Predictive pion-quark BCS relation and Thornber-Feynman high-T_c gap

M.D. Scadrona
B.A. Greenb

aPhysics Department, University of Arizona, Tucson, AZ 85721
b11912 N. Centaurus Pl., Tucson AZ 85737

A pion-quark pairing temperature is defined by a BCS-like relation identified from a quark-level Goldberger-Treiman relation with a Nambu scalar mass “gap parameter” taken in the low-mass limit. This intuitive relation predicts the associated “experimental” lattice-gauge pairing temperature. The opposite high-mass limit predicts the sigma mass, and notably has a predictive analog in high-T_c superconductivity in the stable nondispersive energy gap as defined by Thornber-Feynman polaron dynamics.
A predictive analog pion-quark BCS relation with a Nambu-mass gap parameter has a further parallel in the nondispersive high-T_c superconductivity gap as defined from Thornber-Feynman (TF) polaron dynamics [1]. This BCS-like relation for the pion $\bar{q}q$ binding energy and pair-breaking “temperature”, as defined from a quark-level Goldberger-Treiman relation (GTR) in the low-mass limit [1], predicts this latest calculated temperature as follows. The GTR for the pion-nucleon coupling constant $g_{\pi NN}$ is $g_{\pi NN}=m_N g_A/f_\pi$ in terms of the nucleon mass m_N (939 MeV), pion decay constant in the chiral pairing limit $f_\pi \sim 90$ MeV, and axial current form factor $g_A=1$ for structureless quarks in the constituent quark model [2]. For the constituent quark this relation becomes $g_{\pi qq}=m_q/f_\pi$ where $m_q \approx 939$ MeV/3=313 MeV and g_A is unity for structureless quarks, so an “experimental” two-flavor quark-level GTR is

$$g_{\pi qq}=m_q/f_\pi \sim 313 \text{ MeV}/90 \text{ MeV}=3.5. \quad (1)$$

Noting that the righthand side of Eq. 1 numerically approximates the BCS ratio, we cast it into “BCS form” by multiplying the numerator and denominator by two, i.e.,

$$g_{\pi qq}=2m_q/2f_\pi \sim 3.5. \quad (2)$$

The numerator $2m_q$ is recognized as the scalar meson mass identified from the Nambu scalar mass (Eq. A-3) in the Appendix as an analog superconducting gap 2Δ. From this approximate BCS ratio $2\Delta/k_BT_c \sim 3.5$ in Eq. 2 for $T_c \sim 3-4$ K we identify the numerator ($2m_q$) with a pair binding energy 2Δ, where the constituent quark masses are largely taken up in the binding as with the pion [3]. This further suggests the BCS denominator $2f_\pi$ is an intuitive $\bar{q}q$ pairing or chiral
restoration “temperature” T_c, i.e., $T_c = 2f_r - 180$ MeV [4], which in fact is compatible
with the recent “experimental” value of 173 ± 8 MeV obtained from a computer
“lattice” calculation for two quark flavors [5]. Notably this intuitive T_c determina-
tion from the quark-level GTR complements the earlier ones in Ref. 4 in the
framework of chiral symmetry breaking.

This Nambu scalar mass-pion BCS connection in the low-mass limit
\((2m_q \to 2\Delta, 2f_\pi \to T_c)\) is further supported by independent calculations of the BCS
ratio and $g_{\pi qq}$ as analytic expressions that are similar in both magnitude and
form. Namely for acoustical phonons the gap ratio becomes [1]

\[\frac{2\Delta/k_B T_c}{2\pi e^{-\gamma}} \approx 3.528, \] (3)

where γ is the Euler constant (0.5772), and for the pion-quark coupling constant
with color number $N_c = 3$ we find [6,4]

\[g_{\pi qq} = \frac{2\pi}{N_c^{1/2}} = \frac{2\pi}{3^{1/2}} = 3.628. \] (4)

Note this numerical nearness of Eqs. 3 and 4 to the BCS ratio in Eqs. 1,2.

The above identification of the double quark mass $2m_q$ in Eq. 2 with the
pion $\bar{q}q$ pairing energy 2Δ is reinforced by theoretical and experimental
determinations of the pion charge radius r_π from a “fused” quark pair that accords
with the tight-binding massless Nambu-Goldstone pion implicit in the GTR, Eq. 1.
Hence r_π is specified by a single quark mass suggestive of the fused pair as
\[r_\pi = \frac{h c}{m_q} = 197.3 \text{ MeV-fm/313 MeV} = 0.63 \text{ fm (} h c = 197.3 \text{ MeV-fm)} \] [7] from the
“common sense” quark mass 313 MeV=$m_N/3$ as expected with three constituent
non-strange quarks in a nucleus. Similarly, vector meson dominance (VMD) [8]
with rho-meson mass 770 MeV specifies a pion charge radius $6^{1/2}(197.3 \text{ MeV-fm})/770 \text{ MeV} \approx 0.63 \text{ fm}$.

Not surprisingly, the numerical closeness of 3.528 and 3.628 in Eqs. 3 and 4 is not accidental. In both cases the energy scales with the momentum as $E=p$ (in units $c=1$), but for different reasons. For the acoustic-phonon BCS coupling in Eq. 3 the linear scaling is in the low-energy limit due to the large Fermi surface (FS), which follows from the relation $\Delta E = (p/m) \Delta p$ with constant of proportionality p/m defined from energy-momentum changes ΔE and Δp. Hence p/m is approximately constant on the FS because the changes $\Delta p/p$ are small. Whereas in Eq. 4 the linear scaling is due to tight binding, where the fused pion mass vanishes in the relativistic energy-mass relation $E = p^2 + m^2$ as the mass converts to binding energy, so E is approximately p in this (tight binding) limit.

The Nambu scalar mass gap parameter Eq. A-3 in the opposite high-mass limit predicts the sigma mass as shown in the Appendix. The further analog in the flatband high-T_c superconductivity gap $2\Delta_{HTC}$ in this limit, paralleling the long-range low-T_c gap parameter Eq. A-2 [1], is experimentally specified by the non-dispersive (massive) energy-constrained TF quasiparticle shift E_{LO} (the longitudinal-optical (LO) phonon mode energy) [9]. This mobile, stable, gapped quasiparticle in paralleling the high-T_c particle arises from nonadiabatic (conserved) internal polaron dynamics in such low-symmetry Frohlich media [10] as defined by a “universal” TF mobility [1] (e.g., in photoconducting alkali halides and related transition-metal oxides [12]). Accordingly the optimum, constrained high-T_c gap analogous to Eq. A-2 is empirically
\[2\Delta_{HTC} = E_{LO}, \quad (5a) \]

where in the cuprates this gap as defined by angle-resolved photoemission spectroscopy (ARPES) data in fact equals the resonance-softened in-plane Cu-O mode energy \(E_{LO}^R \) in satisfying Eq. 5a directly or from combined cuprate data [1], so the above TF gap relation becomes

\[2\Delta_{HTC} = E_{LO}^R. \quad (5b) \]

In particular for optimum-doped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_3\text{O}_8 \) (Bi-2212) this ARPES energy shift \(2\Delta_{SC} \) in Fig. 1(a) is 74 meV (1 meV = \(10^{-3} \) eV), where combining with resonance-softened \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4 \) (La-214) Cu-O mode data \(E_{LO}^R \approx 70 \) meV from Table I. Whereas for \(\text{YBa}_2\text{Cu}_3\text{O}_7 \) (Y-123) the ARPES gap Eq. 5b is predicted by this Y-123 data alone, with the shift \(2\Delta_{HTC} \) and \(E_{LO}^R \) from Table I and Fig. 1(b) respectively 58 meV and 56 meV [20]. Notably Eq. 5b is further given by a directional resonance coupling of these TF dynamics to the ARPES distribution [1].

Moreover Eq. 5 in addition to a Nambu-sigma mass analog constitutes an empirical “slowing” relation, where the simple energy and coupling independence reflects nondispersive, nonlinear inelastic-Frohlich slowing, and the conservation or irreversibility derives from the system asymmetry [1]. Such energetic “bunching” from these nonlocal dynamics, in setting the (TF) polaron apart from that due to Feynman [10], is consistent with the short-range stable normal-state pairing. Similarly, such nonlinear extension of this Frohlich “action” [11b] facilitates its energetic sharing in the many-particle state.

Significantly an extra-high-\(T_c \) multi-layer cubic BCS cuprate possibly observed as a minority phase is defined from this empirical TF Nambu-mass
analog gap relation Eq. 5b for the non-cubic cuprates, and in particular for the BCS-like/cubic alkali-fullerene Rb$_2$CsCo$_{60}$ [21]. Hence in the latter where $T_c=40$ K the TF shift of 13 meV from Table I yields the expected near-BCS ratio,

$$2\Delta_{HTC}/T_c k_B = (13 \text{ meV}/40 \text{ K})(11.6 \text{ K/meV}) = 3.8,$$

(6a)

paralleling a low-T_c Nambu-analog gap mode in NbSe$_2$ with gap ratio 3.4 in Eq. A-1. Whereas for the (non-cubic) cuprates non-BCS gap ratios are specified, viz., for Bi-2212 with $T_c=95$ K and $2\Delta_{HTC}=74$ meV experimentally from the TF-ARPES relation Eq. 5b, the ratio is

$$2\Delta_{HTC}/T_c k_B = (74 \text{ meV}/95 \text{ K})(11.6 \text{ K/meV}) = 9.0 $$

(6b)

($k_B=1$ meV/11.6 K). Similarly for Y-123 where $T_c=93$ K and $2\Delta_{HTC}=58$ meV again given by Eq. 5b a decreased ratio is specified as

$$2\Delta_{HTC}/T_c k_B = (58 \text{ meV}/93 \text{ K})(11.6 \text{ K/meV}) = 7.2,$$

(6c)

where this decrease would reflect the relative uniformity of the Y-123 structure. Notably for the purposes of our projected ideal BCS cuprate, the diversity in the optimum high-T_c gap of these structures of 13 meV, 74 meV and 58 meV is

fundamentally specified by the TF shift Eq. 5. (Albeit the accompanying T_c increases in the cuprates are offset by the large ratios reflecting non-BCS localization associated with the low lattice symmetry).

Added basis for this ideal BCS cuprate comes from such high-T_c superconductivity associated with cubic symmetry in general as in optimum Rb$_2$CsC$_{60}$ above. Hence in Ba$_0.6$K$_{0.4}$BiO$_3$ with $2\Delta_{HTC}=70$ cm$^{-1}$ and $T_c=30$ K [22] (recall $\hbar c=197.3$ MeV-fm=0.01973 meV-cm) the gap ratio is

$$2\Delta_{HTC}/T_c k_B = (2\pi)(70 \text{ cm}^{-1}/30 \text{ K})(11.6 \text{ K/meV})(0.01973 \text{ meV-cm})=3.4,$$

(7a)
and in Rb$_3$C$_{60}$ with Δ_{SC}/k_B=53 K, or Δ=4.6 meV and T_c=29.4 K [23] the ratio is

$$2\Delta_{HTC}/T_c k_B = 2(4.6 \text{ meV}/29.4 \text{ K})(11.6 \text{ K/meV})=3.6. \quad (7b)$$

These Nambu-analog TF gap and BCS ratio specifications from Eqs. 5b, 6 and 7 provide an empirical basis for defining the ideal BCS cuprate, e.g., the gap specifications imply the TF shift is fundamental and therefore also holds for the record-high-T_c 164 K multi-layer structure HgBa$_2$Ca$_2$Cu$_3$O$_8$ under applied hydrostatic pressure [24]. Hence taking the resonance LO-mode energy E_{LO}^R in Eq. 5b in this case as \sim65 meV, as estimated from an average of the Y-123 and La-214 data, the gap ratio is logically reduced from 7-9 in Bi-2212 and Y-123 to

$$2\Delta_{HTC}/T_c k_B \sim (65 \text{ meV}/164 \text{ K})(11.6 \text{ K/meV})=4.6, \quad (8)$$

where this reduction is consistent with symmetry increases toward a cubic BCS structure from the added planes and hydrostatic pressure.

In Ref. 1 a \sim250 K infinite-layer cubic cuprate superconductor was projected from this predictive TF gap Eq. 5b plus BCS condition generally observed in cubic high-T_c structures (cf. Eqs. 6a and 7). For such a Bi-2212 base structure this T_c limit from Eq. 6b as a result of added planes and applied pressure is thus

$$T_c = 74 \text{ meV}(11.6 \text{ K/meV})/3.5=245 \text{ K}. \quad (9a)$$

Stated in reverse, the BCS ratio limit is reached for the ideal 245 K T_c structure as

$$2\Delta_{HTC}/T_c k_B = (74 \text{ meV}/245 \text{ K})(11.6 \text{ K/meV})=3.5. \quad (9b)$$

Notably this T_c is consistent with numerous observations of possible minority-phase superconductivity near this temperature.
Summarizing this Nambu-analog gap ratio progression toward the extra-high-T_c structure, starting with the low-T_c analog NbSe$_2$ with a ratio 3.4 in Eq. A-1, the sequence continues in the optimum high-T_c structures with ratios 3.8, 9.0 and 7.2, all given by the TF gap Eq. 5. Continuing to higher T_c a TF-lattice symmetry gap ratio pattern peaking at 9.0 emerges with increasing T_c as 3.8, 9.0, 7.2, 4.6(?) \rightarrow 3.5(?), with (?) denoting the TF-BCS-like projections.

