APPLICATION OF THE DOUBLE LAPLACE ADOMIAN
DECOMPOSITION METHOD FOR SOLVING LINEAR
SINGULAR ONE DIMENSIONAL THERMO-ELASTICITY
COUPLED SYSTEM

HASSAN ELTAYEB¹, ADEM KILIÇMAN² AND SAID MESLOUB³

Abstract. In the present work, the Adomain decomposition and double Laplace
transform methods are combined to solve linear singular one dimensional hy-
perbolic equation and linear singular one dimensional thermo-elasticity cou-
pled system. Also we address the convergence of double Laplace transform
decomposition method. Moreover, some examples are given to establish our
method.

1. Introduction

In general, it is reported in the literature that finding the exact solutions for partial
differential equations are a complicated task. Therefore, some recent approximate
methods to over come this task have been improved, such as homotopy perturba-
tion method [1, 2], combined Laplace transforms and decomposition method [3]
to solve first order differential equation, An auxiliary parameter method using A
domain polynomials and Laplace transformation have been powerfully combined
[5] to study the nonlinear differential equation. The one-dimensional nonlinear hy-
perbolic equation with Bessel operator is one of the fundamental nonlinear wave
equations having many applications in science. The energy-integral method is used
to handle nonlinear singular one dimensional hyperbolic equation [4]. In [6] au-
thors studied the initial boundary value problem for a nonlinear singular system of
thermo-elasticity by using a functional analysis approach and an iteration method.

The aim of the present paper is to investigate the application of the modified double
Laplace transform decomposition method for solving the linear singular one dimen-
sional hyperbolic equation and linear singular one dimensional thermo-elasticity
coupled system. The convergence of Adomian’s method has been studied by sev-
eral authors [11, 12, 13, 14, 16]. Now, we recall the following definitions which are
given by [10, 7, 8, 9]. The double Laplace transform is defined as

\[L_x L_t [f(x, s)] = F(q, s) = \int_0^\infty e^{-qx} \int_0^\infty e^{-st} f(x, t) dt \, dx, \]

Date: October 10, 2016.

1991 Mathematics Subject Classification. 35A44, 65M55.

Key words and phrases. double Laplace transform, inverse Laplace transform, nonlinear hy-
perbolic equation, single Laplace transform, decomposition methods, thermo-elasticity.
where $x, t > 0$ and q, s are complex values, and further double Laplace transform of the first order partial derivatives is given by

$$L_x L_t \left[\frac{\partial v(x,t)}{\partial x} \right] = qV(q,s) - V(0,s).$$

Similarly the double Laplace transform for second partial derivative with respect to x and t are defined as follows

$$L_x L_t \left[\frac{\partial^2 u(x,t)}{\partial x^2} \right] = q^2 U(q,s) - qU(0,s) - \frac{\partial U(0,s)}{\partial x},$$

$$L_x L_t \left[\frac{\partial^2 u(x,t)}{\partial t^2} \right] = s^2 U(q,s) - sU(q,0) - \frac{\partial U(q,0)}{\partial t}.$$

First of all we need the following lemma for future use in this paper.

Lemma 1. Double Laplace transform of the non constant coefficient second order partial derivative $x^n \frac{\partial^2 u}{\partial t^2}$ and the function $x^n f(x,t)$ given by

$$(-1)^n \frac{d^n}{dq^n} \left[L_x L_t \left(x^n \frac{\partial^2 u}{\partial t^2} \right) \right] = L_x L_t \left(x^n \frac{\partial^2 u}{\partial t^2} \right)$$

and

$$L_x L_t \left(x^n f(x,t) \right) = (-1)^n \frac{d^n}{dq^n} \left[L_x L_t \left(f(x,t) \right) \right] = (-1)^n \frac{d^n F(q,s)}{dq^n}.$$

One can prove this lemma by using the definition of double Laplace transform in Eq.(1.1), Eq.(1.3) and Eq.(1.2).

2. SINGULAR ONE DIMENSIONAL HYPERBOLIC EQUATION

In this part of the paper we discuss how to obtain the solution of the singular one dimensional hyperbolic equation:

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{x} \left(x \frac{\partial u}{\partial x} \right) + f(x,t),$$

subject to

$$u(x,0) = f_1(x), \quad \frac{\partial u(x,0)}{\partial t} = f_2(x),$$

where $\frac{1}{x} \left(x \frac{\partial u}{\partial x} \right)_x$ is called Bessel operator and the functions $f(x,t), f_1(x)$ and $f_2(x)$ are known. In the following theorem we apply modified double Laplace decomposition methods.

