Recent and Glacial Age Organic Carbon and Biogenic Silica Accumulation in Marine Sediments

Douglas S. Cwienk
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
Cwienk, Douglas S., "Recent and Glacial Age Organic Carbon and Biogenic Silica Accumulation in Marine Sediments" (1986). Open Access Master's Theses. Paper 809.
https://digitalcommons.uri.edu/theses/809

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
RECENT AND GLACIAL AGE ORGANIC CARBON AND BIOGENIC SILICA ACCUMULATION IN MARINE SEDIMENTS

BY

DOUGLAS S. CWIENK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY (GEOLOGICAL)

UNIVERSITY OF RHODE ISLAND

1986
MASTER OF SCIENCE THESIS

OF

DOUGLAS S. CWIENK

APPROVED:

Thesis Committee

Major Professor

DEAN OF THE GRADUATE SCHOOL
Sedimentation rate data for the late Pleistocene and Holocene was compiled and mapped along with bulk sediment accumulation rate data estimated from the surface calcium carbonate concentration. This data was combined with surface organic carbon and opal (biogenic silica) concentration data in order to calculate the recent rate of accumulation of these biogenically derived sedimentary components. The maps of organic carbon and opal accumulation rates showed similar trends, being highest in known regions of upwelling and high productivity. Annual organic carbon burial was estimated by multiplying the accumulation rates by the areas between the contours and found to be 0.21×10^{14} gC/yr for the deep-sea (pelagic and hemipelagic) and 0.04×10^{14} gC/yr for the shelves exclusive of deltaic sediments. Burial of organic carbon in deltaic sediments is very large, however the necessary data is not available to calculate the burial of organic carbon in all the world's major river deltas. For this reason an estimate of 1.04×10^{14} gC/yr from Berner (1982) is assumed to be correct for delta deposits, yielding a global organic carbon burial rate of 1.29×10^{14} gC/yr. Organic carbon burial in the most recent Mediterranean sapropel is 0.016×10^{14} and therefore had little or no affect on the global carbon cycle. Glacial versus interglacial organic carbon accumulation is compared at 10 sites, showing glacial rates higher in areas of present upwelling. Organic carbon
accumulation rates and organic carbon accumulation rates divided by productivity are plotted versus sedimentation. While correlations were fairly good ($r^2=0.81$ and $r^2=0.66$, respectively), sedimentation rate data alone is insufficient for estimating organic carbon accumulation.

All available quartz and opal concentrations from deep-sea surface sediments were intercalibrated, plotted, and contoured on a calcium carbonate-free basis. The maps show highest concentrations of opal along the west coast of Africa, along equatorial divergences in all oceans, and at the Polar Front in the southern Indian Ocean. These are all areas where upwelling is strong and there is high biological productivity. Quartz in pelagic sediments deposited far from land is generally eolian in origin. Its distribution reflects dominant wind systems in the Pacific, but in much of the Atlantic and Indian oceans the distribution pattern is strongly modified by turbidite deposition and bottom current processes.
ACKNOWLEDGEMENTS

Support for this work came from National Science Foundation grants ATM 81-16301, OCE 82-00388, and OCE 85-11896 to M. Leinen and also through the award of the URI Industrial Associates Fellowship in 1985 from Exxon. I thank the many technicians and students who generated the data used in this compilation, most of whom I do not know, but including Patricia Price, formerly of Oregon State University, and Tammy King Walsh, University of Rhode Island. I also thank Ray Cranston of the Atlantic Geoscience Centre, Bedford Institute of Oceanography and J.H.F. Jansen of the Netherlands Institute for Sea Research for providing me with unpublished data.

I would like to thank Richard Burroughs for once again being an outside committee member for a defending graduate student at GSO, and for his insight into the problem from outside the immediate area of my work. I would like to thank Mike Arthur for his suggestions and many long discussions of my work. I would especially like to thank my major professor Margaret Leinen for her help in defining the direction my work was to take, pointing me in the right direction to find what was needed, for showing me how to write scientific works, and for consistently providing funding for me, so that I could complete my work. I would also like to thank Ken Hinga for his help and his insight into the workings of GSO.

On a more personal note I would like to thank my friends
at GSO, the girls in the lab who listened to me complain when things went wrong, the other students who drank, laughed and enjoyed life beyond work with me, especially Frank Hall and the intramural football team, White Noise, who helped me blow off steam both on the field and in the bar. Above all I would like to thank my parents for their constant love and support regardless of what I chose to do with my life and my wife Eileen, who supported, comforted, and loved me through the many ups and downs that my work and my moods created.
This thesis is presented in the form of one manuscript, in accordance with the guidelines of the University of Rhode Island Graduate School of Oceanography. The manuscript is to be submitted to the journal, Biogeochemical Cycles. Appendix I consists of an article previously published under the authorship of Margaret Leinen, Douglas Cwienk, G. Ross Heath, Pierre Biscaye, V. Kolla, Jorn Thiede, and J. Paul Dauphin. Much of the plotting and contouring was done by me as was the writing of the initial draft of the text, however the text was heavily revised and the unpublished data used, had been obtained prior to my beginning work on that project. Appendix I, while not an integral part of this thesis, provided data and experience in plotting and handling large data sets, used in the preparation of this thesis. Appendix 2 and 3 contain all of the raw data used to generate both the maps for my thesis and the maps of Leinen, et al, 1986. Appendix 4 contains the calculated values used to generate the sedimentation rate, bulk sediment, organic carbon and opal accumulation rate maps.
TABLE OF CONTENTS

Abstract ii
Acknowledgement iv
Preface vi
Table of Contents vii
List of Tables ix
List of Figures x
Introduction 1

Methods

Organic Carbon 7
Biogenic Silica 10
Sedimentation Rates 11
Accumulation Rates 13

Discussion

Sedimentation Rate Map 16
Bulk Sediment Accumulation Rate 18
Organic Carbon Accumulation 19
Opal Accumulation Rates 20
Global Organic Carbon Deposition 21
Organic Carbon Burial in Sapropels 26
Glacial vs Interglacial Organic Carbon Accumulation 27
Estimating Organic Carbon Accumulation 28

Conclusions 29

Literature Cited 31
Tables 43
Figures 46

Appendices 78
Bibliography

1. Regional Distribution of Organic Carbon occross 65
2. Comparison of Organic Carbon burial estimates 64
3. Comparison of Glacial vs Interglacial Organic 63
LIST OF TABLES

1 Regional Distribution of Organic Carbon Burial 43
2 Comparison of Organic Carbon Burial Estimates 44
3 Comparison of Glacial vs Interglacial Organic Carbon Accumulation Rates 45
LIST OF FIGURES

1 Sedimentation Rate Map
2 Distribution of CaCO₃ in Surface Sediments
 a Pacific Ocean (Berger, et al, 1976)
 b Atlantic Ocean (Biscaye and Kolla, 1976)
 c Indian Ocean (Kolla, et al, 1976)
3 Distribution of Opal in Surface Sediments
 (Leinen, et al, 1986)
4 Distribution of Quartz in Surface Sediments
 (Leinen, et al, 1986)
5 Bulk Sediment Accumulation Rate Map
6 Organic Carbon Accumulation Rate Map
7 Opal Accumulation Rate Map
8 Plot Opal vs Organic Carbon Accumulation
9 Distribution of Primary Production
 (Berger, et al, 1986)
10 Equal Area Projection of Organic Carbon Accumulation
11 Glacial vs Interglacial Organic Carbon Accumulation
12 Sedimentation Rate vs Organic Carbon Accumulation Rate
13 Sedimentation Rate vs Organic Carbon Accumulation Rate Divided by Primary Production
14 Regional Annual Organic Carbon Accumulation
INTRODUCTION

Organic carbon is usually a minor constituent of marine sediments, however its burial plays a very important role in biogeochemical cycles. Marine sediments represent a significant sink for carbon in the marine carbon cycle that has been estimated by many researchers (e.g. Garrels and Perry, 1974; Kempe, 1979; Berner, 1982), but has not yet been studied in great detail. In this study we combine maps of the global distribution of organic carbon in deep sea sediments (Premuzic, et al., 1982; Cwienk and Leinen, 1986) with sedimentation and mass accumulation rates to make a quantitative estimate of recent and glacial age organic carbon accumulation in marine sediments.

The main sources of organic carbon to marine sediments are terrestrial organic matter transported to the ocean via rivers and photosynthetic production of marine phytoplanktic organic matter. Chemosynthetic production of organic carbon compounds occurs in hydrothermal vent communities (Corliss, et al., 1979). The net carbon production of these unique areas is probably small and will be ignored for the purposes of this study.

The amount of marine autochthonous organic carbon fixed in near-surface waters by photosynthesis is dependent, in part, on nutrient availability in surface waters. During
respiration a large proportion of this photosynthetic organic carbon is metabolically oxidized and a smaller fraction of it is reformed into different organic carbon compounds. Carbon (CO$_2$) is cycled through this system of photosynthetic fixation and metabolic liberation. A portion of the organic carbon in this cycle survives oxidation in the water column and is transported to the sediments where most of it is recycled by benthic faunal respiration. A similarly small fraction (ca. 0.5% of the primary production) of the organic carbon reaching the sediments is preserved by burial (Müller and Suess, 1979). Previous studies suggest that on a regional and local basis (e.g. Lisitzin, 1972; Suess, 1980) the rate of organic carbon burial reflects primary productivity in spite of the many processes which diminish carbon fluxes to sediments. Such a relationship between sedimentary organic carbon accumulation and primary productivity (photosynthesis) would allow us to make inferences about surface productivity in the past from sediment accumulation, despite the fact that only 0.01% to 20% (typically 0.5%) of the organic carbon produced is preserved in the sediments (Müller and Suess, 1979).

Whereas river input and primary production (photosynthesis) in surface waters control the amount of organic carbon supplied to the seafloor, many factors modify the concentration of organic carbon buried in the sediments. For example, because organic carbon fluxes may be modified by oxidation in the water column and at the sediment water
interface organic carbon distribution can be altered by
depth-dependent oxygen concentrations. In areas where the
midwater oxygen-minimum zone intersects the seafloor along
continental margins, organic carbon is preferentially
preserved in surface sediments (e.g. the Peru margin,
Froelich, 1979; Demaison and Moore, 1980). Organic carbon
concentrations and accumulation rates may also be influenced
by varying burial rates. Higher sedimentation rates remove
organic carbon from the zone of oxic benthic metabolism
(reduced residence time at the sediment/water interface).
The relationship between the rate of organic carbon burial
and sedimentation rate is quantitative for specific areas
(eg. northeast Pacific, Heath et al, 1977; West Africa,
Jansen, et al, 1984). Müller and Suess (1979) have
suggested that the relationship between the rate of organic
carbon burial and sedimentation rate varies in a systematic
fashion in all sediments.

Organic carbon distribution may also be affected by the
grain size and mineralogy of the accompanying sediments.
Some organic carbon compounds are sorbed onto clays (Weiss,
1969; Morris and Calvert, 1975), thereby apparently
increasing organic carbon preservation in the fine fraction.
Fine-grained sediments have been found to be higher in
organic carbon (Emery and Uchupi, 1972; Bordovskiy, 1965;
and others). Of course, this relationship may be the result
of depositional energy and higher organic carbon fluxes to
the seafloor over the continental slope where finer grained
sediments preferentially accumulate. Müller and Suess (1977) suggested that organic carbon preservation is also related to calcium carbonate concentration, due to sorption of dissolved organic matter onto the surface of calcium carbonate grains. Direct evidence for these effects is lacking.

It has been proposed that primary production in many low latitude oceanic regions was higher during glacial periods than during interglacial periods (e.g. Müller, et al, 1983; CLIMAP Project Members, 1976, and Broecker, 1982). Such changes in productivity and the amount of carbon buried would also have affected the CO$_2$ content of the atmosphere. Evidence from Antarctic ice cores suggests that the CO$_2$ content of the atmosphere was approximately 90 ppm lower during the last glacial maximum (18 ka) (Neftel, et al, 1982). It has been shown that increasing the concentration of CO$_2$ in the atmosphere would cause a warming of the atmosphere due to the retention of short wave radiation being back-radiated by the earth (Schneider and Kellogg, 1973). This phenomenon is known as the "greenhouse effect". Its possible consequences have caused much concern because of the progressive increase in atmospheric CO$_2$ concentrations since the industrial revolution, as the result of the burning of fossil fuels.

Any attempt to study changes in the carbon cycle through time or to assess possible responses to anthropogenic influences (e.g. Garrels and Perry, 1974; Kempe, 1979;
Arthur, 1982; etc.) must include an estimate of changes in the rate of removal of organic carbon from the system by sedimentation on the sea floor so that a baseline is available against which to compare estimates for older time periods. Organic carbon accumulation rates are related to productivity, the rates determined here also provide data with which such a relationship can be quantified for estimation of rates of productivity during other time intervals may be made.

Other approaches to estimating rates of organic carbon burial and its role in the carbon cycle are based on net flux measurements at a few localities, which are calculated from surface carbon flux measured by sediment traps and benthic flux measured by benthic respiration and pore water studies. Such studies are necessarily short term and therefore are influenced by seasonal and short-term events, such as organic floc falls (Honjo, 1982). Surface flux minus benthic flux equals the burial flux or accumulation rate. The average organic carbon accumulation rate in sediments integrates the burial flux over longer periods of time (a few kyrs.) and mediates the effects of seasonality, short-term and localized phenomena. By mapping the distribution of organic carbon accumulation on the sea floor, local studies of fluxes may be placed into the context of global or regional trends. In this way such flux studies can be extrapolated globally without having to study fluxes everywhere in the world for extended periods of time.
Biogenic silica (opal) is often a major constituent of marine sediments and its importance has long been recognized. Opal consists primarily of the tests of siliceous marine phytoplankton and zooplankton, which are most abundant in zones of high nutrient availability and therefore it is another possible indicator of surface water biological productivity. Its distribution in ancient sediments has been used by many authors to infer paleoproductivity and paleocirculation (e.g. Pisias, 1974; Molina-Cruz, 1976; Pisias and Leinen, 1984). Like organic carbon, opal produced in the surface waters does not reach the seafloor without dissolution. Opal is subject to dissolution both in the water column and on the seafloor because seawater is everywhere undersaturated with respect to opaline silica (Miskell, et al, 1985). For deep water masses it is a general rule that older water masses (i.e. ones which have been separated from the surface water longer) are less undersaturated (Berger, 1970; Edmond, 1974). This is because dissolved silica is added to the bottom waters by progressive dissolution of opal falling from surface waters and a net upward flux of dissolved silica from sediments to deepwater masses. Unlike calcium carbonate, which is subject to differential dissolution with depth, preservation of opal is largely independent of depth. Opal and organic carbon are similar in that preservation is partially dependent on sedimentation rate, however since other factors may affect the preservation of either or both
to varying degrees, any major differences in their distribution should distinguish areas in which variations are due to preservation rather than to actual variations in productivity.

A global map of recent sedimentation rate and bulk sediment accumulation are presented in this study along with maps previously published which explain the pattern of global sedimentation. Maps of global opal and organic carbon accumulation are presented to show the pattern of accumulation of two organically derived sedimentary components that are not as strongly controlled by water depth as calcium carbonate. With the exception of the opal accumulation map which was generated to contrast with the organic carbon accumulation map, the generation of the maps was done with the ultimate goal of calculating the recent burial rate of organic carbon in submarine sediments.

METHODS

Organic Carbon

There are several techniques for determining carbon in deep sea sediments. Sediment geochemists analyze marine carbon in three categories: 1) carbonate carbon, which in deep-sea sediments is generally the remains of calcareous organisms, 2) organic carbon, which is the remains of living tissue, and 3) total carbon, the carbonate plus the organic carbon. Because these three components are related, only two need to be determined, and the third can be calculated. Some investigators measure both the organic carbon and the
carbonate carbon (Weliky, et al, 1983), while others measure the total carbon and either organic carbon or carbonate and find the third value by difference (Kolpack and Bell, 1968). Carbonate carbon is measured by adding a strong acid such as hydrochloric or phosphoric acid, which dissolves the carbonate, generating carbon dioxide (Weliky, et al, 1983). The amount of CO$_2$ generated is measured and the results are compared to standards to determine the concentration. Measurements of carbonate carbon using a carbonate bomb have an accuracy of ca. ±5% (Dunn, 1980), while measurements made with a coulometer are dependent on the accuracy of the sample weight, (Engleman, et al, 1985).

Organic carbon is generally measured by heating the sample to extremely high temperatures and measuring either the weight loss (for samples with high concentrations) or measuring the CO$_2$ generated by the oxidation of the organic carbon (for samples with low organic carbon concentrations, e.g. LECO, CHN and coulometry techniques) (Gibbs, 1977). Weliky, et al (1983) used a slightly different technique for measuring organic carbon, which consisted of measuring the CO$_2$ generated by dichromate oxidation of the sample. Carbon of various types is usually measured by instruments such as the LECO Carbon Analyzer or automated CHN (carbon-hydrogen-nitrogen) analyzer, which determine carbon by combusting the sample at high temperatures with purified O$_2$ and measuring the CO$_2$ generated (Kolpack and Bell, 1968). The determinations of organic carbon concentration in the
literature generally have an accuracy of ±0.02 weight percent. High precision and accuracy are required in partitioning total carbon into carbonate and organic carbon because organic carbon is found in concentrations of only 5% to <0.1% in open ocean sediments (Heath et al, 1977). Concentrations are somewhat higher on the continental shelves and slopes (Premuzic, et al, 1982).

There are some problems with the analytical techniques for carbon, which cause inaccuracies in the measurements. When a sample is acidified in order to measure the carbonate content, some of the volatile/soluble portion of the organic carbon can be dissolved by the acid and measured with the carbonate. Similarly when a sample is ashed at high temperatures in order to measure the organic carbon, some of the carbonate carbon is oxidized by the extreme heat (Lyle, written communication). Attempts to reduce the error due to these effects by using a weaker acid or lower temperature may result in incomplete dissolution or oxidation of the desired form of carbon (Froelich, 1980; Weliky et al, 1983). For these reasons the measured organic carbon and carbonate carbon rarely add up to 100% of the total carbon when all three are measured. Froelich (1980) attempted to solve this problem by acidifying samples to remove the carbonate, then analyzing the insoluble residue with a CHN analyzer. The acid-dissolved solution (filtrate) was also analyzed using a modified dissolved organic carbon (DOC) method (Menzel and Vaccaro, 1964; Kerr, 1977). The two values were summed to
obtain the organic carbon percentage. Because of its relative difficulty and time-consuming nature this technique has not been used by many authors. Due to problems in accurately determining the dry bulk density and sedimentation rate, values with errors of less than ±10% of the true value are acceptable.

For this study we used organic carbon and carbonate carbon data from various literature sources. Additional unpublished data for sediments from North Pacific basin, analyzed at Oregon State University, were provided by M. Lyle (written communication). Additional new analyses of organic carbon concentrations in Indian and Atlantic Ocean samples were performed for this study using a Coulombmetrics, Inc. coulometer. Samples were dried, weighed, and a split of the sample was placed in coulometer, where they were acidified with phosphoric acid. The CO$_2$ generated was then automatically titrated by the coulometer to provide the percentage of calcium carbonate. A second split was placed in an oven at 980°C where the CO$_2$ generated was swept by a constant flow of ultrapure O$_2$ into the same automated titrator to determine the total carbon (Huffman, 1977). Standards of pure calcium carbonate were run to ensure that all carbonate carbon was being dissolved or combusted during each of the analyses. The organic carbon was calculated by subtraction.

Biogenic Silica

Opal concentrations used in this study are from the
compilation of Leinen and others (1986). Most of the opal values reported were determined by x-ray diffractometry using alumina as an internal standard (Calvert, 1966; Ellis and Moore, 1973). Although the absolute values indicated by opal determinations have been suspect, recent work (Leinen and King, 1981a, b; Leinen, 1985) shows that the relative abundances indicated by x-ray diffractometry are valid. Leinen and others (1986) also used several techniques to intercalibrate the x-ray diffraction data with other data sets, including 1) comparison of samples analyzed by more than one author, 2) normative partitioning of sediment geochemistry, and 3) standard additions. Their results indicate that the accuracy of uncalibrated x-ray opal determinations is <±10 wt%.

Sedimentation Rates

Sedimentation rates were calculated by dividing the depth to a given stratigraphic marker (in centimeters) by the age of that marker (in thousands of years). This yielded the sedimentation rate in centimeters per thousands of years. In the absence of data to the contrary, it was assumed that sedimentation was continuous during the interval between the surface and the stratigraphic datums.

The most reliable stratigraphic markers for determining Holocene and glacial sedimentation rates are the last glacial maximum (at 18 ka) and the end of the last glacial (at 12 ka) as determined from the oxygen isotopic composition of planktonic or benthonic foraminifera (Imbrie,
et al., 1984), and 14C age determinations. Many cores were available for which oxygen isotope stratigraphies had been determined by CLIMAP, a study of the Holocene and glacial global ocean (Moore, et al., 1980; Prell, et al., 1980; CLIMAP Project Members, 1976). Additional sedimentation rates were also available or calculated based on carbon-14 dating of recent sediments, ash layer datums, biostratigraphy and magnetostratigraphy (the Brunhes/Matuyama (B/M) magnetic reversal at 690 ka (Goodel and Watkins, 1968)). The sedimentation rate estimates for the North Pacific Ocean are based primarily on 18 ka oxygen isotopic determinations and magnetostratigraphy (B/M) with ash layer datums in the eastern equatorial region. All stratigraphy in the southern South Pacific is based on magnetic reversal stratigraphy (B/M Boundary). The Atlantic and Indian Ocean sedimentation rates are based mainly on oxygen isotope stratigraphy with some magnetostratigraphy, carbon-14, and biostratigraphy, particularly on the margins.

Because this study was designed to investigate the accumulation rates of organic carbon for the Holocene (12 ka to present) and for the last glacial maximum, stratigraphies based on oxygen isotope determinations or carbon-14 ages are preferable because no pre-stage 2 sedimentation is included in the rate. The oxygen isotopic stratigraphy is very accurate and allows resolution of the desired interval (Prell, et al., 1986). In some cases the oxygen isotopic stratigraphy is detailed enough to identify the end of the
last glacial at 12 ka. In this case both glacial and interglacial accumulation rates can be determined. In other cases the resolution of the oxygen isotopic stratigraphy was not sufficient to identify the end of the last glacial periods accurately. In this case, if there have been changes in sedimentation rate since the last glacial maximum the differences will be averaged. Average sedimentation rates determined using only the Bruhnes/Matuyama datum represent longer averages and include possible changes that occurred over a number of glacials and interglacials (i.e. average late Pleistocene sedimentation). Carbon-14 dates based on organic carbon provide absolute ages, however the accuracy of these ages is altered by reworking and redeposition of the carbon and to some extent by diagenesis (Erlenkeuser, 1980). Most C-14 ages are too old by 1 to 2 kyrs. Sedimentation rates based on ash layer dates are precise and the ages of many of the ash layer datums are very accurate, but in general they are only useful in small areas.

Accumulation Rates

The bulk sediment accumulation rate is the mass burial flux of sediments. It is calculated by multiplying the dry bulk density (in g/cm³) and the sedimentation rate. When the bulk accumulation rate is multiplied by the concentration of any sedimentary component (expressed as a fraction of the sediment dry weight) the resulting value is the accumulation rate of that particular component.
regardless of dilution by other components or by lithification or compaction by burial.

In this study, accumulation rates, A, were calculated by multiplying the dry bulk density, B_d (in g/cm3), by the sedimentation rate, S (in cm/kyr), and the concentration of the sedimentary component being studied, C, giving units of g/cm2/1000yr:

$$A = B_d S C$$

Dry bulk density is defined as the weight of dry sediment per wet volume of sediment. This value was not available for all cores. Lyle and Dymond (1976) developed a set of equations to estimate the dry bulk density from calcium carbonate concentrations applicable to the North Pacific sediments that are relatively free of biogenic opal. Lyle and Dymond’s (1976) reasoning was that because the CaCO$_3$ is the only major sedimentary component that is significantly different in density from the others in unlithified opal-free deep-sea sediments, its concentration would control the changes in bulk density. Their data for the Pacific Ocean suggested that:

$$B_d = P_t (1 - X_w);$$

$$X_w = 0.83 - 0.36C;$$

and $$1/P_t = 0.88 - 0.22C - 0.03C^2$$

where, B_d is the uncompressed dry bulk density, P_t is the wet bulk density, X_w is the water content, and C is the calcium carbonate concentration. Whereas estimates based on this technique appear to be reasonable in the regional
examples cited by Lyle and Dymond, the technique is less reliable for estimating downcore variations in bulk density within a single core (Curry, 1986). Such uncertainty introduces some error into the accumulation rate calculations, but this error is generally smaller than errors in estimating absolute ages for various levels in the cores.

Kominz and others (1977) compared GRAPE (Gamma Ray Attenuation Porosity Evaluator) bulk density measurements from selected cores to the results obtained with the Lyle and Dymond (1976) equations and found good agreement. They used stepwise regression analysis and considered variations in dry bulk density due to age and depth in core to try to improve the equations but could not get significantly better results. Therefore, the Lyle and Dymond equations were used in this study to estimate the dry bulk density when measurements by GRAPE or other direct determinations were not available.

For calculating global organic carbon burial, areas within basins and between contour lines were determined by planimetering the area with a planimeter that had been calibrated by planimetering several known areas at varying latitudes (to ensure that the map was a true equal area projection) on an equal area map.
DISCUSSION

Maps were constructed for the global distribution of sedimentation rates, bulk sediment accumulation rates, organic carbon accumulation rates and opal accumulation rates. Organic carbon concentrations compiled from a literature search and new determinations made for this study were used as the data base for the organic carbon accumulation rate map. A map of global surface sediment opal distribution (Leinen et al, 1986) was used to generate the opal accumulation rate map. A map of bulk density was not generated because in most areas the bulk density was estimated from the CaCO$_3$ concentration as discussed above. More complete maps of CaCO$_3$ concentration in surface sediments than could be drawn from this data set have been published (Lisitzin, 1972, Berger, et al, 1976, Biscaye, et al, 1976, Kolla, et al, 1976).

SEDIMENTATION RATE MAP

One of the most important controls on the thickness of sediment accumulating on the sea-floor per unit time (Fig. 1) is the proximity to land and therefore the amount of terrigenous input. Terrigenous sources are dominant on the continental shelves but are also important in deep-sea areas where turbidity currents have deposited sediments, such as in the northeast Pacific and the western North Atlantic. A second important control on sedimentation rates is the varying rate of primary productivity in the surface waters. Major biogenic sedimentary components, carbonate which is
highly depth dependent and opal which is less dependent on water depth, are most important in areas with high nutrient inputs to surface waters, usually nearshore or in areas of upwelling, like the equatorial oceans (Figs. 2 & 3). Another factor controlling sedimentation rate is the relative rate of preservation of sedimentary components that dissolve in seawater, which is in part related to water depth. For example, CaCO₃ dissolves less rapidly in shallower waters than at abyssal depths and results in higher sedimentation rates on oceanic ridges such as the East Pacific Rise in the South Pacific Ocean and on oceanic plateaus, such as the Ontong-Java Plateau in the western equatorial Pacific and the Rockall Plateau west of Great Britain (Fig. 2). The eolian or windblown input in areas beneath major wind belts, such as the westerlies belt east of Japan, which has desert sources in southeast Asia or the eastern North Atlantic off Northwest Africa, which has sources in the desert Sahara, will also increase the sedimentation rate (e.g., Fig. 4). The lowest sedimentation rates are in areas which receive little eolian and biogenic sediments, and no terrigenous material from downslope transport. These areas, such as the central South Pacific have the lowest accumulation rates in the deep sea and accumulate little other than hydrogenous and hydrothermal sediment (Lyle, in press). The Pacific Ocean has lower overall sedimentation rates than the Atlantic Ocean for two reasons. The Pacific Ocean
has a ring of trenches circling the deep ocean basin which trap the terrigenous material transported downslope from the continents into the basin. Most of the sea-floor in the Pacific Ocean is also below the calcium carbonate compensation depth (CCD), thereby preventing the accumulation of CaCO$_3$ on much of the sea-floor, except along the East Pacific Rise and the various seamounts and plateaus.

In the Indian Ocean high sedimentation rates occur southwest and southeast of India, where the Indus Cone and Bengal Fan, respectively, accumulate great quantities of terrigenous material being eroded from the Himalayas. East of Southern Africa preservation of CaCO$_3$ on the shallow mid-ocean ridges and biogenic silica from the productive convergence at the polar front accounts for the higher sedimentation rate.

BULK SEDIMENT ACCUMULATION RATE

Figure 5 is the map of bulk sediment accumulation rates generated from the bulk densities estimated from CaCO$_3$ concentration using the equation of Lyle and Dymond (1976) and sedimentation rates. Measured bulk densities were available for a small number of sites in the South Pacific. For many cores sedimentation rate data were available but CaCO$_3$ concentrations were not. Because there were detailed maps of CaCO$_3$ available (Berger, et al., 1976, Biscaye, et al., 1976, Kolla, et al., 1976) and we had CaCO$_3$ data from cores near the sedimentation rate data, we estimated the
CaCO$_3$ concentration for cores for which such data were not available. The error introduced by such an estimation is at most about 20% which is small compared to the variation in sedimentation rate. The map of bulk sediment accumulation rate (Fig.5) shows the same general features as the sedimentation rate map (Fig.1). This confirms that bulk density, does not vary greatly compared to sedimentation rate and that the latter is the dominant control on mass accumulation rates.