In conclusion, the latest calculated pion-quark pairing temperature is predicted by an intuitive BCS relation identified from a quark-level Goldberger-Treiman relation with a Nambu scalar-mass gap parameter taken in the low-mass limit. Whereas in the high-mass limit this parameter predicts the sigma mass, and moreover has an analog in high-T_c superconductivity in the stable localized energy gap as specified by the Thomber-Feynman (TF) polaron with a strongly-constrained shift from conserved dynamics paralleling the high-T_c case. Notably an extra-high-T_c BCS cuprate possibly observed as a minority phase is defined by a high-T_c gap ratio sequence based on these empirical Nambu-analog TF gaps.

Appendix: Particle physics analog of a low-T_c gap mode

We outline here how a massive “gap mode” appearing at T_c near 2Δ in the BCS superconductor NbSe$_2$ constitutes a particle physics analog leading in the low-mass limit to the pion pairing BCS relation Eq. 2. A near-BCS gap ratio is defined in NbSe$_2$ from $2\Delta=17$ cm$^{-1}$ (with $\omega=2\pi\nu$) and $T_c=7.2$ K [25],

$$2\Delta/T_c k_B = [(2\pi)17 \text{ cm}^{-1}/7.2 \text{ K}][0.01973 \text{ meV-cm}] [11.6 \text{ K/meV}] \approx 3.4, \quad (A-1)$$
suggesting a nominal global pairing over the Fermi surface. The particle physics connection of this gap mode follows from its identification by Littlewood and Varma with the Nambu scalar mass [26]. This mode arises from a coupling of the superconductivity/gap to an amplitude mode of the charge-density-wave (CDW) (created from optical-phonon induced oscillation of the CDW gap at a local zone face). Hence as a local paired bound state near 2Δ with mass M, or

$$2\Delta=M,$$

(A-2)

it has an analog in the Nambu scalar mass [27] identified in Eq. 2, i.e.,

$$2m_q=m_s.$$

(A-3)

This “gap parameter” Eq. A-3 in the high-mass limit predicts the sigma meson mass m_σ, as also concluded in Ref. 28 from a chiral-breaking analog mode of Nambu and Jona-Lasinio [27], where m_q is the constituent quark mass as verified experimentally by the scalar sigma with mass $m_\sigma=600$ MeV [29]. Independent determination of the quark mass m_q of 325 MeV in the chiral limit from the linear σ model [6] (or simply $m_N/3=313$ MeV from the 3 quarks in the nucleus) yields 626-650 MeV for m_σ. Equation A-3 expresses the dispersion-theoretic limit in the dispersion range with squared four-momentum $q^2=4m^2$ to 0, where the quark-anti-quark pair can be considered as “touching” with $q^2=(2m_q)^2$.

A BCS-particle physics analog of Eq. A-2 in the opposite zero-mass limit in the text gives the predictive BCS-like relation for the pion with the $\bar{q}q$ pair considered as “fused”, i.e., a tightly-bound pair at $q^2=m^2_\pi=0$, or at the VMD value $r_\pi=0.63$ fm.
References

1. B. A. Green and M. D. Scadron, Physica B 305 175 (2001).

2. Quoting from S. Weinberg in Phys. Rev. Lett. 65 1181 (1990), “An explanation is offered why quarks in the constituent quark model should be particles with axial coupling $g_A=1$ and no anomalous magnetic moment”.

3. Y. Nambu, Phys. Rev. Lett. 4 380 (1960); J. Goldstone, Nuovo Cim. 19 154 (1961).

4. D. Bailin, J. Cleymans and M.D. Scadron, Phys. Rev. D 31 164 (1985); J. Cleymans, A. Kocic and M.D. Scadron, Phys. Rev. D 39 323 (1989); N. Bilic, J. Cleymans and M.D. Scadron, Int. J. Mod. Physics A 10 1169 (1995); M. D. Scadron and P. Zenczykowski, Hadronic Jour. 26 503 (2003).

5. F. Karsch, Quark Matter Conf. 2001, Stonybrook, Jan. 2001, hep-ph/0103314; F. Karsch et al., Nucl. Phys. B 605 579 (2001).

6. R. Delbourgo and M. D. Scadron, Mod. Phys. Lett. A 10 251 (1995); hep-ph/9910242; see also V. Elias and M. D. Scadron, Phys. Rev. Lett. 53 1129 (1984).

7. This is the chiral limit, whereas the experimentally measured radius is 0.672 ± 0.008 fm; see e.g., Particle Data Group, Phys. Lett. B 592 499 (2004).

8. J. J. Sakurai, Ann. Phys. 11 1 (1960); ibid., Advanced Quantum Mechanics, Addison-Wesley (1967).

9. K.K. Thornber and R.P. Feynman, Phys. Rev. B 1 4099 (1970).

10. This physics due the system asymmetry sets the TF quasiparticle apart from the commonly used dispersive negative-energy Feynman polaron [11].
11. R.P. Feynman, Phys. Rev. 97 660 (1955); also R.P. Feynman and A. R.
Hibbs, *Quantum Mechanics and Path Integrals*, McGraw-Hill, N.Y. (1965), Chap.
12. Ref. 1 and references to polar mobility data therein.
13. M. R. Norman, et al., Phys. Rev. Lett. 79 3506 (1997).
14. D. H. Lu, et al., Phys. Rev. Lett. 86 4370 (2001).
15. L. Pintschovius et al., Physica C 185-189 156 (1991); W. Reichardt et al., op.
cit. 162-164 464 (1989).
16. R. J. McQueeney et al., Phys. Rev. Lett. 82 628 (1999).
17. J. –H. Chung et al., Phys. Rev. B 67 014517 (2003).
18. O. Gunnarson, Rev. Mod. Phys. 69 575 (1997), Sect. III.B.
19. Op. cit., Sect. II.A.
20. See Ref. 1, Note Added in the Proof.
21. B. A. Green, Phys. Lett. A 227 372 (1997).
22. C. –K. Loong et al., Phys. Rev. Lett. 62 2628 (1989).
23. R. F. Kiefl et al., Phys. Rev. Lett. 70 3987 (1993).
24. L. Gao et al., Phys. Rev. B 50 4260 (1994).
25. R. Sooryakumar and M.V. Klein, Phys. Rev. Lett. 45 660)(1980); Phys. Rev.
B 23 3213 (1981); 23 3223 (1981).
26. P.B. Littlewood and C.M. Varma, Phys. Rev. B 26 4883 (1982); ibid., Phys.
Rev. Lett. 47 811 (1981).
27. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 345 (1961).
28. R. Delbourgo and M.D. Scadron, Phys. Rev. Lett. 48 379 (1982); M.D.
Scadron, Ann. Phys. 148 257 (1983).
29. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592 1 (2004).
Optimum gap, 2Δ (meV) | In-plane LO-phonon energy (meV) | Critical temperature, T_c (K)
---|---|---
$\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ (Bi-2212) | 74 [12] | 80 [15] | 95
$\text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4$ (La-214) | 15 | 83 [16] | 70 [16] | 40
$\text{YBa}_2\text{Cu}_3\text{O}_7$ (Y-123) | 58a [14] | 68a [17] | 56a [17] | 93
$\text{Rb}_2\text{CsC}_{60}$ | 12b | 13 [18] | 40 [19]

aA-axis data in direction of reduced screening across charge stripes.
bThis gap with the observed T_c of 40 K corresponds to the BCS gap ratio generally observed in these structures.

Table I. Optimum gap 2Δ and non-resonance and resonance in-plane LO-phonon energies E_{LO} and E_{LO}^R in the (1,0,0) direction in Bi-2212, La-214 and Y-123 from ARPES and inelastic neutron scattering data, respectively. Note the $2\Delta-E_{LO}^R$ resonance match according to the TF polar coupling relation Eq. 5b from such resonance “softening” of the mid-zone Cu-O mode, and similarly in $\text{Rb}_2\text{CsC}_{60}$ according to Eq. 5a. The small gap in La-214 reflects the short-range order.
Figure 1

(a) ARPES distribution of Bi-2212 at ($\pi,0$) momentum location on the Fermi surface that defines the optimum energy gap Δ for the normal and superconducting states (from Ref. 13). (b) High-density a-axis superconducting peak defining the gap of Y-123 at ($\pi,0$), with the corresponding Bi-2212 peak (from Ref. 14).
