Towards the assignments for 1^1D_2 and 1^3D_2 meson nonets

Xue-Chao Feng 1, Ke-Wei Wei 2, Jie Wu 1, Xue-Zhen Zhai 1, Shi-Zhuo Wang 1

1 Department of Technology and Physics, Zhengzhou University of Light Industry, 450002 Zhengzhou, China
2 School of Science, Henan University of Engineering, 451191 Zhengzhou, China

In this work, we investigate the mass spectrum of 1^1D_2 and 1^3D_2 meson nonets in the framework of the meson mass matrix and Regge phenomenology. The results are compared with the values from different phenomenological models and may be useful for the assignment of the 1^1D_2 and 1^3D_2 meson nonets in the future.

PACS numbers: 11.55.Jy, 12.40.Yx, 14.40.Be

1. Introduction

Quantum Chromodynamics (QCD) was established half a century ago as a theory of strong interactions. In the past few years, QCD has achieved great success and continued to provide satisfactory explanations for many puzzling experimental results. However, we also need to face the fact objectively that there is still a long way to obtain a comprehensive understanding of strong interactions. One of the problems to be solved is that perturbative QCD is not applicable at low energy, and it is difficult to produce accurate results from non-perturbative calculations [1]. In this case, it is necessary to build models that can reveal the most important features of QCD, e.g., quenched lattice QCD [2,3], the Dyson-Schwinger formalism [4], constituent quark models [5], and light cone QCD [6,7]. In addition, since mesons are an ideal laboratory for studying strong interactions in the strongly coupled non-perturbative regime, the study of the meson spectrum is of great
significance for better understanding the dynamics of strong interactions \[8\], \[9\], \[10\], and \[11\].

In this work, we will discuss the assignment of the \(1^1D_2\) and \(1^3D_2\) meson nonets. The masses and widths of the \(1^1D_2\) and \(1^3D_2\) meson nonets are listed in Table 1. Here, the values are taken from PDG \[12\].

Table 1. The masses and widths of \(1^3D_2\) and \(1^1D_2\) meson nonets (in units of MeV). \(\rho_2(???)\), \(\omega_2(???)\), and \(\phi_2(???)\) remain to be found in experiments.

State \((D^1D_2)\)	\(\text{mass} \)	\(\text{width} \)	State \((D^1D_2)\)	\(\text{mass} \)	\(\text{width} \)
\(\pi_2(1670)\)	\(1670.6^{+1.2}_{-1.3} \)	\(258^{+5}_{-5} \)	\(\rho_2(???)\)		
\(\eta_2(1645)\)	\(1617 \pm 5 \)	\(181 \pm 11 \)	\(\omega_2(???)\)		
\(\eta_2(1870)\)	\(1842 \pm 8 \)	\(225 \pm 14 \)	\(\phi_2(???)\)		
\(K_2(1770)^1\)	\(1773 \pm 8 \)	\(186 \pm 14 \)	\(K_2(1820)^1\)	\(1819 \pm 12 \)	\(264 \pm 34 \)

For the \(1^1D_2\) meson nonet, the states \(\pi_2(1670)\), \(\eta_2(1645)\) and \(\eta_2(1870)\) are well established. The state \(\pi_2(1670)\) was observed in the reaction \(\pi^+p \rightarrow p\pi^+\pi^+\pi^-\) half a century ago \[13\]. In 2002, the E852 Collaboration performed a partial-wave analysis of the reaction \(\pi^-p \rightarrow \pi^+\pi^-\pi^-\pi^-\) and the \(\pi_2(1670)\) was confirmed \[14\]. In 2005, three isovector \(2^-\) states \(\pi_2(1670)\), \(\pi_2(1880)\) and \(\pi_2(1970)\) were seen in the \(\omega\rho^-\) decay channel \[15\]. In Ref. \[16\], the state \(\pi_2(1670)\) was measured with mass \(1642^{+12}_{-11}\) MeV and width \(311^{+12}_{-23}\) MeV. For the isoscalar, the Crystal Barrel Collaboration observed \(\eta_2(1645)\), and \(\eta_2(1870)\) in the reaction \(pp \rightarrow \eta\pi^0\pi^0\pi^0\) \[17\]. Subsequently, the \(\eta_2(1645)\) and \(\eta_2(1870)\) were studied by the WA102 Collaboration in the \(a_2(1320)\pi, f_2(1270)\pi, a_0(1320)\pi\) channels \[18\], \[19\]. For the kaon sector, the assignment of \(K_2(1770)\) remains interesting. The \(K_2(1770)\) was first reported in the reaction \(K^-p \rightarrow pK^-\pi^+\pi^-\) and \(K^-p \rightarrow pK^0\pi^-\pi^0\) \[20\]. Moreover, the evidence for two \(J^P = 2^-\) strange mesons was presented in the reaction \(K^-p \rightarrow K^-\pi^+\pi^-\pi^0\) \[21\]. Unlike the \(\pi_2(1670)\), \(\eta_2(1645)\) and \(\eta_2(1870)\), the kaon has non-diagonal C-parity, the spin-singlet \((1^1D_2)\) and spin-triplet \((1^3D_2)\) can mix to produce the physical states \(K_2(1770)\) and \(K_2(1820)\) \[22\]. The cognition of the \(1^3D_2\) meson nonet is even lower than that of the \(1^1D_2\) meson nonet. Since \(1^3D_2\) meson has the same spin angular momentum and orbital momentum as \(1^1D_2\) and \(1^3D_1\) meson, the mass of the corresponding states may have a large overlap. Moreover, the large decay widths also make it very difficult to find these states. Till now, only the kaon \(K_2(1820)\) is listed in Table 1, the other members are still not established in the experiments. Therefore, both the theoretical and experimental analysis of the assignment for \(1^1D_2\) and \(1^3D_2\) meson nonets is required.

