Review

Haemogregarines and Criteria for Identification

Saleh Al-Quraishy 1, Fathy Abdel-Ghaffar 2, Mohamed A. Dkhil 1,3 and Rewaida Abdel-Gaber 1,2,*

1 Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; guraishi@yahoo.com (S.A.-Q.); mohameddkhil@yahoo.com (M.A.D.)
2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt; fathyghaffar@yahoo.com
3 Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
* Correspondence: rabdelgaber.ksu.edu.sa

Simple Summary: Taxonomic classification of haemogregarines belonging to Apicomplexa can become difficult when the information about the life cycle stages is not available. Using a self-reporting, we record different haemogregarine species infecting various animal categories and exploring the most systematic features for each life cycle stage. The keystone in the classification of any species of haemogregarines is related to the sporogonic cycle more than other stages of schizogony and gamogony. Molecular approaches are excellent tools that enabled the identification of apicomplexan parasites by clarifying their evolutionary relationships.

Abstract: Apicomplexa is a phylum that includes all parasitic protozoa sharing unique ultrastructural features. Haemogregarines are sophisticated apicomplexan blood parasites with an obligatory heteroxenous life cycle and haplohomophagic alternation of generations. Haemogregarines are common blood parasites of fish, amphibians, lizards, snakes, turtles, tortoises, birds, and mammals. Haemogregarine ultrastructure has been so far examined only for stages from the vertebrate host. PCR-based assays and the sequencing of the 18S rRNA gene are helpful methods to further characterize this parasite group. The proper classification for the haemogregarine complex is available with the criteria of generic and unique diagnosis of these parasites.

Keywords: haemogregarines; gamogony; sporogony; schizogony; molecular analysis

1. Introduction

Phylum Apicomplexa was described by Levine [1] to include parasitic protozoa sharing unique ultrastructural features known as the “apical complex” (Figure 1). Haemogregarines (Figure 2) are ubiquitous adeleorine apicomplexan protists inhabiting the blood cells of a variety of ectothermic and some endothermic vertebrates [2–4]. They have also an obligatory heteroxenous life cycle (Figure 3), where asexual multiplication occurs in the vertebrate host; while sexual reproduction occurs in the hematophagous invertebrate vector [5]. This family contains four genera, according to Levine [6]: Haemogregarina Danilewsky [7], Karyolysus Labbé [8], Hepatozoon Miller [9], and Cyriella Lainson [10]. Barta [11] conducted a phylogenetic analysis of representative genera in phylum Apicomplexa using biological and morphological features to infer evolutionary relationships in this phylum among the widely recognized groups. The data showed that the biologically diverse Haemogregarinidae family should be divided into at least three families (as suggested by Mohammed and Mansour [12]), were family Haemogregarinidae, containing the genera Haemogregarina and Cyriella; family Karyolysidae Wennyon [13], of the genus Karyolysus; and family Hepatozooidae Wenyon [13], of the genus Hepatozoon, since the four genera currently in the family do not constitute a monophyletic group. The picture is further complicated by evidence from a study by Petit et al. [14] of a new Brazilian toad haemogregarine parasite Haemolivia stellata.
Figure 1. The general structure for the apical complex for Apicomplexa.

Figure 2. Haemogregarines as a part of phylum Apicomplexa.
Figure 3. The life cycle of the apicomplexan parasites.

It undergoes sporogonic development in its tick host’s gut wall and has a complex life cycle that resembles *Karyolysus* species much more than *Hepatozoon, Haemogregarina,* and *Cyrilia* species. Haemogregarines can be morphologically classified based on the developmental details of sporogonic phases of the parasite in the vector, which provide the main characters for classification, the morphology of gametocytes in the red blood cells, and an evaluation of the stages of development [15,16]. Although useful, this methodology is not sufficient for a taxonomic diagnosis [17,18], also the classical systematics has been problematic because of the variability to which morphological details are subjected [19]. Therefore, the use of molecular methods from blood or tissue samples [20–22], with appropriate molecular phylogeny study, became an essential adjunct to existing morphological and biological characters for use in the inference of evolutionary history relationships among haemoprotozoan parasites [23–25]. Molecular data has been carried out based using PCR assays targeting the nuclear 18s ribosomal RNA gene, which have been extensively applied to characterize hemoparasites DNA more fully in the absence of complete life cycles [26–32].

In the present critical review of the haemogregarines complex, the proper classification, the criteria of generic and unique diagnosis, and the cosmopolitan distribution of haemogregarines among the vertebrate and invertebrate hosts are examined because of their relevant characteristic and taxonomic revisions.

2. Materials and Methods

This review included all related published scientific articles from January 1901 to December 2020. This article was conducted by searching the electronic databases NCBI, ScienceDirect, Saudi digital library, and GenBank database, to check scientific articles and
M.Sc./Ph.D. Thesis related to the research topic of this review. Studies published in the English language were only included and otherwise are excluded.

Relevant studies were reviewed through numerous steps. In the first step, target published articles were identified by using general related terms related to the morphological features, such as “Haemogregarines” and “Apicomplex”. The second step involved screening the resulting articles by using highly specific keywords of the generic features for stages in the life cycle of haemogregarines species, including “Merogony”, “Gamogony”, “Sporogony”, “Infective stages”, “Motile stage”, “Infection sites”, and “sporozoites”. The last step of the review focused on selected studies involving the use of molecular analysis for accurate taxonomic identification by using highly specific keywords, including “PCR”, “Genetic markers”, “Variable regions”, “18S rRNA”, and “Phylogenetic analysis”.

The obtained data were presented in tables and figures and were: Table 1 representing the characteristic features for the haemogregarines genera, Tables 2–6 showing haemogregarines species, the vertebrate host, site of the merogonic stage, the invertebrate vectors, site of gamogony and sporogonic stages, geographical locality for hosts, and the authors for publishing data, Table 7 with the primer sets used for the amplification and sequencing for the appropriate gene of 18S rRNA for haemogregarines, and Table 8 representing all the sequenced and deposited haemogregarines in the GenBank database until now.

3. Results and Discussion

In this review, the different stages of the apicomplexan life cycle were used to identify haemogregarines. However, in most cases, their assignment to one or another genus cannot be considered more than provisional. Accordingly, about 82 haemogregarines in 155 research articles were identified previously. Osimani [33] stated that the differences between the haemogregarines relied more on the host’s identity than the parasite’s characteristics. Mohammed and Mansour [12] reported that haemogregarines gamonts morphology does not provide generic identification with a reliable key. However, Telford et al. [34], and Herbert et al. [35] stated that the determination of generic haemogregarines should not be based exclusively on the gamonts’ form, the type of parasitized host cells, and their effect on the host and site merogony in host cells. While the most characteristic feature for the basic identification via the sporogonic stage.

The reviewed species belonged to the four genera within Hemogregarinidae (Table 1). Following the parsimony analysis in the phylogenetic study of the representative genera in phylum Apicomplexa performed by Siddall and Desser [36] primarily based on ultrastructural observations, it was concluded that the variations between the different haemogregarines genera are mainly reflected by the sporogony features. Besides, Dvořáková et al. [37] added that the host specificity, together with the haemogregarine’s careful morphological and biological analysis, is a sound criterion for accurate identification. These species are common in different animals as fish (Table 2), amphibians (Table 3), reptiles (Tables 4–7), birds (Table 8), and mammals (Table 9).
Table 1. Characters of different groups of haemogregarines used in the parsimony analysis carried out by Barta [19] and Siddall and Desser [36].

Comparable Features	Karyolysis	Haemogregarina	Cryilia	Hepatozoon	Haemolivia
Conoid present	?	In all non-gametes	In all non-gametes	In all non-gametes	In all non-gametes
Crystalloid bodies +/-	+/−	+/−	+	+/−	+/−
Merogony +/-	+ Intra-cellular				
Micropores +/-	+	+/−	+	+/−	+/−
Mitochondria	Cristate	Cristate	Cristate	Cristate	Cristate
Mitosis	Centriolar	Centriolar	?	Centriolar	Centriolar
Amylopectin granules +/-	+	−/−	+	+/−	+/−
Polar ring complex +/-	+	+/−	+	+/−	+/−
Gametogenesis	Extra-cellular	Extra-cellular	Extra-cellular	Extra-cellular	Intra-cellular
No. of microgametes/each	2	4	4	4	2–4
microgamont					
Gamonts	Anisogamous	Anisogamous	Anisogamous	Anisogamous	Anisogamous
Syzygy	+	+/−	+	+/−	+/−
Zygote	Non-motile	Non-motile	Non-motile	Non-motile	Non-motile
Sporogony	Extra-cellular	Extra-cellular	Extra-cellular	Extra-cellular	Intra-cellular
Persistent cysts +/-	−	−/−	−	+/−	+/−
No. of flagella/microgametes	1	1	Absent	1	?
Arrangement of flagella in	Terminal	Terminal	?	Terminal	Terminal
microgametes					
No. of sporozoites/oocyst	20–30	8	>20	4–16	10–25

