Abstract

Holm (Proc. Roy. Soc 2015) introduced a variational framework for stochastically parametrising unresolved scales of hydrodynamic motion. This variational framework preserves fundamental features of fluid dynamics, such as Kelvin’s circulation theorem, while also allowing for dispersive nonlinear wave propagation within a stratified fluid, as well as at its free surface. The present paper combines asymptotic expansions and vertical averaging with the stochastic variational framework to formulate a new approach for developing stochastic parametrisation schemes. It applies this approach to the various stratified shallow water equations which descend from Euler’s three-dimensional fluid equations under approximation by asymptotic expansions and vertical averaging. In the nonlinear stochastic wave-current interaction theory derived here this way, Kelvin’s circulation theorem reveals a barotropic mechanism for wave generation of horizontal circulation (cyclogenesis) which is activated whenever the gradients of wave elevation and/or topography are not aligned with the gradient of the vertically averaged buoyancy.

Contents

1 Stochastic variational principle and averaging principle 5
 1.1 Stochastic Euler-Poincaré theorem and averaging 7
 1.2 Stochastic Kelvin–Noether circulation theorem 9
 1.3 Nondimensionalising the Lagrangian 10
 1.4 Averaging of Newton’s second law 13

2 Long time - very small wave scaling regime 14
 2.1 Leading order expansion in the long time – very small wave scaling regime 15
 2.2 Higher order expansion in the long time – very small wave scaling regime 16
 2.3 Averaged Euler-Poincaré Lagrangian for long time – very small wave scaling 18

3 Short time - small wave scaling regime 20
 3.1 Averaging of Newton’s 2nd law in the short time - small wave scaling 22
 3.2 Averaged Euler-Poincaré Lagrangian for short time - small wave scaling 24
 3.3 Stochastic Camassa-Holm equations 27
 3.4 Differences between the Newtonian and variational approaches 29

4 Conclusion 30
 4.1 Outlook and open problems. What to do? 32

5 Acknowledgments 33

A Linear dispersion relations for deterministic equilibria of Green–Naghdi equations 35
Introduction

Weather forecasting, climate change prediction and global ocean circulation all face the fundamental challenge of creating appropriate models of measurement error and uncertainty due to unresolved scales, unknown physical phenomena and incompleteness of observed data. An approach in observational science for tackling this issue is via stochastic data driven modelling, which predicts both future measurements and their uncertainty by analysing available data.

A common approach for modelling and simulating climate and weather involves the introduction of stochastic parametrisation. For recent reviews of stochastic parametrisation, see, e.g. [BJP12, BAB+17, GCF16]. The fundamental conclusions of [BJP12] are twofold:

A posteriori addition of stochasticity to an already tuned model is simply not viable.

Stochasticity must be incorporated at a very basic level within the design of physical process parametrisations and improvements to the dynamical core.

A new approach [Hol15] which meets the challenge of incorporating stochastic parametrisation at the fundamental level enunciated in [BJP12] involves the introduction of stochastic transport into Kelvin’s circulation theorem. The expected values of quantities of physical interest are then modelled together with their statistical uncertainty, and data assimilation is used to reduce that uncertainty. This is the SALT approach.

The SALT (Stochastic Advection by Lie Transport) approach combines stochasticity in the velocity of the fluid material loop in Kelvin’s circulation theorem with ensemble forecasting. The ensemble forecasting in SALT has been coordinated with the results of the particle filtering method of data assimilation. A protocol for applying the SALT approach in combination with data assimilation based on comparing fine scale and coarse scale computational simulations has recently been established in [CCH+19a, CCH+18] which demonstrates the capability of the SALT approach to successfully reduce forecast uncertainty in a variety of test problems for fluid dynamics in two spatial dimensions. The three dimensional SALT theory has been developed, but it awaits computational implementation at the present time.

The present paper aims to extend the SALT approach for fluid dynamics described above to provide a barotropic (vertically averaged) description of wave current interaction (WCI) in a stratified incompressible fluid flow, by incorporating stochastic fluid transport and circulation with nonlinear dispersive wave propagation internally and on the free surface. Historically in ocean modelling, the rapid propagation of the barotropic (or, external) mode representing disturbances on the free surface, for example, has required special handling; because otherwise incorporating the simulation of its rapid time scale and multicomponent physical processes would tend to occupy an inordinate amount of computer power [DS94, FKAB+19].

In addressing this challenge, the CH92 model derived in [CH92] used vertical averaging to transform the 3D Euler–Boussinesq fluid equations into a family of 2D stratified ‘rotating shallow water equations’ which incorporate effects of weak deviations from hydrostatic balance, weak stratification and strong topography. Via a series of approximations and asymptotic limits, the CH92 model was found to contain the Kadomsev-Petviashvili (KP) and Korteweg-de Vries (KdV) equations in a rotating frame, as shown in Figure 1.

The present paper will concentrate on developing a family of stochastic models of barotropic wave-current interaction for mesoscale and submesoscale ocean dynamics based on the deterministic CH92 model and its further development in [CHL96, CHL97]. The present approach will involve dimensional analysis, asymptotic expansions and vertical averaging to obtain the barotropic component of the fluid motion, as in [CH92], combined with the Euler–Poincaré variational approach of [HMR98] and with the SALT approach [Hol15] for introducing stochasticity. Specifically, we handle the barotropic effects by vertically averaging, applied either to the equations of motion as in [Wu81], or to the variational principle for SALT [Hol15]. The present paper aims to incorporate stochasticity into nonlinear dispersive water wave theory for the purpose of quantifying the uncertainty of wave current interaction and reducing it by using data assimilation in the SALT approach.
Background. A framework for combining data with existing models in a probabilistic manner was presented in [Hol15], where a stochastic variational principle for continuum mechanics was introduced. This stochastic variational principle enables one to derive stochastic models of inviscid fluid dynamics which satisfy a Kelvin circulation theorem, starting from the Lagrangian of the corresponding deterministic fluid model and using a Clebsch constraint to introduce the Stochastic Advection by Lie Transport (SALT). This approach decomposes the fluid velocity vector field into the sum of a drift velocity and a Stratonovich stochastic velocity. The former is obtained from the constrained variational principle and the latter is determined by analysing available data according to the protocol established in [CCH]+19a, CCH+18. The constraints may be introduced either by imposing the advection equations for the relevant physical quantities of the model, or equivalently by imposing the advection equation for the fluid labels.

Recently, in [dLHLT19], the known Euler-Poincaré and Hamilton-Pontryagin stochastic variational principles were reformulated and shown to be equivalent to the Clebsch variant, by proving existence and uniqueness of the solution of the SALT advection constraint. The noise used in the [Hol15] approach also appears in [CGH17], where the decomposition for SALT of the fluid velocity vector field into the sum of a drift velocity and a Stratonovich stochastic velocity was derived by using multi-time homogenisation theory. Many subsequent investigations of the properties of the equations of fluid dynamics with the SALT modification have appeared in the literature over the last four years. In particular, the SALT approach preserves most physical conservation laws by construction, while it also possesses much of the analytical structure of the underlying deterministic model. For example, in [CFH19], the three dimensional SALT Euler equations are shown to have the same local-in-time existence and uniqueness analytical properties as the deterministic version, as well as the same Beale-Kato-Majda [BKM84] criterion for blow-up of solutions. In [GHL17], the Lorenz 63 equations are derived from Rayleigh-Bénard convection with this type of stochasticity and the rate of convergence towards the attractor is shown to be preserved by this type of noise. From a more operational point of view, in [CCH+19a], SALT was introduced into the two dimensional Euler equations and it was shown that the stochastic equations, which are solved on a coarse grid, mimic the deterministic equations, which are solved on a fine grid, for a significant period of time. In [CCH+18], a similar result was established for the flow in a channel of a two layer quasigeostrophic system.

In this paper, we are concerned with consistency of SALT under asymptotic expansion and analysis.
for the simulation of the barotropic mode in ocean dynamics. As mentioned earlier, the barotropic mode in ocean dynamics is the fastest excitation in the free-surface dynamics. It is treated separately (for example, by subcycling) in most 3D simulations of large scale ocean circulation. The issue of the free-surface treatment which motivated the original investigation of the various types of nonlinear wave behaviour in [CH92] is still of current concern.

A motivating question for introducing SALT into nonlinear dispersive water wave theory to be addressed in the present paper is: How can one use available data to quantify the uncertainty due to the barotropic mode in the free-surface treatment for computational simulations? This work is done in preparation for using the data assimilation methods of [CCH+19a, CCH+18] to reduce that uncertainty, e.g., by using satellite data.

As in [CH92], we will combine asymptotic analysis with the vertical averaging principle of [Wu81] to derive a sequence of two dimensional barotropic models. This averaging principle will be applied both on the equations and also on the variational principle. The latter turns out to be advantageous in situations where the Strouhal number (the ratio of the chosen time scale over the natural time scale induced by the length and fluid velocity scales) is not equal to unity. The starting point of these derivations is the three dimensional rotating stratified Euler model, a three dimensional fluid model that includes the effects of rotation and buoyancy stratification. By making assumptions about the buoyancy stratification, we transition into the Euler-Boussinesq model. Here, we apply the averaging principle to derive two dimensional models with nonhydrostatic effects, rotation and stratification. The two dimensional models will be derived with respect to two different time scales: the first time scale is the natural one and the second is the time scale that corresponds to gravity waves. When the time scale is the natural one, the Strouhal number is equal to unity, which means that the asymptotic analysis applied to the equations and the asymptotic analysis applied inside the variational principle lead to the same result at each order in the asymptotic expansion. The assumption that the free surface amplitude is very small leads to the Great Lake, Lake and Benney long wave equations, first derived in [CHL96, CHL97, Ben73], respectively, although in this paper we also include the effects of rotation, stratification and stochasticity. The second scaling regime is where the Strouhal number is equal to the inverse of the Froude number. This scaling regime leads to equations in the Green-Naghdi [GN76] class, if the free surface amplitude is assumed to be small, rather than very small. This derivation was first accomplished in [CH92], where also a Kadomtsev-Petviashvili equation is derived, augmented by the effects of rotation and bathymetry. In the presence of stochasticity, however, this derivation cannot be done directly. As we shall see, in the situation where the Strouhal number is not equal to unity, asymptotic analysis applied to the equations fails to respect the geometric structure of the problem, but the asymptotic analysis of the variational principle does preserve the geometric structure.

In [Hol15], the SALT stochastic fluid vector field is defined as

$$dX_t := u(x, t) dt + \sum_{i=1}^{M} \xi_i(x) \circ dW^i_t.$$

Here $u(x, t)$ is the fluid velocity field, $\xi_i(x)$ are the vector fields that represent spatial velocity-velocity correlations, W^i_t denotes independent, identically distributed Wiener processes for each $i = 1, \ldots, M$, and the symbol \circ means Stratonovich integration. The number of eigenvectors $\xi_i(x)$ required for a given level of accuracy can be determined via the amount of variance required from a principal component analysis, or via empirical orthogonal function analysis. Via data assimilation procedures, in particular via novel high dimensional particle filtering methods, the uncertainty may be controlled and reduced when even a small amount of new data is observed, as shown in [CCH+19a, CCH+18]. As we shall see, the variational approach of SALT used here has the additional advantage of preserving the Kelvin circulation theorem and the Hamiltonian framework, both of which have been fundamental in the history of studying wave-current interaction and now can be made stochastic.

Overview of the paper

The starting point, described in Section 1, will be the introduction of a number of tools that are invaluable for this work. First we will introduce the stochastic Euler-Poincaré variational principle, Kelvin’s circulation theorem and an averaging principle. Then, starting with the rotating, stratified Euler equations, we will assume
that the buoyancy stratification is weak enough to allow us to work with the Euler-Boussinesq equations. This is a justified assumption when the goal is to model the ocean. The flow in wave-current interaction is primarily incompressible, so the models used here will reflect this property. The ocean is shallow, compared to the horizontal distances of interest. In particular, the characteristic height scale is much smaller than the characteristic horizontal scales. This situation allows a reduction in spatial dimension by vertically integrating the Euler-Boussinesq equations, to find the vertical average of the nonlinearity and an unknown vertically averaged pressure. Not surprisingly, these are the two terms which we cannot determine from the averaged equations alone. In order to derive a set of closed equations, we will turn to asymptotic analysis, which we will execute in two different regimes. Within each of those two regimes, we will apply asymptotic analysis in two different ways. In the first regime, called “long time - very small wave scaling”, the time scale is determined by the ratio of the characteristic velocity scale and horizontal length scale, and with very small wave amplitude. The second regime, called the “short time - small wave scaling”, will employ the time scale based on the gravity wave speed and a characteristic horizontal length. The vertical averaging principle of \cite{Wu81} will be applied, both on the 3D equations, and on the corresponding Euler–Poincaré Lagrangian. We will show that in the first regime, the approaches coincide and produce the same equations. In the second regime the asymptotic analysis requires special treatment, as the Strouhal number is not equal to unity in that situation. This difference in Strouhal number means that the material derivative contributes at two different orders in the asymptotic expansion. We shall focus on deriving two dimensional stochastic fluid models in these two difference time-scale regimes, starting from a model for a three dimensional stochastic fluid with rotation and stratification in a shallow box with bathymetry and a free surface.

In Section 2, “the long time - very small wave scaling regime” of the Euler-Boussinesq equations with negligible buoyancy stratification will be derived from asymptotics applied to the equations and to the corresponding Lagrangian. At leading order, this will give rise to the Benney long wave equations, before making the columnar motion assumption. It will produce the stochastic and rotating version of the Lake equations after assuming that the motion is columnar. The Benney equations have an interesting mathematical structure, presented in \cite{Kup06}. From a different perspective, the rotating Lake equations are also obtained after assuming that the rotating shallow water equations have a rigid lid. At the next order we find the stochastic and rotating version of the Great Lake equations \cite{CHL96,CHL97}, which can be interpreted as the rigid lid version of the Green-Naghdi equations. The deterministic versions of the Lake and Great Lake equations are both globally wellposed in time, as shown in \cite{LOT96a,LOT96b}.

In Section 3, “the short time - small wave scaling” of the Euler-Boussinesq equations with non negligible buoyancy will be considered. This is quite different from the previous section in terms of the results of the asymptotics. In this scenario, the Strouhal number is not unity and the asymptotics on the equations provides us with a set of equations that are not closed. The reader may refer to \cite{CH92} for the deterministic derivation and for the relation to the Kadomtsev–Petviashvili equation. The corresponding asymptotic analysis on the Lagrangian does give a closed set of equations, as it results in a buoyant version of the Green–Naghdi equations. As it turns out, a variational derivation of equations for the free surface alone is not available. Hence, the corresponding Boussinesq type water wave equations are not available, unless model assumptions in the variational principle were to be changed. It will be shown that a hierarchy of stochastic Camassa–Holm equations can be derived from this point of view and consequently one can consider the stochastic Korteweg–De Vries equation.

In Section 4 we conclude by discussing a pair of diagrammatic overviews of the results obtained in this paper.

1 Stochastic variational principle and averaging principle

Central to this work is the stochastic Euler-Poincaré variational principle, presented in \cite{dLHLT19}, which is equivalent to the variational principle in \cite{Hol15}. However, the Euler-Poincaré variational principle uses prescribed variations, rather than variations induced by constraints used in \cite{Hol15}. The most general version of the Euler-Poincaré theorem is formulated on the Lie algebra of a semidirect product Lie group and uses the language of differential geometry and representation theory, which first appeared deterministically in \cite{HMR98}. For fluids, the group of interest is the diffeomorphism group, which is the space of differentiable maps whose inverse maps are equally differentiable. The group action is composition of functions. The smooth diffeomor-
phisms are regarded as a Lie group in the sense of [EM70]. In order to state the Euler-Poincaré theorem, we first need to introduce some notation.

Notation. The domain of interest for the paper is a three dimensional box with bathymetry specified by \(h(x, y) \) and a free surface \(\zeta(x, y, t) \), as illustrated in figure 2 below. The domain, which we will call \(\Omega \), is a subset of \(\mathbb{R}^3 \) which is equipped with Cartesian coordinates. As this information is available, we can present the Euler-Poincaré theorem in \(\mathbb{R}^3 \) vector calculus, rather than using the more abstract differential geometric notation.

We shall clearly distinguish between two dimensional and three dimensional objects, by putting a subscript on the three dimensional objects, as follows

\[
x_3 = (x, z), \quad u_3 = (u, w), \quad \nabla_3 = \left(\nabla, \frac{\partial}{\partial z} \right).
\]

(1.1)

Here \(x_3 \) denotes the coordinate system, \(u_3 \) is the fluid vector field and \(\nabla_3 \) is the gradient. The typical horizontal length scale \(L \) is in the order of one hundred kilometres, or more, and the typical depth \(H \) is four kilometres, hence the domain is shallow. The rotation of the planet is included by introducing the vector potential \(\mathbf{R}_3(x_3) = (\mathbf{R}(x), 0) \) for the Coriolis parameter, given by

\[
\nabla_3 \times \mathbf{R}(x) = f(x)\mathbf{\hat{z}},
\]

(1.2)

where \(f(x) \) is the Coriolis parameter and \(\mathbf{\hat{z}} \) is the unit vector in the vertical direction.

![3D Flow Domain](image)

Figure 2: The 3D flow domain, \(\Omega \). The wavy green surface is the free surface \(\zeta(x, y, t) \) and the wavy blue surface is the bathymetry \(h(x, y) \). This figure is not to scale, as the horizontal length scale is much larger than the height scale. In the paper we will assume that \(L_x = L_y = L \).

By \(\mathcal{X}(\Omega) \) we denote the space of vector fields over \(\Omega \) and by \(V^* \) we mean the abstract vector space of advected quantities, which are usually tensor fields of different degrees. In this paper, the elements of \(V^* \) that we will consider are buoyancy \(b \), which is a scalar function, the density \(D \), which is a volume form and later in the two dimensional setting, we will consider the depth \(\eta(x, t) := \zeta(x, t) + h(x) \), which is the volume form in that scenario. The stochastic vector fields which generate the Lagrangian transport in three and two dimensions are given, respectively, below. The stochastic vector field for three dimensional transport is given by

\[
d\chi_{3t} := u_3(x_3, t)dt + \sum_{i=1}^{M} \xi_i(x) \circ dW_i.
\]

(1.3)
The stochastic vector field \mathbf{X}_{3t} in (1.3) is an example of a semimartingale.

Definition 1.1 (Semimartingale). A càdlàg process Y is a semimartingale if it can be written as

$$Y_t = Y_0 + M_t + V_t,$$

where M is a càdlàg local martingale, V is a càdlàg process of finite variation and $M_0 = V_0 = 0$.

The adjective càdlàg stands for right continuous with a limit on the left. The processes we will be considering will have continuous paths almost surely. For more background on stochastic analysis, see e.g. [Sep12]. Semimartingales have several nice properties, such as:

- For a suitably bounded predictable process X and a semimartingale Y, the stochastic integral $\int XdY$ is again a semimartingale.
- For a twice differentiable function f, the quantity $f(Y)$ is again a semimartingale.

One notices that the vectors $\xi_i(x)$ are taken to have only horizontal components. Since we will be taking vertical averages and will require the vertical component of the noise to vanish, here we have made the modelling assumption that the vertical component of ξ_i is zero. One could allow for compactly supported vertical variations whose vertical average vanish, but in this paper *vertical stochastic fluctuations are not being considered*. The two dimensional version of (1.3) is given by

$$d\mathbf{X}_t := u(x,t)dt + \sum_{i=1}^M \xi_i(x) \circ dW^i_t.$$ \hfill (1.4)

Boundary conditions. Having defined these vector fields for fluid transport, we can now specify the boundary conditions for the domain illustrated in figure 2 above. One assumes that the free surface at the top is a Lagrangian surface, and that no fluid penetrates the bottom and vertical walls. Consequently, the following stochastic kinematic boundary conditions hold for the vertical velocity

$$wdt = d\zeta + (d\mathbf{X}_t \cdot \nabla)\zeta \quad \text{at} \quad z = \zeta(x,t), \quad \text{and} \quad wdt = -(d\mathbf{X}_t \cdot \nabla)h \quad \text{at} \quad z = -h(x).$$ \hfill (1.5)

Since the stochastic flow does not penetrate the lateral boundaries, the horizontal velocity is taken to be tangential to the lateral boundaries

$$d\mathbf{X}_t \cdot \mathbf{n} = 0, \quad \text{on any vertical lateral boundary},$$ \hfill (1.6)

where \mathbf{n} is the unit vector normal to the lateral boundaries. Finally, we assume the dynamic boundary condition for the pressure, namely,

$$p = \zeta \quad \text{at} \quad z = \zeta(x,t),$$ \hfill (1.7)

This condition means that at the free surface the pressure is purely hydrostatic. In this formulation, surface tension has been neglected and the ambient pressure has been set to be zero at the surface. The lateral boundary condition is consistent with the incompressibility condition

$$\nabla_3 \cdot d\mathbf{X}_{3t} = 0.$$ \hfill (1.8)

We want to be able to recover the deterministic fluid equations upon removing the stochastic terms in (1.3) and (1.4), each of which is the sum of a deterministic vector and a stochastic vector. That is, the stochastic fluid equations must return to the deterministic fluid equations when the noise term on the transport velocity is switched off. This type of consideration will be repeated as a ‘sanity check’ throughout the paper. For example, this consideration requires that both terms in the transport vector field in (1.3) must be divergence-free,

$$\nabla_3 \cdot u_3 = 0, \quad \text{and} \quad \nabla_3 \cdot \xi_i = 0, \quad \text{for all} \quad i = 1, \ldots, M.$$ \hfill (1.9)

We will assume that the free surface and the pressure are semimartingales.

1.1 Stochastic Euler-Poincaré theorem and averaging

Variational derivatives of functionals.
Definition 1.2 (Functionals and functional derivatives).
A functional $F[\rho]$ is defined as a map $F: \rho \in C^\infty(M) \to \mathbb{R}$.
The variational derivative of a functional $F(\rho)$, denoted $\delta F/\delta \rho$, is defined by
\[
\delta F[\rho] := \lim_{\varepsilon \to 0} \frac{F[\rho + \varepsilon \phi] - F[\rho]}{\varepsilon} \equiv \frac{d}{d\varepsilon} F[\rho + \varepsilon \phi] \bigg|_{\varepsilon=0} = \int_{\Omega} \frac{\delta F}{\delta \rho}(x) \phi(x) \, dx := \left\langle \frac{\delta F}{\delta \rho}, \phi \right\rangle
\]
where $\varepsilon \in \mathbb{R}$ is a real parameter, ϕ is an arbitrary smooth function and the angle brackets $\langle \cdot, \cdot \rangle$ indicate L^2 real symmetric pairing of integrable smooth functions on the flow domain Ω.

Euler–Poincaré theorem. Given the boundary conditions and definitions above, the following form of the Euler–Poincaré theorem with stochastic variations provides the corresponding stochastic equations of motion derived from Hamilton’s principle with a deterministic Lagrangian functional
\[
\frac{\delta F}{\delta \rho} = \phi.
\]
where ϕ is an arbitrary smooth function and the angle brackets $\langle \cdot, \cdot \rangle$ denote the functional derivative $\delta F/\delta \rho$ operationally as
\[
\delta F[\rho] = \left\langle \frac{\delta F}{\delta \rho}, \phi \right\rangle.
\]

Theorem 1.1 (Stochastic Euler–Poincaré equations [Hol15, dLHLT19]).
The following two statements are equivalent:
i) Hamilton’s variational principle in Eulerian coordinates, with $u_3 \in \mathfrak{X}(\Omega)$ and $b,D \in V^*(\Omega),$
\[
\frac{\delta S}{\delta t} := \int_{t_1}^{t_2} \ell(u_3, b, D) \, dt = 0,
\]
holds on $\mathfrak{X}(\Omega) \times V^*$, using variations of the form
\[
\delta u_3 \, dt = dv_3 - [d\chi_{3t}, v_3], \quad \delta b \, dt = -(v_3 \cdot \nabla_3)b \, dt, \quad \delta D \, dt = -\nabla_3 \cdot (Dv_3) \, dt,
\]
where the arbitrary vector field v_3 is a semimartingale.

ii) The stochastic Euler–Poincaré equations hold. These equations are
\[
\frac{d}{dt} \chi_{3t} + (d\chi_{3t} \cdot \nabla_3) \frac{\delta \ell}{\delta u_3} + (\nabla_3 d\chi_{3t}) \cdot \frac{\delta \ell}{\delta u_3} + \frac{\delta \ell}{\delta u_3} (\nabla_3 \cdot d\chi_{3t}) = \frac{\delta \ell}{\delta b} \nabla_3 b \, dt + D\nabla_3 \frac{\delta \ell}{\delta D} \, dt
\]
or, equivalently,
\[
\frac{d}{dt} \chi_{3t} = (\nabla_3 \chi_{3t} \cdot \frac{\delta \ell}{\delta u_3}) + \nabla_3 \left(d\chi_{3t} \cdot \frac{\delta \ell}{\delta u_3} \right) + \frac{\delta \ell}{\delta u_3} \nabla_3 \cdot (d\chi_{3t}) = \frac{\delta \ell}{\delta b} \nabla_3 b \, dt + D\nabla_3 \frac{\delta \ell}{\delta D} \, dt,
\]
with advection equations
\[
db = -d\chi_{3t} \cdot \nabla b \quad \text{and} \quad DD = -\nabla_3 \cdot (Dd\chi_{3t}).
\]

Remark 1.2. The abstract statement of the Euler–Poincaré Theorem 1.1, formulated on general semidirect product Lie groups, is presented in [HMR98] deterministically and in [Hol15, dLHLT19] stochastically.

Remark 1.3. In Theorem 1.1, the operator δ in (1.12) is the functional derivative defined in (1.10), the brackets $[\cdot, \cdot]$ denote the commutator of vector fields defined in (1.11), and $v_3 \in \mathfrak{X}(\Omega)$ is an arbitrary semimartingale vector field in three dimensions which vanishes at the endpoints in time, t_1 and t_2.

Remark 1.4 (Newton’s Law interpretation of Euler–Poincaré equation (1.14)).
One may interpret the stochastic Euler–Poincaré equation (1.14) as the Newton’s law of motion for a stochastic process. That is, the stochastic rate of change of the covector momentum $P := \delta \ell / \delta u_3$ equals the sum of forces on the right hand side of equation (1.14). Of course, when the stochasticity is removed from the vector field in (1.4), equation (1.14) recovers its deterministic version.
Proof. Hamilton’s variational principle implies
\[
0 = \int_{t_1}^{t_2} \left[\left\langle \frac{\delta\ell}{\delta u_3} , \delta u_3 \right\rangle dt \right]_X + \left\langle \frac{\delta\ell}{\delta b} , \delta b dt \right\rangle_{V^*} + \left\langle \frac{\delta\ell}{\delta D} , \delta D dt \right\rangle_{V^*} \\
= \int_{t_1}^{t_2} \left[\left\langle \frac{\delta\ell}{\delta u_3} , d v_3 - [d X_{3t}, v_3] \right\rangle_X + \left\langle \frac{\delta\ell}{\delta b} , - (v_3 \cdot \nabla_3) b dt \right\rangle_{V^*} + \left\langle \frac{\delta\ell}{\delta D} , - \nabla_3 \cdot (D v_3) dt \right\rangle_{V^*} \right]
\]
\[
= \int_{t_1}^{t_2} \left[- \frac{d\ell}{d u_3} - (d X_{3t} \cdot \nabla_3) \frac{\delta\ell}{\delta u_3} - (\nabla_3 d X_{3t}) \cdot \frac{\delta\ell}{\delta u_3} + \frac{\delta\ell}{\delta u_3} (V_3 \cdot d X_{3t}) \right]_X + \left\langle - \frac{\delta\ell}{\delta b} \nabla_3 b dt, v_3 \right\rangle_X + \left\langle D \nabla_3 \frac{\delta\ell}{\delta D} dt, v_3 \right\rangle_X.
\]

The subscripts \(X \) and \(V^* \) on the \(L^2 \) pairings indicate over which space that the pairing is defined. Since the semimartingale \(v_3 \) is arbitrary, except for vanishing at the endpoints \(t_1 \) and \(t_2 \) in time, the following equation holds,
\[
d \frac{\delta\ell}{\delta u_3} + (d X_{3t} \cdot \nabla_3) \frac{\delta\ell}{\delta u_3} + (\nabla_3 d X_{3t}) \cdot \frac{\delta\ell}{\delta u_3} + \frac{\delta\ell}{\delta u_3} (V_3 \cdot d X_{3t}) = - \frac{\delta\ell}{\delta b} \nabla_3 b dt + D \nabla_3 \frac{\delta\ell}{\delta D} dt.
\]

This finishes the proof of the stochastic Euler-Poincaré equation in (1.14). The equivalent form in equation (1.15) follows by means of a standard vector identity.

1.2 Stochastic Kelvin–Noether circulation theorem

A straightforward calculation combining equation (1.14) and the second advection equation in (1.16) proves the following.

Lemma 1.5 (Circulation form of the stochastic Euler-Poincaré equation [Hol15, dLHLT19]). The stochastic Euler-Poincaré equation in (1.14) is equivalent to the following,
\[
d \left(\frac{1}{D} \frac{\delta\ell}{D u_3} \right) + (d X_{3t} \cdot \nabla_3) \left(\frac{1}{D} \frac{\delta\ell}{D u_3} \right) + (\nabla_3 d X_{3t}) \cdot \left(\frac{1}{D} \frac{\delta\ell}{D u_3} \right) = - \frac{1}{D} \frac{\delta\ell}{\delta b} \nabla_3 b dt + \nabla_3 \frac{\delta\ell}{\delta D} dt. \tag{1.17}
\]

One of the main benefits of Theorem 1.1 is that its stochastic Euler-Poincaré equations satisfy the following Kelvin circulation theorem.

Theorem 1.6 (Stochastic Kelvin–Noether circulation theorem [Hol15, dLHLT19]). For an arbitrary loop \(c(t) \) which is advected by the stochastic velocity field \(d X_{3t} \), the following circulation dynamics holds
\[
1 := \oint_{c} \frac{1}{D} \frac{\delta\ell}{D u_3} \cdot dx_3, \quad \text{dl} = - \oint_{c} \left(\frac{1}{D} \frac{\delta\ell}{\delta b} \right) \nabla_3 b \cdot dx_3 dt. \tag{1.18}
\]

Proof. The Kelvin circulation law (1.18) follows from Newton’s law of motion obtained from the stochastic Euler-Poincaré equation (1.17) for the evolution of momentum/mass \(D^{-1} \delta\ell/\delta u_3 \) concentrated on an advecting material loop, \(c(t) = \phi_t c(0) \), where \(\phi_t \) is the stochastic flow map which is generated by the stochastic vector field \(d X_{3t} \) defined in equation (1.3). Upon changing variables to pull back the integrand to its initial position, the stochastic differential can be moved inside and the product rule may be applied. Then by inverting the pull-back we have the following
\[
d \oint_{c} \frac{1}{D} \frac{\delta\ell}{D u_3} \cdot dx_3 = \oint_{c} (d + d X_{3t} \cdot \nabla_3 + (\nabla_3 d X_{3t})) \left(\frac{1}{D} \frac{\delta\ell}{D u_3} \right) \cdot dx_3
\]
\[
= - \oint_{c} \frac{1}{D} \frac{\delta\ell}{\delta b} \nabla_3 b dt \cdot dx_3 + \oint_{c} \nabla_3 \frac{\delta\ell}{\delta D} dt \cdot dx_3
\]
\[
= - \oint_{c} \left(\frac{1}{D} \frac{\delta\ell}{\delta b} \right) \nabla_3 b \cdot dx_3 dt.
\]

In the second line we have used the Euler-Poincaré equation (1.14) and the advection equation for the density. The last step applies the fundamental theorem of calculus to show vanishing of the last loop integral in the second line. For the corresponding proof in the deterministic case, see [HMR98]. For detailed discussion of pull-back by stochastic flow maps, see [dLHLT19].
Corollary 1.6.1 (Generation of circulation, I).

By Stokes Law, equation (1.19) in the stochastic Kelvin–Noether circulation theorem 1.6 implies

\[\widehat{dI} = -\int_{\partial S(c(w))} \nabla_3 \left(\frac{1}{D} \frac{\delta \ell}{\delta b} \right) \times \nabla_3 b \cdot dS_3 \, dt. \]

(1.19)

Therefore, circulation is created by misalignment of the gradients of buoyancy \(b \) and its dual quantity \(D^{-1} \delta \ell / \delta b \).

Remark 1.7 (A mechanism for cyclogenesis). Formula (1.19) expresses the mechanism for generation of circulation (i.e., convection) driven by misalignment of certain potential gradients with gradients of scalar advected fluid quantities such as the buoyancy, \(b \). In particular, formula (1.19) is the fundamental mechanism for generation of circulation or convection by wave-current interaction in stratified fluids. For the vertically averaged stratified fluid models treated later in the present paper, this formula will express a barotropic mechanism for generation of horizontal circulation by misalignment of horizontal gradients of certain barotropic fluid quantities (such as wave elevation or bottom topography) with the horizontal gradient of vertically averaged buoyancy.

In three dimensional stochastic fluid dynamics, the Lagrangian in the Euler-Poincaré theorem is a functional defined over the volume of flow which, as we will discuss below, involves the kinetic energy density of the fluid relative to the rotating frame and the potential energy density. Our aims in the remainder of the paper are to combine asymptotic expansions and vertical averaging with the stochastic Euler-Poincaré variational theorem to formulate a new approach for developing stochastic parametrisation methods. To achieve these aims, we will apply asymptotic expansions in a vertically averaged (barotropic) stochastic Euler-Poincaré variational principle. For this purpose, we will apply asymptotic expansions to the nondimensionalised Lagrangian for 3D incompressible fluids of a stratified and rotating Euler fluid, then evaluate the vertical integral at an appropriate order in the expansion and finally use the Euler-Poincaré theorem to derive the equations of motion and advection we seek. We will then analyse and discuss their solution properties from the viewpoints of Newton’s laws of motion and the Kelvin–Noether circulation theorem. We will also discuss the conservation laws for these equations.

1.3 Nondimensionalising the Lagrangian

The Lagrangian, in dimensional form, of the rotating, stratified Euler equations (rsE) is given by

\[\ell_{rsE}(u, b, \zeta, c) := \int_{\Omega} \rho_0 D(1 + b) \left(\frac{1}{2} |u|^2 + \frac{1}{2} |b|^2 + u \cdot R - gz \right) \, dx \, dy \, dz. \]

(1.20)

Here, \(\rho_0 \) represents the reference density and \(g \) represents gravity. The ocean has quite a few small dimensionless numbers which can used to simplify the rsE Lagrangian and will allow one to access a hierarchy of simplified models. In particular, we want to derive the Lagrangian for the Euler-Boussinesq equations, which requires assumptions on the smallness of buoyancy, in terms of the Rossby number. To derive the equations of motion associated to the Lagrangian, we introduce the following action

\[S_{rsE} = \int_{t_1}^{t_2} \ell_{rsE} \, dt - \langle dp, D - 1 \rangle =: \int_{t_1}^{t_2} c \ell_{rsE}, \]

(1.21)

where \(dp \) is the Lagrange multiplier that enforces the density ratio \(D \) to be equal to one, the times \(0 \leq t_1 \leq t_2 \) are arbitrary, and the angle brackets refer to the \(L^2 \) pairing over the domain \(\Omega \). The notation \(c \ell_{rsE} \) refers to constrained Lagrangian and is introduced to keep the notation similar to the stochastic Euler-Poincaré theorem 1.1. This constraint implies incompressibility. The treatment of the stochastic pressure is explained in the following remark.

Remark 1.8 (Semimartingale pressure). At this point one recognises a departure from the stochastic Euler-Poincaré equations without constraints derived in the Euler–Poincaré theorem 1.1. Namely, we have written the Lagrange multiplier \(dp \) which imposes the constraint \(D - 1 = 0 \). The notation stresses that \(dp \) is imposing a constraint that is stochastic. Now, setting \(D = 1 \) in the advection equation for \(D \) by the stochastic vector field \(dX_{3t} \) implies that \(\nabla_3 \cdot (dX_{3t}) = 0 \). Following the discussion leading to (1.9), this in turn must also imply \(\nabla_3 \cdot u_3 = 0 \). By its definition in (1.4), the quantity \(X_{3t} \) is a semimartingale. Therefore, accounting for both the deterministic and stochastic parts of the motion equation in (1.29) will require that the pressure \(dp \) must also be a semimartingale, hence the notation. The point is that the semimartingale \(D \) cannot be enforced to
be a constant by a deterministic Lagrange multiplier. The Lagrange multiplier must also be obtained from a semimartingale equation. In the present case, this can be accomplished by acknowledging that the pressure is a semimartingale and writing its contribution in the motion equation as \(dp \), in a notation which implies a sum of both Lebesque and stochastic time integrations. Then, upon imposing the consequence of \(D = 1 \) in the form \(\text{div}\, \mathbf{u} = 0 \) we find a semimartingale Poisson equation for \(dp \) which encompasses both the deterministic and stochastic parts of the constrained motion equation. Finally, the time integration of the solution of the Poisson equation for \(dp \) determines the semimartingale \(p \). See, for example, the discussions after equation (2.40) and after equation (3.5).

The nondimensional versions of all the relevant variables and parameters are given below,

\[
\begin{align*}
\mathbf{x}_3 &= L(x', \sigma z'), \quad \mathbf{u}_3 = U(u', \sigma w'), \quad \nabla_3 = \frac{1}{L} \left(\nabla' \frac{1}{\sigma} \frac{\partial}{\partial z} \right), \quad t = T t', \quad W_t = \frac{1}{\sqrt{T}} W_t', \\
h &= H h', \quad \zeta = \alpha H' \zeta', \quad \mathbf{R} = f_0 L \mathbf{R}', \quad \rho = \rho_0 \rho', \quad dp = \rho_0 g H dp', \\
\sigma &= \frac{H}{L}, \quad \alpha = \frac{\zeta_0}{H}, \quad \beta = \frac{U}{\sqrt{gH}}, \quad \text{Ro} = \frac{U}{f_0 L}, \quad \text{Sr} = \frac{L}{UT}.
\end{align*}
\]

Here \(L \) denotes the horizontal scale, \(H \) is the vertical scale, \(U \) is the typical horizontal velocity, \(f_0 \) is the rotation frequency, \(\zeta_0 \) is the typical free surface amplitude and \(T \) is the time scale. The dimensionless numbers in the bottom row are, respectively, the aspect ratio \(\sigma \), the wave amplitude \(\alpha \), the Froude number \(\beta \), the Rossby number \(\text{Ro} \) and the Strouhal number \(\text{Sr} \). Note that we have also scaled the Wiener process so that in the nondimensional setting, the noise is again a standard Wiener process. The dimensionless factor that arises can be absorbed into the \(\xi_i \) for each \(i \). The nondimensional rsE Lagrangian is obtained by substituting (1.22) into (1.20) and dropping the primes, which yields

\[
\ell_{rsE}(\mathbf{u}_3, b, D) = \int_\Omega D(1 + b) \left(\frac{\beta^2}{2} u'^2 + \frac{\beta^2 \sigma^2}{2} w'^2 + \frac{\beta^2}{\text{Ro}} \mathbf{u} \cdot \mathbf{R} - z \right) \, dx \, dy \, dz.
\]

(1.23)

In the ocean, the horizontal scale \(L \) is of the order of hundreds of kilometres, whereas the vertical scale \(H \) is typically about four kilometres. The free surface amplitude is five metres and the horizontal velocity is about a tenth of a metre per second. Hence the aspect ratio \(\sigma \ll 1 \), the wave amplitude \(\alpha \ll 1 \) and the Froude number \(\text{Fr} \ll 1 \). The Rossby number at these scales is also small, \(\text{Ro} \ll 1 \). Also, the buoyancy stratification is weak. Assuming that \(b = O(\beta) \), meaning that the buoyancy is of the order of the Froude number, allows us to simplify the rsE Lagrangian. The result of this assumption is that the only term that notices the effect of buoyancy is the potential energy term. Dropping terms of order \(O(\beta^3) \) yields the Euler-Boussinesq (EB) Lagrangian, given by

\[
\ell_{EB}(\mathbf{u}_3, b, D) = \int_\Omega D \left(\frac{\beta^2}{2} u'^2 + \frac{\beta^2 \sigma^2}{2} w'^2 + \frac{\beta^2}{\text{Ro}} \mathbf{u} \cdot \mathbf{R} - (1 + b)z \right) \, dx \, dy \, dz.
\]

(1.24)

The Euler-Boussinesq equations are obtained by applying the Euler-Poincaré theorem to the action obtained by taking the Lagrangian in (1.24) with the pressure constraint, as in (1.21). The action for the EB equations is then given by

\[
S_{EB} = \int_{t_1}^{t_2} \ell_{EB} \, dt - \langle dp, D - 1 \rangle = \int_{t_1}^{t_2} \delta \ell_{EB}.
\]

(1.25)

Besides the small buoyancy assumption, we will also assume that the variations of the Coriolis parameter and the bathymetry profile are small, of order \(O(\text{Ro}) \),

\[
f(x) = 1 + \text{Ro} f_1(x), \quad h(x) = 1 + \text{Ro} h_1(x).
\]

(1.26)

These assumptions are made because they are consistent with the assumptions for the quasigeostrophic model. In particular, the condition on the smallness of the variations in the bathymetry profile will be necessary in working with stochastic boundary conditions on the vertical velocity. The Lagrangian of interest in (1.24) is in dimensionless form, but the constraints in theorem 1.1 are still dimensional. Since \(v_3 \) is arbitrary, multiplying it by some constant does not change its arbitrary nature. Hence, besides the \(\delta \mathbf{u}_3 \) constraint, nothing changes upon nondimensionalisation. As said earlier, the \(\delta \mathbf{u}_3 \) variational constraint does change, as follows,

\[
\delta \mathbf{u}_3 \, dt = \text{Sr} \, d\mathbf{v}_3 - [d\mathbf{x}_3, \mathbf{v}_3].
\]

(1.27)
The rsE and EB Lagrangians do not feature time explicitly anywhere. Thus, the Strouhal number has not appeared before; but time rescaling has a significant impact on the behaviour of the model. In (1.27) one can see that if the Strouhal number is not unity, advection will no longer be balanced. This observation will be crucial later, when we look at the short time limit. So far, we have obtained a theorem which, given a certain deterministic Lagrangian for three-dimensional fluids, provides us with the corresponding stochastic equations. By explicitly evaluating the vertical integral, when possible, in that theorem, we have a systematic way to obtain the vertically averaged version of the three dimensional fluid equations of interest. We also have introduced a general nondimensionalisation and identified the scales in the problem which determine the small dimensionless numbers in the ocean. Now, an application of theorem 1.1 to the EB Lagrangian (1.25), with variations given by
\[
\frac{\delta c_{\lambda}E_{B}}{\delta u} = \beta^{2}D \left(u + \frac{1}{\Ro} \mathbf{R} \right),
\]
\[
\frac{\delta c_{\lambda}E_{B}}{\delta w} = \beta^{2}\sigma^{2}Dw,
\]
\[
\frac{\delta c_{\lambda}E_{B}}{\delta D} = \frac{\beta^{2}}{2}|u|^{2} + \frac{\beta^{2}}{2}\sigma^{2}w^{2} + \frac{\beta^{2}}{\Ro}u \cdot \mathbf{R} - (1 + b)z - dp,
\]
\[
\frac{\delta c_{\lambda}E_{B}}{\delta b} = Dz,
\]
\[
\frac{\delta c_{\lambda}E_{B}}{\delta p} = D - 1.
\]
implies the following stochastic Euler-Poincaré equations in circulation form (see lemma 1.5)
\[
\Sr \beta^{2}du + \beta^{2}(d\mathbf{x}_{3} \cdot \nabla_{3})u + \beta^{2}(\nabla \xi_{i}) \cdot u \circ dW_{i} = -\nabla dp - \frac{\beta^{2}}{\Ro}f\mathbf{z} \times d\mathbf{x}_{t} - \frac{\beta^{2}}{\Ro}\nabla(\xi_{i} \cdot \mathbf{R}) \circ dW_{i},
\]
\[
\Sr \beta^{2}\sigma^{2}dw + \beta^{2}\sigma^{2}(d\mathbf{x}_{3} \cdot \nabla_{3})w = -\frac{\partial}{\partial z}dp + (1 + b)dt,
\]
\[
\Sr db + (d\mathbf{x}_{3} \cdot \nabla_{3})b = 0,
\]
\[
\nabla_{3} \cdot (d\mathbf{x}_{3}) = 0.
\]
Note: we will henceforth drop the summation symbol and use Einstein’s convention of summing repeated indices over their range. The Euler-Boussinesq equations satisfy the following Kelvin circulation theorem, for any closed loop \(c(d\mathbf{x}_{3})\) which is advected with the stochastic velocity \(d\mathbf{x}_{3}\) in equation (1.3),
\[
\Sr \oint_{c(d\mathbf{x}_{3})} \left((u, \sigma^{2}w) + \frac{1}{\Ro} (\mathbf{R}, 0) \right) \cdot d\mathbf{x}_{3} = -\frac{1}{\beta^{2}} \oint_{c(d\mathbf{x}_{3})} \mathbf{z} \cdot \nabla_{3}b \cdot d\mathbf{x}_{3}dt - \frac{1}{\beta^{2}} \int_{\partial S = c(d\mathbf{x}_{3})} \mathbf{z} \times \nabla_{3}b \cdot dSdt,
\]
where the notation \((u, \sigma^{2}w)\) denotes a three dimensional vector field, two horizontal components from \(u\) and the vertical component \(\sigma^{2}w\). As \(\mathbf{R}\) is strictly horizontal, the vertical component is zero. Hence the misalignment of the unit vector in the vertical direction and the gradient of buoyancy creates vertical circulation, or convection.

Additionally, the Euler-Boussinesq equations satisfy the Silberstein-Ertel theorem for potential vorticity. This theorem states that the potential vorticity, defined by
\[
q := \nabla_{3}b \cdot \nabla_{3} \times \left((u, \sigma^{2}w) + \frac{1}{\Ro} (\mathbf{R}, 0) \right),
\]
is conserved along particle trajectories and thus satisfies the following equation
\[
\Sr dq + (d\mathbf{x}_{3} \cdot \nabla_{3})q = 0.
\]
Since the buoyancy and the potential vorticity are constant along particle trajectories, the spatially integrated quantity,
\[
C_{\phi} = \int_{\Omega} \Phi(b, q) \, dx \, dy \, dz,
\]
is also preserved in time for any differentiable function, \(\Phi\), for which the integral exists. The proof is analogous to the deterministic case, which is shown in [HMR98, HMR99]. A special case of this statement is the preservation of the enstrophy, which is defined as the \(L^{2}\) norm of the potential vorticity. This shows that the Euler-Boussinesq
equations, even in the presence of SALT, have an infinite number of conservation laws. This structure must also be preserved by the vertical averaging. The spatially integrated quantities C_Φ are also referred to as Casimirs, as they are the functions whose Lie–Poisson bracket corresponding to the Euler-Boussinesq equations vanishes for any Hamiltonian expressed in the Eulerian fluid variables.

1.4 Averaging of Newton’s second law

Besides evaluating the vertical integral in the variational principle, one can also choose to use Newton’s second law to derive the equations of fluid motion in this domain, rather than using the Euler-Poincaré theorem. By means of the method of control volumes, it is possible to derive the equations and also come up with an averaging principle. This is what is shown in [Wu81] for the deterministic case. The stochastic case is not that different, but there is one issue that requires careful treatment: there is an additional advection term. Let us denote the vertical average by putting a bar over the relevant quantity

$$\bar{f} := \frac{1}{\eta} \int_{-h}^{\zeta} f dz. \tag{1.34}$$

For incompressible flows, the advection equation for a scalar and the continuity equation for a density can be written in the same form. That is, the average of a scalar function $f(x_3, t)$ and that of a volume form $f(x_3, t)d^3x$, for incompressible flows, are of the same form,

$$Sr d \int_{-h}^{\zeta} f(x_3, t)dz + \nabla \cdot \int_{-h}^{\zeta} f(x_3, t)d\chi dz = 0. \tag{1.35}$$

In the deterministic case, it is possible to substitute in the fluid velocity for f in (1.35) and obtain the vertically averaged momentum equation after applying (1.34). The formula above holds for scalars and densities, but fluid velocity is neither. However, the fluid velocity equation obtained in this way is correct, but only in the deterministic case. The explanation for this coincidence is the following. In the deterministic setting, the advective terms in the equation for the fluid velocity for incompressible fluids are $(u \cdot \nabla)\mathbf{u} + (\nabla \mathbf{u}) \cdot \mathbf{u}$. The latter term is equal to the gradient of the kinetic energy, so a cancellation occurs in Newton’s second law. When SALT is introduced in this problem, the kinetic energy is the same as in the deterministic situation, but the advective terms are now stochastic, hence this cancellation no longer occurs.

Applying (1.34) and (1.35) to the Euler-Boussinesq equations (1.29) yields the following vertically averaged nonlinear equations,

$$Sr \beta^2 d(\eta \mathbf{u}) + \beta^2 \nabla \cdot (\eta \mathbf{u} \otimes \mathbf{u}) + \beta^2 \eta (\nabla(\xi_i) \cdot \mathbf{u}) dW_i = -\eta \nabla \rho + \frac{\beta^2}{Ro} \eta f \hat{z} \times \mathbf{d} \chi t - \frac{\beta^2}{Ro} \eta \nabla(\xi_i \cdot \mathbf{R}) \circ dW_i,$$

$$Sr d(\eta \mathbf{u}) + \nabla \cdot (\eta \mathbf{u} d\chi) = 0,$$

$$Sr d\eta + \nabla \cdot (\eta d\chi) = 0. \tag{1.36}$$

The last equation is obtained by substituting unity into (1.35). It corresponds to conservation of volume in the two dimensional setting. As the problem is incompressible, the vertical velocity can be expressed in terms of the horizontal velocity field, as follows,

$$w(x, z) = -\nabla \cdot \int_{-h}^{z} u(x, z')dz' = \nabla \cdot \int_{z}^{\zeta} u(x, z')dz'. \tag{1.37}$$

This expression has been derived by vertically integrating the three dimensional incompressibility condition (1.8) and using the boundary conditions on the vertical velocity to pull the divergence outside of the integral. When the boundary conditions are stochastic, as in (1.5), the latter step requires the gradient of the bathymetry to be small, which is satisfied by assuming (1.26). This step also requires the free surface amplitude to be small, which is satisfied by the small wave limit and by the very small wave limit. If one does not make these assumptions, it is not possible to determine an expression for the vertical velocity. In fact, one can only determine an expression for the time integral of the vertical velocity. However, we need more information in our approach. Alternatively, one could assume that the vector fields ξ_i are small in amplitude, which is an assumption we do not want to make since it puts restrictions on the data one is allowed to use to calibrate the ξ_i. Even though the Newtonian averaging approach is very insightful, there is a drawback. The averaged equations (1.36) contain three terms.
which are unknown. In the momentum equation, the average of the nonlinear term and the average of the pressure are unknown. In the buoyancy equation, the advection term is unknown. In order to close this set of equation, we will use asymptotic analysis, which we shall employ in two different scaling regimes.

2 Long time - very small wave scaling regime

Long time corresponds to choosing the time scale to be $T = L/U$ and very small wave means that the amplitude of the wave and the pressure are both scaled by a factor of β^2. In this setting we therefore have

$$
\begin{align*}
\mathbf{x}_3 &= H\left(\frac{1}{\sigma} \mathbf{x}', z'\right), \\
\mathbf{u}_3 &= \beta \sqrt{gH}(\mathbf{u}', \sigma \mathbf{w}'), \\
\nabla_3 &= \frac{1}{L} \left(\nabla', \frac{1}{\sigma} \frac{\partial}{\partial z} \right), \\
h &= Hh', \\
\zeta &= \beta^2 H \zeta', \\
\mathbf{R} &= f_0 L \mathbf{R}', \\
\rho &= \rho_0 \rho', \\
dp &= \beta^2 \rho_0 g H dp', \\
\sigma &= \frac{H}{L}, \\
\alpha &= \beta^2, \\
\beta &= \frac{U}{\sqrt{gH}}, \\
Ro &= \frac{U}{f_0 L}, \\
Sr &= 1.
\end{align*}
$$

With these scaling relations, the constrained EB Lagrangian in equation (1.25) takes the following form

$$
S_{EB}(\mathbf{u}_3, b, D) = \int_{t_1}^{t_2} \int_{\Omega} D \left(\frac{1}{2} ||\mathbf{u}'||^2 + \frac{1}{2} w'^2 + \frac{1}{2} \left(\mathbf{u} \cdot \mathbf{R} - (1 + b) z\right) \right) dx \, dy \, dz \, dt - \langle dp, D - 1 \rangle,
$$

(2.2)

Note that no information about the very small free surface amplitude appears in the Lagrangian; it only contains the aspect ratio, which controls the size of the vertical kinetic energy. However, information about the size of the free surface amplitude does appear in the boundary conditions, which are

$$
\begin{align*}
p &= \zeta \\
wdt &= \beta^2 \left(d\zeta + \left(\mathbf{d}_{\mathbf{x}_t} \cdot \nabla\right) \zeta \right) \\
wdt &= - \left(\mathbf{d}_{\mathbf{x}_t} \cdot \nabla\right) h \\
\mathbf{d}_{\mathbf{x}_t} \cdot \mathbf{n} &= 0
\end{align*}
$$

(2.3)

An application of the stochastic Euler-Poincaré Theorem 1.1 on the long time scale Lagrangian in (2.2) now yields the following equations

$$
\begin{align*}
\mathbf{d}u + \left(\mathbf{d}_{\mathbf{x}_t} \cdot \nabla\right) \mathbf{u} + w \frac{\partial}{\partial z} u dt + (\nabla \mathbf{x}_i) \cdot \mathbf{u} \, dW_i &= - \nabla dp - \frac{1}{Ro} f \times \mathbf{d}_{\mathbf{x}_t} - \frac{1}{Ro} \nabla (\xi_i \cdot \mathbf{R}) \circ dW_i, \\
\frac{1}{\sigma^2} \left(d\mathbf{w} + \left(\mathbf{d}_{\mathbf{x}_t} \cdot \nabla\right) w + w \frac{\partial}{\partial z} w dt \right) &= - \frac{\partial}{\partial z} dp - (1 + b) dt, \\
\nabla \cdot \mathbf{u} + \frac{\partial}{\partial z} w &= 0, \\
\nabla \cdot \xi &= 0.
\end{align*}
$$

(2.4)

The last two equations in (2.4) imply the incompressibility of the stochastic vector field $\mathbf{d}_{\mathbf{x}_3}$. The reason that the last two equations are written separately is that upon removing the noise, we want to recover the deterministic equations. The equations in (2.4) satisfy the Kelvin circulation theorem as in (1.30), and have conservation of potential vorticity along particle trajectories as in (1.32). These equations also conserve an infinity of integral quantities as in (1.33). In the long-time scaling in (2.1) the Strouhal number is equal to one. In this scaling regime, the equations take a particularly nice form. The dimensionless numbers of interest are the aspect ratio σ and the Froude number β, the Rossby number Ro shall be left untouched. In particular, we consider $\beta \ll \sigma \ll 1$, where we let the Froude number tend to zero while holding the aspect ratio fixed.

The effect of sending the Froude number to zero is the *rigid lid approximation*, where the free surface is no longer allowed to vary and becomes a rigid boundary, instead. This removes gravity waves from the problem. However, the leading order dynamics can still be recovered from the dynamic boundary condition on
the pressure. The effect of sending $\beta \to 0$ before touching the aspect ratio is that one can derive equations that include the nonhydrostatic effect due to the vertical velocity. The corresponding equations are the so-called Great Lake equations, first derived in [CHL96, CHL97]. Taking $\sigma \to 0$ after the low Froude number limit leads to the Lake equations. If one takes $\sigma \ll \beta \ll 1$, the result is the same, but the route is slightly different. Upon sending $\sigma \to 0$, the vertical component in the Lagrangian (2.2) vanishes and upon assuming columnar motion, one can integrate the Lagrangian vertically. This leads to the Lagrangian for rotating shallow water. Sending $\beta \to 0$ corresponds to putting a rigid lid on top of the rotating shallow water equations and this leads to the Lake equations. Upon taking $\beta \to 0$ while keeping σ fixed, the equations (2.4) do not change, but the boundary conditions in (2.3) do:

\[
\begin{align*}
 p &= \zeta & \text{at } z = 0, \\
 wdt &= 0 & \text{at } z = 0, \\
 wdt &= -(\langle d\chi_t \cdot \nabla \rangle)h & \text{at } z = -h(x), \\
 d\chi_t \cdot n &= 0 & \text{on lateral boundaries}.
\end{align*}
\]

In the limit $\beta \to 0$, the depth $\eta = h$, as the contribution of the free surface vanishes. Also, the expression for the vertical velocity simplifies, as the free surface contribution vanishes, and takes the form

\[
w = \int_0^h \nabla \cdot udz'.
\]

The horizontal divergence can be taken inside the vertical integral at no cost, so this form is favourable over the other one in (1.37). Averaging with the Newtonian approach leads to the following vertically averaged versions of the equations (2.4),

\[
\begin{align*}
 d\mathbf{u} + \frac{1}{h} \nabla \cdot (h d\mathbf{X}_t \otimes \mathbf{u}) + (\nabla \xi_i) \cdot \mathbf{u} dW_t^i &= -\nabla dp + \frac{1}{Ro} f z \times d\mathbf{X}_t - \frac{1}{Ro} \nabla (\xi_i \cdot \mathbf{R}) dW_t^i, \\
 d\hat{\mathbf{b}} + \nabla \cdot (h d\mathbf{X}_t) &= 0,
\end{align*}
\]

and

\[
\nabla \cdot (h d\mathbf{X}_t) = 0.
\]

The continuity equation has become a weighted incompressibility condition (2.8), where the weight is determined by the bathymetry profile. As in the discussion above about the incompressibility condition (1.9), the weighted incompressibility must hold for the velocity field and the ξ_i independently. If the bathymetry is flat, one finds the two-dimensional incompressibility condition. However, the momentum equation and the buoyancy equation above still suffer from the problem that terms are present which we, as yet, have not determined.

