Thurston’s norm revisited

Igor V. Nikolaev *

Abstract

We study the Thurston norm on the second homology of a 3-manifold M, which is the surface bundle over the circle with a pseudo-Anosov monodromy. A novelty of our approach consists in the application of the C^*-algebras to a problem in topology. Namely, one associates to M a C^*-algebra, whose K-theory gives rise to an algebraic number field K. It is shown, that the trace function on the ring of integers of K induces a norm on the second homology of M. The norm coincides with the Thurston norm on the second homology of M.

Key words and phrases: operator algebras, 3-manifolds

AMS (MOS) Subj. Class.: 19K, 46L, 57M.

1 Introduction

In 1986, W. P. Thurston discovered the fundamental measure of complexity of a 3-dimensional manifold, M. The measure is a norm on the second homology of M, which assigns the non-negative integers to the elements of the group $H_2(M) = H_2(M;\mathbb{Z})$. If $z \in H_2(M)$, then a number $N(z)$ is attached, such that $N(z) = \min_X \{-\chi(X) \mid X \neq S^2$ is compact surface representing class $z\}$, where χ is the Euler number of X. The norm is called a Thurston norm. The function N is linear on the $H_2(M)$ and extends to the real homology group $H_2(M;\mathbb{R})$ as a pseudo-norm (Thurston [10]). The Thurston norm is an important homotopy invariant of the manifold M, which can be viewed as a generalization of the genus of a knot.

It is interesting that the abelian groups with a norm arise in the context of the AF-algebras (the operator algebras, see Effros [2]). Namely, let $\mathbb{Z}^k \xrightarrow{\lambda} \mathbb{Z}^k \xrightarrow{\lambda} \mathbb{Z}^k \xrightarrow{\lambda} \ldots$, be a stationary dimension group. (We refer the reader to the section 2 for a definition.) By λ_A one understands the Perron-Frobenius eigenvalue of the positive integral matrix A. Let $K = \mathbb{Q}(\lambda_A)$ be an algebraic

*Partially supported by NSERC.
number field of the degree \(k \), obtained as an extension of the rationals by the algebraic number \(\lambda \). The field \(K \) is known to be an important invariant of the stationary dimension group. Namely, the triple \((K, \alpha, I)\), where \(\alpha \) is an embedding of the field \(K \) and \(I \) is the equivalence class of ideals in the ring of integers of \(K \), is a complete Morita invariant of the stationary dimension group (Bratteli, Jørgensen, Kim & Roush [1], Effros [2], Handelman [6]). Denote by \(O_K \) the ring of integers of the field \(K \) and fix an integral basis \(\omega_1, \ldots, \omega_k \) in \(O_K \). Note that \(O_K \cong \mathbb{Z}^k \) by the Gauss isomorphism. It is well known that the multiplication by \(\alpha \in O_K \) induces a linear operator on the vector space \(O_K \):

\[
\begin{pmatrix}
\alpha \omega_1 \\
\vdots \\
\alpha \omega_k
\end{pmatrix} =
\begin{pmatrix}
a_{11} & \cdots & a_{1k} \\
\vdots & \ddots & \vdots \\
a_{k1} & \cdots & a_{kk}
\end{pmatrix}
\begin{pmatrix}
\omega_1 \\
\vdots \\
\omega_k
\end{pmatrix},
\]

where \(a_{ij} \) are the rational integers. Define a function \(N : O_K \to \mathbb{Z} \) by the formula \(\alpha \mapsto a_{11} + \cdots + a_{kk} \), where \(\alpha \in O_K \). It is not hard to verify, that \(N \) is a linear function, which is independent of the choice of the integral basis in \(O_K \) (Weyl [13]). Note that the pre-image \(N^{-1}(\mathbb{Z}^+) \) of the semi-group \(\mathbb{Z}^+ = \{0, 1, 2, \ldots\} \) is a cone \(C \subset \mathbb{Z}^k \).

