Discovery of the Isotopes with $11 \leq Z \leq 19$

M. Thoennessen*

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Abstract

A total of 194 isotopes with $11 \leq Z \leq 19$ have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

*Corresponding author.

Email address: thoennessen@nscl.msu.edu (M. Thoennessen)
1. Introduction

The discovery of isotopes of the elements from sodium to potassium is discussed as part of the series of the discovery of isotopes which began with the cerium isotopes in 2009 [1]. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3]. In cases where the reported half-life differed significantly from the adopted half-life (up to approximately a factor of two), we searched the subsequent literature for indications that the measurement was erroneous. If that was not the case we credited the authors with the discovery in spite of the inaccurate half-life.

The initial literature search was performed using the databases ENSDF [3] and NSR [4] of the National Nuclear Data Center at Brookhaven National Laboratory. These databases are complete and reliable back to the early 1960's. For earlier references, several editions of the Table of Isotopes were used [5–10]. A good reference for the discovery of the stable isotopes was the second edition of Aston’s book “Mass Spectra and Isotopes” [11].
2. Discovery of Isotopes with $11 \leq Z \leq 19$

The discovery of 194 isotopes with $11 \leq Z \leq 19$ includes 19 sodium, 21 magnesium, 22 aluminum, 23 silicon, 21 phosphorus, 22 sulfur, 21 chlorine, 23 argon, and 22 potassium isotopes.

The discovery of the light stable isotopes is not easily defined because they were involved in the discovery of isotopes themselves. We decided to credit discovery if the detection method was sensitive enough to separate isotopes and if isotopes were specifically searched for. Thus the first description of a mass spectrograph by Dempster in 1918 was not considered because Dempster observed only a single isotope per element and did not perform absolute mass measurements [12].

Nuclei beyond the driplines, i.e. nuclei which decay by the emission of a neutron or a proton were included in the compilation. In some cases these nuclei live for only very short times and especially for nuclei beyond the neutron dripline they can only be measured as resonances. Nevertheless the masses can be determined by transfer reactions or by invariant mass measurements and the lifetimes can be determined from the width of the resonance. However, especially for nuclei which are removed by two or more neutrons from the last particle-stable isotope, these resonant states can be very broad and it becomes questionable if the corresponding lifetimes are long enough to be called a nucleus [13]. Only unbound nuclei for which a resonance was observed are included, the first “non-existence” for an unbound nucleus has been compiled elsewhere [13].

For heavier isotopes we have adopted the practice to accept the observation of isomeric states or excited proton unbound states prior to the determination of the ground states as the discovery. Accordingly for the light nuclei the observed resonance does not necessarily have to correspond to the ground state.

2.1. Sodium

The observation of 19 sodium isotopes has been reported so far, including 1 stable, 3 proton-rich, 13 neutron-rich, and 2 proton-unbound resonances. The one-neutron unbound resonances of ^{36}Na and ^{38}Na should be able to be observed in the future. In addition, ^{39}Na still might be particle-stable.

Figure 1 summarizes the year of first observation for all sodium isotopes identified by the method of discovery. The radioactive sodium isotopes were produced using light-particle reactions (LP), photo-nuclear reactions (PN), spallation (SP), projectile fragmentation of fission (PF), and most recently with secondary beams (SB). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each sodium isotope is discussed in detail and a summary is presented in Table 1.

^{18}Na

Zerguerras et al. discovered ^{18}Na as reported in the 2004 paper “Study of light proton-rich nuclei by complete kinematics measurements” [14]. A secondary ^{20}Mg beam was produced by projectile fragmentation with the GANIL SISSI solenoids and ALPHA spectrometer from a primary 95 MeV/nucleon ^{24}Mg beam. ^{18}Na was identified from the invariant mass obtained from the ^{17}Ne and proton events. “To construct the invariant-mass spectrum of ^{18}Na, $^{17}\text{Ne} + p$ events were analysed. The result is shown in [the figure]. A two-peak structure is clearly visible with mass excess values of 24.19(16) MeV and 25.04(17) MeV.”
Fig. 1: Sodium isotopes as a function of time when they were discovered. The different production methods are indicated.
The first observation of 19Na was described by Cerny et al. “New nuclides 19Na and 23Al observed via the (p,6He) reaction” in 1969 [15]. A 24Mg target was bombarded with 54.7 MeV protons from the Berkeley 88-in. cyclotron. 19Na was produced in the reaction 24Mg(p,6He) and identified by measuring the 6He in a two-counter telescope. “The mass excess of 19Na is determined to be 12.974±0.070 MeV [12C=0]. We will take it to be the ground state noting that in either event 19Na is proton unstable; with this assumption, 19Na is unbound to 18Ne + p by 366±70 keV.”

20Na was discovered by Alvarez in the 1950 paper “Three new delayed alpha-emitters of low mass” [16]. A 32 MeV proton beam from the Berkeley linear accelerator bombarded a proportional counter filled with neon and delayed heavy particles were observed in the counter. “Two new positron active isotopes, B8 and Na20, have been found to decay to excited states of Be8 and Ne20, which in turn decay “instantaneously” by alpha-emission. Their half-lives are 0.65±0.1 sec. and 1/4 sec., respectively.” The half-life of 20Na is within a factor of two of the accepted value of 447.9(23) ms.

21Na

In the 1940 paper “Transmutation of the separated isotopes of neon by deuterons” Pollard et al. reported the observation of 21Na [17]. Neon gas was bombarded with 2.6 MeV deuterons and the isotopes were separated by thermal diffusion. 21Na produced in the reaction 20Ne(d,n) and decay curves and absorption spectra were measured. “A rather weak gamma-ray was found but this did not decay with the 43-second half-life expected. In [the figure] the decay curve is shown. It has a half-life of 26±3 seconds and is almost certainly to be identified with Na21 discovered by Creutz, Fox, and Sutton [18] and here produced by the reaction Ne20+H2→Na21+n.” This half-life agrees with the currently adopted value of 22.49(4) (s). The work by Creutz et al. mentioned in the quote was only published as an abstract of a meeting.

22Na

22Na was discovered in 1935 by Frisch as reported in the paper “Induced radioactivity of fluorine and calcium” [19]. Alpha particles from a 600 mCi radon source were used to irradiate sodium fluoride and lithium fluoride and 22Na was formed in the reaction 19F(α,n). “The search for Na22 was therefore continued with sodium fluoride and lithium fluoride. In both cases weak activity was observed after prolonged bombardment. A chemical separation, kindly carried out by Prof. G. von Hevesy, showed that the active body follows the reactions of sodium, and therefore is presumably Na22.” The estimated half-life between one and several years is consistent with the currently adopted value of 2.6019(4) y.

23Na

The discovery of stable 23Na was reported by Aston in his 1921 paper “The constitution of the alkali metals” [20]. The positive anode ray method was used to identify 23Na with the Cavendish mass spectrograph. “Sodium (atomic weight 23.00) is the easiest metal to deal with; its mass spectrum consists of a single line only. From the known values of the fields employed this line is in the position expected from the atomic weight; it is therefore assumed to be exactly 23, and used as a standard comparison line.” Dempster had observed sodium in his mass spectrograph but did not determine the mass independently but rather placed the sodium line to the known chemical mass, he also did not attempt to search for other sodium isotopes [12].
24\text{Na}

24Na was discovered by Fermi et al. in the 1934 article “Artificial radioactivity produced by neutron bombardment” [21]. Magnesium targets were irradiated with neutrons from a 800 mCi radon beryllium source and activities were measured with Geiger-Müller counters following chemical separation. “The active element decaying with the 15 hours’ period could be chemically separated. The irradiated magnesium was dissolved, and a sodium salt was added. The magnesium was then precipitated as phosphate and found to be inactive, while the sodium which remains in the solution carries the activity. The active atom is thus proved not to be an isotope of magnesium, and as neon also can be excluded, we assume it to be an isotope of sodium, formed according to the reaction: Mg\text{24} + n_{\text{0}} = Na\text{24} + H_{\text{1}}.” This half-life agrees with the currently adopted value of 14.9590(12) h.

25\text{Na}

First evidence of 25Na was shown by Huber et al. in “Kernphotoeffekt unter Abspaltung eines Protons: Mg\text{26}(\gamma,p)Na\text{25}” in 1943 [22]. Lithium \(\gamma\)-rays (∼17 MeV) irradiated magnesium targets and the \(\beta\)-activity and absorption spectra were recorded. “Die gefundene 62 sec-Aktivität ist somit dem Prozess Mg\text{26}(\gamma,p)Na\text{25} zuzuordnen.” [The observed activity of 62 s is therefore assigned to the process Mg\text{26}(\gamma,p)Na\text{25)]. This half-life agrees with the presently adopted value of 59.1(6) s. The authors had reported this half-life (62(2) s) earlier but could not rule out the possibility that it was due to excited states of 24Mg or 25Mg [23].

26\text{Na}

In 1958 Nurmia and Fink observed 26Na for the first time in “Cross-sections for (n,p) and (n,\alpha) reactions of magnesium with 14.8 MeV neutrons; A new isotope Na\text{26}” [24]. Neutrons of 14.8 MeV produced at the Arkansas 400 keV Cockroft-Walton accelerator irradiated highly enriched 26MgO targets. The resulting activities were measured with a plastic scintillator. “In addition to 15.0-hour Na\text{24}, a composite activity from a mixture of 38-second Ne\text{23} from the Mg\text{26}(n,\alpha) reaction and 60-second Na\text{25} from the Mg\text{25}(n,p) reaction, and an activity with half-life of 1.04±0.03 s were observed. The last activity, consisting mainly of high energy (>5 MeV) beta-particles, has not been reported previously, and it is assigned to a new isotope of sodium Na\text{25}.” This half-life agrees with the presently adopted value of 1.077(5) s.

27\text{Na}

Klapisch et al. discovered 27Na in 1968 in “Isotopic distribution of sodium fragments emitted in high-energy nuclear reactions. Identification of 27Na and possible existence of heavier Na isotopes” [25]. 100Mo, tantalum, iridium, and uranium targets were bombarded with 10.5 GeV protons from the CERN proton synchrotron and 27Na was extracted by surface ionization and identified with a Nier-type separator. “We have found peaks at masses 27, 28, and 29. To the extent that we specifically ionize sodium, this would indicate the existence of three new isotopes of sodium. However, despite their smaller ionization probability, we have to take into account the possibility that Al isotopes produced in the reaction could also be ionized. Thus we see at once that mass 27 cannot be due to Al because the cross section for the production of 27Al would be some 30 times greater than that for 23Na, and this is completely ruled out on the basis of nuclear-reaction systematics.”
28−31 Na

28Na, 29Na, 30Na, and 31Na were first identified by Klapisch et al. in the 1969 paper "Half-Life of 11Li, of 27Na, and of the new isotopes 28Na, 29Na, 30Na, and 31Na produced in high-energy nuclear reactions" [26]. The CERN proton synchrotron was used to bombard iridium and uranium targets with 24 GeV protons. The isotopes were identified with an on-line mass separator and beta activities were measured with a plastic scintillator. "Our experimental results establish the particle stability of all the sodium isotopes filling the sd-neutron shell." Half-lives of 34(1) s (28Na), 47(3) s (29Na), 55(3) s (30Na), and 16.5(40) s (31Na) were listed in a table and agree with the presently accepted values of 30.5(4) s, 44.9(12) s, 48.4(17) s, and 17.0(4) s, respectively.

32,33 Na

In 1972 Klapisch et al. reported the first observation of 32Na and 33Na in "Half-life of the new isotope 32Na; Observation of 33Na and other new isotopes produced in the reaction of high-energy protons on U" [27]. Uranium targets were bombarded with 24 GeV protons from the CERN proton synchrotron. 32Na and 33Na were identified by on-line mass spectrometry and decay curves were measured. "[The figure] then shows that peaks do occur for 32Na in the positions expected from the calibration with the known isotope 22Na... A search was made for 33Na using the same procedure during a 3-h experiment with a total of 7×10^{15} protons, and [the table] gives the number of counts at the locations where 33Na peaks are expected. It is seen that a significant number of counts over the background arises for the first three pairs of peaks. Adding them channel by channel, two peaks of 33Na are found with 86±15 and 61±15 counts, respectively, after a background of 76±9 has been subtracted." Half-lives of 14.5(3) s (32Na) and 20(15) s (33Na) were listed in a table and are consistent with the currently accepted values of 12.9(7) s and 8.2(2) s, respectively.

34,35 Na

Langevin et al. reported the observation of 34Na and 35Na in the 1983 paper "35Na: A new neutron-rich sodium isotope" [28]. The CERN synchrotron was used to bombard an iridium target with 10 GeV protons. 35Na and 35Na were identified with the on-line mass spectrometer. Beta-delayed neutrons were measured with a NE213 liquid scintillator. "During the collection of alkali isotopes a multiscaler device defines the time occurrence of each 3-coincident neutron event after each fast extraction beam pulse. [The figure] shows the experimental time occurrence of β-coincident neutrons for the collection of mass 34 and 35 alkali ions. The 33 events of mass 35 were obtained in 20 h, corresponding to 5×10^{16} protons on the target... A straightforward χ^2 analysis of the experimental results of [the figure] convoluting the time dependence of Na ion production and the beta-decay gives half-lives of (5.5±1.0) ms for 34Na and (1.5±0.5) ms for 35Na." These measured half-lives correspond to the presently adopted values. Langevin et al. did not consider the observation of 34Na a new discovery referring to earlier conference proceedings and an unpublished Thèse de Doctorat. Also, in a 1979 paper Détraz et al. showed a figure plotting the number of 24Na ions per pulse produced by bombarding uranium with 24 GeV protons, however, no further details were given in the paper, stating "The β decay of 34Na is certainly accessible to the method..." [29]

Langevin et al. reported the discovery of 35Na in the 1983 paper "35Na: A new neutron-rich sodium isotope" [28]. The CERN synchrotron was used to bombard an iridium target with 10 GeV protons. 35Na was identified with the on-line mass spectrometer. Beta-delayed neutrons were measured with a NE213 liquid scintillator. "During the collection of alkali isotopes a multiscaler device defines the time occurrence of each 3-coincident neutron event after each fast
extraction beam pulse. [The figure] shows the experimental time occurrence of β-coincident neutrons for the collection of mass 34 and 35 alkali ions. The 33 events of mass 35 were obtained in 20 h, corresponding to 5×10^{16} protons on the target.” The measured half-life of 1.5(5) s corresponds to the presently adopted value.

37Na

In the 2002 article “New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64 A MeV 48Ca beam” Notani et al. described the first observation of 37Na [30]. The RIKEN ring cyclotron accelerated a 48Ca beam to 64 MeV/nucleon which was then fragmented on a tantalum target. The projectile fragments were analyzed with the RIPS spectrometer. “[Part (a) of the figure] shows a two-dimensional plot of A/Z versus Z, obtained from the data accumulated with the 40Mg Bp setting, while [part (b)] is for the 43Si setting. The integrated beam intensities for the two settings are 6.9×10^{16} and 1.7×10^{15} particles, respectively. The numbers of events observed for three new isotopes, 34Ne, 37Na and 43Si, were 2, 3 and 4, respectively.” Lukyanov et al. reported the discovery of 37Na independently less than two months later [31].

2.2. Magnesium

The observation of 21 magnesium isotopes has been reported so far, including 3 stable, 4 proton-rich, 13 neutron-rich, and 1 proton-unbound resonance. The one-neutron unbound resonances of 39Mg and 41Mg should be able to be observed in the future. In addition, 42Mg still might be particle-stable.

Figure 2 summarizes the year of first observation for all magnesium isotopes identified by the method of discovery. The radioactive magnesium isotopes were produced using light-particle reactions (LP), deep-inelastic reactions (DI), spallation (SP), projectile fragmentation of fission (PF), and most recently with secondary beams (SB). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each magnesium isotope is discussed in detail and a summary is presented in Table 1.

19Mg

19Mg was observed by Mukha et al. in the 2007 paper “Observation of two-proton radioactivity of 19Mg by tracking the decay products” [32]. A primary 591 MeV/nucleon 24Mg from the GSI SIS facility was used to produce a secondary beam of 20Mg. 19Mg was then produced in a neutron removal reaction and decayed by the emission of two protons in flight. The lifetime was measured by reconstructing the vertex of the decay to 17Ne and two protons. “For the first time, the trajectories of the 2p-decay products, 17Ne+p+p, have been measured by using tracking microstrip detectors which allowed us to reconstruct the 2p-decay vertices and fragment correlations. The half-life of 19Mg deduced from the measured vertex distribution is 4.0(15) ps in the system of 19Mg. The Q value of the 2p decay of the 19Mg ground state inferred from the measured p−p−17Ne correlations is 0.75(5) MeV.” This is currently the only measured half-life.

20Mg

20Mg was discovered by Robertson et al. in the 1974 paper “Highly proton-rich $T_z = -2$ nuclides: 8C and 20Mg” [33]. Alpha-particles accelerated to 156 MeV by the Jülich isochronous cyclotron bombarded an enriched 24Mg target and produced 20Mg in the reaction 24Mg(α,2He). The 2He ejectiles were measured in a double-focusing magnetic analyzer and the energy-loss, energy, magnetic rigidity and time-of-flight were recorded. “For 20Mg, a mass excess of 17.74±0.21
Fig. 2: Magnesium isotopes as a function of time when they were discovered. The different production methods are indicated.
MeV is found, indicating that ^{20}Mg is nucleon stable.” An earlier tentative report of a 0.62 s half-life for ^{20}Mg [34] was evidently incorrect.

^{21}Mg

In “Observation of delayed proton radioactivity” Barton et al. implied the observation of ^{21}Mg for the first time in 1963 [35]. The McGill Synchrocyclotron accelerated protons to 97 MeV which bombarded a magnesium target. ^{21}Mg was identified by the observation of β-delayed protons in a silicon junction particle detector. “The hypothesis that the decay of the nuclide $(2k+2, 2k-1)$ will dominate the delayed proton spectrum from targets of both element $(2k+2)$ and element $(2k+1)$ seems to be verified. In particular, by following very reasonable rules for predicting proton lines, all the observed lines are accounted for and all those predictions based on known level properties are borne out. The existence of Mg21, Ne17, and O13 is assumed since it seems fairly certain that proton lines in the decay of each have been observed.” The half-life was subsequently measured by McPherson et al. [36] who acknowledged the tentative observation by Barton et al.

^{22}Mg

The first observation of ^{22}Mg was reported by Ajzenberg-Selove et al. in the 1961 paper “Energy levels of Na21 and Mg22” [37]. ^3He ions were accelerated to 4−5 MeV by the Los Alamos vertical Van de Graaff generator and bombarded a neon target. ^{22}Mg was produced in the reaction $^{20}\text{Ne}(^3\text{He},n)$ and identified by measuring neutrons with a NE102 scintillator. “Mg22, here reported for the first time, has a mass excess $(M - A)$ of -0.14 ± 0.08 Mev (C12 reference) from $Q = -0.043\pm0.08$ Mev for Ne$^{20}(^3\text{He},n)$Mg22.” Previously a 130 ms activity was assigned to either ^{23}Al or ^{22}Mg [38].

