Conventional manual small-incision cataract surgery

Sir,
We read with interest the article by Yang et al.\(^1\) describing good visual outcomes in manual cataract extraction via a subconjunctival limbus oblique incision (SCOLI) for mature cataracts. Although the authors’ results are impressive, we would like to highlight that conventional manual small-incision cataract surgery (MSICS) can also produce very good visual and refractive outcomes.

Several studies have demonstrated that MSICS is safe and effective, even in advanced or complicated cataracts. Venkatesh et al.\(^2\) described excellent visual outcomes of MSICS performed on a group of patients with brown and brunescent cataracts, with 97.1% achieving visual acuity (VA) of 6/18 or better with low complication rates. Another paper, also reported excellent outcomes in white cataracts,\(^3\) with 98.2% achieving corrected distance VA of 6/18 or better. MSICS has also been shown to be safe in patients with phacolytic glaucoma,\(^4\) demonstrating good visual outcomes with 87.9% of patients achieving good visual outcomes of 20/60 or better, while intraocular pressure was controlled without the need for long-term anti-glaucoma medications.

Although the authors reported SCOLI induces less iatrogenic astigmatism due to its supero-oblique incision,\(^5\) Ruit et al.\(^6\) had demonstrated that conventional MSICS can similarly reduce induced astigmatism by adopting a temporal approach. A recent Cochrane review\(^7\) further suggests that conventional MSICS results in less surgically-induced astigmatism compared to extra-capsular cataract extraction.

In summary, we congratulate the authors in promoting and teaching alternative techniques of cataract surgery that are safe, efficacious, and cost-effective. In conjunction with the International Agency for the Prevention of Blindness and the World Health Organization Programme for Blindness and Deafness, this is part of a strategy to reduce cataract blindness globally. We feel that it is important for clinicians to consider the option of MSICS as part of their surgical repertoire.

Milton C Chew\(^1,\) Colin S Tan\(^1,2\)

\(^1\)Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, \(^2\)Fundus Image Reading Center, National Healthcare Group Eye Institute, Singapore

Correspondence to: Dr. Colin S Tan, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433. E-mail: Colintan_eye@yahoo.com.sg

References

1. Yang J, Lai P, Wu D, Long Z. Manual cataract extraction via a subconjunctival limbus oblique incision for mature cataracts. Indian J Ophthalmol 2014;62:274-8.
2. Venkatesh R, Tan CS, Singh GP, Veena K, Krishnan KT, Ravindran RD. Safety and efficacy of manual small incision cataract surgery for brunescent and black cataracts. Eye (Lond) 2009;23:1155-7.
3. Venkatesh R, Tan CS, Sengupta S, Ravindran RD, Krishnan KT, Chang DF. Phacoemulsification versus manual small-incision cataract surgery for white cataract. J Cataract Refract Surg 2010;36:1849-54.
4. Venkatesh R, Tan CS, Kumar TT, Ravindran RD. Safety and efficacy of manual small incision cataract surgery for phacolytic glaucoma. Br J Ophthalmol 2007;91:279-81.
5. Ruit S, Tabin G, Chang D, Bajracharya L, Kline DC, Richheimer W, et al. A prospective randomized clinical trial of phacoemulsification vs manual sutureless small-incision extracapsular cataract surgery in Nepal. Am J Ophthalmol 2007;143:32-38.

6. Ang M, Evans JR, Mehta JS. Manual small incision cataract surgery (MSICS) with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev 2012;4:CD008811.

Dear Editor,

We read with interest the article by Arda et al. [1]. We would like to make the following observations/queries.

Although most authors would agree to an early postoperative overcorrection in adult patients with intermittent exotropia, the same may not be true for pediatric patients. In contrast, most investigators believe that intentional overcorrection should be avoided in children with immature systems because of the risk of developing a suppression scotoma and an irreversible monofixation esotropia, which can lead to loss of stereopsis and amblyopia.

[2‑4]

The age group in this study by Arda et al. is 2–12 years. It is questionable whether intentional overcorrection is indicated in this age group. As the authors have not evaluated sensory outcomes and only motor surgical success rate has been evaluated, the effect of intentional overcorrection on binocularity, stereopsis and development of amblyopia is not assessed and may, therefore, be considered a major limitation of the study.

In the evaluation of postoperative deviations, no mention of deviation at near is found. Near-distance disparity may occur after bilateral lateral rectus (LR) recessions. Small overcorrections at distance may in turn produce excess overcorrections at near. This is even more important in young pediatric patients whose daily activities may be limited to near and intermediate vision. The esotropia at near may lead to amblyopia in this age group. In this regard, it is also important to highlight that the authors have excluded cases with true divergence excess and high accommodative convergence (AC/A) ratio in whom intentional overcorrections may lead to extreme near‑distance disparity with esotropia at near, which may be detrimental in pediatric patients with immature visual systems.

Thus, in our view, augmented LR recessions may be valuable in adult patients, and after evaluation for near-distance disparity; however, its use in visually immature children, especially those with true divergence excess and high AC/A ratio, requires caution.

Vishaal Bhambhwani, Pramod Kumar Pandey, Shagun Sood, Poonam Gupta, Ranjith PC

Department of Ophthalmology, Guru Nanak Eye Centre and Maulana Azad Medical College, New Delhi, India

Correspondence to:
Dr. Vishaal Bhambhwani,
Guru Nanak Eye Centre, Ranjit Singh Marg,
New Delhi - 110 002, India.
E-mail: vishaalb@ymail.com

References
1. Arda H, Atalay HT, Orge FH. Augmented surgical amounts for intermittent exotropia to prevent recurrence. Indian J Ophthalmol 2014;62:1056-9.
2. Santiago AP, Ing MR, Kushner BJ, Rosenbaum AL. Intermittent exotropia. In: Rosenbaum A, Santiago AP, editors. Clinical Strabismus Management: Principles and Surgical Techniques. Philadelphia, PA: Saunders; 1999.
3. Jampolsky A. Treatment of exodeviations. Trans New Orleans Acad Ophthalmol 1986;34:201-34.
4. Edelman PM, Brown MH, Murphree AL, Wright KW. Consecutive esodeviation: Then what? Am Orthopt J 1988;38:111-6.