The aim of this note is to show that the algebraic norm \(N \) and the Thurston norm \(\mathcal{N} \) are related. Namely, let \(\varphi : X \to X \) be a pseudo-Anosov diffeomorphism of the compact surface \(X \) of the genus \(g \) and let \(\mathcal{F} \) be the \(\varphi \)-invariant foliation on \(X \) (Thurston [11]). Consider the mapping torus of \(\varphi \), i.e. a 3-dimensional manifold \(M = \{X \times [0, 1] | \ (x, 0) \mapsto (\varphi(x), 1), \ x \in X \} \). (The reader can recognize \(M \) to be the surface bundle over the circle with a monodromy \(\varphi \).) Let us construct the crossed product \(C^* \)-algebra \(A_\varphi = C(X) \rtimes_\varphi \mathbb{Z} \), where \(C(X) \) is the \(C^* \)-algebra of the continuous complex-valued functions on the surface \(X \). It can be shown, that the \(K_0 \)-group of \(A_\varphi \) is a stationary dimension group. Define a map \(\mathcal{N} : H_2(M) \to \mathbb{Z} \) using a natural isomorphism \(O_K \cong H_1(X, \text{Sing} \mathcal{F}; \mathbb{Z}) \cong H_2(M) \), where \(\text{Sing} \mathcal{F} \) is the set of singular points of the foliation \(\mathcal{F} \). Our main result is the following theorem.

Theorem 1 For every surface bundle \(M \to S^1 \) with a pseudo-Anosov monodromy \(\varphi \), the following is true: (i) the preimage \(\mathcal{N}^{-1}(\mathbb{Z}^+) \) of the semi-group \(\mathbb{Z}^+ = \{0, 1, 2, \ldots\} \) is a cone \(C \subset H_2(M) \) and (ii) the norm \(\mathcal{N} \) coincides with the Thurston norm \(\mathcal{N} \) on the cone \(C \).

The structure of the note is the following. In section 2, the notation is introduced. Theorem 1 is proved in section 3.

2 Notation

This section is a brief introduction to the dimension groups, the algebraic number fields and the Thurston norm on the 3-dimensional manifolds. We refer
the reader to O. Bratteli, P. E. T. Jørgensen, K. H. Kim & F. Roush, ([1]), M. Rørdam, F. Larsen & N. Laustsen ([9]), H. Weyl ([13]) and W. Thurston ([10]) for a complete account.

2.1 The dimension group

By the \(C^* \)-algebra one understands a noncommutative Banach algebra with an involution ([9]). Namely, a \(C^* \)-algebra \(A \) is an algebra over \(\mathbb{C} \) with the norm \(a \mapsto ||a|| \) and an involution \(a \mapsto a^* \), \(a \in A \), such that \(A \) is complete with respect to the norm, and such that \(||ab|| \leq ||a|| ||b|| \) and \(||a^*a|| = ||a||^2 \) for every \(a, b \in A \). If \(A \) is commutative, then the Gelfand theorem says that \(A \) is isometrically \(*\)-isomorphic to the \(C^* \)-algebra \(C_0(X) \) of the continuous complex-valued functions on a locally compact Hausdorff space \(X \). For otherwise, \(A \) represents a noncommutative topological space.

2.1.1 The ordered abelian groups

Given a \(C^* \)-algebra, \(A \), consider a new \(C^* \)-algebra \(M_n(A) \), i.e. the matrix algebra over \(A \). There exists a remarkable semi-group, \(A^+ \), connected to the set of projections in the algebra \(M_\infty = \bigcup_{n=1}^\infty M_n(A) \). Namely, the projections \(p, q \in M_\infty(A) \) are the Murray-von Neumann equivalent \(p \sim q \), if they can be presented as \(p = v^*v \) and \(q = vv^* \) for an element \(v \in M_\infty(A) \). An equivalence class of the projections is denoted by \([p]\). The semi-group \(A^+ \) is defined to be the set of all equivalence classes of projections in \(M_\infty(A) \) with the binary operation \([p] + [q] = [p \oplus q]\). The Grothendieck completion of \(A^+ \) to an abelian group is called a \(K_0 \)-group of \(A \). The functor \(A \to K_0(A) \) maps the unital \(C^* \)-algebras into a category of the abelian groups, so that the semi-group \(A^+ \subset A \) corresponds to a positive cone \(K_0^+ \subset K_0(A) \) and the unit element \(1 \in A \) corresponds to an order unit \([1] \in K_0(A) \). The ordered abelian group \((K_0, K_0^+, [1])\) with the order unit is called a dimension group of the \(C^* \)-algebra \(A \).

