Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci

Silvia Herbert¹, Agnieszka Bera¹, Christiane Nerz¹, Dirk Kraus², Andreas Peschel², Christiane Goerke², Michael Meehl³, Ambrose Cheung³, Friedrich Götz¹*

¹ Microbial Genetics Department, University of Tübingen, Tübingen, Germany, ² Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany, ³ Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, United States of America

It has been shown recently that modification of peptidoglycan by O-acetylation renders pathogenic staphylococci resistant to the muramidase activity of lysozyme. Here, we show that a Staphylococcus aureus double mutant defective in O-acetyltransferase A (OatA), and the glycopeptide resistance-associated two-component system, GraRS, is much more sensitive to lysozyme than S. aureus with the oatA mutation alone. The graRS single mutant was resistant to the muramidase activity of lysozyme, but was sensitive to cationic antimicrobial peptides (CAMPs) such as the human lysozyme-derived peptide 107R-A-W-V-A-W-R-N-R115 (LP9), polymyxin B, or gallidermin. A comparative transcriptome analysis of wild type and the graRS mutant revealed that GraRS controls 248 genes. It up-regulates global regulators (rot, sarS, or mgrA), various colonization factors, and exotoxin-encoding genes, as well as the ica and dlt operons. A pronounced decrease in the expression of the latter two operons explains why the graRS mutant is also biofilm-negative. The decrease of the dlt transcript in the graRS mutant correlates with a 46.7% decrease in the content of esterified Ọ-alanyl groups in teichoic acids. The oatA/dltA double mutant showed the highest sensitivity to lysozyme; this mutant completely lacks teichoic acid–bound Ọ-alanine esters, which are responsible for the increased susceptibility to CAMPs and peptidoglycan O-acetylation. Our results demonstrate that resistance to lysozyme can be dissected into genes mediating resistance to its muramidase activity (oatA) and genes mediating resistance to CAMPs (graRS and dlt). The two lysozyme activities act synergistically, as the oatA/dltA or oatA/graRS double mutants are much more susceptible to lysozyme than each of the single mutants.

Introduction

In humans, lysozyme is found in a wide variety of fluids, such as tears, breast milk, and respiratory and saliva secretions, as well as in cells of the innate immune system, including neutrophils, monocytes, macrophages, and epithelial cells [1,2]. Lysozyme is an important protein in the innate defense response against invading microorganisms and acts on bacteria by hydrolyzing the β-1,4 glycosidic bonds between N-acetylmuramic acid (MurNAc) and N-acetylg glucosamine (GlucNAc), resulting in degradation of peptidoglycan (PG), and subsequent cell lysis [3,4]. Most bacterial species are sensitive to lysozyme, but some important human pathogens, such as Staphylococcus aureus, Neisseria gonorrhoeae, and Proteus mirabilis, are resistant. The mechanisms behind the high resistance of S. aureus to lysozyme are unknown, although several studies suggest that O-acetylation at position C-6 of the MurNAc residue contributes to lysozyme resistance [5–9]. Recently, we were able to prove that indeed O-acetyltransferase A (OatA) of S. aureus is responsible for O-acetylation of the PG, and this leads to resistance to the muramidase activity of lysozyme [10]. We also showed that the MurNAc was O-acetylated only in pathogenic, lysozyme-resistant staphylococci (e.g., S. aureus, S. epidermidis, S. lugdunensis, and others). All nonpathogenic species (e.g., S. canosus, S. gallinarum, or S. xylosus) were lysozyme sensitive and lacked PG-specific O-acetylation. Therefore, OatA can be regarded as a general virulence factor [11].

Although the oatA mutant was less resistant to lysozyme than the wild type (WT) S. aureus, it still was more resistant than, for example, Micrococcus luteus, suggesting that other factors, such as a high degree of peptide cross-linking, may also contribute to lysozyme resistance [12]. Recently, we showed that the presence of wall teichoic acid (WTA) increased lysozyme resistance [13]. One also has to consider that lysozyme does not only comprise muramidase activity but also antimicrobial peptide activity, as demonstrated by catalytically inactivate lysozyme or peptides isolated from digested lysozyme, and by synthetic lysozyme-derived peptides [14–17].

Here, we show that the extremely high resistance of S. aureus to lysozyme can be genetically dissected as a) resistance

Editor: Jeffrey N. Weiser, University of Pennsylvania, United States of America

Received February 16, 2007; Accepted June 4, 2007; Published July 27, 2007

Copyright: © 2007 Herbert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: CAMP, cationic antimicrobial peptide; GraRS, glycopeptide resistance-associated; MIC, minimal inhibition concentration; MurNAc, N-acetylmuramic acid; OatA, O-acetyltransferase A; OD, optical density; PG, peptidoglycan; TA, teichoic acid; TCS, two-component system; WT, wild type; WTA, wall teichoic acid

* To whom correspondence should be addressed. E-mail: friedrich.goetz@uni-tuebingen.de
Author Summary

In humans, lysozyme plays an important role in the suppression of bacterial infections. However, some bacterial pathogens, such as Staphylococcus aureus, are completely resistant to lysozyme. Here we demonstrate that lysozyme acts on S. aureus in two ways: as a muramidase (cell wall lytic enzyme) and as a cationic antimicrobial peptide (CAMP). S. aureus has developed resistance mechanisms against both activities by modifying distinct cell wall structures. Modification of the peptidoglycan by O-acetylation (OatA) renders the cells resistant to the muramidase activity. Modification of teichoic acids by d-alanine esterification (Dlt) renders the cells resistant to lysozyme’s CAMPs and other CAMPs. Transcriptome analysis of the glycopeptidase resistance-associated (GraRS) two-component system revealed that this global regulator controls 248 genes such as other global regulators, colonization factors, or exotoxin-encoding genes. Since GraRS also upregulates the dlt operon, it was not surprising that in the graRS mutant teichoic acid Ω-alanylation is markedly decreased, which explains its increased sensitivity to CAMPs. By comparative analysis of mutants we were able to dissect genes that were responsive to the dual activities of lysozyme. Here we show how efficiently S. aureus is protected from the human defense system, which enables this pathogen to cause persistent infections.

to muramidase activity and b) resistance to inherent cationic antimicrobial peptide (CAMP) activity. Furthermore, we characterized via transcriptome analysis the two-component system (TCS), GraRS, which, in addition to many virulence genes, also controls the dlt operon to mediate resistance to lysozyme and other CAMPs.

Results

Susceptibility of oatA and graRS Single and Double Mutants to Lysozyme and CAMPs

In our search for highly susceptible lysozyme mutants in S. aureus, we isolated two Tn917 transposon mutants in SA113oatA::kan that revealed higher sensitivity to lysozyme than the oatA mutation alone. Chromosomal sequencing of the flanking Tn917 insertion sites revealed that Tn917 was inserted in SA0615 [18]. SA0615 and the upstream gene SA0614 have the features of a typical TCS and were recently named GraRS (glycopeptidase resistance-associated), because overexpression of GraR (response regulator) and GraS (sensor histidine kinase) increased vancomycin resistance [19]. To further study the role of TCS in lysozyme resistance, we constructed a deletion mutant by substituting graRS with an erythromycin B cassette to yield SA113 graRS::erm (Figure 1). In addition, we also constructed an oatA::kan/graRS::erm double knockout. Sequencing and complementation with pTXgrraRS, a vector in which the graRS genes are induced into expression by xylose, confirmed the correct replacement. Whereas the oatAgraRS double mutant was highly susceptible to lysozyme, both single mutants were only marginally affected, but were still more sensitive than the WT, which is completely lysozyme resistant (Figure 2A–2D).

The oatAgraRS double mutant was much more lysozyme sensitive than each of the single mutants. This hyper-sensitivity of the double mutant can be explained by dual activities of lysozyme that act in a synergistic way. To study this phenotype in more detail, we investigated whether the graRS single mutant is affected by the muramidase activity of lysozyme. Indeed, the isolated PG from the graRS single mutant was completely resistant to lysozyme hydrolysis, in contrast to the oatA mutant. As expected, PG of the oatA/graRS double mutant was also hydrolysed, although the sensitivity was less pronounced, as in the oatA single mutant (Figure 3). Therefore, the increased sensitivity of the double mutant likely came from its higher susceptibility to lysozyme’s CAMP activity. This was confirmed by the addition of LP9, polymyxin B, or gallidermin to a growing culture, which caused immediate growth arrest in the graRS mutant, whereas the WT was much less affected (Figure 4A and 4B), and only the lantibiotic gallidermin inhibited the WT. In addition, we demonstrated that heat-inactivated lysozyme exhibits CAMP activity, but no muramidase activity. Heat-inactivated lyso-

A) WT SA113

B) SA113 graRS::ermB

Figure 1. Illustration of Construction of the graRS Deletion Mutant

(A) Gene organization in the chromosome of WT SA113; Tn917 insertions in graS gene are indicated by arrows.

