From abstraction and indiscernibility to classification and types: revisiting Hermann Weyl’s theory of ideal elements

Jean-Baptiste Joinet\textsuperscript{1} and Thomas Seiller\textsuperscript{2}

Abstract

At the end of the 19th century, the Peano School elaborated its famous theory of “definitions by abstraction”. Two decades later, Hermann Weyl elaborated a generalization of the former, termed “creative definitions”, capable of covering various cases of ideal elements (Peano’s abstracta being among them). If the Peano School proposal eventually appeared to be based on the nowadays standard classificatory process of quotienting a set by an equivalence, Weyl’s proposal still lacks a set-theoretical, classificatory interpretation. In this paper, we define and investigate the notion of relational indiscernibility (upon which Weyl’s creative definitions are based) and show that a bridge from the concept of indiscernibility to the notion of type (sets closed by bi-orthogonal) may be built from the observation that individuals are indiscernible exactly when they belong to exactly the same types. In the last part, we investigate some philosophical consequences of those observations concerning the theory of abstraction.

1 Introduction. Essentialist and existentialist viewpoints on Types

The notion of Type was introduced at the very beginning of the 20th century by Bertrand Russell in [Russell, 1903] (Appendix B: “The Doctrine of Types”). The new fregean frame for Logic, in its set theoretical format, just happened to be proved inconsistent. Following Russell’s diagnosis, the fault originates in the consideration of mathematical objects as if they had an existence per se, a pure existence. Russell’s aim in introducing type theory was therefore to rebuild logic by rooting the existence of objects in a kind of existence, in other words an essence (their type); hence excluding from the scope of existence those individuals with no essence (meaningless, pseudo existing objects).

Four decades later, similar considerations led Alonzo Church to introduce types in his Lambda-calculus, a theory today considered as one of the first programming languages ever designed [Church, 1940]. In “Simply typed Lambda-calculus” (but also in the more powerful typing systems elaborated later on), it is the building of programs (lambda-terms: acting, behavioural individuals) that is mastered by the discipline of types. In that context, once again, the external norm introduced by types aims at excluding meaningless – untypable – individuals\textsuperscript{3}. It notably leaves aside the ones inducing
infinite computations – the dynamical version of logical paradoxes –, hence “taming” the computational dynamic.

In the same field of Theoretical Computer Science, however, an alternative approach to the notion of type emerged later on. Following the Propositions-as-Types point of view (i.e. the Brouwer-Heyting-Kolmogorov semantics of proofs revisited by the proof-as-programs viewpoint initiated by the Curry-Howard correspondence [Howard, 1980]) a given type is seen as some given set of programs, namely the set of all programs selected by the external norm of the typing discipline. With this point of view (types as sets of programs), the question naturally arises to characterise intrinsically which sets of programs are types, i.e. characterising them from an existentialist viewpoint, by considering all pure programs and their interactions in the computational process.

As existence appears rooted into essence in the first approach to the notion of type, this second point of view is naturally qualified as “essentialist” (as William Tait does, for instance in Theory of Types and Natural Deduction, chapter 4 [Tait, 1990], p.65). For this alternative approach, existence precedes essence. Better still: essence is deduced from existence, deduced a posteriori from the behaviour (tell me how you act, I shall tell you who you are), a reason why it may be qualified as “non essentialist” or “existentialist” (as Jean-Yves Girard does, for instance in [Girard, 1990]).

From that latter existentialist point of view, a type describes, so to speak, a collective, common, behaviour: a set of acting individuals (programs) having, through the computational process, a similar, or comparable, behaviour (at least in some respects) in their interaction with their (pure) peers.

Concretely, existentialist types are defined through a closure by bi-orthogonality operation (presented in section 3), where the involved notion of orthogonality is relative to some given binary relation. In the particular case of theoretical computer science, the considered relation depends on the interactive dynamic. In this work, we will however consider the methodology from a more general perspective, i.e. for any given binary relation. From that set theoretical point of view, this operation of closure by bi-orthogonality provides a general tool for classification and the concept of type becomes a classifying notion.
The first classificatory notions emerged in late 19th century in the context of the logical investigations by the Peano school on abstraction. The historical and theoretical thread which links abstraction to classification (by means of the notions of equivalence relation, equivalence classes and quotientation of a set by an equivalence relation, drawn by the Peano school) is well known and well documented. Among the abundant literature on the history of Peano’s “Definitions by abstraction” and Russell’s “Abstraction principles” (the new name for the former proposed and popularized later on by Russell), one could refer in particular to [Consuegra, 1991] (whose first chapters underline the importance and the anteriority of the Peano school investigations into abstraction and set theoretical interpretations of abstraction) and [Mancosu, 2016] (whose Part 1 is entirely devoted to the history of Abstraction theory in logic and in mathematical practice, from the 19th century – and even earlier – to the mid-20th century).

In this work, we aim to show that the same thread linking abstraction to the notion of class extends to the (more general) notion of type. Moreover, we advocate that such an extension is needed to understand the generalisation of the Peano school’s theory of abstraction that Hermann Weyl proposed in the first decade of 20th century and which roots ideal elements à la Hilbert into relational indiscernibility.

2 Abstraction and Ideality: from Peano to Weyl
2.1 The Peano school’s research programme on abstraction.
Around 1880, Peano and his group launched a research programme aimed at establishing a typology of definitions (as they actually occur in the practice of mathematicians throughout the centuries), using the precise linguistic tools offered by the emerging formal logic. The thread of their investigations gradually led them to bring out (as candidates for a special kind of “definition”) statements of the form:

\[ f_R(x) = f_R(x') \iff xRx', \]

where \( f_R \) is a newly introduced unary function constant and \( R \) is a binary predicate satisfying three properties (for which, after some terminological hesitation, they eventually coined the terms reflexivity, symmetry, and transitivity) characterising what they progressively called, as we still do:
equivalence relations$^9$. Peano’s group proposed to term axioms of the form above as definitions and coined them “definitions by abstraction”$^{10}$.

A simple, popular example of such definitions “by abstraction” is that of the direction of a line. One starts by considering the binary relation $\parallel$ (“is parallel to”) over lines defined by $x \parallel x'$ iff the lines $x$ and $x'$ have all their points in common or no points in common. One then introduces the new lexical element $f_\parallel(x)$ (to be read: “the direction of line $x$”) satisfying $f_\parallel(x) = f_\parallel(x') \iff x \parallel x'$; i.e. the direction of the lines $x$ and $x'$ are the same if and only if $x$ and $x'$ are parallel.

The method described by the Peano school under the name “definition by abstraction” actually covered numerous previous examples which can be found in the history of mathematics$^{11}$. Used as far back as in Euclid’s approach of rationals (abstracted from ratios comparison), the method happened however to become increasingly widespread in the mathematical practice of the 18th and, above all, 19th centuries. Among several mathematical pursuits, one may cite — again — directions abstracted from the relation of parallelism between lines; shapes abstracted from topological invariances; von Helmholtz’s weights, brightness, pitch of tones; and, neither last, nor least, cardinal numbers abstracted from bijectibility between sets, a.k.a. Hume’s principle$^{12}$.

A large part of the early philosophical debates about definitions by abstraction comes from the fact that, semantically, the codomain of $f_R$ (whose elements are considered as the abstracta) is not determined by the new “definitional” axiom (favorizing interrogations about the ontological status of the thus potentially new entities: the abstracta). Once a minimum of set theory is assumed, a canonical solution is of course to reduce abstraction to classification by interpreting systematically $f_R$ as the operator $[\cdot]_R$ associating to any element its equivalence class$^{13}$ (thus choosing the quotient of the domain by $R$ as the codomain of $f_R$)$^{14}$. In some cases, an ontologically less costly variant of that classificatory solution (an Ockhamian solution to abstraction, so to speak) may consist in choosing a representative in each equivalence class (even if, in general, choosing is not at all an innocuous operation...).
2.2 From Peano to Weyl: abstracta and ideal elements.

