Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

Publiée tous les 15 jours par le service de documentation de l'AFM-Téléthon, la « Veille Neuromusculaire » contient les dernières références intégrées dans Pubmed. La liste des pathologies concernées par cette veille est issue des Fiches Techniques Savoir & Comprendre publiées par l'AFM-Téléthon intitulées « Principales maladies neuromusculaires » (Novembre 2017) et « Recherche Neuromusculaire : Etat des lieux, 6ème Edition » (Septembre 2018). Vous trouverez les veilles précédentes sur notre portail documentaire dédié aux maladies neuromusculaires Myobase.

Every two weeks, the AFM documentation service publishes the “Neuromuscular Bibliography” in which you will find latest references published in Pubmed. The list of diseases below comes from both resources: « Principales maladies neuromusculaires » (November 2017) and « Recherche Neuromusculaire : Etat des lieux, 6ème Edition » (September 2018) published by AFM-Téléthon in Fiches Techniques Savoir & Comprendre Serie. Previous reports are available on Myobase, the informations tool about neuromuscular diseases.

Sommaire par maladies / diseases

Disease Category	Page
COVID-19 et maladies neuromusculaires – COVID-19 and neuromuscular diseases	3
Amyotrophies bulbo-spinales – Bulbospinal amyotrophies	3
Amyotrophie spinale proximale liée à SMN1 – SMN1-related spinal muscular atrophy (SMA)	3
Canalopathies musculaires – Muscular channelopathies	7
Dystrophies musculaires congénitales – Congenital muscular dystrophies	8
Dystrophies musculaires d’Emery-Dreifuss – Emery-Dreifuss muscular dystrophies	9
Dystrophinopathies, dystrophie musculaire de Duchenne, dystrophie musculaire de Becker –	9
Dystrophinopathies	
Dystrophies musculaires des ceintures – Limb-girdle muscular dystrophies	14
Dysferlinopathies – Dysferlinopathies	14
Dystrophie musculaire facioscapulohumérales – Facioscapulohumeral muscular dystrophy (FSHD)	15
Dystrophies myotoniques – Myotonic dystrophies	15
Fibrodysplasie ossifiante progressive (FOP) – Fibrodysplasia ossificans progressiva	17
Maladie de Charcot-Marie-Tooth – Charcot-Marie-Tooth disease	19
Myasthénie autoimmune – Myasthenia gravis	23
Myopathies congénitales – Congenital myopathies	26
Myopathies distales – Distal myopathies	27
Myopathies liées à la cavéoline 3 – CAV3 related myopathies	27
Myopathies inflammatoires – Inflammatory myopathies	27
Maladie de Pompe – Pompe disease	33
Myopathies métaboliques – Metabolic myopathies	36
Lipidoses musculaires – Lipid myopathies	36
Myopathies mitochondriales – Mitochondrial myopathies	37
Myopathies myofibrillaires – Myofibrillar myopathies	38
Myotilinopathies – Myotilinopathies	38
Myotonies congénitales – Congenital myotonia	38
Syndromes myasthéniques congénitaux – Congenital myasthenic syndrome	38
Maladies du motoneurone (plusieurs pathologies) – Motor neuron diseases (Multiple)	39
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

Dystrophies musculaires (plusieurs pathologies) – Muscular dystrophies (Multiple) ...39
Maladies neuromusculaires (plusieurs pathologies) – Neuromuscular diseases (Multiple)39
Divers – Miscellaneous ...41

Sommaire par spécialités / specialties

Anatomopathologie – Anatomical pathology ...43
Cardiologie – Cardiology ...43
Douleur – Pain ...45
Électromyographie – Electromyography ...45
Gastroentérologie / Nutrition – Gastroenterology / Nutrition ..46
Imagerie médicale – Medical imaging ..46
Médecine physique et de réadaptation – Physical and rehabilitation medicine ..47
Néphrologie – Nephrology ...48
Ophtalmologie – Ophthalmology ..48
Pneumologie – Pulmonogy ..49
COVID-19 et maladies neuromusculaires – COVID-19 and neuromuscular diseases

1. J Autoimmun. 2020 Jun 8;102502. doi: 10.1016/j.jaut.2020.102502. [Epub ahead of print]
SARS-CoV-2 infection in patients with autoimmune rheumatic diseases in northeast Italy: A cross-sectional study on 916 patients.
Zen M1, Fuzzi E1, Astorri D1, Saccon F1, Padoan R1, Lenna L1, Cozzi G1, Depascale R1, Zanatta E1, Gasparotto M1, Benvenuti F1, Bindoli S1, Gatto M1, Felicetti M1, Ortolan A1, Campaniello D1, Larosa M1, Lorenzin M1, Ramonda R1, Sfriso P1, Schiavon E1, Iaccarino L1, Doria A2.
1Division of Rheumatology, Department of Medicine DIAM, University of Padua, Italy.
2Division of Rheumatology, Department of Medicine DIMED, University of Padua, Italy. Electronic address: adoria@unipd.it.
KEYWORDS: ANCA vasculitis; Idiopathic inflammatory myopathies; Rheumatoid arthritis; SARS-CoV-2; Systemic lupus erythematosus; Systemic sclerosis
PMID: 32527675 DOI:10.1016/j.jaut.2020.102502

2. J Neuromuscul Dis. 2020;7(3):361-364. doi: 10.3233/JND-200520.
COVID-19 in Refractory Myasthenia Gravis- A Case Report of Successful Outcome.
Ramaswamy SB1, Govindarajan R1.
1Department of Neurology, University of Missouri, Columbia, Missouri.
KEYWORDS: COVID-19; Plasmapheresis; Refractory Myasthenia Gravis; immunosuppression; outcome
PMID: 32508329 DOI:10.3233/JND-200520

Amyotrophies bulbospinales – Bulbospinal amyotrophies

3. ACS Med Chem Lett. 2020 May 18;11(6):1092-1093. eCollection 2020 Jun 11.
PROTAC Compounds Targeting Androgen Receptor for Cancer Therapeutics: Prostate Cancer and Kennedy's Disease.
Kargbo RB1.
1Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States.
PMID: 32550986 PMCID: PMC7294551 [Available on 2021-06-11] DOI:10.1021/acsmedchemlett.0c00236

Amyotrophie spinale proximale liée à SMN1 – SMN1-related spinal muscular atrophy (SMA)

4. Anal Chim Acta. 2020 Aug 1;1123:56-63. doi: 10.1016/j.aca.2020.04.026. Epub 2020 Apr 13.
Molecular inversion probe-rolling circle amplification with single-strand poly-T luminescent copper nanoclusters for fluorescent detection of single-nucleotide variant of SMN gene in diagnosis of spinal muscular atrophy.
Chen CA1, Wang CC2, Kou HS3, Wu SM4.
1School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, ROC.
2School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC.
3School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC. Electronic address: shmewu@kmu.edu.tw.
KEYWORDS: Copper nanoclusters; Molecular inversion probe; Rolling circle amplification; SMA; SMN
PMID: 32507240 DOI:10.1016/j.aca.2020.04.026

5. BMC Med Genet. 2020 Jun 18;21(1):133. doi: 10.1186/s12881-020-01069-z.
Mutation analysis of 419 family and prenatal diagnosis of 339 cases of spinal muscular atrophy in China.
Sun Y1, Kong X2, Zhao Z1, Zhao X1.
1The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Add: No. 1, Jianshe East Rd, Erqi District, Zhengzhou, Henan Province, China.
2The Genetics and Prenatal Diagnosis Center, The First Affiliate Hospital of Zhengzhou University, Add: No. 1, Jianshe East Rd, Erqi District, Zhengzhou, Henan Province, China. kongx2@263.net.
KEYWORDS: Long-range PCR; MLPA; Prenatal diagnosis; SMN1 gene; Spinal muscular atrophy
PMID: 32552676 PMCID: PMC7302341 DOI:10.1186/s12881-020-01069-z Free PMC Article
6. **Ann Clin Transl Neurol.** 2020 Jun 17. doi: 10.1002/acn3.51092. [Epub ahead of print]

Whole-blood dysregulation of actin-cytoskeleton pathway in adult spinal muscular atrophy patients.
Siranosian JJ\(^1\), Nery FC\(^1\), Alves CRR\(^1,2\), Siranosian BA\(^2\), Lyons NJ\(^2\), Eichelberger EJ\(^1\), Garner R\(^2\), Da Silva Duarte Lepez S\(^3\), Johnstone AJ\(^1\), Subramanian A\(^2\), Swoboda KJ\(^1,2\).

1Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
2Broad Institute of MIT and Harvard, Cambridge, MA, USA.
PMID: 32556393 DOI:10.1002/acn3.51092 Free full text

7. **Cell Signal.** 2020 Jun 15;109696. doi: 10.1016/j.cellsig.2020.109696. [Epub ahead of print]

Characteristics of circular RNAs generated by human Survival Motor Neuron genes.
Ottesen EW\(^1\), Singh RN\(^1\).

1Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
2Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America. Electronic address: singhr@iastate.edu.
KEYWORDS: Alu elements; Backsplicing; Spinal muscular atrophy, SMA; Survival motor neuron, SMN; circRNA; microRNA
PMID: 32553550 DOI:10.1016/j.cellsig.2020.109696

8. **Expert Opin Ther Targets.** 2020 Jun 13. doi: 10.1080/14728222.2020.1783241. [Epub ahead of print]

RNA in spinal muscular atrophy: therapeutic implications of targeting.
Singh RN\(^1\), Seo J\(^1\), Singh NN\(^1\).

1Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA.
KEYWORDS: ISS-N1; RNP; SMA; SMN; Spinal muscular atrophy; SpinrazaTM ; Survival Motor Neuron; antisense; circular RNA; nusinersen; pre-mRNA splicing
PMID: 32538213 DOI:10.1080/14728222.2020.1783241

9. **J Neuromuscul Dis.** 2020 Jun 12. doi: 10.3233/JND-200534. [Epub ahead of print]

Measuring Outcomes in Adults with Spinal Muscular Atrophy - Challenges and Future Directions - Meeting Report.
Sansone VA\(^1\), Walter MC\(^2\), Attarian S\(^3\), DeIstanche S\(^4\), Mercuri E\(^5,6\), Lochmüller H\(^7,9\), Neuwirth C\(^10\), Vazquez-Costa JF\(^11,12,13,14\), Kleinschnitz C\(^15\), Hagenercker T\(^15\).

1The NEMO Clinical Center, Milan - Neuromuscular Unit, University of Milan, Italy.
2Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany.
3Reference Center for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, Marseille, France.
4Department of Neurology, University of Liege, Belgium.
5Department of Pediatrics, Catholic University of Rome, Roma, Italy.
6Department of Woman and Child Health and Public Health, Paediatric Neurology and Neuromuscular Centre Clinical Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy.
7Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
8Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
9Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
10Muskelauslassklinic ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland.
11Instituto de Investigacion Sanitaria La Fe (IIS La Fe), Neuromuscular Research Unit, Valencia, Spain.
12Department of Neurology, ALS Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain.
13Centro de Investigacion Biomedica en Red de EnfermedadesRaras (CIBERER), Valencia, Spain.
14Department of Medicine, University of Valencia, Valencia, Spain.
15Department of Neurology, University of Essen, Essen, Germany.
KEYWORDS: 5q-SMA; adult SMA; motor neuron; nusinersen; spinal muscular atrophy
PMID: 32538864 DOI:10.3233/JND-200534
10. Nat Commun. 2020 Jun 12;11(1):2973. doi: 10.1038/s41467-020-16806-4.
CRISPR artificial splicing factors.
Du M1,2, Jillette N1, Zhu JJ1, Li S1,2,3,4, Cheng AW5,6,7,8.
1The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
2Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
3The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA.
4Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
5The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. albert.cheng@jax.org.
6Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA. albert.cheng@jax.org.
7The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA. albert.cheng@jax.org.
8Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA. albert.cheng@jax.org.
PMID: 32532987 PMCID:PMC7293279 DOI: 10.1038/s41467-020-16806-4 Free PMC Article

11. Orphanet J Rare Dis. 2020 Jun 12;15(1):148. doi: 10.1186/s13023-020-01414-8.
Effects of nusinersen after one year of treatment in 123 children with SMA type 1 or 2: a French real-life observational study.
Audic F1, de la Banda MGG2, Bernoux D2, Ramirez-Garcia P3, Durigneux J4, Barnerias C5, Isaposof A6, Cuisset JM7, Cances C8, Richelme C9, Vuillerot C10, Laugel V11, Ropars J12, Altuzarra C13, Espli-Tans C14, Walther-Louvier U15, Sabouraud P16, Chouchane M1, Vanhulle C18, Trommsdorff V19, Pervillé A20, Testard H21, Lagrue E22, Sarret C23, Avic AL24, Beze-Beyne P25, Pauly V24, Quirino-Roy S2, Chatrol B2, Desquerre F.
1Centre de Référence des Maladies Musculaires des enfants PACARARE, Service de Neuropédiatrie, Hôpital Timone Enfants, 264 rue Saint Pierre, 13385, Marseille Cedex 5, France. frederique.audic@ap-hm.fr.
2Centre de Référence des Maladies Neuromusculaires Nord/Ile de France/Est, Hôpital Raymond Poincaré, APHP, Garches, France.
3Centre de Référence des Maladies Neuromusculaires de l'enfant PACARARE, Service de Neuropédiatrie, Hôpital Timone Enfants, 264 rue Saint Pierre, 13385, Marseille Cedex 5, France.
4Centre de Référence des Maladies Neuromusculaires AOC, CHU d'Angers, Angers, France.
5Centre de Référence des Maladies Neuromusculaires Nord/Ile de France/Est, Service de Neurologie pédiatrique, Hôpital Necker-Enfants Malades, APHP, Paris, France.
6Centre de Référence des Maladies Neuromusculaires Nord/Ile de France/Est, Service de Neuropédiatrie, Hôpital Trousseau, APHP, Paris, France.
7Centre de Référence des Maladies Neuromusculaires Nord/Ile de France/Est, Service de Neuropédiatrie, Hôpital Salengro CHU Lille, Lille, France.
8Centre de Référence des Maladies Neuromusculaires AOC, Unité de Neurologie Pédiatrique, Hôpital des Enfants CHU Toulouse, Toulouse, France.
9Centre de Référence des Maladies Neuromusculaires PACARARE, Hôpitaux Pédiatriches de Nice CHU - Lenval, Nice, France.
10Centre de Référence des Maladies Neuromusculaires de l'enfant PACARARE, Service de MPR pédiatrique L'Escale Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
11Centre de Référence des Maladies Neuromusculaires Nord/Ile de France/Est, Pediatrie médico-chirurgicale, CHU de Strasbourg - Hôpital de Hautepierre, Strasbourg, France.
12Centre de Référence des Maladies Neuromusculaires AOC, Service de Pédiatrie, CHRU de Brest, Brest, France.
13Centre de compétences des Maladies Neuromusculaires Nord/Ile de France/Est, Unité de Neuropédiatrie et médecine pédiatrique, Hôpital Minjoz, CHU de Besançon, Besançon, France.
14Centre de Référence des Maladies Neuromusculaires AOC, Unité de Neurologie pédiatrique, CHU Pellegrin, Bordeaux, France.
15Centre de Référence des Maladies Neuromusculaires AOC, Service de Neuropédiatrie CHU Montpellier, Montpellier, France.
16Centre de Référence des Maladies Neuromusculaires Nord/Ile de France/Est, Site Reims enfant AMH, CHU Reims, Reims, France.
17Centre de Compétence des Maladies Neuromusculaires Nord/Ile de France/Est, Service de pédiatrie 1, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France.
18Centre de Compétence des Maladies Neuromusculaires Nord/Ile de France/Est, CHU de Rouen Charles Nicolle, Rouen, France.
19Centre de Référence des Maladies Neuromusculaires PACARARE, Service de Pédiatrie, CHU La Réunion, Saint-Pierre, France.
20Centre de Compétence des Maladies Neuromusculaires PACARARE, Service de Pédiatrie, CHU La Réunion, Saint-Denis, France.
21Centre de Compétence des Maladies Neuromusculaires PACARARE, Neuropédiatrie, Clinique Universitaire Pédiatrique, Hôpital Couple Enfant - CHU Grenoble, Grenoble, France.
12. J Child Neurol. 2020 Jun 9;35(7):883073820928784. doi: 10.1177/0883073820928784. [Epub ahead of print]
Clinical Course in a Patient With Spinal Muscular Atrophy Type 0 Treated With Nusinersen and Onasemnogene Abeparvovec.
Matesanz SE1, Curry C2, Gross B1, Rubin AI3,4, Linn R3,5, Yum SW1,6, Kichula EA1,6.
1Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
2Neurology, Mission Children's Specialists, Asheville, NC, USA.
3Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
4Dermatology, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA.
5Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
6Division of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
KEYWORDS: ethics; infant; neuropathy; outcome; treatment
PMID: 32515646 DOI:10.1177/0883073820928784

13. JCI Insight. 2020 Jun 9. pii: 130574. doi: 10.1172/jci.insight.130574. [Epub ahead of print]
Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons.
Osman EY1, Van Aystyne M2, Yen PF1, Lotti P2, Feng Z2, Ling KK4, Ko CP3, Pellizzoni L2, Lorson CL1.
1Department of Veterinary Pathobiology, University of Missouri, Columbia, United States of America.
2Department of Pathology and Cell Biology, Columbia University, New York, United States of America.
3Department of Biological Sciences, University of Southern California, Los Angeles, United States of America.
4Department of Biological Science, University of Southern California, Los Angeles, United States of America.
KEYWORDS: Neurodegeneration; Neuroscience
PMID: 32516136 DOI:10.1172/jci.insight.130574 Free full text

14. Muscle Nerve. 2020 Jun 8. doi: 10.1002/mus.26995. [Epub ahead of print]
Whole Blood SMN Protein Levels Correlate with Severity of Denervation in Spinal Muscular Atrophy.
Alves CRR1, Zhang R1, Johnstone AJ1, Garner R1, Eichelberger EJ1, Da Silva Duarte Lepez S1, Yi V1, Stevens V1, Poxson R2, Schwartz R1, Zaworski P2, Swoboda KJ1.
1Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.
2PharmOptima, Portage, MI.
KEYWORDS: SMN protein levels; Spinal muscular atrophy; denervation
PMID: 32511765 DOI:10.1002/mus.26995

15. Neurology. 2020 Jun 8. pii: 10.1212/WNL.0000000000009716. [Epub ahead of print]
Spinal muscular atrophy: Nature or nurture?
Topaloglu H1, Kuntz N2.
1From the Hacettepe Children's Hospital (H.T.), Ankara, Turkey; and Ann and Robert H. Lurie Children's Hospital (N.K.), Chicago, IL. H.T. is currently at the Department of Pediatrics, Yeditepe University, Istanbul, Turkey.
haluk.topaloglu@yeditepe.edu.tr.
2From the Hacettepe Children's Hospital (H.T.), Ankara, Turkey; and Ann and Robert H. Lurie Children's Hospital (N.K.), Chicago, IL. H.T. is currently at the Department of Pediatrics, Yeditepe University, Istanbul, Turkey.
PMID: 32513787 DOI:10.1212/WNL.0000000000009716
16. Neurology. 2020 Jun 8. pii: 10.1212/WNL.0000000000009715. [Epub ahead of print]

Prenusinersen economic and health-related quality of life burden of spinal muscular atrophy. Chambers GM1, Settumba SN2, Carey KA1, Cairns A2, Menezes MP2, Ryan M2, Farrar MA2.

1From the National Perinatal Epidemiology and Statistics Unit (G.M.C., S.N.S.), School of Women's and Children's Health and the Centre for Big Data Research in Health, University of New South Wales (UNSW) Sydney; Discipline of Paediatrics (K.A.C., M.A.F.), School of Women's and Children's Health, UNSW Medicine, UNSW Sydney; Department of Neurology (M.A.F.), Sydney Children's Hospital Randwick; Neurosciences Department (A.C.), Queensland Children's Hospital; Department of Neurology (M.P.M.), Children's Hospital at Westmead; University of Sydney (M.P.M.), New South Wales; Neurosciences Research (M.R.), Murdoch Children's Research Institute, Melbourne, Victoria; and Department of Paediatrics (M.R.), University of Melbourne, Parkville, Victoria, Australia. g.chambers@unsw.edu.au.

2From the National Perinatal Epidemiology and Statistics Unit (G.M.C., S.N.S.), School of Women's and Children's Health and the Centre for Big Data Research in Health, University of New South Wales (UNSW) Sydney; Discipline of Paediatrics (K.A.C., M.A.F.), School of Women's and Children's Health, UNSW Medicine, UNSW Sydney; Department of Neurology (M.A.F.), Sydney Children's Hospital Randwick; Neurosciences Department (A.C.), Queensland Children's Hospital; Department of Neurology (M.P.M.), Children's Hospital at Westmead; University of Sydney (M.P.M.), New South Wales; Neurosciences Research (M.R.), Murdoch Children's Research Institute, Melbourne, Victoria; and Department of Paediatrics (M.R.), University of Melbourne, Parkville, Victoria, Australia.

PMID: 32513788 DOI:10.1212/WNL.0000000000009715

17. Version 2. Wellcome Open Res. 2020 May 12 [revised 2020 May 12];5:57. eCollection 2020.

Sodium channel myotonia may be associated with high-risk brief resolved unexplained events. Cea G1,2, Andreu D1, Fletcher E3, Ramdas S4, Sud R3, Hanna MG5, Matthews E6.

1Departamento de Ciencias Neurologicas, Universidad de Chile, Santiago, Chile. 2Servicio de Neurología, Hospital Salvador, Santiago, Chile.

3Department of Clinical Genetics, Centro Genomic and Experimental Medicine, Western General Hospital, Edinburgh, EH5 2GL, UK.

4Department of Paediatric Neurology, John Radcliffe Hospital NHS Foundation Trust, Oxford, UK.

5Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK.

6Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.

KEYWORDS: Apnoea; Channelopathy; Laryngospasm; Muscle Disease; Myotonia; Paediatric; Sodium channel; Stridor

PMID: 32509969 PMCID: PMC7241273 DOI:10.12688/wellcomeopenres.15798.2 Free PMC Article

18. Mol Cell Proteomics. 2020 Jun 15. pii: mcp.RA120.002071. [Epub ahead of print]

Kir2.1 interactome mapping uncovers PKP4 as a modulator of the Kir2.1-regulated inward rectifier potassium currents. Park SS1, Ponce-Balbuena D2, Kuick R3, Guerrero-Serna G4, Yoon J5, Melcheruuvu D6, Conlon KP7, Basrur V8, Nesvijzhska A9, Jalife J4, Rual JF10.

1University of Michigan, Dept. of Pathology, United States. 2University of Michigan, Dept. of Internal Med., United States. 3University of Michigan.

4University of Michigan, United States. 5Case Western, United States. 6University of Michigan Medical School, United States. 7The University of Michigan.

8University of Michigan. 9Department of Pathology, University of Michigan, United States.

10Pathology, University of Michigan, United States jrual@umich.edu.

KEYWORDS: BioID; Cardiomyopathy; Cardiovascular disease; Cardiovascular function or biology; Inward rectifier potassium current; Kir2.1; Macromolecular complex analysis; Mass Spectrometry; PKP4; Protein-Protein Interactions

PMID: 32541000 DOI: 10.1074/mcp.RA120.002071 Free full text

19. Adv Genet. 2020;105:137-174. doi: 10.1016/bs.adgen.2020.03.002. Epub 2020 May 26.

"Electrifying dysmorphology”: Potassium channelopathies causing dysmorphic syndromes. Hamilton MJ1, Suri M2.

1Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom.
Dystrophies musculaires congénitales – Congenital muscular dystrophies

20. *Can J Ophthalmol.* 2020 Jun 7. pii: S0008-4182(20)30033-8. [Epub ahead of print]
Ultrasound biomicroscopy and posterior B-scan findings in Walker-Warburg syndrome.
Al-Farsi N1, Tsang AC2, Sharma RA2, Fournier A3.
1 The Children’s Hospital of Eastern Ontario, Ottawa, Ont.. Electronic address: noufalfarsi@gmail.com.
2 The University of Ottawa Eye Institute, Ottawa, Ont.
3 The Children’s Hospital of Eastern Ontario, Ottawa, Ont.; The University of Ottawa Eye Institute, Ottawa, Ont.
PMID: 32522335 DOI: 10.1016/j.jcjo.2020.04.022

21. *J Neurosci Nurs.* 2020 Jun 5. doi: 10.1097/JNN.0000000000000519. [Epub ahead of print]
Assessing Motor Function in Congenital Muscular Dystrophy Patients Using Accelerometry.
Lawal TA1, Todd JJ, Elliott JS, Linton MM, Andres M, Witherspoon JW, Collins JP, Chrismer IC, Tounkara F, Waite MR, Nichols C, Bönnemann CG, Vuillerot C, Bendixen R, Jain MS, Meilleur KG.
1 Joshua J. Todd, PhD, is Research Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Jeffrey S. Elliott, BS, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Dr. Melody M. Linton, BS, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Megan Andres, BS, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Jessica W. Witherspoon, DPT, PhD, is Research Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. John P. Collins, MD, PhD, is Assistant Professor, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD; and Department of Rehabilitation Science, George Mason University, Fairfax, VA. Irene C. Chrismer, BSN, is Research Nurse, National Institute of Nursing Research, NIH, Bethesda, MD. Fatoumata Tounkara, PhD, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Carmel Nichols, BA, is Post-Baccalaureate Fellow, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD. Carsten G. Bönnemann, MD, is Neurologist, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD. Carole Vuillerot, MD, PhD, is Pediatrician, Service de Médecine Physique et de Réadaptation Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France. Roxanna Bendixen, PhD, is Associate Professor, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA. Minal S. Jain, BSc, is Physical Therapist, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD. Katherine G. Meilleur, PhD, is Pediatric Nurse Practitioner, National Institute of Nursing Research, NIH, Bethesda, MD.
PMID: 32511172 DOI: 10.1097/JNN.0000000000000519

22. *Hum Genome Var.* 2020 May 26;7:16. doi: 10.1038/s41439-020-0103-5. eCollection 2020.
Novel LAMA2 variants identified in a patient with white matter abnormalities.
Yamamoto-Shimojima K1,2,3, Ono H4, Imaizumi T1,2,5, Yamamoto T2,3,5.
1 Japan Society for the Promotion of Science (RPD), Tokyo, Japan. 2 Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan. 3 Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan. 4 Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan. 5 Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.
KEYWORDS: Genetics research; Medical genetics
PMID: 32509318 PMCID: PMC7248065 DOI: 10.1038/s41439-020-0103-5 Free PMC Article

23. *Front Mol Neurosci.* 2020 May 25;13:69. doi: 10.3389/fnmol.2020.00069. eCollection 2020.
Impaired Regeneration in Dystrophic Muscle-New Target for Therapy.
Yanay N1,2, Rabie M1,2, Nevo Y1,2.
1Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel. 2 Institute of Neurology, Schneider Children’s Medical Center, Tel-Aviv University, Tel-Aviv, Israel.
KEYWORDS: LAMA2-CMD; dy2J/dy2J mouse model; laminin-211; muscular dystrophy; next-generation sequencing; satellite cells
PMID: 32523512 PMCID: PMC7261890 DOI: 10.3389/fnmol.2020.00069 Free PMC Article
Dystrophies musculaires d'Emery-Dreifuss – Emery-Dreifuss muscular dystrophies

24. J Pers Med. 2020 Jun 15;10(2). pii: E50. doi: 10.3390/jpm10020050.

An Omics View of Emery-Dreifuss Muscular Dystrophy.

Vigner N1, Muchir A1.

1INSERM, Center of Research in Myology, Institute of Myology, Sorbonne University, 75013 Paris, France.

KEYWORDS: Emery–Dreifuss muscular dystrophy; LMNA; Omics

PMID: 32549253 DOI: 10.3390/jpm10020050 Free full text

25. Neuromuscul Disord. 2020 Jun;30(6):443-456. doi: 10.1016/j.nmd.2020.04.002. Epub 2020 May 11.

Muscle cell differentiation and development pathway defects in Emery-Dreifuss muscular dystrophy.

Storey EC1, Holt I1, Morris GE1, Fuller HR2.

1Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK.

2Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK. Electronic address: h.r.fuller@keele.ac.uk.

KEYWORDS: Differentiation; Emerin; Emery-Dreifuss Muscular dystrophy; LINC complex; Lamin A/C; Nesprin

PMID: 32522500 DOI: 10.1016/j.nmd.2020.04.002

Free full text

26. Cells. 2020 Jun 15;9(6). pii: E1463. doi: 10.3390/cells9061463.

EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms.

Iyer A1,2, Holaska JM1,2.

1Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.

2Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA.

KEYWORDS: Emery–Dreifuss muscular dystrophy; emerin; histone deacetylase; myogenic differentiation; nuclear envelope

PMID: 32549231 DOI: 10.3390/cells9061463 Free full text

27. Cells. 2020 Jun 6;9(6). pii: E1415. doi: 10.3390/cells9061415.

Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin-BAF Interaction and BAF Nuclear Localization.

Cenni V1,2, Squarzoni S1,2, Loi M1,2, Mattioli E1,2, Lattanzi G1,2, Capanni C1,2.

1CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136 Bologna, Italy.

2IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

3Department of Biomedical and Neuroromotor Sciences, University of Bologna, 40127 Bologna, Italy.

KEYWORDS: BAF; BANF1; DNA-damage response; EDMD1; chromatin; emerin; laminA/C; laminopathies; oxidative stress; prelamin A

PMID: 32517247 DOI: 10.3390/cells9061415 Free full text

Dystrophinopathies, dystrophie musculaire de Duchenne, dystrophie musculaire de Becker – Dystrophinopathies

28. PLoS One. 2020 Jun 19;15(6):e0232654. doi: 10.1371/journal.pone.0232654. eCollection 2020.

Comprehensive genetic analysis of 961 unrelated Duchenne Muscular Dystrophy patients: Focus on diagnosis, prevention and therapeutic possibilities.

Kumar SH1, Athimoolam K1, Suraj M1, Das Christu Das MS1, Muralidharan A1, Jeyam D1, Ashokan J1, Karthikeyan P1, Krishna R1, Khanna-Gupta A1, Bremadesam Raman L1.

1Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India.

PMID: 32559196 DOI: 10.1371/journal.pone.0232654 Free full text
29. J Med Chem. 2020 Jun 18. doi: 10.1021/acs.jmedchem.0c00807. [Epub ahead of print]

2-Arylbenzo[d]oxazole phosphinate esters as second-generation modulators of utrophin for the treatment of Duchenne Muscular Dystrophy.
Babbs A, Berg A, Chatzopoulou M, Davies KE, Davies SG, Edwards B, Elsey D, Emer E, Guiraud S, Harriman S, Lecci C, Moir L, Peters D, Robinson N, Rowley J, Russell AJ, Squire S, Tinsley J, Wilson F, Wynne GM.
PMID: 32551645 DOI: 10.1021/acs.jmedchem.0c00807

30. PLoS One. 2020 Jun 18;15(6):e0232870. doi: 10.1371/journal.pone.0232870. eCollection 2020.

Prognostic factors for changes in the timed 4-stair climb in patients with Duchenne muscular dystrophy, and implications for measuring drug efficacy: A multi-institutional collaboration.
Goemans N1, Wong B2, Van den Hauwe M1, Signorovitch J1,4, Sajeev G3, Cox D3, Landry J2, Jenkins M2, Dieye I3, Yao Z3, Hossain J1, Ward S1,4: Collaborative Trajectory Analysis Project (cTAP).
1Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium. 2Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States of America. 3Analysis Group Inc., Boston, Massachusetts, United States of America. 4The Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America. 5Eli Lilly and Company, Indianapolis, Indiana, United States of America. 6Eli Lilly and Company, Toronto, Ontario, Canada. 7Analysis Group Inc., London, United Kingdom.
PMID: 32555695 PMCID: PMC7302444 DOI:10.1371/journal.pone.0232870 Free PMC Article

31. Respir Care. 2020 Jun 16. pii: respcare.07426. doi: 10.4187/respcare.07426. [Epub ahead of print]

Effects of Positioning on Cough Peak Flow and Muscular Electromyographic Activation in Duchenne Muscular Dystrophy.
Marques L1,2, de Freitas Fregonezi GA1,2, Santos IP1,2, Marcelino AA1,2, Medeiros da Fonséca JD1,2, Dourado-Júniort MET3, Aliverti A4, Sarmento A1,2, Resquei VR5,2.
1PneumoCardioVascular Lab, Hospital Universitario Onofe Lopes, Empresa Brasileira de Serviços Hospitalares, Natal, Brazil. 2Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Brazil. 3Ambulatório de Neurologia, Empresa Brasileira de Serviços Hospitalares (EBSERH), Universidade Federal do Rio Grande do Norte, Natal, Brazil. 4Laboratorio di Tecnologie Biomediche, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy. 5PneumoCardioVascular Lab, Hospital Universitario Onofe Lopes, Empresa Brasileira de Serviços Hospitalares, Natal, Brazil. vanessaresquei@hotmail.com.
KEYWORDS: Duchenne muscular dystrophy; cough; electromyography; plethysmography; respiratory muscles
PMID: 32546537 DOI:10.4187/respcare.07426

32. JAMA Neurol. 2020 Jun 15. doi: 10.1001/jamaneurol.2020.1484. [Epub ahead of print]

Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial.
Mendell JR1,2,3, Sahenk Z1,2,3, Lehman K1,2, Nease C1,2, Lowes LP1,2,3, Miller NF1, Lammari MA1, Alfano LN1, Nicholl A1, AI-Zaidy S1, Lewis S1,4, Church K1, Shell R2, Cripe LH3, Potter RA1,4, Griffin DA1,4, Pozsgai E1,4, Dugar A4, Hogan M5, Rodino-Klapac LR1,2,4.
1Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio. 2Department of Pediatrics, The Ohio State University, Columbus. 3Department of Neurology, The Ohio State University, Columbus. 4Sarepta Therapeutics Inc, Cambridge, Massachusetts. 5Department of Radiology, Vascular and Interventional Radiology, Nationwide Children's Hospital, Columbus, Ohio.
PMID: 32539076 PMCID: PMC7296461 DOI:10.1001/jamaneurol.2020.1484 Free PMC Article

33. Mol Genet Genomic Med. 2020 Jun 15;e1362. doi: 10.1002/mgg3.1362. [Epub ahead of print]

DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles.
Wonkam-Tingang E1, Nquefack S2,3, Estehuizen A1,4, Chelo D2,3, Wonkam A1,6.
1Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.
Rimeporide as a first-in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne Muscular Dystrophy.
Previtali SC1, Gidaro T2, Diaz-Manera J3, Zambon A1, Carmeschi S4, Roux-Lombard P5, Spitali P6, Signorelli M7, Szigvarto CA8, Johannson CR8, Gray J9, Labolle D9, Thomé FP10, Pitchforth J11, Domingos J11, Muntoni F12.
1IRCCS San Raffaele Scientific Institute, Department of Neurology and INSPE, Milan, Italy.
2Institute of Myology, Hopital Trousseau, I- Motion, Paris, France.
3Hospital de la Santa Creu i Sant Pau de Barcelona Servei de Neurologia, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.
4Geneva University (UNIGE), Geneva, Switzerland.
5Geneva University Hospital (HUG), Immunology and Allergology Department, Geneva, Switzerland.
6Leiden University Medical Center, Netherlands.
7KTH, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.
8Science for Life Laboratory, Department of Protein Science, Division of Systems Biology, Solna, Sweden.
9EspeRare, Geneva, Switzerland.
10EspeRare, Geneva, Switzerland. Electronic address: porte.florence@esperare.org.
11UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital Dubowitz Neuromuscular Centre, London, UK.
12UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital Dubowitz Neuromuscular Centre, London, UK; NIH Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital Trust, University College London, London, UK.
KEYWORDS: Cardiomyopathy; Duchenne Muscular Dystrophy; NHE-1; Pharmacokinetic; Rimeporide; Safety
PMID: 32535224 DOI:10.1016/j.phrs.2020.104999

Comparison of Survival Analysis between Surgical and Non-surgical Treatments in Duchenne Muscular Dystrophy Scoliosis.
Yang JH1, Kim KS2, Lee GH3, Kim HS4.
1Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. Electronic address: y815518@yuhs.ac.
2Department of Physical Therapy, College of Life & Health Science, Hoseo University, Asan-Si, Korea. Electronic address: kskim68@hoseo.edu.
3Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. Electronic address: gns2000@yuhs.ac.
4Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. Electronic address: haksunkim@yuhs.ac.
KEYWORDS: Duchenne muscular dystrophy; Forced vital capacity; Functional outcome; Mortality; Respiratory function; Scoliosis; Survival rate; Swinyard scale
PMID: 32535073 DOI:10.1016/j.spinee.2020.06.004

NATURAL HISTORY OF SERUM ENZYME LEVELS IN DUCHENNE MUSCULAR DYSTROPHY AND IMPLICATIONS FOR CLINICAL PRACTICE.
Rodríguez-Cruz M1,2, Almeida-Becerril T3, Atlantico-Miquel S1, Cárdenas-Conejo A3, Bernabe-García M1.
1Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc No. 330, Col. Doctores, Delegación Cuauhtémoc, 06725 Ciudad de México (CDMX), México.
2Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc No. 330, Col. Doctores, Delegación Cuauhtémoc, 06725 Ciudad de México (CDMX), México.
37. **Drugs.** 2020 Jun 9. doi: 10.1007/s40265-020-01339-3. [Epub ahead of print]

Viltolarsen: First Approval.

Dhillon S. 1

1Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand. dru@adis.com.

PMID: 32519222 DOI:10.1007/s40265-020-01339-3

38. **Indian J Pediatr.** 2020 Jun 9. doi: 10.1007/s12098-020-03384-y. [Epub ahead of print]

The Quest for the Prediction of Steroid Responsiveness in Duchenne Muscular Dystrophy.

Suthar R1, Sahu JK2.

1Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.

2Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India. jsh2003@gmail.com.

PMID: 32519261 DOI:10.1007/s12098-020-03384-y

39. **J Mol Neurosci.** 2020 Jun 8. doi: 10.1007/s12031-020-01565-0. [Epub ahead of print]

Effect of Aerobic Physical Exercise in an Animal Model of Duchenne Muscular Dystrophy.

Hoepers A1,2, Freiberger V1, Ventura L1, Grigollo LR1, Andreu CS3, da Silva BB1, Martins DF1, Junior RJN4, Streck EL5, Comim CM1.

1Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil.

2Research Group on Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences University of South Santa Catarina, Palhoça, SC, Brazil. adrianoalberti90@hotmail.com.

3CEU Cardenal Herrera University, Valencia, Spain.

4Department of Physical Education, University of West Santa Catarina, Joaçaba, Brazil.

5Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.

KEYWORDS: Animal; Duchenne muscular dystrophy; Muscle; Oxidative stress; Physical exercise

PMID: 32507928 DOI:10.1007/s12031-020-01565-0

40. **J Physiol.** 2020 Jun 8. doi: 10.1113/JP279282. [Epub ahead of print]

Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse.

Ferry A1,2, Messéant J1, Parlakian A3, Lemaître M1, Roy P1, Delacroix C1, Lilienbaum A4, Hovhannisyan Y3, Furling D1, Klein A1, Li Z2, Akgulul O3.

1Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, F-75013, France.

2Université de Paris, Institut des Sciences du Sport Santé de Paris, Paris, F-75015, France.

3Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, F-75005, France.

4Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, F-75013, France.

KEYWORDS: desmin; mdx mice; skeletal muscle function

PMID: 32515007 DOI:10.1113/JP279282

41. **Braz J Phys Ther.** 2020 Jun 5. pii: S1413-3555(19)30364-8. [Epub ahead of print]

Pulmonary and upper limbs function in children with early stage Duchenne muscular dystrophy compared to their healthy peers.

Bulut N1, Aydin G2, Alemdaroğlu-Gürbüz F, Karaduman A2, Yilmaz O2.

1Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey. Electronic address: nmn60_90@hotmail.com.
2Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey.

KEYWORDS: Functional performance; Pulmonary function test; Rehabilitation; Upper limb

PMID: 32553415 DOI:10.1016/bjpt.2020.05.012

42. Neuromusc Disord. 2020 Jun;30(6):437-442. doi: 10.1016/j.nmd.2020.05.001. Epub 2020 May 16.
Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy - a narrative review.

Doorenweerd N1.
1C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, C-03-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands; John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom. Electronic address: n.doorenweerd@lumc.nl.

KEYWORDS: Cognition; Duchenne muscular dystrophy; Dystrophin; Neuroimaging

PMID: 32522501 DOI:10.1016/j.nmd.2020.05.001

43. Neuromusc Disord. 2020 Jun;30(6):492-502. doi: 10.1016/j.nmd.2020.05.002. Epub 2020 May 19.
Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy.

Wagner KR1, Abdel-Hamid HZ2, Mah JK3, Campbell C4, Guglieri M5, Muntoni F6, Takeshima Y7, McDonald CM8, Kostera-Pruszczyk A4, Karachunski P10, Butterfield RJ11, Mercuri E12, Fiorillo C13, Bertini ES14, Tian C15, Statland J16, Sadosky AB17, Puneet VS18, Sherlock SP18, Palmer JP18, Binks M18, Charnas L18, Marraffino S18, Wong BL19.
1Center for Genetic Muscle Disorders, Baltimore, Kennedy Krieger Institute, Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address: wagnerk@kennedykrieger.org.
2University of Pittsburgh, Pittsburgh, PA, USA.
3Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada.
4Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, University of Western Ontario, Children's Hospital London Health Sciences Centre, London, ON, Canada.
5The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
6NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK.
7Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
8Lawson Health Research Institute: Children's Hospital, London, ON, Canada.
9Department of Neurology, Medical University of Warsaw, Warsaw, Poland.
10University of Minnesota, Minneapolis, MN, USA.
11University of Utah School of Medicine, Salt Lake City, UT, USA.
12Paediatric Neurology, Catholic University, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
13IRCCS Giannina Gaslini, Genova, Italy.
14Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy.
15Cincinnati Children's Hospital Medical Center; College of Medicine University of Cincinnati, Cincinnati, OH, USA.
16University of Kansas Medical Center, Kansas City, KS, USA.
17Pfizer Inc, New York, NY, USA.
18Pfizer Inc, Cambridge, MA, USA.
19University of Massachusetts Medical School, Worcester, MA, USA.

KEYWORDS: 4-stair climb; Duchenne muscular dystrophy; domagrozumab; myostatin inhibitor

PMID: 32522498 DOI:10.1016/j.nmd.2020.05.002

44. Front Physiol. 2020 May 19;11:403. doi: 10.3389/fphys.2020.00403. eCollection 2020.
PTX3 Predicts Myocardial Damage and Fibrosis in Duchenne Muscular Dystrophy.

Farini A1, Villa C1, Di Silvestre D2, Bella P1, Tripodi L1, Rossi R2, Sizita C3, Gatti S4, Mauri P5, Torrente Y1.
1Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.
2Institute of Biomedical Technologies, National Research Council (ITB-CNR), Milan, Italy.
3Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, Milan, Italy.
4Center for Surgical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.

KEYWORDS: Duchenne muscular dystrophy (DMD); alarmins; cardiomyopathy; muscular dystrophy; pentraxin 3 (PTX3)

PMID: 32508664 PMCID: PMC7248204 DOI:10.3389/fphys.2020.00403 Free PMC Article
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

45. Acta Pharm Sin B. 2020 May;10(5):734-745. doi: 10.1016/j.apsb.2020.01.001. Epub 2020 Jan 8.
Natural products, PGC-1 α, and Duchenne muscular dystrophy.
Suntar I1, Sureda A2, Belwal T3, Sanches Silva A4,5, Vaccra RA6, Tewari D7, Sobarzo-Sánchez E8,9, Nabavi SF10, Shirooie S11, Dephour AR12,13, Xu S14, Yousef B15,16, Majidinia M17, Daglia M18,19, D’Antona G20, Nabavi SM21.
1Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etlik, Ankara 06330, Turkey.
2Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdIBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma, Balearic Islands E-07122, Spain.
3G. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand 263643, India.
4National Institute for Agricultural and Veterinary Research (INIAV), Vairão, Vila do Conde, Portugal.
5Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal.
6Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari 70126, Italy.
7Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
8Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
9Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
10Applied Biotechnology Research Center, Baqyitallah University of Medical Sciences, Tehran 5613156491, Iran.
11Pharmacological Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
12Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
13Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
14The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
15Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran.
16Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 516815731, Iran.
17Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia 571478334, Iran.
18Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy.
19International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 210213, China.
20Department of Public Health, Experimental and Forensic Medicine and CRIAMS-Sport Medicine Centre, University of Pavia, Pavia 27100, Italy.
PMID: 32528825 PMCID: PMC7276881 DOI: 10.1016/j.apsb.2020.01.001 Free PMC Article

46. Hum Mutat. 2020 Jun 19. doi: 10.1002/humu.24066. [Epub ahead of print]
A single c.1715G>C calpain 3 gene variant causes dominant calpainopathy with loss of calpain 3 expression and activity.
Vissing J1, Dahlqvist JR1, Roudaut C2, Poupiot J2, Richard I2, Dunn M3, Krag T4.
1Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
2INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002, Evry, France.
3Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
KEYWORDS: calpain 3; calpainopathy; dominant inheritance; limb girdle muscular dystrophy
PMID: 32557960 DOI:10.1002/humu.24066

Dystrophies musculaires des ceintures – Limb-girdle muscular dystrophies

47. Int J Mol Sci. 2020 Jun 16;21(12). pii: E4293. doi: 10.3390/ijms21124293.
N-Acetylcysteine Reduces Skeletal Muscles Oxidative Stress and Improves Grip Strength in Dysferlin-Deficient Bla/J Mice.
García-Campos P12, Baez-Matus X1, Jara-Gutiérrez C2, Paz-Araos M2, Astorga C3, Cea LA4, Rodriguez V5, Bevilacqua JA6, Caviedes PT, Cárdenas AM1.
1Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile.
2Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2520000, Chile.

N-Acetylcysteine Reduces Skeletal Muscles Oxidative Stress and Improves Grip Strength in Dysferlin-Deficient Bla/J Mice.
García-Campos P12, Baez-Matus X1, Jara-Gutiérrez C2, Paz-Araos M2, Astorga C3, Cea LA4, Rodriguez V5, Bevilacqua JA6, Caviedes PT, Cárdenas AM1.
1Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile.
2Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2520000, Chile.
Dystrophie musculaire facioscapulohumérale – Facioscapulohumeral muscular dystrophy (FSHD)

48. *Sci Signal.* 2020 Jun 16;13(636). pii: eaaz5599. doi: 10.1126/scisignal.aaz5599.

Crystal structure of the hinge domain of Smchd1 reveals its dimerization mode and nucleic acid-binding residues.

Chen K1,2, Birkinshaw RW1,2, Gurza AD1,2, Wanigasuriya I1,2, Wang R1,2, Iminitoff M1,2, Sandow JJ1,2, Young SN1, Hennessy PJ1, Wilson TA1,2, Heckmann DA1,2, Webb AL1,2, Blewitt ME1,2,4, Czabotar PE1,2, Murphy JM1,2, Willson TA1,2, Webb AI1,2, Blewitt ME1,2,4, Czabotar PE1,2, Murphy JM1,2.

1Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia.
2Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
3Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia.
4School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia.

PMID: 32546545 DOI: 10.1126/scisignal.aaz5599

49. *Eur J Paediatr Neurol.* 2020 May 22. pii: S1090-3798(20)30106-9. [Epub ahead of print]

Deletion of the Williams Beuren syndrome critical region unmasks facioscapulohumeral muscular dystrophy.

Rodolico C1, Politano L2, Portaro S3, Murru S4, Boccone L4, Sera F5, Passamano L2, Brizzi T6, Tupler R7.

1Department of Clinical and Experimental Medicine, University of Messina, Italy.
2Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, "Luigi Vanvitelli", Naples, Italy.
3IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.
4Azienda Ospedaliera "G.Brotzu", Cagliari, Italy.
5Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK.
6Department of Clinical and Experimental Medicine, University of Messina, Italy; "Piemonte" Hospital, Messina, Italy.
7Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, USA.

Electronic address: rossella.tupler@unimore.it.

PMID: 32553920 DOI: 10.1016/j.ejpn.2020.05.006

50. *BMJ Case Rep.* 2020 Jun 11;13(6). pii: e236444. doi: 10.1136/bcr-2020-236444.

Use of muscle MRI in an atypical presentation of FSHD2.

Jesuthasan A1, Shah S2, Morrow JM3.

1University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK.
2Lushlim Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK.
3Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK. j.morrow@ucl.ac.uk.

PMID: 32532898 DOI: 10.1136/bcr-2020-236444

Dystrophies myotoniques – Myotonic dystrophies

51. *Ther Innov Regul Sci.* 2020 Jul;54(4):775-778. doi: 10.1007/s43441-019-00017-1. Epub 2019 Dec 9.

Learnings from Patient-Report Workshop on Disease Progression in Myotonic Dystrophy.

White M1.

1Myotonic Dystrophy Foundation, 1004A O’Reilly Avenue, San Francisco, CA, 94129, USA. molly.white@myotonic.org.

PMID: 32532898 DOI: 10.1136/bcr-2020-236444
52. ACS Chem Biol. 2020 Jun 17. doi: 10.1021/acschembio.0c00417. [Epub ahead of print]
A Toxic RNA Templates the Synthesis of Its Own Fluorogenic Inhibitor by Using a Bio-orthogonal Tetrazine Ligation in Cells and Tissues.
Angelbello AJ1, Disney MD2.
1Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States.
PMID: 32557301 DOI:10.1007/s43441-019-00017-1

53. J Neurol. 2020 Jun 15. doi: 10.1007/s00415-020-09970-6. [Epub ahead of print]
Change over time in ability to perform activities of daily living in myotonic dystrophy type 1.
Landfeldt E1, Nikolenko N2, Jimenez-Moreno C3,4, Cumming S5, Monckton DG5, Faber CG6, Merkies ISJ6,7, Gorman G8, Turner C2,9, Lochmüller H10,11.
1Department of Women's and Children's Health, Karolinska Institutet, Karolinska Vägen 37A, 171 76, Stockholm, Sweden.
2Department of Medicine, University of Freiburg, Freiburg, Germany.
3Department of Pediatrics, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK.
4Welcome Center for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
5Department of Neurology, School of Medical Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
6Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
7Department of Neurology, Curaçao Medical Centre, Willemstad, Curaçao.
8Institute of Neuroscience, University of Padova, Padova, Italy.
9Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.
10Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
11Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
KEYWORDS: Activities of daily living; Disability; Participation; PhenoDM1
PMID: 32542526 DOI:10.1007/s00415-020-09970-6

54. Heart Rhythm. 2020 Jun 7. pii: S1547-5271(20)30546-4. [Epub ahead of print]
Evaluation of mexiletine effect on conduction delay and bradyarrhythmic complications in patients with myotonic dystrophy type 1 over long-term follow-up.
Vio R1, Zorzi A1, Bello L2, Bozzoni V2, Botta A3, Rivezzi F1, Leoni L1, Migliore F1, Bertaglia E1, Illiceto S1, Pegoraro E2, Corrado D4, Calore C1.
1Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.
2Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland.
3Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
4Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.
5Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
Electronic address: domenico.corrado@unipd.it.
KEYWORDS: antiarrhythmic drugs; atrioventricular block; bundle branch block; myotonic dystrophy; neuromuscular disorder; pacemaker; sudden cardiac death
PMID: 32525073 DOI:10.1016/j.hrthm.2020.05.043

55. Neuromuscul Disord. 2020 Jun;30(6):510-520. doi: 10.1016/j.nmd.2020.04.005. Epub 2020 May 19.
Characterizing cognitive-motor impairments in patients with myotonic dystrophy type 1.
Filli L1, Schwegler S2, Meyer C3, Killeen T3, Easthope CS3, Broicher SD2, Curt A1, Zörner B1, Bolliger M1, Jung HH, Petersen J3.
1Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland.
2Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland.
3Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland.
Electronic address: linard.filli@balgrist.ch.
KEYWORDS: Cognition; Cognitive-motor interactions; Dual-task; Gait; Myotonic dystrophy; Neuromuscular disorders
PMID: 32527589 DOI:10.1016/j.nmd.2020.04.005
56. Front Neurol. 2020 May 19;11:392. doi: 10.3389/fneur.2020.00392. eCollection 2020. Functional Ambulation Profile (FAP) Score as a Potential Marker of Gait Analysis in Myotonic Dystrophy Type 1. Kim S1, Lim YH1,2, Kang K3, Park D4, Lee HW3, Park JS3.
1Department of Neurology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea.
2Center of Self-Organizing Software-Platform, Kyungpook National University, Daegu, South Korea.
3Department of Neurology, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu, South Korea.
4Department of Physical Medicine and Rehabilitation, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea.
KEYWORDS: FAP score; gait; gastrocnemius; instability; myotonic dystrophy; tibialis anterior
PMID: 32508737 PMCID: PMC7249254 DOI: 10.3389/fneur.2020.00392 Free PMC Article

57. GeneReviews® [Internet]. 2020 Jun 11. Fibrodysplasia Ossificans Progressiva. Akesson LS1, Savarirayan R2.
1Victorian Clinical Genetics Services; Royal Melbourne Hospital; University of Melbourne, Melbourne, Victoria, Australia
2Victorian Clinical Genetics Services; Murdoch Children's Research Institute; University of Melbourne, Parkville, Victoria, Australia
MYOBASE link: http://www.myobase.org/index.php?lvl=notice_display&id=70274
PMID: 32525643
Free Books & Documents Free full text

58. J Clin Pharmacol. 2020 Jun 18. doi: 10.1002/jcph.1638. [Epub ahead of print] Pharmacokinetics and Pharmacodynamics of Garetosmab (Anti-Activin A): Results From a First-in-Human Phase 1 Study. Vanhoutte F1, Liang S2, Ruddy M2, Zhao A2, Drewery T2, Wang Y2, DelGizzi R2, Forleo-Neto E2, Rajadhyaksha M2, Herman G2, Davis JD1.
1SGS Clinical Pharmacology Unit, Antwerp, Belgium.
2Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA.
KEYWORDS: activin A; clinical trial; fibrodysplasia ossificans progressiva; garetosmab; monoclonal antibody
PMID: 32557665 DOI: 10.1002/jcph.1638

59. JBMR Plus. 2020 Apr 28;4(6):e10363. doi: 10.1002/jbmr.10363. eCollection 2020 Jun. Diagnostic Value of Magnetic Resonance Imaging in Fibrodysplasia Ossicificans Progressiva. Botman E1, Teunissen BP2, Rajmakers P2, de Graaf P2, Yaqub M2, Treurniet S1, Schoenmaker T1, Bravenboer N4, Micha D2, Pals G1, Bökenkamp A2, Netelenbos JC2, Lammertsma AA2, Eekhoff EM1.
1Department of Internal Medicine section Endocrinology, Amsterdam Bone Center Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences Amsterdam The Netherlands.
2Department of Radiology & Nuclear Medicine Amsterdam UMC, Vrije Universiteit Amsterdam The Netherlands.
3Department of Periodontology Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam The Netherlands.
4Department of Clinical Chemistry, Amsterdam Bone Center Amsterdam UMC, Vrije Universiteit Amsterdam The Netherlands.
5Department of Clinical Genetics, Amsterdam Bone Center Amsterdam Movement Sciences Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands.
6Department of Paediatric Nephrology Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands.
KEYWORDS: ANALYSIS/QUANTITATION OF BONECLINICAL TRIALSDISEASES AND DISORDERS OF/RELATED TO BONEFIBRODYSPLASIA OSSICIFICANS PROGRESSIVARADIOLOGY
PMID: 32537549 PMCID: PMC7285757 DOI: 10.1002/jbmr.10363 Free PMC Article
60. Bone. 2020 Jun 15;115473. doi: 10.1016/j.bone.2020.115473. [Epub ahead of print]

Activin A does not drive post-traumatic heterotopic ossification.
Hwang C1, Pagani CA1, Das N2, Marini S3, Huber AK1, Xie L2, Jimenez J2, Brydges S2, Lim W2, Nannuru K2, Murphy AJ2, Economides AN4, Hatsell SJ2, Levi B3.
1Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America.
2Regeneron Pharmaceuticals, Tarrytown, NY, USA.
3Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America; Division of Plastic Surgery, Department of Surgery, University of Michigan Health System, 1500 E Medical Center Drive, SPC 5340, Ann Arbor, MI 48109-5340, United States of America. Electronic address: Blevi@umich.edu.
KEYWORDS: ACVR1; ALK3-Fc; Activin A; Anti-ACVR1 antibody; Burn tenotomy; Fibrodysplasia ossificans progressiva; Heterotopic ossification; Inhba; Progenitor cells; Single cell RNA sequencing; Trauma
PMID: 32553795 DOI: 10.1016/j.bone.2020.115473

61. Elife. 2020 Jun 9;9. pii: e54582. doi: 10.7554/eLife.54582. [Epub ahead of print]

Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop.
Aykul S1, Corpina RA2, Goebel EJ3, Cunanan CJ1, Dimitriou A2, Kim H2, Zhang Q2, Rafique A4, Leidich R5, Wang X5, McClain J4, Jimenez J2, Nannuru KC2, Rothman NJ2, Lees-Shepard JB2, Martinez-Hackert E2, Murphy AJ2, Economides AN2, Idone V2.
1Skeletal Diseases TFA, Regeneron Pharmaceuticals, Tarrytown, United States.
2Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States.
3Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States.
4Therapeutic Antibodies, Regeneron Pharmaceuticals, Tarrytown, United States.
5Bioassay, Molecular Biology, and Protein Development, Regeneron Pharmaceuticals, Tarrytown, United States.
6Genome Engineering Technologies, Regeneron Pharmaceuticals, Tarrytown, United States.
7Michigan State University, East Lansing, United States.
8Research & Development, Regeneron Pharmaceuticals, Tarrytown, United States.
9Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, United States.
KEYWORDS: biochemistry; cell biology; chemical biology; mouse
PMID: 32515349 DOI: 10.7554/eLife.54582 Free full text

62. Bone. 2020 Jun 6;138:115472. doi: 10.1016/j.bone.2020.115472. [Epub ahead of print]

Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors.
Sanchez-Duffhues G1, Williams E2, Goumans MJ3, Heldin CH4, Ten Dijke P5.
1Department of Cell and Chemical Biology, Leiden University Medical Center, Eindhovenweg 20, 2333 ZC Leiden, the Netherlands. Electronic address: g.sanchez_duffhues@lumc.nl.
2Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK.
3Department of Cell and Chemical Biology, Leiden University Medical Center, Eindhovenweg 20, 2333 ZC Leiden, the Netherlands.
4Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
5Department of Cell and Chemical Biology, Leiden University Medical Center, Eindhovenweg 20, 2333 ZC Leiden, the Netherlands; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Eindhovenweg 20, 2333 ZC Leiden, the Netherlands. Electronic address: p.ten_dijke@lumc.nl.
KEYWORDS: ALK2; BMP; DIPG; FOP; Fibrodysplasia ossificans progressiva; Kinase inhibitor; PAH; Pulmonary arterial hypertension
PMID: 32522605 DOI: 10.1016/j.bone.2020.115472 Free full text

63. Bone. 2020 Jun 5;138:115469. doi: 10.1016/j.bone.2020.115469. [Epub ahead of print]

Design of primers for direct sequencing of nine coding exons in the human ACVR1 gene.
Matsuoka M1, Nakagawa S2, Tsukamoto S3, Orihara Y1, Kamawara R2, Kuratani M3, Haga N4, Ikeuchi K5, Katagiri T6.
1Department of Clinical Laboratory, Saitama Medical University, Saitama, Japan; Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan.
2. Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan; Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
3. Department of Clinical Laboratory, Saitama Medical University, Saitama, Japan.
4. Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
5. Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
6. Department of Clinical Laboratory, Saitama Medical University, Saitama, Japan; Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan. Electronic address: ikebuchi@saitama-med.ac.jp.
7. Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan; Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address: katagiri@saitama-med.ac.jp.

KEYWORDS: ACVR1; Fibrodysplasia ossificans progressiva; Genetic diagnosis
PMID: 32512165 DOI: 10.1016/j.bone.2020.115469

64. Handb Exp Pharmacol. 2020 Jun 10. doi: 10.1007/164_2019_305. [Epub ahead of print]
Pharmacotherapy in Rare Skeletal Diseases.
Hoyer-Kuhn H1,2, Schönau E3,4,5.
1Faculty of Medicine, University of Cologne, Cologne, Germany. heike-katharina.hoyer-kuhn@uk-koeln.de.
2Department of Paediatrics, University Hospital Cologne, Cologne, Germany. heike-katharina.hoyer-kuhn@uk-koeln.de.
3Faculty of Medicine, University of Cologne, Cologne, Germany.
4Department of Paediatrics, University Hospital Cologne, Cologne, Germany.
5Center for Prevention and Rehabilitation, Unireha, University of Cologne, Cologne, Germany.
KEYWORDS: Bisphosphonates; Denosumab; Rare skeletal disease
PMID: 32519163 DOI: 10.1007/164_2019_305

65. J Hum Genet. 2020 Jun 18. doi: 10.1038/s10038-020-0789-8. [Epub ahead of print]
Non-invasive prenatal testing leading to a maternal diagnosis of Charcot-Marie-Tooth neuropathy.
Kumps C1, Niel Bütschi F2, Rapin B2, Baud D3, Pescia G4, Robyr D4, Superti-Furga A5, Unger S5.
1Department of Medecine, Division of Genetic Medicine, Lausanne University Hospital, Lausanne, Switzerland. camille.kumps@chuv.ch.
2Division of Genetic Medicine, Medical Genetics Laboratory, Lausanne University Hospital, Lausanne, Switzerland.
3Division of Obstetrics, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
4Aurigen Centre of Genetics and Pathology, Lausanne, Switzerland.
5Department of Medecine, Division of Genetic Medicine, Lausanne University Hospital, Lausanne, Switzerland.
PMID: 32555312 DOI: 10.1038/s10038-020-0789-8

66. Int J Mol Sci. 2020 Jun 16;21(12). pii: E4277. doi: 10.3390/ijms21124277.
A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases.
Rzepnikowska W1, Kaminska J2, Kabzińska D1, Binięda K1, Kochański A1.
1Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland.
2Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland.
KEYWORDS: Charcot-Marie-Tooth disease; neurodegenerative diseases; neuropathy; yeast model organism
PMID: 32560077 DOI: 10.3390/ijms21124277 Free full text

67. FEBS J. 2020 Jun 15. doi: 10.1111/febs.15449. [Epub ahead of print]
Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish.
Mullen P1, Abbott JA1, Wellman T1, Aktar M1, Field C1, Demeler B2, Ebert AM4, Francklyn CS1.
1Department of Biochemistry, University of Vermont, Burlington, United States.
2Department of Pharmacology, University of Vermont, Burlington, United States.
3Department of Chemistry & Biochemistry, University of Lethbridge.
4Department of Biology, University of Vermont, Burlington, United States.
KEYWORDS: Charcot-Marie-Tooth disease; aminocyl-IRNA synthetase; peripheral neuropathy; protein synthesis; tRNA
PMID: 32543048 DOI: 10.1111/febs.15449
Early-onset cerebellar ataxia in a patient with CMT2A1.

Madriz R1, Guariglia SR1, Haworth A1, Korosh W1, Gavin M1, Lyon GJ1.
1Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York 10314, USA.
2Congenica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.

KEYWORDS: progressive cerebellar ataxia; severe global developmental delay

PMID: 32532879 DOI: 10.1101/mcs.a005108 Free full text

Electrodiagnostic accuracy in polyneuropathies: supervised learning algorithms as a tool for practitioners.

Uncini A1, Aretusi G2,3, Manganelli F4, Sekiguchi Y5, Magy L6, Tozza S4, Tsuneyama A6, Lefour S6, Kuwabara S5, Santoro L4, Ippoliti L3.
1Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Via Luigi Polacchi 11, 66100, Chieti-Pescara, Italy. uncini@unich.it.
2Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Via Luigi Polacchi 11, 66100, Chieti-Pescara, Italy.
3Statistics Unit, Department of Economics, University "G. d'Annunzio", Chieti-Pescara, Italy.
4Department of Neurosciences, Reproductive Sciences and Odontostomatologia, University of Naples Federico II, Naples, Italy.
5Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
6National Reference Centre for Rare Peripheral Neuropathies and Department of Neurology, University of Limoges, Limoges, France.

KEYWORDS: Diagnostic accuracy; Electrodiagnosis; Polyneuropathies; Supervised learning algorithms

PMID: 32518996 DOI: 10.1007/s10072-020-04499-y

A New Point Mutation in the PMP22 Gene in a Family Suffering From Atypical HNPP.

Benquey T1, Fockens E2, Kouton L2, Delmont E2, Martini N2,4, Attarian S2,3, Bonello-Palot N3,4.
1Service de Biochimie et Biologie moléculaire Grand Est, Unité Médicale Pathologies neurologiques et cardiologiques, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France.
2Referral Centre for ALS and Neuromuscular Diseases, Hospital La Timone 264 rue Saint Pierre, 13005, Marseille, France.
3Aix Marseille University, INSERM, GMGF, Marseille, France.
4Medical Genetics Department, La Timone Teaching hospital, 264, rue Saint-Pierre, 13385 Marseille, France.

KEYWORDS: HNPP; PMP22 gene; phenotypic heterogeneity; point mutations

PMID: 32538861 DOI: 10.3233/JND-190460

Subcellular diversion of cholesterol by gain- and loss-of-function mutations in PMP22.

Zhou Y1, Borchelt D1, Bauson JC2, Fazio S2, Miles JP6, Tavori H4, Notterpek L1,3.
1Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.
2Department of Medicine, Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Oregon, Portland, USA.
3Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.

KEYWORDS: Charcot-Marie-tooth disease Type 1A; Dejerine-Sottas syndrome; Schwann cell; cholesterol subcellular trafficking; fibroblast; peripheral myelin protein 22

PMID: 32511621 DOI: 10.1002/glia.23840

Peripheral myelin protein 22 preferentially partitions into ordered phase membrane domains.

Marinko JT1,2, Kenworthy AK3,4, Sanders CR2,2,6.

PMID: 202000508 DOI: 10.1073/pnas.2000508117

Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

68. Cold Spring Harb Mol Case Stud. 2020 Jun 12;6(3). pii: a005108. doi: 10.1101/mcs.a005108. Print 2020 Jun.

69. Neurol Sci. 2020 Jun 10. doi: 10.1007/s10072-020-04499-y. [Epub ahead of print]

70. J Neuromuscul Dis. 2020 Jun 12. doi: 10.3233/JND-190460. [Epub ahead of print]

71. Glia. 2020 Jun 8. doi: 10.1002/glia.23840. [Epub ahead of print]
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

1Department of Biochemistry, Vanderbilt University, Nashville, TN 37240.
2Center for Structural Biology, Vanderbilt University, Nashville, TN 37240.
3Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903; akk7hp@virginia.edu chuck.sanders@vanderbilt.edu.
4Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903.
5Department of Biochemistry, Vanderbilt University, Nashville, TN 37240; akk7hp@virginia.edu chuck.sanders@vanderbilt.edu.
6Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.

KEYWORDS: membrane phase domain; ordered; peripheral myelin protein 22

PMID: 32513719 DOI: 10.1073/pnas.2000508117 Free full text

73. J Peripher Nerv Syst. 2020 Jun 8. doi: 10.1111/jns.12397. [Epub ahead of print]
Validation of the Italian version of the Charcot-Marie-Tooth Health Index (CMT-HI).
Pisciotta C1, Ciafaloni E2, Zuccarino R3,4, Calabrese D1, Saveri P1, Fenu S1, Tramacere I1, Genovese F5, Dilek N2, Johnson NE6, Heatwole C7, Herrmann DN2, Pareyson D1; ACT-CMT study group.
Collaborators (16)
1Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
2Department of Neurology, University of Rochester, Rochester, New York, USA.
3Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
4Neuromuscular Omnicentre (NEMO)-Fondazione Serena Onlus, Arenzano, GE, Italy.
5ACMT-Rete per la malattia di Charcot-Marie-Tooth, OdV, Bologna, Italy.
6Department of Neurology, Virginia Commonwealth University (VCU), Richmond, Virginia, USA.
7Center for Health and Technology (CHeT), University of Rochester, Rochester, New York, USA.

KEYWORDS: Charcot-Marie-Tooth disease; Patient-reported outcome measures; clinical trials; quality of life; translation and cultural adaptation

PMID: 32511835 DOI: 10.1111/jns.12397

74. Neuromuscul Disord. 2020 Apr 29. pii: S0960-8966(20)30096-1. [Epub ahead of print]
Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism.
Keller N1, Mendoza-Ferreira N1, Maroofian R2, Chelban V3, Khalil Y4, Mills PB4, Boostani R5, Torbati PN6, Karimiani EG7, Thiele H8, Holden H2, Wirth B1, Karakaya M9.
1Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany.
2Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK;
Department of Neuroradiology, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
3Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK;
Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Toma Ciorbă 1, 2052 Chisinau, Republic of Moldova.
4Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
5Neurology Dept., Ghaem Hospital, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
6Department of Molecular Genetics, Next Generation Genetic Polyclinic, Mashhad 09851, Iran.
7Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK;
Department of Molecular Genetics, Next Generation Genetic Polyclinic, Mashhad 09851, Iran.
8Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.
9Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany. Electronic address: mert.karakaya@uk-koeln.de.

KEYWORDS: PDXK; hereditary neuropathy; optic atrophy; pyridoxal kinase; pyridoxal phosphate; vitamin B6

PMID: 32522499 DOI: 10.1016/j.nmd.2020.04.004

75. Foot Ankle Surg. 2020 Apr 27. pii: S1268-7731(20)30069-2. doi: 10.1016/j.fas.2020.04.004. [Epub ahead of print]
Pes cavovarus in Charcot-Marie-Tooth compared to the idiopathic cavovarus foot: A preliminary weightbearing CT analysis.
Bernasconi A1, Cooper L2, Lyle S3, Patel S4, Cullen N5, Singh D6, Welck M7.
1Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom; Department of Public Health, Trauma and Orthopaedics, University of Naples Federico II, Naples, Italy. Electronic address: alebernas@gmail.com.
2Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom. Electronic address: lucy_cooper_@hotmail.co.uk.
3Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom. Electronic address: shirleylyle@doctors.org.uk.
4Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom. Electronic address: shelain.patel@doctors.org.uk.
5Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom. Electronic address: nick.cullen@nhs.net.
6Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom. Electronic address: dishansingh@aol.com.
7Foot and Ankle Unit, Royal National Orthopaedic Hospital, Stanmore, United Kingdom. Electronic address: matthewwelck@doctors.org.uk.

KEYWORDS: Cavovarus; Charcot-Marie-Tooth; Cone beam; High arch; Hindfoot; Weightbearing CT

PMID: 32507338 DOI: 10.1016/j.fas.2020.04.004

76. J Bodyw Mov Ther. 2020 Apr;24(2):85-91. doi: 10.1016/j.jbmt.2019.09.009. Epub 2019 Oct 4.
An adapted dance program for children with Charcot-Marie-Tooth disease: An exploratory study.
Cherrière C1, Martel M2, Fortin S3, Raymond MJ4, Veilleux LN5, Lemay M4.
1Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada; ToNIC Toulouse Neuroimaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France. Electronic address: claire.cherriere@inserm.fr.
2Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada.
3Département de Danse, Université du Québec à Montréal, Montréal, Canada.
4Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada; Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, Canada.
5Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada; Shriners Hospital for Children, Montréal, Canada; École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, Montréal, Canada.
PMID: 32507158 DOI: 10.1016/j.jbmt.2019.09.009

77. J Bodyw Mov Ther. 2020 Apr;24(2):130-137. doi: 10.1016/j.jbmt.2019.10.014. Epub 2019 Oct 25.
Massage therapy treatment and outcomes in a patient with Charcot-Marie-Tooth disease: A case report.
Paz G1.
1Grant MacEwan University, Massage Therapy Program, Canada. Electronic address: galitip@gmail.com.
KEYWORDS: Charcot-Marie-Tooth; Massage therapy; Peripheral neuropathy
PMID: 32507138 DOI: 10.1016/j.jbmt.2019.10.014

78. Int J Mol Sci. 2020 Jun 17;21(12). pii: E4320. doi: 10.3390/ijms21124320.
Telocytes in the Normal and Pathological Peripheral Nervous System.
Díaz-Flores L1, Gutiérrez R1, García MP2, Gayoso S1, Gutiérrez E1, Díaz-Flores L Jr1, Carrasco JL1.
1Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain.
2Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, 38100 Tenerife, Spain.
KEYWORDS: Meissner corpuscles; appendicular neurogenic hyperplasia; gallbladder neurogenic hyperplasia; nerves; peripheral nervous system tumours; telocytes
PMID: 32560571 DOI: 10.3390/ijms21124320 Free full text

79. J Med Chem. 2020 Jun 18. doi: 10.1021/acs.jmedchem.0c00366. [Epub ahead of print]
Discovery of 6-Phenylhexanamide Derivatives as Potent Stereoselective Mitofusin Activators for the Treatment of Mitochondrial Diseases.
Dang X1,2, Zhang L1, Franco A3,4, Lui LP, Rocha AG1, Devanathan S3, Dolle RE3,4, Bernstein PR3,4, Dorn GW Jr1,3.
1Department of Cardiology, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, Shaanxi, China.
2Center for Pharmacogonomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States.
3Mitochondria in Motion, Inc. 4340 Duncan Avenue, Suite 216, St. Louis, Missouri 63110, United States.
4Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, Missouri 63110, United States.
5Harrington Discovery Institute at University Hospitals, 11407 Euclid Ave, Cleveland, Ohio 44106, United States.
PMID: 32506913 DOI: 10.1021/acs.jmedchem.0c00366
80. Safety and tolerability of therapeutic plasma exchange in autoimmune neurological diseases - a retrospective single-centre analysis.
Gala-Bładzińska A1,2, Mazur K3, Debiec A4, Gargasz K5, Bartosik-Psiejek H6,4.
1University of Rzeszów, Collegium Medicum, Institute of Medical Sciences, Al. W. Kopisto 2A, 35-959 Rzeszów, Poland.
agala.edu@gmail.com.
2Department of Internal Medicine, Nephrology and Endocrinology, St. Queen Jadwiga Clinical District Hospital No2 in Rzeszów, ul. Lwowska 60, 35-301 Rzeszów, Poland. agala.edu@gmail.com.
3Department of Internal Medicine, Nephrology and Endocrinology, St. Queen Jadwiga Clinical District Hospital No2 in Rzeszów, ul. Lwowska 60, 35-301 Rzeszów, Poland.
4Neurology Clinic, St. Queen Jadwiga Clinical District Hospital No. 2 in Rzeszow, ul. Lwowska 60, 35-301 Rzeszów, Poland.
5University of Rzeszów, Collegium Medicum, Institute of Medical Sciences, Al. W. Kopisto 2A, 35-959 Rzeszów, Poland.
KEYWORDS: autoimmune neurological diseases; efficacy; side effects; therapeutic plasma exchange
PMID: 32557528 DOI:10.5603/PJNNS.a2020.0045 Free full text

81. Comparison of the Single Simple Question and the Patient Acceptable Symptom state in Myasthenia Gravis.
Menon D1,2, Barnett C1,2, Bril V1,2.
1University Health Network, Neurology, Toronto, Ontario, Canada.
2University of Toronto, Neurology, Toronto, Ontario, Canada.
KEYWORDS: Myasthenia Gravis; patient acceptable symptom state; patient reported outcomes; single simple question; symptoms
PMID: 32537628 DOI:10.1111/ene.14397

82. Myasthenia gravis with anti-muscle-specific tyrosine kinase antibodies during therapy for multiple myeloma: a case report.
Sakano S1, Matsuyama H1, Ishikawa H1, Shindo A1, Li Y1, Matsuura K1, Mizutani M1, Kawada N1, Tomimoto H1.
1Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
2Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
hidehiro-i@clin.medic.mie-u.ac.jp.
3Department of Hematology, Matsusaka Central General Hospital, 102 Azakomon, Kawai-machi, Matsusaka, Mie, 515-0818, Japan.
4Department of Neurology, Matsusaka Central General Hospital, 102 Azakomon, Kawai-machi, Matsusaka, Mie, 515-0818, Japan.
KEYWORDS: Anti-muscle-specific tyrosine kinase antibodies; Bortezomib; Case report; Multiple myeloma; Myasthenia gravis
PMID: 32532281 PMCID: PMC7291755 DOI:10.1186/s12883-020-01813-1 Free PMC Article

83. Sensitivity and Specificity of Repetitive Nerve Stimulation with Lower Cutoffs for Abnormal Decrement in Myasthenia Gravis.
Lamb CJ1, Rubin DI1.
1Department of Neurology, Mayo Clinic, Jacksonville, Florida.
KEYWORDS: Myasthenia gravis; decrement; electrodiagnostic testing; repetitive stimulation
PMID: 32530515 DOI:10.1002/mus.26999
84. **BMC Neurol.** 2020 Jun 11;20(1):238. doi: 10.1186/s12883-020-01805-1.

Prediction of generalization of ocular myasthenia gravis under immunosuppressive therapy in Northwest China.

Ding J1, Zhao S1, Ren K1, Dang D2, Li H1, Wu F3, Zhang M1, Li Z4, Guo J5.

1Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
2Intensive Care Unit, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi Province, China.
3Department of Neurology, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi Province, China.
4Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
5Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.

lizhuyi@fmmu.edu.cn.

1Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
2Intensive Care Unit, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi Province, China.
3Department of Neurology, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi Province, China.
4Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.

KEYWORDS: Generalization; Immunosuppressive therapy; Myasthenia gravis; Ocular; Predictive factor

PMID: 32527235 PMCID:PMC7288410 DOI: 10.1186/s12883-020-01805-1 Free PMC Article

85. **Eur J Neurol.** 2020 Jun 11. doi: 10.1111/ene.14391. [Epub ahead of print]

Efficacy and safety of Rituximab in myasthenia gravis: A French multicentre real-life study.

Dos Santos A1, Noury JB2, Genestet S2, Nadaj-Pakleza A3, Cassereau J4, Videt D5, Michel L7, Pereon Y8, Wiertlewski S1, Magot A8.

1Department of Neurology, University Hospital of Nantes, Nantes, France.
2Reference Centre for Neuromuscular Diseases AOC, University Hospital of Brest, Brest, France.
3Reference Centre for Neuromuscular Diseases, University Hospital of Strasbourg, Strasbourg, France.
4Reference Centre for Neuromuscular Diseases AOC, University Hospital of Angers, Angers, France.
5Department of Clinical Neurophysiology, University Hospital of Poitiers, Poitiers, France.
6Department of Neurology, Centre Hospitalier Bretagne Atlantique, Vannes, France.
7Department of Neurology, University Hospital of Rennes, Rennes, France.
8Reference Centre for Neuromuscular Diseases AOC, University Hospital of Nantes, Nantes, France.

KEYWORDS: Myasthenia gravis; Rituximab; anti-ACh-R; anti-MusK

PMID: 32526053 DOI:10.1111/ene.14391

86. **Eur Neurol.** 2020 Jun 11:1-7. doi: 10.1159/000507853. [Epub ahead of print]

Adult Ocular Myasthenia Gravis Conversion: A Single-Center Retrospective Analysis in China.

Feng X1, Huan X1, Yan C1, Song J1, Lu J1, Zhou L1, Wu H2, Qiao K3, Lu J4, Xi J5, Luo S1, Zhao C4.

1Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.
2Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China.
3Department of Clinical Electromyography, Institute of Neurology, Huashan hospital Fudan University, Shanghai, China.
4Department of Neurology, Huashan Hospital Fudan University, Shanghai, China, zhao_chongbo@fudan.edu.cn.

KEYWORDS: Adult myasthenia gravis; Anti-acetylcholine receptor antibody; Conversion; Ocular myasthenia gravis; Risk factors

PMID: 32526733 DOI:10.1159/000507853

87. **Neurology.** 2020 Jun 10. pii: 10.1212/WNL.0000000000009782. [Epub ahead of print]

The face of myasthenia gravis.

Ruiter AM1, Naber WC2, Tannemaat MR2, Verschuuren JJGM2.

1From the Department of Neurology, Leiden University Medical Center, the Netherlands. a.m.ruiter@lumc.nl.
2From the Department of Neurology, Leiden University Medical Center, the Netherlands.

PMID: 32522801 DOI:10.1212/WNL.0000000000009782

88. **Front Mol Neurosci.** 2020 May 28;13:86. doi: 10.3389/fnmol.2020.00086. eCollection 2020.

Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability.

Takamori M1.

1Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Japan.

KEYWORDS: Lrp4; MuSK; acetylcholine receptor; agrin; matrix proteins; myasthenia gravis; neuromuscular junction; wnts

PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086 Free PMC Article
89. Front Immunol. 2020 May 27;11:776. doi: 10.3389/fimmu.2020.00776. eCollection 2020.
Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology.
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC.
1Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.
2Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States.
3Trinity Hall, University of Cambridge, Cambridge, United Kingdom.
KEYWORDS: MuSK; AChR; B cells; B lymphocytes; autoantibodies; autoimmunity; immunopathology; myasthenia gravis
PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776 Free PMC Article

90. Mult Scler Relat Disord. 2020 May 23;44:102205. doi: 10.1016/j.msard.2020.102205. [Epub ahead of print]
Anti-MOG and Anti-AQP4 positive neuromyelitis optica spectrum disorder in a patient with myasthenia gravis.
Bates M, Chisholm J, Miller E, Avasarala J, Guduru Z.
1University of Kentucky, Department of Neurology, USA.
PMID: 32526697 DOI: 10.1016/j.msard.2020.102205

91. Front Neurosci. 2020 May 21;14:507. doi: 10.3389/fnins.2020.00507. eCollection 2020.
Emerging Roles of Dysregulated MicroRNAs in Myasthenia Gravis.
Wang L, Zhang L.
1Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
2Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
KEYWORDS: autoimmune; interleukin; microRNA; myasthenia gravis; neuromuscular disease
PMID: 32508584 PMCID: PMC7253668 DOI: 10.3389/fnins.2020.00507 Free PMC Article

92. Front Immunol. 2020 May 19;11:809. doi: 10.3389/fimmu.2020.00809. eCollection 2020.
CD4+ T Cells of Myasthenia Gravis Patients Are Characterized by Increased IL-21, IL-4, and IL-17A Productions and Higher Presence of PD-1 and ICOS.
Çebi M, Durmuş H, Aysal E, Özkan B, Gül GE, Çağlar A, Hocaoglu M, Mercan M, Yentür SP, Tütüncü M, Yayla V, Akın O, Doğan Ö, Parman Y, Sanuhan-Direskeneli G.
1Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
2Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
3Department of Neurology, Medipol University, Istanbul, Turkey.
4Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
5Okmeydani State Hospital, Istanbul, Turkey.
6Bakırköy Sadi Konuk State Hospital, Istanbul, Turkey.
7Department of Neurology, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey.
8Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
9Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
KEYWORDS: CXCR5; ICOS; IL-17; IL-21; IL-4; PD-1; T follicular helper cells; myasthenia gravis
PMID: 32508812 PMCID: PMC7248174 DOI: 10.3389/fimmu.2020.00809 Free PMC Article

93. Neuromuscul Disord. 2020 May 19. pii: S0960-8966(20)30095-X. [Epub ahead of print]
Double seropositivity for AChR and MuSK autoantibodies in myasthenia gravis.
Zhu M, Lennon VA.
1Neuroimmunology Laboratory, Mayo Clinic Rochester MN, USA.
2Neuroimmunology Laboratory, Mayo Clinic Rochester MN, USA. Electronic address: lennon.vanda@mayo.edu.
PMID: 32527590 DOI: 10.1016/j.nmd.2020.04.003

94. Rozh Chir. 2020 Spring;99(5):226-231. doi: 10.33699/PIS.2020.99.5.226-231.
“Maximal” minimally invasive thymectomy in patients with Nonthymomatous Myasthenia Gravis - short-term results over a 10year period - retrospective study.
Juhoš P, Janík M, Lučenčí M, Tarabová K, Šiška D, Laucěk P.
KEYWORDS: VATS; maximal thymectomy; minimally invasive surgery; nonthymomatous Myasthenia Gravis
Myopathies congénitales – Congenital myopathies

95. Mol Ther Methods Clin Dev. 2020 May;4:17:1178-1189. eCollection 2020 Jun 12.
Myostatin: a Circulating Biomarker Correlating with Disease in Myotubular Myopathy Mice and Patients.
Koch C1, Buono S1, Menuet A1,2,3,4,5, Robé A1, Djeddi S2,3,4,5, Kretz C2,3,4,5, Gomez-Oca R1,2,3,4,5, Depla M1, Monseur A6, Thielemans L1, Servais L7,8,9; NatHis-CNM Study Group, Laporte J2,3,4,5, Cowling BS1.
Collaborators (15)
1Dynacure, Illkirch, France.
2Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
3INSERM U1258, Illkirch, France.
4CNRS UMR7104, Illkirch, France.
5Strasbourg University, Illkirch, France.
6Pharmalex, Mont-St-Guibert, Belgium.
7Hospital Armand Trousseau, Institute I-Motion, Institute of Myology, Paris, France.
8MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.
9Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, 4000 Liège, Belgium.
KEYWORDS: GDF8; MSTN; antisense oligonucleotides; biomarker; centronuclear myopathies; dynamin; myotubular myopathy; therapy
PMID: 32545974 DOI:10.33699/PIS.2020.99.5.226-231

96. Autophagy. 2020 Jun 16:1-3. doi: 10.1080/15548627.2020.1779468. [Epub ahead of print]
Scission, a critical step in autophagosome formation.
Lei Y1, Klionsky DJ1.
1Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
KEYWORDS: Autophagosome; RAB11; centronuclear myopathy; dynamin 2; recycling endosome; scission
PMID: 32544363 DOI:10.1080/15548627.2020.1779468

97. Neurology. 2020 Jun 16;94(24):1109. doi: 10.1212/WNL.0000000000009655.
Editors’ note: Sporadic late-onset nemaline myopathy: Clinical spectrum, survival, and treatment outcomes.
Ganesh A, Golette S.
MYOBASE link for the original article of Naddaf et al: http://www.myobase.org/index.php?lvl=notice_display&id=67782
PMID: 32540942 DOI:10.1212/WNL.0000000000009655

98. Neurology. 2020 Jun 16;94(24):1109-1110. doi: 10.1212/WNL.0000000000009657.
Reader response: Sporadic late-onset nemaline myopathy: Clinical spectrum, survival, and treatment outcomes.
Chahin N1, Karam C1.
1(Portland, Oregon).
MYOBASE link for the original article of Naddaf et al: http://www.myobase.org/index.php?lvl=notice_display&id=67782
PMID: 32540943 DOI:10.1212/WNL.0000000000009657

99. Neurology. 2020 Jun 16;94(24):1110-1111. doi: 10.1212/WNL.0000000000009659.
Author response: Sporadic late-onset nemaline myopathy: Clinical spectrum, survival, and treatment outcomes.
Naddaf E1, Milone M1, Kansagra A2, Buadi F1, Kourelis T1.
1(Rochester, MN).
2(Dallas).
Myopathies distales – Distal myopathies

101. *FEBS Lett.* 2020 Jun 9. doi: 10.1002/1873-3468.13858. [Epub ahead of print]

Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-related MATR3 mutations in Drosophila.

Zhao M1,2, Kao CS1,2, Arndt C1,2, Tran DD1, Cho WI1, Maksimovic K1,2, Chen XXL1,2, Khan M1,2, Zhu H1,2, Qiao J1,2, Peng K1,2, Hong J1,2, Xu J1,2, Kim D1,2, Kim JR1,2, Lee J1, van Bruggen R1, Yoon WH1, Park J1,2.

1Department of Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada. 2Department of Molecular Genetics, University of Toronto, Toronto, Canada.

KEYWORDS: Drosophila; MATR3; amyotrophic lateral sclerosis (ALS); genetic screen; multisystem proteinopathy (MSP)

PMID: 32515490 DOI:10.1002/1873-3468.13858

Myopathies liées à la cavéoline 3 – CAV3 related myopathies

102. *Methods Mol Biol.* 2020;2169:197-216. doi: 10.1007/978-1-0716-0732-9_18.

Immunofluorescence-Based Analysis of Caveolin-3 in the Diagnostic Management of Neuromuscular Diseases.

Roos A1, Hathazi D2, Schara U3.

1Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. andreas.roos@uk-essen.de. 2Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. 3Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

KEYWORDS: CAV3-related LGMD; Caveolin-3; Caveolinopathy; Immunofluorescence in muscular diseases; Protein analyses in muscular diseases; Rippling muscle disease

PMID: 32548831 DOI:10.1007/978-1-0716-0732-9_18

Myopathies inflammatoires – Inflammatory myopathies

103. *Exp Ther Med.* 2020 Jul;20(1):219-226. doi: 10.3892/etm.2020.8716. Epub 2020 May 5.

Comparison of rapamycin and methylprednisolone for treating inflammatory muscle disease in a murine model of experimental autoimmune myositis.

Kang J1, Feng D1, Yang F1, Tian X1, Han W1, Jia H1,2.

1Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China. 2Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518034, P.R. China.

KEYWORDS: EAM; IL1Ms; TGF-β; Treg cells; rapamycin

PMID: 32536994 PMCID:PMC7291653 DOI: 10.3892/etm.2020.8716 Free PMC Article
104. *Neuromuscul Disord.*, 2020 Jun;30(6):503-509. doi: 10.1016/j.nmd.2020.03.008. Epub 2020 May 22.

Spontaneous symptomatic improvement in a pediatric patient with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase myopathy.

Suárez B1, Jofré J2, Lozano-Arango A2, Ortega X3, Diaz J4, Calcagno G5, Bevilacqua JA6, Castiglioni C7.

1Departamento de Neurología Pediátrica, Clínica Las Condes, Lo Fontecilla 441, Santiago 7591046, Chile; Unidad de Neurología Pediátrica, Instituto Nacional de Rehabilitación Pedro Aguirre Cerda, Santiago, Chile.

2Departamento de Neurología Pediátrica, Clínica Las Condes, Lo Fontecilla 441, Santiago 7591046, Chile.

3Unidad de Diagnóstico por Imágenes, Clínica Las Condes, Santiago, Chile.

4Centro de Imagenología, Hospital Clínico Universidad de Chile, Santiago, Chile.

5Servicio de Kinesiología, Clínica Las Condes, Santiago, Chile.

6Unidad Neuromuscular, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Chile; Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago, Chile.

7Departamento de Neurología Pediátrica, Clínica Las Condes, Lo Fontecilla 441, Santiago 7591046, Chile. Electronic address: ccastiglioni@clc.cl.

KEYWORDS: 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HMGCR; Immune-mediated necrotizing-myopathy; LGMD; spontaneous improvement

PMID: 32518057 DOI:10.1016/j.nmd.2020.03.008

105. *Clin Rev Allergy Immunol.*, 2020 Jun 17. doi: 10.1007/s12016-020-08798-2. [Epub ahead of print]

Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases.

Jiang J1,2, Zhao M1,2, Chang C3,4, Wu H5,6, Lu Q7,8.

1Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.

2Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.

3Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.

4Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.

5Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. chriswu1010@csu.edu.cn.

6Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. chriswu1010@csu.edu.cn.

7Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. qianlu5860@csu.edu.cn.

8Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. qianlu5860@csu.edu.cn.

KEYWORDS: Autoimmune disease; Epigenetic modifications; Interferonopathies; Juvenile idiopathic arthritis; Sjogren's syndrome; Systemic lupus erythematosus; Type I interferon signaling pathway

PMID: 32557263 DOI:10.1007/s12016-020-08798-2

106. *J Clin Rheumatol.*, 2020 Jun 17. doi: 10.1097/RHU.0000000000001443. [Epub ahead of print]

A Dramatic Presentation of Immune-Mediated Necrotizing Myopathy.

Diel RJ1, Hannah CE2, Moore SA3, Bettendorf B4.

1From the Department of Ophthalmology, University of Iowa Hospitals & Clinics. 2Department of Medicine, Penn Medicine, Philadelphia, PA. 3Department of Pathology. 4Division of Immunology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA.

PMID: 32558677 DOI:10.1097/RHU.0000000000001443

107. *Ann Rheum Dis.*, 2020 Jun 16. pii: annrheumdis-2019-216599. [Epub ahead of print]

Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis.

Pinal-Fernandez I1,2,3, Casas-Dominguez M1,2, Derfoul A1, Pak K1, Miller FW7, Millisenda JC6, Grau-Junyent JM8, Selva-O’Callaghan A1, Carrion-Ribas C1, Pak JP1, Albayda JP1, Christopher-Stine L2,8, Lloyd TE2, Corse AM2, Mammen AL9,2,8.

1Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.

2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

3Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.

4Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain.

5Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

6National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.

PMID: 32558677 DOI:10.1097/RHU.0000000000001443
5Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA.
6Internal Medicine, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain.
7Internal Medicine, Vall d’Hebron General Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain.
8Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
9Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. andrew.mammen@nih.gov.

KEYWORDS: autoantibodies; autoimmune diseases; autoimmunity; dermatomyositis; polymyositis
PMID: 32546599 DOI: 10.1136/annrheumdis-2019-216599

108. J Rheumatol. 2020 Jun 15. pii: jrheum.200480. doi: 10.3899/jrheum.200480. [Epub ahead of print]
Proceedings of the 2019 Canadian Inflammatory Myopathy Study Symposium: Clinical Trial Readiness in Myositis.

Leclair V1, Landon-Cardinal O1, Aggarwal R1, Bansback N1, Campbell C1, Feldman BM1, Jarry M4, McNamara S1, White B1, Hudson M; CIMS Investigators.
1From the Department of Medicine, McGill University; Division of Rheumatology, Jewish General Hospital; Department of Medicine, Université de Montréal; Division of Rheumatology and Research Center, Centre Hospitalier de l'Université de Montréal, Montreal, Canada; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; University of British Columbia and Arthritis Research Canada, Vancouver, British Columbia; Department of Pediatrics, London Children's Hospital; University of Western Ontario, London, Ontario; Faculty of Medicine and IHPME Dalla Lana School of Public Health, University of Toronto; Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario; Corbus Pharmaceutical Holdings Inc., Norwood, Massachusetts, USA; Lady Davis Institute, Montreal; Department of Medicine, Université de Laval; Division of Rheumatology, Centre Hospitalier Universitaire de Québec, Québec City; Montreal Neurological Institute, McGill University; Division of Rheumatology, Hôpital du Sacré-Coeur, Montreal, Québec, Canada. As part of the supplement 2019 Canadian Inflammatory Myopathy Study Symposium, this report was reviewed internally and approved by the Guest Editors for integrity, accuracy, and consistency with scientific and ethical standards. This symposium was funded by a Canadian Initiative for Outcomes in Rheumatology cAre (CIORA) grant and the McGill Interdisciplinary Initiative in Infection and Immunity, as well as unrestricted educational grants from Grifols, Corbus Pharmaceuticals, Bristol-Myers Squibb, Sanofi, and Pfizer. V. Leclair, MD, Department of Medicine, McGill University, and Division of Rheumatology, Jewish General Hospital; O. Landon-Cardinal, MD, Department of Medicine, Université de Montréal, and Division of Rheumatology, Jewish General Hospital; O. Landon-Cardinal, MD, Department of Medicine, Université de Montréal, and Division of Rheumatology and Research Center, Centre Hospitalier de l'Université de Montréal; R. Aggarwal, MD, MSc, Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine; N. Bansback, PhD, University of British Columbia and Arthritis Research Canada; C. Campbell, MD, Department of Pediatrics, London Children's Hospital, University of Western Ontario; B.M. Feldman, MD, MSc, Faculty of Medicine and IHPME Dalla Lana School of Public Health, University of Toronto; and Division of Rheumatology, The Hospital for Sick Children; M. Jarry, Patient Advocate, Corbus Pharmaceutical Holdings Inc.; S. McNamara, PhD, Corbus Pharmaceutical Holdings Inc.; B. White, MD, Corbus Pharmaceutical Holdings Inc.; M. Hudson, MD, MPH, Department of Medicine, McGill University, and Division of Rheumatology, Jewish General Hospital, and Lady Davis Institute. Address correspondence to Dr. V. Leclair, Division of Rheumatology, Jewish General Hospital, A.725-3755 Chemin de la Côte-Sainte- Catherine.
PMID: 32541080 DOI: 10.3899/jrheum.200480

109. BMC Infect Dis. 2020 Jun 12;20(1):409. doi: 10.1186/s12879-020-05137-w.
Multiple subcutaneous tuberculous abscesses in a dermatomyositis patient without pulmonary tuberculosis: a case report and literature review.

Gao W1, Zeng Y2, Chen W2
1Department of Tuberculosis, the second hospital of Nanjing, Nanjing University of Chinese Medicine, 1-1 Zhongfu Road, Gulou district, Nanjing, 210003, Jiangsu province, China.
2Department of Tuberculosis, the second hospital of Nanjing, Nanjing University of Chinese Medicine, 1-1 Zhongfu Road, Gulou district, Nanjing, 210003, Jiangsu province, China. njyy002@njucm.edu.cn.

KEYWORDS: Abscess; Dermatomyositis; Limb; Subcutaneous; Tuberculous
PMID: 32532200 PMCID:PMC7291664 DOI: 10.1186/s12879-020-05137-w Free PMC Article
110. *Autoimmun Rev.*, 2020 Jun 11:102586. doi: 10.1016/j.autrev.2020.102586. [Epub ahead of print]

Immune checkpoint inhibitor-induced myositis, the earliest and most lethal complication among rheumatic and musculoskeletal toxicities.

Allenbach Y¹, Anquetil C², Manouchehrí A³, Benveniste O⁴, Lebrun-Vignes B⁵, Spano JP⁶, Ederhy S⁵, Klatzmann D⁴, Rosenzweig M⁵, Fautrel B¹, Cadranel J⁵, Johnson DB², Moslehi J³, Salem JE¹⁰.

1Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMR974 Paris, France. Electronic address: yves.allenbach@aphp.fr.

2Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMR974 Paris, France.

3Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.

4Department of Internal Medicine and Clinical Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Bicêtre, Université Paris Sud, Inserm, CEA, UMR 1184 Le Kremlin-Bicêtre, France.

5Regional Pharmacovigilance Centre, Department of Pharmacology, Sorbonne Université, INSERM CIC Paris-Est, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France.

6Oncology department, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.

7Department of Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy (i2B), Sorbonne Université, Pitié-Salpêtrière University Hospital, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.

8Department of Rheumatology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Inserm UMR 1136, Pierre Louis Institute of Health and Épidémiologie Paris, France.

9Department of Rheumatology, Constitutive Center on Rare Pulmonary Diseases, Sorbonne Université, Tenon University Hospital, Paris, France.

10Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Regional Pharmacovigilance Centre, Department of Pharmacology, Sorbonne Université, INSERM CIC Paris-Est, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France. Electronic address: joe-elle.salem@aphp.fr.

KEYWORDS: Adverse drug reactions; Immune checkpoint inhibitors; Myocarditis; Myositis; Pharmacology; Rheumatology

PMID: 32535094 DOI: 10.1016/j.autrev.2020.102586

111. *Autoimmun Rev.*, 2020 Jun 11:102595. doi: 10.1016/j.autrev.2020.102595. [Epub ahead of print]

Rheumatic immune-related adverse events associated with cancer immunotherapy: A nationwide multi-center cohort.

Roberts J¹, Ennis D², Hudson M³, Ye C⁴, Saltman A⁵, Rottapel R⁶, Pope J⁷, Hoa S⁷, Tisseverasinghe A⁸, Fifi-Mah A⁹, Maltez N¹⁰, Jamal S¹¹.

1Division of Rheumatology, Dalhousie University, Halifax, Canada. Electronic address: janet3.roberts@nshealth.ca.

2Division of Rheumatology, University of British Columbia, Vancouver, Canada.

3McGill University, Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, Canada.

4Division of Rheumatology, University of Alberta, Edmonton, Canada.

5University of Toronto, Toronto, Canada.

6University of Western Ontario, London, UK.

7Division of Rheumatology, University of Montreal, Montreal, Canada.

8University of Manitoba, Winnipeg, Canada.

9University of Calgary, Calgary, Canada.

10University of Ottawa, Ottawa, Canada.

11Division of Rheumatology, University of British Columbia, Vancouver, British Columbia, Canada.

PMID: 32535092 DOI: 10.1016/j.autrev.2020.102595

112. *J Nephrol.*, 2020 Jun 11. doi: 10.1007/s40620-020-00772-7. [Epub ahead of print]

Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases).

Ponticelli C¹, Doria A², Moroni G³.

1Division of Nephrology, IRCCS Ospedale Maggiore Milano, Via Ampere 126, 20131, Milano, Italy.

2Division of Rheumatology, Department of Medicine, DIMED, University of Padua, Padua, Italy.

3Division of Nephrology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico Milano, Milano, Italy.

KEYWORDS: Lupus nephritis; Malignant hypertension; Myoglobinuria; Polymyositis; Scleroderma; Sjögren syndrome

PMID: 32529559 DOI: 10.1007/s40620-020-00772-7
113. PLoS One. 2020 Jun 11;15(6):e0234523. doi: 10.1371/journal.pone.0234523. eCollection 2020.
Evaluation of usefulness in surfactant protein D as a predictor of mortality in myositis-associated interstitial lung disease.
Kaieda S¹, Gono T², Masui K³, Nishina N⁴, Sato S⁵, Kuvana M⁶; A Multicenter Retrospective Cohort of Japanese Patients with Myositis-associated ILD (JAMI) investigators.
1Department of Medicine, Division of Respirology, Neurology, and Rheumatology, Kurume University School of Medicine, Fukuoka, Japan.
2Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan.
3Department of Anaesthesiology, Showa University School of Medicine, Tokyo, Japan.
4Department of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
5Department of Rheumatology, Department of Internal Medicine, Tokai University School of Medicine, Tokyo, Kanagawa, Japan.
PMID: 32525903 PMCID: PMC7289364 DOI:10.1371/journal.pone.0234523 Free PMC Article

114. BMC Rheumatol. 2020 Jun 10;4:25. doi: 10.1186/s41927-020-00125-8. eCollection 2020.
MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies.
Parkes JE¹,², Thoma A³, Lightfoot AP³, Dav P⁴, Chiny H⁵,⁶, Lamb JA¹.
1Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
2Stopford Building, University of Manchester, Oxford Road M13 9PT, Manchester, UK.
3Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.
4Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
5Division of Evolution & Genomic Sciences, University of Manchester, Manchester, UK.
6Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
7National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
8Department of Rheumatology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.
KEYWORDS: Dermatomyositis; Idiopathic inflammatory myopathies; Polymyositis; RNA sequencing; microRNA
PMID: 32529172 PMCID: PMC7285612 DOI:10.1186/s41927-020-00125-8 Free PMC Article

115. Pediatr Dermatol. 2020 Jun 10. doi: 10.1111/pde.14243. [Epub ahead of print]
Anti-Ku antibody-positive systemic sclerosis-polymyositis overlap syndrome in an adolescent.
Loo RJ¹, Nocton JJ², Harmelink MM³, Chiu Y⁴.
1Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
2Department of Pediatrics (Rheumatology), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
3Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
4Departments of Dermatology (Pediatric Dermatology) and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
KEYWORDS: anti-Ku antibody; myositis; overlap syndrome; polymyositis; scleroderma
PMID: 32519400 DOI:10.1111/pde.14243

116. Ann Dermatol Venereol. 2020 Jun 9. pii: S0151-9638(20)30236-2. [Epub ahead of print]
[Juvenile dermatomyositis: A series of 22 cases].
[Article in French]
Moegle C¹, Lipsker D².
1Service de dermatologie, hôpital universitaire de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France.
2Service de dermatologie, hôpital universitaire de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France. Electronic address: dan.lipsker@chru-strasbourg.fr.
KEYWORDS: Dermatomyosite; Dermatomyosite juvénile; Dermatomyositis; Gottron's sign; Juvenile dermatomyositis; Myosite; Myositis; Signe de Gottron
PMID: 32532518 DOI:10.1016/j.annder.2020.04.016
117. *J Dermatolog Treat.*, 2020 Jun 9:1-7. doi: 10.1080/09546634.2020.1773385. [Epub ahead of print]

Off-label studies on ruxolitinib in dermatology: a review.
Wu J1, Smogorzewski J2.

1David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. 2Division of Dermatology, Harbor-UCLA Medical Center, Torrance, CA, USA.

KEYWORDS: Ruxolitinib; alopecia; off-label; psoriasis
PMID: 32515635
DOI: 10.1080/09546634.2020.1773385

118. *World J Clin Cases.*, 2020 Jun 6;8(11):2339-2344. doi: 10.12998/wjcc.v8.i11.2339.

Macrophage activation syndrome as a complication of dermatomyositis: A case report.
Zhu DX1, Qiao JJ1, Fang H2.

1Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China. 2Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.

KEYWORDS: Case report; Dermatomyositis; Hyperferritinemia; Inflammatory; Macrophage activation syndrome; Systemic juvenile idiopathic arthritis
PMID: 32548165
PMCID: PMC7281037
DOI: 10.12998/wjcc.v8.i11.2339 Free PMC Article

119. *Semin Arthritis Rheum.*, 2020 Jun 1;50(4):776-790. doi: 10.1016/j.semarthrit.2020.03.007. [Epub ahead of print]

Recommendations for the treatment of anti-melanoma differentiation-associated gene 5-positive dermatomyositis-associated rapidly progressive interstitial lung disease.
Romero-Bueno F1, Díaz Del Campo E2, Trailler-Arguás E3, Ruiz-Rodríguez JC4, Castellvi J5, Rodríguez-Nieto MJ6, Martínez-Becerra MJ7, Sanchez-Pernaute O8, Pinal-Fernandez I9, Solanich X9, Gono T10, Gonzalez-Gay MA11, Plaona MN12, Selva-O’Callaghan A13, MEDRAS5 (Spanish MDA5 Register) group (listed contributors at the end of the article).

1Rheumatology Dept. Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain. 2Research Unit, Spanish Society of Rheumatology, Madrid, Spain. 3Rheumatology Unit. Vall d'Hebron University Hospital, GEAS group, Barcelona, Spain. 4Intensive Care Department. Vall d'Hebron University Hospital, Shock, Organ Dysfunction, and Resuscitation Research Group, Vall d'Hebron Research Institute, Barcelona, Spain. 5Rheumatology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, Spain. 6Pneumology Dept. Fundación Jiménez Díaz University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. 7Immunology Dept. Fundación Jiménez Díaz University Hospital, Madrid, Spain. 8National Institute of Arthritis and Musculoskeletal and Skin Diseases; NIH, Bethesda; Johns Hopkins University School of Medicine, Baltimore, MD, USA. 9Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitala de Llobregat, Barcelona, Spain. 10Nippon Medical School Graduate School of Medicine, Department of Allergy and Rheumatology, Tokyo, Japan. 11Epidemiology and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Div., Hosp. Universitario Marqués de Valdecilla, IDIVAL and University of Cantabria, Santander; and Univ. of the Witwatersrand, South Africa. 12Research Unit, Spanish Society of Rheumatology, Madrid, Spain. CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain. 13Systemic Autoimmune Diseases Unit, Medicine Dept. Vall d'Hebron University Hospital, GEAS group. Universitat Autònoma de Barcelona, Barcelona, Spain. Electronic address: aselva@vhebron.net.

KEYWORDS: Basiliximab; Cyclophosphamide; Cyclosporine; Dermatomyositis; Extracorporeal membrane oxygenation; Glucocorticoid; Intensive care; Intravenous immunoglobulins; Lung transplant; Mycophenolate; Plasmapheresis; Polymyxin B hemoperfusion; Rapidly progressive interstitial lung disease; Review; Rituximab; Tacrolimus; Tofacitinib; systematic
PMID: 32534273
DOI: 10.1016/j.semarthrit.2020.03.007
Elsevier Full Text Article

120. *Case Rep Rheumatol.*, 2020 May 28;2020:4073879. doi: 10.1155/2020/4073879. eCollection 2020.

Abatacept in the Treatment of Juvenile Dermatomyositis-Associated Calcifications in a 16-Year-Old Girl.
Sukumaran S1, Vijayan V2.

1Division of Rheumatology, Department of Pediatrics, Valley Children's Hospital, Madera, CA, USA. 2Division of Infectious Diseases, Department of Pediatrics, Valley Children's Hospital, Madera, CA, USA.

PMID: 32550037
PMCID: PMC7275234
DOI: 10.1155/2020/4073879 Free PMC Article
121. *Case Rep Dermatol.* 2020 May 5;12(2):92-97. doi: 10.1159/000507504. eCollection 2020 May-Aug. A Case of Dermatomyositis Coexisting with Both Anti-Mi-2 and Anti-NXP-2 Antibodies. Ito M1, Moriya C1, Matsuyama K1, Shu E1, Hamaguchi Y2, Seishima M3. 1Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan. 2Department of Molecular Pathology of Skin, Kanazawa University Graduate School of Medicine, Kanazawa, Japan. KEYWORDS: Anti-Mi-2 antibody; Anti-NXP-2 antibody; Dermatomyositis; Myositis-specific autoantibody. PMID: 32508616 PMCID: PMC7250387 DOI:10.1159/000507504 Free PMC Article

122. *Cureus.* 2020 May 5;12(5):e7963. doi: 10.7759/cureus.7963. Statin-Induced Immune-Mediated Necrotizing Myopathy: An Increasingly Recognized Inflammatory Myopathy. Stroie OP1, Boster J2, Surry L3. 1Internal Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA. 2Internal Medicine, Brooke Army Medical Center, Fort Sam Houston, San Antonio, USA. 3Internal Medicine, San Antonio Uniformed Services Health Education Consortium, San Antonio, USA. KEYWORDS: anti-hmgcr; immune-mediated; myositis; necrotizing myopathy. PMID: 32523820 PMCID: PMC7273436 DOI:10.7759/cureus.7963 Free PMC Article

123. *Cureus.* 2020 May 5;12(5):e7962. doi: 10.7759/cureus.7962. Anti-Signal Recognition Particle Antibody-Associated Severe Interstitial Lung Disease Requiring Lung Transplantation. Qureshi A1, Brown D2, Brent L3. 1Internal Medicine, Reading Hospital - Tower Health, West Reading, USA. 2Pathology and Laboratory Medicine, Lehigh Valley Health Network, Allentown, USA. 3Rheumatology, Temple University Hospital, Philadelphia, USA. KEYWORDS: anti-signal recognition particle; interstitial lung disease; lung transplantation; myopathy. PMID: 32523819 PMCID: PMC7273426 DOI:10.7759/cureus.7962 Free PMC Article

124. *AACE Clin Case Rep.* 2020 Jan 22;6(2):e86-e89. doi: 10.4158/ACCR-2019-0547. eCollection 2020 Mar-Apr. A Rare Case of Statin-Induced Necrotizing Autoimmune Myopathy. Shuster S, Awad S. PMID: 32524017 PMCID: PMC7282149 DOI:10.4158/ACCR-2019-0547 Free PMC Article

125. *Contemp Oncol (Pozn).* 2020;24(1):75-78. doi: 10.5114/wo.2020.94727. Epub 2020 Mar 30. The cancer immunotherapy environment may confound the utility of anti-TIF-1γ in differentiating between paraneoplastic and treatment-related dermatomyositis. Report of a case and review of the literature. Zarkavelis G1, Mauri D1, Karassa F1, Eleftherios K1, Pentheroudakis G1, Pappadaki A1, Mavroeidis L1, Ntellas P1, Gkouras S1, Gazouli I1. 1Department of Medical Oncology, University Hospital of Ioannina, Greece. KEYWORDS: anti-TIF-1γ; autoimmune; dermatomyositis; immunotherapy; ipilimumab; nivolumab; paraneoplastic; urothelial cancer. PMID: 32514241 PMCID:PMC7265958 DOI:10.5114/wo.2020.94727 Free PMC Article

Maladie de Pompe – Pompe disease

126. *J Inherit Metab Dis.* 2020 Jun 9. doi: 10.1002/jimd.12272. [Epub ahead of print] Long-term benefit of enzyme replacement therapy with alglucosidase alfa in adults with Pompe disease: prospective analysis from the French Pompe Registry. Semplicini C1,2, De Antonio M1, Taouagh N3, Béhin A4, Bouhour F1, Echaniz-Laguna A5, Magot A6, Nadaj-Pakleza A7, Orlikowski D8, Sacconi S9, Salort-Campana E10, Solé G11, Tard C12, Zagnoli F13, Jean-Yves H3, Hamroun D14, Laforêt P16;
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

French Pompe Study Group, Attarian S10, Aubé-Nathier AC16, Arrassi A3, Bassez G3, Bedat-Millet AL17, Bouibede F3, Boyer FC19, Caillaud C20, Canal A3, Carlier RV3, Chanson JB7, Chapron F21, Cintas P22, Deibener-Kaminsky J23, Demurger F24, Desnuelle C9, Durieu 25, Eyraud B3, Feasson L26, Fournier M21, Froissart R7, Furby A26, Garcia PY28, Germain DP29, Ghobab K30, Morales RJ31, Krim M32, Labauge P33, Lacour A26, Lagrange E33, Lefèvre C15, Leguy-Seguin V34, Leonard-Louis S35, Magy L36, Massie A37, Michaud M38, Minot-Myhie MC39, Nicolas G19, Nollet S38, Not A39, Noury JB40, Ollivier G3, Pérignon Y41, Perez T42, Perricini B43, Piraud M3, Petitot E45, Pouget J4, Pratine J4, Prigent H4, Renard D44, Spinazzi M45, Stojkovic T36, Taithe E4, Trifonov V46, Vincent D47.

1Department of Neurosciences, University of Padova, Azienda Ospedaliera di Padova, Padova, Italy.
2Centre de référence des maladies neuromusculaires Nord-Est-Ile de France, Hôpital La Platié-Salpêtrière, AP-HP, Paris, France.
3Institut de Myologie, Hôpital La Pitié-Salpêtrière, AP-HP, Paris, France.
4Service ENMG et pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.
5Département de Neurologie, CHU Bicêtre, Le Kremlin Bicêtre, Cedex.
6Centre de Référence des maladies neuromusculaires Nantes-Angers, Service des Explorations Fonctionnelles, CHU, Nantes, France.
7Department of Neurology, University Hospital Strasbourg, Strasbourg, France.
8Pôle de ventilation à domicile, AP-HP, Hôpital Raymond Poincaré, 92380, Garches, France; CIC 1429, INSERM, AP-HP, Hôpital Raymond Poincaré, Garches, France.
9Centre de référence des Maladies Neuromusculaires, Hôpital Archet, France. CNRS UMR7277, INSERM U1091, IBV - Institute of Biology Valrose, UNS Université Nice Sophia Antipolis, Faculté de Médecine, Parc Valrose, Nice, CEDEX, France.
10Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, France.
11AOAC (Atlantique-Occitanie-Caraïbe) Reference Center for Neuromuscular Disorders, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, place Amélie Raba-Léon, Bordeaux Cedex, France.
12CHU de Lille, Inserm U1171, Neurology Department, Reference Center for Neuromuscular Disorders, Lille, France.
13CHR U Cava Blanche, boulevard Tanguy-Pigent, Brest, France.
14Direction de la Recherche et de l'Innovation, CHRU de Montpellier, Hôpital La Colombière, Montpellier, France.
15Centre de référence des maladies neuromusculaires Nord-Est-Ile de France, Service de Neurologie, CHU Raymond Poincaré, AP-HP, Garches, France. INSERM U1179, END-ICAP, équipe Biothérapies des Maladies du Système Neuromusculaire, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.
16Centre de référence des maladies neuromusculaires Nantes/Angers, Service de neurologie, CHU d'Angers, Angers, France.
17Centre de compétence de pathologie neuromusculaire, CHU Charles Nicolle, Rouen, France.
18Service de Médecine Interne, Hôpital Porte Madeleine, Orléans, France.
19Service de médecine physique et de réadaptation, CHU de Reims, France.
20Laboratoire de Biochimie Météabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris, France.
21Centre de compétence des maladies neuromusculaires, CHU de Caen, France.
22Centre STA et maladies neuromusculaires, CHU de Toulouse-Rangueil, Toulouse, France.
23Centre de référence des maladies héréditaires du métabolisme de Nancy.
24Genétique médicale, centre hospitalier Bretagne-Atlantique, Vannes, France.
25Service de médecine interne, centre hospitalier Lyon Sud, Pierre-Bénit, France.
26Centre de références des maladies neuromusculaires rares Rhône-Alpes, Hôpital Nord, CHU de Saint-Etienne, France.
27Centre de biologie et pathologie Est, hospices civils de Lyon, Bron, France.
28Neurology Department, Compiègne Hospital, Compiègne, France.
29Service de génétique médicale, Hôpital Raymond Poincaré, Garches, France.
30Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges.
31Clinique du motoneurone et pathologies neuromusculaires, CHRU de Montpellier, Montpellier, France.
32Service de neuropathie, Hôpital F. Mitterrand, 4 bd Hauterive, Pau, France.
33Pôle pédopsychiatrie, neurologie et rééducation neurologique, clinique de neurologie, CHU de Grenoble, Grenoble, France.
34Service de Médecine Interne et Immunologie Clinique, CHU Bocage Central, Dijon, France.
35Service de Médecine Interne, CHU Hôtel Dieu, Nantes, France.
36Department of Neurology, Central's Hospital, Nancy, France.
37Service neurologie, CHU de Rennes, Rennes, France.
38Service de Neurologie-Électrophysiologie clinique, University Hospital (CHRU), Besançon, France.
39CHU de Lille-Hôpital Calmette, Lille, France.
40Centre de référence maladies neuromusculaires de la région Rhône-Alpes, hôpital de la Croix-Rousse, Lyon, France.
41Centre de compétence des maladies neuromusculaires, CHRU de Tours, Tours, France.
42Département de physiologie, explorations fonctionnelles, unité de physiologie respiratoire, hôpital Raymond-Poincaré, AP-HP, Garches, France.
43CHU de Nîmes, Service de Neurologie, Nîmes, France.
44Centre de référence des maladies neuromusculaires Nantes-Angers, Hôtel Dieu, Nantes, France.
45Service de neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France.
127. J Neurol. 2020 Jun 10. doi: 10.1007/s00415-020-09936-8. [Epub ahead of print]
Respiratory function during enzyme replacement therapy in late-onset Pompe disease: longitudinal course, prognostic factors, and the impact of time from diagnosis to treatment start.
Stockton DW1, Kishnani P2, van der Ploeg A3, Lierena J Jr4, Boenert M5, Roberts M6, Byrne BJ7, Araujo R8, Maruti SS8, Thibault N8, Verhulst K9, Berger K10.
1Division of Genetic, Genomic and Metabolic Disorders, Departments of Pediatrics and Internal Medicine, Wayne State University and Children's Hospital of Michigan, Detroit, MI, USA. dstockton@med.wayne.edu.
2Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
3Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
4Departamento de Genética Médica, Instituto Fernandes Figueira (FIOCRUZ), Rio de Janeiro RJ, Brazil.
5Department of Neurology, University Hospital of Münster, Münster, Germany.
6Salford Royal NHS Foundation Trust, Salford, UK.
7Department of Pediatrics, University of Florida, Gainesville, FL, USA.
8Sanofi Genzyme, Cambridge, MA, USA.
9Sanofi Genzyme, Amsterdam, The Netherlands.
10Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, and the André Courmand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, NY, USA.
KEYWORDS: Alglucosidase alfa; Enzyme replacement therapy; Late-onset Pompe disease; Registry; Respiratory function
PMID: 32524257 DOI: 10.1007/s00415-020-09936-8

128. Neurology. 2020 Jun 9. pii: 10.1212/WNL.0000000000009979. [Epub ahead of print]
Novel approaches to quantify CNS involvement in children with Pompe disease.
Korlimarla A1, Spindiglozzi GA2, Crisp R3, Herbert M4, Chen S5, Malinzak M6, Stefanescu M7, Austin SL8, Cope H1, Zimmerman K9, Jones H2, Proenzenzle JM6, Kishnani PS7.
1Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
2Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
3Department of Pediatric Neurology, University of Kentucky Medical Center, Lexington, KY.
4Department of Neuroradiology, Duke University Medical Center, Durham, NC.
5Duke Clinical Research Institute, Durham, NC, USA.
6Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
priya.kishnani@duke.edu.
PMID: 32518148 DOI: 10.1212/WNL.0000000000009979

129. Mol Ther. 2020 May 30. pii: S1525-0016(20)30289-6. doi: 10.1016/j.ymthe.2020.05.025. [Epub ahead of print]
Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase.
Cagin U1, Puzzo F2, Gomez MJ3, Moya-Nilges M4, Sellier P5, Abad C6, Van Wittenbergha L1, Daniele N1, Guerchet N1, Djata B1, Collaud F1, Charles S1, Sola MS1, Boyer O7, Krense-Locker J8, Ronzitti G7, Coella P8, Mingozzi F6.
1INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France.
2INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France; Sorbonne Université, Paris, France.
3Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain.
4Pasteur Institute, Rue du Dr. Roux, 75015 Paris, France.
5Université de Rouen Normandie-IRIB, 76183 Rouen, France.
6INTEGRARE, Genethon, INSERM, Université Paris-Saclay, 91002 Evry, France; Sorbonne Université, Paris, France; Spark Therapeutics, Philadelphia, PA 19103, USA. Electronic address: federico.mingozzi@sparktx.com.
KEYWORDS: AAV; Pompe disease; Pompe mouse; advanced disease; gene therapy; liver gene transfer; secretable GAA; transcriptomics
PMID: 32526204 DOI: 10.1016/j.ymthe.2020.05.025 Free full text
130. Front Immunol. 2020 May 20;11:969. doi: 10.3389/fimmu.2020.00969. eCollection 2020. Development of ImmTOR Tolerogenic Nanoparticles for the Mitigation of Anti-drug Antibodies. Kishimoto TK1.
1Selecta Biosciences, Watertown, MA, United States.
KEYWORDS: anti-drug antibodies; immune tolerance; nanoparticles; rapamycin; regulatory T cells
PMID: 32508839 PMCID: PMC7251066 DOI: 10.3389/fimmu.2020.00969 Free PMC Article

131. Int J Environ Res Public Health. 2020 Jun 17(12). pii: E4334. doi: 10.3390/ijerph17124334. Sex Differences and the Influence of an Active Lifestyle on Adiposity in Patients with McArdle Disease. Rodriguez-Gómez I1,2, Santalla A1, Diego-Bermejo J3, Munguía-Izquierdo D1,2, Alegre LM1,2, Nogales-Gadea G3,4, Arenas J5,6, Martín MA4,5, Línea A2,3, Ara I1,2.
1GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain. 2CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain. 3Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, 41013 Sevilla, Spain. 4Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain. 5Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol I Campus Can Ruti, Universitat Autònoma de Barcelona, 08041 Badalona, Spain. 6CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain. 7School of Research and Doctorate Studies, Universidad Europea de Madrid, 28670 Madrid, Spain.
KEYWORDS: DXA; exercise; fat mass; inactivity; obesity; physical activity
PMID: 32560448 DOI: 10.3390/ijerph17124334 Free full text

132. Case Rep Med. 2020 May 27;2020:7904190. doi: 10.1155/2020/7904190. eCollection 2020. Lipin-1 Deficiency-Associated Recurrent Rhabdomyolysis and Exercise-Induced Myalgia Persisting into Adulthood: A Case Report and Review of Literature. Indika NLR1, Vidanapathirana DM2, Jasinge E3, Waduge R4, Shyamali NLA5, Perera PPR1.
1Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka. 2Department of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka. 3Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka. 4Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka. 5Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
PMID: 32549891 PMCID: PMC7275236 DOI: 10.1155/2020/7904190 Free PMC Article

133. GeneReviews® [Internet]. 2020 Jun 18. Multiple Acyl-CoA Dehydrogenase Deficiency. Prasun P1.
MYOBASE link: http://www.myobase.org/index.php?lvl=notice_display&id=70398
PMID: 32550677 Free Books & Documents Free full text

134. Eur J Neurol. 2020 Jun 17. doi: 10.1111/ene.14402. [Epub ahead of print] Adult-onset Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCADD). Fatehi F1, Okhovat AA1, Nillpour Y2,3, Mroczek M4, Straub V5, Topf A1, Palibrik A6, Peric S2, Rakoczevic Stojanovic V5, Najimbadi H1, Nafissi S1.
1Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. 2Pediatric Pathology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 3Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 4John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. 5Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
6Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

KEYWORDS: Inherited metabolic disorders; Lipid Storage Myopathy; Metabolic Myopathy; Neuromuscular diseases; VLCAD Deficiency; Very Long-Chain Acyl-CoA Dehydrogenase

PMID: 32558070 DOI: 10.1111/ene.14402

135. *Saudi Med J*. 2020 Jun;41(6):590-596. doi: 10.15537/smj.2020.6.25131.

Molecular and clinical characteristics of very-long-chain acyl-CoA dehydrogenase deficiency: A single-center experience in Saudi Arabia.

Alhashem A1, Mohamed S, Abdelraheem M, AlGufaydi B, Al-Aqeel A.

1Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia. E-mail. aalhashem@psmmc.med.sa.

PMID: 32518924 DOI: 10.15537/smj.2020.6.25131 Free full text

136. *BMC Neurol*. 2020 Jun 17;20(1):247. doi: 10.1186/s12883-020-01818-w.

Late-onset MELAS syndrome with mtDNA 14453G→A mutation masquerading as an acute encephalitis: a case report.

Yokota Y1, Hara M2, Akimoto T1, Mizoguchi T1, Goto Y1,2,3,4, Nishino I5, Kamei S1,6, Nakaima H1.

1Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicyo, Itabashi-ku, Tokyo, 173-8610, Japan.
2Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicyo, Itabashi-ku, Tokyo, 173-8610, Japan. hara.makoto@nihon-u.ac.jp.
3Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
4Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
5Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
6Center for Neuro-infection, Department of Neurology, Ageo Central General Hospital, Saitama, Japan.

KEYWORDS: Encephalitis; Late-onset; MELAS; ND6 gene

PMID: 32552896 PMCID: PMC7298965 DOI: 10.1186/s12883-020-01818-w Free PMC Article

137. *Medicine (Baltimore)*. 2020 Jun 12;99(24):e20310. doi: 10.1097/MD.0000000000020310.

Mitochondrial DNA 10158T>C mutation in a patient with mitochondrial encephalomyopathy with lactic acidosis, and stroke-like episodes syndrome: A case-report and literature review (CARE-complaint).

Wang S1, Song T, Wang S.

1Department of neurological rehabilitation, The Third People's Hospital of Qingdao.

PMID: 32541454 DOI: 10.1097/MD.0000000000020310 Free full text

138. *J Neuromuscul Dis*. 2020 Jun 6. doi: 10.3233/JND-200513. [Epub ahead of print]

Ganglionopathies Associated with MERRF Syndrome: An Original Report.

Michaud M1, Stoiljkovic T2, Maisonobe T3, Behin A2, Rucheton B4, Léonard-Louis S2, Eymard B2, Laforêt P5,6.

