Implementation and impact of pediatric antimicrobial stewardship programs: a systematic scoping review

D. Donà 1,2,3†, E. Barbieri 1**, M. Daverio 4, R. Lundin 3, C. Giaquinto 1,3, T. Zaoutis 5,3 and M. Sharland 2,3

Abstract

Background: Antibiotics are the most common medicines prescribed to children in hospitals and the community, with a high proportion of potentially inappropriate use. Antibiotic misuse increases the risk of toxicity, raises healthcare costs, and selection of resistance. The primary aim of this systematic review is to summarize the current state of evidence of the implementation and outcomes of pediatric antimicrobial stewardship programs (ASPs) globally.

Methods: MEDLINE, Embase and Cochrane Library databases were systematically searched to identify studies reporting on ASP in children aged 0–18 years and conducted in outpatient or in-hospital settings. Three investigators independently reviewed identified articles for inclusion and extracted relevant data.

Results: Of the 41,916 studies screened, 113 were eligible for inclusion in this study. Most of the studies originated in the USA (52.2%), while a minority were conducted in Europe (24.7%) or Asia (17.7%). Seventy-four (65.5%) studies used a before-and-after design, and sixteen (14.1%) were randomized trials. The majority (81.4%) described in-hospital ASPs with half of interventions in mixed pediatric wards and ten (8.8%) in emergency departments. Only sixteen (14.1%) studies focused on the costs of ASPs. Almost all the studies (79.6%) showed a significant reduction in inappropriate prescriptions. Compliance after ASP implementation increased. Sixteen of the included studies quantified cost savings related to the intervention with most of the decreases due to lower rates of drug administration. Seven studies showed an increased susceptibility of the bacteria analysed with a decrease in extended spectrum beta-lactamase producers E. coli and K. pneumoniae; a reduction in the rate of P. aeruginosa carbapenem resistance subsequent to an observed reduction in the rate of antimicrobial days of therapy; and, in two studies set in outpatient setting, an increase in erythromycin-sensitive S. pyogenes following a reduction in the use of macrolides.

Conclusions: Pediatric ASPs have a significant impact on the reduction of targeted and empiric antibiotic use, healthcare costs, and antimicrobial resistance in both inpatient and outpatient settings. Pediatric ASPs are now widely implemented in the USA, but considerable further adaptation is required to facilitate their uptake in Europe, Asia, Latin America and Africa.

Keywords: Antibiotic stewardship, Antimicrobial stewardship, Infectious diseases, Pediatrics

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Antimicrobials are the most commonly prescribed medicine in pediatrics [1–3], with some estimates showing that between 37 and 61% of hospitalized infants and children receive antibiotics [4–8]. It has been demonstrated that between 20 to 50% of these prescriptions are potentially unnecessary or inappropriate [9–13], and that many children still receive broad-spectrum antibiotics for viral infections or antibiotic courses that are significantly longer than needed [14–18].

This unnecessary exposure increases the risk of serious side effects, raises healthcare costs, and contributes significantly to the global emergency of antimicrobial resistance [7, 19].

Although antimicrobial resistance occurs naturally and can be acquired through gene transfer, antimicrobial misuse promotes the selection of resistant organisms [20, 21]. The emergence of resistant pathogens and their global spread has rapidly become a major threat to public health around the world, constituting a substantial burden for patients, prolonging hospital stays, and leading to increases in both healthcare costs and mortality [22–27]. This is particularly urgent due to the steady reduction in the number of new antibiotic drugs approved over the last few decades, particularly for children [28, 29].

The World Health Organization and the United Nations at the General Assembly of 2016 identified the development of country-level and institutional antimicrobial stewardship programs (ASPs) as key instruments to tackle this concern [30, 31].

The concept of an ASP was formally introduced in 2007 by the Infectious Disease Society of America (IDSA) and defined as a set of coordinated interventions designed to improve antimicrobial use in terms of selecting the appropriate agent, dose, route of administration, and therapy duration without compromising patient outcomes [32]. The Pediatric Infectious Diseases Committee on Antimicrobial Stewardship has defined the development of ASPs in three different settings: inpatients, special populations (e.g. oncology), and outpatients. Indeed, the characteristics of specific ASPs may vary to best fit the needs of different settings [33]. The primary aim of this review is to summarize the current state of evidence on how ASPs are conducted in pediatrics inpatients and outpatients globally, informing practice in the field.

Materials and methods
Study design and search strategy
A review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [34]. Working with a medical librarian, we conducted a systematic search of the MEDLINE, Embase, and Cochrane Library databases, including citations from January 1, 2007, to November 21, 2018, with a strategy combining Medical Subject Heading (MeSH) and free-text terms for ‘children’ AND ‘antimicrobial’ AND ‘stewardship.’ The full strategy is provided in the Additional file 1.

Inclusion criteria
Studies were eligible for full-text review if they included both patients younger than 18 years and were conducted in outpatient or in-hospital settings. Randomized controlled trials, controlled and non-controlled before-and-after studies, controlled and non-controlled interrupted time series, and cohort studies were included.

Exclusion criteria
Review articles, case series, letters, notes, conference abstracts, and opinion articles were excluded. Papers on both adults and children where extraction of pediatric data was not possible were also excluded. We excluded studies published before 2007, as the concept of antimicrobial stewardship was formally introduced that year. We did not include articles about malaria, HIV, viral and fungal treatments.

Study selection
Assessments of the titles, abstracts, and full texts were conducted independently by two investigators (EB and MD). Any disagreement regarding study selection was resolved by discussion with a third reviewer (DD). The selection process is summarized in Fig. 1.

Data collection
Data were extracted using a standardized data collection form which summarized information about authors, year of publication, study design, country, study period, setting, multicentric involvement, type of intervention, and main results.

Results
Of 41,916 titles and abstracts, 113 were eligible for inclusion in this review. Most of the studies (98/113, 86.7%) originated from high-income countries (defined according to the World Bank list of economies in September 2018) [35] and a slight majority described ASPs implemented in the USA (59/113, 52.2%). Only 28/113 (24.7%) papers describe the implementation of an ASP in Europe (Ireland, Cyprus, Czech Republic, Germany, Greece, Spain, France, Netherlands, Switzerland, UK, and Italy); 20/113 (17.7%) describe the implementation of an ASP in Asia (India, Indonesia, Israel, Philippines, Russia, Saudi Arabia, Singapore, South Korea, Pakistan, Bangladesh, Japan, and China), with the remainder describing ASPs implemented in Benin, Argentina, and Canada.

Fifty studies were published between 2016 and 2018 [50/113, 44.5% in total; 28/50 (56%) from USA, 11/50 (22%) from Asia, and 11/50 (22%) from Europe], three times more than during the 2007–2009 period [16/113, 14.2% in total; 6/16 (37.5%) from the USA, 5/16 (31.3%) from Asia, 4/16...
From Europe, 1/16 (6.3%) from Africa. Geographical distribution of articles is shown in Fig. 2. Author, publication year, study design, country, study period, setting, type of intervention, and main results are summarized in Table S1 (please see Additional file 2). Thirty-nine (39/113, 34.5%) were multicentre studies: 43.6% (17/39) were set in the USA, 35.9% (14/39) in Europe, and the rest 20.5% in Asia and Africa (8/39).

ASPs setting and type of intervention

Ninety-two studies [92/113, 81.4% in total; 50/92 (54.3%) from the USA and 21/92 (22.8%) from Europe] described ASP implementation in the hospital setting [36–120]. Most of the ASP interventions in this setting were audit and feedback [53, 55–58, 62, 67–71, 74, 76, 78, 79, 82–84, 86, 89, 91, 92, 94, 107, 110, 111, 113, 120–123] guidelines implementation [36, 37, 40, 42, 43, 54, 59, 60, 73, 80, 83–85, 87, 90, 91, 99, 100, 104, 106, 109, 115, 119, 121, 122, 124, 125], and more specific approaches based on laboratory testing and check-lists [38, 42, 51, 52, 54, 61, 65, 75, 77, 81, 87, 91, 95, 96, 98, 99, 101–103, 111, 112, 114, 116–119, 124–131]. Eight interventions conducted in the hospital setting monitored perioperative prophylaxis [3/8 (37.5%) in the USA, 3/8 (37.5%) in Europe the rest in Argentina and Canada (2/8, 25%)]) [51, 54, 59, 69, 87, 91, 98] including one implemented in the NICU ward [115]. Twenty-one papers [21/113, 18.6% in total; 9/21 (42.8%) from USA, 7/21 (33.3%) from Europe, 4/21 (19%) from Asia, and 1/21 (4.7%) from Africa] described ASP in an outpatient setting [126–130, 132–147], among which seven were focused on education combined with audit and feedback [129, 132, 134, 138, 141, 142, 145–147]. ASP interventions stratified for different settings are summarized in Table 1.

ASPs outcomes

Ninety (90/113, 79.6%) studies reported as their main outcome changes in antimicrobial prescribing with a reduction in inappropriate prescriptions [45/90 (50%) from the USA, 23/90 (25.5%) from Europe, and 24.5% from Asia] [36–39, 41, 43–50, 52–62, 64–84, 86, 87, 89–92,
94–107, 110–114, 116–121, 123–135, 137, 138, 141–143, 147, 148]; sixty-one of these were studies with a single intervention, mainly with an audit and feedback strategy (19/61, 31.1%) [53, 56–58, 62, 64, 67–71, 74, 76, 82–86, 89, 91, 92, 94, 107, 110, 111, 113, 120, 121, 123, 127, 132, 134, 135, 138, 141, 142, 147]. Eighteen papers (18/113, 15.9%) [40–42, 51, 54, 60, 71, 85, 87, 91, 98, 105, 106, 125, 135, 136, 138, 142] showed an increase in compliance among prescribing physicians; half of the papers analysing this outcome were from USA and Canada (10/18, 55.5%), and the main ASPs adopted were guidelines (9/34, 26.5%) [40, 42, 54, 60, 85, 87, 91, 106, 125, 142], doctors education (5/34, 14.7%) [54, 91, 98, 138, 142] and other not common ASPs such as antibiotic order set [42, 51], and checklists [87, 91]. Sixteen of the included studies [16/113, 14.2% in total; 7/16 (43.7%) from USA, 6/16 (37.5%) from Asia and the rest (18.7%) from Europe] quantified cost savings related to the intervention [39, 49, 52, 64, 66, 69, 73, 86, 89, 92, 97, 101, 102, 122–124]. Decreases in costs were most often due to lower rates of drug administration. Twelve papers [12/113, 10.6% in total; 6/12 (50%) from Asia and the rest equally from Europe and USA] took into consideration changes in antimicrobial resistance [52, 58, 66, 67, 72, 106, 112, 115, 124, 137, 141] as an outcome used mostly to analyse audit and feedback ASP [58, 67, 74, 141]. In five cases, no changes were reported [58, 66, 74, 106, 115], while the other seven studies showed an increased susceptibility of the bacteria analysed [52, 67, 72, 112, 124, 137, 141]. The most interesting results were a decrease in extended spectrum beta-lactamase (ESBL) producers E. coli and K. pneumoniae [72, 112, 124]; a reduction in the rate of P. aeruginosa carbapenem resistance subsequent to an observed reduction in the rate of antimicrobial days of therapy (DOT) [67, 124]; and, in two studies set in outpatient setting, an increase in erythromycin-sensitive S. pyogenes following a reduction in the use of macrolides [137, 141]. See Table S1 (Additional file 2) for further details regarding study outcomes.

Discussion
Main findings
Since 2007, ASPs have been proven to reduce inappropriate antimicrobial use and resistance, enhance patient safety, and lower drug costs both in adult and pediatric populations. More than 300 studies performed in the adult setting have now been published [149–152], while 113 studies over the last twelve years were performed in pediatric settings.

We conducted this scoping systematic review [153] to provide an easily consultation compendium (divided by country, study period, type of intervention and main outcomes analysed) describing the state of art of ASPs worldwide and to help clinicians to choose wisely which program would fit better in their setting. This is the first systematic scoping review analysing the implementation of ASPs in pediatrics globally, in both inpatient and outpatient settings. Previously, two systematic reviews had been conducted which did not include ASPs intervention in outpatient settings, with Smith et al. [154] limited to inpatient interventions in the USA and Da Silva et al. [155] limited to general pediatric wards and PICU.

It is interesting to notice that the relative number of articles on pediatric ASPs published in Europe and Asia increased between 2016 and 2018, compared to USA where the spike was already observed in 2013–2015. Moreover, there seems to be an ASPs research gaps in certain area of the world, mostly in middle-low or low income countries, that could be due to the fact that
| Table 1 Antimicrobial stewardship programs strategies and settings (2007–2018) |
|--|---|---|---|---|---|---|---|
| **ED (15)** | Audit and feedback | Guidelines | Physician Education | Pre-Authorization | Parents Education | CDS tool | CP | Other |
| | 5 | 4 | | | | | | 3 |
| France | 1 | 1 | | | | | | 3 |
| Italy | | | 1 | | | | | |
| Netherlands | | | | | | | | 1 |
| Switzerland | | | | | | | | 1 |
| USA | 3 | | 1 | | | | | 2 |
| Spain | | | | | | | | |
| **ED + Pediatric ward (4)** | | | | | | | | 3 |
| Italy | 1 | | | | | | | |
| USA | | | | | | | | 1 |
| **Hospital (all wards) (62)** | 23 | 11 | 4 | 10 | | | | 14 |
| Bangladesh | 1 | | | | | | | |
| Canada | 2 | 1 | | | | | | 1 |
| China | 1 | | | | | | | 1 |
| Germany | | | 1 | | | | | |
| Greece | | | | | | | | |
| Italy | 1 | 1 | | | | | | 3 |
| Japan | 2 | | | | | | | 3 |
| Pakistan | | | | | | | | |
| Singapore | | | | | | | | |
| South Korea | | | | | | | | 1 |
| USA | 17 | 6 | 1 | 5 | | | | 9 |
| **Hospital (all wards), ED and PICU excluded (1)** | | | | | | | | 1 |
| USA | | | | | | | | 1 |
| **Hospital (all wards), PICU excluded (3)** | 1 | | | | | | | 1 |
| Argentina | | | 1 | | | | | 1 |
| **Hospital (one ward) (3)** | 1 | 1 | | | | | | 1 |
| Bangladesh | 1 | 1 | | | | | | 1 |
| **Hospital (two wards) (1)** | 1 | | | | | | | |
| Russia | | | | | | | | |
| **NICU (18)** | 4 | 3 | 2 | | | | | 7 |
| France | | | | | | | | 1 |
| India | | | | | | | | |
| Ireland | | | | | | | | 1 |
| Netherlands | | | | | | | | 1 |
| Philippines | | | | | | | | |
| USA | 2 | 2 | 1 | | | | | 4 |
| **NICU + Hospital nursery (1)** | | | | | | | | 1 |
| Netherlands | | | | | | | | |
| **NICU + PICU (2)** | | | | | | | | 2 |
| Switzerland | | | | | | | | 1 |
| UK | | | | | | | | 1 |
| **Oncology ward (3)** | | | | | | | | 1 |
most ASPs program are under development and/or considered as part of new standard of care strategies. An earlier review by Schweitzer et al. [156] found that the overall quality of ASPs studies is low and has not improved over time. Our research confirmed these previous findings with most of the studies having a before-and-after design, most likely because of the low cost, convenience, and simplicity of these designs.

ASPs are mainly based on two core strategies: prospective audit and feedback, which involves interaction and feedback between an infectious disease physician and the prescriber; and formulary restriction and preauthorization requirements for specific agents [32]. Implementation of both core strategies together is strongly recommended by the ASP guidelines, but we found just four studies (3.5%) where both ASPs were implemented. These ASPs were implemented more in the USA, with just seven core interventions implemented in Europe. More accuracy in dosage and better adherence to guidelines were obtained in these studies worldwide, together with an overall decrease in length of therapy and DOT, especially for cephalosporins and fluoroquinolones.

According to the IDSA guidelines, ASPs should improve antimicrobial use, leading to reductions in antimicrobial resistance, adverse drug events, healthcare costs, and rates of *C. difficile* infections. The most commonly reported outcome in this review was a change in the prescribing of antimicrobials, with less emphasis on healthcare costs, safety, and resistance. Almost all the studies we reviewed evaluating antimicrobial consumption showed a significant reduction in inappropriate prescriptions [36–39, 41–48, 50–62, 64, 66, 70, 72, 74–84, 86, 87, 89–92, 94–107, 110–114, 116–121, 123–135, 137, 138, 141–143, 147, 148]. Compliance after ASP implementation reported in eighteen papers (15.9%) was high [40–42, 51, 54, 60, 71, 85, 87, 91, 98, 105, 106, 125, 135, 136, 138, 142], showing that ASP interventions were generally well tolerated despite

Table 1 Antimicrobial stewardship programs strategies and settings (2007–2018) (Continued)

Strategy	UK	USA	Outpatient (43)	Argentina	Bangladesh	Benin	Cyprus	Czech Republic	Israel	Italy	Saudi Arabia	Switzerland	UK	USA	Spain	Outpatient + ED (1)	Italy	Outpatient + Hospital (8)	China	PICU (5)	China	Pakistan	UK	PICU + Pediatric wards (2)	Indonesia	Grand Total
-------------------	----	-----	----------------	-----------	------------	-------	--------	---------------	--------	-------	-------------	-------------														
Audit and feedback	1	1	10	6	9	5	4	9	1		1	1	1			1		2		1		1				41
Guidelines																										32
Physician Education																										26
Pre-Authorization																										11
Parents Education																										7
CDS tool																										7
CP																										6
Other																										42

Entries in boldface represent total sum of ASP strategies according to setting (eg. ED/Guidelines = 5 it is the sum of France (1), Netherlands (1) and USA (3))
theoretical concerns about prescriber opposition [82]. It is critical that implementation of these tools be supported by evaluation of compliance, because if the tools are too complicated to use or too time-consuming, physicians will not use them and the likelihood of inappropriate therapy will increase. Papers analysing costs variations mostly included just drug costs, even thought the cost savings of ASPs should also include the reduction due to the shift from intravenous to oral administration, the reduction in length of hospital stays, and reduced rates of infections due to multidrug-resistant bacteria [157]. Only three European studies analysing healthcare costs were published; the other studies were mostly from the USA or other countries, such as China, that do not have universal healthcare coverage. For this reason, formal economic studies are also needed in pediatrics to show how ASP implementation impacts all costs, not just the costs of antimicrobials. Moreover, as Tacconelli et al. strongly advise [158], microbiological analysis of common bacteria such as S. aureus and K. pneumoniae before and after ASP implementation should be included (just the 11.2% of the papers considered reported microbiological data), as their prevention and control are important potential indicators of program success.

Overall, there was a paucity of literature on other, more specific settings and interventions, resulting in limited conclusions. Just 5.6% of studies were focused on perioperative prophylaxis, 16.8% on EDs, 37.4% on outpatient settings, and 6.5% on parental education activities. It is notable that results from the Weddle et al. study based on education intervention for prescribers in the ED [145] showing a 2% decrease in inappropriate antimicrobial prescribing were consistent with results from a study in the USA based on an adult population, which showed increased consistency of therapy choice from 44.8 to 83% [159]. ASPs implemented in outpatient settings, mainly involving audit and feedback and education, also seemed effective in reducing antimicrobial prescriptions.

The primary limitation of our study is that only three databases were searched, and not all pediatric stewardship studies may have been identified. In addition, available search indices and methods were limited, as unpublished, unreported data and case reports were not included. On the other hand, document such as non peer-reviewed manuscript or report are not assessed for accuracy or validity of the research methodology leaving uncertainties about their quality. Finally, no MeSH term was provided for antimicrobial stewardship, a wide search-term strategy was used to ensure the retrieval of all studies with an intervention on antimicrobial use, even if the intervention was not explicitly defined as antimicrobial stewardship.

Future research – conclusion
Pediatric ASPs have a significant impact on antimicrobial use, healthcare costs, and antimicrobial resistance in both inpatient and outpatient settings. Because of this significant impact, pediatric ASPs are spreading rapidly in the USA. Their implementation in Europe is still limited, possibly due to the fact that guidelines published so far (IDSA/SHEA) are designed for the USA healthcare system and easily adopted in this setting, while the diversity of healthcare systems throughout Europe and Asia implies a wide range of approaches to the same problem. Secondly, across Europe we found a high variability of funding opportunities and availability of specialists with advance training in pediatrics, resources more consistently and easily accessible in the USA.

Further efforts in developing pediatric ASPs are urgently needed, particularly in order to improve the collection of surveillance data regarding antimicrobials use and antimicrobial resistance in pediatric populations. More coordination, harmonization, and sharing of information will lead to a more precise effects on healthcare systems, and, as a result, on patient health as well. This is especially important for pediatric patients, as lack of data represents a greater challenge for pediatricians in their daily practice compared with physicians treating adult patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13756-019-0659-3.

Additional file 1. Search strategy.
Additional file 2. ASPs description according to author, publication year, study design, country, study period, setting, type of intervention, and main results (2007-2018).

Abbreviations
ASP: Antimicrobial Stewardship Program; CAP: Community Acquired Pneumonia; CDS: Computer Decision Support; CP: Clinical Pathway; DDD: Defined Daily Dose; DOT: Days Of Therapy; ED: Emergency Department; EOS: Early Onset Sepsis; ESBL: Extended Spectrum Beta-Lactamase; GAS: Group A Streptococcus; HAI: Hospital Acquired Infection; HSCT: Hematopoietic Stem Cell Transplant; IDSA: Infectious Diseases Society of America; LOT: Length of Therapy; NICU: Neonatal Intensive Care Unit; PCT: Procalcitonin; PICU: Pediatric Intensive Care Unit; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; RANIN-KIDS: Reducing Antimicrobial use and Nosocomial Infections in KIDS; A European Network; RCT: Randomized Clinical Trials; RR: Relative Risk

Acknowledgments
The authors would like to thank PENTA Foundation for the support.

Authors’ contributions
DD conceived the presented idea. EB and MD conduct the assessments of the titles, abstracts, and full texts independently. DD, EB and MD discussed study selection and study details and decided with studies were to be included in the review. DD and EB performed the numerical calculations and wrote the manuscript with input from all authors. RL and MS aided in interpreting the results and revised the manuscript. CG and TZ revised the manuscript.
Funding
The authors received no specific funding for this work.

Availability of data and materials
All data generated or analysed during this study are included in this published article [and its Additional files 1 and 2].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division of Pediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, Padua, Italy. 2 Pediatric intensive care unit, Department for Woman and Child Health, University of Padua, Padua, Italy. 3 Division of Infectious Diseases and the Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.

Received: 5 July 2019 Accepted: 26 November 2019
Published online: 03 January 2020

References
1. van der Meer JW, GysSENS IC. Quality of antimicrobial drug prescription in hospital. Clin Microbiol Infect. 2001;7(Suppl 6):12-5. https://doi.org/10.1111/j.1469-0691.2001.tb03114.x
2. Gerber JS, Newland JG, Coffin SE, Hall M, Thurm C, Prasad PA, Feudtner C, Zaoutis TE. Variability in Antibiotic Use at Children's Hospitals. Pediatrics. 2010;126(6):1067–73. https://doi.org/10.1542/peds.2010-1275
3. Ashinu-Oredope D, Kessel A, Hopkins S, et al. Antimicrobial stewardship: English Surveillance Programme for Antimicrobial Utilization and Resistance (ESPAUR). J Antimicrob Chemother. 2013;68(11):2421–3. https://doi.org/10.1093/jac/dkt363
4. Versporten A, Bielecki J, Drapier N, Sharland M, Goossens H; ARPEC project group. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. J Antimicrob Chemother. 2016;71(4):1106–16. https://doi.org/10.1093/jac/dkt341
5. Potocnik M, Goeote J, Szucs TD, Nadal D. Prospective Survey of Antibiotic Utilization in Pediatric Hospitalized Patients to Identify Targets for Improvements of Prescription. Infection. 31(6):398–403. https://doi.org/10.1007/s10157-011-0410-1
6. Hajdu A, Samodova OV, Carlson TR, Voinova LV, Nazarenko SJ, Tjurikov AV, et al. A point prevalence survey of hospital-acquired infections and antimicrobial use in a paediatric ward in north-western Russia. J Hosp Infect. 2007;66(4):378–84. https://doi.org/10.1016/j.jhin.2007.04.010
7. Berild D, Abrahamsen TG, Andresen S, Bjør Prelau E, Haug O, Kesseniaw IM, et al. A controlled intervention study to improve antibiotic use in a Russian paediatric ward. Int J Antimicrob Agents. 2008;31(5):478–83. https://doi.org/10.1016/j.ijantimicag.2008.01.009
8. Ang L, Laskar R, Gray JW. A point prevalence study of antimicrobial use at a UK children's hospital. J Hosp Infect. 2008;68(4):372–4. https://doi.org/10.1016/j.jhin.2008.01.030
9. Hulscher ME, Grol RP, van der Meer JW. Antibiotic prescribing in hospitals: a social and behavioural scientific approach. Lancet Infect Dis. 2010;10(3):167–75. https://doi.org/10.1016/S1473-3099(10)70027-X
10. Spoorenberg V, Hulscher ME, Akkermans RP, Prins JM, Geerlings SE. Appropriate Antibiotic Use for Patients With Urinary Tract Infections Reduces Length of Hospital Stay. Clin Infect Dis. 2014;58(2):164–9. https://doi.org/10.1093/cid/ciu688
11. Davey P, Marwick CA, Scott CL, Charan E, McNeil K, Brown E, Gould IM, Ramsay CR, Michie S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017;2:CD003543. https://doi.org/10.1002/14651858.CD003543.pub4
12. Zarb P, Amaddeo B, Muller A, Drapier N, Vankerkhoven V, Davey P, Goossens H; ESAC-3 Hospital Care Subproject Group. Identification of targets for quality improvement in antimicrobial prescribing: the web-based ESAC Point Prevalence Survey 2009. J Antimicrob Chemother. 2011;66(2):483–9. https://doi.org/10.1093/jac/dkq430
13. Hecker MT, Aron DC, Patel NP, Lehmann MK, Donà E, Donskey CJ. Unnecessary Use of Antibiotics in Hospitalized Patients. Arch Intern Med. 2003;163(8):972. https://doi.org/10.1001/archinte.163.8.972
14. Levy ER, Swami S, Dubois SG, Wendt R, Banerjee R. Rates Appropriateness of Antimicrobial Prescribing at an Academic Children’s Hospital, 2007–2010. Infect Control Hosp Epidemiol. 2012;33(4):546–53. https://doi.org/10.1086/664761
15. Barbieri E, Donà D, Cantarutti A, Lundin R, Scamarcia A, Conrao G et al., Cantarutti L, Giaquinto C. Antibiotic prescriptions in acute otitis media and pharyngitis in Italian pediatric outpatients, Ital J Pediatr. 2019;45(1):103. doi: https://doi.org/10.1186/s13052-019-0969-9
16. McCaig LF, Besser RE, Hughes JM. Antimicrobial-Drug Prescription in Ambulatory Care Settings, United States, 1992–2000. Emerg Infect Dis. 2003;9(4):432–7. https://doi.org/10.3201/eid0904.020268
17. Porta A, Hsia Y, Doeholt K, Spyridis N, Bielecki J, Menson E, et al. Comparing neonatal and paediatric antibiotic prescribing between hospitals: a new algorithm to help international benchmarking. J Antimicrob Chemother. 2012;67(5):1278–86. https://doi.org/10.1093/jac/dks021
18. Espósito S, Blasi F, Allegra L, Principi N, Mowgli Study Group. Use of antimicrobial agents for community-acquired lower respiratory tract infections in hospitalised children. Eur J Clin Microbiol Infect Dis. 2001;20(9):647–50
19. Shehab N, Patel PR, Sinirisanas A, Budnitz DS. Emergency Department Use for Antibiotic-Associated Adverse Events. Clin Infect Dis. 2008;47(6):735–43. https://doi.org/10.1086/591126
20. Cosgrove SE. The relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clin Infect Dis. 2006;42(Supplement_2):382–89. doi:https://doi.org/10.1086/494046
21. Maragakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther. 2008(6):5(5):751–63. https://doi.org/10.1586/14787187.2008.531154
22. Cosgrove SE, Cameli Y. The Impact of Antimicrobial Resistance on Health and Economic Outcomes. Clin Infect Dis. 2003;36(11):1433–7. https://doi.org/10.1086/375281
23. Roberts RR, Hota B, Ahmad I, Scott RD 2nd, Foster SD, Abbas F, et al. Hospital and Societal Costs of Antimicrobial-Resistant Infections in a Chicago Teaching Hospital: Implications for Antibiotic Stewardship. Clin Infect Dis. 2009;49(8):1175–84. https://doi.org/10.1086/605630
24. Evans HL, Lefrak SN, Lyman J, Smith RL, Chong TW, McBeanley ST, et al. Cost of Gram-negative resistance?. Crit Care Med. 2007;35(3):189–95. https://doi.org/10.1097/01.CCM.0000251496.61520.75
25. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The Epidemic of Antibiotic-Resistant Infections: A Call to Action for the Medical Community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155–64. https://doi.org/10.1086/524891
26. Kociolk LK, Patel SJ, Zheng X, Todd KM, Shulman ST, Gerding DN. Clinical and Microbiologic Assessment of Cases of Pediatric Community-associated Clostridium difficile Infection Reveals Opportunities for Improved Testing Decisions. Pediatr Infect Dis J. 2016;35(2):157–61. https://doi.org/10.1097/INF.0000000000000954
27. Pant C, Deshpande A, Gilroy R, Olyaei M, Donskey CJ, et al. Rising Incidence of Clostridium difficile Related Discharges among Hospitalized Children in the United States. Infect Control Hosp Epidemiol. 2016;37(1):104–6. https://doi.org/10.1017/ice.2015.234
28. Mossialos E. Policies and Incentives for Promoting Innovation in Antibiotic Research: European Observatory on Health Systems and Policies; 2010.
29. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin Infect Dis. 2009(49):1–12. https://doi.org/10.1086/595011
30. United Nations. Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance; 2016.
31. World Health Organization. GLOBAL ACTION PLAN ON ANTIMICROBIAL RESISTANCE, 2015.
32. Delft TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America and the Society for Healthcare
Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin Infect Dis. 2007;44(2):159–77. doi:10.1086/510393.

Septimus EJ, Owens RC. Need and Potential of Antimicrobial Stewardship in Community Hospitals. Clin Infect Dis. 2011;53(suppl_1):S58–64. doi:10.1093/cid/cis363.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. https://doi.org/10.1136/BMJ.B2700.

World Bank. The World Bank Annual Report 2018 (English). In: Washington. D.C.: World Bank Group; 2018. http://documents.worldbank.org/curated/en/630661589337237447/The-World-Bank-Annual-Report-2018.

Angoulvant F, Pereira M, Perreaux F, Sousan V, Pham LL, Trieu TV, et al. Impact of unlabeled French antibiotic guidelines on antibiotic prescriptions for acute respiratory tract infections in 7 Pediatric Emergency Departments, 2009–2012. Pediatr Infect Dis J. 2014;33(3):330–3. https://doi.org/10.1097/INF.0000000000001215.

Ambroggio L, Thomson J, Murtagh Kurowski E, Courter J, Statile A, et al. Comprehensive Approach to Pediatric Pneumonia. J Healthc Qual. 2017;39(4):e59–e69. doi: https://doi.org/10.1097/JHQ.0000000000000048.

Di Pentima MC, Chan S, Eppes SC, Klein JD. Antimicrobial Prescription Errors in Hospitalized Children: Role of Antimicrobial Stewardship Program in Detection and Intervention. Ped Clin N Am. 2017;64:697–706. doi:10.1016/j.pedc.2017.05.001.

Doyon S, Perreault M, Marquis C, Gauthier J, Bailey B, et al. A collaborative intervention to improve antibiotic prophylaxis in children: results from a prospective multicenter study. Eur J Clin Pharmacol. 2017;73(9):1141–1147. doi:10.1007/s00228-017-2270-y.

Dassner AM, Ghiotto J.E. Evaluation of a Second-Sign Process for Antimicrobial Prior Authorization. J Pediatr Infect Dis Soc. 2018;7(2):113–8. https://doi.org/10.1093/jpids/pio015.

Di Pentima MC, Chan S, Hassain J, Di Pentima MC. Implications and Impact of Prior Authorization Policy on Vancomycin Use at a Tertiary Pediatric Teaching Hospital. Pediatr Infect Dis J. 2015;34(5):506–8. https://doi.org/10.1097/INF.0000000000000615.

Ciofi degli Atti M, Alegiani SS, Raschetti R, Arace P, Giusti A, Spiazzi R, et al. A collaborative intervention to improve surgical antibiotic prophylaxis in children: results from a prospective multicenter study. Eur J Clin Pharmacol. 2015;71(4):383–90. doi:10.1111/eup.12575.

Donà D, Baraldi M, Brigadoi G, Lundin R, Perilongo G, Hamdy RF, et al. The Impact of Clinical Pathways on Antibiotic Prescribing for Acute Otitis Media for Pediatric Community-acquired Pneumonia in Community Settings. Acad Pediatr. 2015;15(6):1111–1117. doi.org/10.1016/j.aclpd.2015.11.017.
Molloy L, McGrath E, Thomas R, Kaye KS, Rybak MJ. Acceptance of
Parker SK, Hurst AL, Thurm C, Millard M, Jenkins TC, Child J. Pediatric antibiotic stewardship: successful interventions to reduce broad-spectrum antibiotic use on general pediatric wards. Infection. 2017;45(4): 493–504. https://doi.org/10.1007/s10150-017-0909-9.

Lee HR, Bagga B, Arnold SR. Reduction of Broad-Spectrum Antimicrobial Use in a Tertiary Children’s Hospital Post Antimicrobial Stewardship Program Guideline Implementation*. Pediatr Crit Care Med. 2016;17(3):187–93. https://doi.org/10.1097/PCC.0000000000000615.

Lee J, Pai H, Kim YK, Kim NH, Eun BW, Kang HJ, et al. Control of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumonieae in a children’s hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother. 2007;60(3):29–37. https://doi.org/10.1093/jac/dkm225.

Lighter-Fisher J, Desai S, Stachel A, Pham VP, Klejmont L, Dubrovskaya Y. Implementing an Inpatient Pediatric Prospective Audit and Feedback Antimicrobial Stewardship Program Within a Larger Medical Center. Hosp Pediatr. 2017;7(9):516–22. https://doi.org/10.1542/hpeds.2016-0144.

Malcolmson C, Ng K, Hughes K, Kisson N, Chima J, Tilley PA, et al. Impact of Matrix-Assisted Laser Desorption and Ionization Time-of-Flight and Antimicrobial Stewardship Intervention on Treatment of Bloodstream Infections in Hospitalized Children. J Pediatric Infect Dis Soc. 2016;6(2): pwv033. doi: https://doi.org/10.1093/pdis/pwv033.

McCollough RJ, Queen MA, Lee B, Yu D, Stach L, Goldman J. Clinical Impact of an Antimicrobial Stewardship Program on Pediatric Hospitalist Practice, a 5-Year Retrospective Analysis. Hosp Pediatr. 2015;5(5):520–7. https://doi.org/10.1542/hpeds.2014-0250.

Messaar K, Hurst AL, Child J, Campbell K, Palmer C, Hamilton S. Clinical impact and provider acceptability of real-time antimicrobial stewardship decision support for rapid diagnostics in children with positive blood culture results. J Pediatric Infect Dis Soc. 2017;6(3):267–74. https://doi.org/10.1093/jpids/pwy047.

Messaar K, Campbell K, Peace K, Pyle L, Hurst AL, Child J, et al. A Handshake From Antimicrobial Stewardship Opens Doors for Infectious Disease Consultations. Clin Infect Dis. 2017;64(10):1449–52. https://doi.org/10.1093/cid/cix139.

Metjian TA, Pasad PA, Kogon A, Coffin SE, Zaoutis TE. Evaluation of an Antimicrobial Stewardship Program at a Pediatric Teaching Hospital. Pediatr Infect Dis J. 2018;37(P2):106–111. https://doi.org/10.1097/INF.0b013e181880f63a.

Molakovsky M, Walter MF, Moawad I, Actis J, Cummings BM, El Saleebey CM. The Impact of Pediatric-Specific Vancomycin Dosing Guidelines: A Quality Improvement Initiative. Pediatrics. 2017;139(6):e20162423. https://doi.org/10.1542/peds.2016-2423.

Molly L, McGrath E, Thomas R, Kaye KS, Rybak MJ. Acceptance of Pharmacist-Driven Antimicrobial Stewardship Recommendations with Differing Levels of Physician Involvement in a Children’s Hospital. Clin Pediatr (Phila). 2017;56(8):744–51. https://doi.org/10.1177/009928816678598.

Newland JG, Stach LM, De Lurgio SA, et al. Impact of a Prospective-Audit-With-Feedback Antimicrobial Stewardship Program at a Children’s Hospital. J Pediatric Infect Dis Soc. 2012;3(179–86. https://doi.org/10.1097/inf.0b013e18182f0a54.

Newman RE, Hedican EB, Herigon JC, Williams DD, Williams AR, Newland JG. Impact of a Guidance on Management of Children Hospitalized With Community-Acquired Pneumonia. Pediatrics. 2012;129(3):e597–604. https://doi.org/10.1542/peds.2012-1423.

Nguyen-Ha PT, Howrie D, Crowley K, Vetterly CG, McGhee W, Berry D, et al. A Quality Assessment of a Collaborative Model of a Pediatric Antimicrobial Stewardship Program. Pediatrics. 2016;137(5):e20153016. https://doi.org/10.1542/peds.2015-0316.

Noorani QA, Qazi SA, Rasmussen ZA, Muhammad Y. Use of a pneumonia management tool to manage children with pneumonia at the first level health care facilities. J Pak Med Assoc. 2011;61(5):481–8. (JPA 61;481; 2011).

Parker SK, Hurst AL, Thurm C, Millard M, Jenkins TC, Child J. Anti-infective Acquisition Costs for a Stewardship Program: Getting to the Bottom Line. Clin Infect Dis. 2017;65(10):1632–7. https://doi.org/10.1093/cid/cix31.
105. Coggins SA, Wynn JL, Hill ML, Slaughter XC, Ozdas-Weitkamp A, Jaloh O, et al. Use of a computerized reactive protein (CRP) based sepsis prediction tool in very low birth weight (VLBW) infants: A five-year experience. Denning PW, ed. PLoS One. 2013;8(11):e78602. doi:10.1371/journal.pone.0078602.

106. Gill CJ, Mantaring BJV, Macleod WB, Mendoza M, Mendoza S, Hucksin WC, et al. Impact of Enhanced Infection Control at 2 Neonatal Intensive Care Units in The Philippines. Clin Infect Dis. 2009;48(1):13–21. doi:10.1086/594120.

