Medication-related burden among patients with diabetes mellitus and its relation to diabetic control parameters: an observational study [version 1; peer review: awaiting peer review]

Ayman Jamal Noori1, Dheyaa Jabbar Kadhim1, Muqdad Abdulhasan Al-Hilal2

1Department of Clinical Pharmacy, College of Pharmacy, University of Baghdad, Baghdad, 10011, Iraq
2Specialized Center for Endocrinology and Diabetes, Alrusafa Health Directorate, Baghdad, 10011, Iraq

Abstract

Background: Diabetes mellitus (DM) refers to a group of metabolic abnormalities that are linked with significant morbidity, death, and health-care costs. Management options for patients with chronic illnesses such as diabetes are growing more complicated, which may result in a therapeutic burden for patients. The purpose of this research was to quantify the forms of concerns diabetic individuals have with medication that influence overall burden, as well as to examine the sociodemographic and clinical factors linked with negative medication use experiences and increased levels of burden.

Methods: The present research was a cross-sectional study of diagnosed diabetes patients who attended the Specialized Center for Endocrinology and Diabetes between 1st of December 2021 and 30th April 2022 in Baghdad, Iraq. The Living with Medicines Questionnaire (LMQ) was used to assess medication-related burden (MRB).

Results: The study recruited 193 patients with diabetes mellitus. The participants were adults with an average age of 50±15 years. More than half (52.8%) of the participating patients were women, and more than half (51.3%) also had one or more other chronic diseases. Additionally, 23.3% of patients had polypharmacy (≥ 5 medications). More than one-third had diabetes complications: neuropathy (45.6%) or retinopathy (38.9%). The mean LMQ score was (122.8±15.5). The research revealed that most of the DM patients experienced a moderate degree of medication burden (72.5%), followed by high burden (14.5%), minimum burden (12.4%), and no burden at all (0.5%) with no patient experiencing extremely high burden (0.0 %). Patients with uncontrolled blood glucose (high HbA1c), neuropathy, or retinopathy had a significantly higher medication burden.

Conclusions: The MRB among diabetic patients is at a very high level. This information may be helpful to health care professionals and
policymakers seeking to understand MRB for patients with diabetes. Future studies should focus on developing interventions that help reduce such burdens.

Keywords
Diabetes mellitus, medication-related Burden, Living with Medicines Questionnaire, diabetic control parameters, Iraq

This article is included in the Sociology of Health gateway.
Introduction
Diabetes is a series of metabolic abnormalities characterized by hyperglycemia which are caused by abnormalities in insulin activity, production, or even both. Type 1 and type 2 diabetes are the most common types of diabetes. Type 2 diabetes is a chronic disease defined mostly by insulin resistance and high blood glucose levels, which may lead to increased morbidity and mortality. Type 1 diabetes is characterized by autoimmune destruction of the pancreas' beta cells, leading to absolute insulin deficiency. Diabetes constitutes a severe public health care issue. According to the international diabetic federation, in 2021 the total global number of adult diabetic patients was 537 million, which represents 9.8% of the total population; 73 million live in the Middle East and North Africa (MENA), which include the highest regional prevalence of 16.2%. In Iraq, studies suggested the prevalence of diabetes (13.9%). However, some Iraqi cities have a high diabetes mellitus (DM) prevalence of as much as one in five adults.

Many patients find it burdensome to take many medications for long-term diseases. This burden is complex and influenced by various aspects, such as medicine formulation, regimen, adverse outcomes, socioeconomic burden, and healthcare influences. Medicine has been demonstrated to make patients' everyday life more difficult, including medication administration, controlling, and traveling. Medication-related burden (MRB) affects patients' health and well-being, as well as their views and behaviors regarding treatments. Diabetes is a non-communicable chronic disease that needs lifelong treatment, mostly with more than one medication to achieve the target blood glucose. The prevalence of many comorbidities and diabetic complications increase the number and burden of medication use. Extra medication and much more complicated prescription programs have been associated with poorer patient outcomes, notably higher patient non-adherence. Increased medication complexity or burden has also been associated with higher HbA1c, healthcare costs, and death rates among elderly individuals.

