SPLIT EXTENSIONS OF GROUP WITH INFINITE CONJUGACY CLASSES

JEAN-PHILIPPE PRÉAUX

ABSTRACT. We give a characterization of the group property of being with infinite conjugacy classes (or icc, i.e. $\neq 1$ and of which all conjugacy classes beside 1 are infinite) for split extensions of group.

INTRODUCTION

A group is said to be with infinite conjugacy classes (or icc) if it is non trivial, and if all its conjugacy classes beside $\{1\}$ are infinite. This property is motivated by the theory of Von Neumann algebra, since for any group Γ, a necessary and sufficient condition for its Von Neumann algebra $W^*_\lambda(\Gamma)$ to be a type $II - 1$ factor is that Γ be icc (cf. [ROIV]).

The property of being icc has been characterized in several classes of groups : 3-manifolds and $PD(3)$ groups in [HP], groups acting on Bass-Serre trees in [Co], wreath products and finite extensions in [P1, P2]. We will focus here on groups defined by a split extension (also called semi-direct product).

Towards this direction particular results are already known. In [P2] has been proved the following :

Let G be a finite extension of K :

$1 \longrightarrow K \longrightarrow G \longrightarrow Q \longrightarrow 1$

then G is icc if and only if K is icc and the natural homomorphism $\theta : Q \longrightarrow Out(K)$ is injective.

In particular, it applies when the finite extension splits :

Let $G = K \rtimes_\theta Q$, with Q finite ; G is icc if and only if K is icc and the homomorphism $Q \longrightarrow Out(K)$ induced by θ is injective.

In [Co], has been proved, among other results, the following characterization of icc extensions by \mathbb{Z} :

Let $G = D \rtimes_\theta \mathbb{Z}$ with $D \neq \{1\}$; then G is not icc if and only if one of the following conditions is satisfied :

(i) D contains a $\theta(Q)$-stable normal subgroup $N \neq \{1\}$ and either N is finite or $D = \mathbb{Z}^n$ and if π is the natural homomorphism from G to $GL(n, \mathbb{Z})$ extending θ, then N has only finite $\pi(G)$-orbits,

(ii) the homomorphism $\mathbb{Z} \longrightarrow Out(D)$ induced by θ is non injective.

We give a generalization of these partial results by proposing a general characterization of split extensions with infinite conjugacy classes.

1Centre de Recherche de l’Armée de l’air, Ecole de l’air, F-13661 Salon de Provence air
2Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue F.Joliot-Curie, F-13453 marseille cedex 13
E-mail : preaux@cmi.univ-mrs.fr
Mathematical subject classification : 20E45 , 20E22
1. Preliminaries

Let G be a group, H a non empty subset of G, and u, g elements of G; then $Z_G(H)$ and $Z(G)$ denote respectively the centralizer of H in G and the center of G. The element u^g of G is defined as $u^g = g^{-1}ug$, while $u^H = \{u^g \mid g \in H\}$; in particular u^G denotes the conjugacy class of u in G. One immediately verifies that the cardinality of u^G equals the index of $Z_G(u)$ in G so that u^G is finite if and only if $Z_G(u)$ has a finite index in G.

The set of elements having a finite conjugacy class in G turns out to be a characteristic subgroup of G that we denote by $FC(G)$; it is a so called FC-group, that is a group whom all conjugacy classes are finite. Obviously G is icc if and only if $FC(G) = \{1\}$. The class of FC-groups has been extensively studied and it’s a well known fact that finitely generated FC-groups are precisely those groups defined by a central finite extension of a f.g. abelian group (c.f. [Ne]). In particular, in any f.g. FC-groups K, the subset of torsion elements $Tor(K)$ is a characteristic subgroup of K and the quotient $K/Tor(K)$ is free abelian with a finite rank.

