Renormalization of the GT operator within the realistic shell model

L. Coraggio,¹ L. De Angelis,¹ T. Fukui,¹ A. Gargano,¹ N. Itaco,²,¹ and F. Nowacki³,4,²

¹Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy
²Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”, viale Abramo Lincoln 5 - I-81100 Caserta, Italy
³Université de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg, France
⁴CNRS, IPHC UMR 7178, 67037 Strasbourg, France

In nuclear structure calculations, the choice of a limited model space, due to computational needs, leads to the necessity to renormalize the Hamiltonian, as well as any transition operator. Here, we present a study of the renormalization procedure and effects of the Gamow-Teller operator within the framework of the realistic shell model. Our effective shell-model operators are obtained, starting from a realistic nucleon-nucleon potential, by way of the many-body perturbation theory in order to take into account the degrees of freedom that are not explicitly included in the chosen model space. The development of effective shell-model Hamiltonians and transition operators are then employed in shell-model calculations, whose results are compared with data of Gamow-Teller transition strengths and double-β half-lives for nuclei which are currently of interest for the detection of the neutrinoless double-β decay process, in a mass interval ranging from $A = 48$ up to $A = 136$. We show that effective operators are able to reproduce quantitatively the spectroscopic and decay properties without resorting to an empirical quenching neither of the axial coupling constant g_A, nor of the spin and orbital gyromagnetic factors. This should assess the reliability of applying present theoretical tools to this problematic.

PACS numbers: 21.60.Cs, 21.30.Fe, 27.60.+j, 23.40-s

I. INTRODUCTION

A long-standing issue of nuclear structure calculations is the need to reduce both the number of particles considered to describe the physics of a nuclear system under investigation, and the space of the configurations available to the interacting nucleons. Such approximations, that are necessary to overcome the computational complexity of the nuclear many-body problem, drive the nuclear structure practitioners to resort to effective Hamiltonians and operators, that depend on a certain set of parameters, built up to account for the degrees of freedom which do not appear explicitly in the calculated wavefunctions. The development of effective operators suitable to describe observables is a problematic that has to be tackled in every nuclear structure model that relies on the truncation of the number of interacting nucleons and/or the dimension of the configuration space.

In the nuclear shell model (SM), the physics of a certain nuclear system is described in terms only of a limited number of valence nucleons, that interact in a model space consisting of a major shell, placed outside a closed core made up by the remaining constituent nucleons, the latter being frozen inside a number of filled shells.

The status of the theoretical derivation of an effective shell-model Hamiltonian (H_{eff}), starting from a realistic nuclear potential, has reached nowadays a notable progress, especially within the framework of the many-body perturbation theory [1] [2]. At present, realistic shell-model Hamiltonians are largely employed in shell-model calculations, exhibiting a substantial reliability (see, for example Ref. [3] and references therein).

As regards the theoretical efforts to derive effective shell-model transition operators starting from realistic potentials, the literature is far less extended, but it is worth mentioning an early review about this topic, which can be found in Ref. [4]. More recently, Suzuki and Okamoto have developed a formalism to derive effective shell-model operators [5], that provides an approach that is consistent with the construction of the corresponding H_{eff}.

In the present work we focus on the derivation of effective shell-model Gamow-Teller (GT) operators to calculate observables related to the β-decay transition for nuclei in different mass regions, aiming to trace back to the roots of the quenching of the free value of the axial coupling constant g_A in nuclear structure calculations.

As a matter of fact, effective GT operators are in general obtained resorting to effective values of g_A, via a quenching factor q, to reproduce experimental GT transitions. The choice of q depends obviously on the nuclear structure model employed to derive the nuclear wave functions, the dimensions of the considered Hilbert space, and the mass of the nucleus under investigation. In this regard, it is worth mentioning the recent review paper by Suhonen [6], where the quenching is discussed from the points of view of different methods.

For the sake of clarity, we point out that the quenching of g_A is entangled with both the renormalization of many-body correlations - due to the truncation of the basis used to construct the wave functions - and the corrections due to the subnucleonic structure of the nuclei [7][10], since the free value $g_A^{\text{free}} = 1.269$ is obtained from the data of the neutron decay [11] under the assumption that the
nucleons are point-like particles.

We will show in the following that the perturbative approach to the derivation of effective spin-dependent operators allows to reproduce quantitatively spectroscopic and decay properties without resorting to an empirical quenching neither of the axial coupling constant \(g_A \), nor of the spin and orbital \(g \)-factors.

In this connection, it is worth noting that an important contribution to understand the quenching of \(g_A \) within a microscopic framework has been given by the studies of I. S. Towner and co-workers (see the review paper Ref. \[12\] and references therein), who have extensively investigated the role played by both the many-body correlations induced by the truncation of the Hilbert space and the two-body meson-exchange currents in the renormalization of spin-dependent electromagnetic (\(M1 \)) and weak (GT) operators [13].

Nowadays, there is a renewed interest in the problematics of the renormalization of the GT operator, because of its connection with the calculation of the nuclear matrix elements (NME) of the neutrinoless double-\(\beta \) decay (\(0\nu\beta\beta \)) (see for example Ref. \[14\]). In fact, the half life of such a process is expressed by:

\[
\frac{1}{2} T_{1/2}^{0\nu} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\nu} \rangle^2 ,
\]

where \(G^{0\nu} \) is the so-called phase-space factor, \(\langle m_{\nu} \rangle \) is the effective neutrino mass, and \(M^{0\nu} \) is the nuclear matrix element, that relates the wave functions of the parent and grand-daughter nuclei. As a matter of fact, \(M^{0\nu} \) can be expressed as the sum of the GT, Fermi (\(F \)), and tensor (\(T \)) matrix elements, and depends on the axial and vector coupling constants \(g_A, g_V \):

\[
M^{0\nu} = M^{0\nu}_{GT} - \left(\frac{g_V}{g_A} \right)^2 M^{0\nu}_F - M^{0\nu}_T .
\]

On these grounds, we focus attention on the renormalization of the GT operator that takes into account the reduced SM model space, without considering the corrections arising from meson-exchange currents Ref. \[13\]. Our theoretical framework is the many-body perturbation theory Ref. \[2\] \[5\] \[16\] \[17\], and, starting from a realistic nuclear potential, we derive effective shell-model GT operators and Hamiltonians for nuclei with mass ranging from \(A = 48 \) to \(A = 136 \). We also consider in the derivation of the one-body effective operators the so-called \"blocking effect\", to take into account the Pauli exclusion principle in systems with more than one valence nucleon Ref. \[4\].

In Section II we will sketch out a few details about the derivation of the effective SM Hamiltonians and operators from a realistic nucleon-nucleon (\(NN \)) interaction. The results of the shell-model calculations are then reported in Section III. More precisely, we compare calculated and experimental \(2\nu\beta\beta \) decay matrix elements, GT transition-strength distributions for nuclei that are candidates for the detection of the \(0\nu\beta\beta \)-decay. We extend this analysis to magnetic dipole moments and reduced transition probabilities (\(B(M1) \)), and, for the sake of completeness, the energy spectra and \(B(E2) \) values of the parent and grand-daughter nuclei are also shown. The conclusions of this study are drawn in Section IV, together with the outlook of our current project. In Appendix, tables containing the calculated SP energies of the effective Hamiltonians and the matrix elements of the effective \(M1 \) and GT operators are reported.

