83mKr calibration of the 2013 LUX dark matter search

D.S. Akerib,1,2,3 S. Alsum,4 H.M. Araújo,5 X. Bai,6 A.J. Bailey,5 J. Balajthy,7 P. Beltrame,8 E.P. Bernard,9,10 A. Bernstein,11 T.P. Biesiadzinski,1,2,3 E.M. Boulton,9,10 P. Brás,12 D. Byram,13,14 S.B. Cahn,10 M.C. Carmona-Benitez,15,16 C. Chan,17 A. Currie,5 J.E. Cutter,18 T.J.R. Davison,8 A. Dobi,19 E. Druszkiewicz,20 B.N. Edwards,10 S.R. Fallon,21 A. Fan,2,3 S. Fiorucci,19,17 R.J. Gaitskell,17 J. Genovese,21 C. Ghag,22 M.G.D. Gilchriese,19 C.R. Hall,7 M. Hanhardt,6,14 S.J. Haselschwarz,16 S.A. Hertel,23,19,10 D.P. Hogan,9 M. Horn,14,9,10 D.Q. Huang,17 C.M. Ignarra,2,3 R.G. Jacobsen,9 W. Ji,1,2,3 K. Kandim,9 K. Kazar,11 D. Khaitan,20 R. Knoche,7 N.A. Larsen,10 B.G. Lenardo,18,11 K.T. Lesko,19 A. Lindote,12 M.I. Lopes,12 A. Manalaysay,18 R.L. Mannino,24,4 M.F. Marzioni,9,19,10 D.-M. Mei,13 J. Mock,21 M. Moongweluwan,20 J.A. Morad,18 A.St.J. Murphy,8 C. Nehrkorn,16 H.N. Nelson,16 F. Neves,12 K. O’Sullivan,3,19,10 K.C. Oliver-Mallory,9 K.J. Palladino,4,2,3 E.K. Pease,11,10 C. Rhyne,117 S. Shaw,16,22 T.A. Shutt,1,3 C. Silva,12 M. Solmaz,16 V.N. Solovov,12 P. Sorensen,19 T.J. Sumner,5 M. Szydagis,21 D.J. Taylor,14 W.C. Taylor,17 B.P. Tennyson,10 P.A. Terman,24 D.R. Tiedt,6 W.H. To,25,2,3 M. Tripathi,18 L. Tvrznikova,19,10 S. Uvarov,18 V. Velan,9 J.R. Verbus,17 R.C. Webb,24 J.T. White,24 T.J. Whitis,1,2,3 M.S. Witherell,19 F.L.H. Wolfs,20 J. Xu,11 K. Yazdani,5 S.K. Young,21 and C. Zhang13

(LUX Collaboration)

1Case Western Reserve University, Department of Physics, 10900 Euclid Ave, Cleveland, OH 44106, USA
2SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94309, USA
4University of Wisconsin-Madison, Department of Physics, 1150 University Ave., Madison, WI 53706, USA
5Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom
6South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City, SD 57701, USA
7University of Maryland, Department of Physics, College Park, MD 20742, USA
8SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
9University of California Berkeley, Department of Physics, Berkeley, CA 94720, USA
10Yale University, Department of Physics, 217 Prospect St., New Haven, CT 06511, USA
11Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551, USA
12LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
13University of South Dakota, Department of Physics, 414E Clark St., Vermillion, SD 57069, USA
14South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, SD 57754, USA
15Pennsylvania State University, Department of Physics, 104 Davey Lab, University Park, PA 16802-6300, USA
16University of California Santa Barbara, Department of Physics, Santa Barbara, CA 93106, USA
17Brown University, Department of Physics, 182 Hope St., Providence, RI 02912, USA
18University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616, USA
19Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
20University of Rochester, Department of Physics and Astronomy, Rochester, NY 14627, USA
21University at Albany, State University of New York, Department of Physics, 1400 Washington Ave., Albany, NY 12222, USA
22Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
23University of Massachusetts, Amherst Center for Fundamental Interactions and Department of Physics, Amherst, MA 01003-9337 USA
24Texas A & M University, Department of Physics, College Station, TX 77843, USA
25California State University Stanislaus, Department of Physics, 1 University Circle, Turlock, CA 95382, USA

(Dated: August 9, 2017)

LUX was the first dark matter experiment to use a 83mKr calibration source. In this paper we describe the source preparation and injection. We also present several 83mKr calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber.
I. 83mRb as a Calibration Source

The LUX experiment searches for galactic dark matter particles scattering on target nuclei in a dual-phase xenon time projection chamber (TPC). Energy depositions in the liquid Xe (LXe) produce observable signals via prompt scintillation (S1) and ionization charge, where liberated electrons drift upwards in an applied electric field and generate a delayed electroluminescence signal (S2) in the gaseous Xe (GXe). Light from both S1 and S2 is detected by photomultiplier tubes (PMTs) situated (S2) in the gaseous Xe (GXe). From the S2 signal, the distribution of photons in the 3D position of an interaction may also be reconstructed. The energy of an event may be inferred from the amplitude of its S1 and S2 signals. Additionally, and of vital importance in rejecting background events, the 3D position of an interaction may also be reconstructed. From the S2 signal, the distribution of photons in the top PMT array localizes the event in the xy-plane. The z position is calculated from the ionization electron drift time, i.e., the time interval separating the S1 and S2 signals.

