Modulation Codes for Flash Memory Based on Load-Balancing Theory

Fan Zhang and Henry D. Pfister

Texas A&M University
College Station

Allerton Conference 2009
University of Illinois at Urbana-Champaign
September 30, 2009
Outline

1. Introduction
2. Self-randomized Modulation Codes (SRMC)
3. Load-balancing Modulation Codes (LBMC)
4. Simulation Results
Flash Memory

- Flash memory: high reliability, high storage density, relatively low cost, low power consumption and high read/write speed.

- Some properties of flash memory
 - $(10^5 \sim 10^{20})$ cells are organized as a block
 - Adding charge to a cell is easy, but block erasure is needed if we need to reduce the charge level
 - Maximum number of erasure $\sim 10^6$
 - Multi-level cell technology increases the density of storage
Example: Storing 3 bits in 7 cells, 3-bit data value can change arbitrarily (unconstrained data model)

- **State time** t: s_t
- **Decoder**: $\hat{x}_t = g(s_t)$
 - $\sum_{j=1}^{7} s_t(j) j \mod 8$
 - $\hat{x}_0 = g(s_0) = 0$

Diagram

- Cell index
- Cell level
A Simple Modulation Code: Step 1

Example: Storing 3 bits in 7 cells, 3-bit data value can change arbitrarily (unconstrained data model)

- **State time** t: s_t

- **Decoder**: $\hat{x}_t = g(s_t)$

 $$\sum_{j=1}^{7} s_t(j) \mod 8$$

 $\hat{x}_0 = g(s_0) = 0$

- **Encoder**: $x_1 = 3$

 $$\Delta x_1 = x_1 - \hat{x}_0 \equiv 3$$

 Increase 3rd cell by 1

 $s_1 = [0, 0, 1, 0, 0, 0, 0]$
A Simple Modulation Code: Step 2

Example: Storing 3 bits in 7 cells, 3-bit data value can change arbitrarily (unconstrained data model)

\[s_1 = [0, 0, 1, 0, 0, 0, 0] \]

Decoder: \(\hat{x}_t = g(s_t) \)

\[\sum_{j=1}^{7} s_t(j) j \mod 8 \]

\[\hat{x}_1 = g(s_1) = 3 \]
A Simple Modulation Code: Step 2

Example: Storing 3 bits in 7 cells, 3-bit data value can change arbitrarily (unconstrained data model)

- \(s_1 = [0, 0, 1, 0, 0, 0, 0] \)
- Decoder: \(\hat{x}_t = g(s_t) \)
 - \(\sum_{j=1}^{7} s_t(j) j \mod 8 \)
 - \(\hat{x}_1 = g(s_1) = 3 \)
- Encoder: \(x_2 = 0 \)
 - \(\Delta x_2 = x_2 - \hat{x}_1 \equiv 5 \)
 - Increase 5th cell by 1
- \(s_2 = [0, 0, 1, 0, 1, 0, 0] \)
 - \(g(s_2) = 3 + 5 \equiv 0 \)
A Simple Modulation Code: Properties

- Uses $2^3 - 1$ cells to store 3 binary variables
- When the input r.v. is not uniform, some cells may reach maximum before others
- Can we have a code which increases all cell-levels with equal probability for arbitrary i.i.d. input r.v.?
Problem Setup

- Use n q-level cells (called an n-cell) to jointly store k l-ary variables (called a k-variable).

- Denote input at time t as $x_t \in \mathbb{Z}_l^k$ and cell state as $s_t \in \mathbb{Z}_q^n$.

 - Encoder maps x_t and s_{t-1} to s_t: $f : \mathbb{Z}_l^k \times \mathbb{Z}_q^n \rightarrow \mathbb{Z}_q^n$.

 - Decoder only knows s_t and decodes to \hat{x}_t: $g : \mathbb{Z}_q^n \rightarrow \mathbb{Z}_l^k$.

 - Charge levels can only be increased or stay the same.

