Influence of High Sintering Temperature Variation on Crystal Structure and Morphology of Nd₁₂Fe₃O₇ Oxide Alloy Material by Solid-State Reaction Method

E. H. Sujiono¹, R. A. Imran¹, M. Y. Dahlan¹, A.C. M. Said¹, S. Samnur¹, and N. Ihsan¹

¹Laboratory of Materials Physics, Department of Physics, Universitas Negeri Makassar, Makassar 90224, Indonesia.

E-mail: e.h.sujiono@unm.ac.id

Abstract. Nd₁₂Fe₃O₇ powders type perovskite structure was prepared by a solid-state reaction method. This research has been conducted with the recurring heating process at high temperature. The raw material consisted of Nd₂O₃ (99.99 %) and Fe₂O₃ (99.99 %) which characterized by XRD to confirm the phase and using SEM to identify the morphology structure of the sample. Result characterized by XRD confirms the phase of NdFeO₃ and Nd₂O₃ with the formation of NdFeO₃ having the orthorhombic structure (perovskite type). The value of FWHM and the average crystal size of NdFeO₃ was obtained for each sample is 0.20º and 409 nm. While SEM studies showed the surface morphology of Nd₁₂Fe₃O₇ has homogeneous granules with grain size estimates is 0.2 μm. These results indicate that sample Nd₁₂Fe₃O₇ was a good candidate for gas sensor materials.

Keywords. Crystal structure, morphology, sintering, NdFeO₃ oxide alloy, and solid state method.

1. Introduction

Many researchs have been conducted on oxide compounds to be used as a gas sensor, one of them is to use a perovskite oxide that is NdFeO₃ synthesized by various methods or techniques [1–5]. NdFeO₃ known to have type orthorhombic [1, 3–6]. The nano-perovskite oxides ABO₃ (A: La, Nd, Sm, and Gd; B: Fe, Co and Ni; and O: oxygen) have high catalytic activities and high sensitivity for gas sensor material. The NdFeO₃ is mainly using in gas sensing and catalysis application [2, 3, 6]. Research on NdFeO₃ by sol-gel citrate method obtained perovskite-type NdFeO₃ can be used as an H₂S gas sensor and catalytic CO gas sensor in exhaust gas environments [3, 6]. Various synthesizing techniques have been used for synthesis NdFeO₃ alloy oxide it such as by hydrothermal method [7], combustion [8, 9], sol-gel [10], precipitation method [11], solid-state reaction method [12] and sonication assisted precipitation [13].

The solid-state reaction is one of the oldest synthesis routes for the preparation of perovskites [12]. An advantage of this method is a cheap, simple and fast method for the synthesis perovskite. Also, the product of the reaction has high purity and good crystallinity. The properties of the perovskite materials are closely related to either the preparation or sintering conditions. In the ceramics, the sintering process is essential that effect on microstructure, grain growth, and densification [14].
In this paper, we present perovskite oxide Nd$_{1.2}$FeO$_3$-based by a solid state method with varying the sintering temperature using heat treatment process. Then the crystal structure and morphology of Nd$_{1.2}$FeO$_3$ has been characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).

2. Materials and methods
The powders oxide Nd$_{1.2}$FeO$_3$ were prepared by the solid-state reaction method. Raw materials of Nd$_2$O$_3$ (Strem Chemicals, 99.99 %) and Fe$_2$O$_3$ (Sigma-Aldrich, 99.99 %) were mixed together based on a stoichiometric calculation using a molar ratio of $x = 0.2$ [15] to get an oxide alloy Nd$_{1.2}$FeO$_3$. Then powders were grinded for 3 h and calcined using furnace at 700 °C for 6 h. Sample powders are resulting calcination then were grinded back for 5 h to get a homogeneous mixture and sintered at 950 °C for 6 h.

The synthesis process and the heating are then repeated to obtain a better sample homogeneity [16]. Then mix powders produced were grinded for 3 h and calcined at 950 °C for 6 h. Then the result of the calcined sample was grinded back for 5 h to maximize reaction and to increase the homogeneity and sintered as a variation of high temperatures 1000 °C, 1050 °C, and 1100 °C for 6 h, respectively. Finally, the samples were annealed at 450 °C for 1 h. Powders oxide Nd$_{1.2}$FeO$_3$ were characterized by XRD type Rigaku MiniFlex II 2θ = 10° to 70° (Cu Ka, $\lambda = 0.154$ nm) and SEM-EDS type Tescan Vega3SB to analyzed the phase composition and to confirm morphology and elemental structure.