In 1910, H. Weyl generalizes Peano’s theory of “Definitions by abstraction”, by proposing the theory of what he coins “Creative definitions”, see [Weyl, 1910]. In [Weyl, 1927], he gives a more systematic presentation of the topic – a presentation that was to improve again (notably by giving complementary examples) in *Philosophy of Mathematics and Natural Sciences*, the augmented, revised, English-language edition of his 1927 book [Weyl, 1949]. His aim, with the concept of “creative definitions”, is not only to broaden the Peano school typology in order to cover examples overstepping definitions by abstraction\(^\text{15}\), but also to give a precise account of the Hilbertian process of introducing *ideal elements*. For sake of brevity and simplicity, we will not present the general form of “Creative definitions”. While Weyl considers creative definitions induced by \(k + 2\)-ary relations for any integer \(k\), we will focus on the case where \(k = 0\), i.e. creative definitions induced by binary relations\(^{16}\).

Even if Weyl himself does not conceptually justify his ideas in terms of *indiscernibility* and rarely uses that terminology (he contents himself with underlining how the notion of creative definitions fits with the definitional practices of mathematicians, through a list of specific instances), it is very illuminating to present his creative definitions by introducing the notion of *relational indiscernibility*.

2.3 Monadic indiscernibility versus Relational indiscernibility.

In philosophical literature, the word *indiscernibility* is frequently used to qualify what would be better called *universal, absolute indiscernibility*, i.e. indiscernibility of \(x\) and \(x'\) from any possible viewpoints. That binary predicate (*absolute indiscernibility*) is usually paraphrased in second order monadic predicate logic as:

\[
\forall P (Px \iff Px')
\]

(see for instance the entry “Identity of Indiscernibles” of *The Stanford Encyclopedia of Philosophy*, [Forrest, 2016]).

In what follows, we will leave aside the idea of *absolute* indiscernibility, thus limiting ourselves to a more pedestrian notion, namely indiscernibility with respect to a given piece of first order language: *relative* (i.e. not abso-
lute) indiscernibility. At first sight, this simply amounts to avoiding the use of second order quantification in the definition of the indiscernibility binary predicate. However, if one does so (starting thus from the standard definition of absolute indiscernibility given above – namely $\forall P (Px \Leftrightarrow Px')$, the resulting concept for, say, a given unary predicate $P_0$ (indiscernibility of $x$ and $x'$ relatively to $P_0$, namely $P_0x \Leftrightarrow P_0x'$, that we could note $x \sim_{P_0} x'$), happens to be particularly weak at least in terms of classification. If we consider a realization $m$ of the language including $P_0$, then $\sim_{P_0}$ is interpreted by an equivalence relation over the domain of $m$ which partitions it into at most two classes. In other words, the indiscernibility predicate induced by $P_0$ can create at best a bi-partition of the domain, i.e. it creates a classification à la Porphyry: the weakest kind of classification. Although the radical changes in logic during the 19th century saw the notion of ‘property” overtaken by the more general notion of $n$-ary predicate/relation, later philosophical investigations into the notion of indiscernibility essentially persisted in approaching that concept from the point of view of monadic predicate logic.

When one considers the indiscernibility induced by a binary relation $R$ over a set $X$, a basic observation is that $R$ induces over $X$ two indiscernibility (binary) predicates. We will refer to them as $\sim^t_R$ and $\sim^r_R$. They are defined by:

$x \sim^t_R x' \iff _{def} \forall y \in X (xRy \Leftrightarrow x'Ry)$  
$x \sim^r_R x' \iff _{def} \forall y \in X (yRx \Leftrightarrow yRx')$

(we say: $x, x'$ are ‘equi-targeters’)  

The equi-targeted and equi-targeters terminology evidently refers to graphical, sagittal representations of binary relations. The exponents $t_d$ and $t_r$ conveniently recall targeted and targeter, respectively. The relations $\sim^t_R$ and $\sim^r_R$ are the two indiscernibility predicates induced by the binary relation $R$. We will write $\sim_R$ to denote indifferently one of $\sim^t_R$ and $\sim^d_R$.

2.4 Weyl’s creative definitions: indiscernibility and ideal elements.

Weyl’s view is that indiscernibility predicates are the true occasions for introducing ideal elements (Peano’s abstracta being among them). Introducing
a “creative definition” thus means to introduce an axiom of the form:

$$ W_R(x) = W_R(x') \iff x \sim_R x' $$

where $W_R$ (W for Weyl) is a newly introduced function constant\(^{18}\) and $R$ is any binary relation whatever.

As both indiscernibility predicates induced by $R$ are equivalence relations over $X$ (for any $R$ whatever), those “ideal elements” could well be seen as just standard, usual abstracta à la Peano (abstracted from $\sim_R$ – or from $\sim_R$ as well). Weyl actually defends a more accurate but dual view, according to which Peano’s abstracta are particular cases of ideal elements inducible from indiscernibility. Indeed, equivalence relations appear to be exactly the binary relations which coincide with the indiscernibility predicates they induce, i.e. $R$ is an equivalence iff $\sim_R R = R$. Hence, an abstractum introduced by a definition by abstraction is just an ideality introduced by a creative definition, in the very special case (unique to equivalences) where the indiscernibility predicate $\sim_R$ collapses with the relation from which it was induced (namely $R$ itself). Beyond the simple observation that definitions by abstraction are special cases of creative definitions, Weyl overall insists on the “finitist” specificity of definitions by abstraction among creative definitions: they tame the complexity inherent in indiscernibility predicates. Indeed, as an equivalence $R$ allows us to replace the indiscernibility predicates it induces by $R$ itself (as $x \sim_R R x$ is equivalent to $x Rx'$, inasmuch $R$ is an equivalence), equivalences allow to get rid of the universal quantifier present in the definition of indiscernibility predicates.

### 2.5 Which set-theoretic interpretation for Creative definitions?

Similarly to what has already been observed for the case of a simple definition by abstraction à la Peano-Russell, the codomain of the operator introduced by a “creative definition” is left undetermined by the axiom. Just as the Peano school proposed a classificatory, set-theoretic interpretation of definitions by abstraction (the canonical interpretation of abstracta by equivalence classes), one may want to investigate classificatory set-theoretic accounts of $W_R$ in “creative” definitions\(^{19}\) i.e. in those axioms of the form:

$$ W_R(x) = W_R(x') \iff x \sim_R x' $$
where $W_R$ is a newly introduced function constant and $R$ a binary relation whatever.

A first route could simply consist in keeping the “usual” canonical interpretation, i.e. interpreting Weyl through Peano. After all, indiscernibility predicates are themselves equivalences, and one may well choose to interpret Weyl’s *idealities* as equivalence classes for indiscernibility (i.e. sets made of indiscernible elements and maximal for that property)\(^{20}\).

Since it treats indiscernibility as if it were any equivalence whatever, this first way of reading creative definitions (thus reading them à la Peano) does not get the most out of the rich concept of indiscernibility. Notably, as soon as one devotes attention to the correlations between *the properties of* $R$ *on the one hand and the properties of the classifying operations induced by the indiscernibility on the other hand* (as Weyl himself does when he relates, in the case of equivalence relations, the decrease in logical complexity of indiscernibility predicates to the properties of the relation inducing them), a finer understanding of the classificatory process at hand is required. Our thesis is that the notion of type (to be defined in the next section) is the relevant tool for that end. As we will see in section 4, a bridge from the concept of indiscernibility to the notion of type may indeed be built from the observation that *individuals are indiscernible iff they belong to exactly the same types.*

That second route – that we will follow from now on – thus consists in interpreting $W_R(x)$ not as the equivalence class of $x$ for $\sim_R$ anymore, but (at least to start with) as the set of types (induced by $R$) to which $x$ belongs (the set of types of $x$ w.r.t. $R$, as we will say). This amounts to canonically interpreting Weyl’s creative definitions (the generalized formulation of Peano’s theory of abstraction) along “Abstraction Principles” of the form:

\[
x \sim_R x' \iff \text{Set-of-Types}_R(x) = \text{Set-of-Types}_R(x'),
\]

where $R$ is any binary relation.

