On Pfaffian and determinant of one type of skew centrosymmetric matrices

Fatih YILMAZA∗, Tomohiro SOGABEB†, Emrullah KIRKLARA
APolatlı Art and Science Faculty, Gazi University, Turkey
BGraduate School of Engineering, Nagoya University, Japan

June 14, 2016

Abstract

This paper is dedicated to compute Pfaffian and determinant of one type of skew centrosymmetric matrices in terms of general number sequence of second order.

Key words: Pfaffian; determinant; skew centrosymmetric matrix

1 Introduction

The determinant is one of the basic parameters in matrix theory. For an n-square matrix A, it is defined by

\[\det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^{n} a_{\sigma(i)}. \]

The Pfaffian which is intimately related to determinant, was introduced by Cayley, denoted by Pf(A), is defined by

\[\text{Pf}(A) = \sum_{\pi \in S_n} \text{sgn}(\pi)_{2n} \prod_{i=1}^{n} a_{\pi(2i)\pi(2i-1)}. \]

The Pfaffian of a skew symmetric matrix is a quantity closely related to the determinant. Cayley’s Theorem says that the square of the Pfaffian of a matrix is equal to the determinant of the matrix. In other words, for an n-square skew-symmetric matrix A,

\[\det(A) = [\text{Pf}(A)]^2. \]

∗Corresponding author
†e-mails: fatihyilmaz@gazi.edu.tr, sogabe@na.cse.nagoya-u.ac.jp, e.kirklar@gazi.edu.tr
A matrix A is a centrosymmetric matrix if $A = JAJ^{-1}$ where J is anti-diagonal matrix whose anti-diagonal entries are one and others are zero. If $A = -AJA^{-1}$, it is said to be skew-centrosymmetric matrix. This matrix family have wide applications in many fields of science such as, numerical solution of certain differential equations, digital signal processing, information theory, statistics, linear systems theory, some Markov processes and so on (see [1, 2, 3, 4, 5, 6]).

This paper highlights the close connections among the Pfaffian, the determinant and general number sequences of second order.

2 Pfaffian and Skew centrosymmetric matrices

Definition 1 Let us define n-square matrices $A_n = [a_{i,j}]$ and $B_n = [b_{i,j}]$ in the given form

\[
[a_{i,j}] = \begin{cases}
 a, & \text{for } j = i + 1 \\
 -a, & \text{for } i = j + 1 \\
 0, & \text{otherwise}
\end{cases}, \quad [b_{i,j}] = \begin{cases}
 (-1)^{i+1}b, & \text{for } i + j = n + 1 \\
 0, & \text{otherwise}
\end{cases}
\]

where $1 \leq i, j \leq n$.

Definition 2 Let us define 2×2-block matrices as below.

\[
\mathcal{F}_n = \begin{pmatrix} A_k & B_k \\ (-1)^kB_k & A_k \end{pmatrix} \quad \text{and} \quad \mathcal{G}_n = \begin{pmatrix} A_k & -B_k \\ (-1)^{k+1}B_k & A_k \end{pmatrix}.
\]

For example, for $n = 10$, the n-square ($n = 2k$, k is any positive integer) skew centrosymmetric matrix \mathcal{F}_n will be in the following form:

\[
\mathcal{F}_{10} = \begin{pmatrix}
 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b \\
 -a & 0 & a & 0 & 0 & 0 & 0 & 0 & -b & 0 \\
 0 & -a & 0 & a & 0 & 0 & b & 0 & 0 & 0 \\
 0 & 0 & -a & 0 & a & 0 & -b & 0 & 0 & 0 \\
 0 & 0 & 0 & -a & 0 & b & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & -b & 0 & a & 0 & 0 & 0 \\
 0 & 0 & 0 & b & 0 & -a & 0 & a & 0 & 0 \\
 0 & 0 & -b & 0 & 0 & 0 & -a & 0 & a & 0 \\
 0 & b & 0 & 0 & 0 & 0 & 0 & -a & 0 & a \\
 -b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -a & 0
\end{pmatrix}.
\]

Definition 3 Let us consider couple-recurrences given below.

\[
f_n = bg_{n-1} + a^2f_{n-2} \quad \text{for } f_1 = b, \quad g_n = -bf_{n-1} + a^2g_{n-2} \quad \text{for } g_1 = -b.
\]

Then we have the following theorem:
Theorem 4 For $n = 2k$,

$$f_k = \text{Pf}(F_n) \quad \text{and} \quad g_k = \text{Pf}(G_n),$$

where $f_{-1} = 0$, $f_0 = 1$ and $g_{-1} = 0$, $g_0 = 1$.

