CAVITY OF MOLECULAR GAS ASSOCIATED WITH SUPERNOVA REMNANT 3C 397

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Jiang, Bing, Yang Chen, Junzhi Wang, Yang Su, Xin Zhou, Samar Safi-Harb, and Tracey DeLaney. “CAVITY OF MOLECULAR GAS ASSOCIATED WITH SUPERNOVA REMNANT 3C 397.” The Astrophysical Journal 712, no. 2 (March 11, 2010): 1147–1156. © 2010 American Astronomical Society.
As Published	http://dx.doi.org/10.1088/0004-637x/712/2/1147
Publisher	Institute of Physics/American Astronomical Society
Version	Final published version
Citable link	http://hdl.handle.net/1721.1/95882
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
CAVITY OF MOLECULAR GAS ASSOCIATED WITH SUPERNOVA REMNANT 3C 397

Bing Jiang1, Yang Chen1,2,6, Junzhi Wang1,2, Yang Su3, Xin Zhou1, Samar Safi-Harb4, and Tracey DeLaney5

1 Department of Astronomy, Nanjing University, Nanjing 210093, China
2 Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, China
3 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
4 Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
5 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139, USA

ABSTRACT

3C 397 is a radio and X-ray bright Galactic supernova remnant (SNR) with an unusual rectangular morphology. Our CO observation obtained with the Purple Mountain Observatory at Delingha, Qinghai Province, China reveals that the remnant is well confined in a cavity of molecular gas and embedded at the edge of a molecular cloud (MC) at the local standard of rest systemic velocity of ~32 km s\(^{-1}\). The cloud has a column density gradient increasing from southeast to northwest, perpendicular to the Galactic plane, in agreement with the elongation direction of the remnant. This systemic velocity places the cloud and SNR 3C 397 at a kinematic distance of ~10.3 kpc. The derived mean molecular density (~10–30 cm\(^{-3}\)) explains the high volume emission measure of the X-ray emitting gas. A \(^{12}\)CO line broadening of the ~32 km s\(^{-1}\) component is detected at the westmost boundary of the remnant, which provides direct evidence of the SNR–MC interaction and suggests multi-component gas there with dense (~10\(^4\) cm\(^{-3}\)) molecular clumps. We confirm the previous detection of an MC at ~38 km s\(^{-1}\) to the west and south of the SNR and argue, based on H\(_1\) self-absorption, that the cloud is located in the foreground of the remnant. A list of Galactic SNRs presently known and suggested to be in physical contact with environmental MCs is appended in this paper.

Key words: ISM: individual objects (3C 397 (G41.1–0.3)) – ISM: molecules – ISM: supernova remnants

Online-only material: color figures

1. INTRODUCTION

Core-collapse supernovae are often not far away from their natal giant molecular clouds (MCs). About half of the Galactic supernova remnants (SNRs) are expected to be in physical contact with MCs (Reynoso & Mangum 2001), but so far only less than 40 SNR–MC associations have been confirmed (see the Appendix). These associations are mostly established by the detection of OH 1720 MHz masers (e.g., Frail et al. 1996; Green et al. 1997). For the other few cases, the convincing evidence comes from the sub-millimeter/millimeter observations of molecular lines and infrared observations in recent decades, including molecular line broadening, high line ratio (e.g., \(^{13}\)CO \(J = 2–1/J = 1–0\)), morphological correspondence of molecular emission, etc. Many SNR–MC associations may have not yet been revealed mainly because the OH maser emission is below the detection thresholds (Hewitt & Yusef-Zadeh 2009). Even for most of the SNRs whose interaction with MCs are confirmed, the detailed distribution of environmental molecular gas, which can shed light on the SNRs’ dynamical evolution and physical properties, is poorly known. In this regard, line emission of CO and its isotopes plays an important role in the study of the SNR–MC association.

3C 397 (G41.1–0.3) is a radio and X-ray bright Galactic SNR with a peculiar rectangular morphology. It is elongated along the southeast (SE)–northwest (NW) direction, perpendicular to the Galactic plane (Anderson & Rudnick 1993). In X-rays, a “hot” spot was detected near the geometric center (Chen et al. 1999; Dyer & Reynolds 1999; Safi-Harb et al. 2000), suggestive of a compact object associated with the SNR; however, using the ASCA and Chandra observations, no pulsed signal and no hard, non-thermal emission were detected from it as would be expected from a neutron star or a pulsar wind nebula (Chen et al. 1999; Safi-Harb et al. 2000, 2005, hereafter S05). Based on the irregular morphology seen in the radio and X-rays, the sharp western boundary, and the higher density in the western region of the SNR, S05 suggested that SNR 3C 397 is encountering or interacting with a MC to the west. Using millimeter data to study the environs of 3C 397, they found evidence for an MC at a local standard of rest (LSR) velocity of \(V_{\text{LSR}} = 35–40\) km s\(^{-1}\) to the west and south of the remnant, and suggested a possible association between the cloud and the SNR. The non-detection of OH masers toward the SNR and the small \(^{12}\)CO (\(J = 2–1)/(J = 1–0\)) ratio led S05 to conclude that either the MC is in the close vicinity of the SNR but has not yet been overrun by the shock wave, or that the SNR–MC interaction is occurring, it must be taking place along the line of sight.

