GJA1 rs2071165 A>G Variant Increased Gastric Cancer Risk in Females of Northwest China: A Case-control Study

lijuan yuan
Xi’an Tangdu Hospital of No4 Military Medical University

Gang Wei
Xi’an Tangdu Hospital of No4 Military Medical University

Ping Yang
Xi’an Tangdu Hospital of No4 Military Medical University

Jianguo Lu
Xi’an Tangdu Hospital of No4 Military Medical University

Shujia Peng
Xi’an Tangdu Hospital of No4 Military Medical University

Jianguo Lu
Xi’an Tangdu Hospital of No4 Military Medical University

Lin Yang
Xi’an Tangdu Hospital of No4 Military Medical University

Guoqiang Bao (guoqiang@fmmu.edu.cn)
Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, 569 Xinsi Street, Xi’an 710038, China.

Research article

Keywords: genetic polymorphisms, gastric cancer, cancer susceptibility, prognosis, GJA1

DOI: https://doi.org/10.21203/rs.3.rs-115856/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Gastric cancer (GC) is one of the most common malignancies and its incidence rates vary widely between men and women. Previous studies have suggested that Cx43 and SCAMP1 are key functional proteins in tumors. Herein, the association between GJA1 and SCAMP1 polymorphisms and GC susceptibility and prognosis was evaluated.

Methods: A total of three SNPs among 681 GC patients and 756 controls were tested using the Agena Mass ARRAY RS1000 system including GJA1 rs2071165, SCAMP1 rs4530741, and rs6874309. The strength of the association with cancer risk was assessed by the odds ratios and 95% confidence intervals generated from the logistic regression model. Kaplan-Meier Curve, long-rank tests, and a multivariate Cox proportional hazard model were used for prognosis analysis. The expression of GJA1 was assessed by immunohistochemistry.

Results: The GJA1 rs2071165 AA/AG genotype significantly increased the risk of GC in the female Chinese population (odds ratio [OR] = 1.55, 95% confidence interval, 95%CI = 1.03–2.32, p = 0.034). Furthermore, the risk effect of rs2071165 was more evident in the subgroups of female patients with GC, stratified by age, clinical stage, tumor size, and recurrence/metastasis. However, no obvious differences in Cx43 expression in GC tissues were observed between males and females. Furthermore, no significant association between rs4530741 and rs6874309 polymorphisms in SCAMP1 and GC risk or prognosis was observed.

Conclusion: In conclusion, this study suggests that GJA1 rs2071165 polymorphisms are associated with increased GC risk in females for the first time, which showed a potential new clinical marker for assessing GC risk in females.

Background

Gastric cancer ranks fifth in incidence rate and is the third leading cause of cancer-related deaths among all human cancers in both sexes worldwide (1, 2). Over 1,000,000 new cases and an estimated 783,000 deaths occurred globally in 2018 (3). The highest gastric cancer incidence and mortality rates were found in East Asia (4), ranking second (13.5%) for males and fifth (7.1%) for females among the most commonly diagnosed cancers in Chinese people in 2018 (5). GC is a multifactorial disease resulting from both environmental and genetic factors. Previous studies have shown that genetic factors, lifestyle conditions, and environmental factors play important roles in the development of gastric cancer (6).

GC incidence rates vary widely between men and women; females showed a lower overall incidence of gastric cancer compared to males (7). Female patients also showed a significantly poorer prognosis than male patients, especially among those with advanced GC aged ≤ 45 years (8). The reasons for such differences are not clear, however, physiological differences may contribute. For example, estrogens may protect females against the development of GC (9–11). Environmental or occupational exposures may also play a role, but the effect of smoking remains elusive (12). In addition, although hundreds of case-control studies examined candidate polymorphisms in relation to GC, there is still insufficient evidence for the genetic differences contributing to the different incidence rates of GC between men and women.

GJA1 (gap junction protein alpha 1), encoding the connexin 43 (Cx43) protein, belongs to the connexin gene family, which encodes gap junction transmembrane channels, allowing the transfer of small molecules between the cytoplasm of two adjacent cells (13). There is compelling evidence supporting the correlation between aberrant Cx43 expression and tumor growth or metastasis (14). SCAMP1 (secretory carrier membrane protein 1) has been reported as a key functional protein in various tumors (15, 16), it also functions as an lncRNA in human tumors (17, 18). However, no studies have shown an association between the polymorphisms of these two genes and gastric cancer. Therefore, three SNPs were selected in this study rs2071165 in GJA1, and rs4530741 and rs6874309 in SCAMP1, to explore their relationship with gastric risk and prognosis.

Methods

Study population

In all, 1437 Han Chinese subjects were enrolled in the study, 681 of which were patients with gastric cancer that underwent radical surgery at the Tangdu and Xijing Hospitals. In all, 756 healthy individuals were randomly selected through health screening at Tangdu Hospital. There were no age, sex, or disease stage restrictions for recruitment. All GC patients were unrelated, of Han Chinese descent, and newly diagnosed and histologically confirmed to have GC. Follow-up of all patients was carried out according to our standard protocol (every 6 months during the first 2 years, then once in 12 months through telephone, outpatient review, or medical records). The latest follow-up data in this analysis were obtained in October 2014. Recurrence and mortality events were recorded and recurrence-free survival (RFS) was calculated for prognosis assessment. Written permission was obtained from all participants and the study was approved by the Institutional Review Board of the Air Force Military Medical University (Xi’an, China). The procedures were performed according to the approved guidelines and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Genotyping
The association between the three SNPs and gastric cancer was evaluated. Peripheral venous blood samples (5 mL) were collected from all subjects in EDTA vacutainers. Genomic DNA was obtained from the peripheral blood lymphocytes of study subjects using the Genomic DNA Extraction Kit (Omega Bio-Tek, Norcross, GA, USA or GoldMag Ltd, Xian, China) according to the manufacturer’s protocol. All samples were collected before curative resection and stored at -80 °C for subsequent analysis. The GJA1 gene rs2071165 G > A, SCAMP1 gene rs4530741 A > C, and rs6874309 T > A polymorphisms were genotyped on the Agena Mass ARRAY RS1000 platform according to the standard protocol (Applied Biosystems, Foster City, CA, USA). Primers were designed using the Agena Mass ARRAY Assay Design 4.0 software.

