On the sum of the largest A_α-eigenvalues of graphs *

Zhen Lina†, Lianying Miaoa, Shu-Guang Guob

aSchool of Mathematics, China University of Mining and Technology,
Xuzhou, 221116, Jiangsu, P.R. China

bSchool of Mathematics and Statistics, Yancheng Teachers University,
Yancheng, 224002, Jiangsu, P.R. China

Abstract

For every real $0 \leq \alpha \leq 1$, Nikiforov defined the A_α-matrix of a graph G as $A_\alpha(G) = \alpha D(G) + (1 - \alpha)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of a graph G, respectively. The eigenvalues of $A_\alpha(G)$ are called the A_α-eigenvalues of G. Let $S_k(A_\alpha(G))$ be the sum of k largest A_α-eigenvalues of G. In this paper, we present several upper and lower bounds on $S_k(A_\alpha(G))$ and characterize the extremal graphs for certain cases, which can be regard as a common generalization of the sum of k largest eigenvalues of adjacency matrix and signless Laplacian matrix of graphs. In addition, some graph operations on $S_k(A_\alpha(G))$ are presented.

Mathematics Subject Classification 2010: 05C50

Keywords: A_α-matrix; Sum of A_α-eigenvalues; Graph operation; Bound.

1 Introduction

Let G be a simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. Denote by K_n, P_n, C_n and $K_{1,n-1}$ the complete graph, path, cycle and star with n vertices, respectively. Let $d_v = d_G(v)$ be the degree of vertex v of the graph G. The minimum and maximum degree of a vertex in G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. For a graph G, the first Zagreb index $Z_1 = Z_1(G)$ is defined as the sum of the squares of the vertices degrees. There is a wealth of literature relating to the first Zagreb index, see for example [5, 16] and the references therein.

*Supported by the National Natural Science Foundation of China (No. 11771443, 12071411).
†Corresponding author. E-mail addresses: lnlzhen@163.com (Z. Lin), miaolianying@cumt.edu.cn (L. Miao), ychgs@163.com (S.-G. Guo).
Let $\lambda_1(M) \geq \lambda_2(M) \geq \cdots \geq \lambda_n(M)$ be the eigenvalues of the real symmetric matrix M. Let $S_k(M)$ be the sum of k largest eigenvalues of M. The investigation on the sum of k largest eigenvalues of a real symmetric matrix is a topic of interest in matrix theory. The following classical theorem is due to Fan [15].

Theorem 1.1 ([15]) Let M and N be two real symmetric matrices of order n. Then

$$
\sum_{i=1}^{k} \lambda_i(M + N) \leq \sum_{i=1}^{k} \lambda_i(M) + \sum_{i=1}^{k} \lambda_i(N)
$$

for any $1 \leq k \leq n$.

Rojo et al. [41] obtained some upper bounds for the sum of the k largest eigenvalues of the matrix M in terms of the trace of M. Mohar [33] showed that $S_k(M)$ is at most $\frac{1}{2} (\sqrt{k} + 1)n$ when the entries of M are between 0 and 1. Meanwhile, he gave an upper bound on the sum of the k largest eigenvalues of arbitrary symmetric matrices. Nikiforov [35] obtained strengthen the upper bound and extend it to arbitrary $(0, 1)$-matrices.

Let $A(G)$ be the adjacency matrix of a graph G. For a graph G, Mohar [33] showed that $S_k(A(G))$ is at most $\frac{1}{2} (\sqrt{k} + 1)n$. This bound is shown to be best possible in the sense that for every k there exist graphs whose sum is $\frac{1}{2} (\sqrt{k} + \frac{1}{2})n - o(k^{-2/5})n$.

Das et al. [13] proved an upper bound on $S_k(A(G))$ in terms of vertex number and negative inertia index. Moreover, Gernert [17] showed that $S_2(A(G)) \leq n$ if G is a regular graph with n vertices. He conjectured that this inequality holds for all graphs.

Gernert’s conjecture was disproved by Nikiforov [36], who gave examples of graphs with $S_2(A(G)) \geq 2n + \sqrt{52n} - 25 > 1.122n - 25$ and proved that $S_2(A(G)) \leq 2\sqrt{\frac{n}{3}} < 1.155n$.

Ebrahimi et al. [14] showed that $S_2(A(G)) \leq (\frac{1}{2} + \sqrt{\frac{5}{12}})n < 1.145n$.

Let $Q(G)$ be the signless Laplacian matrix of a graph G. Ashraf et al. [3] proposed the following conjecture on $S_k(Q(G))$.

Conjecture 1.2 ([3]) Let G be a graph with n vertices and $e(G)$ edges. Then

$$
S_k(Q(G)) \leq e(G) + \binom{k + 1}{2}
$$

for $1 \leq k \leq n$.

2
This conjecture has been proved to be correct for all graphs with at most ten vertices [24], all graphs with $k = 1, 2, n - 2, n - 1, n$ [31, 7], regular graphs [3], trees [22], unicyclic graphs [42], bicyclic graphs [42], tricyclic graphs when $k \neq 3$ [42] and so on. Later, Amaro et al. [2] presented a strongly conjecture as follows.

Conjecture 1.3 ([2]) Let G be a graph with $n \geq 5$ vertices and $3 \leq k \leq n - 2$ edges. Then

$$S_k(Q(G)) \leq S_k(Q(H_{n,k})) < e(G) + \left(\frac{k + 1}{2}\right)$$

with equality if and only if $G = H_{n,k}$, where $H_{n,k}$ is the P_3-join graph isomorphic to $P_3[(n - k - 1)K_1, K_{k-1}, K_2]$ for $3 \leq k \leq n - 2$.

Moreover, Oliveira et al. [10] showed that the inequality $S_2(Q(G)) \leq e(G) + 3$ is tighter for the graph $K^+_{1,n-1}$ among all firefly graphs, where $K^+_{1,n-1}$ is the star graph with an additional edge. Meanwhile, they conjectured that $K^+_{1,n-1}$ minimizes $f(G) = e(G) - S_2(Q(G))$ among all graphs G with n vertices. Recently, Du [12] proved that $S_2(Q(G)) < e(G) + 3 - \frac{2}{n}$ when G is a tree, or a unicyclic graph whose unique cycle is not a triangle. This implies that the conjecture of Oliveira et al. is true for trees and unicyclic graphs whose unique cycle is not a triangle. Oliveira and Lima [39] showed that $S_2(Q(G)) \geq d_1 + d_2 + 1$ with equality if and only if G is the star $K_{1,n-1}$ or the complete graph K_3, where d_i is the i-largest degree of a vertex of G.

Another motivation to study $S_k(A(G))$ and $S_k(Q(G))$ came from the energy $\varepsilon(A(G))$ and signless Laplacian energy $\varepsilon(Q(G))$ of a graph G, which is very popular in mathematical chemistry. Let G be a graph with n vertices and m edges. Then

$$\varepsilon(A(G)) = \sum_{k=1}^{n} |\lambda_k(A(G))| = 2S_{\sigma}(A(G)) = \max_{1 \leq k \leq n} \{2S_k(A(G))\}$$

and

$$\varepsilon(Q(G)) = \sum_{k=1}^{n} \left|\lambda_k(Q(G)) - \frac{2m}{n}\right| = 2S_{\sigma}(Q(G)) - \frac{4\sigma m}{n} = \max_{1 \leq k \leq n} \left\{2S_k(Q(G)) - \frac{4km}{n}\right\},$$

where σ denotes the number of the eigenvalues of M greater than or equal to $tr(M)/n$. Thus $S_k(A(G))$ and $S_k(Q(G))$ are close relation with the energy and signless Laplacian energy, respectively. For more details in this field, we refer the reader to [1, 13, 18, 29].
In addition, $S_k(A(G))$ is related to Ky Fan norms of graphs introduced by Nikiforov [35], which is a fundamental matrix parameter anyway.

For any real $\alpha \in [0, 1]$, Nikiforov [34] defined the matrix $A_\alpha(G)$ as

$$A_\alpha(G) = \alpha D(G) + (1 - \alpha)A(G),$$

where $D(G)$ is the diagonal matrix of its vertex degrees and $A(G)$ is the adjacency matrix. It is easy to see that $A_0(G) = A(G)$ and $2A_{1/2}(G) = Q(G)$. The new matrix $A_\alpha(G)$ not only can underpin a unified theory of $A(G)$ and $Q(G)$, but it also brings many new interesting problems, see for example [24, 27, 28, 34, 38]. This matrix has recently attracted the attention of many researchers, and there are several research papers published continually, see for example [8, 9, 19, 21, 23-28, 30-32, 34, 37, 38] and the references therein.

