Experimental Study

Effects of dexmedetomidine and thymoquinone on erythrocyte deformability in lower limb ischemia reperfusion injury in streptozotocin-induced diabetic rats

Ozer A¹, Comu FM², Kucuk A³, Kilic Y⁴, Alkan M⁵, Oktar L¹, Arslan M⁵, Ozturk L⁶

Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey.

mustarslan@gmail.com

ABSTRACT

OBJECTIVE: In this study we aimed to evaluate the effect of dexmedetomidine and thymoquinone on erythrocyte deformability in lower limb ischaemia-reperfusion (IR) injury in streptozotocin-induced diabetic rats.

MATERIAL AND METHODS: Thirty Wistar albino rats were equally divided into 5 groups (n = 6); randomized control group (Group C), diabetes control group (Group DC), DIR group (Group DIR), DIR group with thymoquinone 25 mg.kg⁻¹ intraperitoneally (Group DIRD) and Group DIR with dexmedetomidine 100 μg.kg⁻¹ intraperitoneally (Group DIRT). Erythrocyte packs were prepared from heparinized blood samples and deformability measurements were performed.

RESULTS: IR significantly increased the relative resistance, a marker of erythrocyte deformability when compared to control group (p < 0.05). There were significant differences among the groups in comparisons with ANOVA test (p < 0.0001). Comparisons of the groups DIRD and DIRT revealed similar results (p = 0.824). The values of the DC, DIR, DIRD and DIRT groups were significantly higher than those of the control group (p < 0.0001, all).

CONCLUSION: Erythrocyte deformability may cause more problems in microcirculation. Dexmedetomidine and thymoquinone may be useful in reducing the adverse effects of this type of injury (Fig. 1, Ref. 41).

KEY WORDS: erythrocyte deformability, lower limb ischemia reperfusion injury, dexmedetomidine, thymoquinone, diabetes, rat.

Introduction

Ischemia is defined as blood supply reduction to a tissue. Thus, oxygen and supply of nutrients decrease (1, 2). Reperfusion induces inflammation and causes remote organ injury (3). Ischemia/reperfusion (IR) is more harmful than single ischemia (4).

Oxidative stress plays a main role in the etiology of both diabetic complications and IR injury (5, 6). In diabetes, oxidation of glucose and glycosylation of proteins cause the produce of free oxygen radicals and these radicals also play the main role in IR injury (5, 6). Besides oxidative stress, free radical formation and lipid peroxidation are also important in development of IR injury. These factors change membrane of red blood cells (RBC) (7). Optimal erythrocyte deformability is essential for normal circulation as RBCs change shape to get through narrow capillaries or to reduce blood viscosity (8).

Dexmedetomidine is a selective α-2 adrenoceptor agonist agent. US Food and Drug Administration approved dexmedetomidine in 1999 as a sedative drug to use for patients in intensive care units. Also, it has indications for regional and general anesthesia, too (9, 10). It was previously shown that dexmedetomidine has protective effect on renal, focal cerebral, cardiac, testicular, and tourniquet-induced IR injury (11–16). Arslan et al reported that dexmedetomidine has protective effect on-hepatic IR injury (15). Also Si et al reported that dexmedetomidine treatment weakens the renal IR injury by inactivating JAK/STAT signaling pathway (16).

Thymoquinone (TQ) is Nigella sativa (NS)’s main active ingredient. It is generally called as black cumin or black seed. Black seed is an annual flowering plant native to some areas like Mediterranean countries (17). 1963 was the year thymoquinone was first extracted as the main active ingredient of NS (18) and it was described as a potent superoxide scavenger and free radical (19–21). However, NS also has an antioxidative effect on the spinal cord, heart and renal tissue IR injury (22–24).

We evaluated the protective effects of dexmedetomidine and thymoquinone on erythrocyte deformability in lower limb IR injury in streptozotocin-induced diabetic rats.
Materials and methods

Animals and experimental protocol

After the approval of the Experimental Animals Ethics Committee of Gazi University the study was carried out in the GAZU-DAM Laboratory of Gazi University. All employed methods were in agreement with approved basics of the Guide for the Care and Use of Laboratory Animals. In the study, 30 male Wistar albino rats weighing between 250 and 300 g, raised under the same environmental conditions, were used. At least one week before the surgery in a pathogen free environment we housed the animals in standard cages. During this time they were free to access food (until 2 h earlier than the procedure of anesthesia) and water. Under 12 h dark-light cycle and the animals were separated into four groups of six rats randomly. The animals were randomly separated into five groups, each containing six rats. IP 100 mg.kg⁻¹ ketamine was used for the anesthesia of rats. Anaesthesia was maintained by repetitive injections of 20 mg.kg⁻¹ ketamine if a positive reaction to surgical stress or intermittent tail pinch could be observed.

