Desmosomes are one of four intercellular junctions present on the lateral side of neighboring polarized epithelial cells. Tight junctions and adherens junctions (AJs) are restricted to the apical domain, where they form the epithelial barrier and organize cortical actin, respectively. Desmosomes are found subjacent to the AJs and are more widely distributed along the lateral membranes. By tethering the intermediate filament (IF) cytoskeleton to the plasma membrane, these strongly adhesive junctions further enhance their force-resisting mechanical properties (see Poster, panels 1 and 3). Interspersed among desmosomes are ‘communicating’ or gap junctions that chemically and electrically couple cells. Desmosomes confer stability to tissues that experience mechanical stress such as the epidermis and heart, and are also found in more specialized junctions of the meninges and lymphatic endothelial cells (reviewed by Getsios et al., 2004; Green and Simpson, 2007; Holthofer et al., 2007).

It has recently emerged that desmosomal cadherins and their associated proteins play a role in instructing the development and differentiation of complex tissues in vertebrates. In addition, they are frequently mutated in inherited diseases of the skin and heart and are targeted by autoimmune antibodies and bacterial toxins, the latter of which can result in blistering of complex epithelia (McGrath, 2005; Waschke, 2008). This Cell Science at a Glance article and its accompanying poster highlight key aspects of desmosome structure, function and regulation, and relate this knowledge to recent advances in our understanding of the role of desmosomes in human disease. Interested readers are referred to more comprehensive recent reviews for further details (Bazzi and Christiano, 2007; Dusek et al., 2007; Garrod and Chidgey, 2008; Getsios et al., 2004; Green and Simpson, 2007; Holthofer et al., 2007; Huber, 2003; McGrath, 2005; Schmidt and Koch, 2007; Waschke, 2008).

Desmosomes are highly organized cadherin-based intercellular junctions

At the ultrastructural level, desmosomes appear as multi-layered, bilaterally symmetrical structures featuring a pair of electron-dense plaques that sandwich an extracellular region of
Desmosomal cadherins

Desmosomal cadherins are the desmosome counterparts of the classic cadherins that are present in AJs. They are subdivided into desmogleins 1-4 (Dsg1-Dsg4) and desmocollins 1-3 (Dsc1-Dsc3); the genes encoding these proteins are organized in a tandem array along mouse and human chromosome 18. Whereas Dsg2 and Dsc2 are commonly found in desmosome-containing tissues, Dsg1 and Dsc1 (as well as Dsg3 and Dsc3) are restricted to stratified epithelia, where they are organized in reciprocal overlapping patterns in the upper and lower layers, respectively (see Poster, panel 4). Dsg4 is also expressed in differentiated layers of the epidermis and associated hair follicles. Desmocollins exist as two splice variants: the more typical type ‘a’ form and the shorter type ‘b’ form, which lacks plakoglobin (Pg)-binding ability and is capped with 11 residues in Dsc1 and Dsc2, and eight residues in Dsc3 that are not found in the Dsc type ‘a’ isoform (see Poster, panel 2).

Dsgs and Dscs are similar to classic cadherins in that they contain a series of highly conserved extracellular repeat (EC) domains, followed by a short transmembrane domain (TM). Whereas classic cadherins interact in a homophilic manner via the exchange of highly conserved tryptophans on adjacent cadherin EC1 ectodomains into the hydrophobic pockets of their partner, the nature of the interactions that occur between desmosomal cadherins, and their preferred partnerships in vivo, are not well understood. Although high-resolution tomographic studies of desmosomes in situ revealed a somewhat disordered array of desmosomal cadherin ectodomains, more recent cryoelectron microscopy studies suggest a highly ordered arrangement of cadherins. These findings could help explain the robust adhesive properties of desmosomes in vivo. Similar to classic cadherins, the EC1 domain of desmosomal cadherins is crucial for adhesion and might participate in both heterophilic and homophilic interactions. The cytoplasmic domains contain an intracellular anchor (IA), a catenin-binding region (ICS) and, in desmogleins, additional unique domains that include the intracellular proline-rich linker (IPL), variable numbers of repeated unit domains (RUDs) and a desmoglein terminal domain (DTD) (Garrod and Chidgey, 2008; Getsois et al., 2004; Holthofer et al., 2007). Established binding partners for desmosomal cadherins are Pg and plakophilins (Pkps), but the extended, highly divergent desmosomal cadherin tails might provide a docking site for additional structural and signaling proteins (Table 1).