Theorem 1. The solution of the singular one dimensional hyperbolic equation given in Eq. (2.1) exists and is given by

$$u(x,t) = f_1(x) + tf_2(x) - L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} L_x L_t \left[\int_0^q x f(x,t) dq \right] \right]$$

$$-L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} L_x L_t \left[\int_0^q \left(x \frac{\partial}{\partial x} \sum_{n=0}^{\infty} u_n \right) dq \right] \right]$$

(2.3)

where

$$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t),$$
and $L_x L_t$ double Laplace transform with respect to x, t and $L_q^{-1} L_s^{-1}$ double inverse
Laplace transform with respect to q, s further A_n represents the linear terms. Here
we provided double inverse Laplace transform with respect to p and s exist for each
terms in the right hand side of Eq. (2.3).

Proof. The method consists of first applying the double Laplace transform to both
sides of equations in Eq.(2.1) and then by using initial conditions Eq.(2.2), and
the differentiation property of double Laplace transform together with lemma 1, we
obtain:

$$\frac{dU(q,s)}{dp} = \frac{1}{s} \frac{dF_1(q)}{dq} + \frac{1}{s^2} \frac{dF_2(q)}{dq}
- \frac{1}{s^2} L_x L_t \left[\left(\frac{\partial u}{\partial x} \right)_x \right] - \frac{1}{s^2} L_x L_t \left[xf(x,t) \right] \quad (2.4)$$

applying the integral for both sides of Eq.(2.4) from 0 to q, we get

$$U(q,s) = \frac{F_1(q)}{s} + \frac{F_2(q)}{s^2} - \frac{1}{s^2} \int_0^q L_x L_t \left[xf(x,t) \right] dq
- \frac{1}{s^2} \int_0^q L_x L_t \left[\left(\frac{\partial u}{\partial x} \right)_x \right] dq. \quad (2.5)$$

The double Laplace Adomain decomposition methods (DLADM) defines the solu-
tion of linear singular one dimensional hyperbolic equation as $u(x,t)$ by the infinite
series

$$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t). \quad (2.6)$$

By applying double inverse Laplace transform for Eq.(2.5) we obtain

$$u(x,t) = f_1(x) + tf_2(x)
- L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q L_x L_t \left[xf(x,t) \right] dq \right]
- L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q L_x L_t \left[\left(\frac{\partial u}{\partial x} \right)_x \right] dq \right]. \quad (2.7)$$

then the general decomposition formula for the (2.7) is given by

$$u(x,t) = f_1(x) + tf_2(x) - L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} L_x L_t \left[\int_0^q xf(x,t) dq \right] \right]
- L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q L_x L_t \left[\int_0^q \left(\frac{\partial u}{\partial x} \sum_{n=0}^{\infty} u_n \right) dq \right] \right].$$

In particular, we have

$$u_0(x,t) = f_1(x) + tf_2(x) - L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} L_x L_t \left[\int_0^q xf(x,t) dq \right] \right]$$

and

$$u_{n+1}(x,t) = - L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q L_x L_t \left[\int_0^q \left(\frac{\partial u}{\partial x} \sum_{n=0}^{\infty} u_n \right) dq \right] \right], \quad (2.8)$$
where $n = 0, 1, 2, \ldots$, and by calculating the terms u_0, u_1, u_2, \ldots we obtain the solution as follows

$$u(x,t) = u_0 + u_1 + u_2 + \ldots$$

In order to establish our method for solving the singular one dimensional hyperbolic equation, we consider the following example:

Example 1. Consider the following one dimensional hyperbolic equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{1}{x} \left(x \frac{\partial u}{\partial x} \right)_x = -x^2 \sin t - 4 \sin t, \quad (2.9)$$

subject to

$$u(x,0) = 0, \quad \frac{\partial u(x,0)}{\partial t} = x^2. \quad (2.10)$$

By taking the double and single Laplace transform for Eq. (2.9) and Eq. (2.10) respectively, we obtain

$$\frac{dU(q,s)}{dq} = -6 q^4 s^2 + 6 q^4 s^2 (s^2 + 1) + \frac{4}{q} \frac{1}{s^2} L_x L_t \left[\left(x \frac{\partial u}{\partial x} \right)_x \right], \quad (2.11)$$

the integral for both sides of Eq.(2.11) from 0 to q, we have

$$U(q,s) = \frac{2}{q^4 s^2} - \frac{2}{q^4 s^2 (s^2 + 1)} - \frac{4}{q} \frac{1}{s^2} \int_0^q L_x L_t \left[\left(x \frac{\partial u}{\partial x} \right)_x \right] dq. \quad (2.12)$$