The purpose of this research was to quantify the sorts of concerns diabetic people have with medication that relate to total burden, as well as to examine the socio-demographic and clinical factors related with unfavourable medication use situations and high levels of burden.

Methods

Ethical approval
On March 23, 2021, the scientific and ethical committee of Baghdad University's College of Pharmacy reviewed and approved the research proposal that explains the aims of the present study as well as the anticipated procedures for data collection (ethics board approval code: 2615). Additionally, on November 11th, 2021, clearance was acquired from the Iraqi Ministry of Health (ethical board approval code: 110483). Before giving the questionnaire, the investigator described the goal of the research to each participant and got written consent to participate in the study. The participants were not offered any incentives.

Study design
This research was a descriptive cross-sectional study carried out on individuals who had been diagnosed with diabetes.

Setting
This study was carried out at a single location, and participants were recruited from patients who were seen at the Specialized Center for Endocrinology and Diabetes at the Al-Rusafa Health Directorate in Baghdad, Iraq, during the period from the first of December 2021 to the end of April 2022.

Sample size
The statistical tool G*Power (RRID:SCR_013726) edition 3.1.9.7 was utilized to determine the sample size. To a 95% confidence level, the following have been the calculated results: Df = 194, noncentrally parameter = 3.3087, critical t = 1.6527 The sample size required to be in the range of 196 individuals (f).

Eligibility criteria
The inclusion criteria of the study were diabetic patients aged 18 years and above of either sex that were diagnosed with DM at least one year before this study and used at least one pharmacological treatment for DM and were able to communicate and willing to participate in the study.

Exclusion criteria
The study's exclusion criteria were patients with cognitive, hearing, or speech deficits that affect their understanding level, pregnancy or lactation, and patients who give incomplete information.
Bias
Sampling error may arise throughout sample selection. This is especially noticeable in retrospective cohort studies when exposure and result have already occurred. In this research, sampling error is less likely. In order to get the desired conclusion, the ideal research population is well-defined, accessible, highly reliable, and reasonable. To avoid bias, participants were recruited in such a way that persons with hearing, speech, or cognitive problems that restrict topic understanding were excluded. We also used standard words to prevent confusion.

Study questionnaire
The study questionnaire is divided into two parts. The first part contains questions about patients' demographical and clinical information, including gender, age, duration of illness, social status, education level, residence, diabetes type, other chronic diseases, monthly income, emergency attendance, and several chronic medications currently used. The second part is the Living with Medicines Questionnaire (LMQ). The Arabic version of LMQ version 3 was used to measure MRB experienced by the DM patients. The LMQ-3 consists of 41 items about which participants expressed their overall degree of agreement using a 5 Point Likert scale [ranging from (strongly agree) through to (strongly disagree)]. It contained eight domains: interactions and communication with health care providers (HCPs) regarding medications (five items), practical difficulties (seven items), medications cost burden (three items), side-effects burden of drugs (four items), belief about the efficacy of medicines (six items), concern about medicine use (seven items), interferences of medications with daily life (six items), and control of drug use (three items). The sum of domain scores yields a total scale score (LMQ-3 overall score) measuring the general degree of MRB, varying from 41 to 205, with higher values suggesting greater pharmaceutical loads.

Questionnaire administration
The researcher gathered all of the data needed for this study. After briefly describing the goal of the research and obtaining an informed consent form, the patients completed the questionnaire, which took around 15-20 minutes.

Laboratory and clinical examination
Additionally, the researcher (after patients' permission) ordered blood sample withdrawal for the analysis of glycosylated hemoglobin in all patients involved in this study. Also, the researcher requested examining the patients for diabetic neuropathy using United Kingdom Screening Test, while eye examination was performed by dilated fundus examination by a specialist physician.

Statistical analyses
During the statistical analysis, version 25 of the IBM SPSS Statistics (RRID: SCR 016479) software for Microsoft Windows was used. All research items were analyzed using descriptive statistics (means, standard deviations, frequencies, and percentages). The association between biological parameters and MRB Score was determined using Pearson correlation. Using independent T-tests and one-way analysis of variance (ANOVA) testing, the effect of patients' demographical and clinical features on MRB was determined (total LMQ Score). Furthermore, an independent T-test was employed to assess the associations between medication burden (total LMQ score) and DM control/complications (neuropathy & retinopathy). A P-value below 0.05 was considered statistically meaningful.

Results
The study recruited 193 patients with diabetes mellitus. The participants were adults with an average age of (50.15±13.6 years). More than half (52.8%) of the participating patients were women, and more than three-quarters were married with primary/secondary school education. In addition, the majority (95.3%) have lived in urban areas and had low income (65.8%) (Table 1).

The mean disease duration was (9.32±7.33 years). More than three quarters (83.4%) of the participating patients had type 2 DM, and more than half (51.3%) also had one or more chronic diseases. Additionally, 23.3% of patients had polypharmacy (≥ 5 medications). Less than one-quarter (16.1%) were admitted to the emergency room during the last 12 months. More than one-third had diabetes complications: neuropathy (45.6%) or retinopathy (38.9%) (Table 2).

The mean LMQ score was (122.8±15.5). The findings showed that most of the DM patients experienced a moderate degree of medication burden (72.5%), followed by a high burden (14.5%) and a minimum burden (12.4%), and no burden at all (0.5%), with no patient experiencing extremely high burden (0.0 %) as illustrated in Table 3.

Four LMQ domains had the lowest mean of burden scores (below the average): domain 1 (relationships with HCPs), domain 2 (practical difficulties in using medicines), domain 5 (effectiveness of prescribed medications), and domain 6 (concerns about drugs use). In other words, the patients had good relationships with HCPs, low practical difficulties in
Table 1. The sociodemographic characteristics of the patients.

Subcategory	Frequency (N)	%		
Gender				
Male	91	47.2		
Female	102	52.8		
Education level				
Illiterate	22	11.4		
Primary school	89	46.1		
Secondary school	59	30.6		
College degree	23	11.9		
Social status				
Single	25	13.0		
Married	154	79.8		
Divorced	2	1.0		
Widowed	12	6.2		
Living place				
Urban	184	95.3		
Rural	9	4.7		
Cigarette smokers				
Yes	31	16.1		
No	162	83.9		
Monthly income				
Less than 0.5 million ID	127	65.8		
0.5-1 million ID	50	25.9		
More than 1 million ID	16	8.3		
Alcohol drinker				
Yes	2	1.0		
No	191	99.0		
Age (years)	Minimum	Maximum	Mean	Std. Dev
	18	77	50.15	13.6

ID: Iraqi dinar.

Table 2. The clinical characteristics of the patients.

Clinical characteristic	Subcategory	Frequency (N)	%
DM type	Type 1 DM	32	16.6
	Type 2 DM	161	83.4
No. of other chronic diseases	0	94	48.7
	1	65	33.7
	2	31	16.1
	3	3	1.6
Emergency admission in the last 12 months	Yes	31	16.1
	No	162	83.9
No. of emergency admission in the last 12 months	1	8	4.1
	2	15	7.8
	3	3	1.6
	≥3	5	2.5
No. of chronic medications	1	18	9.3
	2	58	30.1
	3	42	21.8
	4	30	15.5
	5	20	10.4
	6	13	6.7
	≥7	12	6.2
using medicine, reasonable belief in their effectiveness, and shared concerns about medicine use. On the other hand, four domains had the highest mean of burden scores: domain 3 (cost related burden), domain 4 (side effects of medicines), domain 7 (impact of using medications on daily life), and domain 8 (autonomy to vary regimen). In other words, the patients had difficulty with medicine costs, could not change their regimen, and their medicine impacted their daily life (Table 4).

There were no significant differences in medication burden (total LMQ) according to patient demographic characteristics (Table 5).

Patients who were admitted to the emergency department (ED) last year had a significantly (P-value <0.05) higher medication burden (total LMQ) compared to not admitted patients (Table 6).

Table 2. Continued

Clinical characteristic	Subcategory	Frequency (N)	%
Neuropathy	Without Neuropathy	104	53.9
	With Neuropathy	88	45.6
	Examination not accomplished	1	0.5
Retinopathy	Without retinopathy	113	58.5
	With retinopathy	75	38.9
	Examination not accomplished	5	2.6
DM duration (years)	Minimum	1.00	9.32
	Maximum	38.00	7.33
	Mean	9.32	7.33

DM: diabetes mellitus.

Table 3. Perceived MRB using LMQ in patients with diabetes.

LMQ overall score (mean ± SD)	122.8±15.5		
Degree of burden	The range of each category	Number of patients	%
No burden	(41-73)	1	0.52
Minimum burden	(74-106)	24	12.44
Moderate burden	(107-139)	140	72.54
High burden	(140-172)	28	14.50
Extremely high burden	(173-205)	-	-

LMQ: Living with Medicines Questionnaire; MRB: medication-related burden; SD: standard deviation.

Table 4. Descriptive statistics of LMQ domains.

LMQ themes	Minimum	Maximum	Mean	Std. deviation
Domain 1: Relationships with HCPs	6.00	20.00	12.52	2.26
Domain 2: Practical difficulties in using medicines	9.00	29.00	20.10	3.88
Domain 3: Cost-related burden	4.00	15.00	11.41	2.63
Domain 4: Side effects of medicines	4.00	19.00	12.68	3.25
Domain 5: Effectiveness of prescribed medications	8.00	22.00	14.29	3.08
Domain 6: Concerns about medicines use	14.00	35.00	22.45	3.77
Domain 7: Impact of using medicines on daily life	6.00	28.00	19.20	3.92
Domain 8: Autonomy to vary regimen	5.00	15.00	10.20	1.73

HCPs: health care professionals; LMQ: Living with Medicines Questionnaire.
Table 5. Influence of patients’ demographics on medication burden (total LMQ).

Characteristics	N	Mean	Std. deviation	P-value
Total LMQ				
Age <65 years	169	123.03	15.52	0.661
≥65 years	24	121.54	15.79	
Gender				
Total LMQ Male	91	122.20	15.41	0.586
Total LMQ Female	102	123.42	15.67	
Residence				
Total LMQ Urban	184	122.92	15.74	0.749
Total LMQ Rural	9	121.22	10.52	
Total LMQ No	191	122.95	15.55	
DM type				
Total LMQ Type 1	32	125.47	15.41	0.296
Total LMQ Type 2	161	122.32	15.54	
Social status				
Total LMQ Without spouse	39	123.95	15.39	0.62
Total LMQ With spouse	154	122.56	15.59	
Income				
Total LMQ <0.5 million ID	127	123.36	15.62	0.518
Total LMQ 0.5-1.0 million ID	50	122.88	13.35	
Total LMQ >1.0 million ID	16	118.63	20.78	
Education				
Total LMQ Illiterate	22	128.32	14.03	0.057
Total LMQ primary school	89	123.47	14.44	
Total LMQ Secondary school	59	122.56	15.23	
Total LMQ University	23	115.91	19.67	

ID: Iraqi dinar; LMQ: Living with Medicines Questionnaire.

Table 6. Influence of patients’ clinical characteristics on medication burden (total LMQ score).

Clinical characteristics	N	Mean	Std. deviation	P-value
DM type				
Total LMQ Type 1	32	125.47	15.41	0.296
Total LMQ Type 2	161	122.32	15.54	
ED admission last year				
Total LMQ Yes	31	130.65	11.83	0.002*
Total LMQ No	162	121.35	15.72	
Chronic disease				
Total LMQ No	94	122.10	16.49	0.515
Total LMQ Yes	99	123.56	14.59	
No. of chronic medications				
Total LMQ ≤5	168	122.48	15.72	0.394
Total LMQ >5	25	125.32	14.17	
There were significant (P-value <0.05) differences in medication burden in terms of total LMQ scores according to diabetes control (HbAlc) and complications (neuropathy and retinopathy). In other words, patients with uncontrolled blood glucose (high HbA1c), neuropathy, or retinopathy had a significantly (P-value <0.05) higher medication burden (total LMQ) (Table 7).

Discussion

Diabetes is a chronic condition requiring long-term medical treatment. Whenever lifestyle adjustments alone fail to achieve or maintain the desired glycemic control, the majority of patients are routinely recommended prescription medicine. The vast majority of published studies have understood the biological viewpoint of MRB as the quantity of pills or treatments frequently taken by specific patients to treat their conditions, ignoring the patient’s views. To our knowledge, no published research has quantified MRB amongst diabetic patients in Iraq. Consequently, the purpose of this research was to assess the problems diabetic patients encounter with drugs that contribute to the overall MRB and the variables that affect them.

The current study indicated that nearly all the participants (99%) suffered from varying degrees of MRB. A study in Qatar found that 90% of DM patients were suffering from MRB. Utilization of prescription medication to manage glucose levels and manage concomitant illnesses is an important aspect of diabetes therapy and might even greatly contribute to the MRB for this disease. The most frequent degree of MRB in the current study was moderate burden (72.5%); however, inconsistent with the results of the present study, most DM participants in Qatar were of minimum burden (66.8%). The high level of services administered to DM patients in Qatar at low cost and in one clinical setting may explain such findings.

Four domains had the highest mean of burden scores: cost-related burden, side effects of medicine, the impact of using medication on daily life, and autonomy to vary regimen. Traditionally the focus of guidelines for clinical practice on specific diseases, the growing coexistence of various chronic conditions, and the lack of systematic strategies for addressing issues related with the implications of therapies supposed that patients with long-term illnesses such as DM had to deal with complex medication-related instructions and tasks for the remainder of their lives. Dealing with the unpleasant effects of medication and needing to adjust daily activities to meet the requirements of therapeutic interventions imposes an additional stress on individuals. On the other hand, the patients had good relationships with HCPs, low practical difficulties in using medicine, reasonable belief in their effectiveness, and shared concerns about medicine use. The preponderance of patients with T2DM in Iraq (76.3%) according to a prior research were adamant

Table 6. Continued

Disease duration	N	Mean	Std. deviation	P-value
Total LMQ ≤5 years	73	120.60	14.35	0.118
>5 years	120	124.21	16.10	

*Significant (P-value <0.05) according to independent T-test; DM: diabetes mellitus; ED: emergency department; LMQ: Living with Medicines Questionnaire.

Table 7. The relationships between medication burden (total LMQ) and DM control/complications (neuropathy & retinopathy).

Medication burden parameter	HbA1c	N	Mean	Std. deviation	P-value
Total LMQ ≤7	35	115.06	15.09	0.001*	
>7	157	124.65	15.14		

Neuropathy	No	104	119.60	14.33	0.001*
Yes	88	126.84	16.05		

Retinopathy	No	113	120.55	15.21	0.009*
Yes	75	126.49	15.26		

*Significant (P-value <0.5) according to independent T-test. DM: diabetes mellitus; HbA1c: haemoglobin A1c; LMQ: Living with Medicines Questionnaire.
about the requirement of anti-diabetic therapy for ensuring constant glycemic control (scores of specific-necessity were more significant than the score of specific-concern).29

There were no significant differences in medication burden (total LMQ) according to patient demographic characteristics. However, a study in Qatar found that unmarried, female gendered DM patients demonstrated significantly higher scores of medication burden.19 Patients admitted to ED last year had substantially higher MRB (total LMQ) compared to not admitted patients. Previous studies showed that high MRB leads to decreased medication adherence,19,22 and the non-adherence to medication increases emergency room visits and hospitalization.30 Patients with uncontrolled blood glucose (high HbA1c), neuropathy, or retinopathy had significantly higher medication burdens. Diabetes-related microvascular and macrovascular complications in many patients with type 2 diabetes result in polypharmacotherapy and a high pill burden.31,32

The limitations of the present research demand examination. First, an MRB measurement was patient-reported and hence subjective. The research sample was limited to a single site; therefore, the results may not be representative of the population of individuals with DM in Iraq. Thirdly, due to the cross-sectional design of the research, we were unable to examine how these patient experiences evolved over time.

