A Highly Selective and Fast-Responding Hydrogen Sensor based on In$_2$O$_3$ Nanocubes

S. S. Tongaonkar1, Pradip Patil2

1Department of Physics, Moolji Jaitha College, Jalgaon 425 001, Maharashtra, India
2Department of Physics, North Maharashtra University, Jalgaon 425 001, Maharashtra, India

Abstract: The In$_2$O$_3$ nanocubes were successfully synthesized without any templates by calcining the In(OH)$_3$ precursor in air at 300°C for 2 h and their H$_2$ sensing characteristics were investigated. The In(OH)$_3$ precursor was prepared through a wet chemical route at room temperature (27°C) using InCl$_3$, 4H$_2$O and NH$_4$OH as starting materials. The formation of In$_2$O$_3$ nanocubes was confirmed by X-ray diffraction measurement (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis. The In$_2$O$_3$ nanocubes exhibit excellent sensing properties such as, high gas response (~130 to 50 ppm H$_2$ at 325°C), extremely rapid response (1 s), fast recovery (~5 s), excellent repeatability and good selectivity. Furthermore, the lower detection limit is ~3.87 ppm, which is lower than the permissible explosive limit for H$_2$. The experimental results demonstrate the potential of these nanocubes as sensing material in the fabrication of hydrogen sensors.

Keywords: In$_2$O$_3$ nanocubes, H$_2$ sensor, Semiconductor gas sensors, TEM, XRD.

1. Introduction

Hydrogen (H$_2$) gas, due to its efficient fuel properties like high burning velocity, large heat of combustion (142 kJ/g), low minimum ignition energy (0.017 mJ) and wide flammable range (4-75%), offers its candidacy for future generation energy sources[1]. The burning product of hydrogen is water which is clean and can again be converted into hydrogen and oxygen. This property further makes it a clean and renewable energy fuel source for cars, buses, and other vehicles [2]. Liquid hydrogen is used as a fuel for rockets. Monitoring/controlling of the hydrogen concentration is also crucial in nuclear reactors, coal mines and semiconductor manufacturing. [3–5]. However, hydrogen gas is tasteless, colourless, odourless and leaks with large diffusion coefficient (0.61 cm2/s). It catches fire even at low volume concentrations (~4 ppm) and has large flame propagation velocity [6-8]. Therefore, uses of hydrogen in technological applications are generally associated with effective execution of sensors to detect or critically monitor minute hydrogen leakages.

Semiconductor metal oxides are historically and generally investigated as hydrogen sensors. V. Aroutiounian [9] has reviewed, compiled and tabulated some important data (from 1966 to 2006) about hydrogen sensing properties metal oxides along with effect of doping by metal nano particles and another metal oxide. Recently, Haoshuang et.al [1] have provided a comprehensive review on the hydrogen gas sensors based on metal oxide thin films and one-dimensional (1D) nanostructures for the period 2007-2012 in which the hydrogen sensing mechanism and some critical issues are discussed. The influences of grain size, porosity, orientation, doping and surface decoration as well as the device architecture on the sensing performance of hydrogen sensors is also widely investigated for improving gas selectivity and hydrogen response at low temperatures.

Recently, Wadkar et.al [10] al have reported a high performance H$_2$ sensor based on ZnSnO$_3$ cubic crystallites synthesized by a hydrothermal method. Amongst other recent studies, Katoch et. al [11] have reported SnO$_2$–ZnO nano fiber composite for drastically enhancing the sensing behavior H$_2$ gas and Wang et.al [12] report a low temperature, high performance hydrogen gas sensors using palladium decorated tungsten oxide.

