Analysis of senior high school students’ creative thinking skills profile in Klaten regency

F N Sugiyanto¹, M Masykuri² and Muzzazinah²
¹Master Program of Science Education, Universitas Sebelas Maret, Indonesia
²Faculty of Teacher Training and Education, Universitas Sebelas Maret, Indonesia

Email: fadilahn0909@gmail.com

Abstract. The aim of this research is to analyze the initial profile of creative thinking skills in Senior High School students on biology learning. This research was a quantitative descriptive research using test method. Analysis was conducted by giving tests containing creative thinking skills. The research subject was grade 11 students of Senior High School that categorized by its accreditation as category A (high grade) and category B (low grade). These schools are placed in Klaten Regency, Central Java. Based on the analysis, it showed that the percentage of creative thinking skill achievement in category A school is: fluency (46.35%), flexibility (13.54%), originality (20%), and elaboration (34.76%); meanwhile, category B school is fluency (30.39%), flexibility (2.45%), originality (9.11%) and elaboration (12.87%). The lowest percentage of that result in both school categories was found on flexibility and originality indicator. Based on the result, the average of creative thinking skills in category A school was 28.66%, and category B school was 13.71%. The conclusion of this research is the initial profile of students’ creative thinking skills in biology learning was relatively in low grade. The result indicates that creative thinking skills of Senior High School students should become a serious attention considering the low percentage on each indicator.

1. Introduction
Creative thinking skills have strategic values in 21st century. Creative thinking skills are considered by the National Qualification Framework for Higher Education as a high level creative thinking skill which focuses on developing students’ skill [1]. During the recent years, creative thinking and creativity become one of important skills to be obtained to adapt with rapid changes of globalization [2]. Creative thinking skills are defined as skills required on almost all subjects [3].

Creative thinking skills can be created through divergent thinking stages. The stages of creative thinking process are preparation, incubation, illumination, and verification or evaluation [8].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
Creativity as a result of creative thinking process was acknowledged [9] as an important role to boost innovation and as a main factor to develop person’s competency. Creativity is mostly used broadly and considered as a skill, like ‘creative thinking’ or ‘creative problem solving’ [3]. Creativity can be empowered through teacher training and learning environment which encourage questions, open minded to new ideas, and readiness to learn from mistakes and failures [10]. Studies on creative thinking measurement have not been conducted much. [11] It stated that the study related to creative thinking skills in countries, such as India, Israel, Hong Kong, Germany and Romania, are relatively classified as low criteria; thus, it is important to do further research through the contribution of teachers, students, and educations. Creative thinking skill can be learned and improved as logical rules through education at school and with teachers help [12]. Although assessing creativity is difficult, there are several instruments to measure creativity in particular field [13]. Instruments to measure and analyze creative thinking can be developed from the indicator of skills. Study related to creative thinking skill to analyze initial profile of students is necessary to be conducted in relation to strategic contributions.

The profile of students’ creative thinking skills is the important thing to create the initial description of students’ competence in overcoming their learning difficulties. The research data can be used as a consideration to evaluate the learning process, especially on biology learning at Senior High School students in Klaten. Biology is a difficult subject for students. The difficulty to learn biology is caused by misunderstanding, difficulty in finding relationship between concept and environment. Those difficulties are caused due to the lack of students’ skills to learn about the particular topic [14]. The purpose of this research is to analyze the initial profile of students’ creative thinking skills on biology learning.

2. Research Method
This study was quantitative descriptive study, using test method. The test method was chosen to describe the percentage of creative thinking skills of Senior High School students in Klaten, Central Java, Indonesia. The sample in this research was sixty four students of grade 11, which are from an A-Category and B-Category Senior High School. This research used purposive sampling technique based on grade categorization (low and high category). School categorization was based on the analysis of Biology National Examination result in 2015/2016 academic year.

The students were given test to analyze their creative thinking skills, especially on biology learning. The test used open-ended questions based on indicators of creative thinking skills, validated by team expert of learning evaluation. Two items developed on each indicator, the biological topics in the questions covered ecosystems, photosynthesis, and pollution topic. In order to Score the open-ended question, this study used rubrics that has been validated by expert for each indicator. The data of test result was analyzed by descriptive percentage, to find out the indicators of creative thinking skills that could not be achieved by students; used the following formula:

\[
\text{Percentage} \% = \frac{s}{t} \times 100\%
\]

Furthermore, the percentage of creative thinking skills was interpreted by the criteria of creative thinking grade (Table 2).

3. Result and Discussion
This research was conducted to analyze the initial profile of students’ creative thinking skills in Senior High School students in biology learning. Creative thinking is defined as a thought process that enables students to apply their imaginations to generate ideas and using ideas creatively to provide solution [15,16]. The initial profile of student’s creative thinking skills was represented by four indicators. First, fluency represents students’ ability to generate many relevant ideas related to the problems and in short time. Second, flexibility represents students’ ability to generate various ideas and approaches in answering questions. Third, originality represents students’ to generate new ideas and develop existing

\[
\text{Percentage} \% = \frac{s}{t} \times 100\%
\]
ideas. Fourth, \textit{elaboration} represents students’ ability to develop the detailed ideas. Open-ended questions, which were used to measure students profile, was intentionally conducted to give chance for each student to think, to generate ideas, and to suggest unique ideas. Questions should be presented to students to make them spoke up the unique ideas involving their imagination and creativity [17]. The result of student initial profile test is presented in Table 1, and the analysis of test result which refers to the creative thinking level criteria is presented in Table 2.

Table 1. Student thinking skills profile.

No.	Indicator	Percentage of Achievement (%)	
	School Category A	School Category B	
1	Fluency	46.35	30.39
2	Flexibility	13.54	2.45
3	Originality	20	9.11
4	Elaboration	34.76	12.87

Table 2. Criteria of creative thinking skills level.

Percentage(%)	Criteria
81-100	Very high
61-80	High
40-59	Sufficient
20-39	Low
0-19	Very low

Table 1 shows that the initial profile of creative thinking skills of grade 11 of Senior High School students at A-category school (high grade) is higher than students at B-category school (low grade). Based on the result, the average percentage of creative thinking skills of A-category school was 28.66% and B-category school was 13.71%. In this case, the level of intelligence seems to have an influence on the achievement of student skills. Some factors can affect the development of creativity, such as intelligence, knowledge, motivation, social environment, cultural context, and personality [18].

The analysis result refers to the criteria of creative thinking skills grade presented in Table 2. It can be seen that the creative thinking skills on each indicator at the A-category school and B-category school are relatively classified as low grade. This finding has the appropriateness related to some previous research results that also shows that the low grade of creative thinking skills in Indonesia. The low grade of creative thinking was proved in several studies on a national scale [19,20,21,22]. The lack of creative thinking not only occurred on a national scale, but also occurred in France and Arab [16,23].

The assessment of creative thinking skills based on Guilford’s indicator [6] shows that some students almost reach the target in the fluency indicator, it reach 46.35% (sufficient category) in A-category school. The percentage of achievements of the creative thinking skills, that are too far from the target from both schools categories, are on flexibility, elaboration and originality indicator. The lowest percentage in both school categories was found on flexibility and originality indicator. In line with the previous research, the limited or unsatisfactory achievements are found on three criterias, namely flexibility, elaboration, and originality indicators (the worst) [24]. Flexibility is a person’s ability to consider various approaches to have solutions, so students are aware of its way to generate new discoveries of a problem [25]; meanwhile, originality is the ability to generate ideas or new and different ideas. Students can achieve these indicators if they are accustomed to practice their thinking skills with different points of view, because the sub-dimension depends on several factors [24]. As a result, it indicated that students’ creative thinking skills were not trained optimally. Therefore, it is important to
use this skill in learning, especially on the biology learning through their strategic value. Various researches have analyzed teachers’ perception of creativity skill; the general result indicates that teachers are aware of the positive impact of learning and daily life from creativity [26]. Effective training to contribute of creative thinking usually focuses on strategies related to problem definition, conceptual combinations, idea generation, and implementation planning [27].

4. Conclusion
The conclusion of this research is the initial profile of students’ creative thinking skills in biology learning was relatively in low grade. The results indicated that students’ creative thinking skills should be a serious attention to be developed considering the low percentage on every indicators, especially flexibility and originality indicator.

Acknowledgment
I would like to thank the various parties involved in this research, especially the Head Master and Biology teachers of Senior High School in Klaten Regency. I would also like to thank the students who have participated as samples in the research. Hopefully, the results of this study are useful for the reader and as a consideration for further research.

References
[1] Songkram N 2015 Procedia-Soc. Behav. Sci. 174 674
[2] Gencer A K and Gonen M 2015 Procedia-Soc. Behav. Sci. 186 456
[3] Heilman G and Korte W B 2010 The Role of Creativity and Innovation in School Curricula in the EU27 (Luxembourg: Publicatio Office of the European Union) 43
[4] Daud A M, Omar J, Turiman P and Osman, K 2012 Procedia-Soc. Behav. Sci. 59 467
[5] Ersoy E and Baser N 2014 Procedia-Soc. Behav. Sci. 166 3494
[6] Guilford J P 1975 Gift. Child Quarterly 19 107
[7] Runco M A and Acar S 2012 Creat. Res. J. 24 66
[8] Sitorus J and Masrayati 2016 Think. Sk. Creat. 22 111
[9] Yu Z and Alex R 2014 Procedia Compute Sci. 31 359
[10] Trilling and Fadel 2009 21st Century Learning Skills (San Fracisco, CA: John Wiley & Sons)
[11] Hürsen C, Kaplan A and Özdal H 2014 Procedia-Soc. Behav. Sci. 143 1177
[12] Özcan D 2010 Procedia-Soc. Behav. Sci. 2 5850
[13] Pacific Policy Research Center2010 21st Century Skills for Students and Teachers (Honolulu: Kamehameha Schools, Research & Evaluation Division) p7
[14] Diki D 2013 LUX: A J. of Transdisciplin. Writ. Res. Claremont Grad. Univ. 3 1
[15] Kampylis P and Berki E 2014 Nurturing Creative Thinking (Belle France: UNESCO)
[16] Wahsheh R A 2017 American J. Educ. Res. 5 409
[17] Simsek C L and Kiyici F B 2010 Procedia-Soc. Behav. Sci. 2 2105
[18] Chang C P 2013 Creat. Educ. 4 101
[19] Syafi’i A, Suryawati E and Saputra A R 2011 J. Biogenes. 8 1
[20] Suparman and Husen D N 2015 J. Bioedukast 3 367
[21] Amtiningsih S, Dwastuti S and Sari D P 2016 Proc. Bio. Educ. Conf. 13 868
[22] Yuliani H, Mariati, Yulianti R and Herianto C 2017 J. Pendidik. Fis. Keilmuan 3 48
[23] Georgsdottir A S and Lubart T I 2003 Psycholog. Fr. 48 29
[24] Tran T B L, Ho T N, Mackenzie S V and Le L K 2017 Think. Sk. Creat. 25 20
[25] Awang H and Ramly I 2008 World Acad. Sci., Eng. Technol. 2 334
[26] Pizzigrili P, Valenti C, Cerioli L and Antonietti A 2014 *Procedia-Soc. Behav. Sci.* **191** 584
[27] Mumford M D, Medeiros P J and Partlow 2012 *The J. Creat. Behav.* **44** 30