In the following the group G stands for the split extension $G = K \rtimes_{\theta} Q$ (or semi-direct product) with normal factor K, retract factor Q and associated homomorphism $\theta : Q \to Aut(K)$; with these notations, for any $k \in K$, $q \in Q$, $q^{-1}kq = \theta(q)(k)$. Let $\pi : G \to Aut(K)$ be the homomorphism defined by $\forall g \in G, k \in K, \pi(g)(k) = g^{-1}kg$; it extends on G both θ and the natural homomorphism $\pi_K : K \to Inn(K)$, that is the diagram below commutes.

$$
\begin{array}{cccc}
1 & \to & K & \to & G & \to & Q & \to & 1 \\
\downarrow^{\pi_K} & \downarrow^{\pi} & \downarrow & \downarrow^{\theta} & \downarrow & \downarrow & 1 \\
1 & \to & Inn(K) & \to & \pi(G) & \to & \theta(Q) & \to & 1
\end{array}
$$

The subgroup $\pi(G)$ of $Aut(K)$ is an extension of $Inn(K)$ by $\theta(Q)$; in general the extension does not split, despite the above one does.

We shall write in the following θ_q and π_q instead of $\theta(q)$ and $\pi(q)$. We will denote by $\Theta : FC(Q) \to Out(K)$ the homomorphism induced by $\theta : Q \to Aut(Q)$.

2. Statement of the main result

The first result we prove is the following characterization of semi-direct products with infinite conjugacy classes:

Theorem 1. Let $G = K \rtimes_{\theta} Q \neq 1$ be a split extension, and $\pi : G \to Aut(K)$, $\Theta : FC(Q) \to Out(K)$ be the homomorphisms defined as above. Then G is not icc if and only if one of the following conditions is satisfied:

(i) K contains a normal subgroup $N \neq 1$ preserved under the action of $\pi(G)$ and such that either N is finite, or $N \approx \mathbb{Z}^n$ has only finite $\pi(G)$-orbits.

(ii) $\ker \Theta$ contains $q \neq 1$ with $\forall x \in K, \theta_q(x) = k^{-1}xk$, for some $k \in K$ with finite $\theta(Q)$-orbit.

Remark 1. Condition (ii) can be rephrased as:

(ii) either $\theta : FC(Q) \to Aut(K)$ is non injective or the subgroup $\pi_K^{-1}(\theta(FC(Q)))$ of K contains $k \neq 1$ whose $\theta(Q)$-orbit is finite.

Example. Suppose $G = K \rtimes_{\theta} Q$; if K satisfies any of the above assumptions, then G is not icc:

- K is a non trivial elementary group,
- $Z(K)$ contains a non trivial finite subgroup,
- $FC(K) \setminus 1$ contains a finite $\theta(Q)$-orbit,
– $\text{Tor}(FC(K))$ is a non trivial finite group.

(For each case condition (i) of theorem 1 is satisfied.)
– θ is non injective,

(For which case condition (ii) follows.)

The theorem 1 can be rephrased in several ways. The first rephrasing is by mean of the finite $\theta(Q)$-orbits in K.

Theorem 2. Let O_{θ} be the union of all finite $\theta(Q)$-orbits in K; G is icc if and only if:

(a) $O_{\theta} \cap FC(K) = 1$, and

(b) $O_{\theta} \cap \pi^{-1}_{K}(\theta(FC(Q))) = 1$, and

(c) the restricted homomorphism $\theta : FC(Q) \rightarrow Aut(K)$ is injective.

Condition (a) of theorem 2 is equivalent to the negation of condition (i) of theorem 1.

Negation of condition (ii) of theorem 1 is equivalent to the conjunction of conditions (b) and (c) of theorem 2. So that theorem 2 can be seen as a way of reducing condition (ii) into the obvious condition : $\theta : FC(Q) \rightarrow Aut(K)$ non injective, and a residual one.

In this direction one can also reduce condition (ii) of theorem 1 into the condition that either $\theta : FC(Q) \rightarrow Aut(K)$ is non injective or G contains –what we called– a twin FC-subfactor.

Theorem 3. In theorem 1, condition (ii) can be changed into :

(ii.a) $\theta : FC(Q) \rightarrow Aut(K)$ is non injective, or

(ii.b) G contains a twin FC-subfactor $C \rtimes C$.

