Detangling PPI Networks to Uncover Functionally Meaningful Clusters

Sarah Hall-Swan, Jake Crawford, Rebecca Newman, Lenore J. Cowen

Department of Computer Science, Tufts University
Community Detection

• Using only graph-theoretic measures of closeness and density, can we partition a network into meaningful “communities”?
Why is this important biologically?

• Closely connected nodes often share a biological function
• May also be involved in similar pathways, diseases, etc.
Approaches

• Not one right answer to what makes a “best” partition

• Many existing methods optimize different graph-theoretic measures of cluster quality (modularity, conductance)

• Even if criteria is agreed on, exact optimization is often NP-hard
Some popular methods

• Louvain (iterative modularity optimization using local cluster modifications)\(^1\)

• Walktrap (agglomerative clustering via random walks)\(^2\)

• Spectral clustering (dimension reduction, then clustering based on distance/similarity)\(^3\)

• …and many others

\(^1\)Blondel et al. *Journal of statistical mechanics* (2008)

\(^2\)Pons and Latapy. *ISCIS* (2005)

\(^3\)Ng et al. *NIPS* (2001)
We look initially at the Louvain clustering algorithm.

(In the full paper, we explore how our results generalize to other algorithms)
Louvain Clustering: a crash course

- Start with each node assigned to its own community
Louvain Clustering: a crash course

- Consider change in modularity if each node is grouped with its neighbors (this can be computed efficiently)

\[\Delta Q = 0.312 \]

\[\Delta Q = 0.114 \]

\[\Delta Q = 0.459 \]
Louvain Clustering: a crash course

- Assign node to the community that gives the best (most positive) change in modularity

\[\Delta Q = 0.312 \]
\[\Delta Q = 0.459 \]
\[\Delta Q = 0.114 \]
Louvain Clustering: a crash course

- Iterate through all nodes in the network, combining to give the best change in modularity at each step.
Louvain Clustering: a crash course

- Iterate by grouping communities into individual nodes, and repeat until modularity no longer improves
Louvain Clustering

• Note: this process is highly sensitive to the order in which nodes are grouped/compared with their neighbors

• So, the statistics we report (later) are from the median over 10 independently randomized runs

• We also consider a version of Louvain that does not merge clusters if they are bigger than 100 nodes
Importantly, Louvain requires some definition of what it means for two nodes in a network to be “neighbors”.

Our question: **Can we redefine distance to better identify similar genes as neighbors?**
Can we redefine distance to better identify similar genes as neighbors?

We used our favorite distance metric, Diffusion State Distance (DSD)
DSD: A Spectral Distance Metric

- A random walk-based, fine-grained distance measure for biological networks

- We proved DSD is a metric, and converges as the number of walk steps goes to infinity

Details in Cao et al. *PloS one* (2013); Cao et al. *Bioinformatics* (2014)
We claim: detangling the network using DSD distance makes Louvain produce a “better” set of clusters in the network.
But, what is a “better” set of clusters?

• Define a single cluster as “good” using the well-studied notion of functional enrichment; i.e., it has many nodes annotated with the same function

• Even if we agree on what makes a good cluster, it’s not yet obvious what makes a good set of clusters
To identify the functions themselves, we use Gene Ontology annotations.
To identify enriched clusters, we statistically compare cluster size to number of annotations (using the FuncAssociate tool\(^1\))

\[^1\text{Berriz et al. Bioinformatics (2009)}\]

\[\bullet = \text{“annotated with function } f \text{”}\]
Now we know what to look for in each individual cluster.

But, how can we score a partition (i.e., a group of clusters)? How can we judge which of two partitions is “better”?
Idea 1: % of clusters enriched

• Gives a way to compare a set of communities in a global sense

= enriched

= not enriched
Idea 1: % of clusters enriched

● = “annotated with function f”
Idea 1: % of clusters enriched

3 of 4 clusters enriched (75%) 5 of 8 clusters enriched (63%)
Idea 1: % of clusters enriched

- Gives a way to compare a set of communities in a global sense
- But: favors many small, peripheral clusters (or few total clusters)
Idea 2: % nodes in enriched clusters

- Addresses the issue with many small clusters
Idea 2: % of nodes in enriched clusters