- Design f and g such that the system is optimized.

- If max # of rewrites, symptotically optimum codes:

$$\lim_{n \text{ or } q \rightarrow \infty} \frac{\text{number of rewrites}}{n(q - 1)} = 1.$$
In previous works, the authors consider data models and optimality measures as follows.

teams	input data model	max # of rewrites
[Jiang et. al]	any sequence	1 var changed
		worst case
[Finucane et. al]	Markov chain	1 var changed
		average case
[Yaakobi et. al]	any sequence	1 var changed
		worst case

(note: we call it as **constrained** data model when only 1 variable changed each rewrite)
Another Performance Metric

Consider another metric: storage efficiency

\[\gamma \triangleq E \left(\frac{\sum_{i=1}^{R} I_i}{n(q-1)} \right), \]

- \(I_i \): amount of information stored at the \(i \)-th rewrite
- \(R \): the number of rewrites between two erasures.

Let \(N \) be the number of \(n \)-cells in a block

- \(\max_{f,g} \) #rewrites in worst case = \(\max_{f,g} \gamma \) when \(N \to \infty \)
- \(\max_{f,g} \) #rewrites on average = \(\max_{f,g} \gamma \) when \(N = 1 \)
Data Models and Upper Bounds on γ

- **Constrained data model ($n = kl$)**
 - Only one of the k variables changes at a time
 - Implies $\gamma < \log_2 kl$.

- **Unconstrained data model ($n = l^k$)**
 - Arbitrary data changes allowed
 - Implies $\gamma < k \log_2 l$

- Large k (or l) needed to achieve high storage efficiency γ

- Assume all cells in block used as a single n-cell, i.e., $N = 1$
A Self-randomized Modulation Code (SRMC)

- Asymptotically optimal: \(\lim_{q \to \infty} \frac{\text{average \# of rewrites}}{n(q-1)} = 1. \)
 - For arbitrary \(k \) and \(l \) and arbitrary i.i.d. input distributed r.v.
 - Optimality identical to weakly robust codes in [Jiang ISIT09]

- The code in [Finucane el. al] is asymptotically optimal for arbitrary i.i.d. input distributed r.v. only when \(k = 2. \)

- For arbitrary \(k \) and \(l \), SRMC uses \(n = l^k \) cells.
Main idea behind SRMC:
- Use deterministic scrambling to randomize cell index

Encoder
- First decode s_{t-1} to the value \hat{x}_{t-1} stored in the n-cell, then calculate difference $x_t - x_{t-1} \mod l^k$
- Randomize difference $\Delta x_t = x_t - \hat{x}_{t-1} + ||s_{t-1}||_1 \mod l^k$ and increase the cell-level by 1
- Randomizing the mappings over time induces a uniform distribution over cell indices regardless of input distribution
SRMC Example: Initialization

Example: Storing 3 bits in 8 cells, 3-bit data value can change arbitrarily (unconstrained data model)

\[s_0 = [0, 0, 0, 0, 0, 0, 0, 0], \]
\[\hat{x}_0 = 0 \]
SRMC Example: Step 1

Example: Storing 3 bits in 8 cells, 3-bit data value can change arbitrarily (unconstrained data model)

- \(s_0 = [0, 0, 0, 0, 0, 0, 0, 0] \), \(\hat{x}_0 = 0 \)
- **Encode**: \(x_1 = 3 \)
 - \(\Delta x_1 = x_1 - \hat{x}_0 + \|s_0\| \equiv 3 \)
 - Increase 3rd cell by 1
- **Decode**:
 \[
 \hat{x}_1 = 3 - \frac{\|s_0\| (\|s_0\| + 1)}{2} \equiv 3
 \]
Example: Storing 3 bits in 8 cells, 3-bit data value can change arbitrarily (unconstrained data model)

- \(s_1 = [0, 0, 0, 1, 0, 0, 0, 0] \), \(\hat{x}_1 = 3 \)
- **Encode:** \(x_2 = 0 \)
 - \(\Delta x_2 = x_2 - \hat{x}_1 + \|s_1\| \equiv 6 \)
 - Increase 6th cell by 1
- **Decode:**
 - \(\hat{x}_2 = 9 - \frac{\|s_1\| (\|s_1\| + 1)}{2} \equiv 0 \)
SRMC Example: Step 3

Example: Storing 3 bits in 8 cells, 3-bit data value can change arbitrarily (unconstrained data model)

- $s_2 = [0, 0, 0, 1, 0, 0, 1, 0]$, \(\hat{x}_2 = 0 \)
- Encode: \(x_3 = 5 \)
 - \(\Delta x_3 = x_3 - \hat{x}_2 + \|s_2\| \equiv 7 \)
 - Increase 7th cell by 1
- Decode:
 \[
 \hat{x}_3 = 16 - \frac{\|s_2\| (\|s_2\| + 1)}{2} \equiv 5
 \]
Questions on SRMC

- There are totally $l^k - 1$ possible values for the new message. But we use l^k cells to store one of those $l^k - 1$ values. Is it necessary?
 - A group-theoretic analysis shows that we need at least 1 extra cell to let the code be robust against arbitrary i.i.d. r.v.

- The asymptotic optimality requires $q \to \infty$ which is not true in practice (MLC with 16 levels is still very cutting-edge). How can we analyze/improve γ for moderately large q?
 - Tools from load-balancing theory
Load Balancing and Modulation Codes

- Load-balancing is a technique to distribute objects (e.g., workloads) evenly across two or more resources (e.g., computers, CPU’s and hard drives)

- Classical load-balancing: the balls-and-bins problem
 - n balls are thrown into n bins independently and uniformly
 - What is the maximum load (w.h.p.) as $n \to \infty$? ($\approx \frac{\ln n}{\ln \ln n}$)

- Connections between balls-and-bins problem and modulation code design problem
 - Think of balls as charge levels and bins as cells
 - Don’t worry about decodability for now
Results from Load-Balancing Theory

- \(n(q - 1) \) balls thrown into \(n \) bins
 - Each ball placed into least loaded bin of \(d \) random choices
 - \(M \) = number of balls in most loaded bin

- Scaling as \(n \rightarrow \infty \) with \(q \) constant
 - \(M \approx O \left(\frac{\ln n}{\ln \ln n} \right) \) when \(d = 1 \) (RL1C)
 - \(M \approx (q - 1) + O \left(\frac{\ln \ln n}{\ln d} \right) \) when \(d \geq 2 \) (RL\(d \)C)

- More general scaling in [Raab et. al.] [Karlinz et. al.]

- Can we achieve decodability without losing any load-balancing performance?
 - SRMC has the same l.b. performance with RL1C
 - LBMC has the same l.b. performance with RL\(d \)C
Load-balancing Modulation Codes (LBMC)

The idea of LBMC:

- Each value can be stored by increasing any of d cells
- Encoding adds one to the cell-level of least charged cell
- By making these d choices independent with each other and uniform over time, LBMC performs like RLδC
To study the load-balancing capability, define $\eta \triangleq 1 - \frac{E[R]}{n(q-1)}$.

(Note: the code in [Finucane et. al.] also matches RL1C)
Storage Efficiency of SRMC and LBMC (small n)

![Graph showing storage efficiency](image)

Figure: Storage Efficiency of SRMC and LBMC with $n = 16$.
Figure: Storage Efficiency of SRMC and LBMC with $n = 2^{10}$.
Conclusions

- Proposed a Self-randomized Modulation Code (SRMC)
 - Asymptotically optimal for arbitrary k, l and i.i.d. input
 - Analysis for finite q exposes a load-balancing issue
- Proposed a Load-balancing Modulation Code (LBMC)
 - Analysis implies significant improvement when q is small
- Simulation results verify the analytical conclusions
Thank you