Armadillo proteins

Desmosomal armadillo family members include Pg and Pkps 1-3. Similar to their AJ counterparts β-catenin and p120 catenin, Pg and Pkps are also present in the nucleus. Pkp1 and Pkp2 each have two isoforms, the shorter ‘a’ form and the longer ‘b’ form, the Pkp1b form being exclusively nuclear. The presence of Pkp2 in the nucleus, where it contributes to the RNA polymerase III holoenzyme complex, is regulated by the 14-3-3 protein. It has been reported that a fourth Pkp-like molecule, known as p0071 (Pkp4), associates with desmosomes and AJs, although recently its desmosomal location has been questioned (Hofmann et al., 2009). Pg comprises 12 central arm repeats, which are flanked by N- and C-terminal domains. By interacting with both the ICS domain of the desmosomal cadherins and the N-terminus of the IF-anchoring protein desmoplakin (DP), Pg is positioned to play a role in linking IFs to the plaque. In addition to its junctional roles, Pg regulates cell growth, survival and differentiation indirectly through its influence on β-catenin signaling, and directly through transcriptional pathways that have yet to be fully elucidated (Hatzfeld, 2007; Holthofer et al., 2007; Keil et al., 2007).

Plakins

Plakins are a family of large, modular proteins that link various cytoskeletal elements with each other and with plasma membranes. Of four plakin family members that have been reported to associate with desmosomes (DP, plectin, envoplakin and periplakin), DP is indispensable for desmosome assembly and IF anchorage; DP-deficient mouse embryos do not survive beyond E6.5. DP, which is expressed as two alternatively spliced isoforms (DP1 and DPII), is a long dumbbell-shaped molecule that is divided into three domains (see Poster, panel 2): the N-terminal head domain binds to armadillo proteins and to Dsc1a, and targets DP to the desmosomal plaque; the central rod domain is required for DP oligomerization; and the C-terminal domain (comprising three plakin repeats – A, B and C) links the desmosomal complex to the IF cytoskeleton (Garrod and Chidgey, 2008; Holthofer et al., 2007; Sonnenberg and Liem, 2007). The phosphorylation status of the extreme C-terminal region regulates the interaction between DP and IFs (Stappenbeck et al., 1994). In addition to its absolute requirement for maintaining tissue integrity, DP has also been implicated in regulating cellular proliferation by affecting the ERK-Akt signaling pathway (Wan et al., 2007) and in governing the redistribution of microtubules during epidermal differentiation (Lechler and Fuchs, 2007).

Desmosomes as dynamic structures

Assembly

The dynamic nature of desmosomes is illustrated by live-cell imaging observations in cultured cells, revealing their constant remodeling and the exchange of GFP-labeled desmosome molecules into existing plaques. De
Desmogline 1 (Dsg1)

Desmosomal GPIs

Desmosomal cadherins are cytoplasmic pools of cadherin core and plaque proteins. In addition, desmosomal cadherins become stabilized and cluster at the cell surface in conjunction with plaque proteins. In response to cell-cell contact, desmosomal cadherins associate with the desmosomal plaque proteins such as DP, resulting in DP phosphorylation and conversion to an assembly-competent state.

Desmosomal binding partners include DP, Pkp1, Pkp2, and Pkp3. These proteins then translocate to nascent desmosomes to reinforce the plaque in an actin-dependent manner about 30 minutes following contact. A proportion of the cellular pool of Pkp2 associates with these DP precursors and plays an essential role in regulating both the association of DP with IFs and its dynamic behavior. Pkp2 might accomplish this by association of DP with IFs and its dynamic behavior.

