Prevalence of Enterobiasis Among the Kindergarten Children of Sabzevar, Northeast of Iran

Hossein Elyasi1, Rahim Golmohammadi1, Mohammad-Shafi Mojadadi1

1Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
2Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.

Abstract
Background: Enterobiasis is a common parasitic disease at all age groups, especially children. It results in perianal itching, insomnia, abdominal pain, diarrhea, and rarely appendicitis and fallopian tube inflammation in the affected patients. The prevalence of enterobiasis varies in different parts of Iran. However, the status of the enterobiasis prevalence among Sabzevar children remains unknown. Hence, this study aimed to investigate the prevalence of enterobiasis among the kindergarten children of Sabzevar, Razavi Khorasan province, the northeast of Iran.

Methods: In this cross-sectional analytical-descriptive study, sampling was carried out on children aged below 7 years using the Scotch-tape technique in the kindergartens of Sabzevar in 2019. The samples were then examined by a light microscope. Finally, the data were recorded in a questionnaire and analyzed using SPSS software and Fisher exact test.

Results: Based on the results, 6 (3.49%) out of 172 collected samples were found to be infected with enterobiasis. There was no significant association between gender and infection. Eventually, no significant relationship was found between the geographical living area and enterobiasis.

Conclusions: These findings indicated that the overall prevalence of enterobiasis among Sabzevar kindergarten children was lower than that of many parts of Iran. However, educational programs for parents and kindergarten staff regarding enterobiasis infection and the transmission routes should be conducted to reduce the infection rate.

Keywords: Enterobiasis, Prevalence, Kindergarten, Preschool, Iran

Background
Enterobiasis is considered as a common parasitic disease among children caused by Enterobius vermicularis, which is also called Oxyuriasis vermicularis or pinworm. Adult male and female pinworms are 2-5 and 8-13 mm long, respectively. They live in the human large intestine, and fertile female worms migrate out of the anus at nights to lay their eggs on the folds of the rectum (1). Due to the movement of the worm and the eggs laid around the anus, it can cause allergy in the anus which is occasionally highly severe and is usually experienced at nights. Itching in the anus, inflammation in the intestine, invasion to appendix, and neurological complications such as restlessness, anger, fatigue, insomnia, and nocturnal enuresis are reported in the affected individuals (1,2). In rare cases, infection with pinworm can cause intestinal problems and ectopic infections such as vaginitis and appendicitis (3,4).

The transmission of enterobiasis is facilitated by several factors such as poor hygiene and overcrowding in kindergartens, schools, and orphanages (5). The parasite can be directly transmitted via the anus-to-mouth route or indirectly through infected objects such as toys, class desks, chairs, and the ground (6). Children are typically infected by various methods such as eating food contaminated with parasitic eggs, contaminated fingers, inhalation of the suspended eggs in the dust, and reverse migration of the larvae released from eggs around the anus into the colon (1).

The definitive diagnosis of enterobiasis relies on the finding of the egg or the parasite itself. Based on a fecal test, its diagnosis is less than 5%. Hence, the Scotch-tape test or Graham’s test is the best technique for diagnosing enterobiasis. This test is still the gold standard for enterobiasis diagnosis which can be simply done at home. In this method, using a glass tape or cellophane, a sample is taken from around the anus and then observed under a light microscope for E. vermicularis eggs. To enhance the chance of diagnosis, it is recommended to do sampling in the morning and before defecation or bathing (1).

The prevalence of enterobiasis is about 200 million people worldwide. Meanwhile, 30% of cases are children aged 5-10 years (7). Enterobiasis is prevalent in different parts of the world, especially countries with a temperate climate. In addition, its prevalence rate is about 30-50%...
in the United States and parts of Europe (5), 22.4% in the
Marshall Islands (7, 8), 6.85% in Chongqing of China
(9), and 10.5% in the Gimhae-si of Korea (10).

Further, the prevalence of enterobiasis differs in different
parts of Iran. For instance, its prevalence is 22.2% in Babol
(11) and 7.1% in Amol (12) in the northern parts. This
value is 2.1% in Shahroud in the central parts (13). In the
southern and western parts, the prevalence is 24.1% and
14.7% in Khash (14) and Kermanshah (15), respectively.
However, the status of enterobiasis prevalence among
Sabzevar children remains unknown. Accordingly, this
study sought to evaluate the prevalence of enterobiasis
among the kindergarten children of Sabzevar, Razavi
Khorasan province, the northeast of Iran.

Methods

Study Area
Sabzevar (36°12’45”N 57°40’55”E) is a city in Razavi
Khorasan province, the northeast of Iran (Figure 1). Its
population is around 243,700 and has a cold semi-arid
climate (The statistical center of Iran, https://www.amar.
org.ir/english).

