Length-weight relationships and condition factors of the Groe Fish *Barbodes binotatus* (Pisces: Cyprinidae) in Nagan River, Aceh Province, Indonesia

A S Batubara¹, F M Nur², I Zulfahmi³, S Rizal⁴, D Efizon⁵, R Elvyra⁶, Z A Muchlisin¹*

¹Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
²Master Program of Biology, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Indonesia
³Department of Biology, Faculty of Science and Technology, Ar-Raniry State Islamic University, Banda Aceh 23111, Indonesia.
⁴Department of Marine Sciences Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
⁵Faculty of Fisheries and Marine Sciences, Universitas Riau, Pekanbaru, Indonesia.
⁶Department of Biology, Faculty of Sciences, Universitas Riau, Pekanbaru, Indonesia.

*Email: muchlisinza@unsyiah.ac.id

Abstract. The groe fish *Barbodes binotatus* is one of the commercial freshwater fish occurred in Nagan River, Aceh Province, Indonesia. To date, information on the growth pattern and condition factor of this species were not available. Hence, the objective of the present study was to examine the growth pattern and condition factors of the groe fish *B. binotatus* in Nagan River, Nagan Raya District, Aceh Province, Indonesia. The sampling was conducted for 12 months from January 2016 to December 2016. The sampling locations were determined based on the information from local fishermen. The Linear Allometric Model (LAM), Fulton’s and Relative Weight conditions factors were utilized to analyse the length-weight relationships and condition factors of the groe fish. A total of 409 fish samples were collected during the study. The results showed that the highest coefficient of b was recorded in October, where the b value was 5.19 with the average b value was 2.91 indicates an isometric growth pattern. The average Fulton’s condition factor (K) was 2.41 and the average Relative weight (Wr) condition factor was 100.52. It is concluded that fish had an isometric growth pattern and based on K and Wr value, the results indicate that the waters are still in good condition and supports the life of fish. Furthermore, the availability of food sources, low competitors, and low predators indicate that the aquatic environment is in a stable condition.
1. Introduction
A total of 56 species of fish within Barbodes genus have been described worldwide [1], of these four species i.e., *B. binotatus*, *B. microps*, *B. brevis* and *B. lateristrigaare* occurred in Aceh waters [2-6]. *Barbodes* is one of the commercial freshwater fish utilized for consumption and ornamental fish [7], because this species had an attractive color [8]. *Barbodes binotatus* has a good adaptation to less favorable waters [9], and therefore, this species is distributing widely in Aceh waters [2].

Based on direct observation on the field showed that groe fish *B. binotatus* is one of the main targets for fishing by local fishermen because this species is easily finding and widely distributing. However, this species has been listed in the IUCN Redlist at the Least Concern category [10]. However, the pressure on this fish population is increasing along with intensive harvesting, environmental damage due to illegal logging, and the intensive introduction of alien fish species in Aceh waters [11, 12]. Therefore, the conservation strategy has to be initiated to protect these aquatic resources as early as possible. Information of the length-weight relationships (LWS) and condition factors are very crucial to plan a better management strategy of fish [13, 14], and currently, this information was not available. Therefore, the objectives of the present study were to analyze the length-weight relationships and condition factors of the groe fish *B. binotatus* harvested from Nagan River, Nagan Raya District, Aceh Province, Indonesia.

2. Material and Methods

2.1. Time and site
The study was conducted from January to December 2016 in Nagan River, Aceh Province, Indonesia. The sampling was conducted at three sampling locations along the Nagan River (Figure 1).

2.2. Sampling procedure
Sampling was conducted four times per month for 12 months; the fish was caught using gillnet and casting net from 08.00 AM to 18.00 PM. The sampling sites were determined purposively based on information from local fishermen. The sampled fish were counted, the temporary preserved in the crushed ice (4 °C) then transported to the laboratory in Syiah Kuala University. In the laboratory, the fish was weighed for body weight (g) and measured for total length (mm).

![Figure 1. Map of Nagan River, Nagan Raya District, Aceh Province, Indonesia showing location sampling (black dots)](image)

2.3. Length-weight relationship analysis
The Linear Allometric Model (LAM) was utilized to estimate the growth pattern of the fish as proposed by De-Robertis dan William [15] as follow:

\[W = e^{0.56(aL^b)} \]

Where \(W \) is total body weight (g), \(L \) is the total length (mm), \(a \) is the regression intercept of the model, \(b \) is the regression coefficient, \(e \) is the variance of residual of the LAM model, 0.56 is correction factor.

