NanoString expression profiling identifies candidate biomarkers of RAD001 response in metastatic gastric cancer

Kakoli Das,1 Xiubin Chan,2 David Epstein,1 Bin Tean Teh,1,3,4 Kyoung-Mee Kim,5 Seung Tae Kim,6 Se Hoon Park,6 Won Ki Kang,6 Steve Rozen,1 Jeeyun Lee,6 Patrick Tan1,2,4

ABSTRACT

Background: Gene expression profiling has contributed greatly to cancer research. However, expression-driven biomarker discovery in metastatic gastric cancer (mGC) remains unclear. A gene expression profile predicting RAD001 response in refractory GC was explored in this study.

Methods: Total RNA isolated from 54 tumour specimens from patients with mGC, prior to RAD001 treatment, was analysed via the NanoString nCounter gene expression assay. This assay targeted 477 genes representing 10 different GC-related oncogenic signalling and molecular subtype-specific expression signatures. Gene expression profiles were correlated with patient clinicopathological variables.

Results: NanoString data confirmed similar gene expression profiles previously identified by microarray analysis. Signature I with 3 GC subtypes (mesenchymal, metabolic and proliferative) showed approximately 90% concordance where the mesenchymal and proliferative subtypes were significantly associated with signet ring cell carcinoma and the WHO classified tubular adenocarcinoma GC, respectively (p=0.042). Single-gene-level correlations with patient clinicopathological variables showed strong associations between FHL1 expression (mesenchymal subtype) and signet ring cell carcinoma, and NEK2, OIP5, PRC1, TPX2 expression (proliferative subtype) with tubular adenocarcinoma (adjusted p<0.05). Increased BRCA2 (p=0.040) and MMP9 (p=0.045) expression was significantly associated with RAD001 good response and longer progression-free survival outcome (BRCA2, p=0.012, HR 0.370 95% CI (0.171 to 0.800); MMP9, p=0.010, HR 0.359 95% CI (0.166 to 0.779)). In contrast, increased BTC (p=0.035) expression was significantly associated with RAD001 poor response and poor progression-free survival (p=0.031, HR 2.336 95% CI (1.079 to 5.059)) by univariate Cox regression analysis.

Conclusions: Microarray results are highly reproducible with NanoString nCounter gene expression profiling. Additionally, BRCA2 and MMP9 expression are potential predictive biomarkers for good response in RAD001-treated mGC.

Key questions

What is already known about this subject?
Several preclinical studies have shown that mammalian target of rapamycin (mTOR), a serine-threonine kinase, is a potential therapeutic target in many cancer types, including gastric cancer (GC). Our previous phase II study of patients with metastatic gastric cancer (mGC) who failed to respond to first-line and second-line chemotherapy demonstrated clinical efficacy and safety of the mTOR inhibitor RAD001 in these patients. Despite a lack of response in the overall population, subgroup analysis suggested that certain patients with GC may benefit from RAD001 treatment, indicating the need for biomarkers that can accurately predict GC response to RAD001.

What does this study add?
We performed a gene expression profiling assay by the NanoString nCounter System in RAD001-treated patients with mGC. The gene expression profiles were analysed by unsupervised hierarchical clustering for 10 Signature Groups comprising 477 genes that were relevant to GC signalling pathways. We found that higher expression of BRCA2 and MMP9 was strongly associated with RAD001 good response and longer progression-free survival outcome (p<0.05) in patients with mGC, whereas increased BTC and CHST3 expression was statistically associated with RAD001 poor response mGC. The BTC expression was also associated with poor progression-free survival in these patients (p<0.05).

How might this impact on clinical practice?
Classification of patients into signature subtypes by NanoString expression profiling may be a useful approach of exploring predicting biomarkers for responders/non-responders in clinical trials. A subset of patients with GC with specific biomarkers may potentially benefit from RAD001.

INTRODUCTION

Gastric cancer (GC) is a predominant form of cancer in Asia, with the highest incidence...
in the Republic of Korea, followed by Mongolia and Japan. The overall incidence rate of GC in East Asia is 24 per 100,000 in men and 9.8 per 100,000 in women, both of which are higher than the corresponding statistics in North America (2.8 and 1.5). In the last decade, several phase III clinical trials have failed to show survival benefit associated with the targeted agents in patients with metastatic GC (mGC). Most recently, the REGARD trial demonstrated significantly prolonged progression-free survival (PFS) in patients with GC treated with ramucirumab, a monoclonal antibody against vascular endothelial growth factor receptor 2, as compared with the results in patients in the placebo arm. Subsequently, the RAINBOW trial, which compared paclitaxel with or without ramucirumab in second-line chemotherapy, showed prolonged overall survival in the paclitaxel with ramucirumab arm. These trials have introduced several targeted agents for mGC, especially with the recent identification of the molecular landscape of GC. Although trastuzumab, a monoclonal antibody against HER2, was approved worldwide as a standard therapy for HER2-positive GC in 2010 on the basis of the results from the phase III multicentre ToGA trial, other targeted agents have failed to show survival benefit in GC.

The mammalian target of rapamycin (mTOR), a serine-threonine kinase activated by PI3K through Akt, regulates cell growth and proliferation, cellular metabolism and angiogenesis. The PI3K-Akt-mTOR pathway is frequently activated in GC, as demonstrated by several preclinical studies suggesting that mTOR is a potential therapeutic target. Our previous phase II study of patients with mGC who failed to respond to first-line and second-line chemotherapy demonstrated clinical efficacy and safety of the mTOR inhibitor everolimus (RAD001) in these patients and also in those with peritoneal dissemination. Recently, the phase III GRANITE-I study evaluated RAD001 efficacy and safety in 656 patients who were previously treated with two lines of systemic chemotherapy. However, GRANITE-I did not demonstrate any significant improvement in overall survival or PFS compared with best supportive care. Despite a lack of response in the overall population, subgroup analysis suggested that certain patients with GC may benefit from RAD001 treatment, indicating the need for biomarkers that can accurately predict GC response to RAD001.

