A curated binary pattern multitarget dataset of focused ATP-binding cassette transporter inhibitors

Sven Marcel Stefan 1,2,3,4, Patric Jan Jansson 3,5, Jens Pahnke 1,4,6,7 & Vigneshwaran Namasivayam 2,4 ✉

Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural patterns are of the highest importance for the drug discovery process as demonstrated by the novel drug discovery tool 'computer-aided pattern analysis' ('C@PA'). Here, we report a multitarget dataset of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design in general in terms of pharmacokinetics and pharmacodynamics.

Background & Summary

The superfamily of ABC transporters is of highest importance in terms of novel drug discovery, design, and development. ABC transporters are ubiquitously present in the human body 1–4, and their (co-)expression has broad implications in human diseases. These diseases include prevalent [e.g., Alzheimer’s disease (AD) 5,6, atherosclerosis 7, or cancer 8,9,10] and orphan [e.g., Tangier disease (ABCA1) 11, Stargardt’s disease (ABCA4) 12, harlequin ichthyosis (ABCA12) 13, pseudoxanthoma elasticum (ABCC6) 14, or adrenoleukodystrophy (ABCD1) 15] pathological conditions. Together with tight-junction proteins, these membrane-bound efflux pumps are the backbone of systemic barrier formation 16,17. Their localization at blood-tissue barriers impacts metabolite distribution and drug delivery, and hence, disease progress, treatment, and therapy 18,19. Determinants that establish a correlation between the molecular structure of a small-molecule (drug) and its interaction with ABC transporters is key for the development of novel, safe, systemically applicable, and target-oriented (selective) drugs.

These determinants include descriptors that conserve certain physicochemical features of the small-molecules of interest, such as the calculated octanol-water partition coefficient (CLogP), molecular weight.
The generation of the ABC_BPMDS was a four-step process: (i) deep literature search including the selection of qualified reports, resulting in the exquisite compilation of the original multitarget dataset as reported earlier\(^2\) [including updates in our former and the present work (see below)]; (ii) manual curation of the given data, in particular: (a) calculation of bioactivity values for estimated bioactivity data and data determination, (b) unification and harmonization of bioactivity data, as well as (c) comparison, curation, and harmonization of molecular-structural data (SMILES codes); (iii) generation of a substructure catalog, in particular: (a) visual inspection of the 1,167 molecules of the updated multitarget dataset, (b) extraction of partial structures, (c) creation and extension of substitution patterns, as well as (d) screening of the multitarget dataset for these substructures, discovering 604 active substructures; and (iv) individual pattern analysis\(^7\) for uncovering the statistical distribution of these 604 active substructures amongst the 1,167 compounds of the multitarget dataset. The following sections will provide a detailed description on how the final ABC_BPMDS was assembled. Figure 1 provides an overview of the taken steps.

Methods

A deep literature search was the first step to compile the original multitarget dataset, which has been reported in detail before\(^7,27\). The National Center for Biotechnological Information (NCBI; https://www.ncbi.nlm.nih.gov)\(^29\) was used to search for qualified reports applying the keywords (i) ABCB1, (ii) ABCC1, (iii) ABCG2, (iv) P-gp, (v) MRP1, and (vi) BCRP. The keywords were used in all possible combinations to extract the maximal yield in reports. In addition to the genuine database search, the reference sections of the found reports were searched for potential additional literature to extract further qualified information.

Compounds. Compounds were considered only if they had been evaluated against all three focused targets, ABCB1, ABCC1, and ABCG2, including inactive compounds as well as selective, dual, and triple inhibitors. This information could be provided either in one single report (e.g., in case of the standard ABCG2 inhibitor Ko143\(^{30}\)) or in several individual reports (e.g., in case of the standard ABCC1 inhibitor verlukast\(^{31\text{–}36}\)). The molecular structures of qualified compounds were collected as SMILES codes. These were obtained either from (i) supplementary information of the respective report; (ii) the PubChem database (https://pubchem.ncbi.nlm.nih.gov)\(^37\) [e.g., in case of known drugs and drug-like compounds, such as the standard inhibitors verapamil (ABC1B), cyclosporine A (ABCB1 and ABCC1), verlukast (ABCC1), or Ko143 (ABC2)]; or (iii) manual drawing according to the 2D representations as outlined in the respective report using ChemDraw Pro version 20.1.1.125. Isomeric SMILES were considered where applicable. SMILES codes that encoded aromatic substrates with lower-case letters in certain reports\(^{38,39}\) were unified according to the upper-case description scheme (structural curation)\(^3\).

Assays. Only functional assays were considered using either fluorescence labeling or radionuclide detection applying either living (selected or transfected) cells or membrane vesicles with reconstituted transporters. ATPase assays were not considered because ATPase activity and transporter inhibition may not be directly connected to each other. MDR reversal assay data was not considered because of the complexity of the involved processes and the fact that the triggered response(s) may not only be caused by ABC transporter inhibition. Table 1 provides an exhaustive list of functional tracers (and substrates) that were used to assess the 1,167 compounds of the ABC_BPMDS against ABCB1, ABCC1, and ABCG2. Table 2 summarizes all used host systems (cell lines and membrane vesicles) used for the evaluation of the 1,167 compounds against ABCB1, ABCC1, and ABCG2.

Bioactivity. The bioactivities (IC\(_{50}\) values) of the compounds were extracted from either (i) tables of the respective reports (including supplementary information); or (ii) screening figures with relative inhibition (I\(_{rel}\)) values (%) compared to a standard (I\(_{max}\); 100%). In the latter case, the IC\(_{50}\) values were estimated (either span or \(>\), \(\geq\), \(<\), \(<\sim\)) in the previous multitarget dataset\(^{2,27}\).
Data Curation – Bioactivity Data. Dataset Update and Complementation. New reports particularly from 2021 and 2022 were taken into consideration to update the dataset with compounds that were evaluated against the three transporters ABCB1, ABCC1, and ABCG2. In total, 22 new compounds were included into the list of qualified compounds.\(^7,40–42\) In addition, we focused an extended literature search, particularly of known standard inhibitors of ABCB1, ABCC1, and ABCG2 to obtain bioactivities with less mathematical uncertainty which also align well with our empirical experience in the laboratory. These compounds included verapamil (ABCB1\(^43\)), cyclosporine A (ABCB1\(^41,43–46\) and ABCC1\(^31,44–46\)), verlukast (ABCC1\(^31–36\)), and Ko143 (ABCG2\(^41,45\)). As a side note, the additional literature search also resulted in an update of bioactivity data of the natural compound piperine\(^47\). In the curation process to complement bioactivity values, we found that two compounds were erroneously included into the dataset (apatinib\(^48\) and ceritinib\(^49\)). Both were not evaluated against ABCC1, and therefore, did not qualify for this dataset and were therefore removed.