Roughly speaking, a twin FC-subfactor is a transversal subgroup, either $\mathbb{Z}^{n} \times \mathbb{Z}^{n}$ or $C \rtimes C$ for C a finite group, which is $\theta(Q)$-stable with only finite $\theta(Q)$-orbits, and such that $\theta^{-1} \circ \pi$ sends isomorphically the left factor on the right one. (cf. §6).

3. PROOF OF THEOREM 1

This section is entirely devoted to proving theorem 1.

Proof of theorem 1

We first prove the sufficient part of the assumption, that is, if either condition (i) or condition (ii) is satisfied, then G is not icc.

Fact 1. Condition (i) implies that G is not icc.

Proof of the fact 1. Suppose the condition (i) is satisfied. Since the conjugacy class in G of an element of K is its orbit under the action of $\pi(G)$, obviously each element of N has a finite conjugacy class in G, and hence G is not icc. □

Fact 2. Condition (ii) implies that G is not icc.

Proof of the fact 2. Suppose the condition (ii) is satisfied; let $\omega = k^{-1}q \neq 1$, so that $Z_{G}(\omega) \supset K$. Let $\text{Stab}_{\theta}(k)$ denotes the stabilizer of k in $\theta(Q)$; since it has a finite index in $\theta(Q)$, then $Q_{0} = \theta^{-1}(\text{Stab}_{\theta}(k))$ has a finite index in Q. Hence $Q_{1} = Z_{Q}(q) \cap Q_{0}$ also has a finite index in Q. Then for any $u \in Q_{1}$, $\omega^{u} = u^{-1}k^{-1}qu = \theta_{u}(k^{-1})q^{u} = k^{-1}q = \omega$; hence $Z_{G}(\omega) \supset Q_{1}$. It follows that $Z_{G}(\omega)$ contains $K \rtimes Q_{1}$ and hence has a finite index in G, so that G is not icc. □

We now prove the necessary part of the assumption, that is, if G is not icc then either condition (i) or condition (ii) is satisfied. Let G be not icc: since $G \neq 1$, there exists $u \neq 1$ in G such that u^{G} is finite.

Fact 3. If K contains $u \neq 1$ with u^{G} finite, then condition (i) follows.
Proof of the fact 3. Let N' be the subgroup of K finitely generated by the set u^G. Then N' is preserved under the action of $\pi(G)$, and in particular is normal in K. Since any element of u^G has a finite orbit under $\pi(G)$, N' contains only finite $\pi(G)$-orbits. In particular N' is a finitely generated FC-group. It follows that $Tor(N')$ is a finite characteristic subgroup of N' and $N'/Tor(N')$ is free abelian with finite rank (cf. \[\text{Ne}\]). Then one obtains a normal subgroup N of K satisfying condition (i) by : if $Tor(N') \neq 1$ then $N = Tor(N')$ and otherwise $N = N' = \mathbb{Z}^n$.

Fact 4. If $G \setminus K$ contains u^G finite, then either condition (i) or (ii) is satisfied.

Proof of the fact 4. Let $u = k^{-1}q$ for some $k \in K$ and $q \neq 1$ lying in Q, such that $Z_G(u)$ has a finite index in G. Necessarily q lies in $FC(Q)$, for q^Q is the image of u^G under the projection of G onto Q.

Let $h \in K$ and $\omega = [u, h] \in K$; both $Z_G(u)$ and $Z_G(hu^{-1}h^{-1})$ have a finite index in G and their intersection lies in $Z_G(\omega)$, so that ω is an element of K having a finite conjugacy class in G. If $\omega \neq 1$, it follows from the fact 3 that condition (i) is satisfied. So we suppose in the following that for any $h \in K$, $[u, h] = 1$, so that π_u is the identity on K. Hence θ_q is inner, for any $x \in K$, $\theta_q(x) = x^k$.

Now let $Q_0 = Z_G(u) \cap Z_Q(q)$, Q_0 is obviously contained in $Z_Q(k)$, so that $\theta(Q_0)$ is contained in $Stab_\theta(k)$. Since Q_0 has a finite index in $Z_Q(q)$, it also has a finite index in Q, and then $Stab_\theta(k)$ has a finite index in $\theta(Q)$, so that k has a finite $\theta(Q)$-orbit. Hence condition (ii) is satisfied.