(B) In the graRS deletion mutant, graRS is substituted by the erythromycin B resistance cassette. Note that ermB gene has a weak transcription terminator, and transcriptional read-through to the following vraFG genes is likely. graR, response regulator; graS, sensor histidine kinase; vraF, ABC transporter ATP-binding protein; vraG, ABC transporter permease; SA0612 and SA0613 are hypothetical proteins (HP).

doi:10.1371/journal.ppat.0030102.g001
zyme showed no activity (neither lytic nor CAMP activity) to the oatA mutant or to the isolated PG of oatA, but it was able to inhibit the growth of the oatA/graRS double mutant (Figures 2B, 2D, and 3). This result suggests that GraRS controls genes involved in CAMP resistance. This effect was not only achieved with hen egg-white, but also with human lysozyme.

Comparative Transcriptome Analysis of WT and graRS Mutant

To find out which genes are responsible for the high susceptibility to CAMPs in the graRS mutant, we carried out a comparative transcriptome analysis of the WT strain and the graRS mutant. We detected 115 genes whose mRNAs were up-regulated (Table 1) and 133 genes whose mRNAs were down-regulated by GraRS (Table 2). The complete list of up- and down-regulated genes with their National Center for Biotechnology Information PID numbers is presented in Dataset S1. In order to give an impression of which genes are controlled by GraRS, some examples are mentioned below.

In the graRS mutant, genes that are involved in RNA and amino acid synthesis and glycolysis shows highly gene transcription rates. In particular, the urease genes (ureA-G) all 12 pur genes were 2- to 32-fold up-regulated as compared to the WT, whereas purR (repressor) appeared not to be influenced by GraRS. Interestingly, the amount of oatA transcript increased in the graRS mutant, which could explain the slightly higher resistance of the graRS mutant to the muramidase activity of lysozyme (Figure 3). A number of genes that were down-regulated included global regulators (rot, sarS, mgrA), cell surface protein encoding genes (the Ser-Asp rich fibrinogen-binding proteins SdrC and SdrE), the major autolysin gene (atlA) and an autolysin/adesin gene (aatA) [20], exoprotein encoding genes (lbt, hlgA,B, lukM,F, and geh), transporter encoding genes (essA,essC, oppB, and norB), capsule encoding genes (capA,H,I,J,K) and PIA encoding genes (icaADBC), genes responsible for 3-alanyl esterification of teichoic acids (TAs) (dltA,B,D), and the alanine dehydrogenase gene (aldA). The pronounced decrease of expression of the ica [21–23] and dlt operons [24] and atlA [25] explains why the graRS mutant showed a biofilm-negative phenotype on microtiter plates (unpublished data). With a few genes, such as rot, uvrC, and dltA, we verified the transcriptome data by reverse transcriptase (RT)-PCR (Table 3).

Next, we asked which of the 115 less expressed genes in the graRS mutant were responsible for the increased susceptibility to CAMPs. A most likely candidate was the dlt operon (encoding enzymes involved in 3-alanylation of TAs). Its transcript was decreased 2.1-fold to 2.9-fold as compared to WT, whereas purR (repressor) appeared not to be influenced by GraRS. Interestingly, the amount of oatA transcript increased in the graRS mutant, which could explain the slightly higher resistance of the graRS mutant to the muramidase activity of lysozyme (Figure 3). A number of genes that were down-regulated included global regulators (rot, sarS, mgrA), cell surface protein encoding genes (the Ser-Asp rich fibrinogen-binding proteins SdrC and SdrE), the major autolysin gene (atlA) and an autolysin/adesin gene (aatA) [20], exoprotein encoding genes (lbt, hlgA,B, lukM,F, and geh), transporter encoding genes (essA,essC, oppB, and norB), capsule encoding genes (capA,H,I,J,K) and PIA encoding genes (icaADBC), genes responsible for 3-alanyl esterification of teichoic acids (TAs) (dltA,B,D), and the alanine dehydrogenase gene (aldA). The pronounced decrease of expression of the ica [21–23] and dlt operons [24] and atlA [25] explains why the graRS mutant showed a biofilm-negative phenotype on microtiter plates (unpublished data). With a few genes, such as rot, uvrC, and dltA, we verified the transcriptome data by reverse transcriptase (RT)-PCR (Table 3).

Next, we asked which of the 115 less expressed genes in the graRS mutant were responsible for the increased susceptibility to CAMPs. A most likely candidate was the dlt operon (encoding enzymes involved in 3-alanylation of TAs). Its transcript was decreased 2.1-fold to 2.9-fold as compared to WT, and indeed, the D-alanylation of TAs was decreased 46.7% in the graRS mutant compared to WT (Table 3). It has been previously shown that inactivation of the dlt operon in S. aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides [26]. The observed decrease of aldA transcription by a factor of 3.5 is in line with the decreased dlt transcription. AldA is the alanine dehydrogenase, which is involved in the synthesis of 3-alanine.

Comparison of graRS and dltA Mutants

Because the dlt operon is less expressed in the graRS mutant, we investigated lysozyme susceptibility with a dltA deletion mutant, which is well-known to be sensitive to
Camps [26]. Indeed, the dlt mutant was more sensitive to lysozyme (Figure 2E); however, this sensitivity was not due to its muramidase activity, as the isolated PG of the dlt mutant was not hydrolyzed by lysozyme (Figure 2A). Furthermore, growth of the dlt mutant was inhibited whether active or heat-inactivated lysozyme was applied (Figure 2E). When the susceptibility of graRS and dltA mutants to LP9, polymyxin B, and gallidermin were compared, both mutants were similarly more susceptible to these Camps (Figure 4B and 4C). However, there were two distinctions: a) the susceptibility of the dlt mutant was more pronounced than that of the graRS mutant, and b) even in the presence of gallidermin or polymyxin B, the graRS mutant started to grow after some time and reached the same optical density (OD) values after 24 h as the control culture lacking Camps. In contrast, the dlt mutant remained sensitive to gallidermin and polymyxin B and was unable to resume growth. In the presence of LP9, growth resumed after a similar lag period as in the graRS mutant; this can possibly be explained by its proteolytic degradation. Not only the single but also the double mutants oatAGraRS and oatA/dltA were sensitive to the Camp activity of LP9, although the susceptibility was less pronounced as with the graRS and dltA single mutants. However, the oatA single mutant was completely resistant to LP9, indicating that oatA is resistant to Camps (Figure 4D–4F). With respect to gallidermin- and polymyxin B–induced cell lysis, it has been observed that Camps such as lantibiotics induce autolysis in staphylococci by increasing PG hydrolase activity [27]. We assume that gallidermin and polymyxin B, which are also Camps, very likely have a similar effect.

We asked whether the increasing insensitivity of the graRS mutant after prolonged growth is some short lasting Camp-induced adaptation or whether it is based on selection of resistant mutants. To answer this question, we inoculated from a 24-h graRS culture treated with polymyxin B (Figure 5B) a new culture and challenged it again with polymyxin B (Figure 5C). The subculture revealed no growth retardation, which suggests that the graRS phenotype is unstable and that polymyxin B–resistant revertants were quickly selected. Since the dltA revealed a stable phenotype, we assume that in the selected revertants dltA expression was increased to WT levels.

Hypersensitivity of the oatA/dltA and oatA/graRS Double Mutants to Lysozyme

The highest susceptibility to lysozyme was observed with the oatA/dltA double mutant, which was more than 66-fold and 333-fold more sensitive to lysozyme than the dltA and oatA single mutants, respectively (Figure 2B, 2E, and 2F; Table 4). The oatA/graRS mutant is not quite as sensitive as the oatA/dltA mutant. Another difference is that the oatA/dltA mutant stays lysozyme sensitive even after 24 h of cultivation (Figure 2D and 2F), indicating that the dltA mutant phenotype cannot easily revert to the WT phenotype. The lower susceptibility of the oatA/graRS double mutant can possibly be explained by the fact that the TA in this mutant still contains 53.3% β-alanyl esters, whereas the dltA mutant completely lacks β-alanylmylation in its TAs (Table 3).

The high susceptibility of the double mutants is based on the dual activities of lysozyme: a) the oatA mutant is sensitive to the muramidase activity of lysozyme but is insensitive to Camps (Figures 2B, 3, and 4F), and b) the dltA and graRS mutants are sensitive to Camps, but insensitive to the muramidase activity of lysozyme (Figures 3, 4B, and 4C). The extremely high lysozyme susceptibility of the oatA/dltA double mutant can only be explained by a synergistic effect of the two activities.

