Greenhouse Gas Emissions from Pecan Orchards in Semiarid Southern New Mexico

Darby S. Kellum1, Manoj K. Shukla, John Mexal, and Sanjit Deb

Department of Plant and Environmental Science, New Mexico State University, P.O. Box 30003 MSC 3Q, Las Cruces, NM 88003

Additional index words. Carya illinoinensis, nitrous oxide, climate change, small chamber technique, emission factor

Abstract. Greenhouse gas (GHG) emissions are fueling global climate change, with methane and nitrous oxide being the primary agricultural gases emitted. It has been shown that N2O emissions correlate to moisture content fluctuations; however, emissions from agricultural fields in the semiarid regions of the Southwest where rewetting events occur regularly are not well established. The scope of this study was to quantify GHG emissions in correlation to soil moisture fluctuations and fertilizer application. The study was conducted continuously in two pecan [Carya illinoinensis (Wangenh.) K. Koch] orchards between Aug. 2010 and Aug. 2011 on a sandy loam soil (La Mancha) and a silty clay loam soil (Leyendecker), both under normal management practices. The small chamber technique was used to measure GHGs. Emissions varied greatly throughout the year. The largest flux of CO2 at La Mancha and Leyendecker both occurred during a drying event immediately following an irrigation event: 84,642.49 μg·m⁻²·h⁻¹ and 30,338.24 μg·m⁻²·h⁻¹, respectively. The net CH4 flux at Leyendecker and La Mancha was close to zero with the largest emissions occurring during wetting events. Results showed that N2O emissions were maintained near the baseline except for the few days following an irrigation event. The largest emission peak at La Mancha occurred after irrigation and nitrogen application: 322.06 μg·m⁻²·h⁻¹. The largest emission peaks of 26.37 and 1.13 μg·m⁻²·h⁻¹ at Leyendecker and La Mancha, respectively, occurred after irrigation, nitrogen application, and tillage. Nitrogen application was the driving factor affecting N2O emissions at La Mancha, whereas soil moisture content was the driving factor at Leyendecker. Emission factors (EFs) at La Mancha and Leyendecker were 0.49% and 0.05%, respectively. A thorough accounting of GHG emissions is necessary for budgeting and identifying mitigation policy.

Carbon dioxide, methane (CH4), and nitrous oxide (N2O) are major contributors to the increases in GHG emissions, fueling changes in the earth’s climate. The USEPA (2015) estimates that GHG emissions due to agriculture accounted for 7.6% of total emissions in 2013, with CH4 and N2O being the primary GHGs emitted. Agricultural practices contribute up to 74.4% of US N2O emissions and enteric fermentation and manure management contribute up to 34.6% of CH4 emissions (USEPA, 2015). N2O is 296 times and CH4 23 times more effective than CO2 in causing an immediate increase in global warming. It has been estimated that a 2-fold increase in atmospheric N2O would result in a 10% decrease in ozone and, therefore, cause a 20% increase in ultraviolet radiation reaching the earth (Crutzen and Ehhalt, 1977). Even though CO2 is the main GHG of concern for national and global budgeting, for agriculture, the most important is N2O (Snyder et al., 2009). Biotic and anthropogenic activities have caused an increase in atmospheric N2O (Andreae and Schimel, 1989; Rhode, 1990), with N2O from soils largely accounting for these increases. Agricultural practices are altering the carbon and nitrogen cycles through combustion of fossil fuels, application of N fertilizers, cultivation of N-fixing legumes, and other actions, with agriculture being the main contributor to N2O in the atmosphere. N2O is increasing at a rate of 0.2% to 0.3% a year (Vitousek et al., 1997). In the past, land conversion to croplands caused major perturbations in soil N processes. Continued growth of atmospheric N2O has been partly attributed to increased N input into the soil system (Mosier et al., 1996). To continue global food production to meet the needs of an expanding population, soil N input is expected to continue over the next 100 years (Hammond, 1990). The Intergovernmental Panel on Climate Change currently recommends an EF (amount of N2O lost per unit of N applied) of 1.25% of the amount of N applied for the accounting of N2O emissions from agricultural soils (IPCC, 1997). Greenhouse gas emission variations found in the literature are due to a variety of factors (Mosier et al., 1996; Smith et al., 2003) including crop, soil texture, temperature (Cates Jr. and Keeney, 1987; Hart, 2006; Johnson et al., 2010; Wagner-Riddle et al., 1994), fertilization and other management techniques (Alluvione et al., 2010; Amos et al., 2005; Dusenbury et al., 2008; Halvorson et al., 2008, 2010; Jacinthe and Dick, 1997; Ma et al., 2010; Mosier et al., 2006), and soil moisture (Adviento-Borbe et al., 2006; Cates Jr. and Keeney, 1987; Hernandez-Ramirez et al., 2008; Rochette et al., 2007; Rousset et al., 2007; Welzimiller et al., 2008; Zins et al., 2008). Few studies have been carried out in the semiarid region of the Southwest United States quantifying N2O emissions as they are related to biological and physical factors.