2.1.2 The \(AF \)-algebras

An \(AF \) (approximately finite-dimensional) \(C^* \)-algebra is defined to be a norm closure of an ascending sequence of the finite dimensional \(C^* \)-algebras \(M_n \)'s, where \(M_n \) is a \(C^* \)-algebra of the \(n \times n \) matrices with the entries in \(\mathbb{C} \). Here the index \(n = (n_1, \ldots, n_k) \) represents a multi-matrix \(C^* \)-algebra \(M_n = M_{n_1} \oplus \ldots \oplus M_{n_k} \). Let \(M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} \ldots \) be a chain of the finite-dimensional \(C^* \)-algebras and their homomorphisms. A set-theoretic limit \(A = \lim M_n \) has a natural algebraic structure given by the formula \(a_m + b_k \to a + b \); here \(a_m \to a, b_k \to b \) for the sequences \(a_m \in M_m, b_k \in M_k \). The homeomorphisms of the above (multi-matrix) algebras admit a canonical description (Effros [2]). Suppose that \(p, q \in \mathbb{N} \) and \(k \in \mathbb{Z}^+ \) are such numbers that \(kq \leq p \). Let us define a homomorphism \(\varphi : M_q \to M_p \) by the formula \(a \mapsto a \oplus \ldots \oplus a \oplus 0_h \), where \(p = kq + h \). More
generally, if \(q = (q_1, \ldots, q_s), p = (p_1, \ldots, p_r) \) are vectors in \(\mathbb{N}^s, \mathbb{N}^r \), respectively, and \(\Phi = (\phi_{kl}) \) is a \(r \times s \) matrix with the entries in \(\mathbb{Z}^+ \) such that \(\Phi(q) \leq p \), then the homomorphism \(\varphi \) is defined by the formula:

\[
a_1 \oplus \ldots \oplus a_s \rightarrow \left(\begin{array}{c}
\phi_{11} \oplus \ldots \oplus \phi_{12} \\
\phi_{21} \oplus \ldots \oplus \phi_{22}
\end{array} \right) \left(\begin{array}{c}
(a_1 + a_1 \oplus \ldots) \oplus (a_2 + a_2 \oplus \ldots) \oplus \ldots \oplus 0_{h_1} \\
\oplus \ldots \oplus (a_1 + a_1 \oplus \ldots) \oplus (a_2 + a_2 \oplus \ldots) \oplus \ldots \oplus 0_{h_2} \oplus \ldots
\end{array} \right)
\]

where \(\Phi(q) + h = p \). We say that \(\varphi \) is a canonical homomorphism between \(M_p \) and \(M_q \). Any homomorphism \(\varphi : M_q \rightarrow M_p \) can be rendered canonical ([2]).

2.1.3 The Bratteli diagrams

This graphical presentation of the canonical homomorphism is called a Bratteli diagram. Every block of such a diagram is a bipartite graph with the \(r \times s \) matrix \(\Phi = (\phi_{kl}) \). In general, the Bratteli diagram is given by the vertex set \(V \) and the edge set \(E \), such that \(V \) is an infinite disjoint union \(V_1 \sqcup V_2 \sqcup \ldots \), where each \(V_i \) has a cardinality \(n \). Any pair \(V_{i-1}, V_i \) defines a non-empty set \(E_i \subseteq E \) of the edges with a pair of the range and the source functions \(r, s \), such that \(r(E_i) \subseteq V_i \) and \(s(E_i) \subseteq V_{i-1} \). The non-negative integral matrix of the incidences \((\phi_{ij}) \) shows how many edges are drawn between the \(k \)-th vertex in the row \(V_{i-1} \) and \(l \)-th vertex in the row \(V_i \). A Bratteli diagram is called stationary, if \((\phi_{kl}) \) is a constant matrix for all \(i = 1, \ldots, \infty \).

