UNIVERSAL TORSORS AND VALUES OF QUADRATIC POLYNOMIALS REPRESENTED BY NORMS

ULRICH DERENTHAL, ARNE SMEETS, AND DASHENG WEI

Abstract. Let K/k be an extension of number fields, and let $P(t)$ be a quadratic polynomial over k. Let X be the affine variety defined by $P(t) = N_{K/k}(z)$. We study the Hasse principle and weak approximation for X in two cases. For $[K : k] = 4$ and $P(t)$ irreducible over k and split in K, we prove the Hasse principle and weak approximation. For $k = \mathbb{Q}$ with arbitrary K, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the only one.

Contents

1. Introduction 1
2. Quadratic polynomials represented by a quartic norm 3
3. Universal torsors 4
4. Quadratic polynomials represented by a norm over \mathbb{Q} 9
References 11

1. Introduction

Let K/k be an extension of number fields of degree n. When can values of a polynomial $P(t)$ over k be represented by norms of elements of K? To answer this question, we study solutions $(t, z) \in k \times K$ of the equation

$$P(t) = N_{K/k}(z).$$

This is closely related to the problem of studying the Hasse principle and weak approximation (see the end of this introduction for a review of this terminology) on a smooth proper model X^c of the affine hypersurface $X \subset \mathbb{A}^1_k \times \mathbb{A}^n_k$ with coordinates $(t, z) = (t, z_1, \ldots, z_n)$ defined by (1), via a choice of a basis $\omega_1, \ldots, \omega_n$ of K over k, with $N_{K/k}(z) = N_{K/k}(z_1 \omega_1 + \cdots + z_n \omega_n)$.

Colliot-Thélène conjectured that the Brauer–Manin obstruction to weak approximation is the only one on X^c (see [CT03]). This conjecture is known in the case where $P(t)$ is constant, thanks to work of Sansuc [San81]; if additionally K/k is cyclic, it is known that the Hasse principle (proved by Hasse himself [Has30, p. 150]) and weak approximation hold. Other known cases of Colliot-Thélène’s conjecture, in some cases leading to a proof of the Hasse principle and weak approximation, include the class of Châtelet surfaces ($[K : k] = 2$ and $\deg(P(t)) \leq 4$) [CTSanSD87a, CTSanSD87b], a class of singular cubic hypersurfaces ($[K : k] = 3$ and $\deg(P(t)) \leq 3$) [CTSanSD87a, CTSanSD87b].

Date: April 28, 2012.

2010 Mathematics Subject Classification. 14G05 (11D57, 14F22).
Theorem 2. We also generalize Theorem 2 to a large class of multivariate combination of their analytic work with descent theory gives our more general from \cite[Theorem 2]{BHB11} leads to their restriction to K number theory, inspired by work of Fouvry and Iwaniec \cite{FI97}. While one Theorem 2] proves weak approximation using sieve methods from analytic \cite{BHB11, (1.5)} is the restriction of a universal torsor T over X to U, or a product of T_U with a quasi-split torus. For the variety Y, \cite[Theorem 2]{BHB11} proves weak approximation using sieve methods from analytic number theory, inspired by work of Fouvry and Iwaniec \cite{FI97}. While one step in Browning’s and Heath-Brown’s deduction of \cite[Theorem 1]{BHB11} from \cite[Theorem 2]{BHB11} leads to their restriction to $[K : Q] = 4$, the combination of their analytic work with descent theory gives our more general Theorem 2. We also generalize Theorem 2 to a large class of multivariate polynomials $P(t_1, \ldots, t_\ell) \in Q[t_1, \ldots, t_\ell]$.

Terminology. For an algebraic variety Z defined over a number field k, one says that the Hasse principle holds if $\prod_{v \in \Omega_k} Z(k_v) \neq \emptyset$ (where Ω_k is the set of places of k and k_v is the completion of k at v) implies $Z(k) \neq \emptyset$. One says that weak approximation holds if $Z(k)$ is dense in $\prod_{v \in \Omega_k} Z(k_v)$ with the product topology, via the diagonal embedding.

If Z is smooth and proper, one says that the Brauer–Manin obstruction to the Hasse principle is the only one if $(\prod_{v \in \Omega_k} Z(k_v))^{\text{Br}(Z)} \neq \emptyset$ implies that $Z(k) \neq \emptyset$, and that the Brauer–Manin obstruction to weak approximation is the only one if $Z(k)$ is dense in $(\prod_{v \in \Omega_k} Z(k_v))^{\text{Br}(Z)}$. Here $(\prod_{v \in \Omega_k} Z(k_v))^{\text{Br}(Z)}$ is the set of all $(z_v) \in \prod_{v \in \Omega_k} Z(k_v)$ satisfying $\sum_{v \in \Omega_k} \text{inv}_v(A(z_v)) = 0$ for each A in the Brauer group $\text{Br}(Z) = H^2_k(Z, \mathbb{G}_m)$ of Z, where the map $\text{inv}_v : \text{Br}(k_v) \to Q/Z$ is the invariant map from local class field theory.

Let X be the variety defined by f and let $U \subset X$ be the open subvariety given by $P(t) \neq 0$. We will prove that the variety Y defined by $\{f(t) = 0\}$ is the restriction of a universal torsor T over X to U, or a product of T_U with a quasi-split torus. For the variety Y, \cite[Theorem 2]{BHB11} proves weak approximation using sieve methods from analytic number theory, inspired by work of Fouvry and Iwaniec \cite{FI97}. While one step in Browning’s and Heath-Brown’s deduction of \cite[Theorem 1]{BHB11} from \cite[Theorem 2]{BHB11} leads to their restriction to $[K : Q] = 4$, the combination of their analytic work with descent theory gives our more general Theorem 2. We also generalize Theorem 2 to a large class of multivariate polynomials $P(t_1, \ldots, t_\ell) \in Q[t_1, \ldots, t_\ell]$.

