Bipartization of Graphs

Mateusz Miotk · Jerzy Topp · Paweł Żyliński

Received: 7 April 2018 / Revised: 8 July 2019 / Published online: 9 August 2019
© The Author(s) 2019

Abstract
A dominating set of a graph G is a set $D \subseteq V_G$ such that every vertex in $V_G - D$ is adjacent to at least one vertex in D, and the domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. In this paper we provide a new characterization of bipartite graphs whose domination number is equal to the cardinality of its smaller partite set. Our characterization is based upon a new graph operation.

Keywords Bipartite graph · Bipartization · Domination number

Mathematics Subject Classification 05C69 · 05C76 · 05C05

1 Introduction and Notation

For notation and graph theory terminology we in general follow [2]. Specifically, let $G = (V_G, E_G)$ be a graph with vertex set V_G and edge set E_G. For a subset $X \subseteq V_G$, the subgraph induced by X is denoted by $G[X]$. For simplicity of notation, if $X = \{x_1, \ldots, x_k\}$, we shall write $G[x_1, \ldots, x_k]$ instead of $G[\{x_1, \ldots, x_k\}]$. For a vertex v of G, its neighborhood, denoted by $N_G(v)$, is the set of all vertices adjacent to v, and the cardinality of $N_G(v)$, denoted by $\deg_G(v)$, is called the degree of v. The closed neighborhood of v, denoted by $N_G[v]$, is the set $N_G(v) \cup \{v\}$. In general, the neighborhood of $X \subseteq V_G$, denoted by $N_G(X)$, is defined to be $\bigcup_{v \in X} N_G(v)$, and the closed neighborhood of X, denoted by $N_G[X]$, is the set $N_G(X) \cup X$. A vertex of degree one is called a leaf, and the only neighbor of a leaf is called its support vertex.
Observation. A weak support is a vertex adjacent to exactly one leaf. Finally, the set of leaves and the set of supports of G we denoted by L_G and S_G, respectively.

A subset D of V_G is said to be a dominating set of a graph G if each vertex belonging to the set $V_G - D$ has a neighbor in D. The cardinality of a minimum dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. A subset $C \subseteq V_G$ is a covering set of G if each edge of G has an end-vertex in C. The cardinality of a minimum covering set of G is called the covering number of G and denoted by $\beta(G)$.

It is obvious that if $G = ((A, B), E_G)$ is a connected bipartite graph, then $\gamma(G) \leq \min\{|A|, |B|\}$. In this paper the set of all connected bipartite graphs $G = ((A, B), E_G)$ in which $\gamma(G) = \min\{|A|, |B|\}$ is denoted by \mathcal{B}. Some properties of the graphs belonging to the set \mathcal{B} were observed in the papers [1,3–6], where all graphs with the domination number equal to the covering number were characterized. In this paper, inspired by results and constructions of Hartnell and Rall [3], we introduce a new graph operation, called the bipartization of a graph with respect to a function, study basic properties of this operation, and provide a new characterization of the graphs belonging to the set \mathcal{B} in terms of this new operation.

2 Bipartization of a Graph

Let \mathcal{K}_H denote the set of all complete subgraphs of a graph H. If $v \in V_H$, then the set $\{K \in \mathcal{K}_H : v \in V_K\}$ is denoted by $\mathcal{K}_H(v)$. If $X \subseteq V_H$, then the set $\bigcup_{v \in X} \mathcal{K}_H(v)$ is denoted by $\mathcal{K}_H(X)$, and it is obvious that $\mathcal{K}_H(X) = \{K \in \mathcal{K}_H : V_K \cap X \neq \emptyset\}$. Let $f : \mathcal{K}_H \to \mathbb{N}$ be a function. If $K \in \mathcal{K}_H$, then by \mathcal{F}_K we denote the set $\{(K, 1), \ldots, (K, f(K))\}$ if $f(K) \geq 1$, and we let $\mathcal{F}_K = \emptyset$ if $f(K) = 0$. By \mathcal{K}^f_H we denote the set of all positively f-valued complete subgraphs of H, that is, $\mathcal{K}^f_H = \{K \in \mathcal{K}_H : f(K) \geq 1\}$.