Note: (+) presence, (-) absence, (?) not detected.
Table 2. Haemogregarines of fish.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Cyrilia gomesi	Synbranchus marmoratus	Leucocytes	Haementeria latzi	Stomach	Sao Paulo, Brazil	Nakamoto et al. [38]
Haemogregarina bigemina	Lipophrys folis and Coryphoblennius galerita	Blood cells	Gnathia maxillaris	Hindgut	Portugal Atlantic west coast	Davies et al. [39]
		Intra-erythrocytic gamonts are only described				
Haemogregarina vltavensis	Perca fluviatilis			Czechoslovakia		Lom et al. [40]
Haemogregarina leptocotti	Leptocottus armatus	Blood cells		California USA		Hill and Hendrickson [41]
Haemogregarina rolofsi	Sebastes melanops	Blood cells		California USA		Hill and Hendrickson [41]
Haemogregarina bigemina	Clinus superciliosus and Clinus cottoides	Intra-erythrocytic	Gnathia africana	South Africa	Davies and Smit [42]	
Haemogregarine sp.	Scomber scombrus L.	Leucocytes		Northwest and Northeast Atlantic ocean		Maclean and Davies [43]
Haemogregarina curtata	Clinus cottoides, Parablemmius cornutus	Intra-erythrocytic	Zeylanicobdella arugamensis	Host gut tissue	South Africa	Hayes et al. [44]
Haemogregarina balistapi	Rhinecanthus aculeatus	Intra-erythrocytic	Gnathia aureamaculosa	Host gut tissue	Great Barrier Reef, Australia	Curtis et al. [45]
Cyrilia sp.	Potamotrygon wallacei	Intra-erythrocytic		Rio Negri	Oliveira et al. [46]	
Haemogregarina daviesensis	Lepidosiren paradoxa	Intra-erythrocytic		Eastern Amazon region	Esteves-Silva et al. [47]	
Table 3. Haemogregarines of amphibians.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Pseudohaemogregarina nutti	*Rana nutti*	Erythrocytes and liver	–	–	Germany	Awerenzew [48]
Haemogregarina theileri	*Rana angloensis*	Erythrocytes and liver	Ticks	Gut wall	Njoro, Kenya	Ball [49]
Haemolivia stellate	Brazilian toads	Liver	–	–	Brazil	Petit et al. [14]
Haemogregarina nucleobisecans	*Bufo himalayanus*	Erythrocytes and liver	–	–	India	Ray [50]
Hepatozoon sipedon	*Nerodia sipedon*	Various internal organs	*Culex pipiens*	Hemocoel	Ontario, Canada	Smith et al. [51]
Hepatozoon catesbianae	*Rana catesbeiana*	Erythrocytes and liver	*Culex territans*	Malpighian tubules	Ontario, Canada	Desser et al. [52]
Hepatozoon cainani	*Rana catesbeiana*	Intra-erythrocytic	*Culex fatigans*	Extra-erythrocyctic gametocytes	State of Mato Grosso	Lainson et al. [53]
Hepatozoon theileri	*Amietia quecketti*	Intra-erythrocytic gamonts are only described	–	–	South Africa	Conradie et al. [54]
Hepatozoon involucrum	*Hyperolius marmoratus*	Intra-erythrocytic	–	–	KwaZulu-Natal, South Africa	Netherlands et al. [55]
Hepatozoon tenais	*Afrixalus fornasinii*	Intra-erythrocytic	–	–	KwaZulu-Natal, South Africa	Netherlands et al. [55]
Hepatozoon thori	*Hyperolius marmoratus*	Intra-erythrocytic	–	–	KwaZulu-Natal, South Africa	Netherlands et al. [55]
Table 4. Haemogregarines of lizards.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors	
Hepatozoon mesnili	Gecko verticillatus	Endothelial cells of all host organs	Culex fatigans and Aedes albopictus	Stomach	Saigon	Robin [36]	
Haemogregarina triatomae	Tupinambis teguixin	Liver and lung	Triatoma s布鲁维亚里亚	Intestine	South America	Osimani [33]	
Hepatozoon argantis	Agama mossambica	Liver	Argas brumphi	Gut and homocoelomic cavity	East Africa, Mossambic	Garnham [57]	
Hepatozoon sauromalii	Sauromalus sp.	Liver	Ophionyssus sp.	Hemocoel	–	Lewis and Wagner [58]	
Haemogregarina sp.	Tarentola annularis	Lung	–	–	Sudan	Elvasila [59]	
Hepatozoon lygosomarum	Leiolopisma nigriplantare	Liver and spleen	Ophionyssus saurarum	Wall of the gut caeca	Canterbury, New Zealand	Allison and Desser [60]	
Haemogregarina wallatrensis	Calotes versicolor	Peripheral blood, liver, lung, and bone marrow	–	–	India	Saratchandra [61]	
Hepatozoon gracilis	Mabuya quinquetaeniata	Liver	Culex pipiens molesus	Hemocoel	–	Giza, Egypt	Bashtar et al. [62]
Haemogregarina sp.	Podarcis bocagei and Podarcis carbonelli	Intra-erythrocytic	–	–	NW Portugal	Roca and Galdón [63]	
Haemogregarina ramadani	Acanthodactylus boskianus	Intra-erythrocytic	–	–	–	Giza, Egypt	Abdel-Baki and Al-Quraishy [64]
Hepatozoon sp.	Podarcis vaucheri	Intra-erythrocytic	–	–	Qena, Egypt	Moreira et al. [65]	
Haemogregarina sp.	Tarentola annularis	Intra-erythrocytic	–	–	–	Rabie and Hussein [66]	
Karyolysus lacazei	Lacerta agilis	Intra-erythrocytic	Ophionyssus saurarum and Ixodes ricinus	–	Poland, Slovakia	Haklová-Kočičková et al. [18]	
Karyolysus lacazei	Varanus niloticus	Intra-erythrocytic	–	–	–	Ndumo Game Reserve, South Africa	Cook et al. [31]
Karyolysus paradoxa	Varanus albigularis,	Intra-erythrocytic	–	–	–	Eastern Amazon region	Esteves-Silva et al. [47]
Haemogregarina daviesensis	Lepidosiren paradoxa	Intra-erythrocytic	–	–	South Sinai, Egypt	Abou Shafeey et al. [67]	
Haemogregarina sp.	Scincus scincus	Intra-erythrocytic	–	–	–	Czech Republic	Zechmeisterová et al. [68]
Table 5. Haemogregarines of snakes.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Hepatozoon rarefaciens	Drymachon corais	Lung	Culex tarsalis, Anopheles albintarus, Aedes sierrensis	Hemocoel	California, USA	Ball and Oda [69]
Haemogregarnia matrihensis	Psammophis schokari	Intra-erythrocytic	–	–	Egypt	Ramadan [70]
Hepatozoon fusifex	Boa constrictor	Lung	Culex tarsalis	Hemocoel	USA	Ball et al. [71]
Hepatozoon aegypti	Spalerosophis diadema	Lung	Culex pipiens molestus	Hemocoel	Egypt	Bashtar et al. [72]
Hepatozoon mocassini	Agkistrodon piscivorus leucostoma	Liver parenchyma cells	Aedes aegypti	Hemocoel	Louisiana, USA	Lowichik et al. [73]
Hepatozoon seurati	Cerastes cerastes	Liver, lung, and spleen	Culex pipiens molestus	Hemocoel	Aswan, Egypt	Abdel-Ghaffar et al. [74]
Hepatozoon mohlhorni	Echis carinatus	Liver, lung, and spleen	Culex pipiens molestus	Hemocoel	Siwash and Baharia Oasis, Egypt	Bashtar et al. [75]
Hepatozoon matrihensis	Psammophis schokari	Liver and lung	Culex pipiens molestus	Hemocoel	Faiyum, Ismailia, Egypt	Bashtar et al. [76]
Hepatozoon ghaffari	Cerastes vipera	Liver, lung, and spleen	Culex pipiens molestus	Hemocoel	Aswan, Egypt	Shazly et al. [77]
Hepatozoon sipedon	Nerodia sipedon and Rana pipiens	Liver and internal organs	Culex pipiens, and Culex territans	Hemocoel	Ontario, Canada	Smith et al. [81]
Haemogregarnia garnhamii	Psammophis schokari	Intra-erythrocytic	–	–	Egypt	Saoud et al. [78]
Hepatozoon aqorgbor	Python regius	Intra-erythrocytic	–	–	Ghana	Sloboda et al. [79]
Haemogregarnia sp.	Cerastes cerastes gasperetti	Intra-erythrocytic	–	–	Jizan, Saudi Arabia	Al-Farraj [80]
Hepatozoon garnhamii	Psammophis schokari	Intra-erythrocytic	–	–	Riyadh, Saudi Arabia	Abdel-Baki et al. [29]
Hepatozoon sp.	Zamenis longissimus	Intra-erythrocytic	–	–	Iran	Sajjadi and Javanbakht [81]
Hepatozoon aegypti	Spalerosophis diadema	Intra-erythrocytic	–	–	Riyadh, Saudi Arabia	Abdel-Haleem et al. [82]
Table 6. Haemogregarines of turtles and tortoises.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Hemogregarina nicoriae	Nicoria trijuga	Circulating blood and lung	Ozobranchus shipleyi	Intestinal epithelium	Ceylon	Robertson [83]
Haemogregarina balli	Chelydra serpentine	Lacunar endothelial cells, liver, lung, and spleen	Placobdella ornata	Gastric and intestinal caeca	Ontario, Canada	Siddall and Desser [84]
Hepatozoon mauritanicum	Testudo graeca	Endothelial cells of all host organs as liver, lung, spleen . . . etc	Hyalomma aegyptium	The intestinal epithelium of the tick	–	Michel [85]
Haemogregarina pseudomydis	Pseudemys scripta elegans	Leucocytes and Erythrocytes	Placobdella parasitica	–	Louisiana, USA	Acholonu [86]
Haemogregarina gangetica	Trionyx gangeticus	Erythrocytes and lung	–	–	India	Misra [87]
Haemogregarina ganapatii	Lissemys punctata granosa	Peripheral blood and Liver and lung Erythrocytes and Kupffer’s cells of the liver	Mooreotorix cotylifer	Gastric and intestinal caeca of the leech	China	Chai and Chen [88]
Haemogregarina sinensis	Trionyx sinensis	Intra-erythrocytic	Placobdella costata	Gut cells	Romania	Mihalca et al. [89]
Haemolivia mauritanica	Emys orbicularis	Intra-erythrocytic	Hyalomma aegyptium	–	Israel	Paperna [90]
Haemolivia mauritanica	Testudo graeca	Intra-erythrocytic	–	–	Western Palaearctic realm	Široký et al. [91]
Haemolivia stepanowi	Emys orbicularis, Mauremys caspica, M. rivulata, M. leprosa	Intra-erythrocytic	–	–	Western Palaearctic	Dvořáková et al. [23]
Haemolivia mauritanica	Lissemys punctata and Geoclemys hamiltonii	Intra-erythrocytic	–	–	West Bengal, India	Hossen et al. [4]
Haemolivia mauritanica	Testudo graeca and Testudo marginata	Intra-erythrocytic	–	–	North African	Harris et al. [93]
Table 6. Cont.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Haemogregarina sp.	Rhinoclemmys funera and Kinosternon leucostomum	Intra-erythrocytic	–	–	Costa Rica	Rossow et al. [94]
Haemogregarina sp. Podocnemis unifilis	Intra-erythrocytic	–	–	Brazilian Amazonia	Soares et al. [95]	
Haemogregarina sundarbanensis Lissemys punctata	Intra-erythrocytic	–	–	West Bengal, India	Molla et al. [96]	
Haemogregarina stepanowi Emys orbicularis	Intra-erythrocytic	–	–	Belgrade Zoo Araguaia River Basin, Brazil	József et al. [24]	
Haemogregarina sp. Podocnemis expansa	Cuora galbinifrons, Leucocephalon yavonai, Lissemys punctata	Intra-erythrocytic	–	–	Southeast Asia	Dvořáková et al. [37]
Haemogregarina sacaliae Cuora galbinifrons, Leucocephalon yavonai, Lissemys punctata	Intra-erythrocytic	–	–	South African	Cook et al. [31]	
Haemogregarina pellegrini Land tortorise, Stigmochelys pardalis	Intra-erythrocytic	–	–	Sicily	Arizza et al. [98]	
Haemogregarina sp. Mauremys caspica	Intra-erythrocytic	–	–	Iran	Rakhshandehroo et al. [99]	
Haemogregarina sp. Macrocelys temminckii Mesoclemmys vanderhaegi	Intra-erythrocytic	–	–	Caldwell Zoo, Texas	Alhaboubi et al. [100]	
Haemogregarina sp. Podocnemis Unifilis	Intra-erythrocytic	–	–	Brazil	Goes et al. [101]	
Haemogregarina podocnemis	PODOCNEMIS UNIFILIS	Intra-erythrocytic	–	–	Brazil	Úngari et al. [102]
Table 7. Haemogregarines of crocodilians.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Haemogregarina crocodilinorum	*Alligator mississippiensis*	Intra-erythrocytic	*Placobdella multilineata*	Intestinal epithelial cells of the leech	Southern USA includes Arkansas, Carolina, and Florida	Börner [103]
Haemogregarina caimani (= Hepatozoon caimani)	*Caiman latirostris*	Intra-erythrocytic	*Culex dolosus*	Hemocoel	Brazil	Pessôa and de Biasi [104]
Haemogregarina pettiti (=Hepatozoon pettiti Hoare 1932)	*Crocodilus niloticus*	Erythrocytes and liver	*Glossina palpalis*	Intestine	Uganda, Senegal, West Africa	Hoare [105]
Hepatozoon sp.	*Caiman c. yacare*	Intra-erythrocytic	*Phaeotabanus fervens*	Intestine	Pantanal, Brazil	Viana and Marques [106]
Hepatozoon caimani	*Caiman yacare*	Intra-erythrocytic	–	–	Pantanal region, Brazil	Viana et al. [107]

Table 8. Haemogregarines of birds.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Hepatozoon atticorae	*Hirundo spilodera*	Intra-erythrocytic	*Ornithodoros peringueyi* and *Xenopsylla trispinis*	Hemolymph	South Africa, South America, Jamaica, Europea	Bennett et al. [108]
Hepatozoon prionopis	*Prionops plumatus*	Intra-erythrocytic	–	–	Transvaal, South Africa	Bennett and Earle [109]
Hepatozoon lanis	*Lanius collaris*	Intra-erythrocytic	–	–	South Africa	Bennett et al. [108]
Hepatozoon malacotinus	*Dryoscopus cubla*	Intra-erythrocytic	–	–	South Africa	Bennett et al. [108]
Hepatozoon numidis	*Numida meleagris*	Intra-erythrocytic	–	–	South Africa	Bennett et al. [108]
Hepatozoon pittae	*Pitta arcurae*	Intra-erythrocytic	–	–	Sabah	Bennett et al. [108]
Hepatozoon estrildus	*Lonchura cucullata*	Intra-erythrocytic	–	–	Zambia	Bennett et al. [108]
Hepatozoon squacrum	*Parisoma subcaeruleum*	Intra-erythrocytic	–	–	South Africa	Bennett et al. [108]
Hepatozoon passeris	*Zosterops pallida*	Intra-erythrocytic	–	–	South Africa	Bennett et al. [108]
Hepatozoon squamifrons	*Sporopipes squamifrons*	Intra-erythrocytic	–	–	Botswana, South Africa	Bennett et al. [108]
Table 9. Haemogregarines of mammals.