Terminology. For an algebraic variety Z defined over a number field k, one says that the Hasse principle holds if $\prod_{v \in \Omega_k} Z(k_v) \neq \emptyset$ (where Ω_k is the set of places of k and k_v is the completion of k at v) implies $Z(k) \neq \emptyset$. One says that weak approximation holds if $Z(k)$ is dense in $\prod_{v \in \Omega_k} Z(k_v)$ with the product topology, via the diagonal embedding.

If Z is smooth and proper, one says that the Brauer–Manin obstruction to the Hasse principle is the only one if $(\prod_{v \in \Omega_k} Z(k_v))^{\text{Br}(Z)} \neq \emptyset$ implies that $Z(k) \neq \emptyset$, and that the Brauer–Manin obstruction to weak approximation is the only one if $Z(k)$ is dense in $(\prod_{v \in \Omega_k} Z(k_v))^{\text{Br}(Z)}$. Here $(\prod_{v \in \Omega_k} Z(k_v))^{\text{Br}(Z)}$ is the set of all $(z_v) \in \prod_{v \in \Omega_k} Z(k_v)$ satisfying $\sum_{v \in \Omega_k} \text{inv}_v(A(z_v)) = 0$ for each A in the Brauer group $\text{Br}(Z) = H^2_k(Z, \mathbb{G}_m)$ of Z, where the map $\text{inv}_v : \text{Br}(k_v) \to Q/Z$ is the invariant map from local class field theory.

\cite{CTS89} and the case where K/k is arbitrary and $P(t)$ is split over k with at most two distinct roots \cite{HB92, CTS03, SJ11}. Finally, if one admits Schinzel’s hypothesis, then the conjecture is known for K/k cyclic and $P(t)$ arbitrary \cite{SD98}. See \cite[Introduction]{CT93} and \cite[Section 1]{BHB11} for a more detailed discussion of these results and the difficulties of this problem.

In a recent preprint, Browning and Heath-Brown proved the conjecture for $k = Q$, $[K : Q] = 4$ and $\deg(P(t)) = 2$ with $P(t)$ irreducible over k and split over K. Their main result \cite[Theorem 1]{BHB11} answers a question of Colliot-Thélène (see \cite[Section 2]{CT03}) in the case $k = Q$. We give a very short and elementary proof of this result for an arbitrary number field k. It is independent of the work of Browning and Heath-Brown and uses the fibration method in a simple and classical case.

Theorem 1. Let $P(t)$ be a quadratic polynomial that is irreducible over a number field k and split in K with $[K : k] = 4$. Then the Hasse principle and weak approximation hold for the variety $X \subset A^2_k$ defined by f.

If the ground field is Q, we can prove a much more general result based on the analytic work of Browning and Heath-Brown in \cite[Theorem 2]{BHB11} and the descent method of Colliot-Thélène and Sansuc:

Theorem 2. Let $k = Q$ and K be any number field. Let $P(t) \in Q[t]$ be an arbitrary quadratic polynomial. Then the Brauer–Manin obstruction to the Hasse principle and weak approximation is the only obstruction on any smooth proper model of $X \subset A^{n+1}_Q$ defined by f.
Acknowledgements. The first named author was supported by grant DE 1646/2-1 of the Deutsche Forschungsgemeinschaft and grant 200021_J24737/1 of the Schweizer Nationalfonds. The second named author was supported by a PhD fellowship of the Research Foundation - Flanders (FWO). The third named author was supported by NSFC grant # 10901150. This collaboration was supported by the Center for Advanced Studies of LMU München. We thank T. D. Browning and J.-L. Colliot-Thélène for useful discussions and remarks.

2. Quadratic polynomials represented by a quartic norm

In this section, we give a very short proof of Theorem 1 that is independent of the work of Browning and Heath-Brown [BHB11] and generalizes it from \(\mathbb{Q} \) to an arbitrary number field \(k \). Let \(K/k \) be an extension of degree 4. Let \(P(t) \in k[t] \) be an irreducible quadratic polynomial that is split in \(K \). Using a change of variables if necessary, we can assume that \(P(t) = c(t^2 - a) \), with \(c \in k^* \), where \(a \in k^* \) is not a square and \(\sqrt{a} \in K \). Write \(L = k(\sqrt{a}) \subset K \).

Proof of Theorem 1. Let \(U = \{(t, z) : P(t) \neq 0\} \subset X \). Let \(S \subset A^2_k \) be the conic defined by the affine equation \(c = N_{L/k}(w) \) and let \(p : U \to S \) be the morphism defined by

\[
(t, z) \mapsto (t - \sqrt{a})^{-1} N_{K/L}(z).
\]

The morphism \(p \) is smooth.

Let \(S^c \) be a smooth compactification of \(S \). Then there exists a smooth compactification \(X^c \) of \(X \) such that \(p \) extends to \(X^c \to S^c \). The conic \(S \) satisfies weak approximation. We can assume that \(X^c \) has points everywhere locally; otherwise there is nothing to prove. This implies that \(S^c(k) \neq \emptyset \) and even \(S(k) \neq \emptyset \). The fiber of \(p \) over a rational point \(w \in S(k) \) is defined by the equation \(t - \sqrt{a} = w^{-1} N_{K/L}(x) \). This \(k \)-variety is isomorphic to a smooth quadric of dimension 3: writing \(x = (x_1 + x_2 \sqrt{a}) + (x_3 + x_4 \sqrt{a}) \beta \) for some \(\beta \in L \) such that \(K = L(\beta) \), Lemma 1 below shows that

\[
w^{-1} N_{K/L}(x) = f_0(x_1, \ldots, x_4) + f_1(x_1, \ldots, x_4) \sqrt{a}
\]

for some quadratic forms \(f_0 \) and \(f_1 \) (over \(k \)) of rank 4, which depend on \(w \). Hence the fiber is isomorphic to the affine \(k \)-hypersurface given by an equation \(f_1(x_1, \ldots, x_4) = -1 \), which is indeed a smooth quadric of dimension 3. Therefore, Theorem 1 holds by [CTSanSD87a, Proposition 3.9]. \(\square \)

Now we show that the quadratic forms in the proof of Theorem 1 have rank 4.

