Fatty acid translocase: a culprit of lipid metabolism dysfunction in disease
Joseph E. Rupert, Mikhail G. Kolonin*

Abstract
Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across the PM. Interactions of CD36 with proteins PHB1, ANX2, and CAV1 mediate intercellular lipid transport between adipocytes, hematopoietic, epithelial, and endothelial cells. Intracellularly, the FAT complex has been found to regulate LCFA trafficking between the PM and LD. This process is regulated by CD36 glycosylation and S-acylation, as well as by post-translational modifications of PHB1 and ANX2, which determine both protein–protein interactions and the cellular localization of the complex. Changes in extracellular and intracellular LCFA levels have been found to induce the post-translational modifications and the function of the FAT complex in lipid uptake and mobilization. The role of the CD36/PHB1/ANX2 complex may span beyond lipid trafficking. The requirement of PHB1 for mitochondrial oxidative metabolism in brown adipocytes has been revealed. Cancer cells which take advantage of lipids mobilized by adipocytes and oxidized in leukocytes are indirectly affected by the function of FAT complex in other tissues. The direct importance of CD36 interaction with PHB1/and ANX2 in cancer cells remains to be established. This review highlights the multifaceted roles of the FAT complex in systemic lipid trafficking and discuss it as a potential target in metabolic disease and cancer.

Keywords: fatty acid translocase, lipid metabolism

1. The role of CD36 in health and disease
Changes in lipid metabolism underlie the progression of all diseases [1]. Fatty acids (FA), cholesterol, their derivatives, and other lipids are used as a source of energy, cell structure components, and signaling molecules. White adipocytes are the rheostat of FA, contained as triglycerides in the lipid droplets (LD), as well as of cholesterol. White adipose tissue (WAT) can store or release lipids, which affects metabolism and the immune system systemically [2-3]. In contrast, brown adipose tissue (BAT) and beige adipocytes in WAT serve as energy sink by catabolizing lipids through adaptive thermogenesis [4]. Adipocyte dysfunction and imbalance between lipid storage and mobilization aggravates chronic cardiovascular, inflammatory, and malignant conditions [5]. Adipocyte hypertrophy, a hallmark of obesity, leads to WAT inflammation, dyslipidemia, and systemic lipotoxicity resulting in type-2 diabetes [6-7]. Conversely, excessive WAT lipolysis and lipid mobilization is associated with cachexia and cancer progression [8-10]. The transport of lipids across the PM is an active process controlling cell metabolism. A key mediator of lipid transport is the scavenger receptor cluster of differentiation 36 (CD36), also known as fatty acid translocase (FAT). This protein, along with co-factors such as Src family kinases and G protein–coupled receptors (GPCRs), facilitates the intracellular and extracellular trafficking of long-chain fatty acids (LCFA), cholesterol, oxidized low-density lipoprotein (OxLDL), and extracellular matrix proteins [11-15]. The interaction of CD36 with Src kinases and GPCRs allows for detection of specific lipids and the downstream activation of unique signaling pathways. For instance, CD36 binding of oleic acid activates mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK)1/2 pathways and is associated with tumor cell progression and metastasis [16,17]. Moreover, CD36 interaction with GPR120 and GPR40 in taste buds is implicated in the perception of dietary lipids and may play a role in obesity-associated diseases [18].

Ample evidence indicates the importance of CD36 in AT. CD36 inhibition attenuates the effect of lipolysis induction [19] and reduces hypertrophy of visceral WAT in mice fed high-fat diet [20,21]. Based on this notion, CD36 has been investigated as a therapeutic target. However, these pursuits have been complicated because CD36 is expressed by various cell types including hematopoietic [22], and epithelial and endothelial cells [23,24] in which it plays diverse roles. In models of atherosclerosis, suppression of CD36 transcription [25,26], function [27], or increased CD36 degradation [28] were associated with a reduction in foam cell formation and reduced uptake of oxidized lipids by macrophages. Consistent with a pathogenic role of CD36, its inhibition attenuated hepatic steatosis/fibrosis [29,30] and myosteatosis [31]. However, global deletion of CD36 results in dyslipidemia, subclinical inflammation [32], and an increased risk of atherosclerosis [33]. Moreover, expression of CD36 was found to be an important regulator of proper muscle satellite cell differentiation and myofiber regeneration [34]. Expression of CD36 is also important for suppressing neuroinflammation in demyelinating disorders [35]. Collectively, these findings suggest that targeting the CD36 pathway requires cell type-specific strategies, and systemic inhibition of CD36 may have undesirable off-target effects.
2. Formation of the PHB1/ANX2/CD36 complex and its importance in lipid trafficking and mitochondrial homeostasis