Sampling and Parasitological Examination
In this cross-sectional analytical-descriptive study, 172
kindergarten children (3-7 years old) were randomly
examined for enterobiasis infection using the Scotch-tape
technique in June 2019. Both male and female children
from the northern and southern parts of the city were
included in the study. Their parents were instructed and
asked to collect a specimen from the perianal surface of the
children before defecation in the morning using a piece of
clear adhesive tape. The samples were then received on the
next day. Ultimately, the samples were transferred to the
parasitology laboratory at Sabzevar University of Medical
Sciences and examined by an expert parasitologist under
a light microscope using ×100 and ×400 magnification.
Furthermore, demographic variables (i.e., gender and the
living area) were collected using a researcher-designed
questionnaire.

Statistical Analysis
The data were analyzed using SPSS software, version 22.
Eventually, Fisher exact test was used to determine the
possible association between gender, geographical living
area, and enterobiasis, and a $P$ value less than 0.05 was
considered statistically significant.

Results
Out of 172 samples, 6 (3.49%) cases were positive for the
E. vermicularis egg. In addition, 2 (1.16%) out of 6
samples were detected in girls and the remaining 4 cases
belonged to boys. Further, 72 and 100 samples
were collected from the northern and southern parts
of the city, respectively. Furthermore, 2 (2.8%) and 4
(2.3%) samples out of the collected samples from the
northern and southern areas were positive for enterobiasis,
respectively. Although the infection rate was slightly higher
in boys (4.25%) compared to girls (2.6%), no significant
association was found between gender and enterobiasis.
In addition, there was no significant relationship between
the geographical living area and the infection ($P > 0.05$),
the details of which are presented in Table 1.

Discussion
The aim of this study was to investigate the prevalence
of E. vermicularis infection among the kindergarten
children of Sabzevar, Iran. According to the results, the
overall prevalence of enterobiasis among the studied
children was 3.49%. This infection rate was considerably
lower than most of those reported in other parts of the
United States and parts of Europe (5), 22.4% in the
Marshall Islands (7, 8), 6.85% in Chongqing of China
(9), and 10.5% in the Gimhae-si of Korea (10).

Further, the prevalence of enterobiasis differs in different
parts of Iran. For instance, its prevalence is 22.2% in Babol
(11) and 7.1% in Amol (12) in the northern parts. This
value is 2.1% in Shahroud in the central parts (13). In the
southern and western parts, the prevalence is 24.1% and
14.7% in Khash (14) and Kermanshah (15), respectively.

However, the status of enterobiasis prevalence among
Sabzevar children remains unknown. Accordingly, this
study sought to evaluate the prevalence of enterobiasis
among the kindergarten children of Sabzevar, Razavi
Khorasan province, the northeast of Iran.

Methods

Study Area
Sabzevar (36°12’45”N 57°40’55”E) is a city in Razavi
Khorasan province, the northeast of Iran (Figure 1). Its
population is around 243,700 and has a cold semi-arid
climate (The statistical center of Iran, https://www.amar.
org.ir/english).

Sampling and Parasitological Examination
In this cross-sectional analytical-descriptive study, 172
kindergarten children (3-7 years old) were randomly
examined for enterobiasis infection using the Scotch-tape
technique in June 2019. Both male and female children
from the northern and southern parts of the city were
included in the study. Their parents were instructed and
asked to collect a specimen from the perianal surface of the
children before defecation in the morning using a piece of
clear adhesive tape. The samples were then received on the
next day. Ultimately, the samples were transferred to the
parasitology laboratory at Sabzevar University of Medical
Sciences and examined by an expert parasitologist under
a light microscope using ×100 and ×400 magnification.
Furthermore, demographic variables (i.e., gender and the
living area) were collected using a researcher-designed
questionnaire.

Statistical Analysis
The data were analyzed using SPSS software, version 22.
Eventually, Fisher exact test was used to determine the
possible association between gender, geographical living
area, and enterobiasis, and a $P$ value less than 0.05 was
considered statistically significant.

Results
Out of 172 samples, 6 (3.49%) cases were positive for the
E. vermicularis egg. In addition, 2 (1.16%) out of 6
samples were detected in girls and the remaining 4 cases
belonged to boys. Further, 72 and 100 samples
were collected from the northern and southern parts
of the city, respectively. Furthermore, 2 (2.8%) and 4
(2.3%) samples out of the collected samples from the
northern and southern areas were positive for enterobiasis,
respectively. Although the infection rate was slightly higher
in boys (4.25%) compared to girls (2.6%), no significant
association was found between gender and enterobiasis.
In addition, there was no significant relationship between
the geographical living area and the infection ($P > 0.05$),
the details of which are presented in Table 1.

