Abstract. For each poset P, we construct a polytope $\mathcal{A}(P)$ called the P-associahedron. Similarly to the case of graph associahedra, the faces of $\mathcal{A}(P)$ correspond to certain tubings of P. The Stasheff associahedron is a compactification of the configuration space of n points on a line, and we recover $\mathcal{A}(P)$ as an analogous compactification of the space of order-preserving maps $P \to \mathbb{R}$. Motivated by the study of totally nonnegative critical varieties in the Grassmannian, we introduce affine poset cyclohedra and realize these polytopes as compactifications of configuration spaces of n points on a circle. For particular choices of (affine) posets, we obtain associahedra, cyclohedra, permutohedra, and type B permutohedra as special cases.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{poset_associahedron.png}
\caption{A poset associahedron.}
\end{figure}

\begin{flushleft}
Date: October 19, 2021.
2020 Mathematics Subject Classification. Primary: 52B11. Secondary: 05E99, 06A07, 54D35.
Key words and phrases. Poset, associahedron, cyclohedron, configuration space, compactification.
The author was supported by an Alfred P. Sloan Research Fellowship and by the National Science Foundation under Grants No. DMS-1954121 and No. DMS-2046915.
\end{flushleft}
1. Introduction

Polytopes arising from combinatorial data have been studied extensively in the recent decades. Some examples include order polytopes [Sta86], graph associahedra [CD06], generalized permutohedra [Pos09], the associahedron [Tam51, Sta63, Hai84, Lee89], and the cyclohedron [BT94, Sim03]. The latter two polytopes may be obtained as compactifications of configuration spaces of \(n \) points on a line and on a circle, respectively; see e.g. [FM94, AS94, Kon99, Sin04, Gai03, LTV10].

The goal of the present paper is to introduce a new class of polytopes called poset associahedra which combines the notions of graph associahedra and order polytopes in a natural way, and to show that these polytopes arise as compactifications of poset configuration spaces of points on a line. We review these results in Sections 1.1–1.2. We then introduce affine posets and affine poset cyclohedra in Section 1.3. They correspond to compactifying affine poset configuration spaces of points on a circle rather than on a line, and lead to applications to critical varieties [Gal21a] which we pursue in a separate paper [Gal21b].

1.1. Poset associahedra. Let \((P, \preceq_P)\) be a finite connected poset with \(|P| \geq 2\). Recall from [Sta86] that the faces of the order polytope of \(P\) correspond to set partitions \(T\) of \(P\) such that each \(\tau \in T\) is a convex connected subset of \(P\), and such that the directed graph \(D_T\) given by

\[
E(D_T) := \{ (\tau, \tau') \mid \tau \cap \tau' = \emptyset \text{ and } i \prec_P j \text{ for some } i \in \tau, j \in \tau' \}
\]

is acyclic. Here a subset \(\tau \subseteq P\) is called convex if having \(i \prec_P j \prec_P k\) with \(i, k \in \tau\) implies \(j \in \tau\), and \(\tau\) is called connected if the corresponding induced subgraph of the Hasse diagram of \(P\) is connected. Let us say that two sets \(A, B\) are nested if either \(A \subseteq B\) or \(B \subseteq A\).

Definition 1.1. A \(P\)-tube is a convex connected nonempty subset \(\tau \subseteq P\). A \(P\)-tubing is a collection \(T\) of \(P\)-tubes such that any two sets \(\tau, \tau' \in T\) are either nested or disjoint, and such that the directed graph \(D_T\) given by (1.1) is acyclic.

When the poset \(P\) is clear from the context, we refer to \(P\)-tubes (resp., \(P\)-tubings) simply as tubes (resp., tubings). We say that a tube \(\tau\) is proper if \(1 < |\tau| < |P|\). A tubing is proper if it consists of proper tubes. Clearly, a subset of a proper tubing is a proper tubing.

Theorem 1.2 (Poset associahedron). Let \(\mathcal{K}_\mathcal{A}(P)\) be an abstract simplicial complex whose vertices correspond to proper tubes, and whose simplices correspond to proper tubings. Then there exists a simplicial \((|P| - 2)\)-dimensional polytope \(\mathcal{A}(P)^*\) whose boundary complex is isomorphic to \(\mathcal{K}_\mathcal{A}(P)\).

By definition, the poset associahedron \(\mathcal{A}(P)\) is the polar dual of the polytope constructed in Theorem 1.2. Thus \(\mathcal{A}(P)\) is a simple polytope of dimension \(|P| - 2\) whose facets correspond to proper tubes and whose vertices correspond to maximal by inclusion proper tubings. See Figures 1 and 2 for examples.

We list some properties and examples of poset associahedra in Section 2.3. For instance, similarly to other families of combinatorial polytopes (including permutohedra and associahedra), each face of \(\mathcal{A}(P)\) is a product of smaller poset associahedra. When \(P\) is a chain, \(\mathcal{A}(P)\) is combinatorially equivalent to the \((|P| - 2)\)-dimensional associahedron. When \(P\) is

\[\text{Stanley’s construction of an order polytope only applies when } P \text{ has a minimal and a maximal element. In 1.2, we slightly modify his construction to include arbitrary connected posets.}\]
a claw (that is, \(P \) contains a minimal element \(\hat{0} \) and any two other elements of \(P \) are incomparable), \(\mathcal{A}(P) \) is combinatorially equivalent to the \((|P| - 2)\)-dimensional permutohedron. See Figure 2 for two-dimensional examples.

Remark 1.3. The set of tubes is not a building set in the sense of [DCP95, FS05, Pos09] since the union of two tubes whose intersection is nonempty need not be a tube. (It need not be convex.) Thus poset associahedra are not special cases of graph associahedra or nestohedra. One further difference is that in the case of graph associahedra, a tubing cannot contain two adjacent tubes, i.e., two disjoint tubes whose union is a tube. We do not include this restriction in the definition of poset associahedra.

Remark 1.4. A different family of poset associahedra was constructed in [DFRS15]. We do not see any direct relation between the two constructions. It would be interesting to find the intersection of these two classes of polytopes.

Remark 1.5. While we show that poset associahedra \(\mathcal{A}(P) \) exist as abstract polytopes, we do not construct any explicit geometric realization of \(\mathcal{A}(P) \) as a polytope with, say, integer vertex coordinates. Doing so remains an open problem. Another interesting problem is to describe the \(f \)- and \(h \)-vectors of \(\mathcal{A}(P) \) in terms of the combinatorics of \(P \).

Question 1.6. In [LP16b], it was shown that graph associahedra of [CD06] arise as dual cluster complexes of Laurent phenomenon algebras [LP16a], which are certain generalizations of cluster algebras [FZ02]. Do poset associahedra arise as cluster complexes of cluster algebras or of Laurent phenomenon algebras?

1.2. Compactifications

We explain how poset associahedra may be obtained as compactifications of configuration spaces of points on a line. When \(P \) is a chain, our construction recovers the case of Stasheff associahedra obtained as Axelrod–Singer compactifications [AS94]; see also [FM94].

Recall that the order polytope [Sta86] of \(P \) is the space of order-preserving maps \(P \to [0, 1] \). We modify this construction to consider order-preserving maps \(P \to \mathbb{R} \) instead. Let
Sim\(_1\) be the group acting on \(\mathbb{R}^P\) by
rescalings \(x \mapsto \lambda x\) for \(\lambda \in \mathbb{R}_{>0}\)
and constant shifts \(x \mapsto x + \mu (1, 1, \ldots, 1)\) for \(\mu \in \mathbb{R}\). We let
\[
(1.2) \quad \mathcal{O}(P) := \{x \in \mathbb{R}^P \mid x_i < x_j \text{ for all } i \prec_P j\}/\text{Sim}_1
\]
denote the \(P\)-configuration space. It is not hard to see (cf. Section 2.1) that \(\mathcal{O}(P)\) is
naturally identified with the interior of a \(|P| - 2\)-dimensional polytope denoted \(O(P)\). The
faces of \(O(P)\) are indexed by tubings \(T\) which are simultaneously set partitions of \(P\). If
\(P\) is bounded, i.e., contains a maximal and a minimal element, then \(O(P)\) is projectively
equivalent to Stanley’s order polytope; see Remark 2.5.

We will consider a certain compactification of \(\mathcal{O}(P)\) which we first describe informally.
See Figure 3 and Example 1.8. An element \(x \in \mathcal{O}(P)\) is a collection of \(|P|\) points on a
line satisfying the inequalities in (1.2). Allowing some (but not all, in view of the action of
Sim\(_1\)) of the points to collide, we obtain a point \(x \in \mathcal{O}(P)\), which belongs to a face labeled
by some set partition \(T_0 = \{\tau_1, \tau_2, \ldots, \tau_m\}\) of \(P\) into \(m \geq 2\) disjoint tubes. Thus all points
in each tube \(\tau_j\) have collided, and moreover, it could be that all points in, say, \(\tau_1 \sqcup \tau_2\) have
collided. During the collision, we keep track of the “ratios of distances” between all pairs
of points inside each individual \(\tau_j\) (however, the distances between pairs of points in \(\tau_i \times \tau_j\)
for \(i \neq j\) are ignored). In the limit, this gives a point \(x[\tau_j] \in \mathcal{O}(\tau_j)\) for each \(j = 1, 2, \ldots, m\),
where \(\tau_j\) is treated as a connected subposet \((\tau_j, \preceq_P)\) of \(P\). We iterate this construction: the
point \(x[\tau_j]\) belongs to some face of \(\mathcal{O}(\tau_j)\) labeled by a partition of \(\tau_j\) into disjoint tubes, so
we record the distance ratios between pairs of points in each of those tubes, etc. At the end,
we obtain a collection \(T(x)\) of tubes which form a tubing, and for each tube \(\tau \in T(x)\), we
have a point \(x[\tau] \in \mathcal{O}(\tau)\).
The non-rigorous part in the above paragraph is the notion of “ratios of distances” that we keep track of when the points collide. While such ratios are an essential ingredient in the definition of the Axelrod–Singer compactification [AS94, Sim04, LTV10], we found that this approach cannot be directly applied to poset configuration spaces: see Example 3.1. Instead, we utilize a new construction which we now describe formally.

For a point \(\mathbf{x} \in \mathcal{O}^o(P) \) and a tube \(\tau \), let \(\mathbf{x}[\tau] \in \mathcal{O}^o(\tau) \) be the restriction of \(\mathbf{x} \) to \(\tau \), i.e., the image of \(\mathbf{x} \) under the standard projection \(\mathbb{R}^P \to \mathbb{R}^\tau \). (This projection is \(\text{Sim}_1 \)-equivariant.) Recall that \(\mathcal{O}^o(\tau) \) is identified with the interior of the order polytope \(\mathcal{O}(\tau) \). Consider the composite restriction map

\[
\rho : \mathcal{O}^o(P) \to \prod_{|\tau| > 1} \mathcal{O}(\tau), \quad \mathbf{x} \mapsto (\mathbf{x}[\tau])_{|\tau| > 1},
\]

where the product is taken over tubes \(\tau \) satisfying \(|\tau| > 1 \). (This includes \(\tau = P \).)

Definition 1.7 (P-compactification). Let \(\text{Comp}(P) \) denote the closure

\[\text{Comp}(P) := \overline{\rho(\mathcal{O}^o(P))}.\]

Thus, a point \(\mathbf{x} \in \text{Comp}(P) \) is a collection \((\mathbf{x}[\tau])_{|\tau| > 1} \in \prod_{|\tau| > 1} \mathcal{O}(\tau) \) of points in various order polytopes. We refer to the coordinates of \(\mathbf{x}[\tau] \) as \((x_i[\tau])_{i \in \tau} \). We outlined above a recursive way to associate a proper tubing \(T(\mathbf{x}) \) to each such point \(\mathbf{x} \in \text{Comp}(P) \); see Definition 3.4 for further details. This endows \(\text{Comp}(P) \) with the structure of a stratified space, where the strata are indexed by proper tubings.

Example 1.8. Consider the poset \(P \) in Figure 3(a). For small \(t > 0 \), the point \(\mathbf{x}^{(t)} \) shown on the left in Figure 3(c) belongs to the \(P \)-configuration space \(\mathcal{O}^o(P) \). When we take the limit as \(t \to 0 \), we obtain a point \(\mathbf{x} \in \text{Comp}(P) \), described as follows. The points 1, 2, 3, 4, 5 collide, as do the points 6, 7, 8, 9, thus \(\mathbf{x}[P] \in \mathcal{O}(P) \) satisfies \(x_1[P] = x_2[P] = \cdots = x_5[P] \) and \(x_6[P] = \cdots = x_9[P] \). The set \(\{1, 2, 3, 4, 5\} \) is a union of two tubes, and the corresponding two points \(\mathbf{x}[123] \in \mathcal{O}(123) \) and \(\mathbf{x}[45] \in \mathcal{O}(45) \) are among those shown on the right in Figure 3(c). Here we abbreviate 123 = \(\{1, 2, 3\} \), etc. The two to one ratio of distances between the points 1, 2 and 2, 3 is encoded in the coordinates of \(\mathbf{x}[123] \). Similarly, the point \(\mathbf{x}[6789] \in \mathcal{O}(6789) \) satisfies \(x_6[6789] = x_7[6789] \), but we have \(x_6[67] < x_7[67] \). The tubes 123, 45, 6789, 67 form a proper tubing \(T := T(\mathbf{x}) \) which labels (cf. Definition 3.4) the stratum of \(\text{Comp}(P) \) containing \(\mathbf{x} \). This tubing is shown in Figure 3(b). By definition, to specify a point \(\mathbf{x} \in \text{Comp}(P) \), one needs to specify a point \(\mathbf{x}[\tau] \in \mathcal{O}(\tau) \) for any tube \(\tau \), including the case \(\tau \notin T \). Some of such points \(\mathbf{x}[\tau] \) are shown in Figure 3(d). As we explain in Lemma 3.8, it actually suffices to only specify the points \(\mathbf{x}[\tau] \) for \(\tau \in T \cup \{P\} \).

Theorem 1.9. There exists a stratification-preserving homeomorphism \(\mathcal{A}(P) \to \text{Comp}(P) \).

1.3. **Affine poset cyclohedra.** We now describe affine versions of the above constructions, which have served as the original motivation for this work; see Remark 1.15.

Definition 1.10. An affine poset (of order \(n \geq 1 \)) is a poset \(\mathring{P} = (\mathbb{Z}, \preceq_{\mathring{P}}) \) such that:

- for all \(i \in \mathbb{Z} \), \(i <_{\mathring{P}} i + n; \)
- for all \(i, j \in \mathbb{Z} \), \(i \preceq_{\mathring{P}} j \) if and only if \(i + n \preceq_{\mathring{P}} j + n; \)
- \(\mathring{P} \) is strongly connected: for all \(i, j \in \mathbb{Z} \), we have \(i \preceq_{\mathring{P}} j + kn \) for some \(k \geq 0 \).

We denote the order of \(\mathring{P} \) by \(|\mathring{P}| := n \).
A \(\tilde{P}\)-tubing is an \(n\)-periodic collection \(T\) of tubes such that any two tubes in \(T\) are either nested or disjoint, and such that the directed graph \(D_T\) given by (1.1) is acyclic. A tube \(\tau\) is called proper if it satisfies \(|\tau| > 1\) and \(\tau \neq \tilde{P}\). A tubing is called proper if it consists of proper tubes. Observe that each tubing is a disjoint union of finitely many equivalence classes of tubes.