Proof. Let us prove the theorem by using mathematical induction method. For $k = 1$,

$$F_2 = \begin{pmatrix} A_1 & B_1 \\ -B_1 & A_1 \end{pmatrix} = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \quad \text{and} \quad G_2 = \begin{pmatrix} A_1 & -B_1 \\ B_1 & A_1 \end{pmatrix} = \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}.$$

In this case,

$$f_1 = \text{Pf}(F_2) = b, \quad g_1 = \text{Pf}(G_2) = -b.$$

Assume that the recurrences hold for all $t \leq k$. Then they hold for $k = t + 1$.

$$F_{2t+2} = \begin{pmatrix} A_{t+1} & B_{t+1} \\ (-1)^{t+1}B_{t+1} & A_{t+1} \end{pmatrix} = \begin{pmatrix} 0 & a & \cdots & 0 & b \\ -a & 0 & \cdots & 0 & 0 \\ 0 & A_t & -B_t & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & (-1)^t B_{t-1} & A_t & 0 & a \end{pmatrix}.$$ \hspace{1cm} (1)

From the expansion formula along with $2t + 2$ column of (1), it follows that

$$\text{Pf}(F_{2t+2}) = b\text{Pf}(G_{2t}) + a\text{Pf}(M_{2t}) = bg_t + aPf(M_{2t}), \hspace{1cm} (2)$$

where

$$M_{2t} = \begin{pmatrix} 0 & a & \cdots & 0 \\ -a & 0 & \cdots & 0 \\ 0 & a & \cdots & a \\ \vdots & 0 & \ddots & \ddots \\ \vdots & \vdots & \ddots & A_{t-1} \\ 0 & 0 & \cdots & (-1)^{t-1}B_{t-1} \end{pmatrix}. \hspace{1cm} (3)$$

From the expansion formula along with 1st row of (3), it follows that

$$\text{Pf}(M_{2t}) = a\text{Pf}(F_{2t-2}) = af_{t-1}. \hspace{1cm} (4)$$

From (2) and (4), we have

$$f_{t+1} = bg_t + a^2f_{t-1}.$$

The recurrence for g_{t+1} can be obtained in a similar manner. ■

Corollary 5 $f_n = (-1)^{n-1}bf_{n-1} + a^2f_{n-2}$ with $f_{-1} = 0$ and $f_1 = 1$.

3
3 Determinant of the skew centrosymmetric matrix

In this section, we consider determinant of the matrix F_n ($n = 2k$). It is a well-known fact \[3\] for block matrices:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(AD - BC)$$

if it verifies $AC = CA$. Taking into account this property, determinant of the matrix F_n is

$$|F_n| = |T_k| = \det \begin{pmatrix} -a^2 + b^2 & 0 & a^2 \\ 0 & -2a^2 + b^2 & 0 & \ddots \\ a^2 & 0 & \ddots & \ddots & a^2 \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & -2a^2 + b^2 & 0 & -a^2 + b^2 \end{pmatrix}_{k \times k}$$

Sogabe and El-Mikkawy \[8\] considered a fast block diagonalization of k-tridiagonal matrices using permutation matrices. Exploiting this method, we can rearrange the matrix T_k.

(i) For k is odd

For this let us define the following matrices:

$$H_{k-1} = \begin{cases} -2a^2 + b^2, \text{ for } i = j \\ a^2, \text{ for } i = j + 1 \text{ and } j = i + 1 \\ 0, \text{ otherwise} \end{cases}$$

and

$$K_{k+1} = \begin{cases} -a^2 + b^2, \text{ for } i = j = 1 \text{ and } i = j = \frac{k+1}{2} \\ -2a^2 + b^2, \text{ for } i = j = 2(1) \frac{k-1}{2} \\ a^2, \text{ for } i = j + 1 \text{ and } j = i + 1 \\ 0, \text{ otherwise} \end{cases}$$

Then,

$$P^T F_k P = \begin{pmatrix} H_{k-1} & 0 \\ 0 & K_{k+1} \end{pmatrix},$$

where permutation matrix P is determined by using method in \[8\]. Obviously,

$$\det(P^T T_k P) = \det T_k = \det F_n = \det(H_{k-1}) \det(K_{k+1}).$$

(ii) For k is even

Let us define
\[N_k = \begin{cases} -a^2 + b^2, & i = j = \frac{k}{2} \\ -2a^2 + b^2, & i = j = 1 \left(\frac{k}{2} - 1 \right) \\ a^2, & \text{for } i = j + 1 \text{ and } j = i + 1 \\ 0, & \text{otherwise} \end{cases} \]

and

\[Q_k = \begin{cases} -a^2 + b^2, & i = j = 1 \\ -2a^2 + b^2, & i = j = 2 \left(\frac{k}{2} \\ a^2, & \text{for } i = j + 1 \text{ and } j = i + 1 \\ 0, & \text{otherwise} \end{cases} \]

Then,

\[P^T F_k P = \begin{pmatrix} N_k & 0 \\ 0 & Q_k \end{pmatrix}. \]

Obviously,

\[\det(P^T T_k P) = \det T_k = \det F_n = \det(N_k) \det(Q_k). \]

It can be seen that \(\det(N_k) = \det(Q_k). \)

