The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers

Weifa Su1,2,3,4, Tao Gong1,2,3,4, Zipeng Jiang1,2,3,4, Zeqing Lu1,2,3,4 and Yizhen Wang1,2,3,4*

1 National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China, 2 Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China, 3 Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China, 4 Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China

Early weaning of piglets is an important strategy for improving the production efficiency of sows in modern intensive farming systems. However, due to multiple stressors such as physiological, environmental and social challenges, postweaning syndrome in piglets often occurs during early weaning period, and postweaning diarrhea (PWD) is a serious threat to piglet health, resulting in high mortality. Early weaning disrupts the intestinal barrier function of piglets, disturbs the homeostasis of gut microbiota, and destroys the intestinal chemical, mechanical and immunological barriers, which is one of the main causes of PWD in piglets. The traditional method of preventing PWD is to supplement piglet diet with antibiotics. However, the long-term overuse of antibiotics led to bacterial resistance, and antibiotics residues in animal products, threatening human health while causing dysbiosis of gut microbiota and superinfection of piglets. Antibiotic supplementation in livestock diets is prohibited in many countries and regions. Regarding this context, finding antibiotic alternatives to maintain piglet health at the critical weaning period becomes a real emergency. More and more studies showed that probiotics can prevent and treat PWD by regulating the intestinal barriers in recent years. Here, we review the research status of PWD-preventing and treating probiotics and discuss its potential mechanisms from the perspective of intestinal barriers (the intestinal microbial barrier, the intestinal chemical barrier, the intestinal mechanical barrier and the intestinal immunological barrier) in piglets.

Keywords: piglets, postweaning diarrhea, antibiotics, probiotics, intestinal barriers

INTRODUCTION

As a critical period, the health of piglets during the weaning period determines later growth performance (Gresse et al., 2017). In the modern porcine industry, early weaning generally occurs at 3-4 weeks of age to improve economic efficiency (Sutherland et al., 2014). Nevertheless, the digestive and immune systems of piglets are immature at this stage. Study has shown that the activities of piglets’ digestive enzymes,
such as pepsin, trypsin, chymotrypsin and amylase, significantly decreased within 1 week of early weaning, making feed difficult to digest (Jensen et al., 1997). Simultaneously, the change of feed from liquid milk to solid feed results in the destruction of intestinal physical barrier, including the destruction of tight junctions (TJs), reducing mucin production, and increasing of gut permeability, etc. (Le Dividich and Seve, 2000; Hu et al., 2013; Wang et al., 2016a). Additionally, early weaning causes the loss of microbial diversity and dysbiosis of gut microbiota, and further increases the risk of gastrointestinal diseases of piglets (Guevarra et al., 2018). Studies have reported that weaning transition reduces the relative abundance of *Lactobacillus* (the primary gut microbiota in piglet shaped by the sows’ milk), increases the relative abundance of *Clostridium* spp., *Prevotella* spp., *Proteobacteriaceae*, and *E. coli* (Konstantinov et al., 2006). Early weaned piglets are susceptible to enterotoxigenic *E. coli* (ETEC) infection and causing PWD, which kills up to 50% of piglets worldwide each year (Gresse et al., 2017).

In modern farming, antibiotics are heavily used to prevent and treat pig diseases in order to reduce economic losses. (Li, 2017). The long-term overuse of antibiotics is a screening process of bacteria and accelerates the spread of drug-resistant bacteria in animal gastrointestinal tract (Pamer, 2016). Such as, ETEC shows significant high resistance in porcine intestinal tract (Laird et al., 2021). While the gut microbial ecosystem is normally resilient, the composition of gut microbiota is relatively simple in the newborn mammals, resulting in a low resilience of the gut microbiota. The use of antibiotics permanently changes the structure of the microbial community and interferes with the intestinal homeostasis of newborn mammals (Sommer et al., 2017; Zong et al., 2020). Furthermore, studies have shown that antibiotics promote intestinal inflammation (Zeng et al., 2017), and antibiotics are associated with the decrease of microbiota diversity, exacerbating the vicious circle of PWD (Perez-Cobas et al., 2013). Antibiotics can also remain in the bodies of livestock, ultimately affecting human health. Therefore, antibiotics have been forbidden to be fed on livestock in many countries and regions. As the world’s largest pig farming country, since 1 July 2020, China have started to ban the feed production enterprises to product commercial feed containing growth-promoting drugs feed additives. Hence, there is an urgent need for developing nonantibiotic alternative to restore microbial balance and control PWD of piglets. The effects of probiotics, an alternative to antibiotics, on treating PWD are widely documented in recent years (Table 1). The most frequently used microorganisms are *Lactobacillus*, *Bifidobacterium*, *Enterococcus*, *Bacillus* and yeasts from the genus *Saccharomyces* (Liao and Nyachoti, 2017). A comprehensive understanding of the interactions between probiotics and intestinal barrier of piglets during PWD will help develop new probiotics interventions strategies that can enhance piglets’ growth performance and protect piglets from PWD.

INTESTINAL BARRIERS OF PIGLETS

The intestinal barriers of piglets are consisted of microbial barrier, mucosal barrier and immunological barrier. The intestinal barriers play an important role in maintaining the homeostasis of the gut internal environment (Maynard et al., 2012). As a critical line of defense, intestinal barrier prevents the pathogenic antigens, toxins and pathogenic microorganisms from invading the internal environment of the body (Baumgart and Dignass, 2002).

