Nonexistence of quasi-harmonic sphere with large energy

Jiayu Lia, Yunyan Yangb

aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China
bDepartment of Mathematics, Information School, Renmin University of China, Beijing 100872, P. R. China

Abstract

Nonexistence of quasi-harmonic spheres is necessary for long time existence and convergence of harmonic map heat flows. Let \((N, h) \) be a complete noncompact Riemannian manifolds. Assume the universal covering of \((N, h)\) admits a nonnegative strictly convex function with polynomial growth. Then there is no quasi-harmonic spheres \(u : \mathbb{R}^n \to N \) such that

\[
\lim_{r \to \infty} r^n e^{-\frac{|x|^2}{4}} \int_{|x| \leq r} e^{-\frac{|u|^2}{4}} |\nabla u|^2 dx = 0.
\]

This generalizes a result of the first named author and X. Zhu (Calc. Var., 2009). Our method is essentially the Moser iteration and thus very simple.

Key words: Quasi-harmonic sphere; Harmonic map heat flow

2000 MSC: 58E20, 53C43

1. Introduction

Let \((N, h)\) be a complete noncompact Riemannian manifolds. By the Nash embedding theorem, there exists sufficiently large \(K \) such that \((N, h)\) is isometrically embedded in \(\mathbb{R}^K \). We say that a map \(w : \mathbb{R}^n \to N \hookrightarrow \mathbb{R}^K \) is a quasi-harmonic sphere if it satisfies

\[
\Delta u = \frac{1}{2} x \cdot \nabla u + A(u)(\nabla u, \nabla u),
\]

where \(A(\cdot, \cdot) \) is the second fundamental form of \((N, h)\) in \(\mathbb{R}^K \). The Quasi-harmonic sphere arose from the study of singularities of harmonic map heat flows \[3, 7\]. It is closely related to the global smoothness and convergence of the harmonic map heat flow \[1, 2, 3\].

In \[6\], we have proved that if the universal covering of \((N, h)\) admits a nonnegative strictly convex function with polynomial growth, then there is no quasi-harmonic spheres of finite energy, namely

\[
\int_{\mathbb{R}^n} e^{-\frac{|u|^2}{4}} |\nabla u|^2 dx < \infty.
\]

The proof is based on the monotonicity inequality for \(u \) and John-Nirenberg inequality. In this note, we will use the Moser iteration to prove a stronger result. Precisely we have the following:
Theorem 1.1 Let (N, h) be a complete Riemannian manifold. Assume that u is a quasi-harmonic sphere from \mathbb{R}^n ($n \geq 3$) to (N, h). Let (\tilde{N}, \tilde{h}) be the universal covering of (N, h). Suppose (\tilde{N}, \tilde{h}) admits a nonnegative strictly convex function $\tilde{f} \in C^2(\tilde{N})$ with polynomial growth, i.e. $\nabla^2 \tilde{f}(y)$ is positive definite for every $y \in \tilde{N}$ and

$$\tilde{f}(y) \leq C(1 + \tilde{d}(y, y_0))^{2m}$$

for some $y_0 \in \tilde{N}$ and positive integer m, where $\tilde{d}(y, y_0)$ is the distance between y and y_0. If

$$\lim_{r \to \infty} r^n e^{-\frac{r^2}{4}} \int_{|x| \leq r} e^{-\frac{|u|^2}{r^2}} |\nabla u|^2 dx = 0,$$ \hspace{1cm} (1.3)

then u is a constant map.

We remark that if u satisfies (1.3), then its energy $\int_{\mathbb{R}^n} e^{-\frac{|u|^2}{r^2}} |\nabla u|^2 dx$ may be infinite. In this sense, the conclusion of Theorem 1.1 is stronger than that of [6]. When (N, h) is the standard real line \mathbb{R}, the quasi-harmonic sphere becomes a quasi-harmonic function, which is a solution to the equation

$$\Delta u - \frac{1}{2} x \cdot \nabla u = 0 \quad \text{in} \quad \mathbb{R}^n.$$

To prove Theorem 1.1, here we will use the Moser iteration instead of using the monotonicity inequality for quasi-harmonic sphere and the John-Nirenberg inequality for BMO space in [6]. Avoiding hard work from harmonic analysis, our method looks very simple.

A special case of Theorem 1.1 is the following:

Corollary 1.2 Let u be a quasi-harmonic function. If (1.3) is satisfied, then u is a constant.

In view of Theorem 4.2 in [5], any positive quasi-harmonic function $u : \mathbb{R}^n \to \mathbb{R}$ with polynomial growth must be a constant. This is based on the gradient estimate. Its assumption can be interpreted by

$$\int_{|x| \leq r} e^{-\frac{|u|^2}{r^2}} |\nabla u|^2 dx \leq C(n)P(r),$$ \hspace{1cm} (1.4)

where $C(n)$ is a universal constant and $P(r)$ is a polynomial with respect to r. Obviously the hypothesis (1.3) is much weaker than (1.4). Hence the conclusion of Corollary 1.2 is better than that of Theorem 4.2 in [5].