II. OUTLINE OF CALCULATIONS

The cornerstone of a realistic shell-model calculation is the choice of a realistic nuclear potential to start with. We consider for our calculations the high-precision CD-Bonn \(NN \) potential Ref. \[18\], whose non-perturbative behavior requires to integrate out its repulsive high-momentum components by way of the so-called \(V_{\text{low-}k} \) approach Ref. \[15\] \[20\]. This is based on a unitary transformation that provides a softer nuclear potential defined up to a cutoff \(\Lambda \), and preserves the physics of the original CD-Bonn interaction.

As in our recent works Ref. \[17\] \[21\] \[23\], the value of the cutoff \(\Lambda \) is chosen equal to \(2.6 \text{ fm}^{-1} \), since we have found that the role of missing three-nucleon force (3NF) decreases by enlarging the \(V_{\text{low-}k} \) cutoff Ref. \[22\]. In our experience, \(\Lambda = 2.6 \text{ fm}^{-1} \) is an upper limit, since with a larger cutoff the order-by-order behavior of the perturbative expansion may be not satisfactory.

This \(V_{\text{low-}k} \) is then employed as the two-body interaction term of the Hamiltonian for the system of \(A \) nucleons under investigation:

\[
H = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i<j=1}^{A} V_{\text{low-}k}^{ij} = T + V_{\text{low-}k} .
\]

This Hamiltonian should be then diagonalized in an infinite Hilbert space to describe the physical observables. Obviously, this task is unfeasible, and in the shell model the infinite number of degrees of freedom is reduced only to those characterizing the physics of a limited number of interacting nucleons, that are constrained in a finite Hilbert space spanned by a few accessible orbitals. To this end, the Hamiltonian \(H \) of Eq. 3 is broken up, by way of an auxiliary one-body potential \(U \), into the sum of a one-body term \(H_0 \), whose eigenvectors set up the shell-model basis, and a residual interaction \(H_1 \):

\[
H = T + V_{\text{low-}k} = (T + U) + (V_{\text{low-}k} - U) = H_0 + H_1 .
\]

The following step is to derive an effective shell-model Hamiltonian \(H_{\text{eff}} \), that takes into account the degrees of freedom that are not explicitly included in the shell-model framework, as the core polarization due to the
interaction, within the full Hilbert space, between the valence nucleons and those belonging to the closed core.

We derive H_{eff} by resorting to the many-body perturbation theory, an approach that has been developed by Kuo and coworkers through the 1970s [24, 25]. More precisely, we use the well-known Q box-plus-folded-diagram method [25], where the Q box is defined as a function of the unperturbed energy ϵ of the valence particles:

$$\hat{Q}(\epsilon) = P H_1 P + P H_1 \frac{1}{\epsilon - Q H Q} Q H_1 P,$$

where the operator P projects onto the model space and $Q = 1 - P$. In the present calculations the Q box is expanded as a collection of one- and two-body irreducible valence-linked Goldstone diagrams up to third order in the perturbative expansion [26, 27].

Within this framework the effective Hamiltonian H_{eff} can be written in an operator form as

$$H_{\text{eff}} = \hat{Q} - \hat{Q}' \int \hat{Q} + \hat{Q}' \int \hat{Q} - \hat{Q}' \int \hat{Q} \int \hat{Q} + \cdots,$$

where the integral sign represents a generalized folding operation [28], and Q' is obtained from Q by removing first-order terms [29].

Since it has been demonstrated the following operatorial identity [29]:

$$\hat{Q} \int \hat{Q} = -\hat{Q}_1 \hat{Q},$$

the solution of Eq. 6 may be obtained using the \hat{Q} box derivatives

$$\hat{Q}_m = \frac{1}{m!} \frac{d^m \hat{Q}(\epsilon)}{d\epsilon^m}|_{\epsilon = \epsilon_0},$$

ϵ_0 being the model-space eigenvalue of the unperturbed Hamiltonian H_0, that we have chosen to be harmonic-oscillator (HO) one.

Consequently, the expression in Eq. 9 may be rewritten as

$$H_{\text{eff}} = \sum_{i=0}^{\infty} F_i,$$

where

$$F_0 = \hat{Q}(\epsilon_0)$$

$$F_1 = \hat{Q}_1(\epsilon_0) \hat{Q}(\epsilon_0)$$

$$F_2 = \left[\hat{Q}_2(\epsilon_0) \hat{Q}(\epsilon_0) + \hat{Q}_1(\epsilon_0) \hat{Q}_1(\epsilon_0) \right] \hat{Q}(\epsilon_0)$$

$$\cdots$$

From H_{eff} for one-valence-nucleon systems we obtain the single-particle (SP) energies for our SM calculations, while the two-body matrix elements (TBMEs) are obtained from H_{eff} derived for the nuclei with two valence nucleons, by subtracting the theoretical SP energies. The calculated SP energies for ^{40}Ca, ^{56}Ni, and ^{100}Sn cores are reported in the Appendix, while the corresponding TBMEs can be found in the Supplemental Material [30].

As mentioned before, we derive the effective transition operators, namely the matrix elements of the effective spin-dependent $M1$, GT operators and the effective charges of the electric quadrupole operator, using the formalism presented by Suzuki and Okamoto in Ref. [3].

As a matter of fact, a non-Hermitian effective operator Θ_{eff} can be expressed in terms of the Q box, its derivatives, and an infinite sum of operators χ_n, the latter being defined as:

$$\chi_0 = (\Theta_0 + h.c.) + \Theta_{00},$$

$$\chi_1 = (\Theta_1 \hat{Q} + h.c.) + (\Theta_0 \hat{Q} + h.c.),$$

$$\chi_2 = (\Theta_1 \hat{Q} \hat{Q} + h.c.) + (\Theta_2 \hat{Q} + h.c.) + (\Theta_0 \hat{Q} \hat{Q} + h.c.) + \hat{Q} \Theta_1 \hat{Q},$$

$$\cdots$$

where $\hat{\Theta}_m$, $\hat{\Theta}_{mn}$ have the following expressions:

$$\hat{\Theta}_m = \frac{1}{m!} \frac{d^m \hat{\Theta}(\epsilon)}{d\epsilon^m}|_{\epsilon = \epsilon_0},$$

$$\hat{\Theta}_{mn} = \frac{1}{m! n!} \frac{d^m}{d\epsilon_1^m} \frac{d^n}{d\epsilon_2^n} \hat{\Theta}(\epsilon_1; \epsilon_2)|_{\epsilon_1 = \epsilon_0, \epsilon_2 = \epsilon_0},$$

with

$$\hat{\Theta}(\epsilon) = P \Theta P + P \Theta Q \frac{1}{\epsilon - Q H Q} Q H_1 P,$$

$$\hat{\Theta}(\epsilon_1; \epsilon_2) = P H_1 Q \frac{1}{\epsilon_1 - Q H Q} Q H_1 Q \frac{1}{\epsilon_2 - Q H Q} Q H_1 P,$$

Θ being the bare transition operator.