Motivated by the above works, we study the sum of k largest eigenvalues of $A_\alpha(G)$. Since $S_k(A_0(G)) = S_k(A(G))$ and $2S_k(A_{1/2}(G)) = S_k(Q(G))$, $S_k(A_\alpha(G))$ can be regard as a common generalization of $S_k(A(G))$ and $S_k(Q(G))$. Moreover, if G is a graph with n vertices and m edges, then

$$\varepsilon_\alpha(G) = \sum_{k=1}^{n} \left| \lambda_k(A_\alpha(G)) - \frac{2\alpha m}{n} \right| = 2S_\sigma(A_\alpha(G)) - \frac{4\alpha \sigma m}{n} = \max_{1 \leq k \leq n} \left\{ 2S_k(A_\alpha(G)) - \frac{4\alpha km}{n} \right\},$$

where $\varepsilon_\alpha(G)$ is the α-energy of G defined by Guo and Zhou [19]. Thus $S_k(A_\alpha(G))$ is close relation with the α-energy of G. In this paper, we obtain some upper and lower bounds on the sum of k largest eigenvalues of $A_\alpha(G)$, which extend the results of $S_k(A(G))$ and $S_k(Q(G))$. In particular, the following problems and conjecture are proposed, repectively.

Problem 1.4 For a given k, which graph(s) minimize (or maximize) the sum of k largest eigenvalues of $A_\alpha(G)$ among all graphs with n vertices?

Conjecture 1.5 Let G be a graph with n vertices and $e(G)$ edges. If $\frac{1}{2} \leq \alpha < 1$, then

$$S_k(A_\alpha(G)) \leq \alpha e(G) + \alpha \left(k + 1 \right) \binom{k + 1}{2}$$

for $1 \leq k \leq n$.

Problem 1.6 Which graph(s) minimize $f(G) = \alpha e(G) + \alpha + 1 - S_2(A_\alpha(G))$ for $\frac{1}{2} \leq \alpha < 1$?
The remainder of this paper is organized as follows. In Section 2, we recall some useful notions and lemmas used further. In Section 3, some upper bounds on $S_k(A_\alpha(G))$ are obtained. In Section 4, some upper bounds on the sum of the k largest $A_\alpha(G)$-eigenvalues of a tree are presented. In Section 5, some lower bounds on $S_k(A_\alpha(G))$ are given. Moreover, we prove that path is the minimum $S_2(A_\alpha(G))$ among all connected graphs for $\frac{1}{2} \leq \alpha < 1$, which is concerned with Problem 1.4. In Section 6, some graph operations on $S_k(A_\alpha(G))$ are presented.

2 Preliminaries

Let \overline{G} be the complement of a graph G. The line graph $L(G)$ is the graph whose vertex set are the edges in G, where two vertices are adjacent if the corresponding edges in G have a common vertex. The k-th power G^k of a graph G is a graph with the same set of vertices as G such that two vertices are adjacent in G^k if and only if their distance in G is at most k. The double graph $D(G)$ of G is a graph obtained by taking two copies of G and joining each vertex in one copy with the neighbors of corresponding vertex in another copy. A clique of a graph G is the maximal complete subgraph of the graph G. The independence number of G is the maximum size of a subset of vertices of G that contains no edge. A matching \mathcal{M} of G is a subset of $E(G)$ such that no two edges in \mathcal{M} share a common vertex. The matching number of G is the maximum number of edges of a matching in G. The chromatic number of a graph G is the minimum number of colors such that G can be colored in a way such that no two adjacent vertices have the same color. The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. The matrix $L(G) = D(G) - A(G)$ is called the Laplacian matrix of G. The second smallest eigenvalue of the Laplacian of a graph G, best-known as the algebraic connectivity of G, denoted by $a(G)$.

Lemma 2.1 ([33]) If a, b are real numbers, where $a < b$, and n is an integer, let $S_{a,b}^n$ be the set of all symmetric matrices whose entries are between a and b. Then for every integer k, $2 \leq k \leq n$, and every $M \in S_{a,b}^n$, we have

$$S_k(M) \leq \frac{(b - a)n}{2} (1 + \sqrt{k}) + \max\{0, a\}.$$

Lemma 2.2 ([41]) Let M be an $n \times n$ matrix with nonnegative eigenvalues. Let $1 \leq k \leq \sqrt{n}$
$n - 1$. Then

$$S_k(M) \leq \frac{k(tr(M))}{n} + \sqrt{\frac{k(n-k)}{n} f(M)},$$

where

$$f(M) = \sum_{i=1}^{n} \sum_{k=1}^{n} m_{ik} m_{ki} - \frac{(tr(M))^2}{n}.$$

Lemma 2.3 ([5, 16]) Let G be a graph with n vertices and m edges. Then

$$\frac{4m^2}{n} + \frac{1}{2}(\Delta - \delta)^2 \leq Z_1(G) \leq \frac{4m^2}{n} + \frac{n}{4}(\Delta - \delta)^2.$$

Lemma 2.4 ([34]) Let G be a graph with n vertices. Then

$$\sqrt{\frac{Z_1}{n}} \leq \lambda_1(A_\alpha(G)) \leq \Delta.$$

Lemma 2.5 ([8]) Let G be a graph of with n vertices and $\Delta(G) < n - 1$. If $\frac{1}{2} < \alpha < 1$, then

$$\lambda_2(A_\alpha(G)) \leq \alpha(n - 2)$$

If the equality holds, then the complement of G has at least one component isomorphic to K_2.

Lemma 2.6 ([22]) Let T be a tree with n vertices. Then $S_k(L(T)) \leq n + 2k - 2$ for $1 \leq k \leq n$.

Lemma 2.7 ([4]) Let M be an $n \times n$ Hermitian matrix. Then for $1 \leq k \leq n$,

$$\sum_{i=1}^{k} \lambda_i(M) = \max \sum_{i=1}^{k} \langle MX_i, X_i \rangle,$$

where the maximum is taken over all orthonormal k-tuples of vectors $\{X_1, \ldots, X_k\}$ in \mathbb{C}^n.

Lemma 2.8 ([32]) Let G be a graph with n vertices. If $e \in E(G)$ and $\alpha \geq \frac{1}{2}$, then

$$\lambda_i(A_\alpha(G)) \geq \lambda_i(A_\alpha(G - e))$$

for $1 \leq i \leq n$.
Lemma 2.9 ([23]) Let \(G \) be a graph with \(n \) vertices and degree sequence \(d_1 \geq d_2 \geq \cdots \geq d_n \). Then
\[
\lambda_k(A_\alpha(G)) \leq \alpha d_k + (1 - \alpha)(n - k) \quad (2.1)
\]
If equality in (2.1) holds and \(0 < \alpha < 1 \), then \(G \) has an induced subgraph \(H \cong K_{n-k+1} \) such that \(d(v_i) = \delta \) for all \(v_i \in V(H) \).

Lemma 2.10 ([11]) Let \(G \) be a graph with \(n \) vertices and \(m \geq 1 \) edges. Then \(\lambda_i(Q(G)) = \lambda_i(A(L(G))) + 2, i = 1, 2, \ldots, s \), where \(s = \min\{n, m\} \). Further if \(m > n \), we have \(\lambda_i(A(L(G))) = -2 \) for \(i \geq n + 1 \) and if \(n > m \), we have \(\lambda_i(Q(G)) = 0 \) for \(i \geq m + 1 \).

Lemma 2.11 ([9]) For any \(K_3 \)-free and \(C_4 \)-free graph \(G \), \(A(G^2) = A^2(G) - L(G) \).

Lemma 2.12 If \(1 \leq k \leq n \), then
\[
\sum_{i=1}^{k} \cos \frac{i\pi}{n} = \frac{1}{2} \csc \frac{\pi}{2n} \sin \left(\frac{(2k+1)\pi}{2n} \right) - \frac{1}{2}.
\]

Proof. For \(1 \leq k \leq n \), we have
\[
\sum_{i=1}^{k} \cos \frac{i\pi}{n} = \frac{(1 + \cos \frac{\pi}{n}) \sin \frac{k\pi}{n}}{2 \sin \frac{\pi}{n}} + \frac{1}{2} \cos \frac{k\pi}{n} - \frac{1}{2}
\]
\[
= \frac{1}{2} \cot \frac{\pi}{2n} \sin \frac{k\pi}{n} + \frac{1}{2} \cos \frac{k\pi}{n} - \frac{1}{2}
\]
\[
= \frac{1}{2} \csc \frac{\pi}{2n} \sin \left(\frac{(2k+1)\pi}{2n} \right) - \frac{1}{2}.
\]
The proof is completed. \(\square \)

Lemma 2.13 If \(0 \leq \beta < \alpha \leq 1 \) and \(G \) is a graph with \(n \) vertices, then
\[
S_k(A_\beta(G)) \leq S_k(A_\alpha(G))
\]
for \(1 \leq k \leq n \). If \(G \) is connected, then inequality is strict, unless \(k = 1 \) and \(G \) is regular.

Proof. If \(0 \leq \beta < \alpha \leq 1 \), from Proposition 4 in [34], then \(\lambda_k(A_\beta(G)) \leq \lambda_k(A_\alpha(G)) \) for \(1 \leq k \leq n \). Thus \(S_k(A_\beta(G)) \leq S_k(A_\alpha(G)) \), and the proof follows. \(\square \)
3 Upper bounds on the sum of the largest A_α-eigenvalues in terms of vertex degrees

Nikiforov [34] showed that $A_\alpha(G)$ is a positive semi-definite matrix for $\frac{1}{2} \leq \alpha < 1$. Further, G has no isolated vertices, then $A_\alpha(G)$ is positive definite. Let $\alpha_0(G)$ be the smallest α such that $A_\alpha(G)$ is positive semidefinite for $\alpha_0(G) \leq \alpha \leq 1$. Nikiforov and Rojo [38] found $\alpha_0(G)$ if G is regular or G contains a bipartite component and given a lower bound on $\alpha_0(G)$ of χ-colorable graphs.