Complementary Data Analysis. The bioactivity of several inhibitors could only be described as an estimation (either described as span, marked as ‘active’, or annotated with ‘\(>\)’, ‘\(\geq\)’, ‘\(<\)’, ‘\(\sim\)’ in the previous dataset\(^7,27\)). However, to allow for the use of the entire dataset in mathematical and computational operations, we sought to allocate defined bioactivity values to these compounds. Hence, the individual reports were analyzed and the given indications of bioactivity [e.g., screening figures, flow-cytometry histograms, or tables with bioactivity values other than IC\(_{50}\) values (e.g., percentages)] were taken into consideration for further data analysis. The specific bioactivity value (e.g., percentage inhibition) was extracted and correlated to the used compound concentration. By using GraphPad Prism version 8.4.0 applying the three-parameter logistic equation with a fixed Hill slope (\(n=1.0\)), IC\(_{50}\) values were calculated and listed in the new multitarget dataset. A detailed curation protocol is provided on https://www.zenodo.org\(^50\) as well as he http://www.panabc.info website, and the related GraphPad Prism file containing the concentration-effect curves can be accessed without restrictions. In total, the bioactivity data of 104, 77, and 73 ABCB1, ABCC1, and ABCG2 inhibitors, respectively, have been calculated and complemented.

Data Determination. The bioactivities of five compounds [ayanin\(^51\), retusin\(^51\) (flavone derivative 12\(^52\)), dihydrodibenzoazepine derivative 4\(^i53\), dregamine derivative 2\(^54\), and tabernaemontanine derivative 22\(^54\)] had to be determined without mathematical operations. The IC\(_{50}\) values of ayanin and retusin were stated as ‘\(>50\) \(\mu M\)’ in the original report\(^51\). Usually, these kinds of statements (e.g., ‘\(>50\) \(\mu M\)’, ‘\(>100\)’, ‘inactive’, etc) led to the allocation of such compounds into the ‘inactive’ category (arbitrary IC\(_{50}\) value of 2000 \(\mu M\) in the ABC_BPMDS). However, the authors of the respective publication stated that ayanin and retusin had some (weak) inhibitory activity\(^53\).
Table 1. An exhaustive list of functional tracers that were used to functionally assess the 1,167 compounds of the ABC_BPMDS against ABCB1, ABCC1, and ABCG2. The assessment of the corresponding transporter by the respective tracer is indicated by a black box. The provided references are examples in which details in terms of the stated assays can be found.

functional tracer	ABCB1 (P-gp)	ABCC1 (MRP1)	ABCG2 (BCRP)
BODIPY-FL-vinblastine			
BODIPY-prazosin			
Calcein AM			
5-CFDA			
DiOC2(3)			
Daunorubicin			
Lucifer yellow			
D-luciferin			
Doxorubicin			
Estradiol glucuronide			
Estrone sulfate			
Fluo-3 AM			
Fluo-4 AM			
Hoechst 33342			
JC1			
Mitoxantrone			
Paclitaxel			
Rhodamine 12388,59,100			
PhenGreen SK diacetate			
Pheophorbide A			
N-methyl-quinidine			
Rosuvastatin			
Silybin A			
Silybin B			
99mTc-Sestamibi			
Vincristine			

Therefore, we decided to allocate an arbitrary value of 100 µM to these compounds to acknowledge their minor inhibitory potential against ABCB1, ABCC1, and ABCG2. Dihydrodibenzoxazepine derivative 4, dregamine derivative 2, and tabernaemontanine derivative 2, on the other hand, reached over 100% inhibition at concentrations of 2.50 µM, 20.0 µM, and 20.0 µM, respectively. Unfortunately, these were the only indications of bioactivity by the authors of the original reports. Hence, we decided to allocate arbitrary values of 0.999 µM, 4.99 µM, and 4.99 µM, respectively, to acknowledge their potentially (very) high inhibitory power against ABCB1 as well as ABCG2 considering the effect-concentrations used in the original reports. These arbitrary IC50 values have been chosen since sub-classifications of bioactivity classes according to bioactivity thresholds (e.g., 1 and 5 µM) provided a better prediction in our previous works.

Data Unification. Several compounds were evaluated in multiple assays, e.g., the mentioned standard inhibitors of ABCB1, ABCC1, and ABCG2. However, to allocate one bioactivity value to one compound, a unification process was necessary. As IC50 values do not follow a normal distribution, the multiple IC50 values associated with one compound were subject to a three-step mathematical operation: (i) logarithmization of the IC50 values; (ii) calculation of the mean; and (iii) delogarithmization of the log(IC50)-mean value. The resultant mean value was allocated to the respective compound. It shall be noted that the bioactivities of the compounds curcumin I-III (ABCC1) and gefitinib (ABCB1 and ABCC1) were only given as a span in the original reports, and hence, the mean of the respective span was taken for further operations. In total, 60, 48, and 209 ABCB1, ABCC1, and ABCG2 inhibitors have been given a new bioactivity value by these operations compared to the previous multitarget dataset.

Data Correction and Harmonization. Through the complementary analysis process, several bioactivity values were corrected. This applied for compounds that were falsely marked as ‘inactive’ in the previous multitarget dataset (ABCB1: 22 compounds; ABCC1: 26 compounds; ABCG2: 19 compounds). Lastly, all bioactivity values of the ABC_BPMDS were harmonized according to a number of three significant digits. This harmonization resulted in a standardized format of presentation: (i) ‘XXX0 µM’; (ii) ‘XXX µM’; (iii) ‘XXX µM’; (iv) ‘XXX µM’; (v) ‘0.XXX µM’; and (vi) ‘0.0XX X = any numeric value between 1–9’. Here, 11, 8, and 9 ABCB1, ABCC1, and ABCG2 values have been changed compared to the previous multitarget dataset.
Table 2.

An exhaustive list of transporter host systems that were used to functionally assess the 1,167 compounds of the ABC_BPMDS against the well-studied ABC transporters ABCB1, ABCC1, and ABCG2\(^7,27\). The assessment of the corresponding transporter by the respective host system is indicated by a black box. Regarding selected cells, the used cytotoxic agent is indicated under the respective transporter, and the cell subline abbreviation is given in brackets. The provided references are examples in which details in terms of the stated cell lines can be found\(^7,38,42,48,52,84,89,93,95,97–114\).

![Table 2](https://www.nature.com/scientificdata/)

Data Curation – Molecular-structural Data.

The 1,167 compounds of the ABC_BPMDS were portrayed as canonical or isomeric SMILES codes as derived from the (i) respective report, (ii) PubChem database (https://pubchem.ncbi.nlm.nih.gov), or (iii) SMILES generation tool of ChemDraw Pro version 20.1.125. All smiles were compared to each other to identify duplicates by using InstantJChem version 21.13.0. Through this individual cross-check of the molecular-structural data, 13 compounds were discovered as duplicates\(^46,51,56–59\) and their bioactivity values were merged with the original bioactivity data of the particular compound\(^52,59–62\). In addition, three compounds were identified to be incorrect in terms of their molecular structure and have been corrected in the dataset\(^46,57,63\).

Binary Pattern Generation.