3. Results and discussion
X-ray diffraction (XRD) pattern of samples Nd$_{1.2}$FeO$_3$ at high temperatures 1000 °C, 1050 °C, and 1100 °C shown in Figure 1, respectively. According to the result of synthesis NdFeO$_3$ powder obtained diffraction peaks form a single phase with a perovskite structure [4, 17]. In Figure 1 shows the formation phase of NdFeO$_3$ and Nd$_2$O$_3$. Formation of phase Nd$_2$O$_3$ produces another peak that regarded as an impurity phase and can reduce the sensitivity of the material as a gas sensor. Phases analysis using Match! software shows that dominant phase of NdFeO$_3$ is having the orthorhombic structure (perovskite type) with Pnma space group [18].

![Figure 1. XRD patterns of Nd$_{1.2}$FeO$_3$ as variation of different temperatues (♦= NdFeO$_3$, ●= Nd$_2$O$_3$).](image-url)
Table 1. Data of positions (2θ), intensities and FWHM values of Nd$_{1.2}$FeO$_3$ phases

Sample	Identification phase	2θ (°)	Intensity (Counts)	FWHM (°)
RS1000	NdFeO$_3$	32.54	13053.33	0.20±0.02
RS1050	NdFeO$_3$	32.56	13260.00	0.20±0.02
RS1100	NdFeO$_3$	32.52	13810.00	0.20±0.02

It can be seen from Table 1, FWHM values of NdFeO$_3$ phase same for all three samples at the dominant peak is hkl (121) with the peak position $2\theta = 32.5^\circ$. Synthesis of NdFeO$_3$ has also been done by Jada Shanker et al. with temperature 900 °C [5], and Yabin Wang et al. with temperature 1000 °C [4] which get similar results that phase NdFeO$_3$ exist at $2\theta = 32.56^\circ$ with hkl (121). FWHM value stated of homogeneity between atoms in a crystal which the smaller the FWHM value means the lattice more homogeneous or has good crystallinity, which means that the level of material quality is also getting better [4]. The crystal size can be calculated using Debye-Scherrer equation (1):

$$D = \frac{0.9\lambda}{\beta \cos \theta}$$

where λ is the wavelength of X-ray (0.15405 nm for Cu Kα), β is FWHM value at hkl (121), and θ is diffraction angle. Based on the calculation, the value of the crystal size of Nd$_{1.2}$FeO$_3$ which synthesized was 409.37 nm, 409.39 nm and 409.35 nm, respectively.

Figure 2. Relative intensity $I(121)/I(011)$ of Nd$_{1.2}$FeO$_3$ powders oxide material as a function of sintering temperatures.

Figure 2 shows diffraction intensity curve between the dominant of peak intensity (121) with a peak intensity of (011) for each variation of sintering temperature. In this study, we found that a significant change of peak intensity of (011) as a comparison of (121) which is indicating that the intensity of Nd$_3$O$_5$ phase decreases as the temperature of sintering increases.
Figure 3. SEM images of sample Nd$_{1.2}$FeO$_3$ as a variation of sintering temperature a) RS1000, b) RS1050, and c) RS1100, respectively.

Compound	Norm. C [wt%]	Error (3 Sigma) [wt%]				
	RS1000	RS1050	RS1100	RS1000	RS1050	RS1100
Oxygen	16.94	16.50	16.41	5.91	5.83	6.90
Sodium	1.32	-	-	0.38	-	-
Magnesium	0.27	-	-	0.15	-	-
Aluminium	0.25	-	-	0.14	-	-
Potassium	0.04	-	-	0.09	-	-
Titanium	0.11	-	-	0.10	-	-
Iron	21.11	21.60	19.87	1.63	1.70	1.77
Copper	0.85	0.81	0.38	1.22	0.22	0.19
Neodymium	58.99	60.94	63.15	4.26	4.52	5.23
Silicon	0.12	0.15	0.18	0.11	0.11	0.13

The morphology, crystal structure and particle size of the sample were investigated by SEM. Microstructures of polycrystalline Nd$_{1.2}$FeO$_3$ sintered at various temperatures are shown in Figure 3. SEM results of all samples in Figure 3, it is generally assumed that the powders Nd$_{1.2}$FeO$_3$ oxide alloy material have a high homogeneity level with formation small uniform granules which an estimated grain size about of 0.2 μm and the color is almost evenly gray. This powder has a very high porosity,
and this is an advantage for improving the gas-sensing characters, as has reported by Niu Xinshu et al. [2] and Ho et al. [3].

Table 2 shows the elemental composition of samples Nd$_{1.2}$FeO$_3$, were RS1000 contain Nd (58.99 wt%) and Fe (21.11 wt%), RS1050 contain Nd (60.94 wt%) and Fe (21.60 wt%), and RS1100 contain Nd (63.15 wt%) and Fe (19.87 wt%), which also contain a minor phase as shown in Table 2. That minor phase as indication due to the sample holder preparation process and no significant effect on the constituent elements of each sample.