In the remaining part of this note, we will prove Theorem 1.1.

2. Proof of Theorem 1.1

Let $u : \mathbb{R}^n \to (N, h) \to \mathbb{R}^K$ be a quasi-harmonic sphere satisfying (1.1). Denote

$$w(r) = \int_{S^{n-1}} (2|u|^2 - |\nabla u|^2) d\theta = \int_{S^{n-1}} (|u|^2 - \frac{1}{r^2} |u|^2) d\theta.$$ \hspace{1cm} (2.1)
It follows from (1.1) that \(\langle \Delta u, u_r \rangle = \frac{\partial}{\partial r} |u_r|^2 \), and thus \(\int_{S^{n-1}} \langle \Delta u, u_r \rangle d\theta = \frac{\partial}{\partial r} \int_{S^{n-1}} |u_r|^2 d\theta \). Integration by parts implies

\[
\frac{d}{dr} w(r) = \int_{S^{n-1}} \left(\frac{2}{r} |u_r|^2 + \left(r - \frac{2n - 2}{r} \right) |u_r|^2 \right) d\theta. \tag{2.2}
\]

For details of deriving (2.2), we refer the reader to [6].

Lemma 2.1 Let \(w(r) \) be defined by (2.1), \(w^+(r) \) be the positive part of \(w(r) \), and \(u \) be a quasi-harmonic sphere from \(\mathbb{R}^n \) to \((N, h) \). Suppose

\[
\int_0^\infty e^{-\frac{r^2}{4}} w^+(r)r^{n-1} dr \leq o(r^n e^{\frac{r^2}{4}}) \quad \text{as} \quad r \to \infty. \tag{2.3}
\]

Then there exists a constant \(C \) depending only on \(n \) and \(w(2n) \) such that

\[
\int_{\mathbb{R}^n} (d_N(u(x), u(0)))^2 \ dx \leq Cr^{n+1},
\]

where \(d_N(\cdot, \cdot) \) denotes the distance function on \((N, h) \).

Proof. We can see from (2.2) that \(w'(r) \geq 0 \) for \(r \geq \sqrt{2n - 2} \). We claim that \(w(r) \leq 0 \) for every \(r \geq \sqrt{2n - 2} \). Suppose not, there exists some \(r_0 \geq \sqrt{2n - 2} \) such that \(w(r_0) > 0 \). Then \(w(r) \geq w(r_0) > 0 \) for every \(r > r_0 \) and

\[
w'(r) \geq \left(r - \frac{2n - 2}{r} \right) w(r). \tag{2.4}
\]

We have by integrating \(w'(r)/w(r) \) from \(r_0 \) to \(r \)

\[
w(r) \geq w(r_0) e^{r_0/r} r^{2n-2} e^{-\frac{2n-2}{r} r^n}.
\]

Hence

\[
\int_{r_0}^\infty e^{-\frac{r^2}{4}} w(r)r^{n-1} dr \geq w(r_0) e^{r_0/r} \int_{r_0}^\infty r^{1-n} e^{-\frac{2n-2}{r} r^n} dr
\]

\[
\geq w(r_0) e^{r_0/r} \int_{r_0}^\infty r e^{\frac{r^2}{4}} dr
\]

\[
= 2w(r_0) e^{r_0/r} \int_{r_0}^\infty r^{n-2} e^{-\frac{2n-2}{r} r^n} dr.
\]

This contradicts the assumption (2.3) and thus confirms our claim.

Now we estimate the growth order of the integral \(\int_{\mathbb{R}^n} (d_N(u(x), u(0)))^2 \ dx \). For simplicity, we denote \(d_N(u(x), u(0)) \) by \(d_N(x) \). In the polar coordinates in \(\mathbb{R}^n \), we always identify \((r, \theta) \) with \(x \). Notice that \(d_N(r, \theta) \leq \int_0^r |u_r| ds \) and one needs the following estimates, which can be obtained by
using the Hölder inequality, the above claim, (2.1) and (2.4).

\[
\int_{S^{n-1}} \left(\int_0^r |u_r| ds \right)^2 d\theta \leq \int_{S^{n-1}} r \left(\int_0^r |u_r|^2 ds \right) d\theta \leq r \int_0^{2n} \int_{S^{n-1}} |u_r|^2 d\theta ds + r \int_{2n}^{\infty} \int_{S^{n-1}} |u_r|^2 d\theta ds \leq Cr + r \int_{2n}^{\infty} \frac{w'(s)}{s^{n-2}} ds \leq Crw(s)ds \leq Crw(2n) \leq Cr,
\]

where \(C \) is a constant depending only on \(n \) and \(w(2n) \). Hence we have

\[
\int_{B_r} d_n^2(x)dx \leq \int_0^{2n} \int_{S^{n-1}} \left(\int_0^r |u_r| ds \right)^2 d\theta \leq C \int_0^{r^2} t^{n-1} dt \leq C r^{n+1}.
\]

