Precise determination of the $f_0(500)$ and $f_0(980)$ parameters in dispersive analysis of the $\pi\pi$ data

R. Garcia-Martin, J. Pelaez and J. Ruiz de Elvira

Universidad Complutense de Madrid,

Robert Kamiński

Institute of Nuclear Physics PAN, Kraków

QCD 2012 Conference

Physical Review Letters **107**, 072001 (2011)
Schedule

- Theory
- Experiment
- Results
- Conclusions
Schedule

- Theory
- Experiment
- Results
- Conclusions

- dispersion relations,
- state of art of data,
- combined analysis of dispersion relations and data
Dispersion relations for $\pi \pi$ interactions
theory \leftrightarrow experiment

Once subtracted dispersion relations "GKPY" (for the S and P waves):

\[\mathcal{T}_s(s, t) = \hat{C}_{st} \mathcal{T}_t(t, s) \]

Crossing symmetry:

\[\mathcal{T}(s, t) + \text{crossing symmetry} \rightarrow \text{dispersion relations for } 4m_\pi^2 < s < \sim (1150 \text{ MeV})^2 \]

\[
\text{Re } t^{(OUT)}_{\ell}(s) = \sum_{l'=0}^{2} C_{st}^{ll'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{l''=0}^{4} \int_{4m_\pi^2}^{\infty} ds' K_{l'l''}^{ll'}(s, s') \text{Im } t^{(IN)}_{\ell l''}(s')
\]

$a_{0}^{l'}$ - subtraction constant = $\mathcal{T}_s(s = 4m_\pi^2, t = 0)$ - scattering lengths in S wave
Dispersion relations for $\pi \pi$ interactions

Once subtracted dispersion relations "GKPY" (for the S and P waves):

$$\pi \quad s \quad \pi$$

\[\begin{align*}
\text{crossing symmetry:} & \quad s \rightarrow t \rightarrow \mathbf{T}_s(s, t) = \hat{C}_{st} \mathbf{T}_t(t, s) \\
\mathbf{T}(s, t) + \text{crossing symmetry} & \rightarrow \text{dispersion relations for } 4m^2_\pi < s < \sim (1150 \text{ MeV})^2
\end{align*} \]

\[\begin{align*}
\text{Re} \ t^{(\text{OUT})}_l(s) &= \sum_{l'=0}^{2} C^{l''}_{st} a^{l''}_0 + \sum_{l'=0}^{2} \sum_{l''=0}^{4} \int_{4m^2_\pi}^{\infty} ds' K^{l''}_{l'l'}(s, s') \text{Im} \ t^{(\text{IN})}_{l'}(s') \\
a^{l''}_0 &- \text{subtraction constant} = \mathbf{T}_s(s = 4m^2_\pi, t = 0) - \text{scattering lengths in } S \text{ wave}
\end{align*} \]

Condition for crossing symmetry:

$$\text{Re} f^{(\text{OUT})}_l(s) - \text{Re} f^{(\text{IN})}_l(s) = 0$$
Experimental data on the $\pi \pi$ interactions in the S_0 wave (notation J^I)
Experimental data on the $\pi\pi$ interactions in the S_0 wave (notation JI)
Experimental data on the $\pi\pi$ interactions in the S_0 wave (notation JI)

- "up-down" ambiguity eliminated (in 2003) using the Roy equations (Roy 1971) (two subtractions)

- once subtracted dispersion relations GKPY (presented in 2011) - much smaller errors of the output amplitude

- elimination of several sets of experimental data
Experimental data on the $\pi\pi$ interactions in the S_0 wave (notation JI)

- "up-down" ambiguity eliminated (in 2003) using the Roy equations (Roy 1971) (two subtractions)

- once subtracted dispersion relations GKPY (presented in 2011) - much smaller errors of the output amplitude

- elimination of several sets of experimental data
"Precise determination of the f0(500) and f0(980) pole parameters from a dispersive data analysis",
R. Garcia-Martin, R. Kamiński, J.R. Pelaez, J. Ruiz de Elvira,
Phys. Rev. Lett. 107 (2011) 072001
Method of combined analysis (data dispersion relations)

