Roles of the histone methyltransferase G9a in the development and differentiation of mesenchymal tissues

Hisashi Ideno, Kazuhisa Nakashima* and Akira Nifuji*

Department of Pharmacology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama City, Kanagawa 230-8501, Japan

Received: October 26, 2015 / Accepted: October 30, 2015

Abstract The expression of cell lineage-specific genes during cell differentiation and development is regulated by lineage-specific transcription factors. Recent studies have revealed that epigenetic mechanisms, including post-translational modifications in histone proteins and DNA methylation, play important roles in cell lineage determination and further differentiation. Many different post-translational modifications of histone proteins have been identified to date. For example, modifications at the N-terminal ninth lysine residue of histone H3 (H3K9) are associated with the level of gene expression and local chromatin structure. H3K9 is known to have un-, mono-, di-, and trimethylation states, and these methylated states are determined by six H3K9 methyltransferases in mammals. Among these H3K9 methyltransferases, G9a is responsible for mono- and dimethylation of H3K9. G9a-null mice showed embryonic lethality, indicating its critical roles in cell differentiation, organogenesis, and development. Indeed, studies of G9a conditional deletion in vivo and G9a-deficient cells in vitro have suggested that G9a is a multifunctional protein in various cell types. This short review summarizes recent findings regarding the effects of G9a function on the development of mesenchymal tissues, such as muscle, adipose, and skeletal tissues.

Keywords: G9a, cell differentiation, development, epigenetics

Introduction Harmonized locomotion is achieved through interactions of several mesenchymal tissues, including bones, cartilage, skeletal muscles, and tendons/ligaments. These tissues comprise a locomotive system that permits fluid movement and structural integrity and strength of the joint. Failures in this system result in pain, limited range of motion, loss of muscle strength, and poor balance in aged people; this condition is called locomotive syndrome1). One of the etiologies of locomotive syndrome is obesity, in which mesenchyme-derived adipose tissue plays a central role. Thus, mesenchymal cells are critical elements for the development and pathogenesis of locomotive system dysfunction.

The molecular mechanisms governing the differentiation, development, and pathological abnormalities of mesenchymal cells and tissues have been under extensive investigation for the last three decades. A transcription factor essential for a certain cell type governs the specific gene expression profile and functions of a certain cell lineage. One well-supported mechanisms of tissue-specific gene transcription are described as recognition and binding of genomic cis-elements of genes by tissue-specific transcription factors2-5). Recent extensive studies, however, have revealed that the nucleosome structure comprising chromatin is a dynamic component of the machinery regulating gene transcription6). Histone modifications change nucleosome structure, thus affecting the functions of tissue-specific transcription factors.

In this short review, we describe recent findings regarding the functions of a histone modification enzyme, G9a, in several mesenchymal tissues, particularly muscle, adipose, and skeletal tissues.

Epigenetic modifications and G9a

The nucleosome structure is composed of a highly conserved histone octamer, which includes two pairs of the histones H2A, H2B, H3, and H4. In this structure, 145-147 base pairs of DNA are wrapped around the octamer of histone proteins7). The N-terminal tails of the histones protrude from the packed nucleosome and are subjected to post-translational modifications, such as methylation, acetylation, phosphorylation, and ubiquitination (Fig. 1)8). More than 50 modifications have been identified in the N-terminal tails of histones. These acquired post-translational modifications are associated with chromatin
structure rearrangement and transcriptional accessibility of transcription factors by altering the higher order of the nucleosome structure\(^9\). For example, acetylation and trimethylation of H3K4 (the fourth lysine residue at the N-terminal tail of histone H3) are associated with active gene expression\(^{10,11}\), whereas trimethylation of H3K9 (the ninth lysine residue of histone H3) and H3K27 are associated with gene repression\(^2\).

Methylation of H3K9 is regulated by site-specific histone methyltransferases and demethylases producing mono-, di-, and trimethylation (H3K9me1, -me2, and -me3, respectively; Fig. 2). H3K9me3 is enriched in transcriptionally inactive heterochromatin\(^13\), whereas H3K9me1 and H3K9me2 are generally associated with gene bodies and regulatory regions, both heterochromatin and euchromatin, and are correlated with both activation and repression of transcription\(^{14,15}\). In mammals, six enzymes have been identified as H3K9-specific histone methyltransferases (HMTs; Fig. 3): G9a, Glp, Eset, Suv39h1, Suv39h2, and Prdm2\(^{15-20}\). All HMTs share a conserved Su (var) 3-9, Enhancer of zeste, Trithorax (SET) domain, which is necessary for their methylation activities\(^21\).