This concludes the lemma. \(\square \)

The following Lemma is elementary:

Lemma 2.2 For every function \(f \) defined on \(\mathbb{R}^n \), if there exists \(k \in \mathbb{N} \) such that

\[
\int_{B_r} |f(x)| dx \leq C_1 r^k + C_2
\]

for some constants \(C_1 \) and \(C_2 \), then we have

\[
\int_{\mathbb{R}^n} e^{-\frac{|x|^2}{4}} |f(x)| dx < \infty.
\]

Proof. For sufficiently large \(r \), it is easy to see that

\[
\int_{\mathbb{R}^n \setminus B_r} e^{-\frac{|x|^2}{4}} |f(x)| dx = \sum_{j=1}^{\infty} \int_{B_{2^j} \setminus B_{2^{j-1}}} e^{-\frac{|x|^2}{4}} |f(x)| dx \leq \sum_{j=1}^{\infty} e^{-4^{-2j^2}} \int_{B_{2^j}} |f(x)| dx \leq \sum_{j=1}^{\infty} e^{-4^{-2j^2}} (2^k) C_1 r^k + C_2) \leq Cr^k e^{-\frac{|x|^2}{4}}.
\]
for some constant C depending only on C_1 and C_2. This immediately implies

$$
\lim_{r \to \infty} \int_{\mathbb{R}^n \cap B_r} e^{-\frac{|x|^2}{4}} |f(x)| \, dx = 0,
$$

and thus gives the desired result. \qed

We will use the Moser iteration of the following simple version (see for example Chapter 8 in [8]):

Theorem A Let $u \geq 0$ be a weak solution of $\text{div}(a\nabla u) \geq 0$ in $B_{2\delta}(x_0)$, where $\delta > 0$ is a constant, $x_0 \in \mathbb{R}^n$, $a = a(x)$ satisfies $0 < \lambda \leq a(x) \leq \Lambda$ in $B_{2\delta}(x_0)$. Then for any $p > 0$, there exists a constant C depending only on Λ/λ, n and p such that

$$
\sup_{B_{\delta}(x_0)} u \leq C \left(\frac{1}{|B_{2\delta}(x_0)|} \int_{B_{2\delta}(x_0)} u^p \, dx \right)^{1/p}.
$$

For application of Theorem A, the following observation is crucial:

Lemma 2.3 Let $\rho(x) = e^{-\frac{|x|^2}{4}}$ on \mathbb{R}^n. Then for all $r > 1$ and $x^* \in \mathbb{B}_r = \{x \in \mathbb{R}^n : |x| \leq r\}$, there holds

$$
\sup_{x, y \in \mathbb{B}_r(x^*)} \frac{\rho(x)}{\rho(y)} \leq e^2.
$$

Proof. Assume $x \in \mathbb{B}_{\frac{3}{4}}(x^*)$. It is easy to see that

$$
\left(|x^-|^2 - \frac{2}{r} \right)^2 \leq |x|^2 \leq \left(|x^-|^2 + \frac{2}{r} \right)^2.
$$

Hence for $x, y \in \mathbb{B}_{\frac{3}{4}}(x^*)$,

$$
\frac{\rho(x)}{\rho(y)} \leq \exp \left(\frac{1}{4} \left(|x^-|^2 + \frac{2}{r} \right)^2 - \frac{1}{4} \left(|x^-|^2 - \frac{2}{r} \right)^2 \right) \leq \exp \left(\frac{2|x^-|^2}{r} \right).
$$

Note that $x^* \in \mathbb{B}_{\frac{3}{4}}$, we get the desired result. \qed

Now we are ready to prove Theorem 1.1 by using Theorem A.

Proof of Theorem 1.1. Let $\tilde{f} \in C^2(\tilde{N})$ be a nonnegative strictly convex function with polynomial growth, $u : \mathbb{R}^n \to (N, h) \leftrightarrow \mathbb{R}^K$ be a quasi-harmonic sphere, and $\tilde{u} \in C^2(\tilde{N})$ be a lift of u. Define a function $\phi = \tilde{f} \circ \tilde{u}$. Let $\rho(x) = e^{-\frac{|x|^2}{4}}$. Then we have by a straightforward calculation

$$
\text{div}(\rho \nabla \phi) = \rho \nabla^2 \tilde{f}(\tilde{u}(x))(\nabla \tilde{u}, \nabla \tilde{u}) \geq 0.
$$

