Effect of Molecular Weight on Cloud Point of Aqueous Solution of Poly (ethylene oxide)–Poly (propylene oxide) Alternating Multiblock Copolymer

Tasuku Horiuchi¹, Kazuaki Rikiyama¹, Kenji Sakanaya², Yusuke Sanada², Keisuke Watanabe², Misako Aida¹, and Yukiteru Katsumoto²*

¹ Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima 739-8526, JAPAN
² Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, JAPAN

Abstract: A poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO) alternating multiblock (AMB) copolymer with various molecular weights was prepared via precipitation fractionation from an acetone/n-hexane mixture. The cloud point (Tc) of the aqueous solution of PEO–PPO AMB copolymer decreased as the number-average molecular weight of the sample increased. This phenomenon is generally observed for certain homopolymer systems having a lower critical solution temperature, such as PEO/water and poly(N,N-diethylacrylamide)/water systems. The relationship between the Tc of the solutions and the number of monomer units of the AMB copolymer suggests that the Shultz–Flory theory is applicable to this system.

Key words: multiblock copolymer, thermo-responsive, phase separation, molecular weight dependence

1 Introduction

Thermoresponsive polymers are a class of smart materials. The properties of such polymers change significantly in a controlled fashion under the influence of external stimuli. To develop synthetic polymer systems that act as protein mimics, it is important to control the block sequence and monomer composition of the copolymers. The block design of copolymers is an effective strategy for preparing protein mimics using synthetic polymers. An alternative way is to control the monomer sequence, which corresponds to the primary structure of proteins. However, the interaction among the monomers often makes it difficult to predict the macroscopic properties of the final products. In comparison with monomer sequence control, the block design is advantageous for achieving predictable physicochemical properties of the resultant copolymer and scale-up of the preparation process. Because the individual blocks in the copolymer may retain the characteristics of the homopolymer, the block copolymers may serve as a block library.

Recently, we investigated the solution properties of amphiphilic alternating multiblock (AMB) copolymers. The AMB copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), i.e., the PEO-PPO AMB copolymer, exhibits amphiphilic features comparable to those of Pluronic and Ploxamer. Unique characteristics of the AMB copolymer were observed for the unimer morphology in water. Previously, we found that the unimer of PEO-PPO AMB copolymers in water forms a core-corona structure similar to flower micelles. This may arise from two factors: the hydrophobic interaction among the PPO blocks in the core and the repulsion among the unimers based upon stabilization of the PEO chain at the corona. When the hydrophilic interaction was not sufficiently strong, the unimer of the AMB copolymers could not form a core-corona structure. Indeed, the AMB copolymer of PEO and poly(N-isopropylacrylamide) (PNiPAm) adopts a random-coil conformation in water at room temperature, because PNiPAm tends to be well hydrated compared with PPO. Because the PPO blocks are sufficiently hydrophobic to form a unimer micelle, the PEO-PPO AMB copolymer can also be expected to serve as a simple model of multipass transmembrane proteins such as bacteriorhodopsin.

Although the PEO-PPO AMB copolymers possess interesting features as above mentioned, the fundamental aspects have yet to be fully revealed. In this study, we focus on the effect of the molecular weight on the cloud point (Tc) of the copolymer. Based on the literature concerning PEO-PPO-PEO triblock copolymers, the hydro-
phobicity of PEO-PPO block copolymers is essentially proportional to the molecular weight of PEO and PPO when the weight fraction of PEO \(f_{\text{PEO}} \) is constant. For the AMB copolymers, however, the molecular weight of the PEO and PPO blocks is fixed, but the number of PEO-PPO repeating pairs varies depending on the total molecular weight. Herein, PEO-PPO AMB copolymers with various molecular weights are prepared by precipitation fractionation. The fractionated samples are used to investigate the \(T_c \) of the aqueous solution.

2 Experimental Procedures

2.1 Preparation of PEO-PPO AMB copolymer

The PEO-PPO AMB copolymer was prepared by a dehydrated condensation reaction according to the literature\(^{21}\). Briefly, \(\alpha,\omega \)-diamino PPO (JEFFAMINE D-2000; weight-average molecular weight \(M_w = 2,000 \)) was kindly supplied by Huntsman Corporation. \(\alpha,\omega \)-Disuccinimidyl PEO (SUN-BRIGHT DE-100HS; \(M_w = 10,000 \)) was purchased from NOF Corporation. The reaction was carried out in chloroform solution at 0°C. The crude sample was recovered by dialysis against water, followed by freeze-drying. Precipitation fractionation of the copolymer was performed by phase separation in an acetone/\(n \)-hexane mixture at 25-50°C. The PEO-PPO AMB copolymer prepared herein is denoted as \(\text{EO}_{220}\text{PO}_{33} \alpha \), where EO is the ethylene oxide unit, PO is the propylene oxide unit, and \(n \) is the number of PEO-PPO repeating units. The characterization details can be found in previous reports\(^{20,21}\).

2.2 Size exclusion chromatography (SEC)

The SEC apparatus consisted of a Jasco Intelligent HPLC system equipped with a guard column (SB-G, Shodex), two separation columns (SB-802.5HQ and SB-806MHQ, Shodex), and a refractive index detector (RI-2031Plus, Jasco). \(N,N \)-Dimethylformamide (HPLC grade, Wako) with 10 mM LiBr was used as the eluent at a flow rate of 0.35 mL min\(^{-1} \), at 60°C. The number-average molecular weight \(M_n \), \(M_w \), and the polydispersity \(M_w/M_n \) were evaluated with respect to standard polystyrene samples with ten different peak-top molecular weights in the range of \(1.22 \times 10^4 \) to \(2.70 \times 10^6 \) (STANDARD SM-105, Shodex).

2.3 \(^1 \)H NMR and IR spectroscopy

The ratio of EO units to PO units \((EO/PO) \) in the PEO-PPO AMB copolymers was determined from the \(^1 \)H NMR spectra recorded on an Ascend 400 (Bruker) instrument at 400 MHz. All spectra were acquired at 25°C using 1.0 wt% D\(_2\)O solutions.

2.4 Turbidity measurements

The transmittance of 633 nm light through the polymer solution was monitored by using a UV-Vis spectrophotometer (V-630RM, Jasco) equipped with a temperature controller (ETCS-761, Jasco). The sample was heated at a rate of 1.0°C min\(^{-1} \). The cloud point \((T_c) \) was defined by referring to the first derivative of the transmittance curve.

3 Results and Discussion

3.1 Characterization of the fractionated samples

Figure 1 shows the SEC charts of the PEO-PPO AMB copolymers, \((EO_{220}PO_{33})_\alpha \), before and after precipitation fractionation. Two peaks at 2270 and 2330 cm\(^{-1} \) were apparent in the SEC chart of the last fraction. Thus, we did not analyze this sample (denoted as “residue” in Fig. 1). The SEC charts of fraction 1-3 showed a systematic shift, indicating differences in the \(M_n \) of each fraction. The estimated \(M_n \) and \(M_w/M_n \) values are listed in Table 1. Although fractionation appeared to be successful based on the \(M_n \) of each fraction, the \(M_w/M_n \) values were still large (1.7-2.4). In general, fractionation of copolymers is more difficult than fractionation of homopolymers because the solubility of copolymers is also influenced by their chemical composition\(^{24}\). To estimate the \(EO/PO \) ratio for the fractionated samples, the \(^1 \)H NMR spectra were acquired (Fig. 2). The peak at \(\delta = 3.7 \) ppm arises from the methylene proton of the EO and PO units, while the peak at \(\delta = 1.2 \) ppm is due to the methyl proton of the PO unit. The intensity ratio of the \(\delta = 3.7 \) ppm peak to the \(\delta = 1.2 \) ppm peak \((I_{3.7}/I_{1.2}) \) was estimated to be 9.6-9.9. Because the PEO block contains

![Fig. 1 SEC charts of the crude and each fractions of the PEO-PPO AMB copolymer.](image-url)
Effect of Molecular Weight on Multiblock Copolymer Aqueous Solution

220 EO units and the PPO block has 33 PO units, the one-by-one connection of PEO and PPO yields \(I_{3.7}/I_{1.2} = 9.5 \). Thus, we can assume that the PEO-PPO AMB copolymers contain an equal amount of PEO and PPO blocks and the chemical composition of each fractionated sample is similar.

The SEC and \(^1\text{H} \) NMR results indicate successful precipitation fractionation of the PEO-PPO AMB copolymer. The \(n \) value for (EO\(_{220}\)PO\(_{33}\)) was estimated to range from 3.3 to 5.4. When \(n \)-hexane as a poor solvent was added to the acetone solution, the PEO-PPO AMB copolymers precipitated in the order of the molecular weight. Interestingly, this behavior is similar to the precipitation fractionation of homopolymers. Thus, we presumed that the EO/PO for a single chain did not differ in the PEO-PPO AMB copoly-

sample fraction	\(M_n (M_w/M_n) \)	\(I_{3.7}/I_{1.2} \)	\(n \)
crude	7.2 \times 10^7 (3.3)	-	-
120k\(^a\)	1.2 \times 10^8 (1.5)	9.4	6.3
100k	1.0 \times 10^7 (2.4)	9.9	5.4
94k	9.4 \times 10^7 (1.7)	9.6	5.1
61k	6.1 \times 10^4 (1.8)	9.9	3.3

\(^a\) Size exclusion chromatography with polystyrene standards.
\(^b\) Integrated intensity ratio of the peak at 3.7 ppm to 1.2 ppm obtained from \(^1\text{H} \) NMR.
\(^c\) The fraction was obtained from a different lot.

Table 1 Molecular weight \((M_n)\), polydispersity \((M_w/M_n)\), the ratio of EO units to PO units \((I_{3.7}/I_{1.2})\), and the number of repeating units \((n)\) of PEO–PPO AMB copolymers.

3.2 Molecular weight dependence of \(T_c \) for the PEO-PPO AMB copolymer in water

The results of the turbidity measurement for the copolymers are shown in Fig. 3. The \(T_c \) values were clearly high for the crude sample and the residue. As shown in Fig. 1, the residue contained a certain amount of impurity, corresponding to the peak at 2320 s in the SEC chart. The \(T_c \) of the crude sample may also contain a large contribution from the impurity. Thus, we assumed that there is a short PEO-PPO block copolymer in the crude sample and the

Fig. 2 \(^1\text{H} \) NMR spectra of the fractionated PEO-PPO AMB copolymers, the crude, and the residue.

Fig. 3 Temperature dependence of the transmittance of the 633 nm light passing through the aqueous solution of the PEO-PPO AMB copolymers. The polymer concentration is 1.5 wt% except for the 120k fraction (1.0 wt%).
residue, resulting in the high T_c. Note that the aqueous solution of the PEO homopolymer with $M_n = 14,000$ g mol$^{-1}$ undergoes phase separation around 107°C \(^{25}\), whereas the T_c of an aqueous solution of Pluronics F88, for which the EO/PO ratio is similar to that of (EO\(_{28}\)PO\(_{30}\))\(_s\) synthesized herein, is over 100°C \(^{26}\).

Figure 4 shows the molecular weight dependence of T_c for the aqueous solution of the PEO-PPO AMB copolymers. The T_c decreases with increasing M_n, which is typical for polymer solutions that undergo phase separation with a lower critical solution temperature (LCST), such as the PEO/water \(^{27}\) and poly(N-N-diethylacrylamide)/water \(^{27}\) systems. On the other hand, poly(N-isopropylacrylamide)/water system, which is a quite popular system that undergoes LCST-type phase separation, shows an abnormal M_n dependence on T_c, in which T_c decreases with decreasing M_n \(^{28}\).

