Muon Anomalous Magnetic Moment in a Supersymmetric $U(1)'$ Model

Vernon Barger1, Chung Kao2, Paul Langacker3, and Hye-Sung Lee1

1Department of Physics, University of Wisconsin, Madison, WI 53706

2Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019

3Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104

Abstract

We study the muon anomalous magnetic moment $a_\mu = (g_\mu - 2)/2$ in a supersymmetric $U(1)'$ model. The neutralino sector has extra components from the superpartners of the $U(1)'$ gauge boson and the extra Higgs singlets that break the $U(1)'$ symmetry. The theoretical maximum bound on the lightest neutralino mass is much smaller than that of the Minimal Supersymmetric Standard Model (MSSM) because of the mixing pattern of the extra components. In a $U(1)'$ model where the $U(1)'$ symmetry is broken by a secluded sector (the S-model), $\tan \beta$ is required to be $\lesssim 3$ to have realistic electroweak symmetry breaking. These facts suggest that the a_μ prediction may be meaningfully different from that of the MSSM. We evaluate and compare the muon anomalous magnetic moment in this model and the MSSM and discuss the constraints on $\tan \beta$ and relevant soft breaking terms. There are regions of the parameter space that can explain the experimental deviation of a_μ from the Standard Model calculation and yield an acceptable cold dark matter relic density without conflict with collider experimental constraints.
I. INTRODUCTION

The anomalous magnetic moment of the muon $a_\mu = (g-2)_\mu/2$ is one of the most precisely measured physical quantities. Its current value from the Brookhaven National Laboratory E821 experiment is $[1, 2]$

\[a_\mu(\text{exp}) = (11\,659\,208 \pm 6) \times 10^{-10}, \]

which is a 2.4σ deviation from the Standard Model (SM) prediction

\[\Delta a_\mu \equiv a_\mu(\text{exp}) - a_\mu(\text{SM}) = (23.9 \pm 10.0) \times 10^{-10} \]

when the hadronic vacuum polarization information is taken directly from the annihilation of e^+e^- to hadrons $[3]$ measured at CMD-2 $[4]$. The uncertainties involved in Eq. (2) are 7.2×10^{-10} from the leading-order hadronic contribution $[5]$, 3.5×10^{-10} from the hadronic light-by-light scattering $[6]$, and 6×10^{-10} from the a_μ experiment. The indirect hadronic information from the hadronic τ decay gives a higher SM value that does not indicate a significant discrepancy with the SM (only a 0.9σ deviation)1. Recently released KLOE data $[8]$ show an overall agreement with the CMD-2 data $[4]$, confirming that there is a discrepancy between the hadronic contributions from the e^+e^- data and the τ data obtained from ALEPH, CLEO and OPAL $[9]$.

New physics is expected to exist at the TeV-scale to resolve various theoretical problems, including Higgs mass stabilization, and new physics could give a significant contribution to a_μ to explain the above deviation $[10]$. There have been extensive studies of a_μ in supersymmetric (SUSY) models $[11]$, which show that supersymmetry can naturally explain the deviation of Eq. (2).

The a_μ data constrains the SUSY parameters, including the sign of μ $[12]$ and upper limits on relevant scalar and fermion superpartner masses $[13]$. In the minimal supergravity model (mSUGRA) or the Minimal Supersymmetric Standard Model (MSSM), the dominant additional contribution to a_μ comes from the first-order radiative corrections of the chargino-sneutrino and the neutralino-smuon loops; it is

\[\Delta a_\mu(\text{SUSY}) \sim 13 \times 10^{-10} \frac{\tan \beta \, \text{sign}(\mu)}{(M_{\text{SUSY}}/100 \text{ GeV})^2} \]

in the limit that all the supersymmetric masses are degenerate at M_{SUSY} $[14]$. The 2-loop corrections involve sfermion subloops or chargino/neutralino subloops and are at about the few percent level, although full calculations are not yet complete $[15]$. The discrepancy in Eq. (2) shows that a supersymmetry solution can be found if $\text{sign}(\mu) > 0$ and $M_{\text{SUSY}} \lesssim 700$ GeV for $\tan \beta \lesssim 50$, in the limit that supersymmetric masses are degenerate. The deviation of a_μ similarly gives constraints on the parameters of other new physics models including the mass of a second generation leptoquark $[16]$, the mass of the heavy photon in the little Higgs model $[17]$ and the compactification scale of an extra dimension $[18]$.

Given that a_μ has been a powerful tool for constraining the new physics models, due to the accuracy of its measurement and the SM evaluation, it is interesting to pursue what a_μ can tell about recently emerging models. The recent idea of split supersymmetry assumes large

1 For a recent review of the various SM predictions and the a_μ discrepancies, see Ref. $[7]$.

masses (e.g., 10^{10} GeV) for scalar superpartners (sleptons, squarks) while keeping fermionic superpartners (gauginos, higgsinos) at the TeV-scale \[19\]. The large masses of the smuon and sneutrino would make the chargino-sneutrino and neutralino-smuon loop contributions to a_μ negligible; the split supersymmetry model would be rejected if the deviation of a_μ is in fact real.