ORGANIC CARBON ACCUMULATION

Organic carbon accumulation rates (Fig. 6) are highest in the equatorial Pacific, along the coasts (particularly the west coast of the United States), south of the Aleutian Islands and in a region extending east of Japan. Along the coasts, the organic carbon accumulation is high as a result of high primary and secondary biological production due to the input of nutrients and as a result of the accumulation of terrestrial organic carbon from the land. The organic carbon accumulation rate is high in the equatorial Pacific because of high primary production in the zone of upwelling (Koblenz-Mishke, et al, 1970). The lobe extending eastward from Japan is a reflection of the high productivity in that area due to upwelling at the confluence of the Kuroshio and Oyashio currents (Koblenz-Mishke, et al, 1970). The high values south of the Aleutian Islands is due to the cumulative effects of slightly higher productivity and high burial rates of terrigenous carbon in turbidites (Koblenz-
Mishke, et al, 1970).

The available data is adequate in the Pacific Ocean but is very sparse, elsewhere. Nonetheless, it is unlikely that any significant areas of high organic carbon accumulation were missed. Some areas that have better sample coverage may have been emphasized compared to regions having comparable values but a fewer number of data points. Data for organic carbon concentration is lacking in much of the Atlantic, Indian and Southern Ocean, therefore estimates of organic carbon accumulation are based on a small number of data points, thought to be representative.

OPAL ACCUMULATION RATES

The opal accumulation rate map (Fig.7) shows highest accumulation rates in the equatorial Pacific, east of Japan, off the northwest coast of Africa, around Antarctica, in the Caribbean and south of India. Aside from the Caribbean which is rather shallow, all of the regions mentioned are known areas of strong mixing and/or upwelling.

In most of the areas where organic carbon is accumulating rapidly, opal is also accumulating rapidly (see Fig. 8). This suggests that early work calling attention to the relationship between organic carbon accumulation, opal accumulation and primary productivity (Lisitzin, 1972; Heath, 1974) over broad areas, is reasonable, although this relationship may not hold for individual sites. This agreement can be seen between a map of estimated primary productivity (Fig.8) generated by Berger and others (1986).
for the Pacific Ocean and the organic carbon accumulation rate for that ocean basin (Fig. 6).

GLOBAL ORGANIC CARBON DEPOSITION

One of the major objectives of this study was to determine the total amount of organic carbon being deposited in sediments during the Holocene. For the Pacific Ocean, we estimated the rate of organic carbon deposition by multiplying the areas between contours of organic carbon accumulation by the mean value within that area (Table 1). This procedure could not be used for the Atlantic and Indian Oceans because of the poor data coverage for organic carbon contents. Atlantic and Indian Ocean sedimentation is controlled to a large degree by the bottom topography (e.g. Fig. 1). We therefore divided the Atlantic and Indian deep sea floor into sedimentary and topographic provinces and made new analyses of representative samples from each province in order to determine its average organic carbon accumulation rate (Fig. 10). The organic carbon burial rate was then determined as for that in the Pacific Ocean (Table 1).

The organic carbon accumulation rate on the continental shelves is difficult to estimate. Although organic carbon data for the shelves are not extensive, an estimate was made using DeMaster's (1981) technique for estimating the accumulation rate of biogenic silica on the continental shelves. He chose representative areas of the continental shelves and calculated accumulation rates for them. The
rest of the shelves were assumed to have the same accumulation rates as the area that they most closely resembled oceanographically. Estimates of annual organic carbon burial for the continental shelves and Arctic Ocean were made in this way.

Estimates of organic carbon accumulation for the highly siliceous sediment province of the Antarctic were made using the paleo-productivity equation developed by Sarnthein and others (in press)

\[P = 15.9 \, C^{0.66} \, S_B^{0.66} \, (\rho (1-\phi)^{0.66}) \, S_{B-C}^{-0.71} \, Z^{0.32} \]

in which, \(P \) is productivity in gC/m\(^2\)/yr, \(C \) is organic carbon concentration in weight percent, \(S_B \) is the sedimentation rate in cm/kyr, \(\rho (1-\phi) \) is the dry bulk density in g/cm\(^3\), \(S_{B-C} \) is the sedimentation rate for the organic carbon-free fraction and \(Z \) is the water depth in meters.

Average productivity for the Antarctic was estimated at 85 gC/m\(^2\)/yr based on Berger and others (1986), this is similar to what would be estimated using Koblenz-Mishke and others (1970). The average sedimentation rate of 5.9 cm/kyr was determined from Cooke and Hays (1981). The average water depth is 4000 meters and the dry bulk density 0.4 g/cm\(^2\). This yielded

\[
C = \frac{85}{15.9} \, (5.9)^{0.66} \, (0.4)^{0.66} \, (5.86)^{-0.71} \, (4000)^{0.32} \times 1.515
\]

\[C = 0.65\% \]

Therefore, \((0.0065)(0.4)(5.9)(1000)=15.34\) mgC/cm\(^2\)/ky Using this value, an annual organic carbon burial of 0.03x10\(^{14}\) mg/cm\(^2\)/ky (Table 1) was estimated for the circum-Antarctic
highly siliceous sediment belt. A much lower organic carbon accumulation rate was calculated for the remainder of the Antarctic region because it has a slower sedimentation rate (therefore, less effect on preservation), lower productivity and it is subject to erosion over much of its area. Whereas it may seem inappropriate to use the productivity equation in this way, the estimate that it yielded for the circum-Antarctic appears reasonable.

The annual organic carbon burial for the continental shelves \(0.04 \times 10^{14}\) grams C and the deep-sea \(0.21 \times 10^{14}\) grams C total \(0.25 \times 10^{14}\) grams carbon (Table 1). This value agrees well with that of Berner (1982) if one excludes the deltaic-shelf sediments, which account for 83% of his estimate of sedimentary organic carbon burial rates (Table 2). We gave no special consideration to deltaic sediments in this study. Berner (1982) determined organic carbon burial in deltaic deposits by multiplying the suspended sediment transport from rivers by the average organic carbon content of the deltaic sediments. Arthur and others (1985) arrived at a global organic carbon burial value comparable to Berner's (Table 2) by balancing the carbon reservoirs with the global \(\delta^{13}C\).

Mopper and Degens (1979) pointed out that organic flocculation in estuaries (and presumably deltas) may control the amount of organic carbon reaching the deep-sea from rivers. This together with Berner's (1982) estimate suggest that delta deposits are an important component of
the carbon burial. We therefore tried to make an estimate of carbon burial in deltas based on sediment accumulation rates that could be compared with the Berner estimate.

Kuehl and others (1982) found that sediments accumulate on the Amazon Delta at a rate of 2 cm/yr over an area of approximately 46,000 km\(^2\) and 0.5 cm/yr over an area of 30,000 km\(^2\) and that the sediments have a dry bulk density of 0.7425 gr/cm\(^3\) for a total of \(8 \times 10^{14}\) grams of sediment accumulating annually on the Amazon Delta. This quantity is twice the suspended sediment transport \((3.63 \times 10^{14})\) used by Berner (1982) for his calculations and suggests that Berner's carbon burial could be less than half of the actual amount for this delta.

Trefry and Presley (1982) found that sediments are accumulating at a rate of 2 cm/yr on the Mississippi Delta and that approximately 1% of the sediment is organic carbon. The area of the delta is 2000 km\(^2\). If the dry bulk density is similar to that for the Amazon Delta (0.75), then the annual carbon burial is \(0.3 \times 10^{12}\) grams. The inclusion of Mississippi Fan sediments \((2 \times 10^{10}\) gC/yr) calculated from DSDP Leg 96 data (Wetzel and Kohl, 1986; Whelan and Tarafa, 1986) does not significantly change this value. This value is approximately one tenth of Berner's (1982) value for the Mississippi Delta, based on the suspended sediment transport. Thus Berner's (1982) value could be as much as ten times higher than the actual value for the Mississippi Delta.
These examples demonstrate that deltas are very important areas of organic carbon burial but that the organic carbon burial estimated by Berner (1982) from river transport for deltas may be in error by up to an order of magnitude. These discrepancies probably result from differences in the processes acting on organic carbon in estuaries and the nearshore environment before it is deposited. It is clear from our examples, however, that estimates of organic carbon burial in deltas based on the suspended river flux are not consistently greater than or less than estimates of burial flux based on sediment composition and sedimentation rate. Because Berner's total carbon burial is comparable to that of Arthur and others (1985) and because there is insufficient data to estimate the true burial rate of organic carbon in all of the world's major river deltas, we have used Berner's estimate for deltaic organic carbon burial, knowing that it may incorporate non-systematic errors of up to an order of magnitude for individual deltas.

The addition of 1.04x10^{14} g organic carbon, buried in river deltas to the 0.21x10^{14} g organic carbon buried in deep sea sediments and 0.04x10^{14} g carbon buried on shelves (exclusive of deltas) yields a total of 1.29x10^{14} g organic carbon buried annually in marine sediments. This value is very similar to that estimated by Berner (1982) and about 10% higher than the Arthur and others organic carbon burial estimated from a mass balance of δ^{13}C.
Having defined the present (since the last glacial maximum, 18 ka) organic carbon burial rate, it would be a useful exercise to see how this would be affected by a major change in organic carbon deposition such as a sapropel and how glacial organic carbon deposition compares to interglacial deposition.

ORGANIC CARBON BURIAL IN SAPROPELS

Sapropels are organic-rich mud layers commonly found in deep-sea cores from the eastern Mediterranean Sea. The organic carbon content of these layers can be as great as 7% by weight. The origin of these layers is quite controversial, but all mechanisms attribute the increased organic carbon burial to stagnation of bottom waters due to an increase in the vertical stratification. For example, the eastern Mediterranean became well stratified after a rapid influx of freshwater (at 12 to 8 ka) from melting of the Eurasian ice-sheet (Ryan, 1972), or as the result of intensified monsoonal rainfall in regions of North Africa which ultimately drain into the Mediterranean (Rossingnol-Strick, et al, 1982). The increased vertical stability, possibly coupled with higher than normal organic carbon production (Jenkins and Williams, 1984) caused rapid depletion of oxygen in bottom waters and enhanced preservation of organic matter to form the organic-rich sediments (Cita, et al, 1973). Because the rapid deposition of organic-rich layers over a large area could have a significant effect on the global marine organic carbon
budget we have estimated the total organic carbon burial resulting from the deposition of this sapropel.

Stanley (1978) showed that the deposition of sapropelic sediments occurred over much of the Mediterranean, but probably no more than 1.5 million square kilometers. Sapropels usually represent a period of 2000 years and have a rate of deposition of 2 cm/kyr (Dominik and Mangini, 1979). Sapropels have an organic carbon concentration of 2 to 7% (Anastasakis and Stanley, 1984). If we assume a dry bulk density of 0.75 g/cm³, comparable to organic-rich deltaic sediments and an organic carbon concentration of 7%, then we can calculate a maximum contribution to the burial flux of 0.016×10^{14} grams carbon buried annually during Mediterranean sapropel deposition. This is much less than 0.1% of the total annual burial of organic carbon in marine sediments today and 5% of the total deep-sea burial. Therefore, the sapropel had an insignificant effect on the global organic carbon burial rate and the global carbon cycle, which includes 7.02×10^{17} grams of carbon readily available in the form of CO₂ in the atmosphere (Freyer, 1979).

GLACIAL vs INTERGLACIAL ORGANIC CARBON ACCUMULATION

It has been proposed by many authors, that primary productivity in the surface oceans was higher during glacials then interglacials (Müller et al, 1983; CLIMAP Project Members, 1976). In order to estimate the difference in glacial versus interglacial organic carbon deposition, we
determined rates for all CLIMAP cores which had oxygen isotopic stratigraphies and organic carbon analyses of glacial and interglacial sediments. There are only 10 such cores in the Pacific Ocean. The depth to the glacial/interglacial transition (at 12ka) was picked from oxygen or carbon isotope data, thereby allowing the determination of the glacial (18 to 12ka) and interglacial (12ka to present) organic carbon accumulation rates (Table 3).

Glacial organic carbon rates were higher in 6 of the 10 cores (Fig 11). These data are inadequate to support or refute the proposal that organic carbon accumulation was higher during glacial, as it would be expected to be if primary productivity had been high—particularly 2 to 3 times higher as proposed by Müller and others (1983). The data do suggest that glacial primary production is higher in areas in which upwelling is presently strong, while it is lower in other areas (Fig. 11). This would agree with Muller and others (1983), who found that glacial primary production increased significantly in areas of present upwelling.

ESTIMATING ORGANIC CARBON ACCUMULATION

It has been proposed (Heath et al, 1977) that there is a correlation between organic carbon accumulation and sedimentation rate ($C_A = 0.01 * \text{Sed}^{1.4}$), which occurs because high sedimentation rates sequester organic carbon from degradation at the sediment surface. Using all of the data points for which organic carbon accumulation rates were
calculated (Pacific Ocean), the sedimentation rate versus the organic carbon accumulation rate was plotted (Fig. 12). These two variables are well correlated ($r^2=0.81$).

Müller and Suess (1979) refined this idea by including surface water productivity as an additional variable controlling organic carbon accumulation ($C_A/PP*100=Sed^{1.30}$). In order to test Müller and Suess's (1979) hypothesis, the same data points were plotted but with the organic carbon accumulation rate divided by the primary productivity, as estimated from the Berger and others (1986) primary production map (Fig. 13). The correlation of these points is relatively good ($r^2=0.66$). The data were also divided into regions to determine whether the correlation is better within regions of similar sedimentation (the Australian/New Zealand high productivity region, the Kuroshio/Oyashio confluence region, the Peru/Equatorial high productivity region, the Pacific Coast of North America shelf region, and the Central Gyral regions). The correlation within each of the regions was significantly worse than that for all of the data combined (r^2 between 0.32 and 0.11) except the North American Shelf region ($r^2=0.67$). Our inability to estimate the primary productivity precisely enough may have caused sufficient error to mask the correlation in the regional sets (due to a lower number of observations) while the broader trend was still apparent in the larger data set.

CONCLUSIONS

Organic carbon burial in marine sediments is an
important mechanism for removing carbon from the ocean-atmosphere carbon reservoir. Burial of organic carbon in marine sediments exclusive of deltaic sediments accounts for 0.25×10^{14} grams carbon per year. Organic carbon burial is twice as large in the Pacific Ocean as either the Atlantic or Indian Oceans (Fig. 14). Burial on the shelves and around Antarctica is similar in magnitude to the Atlantic and Indian Oceans, while the semi-enclosed basins of the Mediterranean and Caribbean Seas account for much less. Burial in the Arctic Basin is extremely low. Burial of organic carbon in deltaic sediments is less easily quantified, but the estimate made by Berner on the basis of suspended sediment transport (1.04×10^{14} gC/yr) appears to be reasonable.

Organic carbon burial in Holocene sapropels of the eastern Mediterranean represents an insignificant (less than 0.1%) increase in the global burial of organic carbon.

Organic carbon accumulation in marine sediments is sufficiently independent of sedimentation rate that sedimentation rate alone cannot be used for predicting organic carbon accumulation.
LITERATURE CITED

Anastaskis, G.C. and D.J. Stanley, Sapropels and organic-rich variants in the Mediterranean: sequence development and classification, in Fine-Grained Sediments: Deep-Water Processes and Facies, edited by D.A. Stow and D.J.W. Piper, pp.497-510, London, Blackwell Scientific Publications, 1984.

Arthur, M.A., The carbon cycle - controls on atmospheric CO₂ and climate in the geologic past, in Climate in Earth history, pp.55-67, National Academy Press, 1982.

Arthur, M.A., W.E. Dean, and S.O. Schlanger, Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO₂, in The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present, edited by E.T. Sundquist and W.S. Broeker, pp.504-529, Geophysical Monograph 32, 1985.

Berger, W.H., Biogenous deep-sea sediment fractionation by deep-sea circulation, GSA Bulletin, 81, 1385-1402, 1970.

Berger, W.H., C.G. Adelsec, and L.A. Mayer, Distribution of carbonate in surface sediments of the Pacific Ocean, Journal of Geophysical Research, 81, 2617-2627, 1976.

Berger, W.H., K. Fischer, C. Lai, and G. Wu, Primary production and organic carbon flux in the world ocean, poster presented at the Ocean Sciences Meeting, AGU/ASLO, New Orleans, LA, Jan. 13-17, 1986.
Berner, R.A., Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance, American Journal of Science, 282, 451-473, 1982.

Biscaye, P.E., V. Kolla, and K.K. Turekian, Distribution of calcium carbonate in surface sediments of the Atlantic Ocean, Journal of Geophysical Research, 81, 2595-2603, 1976.

Bordovskiy, K.O., Accumulation and transformation of organic substances in marine sediments 3: accumulation of organic matter in bottom sediments, Marine Geology, 3, 33-82, 1965.

Broecker, W.S., Ocean chemistry during glacial time, Geochimica et Cosmochimica Acta, 46, 1689-1705, 1982.

Calvert, S.E., Accumulation of diatomaceous silica sediments in the Gulf of California, Geological Society of America Bulletin, 77, 569-596, 1966.

Cita, M.B., M.A. Chierici, G. Ciampo, M. Zeff, d’Onofrio, W.B.F. Ryan, and R. Scorziello, The Quaternary record in the Tyrrhenian and Ionian Basins of the Mediterranean Sea, in Initial Reports of the Deep Sea Drilling Project XIII edited by W.B.F. Ryan, K.J. Hsu, et al, pp.1263-1339 U.S. Government Printing Office: Washington D.C., 1973.

CLIMAP Project Members, The surface of the Ice age earth, Science, 191, 1131-1137, 1976.

Cooke, D.W., and J.D. Hays, Glacial-interglacial
sedimentation changes in the Antarctic Ocean, in *Third International Symposium on Antarctic Geology and Geophysics*, edited by C. Craddock, University of Wisconsin Press, 1981.

Corliss, J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, T.H. van Andel, Submarine thermal springs on the Galapagos Rift, *Science*, 203, 1073-1082, 1979.

Curry, W.B., Paleoceanographic reconstruction of flux records in Tropical Atlantic deep sediment, paper presented at International Conference on Paleoceanography, Woods Hole, MA, Sept. 8-12, 1986.

Cwienk, D., and M. Leinen, Expression of global sediment component fluxes in surface sediment accumulation rates, paper presented at the Ocean Sciences Meeting, AGU/ASLO, New Orleans, LA, Jan. 13-17, 1986.

Demaison, G.J. and G.T. Moore, Anoxic environments and oil source bed genesis, *Organic Geochemistry*, 2, 9-31, 1980.

DeMaster, D.J., The supply and accumulation of silica in the marine environment, *Geochimica et Cosmochimica Acta*, 45, 1715-1732, 1981.

Dominik, J. and A. Manganini, Late Quaternary sedimentation rate variations on the Mediterranean Ridge, as results from Th-230 excess method, *Sedimentary Geology*, 23, 95-112, 1979.
Dunn, D.A., Revised techniques for quantitative calcium carbonate analysis using the "Karbonat-Bomb" and comparisons to other quantitative carbonate analysis methods, Journal of Sedimentary Petrology, 50, 631-637, 1980.

Edmond, J.M., On the dissolution of carbonate and silicate in the deep ocean, Deep-Sea Research, 21, 455-480, 1974.

Ellis, D.B., and T.C. Moore Jr., Calcium carbonate, opal, and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean, Journal of Marine Research, 31, 210-277, 1973.

Emery, K.O., and E. Uchupi, North Atlantic Ocean: Topography, Rocks, Structure, Water, Life, and Sediments, Memior 17, American Association of Petroleum Geologists, Tulsa, 371pp., 1972.

Engleman, E.E., L.L. Jackson, and D.R. Norton, Determination of carbonate carbon in geological materials by coulometric titration, Chemical Geology, 53, 125-128, 1985.

Erlenkeuser, H., \(^{14}\)C-age and vertical mixing of deep sea sediments, Earth and Planetary Science Letters, 47, 319-326, 1980.

Freyer, H.D., Variations in the atmospheric CO\(_2\) content, in The Global Carbon Cycle, edited by B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, pp.79-99, New York, John Wiley and Sons, 1979.
Froelich, P.N., Marine phosphorus geochemistry, [Ph.D. thesis] Kingston, University of Rhode Island, 1979.
Froelich, P.N., Analysis of organic carbon in marine sediments, Limnology and Oceanography, 25, 564-572, 1980.
Garrels, R.M., and E.A. Perry, Cycling of carbon, sulfur, and oxygen throughout geologic time, in The Sea vol. 5 Marine Chemistry, edited by E.D. Goldberg, p.303-336, New York, John Wiley and Sons, 1974.
Gibbs, R.J., Effect of combustion temperature and time of the oxidation agent used in organic carbon and nitrogen analyses of sediments and dissolved organic material, Journal of Sedimentary Petrology, 47, 547-550, 1977.
Goodell, H.G., and N.D. Watkins, The paleomagnetic stratigraphy of the Southern Ocean: 20° west to 160° east longitude, Deep-Sea Research, 15, 89-112, 1968.
Heath, G.R., Dissolved silica and deep sea sediments, in Studies in Paleo-oceanography, edited by W.W. Hay, pp.77-73, Society of Economic Paleontologists and Mineralogists, Special Publication 20, 1974.
Heath, G.R., T.C. Moore Jr., and J.P. Dauphin, Organic carbon in deep-sea sediments, in The Fate of Fossil Fuel CO₂ in the Oceans, edited by Neil R. Andersen and Alexander Malahof, pp.605-626, New York, Plenum Publishing Corporation, 1977.
Honjo, S., Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin,
Science, 218, 883-884, 1982.

Huffman, E.W.D., Performance of a new automatic carbon dioxide coulometer, Microchemical Journal, 22, 567-573, 1977.

Imbrie, J., J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, and N.J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record, in Milankovitch and Climate, Part I, edited by A.L. Berger, et al, pp.269-305, D. Reidel Publishing Company, 1984.

Jansen, J.H.F., T.C.E. van Weering, R. Gieles, and J. van Iperen, Middle and Late Quaternary oceanography and climatology of the Zaire-Congo Fan and the adjacent eastern Angola Basin, Netherlands Journal of Science, 17, 201-249, 1984.

Jenkins, J.A. and D.F. Williams, Nile water as a cause of Eastern Mediterranean sapropel formation: evidence for and against, Marine Micropaleontology, 9, 521-534, 1984.

Kempe, S., Carbon in the rock cycle, in The Global Carbon Cycle, edited by B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, pp.343-378, New York, John Wiley and Sons, 1979.

Kerr, R.A., The isolation and partial characterization of dissolved organic matter in seawater, [Ph.D. thesis] Kingston, University of Rhode Island, 163pp., 1977.
Koblenz-Mishke, O.J., V.V. Volkovinsky, and J.F. Kabanova, Plankton primary production in the world ocean, in Scientific Explorations of the South Pacific, edited by W.S. Wooster, pp.183-193, Washington D.C., National Academy of Sciences, 1970.

Kolla, V., A.W.H. Be, and P.E Biscaye, Calcium distribution in the surface sediments of the Indian Ocean, Journal of Geophysical Research, 81, 2605-2616, 1976.

Kolpack, R.L., and S.A. Bell, Gasometric determination of carbon in sediments by hydroxide adsorption, Journal of Sedimentary Petrology, 38, 617-620, 1968.

Kominz, M., G.R. Heath, and T.C. Moore Jr., Bulk density of pelagic sediments from the equatorial Pacific estimated from carbonate content, age, and subbottom depth, Journal of Sedimentary Petrology, 47, 1593-1597, 1977.

Kuehl, S.A., C.A. Nittrouer, and D.J. DeMaster, Modern sediment accumulation and strata formation on the Amazon Continental Shelf, Marine Geology, 49, 279-230, 1982.

Leinen, M., Techniques for determining opal in deep-sea sediments: a comparison of Radiolarian counts and X-ray diffraction data, Marine Micropaleontology, 9, 375-383, 1985.

Leinen, M., and T. King, Measuring biogenic opal in sediments: an evaluation and improvement of the X-ray diffraction technique, Geological Society of America Abstracts with Programs, 13, 487, 1981a.
Leinen, M., and T. King, Pacific site assessment: Subseabed Disposal Program Annual Report, January to September 1981, Volume II, Appendices, Sandia Report, SAND82-0664/II, Albuquerque, Sandia National Laboratories, 335-388, 1981b.

Leinen, M., D. Cwienk, G.R. Heath, P.E. Biscaye, V. Kolla, J. Theide, and J.P. Dauphin, Distribution of biogenic silica and quartz in recent deep-sea sediments, Geology, 14, 199-203, 1986.

Lisitzin, A.P., Sedimentation in the World Ocean, Society of Economic Paleonotologists and Mineralogists, Special Publication 17, Tulsa, 1972.

Lyle, M., and J. Dymond, Metal accumulation rates in the southeast Pacific: errors introduced from assumed bulk densities, Earth and Planetary Science Letters, 30, 164-168, 1976.

Menzel, D.W., and R.F. Vaccaro, The measurement of dissolved organic and particulate carbon in seawater, Limnology and Oceanography, 9, 138-142, 1964.

Miskell, K.J., G.W. Brass, and C.G.A. Harrison, Global patterns in opal deposition from late Cretaceous to late Miocene, AAPG Bulletin, 69, 996-1012, 1985.

Molina-Cruz, A., Paleo-oceanography of the subtropical southeastern Pacific during late Quaternary: a study of radiolaria, opal and quartz contents of deep-sea sediments [M.S. thesis]: Corvallis, Oregon State University, 178pp., 1976.
Moore, T.C., L.H. Burckle, K. Geitznauer, B. Luz, A. Molina-Cruz, J.H. Robertson, H. Sachs, C. Sancetta, J. Theide, P. Thompson, and C. Wenkam, The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P., Marine Micropaleontology, 5, 215-247, 1980.

Mopper, K. and E.T. Degens, Organic carbon in the ocean: nature and cycling, in The Global Carbon Cycle, edited by B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, pp.293-316, New York, John Wiley and Sons, 1979.

Morris, R.J., and S.E. Calvert, Fatty acid uptake by marine sediment particles. Geochimica et Cosmochimica Acta, 39, 377-381, 1975.

Müller, P.J., and E. Suess, Interaction of organic compounds with calcium carbonate III. amino acid composition of sorbed layers, Geochimica et Cosmochimica, 41, 941-949, 1977.

Müller, P.J., and E. Suess, Productivity, sedimentation rate, and organic matter in the oceans- I. organic carbon preservation, Deep-Sea Research, 26A, 1347-1362, 1979.

Müller, P.J., H. Erlenkeuser, R. von Grafenstein, Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores, in Coastal Upwelling part B edited by J. Theide and E. Suess, pp.365-393, Plenum Publishing Corporation, 1983.

Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R.
Zumbrunn, Ice core sample measurements give atmospheric CO₂ content during the past 40,000 yr., Nature, 295, 220-223, 1982.

Pisias, N.G., Model of late Pleistocene-Holocene variations in rate of sediment accumulation: Panama Basin, eastern equatorial Pacific [M.S. thesis] Corvallis, Oregon State University, 77pp., 1974.

Pisias, N.G., and M. Leinen, Late Pleistocene variability of the northwest sector of the Pacific Ocean, in Milankovitch and Climate part I, ed. by Berger, A., et al, pp.307-330, New York, D. Riedel, 1984.

Prell, W.L., W.H. Hutson, D.F. Williams, A.W.H. Be, K. Geitznauer, and B. Molfino, Surface circulation of the Indian Ocean during the last glacial maximum, approximately 18,000 yr. B.P., Quaternary Research, 14, 309-336, 1980.

Prell, W.L., J. Imbrie, D.G. Martinson, J.J. Morley, N.G. Pisias, N.J. Shackleton, and H.F. Streeter, Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary, Paleoceanography, 1, 137-162, 1986.

Premuzic, E.T., C.M. Benkovitz, J.S. Gaffney, and J.J. Walsh, The nature and distribution of organic matter in the surface sediments of world oceans and seas, Organic Geochemistry, 4, 63-77, 1982.

Rossingnol-Strick, M., W. Nesteroff, P. Olive, and C. Vergnaud-Grazzini, After the deluge: Mediterranean
stagnation and sapropel formation, Nature, 295, 105-110, 1982.

Ryan, W.B.F., Stratigraphy of Late Quaternary sediments on the eastern Mediterranean, in The Mediterranean Sea: A Natural Sedimentation Laboratory, edited by D.J. Stanley, pp.149-169, Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA, 1972.

Sarnthein, M., K. Winn, and R. Zahn, Paleoproductivity of oceanic upwelling and the effect on atmospheric CO₂ and climatic change during deglaciation times, in press.

Schneider, S.H. and W.W. Kellog, The chemical basis for climate change, in Chemistry of the Lower Atmosphere, edited by S.I. Rasool, pp.203-250, Plenum, New York, 1973.

Stanley, D.J., Ionian Sea sapropel distribution and late Quaternary paleoceanography in the eastern Mediterranean, Nature, 274, 149-152, 1978.

Suess, E., Particulate organic carbon flux in the oceans - surface productivity and oxygen utilization, Nature, 288, 260-263, 1980.

Trefry, J.H. and B.J. Presley, Manganese fluxes from Mississippi Delta sediments, Geochimica et Cosmochimica Acta, 46, 1715-1728, 1982.

Weiss, A., Organic derivations of clay minerals, zeolites, and related minerals, in Organic Geochemistry, edited by G. Eglinton and M.T.J. Murphy, pp.737-782, Springer Verlag, 1969.
Weliky, K., E. Suess, and C.A. Ungorer, Problems with accurate carbon measurements in marine sediments and particulate matter in seawater: a new approach, Limnology and Oceanography, 28, 1252-1259, 1983.