Desmosomal proteins binding partners level of evidence references

Desmosomal binding partners include DP, Pkp1, Pkp2, and Pkp3. These proteins then translocate to nascent desmosomes to reinforce the plaque in an actin-dependent manner about 30 minutes following contact. A proportion of the cellular pool of Pkp2 associates with these DP precursors and plays an essential role in regulating both the association of DP with IFs and its dynamic behavior. Pkp2 might accomplish this by association of DP with IFs and its dynamic behavior.

Desmosomes and AJs exhibit a symbiotic relationship: desmosome formation depends on the presence of AJs, whereas the maturation of desmosomes. A variety of structural and signaling mediators are important for this relationship. Armadillo family members enhance the structural integrity of cell-cell junctions and have a positive effect on the size and number of desmosomes. Desmosomes and AJs exhibit a symbiotic relationship: desmosome formation depends on the presence of AJs, whereas the maturation of desmosomes. A variety of structural and signaling mediators are important for this relationship. Armadillo family members enhance the structural integrity of cell-cell junctions and have a positive effect on the size and number of desmosomes.
desmosomal cadherins and subsequently dictate their segregation into distinct junctions in epithelial tissues. Desmosomal-plaque assembly is actin-dependent and might require actin remodelling, which can be triggered by the ligation of classic cadherins. These events are associated with the maturation of AJs and are coordinated with biochemical signaling pathways. For instance, PKC activation can circumvent the requirement for AJs in directing the formation of desmosomes, suggesting a potential role for this protein kinase in mediating crosstalk. Nectin-1, a member of a subfamily of immunoglobulin-like adhesion molecules known to regulate AJs and tight junctions, is also emerging as a potential regulator of desmosome assembly (Barron et al., 2008; Hatsell and Cowin, 2001; Hatzfeld, 2007). Collectively, these observations underscore the interdependency of intercellular junctions from their de novo assembly to their function during tissue homeostasis.

Regulation of desmosomal adhesion
The stability of desmosomes in subconfluent or freshly plated cultured cells depends on extracellular Ca$^{2+}$. Acute Ca$^{2+}$ depletion causes the engulfment of desmosomal plaques and associated IFs, whereas protein kinase inhibition prevents loss of adhesion and accompanying internalization (Garrod and Kimura, 2008). In addition, cholinergic receptors, receptor tyrosine kinases, proteolytic processing by ADAM (a disintegrin and metalloproteinase) sheddases and pathogenic pemphigus autoantibodies have all been implicated in junctional destabilization through their capacity to promote desmosomal cadherin internalization and/or to weaken interactions between desmosomal cadherins and IFs (Delva and Kowalczyk, 2009; Grando, 2006; Kotké et al., 2006; Muller et al., 2008; Waschke, 2008). Although PKCα promotes desmosome assembly, its activity is attenuated during junctional maturation, leading to the formation of hyperadhesive Ca$^{2+}$-independent desmosomes. In fact, in tissues, most desmosomes exhibit this hyperadhesive state. However, both epithelial sheets in vitro and desmosomes in vivo can convert to a Ca$^{2+}$-dependent state after wounding, possibly in response to re-activation of PKCα, which becomes closely associated with the plaque region during this conversion process (Garrod and Kimura, 2008). Although molecular targets of PKC that contribute to this conversion have not been identified, one candidate could be DP, whose solubility and assembly state are regulated by serine phosphorylation (Holthofer et al., 2007). RhoA, of the Rho family of small GTPases, is also implicated in regulating desmosome-mediated adhesion in patients with pemphigus, who suffer from epidermal blistering caused by circulating autoimmune anti-Dsg antibodies. Antibody-mediated loss of intercellular adhesion is inhibited by specific activation of RhoA, and inactivation of RhoA results in pemphigus-like epidermal splitting (Waschke, 2008). Thus, desmosomes are subject to cues from both the normal tissue environment and pathogenic processes that regulate their assembly state and adhesive strength.

