Cascading Effects of Ocean Acidification in a Rocky Subtidal Community
Valentina Asnaghi, Mariachiara Chiantore, Luisa Mangialajo, Frédéric Gazeau, Patrice Francour, Samir Alliouane, Jean-Pierre Gattuso

To cite this version:
Valentina Asnaghi, Mariachiara Chiantore, Luisa Mangialajo, Frédéric Gazeau, Patrice Francour, et al.. Cascading Effects of Ocean Acidification in a Rocky Subtidal Community. PLoS ONE, Public Library of Science, 2013, 8 (4), pp.e61978. <10.1371/journal.pone.0061978>. <hal-01535594>

HAL Id: hal-01535594
https://hal.sorbonne-universite.fr/hal-01535594
Submitted on 9 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Cascading Effects of Ocean Acidification in a Rocky Subtidal Community

Valentina Asnaghi1,2,*, Mariachiara Chiantore1, Luisa Mangialajo2, Frédéric Gazeau3,4, Patrice Francour2, Samir Alliouane3,4, Jean-Pierre Gattuso3,4

1 DISTAV - University of Genoa, Genoa, Italy, 2 Université de Nice-Sophia Antipolis, EA 4228 ECOMERS, Nice, France, 3 CNRS-INSU, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France, 4 Université Pierre et Marie Curie-Paris 6, Observatoire Océanologique de Villefranche, Villefranche-sur-Mer, France

Abstract

Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coraline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dicyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle’s lantern size. In a future scenario of ocean acidification a decrease of sea urchins’ density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins’ diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.

Introduction

The partial pressure of CO2 (pCO2) in the atmosphere has increased by about 40% (267 to 384 ppm) since the beginning of the industrial revolution, leading to changes in the Earth’s climate and in terrestrial ecosystems functioning [1]. This increase in atmospheric CO2, mainly due to anthropogenic emissions, led to a well-known shift in the carbonate system of seawater [2], which can be seen as the ocean’s pCO2 elevation [3]. The ocean, being a reservoir for more than 80% of the atmospheric CO2, is strongly affected by this increase [4]. The partial pressure of CO2 (pCO2) has increased by about 40% (267 to 384 ppm) since the beginning of the industrial revolution, leading to changes in the Earth’s climate and in terrestrial ecosystems functioning [1]. This increase in atmospheric CO2, mainly due to anthropogenic emissions, led to a well-known shift in the carbonate system of seawater [2], which can be seen as the ocean’s pCO2 elevation [3]. The ocean, being a reservoir for more than 80% of the atmospheric CO2, is strongly affected by this increase [4].

In a future scenario of ocean acidification a decrease of sea urchins’ density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins’ diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.
of turfs [15–16] or barrens of coralline algae [13,17] in response to human pressures, e.g. urbanization of the coastline and overfishing (that favour proliferation of sea urchins).

Macroalgae also exhibit different sensitivities to increased sea temperature and ocean acidification [9,18–20]. Non-calculifying algae generally show increased production and growth in response to elevated CO₂ [21–23], while fucoid canopy algae, even though particularly sensitive to human impacts, are considered to be less sensitive to pH variations and their primary production might be even expected to increase in acidified waters [24]. Corallinaceae species are the dominant calculating algal group and appear to be the most sensitive to ocean acidification; elevated pCO₂ negatively affects their recruitment [25], growth [26] and calcification [7,27–29]. They exhibit calcium carbonate dissolution and decreased surface percent cover at lower pH and may be less competitive for space, driving a shift from dominance of calculating to non-calcifying algae [25,30–32].

Sea urchins are generally the most effective benthic herbivores in shallow subtidal areas [33]. Although their grazing activity can facilitate the settlement of new species by providing patches of bare substrate, with an increase in biodiversity [34], when they are particularly abundant as a direct or indirect consequence of human disturbance (e.g. overfishing, [13]; date-mussel fishery, [17]), they can dramatically deplete non-calculifying algae, changing the seascapes with the creation of extensive barren grounds dominated by coralline algae.

Sea urchins also show sensitivity to decreased pH: their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, both in adult, juvenile and larval stages [33–37]. Adult sea urchin sensitivity to ocean acidification has been reported particularly by in situ records in naturally acidified areas [18], while laboratory experiments have mainly tested effects of low pH on larval stages or gene expression in the developmental process [36,38–41].

Macroalgae and sea urchins therefore strongly interact to shape the ecological state of rocky ecosystems. Studies on their response to ocean acidification have been so far performed separately through laboratory experiments on isolated species [19,21–22,33,42] and through in situ observations in naturally acidified areas [18,30,43], but it is crucial to assess the cascading effects of their individual responses [44].

The effects of increase pCO₂ on species interactions are still poorly known and the extent of consequences at the ecosystem level hard to assess. Most of the laboratory studies on ocean acidification have been focused on fitness and physiological processes of individual species [45]. Only a few studies, so far, have dealt with species interactions in naturally acidified locations [18,43–44], that mimic future acidified scenarios but whose ecology is potentially affected by surrounding areas (see [44] for in-depth discussion). Individual species fitness can affect communities and/or ecosystem functioning and biodiversity by cascade processes [8,46] and pCO₂ effects on upper trophic levels may be modulated (ameliorated or exacerbated) by indirect effects intrinsic to interactions with other trophic levels [47]. These effects cannot be ascertained without simultaneously testing response to ocean acidification on interacting species.

In this context, we performed one of the first, to our knowledge, laboratory experiments on ocean acidification taking into account species interactions. We used calculating (Corallina elongata), and non-calculifying (the fucoid Cystoseira amentacea var. stricta, hereafter Cystoseira amentacea, and Dictyota dichotoma) macroalgae, and sea urchins (Paracentrotus lividus), under 4 different pCO₂ conditions, relevant to present conditions and future scenarios [48].