Motivated by the above findings and aiming to investigate the detailed distribution of the molecular gas enveloping SNR 3C 397, we performed a new observation in \(^{12}\)CO (\(J = 1–0\)) and \(^{13}\)CO (\(J = 1–0\)) lines toward the remnant. In this paper, we present our discovery of a cavity of molecular gas associated with 3C 397 and argue that the 38 km s\(^{-1}\) cloud is likely in the foreground of the SNR.

2. OBSERVATIONS

The observation was taken with the 13.7 m millimeter-wavelength telescope of the Purple Mountain Observatory at Delingha (hereafter PMOD), China, during 2008 November to December. An SIS receiver was used to simultaneously observe the \(^{12}\)CO (\(J = 1–0\)) line (at 115.271 GHz) and \(^{13}\)CO (\(J = 1–0\)) line (at 110.201 GHz), while two acousto-optical spectrometers were used as the back end with 1024 channels. The corresponding spectral coverage was 145 MHz for \(^{12}\)CO (\(J = 2–1)/(J = 1–0\)) and \(^{13}\)CO (\(J = 1–0\)) lines.
K for both 12CO and 13CO data. All the CO data were reduced and southwest, and has a morphology strikingly similar to that mid-IR image displays a distinct SNR "shell" in the north, west, image and the Spitzer

http://www.iram.fr/IRAMFR/GILDAS

13CO peak (J = 1–0) and no CO emission is detected outside of this range. There are two prominent CO emission peaks around 38 km s\(^{-1}\) and 55 km s\(^{-1}\). We made 12CO emission intensity channel maps with \(\sim 1\) km s\(^{-1}\) velocity intervals. No evidence is found for the positional correlation between the 55 (50–70) km s\(^{-1}\) CO component and SNR 3C 397. The other prominent CO emission peak at 38 km s\(^{-1}\) appears to form a crescent strip that partially surrounds the western and southern borders of the remnant as shown in the 35–42 km s\(^{-1}\) velocity interval of Figure 2. This is consistent with the structure seen in the 13CO images in the 35.4–41.3 km s\(^{-1}\) interval found by S05.

Interestingly, the intensity maps in the 27–35 km s\(^{-1}\) interval of Figure 2 reveal a “bay”-like cavity of molecular gas that coincides with the remnant well. The SNR appears surrounded by the molecular gas except in the SE. As seen in the CO spectra (Figure 1), the molecular gas in this range corresponds to a molecular component peaked at 32 km s\(^{-1}\). Although not as prominent as the 38 km s\(^{-1}\) component, the 32 km s\(^{-1}\) component can be resolved in both the 12CO and 13CO spectra. Because 13CO (J = 1–0) is usually optically thin and indicative of a high column density of H\(_2\) molecules, the presence of the 13CO peak (\(\geq 6\)σ) at \(\sim 32\) km s\(^{-1}\) implies that it is not a broadened part from the left wing of the 38 km s\(^{-1}\) peak, but a separate component.

Figure 3 shows the integrated 12CO map in the velocity range of 27–35 km s\(^{-1}\) overlaid with the Chandra 0.5–8 keV X-ray image and the Spitzer 24 µm mid-IR image of the SNR. The mid-IR image displays a distinct SNR “shell” in the north, west, and southwest, and has a morphology strikingly similar to that

\[1.012 \times 10^5 \quad 1.019 \times 10^5 \quad 1.1018 \times 10^5 \quad 1.1017 \times 10^5\]

\[\text{Velocity (km/s)}\]

- 50
- 100

Figure 1. Average CO spectra over the FOV. The dashed line is 12CO (J = 1–0) and the solid line is 13CO (J = 1–0) (multiplied by a factor of 2).

in radio and X-rays. In particular, it is worth noting the sharp western boundary seen at all wavelengths. The box-like shell appears to be well confined in the molecular gas cavity, both of which seem open in the SE. Furthermore, the flat northeastern boundary appears to follow a sharp 12CO intensity interface. This is consistent with a possible density enhancement in the north as suggested by Anderson & Rudnick (1993) for the inhibition of the SNR expansion in this direction.

The 27–35 km s\(^{-1}\) 12CO intensity gradient from SE to NW is clearly seen in Figures 2 and 3. This is consistent with the large-scale density gradient which was suggested based on the SNR brightening in radio toward the Galactic plane (Anderson & Rudnick 1993). In order to remove the confusion by this broad structure at low Galactic latitude (\(-0.3\)) in radio and X-rays, in particular, it is worth noting the sharp western boundary seen at all wavelengths. The box-like shell appears to be well confined in the molecular gas cavity, both of which seem open in the SE. Furthermore, the flat northeastern boundary appears to follow a sharp 12CO intensity interface. This is consistent with a possible density enhancement in the north as suggested by Anderson & Rudnick (1993) for the inhibition of the SNR expansion in this direction.