Background. In contrast to common molecular fingerprints for similarity-based virtual screenings\(^20,24\), the very recently reported novel drug discovery tool 'computer-aided pattern analysis' ('C@PA') identified that defined (=non-substituted) hydrogens and their positioning is particularly important in terms of the differentiation between selective and multitarget inhibition of ABC transporters\(^7,26,27\). Although certain fingerprints indeed consider polar hydrogens\(^21,22\), C@PA particularly discovered non-polar...
hydrogens with critical discriminatory potential in the virtual screening process26,27. However, the original C@PA worked with a very preliminary and limited dataset of 308 substructures which were compiled after multitarget dataset visualization and literature consideration28, of which only 162 substructures were active in the multitarget dataset of, at the time of the study, 1,049 compounds27.

Substructure Visualization, Identification, and Extension. For the development of a complete, detailed, and novel (multitarget) fingerprint, which may also universally be used in (multitarget) virtual screening approaches, the 1,167 compounds of the updated multitarget dataset were visualized using ChemDraw Pro version 20.1.1.125, and substructures were identified and extracted. The extracted substructures [e.g., single-stand/centered (hetero-)aromatic rings, condensed (hetero-)aromatic rings, (un)saturated side chains, extremities, and non-aromatic (hetero-)cycles, etc.] were derivatized by applying a heavy atom substitution scheme as already reported earlier29 (scaffold fragmentation and substructure hopping). Especially the presence and positioning of (non-polar) hydrogens in the sense of a proton/non-proton pattern scheme was stressed. These measures increased the quantity of substructural properties covered by the intended fingerprint. In addition, alternative datasets of ABC transporter modulators5 and modes of action (particularly ABC transporter activators)6,8 have been considered to gain complementary knowledge about potentially active substructures. The resultant substructures were subsequently searched in the 1,167 compounds (loaded as.csv file) using the query search function of InstantJChem version 21.13.0 and compared to the original list, translating the entry differences into a binary code [1 = substructure present (active substructure); 0 = substructure not present (inactive substructure)]. A binary pattern distribution scheme resulted which constituted the final ABC_BPMDS. It shall be taken note that the number of the very same substructure within the same compound was irrelevant; the presence (numeric value = 1) of the substructure was not an expression of how often the respective substructure appeared within the compound.

Individual Pattern Analysis7. In a final step, the multitarget dataset of 1,167 compounds was statistically analyzed for the listed 604 substructures of the substructure catalog. Here, the resultant list of hit molecules per substructure derived from the query search function of InstantJChem version 21.13.0 was saved and compared to the original list, translating the entry differences into a binary code [1 = substructure present (active substructure); 0 = substructure not present (inactive substructure)]. A binary pattern distribution scheme resulted which constituted the final ABC_BPMDS. It shall be taken note that the number of the very same substructure within the same compound was irrelevant; the presence (numeric value = 1) of the substructure was not an expression of how often the respective substructure appeared within the compound.

Data Records

The ABC_BPMDS is freely available in an .xlsx format under the http://www.zenodo.org28 URL as well as the http://www.panabc.info website and its use is free of charge. The dataset consists of (i) an individual database identifier for each compound; (ii) the original name of the compounds according to the original report(s); (iii) the IUPAC nomenclature of each compound generated by using ChemDraw Pro version 20.1.1.125; (iii) The SMILES code obtained either from the (a) supporting information of the respective report, (b) PubChem database (https://pubchem.ncbi.nlm.nih.gov), or (c) manual drawing using ChemDraw Pro version 20.1.1.125; (iv) the physicochemical properties (a) CLogP5, (b) calculated molecular water solubility (CLogS), (c) MW, (d) MR, (e) TPSA, (f) H-bond donors, (g) H-bond acceptors, (h) rotatable bonds, and (i) number of heavy atoms; (v) the associated bioactivity values expressed as (a) IC\textsubscript{50} values [µM] against ABCB1, ABCC1, and ABCG2 presented in the standardized format of three significant digits as outlined above [10log(mean)], and (b) pIC\textsubscript{50} values against ABCB1, ABCC1, and ABCG2; (vi) the binary code (active = 1; inactive = 0) for each of the 604 evaluated substructures of the substructure catalog including their (a) trivial name, (b) SMILES code, (c) number of defined hydrogens, (d) number of heavy atoms, (e) total hit count, and (f) individual substructure identifier. The substructures are sorted from most abundant (left) to most rare (right); and (vii) the PubMed (https://pubmed.ncbi.nlm.nih.gov) identifier (PMID) retrieved from NCBI (https://www.ncbi.nlm.nih.gov). In addition, a detailed curation protocol as well as an associated GraphPad Prism file can be found on https://www.zenodo.org50 as well as the http://www.panabc.info website.

inhibitor class	count	IC\textsubscript{50} span [µM]	pIC\textsubscript{50} span	IC\textsubscript{50} median [µM]	pIC\textsubscript{50} median	IC\textsubscript{50} mean [µM]	pIC\textsubscript{50} mean
ABC_BPMDS	1,167	0.0153–1630	7.815–2.788	4.39	5.358	3.84	5.416
All ABCB1	525	0.0153–1460	7.815–2.836	6.37	5.196	6.32	5.199
All ABCC1	344	0.146–1630	6.836–2.788	11.20	4.951	9.26	5.033
All ABCG2	866	0.0234–405	7.631–3.393	1.95	5.710	2.00	5.698
Selective ABCB1	88	0.0153–708	7.815–3.150	2.51	5.599	3.41	5.467
Selective ABCC1	61	0.222–112	6.654–3.951	5.97	5.224	5.63	5.249
Selective ABCG2	409	0.0234–405	7.631–3.393	1.06	5.975	1.13	5.948
Dual ABCB1/ABCC1	38	0.289–180	6.539–3.745	20.40	4.692	15.20	4.819
Dual ABCB1/ABCG2	212	0.0255–333	7.593–3.478	4.43	5.354	3.85	5.415
Dual ABCC1/ABCG2	58	0.0988–163	7.005–3.788	10.10	4.956	6.92	5.160
Triple ABCB1/ABCC1/ABCG2	187	0.0475–1630	7.323–2.788	6.98	5.156	6.74	5.172

Table 3. Statistical survey of the span as well as median and mean values of the bioactivity of the entire ABC_BPMDS as well as important sub-classes. The pIC\textsubscript{50} values have been calculated by using the negative decadic logarithm of the respective bioactivity value.
Technical Validation

Compounds. The 1,167 compounds were portrayed as canonical or isomeric SMILES codes as derived from the respective report or the PubChem database (https://pubchem.ncbi.nlm.nih.gov) and imported into the MarvinSketch editor implemented in InstantJChem version 21.13.0. If the loaded SMILES code appeared as the intended original molecular representation according to the respective report or the PubChem database (https://pubchem.ncbi.nlm.nih.gov) without any errors, it was considered as valid.