Newborn piglets develop a diverse and complex microbial community in the gastrointestinal tract by milk intake and exposure to the external environment (Blaut and Clavel, 2007). The dynamic balance, formed by interdependence and mutual restraint among different gut microbiota, provides the first barrier for gut. In the face of the external threats, the gut microbiota works together to counteract its own disadvantages (Hooper and Macpherson, 2010; Shanahan, 2010). There are three widely accepted mechanisms of gut microbial barrier function: 1) occupying the binding site and settlement space; 2) nutrition competition; 3) promoting the improvement of intestinal function (regulating the secretion of mucus and the development of intestinal immune system) (Buffie and Pamer, 2013; Kamada et al., 2013).

The mucosal barrier, the second intestinal barrier in piglets, consists of chemical and mechanical barriers (Sperandio et al., 2015). Chemical barrier is composed of the mucus secreted by the intestinal mucosa epithelium, digestive liquid, and bacteriostatic substances produced by normal parasitic bacteria in the intestinal lumen. Paneth cells and goblet cells contribute to the natural immune defense that supports epithelial barrier function (McCracken and Lorenz, 2001). Paneth cells produce antimicrobial agents such as defensins and lysozyme, and they can damage bacterial cell walls or membranes to inhibit or kill pathogenic bacteria and maintain gut mucosal homeostasis (Salzman et al., 2007; Bevins and Salzman, 2011; Salzman, 2011; Sun et al., 2021a). Additionally, the mucin, produced by goblet cells, forms a protective layer to prevent pathogenic microbes from binding to intestinal epithelial cells (Desai et al., 2016). The gut microbiota and the host immune cells can ingeniously modulate these barriers to avoid unnecessary immune responses to gut commensal microbes by spatially segregating the gut microbiota and the host immunity (Okumura and Takeda, 2018). The structure of mechanical barrier is based on intact intestinal epithelial cells (ICEs) and TJs between epithelial cells. ICEs and TJs can effectively prevent bacteria and endotoxins from entering the blood from intestine (Wang et al., 2014; Balda and Matter, 2016; Zong et al., 2021).

Early weaning is a challenge to the immature gut immune system as it must adapt to gut microbial colonization and feed antigens. In the early weaning period, the innate immune system defenses responsible for barrier function are more mature compared to the adaptive immune system. Therefore, the early weaning piglet is more reliant on innate immunity (Humphrey et al., 2019). The intestinal immune system is stimulated to maintain homeostasis in the intestinal epithelium by secreting immunoglobulins, interleukins and interferons. At approximately 6 weeks of age, piglets have stable numbers of lymphocytes and mature secondary lymphoid organs, such as Peyer’s patches (PPs) in the gut (Moeser et al., 2017). PPs are
TABLE 1 | Effects of probiotics on treating PWD of piglet.

Microorganism Category	Microorganism Name	Treatment	Host Health Influence	Reference
Lactic acid bacteria	Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium thermophilum and Enterococcus faecium	Piglets weaned at 28 d of age were fed the basal diet mixed the probiotics (0.25 × 10⁶ CFU/g for each strain) for 25 days, and orally administered with ETEC F18+ (2 × 10⁹ CFU/g) on day 13 postweaning	Decreasing serum TNF-α; increasing jejunal villus height, and especially villus height-to-crypt depth ratio in piglets	(Sun et al., 2021b)
Lactobacillus delbrueckii	The piglets were orally administrated with Lactobacillus delbrueckii (50 × 10⁹ CFU/mL) at amounts of 1, 2, 3, and 4 mL per animal at 1, 3, 7, and 14 d of age	Increasing the height of intestinal villi of piglets; promoting the expression of intestinal TJs proteins, and reducing the incidence of diarrhea by more than 50%	(Li et al., 2019a)	
Enterococcus faecalis	Piglets weaned at 26 d of age were fed basal diet supplemented with Enterococcus faecalis (2.5 × 10⁶ CFU/kg) for 28 days	Enterococcus faecalis and neomycin sulfate decreased diarrhea index and improve growth performance, Enterococcus faecalis increased Lactobacillus in feces	(Hu et al., 2015)	
Lactobacillus plantarum	Piglets (4 d of age) were orally administrated with Lactobacillus plantarum (5 × 10⁹ CFU/kg) for 15 days and then orally administrated with ETEC F4 (1 × 10⁸ CFU per pg)	Improving performance and effectively preventing the diarrhea; improving function of the intestinal barrier by protecting intestinal morphology and intestinal permeability and the expression of genes for TJs proteins	(Yang et al., 2014)	
Lactobacillus zeae and Lactobacillus casei	Piglets weaned at 28 d of age were fed corn-soybean meal mixed feed fermented by Lactobacillus zeae and Lactobacillus casei for 3 days, and then orally challenged with 1 mL Salmoella (1 × 10⁶ CFU/mL)	Decreasing pro-inflammatory cytokine expression and alleviating Salmonella infection	(Yin et al., 2014)	
Yeast	Saccharomyces cerevisiae	Piglets weaned at 14 d of age were fed basal diet supplemented with 3.0 g kg⁻¹ live yeast Saccharomyces cerevisiae (4.3 × 10⁹ CFU/g) for 21 days	Decreasing numbers of Escherichia coli in ileum and cecum contents; increasing serum SOD activity and jejunal mucosal SIgA secretions	(Zhu et al., 2017a)
Saccharomyces cerevisiae	Piglets weaned at 28 d of age were fed basal diet supplemented with 5 g/kg live yeast Saccharomyces cerevisiae for 14 days, orally challenged with ETEC F4 (1.5 × 10¹ⁱ CFU/piglet) after weaning (d 29)	Significantly lower daily diarrhea scores, duration of diarrhea, and shedding of pathogenic ETEC bacteria in feces and increasing IgA levels in the serum of piglets	(Trckova et al., 2014)	
Saccharomyces cerevisiae	Piglets weaned at 21 d of age were fed basal diet supplemented with Saccharomyces cerevisiae fermentation products for 8 days and then orally challenged with ETEC F4	Saccharomyces cerevisiae fermentation products and carbadox increased average daily feed intake, Saccharomyces cerevisiae fermentation products decreased the ileal mucosa adherent Escherichia coli ETEC F4	(Kiarie et al., 2011)	
Saccharomyces cerevisiae var. boulardii	Piglets weaned at 26 d of age were fed basal diet supplemented with 200 g/t live Saccharomyces cerevisiae var. boulardii for 16 days, and then dosed via indwelling jugular catheters with Escherichia coli lipopolysaccharide (LPS) (25 µg/kg of BW)	ADG increased by 39.9% and LPS-induced piglet mortality was reduced 20%	(Colier et al., 2011)	
Saccharomyces cerevisiae	Piglets weaned at 21 d of age were fed Saccharomyces cerevisiae fermentation products for 14 days, and then orally administered with Salmonella (1 × 10⁶ CFU)	Increasing compensatory body weight gains after Salmonella infection and increasing Salmonella shedding in feces	(Price et al., 2010)	
Bacillus	Bacillus subtilis KN-42	Piglets weaned at 28 d of age were fed basal diet supplemented with 20 × 10⁶ CFU/kg feed of B. subtilis KN-42 for 28 days	Bacillus subtilis KN-42 increased average daily gain (ADG) and feed efficiency of piglets, Bacillus subtilis KN-42 and neomycin sulfate decreased diarrhea index and the relative number of Escherichia coli	(Hu et al., 2014)
Clostridium butyricum	Piglets (7.09 ± 0.2 kg) were fed basal diet supplemented with Clostridium butyricum (5 × 10⁶ CFU/g) for 15 days and then orally administrated with ETEC F4 (1 × 10⁸ CFU/g)	Alleviating intestinal villi injury caused by ETEC F4 challenge	(Li et al., 2021)	
Three types of mixed bacteria	Enterococcus faecium, Bacillus subtilis, Saccharomyces cerevisiae and Lactobacillus paracasei	Piglet weaned at 28 d of age were fed the basal diet mixed the probiotics (>1 × 10⁹ CFU/g for each strain) for 21 days	Increasing fecal acetic acid and propionic acid; increasing growth performance and significantly reducing PWD	(Lu et al., 2018)