In this work, the mass spectrum of \(1^1D_2\) and \(1^3D_2\) meson nonets is investigated in the framework of the meson mass mixing matrix and Regge phenomenology. This work is organized as follows. The mass mixing ma-
The mass mixing matrix of isoscalar states

In the quark model, mesons exist as qq' bound states of quark q and antiquark \bar{q}' (the flavors of q and \bar{q}' may be different). The qq' bound states can be classified based on the representations of SU(3) flavor group. In general, states with the same J^P and additive quantum numbers can mix, so the bare isoscalar states can mix and form two physical states [23, 24, 25].

In the $n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$ and $s\bar{s}$ basis, the mass matrix describing the mix of the physical isoscalar states can be expressed as

$$M^2 = \begin{pmatrix} M_{n\bar{n}}^2 + 2A_{nn} & \sqrt{2}A_{ns} \\ \sqrt{2}A_{ns} & M_{ss}^2 + A_{ss} \end{pmatrix}$$

with

$$A_{nn} = \frac{\zeta}{m_n m_n}, \quad A_{ns} = \frac{\zeta}{m_n m_s}, \quad A_{ss} = \frac{\zeta}{m_s m_s},$$

where $M_{n\bar{n}}$ and M_{ss} are the masses of states $n\bar{n}$ and $s\bar{s}$, respectively; A_{nn}, A_{ns} and A_{ss} are the mixing parameters, which describe the $qq' \leftrightarrow q'\bar{q}$ transition amplitudes [26, 27]; ζ is an SU(3)-invariant phenomenological parameter, m_n, m_s are the masses constituent quarks (n denotes the up or down quark).

For a given meson nonet, the physical isoscalar states Φ and Φ' are the eigenstates of the mass matrix M^2

$$UM^2U^\dagger = \begin{pmatrix} M_\Phi^2 & 0 \\ 0 & M_{\Phi'}^2 \end{pmatrix},$$

where U is the unitary matrix, M_Φ^2 and $M_{\Phi'}^2$ are masses of states Φ and Φ', respectively.

From the realtions (1), (2) and (3), one has

$$M_{n\bar{n}}^2 + \frac{2\zeta}{m_n^2} + M_{ss}^2 + \frac{\zeta}{m_s^2} = M_\Phi^2 + M_{\Phi'}^2,$$

$$M_{n\bar{n}}^2 + \frac{2\zeta}{m_n^2} \left(M_{ss}^2 + \frac{\xi}{m_s^2} \right) - \frac{2\xi}{m_n^2 m_s^2} = M_\Phi^2 M_{\Phi'}^2.$$

The relations (4) and (5) are the trace and determinant of relation (3), respectively.

Applying the relations (4) and (5) for the 1^1D_2 and 1^1P_1 meson nonets, we obtain the masses $M_{s\bar{s}(1^1D_2)} = 1849.0\pm8.1$ MeV or 1609.1 ± 5.7 MeV and
$M_{s\bar{s}(1^1P_1)} = 1423.9\pm 8.7$ MeV or 1156.4 ± 8.1 MeV. The masses $M_{s\bar{s}(1^1D_2)} = 1609.1\pm 5.7$ MeV and $M_{s\bar{s}(1^1P_1)} = 1156.4\pm 8.1$ MeV should be discarded since they are smaller than the masses of the isovector states $\pi_2(1670)$ and $b_1(1235)$. In this work, we use the quark masses $m_n = 0.29$ GeV, $m_s = 0.46$ GeV as extracted from meson spectroscopy [28, 29].

