma} (\xi) = V^{-1}(\xi) \dot{\sigma} (V(1)).$$

In other words, $\dot{\sigma}$ is coming from a Lubin–Tate O-display. For a unit $\kappa \in O' \otimes_{O} W_{O}(R)$, we denote by

$$L_{O'/O, \kappa}(R)$$

the Lubin–Tate O'-frame such that $\dot{\sigma} (\pi' \otimes 1 - 1 \otimes [\pi']) = \kappa$. By Proposition 12.3, such a $\dot{\sigma}$ exists and is unique.

Remark 12.8. By [11, Lemma 2.2], there exists a unique element $s \in O' \otimes_{O} W_{O}(R)$ such that $\sigma (\xi) = s \dot{\sigma} (\xi)$ for all $\xi \in J_{O'}(R)$. For the O'-frame $L_{O'/O, \kappa}(R)$, this element is $s = \kappa^{-1} \sigma (\pi' \otimes 1 - 1 \otimes [\pi'])$.

Example 12.9.

1. We consider the case $O' = O$. For any π-adic O-algebra R, the Witt O-frame $W_{O}(R)$ is an example of a Lubin–Tate O-frame. It agrees with $L_{O'/O, \kappa}(R)$, where $\epsilon \in W_{O}(R)$ is the unit

$$\epsilon = V^{-1}(\pi - [\pi]).$$

2. We return to the case of an arbitrary totally ramified extension O'/O. Let θ be an element as in Lemma 12.5. We define $\dot{\sigma} : J_{O'}(R) \rightarrow O' \otimes_{O} W_{O}(R)$ as

$$\dot{\sigma} (x) = V^{-1}(\theta x).$$

Then for $\xi \in O' \otimes_{O} I_{O}(R)$,

$$\dot{\sigma} (\xi) = V^{-1}(\theta \xi) = \sigma (\theta) V^{-1}(\xi) = V^{-1}(\xi) \dot{\sigma} (V(1))$$

because of the identity $\theta V(1) = V(\sigma (\theta))$. Thus, $\dot{\sigma}$ defines the Lubin–Tate O'-frame $L_{O'/O, \kappa}(R)$, where κ is the unit $V^{-1}(\theta (\pi' \otimes 1 - 1 \otimes [\pi']))$ from Lemma 12.6.

We now consider a tower of extensions $O''/O'/O$, all totally ramified. We fix uniformizers π'', π' and π in the respective rings. Recall from [5] that for any O'-algebra R, there is a natural map of O-algebras

$$\alpha : W_{O}(R) \rightarrow W_{O'}(R).$$

This map is Frobenius equivariant and satisfies $\alpha \circ V_{\pi} = \frac{\pi}{\pi'} V_{\pi'} \circ \alpha$, where V_{π} and $V_{\pi'}$ denote the respective Verschiebung maps.

Proposition 12.10. Let R be a π-adic O''-algebra and let $\kappa \in O'' \otimes_{O} W_{O}(R)$ be a unit. Then the natural map of O''-algebras

$$\alpha : O'' \otimes_{O} W_{O}(R) \rightarrow O'' \otimes_{O'} W_{O'}(R)$$

induces a strict morphism of O''-frames

$$L_{O''/O, \kappa}(R) \rightarrow L_{O''/O', \alpha(\kappa)}(R).$$

In other words, α commutes with the $\dot{\sigma}$-operators.
In the last step, we used that $P = \xi = \xi_0 \theta$ the equation by a unit. So we choose κ. We need to verify that this makes $(\pi \otimes 1 - 1 \otimes [\pi'])_x$ into an \mathcal{O}'-module equipped with a strict \mathcal{O}'-linear, so it is enough to verify the relation for \mathcal{O}'-frames.