NanoString is a relatively new molecular profiling technology that can generate accurate genomic information from small amounts of fixed patient tissues. The NanoString platform uses digital, colour-coded barcodes or code sets tagged to sequence-specific probes, allowing quantification of mRNA expression. Recent studies have also reported the use of the nCounter System for prognostic and predictive investigation in chemotherapy trials and randomised placebo-controlled studies. The importance of molecular subtypes according to gene expression profiling has been highlighted by several groups such as The Cancer Genome Atlas (TCGA), Asian Cancer Research Group (ACRG) and the Singapore Study (genomic intestinal (G-INT) and genomic diffuse (G-DIF), metabolic/proliferative/mesenchymal).

In this study, we used NanoString technology to investigate gene expression patterns in a phase II trial cohort of patients with mGC treated with RAD001 in a salvage setting. In total, we analysed 477 genes, carefully selected from established oncogenic pathways and subtype-specific gene signatures in the literature (see online supplementary table S1).

MATERIALS AND METHODS

Patient demographics

We obtained tissues from 54 patients with histologically confirmed mGC who received palliative RAD001 chemotherapy at the Samsung Medical Centre (Korea) after patient consent and ethics approval was obtained (46 patients from Xeloda/RAD001, 8 patients from the RAD001 trial). All procedures were carried out according to guidelines from the Declaration of Helsinki. The Institutional Review Board at the Samsung Medical Center approved the protocol. Patient characteristics are presented in table 1.

Characteristic	Number of samples (%)
Patients	54
Ethnicity	Korean
Median age (range)	53 (36–78)
Gender	
Male	39 (72%)
Female	15 (28%)
WHO classification	
Tubular adenocarcinoma	45 (83%)
Signet ring cell carcinoma	9 (17%)
Lauren classification	
Intestinal	16 (30%)
Diffuse	11 (20%)
Missing	27 (50%)
Grade	
Well differentiated	2 (4%)
Moderately differentiated	24 (44%)
Poorly differentiated	28 (52%)
Distant metastasis	
M0	0 (0)
M1	54 (100%)
Documented disease progression	
Yes	45 (83%)
No	8 (15%)
Response to RAD001	
Good responder	
Partial	5 (9%)
Stable	20 (37%)
Poor responder	
Progressive	25 (46%)
Not evaluable	4 (7%)

Das K, et al. ESMO Open 2016;1:e000009. doi:10.1136/esmoopen-2015-000009
RNA extraction and NanoString quantification
Total RNA was extracted from 5 to 10 sections of 4 µm thick FFPE sections as previously described. Non-tumour elements were removed by manual microdissection before transferring to the extraction tube guided by H&E-stained slides. Total RNA was then extracted using the High Pure RNA Paraffin kit (Roche Diagnostic, Mannheim, Germany) or E.Z.N.A. FFPE RNA Isolation Kit (Omega Bio-Tek, Norcross, Georgia, USA) according to the manufacturer’s protocol. Concentrations of extracted RNA were determined using the NanoDrop 8000 Spectrophotometer (Thermo Scientific). The samples with RNA concentrations of <40 ng/µL, A260/ A280 ratios <1.5 or A260/230 ratios <1.0 were considered as inadequate and were excluded from the analysis.

A NanoString panel was designed, comprising 495 previously published genes representing 10 different GC-related oncogenic signalling and molecular subtype-specific expression signatures of clinical relevance (see online supplementary table S1). Additionally, five housekeeping genes (GAPDH, TBP, ACTB, RPL29 and GUSB) showing minimal alteration across GC samples were also included as controls. The custom-designed probes included a 100-bp region targeting the mRNA, with two sequence-specific, fluorescent-barcoded probes for each target (3' biotinylated capture probe and a 5’ reporter probe). Probes and 100 ng total RNA were hybridised overnight at 65°C according to the manufacturer’s protocol. A NanoString nCounter Digital Analyzer (NanoString Technologies, Seattle, Washington, USA) was used to count the digital barcodes representing the number of transcripts. The raw expression data were normalised using nSolver Analysis software. A normalisation factor was calculated by obtaining the geometric mean of the positive controls used for each sample and applied to the raw counts of the nCounter output data to eliminate variability that was unrelated to the samples. The resulting data were normalised again with the geometric mean of the housekeeping genes. Normalised data were log2-transformed for further analyses. During the data normalisation process, we found that 18 genes exhibited expression values below the limits of detection as defined by NanoString nSolver Analysis software. These 18 genes were subsequently filtered out and discarded, leaving a total of 477 genes for downstream analysis.

RESULTS
Gene expression analysis of 10 expression signature subgroups
We profiled 54 FFPE GC samples, recruited from a previously published clinical trial cohort where patients were treated with RAD001. Tumour samples were collected prior to RAD001 treatment. RNA from the samples was analysed using a custom-designed NanoString panel measuring the expression levels of 477 genes. The genes were divided into 10 expression signature subgroups, where the constituent genes in each subgroup were selected on the basis of their association with previously published GC molecular subtypes, signalling pathways or other GC oncogenic processes (see online supplementary table S1). Using a clustering algorithm, we grouped the individual GCs according to each expression signature.