Theorem 3.1 Let $G \neq K_n$ be a graph with n vertices and maximum degree Δ.

(i) If $0 \leq \alpha < \frac{1}{\Delta + 1}$, then $S_k(A_\alpha(G)) \leq \frac{(1-\alpha)n}{2}(1 + \sqrt{k})$ for $2 \leq k \leq n$.

(ii) If $\frac{1}{\Delta + 1} \leq \alpha < 1$, then $S_k(A_\alpha(G)) \leq \frac{\alpha \Delta n}{2}(1 + \sqrt{k})$ for $2 \leq k \leq n$.

Proof. In this proof we use Lemma 2.1 with $a = 0$ and $b = 1 - \alpha$ for $0 \leq \alpha < \frac{1}{\Delta + 1}$. Then

$$S_k(A_\alpha(G)) \leq \frac{(1-\alpha)n}{2}(1 + \sqrt{k}).$$

By a similar reasoning as above, the second part of the theorem follows. □

Theorem 3.2 Let $\frac{1}{2} \leq \alpha < 1$ and G be a graph with n vertices and m edges. If $1 \leq k \leq n - 1$, then

$$S_k(A_\alpha(G)) \leq \frac{2\alpha km}{n} + \sqrt{k(n-k)}\left(\frac{\alpha^2 Z_1 + 2m(1-\alpha)^2 - \frac{4\alpha^2 m^2}{n}}{n}\right).$$

Proof. Since $tr(A_\alpha(G)) = 2\alpha m$, $\sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}a_{ki} = \alpha^2 Z_1 + 2m(1-\alpha)^2$ and $A_\alpha(G)$ is a positive semi-definite matrix for $\frac{1}{2} \leq \alpha < 1$, by Lemma 2.2 we have the proof. □

The following result is direct corollary of Lemma 2.3 and Theorem 3.2.

Corollary 3.3 Let $\frac{1}{2} \leq \alpha < 1$ and G be a graph with n vertices and m edges. If $1 \leq k \leq n - 1$, then

$$S_k(A_\alpha(G)) \leq \frac{2\alpha km}{n} + \sqrt{k(n-k)}\left(\frac{2m(1-\alpha)^2 + \frac{\alpha^2 n}{4}(\Delta - \delta)^2}{n}\right).$$
Theorem 3.4 Let $\frac{1}{2} < \alpha < 1$ and G be a graph with n vertices. If $1 \leq k \leq n - 1$ and G has no isolated vertices, then

$$S_k(A_\alpha(G)) \leq 2\alpha m - (n - k) \left(\frac{|\det(A_\alpha(G))|}{\lambda_1(A_\alpha(G))\lambda_2^{k-1}(A_\alpha(G))} \right)^{\frac{1}{n-k}} \tag{3.1}$$

with equality if and only if $\lambda_2(A_\alpha(G)) = \cdots = \lambda_k(A_\alpha(G))$ and $\lambda_{k+1}(A_\alpha(G)) = \cdots = \lambda_n(A_\alpha(G))$.

Proof. Since $\frac{1}{2} < \alpha < 1$ and G has no isolated vertices, we know that $A_\alpha(G)$ is positive definite. By the arithmetic-geometric mean inequality, we have

$$S_k(A_\alpha(G)) = \lambda_1(A_\alpha(G)) + \lambda_2(A_\alpha(G)) + \cdots + \lambda_k(A_\alpha(G))$$

$$\leq 2\alpha m - (\lambda_{k+1}(A_\alpha(G)) + \lambda_{k+2}(A_\alpha(G)) + \cdots + \lambda_n(A_\alpha(G)))$$

$$\leq 2\alpha m - (n - k) \left(\prod_{i=k+1}^{n} \lambda_i(A_\alpha(G)) \right)^{\frac{1}{n-k}}$$

$$= 2\alpha m - (n - k) \left(\frac{|\det(A_\alpha(G))|}{\prod_{i=1}^{k} \lambda_i(A_\alpha(G))} \right)^{\frac{1}{n-k}}$$

with equality if and only if $\lambda_2(A_\alpha(G)) = \cdots = \lambda_k(A_\alpha(G))$ and $\lambda_{k+1}(A_\alpha(G)) = \cdots = \lambda_n(A_\alpha(G))$. This completes the proof. \(\Box\)

If G is a complete graph K_n, then equality holds in (3.1). However, there are many other cases of equality some of which are rather complicated and their complete description seems difficult.

Problem 3.5 Characterize the graphs for which equality holds in (3.1).

Corollary 3.6 Let $\frac{1}{2} < \alpha < 1$ and G be a graph with n vertices and maximum degree $\Delta < n - 1$. If $1 \leq k \leq n - 1$ and G has no isolated vertices, then

$$S_k(A_\alpha(G)) \leq 2\alpha m - (n - k) \left(\frac{|\det(A_\alpha(G))|}{\alpha^{k-1}\Delta(n - 2)^{k-1}} \right)^{\frac{1}{n-k}}.$$
Proof. By Lemma 2.4 we have $\lambda_1(A_\alpha(G)) \leq \Delta$. By Lemma 2.5 and Theorem 3.4 we have the proof. □

Corollary 3.7 Let G be a connected non-bipartite graph. Then

$$S_k(Q(G)) \leq 2m - (n - k) \left(\frac{\det(Q(G))}{\lambda_1(Q(G)) \lambda_{k+1}^{-1}(Q(G))} \right)^{1/n}.$$

Theorem 3.8 Let $0 \leq \alpha < \alpha_0(G)$ and G be a graph with n vertices and m edges, and let p be the positive inertia index of $A_\alpha(G)$. Then

$$S_p(A_\alpha(G)) \leq 2\alpha m + \frac{1}{2}(2m(1 - \alpha)^2 + \alpha^2 Z_1) \sqrt{n(n - p)} \frac{Z_1}{Z}.$$

Proof. By Lemma 2.4 we have $\lambda_1(A_\alpha(G)) \geq \sqrt{\frac{Z_1}{n}}$. We assume that

$$\sum_{i=1}^{n-p} \lambda_{n-i+1}^2(A_\alpha(G)) > \frac{n(2m(1 - \alpha)^2 + \alpha^2 Z_1)^2}{4Z_1},$$

in which case

$$2m(1 - \alpha)^2 + \alpha^2 Z_1 = \sum_{i=1}^p \lambda_i^2(A_\alpha(G)) + \sum_{i=1}^{n-p} \lambda_{n-i+1}^2(A_\alpha(G)) \geq \lambda_1^2(A_\alpha(G)) + \sum_{i=1}^{n-p} \lambda_{n-i+1}^2(A_\alpha(G)) > \frac{Z_1}{n} + \frac{n(2m(1 - \alpha)^2 + \alpha^2 Z_1)^2}{4Z_1}.$$

This implies that

$$\left(\sqrt{\frac{Z_1}{n}} - \frac{1}{2}(2m(1 - \alpha)^2 + \alpha^2 Z_1) \sqrt{n/Z_1} \right)^2 < 0,$$

which is a contradiction. Thus

$$\sum_{i=1}^{n-p} \lambda_{n-i+1}^2(A_\alpha(G)) \leq \frac{n(2m(1 - \alpha)^2 + \alpha^2 Z_1)^2}{4Z_1},$$
By the Cauchy-Schwarz inequality, we have

\[S_p(A_\alpha(G)) = 2\alpha m - \sum_{i=1}^{n-p} \lambda_{n-i+1}(A_\alpha(G)) \]

\[\leq 2\alpha m + \sqrt{(n-p) \sum_{i=1}^{n-p} \lambda_{n-i+1}^2(A_\alpha(G))} \]

\[\leq 2\alpha m + \frac{1}{2}(2m(1-\alpha)^2 + \alpha^2 Z_1) \sqrt{\frac{n(n-p)}{Z_1}}. \]

This completes the proof. \(\blacksquare \)

By Lemma 2.3 and Theorem 3.8, we obtain the following corollary.