The inset of Fig. 4 shows the plot of $1/T_c$ against $1/N^{0.5} + 1/2N$, where N is the number of monomer units (both of EO and PO) in the AMB copolymer. According to the Shultz-Flory theory \(^{29}\), the critical solution temperature (T_c) of a polymer solution is correlated with the polymerization degree as:

$$
\frac{T_c}{T_{cp}} = 1 + \frac{1}{\psi} \left(\frac{1}{\sqrt{N}} - \frac{1}{2N} \right)
$$

where T_c is Flory’s theta temperature and ψ is the entropy parameter \(^{30}\). Clearly, T_{cp} is not equal to the T_c measured herein. In a previous paper, however, we reported that the T_c of the aqueous solution of PEO-PPO AMB copolymers is insensitive to the polymer concentration above T_{cp}, which is located at ca. 0.3 wt% \(^{21}\). Thus, the T_c measured for the 1.5 wt% aqueous solution of the copolymers is expected to be close to the T_{cp}. The intercept of the solid line in the inset gives a value of 39°C, which corresponds to the T_n of the system. In previous papers, we reported that the micellization temperature of (EO\(_{28}\)PO\(_{30}\))\(_s\) is around 41-50°C \(^{23}\) and the second virial coefficient, A_{2}, of (EO\(_{28}\)PO\(_{30}\))\(_s\) approaches zero around 50°C \(^{23}\). The results shown here imply that the Shultz-Flory theory is applicable even to PEO-PPO AMB copolymers.

4 Conclusion
We investigated the effect of the molecular weight on the T_c of aqueous solutions of PEO-PPO AMB copolymers with various molecular weights. The PEO-PPO AMB copolymers were obtained by precipitation fractionation. The T_c of the aqueous solution of the PEO-PPO AMB copolymer decreases as the M_n increases. The results imply that the Shultz-Flory theory is applicable to the PEO-PPO AMB copolymer/water system.

Acknowledgment
This work was supported by the Grant-in-Aid for Scientific Research (C) (No. 26410137).

References
1) Kobayashi, J.; Okano, T. Design of temperature-responsive polymer-grafted surfaces for cell sheet preparation and manipulation. Bull. Chem. Soc. Jpn. 92, 817-824 (2019).
2) Rikiyama, K.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Unimer structure and micellization of poly(ethylene oxide)-stereoregular poly(N-isopropylacrylamide)-alternating multiblock copolymers in aqueous solution. Macromolecules 52, 7188-7196 (2019).
3) Lutz, J. F. A controlled sequence of events. Nat. Chem. 2, 84-85 (2010).
4) Keerl, M.; Richtering, W. Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid Polym. Sci. 285, 471-474 (2007).
5) Maeda, Y.; Yamabe, M. A unique phase behavior of random copolymer of N-isopropylacrylamide and N,N-diethylacrylamide in water. Polymer (Guildf) 50, 519-523 (2009).
6) Engelis, N.G.; Anastasaki, A.; Nurumbetov, G.; Truong, N.P.; Nikolaou, V.; Shegiwal, A.; Whittaker, M.R.; Davis,
Effect of Molecular Weight on Multiblock Copolymer Aqueous Solution

T.P.; Haddleton, D.M. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat. Chem. 9, 171-178 (2017).

7) Gody, G.; Barbev, R.; Danial, M.; Perrier, S. Ultrafast RAFT polymerization: Multiblock copolymers within minutes. Polym. Chem. 6, 1502-1511 (2015).

8) Gody, G.; Maschmeyer, T.; Zetterlund, P.B.; Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 4, 1-9 (2013).

9) Simula, A.; Nikolou, V.; Anastasaki, A.; Alsubaie, F.; Nurumbelev, G.; Wilson, P.; Kempe, K.; Haddleton, D.M. Synthesis of well-defined αω-telechelic multiblock copolymers in aqueous medium: In situ generation of αω-diols. Polym. Chem. 6, 2226-2233 (2015).

10) Anastasaki, A.; Oschmann, B.; Willenbacher, J.; Melker, A.; Van Son, M.H.C.; Truong, N.P.; Schulze, M.W.; Dickey, E.H.; McGrath, A.J.; Davis, T.P.; Bates, C.M.; Hawker, C.J. One-pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi-fluorinated segments. Angew. Chemie-Int. Ed. 56, 14483-14487 (2017).

11) Carroll, D.R.; Constantinou, A.P.; Stengl, N.; Georgiou, T.K. Scalable syntheses of well-defined pentadecablock bipolar and quintopolymer. Polym. Chem. 9, 3450-3454 (2018).

