Generalization of order separability for free products and omnipotence of free products of groups.

Vladimir V. Yedynak
Faculty of Mechanics and Mathematics, Moscow State University
Moscow 119992, Leninskie gory, MSU
edynak_yova@mail.ru

Abstract

It was proved that for any finite set of elements of a free product of residually finite groups such that no two of them belong to conjugate cyclic subgroups and each of them do not belong to a subgroup which is conjugate to a free factor there exists a homomorphism of the free product onto a finite group such that the order of the image of each fixed element is an arbitrary multiple of a constant number.

Keywords: free products, residual properties, omnipotence.

MSC: 20E26, 20E06.

1 Introduction

Order separabilities are connected with the investigation of the correlation between the orders of elements’ images after a homomorphism of a group onto a finite group. For example in [1] it was proved that for each elements u and v of a free group F such that u is conjugate to neither v nor v^{-1} there exists a homomorphism of F onto a finite group such that the images of u and v have different orders. In [6] it was proved that this property is inherited by free products. This paper is devoted to the proof of the theorem that strengthens the property of order separability for the class of free products of groups.

Theorem. Consider the group $G = A * B$ where the subgroups A and B are residually finite. Consider the elements u_1, \ldots, u_n such that $u_i \in G \setminus \{ \cup g \in G (g^{-1}Ag \cup g^{-1}Bg) \}$, u_i, u_j belongs to conjugate cyclic subgroups whenever $i = j$. Then there exists the natural number K such that for each ordered sequence l_1, \ldots, l_n of natural numbers there exists a homomorphism φ of G onto a finite group such that the order of $\varphi(u_i)$ is equal to Kl_i.

The property under study in this work is closely connected with omnipotence which was investigated in [2], [3] where it was shown that free groups and fundamental groups of compact hyperbolic surfaces are omnipotent. Besides all finite sets of independent elements whose orders are infinite in a Fuchsian group of the first type also satisfy the property of omnipotence [4].

Definition. The group G is called omnipotent if for each elements u_1, \ldots, u_n such that no two of them have conjugate nontrivial powers there exists a number K such that for each ordered sequence of natural numbers l_1, \ldots, l_n there exists a homomorphism φ of G onto a finite group such that the order of $\varphi(u_i)$ equals KL_i.
The familiar property was also investigated in [7] where some sufficient conditions were found for n-order separability of free products. The group G is said to be n-order separable if for a set $S = \{ s_1, \ldots, s_n \mid s_i \neq h^{-1}s_j^\pm h, i \neq j \}$ of n elements of G there exists a homomorphism of G onto a finite group mapping S onto a set whose elements have pairwise different orders.

Notice that the theorem of this paper will enable to investigate the residual properties of the fundamental group of graphs of groups whose vertex groups are residually finite free products and edge groups are cyclic not belonging to subgroups conjugate to free factors of vertex groups.

2 Notations and Definitions

We consider that for every graph there exists a mapping η from the set of edges of this graph onto itself. For every edge e this mapping corresponds an edge which is inverse to e. Besides the following conditions are true: $\eta(\eta(e)) = e$ for each e, η is a bijection, for every edge e the beginning of e coincides with the end of the edge $\eta(e)$.

The graph is called oriented if from every pair of mutually inverse edges one of them is fixed. The fixed edge is called positively oriented and the inverse edge is called negatively oriented.

Let G be a free product of groups A and B. There exists a correspondence such that for every action of G on the set X at which both A and B act freely there exists a graph Γ satisfying the following properties:

1) for each $c \in A \cup B$ and for each vertex p of Γ there exists exactly one edge labelled by c going into p and there exists exactly one edge labelled by the element c which goes away from p.

2) for every vertex p of Γ the maximal connected subgraph $A(p)$ of Γ containing p whose positively oriented edges are labelled by the elements of A is the Cayley graph of the group A with generators $\{ A \}$; we define analogically the subgraph $B(p)$.

3) we consider that for every edge e from the first item there exists the edge inverse to e which does not bear a label; two edges with labels are not mutually inverse; edges with labels are positively oriented.

Definition 1. We say that a graph is the free action graph of the group $G = A \ast B$ if it satisfies the properties 1), 2), 3).