● = “annotated with function f”
Idea 2: % of nodes in enriched clusters

12 of 18 nodes in enriched clusters (67%) 9 of 18 nodes in enriched clusters (50%)
Idea 2: % nodes in enriched clusters

• Addresses the issue with many small clusters

• But: favors large clusters (in which many nodes may not be relevant, or may not “belong” in the cluster)
Idea 3: % “correctly clustered” nodes

• Count a node as “correctly clustered” if one of its annotations matches an annotation the cluster is enriched for as a whole.
Idea 3: % “correctly clustered” nodes

- Count a node as “correctly clustered” if one of its annotations matches an annotation the cluster is enriched for as a whole

4 of 6 nodes correctly clustered (67%)
Idea 3: % “correctly clustered” nodes

- Addresses problem of irrelevant nodes in large clusters
- But: can be skewed by missing data, incorrect annotations, etc.
We looked at all 3 of the preceding measures. But, this still includes many general, uninformative annotations.

So...we also looked at enrichment limited to the 5th level of the GO and below.

get rid of these more general terms
keep the specific terms
Redefining neighbors

• Now, we have a way to compare partitions

• We run Louvain directly on the PPI, and compare the resulting partition to what we get when we draw a new, “detangled” graph where nodes of DSD distance $< t$ are considered neighbors.

• We try $t = 4, 4.5, 5, 5.5, 6$.
Results:

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%
Results:

Percent of clusters enriched ("Idea 1")

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%
Results:

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%

Nodes in enriched clusters
Results:

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%

Percent of nodes in enriched clusters, with no GO level filtering ("Idea 2")
Results:

Percent of nodes in enriched clusters, with filtering of terms above the 5th GO level

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%
Results:

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%

Percent of nodes in enriched clusters that have a correct label, with filtering of terms above the 5th GO level (“Idea 3”)
Results: (for Louvain algorithm, with cluster sizes between 3-100)

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	90.5	382	23.69%	1901	31.17%	26.03%	11.26%
4.0	147	192.5	76.36%	1355	22.23%	21.78%	19.39%
4.5	214	305	70.16%	2369.5	38.87%	35.11%	24.89%
5.0	161.5	352	45.88%	2965.5	48.65%	37.11%	16.94%
5.5	87	227.5	38.24%	3643.5	59.77%	32.70%	8.10%
6.0	55.5	180.5	30.75%	2740	44.96%	27.84%	5.26%
We also ran experiments without limiting cluster size, but we often get much different size distributions.

Louvain, no size restriction

Louvain, cluster sizes between 3-100
Results: (for spectral clustering algorithm, with cluster sizes between 3-100)

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	262	324	80.86%	3743	61.38%	55.59%	40.13%
DSD 4.5	208	266	78.19%	1776	29.13%	29.42%	24.07%
DSD 5.0	222	309	71.84%	4143	67.96%	66.48%	43.44%
DSD 5.5	222	291	76.29%	4771	78.26%	72.91%	46.05%
DSD 6.0	204	249	81.93%	5172	84.84%	80.99%	44.79%
Results: (for Walktrap algorithm, with cluster sizes between 3-100)

Method	Enriched Clusters	Total Clusters	% Enriched	# NEC	% NEC U	% NEC F	% NEC S
PPI	61	64	95.31%	5692	93.34%	91.67%	54.41%
DSD 4.0	111	142	78.17%	1493	24.49%	24.21%	19.90%
DSD 4.5	173	215	80.47%	3108	50.98%	48.47%	38.53%
DSD 5.0	126	174	72.41%	4950	81.20%	79.04%	53.82%
DSD 5.5	76	93	81.72%	5780	94.82%	91.67%	48.57%
DSD 6.0	70	81	86.42%	5691	93.36%	90.86%	41.85%
Future Work

• Problem is somewhat artificial (non-overlapping clusters, size limitations) - we’d like to generalize

• We did a small pilot study on the human STRING network and results looked similar, could try other species and types of networks (coexpression, regulatory, etc.)

• Experiment with other ways to control/correct for varying size distributions
Slides will be available shortly on my website:

http://jjc2718.github.io

Thanks to the Tufts Bioinformatics and Computational Biology research group for helpful ideas/critiques!