Research Article

In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

Saied Soflaei, Abdolhossein Dalimi, Fatemeh Ghaffarifar, Mojtaba Shakibaie, Ahmad Reza Shahverdi, and Mohsen Shafiepour

1 Department of Parasitology, Medical Sciences Faculty, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
2 Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
3 Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14115-331, Tehran 14117-13116, Iran
4 Intrameicine Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

Correspondence should be addressed to Abdolhossein Dalimi, dalimi.a@modares.ac.ir

Received 18 February 2012; Revised 18 April 2012; Accepted 7 May 2012

1. Introduction

Leishmaniasis is considered as one of the most important tropical diseases with worldwide distribution [1]. The disease is reported in 88 countries around the world, and its prevalence is estimated to be approximately 12 million annually and about 350 million people are at the risk of the disease [1, 2]. About 90% of cases of cutaneous leishmaniasis are found in Brazil, Afghanistan, Iran, Peru, Saudi Arabia, and Syria, and about 90% cases of visceral leishmaniasis are reported in Bangladesh, Brazil, Nepal, India, and Sudan [3, 4]. Visceral leishmaniasis (Kala-azar) is characterized by the presence of fever, splenomegaly, hepatomegaly, swollen lymph nodes, and weight loss that depends on the pathogenicity of Leishmania species and the host immune response against parasite [5, 6]. About 90% of the cases of this disease may lead to death if it is left without any treatment. Leishmaniasis coinfection with HIV and other immunosuppression is becoming another serious problem, therefore the treatment methods mostly focus on induction of immune responses [5]. Pentavalent antimonials are a group of compounds used for the treatment of leishmaniasis. The compounds currently available for clinical use are sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). In systemic therapy of leishmaniasis these drugs are used alone or in combination with other compounds [7–15]. The current drugs is not so much suitable due to resistance reported, high toxicity, various side effects and so forth. So, new therapeutic antileishmanial strategies are urgently required [5, 16].

Nanomedicine is the medical application of nanotechnology. Nanomedical approaches to drug delivery center...
on developing nanoscale particles [17]. Up to now various nanoparticle compounds have been introduced against leishmaniasis [18–27]. In the present study we evaluated the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro.

2. Materials and Methods

2.1. Drug Preparation. Antimony sulfide nanoparticle was synthesized by intracellular biological methods from nonpigmented by using of the Serratia marcescens bacterial isolate from the Caspian Sea in northern of Iran with the size less than 35 nm according to Bahrami et al. [28] in the Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of medical sciences.

2.2. Parasites. Leishmania infantum MON-1 (MHOM/TN/80/IPT1) was provided from Pasteur Institute of Iran. Promastigotes were cultured in RPMI1640 medium supplemented with 10% fetal calf serum (FCS) and antibiotics (100 IU/mL of penicillin and 100 μg/mL of streptomycin). The culture was maintained in 24°C for promastigote proliferation. The parasites were transferred weekly from previous culture into new medium.

2.3. Drug Assessment. The interaction of antimony sulfide NPs directly and promastigotes was studied. After proliferation of the parasites, 100 μL of promastigotes (2 × 10^6 cell/mL) was seeded in 24-well plate containing 100 μL of RPMI1640 medium and treated with serial dilutions of the antimony sulfide NPs (5, 10, 25, 50, and 100 μg/mL) for 24, 48, and 72 hours. After incubation, the antileishmanial activity of antimony sulfide NPs was evaluated by direct counting of parasites. These data were analyzed by Graph pad Prism version 5.04 software.

2.4. MTT Test. Briefly, 100 μL of promastigotes (2 × 10^6 cells/mL) was cultured separately in 96-well microplates containing 100 μL of RPMI1640 medium supplemented with 20% FCS. These cultures were repeated at least three times in triplicate wells. 200 μL of promastigotes were cultured as control group. 200 μL/well PBS was added around well of plates to prevent the evaporation of well contents. The cells were incubated in presence seven dilutions of antimony sulfide NPs at 24 ± 1°C for 72 hours and then 20 μL of MTT solution was added into each of wells. Plates were incubated again at 24°C for 4 hours and then centrifuged at 1000 g for 10 minutes. Supernatant was aspirated gently and discarded. 100 μL DMSO was added to each of wells and finally the absorbance of these plates was measured by the ELISA reader in at 540 nm.