3. RESULTS

3.1. The Molecular Gas Cavity at V\(_{\text{LSR}}\) ~ 32 km s\(^{-1}\)

Figure 1 shows the 12CO (J = 1–0) and 13CO (J = 1–0) spectra averaged over the field of view (FOV). Several velocity components are present in the velocity range V\(_{\text{LSR}}\) = 0–100 km s\(^{-1}\), and no CO emission is detected outside of this range. There are two prominent CO emission peaks around 38 km s\(^{-1}\) and 55 km s\(^{-1}\). We made 12CO emission intensity channel maps with \(\sim 1\) km s\(^{-1}\) velocity intervals. No evidence is found for the positional correlation between the 55 (50–70) km s\(^{-1}\) CO component and SNR 3C 397. The other prominent CO emission peak at 38 km s\(^{-1}\) appears to form a crescent strip that partially surrounds the western and southern borders of the remnant as shown in the 35–42 km s\(^{-1}\) velocity interval of Figure 2. This is consistent with the structure seen in the 13CO images in the 35.4–41.3 km s\(^{-1}\) interval found by S05.

Interestingly, the intensity maps in the 27–35 km s\(^{-1}\) interval of Figure 2 reveal a “bay”-like cavity of molecular gas that coincides with the remnant well. The SNR appears surrounded by the molecular gas except in the SE. As seen in the CO spectra (Figure 1), the molecular gas in this range corresponds to a molecular component peaked at 32 km s\(^{-1}\). Although not as prominent as the 38 km s\(^{-1}\) component, the 32 km s\(^{-1}\) component can be resolved in both the 12CO and 13CO spectra. Because 13CO (J = 1–0) is usually optically thin and indicative of a high column density of H\(_2\) molecules, the presence of the 13CO peak (\(\geq 6\)σ) at \(\sim 32\) km s\(^{-1}\) implies that it is not a broadened part from the left wing of the 38 km s\(^{-1}\) peak, but a separate component.

Figure 3 shows the integrated 12CO map in the velocity range of 27–35 km s\(^{-1}\) overlaid with the Chandra 0.5–8 keV X-ray image and the Spitzer 24 µm mid-IR image of the SNR. The mid-IR image displays a distinct SNR “shell” in the north, west, and southwest, and has a morphology strikingly similar to that
and 9.9 kpc. For comparison, the tangent point in the direction to 3C 397 is at ∼6.0 kpc. The discrepancy of the kinematic distances to the two molecular components is at least 0.4 kpc, much larger than the typical size of a giant MC complex (∼50 pc; Cox 2000). Thus, it is almost impossible for SNR 3C 397 to simultaneously interact with the two clouds.

We can use the H\textsc{i} self-absorption (SA) measurement to help resolve the near–far ambiguity in kinematic distances, as suggested by Liszt et al. (1981) and Jackson et al. (2002). The likelihood of detecting H\textsc{i} SA favors the geometry in which a cloud lies at the near kinematic distance (see Figure 1 in Roman-Duval et al. 2009 for this reasoning). Figure 5 shows the VGPS H\textsc{i} and PMOD 13CO spectra of the NE and SW regions near the SNR. The H\textsc{i} SA associated with the 13CO peak is clearly seen at 38 km s$^{-1}$, which indicates that this cloud is most probably at the near distance, 2.1 kpc. On the contrary, little H\textsc{i} SA is detected at 32 km s$^{-1}$. It has been suggested that SNR 3C 397 is located beyond 7.5 kpc and behind the tangent point based on the H\textsc{i} absorption (Radhakrishnan et al. 1972; Caswell et al. 1975). Therefore, the 38 km s$^{-1}$ velocity component is likely to be a foreground MC toward the SNR.

3.2. Kinematic Evidence for Interaction

A grid of 12CO ($J = 1–0$) spectra is produced focusing on the 32 km s$^{-1}$ component (Figure 6). We inspected the local

![Figure 2. 12CO ($J = 1–0$) intensity maps integrated each 1 km s$^{-1}$ in the velocity range of 26–46 km s$^{-1}$, overlaid by VLA 1.4 GHz radio continuum emission in contours with levels of 2, 9, 13.5, 18, 23, and 32 mJy beam$^{-1}$. The central velocities are marked in each image. The average rms noise of each map is 0.18 K km s$^{-1}$. The dashed boxes labeled with “NE” and “SW” denote the regions from which the 13CO and H\textsc{i} spectra (see Figure 5) were extracted. The dashed lines indicate lines of Galactic latitude and longitude along which the column density distribution N(H$_2$) of the 32 km s$^{-1}$12CO molecular component was derived (see Figure 8).]
spectra along the edges of the remnant and found that the blue (left) wings (∼28–31 km s⁻¹) of the ¹²CO line profiles of the 32 km s⁻¹ component in the northern, northwestern, and westmost edges (see regions “N,” “NW,” and “W” marked in Figure 6) appear to be broadened, as shown in Figure 7. The blue wings of other positions along the SNR boundary are not seen to be similarly broadened. In other cases of SNRs such as IC 443 (White et al. 1987), W28 (Arikawa et al. 1999), G347.3−0.5 (Moriguchi et al. 2005), Kes 69 (Zhou et al. 2009), and Kes 75 (Su et al. 2009), the ¹²CO line broadenings show that the surrounding molecular gas suffers a perturbation and are regarded as strong kinematic evidence for the SNR shock–MC interaction. The broad line profiles seen in 3C 397 are possibly evidence of such an interaction. We cannot conclude whether the red (right) wings of the 32 km s⁻¹ lines in the three regions are broad or not, because they are overlapped by the left wings of the strong 38 km s⁻¹ lines, which makes it difficult to determine the broadness of the red sides of the 32 km s⁻¹ lines.