Corollary 3.9 Let \(0 \leq \alpha < \alpha_0(G) \) and \(G \) be a graph with \(n \) vertices and \(m \) edges, and let \(p \) be the positive inertia index of \(A_\alpha(G) \). Then

\[S_p(A_\alpha(G)) \leq 2\alpha m + \left(mn(1-\alpha)^2 + 2\alpha^2 m^2 + \frac{\alpha^2 n^2}{8} (\Delta - \delta)^2 \right) \sqrt{\frac{2(n-p)}{8m^2 + n(\Delta - \delta)^2}}. \]

4 On the sum of the \(k \) largest \(A_\alpha \)-eigenvalues of a tree

Theorem 4.1 Let \(G \) be a bipartite graph with \(n \) vertices and \(m \) edges, and let \(\eta \) be the nullity of \(G \). Then

\[S_k(A(G)) \leq \begin{cases}
\sqrt{km}, & \text{if } 1 \leq k \leq \left\lfloor \frac{n-\eta}{2} \right\rfloor; \\
\sqrt{\left\lfloor \frac{n-\eta}{2} \right\rfloor m}, & \text{if } \left\lfloor \frac{n-\eta}{2} \right\rfloor < k \leq \left\lfloor \frac{n+\eta}{2} \right\rfloor; \\
\sqrt{(n-k)m}, & \text{if } \left\lfloor \frac{n+\eta}{2} \right\rfloor < k \leq n.
\end{cases} \]

Proof. Since \(G \) is a bipartite graph, we know that eigenvalues of \(A(G) \) are symmetric with respect to the origin, that is \(S_k(A(G)) = S_{n-k}(A(G)) \) for \(\left\lfloor \frac{n+\eta}{2} \right\rfloor < k \leq n-1 \). Since \(\sum_{i=1}^{n} \lambda_i^2(A(G)) = 2m \), we have \(\sum_{i=1}^{\left\lfloor \frac{n+\eta}{2} \right\rfloor} \lambda_i^2(A(G)) = m \). By the Cauchy-Schwarz inequality,
we have
\[S_k(A(G)) = \sum_{i=1}^{k} \lambda_i(A(G)) \leq \sqrt{k \sum_{i=1}^{k} \lambda_i^2(A(G))} \leq \sqrt{k m} \]
for \(1 \leq k \leq \left\lfloor \frac{n-\eta}{2} \right\rfloor\). This completes the proof. \(\square\)

If \(T\) is a tree with \(n\) vertices and matching number \(\beta\), Cvetković and Gutman [6] showed that \(\eta = n - 2\beta\). Thus we have

Corollary 4.2 Let \(T\) be a tree with \(n\) vertices and matching number \(\beta\). Then
\[
S_k(A(T)) \leq \begin{cases}
\sqrt{k(n-1)}, & \text{if } 1 \leq k \leq \beta; \\
\sqrt{\beta(n-1)}, & \text{if } \beta < k \leq n - \beta; \\
\sqrt{(n-k)(n-1)}, & \text{if } n - \beta < k \leq n.
\end{cases}
\]

Theorem 4.3 Let \(T\) be a tree with \(n\) vertices.

(i) If \(0 \leq \alpha < \frac{1}{2}\), then
\[
S_k(A_\alpha(T)) \leq \begin{cases}
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{k(n-1)}, & \text{if } 1 \leq k \leq \beta; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{\beta(n-1)}, & \text{if } \beta < k \leq n - \beta; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{(n-k)(n-1)}, & \text{if } n - \beta < k \leq n.
\end{cases}
\]

(ii) If \(\frac{1}{2} \leq \alpha < 1\), then
\[
S_k(A_\alpha(T)) \leq \alpha(n + 2k - 2)
\]
for \(1 \leq k \leq n\).

Proof. (i) From Proposition 2.5 in [10], we know that \(Q(G)\) and \(L(G)\) share the same eigenvalues if and only if \(G\) is bipartite. By Lemma 2.6, we have \(S_k(Q(T)) \leq n + 2k - 2\) for \(1 \leq k \leq n\). Since \(A_\alpha(T) = \alpha Q(T) + (1 - 2\alpha)A(T)\) for \(0 \leq \alpha < \frac{1}{2}\), by Theorem 1.1 and Corollary 4.2, we have
\[
S_k(A_\alpha(T)) \leq \alpha S_k(Q(T)) + (1 - 2\alpha)S_k(A(T))
\]
\[
\leq \begin{cases}
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{k(n-1)}, & \text{if } 1 \leq k \leq \beta; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{\beta(n-1)}, & \text{if } \beta < k \leq n - \beta; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{(n-k)(n-1)}, & \text{if } n - \beta < k \leq n.
\end{cases}
\]
(ii) Since \(Q(G) \) is a real symmetric matrix, the spectrum of \(Q(G) \) majorizes its main diagonal, that is, \(S_k(Q(G)) \geq S_k(D(G)) \). Since \(A_\alpha(T) = (1 - \alpha)Q(T) + (2\alpha - 1)D(T) \) for \(\frac{1}{2} \leq \alpha < 1 \), by Theorem 1.1 and Lemma 2.6, we have

\[
S_k(A_\alpha(T)) \leq (1 - \alpha)S_k(Q(T)) + (2\alpha - 1)S_k(D(T))
\]

\[
\leq (1 - \alpha)S_k(Q(T)) + (2\alpha - 1)S_k(Q(T))
\]

\[
= \alpha S_k(Q(T))
\]

\[
\leq \alpha(n + 2k - 2).
\]

The proof is completed. \(\square \)

Theorem 4.4 Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges, and let \(\beta' \) be the matching number of the spanning tree of \(G \).

(i) If \(0 \leq \alpha < \frac{1}{2} \), then

\[
S_k(A_\alpha(G)) \leq \begin{cases}
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{k(n - 1)} + m - n + 1, & \text{if } 1 \leq k \leq \beta' \; ; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{\beta'(n - 1)} + m - n + 1, & \text{if } \beta' < k \leq n - \beta' \; ; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{(n - k)(n - 1)} + m - n + 1, & \text{if } n - \beta' < k \leq n.
\end{cases}
\]

(ii) If \(\frac{1}{2} \leq \alpha < 1 \), then

\[
S_k(A_\alpha(G)) \leq \alpha(2k + 2m - n)
\]

for \(2 \leq k \leq n \).

Proof. (i) Let \(T \) be a spanning tree of \(G \). If \(0 \leq \alpha < \frac{1}{2} \), by Theorems 1.1 and 1.3, we have

\[
S_k(A_\alpha(G)) \leq S_k(A_\alpha(T)) + (m - n + 1)S_k(A_\alpha(K_2 \cup (n - 2)K_1))
\]

\[
= S_k(A_\alpha(T)) + m - n + 1
\]

\[
\leq \begin{cases}
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{k(n - 1)} + m - n + 1, & \text{if } 1 \leq k \leq \beta' \; ; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{\beta'(n - 1)} + m - n + 1, & \text{if } \beta' < k \leq n - \beta' \; ; \\
\alpha(n + 2k - 2) + (1 - 2\alpha)\sqrt{(n - k)(n - 1)} + m - n + 1, & \text{if } n - \beta' < k \leq n.
\end{cases}
\]
(ii) If $\frac{1}{2} \leq \alpha < 1$, by Theorems 1.1 and 4.3, we have
\[
S_k(A_\alpha(G)) \leq S_k(A_\alpha(T)) + (m - n + 1)S_k(A_\alpha(K_2 \cup (n - 2)K_1)) \\
= S_k(A_\alpha(T)) + 2\alpha(m - n + 1) \\
\leq \alpha(n + 2k - 2) + 2\alpha(m - n + 1) \\
= \alpha(2k + 2m - n)
\]
for $2 \leq k \leq n$.

This completes the proof. \square

Theorem 4.5 Let P_n be a path with n vertices.

(i) If $0 \leq \alpha < \frac{1}{2}$, then
\[
S_k(A_\alpha(P_n)) \leq 2\alpha k + \alpha - 1 + \alpha \csc \frac{\pi}{2n} \sin \left(\frac{(2k + 1)\pi}{2n}\right) \\
+ (1 - 2\alpha) \csc \frac{\pi}{2(n + 1)} \sin \left(\frac{(2k + 1)\pi}{2(n + 1)}\right)
\]
for $1 \leq k \leq n$.

(ii) If $\frac{1}{2} \leq \alpha \leq 1$, then
\[
S_k(A_\alpha(P_n)) \leq 2\alpha k + (1 - \alpha) \left(\csc \frac{\pi}{2n} \sin \left(\frac{(2k + 1)\pi}{2n}\right) - 1\right)
\]
for $1 \leq k \leq n$.

Proof. (i) Since $A_\alpha(P_n) = \alpha Q(P_n) + (1 - 2\alpha)A(P_n)$ for $0 \leq \alpha < \frac{1}{2}$, by Theorem 1.1 and Lemma 2.12 we have
\[
S_k(A_\alpha(P_n)) \leq \alpha S_k(Q(P_n)) + (1 - 2\alpha)S_k(A(P_n)) \\
= 2\alpha \sum_{i=1}^{k} \left(1 + \cos \frac{i\pi}{n}\right) + 2(1 - 2\alpha) \sum_{i=1}^{k} \cos \frac{i\pi}{n + 1} \\
= 2\alpha k + \alpha \left(\csc \frac{\pi}{2n} \sin \left(\frac{(2k + 1)\pi}{2n}\right) - 1\right) \\
+ (1 - 2\alpha) \left(\csc \frac{\pi}{2(n + 1)} \sin \left(\frac{(2k + 1)\pi}{2(n + 1)}\right) - 1\right)
\]
for 1 ≤ k ≤ n.

(ii) Since $A_\alpha(P_n) = (1 - \alpha)Q(P_n) + (2\alpha - 1)D(P_n)$ for $\frac{1}{2} \leq \alpha < 1$, by Theorem 1.1 and Lemma 2.12 we have

$$S_k(A_\alpha(P_n)) \leq (1 - \alpha)S_k(Q(P_n)) + (2\alpha - 1)S_k(D(P_n))$$

$$= 2(1 - \alpha)\sum_{i=1}^{k} \left(1 + \cos \frac{i\pi}{n} \right) + 2(2\alpha - 1)k$$

$$= 2k(1 - \alpha) + (1 - \alpha) \left(\csc \frac{\pi}{2n} \sin \frac{(2k + 1)\pi}{2n} - 1 \right)$$

$$+ 2(2\alpha - 1)k$$

$$= 2\alpha k + (1 - \alpha) \left(\csc \frac{\pi}{2n} \sin \frac{(2k + 1)\pi}{2n} - 1 \right)$$

for 1 ≤ k ≤ n. The proof is completed. □

Corollary 4.6 Let P_n be a path with n vertices. If $0 \leq \alpha < 1$, then $S_k(A_\alpha(P_n)) < 2k$ for 1 ≤ k ≤ n.