2.5. Macrophage Cytotoxicity Measurement. Inbred male BALB/c mice were prepared from Razi Institute of Iran. The effect of antimony sulfide NPs on macrophages of infected and uninfected mice was evaluated. In this regard, 7 mL of RPMI medium (sigma) was injected into peritoneumand macrophages were collected. Then the number of live macrophages was counted. 100 μL of macrophages with 100 μL RPMI1640 medium were seeded in exposure to seven dilutions of antimony sulfide NPs. These cultures were maintained at 37°C in the presence of 5% CO₂ for 24, 48, and 72 hours. The experiment was terminated by direct counting. Cytotoxic effect of antimony sulfide NPs on macrophage was evaluated and compared with control cultures.

2.6. Intracellular Amastigote Assay. Peritoneal cavity macrophages of BALB/c were seeded in 24-well plates and incubated at 37°C with 5% CO₂ for 24 hours for differentiation. The cells were infected with promastigotes of stationary growth phase at a parasite/macrophage ratio of 10:1. Drug susceptibilities of intracellular amastigotes were assessed with the method previously described by Tada et al. [29]. The culture was incubated at 37°C in the presence of 5% CO₂ for 24 hours until promastigotes were phagocyte by macrophages. After incubation, each well of the plates was washed with 1-2 mL PBS to remove the extracellular promastigotes. Then infected macrophages were separated from the plates by cold method (10–15 minutes on ice pieces). Then 5 μL of these cells were stained by Giemsa method. The percentage of infected cells and the number of amastigotes in each cell was microscopically assessed. After that 100 μL of these cells were transferred into new plate and were incubated with seven dilutions of antimony sulfide NPs at 37°C with 5% CO₂ for 24, 48, and 72 hours. Finally, the plates were incubated on ice pieces for 10–15 minutes. The percentage of infection and IC₅₀ was calculated through examination of 200 macrophages and the number of amastigotes in every single cell. The results were expressed as the infection index, which is reflecting of drug effect in prevention of infection.

2.7. Promastigote Apoptosis Assessment. At first 2 × 10^6 cells/mL of promastigotes were treated with various dilutions (10, 25, 50, 100 μg/mL) of antimony sulfide NPs in ELISA plates and incubated at 24°C for 72 hours. Test and control wells were washed twice by cold PBS solution and centrifuged in 1400 rpm for 10 min. 100 μL Annexin-V FITC solution and 100 μL PI (propidium iodide) solution were added and incubated for 15 minutes at room temperature. Subsequently, cellular apoptosis in our study was detected by using Annexin-V FLUOS staining kit (Roche, Germany). The procedure was performed according to manufacturing protocol in the dark place and was evaluated FACSCalibur system. Afterwards the flow cytometry results were then analyzed using CellQuest software.

3. Statistical Analysis

The results of test and control groups were analyzed and compared by ANOVA statistical test (P ≤ 0.05) using SPSS version 15 software and Graph pad prism version 5.04.
4. Results

The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The cytotoxic effect of 5 dilutions of antimony sulfide NPs on promastigotes was assessed and compared with control group in Figure 1. The IC50 (50% inhibitory concentration) of antimony sulfide NPs on promastigotes was calculated 50 μg/ml.

MTT method was used for verification results of promastigote assay. Cytotoxicity of different concentration of the drug and viability of promastigote stage of the parasite are shown in Figure 2. By increasing the concentration of antimony sulfide NPs, the cytotoxicity curve raised and the viability curve of the parasite dropped simultaneously.