We will come back to that alternative interpretation of Weyl’s Abstraction Principles in section 4, after having defined and presented the notion of type – a task to which the coming section is devoted.
3 The notion of type

We will now present the notion of type induced by a binary relation \( R \). That notion may be defined for any binary relations between arbitrary sets and there is no reason to restrict ourselves to relations \( R \) over a single set here. We thus chose to provide more general definitions based on relations between arbitrary sets \( X \) and \( Y \). Doing so we will be able to keep covering the particular case of classifications induced by a relation over a single set – e.g. quotientation by an equivalence relation –, but also to cover the more general case of classifications where the criterion for classifying the elements of a set depends on another set. In any event, from now on \( R \) will by default denote a subset of \( X \times Y \), and we will follow the following notational conventions: \( A, A' \ldots \) denote subsets of \( X \); \( B, B' \) denote subsets of \( Y \); \( x, x' \ldots \) denote elements of \( X \), and \( y, y' \ldots \) denote elements of \( Y \). The developments in this section are mainly technical, and we will discuss their consequences in the next section.

3.1 The orthogonality relation induced by a relation.

The definition of types is based on a so-called orthogonality relation induced by \( R \).

**Definition 1.** The right orthogonality relation induced by \( R \), is the binary relation \( \bot_R \subseteq \mathcal{P}(X) \times \mathcal{P}(Y) \) defined by: \( A \bot_R B \iff A \times B \subseteq R \). The relation \( A \bot_R B \) can be read both as “\( A \) is (left-)orthogonal to \( B \)” and as “\( B \) is (right-)orthogonal to \( B \)”.

Inasmuch only one relation \( R \subseteq X \times Y \) is involved, we frequently leave implicit the reference to \( R \) in those notations. In most situations, the context suffices to makes ambiguities disappear.

The following easy lemma characterises the orthogonality relation element-wise.

**Lemma 2.** Given two subsets \( A \subseteq X \) and \( B \subseteq Y \),

\[
A \bot B \text{ if and only if } \forall x \in A, \forall y \in B, xRy.
\]

3.2 Orthogonality operators induced by a relation.

While the orthogonality relation defines a predicate over the product set \( \mathcal{P}(X) \times \mathcal{P}(Y) \), it also induces two functions \( (\cdot)^\bot : \mathcal{P}(X) \to \mathcal{P}(Y) \) and \( \bot(\cdot) : \)
\( \mathcal{P}(Y) \to \mathcal{P}(X) \) defined using the natural ordering of subsets induced by inclusion. Those functions will be called the orthogonality operators.

**Definition 3.** Given a subset \( A \subseteq X \), we define the (right) orthogonal \( A^\perp \) of \( A \) as the largest subset of \( Y \) which is right-orthogonal to \( A \), i.e. \( A^\perp = \text{def} \max \{ B \in \mathcal{P}(Y) \mid A \perp B \} \). Similarly, the (left) orthogonal \( \perp B \) of a subset \( B \subseteq Y \) is defined as the largest subset of \( X \) which is left-orthogonal to \( B \), i.e. \( \perp B = \text{def} \max \{ A \in \mathcal{P}(X) \mid A \perp B \} \).

The fact that the notions of left- and right-orthogonal of a subset are well-defined is based on the following property, which is a direct consequence of the element-wise characterisation of the orthogonality relation.

**Lemma 4.** We consider subsets \( A \subseteq X \), \( B \subseteq Y \) and \( B' \subseteq Y \). If \( A \perp B \) and \( A \perp B' \), then \( A \perp B \cup B' \).

Once again, the definition can be understood element-wise\(^{21}\).

**Lemma 5.** Given subsets \( A \subseteq X \) and \( B \subseteq Y \):

\[
A^\perp = \{ y \in Y ; \forall x \in A \ x R y \},
\]

\[
\perp B = \{ x \in X ; \forall y \in B \ x R y \}.
\]

When considering iterated applications of the orthogonality operators, and when the context is clear, we will allow ourselves to write \( A^{\perp \perp} \) instead of \( \perp (A^\perp) \) and \( B^{\perp \perp} \) instead of \( \perp \perp B \). Notice however that in the particular cases when \( X \) and \( Y \) overlap (and notably when \( X = Y \)), the notation \( A^{\perp \perp} \) becomes ambiguous, as \( \perp (A^\perp) \neq \perp \perp A \) in general.

**Remark 6.** We can check that left- and right-orthogonality operators are exchanged by considering the relation \( R^{-1} = \{(y, x) \in Y \times X \mid (x, y) \in R\} \) instead of \( R \). As a consequence, it is enough to state and prove the properties of the right-orthogonality operator: by symmetry, the same property will hold for the left-operator. We thus now give statements about “orthogonal operators” by stating them for right-orthogonality.

**Proposition 7.** Given \( A \subseteq X \), \( A \subseteq A^{\perp \perp} \).

**Proof.** This is a direct consequence of the fact that \( A \perp A^{\perp} \) and the definition of \( \perp (A^{\perp}) \) as the maximal left-orthogonal to \( A^{\perp} \). \(\square\)
Proposition 8 (Contravariance). The orthogonal operators are contravariant: given $A \subseteq A' \subseteq X$, one has $A'^\perp \subseteq A^\perp$.

Proof. Let us pick $y \in A'^\perp$. By definition, for all $x \in A$, $x$ also belongs to $A'$, hence $xRy$. So $A \perp A'^\perp$, i.e. $A'^\perp$ is right-orthogonal to $A$. Since $A^\perp$ is defined as the maximal subset of $Y$ which is right-orthogonal to $A$, this implies that $A'^\perp \subseteq A^\perp$. \hfill \Box

Corollary 9. Given $A \subseteq X$, $A^\perp \perp \perp = A^\perp$.

Proof. We have that $A \subseteq A^\perp \perp$ by Proposition 7, thus Proposition 8 allows us to conclude that $A^\perp \perp \perp \subseteq A^\perp$. The converse inclusion is given by Proposition 7 applied to the set $A^\perp$. \hfill \Box

Proposition 10. Let $I$ be a set, and $\{A_i\}_{i \in I}$ an $I$-indexed family of subsets of $X$, i.e. $\forall i \in I, A_i \in \mathcal{P}(X)$. Then:

1. $\left( \bigcup_{i \in I} A_i \right)^\perp = \bigcap_{i \in I} A_i^\perp$,

2. $\bigcup_{i \in I} A_i^\perp \subseteq \left( \bigcap_{i \in I} A_i \right)^\perp$.

However, $\left( \bigcap_{i \in I} A_i \right)^\perp \not\subseteq \bigcup_{i \in I} A_i^\perp$ in general.

Proof. To prove the first item, we take $y \in \bigcap_{i \in I} A_i^\perp$ and $x \in \bigcup_{i \in I} A_i$ and show that $xRy$. By definition, there exists $i_0 \in I$ such that $x \in A_{i_0}$. On the other hand, $y \in A_i^\perp$ for all $i \in I$. Thus $y \in A_{i_0}^\perp$, and therefore $xRy$ since $x \in A_{i_0}$. For the second item, as $\bigcap_{i \in I} A_i \subseteq A_i$ for all $i \in I$, we use the contravariance to conclude that $A_i^\perp \subseteq (\bigcap_{i \in I} A_i)^\perp$ for all $i \in I$. Consequently, $\bigcup_{i \in I} A_i^\perp \subseteq (\bigcap_{i \in I} A_i)^\perp$. Finally, for the last assertion, one observes that this inclusion does not hold in general, by considering $X = Y = \{1, 2, 3\}$, $R = \{(2, 2)\}$, $A_1 = \{1, 2\}$, and $A_2 = \{2, 3\}$. One then checks that $(A_1 \cap A_2)^\perp = \{2\}^\perp = \{2\}$, but $A_1^\perp \cup A_2^\perp = \emptyset \cup \emptyset = \emptyset$. \hfill \Box

Remark 11. In general, the operator $(\cdot)^\perp$ is neither surjective nor injective. For surjectivity, let $X_1 = \{1\}$, $Y_1 = \{2, 3\}$ and let $R_1 \subseteq X \times Y$ be the binary relation $R_1 = \{(1, 2)\}$ (depicted below): we have $\emptyset^\perp = \{2, 3\}$ and $\{1\}^\perp = \emptyset$. For injectivity, consider $X = Y = \{1, 2, 3\}$, $R = \{(1, 2), (2, 3)\}$, $A_1 = \{1\}$, $A_2 = \{2\}$, and $A_3 = \{3\}$. One then checks that $(A_1 \cap A_2 \cap A_3)^\perp = \emptyset^\perp = \emptyset$, but $A_1^\perp \cap A_2^\perp = \emptyset \cap \emptyset = \emptyset$. However, $(A_1 \cap A_2 \cap A_3)^\perp = \emptyset^\perp = \emptyset$, which shows that $(\cdot)^\perp$ is not injective.