5 Lower bounds on the sum of the largest A_α-eigenvalues

Theorem 5.1 Let G be a graph with maximum degree Δ.

(i) If $0 \leq \alpha \leq \frac{1}{2}$, then

$$S_k(A_\alpha(G)) \geq (1 - \alpha)S_k(Q(G)) + (2\alpha - 1)k\Delta.$$

(ii) If $\frac{1}{2} \leq \alpha \leq 1$, then

$$S_k(A_\alpha(G)) \geq \alpha S_k(Q(G)) + (1 - 2\alpha)S_k(A(G)).$$

If G is a regular graph, then the equality in the above inequalities must hold.

Proof. (i) If $0 \leq \alpha \leq \frac{1}{2}$, then $\frac{1}{2} \leq 1 - \alpha \leq 1$. It follows that $A_{1-\alpha}(G) = \alpha Q(G) + (1 - 2\alpha)D(G)$. Since $A_\alpha(G) + A_{1-\alpha}(G) = Q(G)$, by Theorem 1.1 we have

$$S_k(A_\alpha(G)) \geq S_k(Q(G)) - S_k(A_{1-\alpha}(G))$$

$$\geq S_k(Q(G)) - \alpha S_k(Q(G)) - (1 - 2\alpha)S_k(D(G))$$

$$\geq (1 - \alpha)S_k(Q(G)) + (2\alpha - 1)k\Delta.$$

15
(ii) If $\frac{1}{2} \leq \alpha \leq 1$, then $0 \leq 1 - \alpha \leq \frac{1}{2}$. It follows that $A_{1-\alpha}(G) = (1 - \alpha)Q(G) + (2\alpha - 1)A(G)$. Since $A_{\alpha}(G) + A_{1-\alpha}(G) = Q(G)$, by Theorem 1.1, we have

$$S_k(A_{\alpha}(G)) \geq S_k(Q(G)) - S_k(A_{1-\alpha}(G))$$
$$\geq S_k(Q(G)) - (1 - \alpha)S_k(Q(G)) - (2\alpha - 1)S_k(A(G))$$
$$\geq \alpha S_k(Q(G)) + (1 - 2\alpha)S_k(A(G)).$$

This completes the proof. \[\square\]

Corollary 5.2 Let P_n be a path with n vertices.

(i) If $0 \leq \alpha \leq \frac{1}{2}$, then

$$S_k(A_{\alpha}(P_n)) \geq 2\alpha k + (1 - \alpha) \left(\csc \frac{\pi}{2n} \sin \left(\frac{(2k + 1)\pi}{2n} \right) - 1 \right)$$

for $1 \leq k \leq n$.

(ii) If $\frac{1}{2} \leq \alpha \leq 1$, then

$$S_k(A_{\alpha}(P_n)) \geq 2\alpha k + \alpha - 1 + \alpha \csc \frac{\pi}{2n} \sin \left(\frac{(2k + 1)\pi}{2n} \right)$$
$$+ (1 - 2\alpha) \csc \frac{\pi}{2(n + 1)} \sin \left(\frac{(2k + 1)\pi}{2(n + 1)} \right)$$

for $1 \leq k \leq n$.

Theorem 5.3 Let G be a r-regular graph.

(i) Let t be the number of vertex-disjoint cliques in G. If $0 \leq \alpha \leq 1$, then

$$S_k(A_{\alpha}(G)) \geq \alpha kr + (1 - \alpha)(r - k + 1)$$

for $1 \leq k \leq t + 1$.

(ii) Let $g_1 \geq g_2 \geq \cdots \geq g_c$ and $C_{g_1}, C_{g_2}, \ldots, C_{g_c}$ be the vertex-disjoint induced cycles of length even in G. If $0 \leq \alpha \leq 1$, then

$$S_k(A_{\alpha}(G)) \geq (\alpha k + 1 - \alpha)r + 2(1 - \alpha)\sum_{i=1}^{k-1} (1 - \frac{4}{g_i})$$

for $1 \leq k \leq c + 1$.

16
Proof. (i) Let X_1 be the vector with all entries equal to 1. Then X_1 is an eigenvector corresponding to $\lambda_1(A(G))$. Let $K_{\omega_1}, K_{\omega_2}, \ldots, K_{\omega_t}$ be the vertex-disjoint cliques in G. Then we take

\[
X_2 = (x_1^{(2)}, x_2^{(2)}, \ldots, x_{\omega_1}^{(2)}, 0, \ldots, 0),
\]

\[
X_3 = (0, \ldots, 0, x_1^{(3)}, x_2^{(3)}, \ldots, x_{\omega_2}^{(3)}, 0, \ldots, 0), \ldots,
\]

\[
X_{t+1} = (0, \ldots, 0, 0, \ldots, x_1^{(t+1)}, x_2^{(t+1)}, \ldots, x_{\omega_t}^{(t+1)}, 0, \ldots, 0)
\]

satisfying

\[
\begin{align*}
&x_1^{(s)} + x_2^{(s)} + \cdots + x_{\omega_{s-1}^{(s)}} = 0 \\
&x_1^{2(s)} + x_2^{2(s)} + \cdots + x_{\omega_{s-1}^{2(s)}} = 1
\end{align*}
\]

for $s = 2, 3, \ldots, t+1$. Thus we have $2 \sum_{i<j} x_i^{(s)} x_j^{(s)} = -1$. Since G is a r-regular graph and the vectors $X_1, X_2, \ldots, X_{t+1}$ are orthogonal, by Lemma 2.7, we have

\[
S_k(A_\alpha(G)) = \alpha kr + (1 - \alpha) S_k(A(G))
\]

\[
= \alpha kr + (1 - \alpha) \max \sum_{i=1}^k \langle A(G)X_i, X_i \rangle
\]

\[
\geq \alpha kr + (1 - \alpha) \sum_{i=1}^k \langle A(G)X_i, X_i \rangle
\]

\[
= \alpha kr + (1 - \alpha)(r + 2(k - 1) \sum_{i<j} x_i^{(k-1)} x_j^{(k-1)})
\]

\[
= \alpha kr + (1 - \alpha)(r - k + 1).
\]

for $1 \leq k \leq t + 1$.

(ii) Let X_1 be the vector with all entries equal to 1. Then X_1 is an eigenvector corresponding to $\lambda_1(A(G))$. Let $g_1 \geq g_2 \geq \cdots \geq g_c$ and $C_{g_1}, C_{g_2}, \ldots, C_{g_c}$ be the vertex-disjoint induced cycles of length even in G. Then we take

\[
X_2 = \frac{1}{\sqrt{g_1}}(1, \ldots, 1, -1, \ldots, -1, 0, \ldots, 0),
\]

\[
X_3 = \frac{1}{\sqrt{g_2}}(0, \ldots, 0, 1, \ldots, 1, -1, \ldots, -1, 0, \ldots, 0), \ldots,
\]
Thus we have

\[\sum_{v_i v_j \in E(C_{gs})} x_i x_j = 2(1 - \frac{4}{g_s}) \text{ for } s = 1, 2, \ldots, c. \]

Since \(G \) is a \(r \)-regular graph and the vectors \(X_1, X_2, \ldots, X_{c+1} \) are orthogonal, by Lemma 2.7, we have

\[
S_k(A_\alpha(G)) = \alpha kr + (1 - \alpha)S_k(A(G)) \\
= \alpha kr + (1 - \alpha) \max \sum_{i=1}^{k} \langle A(G)X_i, X_i \rangle \\
\geq \alpha kr + (1 - \alpha) \sum_{i=1}^{k} \langle A(G)X_i, X_i \rangle \\
= \alpha kr + (1 - \alpha)(r + 2 \sum_{s=1}^{k-1} \sum_{v_i v_j \in E(C_{gs})} x_i x_j) \\
= \alpha kr + (1 - \alpha) \left(r + 2 \sum_{i=1}^{k-1} (1 - \frac{4}{g_i}) \right) \\
= (\alpha k + 1 - \alpha)r + 2(1 - \alpha) \sum_{i=1}^{k-1} (1 - \frac{4}{g_i})
\]

for \(1 \leq k \leq c + 1. \)

This completes the proof. \(\square \)

Theorem 5.4 Let \(G \) be a connected bipartite graph with bipartition \(V(G) = X \cup Y, \) \(|X| = s \) and \(|Y| = t. \) Let \(m \) and \(\beta \) be the number of edges and matching number of \(G, \) respectively. If \(0 \leq \alpha \leq 1, \) then

\[
S_k(A_\alpha(G)) \geq \frac{\alpha m}{2} \left(\frac{1}{s} + \frac{1}{t} \right) + \frac{(1 - \alpha)m}{\sqrt{st}} + (k - 1) \left(\alpha - \frac{2(1 - \alpha)\sqrt{st}}{s + t} \right)
\]

for \(1 \leq k \leq \beta + 1. \)