The amount of N2O released into the atmosphere is likely underestimated because the effect of N input is only partially traced through the environment and estimates do not include production from animal manure and biological fixation (Mosier et al., 1996). Because of water being limited, we believe that the potential to reduce N2O emissions is much higher than the potential to increase C sequestration as a GHG mitigation technique in the semiarid southwest than in the high plains and southeast. An array of studies is needed that take into account N2O emissions as affected by N application, crop, climate, and management technique throughout the year and not just the cropping season, and to create more accurate prediction models on an area, regional, and global scale (Mosier et al., 1996). To the best of our knowledge, no studies have quantified GHG emissions from irrigated pecan orchards of southern New Mexico. The objectives of this research are 1) to examine the effect of soil moisture, fertilization, climate, and soil texture on N2O emissions, 2) to quantify N2O, CH4, and CO2 emissions throughout the year, and 3) to report percent of N application lost as N2O for some pecan orchards in semiarid southern New Mexico. The hypothesis for this research is that N2O emissions are a direct function of moisture content fluctuations and fertilization events.

Materials and Methods

Experimental sites. We established sites at two pecan [C. illinoinensis (Wangenh.) K. Koch] orchards: New Mexico State University Leyendecker Plant Science Research Center, located 14.5 km south of Las Cruces (lat. 32°11’5.66’’N, long. 106°44’30.50’’W, and altitude of 1,174 m above sea level), and a private orchard (La Mancha), located 12.7 km northwest of Las Cruces, NM (lat. 32°17’5.32’’N, long. 106°50’3.85’’W, and altitude of 1,185 m above sea level). Soils at Leyendecker and La Mancha are primarily Arimio clay loam and Brazito very fine sandy loam, respectively. Soil properties at the sites are referenced in Table 1 (Deb et al., 2013). The climate of the experimental areas is

Received for publication 14 Dec. 2017. Accepted for publication 5 Mar. 2018.

We thank the Specialty Crop Research Initiative, NMSU Agricultural Experiment Station, and the USDA-Pecan Research for providing funding, Roy Clark for providing help and information about agricultural management practices, Christine Stockert for gas sample analysis, and Parmodh Sharma and Lester Boyse for their help with nitrate analysis.

1Corresponding author. E-mail: darby@lanl.gov.
classified as arid with average annual temperature and precipitation of 17.7 °C and 29.7 cm, respectively (Gile et al., 1981). Both experimental sites are flood irrigated with groundwater and canal water. Both fields were managed under conventional farming techniques using shallow tillage. Fertilizer was applied as broadcast application followed by flood irrigation; La Mancha received three applications of 46–0–0: N–P–K (urea) and Leyendecker two applications of 21–0–0: N–P–K (ammonium sulfate) and 11–52–0: N–P–K (monommonium phosphate).

Field experiment. We used the closed small chamber method to measure GHG fluxes to quantify point emission rates. The chamber method has been reported to underestimate the actual emission rates because of inherently nonlinear time series data (Ventera et al., 2009). Our chamber design was based on Mosier’s (1989) review of key issues related to chamber techniques for flux measurements. The apparatus consisted of two parts, an anchor of 20.32 cm diameter by 15.24 cm long PVC pipe and a 20.32 cm PVC endcap. Chambers were not left in place for longer than 1 h to prevent an increase of the temperature inside the chamber and to maintain linear regression of the flux.