On using double inverse Laplace transform, we have

$$u(x,t) = x^2 \sin t + 4 \sin t - L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^q L_x L_t \left[\left(x \frac{\partial u}{\partial x} \right)_x \right] dq \right), \quad (2.13)$$

by using equation Eq.(2.3), we obtain

$$\sum_{n=0}^\infty u_n(x,t) = x^2 \sin t + 4 \sin t - 4t - L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^q L_x L_t \left[\left(x \frac{\partial \sum_{n=0}^\infty u_n}{\partial x} \right)_x \right] dq \right), \quad (2.14)$$

The other components given by

$$u_{n+1} = -L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^q L_x L_t \left[\left(x \frac{\partial \sum_{n=0}^\infty u_n}{\partial x} \right)_x \right] dq \right), \quad (2.15)$$

therefore

$$u_1 = -L_q^{-1} L_s^{-1} \left(\frac{1}{s^2} \int_0^q L_x L_t \left[\left(x \frac{\partial u_0}{\partial x} \right)_x \right] dq \right),$$

$$u_1 = 4t - 4 \sin t,$$

and

$$u_2 = 0.$$

It is obvious that the rest coming terms all zeros, we have

$$u(x,t) = u_0 + u_1 + \ldots$$

Therefore, the exact solution is given by

$$u(x,t) = x^2 \sin t.$$
3. **Linear singular one dimensional thermo-elasticity coupled system**

In this section of the paper, we apply our technique to solve the linear singular one dimensional thermo-elasticity coupled system given below

\[
\frac{\partial^2 u}{\partial t^2} - \frac{1}{x^n} \left(x^n \frac{\partial u}{\partial x} \right)_x + x \frac{\partial v}{\partial x} = f(x,t), \quad x \in \Omega
\]

\[
\frac{\partial v}{\partial t} - \frac{1}{x^n} \left(x^n \frac{\partial v}{\partial x} \right)_x + x \frac{\partial^2 u}{\partial x \partial t} = g(x,t), \quad t > 0 \tag{3.1}
\]

subject to

\[
u(x,0) = f_1(x), \quad \frac{\partial u(x,0)}{\partial t} = f_2(x), \quad v(x,0) = g_1(x) \tag{3.2}
\]

where \(\frac{1}{x^n} \left(x^n \frac{\partial u}{\partial x} \right)_x \) and \(\frac{1}{x^n} \left(x^n \frac{\partial v}{\partial x} \right)_x \) are called Bessel’s operators, \(f(x,t) \), \(g(x,t) \), \(f_1(x) \), \(f_2(x) \) and \(g_1(x) \) are known functions and \(n = 1, 2, 3, \ldots \). To obtain the solution of Linear singular one dimensional thermo-elasticity coupled system of Eq.(3.1) we apply our method as follows. On using the definition of partial derivatives of the double Laplace transform and single Laplace transform for Eq.(3.1) and Eq.(3.2) respectively and lemma 1, we get

\[
\frac{d^n U(q,s)}{dq^n} = \frac{d^n F_1(q)}{sdq^n} + \frac{d^n F_2(q)}{s^2 dq^n} + \frac{d^n F(q,s)}{s^2 dq^n} + \frac{(-1)^n}{s^2 L_x L_t} \left[\left(x^n \frac{\partial u}{\partial x} \right)_x - x^{n+1} \frac{\partial v}{\partial x} \right] \tag{3.3}
\]

and

\[
\frac{d^n V(q,s)}{dq^n} = \frac{d^n G_1(q)}{sdq^n} + \frac{d^n G(q,s)}{sdq^n} + \frac{(-1)^n}{s L_x L_t} \left[\left(x^n \frac{\partial v}{\partial x} \right)_x - x^{n+1} \frac{\partial^2 u}{\partial x \partial t} \right] \tag{3.4}
\]

where \(F(q,s), G(q,s), F_1(q), F_2(q) \) and \(G_1(q) \) are double and single Laplace transforms of \(f(x,t) \), \(g(x,t) \), \(f_1(x) \), \(f_2(x) \) and \(g_1(x) \) respectively, by integrating \(n \) time for both sides of Eq.(2.4) from 0 to \(q \) with respect to \(q \), we obtain