Among them, G9a (EHMT2) catalyzes H3K9me1 and H3K9me2\(^22\).

G9a has long-form and short-form splicing isoforms. The functional differences between these isoforms are not well understood. G9a has a SET domain, transactivation domain (TAD), glutamate-rich domain, cysteine-rich domain, and ankyrin repeat domain (ANK)\(^{23,24}\). G9a recognizes and binds to H3K9me1 and H3K9me2 through ANKs\(^25\). While G9a has been shown to be expressed in different tissues, its expression levels vary\(^{15}\). Moreover, G9a is overexpressed in various human cancers, including lung cancer and prostate carcinoma\(^{26,27}\). Because knockdown of G9a inhibits cancer cell growth, G9a has become an anticancer drug target\(^28\). In addition to catalyzing H3K9me1 and H3K9me2, many studies have suggested that G9a binds to and methylates non-histone proteins, including transcription factors\(^29\).

G9a also plays critical roles in embryonic development; indeed, G9a-deficient mice show embryonic lethality around embryonic day 9.5 (E9.5)\(^30\). Analysis of G9a conditional knockout mice in vivo and G9a-deficient cells in vitro suggests that G9a is a multifunctional protein in a wide range of cell types, including musculoskeletal cells.

The functions of G9a in mesenchymal tissue development

Myogenesis. Skeletal muscle development involves commitment of mononuclear progenitor cells and their further differentiation into multinuclear myotubes through cellular fusion\(^31\). The transcription factors involved in the stimulation of myogenic differentiation include MyoD, Myf5, myogenin, MRF4, and members of the MEF2 family. MyoD and Myf5 are expressed in undifferentiated myoblasts and activate the expression of myogenin. Myogenin then activates the expression of MEF2s, in combination with MyoD or myogenin, to promote the expression of myogenin. Myogenin then activates the expression of MEF2s, in combination with MyoD or myogenin, to promote the myogenic differentiation program\(^32\). Muscle-specific G9a-knockout mice have not been reported; thus, the function of G9a in skeletal muscle development in vivo remains unclear.

The roles of G9a in myogenesis in vitro have been extensively examined. During myotube formation, C2C12...
myogenic cells and primary myoblasts show increased expression of MyoD, myogenin, and Mef2D, with reciprocal reduction of G9a expression\textsuperscript{33,34). In these cells, overexpression of G9a inhibits myotube formation, whereas knockdown of G9a promotes myotube formation and the expression of myogenic genes \textit{in vitro}\textsuperscript{33), suggesting that G9a is a negative regulator of myotube formation.

Two distinct molecular mechanisms have been proposed to explain the negative action of G9a. The homeoprotein Msx1 inhibits myotube formation through direct binding with G9a. The G9a-Msx1 heterodimer promotes the enrichment of H3K9me2 on downstream genes, such as MyoD and Myf5\textsuperscript{35). Likewise, the basic helix-loop-helix protein Sharp-1 inhibits myotube formation by forming a heterodimer complex with G9a. The formation of the Sharp-1-G9a complex results in the accumulation of H3K9me2 at the myogenin promoter36,37).

Molecular biological analyses have also revealed that G9a binds directly to MyoD and Mef2D and catalyzes the methylation of these proteins. Methylation of MyoD and Mef2D reduces their transcriptional activity\textsuperscript{34). In addition, methylated MyoD at K104 by G9a is degraded through a ubiquitination-dependent pathway\textsuperscript{33). Therefore, G9a plays a role as a repressor of myogenic differentiation through epigenetic modification of myogenic transcription factor genes and/or through direct modification of the gene products (Fig. 4).

