INTEGRAL REPRESENTATIONS ON NON-SMOOTH DOMAINS

DARIUSH EHSANI

Abstract. We derive integral representations for \((0, q)\)-forms, \(q \geq 1\), on non-smooth strictly pseudoconvex domains, the Henkin-Leiterer domains. A \((0, q)\)-form, \(f\), is written in terms of integral operators acting on \(f\), \(\bar{\partial} f\), and \(\bar{\partial}^* f\). The representation is applied to derive \(L^\infty\) estimates.

1. Introduction

Lieb and Range in [6] developed a powerful integral representation by which estimates in the theory of the \(\bar{\partial}\)-Neumann problem could be deduced. The main theorem was an integral representation of \((0, q)\)-forms on \(D \subset X\) a smooth strictly pseudoconvex domain in a complex manifold \(X\).

Theorem 1.1 (Lieb-Range). Let \(P_0 : L^2(D) \to \mathcal{O} \cap L^2(D)\) be the Bergman projection. There exist integral operators \(T_q : L^2_{(0,q+1)}(D) \to L^2_{(0,q)}(D)\) \(0 \leq q < n = \dim X\) such that for \(f \in L^2_{(0,q)} \cap \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)\) one has

\[
f = P_0 f + T_0 \bar{\partial} f + \text{error terms}\quad \text{for } q = 0
\]

and

\[
f = T_q \bar{\partial} f + T_{q-1}^* \bar{\partial}^* f + \text{error terms}\quad \text{for } q \geq 1.
\]

In [6], the metric has to be carefully adapted to the boundary. The choice of the metric as the Levi metric as in Greiner and Stein [2] was essential in their ”cancellation of singularities” argument, which allowed for treatment of terms in the representation as error terms.

We take up the problem here of establishing an integral representation in the manner of [6] relaxing the assumption that \(D\) be smooth. Let \(D\) have a defining function, \(r\). We allow for singularities in the boundary, \(\partial D\) of \(D\) by permitting the possibility that \(dr\) vanishes at points on \(\partial D\). Such domains were first studied by Henkin and Leiterer in [4], and we therefore refer to them as Henkin-Leiterer domains.

We shall make the additional assumption that \(r\) is a Morse function. Let \(U\) be a neighborhood of \(\partial D\). Then

\[U \cap D = \{x \in U : r(x) < 0\},\]

\(r\) with only non-degenerate critical points on \(U\). We have

\[\partial D = \{x : r(x) = 0\},\]

2000 Mathematics Subject Classification. Primary 32A25, 32W05.
Partially supported by the Alexander von Humboldt Stiftung.
and we can assume that there are finitely many critical points on bD, and none on $U \setminus bD$.

In [1], Lieb and the author studied the Bergman projection on Henkin-Leiterer domains in \mathbb{C}^n, and obtained weighted L^p estimates. We here concern ourselves with proving an analogue of [1] on Henkin-Leiterer domains. The domain D has an exhaustion of smooth strictly pseudoconvex domains $\{D_\epsilon\}_\epsilon$ on each of which the analysis of Lieb and Range applies. One immediate problem one runs into with this approach is that forms which are $\text{Dom}(\partial^* \partial)$ on D may not be in $\text{Dom}(\partial^* \partial)$ on D_ϵ. We deal with this problem by using a density lemma of Henkin and Iordan [3] which provides for forms f_ϵ which are in $L^2(D_\epsilon) \cap \text{Dom}(\partial) \cap \text{Dom}(\partial^*)$ and which approximate a given $f \in L^2(D) \cap \text{Dom}(\partial) \cap \text{Dom}(\partial^*)$. Our approach therefore is to obtain an integral representation valid on each domain D_ϵ and in the end let $\epsilon \to 0$. In this approach we need to multiply our operators by factors of $|dr|$ so that convergence of the representation as $\epsilon \to 0$ is obtained. Let $\gamma = |\partial r|$. The analogue of Theorem 1.1 we establish here is

Theorem 1.2. Let D be a Henkin-Leiterer domain with a defining function which is Morse. There exist integral operators $\tilde{T}_q : L^2_0(D) \to L^2_0(D) \ 0 \leq q < n = \dim X$ such that for $f \in L^2_0(D) \cap \text{Dom}(\partial) \cap \text{Dom}(\partial^*)$ one has

$$\gamma^3 f = \tilde{T}_q \partial f + \tilde{T}_{q-1} \partial^* f + \text{error terms} \quad \text{for } q \geq 1.$$

In a separate paper we build off the integral representation established here, and in particular we look at the mapping properties of the integral operators under differentiation so as to establish C^k estimates.

The author wishes to acknowledge the fruitful discussions with Ingo Lieb over the matters in this paper. His ideas and advice on particulars were instrumental in achieving the results here.

2. **Admissible operators**

With local coordinates denoted by ζ_1, \ldots, ζ_n, we define a Levi metric in a neighborhood of ∂D by

$$ds^2 = \sum_{j,k} \frac{\partial^2 r}{\partial \zeta_j \partial \zeta_k}(\zeta)d\zeta_j d\zeta_k.$$

A Levi metric on X is a Hermitian metric which is a Levi metric in a neighborhood of ∂D.

We thus equip X with a Levi metric and we take $\rho(x, y)$ to be a symmetric, smooth function on $X \times X$ which coincides with the geodesic distance in a neighborhood of the diagonal, Λ, and is positive outside of Λ.

For ease of notation, in what follows we will always work with local coordinates, ζ and z.

Since D is strictly pseudoconvex and r is a Morse function, we can take $r_\epsilon = r + \epsilon$ for epsilon small enough. Then r_ϵ will be defining functions for smooth, strictly pseudoconvex D_ϵ. For such r_ϵ we have that all derivatives of r_ϵ are independent of ϵ. In particular, $\gamma_\epsilon(\zeta) = \gamma(\zeta)$ and $\rho_\epsilon(\zeta, z) = \rho(\zeta, z)$.

Let F be the Levi polynomial for D_ϵ:

$$F(\zeta, z) = \sum_{j=1}^n \frac{\partial r_\epsilon}{\partial \zeta_j}(\zeta)(\zeta_j - z_j) - \frac{1}{2} \sum_{j,k=1}^n \frac{\partial^2 r_\epsilon}{\partial \zeta_j \partial \zeta_k}(\zeta_j - z_j)(\zeta_k - z_k).$$
We note that $F(\zeta, z)$ is independent of ε since derivatives of r_ε are.

For ε small enough we can choose $\delta > 0$ and $\varepsilon > 0$ and a patching function

$$\varphi(\zeta, z),$$

independent of ε, on $\mathbb{C}^n \times \mathbb{C}^n$ such that

$$\varphi(\zeta, z) = \begin{cases} 1 & \text{for } \rho^2(\zeta, z) \leq \frac{\varepsilon}{2} \\ 0 & \text{for } \rho^2(\zeta, z) \geq \frac{3\varepsilon}{2}, \end{cases}$$

and defining $S_\delta = \{ \zeta : |r(\zeta)| < \delta \}$, $D_{-\delta} = \{ \zeta : r(\zeta) < \delta \}$, and

$$\phi_\varepsilon(\zeta, z) = \varphi(\zeta, z)(F(\zeta, z) - r_\varepsilon(\zeta)) + (1 - \varphi(\zeta, z))\rho^2(\zeta, z),$$

we have the following

\textbf{Lemma 2.1.} On $D_\varepsilon \times D_\varepsilon \setminus S_\delta \times D_{-\delta}$,

$$|\phi_\varepsilon| \gtrsim |(\partial r_\varepsilon(z), \zeta - z)| + \rho^2(\zeta, z),$$

where the constants in the inequalities are independent of ε.

\textbf{Proof.} From a Taylor series expansion

\begin{equation}
|\phi_\varepsilon| \gtrsim -r_\varepsilon(\zeta) - r_\varepsilon(z) + \rho^2(\zeta, z) + |\text{Im}\phi_\varepsilon|.
\end{equation}

On $D_\varepsilon \times D_\varepsilon$, $-r_\varepsilon(\zeta) - r_\varepsilon(z) \geq |r_\varepsilon(\zeta) - r_\varepsilon(z)|$. We combine this with

$$|\text{Im}\phi_\varepsilon| + \rho^2(\zeta, z) \gtrsim |\text{Im}(\partial r_\varepsilon(\zeta), \zeta - z)|,$$

and we therefore write

$$|\phi_\varepsilon| \gtrsim |r_\varepsilon(\zeta) - r_\varepsilon(z)| + |\text{Im}(\partial r_\varepsilon(\zeta), \zeta - z)| + \rho^2(\zeta, z)$$

$$\gtrsim |(\partial r_\varepsilon(z), \zeta - z)| + \rho^2(\zeta, z),$$

where the last inequality follows from

$$|(\partial r_\varepsilon(z), \zeta - z)| + |(\partial r_\varepsilon(\zeta), \zeta - z)| + \rho^2(\zeta, z) \approx$$

$$|r_\varepsilon(\zeta) - r_\varepsilon(z)| + |\text{Im}(\partial r_\varepsilon(\zeta), \zeta - z)| + \rho^2(\zeta, z),$$

which itself is an easy consequence of a Taylor expansion.

All inequality signs have constants which are independent of ε since $r_\varepsilon \overset{C^2}{\rightarrow} r$. □

We at times have to be precise and keep track of factors of γ which occur in our integral kernels. We shall write $E_{j,k}(\zeta, z)$ for those double forms on open sets $U \subset D \times D$ such that $E_{j,k}$ is smooth on U and satisfies

\begin{equation}
E_{j,k}(\zeta, z) \lesssim \xi_k(\zeta)|\zeta - z|^j,
\end{equation}

where ξ_k is a smooth function in D with the property

$$|\gamma^\alpha D_\alpha \xi_k| \lesssim \gamma^k,$$

for D_α a differential operator of order α.

We shall write E_j for those double forms on open sets $U \subset D \times D$ such that E_j is smooth on U, can be extended smoothly to $\overline{D} \times \overline{D}$, and satisfies

$$E_j(\zeta, z) \lesssim |\zeta - z|^j.$$

$E_{j,k}^*$ will denote forms which can be written as $E_{j,k}(z, \zeta)$.