1Department of Neurology, Central Hospital, Neuromuscular Reference Center Nord/Est/Ile de France, Nancy, France.
2Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
3Department of Neurophysiology and Neuropathology, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
4Department of Metabolic Biochemistry, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
5Department of Neurology, Neuromuscular Reference Center Nord/Est/Ile de France, Raymond-Poincaré Teaching Hospital, AP-HP, Garches, Paris Saclay University, France.
6INSERM U1179, END-ICAP Versailles Saint-Quentin-en-Yvelines University.

KEYWORDS: MERRF; ataxia; dorsal root ganglia; ganglionopathy; myopathy

PMID: 32538863 DOI: 10.3233/JND-200513
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

139. Front Physiol. 2020 May 21;11:349. doi: 10.3389/fphys.2020.00349. eCollection 2020. Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy. Jeppesen TD1.

1Copenhagen Neuromuscular Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

KEYWORDS: mitochondrial DNA; mitochondrial myopathies; oxidative capacity; training; treatment

PMID: 32508662 PMCID: PMC7253634 DOI:10.3389/fphys.2020.00349 Free PMC Article

140. Hum Mutat. 2020 Jun 9. doi: 10.1002/humu.24062. [Epub ahead of print]

First Clinical and Myopathological Description of a Myofibrillar Myopathy with Congenital Onset and Homozygous Mutation in FLNC.

Köbel H1, Roos A1, van der Ven PFM1, Evangelista T1, Nolte K4, Johnson K5, Töpf A6, Wilson M6, Kress W1, Sickmann A9, Straub V6, Kollipara L5, Weis J5, Fürst DO6, Schara U9.

1Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany.
2Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany.
3Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Neuromuscular Paris, France.
4Institute of Neuropathology, RWTH Aachen University Hospital, Germany.
5The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon-Tyne, United Kingdom.
6Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA.
7Program in Medical and Population Genetics (M.L., D.M.), Broad Institute of Harvard and MIT, Cambridge, MA.
8Department of Human Genetics, University of Würzburg, Germany.
9Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.
10Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom.
11Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.

KEYWORDS: FLNC ; Filamin C; congenital myopathy; myofibrillar myopathy; proteomic signature; recessive inheritance

PMID: 32516863 DOI:10.1002/humu.24062

141. Case Rep Cardiol. 2020 May 13;2020:5128069. doi: 10.1155/2020/5128069. eCollection 2020. Multisystem Myotilinopathy, including Myopathy and Left Ventricular Noncompaction, due to the MYOT Variant c.179C>T.

Finsterer J1, Stöllberger C2, Hasun M2, Riedhammer K3, Wagner M3.

1Krankenanstalt Rudolfstiftung, Messeri Institute, Vienna, Austria.
2Department of Cardiology, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom.
3Department of Human Genetics, Germany.

PMID: 32509353 PMCID:PMC7244945 DOI:10.1155/2020/5128069 Free PMC Article

142. Turk J Pediatr. 2020 Jun;62(3):450-460. doi: 10.24953/turkjped.2020.03.012. Congenital myotonia: a review of twenty cases and a new splice-site mutation in the CLCN1 gene.

Özgün N1, Taşlidere H2.

1Department of Pediatrics, Division of Pediatric Neurology, İstinye University School of Medicine, Istanbul.
2Department of Medical Genetics, University of Health Sciences, Haseki Training and Research Hospital, Istanbul, Turkey.

KEYWORDS: Becker disease; CLCN1 gene; Congenital myotonia; Thomsen disease

PMID: 32558419 DOI:10.24953/turkjped.2020.03.012 Free full text

143. Hum Mol Genet. 2020 Jun 16. pii: ddaa116. doi: 10.1093/hmg/ddaa116. [Epub ahead of print]

Effect of salbutamol on neuromuscular junction function and structure in a mouse model of DOK7 congenital myasthenia.

Webster RG3, Vanhaesebrouck AE1, Maxwell SE1, Cossins JA1, Liu W1, Ueta R2, Yamanashi Y2, Beeson DMW1.

Myotonies congénitales – Congenital myotonia

Syndromes myasthéniques congénitaux – Congenital myasthenic syndrome
1Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
2Division of Genetics, Department of Cancer Biology, the Institute of Medical Science, the University of Tokyo, Tokyo, 135-8550, Japan.

PMID: 32543656 DOI:10.1093/hmg/ddaa116

144. Int J Mol Sci. 2020 Jun 9;21(11). pii: E4125. doi: 10.3390/ijms21114125.
Sonic Hedgehog-Gli1 Signaling and Cellular Retinoic Acid Binding Protein 1 Gene Regulation in Motor Neuron Differentiation and Diseases.
Lin YL1, LinYW1, Nhieu J1, Zhang X1, Wei LN1.
1Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.

KEYWORDS: ALS; CRABP1; Gli; SMA; chromatin remodeling; motor neuron; retinoic acid; sonic hedgehog
PMID: 32527063 DOI:10.3390/ijms21114125 Free full text

145. Front Mol Neurosci. 2020 May 25;13:74. doi: 10.3389/fnmol.2020.00074. eCollection 2020.
Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease.
Falgairolle M1, O'Donovan MJ1.
1Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.

KEYWORDS: amyotrophic lateral sclerosis; central pattern generator; locomotion; recurrent collaterals; spinal muscular atrophy
PMID: 32523513 PMCID:PMC7261878 DOI:10.3389/fnmol.2020.00074 Free PMC Article

146. J Neuromuscul Dis. 2020 Jun 6. doi: 10.3233/JND-190457. [Epub ahead of print]
Lower Extremity Muscle Involvement in the Intermediate and Bethlem Myopathy Forms of COL6-Related Dystrophy and Duchenne Muscular Dystrophy: A Cross-Sectional Study.
Batra A1, Lott DJ1, Willcocks R1, Forbes SC1, Trippett W1, Dastgir J2, Yun P2, Reghan Foley A2, Bönnemann CG2, Vandenborne K1, Walter GA3.
1Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.
2Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
3Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA.

KEYWORDS: Collagen VI-related dystrophies; duchenne muscular dystrophy; force production; magnetic resonance imaging
PMID: 32538860 DOI:10.3233/JND-190457

147. J Neuromuscul Dis. 2020 Jun 12. doi: 10.3233/JND-200497. [Epub ahead of print]
Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells.
Sato T1,2.
1Department of Anatomy, Fujita Health University, Toyoake, Japan.
2AMED-CREST, AMED, Otemachi, Chiyoda, Tokyo, Japan.

PMID: 32538862 DOI:10.3233/JND-200497

148. J Mol Diagn. 2020 Jun 15. pii: S1525-1578(20)30358-5. [Epub ahead of print]
Clinical service delivery of non-invasive prenatal diagnosis (NIPD) by relative haplotype dosage (RHDO) for single gene disorders.
Young E1, Bowns B2, Gerrish A2, Parks M2, Court S2, Clokie S2, Mashayamombe-Wolfgarten C2, Hewitt J2, Williams D2, Cole T2, Allen S2.
1West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, B15 2TG. Electronic address: Elizabeth.Young6@nhs.net.
149. Muscle Nerve, 2020 Jun 8. doi: 10.1002/mus.26996. [Epub ahead of print]
Myopathies featuring early or prominent dysphagia.
Triplet JD1, Pinto MV1, Hosfield EA2, Milone M1, Liewluck T1.
1Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota.
2Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, Minnesota.
KEYWORDS: dysphagia; inclusion body myositis; muscular dystrophy; myopathy; myositis; videofluoroscopy
PMID: 32553884 DOI:10.1016/j.moldx.2020.06.001

150. Neurosci Lett, 2020 Jun 10:135155. doi: 10.1016/j.neulet.2020.135155. [Epub ahead of print]
Collagens at the vertebrate neuromuscular junction, from structure to pathologies.
Legay C1, Dobbertin A2.
1SPPIN CNRS UMR 8003, Université de Paris, 45 rue des Saints-Pères, Paris, 75006, France. Electronic address: claire.legay@parisdescartes.fr.
2SPPIN CNRS UMR 8003, Université de Paris, 45 rue des Saints-Pères, Paris, 75006, France.
KEYWORDS: Collagens; congenital myasthenic syndromes; integrins; junction; myasthenia gravis; neuromuscular; perlecan
PMID: 32534096 DOI:10.1016/j.neulet.2020.135155

151. J Electromyogr Kinesiol, 2020 Jun 9;53:102437. doi: 10.1016/j.jelekin.2020.102437. [Epub ahead of print]
Lambert-Eaton myasthenia syndrome: specified description of a response pattern to low-frequency repetitive nerve stimulation.
Zhou X1, Wang Z1, Zhu Y2, Zhu D1, Xie C1, Guan Y3.
1Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China.
2Department of Neurology, Shanghai International Medical Center, Shanghai, China.
3Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China. Electronic address: yangtaiguan@sina.com.
KEYWORDS: Electrophysiology; Lambert-Eaton myasthenia syndrome; Low-frequency decrement; Myasthenia gravis; Neuromuscular disorder; Repetitive nerve stimulation
PMID: 32554206 DOI:10.1016/j.jelekin.2020.102437

152. J Neuropathol Exp Neurol, 2020 Jul 1;79(7):719-733. doi: 10.1093/jnen/nlaa046.
What Every Neuropathologist Needs to Know: The Muscle Biopsy.
Nix JS1, Moore SA2.
1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
2Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.
KEYWORDS: Inflammatory myopathy; Muscle biopsy; Muscular dystrophy; Myopathy; Neurogenic atrophy
PMID: 32529201 DOI:10.1093/jnen/nlaa046

153. Arch Dis Child, 2020 Jul;105(7):683. doi: 10.1136/archdischild-2020-319812.
Inherited neuromuscular diseases: an explosion in diagnostic modalities.
[No authors listed]
MYOBASE link for the original article of Thompson et al: http://www.myobase.org/index.php?lvl=notice_display&id=70368
PMID: 32581668 DOI:10.1136/archdischild-2020-319812
154. Genet Med. 2020 Jun 11. doi: 10.1038/s41436-020-0840-3. [Epub ahead of print]
Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness.
Töpf A1, Johnson K1,2, Bates A1, Phillips L1, Chao KR3,4, England EM3,4, Laricchia KM3,4, Mullen T3,4, Valkanas E3,4, Xu L3,4, Bertoli M1, Blain A1, Casasús AB1, Duff J1, Mroczek M1, Specht S1, Lek M3,4,6, Ensini M1,7, MacArthur DG3,4,8,9; MYO-SEQ consortium, Straub V10.
Collaborators (79)
1John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
2Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
3Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
4Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
5Northern Genetics Service, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK.
6Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
7Directorate-General for Research and Innovation, Directorate F, Unit E2 Combatting Diseases, Brussels, Belgium.
8Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, Australia.
9Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia.
10John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
volker.straub@ncl.ac.uk.
KEYWORDS: genetic diagnosis; limb-girdle weakness; neuromuscular disease; next-generation sequencing; targeted exome analysis
PMID: 32528171 DOI:10.1038/s41436-020-0840-3

155. Pediatr Pulmonol. 2020 Jun 11. doi: 10.1002/ppul.24899. [Epub ahead of print]
Measures of nocturnal oxyhemoglobin desaturation in children with neuromuscular disease or Prader-Willi syndrome.
Kaditis AG1, Polytarchou A1, Moudaki A1, Panagiotopoulou-Gartagani P1, Kanaka-Gantenbein C1.
1Division of Pediatric Pulmonology and Sleep Disorders Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine and Aghia Sophia Children's Hospital, Athens, Greece.
KEYWORDS: central sleep apnea; desaturation; nocturnal hypoxemia; obstructive sleep apnea
PMID: 32525614 DOI:10.1002/ppul.24899

156. Front Physiol. 2020 May 20;11:451. doi: 10.3389/fphys.2020.00451. eCollection 2020.
Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders.
Siciliano G1, Chico L1, Lo Gerfo A1, Simoncini C1, Schirinzì E1, Ricci G1.
1Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy.
KEYWORDS: aerobic and anaerobic exercise; neuromuscular diseases; oxidative stress; physical exercise training; quality of life
PMID: 32508674 PMCID:PMC7251329 DOI:10.3389/fphys.2020.00451 Free PMC Article

157. J Anat. 2020 Jun 13. doi: 10.1111/joa.13228. [Epub ahead of print]
Morphological variability is greater at developing than mature mouse neuromuscular junctions.
Mech AM1, Brown AL1, Schiavo G2,3, Sleeth JN2,4.
1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
2UK Dementia Research Institute, University College London, London, UK.
3Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK.
KEYWORDS: NMJ-morph; epitrochleoanconeus; fast twitch; flexor digitorum brevis; lumbricals; morphology; motor neuron; muscle fibre type; neuromuscular junction; slow twitch; synapse; transversus abdominis
PMID: 32533580 DOI:10.1111/joa.13228

158. Front Cell Dev Biol. 2020 May 26;8:322. doi: 10.3389/fcell.2020.00322. eCollection 2020.
Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles.
Li B1, Yin D2, Li P2, Zhang Z3, Zhang X1, Li H1,2, Li P2, Hou L1, Liu H2, Wu W1.
1College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
159. *Muscle Nerve*. 2020 Jun 12. doi: 10.1002/mus.27000. [Epub ahead of print]

Quantitative electromyography: Normative data in paraspinal muscles.

Jeppesen TD¹, Levison L², Codeluppi L³, Krarup C⁴

1Copenhagen Neuromuscular Center, Dep. of Neurology, Rigshospitalet, University of Copenhagen, Denmark.
2Dep. of Neurology, Aarhus University Hospital, Aarhus, Denmark.
3Dep. of Neurology Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
4Dep. of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen.

KEYWORDS: Anterior horn cell disease; EMG; Head drop; Myopathy; Neuromuscular disorder; Normative data; Paraspinal muscle; Spinal segment; quantitative electromyography

PMID: 32530492 DOI:10.1002/mus.27000

160. *Med Image Anal.* 2020 Jun 8;64:101741. doi: 10.1016/j.media.2020.101741. [Epub ahead of print]

Spatially regularized parametric map reconstruction for fast magnetic resonance fingerprinting.

Balsiger F¹, Jungo A², Scheidegger C³, Carlier PG⁴, Reyes M⁵, Marty B²⁴

1ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Insel Data Science Center Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; NMR Laboratory, Institute of Myology, Neuromuscular Investigation Center, Paris, France; NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France. Electronic address: fabian.balsiger@artorg.unibe.ch.
2ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Insel Data Science Center Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
3Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
4NMR Laboratory, Institute of Myology, Neuromuscular Investigation Center, Paris, France; NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France.

KEYWORDS: Convolutional neural network; Image reconstruction; Magnetic resonance fingerprinting; Quantitative magnetic resonance imaging

PMID: 32544842 DOI:10.1016/j.media.2020.101741 Free full text
Some of citations presented by diseases are sorted below by specialties.

Anatomopathologie – Anatomical pathology

Ann Rheum Dis. 2020 Jun 16. pii: annrheumdis-2019-216599. [Epub ahead of print]

Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis.

Pinal-Fernandez I1,2,3, Casal-Dominguez M1,2, Derfoul A1, Pak K1, Miller FW5, Milisenda JC6, Grau-Junyent JM4, Selva-O'Calleghan A1, Carron-Ribas C1, Paik JJ2, Albadia J3, Christopher-Stine L2,3, Lloyd TE2, Corse AM2, Mammen AL2,3,8,9.

1Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.

2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

3Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.

4Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain.

5Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA.

6Internal Medicine, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain.

7Internal Medicine, Vall d'Hebron General Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain.

8Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

9Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA andrew.mammen@nih.gov.

KEYWORDS: autoantibodies; autoimmune diseases; autoimmunity; dermatomyositis; polymyositis

PMID: 32546599 DOI: 10.1136/annrheumdis-2019-216599

J Neuropathol Exp Neurol. 2020 Jul 1;79(7):719-733. doi: 10.1093/jnen/nlaa046.

What Every Neuropathologist Needs to Know: The Muscle Biopsy.

Nix JS1, Moore SA2.

1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

2Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.

KEYWORDS: Inflammatory myopathy; Muscle biopsy; Muscular dystrophy; Myopathy; Neurogenic atrophy

PMID: 32529201 DOI: 10.1093/jnen/nlaa046

Cardiologie – Cardiology

Heart Rhythm. 2020 Jun 7. pii: S1547-5271(20)30546-4. [Epub ahead of print]

Evaluation of mexiletine effect on conduction delay and bradyarrhythmic complications in patients with myotonic dystrophy type 1 over long-term follow-up.

Vio R1, Zorzi A1, Bello L2, Boffozzoni V2, Botta A1, Rivezzoli F1, Leonori L1, Migliore F1, Bertaglia E1, Iliceto S1, Pegoraro E2, Corrado D1, Calore C1.

1Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.

2Department of Neuroscience, University of Padova, Padova, Italy.

3Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy.

4Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.

Electronic address: domenico.corrado@unipd.it.

KEYWORDS: antiarrhythmic drugs; atrioventricular block; bundle branch block; myotonic dystrophy; neuromuscular disorder; pacemaker; sudden cardiac death

PMID: 32525073 DOI: 10.1016/j.hrthm.2020.05.043

Mol Cell Proteomics. 2020 Jun 15. pii: mcp.RA120.002071. [Epub ahead of print]

Kir2.1 interactome mapping uncovers PKP4 as a modulator of the Kir2.1-regulated inward rectifier potassium currents.

Park SS1, Ponce-Balbuena D2, Kuick R3, Guerrero-Serna G4, Yoon J5, Mellacheruvu D6, Conlon KP7, Basrur V8, Nesvizhskii AI9, Jalife J4, Rual JF10.

1University of Michigan, Dept. of Pathology, United States.

2University of Michigan, Dept. of Internal Med., United States.

3University of Michigan.
Rimeporide as a first-in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne Muscular Dystrophy.

Previtalli SC1, Gidaro T2, Diaz-Manera J3, Zambon A1, Camesecchi S4, Roux-Lombard P5, Spitali P6, Signorelli M6, Szigwarto CA7, Johansson C8, Gray J9, Labolle D9, Thomé FP10, Pitchforth J11, Domingos J11, Muntoni F12.

1IRCCS San Raffaele Scientific Institute, Department of Neurology and INSPE, Milan, Italy. 2Department of Pathology, Hopital Trousseau, I- Motion, Paris, France. 3Hospital de la Santa Creu i Sant Pau de Barcelona Servei de Neurologia, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain. 4Geneva University (UNIGE), Geneva, Switzerland. 5Geneva University Hospital (HUG), Immunology and Allergology Department, Geneva, Switzerland. 6Leiden University Medical Center, Netherland. 7KTH, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden. 8Science for Life Laboratory, Department of Protein Science, Division of Systems Biology, Solna, Sweden. 9EspeRare, Geneva, Switzerland. 10EspeRare, Geneva, Switzerland. Electronic address: porte.florence@esperare.org. 11UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital Dubowitz Neuromuscular Centre, London, UK. 12UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital Dubowitz Neuromuscular Centre, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital Trust, University College London, London, UK.

KEYWORDS: Cardiomyopathy; Duchenne Muscular Dystrophy; NHE-1; Pharmacokinetic; Rimeporide; Safety

PMID: 32535224 DOI:10.1016/j.phrs.2020.104999

PTX3 Predicts Myocardial Damage and Fibrosis in Duchenne Muscular Dystrophy.

Farini A1, Villa C1, Di Silvestre D2, Bella P1, Tripodi L1, Rossi R1, Sitzia C1, Gatti S1, Mauni P1, Torrente Y1.

1Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy. 2Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy. 3Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, Milan, Italy. 4Center for Surgical Research, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy.

KEYWORDS: Duchenne muscular dystrophy (DMD); alarmins; cardiomyopathy; muscular dystrophy; pentraxin 3 (PTX3)

PMID: 32508664 PMCID: PMC7248204 DOI:10.3389/fphys.2020.00403 Free PMC Article

Multisystem Myotilinopathy, including Myopathy and Left Ventricular Noncompaction, due to the MYOT Variant c.179C>T.

Finsterer J1, Stöllberger C2, Hasun M2, Riedhammer K3,4, Wagner M5.

1Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria. 22nd Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria. 3Institute of Human Genetics, Germany. 4Department of Nephrology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.

PMID: 32509353 PMCID:PMC7244945 DOI:10.1155/2020/5128069 Free PMC Article
Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

Douleur – Pain

J Bodyw Mov Ther. 2020 Apr;24(2):130-137. doi: 10.1016/j.jbmt.2019.10.014. Epub 2019 Oct 25.

Massage therapy treatment and outcomes in a patient with Charcot-Marie-Tooth disease: A case report.

Paz G.¹

¹Grant MacEwan University, Massage Therapy Program, Canada. Electronic address: galitip@gmail.com.

KEYWORDS: Charcot-Marie-Tooth; Massage therapy; Peripheral neuropathy

PMID: 32507138 DOI:10.1016/j.jbmt.2019.10.014

Électromyographie – Electromyography

Respir Care. 2020 Jun 16. pii: respcare.07426. doi: 10.4187/respcare.07426. [Epub ahead of print]

Effects of Positioning on Cough Peak Flow and Muscular Electromyographic Activation in Duchenne Muscular Dystrophy.

Marques L.¹,², de Freitas Fregonezi GA.¹,², Santos JP.¹,², Marcelino AA.¹,², Medeiros da Fonseca JD.¹,², Dourado-Júnior MET.³, Aliverti A.⁴, Sarmento A.¹,², Resqueti VR.¹,²

¹PneumoCardioVascular Lab, Hospital Universitario Onofre Lopes, Empresa Brasileira de Serviços Hospitalares, Natal, Brazil.

²Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Brazil.

³Ambulatório de Neurologia, Empresa Brasileira de Serviços Hospitalares (EBSERH), Universidade Federal do Rio Grande do Norte, Natal, Brazil.

4Laboratorio di Tecnologie Biomediche, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.

5PneumoCardioVascular Lab, Hospital Universitario Onofre Lopes, Empresa Brasileira de Serviços Hospitalares, Natal, Brazil. vanessaresqueti@hotmail.com.

KEYWORDS: Duchenne muscular dystrophy; cough; electromyography; plethysmography; respiratory muscles

PMID: 32546537 DOI:10.4187/respcare.07426

Muscle Nerve. 2020 Jun 12. doi: 10.1002/mus.27000. [Epub ahead of print]

Quantitative electromyography: Normative data in paraspinal muscles.

Jeppesen TD.¹, Levison L.², Codeluppi L.³, Krarup C.⁴

¹Copenhagen Neuromuscular Center, Dep. of Neurology, Rigshospitalet, University of Copenhagen, Denmark.

²Dep. of Neurology, Aarhus University Hospital, Aarhus, Denmark.

³Dep. of Neurology Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.

⁴Dep. of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen.

KEYWORDS: Anterior horn cell disease; EMG; Head drop; Myopathy; Neuromuscular disorder; Normative data; Paraspinal muscle; Spinal segment; quantitative electromyography

PMID: 32530492 DOI:10.1002/mus.27000

J Electromyogr Kinesiol. 2020 Jun 9;53:102437. doi: 10.1016/j.jelekin.2020.102437. [Epub ahead of print]

Lambert-Eaton myasthenia syndrome: specified description of a response pattern to low-frequency repetitive nerve stimulation.

Zhou X.¹, Wang Z.¹, Zhu Y.¹, Zhu D.¹, Xie C.¹, Guan Y.³

¹Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China.

²Department of Neurology, Shanghai International Medical Center, Shanghai, China.

³Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China. Electronic address: yangtaiguan@sina.com.

KEYWORDS: Electrophysiology; Lambert-Eaton myasthenia syndrome; Low-frequency decrement; Myasthenia gravis; Neuromuscular disorder; Repetitive nerve stimulation

PMID: 32554206 DOI:10.1016/j.jelekin.2020.102437
Gastroentérologie / Nutrition – Gastroenterology / Nutrition

Myopathies featuring early or prominent dysphagia.

Triplett JD, Pinto MV, Hosfield EA, Milone M, Liewluck T.

1Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota.
2Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, Minnesota.

KEYWORDS: dysphagia; inclusion body myositis; muscular dystrophy; myopathy; myositis; videofluoroscopy

PMID: 32510670 DOI: 10.1002/mus.26996

Imagerie médicale – Medical imaging

Diagnostic Value of Magnetic Resonance Imaging in Fibrodysplasia Ossificans Progressiva.

Botman E, Teunissen BP, Rajmakers P, de Graaf P, Yaqub M, Treurniet S, Van Ommen G, Bravenboer N, Micha D, Pals G, Bökenkamp A, Neteleinbos JC, Lammertsma AA, Eekhoff EM.

1Department of Internal Medicine section Endocrinology, Amsterdam Bone Center Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences Amsterdam The Netherlands.
2Department of Radiology & Nuclear Medicine Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands.
3Department of Periodontology Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam The Netherlands.
4Department of Clinical Chemistry, Amsterdam Bone Center, Amsterdam Movement Sciences Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands.
5Department of Clinical Genetics, Amsterdam Bone Center, Amsterdam Movement Sciences Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands.
6Department of Paediatric Nephrology Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands.
7Department of Neurology, Amsterdam University Medical Center, Amsterdam The Netherlands.
8Department of Neurology, University of Kentucky Medical Center, Lexington, KY.

KEYWORDS: ANALYSIS/QUANTITATION OF BONECLINICAL TRIALSDISEASES AND DISORDERS OF/RELATED TO BONEFIBRODYSPLASIA OSSIFICANS PROGRESSIVARADIOLOGY

PMID: 32537549 PMCID: PMC7285757 DOI: 10.1002/jbm4.10363 Free PMC Article

Neurology.

Novel approaches to quantify CNS involvement in children with Pompe disease.

Korlimarla A, Spiridigliozzi GA, Crisp K, Herbert M, Chen S, Malinzak M, Stefanescu M, Austin SL, Cope H, Zimmerman K, Jones H, Provenzale JM, Kishnani PS.

1Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
2Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC.
3Department of Surgery, Duke University Medical Center, Durham, NC.
4Department of Pediatric Neurology, University of Kentucky Medical Center, Lexington, KY.
5Department of Nuclear Medicine, Duke University Medical Center, Durham, NC.
6Duke Clinical Research Institute, Durham, NC, USA.
7Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.

priya.kishnani@duke.edu.

PMID: 32518148 DOI: 10.1212/WNL.0000000000009979

Med Image Anal.

Spatially regularized parameteric map reconstruction for fast magnetic resonance fingerprinting.

Balsiger F, Junge A, Scheidegger C, Carlier PG, Reyes M, Marty B.

1ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Insel Data Science Center Inselhospital, Bern University Hospital, University of Bern, Bern, Switzerland; NMR Laboratory, Institute of Myology, Neuromuscular Investigation Center, Paris, France; NMR Laboratory, CEA, DRF, IBFJ, MiRCen, Paris, France.

2ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Insel Data Science Center Inselhospital, Bern University Hospital, University of Bern, Bern, Switzerland.
3Department of Neurology, Inselhospital, Bern University Hospital, University of Bern, Bern, Switzerland; Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroimaging, Inselhospital, Bern University Hospital, University of Bern, Bern, Switzerland.
4NMR Laboratory, Institute of Myology, Neuromuscular Investigation Center, Paris, France; NMR Laboratory, CEA, DRF, IBFJ, MiRCen, Paris, France.

PMID: 32518148 DOI: 10.1016/j.media.2020.101741
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

KEYWORDS: Convolutional neural network; Image reconstruction; Magnetic resonance fingerprinting; Quantitative magnetic resonance imaging
PMID: 32544842 DOI:10.1016/j.media.2020.101741 Free full text

BMJ Case Rep. 2020 Jun 11;13(6). pii: e236444. doi: 10.1136/bcr-2020-236444.

Use of muscle MRI in an atypical presentation of FSHD2.
Jesuthasan A1, Shah S2, Morrow JM3.
1University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK.
2Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK.
3Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK. j.morrow@ucl.ac.uk.

KEYWORDS: neurology; neuromuscular disease
PMID: 32532898 DOI:10.1016/j.bcr-2020-236444

Médecine physique et de réadaptation – Physical and rehabilitation medicine

J Bodyw Mov Ther. 2020 Apr;24(2):85-91. doi: 10.1016/j.jbmt.2019.09.009. Epub 2019 Oct 4.

An adapted dance program for children with Charcot-Marie-Tooth disease: An exploratory study.
Cherriere C1, Martel M2, Fortin S3, Raymond MJ4, Veilleux LN5, Lemay M6.
1Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada; ToNiC Toulouse Neuroimaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France. Electronic address: claire.cherriere@inserm.fr.
2Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada.
3Département de Danse, Université du Québec à Montréal, Montréal, Canada.
4Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada; Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Canada.
5Centre de Réadaptation Marie Enfant, Centre de Recherche du CHU Sainte Justine, Montréal, Canada; Shriner's Hospital for Children, Montréal, Canada; École de Kinésiologie et des Sciences de l'activité Physique, Université de Montréal, Montréal, Canada.

PMID: 32507158 DOI:10.1016/j.jbmt.2019.09.009

J Bodyw Mov Ther. 2020 Apr;24(2):130-137. doi: 10.1016/j.jbmt.2019.10.014. Epub 2019 Oct 25.

Massage therapy treatment and outcomes in a patient with Charcot-Marie-Tooth disease: A case report.
Paz G1.
1Grant MacEwan University, Massage Therapy Program, Canada. Electronic address: galitip@gmail.com.

KEYWORDS: Charcot-Marie-Tooth; Massage therapy; Peripheral neuropathy
PMID: 32507138 DOI:10.1016/j.jbmt.2019.10.014

J Neurosci Nurs. 2020 Jun 5. doi: 10.1097/JNN.0000000000000519. [Epub ahead of print]

Assessing Motor Function in Congenital Muscular Dystrophy Patients Using Accelerometry.
Lawal TA1, Todd JJ, Elliott JS, Linton MM, Andres M, Witherspoon JW, Collins JP, Chrismer IC, Tounkara F, Waite MR, Nichols C, Bönnemann CG, Vuillerot C, Bendixen R, Jain MS, Meilleur KG.
1Joshua J. Todd, PhD, is Research Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Jeffrey S. Elliott, BS, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Jeffrey S. Elliott, BS, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Megan Andres, BS, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Jessica W. Witherspoon, DPT, PhD, is Research Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. John P. Collins, MS, is Assistant Professor, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD; and Department of Rehabilitation Science, George Mason University, Fairfax, VA. Irene C. Chrismer, BSN, is Research Nurse, National Institute of Nursing Research, NIH, Bethesda, MD. Fatoumata Tounkara, PhD, is Post-Baccalaureate Fellow, National Institute of Nursing Research, NIH, Bethesda, MD. Melissa R. Waite, MSPT, is Physical Therapist, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD. Carmel Nichol, BA, is Post-Baccalaureate Fellow, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD. Carsten G. Bönnemann, MD, is Neurologist, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD. Carole Vuillerot, MD, PhD, is Pediatrician, Service de Médecine Physique et de Réadaptation Pédiaétrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France. Roxanna Bendixen, PhD, is Associate Professor, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA. Minal S. Jain, DSc, is Physical Therapist, Mark O. Hatfield
Clinical Research Center, NIH, Bethesda, MD. Katherine G. Meilleur, PhD, is Pediatric Nurse Practitioner, National Institute of Nursing Research, NIH, Bethesda, MD.

PMID: 32511172 DOI:10.1097/JNN.0000000000000519

Front Physiol. 2020 May 21;11:349. doi: 10.3389/fphys.2020.00349. eCollection 2020.

Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy.

Jeppesen TD1.
1Copenhagen Neuromuscular Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

KEYWORDS: mitochondrial DNA; mitochondrial myopathies; oxidative capacity; training; treatment
PMID: 32508662 PMCID: PMC7253634 DOI:10.3389/fphys.2020.00349 Free PMC Article

Front Physiol. 2020 May 20;11:451. doi: 10.3389/fphys.2020.00451. eCollection 2020.

Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders.

Siciliano G1, Chico L1, Lo Gerfo A1, Simoncini C1, Schirinzi E1, Ricci G1.
1Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy.

KEYWORDS: aerobic and anaerobic exercise; neuromuscular diseases; oxidative stress; physical exercise training; quality of life
PMID: 32508674 PMCID:PMC7251329 DOI:10.3389/fphys.2020.00451 Free PMC Article

Nephrologie – Nephrology

J Nephrol. 2020 Jun 11. doi: 10.1007/s40620-020-00772-7. [Epub ahead of print]

Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases).

Ponticelli C1, Doria A2, Moroni G3.
1Division of Nephrology, IRCCS Ospedale Maggiore Milano, Via Ampere 126, 20131, Milano, Italy. ponticelli.claudio@gmail.com.
2Division of Rheumatology, Department of Medicine, DIMED, University of Padua, Padua, Italy.
3Division of Nephrology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico Milano, Milano, Italy.

KEYWORDS: Lupus nephritis; Malignant hypertension; Myoglobinuria; Polymyositis; Scleroderma; Sjögren syndrome
PMID: 32529559 DOI:10.1007/s40620-020-00772-7

Optalmologie – Ophthalmology

BMC Neurol. 2020 Jun 11;20(1):238. doi: 10.1186/s12883-020-01805-1.

Prediction of generalization of ocular myasthenia gravis under immunosuppressive therapy in Northwest China.

Ding J1, Zhao S1, Ren K1, Dang D2, Li H1, Wu F3, Zhang M1, Li Z4, Guo J5.
1Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
2Intensive Care Unit, Xi'an Fourth Hospital, Xi'an, 710004, Shaanxi Province, China.
3Department of Neurology, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi Province, China.
4Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
5Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China. gzoujun_81@163.com.

KEYWORDS: Generalization; Immunosuppressive therapy; Myasthenia gravis; Ocular; Predictive factor
PMID: 32527235 PMCID:PMC7288410 DOI:10.1186/s12883-020-01805-1 Free PMC Article

Eur Neurol. 2020 Jun 11;1:7. doi: 10.1159/000507853. [Epub ahead of print]

Adult Ocular Myasthenia Gravis Conversion: A Single-Center Retrospective Analysis in China.

Feng X1, Huan X1, Yan C1, Song J1, Lu J1, Zhou L1, Wu H2, Qiao K3, Lu J1, Xi J1, Luo S1, Zhao C1.
1Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.
2Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China.
Bibliographie sur les maladies neuromusculaires

Bibliography of neuromuscular disorders

n° 2020-06-1 du 9 au 21 juin 2020 (June 9 to 21, 2020)

3Department of Clinical Electromyography, Institute of Neurology, Huashan hospital Fudan University, Shanghai, China.
4Department of Neurology, Huashan Hospital Fudan University, Shanghai, China, zhao_chongbo@fudan.edu.cn.
KEYWORDS: Adult myasthenia gravis; Anti-acetylcholine receptor antibody; Conversion; Ocular myasthenia gravis; Risk factors
PMID: 32526733 DOI:10.1159/000507853

Pneumologie – Pulmonogy

Effects of Positioning on Cough Peak Flow and Muscular Electromyographic Activation in Duchenne Muscular Dystrophy.
Marques L1,2, de Freitas Fregonezi GA1,2, Santos IP1,2, Marcelino AA1,2, Medeiros da Fonsêca JD1,2, Dourado-Júnior MET3, Alverti A4, Sarmento A1,2, Resqueti VR4,2.
1PneumoCardioVascular Lab, Hospital Universitario Onofe Lopes, Empresa Brasileira de Serviços Hospitalares, Natal, Brazil.
2Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
3Ambulatório de Neurologia, Empresa Brasileira de Serviços Hospitalares (EBSERH), Universidade Federal do Rio Grande do Norte, Natal, Brazil.
4Laboratório de Tecnologias Biomedicas, Departamento de Eletrônica, Informação e Bioengenharia, Politécnico di Milano, Milan, Italy.
5PneumoCardioVascular Lab, Hospital Universitario Onofe Lopes, Empresa Brasileira de Serviços Hospitalares, Natal, Brazil. vanessaresqueti@hotmail.com.
KEYWORDS: Duchenne muscular dystrophy; cough; electromyography; plethysmography; respiratory muscles
PMID: 32546537 DOI:10.4187/respcare.07426

Evaluation of usefulness in surfactant protein D as a predictor of mortality in myositis-associated interstitial lung disease.
Kaieda S1, Gono T2, Masui K3, Nishina N4, Sato S5, Kuwana M2; A Multicenter Retrospective Cohort of Japanese Patients with Myositis-associated ILD (JAMI) investigators.
1Department of Medicine, Division of Respiriology, Neurology, and Rheumatology, Kurume University School of Medicine, Fukuoka, Japan.
2Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan.
3Department of Anaesthesiology, Showa University School of Medicine, Tokyo, Japan.
4Division of Respiratory Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
5Division of Rheumatology, Department of Internal Medicine, Tokai University School of Medicine, Tokyo, Kanagawa, Japan.
PMID: 32525903 PMCID:PMC7289364 DOI:10.1371/journal.pone.0234523 Free PMC Article

Anti-Signal Recognition Particle Antibody-Associated Severe Interstitial Lung Disease Requiring Lung Transplantation.
Qureshi A1, Brown D2, Brent L3.
1Internal Medicine, Reading Hospital - Tower Health, West Reading, USA.
2Pathology and Laboratory Medicine, Lehigh Valley Health Network, Allentown, USA.
3Rheumatology, Temple University Hospital, Philadelphia, USA.
KEYWORDS: anti-signal recognition particle; interstitial lung disease; lung transplantation; myopathy
PMID: 32523819 PMCID:PMC7273426 DOI:10.7759/cureus.7962 Free PMC Article

Respiratory function during enzyme replacement therapy in late-onset Pompe disease: longitudinal course, prognostic factors, and the impact of time from diagnosis to treatment start.
Stockton DW1, Kishnani P2, van der Ploeg A3, Llerena J Jr4, Boentert M5, Roberts M6, Byrne BJ7, Araujo R8, Maruti SS8, Thibaut N9, Verhulst K9, Berger K10.
1Division of Genetic, Genomic and Metabolic Disorders, Departments of Pediatrics and Internal Medicine, Wayne State University and Children's Hospital of Michigan, Detroit, MI, USA. dstockton@med.wayne.edu.
2Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
3Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
4Departamento de Genética Médica, Instituto Fernandez Figueira (FIOCRUZ), Rio de Janeiro RJ, Brazil.
5Department of Neurology, University Hospital of Münster, Münster, Germany.
6Salford Royal NHS Foundation Trust, Salford, UK.
7Department of Pediatrics, University of Florida, Gainesville, FL, USA.
8Sanofi Genzyme, Cambridge, MA, USA.
9Sanofi Genzyme, Amsterdam, The Netherlands.
10Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, and the André Courmand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, NY, USA.

KEYWORDS: Alglucosidase alfa; Enzyme replacement therapy; Late-onset Pompe disease; Pompe disease; Registry; Respiratory function

PMID: 32524257 DOI: 10.1007/s00415-020-09936-8

Semin Arthritis Rheum. 2020 Jun 1;50(4):776-790. doi: 10.1016/j.semarthrit.2020.03.007. [Epub ahead of print]
Recommendations for the treatment of anti-melanoma differentiation-associated gene 5-positive dermatomyositis-associated rapidly progressive interstitial lung disease. Romero-Bueno F1, Diaz Del Campo D1, Trallero-Araguas E2, Ruiz-Rodriguez JC3, Castellvi P4, Rodriguez-Nieto MJ5, Martinez-Becerra MJ6, Sanchez-Fernaute O7, Pinal-Fernandez I8, Solanich X9, Sono T10, Gonzalez-Gay MA11, Pina M12, Selva-O’Callaghan A13. MEDRAS (Spanish MDA5 Register) group (listed contributors at the end of the article).
1Rheumatology Dept. Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.
2Research Unit. Vall d’Hebron University Hospital, GEAS group, Barcelona, Spain.
3Intensive Care Department. Vall d’Hebron University Hospital, Shock, Organ Dysfunction, and Resuscitation Research Group, Vall d’Hebron Research Institute, Barcelona, Spain.
5Rheumatology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autónoma de Barcelona, Barcelona, Spain.
6Pneumology Dept. Fundación Jiménez Díaz University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
7Immunology Dept. Fundación Jiménez Díaz University Hospital, Madrid, Spain.
8National Institute of Arthritis and Musculoskeletal and Skin Diseases; NIH, Bethesda; Johns Hopkins University School of Medicine, Baltimore, MD, USA.
9Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
10Nippon Medical School Graduate School of Medicine, Department of Allergy and Rheumatology, Tokyo, Japan.
11Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Div., Hosp. Universitari Marqués de Valdecilla, IDIVAL and University of Cantabria, Santander; and Univ. of the Witwatersrand, South Africa.
12Research Unit, Spanish Society of Rheumatology, Madrid, Spain. CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
13Systemic Autoimmune Diseases Unit. Medicine Dept. Vall d’Hebron University Hospital, GEAS group. Universitat Autònoma de Barcelona, Barcelona, Spain. Electronic address: aselva@vhebron.net.

KEYWORDS: Basiliximab; Cyclophosphamide; Cyclosporine; Dermatomyositis; Extracorporeal membrane oxygenation; Glucocorticoid; Intensive care; Intravenous immunoglobulins; Lung transplant; Mycophenolate; Plasmapheresis; Polymixin B hemoperfusion; Rapidly progressive interstitial lung disease; Review; Rituximab; Tacrolimus; Tofacitinib; systematic

PMID: 32534273 DOI: 10.1016/j.semarthrit.2020.03.007

Braz J Phys Ther. 2020 Jun 5. pii: S1413-3555(19)30364-8. [Epub ahead of print]
Pulmonary and upper limbs function in children with early stage Duchenne muscular dystrophy compared to their healthy peers. Bulut N6, Aydin O2, Alemdaroğlu-Gürbüz P1, Karaduman A2, Yilmaz O2.
1Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey. Electronic address: nmn60_90@hotmail.com.
2Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey.

KEYWORDS: Functional performance; Pulmonary function test; Rehabilitation; Upper limb

PMID: 32553415 DOI: 10.1016/j.bjpt.2020.05.012

Pediatr Pulmonol. 2020 Jun 11. doi: 10.1002/ppul.24899. [Epub ahead of print]
Measures of nocturnal oxyhemoglobin desaturation in children with neuromuscular disease or Prader-Willi syndrome.
Kaditis AG1, Polyarchou A1, Moudaki A1, Panagiotopoulou-Gartaganis P1, Kanaka-Gantenbein C1.

AFM-Téléméthon (Service Documentation) – 23/06/2020
50/51
1Division of Pediatric Pulmonology and Sleep Disorders Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine and Aghia Sophia Children's Hospital, Athens, Greece.
KEYWORDS: central sleep apnea; desaturation; nocturnal hypoxemia; obstructive sleep apnea
PMID: 32525614 DOI:10.1002/ppul.24899