^{23}Mg

White et al. described the discovery of ^{23}Mg in 1939 in “Short-lived radioactivities induced in fluorine, sodium and magnesium by high energy protons” [39]. Sodium chloride targets were bombarded with 6 MeV protons and ^{23}Mg was produced in the charge-exchange reaction $^{23}\text{Na}(\text{p},n)$. The resulting activities were measured with a Lauritsen electroscope. “Sodium, in the form of NaCl, was bombarded for one minute with 6.0-Mev protons. A characteristic decay curve is shown in [the figure]. The half-life, as found by averaging several runs, is 11.6\pm0.5 sec. We assume that the activity indicates the production of Mg23, for all other possible reactions lead either to stable isotopes or well-known long periods.” This half-life agrees with the presently accepted value of 11.317(11) s.

24−^{26}Mg

In 1920, Dempster discovered ^{24}Mg, ^{25}Mg, and ^{26}Mg as reported in “Positive ray analysis of magnesium” [40]. In an adaptation of the positive ray method magnesium was analyzed. “Using the apparatus for positive ray analysis described in The Physical Review for April, 1918, I have recently succeeded in analyzing the element magnesium (atomic weight 24.36) into three isotopes of atomic weights 24, 25 and 26.”

^{27}Mg

^{27}Mg was discovered by Fermi et al. in the 1934 article “Artificial radioactivity produced by neutron bombardment” [21]. Aluminum targets were irradiated with neutrons from a 800 mCi radon beryllium source and activities
were measured with Geiger-Müller counters. "13–Aluminium: This element acquires a strong activity under neutron bombardment. The decay curves indicate two periods of about 12 minutes (i = 0.8) and 15 hours (i = 0.5)... The active product with the 12-minute period has not been separated. However, we consider it likely to be Mg²⁷, as the other two possible cases, Al²⁸ and Al²⁶, are probably to be excluded, the first because Al²⁸, as we shall next see, is a radioactive isotope with a period of 3 minutes, and the latter because Al²⁶ should probably disintegrate with emission of positrons." This half-life is consistent with the currently adopted value of 9.458(12) min.

²⁸Mg

Sheline and Johnson identified ²⁸Mg for the first time in 1953 in “New long-lived magnesium-28 isotope” [41]. ²⁸Mg was produced in the reaction Si³⁰(γ,2p) with 100 MeV γ-rays at the Chicago betatron and Mg²⁶(α,2p)Mg²⁸ with 39 MeV α particles from the Berkeley 60-in. cyclotron. Activities were measured following chemical separation. “Magnesium-28, a 21=hr. β− emitter, has been produced in both a betatron irradiation and a cyclotron bombardment.” This half-life agrees with the presently adopted value of 20.915(9) h.

²⁹,³⁰Mg

Artukh et al. discovered ²⁹Mg and ³⁰Mg in the 1971 paper “New isotopes ²⁹,³⁰Mg, ³¹,³²,³³Al, ³³,³⁴,³⁵,³⁶Si, ³⁵,³⁶,³⁷,³⁸P, ³⁹,⁴⁰S, and ⁴¹,⁴²Cl produced in bombardment of a ²³²Th target with 290 MeV ⁴⁰Ar ions” [42]. A 290 MeV ⁴⁰Ar beam from the Dubna 310 cm heavy-ion cyclotron bombarded a metallic ²³²Th. Reaction products were separated and identified with a magnetic spectrometer and a surface barrier silicon telescope. “Apart from the nucleides already known, 17 new nucleides, namely: ²⁹,³⁰Mg, ³¹,³²,³³Al, ³³,³⁴,³⁵,³⁶Si, ³⁵,³⁶,³⁷,³⁸P, ³⁹,⁴⁰S and ⁴¹,⁴²Cl have been reliably detected.”

³¹,³²Mg

³¹Mg and ³²Mg was discovered by Butler et al. in “Observation of the new nuclides ²⁷Ne, ³¹Mg, ³²Mg, ³⁴Al, and ³⁹P” in 1977 [43]. ³¹Mg and ³²Mg were produced in the spallation reaction of 800 MeV protons from the Clinton P. Anderson Meson Physics Facility LAMPF on a uranium target. The spallation fragments were identified with a silicon ΔE-E telescope and by time-of-flight measurements. “All of the stable and known neutron-rich nuclides (except ²⁴O and the more neutron-rich Na isotopes) are seen. The five previously unobserved neutron-rich nuclides ²⁷Ne, ³¹Mg, ³²Mg, ³⁴Al, and ³⁹P are clearly evident. Each of these peaks contains ten or more events.”

³³,³⁴Mg

The first observation of ³³Mg and ³⁴Mg was reported by Westfall et al. in “Production of neutron-rich nuclides by fragmentation of 212-MeV/amu ⁴⁸Ca” in 1979 [44]. ⁴⁸Ca ions (212 MeV/nucleon) from the Berkeley Bevalac were fragmented on a beryllium target. The fragments were selected by a zero degree spectrometer and identified in a telescope consisting of 12 Si(Li) detectors, 2 position-sensitive Si(Li) detectors, and a veto scintillator. “In this letter, we present the first experimental evidence for the particle stability of fourteen nuclides ²²N, ²⁶F, ³³,³⁴Mg, ³⁶,³⁷Al, ³⁸,³⁹Si, ⁴¹,⁴²P, ⁴³,⁴⁴,⁴⁵Cl produced in the fragmentation of 212-MeV/amu ⁴⁸Ca.”

³⁵,³⁶Mg

Guillemaud-Mueller et al. announced the discovery of ³⁵Mg and ³⁶Mg in the 1989 article “Observation of new neutron rich nuclei ²⁹F, ³⁵,³⁶Mg, ³⁸,³⁹Al, ⁴⁰,⁴¹Si, ⁴³,⁴⁴P, ⁴⁵−⁴⁷S, ⁴⁶−⁴⁹Cl, and ⁴⁹−⁵¹ Ar from the interaction of 55 MeV/u ⁴⁸Ca+Ta”
A 55 MeV/u 48Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl, and 49,50,51Ar are clearly visible.”

37Mg

37Mg was discovered by Sakurai et al. in 1996 as reported in “Production and identification of new neutron-rich nuclei, 31Ne and 37Mg, in the reaction 80A MeV 50Ti + 181Ta” [46]. A 50Ti beam was accelerated at the RIKEN Ring Cyclotron to 80 MeV/nucleon and fragmented on a tantalum target. The fragments were analyzed by the RIPS spectrometer and identified on the basis of energy loss, total kinetic energy, time-of-flight and magnetic rigidity. “All of the fragments of 30,31,32Ne, 32,33,34,35Na, and 35,36,37Mg were stopped at the SSD4 with the selected window of the magnetic rigidity. Significant numbers of events have been observed for new isotopes, 31Ne (23 events) and 37Mg (three events).”

38Mg

In the 2002 article “New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64A MeV 48Ca beam” Notani et al. observed 38Mg [30]. The RIKEN ring cyclotron accelerated a 48Ca beam to 64 MeV/nucleon which was then fragmented on a tantalum target. The projectile fragments were analyzed with the RIPS spectrometer. The observation of 38Mg was not explicitly mentioned because its discovery was attributed to a previous publication of a conference proceeding [47]. In the two-dimensional A/Z versus Z plot for the 40Mg Bρ setting events for 38Mg can clearly be identified. It represents the first publication of 38Mg in a refereed publication.

40Mg

Baumann et al. discovered 40Mg in the 2007 paper “Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes” [48]. A 141 MeV/nucleon 48Ca beam bombarded a natural tungsten target and 40Mg was identified with the MSU/NSCL A1900 fragment separator and the S800 analysis system. “The particle identification can be seen in [the figure], where the locus of isotopes with constant N=2Z is indicated by the vertical line and heavier isotopes lie to the right. Three events of 40Mg were clearly identified. Each of the parameters that are used for the particle identification has been checked on an event-by-event basis to exclude possible ambiguous background events.”

2.3. Aluminum

The observation of 22 aluminum isotopes has been reported so far, including 1 stable, 5 proton-rich, and 16 neutron-rich isotopes. The proton dripline has been reached with the observation that 21Al is unbound [49]. According to the HFB-14 model [50], three more aluminum neutron-rich isotopes could be bound (44Al, 45Al, and 47Al).

Figure 3 summarizes the year of first observation for all aluminum isotopes identified by the method of discovery. The radioactive aluminum isotopes were produced using light-particle reactions (LP), deep-inelastic reactions (DI), spallation (SP), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each aluminum isotope is discussed in detail and a summary is presented in Table 1.
Fig. 3: Aluminum isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
Cable et al. discovered ^{22}Al as described in the 1982 paper “Beta-delayed proton decay of an odd-odd $T_z = -2$ isotope, ^{22}Al” [51]. A 110 MeV ^3He beam from the Berkeley 88-in cyclotron bombarded magnesium targets forming ^{22}Al in the reaction $^{24}\text{Mg}(^3\text{He},p4n)$. Beta-delayed protons were measured with a three-element semiconductor particle telescope. At 110 MeV, two new proton groups are observed at laboratory energies of 7.839±0.015 MeV and 8.149±0.021 MeV. As noted below and as indicated in [the figure], these groups lie very near the predicted absolute proton energies for the decay of ^{22}Al based on Coulomb displacement energy calculations... A rough half-life (70$^{+50}_{-35}$ ms) for the 7.839 group was determined by observing the relative yields of ^{25}Si, ^{21}Mg, and ^{22}Al with different helium jet operating conditions resulting in different transit times from target to catcher.” This half-life agrees with the presently adopted value of 59(3) ms.

The first observation of ^{23}Al was described by Cerny et al. “New nuclides ^{19}Na and ^{23}Al observed via the $(p,^6\text{He})$ reaction” in 1969 [15]. A natural silicon target was bombarded with 54.7 MeV protons from the Berkeley 88-in. cyclotron. ^{23}Al was produced in the reaction $^{28}\text{Si}(p,^6\text{He})$ and identified by measuring the ^6He in a two counter telescope. “The mass excess of ^{23}Al is determined to be 6.766±0.080 MeV. (The data in [the figure] also show the presence of ^7B ground state from reactions on a ^{12}C target impurity.) Therefore, ^{23}Al is bound to $^{22}\text{Mg}+p$ by 146±82 keV and is nucleon stable.” Previously a 130 ms activity was assigned to either ^{23}Al or ^{22}Mg [38].

In 1953 ^{24}Al was reported by Glass et al. in “The short-lived radioisotopes P28 and Cl32” [52]. Protons were accelerated to 20 MeV by the UCLA cyclotron and bombarded magnesium targets. ^{24}Al was produced in (p,n) charge exchange reactions and identified by measuring γ-rays with a NaI crystal. “We have also obtained some results on Al24 from the reaction $\text{Mg}^{24}(p,n)\text{Al}^{24}$. We observe gamma-radiations of energy 7.1±0.2 Mev, 5.3±0.2 Mev, 4.3±0.2 Mev, and 2.9±0.2 Mev. Our value for the half-life is 2.10±0.04 seconds which agrees within experimental error with the value obtained by Birge.” This half-life is in agreement with the currently adopted value of 2.053(4) s. Birge had reported a half-life of 2.3(2) s but it was only published as an abstract of a meeting [53].

Churchill et al. reported the discovery of ^{25}Al in the 1953 paper “Half-value periods for the decay of aluminium-26, aluminium-25 and nitrogen-13” [54]. Enriched ^{24}Mg targets were bombarded with 418 keV protons and ^{25}Al was formed by resonant proton capture. Positron activities were measured with a Geiger-Müller tube. “The half-value periods were calculated from these results using the rigorous treatment given by Peierls and were as follows: aluminium-26, 6.68±0.11 sec.; aluminium-25, 7.62±0.13 sec.; and nitrogen-13, 602.9±1.9 sec.” The half-life for ^{25}Al agrees with the currently adopted value of 7.183(12)s. A previously measured half-life of 7.3 s was only published in a meeting abstract [55].

The first observation of ^{26}Al was reported by Frisch et al. in “Induced radioactivity of sodium and phosphorus” in 1934 [56]. A 1 mCi thorium B + C α source was used to irradiate sodium targets and the subsequent activity
was measured with a Geiger-Müller counter. “Three different sodium compounds (NaCl, NaF, Na$_2$C$_2$O$_4$) have been investigated; they all showed a fairly strong activity, dying off very quickly. The half value period has been determined by recording the impulses on a rotating drum, the whole decay curve being recorded 21 times. The half value period was found to be 7 ± 1 seconds... So for sodium and phosphorus the reactions would be $^{11}\text{Na}^{23} + \alpha = ^{13}\text{Al}^{26} + \text{neutron}$ and $^{15}\text{I}^{31} + \alpha = ^{17}\text{Cl}^{34} + \text{neutron}$, respectively.” This half-life agrees with the presently accepted value of $6.3452(19)$ s for the isomeric state.

^{27}Al

Aston identified ^{27}Al in 1922 as reported in “The isotopes of selenium and some other elements” [57]. Aluminum was measured with the Cavendish mass spectrometer. “Application of the method to cadmium and tellurium has failed to give the mass lines of these elements. The employment of the more volatile TeCl$_3$ was also unsuccessful, but incidentally gave evidence of great value, which practically confirms two facts previously suspected, namely, that chlorine has no isotope of mass 39, and that aluminium is a simple element 27.”

^{28}Al

Curie and Joliot discovered ^{28}Al in 1934 in “I. Production artificielle d’éléments radioactifs II. Preuve chimique de la transmutation des éléments.” [58]. Magnesium samples were irradiated by polonium α-particles and their electron and positron activities were measured as a function of time. “Le radionucléide émetteur de rayons β créé dans le magnésium irradié est probablement un noyau ^{28}Al, formé à partir de ^{25}Mg par capture de la particule α et émission d’un proton. Les électrons négatifs étant plus nombreux que les positifs, il est probable que la période de 2 min 15 s observée correspond a ce radionucléide.” [The β-emitter produced in the irradiation of magnesium is probably the nucleus ^{28}Al formed by α capture on ^{25}Mg and the emission of a proton. Because there are more negative electrons than positive, it is probable that the observed 2 min 15 s half-life corresponds to this radio-element.] This half-life agrees with the currently adopted value of $2.2414(12)$ min.

^{29}Al

Bethe and Henderson correctly identified ^{29}Al in the 1939 paper “Evidence for incorrect assignment of the supposed Si27 radioactivity of 6.7-minute half-life” [59]. The Purdue cyclotron was used to irradiate magnesium with 16 MeV α-particles. Photographs were taken with a Wilson cloud chamber after the irradiation. Previously there had been some uncertainties about the assignment of a 6–7 min half-life to either ^{27}Si or ^{29}Al. “We have therefore repeated the experiment with the 16-Mev α-particles furnished by the Purdue cyclotron. The result is that there is no positron activity, but only negative electrons. This proves that the previous assignment was incorrect and that the 6.7-min. period is almost certainly Al29, formed by the reaction Mg$^{26}(\alpha,p)$.” This half-life agrees with the presently accepted value of $6.56(6)$ min. The previous measurements with the uncertain assignment were 7.5(15) min [60], 6.7(10) min [61], 6–7 min [62], and 6.6(3) min [63].

^{30}Al

Robinson and Johnson discovered ^{30}Al in 1961 in “New isotope, Al30” [64]. Silicon targets were irradiated with fast neutrons produced by bombarding lithium with 8.8 MeV deuterons from the Purdue 37-in cyclotron. ^{30}Al was formed in
the (n,p) charge exchange reaction and identified by measuring \(\gamma \)- and \(\beta \)-rays in a NaI(Tl) crystal and a plastic phosphor detector, respectively. “A radioisotope with a \((3.27\pm0.20)\)-sec half-life is produced by bombarding silicon with (Li\(^7\)-d) neutrons. This activity is that of the previously unobserved isotope Al\(^{30}\) and is produced by the reaction Si\(^{30}\)(n,p)Al\(^{30}\).” This half-life agrees with the presently adopted value of 3.60(6) s.

\(^{31-33}\)Al

Artukh et al. discovered \(^{31}\)Al, \(^{32}\)Al, and \(^{33}\)Al in the 1971 paper “New isotopes \(^{29,30}\)Mg, \(^{31,32,33}\)Al, \(^{33,34,35,36}\)Si, \(^{35,36,37,38}\)P, \(^{39,40}\)S, and \(^{41,42}\)Cl produced in bombardment of a \(^{232}\)Th target with 290 MeV \(^{40}\)Ar ions” [42]. A 290 MeV \(^{40}\)Ar beam from the Dubna 310 cm heavy-ion cyclotron bombarded a metallic \(^{232}\)Th. Reaction products were separated and identified with a magnetic spectrometer and a surface barrier silicon telescope. “Apart from the nucleides already known, 17 new nucleides, namely: \(^{29,30}\)Mg, \(^{31,32,33}\)Al, \(^{33,34,35,36}\)Si, \(^{35,36,37,38}\)P, \(^{39,40}\)S and \(^{41,42}\)Cl have been reliably detected.”

\(^{34}\)Al

\(^{34}\)Al was discovered by Butler et al. in “Observation of the new nuclides \(^{27}\)Ne, \(^{31}\)Mg, \(^{32}\)Mg, \(^{34}\)Al, and \(^{39}\)P” in 1977 [43]. \(^{34}\)Al was produced in the spallation reaction of 800 MeV protons from the Clinton P. Anderson Meson Physics Facility LAMPF on a uranium target. The spallation fragments were identified with a silicon \(\Delta E\)-E telescope and by time-of-flight measurements. “All of the stable and known neutron-rich nuclides (except \(^{24}\)O and the more neutron-rich Na isotopes) are seen. The five previously unobserved neutron-rich nuclides \(^{27}\)Ne, \(^{31}\)Mg, \(^{32}\)Mg, \(^{34}\)Al, and \(^{39}\)P are clearly evident. Each of these peaks contains ten or more events.”

\(^{35}\)Al

In 1979 Symons et al. described the discovery of \(^{35}\)Al in “Observation of new neutron-rich isotopes by fragmentation of 205-MeV/Nucleon \(^{40}\)Ar ions” [65]. A 205 MeV/nucleon \(^{40}\)Ar beam from the Berkeley Bevalac was fragmented on a carbon target. The projectile fragments were analyzed with a zero-degree magnetic spectrometer and detected in two detector telescopes. “Projected mass spectra with a gate of \(\pm 0.2\) units about charges 10, 11, 12, and 13 are shown in [the figure]. \(^{28}\)Ne and \(^{35}\)Al are positively identified as particle-stable isotopes with more than 10 counts in each case.”

\(^{36,37}\)Al

The first observation of \(^{36}\)Al and \(^{37}\)Al was reported by Westfall et al. in “Production of neutron-rich nuclides by fragmentation of 212-MeV/amu \(^{48}\)Ca” in 1979 [44]. \(^{48}\)Ca ions (212 MeV/nucleon) from the Berkeley Bevalac were fragmented on a beryllium target. The fragments were selected by a zero degree spectrometer and identified in a telescope consisting of 12 Si(Li) detectors, 2 position-sensitive Si(Li) detectors, and a veto scintillator. “In this letter, we present the first experimental evidence for the particle stability of fourteen nuclides \(^{22}\)N, \(^{26}\)F, \(^{33,34}\)Mg, \(^{36,37}\)Al, \(^{38,39}\)Si, \(^{41,42}\)P, \(^{43,44}\)S, and \(^{44,45}\)Cl produced in the fragmentation of 212-MeV/amu \(^{48}\)Ca.”

\(^{38,39}\)Al

Guillemaud-Mueller et al. announced the discovery of \(^{38}\)Al and \(^{39}\)Al in the 1989 article “Observation of new neutron rich nuclei \(^{29}\)F, \(^{35,36}\)Mg, \(^{38,39}\)Al, \(^{40,41}\)Si, \(^{43,44}\)P, \(^{45-47}\)S, \(^{46-49}\)Cl, and \(^{49-51}\)Ar from the interaction of 55 MeV/u \(^{48}\)Ca+Ta.”
A 55 MeV/u 48Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl, and 49,50,51Ar are clearly visible.”

