Adsorption of Ammonium Ion Using Zeolite, Chitosan, Bleached Fibre and Activated Carbon

N N Safie, A Y Zahrim*, M Rajin, N M Ismail, S Saalah, S M Anisuzzaman, A D Rahayu, H Huslyzam, R Jennisha, T T H Calvin
Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu
E-mail: zahrim@ums.edu.my

Abstract. Several materials have been studied for the adsorption of ammonium ion from synthetic solution. Zeolite is having the highest adsorption capacity (3.160 mg/g) with fast reaction time followed by chitosan (2.5770 mg/g). Activated carbon derived from Tarap (Artocarpus odoratissimus) and rice husk shows better performance than the low cost bleached fibres.

1. Introduction
Ammonium is the most basic form of nitrogen and commonly present in the waterways due to the discharge from urban runoff, industrial discharges and untreated sewage discharge[1]. Several pollution cases due to NH$_4^+$ has been recorded in Malaysia river [1] indicating the needs for proper treatment. To minimise the discharging of ammonium ion into the river, gross pollutant trap can be coupled with specific adsorbent for ammonium ion removal. Agricultural waste has been used as low-cost bio sorbents since it is low cost, renewable, wide range of sources as well as contain functional groups such as carboxyl group and hydroxyl group that bind with contaminants during adsorption [2].

Biopolymer such as chitosan has being used because it is natural, biodegradable, reusable and non-toxic polysaccharide from crustacean shells such as shrimps and crabs [6]. Fibers are known to be rich in lignocellulosic materials that comprised of three main components namely lignin, cellulose and hemicellulose that contain functional groups responsible for the adsorption process to occur [7]. In this study, zeolite, chitosan, bleached fibres from coconut coir, water hyacinth, empty fruit bunch (EFB) and activated carbon from rice husk and tarap (Artocarpus odoratissimus) skin have been tested to remove ammonium ion by adsorption.

2. Materials and methods
Zeolites and high molecular weight chitosan were purchased commercially. Banana stems, coconut coir, water hyacinth, tarap skin and rice husk were obtained from Kota Kinabalu, Salut Commercial Centre, Tuaran river, Papar and Kilang Padi Sri Keranahan, Kota Belud respectively. Activated carbon from rice husk and tarap skin were prepared according to the method by Binanipuram and Kerala [8] and Wang et al. [9] respectively. Zeolite, high molecular weight chitosan, rice husk activated carbon, tarap skin activated carbon, bleached EFB, bleached water hyacinth, bleached coconut coir and...
bleached banana stem are denoted as zeolite, HMWC, RHAC, TSAC, EFB, WH, CC and BS respectively.

The NH₄Cl stock solution was prepared from a 99.5% pure anhydrous solid by dissolution in distilled water. NH₄Cl solution with a concentration of 0.05 mg/g was used for the batch adsorption experiment. The samples were then analysed using it was analysed using Jasco UV-vis 650 Bio-spectroscopy with maximum wavelength of 425 nm. Prior to analysis, Nessler reagent was used for NH₃-N compound detection by following the standard USEPA Nessler Method No.8038. The concentration of ammonium ions adsorbed at equilibrium was calculated using Equation (1).

\[q_e = \frac{(C_o - C_e)V}{W} \]

where \(q_e \) (mg/g), \(C_o \) (mg/L), \(C_e \) (mg/L), \(V \) (dm³) and \(W \) (g) are the concentration of ammonium ions adsorbed at equilibrium, liquid-phase concentrations of initial adsorbate and equilibrium, volume of solution and mass of activated carbon used, respectively.