Statistical analysis
Analyses were performed using SPSS version 20.0. Student’s t-test was used to compare differences in age between the two groups. The chi-square or Fisher’s exact test was used for sex and genotype frequency estimation. The odds ratio (OR) and confidence interval (CI) values of associations of genotype frequencies were calculated using binary logistic regression with the SNPstats web tool (http://bioinfo.iconcologia.net/snpstats/start.htm), adjusting for age and gender. Kaplan-Meier curves and log-rank tests were also used to estimate the associations between SNP and OS and RFS. The Cox proportional hazard regression model was applied to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for predicting the effects of SNPs on GC prognosis. All statistical analyses were two-sided, and \(p < 0.05 \) was considered statistically significant.

Immunohistochemistry
Gastric cancer tissue specimens were collected from 45 patients (33 male, 12 female); 33 non-tumor adjacent normal tissue samples were obtained from a segment of the resected specimens that were farthest from the tumor (> 5 cm (23 male, 10 female). All patients were pathologically diagnosed postoperatively. Written informed consent was obtained from all participants.

Immunohistochemical analysis was performed on paraffin-embedded specimens. The slides were incubated in 0.3% H\textsubscript{2}O\textsubscript{2} in methanol for 20 min. For antigen retrieval, the slides were boiled in 10-mM sodium citrate buffer solution (pH 6.0) in a microwave oven for 15 min. After blocking nonspecific binding with 5% BSA for 1 h, the slides were incubated with an anti-connexin 43 antibody (1:100, Abcam) overnight at 4 °C. Then, the slides were incubated with a biotinylated sheep anti-rabbit antibody and DAB. The specific immunoreactivity showed clear brown staining.

Semi-quantitative count of the staining was scored according to Barne's method. Assessment of score standard was based on staining intensity and percentage of positive cells. Immunostaining results were scored as the sum of the extent and intensity of immunoreactivity.

All data were analyzed using the GraphPad Prism 8.0 software. A t-test was used for comparison between groups. A \(p \)-value < 0.05 was considered statistically significant.

Results
The genotype frequencies and their associations with the risk of gastric cancer in the Han Chinese population are shown in Table 1. Three genotypes were detected at each single-nucleotide polymorphism (SNP) locus with similar frequencies of each genotype in the case and control groups, respectively. The \(p \)-value of each SNP from the Hardy–Weinberg equilibrium (HWE) test was more than 0.05. Moreover, no significant association was observed between each SNP and GC susceptibility without regard to gender differences.
Furthermore, stratification analysis was performed to evaluate the association between the polymorphisms and gastric cancer risk (Table 2). A significant association between *GJA1* polymorphisms and GC risk in females was observed other than the *SCAMP1* rs4530741 and rs6874309 polymorphisms. Compared to the rs2071165 GG genotype, the dominant model demonstrated that the combined genotype AG/AA was significantly associated with an increased risk of GC in women, after adjusting for age (odds ratio, OR = 1.55, 95% confidence interval, 95% CI = 1.03–2.32, *p* = 0.034). The frequencies of AA and AG genotypes in female patients were higher compared with those in female controls, while the frequencies of GG genotypes in female cases were lower compared with those in female controls (Supplementary Table 2). No significant associations were observed in men. In addition, no significant association between the AG/AA genotypes and other subgroups were observed, stratifying by age, clinical stages, tumor size, tumor position, and recurrence/metastasis. Moreover, there were no significant differences in specific genotypes or allelic frequencies associated with the prognosis of gastric cancer (Table 4 and Supplementary Table 5).
Table 2
Stratification analyses for the association between genetic polymorphism and GC susceptibility

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p^2
rs2071165						
< 55						
GG	235	133	1.00	0.36	1.00	0.32
AG	173	98	1.00 (0.72–1.38)	1.02 (0.73–1.42)		
AA	21	19	1.60 (0.83–3.08)	1.66 (0.86–3.22)		
AG/AA	194	117	1.06 (0.78–1.45)	0.71	1.09 (0.80–1.49)	0.59
≥ 55						
GG	188	249	1.00	0.44	1.00	0.36
AG	115	158	1.04 (0.76–1.41)	1.15 (0.81–1.63)		
AA	24	22	0.69 (0.38–1.27)	0.70 (0.35–1.39)		
AG/AA	139	180	0.98 (0.73–1.31)	0.88	1.07 (0.77–1.49)	0.69
rs4530741						
< 55						
CC	127	84	1.00	0.37	1.00	0.46
AC	213	122	0.87 (0.61–1.23)	0.89 (0.62–1.27)		
AA	90	43	0.72 (0.46–1.14)	0.75 (0.47–1.18)		
AC/AA	303	165	0.82 (0.59–1.15)	0.26	0.84 (0.60–1.18)	0.33
≥ 55						
CC	123	142	1.00	0.22	1.00	0.7
AC	138	208	1.31 (0.94–1.80)	1.15 (0.80–1.66)		
AA	66	79	1.04 (0.69–1.56)	1.00 (0.63–1.59)		
AC/AA	204	287	1.22 (0.90–1.65)	0.2	1.11 (0.79–1.55)	0.56
rs6874309						
< 55						
AA	358	215	1.00	0.63	1.00	0.68
AT	68	33	0.81 (0.52–1.27)	0.83 (0.53–1.30)		
TT	4	2	0.83 (0.15–4.58)	0.76 (0.14–4.27)		
AT/TT	72	35	0.81 (0.52–1.25)	0.34	0.82 (0.53–1.28)	0.39
≥ 55						
AA	277	354	1.00	0.29	1.00	0.48
AT	46	73	1.24 (0.83–1.85)	1.18 (0.75–1.85)		
TT	4	2	0.39 (0.07–2.15)	0.38 (0.05–3.02)		
AT/TT	50	75	1.17 (0.79–1.74)	0.42	1.13 (0.72–1.75)	0.6
Gender						
Male						
rs2071165						
GG	262	305	1.00	0.35	1.00	0.74