We took gas samples using four replicates at each site by withdrawing gas from inside the chambers using a 20 mL syringe, 0, 30, and 60 min after the chambers were installed. We stored the samples with an overpressure of air in 12-mL soda glass flat-bottom evacuated vials (LabCo, High Wycombe, UK). The University of California Davis Viticulture and Enology laboratory conducted the GHG analysis using a gas chromatograph (GC-2014; Shimadzu Scientific Instruments, Columbia, MD) equipped with electron capture detector, thermal conductivity detector, and flame ionization detector to quantify N\textsubscript{2}O, CO\textsubscript{2}, and CH\textsubscript{4}, respectively. We collected samples between two and five times a week following fertilizer application and irrigation events to capture the rising and falling limbs of the CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O emission curves accurately. During the rest of the year, we collected samples every 2–3 weeks with additional sampling conducted during periods of change in soil and environmental properties. We conducted sampling between 8 and 10 AM. During sampling events, we took internal chamber temperature readings at 0, 30, and 60 min; soil temperature readings; and soil samples at each replicate from 10, 20, and 30 cm to determine soil moisture content and nitrate concentration.

Laboratory experiment. We collected four replicate soil cores between 10 and 20 cm from each field to collect in vitro gas samples to study the effect of anaerobic conditions and fertilizer application on GHG emissions. We incubated cores, 5 cm in diameter, in the dark for 7 d at 20 °C in 1-L mason jars with a septa butyl stopper installed in the lid. Incubations took place at field capacity (Table 1), saturation, and at saturation with a surface fertilizer application (168.13 kg ha-1 urea (N)). Cores one to four were collected from each replicate point at La Mancha and five to eight from those at Leyendecker. The vertical bars denote the sd.

Table 1. Soil properties of La Mancha (Site 1) and Leyendecker (Site 2) at Las Cruces, NM. \(K_c \) = saturated hydraulic conductivity, FC = water content at field capacity (at 30 kPa), and WP = water content at wilting point (at 1,500 kPa) (Deb et al., 2013).

Soil depth (cm)	Core depth	Sand	Silt	Clay	Bulk density (Mg m-3)	\(K_c \) (cm min-1)	FC (cm3 cm-3)	WP (cm3 cm-3)
Site 1	0–20	63.60 ± 0.86*	27.50 ± 0.96	8.90 ± 0.10	1.44 ± 0.02	0.012 ± 0.001	0.27 ± 0.0002	0.06 ± 0.04
	20–40	82.10 ± 3.43	13.50 ± 3.18	4.40 ± 0.31	1.36 ± 0.04	0.0311 ± 0.002	0.17 ± 0.03	0.06 ± 0.0
	40–60	92.60 ± 2.14	3.50 ± 1.66	3.90 ± 0.49	1.37 ± 0.04	0.064 ± 0.0031	0.15 ± 0.01	0.03 ± 0.01
	60–80	94.60 ± 1.97	1.75 ± 1.80	3.65 ± 0.32	1.33 ± 0.07	0.062 ± 0.0024	0.12 ± 0.01	0.03 ± 0.01
Site 2	0–20	22.84 ± 1.92	51.00 ± 1.47	26.16 ± 0.71	1.53 ± 0.04	0.0001 ± 0.0000	0.35 ± 0.04	0.17 ± 0.003
	20–40	10.84 ± 1.29	59.00 ± 1.29	30.16 ± 0.82	1.28 ± 0.05	0.0001 ± 0.0001	0.36 ± 0.02	0.19 ± 0.01
	40–60	49.34 ± 12.99	37.25 ± 10.88	13.41 ± 3.59	1.24 ± 0.08	0.0174 ± 0.0108	0.25 ± 0.01	0.11 ± 0.0
	60–80	37.84 ± 11.52	51.00 ± 1.29	30.16 ± 0.82	1.28 ± 0.05	0.0001 ± 0.0001	0.36 ± 0.02	0.19 ± 0.01

Fig. 1. CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O emissions from eight in vitro soil cores. Cores underwent three sequential treatments: field capacity, saturation, and saturation with 168.128 kg ha-1 urea (N). Cores one to four were collected from each replicate point at La Mancha and five to eight from those at Leyendecker. The vertical bars denote the sd.
soil. Where W is the weight of the pan and the dry soil.

\[DS = \frac{(WS - DS)}{(WS - B)} \times 100 \]

where \(W \%) \) is the percentage of water in the soil, \(B \) is the weight of the pan, WS is the weight of the pan and wet soil, and DS is the weight of the pan and the dry soil.