Species of Haemogregarines	The Vertebrate Host	Site of Merogony	Invertebrate Vector	Site of Gamogony and Sporogony	Locality	Authors
Hepatozoon perniciosum	Laboratory white rats	The liver	Echinolaelaps echinoidis	Stomach	Washington, USA	Miller [9]
Hepatozoon griseisciei	Sciurus carolinensis	Bone marrow, liver, lung, and spleen (with intra-leucocytic gametocytes)	Euhagaemogamasus ambulans, Echinolaelaps echinoidis and Haemogamasus reidi	Stomach	Washington, Marland, Georgia, USA	Desser [110]
Hepatozoon erhardovae	Clethrionomys glareolus	Lung	Xenopsylla cheopis, Ctenophthalmus agyrtes, C. assimilis and Nosopsyllus fasciatus	Stomach and fat-body cells	Munich, Germany	Göbel and Krampitz [111]
Hepatozoon sylvatici	Apodemus sylvaticus and Apodemus flavicollis	Bone marrow and liver	Laelaps agilis	Stomach	Austria	Frank [112]
Hepatozoon sp.	Dogs	Intra-erythrocytic	–	–	Brazil	Forlano et al. [113]
Hepatozoon canis	Dogs	Intra-erythrocytic	–	–	Italy	Otranto et al. [114]
Hepatozoon felis	Cats	Intra-erythrocytic	–	–	India	Baneth et al. [115]
Hepatozoon canis	Dogs	Intra-erythrocytic	Rhipicephalus sanguineus	–	Mato Grosso do Sul, Brazil	Ramos et al. [116]
Hepatozoon canis	Dogs	Intra-erythrocytic	–	–	Central-western Brazil	Paiz et al. [117]
Hepatozoon sp.	Cerdocyon thous, Nasua nasua, Leopards pardalis, Canis familiaris, Thrichomys fosieri, Oecomys namaroc, Clyomys laticeps, Thylamys macrurus, Monodelphis domestics	Intra-erythrocytic	Amblyomma sculptum, A. pareum, A. tigrinum, Rhipicephalus microplus, R. sanguineus, A. auricularium	–	Brazil	De Sousa et al. [118]
Hepatozoon felis	Panthera leo	–	Rhipicephalus sanguineus	–	Thailand	Bhusri et al. [119]
Hepatozoon canis	Dogs	Intra-erythrocytic	–	–	Czech Republic	Mitkova et al. [120]
Hepatozoon felis	Dogs	Intra-erythrocytic	–	–	Northeastern Iran	Barati and Razmi [121]
Hepatozoon canis	Cats	Intra-erythrocytic	–	–	Turkey	Tuna et al. [122]
Hepatozoon canis	Dogs	Intra-erythrocytic	–	–	United Kingdom	Attipa et al. [123]
Hepatozoon felis	Felis silvestris, Caracal caracal, Panthera pardus, P. leo, Leptailurus serval	Muscle and Liver	–	–	Limpopo and Mpumalanga	Harris et al. [124]
Hepatozoon luiperdjie	Panthera pardus	Leukocytes	–	–	Limpopo Province, South Africa	Van As et al. [125]
Hepatozoon canis	Dogs	Intra-erythrocytic	–	–	Manila, Philippines	Baticados et al. [126]
In the schizogony (merogony) stage, haemogregarines are characterized by their considerable ability to invade and develop within different organs and cell types inside the vertebrate host (Tables 2–9). Bray [127] proposed that haemogregarines with schizonts in the liver should be placed in the genus *Hepatozoon*. In contrast, those species that precede schizogony in other organs should belong to another genus as *Haemogregarina* or *Karyolysus*. However, only in the lung of the river turtle, *Trionyx gangeticus* infected with *Haemogregarina gangetica*, was described by Misra [87]. In addition to the usual location of merogonic development in the liver, lung, and spleen, Ball et al. [71] have found certain merogonic stages in the highly infected snakes’ brain and heart. Siddall and Desser [84] described merogonic stages in the lacunar endothelial cells of the circulatory system of the leech and its proboscis, besides the liver, lung, and spleen in the turtle. Yanai et al. [128] also described nodular lesions containing schizonts and merozoites of *Hepatozoon* sp. of the heart’s martens, perisplenic, and perirenal adipose tissues, the diaphragm, mesentery, and tongue. Ungari et al. [102] reported that the genus *Haemogregarina* underwent schizogony in the circulating blood cells as in turtles and fish, and the genus *Hepatozoon* underwent schizogony in the liver. Additionally, there are two morphologically different meronts were the micro- and macromeronts. The presence of these two forms of meronts was mentioned to be a fundamental feature of the whole haemogregarine [74,129,130].

Gametocytes are usually the only stages of the parasite detected by scientists. Their morphology, unfortunately, does not provide a reliable clue to the generic differentiation. Together with other relevant data, their morphological characteristics offer a reliable basis for specific identification [35,67]. The haemogregarines gametocytes appeared as sausage-shaped and generally lie singly within erythrocytes (Tables 2–9), but sometimes free in extracellular space, which is consistent with Telford et al. [34], Sloboda et al. [79] as the presence of free extracellular gametocytes. They are also observed in the leucocytes of fish (Table 2), birds (Table 8), and mammals (Table 9).

The shape, size, and structure of infected blood-corpuscles often undergo considerable changes. Hypertrophy may result directly from the gametocyte’s added intraerythrocytic volume or represent an erythrocyte adaptation to the gametocyte’s presence [53,82,131,132]. An entirely different cell response occurred when the gametocytes of *Hemogregarina* sp. invaded erythrocytes of *Rana berlandieri*. The erythrocytes undergo hypertrophy, and the plasmalemma of the infected erythrocyte demonstrated numerous microvilli-like outgrowings. Hussein [133] also described the hypertrophy of *Karyolysus*-infected erythrocytes. Most haemogregarine gametocytes do not invade the host cell’s nucleus but instead move it to the opposite side or the other host cell’s other pole. This is contrary to the effect of the genus *Karyolysus* on the infected erythrocytes. *Karyolysus* has a karyolytic impact on the host cell’s nucleus and is therefore identified *Karyolysus* Reichenow [134].

Little work had been done to identify the actual arthropod vectors of haemogregarines, as the transmission by inoculation of blood was rarely successful. In general, the invertebrate vectors of haemogregarines were the most challenging problem facing this group’s research progress [49]. The haemogregarines displayed a wide distribution of vertebrate host infections, and a large number of invertebrate vectors (Tables 2–9). In all haemogregarines, fertilization is of Adelea type; both micro- and macrogamonts lie in syzygy within the same parasitophorous vacuole. Syzygy can stimulate the production of the associated gamonts in haemogregarines, since only the parasites found in pairs were mostly differentiated, which is consistent with Davies and Smit [42]. Regarding the number of microgametes produced by each microgamont, the members of the suborder Adeleidea were characterized by the production of only a few (four or less) microgametes [135]. Simultaneously, the formation of multiple microgametes has been identified in most haemogregarines species [52]. However, there are some suggestions that multiple microgamete formation does not occur in the entire genus *Hepatozoon* [111]. Regarding the number of flagella in microgametes in haemogregarines, contradictions were recorded. While monoflagellated microgametes have been described for haemogregarines species [74], biflagellated microga-
metes were also recorded for other haemogregarines [52]. On the other hand, Michel [85] reported non-flagellated microgametes in *Hepatozoon mauritanicum*.

Fertilization follows, leading to the formation of a zygote that becomes an oocyst. The oocyst is surrounded by a flexible membrane rather than a wall, and it produces sporozoites that may undergo further merogony. Sporogony is elucidated for just a few known haemogregarines species, the vast majority of which is supposed to investigate this aspect of their life-cycle, as reported by Forlano et al. [113]. There is also another potential criterion for distinguishing between *Hepatozoon* and *Haemogregarina* based on the presence or absence of oocysts containing sporocysts in the invertebrate vector, which is consistent with Levine [6]. When the developing mite reaches the nymphal stage, the sporozoites attain their maturity. The sporozoites eventually get the nymph’s stomach and pass out with their faeces, which are considered infection sources of the vertebrate host (lizard). The morphological characteristics of the gamonts and meronts found in the blood cells sometimes provide inadequate information for differential diagnoses [37], meaning that assigning species of haemogregarines to one of these genera must be based on the characteristics of its sporogony in the invertebrate vectors [6,64]. However, data on invertebrate vectors and sporogony are missing for the majority of species [23].

Until now, the current taxonomy of haemogregarines is facing a great challenge due to the high variation in gamont morphology, low host specificity, unknown invertebrate hosts in many cases, and fewer details of sporogony. Therefore, molecular approaches are now available to distinguish populations of morphologically identical but genetically different parasites, including DNA and polymerase chain reaction (PCR) based approaches [22,136–141]. Some studies based on PCR-based assays as the reference diagnostic test for epidemiological studies, which given their greater sensitivity, particularly for testing different hosts with intermittent levels of parasitemia via a low infection rate by gamonts, as Otranto et al. [114], Haklová-Kočková et al. [18], Jőzsef et al. [24], Ramos et al. [116], and Mitkova et al. [120]. Notably, all the molecular evidence comes from the complete and partial sequences of the small subunit (SSU) ribosomal DNA (rDNA) 18S gene is a sufficient phylogenetic marker to approximate ordinal level relationships and those within orders [68,98,119,142–145]. Previous molecular studies of Harris et al. [22] and Barta et al. [19] demonstrated that the haemogregarine species are clustered in sister clades with interspecies linked more with the host geographic distribution, rather than host species. There are universal primer sets that were able to molecularly characterize haemogregarines, as mentioned in Table 10. However, many species with sequences deposited in the GenBank database are not identified correctly at the generic level. Table 11 expressed only haemogregarines identified at the species level and others identified at the generic level are excluded.

Table 10. Primer sets used in the phylogenetic analysis of haemogregarines by 18S rRNA gene.

Primer Set	Primer Sequence	Reference
4558F	5′- GCT AAT ACA TGA GCA AAA TCTCAA -3′	Mathew et al. [146]
2733R	5′- CGG AAT TAA CCA GAC AAA T -3′	Mathew et al. [146]
2867F	5′- ACCGTTGAT CCT GCT GCC AG -3′	Mathew et al. [146]
2868R	5′- TGA TCC TTC TGC AGG TTC ACC TAC -3′	Mathew et al. [146]
HEMO1	5′- TAT TGG TTT TAA GAA CTA ATT TTA TGA TG -3′	Perkins and Keller [147]
HEMO2	5′- CTT CTC TTT CCT TTA AGT GAT AAG GTT CAC -3′	Perkins and Keller [147]
HepF	5′- ATA CAT GAG CAA AAT CTC AAC -3′	Inokuma et al. [148]
HepR	5′- CCT ATT CCA TGC AGG AG -3′	Inokuma et al. [148]
HepF300	5′- GATCTGACCTATCAGCATTGAC -3′	Ujvari et al. [20]
HepR900	5′- CAAAATCAAGATTTACACCTGAC -3′	Ujvari et al. [20]
Table 10. Cont.