Increased Lytic Activity of Mutanolysin by Lysozyme and LP9 in the graRS Mutant

Mutanolysin is a muramidase that is able to hydrolyze O-acetylated PG [28] but does not normally cause cell lysis in WT S. aureus or its graRS mutant at a concentration of 100 μg/ml. However, when the graRS mutant was treated with mutanolysin in combination with lysozyme or LP9, the lytic activity (indicated by decrease in OD) was strongly increased (Figure 5A). Because the O-acetylated graRS mutant is insensitive to the catalytic activity of lysozyme, we assume that mutanolysin acts through its lytic activity, and LP9 and lysozyme through their Camp properties. We have not investigated how the stimulating effect of lysozyme and LP9 on cell lysis is accomplished. However, we assume that it is caused by the concerted action of PG hydrolysis by mutanolysin and induced autolysis by lysozyme and LP9, as mentioned above.

Minimal Inhibition Concentration Values of SA113 and Various Mutants

The minimal inhibition concentration (MIC) values for lysozyme, polymyxin B, and gallidermin in WT and various mutants are summarized in Table 4. Both the WT and the
Function of Proteins	N315 ORF	N315 Gene	N315 Product	Protein Location	Change in Expression (n-Fold)	One-Sample t-Test-Benjamini-Hochberg (Adv)	rot, mgrA, arlRS Effect
Virulence factors (cell surface proteins, exotoxins, colonization factors)	SA0519	sdC	Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein	SCW	9.6	0.013	rot, arl up
	SA0521	sdE	Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein	SCW	2.9	0.034	mgr, arl up
	SA1003	fib	HP, similar to fibrinogen-binding protein	SCW	2.5	0.036	
	SA1004	coa	Staphylocoagulase precursor	S	2.2	0.164	mgr down
	SA0222	geh	Glycerol ester hydrolase, lipase 2	S	2.2	0.012	rot down
	SA1811	hlb	Truncated beta-hemolysin	S	2.2	0.007	rot down
	SA1812	lukM	Leukocidin chainLukM	S	2.5	0.042	rot down, mgr up
	SA1813	lukF	Synergolymentropic toxin precursor	S	2.1	0.010	mgr up
	SA2207	hlgA	Gamma-hemolysin component A	S	2.1	0.010	mgr up
	SA2209	hlgB	Gamma-hemolysin component B	S	2.1	0.005	rot, arl down
	SA0270	luk	HP, similar to secretory antigen precursor SsaA	S	2.9	0.012	arl up
	SA0271	essA	Virulence factor EssA	S	4.4	0.012	rot, arl up
	SA0620	luk	HP, similar to secretory antigen precursor SsaA	S	2.1	0.013	rot up
	SA2097	luk	HP, similar to secretory antigen precursor SsaA	S	3.0	0.014	
	SA2431	isaB	Immunodominant antigen B	S	2.2	0.022	mgr down
	SA2459	icaA	Intercellular adhesion protein A	M	4.8	0.032	
	SA2460	icaD	Intercellular adhesion protein D	M	4.9	0.006	
	SA2461	icaB	Intercellular adhesion protein B	SCW	3.3	0.063	
	SA2462	icaC	Intercellular adhesion protein C	M	2.5	0.068	
	SA0108	sarS	Staphylocoacal accessory regulator A homolog	C	7.2	0.007	rot up, mgr down
	SA0614	graR	C	3.1	0.062		
	SA0641	mgrA	HTH-type transcriptional regulator MgrA, MarR family	C	3.1	0.007	
	SA0856	spxA	Transcriptional regulator Spx	C	5.6	0.024	
	SA1583	rot	Repressor of toxins Rot	C	3.8	0.009	arl up
	SA1678	furB	Transcriptional regulator Fur family homolog	C	2.1	0.023	mgr up
	SA2174	hlg	HP, similar to transcriptional regulator	C	2.0	0.046	
	SA0106	lctP	Lactate transporter, LctP family	M	3.2	0.021	
Regulators	SA0109	sirC	Lipoprotein	M	3.5	0.013	
	SA0111	sirA	Lipoprotein	M	2.0	0.086	
	SA0138	HP, similar to alklyphosphonate ABC transporter	M	2.1	0.004	arl down	
	SA0204	azoR	FMN-dependent NADH-azoreductase	C	2.2	0.021	
	SA0207	HP, similar to maitol/maltodextrin-binding protein	M	2.1	0.035		
	SA0208	Maltose/maltodextrin transport permease homolog	M	2.1	0.064		
	SA0268	HP, similar to ABC transporter system permease protein	M	2.3	0.007		
	SA0272	essaA	Protein EssA	M	4.7	0.022	arl up
	SA0273	essA	Protein EssA	M	2.8	0.071	
	SA0276	essC	Protein EssC	M	2.6	0.027	arl up
	SA0295	HP, similar to outer membrane protein precursor	M	2.3	0.010		
	SA0423	aas	N-acetylumuramoyl-L-alanine amidase	SCW	3.6	0.015	
	SA0518	aoz	FMN-dependent NADPH-azoreductase	C	2.1	0.019	
	SA0793	dltA	d-alanine-o-alanyl carrier protein ligase	C	2.9	0.066	
	SA0794	dltB	DltB membrane protein	M	2.1	0.010	
	SA0796	dltD	Poly (glycerophosphate chain) o-alanine transfer protein	M	2.3	0.008	rot up
	SA0845	oppB	Oligopeptide transport system permease protein	M	2.2	0.039	
	SA0846	HP, similar to oligopeptide transport system permease protein OppC	M	2.1	0.049		
	SA0849	HP, similar to peptid binding protein OppA	M	2.4	0.030	mgr down	
	SA0854	HP, similar to oligopeptide transport system permease protein OppC	M	2.1	0.053		
	SA0905	atlA	Autolysin (N-acetylumuramoyl-L-alanine amidase/endo-beta-N-acetylglucosaminidase	SCW	2.4	0.015	
	SA1269	norB	Blt-like protein, efflux pump	M	3.6	0.004	mgr, arl up
	SA1270	HP, similar to acid permease	M	3.5	0.012	mgr, arl up	
	SA1663	HP, belongs to the UFP0342 protein family	M	2.3	0.072		
	SA1979	HP, similar to ferrichrome ABC transporter	M	2.1	0.032		
Function of Proteins	N315 ORF	N315 Gene	N315 Product	Protein Location	Change in Expression (n-Fold)	One-Sample t-Test-Benjamini–Hochberg (Adv)	rot, mgrA, arlRS Effect
--------------------------------------	----------	-----------	---------------------------------------	-----------------	-----------------------------	---	------------------------
l-lactate permease ictP homolog	SA2156			ORF	3.7	0.015	
HP, similar to lipoprotein inner	SA2217			M	2.1	0.022	
membrane ABC transporter							
HP, similar to ABC transporter	SA2302	stpC		M	3.1	0.008	mgr up
HP, similar to membrane spanning	SA2303	smpC		M	5.5	0.010	rot, mgr, arl up
protein							
HP, belongs to ABC-transporter	SA2475			M	2.3	0.067	
HP, belongs to the UPF0397 protein	SA2477			M	2.3	0.068	
family	SA2480	drp35	Lactonase Drp35	C	2.3	0.036	
Capsular polysaccharide biosynthesis	SA2457	capA	capA	M	2.0	0.008	arl down
Capsular polysaccharide synthesis	SA0152	capH	Capsular polysaccharide synthesis	M	2.0	0.033	mgr up
enzyme Cap5H			enzyme Cap5I	M	2.0	0.034	mgr up
Capsular polysaccharide synthesis	SA0153	capJ	Capsular polysaccharide synthesis	M	2.3	0.084	mgr up
enzyme Cap5J			enzyme Cap5K	M	2.7	0.025	mgr up
Alkaline shock protein 23, ASP23	SA1984	asp23		C	2.1	0.082	
HP, similar to deoxyxypurine kinase	SA0515				2.1	0.014	
HP, similar to carbamate kinase	SA1013						
Alcohol-acetaldehyde dehydrogenase	SA0143	adhE					rot down
Branched-chain amino acid transport	SA0180						
HP, similar to aspartokinase II	SA1225	lysC					
HP, similar to threonine deaminase	SA1271						
HP, similar to alanine dehydrogenase	SA1272	ald1					
HP, similar to 5OS ribosomal protein	SA1502	rpsT					
HP, similar to glycerophosphodiester	SA0220						
phosphodiesterase							rot, arl up
HP, similar to replication protein	SA0027						
for plasmid	SA1709						
HP, similar to ferritin							
Holin homolog (bacteriophage phiN315)	SA1760						
2.4	0.104						
HP (bacteriophage phiN315)	SA1766						
6.0	0.087						
HP (bacteriophage phiN315)	SA1785						
2.5	0.028						
HP (bacteriophage phiN315)	SA1793						
23.3	0.074						
Hypothetical genes	SA0037						
HP	SA0077						
HP	SA0081						
HP	SA0090						
HP	SA0100						
HP	SA0161						
HP	SA0213						
HP	SA0221						
HP	SA0262						
HP	SA0279						
HP	SA0283						
HP	SA0291						
HP	SA0292						
HP	SA0378						
HP	SA0408						
HP	SA0424						
HP	SA0623						
HP	SA0651						
HP	SA0738						
HP	SA0739						
HP	SA0772						
HP	SA0890						
HP	SA1056						
HP	SA1151						
HP	SA1828						
HP	SA2101						
HP	SA2153						
HP	SA2198						
HP	SA2256						
HP	SA2332						
HP	SA2339						
HP	SA2373						

Lysozyme Resistance in *Staphylococcus aureus*
graRS mutant were completely resistant to lysozyme at a concentration of 50 mg/ml. However, the graRS mutant was 17- and 4-fold more susceptible to polymyxin B or gallidermin. The sensitivity to the CAMPs is very likely due to the aforementioned decrease in expression of the dlt operon, which corresponds with decreased n-alanylation of the TAs. The oatA mutant was more susceptible to lysozyme than the graRS mutant, but, similar to WT, was completely insensitive to heat-inactivated lysozyme or CAMPs, indicating that oatA is only sensitive to the muramidase activity of lysozyme. The oatAggraRS double mutant was almost 17-fold more sensitive to lysozyme than the oatA mutant, which can be explained by the fact that this double mutant is sensitive to both the muramidase and the CAMP activities of lysozyme. The two activities exert a synergistic effect on the double mutant. The dltA single mutant was over 25-fold more sensitive to lysozyme than the WT and 5-fold more sensitive than the oatA single mutant, demonstrating the importance of lysozyme’s CAMP activity. Furthermore, the dltA mutant exhibited the highest susceptibility to polymyxin B and gallidermin, but was completely insensitive to lysozyme’s muramidase activity (Figure 3).

With a MIC of only 30 μg/ml, the oatA/dltA double mutant revealed the highest susceptibility to lysozyme. Indeed, it has a 20-fold greater sensitivity to lysozyme than the oatAggraRS double mutant. The oatA/dltA double mutant is 333-fold and 66-fold more sensitive than the single oatA or dltA mutants, which illustrates the extremely high synergistic effect of lysozyme when it can exert both muramidase and CAMP activities. Overexpression of graRS in the graRS mutant or the WT by pTXgraRS resulted in an approximately 2-fold increase in polymyxin B resistance, indicating that even in WT cells, CAMP resistance can be further increased.

Discussion

One of our research aims was to identify genes involved in staphylococcal lysozyme resistance. We have already elucidated two genes and corresponding enzymes that contribute to resistance against the muramidase activity of lysozyme. Since the target of muramidase is PG, it is not surprising that the mechanism of resistance is masking PG by modification. In S. aureus there are two PG modifications that are involved in resistance to lysozyme’s muramidase activity. One modification is O-acetylation catalyzed by the PG-specific O-acetyltransferase A, OatA, and we have shown that the oatA mutant is more susceptible to the muramidase activity of lysozyme than the WT [10]. The other modification is WTA [29] that is covalently linked to the same C6 position in MurNac as in the O-acetyl group. TagO is a specific UDP-N-acetylmuramylpentose-4-phosphate acetylglucosamine transferase, which is involved in the first step of WTA synthesis. The tagO deletion mutant completely lacks WTA [30]. Although the tagO mutant still shows high lysozyme resistance, a oatA/tagO double mutant, however, is much more susceptible to lysozyme’s muramidase activity than the oatA mutation alone [13]. Here, we show that the high lysozyme resistance of S. aureus is not only based on resistance to the muramidase activity of lysozyme, but also to its inherent CAMP resistance.

The described global two-component regulator, GraRS, was identified in an oatA-minus background by increased lysozyme susceptibility in an oatAggraRS double mutant. The graRS mutant was more susceptible to CAMPs than the WT. We assume that the reason for the increased susceptibility of the graRS mutant was a decrease in dlt expression and, consequently, GraRS up-regulates dlt expression. The Dlt enzymes modify TAs by the incorporation of n-alanine esters rendering the cells resistant to CAMPs, very likely by repulsion [26]. We showed that the dltA mutant is even more susceptible to lysozyme-derived LP9 and other CAMPs than the graRS mutant, because in the dltA mutant, n-alanine esters were completely absent in TAs, the mutant was stable, and no revertants were observed. Heat-inactivated lysozyme does not affect either the growth of the oatA or that of the graRS mutant. The latter effect is surprising, as the graRS mutant is sensitive to the other CAMPs (LP9, gallidermin, polymyxin B). However, the oatAggraRS mutant was sensitive to heat-inactivated lysozyme, suggesting that the bulky molecule has better access to the cell envelope when the PG is de-O-acetylated. Likewise, sensitivity of the dltA mutant to heat-inactivated lysozyme can also be explained by better access to the cell envelope because of the lack of n-alanine esters in TAs.

The next interesting question was, how do CAMPs act in the dltA, oatAggraRS, or oatA/dltA mutants? Killing of Gram-negative bacteria could be demonstrated by lysozyme-derived peptides that were transported through the outer membrane and damaged the inner membrane by pore formation [17]. Several authors assume that lysozyme and CAMPs are not only acting as membrane permeabilization agents, but also activate autolytic wall enzymes of Gram-positive bacteria, thus causing cell lysis [31–33]. It has also been shown that lipoteichoic acids can bind and inhibit autolysins, depending on their degree of n-alanylation [34–36]. Similar results were also obtained in a dlt mutant of Lactococcus lactis, which showed increased autolysis [37]. In line with these observations, the
Table 2. 133 S. aureus SA113 Genes Down-Regulated by GraRS

Function of Proteins	N31S ORF	N31S Gene	N31S Product	Protein Location	Change in Expression (n-Fold)	One-Sample t-Test-Benjamini-Hochberg (Adv)	rot, mgrA, arlRS Effect
Regulators	SA0017	vicR	Response regulator	C	2.0	0.004	
	SA1071	fabR	Transcription factor FapR	C	2.3	0.015	
	SA1690	recX	Regulatory protein RecX	C	2.0	0.021	
	SA2296		HP, similar to transcriptional regulator, MerR family	C	2.1	0.012	
	SA2320	pfoR	Putative regulatory protein PfoR	M	5.7	0.010	mgr, arl down
	SA2418		HP, similar to two-component response regulator	C	2.1	0.007	
Cell wall (cellular processes, transport, membrane, lipoproteins)	SA0252	lrgA	Holin-like protein LrgA	M	2.6	0.017	mgr, arl up
	SA0469	ftsH	Cell-division protein	M	2.2	0.004	
	SA0616	vroF	ABC transporter ATP-binding protein	M	8.6	0.005	
	SA0617	vroG	ABC transporter permease	M	4.8	0.029	
	SA0708	secA	Preprotein translocase subunit	M	2.1	0.012	
	SA0719	trxB	Thioredoxin reductase	M	2.5	0.016	
	SA0937		Cytochrome D ubiquinol oxidase subunit 1 homolog	M	2.5	0.010	
	SA0997	muI	Glutamate racemase	C	2.4	0.009	
	SA1127	cinA	Competence-damage inducible protein CinA	C	2.0	0.024	
	SA1140	gpf	Glycerol uptake facilitator	M	2.2	0.014	
	SA1206	femA	Aminoacyltransferase femA (factor essential for expression of methicillin resistance)	M	2.0	0.006	
	SA1212	opp-2D	Oligopeptide transport ATPase	M	2.2	0.032	
	SA1214	opp-2B	Oligopeptide transporter membrane permease domain	M	2.5	0.036	
	SA1255	cr	Glucose-specific phosphotransferase enzyme IIA component	M	2.2	0.011	
	SA1519	aapA	α-serine/α-alanine/glycine TRANSPORTER	M	2.4	0.004	
	SA1653	TRAP	Signal transduction protein TRAP	M	2.4	0.005	
	SA1654		HP, similar to ABC transporter ecbB	M	2.5	0.015	
	SA1655	ecbA	ABC transporter ecbA homolog	M	2.3	0.012	
	SA1916		HP, belongs to the UPF0340 protein family	M	2.4	0.063	
	SA1960	mtiF	PTS system, mannitol specific IBC component	M	2.2	0.040	mgr down
	SA2056		HP, similar to acriflavine resistance protein	M	2.0	0.010	
	SA2234	oupCD	Probable glycine betaine/carnitine/choline ABC transporter opuCD	M	2.3	0.025	
	SA2324		HP, similar to thioredoxin	M	2.2	0.015	
	SA2354	oaaA	O-acetyltransferase A	M	2.5	0.012	
RNA (nucleotides, nucleic acid synthesis, regulation)	SA0016	purA	Adenylosuccinate synthase	C	2.2	0.019	mgr down
	SA1724	purB	Adenylosuccinate lyase	C	2.6	0.004	mgr up
	SA0133	deoC1	Deoxyribose-phosphate aldolase	C	2.8	0.005	
	SA0134	deoB	Phosphopentomutase	C	2.7	0.041	
	SA0915	folD	FolD bifunctional protein	C	6.0	0.004	
	SA0916	purE	Putative phosphoribosylaminomimidazole carboxylase PurE	C	19.4	0.005	
	SA0917	purK	Phosphoribosylaminomimidazole carboxylase APase subunit	C	22.2	0.007	
	SA0918	purC	Phosphoribosylaminomimidazole-succinocarboxamide synthase	C	14.2	0.010	
	SA0920	purQ	Phosphoribosylformylglycinamidine synthase PurQ	C	19.9	0.007	
	SA0921	purL	Phosphoribosylformylglycinamidine synthetase PurL	C	13.8	0.009	
	SA0922	purF	Phosphoribosylpyrophosphate amidotransferase PurF	C	28.7	0.004	
	SA0923	purM	Phosphoribosylformylglycinamidine cyclo-ligase PurM	C	21.6	0.006	rot up
	SA0924	purN	Phosphoribosylglycinamidine formyltransferase	C	25.5	0.004	
	SA0925	purH	Bifunctional purine biosynthesis protein PurH	C	17.7	0.004	
	SA0926	purD	Phosphoribosylamine-glycine ligase PurD	C	8.1	0.004	
	SA1172		HP, similar toGMP reductase	C	4.3	0.008	
	SA1237	xpoC	HP, similar to 5-bromo-4-chloroindolyl phosphate hydrolysis protein	C	2.0	0.008	
	SA1914	upp	Uricid phosphoribosyl transferase	C	2.3	0.014	
	SA1938	pdc	Pyrimidine nucleoside phosphorylase	C	2.1	0.010	
	SA1939	deoxyribose-phosphate aldolase	C	2.5	0.014		
	SA1098	codY	Transcription pleiotropic repressor CodY	C	2.2	0.072	
Table 2. Continued.