LUX has made extensive use of 83mKr for calibration purposes. The decay of 83mKr is illustrated in Figure 1. The parent isotope 83Rb is a practical source of 83mKr, due in part to its long half-life of 86.2 d. Once produced, the noble gas 83mKr may diffuse from the generator material into the detector volume, decaying to 83Kr with a half-life of 1.83 h, and releasing a total energy of 41.5 keV. The decay occurs in two transitions of 32.1 and 9.4 keV respectively, with an intervening half-life of 154 ns. These two transitions can each proceed according to multiple decay channels as indicated in Figure 1, but in summary 83mKr exhibits a high probability of internal conversion (IC) followed by Auger emission, resulting in the high concentration of decay energy into electron modes. Two lower-probability modes of photon (gamma or x-ray) emission can occur, with a maximum photon energy of 12 keV.

The first uses of 83mKr as a calibration source were in ALEPH [2] and DELPHI [3], with subsequent deployments at STAR [4] and ALICE [5]. The IC and Auger electrons have served individually as electron energy calibration lines in experiments measuring the tritium spectrum at its endpoint (Mainz [6], Triotisk [7], KATRIN [8], Project 8 [9]). 83mKr is a natural choice for calibrating liquid noble-element dark matter direct detection experiments due to its inert nature and keV-scale decay energy, similar to the energy scales sensed by these experiments. Initial demonstrations of 83mKr calibration in liquid xenon, liquid argon, and liquid neon were performed at Yale University [10,12]. The LXe response of 83mKr has since been studied in detail, including [13] and [14]. It has been used as a calibration source for liquid argon detectors by the SCENE collaboration [15,16], and to characterize a cryogenic distillation system [17].

In a liquid noble environment, the low-energy electrons and photons released by the decay deposit their energy within $\mathcal{O}(10 \mu m)$ of the decay vertex. These separations are much smaller than the spatial resolving power of the LUX detector ($\mathcal{O}(1 \text{ mm})$) or the typical electron diffusion distances during drift (also $\mathcal{O}(1 \text{ mm})$).

We describe here the first use of 83mKr to directly calibrate a dark matter experiment. This paper describes the use of 83mKr during the first (2013) exposure of the LUX experiment [20,21]. The Darkside-50 [22] and XENON1T [23] collaborations have reported similar calibrations.

II. 83mKr Hardware and Mixing

Brookhaven National Laboratory produced the 83Rb for LUX, via proton irradiation of a natRbCl target. Additional Rb radioisotopes can be produced, but with lower efficiency and shorter half-lives (86Rb 18.7 d, 84Rb 32.9 d). The resulting 83Rb is stored in aqueous solution for distribution. After dilution to reduce the specific activity, a measured volume of the 83Rb solution is deposited on several grams of activated coconut carbon mediator (Calgon OVC 4x8). The carbon is baked at $\sim 100^\circ C$ for several hours under vacuum, to remove water and any other volatiles. This charcoal mediator was selected for its low radon emanation rate, previously measured to be 9.4 mBq/kg [24]. Previous studies have found excellent binding of 83Rb to charcoal mediators [11].

The 83Rb-doped mediator is installed in the injection plumbing, as illustrated in Figure 2. To prevent the spreading of possible charcoal particulates, the 83Rb-doped mediator is contained between two sets of particulate filtering, with pore size 15 μm and 0.5 μm. The 83mKr generator plumbing straddles a pressure differential in the main LUX gaseous Xe (GXe) circulation path. During injection this pressure differential motivates flow...
from evaporator \[\begin{array}{c}
\text{Mass Flow Controller} \\
\text{Circulation Pump} \\
83mKr Generator \\
\text{Vacuum Pump}
\end{array} \] to condenser

FIG. 2. Simplified plumbing and instrumentation diagram showing the 83mKr generator (grey background) and its setting for controlled injection. The injection path (red) starts at a high-pressure point on the main Xe circulation path (green) and ends at a low-pressure point near the main circulation pump inlet. A vacuum pump and its associated pump-out line (blue) is used to evacuate the 83mKr generator in some injection sequences. Valves with semicircle handles are automated, all others are manual. Several particulate filters are noted, labeled by their pore diameter. Pressure gauges which play a role in the automated injection script are indicated by circles.

of GXe over the mediator and into circulation. The pressure differential is produced by the main GXe circulation pump, and the rate of GXe flow through the 83mKr generator is controlled using a mass flow controller downstream from the mediator, with a typical control value of 0.50 slpm (much smaller than the flow of the main circulation path). The 83mKr-doped GXe passes through a getter (SAES MonoTorr [25]) containing a 3 nm filter, further mitigating the risk of particulate contamination, or non-noble radioisotope contamination (including by atomic 83Rb) of the detector volume.

