Use of nonselective β blockers after variceal eradication in cirrhotic patients undergoing secondary prophylaxis of esophageal variceal bleeding: a critical review of current evidence

Xiangbo Xu, Xiaozhong Guo, Frank Tacke, Xiaodong Shao and Xingshun Qi

Abstract: Nonselective β blockers (NSBBs) combined with esophageal variceal ligation (EVL) are recommended for secondary prophylaxis of esophageal variceal bleeding (EVB) in cirrhotic patients according to the current practice guidelines and consensus. However, until now, there is a paucity of recommendations regarding the use of NSBBs in cirrhotic patients who achieved variceal eradication. In this review paper, we firstly introduced a case who achieved variceal eradication after additional use of NSBBs for secondary prophylaxis of EVB and then did not require further endoscopic therapy during repeated endoscopic surveillance, and subsequently discuss the importance of NSBBs for secondary prophylaxis of EVB, the effect of NSBBs after variceal eradication, adherence to NSBBs, screening for variceal recurrence, and timing of endoscopic surveillance after variceal eradication.

Keywords: liver cirrhosis, nonselective β blockers, secondary prophylaxis, variceal eradication, variceal recurrence

Introduction

Esophageal variceal bleeding (EVB) is one of the most severe and common complications of portal hypertension in cirrhotic patients. Rebleeding rate is up to 60% in the absence of secondary prophylaxis.1 Nonselective β blockers (NSBBs) (i.e. propranolol and nadolol), which can antagonize β2 receptors to reduce portal pressure, in combination with esophageal variceal ligation (EVL) are the first-line choice for secondary prophylaxis of EVB according to current guidelines and consensus.2-5 Pharmacological alternatives to NSBBs, such as carvedilol, which has also an intrinsic anti-α1 receptor activity, possibly leading to a greater reduction in portal pressure, and long-acting nitrates, such as isosorbide mononitrate (ISMN), which can further reduce portal pressure,6 but is used less frequently due to its common side effects (i.e. dizziness and headache) and absence of superiority in decreasing rebleeding and mortality compared with NSBBs therapy alone.7 Meta-analyses also suggest that a combination of drug and endoscopic therapy significantly decreases the rate of rebleeding and mortality as compared with endoscopic therapy alone (Table 1).7-18

Despite such a critical role of NSBBs, there is a serious concern about the safety and tolerance of NSBBs. First, there are many contraindications for NSBBs, for instance, asthma, sinus bradycardia, peripheral vascular diseases, advanced heart failure, cardiogenic shock, and atrioventricular block. Second, some patients adhere poorly to NSBBs, because NSBBs can lead to drug-related side effects, and monitoring of heart rate and
Table 1. Combination therapy versus endoscopic therapy alone for secondary prophylaxis of esophageal variceal bleeding: an overview of meta-analyses.

First author (Year)	Comparison groups	Variceal rebleeding rate	Overall rebleeding rate	Overall mortality rate
Combination therapy versus Endoscopic therapy alone				
Gonzalez (2008)8 EVL + NSBBs ± ISMN/sucralfate versus EVL	NA			
Ravipati (2009)9 EVL/EIS + NSBBs ± ISMN/versus EVL/EVS	RR = 0.601, 95% CI = 0.44–0.820, 95% CI = 0.523–0.741, p < 0.001			
Cheung (2009)10 EVL + NSBBs ± ISMN versus EVL	RR = 0.38, 95% CI = 0.19–0.76, 95% CI = 0.19–0.76, p = 0.07			
Gluud (2010)7 EVL + NSBBs ± ISMN versus EVL	RR = 0.101, 95% CI = 0.46–2.21, 95% CI = 0.46–2.21, p = 0.71			
Hernandez-Gea (2010)12 EVL + NSBBs ± ISMN versus EVL	RR = 0.60, 95% CI = 0.40–0.89, 95% CI = 0.39–0.77, p = 0.08			
Nomorosa (2011)13 EVL + NSBBs ± ISMN versus EVL	NA			
Thiele (2012)14 EVL + NSBBs ± ISMN/sucralfate versus EVL	RR = 0.65, 95% CI = 0.45–0.93, 95% CI = 0.45–0.93, p = 0.02			
Puente (2014)15 EVL + NSBBs ± ISMN versus EVL	RR = 0.51, 95% CI = 0.32–0.82, 95% CI = 0.28–0.69, p = 0.0003			
Lin (2017)16 EVL + NSBBs ± ISMN versus EVL	RR = 0.59, 95% CI = 0.33–1.06, 95% CI = 0.41–0.79, p = 0.07			
Albillos (2017)17 EVL + NSBBs versus EVL	IRR = 0.52, 95% CI = 0.25–1.11, 95% CI = 0.25–1.11, p = 0.091			
Shi (2018)18 EVL + NSBBs versus EVL	OR = 0.37, 95% CI = 0.16–0.86, 95% CI = 0.16–0.86, p < 0.001			

| **Endoscopic therapy alone versus Combination therapy** | | | | |
| Funakoshi (2010)11 EVL versus EVL + NSBBs | NA |

EVL, Esophageal variceal bleeding; EVS, esophageal variceal sclerotherapy; NSBBs, nonselective β blockers; ISMN, isosorbide 5-mononitrate; OR, odds ratio; RR, risk ratio; IRR, incidence rate ratio; CI, confidence interval; NA, not available.
blood pressure is necessary during the use of NSBBs. Third, NSBBs may be harmful in cirrhotic patients with spontaneous bacterial peritonitis as well as those with refractory ascites. Certainly, recent evidence from meta-analyses also suggested that the mortality was not significantly influenced by NSBBs in cirrhotic patients with ascites. Fourth, the use of NSBBs is also considered as a risk factor for the development of portal vein thrombosis.