Cytotoxic effect of 5 dilutions of antimony sulfide NPs on uninfected splenic macrophages of BALB/c mice was
Figure 5: Induction of apoptosis in promastigotes of *Leishmania infantum* evaluated by flow cytometry method. (a) Most of promastigotes were alive and healthy (control group), (b) under 10 μg/mL of antimony sulfide NPs, (c) under 25 μg/mL of antimony sulfide NPs, (d) under 50 μg/mL of antimony sulfide NPs, and (e) under 100 μg/mL of antimony sulfide NPs.
importance for drug delivery as drug carriers [37]. Among
emulsomes, liposomes, and nanospheres have been of great
new drugs against infectious diseases. Nanoparticles like
the need for new e
remain the most important drugs against leishmaniasis. So,
of incubation is shown in Figure 4. Moreover, the IC_{50} of
sulfide NPs in vitro conditions during 24, 48, and 72 hours
has low cytotoxicity e
otes of
Leishmania infantum
as is shown in Figure 3, indicated that antimony sulfide NPs
compared with control cultures at 24, 48, 72 hours. The result
considered the drugs of choice for treatment of all clinical
(Glucantime) and stibogluconate sodium (Pentostam) are
Pentavalent antimonials including meglumine antimoniate
5. Discussion
Penta-valler antimonials including meglumine antimoniate
(Glucantime) and stibogluconate sodium (Pentostam) are
considered the drugs of choice for treatment of all clinical
forms of leishmaniasis, for 40 years [30–36]. Despite some
limitations attributed to its use due to resistance reported,
high toxicity, various side effects and the high cost, they still
remain the most important drugs against leishmaniasis. So,
the need for new effective drugs with low toxicity and more
effectiveness is critical.
Nanotechnology can be a useful tool for synthesizing
ew drugs against infectious diseases. Nanoparticles like
emulsomes, liposomes, and nanospheres have been of great
importance for drug delivery as drug carriers [37]. Among
several nanoparticles implementing for treatment, liposomes
are the best for evaluating the efficacy of antileishmanial
activity of drugs as compared to any other parasitic disease
mainly due to the fact that Leishmania parasite resides within
the macrophages which are responsible for clearance of
liposomes in vivo [38]. Liposomal formulation with drug has
been proved to be successful against leishmaniasis. Moreover,
the use of conventional liposomes with antileishmanial drugs
has been proved to be associated with the reduction in their
toxicity profile [37].
In fact macrophage surface contains receptors that
recognize terminal galactose, mannose, fucose, or glucose
residues of glycosides therefore sugar bearing liposomes
were designed for improvement in macrophage targeting of
antileishmanial agents [39]. In addition, mannose-grafted
liposomal form was more efficient in transporting the
drug to macrophages [40]. Furthermore, macrophages upon
interaction with particulate drug delivery vehicles may act
as secondary drug repository and contribute in localized
delivery of the drug at the infected site [39].
In addition, polymeric particles like synthetic aliphatic
polymesters (poly(lactic acid) PLA, polyglycolic acid, and their
copolymers (PLGA, or polycaprolactone) are the primary
candidates for the development of nanoparticle-based deliv-
ery system. They offer several advantages as compared with
liposomes: high drug-loading capacity, long-term stability,
and suitability for oral administration. Moreover, they can
control the drug release. When prepared with biodegradable
and biocompatible polymers, they are well tolerated [41].
They may consist of either a polymeric matrix (nano-
or microspheres) or of a reservoir system (nano- or microcap-
sules).
In this regard, Venier-Julienne et al. used PLGA-NP
for delivery of amphotericin B against L. donovaniin vitro
[18]. The activity of pentamidine loaded poly (D, L-lactide)
nanoparticles against L. infantum in a murine model has
been investigated by Durand et al. [19]. The activity and
ultrastructural localization of primaquine-loaded poly (D,
L-lactide) nanoparticles in L. donovani infected mice has
been conducted by Rodrigues et al. [20]. The antileish-
manial activities of 2′,6′-dihydroxy-4′-methoxylchalcone by
entrapped in poly(D,L-lactide) nanoparticles has been
investigated by Torres-Santos et al. [21]. Durand et al.
studied the activity of pentamidine loaded methacrylate
nanoparticles against L. infantum in a mouse model [22].
Gaspar et al. studied in vitro activity of primaquine-loaded
poly(alkyl cyanocrylate) nanoparticles against intracellular
L. donovani [23]. Espuelas et al. studied in vitro antileish-
manial activity of amphotericin B loaded in poly(epsilon-
caprolactone) nanospheres [24].
These nanoparticles in this study were prepared in the
Department of Pharmaceutical Biotechnology and Phar-
maceutical Sciences Research Centre, Faculty of Pharmacy,
Tehran University of medical sciences. The antimony NPs
in our study were composed of sulfur and antimony atoms
at ratio of 84/16 and these particles were as Sb_{2}S_{5} in their
cyttoplasm or other internal bacterial spaces according to
Bahrami et al. Other characteristics of antimony sulfide NPs
in this study and its green synthetic method are present in
Bahrami et al. literature [28]. In our study, instead of
using any additional compound for delivery of antimony
sulfide, nanoparticle form of the drug was synthesized and
its effects on Leishmania infantum in vitro condition were
evaluated. Our results indicated the positive effectiveness
of antimony sulfide NPs on proliferation of promastigote form.
In addition, the drug can induce apoptosis in promastigotes.
So these particles can be useful for elimination of parasite.
Surely this study was performed as preliminary work and
further studies on the drug are needed.

References
[1] H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia,
"Advances in leishmaniasis," The Lancet, vol. 366, no. 9496, pp.
1561–1577, 2005.
[2] D. A. Kafetzis and H. C. Maltezou, “Visceral leishmaniasis in
paediatrics,” Current Opinion in Infectious Diseases, vol. 15, no.
3, pp. 289–294, 2002.
[3] B. L. Herwaldt, “Leishmaniasis,” The Lancet, vol. 354, no. 9185,
pp. 1191–1199, 1999.
[4] World Health Organization, 2002, http://www.who.int/tdr/
publications/documents/vl-rdt-evaluation.pdf.
[5] H. C. Maltezou, "Visceral leishmaniasis: advances in treatment," Recent Patents on Anti-Infective Drug Discovery, vol. 3, no. 3, pp. 192–198, 2008.

