A species-specific triplex PCR assay for authentication of Galli Gigerii Endothelium Corneum

Yuli Zhang, Juan Li, Shiqing Yang, Chao Xu, Roselyn Tehzee Gblinwon, Jianhui Hu, Xiaoxiang Sun, Guohua Xia, Huan Yang, and Yuping Shen

School of Pharmacy, Jiangsu University, Zhenjiang, China

ABSTRACT

A triplex PCR assay was developed to identify animal species and adulteration of a natural medicine Galli Gigerii Endothelium Corneum (GGEC). Three species-specific primer sets were designed according to the difference in mitochondrial genome of Gallus gallus domesticus, Anas platyrhynchos and Anser anser. The PCR conditions were optimized and the assay was well validated for high specificity and sensitivity (1 mg/L). Especially, when artificial adulterants made from the mixture of three species were analyzed, the assay has still exhibited strong capability of differentiation. By using this developed method, two batches out of fourteen commercial GGEC products were identified to be adulterated by Anser anser. The newly proposed assay showed sufficient merits as a regular tool for the identification of counterfeits or adulterants of GGEC product for their pulverized and processed form, and even Chinese patent medicines composed of these species.

1. Introduction

Galli Gigerii Endothelium Corneum (GGEC), is the dry stomach inner-wall of Gallus gallus domesticus (GD). This well-known animal-derived natural medicine has been widely used in Traditional Chinese Medicine (TCM) clinics for more than 2000 years. GGEC has significant effect on dyspepsia and popularly consumed by child patients without side-effects observed. In addition, GGEC is one of major ingredients not only in 155 Chinese patent medicines for the treatment of spermatorrhea, enuresis, gallstones and so on (Chinese Pharmacopoeia Committee 2020), but functional foods or health care products for general population. Anas platyrhynchos (AP) and Anser anser (AA) were both of non-medicinal effects, but they were often used to make GGEC adulterant or counterfeits. Therefore, accurate identification of their animal origins is a prerequisite task to ensure its efficacy (Izadpanah et al. 2018; Jiang et al. 2018; Wang et al. 2020), however similar morphological characteristics and lacking professional experience make it difficult to distinguish the species of closer phylogenetic relationship. Some technologies based on chromatography and mass spectrometry have been developed for the analysis of natural products, which require complicated procedure and expensive instrument (Yang et al. 2017; Lin et al. 2020). However, similar chemical properties always lead to a large difficulty in accurate identification of a mixture.

In recent decades, polymerase chain reaction (PCR) shows a great advantage in convenience, specificity, and sensitivity for species identification (Girish et al. 2005; Chen et al. 2011, 2019a; Xu et al. 2015; Yang et al. 2019, 2020; Zheng et al. 2019; Zia et al. 2020). Especially, multiplex PCR incorporating species-specific amplification was much more preferred to accomplish this purpose, which offers reliable analysis of various species simultaneously in a mixed DNA template without expensive equipment and special reagents (Kitpipit et al. 2014; Palavesam et al. 2018; Prusakova et al. 2018; Chen et al. 2019b; Jiao et al. 2020). In this study, a triplex PCR assay was newly established to authenticate GGEC after validation for specificity and sensitivity.

2. Material and methods

2.1. Samples

Fifteen batches of dry stomach inner-wall from Gallus gallus domesticus, Anas platyrhynchos and Anser anser were collected from market in various cities of China in 2019, and were coded GD1–GD5, AP1–AP5 and AA1–AA5 (Table 1). Their specimens were deposited at herbarium (Dr. Huan Yang, yanghuan1980@ujs.edu.cn) located in School of Pharmacy, Jiangsu University.
All these raw materials were subjected to COI barcoding (Chinese Pharmacopoeia Committee 2020) or reported characteristic primer (Miguel et al. 2003; Chen et al. 2019a) for species verification immediately after collection (data shown in Supplementary Material). As illustrated in Figure 1, they were then processed in accordance with the protocols recorded in the prevailing Chinese Pharmacopoeia. Furthermore, fourteen batches of commercial products including raw GGEC (G1–G5) and processed GGEC (G6–G14) were purchased from different manufacturers. All the above collected samples were pulverized to be fine powder and stored in an electronic desiccator (RH < 35%) at room temperature prior to any further experiments.

2.2. DNA extraction

DNA of the samples was extracted and purified by SDS-based method according to a published paper (Yang et al. 2018). In detail, 50 mg of the homogenized sample was mixed with 995 μL of extraction buffer composed of 100 mM NaCl, 10 mM Tris-HCl (pH 8.0), 25 mM EDTA, 0.5% (w/v) SDS and 5 μL proteinase K (20 mg/mL), and the mixture was incubated at 56 °C for 6 h. For purification of DNA template, an equal volume of Tris-phenol solution, phenol-chloroform-isopentanol (PCI) solution and chloroform-isopentanol (CI) solution were mixed sequentially with the supernatants after centrifugation of the mixture at 12,000 rpm for 15 min in stages. Then, 450 μL of the supernatant was precipitated by 900 μL of 96% ethanol and 45 μL of 5.0 M KAc after constant incubation overnight at −20 °C. The supernatant was removed after centrifugation at 12,000 rpm for 15 min, and the resulting DNA pellet was washed with 70% ethanol and finally reconstituted in 25 μL of TE buffer (pH 8.0) for subsequent experiments. These DNA samples extracted from raw materials or processed products were diluted to 10 mg/μL, and those from highly processed products were used directly as template in further PCR assays. Then, the purity and concentration of all extracted DNA was measured using nucleic acid & protein spectrophotometer (Nano Drop 2000, Thermo, USA) based on absorbance at both A260/A280 and A260/A230.

2.3. Primer design

Species-specific primers were designed by Oligo software (v. 7.60, Molecular Biology Insights, Inc., Cascade, CO, USA) according to mitochondrial genome sequences of three

Code	Species	Sources	Collection date	Voucher No.
GD1	Gallus gallus domesticus	Suzhou, Anhui, PRC	Jul, 2019	2019GD01
GD2	Gallus gallus domesticus	Zhenjiang, Jiangsu, PRC	Sep, 2019	2019GD02
GD3	Gallus gallus domesticus	Zhenjiang, Jiangsu, PRC	Sep, 2019	2019GD03
GD4	Gallus gallus domesticus	Huangshan, Anhui, PRC	Oct, 2019	2019GD04
GD5	Gallus gallus domesticus	Anqing, Anhui, PRC	Oct, 2019	2019GD05
AP1	Anas platyrhynchos	Zhenjiang, Jiangsu, PRC	Sep, 2019	2019AP01
AP2	Anas platyrhynchos	Zhenjiang, Jiangsu, PRC	Feb, 2019	2019AP02
AP3	Anas platyrhynchos	Jiangyin, Jiangsu, PRC	Jul, 2019	2019AP03
AP4	Anas platyrhynchos	Jiangyin, Jiangsu, PRC	Jul, 2019	2019AP04
AP5	Anas platyrhynchos	Jiangyin, Jiangsu, PRC	Jul, 2019	2019AP05
AA1	Anser anser	Zhenjiang, Jiangsu, PRC	Mar, 2019	2019AA01
AA2	Anser anser	Zhenjiang, Jiangsu, PRC	Aug, 2019	2019AA02
AA3	Anser anser	Taizhou, Jiangsu, PRC	Feb, 2019	2019AA03
AA4	Anser anser	Taizhou, Jiangsu, PRC	Jul, 2019	2019AA04
AA5	Anser anser	Taizhou, Jiangsu, PRC	Aug, 2019	2019AA05
species. The primers were subjected to evaluation by DNAMAN (v. 8.0.8.789, Lynnon Bio soft, San Ramon, CA, USA), then the assessed primers were synthesized by Sangon Biotech (Shanghai) Co., Ltd (China) and kept at −20 °C prior to subsequent PCR assays.

2.4. PCR amplification

PCR was performed in a 25 μL reaction mixture containing 2.5 μL of 10 × PCR buffer, 2.5 μL of 2.0 mM MgCl₂, 0.5 μL of 0.2 mM dNTPs, 0.5 μL of each primer set, 0.625 unit of Taq polymerase, 1 μL of 10 mg DNA template and distilled water (filled to a final volume of 25 μL). The optimization of primer concentration was carried out in the range of 0.12 μM–0.28 μM.

After assessment of annealing-temperature, all PCR assays were performed on a Bio-Rad T100 Thermal Cycler with an initial denaturation at 95 °C for 3 min, followed by 35 cycles of 95 °C for 30 s, 57 °C for 30 s and 72 °C for 1 min with a final extension at 72 °C for 5 min. The resulting PCR amplicons were visualized in 2% agarose gel electrophoresis stained with Ethidium bromide under UV illumination.

2.5. Validation of multiplex PCR assay

The developed multiplex PCR method was validated for specificity and sensitivity. The specificity test was performed by amplification of DNA extracted from different batches of processed GD, AP, and AA samples, respectively. Then, the sensitivity was evaluated on premixed DNA templates of each target species at four concentrations ranging from 0.01 mg/μL to 10 mg/μL.

2.6. Analysis of artificial adulterated samples

Those three species (Gallus gallus domesticus, Anas platyrhynchos and Anser anser) were mixed in seven proportions (3:2:1, 2:1:3, 1:3:2, 1:1:1, 2:3:1, 1:2:3) to make artificial adulterants, and the weight of each mixture was 50 mg. DNA of them was extracted, and after that, these DNA templates were amplified using the developed triplex PCR assay.

2.7. Authentication of commercial products

Finally, fourteen batches of commercial products including raw GGEC (G1–G5) and processed GGE (G6–G14) purchased from different manufacturers were analyzed for the identification of Anas platyrhynchos and Anser anser, and the verification of labeling compliance by the established multiplex PCR assay.

3. Results and discussion

3.1. Triplex PCR conditions

Triplex PCR assay developed in this study aims for simultaneous detection of Gallus gallus domesticus, Anas platyrhynchos, and Anser anser. The primer sets designed for triplex PCR assay of three target species were showed in Table 2. Crucial optimization of annealing temperature (55 °C, 57 °C, 59 °C, 61 °C or 63 °C; Table 3) for triplex PCR conditions was illustrated in Figure 2. Three primer sets (0.20 μM PGD, 0.20 μM PAP and 0.20 μM PAA) have well amplified the mixed DNA templates after 35 cycles while the best annealing temperature was 57 °C for elimination of nonspecific amplification.

Three primer mixtures containing different final concentration of each primer set (Table 3) were examined in the optimization step. Figure 3 shows the agarose gel electrophoresis of amplicon resulted from triplex PCR assay using three different primer mixtures. Primer mixture containing 0.14 μM PGD, 0.24 μM PAP and 0.14 μM PAA is chosen as the optimized primers concentration, evidenced by the consistently high band intensity at 94 bp, 124 bp and 155 bp for Gallus gallus domesticus, Anas platyrhynchos and Anser anser, respectively.

3.2. Specificity

In this study, the specificity of this assay was evaluated by triplex PCR amplification against three individual DNA templates. As shown in Figure 4, clear individual bands were

Table 2. Designed species-specific primers.

Species	Code	Sequence (5′–3′)	Amplicon size	Accession No.	Gene Names	Target Range (nt)
Gallus gallus domesticus	PGD	GCAAGTGACAGATTCCTACTCC	94 bp	NC_001323.1	Nil	708–781
		CTATCTAAGTGAACTGGAGAC				
		ATGTTCCCATACGGCAAA				
Anas platyrhynchos	PAP	CGGACTGAATGGTTATCGTG	124 bp	NC_009684.1	ND5	13,061–13,164
		CCAATGGACATAGGGCAAT				
		TGCAACTTCCTTACGCCA				
Anser anser	PAA	155 bp		NC_011196.1	ND5	11,893–12,027

Table 3. Experimental parameters for optimization of annealing temperature and primer concentration.

DNA templates	Temperature	Other parameters	Optimization of annealing temperature	Optimization of primer concentration
GD: AP: AA (1:1:1)	55 °C	Primer concentration:	Primer concentration	0.20 μM PGA, 0.20 μM PAP, and 0.20 μM PAA
GD	57 °C	0.20 μM PGD, 0.20 μM PAP and 0.20 μM PAA		0.16 μM PGA, 0.24 μM PAP, and 0.16 μM PAA
AP	59 °C	Cycles: 35		0.12 μM PGA, 0.28 μM PAP, and 0.12 μM PAA
AA	61 °C			0.14 μM PGA, 0.24 μM PAP, and 0.14 μM PAA
	63 °C			Temperature 57 °C
				Cycles 35

Figure 2. Three primer sets (0.20 μM PGD, 0.20 μM PAP and 0.20 μM PAA) have well amplified the mixed DNA templates after 35 cycles while the best annealing temperature was 57 °C for elimination of nonspecific amplification.
exhibited for their corresponding templates in agarose gel electrophoresis, demonstrating high specificity of the assay.

3.3. Sensitivity

To assess the sensitivity of the developed triplex PCR assay, serially diluted DNA of *Gallus gallus domesticus* was investigated. As shown in Figure 5, the band intensity gradually decreased as the template concentration was reduced from 10 ng/μL to 0.1 ng/μL. Then, very faint band was observed when using 0.1 ng/μL DNA template and no bands was observed when the template concentration was further decreased to 0.01 ng/μL. Taking into account that there could be day-by-day variation of the gel documentation system and agarose gel electrophoresis (technical variation), the detection limit of the triplex PCR assay was determined at 1 ng/μL for all three species.

3.4. Analysis of artificial adulterated samples

As shown in Figure 6, three corresponding species in seven artificial adulterants have been all detected by the triplex PCR assay. The band intensity is in accordance to proportional component in the mixture. And, the amplified bands
were fairly clear even if the assay was applied to analyze samples, which demonstrated that the assay could be applied to the identification of *Anas platyrhynchos* and *Anser anser* in adulterated products.

3.5. Authentication of commercial products

Fourteen batches of commercial products were subjected to the developed triplex PCR assay to identify *Anas platyrhynchos* and *Anser anser* that might adulterate the product. The results were shown in Figure 7 and summarized in Table 4. DNA template extracted from all these products even the processed GGECC have been successfully amplified. In previous studies, a single PCR assay was employed to distinguish the three species in a published report (Miguel et al. 2003), while the analyzed DNA was extracted from liver, muscle, fat, or binary mixture, however this method was not appropriate in processed stomach inner-wall (Pu et al. 2019). Due to DNA damage during processing possibly (Nor et al. 2021), the bands of raw GGECC (G1–G5) were brighter than of processed GGECC (G6–G14). And 12 out of the fourteen samples were authenticated as genuine GA product. However, it was also found that two batches (G13 and G14) were adulterated by *Anser anser*.

4. Conclusion

As a well-known natural medicine derived from *Gallus gallus domesticus*, GGECC is apt to be adulterated by stomach inner-wall of *Anas platyrhynchos* and *Anser anser*. In this study, a species-specific triplex PCR assay was newly established for simultaneous identification of GGECC products and two adulterants. After optimization of annealing-temperature and primer concentration, the developed assay exhibited a high specificity against target DNA fragments and the detection limit was determine to be 1 ng/μL of all three species. By this assay, *Anas platyrhynchos* and *Anser anser* were identified from artificial mixed samples, and two out of fourteen commercial products were identified to be adulterants mixed by *Anser anser*. Consequently, the proposed approach showed great merits as a routine method to authenticate GGECC in raw and processed forms.

![Figure 6. Analysis of artificial adulteration. M: DNA marker; Lane 1–7: Sample mixture (GD: AP: AA) in proportion of 3:2:1, 2:1:3, 1:3:2, 1:1:1, 2:3:1, 3:1:2, 1:2:3; N: negative control.](image1)

![Figure 7. Authentication of commercial products by triplex PCR assay. M: DNA marker; P: Positive control; G1–G5: raw GGECC; G6–G14: processed GGECC; N: Negative control.](image2)

Code	Label	B/N	Manufacturers/sources	GD	AP	AA
G1	Raw GGECC	190213	Bozhou Yonggang Co., Ltd, Bozhou City, Anhui Province, PRC			
G2	Raw GGECC	160809	Shandong Weifang Pharmaceutical Co., Ltd, Weifang City, Shandong Province, PRC			
G3	Raw GGECC	200502	Bozhou Hufeng Guoyao Co., Ltd, Bozhou City, Anhui Province, PRC			
G4	Raw GGECC	–	Xiaoxian Traditional Chinese Medicine Hospital, Suzhou City, Anhui Province, PRC			
G5	Raw GGECC	19030101	Taizhou Baicao Co., Ltd, Taizhou City, Jiangsu Province, PRC			
G6	Processed GGECC	190316	Bozhou Yonggang Co., Ltd, Bozhou City, Anhui Province, PRC			
G7	Processed GGECC	190501	Bozhou Yonggang Co., Ltd, Bozhou City, Anhui Province, PRC			
G8	Processed GGECC	190523	Bozhou Yonggang Co., Ltd, Bozhou City, Anhui Province, PRC			
G9	Processed GGECC	180716	Bozhou Yonggang Co., Ltd, Bozhou City, Anhui Province, PRC			
G10	Processed GGECC	18110101	Taizhou Baicao Co., Ltd, Taizhou City, Jiangsu Province, PRC			
G11	Processed GGECC	190213	Bozhou Yonggang Co., Ltd, Bozhou City, Anhui Province, PRC			
G12	Processed GGECC	–	Nanjing Traditional Chinese Medicine Hospital, Nanjing City, Jiangsu Province, PRC			
G13	Processed GGECC	190501	Jiangsu Jibeier Co., Ltd, Zhenjiang City, Jiangsu Province, PRC			
G14	Processed GGECC	181001	Jiangsu Jibeier Co., Ltd, Zhenjiang City, Jiangsu Province, PRC			

+: Positive; –: negative.
Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by National Natural Science Foundation of China under Grant [81773855], and the Error! Hyperlink reference not valid. under Grant [SH2019073].

ORCID
Huan Yang http://orcid.org/0000-0003-1808-4735

Data availability statement
The sequence data that support the findings of this study are openly available in GenBank of NCBI at the website (https://www.ncbi.nlm.nih.gov/) under accession no. JQ627347 (Anas platyrhynchos), and MN122908 (Anser anser).

References
Chen LQ, Jiao ZQ, Chen YF, Yu PT, Zheng Y, Yang YY, Shen YP, Yang H. 2019a. Development of a species-specific PCR-based technology for authentication of Asini Corii Colla and Taurus Corii Colla. Pharmacogn Mag. 15(65):607–612.

Chen TT, Wang MJ, Jiang SY, Xiong SQ, Zhu DC, Wei H. 2011. Investigation of the microbial changes during koji-making process of Douchi by culture-dependent techniques and PCR-DGGE. Int J Food Sci Technol. 46(9):1878–1883.

Chen YF, Yang YY, Qian YH, Glbinwon RT, Jiao ZQ, Chen LQ, Lin L, Zheng Y, Yang H, Shen YP. 2019b. Harnessing multiplex PCR assay targeting specific mitochondrial DNA elements for simultaneous identification of antelope species in Cornu Saigae Tataricae. Mitochondrial DNA A DNA Mapp Seq Anal. 29(2):266–272.

Jiao QZ, Chen LQ, Xia LJ, Yang YY, Zheng Y, Chen HX, Yu PT, Shen YP, Yang H. 2020. A convenient multiplex PCR assay for rapid authentication of Testudinis Carapax et Plastrum and Trionycis Carapax. Pharmacogn Mag. 16(69):393–399.

Kitpipit T, Sittichan K, Thanakiatkrai P. 2014. Direct-multiplex PCR assay for meat species identification in food products. Food Chem. 163:77–82.

Lin L, Zhang YJ, Li Y, Fu HZ, Hu JH, Zhou Y, Xu Y, Xia GH, Sun XX, Yang H, Shen YP. 2020. Identification of signature proteins of processed Bombbyx batryticatus by comparative proteomic analysis. Int J Biol Macromol. 153:289–296.

Miguel AR, Teresa G, Isabel G, Luis A, Belen M, Ines LC, Pablo EH, Rosario M. 2003. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction. J Agri Food Chem. 51(6):1524–1529.

Nor AT, Mohd NM, Nur FKM, Nurhayatie S, Amalia MH, Md EA, Cheah YK. 2021. Rapid porcine detection in gelatin-based highly processed products using loop mediated isothermal amplification. J Food Sci Technol. DOI:10.1007/s13197-020-04932-2.

Palavesam A, Jyothimal G, Baranidharan GR, Aravind M, Narendran RR, Latha BR, Raman M. 2018. Evaluation of multiplex PCR assay for detection of Babesia spp., Ehrlichiacanis and Trypanosoma evansi in dogs. Acta Trop. 188:58–67.

Pu JZ, Zhang YZ, Zhu YL, Jiang C, Yuan Y. 2019. Quality evaluation of Galli Gigerii endothelium cornemus by allele-specific PCR method. Chin J Exp Tradit Med Formulas. 25(17):142–147.

Wang X, Zhong HJ, Guo JL, Hou FX. 2020. Morphology and molecular identification of the zoological origin of medicinal seahorses in Chinese herbal markets. Mitochondrial DNA A DNA Mapp Seq Anal. 31(8):335–345.

Xu Y, Li HH, Chen QS, Zhao JW, Ouyang Q. 2015. Rapid detection of adulteration in extra-virgin olive oil using three-dimensional fluorescence spectra technology with selected multivariate calibrations. Int J Food Prop. 18(6):2085–2098.

Yang H, Yu P, Lu Y, Jiao Z, Chen L, Zhou Y, Shen Y, Jia X. 2018. A novel non-sequencing approach for rapid authentication of Testudinis Carapax et Plastrum and Trionycis Carapax by species-specific primers. R Soc Open Sci. 5(4):172140.

Yang YY, Zheng Y, Lu BB, Jiao QZ, Chen LQ, Roselyn TG, Jia XB, Shen YP, Yang H. 2020. Rapid identification of Cervus antlers by species-specific PCR assay. Nat Prod Res. 34(9):1315–1319.

Yang H, Zheng J, Wang HY, Li N, Yang YY, Shen YP. 2017. Comparative proteomic analysis of three gelatinous Chinese medicines and their authentications by tryptic-digested peptides profiling using Matrix-assisted Laser Desorption/Ionization-time of Flight/Time of Flight Mass Spectrometry. J Pharmaceut. Mag. 13(52):663–667.

Yang H, Zhou Y, Yu PT, Yang YY, Jiao QZ, James T, Shen YP, Jia XB. 2019. A novel PCR-based technology for rapid and non-sequencing authentication of Bombbyx batryticatus using species-specific primer. Nat Prod Res. 33(9):1251–1256.

Zheng Y, Lu B, Yang Y, Jiao Z, Chen L, Yu P, Shen Y, Yang H. 2019. Rapid identification of medicinal leech by species-specific PCR technology. Phcog Mag. 15(63):410–415.

Zia Q, Alawami M, Mohktar NFK, Nhari RMHR, Hanish I. 2020. Current analytical methods for porcine identification in meat and meat products. Food Chem. 324:126664.