4. Conclusions
The perovskite oxide Nd$_{1.2}$FeO$_3$ powders have been prepared by a solid-state method with the recurring heating process at high temperatures of 1000 °C, 1050 °C, and 1100 °C, respectively. The result of X-Ray diffraction analysis showed the phase of NdFeO$_3$ and Nd$_2$O$_3$ which phase NdFeO$_3$ is an orthorhombic structure with Pnma space group. The results indicate that Nd$_{1.2}$FeO$_3$ analyzed at high-temperature variation given a relatively stable quality, it can be seen the same FWHM value is 0.20° with an estimated crystalline size about of 409 nm. While SEM studies showed, the surface morphology of Nd$_{1.2}$FeO$_3$ has homogeneous granules and high porosity with an estimated grain size of 0.2 μm. The results indicate that Nd$_{1.2}$FeO$_3$ is a good candidate for gas sensor materials as has reported elsewhere.

Acknowledgments
This research was funded by Directorate Research and Community Services, Directorate General of Research and Development, Ministry of Research, Technology, and Higher Education, Republic of Indonesia, under research scheme of Hibah Kompetensi fiscal year 2017.

References
[1] Khorasani-Motlagh M, Noroozifar M, Yousefi M, and Jahani S 2013 Chemical synthesis and characterization of perovskite NdFeO$_3$ nanocrystals via a co-precipitation method *International Journal of Nanoscience and Nanotechnology* 9 pp.7–14.
[2] Niu X, Li H, and Liu G 2005. Preparation, characterization and photocatalytic properties of REFeO$_3$ (RE= Sm, Eu, Gd) *Journal of Molecular Catalysis A: Chemical* 232 pp.89–93
[3] Ho T G et al 2011 *Advanced in Natural Science: Nanoscience and Nanotechnology* 2 pp 015012–15021
[4] Wang Y S 2010 Growth rate dependence of the NdFeO$_3$ single crystal grown by float-zone technique *Journal Crystal Growth* 318 pp 927–931
[5] Shanker J, Suresh M B and Babu D S 2015 *International Journal of Scientific Engineering and Research* 3 pp 194–197
[6] Ru Z et al 2010 Electrical and CO-sensing properties of NdFe$_{1-x}$Co$_x$O$_3$ perovskite system *Journal of Rare Earths* 28 pp 591–595
[7] Zheng W et al 2010 Hydrothermal synthesis of LaFeO$_3$ under carbonate-containing medium *Material Letters* 43 pp 19–22
[8] Manoharan S S and Patil K C 1993 Combustion route to fine particle perovskite oxides *Journal Solid State Chemical* 102 pp 267–267
[9] Chakraborty A, Dévi P S and Maiti H S 1995 Low temperature synthesis and some physical properties of barium-substituted lanthanum manganite (La$_{1-x}$Ba$_x$MnO$_3$) *Journal Materials Research* 10 pp 918–925
[10] Cui H, Zayat M, and Levy D 2006 Epoxide assisted sol–gel synthesis of perovskite-type LaMxFe$_{1.5}$O$_3$ (M= Ni, Co) nanoparticles *Journal of Non-Crystalline Solids* 352 pp 3035–3040
[11] Pandya H N, Kulkarni R G, and Parsania P H 1990 Study of cerium orthoferrite prepared by wet chemical method *Materials Research. Bulletin* 25 pp 1073–1077
[12] Yuan S et al 2011 Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO$_3$ thin films *Journal of Applied Physics* 109
[13] Singh S, Yadav B C, and Dwivedi P K 2013 Fabrication of nanobeads structured perovskite type neodymium iron oxide film: Its structural, optical, electrical and LPG sensing investigations Sensor Actuators B: Chemical 177 pp 730-739

[14] Athayde D D et al 2016 Review of perovskite ceramic synthesis and membrane preparation methods Ceramics International 42 6555–6571

[15] Zharvan V et al 2017 The Effect of Molar Ratio on Crystal Structure and Morphology of Nd_{1+X}FeO_3 (X=0.1, 0.2, and 0.3) Oxide Alloy Material Synthesized by Solid State Reaction Method IOP Conf. Series: Materials Science and Engineering 202 p 1

[16] Mir S A, Ikram M, Asokan K 2014 Optik - International Journal for Light and Electron Optics 125 pp 6903-6908

[17] Shanker J, Suresh M, and Babu D 2016 Synthesis, Characterization and Electrical Properties of NdXO_3 (X=Cr, Fe) Nanoparticles Materials Today: Proceedings 3 pp 2091–2100

[18] Chanda S et al 2013 Raman spectroscopy and dielectric properties of nanoceramic NdFeO3 Materials Research Bulletin 48 pp 1688–1693