Lemma 1. Let \(K/k \) be a quartic extension of fields of characteristic 0 which contains a quadratic subextension \(L = k(\sqrt{a}) \). Take \(\beta \in K \) with \(K = L(\beta) \). Let \(\rho \in L^* \). Let \(y = (y_1 + y_2 \sqrt{a}) + (y_3 + y_4 \sqrt{a}) \beta \) be a \(K \)-variable. If

\[
\rho N_{K/L}(y) = f_0(y_1, \ldots, y_4) + f_1(y_1, \ldots, y_4) \sqrt{a},
\]

then the quadratic forms \(f_0 \) and \(f_1 \) have rank 4.

Proof. Write \(\beta = \sqrt{u + v \sqrt{a}} \) for some \(u, v \in k \). Elementary computations give

\[
N_{K/L}(y) = g_0(y_1, \ldots, y_4) + g_1(y_1, \ldots, y_4) \sqrt{a}
\]
with
\[g_0(y_1, \ldots, y_4) = y_1^2 + ay_2^2 - u(y_3^2 + ay_4^2 - 2ay_3y_4), \]
\[g_1(y_1, \ldots, y_4) = 2y_1y_2 - 2uy_3y_4 - v(y_3^2 + ay_4^2). \]

Multiplying by \(\rho = \rho_0 + \rho_1\sqrt{a} \neq 0 \) (where \(\rho_0, \rho_1 \in K \)), we see that \(f_0 \) and \(f_1 \) are of the form \(\lambda g_0 + \mu g_1 \) for some \((\lambda, \mu) \in k^2 \) with \((\lambda, \mu) \neq (0, 0) \). Then

\[\lambda g_0(y_1, \ldots, y_4) + \mu g_1(y_1, \ldots, y_4) = q_0(y_1, y_2) + q_1(y_2, y_4) \]

with
\[q_0(y_1, y_2) = \lambda y_1^2 + 2\mu y_1y_2 + a\lambda y_2^2, \]
\[q_1(y_3, y_4) = -(\lambda u + \mu v)y_3^2 - 2(\lambda av + \mu u)y_3y_4 - a(\lambda u + \mu v)y_4^2. \]

Clearly \(q_0 \) and \(q_1 \) have rank 2 since \(a \not\in k^{\times 2} \) implies that

\[\text{disc}(q_0) = \lambda^2a - \mu^2 \neq 0, \quad \text{disc}(q_1) = -(\lambda^2a - \mu^2)(v^2a - u^2) \neq 0. \]

The result follows. \(\square \)

Remark 1. The analog of Theorem 1 holds for global fields of positive characteristic different from 2 as well. Indeed, it is not hard to see that our arguments and the proof of [CTSanSD87a, Proposition 3.9] remain valid for such fields.

3. Universal torsors

The basic strategy is based on the following result, which reduces the problem of the Hasse principle and weak approximation on a variety to the same questions on its universal torsors, where we have no Brauer–Manin obstructions. This kind of result has been proved essentially by Colliot-Thélène and Sansuc in their seminal paper [CTSan87]. However, they developed their theory under the simplifying assumption that the varieties involved are proper. Skorobogatov developed a variant under less stringent assumptions in [Sko99]. Descent on open varieties also features in [CTSko00] and [CT03]. We will use the following variant:

Proposition 1. Let \(Z \) be a smooth, geometrically rational variety over a number field \(k \) with algebraic closure \(\overline{k} \). Let \(\overline{Z} = Z \times_k \overline{k} \). Assume furthermore that \(\overline{k}(Z)^{\times} = \overline{k}^\times \), that \(\text{Pic}(\overline{Z}) \) is free of finite rank, that \(Z \) has universal torsors and that there is an open subvariety \(U \subset Z \) such that the restriction \(\mathcal{T}|_U \) satisfies weak approximation for any universal \(Z \)-torsor \(\mathcal{T} \). Then the Brauer–Manin obstruction to the Hasse principle and weak approximation is the only one for any smooth proper model \(Z^c \) of \(Z \).

The condition \(\overline{k}(Z)^{\times} = \overline{k}^\times \) means that the only invertible regular functions on \(Z \) are the constant ones.

Let us explain how to obtain this result from the existing results in the literature. Let \((x_v) \in \prod_{v} Z^c(k_v))^{Br(Z^c)} \). For any finite set \(S \) of places of \(k \), we must find an \(x \in Z^c(k) \) that is arbitrarily close to \(x_v \) for all \(v \in S \).

Because of our assumptions on \(Z \), \(Br_1(Z)/Br_0(Z) \cong H^1(k, \text{Pic}(\overline{Z})) \) is finite, where \(Br_1(Z) \) is the kernel of the natural map \(Br(Z) \to Br(\overline{Z}) \) and \(Br_0(Z) \) is the image of \(Br(k) \to Br(Z) \). We note that the variety \(Z^c \) is smooth, proper and geometrically rational, so that \(Br(Z^c) = 0 \). Therefore,
we can apply [CTSk00] Proposition 1.1] to conclude that $Z(\mathbb{A}_k)^{Br_1}(Z)$ is dense in $\prod_v Z^r(k_v)^{Br(Z^r)}$, and we can choose $(y_v) \in Z(\mathbb{A}_k)^{Br_1}(Z)$ such that y_v is as close as we wish to x_v for all $v \in S$.

By assumption, we can find a universal torsor $f: T \to Z$ and an adelic point $(t_v) \in T(\mathbb{A}_k) \subset \prod_v T(k_v)$ such that $f((t_v)) = (y_v)$ using descent theory [Sko99 Theorem 3]. Since T is smooth over X, the implicit function theorem implies that there exists $(u_v) \in \prod_v T_U(k_v)$ such that u_v is arbitrarily close to t_v for all places $v \in S$.

