Antitumor and Quantitative Structure Activity Relationship Study for
Dihydropyridones Derived from Curcumin

Bahjat A. Saeed, Kawkab Y. Saour, Rita S. Elias, Najim A. Al-Masoudi and Paola La Cola

1Department of Chemistry, College of Education, University of Basrah, Iraq
2Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Iraq
3Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Iraq
4Department of Chemistry, College of Science, University of Basrah, Iraq
5Department of Biology, University of Cagliari, 09042 Calgiari, Italy

Abstract: Problem statement: Pyridones are known to have variety of biological activities like antitumor, antibacterial, antiinflammatory and antimalarial activities. This study presented antitumor evaluation of dihydropyridones derived from curcumin, as well as curcumin for comparison. Approach: The compounds evaluated for a preliminary estimation of the in vitro tumor inhibiting activity against 11 of tumor cell lines by using Microculture Tetrazolium assay (MTT) method. The method is based on the metabolic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The cell lines of tumor subpanels were incubated within five concentrations (0.01-100 µg mL\(^{-1}\)) of each tested compound for 48 h. Results: Antitumor biological activities represented as CC\(_{50}\) were within the range >100-17±1 against leukaemia (MT4). The CC\(_{50}\) values were found to increase with increasing chain length of the substituent on the nitrogen atom. Conclusion: Antitumor activities of the tested dihydropyridones can be enhanced by increasing chain length of the substituent on the nitrogen atom.

Key words: Dihydropyridones, curcumin, leukemia (MTT), QSAR, logP

INTRODUCTION

Six-membered nitrogen heterocycles are key units in medicinal chemistry and versatile intermediates in organic synthesis (Dong et al., 2005; Comins and Ollinger, 2001). Dihydropyridones are important intermediates for the synthesis of natural products, particularly alkaloids (Elias et al., 2008) and they have been extensively investigated as valuable building block for the construction of piperidines, perhydroquinolines, indolizidines, quinolizidines and other alkaloid systems, with a wide range of a biological and pharmacological activities. These compounds known for their antiproliferative and antitubulin activities (Magedov et al., 2008) and as potential selective inhibitors of receptor tyrosyn kinase (Hu et al., 2008; Goodman et al., 2007). Their ability to induce leukaemic cell differentiation have been demonstrated (Pierce et al., 1981). In addition they have potent antimalarial activity (Yeats et al., 2008) and good anticonvulsant activity against acutely elicited Seizures (Revas et al., 2009). On the other hand curcumin is a principal curcuminoid of Indian curry and has known for its antitumor (Ran et al., 2009; Wohlmuth et al., 2010; Ljngman, 2009), antioxidant, antiinflammatory (Takahashi et al., 2009; Kuhad et al., 2007; Michaelidou and H-Litina, 2005) and antiarthritic properties (Patil et al., 2009).

Very little was published about the antitumor activities of dihydropyridones and the aim of this study is to investigate the relationship between structure and antitumor activity of a series of dihydropyridones derived from curcumin.

MATERIALS AND METHODS

The screened pyridones were synthesized by the reaction of curcumin and amines elsewhere (Elias et al., 2008). These compounds as well as curcumin were evaluated for preliminary estimation of the in vitro tumor inhibiting activity against a panel of tumor cell lines consisting of CD4\(^+\) human T-cells containing an integrated Human T-Leukaemia Virus type 1(HTLV-1), CD4\(^+\) human acute lymphoblastic leukaemia, human splenic B-lymphoblastoid cells, human acute B-lymphoblastic leukaemia, human skin melanoma, human
breast adenocarcinoma, human lung squamous carcinoma, human hepatocellular carcinoma, human prostate carcinoma, human foreskin fibroblasts and human lung fibroblasts, using microculture assay (MTT) method (Tang et al., 2010). This method is based on the metabolic reduction of 3-(4,5-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The cell lines of tumor subpanels were incubated within five concentrations (0.01-100 µg mL⁻¹) of each tested compound for 48 h. Molecular descriptors for the studied compounds, logP, Hydration energy (ΔH), Refractivity (Ref) and Polarizability (POL) were calculated using HyperChem 8.5 program, after geometry optimization with the semi empirical RM1 Hamiltonian. The general molecular structure of the studied molecules is shown in Fig. 1.

