Antiplasmodial activities of *Morinda lucida* (Benth) and *Alstonia boonei* (De wild) in mice infected with *Plasmodium berghei*

Olajide Joseph Afolabi* and Adekemi Eunice Abejide

Abstract

**Background:** This study focused on the antiplasmodial activities of two botanicals: *Morinda lucida* and *Alstonia boonei* used in malaria treatment. The in vivo activity of the plants against established *Plasmodium berghei* NK65 infection was evaluated in 75 experimental mice randomly distributed into 15 groups and treated with extracts of *M. lucida* and *A. boonei*, combined recipe of the two plants at graded doses of 400, 600, and 800 mg/kg and chloroquine at 10 mg/kg.

**Results:** The results revealed that the percentage parasitemia was higher in the infected untreated mice (18.40%) than the treated mice. Among the treated mice, the highest percentage parasitemia (6.0%) was obtained in mice treated with 800 mg/kg of *A. boonei* while the lowest percentage parasitemia (0.0%) was obtained in mice treated with 10 mg/kg of chloroquine. Chloroquine eliminated all the parasites (100% clearance) when compared to the percentage clearance by the plant extracts. For the plant extracts, antiplasmodial activity was highest with the combined recipe of *M. lucida* and *A. boonei* at 800 mg/kg (92%) and lowest at 800 mg/kg (45%) of *M. lucida*. Meanwhile, the optimal antiplasmodial activity (83%) of *M. lucida* was obtained at 400 mg/kg and that of *A. boonei* was obtained at 600 mg/kg (85%).

**Conclusions:** This study revealed that the two plant extracts under the study have antiplasmodial activities which are promising in reducing the morbidity and mortality of drug-resistant malaria in endemic communities.

**Keywords:** *Alstonia boonei*, *Morinda lucida*, Antiplasmodial activity, Parasitemia

Introduction

Malaria is an infectious disease with significant health challenges in Nigeria and other countries where the disease is endemic. Over the last 10 years, malaria prevalence has been on the increase, especially in third world countries. It was reported that over three billion people live in risk areas of the disease in 109 countries and territories around the world (Umar et al. 2012). The disease is predominant in subtropical and tropical regions such as the Americas, Asia, and Africa (Rowe 2006). Each year, there are approximately three hundred million people who suffer from the disease, the majority of whom are children below 5 years domiciled in sub-Saharan Africa (Snow et al. 2005). The disease is a major killer disease responsible for the death of millions of children, pregnant women, and adults (Satish and Ranjana 2013). About 80% of malaria mortality is concentrated in 13 countries in Africa, and over half of the percentage mortality was recorded in Nigeria, Congo, Ethiopia, Tanzania, and Kenya (World Health Organization 2008a; World Health Organization 2014). The disease transmission occurs all year round in the southern part of the country while in the north it is more seasonal (Adebayo and Krettli 2011).

Malaria is treated with chloroquine, quinine, derivatives of artemisinin, and other herbal antimalarials by suppressing the virulence of the parasites or kills them...
(Martey 2013). The well-known use of chloroquine (CQ) and antifolates (sulfadoxine-pyrimethamine) for malaria treatment is no longer effective in most endemic areas including Nigeria. The synthetic drugs are expensive with a lot of side effects, and parasites have also developed resistance to them as a result of a long-term usage abuse (Martey et al. 2013).

To overcome all these limitations on the drugs, combination therapy has currently been introduced and has shown to be the best practical solution in overcoming the resistant strains of the parasites (World Health Organization 2008b). However, clinical resistance to these drug combinations has been reported in Cambodia (Noedl et al. 2008). *P. falciparum* especially has been noted to develop resistance to the majority of the drugs currently used. Hence, there is an urgent need to develop alternative therapy and cheaper drugs such as herbal therapy for malaria treatment. In malaria-endemic countries of the world, natural and traditional products (plant and insect products) had been employed as arsenals to combat malaria (Gupta et al. 1993). This has necessitated many countries to change their treatment policies (Wellems 2002).

*Morinda lucida*, "Oruwo" (local name in Yoruba tribe), has been used as a traditional remedy for the treatment of symptomatic malaria by many people in South-West part of Nigeria. Different parts of *M. lucida* have been reported to possess medicinal properties. The leaf extract of the plant was reported to possess trypanocidal activities (Asuzu and Chineme 1990), antimalarial activities (Makinde and Obih 1985), and aortic vasorelaxant effect (Ettarh and Emeka 2004). *M. lucida* leaf extract has also been reported to have a strong oral hypoglycaemic property, and this property was attributed to increased peripheral utilization of glucose (Adeneye and Agbaje 2008). The plant contains tannins, methylanthraquinones, and heterosides. Studies have shown that *M. lucida* leaf extract appears to have schizontocidal and repository effects in mice infected with *Plasmodium berghei* (Akanmori et al. 1994).

*Alstonia boonei* (‘Ahun’ in the local name in Yoruba tribe) is among the medicinal plants that have been widely used in recipes to treat malaria (Idowu et al. 2010). It belongs to the family *Apocynaceae* which consists of about 50 species widely distributed in the continents of Africa, Asia, and America. The stem bark of this plant has been found to be effective in the treatment of several diseases such as fever, painful micturition, insomnia, chronic diarrhea, and rheumatic pains (Olajide et al. 2000; Odeku et al. 2008). Olajide et al. (2000) reported that the stem bark of *Alstonia boonei* has anti-inflammatory, antipyretic, and analgesic properties.

History has revealed that plants that are eco-friendly in nature have been considered as an important source of medicine against malaria. Botanicals and products derived from them have been used for disease treatment for centuries. Presently, it has been evaluated that 80% of the world population depends on herbal preparations to meet their health needs (Shri 2003).

The array of botanicals used in the treatment or prevention of malaria in Akure Southwest Nigeria is presented in Table 1. These medicinal plants are used in most cases, in combination with other two or more plants (such as mango, guava, or cashew leaves). The two most commonly prescribed medicinal plants (*M. lucida* and *A. boonei*) by the herbalists in the study area were used for this research. The advantages of these botanicals over the synthetic drugs have necessitated their inclusion in malaria parasites and vector control campaigns. However, additional research is required to maximize the full benefits of botanicals and respond to the health needs of people, especially in endemic countries like Nigeria (Idowu et al. 2010). Hence, this study is undertaken to examine the antimalarial activities of *M. lucida* and *A. boonei* plant extracts in experimentally infected mice as an animal model.

**Materials and methods**

Survey of botanicals used in malaria treatment in Akure Southwest Nigeria

The plant survey was carried out in Akure by visiting Odopetu herbal market, in Akure south L.G.A of Ondo State to find out the local names, part used, and methods of preparation of these plants.

Plant collection, identification, and extraction

Fresh leaves and barks of *M. lucida* and *A. boonei* were obtained, free of insecticides from Akure, Ondo State, Nigeria. The plants were authenticated by Dr. (Mrs.) B.O. Odiyi, a plant taxonomist. The leaves and barks were cleaned, air-dried at 28 ± 20 °C, and crushed into a coarse powder using pestle and mortar. Five hundred grams in powder form of the stem and bark of each plant sample was soaked in 3 L of 96% ethanol for 72 h. Also, a 500-g combination of both plant samples (comprising 250 g of the individual plant powdered samples) was dissolved in 3 L of 96% ethanol for 72 h. The preparations were stirred every 2 h, thereafter decanted and filtered using a cheesecloth. The liquid filtrate obtained was filtered and concentrated using a rotary evaporator. The crude ethanolic extract was further concentrated in a vacuum oven to further remove any traces of solvent. The extract was refrigerated at 4 °C prior to use (Afolabi and Abejide 2020).

Experimental design and evaluation of in vivo activities of the plant extracts against *P. berghei*

Seventy-five mice weighing between 18 and 20 g were purchased from the Institute of Advanced Medical
Research and Training (IAMRAT), College of Medicine, University of Ibadan. The animals were acclimatized for 2 weeks at 28 ± 2 °C with 12-h dark/light periodicity and fed with commercial chow (purchased from Cap Feeds Ibadan, Nigeria) and water ad libitum; 2.4 inoculation of mice with *P. berghei*. The *P. berghei* (NK65) used for the in vivo study was obtained from IAMRAT.

A Swiss albino mouse (donor mouse) was intraperitoneally administered with a standard inoculum of *P. berghei* on the 1st day. On the 5th day (when the parasite had stabilized in the donor mouse) with a rising parasitemia of 20–30%, the mouse was sacrificed and 0.1 ml of acid citrate dextrose (ACD) was drawn into the syringe before blood was withdrawn from the heart of the donor mouse by cardiac puncture. The blood was diluted with isotonic saline to make inoculum for infecting experimental mice. The experimental mice were inoculated with 0.2 ml of the diluted parasitized red blood cell (RBC) specimen (containing about 1 × 10⁷ parasitized cells). The curative activity (Rane’s test) of the extracts was determined in vivo according to Iyiola et al. (2011). The 75 experimental mice were divided randomly into fifteen groups of five mice each (Table 2). Subsequently, *P. berghei* was injected intraperitoneally into fifty-five mice on day 1. Seventy-two hours later, group 1–9 mice were administered through oral gavage with the extracts as described in Table 2, and groups 10 and 11 were administered with 0.2 ml of 10 mg/kg chloroquine and 5 ml/kg normal saline, respectively, according to the experimental design below once a day for five consecutive days. Parasitemia levels were monitored for each mouse until 7 days.

### Determination of parasitemia

The blood used for thin smear preparation was obtained from the mice via a tail cut. The smears were fixed with methanol for 5 min and stained with 10% Giemsa. The slides were observed under ×100 objective lens of the compound microscope.

Each slide was viewed at four different fields, and the infected and total number of RBCs for each field were recorded. The data obtained were used to calculate percentage parasitemia using the method described by Hilou et al. (2006). Percentage parasitemia and percentage curative were calculated using the formulae below.

**Table 1** Some plants used in malaria treatment in Akure Southwest Nigeria

| Botanical name | Local name (Yoruba) | Common name | Part used | Preparation |
|----------------|---------------------|-------------|-----------|-------------|
| Morinda lucida | Oruwo | Brimstone tree | Leave, bark | Decoction |
| Alstonia boonie | Ahun | Stool wood | Leave, bark | Decoction |
| Azadirachta indica | Dogoyaro | Neem | Leave, bark | Decoction |
| Entania chlorantia | Osopa | African yellow wood | Bark | Decoction |
| Hoppocratea africana | Apoju owiwi | African paddle pod | Bark, root | Decoction |
| Khaya grandifoliola | Oganjio | Mahogany | Bark | Decoction |

**Table 2** Experimental plan for test animals and control

| Groups | Experimental plan | Remarks |
|--------|-------------------|---------|
| Group 1, 2, 3 | Were infected with *Plasmodium berghei* and administered with Morinda lucida plant extract at 400, 600, and 800 mg/kg body weight, respectively, for 5 consecutive days | Treatment |
| Group 4, 5, 6 | Were infected with *Plasmodium berghei* and treated with Alstonia boonie plant extract at 400, 600, and 800 mg/kg body weight, respectively, for 5 consecutive days | Treatment |
| Group 7, 8, 9 | Were infected with *Plasmodium berghei* and treated with combined recipe of Morinda lucida and Alstonia boonie extract at 400, 600, and 800 mg/kg body weight, respectively, for 5 consecutive days | Combined treatment |
| Groups 10 | Were infected with *Plasmodium berghei* and treated with 10 mg/kg of chloroquine phosphate solution for 5 consecutive days | Drug treatment control |
| Group 11 | Were infected with *Plasmodium berghei* and only given 5 ml/kg of distilled water | Positive control |
| Groups 12 | Were administered with 800 mg/kg body weight of Morinda lucida plant extract for 5 consecutive days. | Plant extract control |
| Groups 13 | Were administered with 800 mg/kg body weight of Alstonia boonie plant extract for 5 consecutive days. | Plant extract control |
| Groups 14 | Were administered with 800 mg/kg body weight of combined Morinda lucida and Alstonia boonie extract for 5 consecutive days. | Plant extract control |
| Group 15 | Were neither infected nor treated | Negative control |
\[
\%\text{parasitemia} = \frac{\text{no. of parasitized RBCs}}{\text{Total RBCs}} \times 100
\]

\[
\%\text{curative} = \frac{\text{Parasitemia before treatment} - \text{Parasitemia after treatment}}{\text{Parasitemia before treatment}} \times 100
\]

**Data analysis**

The means of the data were computed and statistical significance was tested using one-way ANOVA. The significant means were separated using Duncan’s new multiple range test (DNMRT) at \( P < 0.05 \).

**Results**

**Antiplasmodial activity of the plant extracts and chloroquine**

The antiplasmodial activity of the plant extracts at graded doses of 400, 600, and 800 mg/kg body weight and the negative control group as represented in Table 3 showed that the percentage parasitemia on days 1 and 2 increased in mice treated with *M. lucida* at 400, 600, and 800 mg/kg. Subsequently, reduction in percentage parasitemia was noted at all doses from days 3–5. However, the least percentage parasitemia (0.40) was noted in mice treated with 400 mg/kg of *M. lucida* for 5 days. In contrast, the reduction in percentage parasitemia was observed in mice treated with *A. boonei* at all doses of the extracts for 5 consecutive days. However, the comparative study of the individual plants with the combined recipes revealed that the antimalarial activity of the plants further increased as the two plants were combined at different doses. For instance, the percentage parasitemia range of the combined recipe of *M. lucida* and *A. boonei* extracts was noted to be 0.40–0.80 while 0.40–1.40 and 0.40–1.60 were observed for *M. lucida* and *A. boonei*, respectively. This shows that the antimalarial activity of the plants increased when both plants were combined at graded doses of 400, 600, and 800 mg/kg. Generally, it was also noted that none of the extracts and their combined recipes could completely reduce the parasitemia to zero. Meanwhile, a complete elimination of the parasites was only noted in mice treated with chloroquine (a standard drug) at 10 mg/kg at 3 days of treatment (Table 3).

The results of the percentage curative as represented in Table 4 shows that chloroquine reduced the parasitemia to zero and recorded 100% percentage curative at 10 mg/kg body weight. The percentage curatives of the plant extracts and their combination vary significantly. It was also noted that the percentage curative of the combined recipe increased from 75 to 92% as the dosage increases from 400 to 800 mg/kg. The percentage curative of *A. boonei* increased from 68 to 85% as the dosage increases from 400 to 600 mg/kg and subsequently decline to 75% as the dosage increased from 600 to 800 mg/kg (Table 4). In contrast, the percentage curative of *M. lucida* decreased as the dosage increases from 400 to 800 mg/kg. However, the optimum antiparasitological activity of *M. lucida* (83%) was obtained at 400 mg/kg while that of the *A. boonei* (85%) was noted at 600 mg/kg. However, the antimalarial activities of the combined recipes of *M. lucida* and *A. boonei* performed better at each concentration than when the plant was used individually. This shows that the efficacy of the drug synergistically increased when the plants were combined.

**Table 3** Curative effect of *Morinda lucida* and *Alstonia boonei* plant extracts and chloroquine against *P. berghei* infection in mice for five consecutive days

| Treatment groups       | Percentage parasitemia |
|------------------------|------------------------|
|                        | Days                   |
|                        | 1                     |
|                        | 2                     |
|                        | 3                     |
|                        | 4                     |
|                        | 5                     |
| *M. lucida*, 400 mg    | 2.40 ± 0.24<sup>a</sup>|
|                        | 3.60 ± 0.24<sup>b</sup>|
|                        | 3.00 ± 0.32<sup>c</sup>|
|                        | 1.60 ± 0.24<sup>cd</sup>|
|                        | 0.40 ± 0.20<sup>ab</sup>|
| *M. lucida*, 600 mg    | 4.40 ± 0.24<sup>b</sup>|
|                        | 5.40 ± 0.24<sup>e</sup>|
|                        | 2.0 ± 0.32<sup>bc</sup>|
|                        | 1.60 ± 0.24<sup>cd</sup>|
|                        | 1.40 ± 0.24<sup>ab</sup>|
| *M. lucida*, 800 mg    | 2.20 ± 0.20<sup>a</sup>|
|                        | 4.80 ± 0.37<sup>e</sup>|
|                        | 2.60 ± 0.40<sup>f</sup>|
|                        | 2.40 ± 0.24<sup>d</sup>|
|                        | 1.20 ± 0.32<sup>bc</sup>|
| *A. boonei*, 400 mg    | 3.80 ± 0.37<sup>b</sup>|
|                        | 1.20 ± 0.20<sup>a</sup>|
|                        | 1.20 ± 0.20<sup>b</sup>|
|                        | 1.60 ± 0.20<sup>ab</sup>|
|                        | 1.00 ± 0.00<sup>b</sup>|
|                        | 1.00 ± 0.32<sup>ab</sup>|
| *A. boonei*, 600 mg    | 2.80 ± 1.07<sup>ab</sup>|
|                        | 1.60 ± 0.40<sup>bc</sup>|
|                        | 1.20 ± 0.37<sup>bc</sup>|
|                        | 0.60 ± 0.24<sup>ab</sup>|
|                        | 0.40 ± 0.24<sup>ab</sup>|
| *A. boonei*, 800 mg    | 6.00 ± 0.32<sup>ab</sup>|
|                        | 3.20 ± 0.20<sup>cd</sup>|
|                        | 2.20 ± 0.20<sup>bc</sup>|
|                        | 2.00 ± 0.32<sup>bc</sup>|
|                        | 1.60 ± 0.40<sup>b</sup>|
| Combined recipe, 400 mg| 3.20 ± 0.37<sup>bc</sup>|
|                        | 0.80 ± 0.20<sup>a</sup>|
|                        | 1.0 ± 0.32<sup>bc</sup>|
|                        | 1.60 ± 0.20<sup>ab</sup>|
| Combined recipe, 600 mg| 3.80 ± 0.97<sup>b</sup>|
|                        | 2.20 ± 0.58<sup>bc</sup>|
|                        | 2.20 ± 0.80<sup>bc</sup>|
|                        | 1.60 ± 0.60<sup>bc</sup>|
|                        | 0.40 ± 0.24<sup>ab</sup>|
| Combined recipe, 800 mg| 5.80 ± 0.49<sup>ab</sup>|
|                        | 2.60 ± 0.24<sup>cd</sup>|
|                        | 0.60 ± 0.24<sup>ab</sup>|
|                        | 0.60 ± 0.24<sup>ab</sup>|
|                        | 0.40 ± 0.24<sup>ab</sup>|
| Chloroquine, 10 mg/kg  | 5.40 ± 0.24<sup>ab</sup>|
|                        | 2.60 ± 0.24<sup>cd</sup>|
|                        | 0.00 ± 0.00<sup>a</sup>|
|                        | 0.00 ± 0.00<sup>a</sup>|
|                        | 0.00 ± 0.00<sup>a</sup>|
| Infected Untreated     | 4.80 ± 0.37<sup>b</sup>|
|                        | 7.00 ± 0.44<sup>a</sup>|
|                        | 11.40 ± 0.60<sup>ab</sup>|
|                        | 13.60 ± 0.87<sup>ab</sup>|
|                        | 18.40 ± 0.98<sup>ab</sup>|

Mean ± standard error represents 5 replicates. Mean values down the column with the same alphabet are not significantly different from each other at \( P > 0.05 \).
Discussion

Malaria is a fatal parasitic infection especially in the tropical African and Asian continents, and it is believed that it kills more than AIDS and the most vulnerable are children below 5 years (WHO 2014). Herbal remedy, which in most cases, is a combination of two or more plants is usually taken ad libitum for malaria treatment or prevention in Africa (Oludele and Olufunso 2018). The curative antimalarial tests indicated that the mice treated with *M. lucida*, *A. boonei*, and their combined recipes at graded doses of 400, 600, and 800 mg/kg body weight resulted in reduced parasite load as compared to the untreated mice. The comparative curative antimalarial activity of *M. lucida* and *A. boonei*, the combined recipe and chloroquine at 10 mg/kg body weight from this study shows that chloroquine, the standard drug, cleared the parasites by 100% compared to the percentage of clearance by plant extracts which varies at graded doses of 400, 600, and 800 mg/kg against *P. berghei* in mice on the fifth day of treatment. Chloroquine reduced the parasites by 100% at 10 mg/kg body weight compared to the plant extracts with varying levels of percentage curative.

Conclusions

The study indicates that the combined recipe of *M. lucida* and *A. boonei* plant extracts at 800 mg/kg and 600 mg/kg has a synergistic effect on the parasite and hence produced more curative effects than when the plants were used individually. However, *M. lucida* when recommended at 400 mg/kg of body weight produced optimal curative effect than when used at higher doses. In contrast, *A. boonei* produces optimal antimalarial activity when recommended at 600 mg/kg of body weight. Therefore, medicinal plants should be considered veritable alternatives in malaria control and prevention.

Abbreviations

A boonei; Alstonia boonei; ACD: Acid citrate dextrose; ACTs: Artemisinin combination therapies; CQ: Chloroquine; DNMRT: Duncan’s new multiple range test; IAMRAT: Institute of Advanced Medical Research and Training; LGA: Local government area; M. lucida: Morinda lucida; RBCs: Red blood cells; UCH: University College Hospital; WHO: World Health Organization

Acknowledgements

The authors acknowledged the contribution of Mrs. V.A. Thomas of IAMRAT for her professional assistance during the in vivo experiment. The authors are also grateful to Mrs. E.T. Ojo, the chief technologist of the Department of Biology, Federal University of Technology Akure, Nigeria, for her technical assistance during the laboratory work.

Authors’ contributions

OJA and EAA involved in the study design. OJA and EAA involved in the field and the laboratory works. Data analysis was undertaken by the authors OJA and EAA. OJA and EAA were the major contributors in writing the manuscript. The authors read and approved the final manuscript.
Funding
No funding was obtained for this study.

Availability of data and materials
All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Ethics approval and consent to participate
The ethics and consent concerning the use of mice for this research were approved by the Institute of Advanced Medical Research and Training, University College Hospital Ibadan.

Consent for publication
The authors give their consent to the Bulletin of the National Research Centre to publish this manuscript if accepted for publication.

Competing interests
The authors declare that they have no competing interests.

Received: 19 March 2020 Accepted: 20 May 2020
Published online: 01 June 2020

References
Adebayo JO, Kretli AU (2011) Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol 133(2):289–302
Adeneye AA, Agbaje EO (2008) Pharmacological evaluation of oral hypoglycaemic and antidiabetic effects of fresh leaves ethanol extract of Morinda lucida Benth in normal and alloxan induced diabetic rats. Afr J Biomed Res 11(1):65–71
Afolabi OA, Ajejejde EA (2020) Hematological and biochemical effects of Morinda lucida and Alstonia boonei on the liver and kidney of mice infected with Plasmodium berghei. Adv Tradit Med https://doi.org/10.1007/s13596-020-00436-8
Akamori BD, Wahi S, Suzuki M (1994) Immunology G2a isotype may have a protective role in Plasmodium berghei NK65 infection in immunized mice. Parasitol Res 80:638–641
Asuzu IU, Chineke CN (1990) Effects of Morinda lucida leaf extract on Trypanosoma brucei brucei infection in mice. J Ethnopharmacol 30:307–311
Awe SO, Makinde JM (1998) Evaluation of sensitivity of Plasmodium falciparum to Morinda lucida leaf extract sample using rabbit in vitro microtest technique. Indian J Pharm 30:51–53
Bello IS, Oduola T, Adeosun OG, Omisore NOA, Raheem GO, Ademosun AA (2009) Evaluation of antimalarial activity of various fractions of Morinda lucida and Alstonia boonei stem bark. Global J Pharm Sci 3(3):163–165
Ettah RA, Emeka P (2004) Morinda lucida extract induces endothelium-independent relaxation of rat aorta. Fitoterapia 75(3-4):332–336
Faparusi SI, Bassir O (1972) Triterpines from Alstonia boonei. Phytochemistry 21:3083–3084
Gbadamosi IT, Moody JO, Lawal AM (2011) Phytochemical screening and proximate analysis of eight ethnobotanicals used as antimalaria remedies in Ibadan. Nigerian J Appl Bioscience 44:2967–2971
Gupta MP, Corea MD, Solis PN, Jones A, Galdames C, Guionneau-Sinclair F (2003) Studies on the anti-inflammatory, antipyretic analgesic properties of Alstonia boonei in normal and alloxan induced diabetic rats. Afr J Ethnopharmacol 47:19–25
Hillo H, Nacoulma OG, Guiguemde TR (2006) Antimalarial activity of Morinda lucida leaf extract for Plasmodium berghei infection in mice. Afr J Ethnopharmacol 92:227–230
Iyiola OA, Tijani AY, Lateef KM (2011) Antimalarial activity of ethanolic stem bark extract of Morinda lucida in mice. Asian J Biol Sci 4:235–243
Kwello-Oka O, Bird D, Field B, Ambrose R, Carroll AR, Smith P, Valdes R (1995) Anti-inflammatory activity of a Ghanaian herbal preparation. J Ethnopharmacol 46:7–13
Lawal HO, Etutuwe SO, Fawehinmi AB (2011) Etnopharmacological and pharmacological properties of Morinda lucida. J Nat Prod 74:93–99
Makinde JM, Obih PO (1985) Screening of Morinda lucida leaf extract for antimalaria action on Plasmodium berghei in mice. Afr J Med Sci 1459–63
Martey ONK, Shittah-Bay O, Owusu J, Okine LKN (2013) The antiplasmodial activity of an herbal antimalarial, AM 207 in Plasmodium berghei-infected Balb/c mice absence of organ specific toxicity. J Med Sci 13:537–545
Ndeoel HY, Schaecker K, Smith BL, Socheatt D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620
Obih PO, Makinde JM, Laoye JO (1985) Investigations of various extracts of Morinda lucida for antimalarial actions on Plasmodium berghei in mice. Afr J Med Sci 14:45–49
Odeku OA, Adegoke OA, Majekodunmi SO (2008) Formulation of the extract of the stem bark of Alstonia boonei as tablet dosage form. Trop J Pharm Res 7:987–994
Odugbemi TO, Akinsulire OR (2007) Medicinal plants useful for malaria therapy in Okejioke, Ondo State, Southwest, Nigeria. Afr J Tradit Complement Altern Med 4(2):191–198
Olijide OA, Awe SO, Makinde JM, Ekhaler AI, Olusola O, Morebise O, Okpako DT (2000) Studies on the anti-inflammatory, antipyretic analgesic properties of Alstonia boonei stem bark. J Ethnopharmacol 71(1-2):179–186
Oliver-Bever B (1986) Medicinal plant in tropical West Africa. Cambridge University Press:89–90
Oludele JO, Olufunso OO (2018) Toxicology of solvent extract and fractions of Alstonia boonei (DC) wild stem bark in rats. Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan. J Herbed Pharmacol 7(3):129–135
Rowe AK (2006) The burden of malaria mortality among African children in the year 2000. Int J Epidemiol 35:691–704
Satish B, Ranjana K (2013) Herbal plants used for the treatment of malaria- a literature review. Department of Pharmacology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442102, Indian. J Pharmacol Phytochem 1:6
Shri NJM (2003) Ginger: its role in xenobiotic metabolism. Indian Council Med Res Bull 33(6):57–63
Snow RW, Guerra CA, Minty HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434(7030):214–217
Umar MB, Ogbadoyo EO, Ilumii YH, Kabiru AY, Maina HI, Ikibikunle GM (2012) In-vivo antiplasmodial efficacy of fractions of crude methanolic root extract of Morinda lucida. Int J Drug Res Technol 2(7):486–491
Wellens TE (2002) Plasmodium chloroquine resistance and the search for a replacement anti-malarial drug. Science 298(5591):124–126
World Health Organization. Guinea-Bissau. 2008a Available from: https://who.int/malaria/publications/country-profiles/profile_gnb_en.pdf.
World Health Organization (2008b) World Malaria Report. World Health Organization, Geneva, pp 7–15 99101
World Health Organization (2014) World Malaria Report. WHO Press, Geneva

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.