In the regions “N” and “NW” of 3C 397, the broad left wings may include the contribution from real line broadening due to shock perturbation. In the northern edge of the SNR, there are some X-ray structures that seem to be interacting with the cloud, such as a hat-like Si knot and an S shell (according to the X-ray equivalent width maps in Jiang & Chen 2010). Thus, as a possibility, the molecular gas in the “diagonal” as revealed in the X-ray equivalent width maps (Jiang & Chen 2010) may include the contribution from real line broadening due to shock perturbation. In the northern edge of the SNR, there are some X-ray structures that seem to be interacting with the cloud, such as a hat-like Si knot and an S shell (according to the X-ray equivalent width maps in Jiang & Chen 2010). However, we also note that in a wide northern and northeastern area in the FOV (see Figure 6), some ¹²CO emission peaks at 30 km s⁻¹ and thus may more or less contaminate the broad blue wings of line profiles of regions “N” and “NW.”

In the westmost region “W,” there is a unique plateau in the broad blue wing. No significant ¹²CO emission at 30 km s⁻¹ is seen near this region. Therefore, the broad blue wing can be safely ascribed to Doppler broadening of the 32 km s⁻¹ line, which provides solid kinematic evidence of interaction between SNR 3C 397 and the adjacent 32 km s⁻¹ MC. It is noteworthy that this westmost line-broadening region is essentially located at a right-angle corner of the rectangular-shaped SNR, which is close to the western radio and X-ray brightness peaks and seems to be coincident with the western end of the Fe-rich ejecta along the “diagonal” as revealed in the X-ray equivalent width maps (Jiang & Chen 2010). Thus, as a possibility, the molecular gas in this region might be impacted by the Fe-rich ejecta.

The fitted and derived parameters for the 32 km s⁻¹ molecular component in region “W” are summarized in Table 1. Here we have applied two methods to estimate the H₂ column density and the molecular mass. In the first method, the X-factor N(H₂)/W(¹²CO) ≈ 1.8 × 10²⁰ cm⁻²K⁻¹ km⁻¹s⁻¹ (Dame et al. 2001) is used. In the second one, local thermodynamic equilibrium for the gas and optically thick condition for the ¹³CO (J = 1–0) line are assumed, and another conversion relation N(H₂) ≈ 7 × 10¹³ N(¹³CO) (Frerking et al. 1982) is used.

In view of the morphological correspondence, the broadened line profile, and the H I SA comparison, we suggest that SNR 3C 397 is associated and interacting with the 32 km s⁻¹ MC, which is at a distance of ∼10.3 kpc, and parameterize the distance to the SNR as d = 10.3d₀₁₃ kpc. The distance values used in the previous X-ray studies (e.g., S05) are numerically very similar to the distance determined here.
Figure 6. Grid of 12CO ($J = 1-0$) spectra restricted to the velocity range 20–40 km s$^{-1}$, superposed on the VLA 1.4 GHz contours of 3C 397 remnant. Three regions ("N," "NW," and "W") are defined for CO-spectrum extraction, of which the 32 km s$^{-1}$ 12CO ($J = 1-0$) line profiles show broad blue wings (see Figure 7).

(A color version of this figure is available in the online journal.)

Figure 7. Averaged CO line profiles of the three regions marked in Figure 6. The 12CO line profiles are plotted with thick lines and the 13CO line profiles with thin lines. The shadowed patch indicates the blueward broadened wing of the \sim32 km s$^{-1}$ 12CO component of region "W."

4. DISCUSSION

4.1. Mean Molecular Density

The H$_2$ column density distributions of the $V_{LSR} \sim 32$ km s$^{-1}$ component along the Galactic latitude and longitude lines crossing the remnant center are plotted in Figure 8 (using the X-factor method). The H$_2$ column is shown to increase along the latitude toward the Galactic plane and has a depression within the SNR’s extent ($\Delta N(H_2) \sim (0.3–1) \times 10^{21}$ cm$^{-2}$) along the longitude, corresponding to the molecular cavity. This
column depression implies a mean density \(n(H_2) \sim 10 \rho^{-1}_{10.3} \times 30d^{-1}_{10.3} \) cm\(^{-3}\) for the molecular gas which was originally in the cavity. It can be roughly regarded as the mean density of the environs. Here we have assumed the line-of-sight length of the cavity as \(10d_{10.3} \) pc, according to the 3.2 \(\times \) 4.7 angular size of the rectangular-shaped SNR which converts to a physical extent of \(\sim 9d_{10.3} \) pc \(\times \) 14d\(_{10.3}\) pc. For comparison, the 32 km s\(^{-1}\) molecular component in the FOV has an average \(H_2 \) column density of \(\sim 2.5 \times 10^{21} \) cm\(^{-2}\) (estimated from the first method) or \(\sim 1.1 \times 10^{21} \) cm\(^{-2}\) (estimated from the second method), with the mass amounting to \(3.0 \times 10^4 \) \(M_\odot \) or \(1.3 \times 10^3 \) \(M_\odot \), respectively.