The experimental design enabled testing the macroalgal responses to increasing pCO₂ as a function of their carbonate content, in presence or absence of grazers, and the sensitivity of sea urchins to ocean acidification, through direct and diet-mediated effects, in order to assess whether low pH conditions may lead to different grazing capabilities, as a function of their requirement for carbonate ions to build-up their carbonate structures, and to different levels of defence to predation. Another novelty of the present study is the focus on the juvenile urchin stage, whose morphology and feeding behaviour are the same of adults, but whose growth rate (skeletons and jaws) is faster and purportedly more sensitive to pH decrease [49]. Given their faster growth rate, their responses (in terms e.g. of jaw and test growth) under short-term experimental conditions may better be assessed.

Materials and Methods

Experimental set-up

Juveniles of Paracentrotus lividus, about 4 months old, were provided by a sea urchin hatchery in Camogli (NW Mediterranean Sea, Italy), where they had been reared after in vitro fertilization. A total of 144 juveniles, with a test diameter of 5 to 6 mm, had been randomly selected and moved to the Laboratoire d’Océanographie de Villefranche, where the experiment was performed, one month before the start of the experiment. Algal specimens were collected in the Bay of Villefranche (NW Mediterranean Sea, France) at a depth of less than 5 m, and transported to Villefranche laboratory. No specific permits were required for collecting specimens in the present location: the Bay of Villefranche is not subject to particular protection restrictions. The location is not privately-owned or protected in any way. For each of the 3 selected algal species, Corallina elongata, Cystoseira amentacea and Dictyota dichotoma, 32 samples of around 5 g fresh weight (FW) were collected, cleaned of epiphytes, fastened with a rubber band and placed in experimental aquaria. The field collection did not involve endangered or protected species. All algal specimens were acclimated in a thermostated room at 22°C, for at least one week before the start of the experiment: the relatively short acclimation period was due to the decision of not adding nutrients for the macroalgal culture. We decided not to add any culture medium to the tanks in order to avoid possible biases due to fact that nutrient enrichment and pH interplay in different directions on growth of non-calculifying and coralline algae [23] and could possibly exert negative effects on juvenile urchins.

Four pCO₂ levels, chosen according to best practices [50] and IPCC projections [48], were used: (1) present day, pCO₂ = 390 μatm (control), (2) optimistic scenario, pCO₂ = 550 μatm, (3) realistic scenario (close to what expected for 2100), pCO₂ = 750 μatm and (4) pessimistic scenario, pCO₂ = 1000 μatm.

Unfiltered seawater, pumped from a depth of 10 m in the Bay of Villefranche, was continuously supplied to four 200 l header tanks. The chosen pCO₂ levels in the experimental tanks were obtained by bubbling pure-CO₂ using a continuous pH-stat system (IKS, Karlsbad, Aquastar). In the control tank, pCO₂ was maintained at 290 μatm by bubbling CO₂-free air produced by stripping CO₂ from ambient using soda lime, and adjusting to the appropriate level through the IKS system. pH values corresponding to each pCO₂ level were estimated based on desired pCO₂, total alkalinity (A), temperature and salinity using the R package seaweb [51]. pH electrodes from the pH-stat system were inter-calibrated every 2 days using a glass combination electrode (Metrohm, electrode plus) calibrated on the total scale using TRIS buffer solutions with a salinity of 35 [52].
The whole system comprised 48 experimental units allocated in 16 aquaria (20 l), 4 aquaria for each pCO2 level (Fig. 1). Three smaller containers, each representing one experimental unit, were placed in each aquarium. Manipulated seawater from the four header tanks was delivered to experimental units at a rate of about 6 L h⁻¹. Each experimental unit was directly provided inflow water from the respective reservoir at any given pH with an individual pipe. The water filled experimental units and flowed out of the smaller containers, filling the aquarium, then was discharged through an overflow system. For each pCO2 level, two aquaria (6 experimental units) with only algae and two aquaria (6 experimental units) with algae and sea urchins were set up. The design enabled us to tease apart weight loss due to sea urchin grazing and direct pCO2 effects on algal species. One of the three different algal species was allocated to each of the three experimental units in each aquarium (Fig. 1); two 5 g samples of each species were placed in their respective units. In the dedicated aquaria, six juvenile urchins were placed in each experimental unit. The experimental units within each aquarium were covered with a net in order to prevent urchin movement from one section to another, and to force them to graze on a single algal species, but with mesh large enough not to reduce light and water flow.

Irradiance values in the aquarium were maintained at about 215 μmol photons m⁻²s⁻¹, corresponding to the irradiance at ca. 5 m depth in the Bay of Villefranche in June-July [19]. Light was supplied by two 39 W fluorescent tubes (JBL Solar Ultra Marin Day), with reflectors, above each aquarium (at a distance of ca. 10 cm from the water surface), with a 12:12 h L:D photoperiod.

Carbonate chemistry and specimens measurements

Seawater samples for total alkalinity (AT) measurements were collected twice a week, filtered on GF/F membranes and immediately analyzed. AT was determined potentiometrically using a Metrohm titrator (Titranet 90) and a glass electrode (Metrohm, electrode plus) calibrated using first NBS buffers (pH 4.0 and pH 7.0, to check that the slope was Nernstian) and then using TRIS buffer solutions. Triplicate titrations were performed on 50 ml sub-samples at 25°C and AT was calculated as described by Dickson et al. [2007]. Titrations of standard seawater provided by A.G. Dickson (batch 106) yielded AT values within 2.4 μmol kg⁻¹ of the nominal value (standard deviation = 4.6 μmol kg⁻¹). All parameters of the carbonate chemistry were determined from pH, AT, temperature and salinity using the R package seacarb [31].