40,41Al

In the 2002 article “New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64A MeV 48Ca beam” Notani et al. observed 40Al and 41Al [30]. The RIKEN ring cyclotron accelerated a 48Ca beam to 64 MeV/nucleon which was then fragmented on a tantalum target. The projectile fragments were analyzed with the RIPS spectrometer. The observation of 40Al and 41Al was not explicitly mentioned because its discovery was attributed to a previous publication of a conference proceeding [47]. In the two-dimensional A/Z versus Z plot for the 40Mg Bρ setting events for 40Al and 41Al can clearly be identified. It represents the first publication of 40Al and 41Al in a refereed publication.

42,43Al

Baumann et al. observed 42Al and 43Al in the 2007 paper “Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes” [48]. A 141 MeV/nucleon 48Ca beam bombarded a natural tungsten target and 40Mg was identified with the MSU/NSCL A1900 fragment separator and the S800 analysis system. “Further, the 23 events of 42Al establish its discovery. [The figure] also contains one event consistent with 43Al.”

2.4. Silicon

The observation of 23 silicon isotopes has been reported so far, including 3 stable, 6 proton-rich, and 14 neutron-rich isotopes. No specific searches for the existence of 21Si have been reported and so it could potentially still be observed [13]. According to the HFB-14 model [50], three more silicon neutron-rich isotopes could be bound (46Si, 48Si, and 50Si).

Figure 4 summarizes the year of first observation for all silicon isotopes identified by the method of discovery. The radioactive silicon isotopes were produced using light-particle reactions (LP), deep-inelastic reactions (DI), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS) and atomic spectroscopy (AS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each silicon isotope is discussed in detail and a summary is presented in Table 1.

22Si

Saint-Laurent et al. discovered 22Si in 1987 in the paper “Observation of a bound $T_z = -3$ nucleus: 22Si” [49]. A 85 MeV/u 36Ar beam was fragmented on a nickel target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. The isotopes were identified by measuring energy loss and time-of-flight. “[The figure] shows the experimental results obtained after a 6-h run... The total number of 22Si observed in [the figure] is 161.”

23Si

23Si was first reported in 1986 by Langevin et al. in “Mapping of the proton drip-line up to $Z = 20$: Observation of the $T_z = -5/2$ series 23Si, 27S, 31Ar, and 35Ca” [66]. A 77.4 MeV/u 40Ca beam was fragmented on a nickel target
Fig. 4: Silicon isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. The isotopes were identified by measuring energy loss and time-of-flight. “The bidimensional plot (see [the figure]) of $\sqrt{\Delta} / \text{t.o.f.}$ (i.e. Z) versus t.o.f (i.e. A/Z) was inspected on-line to calibrate the particle identification... [The figure] shows the same bidimensional representation after 14 hours of integration time. The T\text{z} series ^{23}Si, ^{27}S, ^{31}Ar, and ^{35}Ca clearly becomes visible.”

^{24}Si

In the 1979 paper “Decay of a new isotope, ^{24}Si: A test of the isobaric multiplet mass equation” Äystö et al. described the first observation of ^{24}Si [67]. A 70 MeV ^{3}He beam from the Berkeley 88-in. cyclotron bombarded magnesium targets and ^{24}Si was produced in the reaction $^{24}\text{Mg}(^{3}\text{He},3n)$. Beta-delayed protons from the recoil products were measured at the on-line mass separator system RAMA. “The proton spectrum arising from the decay of ^{24}Si after bombardment for 560 mC is shown in [the figure]. Only one peak is evident in the spectrum; it occurs at a laboratory energy of 3914±9 keV. Possible lower energy groups arising from positron decay to 1$^+\text{ states were not observed, a result partly due to the low detection efficiency of the telescope below 3 MeV. A half-life of 100$^{+90}_{-40}$ ms was estimated for the observed peak by comparing the ^{24}Si focal plane yield to the yields of ^{20}Na ($t_{1/2} = 446$ ms), ^{24}Al (2.07 s), $^{24}\text{Al}^{m}$ (129 ms) and ^{25}Si (220 ms).” This half-life agrees with the presently adopted value of 140(8) ms.

^{25}Si

In “Observation of delayed proton radioactivity” Barton et al. implied the observation of ^{25}Si for the first time in 1963 [35]. The McGill Synchrocyclotron accelerated protons to 97 MeV which bombarded aluminum and SiO$_2$ targets. ^{25}Si was identified by the observation of β-delayed protons in a silicon junction particle detector. “In summary, it is concluded that all the observed peaks are due to delayed protons and that the spectra from Al and Si targets are due to the same radiations. It is concluded from activation and lifetime evidence that these protons are beta-delayed protons emitted from excited states of Al following the beta decay of Si25.” The half-life was subsequently measured by McPherson et al. [36] who acknowledged the tentative observation by Barton et al.

^{26}Si

^{26}Si was identified in 1960 by Robinson and Johnson in “Decay of Si26” [68]. Magnesium targets were bombarded with an 8 MeV ^{3}He beam from the Purdue 37-in cyclotron. ^{26}Si was produced in the reaction $^{24}\text{Mg}(^{3}\text{He},n)$ and identified by measuring decay curves and γ-ray spectra with a NaI(Tl) detector. “An internally consistent argument based on the known decay characteristics of reaction products that may be expected from energy considerations, the results of half-life studies, experimental gamma spectra, and nuclear systematics can be made to support the conclusion that the (2.1\pm0.3)-sec halflife is that of Si26 produced in the reaction Mg$^{24}(^{3}\text{He},n)$Si26, and a consistent decay scheme can be proposed.” This half-life agrees with the presently accepted value of 2.234(13) s. A previously measured 1.7 s half-life assigned to ^{26}Si was not credited with the discovery because the identification was only suggested “from a simple consideration of preferred reaction type[s] and estimates of threshold[s]” [38].

^{27}Si

Kuerti and Van Voorhis identified ^{27}Si in 1939 as described in the paper “Induced radioactivity produced by bombarding aluminum with protons” [69]. Aluminum was bombarded with protons and ^{27}Al was produced in the (p,n)
charge exchange reaction. Excitation functions and activities were measured with an ionization chamber. Previously there had been some uncertainties about the assignment of a 6−7 min half-life to either 27Si or 29Al. “However, all our attempts to find such a period have been completely unsuccessful, its intensity if present being at least ten thousand times weaker than would be predicted from (p,n) cross sections for neighboring elements. We have, however, found an activity of 3.7 seconds half-life which is produced in aluminum by protons.” This half-life agrees with the presently accepted value of 4.16(2) s. The previous measurements with the uncertain assignment were 7.5(15) min [60], 6.7(10) min [61], 6−7 min [62], and 6.6(3) min [63]. This half-life was later assigned to 29Al [59]. In addition, Curie and Jollet had assigned a 2.5 min half-life to 27Si [70, 71] which most likely was due to 28Al.

28,29Si

Aston discovered 28Si and 29Si in 1920 as reported in “The constitution of the elements” [72]. The isotopes were identified by measuring their mass spectra. “The results obtained with silicon (atomic weight 28.3) are somewhat difficult to interpret, and lead to the conclusion that this element has isotopes 28 and 29, with possibly another 30.”

30Si

In the 1924 paper “Isotope effects in the band spectra of boron monoxide and silicon nitride” Mulliken reported the observation of 30Si [73]. Band spectra of silicon nitrate were measured. “In agreement with theory for the heavier isotopes Si29N and Si30N, these weak heads lag behind the corresponding Si28N heads more and more with increasing distance toward the red from the central band. On the ultra-violet side of the central band, the isotope heads are concealed by the heavy shading of the Si28N bands. Isotope 29 appears to be a little more abundant than isotope 30. There is no evidence of other isotopes in appreciable amounts.” Previously Aston had only indicated the possibility of a stable 30Si isotope [72].

31Si

31Si was discovered by Fermi et al. in the 1934 article “Artificial radioactivity produced by neutron bombardment” [21]. Phosphorus targets were irradiated with neutrons from a 800 mCi radon beryllium source and activities were measured with Geiger-Müller counters following chemical separation. “15−Phosphorus−This element shows a strong activity (i = 0.6) decaying with a period of about 3 hours... The 3 hours’ active product could be chemically separated. For this purpose phosphorus was irradiated as a concentrated solution of phosphoric acid. This solution was afterwards diluted with water, adding sulphuric acid and a small amount of sodium silicate. The substance is dried up to render silica insoluble, and then dissolved in water and filtered. The activity is found with the silica. The nuclear reaction is then probably P31 + n_1 = Si31 + H1. This half-life is consistent with the currently adopted value of 157.3(3) min.

32Si

Lindner identified 32Si in the 1953 paper “New nuclides produced in chlorine spallation” [74]. A 340 MeV proton beam from the Berkeley 184-in. cyclotron bombarded sodium chloride targets. Beta absorption and decay curves were measured following chemical separation. “The radiation properties of the beta-emitting nuclides Si32 and Mg28 are described. Si32 was found to have a maximum probable half-life of 710 years, emitting beta-particles of $E_{\text{max}} \sim 100$ kev... These data, therefore, establish the existence of the long-lived Si32, which emits beta particles of about 100 kev.
and apparently no gamma radiation... It is unlikely that the half-life is as low as 100 years.” The quoted range of possible half-lives includes the currently adopted value of 132(13) y. A previous search for 32Si was unsuccessful [75] while Turkevich and Tompkins set an upper limit for the abundance of 32Si in natural silicon [76].

$^{33-36}$Si

Artukh et al. discovered 33Si, 34Si, 35Si, and 36Si in the 1971 paper “New isotopes 29,30,31Mg, 31,32,33Al, 33,34,35,36Si, 35,36,37,38P, 39,40S, and 41,42Cl produced in bombardment of a 232Th target with 290 MeV 40Ar ions” [42]. A 290 MeV 40Ar beam from the Dubna 310 cm heavy-ion cyclotron bombarded a metallic 232Th. Reaction products were separated and identified with a magnetic spectrometer and a surface barrier silicon telescope. “Apart from the nuclides already known, 17 new nuclides, namely: 29,30Mg, 31,32,33Al, 33,34,35,36Si, 35,36,37,38P, 39,40S and 41,42Cl have been reliably detected.”

37Si

In 1979 37Si was discovered by Auger et al. in “Observation of new nuclides 37Si, 40P, 42S, 42Ar on 238U” [77]. A 263 MeV 40Ar beam from the Orsay ALICE facility bombarded a UF$_4$ target and reaction products were measured with a triple silicon solid state counter telescope. “Four new neutron-rich nuclides, 37Si, 40P, $^{41-42}$S have been observed as a result of deep inelastic collisions. The nuclide identification combined two independent time of flight measurements as well as two ($\Delta E \times E$) informations and was quite unambiguous.”

38,39Si

The first observation of 38Si and 39Si was reported by Westfall et al. in “Production of neutron-rich nuclides by fragmentation of 212-MeV/amu 48Ca” in 1979 [44]. 48Ca ions (212 MeV/nucleon) from the Berkeley Bevalac were fragmented on a beryllium target. The fragments were selected by a zero degree spectrometer and identified in a telescope consisting of 12 Si(Li) detectors, 2 position-sensitive Si(Li) detectors, and a veto scintillator. “In this letter, we present the first experimental evidence for the particle stability of fourteen nuclides 22N, 26F, 33,34Mg, 36,37Al, 38,39Si, 41,42P, 43,44S, and 44,45Cl produced in the fragmentation of 212-MeV/amu 48Ca.”

40,41Si

Guillemaud-Mueller et al. announced the discovery of 40Si and 41Si in the 1989 article “Observation of new neutron rich nuclei 29F, 35,36Mg, 38,39Al, 40,41Si, 43,44P, $^{45-47}$S, $^{46-49}$Cl, and $^{49-51}$Ar from the interaction of 55 MeV/u 48Ca+Ta” [45]. A 55 MeV/u 48Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl, and 49,50,51Ar are clearly visible.”

42Si

Lewitowicz et al. discovered 42Si in the 1990 paper “First observation of the neutron-rich nuclei 42Si, 45,46P, 48S, and 51Cl from the interaction of 44 MeV/u 48Ca + 64Ni” [78]. A 44 MeV/u 48Ca beam was fragmented on a 64Ni target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “The isotopes of 42Si, 45,46P, 48S, and 51Cl are identified for the first time.”
In the 2002 article “New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64A MeV 48Ca beam” Notani et al. described the first observation of 43Si [30]. The RIKEN ring cyclotron accelerated a 48Ca beam to 64 MeV/nucleon which was then fragmented on a tantalum target. The projectile fragments were analyzed with the RIPS spectrometer. “[Part (a) of the figure] shows a two-dimensional plot of A/Z versus Z, obtained from the data accumulated with the 40Mg β_p setting, while [part (b)] is for the 43Si setting. The integrated beam intensities for the two settings are 6.9×10^{16} and 1.7×10^{15} particles, respectively. The numbers of events observed for three new isotopes, 34Ne, 37Na and 43Si, were 2, 3 and 4, respectively.”

Tarasov et al. reported the first observation of 44Si in “New isotope 44Si and systematics of the production cross sections of the most neutron-rich nuclei” in 2007 [79]. A 9Be target was bombarded with a 142 MeV/nucleon 48Ca from the NSCL coupled cyclotron facility. 44Si was identified with the A1900 fragment separator. “The study of the production of the most neutron-rich silicon isotopes provided evidence for the existence of a new isotope, 44Si, in a high energy reaction that requires the net transfer of two neutrons to the projectile.”

2.5. Phosphorus

The observation of 21 phosphorus isotopes has been reported so far, including 1 stable, 5 proton-rich, and 15 neutron-rich isotopes. The proton dripline has been reached because as stated in [13] the particle identification plot in the 1986 paper by Langevin et al. clearly showed that 25P is beyond the dripline and has a lifetime shorter than the time-of-flight of 170 ns. According to the HFB-14 model [50], four more phosphorus neutron-rich isotopes could be bound (47−49P and 51P).

Figure 5 summarizes the year of first observation for all phosphorus isotopes identified by the method of discovery. The radioactive phosphorus isotopes were produced using light-particle reactions (LP), deep-inelastic reactions (DI), spallation (SP), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each phosphorus isotope is discussed in detail and a summary is presented in Table 1.

26P

The discovery of 26P was reported in 1983 by Cable et al. in “Beta-delayed proton decay of the $T_z=-2$ isotope 26P” [80]. 28Si was bombarded with a 110−130 MeV 3He beam from the Berkeley 88-in. cyclotron and 26P was produced in the reaction 28Si$(^3$He,p4n). Recoil products were collected on a rotating wheel and β-delayed protons were measured in a three-element semiconductor telescope. “A rough half-life of 20^{+35}_{-15} ms was determined for the 7.269 MeV proton group by varying the wheel rotational speed and observing the relative yields of the various activities present. This method could, in principle, yield a precise half-life measurement but does not do so here due to the low yield of 26P. As shown in [the figure], the 7.269±0.015 MeV group can be attributed to the isospin forbidden decay of the lowest $T = 2$ state in 26Si (fed by the superallowed β^+-decay of the $T = 2$ ground state of 26P) to the ground state of 25Al.” This half-life is consistent with the presently adopted value of 30(25) ms.
Fig. 5: Phosphorus isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
Benenson et al. observed ^{27}P in 1977 as reported in “Mass of ^{27}P and ^{31}Cl” [81]. A ^{32}S target was bombarded with a 70 MeV ^{3}He beam and ^{27}P was formed in a $(^{3}\text{He},^{8}\text{Li})$ reaction. The ejectiles were measured with a double proportional counter and a thin plastic scintillator at the focal plane of a split-pole spectrograph. “The spectrum from the $^{32}\text{S}(^{3}\text{He},^{8}\text{Li})^{27}\text{P}$ reaction at 7° is given in [the figure]. The ^{27}P ground state is clearly evident although not at all strong.”

In 1953 ^{28}P was reported by Glass et al. in “The short-lived radioisotopes ^{28}P and ^{32}Cl” [52]. Protons were accelerated to 20 MeV by the UCLA cyclotron and bombarded silicon targets. ^{28}P was produced in (p,n) charge exchange reactions and identified by measuring γ-rays with a NaI crystal. “The half-life of the ^{28}P was found to be 0.280±0.010 second. It emits positrons and gamma-radiation up to an energy of 7 Mev.” This half-life is in agreement with the currently adopted value of 270.3(5) ms.

White et al. described the observation of ^{29}P in 1941 in the paper “Positrons from light nuclei” [82]. Protons from the Princeton cyclotron bombarded silicon targets. Beta-rays were measured in a cloud chamber and the half-life was recorded by taking photographs of a stop watch dial and the image of the fiber of a projection-type Lauritsen electroscope. “A large number of targets were used in rotation so that the ^{30}P activity would not build up after repeated short exposures to the beam. It was hoped that the energy of ^{29}P would be sufficiently higher than that of ^{30}P so it could be distinguished. That this was possible may be seen from [the figure], where the momentum spectrum of all positrons from the two reactions Si29,30, (p,n)$^{29,30}\text{P}$ is plotted as well as the upper end of the spectrum of positrons from ^{30}P alone, the latter being obtained when the proton energy was below the threshold for production of ^{29}P.” The reported half-life of 4.6(2) s agrees with the presently adopted value of 4.142(15) s.

Curie and Joliot presented first evidence of ^{30}P in 1934 in “Un nouveau type de radioactivité” [70]. Aluminum, boron, and magnesium samples were irradiated by polonium α-particles and their activities were measured with a Geiger Müller counter as a function of time. “Nous plaçons une feuille d’aluminium à 1mm d’une source de polonium. L’aluminium ayant été irradié pendant 10 minutes environ, nous le plaçons au-dessus d’un compteur de Geiger Müller portant un orifice fermé par un écran de 7/100° millimètre d’aluminium. Nous observons que la feuille émet un rayonnement dont l’intensité décroît exponentiellement en fonction du temps avec une période de 3 minutes 15 secondes... Ces expériences montrent l’existence d’un nouveau type de radioactivité avec émission d’électrons positifs. Nous pensons que le processus d’émission serait le suivant pour l’aluminium: $^{13}\text{Al} + \frac{4}{2}\text{He} = ^{30}\text{P} + \frac{1}{0}\text{n.}$. [We place a 1 mm aluminum sheet in front of a polonium source. After the aluminum was irradiated for 10 minutes, we place it on top of a Geiger Müller counter and an aluminum screen with a 7/100 mm aperture. We observe that the sheet emits radiation whose intensity decreases exponentially with a period of 3 minutes and 15 seconds... These experiments show the existence of a new type of radioactivity with the emission of positive electrons. We propose the following emission process: $^{13}\text{Al} + \frac{4}{2}\text{He} = ^{30}\text{P} + \frac{1}{0}\text{n.}$] This half-life is close to the currently adopted value of 2.498(4) min.
Aston discovered ^{31}P in 1920 as reported in “The constitution of the elements” [72]. The isotopes were identified by measuring their mass spectra. “Phosphorus (atomic weight 31.04) and arsenic (atomic weight 74.96) are also apparently simple elements of masses 31 and 75 respectively.”