The column variation of the 32 km s\(^{-1}\) cloud along the latitude is as large as \(\Delta N(H_2) \sim 1 \times 10^{21} \) cm\(^{-2}\), but it cannot alone account for the variation of intervening hydrogen column density (\(\Delta N_{\text{int}} \sim 1.1 \times 10^{22} \) cm\(^{-2}\)) from west to east inferred from the previous \textit{Chandra} X-ray analysis (S05). On the other hand, the 38 km s\(^{-1}\) MC has a column density \(N(H_2) \sim 0.6 \times 10^{22} \) cm\(^{-2}\) (using the first method) or \(0.34 \times 10^{22} \) cm\(^{-2}\) (using the second method), which is well consistent with the variation of X-ray absorption. Therefore, the variation in absorption can basically be explained as a result of the presence of the 38 km s\(^{-1}\) MC, which partially covers the western and southern borders of the remnant.

4.2. Multi-wavelength Properties

Direct contact of the SNR with the MC can help us understand the other properties of the remnant. The pronounced 24 \(\mu \)m shell, correlating with the radio shell, follows the molecular cavity wall rather well. This mid-IR emission may be primarily due to the dust collisionally heated by electrons and ions in the outward moving shock wave as argued for the cases of, e.g., N132D (Tappe et al. 2006) and 3C 391 (Su & Chen 2008) where the blast wave has swept up dense material in those molecular environments. We refer the reader to A. Tappe et al. (2010, in preparation) for a detailed study of the IR properties of 3C 397.

S05 points out that 3C 397 bears some interesting similarities to the thermal composite (or mixed-morphology) SNR 3C 391 in radio and X-rays. The association of 3C 397 with the 32 km s\(^{-1}\) cloud demonstrates more similarities between the two SNRs. Both of them are observed to be located at the edge of a MC, align in a density gradient from SE to NW, and represent a “breakout” morphology in the east, resulting in bright radio shells in the NW and lower surface brightness in the SE.

The association of SNR 3C 397 with the MC enables us to explain the large volume emission measure of the low-temperature component of the X-ray emitting gas (Chen et al. 1999; Safi-Harb et al. 2000; S05). In fact, the molecular gas density

Table 1

Line	Center (km s\(^{-1}\))	FWHM (km s\(^{-1}\))	\(T_{\text{peak}} \) (K)	\(W \) (K km s\(^{-1}\))
\(^{12}\)CO(\(J = 1\rightarrow 0 \))	32.7	2.5	2.9	7.7
\(^{13}\)CO(\(J = 1\rightarrow 0 \))	32.8	1.9	0.4	0.8

Notes.

\(^a\) The region is marked in Figure 6.

\(^b\) The excitation temperature calculated from the maximum \(^{12}\)CO(\(J = 1\rightarrow 0 \)) emission point of the 32 km s\(^{-1}\) component in the FOV.

\(^c\) The optical depth of the \(^{13}\)CO(\(J = 1\rightarrow 0 \)) emission in the velocity interval 27–34 km s\(^{-1}\) from the \(^{12}\)CO emission in the velocity interval 27–34 km s\(^{-1}\) and applying the X-factor method.

Figure 8. \(N(H_2) \) distributions along the Galactic latitude (left panel) and longitude (right panel) lines projected across the remnant (shown in Figure 2). The gray bars indicate the extent of the remnant.
CAVITY OF MOLECULAR GAS ASSOCIATED WITH SNR 3C 397

1153

(\sim 10^9d_{10.3}^{-3} \sim 30d_{10.3}^{-3} \text{ cm}^{-3}) is similar to the ambient gas density inferred from the X-ray spectral analysis (Chen et al. 1999; Safi-Harb et al. 2000; S05). It has been suggested based on detailed Chandra X-ray spectroscopic analysis that the X-ray emission arises from low-ionization-timescale shock-heated ejecta mixed with shocked ambient/circumstellar material within a relatively young age of the remnant \sim 5.3 kyr (S05). If the molecular cavity was excavated by the supernova blast wave, the ejecta may be expected to have been fully mixed with the large-mass \((\sim 1 \times 10^4d_{10.3}^2 n(H_2)/20 \text{ cm}^{-3}) M_\odot \) of swept-up dense gas, so that it would be difficult to spectrally resolve metal-rich ejecta. If the cavity was sculpted chiefly by the progenitor star due to its powerful stellar wind and ionizing radiation, the ejecta would travel in the low-density region before impacting the dense molecular gas. Thus, the interaction of the ejecta with the dense ambient gas should be a recent event and hence the ionization timescale of the ejecta is naturally low. This wind cavity scenario seems to be in favor of the suggestion of reflected shock (S05) inside the SNR. The impact with the cavity wall may have hampered the expansion of the ejecta and, while the outermost ejecta can interact with the dense cloud, the innermost ejecta can be compressed and heated by the reflected shock (as happens, for example, in W49B (Miceli et al. 2006), in the Cygnus Loop (Levenson & Graham 2005), and in Kes 27 (Chen et al. 2008)). A detailed investigation of the X-ray properties of the remnant using XMM-Newton will be presented elsewhere (S. Safi-Harb et al. 2010, in preparation).