covered by a specialized follicle-associated epithelium containing M cells, which is a pathway for antigens to enter the lamina propria. The lamina propria contains a variety of immune cells, mainly including B cells, macrophages, dendritic cells (DCs) and T cells (Allaire et al., 2019). The perception of microbes by epithelial cells, DCs and macrophages is mediated by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs) (Xiao et al., 2017). The T cells closely related to probiotics in the
lamina propria are T helper (Th) and regulatory T (T\textsubscript{Reg}) cells. The activation of PRRs often induces microbial killing pathways and activates T helper 1 (Th1) and T helper 17 (Th17) cells and adaptive immune cells (Liew, 2002).

PROBIOTICS RELIEVE PWD BY REGULATING THE INTESTINAL MICROBIAL BARRIER

Probiotics can improve the richness of gut microbiota and shape the gut microbiota oriented by beneficial bacteria to resist infection by pathogenic microorganisms (Tang et al., 2020). Study has shown that supplementation with \textit{S. cerevisiae} and \textit{Bacillus licheniformis} reduced diarrhea incidence and the relative abundance of intestinal \textit{E. coli}, and increased the invasion by pathogenic microorganisms (Tang et al., 2020). Moreover, \textit{Bifidobacterium} was reported to bind and neutralize lipopolysaccharides (LPS) or Vero cytotoxin from \textit{E. coli} (Kim et al., 2001; Park et al., 2007).

Therefore, the regulatory effects of probiotics to alleviate PWD of piglet through the intestinal microbial barrier mainly include the following three aspects: 1) shaping the gut microbiota oriented by beneficial bacteria; 2) competitive exclusion of pathogen; 3) producing antimicrobial substances. From the research status on the regulatory effect of probiotics on the intestinal microbial barrier of postweaning piglets, probiotics appear to be more effective in preventing PWD than in treating PWD. Screening for probiotics (such as \textit{Lactobacillus}) that can stably colonize the piglet’s gut, efficiently produce antibacterial substances and competitively exclude of pathogen to prevent PWD may be an effective strategy. In addition, supplementing probiotics to accelerate the maturation of gut microbiota or to shape a PWD-preventing gut microbiota in weaned piglets are worthy of further study.

PROBIOTICS RELIEVE PWD BY REGULATING THE INTESTINAL CHEMICAL AND MECHANICAL BARRIER

The mucus layer in the intestine acts as the gatekeeper, separating the luminal microbiota from the epithelial cells (Birchenough et al., 2015; Zong et al., 2019a). Carvalho et al. (2012) reported that ETEC degraded MUC2 by secreting a serine protease (Eat A), which enabled bacteria to penetrate the mucus layer to reach the epithelium and triggered an inflammatory response (Kumar et al., 2014). Zhang et al., (Zhang et al., 2017) suggested that \textit{Bacillus licheniformis}-b and \textit{Bacillus subtilis} up-regulated the expression of Atoh1 in the ileum of weaned piglets, which increased goblet cells number and MUC2 to protect the mucosal barrier from the degradation of ETEC.