Diabetes was induced by a single injection of streptozotocin (Sigma Chemical, St. Louis, MO, USA), at a dose of 55 mg/kg (i.p.) body weight. 72 hours after the injection the blood glucose levels were measured. Rats were classified as diabetic if their fasting blood glucose (FBG) levels exceeded 250 mg/dl, and only animals with FBGs of > 250 mg/dl were included in the diabetic groups (diabetes, diabetes+ischemia-reperfusion diabetes+thymoquinone-ischemia-reperfusion and diabetes+dexmedetomidine-ischemia-reperfusion). The rats were kept alive for four weeks after streptozotocin injection to allow the development of chronic diabetes before they were exposed to IR.

The animals were randomly separated into five groups, each containing 6 rats. Midline laparotomy was done under ketamine anesthesia.

Control group (Group C): Midline laparotomy was done alone without any additional surgical intervention. Blood sample was collected after 4 hours of follow-up and animals were sacrificed eventually.

Diabetes-Control group (Group DC): Midline laparotomy was done alone without any additional surgical intervention. Blood sample was collected after 4 hours of follow-up and animals were sacrificed eventually.

Diabetes-Ischemia-reperfusion group (Group DI/R): Midline laparotomy was done similarly. Infrarenal segment of the aorta was clamped for 2 hours. After removing the clamp, reperfusion was established for another 2 hours. Finally, rats were sacrificed after collecting blood samples from their abdominal aorta.

Diabetes-Ischemia-reperfusion group with dexmedetomidine (Group DI/R-D): Similar steps were followed but in addition to the procedure mentioned above, cerium oxide was given (Precedex 100 μg/2 ml, Abbott, Abbott Laboratory, North Chicago, Illinois, USA 100 μg.kg⁻¹) intraperitoneally 30 minutes before the ischemia period. Rats were sacrificed at the end of reperfusion period which lasted 2 hours after collecting blood samples.

Diabetes-Ischemia-reperfusion group with thymoquinone (Group DI/R-T): Similar steps were followed but in addition to the procedure mentioned above, cerium oxide was given (Tymoquini-none 1G, Sigma Aldrich 25 mg.kg⁻¹) intraperitoneally 30 minutes before the ischemia period. Rats were sacrificed at the end of reperfusion period which lasted 2 hours after collecting blood samples.

All the rats were given ketamine 100 mg.kg⁻¹ intraperitoneally and intraabdominal blood samples were obtained. Heparinized total blood samples were used to prepare erythrocyte packs. Deformability measurements were performed using erythrocyte suspensions with 5 % hematocrit in phosphate buffered saline (PBS) buffer.

Deformability measurements

Blood samples were carefully taken, and the measurement process was as fast as possible to avoid haemolysis of the erythrocytes. The collected blood was centrifuged at 1000 rpm for 10 min. Serum was removed, in addition to the buffy coat on the erythrocytes. An isotonic PBS buffer was added to the collapsing erythrocytes, and this was centrifuged at 1000 rpm for 10 min. The liquid on the upper surface was removed. Finally, pure red cell packs were obtained from the washing process, which was repeated three times. The erythrocyte packs were mixed with the PBS buffer to generate a suspension with a value of 5 % Htc. These erythrocyte suspensions were used for the measurement of deformability. The collection and the deformability measurements of the erythrocytes were performed at 22 °C.

A constant-current filtrometer system was used in the measurement of the erythrocyte deformability. Samples to be measured were prepared with 10 ml of erythrocyte suspension and PBS buffer. The flow rate was held constant at 1.5 ml/min with an infusion pump. A 28 mm nucleoporin polycarbonate filter with a 5 μm pore diameter was preferred. Pressure changes while the erythrocytes passed through the filter were detected by a pressure transducer, and the data were transferred to the computer with the help of an MP30 data equation system (Biopac Systems Inc., Commat, USA). The calculations were performed with related computer programs by measuring the pressure changes at various times. Pressure calibration of the system was performed before each sample measurement. The buffer (P_r) and the erythrocytes (P_e) were passed through the filtration system, and the changes in pressure were measured. The relative refractory period value (Rrel) was calculated by relating the pressure value of the erythrocyte suspension to the pressure value of the buffer. An increasing Rrel in the deformability index was interpreted as adversely affecting the deformability of the erythrocytes.

Statistical analysis

The Statistical Package for the Social Sciences (SPSS, Chicago, IL, USA) 12.0 program was used for the statistical analysis. Erythrocyte deformability between the study groups were assessed using the ANOVA test. The Bonferroni-adjusted test was used if the results of the ANOVA test were significant to determine which groups differed from the others. The results were expressed as mean ± standard deviation (mean ± SD). Statistical significance was set at a p < 0.05.

