Heat Kernels in the Context of Kato Potentials on Arbitrary Manifolds

Batu Güneysu

Abstract By introducing the concept of Kato control pairs for a given Riemannian minimal heat kernel, we prove that on every Riemannian manifold \((M, g) \) the Kato class \(\mathcal{K}(M, g) \) has a subspace of the form \(L^q(M, d\varrho) \), where \(\varrho \) has a continuous density with respect to the volume measure \(\mu_g \) (where \(q \) depends on \(\dim(M) \)). Using a local parabolic \(L^1 \)-mean value inequality, we prove the existence of such densities for every Riemannian manifold, which in particular implies \(L^q_{\text{loc}}(M) \subset \mathcal{K}_{\text{loc}}(M, g) \). Based on previously established results, the latter local fact can be applied to the question of essential self-adjointness of Schrödinger operators with singular magnetic and electric potentials. Finally, we also provide a Kato criterion in terms of minimal Riemannian submersions.

Keywords Heat kernel estimates · Kato potentials · Parabolic mean value inequality

Mathematics Subject Classification (2010) 31C12 · 58J35 · 58J65

1 Introduction

Given a Riemannian manifold \((M, g) \) with \(\mu_g \) the Riemannian volume measure, a Borel function \(w : M \rightarrow \mathbb{R} \) is said to be Kato class of \((M, g) \), symbolically \(w \in \mathcal{K}(M, g) \), if

\[
\lim_{t \to 0^+} \sup_{x \in M} \int_0^t \int_M e^{(s/2)\Delta_g(x, y)}|w(y)|d\mu_g(y)ds = 0,
\]

where \((-1/2)\Delta_g \geq 0\) denotes the Friedrichs realization of \((1/2)\) times the Laplace-Beltrami operator in \(L^2(M, d\mu_g) \). In particular, \(e^{\xi^2\Delta_g(x, y)} \) is precisely the minimal nonnegative heat kernel \(p_g(s, x, y) \) on \((M, g) \). Likewise, there is the local counterpart \(\mathcal{K}_{\text{loc}}(M, g) \).
which is given by all \(w \) such that \(Kw \in K(M, g) \) for all compact \(K \subset M \). Ever since its introduction, the Kato class has proved to be a convenient and large class of perturbations of \((-1/2)\Delta_g\), for which the following important results hold simultaneously: For every \(w = w_+ - w_- \) such that its positive part satisfies \(w_+ \in L^1_{\text{loc}}(M) \), its negative part satisfies \(w_- \in K(M, g) \).

I) \(w_- \) is an infinitesimally small perturbation of \((-1/2)\Delta_g\) (cf. [19]) in the sense of quadratic forms; in particular the form sum \(H^w_g = (-1/2)\Delta_g + w \) is a well-defined self-adjoint operator in \(L^2(M, d\mu_g) \) which is bounded from below.

II) One has \(L^q(M, d\mu_g) \rightarrow L^q(M, d\mu_g) \)-bounds of the form (cf. Proposition A.1 below)

\[
\left\| e^{-tH^w_g} \right\|_{L^q(M, d\mu_g) \rightarrow L^q(M, d\mu_g)} \leq \delta e^{C(\delta, w_-, g)}, \quad \text{for every } \delta > 1
\]

III) \(x \mapsto e^{-tH^w_g} f(x) \) is continuous [18] for all \(f \in L^\infty(M, d\mu_g) \) if \(w \in K(M, g) \) [18].

The remarkable fact about these results is that all of them do not require any additional assumptions on the Riemannian structure \(g \) on \(M \). The bound from II) with \(q = \infty \) has been used recently in the context of the Riemannian total variation by D. Pallara and the author in [8]. Let us also note that one can even establish a semigroup theory of perturbations given by Kato measures rather than Kato functions: Here there exist very subtle results by Sturm [20], Stollmann-Voigt [19], and Kuwae-Takahashi [14], and can even do more general than that [18].

There is another important result which is built on the local Kato class [7]:

IV) If \((M, g) \) is geodesically complete, if \(\alpha \in \Gamma_{1,4}^1(M, T^*M) \) is a magnetic potential with \(\text{grad}(\alpha) \in L^2_{\text{loc}}(M) \), and if \(w \in K_{\text{loc}}(M, g) \cap L^2_{\text{loc}}(M) \) is an electric potential such that the corresponding magnetic Schrödinger operator \(H^{\alpha, w}_g \) is bounded from below on the smooth compactly supported functions, then \(H^{\alpha, w}_g \) is in fact essentially self-adjoint.

Apart from the above “success” of the Kato class from an abstract point of view, as one knows the explicit form of \(p_g(t, x, y) \) only in very few cases, the following question remains:

When is a given Borel function \(w \) on \(M \) actually in \(K(M, g) \) or in \(K_{\text{loc}}(M, g) \)?

In the Euclidean \(\mathbb{R}^m \) this question is usually easy to answer, as one has the characterization \(w \in K(\mathbb{R}^m) \), if and only if

\[
w \in L^1_{\text{unif,loc}}(\mathbb{R}), \quad \text{if } m = 1,
\]

\[
\lim_{r \rightarrow 0^+} \sup_{x \in \mathbb{R}^m} \int_{|x-y| \leq r} |w(y)| h_m(|x-y|) dy, \quad \text{if } m \geq 2,
\]

where \(h_m : [0, \infty) \rightarrow [0, \infty) \) is given by

\[
h_2(r) := \log^+(1/r), \quad h_m(r) := r^{2-m}, \quad \text{if } m > 2,
\]

In fact Kato has introduced \(K(\mathbb{R}^m) \) essentially in this “analytic” form in [13], and the equivalence of the latter definition to the above heat-kernel definition has been shown