Desmosomes in development, differentiation and disease
Desmosomes are crucial for normal morphogenesis during all stages of embryogenesis. Investigation of knockout mice has shown that the lack of several desmosomal components (DP, Dsg2, Dsc3 or Pg) results in early embryonic lethality. In addition, Dsg2 deficiency leads to defects in embryonic stem-cell viability and proliferation, even prior to the appearance of desmosomes, which reveals an adhesion-independent role for this cadherin. Pg- or Pkp2-null mice have lethal defects in embryonic heart development. Hyperproliferative and differentiation disorders have also been reported following expression of dominant-negative desmosomal cadherins or the targeted mis-expression of desmosomal cadherins in the suprabasal layers of the epidermis. These studies reveal the importance of desmosomes as structural mediators of tissue integrity, and demonstrate that they can influence proliferative signaling pathways (Bazzi and Christiano, 2007; Cheng and Koch, 2004; Garrod and Chidgey, 2008; Huber, 2003; Muller et al., 2008; Schmidt and Koch, 2007).

Human diseases show similarities to the deficiencies that have been observed in engineered animal models. Mis-sense, truncation and/or nonsense mutations leading to haplo-insufficiency have been identified in representatives of all major desmosome families, including DP, Pkp, Pg, the desmosomal cadherins and also corneodesmosin (Table 2 and Poster, panel 5). These mutations can lead to skin diseases with symptoms ranging from mild keradatermas to severe lethal acantholysis. An overlapping subset of mutations leads to arrhythmogenic right ventricular cardiomyopathy (ARVC) (McGrath, 2005; Schmidt and Koch, 2007). The pathology of ARVC involves fibrofatty replacement of cardiomyocytes, ventricular arrhythmias, heart failure and sudden death. These outcomes might result from various defects, including abnormal gap-junction function and β-catenin-dependent signaling. For example, Pkp2-deficiency, which accounts for the majority of reported ARVC cases, results in a loss of plasma-membrane-associated Cx43 and thus might affect electrical coupling of cardiac myocytes (Bass-Zubek et al., 2009). Alterations in β-catenin-dependent signaling in a DP mouse model of ARVC were reported to contribute to a transcriptionally driven conversion to an adipocyte cell fate, possibly owing to aberrant redistribution of DP-associated Pg into the nucleus. Finally, mutations in sarcoplasmic/endoplasmic reticulum Ca$^{2+}$ pump gene 2 (SERCA2) impair desmosome assembly and lead to loss of cell-cell adhesion in epidermal keratinocytes of Darier’s disease patients, consistent with the importance of intracellular Ca$^{2+}$ homeostasis in desmosome function.

Desmosomal cadherins are also targets of autoimmune antibodies in pemphigus vulgaris (PV) and pemphigus foliaceus (PF) (Table 2). Antibodies directed against the extracellular domains of Dsg1 and Dsg3 lead to epidermal blistering through molecular mechanisms that can involve steric hindrance, endocytic internalization, impaired desmosome assembly and/or the triggering of signaling pathways that cause cell-cell dissociation. Bacterial toxins produced by Staphylococcus aureus, which causes the proteolytic removal of the Dsg1 extracellular domain, also result in superficial skin blistering that appears identical to that observed in PF (Payne et al., 2004; Stanley and Amagai, 2006). Both antibody- and toxin-mediated pathogenesis have been replicated in a mouse model using pathogenic and non-pathogenic PF anti-Dsg1 antibodies and exfoliative toxin A, respectively. This blistering phenotype contrasts dramatically with the thickened hyperkeratotic state of the epidermis from human patients with genetic alterations in the same Dsg1 molecule, for reasons that are not fully understood (see Table 2).

Desmosomal cadherins and their associated proteins have been linked with cell proliferation and survival pathways, and might contribute to regulation of tumor-cell growth, invasion and metastasis. Dsgs and their binding partner Pg can sensitize cells to apoptotic stimuli, and Dsg internalization is enhanced by epidermal growth factor receptor (EGFR)- and ADAM-family-dependent Dsg2 ectodomain shedding, which might promote tumor-cell migration. In certain contexts, the overexpression of Pg has been associated with increased chromosomal instability and uncontrolled proliferation via increased protein expression of putative tumor-transforming gene and Myc, whereas in epidermal keratinocytes, it has been demonstrated that Pg is required for suppression of the transcriptional activation of Myc. Finally, the transcription of desmosomal genes is attenuated by factors such as zinc finger E-box
binding homebox 1 (ZEB1) and ZEB2, which regulate epithelial-to-mesenchymal transition and promote tumor invasion and metastasis (Chidgery and Dawson, 2007; Garrod, 1995; Klessner et al., 2008; Muller et al., 2008; Pan et al., 2007).