Results

The results of the study indicated that IR significantly increased the relative resistance, a marker of erythrocyte deformability when
compared to control group (p < 0.05) (Fig. 1). There were signif-

icant differences between the groups according to the comparisons

with ANOVA test (p < 0.0001). The results obtained after correc-

tions with Bonferroni test were as follows: Comparisons of the

DIRD and DIRT groups revealed similar results (p = 0.824). The

values of the DIR group were significantly higher than those of

the control, DC, DIR and DIRT groups (p < 0.0001, p = 0.001,

p = 0.004, p = 0.002, respectively). The values of the DC, DIR,

DIRD and DIRT groups were significantly higher than those of

the control group (p < 0.0001, all).

Discussion

In this study, we have reported the protective effect of dex-

medetomidine and thymoquinone on erythrocyte deformability in

experimental lower limb IR injury in streptozotocin-induced dia-

betic rats. Besides, relative resistance was significantly higher in

all the groups compared to the control group (p < 0.05) and dif-

ferences between the groups were also significant according to

the comparisons with ANOVA test (p < 0.0001).

IR injury is an inflammatory response accompanied by free

radical formation, leucocyte migration and activation, sinusoidal

endothelial cellular damage, deteriorated microcirculation and co-

agulation and complement system activation (5). IR injury causes

lipid peroxidation and a complex variety of products occur and this

production causes local and systemic toxic and mutagenic effects

(25). These effects lead to damage of the cellular membrane, which

contains polyunsaturated fatty acids. Finally, the loss of disinte-

gration of cellular membrane occurs by structural and functional

tissue damage.

Erythrocyte deformability is important for organ and tissue

perfusion (26). Erythrocytes must have the capability to extend

curve to move in final organ capillaries for delivering oxygen

and vital molecules and clearing metabolic wastes. This capacity

is called ‘deformability’ (27). When equilibrium in free radical

production and antioxidant defense system is disrupted oxidative

damages occur (28). The products of lipid peroxidation caused by

oxidative stress damage membrane permeability and micro viscos-

ity. Thus, diminished deformability capacity and survival of the

erthrocytes are observed (29).

Hemorheological parameters like hematocrit, plasma proteins,
erthrocyte aggregation, and erythrocyte deformability are often

disturbed in Diabetes mellitus (30). Barnes et al (31) reported that

erthrocyte deformability was lower in the 14 diabetes patients

with the most extensive micro-angiopathy than in the controls

or the 22 diabetes patients with slight or no complications. They

suggested that hyperviscosity and reduced erythrocyte deform-

ability may be important and potentially treatable factors in the

aetiology or progression of microcirculatory disease in diabetes.

Similar to these previous studies, we also found that erythrocyte

deformability was decreased in diabetes induced rats.

Dexmedetomidine which is a potent α-2 agonist has sedative

hypnotic properties. It is also important in prevention of renal, fo-

cal, cerebral, cardiac, testicular and tourniquet-induced IR injury

(11–16). In this study; we have shown that dexmedetomidine has

a protective effect on erythrocyte deformability in lower limb IR

injury in diabetic rats similar to TQ induced group (p = 0.824).

Hosseinzadeh et al showed that TQ has protective effects on

lipid peroxidation after IR injury in rat hippocampus (32). In vari-

ous experimental studies, TQ’s protective effects including anti-

oxidant and free radical scavenging activity were shown (19-21).

Additionally, TQ inhibits the some inflammatory mediators’ pro-

duction (33–39). NS seed oil treatment was shown to reduce renal

histopathological score, improve renal function and serum and tis-

sue anti-oxidative parameters following IR injury by Bayrak et al

(40) In this study; we have shown that TQ has a protective effect

on erythrocyte deformability in lower limb IR injury in diabetic

rats similar to dexmedetomidine induced group.

Erythrocyte deformability and erythrocyte membrane rigidity

are affected by several agents. Altered erythrocyte deformability

not only changes the oxygen delivery capacity of the erythrocytes

but also the survival of the circulating erythrocytes (29, 41).

As a conclusion the results of this study clearly demonstrate

that erythrocyte deformability is significantly altered in experi-

mental lower limb IR injury in streptozotocin-induced diabetic rats. In

addition, dexmedetomidine and TQ was observed to protect against

these alterations in lower limb IR injury in streptozotocin-induced

diabetic rats, when given before induction of ischemia. Other as-

pects of these findings including clinical significance and practical

applications, merit further experimental and clinical investigation.

References

1. Reimer KA, Jennings RB, Tattum AH. Pathobiology of acute myocar-
dial ischemia: metabolic functional and ultra structural studies. Am J Cardiol
1983 52: 72A–81.

2. Silveira M, Yoshida WB. Isquemia e reperfusão em músculo esquelético:
mecanismos de lesão e perspectivas de tratamento. J Vasc Bras 2004
3 (4): 367–378.

