Abstract—Developers today use significant amounts of open source code, surfacing the need for ways to automatically audit and upgrade library dependencies and leading to the emergence of Software Composition Analysis (SCA). SCA products are concerned with three tasks: discovering dependencies, checking the reachability of vulnerable code for false positive elimination, and automated remediation. The latter two tasks rely on call graphs of library and application code to check whether vulnerable methods found in the open source components are called by applications. However, statically-constructed call graphs introduce both false positives and false negatives on real-world projects. In this paper, we develop a novel, modular means of combining statically- and dynamically-constructed call graphs via instrumentation to improve the performance of false positive elimination. Our experiments indicate significant performance improvements, but that instrumentation-based call graphs are less readily applicable in practice.

Index Terms—Software analysis, Software security and trust; data privacy

I. MOTIVATION

Developers today use large amounts of third-party code to build applications; code reuse significantly increases productivity and lowers development costs [25]. However, the fact that major portions of typical applications are now third-party code – a real-world Spring Boot application we use in production is 97.4% third-party – has surfaced the need for tools to manage open source risk. The 2017 Equifax data breach was infamously caused by a vulnerability in Apache Struts [4] and “Using Components with Known Vulnerabilities” is listed in the OWASP Top 10 [23]. The dependency updates required to remediate these are time-consuming and often not carried out frequently enough [7] [18] [8]. Furthermore, application dependencies constantly change and are difficult to determine and audit by hand due to the complexity of modern package managers and library ecosystems.

Software Composition Analysis (SCA) is an emerging subfield of application security concerned with precisely this problem. SCA products offer a suite of services centered around automated identification of third-party library dependencies. Auxiliary services such as interfaces for viewing software inventories, enforcing organization-wide policies, and integration with CI/CD [9] setups may also be present.

Our SCA product goes a step further, solving two pain points with typical SCA offerings. The first is false positives arising from straightforward dependency analysis – framework-based applications pull in large trees of transitive dependencies, which, despite the fact that they are being included, may not be used, or at least not in vulnerable ways. We analyze code call graphs to eliminate such cases. The second pain point is remediation: we provide a way to automatically upgrade dependencies, using a call graph analysis to check if the upgrade is potentially breaking.

In this paper, we describe the structure of a state-of-the-art SCA product and discuss techniques for performing the core SCA tasks: detection of libraries, reachability of vulnerable code for false positive elimination, and automated remediation. We motivate the need for dynamic analysis to obtain accurate results across all tasks, and illustrate a novel means of composing call graphs derived from static analysis and instrumentation in a manner that is modular in third-party libraries, allowing analysis to be performed scalably in CI/CD pipelines. Merging static and dynamic call graphs can result in significantly more vulnerable methods discovered, provided projects under analysis are amenable to instrumentation.

II. DISCOVERING DEPENDENCIES

An essential problem in SCA is that of discovering dependencies: determining the third-party libraries a project uses given its source code. Results are typically drawn from some universe of open source libraries, such as coordinates on Maven Central.

A. Static Dependency Analysis

The most straightforward way of determining a project’s dependencies is to read its dependency manifests, e.g. pom.xml. These contain a listing of library coordinates and associated version constraints. Package managers interpret these manifests to perform dependency resolution: querying an external repository to determine the transitive dependencies of each library (which may themselves introduce more constraints), then selecting a set of libraries which satisfy all constraints. In the event of an inability to satisfy every constraint, package managers may fail or approximate a solution (e.g. Maven’s nearest definition heuristic, which applies when multiple versions of the same library are required). The definition of what constitutes a valid solution also varies, e.g. npm does not require a single version of each library.

B. Dynamic Dependency Analysis

The main difficulty of detecting dependencies statically is in modelling the quirks of a package manager correctly. Package managers are typically unspecified and must be each handled specially. Dependency resolution is also often nondeterministic might produce different results over time. This suggests that

https://nvd.nist.gov/vuln/detail/CVE-2017-5638
A better approach is to perform a dynamic analysis instead; a theme we explore in this paper.