From abstraction and indiscernibility to classification and types
{2}, hence neither \{3\} nor \emptyset are reached by (.\perp) (even if \emptyset \perp \{3\} and \emptyset \perp \emptyset).

For injectivity, let \(X_2 = \{1, 2\}, Y_2 = \{3\}\), and \(R_2 \subseteq X \times Y\) be the binary relation \(R_2 = \{(1, 3), (2, 3)\}\): we have \(\emptyset \perp = \{1\} \perp = \{1\} \perp = \{1, 2\} \perp = \{3\}\).

Both counter-examples are illustrated in Figure 1; types are shown in dashed lines, generating sets of tests are shown in dotted lines.

3.3 Types

**Definition 12.** A (left-)type is a subset \(A \subseteq X\) in the image of the left-orthogonality operator, i.e. \(A \subseteq X\) is a type if and only if there exists \(B \subseteq Y\) such that \(A = \perp B\). We call \(B\) a generating set of tests for the type \(A\).

**Notation 13.** We denote \(\mathcal{T}_l(R)\) the set of left-types, i.e. \(\mathcal{T}_l(R) = \{A \in \mathcal{P}(X) \mid \exists B \subseteq Y, A = \perp^R B\}\). We denote \(\mathcal{T}_r(R)\) the set of right-types, i.e. \(\mathcal{T}_r(R) = \{B \in \mathcal{P}(Y) \mid \exists A \subseteq X, B = A^\perp R\}\).

Again, we will omit to mention \(R\) when it is not ambiguous. Moreover, we will also omit to mention the “direction” (right or left) whenever it is not relevant (we thus states a proposition without mentioning the direction and prove it for only one of the two directions).

**Remark 14.** Reformulated with the terminology just introduced, remark 11 may be rephrased as: in general, some subsets of \(Y\) are not types, and a given type may well have distinct generators.

We saw that any set is included in its double-orthogonal. We will now see that types are exactly those sets for which the converse inclusion holds, i.e. those which are equal to their bi-orthogonal closure\(^{22}\).

\[\text{Figure 1: Illustration of the counter-examples from remark 11.}\]
Proposition 15. A subset $B \subseteq Y$ is a type if and only if $B = B^\perp\perp$.

Proof. Evidently, if $B = B^\perp\perp$, then $B$ has a generating set of tests, namely $B^\perp$ and it is therefore a type. We will now prove the converse.

If $B$ is a type, there exists $A \in \mathcal{P}(X)$ such that $B = A^\perp$. We already know that $B \subseteq B^\perp\perp$ by Corollary 7. Let us show the converse inclusion:

\[
B = A^\perp \Rightarrow B \subseteq A^\perp \\
\Rightarrow A^{\perp\perp} \subseteq B^\perp \quad \text{(by Proposition 8)} \\
\Rightarrow B^{\perp\perp} \subseteq A^{\perp\perp\perp} \quad \text{(by Proposition 8)} \\
\Rightarrow B^{\perp\perp} \subseteq A^\perp \quad \text{(by Corollary 9)} \\
\Rightarrow B^{\perp\perp} \subseteq B \quad \text{(as we assumed $B = A^\perp$)}. \quad \square
\]

Proposition 16. Let $A \subseteq X$. The type $A^{\perp\perp}$ is the smallest type including $A$.

Proof. Indeed, $A^{\perp\perp}$ is a type (since it has $A^\perp$ as its generator) which is contained in any type containing $A$. To see this, let us pick a type $A'$ such that $A \subseteq A'$. As $A \subseteq A'$, we have $A^{\perp\perp} \subseteq A'^{\perp\perp}$ (by Proposition 8 used twice). Since $A'$ is a type, this gives $A^{\perp\perp} \subseteq A'$ by Proposition 15. \square

To close this rapid presentation, let us mention that the inclusion order over types has a lattice structure (the infimum is given by intersection, the supremum by the bi-orthogonal closure of union, which is indeed a supremum because of proposition 16).

4 Back to abstraction and classification

We now come back to the task left uncompleted in the end of section 2: working out a canonical alternative set-theoretic interpretation for the abstraction operators $W_R(.)$ introduced by Weyl's Abstraction Principles (Creative definitions), i.e. by axioms of the form $W_R(x) = W_R(x') \Leftrightarrow x^\sim_R x'$, where $W_R$ is a fresh unary function constant and $R$ any binary relation whatever. Our tool for that task will be the bridge between indiscernibility and types mentioned at the end of section 2, namely the proposition which states that to be $R$-indiscernible (following $\sim^d_R$, resp. $\sim^r_R$, as well) means belonging to exactly the same (right, resp. left) types induced by $R$.

4.1 A type-oriented interpretation of Weyl’s abstraction operators.
Notation 17. Let $R \subseteq X \times Y$, $x \in X$ and $y \in Y$. We introduce the following notations – replacing our former informal notation “Set-of-Types$_R(x)$”:

$$T_R(x) = \text{def } \{A \in T_l(R) ; x \in A\} \quad \text{and} \quad T_R(y) = \text{def } \{B \in T_r(R) ; y \in B\}$$

The proposition below suggests a type-oriented canonical reading of the abstraction operator $W_R(x)$ (in “Abstraction principles” à la Weyl, i.e. creative definitions) as $T_R(x)$.

**Proposition 18.** For any $y, y' \in Y$, one has: $T_R(y) = T_R(y') \iff y \overset{\text{id}}{\sim}_R y'$.

*Proof.* Let $y, y' \in Y$. We need to show that:

$$\forall B \in T_r(R) \ (y \in B \iff y' \in B) \implies y \overset{\text{id}}{\sim}_R y'.$$

- For the left-to-right implication, we let $x \in X$ and verify:

$$xRy \iff y \in \{x\}^\perp \iff \text{by the main hyp. of } (\Rightarrow) \iff y' \in \{x\}^\perp \iff xRy'.$$

This shows that $\forall x \in X, (xRy \iff xRy')$, i.e. $y \overset{\text{id}}{\sim}_R y'$.

- For the right-to-left implication, we let $B$ be a right type for $R$. By definition of types, $B = A^\perp$ for some $A \subseteq X$. Then:

$$y \in B \iff y \in A^\perp \iff \forall x \in A, xRy \iff \forall x \in A, xRy' \iff y \overset{\text{id}}{\sim}_R y' \iff y \in A^\perp \iff y' \in B.$$  

Compared to the usual canonical reading of abstracta $W_R(x)$ as being the $[x]_{\overset{\sim}{R}}$ (the equivalence classes for $\overset{\sim}{R}$, which collapse to $[x]_R$ when $R$s is an equivalence), the logical “order” of the new interpretation proposed ($W_R(x)$ as being $T_R(x)$) may seem a high price to pay for a refinement. Indeed, if $R$ is defined over $X$, the codomain of the operator $T_R(.)$ is the set $\mathcal{P}(\mathcal{P}(X))$. We will now see, however, that, notably because types are closed by intersection, we can canonically interpret the abstraction operator as the function associating to $x$ (actually to $\{x\}$) its minimal type, namely $\{x\}^{\perp\perp}$, by proposition 16.
Proposition 19. Types are closed by intersection, i.e. let \( R \subseteq X \times Y \) and \( \{B_i\}_{i \in I} \), a non empty family of right types. Then \( \bigcap_{i \in I} B_i \) is a right type.