Theorem 1.11 (Affine poset cyclohedron). Let \(K_\varphi(\tilde{P})\) be an abstract simplicial complex whose vertices correspond to equivalence classes of proper tubes, and whose simplices correspond to proper tubings. Then there exists a simplicial \(|\tilde{P}|-1\)-dimensional polytope \(\mathcal{C}(\tilde{P})^*\) whose boundary complex is isomorphic to \(K_\varphi(\tilde{P})\).

We define the **affine poset cyclohedron** \(\mathcal{C}(\tilde{P})\) as the polar dual to \(\mathcal{C}(\tilde{P})^*\). See Corollary 4.10 for a list of its properties. It is a simple \(|\tilde{P}| - 1\)-dimensional polytope whose vertices correspond to proper tubings consisting of \(|\tilde{P}| - 1\) equivalence classes of tubes, and whose facets correspond to equivalence classes of proper tubes. Each face of \(\mathcal{C}(\tilde{P})\) is a product of smaller poset associahedra and affine poset cyclohedra. When \(\tilde{P}\) is a circular chain shown in Figure 4(left) (resp., a circular claw shown in Figure 4(right)), \(\mathcal{C}(\tilde{P})\) is combinatorially equivalent to the cyclohedron (resp., to the type \(B\) permutohedron) of dimension \(|\tilde{P}| - 1\). Since the cyclohedron is a type \(B\) analog of the associahedron [Sim03], we may think of affine posets as type \(B\) analogs of finite posets.
Finally, we explain how affine poset cyclohedra arise as compactifications. Fix some constant $c \in \mathbb{R}_{>0}$. We identify points $x \in \mathbb{R}^{\bar{P}}$ with infinite sequences $\bar{x} = (\bar{x}_i)_{i \in \mathbb{Z}}$ satisfying $\bar{x}_{i+n} = \bar{x}_i + c$ for all $i \in \mathbb{Z}$. Let the group $\mathbb{R}(1,1,\ldots,1)$ act on $\mathbb{R}^{\bar{P}}$ by constant shifts. Set

$$\mathcal{O}^\circ(\bar{P}) := \{x \in \mathbb{R}^{\bar{P}}/\mathbb{R}(1,1,\ldots,1) \mid \bar{x}_i < \bar{x}_j \text{ for all } i <_\bar{P} j\},$$

(1.4)

$$\mathcal{O}((\bar{P}) := \{x \in \mathbb{R}^{\bar{P}}/\mathbb{R}(1,1,\ldots,1) \mid \bar{x}_i \leq \bar{x}_j \text{ for all } i \leq_\bar{P} j\}.$$

We show in Corollary 4.3 that $\mathcal{O}(\bar{P})$ is a nonempty polytope of dimension $|\bar{P}| - 1$. We call it the affine order polytope of \bar{P}.

Given a point $x \in \mathcal{O}^\circ(\bar{P})$ and a tube τ with $|\tau| > 1$, we may still consider the restriction $x[\tau] \in \mathcal{O}^\circ(\tau)$ whose coordinates are given by $(\bar{x}_i)_{i \in \tau}$. (Recall that $\tau = \bar{P}$ is considered a tube, in which case we set $x[\tau] := x$.) When two tubes τ, τ' are equivalent, we have $x[\tau] = x[\tau']$. We thus get a map $\bar{\rho} : \mathcal{O}^\circ(\bar{P}) \to \prod_{|\tau| > 1} \mathcal{O}(\tau), \quad x \mapsto (x[\tau])_{|\tau| > 1}.$

Here $\prod_{|\tau| > 1} \mathcal{O}(\tau)$ is the set of points $(x[\tau])_{|\tau| > 1} \in \prod_{|\tau| > 1} \mathcal{O}(\tau)$ satisfying $x[\tau] = x[\tau']$ whenever two tubes τ, τ' are equivalent. Thus essentially the product $\prod_{|\tau| > 1} \mathcal{O}(\tau)$ is taken over finitely many equivalence classes $\bar{\tau}$ of tubes τ satisfying $|\tau| > 1$, including the case $\tau = \bar{P}$. For $\tau \neq \bar{P}$, $\mathcal{O}(\tau)$ is the order polytope associated to the finite connected subposet $(\tau, \leq_\bar{P})$ of \bar{P}. We consider the closure

$$\text{Comp}(\bar{P}) := \bar{\rho}(\mathcal{O}^\circ(\bar{P})).$$

Similarly to the case of poset associahedra, Comp(\bar{P}) admits a stratification into pieces indexed by proper tubings.

Theorem 1.12. There exists a stratification-preserving homeomorphism $\mathcal{C}(\bar{P}) \sim \text{Comp}(\bar{P})$.

Remark 1.13. The quotient $\mathbb{R}/c\mathbb{Z}$ is homeomorphic to a circle S^1. Thus $\mathcal{O}^\circ(\bar{P})$ may be considered as a configuration space of $|\bar{P}|$ points on S^1 (modulo global rotations of S^1) such that the points comparable in \bar{P} are not allowed to pass through each other. When we take the closure in (1.5), we allow some (possibly all) of the points to collide. During the collisions, we keep track of the ratios of distances recursively as we did in Section 1.2. In particular, when the points belonging to some tube $\tau \neq \bar{P}$ collide, the relative distances between them are described by a point $x[\tau]$ in the order polytope $\mathcal{O}(\tau)$ (as opposed to an affine order polytope). This is consistent with the fact that a circle is locally homeomorphic to a line.

Example 1.14. Suppose that \bar{P} is a circular claw as in Figure 4(right) of order $|\bar{P}| = 3$. We may view $\mathcal{O}^\circ(\bar{P})$ as the configuration space of three points labeled 0, 1, 2 moving on a circle so that 1 and 2 can pass through each other, but neither 1 nor 2 can pass through 0. Consider the octagon in Figure 5(right). Each vertex is labeled by a circle with points 0, 1, 2 on it. We view each such circular configuration as a limit as $t \to 0$ of a family of configurations where the distance between 0 and the closest point is t^2 while the distance between 0 and the farthest point is t. In the limit as $t \to 0$, it yields a point in Comp(\bar{P}) which corresponds to a vertex of $\mathcal{C}(\bar{P})$. This correspondence is illustrated in Figure 6.
Remark 1.15. Affine posets relevant to critical varieties are constructed as follows. Choose a permutation $f \in S_n$. Place n vertices on a circle labeled $1, 2, \ldots, n$ in clockwise order. For each $s \in [n] := \{1, 2, \ldots, n\}$, draw an arrow $s \to i$ whenever $i = f(s)$. The arrow starts slightly after s and terminates slightly before i in clockwise order; see Figure 6(left). Assuming the resulting union of n arrows is topologically connected, the affine poset \tilde{P}_f is defined as the n-periodic transitive closure of the relations $i \prec \tilde{P}_f j \prec \tilde{P}_f i + n$ for all $1 \leq i < j \leq n$ such that the arrows $s \to i$ and $t \to j$ cross; see Figure 6(right). Setting $c := \pi$, the \tilde{P}_f-configuration space $\mathcal{C}^\circ(\tilde{P}_f)$ defined in (1.4) coincides with the space $\Theta_f^{>0}$ of
f-admissible tuples which parameterizes the critical cell Crit_f^0; see [Gal21a, Definition 1.6]. As we show in [Gal21b, Theorem 4.1], the affine poset cyclohedron $\mathcal{C}(\tilde{P}_f)$ admits a surjective continuous map onto the totally nonnegative critical variety Crit_f^0, defined as the closure of Crit_f^0 inside the Grassmannian.

Acknowledgments. I am grateful to Dev Sinha for clarifications regarding some constructions in [Sin04], which provided indispensable tools for the proof of Theorem 1.9 in Section 3. I also thank Pasha Pylyavskyy for his initial contributions to [Gal21a] and for bringing the relevant results of [LP16b, CPY18] to my attention; see Question 1.6 and Remark 4.5.

2. Poset associahedra

2.1. Order cones and polytopes. We start by collecting several simple results on order polytopes. Let P be a finite connected poset with $|P| \geq 2$. First, rather than taking the quotient modulo the group Sim_1 of rescalings and constant shifts, we would like to define $\mathcal{O}(P)$ as an explicit subset of \mathbb{R}^P. Let $\mathbb{R}_{\Sigma=0}^P$ denote the subspace of \mathbb{R}^P where the sum of coordinates is zero. Define a linear function α_P on \mathbb{R}^P by

$$\alpha_P(x) := \sum_{i \prec_P j} x_j - x_i.$$

(2.1)

Here the sum is taken over the covering relations $i \prec_P j$ in P. We are ready to define the order cone $\mathcal{L}(P)$, the order polytope $\mathcal{O}(P)$, and their interiors:

$$\mathcal{L}(P) := \{ x \in \mathbb{R}_{\Sigma=0}^P \mid x_i \leq x_j \text{ for all } i \leq_P j \}, \quad \mathcal{O}(P) := \{ x \in \mathcal{L}(P) \mid \alpha_P(x) = 1 \};$$

$$\mathcal{L}^o(P) := \{ x \in \mathbb{R}_{\Sigma=0}^P \mid x_i < x_j \text{ for all } i \prec_P j \}, \quad \mathcal{O}^o(P) := \{ x \in \mathcal{L}^o(P) \mid \alpha_P(x) = 1 \}.$$

The definition and some basic properties of $\mathcal{L}(P)$ may be found e.g. in [PRW08, JST14]. Recall that a cone is called pointed if it does not contain a line through the origin. Clearly, $\mathcal{L}(P)$ is a pointed polyhedral cone since for each $x \in \mathcal{L}(P) \setminus \{0\}$, we have $\alpha_P(x) > 0$. Thus $\mathcal{O}(P)$ is a polytope of dimension $|P| - 2$.

Next, we describe the faces of $\mathcal{O}(P)$.

Definition 2.1. A tubing partition of P is a tubing T which is simultaneously a set partition of P.

Consider a point $x \in \mathcal{O}(P)$. Let $B(x)$ be the collection of maximal by inclusion tubes τ such that we have $x_i = x_j$ for all $i,j \in \tau$. Then $B(x)$ is a tubing partition of P. Given an arbitrary tubing partition T of P, let

$$\mathcal{F}_\mathcal{O}(P,T) := \{ x \in \mathcal{O}(P) \mid B(x) = T \},$$

(2.2)

and let $\mathcal{F}_{\mathcal{O}}(P,T)$ denote the closure of $\mathcal{F}_{\mathcal{O}}(P,T)$. For the coarsest tubing partition $T = \{P\}$, let $\mathcal{F}_{\mathcal{O}}(P,T) := \emptyset$ denote the empty face of $\mathcal{O}(P)$. The following proposition is a straightforward extension of the results of [Sta86].

Proposition 2.2. The map $T \mapsto \mathcal{F}_{\mathcal{O}}(P,T)$ is a bijection between tubing partitions T of P and faces of $\mathcal{O}(P)$. Face inclusion corresponds to refinement:

$$\mathcal{F}_{\mathcal{O}}(P,T) \subseteq \mathcal{F}_{\mathcal{O}}(P,T') \iff \text{each } \tau' \in T' \text{ is contained in some } \tau \in T.$$

(2.3)

The dimension of each face $\mathcal{F}_{\mathcal{O}}(P,T)$ equals $|T| - 2$. \hfill \qed

Corollary 2.3.
The polar dual of the polytope $\mathcal{O}(P)$ are in bijection with partitions $P = I \sqcup F$ of P into a connected nonempty order ideal I and a connected nonempty order filter F.

The facets of $\mathcal{O}(P)$ are in bijection with the covering relations $i \preceq_P j$ in P.

Each face $\mathcal{F}_\rho(P, T)$ of $\mathcal{O}(P)$ is itself an order polytope $\mathcal{O}(P'/T)$, where the quotient poset P/T is obtained from P by identifying all elements of P that belong to a single tube of T.

Let $\tau \subseteq P$ be a non-singleton tube, i.e., a tube satisfying $|\tau| > 1$. Recall that τ is treated as a subposet (τ, \preceq_P) of P. Given any set $A \supseteq \tau$, define the following maps:

\[
\begin{align*}
\text{avg}_{\tau} & : \mathbb{R}^A \to \mathbb{R}, \quad x \mapsto \frac{1}{|\tau|} \sum_{i \in \tau} x_i; \\
\pi^+ & : \mathbb{R}^{A_0} \to \mathbb{R}^{A_0}, \quad x \mapsto (x_i - \text{avg}_{\tau}(x))_{i \in \tau}; \\
\gamma & : \mathbb{R}^A \to \mathbb{R}, \quad x \mapsto \sum_{i,j : i \preceq_P j} x_j - x_i; \\
\rho & : \mathbb{R}^A \to \mathbb{R}, \quad x \mapsto \frac{1}{\gamma(x)} \pi^+(x).
\end{align*}
\]

Here ρ_τ is a rational map defined on the subset of \mathbb{R}^A where $\gamma(x) \neq 0$.

Remark 2.4. We suppress the dependence of the maps $\text{avg}_{\tau}^+, \pi^+, \gamma, \rho$ on A. Thus, for example, we have $\alpha^\tau \circ \pi^+ = \gamma$ as maps $\mathbb{R}^A \to \mathbb{R}$.

The map ρ_P provides a homeomorphism between the P-configuration space defined in (1.2) and the interior $\mathcal{O}^0(P)$ of $\mathcal{O}(P)$. More generally, suppose that $\tau \subseteq \tau_+$ are non-singleton tubes. Then we have a map

\[
\gamma : \mathcal{L}(\tau_+) \to \mathcal{L}(\tau).
\]

The map $\rho : \mathcal{L}(\tau) \to \mathcal{O}(\tau)$ is defined at all points $x \in \mathcal{L}(\tau_+)$ such that not all coordinates $\{x_i \mid i \in \tau\}$ are equal. For the case $\tau_+ = P$, we find that ρ_τ coincides with the map $x \mapsto x[\tau]$ from Section 1.2. Thus the map ρ in (1.3) extends to a map

\[
\rho : \mathcal{L}^0(P) \to \prod_{|\tau| > 1} \mathcal{O}(\tau), \quad x \mapsto (\rho_\tau(x))_{|\tau| > 1}.
\]

Remark 2.5. Suppose P is bounded, and denote by $\hat{0}, \hat{1} \in P$ its minimal and maximal elements. The order polytope $\mathcal{O}(P)$, introduced by Stanley [Sta86], is the set of all $x \in \mathbb{R}^P$ satisfying $x_0 = 0$, $x_1 = 1$, and $x_i \leq x_j$ for all $i \preceq_P j$. Letting $\alpha'_P(x) := x_1 - x_0$, we see that the map π^+_P provides an affine isomorphism between $\mathcal{O}(P)$ and the polytope $\mathcal{O}'(P) := \{x \in \mathcal{L}(P) \mid \alpha'_P(x) = 1\}$. Thus the polytopes $\mathcal{O}(P)$ and $\mathcal{O}'(P)$ are projectively equivalent. When P is not bounded, it appears that the polytope $\mathcal{O}(P)$ has not been considered before.

