Systematic Review

Long-Term Safety of Prenatal and Neonatal Exposure to Paracetamol: A Systematic Review

Ram Patel 1, Katelyn Sushko 2, John van den Anker 3,4 and Samira Samiee-Zafarghandy 5,*

1 Department of Medical Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; rpat335@uwo.ca
2 Faculty of Health Sciences, School of Nursing, McMaster University, Hamilton, ON L8S 4K1, Canada; sushkok@mcmaster.ca
3 Division of Clinical Pharmacology, Department of Pediatrics, Children’s National Health System, Washington, DC 20010, USA; JVandena@childrensnational.org
4 Division of Pediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, 4056 Basel, Switzerland
5 Division of Neonatology, Department of Pediatrics, McMaster Children’s Hospital, McMaster University, Hamilton, ON L8S 4K1, Canada
* Correspondence: samiees@mcmaster.ca

Abstract: Introduction: Paracetamol is the most commonly used antipyretic and analgesic in pregnancy. It is also increasingly used off-label in the neonatal intensive care unit. Despite the frequent use of paracetamol, concerns have been raised regarding the high variability in neonatal dosing regimens and the long-term safety of early life exposure. Objective: To investigate the available evidence on the long-term safety of prenatal and neonatal paracetamol exposure. Methods: We conducted a systematic search of the electronic databases Ovid Medline, Ovid Embase and Web of Science from inception to August 2021 for original research studies of any design that described the use of paracetamol in the prenatal or neonatal (within the first four weeks of life) periods and examined the occurrence of neurodevelopmental, atopic or reproductive adverse outcomes at or beyond birth. Results: We identified 1313 unique articles and included 30 studies in the final review. Of all studies, 27 (90%), two (7%) and one (3%) were on the long-term safety of prenatal, neonatal and both prenatal and neonatal exposure, respectively. Thirteen (46%), 11 (39%) and four (15%) studies examined neurodevelopmental, atopic and reproductive outcomes. Eleven (100%), 11 (100%), and three (27%) studies on prenatal exposure reported adverse neurodevelopmental, atopic and reproductive outcomes. Only one study found a possible correlation between neonatal paracetamol exposure and long-term adverse outcomes. Conclusions: The available evidence, although limited, suggests a possible association between prenatal paracetamol exposure and an increased risk of neurodevelopmental, atopic and reproductive adverse outcomes. There is an immediate need for robust data on the long-term safety of paracetamol exposure in the prenatal and neonatal periods.

Keywords: paracetamol; acetaminophen; neurodevelopment; atopic disorders; reproductive disorders; neonatology; pharmacology

1. Introduction

Paracetamol, the most frequently used drug in pregnancy, is now one of the most common medications used off-label in the neonatal intensive care unit (NICU). Besides its antipyretic and analgesic properties, paracetamol promotes the closure of persistent patent ductus arteriosus (PDA) [1]. In 2010, paracetamol was the fifteenth most commonly used medication in NICUs in the United States. However, a recent study of European NICUs found that it is now the third most frequently administered drug, prescribed to over 65% of extremely preterm neonates [2].

Citation: Patel, R.; Sushko, K.; van den Anker, J.; Samiee-Zafarghandy, S. Long-Term Safety of Prenatal and Neonatal Exposure to Paracetamol: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2128. https://doi.org/10.3390/ijerph19042128

Academic Editor: Giuseppe La Torre
Received: 20 December 2021
Accepted: 28 January 2022
Published: 14 February 2022

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
The opioid-sparing effects of paracetamol and its comparable effectiveness to non-steroidal anti-inflammatory drugs (NSAIDs) in the closure of PDAs are the main drivers of its increasing use in the NICU [3–5]. Animal models have shown degenerative and necrotic changes in pulmonary, reproductive and nervous systems following exposure to paracetamol during the period of embryogenesis or organogenesis [6]. Over the past 20 years, growing human epidemiological data have also raised concern regarding early life exposure to paracetamol and an increased risk of neurodevelopmental, atopic and reproductive adverse outcomes [7]. Paracetamol’s analgesic and antipyretic effects are mediated through activation of descending serotonergic pathways, inhibition of prostaglandin synthesis and effects on cannabinoids receptors through its active metabolites [8–10]. The non-selective inhibition of peripheral cyclooxygenase and the interference with the cannabinoid receptors are among paracetamol’s mechanisms of action that could explain how such causal association could be biologically plausible [11]. We, therefore, aimed to conduct this review to systematically collate and assess the entirety of primary research on the long-term safety of prenatal and neonatal (within the first four weeks of life) exposure to paracetamol.

2. Materials and Methods

2.1. Protocol and Registration

The Joanna Briggs Institute Manual for Evidence Synthesis [12] and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [13] guided the conduct and reporting of this review, respectively. The protocol for this review was submitted for registration to the international database of prospectively registered systematic reviews (PROSPERO, registration ID CRD42020212364) and was published [14].

2.2. Search Strategy

We developed a systematic search strategy with a professional librarian and searched the electronic databases Ovid Medline (1946 to August 2021), Ovid Embase (1974 to August 2021) and Web of Science (1900 to August 2021) (Table 1). We hand-searched the bibliographies of included studies for additional references. Using Google Scholar, we also searched for articles not commercially published, such as conference abstracts, dissertations and policy documents. We did not apply any language or design limitations.

Table 1. Ovid Medline, Ovid Embase and Web of Science search strategies.
Database: Ovid Medline
1. Exp Infant, Newborn/
2. Intensive Care Units, Neonatal/
3. Neonate *.mp
4. Newborn *.mp
5. Baby.mp
6. Babies.mp
7. Premie.mp
8. Preemie.mp
9. NICU.mp
10. ((premature or preterm or pre-term or pre-mature or “small for gestational age” or postmature or term) adj infant or newborn).mp
11. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10
12. Acetaminophen/
13. Paracetamol.mp
14. Tylenol.mp
15. 12 or 13 or 14
16. Pregnancy/*
17. Prenatal Exposure Delayed Effects/
18. Abnormalities, Drug Induced/
19. ((pregnan* or prenatal or perinatal or antepartum or ante-partum or antenatal or ante-natal or fe?tus or fe?tal) adj exposure).mp
20. 16 or 17 or 18 or 19
21. 11 and 15 and 20

Database: Ovid Embase
1. Exp Newborn/
2. Neonatal Intensive Care Unit/
3. Neonate *.mp
4. Newborn *.mp
5. Baby.mp
6. Babies.mp
7. Premie.mp
8. Preemie.mp
9. NICU.mp
10. ((premature or preterm or pre-term or pre-mature or “small for gestational age” or postmature or term) adj infant or newborn).mp
11. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10
12. Acetaminophen.mp
13. Paracetamol/
14. Tylenol.mp
15. 12 or 13 or 14
16. Pregnancy/
17. Prenatal Exposure/
18. Drug Induced Malformation/
19. ((pregnan* or prenatal or perinatal or antepartum or ante-partum or antenatal or ante-natal or fe?tus or fe?tal) adj exposure).mp
20. 16 or 17 or 18 or 19
21. 11 and 15 and 20

Database: Web of Science
1. TS = (newborn * or neonat * or “baby” or “babies” or pre$mie* or “NICU”)
2. TS = (“acetaminophen” or “paracetamol” or “tylenol”)
3. TS = (pregnan* or “prenatal” or “perinatal” or ante$partum or ante$natal or fe$tus or fe$tal)
4. #1 and #2 and #3