4. FORMULATION BY MEAN OF FINITE $\theta(Q)$-ORBITS

One can formulate the theorem \[\Pi\] by mean of the finite $\theta(Q)$-orbits in K.

Theorem 2. Let $G = K \rtimes_\theta Q \neq 1$ and O_θ be the union of all finite $\theta(Q)$-orbits in K. Then G is icc if and only if :

(a) $O_\theta \cap FC(K) = 1$, and
(b) $O_\theta \cap \pi_K^{-1}(\theta(FC(Q))) = 1$, and
(c) the restricted homomorphism $\theta : FC(Q) \rightarrow Aut(K)$ is injective.

Proof. Condition (i) obviously implies that $O_\theta \cap FC(K) \neq 1$. The converse is also true. For, since $FC(K)$ is a characteristic subgroup of K, $O_\theta \cap FC(K) \neq 1$ implies that $FC(K)$ contains a non trivial finite $\theta(Q)$-orbit $O \neq \{1\}$. The union of conjugates of O in K is finite and preserved under $\pi(G)$. So that for $k_0 \in O$, k_0^G is finite, $k_0 \neq 1$, and condition (i) follows from the fact 3 in the proof of theorem \[\Pi\].

Conjunction of (b) and (c) is an immediate rephrasing of the negation of condition (ii). Conclusion follows from theorem \[\Pi\].

In particular, when $O_\theta = 1$ one obtains a very concise statement.

Corollary 1. Let $G = K \rtimes_\theta Q \neq 1$ such that all $\theta(Q)$-orbits in $K \setminus 1$ are infinite. Then G is icc if and only if the restricted homomorphism $\theta : FC(Q) \rightarrow Aut(K)$ is injective.

5. ON WEAKENING CONDITION (ii)

As we just have seen, in specific cases, condition (ii) in theorem \[\Pi\] can be changed into the obvious : $\theta : FC(Q) \rightarrow Aut(K)$ is non injective. Further examples follow from :
Proposition 1. In the assumption of theorem [1] if one moreover suppose at least one of the following conditions:

- K is abelian,
- $K \setminus 1$ contains only infinite $\theta(Q)$-orbits,
- the $\theta(Q)$-extension $\pi(G)$ of $\text{Inn}(K)$ splits, i.e. $\pi(G) = \text{Inn}(K) \rtimes \theta(Q)$,

then condition (ii) can be strengthened into:

- the restricted homomorphism $\theta : FC(Q) \rightarrow \text{Aut}(K)$ is non injective.

Proof. If either K is abelian or $\pi(G) = \text{Inn}(K) \rtimes \theta(Q)$, then necessarily one has that $\theta(Q) \cap \text{Inn}(K) = 1$ so that $\pi^{-1}_K(\theta(\text{FC}(Q))) = 1$, and condition (ii) becomes equivalent with $\theta : FC(Q) \rightarrow \text{Aut}(K)$ is non injective.

In general one cannot strenghten condition (ii) so far. For example if K is icc and $G = K \rtimes_\theta Z$ then G is not icc each time $\Theta : Z \rightarrow \text{Out}(K)$ is non injective; which may happen while θ is injective.

One may expect to weaken condition (ii) into the condition that $\Theta : FC(Q) \rightarrow \text{Out}(K)$ is non injective; that is forgetting about hypothesis that k has a finite $\theta(Q)$-orbit.

Proposition 2. In the assumption of theorem [1] if one moreover suppose at least one of the following conditions:

- $Z(K) = 1$,
- Q is finite or cyclic,

then condition (ii) can be weakened into condition (ii'):

(ii') $\Theta : FC(Q) \rightarrow \text{Out}(K)$ is non injective.

Proof. Obviously condition (ii) implies condition (ii'). We prove the converse.