^{32}P

^{32}P was discovered by Fermi et al. in the 1934 article “Artificial radioactivity produced by neutron bombardment” [21]. Phosphorus targets were irradiated with neutrons from a 800 mCi radon beryllium source and activities were measured with Geiger-Müller counters following chemical separation. “15–Sulphur: Sulphur shows a fairly strong activity, decaying with a period of about 13 days (rather inaccurately measured). Half-value absorption thickness of the β-rays 0.10 gm/cm2. A chemical separation of the active product was carried out as follows: irradiated sulphuric acid was diluted, a trace of sodium phosphate added, and phosphorus precipitated as phosphomolibdate by addition of ammonium molybdate. The activity was found in the precipitate. We think, in consequence, that the nuclear reaction is $^{32}\text{S} + ^1\text{n} \rightarrow ^{32}\text{P} + ^1\text{H}$. This half-life agrees with the currently adopted value of 14.263(3) d.

^{33}P

Sheline et al. reported the observation of ^{33}P in the 1951 paper “The nuclide ^{33}P and the ^{32}P spectrum” [83]. The Chicago betatron was used to produce 48 MeV γ-rays which bombarded sulfur, sodium sulfide and lithium chloride targets. ^{33}P was produced in the photo-nuclear reactions $^{34}\text{S}(\gamma,p)$, $^{35}\text{Cl}(\gamma,2p)$, and $^{37}\text{Cl}(\gamma,\alpha)$. Beta-rays were recorded with an end window Geiger tube and absorption curves were measured. “The ^{33}P activity has a 25±2 day half-life with a 0.27±0.02-Mev negative beta-ray. There is less than one (0.5-Mev) gamma for every fifteen betas.” This half-life agrees with the presently adopted value of 25.34(12) d. A previously measured 22(5) s half-life was reported as a meeting abstract [84] and was evidently incorrect.

^{34}P

In 1945 ^{34}P was identified by Zünti and Bleuler as described in “Über zwei Aktivitäten ^{37}S und ^{34}P, die durch schnelle Neutronen in Chlor induziert werden” [85]. Fast neutrons produced by a tensator were used to bombard chlorine targets. Beta- and gamma-ray spectra were measured following chemical separation. “Da der n,α-Prozess bei ^{36}Cl auf den bekannten langlebigen ^{32}P führt, kann es sich nur um die Reaktion $^{37}\text{Cl}(n,\alpha)^{34}\text{P}$ handeln.” [Because the n,α-process on ^{35}Cl leads to the known longlived ^{32}P, it can only be due to the reaction $^{37}\text{Cl}(n,\alpha)^{34}\text{P}$.] The measured half-life of 12.4(2) s agrees with the currently adopted value of 12.43(8) s. Previously a 14.7 s half-life was reported to result from either ^{34}P or ^{37}S [86], and a 12.7 s half-life was assigned to a phosphorus isotope with mass larger than 31 [87].

$^{35–38}\text{P}$

Artukh et al. discovered ^{35}P, ^{36}P, ^{37}P, and ^{38}P in the 1971 paper “New isotopes $^{29,30}\text{Mg}$, $^{31,32,33}\text{Al}$, $^{33,34,35,36}\text{Si}$, $^{35,36,37,38}\text{P}$, $^{39,40}\text{S}$, and $^{41,42}\text{Cl}$ produced in bombardment of a ^{232}Th target with 290 MeV ^{40}Ar ions” [42]. A 290 MeV ^{40}Ar beam from the Dubna 310 cm heavy-ion cyclotron bombarded a metallic ^{232}Th. Reaction products were separated and identified with a magnetic spectrometer and a surface barrier silicon telescope. “Apart from the nucleides already
known, 17 new nucleides, namely: $^{29,30}\text{Mg}$, $^{31,32,33}\text{Al}$, $^{33,34,35,36}\text{Si}$, $^{35,36,37,38}\text{P}$, $^{39,40}\text{S}$ and $^{41,42}\text{Cl}$ have been reliably detected.” Less than two months later Grimm and Herzog independently reported the first half-life of 45(2) s for ^{35}P [88].

^{39}P

^{39}P was discovered by Butler et al. in “Observation of the new nuclides ^{27}Ne, ^{31}Mg, ^{32}Al, and ^{39}P” in 1977 [43]. ^{39}P was produced in the spallation reaction of 800 MeV protons from the Clinton P. Anderson Meson Physics Facility LAMPF on a uranium target. The spallation fragments were identified with a silicon ΔE-E telescope and by time-of-flight measurements. “All of the stable and known neutron-rich nuclides (except ^{24}O and the more neutron-rich Na isotopes) are seen. The five previously unobserved neutron-rich nuclides ^{27}Ne, ^{31}Mg, ^{32}Mg, ^{34}Al, and ^{39}P are clearly evident. Each of these peaks contains ten or more events.”

^{40}P

In 1979 ^{40}P was discovered by Auger et al. in “Observation of new nuclides ^{37}Si, ^{40}P, ^{41}S, ^{42}S produced in deeply inelastic reactions induced by ^{40}Ar on ^{238}U” [77]. A 263 MeV ^{40}Ar beam from the Orsay ALICE facility bombarded a UF$_4$ target and reaction products were measured with a triple silicon solid state counter telescope. “Four new neutron-rich nuclides, ^{37}Si, ^{40}P, $^{41–42}\text{S}$ have been observed as a result of deep inelastic collisions. The nuclide identification combined two independent time of flight measurements as well as two ($\Delta E \times E$) informations and was quite unambiguous.”

$^{41,42}\text{P}$

The first observation of ^{41}P and ^{42}P was reported by Westfall et al. in “Production of neutron-rich nuclides by fragmentation of 212-MeV/amu ^{48}Ca” in 1979 [44]. ^{48}Ca ions (212 MeV/nucleon) from the Berkeley Bevalac were fragmented on a beryllium target. The fragments were selected by a zero degree spectrometer and identified in a telescope consisting of 12 Si(Li) detectors, 2 position-sensitive Si(Li) detectors, and a veto scintillator. “In this letter, we present the first experimental evidence for the particle stability of fourteen nuclides ^{22}N, ^{26}F, $^{33,34}\text{Mg}$, $^{36,37}\text{Al}$, $^{38,39}\text{Si}$, $^{41,42}\text{P}$, $^{43,44}\text{S}$, and $^{44,45}\text{Cl}$ produced in the fragmentation of 212-MeV/amu ^{48}Ca.”

$^{43,44}\text{P}$

Guillemaud-Mueller et al. announced the discovery of ^{43}P and ^{44}P in the 1989 article “Observation of new neutron rich nuclei ^{29}F, $^{35,36}\text{Mg}$, $^{38,39}\text{Al}$, $^{40,41}\text{Si}$, $^{43,44}\text{P}$, $^{45–47}\text{S}$, $^{46–49}\text{Cl}$, and $^{49–51}\text{Ar}$ from the interaction of 55 MeV/u $^{48}\text{Ca}+\text{Ta}$” [45]. A 55 MeV/u ^{48}Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species $^{35,36}\text{Mg}$, $^{38,39}\text{Al}$, $^{40,41}\text{Si}$, $^{43,44}\text{P}$, $^{45,46,47}\text{S}$, $^{46,47,48,49}\text{Cl}$, and $^{49,50,51}\text{Ar}$ are clearly visible.”

$^{45,46}\text{P}$

Lewitowicz et al. discovered ^{45}P and ^{46}P in the 1990 paper “First observation of the neutron-rich nuclei ^{42}Si, $^{45,46}\text{P}$, ^{48}S, and ^{51}Cl from the interaction of 44 MeV/u $^{48}\text{Ca} + \text{Ni}$” [78]. A 44 MeV/u ^{48}Ca beam was fragmented on a ^{64}Ni target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “The isotopes of ^{42}Si, $^{45,46}\text{P}$, ^{48}S, and ^{51}Cl are identified for the first time.”
2.6. Sulfur

The observation of 22 sulfur isotopes has been reported so far, including 4 stable, 5 proton-rich, and 13 neutron-rich isotopes. No specific searches for the existence of 26S have been reported and so it could potentially still be observed [13]. The latest mass evaluation predicts the one-proton separation energy of 26S to be 190(360) keV. According to the HFB-14 model [50], four more sulfur neutron-rich isotopes could be bound (49S, 50S, and 54S).

Figure 6 summarizes the year of first observation for all sulfur isotopes identified by the method of discovery. The radioactive sulfur isotopes were produced using light-particle reactions (LP), pion-induced reactions (PI), spallation (SP), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each sulfur isotope is discussed in detail and a summary is presented in Table 1.

27S

27S was first reported in 1986 by Langevin et al. in “Mapping of the proton drip-line up to Z = 20: Observation of the T_z = $-5/2$ series 23Si, 27S, 31Ar, and 35Ca” [66]. A 77.4 MeV/u 40Ca beam was fragmented on a nickel target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. The isotopes were identified by measuring energy loss and time-of-flight. “The bidimensional plot (see [the figure]) of $\sqrt{\Delta}/t.o.f.$ (i.e. Z) versus t.o.f (i.e. A/Z) was inspected on-line to calibrate the particle identification... [The figure] shows the same bidimensional representation after 14 hours of integration time. The T_z series 23Si, 27S, 31Ar, and 35Ca clearly becomes visible.”

28S

Morris et al. discovered 28S in “Target mass dependence of isotensor double charge exchange: Evidence for deltas in nuclei” in 1982 [89]. 28S was produced by the pion induced double charge exchange reaction 28Si($\pi^+,$$\pi^-$) and the negative pions were analyzed with the Energetic Pion Channel and Spectrometer EPICS. “Byproducts of the present measurements are values of the masses of 28S and 40Ti. Our measured mass excesses are 4.13±0.16 and −8.79±0.16 MeV for 28S and 40Ti, respectively.”

29S

In 1964 Hardy and Verrall reported the first observation of 29S in “Delayed protons following the decay of S29” [90]. A thin sulfur target was inserted on a radial probe into the circulating proton beam of the McGill synchrocyclotron. Beta delayed protons were measured with a surface barrier silicon detector. “Typical decay curves for the three main peaks are shown in [the figure]. The data for the 5.59 MeV peak has been corrected for the small Si25 peak (5.62 MeV). From such curves, the half-life we adopt for S29 is 195±8 msec.” This half-life agrees with the presently adopted value of 187(4) ms.

30S

Robinson et al. discovered 30S as described in the 1961 article “Decay of a new isotope, S30*” [91]. Natural silicon targets were irradiated with an 8 MeV 3He beam from the Purdue cyclotron. 30S was formed in a (3He,n) reaction and identified by measuring β- and γ-ray spectra. “A radioisotope with a (1.35±0.10)-sec half-life is produced in the
Fig. 6: Sulfur isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
bom bardment of high-purity silicon with 8-Mev He3 ions. The observed half-life is that of the new isotope S30 produced in the reaction Si28(He3,n)S30.” This half-life is close to the currently adopted value of 1.178(5) s.

31S

King and Elliott identified 31S in “Short-lived radioactivities of 14Si27, 16Si31, and 18A35” in 1940 [92]. Magnesium targets were bombarded with 16 MeV α particles and the resulting activities were measured with a multiple Geiger counter circuit. “In an attempt to extend the well-known series of radioactive elements characterized by the formula $Z - N = 1$, the following new reactions have been observed:... Reaction: 14Si$^{28}(\alpha,n)$S31; Half-life: 3.18 s.” This half-life is near the presently accepted value of 2.572(13) s.

32S

Aston discovered 32S in 1920 as reported in “The constitution of the elements” [72]. The isotopes were identified by measuring their mass spectra. “Sulphur (atomic weight 32.06) has a predominant constituent 32. Owing to possible hydrogen compounds the data are as yet insufficient to give a decision as to the presence of small quantities of isotopes of higher mass suggested by the atomic weight.”

33,34S

In the 1926 article “The isotopes of sulphur” Aston reported the discovery of 33S and 34S [93]. The discovery was possible due to an improved resolving power of the new Cavendish mass spectrograph. Previously, Aston was not able to identify sulfur isotopes other than 32S due to possible hydrogen compounds [72]. “The matter has now been put beyond reasonable doubt by the negative mass-spectrum obtained by using pure SO$_2$ and exposing for an hour with both fields reversed. All three lines were visible, and again showed the same intensity relations. Sulphur is therefore a triple element like the two even ones, magnesium and silicon, which precede it in the periodic table. The lightest mass-number is for the most abundant in all three cases. S34 appears to be about three times as abundant as S33; the two together probably amount to about 3 per cent. of the whole.”

35S

Anderson discovered 35S in 1936 as described in “Ein radioaktives Isotop des Schwefels” [94]. Carbon tetrachloride was irradiated with neutrons from a radium emanation (222Rn) – beryllium source. The resulting activity was measured following chemical separation. “Diese drei Proben waren alle aktiv und ergaben die gleiche Halbwertszeit von 80 Tagen mit einer geschätzten Unsicherheit von ±10 Tagen. Es wurde nur eine Halbwertszeit beobachtet. Wie oben erwähnt, darf man vermuten, dass dies dem Isotop 16S35 eigen ist.” [These three probes were all active and had the same half-life of 80 days with an estimated uncertainty of ±10 days. Only one half-life was observed. As mentioned above, one can assume it corresponds to the half-life of the isotope 16S35.] This half-life agrees with the currently adopted value of 87.51(12) d.

36S

Nier reported the discovery of 36S in 1938 in his paper “The isotopic constitution of calcium, titanium, sulfur and argon” [95]. SO$_2$ flowed into the tube of a mass spectrometer and positive ion peaks of SO$_2^+$, SO$^+$ and S$^+$ were used to identify 36S. “A new sulphur isotope, S36, was discovered, having an abundance 1/6,000 that of S32.”
In 1945, ^{37}S was identified by Zündt and Bleuler as described in “Über zwei Aktivitäten S37 und P34, die durch schnelle Neutronen in Chlor induziert werden” [85]. Fast neutrons produced by a tensator were used to bombard chlorine targets. Beta- and gamma-ray spectra were measured following chemical separation. “Bei den Messungen an diesem Phosphorisotop bemerkten wir die Anwesenheit einer längern Periode. Subtrahiert man von der Abklingkurve des bestrahlten Chlors die bekannten Aktivitäten von P34, Cl34, Cl35, P32 und S35, so bleibt ein rein exponentieller Abfall mit 5,0 min Halbwertszeit übrig. Die chemische Abtrennung zeigt, dass diese Aktivität einem Schwefelisotop zukommt und zwar dem S37, da nach Kamen der S35 mit einer 88-Tage-Periode zersetzt.” [During the measurements of this phosphor isotope we noticed the presence of a longer period. After subtraction of the known activities of P34, Cl34, Cl35, P32 and S35 from the decay curve of the irradiated chlorine a pure exponential decay with a half-life of 5.0 min remains. The chemical separation shows, that this activity is due to a sulfur isotope, specifically S37, because Kamen had shown that S35 decays with a period of 88 days.] The measured half-life of 5.04(2) min agrees with the currently adopted value of 5.05(2) min. Previously a 14.7 s half-life was reported to result from either P34 or S37 [86].

^{38}S was identified in 1958 by Nethaway and Caretto in “New isotope, sulfur-38” [96]. A 48-MeV α-particle beam from the Berkeley 60-in cyclotron bombarded reagent-grade NaCl crystals and ^{38}S was formed in the reaction $^{37}\text{Cl}(\alpha,3\text{p})$. Beta-activity was measured with a proportional counter following chemical separation. “All the chlorine samples were observed to decay with a single 37-minute half-life. The observed counting rates were extrapolated to the time of the sulfur-chlorine separation and then corrected for the chemical yield of the chlorine carrier added and for the loss of sulfur in each separation step. In [the figure] these results are presented in a plot of corrected chlorine activity versus the time of separation. The slope of the line indicates that the parent of Cl38 has a half-life of about 172 minutes, and the repeated chemical isolation of Cl38 from the sulfur fraction verifies the assignment as S38.” This half-life agrees with the presently adopted value of 170.3(7) min.

$^{39,40}\text{S}$

Artukh et al. discovered ^{39}S and ^{40}S in the 1971 paper “New isotopes $^{29,30}\text{Mg}$, $^{31,32,33}\text{Al}$, $^{33,34,35,36}\text{Si}$, $^{35,36,37,38}\text{P}$, $^{39,40}\text{S}$, and $^{41,42}\text{Cl}$ produced in bombardment of a ^{232}Th target with 290 MeV ^{40}Ar ions” [42]. A 290 MeV ^{40}Ar beam from the Dubna 310 cm heavy-ion cyclotron bombarded a metallic ^{232}Th. Reaction products were separated and identified with a magnetic spectrometer and a surface barrier silicon telescope. “Apart from the nuclides already known, 17 new nuclides, namely: $^{29,30}\text{Mg}$, $^{31,32,33}\text{Al}$, $^{33,34,35,36}\text{Si}$, $^{35,36,37,38}\text{P}$, $^{39,40}\text{S}$ and $^{41,42}\text{Cl}$ have been reliably detected.”

$^{41,42}\text{S}$

In 1979 ^{41}S and ^{42}S were discovered by Auger et al. in “Observation of new nuclides ^{37}Si, ^{40}P, ^{41}S, ^{42}S produced in deeply inelastic reactions induced by ^{40}Ar on ^{238}U” [77]. A 263 MeV ^{40}Ar beam from the Orsay ALICE facility bombarded a UF$_4$ target and reaction products were measured with a triple silicon solid state counter telescope. “Four new neutron-rich nuclides, ^{37}Si, ^{40}P, $^{41-42}\text{S}$ have been observed as a result of deep inelastic collisions. The nuclide identification combined two independent time of flight measurements as well as two ($\Delta E \times E$) informations and was quite unambiguous.”
The first observation of 43S and 44S was reported by Westfall et al. in “Production of neutron-rich nuclides by fragmentation of 212-MeV/amu 48Ca” in 1979 [44]. 48Ca ions (212 MeV/nucleon) from the Berkeley Bevalac were fragmented on a beryllium target. The fragments were selected by a zero degree spectrometer and identified in a telescope consisting of 12 Si(Li) detectors, 2 position-sensitive Si(Li) detectors, and a veto scintillator. “In this letter, we present the first experimental evidence for the particle stability of fourteen nuclides 22N, 26F, 33Mg, 36Al, 38P, 41P, 42P, 43S, 44S, and 44,45Cl produced in the fragmentation of 212-MeV/amu 48Ca.”

45−47S

Guillemaud-Mueller et al. announced the discovery of 45S, 46S, and 47S in the 1989 article “Observation of new neutron-rich nuclei 29F, 35Mg, 38Al, 40Si, 43P, 45−47S, 46−49Cl, and 49−51Ar from the interaction of 55 MeV/u 48Ca+Ta” [45]. A 55 MeV/u 48Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl, and 49,50,51Ar are clearly visible.”

48S

Lewitowicz et al. discovered 48S in the 1990 paper “First observation of the neutron-rich nuclei 42Si, 45,46P, 48S, and 51Cl from the interaction of 44 MeV/u 48Ca + 64Ni” [78]. A 44 MeV/u 48Ca beam was fragmented on a 64Ni target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “The isotopes of 42Si, 45,46P, 48S, and 51Cl are identified for the first time.”

2.7. Chlorine

The observation of 21 chlorine isotopes has been reported so far, including 2 stable, 5 proton-rich, and 14 neutron-rich isotopes. The proton dripline has been reached because as stated in [13] the particle identification plot in the 1986 paper by Langevin et al. clearly showed that 29Cl and 30Cl are beyond the dripline and have lifetimes shorter than the time-of-flight of 170 ns. According to the HFB-14 model [50], 54Cl should be the last odd-odd particle stable neutron-rich nucleus while the odd-even particle stable neutron-rich nuclei should continue through 63Cl. Thus, about 8 isotopes have yet to be discovered corresponding to 28% of all possible chlorine isotopes.