We determined nitrogen content of the soil by extracting the free NO\textsubscript{3} with 2 m KCl, filtering, and freezing the mixture until analysis. We tested the liquid using an automated spectrophotometric method (Maynard and Karla, 1993).

We calculated annual CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O emissions by taking the sum of the average daily flux. We calculated EF of N\textsubscript{2}O emissions as the annual emission per the nitrogen applied. This allows for direct comparisons across experimental sites. We calculated EFs without a correction for background flux as the experimental sites were managed under normal management practices and there were no non-fertilized controls.

Results and Discussion

Results from in vitro soil cores showed that CO\textsubscript{2} emissions were highest (11,400.41 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \)) under field capacity and CH\textsubscript{4} emissions were highest under saturation (0.99 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \)). N\textsubscript{2}O emissions from the in vitro soil cores were highest (115.12 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \)) under saturation with a nitrogen application (Fig. 1). The average gas flux was higher at La Mancha than at Leyendecker (\(P = 0.05 \)).

Soil moisture content values are plotted along with flux data (Figs. 2 and 3). Soil water content values were consistently higher at Leyendecker than at La Mancha and varied between 8.18% and 31.73% and 8.97% and 21.02%, with an average of 18.82% and 13.53%, respectively, during the growing season. This is mainly because of the differences in soil texture as each site was irrigated at similar intervals.

Looking at Figs. 2 and 3, it is clear that soil NO\textsubscript{3} varied with rising and falling moisture content as well as fertilizer application. After the first fertigation event of the season soil, NO\textsubscript{3} went from 7.5 to 45.0 mg N/kg dry soil and 6.3 to 21.6 mg N/kg dry soil on days 236 and 219 at Leyendecker and La Mancha, respectively. At Leyendecker, soil NO\textsubscript{3} was highest a few days after an irrigation event and peaks ranged from 21.3 to 55.3 mg N/kg dry soil (Fig. 3). At La Mancha, soil NO\textsubscript{3} was highest immediately following irrigation and peaks ranged from 23.8 to 61.4 mg N/kg dry soil (Fig. 2).

Linear regression modeling between soil water content and CO\textsubscript{2} or CH\textsubscript{4} emissions did not produce a significant correlation on accord with their wide fluctuations throughout 2010 and 11. The largest flux of CO\textsubscript{2} at La Mancha (84,642.49 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \)) and Leyendecker (30,338.24 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \)) occurred during a drying event immediately following an irrigation event (Figs. 2 and 3). The net CH\textsubscript{4} flux at Leyendecker and La Mancha was close to zero with the largest emissions occurring during wetting events (Figs. 2 and 3).

N\textsubscript{2}O emissions varied greatly throughout the year at each site. They increased immediately following irrigation events and then declined. The largest emission peak of 322.1 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \) at La Mancha occurred after irrigation and nitrogen application (Fig. 2). This supported the hypothesis of this study that N\textsubscript{2}O emissions are a direct function of moisture content fluctuations and fertilization events. The largest emission peak of 26.37 \(\mu \text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \) at Leyendecker occurred after irrigation and tillage (Fig. 3). La Mancha had the highest annual flux of 1.129 kg N/ha and % nitrogen loss (EF) of 0.49% (Table 2).

N\textsubscript{2}O emissions were lower from Leyendecker than from La Mancha in both the laboratory and the field (Fig. 1; Table 2), although the difference in the field results (\(P = 0.008 \)) was much more dramatic than that in the laboratory (\(P = 0.05 \)). The lower N\textsubscript{2}O emissions were probably a result of low soil mineral N content because of lower N fertilizer rates at Leyendecker; this is in agreement with other studies that N input is more important than other factors as a predictor.
of \(N_2O \) emissions (Dusenbury et al., 2008; Halvorson et al., 2008; Jacinthe and Dick, 1997; Ma et al., 2010). Higher \(N_2O \) emissions at Leyendecker are expected because of its higher clay content and soil bulk density (Table 1) than La Mancha (Linn and Doran, 1984; Rochette et al., 2007).