For $N \geq 0$, we let R_N denote an N-fold product, or a sum of such products, of first derivatives of $r(z)$, with the notation $R_0 = 1$.
Here

\[P_\epsilon(\zeta, z) = \rho^2(\zeta, z) + 2 \frac{r_\epsilon(\zeta) r_\epsilon(z)}{\gamma(\zeta) \gamma(z)}. \]

Definition 2.2. A double differential form \(A^\epsilon(\zeta, z) \) on \(\overline{D_\epsilon} \times \overline{D_\epsilon} \) is an admissible kernel, if it has the following properties:

i) \(A^\epsilon \) is smooth on \(\overline{D_\epsilon} \times \overline{D_\epsilon} - \Lambda_\epsilon \)

ii) For each point \((\zeta_0, \zeta_0) \in \Lambda_\epsilon\) there is a neighborhood \(U \times U \) of \((\zeta_0, \zeta_0)\) on which \(A^\epsilon \) or \(A^\epsilon_\ast \) has the representation

\begin{equation}
(2.3) \quad R_N R_M^\ast e_{j, \alpha} e_{k, \beta} P_\epsilon^{-t_0} \phi_\epsilon^{t_1} \phi_\epsilon^{t_2} \phi_\epsilon^{t_3} \phi_\epsilon^{t_4} r_\epsilon^{l} r_\epsilon^{*m}
\end{equation}

with \(N, M, \alpha, \beta, j, k, t_0, \ldots, m \) integers and \(j, k, t_0, l, m \geq 0, -t = t_1 + \cdots + t_4 \leq 0, N, M \geq 0, \) and \(N + \alpha, M + \beta \geq 0. \)

The above representation is of smooth type \(s \) for \(s = 2n + j + \min\{2, t - l - m\} - 2(t_0 + t - l - m) \).

We define the type of \(A^\epsilon(\zeta, z) \) to be

\[\tau = s - \max\{0, -N - M - \alpha - \beta\}. \]

\(A^\epsilon \) has smooth type \(\geq s \) if at each point \((\zeta_0, \zeta_0) \in \Lambda_\epsilon\) there is a representation \(2.3\) of smooth type \(\geq s \). \(A^\epsilon \) has type \(\geq \tau \) if at each point \((\zeta_0, \zeta_0) \in \Lambda_\epsilon\) there is a representation \(2.3\) of type \(\geq \tau \). We shall also refer to the double type of an operator \((\tau, s)\) if the operator is of type \(\tau \) and of smooth type \(s \).

The definition of smooth type above is taken from [6]. Here and below \((r_\epsilon(x))^* = r_\epsilon(y) \), the * having a similar meaning for other functions of one variable.

Let \(A^\epsilon_j \) be kernels of type \(j \). We denote by \(A_j \) the pointwise limit as \(\epsilon \to 0 \) of \(A^\epsilon_j \) and define the double type of \(A_j \) to be the double type of the \(A^\epsilon_j \) of which it is a limit. We also denote by \(A^\epsilon_j \) to be operators with kernels of the form \(A^\epsilon_j \). \(A_j \) will denote the operators with kernels \(A_j \). We use the notation \(A^\epsilon_{(j,k)} \) (resp. \(A_{(j,k)} \)) to denote kernels of double type \((j,k) \).

We begin with estimates on the kernels of a certain type.

Proposition 2.3. Let \(A^\epsilon_j \) be of type \(j \), and

\[1 \leq \lambda < \frac{2n + 2}{2n + 2 - j}. \]

Then

\begin{equation}
(2.4) \quad \int_{D_\epsilon} |A^\epsilon_j(\zeta, z)|^\lambda dV(\zeta) < C
\end{equation}

and, similarly,

\begin{equation}
(2.5) \quad \int_{D_\epsilon} |A^\epsilon_j(\zeta, z)|^\lambda dV(z) < C
\end{equation}

for \(C < \infty \) a constant independent of \(\epsilon, z \) or \(\zeta \).

Proof. That \(2.4\) and \(2.5\) hold for a fixed \(\epsilon > 0 \) and a constant \(C \) which may depend on \(\epsilon \) follows from the results on smooth strictly pseudoconvex domains (see [5]). We will perform the calculations in the limit \(\epsilon \to 0 \) so that standard uniform boundedness principles apply to provide bounds uniform in \(\epsilon \).
We handle the estimates case by case depending on the kernel’s double type. For the various cases we now describe the coordinate system with which we work. Fix \(z \) such that \(\gamma(z) \neq 0 \). We define the complex tangent space at \(z \):

\[T^c_z = \{ \zeta : \langle \partial r(z), \zeta - z \rangle = 0 \} \]

We define the orthonormal system of coordinates, \(s_1, s_2, t_1, \ldots, t_{2n-2} \) such that

\[
\begin{align*}
 s_1 &= \text{Re} \left\langle \frac{\partial r(z)}{\gamma(z)}, \zeta - z \right\rangle \\
 s_2 &= \text{Im} \left\langle \frac{\partial r(z)}{\gamma(z)}, \zeta - z \right\rangle,
\end{align*}
\]

and such that \(t_1, \ldots, t_{2n-2} \) span \(T^c_z \). Let also

\[
\begin{align*}
 s &= \sqrt{s_1^2 + s_2^2} \\
 t &= \sqrt{t_1^2 + \cdots + t_{2n-2}^2}.
\end{align*}
\]

From Lemma \(2.1 \) we have

\[
|\phi| \gtrsim |\langle \partial r(z), \zeta - z \rangle| + \rho^2,
\]

which in the above coordinates reads

\[
|\phi| \gtrsim \gamma(z)s + s^2 + t^2.
\]

Case a). \(A_j \) is of double type \((j, j)\).

For kernels of double type \((j, j)\), we can use the relation \(\gamma(\zeta) = \gamma(z) + E_{1,0} \) along with estimates for kernels of double types \((j, j+1)\) and \((j, j+2)\), to reduce the different subcases we need to consider to

\[
\begin{align*}
 i) \quad |A_j| &\lesssim \gamma(z)^2 \frac{1}{P_{n-j/2}} \\
 ii) \quad |A_j| &\lesssim \frac{\gamma(z)^2}{P_{n-j/2}|\phi|} \\
 iii) \quad |A_j| &\lesssim \gamma(z)^2 \frac{1}{P_{n-j/2-\mu}|\phi|^{\mu+1}} \quad \mu \geq 1.
\end{align*}
\]

We will consider the last two subcases, since the first is easier to handle, and can be covered by case c) below.

Subcase ii).

We choose \(\alpha < 2 \) such that

\[
\lambda < \frac{2n - 2 + 2\alpha}{2n + 1 - j},
\]

and let \(\beta = \min(\alpha, \lambda) \). We have

\[
\begin{align*}
 &\int_D \gamma(z)^{2\lambda} \frac{1}{|\phi|^{\lambda P_{n-j/2}}} dV(\zeta) \\
 &\lesssim \gamma(z)^{2\lambda} \int_V \frac{st^{2n-3}}{(\gamma(z)s + s^2 + t^2)^{\lambda/2}} dsdt \\
 &\lesssim \gamma(z)^{2\lambda-\beta} \int_V s^{1-\beta} t^{2n-3} (s + t)^{2\lambda n + \lambda(1-j) - 2\beta} dsdt.
\end{align*}
\]

(2.6)
where V is a bounded subset of \mathbb{R}^2. In the case $\beta = \alpha$ we can estimate the integral in (2.6) by
\[
\gamma(z)^{2\lambda-\alpha} \int_V s^{1-\alpha} \frac{t^{2n-3}}{t^{2\lambda n + \lambda (1-j) - 2\alpha}} dsdt \lesssim 1,
\]
where the inequality follows from our choice of α.

In the case that $\beta = \lambda$ we choose a σ such that
\[
\sigma < 2 - \lambda \quad \text{and} \quad \lambda < \frac{2n - 2 + \sigma}{2n - 1 - j},
\]
and we have
\[
\gamma(z)^{\lambda} \int_V s^{1-\lambda} \frac{t^{2n-3}}{(s+t)^{\lambda(2n-1-j)}} dsdt \lesssim \gamma(z)^{\lambda} \int_V s^{1-\lambda-\sigma} \frac{t^{2n-3}}{t^{\lambda(2n-1-j)-\sigma}} dsdt \lesssim 1,
\]
where the last inequality follows from our choice of σ.

Subcase (ii). In this case to prove (2.3) we choose α so that $\alpha < 2$ and
\[
\lambda < \frac{2n - 2 + 2\alpha}{2n + 2 - j},
\]
and estimate
\[
\gamma(z)^{2\lambda} \int_D \frac{1}{|\phi|^{\lambda(\mu+1)} P^{\lambda(n-\mu-j)/2}} dV(\zeta) \lesssim \gamma(z)^{2\lambda} \int_D \frac{s^{2n-3}}{(\gamma(z)s + s^2 + t^2)^{\lambda(\mu+1)}} dsdt \lesssim \gamma(z)^{2\lambda-\alpha} \int_V s^{1-\alpha} \frac{t^{2n-3}}{t^{\lambda(2n+2-j)-2\alpha}} dtds \lesssim 1,
\]
where V is a bounded subset of \mathbb{R}^2.

Again, (2.4) holds in a similar manner.

Case b). A_j is of double type $(j, j+1)$.

The different subcases we need to consider are
\[i) \quad |A_j| \lesssim \frac{\gamma(z)}{P^{n-\frac{\mu+1}{2}}} \]
\[ii) \quad |A_j| \lesssim \frac{\gamma(z)}{P^{n-\frac{\mu+1}{2}}} |\phi| \]
\[iii) \quad |A_j| \lesssim \frac{\gamma(z)}{P^{n-\frac{\mu+1}{2}} - \mu |\phi|^\mu + 1} \quad \mu \geq 1.\]

Subcases i) and ii) can be handled by the estimate in case c) below. The more difficult estimate is that of subcase iii), for which we choose an $\alpha < 1/2$ which satisfies
\[
\lambda < \frac{2n + 2\alpha}{2n + 1 - j},
\]
and estimate

\[
\gamma(z)^\lambda \frac{1}{|\phi|^\lambda(n-\frac{1}{2})} dV(\zeta)
\leq \gamma(z)^\lambda \int_D \int_V \frac{st^{2n-3}}{(s^2 + t^2)^{\lambda(n-\frac{1}{2})}} dsdt
\leq \gamma(z)^{\lambda-1} \int_V \frac{t^{2n-3}}{(s^2 + t^2)^{\lambda(n-\frac{1}{2})-1}} dt\, ds
cn \int_V s^{-2\alpha} t^{2n-1-\lambda(2n+1-j)/2} dt\, ds
\leq 1,
\]

where \(V\) is a bounded subset of \(\mathbb{R}^2\).

Case c. \(A_j\) is of double type \((j, j + 2)\).

Using the coordinates of cases \(a\) and \(b\), we can estimate all the subcases for kernels of double type \((j, j + 2)\) by

\[
\int_D |A_j(\zeta, z)|^\lambda dV(\zeta) \leq \int_V \frac{s^{2n-3}}{(s^2 + t^2)^{\lambda(n-j/2)}} dsdt
\leq \int_0^M r^{2n-1-\lambda(2n-j)} dr
\leq 1,
\]

where \(V\) is a bounded subset of \(\mathbb{R}^2\), \(M > 0\) is a bounded constant, and \(r = \sqrt{s^2 + t^2}\).