Proof. By definition of types, there is a family \( \{A_i\}_{i \in I} \) of subsets of \( Y \), such that \( \{B_i\}_{i \in I} = \{A_i ^\perp\}_{i \in I} \) (by remark 10). By definition, being the orthogonal to some subset, \( \bigcap_{i \in I} B_i \) is thus a type.

Proposition 20. Let \( x, x' \in X \). \( \mathcal{T}_R(x) = \mathcal{T}_R(x') \iff \{x\}^\perp = \{x'\}^\perp\perp \).

Proof. We start by the left-to-right implication. If \( \mathcal{T}_R(x) = \mathcal{T}_R(x') \), then \( \bigcap \mathcal{T}_R(x) = \bigcap \mathcal{T}_R(x') \). So \( \{x\}^\perp = \{x'\}^\perp\perp \), since, by proposition 16, \( \{x\}^\perp\perp \) and \( \{x'\}^\perp\perp \) are the smallest types to which \( x \) and \( x' \) belongs, respectively.

For the right-to-left implication, if \( \{x\}^\perp = \{x'\}^\perp\perp \), then \( \{x\}^\perp\perp\perp = \{x'\}^\perp\perp\perp \). Thus \( \{x\} = \{x'\}^\perp \) (by corollary 9). Hence \( x \sim_R x' \). So \( \mathcal{T}_R(x) = \mathcal{T}_R(x') \), by proposition 18.

Proposition 21. \( \{x\}^\perp\perp = \{x'\}^\perp\perp \iff x \sim_R x' \)

Proof. Corollary of propositions 18 and 20.

Proposition 21 finally invites us to interpret the abstraction operator \( W_R(x) \) (in “Abstraction principles” à la Weyl, i.e. creative definitions) as \( \{x\}^\perp\perp \), i.e. the minimal type of \( \{x\} \).

4.2 Reading abstraction through types: classificatory and philosophical stakes

This subsection is devoted to comparing the canonical interpretation that we just proposed for Weyl’s abstraction operators \( W_R(.) \) (by which \( W_R(x) \) is the minimal type of \( x \)) with the old, traditional one (following which \( W_R(x) \) is \( x \)'s equivalence class for the indiscernibility relation induced by \( R \) – which collapses with \( x \)'s equivalence class for \( R \), when \( R \) is itself an equivalence relation). We aim not only to underline in which respects the classifications induced differ, but also to draw out the consequences of the specificities of the new interpretation over the philosophical pursuits relating to abstraction initiated by Peano, Frege, Russell and their followers.

As a prefatory remark, we would like to observe first that, in order to compare both canonical interpretations one has no particular reason to come
back to the particular case where $R$ is a relation over a single set $X$. Indeed, from a classificatory point of view, the case where $R \subseteq X \times Y$ with $X \neq Y$ corresponds to the general situation where the classifying criterion to be used is \textit{external} to the classified set (i.e., for example, a type $B$ included in $Y$ is generated by a \textit{set of tests} included in $A$ – see Definition 12) and not by an internal one as, for example, in the case of the quotientation of a set by an equivalence relation. So, considering arbitrary sets $X, Y$, simply corresponds to the more general classificatory frame where the criterion is not necessarily internal. Focusing on relations over a single set is necessary only if one considers and investigates the types induced by a relation satisfying particular properties (like reflexivity, symmetry etc) whose definition requires that the relation is over one and the same set.

From a classificatory point of view, the main feature which distinguishes the type-oriented interpretation from the class-oriented one is that, in the former case, generally, an induced classification does not generate a partition of the domain of $R$. In fact, in general, neither the set of types, nor the set of minimal types, nor do the set of minimal types generated by singletons induce partitions (as shows the following example: Let $X_1 = \{1, 2\}$, $Y_1 = \{3, 4\}$, and $R_3 \subseteq X \times Y$ be the binary relation $R_3 = \{(1, 3), (1, 4), (2, 4)\}$; we have $\{1\}^\perp = \{1\}$ and $\{2\}^\perp = \{1, 2\}$). The classifications induced by the type-oriented interpretation thus are \textit{multi}-classifying ones (i.e. a same element generally belongs to different types).

That ability, for types, to classify multiply a given object impacts the philosophy of abstraction in several respects. To see this, let us first recall that the original philosophical debates which troubled Peano’s circle about abstracta, were partly centred around considerations on the methodology of science (Are definitions by abstraction reducible to nominal definitions?), and partly semantical or ontological (What kind of objects are abstracta? Are they \textit{additional} entities, completely new w.r.t. the ones from which they are induced?).

The traditional set-theoretical canonical solution (abstracta are equivalence classes) brings a clear answer to both pursuits. Concerning the ontological one, the answer is however, in a sense, equivocal. On the one hand, sets may be considered as new entities (some set theory is needed), and well-
separated ones, since the set of equivalence classes forms a \textit{partition} of the original set. But, on the other hand, that same fact may be considered as in a way supporting an ontological parcimony (i.e. the idea that the new, fresh entities are fresh only in appearance). Indeed, when one partitions a set $X$, the cardinality of the resulting partition cannot exceed the cardinality of $X$ – an observation which leaves the door open for a representation of the abstracta by the original objects, hence to parcimony$^{23}$.

Incidentally, would one wish – for ontological pursuits – to target only partitions (separated new individuals, but not more numerous than before), it should be underline that the conditions defining equivalence relations are sufficient for that purpose, but not at all necessary. When $R$ is a relation over a single set $X$, the conditions on $R$ which \textit{characterize the quotientation discipline} are the ones which define collusions (whose definition is recalled below). More precisely, if, for any relation $R$ over $X$ (be it an equivalence or not), we denote by $[x]_R$, the set $\{x' \in X ; xRx'\}$ (“the class of $x$ for $R$”) , then the set of all classes, namely $\{[x]_R\}_{x \in X}$, designs a partition of $X$ iff $R$ is a collusion (the condition “$R$ equivalence” is sufficient, but not necessary). Let us give the definition of collusions in the more general case where $R \subseteq X \times Y$. Those ones are the relations $R$ which are simultaneously:

- \textbf{collusive:} $\forall x, x' \in X \ (\exists y \in Y \ (x Ry \wedge x' Ry) \ \Rightarrow \ \forall y \in Y \ (x Ry \Rightarrow x' Ry))$,$^{24}$
- \textbf{total:} $\forall x \in X \ \exists y \in Y \ \ x Ry$,
- \textbf{surjective:} $\forall y \in Y \ \exists x \in X \ \ x Ry$.

Note that a collusion from $X$ to $Y$ may also be seen as a bijection between a partition of $X$ (whose elements are the left types for $R$) and a partition of $Y$ (whose elements are the right types for $R$)$^{25}$.

In the particular case where $X = Y$, i.e. when $R$ is a relation over a single set $X$, the fact that collusions \textit{characterize the quotientation discipline} (formulated above in terms of classes), may be also formulated in terms of types: the set of the (right, resp. left) types induced by $R$ forms a quasi-partition (of $Y$, resp. of $X$) if and only if $R$ is a collusion$^{26}$. A thorough study of collusions over a single set can be found in [Joinet, 2019].

In fact, the ontological parcimony remark still prevails for the minimal types oriented interpretation that we designed. Indeed, in the minimal types interpretation, since the set of generated types is indexed by $X$, the cardinal of that set of types could at most decrease: the function which, to $x$
associates \(x^\perp\) is surjective. Consequently, to require in name of parcimony that the set of abstracta form a partition or the original set (i.e. to renounce non partitioning, \(\textit{multi}\)-classifying classifications) would be senseless.