Note that if φ is the homomorphism of the group G such that $\varphi_{A \cup B}$ is the bijection then the Cayley graph $\text{Cay}(\varphi(G); \{ \varphi(A) \cup \varphi(B) \})$ of the group $\varphi(G)$ with respect to the set of generators $\{ \varphi(A) \cup \varphi(B) \}$ is the free action graph of the group G.

Remark. In what follows appending a new edge with label to a free action graph we shall consider that it is positively oriented and the inverse edge would have been appended. And if we delete an edge with label the inverse edge would have been deleted.

If e is the edge then $\alpha(e), \omega(e)$ are vertices which coincide with the beginning and the end of e correspondingly.
If we have the free action graph Γ of the group G then there exists the action of G on the set of vertices of Γ which is defined as follows. Let p be an arbitrary vertex of Γ. Then according to the definition of the free action graph for each element c from $A \cup B$ there exist edges e and f whose labels are equal to c such that $\alpha(e) = p, \omega(f) = p$. In this case the action of c on p is defined as follows: $p \circ c = \omega(e), p \circ c^{-1} = \alpha(f)$.

Remark also that if we change the property 2) in the definition of the free action graph supposing that $A(p)$ and $B(p)$ are the Cayley graphs of the homomorphic images of the groups A and B correspondingly we also obtain the graph such that there exists the action of the group G on the set of its vertices. Such a graph will be referred to as an action graph of the group G.

Since there exists the action of G on the set of vertices of an action graph Γ there exists a homomorphism of G onto the set of vertices of the graph Γ. Having a group G and its action graph Γ we shall denote this homomorphism as φ_Γ.

If e is the positively oriented edge of the action graph, then $\text{Lab}(e)$ is the label of e.

Definition 2. Let u be a cyclically reduced element of the group G which belongs to neither A nor B and Γ is the action graph of G. Fix a vertex p of Γ. Then u-cycle in this action graph going from p is the cycle $R = e_1 \ldots e_n$ which satisfies the following properties:

1) the path P is a closed path such that its beginning $\alpha(P) = p$

2) consider $u = u_1 \ldots u_k$ where $u_i \in A \cup B, u_1, u_{i+1}$ as well as u_j, u_k do not belong to one free factor simultaneously; then k divides n and the edge $e_i k + j$ is positively oriented and has a label $u_j, 1 \leq j \leq k$ (indices are modulo n)

3) the cycle P is the minimal cycle which satisfies properties 1) and 2).

Definition 3. Suppose we have a path $S = e_1 \ldots e_n$ in the action graph. Then the label of this path is the element of the group which is equal to $\prod_{i=1}^n \text{Lab}(e_i)'$, where $\text{Lab}(e_i)'$ equals either the label of e_i, if this edge is positively oriented, or $\text{Lab}(e_i)' = \text{Lab}(\rho(e_i))^{-1}$ otherwise. We shall denote the label of the path S as $\text{Lab}(S)$.

Definition 4. Fix the graph Γ, p and q are vertices from Γ. Then we define the distance between p and q as $\rho(p, q) = \min_S l(S)$, where S is an arbitrary path connecting p and q, $l(S)$ is the number of edges in S.

Notice that if a cycle S does not have l-near vertices then each subpath of S of length which less or equal than l is geodesic.

Definition 5. Fix an arbitrary graph and a cycle $S = e_1 \ldots e_n$ in it. For every nonnegative integer number l we shall say that S does not have l-near vertices, if for every $i, j, i \neq j, 1 \leq i, j \leq n$ the distance between the vertices $\alpha(e_i), \alpha(e_j)$ is greater or equal than $\min(l + 1, |i - j|, n - |i - j|)$.

Definition 6. Suppose we have the u-cycle S. It is obvious that its label equals the k-th power of u for some k. Then we say that the length of the u-cycle S is equal to k.

Note that for the action graph Γ and cyclically reduced element $u \in G \setminus \{A \cup B\}$ the order of $|\varphi_\Gamma(u)|$ coincides with the less common multiple of lengths of
It follows from lemma 2 that the theorem can be derived from the following proposition.

Proposition. Let $G = A \ast B$ be a free product of residually finite groups A and B, $u, v_1, \ldots, v_n \in G$. Elements u and v_i do not belong to conjugate cyclic subgroups. Besides u does not belong to a subgroup which is conjugate to either A or B. Then there exist natural numbers L, K_1, \ldots, K_n such that
for each natural \(i \) there exists a homomorphism \(\varphi \) of \(G \) onto a finite group such that \(|\varphi(u)| = L_i, |\varphi(v_i)| = K_i, 1 \leq i \leq n \).

