Many attractive electrical and thermal properties make graphene a promising material for bolometry and calorimetry\(^1\)–\(^3\). Graphene can absorb photons from a wide frequency bandwidth efficiently by impedance matching\(^4\)–\(^7\); the electron–electron scattering time is short and can quickly equilibrate the internal energy from absorbed photons to prevent leakage through optical phonon emission\(^8\)–\(^9\); its weak electron–phonon coupling can keep the electrons thermally isolated from the lattice\(^1\)–\(^8\),\(^10\)–\(^13\),\(^21\)–\(^25\); and, most importantly, at the charge-neutrality point, it has a vanishing density of states. This results in a small heat capacity and electron–phonon thermal conductance, which are highly desirable material properties for bolometers and calorimeters, while maintaining a short thermal response time\(^1\)–\(^9\). Although the bolometric response of graphene has been tested in devices based on noise thermometry\(^10\)–\(^12\),\(^14\)–\(^19\), their performance is severely hampered by degradation in the thermometer sensitivity when the electron temperature rises upon photon absorption\(^1\)–\(^9\). Here, we overcome this challenge by adopting a fundamentally different measurement technique: we integrate monolayer graphene into a microwave resonator and a Josephson junction; upon the absorption of microwave radiation into the resonator, the rise of the electron temperature in graphene suppresses the switching current of the superconductor–graphene–superconductor (SGS) Josephson junction. This mechanism can function as the bolometer readout and enable us to study the thermal response of this bolometer.

Sensitive microwave detectors are essential in radioastronomy\(^1\), dark-matter axion searches\(^3\) and superconducting quantum information science\(^3\)–\(^4\). The conventional strategy to obtain higher-sensitivity bolometry is the nanofabrication of ever smaller devices to augment the thermal response\(^5\)–\(^7\). However, it is difficult to obtain efficient photon coupling and to maintain the material properties in a device with a large surface-to-volume ratio owing to surface contamination. Here we present an ultimately thin bolometric sensor based on monolayer graphene. To utilize the minute electronic specific heat and thermal conductivity of graphene, we develop a superconductor–graphene–superconductor Josephson junction\(^8\)–\(^13\) bolometer embedded in a microwave resonator with a resonance frequency of 7.9 gigahertz and over 99 per cent coupling efficiency. The dependence of the Josephson switching current on the operating temperature, charge density, input power and frequency shows a noise-equivalent power of \(7 \times 10^{-19}\) watts per square-root hertz, which corresponds to an energy resolution of a single 32-gigahertz photon\(^14\), reaching the fundamental limit imposed by intrinsic thermal fluctuations at 0.19 kelvin. Our results establish that two-dimensional materials could enable the development of bolometers with the highest sensitivity allowed by the laws of thermodynamics.
It was observed that the plasma frequency is proportional to the square root of the critical current. By contrast, the product of the absorbed microwave photon caused a resonant excitation at the plasma frequency of the GJJ, we expect the frequency of the resonance dip in I_s to shift by approximately 1 GHz, because the GJJ plasma frequency is proportional to the square root of the critical current. By contrast, the suppression of I_s aligns closely to the microwave resonance frequency measured by reflectometry. Therefore, we cannot attribute the suppression of I_s to resonant excitation of the GJJ. We note that the linewidths in Fig. 3b match to those given by the loaded quality factors of 9 and 13 at $V_g = 0.1 V$ and 1.3 V respectively, obtained from the fitting of the phase of the scattering parameter in Fig. 3a.

Supercurrent switching statistics can reveal the basic properties of the GJJ and hence its thermal response as a bolometer. We measure the distribution of I_s by recording the potential drop across the GJJ while sweeping the bias current 6,000 times for each gate voltage, input power and temperature. The switching of the GJJ from the supercurrent state to the normal state is stochastic, and the typical distribution is plotted in Fig. 4a at 0.19 K and 0.45 K at and $V_g = 0.1 V$ without power input. The switching rate (also known as the escape rate from the tilted-washboard potential in the resistively and capacitively shunted junction model), and thus the switching probability, can be determined uniquely from the distribution using the Fulton–Dunkleberger method. When the experiment is conducted at 0.19 K with an increasing power input, the switching histogram shifts gradually to lower values. When the microwave input power reaches 126 mW, when the device is at 0.19 K, the distribution overlaps well with that at 0.45 K with zero input power; therefore, the GJJ has the same switching rate under these two conditions. This suggests that the suppression of I_s is due to the heating of graphene electrons from 0.19 K to 0.45 K by the microwave input power, and not of other mechanisms such as the a.c. Josephson effect or an additional bias current across the GJJ.