The complexity of FAT signaling and its functions has become even more apparent since the identification of post-translational modifications regulating CD36-induced lipid trafficking from the plasma membrane (PM) to the LD and vice versa. Glycosylation is one such modification, which is particularly pronounced in adipocytes [36,37]. Another modification is S-acylation of CD36 by the palmitoyl acyltransferases DHHC4 or DHHC5. Palmitoylation induces CD36 translocation to the PM, which enables its binding of extracellular lipids and the subsequent internalization of the lipid-FAT complex via caveolin-1 (CAV1)-mediated endocytosis [58]. Other proteins mediating this process are prohibitin-1 (PHB1) and annexin 2 (ANX2), which interact with CD36 at the surface of adipose endothelium and adipocytes [39]. Dynamic S-acylation of PHB1 and ANX2 is important for the formation of the PHB1/ANX2/CD36 complex and its trafficking to and from the PM [40]. Furthermore, lipolysis induction results in CD36 deacetylation, internalization, and an apparent dissociation from PHB1 and ANX2 in the cytosol. Transient colocalization of CD36 and CAV1 at the LD during LCFA transport suggests that CD36 may play a role in lipid trafficking not only at the cell surface but also for transporting lipids from the PM to the LD. The detailed roles of PHB1 and ANX2 in regulating CD36-mediated lipid transport remain to be completely understood. Although the inhibition of either PHB1 or ANX2 leads to a phenotype akin to CD36 knockout and [39,41], these proteins have other functions in addition to lipid transport. Both PHB1 and ANX2 are found in various cell organelles, in which they regulate distinct processes [41–48]. A key function of PHB1 is to maintain mitochondrial biogenesis and function [46–51]. Indeed, ablation of PHB1 in adipocytes results in decreased mitochondrial content and function, which accounts for the loss of BAT and thermogenesis [42,59]. Interestingly, PHB1 does not possess a mitochondrial targeting domain, instead, phosphorylation of PHB1 at Thr258 by AKT is considered the mechanism promoting mitochondrial localization of PHB1 [54].

Since the discovery of the interaction of PHB1 with CD36 in adipocytes, and the critical role of PHB1 in mitochondrial respiration, it is logical to extrapolate this mechanism to non-adipogenic cells and postulate that the PHB1/ANX2/CD36/CAV1 interactome may act as a ubiquitous lipid-sensing pathway. One possibility is that lipid delivery to the mitochondrial membrane and stabilization of electron transport chain enzymes, mediated by these proteins, may increase mitochondrial oxidative phosphorylation and biogenesis, favoring FA oxidation for ATP generation. This concept could have critical implications in the context of tumor cell physiology. Tumor cells regularly endure hypoxia, changes in fuel source availability, and high levels of reactive oxygen species (ROS). These processes involve changes in mitochondrial function that are likely to engage PHB1 and hence relay back to the FAT complex.

As previously stated, CD36 has been shown to regulate mTOR signaling yet our understanding of the mechanism by which this occurs remains lacking. Interestingly, PHB1 plays a direct role in the regulation of mTOR signaling. Although a consensus suggests PHB1 increases protein translation via activation of mTORC1 [55,56], some studies report contradictory findings [157]. Given its association with CD36 and status as a chaperone protein [30], PHB1 may act as a rheostat for FA metabolism in cells, regulating the shuttling of CD36 between the PM and LD while also activating mTOR and stabilizing mitochondrial metabolism and ATP production. ANX2 binds calcium, actin, and lipids and is a crucial component for stabilizing and organizing lipid microdomains at the PM, which are important sites for endo- and exocytosis [14–40]. Thus, ANX2 may have a role in directing CD36 to specific sites at the PM for lipid trafficking. These implied roles for PHB1 and ANX2 in CD36-mediated FA transport warrant investigation to increase our understanding of these interactions.