To test the robustness of the NanoString-based data, we investigated if individual genes in each signature also exhibited pairwise correlations similar to previously described relationships in the literature. Signature Group I consisted of 95 genes used in a previous study, to categorise GCs into mesenchymal, proliferative and metabolic subtypes using gene microarrays. The study reported that mesenchymal subtype GCs exhibit characteristics of cancer stem cells and are sensitive to PI3K-AKT-mTOR inhibitors, proliferative GCs show high levels of genomic instability and TP53 mutations, while metabolic GCs are sensitive to 5-fluorouracil. NanoString

Das K, et al. ESMO Open 2016;1:e000009. doi:10.1136/esmoopen-2015-000009

Clinicopathological characteristics are shown in table 1. They were enrolled for RAD001 therapy only if they failed at least two previous lines of chemotherapy. The treatment outcome for RAD001 and capecitabine has been published.

RNA extraction and NanoString quantification
Total RNA was extracted from 5 to 10 sections of 4 µm thick FFPE sections as previously described. Non-tumour elements were removed by manual microdissection before transferring to the extraction tube guided by H&E-stained slides. Total RNA was then extracted using the High Pure RNA Paraffin kit (Roche Diagnostic, Mannheim, Germany) or E.Z.N.A. FFPE RNA Isolation Kit (Omega Bio-Tek, Norcross, Georgia, USA) according to the manufacturer’s protocol. Concentrations of extracted RNA were determined using the NanoDrop 8000 Spectrophotometer (Thermo Scientific). The samples with RNA concentrations of <40 ng/µL, A260/A280 ratios <1.5 or A260/230 ratios <1.0 were considered as inadequate and were excluded from the analysis.

A NanoString panel was designed, comprising 495 previously published genes representing 10 different GC-related oncogenic signalling and molecular subtype-specific expression signatures of clinical relevance (see online supplementary table S1). Additionally, five housekeeping genes (GAPDH, TBP, ACTB, RPL29 and GUSB) showing minimal alteration across GC samples were also included as controls. The custom-designed probes included a 100-bp region targeting the mRNA, with two sequence-specific, fluorescent-barcoded probes for each target (3’ biotinylated capture probe and a 5’ reporter probe). Probes and 100 ng total RNA were hybridised overnight at 65°C according to the manufacturer’s protocol. A NanoString nCounter Digital Analyzer (NanoString Technologies, Seattle, Washington, USA) was used to count the digital barcodes representing the number of transcripts. The raw expression data were normalised using nSolver Analysis software. A normalisation factor was calculated by obtaining the geometric mean of the positive controls used for each sample and applied to the raw counts of the nCounter output data to eliminate variability that was unrelated to the samples. The resulting data were normalised again with the geometric mean of the housekeeping genes. Normalised data were log2-transformed for further analyses. During the data normalisation process, we found that 18 genes exhibited expression values below the limits of detection as defined by NanoString nSolver Analysis software. These 18 genes were subsequently filtered out and discarded, leaving a total of 477 genes for downstream analysis.

Statistical analysis
Individual gene sets were divided into 10 Signature Groups. The normalised log2-transformed mRNA expression data of 54 tumours were analysed by unsupervised hierarchical clustering using Cluster V.3.0 and Java Tree view software. Heat maps showing high and low expression of genes in the subtypes were generated and tumours were categorised on the basis of these expression patterns. Statistical analysis was performed using IBM-SPSS Statistics V.22.0 for Windows (SPSS Inc, Chicago, Illinois, USA). Gene expression levels were correlated against different clusters of tumours using a non-parametric, several independent samples test, and a p value <0.05 was considered significant by the Kruskal-Wallis H test. Fisher’s exact test was used to evaluate correlations between gene expression patterns or clusters and clinicopathological characteristics. An independent samples comparison of the means Student t test was used to determine correlations between single-gene expression levels and patient clinicopathological parameters and response to treatment. Overall survival and PFS analysis was performed using the Kaplan-Meier survival analysis and a p value <0.05 was considered significant (log-rank test). Univariate and multivariate analyses with regard to treatment were performed using a Cox proportional hazards regression model. All p values were adjusted using a false discovery rate (FDR) correction of 5% for multiple comparisons. All tests were two-sided at the significance level p<0.05. PFS was defined as the time from initiation of the RAD001 treatment to the date of documented disease progression or death from any cause.

RESULTS
Gene expression analysis of 10 expression signature subgroups
We profiled 54 FFPE GC samples, recruited from a previously published clinical trial cohort where patients were treated with RAD001. Tumour samples were collected prior to RAD001 treatment. RNA from the samples was analysed using a custom-designed NanoString panel measuring the expression levels of 477 genes. The genes were divided into 10 expression signature subgroups, where the constituent genes in each subgroup were selected on the basis of their association with previously published GC molecular subtypes, signalling pathways or other GC oncogenic processes (see online supplementary table S1). Using a clustering algorithm, we grouped the individual GCs according to each expression signature.

To test the robustness of the NanoString-based data, we investigated if individual genes in each signature also exhibited pairwise correlations similar to previously described relationships in the literature. Signature Group I consisted of 95 genes used in a previous study, to categorise GCs into mesenchymal, proliferative and metabolic subtypes using gene microarrays. The study reported that mesenchymal subtype GCs exhibit characteristics of cancer stem cells and are sensitive to PI3K-AKT-mTOR inhibitors, proliferative GCs show high levels of genomic instability and TP53 mutations, while metabolic GCs are sensitive to 5-fluorouracil. NanoString
analysis divided the FFPE GCs into four clusters (figure 1A). Single-gene-level analysis revealed that 91.6% of the 95 genes in this Signature Group were significantly associated with different clusters with FDR values ranging from p<0.0001 to p=0.045 (see online supplementary table S2A). Cluster 1 (mesenchymal) included 29.7% of the 54 gastric tumours and exhibited a high expression of mesenchymal subtype genes. Cluster 2 (metabolic) included 16.6% tumours showing upregulation of metabolic subtype genes while cluster 4 (proliferative) contained 29.7% tumours and high expression levels of proliferative subtype genes. In this cohort, 24% tumours segregated into a previously unidentified cluster 3 exhibiting upregulation of a small number of proliferative and mesenchymal genes (8 genes). Cluster 3 notwithstanding, our analysis suggests that the NanoString panel can be used to identify mesenchymal (cluster 1), metabolic (cluster 2) and proliferative (cluster 4) GCs. In total, approximately 92% NanoString genes exhibited good correlations with previously described microarray analysis patterns for the three subtype clusters.