12.2. Windows over Lubin–Tate frames

Proposition 12.11. Let \mathcal{O}'/\mathcal{O} be a totally ramified extension of rings of integers in p-adic local fields. Let R be a π-adic \mathcal{O}'-algebra and $\kappa \in \mathcal{O}' \otimes_{\mathcal{O}} \mathcal{O}(R)$ a unit. Then there is an equivalence of categories

$$\{\text{strict formal } \mathcal{O}'\text{-modules over } R\} \cong \{\text{nilpotent } \mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R)\text{-windows}\}.$$

This equivalence is compatible with base change in R and with base change along the morphisms of \mathcal{O}'-frames

$$\mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R) \rightarrow \mathcal{L}_{\mathcal{O}'/\mathcal{O}, \tilde{\kappa}}(R)$$

for intermediate extensions $\mathcal{O} \subset \tilde{\mathcal{O}} \subset \mathcal{O}'$.

Proof. Let X/R be a formal \mathcal{O}-module equipped with a strict \mathcal{O}'-action $\iota: \mathcal{O}' \rightarrow \text{End}(X)$. Let $\mathcal{P} := (P, Q, F, \hat{F})$ be its \mathcal{O}-display. Then P is naturally an $\mathcal{O}' \otimes_{\mathcal{O}} \mathcal{O}(R)$-module and $J_{\mathcal{O}'}(R)P \subset Q$. Furthermore, the map \hat{F} is a σ-linear epimorphism $Q \rightarrow P$. Then there is at most one way to define a σ-linear operator $F': P \rightarrow P$ which makes (P, Q, F', \hat{F}) into an $\mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R)$-window, namely

$$F'(x) := \kappa^{-1} \hat{F} ((\pi' \otimes 1 - 1 \otimes [\pi'])x).$$

We need to verify that this F' satisfies

$$\hat{F}(\xi x) = \sigma(\xi) F'(x), \quad \xi \in J_{\mathcal{O}'}(R), \quad x \in P. \quad (12.3)$$

It is enough to verify this for one single κ since all other choices multiply both sides of the equation by a unit. So we choose

$$\kappa = V^{-1}(\theta(\pi' \otimes 1 - 1 \otimes [\pi'])),$$

where θ is an element as in Lemma 12.5. In other words, we work with the Lubin–Tate \mathcal{O}'-frame from Example 12.9 (2).

Both sides in Equation (12.3) are σ-linear, so it is enough to verify the relation for $\xi = (\pi' \otimes 1 - 1 \otimes [\pi'])$ or $\xi \in I_{\mathcal{O}'}(R)$. (These elements generate $J_{\mathcal{O}'}(R)$ as ideal.) The case $\xi = (\pi' \otimes 1 - 1 \otimes [\pi'])$ is the definition of F'. In the case $\xi \in I_{\mathcal{O}'}(R)$, we compute

$$\hat{F}((\theta(\pi \otimes 1 - 1 \otimes [\pi']))x) = V^{-1}(\theta(\pi' \otimes 1 - 1 \otimes [\pi']))x$$

In the last step, we used that \mathcal{P} is an \mathcal{O}-display.
Thus, we get a functor

\[\{\text{strict formal } \mathcal{O}'\text{-modules over } R\} \longrightarrow \{\text{nilpotent } \mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R)\text{-windows}\} \]

which commutes with base change in \(R \) and in the Lubin–Tate \(\mathcal{O}' \)-frame.

To prove that this functor is an equivalence, we construct its inverse. Again it suffices to do this in the special case of \(\kappa = V^{-1}(\theta(\pi' \otimes 1 - 1 \otimes [\pi'])) \). Given any \(\mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R) \)-window \((P, Q, F', \hat{F})\), we define a \(\sigma \)-linear operator \(F : P \longrightarrow P \) by the formula

\[F(x) = F'(\theta x). \]