2.1 Leading order expansion in the long time – very small wave scaling regime

As an initial approach, let us assume a leading order expansion in σ^2. Even though the Rossby number is small as well, we will consider a single scale expansion in σ^2 for the variables:

\[
\begin{align*}
 \mathbf{u} &= \mathbf{u}_0 + o(1), & w &= w_0 + o(1), & \xi_i &= \xi_{0,i} + o(1), & \\
 d\mathbf{X}_t &= d\mathbf{X}_{0,t} + o(1), & dp &= dp_0 + o(1), & \zeta &= \zeta_0 + o(1), \\
 b &= 0 + o(1).
\end{align*}
\]

In order to make the approximation from rsE to EB, the buoyancy was required to be small. This means the buoyancy does not contribute in the leading order expansion. Upon substituting (2.9) into (2.4), the vertical velocity equation at leading order implies hydrostatic balance

\[
\frac{\partial}{\partial z} dp_0 + 1 dt = 0,
\]

and the dynamic boundary condition (1.7) implies that the leading order pressure is equal to the leading order free surface elevation.

Remark 2.1. Note that there is no stochasticity entering (2.10) explicitly. Due to the assumption of the pressure being a semimartingale, the pressure has the standard semimartingale decomposition. When there is no stochasticity equation, the martingale part of the pressure must vanish and we have the expression $dp_0 = p_0 dt$ with a slight abuse of notation.
Interestingly, the substitution of the leading order expansion leads to a closed model even before averaging, when one uses the expression (1.37) for the vertical velocity as an additional equation. Given the boundary conditions in (2.5), the leading order expansion leads to a set of equations reminiscent of the Benney long wave model. There are a few twists, though, since stochasticity and rotation are also involved. Moreover, the low Froude number limit damps the free surface. At leading order, there cannot be any confusion as to which order of the expansion we are considering. Consequently, we may drop the subscript o in writing the following set of equations,

$$
\begin{align*}
\mathbf{d}u + \left(d\chi_t \cdot \nabla \right) \mathbf{u} + w \frac{\partial}{\partial z} u dt + (\nabla \xi_i) \cdot \mathbf{u} \circ dW^i_t &= -\nabla dp - \frac{1}{\text{Ro}} \int_0^1 \hat{z} \times d\chi_t - \frac{1}{\text{Ro}} \nabla (\xi_i \cdot \mathbf{R}) \circ dW^i_t,
\end{align*}
$$

\(2.11\)

Together with the weighted incompressibility condition in (2.8), the dynamic boundary condition on the pressure (1.7) and the lateral boundary condition (1.6), the Benney-like equations (2.11) form a closed set. The Benney long wave equations are interesting because they have a very rich mathematical structure, including an infinite hierarchy of conservation laws, as shown in [Kup06]. If we now make the additional assumption that the leading order component of the horizontal velocity field is independent of the vertical coordinate; that is, if we assume that the leading order component is columnar, then a considerable simplification of (2.11) occurs. Namely, the derivative in the vertical direction drops out. Consequently, it is no longer necessary to determine the vertical velocity and now every term in the equation is horizontal. This set of equations we will refer to as the stochastic, rotating, Lake equations, given by

$$
\begin{align*}
\mathbf{d}u + \left(d\chi_t \cdot \nabla \right) \mathbf{u} + (\nabla \xi_i) \cdot \mathbf{u} \circ dW^i_t &= -\nabla \xi_i - \frac{1}{\text{Ro}} \int_0^1 \hat{z} \times d\chi_t - \frac{1}{\text{Ro}} \nabla (\xi_i \cdot \mathbf{R}) \circ dW^i_t,
\end{align*}
$$

\(2.12\)

accompanied by the weighted incompressibility condition in (2.8) and the lateral boundary condition (1.6). The dynamic boundary condition can now be used to determine the pressure at the free surface. The deterministic, irrotational version of these equations has been shown by [LOT96a, LOT96b, LO97] to be globally wellposed. These equations satisfy a Kelvin circulation theorem, namely

$$
\begin{align*}
\underbrace{d \oint_{c(\chi_t)} (\mathbf{u} + \frac{1}{\text{Ro}} \mathbf{R}) \cdot \mathbf{d}x} = 0,
\end{align*}
$$

\(2.13\)

where $c(\chi_t)$ is any fluid loop that is advected by the stochastic vector field $d\chi_t$. This means that circulation is conserved, as there are no terms on the right hand side to generate circulation. Hence the enstrophy in this model is conserved as well.

2.2 Higher order expansion in the long time – very small wave scaling regime

Let us now consider a higher order perturbation expansion:

$$
\begin{align*}
\mathbf{u} &= \mathbf{u}_0 + \sigma^2 \mathbf{u}_1 + o(\sigma^2),
\mathbf{d}\chi_t &= \mathbf{d}\chi_{0,t} + \sigma^2 \mathbf{d}\chi_{1,t} + o(\sigma^2),
\mathbf{d}\chi_{0,t} &= \mathbf{d}\chi_{0,0,t} + \sigma^2 \mathbf{d}\chi_{0,1,t} + o(\sigma^2),
\mathbf{d}\chi_{1,t} &= \mathbf{d}\chi_{1,0,t} + \sigma^2 \mathbf{d}\chi_{1,1,t} + o(\sigma^2),
\mathbf{dp} &= \mathbf{dp}_0 + \sigma^2 \mathbf{dp}_1 + o(\sigma^2),
\mathbf{dp}_0 &= \mathbf{dp}_{0,0} + \sigma^2 \mathbf{dp}_{0,1} + o(\sigma^2),
\mathbf{dp}_1 &= \mathbf{dp}_{1,0} + \sigma^2 \mathbf{dp}_{1,1} + o(\sigma^2),
\end{align*}
$$

\(2.14\)

It is natural to assume that the leading order terms satisfy the Lake equations (2.12). Hence at leading order in the vertical velocity equation, we have hydrostatic balance (2.10) and in the horizontal component we have columnar motion. At the next order, we substitute (1.37) for the vertical velocity and obtain

$$
\begin{align*}
\frac{\partial}{\partial z} \mathbf{dp}_1 + b_1 dt = z (d\nabla \cdot \mathbf{u}_0 + (d\chi_{0,1,t} \cdot \nabla) (\nabla \cdot \mathbf{u}_0) - (\nabla \cdot \mathbf{u}_0)^2 dt).
\end{align*}
$$

\(2.15\)

On the right hand side, everything in the brackets is independent of the vertical coordinate, so integration is particularly simple and leads to

$$
\begin{align*}
\mathbf{dp}_1 = \mathbf{dp}_1 - b_1 z dt + \frac{1}{2} z^2 (d\nabla \cdot \mathbf{u}_0 + (d\chi_{0,1,t} \cdot \nabla) (\nabla \cdot \mathbf{u}_0) - (\nabla \cdot \mathbf{u}_0)^2 dt).
\end{align*}
$$

\(2.16\)

This shows that the pressure deviates from hydrostatic balance at order σ^2, as the pressure is a function of free surface elevation, buoyancy and horizontal velocity. The vertical average of the horizontal gradient of the
The Kelvin circulation theorem for the stochastic, rotating, stratified Great Lake equations is given by

\[
\frac{d}{dt} \nabla p_1 = \nabla d\zeta + \frac{1}{2} h \nabla b_1 dt + \frac{1}{6} h^2 (d \nabla \cdot u_0 + (d \chi_{0,t} \cdot \nabla)(\nabla \nabla \cdot u_0) + (\nabla d \chi_{0,t}) \cdot (\nabla \nabla \cdot u_0) - 2(\nabla \cdot u_0)(\nabla \nabla \cdot u_0)) dt. \tag{2.17}
\]

By using the weighted incompressibility, the expression above can be simplified. Also bringing in assumption (1.26) leads to

\[
\frac{d}{dt} \nabla p_1 = \nabla d\zeta + \frac{1}{2} h \nabla b_1 dt + \left(d + (d \chi_{0,t} \cdot \nabla) \right) \left(\frac{1}{6} h^2 (\nabla \nabla \cdot u_0) \right) + O(\text{Ro}). \tag{2.18}
\]

The following observation allows us to deal with the average of the nonlinear term. Namely, if the leading order terms satisfy the stochastic, rotating Lake equations (2.12), then the leading order component of the stochastic velocity field is independent of the vertical coordinate. The higher order component of the stochastic vector field is not independent of the vertical coordinate, though, so its average is not trivial. Hence the average of the full stochastic velocity field is

\[
\frac{d}{dt} \chi_t = d \chi_{0,t} + \sigma^2 \frac{d\chi_{1,t}}{\partial t} + o(\sigma^2). \tag{2.19}
\]

From this expression, it is clear that the average of the product minus the product of the average is a higher order term:

\[
\frac{d}{dt} \left(\chi \otimes u - \frac{d\chi_t}{\partial t} \otimes \bar{u} \right) = O(\sigma^4). \tag{2.20}
\]

Therefore, by adding and subtracting the product of the average in (2.7), we can write a closed system of equations. For notational convenience, we define

\[
V(x, t) := \bar{u}(x, t) + \frac{\sigma^2}{6} h^2 \nabla(\nabla \cdot \bar{u}) + o(\sigma^2), \tag{2.21}
\]

and use our expression for the average of the pressure (2.18) into (2.7) to write

\[
\begin{align*}
\frac{d}{dt} V + (\frac{d\chi_t}{\partial t} \cdot \nabla) V + (\nabla \frac{d\chi_t}{\partial t}) \cdot V &= -\nabla d\zeta + \frac{1}{2} |\bar{u}|^2 dt - \frac{\sigma^2}{2} h \nabla \tilde{b} dt - \frac{1}{\text{Ro}} f \tilde{z} \times d\chi_t - \frac{1}{\text{Ro}} \nabla (\xi \cdot \bar{R}) \circ dW^i_t, \\
\frac{d}{dt} \bar{b} + (\frac{d\chi_t}{\partial t} \cdot \nabla) \bar{b} &= 0.
\end{align*} \tag{2.22}
\]

Together with the weighted incompressibility condition (2.8) and lateral boundary condition (1.6), the set of equations (2.22) comprises the stochastic, rotating, stratified Great Lake equations. The deterministic, non-rotating version of these equations is presented in [CHL96, CHL97], together with the elliptic operator that relates \(V \) and \(\bar{u} \). To solve for the pressure \(d\zeta \), one uses the elliptic operator just mentioned, which is defined by

\[
\begin{align*}
h V &= h \bar{u} + \left[-\frac{\sigma^2}{3} \nabla(h^3 \nabla \cdot \bar{u}) - \frac{\sigma^2}{2} \nabla(h^2 \nabla \cdot \nabla \bar{h}) + \frac{\sigma^2}{12} h^2 (\nabla \cdot \bar{u}) \nabla h + \sigma^2 h(\nabla \cdot \nabla \bar{h}) \nabla h \right], \\
&=: \mathcal{L}(h) \bar{u}.
\end{align*} \tag{2.23}
\]

This operator is positive-definite and self-adjoint (hence invertible) since \(h > 0 \). The invertibility guarantees the continuous dependence of \(\bar{u} \) on \(V \) [LOT96a, LOT96b]. By operating with \(\nabla \cdot h \mathcal{L}(h)^{-1} h \) on the velocity equation in (2.22) and using the weighted incompressibility condition (2.8), one finds an elliptic problem for \(d\zeta \). The Kelvin circulation theorem for the stochastic, rotating, stratified Great Lake equations is given by

\[
\begin{align*}
\int_{c(d\chi_t)} \left(V + \frac{1}{\text{Ro}} \bar{R} \right) \cdot dx = -\frac{\sigma^2}{2} \int_{c(d\chi_t)} h \nabla \tilde{b} \cdot dxdt. \tag{2.24}
\end{align*}
\]

Here \(c(d\chi_t) \) is any fluid loop that is being advected by the vertically averaged stochastic vector field \(\frac{d\chi_t}{\partial t} \). The right hand side of the circulation theorem reveals that circulation will be generated when the gradients of the buoyancy and the bathymetry are not aligned. The proof that the rotating, stratified, Great Lake equations satisfy this Kelvin theorem is postponed to end of the next subsection, where we will derive the same set of equations from a variational principle.
Remark 2.2. Note that the small aspect ratio limit \(\sigma \to 0 \) reduces the Great Lake equations in (2.22) to the Lake equations in (2.12). If the bathymetry is flat, then the weighted incompressibility condition in (2.8) reduces to the usual two dimensional incompressibility condition. In this case, the nonhydrostatic pressure term that is part of \(V \) vanishes and one obtains the two dimensional version of the stochastic, rotating, Euler equations with small stratification. Since \(\nabla h \) is small and the weighted incompressibility condition holds, a different but also valid definition for \(V \) in (2.21) is

\[
V(x, t) := \tilde{u}(x, t) - \frac{\sigma^2}{3} h^2 \nabla (\nabla \cdot \tilde{u}) + O(\sigma^2). \tag{2.25}
\]

This at first sight seems to be very odd. The two definitions, (2.21) and (2.25) for \(V \), differ by a factor of minus one half and yet are equivalent up to terms of order \(O(\sigma^2) \). This fact is shown by the elliptic operator derived in [CHL96, CHL97]. The essential statement is that when weighted incompressibility holds, the definition for \(V \) in (2.21) is equivalent to

\[
hV = h\tilde{u} + \left[-\frac{\sigma^2}{3} \nabla (h^2 \nabla \cdot \tilde{u}) - \frac{\sigma^2}{2} \nabla (h^2 \nabla \cdot h) + \frac{\sigma^2}{2} h^2 (\nabla \cdot \tilde{u}) \nabla h + \sigma^2 h (\nabla \cdot \nabla h) \nabla h \right] \tag{2.26}
\]

The alternative definition for \(V \) in (2.25) follows because \(\nabla h = O(\sigma^2) \). Since \(h \) is always positive, dividing both sides by \(h \) shows a remarkable equality which will be useful in relating the Great Lake equations derived above to the equivalent Great Lake equations which we will derive using the Euler-Poincaré theorem next.

2.3 Averaged Euler-Poincaré Lagrangian for long time – very small wave scaling

To apply averaging in the Euler-Poincaré setting, we return to the dimensionless Lagrangian (2.2) whose boundary conditions are given in (2.3). We substitute the higher order expansion (2.14) into the Lagrangian (2.2). We are interested in the dynamics of order \(O(\sigma^2) \), so we group the terms in the Euler-Boussinesq Lagrangian, as follows,

\[
\ell_{EB} = \int_{t_1}^{t_2} D \left(\frac{1}{2} |u_0|^2 + \sigma^2 (u_0 \cdot u_1) + \frac{\sigma^2}{2} v_0^2 + \frac{1}{Ro} (u_0 \cdot R) + \frac{\sigma^2}{Ro} (u_1 \cdot R) - (1 + \sigma^2 b_1) z \right) \, dx \, dy \, dz + o(\sigma^2). \tag{2.27}
\]

The corresponding action is now given by

\[
S_{EB} = \int_{t_1}^{t_2} \ell_{EB} \, dt - \langle dp_0 + \sigma^2 dp_1, D - 1 \rangle
=: \int_{t_1}^{t_2} \ell_{EB}. \tag{2.28}
\]

In line with the derivation of the Great Lake equations from the Newtonian point of view above, we assume that the leading order horizontal velocity is independent of the vertical coordinate. In that situation the expression for the vertical velocity in terms of the horizontal velocity in (1.37) can be integrated explicitly and we obtain

\[
w_0 = \nabla \cdot ((\beta^2 \zeta - z) u_0) = -(z + h) \nabla \cdot u_0. \tag{2.29}
\]

Note that in the limit \(\beta \to 0 \), evaluating the first definition of \(w_0 \) on the free surface implies the free surface boundary condition, but evaluating \(w_0 \) on the bottom boundary does not imply the boundary condition (1.5) unless the weighted incompressibility condition (2.8) holds. By substituting the latter expression for \(w_0 \) into the Lagrangian and applying the average (1.34) to \(u_1 \) and \(b_1 \), we can then evaluate the vertical integral and we obtain

\[
\bar{\ell}_{EB} = \int_{CS} \eta \left(\frac{1}{2} |u_0|^2 + \sigma^2 \eta (u_0 \cdot \tilde{u}) + \frac{\sigma^2}{2} \left[1 + \frac{3}{3} + h z^2 + h^2 z \right] \beta^2 \zeta \eta (\nabla \cdot u_0)^2 + \eta \left(\frac{1}{Ro} (u_0 \cdot R) + \frac{\sigma^2}{Ro} (\tilde{u} \cdot R) \right) \right)
- \frac{1}{2} (1 + \sigma^2 b_1)(\eta - 2h) \, dx \, dy + o(\sigma^2)
= \int_{CS} \eta \left(\frac{1}{2} |u_0|^2 + \sigma^2 (u_0 \cdot \tilde{u}) + \frac{\sigma^2}{6} \eta^2 (\nabla \cdot u_0)^2 + \frac{1}{Ro} (u_0 \cdot R) + \frac{\sigma^2}{Ro} (\tilde{u} \cdot R) \right)
- \frac{1}{2} (1 + \sigma^2 b_1)(\eta - 2h) \, dx \, dy + o(\sigma^2). \tag{2.30}
\]
This Lagrangian is an integral over the horizontal cross section of the domain Ω, which we call CS. The incompressibility constraints have been used to ensure that the expression for the vertical velocity is valid and are thus no longer required. However, the weighted incompressibility condition (2.8) must still hold; so, we introduce a new constraint to make the total depth equal to the bathymetry. This is equivalent to saying that the free surface elevation is zero.