Primer Set	Primer Sequence	Reference
HEP-1	5′- CGC GAA ATT ACC CAA TT -3′	Criado-Fornelio et al. [149]
HEP-2	5′- CAG ACC GAT GTC TTT YAG CAG -3′	Tabar et al. [150]
Piroplasmid-F	5′- CCA GCA GGC GGC GTA ATT -3′	Kvičerová et al. [26]
Piroplasmid-R	5′- CTT GGC CCA TCT AGG CAT CTC -3′	Kledmanee et al. [151]
EF	5′- GAA ACT GGC AAT GGC TCA TT -3′	Zintl et al. [152]
Hep-001F	5′- CCT GGC TAT ACA TGA AAA TCT -3′	Hodžič et al. [153]
Hep-737R	5′- CCA ACT GTC CCT ATC AAT CAT TAA AGC -3′	Rakhshandehroo et al. [99]
BTH-1F	5′- CGC GGA CCA CAA TCA CTA CCA CAT CT -3′	Alhaboubi et al. [100]
BTH-1R	5′- TCG CAG TAG TAG TTT CAG CAG -3′	Kvičerová et al. [26]
GF2	5′- AGG ACT TTG ATT TCG TGG -3′	Kledmanee et al. [151]
GR2	5′- CCA GAA ACT TGC ATT CTC CTC -3′	Zintl et al. [152]
Haemog11_F	5′- ATT GTA GGA GGA GGT CCA TGG -3′	Kvičerová et al. [26]
Haemog11_R	5′- GCG TTA GAC ACG CAA AGT CTG -3′	Kvičerová et al. [26]
HemoFN	5′- CCY TGG TAA TTC TAG AGC TAT -3′	Kvičerová et al. [26]
HemoRN	5′- GAT AGG GCT TAC GGA GATTT TAC ATG AGC -3′	Kvičerová et al. [26]

Table 11. List of sequences for haemogregarines from GenBank database based on the 18S rRNA gene.

Parasites	Hosts	Accession Number in GenBank	
Haemogregarina podocnemis	Podocnemis unifilis	MF476203.1 - MF476205.1	
Haemogregarina pellegrini	Platysternon megacephalum	KM887509.1	
Haemogregarina sacalae	Sacalia quadriocellata	KM887507.1	
Haemogregarina stepanovi	Mauremys leprosa	MT345287.1	
	Emys orbicularis		
	Mauremys leprosa		
	Mauremys riolata		
	Mauremys caspica		
Haemogregarina bigemina	Lipophrys pholis		
Haemogregarina balli	Chelydra serpentine		
Hepatozoon fitzsimonsi	Kinixys zombensis		
Hepatozoon ursi	Chersina angulate		
	Ursus thibetanus japonicus	EU041718.1, AB586028.1, LC431855.1 - LC431853.1	
	Melursus urisinus	HQ892437.1 - HQ892429.1	
Hepatozoon sechellensis	Gradisilia alternans		
	Apodemus sylcaticus		
Hepatozoon ajorbor	Ctenophthalmus agypti		
	Python regius		
	Rhombomys opimus		
Hepatozoon musa	Crotalus durissus		
	Philodryas natterei		
	Hyperotus marmoratus		
Hepatozoon involucrum	Ursus arctos		
Hepatozoon clamatae	Rana pipiens		
Hepatozoon catesbianae	Rana clamitans		
Hepatozoon aegypti	Spalerosophis diadema		
Hepatozoon martis	Martes foina		
Hepatozoon procyonis	Nasua nasua		
Hepatozoon griseisciuri	Scinurus carolinensis		
Parasites	Hosts	Accession Number in GenBank	
-----------	-------	-----------------------------	
Hepatozoon sciuri	*Scinus vulgaris*	MN104636.1 - MN104640.1, AF206668.1, KU729739.1	
Hepatozoon americanum	*Canis familiaris*	MN793001.1, MN793000.1, KP119773.1, KX512804.1, KJ999676.1, MG041605.1	
Hepatozoon theleri	*Amietia queckettii*	Caiman crocodilus	MF322538.1, MF322539.1, MG435046.1 - MG435049.1
Hepatozoon caimani	*Caiman crocodilus*	Felis silvestris silvestris	KX757032.1, MH078194.1, KY649445.1, MG041595.1 - MG041599.1
Hepatozoon silvestris	*Felis catus*	MG041600.1 - MG041603.1	
Hepatozoon tenius	*Afrixalus fornasini*	AF206668.1, KU729739.1	
Hepatozoon torri	*Hyperolius argus*	KJ608372.1	
Hepatozoon luiperdjie	*Panthera pardus pardus*	KF119772.1	
Hepatozoon eharodoviae	*Snakes*	MN793002.1 - MN793004.1, KP119772.1	
Hepatozoon domerguei	*Eurycercus retractus*	MG041601.1, MG041603.1	
Hepatozoon tuatarae	*Sphenodon punctatus*	HG972969.1, HG97770.1	
Hepatozoon cf. ophisauri	*Rhombomys opimus*	KP119772.1	
Hepatozoon colubri	*Amblyomma cajennense*	MG061503.1, EU289922.1, DQ701888.1, MK910141.1 - MK910144.1, MK757993.1 - MK757995.1, MN791089.1, MN791088.1, MN393913.1, MN393910.1, MK649571.1 - MK649576.1, MK214285.1 - MK214288.1, MG254622.1 - MG254625.1, MC091084.1 - MC091092.1, HC092070.1, HC092071.1 - HC092073.1, HC092074.1, HC092075.1	
Haemaphysalis longicornis	*Lycalopex vetulus*	MT107092.1 - MT107097.1, MT107087.1 - MT107091.1, LC169075.1	
Haemaphysalis concinna	*Lycalopex gymnocercus*	MH595911.1 - MH595921.1, MG087347.1, KY056823.1, MG241129.1, KT587790.1, KT587789.1, KY196999.1, KY197000.1 - KY197002.1, QX867389.1, MN207197.1	
Rhipicephalus sanguineus	*Canis aureus*	KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ572975.1, KJ643545.1, JX466886.1 - JX466880.1	
Rhipicephalus microplus	*Lycalopex vetulus*	KJ868814.1, KJ572977.1 - KJ572975.1, KJ643545.1, JX466886.1 - JX466880.1	
Rhipicephalus decoloratus	*Kinixys species*	KX816958.1	
Canis lupus familiaris	*Didelphis albiventris*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Lycalopex vetulus	*Didelphis albiventris*	KJ868814.1, KJ572977.1 - KJ572975.1, KJ643545.1, JX466886.1 - JX466880.1	
Lycalopex gmynecerus	*Lycalopex vetulus*	KX816958.1	
Didelphis albiventris	*Lycalopex gmynecerus*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Canis aureus	*Lycalopex gmynecerus*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Lycalopex gmynecerus	*Lycalopex gmynecerus*	KX816958.1	
Didelphis albiventris	*Lycalopex gmynecerus*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Canis aureus	*Lycalopex gmynecerus*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Lycalopex gmynecerus	*Lycalopex gmynecerus*	KX816958.1	
Didelphis albiventris	*Lycalopex gmynecerus*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Canis aureus	*Lycalopex gmynecerus*	KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ392884.1, KJ392885.1, KF322145.1, KC886721.1, KC886729.1 - KC886733.1	
Table 11. Cont.

Parasites	Hosts	Accession Number in GenBank
Felis catus		KY469446.1, MN689671.1 - MN689661.1
		KY322141.1-KY322144.1, KC886720.1 - KC886728.1, MK757741.1 - MK757792.1, MN103520.1, MN103519.1, MH699884.1 - MH699892.1, MG077048.1 - MG077087.1, KY693670.1, KJ868819.1 - KJ868815.1, KU893118.1 - KU893127.1, KM096414.1 - KM096411.1, KJ572979.1, KJ572978.1, EU165370.1, GU376458.1 - GU376446.1, DQ869909.1, AY731062.1, MW295531.1, MN463026.1 - MN463021.1
Vulpes vulpes		KF322141.1-KF322144.1, KC886720.1 - KC886728.1, MK757741.1 - MK757792.1, MN103520.1, MN103519.1, MH699884.1 - MH699892.1, MG077048.1 - MG077087.1, KY693670.1, KJ868819.1 - KJ868815.1, KU893118.1 - KU893127.1, KM096414.1 - KM096411.1, KJ572979.1, KJ572978.1, EU165370.1, GU376458.1 - GU376446.1, DQ869909.1, AY731062.1, MW295531.1, MN463026.1 - MN463021.1
Ixodes ricinus		KF322141.1-KF322144.1, KC886720.1 - KC886728.1, MK757741.1 - MK757792.1, MN103520.1, MN103519.1, MH699884.1 - MH699892.1, MG077048.1 - MG077087.1, KY693670.1, KJ868819.1 - KJ868815.1, KU893118.1 - KU893127.1, KM096414.1 - KM096411.1, KJ572979.1, KJ572978.1, EU165370.1, GU376458.1 - GU376446.1, DQ869909.1, AY731062.1, MW295531.1, MN463026.1 - MN463021.1
Hydrochoerus hydrochaeris		KU597235.1 - KU597242.1, KCS84780.1
Cuon alpinus		KU597235.1 - KU597242.1, KCS84780.1
Dermacentor reticulatus		KU597235.1 - KU597242.1, KCS84780.1
Pseudolopex gymnocercus		KU597235.1 - KU597242.1, KCS84780.1
Panthera leo		KU597235.1 - KU597242.1, KCS84780.1
Panthera tigris		KU597235.1 - KU597242.1, KCS84780.1
Camelus dromedarius		KU597235.1 - KU597242.1, KCS84780.1
Hepatozoon apri		KU597235.1 - KU597242.1, KCS84780.1
Sus scrofa leucomystax		KU597235.1 - KU597242.1, KCS84780.1
Amietophrynus gutturalis		KU597235.1 - KU597242.1, KCS84780.1
Amietophrynus garmani		KU597235.1 - KU597242.1, KCS84780.1
Sclerophrys maculata		KU597235.1 - KU597242.1, KCS84780.1
Sclerophrys pusilla		KU597235.1 - KU597242.1, KCS84780.1
Hepatozoon cf. felis		KU597235.1 - KU597242.1, KCS84780.1
Felis silvestris silvestris		KU597235.1 - KU597242.1, KCS84780.1
Puma concolor		KU597235.1 - KU597242.1, KCS84780.1
Eira barbara		KU597235.1 - KU597242.1, KCS84780.1
Lycalopex gymnoucercus		KU597235.1 - KU597242.1, KCS84780.1
Leopardus pardalis		KU597235.1 - KU597242.1, KCS84780.1
Asian lion		KU597235.1 - KU597242.1, KCS84780.1
Prionailurus bengalensis		KU597235.1 - KU597242.1, KCS84780.1
Prionailurus trionemotis		KU597235.1 - KU597242.1, KCS84780.1
Panthera onca		KU597235.1 - KU597242.1, KCS84780.1
Panthera tigris		KU597235.1 - KU597242.1, KCS84780.1
Rhipicephalus sanguineus		KU597235.1 - KU597242.1, KCS84780.1
Eurasin lynx		KU597235.1 - KU597242.1, KCS84780.1
Haemolivia parvula		KU597235.1 - KU597242.1, KCS84780.1
Kinyxs zambensis		KU597235.1 - KU597242.1, KCS84780.1
Haemolivia stellata		KU597235.1 - KU597242.1, KCS84780.1
Amblyomma dissimile		KU597235.1 - KU597242.1, KCS84780.1
Amblyomma rotundatum		KU597235.1 - KU597242.1, KCS84780.1
Haemolivia mariae		KU597235.1 - KU597242.1, KCS84780.1
Egerinia stokesii		KU597235.1 - KU597242.1, KCS84780.1
Tiliqua rugosa		KU597235.1 - KU597242.1, KCS84780.1
Haemolivia mauritanica		KU597235.1 - KU597242.1, KCS84780.1
Hyalomma aegyptium		KU597235.1 - KU597242.1, KCS84780.1
Haemolivia mauritanica		KU597235.1 - KU597242.1, KCS84780.1
Hyalomma sp.		KU597235.1 - KU597242.1, KCS84780.1
Canis lupus familiaris		KU597235.1 - KU597242.1, KCS84780.1
Testudo marginata		KU597235.1 - KU597242.1, KCS84780.1
Kangaroo mouse cricetulus		KU597235.1 - KU597242.1, KCS84780.1
Ixodes ricinus		KU597235.1 - KU597242.1, KCS84780.1

Note: Accession numbers are for GenBank except where otherwise specified.
4. Conclusions

Few haemogregarine characteristics provide a reliable basis for the related parasite to recognized genera. Details of the sporogonic cycle seem to be the only reliable criterion as they are the “Key-stone” in the classification system. Morphological characteristics of the gametocytes do not help in this respect. Features of the schizogonic stages, when these are known, are not much better as criteria of generic value. Molecular phylogenetic studies using the appropriate genetic markers are helpful tools for the accurate taxonomic identification for haemogregarines. Further studies are recommended to include other nuclear and mitochondrial genes to provide more information about the genetic variability among haemogregarines.