3. Ott MC, Scott JR, Bihari A et al. Inhalation of carbon monoxide pre-
vents liver injury and inflammation following hind limb ischemia/reperfu-
sion. FASEB J 2005; 19 (1): 106–108.

Fig 1. Erythrocyte deformability index values of thgroups. Each bar

represents the mean ± SD. * p < 0.05 compared to the Group C, + p <

0.05 compared to the Group DIR.
4. Loerakker S, Oomens CW, Manders E et al. Ischemia-reperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI. Magn Reson Med 2011; 66: 528–537.

5. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia–reperfusion injury. Anesthesiology 2001; 94 (6): 1133–1138.

6. Panés J, Kurose I, Rodríguez-Vaca D et al. Diabetes exacerbates inflammatory responses to ischemia–reperfusion. Circulation 1996; 93 (1): 161–167.

7. Grisham MB, Granger DN. Free radicals: reactive metabolites of oxygen as mediators of postischemic reperfusion injury. In: Martson A, Bulkley GB, Fiddian-Green RG, Haglun U (Eds): Splanchnic ischemia and multiple organ failure. St. Louis: Mosby 1989, p. 13544.

8. Peto K, Nemeth N, Brath E et al. Free radicals: reactive metabolites of oxygen as mediators of postischemic reperfusion injury. In: Martson A, Bulkley GB, Fiddian-Green RG, Haglun U (Eds): Splanchnic ischemia and multiple organ failure. St. Louis: Mosby 1989, p. 13544.

9. McCutcheon CA, Orme RM, Scott DA et al. Free radicals: reactive metabolites of oxygen as mediators of postischemic reperfusion injury. In: Martson A, Bulkley GB, Fiddian-Green RG, Haglun U (Eds): Splanchnic ischemia and multiple organ failure. St. Louis: Mosby 1989, p. 13544.

10. Ramsay MA, Luterman DL. Dexamethasone as a total intravenous anesthetic agent. Anesthesiology 2004; 101: 787–790.

11. Lai YC, Tsai PS, Huang CJ. Effects of dexamethasone on regulating endotoxin-induced up-regulation of inflammatory molecules in murine macrophages. J Surg Res 2009; 154 (2): 212–219.

12. Yoshitomi O, Cho S, Haras T et al. Direct protective effects of dexamethasone against myocardial ischemia–reperfusion injury in anesthetized pigs. Shock 2012; 38 (1): 92–97.

13. Jolkkonen J, Puurunen K, Koistinaho J et al. Neuroprotection by the alpha2-adrenoceptor agonist, dexamethasone, in rat focal cerebral ischemia. Eur J Pharmacol 1999; 372 (1): 31–36.

14. Kocoglu H, Ozturk H, Ozturk H et al. Effect of dexamethasone on ischemia–reperfusion injury in rat kidney: a histopathologic study. Ren Fail 2009; 31 (1): 70–74.

15. Arslan M, Comu FM, Kucuk A et al. Dexamethasoneprotects against lipid peroxidation and erythrocyte deformability alterations in experimental hepatic ischemia reperfusion injury. Libyan J Med 2012; 7: doi: 10.3402/ljm.v7i0.18158

16. Si Y, Bao H, Han L et al. Dexamethasone protects against renal ischemia and peroxide injury by inhibiting the JAK/STAT signaling activation. J Transl Med 2013; 11 (1): 141. doi: 10.1186/1479-5876-11-141.

17. Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 2006; 38: 1249–1253.

18. El Gazzar MA, El Mezayen R et al. Thymoquinone and alternative medicine. Libyan J Med 2012; 7: doi: 10.3402/ljm.v7i0.18158

19. Rajput S, Kaseb AO, Wang Z et al. Antitumor activity of genticabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 2009; 69: 5575–5583.

20. Chehl N, Chipitsyna G, Gong Q et al. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 2009; 11: 373–381.

21. El Gazzaar MA, El Mezayen R et al. Thymoquinone attenuates proinflammatory responses in lipopolysaccharide-activated mast cells by modulating NF-kappaB nuclear transcription. Biochim Biophys Acta 2007; 1776: 556–564.

22. Elsherbiny NM, El-Sherbiny M. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact 2014; 223: 102–108.

23. El Gazzar MA, El Mezayen R et al. Thymoquinone attenuates proinflammatory responses in lipopolysaccharide-activated mast cells by modulating NF-kappaB nuclear transcription. Biochim Biophys Acta 2007; 1776: 556–564.

24. Elsherbiny NM, El-Sherbiny M. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact 2014; 223: 102–108.

25. El Gazzar MA, El Mezayen R et al. Thymoquinone attenuates proinflammatory responses in lipopolysaccharide-activated mast cells by modulating NF-kappaB nuclear transcription. Biochim Biophys Acta 2007; 1776: 556–564.

26. Elsherbiny NM, El-Sherbiny M. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact 2014; 223: 102–108.