RESULTS

The results of the antitumor activities, represented as CC₅₀ (µM) are summarized in Table 1.

The activity values are within the ranges >100-17±1, >100-34±2 and >100-57±4 for leukaemia lymphoma, solid tumor-derived cell lines and normal-cell lines respectively. The calculated molecular descriptors are gathered in Table 2.

The values of logP, Refractivity, Polarizability increase with increasing molecular weight while hydration energy decreases with increasing molecular weight except for molecule 6.

DISCUSSION

All the tested compounds have antitumor activities less than those of curcumin against all tumor cell lines. This may be due to the lack to the β-diketone moiety in pyridones. It is obvious from Table 1 that the CC₅₀ value is increased with increasing chain length of the substituent on the nitrogen atom. Comparing the activity of compound 1 with other pyridones showed

Table 1: Antitumor activities of the studied dihydopyridones in most sensitive tumor cell lines

Comp.	R	Tumor	Cell line	CC₅₀ (µM)
1	-CH₃	Leukaemia	MT4⁺	>100
		lymphoma	WIL-2NS⁺	>100
			CCRF-SB⁺	>100
		Solid tumor	SK-MEL-28⁺	>100
		derived cell	MCF7⁺	>100
		lines	SK-MES-1⁺	>100
			HepG2⁺	>100
			DU145⁺	>100
		Normal-cell	CRL-7065⁺	>100
		lines	MRC⁺	>100
2	-C₃H₅	Leukaemia	MT4⁺	54
		lymphoma	CCRF-CEM⁺	36±9
			WIL-2NS⁺	57±1.5
			CCRF-SB⁺	66±9
		Solid tumor	SK-MEL-28⁺	>100
		derived cell	MCF7⁺	>100
		lines	SK-MES-1⁺	>00
			HepG2⁺	>100
			DU145⁺	>100
		Normal-cell	CRL-7065⁺	>100
		lines	MRC⁺	>100
3	-C₃H₇	Leukaemia	MT4⁺	51
		lymphoma	CCRF-CEM⁺	>100
			WIL-2NS⁺	>100
			CCRF-SB⁺	>100
		Solid tumor	SK-MEL-28⁺	>100
		derived cell	MCF7⁺	>100
		lines	SK-MES-1⁺	>00
			HepG2⁺	>100
			DU145⁺	>100
		Normal-cell	CRL-7065⁺	>100
		lines	MRC⁺	>100
4	-C₆H₉	Leukaemia	MT4⁺	36
		lymphoma	CCRF-CEM⁺	20±2.5
			WIL-2NS⁺	26±6
			CCRF-SB⁺	36±11
		Solid tumor	SK-MEL-28⁺	>100
		derived cell	MCF7⁺	>100
		lines	SK-MES-1⁺	58±2
			HepG2⁺	53±0.5
			DU145⁺	53±0.3
		Normal-cell	CRL-7065⁺	>100
		lines	MRC⁺	>100
5	-C₆H₁₃	Leukaemia	MT4⁺	20
		lymphoma	CCRF-CEM⁺	17±1
			WIL-2NS⁺	24±1
			CCRF-SB⁺	25±1
		Solid tumor	SK-MEL-28⁺	43±7
		derived cell	MCF7⁺	47±8
		lines	SK-MES-1⁺	45±10
			HepG2⁺	34±2
			DU145⁺	42±6
		Normal-cell	CRL-7065⁺	60±0.5
		lines	MRC⁺	57±4
6	-CH₂Ph	Leukaemia	MT4⁺	53
		lymphoma	CCRF-CEM⁺	21±1
			WIL-2NS⁺	52±2
			CCRF-SB⁺	46±8
		Solid tumor	SK-MEL-28⁺	76±8
		derived cell	MCF7⁺	>100
		lines	SK-MES-1⁺	>100
			HepG2⁺	>100
Am. J. Immunol., 6 (1): 7-10, 2010

Table 1: Continued

Normal-cell lines	Leukaemia lymphoma	Curcumin Solid tumor-derived cell lines	Normal-cell lines
DU145\(^a\)	CRL-7065\(^b\)	SK-MEL-28\(^d\)	CRL-7065\(^b\)
56±13	>100	18	19±0.80
			17±2.00
Ref:			Observed biological activity expressed by Log (1/CC\(_{50}\))
		Log(1/CC\(_{50}\)) = 0.078log P−0.512	
		R\(^2\) = 0.938, S\(^2\) = 0.017, F = 30.3	