- $Z(K) = 1$. Condition (ii') implies that there exists $q \neq 1$ in $FC(Q)$ such that θ_q is inner, $\theta_q(x) = x^k$. Any element $p \in Z_Q(q)$ is such that $\theta_p(k) \in k.Z(K)$. For, $\forall x \in K$, $\theta_q(x) = k^{-1}xk = \theta_p \circ \theta_q \circ \theta^{-1}_p(x) = \theta_p(k^{-1})x \theta_p(k)$, implies that $\theta_p(k^{-1}) \in Z(K)$. So that with $Z(K) = 1$, necessarily $\theta(Z_Q(q))$ lies in $\text{Stab}_q(k)$. Since $Z_Q(q)$ has a finite index in Q, $\text{Stab}_q(k)$ has a finite index in $\text{Inn}(Q)$, so that condition (ii) is satisfied.

- Q is finite or cyclic. Suppose there exists $q \neq 1$ in $FC(Q)$ such that θ_q is inner, $\theta_q(x) = x^k$. Since $<q> \subset Q$ has a finite index in Q and fixes k, condition (ii) follows from condition (ii'). (Moreover, if Q is finite, condition (i) is equivalent with K not icc.)

We will see later several other particular cases for which the statement of theorem [1] becomes more concise. But in general, condition (ii) cannot be weakened into (ii') as noted in the following remark.

Remark 2. Condition (ii) of theorem [1] cannot in general be weakened in condition that $\Theta : FC(Q) \rightarrow \text{Out}(K)$ is non injective. For consider:

$$K=<a_1,a_2,k_1,k_2| [a_1,a_2], [a_1,k_1], i,j = 1,2 > \approx (\mathbb{Z} \oplus \mathbb{Z}) \times F(2)$$

$$A=<a_1,a_2>_K \approx \mathbb{Z} \oplus \mathbb{Z} \subset K$$

$$Q=<q_1,q_2|[q_1,q_2] > \approx \mathbb{Z} \oplus \mathbb{Z}$$

Let $\theta_1 \in \text{Inn}(K)$, s.t. $\forall x \in K, \theta_1(x) = x^{k_1}$; θ_1 fixes A pointwise. Let $\theta_2 \in \text{Aut}(K)$, s.t. θ_2 is anosov on A, and $\theta_2(k_2) = k_2$, $\theta_2(k_1) = k_1\alpha$ for some $\alpha \neq 1$ lying in A. So defined, θ_1 and θ_2 commute, so that the map sending q_1 to θ_1 and q_2 to θ_2 extends to an homomorphism $\theta : Q \rightarrow \text{Aut}(K)$; moreover θ is injective.

Consider $G = K \rtimes_\theta Q$; we show that G is icc despite that $\Theta : FC(Q) \rightarrow \text{Out}(K)$ is non injective. For any non trivial $x \in K$, x^G is infinite, so that in particular condition (i) of theorem [1] is not satisfied. If condition (ii) would be satisfied, it would follow that for some $n \geq 1$, k_1^n would have a $\theta(Q)$-finite orbit. We show that this cannot arise.
Consider \(\theta_2 \in \theta(Q) \), \(\theta_2(k_1) = k_1 \alpha, \alpha \neq 1 \in A \), so that for any \(p \geq 1 \),
\[
\theta_2^p(k_1^n) = k_1^n \alpha^n \theta_2(\alpha^n) \theta_2^2(\alpha^n) \cdots \theta_2^{p-1}(\alpha^n)
\]
Let \(\phi_p : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \) be the map defined by \(\phi_p(x) = x \theta_2(x) \theta_2^2(x) \cdots \theta_2^{p-1}(x) \); \(\phi_p \) turns out to be an homomorphism. Let \(M_\theta \in SL(2, \mathbb{Z}) \) be the matrix associated with \(\theta_2 \); it has two distinct irrational eigen values \(\lambda_1, \lambda_2 \). Let \(M_p \) be the matrix associated with \(\phi_p \). Then \(M_p = \text{Id} + M_\theta + M_\theta^2 + \cdots + M_\theta^{p-1} \). \(M_p \) has two eigen values : \(l_i = 1 + \lambda_i + \lambda_i^2 + \cdots + \lambda_i^{p-1}, \)
\(i = 1, 2 \). They must be both non null because otherwise \(\lambda_i^p = 1 \) which contradicts that \(M_\theta \) is anosov. Hence, for any \(p \geq 1 \), \(\phi_p \) is injective. Since for any \(n \geq 1 \), \(\theta_2^p(k_1^n) = k_1^n \phi_p(\alpha^n) \), with \(\alpha^n \neq 1 \in A \), the \(\theta(Q) \)-orbit of \(k_1^n \) is infinite, so that condition (ii) is not satisfied. With theorem I \(G \) is icc, despite that the homomorphism \(\Theta : FC(Q) \to \text{Out}(K) \) is non injective.