To release 83mKr calibration doses of the desired activity and duration, the 83mKr injection system was operated in two modes, depending on the 83Rb activity on the date of injection. For low-activity 83Rb, the valves along the injection flow path (red in Figure 2) were simply opened for a duration proportional to the desired 83mKr dose, typically several minutes. For high-activity 83Rb, the 83mKr generator volume was initially pumped to vacuum to eliminate the relic 83mKr activity prior to injection. In this mode, the injected activity resulted only from 83Rb decays that occur during the injection time window (again an easily-controlled timescale, on the order of minutes).

Calibrations using 83mKr were performed on a regular (typically weekly) schedule throughout the data-taking campaign. An example of precise regular dosing is shown in Figure 3. A typical activity of \sim10 Bq was optimal for the measurement of electron lifetime in of LXe (see Section IV), but depending on the specific calibration goal, both higher- (\sim100 Bq) and lower-rate injections were also performed. Hardware interlocks on pressure and flow readings would abort the injection in the event of unusual readings.

The flow and mixing of LXe within the LUX time-projection chamber (TPC) can be observed using the 83mKr injections, as illustrated in Figures 4 and 5. Starting 60 seconds after GXe flow was initiated over the 83Rb-
The 3D position reconstruction of ionization vertices requires an understanding of the path electrons take from their production site to their point of detection. In LUX, the latter occurs in close proximity to the liquid surface, where the observed S2 signal is generated via electroluminescence in GXe at high field. The distribution of S2 light sensed by the top PMT array is converted into an S2 position (x_{S2}, y_{S2}) using algorithms described in [13]. While the electric field is largely perpendicular to the liquid surface at all positions, the electric field lines in the first LUX science run (WS2013) include a small but non-zero radial component, inducing a radially-inward electron drift. This radial field component is due to the non-zero electrostatic transparency of the field cage. 83mKr calibrations fill the TPC to its edges with a uniform specific activity (activity per unit LXe volume), allowing for a robust consistency check of the observed drift field with that expected from geometrical effects alone.

A 3D model of the LUX geometry is constructed in COMSOL Multiphysics® [27]. A 2D cross-section of this model is shown in Figure 6. Due to the detector’s geometrical complexity (relevant dimensions span 4 orders of magnitude), several model simplifications are adopted, each of which has been checked to ensure the simplification is of negligible effect to the resulting drift field. Details of boundaries within the ultra-high-molecular-weight polyethylene (UHMWPE) and polytetrafluoroethylene (PTFE) volumes are omitted, including the weir, cathode cable and the heat exchanger. The anode grid and the bottom photomultiplier tube (PMT) shield grid are both modeled not as wires but as planes (the anode grid wires are of sub-mm spacing, and the bottom shield grid is backed by PMT faces of similar voltage). The cathode and gate grids are accurately modeled as parallel wires of appropriate spacing, thereby accounting for the electrostatic transparency of the real detector grids. These cathode and gate grids are simplified only in that the wire diameter is reduced to zero (from 206 and 101.6 μm respectively). Test models were studied to ensure this wire diameter change had negligible effect on the resulting solution, as expected from COMSOL’s use of the weak formulation [28] in solving the relevant partial differential equations.

The TPC diameter as measured between parallel opposite faces is 47.3 cm. The grid geometry is shown in Table I. Dielectric constants are included as LXe 1.95, GXe 1.0, PTFE 2.1, UHMWPE 2.3. Applied grid voltages are assigned as relevant to WS2013 operations; voltages
of the field-shaping (dodecagonal) rings between cathode and gate follow expectation given the resistor within the voltage dividing chain.

After solving for the electric field, field lines are used to simulate a uniform-activity dataset. Electron-like test particles follow the field lines to the liquid surface. The simulated electron drift velocity in LXe varies with electric field as in Ref. [29]. The simulated drift time \(t_{S2} \) and \(r_{S2} \) location of \(S2 \) light production \((r_{S2}, y_{S2}) \) can be compared with real \(^{83m}\text{Kr} \) data. A simple 2D version of this 3D comparison space is illustrated in the right panel of Figure 7. We find excellent agreement between simulation and data. It should be emphasized that no aspects of the field model are tuned to improve the level of agreement with data.