Figure 7 summarizes the year of first observation for all chlorine isotopes identified by the method of discovery. The radioactive chlorine isotopes were produced using light-particle reactions (LP), deep-inelastic reactions (DI), neutron-capture reactions (NC), photo-nuclear reactions (PN), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with A \leq 4. The discovery of each chlorine isotope is discussed in detail and a summary is presented in Table 1.

31Cl

Benenson et al. observed 31Cl in 1977 as reported in “Mass of 27P and 31Cl” [81]. A 40Ar gas target was bombarded with a 70 MeV 3He beam and 31Cl was formed in a (3He,8Li) reaction. The ejectiles were measured with a double
Fig. 7: Chlorine isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
proportional counter and a thin plastic scintillator at the focal plane of a split-pole spectrograph. “The final value for the Q value of 36Ar(3He,8Li)31Cl was 29180±50 keV which corresponds to a mass excess of $-7070±50$ keV.”

32Cl

In 1953 32Cl was reported by Glass et al. in “The short-lived radioisotopes P28 and Cl32n” [52]. Protons were accelerated to 20 MeV by the UCLA cyclotron and bombarded sulfur targets. 32Cl was produced in (p,n) charge exchange reactions and identified by measuring γ-rays with a NaI crystal. “The half-life of the Cl32 activity is 0.306±0.004 second, and in addition to positrons it emits gamma-radiation of energy 4.8±0.2 Mev.” This half-life is in agreement with the currently adopted value of 298(1) ms.

33Cl

Hoag reported the discovery of 33Cl in 1940 in “The production and half-life of chlorine 33” [97]. High purity sulphur targets were bombarded with 8-MeV deuterons from the Berkeley 37” cyclotron. The resulting activity was measured with an ionization chamber and Dershem electrometer and recorded on a kymograph. “The record showed a decay curve which could be analyzed into two components of 2.5 min. and 2.8 sec. The former is P30 formed in the known reaction of S32+d→P30+α. The short period gives an exponential decay over a factor of 100 in intensity. The saturation activities of the two periods are almost the same, which would rule out the possibility that the short one was due to a contamination or to any of the rare sulphur isotopes. The only other common type of reaction to be expected is S32+d→Cl33+n. A (d,2n) reaction giving rise to Cl32 can almost be ruled out on energetic grounds. We therefore conclude that the 2.8-sec. period is due to the decay of Cl33 in the reaction Cl33→S33+e+.” This half-life agrees with the currently adopted value of 2.511(3) s.

34Cl

The first observation of 34Cl was reported by Frisch et al. in “Induced radioactivity of sodium and phosphorus” in 1934 [56]. A 1 mCi thorium B + C α source was used to irradiate phosphorus targets and the subsequent activity was measured with a Geiger-Müller counter. “I have found that both sodium and phosphorus become active after α-ray bombardment... Phosphorus (elementary red phosphorus) showed a very much longer lifetime. The half value period was found to be 40±5 minutes.... So for sodium and phosphorus the reactions would be 11Na$^{23} + \alpha = ^{13}$Al$^{26} +$ neutron and 15P$^{31} + \alpha = ^{17}$Cl$^{34} +$ neutron, respectively.” This half-life is close to the presently accepted value of 32.00(4) min for the isomeric state.

35Cl

The 1919 paper “The constitution of the elements” by Aston can be considered the discovery of 35Cl [98]. 35Cl was identified using the positive-ray mass spectrograph in Cambridge, England. “The mass spectra obtained when chlorine is present cannot be treated in detail here, but they appear to prove conclusively that this element consists of at least two isotopes of atomic weights 35 and 37.”

36Cl

Grahame and Walke reported the observation of 36Cl in the 1941 paper “Preparation and properties of long-lived radio-chlorine” [99]. “Irradiation was carried out by allowing relatively large quantities (about a pound each) of sodium
chlorate or of sodium perchlorate to stand in the neighborhood of the target holder of the Berkeley 37-inch cyclotron for periods of six months or more while the cyclotron was in use for other purposes.” Activities were measured with a Lauritsen quartz fiber electroscope and a thin-walled counter. “The emission of positrons, taken together with the fact that the familiar 37-minute radio-chlorine is known to be Cl38, makes it reasonably certain that the new isotope is Cl36 formed by the reaction Cl35(n,γ)Cl36.”

37Cl

The 1919 paper “The constitution of the elements” by Aston can be considered the discovery of 37Cl [98]. 37Cl was identified using the positive-ray mass spectrograph in Cambridge, England. “The mass spectra obtained when chlorine is present cannot be treated in detail here, but they appear to prove conclusively that this element consists of at least two isotopes of atomic weights 35 and 37.”

38Cl

In 1940 Kennedy and Seaborg reported the observation of 38Cl in “Isotopic identification of induced radioactivity by bombardment of separated isotopes; 37-minute Cl38” [100]. A previously reported 37-min half-life could be due to either 36Cl or 38Cl. An enriched HCl35 and an ordinary HCl solution was activated with paraffin-slowed neutrons which were produced by beryllium bombardment with 16 MeV deuterons from the Berkeley 60-in. cyclotron. “The lower intensity in the HCl35 sample shows that this activity is to be assigned to Cl38, formed as the result of neutron absorption by the heavier isotope Cl37.” The half-life agrees with the presently accepted value of 37.24(5) min. The previous observations were produced in the reactions Cl(n,γ) [101], Cl(d,p) [102], and K(n,α) [103].

39Cl

39Cl was identified in 1949 by Haslam et al. in “Confirmation of Cl39 activity” [104]. The University of Saskatchewan betatron was used to irradiate argon at a betatron energy of 23 MeV. The resulting activities were measured with a thin-walled beta counter. “The activity measured in the counting chamber, and thus due to the filtered argon, was then found to have a half-life of exactly 110 minutes, and the glass woolantimony filter carried a β^--activity of 55.5±0.2 minutes. This is ascribed to the isotope Cl39 produced in the reaction A40(γ,p)Cl39. This isotope is listed in the table of Seaborg and Perlman [7] as having a half-life of one hour. This result is based on unpublished data.” The half-life is in agreement with the presently accepted value of 55.6(2) min.

40Cl

40Cl was discovered by Morinaga as reported in “Radioactive isotopes Cl40 and Ga74” in 1956 [105]. Solid argon targets were irradiated with fast neutrons produced by bombarding a beryllium target with 10 MeV deuterons from the Purdue cyclotron. Gamma- and beta-rays were measured with a NaI scintillator and GM counter, respectively. “From both gamma-ray measurements with a NaI scintillator and beta-ray measurements with a GM counter, the half-life of this new activity was found to be about 1.4 min. Since Cl40 is the only unknown isotope which could be produced by irradiating argon and since moreover the energy of one of the gamma rays (1.46 Mev) coincides with the energy of the first excited state of A40, this new activity is attributed to Cl40.” This half-life is consistent with the currently adopted value of 1.35(2) min.
Artukh et al. discovered 41Cl and 42Cl in the 1971 paper “New isotopes 29,30Mg, 31,32,33Al, 33,34,35,36Si, 35,36,37,38P, 39,40S, and 41,42Cl produced in bombardment of a 232Th target with 290 MeV 40Ar ions” [42]. A 290 MeV 40Ar beam from the Dubna 310 cm heavy-ion cyclotron bombarded a metallic 232Th. Reaction products were separated and identified with a magnetic spectrometer and a surface barrier silicon telescope. “Apart from the nuclei already known, 17 new nuclei, namely: 29,30Mg, 31,32,33Al, 33,34,35,36Si, 35,36,37,38P, 39,40S and 41,42Cl have been reliably detected.”

In 1976, Kashy et al. published the discovery of 43Cl in their paper “Observation of highly neutron-rich 43Cl and 59Mn” [106]. A 48Ca target was bombarded with a 74 MeV 3He beam at the Michigan State University Cyclotron. 43Cl was produced in the reaction 48Ca(3He,8B) and identified with an Enge split pole spectrograph. “We report the observation and mass measurement of 43Cl and 59Mn by the (3He, 8B), five-nucleon pickup reaction.”

The first observation of 44Cl and 45Cl was reported by Westfall et al. in “Production of neutron-rich nuclides by fragmentation of 212-MeV/amu 48Ca” in 1979 [44]. 48Ca ions (212 MeV/nucleon) from the Berkeley Bevalac were fragmented on a beryllium target. The fragments were selected by a zero degree spectrometer and identified in a telescope consisting of 12 Si(Li) detectors, 2 position-sensitive Si(Li) detectors, and a veto scintillator. “In this letter, we present the first experimental evidence for the particle stability of fourteen nuclei 22N, 26P, 33,34Mg, 36,37Al, 38,39Si, 41,42P, 43,44S, and 44,45Cl produced in the fragmentation of 212-MeV/amu 48Ca.”

Guillemaud-Mueller et al. announced the discovery of 46Cl, 47Cl, 48Cl, and 49Cl in the 1989 article “Observation of new neutron rich nuclei 29,35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,47S, 46,49Cl, and 49,51Ar from the interaction of 55 MeV/u 48Ca+Ta” [45]. A 55 MeV/u 48Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatric LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl, and 49,50,51Ar are clearly visible.”

50Cl was discovered by Tarasov et al. in 2009 and published in “Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17 ≤ Z ≤ 25” [107]. 9Be targets were bombarded with 132 MeV/u 76Ge ions accelerated by the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. 50Cl was produced in projectile fragmentation reactions and identified with a two-stage separator consisting of the A1900 fragment separator and the S800 analysis beam line. “The observed fragments include fifteen new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50Cl, 53Ar, 55,56K, 57,58Ca, 59,60,61Sc, 62,63Ti, 65,66V, 68Cr, 70Mn).”

35
Lewitowicz et al. discovered ^{51}Cl in the 1990 paper “First observation of the neutron-rich nuclei ^{42}Si, $^{45,46}\text{P}$, ^{48}S, and ^{51}Cl from the interaction of 44 MeV/u $^{48}\text{Ca} + ^{64}\text{Ni}$” [78]. A 44 MeV/u ^{48}Ca beam was fragmented on a ^{64}Ni target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “The isotopes of ^{42}Si, $^{45,46}\text{P}$, ^{48}S, and ^{51}Cl are identified for the first time.” The observation was later questioned by Tarasov et al.: “While not conclusive, the previous identification of this isotope may have been masked by the presence of the hydrogenlike ion $^{48}\text{Cl}^{16+}$ produced at the same time.” [107].

2.8. Argon

The chemical symbol for argon was A until it was changed to Ar in 1957. The observation of 23 argon isotopes has been reported so far, including 3 stable, 7 proton-rich, and 13 neutron-rich isotopes. No specific searches for the existence of ^{30}Ar have been reported and so it could potentially still be observed [13]. The latest mass evaluation predicts the one-proton separation energy of ^{30}Ar to be 350(360) keV. According to the HFB-14 model [50], ^{55}Ar should be the last odd-even particle stable neutron-rich nucleus while the even-even particle stable neutron-rich nuclei should continue through ^{66}Ar. Thus, about 8 isotopes have yet to be discovered corresponding to 16% of all possible argon isotopes.

Figure 8 summarizes the year of first observation for all argon isotopes identified by the method of discovery. The radioactive argon isotopes were produced using light-particle reactions (LP), spallation (SP), neutron-capture reactions (NC), photo-nuclear reactions (PN), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS). Light particles are defined as incident particles with $A \leq 4$. The discovery of each argon isotope is discussed in detail and a summary is presented in Table 1.

^{31}Ar

^{31}Ar was first reported in 1986 by Langevin et al. in “Mapping of the proton drip-line up to Z = 20: Observation of the $T_z=-5/2$ series ^{23}Si, ^{27}S, ^{31}Ar, and ^{35}Ca” [66]. A 77.4 MeV/u ^{40}Ca beam was fragmented on a nickel target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. The isotopes were identified by measuring energy loss and time-of-flight. “The bidimensional plot (see [the figure]) of $\sqrt{\Delta}/\text{t.o.f.}$ (i.e. Z) versus t.o.f (i.e. A/Z) was inspected on-line to calibrate the particle identification... [The figure] shows the same bidimensional representation after 14 hours of integration time. The T_z series ^{23}Si, ^{27}S, ^{31}Ar, and ^{35}Ca clearly becomes visible.”

^{32}Ar

Hagberg et al. discovered ^{32}Ar in the 1977 paper “Decay of a $T_z=−2$ nucleus: Argon-32” [108]. 600 MeV protons from the CERN synchrocyclotron bombarded a vanadium target. ^{32}Ar was produced in spallation reactions and identified with the ISOLDE electromagnetic isotope separator. Beta-delayed protons were measured with a silicon surface barrier counter. “The β-delayed proton spectrum observed for ^{32}Ar is shown in [the figure]. Only one peak is evident, with a laboratory energy of 3350.5±5.0 keV. The time decay of the peak yields a half-life for ^{32}Ar of $75^{+70}_{−30}$ msec.” This half-life agrees with the presently adopted value of 98(2) ms.
Fig. 8: Argon isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
The discovery of ^{33}Ar was reported in 1964 by Reeder et al. in “New delayed-proton emitters: Ti41, Ca37, and Ar33” [109]. The Brookhaven 60-in. cyclotron bombarded gaseous H$_2$S and solid sulfur targets with ^3He at a maximum energy of 31.8 MeV. Proton spectra were measured by two surface barrier detectors. “The excitation function observed for Ca37 has a threshold at 20\pm2 MeV which is consistent with the predicted threshold of 19.4 MeV for the (He3,2n) reaction. “Three new nuclides, Ti41, Ca37, and Ar33, have been observed to be delayed proton emitters of the type that undergo beta decay to proton unstable states of daughter nuclei.” The reported half-life of 182(5) ms is consistent with the currently adopted value of 173.0(20) ms. Independently, Hardy and Verrall reported a 178(10) ms only two weeks later [110].

^{34}Ar

Miller and Kavanagh reported the observation of ^{34}Ar in the 1966 paper “Decay of ^{34}Ar” [111]. A 10 MeV ^3He from the ONR-CIT tandem accelerator bombarded a Sb$_2$S$_3$ target and ^{34}Ar was produced in the reaction $^{32}\text{S}(^3\text{He},n)$. The resulting activities were measured with a NaI(Tl) crystal. “The bottom spectrum of [the figure] shows the difference in yields between the first and second seconds after beam turn-off. Only three statistically significant peaks remain. They are located at energies (in MeV) of 0.51, 0.67 and 1.02. The 0.51 and 1.02 peaks are due to annihilation quanta, singly and in random coincidence. The remaining peak, at 0.67 MeV, was found to have a half life of 1.2\pm0.3 s and is attributed to the decay of ^{34}Ar to the 0.67 MeV state of ^{34}Cl. This half-life agrees with the presently adopted value of 845(3) ms.

^{35}Ar

King and Elliott identified ^{35}Ar in “Short-lived radioactivities of $^{14}\text{Si}^{27}$, $^{16}\text{S}^{31}$, and $^{18}\text{A}^{35}$” in 1940 [92]. Sulfur targets were bombarded with 16 MeV α particles and the resulting activities were measured with a multiple Geiger counter circuit. “In an attempt to extend the well-known series of radioactive elements characterized by the formula Z − N = 1, the following new reactions have been observed:... Reaction: $^{16}\text{S}^{32}(\alpha,n)\text{A}^{35}$; Half-life: 1.91 s.” This half-life agrees with the presently accepted value of 1.775(4) s.

^{36}Ar

In 1920 ^{36}Ar was first measured by Aston in “The constitution of the elements” [112]. The isotope was identified in a mass spectrometer at Cambridge, England. “Argon (atomic weight 39.88 Ramsay; 39.91 Leduc) gives a very strong line exactly at 40, with double charge at 20 and triple charge at 13$\frac{1}{3}$. The last line, being closely bracketed by known reference lines at 13 and, 14, provides very trustworthy values. At first this was thought to be its only constituent, but further photographs showed an associated faint line at 36. This has not yet been proved an element by double and triple charges, as the probable presence of OH$_2$ and the certain presence of C prevent this, but other lines of reasoning make it extremely probable that this is a true isotope, the presence of which to the extent of 3 per cent. is enough to account for the fractional atomic weight quoted.”

^{37}Ar

Weimer et al. reported the first observation of ^{37}Ar in the 1941 article “Radioactive argon A^{37}” [113]. A variety of reactions were used to produce ^{37}Ar and the resulting activities were measured with an ionization chamber connected to
a Wulf bifilar electrometer. “An artificially radioactive gas has been produced by bombarding solid samples containing potassium, chlorine, calcium, or sulfur with appropriate nuclear particles. The radioactivity has been observed for three months and is found to have a single decay period of 34 days... In view of the method by which the present activity has been produced, we assign it to A37.” This half-life agrees with the currently accepted value of 35.04(4) d.

38Ar

38Ar was discovered in 1934 by Zeeman and de Gier as reported in “A new isotope of argon” [114]. Argon gas was examined in a mass spectrograph. “Between the parabolas for the isotopes A40 and A36 always a parabola for the mass 38 was obtained. The intensity of the 38 parabola relatively to that of the two other ones remained unchanged by diluting with O$_2$N$_2$, and other gases... Atoms of mass 38 were till now unknown. We therefore infer, that 38 is really due to a new isotope of argon.”

39Ar

In the 1950 article “Argon39 beta-spectrum” Brosi et al. described the observation of 39Ar [115]. Potassium salt was irradiated with neutrons in nuclear reactors. Activities were measured with a proportional counter and a NaI(Tl) detector. “This new long-lived argon isotope is presumably A39 formed by an (n,p) reaction on K39. An attempt to find the 4-min. activity previously assigned to A39 was unsuccessful.” The 1940 table of isotopes assigns a 4 min half-life to 39Ar [5] quoting a 1937 paper by Pool et al. However, although Pool reported a 4 min half-life observed following the irradiation of potassium with neutrons, they did not assign the activity to a specific isotope [116].

40Ar

In 1920 40Ar was first measured by Aston in “The constitution of the elements” [112]. The isotope was identified in a mass spectrometer at Cambridge, England. “Argon (atomic weight 39.88 Ramsay; 39.91 Leduc) gives a very strong line exactly at 40, with double charge at 20 and triple charge at 13$^{1}_{3}$. The last line, being closely bracketed by known reference lines at 13 and, 14, provides very trustworthy values.”

41Ar

The discovery of 41Ar was reported in 1936 by Snell in “Radioactive argon” [117]. Argon gas was bombarded with 3 MeV deuterons from the Lawrence and Livingston magnetic resonance accelerator. Beta-ray absorption and decay spectra as well as γ-ray were recorded. “When bombarded with high speed deuterons, argon gas is found to yield a radioactive product which emits negative electrons, and decays with a period of 110±1 minutes. Chemical tests show that the activity is due to an isotope of argon, and the reaction involved is doubtless A40+H2=A41+H1. This half-life agrees with the presently adopted value of 109.61(4) min.

42Ar

In 1952 Katcoff reported the observation of 42Ar in “Thermal neutron capture cross section of A40 and observation of A42” [118]. Pure argon gas was irradiated with neutrons from the Brookhaven pile and 42Ar was formed by two successive neutron captures. The resulting activities were measured with a proportional counter. “No attempt was made to detect the A42 radiations directly because of the greatly preponderant activity of A39. Rather, the A42 was detected
by successive extractions of its 12.5-hr K42 daughter... In 13 extractions over a period of 400 days, the corrected activity of A42 showed no apparent decrease; consideration of the possible errors indicates that it could not have gone down by more than 20 percent. This sets a lower limit of 3.5 years on the half life of A42...” This limit is consistent with the present value of 32.9(11) y.