Definition 1 Let H be a graph and let $f : \mathcal{K}_H \to \mathbb{N}$ be a function. The bipartization of H with respect to f is the bipartite graph $B_f(H) = ((A, B), E_{B_f(H)})$ in which $A = V_H$, $B = \bigcup_{K \in \mathcal{K}_H} \mathcal{F}_K$, and where a vertex $x \in A$ is adjacent to a vertex $(K, i) \in B$ if and only if x is a vertex of the complete graph K ($i = 1, \ldots, f(K)$).

Example 1 Figure 1 presents a graph H (for which $\mathcal{K}_H = \{H[a], H[b], H[c], H[d], H[a, b], H[a, c], H[b, c], H[c, d], H[a, b, c]\}$) and its two bipartizations $B_f(H)$ and $B_g(H)$ with respect to functions $f, g : \mathcal{K}_H \to \mathbb{N}$, respectively, where $f(H[a]) = 1$, $f(H[b]) = 1$, $f(H[c]) = 2$, $f(H[d]) = 0$, $f(H[a, b]) = 3$, $f(H[a, c]) = 0$, $f(H[b, c]) = 2$, $f(H[c, d]) = 3$, $f(H[a, b, c]) = 1$, while $g(H[v]) = 0$ for every vertex $v \in V_H$, $g(H[u, v]) = 1$ for every edge $uv \in E_H$, and $g(H[a, b, c]) = 0$. Observe that $B_g(H)$ is the subdivision graph $\mathcal{S}(H)$ of H (i.e., the graph obtained from H by inserting a new vertex into each edge of H).
3 Properties of Bipartizations of Graphs

It is clear from the above definition of the bipartization of a graph with respect to a function that we have the following proposition.

Proposition 1 The bipartization of a graph with respect to a function has the following properties:

1. If \(B_f(H) = ((A, B), E_{B_f(H)}) \) is the bipartization of a graph \(H \) with respect to a function \(f : K_H \rightarrow \mathbb{N} \), then:

 (a) \(N_{B_f(H)}(v) = \bigcup_{K \in K_H(v)} F_K \) if \(v \in A \).

 (b) \(N_{B_f(H)}(X) = \bigcup_{K \in K_H(X)} F_K \) if \(X \subseteq A \).

 (c) \(N_{B_f(H)}((K, i)) = V_K \) if \((K, i) \in B \) \((i = 1, \ldots, f(K))\).

 (d) \(|V_{B_f(H)}| = |V_H| + \sum_{K \in K_H} f(K) \) and \(|E_{B_f(H)}| = \sum_{K \in K_H} f(K) |V_K| \).

2. If \(H \) is a connected graph and \(f : K_H \rightarrow \mathbb{N} \) is a function such that every edge of \(H \) belongs to a positively \(f \)-valued complete subgraph of \(H \), then the bipartization \(B_f(H) \) is a connected graph.

3. If \(H \) is a graph and \(f, g : K_H \rightarrow \mathbb{N} \) are functions such that \(f(K) \geq g(K) \) for every \(K \in K_H \), then the graph \(B_g(H) \) is an induced subgraph of \(B_f(H) \).

Our study of properties of bipartizations we begin by showing that every bipartite graph is the bipartization of some graph with respect to some function.

Theorem 1 For every bipartite graph \(G = ((A, B), E_G) \) there exist a graph \(H \) and a function \(f : K_H \rightarrow \mathbb{N} \) such that \(G = B_f(H) \).