As weak approximation holds on T_U by assumption, we find $u \in T_U(k)$ such that u is as close as we wish to u_v for all $v \in S$. Since f is continuous, the point $x = f(u)$ has the required properties.

The main result of this section is concerned with the existence of universal torsors [CTSan87] (2.0.4) over X as in [1] and their local description.

Let us recall some more definitions. If k is a field and if A is an étale k-algebra, then the k-variety $R_{A/k}(\mathbb{G}_m,A)$ is defined via its functor of points: take $R_{A/k}(\mathbb{G}_m,A)(B) = (A \otimes_k B)^\times$ functorially for every k-algebra B. The norm map $N_{A/k}$ is defined as in [Bou98] §12.2. We denote the absolute Galois group of k by Γ_k.

Proposition 2. Let K/k be an extension of fields of degree n. Let $P(t)$ be an irreducible separable polynomial of degree r over k.

The variety $X \subset \mathbb{A}_k^{n+1}$ defined by (2) is smooth and geometrically integral, with $\text{Pic}(\mathbb{X})$ free of finite rank and $\mathbb{X}[X]^\times = \mathbb{K}^\times$. Let U be the open subset of X defined by $P(t) \neq 0$. Then $\text{Pic}(\bar{U}) = 0$.

Let $c \in \mathbb{K}^\times$ be the leading coefficient of $P(t)$, let L be the field $k[t]/(P(t))$ and let η be the class of t in L. Let $A = L \otimes_k K$. For any universal torsor \mathcal{T} over X, there exists a solution $(\rho, \xi) \in L^\times \times K^\times$ of the equation $cN_{L/k}(\rho) = N_{K/k}(\xi)$ such that \mathcal{T}_U (its restriction to U) is isomorphic to the subvariety of $\mathbb{A}_k^1 \times R_{A/k}(\mathbb{G}_m,A)$ (with coordinates (t, z)) given by the equation

$$t - \eta = \rho N_{A/L}(z).$$

Using only the basic definitions, it is easy to see that one can specialize equation (2) as follows in the two “extreme” cases:

(a) If $P(t)$ splits completely in K, then \mathcal{T}_U is isomorphic to the subvariety of $\mathbb{A}_k^1 \times (R_{K/k}(\mathbb{G}_m,K))^r$ (with coordinates (t, x_1, \ldots, x_r)) given by the equation

$$t - \eta = \rho \prod_{i=1}^r \sigma_i^{-1}(N_{K/k}(x_i))$$

where $\sigma_1, \ldots, \sigma_r$ is a set of representatives of Γ_k/Γ_L.

(b) If $P(t)$ remains irreducible in K, then \mathcal{T}_U is isomorphic to the subvariety of $\mathbb{A}_k^1 \times R_{F/k}(\mathbb{G}_m,F)$ (with coordinates (t, x)) given by the equation

$$t - \eta = \rho N_{F/L}(x)$$

where $F = L \cdot K$.

QUADRATIC POLYNOMIALS REPRESENTED BY NORMS 5
The proof of Proposition 2 will occupy most of the remainder of this section. The κ-variety \overline{X} can be described by an equation of the form

$$c \prod_{i=1}^{r} (t - \eta_i) = u_1 \cdots u_n$$

(5)

where η_1, \ldots, η_r are the embeddings of η in κ. We note that X is smooth because $P(t)$ is separable. Consider the morphism $p : X \to \mathbb{A}_k^1$ given by $(t, x) \mapsto t$. Over κ, it has precisely r reducible fibers X_i, for $i = 1, \ldots, r$, over $t = \eta_i$. Each of these has n irreducible components $D_{i,j} = \{t = \eta_i, u_j = 0\}$ for $j = 1, \ldots, n$. Let U_0 be the open subset of \mathbb{A}_k^1 where $P(t) \neq 0$ and let $U = p^{-1}(U_0) \subset X$. We have

$$\mathcal{U} = U \times_k \kappa \cong (\mathbb{A}_k^1 \setminus \{\eta_1, \ldots, \eta_r\}) \times \mathbb{G}^{n-1}_{m, \kappa},$$

so that $\text{Pic}(\mathcal{U}) = 0$.

We have $\overline{X}[\mathbb{K}] = \overline{\mathbb{K}}$. Indeed, the generic fiber of \overline{X} is $\mathbb{A}_k^1 \setminus \{\eta_1, \ldots, \eta_r\}$, so that $\text{Pic}(\mathcal{U}) = 0$. Therefore, any $f \in \overline{X}[\mathbb{K}]$ has the form $f = g(t)u_1^{m_1} \cdots u_n^{m_n}$ with $g \in k(t)$ and $m_1, \ldots, m_n \in \mathbb{Z}$. If $g(t)$ has a root or pole in some $t_0 \notin \{\eta_1, \ldots, \eta_r\}$, then f or f^{-1} is not regular in a point on $p^{-1}(t_0)$. Otherwise, we have

$$g(t) = c' \prod_{i=1}^{r} (t - \eta_i)^{e_i}$$

for some $c' \in \overline{\mathbb{K}}$ and $e_1, \ldots, e_r \in \mathbb{Z}$. Then

$$\text{div}(f) = \sum_{i=1}^{r} \sum_{j=1}^{n} (e_i + m_j)D_{i,j},$$

so $f \in \overline{X}$ if and only if $e_1 = \cdots = e_r = -m_1 = \cdots = -m_n$. By (5), this is equivalent to saying that f is a constant in $\overline{\mathbb{K}}$.

By descent theory [CTSan87, Corollary 2.3.4], universal torsors over X exist if and only if the exact sequence of Γ_k-modules

$$1 \to \overline{\mathbb{K}} \to \overline{\mathbb{K}}[U] \to \overline{\mathbb{K}}[U]/\overline{\mathbb{K}} \to 1$$

(6)

is split.