Function of Proteins	N315 ORF	N315 Gene	N315 Product	Protein Location	Change in Expression (n-Fold)	One-Sample t-Test Benjamini-Hochberg (Adv)	rot, mgrA, arlRS Effect
Amino acid synthesis							
SA0829	Putative bifunctional biotin ligase/biotin operon repressor	C	2.1	0.004			
SA1411	hrcA	Heat-inducible transcriptional repressor	C	2.2	0.010		
SA2410	ndrD	Anaerobic ribonucleoside-triphosphate reductase	C	4.5	0.004	rot up	
Adaptation to stress conditions							
SA0470	hslO	Heat-shock protein HSP33 homolog	C	2.1	0.009		
SA0480	ctsR	Transcription repressor of class III stress genes homolog	C	2.3	0.010		
SA0509	hchA	Molecular chaperone HchA	C	2.5	0.012		
SA1096	clpQ	Heat shock protein HslV	C	2.5	0.004		
SA1238	HP, similar to tellurite resistance protein	C	2.5	0.009			
SA1408	dnaJ	DnaJ protein (HSP40)	C	2.9	0.006		
SA1409	dnaK	DnaK protein	C	2.4	0.012		
SA1410	gprE	GrpE protein (HSP-70 cofactor HSP20)	C	2.6	0.021		
SA1535	ipx	HP, similar to thioredoxin peroxidase	C	2.5	0.021		
SA0728	pgk	Phosphoglycerate kinase	C	2.2	0.016		
Carbohydrate mechanism							
SA0729	tpIA	Triosephosphate isomerase	C	2.1	0.065		
SA0730	gpmI	2,3-diphosphoglycerate-independent phosphoglycose mutase	C	2.0	0.029		
SA0731	eno	Enolase (2-phosphoglycerate dehydrogenase)	C	2.1	0.010		
SA0958	Putative myo-inositol-1 (or 4)-monophosphatase	C	2.0	0.006			
SA1088	sucC	Succinyl-CoA synthetase, beta chain	C	3.9	0.004		
SA1089	sucD	Succinyl-CoA synthetase, alpha chain	C	3.2	0.004		
SA1184	acnA	Aconitase hydratase	C	2.5	0.010		
SA1336	Glucose-6-phosphate 1-dehydrogenase	C	2.2	0.012			
SA1517	citC	Isocitrate dehydrogenase	C	2.2	0.015		
SA1518	citZ	Citrate synthase II	C	2.4	0.019		
SA1553	rhs	Formyltetrahydrofolate synthetase	C	2.2	0.030		
SA1996	lacB	Galactose-6-phosphate isomerase LacB subunit	C	2.4	0.025	mgr, arl down	
SA2001	HP, similar to oxidoreductase, ald/o ketoreductase family	C	2.3	0.034	rot up		
SA2008	aliS	Alpha-acetolactate synthase	C	2.9	0.04	mgr, arl down	
SA2304	Rp	Fructose-bisphosphatase	C	2.1	0.010		
SA2312	dfh	D-3-hydroxy-3-methylglutaryl-CoA reductase	C	2.5	0.071	rot, mgr down	
SA0822	argG	Arginosuccinate synthase	C	2.0	0.012		
SA0829	Putative HP, similar to 5-oxo-1,2,5-tricarbocyclic-3-penten acid decarboxylase	C	2.1	0.025			
SA0859	Thimet oligopeptidase homolog	C	2.6	0.014			
SA1347	bfmBAB	Branched-chain alpha-keto acid dehydrogenase E1	C	2.1	0.010		
SA1365	gevPB	Glycine dehydrogenase (decarboxylating) subunit 2 homolog	C	2.7	0.010		
SA1366	gevPA	Glycine dehydrogenase (decarboxylating) subunit 1	C	3.9	0.004		
SA1367	gcvT	Aminomethyltransferase	C	3.6	0.004		
SA1915	glyA	Serine hydroxymethyltransferase	C	2.3	0.008		
SA2081	Urea transporter	M	5.5	0.010	mgr, arl down		
SA2082	ureA	Urea gamma subunit	C	13.1	0.009	rot, mgr, arl down	
SA2083	ureB	Urease beta subunit	C	32.4	0.006	rot, mgr, arl down	
SA2084	ureC	Urease alpha subunit	C	24.9	0.007	rot, mgr, arl down	
SA2085	ureE	Urease accessory protein UreE	C	16.0	0.089	rot, mgr, arl down	
SA2086	ureF	Urease accessory protein UreF	C	23.7	0.004	rot, mgr, arl down	
SA2087	ureG	Urease accessory protein UreG	C	21.4	0.012	rot, mgr, arl down	
SA2088	ureD	Urease accessory protein UreD	C	10.0	0.007	rot, mgr, arl down	
SA2318	sdiA	Putative l-serine dehydratase	C	3.7	0.010	mgd down	
SA2319	sdiB	Putative beta-subunit of l-serine dehydratase	C	2.5	0.071	mgd, arl down	
Others (lipid synthesis, DNA repair, coenzyme)							
SA0842	fobH	3-oxoacyl-(acyl-carrier protein) synthase 3	C	2.4	0.063		
SA1072	plkX	Fatty acid/phospholipid synthesis protein	C	2.7	0.006		
SA1073	fabD	Malonyl CoA-acyl carrier protein transacylase	C	2.8	0.011		
SA1074	fabG	3-oxoacyl-reductase, (acyl-carrier protein) reductase	C	2.7	0.006		
SA0484	radA	DNA repair protein homolog	C	2.0	0.096		
SA1138	mutL	DNA mismatch repair protein	C	2.1	0.026		
SA1512	HP, similar to formamidopyrimidine-DNA glycosylase	C	2.0	0.012			
SA0831	cdr	Coenzyme A disulfide reductase	C	2.1	0.009		
SA0231	HP, similar to flavohemoprotein	C	2.4	0.011			
SA0998	HAM1 protein homolog	M	2.4	0.013			

graRS and dltA mutants also showed increased autolysis when treated with Triton X-100 (unpublished data), suggesting that in these mutants, too, CAMPs activate autolytic enzymes. We assume that the observed synergistic effect of lysozyme in the oatA/graRS and oatA/dltA double mutants is caused by the simultaneous activation of autolytic enzymes and the muramidase activity of lysozyme. A similar synergistic effect is seen by treatment with mutanolysin in combination with LP9 (inducing autolysis) or lysozyme (cannot exert its muramidase activity as the PG is O-acetylated) as shown in the graRS single mutant (Figure 5A). For the first time (to our knowledge), we have traced and dissected genes that were responsive to the dual activities of lysozyme.