Author Contributions: Conceptualization, S.A.-Q., F.A.-G. and M.A.D.; methodology, F.A.-G. and R.A.-G.; validation, M.A.D.; formal analysis, R.A.-G. and M.A.D.; investigation, S.A.-Q. and F.A.-G.; resources, R.A.-G. and M.A.D.; data curation, R.A.-G. and M.A.D.; writing—original draft preparation, S.A.-Q., F.A.-G., R.A.-G. and M.A.D.; writing—review and editing, S.A.-Q., F.A.-G., R.A.-G. and M.A.D.; visualization, R.A.-G. and M.A.D.; supervision, S.A.-Q., F.A.-G. and M.A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship for Research and Innovation, “Ministry of Education” in Saudi Arabia, grant number IFKSURP-131.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analysed during this study are included in this published article.

Acknowledgments: The authors extend their appreciation to the Deanship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURP-131”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Levine, N.D. Taxonomy of the Sporozoa. J. Parasitol. 1970, 56, 208–209.
2. Davies, A.J.; Johnston, M.R.L. The biology of some intraerythrocytic parasites of fishes, amphibian and reptiles. Adv. Parasitol. 2000, 45, 1–107. [PubMed]
3. Adl, S.M.; Simpson, A.G.B.; Lane, C.E.; Lukeš, J.; Bass, D.; Bowser, S.S.; Brown, M.W.; Burki, F.; Dunthorn, M.; Hampi, V.; et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 2012, 59, 429–514. [CrossRef] [PubMed]
4. Hossen, M.S.; Bandyopadhyay, P.K.; Gürelli, G. On the occurrence of a Haemogregarinae (Apicomplexa) parasite from freshwater turtles of South 24 Parganas, West Bengal, India. Turk. Parazitol. Derg. 2013, 37, 118–122. [CrossRef] [PubMed]
5. Telford, S.R. Hemoparasites of the Reptilia: Color Atlas and Text; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2009.
6. Levine, N.D. Some corrections in Haemogregarine (Apicomplexa: Protozoa) Nomenclature. J. Protozool. 1982, 29, 601–603. [CrossRef] [PubMed]
7. Danilewsky, B. Die Hematozoen der Kaltblüter. Arch. Mikr. Anat. 1885, 24, 588–598. [CrossRef]
8. Labbé, A. Recherches zooloogiques et biologiques sur les parasites endoglobulaires du sang des Vertébrés. Arch. Zool. Exp. Gen. 1894, 2, 55–258.
9. Miller, W.W. Hepatozoön perniciosum n. g. n. sp., a haemogregarines pathogenic for white rats: With a brief description of the sexual cycle in the intermediate host a mite (Laelaps echidninus Berlese). Hyg. Lab. (Washington) 1908, 46, 51–123.
10. Lainson, R. On Cyrilia gomesi (Neiva and Pinto, 1926) gen. nov. (Haemogregarinidae) and Trypanosoma bourouli Neiva and Pinto. In the fish Synbranchus marmoratus: Simultaneous transmission by the leech Haememteria lutzi. In Parasitological Topics; Special Publication; Canning, E.U., Ed.; Society of Protozoologists, Inc.: Lawrence, KS, USA, 1981; Volume 1, pp. 150–158.
11. Barta, J.R. Phylogenetic analysis of the Class Sporozoa (Phylum Apicomplexa Levine 1970): Evidence for the independent evaluation of heteroxenous life cycles. J. Parasitol. 1989, 75, 195–206. [CrossRef]
12. Mohammed, A.H.H.; Mansour, N.S. The haemogregarines complex (an analytical systematic review). Bull. Fac. Pharm. Cairo Univ. (BFPC) 1959, 35, 39–52.
13. Wenyon, C.M. Protozoology; Bailliere, Tindall and Cox: London, UK, 1926; Volume 2.
14. Petit, G.; Landau, I.; Baccam, D.; Lainson, R. Description et cycle biologique d’Hemolivia stellate n. g., n. sp., hémogregarine de crapauds Brésiliens. [Description and life cycle of Hemolivia stellate n.g., n. sp., a haemogregarines of Brazilian toads]. Ann. Parasitol. Hum. Comp. 1990, 65, 3–15. [CrossRef]
15. Široký, P.; Kamler, M.; Modrý, D. Long-term occurrence of *Helomovia cf. mauritianica* (Apicomplexa: Adeleina: Haemogregarinidae) in the captive *Testudo marginata* (Reptilia: Testudinidae). Evidence for cyclic merony. *J. Parasitol.* 2004, 90, 1391–1393.

16. Jacobson, E.R. Parasites and parasitic diseases of reptiles. In *Infectious Diseases and Pathology of Reptiles: Color Atlas and Text*; Jacobson, E.R., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 579–580.

17. Pineda-Catalan, O.; Perkins, S.L.; Peirce, M.A.; Engstrand, R.; Garcia-Davila, C.; Pinedo-Vasquez, M.; Aguirre, A.A. Revision of hemoproteid genera and description and redescriptions of two species of chelonian hemoprotein parasites. *J. Parasitol.* 2013, 99, 1089–1098. [CrossRef] [PubMed]

18. Haklová-Kolíčková, B.; Hůžanová, A.; Majštaj, I.; Račka, K.; Harris, D.G.; Földvári, G. Molecular characterization of *Karyolysus* - a neglected but common parasite infecting some European lizards. *Parasite. Vector.* 2014, 7, 555. [CrossRef] [PubMed]

19. Bartá, J.R.; Ogedengbe, J.D.; Martin, D.S.; Smith, T.G. Phylogenetic position of the adelieoid coccidia (Myxozoa, Apicomplexa, Coccidia, Eucoecidiorida, Adeleorina) inferred using 18S rDNA sequences. *J. Eukaryot. Microbiol.* 2012, 59, 171–180. [CrossRef]

20. Uljvari, B.; Madsen, T.; Olsson, M. High prevalence of *Hepatozoon* spp. (Apicomplexa, Hepatozooidae) infection in water pythons (*Liasis fuscus*) from tropical Australia. *J. Parasitol.* 2004, 90, 670–672. [CrossRef]

21. Johnson, A.J.; Origgi, F.C.; Wellehan, J.F.X., Jr. Molecular diagnostics. In *Infectious Diseases and Pathology of Reptiles: Color Atlas and Text*; Jacobson, E.R., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 351–380.

22. Harris, D.J.; Maia, J.P.M.C.; Perera, A. Molecular characterization of *Hepatozoon* species in reptiles from the Seychelles. *J. Parasitol.* 2011, 97, 106–110. [CrossRef]

23. Dvořáková, N.; Kvičerová, J.; Papousek, I.; Javanbakht, H.; Tiar, G.; Kami, H.G. Haemogregarines from western Palaearctic freshwater turtles (genera *Emys*, *Mauremys*) to the genus *Haemogregarina stepanovi* Danilevsky, 1885. *Parasitology* 2014, 141, 529–530. [CrossRef]

24. Jozsef, Ő.; Darko, M.; Milos, V.; Bojan, G.; Jevrosima, S.; Dejan, A.-K. Cytological and molecular identification of *Haemogregarina stepanovi* in blood samples of the European pond turtle (*Emys orbicularis*) from quarantine at Belgrade Zoo. *Acta Vet.-Beograd* 2015, 65, 443–453.

25. O’Donoghue, P. Haemoproteidae: Making biological sense of molecular. *Int. J. Parasitol. Parasites Wildl.* 2017, 6, 241–256.

26. Kvičerová, J.; Hupoša, V.; Pakandi, M. Phylogenetic relationships among *Eimeria* spp. (Apicomplexa, Eimeriidae) infecting rabbits: Evolutionary significance of biological and morphological features. *Parasitology 2008*, 135, 443–452. [CrossRef] [PubMed]

27. Kubo, M.; Jeong, A.; Kim, S.I.; Kim, Y.J.; Lee, H.; Kimura, J.; Agatsuma, T.; Sakai, H.; Yanai, T. The first report of *Hepatozoon* species infection in leopard cats (*Pardulaigris bengalensis*) in Korea. *J. Parasitol.* 2010, 96, 437–439. [CrossRef] [PubMed]

28. Pawar, R.M.; Poornachandra, A.; Srinivas, P.; Rao, K.R.; Lakshminikan, U.; Shivaji, S. Molecular characterization of *Hepatozoon* spp. infection in endangered Indian wild felids and canids. *Vet. Parasitol.* 2012, 186, 475–479. [CrossRef] [PubMed]

29. Abdel-Baki, A.S.; Al-Quraishy, S.; Zhang, J.Y. Redescription of *Hemogregarina garnhami* (Apicomplexa: Adeleorina) from the blood of *Psammomphis* schokari (Serpentes: Colubridae) as *Hepatozoon garnhami* n. comb. based on molecular, morphometric and morphologic characters. *Acta Parasitol.* 2014, 59, 294–300. [CrossRef] [PubMed]

30. Cook, C.A.; Waton, S.P.; Davies, A.J.; Smit, N.J. Reassignment of the land tortoise haemogregarine *Haemogregarina fitzimonsi* Dias 1953 (Adeleorina: Haemogregarinidae) to the genus *Hepatozoon* Miller 1908 (Adeleorina: Hepatozooidae) based on parasite morphology, life cycle and phylogenetic analysis of 185 rDNA sequence fragments. *Parasitology 2014*, 141, 1611–1620.

31. Cook, C.A.; Nethersol, E.C.; Smit, N.J. Redescription, molecular characterisation and taxonomic re-evaluation of an unique African monitor lizard haemogregarine *Karyolysus paradoxus* (Dias, 1954) n. comb. (Karyolysidae). *Parasit. Vectors.* 2016, 9, 347. [CrossRef]

32. Cook, C.A.; Nethersol, E.C.; Van As, J.; Smit, N.J. Two new species of *Hepatozoon* (Apicomplexa: Hepatozooidae) parasitizing species of *Philothamnus* (Chelonia: Colubridae) from South Africa. *Folia Parasitol.* 2018, 65, 004. [CrossRef]

33. Osimani, J.J. *Haemogregarina triatomae* n. sp. from a South American lizard, *Tupinambis teguixin* transmitted by the Reduviid *Triatoma rubrovaria*. *J. Parasite.* 1942, 00, 147–154.