The effective transition operators can be written, in terms of the above quantities, as follows

$$\Theta_{\text{eff}} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q} + \hat{Q}_2 \hat{Q} + \cdots) \times (\chi_0 + \chi_1 + \chi_2 + \cdots).$$

Now, inserting the identity $\hat{Q} \hat{Q}^{-1} = 1$ and taking into account Eqs. 9, 10, Eq. 18 may be then recast in the following form

$$\Theta_{\text{eff}} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q} + \hat{Q}_2 \hat{Q} + \cdots) \hat{Q} \hat{Q}^{-1} \times (\chi_0 + \chi_1 + \chi_2 + \cdots) = H_{\text{eff}} \hat{Q}^{-1} (\chi_0 + \chi_1 + \chi_2 + \cdots),$$

The above form provides a strong link between the derivation of the effective Hamiltonian and all effective operators.
In our calculations for the aforementioned one-body transition operators, we arrest the χ_n series to the leading term χ_0, the latter being then expanded perturbatively including diagrams up to the third order in the perturbation theory, consistently with the perturbative expansion of the Q box.

For the sake of clarity, in Fig. 1 we report all the one-body χ_0 diagrams up to the second order, the bare operator Θ being represented with an asterisk. The first-order $(V_{\text{low}-k} - U)$-insertion, represented by a circle with a cross inside, arises because of the presence of the U term in the interaction Hamiltonian H_1 (see for example Ref. [2] for details).

![FIG. 1: One-body second-order diagrams included in the perturbative expansion of χ_0. The asterisk indicates the bare operator Θ, the wavy lines the two-body potential $V_{\text{low}-k}$.
]

The topology of the diagrams reported in Fig. 1 deals, obviously, with single-valence nucleon systems, and many-body diagrams should be included starting from nuclei with two valence nucleons on; in Fig. 2 we report all two-valence-nucleon diagrams for one-body operators, up to second order of the χ_0 perturbative expansion. For the sake of simplicity, for each topology we draw only one of the diagrams which correspond to the exchange of the external pairs of lines.

Diagrams (a)-(d) are the same as in Fig. 1 but with a spectator line a, while connected diagrams (d_1) and (d_2) correct Pauli-principle violation introduced by diagram (d) when the particles c and p own the same quantum numbers.

Since it is straightforward to perform shell-model calculations using one-body transition operators, we derive a density-dependent one-body operator from the two-body ones by summing and averaging over one incoming and one outgoing particles of the connected diagrams (d_1) and (d_2) of Fig. 2. This allows to take into account the filling of the model-space orbitals when dealing with more than one valence nucleon.

For example, we report in Fig. 3 the second-order density-dependent one-body diagram (I), obtained from the contribution (d_1) of Fig. 2 and whose explicit expression is

$$
(I) = \sum_{\alpha} \sum_{p,l} \frac{2J + 1}{2J_b + 1} \frac{\langle a|\Theta|p\rangle \langle p\alpha,J|V_{\text{low}-k}|b\alpha,J\rangle}{(\epsilon_b - \epsilon_p)} \rho(\alpha),
$$

where α and p indices run over the orbitals in, and above the model space, respectively, the matrix elements of the $V_{\text{low}-k}$ are coupled to the total angular momentum J, ϵ_i stands for the unperturbed energy of the orbital i, and $\rho(\alpha)$ is the occupation probability of the orbital α.

In this work all the results of the shell-model calculations, that are shown in Sec. III, have been obtained employing SP energies, TBMEs, and effective one-body operators derived by way of the above mentioned theoretical approach, including consistently all contributions up to third-order in the perturbative expansion, without resorting to any empirically fitted parameter.

In Sec. III, the calculated running sums of the GT strengths $(\Sigma B(p,n))$, obtained with both bare and effective GT operators, are reported as a function of the excitation energy, and compared with the available data extracted from experiment. The GT strength is defined as follows:

$$
B(p,n) = \frac{|\langle \Phi_f|\sum \sigma_j \tau_j^\dagger \Phi_i \rangle|^2}{2J_f + 1},
$$

(21)
where indices i, f refer to the parent and daughter nuclei, respectively, and the sum is over all interacting nucleons.

The single-β decay GT strengths, defined by Eq. (21), can be accessed experimentally through intermediate energy charge-exchange reactions, since the β-decay process is forbidden for the nuclei under our investigation. The GT strength can be extracted from the GT component of the cross section at zero degree, following the standard approach in the distorted-wave Born approximation (DWBA) [31, 32]:

$$
\frac{d\sigma^{\text{GT}}(0^\circ)}{d\Omega} = \left(\frac{\mu}{\pi h^2} \right)^2 \frac{k_f}{k_i} N_D^B I_{J\sigma^1}^2 B(p,n) ,
$$

where N_D^B is the distortion factor, $|J\sigma^1|$ is the volume integral of the effective NN interaction, k_i and k_f are the initial and final momenta, respectively, and μ is the reduced mass.

As regards the calculation of the NME of the $2\nu\beta\beta$ decay, it can be obtained via the following expression:

$$
M_{\text{GT}}^{2\nu} = \sum_n \langle 0_f^+ | \vec{\sigma} \tau^- || n_n^- | J_{\sigma^1}^1 \rangle \langle n_n^+ | \vec{\sigma} \tau^- || 0_i^+ \rangle \frac{E_n + E_0}{E_n - E_0} ,
$$

where E_n is the excitation energy of the $J^\pi = 1^+_n$ intermediate state, $E_0 = 1/4 Q_{\beta\beta}(0^+) + \Delta M, Q_{\beta\beta}(0^+)$ and ΔM being the Q value of the $\beta\beta$ decay and the mass difference between the daughter and parent nuclei, respectively. In the above equation the index n runs over all possible intermediate states of the daughter nucleus. The NMEs have been calculated using the ANTOINE shell-model code, using the Lanczos strength function-method as in Ref. [33], and including as many intermediate states to obtain at least a four-digit accuracy (see also Figs. 5, 11 in Ref. [17]). The theoretical values are then compared with the experimental counterparts, that are extracted from the observed half life $T_{1/2}$

$$
\left[T_{1/2}^{2\nu} \right]^{-1} = G^{2\nu} \left| M_{\text{GT}}^{2\nu} \right|^2 .
$$

III. RESULTS

In this section we present the results of our SM calculations.

We compare the calculated low-energy spectra of 48Ca, 48Ti, 76Ge, 76Se, 82Se, 82Kr, 130Te, 130Xe, 136Xe, and 136Ba, and their electromagnetic properties with the available experimental counterparts. As mentioned in the Introduction, special attention will be focussed on the magnetic dipole properties, since both $M1$ and GT operators are spin dependent.