12) Zhang, Q.; Anastasaki, A.; Li, G.Z.; Haddleton, A.J.; Wilson, P.; Haddleton, D.M. Sequence-controlled multiblock glycopolymers to inhibit DC-SIGN-gp120 binding. Angew. Chemie-Int. Ed. 52, 4435-4439 (2013).

13) Alsubaie, F.; Anastasaki, A.; Wilson, P.; Haddleton, D.M. Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0°C. Polym. Chem. 6, 406-417 (2015).

14) Zhang, Q.; Collins, J.; Anastasaki, A.; Wallis, R.; Mitchell, D.A.; Becer, C.R.; Haddleton, D.M. Multiblock sequence-controlled glycopolymers via Cu(I)-LRP following efficient thiol-halogen, thiol-epoxy and CuAAC reactions. Polym. Chem. 5, 3876-3883 (2014).

15) Determan, M.D.; Cox, J.P.; Seifert, S.; Thiagarajan, P.; Mallapragada, S.K. Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer (Guildf) 46, 6933-6946 (2005).

16) Determan, M.D.; Guo, L.; Thiagarajan, P.; Mallapragada, S.K. Supramolecular self-assembly of multiblock copolymers in aqueous solution. Langmuir 22, 1469-1473 (2006).

17) Peleshanko, S.; Anderson, K.D.; Goodman, M.; Determan, M.D.; Mallapragada, S.K.; Tsukruk, V.V. Thermoresponsive reversible behavior of multistimuli pluronic-based pentablock copolymer at the air-water interface. Langmuir 23, 25-30 (2007).

18) Lu, Y.; Chen, T.; Mei, A.; Chen, T.; Ding, Y.; Zhang, X.; Xu, J.; Fan, Z.; Du, B. Solution behaviors and microstructures of PNIPAm-P123-PNIPAm pentablock terpolymers in dilute and concentrated aqueous solutions. Phys. Chem. Chem. Phys. 15, 8276-8286 (2013).

19) Zhou, Y.; Jiang, K.; Song, Q.; Liu, S. Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide. Langmuir 23, 13076-13084 (2007).

20) Rikiyama, K.; Horiiuchi, T.; Koga, N.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Micellization of poly(ethylene oxide)-poly(propylene oxide) alternating multiblock copolymers in water. Polymer (Guildf) 156, 102-110 (2018).

21) Muraoka, T.; Shima, T.; Hamada, T.; Morita, M.; Takagi, M.; Kinbara, K. Mimicking multipass transmembrane proteins: Synthesis, assembly and folding of alternating amphiphilic multiblock molecules in liposomal membranes. Chem. Commun. 47, 194-196 (2011).

22) Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of poly(ethylene oxide)-poly(propylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromolecules 27, 2414-2425 (1994).

23) Horiiuchi, T.; Sakai, T.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Association behavior of poly(ethylene oxide)-poly(propylene oxide) alternating multiblock copolymers in water toward thermally induced phase separation. Langmuir 33, 14649-14656 (2017).

24) Francuskiwicz, F. Polymer Fractionation. Springer, Berlin (1994).

25) Saeki, S.; Kuwahara, N.; Nakata, M.; Kaneko, M. Upper and lower critical solution temperatures in poly(ethylene glycol) solutions. Polymer (Guildf) 17, 685-689 (1976).

26) Alexandridis, P.; Alan Hatton, T. Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf. A 96, 1-46 (1995).

27) Watanabe, R.; Takaseki, K.; Katsumata, M.; Matsushita, D.; Ida, D.; Osa, M. Characterization of poly(N,N-diethylacrylamide) and cloud points in its aqueous solutions. Polym. J. 48, 621-628 (2016).

28) Tong, Z.; Zeng, F.; Zheng, X.; Sato, T. Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 32, 4488-4490 (1999).

29) Shultz, A.R.; Flory, P.J. Phase equilibria in polymer-solvent systems. J. Am. Chem. Soc. 74, 4760 (1952).

30) Hamada, F.; Fujisawa, K.; Nakajima, A. Lower critical solution temperature in linear polyethylene-n-alkane systems. Polym. J. 4, 316-322 (1973).

J. Oleo Sci.