The same estimates hold for \((2, 3)\).

As a consequence of Proposition 2.3 and a generalization of Young’s inequality \[7\] is the

Corollary 2.4. Let \(A_j\) be an operator of type \(j\). Then

\[
A_j : L^p(D) \to L^s(D) \quad \frac{1}{s} > \frac{1}{p} - \frac{j}{2n+2}.
\]

We let \(E_{1-2n}(\zeta, z)\) be a kernel of the form

\[
E_{1-2n}(\zeta, z) = \frac{E_m, 0(\zeta, z)}{\rho^{2k}(\zeta, z)},
\]

where \(m - 2k \geq 1 - 2n\). We denote by \(E_{1-2n}\) the corresponding isotropic operator. The following theorem follows from \[5\].

Theorem 2.5. Then we have the following properties:

\[
E_{1-2n} : L^p(D) \to L^s(D) \quad \text{for any } 1 \leq p \leq \infty \text{ with } 1/s > 1/p - 1/2n.
\]

3. **Basic integral representation**

In this section we present the basic integral representation for forms on bounded smooth strictly pseudoconvex domains as worked out by Lieb and Range \[6\].
We start with the differential forms

\[
\beta(\zeta, z) = \frac{\partial_{\zeta} \rho^2(\zeta, z)}{\rho^2(\zeta, z)}
\]

\[
\alpha(\zeta, z) = \xi(\zeta) \frac{\partial_{\zeta} r(\zeta)}{\phi_{\zeta}(\zeta, z)},
\]

where \(\xi(\zeta)\) is a smooth patching function which is equivalently 1 for \(|r(\zeta)| < \delta\) and 0 for \(|r(\zeta)| > \frac{3}{2}\delta\), and \(\delta > 0\) is sufficiently small. We define

\[
C_q^* = C_q(\alpha, \beta) = \sum_{\mu=0}^{n-q-2} \sum_{\nu=0}^{q} a_{q\mu\nu} C_{q\mu\nu}(\alpha, \beta),
\]

where

\[
a_{q\mu\nu} = \left(\frac{1}{2\pi i} \right)^n \binom{\mu + \nu}{\mu} \binom{n - 2 - \mu - \nu}{q - \mu}
\]

and

\[
C_{q\mu\nu}(\alpha, \beta) = \alpha \wedge \beta \wedge (\bar{\partial}_\zeta \alpha_\mu) \wedge (\bar{\partial}_\zeta \beta)^{n-q-\mu-2} \wedge (\bar{\partial}_z \alpha_\nu) \wedge (\bar{\partial}_z \beta)^{q-\nu}.
\]

Denoting the Hodge \(*\)-operator by \(\ast\), we then define

\[
\mathcal{L}_q^*(\zeta, z) = (-1)^{q+1} \ast C_q^*(\zeta, z).
\]

We also write

\[
K_q^*(\zeta, z) = (-1)^{q(q-1)/2} \binom{n-1}{q} \frac{1}{(2\pi i)^n} \alpha \wedge (\bar{\partial}_\zeta \alpha_\mu) \wedge (\bar{\partial}_z \alpha_\nu)^{n-q-1} \wedge (\bar{\partial}_z \beta)^{q-\nu}
\]

and

\[
\Gamma_{0,q}^*(\zeta, z) = \frac{(n-2)!}{2\pi^n} \frac{1}{\rho^{2n-2}} (\bar{\partial}_z \partial_{\zeta} \rho^2)^{q-1}.
\]

The kernels in our integral representation are defined through the following for \(q \geq 1\):

\[
T_q^{\alpha r}(\zeta, z) = \partial_{\zeta} \mathcal{L}_q^*(\zeta, z) - \partial_z \mathcal{L}_{q-1}^*(\zeta, z),
\]

\[
T_q^{\beta r}(\zeta, z) = \bar{\partial}_{\zeta} \Gamma_{0,q}^*(\zeta, z),
\]

\[
T_q^r(\zeta, z) = T_q^{\alpha r}(\zeta, z) + T_q^{\beta r}(\zeta, z)
\]

\[
P_q^r(\zeta, z) = Q_q^r(\zeta, z) - Q_q^{\ast r}(\zeta, z)
\]

\[
= \partial_{\zeta} \partial_z \mathcal{L}_{q-1}^*(\zeta, z) - (\bar{\partial}_{\zeta} \partial_z \mathcal{L}_{q-1}^*(\zeta, z))^r
\]

\[
Q_q^r(\zeta, z) = \partial_z \partial_{\zeta} \mathcal{L}_{q-1}^*(\zeta, z).
\]

We denote the operators with kernels \(T_q^r\) and \(P_q^r\) by \(T_q^r\) and \(P_q^r\), respectively.

As mentioned above our goal is to establish \(C^k\)-estimates on the Henkin-Leiterer domain, \(D\), by exhausting \(D\) by smooth strictly pseudoconvex domains, \(\{D_\epsilon\}_\epsilon\), and using the analysis of Lieb and Range [4] on the smooth domains \(D_\epsilon\). It is therefore necessary to be able to approximate a given form \(f \in \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial})\) by forms \(f_\epsilon\) such that

\[
f_\epsilon \xrightarrow{L^2} f
\]

\[
\bar{\partial} f_\epsilon \xrightarrow{L^2} \bar{\partial} f
\]

\[
\bar{\partial}^* f_\epsilon \xrightarrow{L^2} \bar{\partial}^* f.
\]
Let the boundary integral in the BMK formula by vanish on the diagonal of here, we sketch the proof including this new detail. From \([3]\) we have the following

Definition 3.1. We say \(f\) is in the space \(\mathcal{M}_{(p,q)}(D)\), \(f \in \mathcal{M}_{(p,q)}(D)\), if \(f\) is the limit in \(L^2_{(p,q)}(D; \text{loc})\) of \(f_\epsilon \in \text{Dom}(H_\epsilon)\) such that \(\sup \{\|f_\epsilon\|_{G, \epsilon}, \|\Box \epsilon f_\epsilon\|_\epsilon\} < \infty\).

From \([3]\) we have the following

Proposition 3.2. \(\mathcal{M}_{(p,q)}(D)\) is dense in \(\text{Dom}(\bar{\partial}^*) \cap \text{Dom}(\bar{\partial})\) for the graph norm.

Let \(f \in L^2_{(p,q)}(D) \cap \text{Dom}(\bar{\partial}^*) \cap \text{Dom}(\bar{\partial})\). We take a sequence \(\{f_\epsilon\}\), such that \(f_\epsilon \in \text{Dom}(H_\epsilon)\) and \(f_\epsilon \to f\) in the graph norm.

For each \(f_\epsilon\), we apply the analysis of \([3]\) on \(D_\epsilon\), taking into account factors of \(\gamma\), and obtain the integral representation

Theorem 3.3.

\[
f_\epsilon(z) = T_q^* \bar{\partial} f_\epsilon + (T_{q-1})^* \bar{\partial}^* f_\epsilon + P_q^* f_\epsilon + \left(A_{0,2}^* + E_{2-2n}\right) \bar{\partial} f_\epsilon + E_{2-2n} \bar{\partial}^* f_\epsilon + \left(\frac{1}{\gamma} A_{-1,1} + E_{1-2n}\right) f_\epsilon.
\]

The proof follows as in \([3]\), but since the factors of \(\gamma\) are of particular importance here, we sketch the proof including this new detail.

Sketch of proof. Our starting point is the Bochner-Martinelli-Koppelman (BMK) formula for \(f \in C^1_{0,q}(D_\epsilon)\). Let \(B_q\) be defined by

\[
B_q = \Omega_q(\beta) = (-1)^q(p-1)/2 \left(\frac{n-1}{q} \frac{1}{(2\pi i)^n} \beta \wedge (\bar{\partial}_z \beta)^{n-q} \wedge (\bar{\partial}_z \beta)^q\right).
\]

Then for \(z \in D_\epsilon\),

\[
f(z) = \int_{\partial D_\epsilon} f(\zeta) \wedge B_q(\zeta, z) - \int_{D_\epsilon} \bar{\partial} f(\zeta) \wedge B_q(\zeta, z) = \int_{D_\epsilon} f(\zeta) \wedge B_q(\zeta, z) - \partial_z \int_{D_\epsilon} f(\zeta) \wedge B_q(\zeta, z)
\]

Define the kernels \(K_q^*(\zeta, z)\) by \(K_q^*(\zeta, z) = \Omega_q(\alpha_\epsilon)\). We then proceed to replace the boundary integral in the BMK formula by

\[
\int_{\partial D_\epsilon} f \wedge K_q^*.\]

Let \(\zeta_0 \in \partial D_\epsilon\) be a fixed point and \(U\) a sufficiently small neighborhood of \(\zeta_0\). \(F(\zeta, z)\) vanishes on the diagonal of \(U \times \bar{U}\), so Hefer’s theorem applies to give us

\[
F(\zeta, z) = \sum_{j=1}^n h_j(\zeta, z)(\zeta_j - z_j).
\]
We set
\[
\alpha^0(\zeta, z) = \frac{\sum_{j=1}^{n} h_j(\zeta, z) d\zeta_j}{F}.
\]

With the metric given by
\[
\text{ds}^2 = \sum g_{jk}(\zeta) dz_j d\bar{z}_k,
\]
(recall the Levi metric is independent of \(\epsilon \)) we define
\[
b^0(\zeta, z) = \sum_{j,k=1}^{n} g_{jk}(\zeta_k - \bar{z}_k) d\zeta_j
\]
\[
R^2(\zeta, z) = \sum_{j,k=1}^{n} g_{jk}(\zeta_j - z_j)(\zeta_k - \bar{z}_k)
\]
\[
\beta^0(\zeta, z) = \frac{b^0(\zeta, z)}{R^2(\zeta, z)}.
\]

With use of the transition kernels \(C_q \) defined above, we have via Koppelman’s homotopy formula
\[
\Omega_q(\beta^0) = \Omega_q(\alpha^0) + (-1)^{q+1} \partial_{\zeta} C_q(\alpha^0, \beta^0) + \partial_z C_{q-1}(\alpha^0, \beta^0).
\]