34. Telford, S.R., Jr.; Ernst, J.A.; Clark, A.M.; Butler, J.F. *Hepatozoon sauritus*: A polytopic haemogregarine of three genera and four species of snakes in North Florida, with specific identity verified from genome analysis. *J. Parasitol.* 2004, 90, 352–358. [CrossRef]

35. Herbert, J.D.K.; Godfrey, S.; Bull, C.M.; Menz, I. Developmental stages and molecular phylogeny of *Hepatozoon tuatarae*, a parasite infecting the New Zealand tuatara, *Sphenodon punctatus* and the tick, *Amblyomma spennodonta*. Int. *J. Parasitol.* 2010, 40, 1311–1315. [CrossRef]

36. Siddall, M.E.; Deisser, S.S. Merogonic development of *Haemogregarina bali* (Apicomplexa: Adeleina: Haemogregarinidae) in the leech *Placobdella ornata* (Glossiphoniidae), its transmission to a chelonian intermediate host and phylogenetic implications. *J. Parasitol.* 1991, 77, 426–436. [CrossRef]

37. Dvořáková, N.; Kvičerová, J.; Hostovský, M.; Široký, P. Haemogregarines of freshwater turtles from Southeast Asia with a description of *Haemogregarina sacaliae* sp. n. and a redescription of *Haemogregarina pellegrini* Laveran and Pettit, 1910. *Parasitology* 2015, 142, 816–826.

38. Nakamoto, W.; Silva, A.J.; Machado, P.E.; Padovani, C.R.; January, S.A.; De Acreu, M.E. Leukocytes and *Cyrilia gomesii* (blood parasite) in *Synbranchus marmoratus* Bloch, 1975 (Pisces, Synbranchidae) from the Biriqui region of Sao Paulo (Brazil). *Rev. Bras. Biol.* 1991, 51, 755–761.

39. Davies, A.J.; Eiras, J.C.; Austin, R.T.E. Investigations into the transmission of *Haemogregarina bigemina* Laveran and Mesnil, 1901 (Apicomplexa: Adeleorina) between intertidal fishes in Portugal. *J. Fish. Dis.* 1994, 17, 283–289. [CrossRef]
Animals 2021, 11, 170

40. Lom, J.; Tomas, K.; Dykova, I. Haemogregarina vitlensis, new species from perch (Perca fluviatilis) in Czechoslovakia. *Syst. Parasitol.* 1989, 13, 193–196. [CrossRef]

41. Hill, J.P.; Hendrickson, G.L. Haematozoa of fishes in Humboldt Bay, California. *J. Wildl. Dis.* 1991, 27, 701–705. [CrossRef]

42. Davies, A.J.; Smit, N.J. The life cycle of *Haemogregarina bigemina* (Adeleina: Haemogregarinidae) in South African hosts. *Folia Parasit.* 2001, 48, 169–177. [CrossRef]

43. MacLean, S.A.; Davies, A.J. Prevalence and development of intraleucocytic haemogregarines from northwest and northeast Atlantic mackerel, *Scomber scombrus* L. *J. Fish. Dis.* 1990, 13, 59–68. [CrossRef]

44. Hayes, P.M.; Smit, N.J.; Seddon, A.M.; Wertheim, D.F.; Davies, A.J. A new fish haemogregarine from South Africa and its suspected dual transmission with trypanosomes by a marine leech. *Folia Parasit.* 2006, 53, 241–248. [CrossRef]

45. Curtis, L.M.; Grutter, A.S.; Smit, N.J.; Davies, A.J. *Gnathia aureomaculosa*, a likely definitive host of *Haemogregarina balistapi* and potential vector for *Haemogregarina bigemina* between fishes of the Great Barrier Reef, Australia. *Int. J. Parasitol.* 2013, 43, 361–370. [CrossRef]

46. Oliveira, A.; Araújo, M.L.G.; Pantoja-Lima, J.; Aride, P.; Tavares-Dias, M.; Brunn, R.P.; Marcon, J.L. *Cylilia* sp. (Apicomplexa: Haemogregarinidae) in the Amazonian freshwater stingray *Potamotrygon wallacii* (cururu stingray) in different hydrological phases of the Rio Negro. *Rev. Bras. Biol.* 2016, 77, 1–6. [CrossRef] [PubMed]

47. Esteves-Silva, P.H.; da Silva, M.R.L.; O’Dwyer, L.H.; Tavares-Dias, M.; Viana, L.A. *Hepatozoon theileri* sp. nov. (Apicomplexa: Haemogregarinidae) from South American lungfish *Lepidosiren parauchen* (Sarcopterygii: Lepidosirenidae) in the eastern Amazon region. *Parasitol. Res.* 2019, 118, 2773–2779. [CrossRef] [PubMed]

48. Awerenzew, S. Parasiten aus dem Blute von *Rana nuttii*. *Arch. Protistenk.* 1914, 53, 13–20. [CrossRef]

49. Garrett, J.M.; Grutter, A.S.; Smit, N.J. The life cycle of *Haemogregarina daviesensis* sp. nov. (Apicomplexa: Haemogregarinidae) in the leech *Hydromyzus paniceus* (Doroskevich, 1883). *Syst. Parasitol.* 2015, 81, 169–177. [CrossRef]

50. Ray, R. Studies on the anuran blood parasites of sub-Himalayan West Bengal, India. *J. Protozool.* 1949, 1, 277–282. [CrossRef]

51. Smith, T.G.; Desser, S.S.; Martin, D.S. The development of *Hepatozoon cuniculi* in a European rabbit (Oryctolagus cuniculus). *Int. J. Parasitol.* 1984, 14, 376–388. [CrossRef]

52. Desser, S.S.; Hong, H.; Martin, D.S. The life history, ultrastructure and experimental transmission of *Haemogregarina bigemina* sp. comb., an apicomplexan parasite of the bullfrog, *Rana catesbeiana* and the mosquito, *Culex pipiens* and *Culex territans* and its intermediate host, the northern leopard frog (*Rana pipiens*). *Parasitol. Res.* 1994, 80, 559–568. [CrossRef]

53. Sturrock, A.E.; Desser, S.S.; Martin, D.S. *Hepatozoon cuniculi* sp. nov. (Apicomplexa: Haemogregarinidae) in the leech *Hyphemerus betulae* and its mosquito *Culex pipiens*. *Int. J. Parasitol.* 2001, 31, 1451–1459. [CrossRef]

54. Conradie, R.; Cook, C.A.; Preez, L.H.; Jordaan, A.; Netherlands, E.C. Ultrastructural comparison of *Hepatozoon sauromali* sp. (Apicomplexa: Adeleorina) from the gecko *Podarcis bocagei* and the mosquito, *Culex pipiens* and *Culex territans*. *J. Parasitol.* 2010, 96, 201–207. [CrossRef] [PubMed]

55. Netherlands, E.C.; Cook, C.A.; Du Preez, L.H.; Vanhove, M.P.M.; Brendonck, L.; Smit, N.J. Monophyly of the species of *Hepatozoon* (Adeleorina: Hepatozoidae) parasitising (African) anurans, with the description of three new species from hyperoliid frogs in South Africa. *Parasitology 2018*, 145, 1039–1050. [CrossRef]

56. Robin, L.A. Cycle évolutif d’un *Hepatozoon de Greko verticillatus*. *Ann. Inst. Pasteur.* 1936, 56, 376–394.

57. Garnham, P.C.C. A haemogregarines in *Argus brumpti*. *Riv. Parasitol.* 1954, 15, 425–435.

58. Lewis, J.E.; Wagner, E.D. *Hepatozoon sauvromali* sp. n., a haemogregarines from the Chuckwalla (*Sauromalus* spp.) with notes on the life history. *J. Parasitol.* 1964, 50, 11–14. [CrossRef]

59. Elwasila, M. *Haemogregarina* sp. (Apicomplexa: Adeleorina) from the gecko *Tarentola annularis* in the Sudan: Fine structure and life-cycle trials. *Parasitol. Res.* 1989, 75, 443–448. [CrossRef]

60. Allison, B.; Desser, S.S. Developmental stages of *Hepatozoon lygosomae* (Dore 1919) comb. N. (Protozoa, Haemogregarinidae), a parasite of a new Zealand skink, *Leiolopisma nigriglantilata*. *J. Parasitol.* 1981, 67, 852–858. [CrossRef]

61. Saratchandra, B.S. Two new haemogregarines, *Haemogregarina waltairensis* n. sp. from Calotes versicolor (Daudin) and *H. ganapati* n. sp. from Lissensys punctata granosa (Shoepf). *Proc. Indian Acad. Sci. (Anim. Sci.)* 1981, 90, 365–371. [CrossRef]

62. Bashtar, A.-R.; Abdel-Ghaffar, F.; Shazly, M.A. Developmental stages of *Hepatozoon gracilis* (Wenyon, 1909) comb. Nov., a parasite of the Egyptian Skink, *Mabuya quinquetaeniata*. *Parasitol. Res.* 1987, 73, 507–514. [CrossRef]

63. Roca, V.; Galdón, M.A. Haemogregarine blood parasites in the lizards *Podarcis boveai* (Seoane) and *P. carbonelli* (Pérez-Mellado) (Sauria: Lacertidae) from NW Portugal. *Syst. Parasitol.* 2010, 75, 75–79. [CrossRef]

64. Abdel-Baki, A.S.; Al-Quraishy, S. Morphological characteristics of a new species of *Haemogregarina Danielsky*, 1885 (Apicomplexa: Adeleorina) in naturally infected *Acanthodactylus boskianus* (Daudin) (Sauria: Lacertidae) in Egypt. *Syst. Parasitol.* 2012, 82, 65–69. [CrossRef]

65. Moreira, I.D.; Harris, D.J.; Rosado, D.; Tavares, I.; Maia, J.P.; Salvi, D.; Perera, A. Consequences of haemogregarine infection on the escape distance in the lacertid lizard, *Podarcis varius*. *Acta Herpetol.* 2014, 9, 119–123.

66. Rabie, S.A.H.; Hussein, A.-N.A. A description of *Haemogregarina* species naturally infecting white-spotted gecko (*Tarentola annularis*) in Qena, Egypt. *J. Egypt Soc. Parasitol.* 2014, 44, 351–358. [CrossRef] [PubMed]

67. Abou Shaafey, H.; Mohamadain, H.S.; Abdel-Gaber, R.; Emara, N.M. Haemogregarines infecting reptiles in Egypt: 1. Blood and Merogonic stages of *Haemogregarina* sp. infecting the skink *Scincus scincus*. *Egypt J. Exp. Biol. (Zool.)* 2019, 15, 127–133.
Animals 2021, 11, 170

68. Zechmeisterová, K.; De Bellocq, J.G.; Široký, P. Diversity of Karyolysus and Schellackia from the Iberian lizard Lacerta schreiberi with sequence data from engorged ticks. Parasitology 2019, 146, 1690–1698. [CrossRef] [PubMed]

69. Ball, G.H.; Oda, S.N. Sexual stages in the life history of the haemogregarines Hepatozoon nureciciens (Sambon and Seligmann 1907). J. Protozool. 1971, 18, 697–700. [CrossRef]

70. Ramadan, N.F. Morphological, experimental and taxonomic studies on protozoan blood parasite of Egyptian reptiles. Ph.D. Thesis, Ain Shams University, Cairo, Egypt; 1974; 220p.