Future perspectives

Like AJs, desmosomes are dual regulators of cell adhesion and morphogenesis. Whereas AJs play an active role in tissue remodeling, which involves rearrangements of the actin cytoskeleton, the fact that desmosomes interact with IFs puts them at center stage in the maintenance of tissue integrity. Desmosomes also guide differentiation and morphogenesis in complex tissues. However, we still know surprisingly little about how differentiation-dependent patterns of desmosomal cadherins are controlled via transcriptional regulation, or how these patterns dictate cadherin organization in situ. Studies that aim to define desmosomal cadherin structure and the nature of the proteins that interact with their unique cytoplasmic tails are needed to better understand how they are organized and how they perform their structural and signaling roles. Recent advances in genetic and proteomic screening will facilitate future progress in these areas, whereas advances in optical imaging promise to provide insights into the assembly pathways that govern the dynamics of these insoluble organelles. Finally, coupling these state-of-the-art strategies with electrophysiological approaches will further our understanding of the mechanisms that lead to cardiac disease caused by desmosome defects.

We would like to thank Spiro Getsios and Viktor Todorovic for critically reading the manuscript. Due to space limitation only recent articles not yet covered in this review were cited individually, and we apologize to our colleagues whose work was not cited directly. Work in the authors' laboratory is supported by grants from the Leducq Foundation and NCI (NIAMS and NCI) (K.J.G.), the Tiede-Sowers Fellowship in Pathology (B.V.D.) and T32 GM08061 and AHA grant 09PRE2660308 (R.M.H.). Deposited in PMC for future reference.

Table 2. Desmosomal components targeted in human diseases

Heart defects	Desmosomal molecules targeted	Clinical manifestation	References
Arythrophic right ventricular cardiomyopathy (ARVC)	Plk2, DP, Dsg2, Pg, Dsc2	Replacement of right ventricular myocardium with fibrofatty tissue, resulting in thinning of the right ventricular wall and sudden cardiac death	(Gerull et al., 2004; Pilichou et al., 2006; Rampazzo et al., 2002; McKoy et al., 2000; Syrri et al., 2006)
Dilated cardiomyopathy (DC)	Dsg2, DP	Ventricular dilation impairs myocardial function, resulting in failure	(Posch et al., 2008; Norgett et al., 2000)

Skin defects	Desmosomal molecules targeted	Clinical manifestation	References
Woolly hair with and without cardiomyopathy	DP, Dsc2	Syndrome of the scalp hair characterized by frizzy and wiry hair, giving it wool-like appearance	(Muller et al., 2008; Pan et al., 2007)
Striate palmoplantar keratoderma (SPPK)	DP, Dsg1, Dsc2	Epidermal thickening of the palms and soles	(Orton et al., 2008)
Skin fragility ectodermal dysplasia syndrome	Plk1	Thickening of the skin on palms and soles, abnormal nails, and fragile skin that blisters and peels	(Klessner et al., 2008; Muller et al., 2008)
Naxos diseases	Pg	Combination of ARVC, palmpoplantar keratosis and woolly hair	(McKoy et al., 2000)
Hypotrichosis	Dsg4	Sparse, fragile hair with abnormal hair follicles, impaired hair keratinization and epidermal hyperproliferation	(Kljuic et al., 2003)
Hypotrichosis with skin vesicles	Dsc3	Sparse, fragile hair with normal follicles	(Ayub et al., 2009)
Hypotrichosis simplex	Corneodesmosin	Progressive thinning of scalp hair in first decade; loss of cell-cell adhesion in inner root sheath of hair follicles	(Levy-Nissenbaum et al., 2003)
Pemphigus (foliaceus and vulgaris) (PF and PV)	Dsg1, Dsg3	Autoantibody-mediated disruption of intercellular adhesion (acantholysis) and blistering in the epidermis (PF) and/or oral mucosa (PV)	(Koulu et al., 1984; Amagai et al., 1991)
Bullous impetigo	Dsg1	Bacterial exfoliative toxin results in the appearance of localized blisters, usually on the trunk, arms or legs	(Amagai et al., 2000)
Staphylococcal scalded-skin syndrome (SSSS)	Dsg1	More generalized form of bullous impetigo in which exfoliative toxin leads to widespread superficial skin blistering and exfoliation	(Amagai et al., 2000)