\(^a\): Compound concentration required to reduce cell proliferation by 50% as determined by the MTT method. Data represent mean values (±SD); \(^b\): CD4\(^+\) human T-cells containing an integrated HTLV-1; \(^c\): CD4\(^+\) human acute T-lymphoblastic leukaemia; \(^d\): Human splenic lymphoplastoid cells; \(^e\): Human acute B-lymphoplastic leukaemia; \(^f\): Human skin melanoma; \(^g\): Human breast adenocarcinoma; \(^h\): Human lung squamous carcinoma; \(^i\): Human hepatocellular carcinoma; \(^j\): Human prostate carcinoma; \(^k\): Human foreskin fibroblasts; \(^l\): Human lung fibroblast

Table 2: Calculated molecular descriptors, observed activity against leukaemia (MT4) and the predicted activity for the studied dihydropyridones

No.	logP	Ref.	Pol.	ΔH	π	A\(_{obs}\)	A\(_{pred}\)	Residual
2	3.79	114.03	43.11	-16.69	1.02	-0.238	-0.251	-0.013
3	3.67	118.56	44.64	-16.28	1.55	-0.232	-0.210	-0.013
4	4.16	123.16	46.78	-15.85	2.13	-0.192	-0.184	0.008
5	4.95	132.36	50.45	-15.01	3.10	-0.114	-0.121	-0.007
6	4.72	135.30	50.93	-17.76	2.01	-0.123	-0.137	0.000

Ref: Refractivity; Pol: Polarizability; ΔH: Hydration energy; π: Hydropobicity constant of the substituent (p); A\(_{obs}\): Observed biological activity expressed by Log (1/CC\(_{50}\)); A\(_{pred}\): Predicted biological activity

that the inclusion of a methylen or a phenyl group in the substituent moiety shifted the threshold of potency from inactive side towards activity in some of leukaemia lymphoma cell lines, particularly against the leukaemia cell lines MT4. For substituent longer than propyl group the compounds become active for most cell lines and in the case where R is hexyl group the antitumor activity becomes comparable to that of curcumin. Ignoring the data of compound 1 (CC\(_{50}\) > 100 for all cell lines) we tried to correlate the activity of the compounds 2-6 represented by Log(1/CC\(_{50}\)) against the leukaemia cell lines MT4 with the molecular descriptors, logP, refractivity, polarizability, hydration energy and carbon number of the substituent (C\(_n\)). Very good models with R\(^2\) values 0.938, 0.957, 0.968, 0.957 and 0.955 respectively, were obtained when the data of compound 6 are not involved. The models are shown in Eq. 1-5:

Log(1/CC\(_{50}\)) = 0.007Ref − 1.064 \hspace{1cm} (2)

Log(1/CC\(_{50}\)) = 0.017Pol − 1.011 \hspace{1cm} (3)

Log(1/CC\(_{50}\)) = 0.077ΔH + 1.047 \hspace{1cm} (4)

Log(1/CC\(_{50}\)) = 0.033C\(_n\) − 0.317 \hspace{1cm} (5)

The predicted biological activities for the dihydropyridones from Eq. 6 represented as Log (1/CC\(_{50}\)) are shown in Table 2.

CONCLUSION

This study has shown that the biological activity of the studied compounds increases with increasing chain length of the substituent on the nitrogen atom as well the activity could be predicted to good estimate on the basis of a model involving both hydration energy and the hydrophobicity constant of the substituent.

REFERENCES

Comins, D.L. and C.G. Ollinger, 2001. Inter-and intra molecular Horner-Wadsworth-Emmons reactions of 5-(diethoxyphosphoryl)-1-acyl-2-alkylaryl-2,3-dihydro-4-pyridones. Tet. Lett., 42: 4115-4118. DOI: 0040-4039/01.