43Ar

Hansen et al. reported the first observation of 43Ar in the paper “Decay characteristics of short-lived radio-nuclides studied by on-line isotope separator techniques” in 1969 [119]. 600 MeV protons from the CERN synchrocyclotron bombarded a TiO\textsubscript{2}(H\textsubscript{2}O)\textsubscript{x} target and argon isotopes were separated using the ISOLDE facility. Electron capture, \(\beta\)- and \(\gamma\)-rays were measured. The paper summarized the ISOLDE program and did not contain details about the individual nuclei other than in tabular form. The measured half-life of 5.35(15) min agrees with the presently adopted value of 5.37(6) min. Less than 6 months later Larson and Gordon independently reported a half-life of 6.5(18) min [120].

44Ar

Larson and Gordon reported the observation of 44Ar in the 1969 paper “Production and decay of 43Ar and 44Ar” [120]. Enriched 48Ca targets were irradiated with bremsstrahlung from the NRL Linac. The resulting activity was measured with a Ge(Li) detector. “These data are compared with growth curves computed for 44Ar decaying with half-life of 14 min into 44K, which has a 22 min half-life. A curve computed for a six min activity decaying into 44K \((T_{1/2} = 22 \text{ min})\) is also shown. It can be seen that the measured values from [the figure] agree with a 14 min half-life for 44Ar.” This half-life is consistent with the currently adopted value of 11.87(5) min.

45,46Ar

Jelley et al. discovered 45Ar and 46Ar in 1974 as described in “Masses for 43Ar and the new isotopes 45Ar and 46Ar” [121]. Enriched 48Ca targets were bombarded with 77.7 MeV \(\alpha\)-particles and 80.1 MeV 6Li from the Berkeley 88-in. cyclotron to form 45Ar and 46Ar, respectively. The ejectiles were measured with a counter telescope. “By also detecting 7Be nuclei from the 48Ca(\alpha,7Be)45Ar reaction \((Q \sim -28 \text{ MeV})\), excited states in 45Ar and the mass of this new isotope were determined. Similarly, since the feasibility of employing the (6Li,8B) two-proton transfer reaction as a means of studying neutron-rich nuclei has been demonstrated, the 48Ca(8Li,8B)46Ar reaction \((Q \sim -23 \text{ MeV})\) was used to establish the mass of 46Ar.”

47Ar

Guillemaud-Mueller et al. announced the discovery of 47Ar in the 1985 article “Production and identification of new neutron-rich fragments from 33 MeV/u 86Kr beam in the 18\leq Z \leq 27 \text{ region}” [122]. At GANIL in Caen, France, a 33 MeV/u 86Kr beam was fragmented and the fragments were separated by the triple-focusing analyser LISE. “Each particle is identified by an event-by-event analysis. The mass A is determined from the total energy and the time of flight, and Z by the \(\Delta E\) and E measurements... In addition to that are identified the following new isotopes: 47Ar, 57Ti, 59.60V, 61.62Cr, 64.65Mn, 66.67.68Fe, 68.69.70Co.” Only 3 days later Benenson et al. reported a mass measurement of 47Ar [123].
In 2004 Grévy et al. identified 48Ar in “Beta-decay half-lives at the N = 28 shell closure” [124]. A 60 MeV/u 48Ca beam was fragmented on a beryllium target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE3 spectrometer. Beta-particles were measured with two plastic scintillators correlated with the implantation of the fragments in a double-sided Si-strip detector. “We report here on the measurements of the β-decay half-lives of nuclei between 36Mg (N = 24) and 48Ar (N = 30).” The measured 475(40) ms half-life corresponds to the currently adopted value. Guillemaud-Mueller et al. reported the observation of even more neutron-rich argon isotopes (49−51Ar) earlier, but did not mention or show any evidence for 48Ar referring to an internal report [125].

$^{49−51}$Ar

Guillemaud-Mueller et al. announced the discovery of 49Ar, 50Ar, and 51Ar in the 1989 article “Observation of new neutron rich nuclei 29F, 35,36Mg, 38,39Al, 40,41Si, 43,44P, $^{45−47}$S, $^{46−49}$Cl, and $^{49−51}$Ar from the interaction of 55 MeV/u 48Ca+Ta” [45]. A 55 MeV/u 48Ca beam was fragmented on a tantalum target at GANIL and the projectile-like fragments were separated by the zero degree doubly achromatic LISE spectrometer. “[The figure] represents the two-dimensional plot (energy loss versus time-of-flight) obtained under these conditions after 40 h integration time with an average intensity of 150 enA. The new species 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl, and 49,50,51Ar are clearly visible.”

52,53Ar

52Ar and 53Ar were discovered by Tarasov et al. in 2009 and published in “Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17 ≤ Z ≤ 25” [107]. 9Be targets were bombarded with 132 MeV/u 76Ge ions accelerated by the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. 52Ar and 53Ar were produced in projectile fragmentation reactions and identified with a two-stage separator consisting of the A1900 fragment separator and the S800 analysis beam line. “The observed fragments include fifteen new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50,51Cl, 53Ar, 55,56K, 57,58Ca, 59,60,61Sc, 62,63Ti, 65,66V, 68Cr, 70Mn).” 52Ar was not specifically mentioned as a new observation because of the previous publication in a conference abstract [126], however, it is clearly visible in the particle identification plot of the measured atomic number Z versus the calculated function N−Z.

2.9. Potassium

The observation of 22 potassium isotopes has been reported so far, including 3 stable, 4 proton-rich, and 15 neutron-rich isotopes. The proton dripline has been reached because as stated in [13] the particle identification plot in the 1986 paper by Langevin et al. clearly showed that 33K and 34K are beyond the dripline and have lifetimes shorter than the time-of-flight of 170 ns. According to the HFB-14 model [50], 58K should be the last odd-odd particle stable neutron-rich nucleus while the odd-even particle stable neutron-rich nuclei should continue through 67K. Thus, about 7 isotopes have yet to be discovered corresponding to 24% of all possible potassium isotopes.

Figure 9 summarizes the year of first observation for all potassium isotopes identified by the method of discovery. The radioactive potassium isotopes were produced using light-particle reactions (LP), spallation (SP), photo-nuclear reactions (PN), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy.
Fig. 9: Potassium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model.
Light particles are defined as incident particles with $A \leq 4$. The discovery of each potassium isotope is discussed in detail and a summary is presented in Table 1.

35K

Benenson et al. discovered 35K as reported in the 1976 paper “Mass of 35K” [127]. An enriched 40Ca target was bombarded with 73.7 and 75.8 MeV 3He beams from the Michigan State cyclotron. 35K was produced in the reaction 40Ca$(^3$He,8Li) and identified by detecting the ejectiles with an Enge split pole spectrograph. “The Q value for the reaction was found to be -29.693 ± 0.020 MeV and the mass excess to be -11.170 ± 0.020 MeV. Excited states of 35K were found at 1.56 and 2.69 MeV.”

36K

The existence of 36K was shown by Berg et al. in 1967 in “36K decay and T=1 analog in 36Ar” [128]. An enriched 36Ar gas target was bombarded with 23 MeV protons from the Michigan State sector-focused cyclotron and 36K was formed in the (p,n) charge exchange reaction. Decay curves and γ-ray spectra were measured with a Ge(Li) detector. “Values of the 36K half-life were calculated from such data by comparing the yield in successive spectra of each γ ray identified as a transition in 36Ar. The resulting value for the 36K half-life after correction for the decrease in analyzer dead time in successive spectra was 0.265 sec, with a standard deviation of 0.025 sec.” This half-life agrees with the presently adopted value of 342(2) ms.

37K

In 1958 Sun and Wright identified 37K in “Radionuclide K37” [129]. A 12.8 MeV proton beam from the UCLA 20-MV synchrocyclotron bombarded a natural calcium target. Resulting activities were measured with a stilbene crystal scintillation counter and the half-life was determined with a Sanborn Twin-Viso recorder. “The half-life as measured on the Sanborn recorder is $T_{1/2} = 1.2 \pm 0.12$ sec.” This half-life agrees with the currently accepted value of 1.226(7) s. A 1.2 s half-life had previously been assigned to 37K produced in the reaction 39K(γ,2n) [130], however, later this observation was assigned to be the 0.95 s isomeric state in 38K populated in the (γ,n) reaction [131].

38K

Hurst and Walke reported the observation of 38K in “The induced radioactivity of potassium” in 1937 [103]. Lithium chloride was bombarded with 11 MeV α particles and 38K was formed in the reaction 35Cl(α,n). Decay and absorption curves as well as γ-ray spectra were measured following chemical separation. “The precipitate had a strong activity decaying to half-value in 7.75 ± 0.15 minutes as shown in [the figure]. The particles emitted were positrons having a maximum energy as determined by Feather’s rule from the thickness of aluminum required to stop them of 2 Mev.” This half-life is in agreement with the presently adopted value of 7.636(18) min.

39K

The discovery of stable 39K was reported by Aston in his 1921 paper “The constitution of the alkali metals” [132]. The positive anode ray method was used to identify 39K with the Cavendish mass spectrograph. “Potassium (atomic weight 39.10) gives a strong line at 39 and a very weak companion at 41. These are integers within about a quarter of a
unit compared with sodium 23. The relative intensities of the lines are not inconsistent with the accepted atomic weight. Potassium therefore probably consists of two isotopes 39 and 41.”

\[^{40}K \]

Nier discovered \(^{40}K\) in the 1935 paper “Evidence for the existence of an isotope of potassium of mass 40” [133]. Potassium was introduced into a mass spectrograph. “[The figure] shows the interesting portion of one of many mass spectrographic analyses of the region around m/e=40. As may be seen there is a very definite peak due to an ion with an m/e value of 40. The rising portions on either side of this peak are the feet of the very much larger peaks due to K\(^{39}\) and K\(^{41}\).”

\[^{41}K \]

The discovery of stable \(^{41}K\) was reported by Aston in his 1921 paper “The constitution of the alkali metals” [132]. The positive anode ray method was used to identify \(^{41}K\) with the Cavendish mass spectrograph. “Potassium (atomic weight 39.10) gives a strong line at 39 and a very weak companion at 41. These are integers within about a quarter of a unit compared with sodium 23. The relative intensities of the lines are not inconsistent with the accepted atomic weight. Potassium therefore probably consists of two isotopes 39 and 41.”

\[^{42}K \]

In 1935 Hevesy identified \(^{42}K\) in “Natural and artificial radioactivity of potassium” [134]. Scandium oxide was irradiated with neutrons from a beryllium-radium source and \(^{42}K\) was formed in the reaction \(^{45}\text{Sc}(n,\alpha)\). Beta-rays were measured following chemical separation. “The scandium oxide was dissolved in hydrochloric acid and, after the addition of 0.15 gm. of sodium chloride and the same amount of calcium chloride, precipitated with ammonia. The calcium present in the filtrate was removed as oxalate and found to be inactive. The remaining sodium chloride, however, was found to be active and to contain the potassium isotopes looked for. This decayed with a period of about 16 hours, emitting very hard \(\beta\)-rays of approximately 1.2 million e.v.” This half-life is consistent with the currently accepted value of 12.360(12) h. Previously, Amaldi et al. had observed the 16 h half-life without a mass assignment [101]. Hurst and Walker reported a more accurate half-life of 12.4(2) h questioning the half-life measurement by Hevesy [103]. However, Hurst and Walker acknowledge the population of \(^{42}K\) in the \(^{45}\text{Sc}(n,\alpha)\) and thus we credit Hevesy for the discovery of \(^{42}K\).

\[^{43}K \]

\(^{43}K\) was observed in 1949 by Overstreet et al. in the article “Evidence for a new isotope of potassium” [135]. Argon was bombarded with 40 MeV \(\alpha\) particles and the subsequent activity was measured with a Lauritsen electroscope following chemical separation. “A study of the possible isotopes resulting from the bombardment of argon with alpha-particles favors the assignment of K\(^{43}\) to the 22.4 hour potassium isotope. The reaction would be \(\Lambda^{40}(\alpha,p)K^{43}\). This choice is further substantiated by the fact that the new isotope is a beta-emitter.” This half-life agrees with the presently adopted value of 22.3(1) h.
44K

Cohen identified 44K in the 1954 paper “Potassium-44” [136]. Natural calcium and enriched 44Ca was irradiated with neutrons which were produced by bombarding beryllium with 22 MeV protons. Gamma- and beta-ray spectra were measured following chemical separation. “Potassium-44 was produced by an (n,p) reaction on calcium and found to decay by negatron and gamma emission with a 22.0±0.5 minute half-life. The identification was ascertained by comparison of yields from normal and isotopically enriched calcium, cross section measurements, chemical processing, and investigation of impurity effects.” This half-life agrees with the currently accepted value of 22.13(19) min. Previously, Walke had assigned a half-life of 18(1) min to either 43K and 44K [137].

45K

Morinaga and Wolzak discovered 45K in 1964 as reported in “Potassium-45” [138]. An enriched Ca48CO3 target was irradiated with 52 MeV α-particles. Gamma-ray spectra were measured with a NaI(Tl) detector following chemical separation. “Assignment of this activity to K45 is most unambiguously made from its gamma spectrum. The energy of one of the most intense gamma ray (0.175 MeV) corresponds to the first excited state energy of Ca45 and that of a 1.7 MeV gamma ray can be ascribed to the gamma ray from the 1.9 MeV state to the first excited state. The total decay energy of 4.0 MeV, which results from the decay scheme, also supports the assignment of the 20 min, activity to K45.” This half-life agrees with the currently adopted value of 17.3(6) min.

46K

In the 1965 paper “New isotope K46 produced with the Ca48(d,α)K46 reaction” Marinov and Erskine reported the observation of 46K [139]. Enriched 48Ca targets were bombarded with 12 MeV deuterons from the Argonne Van de Graaff accelerator forming 46K in the (d,α) reaction. The ejectiles were identified with a broad range magnetic spectrograph. “The ground-state Q value in the Ca48(d,α)K46 reaction was measured to be 1.915±0.015 MeV.”

47K

In 1964, Kuroyanagi et al. discovered 47K as described in “Potassium-47” [140]. Natural calcium and enriched 48Ca targets were irradiated with 23 MeV bremsstrahlung from the JAERI linac. Gamma- and beta-ray spectra were measured following chemical separation with a NaI(Tl) crystal and a plastic scintillator, respectively. “From purely radiochemical considerations a new activity of 17.5±0.3 sec half-life is assigned to 47K.” This half-life agrees with the presently adopted value of 17.50(24) s.

48−50K

In 1972 Klapisch et al. reported the first observation of 48K, 49K, and 50K in “Half-life of the new isotope 32Na; Observation of 33Na and other new isotopes produced in the reaction of high-energy protons on U” [27]. Uranium targets were bombarded with 24 GeV protons from the CERN proton synchrotron. 48K, 49K, and 50K were identified by on-line mass spectrometry and decay curves were measured. “Following the same procedure as for Na, the isotopes 48K, 49K, and 50K were found. However, their half-lives were not short compared with the diffusion time, and hence could not be determined.”
Langevin et al. is credited with the discovery of 51K, 52K, 53K, and 54K in 1983 in "53K, 54K And 53Ca: Three new neutron rich isotopes" [141]. Iridium was fragmented by 10 GeV protons from the CERN synchrotron to produce neutron rich potassium isotopes, which then decayed into calcium isotopes. Neutrons were measured in coincidence with β-rays after the potassium was mass separated. "This work gives evidence for three new K and Ca isotopes and provides further information on half-lives and P_n values." Half-lives of 365(5) ms for 51K, 105(5) ms for 52K, 30(5) ms for 53K, and 10(5) ms for 54K were reported and correspond to the presently adopted values. The observation of 51K and 52K was not considered a discovery of new isotopes quoting "Huck et al., to be published". However, this article was only published two years later [142].

55,56K

55K and 56K were discovered by Tarasov et al. in 2009 and published in "Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with $17 \leq Z \leq 25$" [107]. 9Be targets were bombarded with 132 MeV/u 76Ge ions accelerated by the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. 55K and 56K were produced in projectile fragmentation reactions and identified with a two-stage separator consisting of the A1900 fragment separator and the S800 analysis beam line. "The observed fragments include fifteen new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50Cl, 53Ar, 55,56K, 57,58Ca, 59,60,61Sc, 62,63Ti, 65,66V, 68Cr, 70Mn)."

3. Summary

The discoveries of the known isotopes and unbound resonances of the elements from sodium to potassium have been compiled and the methods of their production discussed. 194 isotopes were described including 21 stable, 44 proton-rich, 126 neutron-rich, and 3 proton-unbound resonances. Overall the discovery of these isotopes was straightforward. Only for two isotopes (20Mg and 22Mg) the initially measured half-life was incorrect. The half-life of seven isotopes was first reported without a mass assignment (25Na, 23Al, 34P, 38Cl, 37,42K). In addition, the half-life of 29Al was first assigned to 27Si.

Acknowledgments

I would like to thank Ute Thoennessen for carefully proofreading the manuscript. This work was supported by the National Science Foundation under grant No. PHY06-06007 (NSCL).

References

[1] G. Q. Ginepro, J. Snyder, M. Thoennessen, At. Data Nucl. Data Tables 95 (2009) 805.
[2] G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A 729 (2003) 3.
[3] http://www.nndc.bnl.gov/ensdf/ ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science)
[4] http://www.nndc.bnl.gov/nsr/ NSR, Nuclear Science References, maintained by the National Nuclear Data Center at Brookhaven National Laboratory.

[5] J. J. Livingood, G. T. Seaborg, Rev. Mod. Phys. 12 (1940) 30.

[6] G. T. Seaborg, Rev. Mod. Phys. 16 (1944) 1.

[7] G. Seaborg, I. Perlman, Rev. Mod. Phys. 20 (1948) 585.

[8] J. M. Hollander, I. Perlman, G. T. Seaborg, Rev. Mod. Phys. 25 (1953) 469.

[9] D. Strominger, J. M. Hollander, G. T. Seaborg, Rev. Mod. Phys. 30 (1958) 585.

[10] C. M. Lederer, J. M. Hollander, I. Perlman, Table of Isotopes, 6th Edition, John Wiley & Sons 1967.

[11] F. W. Aston, Mass Spectra and Isotopes, 2nd Edition, Longmans, Green & Co., New York 1942.

[12] A. J. Dempster, Phys. Rev. 11 (1918) 316.

[13] M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187.

[14] T. Zerguerras, B. Blank, Y. Blumenfeld, T. Suomijarvi, D. Beaumel, B. A. Brown, M. Chartier, M. Fallot, J. Giovinazzo, C. Jouanne, V. Lapoux, I. Lhenry-Yvon, W. Mittig, P. Roussel-Chomaz, H. Savajols, J. A. Scarpaci, A. Shrivastava, M. Thoennessen, Eur. Phys. J. A 20 (2004) 389.

[15] J. Cerny, R. A. Mendelson Jr., G. J. Wozniak, J. E. Esterl, J. C. Hardy, Phys. Rev. Lett. 22 (1969) 612.

[16] L. W. Alvarez, Phys. Rev. 80 (1950) 519.

[17] E. Pollard, W. W. Watson, Phys. Rev. 58 (1940) 12.

[18] E. C. Creutz, L. A. Delsasso, R. B. Sutton, M. G. White, W. Barkas, Phys. Rev. 58 (1940) 481.