Wetzel, A. and B. Kohl, Accumulation rates of Mississippi Fan sediments cored during Deep Sea Drilling Project Leg 96, in Initial Reports of the Deep Sea Drilling Project, v.96, edited by A.H. Bouma, J.M. Coleman, A.W. Meyer, et al, pp.595-600, Washington D.C., U.S. Government Printing Office, 1986.

Whelan, J.K. and M. Tarafa, Organic matter in Leg 96 sediments: characterization by pyrolysis, in Initial Reports of the Deep Sea Drilling Project, v.96, edited by A.H. Bouma, J.M. Coleman, A.W. Meyer, et al, pp.757-766, Washington D.C., U.S. Government Printing Office, 1986.
Table 1. Regional Distribution of Organic Carbon Burial

REGION	AREA MILLIONS SQ.KM	ORG C ACCUM RATE g/cm²/ky	Total gC/yr
1 Pacific >25 contour	2.2	40.0	8.9x10¹¹
1 Pacific 10-25 contour	25.6	17.5	4.5x10¹²
1 Pacific 5-10 contour	33.5	7.5	2.5x10¹²
1 Pacific 2.5-5 contour	18.7	3.5	6.5x10¹¹
1 Pacific 1-2.5 contour	32.9	1.5	4.9x10¹¹
1 Pacific <1 contour	28.8	0.4	1.2x10¹¹
2 N. Atlantic MAR	5.6	11.0	6.2x10¹¹
2 N. Atlantic AP	6.3	4.0	2.5x10¹²
2 N. Atlantic Deep Basins	20.6	5.0	1.0x10¹²
2 Argentine AP	4.1	1.5	6.2x10¹¹
2 African Hi Sed Region	1.9	8.0	1.5x10¹¹
2 Angolan AP	2.1	12.0	2.5x10¹¹
2 S. Atlantic MAR	8.0	11.0	8.8x10¹¹
2 S. Atlantic Deep Basins	17.6	5.0	8.8x10¹¹
2 Indian Southern Basins	10.9	6.0	6.5x10¹¹
2 Indian Central Basins	3.1	4.5	1.4x10¹¹
2 Ninety East Ridge	1.4	4.0	5.8x10¹¹
2 Indian Western Basins	10.5	4.5	4.7x10¹²
2 Indian Ocean MIR	18.2	11.0	2.0x10¹¹
2 Indus Fan	2.0	4.5	8.8x10¹⁰
2 Indian Eastern Basins	1.0	3.5	3.4x10⁹
2 Bengal Fan	3.1	15.0	4.6x10¹⁰
2 Mediterranean	2.3	2.5	5.9x10¹⁰
2 Caribbean & Gulf	4.8	12.0	5.7x10¹¹
2 Arctic Ocean	12.1	1.5	1.8x10¹¹
2 Shelf E. Coast N. America	1.0	15.0	1.5x10¹¹
2 Shelf Australia & NZ	4.7	10.0	4.7x10¹¹
2 Shelf Indonesia	7.3	12.0	8.8x10¹⁰
2 Shelf and North Sea	1.1	8.0	8.8x10¹¹
2 Shelf E. Coast S. America	2.7	15.0	4.1x10¹¹
2 Shelf W. Coast N. America	2.4	20.0	4.9x10¹¹
2 Shelf W. Coast Africa	1.7	20.0	3.3x10¹¹
2 Shelf S. Coast Asia	2.1	20.0	4.2x10¹¹
2 Shelf E. Coast Africa	0.8	20.0	1.6x10¹¹
2 Shelf E. Coast Asia	3.0	17.0	5.1x10¹¹
2 Shelf W. Coast S. America	1.1	10.0	1.1x10¹²
3 Antarctica Hi-Siliceous	18.9	15.3	2.9x10¹¹
2 Antarctica Lo-Siliceous	18.5	2.5	4.6x10¹³
TOTALS	**342.6**		**2.5x10¹³**

1 represents values obtained from areas with comprehensive data coverage where contours were drawn, 2 represents values obtained from representative samples within oceanographically similar areas, 3 represents values estimated from paleo-productivity equation (see text).
Table 2. Comparison of Organic Carbon Burial Estimates

SOURCE	REGION	ORG C BURIAL X10^14 G/yr
Berner, 1982	Pelagic Sediments	0.21
	Deltaic-Shelf	1.04
	Total	1.25
Arthur, et al, 1985	Global	1.15
This study	Pelagic Sediments	0.21
	Shelf (exc. deltas)	0.04
	Deltaic Deposits	1.04
	(from Berner, 1982)	
	Total	1.29
Table 3. Comparison of Glacial vs. Interglacial Organic Carbon Accumulation Rates

LAT	LONG	CORE	DEPTH meters	AGE ky	SED R cm/ky	DRY BULK DENSITY %	ORG C g/cm^2/ky	ORG C ACC
-11.11	-162.55	rc10-114	2791	12-0	1.00	0.7560	0.17	1.26
				18-12	0.92	0.7560	0.17	1.18
3.39	-140.04	rc11-209	4400	10-0	1.00	0.6216	1.40	8.73
				18-10	2.88	0.6216	0.65	11.62
-27.17	-102.05	rc8-94	3074	12-0	1.00	0.7280	0.62	4.49
				18-12	0.75	0.7280	0.62	3.39
14.31	-96.18	v18-337	3891	12.5-0	7.20	0.2040	3.73	54.75
-17.00	-114.11	v19-55	3177	12-0	23.73	0.2040	2.91	140.88
47.57	168.47	v20-119	2739	12-0	0.92	0.5186	1.40	6.67
				18-12	1.42	0.5186	1.04	7.64
-5.27	160.29	v28-235	1746	12-0	1.33	0.1963	0.25	0.65
				18-12	0.92	0.1963	1.19	2.14
20.06	142.27	v28-255	3261	12-0	1.67	0.4281	4.30	30.70
				18-12	2.58	0.4281	0.81	8.96
43.34	-126.28	y66095	2978	12.5-0	8.32	0.1991	1.84	30.49
				18-12.5	44.73	0.1991	0.68	60.66
-16.26	-77.34	y71612p	2734	12-0	1.00	0.2063	8.41	17.35
				18-12	2.08	0.2063	2.57	11.05
Figure 1: Sedimentation rates in cm/ky. Symbols mark location of core and type of stratigraphic feature used to determine sedimentation rate. ○ indicates oxygen isotope pick, △ indicates magnetostratigraphic pick, ▽ indicates ash layer datum, ▼ indicates biostratigraphic datum, ● indicates C date, and ♦ indicates lithologic determination of age.
Figure 2a: Distribution of CaCO$_3$ in surface sediments (wt.%) for the Pacific Ocean (Berger, et al, 1976).
Figure 2b: Distribution of CaCO$_3$ in surface sediments (wt.%) for the Atlantic Ocean (Biscaye and Kolla, 1976).
Figure 2c: Distribution of CaCO$_3$ in surface sediments (wt.%) for the Indian Ocean (Kolia, et al., 1976).
Figure 3: Distribution of opal in surface sediments (carbonate-free wt.%) (Leinen, et al, 1986).
Figure 4: Distribution of quartz in surface sediments (carbonate-free wt.%) (Leinen, et al, 1986)
Figure 5: Bulk sediment accumulation rates (g/cm2/h/ky). Symbols mark location of core and type of stratigraphic feature used to determine sedimentation rate. ○ indicates oxygen isotope pick, △ indicates magnetostratigraphic pick, ▽ indicates ash layer datum, ▼ indicates biostratigraphic datum, ● indicates 14C date, and ◆ indicates lithologic determination of age.
Figure 6: Organic carbon accumulation rates (mg/cm2/ky). Symbols mark location of core and type of stratigraphic feature used to determine sedimentation rate. O indicates oxygen isotope pick, △ indicates magnetostratigraphic pick, ▼ indicates ash layer datum, ▽ indicates biostratigraphic datum, ▪ indicates 14C date, and ◆ indicates lithologic determination of age.
Figure 7: Opal accumulation rates (mg/cm2/ky).
Figure 8: Organic carbon accumulation rate data plotted against opal accumulation rates for all cores containing both.
$y = 0.3422 \times x^{0.7857}$ \(R = 0.86 \)
Figure 9: Distribution of primary production in surface waters (gC/m²/yr) (Berger, et al, 1986).
SYNTHETIC PRIMARY PRODUCTIVITY

W.H. Berger, K. Fischer, C. Lai and G. Wu
"Primary Production and Organic Carbon Flux in the World Ocean"
AGU, Jan. 13-17, 1986. New Orleans.

\[\text{flux, gC m}^{-2} = \frac{PP}{25}. \]
Figure 10: Equal area projection of organic carbon accumulation rates (mg/cm²/ky). Regions without data points shown have values estimated from the average of the available data within that region.
Figure 11: Percent change of organic carbon accumulation during glacial time (18 to 12ka) relative to interglacial time (12ka to present). Using the equation (glacial - interglacial) / interglacial.
Figure 12: Organic carbon accumulation rate data plotted against sedimentation rate data for all cores in the Pacific Ocean containing both.
$y = 2.2561 \times x^{1.4059}$ \(R = 0.90 \)
Figure 13: Organic carbon accumulation rate data divided by primary productivity above that site plotted against the sedimentation rate data at that site for all cores containing both in the Pacific Ocean.
$y = 0.0368 \times x^{1.0825} \quad R = 0.81$
Figure 14: Regional annual organic carbon accumulation (gC/yr), exclusive of deltaic sediments.
ANNUAL ORGANIC CARBON ACCUMULATION

0.10

0.08

0.06

0.04

0.02

0.00

0.10

0.08

0.06

0.04

0.02

0.00

Grams Carbon (x10^4)

Pacific Atlantic Indian Caribbean & Mediterranean Arctic Shelves Antarctic

Paciic IndiaC Indian Caribbean & Mediterranean Arctic Shelves Antarctic
Appendix I: The Distribution of Quartz and Biogenic Silica in Recent Deep Sea Sediments
THE DISTRIBUTION OF QUARTZ AND BIOGENIC SILICA IN RECENT DEEP SEA SEDIMENTS

Margaret Leinen, Douglas Cweink
Graduate School of Oceanography
University of Rhode Island
Narragansett, RI 02882-1197

G. Ross Heath
College of Ocean and Fishery Science
University of Washington HA-40
Seattle, WA 98195

Pierre E. Biscaye
Lamont-Doherty Geological Observatory
Columbia University
Palisades, NY 10964

V. Kolla
Elf Aquitaine Petroleum
Allied Bank Plaza
1000 Louisiana Avenue
Suite 3800
Houston, TX 77002

Jørn Thiede
Geologisches und Paleontologisches Institut und Museum
Christian Albrechts Universität
Olshausenstrasse 40/60
D-971 Kiel
West Germany

J. Paul Dauphin
College of Oceanography
Oregon State University
Corvallis, OR 97331-5503
THE DISTRIBUTION OF QUARTZ AND BIOGENIC SILICA IN RECENT DEEP SEA SEDIMENTS

Margaret Leinen, Douglas Cweink, and G. Ross Heath, Pierre E. Biscaye, V. Kolla, J. Thiede, and J. Paul Dauphin

ABSTRACT
All available quartz and biogenic silica concentrations from deep-sea surface sediments were intercalibrated, plotted, and contoured on a calcium carbonate-free basis. Quartz in pelagic sediments deposited far from land is generally eolian in origin. The distribution reflects dominant wind systems in the Pacific, but in much of the Atlantic and Indian Oceans the distribution pattern is strongly modified by turbidite deposition and bottom current processes. The surface sediment maps show highest concentrations of biogenic silica (opal) along the west African coast, along equatorial divergences in all oceans, and at the Polar Front in the southern Indian Ocean. These are all areas where upwelling is strong and there is high biological productivity.

INTRODUCTION
Although quartz is often a small component of deep-sea sediments, its abundance and distribution pattern can be very useful for the interpretation of sediment source areas, sedimentation processes and paleoclimate. The siliceous remains of plankton are generally a major component of deep-sea sediments; the abundance and distribution of this biogenic silica (opal) have been used to infer the paleoproductivity and paleocirculation of the oceans (e.g. Molina-Cruz, 1977; Pisias, 1979; Pisias and Leinen, 1984). While detailed maps of the other major biological component of sediments, calcium carbonate, have been published (Berger, 1976; Biscaye et al., 1976), world maps of similar detail for quartz or opal, which have been analyzed by many investigators over the years, have not been published. We have compiled all of the published quartz
and opal data determined by the X-ray diffraction technique and have included all of our unpublished analyses as well.

QUARTZ

Since 1955 a great many quantitative analyses of the quartz content of deep-sea sediments have been made by X-ray diffractometry. After Till and Spears (1969) refined the X-ray technique for quartz determination using alumina as an internal standard, it was used routinely for sediment analyses by many oceanographic laboratories. Detailed maps of the quartz distribution in the Atlantic Ocean (Kolla, et al., 1979), Indian Ocean (Kolla and Biscaye, 1977) and North Pacific Ocean (Moore and Heath, 1978; Heath, et al., 1983) are available, but maps of similar data density for the entire Pacific have not been made, although many data are available. In addition, the various data sets have not been intercalibrated.

Quartz is stable at ocean bottom conditions and does not form authigenically in recent sediments. Therefore its source is, with rare exception (Peterson and Goldberg, 1982), continental. Being resistant to abrasion and dissolution, quartz arrives at the sea floor in much the same condition that it reached the sea surface (Rex, 1958). Most quartz in pelagic sediments occurs as chips and shards and although the grain size varies with its origin and transport mechanism, most grains are in the 5-10 \(\mu \)m range (Rex and Goldberg, 1958). The flux of fluvial and hemipelagic sediments decreases rapidly with distance from land. Such sediments are not sources of quartz far from the continents. For these reasons, quartz in pelagic sediment far from land and in locations protected from turbidity current deposition has been inferred to be eolian (Rex and Goldberg, 1958).

Quartz is common in the mineral aerosol transported by wind (Prospero and Bonatti, 1969; Prospero and Carlson, 1972; Blank, et al., 1985). Recent studies have shown that the proportion of quartz in aerosols matches that in sediments accumulating
beneath the aerosol collection site (e.g. Blank, et al., 1985), further supporting its inferred eolian origin in pelagic sediments.

Methods.

We collected all available published and unpublished X-ray diffraction determinations of quartz. Because the X-ray diffraction technique for quartz and opal analysis requires calcium carbonate removal, all data are on a calcium carbonate-free basis and do not reflect influence by this important diluent. (The data sources are listed in Table 1; core identifications, locations, quartz, opal, and carbonate concentrations are listed in Appendix 1*.) A few areas have some overlap in data and one, the South Atlantic, has been studied in detail by two sets of investigators (Ellis and Moore, 1973; Kolla et al., 1979). The two independent studies showed the same distribution pattern. The analysis of several samples by both sets of investigators allowed us to intercalibrate the quartz analyses done at Lamont-Doherty Geological Observatory (Biscaye, Kolla) with those done at Oregon State University (Ellis, Heath, Molina-Cruz, Thiede, Dauphin) and the University of Rhode Island (Leinen). A comparison of the samples that had been analyzed by both Kolla, et al. (1979) and Ellis and Moore (1973) indicated that the Ellis and Moore values were systematically greater by 5.8 wt% quartz \((r^2 = 0.68)\). The Ellis and Moore samples were calibrated to a standard curve of varying percents of quartz in a clay matrix and the details of the conversion factors were reported in Ellis (1972). This curve was used for all subsequent Oregon State University analyses. The exact factors for

Note to Reviewers: We are including the data Appendix in the manuscript sent out for review. We will request that the appendix not be published, but be included in a data archive that is available by mail request from the Society.
converting peak area ratios to weight percent quartz were not given by Kolla et al. (1979), and they did not publish a standard curve. As a result, we chose to increase the Kolla et al. (1979) quartz values for the Atlantic Ocean and the Kolla and Biscaye (1977) quartz values for the Indian Ocean by 5.8 wt% to match the Oregon State data. The University of Rhode Island data were also intercalibrated with the Oregon State University data (Pisias and Leinen, 1984). The calibrated data were plotted and contoured.

Distribution.

The distribution of quartz in pelagic sediments of eolian origin should reflect dominant wind systems and major arid regions (Griffin, et al., 1968; Kolla and Biscaye, 1977; Moore and Heath, 1978; Kolla et al., 1979; Thiede, 1979). If quartz particles settled to the seafloor by Stokesian settling, the fine grain size of the material would lead to slow settling rates. This action by currents would smear or obliterate any pattern of distribution by wind transport. Such is not the case; quartz distributions reflect wind patterns in many regions. Sediment trap research suggests that filter-feeding plankton concentrate inorganic particles from the surface water into fecal pellets causing them to sink rapidly (Honjo, et al., 1982). Large organic aggregates ("marine snow") also increase the sinking rate (Honjo, et al., 1982).

There is a strong latitudinal pattern of quartz distribution in the North Pacific (Fig. 1) that has been related to the mean position of the westerly wind system over this region (Rex and Goldberg, 1958; Griffin, et al., 1968; Moore and Heath, 1978). Numerous sediment and aerosol studies have demonstrated that this sediment is derived from Asia (Rex and Goldberg, 1958; Griffin, et al., 1968; Windom, 1969; Duce, et al., 1980, 1983; Shaw, 1980; Parrington, 1981). The South Pacific has low quartz concentrations reflecting smaller input from continental sediment sources (Thiede, 1979; Dymond, 1981; Schramm and Leinen, in press; Bloomstine and Rea, in press). Although the influence of Australia as a source region for quartz in the southwest Pacific has been
documented by Thiede (1979), this material does not extend across the entire South Pacific.

The Sahara is an important source of eolian sediment in the eastern Atlantic (Kolla and Biscaye, 1977; Sarnthein, 1979). Its relative influence on deep-sea sedimentation drops off markedly to the west, however, and does not extend across the sub-equatorial Atlantic. In the equatorial Atlantic Ocean there is some suggestion of latitudinal banding, but the quartz distribution has been strongly modified by turbidite deposition and bottom processes which are discussed in detail by Kolla, et al. (1979).

Quartz is diluted by opal in areas of strong upwelling and along the equatorial divergences. This is very apparent in the eastern equatorial Pacific where carbonate-free sediments are dominated by biogenic silica (Molina-Cruz and Price, 1977, Heath, et al., 1983).

OPAL

Biogenic silica (opal) in deep-sea sediments is dominated by the remains of marine plankton, and is closely related to surface productivity (Pisias, 1974; Molina-Cruz, 1977) because siliceous sediments are not affected by differential dissolution with depth, as are calcareous sediments. Earlier maps of opal distribution in pelagic sediments (Lisitzin, 1972; Heath, et al., 1983) focussed on the Antarctic and the North Pacific. The remainder of the world ocean was highly generalized. Unfortunately, no data points were shown on the Lisitzin map and the data have not been published. The importance of biogenic silica has long been recognized, but its surface distribution has not be mapped in detail previously because of the great difficulty of analyzing opal quantitatively in deep-sea sediments (Leinen, 1977; Eggiman, et al., 1980; DeMaster, 1980).

Methods

Opal can be determined by X-ray diffractometry using alumina as an internal standard (Calvert, 1966; Ellis and Moore, 1973), and in fact most of the investigators
who have analyzed quartz in sediments also determined the opal contents of their samples by the X-ray diffraction technique (e.g. Molina-Cruz and Price, 1977). Most of these regional data sets have never been published, however, because the absolute value of the opal concentrations were suspect. Recent work (Leinen and King, 1981; Leinen, in press) suggests that the relative abundances indicated by the X-ray diffraction analyses are valid. After compiling and contouring the opal data for this study (all data are listed in Appendix I), it was clear that the regional patterns of opal distribution determined by X-ray diffractometry did indeed make sense oceanographically, but needed calibration.

X-ray opal values were calibrated using data from other techniques. These calibrations yielded results that were very consistent for individual deep-sea regions. Data for the equatorial Pacific were calibrated by comparing opal values determined by Heath using X-ray diffractometry with those determined by normative partitioning of sediment geochemistry (Leinen, 1977). Several subtropical South Pacific samples analyzed by Molina-Cruz and Price (1977) also had bulk sediment geochemical analyses. Data for this area were calibrated by comparison with estimates of opal content from geochemical partitioning (Dymond, 1981; Leinen and Pisias, 1984). Central North and South Pacific data (Moore and Heath, 1978) and Indian Ocean data (Kolla and Biscaye, 1977; Moll, et al., in press) were calibrated by the standard additions technique of Leinen and King (1981). Northwest Pacific data were also calibrated by the standard additions technique and by comparison with quantitative microfossil counts (Leinen, in press). Finally, the overlapping analyses of South Atlantic samples (Kolla, et al., 1979; Ellis and Moore, 1973) allowed a direct comparison. Because the Ellis and Moore (1973) data were calibrated using a standard curve and microfossil counts, they were accepted and the Kolla, et al. (1979) data were multiplied by a factor of 1.2 to bring them into agreement with the Ellis and Moore data. We did have to adjust the opal values by up to ±5 wt% in areas of overlap between regions calibrated by different techniques. Because the concentration of opal in the sediments was generally large, this adjustment
introduced an error of <10% of measured value. At the 10 wt% contour interval used on
the map, such error would move contours to one side or the other of a point, but would
not affect the pattern of the contours. We chose not to include the contours published by
Lisitzin (1972) because we could not obtain the core locations or calibrate the data to our
x-ray opal analyses.

Distribution

Although the opal data are not ideal and there is certainly room for improvement
in the calibration of different data sets, the distribution pattern of the opal data and the
good agreement between the X-ray diffraction data and other indicators of biogenic
silica concentration (such as microfossil counts and geochemical partitioning) suggest that
the data reflect real differences in opal concentration in deep-sea sediments (Fig. 2). The
carbonate-free concentrations follow the observed patterns of surface water biological
productivity. The equatorial productivity zones in all oceans show up clearly, as do other
zones of strong upwelling, such as those off southwest Africa and those associated with
the Kuroshio-Oyashio confluence in the northwest Pacific. Siliceous productivity
associated with the Polar Front in the Indian Ocean is clearer than that in the southwest
Pacific and south Atlantic where there are fewer data. In the equatorial Indian Ocean opal
is diluted by terrigenous sediment in the Bengal Fan east of India and west of the central
Indian Ridge. In the western equatorial Atlantic it is diluted by terrigenous material from
South America.

DISCUSSION

Using the opal concentrations indicated by the intercalibrated data, we were also
able to correct the quartz concentrations for dilution by biogenic silica. The resulting map
(Fig. 3) reflects the amount of quartz in the non-biogenic sediment. This fraction
includes sediments of terrigenous, hydrogenous, and hydrothermal origin as well as trace
amounts of sediment of biological origin (e.g. organic carbon, barite, phosphatic fish
debris, etc.). Differences in the quantity of quartz in the carbonate- and opal-free
sediment therefore reflect the overall importance of terrigenous material in the sediment as well as the quartz content of specific terrigenous source areas. For example, Dymond (1981) has demonstrated that the non-biogenic sediments of the South Pacific deposited west of the East Pacific Rise crest are dominated by hydrogenous and hydrothermal phases. Thus, it is not surprising that the quartz contents are low. The non-biogenic sediments of the North Pacific are dominated by terrigenous material, however (Griffin, et al., 1968; Windom, 1969; Leinen and Heath, 1981). The distribution pattern in the North Pacific reflects both eolian transport by the major wind systems and differences in the quartz content of terrigenous sources. The latitudinal patterns are much clearer in the opal-free data. In the North Pacific the opal-free data also show a lobe of higher quartz concentrations in the eastern North Pacific at about 20°N which has been attributed to eolian transport from the arid desert regions of Central America and southwestern North America (Moore and Heath, 1978). The map suggests that eolian material transported across the North Pacific from Asia by the westerlies has a similar quartz content to that supplied to subtropical northeast Pacific sediments from the desert regions of North America by the trade winds. The concentration of quartz (calculated on an opal-free basis) also is influenced by the weathering style on the continent. For example, deep-sea sediments contain high concentrations of quartz downwind of major deserts like the Sahara (Sarnthein, 1979; Dauphin, 1982).

Eolian processes are not the only processes controlling quartz distribution in the ocean, however, and in some areas they are not the dominant processes. In the Atlantic Ocean any eolian pattern of latitudinal banding is strongly modified by turbidite deposition on abyssal plains and by contour current winnowing. It is obvious from our results that great care must be taken when choosing where quartz determinations can be used as reliable indicators of eolian transport.

The gross pattern of opal distribution mirrors the surface primary productivity (Koblentz-Mishke, et al., 1970; Heath, et al., 1983) even in areas like the equatorial and
northwest Pacific, where the siliceous sediment is dominated by the skeletal remains of radiolarians which are not primary producers. The similarity between primary productivity and opal distribution is strongest in the Pacific where sediments are dominantly pelagic. Absolute concentrations must be used with care because of problems in calibrating opal techniques discussed earlier, however the map clearly reflects first-order features like the equatorial high productivity belts and some second-order features like the productivity associated with the confluence of the Kuroshio and Oyashio currents in the northwest Pacific.

ACKNOWLEDGEMENTS

We would like to thank the many technicians and students who contributed to the data sets which are combined in this paper. These individuals are acknowledged in the papers which have been published. Patricia Price, formerly of Oregon State University and Tammy King Walsh, URI, performed most of the new, unpublished analyses. The intercalibration work and the summarization work was supported by National Science Foundation grants #ATM - and #OCE - to M. Leinen.
AREA	SOURCE	REFERENCE	PREVIOUS MAPS
A. Indian	Kolla & Biscaye	Kolla and Biscaye (1977) + unpublished data	Kolla and Biscaye (1977)
Atlantic	Kolla & Biscaye	Kolla et al., (1979) + unpublished data	Kolla, et al. (1979)
B. Indian	Dauphin	unpublished	
Pacific	Dauphin	unpublished	
C. South Pacific	Thiede	Thiede (1979) + unpublished data	Thiede (1979)
D. North Pacific	Pisias	Pisias (1974)	
E. North Pacific	Wenkam	Wenkam (1976)	
F. North Pacific	Peterson	Peterson (1969)	
G. Pacific	CLIMAP	unpublished data	
H. South Atlantic	Ellis	Ellis (1972)	Ellis (1972)
I. Indian	Leinen	unpublished data	Moore and Heath (1979) (partial)
J. Pacific	Heath	unpublished data	Molina-Cruz (1976)
K. Pacific	Molina-Cruz	Molina-Cruz (1976)	Molina-Cruz (1977)
L. Pacific	Rex	Rex (1958)	Rex and Goldberg (1958)
		Rex and Goldberg (1958)	
FIGURE CAPTIONS

Figure 1. Distribution of quartz in deep sea sediments. All data are corrected for dilution by calcium carbonate. Contours are in weight percent.

Figure 2. Distribution of biogenic silica (opal) in deep sea sediments. All data are corrected for dilution by calcium carbonate. Contours are in weight percent.

Figure 3. Distribution of quartz in the non-biogenic fraction of deep sea sediments. All data are corrected for calcium carbonate and biogenic silica. Contours are in weight percent.
REFERENCES CITED

Berger, W.H., 1976, Biogenous deep-sea sediments: Production, preservation, and interpretation, In Riley, J.P., and Chester, R., Chemical Oceanography, v. 5, p. 265-287.

Biscaye, P.E., Kolla, V., and Turekian, K.K., 1976, Distribution of calcium carbonate in surface sediments of the Atlantic Ocean: Journal of Geophysical Research, v. 81, p. 2595-2603.

Blank, M., Leinen, M., and Prospero, J.M., 1985, Major Asian eolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific, Nature, in press.

Bloomstine, M.K., and Rea, D.K., 1985, Post-middle Oligocene history of eolian deposition from the southeast Pacific tradewinds, in Leinen, M., and Rea, D.K., et al., Initial Reports of the Deep Sea Drilling Project, v. 92, Washington, D.C., (U.S. Government Printing Office), in press.

Calvert, S.E., 1966, Accumulation of diatomaceous silica sediments in the Gulf of California, Geological Society of America Bulletin, v. 77, p. 569-596.

Dauphin, J.P., 1982, Eolian quartz granulometry as a paleowind indicator in the northeast equatorial Atlantic, North Pacific and southeast equatorial Pacific, Ph.D. Thesis, U. Rhode Island, Kingston, RI, 355p.

DeMaster, D., 1981, The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, v 45, 1715-1732.

Duce, R.A., Unni, C.K., Ray, B.J., Prospero, J.M. and Merrill, J.T., 1980, Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific: temporal variability, Science, v. 209, 1522-1524.

Dymond, J., 1981, Geochemistry of Nazca Plate surface sediments: An evaluation of hydrothermal, biogenic, detrital and hydrogenous sources, In Kulm, L.D.,
Dymond, J., Dasch, E.J., and Hussong, D., Eds., Nazca Plate: Crustal Formation and Andean Convergence, Geological Society of America Memoir 154, p. 133-173.

Eggiman, D.W., Manheim, F.T., and Betzer, P.K., 1980, Dissolution and analysis of amorphous silica in marine sediments, Journal of Sedimentary Petrology, v. 50, p. 215-225.

Ellis, D.B., 1972, Holocene sediment of the South Atlantic Ocean: The calcite compensation depth and concentration of calcite, opal, and quartz, M.S. Thesis, Oregon State University, Corvallis, OR 97331, 139 p.