Algae and urchins wet weights were measured at the beginning and at the end of the experiment (precision: 0.001 g). At the end of the experiment, all specimens were air dried and stored for following analyses. Macroalgal weight loss under experimental conditions was calculated as the difference between algal wet weight at the beginning and at the end of the experiment. A subset of 24 sea urchins (one for each experimental unit) was dissected and immersed in 1% (w/v) sodium hypochlorite for 30 min in order to remove organic matter and facilitate the separation of structural elements. The length of all portions of Aristotle’s lantern and the diameter of the test were measured under a stereomicroscope and the ratio between the length of the jaw pyramids of the Aristotle’s lantern and the diameter of the test was calculated (hereafter referred as jaw/test ratio).

Test robustness was measured on another sub-set of 24 sea urchin specimens using a custom-made device designed to measure the static force required to crush sea urchin tests (adapted from [53]). Sea urchins were positioned upside down (in order to mimic fish predator attack) in a glass column. Then, a hollow piston, built to fit and run within the column, was inserted inside the column and progressively filled with lead pellets in order to increase the pressure, until the crushing of the urchin test. The static force required to crush sea urchin tests was measured as the weight (g) of piston and lead added: data were normalized by the diameter of the test.

Finally, scanning electron microscopy (SEM) images of different parts of sea urchins (apical disc, spines and jaw pyramids) were taken using an Environmental Scanning Electron Microscope (E-SEM VEGA3, TESCAN) at the University of Genoa.

Statistical analyses

The effect of pCO2 on calcifying (C. elongata) and non-calcifying (C. amentacea, D. dichotoma) algae in presence or absence of P. lividus on the percent algal weight loss (arcisin transformed) was tested using a 3-way crossed ANOVA, after test for normality and homogeneity of variance: factor 1 “algal species”, 3 levels (C. elongata, C. amentacea, D. dichotoma); factor 2 “pCO2”, 4 levels (pCO2 = 390, 550, 750, 1000 μatm); factor 3 “urchins”, 2 levels (absent/

Figure 1. Scheme of the experimental set-up. The top boxes represent the four reservoirs in which the pCO2 was regulated. Squares represent the 16 experimental aquaria, divided into sub-sections as described in the Methods, to yield a total of 48 independent experimental units. The numbers of samples of each macroalgal item and of P. lividus are reported in brackets.

doi:10.1371/journal.pone.0061978.g001
present). Replicate values (n=2) were the mean weight losses of the two samples of algae in each experimental unit. Student–Newman–Keuls (SNK) tests were performed for the a posteriori comparisons of means to check for differences among factor levels when the ANOVA detected significant effects.

Then, 2-way crossed ANOVA and SNK tests was performed on untransformed data to assess potential changes in the jaw/test ratio of the sea urchins fed with the three macroalgae and exposed to different pH levels. Considered factor were: factor 1 “algal species”, 3 levels (C. elongata, C. amentacea, D. dichotoma); factor 2 “pCO₂”, 4 levels (pCO₂ = 390, 550, 750, 1000 µatm). Replicate values (n=2) were the mean values derived from urchins investigated in each independent experimental unit. A 2-way ANOVA, testing the same factors, and SNK tests were performed also on untransformed data of the normalised weight required to crush the test, in order to detect potential differences in test robustness among urchins fed with different algae and kept at different pH levels.

Results

Parameters of the carbonate chemistry are reported in Table 1. pH₇ was maintained at an average (±SD) of (1) 8.09 ± 0.04, (2) 7.98 ± 0.06, (3) 7.84 ± 0.04 and (4) 7.70 ± 0.03, in the four treatments, respectively. A2 levels remained stable across treatments and during the whole experiment.

Although irradiance and temperature in the experimental aquaria were chosen to mimic natural conditions, no growth of algal thalli was observed during the experiment in any of the treatments. Accordingly, all algal specimens showed a general decrease in weight in all treatments, including in the experimental units without sea urchins. As expected, weight loss was much larger in the units where urchins were present and represented between 65 and 100% of the amount of algae placed in the aquaria at the beginning of the experiment. In general, C. amentacea and D. dichotoma showed larger weight loss than C. elongata, irrespective of the pCO₂ level: across all pH treatments C. amentacea lost around 90–100% of its weight when grazed by urchins and 55–65% when not grazed (Fig. 2a). D. dichotoma lost around 85–100% in presence of urchins and 45–55% when urchins were absent (Fig. 2b). C. elongata, probably more tolerant to artificial conditions, lost noticeably less weight than the other two algae in the treatments without urchins: around 40% in the control, till 60% at the highest pCO₂ treatment (Fig 2c). Yet, weight loss of C. elongata increased with increasing pCO₂, both in the presence (from 75 to 95%) and absence of sea urchins (Fig. 2c). The statistical significance of these results is shown in Table 2 which highlighted a significant effect of the “algal spp.” and “pCO₂” interaction (p<0.05) and of the factor “urchins” (p<0.001) on all algal species. The SNK test on the factor “urchins” confirmed the expected larger weight loss when urchins were present at all pCO₂ levels (presence > absence; p<0.01). For the interaction between factors “algal spp.” and “pCO₂”, SNK test revealed a significantly larger weight loss of C. elongata at elevated pCO₂ treatments than at the control conditions (pCO₂ (550 = 750 = 1000) > 390 µatm; p<0.01; Table 2), while no differences were observed for the two non calcifying species.

Some mortality of sea urchins, unrelated to the pCO₂ level, occurred during the first week (19 out of 144 specimens, 15 of them were fed with D. dichotoma). The remaining ones were in very good conditions after one month, and showed positive increase in size. The jaw/test ratio showed a weak significant difference only between control pCO₂ and 750 µatm (390 > 750 µatm; p<0.05) and no significant interaction between factor “algal species” and “pCO₂” was observed (ANOVA; Table 3). Significant differences were found for the factor “algal species” (p<0.01) and the SNK test highlighted significant higher values of the ratio in urchins fed with C. elongata, compared to C. amentacea and D. dichotoma (C. elongata > C. amentacea = D. dichotoma; p<0.01). In Figure 3, box plots show jaw/test ratio values for urchins fed with the three different algae, kept at the different pH conditions.