The slight curve seen in the reconstructed \((S2) \) coordinates can be understood through inspection of the left panel of Figure 7. This panel shows equipotentials and field lines from the simpler 2D (axially symmetric) model built for visualization purposes. When a \(^{83m}\text{Kr} \) decay occurs at high radius just above the cathode plane, the liberated electrons follow the field lines shown and escape the liquid at a radius reduced by several cm compared to the interaction radius. The radial field component traces its origin primarily to the electrostatic transparency of the cathode and gate grids (both of 5.0 mm pitch). This effect is strongest at high radii, producing a region of slightly reduced field above the cathode grid (created by upward leakage of the strong reverse-field region below the cathode) and a region of slightly enhanced field below the gate grid (created by downward leakage of the much higher above-gate field).
IV. MAPPING S2 RADIUS TO VERTEX RADIUS

The field model could be employed as a mapping relating the observed S2 position and the true event vertex position, as \(\{ r_{\text{vertex}}, \phi_{\text{vertex}}, z_{\text{vertex}} \} = f(\{ r_{S2}, \phi_{S2}, t_{S2} \}) \). However, we find that in the WS2013 field configuration, only the radial component of position required the construction of a detailed mapping function. The radial correction can be performed more precisely using the data alone, without relying on the accuracy of the field model and the electron drift simulation. A data-driven method is possible and advantageous in WS2013 due to the small scale of the corrections, with the added benefit that it allows for the correction of all radial effects, including small-scale field inhomogeneities and systematic errors in the \(\{ x_{S2}, y_{S2} \} \) reconstruction algorithm.

The construction of a radius correction map relies on the uniform density of the \(^{83}\text{Kr}\) calibration events. To ensure this uniform vertex density in real space, only data sufficiently long after activity injection (\(\geq 2 \) h) is employed in the map construction. \(^{83}\text{Kr}\) events are grouped by vertex position into 11,520 wedge-shaped position selections: A \(r_{S2} \) range of 4 to 320 \(\mu s \) is divided into 32 \(r_{S2} \) sections and 360 \(\phi_{S2} \) sections. These wedge selections of \(^{83}\text{Kr}\) events are not mutually exclusive, overlapping to the midpoint of neighboring selections in both \(t_{S2} \) and \(\phi_{S2} \). Within a given wedge selection, the \(r_{S2} \) distribution of \(^{83}\text{Kr}\) events is then ‘flattened’ by shifting \(r_{S2} \) values such that they are of equal spacing in \(r^2 \) (with maximum radius matching the appropriate dodecagonal radius at that \(\phi \)). Once each wedge selection region has received this treatment, the \(^{83}\text{Kr}\) event positions before and after the equal-spacing treatment are employed as a 3D linear interpolation mapping, as \(r_{\text{vertex}} = f(\{ r_{S2}, \phi_{S2}, t_{S2} \}) \). The application of this interpolative mapping function is illustrated in Figures 8 and 9.

Given that variation in the drift field over time will affect the position mapping function, temporal variation in the electric field is searched for using through Kolmogorov-Smirnov comparisons of \(^{83}\text{Kr}\) distributions on widely separated dates within the WS2013 and found to be consistent with no change. This allows the construction of a single WS2013 interpolative mapping function from a single large \(^{83}\text{Kr}\) injection from May 2013, supplying \(1.5 \times 10^6 \) selected \(^{83}\text{Kr}\) events.

V. THE POSITION-DEPENDENT CORRECTION OF S1 AND S2 AMPLITUDES

Detector efficiencies and gains may vary with position and time, requiring the construction of scintillation (S1)
and ionization (S2) signal amplitude corrections. 83mKr events serve the role of ‘standard candles’ to produce monoenergetic signals of uniform initial scintillation and ionization amplitudes, before efficiency and gain effects. The S1 and S2 cases receive somewhat distinct treatments, described below.

In the S1 case, detector efficiency variation is the result of a spatially-varying probability for a scintillation photon to strike a PMT window. To map this efficiency, 83mKr data is binned in the 3D space of \((x_{S2}, y_{S2}, t_{S2}) \). An average 83mKr S1 amplitude is found for each bin, and a 3D S1 correction map is constructed as the inverse amplitude at the detector center: \(\{0 \text{ cm, 0 cm, 159 } \mu \text{s}\} \). The efficiency-correction map is then applied as a linear interpolation on the 3D grid. Bin spacing of the 83mKr dataset was chosen such that each bin received ~ 300 83mKr events. It is observed that S1 correction maps vary negligibly with date, so a single large 83mKr injection provided the S1 correction map, subsequently applied to the full range of WS2013 data.