4.3. Multi-phase Molecular Environment

For the westmost line-broadened region, we adopt the observed total mass \(\sim 270d_{10.3}^2 M_\odot \) and the Gaussian-subtracted mass \(\sim 74d_{10.3}^2 M_\odot \) (Table 1) as the upper and lower limits of the mass of the disturbed molecular gas, respectively. Both estimates are larger than the mass, \(18d_{10.3}^2 - 54d_{10.3}^2 M_\odot \), of the molecular gas that could be swept up from the geometric center to this position (here we adopt one-fourth the volume of the cone subtended by the western boundary since region “W” shown in Figure 6 spans approximately half the western boundary and since only the one-sided line broadening is taken into account). On the other hand, we have mentioned that the original molecular gas in the cavity volume can roughly account for the low-temperature component of the X-ray emitting gas. Therefore, the disturbed gas in the line-broadened region is not swept-up gas but pre-exists there. The disturbed gas moves at a bulk velocity \(v_m \) around 7 km s\(^{-1}\), which is implied by the blueward line broadening that reflects the velocity component along the line of sight. This motion can be naturally explained to be driven by the transmitted shock in dense clouds. The gas may thus be assumed to be in a crude pressure balance with the proximate hot gas, which will be represented in the following quantitative analysis by the “western lobe” described in S05. For the “western lobe,” the assumption of pressure balance between the low-temperature component of hot gas \((kT_i \sim 0.2 \text{ keV}) \) with volume emission measure \(4.2 \times 10^{6-2}d_{10.3}^2 \text{ cm}^{-3} \); S05) and the high-temperature component \((kT_h \sim 1.4 \text{ keV}) \) with volume emission measure \(6.2 \times 10^{57}d_{10.3}^2 \text{ cm}^{-3} \); S05) yields values of filling factor and atomic density \((f_i \sim 0.94, n_i \sim 66d_{10.3}^{-1/2} \text{ cm}^{-3}) \) for the low-temperature component and \((f_h \sim 0.06, n_h \sim 10d_{10.3}^{-1/2} \text{ cm}^{-3}) \) for the high-temperature component. The small filling factor of the high-temperature component seems to be consistent with the ejecta. Here we have assumed \(f_i + f_h = 1 \) (Rho & Borkowski 2002), while in reality \(f_i + f_h \) may be some-

what smaller than unity. However, because the hot gas density is proportional to the inverse of the square root of the filling factor, the density estimate is not sensitive to the factor. Hence the above density estimates are lower limits, but are still a good approximation. We thus find the density of the disturbed molecular gas \(n(H_2) \sim 2 \times 10^4d_{10.3}^2 \text{ cm}^{-3} \) based on the pressure balance between the cloud shock and the X-ray emitting hot gas (Zel’dovich & Raizer 1967; McKee & Cowie 1975): \(1.4 \times 2n(H_2)m_n v_m^2 \sim 2.3n_bkT_i (\sim 2.3n_bkT_h) \). The derived high \(n(H_2) \) value implies that the disturbed molecular gas is in very dense clumps. The co-existence of moderate-density \((\lesssim 100 \text{ cm}^{-3}) \) molecular component and dense clumps \((\sim 10^4 \text{ cm}^{-3}) \) illustrates a complicated multi-phase molecular environment in the west of SNR 3C 397. This is not uncommon; for example, similar multi-phase MCs have also been discovered in the western region of SNR 3C 391 (Reach & Rho 2000).

5. SUMMARY

We have presented an observation in millimeter CO lines toward the Galactic SNR 3C 397 which is characterized by an unusual rectangular morphology. The SNR is confined in a cavity of molecular gas at an LSR velocity of \(\sim 32 \text{ km s}^{-1} \) and is embedded at the edge of the MC. The cloud has a column density gradient increasing from SE to NW, perpendicular to the Galactic plane, and in agreement with the elongation direction of the remnant. The \(\sim 32 \text{ km s}^{-1} \) CO line profiles with broad blue wings are demonstrated along the northern, northwestern, and westmost boundaries of the SNR; the blue wing of the westmost region may safely be ascribed to Doppler broadening and hence shows solid kinematic evidence for the disturbance by the SNR shock. The systemic velocity, \(32 \text{ km s}^{-1} \), leads to a determination of kinematic distance of \(\sim 10.3 \text{ kpc} \) to the cloud and SNR 3C 397. The mean molecular gas density of the SNR environment is estimated as \(\sim 10^3d_{10.3}^2 - 30d_{10.3}^{-3} \text{ cm}^{-3} \), consistent with the density of the ambient gas previously inferred from X-ray analyses, while the disturbed gas density is deduced as \(\sim 10^4 \text{ cm}^{-3} \), ascribed to very dense clumps, implicating a multi-component molecular environment there. Another MC along the line of sight at around 38 km s\(^{-1}\), which was originally suggested to be associated with the remnant, may be instead located in front of the tangent point, at a distance of \(\sim 2.1 \text{ kpc} \), as implied by the H\(^1\) SA. The variation of X-ray absorption from west to east revealed by S05 can basically be explained as a result of the presence of the 38 km s\(^{-1}\) MC, which partially covers the western and southern borders of the SNR. We compile a list of Galactic SNRs so far confirmed and suggested to be in physical contact with adjacent MCs in the Appendix.

