SARS-CoV-2 e transmissão no trabalho: resultados de uma coorte prospectiva com profissionais aeroportuários, 2020

SARS-CoV-2 and work-related transmission: results of a prospective cohort of airport workers, 2020

Jeadran N. Malagón-Rojas1,2, Marcela Mercado2, Claudia P. Gómez-Rendón1

RESUMO | Introdução: A pandemia de doença do coronavírus 2019 (COVID-19) espalhou-se rapidamente em todo o mundo. Apesar das múltiplas estratégias de controle de doenças respiratórias infecciosas, a abordagem atual para o manejo da pandemia é a prevenção da transmissão de pessoa para pessoa. Apesar da estratégia de distanciamento social, alguns postos de trabalho devem continuar funcionando. É o caso dos trabalhadores do aeroporto. Objetivos: O objetivo deste estudo foi identificar os fatores de risco para a transmissão de COVID-19 entre os trabalhadores do Aeroporto Internacional El Dorado de março a julho de 2020. Métodos: Estudo prospectivo de coorte com trabalhadores do aeroporto internacional El Dorado, em Bogotá. Um questionário sociodemográfico foi utilizado para indagar sobre os sintomas associados à COVID-19 e outros fatores de risco. Swabs nasofaríngeos foram coletados para determinar a presença do novo coronavírus. Para identificar a soroconversão, foi utilizado um imunoensaio quimioluminescente automatizado para anticorpos anti-SARS-CoV-2 IgM e IgG. Os casos positivos foram acompanhados por 21 dias. Resultados: Foi encontrada uma incidência de infecção de 7,9%; a maioria dos casos era assintomática. O primeiro fator de risco associado foi o tempo que passam no deslocamento de casa para o trabalho (risco relativo 1,02 [intervalo de confiança de 95% 1,002–1,041]). Conclusões: Encontramos infecções assintomáticas de COVID-19 entre trabalhadores do aeroporto. O desenvolvimento de pesquisas futuras contribuirá para aumentar o conhecimento para fornecer estratégias que garanta a proteção dos trabalhadores aeroportuários.

Palavras-chave | COVID-19; SARS-CoV-2; condições de trabalho; aeroportos; medicina do trabalho.

ABSTRACT | Introduction: The coronavirus disease 2019 (COVID-19) pandemic has spread rapidly around the globe. Even though multiple strategies are available for controlling infectious respiratory diseases, the current approach for managing this pandemic is the prevention of person-to-person transmission. Despite the quarantine strategy, some work positions must remain active, such as airport personnel. Objectives: To identify risk factors for COVID-19 transmission among workers at the El Dorado, Luis Carlos Galán Airport from March to July 2020. Methods: This is a prospective cohort study with workers of the El Dorado International Airport, in Bogotá, Colombia. A sociodemographic questionnaire was for searching for symptoms associated with COVID-19 and other risk factors. Nasopharyngeal swabs were collected for determining the presence of COVID-19. In order to identify seroconversion, we used an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies. Patients with positive results were followed-up for 21 days. Results: We observed an incidence of infection of 7.9%; most cases were asymptomatic. The main risk factor associated with infection was the duration of daily commute (relative risk 1.02 [95% confidence interval, 1.002–1.041]). Conclusions: We observed asymptomatic infection by COVID-19 among airport workers. Future research should contribute with knowledge for developing strategies that guarantee the protection of airport workers.

Keywords | COVID-19; SARS-CoV-2; working conditions; airports; occupational health.
INTRODUÇÃO

As ações dos governos em âmbito mundial para combater a transmissão da doença do coronavírus 2019 (COVID-19) e limitar a interação entre as pessoas incluem uma série de medidas de controle, como o fechamento de instituições educacionais, o bloqueio do comércio, a restrição de viagens aéreas e terrestres e o isolamento social. Embora a maior parte das empresas e negócios tenha sido fechada ou tenha implementado estratégias de trabalho remoto, diversos setores precisaram continuar trabalhando, principalmente os setores de saúde, alimentício, bancário, de fornecimento de serviços públicos e transporte.

A maior parte das ações de prevenção a infecções foi focada no grupo de profissionais da saúde, já que constituem a linha de frente de ação nos cuidados durante a pandemia. No entanto, conforme a pandemia foi progredindo, foi possível identificar outros setores, como redes de fast food, restaurantes, segurança e transporte, que também estão sob risco aumentado de exposição a pessoas infectadas pelo alto volume de contato diário. Essa situação aplica-se aos profissionais aeroportuários, que exercem diversas funções às quais o contato interpessoal e a atenção ao público estão implícitos e não há opção de trabalho remoto.