On \((\partial D \cap U) \times U\) we have
\[
\Omega_q(\alpha^0) = \Omega_q(\alpha_0) + \mathcal{E}_\infty
\]
\[
\Omega_q(\alpha^*) = \Omega_q(\alpha_0) + \frac{\mathcal{E}_1(\zeta, z)}{\phi_{\epsilon}(\zeta, z)^n}
\]
and on \(U \times U \) we have
\[
\Omega_q(\beta) = \frac{R^{2n}}{\rho^{2n}} \Omega_q(\beta^0) + \mathcal{E}_{2-2n}.
\]
Thus we write
\[
\Omega_q(\beta) = \frac{R^{2n}}{\rho^{2n}} \Omega_q(\beta^0) + \mathcal{E}_{2-2n}
\]
\[
= \frac{R^{2n}}{\rho^{2n}} (\Omega_q(\beta^0) - \Omega_q(\alpha^0)) + \Omega_q(\alpha^0) + \frac{\mathcal{E}_{2n+1}}{\rho^{2n}} \Omega_q(\alpha^0) + \mathcal{E}_{2-2n},
\]
by which it then follows from the homotopy formula and the relations between \(b^0 \) and \(\rho^2 \) and \(R^2 \), exactly as it was obtained in [5], that we have

\[(3.2)\]

\[\Omega_q(\beta) = \Omega_q(\alpha_\epsilon) + (-1)^{q+1}\bar{\partial}_z C_q + \bar{\partial}_z C_{q-1} + (\Omega_q(\alpha^0) - \Omega_q(\alpha_\epsilon)) + \frac{\varepsilon_2 n+1}{\rho^{2n}} \Omega_q(\alpha^0) \]

\[\quad + \varepsilon_{2-2n} + \bar{\partial}_z \left[\left(C_q \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) - C_q(\alpha_\epsilon, \beta) \right) \right] \]

\[\quad + \sum_{\mu, \nu} \frac{\varepsilon_{3+2\mu+2\nu}}{\rho^2(\rho^2+\mu+\nu)} C_{q\mu\nu} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) \]

\[\quad + \frac{\varepsilon_{0+2\mu+2\nu}}{\rho^2+\mu+\nu} C_{q\mu\nu}(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2}) \]

\[\quad + \bar{\partial}_z \left[\left(C_{q-1} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) - C_{q-1}(\alpha_\epsilon, \beta) \right) \right] \]

\[\quad + \sum_{\mu, \nu} \frac{\varepsilon_{3+2\mu+2\nu}}{\rho^2(\rho^2+\mu+\nu)} C_{(q-1)\mu\nu} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) \].

We now work with \(\zeta \in \partial D_\epsilon \) so that \(F = \phi_\epsilon \).

For \(q > 0 \) we have \(\Omega_q(\alpha_\epsilon) = \Omega_q(\alpha^0) = 0 \) near the boundary diagonal. Furthermore,

\[C_{q\mu\nu} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) = R_1 \frac{\varepsilon_1}{\phi_{1/\mu+\nu}(\rho^2)^{n-1-\mu-\nu}}, \]

and thus

\[\bar{\partial}_z \left(\sum_{\mu, \nu} \frac{\varepsilon_{3+2\mu+2\nu}}{\rho^2(\rho^2+\mu+\nu)} C_{q\mu\nu} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) \right) = \bar{\partial}_z \left(R_1 \frac{\varepsilon_{3+2\mu+2\nu}}{\phi_{1/\mu+\nu}(\rho^2)^{2n}} \right) \]

\[= \frac{\varepsilon_{4+2\mu+2\nu}}{\phi_{1+\mu+\nu}(\rho^2)^{2n}} + R_1 \frac{\varepsilon_{4+2\mu+2\nu}}{\phi_{1/\mu+\nu}(\rho^2)^{2n}} + R_1 \frac{\varepsilon_{5+2\mu+2\nu}}{\phi_{1+\mu+\nu}(\rho^2)^{n+1}} \]

\[+ R_1 \frac{\varepsilon_{5+2\mu+2\nu} + \varepsilon_{4+2\mu+2\nu} + \bar{\partial}_z \varepsilon_\alpha}{\phi_{2+\mu+\nu}(\rho^2)^{2n}}. \]

And a similar formula holds for the

\[\bar{\partial}_z \left(\sum_{\mu, \nu} \frac{\varepsilon_{3+2\mu+2\nu}}{\rho^2(\rho^2+\mu+\nu)} C_{(q-1)\mu\nu} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) \right) \]

term.

For \(\nu > 0 \) we have \(C_{q\mu\nu} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) = C_{q\mu\nu}(\alpha_\epsilon, \beta) = 0 \) near the boundary diagonal, and for \(\nu = 0 \) we have

\[(3.3)\]

\[C_{q\mu0} \left(\alpha^0, \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) - C_{q\mu0}(\alpha_\epsilon, \beta) = \frac{\varepsilon_2}{\phi_{1+\mu}(\rho^2)^{n-1-\mu}}. \]
and thus

\[
\tilde{\partial}_z \left(C_{q \mu 0} \left(\alpha^\gamma \frac{\partial \rho^2 + \varepsilon_2}{\rho^2} \right) - C_{q \mu 0}(\alpha, \beta) \right) = \frac{\varepsilon_1}{\phi_{\alpha^\mu}^{1+n}} + \frac{\varepsilon_3 + \varepsilon_2 \wedge \tilde{\partial}r_\alpha}{\phi_{\alpha^\mu}^{2+n}} + \frac{\varepsilon_3}{\phi_{\alpha^\mu}^{1+n}}.
\]

An analogous formula holds for

\[
\tilde{\partial}_z \left(C_{q \mu 0} \left(\alpha^\gamma \frac{\partial \rho^2 + \varepsilon_3}{\rho^2} \right) - C_{q \mu 0}(\alpha, \beta) \right)
\]

(3.2) can thus be written

\[
\Omega_q(\beta) = \Omega_q(\alpha) + (-1)^{q+1} \tilde{\partial}_z C_q(\alpha, \beta) + \tilde{\partial}_z C_{q-1}(\alpha, \beta) + \varepsilon_{2-2n} + \sum_{\tau=0}^{n} \frac{\varepsilon_{3+2\tau}}{\phi^{1+n} \rho^{2n}} + \frac{\varepsilon_{4+2\tau} \wedge \tilde{\partial}r_\alpha}{\phi^{3+n} \rho^{2n}} + R_1 \frac{\varepsilon_{5+2\tau}}{\phi^{4+n} (\rho^2)^{n+1}}.
\]

Thus, after integrating by parts we obtain

\[
\int_{\partial D_\varepsilon} f \wedge B_q^\varepsilon = \int_{\partial D_\varepsilon} f \wedge \Omega_q(\alpha) + \int_{\partial D_\varepsilon} \tilde{\partial} f \wedge C_q^\varepsilon + \tilde{\partial}_z \int_{\partial D_\varepsilon} f \wedge C_{q-1}^\varepsilon + \int_{\partial D_\varepsilon} f \wedge \varepsilon_{2-2n} + \sum_{\tau=0}^{n} \int_{\partial D_\varepsilon} f \wedge \left(\frac{\varepsilon_{3+2\tau}}{\phi^{1+n} \rho^{2n}} + R_1 \frac{\varepsilon_{5+2\tau}}{\phi^{4+n} (\rho^2)^{n+1}} \right)
\]

We now replace all occurrences of \(\rho^2 \) in the denominators by \(P_\gamma \), since the two are equal on \(\partial D_\varepsilon \), and then we change the boundary integrals to volume integrals by Stokes's Theorem:

\[
\int_{\partial D_\varepsilon} f \wedge B_q^\varepsilon = \int_{D_\varepsilon} \tilde{\partial} f \wedge \Omega_q(\alpha) + (-1)^q \int_{D_\varepsilon} \tilde{\partial} f \wedge \tilde{\partial}_z \Omega_q(\alpha) + (-1)^{q+1} \int_{D_\varepsilon} \tilde{\partial} f \wedge \tilde{\partial}_z C_q^\varepsilon
\]

\[
+ \int_{D_\varepsilon} \tilde{\partial} f \wedge \tilde{\partial}_z C_{q-1}^\varepsilon + (-1)^q \tilde{\partial}_z \int_{D_\varepsilon} f \wedge \tilde{\partial}_z C_{q-1}^\varepsilon + \int_{D_\varepsilon} \tilde{\partial} f \wedge \varepsilon_{2-2n}
\]

\[
+ \int_{D_\varepsilon} f \wedge \varepsilon_{1-2n} + \sum_{\tau=0}^{n} \int_{D_\varepsilon} \tilde{\partial} f \wedge \left(\frac{\varepsilon_{3+2\tau}}{\phi^{1+n} P_\gamma} + R_1 \frac{\varepsilon_{5+2\tau}}{\phi^{4+n} P_\gamma^{n+1}} \right)
\]

\[
+ \sum_{\tau=0}^{n} \int_{D_\varepsilon} f \wedge \left(\frac{\varepsilon_{2+2\tau}}{\phi^{1+n} P_\gamma} + R_1 \frac{\varepsilon_{3+2\tau}}{\phi^{3+n} P_\gamma} + \frac{\varepsilon_{4+2\tau}}{\phi^{3+n} P_\gamma^{n+1}} + \frac{\varepsilon_{5+2\tau}}{\phi^{4+n} P_\gamma^{n+1}} + \frac{\varepsilon_{6+2\tau}}{\phi^{5+n} P_\gamma^{n+2}} + R_1 \frac{r_\gamma^\varepsilon \varepsilon_{3+2\tau}}{\phi^{3+n} P_\gamma^{n+1}} \right)
\]

\[
+ R_2 \frac{\varepsilon_{5+2\tau}}{\phi^{4+n} P_\gamma^{n+1}} + R_1 \frac{\varepsilon_{6+2\tau}}{\phi^{5+n} P_\gamma^{n+2}} + R_1 \frac{r_\gamma^\varepsilon \varepsilon_{5+2\tau}}{\phi^{5+n} P_\gamma^{n+2}} \right).
\]
Inserting this expression of the boundary integral into (3.1), and using our notation of operators of a certain type, we can write

\[f(z) = (-1)^q \int_{D_\varepsilon} \partial f \wedge \Omega_q(\alpha) + \int_{D_\varepsilon} \partial f \wedge \Omega_q(\alpha) + (-1)^{q+1} \int_{D_{\varepsilon}} \partial f \wedge \partial \zeta_{\Omega} \]

\[- \int_{D_\varepsilon} \partial f \wedge B_{q-1} + \partial_z \left((-1)^q \int_{D_\varepsilon} f \wedge \partial \zeta_{C_{q-1}} - \int_{D_\varepsilon} f \wedge B_{q-1} \right) \]

\[+ (f, \mathcal{E}_{1-2n}) + \left(f, \mathcal{A}_{(-1,1)} \right) + (\partial f, \mathcal{E}_{2-2n}) + \left(\partial f, \mathcal{A}_{(0,2)} \right) \]

The rest of the proof follows as in [6] to obtain a rearrangement of the terms, and we arrive at the form of the representation in our theorem. □

4. Cancellation of singularities

Lemma 4.1.

\[\frac{r_\varepsilon}{\gamma} \in C^1(D_\varepsilon) \]

with \(C^1 \)-estimates independent of \(\varepsilon \).