2.2. Proof of Theorem 1.2. We use a variation of Lee’s construction [Lee89]. Our proof can be summarized as follows. Recall from Proposition 2.2 that the faces of $\mathcal{O}(P)$ correspond to tubing partitions of P, and therefore the same holds for the polar dual $\mathcal{O}(P)^*$. For each proper tube τ, we have a face of $\mathcal{O}(P)^*$ corresponding to the partition

\[
\{\tau\} \sqcup \{\{i\} \mid i \in P \setminus \tau\}.
\]

We will show that $\mathcal{A}(P)^*$ is obtained from $\mathcal{O}(P)^*$ by performing stellar subdivisions at all such faces. The order of stellar subdivisions is chosen so that the size of τ is weakly decreasing along the way. Before we proceed with the proof, we consider an example of constructing the polar dual of the polytope $\mathcal{A}(P)$ from Figure 1.
Example 2.6. Let \(P = 2 \uparrow 3 \uparrow 5 \) be the poset in Figure 1(left). The polytope \(\mathcal{O}(P)^* \) is shown in Figure 7(left). Here and below we abbreviate \(123 := \{1, 2, 3\} \), etc. The faces of \(\mathcal{O}(P)^* \) correspond to tubing partitions of \(P \), and each face of the form \((2.6)\) for some proper tube \(\tau \) is labeled by \(\tau \) in Figure 7(left). For instance, the top left triangular face with vertices \(\{12, 34, 45\} \) corresponds to the tubing partition \(\{12, 345\} \) which is not of the form \((2.6)\), so we do not label this face in the figure. Next, we apply stellar subdivisions at all faces labeled by 4-element tubes, obtaining the polytope in Figure 7(middle). The set \(\mathcal{M} \), defined below, records the list of faces at which the subdivision has already been performed. We then apply stellar subdivisions at all faces labeled by 3-element tubes, obtaining the polytope in Figure 7(right). Since 2-element tubes label the vertices of \(\mathcal{O}(P)^* \), the corresponding stellar subdivisions do not change the polytope. The vertices of the resulting polytope in Figure 7(right) are in bijection with proper tubes, and a collection of vertices forms a face precisely when the corresponding tubes form a tubing. Thus the polar dual of this polytope is combinatorially equivalent to \(\mathcal{A}(P) \), as one can check by comparing Figure 7(right) to Figure 1(right).

We now explain the proof in detail. Suppose we are given a set \(\mathcal{M} \) of tubes such that for \(\tau \subseteq \tau' \) with \(\tau \in \mathcal{M} \), we have \(\tau' \in \mathcal{M} \). We refer to the elements of \(\mathcal{M} \) as melted tubes. A tube which does not belong to \(\mathcal{M} \) is called frozen.

A tubing \(\mathbf{T} \) satisfying \(P \in \mathbf{T} \) is called \(\mathcal{M} \)-admissible if

(a) for each frozen tube \(\tau \in \mathbf{T} \), there is no \(\tau' \in \mathbf{T} \) such that \(\tau' \subseteq \tau \).
(b) for each melted tube \(\tau \in \mathbf{T} \), the maximal by inclusion tubes \(\tau' \in \mathbf{T} \) satisfying \(\tau' \subseteq \tau \) form a tubing partition of \(\tau \).
Let \((\text{Adm}(\mathcal{M}), \leq_{\mathcal{M}})\) denote the poset of all \(\mathcal{M}\)-admissible tubings, where \(\mathbf{T} \leq_{\mathcal{M}} \mathbf{T}'\) if and only if \(\mathbf{T}\) is obtained from \(\mathbf{T}'\) by removing some melted tubes and subdividing some frozen tubes. More precisely, \(\mathbf{T} \leq_{\mathcal{M}} \mathbf{T}'\) if

1. for each frozen tube \(\tau \in \mathbf{T}\), there exists a frozen tube \(\tau' \in \mathbf{T}'\) satisfying \(\tau \subseteq \tau'\), and
2. for each melted tube \(\tau \in \mathbf{T}\), we have \(\tau \in \mathbf{T}'\).

Our proof will proceed by induction on \(|\mathcal{M}|\), starting from the base case \(\mathcal{M} = \{P\}\). For each set \(\mathcal{M}\), we will introduce a polytope \(\mathcal{A}_{\mathcal{M}}(P)^*\) whose boundary face lattice is isomorphic to \(\text{Adm}(\mathcal{M})\). For each \(\mathbf{T} \in \text{Adm}(\mathcal{M})\), we let \(\mathcal{F}_{\mathcal{A}_{\mathcal{M}}(P)}(\mathbf{T})\) denote the corresponding face of \(\mathcal{A}_{\mathcal{M}}(P)^*\). We will show that its dimension is given by

\[
\dim(\mathcal{F}_{\mathcal{A}_{\mathcal{M}}(P)}(\mathbf{T})) = |P| + |\mathbf{T} \cap \mathcal{M}| - |\mathbf{T} \setminus \mathcal{M}| - 2.
\]

For example, the minimal element of \(\text{Adm}(\mathcal{M})\) consists of \(P\) together with all singleton tubes. (Throughout the entire induction process, the singleton tubes stay frozen.) By (2.7), the face corresponding to this minimal element has dimension \(-1\) and thus is the empty face of \(\mathcal{A}_{\mathcal{M}}(P)^*\). We encourage the reader to check that the face poset of the polytope in Figure 7(middle) coincides with \(\text{Adm}(\mathcal{M})\) for \(\mathcal{M} = \{P, 1234, 2345\}\).

Consider the base case \(\mathcal{M} = \{P\}\). By definition, each \(\mathcal{M}\)-admissible tubing \(\mathbf{T}\) contains \(P\) together with a tubing partition of \(P\) into frozen tubes. The order relation \(\leq_{\mathcal{M}}\) is given by coarsening, which is the opposite of (2.3). Thus we let \(\mathcal{A}_{\mathcal{M}}(P)^* := \mathcal{O}(P)^*\) be the polar dual of \(\mathcal{O}(P)\). For example, maximal elements of \(\text{Adm}(\mathcal{M})\) correspond to tubings of the form \(\mathbf{T} = \{P, I, F\}\) where \(I\) (resp., \(F\)) is a nonempty order ideal (resp., order filter). By Corollary 2.3, such tubings are in bijection with the facets of \(\mathcal{A}_{\mathcal{M}}(P)^*\). We check that (2.7) holds for the base case.

We now proceed with the induction step. Suppose we have constructed the polytope \(\mathcal{A}_{\mathcal{M}}(P)^*\) as above for some set \(\mathcal{M}\). Choose a maximal by inclusion frozen proper tube \(\tau \notin \mathcal{M}\), and let \(\mathcal{M}' := \mathcal{M} \cup \{\tau\}\). Set

\[
\mathcal{S}_\tau := \{P, \tau\} \cup \{\{i\} \mid i \in P \setminus \tau\}.
\]

Thus \(\mathcal{S}_\tau\) is an \(\mathcal{M}\)-admissible tubing. Let \(\mathcal{F}_{\mathcal{A}_{\mathcal{M}}(P)}(\mathcal{S}_\tau)\) be the corresponding face of \(\mathcal{A}_{\mathcal{M}}(P)^*\). Our goal is to perform a stellar subdivision of \(\mathcal{A}_{\mathcal{M}}(P)^*\) at the face \(\mathcal{F}_{\mathcal{A}_{\mathcal{M}}(P)}(\mathcal{S}_\tau)\).

We give some background on stellar subdivisions; see e.g. [Zie95, Exercise 3.0] or [AB20, Section 2.1]. Let \(Q\) be a polytope and \(F \subseteq Q\) be its face. Assume for simplicity that \(Q\) contains the origin in its interior. Geometrically, a stellar subdivision \(\text{Stel}(Q, F)\) of \(Q\) at the face \(F\) is obtained by choosing a point \(x\) in the relative interior of \(F\) and setting

\[
\text{Stel}(Q, F) := \text{Conv}(Q \cup \{(1 + \epsilon)x\})
\]

for some sufficiently small \(\epsilon > 0\). Combinatorially, the face poset of \(\text{Stel}(Q, F)\) is obtained from that of \(Q\) via the following procedure:

1. add a new vertex \(x' := (1 + \epsilon)x\);
2. remove all faces \(F'\) of \(Q\) containing \(F\);
3. for each face \(F'\) of \(Q\) containing \(F\) and each face \(F'' \subseteq F\) not containing \(F\), add a new face \(\text{Conv}(F'' \cup \{x'\})\) of dimension \(\dim(F'') + 1\).

Going back to our proof, we let \(F := \mathcal{F}_{\mathcal{A}_{\mathcal{M}}(P)}(\mathcal{S}_\tau), Q := \mathcal{A}_{\mathcal{M}}(P)^*\), and \(\mathcal{A}_{\mathcal{M}}(P)^* := \text{Stel}(Q, F)\). Thus the face poset of \(\mathcal{A}_{\mathcal{M}}(P)^*\) is given by steps [1]–[3] above. Let us now

\footnote{By definition, the boundary face lattice includes all faces (in particular, the empty face) except for the polytope itself.}
compare $\text{Adm}(\mathcal{M})$ to $\text{Adm}(\mathcal{M}')$ and show that $\text{Adm}(\mathcal{M}')$ is obtained from $\text{Adm}(\mathcal{M})$ by applying analogs of steps (i)–(iii).

(i) $\text{Adm}(\mathcal{M}') \setminus \text{Adm}(\mathcal{M})$ contains a tubing

$$S'_r := \{P, \tau\} \cup \{\{i\} \mid i \in P\}.$$

It corresponds to the new vertex x' of $\mathcal{A}_\mathcal{M}(P)^*.$

(ii) Let T be an \mathcal{M}-admissible tubing such that $S_r \leq_{\mathcal{M}} T$, i.e., such that $\mathcal{F}_{\mathcal{A}_\mathcal{M}}(P; S_r) \subseteq \mathcal{F}_{\mathcal{A}_\mathcal{M}}(P; T)$. Since τ was a maximal by inclusion frozen tube, by (1) we get that $\tau \in T$. In particular, T is not \mathcal{M}-admissible, thus the face $\mathcal{F}_{\mathcal{A}_\mathcal{M}}(P; T)$ is removed. Conversely, any $T \in \text{Adm}(\mathcal{M}) \setminus \text{Adm}(\mathcal{M}')$ must contain τ.

(iii) Let $S_r \leq_{\mathcal{M}} T$ be as above. Any $T' \leq_{\mathcal{M}} T$ is obtained from T by removing some melted tubes and subdividing some frozen tubes. Moreover, we have $S_r \not\leq_{\mathcal{M}} T'$ if and only if $\tau \not\in T'$ (thus τ was among the subdivided frozen tubes). In this case, we claim that $T'' := T' \cup \{\tau\}$ is an \mathcal{M}'-admissible tubing. First, because T' contains a subdivision of τ, any two tubes in T'' are either nested or disjoint. Next, we need to show that the directed graph D_T' is acyclic. Suppose otherwise that $\tau''_1 \rightarrow \tau''_2 \rightarrow \cdots \rightarrow \tau''_m \rightarrow \tau''_{m+1} = \tau''_1$ is a directed cycle in D_T'. For each $j \in [m]$, let $\tau_j \in T$ be the minimal by inclusion tube containing τ''_j. We see that $\tau''_j \in \mathcal{M}'$ if and only if $\tau_j \in \mathcal{M}'$, in which case $\tau_j = \tau''_j$. Let D_T be the directed graph obtained from T via (1.1). Let $j \in [m]$. If $\tau_j \cap \tau_{j+1} = \emptyset$ then (τ_j, τ_{j+1}) is an edge in D_T. Otherwise, τ_j and τ_{j+1} must be nested, say, $\tau_j \subseteq \tau_{j+1}$. Since $\tau_j \cap \tau_{j+1} = \emptyset$, we cannot have $\tau''_{j+1} = \tau_{j+1}$, so $\tau_{j+1} \not\in \mathcal{M}'$ is frozen, and therefore $\tau_j = \tau_{j+1}$ by (a). Because T' is itself a tubing, we must have $\tau''_i = \tau = \tau_i$ for some $i \in [m]$. Therefore not all tubes τ_j are equal to each other. We arrive at a directed cycle in D_T, a contradiction. We have shown that T'' is a tubing. Finally, because $\tau \in \mathcal{M}'$ is subdivided in T', the tubing T'' is \mathcal{M}'-admissible. This way, we obtain all \mathcal{M}'-admissible tubings containing τ.

We let $\mathcal{F}_{\mathcal{A}_\mathcal{M}'}(P; T'')$ be the face $\text{Conv}(\mathcal{F}_{\mathcal{A}_\mathcal{M}'}(P; T') \cup \{x'\})$ of $\text{Stel}(Q, F)$. We find that $\dim \mathcal{F}_{\mathcal{A}_\mathcal{M}'}(P; T'') = \dim \mathcal{F}_{\mathcal{A}_\mathcal{M}'}(P; T') + 1$, which is consistent with (2.7) since $T'' = T' \cup \{\tau\}$ and $\tau \in \mathcal{M}'$. Any \mathcal{M}'-admissible tubing not containing τ is already \mathcal{M}-admissible. This exactly parallels the description in step (iii).

We have shown that $\text{Adm}(\mathcal{M}')$ is the boundary face lattice of $\mathcal{A}_\mathcal{M}(P)^*$, completing the induction step.

We continue this process until \mathcal{M} contains all proper tubes. Then every \mathcal{M}-admissible tubing contains P and all singleton tubes. Removing them, we obtain an order-preserving bijection between $\text{Adm}(\mathcal{M})$ and the poset of proper tubings ordered by inclusion. Thus the boundary face poset $\text{Adm}(\mathcal{M})$ of $\mathcal{A}_\mathcal{M}(P)^*$ is isomorphic to the face poset of the simplicial complex $K_{\mathcal{A}_\mathcal{M}}(P)$ in Theorem 1.2.

\begin{flushright}
\text{Q.E.D.}
\end{flushright}

2.3. Properties of poset associahedra. Recall that a poset P is called a chain if its covering relations are $1 \prec_P 2 \prec_P \cdots \prec_P n$, and P is called a claw if its covering relations are $0 \prec_P 1, 0 \prec_P 2, \ldots, 0 \prec_P n$. In the following result, we identify two polytopes if they are combinatorially equivalent.

Corollary 2.7. Let P be a finite connected poset with $|P| \geq 2$.

(i) $\mathcal{A}(P)$ is a simple polytope of dimension $|P| - 2$.

(ii) Its polar dual $\mathcal{A}(P)^*$ is simplicial, but in general not flag.

(iii) For each proper tubing T, the corresponding face of $\mathcal{A}(P)$ has dimension $|P| - |T| - 2$.

(iv) The vertices of $\mathcal{A}(P)$ are in bijection with proper tubings of size $|P| - 2$.

(v) The facets of $\mathcal{A}(P)$ are in bijection with proper tubes.
(vi) Each face of $\mathcal{A}(P)$ is a product of poset associahedra.

(vii) When P is a chain, $\mathcal{A}(P)$ is the $([P] - 2)$-dimensional associahedron.

(viii) When P is a claw, $\mathcal{A}(P)$ is the $([P] - 2)$-dimensional permutohedron.

Proof. Most of these properties are simple consequences of the definitions and Theorem 1.2. We comment on some of them.

[1] Consider the poset P in Figure 8. The proper tubes $\{1, 2\}, \{3, 4\}, \{5, 6\}$ correspond to three vertices of $\mathcal{A}(P)^*$ such that any two of them form an edge of $\mathcal{A}(P)^*$. However, $T := \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$ is not a tubing since the graph D_T contains a directed cycle. Thus these three vertices do not form a 2-dimensional face of $\mathcal{A}(P)^*$, and therefore the boundary of $\mathcal{A}(P)^*$ is not a flag simplicial complex.