3. Results and Discussions

As shown in Figure 1 is the concentration of NH₃-N being adsorbed by BS, EFB, WH, CC, zeolite and CC against time in minute. Based on the results summarized in Table 1, zeolite has the highest adsorption capacity followed by HMWC, RHAC, TSAC, BS, EFB, CC and the lowest was WH with values of 3.160 mg/g, 2.577 mg/g, 2.269 mg/g, 0.409 mg/g, 0.317 mg/g, 0.258 mg/g and 0.018 mg/g respectively. Zeolite has reached equilibrium in 2 minutes. Research regarding the sorption kinetics studies that the ammonium ion removal using zeolite occurred very rapidly and equilibrium was reached within few minutes ranging between 10 min and 90 min[10][11]. High selectivity and reasonable adsorption capacity of zeolite can be attributed to their unique structural chemistry, for instance, Si/Al ratio, pore size and high specific surface area [12]. Natural zeolite used by Beebe et al. [13] recorded adsorption capacity of 5.02 mg/g but required longer time to reach equilibrium contact time. This behaviour may be ascribed to the quick utilization of the most readily available adsorbing sites of the zeolite used in this work that has contributed to fast diffusion and attainment of rapid equilibrium[10]. Also, the CEC of zeolite used in Beebe et al. [13] was higher 180–195 meq/100 g compared to CEC zeolite used in this work, 140 meq/100 g which explains that it can absorb more cation (NH₄⁺). MCW has higher adsorption capacity compared to bleached fibers and activated carbon and reached equilibrium in 1 minute. HMCW has high deacetylation degree and carries more positive charges that exhibit better performance in removing pollutants[14].

Activated carbon from rice husk and tarap recorded higher adsorption capacity compared to the bleached fibers but with longer time to reach equilibrium. The chemical and activation process has enhanced its porous structure and surface area which attributes to higher adsorption capacity as compared to raw bleached fibers[15]. TSAC has lower adsorption capacity since higher activation temperature was used, 800 °C compared to rice husk 300°C. The lower temperature biochar described by Gaskin et al.[16] was shown to have a higher degree of oxygen surface functional groups. The content of silica in most rice husk may greatly enhance the surface area of rice husk compared to tarap skin[17]. Bleached fibers used in this investigation namely BS, EFB, WH and CC with adsorption capacity 0.4085 mg/g, 0.3171 mg/g, 0, 0176 mg/g and 0.2577 mg/g respectively. Bleached fibers recorded the lowest NH₃-N adsorption capacity compared to activated carbon, zeolite and HMWC. Nevertheless, unbleached EFB done by Zahrim et al. [18] recorded higher adsorption capacity, 0.828 mg/g at the same initial concentration and 94-97 % NH₃-N removal when used as the medium in filtration [19].
Figure 1. Adsorption of ammonia nitrogen against time using BS, EFB, WH, CC, zeolite and HMWC

Table 1. Total time to reach equilibrium, adsorption capacity and comparison with other authors for zeolite, HMWC, BS, EFB, WH, CC, TSAC and RHAC

Type (s) of adsorbent	Equilibrium contact time (min)	Adsorption capacity (mg/g)	Initial conc. (mg/L)	Ref.
Zeolite				
	2	3.160	50	This study
	60	1–6	100-500	[20]
	-	2.8	200	[21]
	2880	5.03	40	[13]
	1440	1.9	10	[22]
HMWC	1	2.5770	50	This study
	180	6.933	7.35	[6]
Bleached fibers				
BS	30	0.4085	50	This study
EFB	10	0.3171	50	This study
	40	0.828	50	[18]
WH	30	0.0176	50	This study
CC	20	0.2577	50	This study
Activated Carbon	TSAC	1.8750	50	This study
	RHAC	1.8154	50	This study
	24	0.87 – 2.20	5	[17]

4. Conclusion
The adsorption capacity of zeolite, high molecular weight chitosan, bleached fibers and activated carbon have been investigated. Zeolite recorded the highest adsorption capacity of 3.160 mg/g and reached equilibrium in two minutes. Carbon activation using KOH on tarap peels and rice husk may influence its porosity that contributed to higher adsorption capacity compared to bleached fibers.