1: adjusted by gender; 2: adjusted by age and gender; 3: adjusted by age

^a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AG	194	191	0.85 (0.65–1.10)		0.92 (0.69–1.22)	
AA	33	30	0.78 (0.46–1.32)		0.84 (0.47–1.48)	
AG/AA	227	221	0.84 (0.65–1.07)	0.16	0.91 (0.69–1.19)	0.48

rs4530741
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	150	167	1.00	0.77	1.00	0.65
AC	242	263	0.98 (0.74–1.29)	1.04	1.04 (0.76–1.41)	
AA	97	95	0.88 (0.61–1.26)		0.87 (0.59–1.29)	
AC/AA	339	358	0.95 (0.73–1.24)	0.70	0.99 (0.74–1.32)	0.93

rs6874309
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	406	441	1.00	0.45	1.00	0.43
AT	78	83	0.98 (0.70–1.37)		0.89 (0.62–1.29)	
TT	5	2	0.37 (0.07–1.91)		0.33 (0.05–2.24)	
AT/TT	83	85	0.94 (0.68–1.31)	0.73	0.86 (0.60–1.24)	0.43

rs2071165
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
GG	161	77	1.00	0.1	1.00	0.084
AG	94	66	1.47 (0.97–2.22)		1.49 (0.98–2.26)	
AA	12	11	1.92 (0.81–4.54)		2.04 (0.85–4.87)	
AG/AA	106	77	1.52 (1.02–2.27)	0.04	1.55 (1.03–2.32)	0.034

rs4530741
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	100	60	1.00	0.52	1.00	0.65
AC	108	67	1.03 (0.66–1.61)		1.00 (0.64–1.57)	
AA	59	27	0.76 (0.44–1.33)		0.79 (0.45–1.38)	
AC/AA	167	94	0.94 (0.62–1.41)	0.76	0.93 (0.61–1.40)	0.72

rs6874309
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	228	129	1.00	0.9	1.00	0.84
AT	36	23	1.13 (0.64–1.99)		1.19 (0.67–2.11)	
TT	3	2	1.18 (0.19–7.14)		1.08 (0.17–6.69)	
AT/TT	39	25	1.13 (0.66–1.96)	0.66	1.18 (0.68–2.05)	0.56

Recurrence and metasis a
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
rs2071165						
GG	423	208	1.00	0.86	1.00	0.76
AG	288	148	1.05 (0.81–1.35)		1.08 (0.83–1.42)	
AA	45	20	0.90 (0.52–1.57)		0.90 (0.50–1.61)	
AG/AA	333	168	1.03 (0.80–1.32)	0.84	1.06 (0.81–1.38)	0.67

rs4530741
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	124	250	1.00	0.63	1.00	0.61

1: adjusted by gender; 2: adjusted by age and gender; 3: adjusted by age
a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AC	181	250	1.04(0.79–1.38)	1.00	0.75–1.35	
AA	71	156	0.92(0.64–1.31)	0.9075	0.62–1.32	
AC/AA	252	506	1.00(0.77–1.31)	0.98	0.74–1.29	0.86

rs6874309

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	310	634	1.00	0.42	1.00	0.72
AT	64	114	1.15(0.82–1.61)	1.07	0.75–1.52	
TT	2	8	0.51 (0.11–2.42)	0.7212	0.14–3.97	
AT/TT	66	122	1.11(0.80–1.54)	0.55	1.05(0.74–1.49)	0.79

rs2071165

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
GG	423	167	1.00	0.75	1.00	0.97
AG	288	102	0.90 (0.67–1.20)	0.96	0.71–1.30	
AA	45	18	1.01 (0.57–1.80)	0.99	0.54–1.80	
AG/AA	333	120	0.91 (0.69–1.20)	0.51	0.72(0.72–1.28)	0.8

rs4530741

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	99	250	1.00	0.98	1.00	0.72
AC	138	350	0.99 (0.73–1.35)	1.06	0.77–1.46	
AA	49	156	0.80(0.53–1.18)	0.80	0.53–1.21	
AC/AA	187	506	0.93 (0.70–1.24)	0.64	0.73(0.73–1.32)	0.88

rs6874309

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	245	634	1.00	0.63	1.00	0.41
AT	40	114	0.91(0.62–1.34)	0.84	0.57–1.26	
TT	2	8	0.65(0.14–3.07)	0.62	0.12–3.21	
AT/TT	42	122	0.89(0.61–1.30)	0.55	0.56–1.23	0.36

rs2071165

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
GG	71	423	1.00	0.22	1.00	0.10
AG	61	288	1.26 (0.87–1.83)	1.39	0.94–2.05	
AA	9	45	1.19 (0.56–2.54)	1.17	0.53–2.57	
AG/AA	70	333	1.25 (0.87–1.80)	0.22	1.35(0.93–1.87)	0.12

rs4530741

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	38	250	1.00	0.13	1.00	0.12
AC	74	350	1.39(0.91–2.12)	1.42	0.91–2.21	
AA	28	156	1.18(0.70–2.00)	1.23	0.71–2.13	
AC/AA	102	506	1.33(0.89–1.98)	0.17	1.36(0.90–2.07)	0.15

rs6874309

	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	112	634	1.00	0.16	1.00	0.32