Bioactivity Space Validation. In total, 113 reports between 1994 and 2022 have been collected, resulting in a final number of 1,167 compounds that were evaluated against ABCB1, ABCC1, and ABCG2, including inactive compounds as well as selective, dual, and triple inhibitors. Amongst the 1,167 compounds are (i) 525 ABCB1 inhibitors, of which (a) 88 are selective ABCB1 inhibitors (no activity against ABCC1 and ABCG2; any given IC50 value), (b) 67 are potent ABCB1 inhibitors (IC50 values < 1 µM), and (c) 25 are selective and potent ABCB1 inhibitors; (ii) 344 ABCC1 inhibitors, of which (a) 61 are selective ABCC1 inhibitors (no activity against ABCB1 and ABCG2; any given IC50 value), (b) 45 are potent ABCC1 inhibitors (IC50 values < 1 µM), and (c) 11 are selective and potent ABCC1 inhibitors; (iii) 866 ABCG2 inhibitors, of which (a) 409 are selective ABCG2 inhibitors (no activity against ABCB1 and ABCC1; any given IC50 value), (b) 330 are potent ABCG2 inhibitors (IC50 values < 1 µM), and (c) 199 are selective and potent ABCG2 inhibitors.

On the other hand, 38, 212, and 58 dual ABCB1/ABCC1, ABCB1/ABCG2, and ABCC1/ABCG2 inhibitors are present, respectively, of which 7, 99, and 13 can be considered as potent dual ABCB1/ABCC1, ABCB1/ABCG2, and ABCC1/ABCG2 inhibitors, respectively (IC50 < 10 µM). Finally, 187 triple ABCB1, ABCC1, and ABCG2 inhibitors can be defined, of which 54 can be considered as potent (IC50 < 10 µM; so-called ‘Class 7’

Fig. 2 Distribution of bioactivity values (pIC50) of the 1,167 compounds of the ABC_BPMDS against ABCB1 (a), ABCC1 (b), and ABCG2 (c).

Fig. 3 Distribution of the important physicochemical properties CLogP (a), MW (b), MR (c), and TPSA (d) amongst the 1,167 compounds of the ABC_BPMDS as determined by MOE version 2019.01.
Table 3 summarizes a survey of statistical parameters of the entire ABC_BPMDS as well as important sub-classes. Figure 2 depicts the distribution of the pIC$_{50}$ values of ABCB1 (A), ABCC1 (B), and ABCG2 (C) inhibitors amongst the entire ABC_BPMDS, which followed in all three cases a Gaussian normal distribution.

Physicochemistry Space Validation. Physicochemical properties shape not only the pharmacological profile of ABC transporter inhibitors, but are also very often used as additional discriminators in virtual screening processes. To prove that the 1,167 compounds of the ABC_BPMDS have a balanced distribution of physicochemical attributes, the ABC_BPMDS was analyzed for the CLogP, MW, MR, and TPSA using MOE version 2019.01. Figure 3 demonstrates that these physicochemical properties are normally distributed within the ABC_BPMDS comparable to other reported datasets. Table 4 summarizes the median and mean values of CLogP, MW, MR, and TPSA of the entire ABC_BPMDS as well as important sub-classes. The median and mean values are well-aligned, which accounts for the equal distribution of values.

Molecular-Structure Space Validation. H-bonds and molecular flexibility are crucial aspects in terms of ligand-target interactions, especially for ABC transporters. Hence, we analyzed the 1,167 compounds of the ABC_BPMDS for their number of H-bond donors, H-bond acceptors, and rotatable bonds. Figure 4 visualizes the found distributions amongst the entire ABC_BPMDS. Together with CLogP and MW, H-bond donors and acceptors play a major role in the drug-likeliness as defined by Lipinski’s rule of five (CLogP \leq 5; MW \leq 500; H-bond donors \leq 5; H-bond acceptors \leq 10), a large majority of compounds of the ABC_BPMDS fulfills these requirements. In particular, (i) 73.8% of compounds have CLogP values of \leq 5, (ii) 84.0% of compounds have a MW of \leq 500, (iii) 99.7% of compounds have \leq 5 H-bond donors, and (iv) 98.6% of compounds have \leq 10 H-bond acceptors. Table 5 summarizes the median and mean values of H-bond donors, H-bond acceptors, and rotatable bonds of the entire ABC_BPMDS as well as important sub-classes. Hence, the ABC_BPMDS contains suitable templates for future drug design and therapeutic development purposes, however, leaves also enough molecular-structural and physicochemical space for explorational analyses beyond the ‘Lipinski rule of five’ for the creation of inhomogeneous high-quality compound collections and compound libraries.

inhibitor class	count	CLogP median	CLogP mean	MW median	MW mean	MR median	MR mean	TPSA median	TPSA mean
ABC_BPMDS	1,167	4.33	4.26	403.39	418.38	11.27	11.73	73.86	77.87
All ABCB1	525	4.40	4.78	432.43	458.67	10.07	10.29	81.04	79.56
All ABCC1	344	3.91	3.88	420.44	442.92	11.12	12.37	76.10	84.82
All ABCG2	866	4.34	4.25	396.37	415.32	11.13	16.64	74.73	79.01
Selective ABCB1	88	5.22	5.47	452.11	481.94	12.08	13.70	61.42	65.98
Selective ABCC1	61	3.37	3.41	374.49	377.22	11.07	16.70	69.77	75.29
Selective ABCG2	409	4.38	4.35	372.38	381.58	10.39	16.67	73.86	75.14
Dual ABCB1/ABCC1	38	5.03	4.80	475.56	471.03	13.19	13.20	70.05	78.29
Dual ABCC1/ABCG2	212	4.42	4.52	420.23	434.62	11.86	12.32	75.69	75.83
Dual ABCC1/ABCG2	58	3.62	3.68	376.91	398.33	10.52	11.23	76.26	80.98
Triple ABCB1/ABCC1/ABCG2	187	3.95	3.91	432.44	472.47	11.91	13.70	79.44	90.45

Table 4. Statistical survey of median and mean values of the important physicochemical properties CLogP, MW, MR, and TPSA amongst the entire ABC_BPMDS as well as important sub-classes as determined by MOE version 2019.01.

Fig. 4 Distribution of H-bond donors (a), H-bond acceptors (b), and rotatable bonds (c) amongst the 1,167 compounds of the ABC_BPMDS as determined by MOE version 2019.01.
porter inhibitors' are the primary focus for extension of the ABC_BPMDS, particularly with respect to their web site. Transporters by multitarget agents poses a promising prospect for future drug discovery and development. Several extension to other, less- and under-studied ABC transporters. Particularly, the addressing of under-studied ABC and thus, their IC50 values vary in a greater span than of other compounds. In addition, data processing prior by the deep literature search. Moreover, these drugs and drug-like compounds were tested in various assays, considering established reference compounds, many IC50 values have been reported that are not fully covered by the deep literature search. Moreover, these drugs and drug-like compounds were tested in various assays, and thus, their IC50 values vary in a greater span than of other compounds. In addition, data processing prior to the original publication varied from laboratory to laboratory [e.g., number of concentrations tested, manner of assay performance (non-standardized procedures), manner of data analysis (e.g., three- vs four-parameter logistic equation, relative vs absolute inhibition), data presentation (single-point screening graphic vs full-blown concentration effect curve, number of significant digits, in- or exclusion of standard deviation and/or standard error)] – contributing to a greater uncertainty of these particular data. Furthermore, the assays themselves that were considered for the ABC_BPMDS were various [e.g., influx vs efflux assay, fluorescence labeling vs radionuclide detection, manner of substrate (e.g., calcein AM vs mitoxantrone), selected cells vs transfected cells vs membrane vesicles] – contributing to a general variation in data that is hidden due to the fact that most compounds were only evaluated in one particular assessment system. These aspects should be considered when using the ABC_BPMDS, however, at the same time, it should be taken note that our previous work demonstrated the strength of substructural patterns based on the previous version of the ABC_BPMDS. A list of compounds affected by these variations in assessment systems can be found in the curation protocol under the https://www.zenodo.org URL (https://doi.org/10.5281/zenodo.6405752) or on the http://www.panabc.info web site.