Another interesting TeV-scale new physics model is the supersymmetric $U(1)'$ model \[20, 21\]. It has a structure similar to the MSSM but has an extra $U(1)$ gauge symmetry ($U(1)'$), which is spontaneously broken at the TeV-scale by one or multiple Higgs singlets. This model can provide natural solutions to some of the difficulties the MSSM faces, including the explanation of the electroweak scale of the μ parameter (μ-problem \[22\]) and the lack\(^2\) of a sufficiently strong first-order phase transition for electroweak baryogenesis (EWBG) \[24\]. The Next-to-Minimal Supersymmetric Standard Model (NMSSM) \[25\] can also resolve the μ-problem but its discrete Z_3 symmetry invokes a cosmological domain wall problem \[26\]; a variant which avoids this problem is discussed in Ref. \[27, 28\].

Besides the bottom-up reasons to introduce an additional $U(1)$ symmetry to supplement the MSSM, many new physics models, including grand unified theories (GUTs), extra dimensions \[29\], superstrings \[30\], little Higgs \[31\], dynamical symmetry breaking \[32\] and Stueckelberg mechanism models \[33\] predict extra $U(1)$ symmetries or gauge bosons. The newly introduced particles such as the $U(1)'$ gauge boson (Z') and the $U(1)'$ breaking Higgs singlet (S) and their superpartners Z'-ino (\tilde{Z}') and singlino (\tilde{S}), alter the Higgs and neutralino spectra. The modified Higgs spectrum \[34\] and the neutralino relic density \[35\] have been recently studied in the $U(1)'$ model with a secluded $U(1)'$ symmetry breaking sector \[21\], and the difference in the predictions from the MSSM detailed.

There have been studies of the muon anomalous magnetic moment in models with additional gauge groups or E_6 GUT \[36, 37, 38\]. They mostly concentrated on the loops including the Z' or the exotic quarks in the model and their superpartners, and constraints were obtained on their masses or couplings. To explain the a_μ deviation, the Z' masses should be typically smaller than the experimental limits of $M_{Z'} \gtrsim 500 \sim 800$ GeV from direct searches at the Tevatron \[39, 40\].

In this paper we quantitatively study a supersymmetric $U(1)'$ model with a secluded $U(1)'$ symmetry breaking sector (the S-model) \[21\] to see how the extended neutralino sector contribution to a_μ is different from the MSSM prediction. The superpotential in this model is

$$W = h_s S H_1 H_2 + \lambda_s S_1 S_2 S_3, \quad (4)$$

where h_s and λ_s are dimensionless parameters. The μ-problem is solved by replacing the μ term by an effective μ parameter

$$\mu_{\text{eff}} = h_s s/\sqrt{2} \quad (5)$$

where $s/\sqrt{2}$ is the vacuum expectation value (VEV) of the Higgs singlet S that acquires a VEV at the electroweak or TeV scale. The Z' has a large mass generated by the Higgs singlet fields $S_{1,2,3}$, which acquire large (TeV scale) VEVs for small λ_s because of an almost F and D flat direction. The extra Higgs singlets allow μ_{eff} to be at the electroweak scale while keeping the Z' heavier than the experimental limit.

\(^2\) The required strong first-order phase transition for EWBG is allowed in the MSSM only if the light Higgs mass is only slightly above the LEP experimental bound and the light stop mass is smaller than the top mass \[23\].
The electroweak symmetry breaking is driven by electroweak scale trilinear soft terms, leading to small values for \(\tan \beta \equiv v_2/v_1 \) (\(\tan \beta \sim 1 \) to 3), while solutions without unwanted global minima at \(\langle H^0_1 \rangle = 0 \) typically have \(\langle S \rangle \lesssim 1.5 \langle H^0_1 \rangle \) \[21\]. A small \(\tan \beta \) implies a problem in the MSSM; for example, the light Higgs mass needs large \(\tan \beta \) (for reasonable superpartner masses) to satisfy the LEP bound of \(m_h > 115 \) GeV. The mixing of the Higgs doublets and singlets in the \(S \)-model, however, lowers the LEP \(m_h \) bound significantly \[34\]. Furthermore, the maximum theoretical value for \(m_h \) for a given \(\tan \beta \) is increased, both by \(F \)-terms (similar to effects in the NMSSM \[25\] \[34\]) and by \(D \)-terms \[41\]. As a result, \(\tan \beta \sim 1 \) to 3 is experimentally allowed in the \(S \)-model.

The neutralinos in the \(S \)-model have extra components of the \(Z' \)-ino and singlino. The lightest neutralino of the \(U(1)' \) model is often very light because of the mixing pattern of the extra components. Eq. (3) suggests that \(a_\mu \) in this model may be significantly different from that of the MSSM. We numerically investigate the differences and obtain constraints on \(\tan \beta \) and the relevant soft breaking terms. We do not include \(Z' \) loops since the \(Z' \) mass bounds from direct searches at colliders imply negligible effects.