CO\(_2\) emissions were lower and CH\(_4\) emissions were higher at Leyendecker, where the bulk density was higher despite having a higher percentage of clay content (Table 1) than that at La Mancha. This is consistent with decreased soil respiration and increased anaerobic conditions reported on compacted soils (Linn and Doran, 1984).

Factors affecting GHG emissions from agricultural soils have been shown to be a function of soil moisture, fertilizer application, other management techniques, temperature, crops, and soil texture (Halvorson et al., 2008; Hargreaves et al., 1994; Jacinthe and Dick, 1997; Mosier et al., 1996; Smith et al., 2003). \(N_2O \) emissions are directly related to soil moisture content (Cates Jr. and Keeney, 1987; Dungan et al., 2016; Halvorson et al., 2016; Hernandez-Ramirez et al., 2008) and exhibit large peaks immediately after the rewetting of dry soils (Davidson, 1992; Leitner et al., 2017). This indicates the importance of observing drying–wetting conditions that occur in irrigated agricultural fields of semiarid regions. \(N_2O \) emissions are reliant on both moisture content and soil NO\(_3^-\); when available NO\(_3^-\) is not a limiting factor, the relationship between moisture content and \(EF \) has been shown to be linear (Dobbie and Smith, 2003). Higher \(N_2O \) emissions as moisture content increases and its correlation to increased soil NO\(_3^-\) suggest that denitrification is the primary source of \(N_2O \) emissions. The results from this project support these conclusions. Denitrification as the primary source of \(N_2O \) emissions has been confirmed using other techniques (Ostrom et al., 2010; Russow et al., 2007).

Because of any one of the controlling factors becoming limiting, the analysis of flux response to a single variable has proved to be more useful than the use of multiple regression techniques (Dobbie and Smith, 2003). At La Mancha, an exponential relationship was found between soil NO\(_3^-\) and \(N_2O \) flux \((P < 0.09)\) (Fig. 4), although results are too weak to provide a direct correlation. At Leyendecker, a significant exponential relationship was found between \(N_2O \) flux and \(W/ioncolor=FF0000\)% \((P < 0.01)\) (Fig. 5). Although not always consistent, the results of these relationships support moisture content and N application being key controlling factors for \(N_2O \) emissions; these results are consistent with those reported in other studies.

EFs varied widely among the two test sites but were still well below the 1.25% IPCC coefficient factor recommended in calculating \(N_2O \) emissions. If the 1.25% coefficient factor was used, annual emissions would be several times higher than those observed: 0.88 kg N/ha and 2.9 kg N/ha, respectively, for Leyendecker and La Mancha. Studies have shown low \(N_2O \) emissions in arid regions (Snyder et al., 2009). This study confirms the conclusion of Dusenbury et al. (2008) that a lower loss predictor should be adopted by the IPCC for semiarid regions. A thorough accounting of \(N_2O \) emissions is imperative for determining the true mitigation potential of management practices (Gregorich et al., 2005).

Mitigating agricultural \(N_2O \) emissions requires the consideration of matching spatial and nutritional needs of crops through limiting and regulating mineral N and water to maximize resource uptake. Possible nitrogen management practices include the following: minimize excess N application, split nitrogen application, precision irrigation application, and application of slow release N sources (Dajal et al., 2003). Improving irrigation efficiency is of particular importance in the semiarid southwest to manage \(N_2O \) emissions. These techniques would limit excess mineral N in the soil, reduce the time soil is saturated, and ensure that resources are spatially available to crops.

![Fig. 3. CO\(_2\), CH\(_4\), and \(N_2O \) emissions (n = 4) and moisture and NO\(_3^-\) content at Leyendecker, Sept. 2010–Aug. 2011. Irrigation and irrigation with N application are indicated by black and black arrows with plus signs, respectively. The vertical bars denote the SE.](https://example.com/fig3.png)

Site	Annual CO\(_2\) emissions (kg C/ha)	Annual CH\(_4\) emissions (kg C/ha)	Annual \(N_2O \) emissions (kg N/ha)	Fertilizer application rate (kg N/ha)	EF (%)
Leyendecker	323	0.024	0.036	70.4	0.05
La Mancha	1,114	0.010	1.13	231.8	0.49

Table 2. Annual CO\(_2\), CH\(_4\), and \(N_2O \) fluxes; fertilizer rates; and emission factors (EFs) at La Mancha and Leyendecker.
Conclusion

In the semiarid region of Southern New Mexico, N\textsubscript{2}O emissions were highest from pecan orchards immediately following a fertilization application. The increased N\textsubscript{2}O emissions as soil nitrate and moisture content increase suggest that anaerobic denitrification is the dominant mechanism of N\textsubscript{2}O production in the field. This study further supports the adoption of a lower coefficient factor by the IPCC for semiarid regions. Further research on the effect of alternative irrigation techniques after fertilizer application could be beneficial in the future for the reduction of N\textsubscript{2}O emissions and to further a thorough emissions accounting system.

Literature Cited

Adviento-Borbe, M.A.A., J.W. Doran, R.A. Drijber, and A. Dobermann. 2006. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. J. Environ. Qual. 35:1999–2010.

Alluvione, F., C. Berora, L. Zavattaro, and C. Grignani. 2010. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci. Soc. Amer. J. 74:384–395.

Amos, B., T.J. Arkebauer, and J.W. Doran. 2005. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Agron. Hort.–Faculty Publ. Paper 321.

Andreese, M.O. and D.S. Schimel. 1989. Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley and Sons, Chichester, UK.

Cates, R.L., Jr., and D.R. Keeney. 1987. Nitrous oxide production throughout the year from fertilized and manured maize fields. J. Environ. Qual. 16:443–447.

Crutzen, P.J. and D.H. Ehhalt. 1977. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6:112–117.

Dajal, R.C., W. Wang, G. Philip Robertson, and W.J. Parton. 2003. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Austral. J. Soil Res. 41:165–195.

Davidson, E.A. 1992. Source of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Amer. J. 56:95–102.

Deb, S.K., M.K. Shukla, P. Sharma, and J.G. Mekal. 2013. Soil water depletion in irrigated mature pecans under contrasting soil textures for arid southern New Mexico. Irr. Sci. 31:69–85.

Dobbie, K.E. and K.A. Smith. 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling factors. Glob. Change Biol. 9:204–218.

Dungan, R.S., A.P. Leytem, D.D. Tarkalson, and J.A. Bjorneberg. 2016. Greenhouse gas emissions from an irrigated dairy forage rotation as influenced by fertilizer and manure applications. Soil Sci. Soc. Amer. J. 81:537–545.

Dusenbury, M.P., R.E. Engel, P.R. Miller, R.L. Lemke, and R. Wallander. 2008. Nitrous oxide emissions from a northern great plains soil as influenced by nitrogen management and cropping systems. J. Environ. Qual. 37:542–550.

Gile, L.H., J.W. Hawley, and R.B. Grossman. 1981. Soils and geomorphology in the basin and range area of southern New Mexico: Guide book to the desert project. Memoir 39, New Mexico Bur. Mines Mineral Resources, Socorro, NM.

Gregorich, E.G., P. Rochette, A.J. VandenBygaart, and D.A. Angers. 2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil Tillage Res. 83:33–73.

Halvorson, A.D., S.J. Del Grosso, and C.A. Reule. 2008. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems. J. Environ. Qual. 37:1337–1344.

Halvorson, A.D., S.J. Del Grosso, and C.E. Stewart. 2016. Manure and inorganic nitrogen affect trace gas emissions under semi-arid irrigated corn. J. Environ. Qual. 45:906–914.

Halvorson, A.D., S.J. Del Grosso, and F. Alluvione. 2010. Tillage and inorganic nitrogen source effects on nitrous oxide emissions from irrigated cropping systems. Soil Sci. Soc. Amer. J. 74:436–445.