Future Perspective. **Extension – New Compounds.** The ABC_BPMDS provides the core application for extension to other, less- and under-studied ABC transporters. Particularly, the addressing of under-studied ABC transporters by multitarget agents poses a promising prospect for future drug discovery and development. Several compounds of the ABC_BPMDS have been demonstrated to address other ABC transporters as well, such as benzbromarone, cyclosporine A, dipyridamole, erlotinib, imatinib, nilotinib, ritonavir, verapamil, and verlukast. These ‘truly multitarget pan-ABC transporter inhibitors’ are the primary focus for extension of the ABC_BPMDS, particularly with respect to their substructural elements that promote multitargeting. On the other hand, the addition of multitarget agents that are not part of the ABC_BPMDS will contribute valuable input to the polypharmacological space as charted by the future ABC_BPMDS_1.2.

Extension – New Substructures (ABC_BPMDS_1.2). The substructural elements of the mentioned truly multitarget pan-ABC transporter inhibitors include 4-anilinopyrimidine, benzyl, cyano, 3,4-dimethoxyphenyl, fluorene, furan, ethylene diamine, ethylene hydroxy, isopropyldimethoxyphenyl, methylene hydroxy, phenethyl, piperezine, pyrimidinone, quinazoline, thiazole, and thiourea. These and other substructures will be re-evaluated with respect to true multitargeting, and thus, receive a differential value dependent on the purpose of the subsequent studies. Furthermore, the addition of multitarget agents that are not part of the ABC_BPMDS will contribute valuable input to the substructure catalog, extending the substructural output of

inhibitor class	count	H-bond donors	H-bond donors	H-bond acceptors	H-bond acceptors	rotatable bonds	rotatable bonds
ABC_BPMDS	1,167	1 1.12	4 4.43	6 6.50			
All ABCB1	525	1 1.07	4 4.95	7 7.72			
All ABCC1	344	1 1.28	4 4.87	6 6.91			
All ABCG2	866	1 1.15	4 4.42	5 6.51			
Selective ABCB1	88	1 0.75	4 4.70	8 7.70			
Selective ABCC1	61	1 1.46	4 4.03	6 5.57			
Selective ABCG2	409	1 1.14	4 3.79	5 5.35			
Dual ABCB1/ABC1	38	1 0.895	4 4.32	6 6.74			
Dual ABCC1/ABC2	212	1 0.986	4 4.78	7 7.87			
Dual ABCG1/ABC2	58	1 1.14	4 4.40	4.5 5.66			
Triple ABCB1/ABC1/ABC2	187	1 1.35	4 5.40	6 7.76			

Table 5. Statistical survey of median and mean values of H-bond donors, H-bond acceptors, and rotatable bonds amongst the entire ABC_BPMDS as well as important sub-classes as determined by MOE version 2019.01.

Usage Notes. **Status Quo.** An easy-to-use sort function allows the user to discriminate the compounds regarding their bioactivities toward the targets, physicochemical properties, or molecular-structural features, but also in terms of the 604 different substructures. Hence, the user can retrieve the necessary binary pattern information for subsequent virtual screening and rational drug design approaches.

Special Considerations. The majority of the compounds was evaluated in proper full-blown concentration effect curves within the original report, providing either only one single IC50 or two IC50 values from different assays for biological validation, resulting mostly in minor standard deviations or standard errors. However, considering established reference compounds, many IC50 values have been reported that are not fully covered by the deep literature search. Moreover, these drugs and drug-like compounds were tested in various assays, and thus, their IC50 values vary in a greater span than of other compounds. In addition, data processing prior to the original publication varied from laboratory to laboratory [e.g., number of concentrations tested, manner of assay performance (non-standardized procedures), manner of data analysis (e.g., three- vs four-parameter logistic equation, relative vs absolute inhibition), data presentation (single-point screening graphic vs full-blown concentration effect curve, number of significant digits, in- or exclusion of standard deviation and/or standard error)] – contributing to a greater uncertainty of these particular data. Furthermore, the assays themselves that were considered for the ABC_BPMDS were various [e.g., influx vs efflux assay, fluorescence labeling vs radionuclide detection, manner of substrate (e.g., calcein AM vs mitoxantrone), selected cells vs transfected cells vs membrane vesicles] – contributing to a general variation in data that is hidden due to the fact that most compounds were only evaluated in one particular assessment system. These aspects should be considered when using the ABC_BPMDS, however, at the same time, it should be taken note that our previous work demonstrated the strength of substructural patterns based on the previous version of the ABC_BPMDS. A list of compounds affected by these variations in assessment systems can be found in the curation protocol under the https://www.zenodo.org URL (https://doi.org/10.5281/zenodo.6405752) or on the http://www.panabc.info web site.

Future Perspective. **Extension – New Compounds.** The ABC_BPMDS provides the core application for extension to other, less- and under-studied ABC transporters. Particularly, the addressing of under-studied ABC transporters by multitarget agents poses a promising prospect for future drug discovery and development. Several compounds of the ABC_BPMDS have been demonstrated to address other ABC transporters as well, such as benzbromarone, cyclosporine A, dipyridamole, erlotinib, imatinib, nilotinib, ritonavir, verapamil, and verlukast. These ‘truly multitarget pan-ABC transporter inhibitors’ are the primary focus for extension of the ABC_BPMDS, particularly with respect to their substructural elements that promote multitargeting. On the other hand, the addition of multitarget agents that are not part of the ABC_BPMDS will contribute valuable input to the polypharmacological space as charted by the future ABC_BPMDS_1.2.

Extension – New Substructures (ABC_BPMDS_1.2). The substructural elements of the mentioned truly multitarget pan-ABC transporter inhibitors include 4-anilinopyrimidine, benzyl, cyano, 3,4-dimethoxyphenyl, fluorene, furan, ethylene diamine, ethylene hydroxy, isopropyldimethoxyphenyl, methylene hydroxy, phenethyl, piperezine, pyrimidinone, quinazoline, thiazole, and thiourea. These and other substructures will be re-evaluated with respect to true multitargeting, and thus, receive a differential value dependent on the purpose of the subsequent studies. Furthermore, the addition of multitarget agents that are not part of the ABC_BPMDS will contribute valuable input to the substructure catalog, extending the substructural output of
the future ABC_BPMDS_1.2. Specifically, this information beyond known multitarget fingerprints will enable the exploration and exploitation of under-studied ABC transporters as potential drug targets of the future.