The S2 case is more complex. A largely z-oriented efficiency variation dominates S2 variation, and results from electron capture on electronegative impurities during drift. During stable operation, the concentration of these impurities varies on a ~week timescale. An independent S2 amplitude variation, oriented purely in the xy plane, results from three processes: the efficiency of electron extraction across the liquid-gas boundary, and the efficiency of producing and then observing electroluminescence photons in the high-field gas region. The extraction efficiency and electroluminescence yield can vary dependent on detector conditions such as pressure, liquid level (dependent on circulation flow rate), detector tilt, and electrostatic grid deflection.

Two S2 correction maps are constructed, one for the z-dependent variation and one for the xy-dependent variation, and these maps are applied independently. The z-dependent S2 correction consists of a simple exponential function of \(t_{S2} \), normalized to unity at the liquid surface (where electron lifetime has no effect on signal). The single-valued z correction is interpolated smoothly between measurements on 83mKr injection dates. It can be seen in Figure 10 that while the exponential description of the z-dependent S2 correction describes the data well in the fiducial volume, it is an imperfect description at the extrema of the drift path, where the drift field deviates from its nearly constant bulk value. This behavior at the extrema is consistent with impurities for which electron capture cross section decreases with field, a category including O$_2$ [30].

The S2 correction xy map is constructed by binning 83mKr data in an xy grid and finding average S2 amplitudes for each 2D bin. The xy map is applied as a 2D linear interpolation of the inverse S2 amplitudes, normalized to \(\{x=0, y=0\} \). The xy grid spacing was variable depending on 83mKr data sample size, binned such that each grid point represented ~ 300 83mKr events. Temporal variation between consecutive xy correction maps was much smaller than the z correction variation; the xy correction uses the nearest-in-time correction map.

83mKr was injected weekly, a timescale set by variation in electron lifetime. 222Rn decays (a constant, low-level background) supply independent verification of the electron lifetimes, and verification that the weekly 83mKr schedule was sufficiently finely-spaced. Each 83mKr injection produces a typical sample size of $\sim 10^5$ 83mKr decays. In the event of a sudden LXe purity change (such as a short circulation outage), data between the most recent 83mKr injection and the purity drop event are corrected assuming the last S2 correction map before purity change. Data taken between a purity change and the first subsequent 83mKr are discarded.

As shown in Figure 1, 83mKr decay proceeds through two transitions, separated by a 154 ns half-life. Because the S2 signals are of 1.0–1.9 μs FWHM (depending on z position), the two decay steps are merged in the S2 signal. On the other hand, the S1 pulse width is short (~ 100 ns after filtering) such that a significant fraction of 83mKr decays exhibit separation into two S1 pulses, which we refer to by their ordering as S1a and S1b (32.1 and 9.4 keV, respectively). It has been observed in [31] that the S1b amplitude (and by implication the S1a+S1b summed amplitude) varies depending on the intervening time delay. A short delay enhances electron-ion recombination in the second decay (S1b), increasing the resulting scintillation and thus boosting the S1b amplitude. Because the S1a+S1b amplitude depends on the stochastic decay time between the two transitions, use of 83mKr S1 amplitude as a standard candle for calibration is only possible if one specifies and adheres to a consistent delay range at all positions. Conversely, if a consistent delay range is used, the complexity of time delay amplitude variation can be ignored. In the LUX WS2013 case, the summed S1 area is employed for S1 area corrections, and the transition time separation range is specified as 0 to 1200 ns. These choices maximize useful calibration statistics. S1 amplitudes in the separate S1a and S1b cases can be used as a cross check, as in the lower panels of Figure 11.

The resolution and central value of the S1 and S2 peaks can be used to monitor the efficacy of amplitude correction maps. The resolution, σ/μ, is calculated from Gaussian fits to the S1 and S2 amplitude distributions. For fiducial volume events in the largest 83mKr dataset (May 2013), the relative resolution of the combined 41.5 keV peak improves from 12.3% to 8.1% in S1 and from 19.3% to 15.3% in S2 after these corrections (see Figure 11). This S1 resolution improvement is typical of every data set, due to the stability of the position-dependent effects (e.g., photon mean free path, material surface reflectivities). On the other hand, the S2 improvement is highly dependent on the electron lifetime. For the largest 83mKr dataset, the lifetime is 750 μs, typical of WS2013 (which exhibits a range of lifetimes of 600–950 μs). We also look at the stability of 83mKr S1 and S2 central values over the...
course of the run after correction, and find that S1 varies by less than 0.6%, and S2 varies by less than 2%. As expected, the S1 correction is of diminished importance for the resolution of small S1 amplitudes, where statistical fluctuations in photon number are of a similar or larger scale to the position-dependent variation. Indeed, the S1b (9.4 keV) peak resolution is the same with and without correction (15.4% for events with S1a and S1b time separations of 1400 to 1600 ns).