It is easy to see that the abelian group $\overline{\mathbb{K}}[U]/\overline{\mathbb{K}}$ is free of rank $r + n - 1$, generated by the classes of the functions $t - \eta_1, \ldots, t - \eta_r, u_1, \ldots, u_n$ with an obvious Γ_k-action and the relation

$$\sum_{i=1}^{r} [t - \eta_i] - \sum_{j=1}^{n} [u_j] = 0$$

(7)

because of the equation defining X.

The exact sequence (6) is split if and only if the classes can be lifted to $\overline{\mathbb{K}}[U]$ in a Γ_k-equivariant way, via a map

$$\phi : \overline{\mathbb{K}}[U]/\overline{\mathbb{K}} \to \overline{\mathbb{K}}[U], \quad [t - \eta] \mapsto \rho^{-1}(t - \eta), \quad [u_1] \mapsto \xi^{-1}u_1$$

(8)

where $\rho \in L^\times$ and $\xi \in K^\times$. Because of the unique relation (7), the pair $(\rho, \xi) \in L^\times \times K^\times$ defines such a splitting if and only if

$$cN_{L/k}(\rho) = N_{K/k}(\xi).$$

(9)
We now want to apply [CTSan87, Theorem 2.3.1, Corollary 2.3.4] for the local description of universal torsors over X. We will describe a morphism of tori $d : M \to T$ such that its dual map of characters fits into the following commutative diagram of Γ_k-equivariant homomorphisms.

$$
\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{O} & \longrightarrow & \overline{\mathcal{O}} & \longrightarrow \text{Pic}(X) & \longrightarrow & 0 \\
& \searrow^{i} & \downarrow^{d} & \downarrow^{\overline{d}} & \downarrow^{j} & \longrightarrow & & \\
1 & \longrightarrow & \mathcal{O}(U)^{\times} / \overline{\mathcal{O}}^{\times} & \longrightarrow & \text{Div}_X(U_X) & \longrightarrow & \text{Pic}(X) & \longrightarrow & 0
\end{array}
$$

Here, the second row is exact because Pic(\overline{U}) = 0 and $\overline{k}[X]^{\times} = \overline{k}^{\times}$.

The Γ_k-module $\mathcal{O}(U)^{\times} / \overline{\mathcal{O}}^{\times}$ is isomorphic to the module of characters of the algebraic k-torus $T \subset R_{L/k}(\mathbb{G}_{m,L}) \times R_{K/k}(\mathbb{G}_{m,K})$ with coordinates (z_1, z_2) given by

$$
N_{L/k}(z_1) = N_{K/k}(z_2).
$$

Indeed, the character group \mathcal{O} is the quotient of $\mathbb{Z}[\Gamma_k/\Gamma_L] \oplus \mathbb{Z}[\Gamma_k/\Gamma_K]$ with the diagonal Γ_k-action by the relation

$$
\sum_{\sigma \Gamma_L \in \Gamma_k/\Gamma_L} \sigma \Gamma_L = \sum_{\gamma \Gamma_K \in \Gamma_k/\Gamma_K} \gamma \Gamma_K.
$$

The isomorphism $i : \mathcal{O} \to \mathcal{O}(U)^{\times} / \overline{\mathcal{O}}^{\times}$ is given by

$$
i(\sigma \Gamma_L) = [t - \sigma(\eta)], \quad i(\gamma \Gamma_K) = [\gamma(u_1)].$$

The abelian group $\text{Div}_X(U_X)$ is free of rank rn, generated by $D_{i,j}$ for $i = 1, \ldots, r$ and $j = 1, \ldots, n$. There is a bijection $\Gamma_k/\Gamma_L \times \Gamma_k/\Gamma_K \to \{ D_{i,j} \}$ defined by $(\sigma \Gamma_L, \gamma \Gamma_K) \mapsto \{ t = \sigma(\eta), \gamma(u_1) = 0 \}$ that is compatible with the action of Γ_k, acting diagonally on the left hand side. Recalling $A = L \otimes_k K$, this shows that $\text{Div}_X(U_X)$ is isomorphic to the module of characters of the k-torus $M = R_{A/k}(\mathbb{G}_{m,A})$. Let $j : \widehat{M} \to \text{Div}_X(U_X)$ be this isomorphism.

Consider the homomorphism $\text{div} : \mathcal{O}(U)^{\times} / \overline{\mathcal{O}}^{\times} \to \text{Div}_X(U_X)$ that maps a function to its divisor. We have

$$
\text{div}(t - \eta) = \sum_{j=1}^{n} D_{1,j}, \quad \text{div}(u_1) = \sum_{i=1}^{r} D_{i,1}.
$$

Now div induces a homomorphism on the character modules $\widehat{d} : \mathcal{O} \to \widehat{M}$. The dual of this homomorphism is then given by the morphism of k-tori

$$
d : M \to T, \quad \mathbf{z} \mapsto (N_{A/L}(z), N_{A/K}(z)).
$$

Let S be the Néron–Severi torus dual to the Γ_k-module $\text{Pic}(\overline{X})$, so that we have an exact sequence of tori

$$
1 \to S \to M \to T \to 1.
$$

This makes M into a T-torsor under S.