Ellis, D.B., and Moore, T.C., Jr., 1973, Calcium carbonate, opal, and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean, Journal of Marine Research, v. 31, p. 210-227.

Griffin, J.J., Windom, H., and Goldberg, E.D., 1968, The distribution of clay minerals in the world ocean: Deep-Sea Research, v. 15, p. 433-459.

Honjo, S., Manganin, S.J., and Cole, J.J., 1982, Sedimentation of biogenic matter in the deep ocean, Deep Sea Research, v. 29, p. 609-625.

Koblenz-Mishke, et al.

Kolla, V., and Biscaye, P.E., 1977, Distribution and origin of quartz in the sediments of the Indian Ocean, Journal of Sedimentary Petrology, v. 47, p. 642-649.

Kolla, V., Biscaye, P.E., and Hanley, A.F., 1979, Distribution of quartz in Late Quaternary Atlantic sediments in relation to climate, Quaternary Research, v. 11, p. 261-277.

Leinen, M., 1977, A normative calculation technique for determining opal in deep-sea sediments, Geochimica et Cosmochimica Acta, v. 41, p. 671-676.

Leinen, M., 1985, Techniques for determining opal in deep sea sediments: A comparison of radiolarian counts and X-ray diffraction data, Marine Micropaleontology, in press.
Leinen, M., and Heath, G.R., 1981, Sedimentary indicators of atmospheric activity in the Northern Hemisphere during the Cenozoic, Paleogeography, Paleoclimatology, Paleooecology, v., 36, p. 1-21.

Leinen, M., and King, T., 1981, Measuring biogenic opal in sediments: an evaluation and improvement of the X-ray diffraction technique, Geological Society of America, Abstracts with Programs, v. 13, p. 487.

Leinen, M., and King, T., 1981, Pacific site assessment, Subseabed Disposal Program Annual Report, January to September 1981, Part II, p. 335-388.

Leinen, M., and Pisias, N.G., 1984, An objective technique for determining end-member compositions and for partitioning sediments according to their sources, Geochimica et Cosmochimica Acta, v. 48, p. 47-62.

Lisitzin, A.P., 1972, Sedimentation in the World Ocean, Society of Economic Paleontologists and Mineralogists, Special Publication 17, 218p.

Molina-Cruz, A., 1977, Paleo-oceanography of the subtropical southeastern Pacific during Late Quaternary: A study of radiolaria, opal and quartz contents of deep-sea sediments, M.S. Thesis, Oregon State University, Corvallis, OR 97331, 219 p.

Molina-Cruz, A., and Price, P., 1977, Distribution of opal and quartz on the ocean floor of the subtropical southeastern Pacific, Geology, v. 5, p. 81-84.

Moll, J.E., Prell, W.L., and Leinen, M., 1985, Late Quaternary climatic fluctuations as indicated by opal phytoliths and quartz from deep-sea cores off northwestern Australia, Paleogeography, Paleoclimatology, Paleooecology, in press.

Moore, T.C., Jr., and Heath, G.R., 1978, Sea floor sampling techniques, In Riley, J.P., and Chester, R., Eds., Chemical Oceanography, v. 7, p. 75-126.

Parrington, J.R., Zoller, W.H., and Aras, N.K., 1983, Asian dust: seasonal transport to the Hawaiian Islands, Science, v. 220, 195-197.

Peterson, M.N.A., and Goldberg, E.D., 1962, Feldspar distribution in South Pacific pelagic sediments, Journal of Geophysical Research, v. 67, p. 3477-3492.
Peterson, R.E., 1969, Calcium carbonate, organic carbon and quartz in hemipelagic sediments off Oregon: A preliminary investigation, M.S. Thesis, Oregon State University, Corvallis, Oregon, 97331, 44p.

Pisias, N.G., 1974, Model of Late Pleistocene-Holocene variations in rate of sediment accumulation: Panama Basin, eastern equatorial Pacific, M.S. Thesis, Oregon State University, Corvallis, Oregon, 97331, 77p.

Pisias, N.G., and Leinen, M., 1984, Late Pleistocene variability of the northwest sector of the Pacific Ocean. In, Berger, A., et al., Eds., Milankovitch and Climate. Pt. I, D. Riedel Publishing Company, p. 307-330.

Prospero, J.M., and Bonatti, E., 1969, Continental dust in the atmosphere of the eastern equatorial Pacific, Journal of Geophysical Research, v. 74, p. 3362-3371.

Prospero, J.M., and Carlson, 1972, Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean, Journal of Geophysical Research, v. 77, p. 5255-5265.

Rex, R.W., 1958, Quartz in sediments of the central and north Pacific Basin, Ph.D. Thesis, University of California-Los Angeles, Los Angeles CA, 1110 p.

Rex, R.W., and Goldberg, E.D., 1958, Quartz contents of pelagic sediments of the Pacific Ocean, Tellus, v. 10, p. 153-159.

Sarnthein, M., 1979, Indicators of continental climates in marine sediments, a discussion. "Meteor" Forschungsergebnisse, v. 13, p. 49-51.

Schramm, C.T., and Leinen, M., 1985, Eolian transport to Site 595A from the late Cretaceous through the Cenozoic, Nairn, J., and Menard, H., et al., Eds., Initial Reports of the Deep Sea Drilling Project, v. 91.

Shaw, G.E., 1980, Transport of Asian desert aerosol to the Hawaiian Island, J. Appl. Meteorology, v. 19, 1254-1259.

Thiede, J., 1979, Wind regimes over the Late Quaternary southwest Pacific Ocean, Geology, v. 7, p. 259-262.
Till, R., and Spears, D.A., 1969, The determination of quartz in sedimentary rocks using an X-ray diffractometer, Clays and Clay Minerals, v. 17, p. 323-327.

Wenkam, C., 1976, Late Quaternary changes in the oceanography of the eastern tropical Pacific, M.S. Thesis, Oregon State University, Corvallis, OR 97331, 143 p.

Windom, H.L., 1969, Atmospheric dust records in permanent snowfield: implications to marine sedimentation, Geol. Soc. Amer. Bull., v. 80, 761-782.
Appendix II: Core Information and Concentration of Sedimentary Components
The following is a list of the table headings and their definitions:
LONG = longitude (D is degrees, M is minutes, + is east, and - is west).
LAT = latitude (+ is north and - is south).
CORE ID = the standard core designations (explained on the following page).
ACCESS = sample number used by analyzing laboratory.
DEPTH = water depth above core site (in meters).
SAMP DEPTH = depth in core from which sample was taken (in centimeters).
QTZ % = quartz concentration (in carbonate-free sample).
OPAL % = opal concentration (in carbonate-free sample).
CACO3 % = calcium carbonate concentration.
SOURCE = data source listed on a following page.
Key for Core Identification Codes:
Cores are identified by standard codes used in the literature or the code used by the author from which the data was obtained. These include the following ship codes.
- RC = Robert Conrad
- V or VM = Vema
- AII = Atlantis II
- EN = Endeavor
- E = Eltanin
- TR or TRI = Trident
- A = Atlantis
- S = Shelf cores from USGS
- T = Tyro
- X = Data from Tiedemann, 1985 with no ship designation
Data Source Designations:

1. Data from Kolla and Biscaye, 1977; Kolla et al, 1979: and Kolla and Biscaye unpublished.
2. Data from Dauphin unpublished.
3. Data from Thiede, 1979; and unpublished.
4. Data from Pisias, 1974.
5. Data from Wenkam, 1976.
6. Data from Peterson, 1969.
7. Data from CLIMAP, unpublished.
8. Data from Ellis, 1972.
9. Data from Leinen, unpublished.
10. Data from Heath, unpublished.
11. Data from Molina-Cruz, 1976.
12. Data from Rex, 1958: and Rex and Goldberg, 1958.

1. Data from Prell, et al, 1980.
2. Data from Borole, et al, 1982.
3. Data from Hays, et al, 1976.
4. Data from Streeter, et al, 1982.
5. Data from Balsam, 1981.
6. Data from CLIMAP, 1976.
7. Data from Curry and Lohman, 1982.
8. Data from Hathaway, 1971.
9. Data from Opdyke and Foster, 1970.
0. Data from Tiedemann, 1985.
1. Data from Jansen, et al, 1984; and Jansen personal communication.
2. Data from Goodell and Watkins, 1968.
3. Data from Huang and Watkins, 1977.
4. Data from Prell, 1980; and Peterson and Prell, 1985.
5. Data from Mix and Ruddiman, 1985.
6. Data from Leinen and Graybeal, 1986.
7. Data from Mix and Fairbanks, 1985.
8. Data from Moore, et al, 1980.
9. Data from Sanders, et al, 1965.
0. Data from Honjo, et al, 1982.
1. Data from Yingst and Aller, 1982.
2. Data from Smith, 1978.
3. Data from Tietjen, 1971.
4. Data from van Vleet and Quinn, 1979.
5. Data from Winters et al, 1984a and b, and Cranston, personal communication.
6. Data from Ledbetter, 1985.
7. Data from Ninkovitch and Shackleton, 1975.
8. Data from this study.
9. Data from Gardner, 1982.
0. Data with no source designation is from unpublished organic carbon and calcium carbonate data from Oregon State University.
| LONG | LAT | CORE | ACCESS | DEPTH | SAMP | QTZ | OPAL | CACO3 | SOURCE |
|------|-----|------|--------|-------|------|-----|------|-------|--------|
| 55.45 | -2.40 | 119-195 | 16812 | 4206 | 0 | 2.76 | 42.98 | 1.1 |
| 51.44 | 8.59 | al5558 | 21115 | 3985 | 1- 3 | 4.91 | 41.87 | 0.2 |
| 69.30 | 19.03 | arb-52 | 2240 | 2240 | 1- 3 | 1.79 | 46.29 | 0.2 |
| 69.30 | 19.03 | arb-52 | 2240 | 2240 | 1- 3 | 1.79 | 46.29 | 0.2 |
| 70.09 | 81.47 | arb-54 | 800 | 800 | 1- 3 | 1.74 | 54.59 | 0.2 |
| 70.09 | 81.47 | arb-54 | 800 | 800 | 1- 3 | 1.74 | 54.59 | 0.2 |
| 105.33 | -43.19 | e4527 | 2111 | 3779 | 1- 3 | 1.91 | 59.11 | 1.1 |
| 114.21 | -45.02 | e4528 | 2112 | 4032 | 1- 3 | 1.73 | 62.65 | 1.1 |
| 97.32 | -29.40 | e4811 | 2114 | 3462 | 1- 3 | 5.40 | 22.48 | 1.1 |
| 85.25 | -39.54 | e4822 | 2115 | 3380 | 1- 3 | 1.79 | 46.29 | 1.1 |
| 83.43 | -39.31 | e4823 | 2116 | 3517 | 1- 3 | 1.83 | 54.59 | 1.1 |
| 79.54 | -38.33 | e4827 | 2117 | 3285 | 1- 3 | 1.74 | 58.14 | 1.1 |
| 100.01 | -41.01 | e483 | 2113 | 3933 | 1- 3 | 2.63 | 44.52 | 1.1 |
| 51.19 | -43.49 | md73025 | 3284 | 3284 | 1- 3 | 2.63 | 44.52 | 0.08 |
| 59.50 | -44.04 | rcll-101 | 18812 | 4806 | 3- 5 | 5.83 | 12.98 | 19.9087 | 1.0001 |
| 54.13 | -34.20 | rcll-106 | 1857 | 4212 | 3- 6 | 3.03 | 62.55 | 1.1 |
| 52.30 | -31.25 | rcll-107 | 1858 | 4799 | 0- 5 | 4.63 | 19.81 | 1.1 |
| 55.53 | -27.30 | rcll-108 | 1859 | 5057 | 4- 8 | 4.18 | 15.30 | 1.1 |
| 57.57 | -24.29 | rcll-110 | 18813 | 4960 | 5- 8 | 2.80 | 20.38 | 1.1 |
| 63.04 | -30.57 | rcll-113 | 18814 | 5136 | 10-12 | 3.85 | 22.67 | 1.1 |
| 66.46 | -34.17 | rcll-115 | 18815 | 4663 | 4- 6 | 2.79 | 22.43 | 1.1 |
| 69.33 | -36.29 | rcll-117 | 18510 | 4367 | 5- 7 | 4.53 | 45.55 | 1.1 |
| 71.32 | -37.48 | rcll-118 | 1494 | 4354 | 4- 8 | 2.74 | 37.45 | 1.1 |
| 74.34 | -40.18 | rcll-119 | 1495 | 3709 | 6-11 | 1.69 | 68.31 | 1.1 |
| 79.52 | -34.31 | rcll-120 | 1423 | 3193 | 0- 5 | 0.51 | 28.49 | 1.1 |
| 79.52 | -34.31 | rcll-120 | 1496 | 3193 | 5- 9 | 0.45 | 11.85 | 1.1 |
| 82.15 | -39.43 | rcll-121 | 1405 | 3426 | 0- 5 | 2.21 | 60.63 | 90.7970 | 1.1001 |
| 86.39 | -37.59 | rcll-123 | 1424 | 3766 | 0- 5 | 0.00 | 59.79 | 89.4642 | 1.0001 |
| 90.13 | -36.06 | rcll-124 | 1425 | 3775 | 0- 5 | 0.86 | 52.56 | 1.1 |
| 91.56 | -33.38 | rcll-125 | 1406 | 4305 | 0- 5 | 3.94 | 31.02 | 1.1 |
| 94.25 | -30.04 | rcll-126 | 1407 | 2336 | 0- 5 | 4.85 | 26.50 | 1.1 |
| 100.05 | -27.49 | rcll-130 | 1426 | 4508 | 0- 5 | 3.32 | 27.72 | 1.1 |
| 105.42 | -33.03 | rcll-133 | 1408 | 5367 | 6- 9 | 4.99 | 15.00 | 1.1 |
| 110.33 | -34.04 | rcll-134 | 1427 | 2345 | 0- 5 | 7.12 | 35.83 | 1.1 |
| 111.90 | -35.15 | rcll-135 | 1409 | 32767 | 6- 8 | 10.43 | 18.42 | 1.1 |
| 112.46 | -33.47 | rcll-137 | 14010 | 3043 | 0 | 8.25 | 61.79 | 1.1 |
| 112.59 | -33.48 | rcll-139 | 14011 | 3157 | 0 | 8.70 | 53.57 | 1.1 |
| 114.07 | -31.34 | rcll-141 | 1428 | 4347 | 0- 5 | 4.87 | 88.16 | 1.1 |
| 110.01 | -25.29 | rcll-145 | 14012 | 3869 | 3- 5 | 3.83 | 53.00 | 1.1 |
| 110.01 | -25.29 | rcll-145 | 3868 | 15.03 | 27.65 | 1.1 |
| 112.48 | -21.25 | rcll-146 | 3869 | 16.09 | 6.58 | 1.1 |
| 112.48 | -21.25 | rcll-146 | 1429 | 2371 | 0- 5 | 5.35 | 31.22 | 1.1 |
| 112.45 | -19.04 | rcll-147 | 14013 | 1953 | 3- 5 | 2.80 | 55.21 | 1.1 |
| 119.00 | -6.01 | rcll-150 | 14014 | 633 | 0- 5 | 0.00 | 15.31 | 1.1 |
| 23.15 | -52.03 | rcll-89 | 1851 | 3010 | 0 | 0.50 | 49.58 | 1.1 |
| 25.43 | -56.38 | rcll-90 | 1852 | 5334 | 3- 6 | 3.10 | 46.08 | 1.1 |
| 34.11 | -56.34 | rcll-91 | 1853 | 5373 | 3- 6 | 2.90 | 72.87 | 1.1 |
| 39.57 | -52.29 | rcll-92 | 1854 | 5093 | 3- 6 | 1.59 | 81.63 | 1.1 |
51.58 -56.18 rcl1-93 1855 5373 0 0.37 37.05 1
54.05 -52.48 rcl1-95 1856 4585 3- 6 3.13 57.59 1
61.12 -50.19 rcl1-97 18810 4638 8-10 0.60 41.14 1
61.02 -46.31 rcl1-99 18811 4449 5- 8 2.64 30.11 1
34.02 -30.18 rcl1-305 18515 2794 4- 6 17.26 11.68 1
37.00 -26.56 rcl1-306 21614 2501 3- 5 10.39 8.83 1
40.27 -22.24 rcl1-308 21615 2361 0 4.60 4.30 1
41.21 -21.41 rcl1-309 21616 3537 3- 5 29.66 5.93 1
41.55 -19.45 rcl1-310 2171 2895 0- 5 7.31 7.08 2
47.48 -6.36 rcl1-320 18512 4784 4- 6 5.32 27.59 1
50.25 0.18 rcl1-322 18513 5077 3- 6 2.80 29.44 1
51.13 4.29 rcl1-324 18514 4954 3- 5 6.41 20.10 1
55.00 0.47 rcl1-326 18515 4795 3- 5 3.50 25.69 1
57.50 1.41 rcl1-327 18516 4446 3- 7 2.44 53.40 1
60.36 3.57 rcl1-328 1861 3087 2- 6 2.31 81.58 1
65.12 2.59 rcl1-329 18816 3864 3- 5 3.91 23.48 1
76.10 0.48 rcl1-333 1862 4233 0- 5 4.81 41.58 1
81.57 6.05 rcl1-336 1863 4067 0- 5 5.04 8.46 0.0250 1.0001
86.27 7.45 rcl1-338 1864 3830 0- 5 5.93 26.70 1
90.02 9.08 rcl1-339 1644 3010 0- 5 7.25 7.09 1.1
88.38 15.03 rcl1-342 1865 2840 0- 5 9.09 5.75 1
36.49 -32.33 rcl1-405 2172 4784 0- 5 7.73 8.22 1
37.36 -32.35 rcl1-406 2173 5057 4- 6 6.98 16.38 1
44.45 -35.31 rcl1-407 2174 3288 0 6.31 15.99 1.1
47.53 -39.01 rcl1-409 2692 0.1
47.53 -39.01 rcl1-409 2692 0.3
51.11 -38.00 rcl1-411 1502 3268 3- 8 4.01 73.30 1.3
59.18 -38.45 rcl1-412 1503 5271 9-10 1.43 53.67 79.8847 1.3001
49.51 -23.41 rcl1-418 1868 3844 0- 5 5.64 20.81 67.1398 1.0001
63.33 -17.34 rcl1-419 1869 3568 0- 5 1.60 67.77 1
68.05 -14.52 rcl1-420 18817 3568 4- 8 0.99 75.55 1
71.53 -12.28 rcl1-421 18610 4462 3- 7 1.96 48.76 1
76.45 -9.11 rcl1-423 18818 5376 5- 8 3.69 11.99 1
88.19 -10.55 rcl1-429 1649 2869 3- 5 1.25 67.91 1.1
88.47 -11.18 rcl1-430 14015 1573 0 2.25 40.71 1
88.34 -9.02 rcl1-431 14016 3862 0- 5 1.45 1.05 1
90.01 -2.00 rcl1-433 14210 3813 3- 6 4.46 37.98 1
89.57 -0.50 rcl1-435 16411 3021 3- 6 5.06 25.56 83.8831 1.1001
90.10 -1.28 rcl1-437 20816 2226 0 6.74 11.30 1.1
90.10 -1.28 rcl1-437 24211 2226 0- 5 4.27 38.34 1
92.26 3.45 rcl1-438 14212 4199 0 4.25 1.29 1
90.31 5.51 rcl1-439 14213 2952 0 20.02 4.73 1
92.44 6.09 rcl1-440 14214 4167 0 5.43 25.75 1
100.00 -7.49 rcl1-446 14215 5566 0 3.90 39.51 1
100.12 -9.03 rcl1-448 14216 5874 0- 5 4.94 14.76 1
103.40 -12.53 rcl1-53 1431 4544 6- 9 1.49 67.25 1
99.32 -19.54 rcl1-56 1432 5890 0- 5 2.15 25.27 1
99.58 -21.59 rcl1-57 1411 5879 0- 4 4.39 22.90 1
102.48 -21.12 rcl1-58 1433 4962 2- 5 2.38 14.51 1
106.20 -20.15 rcl1-59 1412 5550 0- 5 4.95 27.32 1
112.55 -18.04 rcl1-61 2798 15.65 18.88 9
119.27 -15.12 rcl1-63 2838 23.38 15.88 9
44.48 -36.52 rcl1-8 1866 2736 0 7.04 21.25 92.1298 1.0001
47.53 -39.01 rcl1-9 1501 2692 4- 6 1.48 93.66 1
| 47.53 | -39.01 | rc14-9 | 1867 | 2692 | 4-6 | 6.08 | 33.58 | 1 | |
| 66.06 | 15.02 | rc17-113 | 3874 | 0.1 |
| 36.53 | -36.00 | rc17-67 | 2175 | 5260 | 0 | 7.99 | 6.69 | 1 |
| 35.57 | -35.05 | rc17-68 | 2176 | 4390 | 0-5 | 10.02 | 12.10 | 1 |
| 32.36 | -31.30 | rc17-69 | 20818 | 3380 | 1-3 | 10.54 | 3.41 | 1.1 |
| 36.01 | -32.07 | rc17-73 | 20820 | 2120 | 0 | 11.77 | 4.96 | 1.1 |
| 37.39 | -31.32 | rc17-74 | 2177 | 5096 | 3-6 | 9.54 | 5.88 | 1 |
| 40.22 | -30.28 | rc17-75 | 2178 | 4922 | 0 | 9.68 | 5.45 | 1 |
| 43.56 | -29.17 | rc17-76 | 2179 | 2284 | 0-5 | 5.93 | 22.83 | 1 |
| 44.37 | -39.57 | rc17-78 | 21710 | 2398 | 0-5 | 2.86 | 8.60 | 1 |
| 45.47 | -32.16 | rc17-80 | 21711 | 1860 | 0-5 | 8.20 | 21.10 | 1 |
| 65.37 | -13.13 | rc17-98 | 3409 | 0.1 |
| 112.55 | -18.04 | rc19-61 | 1434 | 2798 | 0-5 | 3.07 | 50.86 | 1 |
| 37.49 | -41.53 | rc8-38 | 1888 | 3784 | 2-5 | 4.96 | 41.34 | 1 |
| 42.21 | -42.53 | rc8-39 | 1637 | 4330 | 4-6 | 2.62 | 59.98 | 74.2203 | 1.3001 |
| 51.16 | -43.38 | rc8-41 | 1721 | 2897 | 2-5 | 6.25 | 58.84 | 1 |
| 57.22 | -48.41 | rc8-43 | 1492 | 4319 | 4-8 | 0.88 | 1.00 | 1.3 |
| 62.33 | -53.02 | rc8-45 | 1722 | 4546 | 0 | 1.29 | 25.25 | 1 |
| 65.28 | -55.20 | rc8-46 | 1889 | 2761 | 0-5 | 0.34 | 8.15 | 1 |
| 71.47 | -55.03 | rc8-47 | 1723 | 3502 | 5-8 | 0.48 | 22.40 | 1 |
| 86.55 | -53.16 | rc8-48 | 1724 | 1099 | 4-6 | 0.24 | 11.86 | 1 |
| 81.33 | -51.04 | rc8-49 | 1725 | 3908 | 0 | 1.55 | 30.87 | 1 |
| 92.25 | -44.46 | rc8-50 | 2819 | 0-5 | 1.10 | 74.09 | 1 |
| 93.53 | -44.02 | rc8-51 | 1421 | 2736 | 0-5 | 0.72 | 61.42 | 1 |
| 101.25 | -41.00 | rc8-52 | 1402 | 4393 | 0-5 | 0.88 | 51.29 | 90.5471 | 1.0001 |
| 104.22 | -39.23 | rc8-53 | 1422 | 4429 | 0-5 | 1.18 | 45.26 | 1 |
| 109.57 | -35.49 | rc8-55 | 1403 | 5435 | 3-8 | 3.62 | 2.79 | 1 |
| 114.31 | -31.17 | rc9-150 | 16310 | 2703 | 0 | 4.34 | 71.44 | 1.1 |
| 114.23 | -30.46 | rc9-151 | 1404 | 2543 | 0 | 4.80 | 87.27 | 1 |
| 66.35 | 5.47 | rc9-157 | 1726 | 4111 | 0 | 6.25 | 4.46 | 1 |
| 63.00 | 8.44 | rc9-159 | 1727 | 4576 | 0-5 | 8.90 | 3.84 | 1 |
| 63.09 | 12.03 | rc9-160 | 1728 | 4268 | 0-5 | 9.46 | 2.54 | 47.2311 | 1.0001 |
| 59.36 | 19.34 | rc9-161 | 1729 | 3332 | 4-8 | 12.60 | 8.55 | 1.1 |
| 60.25 | 19.05 | rc9-162 | 17210 | 3092 | 0-5 | 12.73 | 9.54 | 68.3893 | 1.0001 |
| 60.25 | 19.05 | rc9-162 | 18914 | 3092 | 5-7 | 13.72 | 5.94 | 68.3893 | 1.0001 |
| 58.05 | 17.53 | rc9-163 | 17211 | 3005 | 4-8 | 12.44 | 15.73 | 1 |
| 58.05 | 17.53 | rc9-163 | 1897 | 3005 | 10-12 | 12.63 | 10.91 | 1 |
| 49.48 | 13.21 | rc9-164 | 18910 | 3171 | 0-5 | 7.10 | 11.43 | 1 |
| 65.32 | 3.52 | vl14-100 | 1672 | 3682 | 5-8 | 5.91 | 12.80 | 1 |
| 59.50 | 7.31 | vl14-101a | 1673 | 2390 | 0-5 | 4.85 | 25.65 | 1.1 |
| 57.11 | 10.15 | vl14-102 | 1674 | 3915 | 0-5 | 4.34 | 67.88 | 1.1 |
| 56.14 | 11.27 | vl14-103 | 1675 | 4232 | 2-5 | 5.90 | 46.68 | 1 |
| 53.27 | 13.26 | vl14-104 | 1676 | 2670 | 3-6 | 6.57 | 41.98 | 1 |
| 32.52 | -29.39 | vl14-77 | 1818 | 0.1 |
| 37.14 | -29.50 | vl14-78 | 2151 | 4948 | 0-5 | 28.99 | 7.06 | 1 |
| 41.58 | -28.34 | vl14-80 | 2152 | 4603 | 0 | 55.96 | 2.79 | 1 |
| 43.47 | -28.26 | vl14-81 | 1621 | 3634 | 12-15 | 4.38 | 7.40 | 1.1 |
| 66.48 | -11.56 | vl14-92 | 1441 | 2986 | 0 | 1.54 | 1.09 | 1 |
| 64.49 | -4.18 | vl14-95 | 1671 | 4513 | 5-8 | 2.76 | 53.45 | 1 |
| 29.29 | -45.14 | vl16-57 | 1677 | 5289 | 3-5 | 12.62 | 3.74 | 1 |
| 41.58 | -47.19 | vl16-63 | 1678 | 3886 | 0 | 3.46 | 62.73 | 1 |
| 45.46 | -45.00 | vl16-65 | 1507 | 1618 | 3-8 | 1.45 | 36.90 | 1.3 |
| 43.30 | -37.09 | vl16-67 | 2153 | 3643 | 0-5 | 8.66 | 33.03 | 1 |
Value	Unit	Value	Unit	Value	Unit										
57.35	-20.40	1679	2906	4-8	0.43	30.35									
61.02	-27.15	16710	5588	0	1.10	5.10									
78.40	-29.58	1443	2838	6-10	0.61	8.54									
81.32	-30.00	1444	3852	0	1.10	10.17									
85.47	-33.01	1415	3416	0-5	2.24	30.63									
73.33	-31.04	1414	3851	0-5	1.79	28.15									
95.11	-28.01	1416	4071	0-5	1.71	32.01									
99.15	-31.32	1437	2417	0-5	0.96	39.03									
101.09	-33.31	1436	5960	0-5	2.06	34.31									
106.13	-36.08	1413	6077	0	4.61	51.59									
106.13	-36.08	1442	6077	0-5	2.50	14.26									
81.11	3.22	v17-42	ml12680	1814	0	8.50	28.38	57.0000							
82.37	1.52	v17-43	ml12681	3147	0	6.29	37.75	37.5000							
85.07	-3.34	v17-44	ml12682	3358	0	7.78	35.16								
29.56	-38.59	v18-186	1871	4204	3-6	13.76	16.53								
33.55	-38.29	v18-187	2154	3680	0	6.53	3.47								
37.52	-37.38	v18-188	16711	4960	0-6	5.50	14.26								
41.51	-36.07	v18-189	16712	4923	3-5	4.44	12.40								
46.34	-32.26	v18-191	2155	2946	0-5	8.43	6.41								
48.05	-31.12	v18-192	16713	4396	0-5	3.80	26.78								
51.37	-21.26	v18-196	16714	4965	3-5	0.66	13.70								
52.51	-18.28	v18-197	16715	4931	0	1.98	17.79								
63.32	-20.35	v18-200	17616	3305	0-5	1.08	50.77								
74.22	-22.23	v18-203	1445	4014	0	2.04	27.26								
87.07	-25.38	v18-207	1417	2434	0-5	0.76	29.34								
93.43	-25.47	v18-209	1418	4449	5-8	3.11	21.52								
95.58	-25.46	v18-210	1419	4967	5-10	3.06	19.29								
99.04	-25.41	v18-211	14110	5343	5-8	6.21	5.87								
100.12	-25.43	v18-212	14111	1942	0	4.56	38.91								
101.56	-25.41	v18-213	14112	4720	0-5	6.29	1.05								
108.40	-27.59	v18-244	14113	5147	0-5	8.39	31.63								
96.18	14.31	v18-337	ml12685	3891	0	10.47	2.76	2.3600							
96.18	14.31	v18-337	ml12685	3891	0	0.00	0.00	2.3597							
101.40	-11.41	v19-154	14114	4964	0-5	1.44	33.90								
101.32	-12.24	v19-155	4731	2.90	26.37										
101.20	-14.38	v19-156	5363	26.36	4.82										
101.20	-14.38	v19-156	14115	5363	0-5	1.83	71.31								
100.33	-16.20	v19-157	5911	12.14	25.38										
99.24	-18.11	v19-158	5759	21.26	24.26										
88.27	-20.48	v19-162	14116	3085	5-8	1.52	36.13								
82.12	-20.28	v19-164	1681	4784	5-8	3.80	7.10								
82.06	-16.11	v19-166	1682	5400	5-8	4.47	22.63								
82.01	-12.44	v19-168	1683	5138	0-5	1.70	44.44								
81.37	-10.13	v19-169	1684	5110	0-5	1.76	84.08								
81.25	-7.54	v19-170	1685	5218	0-5	2.87	14.65								
80.30	-5.32	v19-172	1872	5167	0-5	6.30	4.44								
80.35	-3.15	v19-173	1686	4964	3-5	4.55	12.23								
80.37	0.27	v19-174	1687	4616	5-8	5.60	4.89								
80.44	4.07	v19-175	1873	4343	3-6	9.58	7.94								
73.15	8.07	v19-178	1625	2188	0-5	5.19	22.03								
73.15	8.07	v19-178	2084	2188	0	7.77	16.18								
69.15	8.09	v19-180	1688	4651	0-5	5.96	14.89								
66.57	8.14	v19-181	1689	4610	0-5	7.85	2.63								
59.20	6.42	v19-185	1627	2867	2-7	5.54	4.18								
Value	Description	Value	Description												
---------	-------------------	---------	-------------------												
60.40	6.52 v19-188	1628	3356 1- 5 5.04 7.20												
60.40	6.52 v19-188	1881	3356 2- 5 3.06 7.83												
55.04	5.58 v19-191	16810	5125 0- 4 4.08 31.40												
51.28	2.59 v19-193	16811	5106 2- 5 3.63 21.81												
51.51	-3.34 v19-196	16813	5062 0- 6 2.78 38.18												
48.46	-3.24 v19-197	16814	4984 0- 5 3.69 23.59												
45.49	-3.11 v19-198	16815	4609 0- 5 3.38 29.94												
40.26	-5.20 v19-201	16210	1861 4- 6 3.40 10.04												
41.11	-6.59 v19-202	2086	2589 0- 5 5.34 7.85												
43.49	-10.14 v19-204	1874	3524 3- 6 2.72 36.21												
41.06	-16.56 v19-207	2156	2505 0- 5 7.52 23.40												
39.30	-17.54 v19-208	2157	2318 6- 9 9.00 8.01												
41.36	-19.55 v19-209	2158	2924 0- 5 9.49 5.29												
37.09	-32.32 v19-21	2162	5114 4- 6 18.20 7.29												
43.41	-20.39 v19-210	2159	3241 0- 5 5.63 5.91												
42.10	-22.51 v19-211	21510	3177 7-10 4.56 10.55												
39.58	-23.11 v19-213	21511	3347 0 8.60 8.60												
38.51	-23.22 v19-214	21512	3092 3- 5 6.82 12.36												
37.51	-23.31 v19-215	21513	2898 0- 5 7.04 8.77												
36.47	-25.20 v19-216	21514	2206 0 10.34 10.05												
38.08	-27.00 v19-217	21515	4836 0 4.57 2.20												
39.45	-29.27 v19-219	21516	4909 0-20 28.91 7.66												
38.10	-31.42 v19-220	2161	5019 7- 9 7.11 4.98												
34.24	-33.22 v19-222	16816	2005 0 9.72 20.34												
31.25	-34.24 v19-223	2163	4116 0- 5 13.96 14.84												
81.42	2.28 v19-25	burkle	2404 10-13 0.00 41.20 51.4000												
81.42	2.28 v19-25	plo0047	2404 10-13 0.00 71.00 56.1200												
82.04	-0.28 v19-27	plo0049	1373 10-13 0.00 38.60 44.0600												
82.04	-0.28 v19-27	burkle	1373 10-13 0.00 8.80 24.9000												
84.39	-2.22 v19-28	m112686	2720 0 4.87 45.12												
84.39	-2.22 v19-28	burkle	2720 0 0.00 0.00 62.7000												
83.56	-3.35 v19-29	m107261	3157 2 0.00 0.00 31.1000												
83.31	-3.23 v19-30	m108176	3091 0 9.48 23.56 20.0000												
96.12	-14.07 v19-41	m112688	3248 0 7.12 21.81												
121.12	-16.56 v19-64	m112691	3570 0 1.19 9.21												
122.58	-11.44 v20-153	1536	25.83 17.31												
106.32	-17.06 v20-158	14313	6048 0- 5 0.95 22.47												
106.32	-17.06 v20-158	6048	16.53 16.94												
103.32	-17.05 v20-159	5629	21.10 24.26												
96.28	-17.13 v20-161	1446	5482 0- 5 1.47 26.40												
96.28	-17.13 v20-161	5482	18.76 9.58												
93.09	-17.16 v20-162	1447	5645 0 0.17 2.19												
88.41	-17.12 v20-163	14117	2706 0 2.81 29.56												
69.14	-21.48 v20-170	16212	2479 2- 5 1.10 33.37												
68.00	-22.18 v20-175	2087	3526 0- 3 2.00 33.52												
66.17	-22.42 v20-176	1875	3946 0- 5 2.78 31.53												
61.34	-23.50 v20-179	17212	3568 0 1.76 7.00												
55.23	-24.07 v20-183	17213	4695 0 1.10 18.67												
51.19	-28.06 v20-186	17214	5037 0- 5 4.89 32.03												
42.26	-26.27 v20-189	2164	4244 0- 5 15.48 7.22												
40.54	-25.07 v20-190	2165	4016 5- 8 5.24 7.55 47.3144 1.0001												
41.19	-23.56 v20-191	2166	3620 0- 5 8.67 8.31												
38.37	-30.39 v20-197	1876	4982 2- 5 3.52 7.20												
85.08	2.50 v21-212	m112702	3338 0 3.35 37.85												
85.08	2.50 v21-212	m112703 3338	0	6.07	40.33	7									
80.38	3.50 v21-214	m112704 2246	0	8.95	24.30	7									
80.38	3.50 v21-214	burkle 2246	0	0.00	0.00	35.5000	7								
89.41	-1.31 v21-30	m112695 617	0	0.00	0.00	70.1273	2								
89.41	-1.13 v21-30	m112695 617	0	0.68	13.97	70.1300	7								
92.05	-3.48 v21-33	thompson 3726	0	0.00	0.00	55.0000	7								
92.05	-3.48 v21-33	m112696 3726	0	1.64	73.25	7									
25.42	-40.08 v22-130	1877	2428	0-3	9.95	26.03	1								
119.19	18.47 v24-132	1897	2019	2	7.88	2.05	1								
120.12	-11.43 v24-187	4266	15.93	15.64	9										
115.40	-11.18 v24-188	6956	31.48	21.44	9										
110.06	-13.29 v24-191	5340	6.78	11.68	9										
110.06	-13.29 v24-191	1448	5340	0-5	1.69	39.67	1								
108.08	-16.02 v24-192	14118	5407	0-5	3.51	50.87	1								
108.02	-14.07 v24-193	4513	5.27	29.29	9										
106.32	-14.07 v24-193	14119	4513	0-5	2.26	50.27	1								
104.21	-11.09 v24-194	5256	8.17	24.67	9										
108.08	-16.02 v24-194	5407	16.14	18.57	9										
58.10	-30.55 v24-201	1878	2917	0-5	4.38	26.84	1								
59.13	-34.21 v24-202	1879	5512	3-6	2.50	49.12	1								
59.59	-36.59 v24-203	1509	4997	6-10	2.26	0.44	1.3								
45.39	-36.16 v24-208	2167	3231	0-5	8.09	21.83	1								
39.44	-34.45 v24-209	2168	5174	2-4	8.83	7.09	1								
37.13	-31.52 v24-210	2169	4960	3-5	10.02	7.09	1								
38.05	-32.37 v24-211	21610	4995	4-10	5.56	11.42	1								
36.24	-34.39 v24-212	17215	5145	3-5	6.87	4.68	1								
120.30	-14.06 v28-342	2730	21.60	16.97	9										
117.58	-14.38 v28-344	5658	8.18	15.01	9										
96.54	-17.45 v28-351	5678	10.45	10.21	9										
96.50	-15.08 v28-352	4722	4.12	5.88	9										
97.05	-8.18 v28-353	5297	7.91	32.04	9										
98.39	-14.42 v28-354	14410	5824	0-5	0.02	6.13	1								
117.57	-17.40 v28-345	1904	18.87	17.24	9										
99.49	-4.08 v29-02	14411	5893	0-5	11.04	4.09	1								
98.21	-3.25 v29-03	14412	4642	0-5	6.24	8.12	1								
95.08	-2.07 v29-04	14413	4347	0-5	4.24	14.18	1								
92.59	-4.37 v29-05	14414	4841	0-5	1.74	84.72	1								
90.14	-6.44 v29-06	14415	3906	0-5	2.73	59.37	1								
88.01	-5.05 v29-07	14416	5092	0-5	2.18	14.74	1								
83.20	4.17 v29-12	17216	4160	0-5	10.56	5.07	1								
85.58	6.14 v29-14	1731	3713	0-5	5.49	40.19	1								
88.44	11.57 v29-15	1732	3173	0	7.78	24.15	1								
88.05	14.09 v29-16	1733	1574	0	8.92	13.50	1								
85.24	16.38 v29-17	1734	2813	0-5	6.81	8.74	1								
83.35	14.42 v29-19	1735	3182	0-5	7.30	13.39	1								
81.42	11.52 v29-20	1736	3557	0-5	7.92	8.28	1								
73.15	5.02 v29-27	1737	461	0	4.08	5.50	1								
77.35	5.07 v29-29	16215	2673	0-5	3.28	24.56	1								
76.15	3.05 v29-30	1738	3651	0-5	5.43	42.24	1.1001								
76.19	-1.34 v29-32	1739	4755	0-5	5.82	27.91	1								
78.39	-5.43 v29-38	18710	5167	5-8	3.98	7.68	1								
79.33	-11.46 v29-41	18711	5383	7-10	2.43	49.53	1								
69.49	-6.00 v29-45	1631	2860	0-5	2.21	1.10	73.7205 1.0001								
66.35	-8.02 v29-46	1883	4027	3-6	1.38	1.10	1								
Value 1	Value 2	Value 3	Value 4	Value 5											
---------	---------	---------	---------	---------											
63.26	-6.16	1633	3882	0-5	1.07	1.10	1.1								
63.33	-10.00	17310	3630	0-5	3.16	91.22	1								
63.23	-13.17	17311	3966	0-5	1.38	82.36	1								
70.14	-18.53	1884	3729	3-5	1.86	47.16	1								
76.35	-18.45	1885	4984	9-10	3.44	11.22	1								
74.52	-27.17	17312	3404	0-5	2.32	29.57	1								
66.03	-31.02	17313	4967	0-5	2.32	29.57	1								
67.26	-29.25	1886	4393	4-6	4.04	18.16	1								
54.37	-18.04	1887	4731	5-8	0.56	2.34	1								
51.32	-19.43	17314	4938	0-5	8.71	10.30	1								
53.09	8.38	13910	3446	0-3	5.89	3.69	1								
48.46	-27.09	17315	2362	0	6.22	22.95	1								
43.03	-31.04	17316	1626	0	9.15	13.89	1								
40.13	-30.47	21611	5092	0-5	6.58	4.92	1								
38.16	-34.40	21612	5264	2-7	6.35	15.54	1								
35.31	-37.22	21613	4834	0-5	10.57	9.64	1								
30.57	-41.32	17317	5059	0-5	15.24	29.26	1								
27.36	-43.51	15010	5451	7-10	3.20	62.61	1.3								
27.23	-49.06	15012	5314	4-9	2.59	5.78	1								
27.23	-49.06	15013	5314	9-10	2.61	56.32	1.3								
25.39	-45.44	15014	5945	4-8	4.63	27.86	1.3								
25.44	-43.42	15015	5148	14	4.49	19.53	1.3								
111.43	-20.55	980	17.61	8.97	9										
112.35	-22.44	0	27.85	12.84	9										
97.04	-11.26	0	8.75	30.74	9										
109.35	-20.33	0	15.37	21.84	9										
111.41	-20.56	1118	16.01	22.12	9										
111.45	-20.55	958	12.46	10.97	9										
89.35	-6.07	3812	0.05												
59.45	16.32	2000	0.05												
104.50	-6.14	1554	3.94	35.34	1										
104.15	-8.27	5678	3.72	14.78	1										
94.04	-2.02	5159	2.71	22.70	1										
91.12	-20.56	4846	2.90	19.77	1										
86.21	-20.39	4169	2.39	34.57	1										
103.32	-17.05	5629	6.16	29.72	1										
99.15	-17.11	6328	2.05	44.86	1										
86.33	2.59	y69106p	2870	0-1	2.41	20.64	1.0700								
86.29	0.06	y6971p	2740	4-5	2.52	60.69	42.8900								
87.56	1.27	y6973p	2707	0-2	0.00	0.00	72.0100								
77.34	16.27	y71612p	2734	0-1	0.00	0.00	8.4100								
77.34	16.27	y71612p	2734	2-4	11.79	11.98	7.4400								
LONG D M	LAT D M	CORE ID	ACCESS DEPTH	DEPTH %	QTZ %	OPAL %	CACO3 %	SOURCE							
---------	--------	--------	-------------	---------	-------	--------	---------	--------							
-76.00	31.00	a15-63	3220	16.75	5.22	0.5									
-74.41	34.49	a15-64	1651 1300	0	12.75	5.33	1.6								
-73.37	37.07	a15-65	1652 0	0	7.07	5.50	1.6								
-69.00	36.29	a16-424	1654 0	3329	7.48	4.54	1.6								
-71.15	37.46	a16-45	1511 0	3330	12.44	4.21	1.6								
-69.62	38.08	a16-46	1512 0	2725	19.36	4.37	1.5								
-68.47	39.33	a16-461	1513 0	2725	19.36	4.37	1.6								
-75.21	31.39	a16-713	1461 0	0	8.15	3.39	1.6								
-76.28	31.28	a16-714	1521 0	5	11.53	3.67	1.6								
-73.28	17.14	a17-21	1462 0	2	5.77	35.88	1.6								
-72.19	16.12	a17-22	1514 3149	10	8.17	7.63	1.6								
-68.51	14.59	a17-26	1463 0	3	7.55	4.91	1.6								
-75.45	23.56	a17-913	1522 1847	0	7.23	16.15	1								
-75.56	24.48	a17-915	1465 0	5	6.73	5.69	1.6								
-74.48	16.36	a17-94	1464 2965 2	0	6.54	18.49	1.6								
-36.42	39.16	a18-015	2062 4610	0	6.77	4.75	1								
-32.29	38.21	a18-016	1532 2270 10	0	15.79	4.81	1.6								
-26.15	29.07	a18-032	1656 5029	0	9.67	6.57	1.6								
-19.18	25.50	a18-039	1658 3470	0	8.80	6.71	1.6								
-17.56	15.20	a18-047	1534 0 15	10.14	13.57	1.6									
-18.06	15.19	a18-048	1534 0 15	10.14	13.57	1.6									
-17.46	12.45	a18-056	1467 2597 2	9.01	21.51	1.6									
-21.47	0.36	a18-072	1468 3841 4	3.38	40.09	1.6									
-23.00	0.10	a18-073	1224 3750 0	6	4.13	5.81	1.6								
-24.10	0.03	a18-074	16510 3329 0	4.90	23.75	1.6									
-45.57	39.27	a18-09	3874 0	9.46	6.67	1.6									
-43.28	0.30	a18-13	1227 3874 10	9.46	6.67	1.6									
-45.52	3.32	a18-14	1228 3655 10	20.98	5.41	1									
-57.20	10.33	a18-17	12313 3765 10	5.77	30.43	1									
-17.56	15.20	a18047	1466 0 3	12.39	3.93	1									
-70.10	39.48	ads	2750			0.004									
-64.42	32.11	ber5	2000			97.500	0.001								
-64.42	32.14	ber6	1500			99.160	0.001								
-64.33	32.15	ber7	2500			96.030	0.001								
-70.47	40.21	cl	97			3.170	0.001								
-70.35	39.55	dl	487			5.2900	0.001								
-54.00	13.30	demera-e	5288			0.002									
-70.40	39.46	dos1	1850			0.004									
-69.36	38.18	dos2	3650			0.004									
-70.55	41.18	dsl	40			0.004									
-79.23	11.30	dsdp502	48.5000			0.0002									
-72.31	38.50	dwd	2200			0.004									
-70.35	39.51	e3	824			6.9500	0.001								
-21.54	6.39	en66-10g	3527			0.06									
-70.45	39.47	fl	1500			14.7800	0.001								
-76.40	33.34	fbl	250			84.6000	0.005								
-76.25	33.32	fb2	500			83.3000	0.005								
-76.10	33.27	fb3	750			61.4000	0.005								
-76.54	33.37	fcl	50			61.3000	0.005								
Value 1	Value 2	Value 3	Value 4	Value 5											
--------	---------	---------	---------	---------											
-76.51	33.36	fc2	100	56.2000											
-76.06	33.27	fs11	1000	52.5000											
-76.05	33.26	fs12	1250	54.3000											
-76.02	33.26	fs13	1500	56.5000											
-76.01	33.25	fs14	1750	54.3000											
-75.59	33.25	fs15	2000	63.3000											
-75.56	33.24	fs16	2500	71.6000											
-70.39	39.42	gl	2086	19.9500											
-70.35	39.26	gh	2500	26.3700											
-25.24	31.17	gme10-ave		0.007											
-25.23	31.17	gme2-ave		0.007											
-24.49	31.27	gme24-ave		0.007											
-70.08	38.47	hh3	2873	32.8700											
-69.32	37.59	i1	3752	33.1500											
-68.41	37.15	jj	4670	0.004											
-68.40	37.13	jj3	4540	29.7100											
1.36	71.47	k-11	3900	0.4											
-23.45	50.00	k708-1	4053	0.6											
-35.01	49.59	k708-4		0.6											
-29.34	51.34	k708-6		0.6											
-24.05	53.56	k708-7		0.6											
-22.33	52.45	k708-8		0.6											
-68.05	36.24	kk	4830	0.004											
-63.10	40.24	knorr78-14	4617	0.003											
-76.05	34.07	lb1	250	79.3000											
-76.01	34.06	lb2	400	71.3000											
-75.55	33.59	lb3	600	60.2000											
-75.51	33.58	lb4	800	53.4000											
-76.14	34.11	lc1	50	58.4000											
-76.11	34.08	lc2	100	55.0000											
-67.25	35.35	lll	4977	27.9500											
-75.50	33.57	ls11	1000	51.3000											
-75.46	33.56	ls12	1500	51.4000											
-75.45	33.50	ls13	2000	61.4000											
-75.44	33.49	ls14	2500	69.4000											
-16.51	25.10	m-12392	2575	0.06											
-66.30	34.45	mml	5001	39.5800											
-64.08	32.13	nal	4245	0.007											
-63.33	22.44	nal4	5840	0.007											
-63.33	22.44	nal5	5840	0.007											
-63.29	22.54	nal9	5845	0.007											
-61.30	25.23	na5	5700	0.007											
-63.28	23.03	na8	5850	0.007											
-63.27	22.47	nap12		1.3000											
-63.21	22.50	nap14-2		1.7000											
-63.23	22.50	nap14-3		1.9000											
-63.24	22.50	nap15		4.6000											
-63.26	22.53	nap21		1.7000											
-63.28	22.54	nap26		2.2000											
-63.27	22.55	nap48-ave		0.007											
-64.31	24.00	nap56-ave		0.007											
-63.32	23.35	nap60-ave		0.007											
-63.29	22.46	nap8		1.2000											
Value	Description	Value	Description												
--------	-------------------	--------	-------------------												
-63.29	22.46 nap9	4.4000	0.007												
-65.49	33.57 nn	5080													
-65.51	33.57 nn1	4950	50.7700												
-65.02	33.07 oo2	4667	0.0001												
-66.06	34.26 rc1-02 1538	5231	6.57												
-73.25	35.32 rc10-288	3678	5.5												
-81.06	11.46 rc10-50 1483	2072	19.22												
-74.47	15.51 rc13-151 14611	1484	15.23												
-75.27	16.43 rc13-152 14612	0	21.47												
-75.57	15.04 rc13-153 14613	1400	10.12												
-78.45	14.53 rc13-154 14614	2308	20.88												
-79.50	13.11 rc13-158 1481	715	20.06												
-77.10	14.42 rc13-159 1482	760	13.80												
-30.00	1.52 rc13-189	2333													
-15.51	0.31 rc13-192 1311	1056	38.52												
-13.41	4.30 rc13-194 1515	4770	16.81												
-4.31	3.55 rc13-210 1958	1856	3.39												
-13.21	0.34 rc24-01	3850													
-21.58	42.23 rc5-34 1524	3750	5.27												
-18.35	46.55 rc5-36 1535	4500	4.48												
-19.03	25.52 rc5-54 1536	3295	6.88												
-19.06	19.40 rc5-57 1537	2945	5.32												
-15.24	54.59 rc9-225		0.6												
-65.32	14.27 rc9-45 13014	4674	7.83												
-58.35	11.11 rc9-49 14610	1851	9.24												
33.10	78.30 sl469	21													
33.10	78.50 sl470	22													
33.10	79.00 sl471	10													
32.60	78.60 sl472	16													
32.60	78.50 sl473	26													
32.50	78.40 sl474	32													
32.50	79.00 sl475	24													
32.50	79.10 sl476	13													
32.40	79.10 sl477	27													
32.40	79.30 sl478	12													
32.30	79.30 sl479	20													
32.30	79.50 sl480	20													
32.20	79.50 sl481	25													
32.20	80.00 sl482	16													
32.10	80.20 sl484	15													
31.60	80.10 sl485	21													
31.60	80.30 sl486	18													
31.50	80.30 sl487	18													
31.50	80.50 sl488	17													
31.40	80.50 sl489	17													
31.30	80.50 sl490	20													
31.30	80.60 sl491	13													
31.20	81.00 sl492	15													
31.10	81.00 sl493	14													
30.60	80.60 sl494	19													
30.60	81.10 sl495	16													
30.50	81.00 sl497	18													
30.40	81.00 sl498	20													
30.40	81.10 sl499	19													
30.30	81.20	81500	17	11.4100	0.8										
30.30	81.00	81501	26	18.0900	0.8										
30.20	80.60	81502	21	24.8300	0.8										
30.20	81.20	81503	12	8.5900	0.8										
30.20	81.20	81504	15	13.5000	0.8										
30.10	81.10	81505	15	35.9000	0.8										
30.10	81.00	81506	21	49.8900	0.8										
29.60	81.00	81507	22	24.6500	0.8										
29.50	81.10	81508	19	12.1100	0.8										
29.50	80.60	81509	17	3.8400	0.8										
29.50	80.50	81510	22	38.5400	0.8										
29.40	80.50	81512	28	39.1100	0.8										
29.40	81.00	81513	18	37.3300	0.8										
29.50	81.10	81514	39	11.1000	0.8										
29.40	81.10	81515	19	17.7400	0.8										
29.30	81.10	81516	16	8.8700	0.8										
29.30	81.00	81517	21	8.5100	0.8										
29.20	81.00	81518	18	9.4400	0.8										
29.00	80.50	81520	17	7.6200	0.8										
29.00	80.40	81521	19	32.2400	0.8										
28.60	80.30	81522	18	49.0400	0.8										
28.00	80.20	81523	47	68.8700	0.8										
28.50	80.10	81524	40	70.7300	0.8										
28.50	80.30	81525	22	51.9200	0.8										
28.50	80.40	81526	18	26.7900	0.8										
28.40	80.30	81527	19	61.6800	0.8										
28.40	80.10	81528	36	68.6500	0.8										
28.30	80.10	81529	40	69.4600	0.8										
28.30	80.20	81530	12	53.4100	0.8										
28.20	80.20	81531	17	54.0700	0.8										
28.00	80.20	81539	22	86.7800	0.8										
27.40	80.20	81545	11	74.8700	0.8										
27.10	80.10	81550	17	69.7100	0.8										
27.00	80.00	81551	20	52.7100	0.8										
26.40	80.00	81553	37	57.0800	0.8										
25.00	80.20	81565	85	95.8200	0.8										
24.40	80.10	81570	88	93.1000	0.8										
24.30	81.20	81571	89	93.2800	0.8										
24.30	81.30	81572	97	92.3700	0.8										
24.30	81.40	81573	107	92.9900	0.8										
24.30	81.50	81574	126	91.3600	0.8										
24.30	82.00	81575	74	93.5100	0.8										
24.20	81.50	81576	228	86.9000	0.8										
24.10	81.20	81580	681	85.7400	0.8										
24.20	81.20	81581	199	93.4000	0.8										
24.30	81.20	81583	188	93.9200	0.8										
24.30	80.50	81584	204	90.7900	0.8										
24.20	80.50	81585	216	93.8600	0.8										
24.20	80.40	81586	707	84.3600	0.8										
24.30	80.40	81587	248	93.7800	0.8										
24.40	80.40	81588	207	94.3900	0.8										
24.50	80.30	81589	149	90.4400	0.8										
24.40	80.30	81590	284	90.7600	0.8										
24.50	80.30	s1591	199	90.9900	0.8										
-------	-------	-------	-----	---------	-----										
24.40	80.20	s1592	757	86.2800	0.8										
24.50	80.10	s1593	295	91.0200	0.8										
24.60	80.10	s1594	220	89.4400	0.8										
24.60	80.00	s1595	500	88.3600	0.8										
25.10	80.10	s1596	256	88.3500	0.8										
25.10	79.50	s1597	598	88.4800	0.8										
25.20	80.00	s1598	484	89.7300	0.8										
25.20	79.50	s1599	656	87.9100	0.8										
25.30	79.50	s1600	456	87.9000	0.8										
25.40	79.50	s1601	295	91.0200	0.8										
25.40	79.40	s1602	792	92.6200	0.8										
25.50	79.40	s1603	769	92.1000	0.8										
25.50	79.50	s1604	797	89.4400	0.8										
25.50	79.60	s1605	331	85.8100	0.8										
25.60	79.50	s1606	465	89.4400	0.8										
26.10	79.50	s1607	266	89.4400	0.8										
26.10	79.50	s1608	584	89.4400	0.8										
26.20	79.40	s1609	777	89.5200	0.8										
26.20	79.50	s1610	494	76.1000	0.8										
26.20	79.50	s1611	307	47.3100	0.8										
26.30	79.60	s1612	239	52.8700	0.8										
26.40	79.50	s1613	382	77.9200	0.8										
26.50	79.50	s1614	342	74.0400	0.8										
26.60	79.40	s1615	669	82.7500	0.8										
26.60	79.30	s1616	742	84.5400	0.8										
27.00	79.40	s1617	549	86.4400	0.8										
27.00	79.50	s1618	321	54.9600	0.8										
27.10	79.50	s1619	258	74.1000	0.8										
27.10	80.00	s1620	72	90.2600	0.8										
27.20	80.00	s1621	69	64.5700	0.8										
27.20	79.50	s1622	303	56.4500	0.8										
27.30	79.50	s1623	286	57.6300	0.8										
27.30	80.00	s1624	56	39.3000	0.8										
27.40	80.00	s1625	54	46.7500	0.8										
27.40	79.50	s1626	229	48.3600	0.8										
27.50	79.50	s1627	229	81.9000	0.8										
27.50	79.40	s1628	529	92.7900	0.8										
27.50	79.30	s1629	678	87.7500	0.8										
28.00	79.30	s1630	783	75.6800	0.8										
28.00	79.40	s1631	782	75.3400	0.8										
28.10	79.40	s1632	479	56.9300	0.8										
28.10	79.50	s1633	301	57.9200	0.8										
28.20	79.50	s1634	313	60.7700	0.8										
28.30	79.50	s1635	348	71.5000	0.8										
28.30	80.00	s1636	134	57.9000	0.8										
28.40	79.60	s1637	167	61.6600	0.8										
28.40	79.50	s1638	406	61.7100	0.8										
28.50	79.50	s1639	435	92.7800	0.8										
28.50	79.20	s1641	777	93.6600	0.8										
29.60	79.30	s1642	752	86.5100	0.8										
29.00	79.40	s1643	822	84.4100	0.8										
29.10	79.40	s1644	802	86.6400	0.8										
-----	-----	-----	-----	-----	-----										
29.40	79.40	s1647	727	82.9800	0.8										
29.50	79.40	s1648	722	85.1000	0.8										
30.00	79.40	s1649	871	87.1000	0.8										
30.00	79.30	s1650	779	91.9400	0.8										
30.20	79.30	s1653	835	88.0100	0.8										
30.30	79.30	s1654	752	91.7300	0.8										
30.40	79.30	s1655	797	88.6900	0.8										
30.40	79.40	s1656	579	88.3800	0.8										
30.50	80.00	s1658	146	37.9700	0.8										
30.00	80.30	s1695	38	75.3900	0.8										
30.10	80.30	s1696	36	69.9400	0.8										
30.00	80.20	s1714	86	57.0800	0.8										
29.50	80.20	s1715	77	77.6700	0.8										
29.20	80.20	s1718	57	66.6300	0.8										
29.00	80.10	s1720	111	88.1300	0.8										
28.50	80.00	s1721	169	57.8000	0.8										
28.60	79.60	s1722	424	58.8000	0.8										
29.10	79.60	s1723	494	67.1400	0.8										
29.10	80.10	s1724	202	68.6600	0.8										
29.20	80.00	s1725	460	70.6900	0.8										
29.30	80.00	s1726	494	77.8800	0.8										
29.40	79.60	s1727	528	76.0900	0.8										
29.50	79.60	s1728	533	78.3300	0.8										
29.60	79.60	s1729	504	75.9600	0.8										
30.10	79.50	s1731	534	85.8200	0.8										
30.10	79.40	s1732	802	78.1200	0.8										
30.10	79.40	s1733	861	88.1200	0.8										
30.20	79.40	s1734	664	83.3300	0.8										
30.20	79.50	s1735	534	65.0300	0.8										
30.30	79.50	s1738	480	66.3300	0.8										
30.30	79.40	s1739	639	86.0800	0.8										
30.40	79.10	s1741	792	93.7000	0.8										
30.50	79.20	s1742	752	93.8100	0.8										
30.50	79.20	s1743	802	94.1100	0.8										
30.50	79.30	s1744	787	88.6200	0.8										
30.50	79.40	s1745	461	73.5500	0.8										
31.10	79.30	s1748	524	94.6300	0.8										
31.20	79.30	s1749	484	94.2600	0.8										
31.40	79.30	s1753	166	70.6500	0.8										
31.50	79.30	s1756	69	69.5000	0.8										
31.50	79.20	s1763	259	65.5300	0.8										
31.40	79.20	s1764	504	91.3900	0.8										
31.50	79.10	s1765	550	93.0700	0.8										
31.50	79.00	s1766	450	94.9000	0.8										
31.50	78.50	s1767	455	93.8900	0.8										
31.50	78.30	s1768	534	90.8900	0.8										
32.00	79.00	s1770	406	84.4100	0.8										
32.10	79.00	s1771	181	65.8000	0.8										
32.10	78.50	s1772	406	82.5400	0.8										
32.20	78.40	s1773	347	45.6400	0.8										
32.40	78.50	s1781	38	16.6100	0.8										
32.40	78.30	s1782	69	58.7000	0.8										
32.40	78.30	s1783	176	52.9500	0.8										
32.30	78.20	s1784	244	51.5900	0.8										
32.40	78.10	s1785	190	59.7800	0.8										
32.50	78.20	s1786	117	61.7000	0.8										
32.50	78.30	s1787	41	16.1700	0.8										
32.60	78.30	s1788	34	7.6600	0.8										
32.60	78.20	s1789	38	9.4400	0.8										
33.10	78.20	s1790	33	11.3000	0.8										
33.20	78.20	s1791	28	7.2000	0.8										
33.20	78.00	s1792	28	2.6200	0.8										
33.10	78.00	s1793	38	10.2600	0.8										
33.00	78.00	s1794	56	55.7100	0.8										
32.50	77.60	s1795	185	33.2000	0.8										
32.40	78.00	s1796	248	42.3000	0.8										
32.30	77.50	s1798	396	44.4500	0.8										
32.40	77.50	s1799	309	35.6300	0.8										
32.50	77.50	s1800	266	33.3000	0.8										
33.00	77.50	s1801	151	34.5600	0.8										
33.10	77.50	s1802	43	10.8600	0.8										
33.20	77.50	s1803	29	24.2500	0.8										
33.20	77.40	s1804	22	19.3400	0.8										
33.30	77.30	s1805	22	33.5400	0.8										
33.20	77.30	s1806	25	51.4700	0.8										
33.10	77.30	s1807	48	30.3000	0.8										
32.60	77.30	s1808	245	12.2500	0.8										
32.50	77.30	s1809	310	71.3300	0.8										
32.50	77.20	s1810	416	65.3100	0.8										
33.00	77.20	s1811	320	65.1000	0.8										
33.10	77.20	s1812	241	21.2600	0.8										
33.20	77.20	s1813	54	29.4900	0.8										
33.30	77.20	s1814	39	26.3100	0.8										
33.40	77.20	s1815	35	38.3600	0.8										
33.50	77.20	s1816	35	37.6600	0.8										
34.00	77.10	s1817	28	14.6100	0.8										
34.10	76.60	s1818	33	33.2600	0.8										
33.60	76.60	s1819	33	36.8900	0.8										
33.50	77.00	s1820	38	58.9600	0.8										
33.40	76.60	s1821	38	53.5400	0.8										
33.30	76.60	s1822	46	47.9300	0.8										
33.20	76.60	s1823	244	15.8600	0.8										
33.10	77.00	s1824	339	63.5000	0.8										
40.50	66.30	s2194	2115	7.1400	0.8										
40.60	66.30	s2195	1240	7.3800	0.8										
41.00	66.20	s2196	720	4.9000	0.8										
42.40	69.30	s2197	282	1.8000	0.8										
41.10	66.10	s2200	941	5.6700	0.8										
41.20	65.40	s2201	2451	7.2500	0.8										
41.30	65.60	s2202	617	3.4400	0.8										
41.40	65.40	s2203	1795	8.7800	0.8										
41.50	65.40	s2204	1238	4.3800	0.8										
41.40	65.30	s2205	1934	7.6800	0.8										
41.30	65.40	s2206	2329	9.3200	0.8										
41.50	65.20	s2209	1845	8.9200	0.8										
42.00	65.30	s2210	801	4.3100	0.8										
42.00	65.00	s2211	1536	10.8900	0.8										
42.10	65.10	s2212	1119	7.3600	0.8										
X1	Y1	X2	Y2	Z1	Z2										
-----	-----	-----	-----	-----	-----										
38.10	75.10	s2217	10	0.1200	0.8										
37.60	75.10	s2218	10	0.1300	0.8										
36.40	76.20	s2219	4	0.2000	0.8										
36.20	76.10	s2220	4	0.1900	0.8										
36.10	76.10	s2221	6	0.1500	0.8										
36.00	76.10	s2222	7	0.1600	0.8										
35.60	76.30	s2223	7	0.2600	0.8										
35.60	76.40	s2224	6	0.2100	0.8										
35.50	76.50	s2225	3	0.2700	0.8										
36.00	76.40	s2226	6	0.1700	0.8										
35.50	76.00	s2227	4	0.0800	0.8										
36.00	75.50	s2228	6	0.1200	0.8										
35.60	75.50	s2229	4	0.1100	0.8										
35.60	75.40	s2230	3	0.3000	0.8										
35.50	75.40	s2231	4	0.1100	0.8										
35.50	75.40	s2232	4	0.1300	0.8										
35.40	75.40	s2233	5	0.1200	0.8										
35.20	75.40	s2234	7	1.2900	0.8										
35.20	75.50	s2235	5	0.3500	0.8										
35.30	75.50	s2236	6	1.4900	0.8										
35.20	75.60	s2237	6	0.6200	0.8										
35.20	76.10	s2238	6	0.2000	0.8										
35.20	76.30	s2239	7	0.2100	0.8										
35.20	76.40	s2240	6	0.4700	0.8										
35.10	76.30	s2241	6	0.2500	0.8										
35.10	76.20	s2242	7	0.3400	0.8										
35.10	76.10	s2243	6	1.4800	0.8										
35.00	76.40	s2244	7	0.8900	0.8										
34.60	76.50	s2245	5	1.5600	0.8										
35.00	77.00	s2246	4	0.1900	0.8										
33.60	77.60	s2247	5	3.2900	0.8										
33.50	78.00	s2248	12	49.0500	0.8										
33.50	78.00	s2249	14	3.7800	0.8										
33.50	78.30	s2250	13	3.2900	0.8										
33.50	78.30	s2250u	12	4.5700	0.8										
33.40	78.50	s2251	12	11.7400	0.8										
33.30	78.60	s2252	8	9.9700	0.8										
33.20	79.00	s2253	12	7.7900	0.8										
33.10	79.10	s2254	10	9.0200	0.8										
33.20	79.20	s2255	6	0.2000	0.8										
33.10	79.10	s2256	5	1.3200	0.8										
33.10	79.10	s2257	8	2.3700	0.8										
32.60	79.10	s2258	13	1.3900	0.8										
32.50	79.30	s2261	4	5.3100	0.8										
32.40	80.20	s2263	6	1.7600	0.8										
32.30	80.20	s2264	9	4.2000	0.8										
32.30	80.20	s2265	9	12.3900	0.8										
32.30	80.30	s2266	12	0.5300	0.8										
32.30	80.40	s2267	5	17.2500	0.8										
32.20	80.40	s2268	11	0.7700	0.8										
32.00	80.60	s2270	8	0.3000	0.8										
31.50	81.00	s2271	9	0.7000	0.8										
31.50	81.10	s2272	7	0.5100	0.8										
31.40	81.10	s2273u	10	1.1900	0.8										
X	Y	Z	W	V	U										
---	---	---	---	---	---										
31.20	81.20	s2277	6	1.0300	0.8										
30.50	81.20	s2282	8	2.6700	0.8										
30.30	81.20	s2284	8	3.5200	0.8										
30.40	81.30	s2286	7	2.7600	0.8										
31.40	81.00	s2291	8	6.2800	0.8										
31.50	80.50	s2292	13	3.9800	0.8										
31.60	80.50	s2293	9	5.2700	0.8										
32.50	79.60	s2300	8	18.3400	0.8										
32.50	79.60	s2301	8	1.3400	0.8										
33.10	79.20	s2302	4	6.2600	0.8										
33.30	79.10	s2304	7	0.3200	0.8										
33.40	77.50	s2305	10	3.7600	0.8										
33.50	77.50	s2306	13	10.8200	0.8										
34.10	77.50	s2307	14	53.2600	0.8										
34.10	77.40	s2308	13	13.4000	0.8										
34.20	77.30	s2309	13	6.0200	0.8										
34.30	77.20	s2310	11	6.9300	0.8										
34.30	77.10	s2311	9	12.5100	0.8										
34.40	77.00	s2312	15	34.6700	0.8										
34.40	76.50	s2313	15	5.5300	0.8										
34.40	76.40	s2314	15	3.0700	0.8										
34.30	76.30	s2315	16	3.1700	0.8										
34.40	76.30	s2316	15	25.0600	0.8										
34.40	76.20	s2317	15	39.5900	0.8										
34.50	76.10	s2318	16	31.6100	0.8										
35.00	75.60	s2319	17	6.1500	0.8										
35.10	75.50	s2320	16	6.0300	0.8										
35.10	75.40	s2321	16	3.0900	0.8										
35.10	75.30	s2322	16	3.4700	0.8										
35.20	75.30	s2323	16	2.5500	0.8										
35.30	75.30	s2324	15	2.5800	0.8										
35.40	75.20	s2325	18	7.7400	0.8										
35.50	75.30	s2326	17	5.4500	0.8										
35.60	75.30	s2327	16	0.7300	0.8										
36.00	75.40	s2328	17	2.3500	0.8										
36.10	75.40	s2329	18	7.0500	0.8										
36.30	75.50	s2330	9	1.3900	0.8										
36.30	75.50	s2331	10	0.5500	0.8										
36.50	75.50	s2332	11	1.8600	0.8										
36.50	75.60	s2333	8	1.6200	0.8										
33.00	76.30	s2334	755	71.0500	0.8										
32.50	76.50	s2335	741	69.7000	0.8										
32.20	76.50	s2336	990	68.4600	0.8										
32.10	77.20	s2337	762	77.7000	0.8										
32.00	77.20	s2338	825	62.8000	0.8										
31.30	77.20	s2340	1029	82.5400	0.8										
31.20	77.40	s2341	818	97.0800	0.8										
31.00	77.30	s2342	930	94.6600	0.8										
30.50	77.50	s2343	898	95.8700	0.8										
30.30	77.30	s2344	882	93.8100	0.8										
30.20	77.20	s2345	1000	91.3600	0.8										
30.00	76.60	s2346	977	91.4800	0.8										
Time (s)	Distance (m)	Speed (m/s)													
---------	--------------	-------------													
29.60	76.40 s2347	1382													
29.50	76.50 s2348	1034													
29.30	76.60 s2349	1036													
29.40	77.10 s2350	905													
29.30	77.30 s2351	951													
29.20	77.40 s2352	915													
29.00	77.30 s2353	1065													
28.50	77.20 s2354	1070													
28.60	76.60 s2356	1095													
28.50	76.50 s2357	1295													
28.30	77.00 s2358	1075													
28.20	77.20 s2359	1097													
27.60	77.30 s2360	1126													
27.50	77.40 s2361	1178													
27.50	78.00 s2362	1080													
28.00	78.10 s2363	1078													
28.10	78.30 s2364	792													
28.16	78.45 s2365	919													
28.29	79.01 s2366	841													
28.45	78.45 s2367	842													
29.00	79.01 s2368	803													
29.15	78.45 s2369	848													
29.31	79.00 s2370	787													
29.45	78.45 s2371	793													
30.01	79.00 s2372	798													
30.16	78.45 s2373	804													
30.31	79.01 s2374	876													
30.48	78.45 s2375	949													
30.31	78.30 s2376	806													
30.22	78.05 s2377	813													
30.27	78.06 s2378	829													
30.29	78.04 s2379	825													
30.50	78.05 s2380	949													
31.04	78.09 s2381	849													
31.02	78.19 s2382	851													
30.56	78.34 s2383	845													
30.55	78.43 s2384	843													
30.57	78.55 s2385	802													
31.00	79.00 s2386	782													
31.23	78.40 s2389	512													
31.29	78.00 s2392	649													
31.39	77.47 s2393	610													
31.47	77.37 s2394	751													
31.49	77.44 s2395	693													
31.54	77.58 s2396	648													
32.00	78.15 s2397	651													
30.15	79.44 s2413	640													
30.16	79.55 s2414	510													
30.18	80.07 s2415	217													
27.01	79.55 s2430	203													
26.36	80.00 s2432	136													
26.16	80.03 s2434	106													
25.45	80.04 s2436	46													
25.35	80.00 s2437	341													
		89.9400	0.8												
		95.0500	0.8												
		95.3300	0.8												
		94.9700	0.8												
		94.7500	0.8												
		96.8300	0.8												
		93.3200	0.8												
		97.2500	0.8												
		92.0600	0.8												
		89.7400	0.8												
		96.4600	0.8												
		96.6100	0.8												
		98.6700	0.8												
		93.7000	0.8												
		97.8900	0.8												
		98.2400	0.8												
		97.6500	0.8												
		97.4100	0.8												
		98.0600	0.8												
		95.4600	0.8												
		96.5900	0.8												
		98.4600	0.8												
		93.8100	0.8												
		97.2800	0.8												
		95.3600	0.8												
		98.5900	0.8												
		94.2500	0.8												
		93.7800	0.8												
		98.0400	0.8												
		97.8400	0.8												
		98.3200	0.8												
		98.4700	0.8												
		97.2300	0.8												
		95.2200	0.8												
		94.1300	0.8												
		98.6400	0.8												
		86.7700	0.8												
		98.4300	0.8												
		96.7100	0.8												
		98.8100	0.8												
		99.3100	0.8												
		98.7800	0.8												
		96.4800	0.8												
		98.6900	0.8												
		97.4500	0.8												
		24.7400	0.8												
		91.8000	0.8												
		86.2100	0.8												
		62.2400	0.8												
		51.4400	0.8												
		69.0500	0.8												
		91.2700	0.8												
		81.9800	0.8												
		90.4500	0.8												
Value1	Value2	Value3	Value4	Value5	Value6	Value7	Value8	Value9	Value10						
--------	--------	--------	--------	--------	--------	--------	--------	--------	---------						
25.42	79.48	s2439	818	98.1600	0.8										
25.56	79.46	s2440	828	96.0400	0.8										
26.00	79.34	s2441	753	97.5300	0.8										
26.08	79.19	s2442	532	96.3000	0.8										
26.30	79.00	s2444	697	96.7300	0.8										
26.39	79.10	s2445	720	98.7200	0.8										
27.04	79.28	s2449	753	88.3300	0.8										
27.11	79.40	s2450	478	88.6600	0.8										
27.22	79.41	s2451	462	85.5700	0.8										
27.25	79.30	s2452	715	92.3300	0.8										
27.27	79.12	s2453	403	96.8500	0.8										
27.30	79.04	s2454	372	96.8100	0.8										
27.33	78.45	s2455	568	97.1700	0.8										
27.38	78.31	s2456	893	93.9300	0.8										
27.53	78.32	s2457	1029	94.9000	0.8										
27.55	78.45	s2458	874	94.5900	0.8										
28.00	78.59	s2459	832	96.4200	0.8										
28.08	79.16	s2460	742	95.7600	0.8										
28.14	79.30	s2461	874	90.2900	0.8										
28.27	79.45	s2462	454	74.2900	0.8										
28.40	79.26	s2464	828	97.0300	0.8										
28.45	79.15	s2465	843	96.8300	0.8										
29.01	79.32	s2466	760	98.7700	0.8										
29.16	79.13	s2467	790	97.1300	0.8										
29.25	79.40	s2468	803	90.3100	0.8										
29.44	79.52	s2469	659	84.6200	0.8										
29.55	79.34	s2470	930	95.0600	0.8										
30.04	79.41	s2471	894	83.8600	0.8										
30.09	79.33	s2472	776	95.5000	0.8										
30.15	79.15	s2473	830	97.9700	0.8										
30.34	79.32	s2474	828	90.7700	0.8										
30.41	79.31	s2475	900	96.8400	0.8										
30.52	79.10	s2476	743	95.9800	0.8										
31.08	79.08	s2478	648	92.7800	0.8										
31.23	79.09	s2479	491	97.2000	0.8										
-56.00	32.45	sap-ave	5558	0.007											
-56.00	32.29	sap12	5556	0.007											
-55.59	32.31	sap15	5556	0.007											
-55.54	32.31	sap20	5556	0.007											
-56.01	32.29	sap39	5556	0.007											
-55.56	32.28	sap40	5556	0.007											
-55.59	32.31	sap53	5557	0.007											
-70.42	40.02	s12	200	9.6600	0.001										
-70.40	39.58	s13	300	5.7400	0.001										
-70.40	39.57	s14	400	6.1600	0.001										
-55.55	31.33	sohm-s2	5581	0.002											
-18.32	32.50	sp8-4		0.6											
-7.00	4.19	stat2		0.02											
9.57	-6.00	t78-30	3040	0.02											
7.58	-5.11	t78-33	4120	0.02											
Value	Formula	Result													
-------	---------	--------													
-7.07	65.46 v23-58	20610 3083 2 - 5 6.08 6.72													
0.01	68.02 v23-59	1454 2973 1 5.09 5.93													
-8.19	70.03 v23-60	1518 1928 2 - 5 11.66 4.69													
-7.23	74.02 v23-61	1455 3050 1 10.54 4.11													
0.12	77.57 v23-62	1519 3047 2 - 5 6.88 5.50													
-6.41	70.59 v23-70	15110 2970 1 - 3 5.67 4.57													
-2.48	68.33 v23-73	1456 1926 1 - 4 2.40 9.02													
-9.36	68.11 v23-74	15515 2592 2 - 4 21.67 4.03													
11.19	56.10 v23-80	1211 2393 10 5.53 3.30													
16.50	54.15 v23-81	1457 3974 4 4.32 7.47													
21.56	52.53 v23-82	15516 3871 5 - 7 3.68 21.31													
16.55	46.00 v23-84	15512 4513 5 - 7 8.59 4.55													
17.02	37.24 v23-86	1593 4175 1 - 3 4.35 2.28													
19.42	34.05 v23-87	1594 5127 2 - 4 5.01 7.47													
25.03	29.51 v23-90	1595 5394 4 - 6 6.10 14.51													
28.34	29.35 v23-91	20611 2758 0 - 3 3.37 7.68													
28.15	30.04 v23-92	1596 2210 2 - 4 5.43 4.84													
23.24	30.27 v23-93	1597 5310 1 - 3 6.17 8.49													
20.09	30.37 v23-94	1561 5380 0 - 4 12.03 7.62													
15.06	29.48 v23-96	1395 3471 2 4.15 5.14													
19.18	23.07 v23-98	1385 3506 4 4.15 5.14													
73.30	36.30 v24-1	20612 3012 4 - 6 16.85 5.16													
68.58	22.31 v24-262	15914 5517 1 - 3 6.30 1.51													
77.57	15.19 v24-28	1458 2274 2 - 5 2.23 5.43													
71.08	28.33 v25-2	15915 5409 1 - 3 4.90 2.37													
67.28	28.43 v25-3	15916 5130 1 - 3 5.90 6.59													
48.01	24.19 v25-30	1398 4096 3 - 4 5.26 3.25													
52.35	24.43 v25-33	1399 941 2 4.56 1.94													
53.36	20.23 v25-35	1387 5269 8 5.13 2.62													
63.56	28.44 v25-4	1564 5203 1 - 4 7.34 3.78													
50.39	12.33 v25-42	2061 4707 2 - 5 9.66 4.01													
45.09	11.30 v25-44	1459 4049 3 5.82 5.63													
33.29	1.22 v25-59	1973 3824 2 - 5 7.88 6.39													
34.50	3.17 v25-60	3749 0.06													
34.49	3.17 v25-60	15113 3749 4 - 6 7.17 12.87													
53.09	8.38 v25-74	13910 3446 3 5.89 3.69													
53.10	8.35 v25-75	2743 0.06													
46.52	4.41 v26-107	14512 3224 2 9.01 2.80													
56.53	15.28 v26-113	13913 5231 2 - 3 4.89 7.17													
74.27	16.08 v26-124	14513 3005 3 7.73 15.28													
68.34	24.30 v26-153	1601 5706 1 - 3 11.12 2.72													
65.18	24.29 v26-154	1602 5773 3 - 6 5.11 2.21													
65.16	27.27 v26-156	1566 5035 1 - 4 5.35 3.11													
72.23	36.03 v26-176	3942 0.5													
72.23	36.03 v26-176	3942 0.5													
72.23	36.03 v26-176	3942 0.5													
72.34	37.33 v26-177	2979 0.5													
40.29	26.28 v26-24	13911 4213 1 - 2 9.40 5.27													
55.23	26.26 v26-28	13912 6293 2 6.22 2.21													
40.39	27.04 v26-29	1389 4519 2 - 4 7.21 4.73													
36.55	19.51 v26-34	17415 5601 0 - 2 8.67 2.40													
34.14	17.42 v26-35	13810 5123 2 7.94 4.03													
31.33	16.32 v26-36	17416 5181 2 - 4 9.53 2.45													
Value	Description	Value	Description												
-------	-------------	-------	-------------												
-31.06	16.38 v26-37	15114	4898	1- 3 9.73 6.19											
-31.33	16.22 v26-38	1751	5181	4- 6 10.29 5.48											
-31.34	16.33 v26-39	1752	5059	0- 2 10.70 5.11											
-59.10	32.37 v26-4	1565	4781	4- 7 6.85 4.85											
-26.07	19.20 v26-41	14510	4341	4- 11.05 8.75											
-18.11	9.34 v26-46	14511	2898	1- 4 3.61 8.06											
-17.52	5.50 v26-49	15115	4621	10 9.05 8.26											
-17.55	6.16 v26-50	13113	4826	2 8.19 4.05											
-22.52	61.14 v27-106	15614	1900	5- 8 1.79 22.56											
-23.58	59.27 v27-107	15615	2492	2- 4 5.79 20.73											
-58.03	43.29 v27-11	1603	3488	1- 3 12.72 6.34											
-18.29	56.54 v27-110	2072	1264	4- 6 10.01 4.85											
-24.05	56.04 v27-111	15616	2809	3- 6 12.03 17.84											
-25.31	56.08 v27-112	1571	3217	4- 6 4.70 34.86											
-27.37	56.10 v27-113	1572	2622	4- 6 2.05 30.79											
-33.04	55.03 v27-114	1605	2532	3- 6 1.30 40.59											
-30.20	52.50 v27-116	1607	3202	5- 7 2.84 24.81											
-19.13	50.58 v27-120	14812	4376	5- 7 6.25 7.21											
-16.58	48.18 v27-122	1573	4696	2- 5 14.56 5.77											
-14.58	44.37 v27-127	1574	5095	1- 4 11.18 2.34											
-9.36	45.12 v27-129	1575	4578	2- 4 12.44 2.88											
-51.05	42.03 v27-13	1604	3294	5- 7 10.03 7.67											
-12.06	48.00 v27-134	1576	3350	2- 4 17.81 3.85											
-17.04	42.42 v27-137	13811	4883	4 9.10 2.14											
-27.17	42.03 v27-139	1577	2465	4- 6 11.55 7.42											
-46.50	41.21 v27-14	1567	4453	4- 6 19.77 9.38											
-1.28	61.51 v27-142	15611	954	0- 3 53.04 8.73											
-13.33	39.36 v27-144	1608	4894	1- 3 8.65 2.06											
-10.42	38.09 v27-146	1609	4921	5- 7 6.45 0.59											
-13.58	33.35 v27-161	1753	4445	0- 2 5.88 2.77											
-16.52	34.12 v27-162	1578	4281	1- 4 4.04 6.99											
-40.55	35.01 v27-163	16011	3704	2- 4 3.48 3.82											
-17.22	31.30 v27-163	13914	4530	0 7.51 4.25											
-22.43	25.51 v27-166	1759	4945	2- 4 13.63 8.05											
-26.35	25.56 v27-167	13915	5099	2 10.18 5.32											
-30.19	25.52 v27-168	1755	5206	6- 8 11.48 3.36											
-32.26	25.50 v27-169	1756	4960	4- 6 8.59 3.02											
-37.18	50.06 v27-17	14514	4054	4- 7 7.12 14.82											
-34.02	24.26 v27-170	1757	6224	3- 5 9.23 2.70											
-32.33	21.44 v27-171	13916	4639	1- 2 11.40 3.49											
-25.00	12.51 v27-174	16010	4912	1- 3 8.71 12.90											
-22.07	8.48 v27-175	13114	5481	2 7.59 22.20											
-26.39	5.06 v27-178	1321	4327	0 6.57 16.67											
-38.48	52.06 v27-19	1529	3466	4- 6 9.62 7.51											
-46.12	54.00 v27-20	14515	3510	5 5.42 13.25											
1.59	1.00 v27-234	1759	4618	0- 2 10.85 22.54											
-11.49	3.03 v27-248	13115	4543	0 3.44 33.08											
-13.38	1.02 v27-250	13116	4942	0 4.92 48.58											
-28.00	22.36 v27-255	17511	5554	0- 2 10.06 2.38											
-29.59	26.25 v27-256	17512	5079	2- 4 5.54 4.35											
-34.53	26.46 v27-259	17513	5596	4- 6 7.15 2.23											
-31.06	25.56 v27-260	17514	5590	8-10 10.18 3.25											
-40.55	35.01 v27-263	16012	4801	2- 4 3.80 5.60											
-43.43	36.31 v27-264	16012	4801	2- 4 3.80 5.60											
BV	Value	V29-160	1765	4971	3-5	7.32	17.27	16.37							
---------	----------	---------	------	------	------	------	------	-------							
BV	Value	V29-161	1766	4807	0-2	6.23	21.31	15.50							
BV	Value	V29-162	1767	4768	0-2	5.25	18.74	15.45							
BV	Value	V29-163	1768	3907	0-2	5.02	21.36	14.56							
BV	Value	V29-164	1769	582	2-4	11.26	15.23	14.19							
BV	Value	V29-166	17610	4159	0-2	11.64	16.34	20.57							
BV	Value	V29-167	17611	2822	0-2	11.46	13.47	17.55							
BV	Value	V29-168	17612	2833	0-2	13.48	11.01	18.04							
BV	Value	V29-169	17613	3508	0-2	13.18	8.72	20.00							
BV	Value	V29-170	17614	4455	0-2	7.80	8.17	20.04							
BV	Value	V30-241	17812	23.24	17.07	10.76	6.84	16.21							
BV	Value	V30-242	17813	3625	3-5	10.55	4.11	16.21							
BV	Value	V30-243	17814	4487	3-5	14.12	6.58	22.10							
BV	Value	V30-36						27.19							
BV	Value	V30-36	17616	4245	6-8	8.95	16.76	27.19							
BV	Value	V30-41k		3874				23.04							
BV	Value	V30-45	17016	3568	0	9.67	19.15	19.56							
BV	Value	V30-46	1772	3378	5-7	8.06	10.73	18.05							
BV	Value	V30-48	1773	3351	2-4	11.39	10.89	19.20							
BV	Value	V30-49	1773	3093	0-2	13.57	9.61	21.05							
BV	Value	V30-50	1775	3409	0-2	12.21	9.15	19.55							
BV	Value	V30-51	1776	3409	0-2	13.60	11.88	19.55							
BV	Value	V30-51k		3409				19.55							
BV	Value	V30-52	1777	4269	2-4	14.46	6.56	21.19							
BV	Value	V30-53	1779	3506	3-5	11.65	8.34	19.12							
BV	Value	V30-54	1778	2160	2-4	12.52	7.52	18.04							
BV	Value	V30-55	17710	1692	3-5	13.95	6.03	17.40							
BV	Value	V30-56	17712	3150	3-5	12.93	7.09	19.06							
BV	Value	V30-57		1213	3-5	20.88	5.99	16.40							
BV	Value	V30-58	17713	4492	0-2	10.76	6.84	20.53							
BV	Value	V30-59	17714	3760	2-4	9.65	5.59	19.31							
BV	Value	V30-61	17715	3170	4-6	9.90	5.40	16.50							
BV	Value	V30-62	17716	942	3-5	19.92	4.64	16.55							
BV	Value	V30-67	1781	1953	0-3	14.16	5.49	15.09							
BV	Value	V30-68	1782	3841	3-5	6.82	6.38	19.08							
Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Value 11	Value 12	Value 13	Value 14	Value 15	Value 16
---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
-18.49	32.12	v30-69	1783	4353	2	4	3.55	8.15	1						
-18.55	32.19	v30-70	1784	4304	0	2	4.35	6.84	1						
-19.51	32.18	v30-71	1785	4124	0	2	4.88	7.25	1						
-24.13	32.43	v30-73	1786	5225	3	5	7.15	8.73	1						
-33.08	39.57	v30-96	20712	3188	2	4	5.06	7.55	1						1.08
-32.56	41.00	v30-97	20713	3371	3	5	6.74	6.97	1						
-32.27	43.09	v30-99	20714	3594	1	3	29.28	6.53	1						
-24.12	9.19	v31-2	17815	1922	2	4	9.30	10.23	1						
-32.25	34.47	v32-8		3252					0.06						
-70.55	38.53	v4-1		2867					0.5						
-11.37	35.03	v4-32		16515	2296	0	7.18	2.38	1.6						
-33.08	37.14	v4-8		16513	1655	0	0.74	53.44	1.6						
-20.31	14.48	x164012		4061		tp			0.01						
-20.34	14.25	x164021		4203		tp			0.01						
-20.32	14.23	x164032		4234		tp			0.01						
-21.18	12.40	x164041		4787		tp			0.01						
-21.25	12.16	x164051		4870		tp			0.01						
-21.37	9.52	x164061		5141		tp			0.01						
-21.58	9.02	x164071		4586		tp			0.01						
-21.27	9.01	x164081		4239		tp			0.01						
-20.51	8.55	x164101		3969		tp			0.01						
-19.54	9.31	x164111		4622		tp			0.01						
-19.51	9.34	x164121		4607		tp			0.01						
-19.18	10.01	x164131		4397		tp			0.01						
-19.06	9.34	x164151		3841		tp			0.01						
-19.24	9.52	x164161		4336		tp			0.01						
-19.44	10.05	x164171		4627		tp			0.01						
-16.38	9.53	x164182		130		tp			0.01						
-16.44	9.54	x164191		312		tp			0.01						
-17.32	9.56	x164201		806		tp			0.01						
-17.53	9.53	x164212		1507		tp			0.01						
-19.38	9.14	x164222		4694		tp			0.01						
-19.20	9.02	x164241		4648		tp			0.01						
-19.02	9.08	x164251		4802		tp			0.01						
-18.26	8.15	x164263		4766		tp			0.01						
-18.42	7.37	x164282		4645		tp			0.01						
-19.25	6.44	x164291		4275		tp			0.01						
-19.59	5.37	x164301		2811		tp			0.01						
-20.18	5.30	x164311		2986		tp			0.01						
-22.03	3.00	x164321		4515		tp			0.01						
-24.01	3.21	x164331		4530		tp			0.01						
-23.45	4.22	x164351		4571		tp			0.01						
-17.56	16.56	x164373		2766		tp			0.01						
SOUTH ATLANTIC OCEAN

LONG	LAT	CORE	ACCESS	DEPTH	SAMP	QTZ	OPAL	CACO3	SOURCE
D M	D M	ID	DEPTH	%	%	%			
			DEPTH						
-36.39	-31.59	a1160-13	2739	0.7					
-24.10	-0.03	a18-074		0.6					
-26.02	-0.46	a18-076	1469	1.6					
-33.37	-6.59	a18-083	1226		1.0				
-1.32	-7.34	clr1220	4313	5.00	96.000				
7.10	-25.40	clr143	4106	9.00	79.000				
9.26	-25.46	clr144	4554	14.00	67.000				
5.29	-8.04	clr216	4249	33.00	19.000				
-6.14	-7.49	clr227	4178	50.00	97.000				
-11.07	-8.17	clr240	3201	47.00	98.000				
-19.02	-4.35	ch315	4349	9.00	88.000				
-18.55	-6.38	ch316	4713	22.00	84.000				
-14.05	-7.20	ch324a	3722	35.00	95.000				
-13.04	-8.23	ch326	3116	5.00	74.000				
-9.27	-8.39	ch329	3714	57.00	92.000				
-38.05	-30.55	chn11588	2941	0.7					
-35.39	-29.55	chn115-70	2340	0.7					
-38.12	-30.53	chn115-89	3152	0.7					
-38.22	-30.51	chn115-90	3384	0.7					
-38.26	-30.50	chn115-91	3576	0.7					
-38.50	-30.26	chn115-92	3934	0.7					
15.07	-33.51	lsdal159	4150	34.00	69.000				
1.58	-31.21	lsdal63	4190	19.00	96.000				
-7.20	-29.42	lsdal67	4152	12.00	94.000				
-9.25	-28.51	lsdal68	3930	9.00	92.000				
-15.32	-24.03	lsdal78	4045	10.00	92.000				
-12.55	-19.44	lsdal83	3500	12.00	99.000				
-10.17	-18.33	lsdal85	3460	5.00	97.000				
-11.14	-5.42	lsdal199	2900	83.00	98.000				
-15.07	-24.04	rco8-18	3977	5.66	17.00				
71.32	-37.48	rcl1-118	4354	0.3					
74.34	40.18	rcl1-119	3709	0.3					
79.52	43.31	rcl1-120	3193	0.3					
-32.54	-12.49	rcl1-19	7415		3.34				
-33.59	-16.09	rcl1-20	7416		9.11				
-35.58	-17.16	rcl1-21	1952		5.68				
-32.42	-20.09	rcl1-22	7722		4.17				
-32.37	-22.47	rcl1-23	7733		4.41				
-31.46	-25.04	rcl1-24	774		30.37				
-30.04	-28.35	rcl1-26	1953		10.14				
-33.37	-31.19	rcl1-34	779		8.39				
-35.06	-34.43	rcl1-35	7710		6.96				
-35.16	-33.52	rcl1-36	7711		5.64				
-35.32	-31.59	rcl1-37	7712		6.09				
-38.14	-28.42	rcl1-38	7713		3.04				
-39.00	-29.19	rcl1-40	7714		3.32				
-37.33	-31.56	rcl1-41	7715		8.60				
-9.52	-50.52	rcl1-78	1493	1.3					
-4.36	-49.00	rcl1-79	3385	7.0000					
-0.03	-46.45	rcl1-80	1954	1.0					