Apart from the mixing of isoscalar states, for the kaons of 1^1D_2 and 1^3D_2, the spin-singlet and spin-triplet can mix to form physical states $K_2(1770)$ and $K_2(1820)$. The mixing can be expressed as

$$K_2(1773) = K_2(1^1D_2) \cos \theta_K + K_2(1^3D_2) \sin \theta_K,$$

$$K_2(1820) = -K_2(1^1D_2) \sin \theta_K + K_2(1^3D_2) \cos \theta_K,$$

where θ_K is the $(1^1D_2)-(1^3D_2)$ mixing angle. The same analysis process is used for axial-vector mesons [30]. The masses of $K_2(1^1D_2)$ and $K_2(1^3D_2)$ can be related with $M_{K_2(1773)}$ and $M_{K_2(1820)}$ by the following relation,

$$
\begin{pmatrix}
\cos \theta_K & \sin \theta_K \\
-\sin \theta_K & \cos \theta_K
\end{pmatrix}
\begin{pmatrix}
M^2_{K_2(1^1D_2)} & M^2_{K_2(1^1D_2)} \\
M^2_{K_2(1^3D_2)} & M^2_{K_2(1^3D_2)}
\end{pmatrix}
\begin{pmatrix}
\cos \theta_K & -\sin \theta_K \\
\sin \theta_K & \cos \theta_K
\end{pmatrix}

= \begin{pmatrix} M^2_{K_2(1773)} & 0 \\ 0 & M^2_{K_2(1820)} \end{pmatrix},
$$

where ξ represents a parameter describing the $K_2(1^1D_2)$ and $K_2(1^3D_2)$ mixing. From the relations (6), (7), and (8), the mixing angle θ_K and the mass relations between $M_{K_2(1^1D_2)}$ and $M_{K_2(1^3D_2)}$ are obtained, i.e.,

$$M^2_{K_2(1^1D_2)} = M^2_{K_2(1773)} \cos^2 \theta_K + M^2_{K_2(1820)} \sin^2 \theta_K,$$

$$M^2_{K_2(1^3D_2)} = M^2_{K_2(1773)} \sin^2 \theta_K + M^2_{K_2(1820)} \cos^2 \theta_K,$$

$$\cos (2\theta_K) = \frac{M^2_{K_2(1^1D_2)} - M^2_{K_2(1^3D_2)}}{M^2_{K_2(1773)} - M^2_{K_2(1820)}},$$

$$M^2_{K_2(1^1D_2)} + M^2_{K_2(1^3D_2)} = M^2_{K_2(1773)} + M^2_{K_2(1820)}.$$

As described in the previous section, based on the mass mixing matrix of isoscalar states and the mixing of the spin-singlet and spin-triplet, we build a bridge that connects the masses of meson nonet members. In the subsequent analysis, we will determine the masses of the unknown meson states by applying relations (4), (5), and (12) to the known meson masses.
3. Regge phenomenology and mass relations

In this section, we use Regge theory for the assignment of meson multiplets. The Regge theory, which connects the high energy behavior of the scattering amplitude with singularities in the complex angular momentum plane of the partial wave amplitudes, was developed in the 1960s [31]. Recently, Regge theory has attracted renewed attention in that it can be used to predict the meson masses or to determine the quantum numbers of newly observed states in experiments [9, 28, 32, 33, 34, 35]. Regge theory indicates that mesons are associated with Regge poles, which move in the complex angular momentum plane as a function of energy. The plots of Regge trajectories of hadrons in the \((J, M^2)\) plane are usually called Chew-Frautschi plots, where \(J\) and \(M\) are the total spins and the masses of the hadrons, respectively. According to the Chew-Frautschi conjecture, the poles fall onto linear trajectories in the \((J, M^2)\) plane,

\[
J = \alpha_{n\bar{n}N}(0) + \alpha'_{n\bar{n}N} M^2_{n\bar{n}N},
\]

\[
J = \alpha_{n\bar{s}N}(0) + \alpha'_{n\bar{s}N} M^2_{n\bar{s}N},
\]

\[
J = \alpha_{s\bar{s}N}(0) + \alpha'_{s\bar{s}N} M^2_{s\bar{s}N},
\]

where \(N\) is the radial quantum number. The \(\alpha'\) and \(\alpha\) are the slope and intercept of the Regge trajectory, respectively. In this work, the intercept and slope can be expressed as

\[
\alpha_{n\bar{n}N}(0) + \alpha_{s\bar{s}N}(0) = 2\alpha_{n\bar{s}N}(0),
\]

\[
\frac{1}{\alpha'_{n\bar{n}N}} + \frac{1}{\alpha'_{s\bar{s}N}} = \frac{2}{\alpha'_{n\bar{s}N}}.
\]

The intercept relation was derived from the dual-resonance model [36], and is satisfied in two-dimensional QCD [37], the dual-analytic model [38], the quark bremsstrahlung model [39]. The slope relation (17) was obtained in the framework of topological expansion and the \(q\bar{q}\)-string picture of hadrons [40].