We only need to check that this defines an \(\mathcal{O} \)-display, i.e., that \(\hat{F}(\xi x) = V^{-1}(\xi) F(x) \) for all \(\xi \in I_{\mathcal{O}}(R) \). But

\[\hat{F}(\xi x) = V^{-1}(\theta \xi) F'(x) = \sigma(\theta) V^{-1}(\xi) F'(x) = V^{-1}(\xi) F(x). \]

The compatibility with base change along the morphisms of frames \(\alpha : \mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R) \longrightarrow \mathcal{L}_{\mathcal{O}'/\mathcal{O}, \tilde{\kappa}}(R) \) is clear. Namely, let \(\alpha_\ast \mathcal{P} = (P', Q', F', \hat{F}') \) be the base change of \(\mathcal{P} \) and let \(\mathcal{P}'' = (P'', Q'', F'', \hat{F}'') \) be the \(\mathcal{L}_{\mathcal{O}'/\mathcal{O}, \tilde{\kappa}}(R) \)-window constructed from the \(\tilde{\mathcal{O}} \)-display of \((X, i)\). Then

\[P' = (\mathcal{O}' \otimes \mathcal{O} \mathcal{W}_{\mathcal{O}}(R)) \otimes P = P'' \]

by [2, Definition 2.24] which relates the \(\mathcal{O} \)-display of \(X \) and its \(\tilde{\mathcal{O}} \)-display. Furthermore, the submodules \(Q' \) and \(Q'' \) agree under this identification. Now both \(\hat{F}' \) and \(\hat{F}'' \) are determined by the condition that they agree with \(\hat{F} \) on the image of \(Q \). Since \(F' \) and \(F'' \) are determined by \(\hat{F}' \) and \(\hat{F}'' \), the windows \(\mathcal{P}' \) and \(\mathcal{P}'' \) agree.

Corollary 12.12. The morphisms of \(\mathcal{O}'' \)-frames from Proposition 12.10

\[\mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa}(R) \longrightarrow \mathcal{L}_{\mathcal{O}'/\mathcal{O}, \kappa'}(R) \]

are all crystalline, i.e., they induce equivalences on their categories of windows.

Proof. This is just a reformulation of the fact that the equivalence in the previous proposition commutes with the base change along such morphisms of \(\mathcal{O}'' \)-frames. \(\square \)

13. The unramified case

For completeness, we also include the case of an unramified extension \(\mathcal{O}'/\mathcal{O} \). Let \(f \) be the degree of the extension. Again, we fix a uniformizer \(\pi \in \mathcal{O} \). For a \(\pi \)-adic \(\mathcal{O}' \)-algebra \(R \), there exists a unique morphism

\[\mathcal{O}' \longrightarrow \mathcal{W}_{\mathcal{O}}(R) \]

that lifts the given morphism \(\mathcal{O}' \longrightarrow R \). In particular, there is a direct product decomposition

\[\mathcal{O}' \otimes_{\mathcal{O}} \mathcal{W}_{\mathcal{O}}(R) \cong \prod_{\mathbb{Z}/f} \mathcal{W}_{\mathcal{O}}(R). \]
Definition 13.1. For a π-adic \mathcal{O}'-algebra R, we define the \mathcal{O}'-frame
\[\mathcal{A}_{\mathcal{O}'/\mathcal{O}}(R) := (W_{\mathcal{O}}(R), I_{\mathcal{O}}(R), F^f, F^{f-1} V^{-1}). \]
Windows over $\mathcal{A}_{\mathcal{O}'/\mathcal{O}}(R)$ are also called f-displays; see [2].

In his thesis [1], Ahsendorf constructs a functor
\[\gamma : \{ \text{strict formal } \mathcal{O}'\text{-modules over } R \} \longrightarrow \{ \text{nilpotent } f\text{-displays over } R \}. \]
Furthermore, the natural morphism
\[W_{\mathcal{O}}(R) \longrightarrow W_{\mathcal{O}'}(R) \]
induces a strict morphism of \mathcal{O}'-frames
\[\mathcal{A}_{\mathcal{O}'/\mathcal{O}}(R) \longrightarrow W_{\mathcal{O}'}(R) \]
and thus gives rise to a functor
\[\delta : \{ f\text{-displays over } R \} \longrightarrow \{ \mathcal{O}'\text{-displays over } R \} \]
that is compatible with duality by Lemma 11.2. Ahsendorf proves that the composition of these functors is an equivalence of categories. We slightly strengthen this result as follows.