Proof.

Since \(A, B \) are residually finite we may consider that \(A \) and \(B \) are finite. Consider also that the elements \(u, v_1, \ldots, v_n \) of \(A \ast B \) are cyclically reduced.

Let us to define the following notation. Consider the action graph \(\Gamma \) of the group \(K \ast L \). Let \(S \) be the subset of \(\Gamma \) (e. g. vertex, edge, path, subgraph etc). Then having a set \(\Gamma_1, \ldots, \Gamma_n \) of copies of \(\Gamma \) we consider that \(S_i \) denotes the subset of \(\Gamma_i \) corresponding to \(S \) in \(\Gamma \).

Put \(s = \max_{b \in \{u, v_1, \ldots, v_n\}} l(b) \), and let \(k' \) be an arbitrary natural number such that \(k' l(u) \geq 10s \). Put \(k = k' l(u) \). Denote by \(P \) the set of all nonunit elements whose length is less or equal than \(10k \). For \(Q = \{u, v_1, \ldots, v_n\} \cup P \) according to lemma 1 there exists the homomorphism \(\varphi \) of \(G \) onto a finite group such that \(\varphi_{A \cup B \cup Q} \) is the injection and for each \(s \in S \) which is cyclically reduced and whose length is greater than 1 each \(s \)-cycle in the graph \(\Gamma = Cay(\varphi(G); \{\varphi(A) \cup \varphi(B) \) has no \((k + 4)\)-near vertices and \(|\varphi(u)| > 10k \).

Fix a natural number \(m > 2 \) whose value we shall choose later. Consider \(m \) copies of the graph \(\Gamma \): \(\Gamma_i, 1 \leq i \leq m \). In the graph \(\Gamma \) we fix a \(u \)-cycle \(S = e_1 \cdots e_r \). Without loss of generality we consider that \(Lab(e_1) \in A \). Put \(p_i = \alpha(e_i), Lab(e_i) = u_i \) (see Figure 1). For each \(i, 1 \leq i \leq m \), we delete edges incident to \(p_i \) whose labels belong to \(A \) and delete also edges labelled by the elements of \(A \) whose begin or end points are \(p_{k+2} \). For each \(i \) we shall denote the obtained graph as \(\Gamma_i \).
Let \(\psi \) be the bijection between the subgraphs \(A(p_{1}) \) and \(A(p_{k+1}) \) which saves labels of edges and \(\psi(p_{1}) = p_{k+1} \).

Fix an arbitrary edge \(e \) of \(\Gamma \) from the subgraph \(A(p_{1}) \) such that the corresponding edge \(\alpha(e) \) of \(\Gamma_{i} \) was deleted. Let \(q = \alpha(e), r = \omega(e) \). For each \(i, 1 \leq i \leq m, \) if \(q \neq p_{2} \) we connect the vertices \(q^{i} \) and \(\psi(r^{i+1}) \) by the new edge \(f_{i} \). If \(r \neq p_{2} \) we connect \(r^{i} \) and \(\psi(q^{i+1}) \) by the edge \(f_{i} \). In both cases the label of \(f_{i} \) coincides with \(\text{Lab} (e) \), besides if \(q \neq p_{2} \) then \(f_{i} \) goes away from \(q^{i} \) and if \(r \neq p_{2} \) then \(f_{i} \) goes into \(r^{i} \).

Now we need to complement the structure of obtained graph for to get the action graph of the group \(A \ast B \). But it will not be the free action graph.

For each \(i, 1 \leq i \leq m, \) let us to add one new vertex \(n_{i} \) to the subgraph \(\Gamma'_{i} \).

Consider an arbitrary edge \(e \) from \(A(p_{k+2}) \) such that the corresponding edge \(\alpha(e) \) was deleted from \(\Gamma_{i} \). Put \(q = \alpha(e), r = \omega(e) \). If \(q = p_{k+2} \) then connect the vertices \(r^{i} \) and \(n_{i} \) by the edge \(g_{i} \). If \(r = p_{k+2} \) then the new edge \(g_{i} \) connects the vertices \(q^{i} \) and \(n_{i} \). Put \(\text{Lab} (g_{i}) = \text{Lab} (e) \). The begin point of \(g_{i} \) coincides with either \(n_{i} \) or \(q^{i} \).