I_s decreases monotonically as we raise the microwave input power P_{mw}. Figure 4b shows I_s as a function of input power. Using the measured I_s at various device temperatures in Fig. 2b, we can apply an interpolation to calculate the graphene electron temperature T_e as a function of I_s, which is a function of P_{mw}. The results, $T_e(P_{mw})$, are shown in Fig. 4c for four different gate voltages, with offsets of multiples of 0.19 K in the y axis for clarity. The dashed lines denote fits to the data using the electron–phonon heat transfer equation $A(T_e^{3} - T_{th}^{3})$, where A is the area of the monolayer graphene, and T_{th} and T_{ph} are the electron–phonon parameter and its temperature power-law exponent, respectively. The best-fit A values are 2.14, 2.04, 2.74 and 3.30 W m$^{-2}$ K$^{-3}$ in ascending order of gate voltages with $\delta = 3$. This temperature power-law corresponds to the cooling of graphene electrons.
mediated by supercollision or disorder26–29. However, using the deformation potential of 20 eV and the electron mobility of 20,000 cm2 V−1 s−1 measured from the GJJ normal resistance versus the gate voltage, the same theory predicts $\Sigma = 0.0086 \text{W m}^{-2} \text{K}^{-3}$. We note that Σ ranges from 2.04 W m2 K−3 to 9.9 W m2 K−3 in the three devices and agrees quantitatively with another report33. This large discrepancy suggests that the existing electron cooling theories of defect-mediated electron–phonon coupling are not applicable when the mean free path l_{mfp} (340 nm in our sample) is larger than or comparable to the sample dimensions (0.3 μm × 2.6 μm in our device). A recent scanning nanothermometry experiment34 spatially imaged the cooling of electrons in high-quality graphene and demonstrated that the electron cooling can be dominated by atomic defects on the edge rather than those in the bulk. Therefore, the l_{mfp} value based on the bulk electrical transport may underestimate the total cooling rate of the electron–phonon coupling when l_{mfp} is larger than the sample size. Because such scatterings by atomic defects on the edge scale with the sample perimeter, whereas defect-mediated scatterings scale with the sample area, further systematic experiments with consistently etched graphene flakes of different sample aspect ratios can provide greater understanding of the cooling of electrons to achieve a higher-sensitivity graphene-based bolometer in the future.

The effectiveness of the thermal insulation at the graphene–superconductor contacts due to Andreev reflection can be evaluated using the Wiedemann–Franz law. If there is any heat diffusion at the contacts, the GJJ (being wide and short) will have the largest contribution to the thermal conductance, which, based on the one-dimensional thermal model16, is given by $4(\pi k_B/e)(T/R)$ where k_B is the Boltzmann constant, e is the electron charge and R is the electrical resistance between the contacts. For $R_n = 145 \Omega$ at $V_g = 1.9 \text{V}$, we would expect the thermal conductance through the contacts to be about 387 pW K−1, 1,000 times larger than the actual measured thermal conductance of $G_{\text{th}} = \delta \Sigma T^{0.1} = 230 \text{ fW K}^{-1}$ at 0.19 K. This suggests that the NbN superconductor used in the experiment acts as a good thermal insulator, prohibiting heat diffusion at the graphene–superconductor interface.

We now study the sensitivity of our detector. When operating as a bolometer, we can infer the input power from the suppression of I_s using the calibration shown in Fig. 4b. The standard deviation of the I_s temperature at different gate voltages.

Fig. 2 Characterization of the GJJ switching current. a, GJJ voltage as a function of bias current (a) and average switching current versus gate voltage (b) at temperatures of 0.19–0.9 K. c, Average switching current versus

temperature at different gate voltages. d, GJJ normal resistance and I_sR_n as a function of gate voltage.

Fig. 3 Operation of the device as a bolometer and measurement of the detector efficiency. a, The scattering parameter S_{11} of the device at 0.19 K shows a resonance near 7.9 GHz with linewidths of 861 MHz and 599 MHz at gate voltages of 0.1 V and 1.3 V, respectively, obtained from the quality factor analysis. b, Suppression of the average switching current at −112 dBm relative to the switching current without input power at two different gate voltages.
distribution, σ_s, sets the uncertainty of a single I_s measurement and thus the minimal detectable power $P_{\text{min}} = \sigma_s (d(I_s)/dP_{\text{int}}|_{P_{\text{int}}=0})$; that is, $P_{\text{min}} = 11.4$ fW for $\sigma_s = 13.2$ nA at 0.19 K and $V_g = 1.9$ V. To estimate the noise-equivalent power (NEP), we consider the time required to detect this P_{min} by comparing three timescales: the resonator input coupling rate, the resonator dissipation rate and the thermal constant, τ_{th}. Analysis of the scattering parameter of the resonator gives the minimal detectable power P_{min} and τ_{th}. From the microwave input power. This also suggests that $1/\tau_{\text{th}}$ is nearly the same as the internal dissipation rate of the resonator. The standard deviation of Cooper pairs to generate a detectable signal, so it is suitable for continuous photon sensing over a wide photon energy range.