Para esse grupo, foram identificados pelo menos dois componentes que aumentam o risco de transmissão de infecções nos aeroportos. O primeiro relaciona-se com a grande mobilidade de passageiros, vindos de diferentes localidades, os quais permanecem concentrados por grandes períodos em áreas de intercâmbio. O segundo componente que pode favorecer a transmissão de infecções é a ignorância quanto ao status de saúde dos viajantes e a ausência de aparelhos que possam medir sinais sugestivos de infecção nos passageiros. Há relatos documentados de transmissão de vírus em aeroportos. O primeiro deles faz referência a uma série de casos da síndrome respiratória por coronavírus do Oriente Médio (MERS-CoV-2) no Aeroporto Heathrow, em Londres, no ano de 2014. Nesse estudo, entre os contatos estudados, cinco reportaram sintomas respiratórios 14 dias após o voo. Um surto de sarampo ocorreu no mesmo ano, em uma viagem partindo das Filipinas com destino ao Reino Unido com conexão nos Países Baixos. A análise identificou transmissão secundária em dois profissionais no Aeroporto Internacional de Amsterdam Schiphol e, mais tarde, em passageiros que pegaram o mesmo voo dos Países Baixos ao Reino Unido. Além disso, surtos de transmissão de influenza A(H1N1) entre profissionais aeroportuários durante a pandemia de 2009. Na Nova Zelândia, uma série de caso compatíveis com influenza foram identificados em um voo partindo da Cidade do México com destino a Auckland com conexão em Los Angeles. Cinco casos de A(H1N1) foram confirmando entre os profissionais do aeroporto.

Na Colômbia, o Aeroporto Internacional El Dorado, localizado na capital Bogotá, recebe aproximadamente 30 milhões de passageiros por ano. A operação do aeroporto é manejada pelo time de 25.000 profissionais e 60 empresas de diferentes setores. As áreas de trabalho se dividem entre carregamento, equipes das companhias aéreas, tripulações, equipe de migração, equipe de limpeza, segurança, empresas fornecedoras de alimentos, serviço de saúde do aeroporto, entre outras. Assim, o Aeroporto Internacional El Dorado não é apenas o terminal aéreo mais importante do país, como também é o terceiro centro de conexões com maior volume de tráfego de passageiros da Europa e da América do Norte. Dessa forma, esse aeroporto é crucial na determinação do risco de transmissão de doenças como a COVID-19.

Devido à pandemia da SARS-CoV-2, o aeroporto fechou as operações comerciais no dia 22 de março de 2020. No entanto, as atividades de transporte de suprimentos e os voos humanitários continuaram, demandando que uma grande parte de profissionais continuassem trabalhando mesmo com o risco de infecção. Assim, o objetivo deste trabalho foi identificar os fatores de risco para infecção de SARS-CoV-2 em uma amostra de profissionais de um aeroporto internacional.

MÉTODOS

O estudo foi uma coorte prospectiva, feita com um grupo de profissionais do Aeroporto Internacional El Dorado, na cidade de Bogotá. O estudo foi realizado seguindo as recomendações da iniciativa Strengthening The Reporting of OBservational Studies in Epidemiology (STROBE), entre 22 de março e 1º de junho de 2020.

Uma chamada para o estudo foi feita através da área de talentos humanos do aeroporto. Como critérios de...
inclusão, foram considerados os seguintes: i) profissionais do aeroporto, entre 18 e 70 anos; ii) profissionais com contrato de trabalho atual e na modalidade presencial nas instalações do aeroporto no período em que o estudo foi feito. Os critérios de exclusão foram estes: i) profissionais com contatos positivos para SARS-CoV-2 fora do ambiente de trabalho (membros da família em casa, outros membros da família etc.); ii) profissionais que viajaram para o exterior por outras razões que não envolviam trabalho e retornaram entre os dias 1º e 20 de março de 2020; iii) profissionais que declararam não querer participar do estudo.

AMOSTRAGEM

Com base nas estimativas do Ministério da Saúde quanto à incidência de infecção por SARS-CoV-2 na população colombiana, o tamanho da amostra foi estimado no software OpenEpi®. A amostra foi composta por 198 profissionais, com intervalo de confiança de 95% e precisão de 3%.

As variáveis sociodemográficas, as condições de trabalho, a percepção do risco de transmissão de SARS-CoV-2, o histórico de viagem, a vacinação contra influenza, os contatos, assim como os resultados sorológicos dos testes de detecção IgM/IgG e de reação em cadeia da polimerase em tempo real (RT-PCR) para SARS-CoV-2 foram considerados.