Incidentally, the philosophical investigations on abstraction initiated by the work of the Peano school members and Frege and Russell were very soon extended to non partitioning, \(\textit{multi}\)-classifying classifications. In particular, several classificatory notions that may be seen somehow as “weakened” forms of equivalence classes did in fact play a central role in 20th century’s philosophy of logic. This is typically the case of the notion of \textit{clique} (a.k.a. \textit{similarity classe}, following Carnap’s later terminology [Carnap, 1928]) and of \textit{maximal cliques}, whose definitions are recalled below. As we will see, they can be directly defined in terms of orthogonal operators and in terms of the notion of type.

Those notions were first designed and studied from 1914 by Bertrand Russell and from 1915 by a post-doctoral member of his department, Norbert Wiener. Russell was attempting to find a total ordering of instants “behind” any partial order of events (aiming, so to speak, at “quotienting” any partial order by the symmetric, non transitive binary relation: “\(x\) is incomparable to \(x’\) w.r.t. the partial order”). Wiener, following a thread more clearly linked with the theory of abstraction originated in the Peano school, was attempting to study abstraction in cases where “equivalences” are replaced by “fuzzy equivalences”, namely similarities with threshold features (his ultimate aim was a reconstruction of concepts from the sensorial subjective experience). Later on, cliques would play a central role in Carnap’s \textit{Quasi-analysis} research programme (see [Leitgeb, 2007] and [Gandon, 2016])\textsuperscript{27}.

\textit{Maximal cliques} play the same role for \textit{similarity relations} (i.e. reflexive, symmetric, but not necessary transitive ones), as \textit{equivalence classes} do for \textit{equivalence relations}. If one looks at a similarity relation as an equivalence to which transitivity is missing, one sees that the lost of transitivity entails that, contrary to equivalence classes, cliques do intersect. As we show below, maximal cliques may be characterised directly in terms of types. Let \(R\) be a binary relation over a single set \(X\).
Definition 22. A subset $C \subseteq X$ is a clique for $R$ iff $\forall x, x' \in C \ xRx'$. And a clique $C$ is a maximal clique for $R$, when, moreover: for all $A \subseteq X$ such that $A \supseteq C$, the set $A$ is not a clique.

Proposition 23. Let $R \subseteq X \times X$, a reflexive relation over $X$ and $C \subseteq X$. $C$ is a maximal clique $\iff C^\perp \cap C = C$. If $R$ is moreover symmetric, then: $C$ is a maximal clique $\iff C = C^\perp$.

Though Russell’s, Wiener’s and Carnap’s investigations on cliques induced by “similarity relations” propagate the interpretation of abstraction based on classes toward multi-classifying classification, one should underline that the approach of classifications based on types goes much further. A first point is that type-oriented classifications are completely general: they do not require any specific property whatever from the relation $R$ inducing the types: they directly capture relational indiscernibility for any relation.

5 Conclusion

The results presented above show that the notion of type could play a central role in renewing and improving the logical and philosophical investigations on abstraction. They draw an appropriate framework to interpret set-theoretically Weyl’s creative definitions, as they build a set-theoretical counterpart for the objects that one may want to make emerge from relational indiscernibility.

The fact that, doing so, one reduces – again – abstraction to classification (again, since the members of the Peano school and Russell had previously performed such a reduction – even if only for the limited case of definitions by abstraction) nevertheless leaves open a series of non pedestrian logical and philosophical questions. Let us only briefly mention three lines of investigations that we hope to be able to follow at a future date.

The first one would be to study systematically how the structure of the lattice of types depends on the properties of the relation inducing them (as we did, for instance, with collusions) and how, where multiple relations are involved, the operations over the relations induce operations over the lattices of types.

A second one would be to try to investigate second order abstraction principles (which are central for logicism, including the contemporary “neo-logicist” trend\textsuperscript{28}), but from the types point of view. In the case of traditional
Abstraction Principles à la Peano-Russell, second order ones have the ordinary shape of abstraction principles, but for the fact that the variables involved are second order variables. So they are of the form: \( \forall X \forall Y (f_R(X) = f_R(Y) \Leftrightarrow R[X,Y]) \), where \( R[X,Y] \) satisfies the properties defining equivalences. In that case, \( f_R(X) \) is supposed to be a first order individual (an “object”). Two famous examples are Frege’s Axiom V and Hume principle. As soon as one considers second order abstraction schemes, things become hazardous: some of them leads to inconsistencies. At this stage, regarding that complex field, we are not able to develop a clear strategy: the concept of types will certainly add complexity. The polymorphic and multi-scale dimension of types could nevertheless constitute a relevant tool to deal with the second order dimension (quantification over the set of tests).

The last one, would be to investigate Weyl’s creative definitions again, but with the viewpoint and the tools of contemporary proof-theory. Apparently, even for the simpler case of definitions by abstraction à la Peano, only a few works have taken that approach ([Tennant, 2017], does it partially). In a sense, such investigations would be faithful to Weyl’s dictum about creative definitions. In reality, knowing what abstracta are (and in particular whether they are sets) does not matter for us. What matters, with our creations, is to understand how we use them.

Notes

1 jean-baptiste.joinet@univ-lyon3.fr, Univ Lyon, Institut de Recherches Philosophiques de Lyon (univ. Jean Moulin), F-69007, LYON (France). Supported by : Japan office of University of Lyon and Capes-Cofecub (Action Sh-873-17)

2 seiller@lipn.fr, CNRS, Laboratoire d’Informatique de Paris Nord (LIPN) – UMR 7030 Université Sorbonne Paris Nord (France).

3 Actually, non typable terms are not always meaningless, especially when considering simple types. In Church’s times, the (blurred) delimitation between non-typable and paradoxal (in the logical sense mentioned further on) was not clear. In particular, it is only with Tait’s and Girard’s work that one understood that lambda-terms of the shape \((t)t\) may be non problematic – [Tait, 1966] and [Girard, 1971].

84
The methodology is for example used in [Girard, 2001], [Krivine, 2001], [Hyland-Schalk, 2003]. For a more theoretical/conceptual focus on the methodology itself: [Naibo-Petrolo-Seiller, 2016].

The notion of orthogonality can be seen as a formulation of Garett Birkhoff’s polarities. In the sections 1., 5., 6. and 7. of chapter IV: “Complete lattices” of [Birkhoff, 1948], bridges are built between 1/ Closure operators (section 1), 2/ Orthogonality (Polarity in Birkhoff’s terminology, section 5), 3/ Galois connections (section 6), starting from the Lattices viewpoint. Thanks to Alexandre Miquel for the reference and enthusiastic discussions.

In fact, the closure by bi-orthogonality methodology has a wide diffusion in contemporary Logic, which exceeds the field of computational types. See for instance [Okada, 1998] where a completeness result for cut-free provability is reached by means of a notion of “fact”, which rests on the same closure by bi-orthogonality methodology.

In the sequel, we thus continuously refer to “the Peano school approach”, even if the philosophical literature on abstraction tends to promote Frege and Russell, because of the role they played in the logicist investigations about second order abstraction - see section 4.

To lighten the notation, we write $xRx'$ to denote sentences $R[x, x']$ having exactly two free variables $x$ and $x'$.

Following [Mancosu, 2016], p.22, “[...] it was in the Peano school that for the first time the three properties characterizing an equivalence relation were assigned a name. It was with Padoa 1908 that such relations acquired the characterizing name of ‘relazione egualiforme’ defined as a relation that satisfies reflexivity, symmetry, and transitivity”. Nevertheless (ibid. p.88, footnote 57) “the explicit use of notions such as reflexivity, symmetry and transitivity in the Peano school seems to originate with Vailati (1892) and De Amicis (1892). Vailati in 1892 takes credit for introducing the word ‘reflexivity’. De Amicis also credits Vailati with the introduction of ‘reflexivity’ and both credit de Morgan with the introduction of ‘transitivity’. De Amicis coined ‘convertible’ [conversivo] for what we call ‘symmetric’ but his terminology did not catch on. Symmetric, in this sense, was introduced by
Schröder in 1890”.