We show also the results of the GT$^-$ strength distributions and the calculated NMEs of the $2\nu\beta\beta$ decays for 48Ca, 76Ge, 82Se, 130Te, and 136Xe, and compare them with the available data. All the calculations have been performed employing theoretical SP energies, TBMEs, and effective transition operators. In particular, for the $M1$ and GT properties we report the calculated values obtained by using the bare (I) and effective (II) operators, as well as those including the blocking effect - and labelled as (III) - by way of a density-dependent effective operator as mentioned in Sec. [11]. The latter give us the opportunity to investigate the role of many-body correlations on the spin- and spin-isospin-dependent one-body operators in nuclei with more than one valence nucleon.

A. 48Ca

The shell-model calculation for 48Ca and 48Ti are performed within the full fp shell, namely the proton and neutron $0f_{7/2}$, $0f_{5/2}$, $1p_{3/2}$, and $1p_{1/2}$ orbitals. In Fig. 4, we show the experimental [34, 35] and calculated low-energy spectra of 48Ca and 48Ti. Next to the arrows, that are proportional to the $B(E2)$ strengths, we report the explicit experimental [33, 35] and calculated $B(E2)$s in e^2fm4.

![FIG. 4: Experimental and calculated spectra of 48Ca and 48Ti. $B(E2)$ strengths (in e^2fm4) are also reported (see text for details).](image)

As can be seen, while the agreement between the experimental and calculated spectra is only qualitative, experimental $B(E2)$s are satisfactorily reproduced by the theory. This should support the reliability of our calculated wave functions for low-lying states.

In Table I the low-energy experimental and calculated observable related to the $M1$ operator are reported. The calculated values reported in columns I, II, III are obtained with the bare magnetic-dipole operator, the effective one without blocking effect, and the one including the blocking effect, respectively.

From inspection of Table I it can be seen that the calculated magnetic-dipole transition rates $B(M1)$s compare well with the observed value for 48Ca. In particular, from Table A.1, the values obtained employing the effective shell-model operators (II-III) are quenched with respect to that calculated with the bare operator (I), and...
TABLE I: Experimental and calculated $B(M1)$ strengths (in μ_N^2) and magnetic dipole moments (in μ_N) of 48Ca and 48Ti. We report those for the observed states in Fig. 4 (see text for details).

Nucleus	$J_i \rightarrow J_f$	$B(M1)_{\text{Expt}}$	I	II	III
48Ca	$3^+_1 \rightarrow 2^+_1$	0.023 ± 0.004	0.051	0.047	0.046
48Ti	2^+_1	+0.78 ± 0.04	+0.37	+0.52	+0.52
	+0.9 ± 0.4	+1.2	+1.5	+1.5	
48Ti	4^+_1	+2.2 ± 0.5	+1.2	+1.5	+1.5

In a better agreement with experiment. The blocking effect is very tiny because the number of valence nucleons is rather small compared with the full capacity of the fp shell.

As regards the magnetic moments, data are available for 48Ti, and they are underestimated by the theory. However, the contribution due to the effective operators points in the right direction, leading to a better agreement with experiment.

TABLE II: Experimental [37] and calculated NME of the $2\nu\beta\beta$ decay (in MeV$^{-1}$) for 48Ca. The same notation of Table I is used (see text for details).

Decay	NME$_{\text{Expt}}$	I	II	III
48Ca \rightarrow 48Ti	0.038 ± 0.003	0.030	0.025	0.025

In Table II we report the observed and calculated values of the NMEs for the $2\nu\beta\beta$ decay of 48Ca into 48Ti. The NME obtained with the bare operator (I) slightly underestimates the experimental one, and it is 20% larger than those obtained with the effective operators (II) and (III). This corresponds to a quenching factor $q = 0.9$, that is roughly the average value of the reduction factor that can be extracted from Table I comparing the single-particle elements of the bare GT operator with the effective ones. It is worth noting that, as for the M1 properties, the blocking effect plays a negligible role also in the calculation of the $2\nu\beta\beta$ NME.

In Fig. 5 the calculated $\Sigma B(p,n)$ for 48Ca are shown as a function of the excitation energy, and compared with the data reported with a red line [38]. The results obtained with the bare operator (I) are drawn with a blue line, while those obtained employing the effective GT operators without and with the blocking effect are plotted using continuous and dashed black lines, respectively.

It can be seen that the distribution obtained using the bare operator (I) overestimates the observed one, and it is very close to those provided by both the effective GT operators (II-III), the blocking effect being almost negligible. Finally, we report about the theoretical total GT$^-$ strengths that are 24.0, 23.1, and 23.0 with the bare operator (I), and the effective ones (II) and (III), respectively.

B. 76Ge

The shell-model calculation for 76Ge and 76Se are performed within the model space spanned by the four proton and neutron orbitals $0f_{5/2}$, $1p_{3/2}$, $1p_{1/2}$ and $0g_{9/2}$, considering 56Ni as closed core. The experimental [34, 35] and calculated low-energy spectra of 76Ge and 76Se are reported in Fig. 6 together with the experimental [34, 35] and calculated $B(E2)$ strengths (in e^2fm4), as in Fig. 4.

In Fig. 6 the calculated $\Sigma B(p,n)$ for 76Ge and 76Se are shown as a function of the excitation energy, and compared with the data reported with a red line [38]. The results obtained with the bare operator (I) are drawn with a blue line, while those obtained employing the effective GT operators without and with the blocking effect are plotted using continuous and dashed black lines, respectively.
The agreement between the experimental and calculated spectra and \(B(E2)\)'s is far more satisfactory than that obtained for \(A = 48 \).

In Table III we report the experimental and calculated \(B(M1)\) strengths as well as magnetic dipole moments of \(^{76}\text{Ge}\) and \(^{76}\text{Se}\).

TABLE III: Same as in Table II but for \(^{76}\text{Ge}\) and \(^{76}\text{Se}\) (see text for details).

Nucleus	\(J_i \rightarrow J_f \)	\(B(M1)_{\text{Exp}} \)	I	II	III
\(^{76}\text{Ge}\)	\(2^+ \rightarrow 2^+ \)	0.003±0.003	0.006	0.003	0.003
	\(4^+_2 \rightarrow 3^+_1 \)	0.02±0.01	0.062	0.032	0.032
	\(4^+_2 \rightarrow 4^+_1 \)	0.03±0.02	0.07	0.04	0.04

It can be observed that, with respect to the calculations for \(^{48}\text{Ca}\) and \(^{48}\text{Ti}\), now the contribution arising from an effective transition operator - whose matrix elements are reported in Table A.V, is more relevant, and significantly improves the comparison with data. This traces back to the fact that, as it is well known \([12]\), spin- and spin-isospin-dependent operators need larger renormalizations when orbitals belonging to the model space lack their spin-orbit counterpart. As a matter of fact, this regards single-body matrix elements of the effective \(M1\) - and \(GT\) operators - involving the \(0f_{5/2}\) and \(0g_{9/2}\) orbitals. We observe that also for \(^{76}\text{Ge}\) and \(^{76}\text{Se}\), the blocking effect on the \(M1\) operator seems rather unimportant.