Genes in Signature Group II (n=100) were selected on the basis of previous microarray analysis reporting an intrinsic subtype classification (G-DIF and G-INT) with distinct gene expression patterns. Using the 100 genes in this signature, we resolved three expression clusters, of which 55% of the 100 genes by NanoString analysis were significantly different between the three clusters (FDR values ranged between p<0.0001 and p=0.049) (see online supplementary table S2B). Cluster 1 included 44.4% of the 54 tumours showing an increased expression of G-DIF subtype, while cluster 3 comprised 38.9% of the tumours showing an increased level of G-INT subtype genes. Only a minority of the GCs (16.7%) were found in cluster 2 that showed a mixed expression level of both G-INT and G-DIF subtype genes (figure 1B), thus confirming a good concordance.
between the NanoString measurements and previously published microarray signatures. Similar results were obtained for the other eight signatures (see online supplementary results), confirming a good concordance between the NanoString measurements and previously published microarray signatures.

Correlation of Signature Groups with patient clinicopathological features

To support the biological relevance of these expression-based groupings, we proceeded to explore if the molecular subgroups defined by these signatures might be associated with independent patient clinicopathological characteristics. Gene expression patterns of the different Signature Groups were thus correlated with clinicopathological characteristics of the 54 patients. Patient age ranged from 36 to 78 years, with a median of 53 years. Patients ≤53 years were grouped as the ‘young age group’ and >53 years as the ‘elderly group’ (table 1). Thus, 24 of the 54 patients (44%) were in the elderly group. Additionally, 45 (83%) tumours were classified as the WHO tubular adenocarcinoma, 16 (30%) as Lauren’s intestinal type and 28 (52%) as poorly differentiated grade (table 1).

Notably, gene expression analysis of NanoString Signature Group I confirmed that previous histopathological correlates are reproducible. Specifically, GCs categorised as mesenchymal subtype were significantly associated with signet ring cell carcinoma, whereas those in the proliferative subtype were associated with tubular adenocarcinoma (p=0.042) (see online supplementary table S3A). At the single-gene level, increased expression of the tumour suppressor gene, four-and-a-half LIM domains 1 (FHL1), was strongly associated with signet ring cell carcinoma compared with tubular type tumours (p=0.003, FDR=0.049) (see online supplementary table S4A). Conversely, increased expression levels of genes, such as opa interacting protein 5 (OIP5) (p<0.0001), NIMA-related kinase 2 (NEK2), protein regulator of cytokinesis 1 (PRC1) and targeting protein for Xklp2 (TPX2) (p=0.001, FDR=0.019), were significantly associated with tubular type GCs (see online supplementary table S4A).

Signature Group II with three clusters of differential gene expression showed a significant association between cluster 2 and females (p=0.016) (see online supplementary table S3B). At the single-gene level, expression of phospholipase C, eta 1 (PLCH1), radial spoke head 1 homolog (RSPH1) and SH3 domain containing ring finger 1 (SH3RF1) genes were significantly upregulated in the younger compared with the elderly patients (p=0.001, FDR-adjusted p=0.033). An increased expression level of GLI pathogenesis-related 2 (GLI PR2) gene belonging to the pathogenesis-related-1 family was significantly associated with signet ring cell carcinoma compared with the tubular type of adenocarcinoma (FDR<0.0001) (see online supplementary table S4B).

Signature Group III comprised 42 genes exhibiting recurrent somatic alterations in GC. These alterations included gene amplification, deletion, mutation, methylation or DNA mismatch repair genes. Clustering analysis revealed three GC clusters using these genes that were correlated with patient clinicopathological characteristics. Cluster 1 tumours were significantly associated with tubular adenocarcinoma (39% of the 54 tumours; p=0.032), moderately differentiated tumour grade (24% of 54 tumours; p=0.037) and Lauren’s ‘intestinal’ type of classification (37% of 27 tumours; p=0.017) (see online supplementary table S3C), suggesting that the genes in Signature III may mediate proliferation in these tumours. Indeed, cluster 1 showed a significantly higher expression of genes such as Erb-B2 receptor tyrosine kinase 2 (ERBB2) amplification, cyclin E1 (CCNE1) amplification and β-catenin (CTNNB1) mutation that are known to be associated with this histological subtype of GC (p=0.20–25) (see online supplementary table S3D). Analysis of the other Signature Groups with clinicopathological features is provided in online supplementary table S2D-J.

Signature IV comprised the therapeutic markers (n=28) that were either sensitive or resistant to chemotherapy agents. Hierarchical clustering analysis generated three clusters and patient clinicopathological correlation showed a strong association between cluster 2 gene expression and the elderly age group (p=0.016), moderately differentiated tumour (p=0.023) and Lauren’s classification of intestinal type of GC (p=0.035) (see online supplementary table S3D). At the single-gene-level correlation, expression of the gene, glutathione S-transferase (GST) theta 1 (GSTT1) among others, was higher in signet ring cell carcinoma (p=0.035), Lauren’s diffuse type of GC (p=0.036) and poorly differentiated grade of tumour (p=0.041) compared with other tumour histological types and grades, although FDR-adjusted p value did not show a significant difference (see online supplementary table S4C). The other six Signature Groups did not show any significant correlation with patient clinicopathological features (FDR>0.05).

