OPTIMAL SEARCH FOR MINIMUM ERROR RATE TRAINING

Authors: Michel Galley & Chris Quirk (Microsoft Research)
Presenter: Avneesh Saluja
The Claim

- Och’s MERT is not exact
 - I will provide a brief MERT review
- This paper: exact search of MERT search space via linear programming
 - Concurrent optimization of all dimensions
- How does this perform vs. Och’s MERT?
MERT for MT: Primer

- Tune parameter weights to directly optimize evaluation metric

\[
\hat{w} = \arg \min_w \left\{ \sum_{s=1}^{S} E(r_s, \hat{e}(f_s; w)) \right\}
\]

\[
= \arg \min_w \left\{ \sum_{s=1}^{S} \sum_{n=1}^{N} E(r_s, e_{s,n}) \delta(e_{s,n}, \hat{e}(f_s; w)) \right\} \quad \text{s.t.}
\]

\[
\hat{e}(f_s; w) = \arg \max_{n \in \{1, \ldots, N\}} \{w^T h\}_{s,n}
\]

1. Courtesy of P. Koehn, “Statistical Machine Translation”
Naïve MERT

- Non-convex, unsmooth: Powell search
 - Multiple starting points used
- Log-linear formulation: \[p(x) = \exp \left\{ \sum_{i=1}^{N} \lambda_i h_i(x) \right\} \]
- Best translation:

\[
x^{\ast}(\lambda_1, \ldots, \lambda_n) = \arg \max_x \exp \left\{ \sum_{i=1}^{N} \lambda_i h_i(x) \right\} \Rightarrow \]

\[
x^{\ast}(\lambda_c) = \arg \max_x \exp \{ \lambda_c h_c(x) + u(x) \} \text{ where } u(x) = \sum_{i \neq c} \lambda_i h_i(x)
\]

- How to explore parameter space?
 - Grid: trade-off between speed & accuracy
 - Finite approximation
Och’s Trick

- Translation ranking only changes at intersections of translation lines!

- Multiple sentences:
 - aggregate intersections across sentences
 - For each intersection point, compute error (re-rank and select 1-best)
 - Return interval with best error score
LP-MERT: one sentence case

- Och’s MERT: great, but optimizing one parameter at a time?
 - Search over a larger subspace of parameter combos, not just line search
- Build convex hull of n-best list, iterate through extreme points
 - CH construction algorithms exponential in dimension
- Resort to LP with interior point methods (poly in dimension) to find extreme points
And more than 1 sentence?

- LP Formulation: return 0 if interior point
- Naïve approach: enumerate all possible hypothesis combinations across all sentences
- Smarter approach: merging convex hulls to maintain convexity
- Extreme point determination: $O(NS)$ # points vs. $O(N^S)$
Other Tricks and Speedups

• Takes $O(NS)$ points to determine if a point is extreme. Need to do this for $O(NS)$ possible combinations
• Trick 1: lazy enumeration (ordering of combos)
• However, not quite enough
Binary lazy enumeration

- Use divide-and-conquer:
Final Algorithm

Inputs:
- N*S feature vectors
- N*S BLEU scores

Outputs:
- Final Weights

Steps:
1. Sort each N-best list
2. Hypothesis Combination Matrix (Frontier)
 - Sub-tree 1
 - Sub-tree 2
3. Linear Program (extreme point, convex hull)
4. Move up to next level of tree
 - Combiner: is point extreme?
 - yes
 - no
 - Try next “best” combo in matrix

Finding the extreme point (over all sentences) with lowest loss
Approximations that we need

- Cosine similarity check (with reference vector):
 \[\cos(\hat{w}, w_0) \geq t \]

- Beam search: prune with respect to current best parameter vector (when combining, check model score)
Experimental Setup

- Tree-to-string model
- 13 features in total
 - Standard PM and LM features, re-ordering, function word insertion/deletion, insertion/deletion counts, target length
- N-best size = 100
 - Same combined N-best lists
- WMT 2010 English \rightarrow German (1.6 million sentence pairs)
 - 2009 test: tuning
 - 2010 test: test
 - One reference translation
The D&C Speedup

length	tested comb.	total comb.	order
8	639,960	1.33×10^{20}	$O(N^8)$
4	134,454	2.31×10^{10}	$O(2N^4)$
2	49,969	430,336	$O(4N^2)$
1	1,059	2,624	$O(8N)$

Table 1: Number of tested combinations for the experiments of Fig. 5. LP-MERT with $S = 8$ checks only 600K full combinations on average, much less than the total number of combinations (which is more than 10^{20}).
Dependence on dimension

Figure 6: Effect of the number of features (runtime on 1 CPU of a modern computer). Each curve represents a different number of tuning sentences.
Cosine Similarity Approximation

\[\cos(\hat{w}, w_0) \geq 0.84 \]

Figure 7: Effect of a constraint on \(w \) (runtime on 1 CPU).
Comparison with 1D-MERT

Assuming LP-MERT finds the “global optimum”, ‘for S=4, [Powell] makes search errors in 90% of the cases, despite using 20 random starting points’

With beam (size 1000)

	32	64	128	256	512	1024
1D-MERT	22.93	20.70	18.57	16.07	15.00	15.44
our work	25.25	22.28	19.86	17.05	15.56	15.67
	+2.32	+1.59	+1.29	+0.98	+0.56	+0.23

Table 2: BLEU4r1[%] scores for English-German on WMT09 for tuning sets ranging from 32 to 1024 sentences.

As S increases, the gap between 1D-MERT and LP-MERT increases

As S increases, the gap between 1D-MERT and LP-MERT decreases
Summary

- End-to-end evaluation (with beam approx. for LP-MERT)
 - Tuning: 0.24 BLEU difference
 - Test: 0.17 BLEU difference
- Exact multi-dimensional MERT
 - LP at the core
 - Divide-and-conquer, lazy enumeration
- Polynomial in dimension, N-best list size
- Exponential in number of sentences
- Approximations used to limit running time
- Bold approach to tackle difficult problem
Questions & concerns that I had…

• End-to-end results do not look significant
• Additional language pairs/datasets would be nice
• As S increases, does the over-performance diminish?
• What can we do to make this algorithm poly(S)?
• LP-MERT + hypergraph MERT \rightarrow towards MERT 2.0?
• Is direct cost optimization the way forward?

Thank you!