Proof We say that vertices \(x \) and \(y \) of \(G \) are similar if \(N_G(x) = N_G(y) \). It is obvious that this similarity is an equivalence relation on \(B \) (as well as on \(A \) and \(A \cup B \)). Let \(B_1, \ldots, B_l \) be the equivalence classes of this relation on \(B \), say \(B_i = \{b_i^1, b_i^2, \ldots, b_i^{k_i}\} \) for \(i = 1, \ldots, l \). It follows from properties of the equivalence classes that \(|B_1| + \cdots + |B_l| = |B|, N_G(b_i^1) = N_G(x) \) for every \(x \in B_i \), and \(N_G(b_i^1) \neq N_G(b_j^1) \) if \(i, j \in \{1, \ldots, l\} \) and \(i \neq j \).
Fig. 2 Graph G is the bipartization of the two non-isomorphic graphs H and F

Now, let $H = (V_H, E_H)$ be a graph in which $V_H = A$ and two vertices x and y are adjacent in H if and only if they are at distance two apart from each other in G. Let \mathcal{K}_H be the set of all complete subgraphs of H, and let $f : \mathcal{K}_H \to \mathbb{N}$ be a function such that $f(K) = |\{b \in B : N_G(b) = V_K\}|$ for $K \in \mathcal{K}_H$. Next, let K_i be the induced subgraph $H[N_G(b_i')]$ of H. It follows from the definition of H that K_i is a complete subgraph of H. In addition, from the definition of f and from properties of the classes B_1, \ldots, B_l, it follows that $f(K_i) = |B_i| > 0$ ($i = 1, \ldots, l$), and $f(K) = 0$ if $K \in \mathcal{K}_H - \{K_1, \ldots, K_l\}$. Consequently, $\mathcal{K}_H^f = \{K_1, \ldots, K_l\}$.

Finally, consider the bipartite graph $B_{f}(H) = ((X, Y), E_{B_{f}(H)})$ in which $X = V_H = A$, $Y = \bigcup_{K \in \mathcal{K}_H} F_K = \bigcup_{K \in \mathcal{K}_H^f} F_K = \bigcup_{j=1}^{l} \{(K_i, 1), \ldots, (K_i, k_i)\}$, and where $N_{B_{f}(H)}((K_i, j)) = V_{K_i} = N_G(b_i^j)$ for every $(K_i, j) \in Y$. Now, one can observe that the function $\varphi : A \cup B \to X \cup Y$, where $\varphi(x) = x$ if $x \in A$, and $\varphi(b_i^j) = (K_i, j)$ if $b_i^j \in B$, is an isomorphism between graphs G and $B_{f}(H)$.

We have proved that a bipartite graph $G = ((A, B), E_G)$ is the bipartization $B_{f}(H)$ of a graph $H = (V_H, E_H)$ (in which $V_H = A$ and $E_H = \{xy : x, y \in A \text{ and } d_G(x, y) = 2\}$) with respect to a function $f : \mathcal{K}_H \to \mathbb{N}$, where $f(K) = |\{b \in B : N_G(b) = V_K\}|$ for $K \in \mathcal{K}_H$. The same graph G is also the bipartization $B_{g}(F)$ of a graph $F = (V_F, E_F)$ (in which $V_F = B$ and $E_F = \{xy : x, y \in B \text{ and } d_G(x, y) = 2\}$) with respect to a function $g : \mathcal{K}_F \to \mathbb{N}$, where $g(K) = |\{a \in A : N_G(a) = V_K\}|$ for $K \in \mathcal{K}_F$. Consequently, every bipartite graph may be the bipartization of two non-isomorphic graphs.

Example 2 Figure 2 depicts the bipartite graph G which is the bipartization of the non-isomorphic graphs H and F with respect to functions $\overline{f} : \mathcal{K}_H \to \mathbb{N}$ and $\overline{g} : \mathcal{K}_F \to \mathbb{N}$, respectively, which non-zero values are displayed in the figure.