Until now, little was known about the two-component system GraRS. We became interested in the regulation of GraRS because we wanted to trace the gene(s) that caused the increased CAMP susceptibility in the graRS mutant. Comparative transcriptome analysis of SA113, an 8325-derivative, and its graRS mutant revealed that 115 genes were up-regulated and 133 genes were down-regulated by GraRS (Tables 1 and 2). Among the down-regulated genes was the vraFG operon, which immediately follows the graRS operon. However, in studying intermediate level of vancomycin resistance in S. aureus, Ambrose Cheung and colleagues found that vraFG is positively controlled by GraRS [38]. This contradictory result can be explained by the genetic organization of our graRS::ermB deletion mutant (Figure 1). In our mutant, the ermB cassette is in the same orientation as the vraFG genes. Since the ermB transcription terminator is very weak, we assume that there is a transcriptional read-through into the vraFG genes. This explains why in our graRS deletion mutant, the vraFG genes were up-regulated instead of down-regulated.

GraRS up-regulates transcription of global regulators such as the SarA homologs Rot, SarS, and MgrA. We compared our GraRS transcriptome results with that of the recently published transcriptome studies of Rot [39], MgrA [40], and ArlRS [41] (Tables 1 and 2; Figure 6). Rot is a repressor of exoproteins but positively regulates cell surface proteins, and SarS is a positive activator of protein A. MgrA appears to be

Table 2. Continued.

Function of Proteins	N315 ORF	N315 Gene	N315 Product	Protein Location	Change in Expression (n-Fold)	One-Sample t-Test Benjamini–Hochberg (Adv)	rot, mgrA, arlRS Effect	
SA1105	Putative zinc metalloprotease	2.1	0.005					
SA1312	ebpS	Elastin binding protein	2.9	0.038				
SA1349	Dihydropyrimidase dehydrogenase	C	2.1	0.011				
SA2301	HP, similar to GTP-pyrophosphokinase	2.8	0.010					
Hypothetical genes	SA0175	HP		3.6	0.014			
SA0381	HP			2.7	0.019			
SA0427	HP			2.2	0.012			
SA0481	HP			C	2.0	0.008		
SA0558	HP			2.1	0.004			
SA0804	HP			4.8	0.004			
SA0805	HP			2.4	0.007			
SA0832	HP			2.1	0.024			
SA0860	HP			2.5	0.037			
SA0903	HP			2.1	0.014			
SA1173	HP			2.6	0.004			
SA1280	HP, conserved	2.0	0.012					
SA1534	HP			2.4	0.007			
SA1723	HP			C	3.2	0.016		
SA1937	HP			2.2	0.010			
SA2005	HP			2.3	0.023			
SA2050	HP			2.2	0.017			
SA2138	HP			2.4	0.045			
SA2160	HP			2.3	0.011			
SA2297	HP			2.3	0.016			

^vraFG were down-regulated instead of up-regulated because of transcriptional read-through into the vraFG genes by the very weak ermB transcription terminator.

C, cytoplasm; HP, hypothetical protein; M, membrane; S, secreted; SCW, secreted cell wall-bound.

Table 3. RT-PCR Values and α-Alanylation of TAs

Strains	RT-PCR rot (%)	RT-PCR ureC (%)	RT-PCR dltA (%)	α-Alanylation (%)
SA113	100	1.4	100	100
graRS::ermB	8	100	13	53.3*
dltA::spc	nd	nd	0	0

Unless noted otherwise, values represent the mean of three independent RT-PCRs.

*The value represents one of three independent experiments.

nd, not determined.

10.1371/journal.ppat.0030102.t003

10.1371/journal.ppat.0030102.t002

doi:10.1371/journal.ppat.0030102.t002

doi:10.1371/journal.ppat.0030102.t003

doi:10.1371/journal.ppat.0030102.t003

doi:10.1371/journal.ppat.0030102.t003

doi:10.1371/journal.ppat.0030102.t003

PLoS Pathogens | www.plospathogens.org July 2007 | Volume 3 | Issue 7 | e1020990

Lysozyme Resistance in Staphylococcus aureus
an antagonist to Rot, as it up-regulates exoproteins and down-regulates cell surface proteins, including the regulator SarS. We found that Rot and MgrA regulate some of the GraRS-controlled genes in the same direction. For these few genes we do not know whether their up- or down-regulation is directly affected by GraRS or indirectly via up-regulation of Rot and MgrA, respectively. Moreover, there are some genes that were regulated in opposite directions (Figure 6, boxed genes). Interestingly, GraRS up-regulates both regulators, Rot 3.8- and MgrA 3.1-fold. GraRS controls many genes involved in cell wall synthesis and transport (57 genes). Among the transporters are the EssA and EssC proteins, involved in transport of the virulence factor EsxA, oligopeptide transport system (OppB), or NorB, which encodes the Blt-like protein that is an efflux pump involved in multidrug resistance, all of which are up-regulated by GraRS. Interestingly, smpC, which encodes a membrane-spanning protein with unknown transport functions, is the only gene that is increased by all four regulators (GraRS, Rot, MgrA, and ArlRS). The gene which had the highest (23.3-fold) up-regulation by GraRS was

Table 4. MIC Values of SA113 and Various Mutants

Strains	Lysozyme	Polymyxin B	Gallidermin			
SA113	>50,000	3,470	350	252.5	9	4.1
graRS::erm	>50,000	3,470	20	14.4	2.5	1.14
oatA-kan	10,000	694	350	252.5	9	4.1
oatA-kan::graRS::erm	600	41.6	25	18	3	1.36
dttA::spc	2,000	138.8	10	7.2	1.2	0.55
oatA-kan::dttA::spc	30	2.08	10	7.2	1.2	0.55
graRS::erm (pTXgraRS::erm)	>50,000	3,470	>800	577.2	9	4.1
SA113 (pTXgraRS)	>50,000	3,470	>500	360.8	9	4.1

The results represent the mean of three to five independent serial dilution experiments; cells were grown in Basic Medium without glucose but with 0.5% xylose as an inducer. doi:10.1371/journal.ppat.0030102.t004

Figure 5. Susceptibility of S. aureus graRS Mutant to Mutanolysin, Mutanolysin and LP9 or Lysozyme, and Polymyxin B

(A) graRS mutant: control (○); mutanolysin (Mut) (100 μg/ml [4.35 μM]) (●); Mut (100 μg/ml) and LP9 (200 μg/ml) (+); Mut (50 μg/ml [2.18 μM]) and Lys (300 μg/ml) (-).

(B) graRS mutant: control (○); polymyxin B (PMB) (20 μg/ml) (●).

(C) graRS subculture of 5B: control (○); PMB (20 μg/ml) (●).

Cells were grown in BM at 37 °C. OD578nm was measured hourly for the first 8 h and after 24 h. Cationic agents were added in the exponential growth phase at OD578nm 1.0 as indicated by arrow. doi:10.1371/journal.ppat.0030102.g005

Figure 6. Interplay of GraRS–TCS with Other Global Regulators

Of the 248 genes regulated by GraRS, 115 genes are up-regulated and 133 genes are down-regulated. GraRS also upregulates the global regulators Rot and Mgr (both are homologs of SarA). Genes that are controlled by both GraRS and Rot or GraRS and MgrA are boxed. Example genes that are exclusively controlled by GraRS are circled. doi:10.1371/journal.ppat.0030102.g006
SA1793, which encodes a hypothetical protein with a phage-related function. Many of the down-regulated genes are involved in RNA and amino acid synthesis or glycolysis. lrQA, which encodes a holin-like protein with murein hydrolyase activity, is also down-regulated by GraRS but up-regulated by ArcRS and MgrA. Most of the genes are exclusively regulated by GraRS, such as ica, pur, mga, sirA,C, atlA, aaa, dnaJ/K, rpfE, and vreF.G. These results illustrate that there is a distinct cross-regulation between GraRS, ArcRS, Rot, MgrA, and probably some other global regulators.