Indium oxide (In$_2$O$_3$) is an important wide band gap (3.55-3.75 eV), transparent material with attractive optoelectronic properties suitable for applications in solar cells[13]. It has received considerable attention because of its high electron affinity and low electron effective mass and increasingly extensive applications in fuel cells [14-15], sensors [16], nano scale transistors [17] and flat-panel display materials [18]. In$_2$O$_3$, as an n-type semiconductor, has proven to be a highly sensitive material for the detection of both reducing and oxidizing gases [19]. Few research groups have recently studied H$_2$ sensors based on pure In$_2$O$_3$ nanostructures with different morphologies [21, 22]. Qurashi et. al [20] reported the H$_2$ sensor based on In$_2$O$_3$ nano wires (~70 nm) and nano needles (150-200 nm) synthesized via catalyta supported growth by vapor transport. The In$_2$O$_3$ nanowires showed a maximum response of about 0.6 at 400°C with the response and recovery times of ~31 s and ~80 s for 500 ppm of H$_2$ at 200°C, respectively. The nano needles exhibited a maximum response of 0.25 at 350°C with response time of 60 s. More recently, Zheng et. al [21] reported hydrogen sensing properties of In$_2$O$_3$ nano towers with an octahedral cap size of 600 nm synthesized via thermal evaporation of In$_2$O$_3$ and active carbon powders. The In$_2$O$_3$ nano towers showed a high response of 83 % towards 1000 ppm of H$_2$ at 240 °C with a response time of 63 s. The detailed study on the influence of morphology of In$_2$O$_3$ on the H$_2$ gas sensing properties was reported recently by Shannugasundaram et. al. [22]. These authors prepared the In$_2$O$_3$ having different morphologies like nanobricks(200 nm × 200 nm × 50 nm) nano particles (10–20 nm), mesoporous nanocubes (200 nm × 200 nm × 200 nm) and nanoflakes by using a facile hydrothermal route. This study unambiguously demonstrated that the sensing performance of nanocubes is far more superior than the other.
morphologies. The In$_2$O$_3$ nanocubes sensor exhibited response of 980 with the response and recovery times of ~39 s and ~115 s for 0.5 ppm of H$_2$ at 150 °C, respectively.

Within the present investigation, experiments have been carried out for the fabrication of a highly selective and fast responding H$_2$ sensor based on In$_2$O$_3$ cubic crystallites. In this study, the In$_2$O$_3$ cubic crystallites were synthesized through a wet chemical route at room temperature. Sensing characteristics of the In$_2$O$_3$ cubic crystallites to H$_2$ were systematically investigated. A sensing mechanism is also discussed based on experimental findings.

2. Experimental

2.1 Materials

All of the chemicals were of analytical grade and were used as-received without any further purification. The indium chloride tetrahydride (InCl$_3$, 4H$_2$O) and liquid ammonia (NH$_3$) solution(30%) were purchased from John Baker Inc-Colorado, U.S.A and Qualigens Fine Chemicals, India, respectively.

2.2 Synthesis of the In$_2$O$_3$ nanocubes

In a typical synthesis of In$_2$O$_3$ nanocubes, 0.29 g of InCl$_3$,4H$_2$O was dissolved to double distilled water (10 mL) to form a solution A. The liquid NH$_3$ (5 mL) was added to double distilled water (5 mL) to form a solution B. The solutions A and B were slowly added drop-wise into double distilled water (50 mL) at room temperature under continuous stirring to form a white precipitate. The resulting white-colored precipitate was harvested by centrifugation, washed several times using double-distilled water and ethanol, and then dried in an oven at 80 °Covernight to obtain the precursor In(OH)$_3$. This precursor was further calcined in air at 300°C for 2 h to obtain the In$_2$O$_3$ nanocubes. The color of the the precursor was changed from white to pale-yellow during calcination.

2.3 Characterization

X-ray diffraction (XRD) analysis was performed with a Bruker diffractometer (D8, Advance, Bruker AXS model) with CuK$_\alpha$ radiation (λ=1.5406 Å) operating at 40 kV and 40 mA. The transmission electron microscopy (TEM)images were recorded with a transmission electron microscope (HRTEM, Tecnai G2 20 Twin, FEI, USA)operating at an accelerating voltage of 200 kV. The FTIR spectroscopy analysis was carried out using FTIR spectrometer (FTIR-4800, Shimadzu, Japan) by the conventional KBr method in the spectral range 4000-400 cm$^{-1}$.

2.4 Gas Sensing Measurements

The In$_2$O$_3$ powder was pressed into pellets under a pressure of 15 MPa and the ohmic contacts were made with the help of silver paste to form the sensing element. The gas sensing measurements were carried out on these sensing elements in a static gas chamber to sense hydrogen in air ambient. The sensing element was kept directly on a heater in the gas chamber and the temperature was varied from 50 to 400 °C. The temperature of the sensing element was monitored by chromel-alumel thermocouple placed in contact with the sensor. The known volume of the H$_2$ was introduced into the gas chamber pre-filled with air and it was maintained at atmospheric pressure. The electrical resistance of the sensing element was measured before and after exposure to hydrogen using a sensitive digital multimeter (2000, Digital Multimeter, Keithley, U.S.A)controlled by a personal computer. The performance of the sensing element is presented in terms of gas response (S), which is defined as :

$$S = \frac{R_{air}}{R_{gas}}$$

where R_{air} and R_{gas} are the electrical resistance values of the sensor element in air and in the presence of H$_2$, respectively.

3. Results and Discussion

3.1 Structural and morphological characteristics

The XRD pattern of the calcinied product is shown in Fig.1(a). It exhibits the diffraction peaks at 20 values of 29.78°, 31.16°, 34.52°, 44.99°, 50.24°, 57.11° and 59.63°, which are attributed to the formation of cubic phase of In$_2$O$_3$ (JCPDS No. 01-073-6440). No other peaks were observed, indicating that no impurities were present and confirming that the adopted synthesis method gives pure In$_2$O$_3$.

The FTIR spectrum of the calcinied product is shown in Fig.1(b). It shows the bands at approximately 424, 561 and 603 cm$^{-1}$ (inset of Fig.1(b)) corresponding to the cubic In$_2$O$_3$ phase. The bands at 424 and 561 cm$^{-1}$ are attributed to In–O stretching whereas the band at 603 cm$^{-1}$ is a characteristic of In–O bending vibrations in the cubic In$_2$O$_3$ [23, 24]. In addition, the broad band at ~ 3450 cm$^{-1}$ may be assigned to the stretching vibrational mode of an O-H group bonded to the In atom, i.e., In–OH [24]. Thus, FTIR spectroscopy result reveals that the phase formation is complete for the as-synthesized In$_2$O$_3$ nanocubes and there is no evidence for the presence of any byproduct (s) in the sample.

The surface morphologies of the calcinied product [Fig.1(c)] reveals the formation In$_2$O$_3$ nanocubes with a typical edge length of ~25 nm. The corresponding selected area electron diffraction (SAED) pattern [Fig.1(d)] further confirms the random orientations of the In$_2$O$_3$ nanocubes and that no secondary phase exists.

3.2 H$_2$ sensing Characteristics

To evaluate the potential applicability of as-prepared In$_2$O$_3$ nanocubes in gas sensing applications, their H$_2$ sensing properties were investigated. It is well known that for metal oxide gas sensors, the operating temperature is an important factor and the response of the gas sensor exhibits a maximum value at a certain operating temperature. In order to determine the optimum operating temperature for H$_2$ gas detection, the response of as-prepared In$_2$O$_3$ nanocubes to 50 ppm H$_2$ was initially measured over an operating temperature range of 150–350 °C. Before exposing to the H$_2$ gas, the sensing element was allowed to equilibrate inside the gas chamber at
an operating temperature for 1 h. A number of experiments have been carried out to measure the gas response as a function of the operating temperature. All the time the gas response of the sensor element has approximately constant values, indicating good repeatability of the sensor. The gas response of the as-prepared In$_2$O$_3$ nanocubes to 50 ppm H$_2$ as a function of operating temperature is shown in Fig.2(a). At low temperatures, the gas response is relatively low (e.g. S = 1.1 at 150 °C), but it increases rapidly with an increase in the operating temperature. The gas response attains a maximum at ~ 325°C (S ~127) and thereafter it decreases with a further increase of the operating temperature. Thus, the optimum operating temperature for the In$_2$O$_3$ nanocubes to detect H$_2$ was at 325°C, which is the modest from the viewpoint of semiconducting oxide gas sensors. Hence, 325°C is the optimum operating temperature in this work and further gas sensing experiments were performed at this temperature.