\[
U(q,s) = \int \int \cdots \left(\frac{d^n F_1(q)}{sdq^n} + \frac{d^n F_2(q)}{s^2 dq^n} + \frac{d^n F(q,s)}{s^2 dq^n} \right) dq \cdots dq + \frac{(-1)^n}{s^2} \int \int \cdots \left(L_x L_t \left[\left(x^n \frac{\partial u}{\partial x} \right)_x - x^{n+1} \frac{\partial v}{\partial x} \right] \right) dq \cdots dq \tag{3.5}
\]

and

\[
V(q,s) = \int \int \cdots \left(\frac{d^n G_1(q)}{sdq^n} + \frac{d^n G(q,s)}{sdq^n} \right) dq \cdots dq + \frac{(-1)^n}{s} \int \int \cdots \left(L_x L_t \left[\left(x^n \frac{\partial v}{\partial x} \right)_x - x^{n+1} \frac{\partial^2 u}{\partial x \partial t} \right] \right) dq \cdots dq \tag{3.6}
\]

The double Laplace a domain decomposition methods (DLADM) defines the solution of the system as \(u(x,t) \) and \(v(x,t) \) by the infinite series

\[
u(x,t) = \sum_{n=0}^{\infty} u_n(x,t), \quad v(x,t) = \sum_{n=0}^{\infty} v_n(x,t). \tag{3.7}
\]
By applying double inverse Laplace transform for Eq.(3.5) and Eq.(3.6) and use Eq.(3.7) we have

\begin{align*}
\mathcal{L}^{-1}
&= L_q^{-1} L_s^{-1} \left[\int \int \int \left(\frac{d^n F_1(q)}{s^d q^n} + \frac{d^n F_2(q)}{s^d q^n} + \frac{d^n F(q,s)}{s^d q^n} \right) dq dq \right] \\
&+ L_q^{-1} L_s^{-1} \left[\left(\frac{1}{s} \int \int \right) L_x L_t \left(x^n \frac{\partial u}{\partial x} \right) dq dq \right] \\
&+ L_q^{-1} L_s^{-1} \left[\left(\frac{1}{s} \int \int \right) L_x L_t \left(x^{n+1} \frac{\partial v}{\partial x} \right) dq dq \right] \tag{3.8}
\end{align*}

In particular, if \(n = 1 \), Eq.(3.8) and Eq.(3.9) becomes

\begin{align*}
\mathcal{L}^{-1}
&= f_1(x) + t f_2(x) + L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s^2} \int_0^q dF(q,s) \right) \right] \\
&- L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q \left(x \frac{\partial u}{\partial x} \right) dq \right) \right] \tag{3.10}
\end{align*}

and

\begin{align*}
\mathcal{L}^{-1}
&= g_1(x) + L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q dG(q,s) \right) \right] \\
&- L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q \left(x \frac{\partial v}{\partial x} \right) dq \right) \right] \tag{3.11}
\end{align*}

Using Eq.(3.7) into Eq.(3.10) and Eq.(3.11) we get

\begin{align*}
\sum_{n=0}^{\infty} u_n(x,t) &= f_1(x) + t f_2(x) + L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s^2} \int_0^q dF(q,s) \right) \right] \\
&- L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q \left(x \sum_{n=0}^{\infty} u_{nx}(x,t) \right) \right) dq \right] \\
&+ L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q \left(x \sum_{n=0}^{\infty} v_{nx}(x,t) \right) \right) dq \right] \tag{3.12}
\end{align*}