3. CD36 and cancer

The importance of lipid metabolism in cancer has been realized in recent years [61–63]. Progression of carcinomas to epithelial-to-mesenchymal (EMT), chemotherapy resistance, and metastasis is linked with increased LCFA uptake by tumors [64,65]. Recent studies of our group demonstrated the role of adipocyte and endothelial CD36 in LCFA mobilization from WAT and their bioavailability for cancer cells [40,63]. However, CD36 is also expressed by cancer cells, in which its glycosylation is relatively low, and the function is debated [40]. Increased expression of CD36 in tumor epithelium is associated with poor prognosis of various GI carcinomas as well as ovarian cancer, glioblastoma, oral squamous cell carcinoma, and melanoma [66]. Interestingly, it is low CD36 expression that marks a poor prognosis for kidney renal clear cell carcinoma and pancreatic adenocarcinoma [67]. Conflicting results have been published for breast cancer [66,68]. Despite this controversy, there appears to be a clear link of high CD36 expression, particularly in combination with CAV1 expression, and metastasis [70]. Pharmacological intervention results are consistent with cell surface CD36 being an important promotor of cancer aggressiveness [71]. Studies have identified CD36 expression as a driver of EMT in cervical [72], ovarian [73], colon [74], breast [75], hepatocellular carcinoma [76], and pancreatic [77] cancers.

4. Targeting CD36 as a novel therapy for metabolic and metastatic disease

CD36 expression in the tumor microenvironment is also a key component of tumor progression. It has been reported that CD36-mediated uptake of oxidized lipids by leukocytes undermines anti-tumor immune response [66,78,79]. Increased CD36-mediated uptake of oxidized lipids by killer T-cells causes them to become dysfunctional and switch from a cytotoxic to immunosuppressive role [79]. Studies investigating tumor-associated macrophages (TAMs) show that blocking CD36-mediated uptake of oxidized lipids by TAMs significantly reduces tumor progression by reducing pro-tumor cytokines produced from TAMs [80]. Interestingly, in breast cancer down-regulation of CD36 expression in cancer-associated fibroblasts is linked with reduced tumor cell proliferation [81]. The CD36-interacting proteins have been individually implicated in promoting cancer progression. Elevated PHB1 is associated with increased metastasis in lung [82] and prostate [83] cancers, while both PHB1 and ANX2 have been implicated in breast cancer metastasis [44,84]. A possible role of the PHB1/ANX2/CD36/CAV1 interactome in cancer progression remains to be determined and put into the context of what is known about other proteins, such as FATP1, which also regulate FA transport in cancer cells [84].
receptor-blocking sites. For example, a peptide mimicking the PHB1-binding site in ANX2 has been shown to block FA transport [39]. Potentially, receptor-homing peptides could be used to deliver molecules neutralizing CD36 complex transport function and signaling specifically in WAT, hepatocytes, or other cells for the treatment of obesity, hepatosteatosis, type-2 diabetes, and metastatic disease. Furthermore, specific targeting of CD36 in cancer cells using phage-display may be an approach to interfere with tumor lipid metabolism, hence making chemotherapy more effective. However, the notion that the loss of PHB1 in adipocytes and in endothelial cells has opposite effects on metabolism [90] reiterates the point that targeting molecules in the FAT complex may need to be directed to specific cell types in order to be beneficial.

Increased interest in the relevance of lipid trafficking in disease will undoubtedly advance our understanding of metabolic and malignant disease. However, several aspects of what role the PHB1/ANX2/CD36 complex plays requires further investigation. For instance, CD36 has been shown to bind various ligands resulting in differential activation of downstream pathways, especially regarding Src family kinases and GPCRs. Detailed mechanisms showing how different classes of lipids binding the PHB1/ANX2/CD36 complex alters its interaction with secondary messengers, including any conformational changes, post-translational modification sites, and protein–protein interactions needs to be elucidated. Furthermore, the premise that this complex may act as a lipid-sensing pathway affecting intracellular lipid trafficking and metabolism in multiple cell types is intriguing. Detailed analyses of the functions of PHB1 and ANX2 after dissociation from the complex, especially if novel roles are identified for their involvement in lipid metabolism, protein synthesis, and mitochondrial function, would be important advances for linking lipids with chemoresistance and cancer progression. Future studies will establish and build on the relative importance of the FAT complex proteins in cells of WAT and BAT vs other benign and malignant tissues.

