Stereotactic radiosurgery versus stereotactic radiotherapy in the management of intracranial meningiomas: a systematic review and meta-analysis

Nida Fatima, MBBS, MD,¹ Antonio Meola, MD, PhD,¹ Erqi L. Pollom, MD, MS,² Scott G. Soltys, MD,² and Steven D. Chang, MD¹

¹Department of Neurosurgery, Stanford University School of Medicine, Palo Alto; and ²Department of Radiation Oncology, Stanford University, Stanford, California

OBJECTIVE Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) have been used as a primary treatment or adjuvant to resection in the management of intracranial meningiomas (ICMs). The aim of this analysis is to compare the safety and long-term efficacy of SRS and SRT in patients with primary or recurrent ICMs.

METHODS A systematic review of the literature comparing SRT and SRS in the same study was conducted using PubMed, the Cochrane Library, Google Scholar, and EMBASE from January 1980 to December 2018. Randomized controlled trials, case-control studies, and cohort studies (prospective and retrospective) analyzing SRS versus SRT for the treatment of ICMs in adult patients (age > 16 years) were included. Pooled and subgroup analyses were based on the fixed-effect model.

RESULTS A total of 1736 patients from 12 retrospective studies were included. The treatment modality used was: 1) SRS (n = 306), including Gamma Knife surgery (n = 36), linear accelerator (n = 261), and CyberKnife (n = 9); or 2) SRT (n = 1430), including hypofractionated SRT (hFSRT, n = 268) and full-fractionated SRT (FSRT, n = 1162). The median age of patients at the time of treatment was 59 years. The median follow-up duration after treatment was 35.5 months. The median tumor volumes at the time of treatment with SRS, hFSRT, and FSRT were 2.84 cm³, 5.45 cm³, and 12.75 cm³, respectively. The radiographic tumor control at last follow-up was significantly worse in patients who underwent SRS than SRT (odds ratio [OR] 0.47, 95% confidence interval [CI] 0.27–0.82, p = 0.007) with 7% less volume of tumor shrinkage (OR 0.93, 95% CI 0.61–1.40, p = 0.72). Compared to SRS, the radiographic tumor control was better achieved by FSRT (OR 0.46, 95% CI 0.26–0.80, p = 0.006) than by hFSRT (OR 0.81, 95% CI 0.21–3.17, p = 0.76). Moreover, SRS leads to a significantly higher risk of clinical neurological worsening during follow-up (OR 2.07, 95% CI 1.06–4.06, p = 0.03) and of immediate symptomatic edema (OR 4.58, 95% CI 1.67–12.56, p = 0.003) with respect to SRT. SRT could produce a better progression-free survival at 4–10 years compared to SRS, but this was not statistically significant (p = 0.29).

CONCLUSIONS SRS and SRT are both safe options in the management of ICMs. However, SRT carries a better radiographic tumor control rate and a lower incidence of posttreatment symptomatic worsening and symptomatic edema, with respect to SRS. However, further prospective studies are still needed to validate these results.

https://thejns.org/doi/abs/10.3171/2019.3.FOCUS1970

KEYWORDS stereotactic radiosurgery; stereotactic radiotherapy; intracranial meningioma; Gamma Knife; CyberKnife; LINAC

INTRACRANIAL meningioma (ICM) constitutes 33.8% of all brain tumors and is almost always histologically benign (95%). Atypical ICMs comprise 5%–15% and the malignant variety encompasses 1%–3% of meningiomas, and is associated with a higher risk of tumor recurrence after surgery than benign meningioma. Gross-total resection (GTR) using a microsurgical technique is the treatment of choice for easily accessible meningiomas. However, meningiomas adjacent to, or abutting, critical neural or vascular structures, such as skull base menin-
giomas, carry a significant risk of morbidity and mortality if GTR is pursued. Stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) have emerged as highly effective alternatives or as complements to resection. SRS and SRT have been used as primary therapy for benign meningioma, especially when located closer to critical areas, as well as for adjuvant treatment for residual or recurrent tumors. SRS and SRT have been used as primary therapy for benign meningioma, especially when located closer to critical areas, as well as for adjuvant treatment for residual or recurrent tumors. SRS carries a 5-year tumor control rate similar to GTR, with lower morbidity than surgery, especially for skull base lesions. Moreover, adjuvant radiation treatment of meningiomas initially treated with subtotal resection (STR) results in a tumor control rate equivalent to GTR. Radiation can be delivered using different techniques that are grouped into two categories, namely SRT and SRS. SRT includes one to a maximum of five sessions of Gamma Knife surgery (GKS), linear accelerator (LINAC) treatment, and CyberKnife, while SRT includes multisession hypofractionated SRT (hFSRT) and full-fractionated SRT (FSRT). No language or publication status restrictions were imposed.

Outcome Measures
Primary outcome measures included radiographic tumor control at last follow-up and clinical worsening at any stage of follow-up. Radiographic tumor control was defined as a stable appearance or shrinkage of the tumor noted on CT or MRI. Clinical worsening was defined as a decline in neurological symptoms.

Secondary outcome measures included tumor shrinkage at last follow-up, symptomatic edema immediately after radiation treatment, and progression-free survival (PFS). Tumor shrinkage was defined as regression in tumor volume. PFS was defined as length of time after radiation treatment to disease progression or death from any cause.

Methods
The present review was performed according to the PRISMA guidelines for systematic reviews and meta-analyses.
Authors & Year	No. of Pts (tumors)	Median Age (range), yrs	Meningioma	Histological Grade	Op:	Median Tumor Vol SRS/SRT (cm³)	Radiation	Median FU SRS/SRT (mos)	Indication for Tx
Lo et al., 2002	53 (63)	66 (22–85)	Petroclival (10), sphenoid (19), & cavernous sinus (1), convexity (19), cerebellar (4), parasagittal (4), tentorial (6)	Grade 1, 47 (74.6%); grade 2, 5 (7.5%); grade 3, 11 (17.4%)	Prior op, 5/53 (9.4%); primary, 48/53 (90.6%)	6.8/8.8	SRS (35), FSRT (18, LINAC-based)	38/30.5	Pts w/ meningiomas < 5 mm from critical structures such as the optic chiasm & brainstem or tumors of large size (usually 4 cm or larger) were selected for FSRT
Torres et al., 2003	128 (156)	57.2 (18–87)	ICM, 156	NA	Prior op, 84/161 (52.1%); primary, 44/161 (27.3%)	12.7/16.1	SRS (79), FSRT (77, LINAC-based)	40/24	SRS is indicated for ICMs < 3 cm or 20 ml in vol & w/ min distance from the optic apparatus of 2–4 cm
Metellus et al., 2005	74	51.2 (53)	Cavernous sinus meningioma	Grade 1, 14 (18.9%, GKS); 23 (31%, FSRT)	GKS: prior op, 13; primary, 23 FSRT: prior op, 17; primary, 15	5.2/13.5	GKS (36), FSRT (conventional EBRT), 38	63.6/88.6	Pts w/ tumors > 3 cm, showing a close relationship w/ optic apparatus (3 mm) or skull base dural spreading, were treated by FSRT
Henzel et al., 2006	224	59 (22–85)	Frontobasal (3), optic nerve (6), cavernous sinus (134), petroclival (37), tentorial (17), falxial (19), others (8)	Grade 1, 113 (50.4%); grade 2, 10 (4.5%); grade 3, 6 (2.6%)	Prior op, 129/224 (57.6%); SRT/SRS: prior op, 224 (42.4%)	1.9/3.8/12.0 (SRS/hFSRT/SRT)	SRS (11), hFSRT (30), SRT (183, LINAC-based)	36	SRT: tumors > 4 ml, distance to critical structures < 2 mm; hSRT: > 4 ml, distance > 2 mm; SRS: < 4 ml, distance > 2 mm
Girvigian et al., 2008	32	59 (22–84); 57 (29–75)	Convexity (18), parasagittal (20)	Grade 2, 4 (12.5%)	Prior op, 16/32 (50%); primary, 14/32 (44%)	2.84/7.46	SRS (14), FSRT (16, LINAC-based)	20/18	Pts w/ incomplete resection (grade III or IV) for convexity or parasagittal meningiomas are candidates for conformal EBRT or SRS; GKS Tx was used for tumors < 3 cm in size, at least 3 mm distant from the optic nerve, & the absence of dural spreading on the cranial base
Hamm et al., 2008	224	59 (22–85)	Skull base meningioma	Grade 1, 196 (87.5%); grade 2, 17 (7.5%); grade 3, 10 (4.5%)	Prior op, 129/224 (57.6%); primary, 95/224 (42.4%)	0.16–3.56/135	SRS (11), hFSRT (30), FSRT (183, LINAC-based)	36	SRT consisted of the tumor vol + a safety margin of approx. 2 mm for WHO grade I & II meningiomas & 5 mm for WHO grade III meningiomas

TABLE 1. Baseline characteristics of the included patients
TABLE 1. Baseline characteristics of the included patients

Authors & Year	No. of Pts (tumors)	Median Age (range), yrs	Location (n)	Histological Grade	Op: Primary RT	Median Tumor Vol (cm³)	Radiation	Dose in cGy & Fractions	Indication for Tx
Eldebawy et al., 2011	32/44 (21–67)	44 (21–67)	Sellar & parasellar (10), lobar (9), cavernous sinus (5), skull base (8)	Grade 1, 32 (100%)	Prior, 18/32 (56.2%); primary, 14/32 (43.7%)	9.2 (1.8–39.7)	SRS (19), hFSRT (13)	NA	SRS: radiological well-defined lesion, small vol & away from critical structures; hFSRT: large vol lesions involving critical structures
Han et al., 2014	213 (220)	59 (28–84)	Basal meningiomas	SRS/SRT: grade 1, 12 (5.5%)/42 (19%); grade 2, 3 (1.3%)/4 (1.8%); grade 3, 3 (1.3%)/7 (3.1%); Unknown: 3 (1.3%)/7 (3.1%)	Prior, 74 (33.6%); GTR, 44 STR, 5 biopsy; primary, 146 (66.3%)	2.8/4.8/11.1	X-Knife SRS (55), hFSRT (22), FSRT (143, LINAC-based)	SRS, 1250, 1 fraction; hFSRT, 2500, 5 fractions; FRT, 5040, 28 fractions	SRS: tumors located in the CPA < 3 cm in max diameter, in anterior skull base tumor < 3 cm in diameter & at least > 2 mm from the optic apparatus; FRT: pts w/ tumor causing optic nerve/chiasm dysfunction, or < 2 mm from the optic structures or large tumor diameter (> 3 cm); hFSRT: tumor size btwn 3 & 5 cm in diameter & > 2 mm from the optic apparatus
Kaul et al., 2014	297	59	Skull base (254), falx (20), convexity (23)	Grade 1, 50 (16.8%); grade 2, 20 (6.7%); grade 3, 12 (4.04%); no histology = 215 (72.4%)	Prior, 158/297 (53.2%); primary, 144/297 (48.5%)	15.01	SRS (28), hFSRT (32), FSRT (179, LINAC-based)	SRS, 1730, hFSRT, 3760; FRT, 5731	Tumors in close proximity to critical structures were assigned to FSRT, while large tumors (> 2 cm) distant to critical structures underwent hFSRT & small tumors (< 2 cm) were treated by SRS
Fokas et al., 2014	318	66 (13–85)	Olfactory (3), optic (14), sphenoid wing (100), cavernous sinus (69), petroclival (39), temporal (13), falx (27), tentorium (8), frontobasal (15), occipital (4), CPA (8), overlapping (16)	Grade 1, 318 (100%)	NA	1.84/6.11/16.0	SRS (16), hFSRT (49), FSRT (253, LINAC-based)	hFSRT, 400, 10 fractions, or 500, 5–7 fractions; FRT, 5580	FSRT: tumor size > 4 cm³, distance to critical structures < 2 mm, 49 pts (15.4%); hFSRT: tumor size > 4 cm³, distance > 2 mm to critical structures, & 16 pts (5.0%) were treated w/ SRS (tumor size < 4 cm³, distance > 2 mm)
Information Sources
The following databases were reviewed: PubMed, Cochrane Library, Google Scholar, and EMBASE. In addition, we reviewed the unpublished “gray” literature including unpublished abstracts from European and American Radiation Oncology conferences over the last 30 years related to SRS and SRT for ICM. However, none of the abstracts met our inclusion criteria. Articles published between January 1980 and December 2018 were searched. The last search was performed on December 11, 2018 (Fig. 1).

Literature Search
The following MeSH headings were searched: “radiosurgery”, “radiotherapy”, and “meningioma”. A total of 150 articles were retrieved using these MeSH headings.

Study Selection and Data Extraction
Eligibility assessment was performed independently in an unblinded standardized manner by 2 reviewers (N.F. and A.M.), on the basis of the inclusion criteria. Disagreements between the reviewers were resolved by consensus. We developed the data extraction sheet based on the Cochrane Consumers and Communication Group’s data extraction template. No author was contacted for further information and data were extracted from the articles.

Data Items
Information was extracted from each study, including: 1) demographic characteristics of patients (median age at time of treatment, median tumor size, tumor location, prior resection, and histological grade of tumor); 2) radiation treatment characteristics (radiation technique, median radiation dose, and median number of fractions); and 3) outcome measures (radiographic tumor control, tumor shrinkage, clinical worsening during follow-up, and PFS).

Risk of Bias in Individual Studies
Before conducting studies, we hypothesized that the effect size was the same.

Summary Measures
The meta-analysis was performed by computing odds ratios (ORs) using a fixed-effects model. Quantitative analysis was performed on the radiographic tumor control at last follow-up and clinical response. ORs and 95% confidence intervals (CIs) for each clinical outcome were calculated.

Planned Method of Analysis
The Review Manager program (version 5) as provided by the Cochrane Library was used to perform statistical analysis. The data from each study was extracted from the articles processed by the software to perform a pooled meta-analysis and subgroup analysis. The radiographic tumor control provided by SRS was computed against SRT and further subgroup analysis was performed by comparing SRS against the hFSRT and the FSRT. Further analysis included tumor shrinkage, clinical worsening,
and symptomatic edema and PFS. The OR from separate studies was then analyzed against the fixed-model effect. Heterogeneity between studies was assessed with the I² statistic.

Risk of Bias Across Studies

None of the included studies was an RCT. Double-blindedness was not achieved in any of the studies. However, high heterogeneity with significant p values was observed in studies involving tumor shrinkage. This was further analyzed using funnel plots that showed asymmetrical distribution. Removal of 1 study decreased the heterogeneity, which indicated that the bias could be due to sample size.

Results

Study Selection

Figure 1 shows a flow diagram of study selection according to PRISMA guidelines.21 A total of 1100 articles were retrieved from PubMed, the Cochrane Library, Google Scholar, and EMBASE. Of 150 eligible articles, 84 were excluded due to missing quantitative outcome data and 54 studies did not present the long-term follow-up, beyond 1 year. No other unpublished studies or abstracts were included. Hence, 12 studies were included in the meta-analysis.

Study Characteristics

All included studies were retrospective. The studies were performed in the US (n = 6), Germany (n = 3), France (n = 1), Japan (n = 1), and Egypt (n = 1). The studies reported the treatment of patients with SRS (n = 306), including GKS (n = 36), LINAC (n = 261), and CyberKnife (n = 9), or SRT (n = 1430), including hFSRT (n = 268), FSRT (n = 1090), and IMRT (n = 72). The baseline characteristics and outcomes of the included patients are reported in Tables 1–3.
The median age of patients at the time of treatment was 59 years. Six hundred forty-three patients (37%) underwent prior microsurgical resection. Eight hundred sixty tumors were benign meningiomas (73.6%), 70 were atypical meningiomas (6%), and 48 were malignant meningiomas (4%). The median tumor sizes at the time of treatment with SRS, hFSRT, and FSRT were 2.84 cm³, 5.45 cm³, and 12.75 cm³, respectively. The median margin doses and fractions for SRS, hFSRT, and FSRT were 1520 cGy in 1 fraction, 3375 cGy in 5–10 fractions, and 5350 cGy in more than 10 fractions (28–30), respectively. The median follow-up duration was 35.5 months.

Study Outcomes

Overall, radiographic tumor control at last follow-up was achieved in 75.5% and 90.2% of patients who received SRS and SRT, respectively. In a pooled meta-analysis of included studies, SRS was significantly associated with a lower likelihood of radiographic tumor control at last follow-up than SRT (OR 0.47, 95% CI 0.27–0.82, p = 0.007; Fig. 2A). Further analysis indicated that, with respect to SRS, tumor control was better achieved by FSRT (OR 0.46, 95% CI 0.26–0.80, p = 0.006) than by hFSRT (OR 0.81, 95% CI 0.21–3.17, p = 0.76; Fig. 2B and C).

Tumor shrinkage at last follow-up occurred in 31.5% of meningiomas treated with SRT, whereas this occurred in 27.8% of meningiomas treated with SRS. Moreover, SRS carried a 7% less extent of tumor volume shrinkage at last follow-up with respect to SRT (OR 0.93, 95% CI 0.61–1.40, p = 0.72; Fig. 3).

During clinical follow-up, 10.2% and 6% of patients who received SRS and SRT, respectively, experienced clinical worsening. In addition, the incidence of symptomatic edema was found to be higher in patients treated with SRS than with SRT (17.4% vs. 4%). In a subgroup analysis, SRS had a 2-fold higher likelihood of clinical worsening during follow-up (OR 2.07, 95% CI 1.06–4.06, p = 0.03) and 4 times higher risk of immediate postradiation symptomatic edema (OR 4.58, 95% CI 1.67–12.56, p = 0.003; Fig. 4) with respect to SRT.

PFS at 4–10 years was achieved in 89% and 88.8% in the cohort of patients treated with SRS and SRT, respectively. Furthermore, SRT could lead to a better, yet statis-
tically nonsignificant, PFS at 4–10 years than SRS (OR 0.72, 95% CI 0.38–1.34, \(p = 0.29 \); Fig. 5).

Discussion

In this study we present a systematic review and meta-analysis of the outcomes of patients affected with ICM who underwent SRS or SRT, with or without prior resection. The vast majority of patients (1162, 67%), were treated by FSRT. In all studies together, a total of 643 tumors (37%) underwent prior resection, while the remaining 63% of tumors received either SRS or SRT as primary treatment.

SRT was used to treat larger tumor volumes (median 12.75 cm\(^3\) for FSRT, 5.45 cm\(^3\) for hFSRT) with respect to SRS (median tumor volume 2.84 cm\(^3\)). These findings are consistent with those in previously published literature\(^{20}\) and with the European Association of Neuro-Oncology (EANO) guidelines recommending treatment of smaller meningiomas with SRS, and treatment of larger or recurrent meningiomas with SRT.\(^{5,11,16,33}\) SRT and other external beam radiation therapy (EBRT) techniques (such as conventional 3D or intensity-modulated radiation therapy [IMRT]) are distinguished by the accuracy of the treatment delivery, based on intrafraction and interfraction accuracy.\(^{9,37}\) SRT is fractionated treatment delivered with the same principles guiding (single-fraction) SRS.\(^{37}\) Therefore, as defined by society-accepted practice guidelines,\(^{37}\) SRS is defined as “radiation therapy delivered via stereotactic guidance with approximately 1 mm targeting accuracy to intracranial targets in 1 to 5 fractions.” Conversely, SRT is treatment with the same level of accuracy, but with more than 5 fractions.\(^{37}\)

FIG. 2. Radiographic tumor control at last follow-up. Pooled meta-analysis of all included studies. A: SRS compared to SRT (hFSRT/FSRT). SRS provides a worse radiographic tumor control at last follow-up than SRT (OR 0.47, 95% CI 0.27–0.82, \(p = 0.007 \)). B: SRS compared to FSRT. FSRT provides better tumor control than SRS (OR 0.46, 95% CI 0.26–0.80, \(p = 0.008 \)). C: SRS compared to hFSRT. hFSRT could provide better tumor control than SRS, but the difference is not statistically significant (OR 0.81, 95% CI 0.21–3.17, \(p = 0.76 \)).

FIG. 3. Subgroup analysis of tumor shrinkage in SRS versus SRT (hFSRT/FSRT) at last follow-up. The comparison demonstrated 7% less volume of tumor shrinkage with SRS than SRT (OR 0.93, 95% CI 0.61–0.1.40, \(p = 0.72 \)).
In our study we found that SRT is significantly associated with better radiographic tumor control and with higher extent of tumor shrinkage at last follow-up compared to SRS (p = 0.007 and p = 0.72, respectively). These findings are consistent with a previous meta-analysis of skull base meningiomas that reported a local tumor control rate at 5 years with SRT of 85%–100%, while with SRS the rate was 85%–97%. However another retrospective series investigating cavernous sinus meningiomas found that monofractionated treatment (GKS and LINAC) induced more tumor shrinkage than FSRT (52.5% vs 20%, p = 0.001). In the same study, the mean radiated tumor volume was 7.4 cm³ and 6.8 cm³ for GKS and LINAC, respectively, whereas for SRT the volume was 12.6 cm³. A potential explanation for the contradictory findings of our study with respect to the study by Leroy et al. is that in our review the mean tumor volume of meningiomas treated with SRS was 2.84 cm³, while the tumor volume of meningiomas treated with SRT was larger (median 12.75 cm³ for FSRT and 5.45 cm³ for hFSRT). The difference in radiographic tumor control could be explained by a systematic error in the measurement of the tumor size change in the case of small meningiomas, which were usually treated with SRS instead of SRT. However, improved radiographic tumor control and a lower incidence of adverse effects (clinical worsening and symptomatic edema) provided by SRT with respect to SRS could be also explained by the biological effects of dose fractionation. In fact, fractionation allows SRT to deliver a higher radiation dose, even to complex-shaped tumors, with high precision and accuracy, and minimize the unwanted dose to the adjacent healthy tissues. This hypothesis is strengthened by the fact that, with respect to SRS, tumor control was better achieved by FSRT (OR 0.46, 95% CI 0.26–0.80, p = 0.006) than by hFSRT (OR 0.81, 95% CI 0.21–3.17, p = 0.76).

The clinical outcomes varied significantly across studies reporting the use of SRS and SRT (p = 0.03). Overall, patients treated with SRS experienced clinical worsening during follow-up twice as frequently as those treated with SRT. However, some studies failed to reveal any statistically significant difference in the risk of clinical worsening between SRS and SRT. From a radiobiological perspective, SRS is delivered in very few fractions, carrying a higher risk of direct vascular injury and release of various tumor-specific antigens and inflammatory cytokines. These effects, along with tumor progression, could result in clinical and neurological worsening. Accordingly, postradiation symptomatic edema was significantly more
frequently associated with SRS than with SRT (p = 0.003). Specifically, SRS can induce disruption of the tumor-brain interface, leading to spread of vasogenic fluid into the brain tissue and causing formation/aggravation of peritumoral edema.2,3,9,10 PFS at 4–10 years was better achieved in a cohort of patients who received SRT compared to SRS, although the difference between the two techniques was not statistically significant (p = 0.29). These finding are consistent with previous studies showing that the 5-year PFS for meningiomas treated with SRS was 94%–98.5%, with LINAC 95%–96%,4,19,31 with FSRT 97.4%, and with hFSRT 96.9%:3,16

The present meta-analysis includes a large population of patients. However, there are several limitations to this study. First, the included studies presented relatively small retrospective series, lacking randomization and control groups. Second, different studies adopted different treatment protocols including, but not limited to, radiation dose, fractionation, radiation technique, and indications for treatment. Different patients within a single study cohort were sometimes treated with different radiation techniques.8,13,14,17,18 In these studies, the results of different radiation techniques could be affected by a selection bias. Third, the evolution of the histological classification and grading of meningiomas might have affected our results. In fact, the series included in the present review was published over more than one decade, between 2002 and 2017. In the same temporal span, the classification of meningioma changed12,23 and, as a consequence, the same tumor could have been included under different categories in different studies. Moreover, a few studies did not report the histological grade of the meningiomas at all. Fourth, the RECIST (Response Evaluation Criteria in Solid Tumors) criteriaa for assessing tumor response to the treatment were not consistently followed. Specifically, although the studies used MRI with contrast enhancement for radiological follow-up, the definition of tumor progression or response was not always described, or varied across different studies. Therefore, further studies are required to validate our findings and should include randomized controlled trials comparing the treatment strategies of ICMs.

Conclusions

SRS and SRT are highly effective treatment modalities in the management of ICM either as primary or adjuvant therapy. FSRT and hFSRT achieved better radiographic tumor control and greater extent of tumor shrinkage in comparison to SRS. SRS has a higher risk of clinical deficits and symptomatic edema risk in comparison with SRT. However, PFS is not significantly different across the two techniques. Further prospective studies are needed to investigate and compare the risks and benefits of SRT and of SRS for ICMs.

References

1. Bloch O, Kaur G, Jian BJ, Parsa AT, Barani IJ: Stereotactic radiosurgery for benign meningiomas. J Neurooncol 107(1):13–20, 2012
2. Cai R, Barnett GH, Novak E, Chao ST, Suh JH: Principal risk of peritumoral edema after stereotactic radiosurgery for intracranial meningioma is tumor-brain contact interface area. Neurosurgery 66:513–522, 2010
3. Chung LK, Mathur I, Lagman C, Bui TT, Lee SJ, Voth BL, et al: Stereotactic radiosurgery versus fractionated stereotactic radiotherapy in benign meningioma. J Clin Neurosci 36:1–5, 2017
4. Colombo F, Casentini L, Cavedon C, Scalchi P, Cora S, Francescon P: Cyberknife radiosurgery for benign meningiomas: short-term results in 199 patients. Neurosurgery 64(2 Suppl):A7–A13, 2009
5. Debus J, Wuendrich M, Pirzkall A, Hoess A, Schlegel W, Zuna I, et al: High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol 19:3547–3553, 2001
6. Eisenhauer EA, Therasse P, Bogdanski J, Schwartz LH, Sargent D, Ford R, et al: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247, 2009
7. Eldebawy E, Mousa A, Reda W, Elgantiry M: Stereotactic radiosurgery and radiotherapy in benign intracranial meningioma. J Egypt Natl Canc Inst 23:89–93, 2011
8. Fokas E, Henzel M, Surber G, Hamm K, Engenhart-Cabillic R: Stereotactic radiation therapy for benign meningioma: long-term outcome in 318 patients. Int J Radiat Oncol Biol Phys 89:569–575, 2014
9. Fossati P, Vavassori A, Deantonio L, Ferrara E, Krengli M, Orecchia R: Review of proton and proton radiotherapy for skull base tumours. Rep Pract Oncol Radiother 21:336–355, 2016
10. Girvigian MR, Chen JC, Rahimian J, Miller MJ, Tome M: Comparison of early complications for patients with convexity and parasagittal meningiomas treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Neurosurgery 62(5 Suppl):A19–A28, 2008
11. Goldbrunner R, Minniti G, Preusser M, Jenkinson MD, Salhabanda K, Houdart E, et al: EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol 17:e383–e391, 2016
12. Hamilton SR, Aaltonen LA: World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Digestive System. Lyon, France: International Agency for Research on Cancer Press, 2000
13. Hamm K, Henzel M, Gross MW, Surber G, Kleinert G, Engenhart-Cabillic R: Radiosurgery/stereotactic radiotherapy in the therapeutical concept for skull base meningiomas. Zentralbl Neurochir 69:14–21, 2008
14. Han J, Girvigian MR, Chen JC, Miller MJ, Lodin K, Rahimian J, et al: A comparative study of stereotactic radiosurgery, hypofractionated, and fractionated stereotactic radiotherapy in the treatment of skull base meningiomas. Am J Clin Oncol 37:255–260, 2014
15. Henzel M, Gross MW, Hamm K, Surber G, Kleinert G, Failing T, et al: Stereotactic radiotherapy of meningiomas: symptomatology, acute and late toxicity. Strahlenther Onkol 182:382–388, 2006
16. Ibuki Y, Yamanaka K, Nakajima H: Two-staged gamma knife radiosurgery for the treatment of large petroclival and cavernous sinus meningiomas. Surg Neurol 56:308–314, 2001
17. Kaul D, Budach W, Vurm R, Grien A, Graeff L, Habbel P, et al: Linac-based stereotactic radiotherapy and radiosurgery in patients with meningioma. Radiat Oncol 9:78, 2014
18. Knitter J, Lemolet GM, Erly KW, Sanan A, Stea B: Comparing outcomes of meningiomas treated with stereotactic radiosurgery (SRS), stereotactic radiation therapy (SRT), or intensity modulated radiation therapy (IMRT): a 10 year single-institution experience. Int J Radiat Oncol Biol Phys 93 Suppl:E64, 2015
19. Kreil W, Luggin J, Fuchs I, Weilig V, Eustachio S, Pa-
paefthymiou G: Long term experience of gamma knife radiosurgery for benign skull base meningiomas. *J Neurol Neurosurg Psychiatry* 76:1425–1430, 2005

20. Leroy HA, Tuleasca C, Reynolds N, Levivier M: Radiosurgery and fractionated radiotherapy for cavernous sinus meningioma: a systematic review and meta-analysis. *Acta Neurochir (Wien)* 160:2367–2378, 2018

21. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* 339:h2270, 2009

22. Lo SS, Cho KH, Hall WA, Hernandez RJ, McCollow KK, et al: Single dose versus fractionated stereotactic radiotherapy for meningiomas. *Can J Neurol Sci* 29:240–248, 2002

23. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathol* 131:803–820, 2016

24. Macià i Garau M: Radiobiology of stereotactic body radiotherapy (SBRT). *Rep Pract Oncol Radiat* 22:86–95, 2017

25. Mahmood A, Qureshi NH, Malik GM: Intracranial meningiomas: analysis of recurrence after surgical treatment. *Acta Neurochir (Wien)* 126:53–58, 1994