¹: adjusted by gender; ²: adjusted by age and gender; ³: adjusted by age

a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AT	28	114	1.39(0.88–2.20)	1.27(0.79–2.06)		
TT	0	8	NA	NA		
AT/TT	28	122	1.30(0.82–2.052)	0.26	1.2(0.74–1.94)	0.45

Middle

rs2071165	GG	272	423	1.00	0.43	1.00	0.62
AG	168	288	0.91(0.71–1.16)	0.94(0.73–1.21)			
AA	25	45	0.86(0.52–1.44)	0.85(0.50–1.45)			
AG/AA	193	333	0.90(0.71–1.14)	0.38	0.93(0.73–1.18)	0.53	

rs4530741	CC	166	250	1.00	0.60	1.00	0.67
AC	217	350	0.93(0.72–1.21)	0.94(0.72–1.24)			
AA	82	156	0.79(0.57–1.10)	0.77(0.55–1.09)			
AC/AA	299	506	0.89(0.70–1.13)	0.35	0.89(0.69–1.15)	0.37	

rs6874309	AA	395	634	1.00	0.73	1.00	0.49
AT	67	114	0.94(0.68–1.31)	0.89(0.63–1.25)			
TT	0	8	NA	NA		NA	
AT/TT	71	122	0.93(0.68–1.28)	0.67	0.89(0.64–1.24)	0.49	

Late

rs2071165	GG	32	423	1.00	0.77	1.00	0.98
AG	20	288	0.92(0.51–1.64)	1.01(0.55–1.83)			
AA	3	45	0.88(0.26–2.99)	0.76(0.21–2.67)			
AG/AA	23	333	0.91(0.52–1.59)	0.75	0.97(0.54–1.71)	0.90	

rs4530741	CC	19	250	1.00	0.96	1.00	0.66
AC	27	350	1.02(0.55–1.87)	1.15(0.61–2.18)			
AA	9	156	0.76(0.34–1.72)	0.90(0.39–2.10)			
AC/AA	36	506	0.94(0.53–1.67)	0.82	1.08(0.59–1.97)	0.81	

rs6874309	AA	46	634	1.00	0.82	1.00	0.88
AT	9	114	1.09(0.52–2.28)	0.94(0.44–2.03)			
TT	0	8	NA	NA		NA	
AT/TT	9	122	1.02(0.49–2.13)	0.96	0.89(0.41–1.91)	0.75	

Tumor size

rs2071165	1.00	1.00				
GG	423	145	1.00	0.44	1.00	0.44

¹ : adjusted by gender; ² : adjusted by age and gender; ³ : adjusted by age

⁻ : Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AG	288	106	1.07 (0.80–1.44)	1.14 (0.84–1.55)		
AA	45	22	1.43 (0.83–2.46)	1.40 (0.79–2.48)		
AG/AA	333	128	1.12 (0.85–1.48)	0.42	1.18 (0.88–1.58)	0.27

rs4530741

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	93	250	1.00	0.86	1.00	0.69
AC	134	350	1.03 (0.75–1.40)	1.07 (0.77–1.48)		
AA	45	156	0.78 (0.52–1.17)	0.81 (0.53–1.24)		
AC/AA	179	506	0.95 (0.71–1.27)	0.74	0.99 (0.73–1.34)	0.94

rs6874309

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	239	634	1.00	0.21	1.00	0.15
AT	33	114	0.77 (0.51–1.16)	0.73 (0.47–1.12)		
TT	1	8	0.33 (0.04–2.67)	0.37 (0.04–3.31)		
AT/TT	34	122	0.74 (0.49–1.11)	0.15	0.71 (0.46–1.08)	0.11

rs2071165	< 5 cm	OR (95% CI)	p	OR (95% CI)	p²	
GG	423	224	1.00	0.28	0.36	
AG	288	140	0.92 (0.71–1.19)	0.97 (0.74–1.27)		
AA	45	15	0.63 (0.34–1.15)	0.64 (0.34–1.20)		
AG/AA	333	155	0.88 (0.68–1.13)	0.31	0.92 (0.71–1.20)	0.55

rs4530741	Position a	OR (95% CI)	p	OR (95% CI)	p²	
-----------	============	-------------	------	-------------	-----	
CC	126	250	1.00	0.86	0.89	
AC	181	350	1.03 (0.78–1.36)	1.02 (0.76–1.37)		
AA	72	156	0.92 (0.64–1.30)	0.89 (0.63–1.29)		
AC/AA	253	506	0.99 (0.76–1.29)	0.95	0.98 (0.75–1.29)	0.89

rs6874309

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
AA	306	634	1.00	0.15	1.00	0.38
AT	70	114	1.27 (0.92–1.77)	1.16 (0.83–1.64)		
TT	3	8	0.78 (0.20–2.95)	0.88 (0.21–3.66)		
AT/TT	73	122	1.24 (0.90–1.71)	0.19	1.15 (0.82–1.61)	0.42

Position a

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
rs2071165	Cardia					
GG	423	78	1.00	0.14	1.00	0.34
AG	288	39	0.73 (0.49–1.11)	0.80 (0.51–1.27)		
AA	45	7	0.84 (0.37–1.94)	0.75 (0.30–1.87)		
AG/AA	333	46	0.75 (0.51–1.11)	0.15	0.79 (0.51–1.23)	0.30

rs4530741

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p²
CC	38	250	1.00	0.59	1.00	0.66