Correlation of gene expression levels with RAD001 treatment response

Of the 54 patients who were treated with RAD001, 27 were given three or more palliative lines of treatment prior to RAD001 treatment and at least 13 patients received further treatment after RAD001/Xeloda. All of the 54 patients had died at the time of NanoString analyses, mostly due to disease progression (N=45).

We proceeded to correlate the NanoString Signature Groups with RAD001 treatment response. Patients with stable or partial response to RAD001 treatment were considered as ‘good’ responders and those with progressive disease or not evaluable were considered as ‘poor’ responders to treatment (table 1). Signature Group clusters were correlated with the responders of RAD001 treatment. However, none of the signatures showed any association
with the responders. For Signature Group I targeting proliferative/mesenchymal/metabolic GCs, 46.3% (25/54) were good responders to RAD001 treatment, and among them 36% (9/25) were found in cluster 1 (mesenchymal) followed by cluster 4 (proliferative) (8/25) and the least in cluster 2 (metabolic) (2/25), although the difference was not statistically significant (p=0.420).

When analysed for PFS to treatment in Signature 1 GC subtypes, 50% of the 54 patients with GC survived for more than 8 weeks of treatment and 9% (5/54) of GC subtypes, 59% of the 54 patients with GC survived for more than 8 weeks of treatment and 9% (5/54) of the patients showed >30% decrease in tumour volume according to the Response Evaluation Criteria in Solid Tumours (RECIST 1.1) criteria, although there was no statistical significance when correlated against the clusters. The PFS survival curve showed that treatment was potentially more effective in cluster 1 (mesenchymal) patients compared with the other clusters and cluster 2 (metabolic) showed the worst survival rate (figure 2A). However, the difference was not statistically significant (p=0.396, log-rank test). Univariate and multivariate Cox regression model analysis after adjusting for age, gender, WHO histology type and tumour grade also did not exhibit any significant correlation between PFS and the clusters (GC subtypes) (see online supplementary tables S5A).

When analysed for trends, Signature VI tumours (stem cell markers) in cluster 2 showed a potential association with good responders (8/25, p=0.192). Other Signature Groups did not show any significant association with RAD001 response. The Kaplan-Meier analysis for PFS curve did not show any statistical difference between the five clusters (p=0.160, log-rank test) of Signature VI tumours (figure 2B). However, univariate Cox regression analysis of PFS correlations with Signature VI clusters (categorical variable) showed a better survival outcome in patients with cluster 2 expression in comparison to cluster 5 expression (p=0.035, HR 0.314, 95% CI (0.107 to 0.922) (see online supplementary table S5A). Multivariate Cox regression model analysis also exhibited statistical significance for cluster 2 after adjusting for age, gender, WHO histology type and tumour grade (p=0.031, HR 0.289, 95% CI (0.094 to 0.892)) (see online supplementary table S5A). Lauren’s histology was not included in both the Signatures I and VI multivariate analysis due to insufficient data. Individual gene-based analysis of all the 477 individual genes with RAD001 response highlighted two genes, breast cancer susceptibility gene 2 (BRCA2, Signature IV, p=0.040) and matrix metalloproteinase 9 (MMP9, Signature V, p=0.045) whose expression was significantly associated with good response to RAD001 treatment. Increased expression level of the genes, β-cellulin (BTC, Signature VII, p=0.035) and carbohydrate (chondroitin6) sulfotransferase 3 (CHST3), (Signature IX, p=0.033) were associated with poor response, although the FDR>0.05 was not significant (see online supplementary table S6). The genes such as excision repair cross-complementation group 1 (ERCC1), X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) and GSTTI (Signature IV; p=0.018, 0.049, 0.033) and CD44 (Signature VI; p=0.035) were associated with more than a 30% decrease in tumour volume by RECIST1.1 criteria. However, the adjusted p values were not significant (see online supplementary table S6). Next, we sought to examine the survival outcome of the responders relative to the expression level of the genes. The Kaplan-Meier survival analysis showed a significant association between RAD001 good response gene expression and longer survival outcome (BRCA2, p=0.008; MMP9, p=0.007) (figure 3A, B). Univariate and multivariate Cox regression analysis adjusted for the variables such as age, gender, WHO histology type and tumour grade showed significant association between better survival outcome and expression of BRCA2 and MMP9 (table 2).

The Kaplan-Meier survival analysis showed a significant association between RAD001 poor response gene expression and poor survival outcome (BTC, p=0.026 and CHST3, p=0.050) (figure 3C, D). Likewise, univariate Cox regression also exhibited significance for BTC expression and potentially for CHST3 expression with poor survival outcome (table 2). However, multivariate Cox regression analysis adjusted for the variables such as age, gender, WHO histology type and tumour grade did not show any significant association between poor survival outcome and BTC and CHST3 genes expression (table 2). These findings suggest that BRCA2, MMP9 and BTC are independent predictors of response to RAD001 treatment.