[19] O. R. Frisch, Nature 136 (1935) 220.

[20] F. W. Aston, Nature 107 (1921) 72.

[21] E. Fermi, E. Amaldi, O. D’Agostino, F. Rasetti, E. Segre, Proc. Roy. Soc. A 146 (1934) 483.

[22] O. Huber, O. Lienhard, P. Scherrer, H. Wäffler, Helv. Phys. Acta 16 (1943) 431.

[23] O. Huber, O. Lienhard, P. Scherrer, H. Wäffler, Helv. Phys. Acta 16 (1943) 33.

[24] M. J. Nurmia, R. W. Fink, Nucl. Phys. A 8 (1958) 139.

[25] R. Klapisch, C. Philippe, J. Suchorzewska, C. Détraz, R. Bernas, Phys. Rev. Lett. 20 (1968) 740.

[26] R. Klapisch, C. Thibault-Philippe, C. Détraz, J. Chaumont, R. Bernas, E. Beck, Phys. Rev. Lett. 23 (1969) 652.

[27] R. Klapisch, C. Thibault, A. M. Poskanzer, R. Prieels, C. Rigaud, E. Roeckl, Phys. Rev. Lett. 29 (1972) 1254.

[28] M. Langevin, C. Détraz, D. Guillemaud-Mueller, A. C. Mueller, C. Thibault, F. Touchard, M. Epherre, Phys. Lett. B 125 (1983) 116.

[29] C. Détraz, D. Guillemaud, G. Huber, R. Klapisch, M. Langevin, F. Naulin, C. Thibault, L. C. Carraz, F. Touchard, Phys. Rev. C 19 (1979) 164.

[30] M. Notani, H. Sakurai, N. Aoi, Y. Yanagisawa, A. Saito, N. Imai, T. Gomi, M. Miura, S. Michimasa, H. Iwasaki,
[31] S. M. Lukyanov, Y. E. Penionzhkevich, R. Astabatyan, S. Lobastov, Y. Sobolev, D. Guillemaud-Mueller, G. Faivre, F. Ibrahim, A. C. Mueller, F. Pougeon, O. Perru, O. Sorlin, I. Matea, R. Anne, C. Cauvin, R. Hue, G. Georgiev, M. Lewitowicz, F. de Oliveira Santos, D. Verney, Z. Dlouhy, J. Mrazek, D. Baiborodin, F. Negoita, C. Borcea, A. Buta, I. Stefan, S. Grevy, J. Phys. G 28 (2002) L41.

[32] I. Mukha, K. Sümmerer, L. Acosta, M. A. G. Alvarez, E. Caserejos, A. Chatillon, D. Cortina-Gil, J. Espino, A. Fomichev, J. E. Garcia-Ramos, H. Geissel, J. Gomez-Camacho, L. Grigorenko, J. Hoffmann, O. Kiselev, A. A. Korsheninnikov, N. Kurz, Y. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfützner, C. Rodriguez-Tajes, E. Roeckl, M. Stanoiu, H. Weick, P. J. Woods, Phys. Rev. Lett. 99 (2007) 182501.

[33] R. G. H. Robertson, S. Martin, W. R. Falk, D. Ingham, A. Djaloneis, Phys. Rev. Lett. 32 (1974) 1207.

[34] R. D. MacFarlane, A. Siivola, Nucl. Phys. 59 (1964) 168.

[35] R. Barton, R. McPherson, R. E. Bell, W. R. Frisken, W. T. Link, R. B. Moore, Can. J. Phys. 41 (1963) 2007.

[36] R. McPherson, R. A. Esterhund, A. M. Poskanzer, P. L. Reeder, Phys. Rev. 140 (1965) B1513.

[37] F. Ajzenberg-Selove, L. Cranberg, F. S. Dietrich, Phys. Rev. 124 (1961) 1548.

[38] H. Tyren, P.-A. Tove, Phys. Rev. 96 (1954) 773.

[39] M. G. White, L. A. Delsasso, J. G. Fox, E. C. Creutz, Phys. Rev. 56 (1939) 512.

[40] A. J. Dempster, Science 52 (1920) 1534.

[41] R. K. Sheline, N. R. Johnson, Phys. Rev. 89 (1953) 520.

[42] A. G. Artukh, V. V. Avdeichikov, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, J. Wilczynski, Nucl. Phys. A 176 (1971) 284.

[43] G. W. Butler, D. G. Perry, L. P. Remsberg, A. M. Poskanzer, J. B. Natowitz, F. Plasil, Phys. Rev. Lett. 38 (1977) 1380.

[44] G. D. Westfall, T. J. M. Symons, D. E. Greiner, H. H. Heckman, P. J. Lindstrom, J. Mahoney, A. C. Shotter, D. K. Scott, H. J. Crawford, C. McParland, T. C. Awes, C. K. Gelbke, J. M. Kidd, Phys. Rev. Lett. 43 (1979) 1859.

[45] D. Guillemaud-Mueller, Y. E. Penionzhkevich, R. Anne, A. G. Artukh, D. Bazin, V. Borrel, C. Détraz, D. Guerreau, B. A. Gvozdev, J. C. Jaemart, D. X. Jiang, A. M. Kalinin, V. V. Kamanin, V. B. Kutner, M. Lewitowicz, S. M. Lukyanov, A. C. Mueller, N. Hoai Chau, F. Pougeon, A. Richard, M. G. Saint-Laurent, W.-D. Schmidt-Ott, Z. Phys. A 332 (1989) 189.

[46] H. Sakurai, N. Aoi, A. Goto, M. Hirai, N. Inabe, M. Ishihara, H. Kobinata, T. Jubo, H. Kumagai, T. Nakagawa, T. Nakamura, M. Notani, Y. Watanabe, Y. Watanabe, A. Yoshida, Phys. Rev. C 54 (1996) R2802.

[47] H. Sakurai, N. Aoi, D. Beaumel, N. Fukuda, M. Hirai, E. Ideguchi, M. Ishihara, H. Iwasaki, T. Kishida, T. Kubo, H. Kumagai, S. M. Lukyanov, T. Nakamura, M. Notani, Y. T. Oganessian, Y. E. Penionzhkevich, T. Teranishi,
Y. Watanabe, Y. Watanabe, K. Yoneda, A. Yoshida, Nucl. Phys. A 616 (1997) 311c.

[48] T. Baumann, A. M. Anthor, D. Bazin, B. A. Brown, C. M. Folden III, A. Gade, T. N. Ginter, M. Hausmann, M. Matos, D. J. Morrissey, M. Portillo, A. Schiller, B. M. Sherrill, A. Stolz, O. B. Tarasov, M. Thoennessen, Nature 449 (2007) 1022.

[49] M. G. Saint-Laurent, J. P. Dufour, R. Anne, D. Bazin, V. Borrel, H. Delagrange, C. Détraz, D. Guillemaud-Mueller, F. Hubert, J. C. Jacmart, A. C. Mueller, F. Pougheon, M. S. Pravikoff, E. Roeckl, Phys. Rev. Lett. 59 (1987) 33.

[50] S. Goriely, M. Samyn, J. M. Pearson, Phys. Rev. C 75 (2007) 064312.

[51] M. D. Cable, J. Honkanen, R. F. Parry, H. M. Thierens, J. M. Wouters, Z. Y. Zhou, J. Cerny, Phys. Rev. C 26 (1982) 1778.

[52] N. W. Glass, L. K. Jensen, Phys. Rev. 90 (1953) 320.

[53] A. C. Birge, Phys. Rev. 85 (1953) 753.

[54] J. L. W. Churchill, W. M. Jones, S. E. Hunt, Nature 172 (1953) 460.

[55] H. Bradner, J. D. Gow, Phys. Rev. 74 (1948) 1559.

[56] O. R. Frisch, Nature 133 (1934) 721.

[57] F. W. Aston, Nature 110 (1922) 664.

[58] I. Curie, F. Joliot, J. Phys. Radium 5 (1934) 153.

[59] H. A. Bethe, W. J. Henderson, Phys. Rev. 56 (1939) 1060.

[60] A. Eckardt, Naturwiss. 23 (1935) 527.

[61] H. Fahlenbrach, Z. Phys. 96 (1935) 503.

[62] C. D. Ellis, W. J. Henderson, Proc. Roy. Soc. A 156 (1936) 358.

[63] A. Meye, Z. Phys. 105 (1937) 232.

[64] E. L. Robinson, O. E. Johnson, Phys. Rev. 123 (1961) 1349.

[65] T. J. M. Symons, Y. P. Yiyogi, G. D. Westfall, P. Doll, D. E. Greiner, H. Faraggi, P. J. Lindstrom, D. K. Scott, Phys. Rev. Lett. 42 (1979) 40.

[66] M. Langevin, A. C. Mueller, D. Guillemaud-Mueller, M. G. Saint-Laurent, R. Anne, M. Bernas, J. Galin, D. Guerreau, J. C. Jacmart, S. D. Hoath, F. Naulin, F. Pougheon, E. Quiniou, C. Détraz, Nucl. Phys. A 455 (1986) 149.

[67] J. Äystö, D. M. Moltz, M. D. Cable, R. D. Von Dinclage, R. F. Parry, J. M. Wouters, J. Cerny, Phys. Lett. B 82 (1979) 43.

[68] E. L. Robinson, O. E. Johnson, Phys. Rev. 120 (1960) 1321.

[69] G. Kuerti, S. N. van Voorhis, Phys. Rev. 56 (1939) 614.

[70] I. Curie, F. Joliot, Compt. Rend. Acad. Sci. 198 (1934) 254.

[71] F. Joliot, I. Curie, Nature 133 (1934) 201.
[72] F. W. Aston, Nature 105 (1920) 547.
[73] R. S. Mulliken, Nature 113 (1924) 423.
[74] M. Lindner, Phys. Rev. 91 (1953) 642.
[75] M. Lindner, Phys. Rev. 89 (1953) 1150.
[76] A. Turkevich, A. Tompkins, Phys. Rev. 90 (1953) 247.
[77] P. Auger, T. H. Chiang, J. Galin, B. Gatty, D. Guerreau, E. Nolte, J. Pouthas, X. Tarrago, J. Girard, Z. Phys. A 289 (1979) 255.
[78] M. Lewitowicz, R. Anne, A. G. Artukh, D. Bazin, A. V. Belozyorov, P. Bricault, C. Détraz, D. Guillemand-Mueller, J. C. Jacmart, E. Kashy, A. Latimier, S. M. Lukyanov, A. C. Mueller, Y. E. Penionzhkevich, F. Pougheon, A. Richard, W. D. Schmidt-Ott, Y. Zhang, Z. Phys. A 335 (1990) 117.
[79] O. B. Tarasov, T. Baumann, A. M. Amthor, D. Bazin, C. M. Folden III, A. Gade, T. N. Ginter, M. Hausmann, M. Matos, D. J. Morrissey, A. Nettleton, M. Portillo, A. Schiller, B. M. Sherrill, A. Stolz, M. Thoennessen, Phys. Rev. C 75 (2007) 064613.
[80] M. D. Cable, J. Honkanen, R. F. Parry, S. H. Zhou, Z. Y. Zhou, J. Cerny, Phys. Lett. B 123 (1983) 25.
[81] W. Benenson, D. Mueller, E. Kashy, H. Nann, L. W. Robinson, Phys. Rev. C 15 (1977) 1187.
[82] M. G. White, E. C. Creutz, L. A. Delsasso, R. R. Wilson, Phys. Rev. 59 (1941) 63.
[83] R. K. Sheline, R. B. Holtzman, C.-Y. Fan, Phys. Rev. 83 (1951) 919.
[84] L. Yaffe, F. Brown, Phys. Rev. 82 (1951) 332.
[85] W. Zünit, E. Bleuler, Helv. Phys. Acta 18 (1945) 263.
[86] O. Huber, O. Lienhard, H. Waffler, Helv. Phys. Acta 15 (1942) 314.
[87] D. R. Corson, K. R. MacKenzie, E. Segre, Phys. Rev. 58 (1940) 672.
[88] W. Grimm, W. Herzog, Z. Naturforsch. 26a (1971) 1933.
[89] C. L. Morris, H. T. Fortune, L. C. Bland, R. Gilman, S. J. Greene, W. B. Cottingame, D. B. Holtkamp, G. R. Burleson, C. F. Moore, Phys. Rev. C 25 (1982) 3218.
[90] J. C. Hardy, R. I. Verrall, Phys. Lett. 13 (1964) 148.
[91] E. L. Robinson, J. I. Rhode, O. E. Johnson, Phys. Rev. 122 (1961) 879.
[92] L. D. P. King, D. R. Elliott, Phys. Rev. 58 (1940) 846.
[93] F. W. Aston, Nature 117 (1926) 893.
[94] E. B. Andersen, Z. Phys. Chemie 32B (1936) 237.
[95] A. O. Nier, Phys. Rev. 53 (1938) 282.
[96] D. R. Nethaway, A. A. Caretto Jr., Phys. Rev. 109 (1958) 504.
[97] J. B. Hoag, Phys. Rev. 57 (1940) 937.
[98] F. W. Aston, Nature 104 (1919) 393.
[99] D. C. Grahame, H. W. Walker, Phys. Rev. 60 (1941) 909.
[100] J. W. Kennedy, G. T. Seaborg, Phys. Rev. 57 (1940) 843.
[101] E. Amaldi, O. D’Agostino, F. Rasetti, E. Segre, Proc. Roy. Soc. A 149 (1935) 522.
[102] S. N. Van Voorhis, Phys. Rev. 49 (1936) 889.
[103] D. G. Hurst, H. Walke, Phys. Rev. 51 (1937) 1033.
[104] R. N. H. Haslam, L. Katz, H. E. Johns, H. J. Moody, Phys. Rev. 76 (1949) 704.
[105] H. Morinaga, Phys. Rev. 103 (1956) 504.
[106] E. Kashy, W. Benenson, D. Mueller, H. Nann, L. Robinson, Phys. Rev. C 14 (1976) 1773.
[107] O. B. Tarasov, D. J. Morrissey, A. M. Amthor, T. Baumann, D. Bazin, A. Gade, T. N. Ginter, M. Hausmann, N. Inabe, T. Kubo, A. Nettleton, J. Pereira, M. Portillo, B. M. Sherrill, A. Stolz, M. Thoennessen, Phys. Rev. Lett. 102 (2009) 142501.
[108] E. Hagberg, P. G. Hansen, J. C. Hardy, A. Huck, B. Jonson, S. Mattsson, H. L. Ravn, P. Tidemand-Pettersson, G. Walter, Phys. Rev. Lett. 39 (1977) 792.
[109] P. L. Reeder, A. M. Poskanzer, R. A. Esterlund, Phys. Rev. Lett. 13 (1964) 767.
[110] J. C. Hardy, R. I. Verrall, Can. J. Phys. 43 (1965) 418.
[111] R. G. Miller, R. W. Kavanagh, Phys. Lett. 22 (1966) 461.
[112] F. W. Aston, Nature 105 (1920) 8.
[113] P. K. Weimer, J. D. Kurbatov, M. L. Pool, Phys. Rev. 60 (1941) 469.
[114] P. Zeeman, J. de Gier, Proc. Akad. Soc. Amsterdam 37 (1934) 3.
[115] A. R. Brosi, H. Zeldes, B. H. Ketelle, Phys. Rev. 79 (1950) 902.
[116] M. L. Pool, J. M. Cork, R. L. Thornton, Phys. Rev. 52 (1937) 239.
[117] A. H. Snell, Phys. Rev. 49 (1936) 555.
[118] S. Katcoff, Phys. Rev. 87 (1952) 886.
[119] P. G. Hansen, P. Hornshøj, H. L. Nielsen, K. Wilsky, H. Kugler, G. Astner, E. Hagebo, J. Hudis, A. Kjelberg, F. Münnich, P. Patzelt, M. Alpsten, G. Andersson, A. Appelqvist, B. Bengtsson, R. A. Naumann, O. B. Nielsen, E. Beck, R. Foucher, P. Hussin, J. Jastrzebski, A. Johnson, J. Alstad, T. Jahnson, A. C. Pappas, T. Tunaal, R. Henck, P. Siffert, G. Rudstam, Phys. Lett. B 28 (1969) 415.
[120] R. E. Larson, C. M. Gordon, Nucl. Phys. A 133 (1969) 237.
[121] N. A. Jelley, K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak, J. Cerny, Phys. Rev. C 9 (1974) 2067.
[122] D. Guillemaud-Mueller, A. C. Mueller, D. Guerreau, F. Pougheon, R. Anne, M. Bernas, J. Galin, J. C. Jacmart, M. Langevin, F. Naulin, E. Quiniou, C. Détraz, Z. Phys. A 322 (1985) 415.
[123] W. Benenson, K. Beard, C. Bloch, B. M. Sherrill, B. A. Brown, A. D. Panagiotou, J. van der Plicht, J. S. Winfield, C. E. Thorn, Phys. Lett. B 162 (1985) 87.

[124] S. Grévy, J. C. Angelique, P. Baumann, C. Borcea, A. Buta, G. Canchel, W. N. Catford, S. Courtin, J. M. Daugas, F. de Oliveira, P. Dessagne, Z. Dlouhy, A. Knipper, K. L. Kratz, F. R. Lecolley, J. L. Lecouey, G. Lehrsenneau, M. Lewitowicz, E. Lienard, S. Lukyanov, F. Marechal, C. Miehe, J. Mrazek, F. Negoita, N. A. Orr, D. Pantelica, Y. Penionzhkevich, J. Peter, B. Pfeiffer, S. Pietri, E. Poirier, O. Sorlin, M. Stanoiu, I. Stefan, C. Stodel, C. Timis, Phys. Lett. B 594 (2004) 252.

[125] W. Zhan et al., Nouvelles du GANIL No. 25, April 1988; and to be published. .

[126] P. F. Mantica et al., Bull. Am. Phys. Soc. 53, 64 (2008) .

[127] W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann, Phys. Rev. C 13 (1976) 1479.

[128] R. E. Berg, J. L. Snelgrove, E. Kashy, Phys. Rev. 153 (1967) 1165.

[129] C. R. Sun, B. T. Wright, Phys. Rev. 109 (1958) 109.

[130] F. I. Boley, D. J. Zaffarano, Phys. Rev. 84 (1951) 1059.

[131] P. Stähelin, Helv. Phys. Acta 26 (1953) 691.

[132] F. W. Aston, Nature 127 (1931) 233.

[133] A. O. Nier, Phys. Rev. 48 (1935) 283.

[134] G. Hevesy, Nature 135 (1935) 96.

[135] R. Overstreet, L. Jacobson, P. R. Stout, Phys. Rev. 75 (1949) 231.

[136] B. L. Cohen, Phys. Rev. 94 (1954) 117.

[137] H. Walke, Phys. Rev. 51 (1937) 439.

[138] H. Morinaga, G. Wolzak, Phys. Lett. 11 (1964) 148.

[139] A. Marinov, J. R. Erskine, Phys. Lett. 14 (1965) 46.

[140] T. Kuroyanagi, T. Tamura, K. Tanaka, H. Morinaga, Nucl. Phys. 50 (1964) 417.

[141] M. Langevin, C. Détraz, D. Guillemaud-Mueller, A. C. Mueller, C. Thibault, F. Touchard, G. Klotz, C. Miché, G. Walter, M. Epherré, C. Richard-Serre, Phys. Lett. B 130 (1983) 251.