\textbf{Adipogenesis.} Adipogenesis is the process of differentiation of multipotent mesenchymal stem cells into preadipocytes (referred to as the determination phase) and subsequent differentiation into lipid droplet-rich mature

\textbf{JPFSM: Roles of the histone methyltransferase G9a of mesenchymal tissues} 359

\textbf{Fig. 3} Schematic representation of the domain structures of H3K9 methyltransferases in mammals. The domains within H3K9-specific HMTs are displayed. SET domain catalyzes methylation. Ankyrin repeats recognize H3K9me1 and H3K9me2. The Tudor domain recognizes H3K9me2 and H3K9me3. The Chromodomain recognizes H3K9me2 and H3K9me3.

\textbf{Fig. 4} A model of G9a-mediated regulation during myogenic differentiation. G9a-Msx1 heterodimer represses MyoD and Myf5 gene expressions through enrichment of H3K9 dimethylation (H3K9me2) at these promoters. G9a-Sharp-1 methylate H3K9 at Myogenin promoter. Transcriptional activity of MyoD and Mef2D are repressed through direct methylation (m) of these proteins by G9a.
adipocytes (referred to as the terminal differentiation phase). Adipocyte differentiation is regulated by members of two distinct families of transcription factors, the CCAAT enhancer-binding protein (C/EBP) family (C/EBP-α, C/EBP-β, and C/EBP-δ) and the peroxisome proliferator-activated receptor family (PPAR-γ). C/EBP-β is expressed in the early phase, and C/EBP-α and PPAR-γ are induced in the late phase during differentiation5,38).

The expression of G9a is high in pre-adipocytes, but low in mature adipocytes. Adipose-specific G9a knockout mice show increased size and weight of white adipose tissue (WAT) and brown adipose tissue (BAT), suggesting that G9a inhibits adipose tissue development in vivo39).

Several mechanisms have been proposed to explain the negative effects of G9a on adipogenesis. G9a represses the expression of C/EBP-α and PPAR-γ through accumulation of H3K9me2 within their enhancer regions, promoters, and entire gene lengths. G9a expression levels are inversely correlated with those of C/EBP-α and PPAR-γ both in vivo and in vitro39,40). G9a directly binds to C/EBP-β, methylates C/EBP-β (K39), and reduces C/EBP-β transcriptional activity41). Thus, G9a is a negative regulatory factor of adipogenesis (Fig. 5).

Chondrogenesis and Osteogenesis. In early development in mice, long bone elongation occurs through growth plate formation. After overt differentiation of chondrocytes from mesenchymal condensations, three types of unique cells are generated in growth plates: proliferating, prehypertrophic, and hypertrophic chondrocytes. These chondrocytes show harmonized proliferation and differentiation. After the cartilage matrix is secreted and calcified, chondrocytes are resorbed, and osteoblasts appear and deposit bone matrix.

G9a is expressed at very low levels in mesenchymal cell condensations at E12.5. G9a is predominantly expressed in prehypertrophic and hypertrophic chondrocytes and osteoblasts at E16.542). During osteogenic and chondrogenic differentiation, Runx2, a key transcription factor involved in osteoblastic differentiation, interacts with G9a. In vitro reporter gene assays have shown that G9a promotes the transcriptional activation of Runx243). Deficiency in GLP, which is structurally related and shares an 80% sequence identity with G9a, results in impaired bone formation at the nasal bones and calvarial bone, and growth retardation after birth44). To date, the function of G9a in skeletal development in vivo has not been elucidated.

Conclusion

Classically, tissue-specific transcription factors are thought to determine tissue-specific gene expression during cell differentiation. Recently, however, studies have shown that cell differentiation is coordinated in a much more complex manner, with interactions between genetic factors and epigenetic modulators. Moreover, in addition to regulation of H3K9 methylation, G9a has been shown to methylate lysine residues of non-histone proteins and regulate the functions of these proteins. G9a is also a negative regulator of the terminal differentiation of myoblasts and adipocytes. In contrast, G9a is required for proper differentiation, survival, and lineage commitment of adult or somatic stem cells45). Further studies are required to delineate the physiological and pathological roles of G9a in vivo during development and differentiation.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Acknowledgments

This work was supported by JSPS KAKENHI Grant numbers 25670784, 23659862 and 22390344 to A.N., and 29861562 to H.I.
References

1) Nakamura K. 2009. Locomotive syndrome: disability-free life expectancy and locomotive organ health in a “super-aged” society. J Orthop Sci 14: 1-2.