The signal amplitude corrections enhance the electron recoil (ER) background rejection power of the S2/S1 discriminant quantity. A simple metric of ER discrimination power is the fraction of ER events leaking past the nuclear recoil (NR) mean, using deuterium-deuterium neutron calibration data \([32]\) to define the NR mean and using tritium calibration data \([33]\) to find the ER leakage. This quantity is plotted as a function of S1 amplitude in Figure 12 for varying levels of S1 and S2 amplitude correction of both ER and NR calibration datasets (no correction, z-only correction of both S1 and S2, and full 3D correction of both S1 and S2). For S1 amplitudes of >10 phd, amplitude corrections are seen to enhance the discrimination power by a factor of ~5.

Figure 11 implies that a 3D correction represents only a marginal improvement over a z-only correction. Important variations in \(xy\) occur at high radius, outside the fiducial selection used in Figure 11 or in the dark matter search analyses. The improved discrimination when moving from z-only to full 3D correction parameters in Figure 12 then, deserves some comment. This improvement is partially a real change resulting from enhanced S1 and S2 resolution, but it is also partly an artifact of the NR calibration’s specific and non-uniform position distribution (the NR calibration is performed using a narrow deuterium-deuterium neutron beam \([32]\)). It so happens that the NR calibration distribution on the xy plane is of very slightly enhanced S2 area, leading to an artificially-degraded discrimination measure before the \(xy\) corrections are applied.

The \(^{83m}\text{Kr}\) calibrations of position and temporal variation lead directly to stronger ER discrimination and higher sensitivity to dark matter nuclear recoils, and were essential to the analyses published in \([20]\), \([21]\), and \([34]\).
relaxes the standard candle assumption, introducing a secondary effect: a drift field amplitude gradient. Along the central axis, the field amplitude in WS2013 varies from \(\sim 165 \) V/cm near the plane of the cathode grid to \(\sim 205 \) V/cm near the plane of the gate grid. A non-uniform electric field amplitude can produce a number of systematic effects, chief among them is a spatially-dependent fraction of electrons which recombine with ions. A weaker field allows more recombination, enhancing the S1 signal and proportionally suppressing the S2 signal. A stronger field has the inverse effect. Field-dependence is minimal for low-energy electron recoils below 10 keV (where recombination is itself minimal) and increases above 10 keV \([33,35,36]\). Electric field amplitude variations can also induce other systematic effects, including a spatially-dependent S1 pulse shape (through a varying recombination fraction as in the pulse amplitude case, see \([37,38]\)) and a spatially-dependent electron lifetime (through field-dependent capture cross sections, as in \([30]\)). To the extent that these various systematics are important, a direct measure of local electric field amplitude in LXe is advantageous.

The S1 and S2 amplitude correction method described in Section \([7]\) assumes \(^{83}\text{mKr} \) serves as a standard candle, and attributes all signal amplitude variation to detector efficiencies and gains. The field dependence of initial photon and electron counts (before detector effects) relaxes the standard candle assumption, introducing a field-dependent variation that depends not only on event energy but on recoil type (ER or NR). In the WS2013 science run described here, the scale of the field-dependence (at all energies and for both ER and NR) is estimated to be few-percent (following \([13,35]\)), sub-dominant to other uncertainties, and is neglected.

The small field dependence in \(^{83}\text{mKr} \) light and charge yields can be leveraged to construct a calibration quantity that varies with electric field amplitude alone. When observably separated, the two S1 amplitudes of a \(^{83}\text{mKr} \) decay (at 32.1 keV and 9.4 keV) exhibit differing field dependence scales. In fact, these two energies form a particularly convenient pair, in that 32.1 keV is well above the \(O(10 \text{ keV}) \) onset of significant field dependence, and 9.4 keV is just below. The ratio of the two S1 amplitudes varies with field alone, since any S1 gain or efficiency effects affect both S1 amplitudes equally.

The result is that the S1b:S1a ratio increases with the field. Figure 13 shows a measurement of this ratio distribution in WS2013. Correspondence of this measured quantity with the field amplitude contours predicted by the field model of Section \([11]\) is clear. The ratio measurement is statistically limited by the number of \(^{83m}\text{Kr} \) decays for which the S1a and S1b pulses are measurably separated. To maximize useful calibration statistics for this purpose, the two \(^{83}\text{mKr} \) S1 amplitudes are measured in a special data processing, employing a parameterized fit to estimate the individual amplitudes of slightly overlapping double-S1 traces. This fit employs two instances of a single pulse template, fitting for four free parameters: two amplitudes and two pulse start times. This method allows S1a and S1b amplitude measurements down to a minimum separation time of 100 ns. This ratio technique for field amplitude measurement is of central importance in subsequent LUX analyses (as in \([34]\)), for which the field variations in \(^{83}\text{mKr} \) recombination are larger and require careful treatment.

VI. USE OF \(^{83}\text{mKr} \) AMPLITUDE RATIOS TO MAP ELECTRIC FIELD AMPLITUDE

This first use of \(^{83}\text{mKr} \) in the calibration of a dark matter direct-detection experiment takes advantage of several key attributes of \(^{83}\text{mKr} \): a low-energy monoenergetic peak conveniently just above the energy region of interest, dispersible uniformly throughout the detector volume, with a convenient hours-scale decay time. The monoenergetic signal enables a precise correction of S1 and S2 amplitudes for position-dependent efficiencies and gains, resulting in an enhanced ER background rejection ability. The uniform spatial distribution enables a precise reconstruction of vertex position, enabling a well-defined fiducial volume selection. This initial experience with \(^{83}\text{mKr} \) in a large-scale, operating dark matter experiment pointed the way towards unforeseen uses, such as the mapping of electric field amplitude variation within the TPC. In subsequent LUX operations \([34]\), a buildup of electric charge on PTFE surfaces induced a time-varying
FIG. 13. The 83mKr S1b:S1a ratio, plotted as average values within bins of drift time and (corrected) radius. S1 amplitudes here are measured differently from other amplitudes in this work, by fitting an S1 pulse template. A gradient in the S1b:S1a ratio is seen, matching the expected variation in field amplitude. The contours are overlaid using a separate z position axis in cm; correspondence to the drift time axis is accurate within a few percent.

and more significantly inhomogeneous electric field, requiring both a more complex procedure for the correction of positions and a more complex approach to S1 and S2 amplitude corrections. These two 83mKr-based calibration efforts, building on the LUX2013 experience described here, will be documented in two forthcoming papers [39, 40]. Work is ongoing to make the most of 83mKr calibrations in current and future projects such as DarkSide [22], XENON1T [23], and LZ [41].

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Department of Energy (DOE) under award numbers DE-AC02-05CH11231, DE-AC05-06OR23100, DE-AC52-07NA27344, DE-FG01-91ER40618, DE-FG02-08ER41549, DE-FG02-11ER41738, DE-FG02-91ER40674, DE-FG02-91ER40688, DE-FG02-95ER40917, de-na0000979, de-sc0006605, de-sc0010010, and de-sc0015535 the U.S. National Science Foundation under award numbers PHY-0750671, PHY-0801536, PHY-1003660, PHY-1004661, PHY-1102470, PHY-1312561, PHY-1347449, PHY-1505868, and PHY-1636738; the Research Corporation grant RA0350; the Center for Ultra-low Background Experiments in the Dakotas (CUBED); and the South Dakota School of Mines and Technology (SDSMT). LIP-Coimbra acknowledges funding from Fundação para a Ciência e a Tecnologia (FCT) through the project-grant PTDC/FIS-NUC/1525/2014. Imperial College and Brown University thank the UK Royal Society for travel funds under the International Exchange Scheme (IE120804). The UK groups acknowledge institutional support from Imperial College London, University College London and Edinburgh University, and from the Science & Technology Facilities Council for PhD studentships ST/K502042/1 (AB), ST/K502406/1 (SS) and ST/M503538/1 (KY). The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336.

This research was conducted using computational resources and services at the Center for Computation and Visualization, Brown University, and also the Yale Science Research Software Core. The 83mRb used in this research to produce 83mKr was supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics.

We thank Kevin Charbonneau at Yale University for his significant contributions to the dosing of the 83mKr generators used in this work.

We gratefully acknowledge the logistical and technical support and the access to laboratory infrastructure provided to us by SURF and its personnel at Lead, South Dakota. SURF was developed by the South Dakota Science and Technology Authority, with an important philanthropic donation from T. Denny Sanford, and is operated by Lawrence Berkeley National Laboratory for the Department of Energy, Office of High Energy Physics.

[1] D. S. Akerib et al. (LUX Collaboration), Nucl. Instrum. Meth. A704, 111 (2013), arXiv:1211.3788 [physics.ins-det].
[2] D. Decamp et al., Nucl. Instrum. Methods A 294, 121 (1990).
[3] A. Chan et al., Nuclear Science, IEEE Transactions on 42, 491 (1995).
[4] V. Eckardt et al., (2001), arXiv:nucl-ex/0101013 [nucl-ex].
[5] J. Stiller and ALICE Collaboration, Nucl. Instrum. Methods A 706, 20 (2013).
[6] A. Picard, H. Backe, J. Bonn, B. Degen, R. Haid, A. Hermanni, P. Leiderer, A. Osipowicz, E. W. Otten, M. Przyrembel, M. Schrader, M. Steininger, and C. Weinheimer, Zeitschrift für Physik A Hadrons and Nuclei 342, 71 (1992).