From relations (13)- (17), one has

\[
M^2_{n\bar{n}N}\alpha'_{n\bar{n}N} + M^2_{s\bar{s}N}\alpha'_{s\bar{s}N} = M^2_{n\bar{s}N}\alpha'_{n\bar{s}N}.
\]

Based on the assumption that the slopes of parity partner trajectories coincide and are independent of charge conjugation [9, 41], that is to say,

\[
\alpha'_{n\bar{n}}(1^1P_1) = \alpha'_{n\bar{n}}(1^3D_2) = \alpha'_{n\bar{n}}(1^3D_2)
\]

\[
\alpha'_{n\bar{s}}(1^1P_1) = \alpha'_{n\bar{s}}(1^1D_2) = \alpha'_{n\bar{s}}(1^3D_2)
\]

\[
\alpha'_{s\bar{s}}(1^1P_1) = \alpha'_{s\bar{s}}(1^1D_2) = \alpha'_{s\bar{s}}(1^3D_2)
\]
we have the following relations, which are related to meson multiplets with the same regge slopes by eliminating the slopes,

\[\frac{4M_{n\bar{s}(1^1D_2)}^2 M_{n\bar{n}(1^1P_1)}^2 - 4M_{n\bar{n}(1^3D_2)} M_{n\bar{s}(1^1P_1)}^2}{M_{n\bar{n}(1^1D_2)}^2 M_{s\bar{s}(1^1P_1)}^2 - M_{s\bar{s}(1^1D_2)}^2 M_{n\bar{n}(1^1P_1)}^2} = \frac{M_{n\bar{s}(1^1D_2)}^2 (M_{n\bar{n}(1^1P_1)}^2 - M_{s\bar{s}(1^1P_1)}^2) - M_{n\bar{s}(1^1P_1)}^2 (M_{n\bar{n}(1^3D_2)} - M_{s\bar{s}(1^1D_2)})}{M_{n\bar{s}(1^1D_2)}^2 M_{s\bar{s}(1^1P_1)}^2 - M_{s\bar{s}(1^1D_2)}^2 M_{n\bar{s}(1^1P_1)}^2}, \]

\[(20) \]

Inserting the masses of states into relations (12), (20), (21), with the aid of \(M_{s\bar{s}(1^3D_2)} = 2M_{n\bar{n}(1^3D_2)} - M_{n\bar{n}(1^3D_2)} \), we obtain the values of \(M_{n\bar{s}(1^1D_2)} \), \(M_{n\bar{s}(1^3D_2)} \), \(M_{n\bar{n}(1^3D_2)} \), \(M_{s\bar{s}(1^3D_2)} \) and list the results in Table 3 and 4. In this work, we take

\[M_{n\bar{s}(1^1P_1)}^2 = \frac{1}{2} M_{K_1(1270)}^2 + \frac{1}{2} M_{K_1(1400)}^2, \]

(22)

the \(K_{1A} \) and \(K_{1B} \) are nearly equal 45° mixtures of the \(K_1(1270) \) and \(K_1(1400) \).\[43\]

Apart from the ground meson, the radial excitations can be estimated in the framework of Regge phenomenology. Based on the assumption that the ground and the radial excitation have the same slopes \[34\], we obtain the following from the relations (13), (14), and (15),

\[M_{n\bar{n}N}^2 \alpha_{n\bar{n}1}^2 - M_{n\bar{n}N}^2 \alpha_{n\bar{n}1}^2 = \alpha_{n\bar{n}1}(0) - \alpha_{n\bar{n}N}(0), \]

(23)

\[M_{s\bar{s}N}^2 \alpha_{s\bar{s}1}^2 - M_{s\bar{s}N}^2 \alpha_{s\bar{s}1}^2 = \alpha_{s\bar{s}1}(0) - \alpha_{s\bar{s}N}(0), \]

(24)

\[M_{n\bar{s}1}^2 \alpha_{n\bar{s}1}^2 - M_{n\bar{s}1}^2 \alpha_{n\bar{s}1}^2 = \alpha_{n\bar{s}1}(0) - \alpha_{n\bar{s}N}(0). \]

(25)