26. Manabe Y, Murai T, Ogino H, Tamura T, Iwabuchi M, Mori Y, et al: CyberKnife stereotactic radiosurgery and hypofractionated stereotactic radiotherapy as first-line treatments for imaging-diagnosed intracranial meningiomas. *Neurou Med Chir (Tokyo)* 57:627–633, 2017

27. McGregor JM, Sarkar A: Stereotactic radiosurgery and stereotactic radiotherapy in the treatment of skull base meningiomas. *Otolaryngol Clin North Am* 42:677–688, 2009

28. Metellus P, Regis J, Muracciole X, Fuentes S, Dufour H, Nanni I, et al: Evaluation of fractionated radiotherapy and gamma knife radiosurgery in cavernous sinus meningiomas: treatment strategy. *Neurosurgery* 57:873–886, 2005

29. Minniti G, Amichetti M, Enrici RM: Radiotherapy and radiosurgery for benign skull base meningiomas. *Radiat Oncol* 4:22, 2009

30. Najem K, Margolin E: Meningioma, optic nerve sheath. *StatPearls.* (https://www.ncbi.nlm.nih.gov/books/NBK430868/) [Accessed April 4, 2019]

31. Nicolato A, Foroni R, Alessandrini F, Bricolo A, Gerosa M: Radiosurgical treatment of cavernous sinus meningiomas: experience with 122 treated patients. *Neurosurgery* 51:1153–1161, 2002

32. Ogemann SG, Sneed PK, Larson DA, Gutin PH, Berger MS, Verhey L, et al: Radiosurgery for malignant meningioma: results in 22 patients. *J Neurosurg 93 (Suppl 3):*e62–67, 2000

33. Rashid A, Memon MA, Ahmed U, Saleem MA, Bhatti AI, Ahmed N, et al: Multisession stereotactic radiosurgery for large benign brain tumors of >3cm-early clinical outcomes. *J Radiosurg SBRT* 2:29–40, 2012

34. Rogers L, Barani I, Chamberlain M, Kaley TJ, McDermott M, Raizer J, et al: Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. *J Neurosurg* 122:4–23, 2015

35. Sarr F, McCarthy BJ, Villano J: Update on meningiomas. *Oncologist* 16:1604–1613, 2011

36. Selch MT, Ahn E, Laskari A, Lee SP, Agazaryan N, Solberg TD, et al: Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. *Int J Radiat Oncol Biol Phys* 59:101–111, 2004

37. Seung SK, Larson DA, Galvin JM, Mehta PM, Potters L, Schultz CJ, et al: American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). *Am J Clin Oncol* 36:310–315, 2013

38. Simpson D: The recurrence of intracranial meningiomas after surgical treatment. *J Neurol Neurosurg Psychiatry* 20:22–39, 1957

39. Singh VP, Kansal S, Vaishya S, Julka PK, Mehta VS: Early complications following gamma knife radiosurgery for intracranial meningiomas. *J Neurosurg 93 (Suppl 3):*57–61, 2000

40. Song CW, Kim MSS, Cho LC, Dusenbery K, Sperduto PW: Radiobiological basis of SBRT and SRS. *Int J Clin Oncol* 19:570–578, 2014

41. Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander E III, Kooy HM, et al: Tolerance of cranial nerves of the cavernous sinus to radiosurgery. *Int J Radiat Oncol Biol Phys* 27:215–221, 1993

42. Torres RC, Frighetto L, De Salles AA, Goss B, Medin P, Solberg T, et al: Radiosurgery and stereotactic radiotherapy for intracranial meningiomas. *Neurosurgery Focus* 14(5):e5, 2003

43. Villavicencio AT, Black PM, Shrieve DC, Fallon MP, Alexander E, Loeffler JS: Linac radiosurgery for skull base meningiomas. *Acta Neurochir (Wien)* 143:1141–1152, 2001

44. Wiemels J, Wrensch M, Claus EB: Epidemiology and etiology of meningioma. *J Neurooncol* 99:307–314, 2010

Disclosures

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions

Conception and design: Fatima. Analysis and interpretation of data: Fatima, Meola. Critically revising the article: Meola, Pollom, Soltsy. Statistical analysis: Fatima. Study supervision: Chang.

Correspondence

Nida Fatima: Stanford University School of Medicine, Palo Alto, CA. nfatima@stanford.edu.

Fatima et al.

Neurosurg Focus Volume 46 • June 2019 11