71. Ball, G.H.; Chao, J.; Telford, S.R. Hepatozoon fusifex sp. n. a haemogregarine from the Boa constrictor producing marked morphological changes in the infected erythrocytes. J. Parasitol. 1969, 55, 800–813. [CrossRef]

72. Bashtar, A.R.; Boules, R.; Mehlhorn, H. Hepatozoon aegypti. Parasitol. Res. 2018, 117, 3119–3125. [PubMed]

73. Abdel-Ghaffar, F.A.; Bashtar, A.R.; Shazly, M.A. Life cycle of Hepatozoon mehlhorni sp. nov. in the viper Echis carinatus and the mosquito Culex pipiens molestus. J. Egypt Ger. Soc. Zool. 1991, 3, 211–226. [CrossRef]

74. Siddall, M.E.; Desser, S.S. Ultrastructure of gametogenesis and sporogony of Haemogregarina (sensu lato) myoxoxephali (Apicomplexa: Adeleina: Hepatozoidea) in an experimental mosquito host, Aedes aegypti. J. Eukaryot. Microbiol. 1993, 40, 287–297. [CrossRef] [PubMed]

75. Bashtar, A.R.; Abdel-Ghaffar, F.A.; Shazly, M.A. Life cycle of Hepatozoon rarefaciens and its experimental transmission by a mosquito vector. J. Parasitol. 1971, 57, 141–142. [CrossRef]

76. Shazly, M.A.; Ahmed, A.K.; Bashtar, A.R.; Fayed, H.M. Life cycle of Hepatozoon aegypti nov. sp. 1- Life cycle. Z. Parasitenkd. 1984, 70, 29–41. [CrossRef]

77. Shazly, M.A.; Ahmed, A.K.; Bashtar, A.R.; Fayed, H.M. Life cycle of Hepatozoon mattruhensis comb. nov. 1- Blood stages and merogony inside the snake Psammophis schokari. J. Egypt Ger. Soc. Zool. 1994, 14, 117–131.

78. Shazly, M.A.; Ahmed, A.K.; Bashtar, A.R.; Fayed, H.M. Life cycle of Hepatozoon mattruhensis comb. nov. 2. Gamogony and sporogony inside the vector Culex pipiens molestus. J. Egypt Ger. Soc. Zool. 1994, 14, 322–340.

79. Saoud, M.; Ramadan, N.; Mohammed, S.; Fawzi, S. On two new haemogregarines (Protozoa: Apicomplexa) from Colubrid and Elapidae snakes in Egypt. Qatar Univ. Sci. J. 1996, 16, 127–139.

80. Sloboda, M.; Kamler, M.; Bulantová, J.; Votýpka, J.; Modrý, D. A new species of Hepatozoon (Apicomplexa: Adeleorina) from Python regius (Serpentes:Pythonidae) and its experimental transmission by a mosquito vector. J. Parasitol. 2007, 93, 1189–1198. [CrossRef] [PubMed]

81. Al-Farraj, S. Light and electron microscopic study on a haemogregarine species infecting the viper Cerastes cerastes gasteriti from Saudi Arabia. Pak. J. Biol. Sci. 2008, 11, 1414–1421. [CrossRef]

82. Abdel-Haleem, H.M.; Mansour, L.; Holal, M.; Qasem, M.A.; Al-Quraishy, S.; Abdel-Baki, A.S. Molecular characterisation of Hepatozoon aegyptii Bashtar, Boulos & Mehlhorn, 1984 parasitising the blood of Natrix tessellata and Natrix natrix (Serpentes: Pythonidae) and its experimental transmission by a mosquito vector. J. Parasitol. 2013, 20, 267–273. [CrossRef]

83. Robertson, M. Studies on Ceylon haematozoa. II–Notes on the life cycle of Haemogregarina nicoriae. Q. J. Microsc. Sci. 1910, 55, 741–762.

84. Siddall, M.E.; Desser, S.S. Ultrastructure of gametogenesis and sporogony of Haemogregarina (sensu lato) myoxoxephali (Apicomplexa: Adeleina) from European pond turtles (Emys orbicularis) in the Marine Leech Malmianta scorpii (Adeleorina) in the Marine Leech Malmianta scorpii (Apicomplexa: Adeleina: Hepatozoidea) in an experimental mosquito host, Aedes aegypti. J. Eukaryot. Microbiol. 1993, 40, 287–297. [CrossRef] [PubMed]

85. Robertson, M. Studies on Ceylon haematozoa. II–Notes on the life cycle of Haemogregarina nicoriae. Q. J. Microsc. Sci. 1910, 55, 741–762.

86. Acholonu, A.D. Haemogregarina pseudemylidis n sp (Apicomplexa: Haemogregarinidae) and Pirhemoctyon chelonarum n. sp. in turtles from Louisiana. J. Protozool. 1947, 21, 659–664. [CrossRef]

87. Misra, K.K. Erythrocytic Schizogony in Haemogregarina gangetica of a River Turtle, Trionyx gangeticus Cuvier. Proc. Zool. Soc. (Calcutta) 1981, 32, 141–143.

88. Chai, J.Y.; Chen, C.H. Six new species of Haemogregarina from chinese turtles. Acta Hydrobiol. Sin. 1990, 14, 129–137.

89. Mihalca, A.D.; Acheleariței, D.; Popescu, P. Haemoparasites of the genus Haemogregarina in a population of european pond turtles (Emys orbicularis) from Drăgășani, Valea county, Romania. Rev. Sci. Parasitol. 2002, 3, 22–27.

90. Paperna, I. Hemolivia mauritiana (Haemogregarinidae: Apicomplexa) infection in the tortoise Testudo graeca in the Near East with data on sporogonic development in the tick vector Haolomma aegyptium. Parasite 2006, 13, 267–273. [CrossRef]

91. Široký, P.; Mikulíček, P.; Jandzik, D.; Kami, H.; Mihalca, A.; Rouag, R.; Kamler, M.; Schneider, C.; Zaruba, M.; Modrý, D. Co-distribution pattern of a haemogregarine Hemolivia mauritiana (Apicomplexa: Haemogregarinidae) and its vector Haolomma aegyptium (Metastigmata: Ixodidae). J. Parasitol. 2009, 95, 728–733. [CrossRef]

92. Telford, S.R., Jr.; Norton, T.M.; Moler, P.E.; Jensen, J.B. A new Haemogregarina species of the alligator snapping turtle, Macrochelys temminckii (Testudines: Chelydridae), in Georgia and Florida that produces macromeronts in circulating erythrocytes. J. Parasitol. 2009, 95, 208–214. [CrossRef]

93. Harris, D.J.; Gracié, E.; Jorge, F.; Maia, J.P.M.C.; Perera, A.; Carretero, M.A.; Giménez, A. Molecular detection of Hemolivia (Apicomplexa: Haemogregarinidae) from ticks of North African Testudo graeca (Testudinidae: Testudinidae) and an estimation of their phylogenetic relationships using 18S rRNA sequences. Comp. Parasitol. 2013, 80, 292–296. [CrossRef]
Animals 2021, 11, 170

94. Rossow, J.A.; Hernandez, S.M.; Sumner, S.M.; Altman, B.R.; Crider, C.G.; Gamage, M.B.; Segal, K.M.; Yabsley, M.J. Haemogregarine infections of three species of aquatic freshwater turtles from two sites in Costa Rica. *Int. J. Parasitol. Parasites Wildl.* 2013, 2, 131–135. [CrossRef]

95. Soares, P.; de Brito, E.S.; Paiva, F.; Pavan, D.; Viana, L.A. *Haemogregarina* spp. in a wild population from *Podocnemis unifilis* Troschel, 1848 in the Brazilian Amazonia. *Parasitol. Res.* 2014, 113, 4499–4503. [CrossRef]

96. Molla, S.H.; Bandyopadhyay, P.K.; Gurelli, G. Description of a new Haemogregarine, *Haemogregarina sundaranensis* n. sp. (Apicomplexa: Haemogregarinidae) from Mud Turtle of Sundarban Regions, West Bengal, India. *Turkiye. Parazitol. Derg.* 2015, 39, 131–134. [CrossRef]

97. Picelli, A.M.; Carvalho, A.V.; Viana, L.A.; Malvasio, A. Prevalence and parasitemia of *Hepatozoon* in dogs from Campo Grande, Mato Grosso do Sul, Brazil. *Braz. J. Vet. Parasitol.* 2015, 24, 191–197. [CrossRef] [PubMed]

98. Artiza, V; Sacco, F; Russo, D; Scardino, R; Arculeo, M; Vamberger, M; Marrone, F. The good, the bad, and the ugly: *Emys trinacris*, *Placobdella costata* and *Haemogregarina stepanowi* in Sicily (Testudines, Anelliida and Apicomplexa). *Folia Parasitol.* 2016, 63, 029. [CrossRef] [PubMed]

99. Rakshandehroo, E.; Sharifiyazdi, H.; Ahmadi, A. Morphological and molecular characterisation of *Haemogregarina* sp. (Apicomplexa: Adeleina: Haemogregarinidae) from the blood of the Caspian freshwater turtle *Mauremys caspica* (Gmelin) (Geoemydidae) in Iran. *Syst. Parasitol.* 2016, 93, 517–524. [CrossRef] [PubMed]

100. Alhaboubi, A.R.; Pollard, D.A.; Holman, P.J. Molecular and morphological characterization of a haemogregarine in the alligator snapping turtle, *Macrochelys temminckii* (Testudines: Chelydridae). *J. Parasitol.* 2017, 116, 207–215. [CrossRef] [PubMed]

101. Goes, V.C.; Brito, E.S.; Valadao, R.M.; Gutierrez, C.O.; Picelli, A.M.; Viana, L.A. Haemogregarine (Apicomplexa: Adeleolina) infection in Vanderhaegea’s toadheaded turtle, *Mesolemmys vanderhaegei* (Chelidae), from a Brazilian Neotropical savanna region. *Folia Parasitol.* 2018, 65, 012. [CrossRef] [PubMed]

102. Ungari, L.P.; Santos, A.L.Q.; O’Dwyer, L.H.; da Silva, M.R.L.; Santos, T.C.R.; da Cunha, M.J.R.; de Melo Costa Pinto, R.; Cury, M.C. Molecular characterization and identification of *Hepatozoon* species Miller, 1908 (Apicomplexa: Adeleolinae) in captive snakes from Brazil. *Parasitol. Res.* 2018, 117, 3857–3865.

103. Börner, C. Untersuchungen über Hämospridien. I-Ein Beitrag zur kenntnis des genus Haemogregarina Danilewsky. *Abt. A Res.* 1901, 37, 131–134.

104. Börner, C. Untersuchungen über Hämospridien. I-Ein Beitrag zur kenntnis des genus Haemogregarina Danilewsky. *Abt. A Res.* 1901, 37, 131–134.

105. Hoare, C.A. On protozoal blood parasites collected in Uganda with an account of the life cycle of the crocodile haemogregarines. *Mem. Inst. Butantan (Sao Paulo)* 1932, 67, 398–416.

106. Viana, L.A.; Marques, E.J. Haemogregarine parasites (Apicomplexa: Hepatozoidae) in *Caiman yacare* (Apicomplexa: Hepatozoidae) in Pantanal region, Brazil. *Parasitol. Res.* 2011, 109, 210–224. [CrossRef]

107. Viana, L.A.; Marques, E.J. Haemogregarine parasites (Apicomplexa: Hepatozoidae) in *Caiman yacare* (Apicomplexa: Hepatozoidae) in Pantanal region, Brazil. *Parasitol. Res.* 2011, 109, 210–224. [CrossRef]

108. Bennett, G.F.; Earle, R.A. New species of *Hepatozoon*, *Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

109. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

110. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

111. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

112. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

113. Forlano, M.D.; Teixeira, K.R.S.; Scolfield, A.; Elisei, C.; Yotoko, K.S.C.; Fernandes, K.R.; Linhares, G.F.C.; Ewing, S.A.; Massard, A., S.B.; De Biasi, P. Nota taxonomica sobre cistos esporozoitos de algumas espécies de *Hepatozoon* (Sporozoa, Haemogregarinidae) parásitos de serpentes brasileiras. *Mem. Inst. Butantan (São Paulo)* 1973, 37, 299–307.