Remark 2.3. By substituting the perturbation series expansion (2.14) into the Euler-Boussinesq Lagrangian (2.2) and truncating at $O(\sigma^2)$, we do not yet have a Lagrangian that we can vertically integrate. Since the leading order velocity does not depend on the vertical coordinate, we can simply average the next order velocity component to eliminate the vertical dependence. When we apply the same procedure to the buoyancy, we obtain a Lagrangian that can be integrated vertically. This reasoning leads to the following vertically averaged Lagrangian

$$\bar{\ell}_{EB} = \int_{CS} \left(\frac{1}{2} |\mathbf{u}_0|^2 + \sigma^2 (\mathbf{u}_0 \cdot \mathbf{u}_1) + \frac{\sigma^2}{6} \eta^2 (\nabla \cdot \mathbf{u}_0)^2 + \frac{1}{Ro} (\mathbf{u}_0 \cdot \mathbf{R}) + \frac{\sigma^2}{Ro} (\mathbf{u}_1 \cdot \mathbf{R})
ight) \frac{1}{2} (1 + \sigma^2 b_1)(\eta - 2h) \, dx \, dy. \quad (2.31)$$

with the action given by

$$\bar{S}_{EB} = \int_{t_1}^{t_2} \bar{\ell}_{EB} \, dt + \langle d\pi, \eta - h \rangle =: \int_{t_1}^{t_2} c\ell_{EB}. \quad (2.32)$$

Since the Great Lake equations are expressed in terms of \mathbf{u} instead of \mathbf{u}_0 and \mathbf{u}_1 independently, we shall express the Lagrangian in terms of \mathbf{u} as well. Another reason for absorbing \mathbf{u}_0 and \mathbf{u}_1 into a single variable is because they carry the same information, as they are both independent of the z-direction and allow for horizontal dynamics. Since the free surface term is very small, we can write

$$\ell_{GL} = \int_{CS} \left(\frac{\eta}{2} \mathbf{u}^2 + \frac{\sigma^2}{6} h^3 (\nabla \cdot \mathbf{u})^2 + \frac{\eta}{Ro} (\mathbf{u} \cdot \mathbf{R}) + \frac{h^2}{2} (1 + \sigma^2 \hat{b}) \right) \, dx \, dy + o(\beta^2), \quad (2.33)$$

with the corresponding action given by

$$S_{GL} = \int_{t_1}^{t_2} \ell_{GL} \, dt + \langle d\pi, \eta - h \rangle =: \int_{t_1}^{t_2} c\ell_{GL}. \quad (2.34)$$

The Lagrangian in (2.33) has been suggestively called the Great Lake Lagrangian and features the H_{div} Sobolev norm, which has interesting relations with integrable systems and geometric statistics, as shown in [KLMP13]. Here $d\pi$ is a semimartingale Lagrange multiplier, whose purpose is to ensure that the weighted incompressibility condition holds. Since the only contribution of the buoyancy at this order is \hat{b}, we have written \hat{b} instead. In order to apply the Euler-Poincaré theorem 1.1 to this Lagrangian, we need to define the variations. By substituting the higher order perturbation expansion (2.14) into the formulas for the variations in the theorem, we obtain

$$\delta \mathbf{u} \, dt = d\mathbf{v} - [d\mathbf{X}, \mathbf{v}], \quad (2.35)$$

where the arbitrary vector field \mathbf{v} is a vector field semimartingale. The variations of the advec ted quantities are obtained by directly integrating the formulae for the variations in the three dimensional case. First we notice that the only advected quantities in this problem are scalar functions and volume forms, which due to incompressibility, satisfy the same form of advection equation, as we saw above in the Newtonian averaging principle. The functional derivative and spatial derivatives commute. Hence, if u_3 is incompressible, then δu_3 must be incompressible, as well. This argument implies that the arbitrary vector field is also incompressible, which means that the constraints for the variations of the buoyancy and the density can be shown to satisfy

$$\delta \hat{b} \, dt = - (\nabla \cdot \mathbf{v}) \hat{b} \, dt,$$

$$\delta \int_{-h}^{\beta^2 \zeta} Ddz \, dt = - \nabla \cdot \left(\int_{-h}^{\beta^2 \zeta} Ddz \, \mathbf{v} \right) \, dt. \quad (2.36)$$

In this paper, $D = 1$, so the vertical integral of D is the depth $\eta = \beta^2 \zeta + b$, showing that the depth η functions as a two dimensional density; hence, it’s variation satisfies

$$\delta \eta \, dt = - \nabla \cdot (\eta \mathbf{v}) \, dt. \quad (2.37)$$
In the $\beta \to 0$ limit, the depth is given by the bathymetry $\eta = h$, which is the constraint introduced to imply weighted divergence. The variations of the Great Lake Lagrangian are

\[
\frac{\delta c_{\text{GL}}}{\delta \eta} = \eta \mathbf{u} - \frac{\sigma^2}{3} \nabla (h^3 \nabla \cdot \mathbf{u}) + \frac{\eta}{R_0} \mathbf{R},
\]

\[
\frac{\delta c_{\text{GL}}}{\delta \mathbf{u}} = \frac{1}{2} \mathbf{u}^2 + \frac{1}{R_0} (\mathbf{u} \cdot \mathbf{R}) - d\pi,
\]

\[
\frac{\delta c_{\text{GL}}}{\delta \mathbf{b}} = \frac{\sigma^2}{2} h^2,
\]

\[
\frac{\delta c_{\text{GL}}}{\delta d\pi} = \eta - h,
\]

Recall that the remarkable identity shown in (2.26) implies that equation (2.19) and the weighted incompressibility condition (2.8) imply, cf. equation (2.25),

\[
V(x,t) = \mathbf{u} - \frac{\sigma^2}{3} h^2 \nabla (\nabla \cdot \mathbf{u}) + \mathcal{O}(R_0) + o(\sigma^2).
\]

An application of the stochastic Euler-Poincaré Theorem 1.1 to the Great Lake Lagrangian in (2.33) with these variational derivatives and the variations in (2.35) leads to the stochastic Great Lake equations (2.22), with rotation and buoyancy,

\[
dV + (\mathbf{d}_t \cdot \nabla) V + (\nabla \mathbf{d}_t) \cdot V = -\nabla d\pi + \frac{1}{2} |\mathbf{u}|^2 dt - \frac{\sigma^2}{2} h \nabla \mathbf{b} dt - \frac{1}{R_0} f \times \mathbf{d}_t - \frac{1}{R_0} \nabla (\xi_i \cdot \mathbf{R}) \circ dW^i_t,
\]

\[
d\mathbf{b} + (\mathbf{d}_t \cdot \nabla) \mathbf{b} = 0,
\]

\[
\nabla \cdot (h \mathbf{d}_t) = 0,
\]

and with the boundary condition

\[
\mathbf{d}_t \cdot \mathbf{n} = 0.
\]

The pressure $d\pi$ is solved for using the elliptic operator defined in (2.23). This calculation shows that the Great Lake equations with rotation, stratification and stochasticity follow from the same perturbation series expansion, when applied either in the fluid equations or in the Great Lake reduced Lagrangian (2.33). Since the Lagrangian framework implies the Kelvin circulation theorem (2.24), the proof is now immediate that the circulation theorem has the form

\[
\frac{d}{dt} \oint_{c(\mathbf{d}_t)} V + 1 \frac{R_0}{R_0} \mathbf{R} \cdot d\mathbf{x} = -\frac{\sigma^2}{2} \int_{\partial S = c(\mathbf{d}_t)} \nabla h \times \nabla \mathbf{b} dS dt.
\]

Thus, in this scaling regime, applying asymptotics to the equations implies the same result as applying the asymptotics in the variational principle.

Remark 2.4 (Kelvin theorem result for generation of horizontal circulation). *The Kelvin circulation theorem in (2.42) shows that any misalignment of the horizontal gradients of the bathymetry and of the vertically averaged buoyancy will generate horizontal circulation in the material loop $c(\mathbf{d}_t)$ which follows the stochastic Lagrangian flow velocity \mathbf{d}_t in the horizontal plane given in equation (1.4).*

In the next section, we will extend the comparative asymptotic expansion approach to consider the short time - small wave limit. This extension will be accomplished by first deriving equations using asymptotics in the Euler-Boussinesq equations and later doing asymptotics in the Lagrangian and applying the Euler-Poincaré theorem.

3 Short time - small wave scaling regime

Short time corresponds to choosing the time scale to be $T = L/\sqrt{gH}$, the time it takes for a gravity wave to traverse the horizontal length scale. ‘Small wave’ means that the amplitude of the wave is small. In this setting, the scales are given by
In this scaling regime, the EB Lagrangian takes the form

$$\ell_{EB}(\mathbf{u}_3, b, D) = \int_{\Omega} D \left(\frac{\beta^2}{2} |\mathbf{u}|^2 + \frac{\beta^2 \sigma^2}{2} w^2 + \frac{\beta^2}{R_0} \mathbf{u} \cdot \mathbf{R} - (1 + b)z \right) dx dy dz,$$

so the corresponding action is given by

$$S_{EB} = \int_{t_1}^{t_2} \ell_{EB} dt - (dp, D - 1) =: \int_{t_1}^{t_2} c\ell_{EB},$$

with boundary conditions given by

$$p = \alpha \zeta \quad \text{at } z = \alpha \zeta(x, t),$$

$$\beta w dt = \alpha \left(\frac{1}{\beta} d\zeta + (d\mathbf{X}_t \cdot \nabla) \zeta \right) \quad \text{at } z = \alpha \zeta(x, t),$$

$$wdt = - (d\mathbf{X}_t \cdot \nabla) h \quad \text{at } z = -h(x),$$

$$d\mathbf{X}_t \cdot \mathbf{n} = 0 \quad \text{on lateral boundaries}.$$ (3.4)

An application of the stochastic Euler-Poincaré theorem 1.1 on the short-time scaled Lagrangian in (3.2) yields the following equations

$$\beta d\mathbf{u} + \beta^2 (d\mathbf{X}_3 \cdot \nabla_2) \mathbf{u} + (\nabla \xi_i) \cdot \mathbf{u} dW^i_t = -\nabla dp - \frac{\beta^2}{R_0} f \times d\mathbf{X}_t - \frac{\beta^2}{R_0} \nabla (\xi_i \cdot R) \circ dW^i_t,$n

$$\beta \sigma^2 d\mathbf{w} + \beta^2 \sigma^2 (d\mathbf{X}_3 \cdot \nabla_3) \mathbf{w} = - \frac{\partial}{\partial z} dp - (1 + b) dt,$$ (3.5)

$$\frac{1}{\beta} db + (d\mathbf{X}_3 \cdot \nabla_3) b = 0.$$

These equations satisfy the Kelvin circulation theorem, which for the Euler-Boussinesq equations takes the form of (1.30), and also have conservation of potential vorticity along fluid trajectories, as in (1.32), as well as conservation of an infinity of integral quantities (1.33), but now the Strouhal number is explicitly given in terms of the Froude number. In this scaling, the free surface is small rather than very small. Hence, we will not take the limit of the Froude number going to zero explicitly. Instead, we will introduce a regular perturbation expansion with small parameters ϵ and γ whose magnitudes need to be determined with respect to α, β, and σ.

$$\mathbf{u} = \mathbf{u}_0 + \epsilon \mathbf{u}_1 + o(\epsilon), \quad w = w_0 + \epsilon w_1 + o(\epsilon), \quad \xi_i = \xi_{0,i} + \epsilon \xi_{1,i} + o(\epsilon),$$

$$d\mathbf{X}_t = d\mathbf{X}_{0,t} + \epsilon d\mathbf{X}_{1,t} + o(\epsilon), \quad p = p_0 + \gamma p_1 + \gamma^2 p_2 + o(\gamma^2), \quad b = b_1 + \gamma^2 b_2 + o(\gamma^2).$$ (3.6)

Substitution of (3.6) into (3.5) provides equations of unknown order. By requiring certain balances to hold, the order of the dimensionless numbers can be related to each other. The boundary condition related to the vertical velocity at the free surface in (3.4) implies that $\alpha = O(\beta)$. In the horizontal velocity equation, the leading order velocity $\beta d\mathbf{u}_0$ needs to be of the same order as $\gamma \nabla dp_1$, which means that $\gamma = O(\beta)$. At the next order, $\beta^2 d\mathbf{u}_1$ is required to be of the same order as $\gamma^2 d\mathbf{v}_2$, which implies that $\epsilon = O(\beta)$. In the vertical velocity equation, we want hydrostatic balance to be broken at $O(\gamma^2)$, which means that $\beta \sigma^2 dp_0$ has to be of the same order as $\gamma^2 \frac{\partial}{\partial z} dp_2$ and implies for our ordering scheme that $\sigma^2 = O(\beta)$. To summarise, our ordering scheme is now fixed to be

$$O(\alpha) = O(\beta) = O(\gamma) = O(\epsilon) = O(\sigma^2).$$ (3.7)
3.1 Averaging of Newton’s 2nd law in the short time - small wave scaling

Averaging in the Newtonian equations leads to the following vertically averaged version of (3.5),
\[
\beta d\mathbf{u} + \frac{\beta^2}{\eta} \nabla \cdot (\eta \overline{d\mathbf{X}_t} \otimes \mathbf{u}) + \beta^2 (\nabla \xi_t) \cdot \mathbf{u} \circ dW_t = -\nabla dp - \frac{\beta^2}{Ro} \hat{\beta} \times \overline{d\mathbf{X}_t} - \frac{\beta^2}{Ro} \nabla (\xi_t \cdot \mathbf{R}) \circ dW_t,
\]
where \(\overline{d\mathbf{X}_t}\) is the vertical average of \(d\mathbf{X}_t\) in equation (3.6); namely,
\[
\overline{d\mathbf{X}_t} := d\mathbf{X}_{0,t} + \epsilon d\mathbf{X}_{1,t} + o(\epsilon).
\]

In this part of our discussion, we will not consider a leading order expansion before doing a higher order expansion. Instead, we work with directly with the expansion introduced in (3.6) and use the ordering scheme (3.7) to apply single scale asymptotics. At leading order in the vertical velocity equation one finds
\[
\frac{\partial}{\partial z} dp_0 + b_1 dt = 0,
\]
and from the horizontal velocity equation at the same order,
\[
\nabla dp_0 = 0,
\]
which implies hydrostatic balance. This information determines the leading order pressure, upon integrating in the vertical direction, to find
\[
dp_0 = (\text{const.} - z) dt,
\]
for the leading order pressure. In remark 2.1 we discussed how to deal with the semimartingale equations when the stochasticity is absent. This allows us to compute the expression for \(p_0\) above. The arbitrary constant is due to integration and will be eliminated later using the boundary condition for the pressure. At the next order in the vertical velocity equation, one finds
\[
\frac{\partial}{\partial z} dp_1 + b_1 dt = 0.
\]
Vertical integration of the expression above leads to
\[
dp_1 = -\int^z b_1 dz' + \psi(x,t) dt,
\]
where \(\psi(x,t)\) is an arbitrary function of horizontal coordinates and time, introduced by the integration. From the horizontal velocity equation at the same order, we have
\[
d\mathbf{u}_0 = -\nabla dp_1.
\]
By applying the gradient to (3.14) and taking the vertical derivative of (3.15), we can derive a relation between the horizontal velocity field and the buoyancy,
\[
\frac{\partial}{\partial z} d\mathbf{u}_0 = \nabla b_1 dt.
\]
From the buoyancy equation at order \(O(\gamma)\), it is clear that \(b_1\) is independent of time. Upon integrating (3.16) both vertically and in time, one finds
\[
\mathbf{u}_0(x,z,t) = t \int^z \nabla b_1(x,z) dz' + \mathbf{u}_0'(x,t) + \tilde{u}_0(x,z).
\]
Unless \(\nabla b_1 = 0\), the first term in (3.17) grows linearly in time. Consequently, we choose the buoyancy \(b_1\) to have the following profile
\[
b_1(z) = \tilde{b} - Sz,
\]
where \(\tilde{b}\) is a constant.
where \tilde{b} is some constant background buoyancy and S is some $O(1)$ positive constant. Of course one can choose a more complicated and more realistic dependence on the vertical coordinate, at the cost of making some computations slightly more involved. The first term in (3.17) now vanishes. The third term in (3.17) arose due to integration with respect to time, hence \bar{u}_0 plays the role of the initial condition. It is also the only term that has z-dependence. So, let us choose an initial condition which is independent of the vertical coordinate. This choice leaves us with

$$u_0(x, t) = u'_0(x, t) + \bar{u}_0(x).$$ (3.19)

Hence u_0 has no vertical dependence. We can then use the incompressibility condition (1.8) to obtain an expression for the vertical velocity as in (1.37), but now only looking at the leading order component of this relation. This leads to

$$w_0 = -(z + h) \nabla \cdot u_0,$$ (3.20)

if the variations of the bathymetry are small enough. Substituting the expression for the leading order vertical velocity into the vertical velocity equation at order $O(\gamma^2)$ yields

$$-(z + h) \partial_z (\nabla \cdot u_0) + \frac{\partial}{\partial z} p_2 + b_2 \, dt = 0.$$ (3.21)

From the equation above, we can determine an expression for p_2. Rearranging and taking a vertical integral provide

$$dp_2 = \left(\frac{1}{2} z^2 + zh \right) d(\nabla \cdot u_0) - \int_z^h b_2 dz' \, dt + \psi'(x, t).$$ (3.22)

Since the expressions for dp_1 and dp_2 in (3.14) and (3.22), respectively, involve the unknown functions $\psi(x, t)$ and $\psi'(x, t)$, we are not yet in the position to write down the average of the pressure. By means of the dynamic boundary condition (1.7) and the expansion for the pressure in (3.6), though, we can write

$$\alpha d\zeta = [dp_0 + \gamma dp_1 + \gamma^2 dp_2 + O(\gamma^3)]|_{z=\alpha \zeta} \, dt$$
$$= (\text{const.} \, dt - \alpha d\zeta + \gamma \left(-\int_z^{\alpha \zeta} b_1 dz' + \psi(x, t) \right) \right) \, dt + \gamma^2 \left[\left(\frac{1}{2} \alpha^2 \zeta^2 + \alpha \zeta h \right) d(\nabla \cdot u_0) \right.$$
$$\left. - \left(\int_z^{\alpha \zeta} b_2 dz' + \psi'(x, t) \right) \right] \, dt + O(\gamma^3).$$ (3.23)

The difference between the pressure at the free surface and elsewhere in the domain can now be evaluated. In particular, functions that are independent of z will be eliminated in this procedure and we are left with

$$dp - \alpha d\zeta = -z \, dt - \alpha d\zeta + \gamma \int_z^{\alpha \zeta} b_1 dz' \, dt$$
$$+ \gamma^2 \left[\left(\frac{1}{2} (z^2 - \alpha^2 \gamma^2) + (z - \alpha \gamma) h \right) d(\nabla \cdot u_0) + \int_z^{\alpha \zeta} b_2 dz' \, dt \right] + O(\gamma^3).$$ (3.24)

We can now determine the gradient of the pressure and collect terms that are of order $O(\gamma^3)$ or equivalent in the remainder. Since b_1 does not depend on the horizontal coordinates, the gradient of b_1 vanishes and we have

$$\nabla dp = \alpha (2 + \tilde{b}) \nabla d\zeta + \gamma^2 \left[\left(\frac{1}{2} z^2 + z h \right) d(\nabla \cdot u_0) + \int_z^0 \nabla b_2 dz' \, dt \right] + O(\gamma^3, \alpha^2 \gamma, \alpha \gamma^2),$$ (3.25)

where the contribution of \tilde{b} is due to the evaluation of b_1 at the free surface boundary. By taking the vertical average of the pressure gradient and switching the order of integration on the b_2 term, we obtain

$$\nabla dp = \alpha (2 + \tilde{b}) \nabla d\zeta + \gamma^2 \left[\frac{1}{3} h^2 d(\nabla \cdot u_0) + (z + h) \nabla b_2 \, dt \right] + O(\gamma^3, \alpha^2 \gamma, \alpha \gamma^2).$$ (3.26)

At this stage, we can make a choice. We can use the averaged equation for the advection of buoyancy (1.36), or we can use the expanded buoyancy equation and find an equation for the evolution $(z + h) \nabla b_2$. The latter choice dictates that we look at the expanded buoyancy equation at order $O(\gamma^2)$, where we have

$$db_2 - S(z + h)(\nabla \cdot u_0) \, dt = 0.$$ (3.27)
Here we have used \((3.18)\) and \((3.20)\). By taking the gradient, then multiplying by \((z + h)\) and taking the average, we obtain after some algebra
\[
d(z + h)\nabla b_2 = S \left(\frac{1}{3} h^2 \nabla (\nabla \cdot u_0) \right) dt. \tag{3.28}
\]
Similar to the derivation of the Great Lake equations, the difference between the average of the nonlinearity and the product of the average is of higher order, since \(u_0\) is independent of the vertical coordinate. Therefore, we can also express \(\mathbf{u} = u_0 + \epsilon \mathbf{u}_1 + O(\epsilon^2)\). At this stage, one follows [CH92] to introduce the variables
\[
\mathbf{A} : = \gamma^2 (z + h) \nabla b_2, \\
\mathbf{D} : = \gamma^2 \left(\frac{1}{3} h^2 \nabla (\nabla \cdot \mathbf{u}) \right),
\]
and writes the following set of stochastic partial differential equations (SPDEs),
\[
\beta \mathbf{d} \mathbf{u} + \beta^2 \left(\mathbf{d} \mathbf{X}_t \cdot \nabla \right) \mathbf{u} + \beta^2 (\nabla \xi_i) \cdot \mathbf{u} \circ dW_i^t = -\alpha (2 + \beta) \nabla \xi_0 - A dt + d\mathbf{D} \\
- \frac{\beta^2}{R_0} f \mathbf{z} \times \mathbf{d} \mathbf{X}_t - \frac{\beta^2}{R_0} (\xi_i \cdot \mathbf{R}) \circ dW_i^t, \\
\frac{\alpha}{\beta} \mathbf{d} \xi + \nabla \cdot (\alpha \xi_0 + h) \mathbf{d} \mathbf{X}_t = 0, \tag{3.30}
\]
where \(\mathbf{d} \mathbf{X}_t\) is defined in equation \((3.9)\).