FONTES DE INFORMAÇÃO

Matriz de avaliação de risco

Foi obtido acesso à matriz para avaliação dos riscos e para avaliação dos riscos de exposição no trabalho para diferentes posições e cargos. Essa matriz identifica os tipos de fontes de exposição, avaliando o tempo e o tipo de exposição aos quais os profissionais estão suscetíveis (contato direto com gotas ou aerossol, contato indireto com superfícies contaminadas). A partir disso, os níveis de risco para contágio por SARS-CoV-2 foram estabelecidos para cada cargo, divididos em alto, médio e baixo.

Pesquisa de caracterização sociodemográfica e formulário de relato epidemiológico

Um questionário foi utilizado para avaliar variáveis sociodemográficas, presença ou ausência de sintomas, uso de equipamentos de proteção pessoal e percepção de risco. O questionário foi elaborado a partir dos instrumentos recomendados pela Organização Mundial da Saúde (OMS) para caracterizar exposição ocupacional a SARS-CoV-2. Esse questionário foi validado por três especialistas na temática de saúde ocupacional e segurança e biossegurança.

 Além disso, os participantes preencheram um formulário de relato epidemiológico sobre infecção respiratória aguda com novo vírus, código 346 dos Institutos Nacionais de Saúde (NIH).

AMOSTRAS BIOLÓGICAS

Todos os profissionais incluídos no estudo tiveram uma amostra nasofaríngea coletada para determinar o RNA viral através do RT-PCR. A amostra foi coletada por uma equipe treinada, utilizando a técnica do time Public Health Research Directorate dos NIH, conforme descrito no guia para supervisão laboratorial do vírus influenza e outros vírus respiratórios dos NIH.

Além disso, foram recolhidos 5 cc de cada participante, que foram centrifugados e armazenados para identificar a presença sérica de anticorpos anti-SARS-CoV-2.

PROCESSAMENTO DA AMOSTRA

O processamento das amostras coletadas foi realizado pelo laboratório de RT-PCR do Research Directorate dos NIH. A detecção do RNA viral foi realizada de acordo com o protocolo de Berlim previamente descrito, que foi padronizado pelo laboratório do Research Directorate dos NIH.

A identificação dos anticorpos foi feita através do uso de ensaio quimioluminescente automático para os anticorpos IgM e IgG anti-SARS-CoV-2. O exame foi analisado por dois observadores independentes, e os resultados foram registrados nos livros de registro do laboratório.

SEGUIMENTO DE CASOS

Os profissionais que testaram positivo para SARS-CoV-2 foram acompanhados nas suas residências nos dias 7, 14 e 21 após fazerem o primeiro RT-PCR. O seguimento em casa foi realizado por dois pesquisadores. A cada visita, novas amostras de swab nasofaríngeo e sangue venoso eram recolhidas. Além disso, uma avaliação do status de saúde dos profissionais foi feita por um médico.
ANÁLISE DE DADOS
Os dados da pesquisa, os registros epidemiológicos e os resultados das sorologias e do teste RT-PCR foram inseridos em uma tabela de dados no Microsoft Excel® v. 2019 (licença dos NIH). Para a análise de dados, o pacote estatístico SPSS® v. 25.0 (licença dos NIH) foi utilizado.
Para as variáveis quantitativas, foram estimadas as médias, além dos desvios padrões. Para as variáveis qualitativas, as frequências e porcentagens foram determinadas. Posteriormente, uma análise bivariada foi realizada, comparando as variáveis nominais ou ordenadas em relação à presença ou ausência de infecção secundária por SARS-CoV-2. Essa análise foi feita através do teste qui-quadrado de Pearson com correção de Yate ou do teste exato de Fisher para valores abaixo de cinco²⁰.
O modelo de regressão de Poisson foi utilizado, considerando que o evento teve baixa frequência²¹,²². As razões de risco (RR) com intervalo de confiança (IC) de 95% foram utilizadas para avaliar as diferenças entre os grupos usando respostas negativas como referência. O nível de significância estatística estabelecido foi p < 0,05.

CONSIDERAÇÕES ÉTICAS
O projeto foi aprovado pelo Comitê de Ética e Metodologia em Pesquisa (CEMIN) dos NIH, sob o número 012/2020. O termo de consentimento informado foi assinado antes de serem recolhidas as amostras. Os resultados foram reportados aos participantes, que receberam acompanhamento, sinais de alerta e recomendações para evitar a transmissão.

RESULTADOS
CARACTERÍSTICAS SOCIODEMOGRÁFICAS DA POPULAÇÃO
O estudo incluiu, no total, 212 profissionais. A maior parte dos profissionais era composta por homens (73,1%, n = 155), mestiços (52,4%, n = 95), de nível socioeconômico médio 3 (62,4%, n = 130) e com nível educacional técnico (39,2%, n = 83) (Tabela 1).
Na análise de risco de transmissão de SARS-CoV-2, a maioria das posições ou cargos foram classificados como risco médio (51,9%, n = 110). No entanto, na avaliação individual do risco de contágio associado, a maior parte dos profissionais classificaram seu cargo como uma atividade de alto risco (51,9%, n = 110). Considerando o uso de equipamentos de proteção pessoal, a maioria dos participantes relataram usar máscaras protetoras (do tipo cirúrgicas) (63,7%, n = 135) ao longo do dia de trabalho. Da mesma forma, o tempo acumulado de treinamento para prevenção da infecção por SARS-CoV-2 foi menor que 120 minutos na maior parte da população (67%, n = 142) (Tabela 2).

INCIDÊNCIA E APRESENTAÇÃO CLÍNICA DA INFECÇÃO POR SARS-COV-2
A incidência de pessoas com resultados positivos para SARS-CoV-2, através do resultado do RT-PCR, foi de 7,92% (IC 95% 4,19-11,64). A maioria era do sexo masculino (n = 10), mas não houve diferença significativa (p = 0,46). Os profissionais que testaram positivo no RT-PCR foram acompanhados por 21 dias. A vasta maioria estava assintomática (81,25%, n = 13). Apenas um dos profissionais desenvolveu dispneia, mas não necessitou de oxigênio ou manejo clínico.

SOROCONVERSAO
O resultado do RT-PCR foi negativo em 56,3% (n = 9) no sétimo dia. No entanto, 18,3% (n = 3) das amostras nasofaríngeas permaneceram positivas no 21º de acompanhamento. O ensaio quimioluminescente foi positivo em 75% (n = 12) dos profissionais no dia 21 (Tabela 3).

FATORES DE RISCO PARA SARS-COV-2 NO AMBIENTE DE TRABALHO
Na análise bivariada, a variável estrato socioeconômico foi associada a resultado positivo do teste RT-PCR (Fisher = 14,08; p = 0,03176). Nenhuma associação foi observada entre as variáveis relacionadas a equipamentos de proteção pessoal, nível de risco e percepção de risco e o resultado do RT-PCR (p > 0,05).
O modelo de regressão de Poisson avaliou que profissionais que têm maior tempo de deslocamento de casa para o trabalho tiveram 1,02 vezes mais risco de ter um RT-PCR positivo do que aqueles que têm tempos de deslocamento menores. Não foi encontrada associação
entre o modo de transporte e os resultados do RT-PCR. Além disso, esse modelo observou que os profissionais que tinham parceiros trabalhando na modalidade remota tinham um fator protetivo. Os profissionais com parceiros trabalhando de casa tinham 4,5 menos chances de apresentar teste positivo para SARS-CoV-2. Por outro lado, as variáveis relacionadas à frequência de higienização das mãos e ao contato com passageiros não tiveram associação com os desfechos avaliados (Tabela 4).

Tabela 1. Variáveis sociodemográficas avaliadas na amostra de profissionais aeroportuários

Variáveis	Total	Feminino	Masculino
	% (n)	% (n)	% (n)
Idade, anos (média ± DP)	36,3±8,2	33±6,0	37±9,0
Tipo sanguíneo			
A (-)	0,9 (2)	0,5 (1)	0,5 (1)
A (+)	29,7 (63)	7,1 (15)	22,6 (48)
AB (+)	0,9 (2)	0,5 (1)	0,5 (1)
B (-)	0,9 (2)	0,0 (0)	0,9 (2)
B (+)	6,1 (13)	2,8 (6)	3,3 (7)
O (-)	3,8 (8)	0,9 (2)	2,8 (6)
O (+)	57,5 (122)	15,1 (32)	42,5 (90)
Etnia			
Afro-colombiano	2,8 (6)	0,9 (2)	1,9 (4)
Brancos	44,8 (95)	13,7 (29)	31,1 (66)
Mestiços	52,4 (111)	12,3 (26)	40,1 (85)
Nível educacional			
Ensino médio	10,8 (23)	3,3 (7)	7,5 (16)
Técnico	39,2 (83)	7,1 (15)	32,1 (68)
Profissional	33,0 (70)	11,8 (25)	21,2 (45)
Especialização	11,8 (25)	2,8 (6)	9,0 (19)
Magistério	5,2 (11)	1,9 (4)	3,3 (7)
Nível econômico			
1	0,5 (1)	0,0 (0)	0,5 (1)
2	22,2 (47)	6,6 (14)	15,6 (33)
3	61,3 (130)	15,6 (33)	45,8 (97)
4	12,7 (27)	4,2 (9)	8,5 (18)
5	2,8 (6)	0,5 (1)	2,4 (5)
6	0,5 (1)	0,0 (0)	0,5 (1)
Total	100,0 (212)	26,8 (57)	73,1 (155)

DP = desvio-padrão.

DISCUSSÃO

A globalização aumentou a mobilização de passageiros e a troca comercial. Esses são elementos cruciais para o funcionamento da economia e para o desenvolvimento científico e tecnológico. No entanto, esse processo também envolve riscos associados com a transmissão de doenças infecciosas em aeronaves e em terminais aéreos. Este estudo detectou uma incidência de 7,92% na população de profissionais aeroportuários. Todos os profissionais...
Tabela 2. Condições de trabalho e percepção de risco avaliada na amostra dos profissionais aeroportuários

Variáveis	Sexo	Valor de p		
	Feminino	Masculino		
	n	%	n	%

Nível de risco de acordo com posição					
Baixo	20	9,4	57	26,9	0,97
Médio	30	14,2	80	37,7	
Alto	7	3,3	18	8,5	

Percepção de risco pessoal					
Baixa	6	2,8	17	8,0	
Média	20	9,4	59	27,8	0,90
Alta	31	14,6	79	37,3	

Uso de máscara facial					
Nunca	2	0,9	0	0,0	
Raramente	1	0,5	6	2,8	
Às vezes	6	2,8	30	14,2	0,2
Na maior parte do tempo	5	2,4	27	12,7	
Sempre	43	20,3	92	43,4	

Tempo acumulado de treinamento					
sobre a prevenção da COVID-19					
Nenhum treinamento	0	0,0	3	1,4	
< 2 h	42	19,8	100	47,2	0,31
> 2 h	15	7,1	52	24,5	
Total	57	26,9	155	73,1	

COVID-19 = doença do coronavírus 2019.

Tabela 3. Resultados do teste de reação em cadeia da polimerase em tempo real (RT-PCR) e anticorpos nos profissionais acompanhados por 21 dias

Profissional	Dia 7	Dia 14	Dia 21			
	RT-PCR	Ensaio quimioluminescente	RT-PCR	Ensaio quimioluminescente	RT-PCR	Ensaio quimioluminescente
1	Pos	Neg	Neg	Neg	Neg	Pos
2	Pos	Neg	Neg	Neg	Neg	Pos
3	Pos	Neg	Pos	Neg	Neg	Pos
4	Pos	Neg	Neg	Neg	Neg	Neg
5	Pos	Neg	Neg	Pos	Neg	Pos
6	Pos	Neg	Neg	Pos	Neg	Pos
7	Pos	Neg	Pos	Pos	Neg	Pos
8	Pos	Neg	Neg	Pos	Neg	Pos
9	Pos	Pos	Neg	Pos	Neg	Pos
10	Pos	Neg	Neg	Neg	Neg	Pos
11	Pos	Neg	Pos	Pos	Neg	Pos
12	Pos	Neg	Neg	Neg	Neg	Pos
13	Pos	Neg	Pos	Pos	Pos	Pos
14	Pos	Neg	Pos	Pos	Pos	Pos
15	Pos	Neg	Pos	Pos	Pos	Neg
16	Pos	Neg	Pos	Pos	Pos	Pos

Neg = negativo; Pos = positivo.
que tiveram testes RT-PCR positivos para SARS-CoV-2 estavam assintomáticos, e não houve relatos de infecção nas famílias desses profissionais. Da mesma forma, este estudo observou que a população de profissionais com maior tempo de deslocamento de casa para o trabalho teve 1,02 vezes mais risco de testar positivo no RT-PCR.

Tanto quanto sabemos, este é o primeiro artigo a relatar quanto à infecção por SARS-CoV-2 em profissionais aeroportuários. Os achados apresentados aqui são relevantes na medida em que essa é uma população raramente estudada em contextos epidêmicos. Por outro lado, nenhum paciente teve desenvolvido sintomas clínicos é marcante. Esse fato é relevante porque os portadores assintomáticos do vírus representam um risco, já que não sabem que têm o diagnóstico e que precisam fazer isolamento e são potenciais transmissores do vírus antes do embarque ou para pessoas próximas, por meio de diferentes modos de transmissão, incluindo através do ar, respingos, contato e contaminação de superfícies. A identificação precoce e o isolamento de portadores assintomáticos pode ajudar a prevenir a transmissão para pessoas como colegas e passageiros, além de evitar possíveis surtos no local de trabalho.