2) Akiyama H. 2008. Control of chondrogenesis by the transcription factor sox9. Mod Rheumatol 18: 213-219.

3) Berkes CA and Tappscott SJ. 2005. Myod and the transcription control of myogenesis. Semin Cell Dev Biol 16: 585-595.

4) Gang EJ, Bosnakovski D, Simsek T, To K and Perlingeiro RC. 2008. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp Cell Res 314: 1721-1733.

5) Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Crespo F, Peinado MA. 2008. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22: 2941-2952.

6) Hübner MR, Ekersley-Maslin MA and Spector DL. 2013. Chromatin organization and transcriptional regulation. Curr Opin Genet Dev 23: 89-95.

7) Kornberg RD and Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285-294.

8) Strahl BD and Allis CD. 2000. The language of covalent histone modifications. Nature 403: 41-45.

9) Zawadzki KA, Morozov AV and Broach JR. 2009. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in saccharomyces cerevisiae. Mol Biol Cell 20: 3503-3515.

10) Wang L, Jin Q, Lee JE, Su IH and Ge K. 2010. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA 107: 7317-7322.

11) Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS and Crabtree GR. 2012. Dynamics and memory of heterochromatin in living cells. Cell 149: 1447-1456.

12) Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinaki Y, Mager DL, Jones S, Hirst M and Liron MC. 2011. DNA methylation and Setdb1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chromatin remodelers in mESCs. Cell Stem Cell 8: 676-687.

13) Solovei I, Kreyxing M, Lancêt C, Kösem S, Peichl L, Cremer T, Guck J and Joffe B. 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137: 356-368.

14) Liu C, Yu Y, Liu F, Wei X, Wrobel JA, Gunawardena HP, Zhou L, Jin J and Chen X. 2014. A chromatin activity-based chemoproteomic approach reveals a transcriptional repressor for gene-specific silencing. Nat Commun 5: 5733.

15) Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwamori H, Sakihama T, Kodama T, Hamakubo T and Shinkai Y. 2005. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19: 815-826.

16) Tachibana M, Sugimoto K, Fukushima T and Shinkai Y. 2001. SET domain-containing protein, G9a, is a novel lysine-prefering mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276: 25309-25317.

17) Blackburn ML, Chansky HA, Zielinska-Kwiatkowska A, Matsui Y and Yang L. 2003. Genomic structure and expression of the mouse ESET gene encoding an ERG-associated histone methyltransferase with a SET domain. Biochim Biophys Acta 1629: 8-14.

18) Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, opravil S, Doyle M, Sibilia M and Jenuwein T. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323-337.

19) O’Carroll D, Scherthan H, Peters AH, Opravil S, Haynes AR, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M, Sattler L, Mattei MG, Denny P, Brown SD, Schweizer D and Jenuwein T. 2000. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20: 9423-9433.

20) Steele-Perrins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J, Buyse IM, Fletcher JA, Liu J, Bronson R, Chadwick RB, de la Chapelle A, Zhang X, Spleeman F and Huang S. 2001. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamiliy. Genes Dev 15: 2250-2262.

21) Qian C and Zhou MM. 2006. SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63: 2757-2763.

22) Shinkai Y and Tachibana M. 2011. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25: 781-788.

23) Bittencourt D, Wu DY, Jeong KW, Gerke DS, Herviou L, lanceluces I, Chodankar R, Siegmund KD and Stallcup MR. 2012. G9a functions as a molecular scaffold for assembly of transcriptional coactivators at a subset of glucocorticoid receptor target genes. Proc Natl Acad Sci USA 109: 19673-19678.

24) Purcell DJ, Jeong KW, Bittencourt D, Gerke DS and Stallcup MR. 2011. A distinct mechanism for coactivator versus corepressor factor binding by histone methyltransferase G9a in transcriptional regulation. J Biol Chem 286: 41963-41971.

25) Collins RE, Northrop JR, Horton JR, Lee DY, Zhang X, Stallcup MR and Chen X. 2008. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15: 245-250.

26) Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR and Issa JP. 2008. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One 3: e2037.