6. FURTHER ON WEAKENING (ii) : THE TWIN FC-SUBFACTORS

We keep on refining condition (ii) by looking at what is in between the strengthed condition \(\theta : FC(Q) \to Aut(K) \) non injective, condition (ii) and the weakened condition (ii') : \(\Theta : FC(Q) \to \text{Out}(K) \) for theorem I.

Definition. Let \(G = K \rtimes_{\theta} Q \); We say that \(C \rtimes C' \) is a twin FC-subfactor of \(G \) when :
- \(C \) is a subgroup of \(K \), \(C \cap FC(K) = 1 \),
- \(C \) is \(\theta(Q) \)-stable with only finite \(\theta(Q) \)-orbits,
- \(C' \) is a normal subgroup of \(Q \), \(C' \subset FC(Q) \),
- \(\pi \) and \(\theta \) are injective respectively on \(C \) on \(C' \) and \(\pi(C) = \theta(C') \),
(so that \(\theta^{-1} \circ \pi | C : C \to C' \) is an isomorphism),
- \(C \neq 1 \) (and so \(C' \) is either finite or \(\mathbb{Z}^n \)).

A twin FC subfactor is either \(\mathbb{Z}^n \times \mathbb{Z}^n \) or \(C \rtimes_{\text{Inn}(C)} C' \), for some finite group \(C \). It is \(\theta(Q) \)-stable with only finite orbits, and \(\theta^{-1} \circ \pi \) sends isomorphically the normal factor on the retract one.

Theorem 3. Let \(G = K \rtimes_{\theta} Q \neq 1 \); Then \(G \) is not icc if and only if either condition (i) or at least one of the following conditions is satisfied :
- (ii.a) \(\theta : FC(Q) \to Aut(K) \) is non injective,
- (ii.b) \(G \) contains a twin FC-subfactor.

Proof. We first consider the sufficient part of the assumption. Condition (i) implies that \(G \) is not icc follows from theorem II; obviously condition (ii.a) also implies \(G \) not icc. If \(G \) contains a twin FC-subfactor \(C \rtimes_{\text{Inn}(C)} C' \), then condition (ii) of theorem II is satisfied with \(q \) being any non trivial element of \(C' \) and \(k = \theta \circ \pi^{-1}(q) \), so that \(G \) is not icc.

We now prove the necessary part of the assumption. We suppose in the following that \(G \) is not icc while it satisfies neither condition (i) nor condition (ii.a) and prove that condition (ii.b) must be satisfied.

With the theorem II there exists \(q \neq 1 \) in \(FC(Q) \) and \(k \neq 1 \) in \(K \), such that \(\theta_q(x) = x^k \) and \(\text{Stab}_q(k) \) has a finite index in \(Q \). Let \(C_Q \) be the subgroup of \(FC(Q) \) finitely generated by \(q^Q \); \(C_Q \) is a non trivial FC-group normal in \(Q \). Let \(Q_1 = \theta^{-1}(\text{Stab}_q(k)) \), it has a finite index in \(Q \). Clearly \(\text{Stab}_q(k) \) is included in \(Z_{\theta(q)}(\theta_q) \); if \(Q_1 \not\subset Z_{\theta(q)} \), there would exist \(p \in Q \) such that \([p, q] \neq 1 \) and \(\theta([p, q]) = 1 \), which would contradict that \(\theta : FC(Q) \to Aut(K) \) is injective. Hence, \(Q_1 \subset Z_{\theta(q)} \), so that for \(q_0 = 1, q_1, \ldots, q_p \) a set of representatives of \(Q/Q_1, C_Q \) is generated by the finite family \(q, q^a, \ldots, q^{p^q} \).