Na nossa análise, a maioria das pessoas que testaram negativo eram jovens; esse resultado é similar à distribuição etária de casos confirmados relatados em outros estudos. No entanto, diferentes estudos mostraram que essa faixa etária não é um fator protetivo.

Quanto aos fatores de risco, este estudo encontrou que os profissionais que passaram mais tempo se deslocando da casa para o trabalho tinham maior risco de ter um RT-PCR positivo do que aqueles que têm tempos de deslocamento menores. Embora nosso achado não tenha identificado uma associação entre o modo de transporte e o tempo de duração, é sabido que os cidadãos que usam transporte público tendem a passar mais tempo no trânsito do que aqueles que usam transporte particular. No caso da pandemia, alguns autores mostraram associação entre os usos de transporte público como um potencial vetor para a transmissão de SARS-CoV-2. Além disso, diferentes cidades na China identificaram o papel do transporte público na disseminação da infecção no início de fevereiro. No entanto, até hoje há dados empíricos limitados para quantificar o risco de adquirir SARS-CoV-2 associada a aerossóis no transporte público.

Neste estudo, foi encontrada uma alta frequência do uso de máscaras: 78,8%. Esse é um achado marcante, tendo em vista que a diretriz da OMS apoiando o uso massivo de proteção respiratória para a comunidade em geral não tinha sido publicada antes de abril de 2020.

Tabela 4. Modelo de regressão para fatores de risco na transmissão da COVID-19 entre profissionais aeroportuários

Variável	RR ajustada	IC95%	Valor de p	
		Inferior	Superior	
Idade	0,984	0,920	1,052	0,635
Etnia	1,143	0,653	2,000	0,640
Sexo	1,325	0,414	4,244	0,636
Nível educacional	1,162	0,628	2,150	0,632
Estrato socioeconômico	1,712	0,746	3,929	0,205
Número de pessoas na residência	0,965	0,566	1,647	0,897
Número de pessoas na residência que trabalham	0,973	0,379	2,498	0,954
Modalidade de trabalho das pessoas que moram juntos	0,222	0,064	0,776	0,018
Tempo de deslocamento (casa-trabalho-casa)	1,021	1,002	1,041	0,029
Doença cardiovascular	0,939	0,186	4,748	0,939
Frequência de higienização das mãos	0,658	0,194	2,240	0,504
Meio de transporte	1,342	0,796	2,262	0,269
Contato com passageiros	2,160	0,274	16,881	0,465

95%CI = intervalo de confiança de 95%; COVID-19 = doença do coronavírus 2019; RR = razão de risco.
Embora não estivesse associado a um fator protetivo no nosso estudo, estudos recentes mostraram que o uso da máscara facial reduz o risco de infecção por SARS-CoV-2. Uma metanálise recentemente publicada observou que o uso desse tipo de proteção pode resultar na redução do risco de infecção pelo vírus [razão de chances (RC) 0,15; IC 95% 0,07-0,34]32.

Não foram encontradas associações com outras variáveis relacionadas às condições de trabalho, como cargo, modo de transporte ou duração do turno trabalhado. Entretanto, o comportamento relacionado ao nível de risco varia de acordo com as demandas de cada profissional, e a percepção individual de risco foi um fator notável no estudo. Embora não tenha sido encontrada correlação entre as variáveis, foi observado que a percepção de risco individual era maior do que a avaliação de risco relacionada ao cargo. Isso relaciona-se com a fato de que, quando o estudo foi feito, os níveis de conhecimento quanto à transmissão do vírus em ambientes de trabalho não relacionados à área da saúde não eram tão amplos.

Estudos que avaliaram a percepção de risco comparando o ambiente de trabalho e a COVID-19 concluíram que o nível de risco autopercebido era previsto por gênero (mulheres), área de residência e se tinham ou não filhos33. Por outro lado, foi identificado que esse nível de risco autopercebido favorece a adoção de comportamentos e condutas que reduzem o risco de infecção34.

Os resultados deste estudo apresentam algumas limitações. Primeiramente, o número de profissionais incluídos no estudo não representa todos os profissionais do aeroporto, já que o modelo de estudo foi para uma população específica, com um local e tempo definidos, medindo a exposição e a doença simultaneamente, o que limita a possibilidade de fazer inferências quanto à causalidade35. Em segundo lugar, a associação da RC pode subestimar a relação, principalmente considerando que a frequência de apresentação da infeção por SARS-CoV-2 nessa população foi baixa. Por fim, é relevante considerar os aspectos relacionados às condições em que as amostras foram retiradas e a habilidade do RT-PCR de identificar o RNA viral nos primeiros dias de infecção, que podem ocorrer mesmo tendo sido considerados e mesmo que tenha sido feito treinamento no time de pesquisa para coleta, acondicionamento e processamento das amostras.