In Refs. \[44\] [45], Filipponi et al. indicate that the values of \(\alpha_{n\bar{n}1}(0) - \alpha_{n\bar{n}N}(0), \alpha_{n\bar{s}1}(0) - \alpha_{n\bar{s}N}(0), \alpha_{s\bar{s}1}(0) - \alpha_{s\bar{s}N}(0) \) depend on the constituent quark masses through the combination \(m_i + m_j \) (\(m_i \) and \(m_j \) are the constituent masses of quark and antiquark). In this case, a factor \(f_i(m_i + m_j) \) is introduced into relations (23) - (25). Then these relations are expressed as
\[M_{n\bar{n}N}^2 = M_{n\bar{n}1}^2 + \frac{(N - 1)}{\alpha_{n\bar{n}}} (1 + f_{n\bar{n}}(m_n + m_n)), \quad (26) \]
\[M_{n\bar{s}N}^2 = M_{n\bar{s}1}^2 + \frac{(N - 1)}{\alpha_{n\bar{s}}} (1 + f_{n\bar{s}}(m_n + m_s)), \quad (27) \]
\[M_{s\bar{s}N}^2 = M_{s\bar{s}1}^2 + \frac{(N - 1)}{\alpha_{s\bar{s}}} (1 + f_{s\bar{s}}(m_s + m_s)). \quad (28) \]

In this work, the parameters used as input are taken from our previous work (Table 2) \[46\].

Table 2. The slopes (GeV\(^{-2}\)) and the parameters \(f_{nn}, f_{ns}\) and \(f_{ss}\) (GeV\(^{-1}\)) of relations (19), (20), and (21).

parameters	\(\alpha_{nn}\)	\(\alpha_{ns}\)	\(\alpha_{ss}\)	\(f_{nn}\)	\(f_{ns}\)	\(f_{ss}\)
value	0.7218	0.6613	0.76902	0.3556	0.1376	0.2219

The results are shown in Table 3, 4 and Figure 1, 2.

Table 3. The radial excitation masses of the \(1^1D_2\) multiplet in this work are compared with the other predictions (in units of MeV). This work (1) and (2) are the solutions of relation (20). The mass used as input for our calculation is shown in boldface.

\(1^1D_2\)	\(N\)	This work(1)	This work(2)	\[47\]	\[48\]	\[49\]	\[50\]	\[51\]
	1	1670.6\(^{+1.9}_{-1.2}\)	1643	1680				
\(M_{n\bar{n}}\)	2	2111.9\(^{+2.3}_{-2.0}\)	1960	2130				
	3	2476.1\(^{+2.0}_{-2.0}\)	2216					
\(M_{n\bar{s}}\)	1	1761.7 \(\pm 5.6\)	1709	1778				
	2	2188.7 \(\pm 4.6\)	2066	2212				
	3	2545.0 \(\pm 3.8\)	2380					
\(M_{s\bar{s}}\)	1	1849.0 \(\pm 8.1\)	1825	1893				
	2	2262.4 \(\pm 6.7\)	2282	2336				
	3	2611.1 \(\pm 5.8\)	2685	2723				

Table 4. The radial excitation masses of the \(1^3D_2\) multiplet in this work are compared with the other predictions (in units of MeV). This work (1) and (2) are the solutions of relation (21).

\(1^3D_2\)	\(N\)	This work(1)	This work(2)	\[47\]	\[48\]	\[49\]	\[50\]	\[51\]
	1	1687.7 \(\pm 15.5\)	1661	1700				
\(M_{n\bar{n}}\)	2	2125.9 \(\pm 12.3\)	1983	2150				
	3	2488.1 \(\pm 10.6\)	2491.2 \(\pm 10.6\)	2241				
\(M_{n\bar{s}}\)	1	1824.8 \(\pm 9.6\)	1824	1879				
	2	2236.8 \(\pm 7.9\)	2243.8 \(\pm 8.0\)	2163				
	3	2589.1 \(\pm 6.8\)	2592.6 \(\pm 7.0\)	2388				
\(M_{s\bar{s}}\)	1	1952.4 \(\pm 13.5\)	1940	1904				
	2	2347.7 \(\pm 11.3\)	2351.9 \(\pm 11.4\)	2297				
	3	2685.3 \(\pm 9.9\)	2689.0 \(\pm 10.1\)	2701				

The mass used as input for our calculation is shown in boldface.
Fig. 1. The radial excitation of N^1D_2 meson nonet.
4. Conclusion