2.4. Condition factors

Two condition factors namely Fulton’s condition factor (K) and the relative weight condition factor (Wr) were calculated in this study. The Wr was calculated based on Rypel dan Richter [16] as follow: \(W_r = \frac{W}{W_s} \times 100 \), where \(W \) is body weight (g), \(W_s \) is body weight prediction based on LAM model, while \(W_s = aL^b \).

The Fulton’s condition factor (K) was calculated based on Muchlisin et al. [14] as follow: \(K = \frac{W}{W_s} L^{-3} \times 100 \), where \(W \) is body weight (g), \(L \) is the total length (mm), -3 is length coefficient to ensure that the K value tends toward one. Based on Morton and Routledge [17], the K value was divided into five categories: very bad (0.8 0-1.0), bad (1.1 - 1.2), balance (1.3 - 1.4), good (1.5 - 1.60), very good (>1.6).

3. Results and Discussions

The analysis of the \(b \) value of the fish showed that the higher \(b \) value was found at December (5.19) and the lower \(b \) value was recorded in January (1.93) with the average \(b \) value within the year was 2.91 (Table 1). The allometric positive growth pattern was recorded during November and December (Figure 2). However, in general, the \(b \) values tended to 3 (2.91), indicate an isometric growth pattern. Isometric growth patterns indicates the balanced weight increments with additional length, the negative allometric representing the body length growth faster than weight gain so that fish appear slim, while positive allometric growth patterns represent the vice versa [18-20].

Month	n	\(b \)	\(r^2 \)	K	Wr
January	33	1.93	0.91	2.43	100.31
February	32	2.65	0.94	2.54	100.42
March	39	2.67	0.88	2.56	100.46
April	36	2.23	0.94	2.42	100.59
May	33	3.26	0.88	2.41	100.49
June	30	2.40	0.70	2.48	100.55
July	36	2.79	0.91	2.28	100.53
August	38	2.84	0.98	2.38	100.51
September	31	2.82	0.98	2.57	100.04
October	38	2.67	0.95	2.40	100.89
November	33	3.51	0.96	2.11	100.23
December	30	5.19	0.88	2.37	101.25
Average	34.08	2.91	0.91	2.41	100.52

Note: \(n \) = total sample, \(b \) = Regression coefficient, \(r^2 \) = Determination coefficient, K = Fulton’s condition factor, Wr = Relative weight condition factor.

Fulton's condition factor has been commonly used in recent decades to predict fish growth and to assess ecological conditions [21-23]. The study revealed that Fulton's condition factor (K) was higher in
September (2.57) and the lowest value was found in November (2.11) with an average value of 2.41 (Table 1). Based on the mean value of K, it was shown that the fish in good condition. This is in agreement with Froese [24] that the K value can be categorized as stable if it is higher than 1.7 in small (100 mm) and K> 2.0 for larger fish (500 mm). A good K value indicates good waters conditions, and it supports fish health [25].

The average Relative weight condition factor (Wr) of groe fish was 100.52, where the highest value was found in December (101.25), and the lowest was recorded in September (104). According to Muchlisin et al. [26] and Batubara et al. [27] state that the Wr value> 100 indicates a stable environmental condition. This is suggesting that the low number of predators, food sources are available and competition for foraging among fish populations is low [28-30]. Besides, Wr values also represent the health and physiological conditions of fish that are directly related to the ecology of the waters where fish live [31-33].
Figure 2. Monthly length-weight relationship of *Barbodes binotatus* (January 2016 to December 2016)
Figure 3. Comparison of observed and predicted growth for *Barbodes binotatus*. Total number of fish = 409 samples