Discussion
The aim of this study was to investigate the prevalence
of E. vermicularis infection among the kindergarten
children of Sabzevar, Iran. According to the results, the
overall prevalence of enterobiasis among the studied
children was 3.49%. This infection rate was considerably
lower than most of those reported in other parts of the
country, including 22.2% in Babol (11), 7.1% in Amol (12), 24.1% in Khash (14), and 14.7% in Kermanshah (15). However, the prevalence of enterobiasis was higher in Sabzevar compared to some parts of the country, including 2.38% in Isfahan (8) and 0.028% in Karaj (16). The results of our study indicated that enterobiasis was less prevalent in Sabzevar than those reported in other parts of the world, including 22.4%, 6.85%, 10.5%, 17.67%, 10.1%, and 34.05% in the Marshall Islands (7), Chongqing city of China (9), Gimhae-si of Korea (10), Sidi-bel-Abbes of Algeria (17), north-eastern Poland (18), and district Mardan of Pakistan (19), respectively. These contradictions in infection rates may be due to differences in culture, climate, lifestyle, and especially personal and collective hygiene in different parts of the world. E. vermicularis eggs are sensitive to high temperatures and dry weather, and hence, they cannot survive outside the host’s body for a long time. On the other hand, a cool and humid weather favor conditions for the eggs. Sabzevar has a high temperature and dry climate in the summer. Thus, the lower rate of enterobiasis in Sabzevar may be at least partly due to these factors when compared with the northern cities of Iran (e.g., Babol and Amol) and other parts of the world which have a temperate and humid weather in this season. Moreover, the samples were collected once by the children’s parents. To increase the chance of enterobiasis diagnosis, samples should be collected three times by the researcher his/herself. However, due to the poor collaboration of children’s parents, we could not collect the samples more than once. Therefore, the findings of the present study may underestimate enterobiasis prevalence in Sabzevar.

We also found that the infection rate in boys was slightly higher compared to girls. However, there was no significant association between gender and enterobiasis (P>0.05), which is in line with the findings of previous studies reporting no significant difference in enterobiasis prevalence by gender (7,12). In contrast, Wu et al in Chongqing, China reported that enterobiasis was significantly more prevalent in girls compared to boys (9). In general, it seems that there is no explicit association between gender and enterobiasis prevalence.

Based on the finding of our study, no significant relationship was observed between the geographical living area and enterobiasis, which is in accordance with the results of Motevalli Haghi et al showing no significant relationship between parasitic infection and the geographical area of the studied children (20). However, several studies reported differences in enterobiasis prevalence regarding the geographical living area (10,18). Generally, enterobiasis is more prevalent in rural areas compared with the urban area due to poor hygiene and low socio-economic status.

Conclusions
Overall, although the overall prevalence of enterobiasis among Sabzevar kindergarten children was lower than that of many parts of Iran, the educational programs for parents and kindergarten staff regarding enterobiasis infection and transmission routes should be conducted to reduce the infection rate.

Conflict of Interests
The authors declare that they have no conflict of interests.

Acknowledgments
We should convey our best attitudes to the Deputy of the Research and Technology of Sabzevar University of Medical Sciences and Sabzevar Welfare Organization for their help in conducting this project. This project was financially supported by the Deputy of the Research and Technology of Sabzevar University of Medical Sciences.

Ethical Approval
This work was reviewed and approved by the Ethics Committee of Sabzevar University of Medical Sciences (Ethical code: IR.MEDSAB.REC.1393.21). The children’s parents were also asked to sign an informed consent form in order to allow their children to take part in this study.

Authors’ Contributions
HE: Conceptualization, methodology, funding acquisition, and statistical analysis; RG: Data collection, methodology, and original draft preparation; MSM: Supervision, statistical analysis, and writing, reviewing, and editing the final manuscript. All authors read and approved the final manuscript.

Funding/Support
This project was financially supported by the Deputy of the Research and Technology of Sabzevar University of Medical Sciences.