107. Holzmann-Pazgal G, Khan AM, Northrup TF, Domonoske C, Eichenwald EC. Decreasing vancomycin utilization in a neonatal intensive care unit. Am J Infect Control. 2015;43(11):1255–7. doi:10.1016/j.ajic.2015.06.028.

108. Hum RS, Cato K, Sheehan S, Patel S, Ducjion J, DeAlmora P, et al. Developing Clinical Decision Support within a Commercial Electronic Health Record System to Improve Antimicrobial Prescribing in the Neonatal ICU. Appl Clin Inform. 2014;5(2):368–87. https://doi.org/10.4338/ACI-2013-09-RA-0069.

109. Lalbenne M, Michaut F, Gouyon B, Ferdynus C, Gouyon JB. A Population-Based Observational Study of Restrictive Guidelines for Antibiotic Therapy in Early-Onset Neonatal Infections. Pediatr Infect Dis J. 2007;26(7):595–9. https://doi.org/10.1097/INF.0b013e3180385b56.

110. Lien MY, Van Den Hoogen A, Rademaker CM, Egberts TC, Fleer A, Krediet TG. Antibiotic weight-weighting: slimming down on antibiotic use in a NICU. Acta Paediatr. 2010;99(12):1900–2. https://doi.org/10.1111/j.1651-2227.2010.01957.x.

111. McCarthy KN, Hawke A, Dempsey EM. Antimicrobial stewardship in the neonatal unit reduces antibiotic exposure. J Paediatr Infect Dis J. 2018;10(7):1716–21. https://doi.org/10.1111/apida.14337.

112. Murki S, Jonnala S, Mohammed F, Reddy A. Restriction of cephalosporins and control of extended spectrum beta-lactamase producing gram negative bacteria in a neonatal intensive care unit. Indian Pediatr. 2010;47(9):785–788. (PID: 10.09745/950028821–2).

113. Nzeewu NI, Ryikalshi MR, Nallu LA, Sorg X, Deng Y, Natusch AM. Implementation of an Antimicrobial Stewardship Program in a Neonatal Intensive Care Unit. Infect Control Hosp Epidemiol. 2017;38(10):1137–43. https://doi.org/10.1017/ice.2017.151.

114. Tolia V, Desai S, Qin H, Rayburn PD, Poon G, Murthy K. Implementation of an Automatic Stop Order and Initial Antibiotic Exposure in Very Low Birth Weight Infants. Am J Perinatol. 2017;34:105–10. https://doi.org/10.1055/s-0036-158452.

115. Walker S, Datta A, Massoumi RL, Gross ER, Uhing M, Arca MJ. Antibiotic Therapy on Pediatric Oncology and Hematopoietic Stem Cell Transplantation Services. Infect Control Hosp Epidemiol. 2017;38(9):1039–43. https://doi.org/10.1017/ice.2017.151.

116. Achten NB, Dorigo-Zetsma JW, van der Linden PD, van Brakel M. Pitfiz B. Sepsi calculator implementation reduces empiric antibiotics for suspected early-onset sepsis. Eur J Pediatr. 2016;175(7):741–6. https://doi.org/10.1007/s00431-018-3133-2.

117. Walker S, Datta A, Massoumi RL, Gross ER, Uhing M, Arca MJ. Antimicrobial stewardship in the newborn surgical patient: A quality improvement project in the neonatal intensive care unit. Surgery. 2017;162(6):1295–302. https://doi.org/10.1016/j.surg.2017.07.021.

118. Achten NB, Dorigo-Zetsma JW, van der Linden PD, van Brakel M. Pitfiz B. Sepsi calculator implementation reduces empiric antibiotics for suspected early-onset sepsis. Eur J Pediatr. 2016;175(7):741–6. https://doi.org/10.1007/s00431-018-3133-2.

119. Donnelly A, Usanjan K, Ibrahim R, Abbas Q, Ahmed SA, Jurair H, et al. Impact of pharmacist-led antibiotic stewardship program in a PICU of low/middle-income country. BMJ Open Qual. 2018;7(1):e000180. https://doi.org/10.1136/bmjmq-2017-000180.

120. Murni K, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: an effectiveness study. Arch Dis Child. 2015;100(5):454–9. https://doi.org/10.1136/archdischild-2014-307297.

121. Chowdhury F, Sturm-Ramirez K, Al Mamun A, Iuliano DA, Chisti MJ, Ahmed M, et al. Effectiveness of an educational intervention to improve antibiotic dispensing practices for acute respiratory illness among drug sellers in pharmacies, a pilot study in Bangladesh. BMC Health Serv Res. 2018;18(1):1–11. https://doi.org/10.1186/s12913-018-3486-y.

122. Zhang Z, Dawkins B, Hicks JP, Walley JD, Hulme C, Eley H, et al. Cost-effectiveness analysis of a multi-dimensional intervention to reduce inappropriate antibiotic prescribing for children with upper respiratory tract infections in China. Trop Med Int Heal. 2018;23(10):1092–100. https://doi.org/10.1111/tmi.13132.

123. Haque A, Hussain K, Ibrahim R, Abbas Q, Ahmed SA, Jurair H, et al. Impact of pharmacist-led antibiotic stewardship program in a PICU of low/middle-income country. BMJ Open Qual. 2018;7(1):e000180. https://doi.org/10.1136/bmjmq-2017-000180.

124. Ding H, Yang Y, Wei J, Fan S, Yu S, Yao K, et al. Influence of the use of antibiotics in a Chinese pediatric intensive care unit. Pharm World Sci. 2008;30(6):787–93. https://doi.org/10.1007/s11096-008-9220-9.

125. Murni K, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: an effectiveness study. Arch Dis Child. 2015;100(5):454–9. https://doi.org/10.1136/archdischild-2014-307297.