Proof. Since \(r_\varepsilon \to r \), we show that

\[\frac{r}{\gamma} \in C^1(D) \]

Outside of a neighborhood of any critical point of \(r \), the result is obvious. We denote the critical points of \(r \) by \(p_1, \ldots, p_k \), and take \(\varepsilon \) small enough so that in each

\[U_{2\varepsilon}(p_j) = \{ \zeta : D \cap |\zeta - p_j| < 2\varepsilon \} \]

for \(j = 1, \ldots, k \), there are coordinates \(u_{j1}, \ldots, u_{jm}, v_{jm+1}, \ldots, v_{j2n} \) such that

\[r(\zeta) = u_{j1}^2 + \cdots + u_{jm}^2 - v_{jm+1}^2 - \cdots - v_{j2n}^2 \]

with \(u_{j\alpha}(p_j) = v_{j\beta}(p_j) = 0 \) for all \(1 \leq \alpha \leq m \) and \(m + 1 \leq \beta \leq 2n \), from the Morse Lemma.

In these coordinates

\[\frac{r(\zeta)}{\gamma(\zeta)} = \frac{u_{j1}^2 - v_{j1}^2}{\sqrt{u_{j1}^2 + v_{j1}^2}} \]

where \(u_{j1}^2 = u_{j1}^2 + \cdots + u_{jm}^2 \) and \(v_{j1}^2 = v_{jm+1}^2 + \cdots + v_{j2n}^2 \).

It is then easy to see \(r(\zeta)/\gamma(\zeta) \) is in \(C^1 \) by differentiating with respect to the given coordinates. □

Theorem 4.2.

\[T_q^\varepsilon = E_{1-2n} + A_{q}^\varepsilon \]

Proof. The proof is a direct result of the operators which make up \(T_q^\varepsilon \). In particular, the kernels \(\mathcal{L}_q^\varepsilon \) and \(\mathcal{L}_{q-1}^\varepsilon \) are sums of terms of the form

\[R_1(\zeta) \frac{E_1}{\phi_{e}^{p_{\mu+1}}} \frac{1}{P_{e}^{p_{\mu-1}}}, \quad \mu \geq 0 \]

and if \(X \) is an arbitrary vector field in either \(\zeta \) or \(z \), we use

\[XP_{e} = E_{1,0} + \gamma E_{0,0} + \gamma^* E_{0,0} \]
to calculate derivatives of the kernels (4.2). (4.3) follows from Lemma 4.1 and from the property
\[\frac{r}{\gamma} = \gamma \mathcal{E}_{0,0}, \]
which also holds by the proof of Lemma 4.1. \(□\)

The proof of the next theorem will take up the bulk of this section. If one calculates the type of the operators associated with the operator \(P_\epsilon\), as we did in Theorem 4.2, just by looking at two vector fields operating on the kernels \(L_{\epsilon-1}\), the conclusion would be that \(P_\epsilon\) is an operator of double type \((-1, 0)\). However, the combination of the two terms involved in \(P_\epsilon\) cancels one order of singularity in the kernels and thus leads to better mapping properties. We shall prove the

Theorem 4.3.
\[P_\epsilon = \frac{1}{\gamma} A_{(-1,1)}^\epsilon + \frac{1}{\gamma} A_{(-1,1)}^\epsilon. \]

The following lemma follows as in the smooth case (see [6]).

Lemma 4.4.
\[\phi_\epsilon - \phi_\epsilon^* = \mathcal{E}_3. \]

For all \(\epsilon\) sufficiently small, we work in coordinate patch near a boundary point of \(D\) and define orthogonal frame of (1, 0)-forms on a neighborhood \(U \cap D_\epsilon\) with \(\omega_1^\epsilon, \ldots, \omega_n^\epsilon\), where \(\partial r_\epsilon = \gamma \omega_1^\epsilon\) as the orthogonal frame, and \(L_1^\epsilon, \ldots, L_n^\epsilon\) comprising the dual frame. These operators refer to the variable \(\zeta\). When they are to refer to the variable \(z\), they will be denoted by \(\Theta_j^\epsilon\) and \(\Lambda_j^\epsilon\), respectively.

Proposition 4.5.
\[
i) \quad \gamma \Lambda_\epsilon^\epsilon P_\epsilon = -2 \phi_\epsilon^* + \frac{\gamma}{\gamma} (\mathcal{E}_{0,0} P_\epsilon + \mathcal{E}_{2,0}) + \mathcal{E}_{2,0} \\
ii) \quad \gamma^* L_\epsilon^\epsilon P_\epsilon = -2 \phi_\epsilon^* + \frac{\gamma^*}{\gamma} (\mathcal{E}_{0,0} P_\epsilon + \mathcal{E}_{2,0}) + \mathcal{E}_{2,0}
\]

Proof. We follow the proof of Proposition 2.18 in [5]. We prove i) since ii) is a consequence of i).

We have
\[\Lambda_\epsilon^\epsilon P_\epsilon = \Lambda_\epsilon \rho^2 + 2 \frac{r_\epsilon^*}{\gamma} - \frac{1}{\gamma} \mathcal{E}_{0,0} \frac{r_\epsilon^* r_\epsilon^*}{\gamma \gamma^*}. \]

We fix the point \(\zeta\) and choose local coordinates \(z^\epsilon\) such that
\[dz_j^\epsilon(\zeta) = \Theta_j^\epsilon(\zeta). \]

Working in a neighborhood of a singularity in the boundary and using the coordinates in (4.4), we see \(\frac{\partial}{\partial z_n}\) is a combination of derivatives with coefficients of the form \(\xi_0(\zeta)\), while \(\Lambda_n\) is a combination of derivatives with coefficients of the form \(\xi_0(z)\), where \(\xi_0\) is defined in (2.2). We have \(\Lambda_n - \frac{\partial}{\partial z_n}\) is a sum of terms of the form
\[(\xi_0(z) - \xi_0(\zeta)) \Lambda^\epsilon = \mathcal{E}_{1,-1} \Lambda^\epsilon, \]
where Λ^r denotes a first order differential operator, and the last line follows from

$$\frac{1}{\gamma(\zeta)} - \frac{1}{\gamma(z)} = \frac{\gamma(z) - \gamma(\zeta)}{\gamma(\zeta)\gamma(z)}$$

$$= \frac{1}{\gamma(z)} \frac{\gamma^2(z) - \gamma^2(\zeta)}{\gamma(\zeta)(\gamma(\zeta) + \gamma(z))}$$

$$= \frac{1}{\gamma(z)} \frac{\xi_1(\zeta)E_1}{\gamma(\zeta)(\gamma(\zeta) + \gamma(z))}$$

$$\leq \frac{1}{\gamma(z)} \frac{E_{1,0}}{\gamma(\zeta)}$$

$$= \epsilon_{1,-2}.$$

We note that $\Theta^\epsilon_j = \Theta_j |_{D^\epsilon}$, and therefore we will suppress the ϵ superscript in the variable z^ϵ_n as well as in the differential operators denoted by Λ. We have

$$\rho^2 = R^2 + \epsilon_3$$

and

$$\Lambda_n \rho^2 = \frac{\partial}{\partial z_n} R^2 + \epsilon^*_{2,-1}$$

$$= -2(\zeta_n - \tau_n) + \epsilon^*_{2,-1},$$

where the last line follows from $g_{jk} = 2\delta_{jk}$ due to the orthogonality of the Θ_j.

Finally, this gives

$$\Lambda_n P = -2(\zeta_n - \tau_n) + 2\frac{r^*_e}{\gamma} - \frac{1}{\gamma^*} \epsilon_{0,0} \epsilon_{2,0} + \epsilon^*_{2,-1}$$

(4.4)

$$= -2(\zeta_n - \tau_n) + 2\frac{r^*_e}{\gamma} - \frac{1}{\gamma^*} (\epsilon_{0,0} P + \epsilon_{2,0}) + \epsilon^*_{2,-1}.$$

We compare (4.4) to ϕ_e by calculating the Levi polynomial, $F_e(\zeta, z)$ in the above coordinates:

$$\overrightarrow{\phi_e}(\zeta, z) = \overrightarrow{F_e}(\zeta, z) - r_e(\zeta) + \epsilon_2$$

(4.5)

$$= \gamma(\zeta)(\zeta_n - \tau_n) - r_e(\zeta) + \epsilon_2.$$

i) then easily follows. \qed

Proposition 4.6.

$$\gamma \gamma^* \left(2P - \sum_{j<n} |L_j \rho^r_j|^2 \right) = 4|\phi_e|^2 + r_e(\zeta) \epsilon_2 + \epsilon_{3,1} + \epsilon^*_{3,1} + \frac{\gamma^*}{\gamma} \epsilon_{4,0}.$$

(4.6)

Proof. We use coordinates as in the proof of Proposition 4.5. In particular, we write

$$L_j = \frac{\partial}{\partial \zeta_j} + \epsilon_{1,-1} \Lambda.$$
Thus,
\[|L_j \rho|^2 |^2 = \left| \frac{\partial}{\partial \zeta_j} \rho^2 \right|^2 + \mathcal{E}_{3,-1} + \mathcal{E}_{4,-2} \]
\[= 4|\zeta_j - z_j|^2 + \mathcal{E}_{3,-1} + \mathcal{E}_{4,-2}. \]
We can then write
\[2P_e - \sum_{j<n} |L_j \rho|^2 = 4|\zeta_n - z_n|^2 + 4 \frac{r^*_e r^*_e}{\gamma \gamma} + \mathcal{E}_{3,-1} + \mathcal{E}_{4,-2}. \]
Furthermore, from \((4.5)\) we have
\[\phi_e \bar{\phi}_e = (\gamma(\zeta_n - z_n) - r_e(\zeta) + \mathcal{E}_2) \phi_e \]
\[= \gamma(\zeta_n - z_n) [\gamma(\zeta_n - z_n) - r_e(\zeta) + \mathcal{E}_2] - r_e(\xi) \phi_e + \gamma \mathcal{E}_3 \phi_e \]
\[= \gamma \gamma^* |\zeta_n - z_n|^2 - r_e(\xi) [\gamma(\zeta_n - z_n) + \mathcal{E}_3] + r_e(\xi) \mathcal{E}_2 + \gamma \mathcal{E}_{3,0}, \]
where we use \(\gamma(\xi) = \gamma(z) + \mathcal{E}_{1,0} \) in the last step.