2.2 The number fields

Let \(\mathbb{Q} \) be the field of the rational numbers. Let \(\alpha \not\in \mathbb{Q} \) be an algebraic number over \(\mathbb{Q} \), i.e. root of the polynomial equation \(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 = 0 \), \(a_n \neq 0 \), where \(a_i \in \mathbb{Q} \). An algebraic extension of the degree \(n \) is a minimal field \(K = K(\alpha) \), which contains both \(\mathbb{Q} \) and \(\alpha \). Note that the coefficients \(a_i \) can be assumed integer. If \(K \) is an algebraic extension of the degree \(n \) over \(\mathbb{Q} \), then \(K \) is isomorphic to the \(n \)-dimensional vector space (over \(\mathbb{Q} \)) with the basis vectors \(\{1, \alpha, \ldots, \alpha^{n-1}\} \) (Pollard [8]).

2.2.1 The ring of integers

Let \(K \) be an algebraic extension of the degree \(n \) over \(\mathbb{Q} \). The element \(\tau \in K \) is called algebraic integer if there exits a monic polynomial \(\tau^n + a_{n-1} \tau^{n-1} + \ldots + a_0 = 0 \), where \(a_i \in \mathbb{Z} \). It can be easily verified that the sum and the product of two algebraic integers is an algebraic integer. The (commutative) ring \(O_K \subset K \) is called a ring of integers. The elements of the subring \(\mathbb{Z} \subset O_K \) are called the rational integers. An integral basis is a collection \(\omega_1, \ldots, \omega_n \) of the elements of \(O_K \), whose linear span over the rational integers is equal to \(O_K \).
An integral basis exists for any finite extension and therefore O_K is isomorphic to the integral lattice \mathbb{Z}^n, where n is the degree of the field K (Weyl [13]).

2.2.2 The trace of an algebraic number

Let K be a number field of the degree n over \mathbb{Q}. There exists n isomorphic embeddings (monomorphisms) $K \to \mathbb{C}$ (McCarthy [7]). We denote them by $\sigma_1, \ldots, \sigma_n$. If $\alpha \in K$ then one defines a trace by the formula $^1: \mathcal{N}(\alpha) = \sigma_1(\alpha) + \ldots + \sigma_n(\alpha)$. When α is an algebraic integer, then $\mathcal{N}(\alpha)$ is a rational integer. If $p, q \in \mathbb{Z}$, then $\mathcal{N}(p\alpha + q\beta) = p\mathcal{N}(\alpha) + q\mathcal{N}(\beta)$, for all $\alpha, \beta \in K$. It is not hard to see that the above formula establishes a homomorphism $\mathcal{N} : O_K \cong \mathbb{Z}^n \to \mathbb{Z}$, which does not depend on the choice of an integral basis in O_K (McCarthy [7], Weyl [13]).

2.3 The 3-manifolds

Let M be a compact oriented 3-manifold. Suppose that the second homology group $H_2(M; \mathbb{Z})$ is non-trivial. There exists a linear mapping of the group into the set of the positive integers, which is given by the following construction of W. P. Thurston ([10]).

2.3.1 The Thurston norm

Let X be a connected surface of the genus $g \geq 0$. Denote by $\chi(X)$ its Euler characteristic, i.e. an integer number $2 - 2g$. The negative part of $\chi(X)$ is defined as $\chi_-(X) = \max\{0, -\chi(X)\}$. If X is not connected, one introduces $\chi_-(X)$ as the sum of the negative parts of the connected components of X. For a cycle $z \in H_2(M; \mathbb{Z})$, consider a non-negative integer $N(z) = \inf\{\chi_-(X) \mid X$ is an embedded surface representing $z\}$. The $N(z)$ is called a Thurston norm. Given two such cycles z_1 and z_2, let X_1 and X_2 be the surfaces representing them. There exists a unique way to mend X_1 and X_2 together to obtain new embedded surface X, such that $\chi_-(X) = \chi_-(X_1) + \chi_-(X_2)$ (Thurston [10]). Thus, $N(z) = N(z_1) + N(z_2)$ extends linearly to the entire group $H_2(M; \mathbb{Z})$.

2.3.2 The pseudo-Anosov diffeomorphisms

Let X be a surface of the genus $g \geq 2$. Denote by Mod $X = Diff X/Diff_0 X$ the mapping class group of X, i.e. the group of the isotopy classes of the orientation preserving diffeomorphisms of X. The following classification of Mod X is due to J. Nielsen and W. P. Thurston.