Acknowledgments
Authors wishing to acknowledge Universiti Malaysia Sabah for funding this work (SDK 0044 – 2018).
References

[1] Hanum P, Ghani A, Yusoff K, Manaf L A and Bin Daud M 2009 Ammonium I on Trend in Selected Malaysian River World Appl. Sci. J. 6 442–8

[2] Dai Y, Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J 2018 Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review Chemosphere 11 235–53

[3] Azreen I, Lija Y and Zahrim AY 2017 Ammonia nitrogen removal from aqueous solution by local agricultural wastes IOP Conf. Ser. Mater. Sci. Eng. 206 12077

[4] Cechinel M A P, Ulson De Souza S M A G, and A. A. Ulson De Souza 2014 Study of lead (II) adsorption onto activated carbon originating from cow bone J. Clean. Prod. 65 342–49

[5] Wang L 2012 Application of activated carbon derived from ‘waste’ bamboo culms for the adsorption of azo disperse dye: Kinetic, equilibrium and thermodynamic studies J. Environ. Manage. 102 79–87

[6] Bernardi F, Zadinelo I, Alves H J, Meurer F and dos Santos L D 2018 Chitins and chitosans for the removal of total ammonia of aquaculture effluents Aquaculture 483 203–12

[7] Zhou Y, Zhang L and Cheng Z 2015 Removal of organic pollutants from aqueous solution using agricultural wastes: A review J. Mol. Liq. 212 739–62

[8] Binanipuram P and Kerala O 2016 Preparation and Characterization of Activated Carbon from Rice Husk 22 551–8

[9] Wang X F, Zhang H P and Chen H Q 2006 Preparation and characterization of high specific surface area activated carbon from bamboo by chemical activation with KOH 37

[10] Karadag D, Koc Y, Turan M and Armagan B 2006 Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite 2006 J. Hazard. Mater. 136 604–9

[11] Huang H, Xiao X, Yan B and Yang L 2010 Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent J. Hazard. Mater. 175 247–52

[12] Delkash M, Ebrazi Bakhshayesh B and Kazemian H 2015 Using zeolitic adsorbents to cleanup special wastewater streams: A review Microporous Meso porous Mater. 214 224–41

[13] Beebe D A, Castle J W and Rodgers J H 2013 Treatment of ammonia in pilot-scale constructed wetland systems with clinoptilolite J. Environ. Chem. Eng 1 1159–65

[14] Chung Y C, Li Y H and Chen CC 2005 Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 40 1775–90

[15] Korobochkin V V, Tu N V and Hieu N M 2016 Production of activated carbon from rice husk Vietnam IOP Conf. Ser. Earth Environ. Sci. 43 012066

[16] Gaskin J W, Steiner C, Harris K, Das K C and Bibens B 2008 Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use Trans. ASABE 51 2061–9

[17] Satayeva A R, Howell C A, Korobeiniky, A V, Jandosov, I, Inglezakis, V J, Mansurov, Z A, Mikhailovsky S V 2018 Investigation of rice husk derived activated carbon for removal of nitrate contamination from water Sci. Total Environ. 630 1237–45

[18] Zahrim A Y, Ricky L N S, Hilal N and Tamrin K F 2017 Ammonia-Nitrogen Recovery from Synthetic Solution using Agricultural Waste Fibers Indian J. Sci. Technol. 10 1–5

[19] Zahrim A Y, Ricky, L N S, Shahril Y, Rosalam S, Nurmin B, Harun A M and Azreen I 2015 Partly Decomposed Empty Fruit Bunch Fiber as a Potential Adsorbent for Ammonia-Nitrogen from Urban Drainage Water in InCIEC 2014 (Singapore: Springer Singapore) p 989–1001.

[20] Rožič M, Cerjan-Stefanović Š, Kurajica S, Vančina V and Hodžič E 2000 Ammoniacal nitrogen removal from water by treatment with clays and zeolites Water Res. 34 3675–81

[21] Zhou L and Boyd C E 2014 Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study Aquaculture 432 252–7

[22] Guo H, Zhang X Y and Liu J L 2016 Ion-exchange Capability for Ammonium Removal using Zeolite Modified by Potassium Permanganate Chem. Eng. Trans. 55 63–168