In Section III we describe the formalism to compute the chargino and neutralino contributions in the \(S \)-model. In Section IIII we give the numerical analysis of \(a_\mu \) and make comparisons to the MSSM results, before the conclusion in Section IV.

II. SUPERSYMMETRIC CONTRIBUTIONS TO \(a_\mu \) WITH \(U(1)' \) SYMMETRY

In this section we describe the neutralino and chargino contributions to \(a_\mu \) in the \(S \)-model. The formalism is similar to the MSSM with a straightforward extension. We assume that the VEVs of the \(S_{1,2,3} \) are large compared to the VEVs of other Higgs fields (\(H^0_1, H^0_2 \) and \(S \)) and that their singlino components essentially decouple \[21\] \[34\].

A. Neutralino Contribution

Ignoring the \(\tilde{S}_{1,2,3} \) singlino, the neutralino mass matrix in the basis \(\{ \tilde{B}, \tilde{W}_3, \tilde{H}^0_1, \tilde{H}^0_2, \tilde{S}, \tilde{Z}' \} \) is given by

\[
M_{\chi^0} = \begin{pmatrix}
M_1 & 0 & -g_1v_1/2 & g_1v_2/2 & 0 & 0 \\
0 & M_2 & g_2v_1/2 & -g_2v_2/2 & 0 & 0 \\
-g_1v_1/2 & g_2v_1/2 & 0 & -h_\beta s/\sqrt{2} & -h_\beta v_2/\sqrt{2} & g_\delta Q'(H^0_1)v_1 \\
g_1v_2/2 & -g_2v_2/2 & -h_\beta s/\sqrt{2} & 0 & -h_\beta v_1/\sqrt{2} & g_\delta Q'(H^0_2)v_2 \\
0 & 0 & -h_\beta v_2/\sqrt{2} & h_\beta v_1/\sqrt{2} & 0 & g_\delta Q'(S)s \\
0 & 0 & g_\delta Q'(H^0_1)v_1 & g_\delta Q'(H^0_2)v_2 & g_\delta Q'(S)s & M_{1'}
\end{pmatrix}
\]

where \(\epsilon = g_1 \cos \theta_W = g_2 \sin \theta_W; g_{Z'} \) is the \(U(1)' \) gauge coupling constant, for which we take the GUT motivated value of \(g_{Z'} = \sqrt{5}/3g_1 \). \(Q' \) is the \(U(1)' \) charge, and the anomaly-free charge assignments based on \(E_6 \) GUT can be found in Ref. \[42\].

The VEVs of the Higgs doublets are \(\langle H^0_i \rangle \equiv \frac{v_i}{\sqrt{2}} \) with \(v_1^2 + v_2^2 \approx 246 \) GeV. The diagonalization of the mass matrix can be accomplished using a unitary matrix \(N \),

\[
N^T M_{\chi^0} N = \text{Diag}(M_{\chi^0_1}, M_{\chi^0_2}, M_{\chi^0_3}, M_{\chi^0_4}, M_{\chi^0_5}, M_{\chi^0_6}).
\]
FIG. 1: Supersymmetric contributions to a_{μ} involving charginos and neutralinos

The first 4×4 (5×5) submatrix of Eq. (6) is the MSSM (NMSSM) limit. Due to the singlino addition, there exists a kind of see-saw mechanism that makes the lightest neutralino very light \[28, 43\], less than 100 GeV in the case of $M_1' \gg M_1$ (where the $ \tilde{Z}'$ practically decouples and the mass matrix becomes the NMSSM limit) \[35\]. We will consider both this limit and that in which the gaugino mass unification relation, $M_1' = M_1 = \frac{5}{3} g_2^2 M_2 \simeq 0.5 M_2$, is satisfied.

The smuon mass-squared matrix is given by

$$M_{\tilde{\mu}}^2 = \begin{pmatrix} M_{LL}^2 & M_{LR}^2 \\ M_{RL}^2 & M_{RR}^2 \end{pmatrix}.$$

(8)

Its diagonalization can be accomplished through the unitary matrix D as

$$D^\dagger M_{\tilde{\mu}}^2 D = \text{Diag}(M_{\tilde{\mu}_1}^2, M_{\tilde{\mu}_2}^2).$$

(13)

The LEP2 SUSY Working Group analysis found $m_{\tilde{\mu}_R} \gtrsim 95$ GeV from $\tilde{\mu} \rightarrow \mu \chi^0_{1,2}$ searches \[44\]. Since $m_{\tilde{\mu}}$ is small compared to supersymmetric parameters, the off-diagonal terms of Eq. (11) and Eq. (12) are small and hence the mixing is small. For $\tan \beta \gtrsim 1$, both m_L^2, $m_E^2 \gtrsim (95 \text{ GeV})^2$ are required to give $m_{\tilde{\mu}_1} \gtrsim 95$ GeV from the tree-level mass matrix of Eq. (8), while for $\tan \beta \lesssim 1$, somewhat larger values of these parameters are required. We require both m_L^2 and m_E^2 to be larger than $(100 \text{ GeV})^2$ and take $A_{\mu} = 0$ in our numerical analysis.