Lemma 1 ([11]) Any diffeomorphism $\varphi \in$ Mod X is isotopic to a diffeomorphism φ', such that either (i) φ' has finite order, or (ii) φ' is pseudo-Anosov

\(^1\)This notion of \mathcal{N} is equivalent to given in section 1.
(non-periodic) diffeomorphism, or (iii) \(\varphi' \) is reducible by a system of curves \(\Gamma \) surrounded by small tubular neighborhoods \(N(\Gamma) \), such that on \(M \setminus N(\Gamma) \) \(\varphi' \) satisfies either (i) or (ii).

2.3.3 The singularity data

Let \(\varphi \) be a pseudo-Anosov diffeomorphism. There exists a pair of \(\varphi \)-invariant measured foliations \(F_\pm \) on \(X \), such that \(\varphi \) expands along \(F_+ \) and contracts along \(F_- \) with dilatation factor \(\mu > 1 \) (Thurston [11]). \(F_+ \) and \(F_- \) are mutually transversal and have common set of singular points, which are saddle points with \(n \geq 3 \) prongs. For brevity, we let \(F = F_+ \). Recall that the index of \(n \)-prong saddle \(s_n \) is \(-\frac{1}{2}(n - 2)\). Therefore \(\sum_{s_n \in \text{Sing } F} s_n = 2g - 2 \), where \(g \) is the genus of surface \(X \). If \(m = |\text{Sing } F| \) is the total number of the singular points of \(F \), then \(1 \leq m \leq 4g - 4 \), where the minimum is attained by a unique saddle \(s_{4g-2} \) and maximum by the set \(\{s_3, s_3, \ldots, s_3\} \) of \(4g - 4 \) saddles. We refer to the set \(\{s_{i_1}, \ldots, s_{i_m}\} \) as a singularity data of \(F \).

2.3.4 The mapping tori

Let \(\varphi : X \to X \) be a diffeomorphism of the surface \(X \). One can obtain 3-dimensional manifolds \(M = M(\varphi) \) by the formula \(M = \{X \times [0, 1] \mid (x, 0) \mapsto (\varphi(x), 1), x \in X\} \). The manifold \(M \) is called a mapping torus. It is not hard to see that \(M \) is a mapping torus if and only if \(M \to S^1 \) is a fibre bundle over \(S^1 \) with the monodromy \(\varphi \). If the diffeomorphism \(\varphi \in \text{Mod } X \) is of a finite order, then \(M \) will be a Seifert manifold. In the case when \(\varphi \) is pseudo-Anosov, the following result due to W. P. Thurston is true.

Lemma 2 ([12]) The mapping torus \(M \) admits a hyperbolic structure, if and only if the diffeomorphism \(\varphi \) is pseudo-Anosov.

2.3.5 The second homology group of the mapping torus

Let \(\varphi : X \to X \) be a pseudo-Anosov diffeomorphism of genus \(g \geq 2 \) surface. Let \(\text{Sing } F \) be a finite set of the singularities of the \(\varphi \)-invariant foliation \(F \). The relative homology group \(H_1(X, \text{Sing } F; \mathbb{Z}) \) is a torsion-free of the rank \(k = 2g + |\text{Sing } F| - 1 \), where \(|\text{Sing } F| \) is the cardinality of the set \(\text{Sing } F \). Let \(M \) be the mapping torus of \(\varphi \). The 2-cycles of \(M \) are generated by the 1-cycles of \(X \setminus \text{Sing } F \). Indeed, let \(C \in H_1(X, \text{Sing } F; \mathbb{Z}) \) and \(\varphi(C) \) its image under the diffeomorphism \(\varphi \). Let \(X \setminus C \) be a copy of the surface \(X \), which is cut along the closed curve \(C \). Similarly, let \(X \setminus \varphi(C) \) be a copy of \(X \) with a cut along \(\varphi(C) \). The surface \(X = (X \setminus C) \cup (X \setminus \varphi(C)) \), glued along the action of \(\varphi \), belongs to the group \(H_2(M) \), and any non-torsion element of \(H_2(M) \) can be obtained in such a way. Therefore, \(\text{rank } H_2(M) = 2g + m - 1 \), where \(m = |\text{Sing } F| \).
2.3.6 The Thurston norm of the surface bundle