A dynamic dependency analysis integrates with package managers and can get the results of dependency resolution exactly as they would have produced at a point in time. The main shortcoming is that a full build of the project may take place, which may be nontrivial. A study we did of 139 Maven projects on GitHub showed that only 36% had a working

```mvn test``` out of the box.

Nevertheless, going from a purely static analysis to a package-manager-integrated dynamic analysis demonstrably improves accuracy. We evaluate this using a set of 41 microbenchmarks across 18 different package managers. On average, we see that the dynamic analysis improves results by 204%, with no cases in which it performs worse.

### III. Identifying Vulnerabilities

#### A. Vulnerability Databases

The next step is to identify vulnerabilities due to libraries. A baseline data source is the NVD; practically every SCA product informs users of CVE vulnerabilities. SCA vendors also curate their own vulnerability datasets, both by hand or with NLP methods and custom tooling.

Determining if a vulnerability is exploitable in an application would allow an SCA product to report fewer false positives. This is valuable because notification fatigue from false positives becomes the bottleneck when fixes are deployed automatically. Furthermore, the amount of false positive reduction is significant: commercial SCA products report that 70-80% of dependencies are never referenced in application code.

Our approach is based on a lightweight reachability analysis using call graphs. We discuss the tradeoffs of various call graph construction methods before covering our implementation of the analysis and how it fits into our SCA product.

#### B. Static Call Graphs

We may model an application as a call graph, a structure that expresses the calling relationships between its methods. A directed edge $e$ from method $m_1$ to method $m_2$ indicates that a call site within $m_1$ invokes $m_2$ in some execution of the program. A call chain is a sequence of edges $e_1e_2...e_n$ where consecutive edges share vertices.

Call graph construction for object-oriented programs must model the effects of dynamic dispatch correctly. False positives are possible when applying such analyses, leading to infeasible edges which are present in the graph but do not occur in any concrete run of the program. Furthermore, call chains comprising only feasible edges may themselves prove infeasible: on average, 25.5% of call chains created by static approaches are infeasible.

The presence of infeasible call chains means that a reachability analysis could produce false positives, traversing paths which will never occur at runtime.

#### C. Dynamic Call Graphs

The main weakness of static call graph construction in practice is unsound handling of dynamic language features such as reflection. Real-world analysis tools often deliberately eschew prohibitively expensive or conservative approximations that would render analysis less useful. This causes problems when analyzing highly dynamic frameworks, such as Spring or Rails: the resulting call graphs are incomplete and lead to false negatives in reachability analyses.

An alternative is the use of runtime instrumentation, or dynamic analysis. Executing tests and observing the flows has the upside of never producing any infeasible call graph edges, since only flows which were actually seen are reported. Support for all language features is also a given.

The downsides are that this approach produces false negatives (missing paths to sinks called by code not covered by tests), and having to build code to analyze it. Instrumentation also imposes overhead, slowing test execution.

#### D. Vulnerable Methods

We consider a vulnerable library to be possibly used in an application if a vulnerability-specific sink is reachable from the application’s call graph. This is weaker than determining if a vulnerability is exploitable as control flow is not taken into account, admitting false positives. We curate these sinks by hand; these are the method-level root causes of vulnerabilities mentioned in CVEs and proprietary vulnerabilities.