GraRS is not only important for resistance to glycopeptides, lysozyme, and other CAMPs. Our data suggest that GraRS also has an intermediate role between other global regulators (Agr, MgrA, Rot, and SarA) as GraRS up-regulates both adhesins as well as exoproteins and toxins (e.g., hlb, hlgAB, lukMF, geh). GraRS is possibly involved in the establishment of persistent infections by the up-regulation of colonization factors (e.g., ica, atl, aaa, fih, sirA, sirC, sdrC, sdrE), factors involved in resistance to CAMPs (dlt), factors involved in intermediary vancomycin resistance (vreF.G, as mentioned above), and factors involved in biofilm formation (e.g., dlt, atl, ica). It would be interesting to study the graRS mutant in an animal model for chronic infection.

Materials and Methods

Bacterial strains and plasmids. All of the strains and plasmids that were used are listed in Table 5. Bacteria were grown in Basic Medium (BM) (1% tryptone; Gibco BRL. Life-Technologies, http://www.invitrogen.com/), 0.5% yeast extract (Gibco BRL), 0.5% NaCl, 0.1% K2HPO4, 0.1% glucose, or 0.5% xylose. Bacteria were grown in BM supplemented with 0.5% yeast extract (Gibco BRL), 0.5% NaCl, 0.1% K2HPO4, 0.1% glucose, or 0.5% xylose. The cultures were incubated at 37°C, and 100-ml flask when the cultures reached an OD578nm of nearly 1.0. The MIC assay. The overnight cultures were diluted in BM with 0.5% xylose to a concentration of 0.5 × 108 CFU/mL and aliquoted in 0.5-ml samples, and cationic agents in different concentrations were added. The cultures were incubated with shaking at 37°C for 20–24 h and MIC was determined.

Biofilm assay. An overnight culture was diluted 1:200 in fresh TSB with 0.5% glucose, and 200 μl were filled into microtiter plates and incubated for 20–24 h at 37°C with shaking. The supernatant was removed and the plate was washed two times with PBS (pH 7.4). The plate was dried and the cells were colored with 0.1% safranin.

Isolation of PG. One liter of BM was inoculated with an overnight culture of the WT SA113 or the mutants. Strains were grown for 12 h with shaking at 37°C. Cells were centrifuged, washed twice with cold 0.9% NaCl, diluted in 0.9% NaCl, and boiled for 20 min. After the cells were chilled on ice, they were again centrifuged and washed twice with 0.9% NaCl. The cells were disrupted in a mechanical grinding device using glass beads 150–212 μm (Sigma-Aldrich) at 4°C. The supernatant was removed and the plate was washed two times with PBS (pH 6.8) and 0.5 mg/ml trypsin for 16 h at 37°C to degrade cell-bound proteins. After centrifugation and washing with water, the PG was Pshigolized.

Turbidometric assay of PG. For analyzing the susceptibility of PG to lysozyme, we used a modified method turbidometric assay as described by Clarke [32]. The MIC of the WT SA113 and the mutants were sonicated and diluted to 0.5 mg in 1 ml of 80 mM PBS (pH 6.4). After the addition of 300 μg lysozyme per ml, the decrease in optical density was monitored at the beginning (0 h) and after 4 h at OD600nm and calculated as percentages.

Table 1. List of Strains and Plasmids

Strain or Plasmid	Comment	Reference or Source
S. aureus RN4220	Mutant strain of B325-4, accept foreign DNA	Kreiswirth [46]
S. aureus SA113	Mutant strain of B325, with an agr background and 11-bp deletion in rsB	Bera [10]
S. aureus SA113AaTA	Mutant of SA113 (AaTA-kan)	Bera [10]
S. aureus SA113AdIA	Mutant of SA113 (AdIA-spcl)	Peschel [26]
S. aureus SA113AgraRS	Mutant of SA113 (AgraRS:erm)	This study
S. aureus SA113AgraRS	otaA and AgraRS double mutant of SA113 (AotaA-kan/AgraRS:erm)	This study
S. aureus SA113AdIA	AgraRS:erm and pTX15 containing lysose inducible AgraRS genes	This study
S. aureus SA113AdIA	SA113 and pTX15 containing lysose inducible AgraRS genes	This study
S. carnosus TM300	Host strain for cloning vector pTX15	Gotz [48]
Escherichia coli DH5α	Host strain for cloning vector pBT2	Hanahan [49]
pBT2	Temperature-sensitive E. coli–S. aureus shuttle vector	Brückner [50]
pBTugraRS	pBT2 containing up- and downstream region of AgraRS and ernB cassette	This study
pTX15	Xylose-inducing vector for complementation	Peschel [51]
pTugraRS	pTX15 containing xylose-inducible AgraRS genes	This study
pTVtis	Vector for transposon (Tn917) transposition	Youngman [52]

Lysozyme Resistance in Staphylococcus aureus

The presence of GraRS genes in the strain 8325 indicated that GraRS is possibly involved in the regulation of the expression of colonization factors (e.g., ica, atl, aaa, fib, sirA, sirC, sdrC, sdrE), factors involved in resistance to CAMPs (dlt), factors involved in intermediary vancomycin resistance (vreF.G, as mentioned above), and factors involved in biofilm formation (e.g., dlt, atl, ica). It would be interesting to study the graRS mutant in an animal model for chronic infection.

Table 5. List of Strains and Plasmids

Strain or Plasmid	Comment	Reference or Source
S. aureus RN4220	Mutant strain of B325-4, accept foreign DNA	Kreiswirth [46]
S. aureus SA113	Mutant strain of B325, with an agr background and 11-bp deletion in rsB	Bera [10]
S. aureus SA113AaTA	Mutant of SA113 (AaTA-kan)	Bera [10]
S. aureus SA113AdIA	Mutant of SA113 (AdIA-spcl)	Peschel [26]
S. aureus SA113AgraRS	Mutant of SA113 (AgraRS:erm)	This study
S. aureus SA113AgraRS	otaA and AgraRS double mutant of SA113 (AotaA-kan/AgraRS:erm)	This study
S. aureus SA113AdIA	AgraRS:erm and pTX15 containing lysose inducible AgraRS genes	This study
S. aureus SA113AdIA	SA113 and pTX15 containing lysose inducible AgraRS genes	This study
S. carnosus TM300	Host strain for cloning vector pTX15	Gotz [48]
Escherichia coli DH5α	Host strain for cloning vector pBT2	Hanahan [49]
pBT2	Temperature-sensitive E. coli–S. aureus shuttle vector	Brückner [50]
pBTugraRS	pBT2 containing up- and downstream region of AgraRS and ernB cassette	This study
pTX15	Xylose-inducing vector for complementation	Peschel [51]
pTugraRS	pTX15 containing xylose-inducible AgraRS genes	This study
pTVtis	Vector for transposon (Tn917) transposition	Youngman [52]
Quantification of α-analalytic activity of TA by HPLC. S. aureus strains were grown in BM with 0.25% glucose overnight, centrifuged, washed three times, and resuspended in ammonium acetate buffer (20 mM [pH 6.0]). The OD600nm was adjusted to 30. Aliquots (1 ml) were heat-inactivated by incubation at 99 °C for 10 min and centrifuged, and pellets were dried. After incubation at 37 °C for 1 h with 100 µl of 0.1 N NaOH, 100 µl of 0.1 N HCl were added for neutralization and samples were dried. For derivatization, 100 µl of triethylamine and 100 µl of Marfrey’s reagent (1-fluoro-2,4-dinitrophenyl-5-carboxylamide; Sigma) (10 mM) were added. After incubation at 40 °C for 1 h, samples were dried and resuspended in DMSO:H2O (1:1). Quantification of α-analalytic activity was performed by HPLC as previously described [43].

RNA isolation and real-time RT-PCR. SA113 and the graRS deletion mutant were cultured in 50 ml of BM and harvested at mid-exponential phase. Before RNA isolation, two volumes of RNAprotect bacteria reagent (Qiagen, http://www.qiagen.com/) were added to 10 ml of culture and centrifuged. The cells were lysed by the addition of 50 µg/ml of lysozymin (0.5 mg/ml) (Gennicmedics) in TE buffer and total RNA was isolated using the RNeasy Mini Kit (Qiagen). Contaminating DNA was degraded with the DNase Kit (Ambion, http://www.ambion.com) according to the manufacturer’s instructions. LightCycler RNA-PCR was carried out using the LightCycler RNA amplification Kit SYBR Green I (Roche Biochemicals). In none of the cases an additional control for DNA contamination, each sample was subjected to PCR by using the LightCycler DNA amplification kit for hybridization probes (Roche Biochemicals, Kit SYBR Green I or with the LightCycler Cycler RNA amplification Kit SYBR Green I). Contaminating DNA was degraded with the DNase Kit (Qiagen). Samples were then dried and resuspended in DMSO:H2O (1:1). Quantification of α-analalytic activity was performed by HPLC as previously described [43].