Equations \((3.30)\) comprise the stochastic version of those obtained in [CH92], provided one sets the dynamic boundary condition to \(p = \tilde{p}\), rather than the value of the free surface. In the special case of deterministic, irrotational motion around the quiescent state \(\mathbf{u} = 0\), the covector quantities \(\mathbf{A}\) and \(\mathbf{D}\) form an oscillator pair which oscillates with the Brunt-Väisälä frequency \(S\). Also, in the deterministic case, an elimination procedure allows one to derive the Kadomtsev-Petviashvili equation and subsequently the Korteweg-De Vries equation for shallow water waves, as is done in [CH92]. The direct approach for the derivations for water wave equations requires the substitution of the velocity field into the free surface equation, which requires time derivatives. In the stochastic case, however, one cannot take these time derivatives; so, the corresponding stochastic shallow water wave equations cannot be derived by using SALT. If instead, one takes a pathwise approach so that at least one time derivative can be taken, then the corresponding water-wave equations can be derived in this framework. In the next subsection, a hierarchy of stochastic water-wave equations is derived from the variational point of view. Although the deterministic version of equations \((3.30)\) gives rise to well known water wave equations, the original equations \((3.30)\) are not closed, as there is no equation from which we can solve for \(d\mathbf{D}\). The reason that this set of equations is not closed is that exact asymptotics sees the advection constraint \((1.27)\) as two individual terms, rather than as two objects that should always go together. Possibly, a multiscale analysis approach would be able to resolve this issue by linking these two objects in a variational principle and thereby achieving closure for a system closely related to \((3.30)\). Next, we consider the averaging procedure in this section from the Euler-Poincaré perspective.

3.2 Averaged Euler-Poincaré Lagrangian for short time - small wave scaling

In the previous section, we used direct asymptotics to derive the stochastic version of the equations in [CH92]. These equations failed to form a closed system, though, because of a mismatch in scales arising from the Strouhal number not being equal to unity. This difficulty will be overcome in the Euler-Poincaré approach, because the variational approach is able to cope with arbitrary Strouhal number. The starting point for the vertical averaging of the Lagrangian is the substitution of \((3.6)\) with the ordering scheme \((3.7)\) into the dimensionless Euler-Boussinesq Lagrangian \((3.2)\) and evaluation of the boundary conditions \((3.4)\) in the short time scaling regime. The perturbation expansion is then
\[
\mathbf{u} = u_0 + \sigma^2 u_1 + o(\sigma^2), \quad w = w_0 + \sigma^2 w_1 + o(\sigma^2), \quad \xi_i = \xi_{0,i} + \sigma^2 \xi_{1,i} + o(\sigma^2), \quad \xi_{i,j} = \xi_{0,i,j} + \sigma^2 \xi_{1,i,j} + o(\sigma^2), \tag{3.31}
\]
which we substitute into the Lagrangian. We are interested in modelling the dispersive effects of the vertical kinetic energy. Hence, we retain terms up to and including \(O(\beta^2 \sigma^2)\) in the resulting Lagrangian, which is given
by
\[\ell_{EB}(u_3, b, D) = \int_R D \left(\frac{\beta^2}{2} |u_0|^2 + \beta^2 \sigma^2 (u_0 \cdot u_1) + \frac{\beta^2 \sigma^2}{2} w_0^2 + \frac{\beta^2}{R_0} u_0 \cdot R + \frac{\beta^2 \sigma^2}{R_0} u_1 \cdot R \right) \] (3.32)

The corresponding action integral is given by
\[S_{EB} = \int_{t_1}^{t_2} \ell_{EB} dt - \langle dp_0 + \sigma^2 dp_1 + \sigma^4 dp_2, D - 1 \rangle =: \int_{t_1}^{t_2} c \ell_{EB}. \] (3.33)

As before, we assume that the leading order horizontal velocity is independent of the vertical coordinate. This assumption allows us to integrate the expression for the vertical velocity in the short time - small wave scaling regime, which leads to
\[u_0 = -(z + h) \nabla \cdot u_0. \] (3.34)

As in the variational approach for the Great Lake equations in remark 2.3, rather than considering \(u_0 \) and \(\bar{u}_1 \) as variables, we directly consider \(\bar{u} \) since it carries the same amount of information and the goal is to formulate equations in terms of \(\bar{u} \). Hence, upon introducing \(\bar{u} \) and \(\bar{b} \), we can evaluate the vertical integral in the Lagrangian. The pressure constraint drops out, as it is used to determine the expression for the vertical velocity. These steps result in the following nondimensional Lagrangian
\[\ell_{rsGN}(\bar{u}, \eta, \bar{b}) = \int_{CS} \left(\frac{\beta^2}{2} |\bar{u}|^2 + \frac{\beta^2 \sigma^2}{6} h^3 (\nabla \cdot \bar{u})^2 + \frac{\beta^2}{R_0} \eta (\bar{u} \cdot R) \right) - \frac{1}{2} (1 + \sigma^2 \bar{b})(\eta^2 - 2\eta h) \right) \eta dx dy, \] (3.35)

with total depth \(\eta = \alpha \zeta + h \). The subscript on the Lagrangian \(\ell_{rsGN} \) denotes rotating, stratified Green–Naghdi (rsGN). This suggestion for a name is not entirely correct, since the Green–Naghdi Lagrangian depends solely on the total depth, \(\eta \), not on the mean depth \(h \), separately. The reason for this difference is that no requirement of small wave height is imposed in the formal derivation of the Green–Naghdi equations.

Remark 3.1. The Lagrangian (3.36) is balanced from the asymptotic analysis point of view. However, at the cost of introducing a term of order \(O(\sigma^8) \), we can obtain a much nicer geometric structure. The change that we make is to replace \(h^3 \) by \(\eta h^2 \). The original term \(h^3 \) is order \(O(1) \) and the new term is \(\eta h^2 = (\alpha \zeta + h)h^2 \), which contains the original term as well as a term of order \(O(\sigma^2) \). The constant in front of the divergence term then lifts the order of the new term to \(O(\sigma^8) \). The benefit of this change is that the momentum takes a nicer form, as a factor of \(\eta \) can be taken out. So we work with the slightly adapted, rsGN Lagrangian given by
\[\ell_{rsGN}(\bar{u}, \eta, \bar{b}) = \int_{CS} \left(\frac{\beta^2}{2} |\bar{u}|^2 + \frac{\beta^2 \sigma^2}{6} h^2 (\nabla \cdot \bar{u})^2 + \frac{\beta^2}{R_0} \eta (\bar{u} \cdot R) \right) - \frac{1}{2} (1 + \sigma^2 \bar{b})(\eta^2 - 2\eta h) \right) \eta dx dy. \] (3.36)

In the Lagrangian above, \(\eta \) has become the natural density again, so we can factor out \(\eta \) for every term.

We now take variations in much the same way as done for the Great Lake equations in the Euler-Poincaré approach. However, there is a crucial difference. In the present scaling regime, the Strouhal number \(Sr \) is not equal to unity. Instead, we have \(Sr = 1/\beta \), which is the inverse Froude number. Consequently, in the present case, the Euler-Poincaré variations of the velocities are taken as,
\[\delta \bar{u} dt = \frac{1}{\beta} dv - [\dot{\chi} \times, v]. \] (3.37)

The variational derivatives of the nondimensional Lagrangian \(\ell_{rsGN} \) in equation (3.36) are the following:
\[\frac{\delta \ell_{rsGN}}{\delta \bar{u}} = \beta^2 \eta \bar{u} - \frac{\beta^2 \sigma^2}{3} \nabla (\eta h^2 \nabla \cdot \bar{u}) + \frac{\beta^2}{R_0} \eta \bar{R}, \]
\[\frac{\delta \ell_{rsGN}}{\delta \eta} = \frac{\beta^2}{2} |\bar{u}|^2 + \frac{\beta^2 \sigma^2}{6} h^2 (\nabla \cdot \bar{u})^2 + \frac{\beta^2}{R_0} (\bar{u} \cdot R) - (1 + \sigma^2 \bar{b})(\eta - h), \]
\[\frac{\delta \ell_{rsGN}}{\delta \bar{b}} = -\frac{\sigma^2}{2} (\eta^2 - 2\eta h). \] (3.38)

For notational convenience, similar as in (2.25), we set
\[V(x, t) = \bar{u} - \frac{\sigma^2}{3} h^2 \nabla (\nabla \cdot \bar{u}) + O(Ro). \] (3.39)
The $O(\text{Ro})$ terms arise upon taking h outside the gradient. In this notation, an application of the stochastic Euler-Poincaré Theorem 1.1 with the velocity variations given in (3.37) and the variational derivatives in (3.38) of the Lagrangian $\ell_{rs\text{GN}}$ in (3.36) yields the following SPDEs,

$$\frac{1}{\beta} d\mathbf{V} + (d\mathbf{X}_t \cdot \nabla) \mathbf{V} + (\nabla d\mathbf{X}_t) \cdot \mathbf{V} = \frac{1}{\beta^2} \left(-\nabla \left((1 + \sigma^2)\alpha \partial_c \zeta \right) + \frac{\beta^2}{2} \nabla |\mathbf{u}|^2 dt + \frac{\beta^2 \sigma^2}{6} \nabla (h \nabla \cdot \mathbf{u})^2 dt
+ \frac{\sigma^2}{2} (\alpha \zeta - h) \nabla \hat{\mathbf{b}} dt \right) - \frac{1}{\text{Ro}} f \hat{z} \times \overline{\mathbf{dX}_t} - \frac{1}{\text{Ro}} \nabla (\xi_i \cdot \mathbf{R}) \circ dW^i_t,$$

(3.40)

where $\overline{\mathbf{dX}_t}$ is defined in equation (3.9).

It is useful to note that $\eta^{-1} \delta \ell_{rs\text{GN}}/\delta \overline{\mathbf{b}} = (\sigma^2/2)(\eta - 2h) = (\sigma^2/2)(\alpha \zeta - h)$, since $\eta = \alpha \zeta + h$. These equations do satisfy a Kelvin circulation theorem, as they have been derived from the Euler-Poincaré variational principle. The circulation theorem takes the following form

$$\frac{1}{\beta} \int_{\partial S = \overline{\mathbf{dX}_t}} \mathbf{V} + \frac{1}{\text{Ro}} \mathbf{R} \cdot d\mathbf{x} = \int_{\partial S = \overline{\mathbf{dX}_t}} \frac{\sigma^2}{2\beta^2} (\alpha \zeta - h) \nabla \overline{\mathbf{b}} \cdot d\mathbf{x} = \int \int_{S = \partial \overline{\mathbf{dX}_t}} \frac{\sigma^2}{2\beta^2} \nabla (\alpha \zeta - h) \times \nabla \overline{\mathbf{b}} \cdot dS \, dt.$$

(3.41)

As expected from equations (1.19) and (1.30) for the Kelvin circulation theorem which follows from the Euler-Poincaré equation (1.14) in three dimensions, circulation is created by misalignment of the gradients of vertically averaged buoyancy $\overline{\mathbf{b}}$ and its dual quantity $\eta^{-1} \delta \ell_{rs\text{GN}}/\delta \overline{\mathbf{b}}$ for the rsGN Lagrangian in equation (3.36). Interestingly, the misalignment of the gradient of vertically averaged buoyancy $\overline{\mathbf{b}}$ and the difference $(\alpha \zeta - h)$ generates horizontal circulation (vertical vorticity). This represents a barotropic mechanism for cyclogenesis (emergence of horizontal circulation, or eddies) in the ocean. The dispersion relation that corresponds to the linearised, deterministic version of equations (3.40) is discussed in Appendix A. A Kelvin circulation theorem similar to that in (3.41) holds for the thermal rotating shallow water (TRSW) equations, as discussed in Appendix B.

Remark 3.2 (Comparison with JEBAR for ocean currents). For the deterministic case, one replaces $c(\overline{\mathbf{dX}_t}) \rightarrow c(\mathbf{u})$ and the circulation theorem in (3.41) recalls an aspect of the JEBAR (Joint Effect of Baroclinicity and Bottom Relief) approach for modelling the dynamics of ocean currents [SAR97, CCK98, MEI99, SAR06, CDVO16]. Namely, the creation of circulation in (3.41) occurs when the gradients of certain fluid properties are not aligned with the gradient of the bottom topography, $\nabla h(x)$.

There are also may differences of (3.41) from JEBAR. In particular, the circulation dynamics in (3.41) represents Kelvin’s theorem as derived from a vertically averaged and asymptotically expanded Hamilton’s principle for Euler’s fluid equations for the stochastic dynamics of an incompressible, stratified, rotating fluid flow with a free upper surface moving under the influence of gravity. Nonetheless, many of the physical principles underlying the derivation of (3.41) also relate to principles which could be applied in the oceanographic setting for JEBAR. Hence, it may be advisable to investigate the utility of the present stochastic, asymptotic, vertically-averaged variational approach for some applications in oceanography.

Potential vorticity. In the circulation theorem for the rotating, stratified Great Lake equations in equation (2.24), the circulation is generated by the misalignment between the horizontal gradient of the bathymetry and the horizontal gradient of the buoyancy. Here, we have seen that the misalignment of horizontal gradients of the free surface height with the horizontal gradient of the buoyancy also contributes to the generation of circulation. In terms of the potential vorticity given by

$$q := \eta^{-1} (\hat{z} \cdot \nabla \times (\mathbf{V} + \text{Ro}^{-1} \mathbf{R})),$$

(3.42)

the generation of circulation is accompanied by the following

$$\frac{1}{\beta} dq + (\overline{\mathbf{dX}_t} \cdot \nabla) q = \frac{\sigma^2}{2\beta^2 \eta} \hat{z} \cdot \nabla (\alpha \zeta - h) \times \nabla \overline{\mathbf{b}}.$$

(3.43)
will also be generated by this misalignment of horizontal gradients.

Equations (3.40) also possess an infinity of conserved integral quantities of the following form
\[C_{f,g} = \int_{CS} (f(\overline{b}) + qg(\overline{b})) \eta \, dx \, dy, \] (3.44)
for arbitrary differentiable functions \(f, g \) and for boundary conditions \(\delta \chi \cdot n = 0, \nabla \overline{b} \times n = 0 \). The former condition requires the stochastic flow to be tangent to the boundary. Invariance of the vertically averaged buoyancy \(\overline{b} \) as it is advected along the tangential stochastic flow on the boundary is consistent with the latter condition, which requires the boundary to be a level set of \(\overline{b} \).

3.3 Stochastic Camassa-Holm equations

This section considers a sequence of reductions of the Lagrangian \(\ell_{r*GN}(\overline{\mu}, \eta, \overline{b}) \) in equation (3.36) in one spatial dimension which will eventually restrict to the stochastic Camassa-Holm (CH) equation, considered in [HT16, CH18]
\[\frac{1}{\beta} \overline{m} + (\overline{\mu} \overline{m}_x + \partial_x \overline{m}) = 0. \] (3.45)

In one dimension, we assume a flat bathymetry profile \(h_0 \) and ignore the effect of rotation. We also assume that the wave amplitude \(\alpha \) is of order of \(\beta \), meaning that \(\alpha \) is negligible at order \(O(\beta) \). Applying these approximations to the Lagrangian \(\ell_{r*GN}(\overline{\mu}, \eta, \overline{b}) \) in equation (3.36) yields the following Lagrangian at order \(O(\beta^2 \sigma^2) \),
\[\ell_{CH3} = \int_{-\infty}^{\infty} \frac{\beta^2}{2} h_0 \overline{w}^2 + \frac{\beta^2 \sigma^2}{6} h_0^2 \overline{u}_{xx} - \frac{1}{2} (\eta - h_0)^2 \] (3.46)
where we have completed the square on the potential energy term. The domain of flow is taken to be the entire real line, rather than a compact line between two lateral boundaries as illustrated in figure 2. Boundary conditions on the real line require the vertically averaged velocity \(\overline{u} \) and its horizontal spatial derivative \(\overline{u}_x \) to vanish in the limit \(|x| \to \infty \). The variational derivatives of the Lagrangian \(\ell_{CH3} \) in (3.46) are given by
\[\frac{\delta \ell_{CH3}}{\delta \overline{u}} = \beta^2 h_0 \overline{u} - \frac{\beta^2 \sigma^2}{3} h_0^2 \overline{u}_{xx} =: \overline{m}, \]
\[\frac{\delta \ell_{CH3}}{\delta \eta} = - (\eta - h_0), \]
\[\frac{\delta \ell_{CH3}}{\delta \overline{b}} = \frac{\sigma^2}{2} h_0^2. \] (3.47)

An application of the stochastic Euler-Poincaré theorem 1.1 then leads to the following set of three stochastic equations
\[\frac{1}{\beta} \overline{m} + (\overline{\mu} \overline{m}_x + \partial_x \overline{m}) \overline{\chi}_x = - \eta \eta_x \, dt - \frac{\sigma^2}{2} h_0^2 \overline{b}_x \, dt, \]
\[\frac{1}{\beta} \overline{\eta} + (\eta \overline{\chi}_x)_x = 0, \]
\[\frac{1}{\beta} \overline{\chi}_x + (\overline{b}_x \overline{\chi}_x)_x = 0. \] (3.48)

The set of equations (3.48) defines the three-component stochastic Camassa-Holm system (CH3). The stochastic evolution equation for momentum \(\overline{\mu} \) includes the effects of varying depth and horizontal variations of the buoyancy. There follows a continuity equation for depth, \(\eta \), and a scalar advection equation for buoyancy, \(\overline{b} \).