and

\begin{align*}
\sum_{n=0}^{\infty} v_n(x,t) &= g_1(x) + L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q dG(q,s) \right) \right] \\
&- L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q \left(x \sum_{n=0}^{\infty} v_{nx}(x,t) \right) \right) dq \right] , \\
&+ L_q^{-1} L_s^{-1} \left[\int \int \left(\frac{1}{s} \int_0^q \left(x^2 \frac{\partial^2 u}{\partial x^2} \left(\sum_{n=0}^{\infty} u_n(x,t) \right) \right) dq \right) \right] \tag{3.13}
\end{align*}
in particular
\[
\begin{align*}
u_0 (x, t) &= f_1 (x) + tf_2 (x) + L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q dF (q, s) \right] \\
v_0 (x, t) &= g_1 (x) + L_q^{-1} L_s^{-1} \left[\frac{1}{s} \int_0^q dG (q, s) \right]
\end{align*}
\] (3.14)
general we have
\[
\begin{align*}
u_{n+1} (x, t) &= -L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q L_q L_t \left[\left(\sum_{n=0}^{\infty} u_{nx} (x, t) \right) \right] dq \right] \\
&\quad + L_q^{-1} L_s^{-1} \left[\frac{1}{s} \int_0^q L_q L_t \left[\left(\sum_{n=0}^{\infty} v_{nx} (x, t) \right) \right] dq \right], \quad (3.15) \\
v_{n+1} (x, t) &= -L_q^{-1} L_s^{-1} \left[\frac{1}{s} \int L_q L_t \left[\left(\sum_{n=0}^{\infty} v_{nx} (x, t) \right) \right] dq \right] \\
&\quad + L_q^{-1} L_s^{-1} \left[\frac{1}{s} \int L_q L_t \left[x^2 \frac{\partial^2}{\partial x \partial t} \left(\sum_{n=0}^{\infty} u_n (x, t) \right) \right] dq \right] \quad (3.16)
\end{align*}
\]
By calculate the terms \(u_0, u_1, \ldots \) and \(v_0, v_1, \ldots \). We obtain the solution of the system as
\[
\begin{align*}
u (x, t) &= u_0 + u_1 + \ldots \quad \text{and} \quad v (x, t) &= v_0 + v_1 + \ldots
\end{align*}
\]
In the following example we consider \(n = 1 \) in Eq.(3.1) as:

Example 2. Consider the following linear singular one dimensional thermo-elasticity coupled system
\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \frac{1}{x} \left(x \frac{\partial u}{\partial x} \right)_x + x \frac{\partial v}{\partial x} &= -x^2 \sin t - 4 \sin t + 2x^2 e^t, \quad x \in \Omega \\
\frac{\partial v}{\partial t} - \frac{1}{x} \left(x \frac{\partial v}{\partial x} \right)_x + x \frac{\partial^2 u}{\partial x \partial t} &= x^2 e^t - 4e^t + 2x^2 \cos t, \quad t > 0
\end{align*}
\] (3.17)
subject to
\[
\begin{align*}
u (x, 0) &= 0, \quad \frac{\partial u (x, 0)}{\partial t} = x^2, \quad v (x, 0) = x^2.
\end{align*}
\] (3.18)
By using modified double Laplace decomposition methods for Eq.(3.17), Eq.(3.18) and apply Eq.(3.10), Eq.(3.11) we have
\[
\begin{align*}
u (x, t) &= x^2 \sin t + 4 \sin t - 4t + 2x^2 e^t - 2x^2 t - 2x^2 \\
&\quad - L_q^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^q L_q L_t \left(\left(x \frac{\partial u}{\partial x} \right)_x - x^2 \frac{\partial v}{\partial x} \right) dq \right] \quad (3.19)
\end{align*}
\]
and
\[
\begin{align*}
\begin{align*}
v (x, t) &= x^2 e^t - 4e^t + 2x^2 \sin t - 4 \\
&\quad - L_q^{-1} L_s^{-1} \left[\frac{1}{s} \int L_q L_t \left(\left(x \frac{\partial v}{\partial x} \right)_x - x^2 \frac{\partial^2 u}{\partial x \partial t} \right) dq \right].
\end{align*}
\end{align*}
\] (3.20)
On using Eq.(3.14), Eq.(3.15) and apply Eq.(3.16) we get
\[
\begin{align*}
u_0 (x, t) &= x^2 \sin t + 4 \sin t - 4t + 2x^2 e^t - 2x^2 t - 2x^2 \\
v_0 (x, t) &= x^2 e^t - 4e^t + 2x^2 \sin t - 4,
\end{align*}
\] (3.21)
\[u_1(x,t) = -4t + 4x^2 \sin t - 4 \sin t + 8e^t - 8 - \frac{4}{3}t^3 - 4t^2 - 2x^2e^t - 2x^2 + 2x^2 \]
\[v_1(x,t) = 4x^2e^t + 4e^t - 2x^2 \sin t + 4 - 8 \cos t - 4x^2, \]
and
\[u_2(x,t) = 8t - 4x^2 \sin t - 16 \sin t - 8e^t + 8 + \frac{4}{3}t^3 + 4t^2 - 4x^2e^t + 8x^2t + 4x^2 + 2x^2t^2 \]
\[v_2(x,t) = 4x^2e^t + 16e^t - 8x^2 \sin t - 24 + 8 \cos t - 4x^2 + 4x^2t - 16t. \]