It is obvious from Theorem 1 that every tree is a bipartization. We are now interested in providing a simple characterization of graphs H and functions $f : \mathcal{K}_H \to \mathbb{N}$ for which the bipartization $B_{f}(H)$ is a tree. We begin with the following notation: An alternating sequence of vertices and complete graphs $(v_0, F_1, v_1, \ldots, v_{k-1}, F_k, v_k)$ is said to be a positively f-valued complete $v_0 - v_k$ path if $v_{i-1}v_i$ is an edge in the complete graph F_i for $i = 1, \ldots, k$. We now have the following two useful lemmas.

\[\text{Springer}\]
Lemma 1 Let H be a connected graph, and let $f : \mathcal{K}_H \to \mathbb{N}$ be a function. If there are two vertices u and v and two distinct internally vertex-disjoint positively f-valued complete $u-v$ paths in H, then the bipartization $B_f(H)$ contains a cycle.

Proof If $(v_0 = u, F_1, v_1, \ldots, v_{m-1}, F_m, v_m = v)$ and $(v_0' = u, F_1', v_1', \ldots, v_{n-1}', F_n', v_n' = v)$ are distinct internally vertex-disjoint positively f-valued complete $u-v$ paths in H, then $(v_0, (F_1, 1), v_1, \ldots, v_{m-1}, (F_m, 1), v_m)$ and $(v_0', (F_1', 1), v_1', \ldots, v_{n-1}', (F_n', 1), v_n')$ are distinct $u-v$ paths in $B_f(H)$, and so they generate at least one cycle in $B_f(H)$. □

Let us recall first that a maximal connected subgraph without a cutvertex is called a block. A graph H is said to be a block graph if each block of H is a complete graph. The next lemma is probably known, therefore we omit its easy inductive proof.

Lemma 2 If S is the set of all blocks of a graph H, then $\sum_{B \in S} (|V_B| - 1) = |V_H| - 1$.

Now we are ready for a characterization of graphs which bipartizations (with respect to some functions) are trees.

Theorem 2 Let H be a connected graph, and let $f : \mathcal{K}_H \to \mathbb{N}$ be a function such that every edge of H belongs to some positively f-valued complete subgraph of H. Then the bipartization $B_f(H)$ is a tree if and only if the following conditions hold:

(1) $f(K) \leq 1$ for every non-trivial complete subgraph K of H.
(2) H is a block graph.
(3) For a non-trivial complete subgraph K of H is $f(K) = 1$ if and only if K is a block of H.

Proof Assume that $B_f(H)$ is a tree. The statement (1) is obvious, for if there were a non-trivial complete subgraph K of H for which $f(K) \geq 2$, then for any two vertices u and v belonging to K, the sequence $(u, (K, 1), v, (K, 2), u)$ would be a cycle in $B_f(H)$.

Suppose now that H is not a block graph. Then there exists a block in H, say B, which is not a complete graph. Thus in B there exists a cycle such that not all its chords belong to B. Let $C = (v_0, v_1, \ldots, v_l, v_0)$ be a shortest such cycle in B. Then $l \geq 3$ and we distinguish two cases. If C is chordless, then, by Lemma 1, $B_f(H)$ contains a cycle. Thus assume that C has a chord. We may assume that v_0 is an end-vertex of a chord of C, and then let k be the smallest integer such that v_0v_k is a chord of C. Now the choice of C implies that the vertices v_0, v_1, \ldots, v_k are mutually adjacent, and therefore, $k = 2$. Similarly, v_0, v_k, \ldots, v_l are mutually adjacent, and so we must have $l = 3$. Consequently, $C = (v_0, v_1, v_2, v_3, v_0)$ and v_0v_2 is the only chord of C. Now it is obvious that there are at least two v_0-v_2 positively f-valued complete paths in H. From this and from Lemma 1 it follows that the bipartition $B_f(H)$ contains a cycle. This contradiction completes the proof of the statement (2).