10 Following [Mancosu, 2016], p. 2 and p. 13, the term *definitions by abstraction* appeared in print in 1894, but it was used earlier by members of the Peano school, at least from 1888. In the first decade of 20th century, Russell favouredized the “abstraction principle” terminology to name those axioms (to the detriment of the “definition by abstraction” terminology).

11 For a broad historical overview, see [Mancosu, 2016], Chapter 1: “The mathematical practice of definitions by abstraction from Euclid to Frege (and beyond)”.

12 In §63 of his Grundlagen, Frege cites Hume as an ancestor of this idea, developed in the mean time by Cantor. The terminology *Hume’s principle* seems however to come from [Boolos, 1987]. For a stimulating detailed overview of the genesis of the treatment of numbers by Dedekind, Cantor and Frege, see [Tait, 1996].

13 The notion of *Equivalence class* was brought out by Mario Pieri, Cesare Burali-Forti and Alessandro Padoa, within their attempts to reformulate “definitions by abstraction” as “nominal definitions”, see [Consuegra, 1991]. Note that the “solution” interpreting \( f_R(x) \) as \([x]_R\) is more appropriately described as introducing a binder – which in that particular case happens to be the binder corresponding to set formation: \( \{y; xRy\} \), rather than a function constant \( f_R \). For more on abstraction principles formulated with binders, see [Pollard, 1998] and [Tennant, 2017].

14 Following [Mancosu, 2016], the first systematic and complete exposition of the partitioning/quotienting discipline in a mathematical textbook seems to occur only in the late 1920s (probably for the first time in van der Waerden’s *Abstrakte Algebra* [Van der Waerden, 1930], in the § 5, entitled “Klasseneinteilung. Äquivalenzrelation”). Nevertheless, “the technical details were already clear in the 1910s” for Russell, who, from 1902/1903, pleads for interpreting “abstracta” systematically by equivalence classes.

15 The main examples presented or cited by Weyl are: *circles* in planar geometry, the notion of *function* over reals, *points at infinity*, *imaginary elements* in geometry, Kummer’s *ideal numbers*.

16 We nevertheless believe this general case can be reduced to our binary
setting or a simple generalisation thereof.

17 Weyl considers the general case where $R$ is a $k + 2$-ary relation. **Indiscernibility predicates** are then given as the family of formulas:

$$
\forall y_0 \ldots \forall y_i \forall y_{i+2} \ldots \forall y_{k+2} (Ry_0 \ldots y_i xy_{i+2} \ldots y_{k+2} \Leftrightarrow Ry_0 \ldots y_i x'y_{i+2} \ldots y_{k+2}).
$$

18 As Weyl compares Peano’s Definitions by abstraction to his own Creative definitions (in order to defend that the latter do generalize the former), he presents them in a format analogous to Peano’s, namely as axioms introducing a fresh function constant. But in the examples that he develops, it is clear that Weyl is actually tempted to describe those axioms as introducing instead a definite descriptor and, thus, a binder and a “copula” (even if he does not explicitly introduce specific notations). This would lead to the introduction of a fresh binder $\theta_R$, say, and to writing $\theta_R x.x_t \sim_R x'$ instead of $W_R(x')$ in the axiom and a copula that one would be tempted to note $\in$. See footnote 20.

19 Weyl explicitly says that one may well choose to favour a set-theoretic interpretation of his ideal elements. As an epigone of Hilbert, he nevertheless underlines that, from his proof-theoretic point of view, such an interpretation is not compulsory, just a matter of preference.

20 Notice that, in [Pollard, 1998], Stephen Pollard (who formulates Abstraction principles using definite descriptors, hence binders, instead of function symbols, and introduce a “copula” – see our footnote 18) claims that to do so actually amounts to reducing Weyl’s theory of abstraction/ideality to a weak set theory, made of: 1/ a weak comprehension scheme limited to “instantiable” properties, i.e. properties $P[x]$ such that $P[t/x]$ is provable for some term $t$ (following an argument credited to Dummett, such a weak comprehension scheme is derivable as soon as one accepts just the small piece of comprehension needed to construct equivalence classes), 2/ together with a weak extensionality axiom equalizing only sets defined by provably equivalent concepts differing only w.r.t. complementary parameters (i.e. $A[x, y_i]$ and $A[x, z_i]$, such that $A[x, y_i] \Leftrightarrow A[x, z_i]$ is provable in the current theory, where the $y_i, z_i$ have no free occurrences); indeed this extensionality axiom
is just a particular case of a creative definition à la Weyl (indiscernibility w.r.t. the copula ∈).

21 So defined, the “orthogonality” and “orthogonal (operator)” terminology both echoes and generalises the standard notions for vector spaces. In the latter case, \( A^\perp \) denotes “the orthogonal of a subset \( A \) of a vectorial space \( X \)” defined as the sub-vectorial space whose elements are all the vectors orthogonal to all the vectors of \( A \). In that particular case, vectors \( x, x' \) are said orthogonal w.r.t. to a given bilinear form \((.|.\) defined over \( X \times Y \) (notation \( x \perp x' \)), when \((x \mid y) = 0\). So the notions we are considering are just more general: \( x \perp x' \) means \( xRx' \) for any relation \( R \subseteq X \times Y \), where \( X, Y \) also are arbitrary sets. Though the notion has a long genealogy in the history of mathematical practice (from Euclid), the theoretical focus on “orthogonality” in this broad sense seems to be notably due to Hilbert (and then Weyl).

22 The bi-orthogonality operator is an example of the notion of closure operator.

23 Whenever one requires (in order to acknowledge that the cardinality of a partition never exceeds the one of the original set), to prove the existence of an injection from the partition to the original set, the result then rests upon the Partition Principle, which says that when there is a surjection \( s : X \to Y \), then there exists an injection \( i : Y \to X \). The Partition Principle is provable in \( \text{ZFC} \). The question whether it is equivalent to the axiom of choice, seems to be still an open problem of set theory (in any case, it was still the case in 1995, see [Higasikawa, 1995]). It would be interesting, from an historical point of view, to determine whether the Peano school members included that observation about cardinality into their ontological debates about definitions by abstraction. De facto, even if the Partition principle was first established in 1902 by [Levi, 1902], Burali-Forti early proposed, in 1896, an approximation of it (actually a wrong formulation, later criticised by Russell, in 1906). For a precise historical and technical presentation of the Partition Principle, see [Banaschewski & Moore, 1990].

24 The collusivity property may be reformulated in terms of indiscernibility predicates by: \( R \) is collusive iff \( \forall x, x' \in X \left( \exists y \in Y \left( xRy \wedge x'Ry \right) \Rightarrow x \sim^R_R x' \right) \)
25 Indeed, we can prove that the set of collusions from $X$ to $Y$ may be bijectively mapped onto the set of bijections between partitions of $X$ and partitions of $Y$. See [Joinet-Seiller, 202?] which should appear soon.

26 We say a quasi partition because the non emptiness of classes condition is not satisfied. In the standard definition of a partition, a subset belonging to it, is required to be non empty. This cannot apply insofar as we have two disjoint types: since types are closed by intersection, $\emptyset$ has then to be a type – the minimal type. But of course, if we focus on types whose generators are singletons, as we did to interpret Weyl’s Abstraction principles, $\emptyset$ cannot be one of them.

27 One may mention that, in relatively recent times, the notion of clique happened to have a second life in Logic, namely in Girard’s Linear Logic. “Coherent spaces”, by which the proofs of Linear Logic are denotationally interpreted, are indeed spaces of cliques for “similarity relations”. See [Girard, 1987] and also [Girard, 2004] where the considered “Coherent spaces” are themselves defined through a bi-orthogonality construction.

28 It was initiated by [Hale, 1987]. The literature about second order abstraction principles is abundant. One can find good introductions to the topic in [Antonelli-May, 2005] and [Tennant, 2017].