The neutralino contribution to a_{μ} is then \[11\]

$$a_{\mu}(\chi^0) = a^1_{\mu}(\chi^0) + a^2_{\mu}(\chi^0)$$

(14)

where

$$a^1_{\mu}(\chi^0) = \sum_{j=1}^{6} \sum_{k=1}^{2} \frac{m_{\mu}}{8 \pi^2 M_{\chi^0_j}^2} Re[L_{jk} R_{jk}^* F_1(\frac{M_{\tilde{\mu}_k}}{M_{\chi^0_j}})]$$

(15)

$$a^2_{\mu}(\chi^0) = \sum_{j=1}^{6} \sum_{k=1}^{2} \frac{m_{\mu}^2}{16 \pi^2 M_{\chi^0_j}^2} \left(|L_{jk}|^2 + |R_{jk}|^2\right) F_2(\frac{M_{\tilde{\mu}_k}}{M_{\chi^0_j}})$$

(16)
with the following \(\mu-\bar{\mu}-\chi^0 \) chiral coupling:

\[
L_{jk} = \frac{1}{\sqrt{2}} \left(g_1 Y_{\mu L} N_{1j}^* - g_2 N_{2j}^* + g z' Q'(\mu L) N_{6j}^* \right) D_{1k} + \frac{\sqrt{2} m_\mu}{v_1} N_{3j}^* D_{2k} \tag{17}
\]

\[
R_{jk} = \frac{1}{\sqrt{2}} \left(g_1 Y_{\mu R} N_{1j} + g z' Q'(\mu R) N_{6j} \right) D_{2k} + \frac{\sqrt{2} m_\mu}{v_1} N_{3j} D_{1k}. \tag{18}
\]

\(Y_{\mu L} = -1, \ Y_{\mu R} = 2 \) are hypercharges and the terms with \(g z' \) coupling are the additional contributions from the \(U(1)' \). Since \(m_\mu \) is small compared to the supersymmetric masses, we can approximate it as zero in the loop integral functions to obtain

\[
F_1(x) = \frac{1}{2} \frac{1}{(x-1)^3}(1 - x^2 + 2x \ln x) \tag{19}
\]

\[
F_2(x) = \frac{1}{6} \frac{1}{(x-1)^4}(-x^3 + 6x^2 - 3x - 2 - 6x \ln x). \tag{20}
\]

B. Chargino Contribution

The chargino mass matrix is given by

\[
M_{\chi^\pm} = \begin{pmatrix}
M_2 & \sqrt{2} M_W \sin \beta \\
\sqrt{2} M_W \cos \beta & \frac{h_s s}{\sqrt{2}}
\end{pmatrix}. \tag{21}
\]

It is essentially the same as in the MSSM except that \(\mu \) is replaced by \(\mu_{\text{eff}} = \frac{h_s s}{\sqrt{2}} \). \(M_{\chi^\pm} \) can be diagonalized by two unitary matrices \(U \) and \(V \) as

\[
U^* M_{\chi^\pm} V^{-1} = \text{Diag}(M_{\chi_1^\pm}, M_{\chi_2^\pm}). \tag{22}
\]

The LEP light chargino mass limit \(M_{\chi^-} \gtrsim 104 \text{ GeV} \) gives constraints on \(M_2 \) and \(\mu_{\text{eff}} \) for a fixed value of \(\tan \beta \). The sneutrino mass-squared is given by

\[
M_{\tilde{\nu}_\mu}^2 = m_{\tilde{\nu}_L}^2 + T_{3\nu} M_Z^2 \cos 2\beta. \tag{23}
\]

As in the MSSM calculations, we do not include the right-handed neutrino or its superpartner.

The chargino loop contribution to \(a_\mu \) is

\[
a_\mu(\chi^-) = a_\mu^1(\chi^-) + a_\mu^2(\chi^-) \tag{24}
\]

where

\[
a_\mu^1(\chi^-) = \sum_{j=1}^2 \sum_{k=1}^2 \frac{m_\mu}{8\pi^2 M_{\chi_j^-}} \text{Re}[L_{jk} R_{jk}^*] F_3 \left(\frac{M_\mu^2}{M_{\chi_j^-}^2} \right) \tag{25}
\]

\[
a_\mu^2(\chi^-) = -\sum_{j=1}^2 \sum_{k=1}^2 \frac{m_\mu^2}{16\pi^2 M_{\chi_j^-}^2} \left(|L_{jk}|^2 + |R_{jk}|^2 \right) F_4 \left(\frac{M_\mu^2}{M_{\chi_j^-}^2} \right) \tag{26}
\]