It is interesting to relate the Thurston norm N on the second homology with the geometry of M. It turns out, that in this case N can be expressed in terms of the Euler classes of the plane bundle tangent to the fibres of M. Namely, let N^* be a dual Thurston norm defined on the first homology $H_1(M;\mathbb{Z})$ by the formula $N^*(z) = \sup_{u \in \text{Hom}(H_1(M;\mathbb{Z}),\mathbb{Z})} u(z)$, where $u \in \text{Hom}(H_1(M;\mathbb{Z}),\mathbb{Z}) \approx H_1(M;\mathbb{Z})$ and N is the Thurston norm on $H_1(M;\mathbb{Z}) \approx H_2(M;\mathbb{Z})$ induced by the Poincaré duality. Then the following lemma is true.

Lemma 3 ([3], ([10]) Let τ be a subbundle of the tangent bundle TM consisting of the 2-planes tangent to the fiber X of the fibration $M \to S^1$. Let $e(\tau) \in H^2(M;\mathbb{Z})$ be the Euler class of τ, i.e. first obstruction to the cross-section of bundle τ. Then (i) the norm $N^*: H_1(M;\mathbb{Z}) \to \mathbb{Z}^+$ is induced by the cocycle $e(\tau)$, i.e. $N^*(z) = |\int_{\tau} e(\tau)|$; (ii) the set of the (de Rham) cohomology classes $H_1(M;\mathbb{R})$, which is representable by the closed non-singular differential 1-forms on M is a maximal cone $C \subset H_1(M;\mathbb{R})$, where the Thurston norm N can be extended linearly.

3 Proof of theorem 1

(i) Let $\mathcal{N}: H_2(M) \to \mathbb{Z}$ be a linear mapping. To show that the set $C = \{z \in H_2(M) \mid \mathcal{N}(z) > 0\}$ is a cone, we have to establish that

1. $z \in C, c > 0$ implies $cz \in C$
2. $z_1, z_2 \in C$ implies $z_1 + z_2 \in C$.

Indeed, since \mathcal{N} is linear, $\mathcal{N}(cz) = c\mathcal{N}(z)$, where $\mathcal{N}(z) > 0$ by the assumption. Therefore, $c\mathcal{N}(z) > 0$ and the item (1) follows. Similarly, in the item (2), by the linearity of \mathcal{N}, we have $\mathcal{N}(z_1 + z_2) = \mathcal{N}(z_1) + \mathcal{N}(z_2) > 0$, since $\mathcal{N}(z_1) > 0, \mathcal{N}(z_2) > 0$ by the assumption. The item (i) is proved.

(ii) The proof of item (ii) is based on a lemma of D. Gabai ([4]). Roughly speaking, we shall estimate the Gromov norm (a simplicial norm) of $H_2(M)$, rather than the Thurston norm itself. This approach gives a technical advantage, because the group of the 2-chains in M has a natural abelian structure. Next we use the Gabai lemma to evaluate the two norms. The Gromov norm was introduced and studied in ([5]).

Let M be a compact manifold and $z \in H_2(M)$ be an element of the second homology group of M. A Gromov norm $g(z)$ is given by the formula $g(z) = \inf_{Z \in [z]} \{ \sum |a_i| : Z = \sum a_i \sigma_i \}$, where $[z]$ is the homology class of the 2-chains and $\sigma_1, \ldots, \sigma_n$ is a basis of the simplicial decomposition of M. The following lemma is true.
Lemma 4 Suppose \(M \) is a compact oriented 3-manifold. Then the Thurston norm \(N \) and Gromov norm \(g \) are related by the formula \(N(z) = \frac{1}{2} g(z) \), for each \(z \in H_2(M) \) in the domain of definition of the two norms.

Proof. The proof can be found in ([4]), Corollary 6.18. For the sake of clarity, let us outline the main idea. First, notice that if \(M \) is a hyperbolic \(k \)-manifold and \([M]\) its homology class, then we have Gromov's formula \(g([M]) = Vol M / Vol \sigma \), where \(\sigma \) is the largest hyperbolic \(k \)-simplex (Gromov [5]). Thus, for the connected surface \(X \), one has \(g([X]) = \frac{2|\chi(X)|}{\pi} = 2N([X]) \). The formula extends to the case \(X \) with more than one connected component and requires the singular norms \(x_s \) in this case, see Gabai ([4]). Eventually, it can be shown, that \(x_s = N \) and one gets inequality \(g \leq 2N \).