In this work, we investigate the mass spectrum of $^{1}D_{2}$ and $^{3}D_{2}$ meson nonets in the framework of the meson mass matrix and Regge phenomenology. The mass of $^{1}D_{2}(s\bar{s})$ is determined to be 1849.0 MeV, which agrees with the state $\eta_{2}(1870)$ with a mass of 1842 ± 8 MeV in PDG. The consistency of masses also indicates that $\eta_{2}(1870)$ is the candidate for $^{1}D_{2}$ meson nonet with a small mixing with $n\bar{n}$ component, the corresponding results need to be further confirmed in the experiment. Apart from the ground meson, the masses of radial excitations of $^{1}D_{2}$ are obtained. There are five isovector states with $J^{PC} = 2^{-+}$ ($\pi_{2}(1670)$, $\pi_{2}(1880)$, $\pi_{2}(2050)$, $\pi_{2}(2100)$, $\pi_{2}(2285)$) are listed in PDG. The $\pi_{2}(2100)$ is omitted from the summary table, the states $\pi_{2}(2050)$ and $\pi_{2}(2285)$ are classified as “further states”. In this work, the isovector of $^{1}D_{2}$ mass is determined to be 2111.9 MeV, which is consistent with the mass of $\pi_{2}(2100)$ (2090 ± 29 MeV). We suggest that $\pi_{2}(2100)$ would be the plausible candidate of $^{1}D_{2}$ meson state. For the $^{3}D_{2}$ meson nonet, only the kaon $K_{2}(1820)$ is found, and it will mix with $K_{2}(1770)$ state. In PDG, the four states $\rho_{2}(1940)$, $\omega_{2}(1975)$, $\omega_{2}(2195)$, $\rho_{2}(2225)$ with $J^{PC} = 2^{--}$ are interpreted as “further states”. In this work, we find that there is still a large deviation between our results and the masses of these states. Till now, since the experimental information of $^{3}D_{2}$ meson nonet is not enough, it is necessary to conduct a systematic and complete study for these states. The results may be useful for the discovery of unobserved states in the experiments (BESIII, CMD-3, and COMPASS).

REFERENCES

[1] H. G. Blundell, “Meson properties in the quark model: A look at some outstanding problems,” [arXiv:hep-ph/9608473 [hep-ph]].

[2] M. Luscher, S. Sint, R. Sommer and H. Wittig, “Nonperturbative determination of the axial current normalization constant in O(a) improved lattice QCD,” Nucl. Phys. B 491, 344 (1997). doi: 10.1016/S0550-3213(97)00087-4

[3] S. Aoki, T. Hatsuda and N. Ishii, “Theoretical foundation of the nuclear force in QCD and its applications to central and tensor forces in quenched lattice QCD simulations,” Prog. Theor. Phys. 123, 89 (2010). doi: 10.1143/PTP.123.89

[4] P. Maris and C. D. Roberts, “Dyson-Schwinger equations: a Tool for hadron physics,” Int. J. Mod. Phys. E 12, 297 (2003). doi: 10.1142/S0218301303001326

[5] M. Gell-Mann, “A schematic model of baryons and mesons,” Phys. Lett. B 8, 214 (1964). doi: 10.1016/S0031-9163(64)92001-3
[6] G. P. Lepage and S. J. Brodsky, “Exclusive processes in perturbative Quantum Chromodynamics,” Phys. Rev. D 22, 2157 (1980). doi: 10.1103/PhysRevD.22.2157

[7] G. Buchalla, T. K. Komatsubara, F. Muheim, L. Silvestrini, M. Artuso, D. M. Asner, P. Ball, E. Baracchini, G. Bell and M. Beneke, et al. “B, D and K decays,” Eur. Phys. J. C 57, 309 (2008). doi: 10.1140/epjc/s10052-008-0716-1

[8] S. Godfrey and J. Napolitano, “Light meson spectroscopy,” Rev. Mod. Phys. 71, 1411 (1999). doi: 10.1103/RevModPhys.71.1411

[9] D. M. Li, B. Ma, Y. X. Li, Q. K. Yao and H. Yu, “Meson spectrum in Regge phenomenology,” Eur. Phys. J. C 37, 323 (2004). doi: 10.1140/epjc/s2004-02002-5

[10] A. Koenigstein and F. Giacosa, “Phenomenology of pseudotensor mesons and the pseudotensor glueball,” Eur. Phys. J. A 52, no.12, 356 (2016). doi: 10.1140/epja/i2016-16356-x

[11] S. Jafarzade, A. Vereijken, M. Piotrowska and F. Giacosa, “From well-known tensor mesons to yet unknown axial-tensor mesons,” Phys. Rev. D 106, no.3, 036008 (2022) doi: 10.1103/PhysRevD.106.036008

[12] P. A. Zyla et al. [Particle Data Group], “Review of Particle Physics,” PTEP 2020, no.8, 083C01 (2020). doi: 10.1093/ptep/ptaa104

[13] J. Bartsch, E. Keppel and G. Kraus, “Observation and Analysis of the 1660 MeV 3π Resonance A(3) in 8 GeV/c π+p Interactions,” Nucl. Phys. B 7, 345 (1968). doi: 10.1016/0550-3213(68)90088-6