Proof. By the hypothesis, we take a set of orthonormal vectors as follows:

\[
X_1 = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{s}}, \ldots, \frac{1}{\sqrt{s}}, \frac{1}{\sqrt{t}}, \ldots, \frac{1}{\sqrt{t}} \right)
\]

\[
X_2 = \sqrt{\frac{t}{s+t}} (1,0,\ldots,0) - \sqrt{\frac{s}{s+t}} (0,\ldots,0)
\]
\[X_3 = \sqrt{\frac{s}{s+t}} (0,1,\ldots,0,-\sqrt{\frac{t}{s}},0,\ldots,0), \ldots, \]

\[X_{\beta+1} = \sqrt{\frac{s}{s+t}} (0,\ldots,0,1,0,\ldots,0,0,\ldots,0,-\sqrt{\frac{t}{s}},0,\ldots,0). \]

By Lemma 2.7, we have

\[
S_k(A_\alpha(G)) = \max \sum_{i=1}^{k} (A_\alpha(G)X_i, X_i) \\
\geq \sum_{i=1}^{k} (A_\alpha(G)X_i, X_i) \\
= \sum_{i=1}^{k} \sum_{ uv \in E(G)} (\alpha x^2_u + 2(1-\alpha)x_u x_v + \alpha x^2_v) \\
= m \left(\frac{\alpha}{2s} + 2(1-\alpha) \frac{1}{2\sqrt{st}} + \frac{\alpha}{2t} \right) \\
+ (k-1) \left(\frac{\alpha s}{s+t} + 2(1-\alpha) \frac{-\sqrt{st}}{s+t} + \frac{\alpha t}{s+t} \right) \\
= \frac{am}{2} \left(\frac{1}{s} + \frac{1}{t} \right) + \frac{(1-\alpha)m}{\sqrt{st}} + (k-1) \left(\alpha - \frac{2(1-\alpha)\sqrt{st}}{s+t} \right)
\]

for \(1 \leq k \leq \beta + 1.\) The proof is completed. \(\Box\)

Let \(M\) be a real symmetric partitioned matrix of order \(n\) described in the following block form

\[
\begin{pmatrix}
M_{11} & \cdots & M_{1t} \\
\vdots & \ddots & \vdots \\
M_{t1} & \cdots & M_{tt}
\end{pmatrix},
\]

where the diagonal blocks \(M_{ii}\) are \(n_i \times n_i\) matrices for any \(i \in \{1,2,\ldots,t\}\) and \(n = n_1 + \cdots + n_t.\) For any \(i,j \in \{1,2,\ldots,t\},\) let \(b_{ij}\) denote the average row sum of \(M_{ij},\) i.e. \(b_{ij}\) is the sum of all entries in \(M_{ij}\) divided by the number of rows. Then \(B(M) = (b_{ij})\) (simply by \(B\)) is called the quotient matrix of \(M.\)

Lemma 5.5 ([20]) Let \(M\) be a symmetric partitioned matrix of order \(n\) with eigenvalues \(\xi_1 \geq \xi_2 \geq \cdots \geq \xi_n,\) and let \(B\) its quotient matrix with eigenvalues \(\eta_1 \geq \eta_2 \geq \cdots \geq \eta_r\) and \(n > r.\) Then \(\xi_i \geq \eta_i \geq \xi_{n-r+i}\) for \(i = 1,2,\ldots,r.\)
Corollary 5.6 Let M be a symmetric partitioned matrix of order n, and let B be its quotient matrix of order k. Then
\[S_k(M) \geq S_k(B). \]

Let B be the quotient matrix of $A_\alpha(G)$ corresponding to the partition for the color classes of G. Then the following corollary is immediate.

Corollary 5.7 Let G be a connected graph with n vertices, m edges, chromatic number χ and independence number θ. If $0 \leq \alpha < 1$, then
\[S_\chi(A_\alpha(G)) \geq \frac{2m}{\theta}. \]

Let $U \subseteq V(G)$, $W \subseteq V(G)$ and $\partial(U, W)$ be the set of edges which connect vertices in U with vertices in W.

Theorem 5.8 Let $0 \leq \alpha < 1$ and G be a connected graph with n vertices and m edges. For any given vertices subset $U = \{u_1, \ldots, u_{k-1}\}$ with $1 \leq k \leq n$,
\[S_k(A_\alpha(G)) \geq \left(\alpha - \frac{1}{n-k+1} \right) \sum_{u \in U} d_u + \frac{2m - (1 - \alpha)|\partial(U, V(G) \setminus U)|}{n-k+1}. \]

Proof. If $2 \leq k \leq n$, then the quotient matrix of $A_\alpha(G)$ corresponding to the partition $V(G) = U \cup (V(G) \setminus U)$ of G is
\[B(G) = \begin{bmatrix} A_\alpha(U) & b_{1,k} \\ \vdots & \vdots \\ b_{k,1} & \cdots & b_{k,k-1} & b_{k,k} \end{bmatrix}, \]
where $A_\alpha(U)$ is the principal submatrix of $A_\alpha(G)$. By Lemma 5.5, we have
\[S_k(A_\alpha(G)) \geq S_k(B(G)) \]
\[= \text{tr}(A_\alpha(U)) + b_{k,k} \]
\[= \alpha \sum_{u \in U} d(u) + \frac{2m - \sum_{u \in U} d_u - (1 - \alpha)|\partial(U, V(G) \setminus U)|}{n-k+1} \]
\[= \left(\alpha - \frac{1}{n-k+1} \right) \sum_{u \in U} d_u + \frac{2m - (1 - \alpha)|\partial(U, V(G) \setminus U)|}{n-k+1}. \]
If \(k = 1 \), then \(U \) is an empty set. Thus \(\sum_{u \in U} d_u = 0 \) and \(|\partial(U, V(G) \setminus U)| = 0 \). Taking a \(n \)-vector \(X = (1, \ldots, 1) \), by Rayleigh’s principle, we have
\[
S_1(A_\alpha(G)) = \lambda_1(A_\alpha(G)) \geq \frac{2m}{n}.
\]
Therefore, the above inequality still holds for \(k = 1 \). This completes the proof. \(\square \)

If \(U \) is a subset of a maximum independent set of \(G \), by Theorem 5.8, we have

Corollary 5.9 Let \(G \) be a connected graph with \(n \) vertices, \(m \) edges and independence number \(\theta \). If \(0 \leq \alpha < 1 \), then
\[
S_k(A_\alpha(G)) \geq \alpha(k - 1)\delta + \frac{2m - (2 - \alpha)(k - 1)\delta}{n - k + 1}
\]
for \(1 \leq k \leq \theta + 1 \).

The next theorem is concerned with Problem 1.4. For \(k = 2 \), we will prove that path is the minimum \(S_k(A_\alpha(G)) \) among all connected graphs for \(\frac{1}{2} \leq \alpha < 1 \). Let the sequence \((d_1, d_2, \ldots, d_n) \) be the set of a graph with the same degree sequence.

Theorem 5.10 Let \(G \) be a connected graph with \(n \geq 12 \) vertices. If \(\frac{1}{2} \leq \alpha < 1 \), then
\[
S_2(A_\alpha(G)) \geq S_2(A_\alpha(P_n))
\]
with equality if and only if \(G = P_n \).

Proof. By Corollary 4.6, we have \(S_2(A_\alpha(P_n)) < 4 \). Let \(T_n \) be a spanning tree of a connected graph \(G \) with \(n \) vertices. By Lemmas 2.8 and 2.13 we have
\[
S_2(A_\alpha(G)) \geq S_2(A_\alpha(T_n)) \geq S_2(A_{1/2}(T_n)) \geq S_2(A_{1/2}(T_{12}))
\]
for \(\frac{1}{2} \leq \alpha < 1 \) and \(n \geq 12 \).

In the following, we only need to show \(S_2(A_{1/2}(T_{12})) \geq S_2(A_\alpha(P_n)) \) for \(\frac{1}{2} \leq \alpha < 1 \) and \(n \geq 12 \). For \(\alpha = \frac{1}{2} \), we have \(A_{1/2}(G) = \frac{1}{2}Q(G) \). From Theorem 3.1 in [39], we know that \(S_2(Q(G)) \geq S_2(D(G)) + 1 \) with equality if and only if \(G \) is the star \(K_{1, n-1} \) or the complete graph \(K_3 \). Let \(\Delta_2(G) \) be the second largest degree of a graph \(G \).
If $\Delta(T_{12}) \geq 4$ and $\Delta_2(T_{12}) \geq 3$, then we have

$$S_2(A_{1/2}(T_{12})) \geq \frac{1}{2}(S_2(D(G)) + 1) = \frac{1}{2}(4 + 3 + 1) = 4 > S_2(A_n(P_n))$$

for $\frac{1}{2} \leq \alpha < 1$ and $n \geq 12$.

If $\Delta(T_{12}) \geq 5$ and $\Delta_2(T_{12}) \geq 2$, then we have

$$S_2(A_{1/2}(T_{12})) \geq \frac{1}{2}(S_2(D(G)) + 1) = \frac{1}{2}(5 + 2 + 1) = 4 > S_2(A_n(P_n))$$

for $\frac{1}{2} \leq \alpha < 1$ and $n \geq 12$.

