were conducted by using MEGA version 4.1 (www.megasoftware.net). The partial lppA gene nucleotide sequences of isolates GN407 and GN408 were submitted to GenBank under accession nos. HQ699892 and HQ699893, respectively.

PCR amplifications of the 2 joint fluids and their cultures were positive for M. leachii. When we compared the complete 16S rRNA gene and the partial lppA gene, the 2 isolates from the same epizootic shared 100% nt identity. For 16S rRNA gene, the isolates shared 99.9%, 99.9%, and 99.7% nt identities to M. leachii PG50, M. capricolum subsp. capricolum, and M. mycoides subsp. mycoides small colony, respectively. For partial lppA gene, the isolates shared 99.6%, 95.1%, and 69.6% nt identities to M. leachii PG50, M. mycoides subsp. mycoides small colony, and M. capricolum subsp. capricolum, respectively.

Intraarticular inoculation of the passage cultures successfully reproduced the polyarthritis in calves 1 month of age. Thus, there are notable similarities between our findings and those reported in Australia (3). Multidisciplinary procedures, including clinical assessment and comprehensive laboratory investigations of affected calves, were used to identify the etiologic agent. The results showed that the outbreak of the serious polyarthritis in calves was caused by M. leachii.

Our detection of M. leachii in China confirms a wider geographic presence of this type of Mycoplasma spp. in cattle and suggests M. leachii is common and potentially distributed worldwide. Currently, the source of M. leachii infection and its means of spread have not been established. However, our epidemiologic and clinical investigations indicated clear evidence of seminal infection because all calves with arthritis were from dams that were fertilized by using the same batch of semen, and cows in the same herd that were fertilized by using a different batch of semen delivered healthy calves. More epidemiologic, molecular, and pathogenic studies are required to determine the relevance, distribution, importance, and diversity of M. leachii in cattle.

This work was supported by Special Fund for Agro-scientific Research in the Public Interest of China (No. 200803018).

Ji-Tao Chang, Hai-Jun Liu, and Li Yu
Author affiliation: Harbin Veterinary Research Institute–Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
DOI: http://dx.doi.org/10.3201/eid1709.101891

References

1. Manso-Silván L, Vilei EM, Sachse K, Djordjevic SP, Thiaucourt F, Frey J. Mycoplasma leachii sp. nov. as a new species designation for Mycoplasma sp. bovine group 7 of Leach, and reclassification of Mycoplasma mycoides subsp. mycoides LC as a serovar of Mycoplasma mycoides subsp. capri. Int J Syst Evol Microbiol. 2009;59:1353–8. doi:10.1099/ijss.0.005546-0
2. Simmons GC, Johnston LA. Arthritis in calves caused by Mycoplasma sp. Aust Vet J. 1963;39:11–4. doi:10.1111/j.1751-0813.1963.tb04169.x
3. Hum S, Kessell A, Djordjevic S, Rheinberger R, Hornitzky M, Forbes W, et al. Mastitis, polyarthritis and abortion caused by Mycoplasma species bovine group 7 in dairy cattle. Aust Vet J. 2000;78:44–50. doi:10.1111/j.1751-0813.2000.tb10444.x
4. Connole MD, Laws L, Hart RK. Mastitis in cattle caused by a Mycoplasma sp. Aust Vet J. 1967;43:157–62. doi:10.1111/j.1751-0813.1967.tb04824.x
5. Shiel MJ, Coloe PJ, Worotniuk B, Burgess GW. Polyarthritis in calf associated with a group 7 Mycoplasma infection. Aust Vet J. 1982;59:192–3. doi:10.1111/j.1751-0813.1982.tb16007.x
6. Alexander PG, Slee KJ, McOrist S, Ireland L, Coloe PJ. Mastitis in cows and polyarthritis and pneumonia in calves caused by Mycoplasma species bovine group 7. Aust Vet J. 1985;62:135–6. doi:10.1111/j.1751-0813.1985.tb07265.x
7. Atalaia V, Machado M, Frazao F. Patologia dos pequenos ruminantes infeccoes em ovinos e caprinos, originadas pelo micoplasma do grupo 7, Leach (pg. 50).

Bartonella clarridgeiae in Fleas, Tahiti, French Polynesia

To the Editor: Bartonella species are small, gram-negative, fastidious, and hemotropic emerging pathogens that cause various human diseases and circulate between a large variety of mammalian and arthropod vectors. More than 30 Bartonella species have been isolated from humans as well as from wild and domestic animals worldwide (1). B. clarridgeiae was suggested to be a minor causative agent of cat-scratch disease (CSD) in humans, however, this suggestion remains controversial. Usually, the agent of CSD is B. henselae and its principal reservoir is domestic cats (Felis catus) (1,2). The principal vector of these 2 species is the cat flea (Ctenocephalides felis) (3,4).
We report Bartonella species in fleas collected from cats and dogs in Tahiti, French Polynesia.