To prove the inequality \(g \geq 2N \), let \(z \in H_2(M) \) and \(Z \in [z] \) be a 2-cycle \(Z = \sum a_i \sigma_i \), where \(a_i \in \mathbb{Z} \). By pasting the singular simplices, one can obtain a proper map \(f : X \to M \), such that \([f(X)] = z \). By Gromov's formula for the hyperbolic volumes \(2N([X]) \leq \sum |a_i| = g([X]) \). Lemma 4 follows. \(\square \)

Fix a simplicial basis \(\sigma_1, \ldots, \sigma_n \) in the group \(C \) of the 2-chains of the regular triangulation of \(M \). Consider a subset of \(C \), given by the formula \(K_C = \{ Z \in C | Z = \sum_{i=1}^n a_i \sigma_i, \ a_i > 0 \} \). Denote by \(\tilde{N} : H_2(M) \to \mathbb{Z}^+ \) the mapping \(z \mapsto g(z) \) given by the Gromov norm. It is not hard to verify, that \(\tilde{N} \) is linear on the \(K_C \) and the \(K_C \) is a cone in \(C \). Consider the following commutative diagram of the linear mappings:

\[
\begin{array}{ccc}
K_C & \xrightarrow{\Sigma} & C \\
\downarrow{\tilde{N}} & & \downarrow{N} \\
\mathbb{Z}^+ & \xrightarrow{w} & \mathbb{Z}^+
\end{array}
\]

(Here \(w \) is a doubling map, acting by the formula \(z \mapsto 2z \)). The map \(\Sigma \) on the diagram is linear. The \(\Sigma \) establishes a bijection between the bases \(\{\sigma_i\} \) and \(\{\omega_i\} : \Sigma(\sigma_i) = \omega_i \). It remains to apply lemma 4. The item (ii) of theorem 1 follows. \(\square \)

Acknowledgments. I wish to thank O. Bratteli, D. Calegari, M. Felisatti, Y. Minsky and V. Turaev for helpful comments.

References

[1] O. Bratteli, P. E. T. Jørgensen, K. H. Kim, and F. Roush, Computation of isomorphism invariants for stationary dimension groups. Ergodic Theory Dynam. Systems 22 (2002), 99-127.
[2] E. G. Effros, Dimensions and C^*-Algebras, in: Conf. Board of the Math. Sciences No.46, AMS (1981).

[3] D. Fried, Fibrations over S^1 with pseudo-Anosov monodromy, in: A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Exposé 14, Astérisque 66-67 (1979), 251-266.

[4] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geometry 18 (1983), 445-503.

[5] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5-99.

[6] D. Handelman, Positive matrices and dimension groups affiliated to C^*-algebras and topological Markov chains, J. Operator Theory 6 (1981), 55-74.

[7] P. J. McCarthy, Algebraic Extensions of Fields, Blaisdell Publishing Company, 1966.

[8] H. Pollard, The Theory of Algebraic Numbers, Carus mathematical monographs, 9.

[9] M. Rørdam, F. Larsen and N. Laustsen, An introduction to K-theory for C^*-algebras. London Mathematical Society Student Texts, 49. Cambridge University Press, Cambridge, 2000. xii+242 pp. ISBN: 0-521-78334-8; 0-521-78944-3

[10] W. P. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986), 99-130.

[11] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer Math. Soc. 19 (1988), 417-431.

[12] W. P. Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle, arXiv:math.GT/9801045 v1.

[13] H. Weyl, Algebraic Theory of Numbers, Annals of Math. Studies 1, Princeton Univ. Press, 1940.

THE FIELDS INSTITUTE FOR MATHEMATICAL SCIENCES, TORONTO, ON, CANADA, E-MAIL: igor.v.nikolaev@gmail.com

Current address: 101-315 Holmwood Ave., Ottawa, ON, Canada, K1S 2R2