The effects of pCO₂ and algal species on test robustness (Fig. 4) were both significant (ANOVA, p<0.05; Table 4). Test robustness was significantly lower in urchins kept at the highest pCO₂ level (pCO₂ (390 = 550 = 750) > 1000 µatm; p<0.05) and changed according to the diet, across all pH treatments: tests of urchins fed with C. elongata were significantly stronger compared to urchins fed with the two non-calcifying species (C. elongata > (C. amentacea = D. dichotoma)). Scanning Electron Microscope images performed on the apical disc, spines and, Aristotle’s lantern of sea urchins showed that only the Aristotle’s lantern was affected by the experimental treatments, while the other portions investigated did not reveal clearly detectable differences. The surface of latero-radial sides of the Aristotel’s lantern, usually characterized by fine and dense tridimensional mesh of calcite trabeculae [54], examined with SEM at a magnification of 8500x, showed a porous structure with larger and more irregularly shaped holes, increasing signs of corrosion and structural breaks as a function of increasing pCO₂ (Fig. 5). The porous structure of Aristotle’s lantern of urchins fed with C. elongata at 390 µatm (Fig. 5a) looked denser and Aristotle’s lantern surface was smoother than those of urchins fed with the same diet but maintained at elevated pCO₂ (e.g. 1000 µatm, Fig. 5b) and also to those of urchins fed with non-calcifying macroalgae (e.g. urchins fed with C. amentacea, Fig. 5c) at the same pCO₂ (390 µatm). The density and preservation of the

Table 1. Parameters of the carbonate system and temperature in each treatment (mean ± SD).

Treat	pH₇	pCO₂ (µatm)	Aᵢ (mmol kg⁻¹)	CO₂⁺ (mmol kg⁻¹)	HCO₃⁻ (mmol kg⁻¹)	Cᵢ (mmol kg⁻¹)	Ωcalcite	Ωaragonite	T(°C)
T1	8.09 ± 0.04	382 ± 41	2.531 ± 0.005	0.260 ± 0.023	1.891 ± 0.059	2.162 ± 0.037	6.10 ± 0.55	4023 ± 0.378	24.18 ± 1.12
T2	7.98 ± 0.06	528 ± 87	2.530 ± 0.005	0.215 ± 0.022	2.002 ± 0.055	2.232 ± 0.036	5.03 ± 0.52	3322 ± 0.344	24.40 ± 1.30
T3	7.84 ± 0.04	755 ± 87	2.530 ± 0.006	0.167 ± 0.017	2.121 ± 0.039	2.309 ± 0.025	3.91 ± 0.40	2581 ± 0.268	24.32 ± 1.08
T4	7.70 ± 0.03	1093 ± 72	2.530 ± 0.005	0.126 ± 0.010	2.222 ± 0.019	2.378 ± 0.012	2.95 ± 0.23	1947 ± 0.154	24.33 ± 0.97

doi:10.1371/journal.pone.0061978.t001
trabecular structure of the Aristotle’s lantern of urchins that grazed on non-calcifying macroalgae exhibited a larger damage at elevated pCO$_2$ (Fig. 5d).

Discussion

Effects of ocean acidification and grazing on calcifying and non-calcifying macroalgae

The role that ocean acidification could play on macroalgal assemblages, potentially affecting different processes, such as photosynthesis, growth, calcification rate and competitive ability of macroalgae, depending on their carbonate content and deposition pathway, is difficult to unravel. Macroalgae rely for

Table 2. Three-way ANOVA on algal weight loss.

Source	SS	DF	MS	F	P
algal species	1493.56	2	746.78	17.65	0.0000
pCO$_2$	655.71	3	218.57	5.16	0.0068
Urchins	12076.74	1	12076.74	285.38	0.0000
algal spp. X pCO$_2$	726.15	6	121.02	2.86	0.0302
algal spp. X urchins	63.24	2	31.62	0.75	0.4844
pCO$_2$ X urchins	337.50	3	112.50	2.66	0.0771
algal spp. X pCO$_2$ X urchins	167.34	6	27.89	0.66	0.6829
Residuals	1015.62	24	42.32		
Total	16535.87	47			

SNK tests:
- Algal species (pCO$_2$): at 390 µatm C. amentacea = D. dichotoma > C. elongata ($p<0.01$); at 550 µatm, C. amentacea = D. dichotoma > C. elongata ($p<0.05$); at 750 µatm: D. dichotoma > C. elongata ($p<0.05$); at 1000 µatm: C. amentacea = D. dichotoma = C. elongata.
- pCO$_2$ (Algal species): for C. amentacea and D. dichotoma 390 = 550 = 750 = 1000 µatm; for C. elongata pCO$_2$ 550 = 750 = 1000 > 390 µatm ($p<0.01$).
- Urchins: presence > absence ($p<0.01$).

All factors are orthogonal and fixed. Number of replicates = 2. Cochran’s test is not significant (C = 0.19). The significant effects are highlighted in bold. F values were calculated versus MS of residuals.

Figure 2. Box plot on percent weight loss as a function of pCO$_2$ (µatm), for each macroalga: (a) Cystoseira amentacea, (b) Dictyota dichotoma and (c) Corallina elongata. Medians are highlighted in bold; bars represent the 25% and 75% quartiles; whiskers represent the lowest and highest data points.

doi:10.1371/journal.pone.0061978.g002

Figure 3. Box plot on the jaw/test ratio as a function of pCO$_2$ and algal diet: sea urchins fed with (a) Corallina elongata, (b) Cystoseira amentacea and (c) Dictyota dichotoma. Medians are highlighted in bold; bars represent the 25% and 75% quartiles; whiskers represent the lowest and highest data points.

doi:10.1371/journal.pone.0061978.g003
photosynthesis on CO2 and/or HCO3− [55] which will increase in the ocean acidification scenario, potentially stimulating primary production [56]. Yet, the decrease in pH reduces CO22[−3−], which is used by calcifying macroalgae for the production and maintenance of carbonate structures [57–59], reducing growth [23,25] and calcification [28–29]. Additionally, calcifying species may also be negatively affected by increased CO2 indirectly, as a consequence of the increased competitive ability of non-calcifying macroalgae [60].