A geração de informações para implementar estratégias que protejam os profissionais, considerada a pandemia, terá impactos de curto e longo prazo, tendo em vista que é um grupo de profissionais que será afetado pela pandemia atualmente ou no futuro. Além disso, planos de controle mais eficientes para o manejo da pandemia nos aeroportos causam um impacto econômico menos severo para esses locais36.

Em conclusão, o presente estudo investigou os fatores de trabalho para infeção pela COVID-19 em uma população de alto risco, que está em contato interpessoal com viajantes que podem ser portadores assintomáticos de doenças infecciosas com risco pandêmico. Nosso resultado indica o risco de infecção assintomática de SARS-CoV-2 entre os profissionais aeroportuários. O controle do fator de risco pode ajudar a prevenir novos surtos e a garantir a proteção dos profissionais aeroportuários e das pessoas próximas deles.

AGRADECIMENTOS

Os autores agradecem a Tomás Aragón, Luis Soto, Jairo Larrarte e Sorent Chacón, do Aeroporto Internacional El Dorado. Além disso, os autores fazem um agradecimento especial à Eliana Parra, ao Professor Owen Harrison e ao Professor Edgar Ibáñez, pelos comentários na versão final do manuscrito.

REFERÊNCIAS

1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239-42.
2. República de Colombia, Ministerio del Interior de Colombia. Decreto número 457 de 2020. Bogotá: Ministerio del Interior; 2020 [citado em 09 dic. 2020]. Disponible en: https://dapre.presidencia.gov.co/normativa/normativa/DECRETO%20457%20DEL%202020.pdf
3. Peck AJ, Newbern EC, Felkin DR, Issakbaeva ET, Park BJ, Fehr J, et al. Lack of SARS transmission among healthcare workers, United States. Emerg Infect Dis. 2004;10(2):217-24.
4. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers exposed to infection or disease: a key factor in containing risk of COVID-19 infection. PLoS ONE. 2020;15(4):e0232452.

5. Burdorf A, Porru F, Rugulies R. The COVID-19 (Coronavirus) pandemic: consequences for occupational health. Scand J Work Environ Health. 2020;46(3):229-30.

6. Quilty BJ, Clifford S, Flasche S, Eggo RM, CMMID nCoV working group. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro Surveill. 2020;25(5):2000080.

7. Zhang N, Zhao P, Li Y. Increased infection severity in downstream cities in infectious disease transmission and tourists surveillance analysis. J Theor Biol. 2019;470:20-9.

8. Parry-Ford F, Boddington N, Pebody R, Phin N, Incident Management Team. Public health response to two incidents of confirmed MERS-CoV cases travelling on flights through London Heathrow Airport in 2014 - lessons learnt. Euro Surveill. 2015;20(18):21114.

9. Lochlainn LN, Mandal S, Sousa R, Paranthaman K, van Binnendijk R, Ramsay M, et al. A unique measles B3 cluster in the United Kingdom and the Netherlands linked to air travel and transit at a large international airport, February to April 2014. Euro Surveill. 2016;21(3).

10. Katz R. Use of revised International Health Regulations during influenza A (H1N1) epidemic, 2009. Emerg Infect Dis. 2009;15(8):1165-70.

11. Baker MG, Thornley CN, Mills C, Roberts S, Perera S, Peters J, et al. Transmission of pandemic A/H1N1 2009 influenza on passenger aircraft: retrospective cohort study. BMJ. 2010;340:c2424.

12. Aeropuerto El Dorado. Estadísticas 2019 2020. Acesso em: 08/01/2020. Disponível em: https://eldorado.aero/comunicados/estadisticas-del-aeropuerto

13. PLOS Medicine Editors. Observational studies: getting clear about transparency. PLoS Med. 2014;11(8):e1001711.

14. Dean AG, Sullivan KM, Soe MM. OpenEpi: Open Source Epidemiologic Statistics for Public Health [cited 2020 Apr. 8]. Available from: https://www.openepi.com/BriefDoc/About.htm

15. World Health Organization (WHO). Protocol for assessment of potential risk factors for 2019-novel coronavirus (COVID-19) infection among health care workers in a health care setting. Geneva: WHO; 2020 [cited 2020 Mar. 31]. Available from: https://www.who.int/publications-detail/protocol-for-assessment-of-potential-risk-factors-for-2019-novel-coronavirus-(2019-ncov)-infection-among-health-care-workers-in-a-health-care-setting

16. Pedroza I, Suárez-Álvarez J, García-Cueto E. Evidencias sobre la validez de contenido: avances teóricos y métodos para su estimación. Accion Psicol. 2014;10(2):3-18.