27) Chen MW, Hua KT, Kao HJ, Chi CC, Wei LH, Johansson G, Shiah SG, Chen PS, Jeng YM, Cheng TY, Lai TC, Chang JS, Jan YH, Chien MH, Yang CJ, Huang MS, Hsiao M and Kuo ML. 2010. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res 70: 7830-7840.

28) Suzuki K, Yu C, Qu J, Li M, Yao X, Yuan T, Goebel A, Tang S, Ren R, Aizawa E, Zhang F, Xu X, Soligalla RD, Chen F, Kim J, Kim NY, Liao HK, Benner C, Esteban CR, Jin Y, Liu GH, Li Y and Izpisua Belmonte JC. 2014. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15: 31-36.

29) Huang J, Dorsey J, Chukov S, Pérez-Burgos L, Zhang X, Jenuwein T, Reinberg D and Berger SL. 2010. G9a and GLP...
methylate lysine 373 in the tumor suppressor p53. *J Biol Chem* 285: 9636-9641.

30) Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H and Shinkai Y. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. *Genes Dev* 16: 1779-1791.

31) Abmayr SM and Pavlath GK. 2012. Myoblast fusion: lessons from flies and mice. *Development* 139: 641-656.

32) Bismuth K and Relaix F. 2010. Genetic regulation of skeletal muscle development. *Exp Cell Res* 316: 3081-3086.

33) Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH, Rao VK, Gopinadhan S, Sartorelli V, Walsh MJ and Taneja R. 2012. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. *Proc Natl Acad Sci USA* 109: 841-846.

34) Choi J, Jang H, Kim H, Lee JH, Cho EJ and Youn HD. 2014. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. *Nucleic Acids Res* 42: 224-234.

35) Wang J and Abate-Shen C. 2012. The Mx1 homeoprotein recruits G9a methyltransferase to repressed target genes in myoblast cells. *PLoS One* 7: e37647.

36) Ling BM, Gopinadhan S, Kok WK, Shankar SR, Gopal P, Bharathy N, Wang Y and Taneja R. 2012. G9a mediates Sharp-1-dependent inhibition of skeletal muscle differentiation. *Mol Biol Cell* 23: 4778-4785.

37) Wang Y, Shankar SR, Kher D, Ling BM and Taneja R. 2013. Sumoylation of the basic helix-loop-helix transcription factor Sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis. *J Biol Chem* 288: 17654-17662.

38) Tang QQ, Zhang JW and Daniel Lane M. 2004. Sequential gene promoter interactions of C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. *Biochem Biophys Res Commun* 319: 235-239.

39) Wang L, Xu S, Lee JE, Baldridge A, Grullon S, Peng W and Ge K. 2012. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. *EMBO J* 32: 45-59.

40) Li SF, Guo L, Qian SW, Liu Y, Zhang YY, Zhang ZC, Zhao Y, Shou JY, Tang QQ and Li X. 2013. G9a is transactivated by C/EBPβ to facilitate mitotic clonal expansion during 3T3-L1 preadipocyte differentiation. *Am J Physiol Endocrinol Metab* 304: E990-E998.

41) Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ and Leutz A. 2008. G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-β. *J Biol Chem* 283: 26357-26363.

42) Ideno H, Shimada A, Imaizumi K, Kimura H, Abe M, Nakashima K and Nifuji A. 2013. Predominant expression of H3K9 methyltransferases in prehypertrophic and hypertrophic chondrocytes during mouse growth plate cartilage development. *Gene Expr patterns* 13: 84-90.

43) Purcell DJ, Khalid O, Ou CY, Little GH, Frenkel B, Baniwal SK and Stallcup MR. 2012. Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. *J Cell Biochem* 113: 2406-2414.

44) Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, Zheng Y, Chen S, Cai T, Gao S and Zhu B. 2015. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. *Genes Dev* 29: 379-393.

45) Schones DE, Chen X, Trac C, Setten R and Paddison PJ. 2014. G9a/GLP-dependent H3K9me2 patterning alters chromatin structure at CpG islands in hematopoietic progenitors. *Epigenetics Chromatin* 7: 23.

46) Kooistra SM and Helin K. 2012. Molecular mechanisms and potential functions of histone demethylases. *Nat Rev Mol Cell Biol* 13: 297-311.