Endotoxin activating the immune system results in inflammation and increases the permeability of the intestinal mucosa. Probiotics can reduce the permeability of the intestinal barrier by competing for binding sites, preventing attachment of pathogenic bacteria, and by decreasing the expression of proinflammatory cytokines. For example, \textit{Bifidobacterium lactis} and \textit{Lactobacillus rhamnosus} inhibited the adhesion of \textit{Salmonella}, \textit{Clostridium} and \textit{E. coli} to pig intestinal mucus. \textit{Saccharomyces cerevisiae} var. \textit{boulardii} and \textit{β}-galactomannan also inhibited \textit{in vitro} adhesion of ETEC on cell surface of porcine intestinal IPI-21 cells (Badia et al., 2012a). In addition to inhibiting the adhesion of pathogens to the intestinal mucosa through competitive exclusion, probiotics also can secrete antimicrobial substances, such as bacteriocins, organic acids and hydrogen peroxide (Dicks and Botes, 2010; O’Shea et al., 2012; Knaus et al., 2017). The antimicrobial compounds exert direct antimicrobial effect against competing entero-pathogens and prevent the pathogenic colonization in the gastrointestinal tract of piglets (van Zyl et al., 2020).
secretion reduction, thereby reducing the diarrhea of piglets (Hu et al., 2018b).

Many studies reported that probiotics relieved PWD by modulating the gut mechanical barrier. Yang et al. (2014) suggested that Lactobacillus plantarum alleviated the increase of urine lactic acid and plasma concentration and the decrease of ZO-1 and Occludin mRNA and protein in the jejunum of piglets caused by ETEC. Hu et al. (2018a) demonstrated that oral administration of Lactobacillus frumenti can significantly improve the intestinal integrity and up-regulate the intestinal TJs proteins (ZO-1, Occludin, and Claudin-1) of piglets. Similarly, Clostridium butyricum, Bacillus licheniformis and Lactobacillus reuteri compete with potential pathogens for intestinal epithelial binding sites to promote TJs proteins expression (Li et al., 2019b; Zhao et al., 2019; Zong et al., 2019b). Study showed that Lactobacillus plantarum reversed EIEC infection resulting in a centripetal retraction of the perijunctional actin filaments with separation of actins from the apical cellular borders and EIEC-induced rearrangements of Claudin-1, Occludin, JAM-1 and ZO-1 proteins in Caco-2 (Qin et al., 2009).

In summary, the protection of mucosal barrier in piglets by probiotics may be achieved mainly through stimulating secretion of mucin and antimicrobial peptides, promoting intestinal fluid absorption and reducing fluid secretion, and upregulating the expression of intestinal TJs protein. From the research status on the regulatory effects of probiotics on the intestinal chemical and mechanical barriers of postweaning piglets, probiotics play an important role in both prevention and treatment of PWD. On the one hand, probiotics promote the secretion of mucin and antimicrobial peptides and up-regulating the expression of TJs protein to prevent PWD. On the other hand, it can alleviate the damage of the intestinal chemical and mechanical barriers caused by PWD. However, the specific regulatory mechanism of probiotics on the intestinal chemical and mechanical barriers in postweaning piglets still needs further research.

PROBIOTICS RELIEVE PWD BY REGULATING THE INTESTINAL IMMUNOLOGICAL BARRIER

Piglets are exposed to complex microbiota after weaning from environment. The intestinal immune system needs to rapidly identify harmful microorganisms and dietary antigens, and trigger the correct mucosal immune response. However, the intestinal mucosal immune system of piglets does not mature until about two weeks after early weaning (Butler and Wertz, 2012). In recent years, many studies have reported the effect of probiotics on the gut immunity of weaned piglets (Table 2). Probiotics (such as Lactobacillus, Bacillus, yeast, etc.) and their metabolites (such as organic acids, mannan oligosaccharide and β-glucan of yeast cell wall, etc.) seem to act as immune activators, which can trigger the proliferation and differentiation of T lymphocytes and B lymphocytes, and promoting the secretion of a series of cytokines and generating a series of immune responses (Sharma et al., 2010).

When weaned piglets are not infected by pathogens such as E. coli, the supplement of probiotics actually activates the immune system of piglets to develop towards a more stable and less vulnerable direction. The supplement of probiotics, to a large extent, helps piglets to establish intestinal immunity response against the invasion of pathogens after weaning without causing severe inflammatory responses. Van Baarlen et al. (van Baarlen et al., 2011) reported that lipoteichoic acid, a cell surface molecule of Lactobacillus plantarum, regulated the activation of extracellular signaling kinase through the TLR signaling pathway, in turn activating NF-κB to regulate the release of Th1 cytokines and subsequent Treg and Th1 development. Lactobacillus rhamnosus can regulate the proliferation of T-lymphocytes and increase the number of CD3+/CD4+ T-lymphocytes in the intestine of early weaning piglets (Shonyela et al., 2020). In addition, probiotics also play a role in the stimulation of antibodies in the gut, particularly slgA, which can inhibit pathogen adherence to IECs. Zhu et al. (2017a) suggested that weaning pigs diet supplemented with Saccharomyces cerevisiae increase the content of slgA in intestinal mucosa.