Proposition 13.2. Let R be a noetherian π-adic \mathcal{O}'-algebra. Then the above functors γ and δ are both equivalences of categories (when restricted to the full subcategories of nilpotent windows).

Proof. By Ahsendorf, the composition $\delta \circ \gamma$ is an equivalence of categories, at least when restricted to the full subcategories of nilpotent windows. It is hence enough to prove that either of these functors is an equivalence. It would even be enough to just prove the faithfulness of δ. But for later use, we construct a quasi-inverse for γ. For this, we first recall the construction of this functor.

Let $\mathcal{P} = (P, Q, F, \hat{F})$ be the \mathcal{O}-display of a strict formal \mathcal{O}'-module over R. Then the natural map $\mathcal{O}' \longrightarrow W_{\mathcal{O}}(R)$ induces a \mathbb{Z}/f-grading
\[P = \bigoplus_{i \in \mathbb{Z}/f} P_i \]
such that both F and \hat{F} are homogeneous of degree 1. The strictness implies that $Q = Q_0 \oplus P_1 \oplus \cdots \oplus P_{f-1}$. In particular, the restriction $\hat{F}_i := \hat{F}|_{Q_i}$ is an F-linear isomorphism $P_i \longrightarrow P_{i+1}$ for $i = 1, \ldots, f - 1$. The f-\mathcal{O}-display is now given by
\[(P_0, Q_0, \hat{F}^{f-1} \circ F|_{P_0}, \hat{F}^f|_{Q_0}). \]

Let us phrase this construction in terms of an \mathcal{O}'-stable normal decomposition $P = L \oplus T$. The \mathcal{O}'-stability is equivalent to the fact that both L and T are compatible with the grading and hence have the form
\[L = L_0 \oplus P_1 \oplus \cdots \oplus P_{f-1}, \]
\[T = T_0 \oplus 0 \oplus \cdots \oplus 0. \]
Let $\Phi := \hat{F}|_L \oplus F|_T = \oplus_{i \in \mathbb{Z}/f} \Phi_i$ be the F-linear automorphism of P associated with the normal decomposition. We use Φ_i to identify P_{i+1} with $P_i^{(F)}$. Hence, the display P together with its \mathcal{O}'-action can be described as follows. The modules are of the form

$$P = P_0 \oplus P_0^{(F)} \oplus P_0^{(F^2)} \oplus \ldots \oplus P_0^{(F^{f-1})},$$

$$Q = Q_0 \oplus P_0^{(F)} \oplus P_0^{(F^2)} \oplus \ldots \oplus P_0^{(F^{f-1})}$$

and the display structure is given by the normal decomposition

$$L = L_0 \oplus P_0^{(F)} \oplus P_0^{(F^2)} \oplus \ldots \oplus P_0^{(F^{f-1})},$$

$$T = T_0 \oplus 0 \oplus \ldots \oplus 0$$

and the F-linear operator

$$\Phi = \begin{pmatrix}
1 & \phi \\
1 & & \ddots \\
& & & \ddots & 1
\end{pmatrix}$$

where $\phi = \Phi_{f-1}$.

It is now clear how to invert this construction. Given an \mathcal{O}'-display $P' = (P', Q', F', \hat{F}')$, we set $P_0 := P'$ and $Q_0 := Q'$. Then we define P and Q by the above formulas. If $(P' = L' \oplus T', \phi)$ is a normal decomposition of P', then we set $L_0 := L'$, $T_0 := T'$ and define a normal decomposition and the operator Φ by the above formulas.