Let B be a block of H. We have already proved that B is a complete graph. Let B' be a proper non-trivial complete subgraph of B. To prove (3), it suffices to observe that $f(B') = 0$. On the contrary, suppose that $f(B') \neq 0$. We now choose two distinct
vertices \(v \) and \(u \) belonging to \(B' \), and a vertex \(w \) belonging to \(B \) but not to \(B' \). This clearly forces that there are at least two \(v - u \) positively \(f \)-valued complete paths in \(H \). Consequently, by Lemma 1, \(B_f(H) \) contains a cycle, and this contradiction completes the proof of the statement (3).

Assume now that the conditions (1)–(3) are satisfied for \(H \) and \(f \). Since end-vertices of \(B_f(H) \), corresponding to positively \(f \)-valued one-vertex complete subgraphs of \(H \), are not important to our study of tree-like structure of \(B_f(H) \), we can assume without loss of generality that \(f(H[v]) = 0 \) for every vertex \(v \in V_H \). Consequently, \(H \) is a block graph and \(f(K) = 1 \) for every block \(K \) of \(H \), while \(f(K') = 0 \) for every other complete subgraph \(K' \) of \(H \). It remains to prove that \(B_f(H) \) is a tree. Since \(B_f(H) \) is a connected graph, it suffices to show that \(|E_{B_f(H)}| = |V_{B_f(H)}| - 1 \). Let \(S \) be the set of all blocks of \(H \). Then \(\mathcal{K}_H^f = S, |V_{B_f(H)}| = |V_H| + \sum_{K \in \mathcal{K}_H^f} f(K) = |V_H| + |S| \), and \(|E_{B_f(H)}| = \sum_{K \in \mathcal{K}_H^f} f(K)|V_K| = \sum_{K \in S} |V_K| = \sum_{K \in S} (|V_K| - 1) + |S| \).

Now, since \(\sum_{K \in S} (|V_K| - 1) = |V_H| - 1 \) (by Lemma 2), we finally have \(|E_{B_f(H)}| = (|V_H| - 1) + |S| = (|V_H| + |S|) - 1 = |V_{B_f(H)}| - 1 \).

Corollary 1 For every connected graph \(H \), there exists a function \(f : \mathcal{K}_H \rightarrow \mathbb{N} \) such that the bipartization \(B_f(H) \) is a tree.

Proof Let \(F \) be a spanning block graph of \(H \) and let \(f : \mathcal{K}_F \rightarrow \{0, 1\} \) be a function such that \(f(K) = 1 \) if and only if \(K \) is a block of \(F \). Clearly, \(f \) satisfies the conditions (1)–(3) of Theorem 2, and so the bipartization \(B_f(H) \) is a tree. \(\square \)

Example 3 Figure 2 shows the tree \(G \) which is the bipartization of two block graphs \(H \) and \(F \) with respect to functions \(\overline{f} \) and \(\overline{g} \), respectively, which non-zero values are listed in the same figure.

4 Graphs Belonging to the Family \(\mathcal{B} \)

In this section, we provide an alternative characterization of all bipartite graphs whose domination number is equal to the cardinality of its smaller partite set, that is, we prove that a connected graph \(G \) belongs to the class \(\mathcal{B} \) if and only if \(G \) is some bipartization of a graph. For that purpose, we need the following lemma.

Lemma 3 [4] Let \(G = ((A, B), E_G) \) be a connected bipartite graph with \(1 \leq |A| \leq |B| \). Then the following statements are equivalent:

1. \(\gamma(G) = |A| \).
2. \(\gamma(G) = \beta(G) = |A| \).
3. \(G \) has the following two properties:

 (a) Each support vertex of \(G \) belonging to \(B \) is a weak support and each of its non-leaf neighbors is a support.

 (b) If \(x \) and \(y \) are vertices belonging to \(A - (L_G \cup S_G) \) and \(d_G(x, y) = 2 \), then there are at least two vertices \(\overline{x} \) and \(\overline{y} \) in \(B \) such that \(N_G(\overline{x}) = N_G(\overline{y}) = \{x, y\} \).
We are ready to establish our main theorem that provides an alternative characterization of the graphs belonging to B in terms of the bipartization of a graph.