Therefore, the approximate solution is
\[u(x,t) = u_0 + u_1 + \ldots \quad \text{and} \quad v(x,t) = v_0 + v_1 + \ldots \]

We obtain the closed form solution
\[u(x,t) = x^2 \sin t \quad \text{and} \quad v(x,t) = x^2e^t \]

4. CONVERGENCE ANALYSIS

In this section, we will discuss the convergence analysis of the modified double Laplace decomposition methods for the nonlinear singular one dimensional hyperbolic equation. We propose to extend this idea given in [15, 17]. First of all let us consider the Hilbert space \(H \), defined by
\[H = L^2((a,b) \times [0,T]), \]
where \(a \ll 0 \) with following scalar product
\[(u,v) = \int_Q xu(x,t) v(x,t) \, dx \, dt \]

where \(Q = (a,b) \times [0,T] \) and
\[H = \left\{ (u,v) : (a,b) \times [0,T], \text{with} \right\} \]
\[H = \left\{ L_p^{-1}L_s^{-1} \left[\frac{1}{2} \int_0^p \int_0^s L_x L_t \{u(x,t)\}(p,s) \, dp \right] (x,t) < \infty \right\}. \]

\textbf{Problem:} We consider the nonlinear singular one dimensional hyperbolic equation:

is given by
\[\partial^2 u \partial t^2 = \frac{1}{x} \frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) + u \frac{\partial u}{\partial x} + f(u), \quad t > 0 \] (4.1)
for all \(u,v \in H \). We define \(H \) as \(H = L^2_p((a,b) \times [0,T]) \) and

\[(u,v) = \int_Q xu(x,t) v(x,t) \, dx \, dt, \]

where \(Q = (a,b) \times [0,T] \) and
\[H = \left\{ (u,v) : (a,b) \times [0,T], \text{with} \right\} \]
\[H = \left\{ L_p^{-1}L_s^{-1} \left[\frac{1}{2} \int_0^p \int_0^s L_x L_t \{u(x,t)\}(p,s) \, dq \right] (x,t) < \infty \right\}. \]
Multiplying both sides of Eq.(4.1) by \(x \), and write the equation in the operator form

\[
L(u) = x \frac{\partial^2 u}{\partial t^2} = \frac{\partial u}{\partial x} + x \frac{\partial^2 u}{\partial x^2} + \frac{1}{2} x \frac{\partial u^2}{\partial x} + x f(u), \quad u = u(x,t) \quad t > 0
\]

where \(|x| \leq b \). For \(L \) hemicontinuous operator, by using the following definition:

Definition 1. 1. (H1)
\[
(L(u) - L(v), u - v) \geq k \|u - v\|^2; \quad k > 0, \forall u, v \in H
\]

2. (H2) whatever may be \(M > 0 \), there exist a constant \(C(M) > 0 \) such that for \(u, v \in H \) with \(\|u\| \leq M, \|v\| \leq M \) we have:

\[
(L(u) - L(v), w) \leq C(M) \|u - v\| \|w\|
\]

for every \(w \in H \). For more details see [15, 17].

In the next Theorem we follow [16, 18, 19].

Theorem 2. (Sufficient condition of convergence) The Modified double Laplace decomposition methods applied to the nonlinear singular one dimensional hyperbolic equation Eq.(4.2) with homogenous initial condition, converges towards a solution.

Proof. First, we will verify the convergence hypothesis H1 for the operator \(L(u) \) of Eq.(4.2). we use the definition of our operator \(L \), we have the following form

\[
(L(u) - L(v), u - v) = \left(\frac{\partial}{\partial x} (u - v), u - v \right)
\]

\[
+ \left(x \frac{\partial^2}{\partial x^2} (u - v), u - v \right)
\]

\[
+ \left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right)
\]

\[
+ (x (f(u) - f(v)), u - v)
\]

Therefore,

\[
(L(u) - L(v), u - v) = \left(\frac{\partial}{\partial x} (u - v), u - v \right)
\]

\[
+ \left(x \frac{\partial^2}{\partial x^2} (u - v), u - v \right)
\]

\[
+ \left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right)
\]

\[
+ (x (f(u) - f(v)), u - v)
\]