[6] Consider a proper tubing T. For each $\tau \in T \sqcup \{P\}$, consider the quotient $\tau / T[\tau]$ of the poset τ obtained by identifying all elements which belong to some $\tau_\prec \in T$ satisfying $\tau_\prec \subseteq \tau$. Then the face of $\mathcal{A}(P)$ corresponding to T is combinatorially equivalent to the product $\prod_{\tau \in T \sqcup \{P\}} \mathcal{A}(\tau / T[\tau])$ of such quotient poset associahedra.

Let $n := |P|$. Recall that the faces of the $(n - 2)$-dimensional associahedron are in bijection with plane rooted trees with n leaves, where the root has degree ≥ 2. Face closure relations correspond to edge contractions in such trees. In view of Definition 3.5 below, it follows that when P is a chain, plane rooted trees with n leaves are in bijection with proper tubings. Explicitly, we may assume that each plane tree is embedded in the upper half plane with the leaves lying on the x-axis. Labeling the leaves $1, 2, \ldots, n$ from left to right, each non-leaf vertex v gives rise to a tube τ_v consisting of the labels of its descendant leaves. The collection of τ_v over all non-leaf vertices v other than the root of the tree gives a proper tubing. Clearly, each proper tubing arises from a unique such plane rooted tree.

Recall that the $(n - 1)$-dimensional permutohedron Π_n is the convex hull of all vectors obtained from $(1, 2, \ldots, n)$ by permuting the coordinates. The faces of Π_n are in bijection with ordered set partitions (B_1, B_2, \ldots, B_k), where $[n] = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_k$ and each B_i is nonempty. For each $i \in [k]$, let $\tau_i := \{0\} \sqcup B_1 \sqcup \cdots \sqcup B_i$. We obtain a proper tubing $T := \{\tau_i \mid i \in [k]\}$, and the resulting map gives the desired order-preserving bijection. \qed

3. Poset associahedra as compactifications

We develop some further properties of compactifications introduced in Section 1.2 and prove Theorem 1.9. Before we proceed with the proof, we demonstrate a problem that arises when extending the definition of Axelrod–Singer compactifications to poset configuration spaces. The standard approach \cite{AS94, Sin04, LTV10} when P is a chain is to consider a family of functions

$$d_{i,j,k} : \mathcal{O}(P) \to [0, \infty), \quad d_{i,j,k}(x) := \frac{|x_i - x_j|}{|x_i - x_k|}$$
for all triples \(i, j, k \in P\) of distinct elements. The Axelrod–Singer compactification is then essentially the closure of the image of \(\partial^\circ(P)\) inside the corresponding \(|P|\)-dimensional space. In order to apply a similar construction to an arbitrary poset \(P\), one would expect to fix some set \(\text{Triples}(P)\) consisting of some of the \(\binom{|P|}{3}\) triples \((i, j, k)\), and then define \(\text{Comp}(P)\) to be the closure of the image of \(\partial^\circ(P)\) inside the corresponding \(|\text{Triples}(P)|\)-dimensional space. The following example demonstrates that this is impossible.

Example 3.1. Let \(P\) be the \(N\)-shaped poset with relations \(1 \prec P 3 \succ P 2 \prec P 4\). Thus \(\mathcal{A}(P)\) is a pentagon; see Figure 9. Let \(x^{(t)} \in \partial^\circ(P)\) be a configuration of four points on a line. We will use the definition \((1,2)\) of \(\partial^\circ(P)\) as a subset of \(\mathbb{R}P / \text{Sim}_1\). Consider a point \(x \in \mathcal{A}(P)\) obtained as the limit \(x_1^{(t)} \to a\), \(x_2^{(t)}, x_3^{(t)} \to b\), \(x_4^{(t)} \to c\). Letting \(a < b < c\) vary, we obtain a 1-dimensional face of \(\mathcal{A}(P)\). Thus there should be a triple \((i, j, k) \in \text{Triples}(P)\) such that \(d_{i,j,k}\) allows one to recover the ratio \((c - b) : (b - a)\). The set of such triples \((i, j, k)\), modulo the symmetry of \(P\) swapping \(1 \leftrightarrow 4\) and \(2 \leftrightarrow 3\), and modulo swapping \(j\) and \(k\) in \(d_{i,j,k}\), consists of \((1,2,4), (2,1,4),\) and \((1,3,4)\). Suppose \((1,2,4) \in \text{Triples}(P)\) or \((2,1,4) \in \text{Triples}(P)\). Then consider a different limit where \(x_1^{(t)}, x_2^{(t)}, x_4^{(t)} \to 0\) and \(x_3^{(t)} \to 1\). This limit should yield a single point \(y \in \mathcal{A}(P)\). However, depending on how \(x_1^{(t)}, x_2^{(t)}, x_4^{(t)}\) approach 0, the ratios \(d_{1,2,4}(x^{(t)})\) and \(d_{2,1,4}(x^{(t)})\) may converge to any numbers in \([0, \infty]\). Thus \((1,2,4), (2,1,4) \notin \text{Triples}(P)\). Similarly, if \((1,3,4) \in \text{Triples}(P)\) then we consider a limit where \(x_1^{(t)}, x_3^{(t)}, x_4^{(t)} \to 1\), \(x_2^{(t)} \to 0\). This should yield a single point \(z \in \mathcal{A}(P)\) but the ratio \(d_{1,3,4}(x^{(t)})\) again may converge to any number depending on the way we take the limit. We arrive at a contradiction. See Figure 9.

The same problem arises if we consider more general distance ratio functions \(d'_{i,j,k,l}(x) := \frac{|x_i - x_j|}{|x_k - x_l|}\). For instance, the above ratio \((c - b) : (b - a)\) may be recovered from \(d''_{1,3,2,4}\). However,\footnote{For arbitrary manifolds, one needs to include other functions keeping track of the coordinates \(x_i\) and the directions of the unit vectors \(\frac{x_i - x_j}{|x_i - x_j|}\) when the points \(x_i\) and \(x_j\) collide. In the 1-dimensional case, ignoring these extra functions does not alter the resulting compactifications.}
considering a limit $x^{(t)}_1, x^{(t)}_3 \to 1$, $x^{(t)}_2, x^{(t)}_4 \to 0$ corresponding to a vertex of $\mathcal{A}(P)$, we again conclude that $d_{1,3,2,4}$ cannot be used in the construction.

3.1. Coherent collections. Our first goal is to describe which elements of $\prod_{|\tau|>1} \Theta(\tau)$ belong to $\mathrm{Comp}(P)$. For that, we will introduce the notion of a coherent collection. Recall from (2.4) that for any tubes $\tau \subseteq \tau_+$ with $|\tau| > 1$, the map $\pi_{\Sigma=0}^\tau$ gives a projection $\mathcal{L}(\tau_+) \to \mathcal{L}(\tau)$.

Definition 3.2. An element $x \in \prod_{|\tau|>1} \Theta(\tau)$ is called coherent if

(3.1) for any $\tau \subseteq \tau_+$ with $|\tau| > 1$, there exists $\lambda \in \mathbb{R}_{>0}$ such that $\pi_{\Sigma=0}^\tau(x[\tau_+]) = \lambda x[\tau]$.

We let $\mathrm{Coh}(P)$ denote the set of points $x \in \prod_{|\tau|>1} \Theta(\tau)$ satisfying (3.1). We will see later in Proposition 3.9 that $\mathrm{Coh}(P) = \mathrm{Comp}(P)$.

Remark 3.3. For $(y, z) \in \mathbb{C}^d \times (\mathbb{C}^d \setminus \{0\})$, the condition that there exists some $\lambda \in \mathbb{C}$ satisfying $y = \lambda z$ cuts out a subvariety of $\mathbb{C}^d \times (\mathbb{C}^d \setminus \{0\})$ defined by equations $y_i z_j = y_j z_i$ for all $i, j \in [d]$. This construction is closely related to the classical notion of a blow-up in algebraic geometry; see e.g. [Har77] page 28. Thus the space $\mathrm{Coh}(P)$ may be considered a polytope-theoretic blow-up of $\Theta(P)$ along the collection of faces indexed by tubing partitions of the form (2.6). We note that there is a well-known connection between blow-ups of toric varieties and stellar subdivisions of the associated polytopes; see e.g. [Oda88] Section 1.7. It would be interesting to find some family of algebraic varieties reflecting the combinatorics of poset associahedra.

3.2. A cell decomposition. Given a point $x \in \mathrm{Coh}(P)$ and a non-singleton tube τ, we have a point $x[\tau] \in \Theta(\tau)$. We may therefore consider the corresponding tubing partition $\mathcal{B}(x[\tau])$ of τ defined in Section 2.1.

Definition 3.4. Let $x \in \mathrm{Coh}(P)$. Let $\hat{T}(x)$ be the smallest collection of tubes such that

- $\hat{T}(x)$ contains P;
- for each non-singleton $\tau \in \hat{T}(x)$, $\hat{T}(x)$ also contains all tubes in $\mathcal{B}(x[\tau])$.

In particular, $\hat{T}(x)$ contains P and all singleton tubes. We let $T(x)$ denote the set of proper tubes in $\hat{T}(x)$. For an arbitrary proper tubing T, we let \hat{T} be obtained from T by adding P and all singleton tubes.

Definition 3.5. Let \hat{T} be a collection of tubes containing P and all singleton tubes, such that any two tubes in \hat{T} are either nested or disjoint. Then \hat{T} has the following structure of a rooted tree. The tube $P \in \hat{T}$ is the root, and the singleton tubes are the leaves. For each non-singleton tube $\tau \in \hat{T}$, the set $\hat{T}[\tau]$ of its children consists of all maximal by inclusion tubes $\tau_- \in \hat{T}(x)$ satisfying $\tau_- \subseteq \tau$.

Lemma 3.6. For any $x \in \mathrm{Coh}(P)$, $T(x)$ is a proper tubing.

Proof. It is clear that any two tubes in $\hat{T} := \hat{T}(x)$ are either nested or disjoint. We need to show that the directed graph D_T is acyclic. Suppose otherwise that $\tau'_1 \to \tau'_2 \to \cdots \to \tau'_{m+1} = \tau'_1$ is a cycle in D_T. Let $\tau_+ \in \hat{T}$ be the lowest common ancestor (cf. Definition 3.5) of $\tau'_1, \tau'_2, \ldots, \tau'_{m}$. For each $j \in [m]$, let τ_j be the child of τ_+ containing τ'_j. Thus the tubes $\tau_1, \tau_2, \ldots, \tau_m$ are not all equal to each other. The children of τ_+ in \hat{T} form a tubing partition
\(\hat{T}[\tau_+] \) of \(\tau_+ \) equal to \(\mathcal{B}(x[\tau_+]) \). Thus for each \(j \in [m] \), either \(\tau_j = \tau_{j+1} \) or \(\tau_j \cap \tau_{j+1} = \emptyset \), in which case \(\tau_j \rightarrow \tau_{j+1} \) is an edge of \(D_T \). We have therefore found a cycle in \(D_T \) consisting of children of \(\tau_+ \), which contradicts the fact that they form a tubing partition of \(\tau_+ \). \(\square \)

Our next goal is to show that any point \(x \in \text{Coh}(P) \) is completely determined by the points \(x[\tau] \) for all \(\tau \in \hat{T}(x) \) (as opposed to all tubes \(\tau \) satisfying \(|\tau| > 1 \); cf. Figure 3(c,d) and Example 1.8).

Definition 3.7. Given an arbitrary subset \(A \subseteq P \) and a tubing \(\hat{T} \) with \(P \in \hat{T} \), let \(\hat{T}^{\min}_{\geq A} \) be the minimal by inclusion tube \(\tau \in \hat{T} \) satisfying \(\tau \supseteq A \).

Lemma 3.8. Let \(x \in \text{Coh}(P) \) and \(\hat{T} := \hat{T}(x) \). Let \(\tau \) be any non-singleton tube, and let \(\tau_+ := \hat{T}^{\min}_{\geq \tau} \). Then

\[
\alpha_{\tau}(x[\tau_+]) > 0 \quad \text{and} \quad x[\tau] = \rho_{\tau}(x[\tau_+]).
\]

Proof. Because \(\tau_+ \in \hat{T} \) is minimal by inclusion containing \(\tau \), we see that \(\tau \) is not contained in any tube in the tubing partition \(\hat{T}[\tau_+] = \mathcal{B}(x[\tau_+]) \). In particular, not all coordinates \(\{x_i[\tau_+] \mid i \in \tau \} \) are equal. Thus \(\alpha_{\tau}(x[\tau_+]) > 0 \) and \(\pi_{\tau=0}(x[\tau_+]) \neq 0 \). By (3.1), we have \(\lambda x[\tau] = \pi_{\tau=0}(x[\tau_+]) \), and since the right hand side is nonzero, we have \(\lambda > 0 \). It follows that \(\lambda = \alpha_{\tau}(x[\tau_+]) \), thus \(x[\tau] = \rho_{\tau}(x[\tau_+]). \) \(\square \)

Proposition 3.9. We have \(\text{Comp}(P) = \text{Coh}(P) \).

Proof. First, (3.1) is satisfied for all points in \(\rho(\mathcal{O}^o(P)) \). We explained in Remark 3.3 that (3.1) is described by polynomial equations and thus it is satisfied for the points in the closure \(\text{Comp}(P) \) of \(\rho(\mathcal{O}^o(P)) \). Therefore \(\text{Comp}(P) \subseteq \text{Coh}(P) \).

Conversely, let \(x \in \text{Coh}(P) \) and \(T := T(x) \). The following argument is borrowed from [Sin04, Section 3.4]. Choose a vector \(t = (t_\tau)_{\tau \in T} \in \mathbb{R}^T_{>0} \) such that

\[
(3.2) \quad 0 < t_\tau \ll 1 \quad \text{for all} \quad \tau \in T, \quad \text{and} \quad t_{\tau_-} \ll t_\tau \quad \text{for all} \quad \tau_-, \tau \in T \quad \text{such that} \quad \tau_- \subsetneq \tau.
\]

Define a point \(y^{(t)} \in \mathbb{R}^P \) by

\[
y_{i}^{(t)} := x_i[P] + \sum_{\tau \in T: i \in \tau} t_\tau x_i[\tau], \quad \text{for all} \quad i \in P.
\]

It is easy to see that for \(t \) sufficiently small satisfying (3.2), we have \(y^{(t)} \in \mathcal{L}^o(P) \). Let

\[
z^{(t)} := \rho(y^{(t)}) \in \prod_{|\tau| > 1} \mathcal{O}(\tau);
\]

cf. (2.5). We claim that \(\lim_{t \to 0} z^{(t)} = x \) inside \(\prod_{|\tau| > 1} \mathcal{O}(\tau) \), where the limit is taken in the above regime (3.2). In other words, we need to show that \(\lim_{t \to 0} z^{(t)}[\tau] = x[\tau] \) for each non-singleton tube \(\tau \). This is clear for \(\tau = P \). Suppose next that \(\tau \in T \). Define a point \(x^{(t)}[\tau] \in \mathcal{L}^o(\tau) \) by

\[
x_i^{(t)}[\tau] := x_i[\tau] + \sum_{\tau_- \in T: i \in \tau_- \subsetneq \tau} \frac{t_{\tau_-}}{t_\tau} x_i[\tau_-] \quad \text{for} \quad i \in \tau.
\]

Thus \(z^{(t)}[\tau] = \frac{1}{\alpha_{\tau}(x^{(t)}[\tau])} a^{(t)}[\tau] \). By (3.2), we have \(a^{(t)}[\tau] \rightarrow a[\tau] \) inside \(\mathcal{L}(\tau) \) as \(t \to 0 \). Thus \(\alpha_{\tau}(x^{(t)}[\tau]) \to 1 \) and \(z^{(t)}[\tau] \to x[\tau] \) as \(t \to 0 \). We have shown the result for \(\tau \in T \). For any proper tube \(\tau \notin T \), the result follows by Lemma 3.8 for \(\tau_+ := \hat{T}^{\min}_{\geq \tau} \), the map
\[\rho_\tau : \mathcal{L}(\tau_+) \to \mathcal{O}(\tau) \] is continuous where it is defined, and its domain of definition includes the points \(x_{[\tau_+]} \) and \(z^{(t)}_{[\tau_+]} \).