Let \(k_i \) be such that \(k = \theta_{q_i}(k_i) \), then \(k_0 = k, k_1, \ldots, k_p \) is the \(\theta(Q) \)-orbit of \(k \) and moreover \(\theta_{q_i}^{-1} \circ \theta_q \circ \theta_{q_i}(x) = x^{k_i} \). Let \(C_K \) be the subgroup of \(K \) generated by \(k_0, k_1, \ldots, k_p \); \(C_K \) is preserved under \(\theta(Q) \) and contains only finite \(\theta(Q) \)-orbits. An element in \(C_K \cap
\(FC(K) \) has a finite conjugacy class in \(G \), so that \(C_K \cap FC(K) = 1 \) because otherwise as in fact 3 in the proof of theorem 1, condition (i) would follow.

By construction, \(\pi(C_K) = \theta(C_Q) \). Each element of \(Ker \pi|_{C_K} \) has a finite conjugacy class in \(G \) so that \(\pi \) must be injective on \(C_K \) because otherwise, as in fact 3 in the proof of theorem 1, condition (i) would follow. Moreover \(\theta \) is injective on \(C_Q \) because otherwise \(\theta : FC(Q) \to Aut(K) \) would be non injective. Hence \(\theta^{-1} \circ \pi|_{C_K} : C_K \to C_Q \) is an isomorphism. Now \(C_Q \neq 1 \) is a f.g. \(FC \)-group and hence with \(\text{Ne} \) either \(Tor(C_Q) \neq 1 \) is a finite normal subgroup in \(Q \), in which case let \(C' = Tor(C_Q) \), or \(C_Q \approx \mathbb{Z}^n \), in which case let \(C' = C_Q \). If \(C \) denotes \(\pi^{-1} \circ \theta(C') \), then \(C \rtimes_\theta C' \) is a twin \(FC \)-subfactor in \(G \).

In conclusion suppose that \(G = K \rtimes_\theta Q \) does not satisfy condition (i) of theorem 1. If \(\theta : FC(Q) \to Aut(K) \) is non injective then \(G \) is not icc. If \(G \) is not icc despite \(\theta \) is injective then \(G \) contains a twin \(FC \)-subfactor. It follows that \(\Theta : FC(Q) \to Out(K) \) is non injective. If \(\Theta \) is non injective, \(G \) may be icc as seen in remark 2; \(G \) is not icc whenever \(G \) contains a twin \(FC \)-subfactor.

Example. As in remark 2, consider:

\[
K = \langle a_1, a_2, k_1, k_2 | [a_1, a_2], [a_1, k_1], i, j = 1, 2 \rangle > \approx (\mathbb{Z} \oplus \mathbb{Z}) \times F(2)
\]

\[
A = \langle a_1, a_2 \rangle_{K} > \approx \mathbb{Z} \oplus \mathbb{Z} \subset K
\]

\[
Q = \langle q_1, q_2 | [q_1, q_2] > > \approx \mathbb{Z} \oplus \mathbb{Z}
\]

Let \(\theta_1 \in Inn(K) \), s.t. \(\forall x \in K, \theta_1(x) = x^{\theta_1} \). Let \(\theta_2 \in Aut(K) \), s.t. \(\theta_2 \) is anosov on \(A \), and \(\theta_2 \) is the identity on \(< k_1, k_2 >_{K} \). Hence \(\theta_1 \) and \(\theta_2 \) commute so that the map sending \(q_1 \) to \(\theta_1 \) and \(q_2 \) to \(\theta_2 \) extends to an injective homomorphism \(\theta : Q \to Aut(K) \). So defined, \(\theta(Q) \) fixes \(k_1 \) so that condition (ii) of theorem 1 is satisfied and \(G \) is not icc; condition (i) is not satisfied since \(FC(K) = A \) contains only infinite \(\theta(Q) \)-orbits. Let \(C \subset K, C' \subset Q \) be generated respectively by \(k_1 \) and \(q_1 \), then \(C \rtimes_\theta C' = \mathbb{Z} \times \mathbb{Z} \) is a twin \(FC \)-subfactor in \(G \).