According to the coercive operator the differential operator \(\frac{\partial}{\partial x} \) and \(\frac{\partial^2}{\partial x^2} \) in \(H \), then there exist constants \(\alpha, \beta, \theta > 0 \) such that

\[
\left(\frac{\partial}{\partial x} (u - v), u - v \right) \geq \alpha \|u - v\|^2
\]

and by using Cauchy–Schwartz inequality

\[
- \left(x \frac{\partial^2}{\partial x^2} (u - v), u - v \right) \leq |x| \left\| \frac{\partial^2}{\partial x^2} (u - v) \right\| \|u - v\|
\]

\[
\leq \beta b \|u - v\|^2
\]

\[
\Leftrightarrow \left(x \frac{\partial^2}{\partial x^2} (u - v), u - v \right) \geq - \beta b \|u - v\|^2
\]

(4.6)
where \(\|u\| \leq M \) and \(\|v\| \leq M \), and according to the Schwartz inequality, we get
\[
\left(-\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \leq \frac{1}{2} |x| \left\| \frac{\partial}{\partial x} (u^2 - v^2) \right\| \|u - v\|
\]
\[
\leq \frac{1}{2} b \theta \|u^2 - v^2\| \|u - v\|
\]
\[
\leq \frac{1}{2} b \theta \|u + v\| \|u - v\|^2
\]
\[
\leq b \theta M \|u - v\|^2,
\]
where \(|x| \leq b \), hence
\[
\left(-\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \geq -b \theta M \|u - v\|^2.
\] (4.7)

By using Schwartz inequality, where \(\sigma > 0 \) as \(f \) is Lipschitzian function, we obtain
\[
(-x (f (u) - f (v)), u - v) \leq |x| \|f (u) - f (v)\| \|u - v\|
\]
\[
\leq b \|f (u) - f (v)\| \|u - v\|
\]
\[
\leq b \sigma \|u - v\|^2 \iff (x (f (u) - f (v)), u - v) \geq -b \sigma \|u - v\|^2,
\] (4.8)

substituting Eq.(4.5), Eq.(4.6), Eq.(4.7) and Eq.(4.8) into equation Eq.(4.4) gives
\[
(L (u) - L (v), u - v) \geq (\alpha - \beta M - b \theta M - b \sigma) \|u - v\|^2
\]
\[
(L (u) - L (v), u - v) \geq k \|u - v\|^2.
\]

So the hypothesis (H1) holds. where
\[
k = \alpha - \beta M - b \theta M - b \sigma > 0.
\]

Now we verify the convergence hypotheses (H2) for the operator \(L(u) \), for every \(M > 0 \), there exist a constant \(C (M) > 0 \) such that for \(u, v \in H \) with \(\|u\| \leq M \), \(\|v\| \leq M \), exist constants \(\alpha_1, \alpha_2, \beta_1, \sigma_1 > 0 \) such that
\[
(L (u) - L (v), w) \leq C (M) \|u - v\| \|w\|,
\]
\(\forall w \in H \). we have,
\[
(L (u) - L (v), w) = \left(\frac{\partial}{\partial x} (u - v), w \right)
\]
\[
+ \left(x \frac{\partial^2}{\partial x^2} (u - v), w \right)
\]
\[
+ \left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), w \right)
\]
\[
+ (x (f (u) - f (v)), w).
\] (4.9)
By using the Schwartz inequality and the fact that \(u \) and \(v \) are bounded, we obtain the following:

\[
\left(\frac{\partial}{\partial x} (u - v), w \right) \leq \alpha_1 \|u - v\| \|w\|,
\]

\[
\left(x \frac{\partial^2}{\partial x^2} (u - v), w \right) \leq b\beta_1 \|u - v\| \|w\|
\]

\[
\leq b\beta_1 \|u - v\| \|w\|
\]

\[
\left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), w \right) \leq \frac{1}{2} \alpha_2 |x| \|u + v\| \|u - v\| \|w\|
\]

\[
\leq b\alpha_2 M \|u - v\| \|w\|, \\
(x (f(u) - f(v)), w) \leq b\sigma_1 \|u - v\| \|w\|,
\]

where \(|x| \leq b \) we have:

\[
(L(u) - L(v), w) \leq (\alpha_1 + b\beta_1 + b\alpha_2 M + b\sigma_1) \|u - v\| \|w\|
\]

\[
= C(M) \|u - v\| \|w\|
\]

where

\[
C(M) = (\alpha_1 + b\beta_1 + b\alpha_2 M + b\sigma_1).
\]

and therefore (H2) holds. This completes the proof. \(\Box \)

Conclusion 1. In this work, first: we proposed new modified double Laplace decomposition methods to solve linear singular one dimensional hyperbolic equation and linear singular one dimensional thermo-elasticity coupled system. The efficiency and accuracy of the present scheme are validated through examples. This method can be applied to many complicated linear and non-linear PDEs and also for system of PDEs and does not require linearization. Second, we presented a convergence proof of the (DLADM) applied to the nonlinear singular one dimensional hyperbolic equation.