with the chiral \(\mu-\bar{\nu}_\mu-\chi^- \) couplings

\[
L_{j1} = \frac{\sqrt{2} m_\mu}{v_1} U_{j2}^*, \quad R_{j1} = -g_2 V_{j1}. \tag{27}
\]
FIG. 2: (a) Δa_μ in the MSSM [filled circles] and the NMSSM limit ($M_1' \gg M_2$) of the S-model [dark shading] for $\tan \beta = 2.5$ and $m_{\text{s\muon}} = 100$ GeV. For the S-model, $h_s = 0.75$ and η-model charges are assumed. The region outside the NMSSM region has $\Delta a_\mu \times 10^{10} < 13.9$, while the island inside the NMSSM region (around $M_2 \sim 100$ GeV) has $\Delta a_\mu \times 10^{10} > 33.9$. The lightly shaded area outlined by solid curves is excluded by the LEP chargino mass limit $M_\chi^- > 104$ GeV. The Δa_μ have values $13.9 \leq \Delta a_\mu \times 10^{10} \leq 33.9$ favored by Eq. (2). The models give similar a_μ results and all the models allow small $\tan \beta$ for $m_{\text{s\muon}}$ small (~ 100 GeV). (b) The solution space for the acceptable neutralino relic density $\Omega_\chi^0 h^2 < 0.09$ and the $(g-2)_\mu$ deviation are shown together for the same NMSSM limit. The filled squares have the WMAP 3σ allowed range of $0.09 < \Omega_\chi^0 h^2 < 0.15$, the open circles have $\Omega_\chi^0 h^2 < 0.09$ and the crosses have $0.15 < \Omega_\chi^0 h^2 < 1.0$.

The loop integral functions are

$$F_3(x) = -\frac{1}{2} \frac{1}{(x-1)^3} (3x^2 - 4x + 1 - 2x^2 \ln x)$$ \hspace{1cm} (28)$$
$$F_4(x) = -\frac{1}{6} \frac{1}{(x-1)^4} (2x^3 + 3x^2 - 6x + 1 - 6x^2 \ln x).$$ \hspace{1cm} (29)$$

III. ANALYSIS

The MSSM can explain the 2.4σ deviation between the E821 experiment and the SM prediction for most values of $\tan \beta$. In this section, we compare predictions from the MSSM with those of the S-model.

Figure 2(a) shows Δa_μ in the M_2-s (also M_2-μ) plane for the MSSM [filled circles], the S-model and its NMSSM limit [dark shading], with $\tan \beta = 2.5$ and $m_{\text{s\muon}} \equiv m_{\tilde{L}} = m_{\tilde{E}} = 100$ GeV. The comparison is made for $\mu = \mu_{\text{eff}}$. The corresponding plot for the S-model with $M_1 = M_2$ is hardly distinguishable from that of the NMSSM limit so it is not shown in the figure. The plots are the parameter spaces that can give values $\Delta a_\mu \times 10^{10} = 13.9 \sim 33.9$ favored by Eq. (2). The parameter space excluded by the LEP chargino mass limit of
FIG. 3: Maximum Δa_μ versus (a) $\tan \beta$ and (b) m_{smuon} in the S-model with $M_1' = M_1$. The MSSM result and the NMSSM limit ($M_1' \gg M_2$) are nearly indistinguishable from the $M_1' = M_1$ curve and are not plotted. M_2 is scanned from 100 GeV to 1000 GeV, and $\mu (\mu_{\text{eff}})$ from 100 GeV to 1000 GeV. m_{smuon} is scanned from 100 GeV to 500 GeV for (a), and $\tan \beta$ from 1 to 3 for (b). Horizontal dashed-dot lines are boundaries of the measured deviation $\Delta a_\mu \times 10^{10} = 13.9 \sim 33.9$ of Eq. (2).

$M_\chi^- > 104$ GeV is shown as the lightly shaded area outlined by solid curves. Throughout the following analysis (Figures 3 and 4), we do not include the parameter points that violate the LEP chargino mass constraint. This figure shows that both the MSSM3 and the S-model (including the NMSSM limit) can explain the Δa_μ data with small $\tan \beta$ while satisfying $m_{\text{smuon}} \gtrsim 100$ GeV from the experimental bound on the scalar muon mass. The S-model gives only a slightly larger area in the parameter space than the MSSM. For the S-model, $h_s = 0.75$, and the E_6 motivated η-model4 charge assignments are assumed4.

It is interesting to note that in the $M_1' \gg M_2$ case5 (NMSSM limit), a sizable part of the a_μ 2.4σ deviation solution area overlaps the solution area which reproduces the observed cold dark matter (CDM) relic density in the same framework and limit3 as shown in Figure 2 (b). The filled squares have the WMAP 3σ allowed range of $0.09 < \Omega_\chi^0 h^2 < 0.15$, the open circles have $\Omega_\chi^0 h^2 < 0.09$ and the crosses have $0.15 < \Omega_\chi^0 h^2 < 1.0$. In the event that the Δa_μ deviation from the SM is real, this CDM result enhances the viability of the model. The chargino mass allowed by both the a_μ deviation and the relic density is 104 GeV $\lesssim M_{\chi^\pm} \lesssim 220$ GeV, where the lower bound is the present experimental limit. Since the chargino mass could be only slightly larger than the present LEP limit, a search for the

3 It should be emphasized that the MSSM cannot accept this small $\tan \beta$ if we consider other constraints: the light Higgs mass would be too small to be compatible with the LEP Higgs mass bound of $m_h > 115$ GeV.

