A Consistent PCR-RFLP Assay Based on ITS-2 Ribosomal DNA for Differentiation of Fasciola Species

Reza Shafiei 1, Bahador Sarkari 2*, Abdolali Moshfe 3

1 Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
2 Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
3 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

Article type: Original article

Article history:
Received: May 26, 2013
Accepted: Sep 28, 2013

Keywords: Differentiation, Fasciola, Restriction enzymes, RFLP

Abstract

Objective(s): Fascioliasis is a zoonotic parasitic disease caused by liver fluke species of Fasciola hepatica and F. gigantica. Differentiation of these two species, based on their morphological characteristics, is difficult. The current study aimed to use PCR-RFLP assay to distinguish between *F. hepatica* and *F. gigantica*, based on profiles of RFLP, produced by effect of endonucleases on ITS2 of the ribosomal DNA genes from these two species.

Materials and Methods: Adult *Fasciola* spp. were isolated from bile duct of naturally infected animals. The species of *Fasciola* were confirmed by sequencing the 505 bp region of the ITS2 gene in the isolates. By running the sequences of the samples in NEBcutter, suitable restriction enzymes (MspI and KpnI) were selected. Eight *F. gigantica* and eighteen *F. hepatica* samples were evaluated.

Results: While RFLP pattern with *MspI* produced a profile by which it was difficult to differentiate these two species, *KpnI* along with *MspI* produced a consistent pattern of a 231, 212 and 93 bp fragments in *F. hepatica*. This pattern was not seen in *F. gigantica*.

Conclusion: Findings of this study demonstrated that RFLP with *KpnI* and *MspI* produce a suitable pattern which simply differentiates *F. hepatica* from *F. gigantica*.

Introduction

Fascioliasis is a zoonotic parasitic disease caused by the liver fluke species of the genus *Fasciola*. *F. hepatica* and *F. gigantica* are two species which infect human and animals. *F. hepatica* has a worldwide distribution and both species are present in the tropical and subtropical regions of Africa and Asia (1).

Differentiation of these two species, based on their morphological characteristics, is difficult. The differences in the intermediate hosts, control strategies, transmission patterns and also epidemiological characteristics which overlap in some area indicate that the proper differentiation of *F. hepatica* and *F. gigantica* infections in human or animals is crucial (2).

Due to the limitations of morphological methods, several molecular approaches, using different molecular targets, have been developed for the differentiation of *F. hepatica* and *F. gigantica* (3).

Several DNA-based approaches have been used for differentiation of *Fasciola* species (4-7). Among them, sequencing of the first and the second internal transcribed spacers (ITS-1 and ITS-2) of ribosomal DNA and mitochondrial DNA (mtDNA) provided reliable genetic markers for species-level identification of *Fasciola* species (3). ITS-2 sequence is located between the 5.8S and 28S coding regions of rDNA that are highly conserved and have few inter-specific nucleotides useful for genetic characterization and identification in both *F. hepatica* and *F. gigantica* (8-9).

Although sequencing of ribosomal or mitochondrial DNA which shows the differences between the nucleotides of the desired gene, offers reliable methods for differentiation of *Fasciola* species, RFLP-based approaches provide a relatively simple, cost-effective and appropriate method for differential diagnosis of *F. hepatica* and *F. gigantica*. In line with this, different restriction enzymes and target genes have been used (2). The current study...
was performed to examine the utility of a PCR-RFLP assay for differentiation of *F. hepatica* and *F. gigantica*, based on RFLP profiles, produced by the effect of endonucleases on ITS2 of the ribosomal DNA genes from these two species.

Materials and Methods

Parasite

Adult *Fasciola* spp. were isolated from bile duct of naturally infected sheep, goat and cattle at the slaughterhouses from various regions of Kohgiluyeh and Boyer-Ahmad province in Iran, where human cases of fasciolosis has been recently reported (10). Flukes were washed extensively in PBS (37°C) and subsequently fixed in 70% ethanol and maintained at 4°C for several weeks until used.

DNA extraction and polymerase chain reaction (PCR)

For genomic DNA extraction, a portion of the apical and lateral zone of adult flukes was removed and crushed. DNA from the crushed materials was extracted with phenol-chloroform method. Briefly, 500 μl of lysis buffer and 8 μl of proteinase K was added to the sample and incubated overnight at 37°C. Afterward, 100 μl of phenol-chloroform was added and centrifuged at 1000 g for 10 min at 25°C. Top aqueous phase was removed and absolute alcohol was used to precipitate the DNA. Extracted DNA was diluted in double distilled water and preserved at 4°C until used.