1. **Static call graph construction**: Given an application, we construct a call graph $G_s = (V_s, E_s)$, shown in Figure III-D2. As we only analyze application bytecode, $V_s$ consists of both application methods (B, A, D, E) and the entry points of libraries called directly by the application (C, U); transitively-called library methods (V, P, Q) are absent. $E_s$ is initialized to the set of statically-known static or virtual calls; given a method call $a.b(\cdot)$ in method $m$, we add an edge between $m$ and the method $b$ of $a$, no matter its class or interface.

We expand the set $E_s$ with a number of passes:

1. **Class Hierarchy Analysis (CHA)**, which determines possible receiver classes for $b$ using subclass relations.
2. **Dynamic Type Analysis (RTA)**, which rules out receiver classes using information about object instantiations.

Thus we have $G'_s = (V_s, RTA(CHA(E_s)))$. We define the set of first-party entry points $\{ V_e \in V_s, \forall (m_1, m_2) \in E_s \mid V_e \neq m_2 \}$: methods without callers, which must be first-party (A, D); third-party methods must be called by a first-party method to appear at all. $V_e$ may be further filtered down (e.g. by considering only main methods) depending on analysis goals. $G'_s$ is constructively a graph of all methods reachable from a first-party entry point.

Separately, we precompute vulnerable method call chains $CC$ for libraries: sequences of directed edges $e_1e_2...e_n$ such that $e_n$ ends at a vulnerable method (Z, V, Q), and $e_1$ is an entry point of the library (Y, X, P). A call chain represents a path into the library ending at a library-specific sink.
for $e$ in $e_1 e_2 ... e_n$ do
  $(m_1, m_2) \leftarrow e$
  if $m_1 \in V_s$ then
    add $e ... e_n$ to $G_s'$
    break
  end if
end for

Fig. 1. Merging vulnerable method call chains

2) Merging library call chains: Given a vulnerable method call chain $e_1 e_2 ... e_n$ and a static call graph $G_s'$, we merge them using the algorithm in Figure II-D3.

Applied to $G_s'$, this would result in $V$ being added. The approach ensures that we do not introduce third-party entry points, such as X, Y, and P: new outgoing edges are only attached to existing ones and no new incoming edges are added. This preserves the property that all vertices are reachable from a first-party entry point. Consequently, determining if a vulnerable method is called in some execution of the program – the key question we are interested in answering – is a simple membership check.

3) Dynamic call graph construction: Given tests, we instrument them to derive a dynamic call graph, then compose it with the static call graph and vulnerable method call chains to find more potentially reachable vulnerable methods.

Running the tests, we construct a dynamic call graph $G_d = (V_d, E_d)$. $V_d$ comprises both first- and third-party methods (J, T, S, R, B), and $E_d$ contains only feasible edges and paths. In contrast to $E_s$, where method callers were only ever first-party methods and callees were either first- or third-party, $E_d$ contains third-party callees and callees – this may be observed from the execution of a framework such as JUnit, where a main method defined in JUnit itself (J) is called, which dynamically discovers @Test-annotated user methods (T) to invoke reflectively. This inversion of control is a common pattern in framework-based applications [26]. First-party entry points (T) thus do have callees.

When composing the static and dynamic call graphs, we would like to preserve the property that allowed us to determine reachability by set membership. We have to add entry points now, though, because tests were never considered earlier; the solution is then to ensure that they are first-party.

We first instrument tests, and when the test run completes (either in success or failure), the resulting edges form the graph $G_d$. Next we identify framework entry points: these are the edges which span framework and application code (JT). We identify frameworks manually here as there is no good way to differentiate them without more context, special-casing common ones like JUnit and TestNG.

Finally, given a framework entry point, we take its transitive closure (T, S, R, B) and add it to a new graph $G_d'$ – a graph of dynamic edges whose entry points are first-party.

The union of $G_s'$ and $G_d'$ gives us $G_c$, a combined static and dynamic call graph with only first-party entry points. We may further merge the static call chains into $G_c$. Paths in $G_c$ may then span both static and dynamic edges.