Funding

MGK is supported by NIH grant 2R01DK088131, the Levy-Longenbaugh Fund and the Bovay Foundation.

Conflicts of interests

The authors declare that they have no conflicts of interest.

References

[1] Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1–2):20–44. doi: 10.1016/j.cell.2013.12.012.
[2] de Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71(2):332–8. doi: 10.1017/S0032543912000092.
[3] Yazici D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017;960:277–304.
[4] Kajimura S, Spiegelman BM. Seale P. Brown and beige fat. Annu Rev Physiol. 2014;76:281–303. doi: 10.1146/annurev-physiol-020913-150026.
[5] Morigny P, Boucher J, Arner P, et al. Lipid and glucose metabolism in human adipose tissue. J Physiol. 2015;593(9):2521–30. doi: 10.1113/JP26746.
[6] Ratter JE, Narasimhan A, Bengel DHA. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med. 2021;218(6):e20190450.
[7] Quail DF, Dannenberg AJ. The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 2019;15(3):139–54. doi: 10.1038/s41574-018-0126-x.
[8] Bacci M, Lorto N, Bonomi A, et al. Fat and tumour lipid metabolism in antitumour therapy response and resistance. Trends Cancer. 2017;3(1):198–213. doi: 10.1016/j.trecan.2019.10.004.
[9] Pepino MY, Kuda O, Samovski D, et al. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 2014;34:281–303. doi: 10.1146/annurev-nutr-071812-161220.
[10] Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev. 2010;90(1):367–417. doi: 10.1152/physrev.00003.2009.
[11] Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13(9):621–34. doi: 10.1038/nri3515.
[12] Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Synopses. 2009;2:103–22.
[13] Asch AS, Silbiger S, Heinem E, et al. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun. 1992;182(2):1208–17. doi: 10.1016/0006-291x(92)91860-s.
[14] Yang P, Su C, Luo X, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation of Src/ERK pathway. Cancer Lett. 2018;438:76–85. doi: 10.1016/j.clet.2018.09.013.
[15] Luo X, Zheng E, Wei L, et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 2021;12(4):328. doi: 10.1038/s41419-021-03596-w.
[16] Gilbertson TA, Khan NA. Cell signaling mechanisms of oro-gustatory detection of dietary fats: advances and challenges. Prog Lipid Res. 2014;53:82–92. doi: 10.1016/j.plipres.2013.11.001.
[17] Zhou D, Samovski D, Okunade AL, et al. CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB J. 2012;26(11):4733–42. doi: 10.1096/fj.12-206862.
[18] Su T, Huang C, Yang C, et al. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol Res. 2020;152:104586. doi: 10.1016/j.phrs.2019.104586.
[19] Yang J, Park KW, Cho S. Inhibition of the CD36 receptor reduces visceral fat accumulation and improves insulin resistance in obese mice carrying the BDNF-Val66Met variant. J Biol Chem. 2018;293(34):33338–48.
[20] Yang M, Silverstein RL. CD36 signaling in vascular redox stress. Free Radic Biol Med. 2019;136:159–71. doi: 10.1016/j.freeradbiomed.2019.02.021.
[21] Cifarelli V, Appak-Baskov S, Peche VS, et al. Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nat Commun. 2021;12(1):3350. doi: 10.1038/s41467-021-03596-w.
[22] Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001;108(6):785–91.
[23] Ackers I, Szymanski C, Duckett KJ, et al. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovasc Pathol. 2018;34:1–8. doi: 10.1016/j.carpath.2018.01.008.
[24] Jia Q, Cao H, Shen D, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int J Mol Med. 2019;44(3):893–902. doi: 10.3892/ijmm.2019.4263.
[25] Fan Y, Yang L, Li H, et al. SNX10 deficiency restricts foam cell formation and protects against atherosclerosis by suppressing CD36-Lyn axis. Can J Cardiol. 2020. doi: 10.1016/j.cjca.2020.05.010.
[26] Xia X, Hu T, He J, et al. USP10 deletion inhibits macrophage-derived foam cell formation and cellular-oxidized low density lipoprotein uptake by promoting the degradation of CD36. Aging. 2020;12(22):22892–905. doi: 10.1086/6914003.
[27] Lin HY, Wang FS, Yang YL, et al. MicroRNA-29a Suppresses CD36 to ameliorate high fat diet-induced steatohepatitis and liver fibrosis in mice. Cells. 2019;8(1):12981298. doi: 10.3390/cells8101298.
[28] Zhang C, Luo X, Chen J, et al. Osteoprotegerin promotes liver steatosis by targeting the ERK-PPARγ-CD36 pathway. Diabetes. 2019;68(10):1902–14. doi: 10.2337/db18-1055.
[29] Glatz JF, Luiken JJ, FP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res. 2018;59(7):1084–93.
[30] Cifarelli V, Ivanov S, Xie Y, et al. CD36 deficiency impairs the small intestinal barrier and induces subclinical inflammation in mice. Cells Mol Gastroenterol Hepatol. 2017;3(1):82–98. doi: 10.1016/j.cgmh.2016.09.001.
[31] Zhao L, Varghese Z, Moorhead JF, et al. CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull. 2018;126(1):101–12. doi: 10.1093/bmbldy/006.
Rupert et al • 2022 (4):3