¹: adjusted by gender; ²: adjusted by age and gender; ³: adjusted by age

a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p^2
AC	60	350	1.13 (0.73 – 1.75)	1.12 (0.68 – 1.83)		
AA	27	156	1.14 (0.67 – 1.94)	1.38 (0.76 – 2.50)		
AC/AA	87	506	1.13 (0.75 – 1.71)	0.56	1.19 (0.75 – 1.89)	0.46

rs6874309

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p^2
AA	107	634	1.00	0.66	1.00	0.25
AT	17	114	0.88 (0.51 – 1.53)	0.70 (0.38 – 1.30)		
TT	1	2	0.74 (0.09 – 5.98)	0.83 (0.067 – 10.18)		
AT/TT	18	333	0.87 (0.51 – 1.49)	0.62	0.70 (0.38 – 1.29)	0.26

Non-cardia

rs2071165

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p^2
GG	423	238	1.00	1.00	1.00	0.79
AG	288	162	1.00 (0.78 – 1.28)	1.04 (0.80 – 1.34)		
AA	45	25	0.99 (0.59 – 1.65)	0.98 (0.58 – 1.66)		
AG/AA	333	187	1.00 (0.79 – 1.27)	0.99	1.03 (0.80 – 1.31)	0.83

rs4530741

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p^2
CC	142	250	1.00	0.82	1.00	0.70
AC	205	350	1.03 (0.79 – 1.35)	1.06 (0.80 – 1.40)		
AA	76	156	0.86 (0.61 – 1.21)	0.85 (0.60 – 1.21)		
AC/AA	281	506	0.98 (0.76 – 1.26)	0.86	0.99 (0.76 – 1.29)	0.95

rs6874309

Genotype	Control	Case	OR (95% CI)	p	OR (95% CI)	p^2
AA	350	634	1.00	0.47	1.00	0.80
AT	71	114	1.13 (0.82 – 1.56)	1.04 (0.75 – 1.46)		
TT	3	8	0.68 (0.18 – 2.58)	0.75 (0.18 – 3.04)		
AT/TT	74	122	1.10 (0.80 – 0.58)	0.56	1.03 (0.74 – 1.43)	0.87

1: adjusted by gender; 2: adjusted by age and gender; 3: adjusted by age

a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Table 3
Stratification analyses for the association between GJA1 rs2071165 G > A polymorphism and GC susceptibility in females

Model	Genotype	case	control	OR(95%CI)	p	OR(95%CI)	p'
Age							
≥ 55	Co-dominant	GG	38	105	1.00	1.00	0.26
		AG	33	66	1.38 (0.79–2.42)	1.42 (0.78–2.56)	
		AA	6	9	1.84 (0.61–5.52)	2.15 (0.67–6.88)	
	Dominant	GG	38	105	1.00	1.00	0.19
		AA/AG	39	75	1.44 (0.84–2.46)	1.50 (0.85–2.64)	
	Recessive	AG/GG	71	171	1.00	1.00	0.39
		AA	6	9	1.61 (0.55–4.68)	1.86 (0.60–5.75)	
< 55	Co-dominant	GG	39	56	1.00	1.00	0.11
		AG	33	28	1.69 (0.88–3.24)	1.85 (0.88–3.88)	
		AA	5	3	2.39 (0.54–10.60)	4.52 (0.93–22.00)	
	Dominant	GG	39	56	1.00	1.00	0.08
		AA/AG	38	31	1.76 (0.94–3.93)	2.06 (1.01–4.21)	
	Recessive	AG/GG	72	84	1.00	1.00	0.37
		AA	5	3	1.94 (0.45–8.42)	3.51 (0.75–16.53)	
Tumor size a							
≥ 5 cm	Co-dominant	GG	32	161	1.00	1.00	0.07
		AG	31	94	1.66 (0.95–2.89)	1.66 (0.95–2.89)	
		AA	6	12	2.52 (0.88–7.20)	2.53 (0.88–7.23)	
	Dominant	GG	32	161	1.00	1.00	0.04
		AA/AG	37	106	**1.76(1.03–2.99)**	**1.753(1.03–2.99)**	
	Recessive	AG/GG	63	255	1.00	1.00	0.17
		AA	6	12	2.02 (0.73–5.60)	2.04 (0.73–5.64)	
< 5 cm	Co-dominant	GG	41	161	1.00	1.00	0.17
		AG	34	94	1.42 (0.84–2.39)	1.42 (0.82–2.46)	
		AA	5	12	1.64 (0.55–4.91)	2.01 (0.64–6.34)	
	Dominant	GG	41	161	1.00	1.00	0.15
		AA/AG	39	106	1.45 (0.87–2.39)	1.48 (0.87–2.51)	
	Recessive	AG/GG	75	255	1.00	1.00	0.52
		AA	5	12	1.42 (0.48–4.15)	1.75 (0.57–5.36)	
Clinical stage a							
0/I/II*	Co-dominant	GG	56	161	1.00	1.00	0.26
		AG	43	94	1.32 (0.82–2.11)	1.38 (0.85–2.23)	