For each \(c \in A \cup B \) and for each vertex \(p \) of the obtained graph which is not incident to an edge with label \(c \) add a loop with label \(c \) going from \(p \).

If we fix \(j \) then the union of the graph \(\Gamma'_{j} \) and \(A(p_{k+1}^{j}), A(p_{k+2}^{j}), A(p_{1}^{j}) \) is denoted by \(\Delta_{j} \).

We constructed the new graph \(\Delta \) which contains subgraphs \(\Gamma'_{j} \) and \(\Delta_{j} \) and is the action graph of the group \(G \).

In the graph \(\Delta \) the \(u \)-cycle \(S' \) going from the vertex \(p_{1}^{1} \) has the length \(|\varphi(u) \mid - k' \cdot m \). From the properties of the homomorphism \(\varphi \) it follows that \(|\varphi(u)| > 10k = 10k' \cdot l(u) > k' \). Hence \(|\varphi_{\Delta}(u)| > (|\varphi(u)| - k') \cdot m > m \).

Let us to prove that for each \(i \) and each \(\nu_{i} \)-cycle \(T \) in the graph \(\Delta \) all vertices of \(T \) belong to two subgraphs \(\Delta_{j_1}, \Delta_{j_1+1} \) for some \(j_1 \). Suppose the contrary. That is we suppose that there exist pairwise different numbers \(j_1, j_2, j_3 \) such that the vertices of \(T \) belong to all three subgraphs \(\Delta_{j_1}, \Delta_{j_2}, \Delta_{j_3} \).

Note that different subgraphs \(\Delta_{k_1}, \Delta_{k_2} \) has the nonempty intersection if and only if \(|k_1 - k_2| = 1 \) and their intersection equals the subgraph \(A(p_{1}^{k}) \) since \(m > 2 \) where \(l \) is equal to either \(k_1 \) or \(k_2 \). So if \(\Delta_{j_1}, \Delta_{j_2}, \Delta_{j_3} \) contain vertices of \(T \) there exists the number \(j \) such that the subgraphs \(\Delta_{j}, \Delta_{j+1}, \Delta_{j+2} \) contain the vertices of \(T \) and there exists the path \(R \) which is the part of \(T \) and which belongs to \(\Delta_{j} \cup \Delta_{j+1} \cup \Delta_{j+2} \), \(R \) goes away from the vertex of \(\Delta_{j} \) and goes into the vertex of \(\Delta_{j+2} \) (indices are modulo \(m \)).

From the properties of \(R \) it follows that \(R \) contains its first and the last edges \(t_{j}, r_{j} \) correspondingly such that \(t_{j} \in A(p_{1}^{j}), \omega(t_{j}) = p_{k+2}^{j+1}, r_{j} \in A(p_{k+1}^{j}), \omega(r_{j}) = p_{k+2}^{j+2} \), and the rest edges of \(R \) are in \(\Delta_{j+1} \).

Because of our supposition that \(T \) goes from \(\Delta_{j+1} \) into \(\Delta_{j+2} \) it is possible to deduce that \(R \) contains the subpath \(s_{1} \ldots s_{l} \) such that \(s_{2} \ldots s_{l} \) belongs to \(\Gamma'_{j+1} \) and edges \(s_{1}, s_{l} \) satisfy the following properties: \(\alpha(s_{1}) \in A(n_{j+1}) \cup B(p_{k+1}^{j+1}), \omega(s_{1}) \in A(p_{k+1}^{j+1}) \cup B(p_{k+2}^{j+1}) \).