Definition 3.10. Given a proper tubing \(T \), let

\[\text{Comp}_T(P) := \{ x \in \text{Comp}(P) \mid T(x) = T \}. \]

Recall from Definition 3.5 that for a proper tubing \(T \) and a tube \(\tau \in \hat{T} \), we denote by \(\hat{T}[^\tau] \) the tubing partition of \(\tau \) consisting of all children of \(\tau \) in the rooted tree \(\hat{T} \).

Proposition 3.11. For each proper tubing \(T \), we have a homeomorphism

\[\text{Comp}_T(P) \cong \prod_{\tau \in T \cup \{P\}} \mathcal{F}_0^G(\tau, \hat{T}[\tau]). \]

Proof. Let \(x \in \text{Comp}_T(P) \). By Definition 3.4 we have

\[(x[\tau])_{\tau \in T \cup \{P\}} \in \prod_{\tau \in T \cup \{P\}} \mathcal{F}_0^G(\tau, \hat{T}[\tau]). \]

We claim that the map \(x \mapsto (x[\tau])_{\tau \in T \cup \{P\}} \) is a homeomorphism. To describe the inverse of this map, choose a point \((x[\tau])_{\tau \in T \cup \{P\}} \) as in (3.3). Take any non-singleton tube \(\tau \) and let \(\tau_+ := \hat{T}[^\tau]_{\leq \tau}. \) By Lemma 3.8 we must set \(x[\tau] := \rho_\tau(x[\tau_+]) \). This defines a point \(x \in \prod_{|\tau|>1} \mathcal{O}(\tau). \) We claim that \(x \in \text{Coh}(P) \), i.e., that it satisfies (3.1).

Let \(\tau \subseteq \tau_+ \) be arbitrary tubes with \(|\tau| > 1 \). Our goal is to show that \(\pi_{\Sigma=0}(x[\tau_+]) = \lambda x[\tau] \) for some \(\lambda \in \mathbb{R}_{>0}. \) Let \(\tau' := \hat{T}[^\tau]_{\leq \tau_+} \) and \(\tau'_+ := \hat{T}[^\tau]_{\geq \tau_+} \), thus \(\tau' \subseteq \tau'_+ \). Suppose first that \(\tau' \subseteq \tau'_+. \) Then \(\tau' \) is a subset of some tube in \(\hat{T}[\tau'_+], \) and thus \(\pi_{\Sigma=0}(x[\tau'_+]) = 0. \) Since \(x[\tau_+] \) is proportional to \(\pi_{\Sigma=0}(x[\tau'_+]) \), and since \(\pi_{\Sigma=0} \circ \pi_{\Sigma=0} = \pi_{\Sigma=0} \circ \pi_{\Sigma=0} = \pi_{\Sigma=0} \) (cf. Remark 2.4), it follows that \(\pi_{\Sigma=0}(x[\tau_+]) = 0. \) Thus (3.1) holds with \(\lambda = 0. \) Suppose now that \(\tau' = \tau'_+ \) and let

\[y := x[\tau'] = x[\tau'_+]. \]

Then \(x[\tau] \) is a positive scalar multiple of \(\pi_{\Sigma=0}(y) \) and \(x[\tau_+] \) is a positive scalar multiple of \(\pi_{\Sigma=0}(y). \) Again using \(\pi_{\Sigma=0} \circ \pi_{\Sigma=0} = \pi_{\Sigma=0} \), we find that \(x[\tau] \) is a positive scalar multiple of \(\pi_{\Sigma=0}(x[\tau_+]). \) Thus \(x \in \text{Coh}(P) = \text{Comp}(P). \) Moreover, Definition 3.4 implies that \(x \in \text{Comp}_T(P). \)

We have constructed a bijection between \(\text{Comp}_T(P) \) and \(\prod_{\tau \in T \cup \{P\}} \mathcal{F}_0^G(\tau, \hat{T}[\tau]). \) This bijection and its inverse are clearly continuous, thus the two spaces are homeomorphic.

Corollary 3.12. We have a disjoint union

\[\text{Comp}(P) = \bigcup_T \text{Comp}_T(P), \]

where for each proper tubing \(T \), the cell \(\text{Comp}_T(P) \) is homeomorphic to \(\mathbb{R}^{|P|-|T|-2}. \)

Proof. By Proposition 3.11 \(\text{Comp}_T(P) \) is homeomorphic to an open ball. By Proposition 2.2 its dimension is given by

\[\sum_{\tau \in T \cup \{P\}} (|\hat{T}[\tau]| - 2) = \sum_{\tau \in T \cup \{P\}} |\hat{T}[\tau]| - 2|T| - 2 = |T| + |P| - 2|T| - 2 = |P| - |T| - 2. \]

The first and the third equalities are trivial, and the second equality follows from the fact that each tube \(\tau_+ \in \hat{T} \setminus \{P\} \) appears in \(\hat{T}[\tau] \) for exactly one \(\tau \in T \cup \{P\}. \)
Lemma 3.13. The closure of each cell $\text{Comp}_T(P)$ in $\text{Comp}(P)$ is given by
\[
\overline{\text{Comp}_T(P)} = \bigcup_{T' \supseteq T} \text{Comp}_{T'}(P),
\]
where the union is taken over proper tubings T' containing T.

Proof. Suppose that a point $x \in \overline{\text{Comp}_T(P)}$ belongs to $\overline{\text{Comp}_T(P)}$. First, we show that $T' \supseteq T$. Let $\tau \in T$ and $\tau_+ := \hat{T}^\text{min}_{\geq \tau}$. We need to show that $\tau \in T'$. If $\tau = \tau_+$ then we are done, so assume $\tau \subsetneq \tau_+$.

We claim that for any point $y \in \text{Comp}_{T'}(P)$, τ is contained inside some tube $\tau' \in \mathcal{B}(y[\tau_+])$ (which therefore satisfies $\tau' \subsetneq \tau_+$. Indeed, by Lemma 3.8, $y[\tau_+]$ is obtained as $\rho_{\tau_+}(y[\tau'_+])$ for $\tau'_+ := \hat{T}^\text{min}_{\geq \tau'}$. We see that $\tau', \tau'_+ \in \hat{T}$ and $\tau \subsetneq \tau_+ \subsetneq \tau'_+$, so τ is contained inside some tube in $\mathcal{B}(y[\tau'_+])$. Since $\tau \subsetneq \tau_+$, it follows that τ is contained inside some tube $\tau' \in \mathcal{B}(y[\tau_+])$.

Since x is the limit of a sequence of points in $\text{Comp}_T(P)$, we see that τ is contained inside some tube $\tau'' \in \mathcal{B}(x[\tau_+])$. By Definition 3.14, we have $\tau'' \in \mathcal{T}$, and since $\tau \subsetneq \tau'' \subsetneq \tau_+$, we get a contradiction with the minimality of τ_+. We have shown that $T' \supseteq T$.

Conversely, suppose that $x \in \text{Comp}_{T'}(P)$ for some $T' \supseteq T$. Our goal is to show that $x \in \overline{\text{Comp}_T(P)}$. We modify the construction in the proof of Proposition 3.9. Choose a vector $t = (t_\tau)_{\tau \in T \cap T'}$. For $\tau \in T \cup \{P\}$, define a vector $y^{(t)}[\tau]$ by
\[
y^{(t)}_i[\tau] := x_i[\tau] + \sum_{\tau_- \in T \setminus T : i \in \tau_- \subset \tau} t_{\tau_-} x_{i}[\tau_-] \quad \text{for } i \in \tau.
\]
For $t \in \mathbb{R}^{T \cap T'}_{>0}$ sufficiently small satisfying (3.2), we get $y^{(t)}[\tau] \in \mathcal{L}(\tau) \setminus \{0\}$. Let $z^{(t)}[\tau] := \rho_{\tau}(y^{(t)}[\tau]) \in \mathcal{O}(\tau)$.

We see that $z^{(t)}[\tau] \in \mathcal{F}_{\hat{\mathcal{O}}}(\tau, \hat{T}[\tau])$. Repeating this for each $\tau \in T \cup \{P\}$, we obtain a point in $\prod_{\tau \in T \cap T'} \mathcal{F}_{\hat{\mathcal{O}}}(\tau, \hat{T}[\tau])$, which by Proposition 3.11 gives a point $z^{(t)} \in \text{Comp}_T(P)$. Similarly to the argument in the proof of Proposition 3.9, we get $z^{(t)} \to x$ as $t \to 0$. \qed

3.3. Collapsing and expanding maps. We now come to the most technical part of our proof. We will construct a family of maps which will be later used to show that the closure $\overline{\text{Comp}_T(P)}$ of each cell is a topological manifold with boundary. Throughout this section, we fix two tubings $\tau \subsetneq \tau_+$. Let $\vert \tau \vert > 1$.

Definition 3.14. Given a proper tubing T, we say that $\tau, \tau_+ \in \hat{T}$ and τ_+ is the parent of τ in \hat{T}, i.e., $\tau \in \hat{T}[\tau_+]$. We denote by $\text{Adj}(\tau, \tau_+)$ the set of proper tubings \hat{T} such that τ, τ_+ are adjacent in \hat{T}. We get
\[
\text{Adj}(\tau, \tau_+) := \bigcup_{T \in \text{adj}(\tau, \tau_+)} \text{Comp}_T(P), \quad \text{Adj}'(\tau, \tau_+) := \bigcup_{T \in \text{adj}(\tau, \tau_+)} \text{Comp}_T(P) \cup \text{Comp}_{T \setminus \{P\}}(P).
\]

Next, we write
\[
P_{\tau_+} := \{(i, j) \in \tau \times (\tau_+ \setminus \tau) \mid i \prec_P j\} \quad \text{and} \quad P_{\tau_+} := \{(j, i) \in (\tau_+ \setminus \tau) \times \tau \mid j \prec_P i\}.
\]

For $x \in \text{Adj}(\tau, \tau_+)$, let
\[
t_{\tau, \tau_+}^{\text{max}}(x) := \sup \left\{ t \in \mathbb{R} \left| \begin{array}{ll} x_i[\tau_+] + tx_i[\tau] < x_j[\tau_+] \quad & \text{for } (i, j) \in P_{\tau_+}, \text{ and} \\ x_j[\tau_+] < x_i[\tau_+] + tx_i[\tau] \quad & \text{for } (j, i) \in P_{\tau_+} \end{array} \right. \right\}.
\]
Note that the set on the right hand side of (3.3) is nonempty since it contains $t = 0$. Thus we get a map $t_{τ,τ_+}^{\text{max}} : \text{Adj}(τ, τ_+) → [0, ∞]$. We treat $[0, ∞]$ as a topological space homeomorphic to a line segment.

Lemma 3.15. The map $t_{τ,τ_+}^{\text{max}}$ is continuous on $\text{Adj}(τ, τ_+)$ and has image in $(0, ∞]$.

Proof. We will show instead that $\frac{1}{t_{τ,τ_+}^{\text{max}}}$ is a continuous function $\text{Adj}(τ, τ_+) → [0, ∞)$. Observe that $x_i[τ_+] < x_j[τ_+]$ for all $x ∈ \text{Adj}(τ, τ_+)$ and $(i, j) ∈ P_{τ_+}^τ$. Thus $f_{i,j}(x) := \frac{x_i[τ]}{x_j[τ_+] - x_i[τ_+]}$ is a continuous function $\text{Adj}(τ, τ_+) → R$, and therefore $f_{i,j}^+(x) := \max(f_{i,j}(x), 0)$ is a continuous function with image in $R_{≥0}$. Similarly, for $(j, i) ∈ P_{τ_+}^τ$, let $g_{i,j}(x) := \frac{x_j[τ]}{x_i[τ] - x_j[τ_+]}$ and $g_{i,j}^+(x) := \max(g_{i,j}(x), 0)$. It follows from (3.5) that

$$\frac{1}{t_{τ,τ_+}^{\text{max}}(x)} = \min(\{f_{i,j}^+(x) \mid (i, j) ∈ P_{τ_+}^τ\} \cup \{g_{i,j}^+(x) \mid (j, i) ∈ P_{τ_+}^τ\}) ∈ [0, ∞).$$

In particular, $\frac{1}{t_{τ,τ_+}^{\text{max}}}$ is continuous since it is the minimum of several continuous functions. □

Define the **expanding set**

$$\text{Ex}(τ, τ_+) := \{(x, t) ∈ \text{Adj}(τ, τ_+) × [0, ∞) \mid 0 ≤ t < t_{τ,τ_+}^{\text{max}}(x)\}.$$

Similarly, define the **collapsing set**

$$\text{Coll}(τ, τ_+) := \left\{x ∈ \text{Adj}′(τ, τ_+) \mid \text{avg}_τ(x[τ_+]) < x_j[τ_+] \text{ for } (i, j) ∈ P_{τ_+}^τ, \text{ and } x_j[τ_+] < \text{avg}_τ(x[τ_+]) \text{ for } (j, i) ∈ P_{τ_+}^τ \right\}.$$

The following result is a straightforward consequence of the definitions and Lemma 3.15.

Lemma 3.16.

(i) $\text{Ex}(τ, τ_+)$ is an open subset of $\text{Adj}(τ, τ_+) × [0, ∞)$ containing $\text{Adj}(τ, τ_+) × \{0\}$.

(ii) $\text{Coll}(τ, τ_+)$ is an open subset of $\text{Adj}′(τ, τ_+) × [0, ∞)$ containing $\text{Adj}(τ, τ_+)$. □

Finally, we introduce expanding and collapsing maps. We first define the expanding map

$$\text{ex}_{τ,τ_+} : \text{Ex}(τ, τ_+) → \text{Coll}(τ, τ_+).$$

Let $(x, t) ∈ \text{Ex}(τ, τ_+)$. If $t = 0$, we set $\text{ex}_{τ,τ_+}(x, t) := x$. If $t > 0$, the image $\text{ex}_{τ,τ_+}(x, t) = y$ is described as follows. Let $T := T(x)$, thus $τ, τ_+ ∈ T$, and let $T' := T \setminus \{τ\}$. The point y will belong to $\text{Comp}_T(P)$, thus by Proposition 3.11 it suffices to specify a point $y[τ'] ∈ F_0(τ', T'[τ'])$ for each $τ' ∈ T' \cup \{P\}$. For $τ' ∈ T' \setminus \{τ_+\}$, set $y[τ'] := x[τ']$. Let $z ∈ Z(τ_+) \setminus \{0\}$ be defined by

$$z_i := \begin{cases} x_i[τ_+], & \text{if } i ∈ τ_+ \setminus τ; \\ x_i[τ_+] + tx_i[τ], & \text{if } i ∈ τ. \end{cases}$$

Set $y[τ_] := \frac{1}{z(τ)}z$. Thus indeed $y[τ'] ∈ F_0(τ', T'[τ'])$ for each $τ' ∈ T' \cup \{P\}$, and by Proposition 3.11 this data gives rise to a point $y ∈ \text{Comp}_T(P)$. Since the conditions in the definition of $\text{Coll}(τ, τ_+)$ are satisfied for z (where $\text{avg}_τ(z) = x_i[τ_+]$ for any $i ∈ τ$), we find $y ∈ \text{Coll}(τ, τ_+)$. We set $\text{ex}_{τ,τ_+}(x) := y$.

Next, we describe the collapsing map

$$\text{coll}_{τ,τ_+} : \text{Coll}(τ, τ_+) → \text{Ex}(τ, τ_+).$$
We will later see that it is the set-theoretic inverse of \(\text{ex}_{\tau, \tau_+} \). Let \(y \in \text{Coll}(\tau, \tau_+) \) and let \(T' := T(y) \). If \(\tau \in T' \), we set \(\text{coll}(y) := (y, 0) \). Suppose now that \(\tau \notin T' \) and set \(T := T' \cup \{ \tau \} \). Introduce a point \(z \in \mathcal{L}^{\text{adj}}(\tau_+) \) given by

\[
\begin{align*}
 z_i := \begin{cases}
 y_i[\tau_+], & \text{if } i \in \tau_+ \setminus \tau; \\
 \text{avg}_\tau(y[\tau_+]), & \text{if } i \in \tau.
 \end{cases}
\end{align*}
\]

(3.8)

Set \(x[\tau'] := y[\tau'] \) for all non-singleton \(\tau' \in \widehat{T} \setminus \{ \tau_+ \} \) (including the case \(\tau' = \tau \)), thus \(x[\tau'] \in \mathcal{F}^{\text{adj}}(\tau', T[\tau']) \). Set \(x[\tau_+] := \frac{1}{\alpha_{\tau_+}(z)} z \). Applying Proposition 3.11, we obtain a point \(x \in \text{Comp}_T(P) \). We let \(t \in \mathbb{R}_{>0} \) be the unique number satisfying

\[
\frac{1}{\alpha_{\tau_+}(z)} y_i[\tau_+] = x_i[\tau_+] + tx_i[\tau] \quad \text{for all } i \in \tau.
\]

We see that \(0 < t < t_{\tau, \tau_+}^{\text{max}}(x) \) since the inequalities in the definition (3.5) of \(t_{\tau, \tau_+}^{\text{max}} \) are satisfied for \(y[\tau_+] \). We set \(\text{coll}_{\tau, \tau_+}(y) := (x, t) \in \text{Ex}(\tau, \tau_+) \).

Proposition 3.17. The maps \(\text{ex}_{\tau, \tau_+} \) and \(\text{coll}_{\tau, \tau_+} \) are mutually inverse homeomorphisms between \(\text{Ex}(\tau, \tau_+) \) and \(\text{Coll}(\tau, \tau_+) \).

Proof. The fact that these maps are set-theoretic inverses of each other follows by construction. It remains to check that both maps are continuous. Let \((x, t) \in \text{Ex}(\tau, \tau_+) \). If \(t > 0 \) then \(\text{ex}_{\tau, \tau_+} \) is obviously continuous at \((x, t)\), so suppose \(t = 0 \). Choose a sequence \((x^{(n)}, t^{(n)}) \in \text{Ex}(\tau, \tau_+) \) satisfying \(0 \leq t^{(n)} < t_{\tau, \tau_+}^{\text{max}}(x^{(n)}) \) and converging to \((x, 0)\) as \(n \to \infty \). Let \(y^{(n)} := \text{ex}_{\tau, \tau_+}(x^{(n)}, t^{(n)}) \). Since \(\text{ex}_{\tau, \tau_+}(x, 0) = x \), we need to show that \(\lim_{n \to \infty} y^{(n)} = x \).

Without loss of generality, we may assume that \(x^{(n)} \in \text{Comp}_{T'}(P) \) for some fixed \(T' \).

Letting \(T := T(x) \), we see that \(T' \subseteq T \) by Lemma 3.13. Since \(x, x^{(n)} \in \text{Adj}(\tau, \tau_+) \), we have \(T, T' \in \text{adj}(\tau, \tau_+) \), thus \(\tau, \tau_+ \in \widehat{T} \subseteq \widehat{T} \). Let \(\tau' \) be any non-singleton tube, and let \(\tau'_+ := \widehat{T}_{\tau'_+^{\min}} \). We consider four cases:

1. \(\tau'_+ \neq \tau, \tau_+ \);
2. \(\tau'_+ = \tau \);
3. \(\tau'_+ = \tau_+ \) and \(\tau'_+ \cap \tau = \emptyset \);
4. \(\tau'_+ = \tau_+ \) and \(\tau'_+ \cap \tau \neq \emptyset \).

We use Lemma 3.8 to show that in cases (1) and (3) we have \(y^{(n)}[\tau'] = x^{(n)}[\tau'] \). First, in case (1)

\[
\begin{align*}
 x^{(n)}[\tau'] &= \rho_{\tau'}(x^{(n)}[\tau'_+]) = \rho_{\tau'}(y^{(n)}[\tau'_+]) = y^{(n)}[\tau'].
\end{align*}
\]

In case (2), by (3.7), we have \(x^{(n)}[\tau] = \rho_{\tau}(y^{(n)}[\tau_+]) \), and thus

\[
\begin{align*}
 x^{(n)}[\tau'] &= \rho_{\tau'}(x^{(n)}[\tau]) = \rho_{\tau'}(\rho_{\tau}(y^{(n)}[\tau_+]))) = \rho_{\tau'}(y^{(n)}[\tau_+]) = y^{(n)}[\tau'].
\end{align*}
\]

In case (3), since \(\rho_{\tau'}(z) \) depends only on the coordinates \(z_i \) for \(i \in \tau' \), we get

\[
\begin{align*}
 x^{(n)}[\tau'] &= \rho_{\tau'}(x^{(n)}[\tau_+]) = \rho_{\tau'}(y^{(n)}[\tau_+]) = y^{(n)}[\tau'].
\end{align*}
\]

Therefore in cases (1) and (3) we find

\[
\begin{align*}
 \lim_{n \to \infty} y^{(n)}[\tau'] = \lim_{n \to \infty} x^{(n)}[\tau'] = x[\tau'], \quad \text{since } \lim_{n \to \infty} x^{(n)} = x.
\end{align*}
\]

In case (4), because \(\tau, \tau_+ \) are adjacent in \(\widehat{T} \), we get \(\widehat{T}^{\tau_+_{\min, \tau'}} = \tau_+ \). Thus \(y^{(n)}[\tau'] = \rho_{\tau'}(y^{(n)}[\tau_+]) \) and \(x[\tau'] = \rho_{\tau'}(x[\tau_+]) \). By construction (3.7), we have \(y^{(n)}[\tau_+] \to x[\tau_+] \) as \(n \to \infty \), which implies the result by the continuity of \(\rho_{\tau'} \). We have shown that the map \(\text{ex}_{\tau, \tau_+} \) is continuous.
We now check the continuity of \(\text{coll}_{\tau,\tau^+} \). Let \(y \in \text{Col}l(\tau,\tau^+) \) with \(T := T(y) \). If \(\tau \notin T \) then clearly \(\text{coll}_{\tau,\tau^+} \) is continuous at \(y \), so assume \(\tau \in T \). Thus \(\text{coll}_{\tau,\tau^+}(y) = (y,0) \). Choose a sequence \((y^{(n)}) \) in \(\text{Col}l(\tau,\tau^+) \) converging to \(y \), and assume that \(T'' := T(y^{(n)}) \) is fixed. By Lemma 3.13, it satisfies \(T'' \subseteq T \). It \(\tau \in T'' \) then \(\text{coll}_{\tau,\tau^+}(y^{(n)}) = (y^{(n)},0) \) converges to \(y \) as \(n \to \infty \), so assume \(\tau \notin T'' \), and let \(T' := T'' \cup \{\tau\} \). We again have \(T,T' \in \text{adj}(\tau,\tau^+) \).

Let \((x^{(n)},t^{(n)}) := \text{coll}_{\tau,\tau^+}(y^{(n)}) \), thus \(t^{(n)} > 0 \) and \(T(x^{(n)}) = T' \). Let \(\tau' \) be any non-singleton tube, and let \(\tau'_+ := \tau'_\text{min} \). Considering cases \([1],[4]\) above, we check that

\[
\lim_{n \to \infty} x^{(n)} = y. \tag{3.9}
\]

It remains to show that \(t^{(n)} \to 0 \) as \(n \to \infty \). Let \(z \) and \(z^{(n)} \) be obtained respectively from \(y \) and \(y^{(n)} \) via (3.8). Thus \(\lim_{n \to \infty} z^{(n)} = z \). Choose \(i,j \in \tau \). For each \(n \), \(t^{(n)} \)

\[
\frac{1}{\alpha_{\tau^+}(z^{(n)})}(y_j^{(n)}[\tau^+] - y_i^{(n)}[\tau^+]) = (x_j^{(n)}[\tau^+] - x_i^{(n)}[\tau^+]) + t^{(n)}(x_j^{(n)}[\tau^+] - x_i^{(n)}[\tau^+]).
\]

By (3.9), \(x_j^{(n)}[\tau^+] - x_i^{(n)}[\tau^+] \) has a positive limit \(x_j[\tau^+] - x_i[\tau^+] \), and since we have

\[
\frac{1}{\alpha_{\tau^+}(z)}(y_j[\tau^+] - y_i[\tau^+]) = (x_j[\tau^+] - x_i[\tau^+]) + t(x_j[\tau] - x_i[\tau]) \quad \text{for } t = 0,
\]

we find \(t^{(n)} \to 0 \) as \(n \to \infty \).

3.4. \(\text{Comp}(P) \) is a topological manifold with boundary. Our next goal is to show that \(\text{Comp}(P) \) — as well as each cell closure \(\text{Comp}_T(P) \) — is a topological manifold with boundary.

Fix two proper tubings \(T', \subseteq T \). Let

\[
T \setminus T' = \{\tau^{(1)},\ldots,\tau^{(m)}\} \tag{3.10}
\]

be ordered by inclusion so that \(\tau^{(i)} \subseteq \tau^{(j)} \) implies \(i \leq j \). For \(i \in [m] \), let \(\tau_+^{(i)} \supseteq \tau^{(i)} \) be the parent of \(\tau^{(i)} \) in \(\widehat{T} \) (cf. Definition 3.5).

Let \((x_0,t) \in \text{Comp}_T(P) \times [0,\infty)^m \). We give the following inductive definition. We say that \((x_0,t) \) is \(0 \)-expandable and set \(\text{ex}^{(0)}_{T,T'}(x_0,t) := x_0 \). For each \(i = 1,2,\ldots,m \), assume that \((x_0,t) \) is \((i-1) \)-expandable and set \(x_{i-1} := \text{ex}^{(i-1)}_{T,T'}(x_0,t) \). We say that \((x_0,t) \) is \(i \)-expandable if \((x_{i-1},t_i) \in \text{Ex}(\tau^{(i)},\tau_+^{(i)}) \). In this case, we define \(\text{ex}^{(i)}_{T,T'}(x_0,t) := \text{ex}^{(i)}_{T,T'}(x_{i-1},t_i) \). Let

\[
\text{Ex}(T,T') := \{(x_0,t) \in \text{Comp}_T(P) \times [0,\infty)^m \mid (x_0,t) \text{ is } m \text{-expandable}\}.
\]

We thus get a map \(\text{ex}_{T,T'} := \text{ex}^{(m)}_{T,T'} : \text{Ex}(T,T') \to \text{Comp}(P) \).

Conversely, set

\[
\text{Star}(T,T') := \bigsqcup_{T' \subseteq T' \subseteq T} \text{Comp}_T(P).
\]

Clearly, the image of \(\text{ex}_{T,T'} \) is contained in \(\text{Star}(T,T') \). Let \(y_m \in \text{Star}(T,T') \). We say that \(y_m \) is \(m \)-collapsible and define \(\text{coll}^{(m)}(y_m) := y_m \). For each \(i = m,m-1,\ldots,1 \), assume that \(y_m \) is \(i \)-collapsible and that we have defined a point \(\text{coll}^{(i)}(y_m) = (y_i,t^{(i)}) \), where \(t^{(i)} = (t_m,t_{m-1},\ldots,t_{i+1}) \in [0,\infty)^{m-i} \). We say that \(y_m \) is \((i-1) \)-collapsible if \(y_i \in
Coll($\tau^{(i)}$, $\tau_{+}^{(i)})$. In this case, denoting $(y_{i-1}, t_{i}) := \text{coll}_{\tau^{(i)}, \tau_{+}^{(i)}}(y_{i})$, we define $\text{coll}^{(i-1)}(y_{m}) := (y_{i-1}, (t_{m}, t_{m-1}, \ldots, t_{i+1}, t_{i}))$. Let

$$\text{Coll}(T, T') := \{y_{m} \in \text{Star}(T, T') \mid y_{m} \text{ is 0-collapsible}\}.$$

We thus have a map $\text{coll}_{T, T'} := \text{coll}^{(0)}_{T, T'} : \text{Coll}(T, T') \to \text{Comp}_{T}(P) \times [0, \infty)^{m}$. By Proposition 3.17, $\text{ex}_{T, T'}$ and $\text{coll}_{T, T'}$ form a pair of mutually inverse homeomorphisms between $\text{Ex}(T, T')$ and $\text{Coll}(T, T')$.

Lemma 3.18.

(i) $\text{Ex}(T, T')$ is an open subset of $\text{Comp}_{T}(P) \times [0, \infty)^{m}$ containing $\text{Comp}_{T}(P) \times \{0\}$.

(ii) $\text{Coll}(T, T')$ is an open subset of $\text{Comp}_{T'}(P)$ containing $\text{Comp}_{T}(P)$.

Proof.

(i) For $i = 0, 1, \ldots, m$, let $\text{Ex}^{(i)}(T, T') \subseteq \text{Comp}_{T}(P) \times [0, \infty)^{m}$ be the set of i-expandable points. Thus $\text{Ex}^{(0)}(T, T') = \text{Comp}_{T}(P) \times [0, \infty)^{m}$ and $\text{Ex}^{(m)}(T, T') = \text{Ex}(T, T')$. We proceed by induction on $i = 1, 2, \ldots, m$. Suppose that $\text{Ex}^{(i-1)}(T, T')$ is open inside $\text{Comp}_{T}(P) \times [0, \infty)^{m}$ and contains $\text{Comp}_{T}(P) \times \{0\}$. We have

$$\text{Ex}^{(i)}(T, T') = \{(x_{0}, t) \in \text{Ex}^{(i-1)}(T, T') \mid (\text{ex}_{T, T'}^{(i-1)}(x_{0}, t), t_{i}) \in \text{Ex}(\tau^{(i)}, \tau_{+}^{(i)})\}.$$

Observe that for any $(x_{0}, t) \in \text{Ex}^{(i-1)}(T, T')$, the point $x_{i-1} := \text{ex}_{T, T'}^{(i-1)}(x_{0}, t)$ belongs to $\text{Adj}(\tau^{(i)}, \tau_{+}^{(i)})$ since the tubes in (3.10) are ordered by inclusion. In order for (x_{i-1}, t_{i}) to belong to $\text{Ex}(\tau^{(i)}, \tau_{+}^{(i)})$, we must have $t^{(i)} < \tau^{(i)}_{+}^{(i)}(x_{i-1})$. By Lemma 3.16, $\text{Ex}(\tau^{(i)}, \tau_{+}^{(i)})$ is open in $\text{Adj}(\tau^{(i)}, \tau_{+}^{(i)})$. Since the maps $\text{ex}_{T, T'}^{(i-1)}$ and $t^{(i)}$ are continuous, it follows that $\text{Ex}^{(i)}(T, T')$ is open in $\text{Comp}_{T}(P) \times [0, \infty)^{m}$. By construction, it contains $\text{Comp}_{T}(P) \times \{0\}$. This finishes the induction step.

(ii) Similarly, for $i = m, m-1, \ldots, 0$, let $\text{Coll}^{(i)}(T, T') \subseteq \text{Star}(T, T')$ consist of all i-collapsible points y_{m}. Denote $(y_{i}, t^{(i)}) := \text{coll}^{(i)}(y_{m})$ as above. It follows that $y_{i} \in \text{Adj'}(\tau^{(i)}, \tau_{+}^{(i)})$ for each i. By Lemma 3.16, $\text{Coll}(\tau^{(i)}, \tau_{+}^{(i)})$ is an open subset of $\text{Adj'}(\tau^{(i)}, \tau_{+}^{(i)})$. Thus each $\text{Coll}^{(i)}(T, T')$ is an open subset of $\text{Star}(T, T')$, which is an open subset of $\text{Comp}_{T}(P)$.

By construction, $\text{Coll}^{(i)}(T, T')$ contains $\text{Comp}_{T}(P)$ for each $i = m, m-1, \ldots, 0$.

Corollary 3.19. Each cell closure

$$\text{Comp}_{T}(P) = \bigcup_{T \supseteq T'} \text{Comp}(P)$$

is a topological manifold with boundary

$$\partial \text{Comp}_{T}(P) = \bigcup_{T \supseteq T'} \text{Comp}_{T}(P).$$

Note that $\text{Comp}(P) = \overline{\text{Comp}}_{0}(P)$ appears in the above corollary as a special case.

Proof. Choose a point $y \in \overline{\text{Comp}}_{0}(P)$ and let $T = T(y)$. We have constructed a homeomorphism $\text{Ex}(T, T') \cong \text{Coll}(T, T')$. We have $y \in \text{Coll}(T, T')$ and $(y, 0) \in \text{Ex}(T, T')$. Since $\text{Ex}(T, T')$ is open, we can choose an open neighborhood $U \times [0, \epsilon)^{m} \subset \text{Ex}(T, T')$ of $(y, 0)$ such that U is homeomorphic to an open ball. Then the image of $U \times [0, \epsilon)^{m}$ under $\text{ex}_{T, T'}$ is an open neighborhood of y inside $\text{Coll}(T, T')$, which is open inside $\overline{\text{Comp}}_{T'}(P)$. Thus
admits an open neighborhood inside \(\text{Comp}_T(P) \), homeomorphic to \(U \times [0, \epsilon]^m \), where \(m = |T| \setminus |T'| \). If \(m > 0 \) then \(U \times [0, \epsilon]^m \) is homeomorphic to a half-space, and if \(m = 0 \) then \(U \) is homeomorphic to an open ball.

Proof of Theorem 1.9. Since \(\text{Comp}(P) \) is a subset of \(\prod_{|\tau| > 1} \mathcal{O}(\tau) \), it is Hausdorff. We have constructed a stratification of \(\text{Comp}(P) \) into cells so that the closure of each cell is a topological manifold with boundary, and the boundary of each cell is the union of lower cells. Moreover, the poset of cell closures (i.e., the poset of proper tubings ordered by reverse inclusion) is isomorphic to the face poset of the polytope \(\mathcal{A}(P) \). It is then a standard application of the generalized Poincaré conjecture \cite{Sma61,Fre82,Per02,Per03a,Per03b} that \(\text{Comp}(P) \) is a regular CW complex homeomorphic to \(\mathcal{A}(P) \). We outline a proof sketch and refer to \cite[GKL19 Section 3.2]{GKL19} for full details.

The proof proceeds by induction on cell dimension. Given a cell \(\text{Comp}_T(P) \), by the induction hypothesis, the closure of each cell in \(\partial \text{Comp}_T(P) \) is homeomorphic to a closed ball, with boundary homeomorphic to a sphere. This endows \(\partial \text{Comp}_T(P) \) with the structure of a regular CW complex. Its cell closure poset is isomorphic to the face poset of the boundary of \(\mathcal{A}(P) \) labeled by \(T \). Thus it follows from the results of \cite{Bjo84} that \(\partial \text{Comp}_T(P) \) is homeomorphic to a sphere. Since \(\text{Comp}_T(P) \) is a topological manifold with boundary, by an application of the generalized Poincaré conjecture (see \cite[Dav08 Theorem 10.3.3(ii)]{Dav08} or \cite[GKL19 Theorem 3.10]{GKL19}), \(\text{Comp}_T(P) \) is homeomorphic to a closed ball. This constitutes the induction step.

\[\square \]

4. Affine Poset Cyclohedra

Let \(\tilde{P} \) be an affine poset of order \(\tilde{P} = n \geq 1 \). We explain how our results on poset associahedra extend to affine poset cyclohedra. For the most part, the proofs are completely analogous; we indicate the places where they differ from their poset associahedra counterparts. Throughout this section, by tubes and tubings we mean \(\tilde{P} \)-tubes and \(\tilde{P} \)-tubings, respectively.

For our purposes, it will be more convenient to slightly change the definition \((1.4)\) of \(\mathcal{O}(\tilde{P}) \) and \(\mathcal{O}^\circ(\tilde{P}) \) and work with \(\mathbb{R}^{\tilde{P}}_{\Sigma=0} \) rather than with \(\mathbb{R}^{\tilde{P}}/\mathbb{R}(1,1,\ldots,1) \):

\[
\mathcal{O}^\circ(\tilde{P}) := \{ x \in \mathbb{R}^{\tilde{P}}_{\Sigma=0} \mid \tilde{x}_i < \tilde{x}_j \text{ for all } i \prec_{\tilde{P}} j \}, \quad \mathcal{O}(\tilde{P}) := \{ x \in \mathbb{R}^{\tilde{P}}_{\Sigma=0} \mid \tilde{x}_i \leq \tilde{x}_j \text{ for all } i \preceq_{\tilde{P}} j \}.
\]

Our first goal is to show that \(\mathcal{O}(\tilde{P}) \) is nonempty.

Definition 4.1. A linear extension of \(\tilde{P} \) is a bijection \(\phi : \mathbb{Z} \to \mathbb{Z} \) satisfying \(\phi(i+n) = \phi(i)+n \) and \(\phi(i) < \phi(j) \) for all \(i \prec_{\tilde{P}} j \).

For instance, the vertex labels of the affine posets shown in Figures 4 and 6 are examples of linear extensions.

Lemma 4.2. Each affine poset \(\tilde{P} \) admits at least one linear extension.

Proof. Let \(S := \{ i \in \mathbb{Z} \mid i - n \prec_{\tilde{P}} 0 \text{ and } i \not\prec_{\tilde{P}} 0 \} \). Because \(\tilde{P} \) is strongly connected (cf. Definition 1.10), \(S \) contains exactly one element in each residue class modulo \(n \), thus \(|S| = n \). Moreover, we claim that \(S \) is convex. Indeed, suppose \(i,j,k \in \mathbb{Z} \) are such that \(i \prec_{\tilde{P}} j \prec_{\tilde{P}} k \) and \(i,k \in S \). Then we have \(j - n \prec_{\tilde{P}} k - n \prec_{\tilde{P}} 0 \not\prec_{\tilde{P}} i \prec_{\tilde{P}} j \), so \(j \in S \). Note, however, that \(S \) need not be connected in general.
Consider S as a finite subposet (S, \preceq_P) of \tilde{P}. Choose a linear extension $\tilde{\phi} : S \to [n]$ of S, and let $\phi : \mathbb{Z} \to \mathbb{Z}$ be its unique n-periodic extension (satisfying $\phi(i) = \tilde{\phi}(i)$ for $i \in S$ and $\phi(i + n) = \phi(i) + n$ for $i \in \mathbb{Z}$). We claim that ϕ is a linear extension of \tilde{P}. First, it is clearly a bijection $\mathbb{Z} \to \mathbb{Z}$. Second, suppose that for some $i \prec_P j$, we have $\phi(i) > \phi(j)$. Adding a multiple of n to both indices, we may assume that $j \in S$. Let $i' \in S$ be such that $i' \equiv i \pmod{n}$. Since ϕ is a linear extension, we cannot have $i = i'$. If $i < i'$ then because $\phi(i') \prec_P j \in [n]$, we have $\phi(i) \leq \phi(i') - n \leq 0 < \phi(j)$, a contradiction. Assume now that $i' < i$. Then $i' \prec_P i \prec_P j$, so since S is convex, we get $i \in S$, a contradiction. \hfill \Box

Corollary 4.3. $\mathcal{O}(\tilde{P})$ is a nonempty polytope of dimension $n - 1$.

Proof. Let ϕ be a linear extension of \tilde{P}. Setting $x_i := \phi(i) \cdot \frac{\xi}{n}$ for $i \in [n]$, we obtain a point $x \in \mathbb{R}^{[\tilde{P}]}$ such that $\pi_{\sum=0}^{[n]}(x) \in \mathcal{O}(\tilde{P})$. Thus the interior of $\mathcal{O}(\tilde{P})$ in $\mathbb{R}^{[\tilde{P}]}$ is nonempty. \hfill \Box

Remark 4.4. We mention several relations between affine posets and existing objects in the literature. First, $\mathcal{O}(\tilde{P})$ is an alcoved polytope in the sense of [LP07]. Its volume is the number of different linear extensions of \tilde{P}, where two linear extensions are considered the same if their values differ by a constant. It is an interesting problem to compute the number of such linear extensions for various classes of posets, such as the ones arising from critical varieties as discussed in Remark 1.15. Second, it would be interesting to develop an analogous theory of (combinatorial, piecewise-linear, or birational) rowmotion on affine posets; see e.g. [EP21, EP14, SW12]. Third, a natural class of affine posets consists of cylindric skew shapes, i.e., regions of \mathbb{Z}^2 between two up-right lattice paths which are invariant under shifting by some nonzero vector $(a, b) \in \mathbb{Z}^2_{\geq 0}$. An example for $(a, b) = (2, 2)$ is shown in Figure 10. Linear extensions of such affine posets are certain kinds of “cylindric standard Young tableaux.” These objects are different from the well-studied cylindric tableaux arising in quantum Schubert calculus; cf. [Pos05]. Indeed, the labels of the former increase in the northeast direction while the labels of the latter increase in the southeast direction.

Remark 4.5. Recall from Remark 1.15 that one can associate an affine poset to each permutation $f \in S_n$. A different construction associating an affine poset to an affine permutation was given in [CPY18, Section 3.1]. The authors of [CPY18] consider the notion of a proper numbering of an affine poset \tilde{P}, which is a map $d : \tilde{P} \to \mathbb{Z}$ such that we have $d(i) < d(j)$ for all $i \prec_P j$, and such that for each $j \in \tilde{P}$, there exists $i \prec_P j$ satisfying $d(i) = d(j) - 1$. Thus the notion of a proper numbering of \tilde{P} is similar but different from our notion of a linear extension of \tilde{P}. It would be interesting to see which of the remarkable properties of proper numberings developed in [CPY18, Section 11] generalize to arbitrary affine posets.

Figure 10. A cylindric skew shape \tilde{P} (left) and a linear extension of \tilde{P} (right).
Definition 4.6. A tubing partition of \(\tilde{P} \) is a tubing which is simultaneously a set partition of \(\mathbb{Z} \).

This includes the case \(T = \{ \tilde{P} \} \) which will correspond to the empty face of \(\mathcal{O}(\tilde{P}) \). Recall the notion of equivalence of tubes from Section 1.3. For a tubing \(T \) not containing \(\tilde{P} \), we let \(\mathbb{T} := \{ \tau \mid \tau \in T \} \) denote the corresponding (finite) set of equivalence classes. Thus we have \(T = \bigsqcup_{\tau \in \mathbb{T}} \tau \). For the tubing partition \(T = \{ \tilde{P} \} \), we set \(\mathbb{T} := \emptyset \).

Similarly to Proposition 2.2 we have the following description of the faces of \(\mathcal{O}(\tilde{P}) \).

Proposition 4.7. We have a bijection \(T \mapsto \mathcal{F}_\mathcal{O}(\tilde{P}, T) \) between tubing partitions of \(\tilde{P} \) and faces of \(\mathcal{O}(\tilde{P}) \). The face closure relations are given by refinement (2.3). The dimension of each face \(\mathcal{F}_\mathcal{O}(\tilde{P}, T) \) equals \(|T| - 1 \).

As in the case of order polytopes, for a point \(x \in \mathcal{F}_\mathcal{O}(\tilde{P}, T) \), we write \(B(x) := T \), where \(\mathcal{F}_\mathcal{O}(\tilde{P}, T) \) denotes the relative interior of the face \(\mathcal{F}_\mathcal{O}(\tilde{P}, T) \).

We say that a maximal proper tube is a tube \(\tau \neq \tilde{P} \) satisfying \(|\tau| = n \).

Corollary 4.8.

(i) The vertices of \(\mathcal{O}(\tilde{P}) \) are in bijection with equivalence classes of maximal proper tubes.
(ii) The facets of \(\mathcal{O}(\tilde{P}) \) are in bijection with covering relations \(i \preceq \tilde{P} j \) in \(\tilde{P} \) such that \(i \neq j \) modulo \(n \).
(iii) Each face \(\mathcal{F}_\mathcal{O}(\tilde{P}, T) \) of \(\mathcal{O}(\tilde{P}) \) is itself an affine order polytope \(\mathcal{O}(\tilde{P}/T) \), where the quotient affine poset \(\tilde{P}/T \) is obtained from \(\tilde{P} \) by identifying all elements that belong to a single tube of \(T \).

A non-trivial consequence of Corollaries 4.3 and 4.8 is that the set of maximal proper tubes is nonempty for any affine poset \(\tilde{P} \).