Theorem 3 Let $G = ((A, B), E_G)$ be a connected bipartite graph with $1 \leq |A| \leq |B|$. Then $\gamma(G) = |A|$ if and only if G is the bipartization $B_f(H)$ of a connected graph H with respect to a non-zero function $f : \mathcal{K}_H \to \mathbb{N}$ and f has the following two properties:

1. If $uv \in E_H$ and $f(H[u, v]) = 0$, then $f(H') > 0$ for some complete subgraph H' of H containing the edge uv.
2. If $uv \in E_H$ and $f(H[u]) = f(H[v]) = 0$, then $f(H[u, v]) \geq 2$.

Proof Assume first that $\gamma(G) = |A|$. Then G has the properties (3a) and (3b) of Lemma 3. Let $H = (V_H, E_H)$ be a graph in which $V_H = A$ and $E_H = \{xy : x, y \in A$ and $d_G(x, y) = 2\}$, and let $f : \mathcal{K}_H \to \mathbb{N}$ be a function such that $f(K) = |\{x \in B : N_G(x) = V_K\}|$ for each $K \in \mathcal{K}_H$. Then G is the bipartization $B_f(H)$ of H with respect to f as we have shown in the proof of Theorem 1. It is obvious that if $H = K_1$, then $\mathcal{K}_H = \{H\}$ and it must be $f(H) \geq 1$ (as otherwise $G = B_f(H)$ would be a graph of order one). Thus assume that H is non-trivial. Now it remains to prove that f has the properties (1) and (2).

Let uv be an edge of H such that $f(H[u, v]) = 0$. Suppose on the contrary that $f(H') = 0$ for every complete subgraph H' containing the edge uv. Then the vertices u and v do not share a neighbor in $B_f(H) = G$, so $d_G(u, v) > 2$ and uv is not an edge in H, a contradiction. This proves the property (1).

Now let uv be an edge of H such that $f(H[u]) = f(H[v]) = 0$. From these assumptions it follows that $d_G(u, v) = 2$ and neither u nor v is a support vertex in $G = B_f(H)$. Now we shall prove that none of the vertices u and v is a leaf in G. First, because $u, v \in A$ and they have a common neighbor, it follows from the first part of the property (3a) of Lemma 3 that at least one of the vertices u and v is not a leaf in G. Suppose now that exactly one of the vertices u and v is a leaf in G, say u is a leaf. Then it follows from the second part of the property (3a) of Lemma 3 that v is a support vertex in $G = B_f(H)$ and, therefore, $f(H[v]) > 0$, a contradiction. Consequently, both u and v are elements of $A - N_G[L_G]$. Thus, since $d_G(u, v) = 2$, the property (3b) of Lemma 3 implies that there are at least two vertices $\bar{u}, \bar{v} \in B$ such that $N_G(\bar{u}) = N_G(\bar{v}) = \{u, v\}$. Therefore $f(H[u, v]) = |\{x \in B : N_G(x) = \{u, v\}\}| \geq |\{\bar{u}, \bar{v}\}| = 2$ and this proves the property (2).

Assume now that H is a connected graph, and $f : \mathcal{K}_H \to \mathbb{N}$ is a non-zero function having the properties (1) and (2). We shall prove that in the bipartization $B_f(H) = ((A, B), E_{B_f(H)})$, where $A = V_H$ and $B = \bigcup_{K \in \mathcal{K}_H} \mathcal{F}_K$, is $|A| \leq |B|$ and $\gamma(B_f(H)) = |A|$. This is obvious if H is a graph of order 1. Thus assume that H is a graph of order at least 2. From the property (1) it follows that $B_f(H)$ is a connected graph. We first prove the inequality $|A| \leq |B|$. To prove this, it suffices to show that $B_f(H)$ has an A-saturating matching. We begin by dividing $A = V_H$ into two subsets $V^1_H = \{v \in V_H : f(H[v]) \geq 1\}$ and $V^0_H = \{v \in V_H : f(H[v]) = 0\}$. It is obvious that the edge-set $M^1 = \{v(H[v]) \geq 1 : v \in V^1_H\}$ is a V^1_H-saturating matching in $B_f(H)$. Next, we order the set V^0_H in an arbitrary way, say $V^0_H = \{v_1, \ldots, v_n\}$. Now,
depending on this order, we consecutively choose edges \(e_1, \ldots, e_n\) in such a way that
\(M^1 \cup \{e_1, \ldots, e_i\}\) is a \((V^1_H \cup \{v_1, \ldots, v_i\})\)-saturating matching in \(B_f(H)\).