We now describe the map $U \to T$ induced by the splitting ϕ as in (8) by a choice of $(\rho, \xi) \in L^{\times} \times K^{\times}$ satisfying (9). The induced map is given by

$$
U \to T, \quad (t, x) \mapsto (\rho^{-1}(t - \eta), \xi^{-1}x),
$$

where $\rho^{-1}(t - \eta)$ is the norm of t with respect to the extension L/k. This completes the description of the universal torsor over X.

and it is easy to see that the image is in T using the equation of X and the condition $[1]$. Therefore, the image of U in T is isomorphic to the subvariety of $\mathbb{A}_k^1 \times T$ with coordinates (t, z_1, z_2) defined by
\[t - \eta = \rho z_1. \]

By [CTSan87] Theorem 2.3.1, Corollary 2.3.4, any universal torsor \mathcal{T}_U over U is the pullback of a torsor M from T to U. Our computations show that it is isomorphic to the subvariety of $\mathbb{A}_k^1 \times R_{G/A}(\mathbb{G}_m,A)$ with coordinates (t, z) defined by $[3]$. This completes the proof of Proposition 2.

Remark 2. One can determine equations for universal torsors T over the smooth locus X_{sm} of the variety X defined by $[1]$ even if $P(t)$ is not irreducible over k; note that X is not smooth if $P(t)$ is not separable. Then Pic(X_{sm}) is a finitely generated (but not necessarily free) abelian group. So T will be a torsor over X_{sm} under the group of multiplicative type that is dual to Pic(X_{sm}).

The result is as follows: Assume that
\[P(t) = cP_1(t)^{e_1} \cdots P_d(t)^{e_d} \]
for $c \in k^\times$, some irreducible monic polynomials $P_i(t) \in k[t]$ and positive integers e_i. Write $L_i = k[t]/(P_i(t))$ and let η_i be the class of t in L_i. For $i = 1, \ldots, d$, consider the étale L_i-algebra $A_i = L_i \otimes_k K$. Let $U \subset X_{sm}$ be the open subvariety given by $P(t) \neq 0$. For any universal torsor T over X_{sm}, there exists a solution $(\rho_1, \ldots, \rho_d, \xi) \in L_1^\times \times \cdots \times L_d^\times \times K^\times$ of the equation
\[cN_{L_1/k}(\rho_1)^{e_1} \cdots N_{L_d/k}(\rho_d)^{e_d} = N_{K/k}(\xi) \]
such that \mathcal{T}_U is isomorphic to the subvariety of $\mathbb{A}_k^1 \times \prod_{i=1}^d R_{A_i/k}(\mathbb{G}_m,A_i)$ with coordinates (t, z_1, \ldots, z_d) given by the system of equations
\[t - \eta_i = \rho_i N_{A_i/L_i}(z_i) \quad \text{for} \quad 1 \leq i \leq d. \]

The proof is a straightforward generalization of the proof of Proposition 2.

Note that [HBSko02] Theorem 2.2 is a special case of this result.

In case that k is a number field, the following result links the existence of universal torsors as in Proposition 2 to the absence of Brauer–Manin obstructions on X.

This can also be deduced from general results ([Sk01 Proposition 6.1.4] and [CTSko00 Proposition 1.1]). However, our more elementary proof easily generalizes to the setting of Remark 2 where these general results do not apply.

Lemma 2. Let $P(t)$ be an irreducible polynomial over a number field k. Let K/k be an extension of finite degree n. Let $X \subset \mathbb{A}_k^{n+1}$ be the variety defined by $[1]$. A universal torsor over X exists if there is no Brauer–Manin obstruction to the Hasse principle on a smooth proper model of X.

Proof. Consider the variety $E \subset R_{L/k}(\mathbb{G}_m,L) \times R_{K/k}(\mathbb{G}_m,K)$ defined by the equation $cN_{L/k}(z_1) = N_{K/k}(z_2)$, corresponding to the equality $[1]$. We have a natural map $U \to E$ defined by $(t, x) \mapsto (t - \eta, x)$. It is clear that E is a principal homogeneous space of the torus $T \subset R_{L/k}(\mathbb{G}_m,L) \times R_{K/k}(\mathbb{G}_m,K)$ defined by $N_{L/k}(z_1) = N_{K/k}(z_2)$.
By Hironaka’s theorem, there exist a smooth compactification E^c of E, a smooth compactification U^c of U and a morphism $U^c \to E^c$ extending the map $U \to E$ above. Our assumption implies
\[
\left(\prod_v U^c(k_v) \right)^{Br(U^c)} \neq \emptyset \quad \text{and hence} \quad \left(\prod_v E^c(k_v) \right)^{Br(E^c)} \neq \emptyset.
\]
Since the Brauer–Manin obstruction to weak approximation is the only one for compactifications of homogeneous spaces of linear algebraic groups [San81, Theorem 8.12], we have $E(k) \neq \emptyset$, i.e., there exists $(\rho, \xi) \in L^\times \times K^\times$ satisfying (9). Now the existence of a universal torsor over X follows from [CTS87, Corollary 2.3.4].

4. Quadratic polynomials represented by a norm over \mathbb{Q}

Let $k = \mathbb{Q}$. As before, we can assume without loss of generality that $P(t) = c(t^2 - a)$ with $c \in \mathbb{Q}^\times$ and $a \in \mathbb{Q}$, but now we do not assume that $P(t)$ is split in K. Using the deep work of Browning and Heath-Brown and our description of universal torsors, we can prove the following result:

Proposition 3. If the quadratic polynomial $P(t)$ is irreducible over \mathbb{Q}, then the restriction \mathcal{T}_U of each universal torsor \mathcal{T} over X as in Proposition 2 satisfies weak approximation.

Proof. Assume that $P(t)$ is split in K. Consider $\mathcal{T}_U \subset \mathbb{A}_k^1 \times (R_{K/k}(\mathbb{G}_{m,K}))^2$ defined by equation (3) in the case $r = 2$. For any $\sigma \in \Gamma_k$, we have $\sigma(L) = L$, and for any $x \in L$, we have $\sigma(x) = \sigma^{-1}(x)$. Therefore, (3) can be rewritten as
\[
t - \sqrt{a} = \rho N_{K/L}(x_1) \cdot \sigma(N_{K/L}(x_2)),
\]
where $\sigma \in \Gamma_k$ with $\sigma(\sqrt{a}) = -\sqrt{a}$.