The present study confirms previous findings, both based on in situ observations [18,30] and laboratory experiments [19–20,23,60], which have shown different responses of calcifying and non-calcifying macroalgae to ocean acidification.

The weight loss of the non-calcifying species, Cystoseira amentacea and Dictyota dichotoma was unaffected by pCO2. In contrast, the calcifying seaweed Corallina elongata showed a significantly larger weight loss in the three elevated pCO2 treatments than in the control condition. The sensitivity of coralline algae to elevated pCO2 has already been reported by previous studies, some of which actually contrasted the response to nowadays pCO2 conditions compared to pCO2 levels higher than those projected in the incoming decades (ranging between 700 and 1500 µatm; e.g. [7,19,25,29,61]). The present study, testing pCO2 levels in the range projected in the coming century, demonstrates that Corallina elongata exhibits a negative response even at a relatively low pCO2 level (550 µatm), suggesting a significant impact in a few decades.

In the presence of urchins, all macroalgal species lost significantly more weight at any pCO2 compared to experimental units where urchins were absent. More interestingly, the presence of urchins increased algal weight loss at any elevate pCO2 compared to controls. The apparently smaller weight loss of C. elongata in the grazed condition (Fig. 2), compared to the non-calcifying species, was actually due to the lower weight loss of the calcified species also under the un-grazed condition. These findings suggest that urchin grazing pressure will be unaffected calcified species also under the un-grazed condition. These findings suggest that urchin grazing pressure will be unaffected by increased CO2 indirectly, as a consequence, grazing activity is expected to exacerbate pCO2 effects on macroalgae, particularly calcifying ones.

All algal species showed a weight loss during the experiment. It did not prevent testing the effects of the main factors (pCO2 and presence/absence of urchins). An increase in growth of non-calcifying species at elevated pCO2 was anticipated based on previous studies [21–22,23,62–63], which would suggest that photosynthesis of certain benthic autotrophs will increase in a high-CO2 world, except when other constituents such as nitrogen, phosphorus, and iron are limiting [8,64]. The weight loss observed in the present study may be explained by nutrient limitation and/or artificial conditions of the experiment (e.g. light). Additionally, in the Mediterranean Sea, the macroalgal biomass is highest in the spring; growth is much lower in June-July, the time at which the experiment was performed.

Figure 4. Box plot on test robustness, expressed as the weight (g) needed to crush the urchin test normalized by the test diameter, as a function of pCO2 and algal diet: sea urchins fed with (a) Corallina elongata, (b) Cystoseira amentacea and (c) Dictyota dichotoma. Medians are highlighted in bold; bars represent the 25% and 75% quartiles; whiskers represent the lowest and highest data points.

doi:10.1371/journal.pone.0061978.g004

Table 3. Two-way ANOVA on the jaw/test ratio.

Source	SS	DF	MS	F	P
algal species	0.0036	2	0.0018	10.13	0.0027
pCO2	0.0019	3	0.0006	3.61	0.0458
algal spp. X pCO2	0.0024	6	0.0004	2.20	0.1157
Residuals	0.0021	12	0.0002		
Total	0.0100	23			

SNK tests:
Algal species: C. elongata > (C. amentacea = D. dichotoma) (p<0.01); pCO2: 390 > 750 µatm (p<0.05).
All factors are orthogonal and fixed. Number of replicates = 2. Cochran’s Test is not significant (C = 0.22). The significant effects are highlighted in bold. F values were calculated versus MS of residuals.
doi:10.1371/journal.pone.0061978.t003

Figure 5. SEM images (8500x) of portions of the Aristotle’s lantern of urchins fed calcifying (C. elongata a, b) and non-calcifying (C. amentacea c, d) macroalgae and maintained at pCO2 levels of 390 (a, c) and 1000 µatm (b, d) for 1 month.
doi:10.1371/journal.pone.0061978.g005
Combined effect of ocean acidification and diet on sea urchins

Sea urchins are the major grazers on rocky subtidal habitats [33] and their carbonate structures are particularly susceptible to pH reductions across their different developmental stages (larval skeletal rods, adult test, teeth and spines; [35,65–66]).

Few studies have focused on the juvenile stage, which is potentially one of the most susceptible to acidified conditions, given their higher growth rate compared to adults. In fact, even a small change in pCO_2 (200 μatm) is reported to increase mortality, decrease growth and cause a thinner and more easily breakable test in one year old urchins [49].

The present study shows significant pCO_2 effects on test robustness; sea urchins maintained at the lower pH (pH_1 7.7) exhibited a less robust test than the ones maintained at higher pH. Yet, lower test robustness, *per se*, did not affect mortality during the short experimental time. In addition to direct pCO_2 effects, our study points out that the effect of ocean acidification on juveniles of *Paracentrotus lividus* is mediated by their diet, both concerning test robustness and jaw size, potentially affecting grazing capacity. The food source caused differences in the robustness of the test: urchins fed with *C. elongata* displayed a significantly stronger test than the ones fed with the two non-calcifying species.

These findings (the threshold of pH_1 7.7 in sea urchin sensitivity and the role of coralline in their diet for strengthening the test) are in agreement with the findings of Hall-Spencer *et al.* (2008) in naturally acidified areas: a threshold value of mean pH_1 7.8 is reported below which sea urchins are absent; accordingly, in these pH_1 conditions coralline algae are missing. Combining the results of these two studies suggests that a pH_1 value of 7.7–7.8 and the lack of corallines in urchin diet does not increase directly the sea urchin mortality but, rather, makes them more susceptible to predation, because of the less robust tests.