Intrinsic thermal fluctuation of a canonical ensemble imposes a fundamental limit on the sensitivity of a bolometer, given by $\sqrt{4Gk_B T}$ (ref. 14). Comparison of the data in Fig. 4d suggests that the NEP of our bolometer as predicted by such a fluctuation (using the measurement of the electron-phonon coupling) is in close agreement to the NEP that we measure using the suppression of the switching current that results from the microwave input power. This also suggests that $1/\tau_{\text{th}}$ is nearly the same as the internal dissipation rate of the resonator. The same temperature scaling law projects a further improvement to 10^{-21} W Hz$^{-1/2}$ at 20 mK. The same detector design could be used to perform calorimetry to detect single microwave photons with further optimization of $d(I_s)/dT$ (ref. 23). To achieve continuous power readout while keeping the GJJ non-dissipative in the supercurrent state, we can employ a radiofrequency resonance readout to detect the change of the Josephson inductance of the GJJ.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-020-2752-4.
1. Benford, D., Amato, M., Mather, J. C., Moseley, S. H. & Leisawitz, D. Mission concept for the J. Appl. Phys.
2. Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. (2004). Astrophys. Space Sci.
33. Draelos, A. W. et al. Supercurrent flow in multiterminal graphene Josephson junctions. Phys. Rev. Lett.
34. Halbertal, D. et al. Imaging resonant dissipation from individual atomic defects in graphene. Phys. Rev. B.
35. Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol.
36. Gasparinetti, S. et al. Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl.
37. Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions. Phys. Rev. Lett.
38. Lee, G.-H., Jeong, D., Choi, J.-H., Doh, Y.-J. & Lee, H.-J. Electrically tunable macroscopic quantum tunneling in a graphene-based Josephson junction. Phys. Rev. Lett.
39. Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Annu. Rev. Nucl. Part. Sci.
40. Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Phys.
41. Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field proximity effect. Phys. Rev. Lett.
42. Morpurgo, A. F., Klapwijk, T. M. & van Wees, B. J. Hot electron tunable supercurrent. Phys. Rev. Lett.
43. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with superconducting tunnel junctions. Phys. Rev. X.
44. Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based graphene-based van der Waals heterostructures. Nat. Nanotechnol.
45. Fong, K. C. & Schwab, K. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. J. Appl. Phys.
46. Moseley, S. H., Mather, J. C. & McCammon, D. Thermal detectors as X-ray spectrometers. Phys. Lett.
47. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nano Lett.
48. McKitterick, C., Prober, D. & Karasik, B. Performance of graphene thermal photon detectors. Nat. Nanotechnol.
49. Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Lett.
50. Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a superconducting proximity in ballistic graphene. Phys. Rev. Lett.
51. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in undoped graphene. Phys. Rev. Lett.
52. Viljas, J. K. & Heikkila, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Appl. Phys. Lett.
53. Chen, W. & Clerk, A. Electron-phonon mediated heat flow in disordered graphene. Nat. Phys.
54. El Fatimy, A. E. et al. Epitaxial graphene quantum dots for high-performance terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol.
55. Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol.
Device fabrication

The devices are fabricated by first encapsulating the monolayer graphene between two layers of atomically flat and insulating boron nitride (~30 nm thick) using the dry-transfer technique. For Device A, the superconducting terminals consist of 5-nm-thick niobium and 60-nm-thick niobium nitride, deposited after reactive ion etching and electron-beam deposition of 5-nm-thick titanium to form the one-dimensional contact. For devices H and T, a molybdenum–rhenium alloy is sputtered as the superconducting material. Finally, we make the local gate to control the carrier density of the monolayer graphene by growing an aluminium oxide dielectric layer by atomic layer deposition before depositing a layer of gold as the metallic gate. All d.c. electrodes are connected through the reactive low-pass filters fabricated on the chip to provide isolation to the microwave circuit. We note that the simultaneous operation of the Josephson junction and the microwave impedance matching of the device can limit the fabrication yield to about 14% when duplicating the process on different sets of cleanroom equipment.

Impact of contact resistance on detector performance

We consider how the contact resistance may affect the device (1) in the Josephson junction measurement and (2) in the microwave resonator. Nyquist noise from the graphene/NbN contact in the junction direction (vertical direction in Fig. 1b–d) is expected to be absent, because the bolometer operates in the supercurrent regime, where the two-probe resistance is zero. Nyquist noise would come into play only after the Josephson junction switches to the resistive regime by microwave photon absorption and gives finite normal resistance R_n. Therefore, we do not need to consider Nyquist noise to determine the NEP of the bolometer. The noise contributions from thermal and quantum fluctuations on the current-biased Josephson junction are included in the determination of the NEP because they both contribute to the width of the switching current distribution in Fig. 4a. These noises induce thermal activation and macroscopic quantum tunnelling of the phase particle of the current-biased Josephson junction and their rate can be determined using the Fulton–Dunkelberger method.

However, it is possible that the contact resistance between the graphene flake and the microwave resonator degrade the bolometer by dissipating the photon energy at the contact instead of at the graphene flake. To estimate this effect, we consider a graphene resonance along the resonator direction of R_{res}, and a graphene–NbN contact resistance along the resonator (horizontal direction in Fig. 1b–d) of R_c. We measured a normal resistance of $R_n = 145 \Omega$ along the direction of a junction with width $W = 1 \mu m$ and length $L = 270 \mu m$, so the square resistance is $R_{sq} = R_n/(W/L)$. With a graphene width of $W = 300 \mu m$ and length of $L' = 2.6 \mu m$, the resonator direction, we can roughly estimate $R_{res} = R_{sq}(L'/W) = 5 \kOmega$. If we assume that the contact transparencies for graphene–NbN interfaces along the directions of the junction and the resonator are similar, because NBN was deposited at the same time for both the GJ and the resonator, R_c can be estimated as $R_c = (\mu/(kW))^2$, where k is the Fermi wavenumber and μ is the contact transparency estimated from the relationship $R_c = (\mu/(kW))^2$ for ballistic graphene channel along the direction of the Josephson junction (see the next section for a discussion on the ballistic nature of graphene in our experiment). The contact contribution to the photon energy dissipation by R_c is less than 10% of the total resistance, given by $R_{res} + R_c$. Thus, we expect that the contact resistance would not considerably degrade bolometer performance.

Electron mean free path

The GJJ is at or near the ballistic limit. This is because if we assume that the graphene is in the diffusive regime, the Drude mobility and mean free path of graphene are estimated to be 20,000 cm2V$^{-1}$s$^{-1}$ and 340 nm, respectively. However, this mean free path exceeds the junction length of 270 nm. This is usually the case when graphene is encapsulated by atomically flat and insulating hBN flakes and protected from dirty environments during the fabrication process. Ref. 9 describes how the formation of a moiré superlattice with the hBN substrate can give rise to the unusual rise of R_n at $V_g = 2–3 \text{V}$.

Design of input resonator

We design the device for optimal impedance matching to a 2-kΩ graphene resistance, a value estimated based on its dimensions. Energy dissipation is dominated by Joule heating into the graphene in such a structure, because the typical internal quality (Q) factor of NbN superconducting resonators without a graphene flake is of the order of 10^5-10^7, whereas the internal Q factor of our device is measured to be less than 30, using the circle fitting method and fitting of the loaded Q factor (see Extended Data Fig. 1). We achieve optimal impedance matching at the critical coupling (where the internal Q factor of the resonator due to the graphene resistance is equal to the Q factor of the coupling) by adjusting the coupling gap capacitor. We simulate the device with different gap capacitor values using a method-of-moments electromagnetic simulator and determine a coupling capacitor value of 200 fF. In addition to reflectometry (Fig. 3a), we can also measure the input resonator frequency by monitoring I_n, as shown in Extended Data Fig. 2.

Electron–phonon coupling

We can use the electron–phonon coupling theory in the supercollision or disorder regime to calculate Σ (refs. 26, 27):

$$\Sigma = \frac{2\zeta(3)}{\pi} \frac{E_f}{v_F} \frac{D^3 k_B^3}{\hbar^4 l_{mp} s^2},$$

where ζ is the zeta function, E_f is the Fermi energy of the graphene charge carriers, ρ_s is the mass density of the graphene sheet, D is the deformation potential, h is the reduced Planck constant and s is the sound velocity of the graphene lattice. However, the enhanced electron–phonon cooling that we observed is more probably due to resonant scattering by defects located around the edges of the graphene flake. The fitted Σ values listed in Extended Data Table 1 are based on the data in Extended Data Figs. 3, 4.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

We acknowledge discussions with L. Levitov, M. H. Nguyen and W. Kalfus. We thank H. J. Lee for fabrication facility support for some of the devices. W. J. and G. H. L. acknowledge support from the Samsung Science and Technology Foundation under Project Number SSTFBA1702-05. D. K. E. acknowledges support from the Ministry of
Economy and Competitiveness of Spain through the “Severo Ochoa” programme for Centres of Excellence in R&D (SES-0522), Fundació Privada Cellex, Fundació Privada Mir-Puig, Generalitat de Catalunya through the CERCA programme, the H2020 Programme under grant agreement 820378 (project 2D-SIPC) and the La Caixa Foundation. The work of E.D.W. and D.E. was supported in part by the Army Research Laboratory Institute for Soldier Nanotechnologies programme W911NF-18-2-0048 and the US Army Research Laboratory (award W911NF-17-1-0435). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, grant number JPMXP0112101001, JSPS KAKENHI grant number JP20H00354 and CREST(JPMJCR15F3), JST. The work of P.K. and K.C.F. was supported by the US Army Research Office under Cooperative Agreement number W911NF-17-1-0574.

Author contributions G.-H.L., T.A.O., D.E. and K.C.F. conceived the project. L.R., G.-H.L. and W.J. designed and fabricated the samples. T.T. and K.W. provided the hBN crystal. G.-H.L., E.D.W. and K.C.F. performed the measurements. G.-H.L., D.K.E., L.R., E.D.W., T.A.O., P.K., D.E. and K.C.F. performed the data analysis and wrote the paper. P.K., D.E. and K.C.F. supervised the project.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.C.F.
Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Loaded Q factor of input resonator. Fitting of the loaded quality factor of the microwave resonator. Shown is the phase of the S_{11} scattering parameter of the half-wave microwave resonator at two different gate voltages. Data from the same dataset as in Fig. 3a.
Extended Data Fig. 2 | GJJ bolometer input resonator. a, b, Suppression of the switching current at the resonance frequency of the input resonator for Device H (a) and Device T (b) with test power of −15 dBm applied outside the cryostat at 0.3 K (a) and 0.2 K (b). See Extended Data Table 1 for the dimensions and measured parameters of the devices.
Extended Data Fig. 3 | GJJ switching current. a, b. Average switching current of the Josephson junction for Device H (a) and Device T (b).
Extended Data Fig. 4 | Electron cooling. a, b, Interpolated graphene electron temperature versus input power for Device H with a carrier density of $-0.72 \times 10^{12} \text{ cm}^{-2}$ (a) and Device T with a carrier density of $-3.2 \times 10^{12} \text{ cm}^{-2}$ (b). The lines are fits using the electron–phonon heat transfer theory.
Extended Data Table 1 | Sensitivity and thermal properties of the GJJ bolometer

Parameters used to estimate the NEP and thermal properties of the GJJ bolometer. Data presented in the main text are collected from Device A.
Device A
superconductor
graphene area (μm²)
input frequency (GHz)
temperature (K)
V_{gate} (V)
V_{CNF} (V)
carrier density (10^{12} cm⁻²)
R_n (Ω)
C_s (k_B)
Σ (Wm⁻²K⁻³) from fitting
G_{th} (pW/K)
(J_n) (μA)
σ_L (nA)
$
Q_{int}
Q_{couple}
resonator internal dissipation rate (MHz)
thermal fluctuation limited NEP ($\times 10^{-19}$ W/Hz⁻¹/₂)
estimated NEP ($\times 10^{-19}$ W/Hz⁻¹/₂)
ratio of the estimated NEP to the thermal fluctuation limited NEP
Extended Data Table 2 | GJJ properties

Josephson junction parameters of Device A at $V_{\text{gate}} = 1.9$ V

Parameter	Value
JJ channel length	300 nm
JJ channel width	1 μm
Electron density	2.0×10^{12} cm$^{-2}$
Electronic mobility	2×10^4 cm2/Vs
normal resistance	59 Ω
Mean free path	340 nm
Disorder temperature	2.8 K
Bloch-Grüneisen temp.	76 K
$I_c(T_0)R_n$ product	142 μeV
Thouless energy	1.2 meV
JJ coupling energy	2.0 meV
Effective capacitance	3.65 fF
Plasma Freq. at zero bias current	≤ 904 GHz
McCumber parameters	0.23
NbN superconducting gap	1.52 meV