4 The η-model is a $U(1)'$ model that is produced with a unique set of charge assignments when E_6 is broken to a rank-5 group.

5 The CDM expectations for smaller M_1' have not yet been examined.
SUSY trilepton signal at the Tevatron Run II will be very interesting [46]. It should be noted that only the Z-pole annihilation channel was considered to show this model could reproduce the acceptable relic density. There could be a larger solution space when more channels are considered.

We now consider the limits on tan β and m_{smuon} that allow the favored range of Δa_μ. Figure 3(a) shows the maximum Δa_μ as a function of tan β in the S-model (with $M_1 = M_2$). The MSSM curve is nearly the same, as is the NMSSM limit ($M_1 \gg M_2$) of the S-model. M_2 is scanned from 100 GeV to 1000 GeV, $\mu (\mu_{\text{eff}})$ from 100 GeV to 1000 GeV (negative μ is nearly irrelevant for producing positive Δa_μ), and m_{smuon} from 100 GeV to 500 GeV. This figure demonstrates the almost linear dependence on tan β, as in Eq. (3), and shows that even with small tan β, both models are able to produce the favored values of Δa_μ. Smaller tan β, however, has less supersymmetric parameter space that explains the deviation. The maximum values of Δa_μ have $m_{\text{smuon}} \sim 100$ GeV (the lowest scan value).

Since the chargino contribution is the same in the MSSM and the S-model, the dominant difference in a_μ would come from the lightest neutralino (χ^0_1) contribution. The mass and the coupling of χ^0_1 in the S-model is similar to that of the MSSM. In the NMSSM limit ($M_1 \gg M_1$), χ^0_1 is often significantly lighter than that of the MSSM but it is mostly singlino-like which couples to the muon only through mixing; χ^0_2 is mostly similar to χ^0_1 of the MSSM.

Figure 3(b) shows the maximum Δa_μ as a function of m_{smuon} in the S-model; the MSSM curve is nearly identical when tan β is scanned only from 1 to 3. The maximum points have tan $\beta \sim 3$ (the highest scan value). A large value of tan β, as more general $U(1)'$ models allow, would always ensure a sufficiently large maximum Δa_μ for a given m_{smuon}. This figure demonstrates the roughly inverse-squared dependence on m_{smuon} as in Eq. (4). It also shows that, for small tan β, the scalar muon should be light (100 GeV $\lesssim M_\mu \lesssim 180$ GeV) to explain the a_μ deviation. This could in principle lead to a concern for the neutralino cold dark matter candidate, since the scalar muon could be light enough to be the lightest supersymmetric particle (LSP). A charged LSP would conflict with the observational absence of exotic isotopes. In the S-model, however, the lightest neutralino is usually very light, e.g., $M_{\chi^0_1} \lesssim 100$ GeV, while it produces the acceptable range of the relic density for a wide range of the parameter space [35]. One can therefore have a light slepton with an even lighter neutralino as the LSP. A light slepton will be observable in future accelerators such as the CERN Large Hadron Collider (LHC) and International Linear Collider (ILC). Light sleptons could be detected easily at a linear collider of a moderate energy of 500 GeV.

Figure 4 shows the maximum Δa_μ as a function of M_2 in both models. For the dotted curves, we do not impose the gaugino mass unification assumption of $M_1 = M_2 \simeq 0.5 M_2$, and we scan M_1 from 50 GeV to 1000 GeV. This figure shows that independent M_1 can make quite a difference for a fixed M_2 when M_2 is large. For Figure 3 a relaxation of gaugino mass unification would not make much difference since the maximum Δa_μ mostly happens for small M_2 [6]. In the S-model we do not relax M_1 as a free parameter for the dotted curve, but rather take the NMSSM limit ($M_1 \gg M_2$) and relax only M_1. Unless M_1 is very small (smaller than the M_1 scan limit of 50 GeV), it would not increase the maximum Δa_μ significantly. For a wide range of M_2 (and practically for any M_2 in the case that M_1 is a free parameter), both models can produce the favored Δa_μ. The maximum Δa_μ have tan $\beta \sim 3$, $m_{\text{smuon}} \sim 100$ GeV (and $M_1 \sim 50$ GeV for the dotted curves).

6 Small M_2 results in a small chargino mass in Eq. (21), and large Δa_μ in Eq. (24).
FIG. 4: Maximum Δa_μ versus M_2 in (a) the MSSM and (b) the S-model. The dotted curves take M_1 as a free parameter while the solid ones follow the gaugino mass unification relation ($M_1' = M_1 \simeq 0.5 M_2$). $\mu(\mu_{\text{eff}})$ is scanned from 100 GeV to 1000 GeV, M_1 (for dotted curves) from 50 GeV to 1000 GeV, $\tan \beta$ from 1 to 3, and m_{smuon} from 100 GeV to 500 GeV. When M_1 is a free parameter, we take $M_1' \gg M_2$ (NMSSM limit) for the S-model (dotted curve). In both models, the maximum values of Δa_μ occur for $M_1 \sim 50$ GeV when M_1 is taken as a free parameter.

IV. CONCLUSION

Unlike the MSSM, the electroweak symmetry breaking condition in the S-model requires small $\tan \beta$. Moreover, the LEP smuon mass bound requires slepton masses above about 100 GeV. On the other hand, the 2.4σ deviation of the muon anomalous magnetic moment favors large $\tan \beta$ and small slepton soft terms. The Δa_μ determination gives the most severe constraint on $\tan \beta$ and slepton masses in the S-model; nonetheless, the S-model can still explain the deviation while satisfying the chargino and smuon mass limits. Since the mass of the light smuon is constrained to be less than 180 GeV, it would be easily observable at the next generation colliders. It is remarkable that the parameter space that explains the a_μ deviation has a sizable overlap with the parameter space that produces an acceptable cold dark matter relic density even when only the Z-pole annihilation channel is considered. The common solution space implies a lighter chargino upper mass bound of 220 GeV, though the common solution space would increase when annihilation channels in addition to the Z-pole are included for the neutralino relic density calculation. More general $U(1)'$ models that do not require small $\tan \beta$ could explain the a_μ deviation in a wider range of the parameter space.

Even though the lightest neutralino in the S-model is often very light, the difference of the Δa_μ predictions of the MSSM and the $U(1)'$ models for comparable parameters is not large. This is because the lightest neutralino is mostly singlino-like when it is lighter than that of the MSSM, and it couples to the muon only through mixing; the properties of the other neutralinos are quite similar to those of the MSSM. The relaxation of gaugino mass unification makes a sizable difference in both models.
The contribution of the \(Z' \)-loop is suppressed by the large \(Z' \) mass, which is constrained by the CDF limit of \(M_{Z'} \gtrsim 500 \sim 800 \text{ GeV} \), with the limit depending on the model \cite{39}. In the case that the right-handed neutrinos are \(U(1)' \) charged and form Dirac particles, more severe constraints of \(M_{Z'} \gtrsim \text{ multi-TeV} \) are deduced from Big Bang Nucleosynthesis (BBN) \cite{47}. Other possibilities for neutrino mass in these models are discussed in Ref. \cite{48}.

Acknowledgments

This research was supported in part by the U.S. Department of Energy under Grants No. DE-FG02-95ER40896, No. DE-FG02-04ER41305, No. DE-FG02-03ER46040, and No. DOE-EY-76-02-3071, and in part by the Wisconsin Alumni Research Foundation.

[1] G.W. Bennett et al. [Muon (g-2) Collaboration], Phys. Rev. Lett. 92 (2004) 161802.
[2] H.Deng et al. [Muon (g-2) Collaboration], hep-ex/0408148.
[3] B.E. Lautrup, A. Peterman and E. de Rafael, Phys. Rep. C 3 (1972) 193.
[4] R.R. Akhmetshin et al. [CMD-2 Collaboration], Phys. Lett. B 578 (2004) 285.
[5] M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Eur. Phys. J. C 31 (2003) 503; S. Ghozzi and F. Jegerlehner, Phys. Lett. B 583 (2004) 222; K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Phys. Rev. D 69 (2004) 093003.
[6] M. Hayakawa and T. Kinoshita, hep-ph/0112102; J. Bijnens, E. Pallante and J. Prades, Nucl. Phys. B 626 (2002) 410; M. Knecht and A. Nyffeler, Phys. Rev. D 65 (2002) 073034; M. Knecht, A. Nyffeler, M. Perrottet and E. de Rafael, Phys. Rev. Lett. 88 (2002) 071802; I. Blokland, A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 88 (2002) 071803.
[7] M. Passera, hep-ph/0411168.
[8] A. Aloisio et al. [KLOE Collaboration], Phys. Lett. B 606 (2005) 12.
[9] A. Hocker, hep-ph/0410085.
[10] A. Czarnecki and W.J. Marciano, Phys. Rev. D 64 (2001) 013014.
[11] For MSSM calculations see, for example, T. Ibrahim and P. Nath, Phys. Rev. D 62 (2000) 015004; G.C. Cho, K. Hagiwara and M. Hayakawa, Phys. Lett. B 478 (2000) 231; S.P. Martin and J.D. Wells, Phys. Rev. D 64 (2001) 035003.
[12] J.L. Lopez, D.V. Nanopoulos and X. Wang, Phys. Rev. D 49 (1994) 366; U. Chattopadhyay and P. Nath, Phys. Rev. D 53 (1996) 1648.
[13] U. Chattopadhyay and P. Nath, Phys. Rev. Lett. 86 (2001) 5854.
[14] T. Moroi, Phys. Rev. D 53 (1996) 6565 [Erratum-ibid. D 56 (1997) 4424].
[15] S. Heinemeyer, D. Stockinger and G. Weiglein, Nucl. Phys. B 690 (2004) 62; Nucl. Phys. B 699 (2004) 103.
[16] K. Cheung, Phys. Rev. D 64 (2001) 033001.
[17] S.C. Park and J. Song, hep-ph/0306112.
[18] G. Cacciapaglia, M. Cirelli and G. Cristadoro, Nucl. Phys. B 634 (2002) 230.
[19] N. Arkani-Hamed and S. Dimopoulos, hep-th/0405159.
[20] M. Cvetic, D.A. Demir, J.R. Espinosa, L.L. Everett and P. Langacker, Phys. Rev. D 56 (1997) 2861 [Erratum-ibid. D 58 (1998) 119905].
[21] J. Erler, P. Langacker and T. Li, Phys. Rev. D 66 (2002) 015002.
[22] J.E. Kim and H.P. Nilles, Phys. Lett. B 138 (1984) 150.
[23] B. de Carlos and J.R. Espinosa, Nucl. Phys. B 503 (1997) 24; K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, JHEP 0106 (2001) 031; M. Carena, M. Quiros, M. Seco and C.E.M. Wagner, Nucl. Phys. B 650 (2003) 24.

[24] J. Kang, P. Langacker, T. Li and T. Liu, hep-ph/0402086.

[25] J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Phys. Rev. D 39 (1989) 844; U. Ellwanger, J.F. Gunion, C. Hugonie and S. Moretti, hep-ph/0305109, and references therein.

[26] S.A. Abel, S. Sarkar and P.L. White, Nucl. Phys. B 454 (1995) 663; J. Bagger, E. Poppitz and L. Randall, Nucl. Phys. B 455 (1995) 59.

[27] C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B 469 (1999) 145; Phys. Lett. B 446 (1999) 224; C. Panagiotakopoulos and A. Pilaftsis, Phys. Rev. D 63 (2001) 055003; A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phys. Rev. D 63 (2001) 055009.

[28] A. Menon, D.E. Morrissey and C.E.M. Wagner, Phys. Rev. D 70 (2004) 035005.

[29] M. Masip and A. Pomarol, Phys. Rev. D 60 (1999) 096005.

[30] For a recent discussion, see P. Langacker, hep-ph/0402203.

[31] N. Arkani-Hamed, A.G. Cohen and H. Georgi, Phys. Lett. B 513 (2001) 232; N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, JHEP 0207 (2002) 034; T. Han, H.E. Logan, B. McElrath and L.T. Wang, Phys. Rev. D 67 (2003) 095004.

[32] For a review, see C.T. Hill and E.H. Simmons, Phys. Rept. 381 (2003) 235 [Erratum-ibid. 390 (2004) 553].

[33] E.C.G. Stueckelberg, Helv. Phys. Acta. 11 (1938) 225; V.I. Ogievetskii and I.V. Polubarinov, JETP 14 (1962) 179; B. Kors and P. Nath, Phys. Lett. B 586 (2004) 366; JHEP 0412 (2004) 005.

[34] T. Han, P. Langacker and B. McElrath, hep-ph/0405244.

[35] V. Barger, C. Kao, P. Langacker and H.S. Lee, Phys. Lett. B 600 (2004) 104.

[36] J.P. Leveille, Nucl. Phys. B 137 (1978) 63.

[37] J.A. Grifols, A. Mendez and J. Sola Phys. Rev. Lett. 57 (1986) 2348; D.A. Morris, Phys. Rev. D 37 (1988) 2012.

[38] M. Frank and C.S. Kalman, Phys. Rev. D 38 (1988) 1469; R.M. Francis, M. Frank and C.S. Kalman, Phys. Rev. D 43 (1991) 2369.

[39] F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 79 (1997) 2192.

[40] S. Eidelman et al. [PDG], Phys. Lett. B 592 (2004) 1.

[41] G.L. Kane, C.F. Kolda and J.D. Wells, Phys. Rev. Lett. 70, 2686 (1993); J.R. Espinosa and M. Quiros, Phys. Rev. Lett. 81, 516 (1998); M. Quiros and J.R. Espinosa, hep-ph/9809269.

[42] For a study of $U(1)'$ breaking in supersymmetric E_6 models, see, e.g., P. Langacker and J. Wang, Phys. Rev. D 58 (1999) 115010.

[43] S. Hesselbach, F. Franke and H. Fraas, Eur. Phys. J. C 23 (2002) 149; J. Erler, P. Langacker and T. Li, Phys. Rev. D 66 (2002) 015002.

[44] [LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL Collaborations], LEPSUSYWG/04-01.1 (http://lepsusy.web.cern.ch/lepsusy/).

[45] [LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL Collaborations], LEPSUSYWG/01-03.1.

[46] V.D. Barger, C. Kao and T. Li, Phys. Lett. B 433 (1998) 328; V.D. Barger and C. Kao, Phys. Rev. D 60 (1999) 115015; K.T. Matchev and D.M. Pierce, Phys. Rev. D 60 (1999) 075004; H. Baer, M. Drees, F. Paige, P. Quintana and X. Tata, Phys. Rev. D 61 (2000) 095007.

[47] V. Barger, P. Langacker and H.S. Lee, Phys. Rev. D 67 (2003) 075009.

[48] J. Kang, P. Langacker and T. Li, Phys. Rev. D 71 (2005) 015012.