Proof sketch of Theorem 1.11. Our argument closely follows the proof of Theorem 1.2 in Section 2.2. We work with \(n \)-periodic sets \(M \) of melted tubes, still assuming that \(\tau \subseteq \tau' \) with \(\tau \in M \) implies \(\tau' \in M \). An \(M \)-admissible tubing is a tubing \(T \) containing \(\tilde{P} \) and satisfying conditions (a)–(b) in Section 2.2. The poset \((\text{Adm}(M), \leq_M) \) is defined in exactly the same way, using conditions 1–2 in Section 2.2. The dual affine poset cyclodron \(\mathcal{C}(\tilde{P})^* \) is then obtained from the dual affine order polytope \(\mathcal{O}(\tilde{P})^* \) via a sequence of stellar subdivisions at the faces of \(\mathcal{O}(\tilde{P}) \) corresponding to tubing partitions of the form

\[\tau \cup \{i \mid i \in \mathbb{Z} : i \text{ is not contained inside any element of } \tau \}, \]

where at each step, we let \(\tau \) be a maximal by inclusion proper tube not contained in \(M \). □

Remark 4.9. Suppose \(P \) is a bounded (finite) poset with vertex set \(\{0, 1, \ldots, n\} \) such that 0 is the minimal element and \(n \) is the maximal element. Then \(P \) naturally gives rise to an affine poset \(\tilde{P} \) of order \(n \) obtained by “identifying 0 and \(n \)” More precisely, \(\preceq_P \) is obtained by taking the transitive closure of relations \(i + dn <_{\tilde{P}} j + dn \) for all \(d \in \mathbb{Z} \) and \(i <_{\tilde{P}} j \). A very similar operation was recently considered in [GP19, Remark 2.7].

It is easy to see that \(\mathcal{O}(\tilde{P}) \) is linearly equivalent to Stanley’s order polytope \(\hat{\mathcal{O}}(P) \), thus the polytopes \(\mathcal{O}(P) \) and \(\mathcal{O}(\tilde{P}) \) are projectively equivalent by Remark 2.5. Each \(P \)-tube is also a \(\tilde{P} \)-tube. However, not all (equivalence classes of) \(\tilde{P} \)-tubes are obtained in this way, since we have \(\tilde{P} \)-tubes of the form \(\tau \cup (\tau' + n) \) where \(\tau, \tau' \) are disjoint proper \(P \)-tubes such that \(n \in \tau \) and \(0 \in \tau' \). Thus the polytopes \(\mathcal{O}(P) \) and \(\mathcal{C}(\tilde{P}) \) are not directly related to each
other. For instance, if P is a chain on 4 elements then $\mathcal{A}(P)$ is a pentagon and $\mathcal{C}(\tilde{P})$ is a hexagon; compare Figure 2(left) and Figure 4(left).

Next, we state an affine analog of Corollary 2.7, where we again identify two polytopes if they are combinatorially equivalent. We say that \tilde{P} is a circular chain if $\preceq_{\tilde{P}}$ coincides with the standard order \leq on \mathbb{Z}. We say that \tilde{P} is a circular claw if $\preceq_{\tilde{P}}$ is the n-periodic transitive closure of relations $0 \prec_{\tilde{P}} 1, 2, \ldots, n-1 \prec_{\tilde{P}} n$. See Figure 1.

Corollary 4.10. Let \tilde{P} be an affine poset.

(i) $\mathcal{C}(\tilde{P})$ is a simple polytope of dimension $|\tilde{P}|-1$.

(ii) Its polar dual $\mathcal{C}(\tilde{P})^*$ is simplicial, but in general not flag.

(iii) For each proper tubing T, the corresponding face of $\mathcal{C}(\tilde{P})$ has dimension $|\tilde{P}|-|T|-1$.

(iv) The vertices of $\mathcal{C}(\tilde{P})$ are in bijection with proper tubings T satisfying $|T|=|\tilde{P}|-1$.

(v) The facets of $\mathcal{C}(\tilde{P})$ are in bijection with equivalence classes of proper tubes.

(vi) Each face of $\mathcal{C}(\tilde{P})$ is a product of poset associahedra and affine poset cyclohedra.

(vii) When \tilde{P} is a circular chain, $\mathcal{C}(\tilde{P})$ is the $|\tilde{P}|-1$-dimensional cyclohedron.

(viii) When \tilde{P} is a circular claw, $\mathcal{C}(\tilde{P})$ is the $|\tilde{P}|-1$-dimensional type B permutohedron.

Proof. Each of the properties (i)(viii) is either trivial or is proven similarly to its analog in Corollary 2.7. For the last two properties, we need to explain the combinatorial objects labeling the faces of the cyclohedron and the type B permutohedron in order to connect them to tubings.

(vii) Similarly to the case of the associahedron, the faces of the $(n-1)$-dimensional cyclohedron are in bijection with rooted trees T embedded in a disk such that the root has degree ≥ 1, all non-leaf vertices lie in the interior of the disk, and the leaves lie on the boundary and are labeled $0, 1, 2, \ldots, n$ in clockwise order. Face closure relations again correspond to contracting non-leaf edges in T. Let v be a non-leaf non-root vertex of T. The edges incident to v have a natural cyclic order. Let e be the edge connecting v to its parent in T. Consider a walk that starts at the parent of v, traverses e and then turns maximally left at each vertex until it reaches some leaf $a \in [n]$. Similarly, consider another walk which turns maximally right at each vertex until it reaches another leaf $b \in [n]$. The leaf descendants of v naturally form a cyclic subinterval $[a, b]$ of $[n]$. We may thus associate a tube τ_v to v which equals $[a, b]$ if $a \leq b$ and $[a, b+n]$ if $a > b$. If the root of T has degree 1 and v is its sole child vertex then b equals $a-1$ modulo n, so we get $[a, b] = [n]$. Still, depending on the value of a, we get different tubes $\tau = [a, a+n-1]$, which corresponds to the different ways of placing the root of T next to v. It is again clear that when \tilde{P} is a circular chain, the set of tubes τ_v where v runs over the set of non-leaf non-root vertices of T yields a proper \tilde{P}-tubing. Moreover, we see that any proper \tilde{P}-tubing arises uniquely in this way, and that contracting edges in trees corresponds to removing tubes from a tubing.

(viii) The $(n-1)$-dimensional type B permutohedron Π^n_{n-1} is defined as the convex hull of all vectors obtained from $(1, 2, \ldots, n-1)$ by permuting the coordinates and changing their signs. The face poset of Π^n_{n-1} coincides with the order poset of the boundary face poset of the $(n-1)$-dimensional cross-polytope; see [Wac07 Example 1.3.2]. Thus the facets of Π^n_{n-1} are in bijection with pairs (K^+, K^-) of disjoint subsets of $[n-1]$ whose union is nonempty. Arbitrary faces of Π^n_{n-1} are labeled by sets

$$\{(K_1^+, K_1^-), (K_2^+, K_2^-), \ldots, (K_r^+, K_r^-)\}$$
of such pairs satisfying the conditions
\[K_1^+ \subset K_2^+ \subset \cdots \subset K_r^+ \subset [n-1] \setminus K_r^- \subset [n-1] \setminus K_{r-1}^- \subset \cdots \subset [n-1] \setminus K_1^-; \]
see [Het20, Corollary 1.11]. Identifying each pair \((K^+, K^-)\) with (the equivalence class of) the tube \((K^- - n) \sqcup \{0\} \sqcup K^+\), we obtain a bijection between faces of \(\Pi_{n-1}^B\) and proper \(\tilde{P}\)-tubings.

It remains to justify the relation between affine poset cyclohedra and compactifications.

Proof sketch of Theorem 1.11. The proof is obtained from that in Section 3 via straightforward modifications as we outline below. By convention, we write \(\tau \subset \tilde{P}\) for any tube \(\tau \neq \tilde{P}\), including the case of maximal proper tubes \(\tau \subset \tilde{P}\) satisfying \(|\tau| = |\tilde{P}|\). Throughout the whole proof in Section 3, we replace \(P\) with \(\tilde{P}\) and \(\prod_{|\tau| > 1} \mathcal{O}(\tau)\) with \(\prod_{|\tau| > 1} \mathcal{O}(\tau)\). The remaining changes are listed below.

By Definition 3.4 (with \(P\) replaced by \(\tilde{P}\)), \(\hat{T}(x)\) contains \(\tilde{P}\) and all tubes in \(B(x[\tilde{P}])\), thus \(\hat{T}(x)\) is an infinite tubing. It still has the structure of an infinite \(n\)-periodic rooted tree described in Definition 3.5. The remaining definitions and proofs in Sections 3.1 and 3.2 do not require any changes. The same applies to all results in Section 3.3 except that in Corollary 3.12 \(\text{Comp}_T(\tilde{P})\) is now homeomorphic to \(\mathbb{R}^{[\tilde{P}] - [\tau]} - 1\). The sets \(P_{\tau^+}^r\) and \(P_{\tau^+}^r\) in (3.4) become infinite when \(\tau^+ = \tilde{P}\), but that does not affect the proof since only finitely many of their elements participate non-trivially in (3.5) and (3.6). The rest of the proof in Sections 3.3 and 3.4 proceeds without change. □

References

[AB20] Karim Adiprasito and Bruno Benedetti. Barycentric subdivisions of convex complexes are collapsible. *Discrete Comput. Geom.*, 64(3):608–626, 2020.

[AS94] Scott Axelrod and I. M. Singer. Chern-Simons perturbation theory. II. *J. Differential Geom.*, 39(1):173–213, 1994.

[Bjö84] A. Björner. Posets, regular CW complexes and Bruhat order. *European J. Combin.*, 5(1):7–16, 1984.

[BT94] Raoul Bott and Clifford Taubes. On the self-linking of knots. *J. Math. Phys.*, 35(10):5247–5287, 1994.

[CD06] Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. *Topology Appl.*, 153(12):2155–2168, 2006.

[CPY18] Michael Chmutov, Pavlo Pylyavskyy, and Elena Yudovina. Matrix-ball construction of affine Robinson-Schensted correspondence. *Selecta Math. (N.S.)*, 24(2):667–750, 2018.

[Dav08] Michael W. Davis. *The geometry and topology of Coxeter groups*, volume 32 of *London Mathematical Society Monographs Series*. Princeton University Press, Princeton, NJ, 2008.

[DCP95] C. De Concini and C. Procesi. Wonderful models of subspace arrangements. *Selecta Math. (N.S.)*, 1(3):459–494, 1995.

[DFRS15] Satyan L. Devadoss, Stefan Forcey, Stephen Reisdorf, and Patrick Showers. Convex polytopes from nested posets. *European J. Combin.*, 43:229–248, 2015.

[EP14] David Einstein and James Propp. Piecewise-linear and birational toggling. In *26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)*, Discrete Math. Theor. Comput. Sci. Proc., AT, pages 513–524. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014.

[EP21] David Einstein and James Propp. Combinatorial, piecewise-linear, and birational homomesy for products of two chains. *Algebr. Comb.*, 4(2):201–224, 2021.

[FM94] William Fulton and Robert MacPherson. A compactification of configuration spaces. *Ann. of Math. (2)*, 139(1):183–225, 1994.
[Fre82] Michael Hartley Freedman. The topology of four-dimensional manifolds. *J. Differential Geom.*, 17(3):357–453, 1982.

[FS05] Eva Maria Feichtner and Bernd Sturmfels. Matroid polytopes, nested sets and Bergman fans. *Port. Math. (N.S.)*, 62(4):437–468, 2005.

[FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. *J. Amer. Math. Soc.*, 15(2):497–529 (electronic), 2002.

[Gal21a] Pavel Galashin. Critical varieties in the Grassmannian. *arXiv:2102.13339v1*, 2021.

[Gal21b] Pavel Galashin. Totally nonnegative critical varieties. *arXiv:2110.08548v1*, 2021.

[GKL19] Pavel Galashin, Steven N. Karp, and Thomas Lam. Regularity theorem for totally nonnegative flag varieties. *J. Amer. Math. Soc.*, to appear. *arXiv:1904.00527v3*, 2019.

[GP19] Pavel Galashin and Pavlo Pylyavskyy. R-systems. *Selecta Math. (N.S.)*, 25(2):Paper No. 22, 2019.

[Hai84] Mark Haiman. Constructing the associahedron. Preprint, 1984.

[Har77] Robin Hartshorne. *Algebraic geometry*. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[Het20] Gábor Hetyei. The type B permutohedron and the poset of intervals as a Tchebyshev transform. *arXiv:2007.07362v2*, 2020.

[JS14] Katharina Jochemko and Raman Sanyal. Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings. *SIAM J. Discrete Math.*, 28(3):1540–1558, 2014.

[Kon99] Maxim Kontsevich. Operads and motives in deformation quantization. *Lett. Math. Phys.*, 48(1):35–72, 1999.

[Lee89] Carl W. Lee. The associahedron and triangulations of the n-gon. *European J. Combin.*, 10(6):551–560, 1989.

(LP07] Thomas Lam and Alexander Postnikov. Alcoved polytopes. I. *Discrete Comput. Geom.*, 38(3):453–478, 2007.

(LP16a] Thomas Lam and Pavlo Pylyavskyy. Laurent phenomenon algebras. *Camb. J. Math.*, 4(1):121–162, 2016.

(LP16b] Thomas Lam and Pavlo Pylyavskyy. Linear Laurent phenomenon algebras. *Int. Math. Res. Not. IMRN*, (10):3163–3203, 2016.

[LTV10] Pascal Lambrechts, Victor Turchin, and Ismar Volić. Associahedron, cyclohedron and permutohedron as compactifications of configuration spaces. *Bull. Belg. Math. Soc. Simon Stevin*, 17(2):303–332, 2010.

[Oda88] Tadao Oda. *Convex bodies and algebraic geometry*, volume 15 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese.

[Per02] Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications. *arXiv:math/0211159*, 2002.

[Per03a] Grisha Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. *arXiv:math/0307245*, 2003.

[Per03b] Grisha Perelman. Ricci flow with surgery on three-manifolds. *arXiv:math/0303109*, 2003.

[Pos05] Alexander Postnikov. Affine approach to quantum Schubert calculus. *Duke Math. J.*, 128(3):473–509, 2005.

[Pos09] Alexander Postnikov. Permutohedra, associahedra, and beyond. *Int. Math. Res. Not. IMRN*, (6):1026–1106, 2009.

[PRW08] Alex Postnikov, Victor Reiner, and Lauren Williams. Faces of generalized permutohedra. *Doc. Math.*, 13:207–273, 2008.

[Sim03] Rodica Simion. A type-B associahedron, volume 30, pages 2–25. 2003. Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001).

[Sim04] Dev P. Sinha. Manifold-theoretic compactifications of configuration spaces. *Selecta Math. (N.S.)*, 10(3):391–428, 2004.

[Sma61] Stephen Smale. Generalized Poincaré’s conjecture in dimensions greater than four. *Ann. of Math. (2)*, 74:391–406, 1961.
[Sta63] James Dillon Stasheff. Homotopy associativity of H-spaces. I, II. *Trans. Amer. Math. Soc.* 108 (1963), 275-292; ibid., 108:293–312, 1963.

[Sta86] Richard P. Stanley. Two poset polytopes. *Discrete Comput. Geom.*, 1(1):9–23, 1986.

[SW12] Jessica Striker and Nathan Williams. Promotion and rowmotion. *European J. Combin.*, 33(8):1919–1942, 2012.

[Tam51] Dov Tamari. *Monoïdes préordonnés et chaînes de Malcev*. Thèse, Université de Paris, 1951.

[Wac07] Michelle L. Wachs. Poset topology: tools and applications. In *Geometric combinatorics*, volume 13 of *IAS/Park City Math. Ser.*, pages 497–615. Amer. Math. Soc., Providence, RI, 2007.

[Zie95] Günter M. Ziegler. *Lectures on polytopes*, volume 152 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995.

Department of Mathematics, University of California, Los Angeles, CA 90095, USA

Email address: galashin@math.ucla.edu