Remark 3.3 (Is the deterministic CH3 case completely integrable?). An investigation is underway elsewhere to determine whether the Lie–Poisson Hamiltonian system of CH3 equations in (3.48) is completely integrable in the deterministic case, where it simplifies to
\[\frac{1}{\beta} \partial_t \overline{m} + (\overline{\mu} \partial_x \overline{m} + \partial_x \overline{m}) \overline{\chi} = - \eta \eta_x \overline{\chi}_x - \frac{\sigma^2}{2} h_0^2 \overline{b}_x, \]
\[\frac{1}{\beta} \partial_t \eta + (\eta \overline{\chi})_x = 0, \]
\[\frac{1}{\beta} \partial_t \overline{b} + \overline{b}_x = 0. \] (3.49)
We proceed further now in the stochastic case by assuming that the vertically averaged buoyancy \overline{b} is constant in both space and time, so that we may replace $b(x,t) \mapsto b_0$; a constant. Under this assumption, the Lagrangian ℓ_{CH3} simplifies, since the buoyancy term no longer contributes to the dynamics, and we arrive at the following Lagrangian ℓ_{CH2} for the stochastic two component Camassa-Holm (CH2) system:

$$\ell_{CH2} = \int_{-\infty}^{\infty} \frac{\beta^2}{2} h_0 \overline{w}^2 + \frac{\beta^2 \sigma^2}{6} h_0^2 \overline{u}_x^2 - \frac{1}{2}(\eta - h_0)^2 \, dx.$$ \hspace{1cm} (3.50)

The variational derivatives of the Lagrangian ℓ_{CH2} in (3.50) are given by

$$\frac{\delta \ell_{CH2}}{\delta \overline{u}} = \beta^2 h_0 \overline{w} - \frac{\beta^2 \sigma^2}{3} h_0^2 \overline{u}_{xx} =: \overline{m},$$ \hspace{1cm} (3.51)

$$\frac{\delta \ell_{CH2}}{\delta \eta} = -(\eta - h_0).$$

An application of the stochastic Euler-Poincaré theorem 1.1 with these variational derivatives yields the following motion equation and advection law,

$$\frac{1}{\beta} \partial_x \overline{m} + \left(\overline{m} \partial_x + \overline{u}_x \right) \partial_x \chi = -\eta \partial_x \chi = 0.$$ \hspace{1cm} (3.52)

The set of equations (3.52) is the stochastic two component Camassa-Holm (CH2) system. In the deterministic case, this set of equations is a completely integrable Hamiltonian system, as shown first by [CZ*06].

Finally, we will assume that the squared elevation in the CH2 Lagrangian ℓ_{CH2} in (3.50) is of order $(\eta - h_0)^2 = o(\beta^2 \sigma^2)$. This assumption neglects the potential energy term in ℓ_{CH2}, which then reduces to

$$\ell_{CH} = \int_{-\infty}^{\infty} \frac{\beta^2}{2} h_0 \overline{w}^2 + \frac{\beta^2 \sigma^2}{6} h_0^2 \overline{u}_x^2 \, dx.$$ \hspace{1cm} (3.53)

The variation of the CH Lagrangian (3.53) with respect to the velocity \overline{u} yields

$$\frac{\delta \ell_{CH}}{\delta \overline{u}} = \beta^2 h_0 \overline{w} - \frac{\beta^2 \sigma^2}{3} h_0^2 \overline{u}_{xx} =: \overline{m}.$$ \hspace{1cm} (3.54)

An application of the stochastic Euler-Poincaré theorem 1.1 then implies the SPDE,

$$\frac{1}{\beta} \partial_x \overline{m} + \left(\overline{m} \partial_x + \overline{u}_x \right) \partial_x \chi = 0.$$ \hspace{1cm} (3.55)

Equation (3.55) is the dispersionless stochastic Camassa-Holm equation, whose singular ‘peakon’ solutions have been studied in [HT16, CH18].

Including cubic linear dispersion in the stochastic Camassa-Holm equation yields

$$\frac{1}{\beta} \partial_x \overline{m} + \left(\overline{m} \partial_x + \overline{u}_x \right) \partial_x \chi = 0.$$ \hspace{1cm} (3.56)

The solution properties of this equation have been studied in [HT16, BCH19].

When terms of order $O(\sigma^2)$ are neglected in equation (3.56), it reduces further to the stochastic KdV equation,

$$\frac{1}{\beta} \partial_x \overline{m} + \left(\overline{m} \partial_x + \overline{u}_x \right) \partial_x \chi = 0,$$ \hspace{1cm} (3.57)

which has been studied in [Woo19].

The deterministic CH equation was first derived in [CH93, CHH94], by using asymptotics on the Hamiltonian side. Here the stochastic CH equation has been derived by means of asymptotics in the Lagrangian for the rotating, stratified, Green-Naghdi equations (3.36) followed by applying the stochastic Euler-Poincaré theorem to the approximated Lagrangian at a variety of levels.
3.4 Differences between the Newtonian and variational approaches

There are several striking differences between the equations that one derives from the Newtonian approach and from the Euler-Poincaré approach, as illustrated with underbraces below. The most important difference is that the time derivative of \mathbf{D} no longer appears explicitly in the equations above. Instead, the dynamical variable \mathbf{V} appears naturally, as it did for the Great Lake equations in (2.24). The pressure and the buoyancy term also take slightly different forms. The averaged equations (3.8) indicate that the usage of the buoyancy equation is natural. In the Newtonian approach, the buoyancy only has dynamics at order σ^4, since b_1 was calculated explicitly and shown only to depend on the vertical coordinate. This explains the sole appearance of b_2 in the buoyancy equation. In the variational approach, we do not calculate the explicit profile of b_1, but instead we introduce a vertically averaged buoyancy in the Lagrangian. This means that the buoyancy is still allowed to vary horizontally, which can be seen in the equation for the buoyancy. The effect of the horizontal dependence of the buoyancy is important for the generation of horizontal circulation, as noticed in (3.41). Below we have expressed the two sets of equations in terms of the same variables so that the differences and similarities are clear.

Newtonian CH92 equations:

$$
\frac{1}{\beta} \frac{d}{dt} \mathbf{u} - \frac{\sigma^2}{3\beta} h^2 \left(\nabla (\nabla \cdot \mathbf{u}) + (\nabla \mathbf{X}_t \cdot \nabla) \mathbf{u} + \nabla (\nabla \mathbf{X}_t) \cdot \mathbf{u} \right) = \frac{1}{\beta^2} \left(- \nabla ((2 + \tilde{b}) \alpha d\zeta) + \frac{\beta^2}{2} \nabla |\mathbf{u}|^2 dt - \beta^2 (z + h) \nabla b_2 dt \right) - \frac{1}{Ro} \tilde{f} \times \overline{\mathbf{X}_t} - \frac{1}{Ro} \nabla (\xi_i \cdot \mathbf{R}) \circ dW_i, \tag{3.58}
$$

$$
\frac{\alpha}{\beta} \frac{d}{dt} \zeta + \nabla \cdot ((\alpha \zeta + h) \overline{\mathbf{X}_t}) = 0,
$$

$$
\frac{d}{dt} (z + h) \nabla b_2 = \frac{S}{3} h^2 \nabla (\nabla \cdot \mathbf{u}) dt.
$$

Variational CH92 equations:

$$
\frac{1}{\beta} \frac{d}{dt} \mathbf{u} - \frac{\sigma^2}{3\beta} h^2 \left(\nabla (\nabla \cdot \mathbf{u}) + (\nabla \mathbf{X}_t \cdot \nabla) \mathbf{u} + \nabla (\nabla \mathbf{X}_t) \cdot \mathbf{u} \right) = \frac{1}{\beta^2} \left(- \nabla \left((1 + \sigma^2 \tilde{b}) \alpha d\zeta \right) + \frac{\beta^2}{2} \nabla |\mathbf{u}|^2 dt + \frac{\beta^2 \sigma^2}{6} \nabla (h \nabla \cdot \mathbf{u})^2 dt \right)
$$

$$
+ \frac{\sigma^2}{2} (\alpha \zeta - h) \nabla \tilde{b} dt - \frac{1}{Ro} \tilde{f} \times \overline{\mathbf{X}_t} - \frac{1}{Ro} \nabla (\xi_i \cdot \mathbf{R}) \circ dW_i, \tag{3.59}
$$

$$
\frac{\alpha}{\beta} \frac{d}{dt} \zeta + \nabla \cdot ((\alpha \zeta + h) \overline{\mathbf{X}_t}) = 0,
$$

$$
\frac{d}{dt} \tilde{b} + \overline{\mathbf{X}_t} \cdot \nabla \tilde{b} = 0.
$$

where $\overline{\mathbf{X}_t}$ is defined in equation (3.9).

The underbraced terms in (3.59) identify the differences between the Newtonian equations and the variational CH92 equations. The first underbraced terms are related to the advection of nonhydrostatic velocity. These terms are missing from the Newtonian approach, as they are eliminated when applying strict asymptotics to the equations. The other differences are in the buoyancy expression: in the Newtonian approach we explicitly calculate the form of the buoyancy up to b_1, equation (3.18), and provide an evolution equation that determines the quantity \mathbf{A} defined in (3.29).

In the variational approach, we instead introduce the vertically averaged buoyancy which gives rise to terms that create horizontal circulation, rather than introducing an explicit profile. The explicit buoyancy
profile (3.18) has no horizontal dependence and the linear term in the vertical coordinate is only important at higher order. This means that in the Lagrangian at order $O(\sigma^2/\beta^2)$, the explicit buoyancy profile (3.18) does not contribute to the dynamics.

Formulating the CH92 equations by using a variational principle which can accommodate dependence of the asymptotics on the Strouhal number has introduced additional structure and new solution behaviour. These new features can be seen by comparing the equation sets in (3.58) and (3.59), above. The original CH92 equations in (3.58) were derived in [CH92] by applying vertical averaging and strict asymptotics in the unapproximated equations in the form of Newton’s force law for the fluid. The augmented CH92 equations in (3.59), which arise from from applying vertical averaging and strict asymptotics in the variational principal for the unapproximated equations. The additional underbraced terms in (3.59) close the CH92 system dynamically and introduce SALT. These additional terms also produce the following new features:

1. They provide closure by introducing a dynamical equation for the vertically averaged buoyancy, \overline{b};
2. The dynamics of the vertically averaged buoyancy, \overline{b}, contributes to the pressure terms;
3. They restore the Kelvin circulation theorem seen in equation (3.40);
4. They reveal a barotropic mechanism for horizontal circulation (cyclogenesis), as seen in equation (3.40); and
5. They allow for a hierarchy of Camassa-Holm equations to be derived, see subsection 3.3.

4 Conclusion

Summary. This paper has extended the work of [CH92] and [CHL96, CHL97] by casting it into the framework of Hamilton’s variational principle and including the multi-time effects of the Strouhal number and the barotropic effects of vertically-integrated buoyancy with horizontal gradients. As a result, a variety of new terms representing new effects relative to [CH92] and [CHL96, CHL97] have appeared in the resulting equations. For example, in the variational CH92 equations (3.40) written in Kelvin circulation form in (3.41) one sees how horizontal circulation (convection) is generated by a misalignment of horizontal gradient of vertically averaged buoyancy with the horizontal gradients of bathymetry and/or surface elevation. The new terms in these equations relative to [CH92] are pointed out explicitly in equation (3.59).

Having extended the earlier work of [CH92] and [CHL96, CHL97] in a variational setting and expressed the results in Kelvin circulation form, the paper has also taken advantage of the variational framework of [Hol15] to include the effects of stochastic advective Lie transport (SALT). Including the effects of SALT introduces a new capability to quantify the uncertainty and then use data assimilation to reduce the uncertainty of the solutions of these equations due to unmodelled, or unresolved effects. A protocol for doing this has been developed in [CCH+18, CCH+19a, CCH+19b]. This protocol regards SALT as a type of ‘informed randomness’ described by spatially correlated noise obtained from observed or simulated high-resolution data. This protocol may be applied to the present class of fluid equations. In order to reduce the investigation of these equations to their simplest form, the paper has derived the unidirectional version of the equation set in (3.59) in the variational setting. This reduction has yielded stochastic versions of a family of CH equation, including the one derived in [CH93, CHH94]. These stochastic CH equations describe the interaction of solitons with noise. The first developments in this direction for the stochastic CH equation have already been studied in [HT16, HT18, CH18, BCH19].

Two diagrams sketched below provide ‘roadmaps’ of the two routes of simplification we have taken in this paper by using asymptotic expansions in the various small parameters for the ordering scheme in equation (3.7). The Newtonian approach is shown in figure 3. The corresponding road map for the variational approach is shown in figure 4.
In section 1 we investigated whether the SALT approach was compatible with the asymptotic expansions. It was shown that an additional assumption on the magnitude of the gradient of the bathymetry was required for the SALT version to be consistent with the deterministic situation. Except for this additional assumption, SALT was verified to be compatible with the methods of asymptotic analysis. From the variational point of view,
view, this was to be expected. Any fluid model which has a corresponding Lagrangian can be made stochastic with the approach of [Hol15]. However, boundary conditions need to be made consistent with the derivation of the equations. A simpler, but also important ‘sanity check’ was passed, by confirming that the stochastic Lake and Great Lake equations successfully recover the deterministic Lake and Great Lake equations when the noise terms are absent.

In section 2, we showed that the Great Lake equations in (2.24) may be derived using a direct approach, by combining vertical averaging of the nondimensional Euler-Boussinesq equations with asymptotic analysis in a long time - very small wave scaling regime. The resulting averaged equations can be closed. One may also derive the same equations by vertically averaging the Lagrangian and applying the Euler-Poincaré theorem. In both situations, an averaging principle is required which respects the boundary conditions for the Euler-Boussinesq equations. The road map of these derivations is sketched on the right-hand branches of figures 3 and 4.

In section 3, we worked in a short time - small wave scaling regime, following the left-hand branches of figures 3 and 4. In this scaling regime, the Strouhal number does not equal unity. Instead, the Strouhal number is the inverse of the Froude number, which was taken to be small in this scaling regime. Consequently, the material derivative was no longer balanced in the asymptotic expansion. Because of this imbalance, the direct asymptotic expansion approach failed to derive the rotating stratified Green-Naghdi equations in this scaling regime. However, the variational approach was able to take an arbitrary Strouhal number into account. In this scaling regime, the variational approach provided a set of equations reminiscent of the Green-Naghdi equations, and which had the geometric structure required to possess a Kelvin circulation theorem. Thus, the Strouhal number played a crucial role in determining the differences between the direct approach and the variational approach in the short time - small wave scaling regime. In addition, by further approximating the asymptotic expansion of the wave Lagrangian in Hamilton’s principle, in Section 3.3 we derived several stochastic variants of the Camassa-Holm equation and the Korteweg - de Vries equation for one dimensional unidirectional propagation. Finally, in section 3.4 we discussed the differences between the Newtonian and variational approaches in this scaling regime by making a detailed comparison of the equations and explaining the implications of the additional terms in the variational approach which were missing in the direct approach.

4.1 Outlook and open problems. What to do?

This paper has integrated several methodologies into a research framework for investigating the various effects of wave-current interaction in stratified shallow water flows. Several methodologies were required because wave-current interaction involves several elements. Different time scales exist for flow and wave propagation, as indicated by the different regimes of Strouhal number. This means that simultaneous interactions take place among various physical effects with different times scales. For example, we have seen that nonlinear interactions arise among advective transport, dispersive nonlinear wave propagation, stratification and generation of circulation in the interplay of waves, topography and stratification. This is not to even mention the effects of shear on the propagation of waves and the effects of wave perturbations on unstable flow equilibria.

Because of these various interacting elements, modelling the wave-current interaction process involves many uncertainties. These uncertainties arise from the combination of incomplete sparse observations and the ‘irreducible imprecision’ of numerical simulations arising because of under-resolution and the wide variety of choice in numerical simulation algorithms. In the hopes of providing a methodology for systematically quantifying these uncertainties, this paper has introduced stochastic advection by Lie transport (SALT) in the derivation of the various new equations arising in the ramifications of the asymptotic expansions studied here. We believe that the SALT approach could eventually be made useful for stochastic parameterisation and uncertainty quantification of wave-current interaction, for example, in describing the effects of sub-mesoscale unresolved ocean dynamics on the larger, slower, resolvable oceanic flow. Combined with judicious data assimilation approaches based on the earlier work of [CCH+18, CCH+19a, CCH+19b], one can hope that in some cases these uncertainties may even be reduced. The progress made here suggests that further pursuit of the SALT approach for stochastic parameterisation may soon be fruitful in the context of wave-current interaction of dispersive nonlinear waves in stratified shallow water. In the mean time, the present paper has combined asymptotic expansions and vertical averaging with the stochastic variational framework to formulate the SALT approach for the various stratified shallow water equations which descend from Euler’s three-dimensional fluid equations under approximation by asymptotic expansions and vertical averaging.
5 Acknowledgments

We are grateful for many suggestions for improvements offered in discussions with A. Bethencourt de Leon, C. Cotter, D.O. Crisan, J.D. Gibbon, W. Pan, D. Papageorgiou, O. Street and S. Takao. EL thanks R. Klein for his inspirational lectures on asymptotic analysis and his careful explanation of the Strouhal number. The work of DDH was partially supported by EPSRC standard grant [grant number EP/N023781/1]. EL was supported by EPSRC grant [grant number EP/L016613/1] and is grateful for the warm hospitality at the Imperial College London EPSRC Centre for Doctoral Training in the Mathematics of Planet Earth during the course of this work.

References

[BAB+17] Judith Berner, Ulrich Achatz, Lauriane Batté, Lisa Bengtsson, Alvaro de la Cámara, Hannah M Christensen, Matteo Colangeli, Danielle RB Coleman, Daan Crommelin, Stamen I Dolaptchiev, et al. Stochastic parameterization: Toward a new view of weather and climate models. *Bulletin of the American Meteorological Society*, 98(3):565–588, 2017.

[BCH19] Thomas M Bendall, Colin J Cotter, and Darryl D Holm. Perspectives on the formation of peakons in the stochastic Camassa-Holm equation. *arXiv preprint arXiv:1910.03018*, 2019.

[Ben73] DJ Benney. Some properties of long nonlinear waves. *Studies in Applied Mathematics*, 52(1):45–50, 1973.