4. Conclusion
Barbodes binotatus has an isometric growth pattern. The mean K and Wr were 2.41 and 100.52, respectively indicate the presence of low predators, available food sources, and stable environmental conditions.
References
[1] Fishbase 2019 https://wwwfishbase.de/Nomenclature/ScientificNameSearchList.php? (Accessed June 27, 2019)
[2] Muchlisin ZA and Siti-Azizah MN 2009 International Journal of Zoological Research 5(2) 62-79
[3] Muchlisin ZA, Thomy Z, Fadli N, Sarong MA and Siti-Azizah MN 2013 Acta ichthyologica et Piscatoria 43(1) 21-29
[4] Muchlisin ZA, Akyun Q, Halim A, Rizka S, Sugianto S, Fadli N and Siti-Azizah MN 2015 Check List 11(2): 1560
[5] Dekar M, Sarong MA, Batubara AS and Muchlisin ZA 2018 IOP Conference Series: Earth and Environmental Science (London: IOP Publishing) 216 012024
[6] Timorya Y, Abdullah A, Batubara AS and Muchlisin ZA 2018 IOP Conference Series: Earth and Environmental Science (London: IOP Publishing) 216 012044
[7] Muchlisin ZA 2013 Iktilogia Indonesia 13(1) 91-96
[8] Lim LS, Chor WK, Tuzan AD, Malitam L, Gondipon R and Ransangan J 2013 International Research Journal of Biological Sciences 2(7) 61-63
[9] Roesma DI, Djong HT, Munir W and Aidil DR 2018 International Journal on Advanced Science Engineering Information Technol 8(1) 250-256
[10] Jenkins A, Kullander FF and Tan HH 2015 Barbodes binotatus The IUCN Red List of Threatened Species
[11] Muchlisin ZA 2011 Jurnal Kebijakan Sosial Ekonomi Kelautan dan Perikanan 1(1) 79-89
[12] Muchlisin ZA 2012 Archives Polish Fisheries 20 129-135
[13] Lalèyè PA 2006 Journal of Applied Ichthyology 22(4) 330-333
[14] Muchlisin ZA, Musman M and Siti Azizah MN 2010 Journal of Applied Ichthyology 26(6) 949-953
[15] De-Robertis A and Williams K 2008 Transactions of the American Fisheries Society 137(3) 707-719
[16] Rypel AL and Richter TJ 2008 North American Journal of Fisheries Management 28(6) 1843-1846
[17] Morton A and Routledge RD 2006 North American Journal of Fisheries Management 26(1) 56-62
[18] Prasad G and Ali PA 2007 Zoos’ Print Journal 22(3) 2637-2638
[19] Simon KD, Bakar Y, Samat A, Zaidi CC, Aziz A and Mazlan AG 2009 Journal of Zhejiang University Science B 10(12) 902-911
[20] Muchlisin ZA 2010 Diversity of freshwater fishes in Aceh Province with emphasis on several biological aspect of the depik (Rasbora tawarensis) an endemic species in Lake Laut Tawar (PhD Thesis, Universiti Sains Malaysia, Penang)
[21] Bolger T and Connolly PL 1989 Journal of Fish Biology 34(2) 171-182
[22] Kurkilahti M, Appelberg M, Hesthagen T and Rask M 2002 Fisheries Research 54(2) 153-170
[23] Nash RD, Valencia AH and Geffen AJ 2006 Fisheries 31(5) 236-238
[24] Froese R 2006 Journal of applied ichthyology 22(4) 241-253
[25] Hossain MY, Khadun MM, Jasmine S, Rahman MM, Jewel MAS and Ohtomi J 2013 Sains Malaysiana 42(9) 1219-1229
[26] Muchlisin ZA, Fransiska V, Muhammadar AA, Fauzi M and Batubara AS 2017 Croatian Journal of Fisheries 75(4) 104-112
[27] Batubara AS, Muchlisin ZA, Efizon D, Elvyra R and Irham M 2019 Vestnik Zoologii 53(1) 75-82
[28] Porath MT and Peters EJ 1997 North American Journal of Fisheries Management 17(3) 628-637
[29] Blackwell BG, Brown ML and Willis DW 2000 Reviews in fisheries Science 8(1) 1-44
[30] Muchlisin ZA, Batubara AS, Azizah MNS, Adlim M, Hendri A, Fadli N and Sugianto S 2015 Biodiversitas 16(1) 89-94
[31] Murphy BR, Willis DW and Springer TA 1991 Fisheries 16(2) 30-38
[32] Liao H, Pierce CL, Wahl DH, Rasmussen JB and Leggett WC 1995 Transactions of the American Fisheries Society 124(3) 387-400

[33] Hansen MJ and Nate NA 2005 North American Journal of Fisheries Management 25(4) 1256-1262