114. Hoare, C.A. On protozoal blood parasites collected in Uganda with an account of the life cycle of the crocodile haemogregarines. *Parasitology* 1932, 24, 210–224. [CrossRef]

115. Viana, L.A.; Marques, E.J. Haemogregarine parasites (Apicomplexa: Hepatozoidae) in *Caiman crocodilus yacare* (Crocodilia: Alligatoridae) from Pantanal, Corumba, MS, Brazil. *Rev. Bras. Parasitol. Vet.* 2005, 14, 173–175.

116. Viana, L.A.; Paiva, F.; Coutinho, M.E.; Lourenço-de-Oliveira, R. *Hepatozoon caimani* (Apicomplexa: Hepatozoidae) in Wild Caiman, *Caiman yacare*, from the Pantanal region, Brazil. *J. Parasitol.* 2010, 96, 83–88. [CrossRef] [PubMed]

117. Bennett, G.F.; Earle, R.A.; Penzhorn, B. *Ornithodoros peringueyi* (Argasidae) and *Xenopsylla trispinis* (Siphonaptera), probable intermediate hosts of *Hepatozoon atticoare* of the South African Cliff swallow, *Hirundo spilodera*. *Can. J. Zool.* 1992, 70, 188–190. [CrossRef]

118. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

119. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

120. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

121. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

122. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.

123. Bennett, G.F.; Earle, R.A. New species of *Haemoproteus, Hepatozoon and Leucocytozoon* from South African birds. *S. Afr. J. Wildl. Res.* 1992, 22, 114–118.
Animals 2021, 11, 170

118. De Sousa, K.C.M.; Fernandes, M.P.; Herrera, H.M.; Benevenute, J.L.; Santos, F.M.; Rocha, F.L.; Barreto, W.T.G.; Macedo, G.C.; Campos, J.B.; Martins, T.F.; et al. Molecular detection of Hepatozoon spp. in domestic dogs and wild mammals in southern Pantanal, Brazil with implications in the transmission route. Vet. Parasitol. 2017, 237, 37–46. [CrossRef] [PubMed]

119. Bhsuri, B.; Sariya, L.; Mongkolphan, C.; Sukai, P.; Kaewchot, S.; Changbunjong, T. Molecular characterization of Hepatozoon felis in Rhipicephalus sanguineus infested on captive lions (Panthera leo). J. Parasit. Dis. 2017, 41, 903–907. [CrossRef]

120. Mitkova, B.; Hrazdilova, K.; Novotna, M.; Jurankova, J.; Hofmannova, L.; Forejt, P.; Modry, D. Autochthonous Babesia canis, Hepatozoon canis and imported Babesia gibsoni infection in dogs in the Czech Republic. Vet. Med. 2017, 62, 138–146. [CrossRef]

121. Barati, A.; Razmi, G.R. A parasitologic and molecular survey of Hepatozoon canis infection in stray dogs in northeastern Iran. J. Parasitol. 2018, 104, 413–417. [CrossRef]

122. Tuna, G.E.; Bakırcı, S.; Dinler, C.; Battal, G.; Uluta¸s, B. Molecular Identification and Clinicopathological Findings of Hepatozoon sp. Infection in a Cat: First Report from Turkey. Turkiye Parazitol. Derg. 2018, 42, 286–289. [CrossRef] [PubMed]

123. Attipa, C.; Maguire, D.; Solano-Gallego, L.; Szladovits, B.; Barker, E.N.; Farr, A.; Baneth, G.; Tasker, S. Hepatozoon canis in three imported dogs: A new tickborne disease reaching the United Kingdom. Vet. Rec. 2018, 183, 716. [CrossRef]

124. Harris, D.J.; Sergiadou, D.; Halajian, A.; Swanepoel, L.; Roux, F. Molecular screening indicates high prevalence and mixed infections of Hepatozoon parasites in wild felines from South Africa. J. S. Afr. Vet. Assoc. 2020, 91, a2055. [CrossRef]

125. Van As, M.; Netherlands, E.C.; Smit, N.J. Molecular characterization and morphological description of two new species of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina: Hepatozoidae) infecting leukocytes of African leopards Panthera pardus pardus (L.). Parasite. Vector. 2020, 13, 222. [CrossRef]

126. Baticados, A.M.; Baticados, W.N.; Carlos, E.T.; Carlos, S.M.; Villarba, L.A.; Subiaga, S.G.; Magcalas, J.M. Parasitological detection and molecular evidence of Hepatozoon canis from canines in Manila, Philippines. Vet. Med. Res. Rep. 2011, 1, 7–10. [CrossRef]

127. Bray, R.S. A check-list of the parasitic protozoa of West Africa with some notes on their classification. Bull. Inst. Fr. Afr. Noire. 1964, 26, 238–315.

128. Yanai, T.; Tomita, A.; Masegi, T.; Ishikawa, K.; Iwasaki, T.; Iwasaki, T.; Yamazoe, K.; Ueda, K. Histopathologic features of naturally occurring Hepatozoon infections of imported dogs: A new tickborne disease reaching the United Kingdom. Vet. Med. Res. Rep. 2020, 11, 7–10. [CrossRef] [PubMed]

129. Nadler, S.A.; Miller, J.H. A redescription of Hepatozoon mocassini (Laveran, 1902) n. comb. from Agkistrodon piscivorus leucostoma Troost 1836. J. Protozool. 1984, 31, 321–324. [CrossRef]

130. Abdel-Baki, A.S.; Mansour, L.; Al-Malki, E.S.; Al-Quraishy, S.; Abdel-Halim, H.M. Morphometric and molecular characterisation of Hepatozoon bashtari n. sp. in painted saw-scaled viper, Echis coloratus (Ophidia, Viperidae). Parasitol. Res. 2020, 119, 3793–3801. [CrossRef]

131. Smith, T.G.; Desser, S.S. Ultrastructural features of cystic and merogonic stages of Hepatozoon canis and molecular evidence of Hepatozoon canis infection in stray dogs in northeastern Iran. Vet. Parasitol. 2018, 26, 238–315.

132. Reichenow, E. Karyoglyus lactare, ein wirtwechselndes Coccidium der Eidechse Lacerta muralis und der Milbe Liponyssus saurarum. Arb. Gesundh. Amtl. Berl. 1913, 45, 317–363.

133. Honigberg, B.M.; Chairman of Committee. A revised classification of the phylum Protozoa. J. Protozool. 1964, 11, 7–20. [CrossRef]

134. Rubin, D.S.; Paduan, K.S.; Perez, R.R.; Ribolla, P.E.M.; O’Dwyer, L.H. Molecular characterization of feline Hepatozoon species from Brazil. Vet. Parasitol. 2006, 137, 168–171. [CrossRef]

135. Ortuño, A.; Castella, J.; Criado-Fornelio, A.; Buling, A.; Barba-Carretero, J.C. Molecular detection of a Hepatozoon species in stray cats from a feline colony in north-eastern Spain. Vet. J. 2008, 177, 134–135. [CrossRef] [PubMed]

136. Vilein, I.E.; Ujvari, B.; Old, J.M.; Deane, E. Molecular and morphological description of a Hepatozoon species in reptiles and their ticks in the Northern Territory, Australia. J. Parasitol. 2009, 95, 434–442. [CrossRef] [PubMed]

137. Maia, J.P.M.C.; Perera, A.; Harris, D.J. Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean. Folia Parasitol. 2012, 59, 241–248. [CrossRef] [PubMed]

138. Tomé, B.M.; Maia, J.P.M.C.; Harris, D.J. Molecular assessment of apicomplexan parasites in the snake Psammophis from north Africa: Do multiple parasite lineages reflect the final vertebrate host diet? J. Parasitol. 2013, 99, 883–887. [CrossRef]

139. Xavier, R.; Severino, R.; Pérez-Losada, M.; Gestal, C.; Freitas, R.; Harris, D.J.; Verissino, A.; Rosado, D.; Cable, J. Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the North-East Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasite. Vector. 2018, 11, 63. [CrossRef]

140. Waeschenbach, A.; Webster, B.L.; Bray, R.A.; Littlewood, D.T.J. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Mol. Phylogenet. Evol. 2007, 45, 311–325. [CrossRef]

141. Ahmad, A.S.; Saeed, M.A.; Rashid, I.; Ashraf, K.; Shehzad, W.; Traub, R.J.; Baneth, G.; Jabbar, A. Molecular characterization of Hepatozoon canis from farm dogs in Pakistan. Parasitol. Res. 2018, 117, 1131–1138. [CrossRef]

142. Hayes, P.M.; Smit, N.J. Molecular insights into the identification and phylogenetics of the cosmopolitan marine fish blood parasite, Haemogregarina bigemina (Adeleorina: Haemogregarinidae). Int. J. Parasitol. Parasites. Wildl. 2019, 8, 216–220. [CrossRef]

143. Ahmad, A.S.; Saeed, M.A.; Rashid, I.; Ashraf, K.; Shehzad, W.; Traub, R.J.; Baneth, G.; Jabbar, A. Molecular characterization of Hepatozoon canis from farm dogs in Pakistan. Parasitol. Res. 2018, 117, 1131–1138. [CrossRef]
145. Nordmeyer, S.C.; Henry, G.; Guerra, T.; Rodriguez, D.; Forstner, M.R.J.; Hahn, D. Identification of blood parasites in individuals from six families of freshwater turtles. *Chelonian Conserv. Biol.* **2020**, *19*, 85–94. [CrossRef]

146. Mathew, J.S.; Van Den Bussche, R.A.; Ewing, S.A. Phylogenetic relationships of *Hepatozoon* (Apicomplexa Adeleorina) based on molecular, morphologic, and life-cycle characters. *J. Parasitol.* **2000**, *86*, 366–372. [CrossRef]

147. Perkins, S.L.; Keller, A.K. Phylogeny of nuclear small subunit rRNA genes of haemogregarines amplified with specific primers. *J. Parasitol.* **2001**, *87*, 870–876. [CrossRef]

148. Inokuma, H.; Okuda, M.; Ohno, K.; Shimoda, K.; Onishi, T. Analysis of the 18S rRNA gene sequence of a *Hepatozoon* detected in two Japanese dogs. *Vet. Parasitol.* **2002**, *106*, 265–271. [CrossRef]

149. Criado-Fornelio, A.; Buling, A.; Cunha-Filho, N.A.; Ruas, J.L.; Farias, N.A.; Rey-Valeiron, C.; Pingret, J.L.; Etievant, M.; Barba-Carretero, M.J.C. Development and evaluation of a quantitative PCR assay for detection of *Hepatozoon* sp. *Vet. Parasitol.* **2007**, *150*, 352–356. [CrossRef]

150. Tabar, M.D.; Altet, L.; Francino, O.; Sánchez, A.; Ferrer, L.; Roura, X. Vector-borne infections in cats: Molecular study in Barcelona area (Spain). *Vet. Parasitol.* **2008**, *151*, 332–336. [CrossRef]

151. Kledmanee, K.; Suwanpakdee, S.; Krajangwong, S.; Chatsiriwech, J.; Suksai, P.; Suwannachat, P.; Sariya, L.; Buddhirongawat, R.; Charoornrut, P.; Chaichoun, K. Development of multiplex polymerase chain reaction for detection of *Ehrlichia canis*, *Babesia* spp., and *Hepatozoon canis* in canine blood. *Southeast Asian J. Trop. Med. Public Health* **2009**, *40*, 35–39.

152. Zintl, A.; Finnerty, E.J.; Murphy, T.M.; De Waal, T.; Gray, J.S. Babesias of red deer (*Cervus elaphus*) in Ireland. *Vet. Res.* **2011**, *42*, 7. [CrossRef]

153. Hodžić, A.; Alić, A.; Fuehrer, H.P.; Harl, J.; Wille-Piazzai, W.; Duscher, G.G. A molecular survey of vector-borne pathogens in red foxes (*Vulpes vulpes*) from Bosnia and Herzegovina. *Parasite. Vector.* **2015**, *8*, 88. [CrossRef]