128
Product Code	Description	Weight (kg)	Length (m)	Width (m)	Height (m)	Volume (m³)	Color	Type
P12-66	Heavy Duty	0.70	20	2.0	1.5	6.0	Blue	Steel
P12-71	Industrial	0.90	30	3.0	2.5	9.0	Green	Plastic
P12-73	Commercial	1.10	40	4.0	3.0	12.0	Red	Aluminum

Note: Descriptions and specifications are for illustrative purposes only.
10.36	-29.37	v19-241	4493	4-9	0.00	2.00	74.000000	8	
6.15	-27.15	v19-244	4865	0/-2	12.00	15.00	68.000000	8	
4.42	-26.12	v19-245	2725	0/-5	9.00	3.00	96.000000	8	
3.20	-25.25	v19-247	5002	3/-4	10.00	8.00	91.000000	8	
4.50	-24.34	v19-248	1964	3321	0	5.03	19.05	1	
8.23	-18.20	v19-262	4918	3/-5	2.00	0.00	76.000000	8	
6.36	-15.55	v19-263	5278	0	14.00	2.00	8.000000	8	
2.13	-13.23	v19-267	5585	0	12.00	15.00	17.000000	8	
4.39	-3.19	v19-281	2066	4566	2/-5	2.60	60.74	1	
5.32	-1.17	v19-283	1965	3442	0	2.52	58.06	1	
-7.45	-28.26	v20-209	4257	0	13.00	15.00	90.000000	8	
-10.20	-28.13	v20-212	19713	3523	4	5.11	15.77	1	
-10.02	-28.13	v20-212	3523	0/-2	8.00	8.00	95.000000	8	
-16.21	-28.38	v20-215	4114	0	10.00	9.00	91.000000	8	
-18.50	-28.41	v20-216	4451	0	9.00	7.00	83.000000	8	
-23.03	-28.33	v20-217	4601	0	2.00	2.00	51.000000	8	
-27.38	-28.40	v20-218	5115	0/-8	14.00	7.00	30.000000	8	
-29.13	-29.02	v20-219	3092	6/-8	12.00	6.00	96.000000	8	
-28.53	-22.53	v20-221	5298	8/-9	13.00	6.00	6.000000	8	
-28.07	-19.29	v20-222	5148	0	12.00	6.00	4.000000	8	
-28.44	-15.21	v20-223	5318	0	13.00	6.00	5.000000	8	
-31.19	-9.48	v20-225	5214	0	13.00	4.00	7.000000	8	
-31.19	-9.48	v20-225	7113	5214	0	5.75	4.45	1	
-32.05	-7.38	v20-226	7114	5092	0	6.72	4.45	1	
-32.05	-7.38	v20-226	5092	0	17.00	6.00	9.000000	8	
-34.38	-4.14	v20-227	2068	3812	2/-5	7.41	3.03	1	
-36.25	-2.29	v20-228	1966	3676	0	8.06	4.31	1	
3.54	-18.43	v21-170	m112697	4131	0	18.12	3.20	0.950000	7
-26.00	-49.09	v22-101	4506	0	16.00	10.00	2.000000	8	
-21.24	-49.50	v22-103	3871	3/-6	11.00	38.00	11.000000	8	
-19.29	-49.00	v22-104	4321	5	15.00	46.00	4.000000	8	
-10.54	-46.08	v22-106	3037	7	18.00	32.00	54.000000	8	
-6.38	-44.28	v22-107	3898	0/-3	8.00	36.00	87.000000	8	
-3.15	-43.11	v22-108	4171	8/-9	7.00	36.00	83.000000	8.3	
-3.15	-43.11	v22-108	19610	4171	0	4.25	44.89	1	
-0.15	-41.58	v22-109	733	8/-10	2.00	9.00	98.000000	8	
5.06	-39.45	v22-110	5145	10	14.00	17.00	24.000000	8	
9.56	-37.33	v22-113	5073	10	31.00	20.00	35.000000	8	
13.41	-36.01	v22-115	4854	10	63.00	7.00	15.000000	8	
8.22	-35.05	v22-139	4825	8/-9	2.00	11.00	3.000000	8	
2.21	-33.37	v22-140	4433	10	13.00	12.00	62.000000	8	
2.10	-32.21	v22-146	2177	0/-1	0.00	5.00	89.000000	8	
1.55	-28.43	v22-159	3471	0	11.00	18.00	93.000000	8	
D	M	D	M	ID	ACCESS	DEPTH	SAMP	QTZ	OPAL	CAC03	SOURCE
-126.24	46.15	660410	mlo2834	3002	6-8	0.3410	0.09				
-128.08	43.08	66042	3786	0	0.00	0.00	2.7110	6			
-127.44	43.07	660913	4016	0	0.00	0.00	1.1370	6			
-128.29	43.43	660920	2597	20	0.00	0.00	43.2620	6			
-126.28	43.34	660955	moo2852	2980	4-6	0.6699					
-124.59	42.07	67112	1365	19	0.00	0.00	5.3230	6			
-129.51	45.10	68094	2700	6	0.00	0.00	10.6870	6			
-131.01	46.42	68088	moo7167	488	2-3	61.5793					
-127.02	41.16	69102	moo2922	2615	5-7	0.5708					
-127.22	41.17	69103	moo9237	2880	0-1	0.6144					
-128.39	41.19	69104	moo3026	3130	1-3	0.4614					
-127.38	42.32	70041	moo9353	2960	0-1	0.9561					
-162.33	44.56	70114p	moo2892	5492	0-9	0.7978					
-119.45	32.52	ahf10614	mc09908	1275	5-7	11.86	3.73	36.1500	7		
-119.49	32.52	ahf10614	nl09908	1275	5	11.86	3.73	5			
-119.33	32.51	ahf10626	mc05586	1400	0	10.45	4.87	36.2100	0.09		
-160.59	29.39	aries40pg	nso4942	5701	2-9	0.7311					
-160.59	29.39	aries40pg	nso4942	5701	2-9	0.7311					
174.57	36.35	aries45pg	nso4942	5195	7-12	0.4582					
178.50	36.33	aries48g	nso4944	4482	3-7	5.7827					
178.50	36.33	aries48g	nso4944	4482	3-7	5.7827					
-108.01	10.29	bnfc43	ms09061	2720	2-4	3.75	35.86	65.9827	5.09		
-109.01	10.29	bnfc43	ms09061	2720	2	3.75	35.86	5			
-109.01	10.29	bnfc43pg	nso09061	2720	2-4	3.75	35.86	65.9800	7.09		
-143.11	45.34	cuspl1g	nso0905	4590	7-12	1.0648					
-143.11	45.34	cuspl1g	nso0905	4590	7-12	1.0648					
-143.07	37.15	cuspl7g	nso4946	5260	5-0	0.5394					
-135.24	31.05	cusplg	nso4945	4940	6-12	0.3820					
-135.24	31.05	cusplg	nso4945	4940	6-12	0.3820					
-134.15	34.27	cuspl22g	nso4947	5120	2-7	0.4683					
-134.15	34.27	cuspl22g	nso4947	5120	2-7	0.4683					
-140.38	43.58	cuspl9g	nso0904	4350	2-8	5.7008					
-140.38	43.58	cuspl9g	nso0904	4350	2-8	5.7008					
-126.43	21.27	dwbg2	ms05222	4370	18.73	3.38	94.2000	0.09			
-128.32	41.16	fanbg22	ms05223	3220	15.45	9.69	0.7400	0			
-128.12	40.08	fanbg27	ms05224	4507	18.01	9.00	0.7100	0			
-117.18	28.12	fanhms1	ms06782	3690	0	13.08	4.65	5			
-118.14	30.17	fanhms2	ms06790	2970	0	16.93	4.93	5			
-118.42	30.06	fanhms3	ms06806	3535	0	8.36	8.27	5			
-8.12	1.05	g76-510	g76-527	18.01	9.00	0.7100	0				
-12.49	0.00	g76-514	g76-527	18.01	9.00	0.7100	0				
-5.06	4.59	g76-527	g76-528	18.01	9.00	0.7100	0				
-6.43	2.52	g76-55	g76-528	18.01	9.00	0.7100	0				
-156.05	23.36	hilo12g	nso4951	4270	6-11	0.5083					
-156.05	23.36	hilo12g	nso4951	4270	6-11	0.5083					
Value											
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
-127.37	28.15	hilo2g	ms05225	4560	16.70	4.29	0.6600	0			
-134.31	24.47	hilo3g	ms05226	4700	13.91	3.28	0.5200	0			
-143.58	22.57	hilo5g	ms05227	4850	14.14	2.74	0.6400	0			
169.48	40.30	jnyiil10g	nso4959	5550	12-17	2.4797					
165.32	39.56	jnyiil11g	nso4960	5350	5-13	1.8706					
165.32	39.56	jnyiil12g	nso4961	5510	7-13	2.8866					
153.10	38.28	jnyiil17g	gso0442	5690	0-2	49.0507					
-162.28	24.34	jnyiil11g	nso4952	4940	5-24	0.7799					
-162.28	24.34	jnyiil11g	nso4953	4700	13.91	3.28	0.5200	0			
-174.15	33.04	jnyiil14g	nso4954	5530	4-12	0.5031					
-174.15	33.04	jnyiil14g	nso4955	165.32	39.56	Jnyiil10g	5550	12-17	2.4797		
-177.43	35.25	jnyiil15g	nso4955	4320	5-17	38.8151					
-177.43	35.25	jnyiil15g	nso4956	5250	1.5069						
178.10	37.56	jnyiil16g	nso4956	5250	1.5069						
178.10	37.56	jnyiil16g	nso4957	5250	1.5069						
173.59	40.12	jnyiil17g	gso0443	4340	0-2	87.2546					
172.33	40.29	jnyiil18g	nso4958	4250	32.831						
177.41	27.05	jnyiil19g	nso4958	4250	32.831						
150.42	29.18	jnyiil20g	nso4959	5850	0-2	88.1443					
-109.49	25.46	l-35	gso0450	1025	0-10	51.5084					
-110.12	25.33	l-39	gso0450	2030	0-10	47.3912					
-110.33	25.24	l-43	gso0450	976	0-10	47.2943					
-110.41	25.19	l-45	gso0450	0-10	9.8684						
-110.45	25.20	l-46	gso0450	805	0-10	8.9205					
-110.59	22.53	lapdlig	nso4956	2322	0-2	1.9391					
-110.59	22.53	lapdlig	ms05228	3240	0-2	1.9391					
-129.22	40.35	lfgs47g	nso5228	3240	0-2	1.9391					
-127.45	38.35	lfgs48g	nso5229	4617	5.09						
-127.03	37.38	lfgs49g	nso5230	5061	1.9391						
-125.56	36.19	lfgs50g	nso5231	4599	0.4749						
-124.06	36.33	lfgs68g	nso5231	3922	0.4749						
-157.56	1.45	lrrlfcl0mah02025	gso0440	2687	79.3650						
-160.42	3.15	lrrlfclmah02005	gso0440	4542	76.0190						
-130.58	23.15	lsdhl02g	nso5235	4850	0.6351						
-125.49	27.29	lsdhl03g	nso5234	4450	0.6351						
-123.59	28.37	lsdhl04g	nso5233	4360	0.6351						
-104.00	8.48	m77-7b	3116	0.5945							
-92.46	6.33	m77-9b	1568	0.5945							
127.01	41.16	mco2922	69102	2615	5-7	0.5700					
-135.32	41.06	men20g	nso0907	4080	8-16	2.6859					
-135.32	41.06	men20g	nso0907	4080	8-16	2.6859					
-142.52	40.41	men25g	nso0909	4700	0-9	1.3647					
-139.22	40.44	men26g	nso0910	4540	6-14	1.6459					
-125.15	34.02	men4g	molo130	4640	0	5.98					
-131.43	33.36	mzf12gc4	mho4187	0	13.11						
-136.23	31.47	mzf2002	mho2006	0	13.11						
-134.39	33.19	mzf201cl	mho4188	0	13.11						
-151.22	29.58	mzf4ffgc4	mho2007	0	13.11						
-151.18	28.36	mzf6pocl2l	mho2008	0	13.11						
Value	Description	Value	Description								
---------	------------------------------------	---------	------------------------------------								
126.24	43.16 m101608 660410 3002 1-4	0.00	3.8000								
-137.06	15.09 msn155g mo10129 4992 0 13.17	3.61	5								
-137.06	15.09 msn155g ms05238 4992	11.24	4.01								
-126.30	24.18 msn157 ms06742 4414 3 13.44	2.36	5								
-122.57	29.07 msn158g ms05239 4075	15.63	4.94 0.8437								
-135.12	20.01 msn3g ms05236 5220	16.03	3.62 0.5971								
-139.18	16.55 msn4g ms05237 5355	13.02	4.27 0.6309								
-141.28	42.19 muk6 nso0911 4480 0-13	1.1708									
-144.49	45.03 mub7g nso0912 4722 8-13	1.4116									
-144.49	45.03 mub7g 0.8205										
-144.28	45.01 mub8g 1.2644										
-144.28	45.01 mub8g nso0913 4690 0-10	1.6438									
-144.27	45.38 mub7 nso0915 4699 4-10	1.8038									
-144.27	45.38 mub7 1.7637										
-144.27	45.39 muk8g 2.2987										
-144.27	45.39 muk8g nso0916 4681 4-12	1.8074									
-156.57	53.15 muk9g nso0917 4540 3-14	0.8595									
-119.53	23.35 pap2g ms05240 4169	16.77	5.33 0.7578								
-143.29	9.22 rcl0-102 m105788 5084 0 10.67	8.97	0.3437								
-143.38	10.02 rcl0-103 5253										
-150.23	6.46 rcl0-149 4451										
-154.03	14.48 rcl0-153 m102240 5460 0 14.72	3.79	0.5206								
-157.49	22.20 rcl0-156 5402										
-159.08	24.46 rcl0-157 5682										
-160.36	28.07 rcl0-158 m103814 5892 0 15.69	2.02	0.7666								
-162.19	31.13 rcl0-159 m102245 5894 0 19.74	3.98	0.7147								
-159.56	32.29 rcl0-160 m103815 4621 0 13.85	2.64	0.8035								
-158.00	33.05 rcl0-161 m102301 3587 1-3 18.35	5.56	39.2400								
-158.00	33.05 rcl0-161 m102301 3587 0 21.74	5.56	39.2398								
-158.48	31.25 rcl0-162 3913										
-157.30	32.43 rcl0-163 0.9										
-150.23	33.24 rcl0-167 m105002 6092 0-1 0.5077	0.9									
-150.23	33.24 rcl0-167 m105002 6092 0 12.43	3.93	0.5077								
-150.23	33.24 rcl0-167 m103816 6092 0 13.26	3.33	0.7700								
-148.26	32.23 rcl0-168 0.9										
-151.04	32.31 rcl0-169 0.9										
-152.14	32.29 rcl0-170 0.9										
-153.02	32.29 rcl0-171 m102252 5544 0 13.91	5.13	0.5193								
-154.38	32.29 rcl0-172 0.9										
-156.27	37.41 rcl0-173 4056										
-157.35	32.35 rcl0-174 3191										
-159.10	34.35 rcl0-175 0.9										
-160.40	34.47 rcl0-176 4226										
-170.51	37.12 rcl0-177 5302										
-172.20	37.48 rcl0-178 m109171 5808 0-1 15.90	1.50	7.09								
-173.43	39.38 rcl0-179 m103817 4312 0 14.10	6.06	1.4771								
-176.50	44.05 rcl0-181 m105790 5698 0 16.03	7.25	0.3864								
-177.52	45.37 rcl0-182 m105791 5561 0 15.40	5.92	0.3218								
-179.04	49.31 rcl0-184 4986										
-177.11	50.12 rcl0-186 6591										
-175.40	50.40 rcl0-187 6216										
-176.54	52.33 rcl0-188 3673										
-178.04	52.15 rcl0-189 3422										
-177.41	53.12 rcl0-190 3733										
Value 1	Value 2	Value 3									
---------	---------	---------									
179.12	53.15	rc10-191									
178.27	53.38	rc10-192									
-179.01	55.01	rc10-194									
176.56	55.58	rc10-195									
177.05	54.42	rc10-196									
178.34	54.54	rc10-197									
-174.01	1.36	rc10-199									
-175.13	48.32	rc10-201									
-173.00	45.37	rc10-202									
-171.57	41.42	rc10-203									
-170.03	44.37	rc10-205									
-170.26	47.13	rc10-206									
-171.33	50.55	rc10-207									
-171.46	51.38	rc10-208									
-172.38	50.48	rc10-210									
-171.45	50.03	rc10-211									
-164.08	50.59	rc10-214									
-158.06	51.01	rc10-215									
-151.10	50.58	rc10-216									
-146.05	50.57	rc10-217									
-139.33	51.03	rc10-219									
-133.44	51.03	rc10-220									
-131.37	50.33	rc10-221									
-135.14	49.57	rc10-222									
-134.39	49.18	rc10-223									
-127.45	48.45	rc10-225									
-127.16	47.27	rc10-226									
-128.00	46.18	rc10-227									
-127.00	45.56	rc10-228									
-126.09	45.35	rc10-229									
-128.25	40.28	rc10-230									
-128.34	37.58	rc10-231									
-128.39	35.35	rc10-232									
-129.06	28.31	rc10-234									
-129.25	25.50	rc10-235									
-128.17	22.58	rc10-236									
-125.07	21.15	rc10-237									
-114.31	16.37	rc10-240									
-107.53	14.21	rc10-242									
-107.53	13.06	rc10-243									
-98.44	11.08	rc10-245									
-95.20	9.41	rc10-246									
-91.33	8.27	rc10-248									
-87.03	7.19	rc10-249									
-93.16	4.21	rc10-257									
-94.47	6.08	rc10-58									
-96.19	5.34	rc10-59									
-101.43	3.20	rc10-62									
-104.27	2.19	rc10-63									
-105.41	1.49	rc10-64									
-108.37	0.41	rc10-65									
-114.54	1.20	rc10-70									
-114.42	1.27	rc10-71									
-113.37	2.48	rc10-72									