Extension – New Modes and Targets. Particularly, the inclusion of, for example, different modes of modulation (e.g., activation), bioactivity measurements [e.g., in vitro (ATPase assays or MDR reversal assays), in silico binding mode analyses (e.g., molecular docking or molecular dynamics simulations), or structural information (e.g., x-ray, cryo-EM, homology-modelling, or AlphaFold)], will promote the discovery of drug candidates with distinctive mode of action. Furthermore, the logistics outlined in this work also provide a useful framework for similar data mining and descriptor approaches with respect to different pharmacological targets [e.g., under-studied human/bacterial ABC transporters, G-protein coupled receptors (GPCRs), ion channels (ICs), solute carriers (SLCs; PANSLC, http://www.panslc.info or tyrosine kinases (TKs)].

Code availability

The ABC_BPMDS is available without any restrictions under the http://www.zenodo.org URL (https://doi.org/10.5281/zenodo.6384343). In addition, a detailed curation protocol including a GraphPad Prism file are provided under the https://doi.org/10.5281/zenodo.6405752. All information is also available on the http://www.panabc.info website and the use is free of charge.

Received: 8 April 2022; Accepted: 28 June 2022;
Published online: 26 July 2022

References

1. Wang, J. Q. et al. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 54, 100743, https://doi.org/10.1016/j.drup.2021.100743 (2021).
2. Gil-Martins, É., Barbosa, D. J., Silva, V., Remiao, F. & Silva, R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 213, 107554, https://doi.org/10.1016/j.pharmthera.2020.107554 (2020).
3. Pasello, M., Giudice, A. M. & Scolandi, K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 60, 57–71, https://doi.org/10.1016/j.semcancer.2019.10.004 (2020).
4. Dodani, K., Patel, A., Kathwala, R. J. & Chen, Z. S. Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer 31, 58–72, https://doi.org/10.15732/cjc.011.10329 (2012).
5. Pahnke, J. et al. Strategies to gain novel Alzheimer’s disease diagnostics and therapeutics using modulators of ABCA transporters. Front Neuropathol 2, https://doi.org/10.17877/fineneuropathology-2021-3528 (2021).
6. Wiese, M. & Stefan, S. M. The A-B-C of small-molecule ABC transport protein modulators: From inhibition to activation—a case study of multidrug resistance-associated protein 1 (ABCC1). Med Res Rev 39, 2031–2081, https://doi.org/10.1002/med.21573 (2019).
7. Namasiyavam, V. et al. Structural feature-driven pattern analysis for multitarget modulator landscapes. Bioinformatics, https://doi.org/10.1093/bioinformatics/btab832 (2021).
8. Stefan, S. M. & Wiese, M. Small molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 39, 176–264, https://doi.org/10.1002/med.21510 (2019).
9. Hooper, A. J., Hegele, R. A. & Burnett, J. R. Tangier disease: update for 2020. Curr Opin Lipidol 31, 80–84, https://doi.org/10.1097/ MOFL.0000000000000669 (2020).
10. Cremers, F. P. M., Lee, W., Collin, R. W. J. & Allikmets, R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 79, 100861, https://doi.org/10.1016/j.preteyeres.2020.100861 (2020).
11. Elkhath, A. M. & Omar, M. in StatPearls (2022).
12. Bisaccia, F., Koshal, P., Abruzzese, V., Castiglione Morelli, M. A. & Ostuni, A. Structural and Functional Characterization of the ABCC6 Transporter in Hepatic Cells: Role on PXE, Cancer Therapy and Drug Resistance. Int J Mol Sci 22, https://doi.org/10.3390/ijms22062858 (2021).
13. Turk, B. R., Theda, C., Fatemi, A. & Moser, A. B. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 80, 52–72, https://doi.org/10.1016/j.ijdevneurosci.2019.10.003 (2020).
14. Abbaddah, I. M., Al-Shami, K. M., Yang, E. & Kaddoumi, A. Blood-Brain Barrier Disruption Increases Amyloid-Related Pathology in Tg(25D)Mice. Int J Mol Sci 22, https://doi.org/10.3390/ijms22031231 (2021).
15. Gomez-Zepeda, D., Taghi, M., Scherrmann, J. M., Deceves, X. & Menet, M. C. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliaomas. Pharmaceuticals 12, https://doi.org/10.3390/pharmaceutics12010020 (2019).
16. Hernandez-Lozano, I. et al. PET imaging to assess the impact of P-glycoprotein on pulmonary drug delivery in rats. J Control Release 342, 44–52, https://doi.org/10.1016/j.jconrel.2021.12.031 (2022).
17. Bruckmueller, H. & Casciori, I. ABCB1, ABCG2, ABCG5, ABCG8, and ABCB3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 17, 369–396, https://doi.org/10.1080/17425255.2021.1876661 (2021).
18. Girardin, F. Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci 8, 311–326 (2006).
19. Casciori, I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 112, 437–473, https://doi.org/10.1016/j.pharmthera.2006.04.009 (2006).
20. Kim, S. et al. PubChem Substance and Compound databases. Nucleic Acids Res 44, D1202–1213, https://doi.org/10.1093/nar/gkv951 (2016).
21. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J Chem Inf Model 50, 742–754, https://doi.org/10.1021/ci100050t (2010).
22. Bender, A., Musa, H. Y., Glen, R. C. & Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J Chem Inf Comput Sci 44, 170–178, https://doi.org/10.1021/ci034207y (2004).
23. Meng, F., Xi, Y., Huang, J. & Ayers, P. W. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci Data 8, 289, https://doi.org/10.1038/s41597-021-01069-5 (2021).
24. Stefan, S. M. Multi-target ABC transporter modulators: what next and where to go. Future Med Chem 11, 2353–2358, https://doi. org/10.4155/fmc-2019-0185 (2019).
25. Namasiyavam, V., Stefan, K., Pahnke, J. & Stefan, S. M. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer’s disease therapeutics. Comput Struct Biotechnol J 19, 6490–6504, https://doi.org/10.1016/j.csbj.2021.11.035 (2021).
26. Namasiavym, V., Silbermann, K., Pahnke, J., Wiese, M. & Stefan, S. M. Scaffold fragmentation and substructure hopping reveal potential for perpetrating pharmacokinetic drug-drug interactions on ABCB1. Bioorg Med Chem 19, 2090–2102, https://doi.org/10.1016/j.bmc.2010.12.043 (2011).
27. Yu, J., Stefan, S. M., Jansson, P. J., Pahnke, J. & Namasiavym, V. A curated binary pattern multitarget dataset of focused ABC transporter inhibitors. Zenodo https://doi.org/10.5281/zenodo.6405752 (2022).
28. Paterna, A. & Wiese, M. Tyrosine kinase inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP cells via the PI3K/Akt signaling pathway. ChemMedChem 7, 650–662, https://doi.org/10.1002/cmdc.201100543 (2012).
29. Obreque-Balboa, J. E., Sun, Q., Bernhardt, G., Konig, B. & Buschauer, A. Flavonoid derivatives as selective ABCB1 modulators: Synthesis and functional characterization. Eur J Med Chem 109, 124–133, https://doi.org/10.1016/j.ejmech.2015.12.010 (2016).
Juvalle, K., Gallus, J. & Wiese, M. Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). *Bioorg Med Chem* **21**, 7858–7873, https://doi.org/10.1016/j.bmc.2013.10.007 (2013).

