The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population

Hsin-Chou Yang* (楊欣洲) et al. a
Institute of Statistical Science, Academia Sinica

Abstract

Background: Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment.

Methods: We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia.

Results: We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1, DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO.

Conclusions: These results suggest that DAO, which is involved in the N-methyl-D-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating
the glutamate and dopamine hypotheses of schizophrenia.

Chih-Min Liu (劉智民), *Yu-Li Liu* (劉玉麗), *Chia-Wei Chen* (陳佳煒), *Chien Ching Chang* (張倩青), *Cathy S. J. Fann* (范盛娟), *Jen-Jie Chiou* (邱振傑), *Ueng-Cheng Yang* (楊永正), *Chun-Houh Chen* (陳君厚), *Stephen V. Faraone* (菲盛娟), *Ming T. Tsuang* (莊明哲) and *Hai-Gwo Hwu* (胡海國)

1. Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
2. Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
3. Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
4. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
5. Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
6. Medical Genetics Research Center and Departments of Psychiatry and Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
7. Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, USA, and Institute of Behavioral Genomics, University of California, San Diego, California, USA
8. Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
9. Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
10. Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan