Simultaneous tuning of the magnetic anisotropy and thermal stability of α''-phase Fe$_{16}$N$_2$

D. Odkhuu1,2,* & S. C. Hong2,2,2

Simultaneously enhancing the uniaxial magnetic anisotropy (K_u) and thermal stability of α''-phase Fe$_{16}$N$_2$ without inclusion of heavy-metal or rare-earth (RE) elements has been a challenge over the years. Herein, through first-principles calculations and rigid-band analysis, significant enhancement of K_u is proposed to be achievable through excess valence electrons in the Fe$_{16}$N$_2$ unit cell. We demonstrate a persistent increase in K_u up to 1.8 MJ m$^{-3}$, a value three times that of 0.6 MJ m$^{-3}$ in α''-Fe$_{16}$N$_2$, by simply replacing Fe with metal elements with more valence electrons (Co to Ga in the periodic table). A similar rigid-band argument is further adopted to reveal an extremely large K_u up to 2.4 MJ m$^{-3}$ in (Fe$_{0.5}$Co$_{0.5}$)$_{16}$N$_2$ obtained by replacing Co with Ni to Ga. Such a strong K_u can also be achieved with the replacement by Al, which is isoelectronic to Ga, with simultaneous improvement of the phase stability. These results provide an instructive guideline for simultaneous manipulation of K_u and the thermal stability in 3d-only metals for RE-free permanent magnet applications.

Alpha-phase iron has been known for its extraordinary magnetic properties, including high saturation magnetization (μ_0M_s) and Curie temperature (T_C), in addition to its relatively simple fabrication and low price. These intriguing features make it a potential champion ever for high-performance permanent magnet applications$^{1-4}$. However, the main drawback of α-Fe is its negligible uniaxial magnetic anisotropy (K_u) on the order of μeV per atom$^{14-16}$. Two practical approaches to enhance K_u in α-Fe are (1) alloying with heavy-metal (HM) or rare-earth (RE) elements, with the most prominent examples being FePt5 and Nd$_2$Fe$_4$B6,7, and (2) reducing the crystal symmetry from the cubic ($c/a = 1$) to tetragonal phase ($c/a \neq 1$)$^{8-10}$. In (1), $5d$ or $4f$ electrons possess inherently large spin-orbit coupling (SOC) and orbital angular momentum (L), but the inclusion of these HM and RE elements is not desirable in terms of price and is detrimental to μ_0M_s and T_C. In (2), the energy levels of the 3d orbitals evolve in tetragonal symmetry, particularly around the Fermi level (E_F), which in turn enhances K_u^{11}.

The tetragonal phase of $c/a \neq 1$ is now accessible in epitaxial Fe films with a diverse choice of lattice-mismatched substrates. Nevertheless, such tetragonal distortion is feasible only for limited film thicknesses of a few nanometers12,13. In contrast, a bulk-scale tetragonal structure of the α''-phase ($c/a = 1.1$) is favored when 12.5 at.% N is embedded into the α-Fe structure with octahedral interstitial sites, forming a 16:2 (Fe$_{16}$N$_2$) stoichiometry14. Since a surprisingly large magnetic moment of 2.6–3 μ_B per Fe atom was reported$^{15-17}$, α''-phase Fe$_{16}$N$_2$ has received enormous attention as a possible 3d-only permanent magnet. However, the practical implementation of α''-Fe$_{16}$N$_2$ in obtaining monophasic samples is quite difficult as α''-Fe$_{16}$N$_2$ decomposes into α-Fe and γ''-Fe$_2$N at a low temperature of approximately 500 K14. Numerous efforts have been made to improve the thermal stability of α''-Fe$_{16}$N$_2$; the most successful approach is Ti addition but the magnetic properties are greatly suppressed18,19. In addition to the weak thermal stability, another major obstacle that hampers practical applications is the still insufficient K_u, which ranges from 0.4 to 1 MJ m$^{-3}$, depending on the sample preparation and film thickness$^{20-22}$. In the research community, search for enhancing K_u, while improving the thermal stability of α''-Fe$_{16}$N$_2$ in the bulk has been thus very intensive and remains unresolved.

In this article, we propose a possible mechanism of tuning the number of valence electrons to simultaneously enhance the thermal stability and K_u, by a few times in Fe$_{16}$N$_2$ and (Fe$_{0.5}$Co$_{0.5}$)$_{16}$N$_2$ apart from the aforementioned approaches (1) and (2), using first-principles calculations and rigid-band model analysis. We predict a persistent increase in K_u up to 2.4 MJ m$^{-3}$, which is four times that (0.6 MJ m$^{-3}$) of Fe$_{16}$N$_2$, by replacing Fe with metal elements with more valence electrons (Co to Ga and Al in the periodic table). Such a supreme K_u is discussed in

1Department of Physics, Incheon National University, Incheon 22012, South Korea. 2Department of Physics, University of Ulsan, Ulsan 44610, South Korea. *email: odkhuu@inu.ac.kr; schong@ulsan.ac.kr
connection with the mutual mechanisms of the Jahn–Teller orbital splitting and excess electron-induced energy level changes in the electronic structure.

Results and discussion

Figure 1a displays the α′′-phase structure of Fe_{16}N_{2}. The optimized a and c/a are 5.69 Å and 1.1, respectively. The corresponding values in an experiment are 5.72 Å and 1.114. In the unit cell, 16 Fe atoms occupy 3 inequivalent sites at the Wyckoff positions of 4e, 8h, and 4d, while 2 N are at the octahedral interstices with the 4 Fe(8h) coordination14. These 4e, 8h, and 4d sites differ in magnetic moment (Table 1): 2.14 (2.33), 2.36 (2.45), and 2.82 (3.05)\mu_B in the present theory (experiment17), respectively. The mechanism is associated with the nonidentical Fe–N bond lengths: Fe(4e)–N: 1.83, Fe(8h)–N: 1.95, and Fe(4d)–N: 3.24 Å. Furthermore, the energy levels of their 3d orbitals evolve near E_F, particularly in the spin-down channel (Fig. 1b).

![Figure 1.](https://example.com/figure1)
Only one Fe atom in the 16 Fe unit cell is replaced by a 3d-metal atom (M = Co–Ga and Al), which corresponds to approximately 5.5 at.% doping. For each M, we have considered three different substitution sites, i.e., M(4e), M(8h), and M(4d). The α-phase stability upon M replacement can be inspected by the enthalpy of formation: $H_f = (H - \sum_{i} \mu_i N_i)/N_A$, where μ_i and N_i are the chemical potential and number of decomposable components i, respectively. N_A and N are the Avogadro constant and the number of atoms in the unit cell. The obtained H_f values of Fe$_{16}$N$_2$ are -3.14 kJ mol$^{-1}$ against (α-Fe)+N$_2$, and -0.80 kJ mol$^{-1}$ against (α-Fe)+(γ′-Fe$_4$N) decomposition. The small negative value of the latter implies that the α'-Fe$_{16}$N$_2$ phase is stable at a low temperature but most likely decomposes into the α-Fe and γ′-Fe$_4$N phases at an elevated temperature, as observed experimentally15. From the ternary Fe–M–N phase diagram, as an example for M = Al in Fig. 1c, Fe$_2$N and Fe$_4$N phases are identified as the most competitive binary decomposable phases to Fe$_{16}$N$_2$. For M = Ni (Cu and Zn), Fe$_2$N+FeNi(Cu/Zn)+Fe decomposition has been considered since Fe$_2$Ni (Fe$_3$Cu/Zn and FeCu/Zn) is unstable.

Figure 1d presents the calculated H_f of Fe$_2$M$_i$N$_2$ (M = Co–Ga and Al) for M(4e), M(8h), and M(4d). All the M elements prefer 4d-site replacement, which in turn splits the neighboring Fe(4d) sites into Fe(4d)$_2$, along the c-axis and Fe(4d)$_{ab}$ on the ab plane with dissimilar magnetic properties, as addressed in the following paragraphs. The α'-phase becomes unstable upon Co to Cu replacements. In contrast, the replacement of Zn, Ga, and Al improves the α'-phase stability with H_f enhanced by 0.04–0.8 kJ mol$^{-1}$ in magnitude, as their nitrides (ZnN, GaN, and AlN) have higher standard enthalpies of formation, in the range of -100 to -320 kJ mol$^{-1}$, than FeN (-47 kJ mol$^{-1}$)25. The completely filled d-orbitals of the Zn and Ga elements provide extra stability to the system, as these elements have a symmetrical distribution of electrons and larger exchange energies than Fe26.

We further investigate the structural stability at an elevated temperature using ab $initio$ molecular dynamic (AIMD) simulation. Figure 2a,b present the fluctuations of the total free energy of the selected Fe$_{16}$N$_2$ and Fe$_{16}$Al$_i$N$_2$ phases for given temperatures 300, 500, and 600 K, respectively. The total energy of Fe$_{16}$N$_2$ decreases immediately within a few fs by 1.3 (at 300 K)–2.2 eV/f.u. (at 600 K), which is associated with the thermal motion and relocation of atomic coordinates. Furthermore, the energy variation during the AIMD simulation increases with temperature and reaches 3.2 eV/f.u. at 600 K, where the α'-phase structure is largely distorted, as indicated in the insets in Fig. 2a. On the other hand, the energy fluctuation of Fe$_{16}$Al$_i$N$_2$ phase is rather small within 1.5 eV/f.u. even at 600 K (Fig. 2b). In particular, the α-phase tends to maintain up to 600 K (insets in Fig. 2b), although marginal phonon vibrations and atomic coordinate distortions occur during the AIMD simulation.

In Fig. 3a, an even more notable finding is the persistent increase in K_u as M changes from Ni to Ga, reaching the largest value of 1.85 MJ m$^{-3}$ for Ga replacement. This value is more than 3 times the enhancement attained for α'-Fe$_{16}$N$_2$. The present K_u of Fe$_{16}$N$_2$ is 0.6 MJ m$^{-3}$, which is within the range of experimental values of 0.4–1 MJ...
The enhanced K_u of the α''-phase is associated with tetragonal distortion. The Jahn–Teller-like d-orbital level splitting when $\alpha \rightarrow \alpha''$ offers more electronic energy level degrees of freedom. More specifically, the tetragonal distortion splits the cubic e_g and t_{2g} levels around E_F: singlets $a_1 (d_{x^2-y^2})$ and $b_1 (d_{3z^2-r^2})$, and singlet $b_2 (d_{xy})$ and doublet $e (d_{yz}, d_{xz})$, respectively. Evidently, the energy levels near E_F of the spin-down electrons, especially the a_1 and b_2 states, differ at the 4e, 8h, and 4d sites (Fig. 1b). Further analyses indicate that the difference comes from their dissimilar hybridization with N-2p orbitals.

Our analysis of atom resolved magnetocrystalline anisotropy energy (MAE) in Fig. 3c indicates that MAE in this α'-phase distributes unequally over the unit cell: -0.14, 0.18, and -0.03 meV at the 4e, 8h, and 4d sites, respectively. Here, MAE is scaled down to the microscopic atomic level (meV/atom), rather than the macroscopic energy density (MJ m$^{-3}$). From the k-resolved (minority-spin) eigenvalue analysis in Fig. 1b, featured bands with cone-like shapes occur: the minimum of a_1 (parabolic) and maximum of b_2 (reverse parabolic) dispersions touch at the \bar{W} point. In particular, for Fe(8h), such a conical a_1-b_2 pair appears right at E_F. In association with their reduced eigenvalue difference across E_F, the SOC matrix term in the Hamiltonian can thus increase the positive contribution to MAE, according to the perturbation theory.

According to Fig. 3d, the Fe(4d) site plays a major role in the M(Cu to Ga)-induced enhancement in MAE (ΔMAE) rather than the Fe(4d)$_{ab}$ site. The contributions to MAE from the other 4e and 8h sites cannot be ignored although minor. Meanwhile, the conical a_1-b_2 pair of the Fe(4d) site moves gradually toward E_F with the Cu to Ga replacement (Fig. 4a), which reflects the rigid-band model. A similar phenomenon is not present for the Fe(4d)$_{ab}$ site because of its longer separation (4 Å) from M than Fe(4d)$_c$ (3.1 Å). We therefore attribute MAE in Fe$_{15}$M$_1$N$_2$ to the joint effects of the Jahn–Teller level splitting and the supplied-electron-induced level changes of the d-orbitals.

In the rigid-band picture, the shift of the electronic states is related to the change in the energy of the Bloch state with $M (\Delta\varepsilon_k)$, as $\rho(\varepsilon_k) = \rho_0(\varepsilon_k) - 2\langle \partial \rho(\varepsilon_k)/\partial \varepsilon_k \rangle |\Delta\varepsilon_k|^{27}$, where $\rho(\varepsilon)$ and $\rho_0(\varepsilon)$ are the density of states (DOS) of Fe(4d)$_c$ in Fe$_{16}$N$_2$ and Fe$_{16}$N$_2$, respectively. For a small amount of M, $\Delta\varepsilon_k$ is also small and thus independent of k, where the shape of the band structure remains the same but displaced by $\Delta\varepsilon_k$. Eventually, for the Ga replacement, the conical a_1-b_2 pair of the Fe(4d)$_c$ site shifts down and appears near E_F, which in turn enhances MAE. Here, the Jahn–Teller argument is not applicable, as the c/a (1.1) of α'-Fe$_{16}$N$_2$ remains almost the same upon M replacement (Table 1).
EF and stronger SOC than Fe, we find that the linearly as the number of excess electrons (\(N\)) is set to zero. We now would like to highlight the intrinsic hard magnetic properties, including maximum theoretical energy product \((BH)_{\text{max}}\), anisotropic field \(\mu_0 H_a\), and hardness parameter \(\kappa\), of the present compounds. The numerical values, that in Fe\(_{16}\)N\(_2\) greatly improves the \(\alpha^\prime\)-phase stability beyond the other M-replacements. In accordance with the \(a_1 - b_2\) shift (Fig. 4a), the replacement element that can maximize MAE is Ga, in line with the obtained \(K_u\) in Fig. 3a. To support this scenario, we explore the replacement element Al, which is isoelectronic to Ga. Remarkably, we find \(K_u\) value of 1.80 MJ m\(^{-3}\) for the Al replacement (Fig. 3a), similar to that (1.85 MJ m\(^{-3}\)) for the Ga replacement. Accordingly, similar electronic features of the \(a_1 - b_2\) bands and \(\Delta \epsilon_3\) at the Fe(4d), site are identified in Fig. 4a for the same group elements, Al and Ga. Furthermore, as mentioned early in Fig. 1d, the inclusion of Al in Fe\(_{16}\)N\(_2\) greatly improves the \(\alpha^\prime\)-phase stability beyond the other M-replacements. From a practical viewpoint, the Ga and Al replacements (particularly, Al) for Fe are desirable for RE-free permanent magnets because of their abundances on earth. In line with the argument we outlined thus far, an even larger \(K_u\) may be achieved if more Fe in Fe\(_{16}\)N\(_2\) are replaced with metal elements with more valence electrons. To test this scenario, we replace half of the Fe in Fe\(_{16}\)N\(_2\) with Co. From the total energy minimization, all the 4d and 4e sites are occupied by Co, forming the B2-phase, \(\text{Fe}_{16}\text{Co}_{0.5}\text{Ga}_{0.5}\text{N}_{2}\), which is isoelectronic to Ga. Remarkably, we find \(K_u\) value of 1.65 MJ m\(^{-3}\) for the Al replacement (Fig. 3a), similar to that (0.6 MJ m\(^{-3}\)) of \(\alpha^\prime\)-Fe\(_{16}\)N\(_2\). A similar argument can be applied for other replacements such as Ni and Zn (not shown here). Furthermore, the enhanced \(c/a\) (1.17) of \((\text{Fe}_{0.5}\text{Co}_{0.5})\text{Ga}_{0.5}\text{N}_{2}\), compared with 1.1 in Fe\(_{16}\)N\(_2\), is clearly an additional cause of the large \(K_u\). Remarkably, the M-replaced \((\text{Fe}_{0.5}\text{Co}_{0.5})\text{Ga}_{0.5}\text{N}_{2}\) compounds exhibit a trend similar to, but with notably enhanced numerical values, that in Fe\(_{16}\)N\(_2\): a nearly linear increase in \(K_u\) from Cu to Ga (Fig. 3b). Eventually, Ga replacement leads to a \(K_u\) as high as 2.44 MJ m\(^{-3}\). Such supreme value of \(K_u\) in Fe\(_{16}\)N\(_2\) results from a more than half the value of \(4.5\) MJ m\(^{-3}\) of the typical RE-magnet Nd\(_2\)Fe\(_{14}\)B\(^{27}\), similar to \(\alpha^\prime\)-Fe\(_{16}\)N\(_2\). Ze, next to M on the c axis (denoted Co\(_c\)) produces the largest \(\Delta \epsilon_3\) compare with other sites (Fig. 3f), although MAE is larger for Fe than for Co (Fig. 3e). At this Co\(_c\) site, it is manifested that the main mechanism of enhancing \(K_u\) is the displacement of the (unoccupied) \(a_1\) band toward \(E_F\) as M changes from Cu to Ga and Al in Fig. 4b. We believe that the present argument is rather general and can be applied to other magnetic materials. To better justify the excess-electron-induced enhancement in \(K_u\), we forcibly increase the number of valence electrons in Fe\(_{16}\)N\(_2\) and \((\text{Fe}_{0.5}\text{Co}_{0.5})\text{Ga}_{0.5}\text{N}_{2}\). This approach reflects an excess electron that is uniformly accumulated over all Fe rather than at a specific site neighboring the M replacement. For both Fe\(_{16}\)N\(_2\) and \((\text{Fe}_{0.5}\text{Co}_{0.5})\text{Ga}_{0.5}\text{N}_{2}\), \(K_u\) increases linearly as the number of excess electrons \((\Delta \Omega)\) increases (Fig. 5a). Nearly the same values of \(K_u\) of 1.3 MJ m\(^{-3}\) in Zn-replaced Fe\(_{16}\)N\(_2\) and 2.4 MJ m\(^{-3}\) in Ga-replaced \((\text{Fe}_{0.5}\text{Co}_{0.5})\text{Ga}_{0.5}\text{N}_{2}\) are reproduced at \(\Delta \Omega = 0.2\) e/atom. From the simplified DOS analyses in Fig. 5b for Fe\(_{16}\)N\(_2\), the unoccupied \(a_1\) bands of all the Fe sites displace toward \(E_F\) upon an increase in \(\Delta \Omega\), while the occupied \(b_2\) state is rather insensitive. This result again reveals that the \(d\)-orbital level change induced by supplied electrons is the main mechanism of the \(K_u\) enhancement.

We now would like to highlight the intrinsic hard magnetic properties, including maximum theoretical energy product \((BH)_{\text{max}}\), anisotropic field \(\mu_0 H_a\), and hardness parameter \(\kappa\), of the present compounds. The

![Figure 4](https://example.com/image4.png)

Figure 4. Spin-down channel eigenvalues of \(a_1\) (blue) and \(b_2\) (red) orbitals of the (a) Fe(4d) atom in M-replaced Fe\(_{16}\)N\(_2\) and (b) Co atom in M-replaced \((\text{Fe}_{0.5}\text{Co}_{0.5})\text{Ga}_{0.5}\text{N}_{2}\) along the high-symmetry N\(_t\)Z line of the Brillouin zone for M = Cu–Ga and Al. The size of the symbols is proportional to their weights. The Fermi level is set to zero.
Figure 5. (a) Predicted K_u of Fe$_{16}$N$_2$ (circle) and (Fe$_{0.5}$Co$_{0.5}$)$_{16}$N$_2$ (square) as a function of the number of excess valence electrons, $\Delta \Omega$, in a unit cell. (b) $\Delta \Omega$-dependent DOS of the a_1 (blue) and b_2 (black) orbitals of Fe(4e), Fe(8h), and Fe(4d) of Fe$_{16}$N$_2$. The color-scale from light to dark in the DOS corresponds to the enhancement of $\Delta \Omega$ from 0 to 0.2 e/atom. The Fermi level is set to zero.

Conclusion

In summary, we show, using first-principles calculations and rigid-band model analysis of α''-phase Fe$_{16}$N$_2$, that K_u can be scaled up by a few times upon the substitution of metal elements with more valence electrons than Fe, from Co to Ga, without the inclusion of RE and HM elements. More remarkably, the replacement by simple metals (Al and Ga) has potential for simultaneous enhancements of K_u and the thermal stability, which would make Fe$_{16}$N$_2$ a possibly RE-free permanent magnet, along with its high Curie temperature and low materials price. Furthermore, as listed in Table 1, the obtained T_c values (804−855 K) of the stable compounds ($M = \text{Zn, Ga, and Al}$) are sufficient to fulfill the basic requirement (no less than 550 K) of permanent magnets.

Methods

The density-functional theory (DFT) calculations were performed using the projector augmented wave (PAW) method34, as implemented in the Vienna \textit{ab initio} simulation package (VASP)35. The exchange-correlation interactions are treated with the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE)36. We used an energy cutoff of 500 eV and a $1 \times 1 \times 1$ Brillouin zone (BZ) k-point mesh to relax the lattice parameters and atomic coordinates until the largest force decreased to below 0.02 eV/Å. The total energy method is applied to obtain K_u, which is expressed as $K_u = (E_a - E_b)/\text{volume}$, where E_a and E_b are the total energies with
magnetization along the a and c axes, respectively. To obtain well-converged K_u, we impose a denser k-point mesh of $15 \times 15 \times 15$ with a smaller smearing of 0.05 in the Gaussian method, where the convergence of K_u with respect to the number of k points and smearing parameter is ensured. In tetragonal symmetry, K_u is expressed as $K_u \approx K_1 \sin^2 \theta + K_2 \sin^4 \theta$, where K_1 and K_2 are the magnetic anisotropy constants and θ is the polar angle between the magnetization vector and the easy axis (c axis in the present system). For $\theta = \pi / 2$, $K_u = K_1 + K_2$.

It is a formidable task to ensure numerical results of K_u with all electron methods, if we start from scratch. To this end, we have also performed full-potential calculations using the WIEN2K package, adopting the optimized lattice constants and ionic positions obtained from the VASP calculations. The two methods produce consistent results. In the AIMD simulation, we adopted the Nosé-thermostat algorithm to model a canonical ensemble. A time step of 1 fs and 10000 ionic steps were used for the total simulation time of 10 ps with the Γ-point BZ integration, where the lattice parameters and atomic coordinates are allowed to relax at constant volume. The numerical calculations for magnetization dynamics and T_c were carried out using Monte Carlo simulation based on the Heisenberg model in the VAMPIRE package. Here, the Heisenberg spin Hamiltonian is defined by

$$H = -\frac{1}{2} \sum_{i \neq j} J_{ij} S_i \cdot S_j - K_u \sum_i (S_i \cdot e)^2$$ \hspace{1cm} (1)$$

where J_{ij} is the exchange interaction between two spins S_i at the i site and S_j at the j site. The exchange interaction parameters, from the first to the third nearest neighbor atoms, were estimated by the constrained local moment approach in the VASP calculations. More detailed methodology is provided in Ref.9.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 4 December 2019; Accepted: 23 March 2021
Published online: 09 April 2021

References

1. Chikazumi, S. *Physics of Magnetism* (Wiley, New York, 1964).
2. McCurrie, R. A. *Ferromagnetic Materials. Structure and Properties* (Academic Press, London, 1994).
3. Skomski, R. & Coey, J. M. D. *Permanent Magnetism* (Institute of Physics, Bristol, 1999).
4. Coey, J. M. D. *Magnetism and Magnetic Materials* (Cambridge University Press, Cambridge, 2010).
5. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. *Science* 287, 1989 (2000).
6. Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. & Matsuura, Y. New material for permanent magnets on a base of Nd and Fe. J. Appl. Phys. 55, 2083 (1984).
7. Yamamoto, H., Matsuura, Y., Fujimura, S. & Sagawa, M. Magnetocrystalline anisotropy of R₂Fe₁₄B tetragonal compounds. Appl. Phys. Lett. 54, 1141 (1984).
8. Burkert, T., Nordström, L., Eriksson, O. & Heinonen, O. Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett. 93, 027203 (2004).
9. Odkhun, D. & Hong, S. C. First-principles prediction of possible rare-earth-free permanent magnet of tetragonal FeCo with enhanced magnetic anisotropy and energy product through interstitial nitrogen. Phys. Rev. Appl. 11, 054085 (2019).
10. Odkhun, D., Rhim, S. H., Park, N., Nakamura, K. & Hong, S. C. Jahn–Teller driven perpendicular magnetocrystalline anisotropy in metastable ruthenium. Phys. Rev. B 91, 014437 (2015).
11. Wang, D. S., Wu, R. Q. & Freeman, A. J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 47, 14932 (1993).
12. Andersson, G. et al. Perpendicular magnetocrystalline anisotropy in tetragonally distorted Fe-Co alloys. Phys. Rev. Lett. 96, 037205 (2006).
13. Winkelmann, A., Przybylski, M., Luo, F., Shi, Y. & Barthel, J. Perpendicular magnetic anisotropy induced by tetragonal distortion of FeCo alloy films grown on Pd(001). Phys. Rev. Lett. 96, 257205 (2006).
14. Jack, K. H. The occurrence and the crystal structure of α-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite. Proc. R. Soc. A 208, 216 (1951).
15. Kim, T. K. & Takahashi, M. New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492 (1972).
16. Mitsuoka, K., Miyajima, H., Ino, H. & Chikazumi, B. Induced magnetic moment in ferromagnetic Fe alloys by tetragonally elongated lattice expansion. J. Phys. Soc. Jpn. 53, 2381 (1984).
17. Coey, J. M. D. The magnetization of bulk α-Fe₂N₂. J. Appl. Phys. 76, 6632 (1994).
18. Wang, H. Y. et al. The effect of Ti addition on the thermal stability of α-Fe₂N₂. J. Phys. D 30, 2932 (1997).
19. Wang, H. Y., Jiang, E. Y. & Wu, P. Enhancement of the thermal stability of Fe₃N₂ by Ti addition. J. Magn. Magn. Mater. 177, 1285 (1998).
20. Kata, E., Shibata, K., Yanagihara, H., Sasaki, Y. & Kishimoto, M. Magnetic anisotropy in spherical Fe₃N₂ core-shell nanoparticles determined by torque measurements. J. Magn. Magn. Mater. 310, 2411 (2007).
21. Li, N. et al. Perpendicular magnetic anisotropy and high spin-polarization ratio in epitaxial Fe-N thin films. Phys. Rev. B 84, 245310 (2011).
22. Ogawa, T. et al. Challenge to the synthesis of α-Fe₂N₂ compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material. Appl. Phys. Express 6, 073007 (2013).
23. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry (Wiley, New York, 1964).
24. Randade, M. R. et al. Enthalpy of formation of gallium nitride. J. Phys. Chem. B 104, 4060 (2000).
25. Gupta, R. et al. Formation of iron nitride thin films with Al and Ti additives. J. Appl. Phys. 111, 130520 (2012).
26. Verma, N.K., Khanna, S.K. & Kapila, B. Comprehensive Chemistry XII (Laxmi Publications LTD, 2019).
27. Stern, E. A. Rigid-band model of alloys. Phys. Rev. 157, 544 (1967).
28. Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y. & Hirosawa, S. Magnetic properties of rare-earth-iron-boron permanent magnet materials. J. Appl. Phys. 57, 4094 (1985).
29. Skomski, R. & Coey, J. M. D. Magnetic anisotropy: How much is enough for a permanent magnet. Scr. Mater. 112, 3 (2016).
30. Asselin, P. et al. Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys. Rev. B 82, 054415 (2010).
31. Leger, J. M., Loriers-Susse, C. & Vodar, B. Pressure effect on the Curie temperatures of transition metals and alloys. Phys. Rev. B 6, 4250 (1972).
32. Sugita, Y. et al. Giant magnetic moment and other magnetic properties of epitaxial grown Fe₃N₂ single-crystal films. J. Appl. Phys. 70, 5977 (1991).
33. Coey, J. M. D. Permanent magnets: Plugging the gap. Scr. Mater. 67, 524 (2012).
34. Bloechl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
37. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Technische Universität Wien, Vienna (2001).
38. Bylander, D. M. & Kleinman, L. Energy fluctuations induced by the Nose thermostat. Phys. Rev. B 46, 13756 (1992).

Acknowledgements
This research was supported by Future Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 2016M3D1A1027831), the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (Grant No. 20192010106850, development of magnetic materials for IE4 class motor), and the Incheon National University Research Grant in 20180438.

Author contributions
D.O. and S.C.H conceived the study and wrote the manuscript. D.O. performed the calculations.

Competing Interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.O. or S.C.H.

Reprints and permissions information is available at www.nature.com/reprints.