We thank the anonymous referee for helpful comments. We are grateful to the staff of Qinghai Radio Observing Station at Delingha for help during the observation and to Lawrence Rudnick for providing the VLA data of SNR 3C 397. Fabrizio Bocchino and Estela Reynoso are appreciated for constructive help in improving the table of interacting SNRs. Y.C. acknowledges support from NSFC grants 10725312 and 10673003 and the 973 Program grant 2009CB824800. S.S.H. acknowledges support by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs program. We acknowledge the use of the VGPS data; the National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research made...
Table 2
Galactic SNRs in Physical Contact with MCs

Name	Other Name	Type	Evidence	Reference	Group	γ-ray detection (Reference)
G0.0+0.0	Sgr A East	TC	OH maser, CS MA & LB, H₂	1, 2, 3, 4, 5	Y	HESS(67)
G1.05-0.1	Sgr D SNR	S	OH maser	2, 6	Y	
G1.4-0.1	S	S	OH maser	2, 6	Y	
G5.4-1.2	Milne 56	C?	OH maser	7	Y	
G5.7-0.0	?	OH maser	7	Y	HESS(68)	
G6.4-0.1	W28	TC	OH maser, CO MA & LB, H₂ MA, NIR	2, 8, 9, 10	Y	EGRET(69), HESS(68)
G8.7-0.1	W30	TC	OH maser	7	Y	HESS(70)
G9.7-0.0	S	OH maser	7	Y		
G16.7+0.1	C	OH maser, CO MA	2, 11, 12	Y		
G18.8+0.3	Kes 67	S	CO MA & LB, CO ratio	13, 14	Y	
G21.8-0.6	Kes 69	TC	OH maser, CO MA & LB, HCO⁻, H₂	2, 11, 15, 16	Y	
G29.7-0.3	Kes 75	C	CO MA & LB	17	Y	
G31.9+0.0	3C 391	TC	OH maser, molecular MA & LB, H₂ NIR	2, 18, 19, 20	Y	
G32.8-0.1	Kes 78	S	OH maser	21	Y	
G34.7-0.4	W44	TC	OH maser, molecular LB, H₂ MA, NIR, CO ratio	2, 8, 10, 22	Y	EGRET(69)
G39.2-0.3	3C 396	C	H₂ & NIR MA, CO MA & LB	16, 23, 24	Y	
G41.1+0.3	3C 397	TC	CO MA & LB	25	Y	
G49.2-0.7	W51	TC	OH maser, CO MA & LB, HCO⁺ LB	2, 11, 26	Y	HESS(71), Milagro(72)
G54.4-0.3	HC40	S	CO MA & LB, IR MA	27, 28	Y	
G89.0+4.7	HB21	TC	CO MA & LB, CO ratio, H₂, NIR	29, 30, 31	Y	
G109.1+1.0	CTB 109	S	CO MA & LB	32	Y	
G189.1+3.0	IC 443	TC	OH maser, CO ratio, H₂, molecular MA & LB	34, 35	Y	EGRET(69), MAGIC(73), Milagro(72), VERITAS(74), AGILE(75)
G304.6+0.1	Kes 17	S	H₂, IR MA & colors	16, 28	Y	
G332.4-0.4	RCW 103	S	IR MA & colors, N IR, H₂ & HCO⁺ MA	28, 36, 37	Y	
G337.0-0.1	CTB 33	S	OH maser	18	Y	
G337.8-0.1	Kes 41	S	OH maser	21	Y	
G346.6-0.2	S	OH maser, H₂ IR colors	21, 16, 28	Y		
G347.3-0.5	S?	CO MA & LB	38	Y	CANGAROO(76), HESS(77), Fermi(78)	
G348.5-0.0	S?	OH maser, H₂ IR MA	2, 16, 28	Y		
G348.5+0.1	CTB 37A	S	OH maser, CO MA	2, 12, 18	Y	HESS(79)
G349.7+0.2	S	OH maser, CO MA & LB, CO ratio, H₂, IR MA	2, 18, 13, 16	Y		
G357.7+0.3	Square Nebula	S	OH maser	2, 6	Y	
G357.7-0.1	MSH 17–39	TC	OH maser, CO & H₂ MA	2, 18, 39	Y	
G359.1–0.5	TC	OH maser, CO & H₂ MA	2, 40, 41, 42	Y	HESS(80)	
G33.6+0.1	Kes 79	S	CO MA, HCO⁺ MA	43	Y?	
G40.5-0.5	S	CO MA	44	Y?	Milagro(81), HESS(82)	
G43.3–0.2	W49B	TC	H₂ MA	45	Y?	
G54.1+0.3	F?	CO MA	46	Y?		
G74.0–8.5	Cygnus Loop	S	CO MA	47	Y?	
G78.2+2.1	γ Cygni SNR	S	CO MA	48	Y?	EGRET(83), Milagro(81)
G84.2–0.8	S	CO MA	49, 50	Y?		
G120.1+1.4	Tycho, SN1572	S	CO MA	51	Y?	
G132.7+1.3	HB3	TC	CO MA	52	Y?	EGRET(83)
G263.9–3.3	Vela	C	CO MA	53	Y?	CANGAROO(84), HESS(85)
G284.3–1.8	MSH 10–53	S	CO MA & possible LB	54	Y?	
G11.2–0.3	C	IR MA & colors	28	?		
G22.7–0.2	S	IR RC	28	?		
G23.3–0.3	W41	S	CO RC	55	?	HESS(67, 70, 86), MAGIC(87)
G39.7–2.0	W50, SS433	?	CO RC	56	?	
G63.7+1.1	F	CO RC	57	?		
G74.9+1.2	CTB 87	F	CO RC	49, 58, 59	?	
G94.0+1.0	3C434.1	S	CO RC	49	?	
G106.3+2.7	C?	CO RC	60	?	EGRET(83), Milagro(81), VERITAS(88)	
G111.7–2.1	Cas A, 3C461	S	H₂CO absorption, CO RC	61, 62	?	HEGRA(89), MAGIC(90), VERITAS(91), Fermi(92)
G160.4+2.8	HB9	S	CO RC	49	?	
G166.0+4.3	VRO 42.05.01	TC	CO RC	49	?	
G166.3+2.5	OV 184	?	CO RC	49	?	
use of NASA’s Astrophysics Data System and of the High-energy Astrophysics Science Archive Research Center operated by NASA’s Goddard Space Flight Center.