References

[1] S. Abbasbandy, Iterated He’s homotopy perturbation method for quadratic Riccati differential equation, Applied Mathematics and Computation 175 (2006) 581-589.
[2] A. Sadighi, D.D. Ganji, Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods, International Journal of Nonlinear Sciences and Numerical Simulation 8 (3) (2007) 435-443.
[3] E. Babolian , J. Blazar , A.R. Vahidi, A new computational method for Laplace transforms by decomposition method, Applied Mathematics and Computation 150 (2004) 841-846.
[4] A. Bouziani, On Initial Boundary Value Problem with Dirichlet Integral Condition for a Hyperbolic Equation with Bessel Operator, Journal of Applied Mathematics 2003:10 (2003) 487-502.
[5] Y. Khan ,, H. Vázquez-Leal , N. Faraz, An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations, Applied Mathematical Modelling 37 (2013) 2702-2708.
[6] Said Meslouba, Fatih Meslou, On a coupled nonlinear singular thermoelastic system, Nonlinear Analysis 73 (2010) 3195-3208.
[7] C. A. D. Moura. A linear uncoupling numerical scheme for the nonlinear coupled thermodynamics equations, Berlin-Springer, 1983, 204-211. In: V. Pereyra, A. Reinoze (Editors), Lecture notes in mathematics, 1005.
[8] A. Kiliçman and H. Eltayeb, A note on defining singular integral as distribution and partial differential equation with convolution term, Math. Comput. Modelling 49 (2009) 327-336.
[9] H. Eltayeb and A. Kilicman, A Note on Solutions of Wave, Laplace’s and Heat Equations with Convolution Terms by Using Double Laplace Transform: Appl, Math, Lett. 21 (12) (2008), 1324-1329.

[10] A. Kilicman and H. E. Gadain, On the applications of Laplace and Sumudu transforms, Journal of the Franklin Institute, vol.347, no. 5, (2010)pp. 848-862.

[11] K. Abbaoui and Y. Cherruault. Convergence of Adomian’s Method Applied to Differential Equations. Computers and Mathematics with Applications, 28(5):(1994)103-109.

[12] K. Abbaoui and Y. Cherruault. Convergence of Adomian’s Method Applied to Nonlinear Equations. Mathematical and Computer Modelling, 20(9):(1994)69-73.

[13] K. Abbaoui, Y. Cherruault, and V. Seng. Practical Formulae for the Calculus of Multivariable Adomian Polynomials. Mathematical and Computer Modelling, 22(1):(1995)89-93.

[14] Abdon Atangana and Suarees Clovis Oukouomi Noutchie. On Multi-Laplace Transform for Solving Nonlinear Partial Differential Equations with Mixed Derivatives, Mathematical Problems in Engineering, Volume 2014, Article ID 267843, (2014) 9 pages.

[15] T. Mavoungou and Y. Cherruault. Convergence of Adomian’s method and applications to non-linear partial differential equations, Kybernetes 21 (6), (1992) 13-25.

[16] I. Hashim , M.S.M. Noorani, M.R. Said Al-Hadidi.Solving the generalized Burgers–Huxley equation using the Adomian decomposition method, Mathematical and Computer Modelling 43 (2006) 1404-1411.

[17] T. Mavoungou, Y. Cherruault, Numerical study of Fisher’s equation by Adomian’s method, Math. Comput. Modelling 19 (1994) 89-95.

[18] Do gan Kaya, Ibrahim E. Inan, A numerical application of the decomposition method for the combined KdV–MKdV equation, Applied Mathematics and Computation 168 (2005) 915-926.

[19] Do gan Kaya, Ibrahim E. Inan, A convergence analysis of the ADM and an application, Applied Mathematics and Computation 161 (2005) 1015-1025.

1,3 Mathematics Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

E-mail address: 1hgadain@ksu.edu.sa, 2akilic@upm.edu.my and 3mesloub@ksu.edu.sa

Current address: 2Department of Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia