Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein

Ari J. Firestone1*, Joshua S. Weinger2*, Maria Maldonado2, Kari Barlan1, Lance D. Langston2, Michael O’Donnell2, Vladimir I. Gelfand3, Tarun M. Kapoor2 & James K. Chen1

The conversion of chemical energy into mechanical force by AAA+ (ATPases associated with diverse cellular activities) ATPases is integral to cellular processes, including DNA replication, protein unfolding, cargo transport and membrane fusion. The AAA+ ATPase motor cytoplasmic dynein regulates ciliary trafficking, mitotic spindle formation and organelle transport, and dissecting its precise functions has been challenging because of its rapid timescale of action and the lack of cell-permeable, chemical modulators. Here we describe the discovery of ciliobrevins, the first small-molecule antagonists of cytoplasmic dynein. Ciliobrevins perturb protein trafficking within the primary cilia, leading to their malformation and Hedgehog signalling blockade. Ciliobrevins also prevent spindle pole focusing, kinetochore–microtubule attachment, melanosome aggregation and peroxisome motility in cultured cells. We further demonstrate the ability of ciliobrevins to block dynein–dependent microtubule gliding and ATPase activity in vitro. Ciliobrevins therefore will be useful reagents for studying cellular processes that require this microtubule motor and may guide the development of additional AAA+ ATPase superfamily inhibitors.

The AAA+ superfamily of enzymes couples ATP hydrolysis with the generation of mechanical force to regulate diverse aspects of prokaryote and eukaryote biology. ATP-dependent conformational changes can propagate through these molecular machines to complete cellular processes within seconds, and chemical inhibitors that act rapidly and reversibly are much-needed tools for investigating the cellular functions of individual superfamily members. Yet, so far, only one AAA+ ATPase mechanoenzyme has been selectively targeted by a small molecule.

We recently conducted a high-throughput screen for inhibitors of the Hedgehog (Hh) pathway (Fig. 1a), a key mediator of embryonic development and oncogenesis. Our study was designed to identify compounds that act downstream of Smoothened (Smo), a transmembrane Hh signalling protein, and one of the small molecules, HPI-4 (Fig. 1b, 1), blocked Hh pathway activation in cells lacking the negative regulator Suppressor of Fused (Sufu). Prolonged treatment of cells with this benzoyl dihydroquinazolinone also reduced the number and size of primary cilia, a microtubule-based extension of the plasma membrane that is required for Hh signalling. Intrigued by these cellular phenotypes, we investigated the biochemical mechanism of HPI-4.

We first synthesized a series of analogues (Fig. 1b; 2–9) and evaluated their effects on Hh signalling and primary cilia formation (Fig. 1c, d and Supplementary Figs 1–3). Chemical derivatives lacking either a 3- or 4-chloro substituent on the benzoyl ring system (2 and 6) or the acyclic ketone (9) were significantly less active in either assay (Fig. 1b, d). The other small molecules segregated into 2,4-dichlorobenzoyl dihydroquinazolinones that inhibit both Hh signalling and primary cilia formation (1, 3–5), which we henceforth name ‘ciliobrevins A–D’, and monochlorobenzoyl analogues that can block Hh target gene expression without inducing ciliary defects (7 and 8) (Fig. 1b, d).

Hh signalling is primarily mediated by the transcription factors Gli2 and Gli3, which exist in a pathway state-dependent balance of amino (N)-terminal repressors (Gli2/3R), full-length polypeptides (Gli2/3FL) and transcriptional activators (Gli2/3A) (Fig. 1a). Both repressor and activator formation require the primary cilia, and accordingly ciliobrevins altered the Gli3FL/Gli3R ratio in cells stimulated with the N-terminal domain of Sonic Hedgehog (Shh-N) (Fig. 1e; 30 μM doses of each compound). Shh-N-dependent Gli3FL phosphorylation was also reduced by these compounds, possibly reflecting loss of Gli3A. In contrast, none of the other analogues had a significant effect on the Gli3 processing or phosphorylation state (Fig. 1e).

To understand better the basis of these phenotypes, we took advantage of the temporal control afforded by chemical perturbations. Although prolonged exposure to these compounds causes defects in axonal morphology, shorter treatments can divulge ciliobrevin-sensitive processes within structurally intact cilium. Because Hh pathway activation coincides with Gli2 accumulation at the distal ciliary tip, we examined the effect of ciliobrevins on Gli2 localization (Fig. 1f). We incubated Hh-responsive cells with individual compounds at a 30 μM concentration in the absence or presence of Shh-N-conditioned medium for 4 h. Gli2 localization was unchanged by derivatives that do not significantly perturb ciliogenesis (2 and 8), whereas ciliobrevins A and D (1 and 5) induced ciliary Gli2 levels comparable to that in Shh-N-stimulated cells.

The ability of ciliobrevins to increase ciliary Gli2 levels suggests that these compounds might target protein trafficking mechanisms within this organelle. Intracellular transport (IFT) can be resolved into anterograde trafficking, which requires the plus-end-directed motor kinesin-2 and the IFTB multisubunit complex, and retrograde trafficking, which uses the minus-end-directed motor cytoplasmic dynein 2 and the IFTA complex. Loss of the primary cilia-specific cytoplasmic dynein 2 heavy chain (Dync2h1) alters cilia morphology12, reduces Hh target gene expression13 and increases ciliary levels of Gli214. Similarities between these genetic phenotypes and the effects of ciliobrevins led us to hypothesize that these small molecules might inhibit cytoplasmic dynein 2. We therefore examined the effect of ciliobrevins on the subcellular localization of IFTB component IFT88, which requires cytoplasmic dynein 2-dependent retrograde transport for its return to the basal body. Treating cells for 1 hour with ciliobrevin D (5) but not DMSO or an inactive analogue (2) significantly increased IFT88 levels at the distal tip of primary cilia (Supplementary Fig. 4), providing further evidence that ciliobrevins inhibit cytoplasmic dynein 2 function.

Cytoplasmic dynein complexes have other cellular functions, including the crosslinking and focusing of microtubule minus ends within the mitotic spindle. These actions create the fusin shape and localize γ-tubulin-containing complexes to the spindle poles. Cytoplasmic dynein 1 inhibition by blocking antibodies or dominant-negative constructs perturbs spindle assembly, resulting in disorganized poles and reduced γ-tubulin recruitment15,16. To determine whether
cilobrevins recapitulate these phenotypes, we treated a metaphase-enriched population of NIH-3T3 cells with 50 μM of either cilobrevin D (5) or an inactive analogue (2) for 1 hour and examined their mitotic structures. Cells treated with cilobrevin D showed abnormal (unfocused, multipolar or collapsed) spindles with disrupted γ-tubulin localization (Fig. 2a, b and Supplementary Fig. 5a), whereas cells incubated with the non-cilia-disrupting analogue or vehicle alone showed normal spindle morphologies. Similar cilobrevin-induced spindle defects were observed in HeLa cells, although to a lesser extent (Fig. 2b). Cytoplasmic dynein 1 is also required for establishing stable kinetochore–microtubule interactions\(^{13}\), and cilobrevin D treatment disrupted the formation of cold-stable microtubules that mediate proper spindle-chromosome attachments (Fig. 2c).

To investigate if these spindle-disruptive effects were associated with altered dynein localization, we examined binding partners that recruit or co-localize with this motor. Immunofluorescence microscopy showed that p150-Glued, a dynactin component proposed to recruit or co-localize with this motor, was also unaffected by cilobrevin D, as assessed in nocodazole-treated cells to obviate effects due to microtubule-attachment status.
Figure 2 | Ciliobrevins disrupt spindle pole assembly and kinetochore–microtubule attachment. a, Mitotic spindles observed in NIH-3T3 cells treated with MG132 for 90 min and subsequently cultured with either an inactive analogue (2) or ciliobrevin D (5) at a 50 μM dose or DMSO for 1 h. Staining for DNA, α-tubulin and γ-tubulin is shown. b, Quantification of spindle phenotypes in NIH-3T3 and HeLa cells treated as described above and scored for either bipolar or abnormal morphologies. Data are the average of three independent experiments ± s.e.m., each including at least 150 spindles. c, Kinetochore–microtubule interactions analysed in metaphase-arrested NIH-3T3 cells treated with DMSO or 50 μM 5 and then incubated on ice for 10 min. Staining for DNA, the kinetochore marker CREST and α-tubulin is shown. Insets highlight individual kinetochore–microtubule attachments or untethered kinetochores (400% magnification). d, Localization of p150-Glued in metaphase-arrested NIH-3T3 cells treated with DMSO or 50 μM 5. Staining for DNA, α-tubulin and p150-Glued is shown. Scale bars: a, 4 μm; c, d, 5 μm. (Supplementary Fig. 6). We similarly observed that Zeste white 10 (Zw10), a component of the Rod/Zw10/Zwilch complex that recruits cytoplasmic dynein I to kinetochores17, and the kinetochore-associated protein Centromere protein E (CENP-E)18 correctly localized to kinetochores under these conditions (Supplementary Fig. 6), indicating that their recruitment and the kinetochore structure itself are not disrupted by ciliobrevins. Thus, ciliobrevin-induced spindle phenotypes most likely result from dynein inhibition rather than mislocalization.

To characterize further the mitotic defects associated with ciliobrevin treatment, we conducted real-time confocal microscopy of green fluorescent protein (GFP)-tubulin-expressing NIH-3T3 cells (Supplementary Figs 7, 8). Within minutes of ciliobrevin D treatment, spindles collapsed, bipolarity was lost and spindle poles appeared disorganized (Supplementary Fig. 7b). Upon compound washout, bipolar spindles quickly re-emerged and chromosomes segregated at anaphase without any pronounced defects (Supplementary Fig. 7c, d). Ciliobrevin D addition also reversibly disrupted the pre-formed spindles of metaphase-arrested cells (Supplementary Fig. 8b, c) and reduced overall microtubule levels (Supplementary Fig. 8d). These latter effects are mitosis-specific, as microtubule levels in non-dividing cells were unaffected by inhibitor treatment (Supplementary Fig. 7e, f). Taken together, these results reveal that cytoplasmic dynein is not only required for spindle pole assembly but also actively participates in its maintenance.

Cytoplasmic dynein 1 also regulates organelle trafficking, such as the melanotonin-induced aggregation of melanosomes in Xenopus melanophores19. To determine if melanosome trafficking is sensitive to ciliobrevins, we cultured Xenopus melanophores with melanoctye-stimulating hormone to disperse these pigment granules and then treated the cells with melatonin and various concentrations of ciliobrevin D (5) or an inactive analogue (2). Ciliobrevin D reversibly inhibited melanosome aggregation, but the non-cilia-disrupting derivative had no discernible effect at comparable doses (Fig. 3a, b and Supplementary Movies 1–3). Ciliobrevin D similarly abrogated the movement of peroxisomes in Drosophila S2 cells (Fig. 3c–e and Supplementary Movies 4 and 5), consistent with the role of cytoplasmic dynein in their bidirectional motility20.

Collectively, these results indicate that ciliobrevins are specific, reversible inhibitors of disparate cytoplasmic dynein-dependent processes. Ciliobrevins do not perturb cellular mechanisms that are independent of dynein function, including actin cytoskeleton organization (Supplementary Fig. 9) and the mitogen-activated protein kinase and phosphoinositol-3-kinase signalling pathways. To examine more directly whether cytoplasmic dynein is the direct target of ciliobrevins, we evaluated their effects on dynein-dependent microtubule gliding in vitro. Ciliobrevins A and D (1 and 5) retarded the ATP-dependent

Figure 3 | Ciliobrevins inhibit melanosome aggregation and peroxisome motility. a, Brightfield images of Xenopus melanophores treated with various concentrations of ciliobrevin D (5) or an inactive derivative (2) for 10 min, stimulated with melatonin in the presence of the compounds for 30 min, and then paraformaldehyde-fixed. b, Melanophores treated with 5 as before, washed in medium containing melatonin alone, and then imaged. Scale bars, 100 μm. c, d, Motility of GFP-labelled peroxisomes in Drosophila S2 cells cultured in the absence (c) or presence (d) of 5. Overlay of videomicroscopy frames at t = 0 s (red) and t = 10 s (green) are shown. Scale bar, 5 μm. e, Vector distributions for the GFP-labelled peroxisomes with movement towards and away from the cell centre denoted by negative and positive bin values, respectively.
movement of fluorescently labelled microtubules on bovine cytoplasmic dynein-coated glass slides in a reversible and dose-dependent manner (Fig. 4a–c, Supplementary Fig. 10 and Supplementary Movies 6–8); analogues that did not perturb cytoplasmic dynein-dependent processes in our cell-based assays (2 and 8) had minimal effects (Fig. 4a, b and Supplementary Movie 9). The conserved structure–activity relationships of dihydroyquinazolinones in the microtubule gliding and cell-based assays confirm cytoplasmic dynein as the ciliobrevin target, and neither ciliobrevin A nor D significantly affected K560/kinesin-1-dependent microtubule gliding in vitro at 100 μM concentrations (Fig. 4d and Supplementary Movies 10–12). The compounds do not broadly target members of the AAA+ ATPase family either, as they have no effect on p97-dependent degradation of endoplasmic-reticulum-associated proteins (Supplementary Fig. 11) or Mcm2–7-mediated DNA unwinding (Supplementary Fig. 12).

We next investigated how ciliobrevins abrogate cytoplasmic dynein function. Neither ciliobrevin A nor D was able to disrupt the association between ADP-bound dynein and microtubules, as determined in a co-sedimentation assay (Supplementary Fig. 13). Both small molecules, however, were able to inhibit the ATPase activity of bovine brain cytoplasmic dynein in a concentration-dependent manner, whereas their inactive analogue (2) could not (Supplementary Fig. 14). The compounds had analogous effects on the ATPase activity of recombinant rat dynein motor domain, but none significantly inhibited the ATPase activities of recombinant motor domains derived from human kinesin-1 or kinesin-5 (Fig. 4e). Ciliobrevin efficacies at various ATP concentrations suggest that these small molecules act in a nucleotide-competitive manner (Fig. 4f). Consistent with this mechanism, ciliobrevin A also inhibited ultraviolet-light-induced cleavage of the cytoplasmic dynein motor domain in the presence of sodium vanadate and ATP (Supplementary Fig. 15).

Our studies establish ciliobrevins as the first small molecules known specifically to inhibit cytoplasmic dynein in vitro and in live cells. Although the ATP analogue erythro-9-[3-(2-hydroxynonyl)]adenine and the antioxidant nordihydroguaiaretic acid have been previously reported to abrogate dynein function, these compounds are promiscuous enzyme antagonists. The natural product purealin can partly inhibit dynein ATPase activity in vitro, but its ability to block cytoplasmic dynein-dependent cellular processes has not been demonstrated. Our studies indicate that ciliobrevins can inhibit both cytoplasmic dynein 1 and 2, and, accordingly, the compounds will be broadly applicable probes of dynein-dependent processes. Further development of ciliobrevin-like molecules could lead to isoform-selective inhibitors of this minus-end-directed microtubule motor and perhaps specific antagonists of other AAA+ ATPase superfamily members.

METHODS SUMMARY

Hh signalling assays. Hh signalling and Gli3 processing assays were performed as described.

Cell imaging. Cilia were immunostained with anti-Arl13b antibody (T. Caspary), and cilia size was determined by dividing the number of Arl13b-positive pixels by the number of nuclei per image. Ciliary levels of Gli2 and IFT88 were determined by immunostaining cells with anti-Gli2 (R&D Systems) or anti-IFT88 (ProteinTech Group) antibodies. Analyses of mitotic spindles and kinetochore–microtubule attachments in fixed cells were performed as described, and real-time confocal microscopy was conducted with NIH-3T3 cells stably expressing GFP-tubulin. Melanosomes and pexosomes motility studies were conducted as reported.

Dynein activity assays. Bovine brain dynein was purified as described, and its microtubule gliding activity was assayed as reported with modifications. Recombinant rat cytoplasmic dynein motor domain was heterologously expressed and purified as described. ATPase activities were determined using a Malachite Green assay (Novus Biologicals). Full Methods are in the Supplementary Information.

Received 15 June 2011; accepted 1 February 2012.
Published online 18 March 2012.

1. White, S. R. & Lauring, B. AAA+ ATPases: achieving diversity of function with conserved machinery. *Traffic* **8**, 1657–1667 (2007).
2. Scholey, J. M. Intraflagellar transport. *Annu. Rev. Cell Dev. Biol.* **19**, 423–443 (2003).
3. Merdes, A., Ramyar, K., Vechoi, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. *Cell* **87**, 447–458 (1996).
4. Akhmanova, A. & Hammer, J. A. III, Linking molecular motors to membrane cargo. *Curr. Opin. Cell Biol.* **22**, 479–487 (2010).
5. Chou, T. F. et al. Reversible inhibitor of p97, DBeq, impairs both ubiquitin-dependent and autophagic protein clearance pathways. *Proc. Natl Acad. Sci. USA* **108**, 4834–4839 (2011).
6. Hyman, J. M. et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. *Proc. Natl Acad. Sci. USA* **106**, 14132–14137 (2009).
7. Jiang, J. & Hui, C.-C. Hedgehog signaling in development and cancer. *Dev. Cell* **15**, 801–812 (2008).
8. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. *Nature Rev. Genet.* **11**, 331–344 (2010).

Figure 4 | Ciliobrevins inhibit cytoplasmic dynein-dependent microtubule gliding and ATPase activity. a, Montages of fluorescent microtubules moving on bovine dynein-coated glass slides in the presence of ATP and either DMSO, ciliobrevin A (1), ciliobrevin D (5) or non-cilia-disrupting analogues (2 and 8). All compounds were tested at a 100 μM concentration and the vertically stacked images were acquired 2 s apart. Scale bar, 10 μm. b, Quantification of the compounds’ effects on dynein-dependent microtubule gliding. Data are the average velocities for at least 56 microtubules ± s.e.m. Asterisks indicate P < 10−8 and at least 30% inhibition for individual compounds versus DMSO. c, Dose responses of 1 and 5 in the dynein-dependent assay. Data are the average velocities for at least 45 microtubules ± s.e.m. d, Effects of 1, 2, 5, 8 and the competitive ATP inhibitor adenylyl imidodiphosphate (A-P) on microtubule gliding driven by the K560 N-terminal fragment of kinesin-1. Dihydroyquinazolinones and AMP-PNP were tested at a 100 μM and 1 mM concentrations, respectively. Data are the average velocities for at least 34 microtubules ± s.e.m., and asterisks indicate P < 0.01 for individual compounds versus DMSO. e, Effects of 1, 2 and 5 on the ATPase activities of recombinant motor domains derived from rat cytoplasmic dynein, human kinesin-1 and human kinesin-5. Compound concentrations in micromolar units are shown, and data are the average ATPase activities for two independent experiments ± s.d. f, Hanes–Woolf plot of rat dynein motor ATPase activity (V) suggesting the nucleotide-competitive activity of 5.
9. Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. *Genes Dev.* **24**, 670–682 (2010).

10. Kim, J., Kato, M. & Beachy, P. A. GlI2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. *Proc. Natl Acad. Sci. USA* **106**, 21666–21671 (2009).

11. Huangfu, D. & Anderson, K. V. Cilia and Hedgehog responsiveness in the mouse. *Proc. Natl Acad. Sci. USA* **102**, 11325–11330 (2005).

12. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. *Nature* **382**, 420–425 (1996).

13. Gaglio, T., Dionne, M. A. & Compton, D. A. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. *J. Cell Biol.* **138**, 1055–1066 (1997).

14. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. *Mol. Biol. Cell* **11**, 2047–2056 (2000).

15. Varma, D., Monzo, P., Stehman, S. A. & Vallee, R. B. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. *J. Cell Biol.* **182**, 1045–1054 (2008).

16. King, S. J., Brown, C. L., Maier, K. C., Quintyne, N. J. & Schroer, T. A. Analysis of the dynein-dynactin interaction in vitro and in vivo. *Mol. Biol. Cell* **14**, 5089–5097 (2003).

17. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. *J. Cell Biol.* **142**, 763–774 (1998).

18. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. *Nature* **359**, 536–539 (1992).

19. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. *J. Cell Biol.* **156**, 855–865 (2002).

20. Kim, H. et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. *J. Cell Biol.* **176**, 641–651 (2007).

21. Bouchard, P., Penningroth, S. M., Cheung, A., Gagnon, C. & Bardin, C. W. erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxymethylase activities. *Proc. Natl Acad. Sci. USA* **78**, 1033–1036 (1981).

22. Arasahi, K., Tani, K., Yoshimori, T., Stephens, D. J. & Tagaya, M. Nordinhydroxuareaic acid affects multiple dynein-dynactin functions in interphase and mitotic cells. *Mol. Pharmacol.* **71**, 454–460 (2007).

23. Schliwa, M., Ezzell, R. M. & Euteneuer, U. Erythro-9-[3-(2-Hydroxynonyl)] adenine is an effective inhibitor of cell motility and actin assembly. *Proc. Natl Acad. Sci. USA* **81**, 6044–6048 (1984).

24. Park, S., Lee, D. K. & Yang, C. H. Inhibition of fos-jun-DNA complex formation by dihydroguaiaretic acid and in vitro cytoxic effects on cancer cells. *Cancer Lett.* **127**, 23–28 (1998).

25. Zhu, G. et al. Synthesis and biological evaluation of purealain and analogues as cytoplasmic dynein heavy chain inhibitors. *J. Med. Chem.* **49**, 2063–2076 (2006).

26. Maldonado, M. & Kapoor, T. M. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. *Nature Cell Biol.* **13**, 475–482 (2011).

27. Woelhke, G. et al. Microtubule interaction site of the kinesin motor. *Cell* **90**, 207–216 (1997).

28. Kapoor, T. M. & Mitchison, T. J. Allele-specific activators and inhibitors for kinesin. *Proc. Natl Acad. Sci. USA* **96**, 9106–9111 (1999).

29. Hook, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. *J. Biol. Chem.* **280**, 33045–33054 (2005).

30. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. *Nature* **406**, 1005–1009 (2000).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank T. Caspary for anti-Arl13b antibodies, W. Brinkley for human CREST anti-serum, T. Yen for anti-CENP-E antibodies, U. Peters for purified bovine dynein, S. Wacker for human kinesin-5 motor domain, R. Valle for a pVL1393 baculovirus expression vector containing the rat dynein motor domain, and K. Bersuker and R. Kopito for TCRα-GFP-expressing cells. This work was supported by funding from the National Institutes of Health (R01 CA136574 to J.K.C.; R01 GM65933 to T.M.K.; R01 GM71772 to T.M.K. and V.I.G.; R01 GM52111 to V.I.G.)

Author Contributions J.K.C. and T.M.K. conceived and directed the study. A.J.F. and M.M. performed mitotic spindle formation and function, ATPase activity, vanadate-dependent dynein photocleavage and p97-dependent protein degradation. A.J.F. and M.M. performed mitotic spindle analyses. K.B. and V.I.G. designed and interpreted the melanophore and peroxisome trafficking assays. J.S.W. performed microtubule gliding and dynein/microtubule binding assays. L.D.L. and M.O. designed and interpreted the Mcm2–7 helicase assays. A.J.F. and J.K.C. wrote the manuscript with contributions from all other authors.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to J.K.C. (jameschen@stanford.edu) or T.M.K. (kapoor@rockefeller.edu).