Generally, physicians should fully weigh the benefits and potential risks of NSBBs in each individual. If variceal eradication is achieved, some uncertainties remain regarding whether NSBBs should be stopped, as well as when to stop NSBBs. Herein, we reported a cirrhotic patient who developed EVB after initial endoscopic therapy alone, but achieved variceal eradication after additional use of NSBBs for secondary prophylaxis. In this setting, we discussed the importance of the use of NSBBs in secondary prophylaxis of EVB, whether NSBBs should be maintained after variceal eradication, drug adherence during the use of NSBBs, approach of screening for variceal recurrence, and timing of endoscopic surveillance after variceal eradication.

Case presentation
On March 26, 2015, a 60-year-old male (FL) with an 8-year history of hepatitis B virus (HBV)-related liver cirrhosis was admitted to the Emergency Department of our hospital due to hematemesis and melena for 1 day. He did not receive antiviral therapy. The laboratory data are listed in Supplementary Table 1. At that time, he was treated with intravenous infusion of vasoconstrictors, and was subjected to immediate EVL for EVB. After controlling the bleeding episode, he was discharged. Notably, he neither received NSBBs nor underwent regular endoscopic surveillance.

On October 13, 2016, the patient was admitted to the Department of Gastroenterology due to the recurrence of hematemesis. Again, intravenous infusion of vasoconstrictors and EVL were given for the management of variceal bleeding. At that time, NSBBs were not yet prescribed.

On February 14, 2017, he was readmitted to the Department of Gastroenterology due to hematemesis and melena for 2 days. After successful treatment of variceal bleeding by vasoconstrictors and EVL, propranolol was initiated according to the current practice guideline. Additionally, a regular follow-up endoscopic surveillance was recommended.

On April 6, 2017, he underwent follow-up endoscopy without hematemesis or melena. Notably, he adhered to propranolol well. He underwent prophylactic EVL for mild esophageal varices. After discharge, a regular follow-up endoscopic examination every 6 months was recommended.

On November 1, 2017, May 10, 2018, and January 10, 2019, he underwent follow-up endoscopy without hematemesis or melena. He adhered to propranolol. At these admissions, only mild varices were found on endoscopy, and EVL was not recommended by our endoscopist. His heart rate ranged from 57 to 68 beats per minute (bpm) with a blood pressure of 90–150/70–100 mmHg.

On February 24, 2019, a telephone follow up showed that he was well, without any complaints (Figure 1). He took propranolol regularly, and his heart rate was about 60 bpm, and blood pressure was about 140/90 mmHg.
Discussion

Importance of NSBBs for secondary prophylaxis of EVB

Evidence from 12 meta-analyses comparing the efficacy of NSBBs as add-on therapy with endoscopic therapy for secondary prophylaxis of EVB were systematically reviewed (Table 1).7–18 Among them, 11 meta-analyses defined EVL alone as endoscopic therapy alone group and EVL + NSBBs ± ISMN/sucralfate as combination therapy group,7,8,10–18 but 1 meta-analysis defined either EVL or endoscopic variceal sclerotherapy (EVS) as endoscopic therapy alone group and EVL/EVS + NSBBs ± ISMN/sucralfate as combination therapy group.9 As for variceal rebleeding evaluated in nine meta-analyses,7,9,10,12,14–18 six meta-analyses showed that combination therapy group significantly decreased the rate of variceal bleeding compared with endoscopic therapy alone group,9,10,12,14,15,18 and three meta-analyses found no statistically significant difference.7,16,17 As for overall rebleeding evaluated in 12 meta-analyses,7–18 10 meta-analyses showed that the combination therapy group significantly decreased the rate of overall rebleeding compared with the endoscopic therapy alone group,8,9,11–18 and two meta-analyses found no statistically significant difference.7,10 As for overall mortality evaluated in 12 meta-analyses, 1 individual patient data meta-analysis showed that combination therapy group significantly decreased the rate of overall mortality compared with endoscopic therapy alone group, especially for Child-Pugh class B/C cirrhotic patients,17 but 11 conventional meta-analyses found no statistically significant difference.7,16,18 Taken together, the addition of NSBBs on the top of endoscopic therapy seemed beneficial for secondary prophylaxis of EVB in terms of reduction of rebleeding and mortality.

Evidence from eight meta-analyses comparing the efficacy of drug therapy (i.e. NSBBs with or without ISMN) alone versus endoscopic therapy alone for secondary prophylaxis of EVB were systematically reviewed (Table 2).7,9,10,13,18,25–27 Among them, two meta-analyses defined either EVS or EVL as endoscopic therapy alone group and NSBBs ± ISMN as drug therapy alone group,7,9 and six meta-analyses defined EVL as endoscopic therapy alone group and NSBBs ± ISMN as drug therapy alone group.10,13,18,25–27 As for variceal rebleeding evaluated in five meta-analyses,7,9,18,26,27 none of them found statistically significant difference between the two groups. Overall rebleeding was evaluated in eight meta-analyses,7,9,10,13,18,25–27 none of which found a statistically significant difference between the two groups. As for overall mortality evaluated in seven meta-analyses,7,9,10,18,25–27 three meta-analyses showed that drug therapy alone group significantly decreased the rate of overall mortality compared with endoscopic therapy alone group,7,26,27 and four meta-analyses found no statistically significant difference.9,10,18,25 Taken together, the findings from meta-analyses suggested that drug therapy alone was not inferior to endoscopic therapy alone in terms of reduction of variceal rebleeding and overall rebleeding; more importantly, drug therapy alone might be superior to endoscopic therapy alone in terms of survival benefit.

Effect of NSBBs after variceal eradication

The recommendations of current guidelines and consensus regarding the use of NSBBs for preventing from no to small varices or from small to large varices under primary prophylaxis are summarized in Table 3.2–5 For patients with high-risk small varices (i.e. red color sign and/or Child-Pugh class C patients), all guidelines consistently recommended the use of NSBBs.2–5 On the contrary, for patients without varices, the use of NSBBs was not recommended.2,4 For patients with small varices but without red color sign, evidence regarding the use of NSBBs was deemed to be lacking.2,4 Several meta-analyses have analyzed the efficacy of NSBBs in the prevention of variceal progression from small to large in patients under primary prophylaxis of EVB (Table 4).28–30 One meta-analysis included patients with no or small varices and found that the incidence of developing large varices was similar between patients treated with placebo and NSBBs.28 Another two meta-analyses included patients with small varices alone and also achieved a consistent finding.29,30 Besides, it should not be neglected that NSBBs led to more adverse effects and brought no benefit in decreasing the rate of first bleeding and mortality.28,30

By comparison, our patient also presented with mild varices, but he was under secondary prophylaxis. However, the recommendation regarding the use of NSBBs in such population remains obscure. Regardless, the primary goal of management should be to prevent variceal recurrence after varical eradication. The evidence was systematically reviewed as follows.
There were seven randomized controlled trials (RCTs) and two cohort studies exploring the rate of esophageal variceal eradication and recurrence in patients receiving NSBBs ± ISMN/sucralfate as add-on therapy to endoscopic therapy (Table 5). Among them, five RCTs defined EVL + NSBBs ± ISMN as combination therapy group and EVL alone as endoscopic therapy alone group, and two RCTs and one cohort study defined NSBBs + EVS as combination therapy group and EVS alone as endoscopic therapy alone group, and one cohort study defined EVL/EVS + NSBBs as combination therapy group and EVL/EVS as endoscopic therapy alone group. First, the rate of variceal eradication ranges from 52% to 89% in the combination therapy group and from 40% to 98% in the endoscopic therapy alone group. Second, the rate of variceal recurrence in patients who achieved variceal eradication was reported to be numerically lower in the combination therapy group than endoscopic therapy alone group, with a range of 14–68% in combination therapy group and 26–97% in the endoscopic therapy alone group (Figure 2). In order to clarify this issue, we performed meta-analyses of these studies. Overall meta-analysis demonstrated a significantly lower rate of variceal recurrence in combination therapy group [OR = 0.58, 95% CI (0.36–0.94),

First author (Year)	Comparison groups	Variceal rebleeding rate	Overall rebleeding rate	Overall mortality rate
Ravipati (2009)	NSBBs ± ISMN/ sucralfate versus EVL/EVS	RR = 1.143, 95%CI = 0.791–1.651, p = 0.42	RR = 1.067, 95%CI = 0.865–1.316, p = 0.42	RR = 0.997, 95%CI = 0.827–1.202, p = 0.98
Ding (2009)	NSBBs ± ISMN versus EVL	NA	RR = 0.94, 95%CI = 0.64–1.38, p = 0.76	RR = 0.81, 95%CI = 0.61–1.08, p = 0.15
Gluud (2010)	NSBBs ± ISMN versus EVL/EVS	RR = 1.61, 95%CI = 1.14–2.27, p = NA	RR = 1.06, 95%CI = 0.75–1.48, p = 0.76	RR = 0.79, 95%CI = 0.65–0.96, p = 0.02
Nomorosa (2011)	NSBBs ± ISMN versus EVL	NA	RR = 0.88, 95%CI = 0.64–1.19, Not significant	NA
Shi (2018)	NSBBs ± ISMN versus EVL	OR = 1.31, 95%CI = 1.00–1.72, p = NA	RR = 1.29, 95%CI = 0.83–2.01, Not significant	OR = 1.28, 95%CI = 0.91–1.79, Not significant
Zhou (2018)	NSBBs ± ISMN versus EVL	RR = 1.30, 95%CI = 0.74–2.25, p = 0.36	RR = 1.12, 95%CI = 0.77–1.65, p = 0.55	RR = 0.71, 95%CI = 0.58–0.88, p = 0.002
Cheung (2009)	EVL versus NSBBs ± ISMN	NA	RR = 0.96, 95%CI = 0.73–1.30, p = 0.77	RR = 1.20, 95%CI = 0.92–1.57, p = 0.18
Li (2011)	EVL versus NSBBs + ISMN/ sucralfate	RR = 0.89, 95%CI = 0.53–1.49, p = 0.66	RR = 0.95, 95%CI = 0.65–1.40, p = 0.81	RR = 1.25, 95%CI = 1.01–1.55, p = 0.04

CI, Confidence interval; EVL, esophageal variceal bleeding; EVS, esophageal variceal sclerotherapy; ISMN, isosorbide 5-mononitrate; NA, not available; NSBBs, nonselective β blockers; OR, odds ratio; RR, risk ratio.
Table 3. Practice guidelines/guidance and consensus recommendations regarding the use of NSBBs in cirrhotic patients with small or no varices.

Guidelines/Consensus (Year)	Target population	Recommendations	Level of evidence; Grade of recommendations
EASL practice guidelines³	LC, with small varices with red wale marks or Child-Pugh class C	NSBBs	III; 1*
AASLD practice guidance²	LC, without varices	No evidence to recommend to use NSBBs	NA
	LC, low-risk small varices (lack of red wale marks or Child-Pugh class C)	Controversial	NA
	LC, with high-risk small varices (with red wale marks and/or Child-Pugh class C)	NSBBs	NA
Baveno VI consensus⁴	LC, with no varices	No indication for NSBBs	1b; A$
	LC, with small varices without signs of increased risk	May be treated with NSBBs	1b; A$
	LC, with small varices with red wale marks or Child-Pugh class C	NSBBs	5; D$
UK guidelines⁵	LC, with grade I varices and red signs irrespective of the severity of liver disease	NSBBs	1a; A‡

Notes:
* The quality of evidence and grading of recommendations were ranked according to self-defined system.
† The quality of evidence and grading of recommendations were ranked according to Oxford System.
‡ The quality of evidence and grading of recommendations were ranked according to AGREE II tool.
AASLD, American Association for the Study of Liver Diseases; EASL, European Association for the Study of the Liver; LC, liver cirrhosis; NA, not available; NSBBs, nonselective β blockers.

Table 4. NSBBs versus placebo for prevention of variceal progression in small or no varices: An overview of meta-analyses.

First author (Year)	Qi (2015)²⁸	Mandorfer (2016)²⁹	Kumar (2017)³⁰
Target population	LC with no varices and small or low-risk varices, but without any previous bleeding	LC with small varices	Adult LC with small varices, but without any previous history of VB
Development of large varices	OR = 1.05, 95%CI = 0.25–4.36, p = 0.95	OR = 0.76, 95%CI = 0.25–2.29, p = 0.63	RR = 0.91, 95%CI = 0.29–2.86, p = 0.87
First UGIB or VB	OR = 0.59, 95%CI = 0.24, 1.47, p = 0.26	NA	RR = 0.72, 95%CI = 0.25–2.12, p = 0.55
Mortality	OR = 0.70, 95%CI = 0.45–1.10, p = 0.12	NA	RR = 0.76, 95%CI = 0.50–1.15, p = 0.19
Adverse effects	OR = 3.47, 95%CI = 1.45–8.33, p = 0.005	NA	RR = 4.66, 95%CI = 1.36–15.91, p = 0.01

CI, Confidence interval; LC, liver cirrhosis; NA, not available; NSBBs, nonselective β blockers; OR, odds ratio; RR, risk ratio; UGIB, upper-gastrointestinal bleeding; VB, variceal bleeding.
Table 5. Combination therapy *versus* endoscopic therapy alone for variceal eradication and recurrence: An overview of individual studies.

First author	Study design	Enrollment period	Included patients	Comparison groups	No. Pts.	Eradication rate	Recurrence rate
dos Santos	Cohort	Aug 2001–Dec 2009	Children and adolescents with PH and previous UGIB and had achieved variceal obliteration	EVL/EVS + Propranolol	15	100%	60%
				EVL/EVS	18	100%	44.4%
Ahmad	RCT	Nov 2003–Jul 2005	LC, with EVB	EVL + Propranolol + ISMN	37	NA	32%
				EVL	39	NA	26%
Kumar	RCT	Oct 2002–Dec 2006	Patients with a prior VB	EVL + Propranolol + ISMN	84	52%	36%
				EVL	83	40%	36%
de la Peña	RCT	Jun 1999–Oct 2003	LC, with UGIB	EVL + Nadolol	43	NA	54% [1 year]; 68% [2 year]
				EVL	37	NA	77% [1 years]; 97% [2 year]
Lo	RCT	Jul 1994–Jan 1996	LC, with history of VB	EVL + Propranolol	37	84%	43%
				EVL	40	80%	38%
Lo	RCT	Oct 1995–Dec 1997	LC, with history of EVB	EVL + Nadolol + Sucralfate	60	75%	26%
				EVL	62	70%	50%
Avgerinos	RCT	Sep 1986–Dec 1989	LC, with endoscopically proven acute EVB	EVS + Propranolol	43	89%	50%
				EVS	40	98%	67%
Elsayed	RCT	Apr 1991–Oct 1991	Patients with PH presenting with first EVB	EVS + Propranolol	70	NA	17%
				EVS	70	NA	34%
Jensen	Cohort	NA	LC, with first EVB and had achieved variceal obliteration	EVS + Propranolol	14	100%	14%
				EVS	15	100%	73%

EVB, Esophageal variceal bleeding; EVL, esophageal variceal bleeding; EVS, esophageal variceal sclerotherapy; ISMN, isosorbide 5-mononitrate; LC, liver cirrhosis; NA, not available; PH, portal hypertension; RCT, randomized controlled trial; UGIB, upper gastrointestinal bleeding; VB, variceal bleeding.
Therapeutic Advances in Chronic Disease 10

Figure 2. Rates of variceal recurrence in patients undergoing endoscopic therapy alone and combined with nonselective β blockers.