1: adjusted by age

*: stage 0 was added to the Clinical stage I/II

a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Model	Genotype	case	control	OR(95%CI)	p	OR(95%CI)	p¹	
	AA	5	12	1.20(0.40–3.55)	1.28	0.42–3.85		
	GG	56	161	1.00	0.26	1.00	0.17	
				1.30(0.82–2.06)		1.37(0.86–2.18)		
	AG/GG	99	255	1.00	0.90	1.00	0.84	
				1.07(0.37–3.13)		1.12(0.38–3.32)		
	AA	5	12	1.07 (0.37–3.13)		1.12(0.38–3.32)		
Dominant	GG	20	161	1.00	0.01	1.00	0.01	
				1.00		1.00		
	AG	22	94	1.88 (0.98–3.63)		1.83(0.94–3.54)		
				4.03(1.36–11.91)		4.19(1.41–12.45)		
	AA	6	12	3.036(1.08–8.53)	3.21	1.14–9.08		
	AG/GG	42	255	1.00	0.04	1.00	0.03	
				2.13(1.14–3.97)		2.09(1.12–3.91)		
	AA	6	12	4.03(1.36–11.91)		4.19(1.41–12.45)		
Recurrence/ Metastasisa								
negative	Co-dominant	GG	35	161	1.00	0.04	1.00	0.03
	AG	36	94	1.76(1.04–2.99)		1.82(1.06–3.10)		
				2.68(0.99–7.30)		2.84(1.03–7.80)		
	AA	7	12	2.68(0.99–7.30)		2.84(1.03–7.80)		
	GG	35	161	1.00	0.02	1.00	0.01	
				2.13(1.14–3.97)		2.09(1.12–3.91)		
	AG	42	255	1.00	0.04	1.00	0.03	
				3.036(1.08–8.53)		3.21(1.14–9.08)		
	AG/GG	71	255	1.00	0.13	1.00	0.12	
				2.095(0.795–5.52)		2.18(0.82–5.80)		
	AA	7	12	3.036(1.08–8.53)		3.21(1.14–9.08)		
positive	Co-dominant	GG	41	161	1.00	0.49	1.00	0.58
	AG	29	94	1.21(0.71–2.08)		1.17(0.68–2.03)		
				1.31(0.40–4.27)		1.41(0.43–4.63)		
	AA	4	12	1.31(0.40–4.27)		1.41(0.43–4.63)		
	GG	41	161	1.00	0.45	1.00	0.51	
				1.22(0.3–2.06)		1.20(0.70–2.03)		
	AG	70	255	1.00	0.74	1.00	0.64	
				1.21(0.38–3.88)		1.32(0.41–4.27)		
	AG/GG	4	12	1.21(0.38–3.88)		1.32(0.41–4.27)		

¹: adjusted by age

*: stage 0 was added to the Clinical stage I/II

a: Patient numbers may not add up to 100% of available subjects because of missing clinical data.
Making Cx43 an attractive tumor biomarker. However, its role in cancer progression and metastasis remains controversial. Connexin 43 is a member of the connexins known for its greater capacity for transporting macromolecules than other connexin proteins.

Table 4

Genotype	OS		Log-rank p	MST\(^1\)	HR (95%CI)	p	RFS		Log-rank p	MST\(^1\)	HR (95%CI)	p
rs2071165												
GG	375	125	0.77	57	1.00	0.46	34	1.00				
AG	250	85		62	1.03 (0.75–1.41)	0.87	250	102				
AA	38	15		40	1.01 (0.54–1.87)	0.98	38	18				
Dominant	288	100	0.94	62	1.02 (0.76–1.39)	0.88	288	120	0.65			
rs4530741												
CC	223	79	0.95	56	1.00	0.75	33	1.00				
AC	319	110		59	1.05 (0.75–1.48)	0.76	319	138				
AA	120	36		43.12	1.03 (0.66–1.60)	0.91	120	49				
Dominant	439	146	0.80	62	1.05 (0.76–1.44)	0.78	439	187	0.58			
rs6874309												
AA	555	190	0.79	57	1.00	0.51	32	1.00				
TA	104	35		42.985	1.14 (0.75–1.71)	0.55	104	40				
TT	4	1		55	0.56 (0.08–1.09)	0.57	4	2				
Dominant	108	36	0.86	57	1.10 (0.73–1.65)	0.65	108	42	0.24			

1: Mean survival time was provided when MST could not be calculated.

Further stratified analyses based on various female patient characteristics were performed. As shown in Table 3 (Supplementary Table 4), after adjusting for age, the dominant model demonstrated that rs2071165 combined genotype AA/AG was significantly associated with an increased risk of GC in female subjects aged < 55 years (OR = 2.06, 95% CI = 1.01–4.21, \(p = 0.046\)), when compared to the rs2071165 GG genotype. Moreover, the AA/AG genotype was associated with an increased risk of GC for females with a tumor size of ≥ 5 cm (OR = 1.75, 95% CI = 1.03–2.99, \(p = 0.039\)), females in tumor stage III/IV (OR = 2.09, 95% CI = 1.12–3.91, \(p = 0.021\)), and females showing negative recurrence/metastasis (OR = 1.93, 95% CI = 1.16–3.23, \(p = 0.012\)), compared to the rs2071165 GG genotype. Furthermore, the co-dominant model showed that the rs2071165 AA genotype had a significant association with an increased risk of GC in women with tumor stage III/IV (OR = 4.19, 95% CI = 1.41–12.45, \(p = 0.010\)) and the rs2071165 AA and AG genotype was significantly associated with an increased risk of GC in women with negative recurrence/metastasis (OR = 2.84, 95% CI = 1.03–7.796, \(p = 0.029\); OR = 1.82, 95% CI = 1.06–3.10, \(p = 0.029\)), respectively. The recessive model also showed that the rs2071165 AA genotype was associated with an increased risk of GC in females with stage III/IV tumors compared to the rs2071165 AG/GG genotype.