In October 2009, fleas were collected from 1 cat and 9 dogs in Papeete, capital of Tahiti Island, French Polynesia. Fleas collected were kept in 70% ethanol and sent to the military veterinary service in Marseille, France; these fleas were later sent to Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes in Marseilles. The fleas were identified phenotypically by using current taxonomic criteria. DNA from fleas and negative control DNA from noninfected laboratory lice were extracted by using a QIAamp Tissue Kit (QIAGEN, Hilden, Germany), as described (3).

Flea samples were tested for Bartonella spp. DNA by using the 7900 HT Fast Quantitative Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and primers and Taqman probes specific for the 16S–23S rRNA gene intergenic spacer region as described (3). Fleas were considered positive when cycle threshold was \(\leq 30 \). All positive fleas at screening were confirmed by using standard Bartonella PCR and sequencing of partial internal transcribed spacer gene fragments by using primers URBarto1 and URBarto2, as described (3). B. elizabethae DNA was used as positive control. DNA sequencing reagents were obtained with BigDye Terminator Cycle Sequencing Ready Reaction Kit (ABI PRISM; Applied Biosystems). The sequences were assembled in Sequencher 4.2 (GeneCodes 2003; www.genecodes.com) and were compared with Bartonella sequences available in GenBank.

Overall, 81 fleas were collected from 1 cat (13 fleas) and 9 dogs (68 fleas). All 81 fleas collected were morphologically identified as C. felis.

Sample fleas were collected from animals visiting a veterinary clinic for neutering or vaccinations. The overall rate of Bartonella-positive fleas by molecular screening with real-time PCR was 7.4% (6/81): 6 fleas from the cat (6/13) and none from a dog (0/68). These positive samples were confirmed after intergenic spacer PCR amplification and sequencing with sequences at 100% identity with B. clarridgeiae (GenBank accession no. EU589237).

B. clarridgeiae was first isolated from the pet cat of an HIV-positive patient in the United States (6). However, B. clarridgeiae has never been isolated or detected by molecular methods in humans, and thus its implication as a human pathogen remains controversial. The presence of B. clarridgeiae antibodies has been reported in a suspected case of CSD and in a patient with a chest-wall abscess (4). However, B. clarridgeiae has been detected on fleas from various continents, including Europe, Asia, North America (1), Africa, New Zealand, and recently from New Caledonia (7).

In France, several studies have reported the molecular detection of B. clarridgeiae in the blood of a cat or in cat fleas (C. felis), indicating the potential role of fleas as vectors of this organism (8,9). Prevalence of this bacterium in cat fleas may vary and be as high as 67.9% in cat fleas from France (3). Moreover, DNA of B. henselae and B. clarridgeiae has been reported from cat fleas from New Zealand (10). Similarly, co-infection with B. clarridgeiae and B. henselae has been reported in domestic cats from Europe and Asia (1). In our study, all Bartonella spp.—positive fleas harbored B. clarridgeiae only; all were obtained from cats and none from dogs, similar to findings reported from New Zealand (10), although B. clarridgeiae has been reported from a flea on a dog in Taiwan (2).

Papeete, the capital of Tahiti, is located in the South Pacific Ocean, and remains one of the most visited areas by tourists from all over the world. There are many stray cats and dogs in Tahiti that may be infected with Bartonella species and thus serve as a reservoir for these pathogens. Our result confirms the presence of B. clarridgeiae in Tahiti and is a warning of the presence of fleaborne bartonellosis and the potential risk of B. clarridgeiae or other fleaborne diseases for humans exposed to cat fleas.

Acknowledgment

We thank Vincent Perrot for his help in collecting the fleas from Tahiti.

Tahar Kernif, Philippe Parola, Bernard Davoust, Loic Plaire, Olivier Cabre, Didier Raoult, and Jean-Marc Rolain

Author affiliations: Université de la Méditerranée, Marseille, France (T. Kernif, P. Parola, D. Raoult, J.-M. Rolain); Direction Régionale du Service de Santé des Armées de Toulon, Toulon, France (B. Davoust); and Direction Interarmées du Service de Santé des Forces Françaises en Polynésie Française, Papeete, Tahiti (L. Plaire, O. Cabre).