(2.5)
Assume $x^* \in \mathbb{B}_r$, such that $\phi(x^*) = \sup_{\mathbb{B}_r} \phi$. It follows from the weak maximum principle for (2.5) that $x^* \in \partial \mathbb{B}_r$. By Lemma 2.3, we can apply Theorem A to the equation (2.5) in the ball $\mathbb{B}_{\frac{1}{2}}(x^*)$. This together with the hypothesis on \tilde{f} implies that for any $p > 0$ and $r > 1$

$$\left(\frac{1}{|\mathbb{B}_r|} \int_{\mathbb{B}_r} \phi^2 \, dx \right)^{1/2} \leq \sup_{\mathbb{B}_r} \phi \leq \sup_{\mathbb{B}_{\frac{1}{2}}(x^*)} \phi \leq C \left(\frac{1}{|\mathbb{B}_{\frac{1}{2}}(x^*)|} \int_{\mathbb{B}_{\frac{1}{2}}(x^*)} \phi^p \, dx \right)^{1/p} \leq C r^{n/p} \left(\int_{\mathbb{B}_{\frac{1}{2}}(x^*)} \phi^p \, dx \right)^{1/p} \leq C r^{n/p} \left(\int_{\mathbb{B}_{\frac{1}{2}}(x^*)} (1 + \tilde{d}^{2mp}(x)) \, dx \right)^{1/p},$$

where $\tilde{d}(x) = \tilde{d}_{\tilde{N}}(\tilde{u}(x), \tilde{u}(0))$ denotes the distance between $\tilde{u}(x)$ and $\tilde{u}(0)$ on the universal covering space \tilde{N} of N. C is some constant depending only on n and p. Clearly the assumption (1.3) implies (2.3). Notice that Lemma 2.1 still holds when u is replaced by \tilde{u}, we have by choosing $p = 1/m$ in the above inequality,

$$\int_{\mathbb{R}^n} \phi^2 \, dx \leq C r^{n+2(n+1)2m},$$

where C is a constant depending only on n, m and \tilde{u}. From Lemma 2.2, we can see that

$$\int_{\mathbb{R}^n} \rho \phi^2 \, dx < \infty. \quad (2.6)$$

Take a cut-off function $\eta \in C_0^\infty(\mathbb{B}_{2r})$, $\eta \geq 0$ on \mathbb{B}_{2r}, $\eta \equiv 1$ on \mathbb{B}_r, and $|\nabla \eta| \leq \frac{2}{r}$. Testing the equation (2.5) by $\eta^2 \phi$, we obtain

$$\int_{\mathbb{R}^n} \eta^2 \rho |\nabla \phi|^2 \, dx \leq - \int_{\mathbb{R}^n} 2 \eta \rho \eta \nabla \eta \nabla \phi \, dx \leq 2 \left(\int_{\mathbb{R}^n} \eta^2 \rho |\nabla \phi|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}^n} \phi^2 \rho |\nabla \eta|^2 \, dx \right)^{1/2}.$$

This together with (2.6) leads to

$$\int_{\mathbb{B}_r} \rho |\nabla \phi|^2 \, dx \leq \frac{C}{r^2}$$

for some constant C depending only on the integral in (2.6). Passing to the limit $r \to \infty$, we have $|\nabla \phi| \equiv 0$, which together with (2.5) and that $\nabla^2 \tilde{f}$ is positive definite implies that $|\nabla \tilde{u}| \equiv 0$. Hence \tilde{u} is a constant map and thus u is also a constant map. \hfill \square

Acknowledgements The first author is partly supported by the National Science Foundation of China. The second author is partly supported by the NCET program.
References

[1] K. Chang, W. Ding and R. Ye: Finite time blow-up of the heat flow of harmonic maps, *J. Diff. Geom.* **36**: 507-515, 1992.

[2] W. Ding and F. Lin: A generalization of Eells-Sampson’s theorem, *J. Partial Diff. Eq.* **5**: 13-22, 1992.

[3] J. Li and G. Tian: A blow up formula for stationary harmonic maps, *Inter. Math. Res. Notices* **14**: 735-755, 1998.

[4] M. Struwe: On the evolution of harmonic maps in higher dimensions, *J. Diff. Geom.* **28**: 485-502, 1988.

[5] J. Li and M. Wang: Liouville theorems for self-similar solutions of heat flows, *J. Eur. Math. Soc.* **11**: 207-221, 2009.

[6] J. Li and X. Zhu: Non existence of quasi-harmonic spheres, *Cal. Var.*, 2009, DOI 10.1007/s00526-009-0271-0

[7] F. Lin and C. Wang: Harmonic and quasi-harmonic spheres, *Commun. Anal. Geom.* **7**: 397-429, 1999.

[8] D. Gilbarg and N. Trudinger: Elliptic partial differential equations of second order. Springer-Verlag Berlin Heidelberg, 2001.