Additional diet related differences were observed in the jaw/test ratio, a parameter notoriously variable according to the trophic condition of the individual [67–69]. Higher values of this index, that means larger lantern compared to the test size, were found in urchins fed with *C. elongata* than in urchins fed with the other species, irrespectively of the pCO_2 level. In Figure 3 appear that pCO_2 modulates the diet effects as the ratio in sea urchins fed with *C. elongata* was higher at 390 μatm than at the three more elevated pCO_2 levels. Sea urchins fed with *D. dichotoma* only exhibited a clear difference between the control and the highest pCO_2 treatment (1000 μatm) (Fig. 3c). No difference among pCO_2 treatments was observed in specimens fed with *C. amentacea* (Fig. 3b). The different response to the three algal species, additionally modulated by pCO_2 in the calcifying species (ratio higher in urchins fed with *C. elongata* in the control condition, and lower with increasing pCO_2 and in the urchins fed with the non-calcifying algae), may be due to the different toughness of the algal tissues. It is hypothesized that sea urchins need a larger grazing apparatus (relative to the body size) when fed with more calcified algal structures: in *Corallina*-fed urchins the ratio decreases sharply from the controls to the first intermediate pCO_2 level, showing a fast response to *Corallina* decalcification, that makes the alga more easily grazable [27].

Scanning Electron Microscope images on latero-radial sides of Aristotle's lantern highlighted, for all sea urchins exposed to experimental conditions, a progressive weakening of the calcite trabecular structure as a function of increasing pCO_2. While the *Aristotle*’s lantern of urchins fed with *C. amentacea* and *D. dichotoma* looked generally less tough in all treatments, *Corallina*-fed urchins displayed denser and smoother structures in the controls compared to controls fed with the other algae, with a clear reduction in thickness and increase in corrosion as a function of increasing pCO_2.

Taken together, these results suggest that the uptake of carbonate from the diet is fundamental in modulating sea urchin response to ocean acidification. The carbonate content of *C. elongata*, even at the higher pCO_2, makes the test of the juveniles much stronger and their jaws larger compared with specimens fed with non-calcifying algae. These findings, that show a direct pCO_2 effect on sea urchin defense from predation (test robustness) but also strong indirect effects mediated by the diet on test robustness and on jaw size, were achieved thanks to the experimental setup of an artificial community, designed for assessing interactions among primary producers and their grazers.

Cascading effects of ocean acidification on prey-predator dynamics

Ocean acidification, whether causing the loss of keystone/critical species or the reduction in their activity (e.g., predation, grazing, bioturbation), could have consequences at the ecosystem level [70], for example reducing habitat complexity and interfering with biological controls, such as the top-down control of sea urchins on non-calcifying macroalgae [44]. Our results highlight that in the different combinations of pCO_2 and diet, sea urchins showed different morpho-functional features, more as a consequence of diet than of pCO_2. Notwithstanding these differences, the grazing pressure of the urchins was similar across all the treatments. The observed combined effects of ocean acidification and macroalgal diet on test robustness and on jaw/test ratio may have severe consequences at the ecosystem level. The decrease in test robustness due to the diet and pCO_2 is anticipated to make juveniles of *P. lividus* more susceptible to predation by fish, e.g., *Diplodus* spp. [71–72], because the decreased robustness of sea urchin skeletons makes them less resistant to static loads whenever they are attacked by crushing predators [53].

The consequent reduced sea urchin density is expected to cause a reduction of their grazing pressure on macroalgal assemblages, with different effects according to the state of the habitat. In barren ground habitats, the reduced abundance of sea urchins would favor the recolonisation of non-calcifying macroalgae [73], potentially causing an increase in macrobenthic biomass and biodiversity. Conversely, in well vegetated, undisturbed environments, biodiversity may be negatively affected by i) the loss of coralline species, ii) the reduced number of colonizable patches produced by sea urchins grazing [34], iii) the lack of the succession promoting role of coralline algae which positively affects recovery and complexity in rocky reef communities after disturbance [74–
Species Interactions under Ocean Acidification

77], authors unpublished data). Consequently, the predicted effects of ocean acidification will lead to a decrease in biodiversity in well vegetated, undisturbed environments, while, considering the interaction with cumulated human impacts [78–79], particularly overfishing (favoring barren grounds formation), non-additive antagonistic effects on macroalgal biomass are expected. The proliferation of sea-urchins due to overfishing will be mitigated in a ocean acidification scenario, also due to higher vulnerability to predation, as shown in this study, favoring the recovery from barren grounds to well vegetated assemblages. The barren recovery trajectory is expected to lead to an increase of macroalgal biomass, but this may be locally unpredictable [80], depending on a multitude of biotic and abiotic factors (e.g. abundance of other grazers, extent of barren area and distance from well vegetated areas, availability of propagules, presence of other human impacts).

The recovery of foundation species (e.g. Cystoseira), in absence of coralline macroalgae, will be potentially prevented by the installation of turfs, able to inhibit their recruitment and known to be promoted in the framework of cumulated human impacts (see [81]). These findings stress the need to move from experiments on individual species to species interactions in order to better understand the both direct and indirect effects driven by top-down and bottom-up processes, in order to build more reliable predictions of future scenarios under the interaction of high μCO$_2$ conditions and cumulated human impacts.

Acknowledgments

Sea urchin juveniles were reared in the CNR-IFB marine facility in Camogli (Italy), in the framework of the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 222492 project (ENRICH); authors are thankful to Davide Privitera and Enrico Cantamessa for the sea urchins juveniles rearing and to Laura Negretti for the SEM images. Authors are particularly thankful to the Academic Editor, Tasman Crowe, and also to the anonymous reviewers, for their accurate review of the manuscript and precious suggestions for its improvement.

Author Contributions

Conceived and designed the experiments: VA MC LM FG J-PG. Performed the experiments: VA FG SA. Analyzed the data: VA MC LM. Contributed reagents/materials/analysis tools: FG SA J-PG MC. Wrote the paper: VA MC LM FG J-PG.