References
1. Wendt S, Trawinski H, Schubert S, Rodloff AC, Mössner J, Lübbert C. The diagnosis and treatment of pinworm infection. Dtsch Arztebl Int. 2019;116(13):213-9. doi: 10.3238/arztebl.2019.0213.
2. Kandi V, Vaish R, Palange P, Koka SS, Gurrupu P, Bhoomigari MR. Enterobius vermicularis: does it invade central nervous system? Am J Infect Dis Microbiol. 2019;7(1):8-12. doi: 10.12691/ajidm-7-1-2.
3. Mentessidou A, Theocharides C, Patoulias I, Panteli C. Enterobius vermicularis-associated pelvic inflammatory disease in a child. J Pediatr Adolesc Gynecol. 2016;29(2):e25-7. doi: 10.1016/j.jpag.2015.10.010.
4. Habashi R, Lisi MP. Acute appendicitis and Enterobius vermicularis infestation. CMAJ. 2019;191(17):E477. doi: 10.1503/cmaj.181194.
5. Burkhart CN, Burkhart CG. Assessment of frequency, transmission, and genitourinary complications of enterobiasis (pinworms), Int J Dermatol. 2005;44(10):837-40. doi: 10.1111/j.1365-4632.2004.02332.x.
6. Kim DH, Cho MK, Park MK, Kang SA, Kim BY, Park SK, et al. Environmental factors related to enterobiasis in a southeast region of Korea. Korean J Parasitol. 2013;51(1):139-42. doi: 10.3347/kjp.2013.51.1.139.
7. Fan CK, Chuang TW, Huang YC, Yin AW, Chou CM, Hsu YT, et al. Enterobius vermicularis infection: prevalence and
risk factors among preschool children in kindergarten in the capital area, Republic of the Marshall Islands. BMC Infect Dis. 2019;19(1):536. doi: 10.1186/s12879-019-4159-0.

8. Abedi S, Eezadi S, Davari B. Prevalence of oxyuriasis in kindergartens of Isfahan, Iran. Hormozgan Med J. 2004;8(1):63-6. [Persian].

9. Wu CG, Luo XJ, Xie J, Jiang SG, Li SS, Xiao BZ. [Prevalence of Enterobius vermicularis infection of children and its influencing factors in Chongqing city]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2012;24(6):703-6.

10. Lee SE, Lee JH, Ju JW, Lee WJ, Cho SH. Prevalence of Enterobius vermicularis among preschool children in Gimhae-si, Gyeongsangnam-do, Korea. Korean J Parasitol. 2011;49(2):183-5. doi: 10.3347/kjp.2011.49.2.183.

11. Norbakhsh Amiri SA, Rahimi MT, Mahdavi SA, Moosazadeh M, Farrokh Koshk A, et al. Prevalence of Enterobius vermicularis infection among preschool children, Babol, North of Iran. J Parasit Dis. 2016;40(4):1332-6. doi: 10.1007/s12639-015-0683-z.

12. Afrakhteh N, Marhaba Z, Mahdavi SA, Garoosian S, Minnezhad R, Eshkevar-Vakili M, et al. Prevalence of Enterobius vermicularis amongst kindergartens and preschool children in Mazandaran Province, North of Iran. J Parasit Dis. 2016;40(4):1332-6. doi: 10.1007/s12639-015-0683-z.

13. Rahimi H, Dehghani M, Norouzi P, Fazli M. Frequency of Giardia lamblia and Enterobius vermicularis infections in Shahroud kindergartens, 2013. J Ardabil Univ Med Sci. 2015;15(1):7-14. [Persian].

14. Ebrahimzadeh A, Saryazdipoor K, Gharaei A, Mohammad S, Jamshidi A. Prevalence of Enterobius vermicularis infection among preschool children of Khos city kindergartens, Iran in 2012. J North Khorsan Univ Med Sci. 2014;6(3):477-81. doi: 10.29252/jnkums.6.3.477.

15. Sha-Mohammadi Z, Ghahramani F, Mahboubi M, Jalilian F, Neia Kane-Shahr M, Mohammad M. Prevalence of Enterobius vermicularis (pinworm) in Kermanshah city nurseries, using Graham: 2014. J Biol Today’s World. 2014;3(1):24-7.

16. Nasiri V, Esmailnia K, Karim G, Nasir M, Akhavan O. Intestinal parasitic infections among inhabitants of Karaj city, Tehran province, Iran in 2006-2008. Korean J Parasitol. 2009;47(3):265-8. doi: 10.3347/kjp.2009.47.3.265.

17. Merad Y, Merbouh A, Bennalam L, Belfodil S, Adjmi-Hamoudi H. Prevalence of enterobiasis among urban school children in Sidi-bel-Abbes, Algeria. Int J Innov Appl Stud. 2018;24(2):453-8.

18. Kubiak K, Dzika E, Paukszto Ł. Enterobiasis epidemiology and molecular characterization of Enterobius vermicularis in healthy children in north-eastern Poland. Helminthologia. 2017;54(4):284-91. doi: 10.1515/helm-2017-0042.

19. Niazi S, Abdullah, Arif M, Zubair N, Khan S, Aurang Zeb M. Prevalence of Enterobius vermicularis in children of district Mardan, Pakistan. PSM Biol Res. 2019;4(2):58-62.

20. Motevalli Hagh SM, Najm M, Fakhar M, Cholami S, Motevalli Hagh SF. Prevalence of Enterobius vermicularis infection among kindergartens in Mazandaran province, 2011. J Mazandaran Univ Med Sci. 2013;23(Suppl 1):241-7. [Persian].