Corollary 2. Let \(G = K \rtimes_\theta Q \), s.t. \(K \) does not contain any \(\theta(Q) \)-invariant subgroup \(H \neq 1 \), either finite or \(\mathbb{Z}^n \) with only finite \(\theta(Q) \)-orbits. Then \(G \) is icc if and only if the restricted homomorphism \(\theta : FC(Q) \to Aut(K) \) is injective.

Proof. Under these hypothesis, one cannot verifies condition (i), and \(G \) cannot contain any twin \(FC \)-subfactor. \(\square \)

7. Split extension of icc groups

We now consider the special case where at least one of the factors is icc.

Theorem 4. Let \(G = K \rtimes_\theta Q \), with \(K \) icc. Then \(G \) is icc if and only if \(\Theta : FC(Q) \to Out(K) \) is injective.

Proof. Since \(K \) is icc, on the one hand condition (i) cannot arise and on the other \(Z(K) = 1 \) so that the conclusion follows from proposition 2 and theorem 1. \(\square \)

The following follows directly from theorem 2.

Theorem 5. Let \(G = K \rtimes_\theta Q \) with \(Q \) icc. Then \(G \) is icc if and only if the action of \(\theta(Q) \) does not have any finite orbit in \(FC(K) \setminus 1 \).

Corollary 3. The icc property is stable under split extension.
Note that a non elementary word hyperbolic group K is icc if and only if it does not contain any non trivial finite normal subgroup. For, in a word hyperbolic group the centralizer of any \mathbb{Z} subgroup is virtually \mathbb{Z}. So that $FC(K)$ is a torsion FC-group. Since in a word hyperbolic group there is only finitely many conjugacy classes of torsion elements, $FC(K)$ is a finite normal subgroup of K.

Theorem 6. Let $G = K \rtimes Q$ with K a non trivial word hyperbolic group. Then G is icc if and only if K is icc and $\Theta : FC(Q) \rightarrow Out(K)$ is injective.

Proof. Note that, as already stated, $G = K \rtimes Q$ is not icc whenever $K \neq 1$ is elementary. So we suppose in the following that G is non elementary. It follows that $Z(K)$ is finite (cf. [Gr]). If $Z(K) \neq 1$ then K contains a non trivial finite normal subgroup so that both K and G are not icc. If $Z(K) = 1$, it follows from proposition 2 that G is not icc if and only if it satisfies either condition (i) or condition (ii'). In a word hyperbolic group the normalizer of a \mathbb{Z} subgroup is virtually \mathbb{Z}; in particular, a non elementary hyperbolic group cannot contain any $\mathbb{Z} \oplus \mathbb{Z}$ nor normal \mathbb{Z} subgroup. Hence condition (i) becomes that K contains a non trivial finite normal subgroup, that is, that K is not icc. \[\square\]

Corollary 4. Let $G = K \rtimes Q$ with K a non cyclic torsion free word hyperbolic group. Then G is icc if and only if $\Theta : FC(Q) \rightarrow Out(K)$ is injective.

References

[Co] Y.de Cornulier, *Infinite conjugacy classes in groups acting on trees*, preprint (2005).
[HP] P.de la Harpe et J.-P.Préaux, *Groupes fondamentaux des variétés de dimension 3 et algèbres d’opérateurs*, preprint arXiv:math.GR/0509449 v1 (2005).
[Gr] M.Gromov, *Hyperbolic groups* in "Essays in group theory", MSRI Publications, Springer (1987), 75–263.
[ROIV] F.J.Murray et J.von Neumann, *On rings of operators*, IV, Annals of Math. 44 (1943), 716–808.
[Ne] W.Neumann, *Groups with finite conjugacy classes*, Proc. of the L.M.S. 1 (1951), 178–187.
[P1] J.-P.Préaux, *Wreath product of groups with infinite conjugacy classes*, preprint arXiv:math.GR/0612685 (2006).
[P2] J.-P.Préaux, *Finite extension of group with infinite conjugacy classes*, preprint arXiv:math.GR/0703314 (2007).