References

1. Keeling CD, Piper SC, Bollschweiler AF, Walker JS (2009) Atmospheric CO$_2$ records from sites in the SIO air sampling network. Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.

2.Gattuso JP & Hansson L (2011) Ocean acidification: background and history. In: Gattuso JP, Hansson L, editors. Ocean Acidification. Oxford University Press, Oxford. pp. 1–20.

3. Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso JP, Hansson L, editors. Ocean Acidification. Oxford University Press, Oxford. pp. 41–66.

4. Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgae. In: Smith AD & Roth AA (1979) Effect of carbon dioxide concentration on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Undaria pinnatifida. Aquaculture 250(3):726–735.

5. Russell BD, Thompson JAI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO$_2$ and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15:2169–2186.

6. Russel BD, Thompson JAI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO$_2$ and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15:2169–2186.

7. Anthony K, Kline D, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105(45):17442.

8. Anderson AJ, Mackenzie FT, Gattuso JP (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso JP, Hansson L, editors. Ocean Acidification. Oxford University Press, Oxford. pp. 122–153.

9. Nelson WA (2009) Calcified macroalgae critical to coastal ecosystems and vulnerable to change: A review. Mar Freshw Res 60(8):787–801.

10. Ballesteros E, Torras X, Pinedo S, Garcia M, Mangialajo L, et al. (2007) A new methodology based on littoral community cartography dominated by macro-algae for the implementation of the European Water Framework Directive. Mar Pollut Bull 55(1–6):172–180.

11. Mangialajo L, Ruggieri N, Asnaghi V, Chiantore M, Povero P, et al. (2007) The effects of sedimentation on rocky coast assemblages. Benthic Processes, organisms, and ecosystems. In: Gattuso JP, Hansson L, editors. Ocean Acidification. Oxford University Press, Oxford. pp. 41–63.

12. Asnaghi V, Chiantore M, Bertolotto R, Paravicini V, Cattaneo-Vietti R, et al. (2009) Implementation of the European Water Framework Directive: natural variability associated to the CARLIT method on the rocky shores of the Ligurian Sea (Italy). Marine Ecology 30:503–513.

13. Sala E, Boudouresque CF, Harnois-Henry E, Guaglianone L (2007) Coral reefs and changing seawater carbonate chemistry. Coastal and estuarine studies 61:73–110.

14. Anthony K, Kline D, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105(45):17442.

15. Connell SD (2005) Assembly and maintenance of subtidal habitat heterogeneity: a multitude of biotic and abiotic factors (e.g. abundance of other grazers, extent of barren area and distance from well vegetated areas, availability of propagules, presence of other human impacts).

16. Mangialajo L, Chiantore M, & Cattaneo-Vietti R (2008) Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Mar Ecol Prog Ser 358:63–74.

17. Guidetti P & Dalic J (2007) Relationships among predatory fish, sea urchins and barnacles in Mediterranean rocky reefs across a latitudinal gradient. Mar Environ Res 63:168–184.

18. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M et al. (2006) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 437(7050):96–99.

19. Martin S & Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100.

20. Connell SD & Russell BD (2010) The direct effects of increasing CO$_2$ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc B Biol Sci 277(1690):1409–1413.

21. Kubler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO$_2$ and O$_2$ on the seaweed Lomentaria articulata. Plant Cell Environ 22(10):1303–1310.

22. Zou D (2005) Effects of elevated atmospheric CO$_2$ growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250(3):726–735.

23. Russell BD, Thompson JAI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO$_2$ and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15(9):2153–2162.

24. Kroeker KJ, Kordas LR, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13(11):1419–1434.

25. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117.

26. Jokiel P, Rodgers K, Kuffner IB, Andersson AJ, Cox E, et al. (2008) Ocean acidification and calcifying reef organisms: a mosescum investigation. Coral Reefs 27(3):473–483.

27. Ragazzola F, Foster LC, Form A, Anderson PSL, Hansteen TH, et al. (2012) Ocean acidification weakens the structural integrity of coralline algae. Glob Change Biol 10.1111/j.1365-2486.2012.02756.x

28. Smith AD & Roth AA (1979) Effect of carbon dioxide concentration on calcification in the red coral alga Heliopora coerulea. Mar Biol 52:217–223.

29. Dunne K, D’Aurea R, Asti K, Ishihara T, Akama T, et al. (1997) Calcification in the articulated coralline alga Corallina officinalis, with special reference to the effect of elevated CO$_2$ concentration. Mar Biol 117:129–132.

30. Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. JEMBE 40(1–2):279–287.

31. Wootten JT, Petersen CA, Forster JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105:18048–18053.

32. Kuffner IB, Connell SD, Jokiel PL, Rodgers KS, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117.

33. Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. JEMBE 40(1–2):279–287.