Denote the path \(e_{1}^{j+1} e_{2}^{j+1} \ldots e_{k+1}^{j+1} \) as \(S_{u} \) and \(s_{2} \ldots s_{l-1} \) as \(S_{v} \) (see Figure 2). Note that \(\rho(\alpha(S_{u}), \alpha(S_{v})) \leq 1, \rho(\omega(S_{u}), \omega(S_{v})) \leq 2 \) (the function \(\rho \) is defined on the product of \(\Delta_{j} \)).
taken with respect to \(\Gamma_i \). Besides \(S_{v_i} \) is a part of some \(v_i \)-cycle, \(S_u \) is a part of the \(u \)-cycle \(S' \). Since the elements \(u, v_i \) of the group \(A \ast B \) do not belong to conjugate cyclic subgroups and the length of the path \(S_u \) is greater than
\[
10s = 10 \max_{z \in \{ u, v_1, \ldots, v_n \}} (l(z))
\]
the paths \(S_{v_i} \) and \(S_u \) are different.
Suppose that the length of the path S_{v_i} is less or equal than $k+4 = l(S_u)+3$. The paths S_{v_i} and S_u and perhaps several edges whose number is less than 4 compose the loop. Let g be the label of this loop. Then g is an element of the group G whose length is less or equal than $2l(S_u) + 6 = 2k + 8 < 10k$ and $\varphi(g) = 1$. But this contradicts the condition on φ and the set Q. Thus the length of the path S_{v_i} is greater than $k + 4 = l(S_u) + 3$. By the symmetry we may also assume that the length of the path $T \setminus S_{v_i}$ is greater than $k+4$: the structure of the part of T in Δ_{j+2} is the same as in Δ_{j+1}. But in this case $\rho(\alpha(S_{v_i}), \omega(S_{v_i})) \leq \min(l(S_u), l(T \setminus S_{v_i})) = \min(k + 4, l(S_{v_i}), l(T \setminus S_{v_i})) = k + 4$, since $l(S_{v_i})$, $l(T' \setminus R') > k + 4$. So the v_i-cycle T containing S_{v_i} has $(k+4)$-near vertices. This also contradicts the conditions on φ.

Thus it is proved that for each i and for each v_i-cycle T in the graph Δ there exists j, $1 \leq j \leq m$, such that all vertices of T are contained in $\Delta_j \cup \Delta_{j+1}$ (indices are modulo m). We deduce also that each u-cycle of Δ which does not start at p_1 belongs to two subgraphs $\Delta_{k_1}, \Delta_{k_1+1}$. This can be established by the same way as it was shown that the analogical statement is true for v_i-cycles.

Now we shall denote the obtained graph Δ for number m as Δ_m. Consider the set of graphs $\Lambda_m = \Delta_{lm}, m = 1, 2, \ldots$

We shall show now that $|\varphi_{\Lambda_m}(v_i)|$ equals some constant number K_i which does not depend on m. Let $R_{i,m}$ be the set of lengths of all v_i-cycles of Λ_m. The local structure of Λ_m is the same: using the above notations and regarding that Λ_m is the union of $\Delta_1, \ldots, \Delta_{lm}$ it is obvious that the subgraphs $\Delta_k \cup \Delta_{k+1}$ and $\Delta_l \cup \Delta_{l+1}$ are isomorphic and do not depend on m. Hence $R_{i,m}$ coincides with the set of lengths of v_i-cycles concentrated in $\Delta_1 \cup \Delta_2$ and thereby $R_{i,m} = R_{i,t}$ for all m, t. The same reasonings are true for all u-cycles of Λ_m except for the u-cycle whose length is the multiple of $3m$ so $|\varphi_{\Lambda_m}(u)| = mK$ for some constant K which does not depend on m.

Proposition is proved and therefore the theorem is also proved.

Acknowledgements

I am grateful to Anton A. Klyachko, Ashot Minasyan, Denis Osin and Henry Wilton for valuable conversations and for information about omnipotence.

References

1. Klyachko, A. A. Equations over groups, quasivarieties, and a residual property of a free group. Journal of group theory 2: 319-327, 1999.

2. Wise, Daniel T. Subgroup separability of graphs of free groups with cyclic edge groups. Q. J. Math. 51, No.1, 107-129 (2000). [ISSN 0033-5606; ISSN 1464-3847]

3. Jitendra Bajpai. Omnipotence of surface groups. Masters Thesis, McGill University, 2007.

4. Henry Wilton. Virtual retractions, conjugacy separability and omnipotence. J. Algebra 323 (2010), pp. 323-335.

5. Marshall Hall, Jr. Coset representations in free groups. Trans. Amer. Math. Soc., 67:421-432, 1948.
6. Yedynak, V. V. Separability with respect to order. *Vestnik Mosk. Univ. Ser. I Mat. Mekh.* 3: 56-58, 2006.

7. Yedynak, V. V. Multielement order separability in free products of groups. *Communications in Algebra* 38(3): 3448 - 3455, 2010.