References

Aberle, H., Butz, S., Stappert, J., Weiswig, H., Klemm, R. and Hermeking, H. (1994). Assembly of the cadherin-catenin complex in vitro with recombinant proteins. *J. Cell Sci.* 107, 3655-3663.

Aicher, B., Lerch, M. M., Muller, T., Schilling, J. and Ulrich, A. (1997). Cellular redistribution of protein tyrosine phosphatases LAR and PTPsigma by inducible proteolytic processing. *J. Cell Biol.* 138, 681-696.

Amagai, M., Kaiser-Kupfer, V., and Stanley, J. R. (2000). Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. *Cell 87*, 869-877.

Amagai, M., Matsuohsi, N., Wang, Z. H., Andl, C. and Stanley, J. R. (2000). Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. *Nat. Cell Biol.* 6, 708-716.

Ayub, M., Basit, S., Jelani, M., Ur Rehman, F., Iqbal, M., Yasinzai, M. and Ahmad, W. (2009). A homozygous nonsense mutation in the human desmocollin-3 (DSC3) gene underlies hereditary hypotrichosis and recurrent skin vesicles. *Am. J. Hum. Genet.* 85, 515-520.

Bannon, L. J., Cabrera, B. L., Stack, M. S. and Green, K. J. (2001). Isoform-specific differences in the size of desmosomal cadherin/catenin complexes. *J. Invest. Dermatol.* 117, 1302-1306.

Barron, M. J., Brookes, J. S., Draper, C. E., Garrod, D., Kirkham, J., Shore, R. C. and Dixon, M. J. (2008). The cell adhesion molecule neurtin-1 is critical for normal enamel formation in mice. *Hum. Mol. Genet.* 17, 3509-3520.

Bass-Zubek, A. E., Hobbs, R. P., Amargo, E. V., Garcia, N. J., Hsieh, S. N., Chen, X., Wahl, J. K., 3rd, Denning, M. F. and Green, K. J. (2008). Plakophilin 2, a critical scaffold for PKC alpha that regulates intercellular junction assembly. *J. Cell Biol.* 181, 605-613.

Bass-Zubek, A. E., Godsk, L. M., Delmar, M. and Green, K. J. (2009). Plakophilins: multifunctional scaffolds for adhesion and signaling. *Curr. Opin. Cell Biol.* 21, 708-716.

Bazzi, H. and Christiano, A. M. (2007). Broken hearts, woolly hair, and tattered skin: when desmosomal adhesion goes awry. *Curr. Opin. Cell Biol.* 19, 515-520.

Benziniger, A., Munster, N., Koch, H. B., Yates, J. R., 3rd and Herneking, H. (2005). Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. *Mol. Cell Proteomics* 4, 785-795.

Bonne, S., Gilbert, B., Hatzfeld, M., Chen, X., Green, K. J. and van Roy, F. (2003). Defining desmosomal plakophilin-3 interactions. *J. Cell Biol.* 161, 403-416.

Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P. O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S. et al. (2004). A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. *Nat. Cell Biol.* 6, 97-105.

Calcins, C. C., Hoeper, B. L., Law, C. M., Novak, M. R., Setzer, S. V., Hatzfeld, M. and Kowalczyk, A. P. (2003). The Armadillo family protein p0071 is a VE-cadherin- and desmoplakin-binding protein. *J. Biol. Chem.* 278, 1774-1783.