Hammond, A.L. 1990. World resources 1990–1991. A report by the World Resources Institute. Oxford Univ. Press, Oxford, UK.
Ma, B.L., T.Y. Wu, N. Tremblay, W. Deen, M.J. Linn, D.M. and J.W. Doran. 1984. Effects of Leitner, S., P.M. Homyak, J.C. Blankinship, J. Jacinthe, P.A. and W.A. Dick. 1997. Soil management scenarios in the northern Corn Belt. Soil Sci. Soc. Amer. J. 73:1182–1191. Johnson, J.M.F., D. Archer, and N. Barbour. 2010. Greenhouse gas emission from contrasting management scenarios in the northern Corn Belt. Soil Tillage Res. 104:238–246. IPCC. 1997. Revised 1996 IPCC guidelines for National Greenhouse Gas Inventories. IPCC/OECD/IEA, IPCC, Geneva, Switzerland. Jacinthe, P.A. and W.A. Dick. 1997. Soil management and nitrous oxide emissions from cultivated fields in southern Ohio. Soil Tillage Res. 41:221–235. Leitner, S., P.M. Homyak, J.C. Blankinship, J. Eberwein, G. Darrel Jenertte, S. Zechmeister-Boltenstern, and J.P. Schimel. 2017. Linking NO and N2O emission pulses with the mobilization of mineral and organic N upon rewetting dry soils. Soil Biol. Biochem. 115:461–466. Linn, D.M. and J.W. Doran. 1984. Effects of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Amer. J. 48:1267–1272. Ma, B.L., T.Y. Wu, N. Tremblay, W. Deen, M.J. Morrison, N.B. McLaughlin, E.G. Gregorch, and G. Stewart. 2010. Nitrous oxide fluxes from cornfields: On-farm assessment of the amount and timing of nitrogen fertilizer. Glob. Change Biol. 16:156–170. Maynard, D.G. and Y.P. Karla. 1993. Nitrate and exchangeable ammonium nitrogen, p. 25–38. In: M. Carter (ed.). Soil sampling and methods of analysis. CRC Press, Boca Raton, FL. Mosier, A.R. 1989. Chamber and isotope techniques, p. 175–187. In: M.O. Andreade and D.S. Schimel (eds.). Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley and Sons, Chichester, UK. Mosier, A.R., J.M. Duxbury, J.R. Freney, O. Heinemeyer, and K. Minami. 1996. Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil 181:95–108. Mosier, A.R., A.D. Halvorson, C.A. Reule, and X.J. Liu. 2006. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 35:1584–1598. Ostrom, N.E., R. Sutka, P.H. Ostrom, A.S. Grandy, K.M. Huizinga, H. Gandhi, J.C. Von Fischere, and G.P. Robertson. 2010. Isotopologue data reveal bacterial denitrification as the primary source of nitrous oxide during a high flux event following cultivation of a native temperate grassland. Soil Biol. Biochem. 42:499–506. Rhode, H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science 248:1217–1219. Rochette, P., D.A. Angers, M.H. Chantigny, and N. Bertrand. 2007. Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil. Soil Sci. Soc. Amer. J. 72:1363–1369. Rassaw, R., O. Spott, and C.F. Stange. 2007. Evaluation of nitrate and ammonium as sources of NO and nitrous oxide emissions from black earth soils (Haplic Chernozem) based on 15N field experiments. Soil Biol. Biochem. 40(2):380–391. Smith, K.A., T. Ball, F. Cohen, K.E. Dobbie, J. Massheder, and A. Rey. 2003. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biophysical processes. Eur. J. Soil Sci. 54:779–791. Snyder, C.S., T.W. Bruulsema, T.L. Jensen, and P.E. Fixen. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agr. Ecosyst. Environ. 133:247–266. USEPA. 2015. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2013. Draft for public review. USEPA Office of Atmospheric Programs, Washington, D.C. Venterea, R.T., K.A. Spokas, and J.M. Baker. 2009. Accuracy and precision analysis of chamber-based nitrous oxide gas flux estimates. Soil Sci. Soc. Amer. J. 73:1087–1093. Vitousek, P.M., J.D. Aber, W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, and D.G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7(3):737–750. Wagner-Riddle, C., G.W. Thurtell, G.E. Kidd, K.M. King, R. Sweetmann, E.G. Beauchamp, and D. Bergstrom. 1994. Efflux of greenhouse gases from agricultural sites into the atmosphere. Annual report to the Ontario Ministry of Environment and Energy, Toronto, Canada. Welzmiiller, J.T., A.D. Matthias, S. White, and T.L. Thompson. 2008. Elevated carbon dioxide and irrigation effects on soil nitrogen gas exchange in irrigated sorghum. Soil Sci. Soc. Amer. J. 72(2):393–401. Zhang, W., J. Z. Mo, G. Yu, Y. Fang, D. Li, X. Lu, and H. Wang. 2008. Emissions of nitrous oxide from three tropical forest in southern China in response to simulated nitrogen deposition. Plant Soil 306:221–236.