Correction to: An Extension of Raşa’s Conjecture to q-Monotone Functions

Ulrich Abel and Dany Leviatan

Mathematics Subject Classification. Primary 26D05, 39B62; Secondary 41A17, 41A36.

Keywords. Polynomial inequalities, Functional inequalities, q-monotonicity.

Correction to: Results Math. 75:180 (2020) https://doi.org/10.1007/s00025-020-01308-y

There is an inadvertent mistake in the statement of Theorem 3.2 and its proof. The authors are indebted to Ioan Raşa for pointing out the mistake in the statement of Theorem 3.2, which has led us to revise the proof.

The theorem should be

Theorem 3.2. Let $n, q \in \mathbb{N}$. If f defined on $[0, \infty)$ and such that $|f(x)| \leq C(1 + x)^\gamma$, for some $C, \gamma > 0$, is a q-monotone function there, then for all $x, y \in [0, \infty)$,

\[
\text{sgn}(x - y)^q \sum_{\nu_1, \ldots, \nu_q = 0}^{\infty} \sum_{j=0}^{q} (-1)^{q-j} \binom{q}{j} \left(\prod_{i=1}^{j} m_{n, \nu_i}(x) \right) \left(\prod_{i=j+1}^{q} m_{n, \nu_i}(y) \right) \int_{0}^{1} f \left(\frac{\nu_1 + \cdots + \nu_q + \alpha t}{n + \alpha} \right) dt \geq 0.
\]

Proof of Theorem 3.2. Let $n, m, q \in \mathbb{N}$, and denote $\nu := (\nu_1, \ldots, \nu_q) \in (\mathbb{N}_0)^q$. By (3.2) it follows that

The original article can be found online at https://doi.org/10.1007/s00025-020-01308-y.
\[
\sum_{|\nu|=m} \prod_{i=1}^q m_{n,\nu_i}(x_i) = \frac{1}{m!} \sum_{|\nu|=m} \binom{m}{\nu} \prod_{i=1}^q \left(\frac{\partial}{\partial z} \right)^{\nu_i} (1-x_i z)^{-n} \bigg|_{z=-1} = \frac{1}{m!} \left(\frac{\partial}{\partial z} \right)^m \prod_{i=1}^q (1-x_i z)^{-n} \bigg|_{z=-1}. \tag{3.4}
\]

Hence, as is done in (2.2), for \(0 \leq x, y < \infty\) and any sequence \((a_k)_{k=0}^{\infty}\), we have

\[
\sum_{|\nu| \geq 0} \sum_{j=0}^q (-1)^{q-j} \binom{q}{j} \left(\prod_{i=1}^j m_{n,\nu_i}(x) \right) \left(\prod_{i=j+1}^q m_{n,\nu_i}(y) \right) a_{|\nu|} = \sum_{m=0}^\infty a_m \frac{1}{m!} \left[\left(\frac{\partial}{\partial z} \right)^m [(1-xz)^{-n} - (1-zy)^{-n}]^q \right] \bigg|_{z=-1} =: I. \tag{3.5}
\]

Let

\[
h(z) := ((1-xz)^{-n} - (1-zy)^{-n})^q.
\]

Then

\[
h(z) = ((1-xz)^{-1} - (1-zy)^{-1})^q \left(\frac{(1-xz)^{-n} - (1-zy)^{-n}}{(1-xz)^{-1} - (1-zy)^{-1}} \right)^q = \left(\frac{1-zy}{1-xz} \right)^q \left(\sum_{m=0}^{n-1} (1-xz)^{-m}(1-zy)^{-(n-1-m)} \right)^q = (x-y)^q z^q g(z).
\]

Note that \(\left(\frac{\partial}{\partial z} \right)^j (1-uz)^{-m} \bigg|_{z=-1} = j! m_{m,j}(u) \geq 0\), for \(j, m = 0, 1, 2, \ldots\), and \(0 \leq u < \infty\). Hence

\[
g^{(k)}(-1) \geq 0, \quad k \geq 0. \tag{3.6}
\]

Finally, we may rewrite the last line in (3.5), as we did in (3.3),

\[
I = \sum_{m=0}^\infty a_m \frac{1}{m!} \left[\left(\frac{\partial}{\partial z} \right)^m [(1-xz)^{-n} - (1-zy)^{-n}]^q \right] \bigg|_{z=-1} = (x-y)^q \sum_{m=0}^\infty a_m \frac{1}{m!} \frac{d^m}{dz^m} (z^q g(z)) \bigg|_{z=-1} = (x-y)^q \sum_{m=0}^\infty \frac{1}{m!} g^{(m)}(-1) \Delta^q a_m,
\]

and Theorem 3.2 follows by taking \(a_m := \int_0^1 f \left(\frac{m+\alpha t}{n+\alpha} \right) dt\). \(\square\)
Author contributions Ulrich Abel and Dany Leviatan contributed equally to this work.

Funding The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data Availability Statement Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reference
[1] Abel, Ulrich, Leviatan, Dany: An extension of Raşa’s conjecture to q-monotone functions. Results Math. 75(180), 1–13 (2020)

Ulrich Abel
Technische Hochschule Mittelhessen
Fachbereich MND
Wilhelm-Leuschner-Straße 13
61169 Friedberg
Germany
e-mail: ulrich.abel@mn.d.thm.de

Dany Leviatan
Raymond and Beverly Sackler School of Mathematical Sciences
Tel Aviv University
6139001 Tel Aviv
Israel
e-mail: leviatan@tauex.tau.ac.il

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.