References

[Antonelli-May, 2005] Aldo Antonelli and Robert May, “Frege’s other program”, Notre Dame Journal of Formal Logic, Vol. 46 (1), p.1–17, 2005

[Banaschewski & Moore, 1990] Bernhard Banaschewski & Gregory H. Moore, “The Dual Cantor-Bernstein Theorem and the Partition Principle”, Notre-Dame Journal of Formal Logic, vol. 31, Number 3, 1990

[Birkhoff, 1948] Garrett Birkhoff, Lattice Theory, Colloquium publications, Volume 25, American Mathematical Society, 1948

[Boolos, 1987] George S. Boolos, “The consistency of Frege’s Foundations”, in On Being and Saying: Essays in Honor of Richard Cartwright, J. Thomson (ed.), MIT Press, Cambridge MA, 1987, p.3-20
[Burali-Forti, 1896] Cesare BURALI-FORTI, “Le classi finite”, Atti dell’Academia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche e Naturale, vol. 32, 1896, p. 34-52

[Carnap, 1928] Rudolf CARNAP, Der logische Aufbau der Welt, Welthkreis, Berlin. English Translation: George RA, The logical structure of the World, Routledge & Kegan Paul, London, 1967.

[Church, 1940] Alonzo CHURCH, A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5, 1940

[Consuegra, 1991] Francisco A. RODRIGUEZ-CONSUEGRA, The Mathematical Philosophy of Bertrand Russell. Origins and Development, Birkhäuser, Basel, 1991

[Forrest, 2016] Peter FORREST, “The Identity of Indiscernibles”, in N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 edition), https://plato.stanford.edu/archives/win2016/entries/identity-indiscernible/, Metaphysics Research Lab of Stanford University, 2016

[Gandon, 2016] Sébastien GANDON, “Wiener and Carnap: A Missed Opportunity?”, in C. Damböck (ed.), Influences on the Aufbau, Vienna Circle Institute Yearbook 18, Springer International Publishing, Switzerland, 2016

[Girard, 1971] Jean-Yves GIRARD, “Une extension de l’interprétation fonctionnelle de Gödel à l’analyse et son application à l’élimination des coupures dans l’analyse et la théorie des types”, in Fenstad (ed.), Proceedings of the 2nd Scandinavian Logic Symposium, p. 63-92, North-Holland, Amsterdam, 1971

[Girard, 1987] Jean-Yves GIRARD, “Linear logic”, Theoretical Computer Science, 50 (1), p. 1-102, Elsevier Science Publishers Ltd, Essex, UK, 1987

[Girard, 1990] Jean-Yves GIRARD, The blind spot, vol. 1, European Mathematical Society, Zürich 2011.
From abstraction and indiscernibility to classification and types

[Girard, 2001] Jean-Yves Girard, “Locus solum: From the rules of logic to the logic of rules”, *Mathematical Structures in Computer Science*, Number 3, vol. 11, 2001

[Girard, 2004] Jean-Yves Girard, “Between logic and quantic: a tract” in Thomas Ehrhard, Jean-Yves Girard, Paul Ruet and Philip Scott (eds.), *Linear Logic in Computer Science*, London Mathematical Society Lecture Note Series, 316 Cambridge University Press, p. 346-381, 2004

[Hale, 1987] Bob Hale, *Abstract Objects*, Basil Blackwell, Oxford, 1987

[Higasikawa, 1995] Masasi Higasikawa, “Partition Principles and Infinite Sums of Cardinal Numbers”, *Notre Dame Journal of Formal Logic*, Volume 36, Number 3, 1995

[Hyland-Schalk, 2003] Martin Hyland and Andrea Schalk, “Glueing and orthogonality for models of linear logic”, Theoretical Computer Science, 294, 2003

[Howard, 1980] William Alvin Howard, “The formulae-as-types notion of construction”, in To H.B. Curry: Essays in combinatory logic, lambda calculus and formalism, J.P. Seldin and J.R. Hindley (eds.), Academic Press 1980, p. 479-490

[Joinet, 2019] Jean-Baptiste Joinet, *Collusions and quotients: generalizing equivalence relations and definitions by abstraction*, open access archives HAL (https://hal.archives-ouvertes.fr/hal-02369662), 20/11/2019

[Joinet-Seiller, 202?] Jean-Baptiste Joinet and Thomas Seiller, *Collusions alias Bijections between partitions* In preparation, To appear soon, hopefully in 2021.

[Krivine, 2001] Jean-Louis Krivine, “Typed lambda-calculus in classical Zermelo-Fraenkel set theory” *Arch. Mathematical Logic*, Vol. 40, 2001

[Leitgeb, 2007] Hannes Leitgeb, “A new analysis of Carnap’s quasi-analysis”, *Journal of Philosophical Logic* 36:181–226, 2007
[Levi, 1902] Beppo Levi, “Intorno alla teoria degli aggregati”, Instituto Lombardo di Scienze e Lettere, Rendiconti, Series 2, Vol. 35, 1902, p.863-868

[Mancosu, 2016] Paolo Mancosu, Abstraction and Infinity, Oxford University Press, 2016

[Naibo-Petrolo-Seiller, 2016] Alberto Naibo, Mattia Petrolo & Thomas Seiller, “On the Computational Meaning of Axioms”, in Olga Pombo Martins, Angel Nepomuceno Fernandez & Juan Redmond (eds.) Epistemology, Knowledge and the Impact of Interaction, Springer, “Logic, Epistemology, and the Unity of Science” Series, Vol. 38, p. 141-184, 2016, doi10.1007/978-3-319-26506-3_5

[Okada, 1998] Mitsuhiro Okada, An Introduction to Linear Logic: Expressiveness and Phase Semantics, Mathematical Society of Japan Memoirs, Vol. 2, 255-295, 1998

[Pollard, 1998] Stephen Pollard, “Weyl on abstraction”, Philosophical Studies 53, Reidel Publishing Company, 1998, p.131-140

[Russell, 1903] Bertrand Russell, The Principles of Mathematics. Cambridge University Press, 1903

[Russell, 1914] Bertrand Russell, Our knowledge of external World as a field for scientific method in philosophy, Open Court, London, 1914.

[Tait, 1966] William W. Tait, A non constructive proof of Gentzen’s Hauptsatz for second order predicate logic, Bull. Amer. Math. Soc. 72 (1966), no. 6, p.980–983. https://projecteuclid.org/euclid.bams/1183528497

[Tait, 1990] William W. Tait, Lectures on Proof Theory, manuscript online at http://home.uchicago.edu/~wwtx/Proof.pdf (the URL is not reachable anymore; but the file can still be found through a web-browser search, using “William W. Tait’s Home Page - University of Chicago” as keywords). The year is uncertain.

[Tait, 1996] William W. Tait, “Frege versus Cantor and Dedekind: On the Concept of Number”, 1996
From abstraction and indiscernibility to classification and types

[Tennant, 2017] Neil Tennant, “Logicism and Neologicism”, in The Stanford Encyclopedia of Philosophy (Winter 2017 Edition), N. Zalta (ed.), https://plato.stanford.edu/archives/win2017/entries/logicism/, Metaphysics Research Lab of Stanford University, 2017

[Van der Waerden, 1930] Bartel Van der Waerden, *Abstrakte Algebra*, Springer, Berlin, 1930

[Weyl, 1910] Hermann Weyl, “Über die Definitionen der mathematischen Grundbegriffe”, Mathematisch-naturwissenschaftliche Blätter, 7, 1910, p.93-95 + p.109-113 (also in Weyl, H., *Gesammelte Abhandlungen*, Berlin: Springer, vol. I, 298-304)

[Weyl, 1927] Hermann Weyl, *Philosophie der Mathematik und Naturwissenschaft*, R. Oldenbourg, 1927

[Weyl, 1949] Hermann Weyl, *Philosophy of Mathematics and Natural Sciences*, Princeton University Press, 1949 (Revised and augmented edition of Weyl’s 1927 book, translated in english by Olaf Helmer)