On the other hand, when weaned piglets are infected with pathogens, these pathogen-associated molecular patterns are well recognized by the cells of the immune system that reside within the lamina propria, and their activation results in the release of pro-inflammatory mediators and inflammatory responses (Humphrey et al., 2019). Probiotics can enhance the proliferation and differentiation of intestinal immune cells, and inhibit the expression of pro-inflammatory cytokines and promote the expression of anti-inflammatory cytokines, thus protecting the intestinal tract from damage caused by pathogen-related inflammation. Zanello et al. (2011) reported that Saccharomyces cerevisiae inhibited the ETEC-induced expression of pro-inflammatory transcripts IL-6, IL-8, CCL20, CXCL2, and CXCL10. Probiotics tend to increase the plasma level of IL-2, and inhibit pro-inflammatory cytokines (IL-1 and IL-18) expression and promote anti-inflammatory cytokines (IFN-γ, IL-4 and IL-10) expression (Ngo and Vo, 2019; Xiang et al., 2020). Wang, et al. (Wang et al., 2016b) suggested Lactobacillus reuteri inhibited ETEC-induced the expression of pro-inflammatory transcripts IL-6 and TNF-α and increased the level of the anti-inflammatory cytokines IL-10. Zhu et al. (2014) found that the amelioration of PWD in piglets by Lactobacillus rhamnosus is associated with the generation of lamina propria CD3+CD4+CD8–T cells and the expansion of PPs CD3+CD4+CD8– cells. In addition, Virdi et al. (2019) suggested that a single-gene-encoded monomeric immunoglobulin A(IgA)-like antibody, mVHH-IgA, secreted from Pichia pastoris, prevent the colonization of F4 fimbiae-bearing enterotoxigenic E. coli in small intestine of piglets. Lactobacillus plantarum was also reported to partially inhibit F4-triggered expression of inflammatory cytokines IL-8 and TNF-α. The induction of negative regulators of TLRs by Lactobacillus plantarum in IPEC-J2 may be important for the
TABLE 2 | Effects of probiotics on immunity of piglets.

Microorganism Category	Microorganism Name	Treatment	Host Health Influence	Reference
Lactic acid bacteria	Lactobacillus salivarius	Porcine intestinal epithelial were stimulated with Lactobacillus salivarius (5×10^8 cells/mL)	Improving IFN-β, IFN-λ, and antiviral factors expression in PIE cells	(Indo et al., 2021)
	Lactobacillus delbrueckii	The piglets were orally administrated with Lactobacillus delbrueckii (5×10^8 CFU/mL) at amounts of 1, 2, 3, and 4 mL per animal at 1, 3, 7, and 14 d of age	Increasing the concentration of IgG in serum; promoting the production of anti-inflammatory cytokines IL-4 and IL-10, and reducing the content of pro-inflammatory factor IL-1β	(Li et al., 2019a)
	Lactobacillus frumenti	Piglets received a PBS suspension (2 mL, 10^8 CFU/mL) containing the Lactobacillus frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning	The level of serum IgG, intestinal slgA, and IFN-γ were significantly increased	(Hu et al., 2018a)
	Lactobacillus reuteri	Intestinal porcine epithelial cells were treated with ETEC and Lactobacillus reuteri	Inhibited ETEC-induced expression of pro-inflammatory transcripts IL-6 and TNF-α and protein IL-6 and increased the level of the anti-inflammatory cytokine IL-10	(Wang et al., 2016b)
	Lactobacillus plantarum	Piglets weaned at 25 d of age were fed basal diet supplemented with Lactobacillus plantarum (2×10^10 CFU/day) for 7 days, and then orally challenged with ETEC F4 (10^6 CFU/mL)	The level of serum TNF-α was significantly increased	(Guerra-Ordaz et al., 2014)
Yeast	Saccharomyces cerevisiae	Piglets (20 d of age) were fed with Saccharomyces cerevisiae (2×10^8 CFU/mL) for 10 days (10 mL/day)	Increasing the numbers of plasmocyte and lymphoid nodules; promoting the development of PPs and germinal center	(Zhai et al., 2020)
	Brewery hydrolyzed yeast	Piglets weaned at 25 d of age were fed basal diet supplemented with 2 g/kg brewery hydrolyzed yeast for 28 days	Increased IgG and IgM antibodies in serum-binding KLH, and increased SRBC agglutination titers	(Molist et al., 2014)
	Saccharomyces cerevisiae var. boulardii and β-galactomannan	Piglets received a PBS suspension (2 mL, 10^8 CFU/mL) containing the Saccharomyces cerevisiae var. boulardii and β-galactomannan	Decreased the mRNA ETEC-induced gene expression of pro-inflammatory cytokines TNF-α, IL-6, GM-CSF and chemokines CCL2, CCL20 and CXCL8 on intestinal IP-2I	(Zanello et al., 2012b)
	Saccharomyces cerevisiae	Porcine small intestine epithelial cell was challenged in vitro with Escherichia col F4 and then treated with Saccharomyces cerevisiae var. boulardii and β-galactomannan	Inhibited the ETEC-induced expression of pro-inflammatory transcripts IL-6, IL-8, CCL20, CXCL2, and CXCL10, as well as proteins IL-6 and IL-8	(Li et al., 2011)
	Clostridium butyricum	Piglets (7.09 ± 0.2 kg) were fed basal diet supplemented with Clostridium butyricum (5×10^6 CFU/g) for 15 days and then orally administrated with ETEC F4 (1×10^9 CFU/g)	Including myeloid differentiation factor, toll-interacting protein, and B cell CCL/lymphoma 3, in the intestines of ETEC F4-challenged piglets	(Badia et al., 2019)
	Bacillus var. Toyoi	Piglets (14 d of age) were fed basal diet supplemented with Bacillus cereus var. Toyoi (6.5×10^8 CFU/g) and then orally administrated with Salmonella (3×10^8 CFU per pig) on d 29	Reduced frequencies of CD8⁺ T cells in the peripheral blood and the jejunal epithelium	(Scharek-Tedin et al., 2013)
Three types of mixed bacteria	Lactobacillus plantarum, Bacillus subtilis and Saccharomyces cerevisiae	Wearing pigs basal diet supplemented with 15% fermented soybean meal	The level of serum IgG, IgM and IgA were significantly increased, and autophagy factor LC3B in piglets showed a downward trend	(Zhu et al., 2017a)

Inhibition of inflammatory cytokines and may be mediated through the NF-κB and MAPK pathways (Wu et al., 2016).