El-Mikkawy [9] obtained determinant of tridiagonal matrix. That is,

\[v_i = \begin{vmatrix} d_1 & a_1 & 0 & \ldots & 0 \\ b_2 & d_2 & a_2 & \ddots & \vdots \\ 0 & b_3 & d_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & a_{i-1} \\ 0 & \ldots & 0 & b_i & d_i \end{vmatrix}, \]

where \(v_i = d_i v_{i-1} - b_i a_{i-1} v_{i-2} \) for \(v_0 = 1 \) and \(v_{-1} = 0. \) By exploiting [9] and Laplace expansion:

For \(k \) is even

\[\det(N_k) = \det(Q_k) = (-a^2 + b^2)w_{\frac{k}{2} - 1} - a^4 w_{\frac{k}{2} - 2}. \]

For \(k \) is odd

\[\det(K_{\frac{k+1}{2}}) = (-a^2 + b^2)^2 w_{\frac{k+1}{2}} = 2a^4 \left(-a^2 + b^2 \right) w_{\frac{k+1}{2}} + a^8 w_{\frac{k+1}{2}}, \]

\[\det(H_{\frac{k-1}{2}}) = w_{\frac{k-1}{2}}. \]

where

\[w_i = \begin{vmatrix} -2a^2 + b^2 & a^2 & \ldots & 0 \\ a^2 & -2a^2 + b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a^2 \\ 0 & \ldots & a^2 & -2a^2 + b^2 \end{vmatrix}. \]

Here \(w_i = (-2a^2 + b^2)w_{i-1} - a^4 w_{i-2} \) for \(w_0 = 1 \) and \(w_{-1} = 0. \) Consequently, for \(n = 2k, \)
If k is odd,
$$
\det F_n = \det T_k = w_{\frac{k-1}{2}} \left((-a^2 + b^2)^2 w_{\frac{k+3}{2}} - 2a^4(-a^2 + b^2)w_{\frac{k-5}{2}} + a^8 w_{\frac{k-7}{2}} \right).
$$

If k is even,
$$
\det F_n = \det T_k = \left((-a^2 + b^2)w_{\frac{k-1}{2}} - a^4 w_{\frac{k-2}{2}} \right)^2.
$$

4 Examples

Let us consider the matrix F_n ($n = 2k$). Then examples of the Pfaffians and the determinants are shown in Tables 1 and 2 respectively. Here F_n, P_n and J_n are nth Fibonacci, Pell and Jacobsthal numbers, respectively.

k	$a = i, b = 1$	$a = i, b = 2$	$a = i\sqrt{2}, b = 1$
	$Pf(F_{2k})$	$Pf(F_{2k})$	$Pf(F_{2k})$
1	$F_2 = 1$	$P_2 = 2$	$J_2 = 1$
2	$-F_3 = -2$	$-P_3 = -5$	$-J_3 = -3$
3	$-F_4 = -3$	$-P_4 = -12$	$-J_4 = -5$
4	$F_5 = 5$	$P_5 = 29$	$J_5 = 11$
5	$F_6 = 8$	$P_6 = 70$	$J_6 = 21$
6	$-F_7 = -13$	$-P_7 = -169$	$-J_7 = -43$
7	$-F_8 = -21$	$-P_8 = -408$	$-J_8 = -85$
8	$F_9 = 34$	$P_9 = 985$	$J_9 = 171$
$\equiv 0, 1 (\text{mod}4)$	F_{k+1}	P_{k+1}	J_{k+1}
$\equiv 2, 3 (\text{mod}4)$	$-F_{k+1}$	$-P_{k+1}$	$-J_{k+1}$

k	$a = i, b = 1$	$a = i, b = 2$	$a = i\sqrt{2}, b = 1$
	$\det(F_{2k})$	$\det(F_{2k})$	$\det(F_{2k})$
1	F_2^2	P_2^2	J_2^2
2	F_3^2	P_3^2	J_3^2
3	F_4^2	P_4^2	J_4^2
4	F_5^2	P_5^2	J_5^2
5	F_6^2	P_6^2	J_6^2
6	F_7^2	P_7^2	J_7^2
7	F_8^2	P_8^2	J_8^2
8	F_9^2	P_9^2	J_9^2
t	F_{t+1}^2	P_{t+1}^2	J_{t+1}^2
References

[1] A. L. Andrew, Centrosymmetric matrices, SIAM Rev., 40 (1988), 697–698.

[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Alg. Appl., 7 (1973), 151–162.

[3] F. Zhang, Matrix Theory Basic Results and Techniques, Springer, 1999.

[4] L. Datta and S. Morgera, On the reducibility of centrosymmetric matrices-applications in engineering problems, Circuits Systems Signal Process, 8 (1989), 71–96.

[5] M. El-Mikkawy and F. Atlan, On solving centrosymmetric linear systems, Applied Mathematics, 4 (2013), 21–32.

[6] J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly, 92 (1985), 711–717.

[7] R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer-Verlag New York, Inc, 1999.

[8] T. Sogabe and M. E. Mikkawy, Fast block diagonalization of k-tridiagonal matrices, Appl. Math. Compute., 218 (2011), 2740–2743.

[9] M. El-Mikkawy, A note on a three-term recurrence for a tridiagonal matrix, Appl. Math. Compute., 139 (2003), 503–511.