[6] S. Natera, C. Machuca, M. Padron-Nieves, A. Romero, E. Diaz, and A. Ponte-Sucre, "Leishmania spp.: proficiency of drug-resistant parasites," International Journal of Antimicrobial Agents, vol. 29, no. 6, pp. 637–642, 2007.

[7] M. L. Chance, "New developments in the chemotherapy of leishmaniasis," Annals of Tropical Medicine and Parasitology, vol. 89, no. 1, pp. 37–43, 1995.

[8] S. Rijal, V. Yardley, F. Chappuis et al., "Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome?" Microbes and Infection, vol. 9, no. 4, pp. 529–535, 2007.

[9] P. M. Loiseau and C. Bories, "Recent strategies for the chemotherapy of visceral leishmaniasis," Current Opinion in Infectious Diseases, vol. 12, no. 6, pp. 559–564, 1999.

[10] S. Grevelin and E. Lerner, "Leishmaniasis," Journal of the American Academy of Dermatology, vol. 34, pp. 257–272, 1996.

[11] T. Fusai, R. Durand, Y. Boulard et al., "Importance of drug carriers in the treatment of visceral Leishmaniasis," Medicine Tropicale, vol. 55, no. 1, pp. 73–78, 1995.

[12] H. Veeken, K. Ritmeijer, J. Seaman, and R. Davidson, "A randomized comparison of branded sodium stiboglucone and generic sodium stiboglucone for the treatment of visceral leishmaniasis under field conditions in Sudan," Tropical Medicine and International Health, vol. 5, no. 3, pp. 312–317, 2000.

[13] S. Sundar, P. R. Sinha, N. K. Agrawal et al., "A cluster of cases of severe cardiotoxicity among kala-azar patients treated with a high-osmolarity lot of sodium antimony gluconate," American Journal of Tropical Medicine and Hygiene, vol. 99, no. 1, pp. 139–143, 1998.

[14] W. L. Roberts, W. J. Mcmurray, and P. M. Rainey, "Characterization of the antimonial antileishmanial agent meglumine antimonate (Glucantime)," Antimicrobial Agents and Chemotherapy, vol. 42, no. 5, pp. 1076–1082, 1998.

[15] J. J. Barbosa da Silva, "Antimoniato de meglumina," The Revista da Sociedade Brasileira de Medicina Tropical, vol. 34, pp. 103–105, 2001.

[16] J. Berman, "Current treatment approaches to leishmaniasis," Current Opinion in Infectious Diseases, vol. 16, no. 5, pp. 397–401, 2003.

[17] http://en.wikipedia.org/wiki/Nanomedicine.

[18] M. C. Venier-Julienne, I. Vouldoukis, L. Monjour, and J. P. Benoit, "In vitro study of the anti-leishmanial activity of biodegradable nanoparticles," Journal of Drug Targeting, vol. 3, no. 1, pp. 23–29, 1995.

[19] R. Durand, M. Paul, D. Rivollet et al., "Activity of pentamidine-loaded poly(D,L-lactide) nanoparticles against Leishmania infantum in a murine model," Parasite, vol. 4, no. 4, pp. 331–336, 1997.

[20] J. M. Rodrigues, S. L. Croft, H. Fessi, C. Bories, and J. P. Devissguet, "The activity and ultrastructural localization of primaquine-loaded poly(D,L-lactide) nanoparticles in Leishmania donovani infected mice," Tropical Medicine and Parasitology, vol. 45, no. 3, pp. 223–228, 1994.

[21] E. C. Torres-Santos, J. M. Rodrigues, D. L. Moreira, M. A. C. Kaplan, and B. Rossi-Bergmann, "Improvement of in vitro and in vivo antileishmanial activities of 2′,6′-dihydroxy-4′-methoxylchalcone by entrapment in poly(D,L-lactide) nanoparticles," Antimicrobial Agents and Chemotherapy, vol. 43, no. 7, pp. 1776–1778, 1999.

[22] R. Durand, M. Paul, D. Rivollet, R. Hovin, A. Astier, and M. Deniau, "Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model," International Journal for Parasitology, vol. 27, no. 11, pp. 1361–1367, 1997.