2.3. Eligibility Criteria

We included original research studies of any design that described the use of paracetamol in the prenatal or neonatal (within the first four weeks of life) periods and examined the occurrence of neurodevelopmental, atopic or reproductive adverse outcomes. Studies were eligible for inclusion irrespective of the indication, dose, administration frequency and duration of paracetamol treatment. In the studies with a control group, we used the provided intervention(s), placebo or standard practice as the comparator. In studies with no comparator group, we collected the observational report of the long-term safety of paracetamol during the study period. Neurodevelopmental, atopic and reproductive adverse outcomes were any neurodevelopmental, atopic or reproductive disorders described by the authors of the primary studies, respectively. We excluded animal studies and duplicate studies.
2.4. Study Selection Process and Data Extraction

Following the database searches, using Covidence as the primary screening and data extraction tool, two reviewers (K.S. and R.P.) screened all articles independently at the title and abstract level. The same reviewers then assessed all full-text articles for eligibility. After identifying the studies to be included in the final review, the same reviewers extracted the data independently, using a prespecified standardized data extraction form [10]. We resolved any discrepancies in the study selection and data extraction processes through discussion with a third reviewer (S.S.Z).

2.5. Risk of Bias Assessment and Assessment of Evidence Certainty

Two reviewers (K.S and R.P) performed a qualitative assessment of the included studies, using standardized risk-of-bias assessment tools appropriate for each study design. These included the Newcastle–Ottawa Quality Assessment Scale for Cohort Studies [15], the modified tool for assessing the Quality of Modern Cross-Sectional Ecologic Studies [16–18] and the Cochrane Collaboration Risk of Bias 2 (RoB 2) tool for randomized controlled trials (RCTs) [19]. The same reviewers used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach [20] to rate the certainty of the evidence, with adaptations by Murad et al. [21] to account for the absence of a single effect estimate. Any discrepancies were resolved through discussion with a third reviewer (S.S.Z.).

2.6. Synthesis Methods

We did not conduct a quantitative synthesis, due to the considerable heterogeneity of the included studies, methodologically, statistically and clinically. We performed a narrative synthesis of the study results based on the timing of exposure (prenatal or neonatal) and the primary outcome of interest (neurodevelopmental, atopic or reproductive adverse outcomes).

3. Results

We identified a total of 1552 articles. After removing duplicates, we screened 1313 studies at the title and abstract level and 97 at the full-text level. Title- and abstract-screening assessed the following: is the study about prenatal or neonatal exposure to paracetamol? Full-text screening assessed the following: does the study examine neurodevelopmental, atopic or reproductive outcomes? We included 30 studies in the final review (Figure 1) [22–51].

Figure 1. PRISMA flow diagram of the study’s selection process.
3.1. Characteristics of Included Studies

Of the 30 included studies, 13 (43%) were published within the last five years [24–27,29,31,34,36,37,45,47,50,51] and 21 (70%) within the last ten years [12–27,29,33–37,39,42–46,48,50,51]. Studies on the long-term safety of prenatal exposure to paracetamol comprised the majority of the included studies (n = 27, 90%) [23–49], with two studies reporting on the long-term safety of neonatal exposure to paracetamol (7%) [50,51] and one (3%) reporting on both timings of exposure [22]. Observational epidemiologic and cohort studies were the most common study designs (27, 90%) [23-49]. The study by Persky et al. was an RCT that randomized pregnant women to receive health education alone or health education plus education on reducing household asthma triggers. Education on paracetamol as a risk factor for the development of asthma was not discussed, and the authors collected maternal self-report of medication use in pregnancy and compared the occurrence of respiratory endpoints at one year of life among children of women who used and who did not use paracetamol during pregnancy [40]. As maternal paracetamol use was not randomized, we treated this study as an observational cohort for the purpose of our review. Two RCTs (7%) were included in the review [50,51]. The remaining study (3%) used an ecologic design [22] (Tables 2 and 3; Supplementary Tables S1 and S2).
Table 2. Characteristics of included studies on the long-term safety of prenatal paracetamol exposure.

Study	Design	Aim	Population	Sample Size	Age* (years)	Exposure Time (WGA)	Dose (mg/kg) and Interval	Duration	Cumulative Dose	Outcomes	Assessment Time (Years)	Conclusion	
Bauer 2013 [22]	Ecologic	Relationship of population weighted average of ASD and paracetamol use	N/R	N/R	N/R	N/R	N/R	ASD	N/R			Biologic plausibility along with clinical evidence is linking paracetamol to ASD and abnormal NDV	
Stergiouki 2016 [23]	PC	Association between behavioral problems and paracetamol use	Cases	≤18: 29.1 ≤18	N/R	N/R	N/R						Children with prenatal exposure to paracetamol have ↑ risk of behavior difficulties that are not explained by behavior or social factors linked to paracetamol use
Andersen 2012 [35]	PC	Risk of asthma and paracetamol exposure	Cases	976	N/R	30 days before the 1st day of LMP	Paracetamol	Asthma				Robust association between maternal prenatal paracetamol exposure and the risk of asthma in offspring	
Bertoldi 2019 [24]	PC	Risk of NDV adverse outcomes with paracetamol exposure	Cases	196,084	N/R	Delivery	N/R	N/R	N/R	Other pharmacotherapy			
Association between cord plasma biomarkers of paracetamol exposure and risk of ADHD and ASD

Study	Year	Cohorts	Cases with maternal cord paracetamol burden	Control	Results
Ji 2020 [26]	2020	Viva, Pelotas	T1/T2: 361, T1 and T2: 692, Pelotas T1/T2: 1620	T1/T2: 2198, T1 and T2: 1274	Other Pharmacotherapy
			T1/T2: 274, T1 and T2: 582, Pelotas T1/T2: 2544	T1/T2: 2198, T1 and T2: 1274	N/R
			T1/T2: 274, T1 and T2: 582, Pelotas T1/T2: 2544	T1/T2: 2198, T1 and T2: 1274	N/R

Paracetamol exposure and prevalence of wheezing, modified by maternal asthma

Study	Year	Cohorts	Cases with asthma and exposure	Control	Results
Garcia-Marcos, 2009 [36]	2009	Viva, Pelotas	T3: 332	T3: 332	Other Pharmacotherapy
			T1: 332	T1: 332	N/R
			T2: 332	T2: 332	N/R