Chen, X., Bonne, S., Hatzfeld, M., van Roy, F. and Green, K. J. (2002). Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. *J. Biol. Chem.* 277, 10512-10522.

Cheng, X., Mizuhikako, Y., Den, Z., Kowalczyk, A. P., Calcins, C., Ishiko, A., Shimizu, A. and Koch, P. J. (2004). Assessment of splice variant-specific functions of desmocollin 1 in the skin. *Mol. Cell. Biol.* 24, 154-163.
Kami, K., Chidgey, M., Daiflora, T. and Overduin, M. (2009). The desmoglein-specific cytoplasmic region is intrinsically disordered in solution and interacts with multiple desmosomal protein partners. J. Mol. Biol. 386, 531-543.

Kanai, Y., Ochiai, A., Shibata, T., Oyama, T., Ushijima, S., Akimoto, S. and Hirohisa, S. (1995). c-erbB-2 gene product directly associates with beta-catenin and plakoglobin. Biochem. Biophys. Res. Comm. 208, 1067-1072.

Keil, R., Wolf, A., Huttelmaier, S. and Hafte, M. (2007). Beyond regulation of cell adhesion: local control of RhoA at the desmosome by fyn fos. Cell Cycle 6, 1227.

Klesner, J. L., Desai, B. V., Amarigo, E. V., Gertsis, S. and Green, K. E. (2004). EGFR and ADAMS cooperate to modulate shedding and endothelial trafficking of desmosomal cadherin desmoglein 2. Mol. Biol. Cell 15, 328-337.

Klingelhofer, J., Troyanovsky, R. B., Laur, O. Y. and Troyanovsky, S. (2000). Amino-terminal domain of classic and armadillo cadherins: a central mechanism to control epidermal growth and differentiation? J. Invest. Dermatol. 128, 511-516.

Nerget, E. H., Hatsch, S. J., Carvajal-Huerta, L., Cabezás, C. J., Common, J., Purkin, E. W., Whittick, L., Leigh, I. M., Stevens, H. P. and Kebell, D. P. (2000). Non-pathogenic missense and deletion of plakoglobin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderm. Hum. Mol. Genet. 9, 2701-2706.

O’Connor, L., Li, M. et al. (2009). Hyper-adhesion: a genetic model for an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin. J. Cell Biol. 118, 671-679.

Kotte, M. D., Delva, E. and Kowalczyk, A. P. (2006). The desmosome: cell science lessons from human diseases. J. Cell Biol. 179, 797-806.

Kouli, L., Kusumi, A., Steinberg, M. S., Klaus-Kovtun, V. and Stanley, J. R. (1984). Human autophagosomes against the recognition of the autophagic vacuole in fibroblasts. J. Exp. Med. 160, 1509-1518.

Kowalczyk, A. P., Stappenbeck, T. S., Parry, D. A., Palka, H. L., Virata, M. L., Bornslaeger, E. A., Nilles, L. A. and Green, K. K. (1994). Structure and function of desmosomal transmembrane core and plaque molecules. Biochemistry 50, 97-112.

Kowalczyk, A. P., Borgwardt, J. E. and Green, K. (1996). Analysis of desmosomal cadherin adhesion function and stoichiometry of desmosomal cadherin-plakoglobin complexes. J. Invest. Dermatol. 107, 293-300.

Kowalczyk, A. P., Bornslaeger, E. A., Borgwardt, J. E., Palka, H. L., Diadiwai, A. S., Corcoran, C. M., Denning, L. W. G. et al. (1997). The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J. Cell Biol. 139, 773-784.

Lampugnani, M. G., Corada, M., Caveda, L., Brexvialer, F., Ayalon, O., Geiger, B. and Dejana, E. (1995). The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (V-/cadherin). J. Cell Biol. 129, 203-217.

Lechler, T. and Fuchs, E. (2007). Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147-154.