[BJP12] Judith Berner, Thomas Jung, and TN Palmer. Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. *Journal of Climate*, 25(14):4946–4962, 2012.

[BKM84] J Thomas Beale, Tosio Kato, and Andrew Majda. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. *Communications in Mathematical Physics*, 94(1):61–66, 1984.

[CCH+18] Colin Cotter, Dan Crisan, Darryl D Holm, Wei Pan, and Igor Shevchenko. Modelling uncertainty using circulation-preserving stochastic transport noise in a 2-layer quasi-geostrophic model. *arXiv preprint arXiv:1802.05711*, 2018.

[CCH+19a] Colin Cotter, Dan Crisan, Darryl D Holm, Wei Pan, and Igor Shevchenko. Numerically modeling stochastic Lie transport in fluid dynamics. *Multiscale Modeling & Simulation*, 17(1):192–232, 2019.

[CCH+19b] Colin Cotter, Dan Crisan, Darryl D Holm, Wei Pan, and Igor Shevchenko. A particle filter for Stochastic Advection by Lie Transport (SALT): A case study for the damped and forced incompressible 2D Euler equation. *arXiv preprint arXiv:1907.11884*, 2019.

[CdVO16] Alain Colin de Verdière and Michel Olittraut. A direct determination of the World Ocean barotropic circulation. *Journal of Physical Oceanography*, 46(1):255–273, 2016.

[CFH19] Dan Crisan, Franco Flandoli, and Darryl D Holm. Solution properties of a 3D stochastic Euler fluid equation. *Journal of Nonlinear Science*, 29(3):813–870, 2019.

[CGH17] Colin J Cotter, Georg A Gottwald, and Darryl D Holm. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 473(2205):20170388, 2017.

[CH92] Roberto Camassa and Darryl D Holm. Dispersive barotropic equations for stratified mesoscale ocean dynamics. *Physica D: Nonlinear Phenomena*, 60(1-4):1–15, 1992.

[CH93] Roberto Camassa and Darryl D Holm. An integrable shallow water equation with peaked solitons. *Physical Review Letters*, 71(11):1661, 1993.

[CH18] Dan Crisan and Darryl D Holm. Wave breaking for the stochastic Camassa–Holm equation. *Physica D: Nonlinear Phenomena*, 376:138–143, 2018.

[CHH94] Roberto Camassa, Darryl D Holm, and James M Hyman. A new integrable shallow water equation. In *Advances in Applied Mechanics*, volume 31, pages 1–33. Elsevier, 1994.

[CHL96] Roberto Camassa, Darryl D Holm, and C David Levermore. Long-time effects of bottom topography in shallow water. *Physica D: Nonlinear Phenomena*, 98(2-4):258–286, 1996.
[CHL97] Roberto Camassa, Darryl D Holm, and C David Levermore. Long-time shallow-water equations with a varying bottom. Journal of Fluid Mechanics, 349:173–189, 1997.

[CHP10] Colin J Cotter, Darryl D Holm, and James R Percival. The square root depth wave equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2124):3621–3633, 2010.

[CKK98] Mark A Cane, Vladimir M Kamenkovich, and Alexander Krupitsky. On the utility and disutility of JEBAR. Journal of Physical Oceanography, 28(3):519–526, 1998.

[CZ+06] Ming Chen, Youjin Zhang, et al. A two-component generalization of the Camassa-Holm equation and its solutions. Letters in Mathematical Physics, 75(1):1–15, 2006.

[dLHLT19] Aythami Bethencourt de Léon, Darryl Holm, Erwin Luesink, and So Takao. Implications of Kunita-Itô-Wentzell formula for k-forms in stochastic fluid dynamics. arXiv preprint arXiv:1903.07201, 2019.

[DS94] John K Dukowicz and Richard D Smith. Implicit free-surface method for the Bryan-Cox-Semtner ocean model. Journal of Geophysical Research: Oceans, 99(C4):7991–8014, 1994.

[EM70] David G Ebin and Jerrold Marsden. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math, 92(1):102–163, 1970.

[FKAB+19] Baylor Fox-Kemper, Alistair Adcroft, Claus W Böning, Eric P Chassignet, Enrique Curchitser, Gokhan Danabasoglu, Carsten Eden, Matthew H England, Rüdiger Gerdes, Richard J Greatbatch, et al. Challenges and prospects in ocean circulation models. Frontiers in Marine Science, 6:65, 2019.

[GCF16] Georg A Gottwald, Daan T Crommelin, and Christian LE Franzke. Stochastic climate theory. arXiv preprint arXiv:1612.07474, 2016.

[GHL17] Bernard J Geurts, Darryl D Holm, and Erwin Luesink. Lyapunov exponents of two stochastic Lorenz 63 systems. arXiv preprint arXiv:1706.05882, 2017.

[GN76] Albert E Green and Paul M Naghdi. A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 78(2):237–246, 1976.

[HMR98] Darryl D Holm, Jerrold E Marsden, and Tudor S Ratiu. The Euler–Poincaré equations and semidirect products with applications to continuum theories. Advances in Mathematics, 137(1):1–81, 1998.

[HMR99] Darryl D Holm, Jerrold E Marsden, and Tudor S Ratiu. The Euler-Poincaré equations in geophysical fluid dynamics. arXiv preprint chao-dyn/9903035, 1999.

[Hol15] Darryl D Holm. Variational principles for stochastic fluid dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2176):20140963, 2015.

[HT16] Darryl D Holm and Tomasz M Tyranowski. Variational principles for stochastic soliton dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2187):20150827, 2016.

[HT18] Darryl D Holm and Tomasz M Tyranowski. New variational and multisymplectic formulations of the Euler–Poincaré equation on the Virasoro–Bott group using the inverse map. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213):20180052, 2018.

[KLMP13] Boris Khesin, Jonatan Lenells, G Misiolek, and Stephen C Preston. Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geometric and Functional Analysis, 23(1):334–366, 2013.

[Kup06] Boris A Kupershmidt. Extended equations of long waves. Studies in Applied Mathematics, 116(4):415–434, 2006.

[LO97] C David Levermore and Marcel Oliver. Analyticity of solutions for a generalized Euler equation. Journal of differential equations, 133(2):321–339, 1997.

[LOT96a] C David Levermore, Marcel Oliver, and Edriss S Titi. Global well-posedness for models of shallow water in a basin with a varying bottom. Indiana University Mathematics Journal, pages 479–510, 1996.

[LOT96b] C David Levermore, Marcel Oliver, and Edriss S Titi. Global well-posedness for the lake equations. Physica D: Nonlinear Phenomena, 98(2-4):492–509, 1996.
A Linear dispersion relations for deterministic equilibria of Green–Naghdi equations

In the coupled set of stochastic Green–Naghdi equations (3.40), there are no time independent solutions. That is, there are no equilibria in the presence of noise. Hence, in order to investigate the wave behaviour of the solutions of these equations near a steady state, we must switch off the noise, and investigate the equilibria of the deterministic equations. By writing the equations in componentwise form, assuming that the bathymetry \(h_0 \) is flat and assuming that the Coriolis parameter \(f_0 \) is constant, linearising around \((\bar{u}, \bar{v}, \zeta, \bar{b}) = (0, 0, 0, 0) \) yields a set of equations with constant coefficients, given by

\[
\begin{align*}
\frac{1}{\beta} \frac{\partial \bar{u}}{\partial t} - \frac{\sigma^2}{3\beta} h_0^2 \frac{\partial^2 \bar{u}}{\partial x \partial t} &= -\frac{\alpha}{\beta^2} \zeta_x - \frac{\sigma^2}{2\beta^2} h_0 \frac{\partial \bar{v}}{\partial x} + \frac{f_0}{R_0} \bar{u}, \\
\frac{1}{\beta} \frac{\partial \bar{v}}{\partial t} - \frac{\sigma^2}{3\beta} h_0^2 \frac{\partial^2 \bar{v}}{\partial y \partial t} &= -\frac{\alpha}{\beta^2} \zeta_y - \frac{\sigma^2}{2\beta^2} h_0 \frac{\partial \bar{u}}{\partial y} - \frac{f_0}{R_0} \bar{v}, \\
\frac{1}{\beta} \frac{\partial \zeta}{\partial t} &= -h_0 (\bar{u}_x + \bar{v}_y), \\
\frac{1}{\beta} \frac{\partial \bar{b}}{\partial t} &= 0.
\end{align*}
\quad (A.1)
\]

We can now substitute the travelling wave Ansatz \((\bar{u}, \bar{v}, \zeta, \bar{b}) = (\bar{u}_0, \bar{v}_0, \zeta_0, \bar{b}_0)e^{i(k \cdot x - \omega t)} \) into (A.1). Standard procedures in linear algebra then imply the dispersion relation as the roots of a quartic polynomial; namely,

\[
\omega(k) = 0,
\]

\[
\omega(k) = \pm \sqrt{\frac{\sigma^2 f_0^2}{4h_0^3} + \alpha h_0 |k|^2 + \frac{2\alpha \sigma h_0^2 k^2 |k|^2}{3}} \sqrt{1 + \frac{\sigma^2 h_0^2 |k|^2}{9} + \frac{\sigma^2 h_0^2 |k|^2}{9} k^2 |k|^2}.
\quad (A.2)
\]

In the dispersion relation, \(\omega(k) \), the quantity \(k = (k, l) \) is the wave vector in two horizontal dimensions. The zero frequency dispersion relation corresponds to geostrophically balanced motion; uniform in time. When the aspect ratio goes to zero the second expression for the frequency yields dispersion relation for inertio-gravity (or Poincaré) waves. At high wave numbers, the wave oscillation frequency tends to a limiting constant; regularised by nonhydrostatic dispersion.

Upon further restricting to one-dimensional motion without rotation, the dispersion relation (A.2) takes the form

\[
\omega(k) = 0,
\]

\[
\omega(k) = \pm \frac{\sqrt{\alpha h_0 k}}{\sqrt{1 + \frac{\sigma^2 h_0^2 |k|^2}{3}}}, \quad (A.3)
\]
and we can compute the phase velocity $v_p = \omega/k$ and the group velocity $v_g = d\omega/dk$ to be

$$v_p(k) = \pm \frac{\sqrt{\alpha h_0}}{\sqrt{1 + \frac{\alpha h_0^2}{3} k^2}},$$

$$v_g(k) = \frac{\sqrt{\alpha h_0}}{(1 + \frac{\alpha h_0^2}{3} k^2)^{3/2}}. \quad (A.4)$$

Equation (A.4) shows the dispersion of shallow water waves, as excitations of longer wavelength travel faster than excitations of shorter wavelength.

B The stochastic thermal rotating shallow water (TRSW) model

The thermal rotating shallow water (TRSW) model describes an upper active layer of fluid motion with horizontally varying buoyancy and an inert lower layer. The TRSW model is an extension of the RSW model and a simplification of the various models we have discussed in the text. This TRSW model comprises an upper active layer of fluid motion with horizontally varying buoyancy and an inert lower layer. Since the lower layer is inert, the TRSW model is sometimes called a 1.5 layer model [WD13]. For a discussion of a fully multilayer model with nonhydrostatic pressure, see [CHP10].

The TRSW equations are expressed in terms of the square root $\gamma = \sqrt{b}$ of the (nonnegative) buoyancy $b(x,t) = (\rho - \rho(x,t))/\bar{\rho}$, where ρ is the (time and space dependent) mass density of the active upper layer, $\bar{\rho}$ is the uniform mass density of the inert lower layer. We let $\eta = \eta(x,t)$ be the thickness of the active layer, where $x = (x,y)$ is the horizontal vector position, and t is time. The nondimensional deterministic TRSW equations are

$$\frac{D\gamma}{Dt} = 0, \quad \eta \partial_t + \nabla \cdot (\eta \mathbf{u}) = 0, \quad \frac{D\gamma}{Dt} = 0, \quad (B.1)$$

with notation Ro for Rossby number and the standard advective time derivative $D_t = \partial_t + \mathbf{u} \cdot \nabla$. The boundary conditions are

$$\mathbf{n} \cdot \mathbf{u} = 0 \quad \text{and} \quad \mathbf{n} \times \mathbf{b} = 0, \quad (B.2)$$

meaning that fluid velocity \mathbf{u} is tangential and buoyancy \mathbf{b} is constant on the boundary of the domain of flow.

Upon introducing the following stochastic vector field in \mathbb{R}^2 for fluid transport

$$d\mathbf{X}_t := \mathbf{u}(x,t)dt + \sum_{i=1}^{M} \xi_i(x) \circ dW^i_t, \quad (B.3)$$

we can derive the stochastic TRSW equations. The deterministic equations in (B.1) follow as Euler-Poincaré equations for the action integral

$$S = \int_0^T \ell_{\text{TRSW}}(\mathbf{u},\eta,\gamma) \, dt = \int_0^T \int_{CS} \frac{\text{Ro}}{2} |\mathbf{u}|^2 + \eta \mathbf{u} \cdot \mathbf{R}(x) - \frac{1}{2} \gamma^2 \eta^2 \, dx \, dy \, dt, \quad (B.4)$$

where CS denotes some horizontal surface. The stochastic TRSW equations are derived by first evaluating the variational derivatives for the Lagrangian in the action integral (B.4) as

$$\frac{1}{\eta} \frac{\delta l}{\delta \mathbf{u}} = \text{Ro} \mathbf{u} + \mathbf{R}(x) =: \mathbf{V}(x,t),$$

$$\frac{\delta l}{\delta \eta} = \frac{\text{Ro}}{2} |\mathbf{u}|^2 + \mathbf{u} \cdot \mathbf{R}(x) - \gamma^2 \eta, \quad (B.5)$$

$$\frac{\delta l}{\delta \gamma} = - \gamma \eta^2 \quad \text{so that} \quad \frac{\delta l}{\delta b} = \frac{1}{2} \gamma^2. \quad (B.5)$$

Next, we apply the stochastic Euler-Poincaré theorem 1.1 with the variational derivatives as above and obtain

$$\text{Ro} \left(d\mathbf{u} + (d\mathbf{X}_t \cdot \nabla) \mathbf{u} + (\nabla \xi_i) \cdot \mathbf{u} \, dW^i_t \right) = - \gamma \nabla (\eta \gamma) \, dt - f \mathbf{z} \times d\mathbf{X}_t - \nabla (\xi_i \cdot \mathbf{R}) \circ dW^i_t, \quad (B.6)$$

$$d\eta + \nabla \cdot (\eta d\mathbf{X}_t) = 0,$$

$$d\gamma + (d\mathbf{X}_t \cdot \nabla) \gamma = 0.$$

36
Remark B.1. The stochastic Euler-Poincaré equation may be written in three dimensional vector notation as,

\[
d\left(\frac{1}{\eta} \frac{\partial l}{\partial \eta} \right) - d\chi_t \times \text{curl}\left(\frac{1}{\eta} \frac{\partial l}{\partial \eta} \right) + \nabla \left(d\chi_t \cdot \frac{1}{\eta} \frac{\partial l}{\partial \eta} - \frac{\partial l}{\partial \eta} dt \right) + \frac{1}{\eta} \frac{\partial l}{\partial \eta} \nabla \gamma dt = 0. \tag{B.7}
\]

For the Lagrangian in (B.4) with variational derivatives given in (B.5) the stochastic Euler-Poincaré equation in (B.7) implies

\[
dV - d\chi_t \times \text{curl}V + \nabla \left(V \cdot \xi_t(x) \circ dW_t + \frac{R_0}{2} |u|^2 dt \right) + \frac{1}{2} \nabla \gamma^2 dt = 0. \tag{B.8}
\]

Remark B.2. The stochastic TRSW equations (B.6) imply the following Kelvin circulation law

\[
d \int_{c(d\chi_t)} \frac{1}{\eta} \frac{\partial l}{\partial \eta} \cdot dx = - \int_{c(d\chi_t)} \frac{1}{\eta} \frac{\partial l}{\partial \eta} \nabla \gamma \cdot dx,
\]

where \(c(d\chi_t)\) is a closed loop moving with stochastic horizontal fluid velocity \(d\chi_t(x,t)\) in two dimensions. Evaluating for the variational derivatives for TRSW in (B.5) yields

\[
d \int_{c(d\chi_t)} V \cdot dx = \frac{1}{2} \int_{c(d\chi_t)} \eta \nabla \gamma^2 \cdot dx = \frac{1}{2} \int_{\beta_S = c(d\chi_t)} \nabla \eta \times \nabla \gamma^2 dS dt,
\]

One sees in equation (B.10) that misalignment of the horizontal gradients of layer thickness \(\eta\) and buoyancy \(b = \gamma^2\) will generate circulation, cf. the corresponding Kelvin circulation theorems in equations (2.42) and (3.41).

Remark B.3. The evolution of potential vorticity on fluid parcels for the TRSW equations in (B.6) is given by

\[
dq + (d\chi_t \cdot \nabla)q = \frac{1}{2\eta} J(\eta, b), \tag{B.11}
\]

where the potential vorticity is defined by

\[
q := \frac{\xi_t}{\eta}, \quad \text{and} \quad \xi := \hat{z} \cdot \nabla \times V,
\]

and

\[
J(\eta, b) = \hat{z} \cdot \nabla \eta \times \nabla b = -\nabla \cdot (\eta \hat{z} \times \nabla b)
\]

is the Jacobian of the depth \(\eta\) and the buoyancy is \(b = \gamma^2\).

Remark B.4. The stochastic TRSW equations (B.6) have an infinite number of conserved integral quantities

\[
C_{f,g} = \int_{CS} (f(\gamma) + qg(\gamma)) \eta dxdy,
\]

for the boundary conditions given in (B.2) and any differentiable functions \(f\) and \(g\).

Remark B.5. The Legendre transform which determines the Hamiltonian \(dh\) for the stochastic TRSW equations is defined as\(^1\)

\[
dh(\mu, \eta, b) := \langle \mu, d\chi_t \rangle - \ell_{\text{TRSW}}(\mu, \eta, \gamma) dt,
\]

in which the angle brackets in the definition of the Legendre transform denote the \(L^2\) pairing over the horizontal cross-section \(CS\). The Hamiltonian form of the stochastic TRSW equations is given by

\[
\frac{1}{\beta} dF = \left\{ F, dh \right\} = - \int_{\Omega} \left[\frac{\delta F}{\delta \mu_j} \partial_j \mu_i + \frac{\delta F}{\delta \eta} \partial_i \eta + \frac{\delta F}{\delta b} \partial_{ij} b \right] dt \left[\begin{array}{c} \delta (dh)/\delta \mu_j \\ \delta (dh)/\delta \eta \\ \delta (dh)/\delta b \end{array} \right] dx dy. \tag{B.16}
\]

The conserved integral quantities \(C_{f,g}\) defined in (B.14) are Casimirs of the Lie–Poisson bracket in (B.16) which persist when the Hamiltonian is made stochastic. This means that these equations describe stochastic coadjoint motion in function space on level sets of the Casimir functionals \(C_{f,g}\). Thus, the SALT introduction of stochasticity into the TRSW equations preserves their Lie–Poisson bracket and thereby preserves their geometric interpretation.

\(^1\)Notice that the Hamiltonian \(dh\) in (B.15) is a semimartingale. Recall the definition 1.1.