Conclusions
The medicine burden for diabetic people is at a very high level. This knowledge may assist pharmacists, doctors, nurses, and other clinicians, as well as policymakers, in comprehending MRB for people with diabetes. Accordingly, future studies should continue to measure MRB while moving the science toward developing interventions aimed at reducing such burdens.

Data availability
Underlying data
Zenodo: Demographic details, as well as questionnaire responses, https://doi.org/10.5281/zenodo.6968395.33

This project contains the following underlying data:

- Article’s data.xlsx (Demographic details, as well as questionnaire responses)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments
The authors thank the participants and the Specialized Center for Endocrinology and Diabetes, Alrusafa Health Directorate, Baghdad/Iraq team for their continuous support during data collection and patient interviews.

References
1. American Diabetes A: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013; 36(Suppl 1): S67-S74. PubMed Abstract | Publisher Full Text
2. Carrillo-Sepulveda MA, Maddie N, Johnson CM, et al.: Vascular hyperacetylation is associated with vascular smooth muscle dysfunction in a rat model of non-obese type 2 diabetes. Mol. Med. 2022; 28(1): 1-14. PubMed Abstract | Publisher Full Text
3. Care D: Care in Diabetes—2022. Diabetes Care. 2022; 45: 517.
4. Rashad BH, Abdi BA, Naziq IA, et al.: Risk Factors Associated with Poor Glycemic Control in Patients with Type Two Diabetes Mellitus in Zakho City. J. Contemp. Med. Sci. | Vol. 2021; 7(3): 167-170.
5. diabetesatlas.org: Iraq diabetes report 2000. [cited 2022 Jul 23]. Reference Source.
6. Alogally MH, Alsafar AJ, Hamid MB: Prevalence of prediabetes among adults in Baghdad/Iraq, Editorial Board Members. 2000; 17(3&4): 215-222.
7. Mansour AA, Al-Maliky AA, Kasem B, et al.: Prevalence of diagnosed and undiagnosed diabetes mellitus in adults aged 19 years and older in Basrah, Iraq. Diabetes Metab. Syndr. Obes. 2014; 7: 139. Publisher Full Text
8. Mohammed MA, Moles RJ, Chen TF: Medication-related burden and patients’ lived experience with medicine: a systematic review and metasynthesis of qualitative studies. BMJ Open. 2016; 6(2): e010035. PubMed Abstract | Publisher Full Text
9. Kraka J, Morecroft CW, Rowe PH, et al.: Measuring the impact of long-term medicines use from the patient perspective. Int. J. Clin. Pharm. 2014; 36(4): 675-678. PubMed Abstract | Publisher Full Text
10. Sav A, Kendall E, McMillan SS, et al.: “You say treatment, I say hard work”: treatment burden among people with chronic illness and their carers in Australia. Health Soc. Care Community. 2013; 21(5): 665-674. PubMed Abstract | Publisher Full Text
11. Sav A, King MA, Whitey JA, et al.: Burden of treatment for chronic illness: a concept analysis and review of the literature. Health Expect. 2015; 18(3): 312-324. PubMed Abstract | Publisher Full Text
12. Ab Rahman N, Lim MT, Thevendran S, et al.: Medication regimen complexity and medication burden among patients with type
2 diabetes mellitus: a retrospective analysis. Front. Pharmacol. 2022; 883.

13. Claxton AJ, Cramer J, Pierce C: A systematic review of the associations between dose regimens and medication compliance. Clin. Ther. 2001; 23(8): 1296–1310. PubMed Abstract | Publisher Full Text

14. de Vries ST, Keers JC, Visser R, et al.: Medication beliefs, treatment complexity, and non-adherence to different drug classes in patients with type 2 diabetes. J. Psychosom. Res. 2014; 76(2): 134–138. PubMed Abstract | Publisher Full Text

15. Labib ALM, Martins AP, Raposo JF, et al.: The association between polypharmacy and adverse health consequences in elderly type 2 diabetes mellitus patients; a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2019; 155: 107804. PubMed Abstract | Publisher Full Text

16. Rodbard HW, Green AJ, Fox KM, et al.: Impact of type 2 diabetes mellitus on prescription medication burden and out-of-pocket healthcare expenses. Diabetes Res. Clin. Pract. 2010; 87(3): 360–365. PubMed Abstract | Publisher Full Text

17. Wimmer BC, Bell JS, Fastbom J, et al.: Medication regimen complexity and polypharmacy as factors associated with all-cause mortality in older people: a population-based cohort study. Ann. Pharmacother. 2016; 50(2): 89–95.

18. Abdelaziz TS, Sadek KM: Effect of reducing medication regimen complexity on glycemic control in patients with diabetes. Rom. J. Intern. Med. 2019; 57(1): 23–29. PubMed Abstract | Publisher Full Text

19. Zidan A, Awaisu A, El-Hajj MS, et al.: Medication-related burden among patients with chronic disease conditions: perspectives of patients attending non-communicable disease clinics in a primary healthcare setting in Qatar. Pharmacy. 2018; 6(3): 85. PubMed Abstract | Publisher Full Text

20. Katusiime B, Corlett SA, Krskka J: Development and validation of a revised instrument to measure burden of long-term medicines use: the Living with Medicines Questionnaire version 3. Patient Relat. Outcome Meas. 2018; 9: 155–168. PubMed Abstract | Publisher Full Text

21. Zidan A, Awaisu A, Hasan S, et al.: The Living with Medicines Questionnaire: translation and cultural adaptation into the Arabic context. Value Health Reg. Issues. 2016; 10: 36–40. PubMed Abstract | Publisher Full Text

22. Awad A, Alkadhib A, Albasam A: Medication-related burden and medication adherence among geriatric patients in Kuwait: a cross-sectional study. Front. Pharmacol. 2020; 11: 1296. PubMed Abstract | Publisher Full Text

23. Sohellykhash S, Rashidi M, Dehghan F, et al.: Prevalence of peripheral neuropathy in diabetic patients. Iranian Journal of Diabetes and Obesity. 2013; 5(3): 107–113.

24. Krskka J, Corlett SA, Katusiime B: Complexity of medicine regimens and patient perception of medicine burden. Pharmacy. 2019; 7(1): 18. PubMed Abstract | Publisher Full Text

25. Gallacher K, Morrison D, Jani B, et al.: Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research. PLoS Med. 2013; 10(6): e1001473. PubMed Abstract | Publisher Full Text

26. Tran V-T, Monitori VM, Eton DT, et al.: Development and description of measurement properties of an instrument to assess treatment burden among patients with multiple chronic conditions. BMC Med. 2012; 10(1): 1–10.

27. Tran V-T, Barnes C, Monitori VM, et al.: Taxonomy of the burden of treatment: a multi-country web-based qualitative study of patients with chronic conditions. BMC Med. 2015; 13(1): 1–15.

28. Tran V-T, Harrington M, Monitori VM, et al.: Adaptation and validation of the Treatment Burden Questionnaire (TBQ) in English using an internet platform. BMC Med. 2014; 12(1): 1–9.

29. Hussein EA, Kadhim DJ, Al-Auqbi TF: Belief About Medications Among Type 2 Diabetic Patients Attending the National Diabetes Center in Iraq. Iraqi Journal of Pharmaceutical Sciences. 2017; 66–74. (P-ISSN: 1683-3597, E-ISSN: 2521-3512).

30. Polonsky WH, Henry RR: Poor medication adherence in type 2 diabetes: recognizing the scope of the problem and its key contributors. Patient Prefer. Adherence. 2016; 10: 1299–1307. PubMed Abstract | Publisher Full Text

31. Morrish NJ, Wang SL, Stevens LK, et al.: Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001; 44(2): S14–S21. PubMed Abstract | Publisher Full Text

32. Stamler J, Vaccaro O, Neaton JD, et al.: Multiple Risk Factor Intervention Trial Research G. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993; 16(2): 434–444. PubMed Abstract | Publisher Full Text

33. Noori AJ: Demographic details, as well as questionnaire responses. [Dataset]. Zenodo. 2022. Publisher Full Text
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com