Acknowledgements. I heartily thank my advisor M. Rapoport for suggesting to think about the AFL, for many helpful discussions and for the many remarks on earlier drafts of this paper. I also thank T. Zink for his notes on \mathcal{O}-displays and for his remarks on an earlier version of the appendix. Also, I thank D. Kirch, M. Morrow and P. Scholze for various helpful discussions. I also thank the referee for several comments that helped improve the article. This paper is the author’s PhD thesis at the university of Bonn. I thank the Bonn International Graduate School for its financial support.

References

1. T. Ahsendorf, \mathcal{O}-displays and π-divisible formal \mathcal{O}-modules, PhD thesis, Universität Bielefeld (2011).
2. T. Ahsendorf, Ch. Cheng and T. Zink, \mathcal{O}-displays and π-divisible formal \mathcal{O}-modules, *J. Algebra* 457 (2016), 129–193.
3. R. Beuzart-Plessis, A new proof of Jacquet-Rallis’s fundamental lemma, Preprint, 2019, arXiv:1901.02653.
4. S. Cho, The basic locus of the unitary Shimura variety with parahoric level structure, and special cycles, Preprint, 2018, arXiv:1807.09997.
5. L. Fargues and J.-M. Fontaine, Courbes et fibré vectoriel en théorie de Hodge p-adique, *Astérisque* 406 (2018), 1–382.
6. W.-T. Gan, B. Gross and D. Prasad, Symplectic root numbers, central critical values, and restriction problems in the representation theory of classical groups, *Astérisque* 346 (2012), 1–109.
7. J. Gordon, Transfer to characteristic zero, Appendix to [22].
8. X. He, C. Li and Y. Zhu, Fine Deligne–Lusztig varieties and arithmetic fundamental lemmas, *Forum of Mathematics, Sigma* 7 (2019), E47.
9. S. Kudla and M. Rapoport, Special cycles on unitary Shimura varieties, I. Unramified local theory, *Invent. Math.* 184 (2011), 629–682.
10. E. Lau, Displays and formal p-divisible groups, *Invent. Math.* 171 (2008), 545–569.
11. E. Lau, Frames and finite group schemes over complete regular local rings, *Doc. Math.* 15 (2010), 1407–1440.
12. C. Li and Y. Zhu, Remarks on the arithmetic fundamental lemma, *Algebra Number Theory* 11 (2017), 2183–2336.
13. M. Rapoport, U. Terstiege and W. Zhang, On the arithmetic transfer conjecture for exotic smooth formal moduli spaces, *Invent. Math.* 174 (2011), 591–627.
14. M. Rapoport, B. Smithling and W. Zhang, On the arithmetic transfer conjecture for p-divisible groups, *Compos. Math.* 154 (2018), 1079–1175.
15. M. Rapoport and T. Zink, Period Spaces for p-divisible Groups, *Annals of Mathematics Studies*, Volume 141 (Princeton University Press, Princeton, 1996).
16. M. Rapoport and T. Zink, On the Drinfeld moduli problem of p-divisible groups, *Camb. J. Math.* 5 (2017), 229–279.
17. I. Vollaard and T. Wedhorn, The supersingular locus of the Shimura variety for $GU(1, n−1)$, II, *Invent. Math.* 184 (2011), 167–228.
18. Y. Zhiwei, The fundamental lemma of Jacquet and Rallis, *Duke Math. J.* 156 (2011), 167–228.
19. W. Zhang, On arithmetic fundamental lemmas, *Invent. Math.* 188 (2012), 197–252.
20. W. Zhang, Periods, cycles, and L-functions: a relative trace formula approach, in *Proceedings of the International Congress of Mathematicians*, pp. 487–521 (World Scientific, 2018).
21. T. Zink, The display of a formal p-divisible group, *Astérisque* 278 (2002), 127–248.