As regards the comparison with experiment, both calculated \(B(M1)\) and dipole moments agree with data, especially those obtained with the effective operators (II) and (III). It is worth pointing out that, using the effective operators, the quenching of the non-diagonal one-body matrix elements in Table A.V is responsible for the reduction of the calculated \(B(M1)\) with respect to those obtained with the bare operator. On the other side, the enhancement of the proton diagonal matrix element \(\langle 0f_{5/2} | M1 | 0f_{5/2} \rangle \) (see Table A.V) leads to an increase of the magnetic dipole moments of the yrast states.

As can be seen in Table A.VIII the renormalization effect of the \(GT\) operator is even much stronger than that observed for the \(M1\) operator. This is reflected in our shell-model results for the NMEs of the \(2\nu\beta\beta\) decay of \(^{76}\text{Ge}\) into \(^{76}\text{Se}\), that are compared with the experimental value \([37] \) in Table IV.

TABLE IV: Same as in Table II but for the \(2\nu\beta\beta\) decay of \(^{76}\text{Ge}\) (see text for details).

Decay \(^{76}\text{Ge} \rightarrow ^{76}\text{Se} \)	\(\text{NME}_{\text{Exp}} \)	I	II	III
\(^{76}\text{Ge} \rightarrow ^{76}\text{Se} \)	0.113±0.006	0.304	0.106	0.111

From the inspection of Table IV it can be observed that using the bare \(GT\) operator (I) the calculated NME overestimates the datum by almost a factor 3, and this gap is recovered employing the effective operator (II) which introduces and average quenching factor \(q \approx 0.6\). As a matter of fact, this renormalization leads to a theoretical result that is very close to the experimental one. Moreover, it can be observed a tiny blocking effect that pushes the calculated value (III) within the experimental error.

The role played by the effective operator is also evident when we compare the calculated and experimental \(\Sigma B(p,n) \) for \(^{76}\text{Ge}\) as a function of the excitation energy. This is done in Fig. 7, where the running sums of the \(GT\) strengths are reported up to a 3 MeV excitation energy. Note that the same notation as in Fig. 5 is used here.

![FIG. 7: Running sums of the \(^{76}\text{Ge} B(p,n)\) strengths as a function of the excitation energy \(E_x\) up to 3 MeV (see text for details).](image-url)
18.2, 6.9, and 7.2 with the bare operator (I), and the effective ones (II) and (III), respectively.

C. 82Se

As for 76Ge and 76Se, the shell model calculation for 82Se and 82Kr has been carried out using, as model space, the four proton and neutron orbitals $0f_{5/2}$, $1p_{3/2}, 1p_{1/2}$ and $0g_{9/2}$ placed outside 56Ni. In Fig. 8 the calculated low-energy spectra and $B(E2)$s are compared with experiment [34, 35].

As regards the observables linked to the magnetic dipole moment M of the decay of 82Se into 82Kr. In fact, the NME calculated with the bare operator overestimates the experimental value [37] by a factor 4, as can be inferred from Table VI, while calculations performed with the effective operators (II-III) provide far better results.

TABLE VI: Same as in Table II but for the $2\nu\beta\beta$ decay of 82Se (see text for details).

Decay	NME$_{\text{Exp}}$	I	II	III
82Se \rightarrow 82Kr	0.083 ± 0.004	0.347	0.114	0.118

The agreement between theory and experiment can be considered satisfactory, the largest discrepancy, in both nuclei, occurring for the $B(E2; 0^+ \rightarrow 2^+)$s, whose calculated values are about a factor 3 smaller than the observed ones.

As regards the observables linked to the $M1$ operator, the only available data for the low-lying states reported in Fig. 8 are the magnetic dipole moments shown in Table V.

FIG. 8: Same as in Fig. 4 but for 82Se and 82Kr (see text for details).

TABLE V: Experimental and calculated magnetic dipole moments (in nm) of 82Se and 82Kr. We report those for the observed states in Fig. 8.

Nucleus	J	μ_{Expt}	I	II	III
82Se					
2^+_1	+0.99 ± 0.06 [34]	+0.72	+0.93	+0.90	
4^+_1	2.3 ± 1.5 [34]	+1.17	+1.64	+1.60	
82Kr					
2^+_1	+0.80 ± 0.04 [33]	+0.50	+0.74	+0.71	
4^+_1	+1.2 ± 0.8 [33]	+0.5	+1.1	+1.1	

Since the model space is the same as for $A = 76$ nuclei, the matrix elements of the effective $M1$ operator (II) are those reported in Table A.V. The action of the effective operators, as can be observed from the inspection of Table V, is to improve the comparison with the data of the shell-model results, with respect to those obtained with the bare operator (I). This result evidences the role of the renormalization of the bare operator to take into account the degrees of freedom that have been left out by constraining the nuclear wave function to the valence nucleons interacting in the truncated model space.

As for the $2\nu\beta\beta$ decay of 76Ge, the quenching of the matrix elements of the GT operator, shown in Table A.VIII is crucial to improve our calculation of the NME of the decay of 82Se into 82Kr. In fact, the NME calculated with the bare operator overestimates the experimental value [37] by a factor 4, as can be inferred from Table VI, while calculations performed with the effective operators (II-III) provide far better results.

FIG. 9: Running sums of the 82Se $B(p,n)$ strengths as a function of the excitation energy E_x up to 3 MeV (see text for details).

As for the calculations of 48Ca, 76Ge $\Sigma B(p,n)$, we observe a negligible role of the blocking effect.

We conclude this section reporting the calculated total GT$^-$ strengths that are 21.6, 8.5, and 8.9 with the bare operator (I), and the effective ones (II) and (III), respectively.
D. 130Te

The shell-model calculation for 130Te and 130Xe are performed within the model space spanned by the five proton and neutron orbitals $0g_{7/2}$, $1d_{5/2}$, $1d_{3/2}$, $2s_{1/2}$ and $0h_{11/2}$, considering 100Sn as closed core. For the sake of completeness, the experimental 34 and calculated low-energy spectra and $B(E2)$s, already reported in Ref. 17, are also presented in this work in Fig. 10.

![Fig. 10: Same as in Fig. 4 but for 130Te and 130Xe (see text for details).](image)

From inspection of Fig. 10 we observe that the comparison between the calculated and experimental low-energy spectra is very good for 130Te, while less satisfactory for 130Xe. As regards the calculated $B(E2)$s, they compare well with the observed values for both nuclei, providing good expectations about the reliability of the SM wavefunctions.

In Table VII the calculated $B(M1; 2^+_1 \rightarrow 2^+_1)$ of 130Te is reported and compared with the two experimental values of Ref. 44. In the same table the calculated and observed magnetic dipole moments of 130Te and 130Xe can be found.