Assume that we have already chosen a \((V^1_H \cup \{v_1, \ldots, v_{i-1}\})\)-saturating matching
\(M^1 \cup \{e_1, \ldots, e_{i-1}\}\) in \(B_f(H)\), and consider the next vertex \(v_i \in V^0_H, f(N_H(v_i)) \neq \emptyset\), say
\(v_j \in N_H(v_i) \cap V^0_H\), then \(f(H[v_j]) = 0\) and therefore \(f(H[v_j]) \geq 2\) (by the property (2)) and the edge \(e_i = v_i(H[v_i, v_j], 1)\) if \(j < i\), \(e_i = v_i(H[v_i, v_j], 2)\) if \(j < i\) together with \(M^1 \cup \{e_1, \ldots, e_{i-1}\}\) form a \((V^1_H \cup \{v_1, \ldots, v_i\})\)-saturating matching in \(B_f(H)\). Thus assume that \(N_H(v_i) \subseteq V^0_H\). Let \(v\) be a neighbor of \(v_i\) in
\(H\). If \(f(H[v_i, v]) \geq 1\), then the edge \(e_i = v_i(H[v_i, v], 1)\) has the desired property. Finally, if
f \((H[v_i, v]) = 0\), then \((H') > 0\) for some complete subgraph \(H'\) of \(H\) containing
the edge \(v_i v\) (by the property (1)) and in this case the edge \(e_i = v_i(H', 1)\) has the desired property (as \(N_H(v_i) \subseteq V^1_H\)). Repeating this procedure as many times
as needed, an \(A\)-saturating matching in \(B_f(H)\) can be obtained.

To complete the proof, it remains to show that \(\gamma(B_f(H)) = |A|\). In a standard way,
suppose to the contrary that \(\gamma(B_f(H)) < |A|\). Let \(D\) be a minimum dominating set
of \(B_f(H)\) with \(|D \cap A|\) as large as possible. Since \(\gamma(B_f(H)) = |D|\), the inequality
\(\gamma(B_f(H)) < |A|\) implies that \(|A - D| > |D \cap B| \geq 1\). In addition, since \(|D \cap A|\) is as
large as possible, the set \(V^1_H = \{v \in V_H : f(H[v]) \geq 1\}\) is a subset of \(D \cap A\), while
\(A - D\) is a subset of \(V^0_H = \{v \in V_H : f(H[v]) = 0\}\). Now, because \(|A - D| > |D \cap B|\) and
each vertex of \(A - D\) has a neighbor in \(D \cap B\), the pigeonhole principle implies that there
are two vertices \(x, y\) in \(A - D\) which are adjacent to the same vertex in
\(D \cap B\). Hence, \(x\) and \(y\) are adjacent in \(H\) (by the definition of \(B_f(H)\)). Now, since
f \((H[x]) = f(H[y]) = 0\), the property (2) implies that \(f(H[x, y]) \geq 2\). Next, since
\(N_{B_f(H)}((H[x, y], 1)) = N_{B_f(H)}((H[x, y], 2)) = \{x, y\}\) and \(x, y \cap D = \emptyset\), the
vertices \((H[x, y], 1)\) and \((H[x, y], 2)\) belong to \(D \cap B\). Consequently, it is easy to
observe that the set \(D' = (D - (H[x, y], 1), (H[x, y], 2))\) \(\cup \{x, y\}\) is a dominating
set of \(B_f(H)\), which is impossible as \(|D'| = |D|\) and \(|D' \cap A| > |D \cap A|\). This
completes the proof.