If $\Delta(T_{12}) = 4$ and $\Delta_2(T_{12}) = 2$, then T_{12} is one of the trees $(4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1)$. By computation with computer, we have

$$S_2(A_{1/2}(T_{12})) \geq S_2(A_{1/2}(T')) \geq \frac{1}{2} \times 8.57037 = 4.285185 > S_2(A_n(P_n))$$

for $\frac{1}{2} \leq \alpha < 1$ and $n \geq 12$, where T', shown in Fig. 4.1, is a tree with minimum sum of the two largest $A_{1/2}$-eigenvalues in the set of trees $(4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1)$. If $\Delta(T_{12}) = \Delta_2(T_{12}) = 3$, then we assume that x, y and z be the number of the vertices of the degree three, the degree two and the degree one, respectively. Thus, we have

$$x + y + z = 12, \quad 3x + 2y + z = 22.$$ Solve the above equations, we get $x = 2, y = 6, z = 4$; $x = 3, y = 4, z = 5$; $x = 4, y = 2, z = 6$; $x = 5, y = 0, z = 7$. Further, we know that T_{12} is one of the trees $(3, 3, 2, 2, 2, 2, 1, 1, 1, 1), (3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1), (3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1)$ and $(3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1)$. By computation with computer, we have

$$S_2(A_{1/2}(T_{12})) \geq S_2(A_{1/2}(T'')) \geq \frac{1}{2} \times 8.31903 = 4.159515 > S_2(A_n(P_n))$$

for $\frac{1}{7} \leq \alpha < 1$ and $n \geq 12$, where T'', shown in Fig. 4.1, is a tree with minimum sum of the two largest $A_{1/2}$-eigenvalues in the set of trees $(3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1), (3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1), (3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1)$ and $(3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1)$. If $\Delta(T_{12}) = 3$ and $\Delta_2(T_{12}) = 2$, then T_{12} is one of the trees $(3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1)$. By computation with computer, we have

$$S_2(A_{1/2}(T_{12})) \geq S_2(A_{1/2}(T''')) \geq \frac{1}{2} \times 8.02294 = 4.01147 > S_2(A_n(P_n))$$

22
for \(\frac{1}{2} \leq \alpha < 1 \) and \(n \geq 12 \), where \(T''' \), shown in Fig. 4.1, is a tree with minimum sum of the two largest \(A_{1/2} \)-eigenvalues in the set of trees \((3, 2, 2, 2, 2, 2, 2, 1, 1, 1) \).

If \(\Delta_2(T_{12}) = 1 \), then \(T_{12} \) is a star \(K_{1,11} \). Thus,

\[
S_2(A_{1/2}(K_{1,11})) \geq \frac{1}{2} \times 13 = 6.5 > S_2(A_\alpha(P_n))
\]

for \(\alpha \in \left[\frac{1}{2}, 1 \right) \) and \(n \geq 12 \).

Combining the above argument, we have

\[
S_2(A_{1/2}(T_{12})) \geq S_2(A_\alpha(P_n)) \quad \text{for} \quad \alpha \in \left[\frac{1}{2}, 1 \right) \quad \text{and} \quad n \geq 12.
\]

Further, we get

\[
S_2(A_\alpha(G)) \geq S_2(A_\alpha(P_n)) \quad \text{for} \quad \frac{1}{2} \leq \alpha < 1 \quad \text{and} \quad n \geq 12,
\]

and equality holds if and only if \(G = P_n \), completing the proof. \(\square \)

![Fig. 4.1 Trees \(T ', T '', T ''' \).](image)

Problem 5.11 For \(0 \leq \alpha < \frac{1}{2} \), which graph(s) minimize the sum of the two largest of \(A_\alpha \)-eigenvalues among all connected graphs with \(n \) vertices?

6 On the sum of the largest \(A_\alpha \)-eigenvalues of graph operations

Theorem 6.1 Let \(G \) be a graph with \(n \) vertices. If \(0 \leq \alpha \leq 1 \), then

\[
(1-\alpha)n+(\alpha n-1)k \leq S_k(A_\alpha(G)) + S_k(A_\alpha(\overline{G})) \leq k[(2-\alpha)n+\alpha(\Delta-\delta-1)-(1-\alpha)(k+1)].
\]

Proof. From Proposition 36 in [34], we have \(S_k(A_\alpha(K_n)) = (1-\alpha)n+(\alpha n-1)k \). Since \(A_\alpha(G) + A_\alpha(\overline{G}) = A_\alpha(K_n) \), by Theorem 1.1, we have

\[
S_k(A_\alpha(G)) + S_k(A_\alpha(\overline{G})) \geq S_k(A_\alpha(K_n)) = (1-\alpha)n+(\alpha n-1)k.
\]

By Lemma 2.3, we have

\[
S_k(A_\alpha(G)) \leq \alpha(d_1 + d_2 + \cdots + d_k) + (1-\alpha)\left(kn - \frac{k(k+1)}{2}\right).
\]

Thus

\[
S_k(A_\alpha(G)) + S_k(A_\alpha(\overline{G})) \leq \alpha k(n-1) + \alpha \sum_{i=1}^{k} (d_i - d_{n-i+1}) + (1-\alpha)(2kn - k(k+1))
\]

\[
\leq \alpha k(n-1) + \alpha k(\Delta - \delta) + (1-\alpha)(2kn - k(k+1))
\]

\[23 \]
This completes the proof. □

Theorem 6.2 Let \(G \) be a graph with \(n \) vertices and \(m \geq 1 \) edges. Then

\[
S_k(A_\alpha(L(G))) \leq 2k(\alpha \Delta - 1) + (1 - \alpha)S_k(Q(G))
\]

for \(1 \leq k \leq s \), where \(s = \min \{n, m\} \). If \(m > n \), then

\[
S_k(A_\alpha(L(G))) \leq 2\alpha k(\Delta - 1) + 2(1 - \alpha)(m - k)
\]

for \(n + 1 \leq k \leq m \).

Proof. If a vertex \(w \) is in one-to-one correspondence with the edge \(uv \) of the graph \(G \), then \(d_{L(G)}(w) = d_G(u) + d_G(v) - 2 \). By Theorem 1.1 and Lemma 2.10, we have

\[
S_k(A_\alpha(L(G))) \leq \alpha S_k(D(L(G))) + (1 - \alpha)S_k(A(L(G)))
\]

\[
= \alpha k(2\Delta - 2) + (1 - \alpha)(S_k(Q(G)) - 2k)
\]

\[
= 2k(\alpha \Delta - 1) + (1 - \alpha)S_k(Q(G))
\]

for \(1 \leq k \leq s \), where \(s = \min \{n, m\} \). If \(m > n \), then we have

\[
S_k(A_\alpha(L(G))) \leq \alpha k(2\Delta - 2) + (1 - \alpha)(2m - 2n - 2(k - n)) = 2\alpha k(\Delta - 1) + 2(1 - \alpha)(m - k)
\]

for \(n + 1 \leq k \leq m \). This completes the proof. □

By Lemma 2.6 and Conjecture 1.3, we have

Corollary 6.3 If \(T \) is a tree with \(n \) vertices, then \(S_k(A_\alpha(L(T))) \leq 2k\alpha(\Delta - 1) + (1 - \alpha)(n-2) \) for \(1 \leq k \leq n-1 \). If \(U \) is a unicyclic graph with \(n \) vertices, then \(S_k(A_\alpha(L(U))) \leq 2k(\alpha \Delta - 1) + (1 - \alpha)(n + \frac{k^2+k}{2}) \) for \(1 \leq k \leq n \). If \(B \) is a bicyclic graph with \(n \) vertices, then \(S_k(A_\alpha(L(B))) \leq 2k(\alpha \Delta - 1) + (1 - \alpha)(n + 1 + \frac{k^2+k}{2}) \) for \(1 \leq k \leq n \).