The response and recovery times are also important parameters for evaluating the performance of gas sensors. The response time is defined as the time required by the sensor to reach 90% of the full response, whereas recovery time is the time required to reach the 10% of the sensor baseline resistance. The response and recovery characteristics of the In$_2$O$_3$ nanocubes to 50 ppmH$_2$-gas at 325°C is shown in Fig.2(b). Five samples were tested from each batch and each sample was tested three times. It was observed that the response of the sensor increases when exposed to the H$_2$ (reducing gas) gas, which suggests that In$_2$O$_3$ nanocubes behaves as a n-type semiconductor. As can be seen from Fig.2(b), the sensor responds rapidly after introduction of H$_2$-gas and recovers immediately when it is exposed to air. The In$_2$O$_3$ nanocubes has response time of ~ 1-2 s and the recovery time of ~ 4-5 s.

The reproducibility and stability are important parameters to be considered when evaluating the performance of a sensor. It is useful to have both a stable base line resistance and a reproducible signal change to a given analyte concentration. The reproducibility and stability of the In$_2$O$_3$ nanocubes gas were measured by repeating the test three times. The gas response of the In$_2$O$_3$ nanocubes upon periodic exposure to 50 ppm H$_2$ gas at 325°C is shown in inset of Fig.2(b). The In$_2$O$_3$ nanocubes show good reproducibility upon repeated exposure and removal of H$_2$ under same conditions. Furthermore, the repeated tests revealed that the gas response values are maintained and the recovery abilities are not reduced after several sensing cycles. Thus, the In$_2$O$_3$ nanocubes exhibit a stable and reproducible characteristic, which suggests that it can be used as a reusable sensing material for the detection of H$_2$ gas.

The gas response of the as-preparedIn$_2$O$_3$ nanocubes as a function of H$_2$ gas concentration at an operating temperature of 325°C is shown in Fig.2(c). The gas response increases approximately linearly as the H$_2$ concentration increases from 5 to 60 ppm. The linear relationship between the gas response and that of the H$_2$ concentration can be expressed as

\[y = 12.99 + 1.99x \quad R = 0.9967 \]

where \(x, y \) and \(R \) represent the H$_2$ concentration, gas response and correlation coefficient, respectively. The broken lines in the Fig.2(c) indicate the linear fit to the experimental data, illustrating the good quality of the fit. The linearity of the gas response suggests that the In$_2$O$_3$ nanocubes can be reliably used to monitor the concentration of H$_2$ over this range. Detection limit is another important factor used for the evaluation of the sensing-performance of the sensors. It is defined as the lowest concentration of the analyte at which the response of the sensor under the given conditions is differentiated from the background level. When this criterion is applied in the present work, the H$_2$ response was set to S > 7.71. According to the equation (2), the detection limit is estimated to be approximately 3.87 ppm for the sensor based on as-preparedIn$_2$O$_3$ nanocubes. The permissible exposure limit (PEL) for H$_2$ as specified by National Institute for Occupational Safety and Health (NIOSH) is 4 ppm. In this work, the detection limit for In$_2$O$_3$ nanocubes is ~ 3.87 ppm which is lower than the PEL for H$_2$.

Selectivity is an important parameter of gas sensors and it is the ability of a sensor to respond to a certain gas in presence of other gases. Theoretically, the sensors should have high response to some gases and little or no response to other gases in the same surroundings. The H$_2$ sensing selectivity of the In$_2$O$_3$ nanocubes is examined towards various gases such as liquid petroleum gas (LPG), carbon monoxide (CO), carbon dioxide (CO$_2$) and ethanol (C$_2$H$_5$OH) at 50 ppm and 325 °C. The responses to each gas were calculated by equation (1). Fig. 2(d) depicts the histogram of the responses of the sensor based on In$_2$O$_3$ nanocubes toward 50 ppm of LPG, H$_2$, CO, CO$_2$ and ethanol at 325 °C. The In$_2$O$_3$ nanocubes exhibit higher response to H$_2$ (127), whereas it shows a considerably lower response (<39.54) to LPG, CO, CO$_2$ and ethanol. The selectivity coefficient (K) of H$_2$ to another gas is defined as [25]:

\[K = \frac{S_{H2}}{S_B} \]

where S_{H2} and S_B are the responses of sensors in H$_2$ and B gas, respectively. The selectivity coefficients for the In$_2$O$_3$ nanocubes were 99.21 to CO$_2$, 93.38 to CO, 40.70 to NH$_3$, 18.43 to ethanol,6.85 to acetone and3.21 to LPG. Commonly, the selectivity coefficient of sensors should be more than 5. Thus, the experimental results indicate that the In$_2$O$_3$ nanocubes based sensor has a good selectivity to H$_2$. Based on the observed results, it can be concluded that the formation of In$_2$O$_3$ nanocubes is not only effective in enhancing the H$_2$ response but also in making it selective for the detection of H$_2$.

4. Conclusions

In summary, we reported a highly selective and fast-responding H$_2$ sensor based on In$_2$O$_3$nanocubes synthesized via a wet chemical route at room temperature. The gas sensing measurements reveal that the sensor based on the In$_2$O$_3$nanocubes exhibit higher response (~ 127 to 50 ppm H$_2$ gas at 325°C), response time (~1-2 s), recovery time (~4-5 s), excellent reproducibility, good sensing selectivity, and lower detection limit (~3.87 ppm H$_2$< PEL) and relatively lower operating temperature (~ 325°C).This work demonstrates the potential of using In$_2$O$_3$nanocubes as sensing material in the fabrication of H$_2$ sensors.
5. Acknowledgement

The authors acknowledge financial support from University Grants Commission (UGC), New Delhi (Project No. F. 530/2/DRS/2010 -SAP-DRS, Phase-II). One of us (SS) is thankful to North Maharashtra University, Jalgaon for providing financial support through the VCRMS Scheme.

References

[1] G. Haoshuang, W. Zhao and H. Yongming, Hydrogen gas sensors based on semi conductoroxide nanostructures, Sensors, 2012, 12, 5517-5550.

[2] S. Verhelst, R. Sierens, Hydrogen engine-specific properties, Int. J. Hydrogen Energy, 2001, 26, 987–990.

[3] T. Hübert, L. Boon-Brett, G. Black and U. Banach, Hydrogen sensors—A review, Sens. Actuat., A 2011, 157, 329–352.

[4] W. J. Buttimer, M. B. Post, R. Burgess and C. Rivkin, An overview of hydrogen safety sensors and requirements, Int. J. Hydrog. Energy, 2011, 36, 2462–2470.

[5] V. Aroutiounian, Hydrogen detectors, Int. Sci. J. Altern. Energy Ecol., 2005, 3, 21–31.

[6] Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li and T. Wang, High performance and negative temperature coefficient of low temperature hydrogen gassensors using palladium decorated tungsten oxide, J. Mater. Chem. A, 2015, 3, 1317–1324.

[7] N. H. Al-Hardan, M. J. Abdullah, A. A. Aziz, Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films, Int. J. Hydrogen Energy, 2010, 35, 4428–4434.

[8] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama and T. Hasegawa, Distributed hydrogen determination with fiber-optic sensor, Sens. Actuators B, 2005, 108, 508–514.

[9] V. Aroutiounian, Metal oxide hydrogen, oxygen and carbon monoxygen sensors for hydrogen setups and cells, Int. J. Hydrogen Energy, 2007, 32, 1145-1158.

[10] P. Wadkar, D. Bauskar, P. Patil, High performance H2 sensor based onZnSnO2 cubic crystallites synthesized by a hydrothermal method, Talanta, 2013, 105, 327–332.