34. Coma R, Serrano E, Linares C, Ribes M, Diaz-Díaz D, et al. (2011) Sea urchins predation facilitates coral invasion in a marine reserve. PLoS ONE 6(7): e22017.
33. Dupont S, Ortega-Martinez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449−62.
36. Kurihara H & Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161−169.
37. Byrne M, Ho M, Wong E, Soars NA, Selvakumaranpany P, et al. (2011) Unhulled abalone and corroded urchins: Development of marine calcifiers in a Changing Ocean. Proc R Soc B-Biol Sci 278(1716):2376−2383.
38. O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, et al. (2009) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:157−171.
39. Moulin L, Catarino AI, Claessens T, & Dobois P (2011) Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar Pollut Bull 62(1):48−54.
40. Stumpff M, Wren J, Melzner F, Thorndyke MC, Dupont ST (2011) CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology 160(3):331−340.
41. Stumpff M, Dupont S, Thorndyke MC, Melzner F (2011) CO2-induced seawater acidification impacts sea urchin larval development II: Gene expression patterns in plateau larvae. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology 160(3):320−330.
42. Martin S, Richier S, Pedrotti ML, Dupont S, Castexon C, et al. (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214(9):1357−1368.
43. Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci USA 108(35):14155−14150.
44. Johnson VR, Russell BD, Fabriceus KE, Brownlee C, Hall-Spencer JM (2012) Temparete and tropical brown macroalgea thrive, despite decalcification, along natural CO2 gradients. Glob Change Biol. DOI: 10.1111/j.1365-2486.2012.02716.x.
45. Nismuou A, Pesant S, Bellerby RGJ, Delille B, Middleburg J et al. (2010) EPOCA/EUR-OCEANS data-mining compilation on the impacts of ocean acidification. Earth System Science Data Discussions 3:109−130.
46. Brownman HI, Vézina AF, Hoegh-Guldberg O (2008) Effects of ocean acidification on marine ecosystems. Mar Ecol Prog Ser 373:199−201.
47. Russell BD & Connell SD (2012) Origins and consequences of global and local stressors: incorporating climatic and non-climatic phenomena that buffer or accelerate ecological change. Mar Biol 1−7.
48. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds Solomon S, et al. (Cambridge University Press, Cambridge, UK).
49. Shirayama Y & Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110(C9):C09S08.
50. Shirayama Y & Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110(C9):C09S08.
51. Lavigne HG, Gattuso J-P (1997) Photosynthesis and calcification in the calcifying red alga Lithothamnion glaciale. Mar Ecol Prog Ser 147:797−922.
52. Gattuso J-P (2010) Seacarb: seawater carbonate chemistry with R. ornl.gov/oceans/- Available at: http://cdiac.ornl.gov/oceans/Handbook_2007.
53. Guidetti P & Mori M (2005) Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Astropecten rigida, against fish predators. Mar Biol 147:397−402.
54. Carnevali MDC, Bonasoro F, Melone G (1991) Microstructure and mechanical design in the lantern ossicles of the regular sea-urchin Paracentrotus lividus. A scanning electron microscope study. Ital J Zoolog 58(1):1−42.
55. Beadall J, Beer S, Raven J (1986) Biodiversity of marine plants in an era of climate change: some predictions based on physiological performance. Bot Marina 41(1−6):113−124.
56. Hurdl CD, Hepburn CD, Currie KJ, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental design. J Phycol 45:1236−1251.
57. Bolowitzka MA & Larkum A (1987) Calcification in algae: mechanisms and the role of metabolism. Crit Rev Plant Sci 6(1):1−45.
58. De Beer D & Larkum A (2001) Photosynthesis and calcification in the calcifying algae Halimeda discoides studied with microsensors. Plant Cell Environ 24(11):1209−1217.
59. Senais IS, Kangser J, Bjork M (2009) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coraline alga, Hydroolithon sp. (Rhodophyta). Estuar Coast Shelf Sci 84(5):337−341.
60. Cornwell CE, Hepburn CD, Pritchard D, Currie KJ, McGowan CM, et al. (2011) Convergent-use strategies in macroalgae: contrasting responses to lowered pH and implications for ocean acidification. J Phycol 48(1):157−164.
61. Buczkowski J, Riesenberg U, Form A (2011) Calcification of the Arctic coralline red alga Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 424:179−187.
62. Gao K, Araya A, Asada K, Ishihara T, Akano T, et al. (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3(4):355−362.
63. Oxygen et CO2 Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria imunaeus (Gigartnagiales, Rhodophyta) grown at different irradiance levels. Phycolgy 48(6):510−517.
64. Falkenberg L, Russell B and Connell S (2012) Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia: 1−9.
65. Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechus miliaris. Mar Pollut Bull. 54(1):89−96.
66. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275−284.
67. Levitan DR (1991) Skeletal changes in the test and jaws of the sea urchin Diadema antillarum in response to food limitation. Mar Biol 111:431−437.
68. Levitan DR, Hoey CP, Fogarty SD (2007) The risk of polypermyn in three congeneric sea urchins and its implications for gametic incompatibility and reproductive isolation. Evolution 61, 8−2007−2014.
69. Ebert TA (1986) Relative growth of sea urchin jaws: an example of plastic resource allocation. Bull Mar Sci 40:467−474.
70. Widdicombe S & Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? JEMBE 366:187−197.
71. Sala E (1997) Fish predators and scavengers of the sea urchin Strongylocentrotus purpuratus. Ecosystems 147:797−802.
72. Sarno A (1997) Fish predators and scavengers of the sea urchin Strongylocentrotus purpuratus. Ecosystems 147:797−802.
73. Bulleri F, Bertocci I, Micheli F (2002) Interplay of encrusting coralline algae and fish in the community structure of mediterranean rocky reef ecosystems across environmental and subtidal habitats. JEMBE 282(1−2):67−84.
74. Bulleri F, Tamburello L, Beneditti-Ceccchi I (2009) Loss of consumers alters the cumulative impacts in ecosystem-based management through ocean zoning. Oikos 118(2):269−279.
75. Maggi E, Bertocci I, Vaselli S, Beneditti-Ceccchi I (2011) Connell and Slatyer’s models of succession in the biodiversity era. Ecology 92(7):1399−1406.
76. Halpern BS, Wulff J, Slociloe KA, Kappel CV, Micheli F, et al. (2008) A global map of human impact on marine ecosystems. Science 319(5863):948−952.
77. Halpern BS, McLeod KL, Rosenberg AA, Crowder LB (2008) Managing for cumulative impacts in ecosystem-based management through ocean zoning. Oceans 2008. 14−219.
78. Sala E, Ballesteros E, Delbrumos P, Frenco A, Ferretti F, et al. (2012) The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. PLoS ONE 7(2):e32742.
79. Falkenberg L, Russell BD, Connell SD (2012) Stability of Strong Species Interactions under Ocean Acidification. PLoS ONE 7(3):e33084. doi:10.1371/journal.pone.0033084.