Overall Survival was defined as the time from the date of surgery to death for the patients with GC. The Kaplan-Meier analysis was performed for the Signatures I and VI in the 27 patients with mGC who had updated survival status. No significant association was found between the signature clusters and overall survival in these patients (Signature I, p=0.433 and Signature VI, p=0.474, log-rank test) (see online supplementary figure S2A, B). Univariate analysis of gene expression status in Signature I (p=0.615, HR 0.920, 95% CI (0.666 to 1.272) and Signature VI (p=0.571, HR 0.945 (0.770 to 1.155) did not show any significant association with overall survival outcome. Multivariate analysis adjusted with age, gender, tumour grade and WHO histology type also did not show any association with overall survival outcome. Multivariate analysis adjusted with age, gender, tumour grade and WHO histology type and tumour grade did not show any significant association between poor survival outcome and BTC and CHST3 genes expression (table 2). These findings suggest that BRCA2, MMP9 and BTC are independent predictors of response to RAD001 treatment.

Open Access

Das K, et al. ESMO Open 2016;1:e000009. doi:10.1136/esmoopen-2015-000009
Univariate and multivariate analysis also did not exhibit any statistical association with overall survival outcome and RAD001 good and poor response gene expression (see online supplementary table S5B).

DISCUSSION

Using the NanoString nCounter system, we analysed a multigene signature originating from our previous microarray analyses. We validated previously described GC subtypes in Signatures I and II. A significant association was also observed between increased expression of mesenchymal subtype genes in Signature I and signet ring cell carcinoma, Lauren’s diffuse adenocarcinoma and poorly differentiated GC, consistent with our previous microarray findings. Likewise, a significant association between proliferative subtypes and tubular adenocarcinoma, Lauren’s intestinal and moderately differentiated GC was also confirmed. These findings indicate that previous microarray findings can be replicated by the NanoString nCounter system. Other studies such as a high-risk neuroblastoma study have also validated microarray signatures by the NanoString nCounter system, suggesting that the former is a viable complement to microarray platforms.

A major challenge in clinical trials is to ensure specimen integrity, especially while investigating predictive biomarkers, to ensure optimal treatment for patients. Poor techniques and sampling errors contribute to the poor quality of RNA obtained, which can render genomic data of little value. A high throughput genomic technique, capable of quantifying mRNA expression from degraded or inadequate amounts of RNA in a clinical setting, was necessary for analysis in this phase II clinical trial. The NanoString nCounter gene expression system is a digital technology that provides results with a minimal amount of RNA (<100 ng) and is less stringent on RNA quality compared with other genomic technologies. The results are also comparable to DNA microarray data, which rely on RNA isolated from fresh-frozen samples. NanoString profiling also offers several advantages over microarrays, including a simpler methodology, thereby reducing technical errors, assay time and cost.

Among genes comprising Signature Groups I and II, we observed statistical association of *FHL1* and *GLIPR2* genes with signet ring cell carcinoma, an aggressive histological type of GC. This finding is unexpected as the *FHL1* gene was previously reported as a tumour suppressor gene in several cancers including gastrointestinal cancers. However, increased expression of *FHL1* has also been observed in a basal stem cell MCF (Michigan Cancer Foundation) cell line. Since *FHL1* in mesenchymal subtype GC also shows cancer stem cell-like characteristics, this may support our finding of increased expression of *FHL1* in the mesenchymal subtype and its association with signet ring cell carcinoma (Lauren’s diffuse type of GC) which originates from stem cells in the glandular neck region of the stomach. The *GLIPR2* gene has been shown to be...
Upregulation of proliferative subtype genes such as \textit{NEK2}, \textit{OIP5} and \textit{TPX2} are most likely related to cell cycle regulation and these genes were significantly associated with tubular adenocarcinoma, similar to those reported in other cancers, such as colorectal, pancreatic, lung and thyroid cancer.32 33

Our study also showed concomitant upregulation of Signature Group III genes such as \textit{ERBB2}, \textit{CCNE1} and \textit{CTNNB1} and their strong association with intestinal type GC. Several studies have already reported association of \textit{ERBB2}, \textit{CCNE1} and trefoil factor 3 (\textit{TFF3}) amplification and overexpression and \textit{CTNNB1} upregulation with intestinal-type GCs compared with diffuse-type GC.20–22 These gene alterations have rather been suggested to be an early event in gastric carcinogenesis.34

Higher expression levels of \textit{MMP9} and \textit{BRCA2} showed a good response and a better survival outcome in patients treated with RAD001 treatment. \textit{BRCA2} is a tumour suppressor gene involved in DNA damage repair. A link between germline mutations in either \textit{BRCA1} or \textit{BRCA2} genes and susceptibility to breast and
Our study has also shown that BTC and CHST3 genes expression are significantly associated with poor response to RAD001 treatment in patients with GC. Furthermore, upregulation of BTC correlated significantly with poor PFS in the patients with GC. BTC is a ligand of the epidermal growth factor (EGF) family that is mediated through EGF receptors (EGFR).45 BTC has been implicated as a potent mitogen in several cancer types.46–47 Although these studies have suggested the mitogenic activity of BTC and its enhanced expression in combination with other growth-promoting factors of the EGF family, its expression has, however, not been shown to be associated with poorer patient prognosis or survival. We thus report the upregulation of BTC and its association with poorer survival outcome in patients with GC in response to RAD001 treatment. The gene CHST3 in our NanoString panel belongs to Signature IX, which is the gp130FG downregulated gene and is a member of the chondroitin sulphotransferase family (CHST) that is known to be involved in the sulfur metabolism pathway. Its overexpression has been reported to be associated with breast tumour aggressiveness and shorter overall survival in patients with inflammatory breast cancer.48 Recently, a study found the involvement of CHST3 gene variants in gemcitabine, oncological drug transport and metabolism and hence an altered response to this drug.49 This may explain our finding, the association of CHST3 gene expression with poor response to RAD001 treatment.