RNA isolation and real-time RT-PCR. SA113 and the graRS deletion mutant were cultured in 50 ml of BM and harvested at mid-exponential phase. Before RNA isolation, two volumes of RNAprotect bacteria reagent (Qiagen, http://www.qiagen.com/) were added to 10 ml of culture and centrifuged. The cells were lysed by the addition of 50 µg/ml of lysozymin (0.5 mg/ml) (Gennicmedics) in TE buffer and total RNA was isolated using the RNeasy Mini Kit (Qiagen). Contaminating DNA was degraded with the DNase Kit (Ambion, http://www.ambion.com) according to the manufacturer’s instructions. LightCycler RNA-PCR was carried out using the LightCycler RNA amplification Kit SYBR Green I (Roche Biochemicals). In none of the cases an additional control for DNA contamination, each sample was subjected to PCR by using the LightCycler DNA amplification kit for hybridization probes (Roche Biochemicals, Kit SYBR Green I or with the LightCycler Cycler RNA amplification Kit SYBR Green I). Contaminating DNA was degraded with the DNase Kit (Qiagen). Samples were then dried and resuspended in DMSO:H2O (1:1). Quantification of α-analalytic activity was performed by HPLC as previously described [43].

References

1. Jolles P, Jolles J (1984) What’s new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63: 165–189.
2. Levy O (2000) Antimicrobial proteins and peptides of blood: Templates for novel antimicrobial agents. Blood 96: 2654–2672.
3. Phillips D (1966) The three-dimensional structure of an enzyme molecule. Sci Am 215: 78–90.
4. Schindler M, Assaf Y, Sharon N, Chipman DM (1977) Mechanism of lysozyme catalysis: Role of ground-state strain in subsite D in hen egg-white lysozyme catalysis: Role of ground-state strain in subsite D in hen egg-white lysozyme catalysis: Role of ground-state strain in subsite D in hen egg-white lysozyme catalysis: Role of ground-state strain in subsite D in hen egg-white lysozyme. Biochemistry 16: 423–431.
5. Blake CC, Johnson LN, Mair GA, North AC, Phillips DC, et al. (1967) Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc London B Biol Sci 167: 378–388.
6. Blundell J, Smith GJ, Perkins HR (1980) The peptidoglycan of the cell wall of Proteus mirabilis. Eur J Biochem 95: 487–495.
7. Chen AJ, Dupont C (1991) O-acetylated peptidoglycan: Its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38: 85–91.
8. Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltansferase OaTα is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778–787.
9. Bera A, Biswas R, Herbert S, Götz F (2006) The presence of peptidoglycan O-acetyltansferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74: 4598–4604.
10. Bera A, Götz F (1997) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis. Inhibition by chitin oligosaccharides. Infect Immun 48: 720–728.
11. Bera A, Herbert S, Götz F (2006) The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74: 4598–4604.
12. Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltansferase OaTα is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778–787.
13. Bera A, Biswas R, Herbert S, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltansferase OaTα is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778–787.
14. Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltansferase OaTα is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778–787.
15. Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltansferase OaTα is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778–787.
25. Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24: 1013–1024.

26. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, et al. (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274: 8405–8410.

27. Bierbaum G, Sahl HG (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 169: 5452–5458.

28. Kawata S, Takemura T, Yokogawa K (1983) Characterization of two N-acetylmuramidases from Streptomyces globisporus 1829. Agric Biol Chem 48: 261–269.

29. Endl J, Seidl HP, Fiedler F, Schleifer KH (1983) Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135: 215–223.

30. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, et al. (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10: 243–245.

31. Ginsburg I (2001) Bacterial cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics? It is enigmatic why this concept is consistently disregarded. Med Hypotheses 62: 367–374.

32. Ginsburg I (2001) Cationic peptides from leukocytes might kill bacteria by activating their autolytic enzymes causing bacteriolysis: Why are publications proposing this concept never acknowledged? Blood 97: 2530–2531.

33. Wecke J, Lahav M, Ginsburg I, Giesbrecht P (1982) Cell wall degradation of Strepomyces globisporus amidase. J Bacteriol 169: 5452–5458.

34. Clarke AJ (1993) Extent of peptidoglycan substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus, Staphylococcus carnosus and Staphylococcus simulans. J Bacteriol 175: 4550–4555.

35. Cleveland RF, Wicken AJ, Daneo-Moore L, Shockman GD (1976) Inhibition of wall autolysis in Streptococcus faecalis by lysozyme. Arch Microbiol 131: 116–123.

36. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67: 686–723.

37. Steen A, Palumbo E, Dегhorain M, Cocconcelli PS, Delcour J, et al. (2005) Autolysis of Lactococcus lactis is increased upon D-alanine depletion of peptidoglycan and lipoteichoic acids. J Bacteriol 187: 114–124.

38. Meehl M, Herbert S, Götz F, Cheung A (2007) Interaction of the GraRS two-component system with the VraFG ABC-transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51: E-pub 14 May 2007.

39. Said-Salim B, Dunman PM, McAleese FM, Macapagal D, Murphy E, et al. (2005) Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol 187: 610–619.

40. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY (2006) Transcription profiling of the mrgA regulon in Staphylococcus aureus. J Bacteriol 188: 1899–1910.

41. Liang X, Zheng L, Landwehr C, Lundford D, Holmes D, et al. (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187: 5486–5492.

42. Clarke AJ (1993) Extent of peptidoglycan O acetylation in the tribe Proteaceae. J Bacteriol 175: 4550–4555.

43. Kovacs M, Halfmann A, Fredike I, Heintz M, Peschel A, et al. (2006) A functional dlt operon, encoding proteins required for incorporation of D-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188: 5797–5805.

44. Goerke C, Fluckiger U, Steinhuber A, Bisanzio V, Ulrich M, et al. (2005) Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect Immun 73: 3415–3421.

45. Resch A, Fehrenbacher B, Eisele K, Schaller M, Götz F (2005) Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett 252: 89–96.

46. Kreiswirth BN, Lofdahl S, Betley MJ, O’Reilly M, Schlievert PM, et al. (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709–712.

47. Jorandlesu S, Sundeau M (1976) Two restriction and modification systems in Staphylococcus aureus NCTC8325. J Gen Microbiol 96: 277–281.

48. Götz F (1990) Staphylococcus carnosus: A new host organism for gene cloning and protein production. J Appl Bacteriol Supp. 69: 49–53.

49. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580.

50. Brückner R (1997) Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett 151: 1–8.

51. Peschel A, Ottenwaelder B, Götz F (1996) Inducible production and cellular location of the epidermin biosynthetic enzyme EpiB using an improved staphylococcal expression system. FEMS Microbiol Lett 137: 225–230.

52. Said-Salim B, Dunman PM, McAleese FM, Macapagal D, Murphy E, et al. (2005) Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol 187: 610–619.

53. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY (2006) Transcription profiling of the mrgA regulon in Staphylococcus aureus. J Bacteriol 188: 1899–1910.

54. Liang X, Zheng L, Landwehr C, Lundford D, Holmes D, et al. (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187: 5486–5492.

55. Clarke AJ (1993) Extent of peptidoglycan O acetylation in the tribe Proteaceae. J Bacteriol 175: 4550–4555.

56. Kovacs M, Halfmann A, Fredike I, Heintz M, Peschel A, et al. (2006) A functional dlt operon, encoding proteins required for incorporation of D-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188: 5797–5805.

57. Goerke C, Fluckiger U, Steinhuber A, Bisanzio V, Ulrich M, et al. (2005) Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect Immun 73: 3415–3421.

58. Resch A, Fehrenbacher B, Eisele K, Schaller M, Götz F (2005) Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett 252: 89–96.

59. Kreiswirth BN, Lofdahl S, Betley MJ, O’Reilly M, Schlievert PM, et al. (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709–712.

60. Jorandlesu S, Sundeau M (1976) Two restriction and modification systems in Staphylococcus aureus NCTC8325. J Gen Microbiol 96: 277–281.

61. Götz F (1990) Staphylococcus carnosus: A new host organism for gene cloning and protein production. J Appl Bacteriol Supp. 69: 49–53.

62. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580.

63. Brückner R (1997) Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett 151: 1–8.

64. Peschel A, Ottenwaelder B, Götz F (1996) Inducible production and cellular location of the epidermin biosynthetic enzyme EpiB using an improved staphylococcal expression system. FEMS Microbiol Lett 137: 225–230.

65. Youngman P, Poth H, Green B, York K, Olmedo G, et al. (2009) Methods for genetic manipulation, cloning and functional analysis of sporulation genes in Bacillus subtilis. In: Smith I, Stepecky RA, Setlow P, editors. Regulation of procaryotic development. Washington (D.C.): American Society for Microbiology. pp. 65–69.