[142] A. Huck, G. Klotz, A. Knipper, C. Miché, C. Richard-Serre, A. Poves, H. L. Ravn, G. Marguier, Phys. Rev. C 31 (1985) 2226.
Explanation of Tables

Table 1. Discovery of isotopes with $11 \leq Z \leq 19$

Isotope	Name of isotope						
First Author	First author of refereed publication						
Journal	Journal of publication						
Ref.	Reference						
Method	Production method used in the discovery:						
	AS: atomic spectroscopy						
	MS: mass spectroscopy						
	DI: deep inelastic reactions						
	LP: light-particle reactions (including neutrons)						
	PF: projectile fragmentation						
	PI: pion-induced reactions						
	SB: reactions with secondary beams						
	SP: spallation reactions						
	NC: neutron-capture reactions						
	PN: photo-nuclear reactions						
Laboratory	Laboratory where the experiment was performed						
Country	Country of laboratory						
Year	Year of discovery						
Isotope	First Author	Journal	Ref.	Method	Laboratory	Country	Year
---------	--------------	------------------------	------	------------	------------	----------------	-------
18Na	T. Zerguerras	Eur. Phys. J. A	14	SB	GANIL	France	2004
19Na	J. Cerny	Phys. Rev. Lett.	15	LP	Berkeley	USA	1969
20Na	L.W. Alvarez	Phys. Rev.	16	LP	Berkeley	USA	1950
21Na	E. Pollard	Phys. Rev.	17	LP	Yale	USA	1940
22Na	O.R. Frisch	Nature	19	LP	Copenhagen	Denmark	1935
23Na	F.W. Aston	Nature	20	MS	Cambridge	UK	1921
24Na	E. Fermi	Proc. Roy. Soc. A	21	LP	Rome	Italy	1934
25Na	O. Huber	Helv. Phys. Acta	22	PN	Zurich	Switzerland	1943
26Na	M.J. Nurmia	Nucl. Phys. A	24	LP	Arkansas	USA	1958
27Na	R. Klapisch	Phys. Rev. Lett.	25	SP	CERN	Switzerland	1968
28Na	R. Klapisch	Phys. Rev. Lett.	26	SP	CERN	Switzerland	1969
29Na	R. Klapisch	Phys. Rev. Lett.	26	SP	CERN	Switzerland	1969
30Na	R. Klapisch	Phys. Rev. Lett.	26	SP	CERN	Switzerland	1969
31Na	R. Klapisch	Phys. Rev. Lett.	27	SP	CERN	Switzerland	1972
32Na	M. Langevin	Phys. Lett. B	28	SP	CERN	Switzerland	1983
33Na	M. Langevin	Phys. Lett. B	28	SP	CERN	Switzerland	1983
34Na	M. Langevin	Phys. Lett. B	28	SP	CERN	Switzerland	1983
35Na	M. Langevin	Phys. Lett. B	28	SP	CERN	Switzerland	1983
36Na	not observed						
37Na	M. Notani	Phys. Lett. B	30	PF	RIKEN	Japan	2002
19Mg	I. Mukha	Phys. Rev. Lett.	32	SB	Darmstadt	Germany	2007
20Mg	R.G.H. Robertson	Phys. Rev. Lett.	33	LP	Juelich	Germany	1974
21Mg	R. Barton	Can. J. Phys.	35	LP	McGill	Canada	1963
22Mg	F. Ajzenberg-Selove	Phys. Rev.	37	LP	Los Alamos	USA	1961
23Mg	M.G. White	Phys. Rev.	39	LP	Princeton	USA	1939
24Mg	A.J. Dempster	Science	40	MS	Chicago	USA	1920
25Mg	A.J. Dempster	Science	40	MS	Chicago	USA	1920
26Mg	A.J. Dempster	Science	40	MS	Chicago	USA	1920
27Mg	E. Fermi	Proc. Roy. Soc. A	21	LP	Rome	Italy	1934
28Mg	R.K. Sheline	Phys. Rev.	41	LP	Chicago	USA	1953
29Mg	A.G. Artukh	Nucl. Phys. A	42	DI	Dubna	Russia	1971
30Mg	A.G. Artukh	Nucl. Phys. A	42	DI	Dubna	Russia	1971
31Mg	G.W. Butler	Phys. Rev. Lett.	43	SP	Los Alamos	USA	1977
32Mg	G.W. Butler	Phys. Rev. Lett.	43	SP	Los Alamos	USA	1977
33Mg	G.D. Westfall	Phys. Rev. Lett.	44	PF	Berkeley	USA	1979
34Mg	G.D. Westfall	Phys. Rev. Lett.	44	PF	Berkeley	USA	1979
35Mg	D. Guillemaud-Mueller	Z. Phys. A	45	PF	GANIL	France	1989
36Mg	D. Guillemaud-Mueller	Z. Phys. A	45	PF	GANIL	France	1989
37Mg	H. Sakurai	Phys. Rev. C	46	PF	RIKEN	Japan	1996
38Mg	M. Notani	Phys. Lett. B	30	PF	RIKEN	Japan	2002
39Mg	M. Notani	Phys. Lett. B	30	PF	RIKEN	Japan	2002
40Mg	T. Baumann	Nature	48	PF	Michigan State	USA	2007
22Al	M.D. Cable	Phys. Rev. C	51	LP	Berkeley	USA	1982
23Al	J. Cerny	Phys. Rev. Lett.	15	LP	Berkeley	USA	1969
24Al	N.W. Glass	Phys. Rev.	52	LP	UCLA	USA	1953
25Al	J.L.W. Churchill	Nature	54	LP	Aldermaston	UK	1953
26Al	O.R. Frisch	Nature	56	LP	London	UK	1934
27Al	F.W. Aston	Nature	57	MS	Cambridge	UK	1922
28Al	I. Curie	J. Phys. Radium	58	LP	Paris	France	1934
29Al	H.A. Bethe	Phys. Rev.	59	LP	Purdue	USA	1939
30Al	E.L. Robinson	Phys. Rev.	64	LP	Purdue	USA	1961
31Al	A.G. Artukh	Nucl. Phys. A	42	DI	Dubna	Russia	1971
32Al	A.G. Artukh	Nucl. Phys. A	42	DI	Dubna	Russia	1971
33Al	A.G. Artukh	Nucl. Phys. A	42	DI	Dubna	Russia	1971
34Al	G.W. Butler	Phys. Rev. Lett.	43	SP	Los Alamos	USA	1977
35Al	T.J.M. Symons	Phys. Rev. Lett.	65	PF	Berkeley	USA	1979
36Al	G.D. Westfall	Phys. Rev. Lett.	44	PF	Berkeley	USA	1979
37Al	G.D. Westfall	Phys. Rev. Lett.	44	PF	Berkeley	USA	1979
38Al	D. Guillemaud-Mueller	Z. Phys. A	45	PF	GANIL	France	1989
39Al	D. Guillemaud-Mueller	Z. Phys. A	45	PF	GANIL	France	1989
40Al	M. Notani	Phys. Lett. B	30	PF	RIKEN	Japan	2002
41Al	M. Notani	Phys. Lett. B	30	PF	RIKEN	Japan	2002
42Al	T. Baumann	Nature	48	PF	Michigan State	USA	2007
Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
---------	----------------------	--------------------------	------	--------	-------------	---------	------
^{43}\text{Al}	T. Baumann	Nature	[48]	PF	Michigan State	USA	2007
^{22}\text{Si}	M.G. Saint-Laurent	Phys. Rev. Lett.	[49]	PF	GANIL	France	1987
^{23}\text{Si}	M. Langevin	Nucl. Phys. A	[66]	PF	GANIL	France	1986
^{24}\text{Si}	J. Äystö	Phys. Lett. B	[67]	LP	Berkeley	USA	1979
^{25}\text{Si}	R. Barton	Can. J. Phys.	[35]	LP	McGill	Canada	1963
^{26}\text{Si}	E.L. Robinson	Phys. Rev.	[68]	LP	Purdue	USA	1960
^{27}\text{Si}	G. Kueri	Phys. Rev.	[69]	LP	Rochester	USA	1939
^{28}\text{Si}	F.W. Aston	Nature	[72]	MS	Cambridge	UK	1920
^{29}\text{Si}	F.W. Aston	Nature	[73]	AS	Harvard	USA	1924
^{30}\text{Si}	E.S. Mulliken	Proc. Roy. Soc. A	[21]	LP	Rome	Italy	1934
^{31}\text{Si}	M. Lindner	Phys. Rev.	[74]	LP	Berkeley	USA	1953
^{32}\text{Si}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{33}\text{Si}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{34}\text{Si}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{35}\text{Si}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{36}\text{Si}	P. Auger	Nature	[77]	DI	Orsay	France	1979
^{37}\text{Si}	G.D. Westfall	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{38}\text{Si}	D. Guillemaud-Mueller	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{39}\text{Si}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{40}\text{Si}	M. Lewitowicz	Z. Phys. A	[78]	PF	GANIL	France	1990
^{41}\text{Si}	M. Notani	Phys. Lett. B	[30]	PF	RIKEN	Japan	2002
^{42}\text{Si}	O.B. Tarasov	Phys. Rev. C	[79]	PF	Michigan State	USA	2007

^{26}\text{P}	M.D. Cable	Phys. Lett. B	[80]	LP	Berkeley	USA	1983
^{27}\text{P}	W. Benenson	Phys. Rev. C	[81]	LP	Michigan State	USA	1977
^{28}\text{P}	N.W. Glass	Phys. Rev.	[52]	LP	UCLA	USA	1953
^{29}\text{P}	M.G. White	Phys. Rev.	[82]	LP	Princeton	USA	1941
^{30}\text{P}	I. Curie	Compt. Rend. Acad. Sci.	[70]	LP	Paris	France	1934
^{31}\text{P}	F.W. Aston	Nature	[72]	MS	Cambridge	UK	1920
^{32}\text{P}	E. Fermi	Proc. Roy. Soc. A	[21]	LP	Rome	Italy	1934
^{33}\text{P}	R.K. Sheline	Phys. Rev.	[83]	LP	Chicago	USA	1951
^{34}\text{P}	W. Zünti	Helv. Phys. Acta	[85]	LP	Zurich	Switzerland	1945
^{35}\text{P}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{36}\text{P}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{37}\text{P}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{38}\text{P}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{39}\text{P}	G.W. Butler	Phys. Rev. Lett.	[43]	SP	Los Alamos	USA	1977
^{40}\text{P}	P. Auger	Phys. Rev.	[77]	DI	Orsay	France	1979
^{41}\text{P}	G.D. Westfall	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{42}\text{P}	D. Guillemaud-Mueller	Phys. Rev.	[45]	PF	GANIL	France	1989
^{43}\text{P}	M. Lewitowicz	Z. Phys. A	[78]	PF	GANIL	France	1990
^{44}\text{P}	M. Lewitowicz	Z. Phys. A	[78]	PF	GANIL	France	1990

^{27}\text{S}	M. Langevin	Nucl. Phys. A	[66]	PF	GANIL	France	1986
^{28}\text{S}	C.L. Morris	Phys. Rev. C	[89]	PI	Los Alamos	USA	1982
^{29}\text{S}	J.C. Hardy	Phys. Lett.	[90]	LP	McGill	Canada	1964
^{30}\text{S}	E.L. Robinson	Phys. Rev.	[91]	LP	Purdue	USA	1961
^{31}\text{S}	L.D.P. King	Phys. Rev.	[92]	LP	Purdue	USA	1940
^{32}\text{S}	F.W. Aston	Nature	[72]	MS	Cambridge	UK	1920
^{33}\text{S}	F.W. Aston	Nature	[93]	MS	Cambridge	UK	1926
^{34}\text{S}	F.W. Aston	Nature	[93]	MS	Cambridge	UK	1926
^{35}\text{S}	E.B. Andersen	Z. Phys. Chemie	[94]	LP	Aarhus	Denmark	1936
^{36}\text{S}	A.O. Nier	Phys. Rev.	[95]	MS	Harvard	USA	1938
^{37}\text{S}	W. Zünti	Helv. Phys. Acta	[85]	LP	Zurich	Switzerland	1945
^{38}\text{S}	D.R. Nethaway	Phys. Rev.	[96]	LP	Berkeley	USA	1958
^{39}\text{S}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{40}\text{S}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{41}\text{S}	P. Auger	Z. Phys. A	[77]	DI	Orsay	France	1979
^{42}\text{S}	P. Auger	Z. Phys. A	[77]	DI	Orsay	France	1979
Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
^{43}\text{S}	G.D. Westfall	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{44}\text{S}	G.D. Westfall	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{45}\text{S}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{46}\text{S}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{47}\text{S}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{48}\text{S}	M. Lewitowicz	Z. Phys. A	[78]	PF	GANIL	France	1990

^{31}\text{Cl}	W. Benenson	Phys. Rev. C	[81]	LP	Michigan State	USA	1977
^{32}\text{Cl}	N.W. Glass	Phys. Rev.	[52]	LP	UCLA	USA	1953
^{33}\text{Cl}	J.B. Hoag	Phys. Rev.	[97]	LP	Berkeley	USA	1940
^{34}\text{Cl}	O.R. Frisch	Nature	[56]	LP	London	UK	1934
^{35}\text{Cl}	F.W. Aston	Nature	[98]	MS	Cambridge	USA	1919
^{36}\text{Cl}	D.C. Grahame	Phys. Rev.	[99]	NC	Berkeley	USA	1941
^{37}\text{Cl}	F.W. Aston	Nature	[98]	MS	Cambridge	USA	1919
^{38}\text{Cl}	J.W. Kennedy	Phys. Rev.	[100]	NC	Berkeley	USA	1940
^{39}\text{Cl}	R.N.H. Haslam	Phys. Rev.	[104]	PN	Saskatoon	Canada	1949
^{40}\text{Cl}	H. Morinaga	Phys. Rev.	[105]	LP	Purdue	USA	1956
^{41}\text{Cl}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{42}\text{Cl}	A.G. Artukh	Nucl. Phys. A	[42]	DI	Dubna	Russia	1971
^{43}\text{Cl}	E. Kashy	Phys. Rev. C	[106]	LP	Michigan State	USA	1976
^{44}\text{Cl}	G.D. Westfall	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{45}\text{Cl}	G.D. Westfall	Phys. Rev. Lett.	[44]	PF	Berkeley	USA	1979
^{46}\text{Cl}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{47}\text{Cl}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{48}\text{Cl}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{49}\text{Cl}	O.B. Tarasov	Phys. Rev. Lett.	[107]	PF	Michigan State	USA	2009
^{50}\text{Cl}	M. Lewitowicz	Z. Phys. A	[78]	PF	GANIL	France	1990

^{31}\text{Ar}	M. Langevin	Nucl. Phys. A	[66]	PF	GANIL	France	1986
^{32}\text{Ar}	E. Hagberg	Phys. Rev. Lett.	[108]	SP	CERN	Switzerland	1977
^{33}\text{Ar}	P. L. Reeder	Phys. Rev. Lett.	[109]	LP	Brookhaven	USA	1964
^{34}\text{Ar}	R.G. Miller	Phys. Lett.	[111]	LP	Caltech	USA	1966
^{35}\text{Ar}	L.D.P. King	Phys. Rev.	[92]	LP	Purdue	USA	1940
^{36}\text{Ar}	F.W. Aston	Nature	[112]	MS	Cambridge	UK	1920
^{37}\text{Ar}	P.K. Weimer	Phys. Rev.	[113]	LP	Ohio State	USA	1941
^{38}\text{Ar}	P. Zeeman	Proc. Akad. Soc.	[114]	MS	Amsterdam	Netherlands	1934
^{39}\text{Ar}	A.R. Brosi	Phys. Rev.	[115]	LP	Oak Ridge	USA	1950
^{40}\text{Ar}	F.W. Aston	Nature	[112]	MS	Cambridge	UK	1920
^{41}\text{Ar}	A.H. Snell	Phys. Rev.	[117]	LP	Berkeley	USA	1936
^{42}\text{Ar}	S. Katcoff	Phys. Rev.	[118]	NC	Brookhaven	USA	1952
^{43}\text{Ar}	P.G. Hansen	Phys. Lett. B	[119]	SP	CERN	Switzerland	1969
^{44}\text{Ar}	R.E. Larson	Nucl. Phys. A	[120]	PN	Naval Research Laboratory	USA	1969
^{45}\text{Ar}	N.A. Jelley	Phys. Rev. C	[121]	LP	Berkeley	USA	1974
^{46}\text{Ar}	N.A. Jelley	Phys. Rev. C	[121]	LP	Berkeley	USA	1974
^{47}\text{Ar}	D. Guillemaud-Mueller	Z. Phys. A	[122]	PF	GANIL	France	1985
^{48}\text{Ar}	S. Grévy	Phys. Lett. B	[124]	PF	GANIL	France	2004
^{49}\text{Ar}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{50}\text{Ar}	D. Guillemaud-Mueller	Z. Phys. A	[45]	PF	GANIL	France	1989
^{51}\text{Ar}	O.B. Tarasov	Phys. Rev. Lett.	[107]	PF	Michigan State	USA	2009
^{52}\text{Ar}	O.B. Tarasov	Phys. Rev. Lett.	[107]	PF	Michigan State	USA	2009

^{35}\text{K}	W. Benenson	Phys. Rev. C	[127]	LP	Michigan State	USA	1976
^{36}\text{K}	R.E. Berg	Phys. Rev.	[128]	LP	Michigan State	USA	1967
^{37}\text{K}	C.R. Sun	Phys. Rev.	[129]	LP	UCLA	USA	1958
^{38}\text{K}	D.G. Hurst	Phys. Rev.	[103]	LP	Berkeley	USA	1937
^{39}\text{K}	F.W. Aston	Nature	[20]	MS	Cambridge	UK	1921
^{40}\text{K}	A.O. Nier	Phys. Rev.	[133]	MS	Minnesota	USA	1935
^{41}\text{K}	F.W. Aston	Nature	[20]	MS	Cambridge	UK	1921
^{42}\text{K}	G. Hevesy	Nature	[134]	LP	Copenhagen	Denmark	1935
^{43}\text{K}	R. Overstreet	Phys. Rev.	[135]	LP	Berkeley	USA	1949
^{44}\text{K}	B.L. Cohen	Phys. Rev.	[136]	LP	Oak Ridge	USA	1954
^{45}\text{K}	H. Morinaga	Phys. Lett.	[138]	LP	Amsterdam	Netherlands	1964
Table 1 (continued)

Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
46K	A. Marinov	Phys. Lett.	[139]	LP	Argonne	USA	1965
47K	T. Kuroyanagi	Nucl. Phys.	[140]	PN	JAERI	Japan	1964
48K	R. Klapisch	Phys. Rev. Lett.	[27]	SP	CERN	Switzerland	1972
49K	R. Klapisch	Phys. Rev. Lett.	[27]	SP	CERN	Switzerland	1972
50K	R. Klapisch	Phys. Rev. Lett.	[27]	SP	CERN	Switzerland	1972
51K	M. Langevin	Phys. Lett. B	[141]	SP	CERN	Switzerland	1983
52K	M. Langevin	Phys. Lett. B	[141]	SP	CERN	Switzerland	1983
53K	M. Langevin	Phys. Lett. B	[141]	SP	CERN	Switzerland	1983
54K	M. Langevin	Phys. Lett. B	[141]	SP	CERN	Switzerland	1983
55K	O.B. Tarasov	Phys. Rev. Lett.	[107]	PF	Michigan State	USA	2009
56K	O.B. Tarasov	Phys. Rev. Lett.	[107]	PF	Michigan State	USA	2009