In conclusion, our findings indicate that classification of patients into signature subtypes by NanoString expression profiling may be a useful approach of exploring predictive biomarkers for responders/non-responders in clinical trials. Although the phase III clinical trial has failed to demonstrate survival benefit from RAD001 in GC, a subset of patients with GC with specific biomarkers may potentially benefit from elevating the levels of EMT markers such as MMP9 in human immortalised renal cells.41 MMP9 also initiates cancer invasion and metastasis by degrading type IV collagen, which is the main component of the basal membrane.42 Our patients with GC were all metastatic and the presence of higher levels of MMP9 suggests that the gene expression may have indeed contributed to disease progression. However, MMP9 gene expression in our study was not associated with other clinicopathological features such as the WHO and Lauren’s histological classifications, tumour size or shorter overall survival. We thus report the upregulation of BTC and its association with poorer survival outcome in patients with GC in response to RAD001 treatment.

Table 2: Univariate and multivariate analyses comparing progression-free survival in patients with metastatic gastric cancer relative to gene expression status and RAD001 response

Model 1 (predictors: BRCA2 high and low expression)	HR (95% CI)	p Value
BRCA2 high vs low	0.370 (0.171 to 0.800)	0.012*
MMP9 high vs low	0.359 (0.166 to 0.779)	0.010*
BTC high vs low	2.336 (1.079 to 5.059)	0.031*
CHST3 high vs low	2.084 (0.979 to 4.432)	0.057

Model 2 (Predictors: BRCA2, Age, Gender, WHO histology type and grade)	HR (95% CI)	p Value
BRCA2 (Signature IV) gene expression		
BRCA2 high vs low	0.218 (0.088 to 0.540)	0.001*
Age	0.351 (0.144 to 0.856)	0.021*
Gender	0.807 (0.322 to 2.027)	0.649
Grade	2.932 (1.318 to 6.522)	0.008*
WHO histology type	0.317 (0.104 to 0.964)	0.043*
MMP9 (Signature V) gene expression		
MMP9 high vs low	0.377 (0.171 to 0.831)	0.016*
Age	0.611 (0.284 to 1.314)	0.208
Gender	0.869 (0.362 to 2.083)	0.753
Grade	2.641 (1.188 to 5.869)	0.017*
WHO histology type	0.562 (0.200 to 1.576)	0.274
BTC (Signature VII) gene expression		
BTC high vs low	1.711 (0.729 to 4.016)	0.217
Age	0.721 (0.327 to 1.628)	0.417
Gender	1.181 (0.471 to 2.961)	0.723
Grade	2.420 (1.045 to 5.604)	0.039*
WHO histology type	0.634 (0.221 to 1.817)	0.396
CHST3 (Signature IX) gene expression		
CHST3 high vs low	1.799 (0.820 to 3.948)	0.143
Age	0.649 (0.300 to 1.405)	0.272
Gender	1.152 (0.471 to 2.815)	0.757
Grade	2.463 (1.080 to 5.614)	0.032*
WHO histology type	0.595 (0.211 to 1.679)	0.326

*p value <0.05 is significant.
RAD001. On the basis of our findings, BRCA2 and MMP9 expression were predictive biomarkers for good response in RAD001-treated GC.

Author affiliations
1Cancer and Stem Cell Biology Program, Duke-NUS Medical School
2Genome Institute of Singapore, Biopolis, Singapore
3Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
4Cancer Science Institute of Singapore, National University of Singapore, Singapore
5Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
6Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

ACKNOWLEDGEMENTS
The authors would like to thank Kie Kyon Huang (Duke-NUS GMS) and Jay Manikandan (NanoString Technologies) for assistance in NanoString data analyses.

Contributors KD, PT and JL conceived the experiments. XBC and JL conducted the experiments. KD, SR, PT and JL analysed the results. JL, PT, DE, SR, BTT, K-MK, STK, SHP and WKK provided the patient samples and facilities for acquisition of data. All the authors reviewed the manuscript.

Funding
The study was supported by grants from National Medical Research Council (NMRC/TCR/009-NJH/S/2013 (PT) and NMRC/BnB/0005b/2013 (BTT/DE)).

Competing interests
None declared.

Ethics approval
The Institutional Review Board at the Samsung Medical Center, Korea approved the protocol.

Provenance and peer review
Not commissioned; externally peer reviewed.