![Figure 2](image)

Study or Subgroup	ET+NSBBs	ET	Odds Ratio	Odds Ratio
	Events	Total	M-H, Random, 95% CI	M-H, Random, 95% CI
EVS+NSBBs vs. EVS				
Avgirinos(1993)	20	40	0.50 [0.20, 1.24]	\[\text{NS}\]
Elsayed(1996)	12	70	0.40 [0.18, 0.88]	\[\text{NS}\]
Jensen(1990)	2	14	0.06 [0.01, 0.40]	\[\text{NS}\]
Subtotal (95% CI)	124	124	0.32 [0.13, 0.77]	\[\text{NS}\]
Total events	34	61		

Heterogeneity: Tau² = 0.30; Chi² = 4.00, df = 2 (P = 0.14); I² = 50%
Test for overall effect: Z = 2.55 (P = 0.01)

EVL+NSBBs vs. EVL

Study or Subgroup	ET+NSBBs	ET	Odds Ratio	Odds Ratio
	Events	Total	M-H, Random, 95% CI	M-H, Random, 95% CI
Ahmad(2009)	12	37	1.39 [0.51, 3.77]	\[\text{NS}\]
de la Peña(2005)	23	43	0.37 [0.14, 0.97]	\[\text{NS}\]
Kumar(2009)	16	44	1.00 [0.39, 2.56]	\[\text{NS}\]
Lo(2001)	11	29	0.80 [0.26, 2.26]	\[\text{NS}\]
Subtotal (95% CI)	198	182	0.69 [0.40, 1.14]	\[\text{NS}\]
Total events	74	84		

Heterogeneity: Tau² = 0.11; Chi² = 5.90, df = 4 (P = 0.21); I² = 32%
Test for overall effect: Z = 1.46 (P = 0.14)

ET+NSBBs vs. ET

Study or Subgroup	ET+NSBBs	ET	Odds Ratio	Odds Ratio
	Events	Total	M-H, Random, 95% CI	M-H, Random, 95% CI
Ahmad(2009)	12	37	1.39 [0.51, 3.77]	\[\text{NS}\]
Avgirinos(1993)	20	40	0.50 [0.20, 1.24]	\[\text{NS}\]
de la Peña(2005)	23	43	0.37 [0.14, 0.97]	\[\text{NS}\]
dos Santos(2013)	9	15	1.88 [0.47, 7.53]	\[\text{NS}\]
Elsayed(1996)	12	70	0.40 [0.18, 0.88]	\[\text{NS}\]
Jensen(1990)	2	14	0.06 [0.01, 0.40]	\[\text{NS}\]
Kumar(2009)	16	44	1.00 [0.39, 2.56]	\[\text{NS}\]
Lo(2001)	11	29	0.80 [0.26, 2.26]	\[\text{NS}\]
Subtotal (95% CI)	337	324	0.58 [0.36, 0.94]	\[\text{NS}\]
Total events	117	153		

Heterogeneity: Tau² = 0.25; Chi² = 15.58, df = 8 (P = 0.05); I² = 49%
Test for overall effect: Z = 2.23 (P = 0.03)

Figure 3. Forest plots comparing the rates of variceal recurrence between patients undergoing endoscopic therapy alone and combined with NSBBs.

EVL, Esophageal variceal ligation; EVS, endoscopic variceal sclerotherapy; ET, endoscopic therapy; NSBBs, nonselective β blockers.

\[p = 0.01\] with a potential heterogeneity (\[I^2 = 49\%\]; \[p = 0.05\]) (Figure 3). Subgroup meta-analysis of studies comparing EVS + NSBB versus EVS also demonstrated a significantly lower rate of variceal...
recurrence in combination therapy group \([OR = 0.32, 95\% CI (0.13–0.77), p = 0.01]\) with a potential heterogeneity \((I^2 = 50\%; p = 0.14)\).\(^{34,38,39}\) Subgroup meta-analysis of studies comparing EVL + NSBBs ± ISMN versus EVL suggested a potential trend of EVL + NSBBs ± ISMN over EVL alone in decreasing the risk of variceal recurrence, but the difference was not statistically significant \([OR = 0.68, 95\% CI (0.40–1.14), p = 0.14]\).\(^{31–33,36,37}\) Based on the current evidence reviewed and pooled data, the continuation of NSBBs might be preferred after variceal eradication in a ‘secondary prophylaxis’ population.

Adherence to the use of NSBBs

Poor adherence increases both morbidity and mortality. By contrast, an adherence rate of over 80% will improve clinical outcomes.\(^{40}\) Debernardi Venon and colleagues found that only 62.5% (60/96) of patients took NSBBs after variceal eradication. The use of NSBBs was the only independent predictor associated with a lower risk of variceal recurrence \((OR = 2.30)\).\(^{41}\) Nonadherence is associated with multiple factors, such as social and economic, healthcare-system-related, therapy-related, condition-related, and patient-related factors.\(^{42}\) For cirrhotic patients who should receive NSBBs for secondary prophylaxis of EVB, the need for life-long use, the presence of contraindications, drug-related adverse effects, patient intolerance, and modification of dosage by monitoring heart rate and blood pressure may be associated with poor adherence. Dos Santos and colleagues initially prescribed NSBBs for secondary prophylaxis in 43 cirrhotic patients younger than 18 years, of whom only 15 had good adherence; the remaining patients discontinued NSBBs due to contraindications, adverse effects, and for reasons that were unclear.\(^{35}\) In the study by Pfisterer and colleagues, only 66.2% (319/482) of patients needing secondary prophylaxis were
treated with NSBBs and EVL, and the remaining patients (163/482, 33.8%) were treated with EVL monotherapy without NSBBs due to unknown reasons (121/163) and contradictions and intolerance (40/163). Therefore, a good adherence to NSBBs or continuity of NSBBs was potentially useful for preventing variceal recurrence.