17. Instituto Nacional de Salud. Guía para la vigilancia por laboratorio del virus de la influenza y otros virus respiratorios. Bogotá, Colombia, 2017. Acesso em: 08/01/2020. Disponível em: https://www.ins.gov.co/busador-eventos/Informacion%20de%20laboratorio/Guia%20para%20la%20Vigilancia%20por%20Laboratorio%20Virus%20Respiratorios.pdf

18. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.

19. Infantino M, Grossi V, Lari B, Bambi R, Perri A, Manneschi M, et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol. 2020;92(9):1671-5.

20. Riffenburgh RH. Statistical testing, risks, and odds in medical decisions. In: Riffenburgh R, editor. Statistics in Medicine. 2nd ed. Burlington: Academic Press; 2006. p. 93-114.

21. Warner P. Poisson regression. J Fam Plann Reprod Health Care. 2015;41(3):223-4.

22. Sroka CJ, Nagaraja HN. Odds ratios from logistic, geometric, Poisson, and negative binomial regression models. BMC Med Res Methodol. 2018;18(1):112.

23. Ikonen N, Savolainen-Kopra C, Enstone JE, Kulmala I, Pasanen P, Salmela A, et al. Deposition of respiratory virus pathogens on frequently touched surfaces at airports. BMC Infect Dis. 2018;18(1):437.

24. Murti M, Whelan M, Saunders A, Hohenadel K, Gubbay J, Buchan S. Surveillance of persons-who-tested negative for COVID-19 in Ontario, January 22–February 22, 2020. Can Commun Dis Rep. 2020;46(5):150-4.

25. Bajema KL, Oster AM, McGovern OL, Lindstrom S, Stenger MR, Anderson TC, et al. Persons evaluated for 2019 novel coronavirus - United States, January 2020. MMWR Morb Mortal Wkly Rep. 2020;69(6):166-70.

26. Sun Z, Zhang N, Li Y, Xu X. A systematic review of chest imaging findings in COVID-19. Quant Imaging Med Surg. 2020;10(5):1058-79.

27. Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184-7.

28. Anderson EL, Turnham P, Griffin JR, Clarke CC. Consideration of the aerosol transmission for COVID-19 and public health. Risk Anal. 2020;40(5):902-7.

29. Zheng R, Xu Y, Wang W, Ning G, Bi Y. Spatial transmission of COVID-19 via public and private transportation in China. Travel Med Infect Dis. 2020;34:101626.

30. Zhao S, Zhuang Z, Ran J, Lin J, Yang G, Yang L, et al. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: a data-driven correlational report. Travel Med Infect Dis. 2020;33:101568.

31. World Health Organization (WHO). Advice on the use of masks in the context of COVID-19: interim guidance, 6 April 2020. Geneva: WHO; 2020 [cited 2020 Dec. 09]. Available from: https://apps.who.intiris/bitstream/handle/10665/331693/WHO-2019-nCoV-IPC_Masks-2020-3-eng.pdf?sequence=1&isAllowed=y

32. Chu DK, Al-Smadi H, Duda S, Al-Abbasi A, AlMarzooqi A, Sehrawat A, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-87.

33. Karasneh R, Al-Azzam S, Muflih S, Soudah O, Hawamdeh S, Khader Y. Media’s effect on shaping knowledge, awareness risk perceptions and communication practices of pandemic COVID-19 among pharmacists. Res Social Adm Pharm. 2020;15(4):371-380.
34. Duan T, Jiang H, Deng X, Zhang Q, Wang F. Government intervention, risk perception, and the adoption of protective action recommendations: evidence from the COVID-19 prevention and control experience of China. Int J Environ Res Public Health. 2020;17(10):3387.

35. Álvarez-Hernández G, Delgado-DelaMora J. Diseño de estudios epidemiológicos. I. El estudio transversal: tomando una fotografía de la salud y la enfermedad. Bol Clin Hosp Infant Edo Son. 2015;32(1):26-34.

36. Chung LH. Impact of pandemic control over airport economics: reconciling public health with airport business through a streamlined approach in pandemic control. J Air Transp Manag. 2015;44:42-53.