APPENDIX

GALACTIC SNRs IN CONTACT WITH MCs

Table 2 shows a compilation of Galactic SNRs that are presently known and suggested to be in physical contact with MCs. The evidence for the contact/interaction adopted in the table includes

1. detection of 1720 MHz OH maser within the extent of SNR;
2. presence of molecular (CO, HCO+, CS, etc.) line broadening or asymmetric profile (LB);
3. presence of line emission with high high-to-low excitation line ratio, e.g., 12CO $J = 2–1/1–0$;
4. detection of near-infrared (NIR) emission, e.g., [Fe II] line or vibrational/rotational lines of H$_2$ (e.g., H_2 1–0 S(1) line (2.12 μm), H_2 0–0 S(0)–S(7) lines) due to shock excitation;
5. specific infrared (IR) colors suggesting molecular shocks, e.g., Spitzer IRAC 3.6 μm/8 μm, 4.5 μm/8 μm, and 5.8 μm/8 μm (Reach et al. 2006);
6. morphological agreement (MA) or correspondence of molecular features with SNR features (e.g., arc, shell, interface, etc.).

Condition 1 has been known as a reliable signpost of interacting SNRs and the combination of condition 6 and one of conditions 2–5 is now also accepted as convincing evidence for SNR–MC interaction. Condition 6 alone is, however, indicative of probable contact. Either of condition 5 and rough spatial coincidence (RC) between SNR and molecular features is suggestive of possible contact. The SNRs listed in Table 2 are thus classified into three groups: 34 confirmed ones (“Y”), 11 probable ones (“Y?”) with strong evidence but not conclusive yet, and 19 possible ones (“?”) remaining to be determined with further observations. Note that Tycho SNR is the only known Type Ia SNR in the table.

Since SNR–MC interaction is an important source of γ-ray emission via decay of pions, γ-ray detections along the line of sight are also listed in the table.

REFERENCES

Abdo, A. A., & Milagro Collaboration, 2007, ApJ, 664, L91
Abdo, A. A., & Milagro Collaboration, 2009, ApJ, 700, L127
Abdo, A. A., et al. 2010, ApJ, 710, L92
Acciari, V. A., & VERITAS Collaboration, 2009a, ApJ, 698, L133
Acciari, V. A., & VERITAS Collaboration, 2009b, ApJ, 703, L6
Aharonian, F., & HESS Collaboration, 2004, Nature, 432, 75
Aharonian, F., & HESS Collaboration, 2005, Science, 307, 1938
Aharonian, F., & HESS Collaboration, 2006a, ApJ, 636, 777
Aharonian, F., & HESS Collaboration, 2006b, A&A, 448, L43
Aharonian, F., & HESS Collaboration, 2007, A&A, 469, L1
Aharonian, F., & HESS Collaboration, 2008a, A&A, 481, 401
Aharonian, F., & HESS Collaboration, 2008b, A&A, 483, 509
Aharonian, F., & HESS Collaboration, 2008c, A&A, 490, 685
Aharonian, F., & HESS Collaboration, 2009, A&A, 499, 723
Aharonian, F., et al. 2001, A&A, 370, 112
Albert, J., & MAGIC Collaboration, 2006, ApJ, 643, L53
Albert, J., & MAGIC Collaboration, 2007a, ApJ, 664, L87
Albert, J., & MAGIC Collaboration, 2007b, A&A, 474, 937
Anderson, M. C., & Rudnick, L. 1993, ApJ, 408, 514