[34] Verpoorten S, Sfyri P, Scully D, et al. Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiol. 2020;228(4):e13395.

[35] Grajchen E, Wouters E, van de Haterd B, et al. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflammation. 2020;17(1):224. doi: 10.1186/s12974-020-01899-x.

[36] Hoosally SJ, Andress EJ, Wooding C, et al. The Human Scavenger Receptor CD36: glycosylation status and its role in trafficking and function. J Biol Chem. 2009;284(24):16727–88. doi: 10.1074/jbc.M109.007749.

[37] Abumrad NA, el-Maghrabi MR, Amri EZ, et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during adipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268(24):17666–8.

[38] Wang J, Hao QH, Wang X, et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 2019;26(1):209–21.e5. doi: 10.1016/j.celrep.2018.12.022.

[39] Salameh A, Daquinag AC, Staquicini DJ, et al. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue. JCI Insight. 2016;1(10):e93717.

[40] Daquinag AC, Gao Z, Fussell C, et al. Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. JCI Insight. 2021;6(17):e147057.

[41] Kathria AS, Butcher LD, Feagins LA, et al. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One. 2012;7(2):e31231. doi: 10.1371/journal.pone.0031231.

[42] Theiss AL, Idell RD, Srinivasan S, et al. Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J. 2007;21(17):197–206. doi: 10.1096/fj.06-6801com.

[43] Mielczan D, Vettermann C, Hampel M, et al. Lipid rafts associate with intracellular B cell receptors and exhibit a B cell stage-specific protein composition. J Immunol. 2005;174(6):3508–17. doi: 10.4049/jimmunol.174.6.3508.

[44] Wang S, Fusaro G, Padmanabhan J, et al. Prohibitin co-localizes with Rab in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene. 2002;21(55):8388–96. doi: 10.1038/sj.onc.1205944.

[45] Kube E, Becker T, Weber K, et al. Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin B-binding site on p11, a member of the S100 protein family. J Biol Chem. 1992;267(20):14175–82.

[46] Johansson N, Weber K. Alkylation of cysteine 82 of p11 abolishes the complex formation with the tyrosine-protein kinase substrate p36 (annexin 2, calpactin 1, lipocortin 2). J Biol Chem. 1990;265(24):14464–8.

[47] Waisman DM. Annexin II tetramer: structure and function. EMBO J. 1995;149–50:301–22.

[48] Gabel M, Delavoue F, Demais V, et al. Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol. 2015;210(5):785–800. doi: 10.1083/jcb.201412030.

[49] Maan M, Peters JM, Dutta M, et al. Lipid metabolism and lipophagocytosis in cancer. Biochem Biophys Res Commun. 2018;504(3):582–9. doi: 10.1016/j.bbrc.2018.01.017.

[50] Snaebjornsson MT, Janaki-Raman S, Schulze A. Gearing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76. doi: 10.1016/j.cmet.2019.11.010.

[51] Lengyel E, Makowski L, DiGiovanni J, et al. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer. 2019;4(5):374–84. doi: 10.1016/j.trecan.2018.03.004.