Screening for variceal recurrence after variceal eradication
Among patients who achieve variceal eradication, it is important to define a suitable technique and interval to predict and screen for variceal recurrence and rebleeding. Hepatic venous pressure gradient (HVPG) measurement seems to play a critical role in assessing the risk of variceal recurrence and rebleeding as well as in predicting the efficacy of NSBBs. Unfortunately, HVPG measurement in our patient, to identify the effect of NSBBs on portal pressure, was unavailable. Studies suggest that HVPG responders treated with NSBBs have better outcomes; by contrast, HVPG nonresponders have worse outcomes. Thus, HVPG-guided strategy is preferred to clearly identify candidates for continuing NSBBs. However, it should be noted that not all HVPG responders are free of rebleeding episodes. The rate of rebleeding is 5.6–43% among HVPG responders (Figure 4A). Similarly, not all HVPG nonresponders will develop rebleeding episodes. The rate of free of rebleeding is 12.5–75% among HVPG nonresponders (Figure 4B). Therefore, HVPG is not perfect, and a HVPG reduction does not fully reflect a decline in the risk of rebleeding. Additionally, HVPG measurement is invasive and requires a skilled interventional radiologist or hepatologist. Considering that variceal bleeding and its related morbidity and mortality are hard endpoints, an upper gastrointestinal endoscopic finding showing variceal recurrence or eradication should be more clinically relevant.

Timing of endoscopic surveillance after variceal eradication
The appropriate timing of endoscopic surveillance for cirrhotic patients who have achieved variceal eradication after secondary prophylaxis of EVB remains to be discussed. The first time point of endoscopic surveillance after variceal recurrence should be 3–6 months, 1–3 months, or 3 months according to 2016 American Association for the Study of Liver Diseases (AASLD) practice guidances, 2007 AASLD

Guidelines/Consensus (Year)	Recommendations	Level of evidence; Grade of recommendations
EASL practice guidelines [2018]	Not mentioned	Not mentioned
AASLD practice guidance [2016]	First EGD performed at 3–6 months after eradication and every 6–12 months thereafter	NA
Baveno VI consensus [2016]	Not mentioned	Not mentioned
UK guidelines [2015]	First EGD performed at 3 months after eradication and every 6 months thereafter	1b; B*
AASLD practice guidelines [2007]	First EGD performed at 1–3 months after eradication and every 6–12 months thereafter	I; C$

Notes:
*The quality of evidence and grading of recommendations were ranked according to AGREE II tool.
$The quality of evidence and grading of recommendations were ranked according to the American College of Cardiology and the American Heart Association Practice Guidelines.
AASLD, American Association for the Study of Liver Diseases; EASL, European Association for the Study of the Liver; EGD, esophagogastroduodenoscopy; NA, not available.
practice guidelines, and 2015 UK guidelines, respectively. Considering these heterogeneous recommendations among the guidelines, a RCT assigned cirrhotic patients under primary or secondary prophylaxis of EVB to 3- and 6-month interval groups to first screen for variceal recurrence; no significant difference was found between the two groups. The next time interval of endoscopic surveillance should be every 6–12 months according to the 2016 AASLD practice guidance and 2007 AASLD practice guideline or 6 months according to the UK guideline, if there is neither variceal recurrence nor a need for endoscopic therapy. By comparison, relevant recommendations are lacking in the 2018 European Association for the Study of the Liver guideline and Baveno VI consensus (Table 6).

Conclusion

The critical role of NSBBs for secondary prophylaxis of EVB has been firmly established. After variceal eradication, the use of NSBBs should be continued for prevention from variceal recurrence and rebleeding. Endoscopic surveillance remains warranted for screening for variceal recurrence and rebleeding. However, its optimal timing needs to be further explored (Figure 5).

Acknowledgements

Authors Xiangbo Xu, Xiaozhong Guo, Frank Tacke contributed equally.

Author contribution

Xiangbo Xu: provided pharmaceutical care of NSBBs for this case, reviewed the literature, and drafted this manuscript.

Xiaozhong Guo: treated this case, participated into the discussion regarding the management of this case, and gave critical comments.

Frank Tacke: gave critical comments and revised the manuscript.

Xiaodong Shao: performed endoscopic examinations and treatment and participated into the discussion regarding the management of this case.

Xingshun Qi: an attending physician for this case, conceived this work, gave critical comments, and revised the manuscript.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was partially supported by the Grant from the Natural Science Foundation of Liaoning Province (no. 201800050) for Xingshun Qi.
Conflict of interest statement
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ORCID iD
Xingshun Qi https://orcid.org/0000-0002-9448-6739

Supplemental material
Supplemental material for this article is available online.