[7] A. I. Belesev, E. V. Geraskin, B. L. Zhuikov, S. V. Zadorozhny, O. V. Kazachenko, V. M. Kohanuk, N. A. Lihovid, V. M. Lobashev, A. A. Nozik, V. I. Parfenov, A. K. Slasysrskaya, E. A. Sudachkov, N. A. Titiov, and V. G. Usanov, Physics of Atomic Nuclei 71, 427 (2008).

[8] M. Zboril and T. K. collaboration, AIP Conference Proceedings 1417, 154 (2011).

[9] D. M. Asner et al. (Project 8 Collaboration), Phys. Rev. Lett. 114, 162501 (2015).

[10] L. W. Kastens, S. B. Cahn, A. Manzur, and D. N. McKinsey, Phys. Rev. C 80, 045809 (2009) [arXiv:0905.1766].

[11] L. W. Kastens, S. Bedikian, S. B. Cahn, A. Manzur, and D. N. McKinsey, Journal of Instrumentation 5, P05006 (2010).

[12] W. H. Lippincott, S. B. Cahn, D. Gastler, L. W. Kastens, E. Kearns, D. N. McKinsey, and J. A. Nikkel, Phys. Rev. C 81, 045803 (2010).

[13] A. Manalaysay, T. M. Undagoitia, A. Askin, L. Baudis, A. Behrens, A. D. Ferella, A. Kish, O. Lebeda, R. Santorelli, D. Vénos, and A. Vollhardt, Review of Scientific Instruments 81, 073303 (2010) [arXiv:0908.0616 [astro-ph.IM]].

[14] E. Aprile et al., Phys. Rev. D 86, 112004 (2012).

[15] T. Alexander et al. (SCENCE), Phys. Rev. D 88, 092006 (2013).

[16] H. Cao et al. (SCENCE), Phys. Rev. D 91, 092007 (2015).

[17] S. Rosendahl et al., Journal of Instrumentation 9, P10010 (2014).

[18] D. S. Akerib et al. (LUX Collaboration), “Position reconstruction in LUX.” (2017), in preparation.

[19] J. B. Albert et al. (EXO-200 Collaboration), Phys. Rev. C 95, 025502 (2017).

[20] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 112, 091303 (2014) [arXiv:1310.8214 [astro-ph.CO]].

[21] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 116, 161301 (2016) [arXiv:1512.03506 [astro-ph.CO]].

[22] P. Agnes et al. (DarkSide), Phys. Rev. D 93, 081101(R).

[23] E. Aprile et al. (XENON), JCAP 04, 27 (2016).

[24] A. Pocar, Ph.D. thesis, Princeton University (2003).

[25] SAES Pure Gas, Inc., “MonoTorr,” http://www.saespuregas.com/default.aspx?idPage=1113.

[26] D. Malling, Measurement and Analysis of WIMP Detection Backgrounds, and Characterization and Performance of the Large Underground Xenon Dark Matter Search Experiment, Ph.D. thesis, Brown University (2014).

[27] COMSOL, Inc., “COMSOL Multiphysics®,” http://www.comsol.com.

[28] N. S. Ottosen and H. Petersson, Introduction to the Finite Element Method (Prentice Hall, 1992).

[29] J. B. Albert et al. (EXO-200), (2016), arXiv:1609.04467 [physics.ins-det].

[30] G. Ascarelli, The Journal of Chemical Physics 74, 3085 (1981) [http://dx.doi.org/10.1063/1.441402].

[31] L. Baudis, H. Dujmovic, C. Geis, A. James, A. Kish, A. Manalaysay, T. Marrodán Undagoitia, and M. Schumann, Phys. Rev. D 87, 115015 (2013).

[32] D. S. Akerib et al. (LUX Collaboration), (2016), arXiv:1608.05381 [physics.ins-det].

[33] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. D 93, 072009 (2016) [arXiv:1512.03133 [physics.ins-det]].

[34] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017).

[35] M. Szydagis, N. Barry, K. Kazkaz, J. Mock, D. Stolp, M. Sweany, M. Tripathi, S. Uvarov, N. Walsh, and M. Woods, Journal of Instrumentation 6, P10002 (2011).

[36] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. D 95, 012008 (2017).

[37] K. Ueshima, et al., Nucl. Instrum. Methods A 659, 161 (2011).

[38] D. S. Akerib et al. (LUX Collaboration), “Scintillation pulse shapes and pulse shape discrimination in a large liquid xenon time-projection chamber,” (2017), in prepa-

[39] D. S. Akerib et al. (LUX Collaboration), “3D modeling of electric fields in the LUX detector,” (2017), in prep-

[40] D. S. Akerib et al. (LUX Collaboration), “Corrections to the LUX WIMP search data in the presence of a non-

[41] D. S. Akerib et al., (2015), arXiv:1509.02910.