Other pharmacotherapy

- N/R: Not reported
- PC: Paracetamol
- ADHD, ASD: Attention Deficit Hyperactivity Disorder, Autism Spectrum Disorder
- Wheezing
- Paracetamol
- N/R: Not reported
- 0–21: 0 to 21 years old
- The frequent usage of paracetamol during pregnancy is associated with an increased risk of ADHD and ASD.
| Study (Year) | Paracetamol exposure and childhood behavioral and cognitive outcomes | Cases | Controls | Cognitive and behavior outcomes | | | | |
|---|---|---|---|---|---|---|---|---|
| Golding 2020 [27] | Paracetamol exposure and childhood behavioral and cognitive outcomes | Cases: Mother-child pairs with paracetamol exposure: 5279 | Controls: Mother-child pairs without paracetamol exposure: 6,746 | N/R 18-32 | N/R N/R N/R | Paracetamol | Cognitive and behavior outcomes | 0.5-17 |
| Ji 2018 [25] | Paracetamol exposure and ADHD in offspring | Cases: Mother-child pairs with maternal paracetamol biomarkers of ADHD | Above median: 668 | Below median: 215 N/R | N/R N/R N/R | ADHD, ASD and other DDs | 7 |
| Bakkeheim | Paracetamol exposure in pregnancy was associated with allergic | Cases: T1: 31 N/R T1 and T2 | Paracetamol | Primary: current asthma, 10 | Other pharmacotherapy | Paracetamol | Paracetamol exposure in pregnancy was associated with allergic | 10 |
| Study | Year | Study Design | Population | Exposure | Outcome Measures | Findings |
|-------|------|--------------|------------|-----------|------------------|----------|
| Piler 2018 | [37] | Case-control | Mother-child pairs with exposure to paracetamol and aspirin | Paracetamol and aspirin exposure | | The combination of prenatal and postnatal paracetamol exposure leads to higher risk of asthma development |
| Shaheen 2002 | [49] | Case-control | Mother-child pairs with paracetamol exposure | | | Frequent use of paracetamol in late pregnancy may ↑ the risk of wheezing in the offspring |
| | 2011 | [44] | Association between paracetamol exposure and asthma in offspring | | | |
| Study | Year | Design | Control Group Characteristics | Exposure Groups | Outcome | Notes |
|-------|------|--------|-------------------------------|-----------------|---------|-------|
| Ernst 2019 | [45] | LC | Association between paracetamol exposure and timing of pubertal development | (1) without paracetamol exposure (2) with prenatal aspirin exposure | Cases: 8606 30.6 (4.4) 13-24 Paracetamol Controls: 30.7 (4.4) N/R | N/R N/R N/R Pubertal development 11.5 and q 6 ms until full sexual maturation or 18 yr. Prenatal paracetamol use may have long-term effects on female offspring pubertal development |
| Jedrychowski 2011 | [39] | PC | Association between low exposure to paracetamol and eczema in early childhood and interaction with exposure to pollutants | Cases: T1: 40 2-40 2-6 T2: 73 2-73 | N/R N/R N/R | 0.3-2 > q 3 ms |
| Vlenterie 2016 | [28] | PSM Cohort | Association between NDV impairment with exposure to paracetamol | Cases: 20,749 594 30-34 805 33-35 345 | N/R N/R N/R | 1.5 Long-term prenatal exposure to paracetamol associated with ↑ risk of motor milestone delay and impaired communication |

N/R: Not recorded
Study	Year	Study Design	Outcome	Prenatal Paracetamol Exposure Duration	AGD, Penile Length, Testicular Descent Distance, Cryptorchidism	Other Pharmacotherapy	Relationship with Male Infant Genital Development
Fisher 2016	PC	Association between analgesic exposure and AGD in offspring	No analgesic exposure:	T1: 25.8	Paracetamol	N/A	The negative association between prenatal analgesic exposure and AGD in male offspring suggests disruption of androgen action
Lind 2017	[47]	Association between paracetamol exposure and wheezing and allergic symptoms	Early pregnancy:	T1: 16–27	Paracetamol	N/A	Paracetamol use in middle to late but not early pregnancy may be related to respiratory symptoms
Persky 2008	Cohort **	Association between paracetamol exposure and wheezing and allergic symptoms	(1) early pregnancy	T2: 28–36	Paracetamol	N/A	Prenatal paracetamol exposure during 8–14 weeks of gestation associated with shorter AGD

- Mother–child pairs without paracetamol exposure:
 - 25–29: 10,183
 - 20–34: 11,873
 - >35: 5329

Cases	Paracetamol exposure only:	N/R	N/R	N/R
Male:	AGD, penile length, testicular descent distance, cryptorchidism	N/R	N/R	N/R
Female: AGD				
Study	PC	Analysis	Child Outcome	Calculated Risk
-------	----	----------	---------------	-----------------
Petersen 2018 [34]	PC	Association between exposure to paracetamol, aspirin or ibuprofen and risk of CP in offspring	Overall CP, unilateral spastic CP	1 to 6
			Paracetamol	Children with T2 paracetamol exposure have ↑ risk of unilateral spastic CP
			N/R	N/R
Rebordosa 2018[41]	PC	Association between paracetamol exposure and asthma/wheezezeing	Asthma/bronchitis; wheezing; hospitalization for asthma	1.5 or 7
			Paracetamol	Prenatal paracetamol exposure has moderate associations with asthma
			N/R	N/R

Cases	Cases	18 month cohort:	Other pharmacotherapy
Mother-child pairs with paracetamol exposure	18 month cohort:	<24:	5525
		25–29:	25,601
		30–35:	25,076
		≥36:	10,147
	7 year cohort:	9546	

Controls	Other pharmacotherapy	
Mother-child pairs with paracetamol exposure	1059	
	25–29:	4732
	30–35:	5041
	≥36:	1864

Mother-child pairs with aspirin exposure	9
(1) exposure to aspirin	N/R
(2) exposure to ibuprofen	N/R

Mother-child pairs with paracetamol exposure	91,015	
	24:	19,318
	25–29:	66,037
	30–34:	70,268
	≥35:	29,994

N/R	N/R	N/R	N/R								
Aspirin: 9	Ibuprofen: 11	Total cohort	N/R	N/R	N/R	N/R	Paracetamol	N/R	N/R	N/R	N/R

| Overall CP, unilateral spastic CP | 1 to 6 |
| Children with T2 paracetamol exposure have ↑ risk of unilateral spastic CP | 1.5 or 7 |
| Prenatal paracetamol exposure has moderate associations with asthma |
Study	Year	Design	Case Definition	Control Definition	Case Strata	Control Strata	Findings
Ystrom	2017	Case-control	Mother–child pairs with prenatal paracetamol exposure	Controls	6 months before pregnancy	Paracetamol	Association between prenatal paracetamol exposure and ADHD in offspring
Liew	2016	Case-control	Mother–child pairs with prenatal paracetamol exposure	Controls	13–16	Other pharmacotherapy	Association between paracetamol exposure and behavior problems/HKDs in offspring
Rifas-Shiman	2020	Case-control	Mother–child pairs with prenatal paracetamol exposure	Controls	1491	Paracetamol	Association between paracetamol and ibuprofen exposure and executive function/behavior problems in offspring
Streissguth	1987	Case-control	Mother–child pairs with paracetamol exposure	Controls	1529	Paracetamol	Association between paracetamol/ aspirin exposure and IQ/atention in offspring
Follow-up at 4 years: 421

Controls
- Mother–child pairs (1) without paracetamol exposure
- (2) with aspirin exposure

Cases
- Mother–child pairs with paracetamol exposure
 - Cases
 - (437) 49.8

Other pharmacotherapy
- N/R N/R N/R

Association between paracetamol use and ADHD in offspring

Thompson 2014 [33]

PC	Association between paracetamol use and ADHD in offspring		
	Mother–child pairs (1) without paracetamol exposure		
	(2) with exposure to other drugs		
Controls	Anti-inflammatory drugs:		
11	-1.3	N/R	N/R
Aspirin:	46	(5.3)	
Antacid:	151	-17.4	
Antibiotics:	204	-23.5	
Cases	Assessed at 3 years:		
<25: 1432	≤18		
(20.1)			
25–29: 4927	≤30		
(27.8)			
30–34: 5876	≤6 months postpartum		
(27.8)			
≥35: 2606	Paracetamol		
(27.3)			

Association between paracetamol exposure and asthma in offspring

Magnus 2016 [42]

PC	Association between paracetamol exposure and asthma in offspring
	Mother–child pairs without prenatal paracetamol exposure
Controls	Assessed at 7 years:
<25: 1712	Asthma
(36.0)	3 and 7 years
25–29: 6522	Independently associated with asthma-related outcomes
(36.8)	
30–34: 7820	Other pharmacotherapy
(37.0)	
≥35: 3857	N/R
(40.4)	
Table 3. Characteristics of included studies on the long-term safety of neonatal paracetamol exposure.