The variety determined by this equation is isomorphic to the subvariety Y of $\mathbb{A}_k^1 \times (R_{K/k}(\mathbb{G}_{m,K}))^2$ defined by the equation
\[
N_{K/k}(w)(t - \sqrt{a}) = \rho N_{K/L}(y),
\]
via the substitution
\[
w = x_2^{-1}, \quad y = x_1 x_2^{-1}
\]
with inverse
\[
x_1 = w^{-1} y, \quad x_2 = w^{-1}
\]
using $N_{K/k}(x_2) = N_{L/k}(N_{K/L}(x_2)) = N_{K/L}(x_2) \cdot \sigma(N_{K/L}(x_2))$. This is exactly [BHB11, equation (1.5)]. Weak approximation then holds on Y because of [BHB11, Theorem 2].

Assume now that $P(t)$ remains irreducible over K and write $F = K \cdot L$, where $L = k(\sqrt{a})$. Choose some $\sigma \in \Gamma_K$ such that $\sigma \notin \Gamma_F = \Gamma_L \cap \Gamma_K$, so $\sigma \notin \Gamma_L$. Therefore, σ is a representative of the non-trivial class both in Γ_K/Γ_F and in Γ_L/Γ_F.

Let $\gamma_1, \ldots, \gamma_n$ be a set of coset representatives of Γ_L/Γ_F. We claim that a set of representatives of Γ_k/Γ_F is given by $\gamma_1, \ldots, \gamma_n, \gamma_1 \sigma, \ldots, \gamma_n \sigma$. Indeed, if $\gamma_1 \sigma \Gamma_F = \gamma_2 \sigma \Gamma_F$, then we have $\sigma^{-1} \gamma_j^{-1} \gamma_i \sigma \in \Gamma_F = \Gamma_L \cap \Gamma_K$. Since L/k is Galois, this gives $\gamma_j^{-1} \gamma_i \in \sigma \Gamma_L \sigma^{-1} = \Gamma_{\sigma(L)} = \Gamma_L$, so $\gamma_j^{-1} \gamma_i \in \sigma \Gamma_K \sigma^{-1} = \Gamma_K$ since $\sigma \in \Gamma_K$. Hence $\gamma_j^{-1} \gamma_i \in \Gamma_L \cap \Gamma_K = \Gamma_F$, so $\gamma_i \Gamma_F = \gamma_j \Gamma_F$, which implies
Furthermore, if $\gamma_i \sigma \Gamma_F = \gamma_j \Gamma_F$, then $\gamma_j^{-1} \gamma_i \sigma \in \Gamma_F \subset \Gamma_L$, which contradicts the fact that $\gamma_i, \gamma_j \in \Gamma_L$, but $\sigma \notin \Gamma_L$. Finally, $\gamma_i \Gamma_F = \gamma_j \Gamma_F$ only for $i = j$ by construction. This proves the claim.

Therefore, $N_{F/k}(w) = N_{F/L}(w)N_{F/L}(\sigma(w))$. We note that σ induces an automorphism over k of the variety $R_{F/k}(\mathbb{G}_{m,F})$: this is clear from the functor-of-points description of $R_{F/k}(\mathbb{G}_{m,F})$.

Using this observation, we see that the variety $Y' \subset \mathbb{A}_k^1 \times (R_{F/k}(\mathbb{G}_{m,F}))^2$ with coordinates (t, w, y) defined by

$$N_{F/k}(w)(t - \sqrt{a}) = \rho N_{F/L}(y)$$

(i.e. equation \text{(13)} with K replaced by F) is isomorphic to the product $T_U \times R_{F/k}(\mathbb{G}_{m,F})$ with coordinates (t, x, y) subject to \text{(4)}. The isomorphism is defined by the map

$$(t, w, y) \mapsto (t, (w \sigma(w))^{-1} y, w),$$

the inverse substitution being given by

$$(t, x, y) \mapsto (t, y, xy \sigma(y)).$$

Since Y' satisfies weak approximation by \cite[Theorem 2]{BHB11} and since $R_{F/k}(\mathbb{G}_{m,F})$ is rational and therefore has non-trivial k_v-points for any place v, this implies that T_U satisfies weak approximation.

\textbf{Proof of Theorem 2.} If $P(t)$ is split over \mathbb{Q} with two distinct roots, then Theorem 2 is a special case of \cite[Theorem 1.1]{HBSko02}. If it is split over \mathbb{Q} with one double root, $U \subset X$ as in Proposition 2 is a principal homogeneous space of a torus, and Theorem 2 holds by \cite{San81}.

Next, assume that $P(t)$ is irreducible over \mathbb{Q}. Assume that there is no Brauer–Manin obstruction to the Hasse principle on a smooth and proper model of X. Then Lemma 2 shows that universal torsors T_U over X exist. By Proposition 3, T_U satisfies weak approximation. Proposition 2 shows that $\mathbb{F}[X]^\times = \mathbb{F}^\times$ and that Pic(X) is free of finite rank. Then an application of Proposition 1 gives the result.

\textbf{Corollary 1.} If the quadratic polynomial $P(t) \in \mathbb{Q}[t]$ is not split in the Galois closure of K/\mathbb{Q}, then the Hasse principle and weak approximation hold on any smooth proper model of $X \subset \mathbb{A}_{\mathbb{Q}}^{n+1}$ defined by \text{(7)}.

\textbf{Proof.} By \cite[Theorem 2.2]{Wei12}, the smooth proper model X^c satisfies $\text{Br}(X^c) = \text{Br}_0(X^c)$, so the result follows immediately from Theorem 2.

