Maximum principle for state constrained optimal control problems governed by multisolution p-Laplacian elliptic equations in the absence of convexity

Hongwei Lou

School of Mathematical Sciences, and LMNS, Fudan University, Shanghai, 200433, China

Shu Luan

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guangdong 524048, China

Abstract

A state constrained optimal control problem governed by a class of multisolution p-Laplacian elliptic equations is studied in this paper. Both the control domain and cost functional considered may be non-convex. Combining the multiplicity and degeneracy of the state equation with the non-convex assumptions is the main difficulty we will overcome. By transforming the initial problem to a well-posed and non-degenerate problem with a point-point mixed constraint and then using Ekeland’s variational principle, the Pontryagin’s maximum principle for the initial problem is obtained by passing to the limits twice.

Keywords: optimal control, p-Laplacian equation, multiplicity, nonconvexity, Pontryagin’s maximum principle

2000 MSC: 49K20, 35J70

✩This work was partially supported by the National Natural Science Foundation of China under grants 11726619, 11726620, 11601213 and the Natural Science Foundation of Guangdong Province under grant 2018A0303070012.

Email address: hwlou@fudan.edu.cn (Hongwei Lou)
1. Introduction

2. Formulation of the control problem and the main result

Let Ω be a bounded open subset of $\mathbb{R}^n (n \geq 3)$ with $C^{1,1}$ boundary Γ. Consider the following p-Laplacian elliptic equation

$$
\begin{cases}
-\text{div}(|\nabla y|^{p-2}\nabla y) = f(x, y, u) & \text{in } \Omega, \\
y = 0 & \text{on } \Gamma,
\end{cases}
$$

(2.1)

where $1 < p < 2$ and $F(y) \in W$.

(2.2)

Let U be a separate metric space and the set of controls \mathcal{U}_{ad} is defined by $\mathcal{U}_{ad} \equiv \{ u : \Omega \to U | u \text{ is measurable} \}$. Define $d(u, v) = | \{ x \in \Omega | u(x) \neq v(x) \} |$, where $| \cdot |$ denotes the Lebesgue measure in \mathbb{R}^n. Then (\mathcal{U}_{ad}, d) is a complete metric space (see Chapter 5 of [1]). Denote

$$
\mathcal{A} = \{(y, u) \mid y \in W^{1,p}_0(\Omega), u \in \mathcal{U}_{ad}, (y, u) \text{ satisfies (2.1) and (2.2)}\},
$$

a pair $(y, u) \in \mathcal{A}$ will be called an admissible pair. The cost functional we considered is as follows:

$$
J(y, u) = \int_{\Omega} f^0(x, y(x), u(x)) \, dx.
$$

We make the following assumptions.

(S1) The function $f : \Omega \times \mathbb{R} \times U \to \mathbb{R}$ is continuous and $f_y(x, \cdot , \cdot)$ is continuous in $\mathbb{R} \times U$. Moreover, f satisfies the following conditions:

$$
|f(x, y, u)| \leq C(1 + |y|^{r_1}) \quad \text{for any } (x, y, u) \in \Omega \times \mathbb{R} \times U
$$

(2.3)

and

$$
|f_y(x, y, u)| \leq \tilde{C}(1 + |y|^{r_1 - 1}) \quad \text{for any } (x, y, u) \in \Omega \times \mathbb{R} \times U,
$$

(2.4)

and there exists a constant $L > 0$ such that for all $x \in \Omega$, $u \in U$, $y_1, y_2 \in \mathbb{R}$,

$$
|f_y(x, y_1, u) - f_y(x, y_2, u)| \\
\leq \begin{cases}
L|y_1 - y_2|(1 + |y_1|^{r_1 - 2} + |y_2|^{r_1 - 2}) & \text{if } r_1 - 2 > 0, \\
L|y_1 - y_2|^{r_1 - 1} & \text{if } r_1 - 2 \leq 0,
\end{cases}
$$

(2.5)
where $C, \tilde{C} \geq 0$ and $1 \leq r_1 \leq n/(n - 2)$.

(S2) Let X be a Banach space with dual X^* strictly convex and let $F : L^2(\Omega) \to X$ be of class C^1. $W \subset X$ is a closed and convex subset.

(S3) $f^0 : \Omega \times \mathbb{R} \times U \to \mathbb{R}$ satisfies that $f^0(\cdot, y, u)$ is measurable in Ω, $f^0(x, \cdot, \cdot)$, $f^0_y(x, \cdot, \cdot)$ are continuous in $\mathbb{R} \times U$. Moreover,

$$|f^0(x, y, u)| + |f^0_y(x, y, u)| \leq a(x) + b|y|^{r_2} \quad \text{for any} \quad (x, y, u) \in \Omega \times \mathbb{R} \times U, \quad (2.6)$$

where $0 \leq r_2 \leq (n + 2)/(n - 2)$, $a(\cdot) \in L^{2n/(n+2)}(\Omega)$, $a(x) \geq 0$ a.e. in Ω, $b \geq 0$.

We note that the following facts.

Remark 2.1 Since we make no monotonicity assumption $f'(x, y, u) \leq 0$ for all $(x, y, u) \in \Omega \times \mathbb{R} \times U$ on f, the state equation (2.1) may admit more than one solution for any $u \in U_{ad}$. Hence, (2.1) is non-well-posed.

Remark 2.2 Due to (S1), every solution of (2.1) belongs to $L^\infty(\Omega)$ (see [2]).

The optimal control problem we considered can be stated as follows.

Problem (P). Find a pair $(\bar{y}, \bar{u}) \in A$ such that

$$J(\bar{y}, \bar{u}) = \inf \{ J(y, u) | (y, u) \in A \}.$$

A solution of **Problem (P)** is said to be an optimal pair, \bar{u} is called an optimal control, and \bar{y} is called an optimal state.

Our purpose is to give an optimality condition for an optimal pair (\bar{y}, \bar{u}). To do this, we need one more assumption. Before stating it, we define, for $r_1, r_2 > 0$,

$$B_{r_1, r_2} = \{(q, w) \in X \times L^\infty(\Omega) : \forall (y, u) \in W_0^{1,2}(\Omega) \times U_{ad} \text{ with}$$

$$\|y - \bar{y}\|_{W_0^{1,2}(\Omega)} \leq r_1, \exists z \in W_0^{1,2}(\Omega) \text{ with} \|z\|_{W_0^{1,2}(\Omega)} \leq r_2 \text{ such that}$$

$$F'(\bar{y})z = q \text{ and } -\text{div}(A\nabla z) - f_y(x, y, \bar{u})z$$

$$-f(x, y, u) + f(x, y, \bar{u}) = w \text{ in } \Omega \} \quad (2.7)$$

where

$$A = |\nabla \bar{y}|^{p-2} \left(I + (p - 2)\frac{\nabla \bar{y}(\nabla \bar{y})^T}{|\nabla \bar{y}|^2} \right). \quad (2.8)$$
There exist \(r_1, r_2 > 0 \) such that \(B_{r_1, r_2} - W \times \{0\} \) has finite codimensionality in \(X \times L^\infty(\Omega) \).

The main result in this paper is as follows.

Theorem 2.1 Suppose that (S1)-(S4) hold. Let \((\bar{y}, \bar{u}) \in W_0^{1,p}(\Omega) \times U_{ad}\) be an optimal pair of Problem (P) and \(A \) be given by (2.8). Then there exists a triplet \((\lambda_0, \varphi_0, \tilde{\psi}) \in \mathbb{R} \times X^* \times W_0^{1,2}(\Omega)\) with \((\lambda_0, \varphi_0, \tilde{\psi}) \neq 0\), such that

\[
- \text{div} \left(A \nabla \tilde{\psi} \right) = f(y(x, \bar{y}, \bar{u})), \quad \text{in } \{\nabla \bar{y} \neq 0\},
\]

\[
\varphi_0(x) = 0, \quad \text{a.e. } x \in \{\nabla \bar{y} = 0\},
\]

\[
\langle \varphi_0, \phi - F(\bar{y}) \rangle_{X^*, X} \leq 0 \quad \text{for all } \phi \in W,
\]

and for almost all \(x \in \Omega \)

\[
H_{\lambda_0}(x, \bar{y}(x), \bar{u}(x), \tilde{\psi}(x)) = \min_{v \in U} H_{\lambda_0}(x, \bar{y}(x), v, \tilde{\psi}(x)),
\]

where

\[
H_{\lambda}(x, y, v, \psi) = \lambda f^0(x, y, v) - \psi f(x, y, v) \quad \forall (x, y, v, \psi) \in \Omega \times \mathbb{R} \times U \times \mathbb{R}.
\]

3. Transformation of the initial problem and the preliminary lemmas

In this section, we will transform Problem (P) to a well-posed problem with a point-point mixed constraint and give some preliminary lemmas. For any \(\tau \in (0, 1) \), let us consider a new state equation

\[
\begin{cases}
- \text{div} \left(\sqrt{\tau^2 + |\nabla y_\tau|^2}^{p-2} \nabla y_\tau \right) = v & \text{in } \Omega, \\
y_\tau = 0 & \text{on } \Gamma,
\end{cases}
\]

with

\[
v(x) = f(x, y_\tau(x), u(x)) \quad \text{a.e. } x \in \Omega,
\]

and \(F(y_\tau) \in W\), where the control \((u, v) \in U_{ad} \times \mathcal{K}, \mathcal{K} \equiv \{v \in L^\infty(\Omega) : \|v - \tilde{v}\|_{L^\infty(\Omega)} \leq K, \tilde{v}(x) = f(x, \bar{y}(x), \bar{u}(x)) \text{ a.e. } x \in \Omega\}\) for some constant
$K > 0$ large enough, and $y_{\tau} \in W_{0}^{1,p}(\Omega)$ is a solution of (3.1) corresponding to $(u,v) \in U_{ad} \times K$.

The following two lemmas show that the existence, uniqueness and regularity of the solution of (3.1) which can be deduced from that Lemmas 3.1 and 3.2 in [3] and Remark 2.2.

Lemma 3.1 Let (S1) hold. Then for any $\tau \in (0,1)$, $(u,v) \in U_{ad} \times K$, (3.1) admits a unique solution $y_{\tau} \in W_{0}^{1,p}(\Omega) \cap L^\infty(\Omega)$, moreover, there exists a constant $C > 0$, independent of τ and (u,v), such that

$$\|y_{\tau}\|_{L^\infty(\Omega)} \leq C.$$

Lemma 3.2 Let (S1) hold. Then for any $\tau \in (0,1)$, $(u,v) \in U_{ad} \times K$, there exist constants $C > 0$ and $\alpha \in (0,1)$, independent of τ and (u,v), such that

$$\|y_{\tau}\|_{C^{1,\alpha}(\bar{\Omega})} \leq C,$$

where y_{τ} is the solution of (3.1) corresponding to (u,v).

Next, we give some other important preliminary results which are proved using the same arguments as in [4].

Lemma 3.3 Suppose that (S3) holds. Let $u_{k}, \tilde{u} \in U_{ad}$ and $v_{k}, \tilde{v} \in K(k > 0)$ be such that $u_{k} \to \tilde{u}$ in U_{ad} and $v_{k} \to \tilde{v}$ strongly in $L^2(\Omega)$ as $k \to \infty$. Then

$$\int_{\Omega} |f^0(x, y_{\tau,k}, u_{k}) - f^0(x, \tilde{y}, \tilde{u})| dx \to 0$$

as $k \to \infty$ and then $\tau \to 0$, where $y_{\tau,k}$ is the solution of (3.1) corresponding to v_{k}, and \tilde{y} is the solution of (2.1) corresponding to \tilde{v}.

Proof. For any $\tau \in (0,1)$, let \tilde{y}_{τ} be the solution of (3.1) corresponding
to \(\tilde{v} \), then it follows from (2.6) that

\[
\int_{\Omega} |f^0(x, y_{\tau,k}, u_k) - f^0(x, \tilde{y}_\tau, \tilde{u})| \, dx \\
\leq \int_{\Omega} |f^0(x, y_{\tau,k}, u_k) - f^0(x, \tilde{y}_\tau, u_k)| \, dx \\
+ \int_{\Omega} |f^0(x, \tilde{y}_\tau, u_k) - f^0(x, \tilde{y}_\tau, \tilde{u})| \, dx \\
\leq \int_{\Omega} |y_{\tau,k} - \tilde{y}_\tau| \int_0^1 |f^0_1(x, \tilde{y}_\tau + \theta(y_{\tau,k} - \tilde{y}_\tau), u_k)| \, d\theta \, dx \\
+ \int_{\Omega_k} |f^0(x, \tilde{y}_\tau, u_k) - f^0(x, \tilde{y}_\tau, \tilde{u})| \, dx \\
\leq \int_{\Omega} |y_{\tau,k} - \tilde{y}_\tau| \left(a + b \int_0^1 |\tilde{y}_\tau + \theta(y_{\tau,k} - \tilde{y}_\tau)| r^2 \, d\theta \right) \, dx \\
+ 2 \int_{\Omega_k} (a + b |\tilde{y}_\tau| r^2) \, dx \\
=: I_{1k} + I_{2k},
\]

where \(\Omega_k = \{ x \in \Omega : u_k(x) \neq \tilde{u}(x) \} \).

Since \(\| v_k - \tilde{v} \|_{L^2(\Omega)} \to 0 \) as \(k \to \infty \) and \(y_{\tau,k}, \tilde{y}_\tau \) is the solution of (3.1) corresponding to \(v_k \) and \(\tilde{v} \), respectively, then the standard energy estimate method implies that \(\| y_{\tau,k} - \tilde{y}_\tau \|_{W^{1,2}_0(\Omega)} \to 0 \) as \(k \to \infty \). Noting \(n \geq 3 \), thus Sobolev’s Imbedding Theorem implies that

\[
\| y_{\tau,k} - \tilde{y}_\tau \|_{L^{2n/(n-2)}(\Omega)} \to 0
\]

as \(k \to \infty \). In addition, one can check that for \(k > 0 \) large enough,

\[
\left\| a + b \int_0^1 |\tilde{y}_\tau + \theta(y_{\tau,k} - \tilde{y}_\tau)| r^2 \, d\theta \right\|_{L^{2n/(n+2)}(\Omega)} \leq C,
\]

where \(C > 0 \) is independent of \(k \). Furthermore, using Hölder inequality, (3.4) and (3.5), we have that

\[
I_{1k} \leq \| y_{\tau,k} - \tilde{y}_\tau \|_{L^{2n/(n-2)}(\Omega)} \cdot \left\| a + b \int_0^1 |\tilde{y}_\tau + \theta(y_{\tau,k} - \tilde{y}_\tau)| r^2 \, d\theta \right\|_{L^{2n/(n+2)}(\Omega)} \\
\leq C \| y_{\tau,k} - \tilde{y}_\tau \|_{L^{2n/(n-2)}(\Omega)} \to 0
\]

as \(k \to \infty \).
Furthermore, (S3) and Sobolev's Imbedding Theorem imply that
\[(a + b|\tilde{y}_\tau|^2) \in L^{2n/(n+2)}(\Omega) \subset L^1(\Omega). \] Moreover, since \(u_k \to \tilde{u} \) in \(U_{ad} \), we have that \(|\Omega_k| \to 0 \) as \(k \to \infty \). Thus we deduce that
\[I_{2k} \to 0 \quad \text{as} \quad k \to \infty. \] (3.7)

On the other hand, by (2.1), (3.1) and Lemma 3.2, we have that
\[\tilde{y}_\tau \to \tilde{y} \quad \text{strongly in} \quad W^{1,2}_0(\Omega), \quad \text{uniformly in} \quad C^1(\bar{\Omega}). \] (3.8)
as \(\tau \to 0 \). This together with (S3), we have that
\[\int_\Omega |f^0(x, y_{\tau,k}, u_k) - f^0(x, \tilde{y}, \tilde{u})|^2 dx \to 0 \quad \text{as} \quad \tau \to 0. \] (3.9)
Finally, by (3.3), (3.6), (3.7) and (3.9), we complete the proof. \(\square \)

Lemma 3.4 Suppose that (S1) holds. Let \(u_k, \tilde{u} \in U_{ad} \) and \(v_k, \tilde{v} \in K(k > 0) \) be such that \(u_k \to \tilde{u} \) in \(U_{ad} \) and \(v_k \to \tilde{v} \) strongly in \(L^2(\Omega) \) as \(k \to \infty \). Then
\[\int_\Omega |f(x, y_{\tau,k}, u_k) - f(x, \tilde{y}, \tilde{u})|^2 dx \to 0 \]
as \(k \to \infty \) and then \(\tau \to 0 \), where \(y_{\tau,k} \) is the solution of (3.1) corresponding to \(v_k \), and \(\tilde{y} \) is the solution of (2.1) corresponding to \(\tilde{v} \).

Proof. For any \(\tau \in (0, 1) \), let \(\tilde{y}_\tau \) be given as above, then we have that
\[\int_\Omega |f(x, y_{\tau,k}, u_k) - f(x, \tilde{y}, \tilde{u})|^2 dx \]
\[\leq 2 \int_\Omega |f(x, y_{\tau,k}, u_k) - f(x, \tilde{y}, u_k)|^2 dx \]
\[+ 2 \int_\Omega |f(x, \tilde{y}, u_k) - f(x, \tilde{y}, \tilde{u})|^2 dx \]
\[\leq 2 \int_\Omega |y_{\tau,k} - \tilde{y}_\tau|^2 \left| \int_0^1 f_y(x, \tilde{y}_\tau + \theta(y_{\tau,k} - \tilde{y}_\tau), u_k)d\theta \right|^2 dx \]
\[+ 2 \int_{\Omega_k} |f(x, \tilde{y}, u_k) - f(x, \tilde{y}, \tilde{u})|^2 dx \]
\[=: I_{3k} + I_{4k}. \] (3.10)
By (2.4) and (3.4), we have that
\[
I_{3k} \leq 2 \|y_{\tau,k} - \tilde{y}_\tau\|_{L^{2n/(n-2)}(\Omega)} \cdot \left\| \tilde{C} \left(1 + \int_0^1 |\tilde{y}_\tau + \theta(y_{\tau,k} - \tilde{y}_\tau)|^{r_1-1} d\theta \right) \right\|_{L^{n/2}(\Omega)}
\]
\[
\leq C \|y_{\tau,k} - \tilde{y}_\tau\|_{L^{2n/(n-2)}(\Omega)}^2 \rightarrow 0
\]
as \(k \rightarrow \infty \).

On the other hand, since \(\tilde{y}_\tau \in L^{2n/(n-2)}(\Omega) \) and \(1 \leq r_1 \leq n/(n-2) \), it is easy to see that \((1 + |\tilde{y}_\tau|^{r_1})^2 \in L^1(\Omega) \). In addition, \(\Omega_k \rightarrow 0 \) as \(k \rightarrow \infty \). Therefore,
\[
I_{4k} \leq C \int_{\Omega_k} (1 + |\tilde{y}_\tau|^{r_1})^2 dx \rightarrow 0
\]
as \(k \rightarrow \infty \). Applying (3.8) and the continuity of \(f \) and by (3.10)-(3.12), the lemma is proved. □

Lemma 3.5 Suppose that (S3) holds. Let \(u_k, \tilde{u} \in U_{ad} \) and \(v_k, \tilde{v} \in K \) \((k > 0)\) be such that \(u_k \rightarrow \tilde{u} \) in \(U_{ad} \) and \(v_k \rightarrow \tilde{v} \) strongly in \(L^2(\Omega) \) as \(k \rightarrow \infty \). In addition, let \(z_{\tau,k}, z \in W^{1,2}_0(\Omega) \) be such that \(z_{\tau,k} \rightarrow z \) strongly in \(L^2(\Omega) \) as \(k \rightarrow \infty \) and then \(\tau \rightarrow 0 \). Then there exist generalized subsequences of \(k \) and \(\tau \), denoted in the same way, such that
\[
\int_{\Omega} f_y^0(x, y_{\tau,k}, u_k) z_{\tau,k} dx \rightarrow \int_{\Omega} f_y^0(x, \tilde{y}, \tilde{u}) z dx
\]
as \(k \rightarrow \infty \) and then \(\tau \rightarrow 0 \), where \(y_{\tau,k} \) is the solution of (3.1) corresponding to \(v_k \), and \(\tilde{y} \) is the solution of (2.1) corresponding to \(\tilde{v} \).

Proof. First, we shall show that on a generalized subsequence of \(k \), denoted in the same way,
\[
f_y^0(x, y_{\tau,k}, u_k) \rightarrow f_y^0(x, \tilde{y}, \tilde{u}) \quad \text{weakly in } L^{2n/(n+2)}(\Omega)
\]
as \(k \rightarrow \infty \) and then \(\tau \rightarrow 0 \) because \(z \in W^{1,2}_0(\Omega) \subset L^{2n/(n-2)}(\Omega) \). For any \(\tau \in (0,1) \), firstly we note that there exists a generalized subsequence of \(k \), denoted in the same way, such that
\[
y_{\tau,k}(x) \rightarrow \tilde{y}_\tau(x), \quad u_k(x) \rightarrow \tilde{u} \quad \text{a.e. in } \Omega
\]
as \(k \to \infty \) since (3.4) holds and \(u_k \to \bar{u} \) in \(\mathcal{U}_{ad} \). Since \(f^0_y : \Omega \times \mathbb{R} \times U \to \mathbb{R} \) is continuous, it follows from (3.15) that

\[
f^0_y(x, y_{\tau,k}, u_k) \to f^0_y(x, \bar{y}, \bar{u}) \quad \text{a.e. in } \Omega \tag{3.16}
\]
as \(k \to \infty \).

On the other hand, by (2.6) and by Sobolev Imbedding Theorem, we have that

\[
\|f^0_y(x, y_{\tau,k}, u_k)\|_{L^{2n/(n+2)}(\Omega)} \leq C, \tag{3.17}
\]

where \(C \) is a positive constant independent of \(k \). Consequently, (3.14) can be deduced by (3.16), (3.17) and (3.8). Obviously, by (3.14), for any \(z \in W^{1,2}_0(\Omega) \), we have that

\[
\int_{\Omega} f^0_y(x, y_{\tau,k}, u_k)z \, dx \to \int_{\Omega} f^0_y(x, \bar{y}, \bar{u})z \, dx \tag{3.19}
\]
as \(k \to \infty \) and then \(\tau \to 0 \).

On the other hand, by (2.6) and Lemma 3.2, we have that

\[
\left| \int_{\Omega} f^0_y(x, y_{\tau,k}, u_k)(z_{\tau,k} - z) \, dx \right| \leq C\|z_{\tau,k} - z\|_{L^2(\Omega)}. \tag{3.20}
\]

Consequently, (3.19) and (3.20) imply (3.13) hold and thus the proof is over.

\[\Box\]

Lemma 3.6 Suppose that (S1) holds. Let \(u_k, \bar{u} \in \mathcal{U}_{ad} \) and \(v_k, \bar{v} \in \mathcal{K}(k > 0) \) be such that \(u_k \to \bar{u} \) in \(\mathcal{U}_{ad} \) and \(v_k \to \bar{v} \) strongly in \(L^2(\Omega) \) as \(k \to \infty \). Suppose that \(\psi_{\tau,k}, \psi \in L^2(\Omega) \) with \(\psi_{\tau,k} \to \psi \) weakly in \(L^2(\Omega) \) and \(z_{\tau,k}, z \in W^{1,2}_0(\Omega) \) with \(z_{\tau,k} \to z \) strongly in \(L^2(\Omega) \) as \(k \to \infty \) and then \(\tau \to 0 \). Then there exist generalized subsequences of \(k \) and \(\tau \), respectively, denoted in the same way, such that

\[
\int_{\Omega} \psi_{\tau,k}f_y(x, y_{\tau,k}, u_k)z_{\tau,k} \, dx \to \int_{\Omega} \psi f_y(x, \bar{y}, \bar{u})z \, dx \tag{3.21}
\]
as \(k \to \infty \) and then \(\tau \to 0 \), where \(y_{\tau,k} \) is the solution of (3.1) corresponding to \(v_k \), and \(\bar{y} \) is the solution of (2.1) corresponding to \(\bar{v} \).

Proof. **Step 1** Firstly, for any \(z \in W^{1,2}_0(\Omega) \), we would like to prove that

\[
\int_{\Omega} \psi_{\tau,k}f_y(x, y_{\tau,k}, u_k)z \, dx \to \int_{\Omega} \psi f_y(x, \bar{y}, \bar{u})z \, dx \tag{3.22}
\]
as $k \to \infty$ and then $\tau \to 0$.

For any $\tau \in (0, 1)$. It is clear that

$$\left| \int_{\Omega} \left[\psi_{\tau,k} f_y(x, y_{\tau,k}, u_k) - \psi f_y(x, \bar{y}_{\tau}, \bar{u}) \right] z dx \right| \leq I_{5k} + I_{6k}, \quad (3.23)$$

where

$$I_{5k} = \left| \int_{\Omega} \psi_{\tau,k} [f_y(x, y_{\tau,k}, u_k) - f_y(x, \bar{y}_{\tau}, u_k)] z dx \right| \quad (3.24)$$

and

$$I_{6k} = \left| \int_{\Omega} \psi_{\tau,k} [f_y(x, \bar{y}_{\tau}, u_k) - f_y(x, \bar{y}_{\tau}, \bar{u})] z dx \right|. \quad (3.25)$$

First, we estimate I_{5k}. We claim that on generalized subsequence of k, denoted in the same way,

$$[f_y(x, y_{\tau,k}, u_k) - f_y(x, \bar{y}_{\tau}, u_k)] z \to 0 \text{ strongly in } L^2(\Omega) \quad (3.26)$$

for any $z \in W^{1,2}_0(\Omega)$ as $k \to \infty$.

Case 1: $1 < r_1 \leq 2$.

In this case, by (2.5) and Sobolev’s Imbedding Theorem and Hölder’s inequality, we obtain that

$$\int_{\Omega} |f_y(x, y_{\tau,k}, u_k) - f(x, \bar{y}_{\tau}, u_k)|^2 z^2 dx$$

$$\leq C \int_{\Omega} |y_{\tau,k} - \bar{y}_{\tau}|^{2(r_1-1)} z^2 dx$$

$$\leq C \|y_{\tau,k} - \bar{y}_{\tau}\|^2_{L^{2n/(n-2)}(\Omega)} \|z\|^2_{L^{2n/(n-2)}(\Omega)}$$

$$\leq C \|y_{\tau,k} - \bar{y}_{\tau}\|^2_{L^{2n/(n-2)}(\Omega)} \|z\|^2_{W^{1,2}_0(\Omega)} \quad (3.27)$$

By (3.4) and (3.27), we get that (3.26) in this case.

Case 2: $r_1 = 1$.

In this case, by (2.5) again, we have that

$$|f_y(x, y_{\tau,k}, u_k) - f_y(x, \bar{y}_{\tau}, u_k)|^n \leq C \quad \forall x \in \Omega. \quad (3.28)$$

On the other hand, by the same argument as in the proof of Case 1, there exists a generalized subsequence of k, denoted in the same way, such that

$$|f_y(x, y_{\tau,k}(x), u_k(x)) - f_y(x, \bar{y}_{\tau}(x), u_k(x))|^n \to 0 \quad \text{a.e. in } \Omega \quad (3.29)$$
as $k \to \infty$. By (3.28) and (3.29) and Lebesgue’s Dominated Convergence Theorem, we get that

$$f_y(x, y_{r,k}, u_k) - f_y(x, \bar{y}_r, u_k) \to 0 \quad \text{strongly in } L^n(\Omega) \quad \text{as } k \to \infty. \quad (3.30)$$

Using Hölder’s inequality and Sobolev’s Imbedding Theorem again, we deduce that

$$\int_{\Omega} |f_y(x, y_{r,k}, u_k) - f(x, \bar{y}_r, u_k)|^2 \, dx \leq C \|f_y(x, y_{r,k}, u_k) - f_y(x, \bar{y}_r, u_k)\|_{L^n(\Omega)}^2 \|z\|^2_{W_0^{1,2}(\Omega)}. \quad (3.31)$$

Thus (3.26) follows from (3.30) and (3.31) immediately in this case.

Case 3: $r_1 > 2$.

In this case, we must have that $n = 3$ because $n \geq 3$. Thus $3 \geq r_1 > 2$. Since $\{y_{r,k}\}$ is bounded in $W_0^{1,2}(\Omega) \subset L^6(\Omega)$, $\{|y_{r,k}|^{r_1-2}\}$ is bounded in $L^{6/(r_1-2)}(\Omega)$. This implies that $\{1 + |y_{r,k}|^{r_1-2} + |ar{y}_r|^{r_1-2}\}$ is bounded in $L^{3/(r_1-2)}(\Omega)$ and therefore is bounded in $L^3(\Omega)$. Hence by (2.5) and by Hölder’s inequality and Sobolev’s Imbedding Theorem, we obtain that

$$\int_{\Omega} |f_y(x, y_{r,k}, u_k) - f(x, \bar{y}_r, u_k)|^2 \, dx \leq C \left(\int_{\Omega} |y_{r,k} - \bar{y}_r|^6 \, dx \right)^{1/3} \left[\int_{\Omega} (1 + |y_{r,k}|^{r_1-2} + |ar{y}_r|^{r_1-2})^6 \, dx \right]^{1/3}$$

$$\leq C \|y_{r,k} - \bar{y}_r\|^2_{L^6(\Omega)} \|z\|^2_{W_0^{1,2}(\Omega)},$$

which shows that (3.26) holds in this case. Thus, we prove (3.26) in all cases.

Since $\psi_{r,k} \to \psi$ weakly in $L^2(\Omega)$ as $k \to \infty$ and then $\tau \to 0$. We have that $\|\psi_{r,k}\|_{L^2(\Omega)} \leq C_\tau$ for some constant $C_\tau > 0$. Thus it follows from (3.26) that

$$I_{5k} \to 0 \quad \text{as } k \to \infty. \quad (3.32)$$

Next, we claim that

$$f_y(x, \bar{y}_r, u_k)z \to f_y(x, \bar{y}_r, \bar{u})z \quad \text{strongly in } L^2(\Omega) \quad \text{as } k \to \infty. \quad (3.33)$$

Since $u_k \to \bar{u}$ in U_{ad} and f_y is continuous on $\Omega \times \mathbb{R} \times U$, it follows that

$$f_y(x, \bar{y}_r(x), u_k(x)) - f_y(x, \bar{y}_r(x), \bar{u}(x)) \to 0 \quad \text{a.e. in } \Omega \quad \text{as } k \to \infty. \quad (3.34)$$
On the other hand, by (2.4) and by Sobolev’s Imbedding Theorem, we have that
\[|f_y(x, \tilde{y}_\tau, u^k) - f_y(x, \tilde{y}_\tau, \tilde{u})|^n \leq 2^n(1 + |\tilde{y}_\tau|^{r-1})^n \in L^1(\Omega). \]
(3.35)
as \(k \to \infty \). By (3.34) and (3.35) and Lebesgue’s Dominated Convergence Theorem, we get that
\[f_y(x, \tilde{y}_\tau, u^k) - f_y(x, \tilde{y}_\tau, \tilde{u}) \to 0 \text{ strongly in } L^n(\Omega) \text{ as } k \to \infty. \]
(3.36)
Using Hölder’s inequality and Sobolev’s Imbedding Theorem again, we deduce that
\[\int_\Omega |f_y(x, \tilde{y}_\tau, u^k) - f_y(x, \tilde{y}_\tau, \tilde{u})|^2 z^2 dx \]
\[\leq C \|f_y(x, \tilde{y}_\tau, u^k) - f_y(x, \tilde{y}_\tau, \tilde{u})\|_{L^n(\Omega)}^2 \|z\|^2_{W^{1,2}_0(\Omega)}. \]
(3.37)
Now (3.33) follows immediately from (3.36) and (3.37). Since \(\psi_{\tau,k} \to \psi \) weakly in \(L^2(\Omega) \) as \(k \to \infty \) and then \(\tau \to 0 \). We have that \(\|\psi_{\tau,k}\|_{L^2(\Omega)} \leq C_\tau \) for some constant \(C_\tau > 0 \). Thus it follows from (3.33) that
\[I_{6k} \to 0 \text{ as } k \to \infty. \]
(3.38)
On the other hand, similarly, by (3.8) and using the same arguments as above, we can get that
\[\int_\Omega \psi f_y(x, \tilde{y}_\tau, \tilde{u}) z dx \to \int_\Omega \psi f_y(x, \tilde{y}, \tilde{u}) z dx \quad \forall z \in W^{1,2}_0(\Omega) \]
(3.39)
as \(\tau \to 0 \). It is clear that (3.22) can be deduced from (3.23), (3.32), (3.38) and (3.39).

Step 2 By (2.4) and Lemma 3.2, we have that
\[\left| \int_\Omega \psi_{\tau,k} f_y(x, y_{\tau,k}, u^k)(z_{\tau,k} - z) dx \right| \leq C \|z_{\tau,k} - z\|_{L^2(\Omega)} \to 0 \]
as \(k \to \infty \) and then \(\tau \to \infty \). Combing this with (3.22), we see that (3.21) holds and thus we complete the proof of Lemma 3.6. \(\square \)

Lemma 3.7 Suppose that (S) holds. Let \(u^k, \tilde{u} \in U_{ad} \) and \(v^k, \tilde{v} \in K(k > 0) \) be such that \(u^k \to \tilde{u} \) in \(U_{ad} \) and \(v^k \to \tilde{v} \) strongly in \(L^2(\Omega) \) as \(k \to \infty \).
Suppose that $\psi_{\tau,k}$ is bounded in $L^2(\Omega)$ for all $k > 0$ and $\tau \in (0,1)$. Then for any $\tau \in (0,1)$ and $M > 0$, there exist a generalized subsequence of k, denoted in the same way, such that

$$
\int_{\Omega} \psi_{\tau,k} [f(x, y_{\tau,k}, u_k) - f(x, y_{\tau,k}, \tilde{u})] \, dx \to 0 \quad (3.40)
$$

uniformly in $z \in W^{1,2}_0(\Omega)$ with $\|z\|_{W^{1,2}_0(\Omega)} \leq M$ as $k \to \infty$, and

$$
\int_{\Omega} \psi_{\tau,k} [f(x, y_{\tau,k}, u_k) - f(x, y_{\tau,k}, \tilde{u})] \, dx \to 0 \quad (3.41)
$$

as $k \to \infty$, where $y_{\tau,k}$ is the solution of (3.1) corresponding to v_k.

Proof. We fix $\tau \in (0,1)$. Let $\Omega_k = \{x \in \Omega : u_k(x) \neq \tilde{u}(x)\}$. It is clear that

$$
|\Omega_k| \to 0 \quad \text{as} \quad k \to \infty. \quad (3.42)
$$

Since $\psi_{\tau,k}$ is bounded in $L^2(\Omega)$, there exists a positive constant $C_\tau > 0$ in dependent of k, such that $\|\psi_{\tau,k}\|_{L^2(\Omega)} \leq C_\tau$. Let $M > 0$ be fixed and $z \in \{z \in W^{1,2}_0(\Omega) : \|z\|_{W^{1,2}_0(\Omega)} \leq M\}$. By H"older’s inequality, we have that

$$
\left| \int_{\Omega} \psi_{\tau,k} [f(y, x, y_{\tau,k}, u_k) - f(y, x, y_{\tau,k}, \tilde{u})] \, z \, dx \right|
\leq \left[\int_{\Omega} \psi_{\tau,k}^2 \, dx \right]^{1/2} \cdot \left[\int_{\Omega} |z|^{2n/(n-2)} \, dx \right]^{(n-2)/2n} \cdot \left[\int_{\Omega} |f(y, x, y_{\tau,k}, u_k) - f(y, x, y_{\tau,k}, \tilde{u})|^{n} \, dx \right]^{1/n}
\leq C_\tau M \|f(y, x, y_{\tau,k}, u_k) - f(y, x, y_{\tau,k}, \tilde{u})\|_{L^2(\Omega)} \quad \text{as} \quad k \to \infty. \quad (3.43)
$$

We claim that on a generalized subsequence of k, denoted in the same way, such that

$$
\|f(y, x, y_{\tau,k}, u_k) - f(y, x, y_{\tau}, u_k)\|_{L^2(\Omega)} \to 0 \quad \text{as} \quad k \to \infty. \quad (3.44)
$$

Case 1: $1 < r_1 \leq 2$.

Since $r_1 \leq n/(n-2)$, we have that $(r_1 - 1)n \leq 2n/(n-2)$. Thus, by Sobolev’s Imbedding Theorem and by (2.5), (3.4), we have that

$$
\int_{\Omega} |f_g(x, y_{\tau,k}, u_k) - f_g(x, y_{\tau}, u_k)|^{(r_1-1)n} \, dx \to 0
$$
as \(k \to \infty \). Therefore (3.44) holds in this case.

Case 2: \(r_1 = 1 \). This case was proved in the proof of Lemma 3.6 (see (3.30)).

In this case, we must have that \(n = 3 \) and \(3 \geq r_1 > 2 \). By Sobolev’s Imbedding Theorem, we infer that \(\| y_{r,k} \|^{3(r_1-2)} \) is bounded in \(L^2(\Omega) \) Hence by (2.5) and by Hölder’s inequality, we obtain that

\[
\int_{\Omega} |f_y(x, y_{r,k}, u_k) - f(x, \tilde{y}_r, u_k)|^3 \, dx \\
\leq C \int_{\Omega} |y_{r,k} - \tilde{y}_r|^3 \left[1 + |y_{r,k}|^{3(r_1-2)} + |\tilde{y}_r|^{3(r_1-2)} \right]^{1/3} \, dx \\
\leq C \| y_{r,k} - \tilde{y}_r \|_{L^6(\Omega)}^3 \| 1 + |y_{r,k}|^{3(r_1-2)} + |\tilde{y}_r|^{3(r_1-2)} \|_{L^2(\Omega)}
\]

as \(k \to \infty \). So by (3.4), we have that (3.44) holds in this case. Thus, we prove (3.44) in all cases.

Similarly, we can deduce that on a generalized subsequence of \(k \), denoted in the same way, such that

\[
\| f_y(x, \tilde{y}_{r,k}, \tilde{u}_k) - f_y(x, \tilde{y}_r, \tilde{u}) \|_{L^\infty(\Omega)} \to 0 \quad \text{as} \quad k \to \infty. \quad (3.45)
\]

Immediately, (3.40) can be deduced from (3.43)-(3.45) and (3.36).

Finally, using the same arguments in the proof of Lemma 3.4, we can prove that (3.41) holds because \(\psi_{r,k} \) is bounded in \(L^2(\Omega) \). Thus the proof of Lemma 3.7 is completed. \(\square \)

4. The proof of the main result

In this section, we will begin to prove Theorem 2.1.

Proof of Theorem 2.1. For any \(\tau \in (0, 1) \) fixed and \((u, v) \in U_{ad} \times K\), let

\[
J_{\tau}(u, v) = \int_{\Omega} f^0(x, y_{\tau}, u) \, dx
\]

and

\[
\bar{J}_{\tau} = \int_{\Omega} f^0(x, \bar{y}_{\tau}, \bar{u}) \, dx = J_{\tau}(\bar{u}, \bar{v}),
\]

where \(\bar{y}_{\tau} \) is the solution of (3.1) corresponding to \(\bar{v} \) and \((\bar{u}, \bar{v}) \) satisfies (3.2).

For each \(0 < \tau, \varepsilon < 1 \), we define a penalty functional on \(U_{ad} \times K \) by

\[
J_{\tau,\varepsilon}(u, v) = \left\{ \left[(J_{\tau}(u, v) - \bar{J}_{\tau} + \varepsilon)^+ \right]^2 + \int_{\Omega} \| \nu - f(x, y_{\tau}, u) \|^2 \, dx + d_{W}(F(y_{\tau})) \right\}^{1/2}, \quad (4.1)
\]

14
where \(d_W(\cdot) \) denotes the distance of \(\cdot \) to \(W \) in \(X \). By virtue of (4.1), Lemmas 3.1 and 3.2, we have that

1. \(J_{\tau,\varepsilon}(\cdot,\cdot) \) is continuous on \(U_{ad} \times K \);
2. \(J_{\tau,\varepsilon}(u,v) > 0 \) for all \((u,v) \in U_{ad} \times K \);
3. \(J_{\tau,\varepsilon}(\bar{u},\bar{v}) = \varepsilon \leq \inf_{(u,v)\in U_{ad} \times K} J_{\tau,\varepsilon}(u,v) + \varepsilon \).

Thanks to Ekeland’s variational principle (see Chapter 4 of [1]), we conclude that there exists \((\bar{u}_{\tau,\varepsilon}, \bar{v}_{\tau,\varepsilon}) \in U_{ad} \times K \) such that

\[
J_{\tau,\varepsilon}(\bar{u}_{\tau,\varepsilon}, \bar{v}_{\tau,\varepsilon}) \leq J_{\tau,\varepsilon}(u,v),
\]

and

\[
d^2(\bar{u}_{\tau,\varepsilon}, \bar{v}_{\tau,\varepsilon}) + \|\bar{v}_{\tau,\varepsilon} - \bar{v}\|_{L^2(\Omega)}^2 \leq \varepsilon
\]

and

\[
J_{\tau,\varepsilon}(\bar{u}_{\tau,\varepsilon}, \bar{v}_{\tau,\varepsilon}) \leq J_{\tau,\varepsilon}(u,v) + J_{\tau,\varepsilon}(u_{\delta}, \bar{v}_{\tau,\varepsilon}) \leq J_{\tau,\varepsilon}(u,v) + \sqrt{\varepsilon} \left[d^2(u_{\delta}, u) + \|v - \bar{v}\|_{L^2(\Omega)}^2 \right]^{1/2}
\]

for all \((u,v) \in U_{ad} \times K \).

Let \((u,v) \in U_{ad} \times K \) be arbitrary but fixed, for each \(0 < \delta < 1 \), by referring to the proofs of Theorem 2.2 of [1, Chapter 5], we deduce there exist subsets \(E^\delta \subset \Omega \) with \(|E^\delta| = \delta |\Omega| \), we set

\[
(u^\delta_{\tau,\varepsilon}(x), v^\delta_{\tau,\varepsilon}(x)) = \begin{cases} (u(x), v(x)) & \text{on } E^\delta, \\ (\bar{u}_{\tau,\varepsilon}(x), \bar{v}_{\tau,\varepsilon}(x)) & \text{on } \Omega \setminus E^\delta, \end{cases}
\]

and let \(y^\delta_{\tau,\varepsilon}, \bar{y}_{\tau,\varepsilon} \) be the solution of (3.1) corresponding to \(v^\delta_{\tau,\varepsilon}, \bar{v}_{\tau,\varepsilon} \), respectively. Denoting

\[
n^\delta_{\tau,\varepsilon}(\cdot) = \nabla \bar{y}_{\tau,\varepsilon}(\cdot) + t(\nabla y^\delta_{\tau,\varepsilon}(\cdot) - \nabla \bar{y}_{\tau,\varepsilon}(\cdot)), \quad t \in [0,1],
\]

\[
A^\delta_{\tau,\varepsilon} = \int_0^1 \left(\sqrt{\tau^2 + |n^\delta_{\tau,\varepsilon}|^2} \right)^{p-2} \left(I + (p-2) \frac{n^\delta_{\tau,\varepsilon} (n^\delta_{\tau,\varepsilon})^T}{\tau^2 + |n^\delta_{\tau,\varepsilon}|^2} \right) dt,
\]

and

\[
Y^\delta_{\tau,\varepsilon} = \frac{y^\delta_{\tau,\varepsilon} - \bar{y}_{\tau,\varepsilon}}{\delta},
\]

then we have that

\[
\begin{cases}
-\text{div}(A^\delta_{\tau,\varepsilon} \nabla Y^\delta_{\tau,\varepsilon}) = v - \bar{v}_{\tau,\varepsilon} & \text{in } \Omega, \\
Y^\delta_{\tau,\varepsilon} = 0 & \text{on } \Gamma.
\end{cases}
\]

(4.5)
On the other hand, by Lemma 3.2,
\[\|y_{\tau,\epsilon}\|_{C^{1,\alpha}(\tilde{\Omega})}, \|\bar{y}_{\tau,\epsilon}\|_{C^{1,\alpha}(\tilde{\Omega})} \leq C\] (4.6)
for some \(C > 0\) independent of \(\delta \in (0, 1)\). Consequently,
\[\|y_{\tau,\epsilon}\|_{C^{\alpha}(\tilde{\Omega})} \leq C \quad \forall t \in [0, 1].\]
Therefore, for some \(\beta > 0\)
\[\|A_{\tau,\epsilon}\|_{C^{\beta}(\tilde{\Omega};\mathbb{R}^{n \times n})} \leq C.\] (4.7)
Then it follows from (4.5) that
\[\|Y_{\tau,\epsilon}\|_{W^{1,2}_0(\Omega)} \leq C_{\tau,\epsilon}\]
for some \(C_{\tau,\epsilon} > 0\), independent of \(\delta\). Thus (as \(\delta \to 0\)),
\[y_{\tau,\epsilon}^\delta = \bar{y}_{\tau,\epsilon} + \delta Y_{\tau,\epsilon}^\delta \to \bar{y}_{\tau,\epsilon}\quad \text{strongly in } W^{1,2}_0(\Omega).\] (4.8)
Combing (4.6) with (4.8), we get that
\[y_{\tau,\epsilon}^\delta \to \bar{y}_{\tau,\epsilon}\quad \text{uniformly in } C^1(\tilde{\Omega}) \quad \text{as } \delta \to 0.\] (4.9)
Therefore, (4.7) implies that (at least in the sense of a subsequence)
\[A_{\tau,\epsilon}^\delta \to A_{\tau,\epsilon} \equiv \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\epsilon}|^2}\right)^{p-2} \left(I + (p-2)\frac{\nabla \bar{y}_{\tau,\epsilon}(\nabla \bar{y}_{\tau,\epsilon})^T}{\tau^2 + |\nabla \bar{y}_{\tau,\epsilon}|^2}\right)\]
normally in \(C(\tilde{\Omega};\mathbb{R}^{n \times n})\) as \(\delta \to 0\). Consequently,
\[Y_{\tau,\epsilon}^\delta \to Y_{\tau,\epsilon}\quad \text{strongly in } W^{1,2}_0(\Omega)\]
with \(Y_{\tau,\epsilon}\) being the solution of the following equation
\[
\begin{cases}
-\text{div}(A_{\tau,\epsilon} \nabla Y_{\tau,\epsilon}) = v - \bar{v}_{\tau,\epsilon} & \text{in } \Omega, \\
Y_{\tau,\epsilon} = 0 & \text{on } \Gamma.
\end{cases}
\] (4.10)
Then by (4.9), (S1) and (S3), we have that as \(\delta \to 0\),
\[J_{\tau}(u_{\tau,\epsilon}^\delta, v_{\tau,\epsilon}^\delta) \to J_{\tau}(\bar{u}_{\tau,\epsilon}, \bar{v}_{\tau,\epsilon}),\] (4.11)
\begin{align*}
\frac{1}{\delta} \left\{ \left(J_\tau (u_{\tau, \varepsilon}^\delta, v_{\tau, \varepsilon}^\delta) - \bar{J}_\tau + \varepsilon \right)^+ \right\}^2 - \left\{ \left(J_\tau (\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon}) - \bar{J}_\tau + \varepsilon \right)^+ \right\}^2 \\
\to 2 \left[J_\tau (\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon}) - \bar{J}_\tau + \varepsilon \right]^+ \left\{ \int_\Omega f^0 (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} \, dx \right\} \\
+ \int_\Omega \left[f^0 (x, \bar{y}_{\tau, \varepsilon}, u) - f^0 (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \right] \, dx.
\end{align*}

(4.12)

\begin{align*}
\frac{1}{\delta} \left\{ \int_\Omega \left[v_{\tau, \varepsilon}^\delta - f (x, y_{\tau, \varepsilon}^\delta, u_{\tau, \varepsilon}^\delta) \right]^2 \, dx \right\} - \int_\Omega \left[\bar{v}_{\tau, \varepsilon} - f (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \right]^2 \, dx \\
\to 2 \int_\Omega \left[\bar{v}_{\tau, \varepsilon} - f (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \right] \left[v - \bar{v}_{\tau, \varepsilon} - f_y (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} \right. \\
- f (x, \bar{y}_{\tau, \varepsilon}, u) + f (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \] \, dx.
\end{align*}

(4.13)

By (S2), we imply that
\begin{equation}
\text{d}_W (F (y_{\tau, \varepsilon}^\delta)) \to \text{d}_W (F (\bar{y}_{\tau, \varepsilon})) \quad \text{as} \quad \delta \to 0.
\end{equation}

(4.14)

Using the same arguments in [Li, Chapter 5], we obtain that
\begin{equation}
\frac{1}{\delta} \left[\text{d}_W^2 (F (y_{\tau, \varepsilon}^\delta)) - \text{d}_W^2 (F (\bar{y}_{\tau, \varepsilon})) \right] \to 2 \text{d}_W (F (\bar{y}_{\tau, \varepsilon})) \langle \xi_{\tau, \varepsilon}, F' (\bar{y}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} \rangle x^*, x,
\end{equation}

(4.15)

where \(\xi_{\tau, \varepsilon} \in \partial \text{d}_W (F (\bar{y}_{\tau, \varepsilon})) \), and
\begin{equation}
\| \xi_{\tau, \varepsilon} \|_{x^*} = \begin{cases} 1 & \text{if } F (\bar{y}_{\tau, \varepsilon}) \notin W, \\
0 & \text{if } F (\bar{y}_{\tau, \varepsilon}) \in W.
\end{cases}
\end{equation}

By (4.4), we have that
\begin{equation}
- \sqrt{\varepsilon} \left(\| v - \bar{v}_{\tau, \varepsilon} \|_{L^2 (\Omega)}^2 + |\Omega| \right)^{1/2} \leq \frac{J_{\tau, \varepsilon}^2 (u_{\tau, \varepsilon}^\delta, v_{\tau, \varepsilon}^\delta) - J_{\tau, \varepsilon}^2 (\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon})}{\delta \left[J_{\tau, \varepsilon} (u_{\tau, \varepsilon}^\delta, v_{\tau, \varepsilon}^\delta) + J_{\tau, \varepsilon} (\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon}) \right]}
\end{equation}

(4.16)

By taking the limit for \(\delta \to 0 \) in (4.16), applying (4.11)-(4.15), we obtain that
\begin{equation}
- \sqrt{\varepsilon} \left(\| v - \bar{v}_{\tau, \varepsilon} \|_{L^2 (\Omega)}^2 + |\Omega| \right)^{1/2} \leq \lambda_{\tau, \varepsilon} z_{\tau, \varepsilon} + \langle \varphi_{\tau, \varepsilon}, F' (\bar{y}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} \rangle x^*, x \\
+ \int_\Omega \psi_{\tau, \varepsilon} \left[(v - \bar{v}_{\tau, \varepsilon} - f_y (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} \\
- f (x, \bar{y}_{\tau, \varepsilon}, u) + f (x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \] \, dx
\end{equation}

(4.17)
for all \((u, v) \in \mathcal{U}_\text{ad} \times \mathcal{K}\), where
\[
\lambda_{\tau, \varepsilon} = \left[J_{\tau}(\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon}) - \bar{J}_{\tau} + \varepsilon \right]/J_{\tau, \varepsilon}(\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon}),
\]
\[
z^0_{\tau, \varepsilon} = \int_{\Omega} \left[f^0_y(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} + f^0(x, \bar{y}_{\tau, \varepsilon}, u) - f^0(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \right] dx,
\]
and
\[
\varphi_{\tau, \varepsilon} = \frac{d\nu(F(\bar{y}_{\tau, \varepsilon})))\xi_{\tau, \varepsilon}/J_{\tau, \varepsilon}(\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon}),
\]
and
\[
\psi_{\tau, \varepsilon} = \frac{[\bar{v}_{\tau, \varepsilon} - f(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon})]}{J_{\tau, \varepsilon}(\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon})}.
\]

One can easily check that
\[
\lambda^2_{\tau, \varepsilon} + \|\varphi_{\tau, \varepsilon}\|^2_{X^*} + \|\psi_{\tau, \varepsilon}\|^2_{L^2(\Omega)} = 1 \quad \text{for any } 0 < \tau, \varepsilon < 1. \tag{4.18}
\]

By taking \(u = \bar{u}_{\tau, \varepsilon}\) in (4.17), we obtain that
\[
-\sqrt{\varepsilon} \left(\|v - \bar{v}_{\tau, \varepsilon}\|^2_{L^2(\Omega)} + |\Omega|^2 \right)^{1/2} \leq \lambda_{\tau, \varepsilon} \int_{\Omega} f^0_y(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) Y_{\tau, \varepsilon} dx
\]
\[
+ \int_{\Omega} \psi_{\tau, \varepsilon} [(v - \bar{v}_{\tau, \varepsilon} - f_y(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) Y_{\tau, \varepsilon})] dx
\]
\[
+ \int_{\Omega} F'(\bar{y}_{\tau, \varepsilon})^* \varphi_{\tau, \varepsilon} Y_{\tau, \varepsilon} dx \tag{4.19}
\]
for all \(v \in \mathcal{K}\).

By taking \(v = \bar{v}_{\tau, \varepsilon}\) in (4.17), we get that
\[
-\sqrt{\varepsilon} |\Omega| \leq \lambda_{\tau, \varepsilon} \int_{\Omega} \left[f^0(x, \bar{y}_{\tau, \varepsilon}, u) - f^0(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon}) \right] dx
\]
\[
- \int_{\Omega} \psi_{\tau, \varepsilon} [f(x, \bar{y}_{\tau, \varepsilon}, u) - f(x, \bar{y}_{\tau, \varepsilon}, \bar{u}_{\tau, \varepsilon})] dx \tag{4.20}
\]
for all \(u \in \mathcal{U}_\text{ad}\).

In fact, (4.19) and (4.20) can be regarded as necessary conditions for \((\bar{u}_{\tau, \varepsilon}, \bar{v}_{\tau, \varepsilon})\). Next, we shall pass to the limits for \(\varepsilon \to 0\) and then \(\tau \to 0\) to derive necessary conditions for \((\bar{y}, \bar{u})\).

By (4.18), there exist generalized subsequences of \(\varepsilon\) and \(\tau\), respectively, denoted in the same way, such that for \(\varepsilon \to 0\) and then \(\tau \to 0\),
\[
\lambda_{\tau, \varepsilon} \to \lambda_0, \tag{4.21}
\]

18
\[\varphi_{\tau,\varepsilon} \rightarrow \varphi_0 \quad \text{weakly star in } X^*, \quad (4.22) \]

and

\[\psi_{\tau,\varepsilon} \rightarrow \bar{\psi} \quad \text{weakly in } L^2(\Omega). \quad (4.23) \]

Furthermore, it follows from (4.3) that

\[\bar{u}_{\tau,\varepsilon} \rightarrow \bar{u} \quad \text{in } \mathcal{U}_{ad}, \quad \bar{v}_{\tau,\varepsilon} \rightarrow \bar{v} \quad \text{strongly in } L^2(\Omega) \quad \text{as } \varepsilon \to 0. \quad (4.24) \]

Thus, combining (4.24) with (3.1), (3.2) and (2.1), we can deduce that

\[\bar{y}_{\tau,\varepsilon} \rightarrow \bar{y} \quad \text{strongly in } W^{1,2}_0(\Omega), \quad \text{uniformly in } C^1(\bar{\Omega}) \quad (4.25) \]

by letting \(\varepsilon \to 0 \) and then \(\tau \to 0. \)

In addition, for any \(0 < \tau, \varepsilon < 1 \), we have that

\[
\begin{align*}
\left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-2} & \cdot |\nabla Y_{\tau,\varepsilon}|^2 \\
+ (p-2) \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-4} & \cdot (\nabla Y_{\tau,\varepsilon})^T \nabla \bar{y}_{\tau,\varepsilon} (\nabla \bar{y}_{\tau,\varepsilon})^T \nabla Y_{\tau,\varepsilon} \\
\end{align*}
\]

\[
= \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-2} |\nabla Y_{\tau,\varepsilon}|^2 \\
+ (p-2) \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-1} \cdot \frac{(\nabla Y_{\tau,\varepsilon})^T \nabla \bar{y}_{\tau,\varepsilon} (\nabla \bar{y}_{\tau,\varepsilon})^T \nabla Y_{\tau,\varepsilon}}{\left(\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2 \right)^{\frac{1}{2}}} \\
= \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-2} |\nabla Y_{\tau,\varepsilon}|^2 + h_{\tau,\varepsilon} \cdot I_{\tau,\varepsilon},
\]

where

\[h_{\tau,\varepsilon} = (p-2) \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-1}, \]

and

\[I_{\tau,\varepsilon} = \frac{(\nabla Y_{\tau,\varepsilon})^T \nabla \bar{y}_{\tau,\varepsilon} (\nabla \bar{y}_{\tau,\varepsilon})^T \nabla Y_{\tau,\varepsilon}}{\left(\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2 \right)^{\frac{1}{2}}}. \]

Next, we deal with the term of \(I_{\tau,\varepsilon} \). In fact, in \(\Omega \), it holds that

\[I_{\tau,\varepsilon} \leq |I_{\tau,\varepsilon}| \leq \frac{|\nabla Y_{\tau,\varepsilon}|^2}{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \cdot \frac{|\nabla \bar{y}_{\tau,\varepsilon}|^2}{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \leq \frac{|\nabla Y_{\tau,\varepsilon}|^2}{\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2}}. \]

Moreover, \(1 < p < 2 \) implies that \(h_{\tau,\varepsilon} < 0 \). Thus we have that

\[
\begin{align*}
\left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-2} & \cdot |\nabla Y_{\tau,\varepsilon}|^2 \\
+ (p-2) \left(\sqrt{\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2} \right)^{p-4} & \cdot (\nabla Y_{\tau,\varepsilon})^T \nabla \bar{y}_{\tau,\varepsilon} (\nabla \bar{y}_{\tau,\varepsilon})^T \nabla Y_{\tau,\varepsilon} \\
\geq (p-1) \left(\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2 \right)^{\frac{p-2}{2}} & \cdot |\nabla Y_{\tau,\varepsilon}|^2. \n\end{align*}
\]
It follows from this and (4.10), we get that
\[(p - 1) \int_{\Omega} (\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2)^{\frac{p-2}{2}} |\nabla Y_{\tau,\varepsilon}|^2 \, dx \]
\[\leq \int_{\Omega} |v - \bar{v}_{\tau,\varepsilon}| \cdot |Y_{\tau,\varepsilon}| \, dx \leq C \int_{\Omega} |Y_{\tau,\varepsilon}| \, dx. \tag{4.26}\]

Since $1 < p < 2$, by (4.26) and Lemma 3.2, we get that
\[(p - 1) \int_{\Omega} |\nabla Y_{\tau,\varepsilon}|^2 \, dx \]
\[\leq (p - 1) \|\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2\|_{L^\infty(\Omega)}^{\frac{2-p}{2}} \int_{\Omega} (\tau^2 + |\nabla \bar{y}_{\tau,\varepsilon}|^2)^{\frac{p-2}{2}} |\nabla Y_{\tau,\varepsilon}|^2 \, dx \]
\[\leq C \int_{\Omega} |Y_{\tau,\varepsilon}| \, dx. \]

Consequently, we have that
\[\|Y_{\tau,\varepsilon}\|_{W^{1,2}_0(\Omega)} \leq C \tag{4.27}\]
for some $C > 0$ independent of ε. Moreover, it follows from (4.25) and the definitions of $A_{\tau,\varepsilon}$, A that
\[A_{\tau,\varepsilon} \to A \text{ uniformly in } C(\bar{\Omega}; \mathbb{R}^{n \times n}) \tag{4.28}\]
as $\varepsilon \to 0$ and then $\tau \to 0$. Thus, by (4.24), (4.25), (4.27) and (4.28), we can deduce that
\[Y_{\tau,\varepsilon} \to Y \text{ weakly in } W^{1,2}_0(\Omega), \text{ strongly in } L^2(\Omega) \tag{4.29}\]
as $\varepsilon \to 0$ and then $\tau \to 0$, where Y satisfies that
\[\begin{cases} -\text{div}(A\nabla Y) = v - \bar{v} & \text{in } \Omega, \\ Y = 0 & \text{on } \Gamma \end{cases}\]
with
\[A = |\nabla \bar{y}|^{p-2}\left(I + (p - 2) \frac{\nabla \bar{y}(\nabla \bar{y})^T}{|\nabla \bar{y}|^2}\right).\]

By (4.21)-(4.25), (4.29) and by applying Lemmas 3.5 and 3.6, we may pass to the limits for $\varepsilon \to 0$ and then $\tau \to 0$ in (4.19) to obtain that
\[0 = \lambda_0 \int_{\Omega} f_y^0(x, \bar{y}, \bar{u})Y \, dx + \int_{\Omega} \bar{\psi} [v - \bar{v} - f_y(x, \bar{y}, \bar{u})Y] \, dx \]
\[+ \int_{\Omega} F'(\bar{y})^* \varphi_0 Y \, dx \tag{4.30}\]
for all \(v \in K \). This implies that (2.9) holds. Similarly, by (4.21)-(4.25) and by Lemmas 3.3 and 3.4, we pass to the limits for \(\varepsilon \to 0 \) and then \(\tau \to 0 \) in (4.20) to derive that
\[
\int_{\Omega} \lambda_0 \left[f^0(x, \bar{y}, u) - f^0(x, \bar{y}, \bar{u}) \right] dx - \int_{\Omega} \bar{\psi} \left[f(x, \bar{y}, u) - f(x, \bar{y}, \bar{u}) \right] dx \geq 0
\]
for all \(u \in \mathcal{U}_{ad} \). This implies that
\[
\int_{\Omega} \left[H_{\lambda_0}(x, \bar{y}, u, \bar{\psi}) - H_{\lambda_0}(x, \bar{y}, \bar{u}, \bar{\psi}) \right] dx \geq 0 \quad \text{for all } u \in \mathcal{U}_{ad}. \tag{4.31}
\]
Then using the same arguments in [5], we get (2.12) from (4.31).

Since \(\varphi_{\tau, \varepsilon} \in \partial d_{W}(F(\bar{y}_{\tau, \varepsilon})) \), we must have that
\[
\langle \varphi_{\tau, \varepsilon}, \phi - F(\bar{y}_{\tau, \varepsilon}) \rangle_{X^*, X} \leq 0 \quad \text{for any } \phi \in W. \tag{4.32}
\]
By (4.25) and (S2), \(F(\bar{y}_{\tau, \varepsilon}) \to F(\bar{y}) \) strongly in \(X \) as \(\varepsilon \to 0 \) and then \(\tau \to 0 \). This together with (4.32) gives that
\[
\langle \varphi_{\tau, \varepsilon}, \phi - F(\bar{y}) \rangle_{X^*, X} \leq \langle \varphi_{\tau, \varepsilon}, F(\bar{y}_{\tau, \varepsilon}) - F(\bar{y}) \rangle_{X^*, X} \to 0 \quad \text{as } \varepsilon \to 0 \text{ and then } \tau \to 0. \tag{4.33}
\]

Now we turn to prove (2.10). By (4.25), we have that
\[
\lim_{\tau \to 0} \lim_{\varepsilon \to 0} \| \bar{y}_{\tau, \varepsilon} - \bar{y} \|_{C^1(\Omega)} = 0.
\]
For any \(\gamma > 0 \), there exists \(\rho \in (0, 1) \), when \(0 < \tau < \rho \),
\[
\lim_{\varepsilon \to 0} \| \bar{y}_{\tau, \varepsilon} - \bar{y} \|_{C^1(\Omega)} \leq \gamma.
\]
Setting \(\lim_{\varepsilon \to 0} \| \bar{y}_{\tau, \varepsilon} - \bar{y} \|_{C^1(\Omega)} = h_{\tau} \), similarly, for \(0 < \tau < \rho \), there exists an \(\varepsilon_{\tau} \in (0, 1) \), such that
\[
\| \bar{y}_{\tau, \varepsilon} - \bar{y} \|_{C^1(\Omega)} - h_{\tau} \leq \gamma.
\]
Thus,
\[
\| \bar{y}_{\tau, \varepsilon} - \bar{y} \|_{C^1(\Omega)} \leq 2\gamma.
\]
This implies that
\[
|\nabla \bar{y}_{\tau, \varepsilon}(x)| \leq 2\gamma \quad \forall x \in \{ \nabla \bar{y} = 0 \}, \quad \tau \in (0, \rho), \quad \varepsilon \in (0, \varepsilon_{\tau}).
\]
Since $1 < p < 2$, using (4.26) and (4.27), we have that
\[(p - 1)(\tau^2 + 4\gamma^2)^{\frac{p-2}{p}} \int_{\{\bar{y} = 0\}} |\nabla Y_{\tau,\epsilon}|^2 \, dx \leq C.\]
That is
\[\int_{\{\bar{y} = 0\}} |\nabla Y_{\tau,\epsilon}|^2 \, dx \leq \frac{C(\tau^2 + 4\gamma^2)^{\frac{2-p}{2}}}{p-1}.\]
Consequently,
\[\int_{\{\bar{y} = 0\}} |\nabla Y|^2 \, dx \leq \frac{C(2\gamma)^{2-p}}{p-1}.\]
This also implies that $Y = 0$ a.e. on $\{\nabla \bar{y} = 0\}$ and then it follows from (4.30) that $\bar{\psi} = 0$ a.e. on $\{\nabla \bar{y} = 0\}$. That is to say that (2.10) holds.

It remains to show that $(\lambda_0, \varphi_0, \bar{\psi}) \neq 0$. To this end, we suppose that $\lambda_0 = 0$. Then it follows from (4.21) that $\lambda_{\tau,\epsilon} \to 0$ as $\epsilon \to 0$ and then $\tau \to 0$.

By (4.17) and (4.32), we obtain that
\[-\eta_{\tau,\epsilon}(u, v) \leq \langle \varphi_{\tau,\epsilon}, F'(\bar{y})Y_{\tau,\epsilon} - \phi + F(\bar{y}) \rangle_{X^*, X} + \int_\Omega \bar{\psi}_{\tau,\epsilon} [v - \bar{v}_{\tau,\epsilon} - f_y(x, \bar{y}_{\tau,\epsilon}, \bar{u})Y_{\tau,\epsilon}]
- f(x, \bar{y}_{\tau,\epsilon}, u) + f(x, \bar{y}_{\tau,\epsilon}, \bar{u})] \, dx \quad (4.34)\]
for all $\phi \in W$ and $(u, v) \in U_{ad} \times K$, where
\[\eta_{\tau,\epsilon}(u, v) = \sqrt{\epsilon} \left(\|v - \bar{v}_{\tau,\epsilon}\|_{L^2(\Omega)}^2 + |\Omega|^2 \right)^{1/2} + \lambda_{\tau,\epsilon} z_{\tau,\epsilon}^0 + \int_\Omega \bar{\psi}_{\tau,\epsilon} [f_y(x, \bar{y}_{\tau,\epsilon}, \bar{u}) - f_y(x, \bar{y}_{\tau,\epsilon}, \bar{u}_{\tau,\epsilon})] \, dx
+ \int_\Omega \bar{\psi}_{\tau,\epsilon} [f(x, \bar{y}_{\tau,\epsilon}, \bar{u}_{\tau,\epsilon}) - f(x, \bar{y}_{\tau,\epsilon}, \bar{u})] \, dx
+ \langle \varphi_{\tau,\epsilon}, [F'(\bar{y}_{\tau,\epsilon}) - F'(\bar{y})]Y_{\tau,\epsilon} + F(\bar{y}_{\tau,\epsilon}) - F(\bar{y}) \rangle_{X^*, X}.\]
Note that $z_{\tau,\epsilon}^0$ depends on (u, v). By (4.29), Lemmas 3.3 and (3.5), we get that for $\epsilon, \tau > 0$ small enough, $|z_{\tau,\epsilon}^0| \leq C$, where C is independent of ϵ, τ and $(u, v) \in U_{ad} \times K$.

Since $\lambda_{\tau,\epsilon} \to 0$, we conclude that $\lambda_{\tau,\epsilon} z_{\tau,\epsilon}^0 \to 0$ uniformly in $U_{ad} \times K$. Then by Lemma 3.7, (4.18), (4.25) and the definition of $\eta_{\tau,\epsilon}$, we deduce that
\[\eta_{\tau,\epsilon}(u, v) \to 0 \quad \text{uniformly in } U_{ad} \times K. \quad (4.35)\]
By (4.25), there exists ε_1, $\tau_1 > 0$ such that
\[
\|\bar{y}_{\tau,\varepsilon} - \bar{y}\|_{W^{1,2}_0(\Omega)} \leq r_1 \tag{4.36}
\]
as $0 < \varepsilon < \varepsilon_1$, $0 < \tau < \tau_1$, where r_1 is given in (S4). Thus, by (2.7), for any $(q, w) \in B_{r_1, r_2}$ and for every $0 < \varepsilon < \varepsilon_1$, $0 < \tau < \tau_1$, there exists $Z_{\tau,\varepsilon} \in W^{1,2}_0(\Omega)$ with
\[
\|Z_{\tau,\varepsilon}\|_{W^{1,2}_0(\Omega)} \leq r_2, \tag{4.37}
\]
such that
\[
-\text{div}(A \nabla Z_{\tau,\varepsilon}) = f_y(x, \bar{y}_{\tau,\varepsilon}, \bar{u})Z_{\tau,\varepsilon} + f(x, \bar{y}_{\tau,\varepsilon}, u) - f(x, \bar{y}_{\tau,\varepsilon}, \bar{u}) + w \text{ in } \Omega, \tag{4.38}
\]
and
\[
F'(\bar{y})Z_{\tau,\varepsilon} = q, \tag{4.39}
\]
where A is given by (2.8).

Let $\tilde{v}_{\tau,\varepsilon} \equiv \tilde{v}_{\tau,\varepsilon} + f_y(x, \bar{y}_{\tau,\varepsilon}, \bar{u})Z_{\tau,\varepsilon} + f(x, \bar{y}_{\tau,\varepsilon}, u) - f(x, \bar{y}_{\tau,\varepsilon}, \bar{u}) + w$, and then by (S1), (4.36) and (4.37), we have that $\tilde{v}_{\tau,\varepsilon} \in K$. Now, we take $v = \tilde{v}_{\tau,\varepsilon}$ and recall $Y_{\tau,\varepsilon}$ satisfies
\[
-\text{div}(A_{\tau,\varepsilon} \nabla Y_{\tau,\varepsilon}) = v - \bar{v}_{\tau,\varepsilon} \text{ in } \Omega. \tag{4.40}
\]
Letting
\[
Y_{\tau,\varepsilon} - Z_{\tau,\varepsilon} = \gamma_{\tau,\varepsilon} \text{ in } \Omega,
\]
then by (4.38), (4.40) and (4.28), we have that
\[
\|\gamma_{\tau,\varepsilon}\|_{W^{1,2}_0(\Omega)} \to 0 \text{ as } \varepsilon \to 0 \text{ and then } \tau \to 0. \tag{4.41}
\]
In (4.34), we take $v = \tilde{v}_{\tau,\varepsilon}$ and have that
\[
-\eta_{\tau,\varepsilon}(u, \tilde{v}_{\tau,\varepsilon}) - \langle \varphi_{\tau,\varepsilon}, F'(\bar{y})\gamma_{\tau,\varepsilon} \rangle_{X^*, X} + \int_{\Omega} \bar{\psi}_{\tau,\varepsilon} f_y(x, \bar{y}_{\tau,\varepsilon}, \bar{u}) \gamma_{\tau,\varepsilon} dx \leq \langle \varphi_{\tau,\varepsilon}, q - \phi + F'(\bar{y}) \rangle_{X^*, X} + \int_{\Omega} \bar{\psi}_{\tau,\varepsilon} wd x \tag{4.42}
\]
for all $\phi \in W$ and $(q, w) \in B_{r_1, r_2}$. Define the left terms of (4.42) to be $\rho_{\tau,\varepsilon}$, that is
\[
\rho_{\tau,\varepsilon} = -\eta_{\tau,\varepsilon}(u, \tilde{v}_{\tau,\varepsilon}) - \langle \varphi_{\tau,\varepsilon}, F'(\bar{y})\gamma_{\tau,\varepsilon} \rangle_{X^*, X} + \int_{\Omega} \bar{\psi}_{\tau,\varepsilon} f_y(x, \bar{y}_{\tau,\varepsilon}, \bar{u}) \gamma_{\tau,\varepsilon} dx.
\]
then by (4.35) and (4.41), we deduce that

$$\rho_{\tau,\varepsilon} \to 0 \quad \text{as} \quad \varepsilon \to 0 \quad \text{and then} \quad \tau \to 0.$$ \hfill (4.43)

On the other hand, since \(\lambda_{\tau,\varepsilon} \to 0\), it follows from (4.18) that there exists \(\sigma > 0\) such that

$$1 \geq \|\varphi_{\tau,\varepsilon}\|_{X^*}^2 + \|\bar{\psi}_{\tau,\varepsilon}\|_{L^2(\Omega)}^2 \geq \sigma > 0$$ \hfill (4.44)

for all \(\varepsilon, \tau\) small enough. By (S4), \(B_{r_1, r_2} - W \times \{0\} + (F(\bar{y}), 0)\) has finite codimensionality in \(X \times L^\infty(\Omega)\). Thanks to Lemma 3.6 of Chapter 4 in [1], we conclude by (4.42)-(4.44), (4.22) and (4.23) that \((\varphi_0, \bar{\psi}) \neq 0\). This gives that

$$(\lambda_0, \varphi_0, \bar{\psi}) \neq 0.$$ \hfill (4.45)

Finally, in the case that \(F'(\bar{y})\) is injective, suppose that \((\lambda_0, \bar{\psi}) = 0\), then by (2.9), \(F'(\bar{y})\varphi_0 = 0\), which shows that \(\varphi_0 = 0\). This contradicts to (4.45). Therefore \((\lambda_0, \bar{\psi}) \neq 0\) in this case.

Thus we complete the proof the Theorem 2.1. \(\square\)
References

[1] Li X., Yong J., *Optimal Control Theory for Infinite Dimensional Systems*, Birkhäuser Boston, Cambridge, MA, 1995.

[2] An YL, Kim CG, Shi JP, Exact multiplicity of positive solutions for a p-Laplacian equation with positive convex nonlinearity, *J Differ. Equations* 2016; 260: 2091–2118.

[3] Lou H., Maximum principle of optimal control for degenerate quasilinear elliptic equations, *SIAM J. Control Optim.* 2003; 42(1): 1–23.

[4] Wang G., Wang L., Maximum principle of optimal control of non-well posed elliptic differential equations, *Nonlinear Anal.* 2003; 52: 41–67.

[5] Casas E., Yong J., Maximum principle for state-constrained optimal control problems governed by quasilinear equations, *Diff. Int. Eqs.* 1996; 130(1): 179–200.