Theorem 6.4 Let \(G \) be a \(K_3 \)-free and \(C_4 \)-free graph with \(n \) vertices and \(m \) edges. If \(0 \leq \alpha \leq 1 \), then

\[
S_k(A_\alpha(G^2)) \leq \alpha(Z_1(G) - (n-k)\delta^2(G)) + (1 - \alpha) \left(2m - \frac{1}{n-k}S_k^2(A(G)) - (k-1)a(G) \right).
\]
Proof. Since \(\sum_{i=1}^{n} \lambda_i(A(G)) = 0 \) and \(\sum_{i=1}^{n} \lambda_i^2(A(G)) = 2m \), by the Cauchy-Schwarz inequality, we have

\[
S_k(A^2(G)) = \lambda_1^2(A(G)) + \lambda_2^2(A(G)) + \cdots + \lambda_k^2(A(G)) = 2m - \sum_{i=k+1}^{n} \lambda_i^2(A(G))
\]

\[
\leq 2m - \frac{1}{n-k} \left(\sum_{i=k+1}^{n} \lambda_i(A(G)) \right)^2
\]

\[
= 2m - \frac{1}{n-k} \left(\sum_{i=1}^{k} \lambda_i(A(G)) \right)^2
\]

\[
= 2m - \frac{1}{n-k} S_k^2(A(G)).
\]

Since \(\sum_{u \in V(G^2)} d_u = Z_1(G) \), by Theorem 1.1 and Lemma 2.11, we have

\[
S_k(A_\alpha(D(G^2))) \leq \alpha S_k(D(G^2)) + (1-\alpha) S_k(A^2(G))
\]

\[
\leq \alpha S_k(D(G^2)) + (1-\alpha) (S_k(A^2(G)) + S_k(-L(G)))
\]

\[
\leq \alpha(Z_1(G) - (n-k)d^2(G)) + (1-\alpha) \left(2m - \frac{1}{n-k} S_k^2(A(G)) - (k-1)a(G) \right).
\]

This completes the proof. □

Theorem 6.5 Let \(G \) be a graph with \(n \) vertices. If \(0 \leq \alpha \leq 1 \), then

\[
S_k(A_\alpha(D(G))) \leq \begin{cases}
4 \sum_{i=1}^{k/2} d_i(G) + 2(1-\alpha)S_k(A(G)), & \text{if } 1 < k < n \text{ is even;} \\
4 \sum_{i=1}^{(k-1)/2} d_i(G) + 2d_{(k+1)/2} + 2(1-\alpha)S_k(A(G)), & \text{if } 1 \leq k < n \text{ is odd;} \\
4 \sum_{i=1}^{k/2} d_i(G), & \text{if } n \leq k \leq 2n \text{ is even;} \\
4 \sum_{i=1}^{(k-1)/2} d_i(G) + 2d_{(k+1)/2}, & \text{if } n \leq k \leq 2n \text{ is odd},
\end{cases}
\]

where \(d_1(G) \geq d_2(G) \geq \cdots \geq d_n(G) \) is the vertex degree sequence of \(G \).
Proof. By the definition of $\mathcal{D}(G)$, the A_α-matrix of the double graph of G is

$$A_\alpha(\mathcal{D}(G)) = \alpha D(\mathcal{D}(G)) + (1 - \alpha) A(D(G))$$

$$= \alpha \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \otimes D(G) + (1 - \alpha) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \otimes A(G),$$

where $M \otimes N$ is the Kronecker product (or tensor product) of M and N. Thus the spectrum of $\left(\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \otimes D(G)\right)$ and $\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \otimes A(G)\right)$ are

$$2d_1(G), 2d_1(G), 2d_2(G), 2d_2(G), \ldots, 2d_n(G), 2d_n(G)$$

and

$$2\lambda_1(A), 2\lambda_2(A), \ldots, 2\lambda_n(A), 0, 0, \ldots, 0,$$

respectively. By Theorem 1.1, we have

$$S_k(A_\alpha(\mathcal{D}(G))) \leq \alpha S_k(D(\mathcal{D}(G))) + (1 - \alpha) S_k(A(D(G)))$$

$$= \begin{cases} 4 \sum_{i=1}^{k/2} d_i(G) + 2(1 - \alpha) S_k(A(G)), & \text{if } 1 < k < n \text{ is even;} \\ 4 \sum_{i=1}^{(k-1)/2} d_i(G) + 2d_{(k+1)/2} + 2(1 - \alpha) S_k(A(G)), & \text{if } 1 \leq k < n \text{ is odd;} \\ 4 \sum_{i=1}^{k/2} d_i(G), & \text{if } n \leq k \leq 2n \text{ is even;} \\ 4 \sum_{i=1}^{(k-1)/2} d_i(G) + 2d_{(k+1)/2}, & \text{if } n \leq k \leq 2n \text{ is odd.} \end{cases}$$

This completes the proof. \blacksquare

References

[1] N. Abreu, D.M. Cardoso, I. Gutman, E.A. Martins, M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl. 435 (2011) 2365-2374.

[2] B. Amaro, L. de Lima, C.S. Oliveira, C. Lavor, N. Abreu, A note on the sum of the largest signless Laplacian eigenvalues, Electron. Notes Discrete Math. 54 (2016) 175-180.

[3] F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaie, On the sum of signless Laplacian eigenvalues of graphs, Linear Algebra Appl. 438 (2013) 4539-4546.
[4] R. Bhatia, Matrix Analysis, GTM 169, Springer-Verlag, New York, 1997.

[5] B. Borovičanin, K.Ch. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.

[6] D. Cvetković, I. Gutman, The algebraic multiplicity of the number zero in the spectrum of a bipartite graph, Mat. Vesnik 9 (1972) 141-150.

[7] X. Chen, G. Hao, D. Jin, J. Li, Note on a conjecture for the sum of signless Laplacian eigenvalues, Czechoslovak Math. J. 68 (2018) 601-610.

[8] Y. Chen, D. Li, J. Meng, On the second largest A_α-eigenvalues of graphs, Linear Algebra Appl. 580 (2019) 343-358.

[9] Y. Chen, D. Li, Z. Wang, J. Meng, A_α-spectral radius of the second power of a graph, Appl. Math. Comput. 359 (2019) 418-425.

[10] D. Cvetković, P. Rowlinson, S.K. Simić, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (Beograd) (N.S.) 81 (2007) 11-27.

[11] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian. I, Publ. Inst. Math. (Beograd) (N.S.) 85 (2009) 19-33.

[12] Z. Du, The sum of the first two largest signless Laplacian eigenvalues of trees and unicyclic graphs, Electron. J. Linear Algebra 35 (2019) 449-467.

[13] K.Ch. Das, S.A. Mojallal, S. Sun, On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs, Linear Algebra Appl. 569 (2019) 175-194.

[14] J. Ebrahimi B, B. Mohar, V. Nikiforov, A.S. Ahmady, On the sum of two largest eigenvalues of a symmetric matrix, Linear Algebra Appl. 429 (2008) 2781-2787.

[15] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. USA 35 (1949) 652-655.

[16] G.H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.

[17] D. Gernert, private communication, see also <http://www.sgt.pep.ufrj.br/home-arquivos/prob-abertos.html>.

[18] H.A. Ganie, B.A. Chat, S. Pirzada, Signless Laplacian energy of a graph and energy of a line graph, Linear Algebra Appl. 544 (2018) 306-324.

[19] H. Guo, B. Zhou, On the α-spectral radius of graphs, Appl. Anal. Discrete Math. 14 (2020) 431-458.

[20] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226-228 (1995) 593-616.

[21] X. Huang, H. Lin, J. Xue, The Nordhaus-Gaddum type inequalities of A_α-matrix, Appl. Math. Comput. 365 (2020) 124716.
[22] W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl. 432 (2010) 2214-2221.

[23] S. Liu, K.Ch. Das, J. Shu, On the eigenvalues of A_α-matrix of graphs, Discrete Math. 343 (2020) 111917.

[24] S. Liu, K.Ch. Das, S. Sun, J. Shu, On the least eigenvalue of A_α-matrix of graphs, Linear Algebra Appl. 586 (2020) 347-376.

[25] H. Lin, H. Guo, B. Zhou, On the α-spectral radius of irregular uniform hypergraphs, Linear Multilinear Algebra 68 (2020) 265-277.

[26] X. Liu, S. Liu, On the A_α-characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018) 274-288.

[27] H. Lin, X. Liu, J. Xue, Graphs determined by their A_α-spectra, Discrete Math. 342 (2019) 441-450.

[28] Z. Lin, L. Miao, S. Guo, The A_α-spread of a graph, Linear Algebra Appl. 606 (2020) 1-22.

[29] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

[30] S. Li, W. Wei, The multiplicity of an A_α-eigenvalue: A unified approach for mixed graphs and complex unit gain graphs, Discrete Math. 343 (2020) 111916.

[31] J. Liu, X. Wu, J. Chen, B. Liu, The A_α spectral radius characterization of some digraphs, Linear Algebra Appl. 563 (2019) 63-74.

[32] H. Lin, J. Xue, J. Shu, On the A_α-spectra of graphs, Linear Algebra Appl. 556 (2018) 210-219.

[33] B. Mohar, On the sum of k largest eigenvalues of graphs and symmetric matrices, J. Combin. Theory Ser. B 99 (2009) 306-313.

[34] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81-107.

[35] V. Nikiforov, On the sum of k largest singular values of graphs and matrices, Linear Algebra Appl. 435 (2011) 2394-2401.

[36] V. Nikiforov, Linear combinations of graph eigenvalues, Electron. J. Linear Algebra 15 (2006) 329-336.

[37] V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the A_α-spectra of trees, Linear Algebra Appl. 520 (2017) 286-305.

[38] V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_\alpha(G)$, Linear Algebra Appl. 519 (2017) 156-163.

[39] C.S. Oliveira, L. de Lima, A lower bound for the sum of the two largest signless Laplacian eigenvalues, Electron. Notes Discrete Math. 55 (2016) 173-176.
[40] C.S. Oliveira, L. de Lima, P. Rama, P. Carvalho, Extremal graphs for the sum of the two largest signless Laplacian eigenvalues, Electron. J. Linear Algebra 30 (2015) 605-612.

[41] O. Rojo, R. Soto, H. Rojo, Bounds for sums of eigenvalues and applications, Comput. Math. Appl. 39 (2000) 1-15.

[42] J. Yang, L. You, On a conjecture for the signless Laplacian eigenvalues, Linear Algebra Appl. 446 (2014) 115-132.