Overall, in terms of intestinal immunological barrier, probiotics prevent or mitigate PWD by triggering a range of immunological defense mechanisms, including promoting the production of slgA and inflammatory cytokines, and promoting the differentiation of intestinal immune cells. From the research status on the regulatory effects of probiotics on the intestinal immunological barrier of postweaning piglets, probiotics also play an important role in both prevention and treatment of PWD. Probiotics and their metabolites act as immune activators to activate the immune system of postweaning piglets and increase the body’s resistance to pathogenic bacteria, thereby preventing PWD. Additionally, probiotics protect the intestinal tract from damage caused by pathogen-related inflammation. In production, we recommend selecting appropriate probiotics as immune activators to prevent PWD, which may have better economic effects.

REGULATION MECHANISM OF PROBIOTICS ON INTESTINAL BARRIERS OF POSTWEANING PIGLETS

The surface components of probiotics, such as flagella, pili, surface layer proteins (SLPs), capsular polysaccharide (CPS), lipoteichoic acid, and lipopolysaccharide, constitute microbial-
associated molecular patterns (MAMPs). They can specifically bind to pattern recognition receptors (PRRs) such as NOD-like receptors (NLRs) and TLRs (Lebeer et al., 2018; Liu et al., 2020). The underlying mechanisms have been proposed for the probiotic (such as Lactobacillus rhamnosus and Lactobacillus plantarum) effect on epithelial barrier modulation, involving protein kinase C (PKC)- and mitogen-activated protein kinase (MAPK)-dependent pathways, and inhibition of cytokine-induced epithelial cell apoptosis and damage through a phosphoinositide 3-kinase–AKT-dependent pathway. These and similar studies have provided insights into the mechanisms by which probiotics may affect epithelial barrier function at the molecular level (Seth et al., 2008; Anderson et al., 2010; Bron et al., 2012). Lactobacillus plantarum also improve epithelial barrier function by inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC F4, possibly through modulation of TLRs, NF-κB and MAPK signaling pathway (Wu et al., 2016). Lactobacillus acidophilus was reported to promote Th1 cell development by inducing the production of Th1 cytokines via an IFN-STAT3-NF-κB signaling axis (van Baarlen et al., 2011). Fu et al. (2021) reported that Clostridium butyricum improved intestinal chemical and mechanical barriers (up-regulating the gene expression of pBDs, JTs protein and mucin) of weaning piglets by the TLR-2-MyD88-NF-κB signaling. Prebiotics can promote the proliferation of SCFAs-producing microorganisms in the hindgut of weaning piglets, and then reduce the expression of intestinal proinflammatory factors through the MyD88-NF-κB signaling pathway to improve the intestinal immunological barrier (Tian et al., 2022). In addition, metabolites produced by probiotics, such as secreted proteins, indole and SCFAs, also protect the intestinal barriers. Butyrate secreted by Clostridium butyricum can promote the expression of hypoxia-inducible factor (HIF-1α) to upregulate the expression of its targeted downstream intestinal JTs, mucin and antimicrobial peptides, and promote intestinal IL-22 secretion, thereby improving the gut barrier and immune function (Pral et al., 2021). The indole-3-lactic acid produced by Bifidobacterium infantis and Lactobacillus reuteri activates the aryl hydrocarbon receptors (AhRs) of the gut epithelium by increasing their nuclear localization and up-regulating the protein expression of CYP1A1. The activation of AhRs then leads to IL-22 transcription, which can further increase the expression of antimicrobial peptides (Ehrlich et al., 2018; Hou et al., 2021). The soluble proteins P40 and p75 isolated from Lactobacillus rhamnosus can activate EGFR and then up-regulate the

![FIGURE 1](https://www.frontiersin.org)
expression of an A proliferation-inducing ligand (APRIL) in the epithelium, thus stimulating the secretion of IgA by B cells. Besides, P40 and p75 can activate EGFR–PI3K–Akt signaling pathway to maintain gut homeostasis (Wang et al., 2017).

In summary, the surface molecules and metabolites of probiotics may modulate postweaning piglets’ gut barrier function via multiple signaling pathways. Direct use of the surface components and metabolites of probiotics may be considered to prevent or treat PWD instead of probiotics during weaning of piglets.

CONCLUSION AND FUTURE PERSPECTIVES

Probiotics is a potential alternative to antibiotics for the prevention and treatment of PWD. We review the research status of PWD-preventing and treating probiotics and discuss its potential regulatory mechanism from the perspective of intestinal barriers. Different from antibiotics, probiotics generally play a role in PWD through restoring the balance of intestinal microbiome and regulating intestinal mucosal and immunological barriers. Different probiotic species exert their health-regulatory effects for PWD through diverse ways such as competitive exclusion of pathogen, producing antimicrobial substance and neutralizing toxin, improving intestinal permeability, and promoting the proliferation and differentiation of intestinal immune cell (Figure 1). Consequently, probiotics have unique advantages and considerable potential in application to PWD of piglets.

From the research status on the regulation effect of probiotics on the intestinal barriers of postweaning piglets, prevention and treatment combinations may be future directions. More in vivo or in vitro experiments should be carried out to screen for probiotics (such as Lactobacillus) from normal weaned healthy piglets that can stably colonize the piglet’s gut, efficiently produce antibacterial substances, competitively exclude of pathogen, improve intestinal mucosal barrier and activate the immune system to prevent PWD. Although some fecal microbiota transplantation (FMT) experiments have been carried out and achieved good results (Ma et al., 2021), the effect of specific flora or strains on intestinal colonization of early piglets still needs further research. In addition, supplementing probiotics to accelerate the maturation of gut microbiota or to shape a PWD-preventing gut microbiota in weaned piglets are worthy of further study. Furthermore, probiotics may be used as a restorative agent to restore the disorders of gut microbiota and immune system that caused by antibiotics in piglets. Probiotics (prevention) - antibiotics (treatment) - probiotics (repair) may be a new combination strategy for early weaning piglets. Additionally, regulation mechanism of probiotics on intestinal barriers by the surface molecules and metabolites of probiotics suggested that direct use of the surface components and metabolites may be a viable and efficient strategy to prevent or treat PWD instead of probiotics during weaning of piglets.