E. Discussion

The key innovations of our approach when compared to existing work [26] are the use of hand-curated, vulnerability-specific sinks and the fact that the analysis is modular, not requiring call graph construction on demand for libraries. The latter makes the analysis scalable, allowing it to complete in minutes on average and making running it in a CI pipeline feasible.

A limitation of vulnerable method call chains being computed for single libraries in isolation is that vulnerable methods called only within third-party code will be missed. For example, the edge UP will not be in any call chain because we cannot tell when computing call chains that P is the start of a vulnerable method call chain from another library. The dynamic call graph does handle this case, however, as shown by S and R; if there were an edge RP (analogous to UP), we would be able to detect the vulnerable method call.

IV. Remediation

Another task we perform automatically is remediate library vulnerabilities. Our approach [1] is a static analysis that precomputes diffs between library versions to determine the changes between them. The diffs are augmented with call graphs (constructed as in Section III-D) and are thus semantic in nature, e.g. considering methods changed if their callees change.

We then check if the methods in all the diffs of libraries discovered occur the application’s call graph; occurrence would indicate a potential breaking change. This information is shown in pull requests we create automatically to warn developers about breaking changes in the upgrade.

A. Dynamic Analysis

In keeping with the theme of the paper, we outline an extension to the above analysis which uses an instrumentation-based call graph to improve accuracy. The analysis depends
on accurate call graphs when computing diffs with semantic information, and checking if an application uses a method of a combined diff. The latter may benefit from this, especially if there are tests available. Given that a dynamic call graph will not contain infeasible edges, there will be fewer false positive calls to libraries, leading to fewer library upgrades being considered as breaking when they are not.

Of course, there is also the obvious “dynamic analysis”: executing tests to check if an upgrade introduces breakage. This does not subsume the entire analysis for breaking changes, as the latter reveals changes occurring outside the coverage of the test suite, as well as non-breaking semantic changes.

V. EVALUATION

We evaluated the performance of call graph construction on four real-world Maven-based Java projects (Table I). On average, we find that dynamic call graphs add $824\%$ more vertices and $361\%$ more edges, allowing us to discover significantly more call sites from which vulnerable methods are reachable in $2/4$ cases. Most of the extra edges are from third-party dependencies. The tradeoff is, however, that dynamic call graphs are much less readily applicable to the average project, as the project must build and tests must run at least partially. There is also significant variance between projects in test coverage (and correspondingly, dynamic call graph size and vulnerable method reachability) and ability to build on fresh clone. Out of a sample of 14 projects, only 4 were able to build, test, and be instrumented successfully.

VI. CONCLUSION AND FUTURE WORK

We motivated and described the SCA problem: the fact that major portions of modern applications are third-party emphasizes the need for tooling to automatically audit and upgrade dependencies. Our approach has three components: dependency analysis, call-graph-based analysis of library use augmented with hand-annotated library-specific sinks, and automated remediation. We illustrate the need for dynamic analysis in each of these tasks, using package manager integrations to identify dependencies and instrumentation to build dynamic call graphs. We also describe a novel means of composing the dynamic and static call graphs together with precomputed call chains, making the analysis modular in the library dependencies of the application. This significantly improves the ability to find vulnerable methods, though instrumentation is not always possible.