Juvalle, K. & Wiese, M. 4-Substituted-2-phenylquinazolines as inhibitors of BCRP. *Bioorg Med Chem Lett* **22**, 6766–6769, https://doi.org/10.1016/j.bmcl.2012.08.024 (2012).

Schäfer, A., Kohler, S. C., Lohe, M., Wiese, M. & Hessemann, M. Synthesis of Homoverrucosanoid-Derived Esters and Evaluation as MDR-Modulators. *J Org Chem* **82**, 10504–10522, https://doi.org/10.1021/acs.joc.7b02012 (2017).

Durant, J. L., Leland, B. A., Henry, D. R. & Nourse, J. G. Reoptimization of MDL keys for use in drug discovery. *J Chem Inf Comput Sci* **42**, 1273–1280, https://doi.org/10.1021/ci010132r (2002).

Jordan, A. M. & Roughley, S. D. Drug discovery chemistry: a primer for the non-specialist. *Drug Discov Today* **14**, 731–744, https://doi.org/10.1016/druds.2009.04.005 (2009).

Schmitt, S. M., Stefan, K. & Wiese, M. Pyrrolopyrimidine Derivatives as Novel Inhibitors of Multidrug Resistance-Associated Protein 1 (MRP1, ABCB1). *J Med Chem* **59**, 3018–3033, https://doi.org/10.1021/acs.jmedchem.5b00644 (2016).

Marighetti, E., Steggemann, K., Karbama, M. & Wiese, M. Scaffold identification of a new class of potent and selective BCRP inhibitors. *ChemMedChem* **10**, 742–751, https://doi.org/10.1002/cmdc.201402498 (2015).

Marighetti, E., Steggemann, K., Hanl, M. & Wiese, M. Synthesis and quantitative structure-activity relationships of selective BCRP inhibitors. *ChemMedChem* **8**, 125–135, https://doi.org/10.1002/cmdc.201200377 (2013).

Stefan, S. M. Purines and 9-deazapurines as Modulators of Multidrug Resistance-associated Protein 1 (MRP1/ABCC1)-mediated Transport *14* 11.17.2017 edn, 1 (2017).

Stepanov, D., Canipa, S. & Wolber, G. HuskinDB, a database for skin permeation of xenobiotics. *Sci Data* **7**, 426, https://doi.org/10.1038/s41597-020-01506-z (2020).

Pajeva, D., Yu, Z., Novotna, E., Morell, A. & Hofman, J. Entrectinib reverses cytostatic resistance through the inhibition of VEGF. *Biochem Pharmacol* **108**, 3049–3057, https://doi.org/10.1016/j.bcp.2014.11.006 (2015).

Zhang, Y. & Laterra, J. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and nilotinib, and dasatinib. *ChemMedChem* **15**, 2828–2835, https://doi.org/10.1002/cmdc.201401437 (2019).

Beretta, G. L., Cassinelli, G., Pennati, M., Zuco, V. & Gatti, L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. *Eur J Med Chem* **142**, 271–289, https://doi.org/10.1016/j.ejmech.2017.07.062 (2017).

Chung, L. et al. Identification of a library from a FDA of approved drugs using a high-throughput bioluminescence screen. *Biochem Pharmacol* **93**, 380–388, https://doi.org/10.1016/j.bcp.2014.11.006 (2015).

Edie, L. N., Dang, P., Goyne, J. M., Hughes, T. P. & White, D. L. ABCC6 plays a significant role in the transport of nitolinib and dasatinib, and contributes to TKI resistance in vitro, in both cell lines and primary patient mononuclear cells. *PLoS One* **13**, e0192180, https://doi.org/10.1371/journal.pone.0192180 (2018).

Hupfeld, T. et al. Tyrosine kinase inhibitors facilitate cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsically deformed cell drug resistance. *Br J Haematol* **161**, 204–213, https://doi.org/10.1111/bjh.12246 (2013).

Ambrus, C., Bakos, E., Sarkadi, B., Ozvég-Laczka, C. & Telbisz, A. Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics. *Sci Rep* **11**, 17810, https://doi.org/10.1038/s41598-021-97160-3 (2021).

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589, https://doi.org/10.1038/s41586-021-03819-2 (2021).

Clearwater, W. Anuchapreeda, S., Nandigama, K., Ambudkar, S. V. & Limtrakul, P. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. *Biochem Pharmacol* **68**, 2043–2052, https://doi.org/10.1016/j.bcp.2004.07.009 (2004).

Dohse, M. et al. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. *Drug Metab Dispos* **38**, 1371–1380, https://doi.org/10.1124/dmd.109.031310 (2012).

Colabufo, N. A. et al. Multi-drug resistance-reverting agents: 2-arylazoaxole and 2-arylthiazole derivatives as potent BCRP or MRP1 inhibitors. *ChemMedChem* **4**, 188–195, https://doi.org/10.1002/cmdc.200800329 (2009).

Jekerle, V. et al. In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. *Int J Cancer* **119**, 414–422, https://doi.org/10.1002/ijc.21827 (2006).

Mathias, T. I. et al. The FLTs and PDGFR inhibitor crenolanib is a substrate of the multidrug resistance protein ABCB1 but does not inhibit transport function at pharmacologically relevant concentrations. *Invest New Drugs* **33**, 300–309, https://doi.org/10.1007/s10637-015-0205-y (2015).

Telbisz, A. et al. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. *Pharmaceutics* **13**, https://doi.org/10.3390/pharmaceutics13010081 (2021).

Zhang, Y., Laterra, J. & Pomper, M. G. Hedgehog pathway inhibitor HaAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. *Neoplasia* **11**, 96–101, https://doi.org/10.1593/neo.81284 (2009).

Vagianiss, D., Yu, Z., Novotna, E., Morell, A. & Hofman, J. Entrectinib reverses cytostatic resistance through the inhibition of ABCG2 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. *Biochem Pharmacol* **178**, 114061, https://doi.org/10.1016/j.bcp.2020.114063 (2020).

Tan, K. W., Sampson, A., Osa-Andrews, B. & Iram, S. H. Calcirotiol and Calcipotriol Modulate Transport Activity of ABC Transporters and Exhibit Selective Cytoxicity in MRPI-overexpressing Cells. *Drug Metab Dispos* **46**, 1856–1866, https://doi.org/10.1124/dmd.118.081612 (2018).

Lempers, V. J. et al. Inhibitory Potential of Antifungal Drugs on ATP-Binding Cassette Transporters P-Glycoprotein, MRP1 to MRP5, BCRP, and BSEP. *Antimicrob Agents Chemother* **60**, 3372–3379, https://doi.org/10.1128/AAC.02931-15 (2016).