Dong, D., X. Bi, Q. Liu and F. Cong, 2005. [5C + 1N] Annullation: A novel synthesis strategy of functionalized 2,3-dihydro-4-pyridones. Chem. Commun., 28: 3580-3582. DOI: 10.1039/b505569e
Elias, R.S., B.A. Saeed, K.Y. Saour and N.A. Al-Masoudi, 2008. Microwave assisted synthesis of dihydropyridones derived from curcumin. Tetrahed. Lett., 49: 3049-3051. DOI: 10.1016/j.tetlet.2008.03.064

Goodman, K.B., H. Cui, S.E. Dowdell, D.E. Giatanopoulos and R.L. Ivy et al., 2007. Development of dihydropyridine indazole amides as selective Rho-kinase inhibitors. J. Med. Chem., 50: 6-9. DOI: 10.1021/jm0609014

Hu, E., A. Tasker, R.D. White, R.K. Kunz and J. Hutman et al., 2008. Discovery of aryl aminoquinoxoline pyridones as potent, selective and orally efficacious inhibitors of receptor tyrosine kinase c-kit. J. Med. Chem., 51: 3065-3068. DOI: 10.1021/jm800188g

Kuhad, A., S. Pilkhwal, S. Sharma, N. Tirkey and K. Chopra, 2007. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephro toxicity. J. Agric. Food Chem., 55: 10150-10155. DOI: 10.1021/jf0723965

Ljngman, M., 2009. Targeting the DNA damage response in cancer. Chem. Rev., 109: 2929-2950. DOI: 10.1021/cr900047g

Magedov, I.V., M. Manapadi, M.A. Ogasawara, A.S. Dhwan and S. Rogdi et al., 2008. Structural implication of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridens and pyrano[3,2-c]quinolones. J. Med. Chem., 51: 2561-2570. DOI: 10.1021/jm701499n.

Michaelidou, A.S. and D. H-Litina, 2005. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): A comparative QSAR study. Chem. Rev., 105: 3235-3271. DOI: 10.1021/cr040708m

Patil, B.S., S.K. Jayaprakasha, K.N.C. Murthy and A. Vikram, 2009. Bioactive compounds: Historical perspectives, opportunities and challenges. J. Agric. Food Chem., 57: 8142-8160. DOI: 10.1021/jf9000132

Pierce, J.B., Z.S. Ariyan and G.S. Ovenden, 1981. Preparation and anti-inflammatory activity of 2- and 4-pyridones. J. Med. Chem., 25: 131-136. DOI: 0022-2623/82/1825-0131

Ran, C., X. Xu, S.B. Raymond, B.J. Ferrara and K. Nael et al., 2009. Design, synthesis and testing of difluoroboron-derivatized curcumin as near-infrared probes for in vivo detection of amyloid-β deposits. J. Am. Chem. Soc., 131: 15257-15261. DOI: 10.1021/ja9047043

Revas, F.M., J.P. Stables, L. Murphree, R.V. Edwanker and C.R. Edwanker et al., 2009. Antiseizure activity of novel-γ-aminobutyric acid (A) receptor subtype-selective benzodiazepine analogues in mice and rat models. J. Med. Chem., 52: 1795-1798. DOI: 10.1021/jm801652d

Takahashi, M., S. Uechi, K. Takara, Y. Asikin and K. Wada, 2009. Evaluation of an oral carrier system in rats. Bioavailability and antioxidant properties of liposome-encapsulated curcumin. J. Agric. Food Chem., 57: 9141-9146. DOI: 10.1021/jf9013923

Tang, H.F., G. Cheng, J. Wu, X.L. Chen and S.Y. Zhang et al., 2010. Cytotoxic asterosaponins capable of promoting polymerization of tubulin from the starfish Culcita novaeguinea. J. Nat. Prod., 72: 284-289. DOI: 10.1021/np8004858

Wohlmuth, H., A.M. Desco, D.J. Brushett, D.R. Thompson and G. MacFarlane et al., 2010. Diarylheptanoid from Pleuranthodium racemigerum with in vitro postglandin E2 inhibitory and cytotoxic activity. J. Nat. Prod., 73: 743-746. DOI: 10.1021/np900688r

Yeats, C.L., J.F. Betchelor, E.C. Capon, N.J. Cheesman and M. Fry et al., 2008. Synthesis and structure-activity relationship of 4-pyridones as potential antimalarials. J. Med. Chem., 51: 2845-2852. DOI: 10.1021/jm07705790