Discussion

The association of GJA1 rs2071165 and SCAMP1 rs4530741 A > C and rs6874309 T > A polymorphisms with GC risk and prognosis was investigated in this study. The GJA1 gene rs2071165 AA/AG genotype significantly increased the risk of GC in the female Chinese population, which indicated that GJA1 polymorphisms may contribute to GC susceptibility in females. Furthermore, the risk effect of rs2071165 was more evident in the subgroups of female patients with GC, stratified by age, clinical stage, tumor size, and recurrence/metastasis. Negative results were observed for SCAMP1 rs4530741 A > C and rs6874309 T > A polymorphisms. To the best of our knowledge, this study reported the association between GJA1 and SCAMP1 gene polymorphisms and GC risk for the first time. Once validated, it may be used as a new marker for assessing GC risk in females, combined with traditional clinical risk factors.

Connexin 43 is a member of the connexins known for its greater capacity for transporting macromolecules than other connexin proteins (19). Compelling evidence suggests that dysregulated Cx43 (GJA1) expression is associated with tumor development and progression (20–22), making Cx43 an attractive tumor biomarker. However, its role in cancer progression and metastasis remains controversial (14). Decreased
expression of Cx43 was found in primary gastric cancer, while increased Cx43 expression was found to contribute to lymph node metastasis (23). Increased Cx43 expression has been reported to be associated with poor prognosis in some cancer types (14, 20, 24), while the contrary has also been reported in breast cancer (25). However, the current consensus appeared to be that the loss of Cx43 gap junction intercellular communication is an early event in malignancy, with the possibility of gap junction restoration in the event of metastasis (26), which also enhanced the role of Cx43 in cancer development and prognosis.

Despite extensive investigations of Cx43 (GJA1) expression and its corresponding activity in cancer evolution, few studies have focused on the effect of the SNPs in GJA1 on cancer risk or prognosis. According to web-based SNP selection tools (https://manticore.niehs.nih.gov/snpinfo/snpfunc.html), two functional SNPs, rs2071165, were selected in the GJA1 gene region for further analysis in our study. rs2071165 is located in the upstream-variant-2KB GJA1 and was predicted to be a transcription factor binding site, which may influence the expression of Cx43 expression in GC patients. The correlation between rs2071165 and cancer risk has not yet been investigated. The SNP rs2071166 was removed from this study due to its strong linkage disequilibrium with the SNP rs2071165. However, the AA/AG genotypes of functional SNP rs2071165 were significantly associated with GC risk in females and the variant-containing (AA, AG, and AA/AG) genotypes showed a more prominent effect on subgroups of female GC patients, stratifying by age, clinical stages, tumor size, and recurrence/metastasis, supporting the important role of Cx43 in GC development. However, no significant association between rs2071165 polymorphisms and GC prognosis was observed in this study, even in females.

Sex disparity in GC has been proven (8). In the present study, it was observed that the GJA1 rs2071165 AA/AG genotype was significantly associated with an increased risk of GC in females but not in males. Cx43 is hormone-responsive (27) and inhibition of estrogen receptors could reduce connexin 43 expression in breast cancers (28). Estrogen also has a preventive role in gastric cancer (29). Furthermore, a report suggested that hypothalamic Cx43 expression is regulated by steroid hormones in a brain-region-specific and sexually dimorphic manner (30). The interaction between estrogen and aberrant Cx43 expression might also contribute to GC development and progression. However, the expression of Cx43 in GC was also discussed in another cohort; decreased expression of Cx43 in gastric cancer was also observed, but no difference in Cx43 expression was observed between males and females (Fig. 1). Therefore, more evidence is needed to support this hypothesis.

Our study has several limitations. First, the exact mechanism of GJA1 polymorphism needs to be further clarified, even though a correlation between rs2071165 polymorphisms and GC risk was observed. Second, the sample size was too small to have enough statistical power for the stratified analyses in females. Only two SNPs in SCAMP1 were evaluated; other important SNPs may have been neglected. Third, the association between genetic and environmental factors, such as drinking and dietary habits, failed to account for the lack of these data. Moreover, the study was restricted to the Han Chinese population and, therefore, generalizability issues cannot be ruled out. Further studies in larger populations including other ethnicities are warranted.

Conclusions

The study suggests that GJA1 rs2071165 polymorphisms are associated with increased GC risk in females, but no significant association between rs4530741 and rs6874309 polymorphisms in SCAMP1 and GC risk or prognosis was observed. Moreover, the GJA1 rs2071165 polymorphisms may contribute to an increased risk of GC in women aged < 55 years. The present study showed potential clinical significance in predicting GC in women and a hypothesis for the sex difference in GC.

Abbreviations

Cx43
Connexin 43
GC
gastric cancer
OS
overall survival
RFS
recurrence-free survival
HR
hazard ratios
CIs
confidence intervals
SNP
single nucleotide polymorphism
MAF
Declarations

Ethics approval and consent to participate

Written permission was obtained from all participants, the study was approved by the Institutional Review Board of the Air Force Military Medical University (Xi’an, China). The procedures were performed according to the approved guidelines and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent for publication

All the authors listed have approved the enclosed manuscript for publication.

Availability of data and materials

Data are available from the authors upon reasonable request and with permission from the Air Force Military Medical University (Xi’an, China).

Competing interests

No conflict of interest exists in the submission of this manuscript, I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part.

Funding

This study was funded by the National Natural Science Foundation of China (No: 81572916, 81502424). The funding body has no role in the design of the study, collection, analysis, interpretation of data, and writing of the manuscript.

Authors’ contributions

LJY designed the work and drafted the article; GW and PY carried out experiments and collected data; ZYY and LY analyzed the experimental results; JGL and SJP assisted with data analysis; XLH and GQB reviewed the manuscript and gave final approval of the version to be published.