From Lemma \((4.4)\) we have
\[\gamma(\zeta_n - z_n) + \mathcal{E}_3 = \gamma(\zeta_n - z_n) + \mathcal{E}_3 \]
\[= \gamma(\zeta_n - z_n) + \gamma^* (\zeta_n - z_n) - r_e(z) + \mathcal{E}_2 \]
\[= -r_e(z) + \mathcal{E}_2, \]
and so we can write
\[\phi_e \bar{\phi}_e = \gamma \gamma^* |\zeta_n - z_n|^2 + r_e r^*_e + r_e \mathcal{E}_2 + \gamma \mathcal{E}_{3,0}. \]
\((4.6)\) now easily follows. \(\square\)

From
\[(4.7) \quad A_{q=0}^e = \frac{1}{\phi_e^{\mu+1} P_{e}^{\mu-n-1}} \eta r_e \wedge \rho^2 \wedge (\bar{\eta} \partial_{\zeta} r_e)^\mu \wedge (\bar{\eta} \partial_{\zeta} \rho^2)_{n-q-2} \wedge (\bar{\eta} \partial_{\zeta} \rho^2)^q + \mathcal{E}_0. \]
we have
\[\mathcal{L}_q = \sum_{\mu=0}^{n-q-2} \left(g_{q\mu} C_{q\mu}^e + \frac{R_1(\zeta) \mathcal{E}_2}{\phi_e^{\mu+1} P_{e}^{\mu-n-1}} \right) + \mathcal{E}_0, \]
where
\[(4.8) \quad C_{q\mu}^e = \sum_{|Q|=q} \frac{\tau_{j} \rho^2}{\phi_e^{\mu+1} P_{e}^{\mu-n-1}} \bar{\phi}_e Q \wedge \Theta^Q \]
and \(g_{q\mu}(\zeta) \) is a real valued function of the form \(R_1(\zeta) \sigma_{q\mu}(\zeta) \) for a real valued function \(\sigma_{q\mu} \). It follows that
\[\mathcal{Q}_{q+1}^e = \sum_{\mu=0}^{n-q-2} \left[g_{q\mu}(\zeta) \partial_{\zeta} \partial_{\zeta} C_{q\mu}^e - g_{q\mu}(z)(\partial_{\zeta} \partial_{\zeta} C_{q\mu}^e)^* \right] + \frac{1}{\gamma^e} A_{1}^e. \]

Proposition 4.7. Let \(C_{q\mu}^e \) be given by \((4.8)\). Then
\[g_{q\mu}(\zeta) \partial_{\zeta} \partial_{\zeta} C_{q\mu}^e - g_{q\mu}(z)(\partial_{\zeta} \partial_{\zeta} C_{q\mu}^e)^* = \frac{1}{\gamma^e} A_{(-1,1)}^e + \frac{1}{\gamma^e} A_{(-1,1)}^e. \]
We write
\[\partial_\zeta \partial_z C_{q\mu} = \sum_{|K|=q+1} A^{\epsilon}_{KL} \partial z^K \wedge \Theta^L \]
and
\[(\partial_\zeta \partial_z C_{q\mu})^* = \sum_{|K|=q+1} A^{\epsilon\mu}_{KL} \omega^K \wedge \Theta^L. \]

To prove Proposition 4.7, we show
\[\gamma(\zeta) A^{\epsilon\mu}_{KL} - \gamma(z) A^{\epsilon\mu*}_{KL} = \frac{1}{\gamma} A^\epsilon_{(-1,1)} + \frac{1}{\gamma^*} A^\epsilon_{(-1,1)}. \]

With
\[M^{\epsilon\mu}_{kj} = \frac{1}{\phi^e_{k+1}} \Lambda_k \left(\frac{T_j \rho^2}{P_{n-\mu-1}} \right), \]
and using \(A_k \phi = \varepsilon_{1,0} \), we have
\[A^{\epsilon\mu}_{KL} = - \sum_{|Q|=q, j<n} \varepsilon^{L,\varepsilon}_{mK} L_m M^{\epsilon\mu}_{kj} + A^\epsilon_{(-1,1)} + \frac{1}{\gamma} A^\epsilon_{(0,2)}, \]
where \(K, L, \) and \(Q \) are multi-indices, and the symbol \(\varepsilon^L_{kQ} \) is defined by
\[\varepsilon^L_{kQ} = \begin{cases} 0 & \text{if } \{k\} \cup Q \neq L \\ 1 & \text{if } kQ \text{ differs from } L \text{ by an even permutation} \\ -1 & \text{if } kQ \text{ differs from } L \text{ by an odd permutation}. \end{cases} \]

Lemma 4.8.

i) \[M^{\epsilon\mu}_{kj} = \frac{1}{\phi^e_{k+1}} \left[\frac{-2\delta_{kj}}{P_n^{n-\mu-1}} + \frac{n-\mu-1}{P_n^{n-\mu}} (L_k \rho^2) (T_j \rho^2) \right] + \text{error} \quad k < n \]

ii) \[M^{\epsilon\mu}_{nj} = \frac{2(n-\mu-1)\varepsilon_{j}}{\phi^e_{n} P_n^{n-\mu}} + \text{error} \quad j < n, \]

where "error" refers to error terms with the property that any derivative with respect to the \(\zeta \) variable leads to kernels of the form
\[\frac{1}{\gamma} A^\epsilon_{(-1,1)} + \frac{1}{\gamma^*} A^\epsilon_{(-1,1)} + \frac{1}{\gamma^2} A^\epsilon_{(0,2)}. \]

Proof. We will prove ii), the proof of i) following similar arguments, and being easier to prove.

It is straightforward to check with the aid of coordinates chosen as in Proposition 4.6 that
\[T_j \rho^2 = (\zeta_j - z_j) + \varepsilon_{2,-1}. \]
When it is not necessary to refer to the special coordinates in Proposition 4.6, we can also write $\nabla_j\rho^2 = \mathcal{E}_1$. We will also refer to the calculation
\[
\Lambda_n \nabla_j \rho^2 = \nabla_j \Lambda_n \rho^2 = \nabla_j \left(\left(\frac{\partial}{\partial \zeta_n} + \mathcal{E}_{1,1} \Lambda \right) R^2 \right) + \mathcal{E}_{2,0}
\]
\[
= \nabla_j \left(-(\zeta_n - \bar{z}_n) + \mathcal{E}_{2,1} \right) + \mathcal{E}_{2,0}
\]
\[
= - \left(\frac{\partial}{\partial \zeta_n} + \mathcal{E}_{1,1} \Lambda \right) (\zeta_n - \bar{z}_n) + \mathcal{E}_{1,1}
\]
for $j < n$, below.

We have
\[
\mathcal{M}_{\eta_j}^{\mu} = \frac{1}{\phi^{*\mu+1}_\rho} \Lambda_n \left(\frac{\nabla_j \rho^2}{\phi^{*\mu+1}_\rho} \right)
\]
\[
= \frac{\mathcal{E}_{1,-1} + \mathcal{E}_{1,-1}}{\phi^{*\mu+1}_\rho} - (n - \mu - 1) \frac{\nabla_j \rho^2}{\phi^{*\mu+1}_\rho} \Lambda_n \phi^{*\mu+1}_\rho
\]
\[
= \frac{\mathcal{E}_{1,-1} + \mathcal{E}_{1,-1}}{\phi^{*\mu+1}_\rho} - \frac{1}{\gamma} \left(\frac{\mathcal{E}_{0,0} \phi^{*\mu+1}_\rho + \mathcal{E}_{2,0}}{\phi^{*\mu+1}_\rho} \right)
\]
\[
= \frac{1}{\gamma} \left(\frac{2(n - \mu - 1) \nabla_j \rho^2}{\phi^{*\mu+1}_\rho} + \mathcal{E}_{1,-1} + \mathcal{E}_{1,-1} \right) + \frac{\mathcal{E}_{3,0}}{\phi^{*\mu+1}_\rho} + \frac{\mathcal{E}_{3,0}}{\phi^{*\mu+1}_\rho}
\]
from which $ii)$ easily follows. We used Proposition 4.5 in the third equality above.

Applying a differential operator with respect to ζ to the last three terms in (4.9) and noting the types of kernels which arise finishes the proof. \hfill \Box

We start with the case $\mu = 0$ and compute $L_m \mathcal{M}_{k,j}^0$.

Lemma 4.9. Let $m, k, j < n$. Then

i) $L_m \mathcal{M}_{k,j}^0 = \frac{2(n - 1)}{\phi_{m+1}\rho} (\delta_{kj} L_m \rho^2 + \delta_{mj} L_k \rho^2) - \frac{n(n - 1)}{\phi_{m+1}\rho} (L_m \rho^2)(L_k \rho^2)(\nabla_j \rho^2)
\]
\[
+ \frac{1}{\gamma} \mathcal{A}_{(-1,1)}^* + \frac{1}{\gamma^2} \mathcal{A}_{(0,2)}^* + \frac{1}{\gamma} \mathcal{A}_{(-1,1)}^*
\]

ii) $L_m \mathcal{M}_{k,j}^0 = \frac{2(n - 1)}{\gamma} \left(\frac{2 \delta_{mj}}{P_n} - \frac{n}{P_{n+m}} (L_m \rho^2)(\nabla_j \rho^2) \right) + \frac{1}{\gamma^2} \mathcal{A}_{(-1,1)}^* + \frac{1}{\gamma} \mathcal{A}_{(-1,1)}^*
\]

iii) $L_m \mathcal{M}_{k,j}^0 = - \frac{2 \delta_{kj}}{\phi_{m+1}\rho} + \frac{(n - 1)(L_k \rho^2)(\nabla_j \rho^2)}{\phi_{m+1}\rho} + \frac{2}{\gamma^2} \mathcal{A}_{(-1,1)}^* + \frac{1}{\gamma} \mathcal{A}_{(-1,1)}^*
\]
\[
+ \frac{1}{\gamma^2} \mathcal{A}_{(-1,1)}^* + \frac{1}{\gamma} \mathcal{A}_{(-1,1)}^* + \frac{1}{\gamma} \mathcal{A}_{(0,2)}^*
\]

iv) $L_m \mathcal{M}_{k,j}^0 = \frac{4n(n - 1)}{\gamma \phi_{m+1}\rho} + \frac{\phi_{m+1}\rho}{P_n} \nabla_j \rho^2 + \frac{1}{\gamma^2} \mathcal{A}_{(-1,1)}^* + \frac{1}{\gamma \phi_{m+1}\rho} \mathcal{A}_{(-1,1)}^*$.
Proof. i). We use

\[L_m \frac{1}{\phi_e P_{e}^{n-1}} - \frac{1}{\phi_e P_{e}} L_m \phi_e - (n - 1) \frac{1}{\phi_e P_{e}} L_m P_e \]

\[= -(n - 1) L_m \rho^2 + \frac{1}{\gamma} A_{(-1,1)} \]

since for \(m < n \) we have \(L_m P_e = \varepsilon_{0,0}(P_e + \varepsilon_2) \), and

\[L_m \left(\frac{1}{\phi_e P_{e}^n} (L_k \rho^2)(L_j \rho^2) \right) = \frac{1}{\phi_e P_{e}^n} (L_m L_k \rho^2)(L_j \rho^2) + \frac{1}{\phi_e P_{e}^n} (L_k \rho^2)(L_m L_j \rho^2) \]

\[+ \frac{n}{\phi_e P_{e}^{n+1}} (L_k \rho^2)(L_j \rho^2)(L_m P_e) \]