[14] S. U. Chung, K. Danyo, R. W. Hackenburg, C. Olchanski, J. S. Suh, H. J. Wihlutzki, S. P. Denisov, V. Dorofeev, V. V. Lipaev and A. V. Popov, et al. “Exotic and q̅q resonances in the π+π−π− system produced in π−p collisions at 18-GeV/c,” Phys. Rev. D 65, 072001 (2002). doi: 10.1103/PhysRevD.65.072001

[15] M. Lu et al. [E852], “Exotic meson decay to ωπ0π−,” Phys. Rev. Lett. 94, 032002 (2005). doi: 10.1103/PhysRevLett.94.032002

[16] M. Aghasyan et al. [COMPASS], “Light isovector resonances in π−p → π−π−π+p at 190 GeV/c,” Phys. Rev. D 98, no.9, 092003 (2018). doi: 10.1103/PhysRevD.98.092003

[17] J. Adomeit et al. [Crystal Barrel], “Evidence for two isospin zero Jπ = 2−+ mesons at 1645-MeV and 1875-MeV,” Z. Phys. C 71, 227 (1996). doi:10.1007/s002880050166

[18] D. Barberis et al. [WA102], “A Study of the ηπ+π− channel produced in central pp interactions at 450-GeV/c,” Phys. Lett. B 471, 435 (2000). doi: 10.1016/S0370-2693(99)01394-5

[19] D. Barberis et al. [WA102], “A Spin analysis of the 4π channels produced in central pp interactions at 450-GeV/c,” Phys. Lett. B 471, 440 (2000). doi: 10.1016/S0370-2693(99)01413-6

[20] J. Bartsch and M. Deutschmann. “Observation of a (Kππ) Resonance near 1800 MeV,” Phys. Lett. 22, 357 (1966). doi: 10.1016/0031-9163(66)90646-9
[21] D. Aston, T. Bienz, F. Bird, W. Dunwoodie, W. Johnson, P. F. Kunz, Y. Kwon, D. W. G. S. Leith, L. Levinson and B. Ratcliff, et al. “Evidence for two $J^P = 2^-$ strange meson states in the $K_2(1770)$ region,” Phys. Lett. B 308, 186 (1993). doi: 10.1016/0370-2693(93)90620-W

[22] T. Barnes, N. Black and P. R. Page, “Strong decays of strange quarkonia,” Phys. Rev. D 68, 054014 (2003). doi: 10.1103/PhysRevD.68.054014

[23] D. M. Li and B. Ma, “X(1835) and $\eta(1760)$ observed by BES Collaboration,” Phys. Rev. D 77, 074004 (2008). doi: 10.1103/PhysRevD.77.074004

[24] D. M. Li and S. Zhou, “Towards the assignment for the A_1S^0 meson nonet,” Phys. Rev. D 78, 054013 (2008). doi: 10.1103/PhysRevD.78.054013

[25] F. Giacosa, A. Koenigstein and R. D. Pisarski, “How the axial anomaly controls flavor mixing among mesons,” Phys. Rev. D 97, no.9, 091901 (2018). doi: 10.1103/PhysRevD.97.091901

[26] M. M. Brisudova, L. Burakovsky and J. T. Goldman, “New glue-ball meson mass relations,” Phys. Rev. D 58, 114015 (1998). doi: 10.1103/PhysRevD.58.114015

[27] R. Delbourgo and M. D. Scadron, “Dynamical generation of linear sigma model SU(3) Lagrangian and meson nonet mixing,” Int. J. Mod. Phys. A 13, 657 (1998). doi: 10.1142/S0217751X98000299

[28] L. Burakovsky and J. T. Goldman, “On the Regge slopes intramultiplet relation,” Phys. Lett. B 434, 251 (1998). doi: 10.1016/S0370-2693(98)00821-1

[29] L. Burakovsky and J. T. Goldman, “Comment on ‘Regge trajectories for all flavours’,” Phys. Rev. Lett. 82, 457 (1999). doi: 10.1103/PhysRevLett.82.457

[30] D. M. Li and Z. Li, “Strange axial-vector mesons mixing angle,” Eur. Phys. J. C 51, 359 (2007). doi: 10.1140/epjc/s10052-007-0286-7

[31] T. Regge, “Introduction to complex orbital momenta,” Nuovo Cim. 14, 951 (1959). doi: 10.1007/BF02728177

[32] D. M. Li, B. Ma and Y. H. Liu, “Understanding masses of $c\bar{s}$ states in Regge phenomenology,” Eur. Phys. J. C 51, 359 (2007). doi: 10.1140/epjc/s10052-007-0286-7