Levy-Nissenbaum, E., Betz, R. C., Flymdran, M., Simon, M., Lahat, H., Bakhan, T., Goldman, B., Bygum, A., Pierick, M., Hillner, A. M. et al. (2003). Hypothesis simplex of the scalp is associated with nonsense mutations in CDSN encoding ependylin. Nat. Genet. 34, 151-153.

McGrath, J. A. (2005). Inherited disorders of desmosomes. Am. J. Dermatopathol. 27, 221-229.

McGrath, J. A., McMillan, J. R., Shemanko, C. S., Runswick, S. K., Leigh, I. M., Lane, E. B., Garrod, D. R. and Eady, R. A. (1997). Mutations in the plakoglobin gene result in ectodermal dysplasia/skin fragility syndrome. Am. J. Hum. Genet. 50, 753-763.

Meng, J. J., Bornslaeger, E. A., Green, K. J., Steinert, P. M. and Ip, W. (1997). Two-hybrid analysis reveals fundamental differences in direct interactions between desmoplakin and cell type-specific intermediate filaments. J. Biol. Chem. 272, 21405-21416.

Mertens, C., Hofmann, I., Wang, Z., Teichmann, M., Sepheri Chong, S., Scholzner, M. and Franke, W. (2001). Nuclear particles containing RNA polymerase III and desmoplakin II are associated with functional plaque protein plakin 2. Proc. Natl. Acad. Sci. USA 98, 7795-7800.

Miravet, S., Piedra, J., Firo, I., Itarte, G., Garcia de Herreros, A. and Duanach, M. (2002). The transcriptional repressor factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J. Biol. Chem. 277, 1884-1891.

Muller, E. J., Williamson, L., Kolby, C. and Suter, M. M. (2008). Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J. Invest. Dermatol. 128, 511-516.

Raz, P., Yarden, Y., Yarden, S., Ron, D., Kraft, I., Erez, R. B., Lev, T. and Yarden, Y. (2002). The E-cadherin/catenin system. Biochim. Biophys. Acta 1583, 285-307.

Rual, J. F., Venkatesan, K., Hao, H., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G. F., Gibbons, J. W., Jiang, Y. M., Asti, V. M. et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1103-1107.

Rueb, T. H., Mittl, M., Zuber, J., Heuber, S. and Middendorf, A. (2004). E-cadherin and catenins at cell-cell junctions. J. Cell Sci. 117, 2103-2110.
Commentaries and Cell Science at a Glance

JCS Commentaries highlight and critically discuss recent and exciting findings that will interest those who work in cell biology, molecular biology, genetics and related disciplines, whereas Cell Science at a Glance poster articles are short primers that act as an introduction to an area of cell biology, and include a large poster and accompanying text.

Both of these article types, designed to appeal to specialists and nonspecialists alike, are commissioned from leading figures in the field and are subject to rigorous peer-review and in-house editorial appraisal. Each issue of the journal usually contains at least one of each article type. JCS thus provides readers with more than 50 topical pieces each year, which cover the complete spectrum of cell science. The following are just some of the areas that will be covered in JCS over the coming months:

Cell Science at a Glance
- Actin and cellular architecture at a glance *Buzz Baum*
- The catenin family at a glance *Pierre McCrea*
- The primary cilium at a glance *Peter Satir*
- The nuclear envelope: a long view *Kathy Wilson*

Commentaries
- Crosstalk between GlcNAcylation and phosphorylation *Gerald Hart*
- Cryo-electron tomography *Ohad Medalia*
- Matrix elasticity, cytoskeletal forces and physics of the nucleus *Dennis Discher*
- Flagellar and ciliary beating *Charles Lindemann*
- Assembly and resorption of the primary cilium *Maxence Nachury*

Although we discourage the submission of unsolicited Commentaries and Cell Science at a Glance poster articles to the journal, ideas for future articles – in the form of a short proposal and some key references – are welcome and should be sent by email to the Editorial Office (jcs@biologists.com).

Journal of Cell Science
Bidder Building, 140 Cowley Road,
Cambridge CB4 0DL, UK
E-mail: jcs@biologists.com
Website: http://jcs.biologists.org