Study	Design	Aim	Population	Sample Size	GA(weeks)	BW (kg)	PNA at Exposure	Dose (mg/kg) and Interval	Duration	Cumulative Dose	Outcomes	Assessment Time (years)	Conclusion
Sordillo 2015	PC	Association between antipyretic exposure and asthma in offspring	Cases	992	32.2	-5.2	Paracetamol	Wheeze, asthma, allergen sensitization				3–5, 7–10	Adjustment for respiratory infections in early life substantially diminished associations between infant antipyretics and early childhood asthma
		Controls	Controls	430			Without paracetamol exposure:						
		Mother–child pairs with paracetamol exposure (1) without paracetamol exposure	Cases	247	29.96	-5.24	Paracetamol	Periconception;				<14 WGA; 14–22 WGA; 20–32 WGA	Prenatal exposure to paracetamol increases risk of cryptorchidism in offspring
		Mother–child pairs with paracetamol exposure (2) with ibuprofen exposure	Cases	2388			Paracetamol						
		Cases											
Sjölander, 2011	PC	Association between analgesic exposure and cryptorchidism/hypospadias	Controls	NSAID: 414 (13)			Other analgesic (2)	Cryptorchidism, hypospadias	2.5			N/R	Maternal antioxidant gene polymorphisms may modify the relation between prenatal acetaminophen exposure and childhood asthma
		Mother–child pairs with (1) No prenatal analgesic exposure	Cases	27.2	<18–20		Paracetamol	Wheezing, asthma, eczema, hay fever; lung function atopy	7, 7.5 and 8.5				
		(2) NSAID exposure			20–32								
		(3) other analgesics exposure											
Shaeen 2010	LC	Association of paracetamol exposure and antioxidant genotypes on childhood asthma	Cases	13,988	-5		Paracetamol	N/R					
		Controls											

* Maternal age. ** Treated as an observational cohort study. Note: Mean (SD), Median (IQR); ↑, increased; ↓, decreased; <, less than; >, greater than; ≤, less than or equal to; ≥, greater than or equal to; ADHD, attention deficit hyperactivity disorder; AGD, anogenital distance; ASD, autism spectrum disorder; CP, cerebral palsy; DD, developmental disorder; FeNO, fractional exhaled nitric oxide; HKD, hyperkinetic disorder; IQ, intelligence quotient; LC, longitudinal cohort; LMP, last menstrual period; N/R, not reported; PC, prospective cohort; PSM, propensity score matching; T1, trimester 1; T2, trimester 2; T3, trimester 3; WGA, weeks gestational age.
Ecologic Study

Bauer, 2013 [22]

Research Question: Paracetamol use in early childhood and ASD

Country/Locate	Study Design	Primary Outcomes	ASD	Other Pharmacotherapy
9 countries with data on circumcision and ASD after 1995	N/R	N/R	N/R	N/R
12 countries with data on circumcision and ASD before 1995	N/R	N/R	N/R	N/R

Case-Control Study

Oncel 2017 [50]

Study Design: RCT Follow-Up

Research Question: The effects of paracetamol vs. ibuprofen on NDV outcomes

Cases	Controls	Paracetamol	Other Pharmacotherapy
Preterm infants with PDA on oral paracetamol	30	28 (1.7)	0.99 (0.21)
Preterm infants with PDA on placebo	31	27.6 (1.9)	0.98 (0.18)

Case-Control Study

Juujarvi, 2021 [51]

Study Design: RCT Follow-Up

Research Question: The effects of IV paracetamol and NDV outcome

Cases	Controls	Paracetamol	Other Pharmacotherapy
Preterm infants with PDA on IV paracetamol	23	23 + 5 to 31	1.22 (0.43)
Preterm infants with PDA on IV placebo	21	23 + 5 to 31	1.12 (0.34)

Paracetamol (mg/kg): N/R

NDV outcomes: No evidence for significant difference in NDV outcomes for paracetamol vs. ibuprofen

NDV outcomes; hearing and vision: 1.5–2

NDV: 2

Long-term adverse reactions of IV paracetamol: N/R

ASD, autism spectrum disorder; BW, birthweight; GA, gestational age; GDMS, Griffiths mental development scales; IV, intravenous; Mean (SD); N/A, not applicable; NDV, neurodevelopmental; N/R, not reported; PDA, patent ductus arteriosus; PNA, postnatal age; RCT, randomized controlled trial; Vs, versus.
3.2. Prenatal Exposure

For the studies that reported the long-term safety of prenatal paracetamol exposure, 13 (46%) [22–34], 11 (39%) [35–44,49] and four (15%) [45–48] focused on neurodevelopmental, atopic and reproductive adverse outcomes, respectively.

3.2.1. Neurodevelopmental Adverse Outcomes

Of the 13 studies that examined the occurrence of neurodevelopmental adverse outcomes, 12 (92%) were observational cohort studies [23–34]. The other study (8%) used an ecologic design [22]. Of the 12 cohort studies, 10 used self-reported questionnaires [23,24,27–34] and two used umbilical cord and maternal plasma biomarkers [25,26] to assess prenatal exposure to paracetamol. Behavioral, performance, intelligence, executive and psychomotor function problems, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and cerebral palsy (CP) were the neurodevelopmental outcomes assessed. Impaired neurodevelopment was reported in 11 studies, with specific reports of increased conduct problems (relative risk (RR) 1.35, 95% confidence interval (CI) 1.13–1.6), ADHD (odds ratio (OR) 1.88, 95% CI 1.18–3.00 and RR 1.13, 95% CI 1.01–1.27), hyperactivity symptoms (RR 1.22, 95% CI 1.04–1.43), motor milestone delays (OR 1.35, 95% CI 1.07–1.70) and hyperkinetic disorders (OR 1.37, 95% CI 1.19–1.59) among children with prenatal paracetamol exposure [23–30,32–34].

The ecologic study investigated the risk of prenatal paracetamol exposure and ASD using the national statistics on maternal use of paracetamol and the occurrence of ASD in nine countries. This study showed that each country’s average prenatal paracetamol use correlated with its ASD prevalence (r = 0.80, 95% CI 0.22–0.47) [22].

3.2.2. Atopic Adverse Outcomes

Eleven studies investigated prenatal exposure to paracetamol and the risk of atopic adverse outcomes, using observational cohort (n = 10, 91%) [35,37–44,49] or epidemiologic (n = 1, 9%) [36] designs. The associations between paracetamol exposure and the occurrence of atopic adverse outcomes were identified via self-report (questionnaires, n = 8, 73% [36–38,40–43,49], interviews, n = 2, 18% [39,44]) and prescription records (n = 1, 9%) [35]. The study by Sordillo et al. also used serum levels of IgE as a marker of atopic adverse outcomes [43]. All studies (n = 11, 100%) reported an independent association between prenatal exposure to paracetamol and the risk of atopic adverse outcomes in childhood [35–44,49].

3.2.3. Reproductive Adverse Outcomes

Four cohort studies investigated prenatal exposure to paracetamol and the risk of reproductive adverse outcomes [45–48]. All studies used maternal self-administered questionnaires to identify the trimester-based exposure to paracetamol. The occurrence of reproductive adverse outcomes was assessed via physical examination (n = 3, 75%) [46–48] and parent or child self-report (n = 1, 25%) [45]. Anogenital distance (AGD) (n = 2, 50%) [46,47], hypospadias or cryptorchidism (n = 1, 25%) [48] and the timing of pubertal development (n = 1, 25%) [45] were the target outcome variables. Three studies (75%) found a strong relationship between prenatal exposure to paracetamol and the development of reproductive adverse outcomes [45,46,48]. One of the two cohort studies that examined the association between prenatal analgesic exposure and AGD in offspring did not find a significant association between prenatal paracetamol exposure alone and the risk of shorter AGD at three months of age. However, the combined exposure to paracetamol and NSAIDs was significantly associated with reduced AGD at three months of age (AGD –4.1 mm; 95% CI 6.4–1.7) [47].
3.3. Neonatal Outcomes

Three studies examined long-term safety outcomes among neonates exposed to paracetamol [22,50,51]. Two studies (67%) focused on neurodevelopmental adverse outcomes only [22,51]. The other study (33%) examined neurodevelopmental and atopic adverse outcomes [51].

Neurodevelopmental and Atopic Adverse Outcomes

The first study used an ecologic design to investigate the country-level association between the rate of circumcision as an index of early life exposure to paracetamol and the rate of ASD. A strong correlation ($r = 0.98$) was found between circumcision and rate of autism for countries with data after 1995 [22]. The second study was a follow-up of an RCT that examined neurodevelopmental outcomes among neonates who received paracetamol or ibuprofen for PDA closure at 25 to 30 weeks’ gestation. There were no significant differences in neurodevelopmental impairment according to the Bayley Scales of Infant Development the Mental Developmental Index or the Psychomotor Developmental Index at 18 and 24 months of age [50]. The third study that focused on neurodevelopmental and atopic adverse outcomes was an RCT that examined paracetamol compared to a placebo for PDA closure in neonates 23 to 31 weeks’ gestation. There was no significant difference in neurodevelopmental or atopic outcomes between the two groups at two and five years of age [51].

3.4. Risk-of-Bias Assessment and Assessment of Evidence Certainty

3.4.1. Risk-of-Bias Assessment

The risk of bias of the included observational epidemiologic and cohort studies [19–45] was assessed using the Newcastle–Ottawa Quality Assessment Scale for Cohort Studies [15]. All but three of the included observational studies received a rating between seven and nine, indicating a low risk of bias (Supplementary Table S3).

We used the RoB 2 tool [19] to determine the risk of bias of the included RCTs [46,47]. We rated the risk of bias of the included RCTs as low and with some concerns (Supplementary Figure S1).

To assess the quality of the ecologic study by Bauer et al. [18], we used the modified tool for assessing the Quality of Modern Cross-Sectional Ecologic Studies [16–18] (Supplementary Table S4). The study received a rating of 17, indicating high study quality.

3.4.2. Assessment of Evidence Certainty

We rated the certainty of the evidence on the long-term safety of prenatal paracetamol exposure as low. This was due to the observational design of the included studies and serious imprecision and inconsistency (Supplementary Tables S5 and S6).

We rated the certainty of the evidence on the long-term safety of neonatal paracetamol exposure as moderate. This was due to very serious imprecision and serious inconsistency of the included studies (Supplementary Tables S7 and S8).

4. Discussion

4.1. Summary of Findings

The results of the current systematic review suggest that prenatal exposure to paracetamol is associated with an increased risk of neurodevelopmental, atopic and reproductive adverse outcomes, independent of the timing and cumulative dosing of exposure. The ecologic study that examined the association between neonatal paracetamol exposure and neurodevelopmental adverse outcomes also demonstrated a correlation between neonatal exposure to paracetamol and neurodevelopmental adverse outcomes. However, neither of the two available RCTs on neonatal exposure to paracetamol showed an increased risk of neurodevelopmental or atopic adverse outcomes. Although two of the three available
4.2. Comparison with Other Research

Studies on transplacental transfer of paracetamol have shown that paracetamol crosses the placental barrier rapidly via passive diffusion with significantly faster maternal-to-fetal than fetal-to-maternal transfer, transferring up to 50% of the original dose [52]. Besides the free cross through the placenta, maternal use of paracetamol has also been shown to be associated with placental CpG methylation [53]. Several studies have linked adverse placental growth and function and poor fetal and long-term health outcomes to placental DNA methylation [54–56]. Although paracetamol is mainly metabolized in the liver, evidence has shown that a small amount of para-aminophenol produced from paracetamol metabolism combines with arachidonic acid to produce N-arachidonoylaminophenol (AM404) [57]. AM404 is an indirect agonist at the cannabinoid receptors and has a disruptive effect on the normal function of the endocannabinoid system, an identified factor in the pathophysiology of neurodevelopmental disorders [8]. The endocannabinoid system has an important role in regulating early brain development through neuronal migration and proliferation of progenitor cells [58]. Exposure to paracetamol in the early stages of brain development could interfere with variable neuroprotein dynamics in different areas of the brain, such as the hippocampus and cerebral cortex, causing variable degrees of impairment in neurodevelopmental pathways and long-term neurodevelopment [9,59].

Paracetamol use is also associated with decreased glutathione levels, resulting in increased oxidant-induced inflammation and enhancement of T-helper type-2 pathways. This could be the biological basis for a link between paracetamol and atopic adverse outcomes [10]. The available evidence also points toward paracetamol causing a perturbation in the hormonal process, such as steroidogenesis and depletion of sulfated sex hormones [60], providing the biological plausibility for the potential alteration in the development of the fetal reproductive system that is associated with paracetamol exposure.

Paracetamol is a drug with multidirectional mechanisms of action consisting of inhibition of cyclooxygenases, involvement in the endocannabinoid system, serotonergic pathways, potassium and calcium channels and ultimately L-arginine in the nitric oxide synthesis pathway [9]. All of these mechanisms have key roles in hemostatic function of several regulatory systems. This raises remarkable controversy over the use of paracetamol during critical periods of organogenesis.

4.3. Strengths and Limitations

Our systematic review aimed to examine the available research on prenatal and neonatal paracetamol exposure and long-term safety outcomes. Although we collected a considerable amount of evidence on prenatal exposure, most studies used observational designs. Thus, these studies are vulnerable to the limitations of observational data, including the inability to establish cause–effect relationships. In addition, although two of the studies that focused on neonatal exposure were RCTs, the conclusions that could be drawn from their results were limited, due to the studies’ small sample sizes.

In our review protocol, we indicated that we intended to collect data on neonatal pharmacokinetics (PK) and pharmacodynamics (PD). We also planned to evaluate the short-term adverse events associated with neonatal paracetamol exposure [14]. As the included studies did not report on PK, PD or short-term adverse events, we were unable to synthesize data on these secondary outcomes.
5. Conclusions

The available evidence suggests a possible association between prenatal exposure to paracetamol and an increased risk of neurodevelopmental, atopic and reproductive adverse outcomes. This is supported by the current knowledge of paracetamol’s mechanism of action and biologic plausibility. However, the evidence is limited to observational studies and prone to biases, such as confounding by indication. Our review did not find an association between neonatal exposure to paracetamol and neurodevelopmental, atopic or reproductive adverse outcomes. However, the lack of quantity of the available evidence limits our conclusions. Considering the recent increase in early life exposure to paracetamol and the possible risk of long-term adverse outcomes, as shown in this review, there is an immediate need for robust data from using more rigorous methodologies. Until further data are available, the currently existing information needs to be investigated by the safety advisory committees of drug-regulatory agencies so that timely and appropriate labeling updates can be made and accessed by consumers and healthcare providers.

Supplementary Materials: The following supporting information can be downloaded at. www.mdpi.com/article/10.3390/ijerph19042128/s1. Table S1: Characteristics of included studies on the long-term safety of prenatal paracetamol exposure. Table S2: Characteristics of included studies on the long-term safety of neonatal paracetamol exposure. Table S3: Risk-of-bias assessment of the included observational studies using the NOS. Table S4: Risk-of-bias assessment of the included ecologic study, using the modified tool for assessing the Quality of Modern Cross-Sectional Ecologic Studies. Table S5: Certainty of the evidence on the long-term safety of prenatal paracetamol exposure. Table S6: Summary of findings on the long-term safety of prenatal paracetamol exposure. Table S7: Certainty of the evidence on the long-term safety of neonatal paracetamol exposure. Table S8: Summary of findings on the long-term safety of neonatal paracetamol exposure. Figure S1: Risk-of-bias assessment summary—review of authors’ judgements about each risk-of-bias Item in RoB 2 for the included randomized controlled trials.

Author Contributions: Conceptualization, S.S.-Z. and J.v.d.A.; methodology, S.S.-Z.; data curation, R.P. and K.S.; writing—original draft preparation, R.P.; writing—review and editing, K.S., S.S.-Z. and J.v.d.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Laura Banfield, the librarian at McMaster University Health Sciences Library, for her consultation in the development of our search strategies.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schilling, A.; Corey, R.; Leonard, M.; Eghtesad, B. Acetaminophen: Old drug, new warnings. Cleavel. Clin. J. Med. 2010, 77, 19–27, doi:10.3949/ccjm.77a.09084.
2. Wright, C.J. Acetaminophen and the Developing Lung: Could There Be Lifelong Consequences? J. Pediatr. 2021, 235, 264–276.e1, doi:101016/j.jpeds.2021.02.026.
3. Allegaert, K. A Critical Review on the Relevance of Paracetamol for Procedural Pain Management in Neonates. Front. Pediatr. 2020, 8, 89, doi:10.3389/fped.2020.00089.
4. van den Bosch, G.E.; Dijk, M.V.; Tibboel, D.; de Graaff, J.C. Long-term Effects of Early Exposure to Stress, Pain, Opioids and Anaesthetics on Pain Sensitivity and Neurocognition. Curr. Pharm. Des. 2017, 23, 5879–5886, doi:102174/1381612823666170926180259.
5. Mitra, S.; Flores, I.D.; Tamayo, M.E.; Mbuagbaw, L.; Vanniyasingam, T.; Veroniki, A.A.; Zea, A.M.; Zhang, Y.; Sadeghirad, B.; Thabane, L. Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen with Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-analysis. JAMA 2018, 319, 1221–1238, doi:101001/jama.2018.1896.
6. van den Anker, J.N.; Allegaert, K. Acetaminophen in the Neonatal Intensive Care Unit: Shotgun Approach or Silver Bullet. J. Pediatr. 2018, 198, 10–11, doi:101016/j.jpeds.2018.02.046.
7. Bardanzellu, F.; Neroni, P.; Dessi, A.; Fanos, V. Paracetamol in Patent Ductus Arteriosus Treatment: Efficacious and Safe? *Biomed. Res. Int.* **2017**, *2017*, 1438038, doi:10.1155/2017/1438038.

8. Saliba, S.W.; Marcotegui, A.R.; Fortwängler, E.; Ditrich, J.; Perazzo, J.C.; Muñoz, E.; de Oliveira, A.C.P.; Fiebich, B.L. AM404, paracetamol metabolite, prevents prostaglandin synthesis in activated microglia by inhibiting COX activity. *J. Neuroinflammation* **2017**, *14*, 246, doi:10.1186/s12974-017-1014-3.

9. Przybyla, G.W.; Szychowski, K.A.; Gmiński, J. Paracetamol—An old drug with new mechanisms of action. *Clin. Exp. Pharmacol. Physiol.* **2020**, ahead of print, doi:10.1111/1440–1681.13392.

10. Farquhar, H.; Stewart, A.; Mitchell, E.; Crane, J.; Evers, S.; Weatherall, M.; Beasley, R. The role of paracetamol in the pathogenesis of asthma. *Clin. Exp. Allergy* **2010**, *40*, 32–41, doi:10.1111/j.1365–2222.2009.03378.x.

11. Allegaert, K.; Van Den Anker, J. How to translate neuro-cognitive and behavioural outcome data in animals exposed to paracetamol to the human perinatal setting? *Arch. Med. Sci.* **2020**, 1–13, doi:10.5114/ams.2020.100715.

12. Aromataris, E.; Munn, Z. JBI Manual for Evidence Synthesis. 2020. Available online: https://synthesismanual.jbi.global (accessed on 31 October 2021).

13. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies that Evaluate Healthcare Interventions: Explanation and Elaboration. *BMJ* **2009**, *339*, b2700, doi:10.1136/bmj.b2700.

14. Samiee-Zafarghandy, S.; Sushko, K.; Van Den Anker, J. Long-Term Safety of Prenatal and Neonatal Exposure to Paracetamol: A Protocol for a Systematic Review. *BMJ Paediatr. Open* **2020**, *4*, e000907, doi:10.1136/bmjpo-2020–000907.

15. Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2013. Available online: www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 31 October 2021).

16. Dufault, B.; Klar, N. The quality of modern cross-sectional ecologic studies: A bibliometric review. *Am. J. Epidemiol.* **2011**, *174*, 1101–1107, doi:10.1093/aje/kwr241.

17. Betran, A.P.; Torloni, M.R.; Zhang, J.; Ye, J.; Mikolajczyk, R.; Deneux-Tharaux, C.; Oladapo, O.T.; Souza, J.P.; Tunçalp, Ö.; Vogel, J.P.; Gülmezoglu, A.M. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. *Reprod. Health* **2015**, *12*, 57, doi:10.1186/s12978–015–0043-6.

18. Cortes-Ramírez, J.; Naish, S.; Sly, P.D.; Jagals, P. Mortality and morbidity in populations in the vicinity of coal mining: A systematic review. *BMJ Public Health* **2018**, *18*, 721, doi:10.1111/bshj.12889–018–5055–7.

19. Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. *BMJ* **2019**, *366*, 14898, doi:10.1136/bmj.14898.

20. Granholm, A.; Alhazzani, W.; Moiler, M.H. Use of the GRADE approach in systematic reviews and guidelines. *Br. J. Anaesth.* **2019**, *123*, 554–559, doi:10.1016/j.bja.2019.08.015.

21. Murad, M.H.; Mustafa, R.A.; Schünemann, H.J.; Sultan, S.; Santesso, N. Rating the certainty in evidence in the absence of a single estimate of effect. *Evid. Based Med.* **2017**, *22*, 85–87, doi:10.1136/ebmed-2017–110668.

22. Bauer, A.Z.; Kriebel, D. Prenatal and perinatal analgesic exposure and autism: An ecological link. *Environ. Health* **2013**, *12*, 41, doi:10.1186/1476–069X–12–41.

23. Stergioukili, E.; Thapar, A.; Davey Smith, G. Association of Acetaminophen Use During Pregnancy with Behavioral Problems in Childhood: Evidence Against Confounding. *JAMA Pediatr.* **2016**, *170*, 964–970, doi:10.1001/jamapediatrics.2016.1775.

24. Bertoldi, A.D.; Rifas-Shiman, S.L.; Boing, A.C.; da Silva Dal Pizzol, T.; Miranda, V.I.A.; Silveira, M.P.T.; Freitas Silveira, M.; Domingues, M.R.; Santos, I.S.; Bassani, D.G.; et al. Associations of acetaminophen use during pregnancy and the first year of life with neurodevelopment in early childhood. *Paediatr. Perinat. Epidemiol.* **2020**, *34*, 267–277, doi:10.1111/ppe.12632.

25. Ji, Y.; Riley, A.W.; Lee, L.C.; Hong, X.; Wang, G.; Tsai, H.J.; Mueller, N.T.; Pearson, C.; Thermitus, J.; Panjwani, A.; et al. Maternal Biomarkers of Acetaminophen Use and In Utero Attention Deficit Hyperactivity Disorder. *Brain Sci.* **2018**, *8*, 127, doi:10.3390/brainsci8070127.

26. Ji, Y.; Auzuine, R.E.; Zhang, Y.; Hou, W.; Hong, X.; Wang, G.; Riley, A.; Pearson, C.; Zuckereman, B.; Wang, X. Association of Cord Plasma Biomarkers of In Utero Acetaminophen Exposure with Risk of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder in Childhood. *JAMA Psychiatry* **2020**, *77*, 180–189, doi:10.1001/jamapsychiatry.2019.3259.

27. Golding, J.; Gregory, S.; Clark, R.; Ellis, G.; Iles-Caven, Y.; Northstone, K. Associations between paracetamol (acetaminophen) intake between 18 and 32 weeks gestation and neurocognitive outcomes in the child: A longitudinal cohort study. *Paediatr. Perinat. Epidemiol.* **2020**, *34*, 257–266, doi:10.1111/ppe.12582.

28. Vlenterie, R.; Wood, M.E.; Brandlistuen, R.E.; Roeleveld, N.; van Gelder, M.M.; Nordeng, H. Neurodevelopmental problems at 18 months among children exposed to paracetamol in utero: A propensity score matched cohort study. *Int. J. Epidemiol.* **2016**, *45*, 1998–2008, doi:10.1093/ije/dwyv192.

29. Ystrom, E.; Gustavson, K.; Brandlistuen, R.E.; Knudsen, G.P.; Magnus, P.; Susser, E.; Davey Smith, G.; Stoltenberg, C.; Surén, P.; Häberg, S.E.; et al. Prenatal Exposure to Acetaminophen and Risk of ADHD. *Pediatrics* **2017**, *140*, e20163840, doi:10.1542/peds.2016–3840.