[11] A. Katoch, K. Jae-Hun, J. K. Yong, W. K. Hyoun and S. K. Sang, Bifunctional sensing mechanism of SnO2−ZnO composite nano fibers for drastically enhancing the sensing behavior in H2 gas, ACS Appl. Mater. Interfaces, 2015, 7, 11351–11358.

[12] Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, T. Wang, High performance and negative temperature coefficient of low temperature hydrogen gassensors using palladium decorated tungsten oxide, J. Mater. Chem. A, 2015, 3, 1317–1324.

[13] C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang and Y. F. Chen, Efficient light harvesting by well-aligned InO3-nanopushpins as antireflection layer on Si solar cells, J. Phys. Chem. C, 2011, 115, 13083–13087.

[14] J. Parrondo, R. Santhanam, F. Mijangos and B. Ramababu, Electrocatalytic performance of In2O3-supported Pt/C nanoparticles for ethanol electro-oxidation in direct ethanol fuel cells, Int. J. Electrochem. Sci., 2010, 5, 1342-1354.

[15] W. H. Ho, C. F. Li, H. C. Liu, S. K. Yen, Electrochemical performance of In2O3-thin film electrode in lithium cell, J. Power Sources, 2008, 175, 897–902.

[16] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei and C. Zhou, Detection of NO2 down to ppb Levels using Individual and Multiple In2O3 Nanowire Devices, Nano Lett., 2004, 4, 1919-1923.

[17] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han and M. Meyyappan, Direct integration of metal oxide nanowire in vertical field-effect transistor, Nano Lett., 2004, 4, 651-657.

[18] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong and T. J. Marks, Indium tin oxide alternatives-high work function transparent conducting oxides as anodes for organic light-emitting diodes, Adv. Mater., 2001, 13, 1476-1480.

[19] X. J. Huang and Y. K. Choi, Chemical sensors based on nanostructured materials, Sens. Actuators B, 2007, 122 659–671.

[20] A. Qurashi, E. M. Maghraby, T. Yamazaki and T. Kikuta, Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties, Sens. Actuators B, 2010, 147, 48–54.

[21] Z. Q. Zheng, L. F. Zhu and B. Wang, In2O3 Nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission, Nano. Res. Letts., 2015, 10, 293-307.

[22] A. Shamugasundaram, B. Ramireddy, P. Basak, S. V. Manorama and S. Srinath, Hierarchical In(OH)3 as a precursor to mesoporousIn2O3 nanocubes: A facile synthesis route, mechanism of self-assembly and enhanced sensing response toward hydrogen, J. Phys. Chem. C, 2014, 118, 6909–6921.

[23] E. C. C. Souza, J. F. Q. Rey and E. N. S. Muccillo, Synthesis and characterization of spherical and narrow size distribution indium oxide nanoparticles, Appl. Surf. Sci., 2009, 255, 3779-3783.

[24] A. Ayeshamariam, M. Bououdina and C. Sanjeeviraja, Optical, electrical and sensing properties of In2O3 nanoparticles, Mater. Sci. Semiconductor Processing, 2013, 16, 686-695.

[25] M. Siemons and U. Simon, Gas sensing properties of volume-doped CoTiO3 synthesized via polyl method, Sens. Actuators B, 2007, 126 595-603.
Figure 1: (a) XRD pattern, (b) FTIR spectrum, (c) TEM image and (d) the corresponding SAED pattern of as-synthesized \(\text{In}_2\text{O}_3 \) nanocubes.
Figure 2: (a) Effect of operating temperature on the gas response of In$_2$O$_3$ nanocubes to 50 ppm H$_2$ gas, (b) Response and recovery characteristics of In$_2$O$_3$ nanocubes to 50 ppm H$_2$ gas at 325°C (Inset depicts the repetitive response to 50 ppm H$_2$ gas at 325°C), (c) Gas response of In$_2$O$_3$ nanocubes as a function of H$_2$ concentration at 325°C and (d) Bar chart showing the gas response of In$_2$O$_3$ nanocubes for different gases. The gas concentration and operating temperature in all cases were 50 ppm and 325°C, respectively.