Finally, we generalize Theorem 2 to equations involving a multivariate polynomial $P(t_1, \ldots, t_{\ell})$, using techniques developed by Harari in \cite{Har97}:

\textbf{Corollary 2.} Let P_0, P_1, P_2 be polynomials in $\ell - 1$ variables t_2, \ldots, t_{ℓ} over \mathbb{Q} of arbitrary degree satisfying

$$\text{gcd}(P_0(t_2, \ldots, t_{\ell}), P_1(t_2, \ldots, t_{\ell}), P_2(t_2, \ldots, t_{\ell})) = 1.$$

Let K be an arbitrary number field of degree $n = [K : \mathbb{Q}]$. Then the Brauer–Manin obstruction to the Hasse principle and weak approximation is the only obstruction on any smooth proper model of $X \subset \mathbb{A}_{\mathbb{Q}}^{n+\ell}$ defined by the equation

$$t_1^2 \cdot P_2(t_2, \ldots, t_{\ell}) + t_1 \cdot P_1(t_2, \ldots, t_{\ell}) + P_0(t_2, \ldots, t_{\ell}) = N_K/\mathbb{Q}(x).$$
Proof. Consider the projection $\pi : X \to \mathbb{A}_{\mathbb{Q}}^{\ell-1}$ defined by $(t, x) \mapsto (t_2, \ldots, t_\ell)$ and consider the closed subset

$$F = \{ P_0(t_2, \ldots, t_\ell) = P_1(t_2, \ldots, t_\ell) = P_2(t_2, \ldots, t_\ell) = 0 \}$$

of $\mathbb{A}_{\mathbb{Q}}^{\ell-1}$, which is of codimension at least 2 by assumption.

The fibers of π over $\mathbb{A}_{\mathbb{Q}}^{\ell-1}\setminus F$ are geometrically integral. The fiber over each rational point in this set is defined by $P(t_1)$ of degree at most 2. By Theorem 2 for quadratic $P(t_1)$, by rationality for linear $P(t_1)$ and by [San81] for constant $P(t_1)$, this has the property that the Brauer–Manin obstruction to the Hasse principle and weak approximation is the only obstruction on any smooth proper model.

The generic fiber of π is a rational variety. Therefore, the result follows by an application of [Har97, Théorème 3.2.1].

References

[BHB11] T. D. Browning and D. R. Heath-Brown. Quadratic polynomials represented by norm forms. Geom. Funct. Anal., to appear, arXiv:1109.0232, 2011.

[Bou58] N. Bourbaki. Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples. Actualités Sci. Ind. no. 1261. Hermann, Paris, 1958.

[CT03] J.-L. Colliot-Thélène. Points rationnels sur les fibrations. In Higher dimensional varieties and rational points (Budapest, 2001), volume 12 of Bolyai Soc. Math. Stud., pages 171–221. Springer, Berlin, 2003.

[CTHarSko03] J.-L. Colliot-Thélène, D. Harari, and A. N. Skorobogatov. Valeurs d’un polynôme à une variable représentées par une norme. In Number theory and algebraic geometry, volume 303 of London Math. Soc. Lecture Note Ser., pages 69–89. Cambridge Univ. Press, Cambridge, 2003.

[CTSal89] J.-L. Colliot-Thélène and P. Salberger. Arithmetic on some singular cubic hypersurfaces. Proc. London Math. Soc. (3), 58(3):519–549, 1989.

[CTSan87] J.-L. Colliot-Thélène and J.-J. Sansuc. La descente sur les variétés rationnelles. II. Duke Math. J., 54(2):375–492, 1987.

[CTSani0a] J.-L. Colliot-Thélène, J.-J. Sansuc, and P. Swinnerton-Dyer. Intersections of two quadrics and Châtelet surfaces. I. J. reine angew. Math., 373:37–107, 1987.

[CTSani0b] J.-L. Colliot-Thélène, J.-J. Sansuc, and P. Swinnerton-Dyer. Intersections of two quadrics and Châtelet surfaces. II. J. reine angew. Math., 374:168, 1987.

[CTSk00] J.-L. Colliot-Thélène and A. N. Skorobogatov. Descent on fibrations over \mathbb{P}_1^1 revisited. Math. Proc. Cambridge Philos. Soc., 128(3):383–393, 2000.

[CTSk09] J.-L. Colliot-Thélène, A. N. Skorobogatov, and P. Swinnerton-Dyer. Rational points and zero-cycles on fibred varieties: Schinzel’s hypothesis and Salberger’s device. J. reine angew. Math., 495:1–28, 1998.

[FI97] E. Fouvry and H. Iwaniec. Gaussian primes. Acta Arith., 79(3):249–287, 1997.

[Hart97] D. Harari. Fiches de spécialisations en cohomologie étale et applications arithmétiques. Bull. Soc. Math. France, 125(2):143–166, 1997.

[Has30] H. Hasse. Die Normenresttheorie relativ-Abelscher Zahlkörper als Klassenkörpertheorie im Kleinen. J. reine angew. Math., 162:145–154, 1930.

[HBSko02] D. R. Heath-Brown and A. Skorobogatov. Rational solutions of certain equations involving norms. Acta Math., 189(2):161–177, 2002.

[San81] J.-J. Sansuc. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. reine angew. Math., 327:12–80, 1981.
[SJ11] M. Swarbrick Jones. A Note On a Theorem of Heath-Brown and Skorobogatov. arXiv:1111.4089, 2011.

[Sko99] A. N. Skorobogatov. Beyond the Manin obstruction. Invent. Math., 135(2):399–424, 1999.

[Sko01] A. N. Skorobogatov. Torsors and rational points, volume 144 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001.

[Wei12] D. Wei. On the equation $N_{K/k}(\Xi) = \mathcal{P}(t)$, preprint, 2012.

Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
E-mail address: ulrich.derenthal@mathematik.uni-muenchen.de

Département Wiskunde, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium and Département de Mathématiques, Bâtiment 425, Université Paris-Sud 11, 91405 Orsay, France
E-mail address: arnesmeets@gmail.com

Academy of Mathematics and System Science, CAS, Beijing 100190, P. R. China and Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
E-mail address: dshwei@amss.ac.cn