[33] X. H. Guo, K. W. Wei and X. H. Wu, “Some mass relations for mesons and baryons in Regge phenomenology,” Phys. Rev. D 78, 056005 (2008). doi: 10.1103/PhysRevD.78.056005

[34] A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, “Systematics of $q\bar{q}$ states in the (n, M^2) and (J, M^2) planes,” Phys. Rev. D 62, 051502 (2000). doi: 10.1103/PhysRevD.62.051502

[35] P. Masjuan, E. Ruiz Arriola and W. Broniowski, “Systematics of radial and angular-momentum Regge trajectories of light non-strange $q\bar{q}$ states,” Phys. Rev. D 85, 094006 (2012). doi: 10.1103/PhysRevD.85.094006

[36] V. S. Berezinsky and G. T. Zatsepin, “Cosmic rays at ultrahigh-energies (neutrino?),” Phys. Lett. B 28, 423 (1969). doi: 10.1016/0370-2693(69)90341-4

[37] R. C. Brower, J. R. Ellis, M. G. Schmidt and J. H. Weis, “Hadron scattering in two-dimensional QCD. 2. Second Order Calculations, Multi-Regge and Inclusive Reactions,” Nucl. Phys. B 128, 175 (1977). doi: 10.1016/0550-3213(77)90304-2
[38] N. A. Kobylinsky, E. S. Martynov and A. B. Prognimak, “Interrelations between intercepts of Regge trajectories and new mass formulas,” Ukr. Fiz. Zh. (Russ. Ed.) 24, 969 (1979).

[39] V. V. Dixit and L. A. P. Balazs, “Regge intercepts of multi-quark systems in Feynman’s bremsstrahlung analogy,” Phys. Rev. D 20, 816 (1979). doi: 10.1103/PhysRevD.20.816

[40] A. B. Kaidalov, “Hadronic mass relations from topological expansion and string model,” Z. Phys. C 12, 63 (1982). doi: 10.1007/BF01475732

[41] M. M. Brisudova, L. Burakovsky and J. T. Goldman, “Effective functional form of Regge trajectories,” Phys. Rev. D 61, 054013 (2000). doi: 10.1103/PhysRevD.61.054013

[42] S. Okubo, “Note on unitary symmetry in strong interactions,” Prog. Theor. Phys. 27, 949 (1962). doi: 10.1143/PTP.27.949

[43] F. Divotgey, L. Olbrich and F. Giacosa, “Phenomenology of axial-vector and pseudovector mesons: decays and mixing in the kaonic sector,” Eur. Phys. J. A 49, 135 (2013). doi: 10.1140/epja/i2013-13135-3

[44] S. Filipponi, G. Pancheri and Y. Srivastava, “Regge trajectories for all flavors,” Phys. Rev. Lett. 80, 1838 (1998). doi: 10.1103/PhysRevLett.80.1838

[45] S. Filipponi and Y. Srivastava, “Hadronic masses and Regge trajectories,” Phys. Rev. D 58, 016003 (1998). doi: 10.1103/PhysRevD.58.016003

[46] Y. H. Liu, X. C. Feng and J. J. Zhang, “Interpreting the masses of mesons in Regge phenomenology,” Eur. Phys. J. A 43, 379 (2010). doi: 10.1140/epja/i2010-10922-2

[47] Q. Li, L. C. Gui, M. S. Liu, Q. F. Lü and X. H. Zhong, “Mass spectrum and strong decays of strangeonium in a constituent quark model,” Chin. Phys. C 45, no.2, 023116 (2021). doi: 10.1088/1674-1137/abcf22

[48] L. Y. Xiao, X. Z. Weng, X. H. Zhong and S. L. Zhu, “A possible explanation of the threshold enhancement in the process $e^+e^- \rightarrow \Lambda\bar{\Lambda}$,” Chin. Phys. C 43, no.11, 113105 (2019). doi: 10.1088/1674-1137/43/11/113105

[49] D. Ebert, R. N. Faustov and V. O. Galkin, “Mass spectra and Regge trajectories of light mesons in the relativistic quark model,” Phys. Rev. D 79, 114029 (2009). doi: 10.1103/PhysRevD.79.114029

[50] C. Q. Pang, J. Z. Wang, X. Liu and T. Matsuki, “A systematic study of mass spectra and strong decay of strange mesons,” Eur. Phys. J. C 77, no.12, 861 (2017). doi: 10.1140/epjc/s10052-017-5434-0

[51] S. Godfrey and N. Isgur, “Mesons in a relativized quark model with Chromodynamics,” Phys. Rev. D 32, 189 (1985). doi: 10.1103/PhysRevD.32.189
Fig. 2. The radial excitation of N^1D_2 meson nonet.