Acknowledgements

We deeply appreciate the contribution to this work made in various ways by all the participants.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011;61(2):69-90.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
3. Venerito M, Link A, Rokkas T, Malfertheiner P. Review: Gastric cancer-Clinical aspects. Helicobacter. 2019;24 Suppl 1:e12643.
4. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115-32.
5. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer communications. 2019;39(1):22.
6. Camargo MC, Figueiredo C, Machado JC. Review: Gastric malignancies: Basic aspects. Helicobacter. 2019;24 Suppl 1:e12642.
7. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 2014;23(5):700-13.
8. Kim HW, Kim JH, Lim BJ, Kim H, Kim H, Park JJ, et al. Sex Disparity in Gastric Cancer: Female Sex is a Poor Prognostic Factor for Advanced Gastric Cancer. Ann Surg Oncol. 2016;23(13):4344-51.
9. Derakhshan MH, Liptrot S, Paul J, Brown IL, McColl KE. Oesophageal and gastric intestinal-type adenocarcinomas show the same male predominance due to a 17 year delayed development in females. Gut. 2009;58(1):16-23.
10. Sheh A, Ge Z, Parry NM, Muthupalani S, Rager JE, Racynski AR, et al. 17beta-estradiol and tamoxifen prevent gastric cancer by modulating leukocyte recruitment and oncogenic pathways in Helicobacter pylori-infected INS-GAS male mice. Cancer Prev Res (Phila). 2011;4(9):1426-35.
11. Camargo MC, Goto Y, Zabaleta J, Morgan DR, Correa P, Rabkin CS. Sex hormones, hormonal interventions, and gastric cancer risk: a meta-analysis. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by
the American Society of Preventive Oncology. 2012;21(1):20-38.

12. Freedman ND, Derakhshan MH, Abnet CC, Schatzkin A, Hollenbeck AR, McColl KE. Male predominance of upper gastrointestinal adenocarcinoma cannot be explained by differences in tobacco smoking in men versus women. Eur J Cancer. 2010;46(13):2473-8.

13. Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS. Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol. 2007;94(1-2):29-65.

14. Bonacquisti EE, Nguyen J. Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett. 2019;442:439-44.

15. Yang S, Lee KT, Lee JY, Lee KH, Rhee JC. Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells. Tumour Biol. 2013;34(5):2731-9.

16. Vadakekolathu J, Al-Juboori SIK, Johnson C, Schneider A, Buczek ME, Di Biase A, et al. MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis. 2018;9(3):344.

17. Zong ZQ, Song YC, Xue YX, Ruan XL, Liu XB, Yang CQ, et al. Knockdown of LncRNA SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating miR-499a-5p/LMX1A/NLRC5 pathway. J Cell Mol Med. 2019;23(8):5048-62.

18. Song R, Liu Z, Lu L, Liu F, Zhang B. Long Noncoding RNA SCAMP1 Targets miR-137/CXCL12 Axis to Boost Cell Invasion and Angiogenesis in Ovarian Cancer. DNA Cell Biol. 2020;39(6):1041-50.

19. Kanaporis G, Brink PR, Valiunas V. Gap junction permeability: selectivity for anionic and cationic probes. Am J Physiol Cell Physiol. 2011;300(3):C600-9.

20. Poyet C, Buser L, Roudnicky F, Detmar M, Hermanss T, Mannhard D, et al. Connexin 43 expression predicts poor progression-free survival in patients with non-muscle invasive urothelial bladder cancer. J Clin Pathol. 2015;68(10):819-24.

21. Conklin C, Huntsman D, Yorida E, Makretsov N, Turbin D, Bechberger JF, et al. Tissue microarray analysis of connexin expression and its prognostic significance in human breast cancer. Cancer Lett. 2007;255(2):284-94.

22. Biscanin A, Ljubicic N, Boban M, Balicevic D, Pavic I, Biscanin MM, et al. CX43 Expression in Colonic Adenomas and Surrounding Mucosa Is a Marker of Malignant Potential. Anticancer research. 2016;36(10):5437-42.

23. Tang B, Peng ZH, Yu PW, Yu G, Qian F. Expression and significance of Cx43 and E-cadherin in gastric cancer and metastatic lymph nodes. Med Oncol. 2011;28(2):502-8.

24. Stoletov K, Stmadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA, et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci. 2013;126(Pt 4):904-13.

25. Chasampalioti M, Green AR, Ellis IO, Rakha EA, Jackson AM, Spendlove I, et al. Connexin 43 is an independent predictor of patient outcome in breast cancer patients. Breast Cancer Res Treat. 2019;174(1):93-102.

26. Phillips SL, Williams CB, Zambrano JN, Williams CJ, Yeh ES. Connexin 43 in the development and progression of breast cancer. What's the connection? (Review). Int J Oncol. 2017;51(4):1005-13.

27. Firestone GL, Kapadia BJ. Mini review: regulation of gap junction dynamics by nuclear hormone receptors and their ligands. Mol Endocrinol. 2012;26(11):1798-807.

28. Tsai CF, Cheng YK, Lu DY, Wang SL, Chang CN, Chang PC, et al. Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers. Toxicol Appl Pharmacol. 2018;338:182-90.

29. Lindblad M, Ye W, Rubio C, Lagergren J. Estrogen and risk of gastric cancer: a protective effect in a nationwide cohort study of patients with prostate cancer in Sweden. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2004;13(12):2203-7.

30. Gulinello M, Etgen AM. Sexually dimorphic hormonal regulation of the gap junction protein, CX43, in rats and altered female reproductive function in CX43+/- mice. Brain Res. 2005;1045(1-2):107-15.