An easy calculation gives

\[L_m L_k \rho^2 = L_m \left(\zeta_k - z_k + \varepsilon_{2,1} \right) \]

\[= \left(\frac{\partial}{\partial \zeta_m} + \varepsilon_{1,1} \Lambda \right) \left(\zeta_k - z_k \right) + L_m (\varepsilon_{2,1}) \]

\[= \varepsilon_{1,1} + \varepsilon_{2,2} \]

\[L_m L_j \rho^2 = 2 \delta_{m_j} + \varepsilon_{1,1} \]

\[L_m P_e = L_m \rho^2 + \frac{\varepsilon_{0,0}}{\gamma} (P_e + \varepsilon_2) \]

so that the right hand side of (4.11) becomes

\[2 \delta_{m_j} \frac{(L_k \rho^2)(L_j \rho^2)(L_m \rho^2)}{\phi_e P_{e}^{n+1}} \]

\[- \frac{n}{\phi_e P_{e}^{n+1}} (L_k \rho^2)(L_j \rho^2)(L_m \rho^2) + \frac{\varepsilon_{2,1} + \varepsilon_{3,2}}{\phi_e P_{e}^{n-1}} + \frac{\varepsilon_{3,1} + \varepsilon_{4,1}}{\phi_e P_{e}^{n-1}} + \frac{\varepsilon_3}{\phi_e P_{e}^{n-1}} \]

(4.10), and (4.12) together with the form of \(M_{k_j}^{(0)} \) from Lemma 4.8 prove part i).

\[ii) \] We have

\[L_m \left(\frac{1}{\gamma (\zeta)} \frac{2(n - 1) L_j \rho^2}{P_{e}^n} \right) = \frac{2(n - 1)}{\gamma} \frac{L_m L_j \rho^2}{P_{e}^n} - \frac{2n(n - 1)}{\gamma} \frac{L_j \rho^2}{P_{e}^{n+1}} L_m P_e + \frac{1}{\gamma^2} \frac{\varepsilon_1}{P_{e}^n} \]

\[= \frac{4(n - 1)}{\gamma} \frac{\delta_{m_j}}{P_{e}^n} - \frac{2n(n - 1)}{\gamma} \frac{L_j \rho^2}{P_{e}^{n+1}} L_m \rho^2 \]

\[+ \frac{1}{\gamma^2} \frac{\varepsilon_1}{P_{e}^n} + \frac{1}{\gamma^2} \frac{\varepsilon_{3,0}}{P_{e}^{n+1}} \]

as in the proof of i). Taking into consideration the error terms from Lemma 4.8 we conclude ii).
iii).

\[
L_n \left(\frac{-2\delta_{kj}}{\phi_e P_n^{n-1}} \right) = \frac{2\delta_{kj}}{\phi_e P_n^{n-1}} L_n \phi_e + 2(n-1) \frac{\delta_{kj}}{\phi_e P_n^{n-1}} L_n P_e
\]

\[
= \frac{2\delta_{kj}}{\phi_e P_n^{n-1}} \left(-\gamma(\zeta) + \mathcal{E}_1\right)
\]

\[
+ 2(n-1) \frac{2\delta_{kj}}{\phi_e P_n^{n-1}} \left(\frac{-2\phi_e^n}{\gamma^*} + \frac{1}{\gamma} \left(\varepsilon_{0,0} P_e + \varepsilon_{2,0}\right) + \frac{\varepsilon_{2,0}}{\gamma^*} \right)
\]

\[
= -\gamma \frac{2\delta_{kj}}{\phi_e P_n^{n-1}} - \frac{1}{\gamma} \frac{4(n-1)\delta_{kj} \phi_e^*}{P_n^{n-1}} + \frac{1}{\gamma} \varepsilon_{1(-1,1)} + \frac{1}{\gamma^*} \varepsilon_{1(-1,1)}.
\]

Since

\[
L_n L_k \rho^2 = L_k L_n \rho^2 + [L_n, L_k] \rho^2
\]

\[
= L_k \left[\left(\frac{\partial}{\partial \zeta_n} + \varepsilon_{1,-1} \right) \rho^2 \right] + \varepsilon_{1,-1}
\]

\[
= L_k \left(\varsigma_n - \varsigma_n + \varepsilon_{2,-1}\right) + \varepsilon_{1,-1}
\]

\[
= \left(\frac{\partial}{\partial \zeta_k} + \varepsilon_{1,-1} \right) \left(\varsigma_n - \varsigma_n\right) + \varepsilon_{1,-1} + \varepsilon_{2,-2}
\]

we have

\[
L_n \left(\frac{n-1}{\phi_e P_n^{n-1}} (L_k \rho^2)(\mathcal{L} j \rho^2) \right)
\]

\[
= \frac{n-1}{\phi_e P_n^{n-1}} (L_n \phi_e)(L_k \rho^2)(\mathcal{L} j \rho^2) - \frac{n(n-1)}{\phi_e P_n^{n+1}} (L_n P_e)(L_k \rho^2)(\mathcal{L} j \rho^2)
\]

\[
+ \frac{n-1}{\phi_e P_n^{n-1}} (L_n L_k \rho^2)(\mathcal{L} j \rho^2)
\]

\[
= \gamma \left[\frac{n-1}{\phi_e P_n^{n-1}} (L_k \rho^2)(\mathcal{L} j \rho^2) + \frac{\varepsilon_3}{\phi_e P_n^{n-1}} - \frac{n(n-1)}{\phi_e P_n^{n+1}} (L_k \rho^2)(\mathcal{L} j \rho^2) \left(-2\phi_e^n \gamma^* + \frac{1}{\gamma} \varepsilon_{0,0} P_e + \varepsilon_{2,0} \right) + \frac{\varepsilon_{2,-1} + \varepsilon_{3,-2}}{\phi_e P_n^2} \right]
\]

\[
= \gamma \left[\frac{n-1}{\phi_e P_n^{n-1}} (L_k \rho^2)(\mathcal{L} j \rho^2) + \frac{1}{\gamma} \frac{2n(n-1)(L_k \rho^2)(\mathcal{L} j \rho^2) \phi_e^*}{P_n^{n+1}} \right]
\]

\[
+ \frac{1}{\gamma} \varepsilon_{1(-1,1)} + \frac{1}{\gamma^*} \varepsilon_{1(-1,1)} + \frac{1}{\gamma^2} A_{(0,2)}.
\]

Putting these calculations together and including the error terms from Lemma 4.8, we can prove iii).
iv). To prove iv) we calculate

\[
L_n \left(\frac{1}{\gamma(\zeta)} \frac{2(n-1)T_{ij} \rho^2}{P_e} \right) = - \frac{1}{\gamma^2} \frac{(n-1)T_{ij} \rho^2}{P_e} \frac{L_n \gamma}{P_n} + \frac{1}{\gamma} \frac{2(n-1) \gamma T_{ij} \rho^2}{P_e} \\
- \frac{1}{\gamma} \frac{2(n-1) \gamma T_{ij} \rho^2}{P_e^{n+1}} L_n P_e \\
= - \frac{1}{\gamma} \frac{2(n-1) \gamma T_{ij} \rho^2}{P_e^{n+1}} \left(-2 \frac{\phi^*}{\gamma^2} + \frac{1}{\gamma} (E_{0,0} P_e + E_{2,0} + \frac{1}{\gamma} P e) \right) \\
+ \frac{1}{\gamma} \frac{E_1}{P_e} \\
= - \frac{4n(n-1)}{\gamma \gamma^*} \frac{\phi^*}{P_e^{n+1}} T_{ij} \rho^2 + \frac{1}{\gamma^2} A^t_{(-1,1)} + \frac{1}{\gamma \gamma^*} A^t_{(-1,1)}.
\]

The error terms may also be absorbed into the terms of the last calculation.

□

Proof of Proposition 4.7. To compute \(A^0_{KL} \) we follow (i) and consider four cases:

Case 1. \(n \in K \) and \(n \in L \).

\[
A^0_{KL} = \sum_{j,m<n} \varepsilon^j_{mK} L_m M^0_{nj} \\
A^*_{KL} = \sum_{j,m<n} \varepsilon^j_{mK} (L_j M^0_{nm})^*.
\]

By Lemma 4.9 ii),

\[
\gamma(\zeta) L_m M^0_{nj} - \gamma(z) (L_j M^0_{nm})^* = \frac{1}{\gamma} A^t_{(-1,1)} + \frac{1}{\gamma^*} A^t_{(-1,1)}.
\]

Case 2. \(n \notin K \) and \(n \notin L \). From \(ii \) (see also \(iii \))

\[
A^0_{KL} = - \sum_{j \in K \atop k \in L} \varepsilon^j_{kQ} \varepsilon^j_{K} L_n M^0_{kj} \\
A^*_{KL} = \sum_{j \in K \atop k \in L} \varepsilon^j_{kQ} \varepsilon^j_{L} (L_n M^0_{jk})^*.
\]

We refer to Lemma 4.9 iii) to calculate

\[
\gamma(\zeta) L_n M^0_{kj} - \gamma(z) (L_n M^0_{jk})^*.
\]