AUTHOR CONTRIBUTIONS

WS: Conceptualization, Writing - original draft. TG and ZJ: Writing - review & editing. ZL and YW: Resources, Writing - review and editing. Supervision. All authors edited, critically revised, and approved the final manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

The authors thank the specialized research fund from China Agriculture Research System of MOF and MARA (CARS-35), National Center of Technology Innovation for Pigs, Major Science and Technology Projects of Zhejiang and Shandong (2021C02008, 2019ZZY020602, 2019C02051, CTZB-2020080127).

REFERENCES

Allaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., and Vallance, B. A. (2019). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 40, 174–178. doi: 10.1016/j.it.2018.12.008
Anderson, R. C., Cookson, A. L., McNabb, W. C., Park, Z., McCann, M. J., Kelly, W. J., et al. (2010). Lactobacillus Plantarum MB452 Enhances the Function of Dendritic Cells Challenged In Vitro with Mucosal Immunostimulating Components. BMC Microbiol. 10, 316. doi: 10.1186/1471-2180-10-316
Badia, R., Zanello, G., Chevaleyre, C., Lizardo, R., Meurens, F., Martinez, P., et al. (2012). Effect of Saccharomyces Cerevisiae Var. Boulardii and Beta-Galactomannan Oligosaccharide on Porcine Intestinal Epithelial and Dendritic Cells Challenged In Vitro With Escherichia Coli F4 (K88). Vet. Res. 43, 4. doi: 10.1186/1297-9716-43-4
Balda, M. S., and Matter, K. (2016). Tight Junctions as Regulators of Tissue Remodelling. Curr. Opin. Cell Biol. 42, 94–101. doi: 10.1016/j.ceb.2016.05.006
Baumgart, D. C., and Dignass, A. U. (2002). Intestinal Barrier Function. Mucosal Immunol. 8, 712–719. doi: 10.1038/mi.2015.32
Blaust, M., and Cavel, T. (2007). Metabolic Diversity of the Intestinal Microbiota: Implications for Health and Disease. J. Nutr. 137, 751s–755s. doi: 10.1093/jn/137.7.751S
Bron, P. A., van Baarlen, P., and Kleerebezem, M. (2012). Emerging Molecular Insights Into the Interaction Between Probiotics and the Host Intestinal Mucosa. Nat. Rev. Microbiol. 10, 66–U90. doi: 10.1038/nrmicro2690
Buffie, C. G., and Pamer, E. G. (2013). Microbiota-Mediated Colonization Resistance Against Intestinal Pathogens. Nat. Rev. Immunol. 13, 790–801. doi: 10.1038/nri3535
Butler, J. E., and Wertz, N. (2012). The Porcine Antibody Repertoire: Variations on the Textbook Theme. Front. Immunol. 3, doi: 10.3389/fimmu.2012.00153
Carvalho, F. A., Koren, O., Goodrich, J. K., Johansson, M. E. V., Naibantoglu, L., Atiken, J. D., et al. (2012). Transient Inability to Manage Proteobacteria
Promotes Chronic Gut Inflammation in TLR5-Deficient Mice. Cell Host Microbe 12, 139–152. doi: 10.1016/j.chom.2012.07.004

Collado, M. C., Grzesiowski, I., and Salminen, S. (2007). Probiotic Strains and Their Combination Inhibit In Vitro Adhesion of Pathogens to Pig Intestinal Mucosa. Curr. Microbiol. 55, 260–265. doi: 10.1007/s00284-007-0144-8

Collier, C. T., Carroll, J. A., Ballou, M. A., Starkey, J. D., and Sparks, J. C. (2011). Effects of Different Starch Sources on Bacillus Spp. in Intestinal Tract and Activities of Enzymes in Pigs With Emphasis on Lipolytic Activity in the Stomach and Duodenum. Asian Austral J. Anim. Nutr. 14, 1876. doi: 10.5713/ajas.17.0418

D’Souza, W. N., Douangpanya, J., Mu, S., Jaeckel, P., Zhang, M., Maxwell, J. R., Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., and Van Hooper, L. V., and Macpherson, A. J. (2010). Immune Adaptations That Maintain Intestinal Permeability, Alters Expression of Cytokine and Tight Junction Proteins, and Activates Mitogen-Activated Protein Kinases in Pigs. J. Anim. Sci. 91, 1094–1101. doi: 10.2527/2012.2012-5796

Hu, J., Xia, X., Luan, Z. S., and Song, J. (2013). Early Weaning Increases Intestinal Permeability, Alters Expression of Cytokine and Tight Junction Proteins, and Activates Mitogen-Activated Protein Kinases in Pigs. J. Anim. Sci. 91, 1094–1101. doi: 10.2527/2012.2012-5796

Indo, Y., Kitahara, S., Tomokiyi, M., Araki, S., Islam, M. A., Zhou, B. H., et al. (2011). Lactobacillus Acidophilus Strains Isolated From the Porcine Gut Modulate Innate Immune Responses in Epithelial Cells and Improve Protection Against Intestinal Viral-Bacterial Superinfection. Front. Immunol. 2, doi: 10.3389/fimmu.2011.00307