Holland, M. L., Allen, J. D. & Arnold, J. C. Interaction of plant cannabinoids with the multidrug transporter ABC1 (MRP1). *Eur J Pharmacal* **591**, 128–131, https://doi.org/10.1016/j.ejphar.2008.06.079 (2008).

Teodori, E. et al. Design, synthesis and biological evaluation of stereo- and regiosomers of amino aryl esters as multidrug resistance (MDR) reversers. *Eur J Med Chem* **182**, 111655, https://doi.org/10.1016/j.ejmech.2019.111655 (2019).
96. Scoparo, C. T. et al. Dual properties of hispidulin: antiproliferative effects on HepG2 cancer cells and selective inhibition of ABCG2 transport activity. *Mol Cell Biochem* **409**, 123–133, https://doi.org/10.1007/s11010-015-2518-8 (2015).
97. Pawarode, A. et al. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. *Cancer Chemother Pharmacol* **60**, 179–188, https://doi.org/10.1007/s00280-006-0357-8 (2007).
98. Huang, X. C., Sun, Y. L., Salim, A. A., Chen, Z. S. & Capon, R. J. Parguerenes: Marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells. *Biochem Pharmacol* **85**, 1257–1268, https://doi.org/10.1016/j.bcp.2013.02.005 (2013).
99. Kita, D. H. et al. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. *Sci Rep* **11**, 1788, https://doi.org/10.1038/s41598-020-79892-w (2021).
100. Munoz-Martinez, F. et al. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance. *Cancer Res* **64**, 7130–7138, https://doi.org/10.1158/0008-5472.CAN-04-1005 (2004).
101. Sun, S. et al. The two enantiomers of tetrahydropalmatine are inhibitors of P-gp, but not inhibitors of MRPs or BCRP. *Xenobiotica* **42**, 1197–1205, https://doi.org/10.3109/00498254.2012.702247 (2012).
102. Sen, R. et al. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. *Mol Cancer Ther* **11**, 2053–2044, https://doi.org/10.1158/1535-7163.MCT-12-0302 (2012).
103. Li, S. et al. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRPs and BCRP dependent multidrug resistant cancer cells. *Phytotherapy Research* **25**, 83–87, https://doi.org/10.1016/j.phymed.2011.06.031 (2011).
104. Zhu, H. J. et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. *J Pharmacol Exp Ther* **317**, 850–857, https://doi.org/10.1124/jpet.105.098541 (2006).
105. Ivjinski-Steel, L. et al. High-throughput flow cytometry to detect selective inhibitors of ABCB1, ABCG1, and ABCG2 transporters. *Assay Drug Dev Technol* **6**, 263–276, https://doi.org/10.1089/adt.2007.107 (2008).
106. Teng, Y. N. et al. beta-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function. *Phytochemistry* **23**, 316–323, https://doi.org/10.1016/j.phytochem.2006.01.008 (2016).
107. Kannan, P. et al. The ‘specific’ P-glycoprotein inhibitor Tarizardik is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). *ACS Chem Neurosci* **2**, 82–89, https://doi.org/10.1021/cn100076a (2011).
108. Sachs, J. et al. Novel 3,4-Dihydrosoxoumarins Inhibit Human P-gp and BCRP in Multidrug Resistant Tumors and Demonstrate Substrate Inhibition of Yeast Pdr5. *Front Pharmacol* **10**, 100, https://doi.org/10.3389/fphar.2019.00400 (2019).
109. Gu, X. et al. Synthesis and biological evaluation of novel bifendate derivatives bearing 6,7-dihydro-dibenzo[c,e]azepine scaffold as potent P-glycoprotein inhibitors. *Eur J Med Chem* **51**, 137–144, https://doi.org/10.1016/j.ejmech.2012.02.034 (2012).
110. Ma, S. L. et al. Lapatinib antagonizes multidrug resistance-associated protein 1-mediated multidrug resistance by inhibiting its transport function. *Mol Med* **20**, 390–399, https://doi.org/10.2119/mmolmed.2014.00059 (2014).
111. Wu, C. P. et al. Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. *Biochem Pharmacol* **85**, 325–334, https://doi.org/10.1016/j.bcp.2012.11.003 (2013).
112. Rijpma, S. R. et al. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. *Malar J* **13**, 359, https://doi.org/10.1186/1475-2875-13-359 (2014).
113. Holland, M. L., Lai, D. T., Allen, J. D. & Arnold, J. C. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. *Br J Pharmacol* **152**, 815–824, https://doi.org/10.1038/s41386-007-07467 (2007).
114. Krauze, A. et al. Thienc[2,3-b]pyridines-a new class of multidrug resistance (MDR) modulators. *Bioorg Med Chem* **22**, 5860–5870, https://doi.org/10.1016/j.bmc.2014.09.023 (2014).
115. Namasiyavam, V. et al. Physicochemistry shapes bioactivity landscape of pan-ABC transporter modulators: anchor point for innovative Alzheimer's disease therapeutics. *Int J Biol Macromol* https://doi.org/10.1016/j.ijbiomac.2022.07.062 (2022).

Acknowledgements

S.M.S. is supported by the Walter Benjamin and Research Grant Programmes of the German Research Foundation [DFG, Deutsche Forschungsgemeinschaft, Germany; #446812474, #504079349 (PANBC)]. P.J.J. appreciates the Cancer Institute of New South Wales Career Development Fellowship (#CDF171147) support. J.P. received funding from the DFG (Germany; #263024513), Nasjonalforeningen (Norway; #16154), HelseSØ (Norway, #2019054, #2019055, #2020046), Barnekreftforeningen (Norway; #19008), EEA and Norway grants Kappa programme [Iceland, Liechtenstein, Norway, Czech Republic; #TO100078 (TACR TARIMAD)], Norges forskningsråd [Norway; #295910 (NAPI), #327571 (PETABC)], and the European Commission (European Union; #643417). PETABC is an EU Joint Programme - Neurodegenerative Disease Research (JPND) project. PETABC is supported through the following funding organizations under the aegis of JPND – **www.jpnd.eu**: NRF #327571 – Norway; FFG #882717 – Austria; BMBF #01ED2106 – Germany; MSMT #8F21002 – Czech Republic; VIAA +E SRTD/2020/26 – Latvia; ANR #20-JPW2-0002-04 – France, SRC #2020-02905 – Sweden. The projects receive funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement #643417 (JPCo-fuND). V.N is supported by the Research Grant Programme of the DFG (#504079349 (PANBC)). The authors like to thank ChemAxon for providing academic research license for InstantJChem.

Author contributions

S.M.S. Conceptualization, Methodology, Validation, Formal Analysis, Data Curation, Writing – Original Draft, Writing – Review & Editing, Visualization, Project Administration, Funding Acquisition, P.J.J. Resources, Writing – Review & Editing, Visualization, Funding Acquisition. J.P. Resources, Writing – Review & Editing, Funding Acquisition. V.N. Conceptualization, Methodology, Software, Validation, Formal Analysis, Data Curation, Writing – Review & Editing, Visualization, Project Administration.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to V.N.

Reprints and permissions information is available at www.nature.com/reprints.