- input amplitudes for the S, P, D and F waves constructed, at the beginning, only by fit to the data,
- just simple polynomials in energy2,
- no assumption on the low threshold parameters (we use NA48/2 data),
- set of dispersion relations used in the analysis:
 - once subtracted dispersion relations (GKPY),
 - twice subtracted dispersion relations (Roy),
 - Forward Dispersion Relations (FDR),
 - Olsson sum rule (SR),
- phenomenological input partial amplitudes used up to 1420 MeV,
- above 1420 MeV - Regge parameterizations
Method of combined analysis (data dispersion relations)

\[\chi^2_{tot} = \chi^2_{data} + \bar{d}^2_{Roy} + \bar{d}^2_{GKPY} + \bar{d}^2_{FDR} + \bar{d}^2_{SR} \]

where \[\bar{d}^2_i = \frac{1}{\text{number of points}} \sum_j^n \left(\frac{\Delta_i(s_j)}{\delta \Delta_i(s_j)} \right)^2 \]

(number of points = 28)

	fit only to data	fit to data and to dispersion relations
\(\bar{d}^2_{Roy} \)	0.87	0.14
\(\bar{d}^2_{GKPY} \)	1.9	0.32
\(\bar{d}^2_{FDR} \)	1.98	0.4
Constrained Fits to Data (FDR+SR+Roy+GKPY)

\[\text{Re } t_0^{(0)}(s) \]

\[\bar{d}^2 = 0.24 \]
fit to GKPY ($P1$ wave)

Constrained Fits to Data (FDR+SR+Roy+GKPY)

$\text{Re } t^{(1)}_1(s)$

$\overline{d}^2 = 0.60$

$\text{GKPY}^\text{P}_{\text{in}}$

$\text{GKPY}^\text{P}_{\text{out}}$
Constrained Fits to Data (FDR+SR+Roy+GKPY)

\[\text{Re } t_0^{(2)}(0) \]

\[\tilde{d}^2 = 0.11 \]

GKPY$^{S2 \text{ in}}$

GKPY$^{S2 \text{ out}}$
precise determination of $f_0(500)\ (\sigma)$ meson and threshold parameters

$f_0(500)\ (\sigma)$

- PDG 2010:
 $M = 400 \pm 1200$ MeV
 $\Gamma = 2 \times (250 \pm 500)$ MeV

- GKPY:
 $E_\sigma = 457 \pm 14 - i279^{+11}_{-7}$ MeV

threshold parameters, e.g. a^0_0:

- ChPT + Roy eqs (Bern group):
 $0.220 \pm 0.005 \, m^{-1}_\pi$

- GKPY:
 $0.220 \pm 0.008 \, m^{-1}_\pi$
precise determination of $f_0(500)\ (\sigma)$ meson and threshold parameters

$f_0(500)\ (\sigma)$

- **PDG 2010:**
 - $M = 400 - 1200$ MeV
 - $\Gamma = 2 \times (250 - 500)$ MeV

- **GKPY:**
 - $E_\sigma = 457 \pm 14 - i279^{+11}_{-7}$ MeV

threshold parameters, e.g. a^0_0:

- **ChPT + Roy eqs (Bern group):**
 - $0.220 \pm 0.005 \ m_{\pi}^{-1}$

- **GKPY:**
 - $0.220 \pm 0.008 \ m_{\pi}^{-1}$
precise determination of $f_0(500) (\sigma)$ meson and threshold parameters

$f_0(500) (\sigma)$

- PDG 2010:
 \[M = 400 \pm 1200 \text{ MeV} \]
 \[\Gamma = 2 \times (250 - 500) \text{ MeV} \]

- GKPY:
 \[E_\sigma = 457 \pm 14 - i279^{+11}_{-7} \text{ MeV} \]

threshold parameters, e.g. a_0^{0}:

- ChPT + Roy eqs (Bern group):
 \[0.220 \pm 0.005 \text{ m}^{-1} \]

- GKPY:
 \[0.220 \pm 0.008 \text{ m}^{-1} \]
precise determination of $f_0(980)$ meson

\[\delta_0^{(0)} \]

- UFD
- Na48/2
- K\rightarrow2 π decay
- Old K decay data
- Kaminski et al.
- Grayer et al. Sol. B
- Grayer et al. Sol. C
- Grayer et al. Sol. D
- Hyams et al. 73

\[s^{1/2} \text{(MeV)} \]

\[\eta_0^{(0)}(s) \]

\[s^{1/2} \text{(MeV)} \]
precise determination of \(f_0(980) \) meson

\[\delta_0^{(0)} \]

\[s^{1/2} \text{ (MeV)} \]

- CFD
- Old K decay data
- Na48/2
- K->2 \(\pi \) decay
- Kaminski et al.
- Grayer et al. Sol.B
- Grayer et al. Sol. C
- Grayer et al. Sol. D
- Hyams et al. 73

\[\eta_0^0(s) \]

\[s^{1/2} \text{ (MeV)} \]

- Cohen et al.
- Etkin et al.
- Wetzel et al.
- Hyams et al. 73
- Kaminski et al.
- Hyams et al. 73
- Protopopescu et al.
- CFD
Model-independent analytic continuation to the complex plane gets pole at $s_{pole}^{1/2}$ on the 2nd Riemann sheet

assuming that $M = Re(s_{pole}^{1/2})$ and $\Gamma = -2 Im(s_{pole}^{1/2})$ we get:

$$M_{f_0(980)} = 996 \pm 7 \text{ MeV} \quad \text{and}$$

$$\Gamma_{f_0(980)} = 50^{+20}_{-12} \text{ MeV}$$

PDG'2010: Mass $m = 980 \pm 10 \text{ MeV}$

Width $\Gamma = 40 - 100 \text{ MeV}$
precise determination of couplings to the $\pi\pi$ channel

$$g^2 = -16\pi \lim_{s \to s_{pole}} (s - s_{pole}) t_\ell(s)(2\ell + 1)/(2p)^{2\ell}$$

where $p^2 = s/4 - m^2_{\pi}$.

| | $\sqrt{s_{\text{pole}}}$ (MeV) | $|g|$ |
|------------------|-------------------------------|---------------|
| $f_0(500)^{\text{GKPY}}$ | $(457^{+14}_{-13}) - i(279^{+11}_{-7})$ | $3.59^{+0.11}_{-0.13}$ GeV |
| $f_0(500)^{\text{Roy}}$ | $(445 \pm 25) - i(278^{+22}_{-18})$ | 3.4 ± 0.5 GeV |
| $f_0(980)^{\text{GKPY}}$ | $(996 \pm 7) - i(25^{+10}_{-6})$ | 2.3 ± 0.2 GeV |
| $f_0(980)^{\text{Roy}}$ | $(1003^{+5}_{-27}) - i(21^{+10}_{-8})$ | $2.5^{+0.2}_{-0.6}$ GeV |
| $\rho(770)^{\text{GKPY}}$ | $(763.7^{+1.7}_{-1.5}) - i(73.2^{+1.0}_{-1.1})$ | $6.01^{+0.04}_{-0.07}$ |
| $\rho(770)^{\text{Roy}}$ | $(761^{+4}_{-3}) - i(71.7^{+1.9}_{-2.3})$ | $5.95^{+0.12}_{-0.08}$ |
Conclusions

due to works on once and twice subtracted dispersion relations with imposed crossing symmetry condition we have in disposal very efficient set of rules for testing the partial $\pi\pi$ amplitudes in the S, P, D and F waves,

we also have set of model independent unitary $\pi\pi$ amplitudes in those waves in the range from $2m_\pi$ to several GeV fulfilling very well crossing symmetry below ~ 1100 MeV,

as an artefact we got very precise values of parameters for the $f_0(500)$ and $f_0(980)$ resonances