30. Liew, Z.; Bach, C.C.; Asamrow, R.F.; Ritz, B.; Olsen, J. Paracetamol use during pregnancy and attention and executive function in offspring at age 5 years. *Int. J. Epidemiol.* **2016**, *45*, 2009–2017, doi:10.1093/ije/dwyv296.
31. Rifas-Shiman, S.L.; Cardenas, A.; Hivert, M.F.; Tiemeier, H.; Bertoldi, A.D.; Oken, E. Associations of prenatal or infant exposure to acetaminophen or ibuprofen with mid-childhood executive function and behaviour. Pediatr. Perinat. Epidemiol. 2020, 34, 287–298, doi:10.1111/ppe.12596.
32. Streissguth, A.P.; Tredter, R.P.; Barr, H.M.; Shepard, T.H.; Bleyer, W.A.; Sampson, P.D.; Martin, D.C. Aspirin and acetaminophen use by pregnant women and subsequent child IQ and attention decrements. Teratology 1987, 35, 211–219, doi:10.1002/tera.1420350207.
33. Thompson, J.M.; Waldie, K.E.; Wall, C.R.; Murphy, R.; Mitchell, E.A.; ABC study group. Associations between exposure during pregnancy and ADHD symptoms measured at ages 7 and 11 years. PLoS ONE 2014, 9, e108210, doi:10.1371/journal.pone.0108210.
34. Petersen, T.G.; Liew, Z.; Andersen, A.N.; Andersen, G.L.; Andersen, P.K.; Martinussen, T.; Olsen, J.; Rebordosa, C.; Tollanes, M.C.; Uldall, P.; et al. Use of paracetamol, ibuprofen or aspirin in pregnancy and risk of cerebral palsy in the child. Int. J. Epidemiol. 2018, 47, 121–130, doi:10.1093/ije/dyx235.
35. Andersen, A.B.; Farkas, D.K.; Mehnert, F.; Ehrenstein, V.; Erichsen, R. Use of prescription paracetamol during pregnancy and risk of asthma in children: A population-based Danish cohort study. Clin. Epidemiol. 2012, 4, 33–40, doi:102147/CLEP.S28312.
36. Garcia-Marcos, L.; Sanchez-Solis, M.; Perez-Fernandez, V.; Pastor-Vivero, M.D.; Mondejar-Lopez, P.; Valverde-Molina, J. Is the effect of prenatal paracetamol exposure on wheezing in preschool children modified by asthma in the mother? Int. Arch. Allergy Immunol. 2009, 149, 33–37, doi:10.11159/000176304.
37. Piler, P.; Švancara, J.; Kukla, L.H. Role of combined prenatal and postnatal paracetamol exposure on asthma development: The Czech ESPAC study. J. Epidemiol. Community Health 2018, 72, 349–355, doi:10.1136/jech-2017-209960.
38. Shaheen, S.O.; Newsom, R.B.; Sherriff, A.; Henderson, A.J.; Heron, J.E.; Burney, P.G.; Golding, J.; ESPAC Study Team. Paracetamol use in pregnancy and wheezing in early childhood. Thorax 2002, 57, 958–963, doi:101136/thorax.57.11.958.
39. Jedrychowski, W.; Spengler, J.D.; Maugeri, U.; Miller, R.L.; Budzyn-Mrozek, D.; Perzanowski, M.; Flak, E.; Mroz, E.; Majewska, R.; Kaim, I.; et al. Effect of prenatal exposure to fine particulate matter and intake of Paracetamol (Acetaminophen) in pregnancy on eczema occurrence in early childhood. Sci Total Environ. 2011, 409, 5205–5209, doi:101016/scitotenv.2011.08.068.
40. Persky, V.; Piorkowski, J.; Hernandez, E.; Chavez, N.; Wagner-Cassanova, C.; Vergara, C.; Pelzel, D.; Enriquez, R.; Gutierrez, S.; Busso, A. Prenatal exposure to acetaminophen and respiratory symptoms in the first year of life. Ann Allergy Asthma Immunol. 2008, 101, 271–278, doi:1011136/jaci-2017-209960.
41. Rebordosa, C.; Kogevinas, M.; Sørensen, H.T.J. Pre-natal exposure to paracetamol and risk of wheezing and asthma in children: A birth cohort study. Int. J. Epidemiol. 2008, 37, 583–90, doi:101093/ije/dyn070.
42. Magnus, M.C.; Karlstad, Ø.; Håberg, S.E.; Nafstad, P.; Davey Smith, G.; Nystrøm, W. Prenatal and infant paracetamol exposure and development of asthma: The Norwegian Mother and Child Cohort Study. Int. J. Epidemiol. 2016, 45, 512–522, doi:101093/ije/dyw366.
43. Sordillo, J.E.; Scirica, C.V.; Rifas-Shiman, S.L.; Gillman, M.W.; Bunyavanich, S.; Camargo CA Jr Weiss, S.T.; Gold, D.R.; Litonjua, A.A. Prenatal and infant exposure to acetaminophen and ibuprofen and the risk for wheeze and asthma in children. J. Allergy Clin. Immunol. 2015, 135, 441–448, doi:101016/j.jaci.2014.07.065.
44. Bakkeheim, E.; Mowinckel, P.; Carlsten, K.H.; Håland, G.; Carlstem, K.C. Paracetamol in early infancy: The risk of childhood allergy and asthma. Acta Paediatr. 2011, 100, 90–96, doi:101111/j.1651-2227.2010.01942.x.
45. Ernst, A.; Brix, N.; Lauridsen, L.L.B.; Olsen, J.; Parner, E.T.; Liew, Z.; Olsen, L.H.; Ramlaup-Hansen, C.H. Acetaminophen (Paracetamol) Exposure During Pregnancy and Pubertal Development in Boys and Girls from a Nationwide Puberty Cohort. Am. J. Epidemiol. 2019, 188, 34–46, doi:101093/aje/kwy193.
46. Fisher, B.G.; Thankamony, A.; Hughes, I.A.; Ong, K.K.G.; Dunger, D.B.; Acerini, C.L. Prenatal paracetamol exposure is associated with shorter anogenital distance in male infants. Hum. Reprod. 2016, 31, 2642–2650, doi:101093/humrep/dew196.
47. Lind, D.V.; Main, K.M.; Kyhl, H.B.; Kristensen, D.M.; Toppari, J.; Andersen, H.R.; Andersen, M.S.; Skakkebaek, N.E.; Jensen, T.K. Maternal use of mild analgesics during pregnancy associated with reduced anogenital distance in sons: A cohort study of 1027 mother-child pairs. Hum. Reprod. 2017, 32, 223–231, doi:101093/humrep/dew285.
48. Snijder, C.A.; Kortenkov, A.; Steegers, E.A.; Jaddoe, V.W.; Hofman, A.; Hass, U.; Burdorf, A. Intrauterine exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadias in the offspring: The Generation R Study. Hum. Reprod. 2012, 27, 1191–201, doi:101093/humrep/der474.
49. Shaheen, S.O.; Newsom, R.B.; Ring, S.M.; Rose-Zerrilli, M.J.; Holloway, J.W.; Henderson, A.J. Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma. J. Allergy Clin. Immunol. 2010, 126, 1141–1148, doi:101016/j.jaci.2010.08.047.
50. Oncel, M.Y.; Eraz, Z.; Uras, N.; Canpolat, F.E.; Erdeve, O.; Oguz, S.S. Neurodevelopmental Outcomes of Preterm Infants Treated with Oral Paracetamol Versus Ibuprofen for Patent Ductus Arteriosus. Am. J. Perinatol. 2017, 34, 1185–1189, doi:101055/s-0037-1601564.
51. Juujärvi, S.; Saarela, T.; Hallman, M.; Aikio, O. Trial of paracetamol for premature newborns: Five-year follow-up. J. Matern. Fetal Neonatal Med. 2021, 21, 1–3, doi:101080/14767058.2021.1875444.
52. Nitsche, J.F.; Patil, A.S.; Langman, L.J.; Penn, H.J.; Derleth, D.; Watson, W.J.; Brost, B.C. Transplacental Passage of Acetaminophen in Term Pregnancy. Am. J. Perinatol. 2017, 34, 541–543, doi:101055/s-0036-1593845.
53. Addo, K.A.; Bulka, C.; Dhingra, R.; Santos, H.P., Jr.; Smeester, L.; O’Shea, T.M.; Fry, R.C. Acetaminophen use during pregnancy and DNA methylation in the placenta of the extremely low gestational age newborn (ELGAN) cohort. *Environ. Epigenet.* 2019, 5, dvz010, doi:101093/eep/dvz010.

54. Green, B.B.; Karagas, M.R.; Punshon, T.; Jackson, B.P.; Robbins, D.J.; Houseman, E.A.; Marsit, C.J. Epigenome-Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New Hampshire Birth Cohort Study (USA). *Environ. Health Perspect.* 2016, 124, 1253–1260, doi:101289/ehp.1510437.

55. Maccani, J.Z.; Koestler, D.C.; Houseman, E.A.; Armstrong, D.A.; Marsit, C.J.; Kelsey, K.T. DNA methylation changes in the placenta are associated with fetal manganese exposure. *Reprod. Toxicol.* 2015, 57, 43–49, doi:101016/j.reprotox.2015.05.002.

56. Marsit, C.J.; Maccani, M.A.; Padbury, J.F.; Lester, B.M. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. *PLoS ONE* 2012, 7, e33794, doi:101371/journal.pone.0033794.

57. Slattery, W.T.; Klegeris, A. Acetaminophen metabolites p-aminophenol and AM404 inhibit microglial activation. *Neuroimmune. Neuroinflammation* 2018, 5, doi:1020517/2347–8659.2018.05.

58. Fride, E.; Gobshtis, N.; Dahan, H.; Weller, A.; Giuffrida, A.; Ben-Shabat, S. The endocannabinoid system during development: Emphasis on perinatal events and delayed effects. *Vitam. Horm.* 2009, 81, 139–158, doi:101016/S0083–6729(09)81006–6.

59. Blecharz-Klin, K.; Piechal, A.; Jawna-Zboińska, K.; Pyranowska, J.; Wawer, A.; Joniec-Maciejak, I.; Widy-Tyszkiwicz, E. Paracetamol—Effect of early exposure on neurotransmission, spatial memory and motor performance in rats. *Behav. Brain Res.* 2017, 323, 162–171, doi:101016/j.bbr.2017.01.051.

60. Cohen, I.V.; Cirulli, E.T.; Mitchell, M.W.; Jonsson, T.J.; Yu, J.; Shah, N.; Spector, T.D.; Guo, L.; Venter, J.C.; Telenti, A. Acetaminophen (Paracetamol) Use Modifies the Sulfation of Sex Hormones. *EBioMedicine* 2018, 28, 316–323, doi:101016/j.ebiom.2018.01.033.