DOI: http://dx.doi.org/10.3201/eid1709.102063

References

1. Saisongkorh W, Rolain JM, Suputtamongkol Y, Raoult D. Emerging Bartonella in humans and animals in Asia and Australia. J Med Assoc Thai. 2009;92:707–31.
2. Tsai YL, Lin CC, Chomel BB, Chuang ST, Tsai KH, Wu WJ, et al. Bartonella infection in shelter cats and dogs and their ectoparasites. Vector Borne Zoonotic Dis. 2010; [Epub ahead of print].
3. Rolain JM, Franc M, Davoust B, Raoult D. Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in cat fleas, France. Emerg Infect Dis. 2003;9:338–42.
4. Chomel BB, Bouloumis HJ, Maruyama S, Breitschwerdt EB. Bartonella spp. in pets and effect on human health. Emerg Infect Dis. 2006;12:389–94.
5. Varagnol M, Parola P, Jouan R, Beaumoune J-C, Rolain JM, Raoult D. First detection of Rickettsia felis and Bartonella clarridgeiae in fleas from Laos. Clin Microbiol Infect. 2009;15:334–5. doi:10.1111/j.1469-0691.2008.02272.x
Bocavirus in Children with Respiratory Tract Infections

To the Editor: Four species of human bocavirus (HBoV1–4) have been identified since 2005 (1–4). Several reports have documented that HBoV1 are prevalent in respiratory tract samples. Although there may be many asymptomatic carriers, HBoV1 has been shown to cause respiratory tract diseases (1,5,6). HBoV2 has mainly been detected in feecal samples and has been linked to gastroenteritis (3,7,8). HBoV3 and HBoV4 have recently also been detected in fecal samples (3,4), although no link to disease has been established for these 2 species.

In this study, we identified and characterized 3 HBoV species (HBoV1–3) detected in respiratory samples. Nasopharyngeal aspirates were collected from 1,238 children (784 boys and 454 girls) with acute lower respiratory tract infections hospitalized in Beijing Children’s Hospital from March 2008 through July 2010. Patients’ ages ranged from 1 month to 9 years (median 10.0 months, mean 32.1 months).

Viral nucleic acid was extracted from nasopharyngeal aspirates by using the NucliSens easyMAG system (bioMérieux, Marcy l’Etoile, France). We screened for HBoV1–4 by nested PCR with touch-down procedure using primers targeting the viral proteins (VP) 1/2 region (4). For HBoV-positive samples, we then quantified viral loads by real-time PCR (online Technical Appendix, www.cdc.gov/EID/content/17/9/110078-Techapp.pdf). Additional viral infections were identified in all screened specimens as described (9). To avoid contamination, the PCR process (including master mixture preparation, nucleic acid extraction, reaction installation, and DNA amplifications) were performed in separate dedicated areas. Strict controls were used during the process of nucleic acid extraction and PCR analyses to monitor contamination. All PCR products were verified by sequence analysis.

We found 141 positive samples for HBoVs (11.4%) from patients ranging in age from 1 to 132 months (median 12.0 months, mean 19.8 months) (GenBank accession nos. HQ871520–HQ871650 and HQ871664–HQ871673). Among these samples, 131 (10.6%; patient ages 1–132 months, median 12 months, mean 19 months) were positive for HBoV1, 5 (0.4%; patients 1–113 months of age, median 7.2 months, mean 29.2 months) for HBoV2, and 5 (0.4%; 1–108 months of age, median 12.0 months, mean 30.4 months) for HBoV3 on the basis of sequence alignment and phylogenetic analysis of PCR amplicons. No specimens were positive for HBoV4. The number of samples positive for HBoV1, -2, and -3 in children ≤5 years old was 124/131 (94.7%), 4/5 (80%), and 4/5 (80%), respectively. Additional respiratory viruses were co-detected in 120/141 (85.1%) HBoV-positive patients (Table). An unanticipated finding was that real-time PCR only detected 1/5 positive sample for HBoV2 (viral load 4.87 × 10^4 copies/mL) and 2/5 positive samples for HBoV3 (viral load 2.59 × 10^4 and 4.1 × 10^2 copies/mL). In contrast, we detected viral loads of 8.35 × 10^4 to 1.28 × 10^6 copies/mL in 5 randomly selected HBoV1–positive samples.

The clinical diagnoses of patients providing HBoV-positive samples included pneumonia (63.1%), bronchitis (14.9%), bronchopneumonia (12.8%), and acute asthmatic bronchopneumonia (9.2%). No clinically significant differences were found between the signs and symptoms of patients with HBoV1, -2, and -3 (cough, sputum production, fever, runny nose, wheezing, and diarrhea). For patients positive for HBoV3, the major diagnoses were pneumonia (2/5), bronchopneumonia (2/5), and acute asthmatic bronchopneumonia (1/5). Main signs and symptoms included cough (5/5), wheezing (4/5), sputum production (3/5), fever (3/5), runny nose (1/5), and diarrhea (1/5). For patients positive for HBoV2, the diagnoses were pneumonia (4/5) and bronchopneumonia (1/5), and main signs and symptoms included cough (5/5), sputum production (4/5), wheezing (3/5), fever (3/5), and runny nose (2/5) (Table).

HBoV2 and HBoV3 were detected sporadically during the study. HBoV3 was detected in samples collected in