\(\square\)

Example 4 The graph \(H\) and the function \(f : \mathbb{K}_H \to \mathbb{N}\) given in Example 1 have the
properties (1) and (2) of Theorem 3 and therefore the bipartization \(B_f(H)\) belongs to
the family \(\mathcal{B}\), that is, \(\gamma(B_f(H)) = |A|\), where \(A\) is the smaller of two partite sets of
\(B_f(H)\) shown in Fig. 1.

The graph \(F\) and the function \(\overline{f}\) given in Fig. 2 do not satisfy the condition (2)
of Theorem 3. However, the bipartization \(G = B_{\overline{f}}(F)\) is a graph belonging to the
family \(\mathcal{B}\) since \(G\) is also the bipartization \(B_{\overline{f}}(H)\), with \(H\) and \(\overline{f}\) given in Fig. 2
and possessing properties (1) and (2) of Theorem 3.

It is obvious that the complete bipartite graph \(K_{m,n}\) is the bipartization of the
complete graph \(K_m\) (resp. \(K_n\)) with respect to the function \(f : \mathbb{K}_{K_m} \to \{0, n\}\), where
\(f(K) = 0\) if and only if \(K \in \mathbb{K}_{K_m} - \{K_m\}\), (resp. \(g : \mathbb{K}_{K_n} \to \{0, m\}\), where \(g(K) = 0\)
if and only if \(K \in \mathbb{K}_{K_n} - \{K_n\}\)). It is also evident that if \(\min\{m, n\} \geq 3\), then \(K_{m,n}\)
does not belong to the family \(\mathcal{B}\) (as \(\gamma(K_{m,n}) = 2 < \min\{m, n\}\)), and neither \(K_n\) and
\(f\) nor \(K_n\) and \(g\) possess the property (2) of Theorem 3.
Finally, as an immediate consequence of Theorems 2 and 3 we have the following simple characterization of trees in which the domination number is equal to the size of a smaller of its partite sets. All such trees are bipartizations of block graphs.

Corollary 2 Let $T = ((A, B), E_T)$ be a tree in which $1 \leq |A| \leq |B|$. Then $\gamma(T) = |A|$ if and only if T is the bipartization $B_f(H)$ of a block graph H with respect to a non-zero function $f : \mathcal{K}_H \to \mathbb{N}$ and f has the following two properties:

1. $f(K) = 1$ if K is a block of H, and $f(K') = 0$ if K' is a non-trivial complete subgraph of H which is not a block of H.
2. $\max\{f(H[u]), f(H[v])\} \geq 1$ for every edge uv of H (or, equivalently, the set $\{v \in V_H : f(H[v]) \geq 1\}$ is a covering set of H).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Arumugam, S., Jose, B.K., Bujtás, C., Tuza, Z.: Equality of domination and transversal numbers in hypergraphs. Discrete Appl. Math. **161**, 1859–1867 (2013)
2. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs. Chapman and Hall/CRC, Boca Raton (2015)
3. Hartnell, B., Rall, D.F.: A characterization of graphs in which some minimum dominating set covers all the edges. Czechoslov. Math. J. **45**, 221–230 (1995)
4. Lingas, A., Miotk, M., Topp, J., Żyliński, P.: Graphs with equal domination and covering numbers (2018). arXiv:1802.09051v1 [math.CO] (manuscript; 25 Feb 2018)
5. Randerath, B., Volkmann, L.: Characterization of graphs with equal domination and covering number. Discrete Math. **191**, 159–169 (1998)
6. Wu, Y., Yu, Q.: A characterization of graphs with equal domination number and vertex cover number. Bull. Malays. Math. Sci. Soc. **35**, 803–806 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.