Nucleus	$J_i \rightarrow J_f$	$B(M1)_{\text{Exp}}$	I	II	III
130Te	$2^+_1 \rightarrow 2^+_1$				
		0.037$^{+0.03}_{-0.04}$	0.057	0.042	0.040
Nucleus	J	μ_{Exp}	I	II	III
---------	---	----------------	---	---	---
130Te		0.58 $^{+0.10}_{-0.09}$	+0.52	+0.68	+0.67
130Xe		0.57 $^{+0.14}_{-0.13}$	+0.50	+0.63	+0.61

As can be seen, similarly to the results of the calculations for 76Ge and 82Se, the role of the effective $M1$ operator is relevant. As a matter of fact, the smaller $B(M1)$ values, compared with the one calculated with the bare operator, are a consequence of the general quenching of the non-diagonal matrix elements reported in Table A.VI. On the other side, the enhancement of the proton $0g_{7/2}$ diagonal matrix element is responsible for the larger dipole moments, when they are calculated employing the effective operators (II) and (III). Actually, because of the large experimental errors, it is not clear if the effective operators are able to provide a better agreement with experiment for the dipole moments with respect to the bare operator. As regards the $B(M1; 2^+_1 \rightarrow 2^+_1)$, it turns out that our calculated values are closer to the smallest of the two values reported in Ref. 44. Finally, it is worth noting that there is no sizeable role of the blocking effect.

The calculated and experimental values of the NME for the 130Te $2\nu\beta\beta$ decay 37 are reported in Table VIII.

Decay	NME$_{\text{Exp}}$	I	II	III
130Te \rightarrow 130Xe	0.031 $^{+0.004}_{-0.004}$	0.131	0.044	0.046

As shown in our previous study 17, where the matrix elements of the effective GT operator can be found in Tables (III-IV), the quenching of the bare operator (I) provided by the effective ones (II-III) plays a fundamental role to obtain a reasonable comparison with the experimental NME. As a matter of fact, our shell model calculation gives a $2\nu\beta\beta$ NME that is almost 4 times bigger than the experimental one, starting from GT operator (I). On the other hand, the effective operators, derived via many-body perturbation theory, take into account the reduction of the full Hilbert space to configurations constrained by the valence nucleons interacting in the model space and provide NMEs that are almost within experimental error bars.

These considerations hold, obviously, also for the calculation of the 130Te $\Sigma B(p,n)$, whose results are reported in Fig. 11 and compared with available data 45 up to 3 MeV excitation energy.

E. 136Xe

The shell-model calculations for 136Xe and 136Ba are carried out using the same model space, effective Hamiltonian and transition operators as for 130Te and 130Xe,

TABLE VIII: Same as in Table II but for the $2\nu\beta\beta$ decay (in MeV$^{-1}$) of 130Te (see text for details).
and details about SP energies, TBMEs, effective charges, and effective GT matrix elements can be found in Ref. [17].

We present, as in our previous study, the experimental [34, 35] and calculated low-energy spectra and B(E2)s which we have reported in Fig. 12.

The comparison between theory and experiment, as regards the low-lying excited states and the B(E2) transition rates, is excellent for both nuclei, testifying once more the reliability of the realistic shell model.

In Table IX we report the calculated and experimental B(M1) of 136Ba, involving some of the excited states reported in Fig. 12 together with the J = 21+ magnetic dipole moment. We compare also theory and experiment for the J = 21+ magnetic dipole moments of 136Xe.

As a matter of fact, we observe the same tendency we have found in the previous calculations, that is the quenching of B(M1) values obtained with effective operators (II-III), and the enhancement of the dipole moments when the same operators are employed. This is grounded on the same observations we have made in Section III D and supported by the inspection of the list of the matrix elements in Table A.VI.

Actually, both features lead to an improvement in the description of the data, and support again the crucial role of the renormalization of transition operators by way of the many-body perturbation theory.

This consideration is even more valid when we consider the calculation of the NME for the 136Xe 2νββ decay, whose results are reported in Table X and compared with the datum [37].

TABLE IX: Same as in Table I but for 136Xe and 136Ba (see text for details). We report those for the observed states in Fig. 12.

Nucleus	J → J	B(M1)Exp	I	II	III
136Ba	2+	0.02 ± 0.1 [36]	0.07	0.06	0.05
	2+	0.002 ± 0.002 [36]	0.006	0.004	0.004
	4+	0.06 +0.08 -0.05 [36]	0.15	0.10	0.10
136Xe	1+	1.53 ± 0.09 [34]	+1.05	+1.15	+1.14
	3+	3.2 ± 0.6 [34]	+2.02	+2.25	+2.23
136Ba	2+	0.69 ± 0.10 [34]	+0.48	+0.59	+0.58

TABLE X: Same as in Table II but for the 2νββ decay (in MeV−1) of 136Xe (see text for details).

Decay	NMEExp	I	II	III
136Xe → 136Ba	0.0181 ± 0.0007	0.0910	0.0285	0.0295

We see that the (II-III) NMEs are more than a factor 3 smaller than the value obtained with the bare operator (I), and closer to the experimental value. The same feature comes out in Fig. 13 where we report the calculated and experimental [17] ΣB(p, n) of 136Xe up to 4.5 MeV excitation energy.

Also for the 136Xe running sums, the many-body renormalization of the GT operator is crucial to reproduce the experimental curve, with a negligible contribution of the blocking effect.

The total GT− strengths, obtained with bare and effective operators (I-III), are 51.9, 20.7, and 21.0, respectively.
FIG. 13: Running sums of the 136Xe $B(p,n)$ strengths as a function of the excitation energy E_x up to 4.5 MeV (see text for details).

IV. CONCLUSIONS AND OUTLOOK

In this paper we have studied the role of effective operators to calculate, within the realistic shell model, observables that are related to spin- and spin-isospin-dependent transitions. Our main focus has been on GT transitions for nuclei that are candidates for the detection of the $0\nu\beta\beta$-decay, and we have calculated, for several nuclei and over a wide mass range, $2\nu\beta\beta$-decay NMEs and the running sums of the $B(p,n)$ strengths to compare them with the available data. Since both the GT and magnetic-dipole operator $M1$ share common problematics, we have extended this analysis to the calculation of $B(M1)s$ and magnetic dipole moments to strengthen our investigation.

As a matter of fact, our aim has been to demonstrate that the present status of the many-body perturbation theory allows to derive consistently effective Hamiltonians and transition operators that are able to reproduce quantitatively the observed spectroscopic and decay properties, without resorting to an empirical quenching of the axial coupling constant g_A, or to empirically fitted spin and orbital g-factors g_s, g_l.

In order to show and stress pictorially the main outcome of our study about the relevance played by effective transition operators, in Fig. 14 we report a correlation plot between our calculated $2\nu\beta\beta$ decay NMEs and the corresponding experimental values. The quantities in Fig. 14 are already reported in Tables I, IV, VI, VIII, X.

The indigo symbols correspond to the results obtained employing the bare operators (I), while the black ones indicate the results obtained with the effective operators (III).

As can be seen, the indigo points are all spread on the lower side of the figure, except the one corresponding to 48Ca, and lie far away from the identity, that is represented by a dashed line. This feature characterizes the nuclei that are described by way of a model space where some of its orbitals lack their spin-orbit counterparts, leading to an overestimation of the calculated NME with respect to the experimental value.

The black points, that correspond to the effective GT operators, on the other hand regroup themselves close to the identity, as a reliable calculation should do.

It is worth reminding that our results may be traced back to earlier investigations carried out by Towner and collaborators since the 1980s (see for instance [12, 13, 48, 49]), where the role of microscopically derived effective spin-dependent operators is enlightened. Present work takes advantage of modern developments to derive the effective shell-model Hamiltonians and operators (see for example Refs. [2, 5]), and up-to-date approaches to the renormalization of realistic NN potentials [20].

On the above grounds, we intend to extend our study by investigating the role of meson-exchange corrections to the electroweak currents [7–10]. More precisely, we aim in a near future at building up effective shell-model Hamiltonians and operators starting from two- and three-body nuclear potentials derived within the framework of chiral perturbation theory [50], and taking also into account the contributions of chiral two-body electroweak currents to the effective GT operators.

At last, our final goal is to benefit from the expertise we have gained to evaluate the $0\nu\beta\beta$ decay NMEs for the nuclei studied in present paper [51].
[1] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261, 125 (1995).
[2] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Ann. Phys. 327, 2125 (2012).
[3] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Prog. Part. Nucl. Phys. 62, 135 (2009).
[4] W. B. Brandow, Rev. Mod. Phys. 90, 075021 (2018).
[5] S. Mukhopadhyay, B. P. Crider, B. A. Brown, S. F. Ashley, A. Chatraborty, A. Kumar, M. T. McEllistrem, E. E. Peters, F. M. Prados-Estévez, and S. W. Yates, Phys. Rev. C 95, 014327 (2017).
[6] J. H. Thies, D. Frekers, T. Adachi, M. Dozono, H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, E.-W. Grewe, K. Hatanaka, et al., Phys. Rev. C 94, 014310 (2013).
[7] K.-H. Speidel, N. Benczer-Koller, G. Kumbartzki, C. Barton, A. Gelberg, J. Holden, G. Jakob, N. Matt, R. H. Mayer, M. Satteson, et al., Phys. Rev. C 57, 2181 (1998).
[8] J. H. Thies, D. Frekers, T. Adachi, M. Dozono, H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, E.-W. Grewe, K. Hatanaka, et al., Phys. Rev. C 86, 014304 (2012).
[9] S. Mukhopadhyay, B. P. Crider, B. A. Brown, S. F. Ashley, A. Chatraborty, A. Kumar, M. T. McEllistrem, E. E. Peters, F. M. Prados-Estévez, and S. W. Yates, Phys. Rev. C 95, 014327 (2017).
[10] S. Mukhopadhyay, B. P. Crider, B. A. Brown, S. F. Ashley, A. Chatraborty, A. Kumar, M. T. McEllistrem, E. E. Peters, F. M. Prados-Estévez, and S. W. Yates, Phys. Rev. C 95, 014327 (2017).
[11] S. Mukhopadhyay, B. P. Crider, B. A. Brown, S. F. Ashley, A. Chatraborty, A. Kumar, M. T. McEllistrem, E. E. Peters, F. M. Prados-Estévez, and S. W. Yates, Phys. Rev. C 95, 014327 (2017).
[12] J. H. Thies, D. Frekers, T. Adachi, M. Dozono, H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, E.-W. Grewe, K. Hatanaka, et al., Phys. Rev. C 86, 014304 (2012).
[13] D. Frekers, M. Alanssari, T. Adachi, B. T. Cleveland, M. Dozono, H. Ejiri, S. R. Elliott, H. Fujita, Y. Fujita, M. Fujiwara, et al., Phys. Rev. C 94, 014310 (2016).
[14] S. F. Hicks, J. R. Vanhoy, and S. W. Yates, Phys. Rev. C 78, 054320 (2008).
[15] P. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, E. Ganioglu, et al., Phys. Rev. C 86, 044603 (2012).
[16] S. Mukhopadhyay, M. Scheck, B. Crider, S. N. Choudry, E. Elhami, E. Peters, M. T. McEllistrem, J. N. Orce, and S. W. Yates, Phys. Rev. C 78, 034317 (2008).
[17] D. Frekers, P. Puppe, J. H. Thies, and H. Ejiri, Nucl. Phys. A 916, 219 (2013).
[18] I. P. Johnstone and I. S. Towner, Eur. Phys. J. A 3, 237 (1998).
[19] B. A. Brown, N. J. Stone, J. R. Stone, I. S. Towner, and M. Hjorth-Jensen, Phys. Rev. C 71, 044317 (2005).
[20] T. Fukui, L. De Angelis, Y. Z. Ma, L. Coraggio, A. Gargano, N. Itaco, and F. R. Xu, Phys. Rev. C 98, 044305 (2018).
[21] L. Coraggio, A. Gargano, N. Itaco, and F. Nowacki, in preparation.
1. SP energies

Table A.I: Theoretical proton and neutron SP energy spacings (in MeV) for \(^{40}\)Ca core.	
Proton SP spacings	**Neutron SP spacings**
\(0f_{7/2}\)	0.0
\(0f_{5/2}\)	8.6
\(1p_{3/2}\)	1.6
\(1p_{1/2}\)	3.3

Table A.II: Theoretical proton and neutron SP energy spacings (in MeV) for \(^{56}\)Ni core.	
Proton SP spacings	**Neutron SP spacings**
\(0f_{5/2}\)	0.2
\(1p_{3/2}\)	0.0
\(1p_{1/2}\)	0.6
\(0g_{9/2}\)	3.1

Table A.III: Theoretical proton and neutron SP energy spacings (in MeV) for \(^{100}\)Sn core.	
Proton SP spacings	**Neutron SP spacings**
\(0g_{7/2}\)	0.0
\(1d_{5/2}\)	0.3
\(1d_{3/2}\)	1.2
\(2s_{1/2}\)	1.1
\(0h_{11/2}\)	1.9

2. Effective M1 and GT operators

Table A.IV: Proton and neutron matrix elements of the effective magnetic dipole operator \(M1 (I)\) (in \(\mu_N\)) for the \(^{40}\)Ca core. In the last column we report the corresponding quenching factors. For \(I\)–forbidden matrix elements there is no quenching factor to be shown.				
\(n_a I_a j_a\)	\(n_b I_b j_b\)	\(T_a\)	\(M_{1\text{eff}}\)	Quenching factor
\(0_f 5/2 \)	\(0_f 7/2 \)	+1/2	8.707	0.959
\(0_f 5/2 \)	\(0_f 5/2 \)	+1/2	-3.981	0.960
\(0_f 5/2 \)	\(0_f 7/2 \)	+1/2	4.663	1.124
\(0_f 5/2 \)	\(0_f 5/2 \)	+1/2	1.340	1.097
\(0_f 5/2 \)	\(1p_{3/2} 0_f 5/2 \)	+1/2	-0.012	
\(0_f 5/2 \)	\(1p_{3/2} 0_f 5/2 \)	+1/2	0.010	
\(0_f 5/2 \)	\(1p_{3/2} 1p_{3/2} \)	+1/2	4.460	0.932
\(0_f 5/2 \)	\(1p_{3/2} 1p_{1/2} \)	+1/2	-2.385	0.922
\(0_f 5/2 \)	\(1p_{1/2} 1p_{1/2} \)	+1/2	2.365	0.914
\(0_f 5/2 \)	\(1p_{1/2} 1p_{1/2} \)	+1/2	-0.297	0.938
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	-2.238	0.746
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	3.296	0.952
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	-3.502	1.029
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	2.408	1.244
\(0_f 5/2 \)	\(1p_{3/2} 0_f 5/2 \)	-1/2	-0.022	
\(0_f 5/2 \)	\(1p_{3/2} 1p_{3/2} \)	-1/2	0.020	
\(0_f 5/2 \)	\(1p_{3/2} 1p_{1/2} \)	-1/2	-2.074	0.859
\(0_f 5/2 \)	\(1p_{3/2} 1p_{1/2} \)	-1/2	2.009	0.931
\(0_f 5/2 \)	\(1p_{3/2} 1p_{1/2} \)	-1/2	-1.992	0.925
\(0_f 5/2 \)	\(1p_{1/2} 1p_{1/2} \)	-1/2	0.774	1.015