We have

\[
(4.13) \quad \frac{\gamma^2}{\phi_e^2 P_e^{n-1}} - \frac{(\gamma^*)^2}{\phi_e^{n-1}} = \frac{\gamma^2}{P_e^{n-1}} \left(\frac{1}{\phi_e^2} - \frac{1}{\phi_e^{n-1}} \right) + \frac{\varepsilon_{1,1}}{\phi_e P_e^{n-1}} \\
= \frac{\gamma^2}{P_e^{n-1}} \frac{(\phi_e + \phi_e^*) \varepsilon_{3}}{\phi_e (\phi_e)^2} + \frac{A^t_{(0,1)}}{\phi_e (\phi_e)^2}.
\]
Furthermore,

\begin{align*}
(4.14) \quad \gamma(\zeta) \frac{\left(L_k \rho^2 \right) \left(\bar{L}_j \rho^2 \right)}{\phi_e P_e} - \gamma(z) \frac{\left(\left(L_j \rho^2 \right) \left(\bar{L}_k \rho^2 \right) \right)}{\phi_e P_e}^* \\
&= \gamma \left(\frac{\left(L_k \rho^2 \right) \left(\bar{L}_j \rho^2 \right)}{\phi_e P_e} - \frac{\left(\left(L_j \rho^2 \right) \left(\bar{L}_k \rho^2 \right) \right)}{\phi_e P_e}^* \right) + A^e_{(-1,1)} \\
&= \frac{E_{z,1}}{P_e} \left(\frac{1}{\phi_e} - \frac{1}{(\phi_e)^2} \right) + A^e_{(-1,1)} \\
&= A^e_{(0,1)} + A^e_{(-1,1)} \\
&= A^e_{(1,-1)},
\end{align*}

and

\begin{align*}
(4.15) \quad \frac{\gamma}{\gamma^*} \frac{\left(L_k \rho^2 \right) \left(\bar{L}_j \rho^2 \right)}{P_e+1} \frac{\phi_e^*}{\phi_e} - \gamma^* \frac{\left(\left(L_j \rho^2 \right) \left(\bar{L}_k \rho^2 \right) \right)}{P_e+1} \frac{\phi_e^*}{\phi_e}^* \\
&= \frac{E_{z,2}}{P_e+1} \left(\frac{\gamma}{\gamma^*} \frac{\phi_e^*}{\phi_e} - \frac{\gamma^*}{\gamma} \frac{\phi_e}{\phi_e} \right) \\
&= \frac{E_{z,2}}{P_e+1} \left(\frac{\phi_e^*}{\phi_e} - \frac{\phi_e}{\phi_e} + E_{1,-1} \frac{\phi_e^*}{\phi_e} + E_{1,-1} \frac{\phi_e}{\phi_e} \right) \\
&= \frac{E_{z,2}}{P_e+1} \left(\frac{\phi_e^* E_{1,3} + \phi_e E_{1,3}}{\phi_e \phi_e} \right) + \frac{1}{\gamma} A^e_{(-1,1)} + \frac{1}{\gamma^*} A^e_{(-1,1)} \\
&= \frac{1}{\gamma} A^e_{(-1,1)} + \frac{1}{\gamma^*} A^e_{(-1,1)}.
\end{align*}

Similarly,

\begin{align*}
(4.16) \quad \frac{\gamma}{\gamma^*} \frac{1}{P_e} \frac{\phi_e^*}{\phi_e} - \frac{1}{P_e} \frac{\phi_e^*}{\phi_e}^* \\
&= \frac{1}{\gamma} A^e_{(-1,1)} + \frac{1}{\gamma^*} A^e_{(-1,1)}.
\end{align*}

From the last three terms in Lemma 4.9 (iii) and (4.13), (4.14), (4.15), and (4.16), we conclude

\[\gamma(\zeta)L_n M^0_k - \gamma(z) \left(\left(L_n \rho^2 \right) \left(\bar{L}_m \rho^2 \right) \right)^* = \frac{1}{\gamma} A^e_{(-1,1)} + \frac{1}{\gamma^*} A^e_{(-1,1)}. \]

Case 3. \(n \notin K \) and \(n \in L \).

\[A^e_{KL} = -\varepsilon_{n,q}^L \sum_{j<n} \varepsilon_{n,K}^j \left(L_n M^0_{kj} \right) \]

\[(4.17) = -\varepsilon_{n,q}^L \sum_{j<n} \varepsilon_{K}^j L_j \rho^2 \frac{A(n-1) \phi_e^*}{\gamma^* P_e+1} + \frac{1}{\gamma} A^e_{(-1,1)} + \frac{1}{\gamma^*} A^e_{(-1,1)} \]

by Lemma 4.9 (iv).

Case 4. \(n \in K \) and \(n \notin L \). From (4.257)

\[A^e_{KL} = \varepsilon_{K,m}^L \sum_{k \in L} \varepsilon_{k,j}^L \sum_{j<n} L_j M^0_{kj} - \sum_{j \in L} \varepsilon_{k,m}^L \varepsilon_{n,M}^K L_n M^0_{kj}. \]
The second sum is \(\frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)} \) because

\[
L_k M_{mj}^0 = L_m M_{kj}^0 + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)}
\]

from Lemma 4.9 i). For the first sum we set \(m = j \) in Lemma 4.9 i), and use

\[
\sum_{j<n} L_j M_{kj}^0 = \frac{2n(n-1)}{\phi_e P^{n+1}} L_k \rho^2 - \frac{n(n-1)}{\phi_e P^{n+1}} \sum_{j<n} |L_j \rho^2|^2 + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)},
\]

the first two terms on the right of which can be written by Proposition 4.1 as

\[
\frac{n(n-1)}{\phi_e P^{n+1}} L_k \rho^2 \left(2P_e - \sum_{j<n} |L_j \rho^2|^2 \right) = \frac{4n(n-1)}{\gamma \gamma^*} \frac{|\phi_e|^2}{\phi_e P^{n+1}} L_k \rho^2 + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)}.
\]

This gives

\[(4.18) \quad A_{KL}^0 = \frac{4n(n-1)}{\gamma \gamma^*} \frac{|\phi_e|^2}{\phi_e P^{n+1}} \sum_{k<n} \varepsilon_{kj} L_k \rho^2 + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)}.\]

Case 3. \(n \notin K \) and \(n \in L \). Comparing (4.17) and (4.18) we obtain

\[
A_{KL}^0 = \varepsilon_{n} L_k^0 \frac{4n(n-1)}{\gamma \gamma^*} \frac{|\phi_e|^2}{\phi_e P^{n+1}} L_k \rho^2 + \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)},
\]

and

\[
(4.19) \quad \gamma(\zeta) A_{KL}^0 - \gamma(z)(A_{KL}^0)^* = \frac{1}{\gamma} A_{r(-1,1)} + \frac{1}{\gamma} A_{r(0,2)}.\]

Case 4. We can reduce it to Case 3 by

\[
\gamma(\zeta) A_{KL}^0 - \gamma(z)(A_{KL}^0)^* = -\left(\gamma(\zeta) A_{KL}^0 - \gamma(z)(A_{KL}^0)^* \right)^*.
\]

This also concludes the proof of Theorem 4.8. As an important corollary to theorems 4.2 and 4.3 we see if we compose the operator \(P^q \) with \(\gamma^2 \gamma^* \) or with \(\gamma(\gamma^*)^2 \), we obtain operators which are of type 1. This is the idea behind the next theorem which results from multiplying the basic integral representation Theorem 4.8 by an appropriate number of factors of \(\gamma \) and \(\gamma^* \). We can then let \(\epsilon \to 0 \) to obtain a representation on the domain \(D \).

For a given \(f \in L_0^0(D) \cap \text{Dom}(\tilde{\partial}^\gamma) \cap \text{Dom}(\tilde{\partial}^{\gamma^*}) \) we take a sequence \(\{ f_\epsilon \} \) which approaches \(f \) in the graph norm by Proposition 5.2. With the use of Theorem 5.3 we define operators \(T_\epsilon^q, S_\epsilon^q, \) and \(P_\epsilon^q \) so that we have the representation for each \(f_\epsilon \)

\[(4.19) \quad f_\epsilon(z) = T_\epsilon^q \tilde{\partial} f_\epsilon + S_\epsilon^q \tilde{\partial}^\gamma f_\epsilon + P_\epsilon^q f_\epsilon.
\]

We then define the operators \(T_\epsilon^q, S_\epsilon^q, \) and \(P_\epsilon^q \) to be such that \(\gamma^* T_\epsilon^q \gamma^2, \gamma^* S_\epsilon^q \gamma^2, \) and \(\gamma^* P_\epsilon^q \gamma^2 \) are the limit operators, as \(\epsilon \to 0 \), of \(\gamma^* T_\epsilon^q \gamma^2, \gamma^* S_\epsilon^q \gamma^2, \) and \(\gamma^* P_\epsilon^q \gamma^2 \), respectively, which exist by Proposition 2.8. We therefore obtain the
Theorem 4.10. For $f \in L^2_{(0,q)}(D) \cap \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)$,
\[
\gamma(z)^3 f(z) = \gamma^* T_q \bar{\partial} (\gamma^2 f) + \gamma^* S_q \bar{\partial}^* (\gamma^2 f) + \gamma^* P_q (\gamma^2 f) .
\]

5. Estimates

We define Z_1 operators to be those which take the form
\[
Z_1 = A_{(1,1)} + E_{1-2n} \circ \gamma ,
\]
and we write Theorem 4.10 as
\[
(5.1) \quad \gamma^3 f = Z_1 \gamma^2 \bar{\partial} f + Z_1 \gamma^2 \bar{\partial}^* f + Z_1 f .
\]

We define Z_j operators to be those operators of the form
\[
Z_j = Z_1 \circ \cdots \circ Z_1 .
\]

By applying Corollary 2.4 and Theorem 2.5 $n + 2$ times, we have the property
\[
Z_{n+2} : L^2(D) \to L^\infty(D).
\]

We now iterate (5.1) to get
\[
\gamma^{3j} f = (Z_1 \gamma^{3(j-1)+2} + Z_2 \gamma^{3(j-2)+2} + \cdots + Z_j \gamma^2) \bar{\partial} f
+ (Z_1 \gamma^{3(j-1)+2} + Z_2 \gamma^{3(j-2)+2} + \cdots + Z_j \gamma^2) \bar{\partial}^* f + Z_j f .
\]

Then we can prove

Theorem 5.1. For $f \in L^2_{(0,q)}(D) \cap \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)$, $q \geq 1$,
\[
\|\gamma^{3(n+2)} f\|_{L^\infty} \lesssim \|\gamma^2 \bar{\partial} f\|_{\infty} + \|\gamma^2 \bar{\partial}^* f\|_{\infty} + \|f\|_2 .
\]

References

[1] D. Ehsani and I. Lieb. L^p-estimates for the Bergman projection on strictly pseudoconvex non-smooth domains. Math. Nach., 281:913–1062, 2008.
[2] P. Greiner and E. M. Stein. Estimates for the $\bar{\partial}$-Neumann problem. Number 19 in Mathematical Notes. Princeton University Press, 1977.
[3] G. Henkin and A. Iordan. Compactness of the Neumann operator for hyperconvex domains with non-smooth B-regular boundary. Math. Ann., 307:151–168, 1997.
[4] G. Henkin and J. Leiterer. Theory of Functions on Complex Manifolds. Monographs in Math. Berkhäuser, Basel.
[5] I. Lieb and J. Michel. The Cauchy-Riemann complex, volume E 34 of Aspects of Mathematics. Vieweg, Wiesbaden, 2002.
[6] I. Lieb and R. Range. Integral representations and estimates in the theory of the $\bar{\partial}$-Neumann problem. Ann. Math., 123:265–301, 1986.
[7] R. M. Range. Holomorphic functions and integral representations in several complex variables, volume 108 of Graduate Texts in Mathematics. Springer, Berlin, 1986.