Amplification of the DNA was performed as described by Itagaki *et al* (2005) using a pair primer to amplify a 505 bp region of the ITS2 sequence (11). PCR reaction contained 3 μl of DNA solution, 0.25 μl of Taq DNA polymerase (Cinnagen, Iran), 2.5 μl of 10x PCR buffer, 1 μl of MgCl2, 1 μl of each primers (Forward: 5’-TGTGTCGATGAAGAGCGCAG-3’ and Reverse: 5’-TGTTAGTTTCTTTCTCCGCG-3’), 1 μl of dNTPs and 15.5 μl of DDW. The DNA product was sequenced and *Fasciola* species were identified.

Restriction fragment length polymorphism (RFLP)

After sequencing using NEBcutter V2.0 software (12), the cutting sites of commercially available restriction enzymes on ITS2 sequences of *F. hepatica* and *F. gigantica* were assessed (Figure 1). *MspI* and *KpnI* were selected as the enzymes which might produce the most informative profile. For RFLP, a total volume of 20 μl, including 10 μl of ITS2 PCR product was added with 1 μl of either *MspI* or *KpnI*, 4 μl of 10x Tango buffer (Fermentas, Lithuania) and 4 μl of DD-H2O. The tubes were incubated at 37°C for 12 hr, according to the manufacturer instruction to ensure full cutting of fragments. For analyzing the digestion products, 15 μl of each product in addition to 2 μl of loading buffer were run in 2% gel electrophoresis.

Results

The species of *Fasciola* were confirmed by sequencing the 505 bp region of the ITS2 gene in the isolates. All amplified products of both *F. hepatica* and *F. gigantica* were digested with the *MspI* restriction endonuclease. Eight *F. gigantica* and eighteen *F. hepatica* samples were evaluated. RFLP pattern with *MspI* produced a 212 and 324 bp fragments for *F. hepatica* and 218 and 322 bp for *F. gigantica* (Figure 2). Based on these profiles, it was quite difficult to differentiate these two species. Using *KpnI* along with *MspI* (double digestion), a consistent pattern was found where *KpnI* cut ITS2 fragment of *F. hepatica* and produced a 231, 212 and 93 bp fragments (Figure 3). This pattern was not seen in *F. gigantica* (Figure 3).

![Figure 1. Cutting sites of MspI restriction enzyme on a) Fasciola gigantica, b) F. hepatica, C) cutting sites of KpnI on F. hepatica. F. gigantica has no cutting sites for KpnI.](image-url)
Discussion

Differentiation of Fasciola species is crucial for proper implementation of any control measurement about both human and animal fascioliasis (1). Molecular markers based on DNA analysis have been employed for genetic characterization and identification of parasites especially helminthes (13, 14). In the present study, a rapid and simple method of RFLP assay, based on the partial rDNA of ITS2 gene, was utilized for the accurate differentiation and identification of Fasciola species.

Restriction enzymes are powerful and simple approaches toward the characterization of parasite species based on differences in their genomes. These methods have been used for differentiation among Fasciola species based on the profiles generated by the effects of endonucleases on ITS genes of these parasites (4, 5). In a study in China, effect of Hsp92II or RcaI on ITS2 region, Fasciola spp. were differentiated from one another by their unique restriction patterns (8). Isolates of Chinese Fasciola produced a mixture of patterns in two Fasciola species. Huang et al (2004) used the restriction endonucleases, Hsp92I and RcaI, on ITS2 region for molecular differentiation of Fasciola spp. and showed that Hsp92I produces different profiles in different isolates from different hosts. They reported that Hsp92I is better than RcaI for differentiating between these two species (8).

Fasciola species have been traditionally classified based on their morphological features, such as width and body length. Because of the size variations of these two species, the discrepancy of morphological features, and the presence of intermediate forms, it is difficult to distinguish the two species, solely based on these characteristics. RFLP is a powerful approach for discriminating these two species. RFLP pattern have been used for characterization of Fasciola species and also other organisms in Iran (15-18). Karimi (2008) showed that in 18S DNA region, BfrI restriction enzyme produce similar profile for both F. hepatica and F. gigantica whereas Dral generates different patterns for two species of Fasciola (15). Rokni et al (2010) used TasI restriction enzyme for ITS1 region which properly differentiated F. hepatica from F. gigantica (2). In another study, Saki et al (2011) showed that AvaiI and DraII restriction enzymes in 28S DNA appropriately differentiate these two species (16). However, Ghavami et al (2009) showed that the pattern of restriction digestion in ITS2 sequence of Fasciola samples which was seen with BamHI and

Figure 2. RFLP pattern of PCR products of F. hepatica and F. gigantica digested by MspI. L) 100-bp DNA ladder, C) undigested PCR product for control; lane 1, 2, 4, 10, 12, 14, 15 and 19 are F. gigantica; lane 3, 5-7, 11, 13, 16-18, 20 and 21 are F. hepatica

Figure 3. RFLP pattern of PCR products of F. hepatica and F. gigantica digested by KpnI and MspI. L) 100-bp DNA ladder, C) undigested PCR product for control; lane 1, 2, 6, 7, 8, 11, 15 are F. gigantica and the rest are F. hepatica
Pfal restriction enzymes at the nucleotide positions of 230, 340 and 341 bp are specific to F. hepatica species and has no effect on F. gigantica (17).

Conclusion
In the current study, considering the sequences of ITS2 of F. hepatica and F. gigantica, two endonucleases, MspI and KpnI, were used to differentiate Fasciola spp. For MspI, the RFLP profiles of two species were very similar while for KpnI the profile was quite different and this enzyme was able to cut the ITS2 of two species of Fasciola at different sites which may be utilized for the differentiation of two species. The evaluation of the Fasciola spp. in the areas where two species of the fluke coexist is important and this simple RFLP can be used for discerning these two species.

Acknowledgment
This study was financially supported by the office of Vice-Chancellor for Research of Shiraz University of Medical Sciences, Shiraz, Iran. The results described in this paper were part of PhD student thesis (Reza Shafiei).

References
1. Mas-Coma S, Valero MA, Bargues MD. Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 2009;69:41-146.
2. Rokni MB, Mirhendi H, Mizani A, Mohabali M, Sharbatkhori M, Kia EB, et al. Identification and differentiation of Fasciola hepatica and F. gigantica using a simple PCR-restriction enzyme method. Exp Parasitol 2010;124:209-213.
3. Ai L, Chen MX, Alasaad S, Elsheikhba HM, Li J, Li HL, et al. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasit Vectors 2011; 4:101.
4. Chaichanasak P, Ichikawa M, Sobhun P, Itagaki T. Identification of Fasciola flukes in Thailand based on their spermatogenesis and nuclear ribosomal DNA, and their intraspecific relationships based on mitochondrial DNA. Parasitol Int 2012; 61:545-459.
5. Dar Y, Amer S, Mercier A, Courtioux B, Dreyfuss G. Molecular identification of Fasciola spp. (Digenea: Fasciolidae) in Egypt. Parasite 2012; 19:177-182.
6. Ichikawa M, Itagaki T. Molecular analysis of aspermic Fasciola flukes from Korea on the basis of the nuclear ITS1 region and mitochondrial DNA markers and comparison with Japanese aspermic Fasciola flukes. J Vet Med Sci 2012; 74:899-904.
7. Mahami-Oskouei M, Dalimi A, Forouzandeh-Moghadam M, Rokni M. Molecular identification and differentiation of Fasciola isolates using PCR- RFLP method based on internal transcribed spacer (ITS1, 5.8S rDNA, ITS2). Iran J Parasitol 2011; 6:35-42.
8. Huang WY, He B, Wang CR, Zhu XQ. Characterisation of Fasciola species from Mainland China by ITS-2 ribosomal DNA sequence. Vet Parasitol 2004; 120:75-83.
9. Choe SE, Nguyen TT, Kang TG, Kweon CH, Kang SW. Genetic analysis of Fasciola isolates from cattle in Korea based on second internal transcribed spacer (ITS-2) sequence of nuclear ribosomal DNA Parasitol Res 2011; 109: 833-839.
10. Sarkari B, Ghabakhoo N, Moshtea A, Eilami O. Seroprevalence of human fascioliasis in a new-emerging focus of fasciolasis in Yasuj district, southwest of Iran. Iran J Parasitol 2012; 7:15-20.
11. Itagaki T, Kikawa M, Sakaguchi K, Shimo J, Terasaki K, Shibahara T, et al. Genetic characterization of parthenogenic Fasciola sp in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitology 2005; 131: 679-685.
12. New England Biolabs. Nebcutter V2.0. Available at: http://tools.neb.com/NEBcutter2.
13. Hwang UW, Kim W. General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean J Parasitol 1999; 37:215-228.
14. Vilas R, Criscione CD, Blouin MS. A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 2005; 131:839-846.
15. Karimi A. Genetic diagnosis of Fasciola species based on 18S ribosomal DNA sequences. J Biol Sci 2008; 8:1166-1173.
16. Salih J, Khademvatan S, Yousefi E. Molecular identification of animal Fasciola isolates in Southwest of Iran. Aust J Basic Appl Sci 2011; 5:1878-1883.
17. Ghavami MB, Rahimi P, Hanloo A, Mosavinasab SN. Genotypic and phenotypic analysis of Fasciola isolates. Iran J Parasitol 2009; 4:61-670.
18. Hossein M, Mirhendi SH, Brandão J, Mirdashti R, Rosado L. Comparison of enzymatic method rapid yeast plus system with RFLP-PCR for identification of isolated yeast from vulvovaginal candidiasis. Iran J Basic Med Sci 2011; 14: 443-50.
۳۰ درصد تخفیف نوروزی ویژه کارگاه‌ها و فیلم‌های آموزشی

اصول تنظیم قراردادها

پروپوزال نویسی

آموزش مهارت‌های کاربردی در ندوین و چاپ مقاله