Han, G. Q., Xiang, Z. T., Yu, B., Chen, D. W., Shi, M., Liu, L., Xie, C. L., et al. (2018a). Inhibitory Activity of Bifidobacterium Longum HY8001 Against Vero Cytotoxin of Escherichia Coli O157:H7. J. Food Prot. 64, 1667–1673. doi: 10.4315/0362-028x-64.11.1667

Koay, J. Y. (2017). Pathogen Control at the Intestinal Mucosa - H2O2 to the Rescue. Microb. Ecol. Health Dis. 29, 1–15. doi: 10.1111/mehd.12631

Hillman, K., Murdoch, T. A., Spencer, R. J., and Stewart, C. S. (1994). Inhibition of Lactobacillus Accelerates Colitis in Association With Health and Nutrition. Nutr. Res. Rev. 7, 265–276. doi: 10.1111/j.1751-7311.1994.tb01631.x

Hooper, L. V., and Macpherson, A. J. (2010). Immune Adaptations That Maintain Homeostasis With The Intestinal Microbiota. Nat. Rev. Immunol. 10, 159. doi: 10.1038/nri2710

Hou, Q. H., Li, Y. L., Li, S. N., Zhang, D. X., Peng, N., Zhao, S. M., et al. (2015). Dietary Enterococcus Faecalis LAB31 Improves Growth Performance, Reduces Diarrhea, and Increases Fecal Bacteriacillus Number of Weaned Piglets. PLoS One 10, e0116635. doi: 10.1371/journal.pone.0116635

Hu, Y. L., Sun, Y. H., Li, S. A., Zhao, S. M., Peng, N., and Liang, X. Y. (2014). Effects of Bacillus Subtilis KN-42 on Growth Performance, Diarrhea and Fecal Bacterial Flora of Weaned Piglets. Asian Austral J. Anim. 27, 1131–1140. doi: 10.5713/ajas.2013.13737

Hu, J., Ma, L. B., Nie, Y. F., Chen, J. W., Zheng, W. Y., Wang, X. K., et al. (2018b). A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. Cell Host Microbe 24, 817. doi: 10.1016/j.chom.2018.11.006

Humphrey, B., Zhao, J., and Faris, R. (2019). Review: Link Between Intestinal Immunity and Practical Approaches to Swine Nutrition. Animal 13, 2736–2744. doi: 10.1016/j.animal.2018.08.001

Kiaire, E., Bhandari, S., Scott, M., Krause, D. O., and Nyachoti, C. M. (2011). Growth Performance and Gastrointestinal Microbial Ecology Responses of Piglets Receiving Saccharomyces Cerevisiae Fermentation Products After an Oral Challenge With Escherichia Coli (K88). J. Anim. Sci. 89, 1062–1078. doi: 10.2527/2010-3424

Kim, S. H., Yang, S. J., Koo, H. C., Bae, W. K., Kim, J. Y., Park, J. H., et al. (2001). Inhibitory Activity of Bifidobacterium Longum HY8001 Against Vero Cytotoxin of Escherichia Coli O157:H7. J. Food Prot. 64, 1667–1673. doi: 10.4315/0362-028x-64.11.1667

Knaus, U. G., Hertzberger, R., Pircalabioru, G. O., Yousefi, S. P. M., and Santos, F. R. (2017). Pathogen Control at the Intestinal Mucosa - H2O2 to the Rescue. Gut. Microbes 8, 67–74. doi: 10.1007/s40364-017-0936-0

Konstantinov, S. R., Awtai, A., Williams, B. A., Miller, G. G., Jones, P., Stokes, C. R., et al. (2006). Post-Natal Development of the Porcine Microbiota Composition and Activities. Environ. Microbiol. 8, 1191–1199. doi: 10.1111/j.1462-2920.2006.00109.x

Kumar, P., Luo, Q. W., Vickers, T. J., Sheikh, A. L., Lewis, W. G., and Fleckenstein, J. M. (2014). EatA, an Immuneogenic Protective Antigen of Enterotoxigenic Escherichia Coli, Destroys Intestinal Mucin. Infect. Immun. 82, 500–508. doi: 10.1128/IAI.00173-13

Laird, T. J., Abraham, S. J., Jordan, D., Pliske, J. R., Hampson, D. J., Trott, D. J., et al. (2021). Porcine Enterotoxigenic Escherichia Coli: Antimicrobial Resistance and Development of Microbial-Based Alternative Control Strategies. Vet. Microbiol. 258, 108997. doi: 10.1016/j.vetmic.2021.109117

Leberer, S., Bron, P. A., Marco, M. L., Van Pijkeren, J. P., O’Connell Motherway, M., Hill, C., et al. (2018). Identification of Probiotic Efferocytotic Molecules: Present State and Future Perspectives. Curr. Opin. Biotechnol. 49, 217–223. doi: 10.1016/j.copbio.2017.10.007

Le Dividich, J., and Seve, B. (2000). Effects of Underfeeding During the Weaning Period on Growth, Metabolism, and Hormonal Adjustments in the Piglet. Domest. Anim. Endocrin. 19, 63–74. doi: 10.1016/S0749-9233(00)00067-9

Li, J. Y. (2017). Current Status and Prospects for in-Feed Antibiotics in the Different Stages of Pork Production - A Review. Asian Austral J. Anim. 30, 1667–1673. doi: 10.5713/ajas.17.0418

Liao, S. F., and Nyachoti, M. (2017). Using Probiotics to Improve Swine Gut Health and Nutrient Utilization. Anim. Nutr. 3, 331–343. doi: 10.1016/j.janimu.2017.06.007

Su et al. Probiotics Regulate Piglets Intestinal Barriers

Evidence of Probiotics in Swine Nutrition in Frontiers in Cellular and Infection Microbiology