[23] R. Gaspar, F. R. Opperdoes, V. Preat, and M. Roland, "Drug targeting with polyalkylcyanoacrylate nanoparticles: in vitro activity of primaquine-loaded nanoparticles against intracellular Leishmania donovani," Annals of Tropical Medicine and Parasitology, vol. 86, no. 1, pp. 41–49, 1992.

[24] M. S. Espuelles, P. M. Loiseau, C. Bories, G. Barratt, and J. M. Irache, "In vitro antileishmanial activity of amphotericin B loaded in poly(e-caprolactone) nanoparticles," Journal of Drug Targeting, vol. 10, no. 8, pp. 593–599, 2002.

[25] O. Kayser, C. Olbrich, V. Yardley, A. F. Kiderlen, and S. L. Croft, "Formulation of amphotericin B as nonsuspension for oral administration," International Journal of Pharmaceutics, vol. 254, no. 1, pp. 73–75, 2003.

[26] O. Kayser, "Nanosuspensions for the formulation of aphpicolin to improve drug targeting effects against Leishmania infected macrophages," International Journal of Pharmaceutics, vol. 196, no. 2, pp. 253–256, 2000.

[27] P. R. Veera, V. Vobalaboina, and N. Ali, "Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanoparticles," Journal of Drug Targeting, vol. 17, no. 2, pp. 140–147, 2009.

[28] K. Bahrami, P. Nazari, Z. Sepehrizadeh, B. Zarea, and A. R. Shahverdi, "Microbial synthesis of antimony sulfide nanoparticles and their characterization," Annals of Microbiology. In press.

[29] H. Tada, O. Shiho, and K. I. Kuroshima, "An improved colorimetric assay for interleukin 2," Journal of Immunological Methods, vol. 93, no. 2, pp. 157–165, 1986.

[30] K. P. Chang and D. M. Dwyer, "Leishmania donovani. Hamster macrophage interactions in vitro: cell entry, intracellular survival, and multiplication of amastigotes," Journal of Experimental Medicine, vol. 147, no. 2, pp. 515–530, 1978.

[31] F. J. Pérez-Victoria, M. P. Sánchez-Cañete, K. Seifert et al., "Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use," Drug Resistance Updates, vol. 9, no. 1–2, pp. 26–39, 2006.

[32] U. K. Singh, R. Prasad, O. P. Mishra, and B. P. Jayswal, "Miltefosine in children with visceral leishmaniasis: a prospective, multicentric, cross-sectional study," Indian Journal of Pediatrics, vol. 73, no. 12, pp. 1077–1080, 2006.

[33] S. Sundar, T. K. Jha, H. Sindermann, K. Junge, P. Bachmann, and J. Berman, "Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis," Pediatric Infectious Disease Journal, vol. 22, no. 5, pp. 434–438, 2003.

[34] S. Wyllie, M. L. Cunningham, and A. H. Fairlamb, "Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani," Journal of Biological Chemistry, vol. 279, no. 38, pp. 39925–39932, 2004.

[35] E. S. A. Moreira and M. L. Petrillo-Peixoto, "In vitro activity of meglumine antimoniate, a pentavalent antimonial drug, on Leishmania promastigotes," Brazilian Journal of Medical and Biological Research, vol. 24, no. 5, pp. 459–469, 1991.

[36] E. M. Netto, P. D. Marsden, E. A. Llanos-Cuentas et al., "Long-term follow-up of patients with Leishmania (Viannia) braziliensis infection and treated with Glucantime," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 84, no. 3, pp. 367–370, 1990.

[37] A. A. Date, M. D. Joshi, and V. B. Patrawale, "Parasitic diseases: liposomes and polymeric nanoparticles versus lipid
nanoparticles,” *Advanced Drug Delivery Reviews*, vol. 59, no. 6, pp. 505–521, 2007.

[38] J. K. Gour, A. Srivastava, V. Kumar et al., “Nanomedicine and leishmaniasis: future prospects,” *Digest Journal of Nanomaterials and Biostructures*, vol. 4, no. 3, pp. 495–499, 2009.

[39] M. Owais and C. M. Gupta, “Targeted drug delivery to macrophages in parasitic infections,” *Current Drug Delivery*, vol. 2, no. 4, pp. 311–318, 2005.

[40] N. Das, S. B. Mahato, K. Naskar, D. K. Ghosh, and M. K. Basu, “Targeting of urea stibamine encapsulated in liposomes to reticuloendothelial system for the treatment of experimental leishmaniasis,” *Biochemical Medicine and Metabolic Biology*, vol. 43, no. 2, pp. 133–139, 1990.

[41] S. Espuelas, “Delivery system for the treatment and prevention of leishmaniasis,” *Gazeta Médica da Bahia*, vol. 79, supplement 3, pp. 134–146, 2009.