In future, we hope improve remediation, for example by performing transitive dependency upgrades or optimizing upgrades, such as by pruning redundant dependencies or reacting to dependency conflicts [12].

REFERENCES

[1] Foo, Darius and Chua, Hendy and Yeo, Jason and Ang, Ming Yi and Sharma, Asankhaya, “Efficient static checking of library updates”, 2018.
[2] Foo, Darius and Ang, Ming Yi and Yeo, Jason and Sharma, Asankhaya, “SGL: A domain-specific language for large-scale analysis of open-source code”, 2018.
[3] Zhou, Yaqin and Sharma, Asankhaya, “Automated identification of security issues from commit messages and bug reports”, 2017.
[4] Dean, Jeffrey and Grove, David and Chambers, Craig, “Optimization of object-oriented programs using static class hierarchy analysis”, 1995.
[5] Sundarespan, Vijay and Hendren, Laurie and Razafmahaeta, Chrislain and Vallée-Rai, Raja and Lam, Patrick and Gagnon, Etienne and Godin, Charles, “Practical virtual method call resolution for Java”, 2000.
[6] S. Raemaekers and A. van Deursen and J. Visser, “Semantic Versioning versus Breaking Changes: A Study of the Maven Repository”, 2014.
[7] Kula, Raula Gaikovina and German, Daniel M and Ouni, Ali and Ishio, Takashi and Inoue, Katsuo, “Do developers update their library dependencies?”, 2017.
[8] Mirhosseini, Samim and Parnin, Chris, “Can automated pull requests encourage software developers to upgrade out-of-date dependencies?”, 2017.
[9] Shahin, Mojtaba and Babar, Muhammad Ali and Zhu, Liming, “Continuous integration, delivery and deployment: a systematic review on approaches, tools, challenges and practices”, 2017.
[10] Z. Xing and E. Stroulia, “API-Evolution Support with Diff-CatchUp”, 2007.
[11] Henkel, Johannes and Diwan, Amer, “CatchUp!: Capturing and Replaying Refactorings to Support API Evolution”, 2005.
[12] Wang, Ying and Wen, Ming and Liu, Zhenwei and Wu, Rongxian and Wang, Rui and Yang, Bo and Yu, Hai and Zhu, Zhilai and Cheung, Shing-Chi, “Do the dependency conflicts in my project matter?”, 2018.
[13] Jiang, Lingxiao and Misherghi, Ghassan and Su, Zhendong and Glondu, Stephane, “Deckard: Scalable and accurate tree-based detection of code clones”, 2007.
[14] Sabetta, Antonino and Bezzi, Michele, “A Practical Approach to the Automatic Classification of Security-Relevant Commits”, 2018.
[15] Grove, David and Chambers, Craig, “A framework for call graph construction algorithms”, 2001.
[16] Routve, Atanas and Kagan, Scott and Gibas, Michael, “Static and dynamic analysis of call chains in Java”, 2004.
[17] Clapp, Lazaro and Anand, Saswat and Aiken, Alex, “Modelegen: mining explicit information flow specifications from concrete executions”, 2015.
[18] Lauinger, Tobias and Chaabah, Abdelberi and Arshad, Sajjad and Robertson, William and Wilson, Christo and Kirda, Engin, “Thou shalt not depend on me: Analysing the use of outdated javascrip libraries on the web”, 2018.
[19] Livshits, Benjamin and Sridharan, Manu and Smaragdakis, Yannis and Christodoulakis and Chechik, Gadi and Ailamaki, A., “Modelgen: mining automatically usable methods from object-oriented programs using static class hierarchy analysis”, 1995.
[20] Mikhaylov, Fedor and Bersa, Kari and Kemme, Dines and Lemire, David and Trost, Thomas, “In defense of soundness: a manifesto”, 2015.
[21] Dufour, Bruno and Ryder, Barbara G and Sevitsky, Gary, “Blended analysis for performance understanding of framework-based applications”, 2007.
[22] Dufour, Bruno and Ryder, Barbara G and Sevitsky, Gary, “A scalable technique for characterizing the usage of temporaries in framework-intensive Java applications”, 2008.
[23] “OWASP Top Ten Project”.
[24] Kula, Raula Gaikovina and Ouni, Ali and German, Daniel M and Inoue, Katsuo, “On the Impact of Micro-Packages: An Empirical Study of the npm JavaScript Ecosystem”, 2017.
[25] Haefliger, Stefan and Von Krogh, Georg and Spaeth, Sebastian, “Code reuse in open source software”, 2008.
[26] Ponta, Serena Elisa and Milate, H. Liu and Sabetta, Antonino, “Beyond metadata: Code-centric and usage-based analysis of known vulnerabilities in open-source software”, 2018.

TABLE I

project	static vertices	static edges	dynamic vertices	dynamic edges	static sinks	dynamic sinks
hellojs	7930	26746	12287	39813	1	3616
immutables	30206	319934	398	874	5	5
java-apsns	536	999	4240	8685	58	859
retrofit	1925	3209	7339	22563	6	6

TABLE I

CALL GRAPH EDGES