Table A.V: Same as in Table A.IV but for the \(^{56}\)Ni core.				
\(n_a I_a j_a\)	\(n_b I_b j_b\)	\(T_a\)	\(M_{1\text{eff}}\)	Quenching factor
\(0_f 5/2 \)	\(0_f 5/2 \)	+1/2	2.155	1.765
\(0_f 5/2 \)	\(1p_{3/2} 0_f 5/2 \)	+1/2	-0.031	
\(1p_{3/2} 0_f 5/2 \)	\(1p_{3/2} 0_f 5/2 \)	+1/2	0.027	
\(1p_{3/2} 1p_{3/2} \)	\(1p_{3/2} 1p_{1/2} \)	+1/2	3.359	0.740
\(1p_{3/2} 1p_{1/2} \)	\(1p_{1/2} 1p_{1/2} \)	+1/2	-1.567	0.606
\(1p_{1/2} 1p_{1/2} \)	\(1p_{1/2} 1p_{1/2} \)	+1/2	1.586	0.613
\(0_g 9/2 \)	\(0_g 9/2 \)	+1/2	-0.097	0.308
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	10.363	0.893
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	1.350	0.697
\(0_f 5/2 \)	\(0_f 5/2 \)	-1/2	-0.032	
\(1p_{3/2} 0_f 5/2 \)	\(1p_{3/2} 0_f 5/2 \)	-1/2	0.029	
\(1p_{3/2} 1p_{3/2} \)	\(1p_{3/2} 1p_{1/2} \)	-1/2	-1.205	0.499
\(1p_{3/2} 1p_{1/2} \)	\(1p_{1/2} 1p_{1/2} \)	-1/2	1.177	0.545
\(1p_{1/2} 1p_{1/2} \)	\(1p_{1/2} 1p_{1/2} \)	-1/2	-1.194	0.553
\(1p_{1/2} 1p_{1/2} \)	\(1p_{1/2} 1p_{1/2} \)	-1/2	0.514	0.674
\(0_g 9/2 \)	\(0_g 9/2 \)	-1/2	-1.312	0.401
TABLE A.VI: Same as in Table A.IV but for the 100Sn core.

$n_{\ell} j_{\ell}$	$n_{\ell} j_{\ell}$	T_s	M_{eff}	quenching factor
0g$_{7/2}$ 0g$_{7/2}$	+1/2	3.018	1.122	
0g$_{7/2}$ 1d$_{5/2}$	+1/2	-0.064		
1d$_{5/2}$ 0g$_{7/2}$	+1/2	0.060		
1d$_{5/2}$ 1d$_{5/2}$	+1/2	5.193	0.765	
1d$_{5/2}$ 1d$_{5/2}$	+1/2	-2.206	0.636	
1d$_{5/2}$ 1d$_{5/2}$	+1/2	2.265	0.653	
1d$_{5/2}$ 1d$_{5/2}$	+1/2	0.387	2.471	
1d$_{5/2}$ 2s$_{1/2}$	+1/2	-0.107		
2s$_{1/2}$ 1d$_{5/2}$	+1/2	0.106		
2s$_{1/2}$ 2s$_{1/2}$	+1/2	2.437	0.729	
0h$_{11/2}$ 0h$_{31/2}$	+1/2	12.259	0.855	
0g$_{7/2}$ 0g$_{7/2}$	-1/2	1.986	0.852	
0g$_{7/2}$ 1d$_{5/2}$	-1/2	-0.009		
1d$_{5/2}$ 0g$_{7/2}$	-1/2	0.008		
1d$_{5/2}$ 1d$_{5/2}$	-1/2	-1.415	0.522	
1d$_{5/2}$ 1d$_{5/2}$	-1/2	1.718	0.593	
1d$_{5/2}$ 1d$_{5/2}$	-1/2	-1.764	0.609	
1d$_{5/2}$ 1d$_{5/2}$	-1/2	1.088	0.752	
1d$_{5/2}$ 2s$_{1/2}$	-1/2	0.069		
2s$_{1/2}$ 1d$_{5/2}$	-1/2	-0.068		
2s$_{1/2}$ 2s$_{1/2}$	-1/2	-1.431	0.625	
0h$_{11/2}$ 0h$_{31/2}$	-1/2	-1.440	0.409	

TABLE A.VII: Matrix elements of the proton-neutron effective GT$^+$ and GT$^-$ operators for the 40Ca core. In the last column we report the corresponding quenching factors (see text for details). For I--forbidden matrix elements there is no quenching factor to be shown.

$n_{\ell} j_{\ell}$	$n_{\ell} j_{\ell}$	GT$^+$	quenching factor
0f$_{7/2}$ 0f$_{7/2}$	2.862	0.995	
0f$_{7/2}$ 0f$_{5/2}$	-3.225	0.970	
0f$_{5/2}$ 0f$_{7/2}$	3.735	1.124	
0f$_{5/2}$ 0f$_{5/2}$	-1.994	1.073	
0f$_{5/2}$ 1p$_{3/2}$	-0.025		
1p$_{1/2}$ 0f$_{5/2}$	0.001		
1p$_{1/2}$ 1p$_{3/2}$	2.150	0.928	
1p$_{1/2}$ 1p$_{1/2}$	-1.892	0.913	
1p$_{1/2}$ 1p$_{1/2}$	1.868	0.902	
1p$_{1/2}$ 1p$_{1/2}$	-0.681	0.929	

$n_{\ell} j_{\ell}$	$n_{\ell} j_{\ell}$	GT$^-$	quenching factor
0f$_{7/2}$ 0f$_{7/2}$	2.699	0.938	
0f$_{7/2}$ 0f$_{5/2}$	-3.024	0.910	
0f$_{5/2}$ 0f$_{7/2}$	3.286	0.989	
0f$_{5/2}$ 0f$_{5/2}$	-1.745	0.939	
0f$_{5/2}$ 1p$_{3/2}$	-0.001		
1p$_{3/2}$ 0f$_{5/2}$	-0.020		
1p$_{1/2}$ 1p$_{3/2}$	2.129	0.919	
1p$_{1/2}$ 1p$_{1/2}$	-1.865	0.900	
1p$_{1/2}$ 1p$_{1/2}$	1.858	0.896	
1p$_{1/2}$ 1p$_{1/2}$	-0.674	0.920	