[52] Zhou X, Yang X, Li B, et al. Downregulation of SLC27A6 by DNA hypermethylation affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem. 2020;295(29):9855–67. doi: 10.1074/jbc.RA120.012979.

[53] Ising C, Brinkkoeetter PT. Prohibitin signaling at the kidney filtration barrier. Adv Exp Med Biol. 2017;982:3–6.75–7. doi: 10.1007/978-3-319-53306-2_9.

[54] Bharaadwaj A, Bydoun M, Holloway R, et al. Annexin A2 heterotramer: structure and function. Int J Mol Sci. 2013;14(3):6259–305. doi: 10.3390/ijms14036259.

[55] Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the mitochondrial stress-related autophagy in human colonic epithelial cells. J Neurochem. 2016;137(6):890–6. doi: 10.1111/jnc.13628.

[56] Gabel M, Delavoue F, DeMais V, et al. Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol. 2015;210(5):785–800. doi: 10.1083/jcb.201412030.

[57] Maan M, Peters JM, Dutta M, et al. Lipid metabolism and lipophagocytosis in cancer. Biochem Biophys Res Commun. 2018;504(3):582–9. doi: 10.1016/j.bbrc.2018.01.017.

[58] Snaebjornsson MT, Janaki-Raman S, Schulze A. Gearing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76. doi: 10.1016/j.cmet.2019.11.010.

[59] Lengyel E, Makowski L, DiGiovanni J, et al. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer. 2019;4(5):374–84. doi: 10.1016/j.trecan.2018.03.004.

[60] Zhou X, Yang X, Li B, et al. Downregulation of SLC27A6 by DNA hypermethylation affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem. 2020;295(29):9855–67. doi: 10.1074/jbc.RA120.012979.

[61] Ising C, Brinkkoeetter PT. Prohibitin signaling at the kidney filtration barrier. Adv Exp Med Biol. 2017;982:3–6.75–7. doi: 10.1007/978-3-319-53306-2_9.

[62] Bharaadwaj A, Bydoun M, Holloway R, et al. Annexin A2 heterotramer: structure and function. Int J Mol Sci. 2013;14(3):6259–305. doi: 10.3390/ijms14036259.

[63] Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the mitochondrial stress-related autophagy in human colonic epithelial cells. J Neurochem. 2016;137(6):890–6. doi: 10.1111/jnc.13628.

[64] Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the mitochondrial stress-related autophagy in human colonic epithelial cells. J Neurochem. 2016;137(6):890–6. doi: 10.1111/jnc.13628.
Su P, Wang Q, Bi E, et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. *Cancer Res.* 2020;80(7):1438–50. doi: 10.1158/0008-5472.CAN-19-2994.

Jabbari K, Winkelmaier G, Andersen C, et al. Protein ligands in the secretome of CD36+ Fibroblasts Induce Growth Suppression in a Subset of Breast Cancer Cell Lines. *Cancers.* 2021;13(18):45214521. doi: 10.3390/cancers13184521.

Ho MY, Liang CM, Liang SM. MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis. *Oncotarget.* 2015;6(1):381–93. doi: 10.18632/oncotarget.2804.

Cho SY, Kang S, Kim DS, et al. HSP27, ALDH6A1 and Prohibitin act as a trio-biomarker to predict survival in late metastatic prostate cancer. *Anticancer Res.* 2018;38(11):6551–60. doi: 10.21873/anticanceres.13021.

Huang X, Liu J, Ma Q. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines. *FEBS Open Bio.* 2020;10(10):2182–90. doi: 10.1002/2211-5463.12966.

Maji S, Chaudhary P, Akopova I, et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis. *Mol Cancer Res.* 2017;15(1):93–105. doi: 10.1158/1541-7786.MCR-16-0163.

Zhang M, Di Martino JS, Bowman RL, et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. *Cancer Discov.* 2018;8(8):1006–25. doi: 10.1158/2159-8290.CD-17-1371.

Jeanne A, Schneider C, Martiny L, et al. Original insights on thrombospondin-1-related antireceptor strategies in cancer. *Front Pharmacol.* 2015;6:252. doi: 10.3389/fphar.2015.00252.

Molkovsky A, Siu LL. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting. *J Hematol Oncol.* 2008;1:20. doi: 10.1186/1756-8722-1-20.