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer, 2013.
2. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014;383:31–9.
3. Hansjochen Wilke W, Van Cutsem E, Cheul Oh S, et al. RAINBOW: a global, phase III, randomized, double-blind study of ramucirumab plus paclitaxel versus placebo plus paclitaxel in the treatment of metastatic gastroesophageal junction adenocarcinoma (GEJG); and gastric adenocarcinoma following disease progression on first-line platinum- and fluoropyrimidine-containing combination therapy rainbow IMCL CP12–0922 (14T-IE-JVBE). J Clin Oncol 2014;32(Suppl 3; abst LBAT7).
4. Cristescu R, Lee J, Nebozhym M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21:449–56.
5. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202–9.
6. Bang YJ, Van Cutsem E, Feyen eslovi A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687–97.
7. Lee J, Kim KM, Kang WK, et al. Innovative personalized medicine in gastric cancer: time to move forward. Clin Genet 2014;86:37–43.
8. Murayama T, Inouchi M, Takagi Y, et al. Relation between outcomes and localisation of p-mTOR expression in gastric cancer. Br J Cancer 2009;100:782–8.
9. Bellacosa A, Kumar CC, Di Cristofano A, et al. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 2005;94:29–86.
10. Yu G, Wang J, Chen Y, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res 2009;15:1821–9.
11. Lee SJ, Lee J, Lee J, et al. Phase II trial of capecitabine and everolimus (RAD001) combination in refractory gastric cancer patients. Invest New Drugs 2013;31:1580–6.
12. Taguchi F, Kodera Y, Katanasaka Y, et al. Efficacy of RAD001 (everolimus) against advanced gastric cancer with peritoneal dissemination. Invest New Drugs 2011;29:1198–205.
13. Ohtsu A, Anjai JA, Bai YX, et al. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRATINE-1 study. J Clin Oncol 2013;31:3935–43.
14. Liu S, Chapman JA, Bunnell MJ, et al. Prognostic and predictive investigation of PAM50 intrinsic subtypes in the NCIC CTG MA.21 phase III chemotherapy trial. Breast Cancer Res Treat 2015;149:439–48.
15. Lee J, Sohn I, Do IG, et al. NanoString-based multigene assay to predict recurrence for gastric cancer patients after surgery. PLoS ONE 2014;9:e90133.
16. Shike M, Doane AS, Russo L, et al. The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. J Natl Cancer Inst 2014;106:pii: dju189.
17. Ju J, Li R, Gu S, et al. Impact of emphysema heterogeneity on pulmonary function. PLoS ONE 2014;9:e913320.
18. Tan IB, Ivanova T, Lim KH, et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 2011;141:476–85, 485s.e1–11.
19. Li Z, Tan IB, Das K, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 2013;145:544–65.
20. Ebert MP, Fei G, Kahrman S, et al. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis 2002;23:87–91.
21. Park DI, Yun JW, Park JH, et al. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci 2006;51:1371–9.
22. Gu J, Zheng L, Zhang L, et al. TFF3 and HER2 expression and their correlation with survival in gastric cancer. Tumour Biol 2015;36:3001–7.
23. Chen Y, McGee J, Chen X, et al. Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS ONE 2014;9:e98293.
24. Stricker TP, Morales La Madrid A, Chlenski A, et al. Validation of a prognostic multi-gene signature in high-risk neuroblastoma using the high throughput digital NanoString nCounter system. Mol Oncol 2014;8:669–78.
25. de Cremoux P, Valet F, Gentien D, et al. Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients. BMC Cancer 2011;11:215.
26. Malkov VA, Serikawa KA, Balantac N, et al. Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter Assay System. BMC Res Notes 2009;2:80.
27. Xu Y, Liu Z, Guo K. Expression of FHL1 in gastric cancer tissue and its correlation with the invasion and metastasis of gastric cancer. Mol Cell Biochem 2012;363:93–9.
28. Asada K, Ando T, Niwa T, et al. FHL1 on chromosome X is a single-hit gastrointestinal tumour-suppressor gene and contributes to the formation of an epigenetic field defect. Oncogene 2013;32:2140–9.
29. Russo J, Russo IH. The role of the basal stem cell of the human breast in normal development and cancer. Adv Exp Med Biol 2011;720:121–34.
30. Hattori T, Fujita S. Trilobated thymidine autoradiographic study on cellular migration in the gastric gland of the golden hamster. Cell Tissue Res 1976;172:171–84.
31. Huang SG, Zhang LL, Niu Q, et al. Hypoxia promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells via inducing GLIIPR-2 expression. PLoS ONE 2013;8:e77497.
32. Chun HK, Chung KS, Kim HC, et al. OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers. BMB Rep 2010;43:349–54.
33. Wei P, Zhang N, Xu Y, et al. TPX2 is a novel prognostic marker for the growth and metastasis of colon cancer. *J Transl Med* 2013;11:313.

34. Carvalho B, Buffart TE, Reis RM, et al. Mixed gastric carcinomas show similar chromosomal aberrations in both their diffuse and glandular components. *Cell Oncol* 2006;28:283–94.

35. Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. *Nature* 1995;378:789–92.

36. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. *Am J Hum Genet* 1999;62:676–89.

37. Friedenson B. BRCA1 and BRCA2 pathways and the risk of cancers other than breast or ovarian. *MedGenMed* 2005;7:60.

38. Chen K, Yang D, Li X, et al. Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. *Proc Natl Acad Sci USA* 2015;112:1107–12.

39. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. *Nat Rev Cancer* 2002;2:161–74.

40. Chen J, Liu X, Jiao H, et al. Prognostic and clinical significance of STAT3 and MMP9 in patients with gastric cancer: a meta-analysis of a Chinese cohort. *Int J Clin Exp Med* 2015;8:546–57.

41. Masola V, Zaza G, Granata S, et al. Everolimus-induced epithelial to mesenchymal transition in immortalized human renal proximal tubular epithelial cells: key role of heparanase. *J Transl Med* 2013;11:292.

42. Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. *J Pathol* 2008;214:283–93.

43. Mikaelian I, Malek M, Gadet R, et al. Genetic and pharmacologic inhibition of mTORC1 promotes EMT by a TGF-beta-independent mechanism. *Cancer Res* 2013;73:6621–31.

44. Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. *Cancer Res* 2011;71:3246–56.

45. Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. *J Cell Physiol* 2009;218:460–6.

46. Moon WS, Park HS, Yu KH, et al. Expression of betacellulin and epidermal growth factor receptor in hepatocellular carcinoma: implications for angiogenesis. *Hum Pathol* 2006;37:1324–32.

47. Sun M, Behrens C, Feng L, et al. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumours. *Clin Cancer Res* 2009;15:4829–37.

48. Siamakpour-Reihani S, Owzar K, Jiang C, et al. Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival. *Int J Hyperthermia* 2015;31:386–95.

49. Harris M, Bhuvaneshwar K, Natarajan T, et al. Pharmacogenomic characterization of gemcitabine response—a framework for data integration to enable personalized medicine. *Pharmacogenet Genomics* 2014;24:81–93.