Let \(R \) be a commutative Noetherian ring with non-zero identity, \(\mathfrak{a} \) an ideal of \(R \), \(M \) a finitely generated \(R \)-module, and \(a_1, \ldots, a_n \) an \(\mathfrak{a} \)-filter regular \(M \)-sequence. The formula

\[
H^i_{\mathfrak{a}}(M) \cong \begin{cases}
H^i_{(a_1, \ldots, a_n)}(M) & \text{for all } i < n, \\
H^{i-n}_{\mathfrak{a}}(H^n_{(a_1, \ldots, a_n)}(M)) & \text{for all } i \geq n,
\end{cases}
\]

is known as Nagel-Schenzel formula and is a useful result to express the local cohomology modules in terms of filter regular sequences. In this paper, we provide an elementary proof to this formula.

1. Introduction

Throughout \(R \) will denote a commutative Noetherian ring with non-zero identity, \(\mathfrak{a} \) and \(\mathfrak{b} \) two ideals of \(R \), \(X \) an arbitrary \(R \)-module which is not necessarily finitely generated, and \(M \) a finitely generated \(R \)-module. Recall that the \(i \)-th local cohomology functor \(H^i_{\mathfrak{a}} \) is the \(i \)-th right derived functor of the \(\mathfrak{a} \)-torsion functor \(\Gamma_{\mathfrak{a}} \). For basic results, notations and terminology not given in this paper, the reader is referred to [1], [2], and [3].
The concept of an \(\mathfrak{a}\)-filter regular sequence is a generalization of the concept of a filter regular sequence which has been studied in [3] and [4], and has led to some interesting results. Let \(a_1, \ldots, a_n \in \mathfrak{a}\). Recall that \(a_1, \ldots, a_n\) is an \(\mathfrak{a}\)-filter regular \(M\)-sequence if

\[
\text{Supp}_R \left(\frac{(a_1, \ldots, a_{i-1})M :_M a_i}{(a_1, \ldots, a_{i-1})M} \right) \subseteq \text{Var}(\mathfrak{a})
\]

for all \(1 \leq i \leq n\), where \(\text{Var}(\mathfrak{a})\) denotes the set of prime ideals of \(R\) containing \(\mathfrak{a}\). Let \(a_1, \ldots, a_n\) be an \(\mathfrak{a}\)-filter regular \(M\)-sequence. Then, by [3, Proposition 1.2], we have

\[
\tag{1}
H^i_{a+b}(Q) \cong H^{i+1}_{a+b}(X)
\]

which is known as Nagel-Schenzel formula. This formula was first obtained by Nagel and Schenzel, in [4, Lemma 3.4], in the case where \(R\) is a local ring with maximal ideal \(\mathfrak{m}\) and \(a = \mathfrak{m}\). Both of them used the Grothendieck spectral sequence

\[
E^{p,q}_2 := H^p_a(H^q_b(X)) \Rightarrow H^{p+q}(M)
\]

to prove (1). In this paper, we provide an elementary proof to this formula.

2. An elementary proof of (1)

The following lemmas are needed in our proof of Nagel-Schenzel formula.

Lemma 2.1. Let \(t\) be a non-negative integer such that \(H^{t-i}_a(H^i_b(X)) = 0\) for all \(0 \leq i \leq t\). Then \(H^t_{a+b}(X) = 0\).

Proof. We prove by using induction on \(t\). The case \(t = 0\) is clear because \(\Gamma_a(\Gamma_b(X)) = \Gamma_{a+b}(X)\). Suppose that \(t > 0\) and that \(t - 1\) is settled. Assume that \(X = X/\Gamma_b(X)\) and \(Q = E_R(X)/X\) where \(E_R(X)\) is an injective hull of \(X\). Since \(\Gamma_b(X) = 0 = \Gamma_{a+b}(X)\), \(\Gamma_b(E_R(X)) = 0 = \Gamma_{a+b}(E_R(X))\). Applying the derived functors of \(\Gamma_b(\cdot)\) and \(\Gamma_{a+b}(\cdot)\) to the short exact sequence

\[
0 \rightarrow X \rightarrow E_R(X) \rightarrow Q \rightarrow 0,
\]

we obtain the isomorphisms

\[
\tag{2}
H^i_b(Q) \cong H^{i+1}_b(X)
\]

and

\[
\tag{3}
H^i_{a+b}(Q) \cong H^{i+1}_{a+b}(X)
\]

for all \(i \geq 0\). From the isomorphisms (2), for all \(0 \leq i \leq t - 1\), we have

\[
H^{(t-1)-i}_a(H^i_b(Q)) \cong H^{t-(i+1)}_a(H^{i+1}_b(X))
\]
which is zero by the assumptions. Thus, from the induction hypothesis on Q, we have $H_{a+b}^{t-1}(Q) = 0$. Therefore $H_{a+b}^t(X) = 0$ by the isomorphisms (3). Now, by the short exact sequence

$$0 \rightarrow \Gamma_b(X) \rightarrow X \rightarrow \overline{X} \rightarrow 0,$$

we get the long exact sequence

$$\cdots \rightarrow H_{a+b}^t(\Gamma_b(X)) \rightarrow H_{a+b}^t(X) \rightarrow H_{a+b}^t(\overline{X}) \rightarrow \cdots .$$

Since $H_{a+b}^t(\Gamma_b(X)) = H_a^t(\Gamma_b(X)) = 0$, the above long exact sequence shows that $H_{a+b}^t(X) = 0$. □

Lemma 2.2. Let s and t be non-negative integers such that

1. $H_a^{s+t-i}(H_b^i(X)) = 0$ for all $i \neq t$,
2. $H_a^{s+t-i+1}(H_b^i(X)) = 0$ for all $i < t$, and
3. $H_a^{s+t-i-1}(H_b^i(X)) = 0$ for all $i > t$.

Then we have the isomorphism $H_a^s(H_b^t(X)) \cong H_{a+b}^{s+t}(X)$.

Proof. Let $\overline{X} = X/\Gamma_b(X)$ and $Q = E_R(\overline{X})/\overline{X}$ where $E_R(\overline{X})$ is an injective hull of \overline{X}. We prove by using induction on t. In the case that $t = 0$, we have $H_{a+b}^{s-1}(X) = 0 = H_{a+b}^s(X)$ from hypothesis (iii) and (i), and Lemma 2.1. Since $H_{a+b}^s(\Gamma_b(X)) = H_a^s(\Gamma_b(X))$, the assertion follows by the exact sequence

$$H_{a+b}^{s-1}(X) \rightarrow H_{a+b}^s(\Gamma_b(X)) \rightarrow H_{a+b}^s(X) \rightarrow H_{a+b}^s(\overline{X}),$$

obtained from the short exact sequence

$$0 \rightarrow \Gamma_b(X) \rightarrow X \rightarrow \overline{X} \rightarrow 0.$$

Suppose that $t > 0$ and that $t - 1$ is settled. From the isomorphisms (2) and the assumptions, we have

- $H_a^{s+(t-1)-i}(H_b^i(Q)) = H_a^{s+t-(i+1)}(H_b^{i+1}(X)) = 0$ for all $i \neq t - 1$,
- $H_a^{s+(t-1)+1-i}(H_b^i(Q)) = H_a^{s+t+1-(i+1)}(H_b^{i+1}(X)) = 0$ for all $i < t - 1$, and
- $H_a^{s+(t-1)-1-i}(H_b^i(Q)) = H_a^{s+t-1-(i+1)}(H_b^{i+1}(X)) = 0$ for all $i > t - 1$.

Thus we get $H_{a+b}^{s+(t-1)}(Q) \cong H_a^s(H_b^{t-1}(Q))$ by the induction hypothesis on Q. Therefore $H_{a+b}^{s+t}(\overline{X}) \cong H_a^s(H_b^t(X))$ from the isomorphisms (2) and (3). On the other hand, by assumptions (i) and (ii), and the exact sequence

$$H_{a+b}^{s+t}(\Gamma_b(X)) \rightarrow H_{a+b}^{s+t}(X) \rightarrow H_{a+b}^{s+t}(\overline{X}) \rightarrow H_{a+b}^{s+t+1}(\Gamma_b(X))$$

obtained from the short exact sequence

$$0 \rightarrow \Gamma_b(X) \rightarrow X \rightarrow \overline{X} \rightarrow 0,$$
we get $H_{a+b}^{s+t}(X) \cong H_{a+b}^{s+t}(X)$. Hence $H_a^s(H_b^t(X)) \cong H_{a+b}^{s+t}(X)$ which completes the proof. \square

Lemma 2.3. Let a_1, \ldots, a_n be an a–filter regular M–sequence. Then, for all $0 \leq i \leq n-1$, $\text{Supp}_R(H^j_{(a_1, \ldots, a_n)}(M)) \subseteq \text{Var}(a)$. In particular,

$$H^j_{(a_1, \ldots, a_n)}(M) \cong \begin{cases} H^j_{(a_1, \ldots, a_n)}(M) & \text{if } j = 0, \\ 0 & \text{if } j > 0, \end{cases}$$

for all $0 \leq i \leq n-1$.

Proof. Let $0 \leq i \leq n-1$ and $p \in \text{Supp}_R(H^j_{(a_1, \ldots, a_n)}(M))$. Assume contrarily that $p \notin \text{Var}(a)$. Thus $p \in \text{Spec}(R) \setminus \text{Var}(a)$ and so $\frac{a_1}{1}, \ldots, \frac{a_n}{1}$ is a weak M_p–sequence. Hence $H^j_{(\frac{a_1}{1}, \ldots, \frac{a_n}{1})}(M_p) = 0$. Therefore we get $(H^j_{(a_1, \ldots, a_n)}(M))_p = 0$. This contradiction shows that $p \in \text{Var}(a)$. \square

Now we are ready to give an elementary and simple proof for (III).

Proof of Nagel-Schenzel formula. Let $i < n$ (resp. $i \geq n$). Consider Lemma 2.3 and apply Lemma 2.2 with $s = 0$, $t = i$, and $b = (a_1, \ldots, a_n)$ (resp. $s = i-n$, $t = n$, and $b = (a_1, \ldots, a_n)$).

References

[1] M. P. Brodmann and R. Y. Sharp, *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge University Press, Cambridge, 1998.

[2] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge, 1998.

[3] K. Khashyarmanesh and Sh. Salarian, *Filter regular sequences and the finiteness of local cohomology modules*, Comm. Algebra 26 (1998) 2483–2490.

[4] U. Nagel and P. Schenzel, *Cohomological annihilators and Castelnuovo-Mumford regularity*, Commutative algebra: Syzygies, multiplicities, and birational algebra, Contemp. Math. 159 (1994) 307–328.

[5] J. J. Rotman, *An Introduction to Homological Algebra*, Academic Press, San Diego, 1979.

[6] P. Schenzel, N. V. Trung, and N. T. Cuong, *Verallgemeinerte Cohen-Macaulay-Moduln*, Math. Nachr. 85 (1978) 57–73.

[7] J. Stuckrad and W. Vogel, *Buchsbaum Rings and Applications*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.

Alireza Vahidi

Department of Mathematics,
Payame Noor University (PNU),
P.O.BOX, 19395-4697,
Tehran, Iran.
vahidi.ar@pnu.ac.ir