References
1. Bosch J and Garcia-Pagan JC. Prevention of variceal rebleeding. Lancet 2003; 361: 952–954.
2. Garcia-Tsao G, Abraldes JG, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology 2017; 65: 310–335.
3. European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018; 69: 406–460.
4. de Franchis R. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol 2015; 69: 406–460.
5. Tripathi D, Stanley AJ, Hayes PC, et al. U.K. guidelines on the management of variceal haemorrhage in cirrhotic patients. Gut 2015; 64: 1680–1704.
6. Garcia-Pagan JC, Navasa M, Bosch J, et al. Enhancement of portal pressure reduction by the association of isosorbide-5-mononitrate to propranolol administration in patients with cirrhosis. Hepatology 1990; 11: 230–238.
7. Gluud LL, Langholz E and Krag A. Meta-analysis: isosorbide-mononitrate alone or with either beta-blockers or endoscopic therapy for the management of oesophageal varices. Aliment Pharmacol Ther 2010; 32: 859–871.
8. Gonzalez R, Zamora J, Gomez-Camarero J, et al. Meta-analysis: combination endoscopic and drug therapy to prevent variceal rebleeding in cirrhosis. Ann Intern Med 2008; 149: 109–122.
9. Ravipati M, Katragadda S, Swaminathan PD, et al. Pharmacotherapy plus endoscopic intervention is more effective than pharmacotherapy or endoscopy alone in the secondary prevention of esophageal variceal bleeding: a meta-analysis of randomized, controlled trials. Gastrointest Endosc 2009; 70: 658–664.e655.
10. Cheung J, Zeman M, van Zanten SV, et al. Systematic review: secondary prevention with band ligation, pharmacotherapy or combination therapy after bleeding from oesophageal varices. Aliment Pharmacol Ther 2009; 30: 577–588.
11. Funakoshi N, Segalas-Largey F, Duny Y, et al. Benefit of combination beta-blocker and endoscopic treatment to prevent variceal rebleeding: a meta-analysis. World J Gastroenterol 2010; 16: 5982–5992.
12. Hernandez-Gea V, Graupera I, Colomo A, et al. Combined therapy with endoscopic variceal ligation and drug therapy with B-blockers plus nitrates to prevent variceal rebleeding. An updated meta-analysis. Hepatology 2010; 52: 1071A.
13. Nomorosa KM, Romero R, Comeily-Birjandi E, et al. Therapeutic interventions for the secondary prophylaxis of esophageal variceal bleeding: a meta-analysis. Hepatol Int 2011; 5: 360.
14. Thiele M, Krag A, Rohde U, et al. Meta-analysis: banding ligation and medical interventions for the prevention of rebleeding from oesophageal varices. Aliment Pharmacol Ther 2012; 35: 1155–1165.
15. Puente A, Hernandez-Gea V, Graupera I, et al. Drugs plus ligation to prevent rebleeding in cirrhosis: an updated systematic review. Liver Int 2014; 34: 823–833.
16. Lin LL, Du SM, Fu Y, et al. Combination therapy versus pharmacotherapy, endoscopic variceal ligation, or the transjugular intrahepatic portosystemic shunt alone in the secondary prevention of esophageal variceal bleeding: a meta-analysis of randomized controlled trials. Oncotarget 2017; 8: 57399–57408.
17. Albillos A, Zamora J, Martinez J, et al. Stratifying risk in the prevention of recurrent variceal hemorrhage: results of an individual patient meta-analysis. Hepatology 2017; 66: 1219–1231.
18. Shi L, Zhang X, Li J, et al. Favorable effects of endoscopic ligation combined with drugs on rebleeding and mortality in cirrhotic patients: a network meta-analysis. Dig Dis 2018; 36: 136–149.
19. Mandorfer M, Bota S, Schwabl P, et al. Nonselective beta blockers increase risk for hepatorenal syndrome and death in patients with
cirrhosis and spontaneous bacterial peritonitis. Gastroenterology 2014; 146: 1680–1690.e1681.

20. Serste T, Melot C, Francoz C, et al. Detrimental effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology 2010; 52: 1017–1022.

21. Chirapongsathorn S, Valentin N, Alahdab F, et al. Nonselective beta-blockers and survival in patients with cirrhosis and ascites: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2016; 14: 1096–1104.e1099.

22. Wong RJ, Robinson A, Ginzberg D, et al. Assessing the safety of beta-blocker therapy in cirrhosis patients with ascites: a meta-analysis. Liver Int 2019; 39: 1080–1088.

23. Qi XS, Bai M and Fan DM. Nonselective β-blockers may induce development of portal vein thrombosis in cirrhosis. World J Gastroenterol 2014; 20: 11463–11466.

24. Xu XB, Guo XZ, De Stefano V, et al. Nonselective beta-blockers and development of portal vein thrombosis in liver cirrhosis: a systematic review and meta-analysis. Hepatol Int. Epub ahead of print 7 June 2019. DOI: 10.1007/s12072-019-09951-6.

25. Ding SH, Liu J and Wang JP. Efficacy of beta-adrenergic blocker plus 5-isosorbide mononitrate and endoscopic band ligation for prophylaxis of esophageal variceal rebleeding: a meta-analysis. World J Gastroenterol 2009; 15: 2151–2155.

26. Li L, Yu C and Li Y. Endoscopic band ligation versus pharmacological therapy for variceal bleeding in cirrhosis: a meta-analysis. Can J Gastroenterol 2011; 25: 147–155.

27. Zhou Y. Endoscopic variceal ligation vs pharmacotherapy in the influencing of mortality and rebleeding rate on secondary prevention of esophageal variceal bleeding: a meta-analysis. Int J Clin Exp Med 2018; 11: 2921.

28. Qi XS, Bao YX, Bai M, et al. Nonselective beta-blockers in cirrhotic patients with no or small varices: a meta-analysis. World J Gastroenterol 2015; 21: 3100–3108.

29. Mandorfer M, Peck-Radosavljevic M and Reiberger T. Prevention of progression from small to large varices: are we there yet? An updated meta-analysis. Gut 2017; 66: 1347–1349.

30. Kumar A, Sharma P, Anikhind SA, et al. Can non-selective beta-blockers (NSBBs) prevent enlargement of small esophageal varices in patients with cirrhosis? A meta-analysis. J Clin Exp Hepatol 2017; 7: 275–283.

31. Lo GH, Lai KH, Cheng JS, et al. Endoscopic variceal ligation plus nadolol and sucralfate compared with ligation alone for the prevention of variceal rebleeding: a prospective, randomized trial. Hepatology 2000; 32: 461–465.

32. Lo GH, Lai KH, Cheng JS, et al. The effects of endoscopic variceal ligation and propranolol on portal hypertensive gastropathy: a prospective, controlled trial. Gastrointest Endosc 2001; 53: 579–584.

33. Kumar A, Jha SK, Sharma P, et al. Addition of propranolol and isosorbide mononitrate to endoscopic variceal ligation does not reduce variceal rebleeding incidence. Gastroenterology 2009; 137: 892–901, 901.e891.

34. Avgerinos A, Rekomis G, Klonis C, et al. Propranolol in the prevention of recurrent upper gastrointestinal bleeding in patients with cirrhosis undergoing endoscopic sclerotherapy. A randomized controlled trial. J Hepatol 1993; 19: 301–311.

35. dos Santos JM, Ferreira AR, Fagundes ED, et al. Endoscopic and pharmacological secondary prophylaxis in children and adolescents with esophageal varices. J Pediatr Gastroenterol Nutr 2013; 56: 93–98.

36. de la Pena J, Brullet E, Sanchez-Hernandez E, et al. Variceal ligation plus nadolol compared with ligation for prophylaxis of variceal rebleeding: a multicenter trial. Hepatology 2005; 41: 572–578.

37. Ahmad I, Khan AA, Alam A, et al. Propranolol, isosorbide mononitrate and endoscopic band ligation - alone or in varying combinations for the prevention of esophageal variceal rebleeding. J Coll Physicians Surg Pak 2009; 19: 283–286.

38. Elsayed SS, Shaheen J, Hamid M, et al. Sclerotherapy versus sclerotherapy and propranolol in the prevention of rebleeding from esophageal varices: a randomised study. Gut 1996; 38: 770–774.

39. Jensen LS and Krarup N. Propranolol may prevent recurrence of oesophageal varices after obliteration by endoscopic sclerotherapy. Scand J Gastroenterol 1990; 25: 579–584.

40. Kones R, Rumana U and Morales-Salinas A. Confronting the most challenging risk factor: non-adherence. Lancet 2019; 393: 105–106.

41. Debernardi Venon W, Elia C, Stradella D, et al. Prospective randomized trial: endoscopic follow up 3 vs 6 months after esophageal variceal eradication by band ligation in cirrhosis. Eur J Intern Med 2014; 25: 674–679.
42. Costa E, Giardini A, Savin M, et al. Interventional tools to improve medication adherence: review of literature. Patient Prefer Adherence 2015; 9: 1303–1314.

43. Pfisterer N, Dexheimer C, Fuchs EM, et al. Betablockers do not increase efficacy of band ligation in primary prophylaxis but they improve survival in secondary prophylaxis of variceal bleeding. Aliment Pharmacol Ther 2018; 47: 966–979.

44. Feu F, Garcia-Pagan JC, Bosch J, et al. Relation between portal pressure response to pharmacotherapy and risk of recurrent variceal haemorrhage in patients with cirrhosis. Lancet 1995; 346: 1056–1059.

45. Villanueva C, Balanzo J, Novella MT, et al. Nadolol plus isosorbide mononitrate compared with sclerotherapy for the prevention of variceal rebleeding. N Engl J Med 1996; 334: 1624–1629.

46. McCormick PA, Patch D, Greenslade L, et al. Clinical vs haemodynamic response to drugs in portal hypertension. J Hepatol 1998; 28: 1015–1019.

47. Escorsell A, Bordas JM, Castaneda B, et al. Predictive value of the variceal pressure response to continued pharmacological therapy in patients with cirrhosis and portal hypertension. Hepatology 2000; 31: 1061–1067.

48. Villanueva C, Minana J, Ortiz J, et al. Endoscopic ligation compared with combined treatment with nadolol and isosorbide mononitrate to prevent recurrent variceal bleeding. N Engl J Med 2001; 345: 647–655.

49. Bureau C, Peron JM, Alric L, et al. ‘A La Carte’ treatment of portal hypertension: adapting medical therapy to hemodynamic response for the prevention of bleeding. Hepatology 2002; 36: 1361–1366.

50. Abraldes JG, Tarantino I, Turmes J, et al. Hemodynamic response to pharmacological treatment of portal hypertension and long-term prognosis of cirrhosis. Hepatology 2003; 37: 902–908.

51. Villanueva C, Lopez-Balaguer JM, Aracil C, et al. Maintenance of hemodynamic response to treatment for portal hypertension and influence on complications of cirrhosis. J Hepatol 2004; 40: 757–765.

52. Garcia-Tsao G, Sanyal AJ, Grace ND, et al.; Practice Guidelines Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 2007; 46: 922–938.