- **Values** represent various numerical data points.
- **rc10** prefixes indicate specific referencing or identification codes.
- **Values 1, 2, 3** represent different parameters or measurements corresponding to each row.
- Additional columns include numerical values and sometimes units of measurement.
| Value 1 | Value 2 | Value 3 | Value 4 | Value 5 | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| -111.37 | 5.42 | rc10-74 | 4100 |
| -110.28 | 6.50 | rc10-75 | 3696 |
| -109.17 | 11.54 | rc10-86 | m108059 | 3288 | 2 | 5.72 | 17.84 | 5 |
| -110.13 | 16.39 | rc10-88 | m102237 | 3660 | 0 | 7.60 | 17.55 | 0.7375 | 0 |
| -113.28 | 15.08 | rc10-89 | 3919 |
| -116.38 | 13.46 | rc10-90 | m106714 | 4261 | 2 | 12.31 | 5.74 | 5 |
| -120.29 | 12.16 | rc10-91 | m106716 | 4471 | 0 | 11.73 | 7.60 | 5 |
| -120.10 | 12.17 | rc10-91 | m102238 | 4471 | 0 | 10.91 | 7.31 | 1.1574 | 0 |
| -125.20 | 7.18 | rc10-93 | 4610 |
| -127.20 | 5.40 | rc10-94 | m103813 | 4356 | 0 | 6.19 | 19.22 | 54.7457 | 0 |
| 136.27 | 31.06 | rc11-161 | 4449 |
| 139.02 | 33.12 | rc11-162 | 1763 |
| 152.42 | 39.32 | rc11-163 | 5559 |
| 162.38 | 35.20 | rc11-164 | 5158 |
| 166.34 | 37.03 | rc11-165 | 4978 |
| -163.21 | 44.29 | rc11-166 | 0.9 |
| -170.14 | 42.10 | rc11-169 | m107160 | 5665 | 0 | 15.89 | 4.99 | 0.9 |
| -163.21 | 44.29 | rc11-170 | m13465 | 5451 | 0 | 14.11 | 2.38 | 7.09 |
| -159.40 | 46.36 | rc11-171 | m105991 | 5167 | 0 | 11.54 | 7.16 | 0.4000 | 0.9 |
| -164.53 | 51.15 | rc11-172 | estimat | 4808 | | | | 7.09 |
| -164.58 | 53.12 | rc11-173 | 3607 |
| -151.21 | 52.35 | rc11-174 | 1618 |
| -144.44 | 56.57 | rc11-176 | m103821 | 3819 | 0 | 13.29 | 2.38 | 1.1017 | 0 |
| -145.39 | 53.30 | rc11-179 | 4067 | | | | | 7.09 |
| -142.54 | 53.09 | rc11-180 | m103822 | 3860 | 0 | 7.68 | 6.54 | 1.2100 | 0 |
| -140.31 | 49.43 | rc11-184 | m103823 | 3959 | 0 | 15.98 | 4.48 | 0.9764 | 0 |
| -143.25 | 47.60 | rc11-185 | m103824 | 4438 | 0 | 19.87 | 5.33 | 3.8981 | 0 |
| -127.72 | 47.54 | rc11-186 | 2582 |
| -130.07 | 47.09 | rc11-187 | 2670 |
| -134.25 | 45.58 | rc11-189 | 3922 |
| -139.57 | 44.31 | rc11-191 | m103916 | 4387 | 0 | 6.76 | 1.91 | 0.4862 | 0 |
| -139.57 | 42.02 | rc11-192 | 4116 |
| -140.03 | 39.57 | rc11-193 | m103917 | 4748 | 0 | 14.45 | 1.04 | 0.4042 | 0.9 |
| -139.57 | 35.00 | rc11-194 | 0.9 |
| -139.59 | 31.51 | rc11-195 | m103918 | 4934 | 0 | 14.44 | 0.49 | 0.5279 | 0.9 |
| -139.56 | 29.11 | rc11-196 | 0.9 |
| -139.59 | 26.24 | rc11-197 | m103825 | 4413 | 0 | 17.98 | 1.59 | 0.5298 | 0 |
| -139.60 | 21.31 | rc11-198 | m103826 | 5378 | 0 | 13.11 | 1.78 | 0.4040 | 0.9 |
| -140.02 | 19.29 | rc11-199 | 5574 |
| -140.02 | 14.52 | rc11-200 | 4828 |
| -140.05 | 12.32 | rc11-202 | m105994 | 4996 | 0 | 10.55 | 6.36 | 0.6700 | 0 |
| -139.53 | 8.47 | rc11-206 | 5086 |
| -139.58 | 5.21 | rc11-208 | m102276 | 4720 | 0 | 7.24 | 35.65 | 70.4838 | 0 |
| -140.04 | 3.39 | rc11-209 | m13827 | 4400 | 0 | 2.50 | 88.57 | 73.8479 | 0.09 |
| -140.03 | 1.49 | rc11-210 | m112664 | 4420 | 0 | 1.52 | 80.07 | 7.09 |
| -140.03 | 1.49 | rc11-210 | m112664 | 4420 | 0 | 1.52 | 80.07 | 2 |
| -170.08 | 51.06 | rc10-212 | 7231 |
| 152.57 | 18.05 | rc12-129 | 5218 |
| 151.34 | 20.25 | rc12-130 | 5801 |
| 149.17 | 23.26 | rc12-131 | 5804 |
| 146.47 | 26.40 | rc12-132 | 5431 |
| 144.25 | 29.06 | rc12-133 | 5854 |
| 142.47 | 31.13 | rc12-134 | m102287 | 6564 | 0 | 9.14 | 17.51 | 0.7229 | 0 |
| 141.50 | 32.39 | rc12-135 | 6736 |
| Value | Type | Reference | Value | Type | Reference |
|-------|------|-----------|-------|------|-----------|
| 137.54 | 33.14 | rc12-136 | 3673 |
| 134.09 | 33.00 | rc12-138 | |
| 134.09 | 32.18 | rc12-139 | |
| 134.12 | 31.50 | rc12-140 | |
| 134.13 | 30.36 | rc12-141 | |
| 134.47 | 29.41 | rc12-142 | 4799 |
| 133.17 | 29.46 | rc12-143 | 2350 |
| 132.14 | 29.07 | rc12-144 | 4931 |
| 131.58 | 29.20 | rc12-145 | 5620 |
| 131.25 | 29.33 | rc12-146 | 3922 |
| 134.04 | 30.44 | rc12-151 | 4464 |
| 135.23 | 30.44 | rc12-152 | 4259 |
| 137.04 | 30.36 | rc12-153 | 4486 |
| 137.44 | 30.52 | rc12-154 | 4189 |
| 137.08 | 31.44 | rc12-155 | 4228 |
| 136.35 | 32.28 | rc12-156 | m102288 | 4318 | 0 | 21.00 | 5.49 | 0.7608 | 0 |
| 136.15 | 32.32 | rc12-157 | 4784 |
| 135.36 | 31.54 | rc12-158 | 4449 |
| 137.07 | 31.38 | rc12-159 | 4281 |
| 138.47 | 31.31 | rc12-160 | 4091 |
| 138.17 | 32.15 | rc12-161 | 3782 |
| 138.02 | 33.00 | rc12-162 | 4030 |
| 137.52 | 33.30 | rc12-163 | 4001 |
| 141.53 | 36.27 | rc12-164 | 2319 |
| 143.51 | 37.04 | rc12-165 | 6485 |
| 145.45 | 38.49 | rc12-166 | m107165 | 5243 | 0 | 16.23 | 21.16 | 0 |
| 144.56 | 40.57 | rc12-167 | 4940 |
| 146.04 | 43.00 | rc12-169 | 3862 |
| 148.12 | 42.39 | rc12-170 | 1844 |
| 149.58 | 42.21 | rc12-171 | 7240 |
| 151.37 | 42.07 | rc12-172 | 5097 |
| -157.56 | 20.47 | rc12-173 | 1476 |
| -157.14 | 50.06 | rc12-174 | 4903 |
| -157.14 | 45.43 | rc12-175 | 4929 |
| -157.50 | 43.00 | rc12-176 | m103829 | 5365 | 0 | 14.60 | 3.92 | 0.4413 | 0.09 |
| -158.24 | 53.54 | rc12-178 | 6384 |
| -157.02 | 52.29 | rc12-179 | 4601 |
| -155.52 | 54.30 | rc12-180 | 5517 |
| -158.57 | 47.09 | rc12-181 | 5141 |
| -157.48 | 46.07 | rc12-182 | 5267 |
| -159.02 | 44.00 | rc12-183 | m103830 | 5449 | 0 | 11.56 | 2.09 | 0.3245 | 0 |
| -158.57 | 38.00 | rc12-184 | 5576 |
| -159.00 | 35.16 | rc12-185 | 5929 |
| -158.58 | 32.25 | rc12-186 | 5993 |
| -158.20 | 28.20 | rc12-187 | 5360 |
| -157.56 | 24.16 | rc12-188 | 39.68 |
| -157.52 | 23.53 | rc12-189 | 4431 |
| -158.23 | 22.27 | rc12-190 | 4927 |
| -160.17 | 19.20 | rc12-191 | 4826 |
| -163.00 | 16.57 | rc12-192 | 5773 |
| -165.52 | 16.05 | rc12-193 | 5295 |
| -167.18 | 13.49 | rc12-194 | 5152 |
| -168.42 | 9.41 | rc12-195 | 5222 |
| 178.25 | 7.35 | rc12-199 | 5565 |
| Column 1 | Column 2 | Column 3 | Column 4 |
|---------|----------|----------|----------|
| 174.52 | 1.28 | rc12-200 | 4691 |
| -91.16 | 10.26 | rc12-30 | 3716 |
| -92.39 | 12.60 | rc12-32 | 4034 |
| -93.57 | 14.50 | rc12-33 | 412 |
| 90.02 | 9.08 | rc12-339 | |
| 90.01 | 12.42 | rc12-340 | |
| 90.34 | 15.10 | rc12-343 | |
| 95.08 | 11.12 | rc12-345 | |
| 94.12 | 8.44 | rc12-348 | 3797 |
| 111.13 | 6.33 | rc12-350 | 1950 |
| 113.35 | 5.02 | rc12-351 | 1229 |
| 114.01 | 6.00 | rc12-352 | 2303 |
| 114.33 | 7.27 | rc12-353 | 525 |
| 114.13 | 7.30 | rc12-354 | 1161 |
| 114.30 | 7.30 | rc12-355 | 1344 |
| 114.13 | 7.30 | rc12-356 | 1390 |
| 120.14 | 8.58 | rc12-357 | 2049 |
| 124.12 | 9.10 | rc12-358 | 1524 |
| 124.08 | 15.06 | rc12-361 | 3528 |
| 126.11 | 23.57 | rc12-365 | 2787 |
| 126.20 | 26.35 | rc12-366 | 1644 |
| 132.15 | 37.35 | rc12-377 | 2226 |
| 134.32 | 36.57 | rc12-378 | 1401 |
| 134.33 | 36.54 | rc12-379 | 1010 |
| 135.42 | 37.15 | rc12-380 | 1622 |
| 133.48 | 38.55 | rc12-381 | 1437 |
| 132.40 | 39.55 | rc12-382 | 3027 |
| 133.07 | 39.43 | rc12-383 | 2677 |
| 133.17 | 40.00 | rc12-384 | 5826 |
| 134.26 | 40.50 | rc12-385 | 3532 |
| 134.36 | 40.48 | rc12-386 | 3497 |
| 135.12 | 40.06 | rc12-387 | 838 |
| 136.08 | 39.07 | rc12-388 | 2496 |
| 136.30 | 38.55 | rc12-389 | 2650 |
| 136.02 | 39.42 | rc12-390 | 1103 |
| 135.43 | 39.59 | rc12-391 | 898 |
| 135.43 | 39.59 | rc12-392 | 1008 |
| 135.39 | 40.46 | rc12-393 | 3048 |
| 136.14 | 40.19 | rc12-394 | 2338 |
| 137.36 | 39.47 | rc12-397 | 2840 |
| 137.31 | 40.31 | rc12-398 | 2664 |
| 144.51 | 40.55 | rc12-400 | 3900 |
| 148.08 | 40.50 | rc12-401 | 5415 |
| 148.08 | 40.50 | m112670 | 5415 |
| 148.08 | 40.50 | m112670 | 5415 |
| 150.44 | 40.11 | rc12-402 | 5332 |
| 152.33 | 36.52 | rc12-403 | 5912 |
| 155.30 | 31.16 | rc12-404 | 5068 |
| 156.53 | 28.19 | rc12-405 | 6190 |
| 154.37 | 25.35 | rc12-406 | 5801 |
| 154.58 | 25.44 | rc12-407 | 5768 |
| 156.36 | 27.30 | rc12-408 | 6128 |
| 159.15 | 30.18 | rc12-409 | 5742 |
| 161.19 | 32.23 | rc12-410 | 5693 |
| 163.43 | 35.48 | rc12-411 | 5550 |
| Value | RCL | Value | RCL | Value | RCL | Value | RCL |
|-------|-----|-------|-----|-------|-----|-------|-----|
| -101.30 | 12.08 | rcl3-127 | 3288 |
| -99.39 | 16.09 | rcl3-128 | 5365 |
| -100.14 | 13.55 | rcl3-129 | 3649 |
| -99.02 | 12.27 | rcl3-130 | 3451 |
| -96.45 | 11.34 | rcl3-131 | 4330 |
| -97.39 | 7.52 | rcl3-132 | 3464 |
| -94.02 | 10.01 | rcl3-133 | 3797 |
| -95.23 | 9.39 | rcl3-134 | 4098 |
| -91.52 | 6.37 | rcl3-135 | 3579 |
| 96.02 | 0.51 | rcl3-136 | 3436 |
| 94.08 | 1.49 | rcl3-137 | 2655 |
| -90.56 | 4.45 | rcl3-138 | 3032 |
| -166.39 | 19.34 | rcl3-139 | 5242 |
| -170.04 | 19.05 | rcl3-140 | 3374 |
| -170.59 | 8.33 | rcl3-141 | 5169 |
| -170.55 | 5.43 | rcl3-142 | 5901 |
| -171.08 | 2.28 | rcl3-143 | 5298 |
| -175.04 | 0.02 | rcl3-144 | 5218 |
| -175.04 | 4.57 | rcl3-145 | 5316 |
| -175.03 | 10.51 | rcl3-146 | 4605 |
| -175.14 | 13.51 | rcl3-147 | 4217 |
| -175.18 | 13.52 | rcl3-148 | 4488 |
| -178.20 | 13.55 | rcl3-149 | 5506 |
| -177.11 | 12.18 | rcl3-150 | 5638 |
| -177.14 | 8.41 | rcl3-151 | 5482 |
| -167.10 | 0.22 | rcl3-152 | 5393 |
| -166.58 | 8.32 | rcl3-153 | 5161 |
| -167.02 | 11.59 | rcl3-154 | 5176 |
| -167.00 | 13.57 | rcl3-155 | 5442 |
| -163.46 | 13.58 | rcl3-156 | 5546 |
| -160.58 | 13.57 | rcl3-157 | 5737 |
| -164.26 | 8.53 | rcl3-158 | 4925 |
| -160.50 | 9.31 | rcl3-159 | 4868 |
| -157.08 | 10.22 | rcl3-160 | 5343 |
| -153.42 | 9.37 | rcl3-161 | 5203 |
| -153.19 | 6.52 | rcl3-162 | 5017 |
| -153.11 | 5.22 | rcl3-163 | 4786 |
| -153.09 | 3.06 | rcl3-164 | ml06001 4846 0 4.18 60.00 56.6600 0 |
| -153.04 | 1.21 | rcl3-165 | 4420 0.09 |
| 157.33 | 39.41 | rcl4-105 ml09505 5630 1- 2 13.71 9.00 7.09 |
| 155.42 | 45.50 | rcl4-106 | 4823 0.09 |
| 147.56 | 36.58 | rcl4-99 ml12679 5652 0 14.77 14.35 7.09 |
| 147.56 | 36.58 | rcl4-99 ml12679 1639 0 14.77 14.35 2 |
| -134.07 | 17.25 | rcl5-13 ml08060 5009 0 14.50 5.34 5 |
| -133.46 | 36.03 | rcl5-7 ml07166 5209 0 14.12 4.87 0 |
| -133.20 | 28.19 | ris120 pg ms05248 4420 17.97 3.20 0 |
| -129.37 | 28.18 | ris123 pg ms05249 4660 16.60 3.00 0 |
| -126.38 | 28.27 | ris125 g ms05250 4550 14.06 4.06 0.7170 0 |
| -123.36 | 28.47 | ris127 g ms05251 4300 12.36 4.34 0 |
| -117.21 | 24.15 | ris3 g ms05246 3935 16.79 4.18 0 |
| -117.29 | 20.19 | ris5 g ms05247 4015 13.48 5.36 0 |
| -157.58 | 16.03 | s68ff1 mh02024 5360 4.24 7.01 0.6100 0 |
| -172.11 | 0.35 | s68pc25 mh02018 5660 4.91 28.03 0.6200 0 |
| -164.50 | 7.40 | s68pc29lamh02019 4960 9.98 12.82 24.4340 0 |
| Gene | Start Position | End Position | Length | Strand | RNA | Target Position |
|--------------|----------------|--------------|--------|--------|-----|----------------|
| s68pc30lamh02020 | -167.31 | 4767 | 9.32 | | 38.1810 | 0 |
| s68pc31lamh02021 | -173.05 | 5797 | 6.16 | | 0.4580 | 0 |
| s68pc32 | -179.32 | 5670 | 6.23 | | 0.5454 | 0 |
| s68pc35lamh02023 | 173.01 | 4912 | 3.66 | | 47.58 | 88.2027 |
| sah8pz | 149.98 | 4308 | 0.00 | | 88.5000 | 7 |
| scan5pg | -130.04 | 3268 | 13.92 | | 7.95 | 0 |
| scan6pg | -140.35 | 4544 | 16.51 | | 3.10 | 0 |
| scan7pg | -140.01 | 5032 | 14.34 | | 2.97 | 0 |
| scan8pg | -140.01 | 4792 | 15.91 | | 2.59 | 0 |
| tr63-31 | -83.58 | 345 | 3.37 | | 4.81 | 0 |
| tr110g | -119.10 | 4121 | 16.41 | | 3.20 | 5 |
| tr111g | -119.00 | 4025 | 15.72 | | 4.41 | 0 |
| tr112g | -118.25 | 4180 | 19.90 | | 3.42 | 5 |
| tr113g | -118.26 | 4180 | 18.22 | | 4.86 | 0 |
| tr114g | -118.04 | 4112 | 12.02 | | 5.91 | 0 |
| tr115g | -96.21 | 4039 | 6.25 | | 19.88 | 5 |
| tr15pg | -112.57 | 3929 | 6.82 | | 12.67 | 0 |
| tr17g | -113.00 | 3697 | 7.87 | | 9.84 | 5 |
| tr17pg | -113.00 | 3697 | 7.62 | | 9.58 | 0 |
| tr18pg | -112.57 | 3463 | 8.24 | | 6.73 | 0 |
| tr19g | -118.01 | 3992 | 14.17 | | 6.10 | 0.6370 |
| v15-30 | 85.06 | 1750 | 1.00 | | 0.009 | 0.00 |
| v17-42 | -81.11 | 1814 | 8.50 | | 28.38 | 57.0000 |
| v17-43 | -82.37 | 3147 | 6.29 | | 37.75 | 37.5000 |
| v18-318 | -118.28 | 4191 | 4.38 | | 61.42 | 79.3300 |
| v18-318 | -118.28 | 4191 | 4.38 | | 61.42 | 79.3312 |
| v18-318 | -118.28 | 4191 | 4.38 | | 61.42 | 79.3312 |
| v18-319 | -117.00 | 4160 | 1.89 | | 51.83 | 71.5804 |
| v18-324 | -107.09 | 3517 | 3.67 | | 20.54 | 21.5213 |
| v18-328 | -103.05 | 3239 | 3.88 | | 6.27 | 3.1657 |
| v18-333 | -98.53 | 3341 | 7.41 | | 7.93 | 0.9592 |
| v18-337 | -96.18 | 3891 | 10.47 | | 2.76 | 2.3597 |
| v18-338 | -95.43 | 5253 | 0.00 | | 0.009 | 0.00 |
| v18-349 | -85.43 | 1818 | 55.9669| | 0.008 | 0.00 |
| v18-350 | -85.16 | 1838 | 53.5156| | 0.008 | 0.00 |
| v19-101 | 163.11 | 4921 | 8.36 | | 14.36 | 10.3464 |
| v19-102 | 160.43 | 5017 | 6.45 | | 1.62 | 4.6500 |
| v19-104 | 158.13 | 5636 | 11.00 | | 2.53 | 0.6000 |
| v19-105 | 156.40 | 5810 | 11.19 | | 1.13 | 0.6800 |
| v19-108 | 149.10 | 5976 | 6.24 | | 0.00 | 0.6700 |
| v19-109 | 142.00 | 4294 | 3.87 | | 5.59 | 2.7100 |
| v19-112 | 135.52 | 4773 | 6.05 | | 26.61 | 1.0500 |
| v19-115 | 131.03 | 5821 | 1.89 | | 12.19 | 0.8200 |
| v19-25 | -81.42 | 2404 | 51.4000| | 0.09 | 0.09 |
| v20-100 | -174.35 | 5340 | 17.42 | | 0.92 | 0.8700 |
| v20-101 | -176.57 | 4460 | 17.13 | | 3.24 | 66.6600 |
| v20-102 | -177.49 | 5216 | 17.21 | | 1.62 | 0.8700 |
| v20-103 | -177.50 | 3442 | 16.01 | | 10.36 | 71.5900 |
| v20-104 | -178.10 | 5449 | 15.06 | | 1.30 | 1.0300 |
| v20-105 | -178.17 | 5336 | 16.27 | | 5.90 | 1.2500 |
| v20-106 | -178.28 | 5832 | 16.17 | | 1.77 | 1.2800 |
| v20-107 | -178.52 | 5872 | 15.47 | | 5.66 | 0.4800 |
| No. | Value | Description | Value | Description |
|------|---------|-------------|---------|-------------|
| 150.50 | 29.51 | v21-74 | m103455 | 6015 | 0 | 14.81 | 2.00 | 0.7600 | 0.9 |
| 147.41 | 30.04 | v21-75 | m103456 | 6119 | 0 | 14.87 | 2.01 | 0.6800 | 0.9 |
| 176.16 | 24.58 | v21-76 | m103453 | 5879 | 0 | 12.69 | 0.80 | 0.8800 | 0.9 |
| 138.23 | 34.02 | v21-80 | m103959 | 4400 | 0 | 14.21 | 0.00 | 0.4900 | 0.0 |
| 136.30 | 29.02 | v21-81 | 4352 | 0 | 136.13 | 27.56 | v21-82 | 4565 | 0 |
| 140.03 | 27.54 | v21-83 | m103960 | 3702 | 0 | 15.11 | 7.12 | 1.5700 | 0.0 |
| 142.30 | 27.58 | v21-85 | 1684 | 0 | 145.03 | 27.53 | v21-86 | 5717 | 0.0 |
| 145.03 | 27.53 | v21-87 | 0.0 | 0.9 |
| 145.39 | 23.35 | v21-89 | 5841 | 0.9 |
| 144.23 | 23.57 | v21-90 | m105974 | 5841 | 0 | 6.38 | 9.76 | 1.0800 | 0 |
| 143.10 | 23.00 | v21-92 | 4283 | 0 |
| 142.28 | 24.37 | v21-93 | 2878 | 0 |
| 136.05 | 23.41 | v21-97 | m103961 | 4868 | 0 | 7.84 | 1.03 | 0.4100 | 0.0 |
| 134.26 | 23.06 | v21-98 | 2135 | 0 |
| 132.14 | 23.32 | v21-99 | m103962 | 5148 | 0 | 15.11 | 2.32 | 0.1600 | 0 |
| 179.44 | 16.08 | v24-100 | m103999 | 5330 | 0 | 12.78 | 0.00 | 0.1200 | 0 |
| 178.53 | 13.10 | v24-101 | 3336 | 0 |
| 170.55 | 4.51 | v24-104 | m104000 | 4501 | 0 | 8.12 | 24.18 | 60.6400 | 0 |
| 165.19 | 2.04 | v24-107 | m102216 | 4160 | 0 | 9.65 | 22.39 | 49.9044 | 0 |
| 162.12 | 1.13 | v24-108 | m102219 | 4113 | 0 | 8.09 | 22.16 | 61.9300 | 0 |
| 158.48 | 0.26 | v24-109 | m12705 | 2367 | 50 | 9.78 | 11.74 | 2.09 |
| 158.48 | 0.26 | v24-109 | m104001 | 2367 | 0 | 8.43 | 11.83 | 72.9900 | 0 |
| 156.42 | 2.21 | v24-110 | m104002 | 2613 | 0 | 10.43 | 11.70 | 68.2600 | 0 |
| 153.22 | 7.56 | v24-112 | m104003 | 4964 | 0 | 12.60 | 3.92 | 0.9700 | 0 |
| 152.05 | 11.19 | v24-113 | m104004 | 5861 | 0 | 12.10 | 3.23 | 0.2500 | 0 |
| 150.33 | 14.42 | v24-114 | m104005 | 5993 | 0 | 9.57 | 1.05 | 0.1600 | 0 |
| 149.09 | 17.55 | v24-115 | m104006 | 5544 | 0 | 7.78 | 2.00 | 0.0800 | 0 |
| 142.22 | 18.36 | v24-117 | m104007 | 3706 | 0 | 3.72 | 11.20 | 11.4200 | 0 |
| 138.44 | 18.42 | v24-118 | m104008 | 5123 | 0 | 6.16 | 25.01 | 0.1600 | 0 |
| 135.01 | 18.39 | v24-119 | m104009 | 5630 | 0 | 6.32 | 0.41 | 0.1600 | 0 |
| 128.23 | 18.30 | v24-121 | m104010 | 5431 | 0 | 11.17 | 1.05 | 0.7300 | 0 |
| 125.28 | 18.32 | v24-122 | m104011 | 4870 | 0 | 10.86 | 1.60 | 0.2400 | 0 |
| 119.50 | 14.14 | v24-126 | 2518 | 0 |
| 120.04 | 18.11 | v24-128 | 3189 | 0 |
| 120.31 | 7.21 | v24-135 | 4276 | 0 |
| 132.26 | 3.31 | v24-139 | m104012 | 3350 | 0 | 9.86 | 13.42 | 45.5800 | 0 |
| 135.33 | 3.04 | v24-140 | 4464 | 0 |
| 138.28 | 2.52 | v24-141 | m104013 | 4383 | 0 | 10.15 | 6.95 | 1.0800 | 0 |
| 141.18 | 2.04 | v24-143 | m104014 | 3191 | 0 | 12.62 | 10.26 | 38.0300 | 0 |
| 144.53 | 1.50 | v24-146 | m104015 | 4526 | 0 | 11.15 | 6.00 | 1.1600 | 0 |
| 151.25 | 10.20 | v24-147 | m104016 | 4918 | 0 | 9.17 | 6.85 | 0.2400 | 0 |
| -90.37 | 6.19 | v24-38 | 3647 | 0 |
| -93.34 | 4.53 | v24-39 | 3413 | 0 |
| -97.08 | 3.04 | v24-40 | m103978 | 3204 | 0 | 2.41 | 53.56 | 66.0700 | 0 |
| -105.09 | 1.40 | v24-46 | m103979 | 3574 | 0 | 1.26 | 72.00 | 57.1200 | 0 |
| -106.59 | 1.43 | v24-47 | m103980 | 3652 | 0 | 0.06 | 80.79 | 61.3500 | 0 |
| -109.20 | 1.43 | v24-48 | 3720 | 0 |
| -112.44 | 0.49 | v24-49 | m103981 | 3878 | 0 | 0.86 | 77.60 | 61.2500 | 0 |
| -114.32 | 1.48 | v24-50 | 3856 | 0 |
| -120.20 | 1.40 | v24-51 | m103982 | 4409 | 0 | 3.26 | 48.30 | 47.3900 | 0 |
| -124.49 | 1.54 | v24-52b | m103983 | 4702 | 0 | 0.57 | 88.80 | 17.5900 | 0 |
| Value | Description | Unit | Value | Description | Unit |
|---------|---------------------------------------|------|---------|---------------------------------------|------|
| -170.05 | 50.23 y70230p | | moo3259 | 5344 | |
| -170.05 | 50.23 y70230p | | moo2329 | 4908 | |
| -163.00 | 52.19 y70232p | | moo3260 | 4019 | |
| -163.00 | 52.19 y70232p | | moo3260 | 4019 | |
| -146.24 | 55.60 y70239p | | moo3260 | 4019 | |
| -146.24 | 55.60 y70239p | | moo3260 | 4019 | |
| -141.04 | 57.10 y70241p | | moo3261 | 3384 | |
| -141.04 | 57.10 y70241p | | moo3261 | 3384 | |
| -143.40 | 59.05 y70451 | | moo3555 | 3650 | |
| -143.40 | 59.05 y70451 | | moo3555 | 3650 | |
| -143.42 | 58.55 y70452 | | moo3560 | 3511 | |
| -143.42 | 58.55 y70452 | | moo3560 | 3511 | |
| -140.41 | 56.05 y70454 | | moo3560 | 3511 | |
| -140.41 | 56.05 y70454 | | moo3560 | 3511 | |
| -139.15 | 50.23 y70459 | | moo3556 | 3774 | |
| -139.15 | 50.23 y70459 | | moo3556 | 3774 | |
| -139.12 | 51.38 y70460 | | moo3558 | 3707 | |
| -139.12 | 51.38 y70460 | | moo3558 | 3707 | |
| -136.15 | 51.09 y70461 | | moo3575 | 3575 | |
| -136.15 | 51.09 y70461 | | moo3575 | 3575 | |
| -120.03 | 34.16 y7110117 | | moo4670 | 570 | 15-22|
| -120.03 | 34.16 y7110117 | | moo4670 | 570 | 15-22|
| -84.58 | 6.53 y7131 | | moo7277 | 1824 | |
| -85.09 | 7.10 y7132 | | moo7278 | 2164 | |
| -85.30 | 7.03 y7133 | | moo7279 | 2551 | |
| -85.30 | 7.03 y7133 | | moo7279 | 2551 | |
| -84.58 | 5.48 y7134 | | moo7280 | 2628 | |
| -84.56 | 5.55 y7135 | | moo7281 | 2363 | |
| -85.22 | 6.23 y7136 | | moo7282 | 1945 | |
| -85.35 | 6.33 y7137 | | moo7283 | 1631 | |
| -102.37 | 6.08 y71990p | | moo4789 | 3295 | 5-10 |
| -106.19 | 6.45 y71993p | | moo4790 | 3521 | 5-10 |
| -106.17 | 6.39 y71994p | | moo4791 | 3687 | 5-10 |
| -116.60 | 29.13 y7323mg1 | | moo8946 | 3957 | |
| -114.35 | 24.35 y7324mg1 | | moo1012 | 4133 | |
| -114.35 | 24.35 y7324mg1 | | moo8939 | 4138 | |
| -104.50 | 14.15 y7325mg | | moo8932 | 3395 | |
| -119.02 | 25.24 y74216mg | | moo9778 | 3670 | |
| -116.06 | 24.42 y74218mg | | moo9773 | 2795 | |
| -112.25 | 23.44 y74222mg | | moo9761 | 3054 | |
| -113.57 | 20.15 y74231mg1 | | moo9788 | 3590 | |
| -124.28 | 22.34 y74234mg4 | | moo9789 | 3910 | |
| -145.06 | 20.11 y74239gct | | moo9790 | 5320 | |
| -109.31 | 17.52 zapg2 | | ms05267 | 3640 | |
| -135.57 | 31.10 zts742 | | ms06743 | 4672 | |
| -134.58 | 31.06 zts743 | | ms06726 | 4569 | |
| -133.00 | 31.18 zts746 | | ms06718 | 4569 | |
| -133.03 | 31.23 zts746 | | ms06734 | 4526 | |
| -144.55 | 28.40 ztsvi139gms | | ms05261 | 5048 | |
| -143.17 | 30.12 ztsvi140gms | | ms05262 | 5050 | |
| -137.41 | 31.01 ztsvi141gms | | ms05263 | 4613 | |
| -135.57 | 31.10 ztsvi142gms | | ms05264 | 4672 | |
| -134.58 | 31.06 ztsvi143gms | | ms05265 | 4569 | |
| -133.00 | 31.18 ztsvi144gms | | ms05266 | 4549 | |
| LONG | LAT | CORE | ACCESS ID | DEPTH | SAMP QTZ | OPAL % | CACO3 % | SOURCE |
|--------|-------|-------|-----------|-------|----------|--------|---------|--------|
| -176.49 | -15.15 | 7tow105 | ts08930 | 2163 | 0 | 2.32 | 15.91 | 9 |
| -176.46 | -20.24 | 7tow72 | ts08929 | 2730 | 6 | 2.14 | | |
| -107.47 | -8.27 | amph19 | dso5448 | 3090 | 18-23 | 76.3648 | | |
| -107.26 | -8.29 | amph21 | dso5449 | 3120 | 17-23 | 0.8063 | | |
| -106.54 | -8.42 | amph23 | dso5450 | 18-23 | 84.3145 | | | |
| -105.53 | -9.03 | amph25 | dso5452 | 3660 | 7-12 | 82.6114 | | |
| -110.52 | -10.33 | amph27 | dlo5592 | 3090 | 5-10 | 77.3472 | | |
| -111.09 | -18.31 | amph30 | dso5453 | 15-20 | 88.2087 | | | |
| -112.11 | -18.28 | amph31 | dso5454 | 3160 | 17-22 | 87.2309 | | |
| -114.57 | -18.24 | amph32 | dso5455 | 3075 | 19-24 | 47.8610 | | |
| -114.56 | -18.20 | amph33 | dso5456 | 3220 | 17-22 | 54.0185 | | |
| -176.45 | -18.35 | antp226 | ts08636 | 2472 | 0 | 2.32 | 34.61 | 9 |
| -175.54 | -17.09 | antp231 | ts08637 | 2238 | 0 | 2.06 | 35.10 | 9 |
| -78.38 | -36.15 | e10-12 | mel2636 | 4113 | 1-2 | 19.50 | 2.00 | 11 |
| -78.38 | -36.15 | e10-12 | mel2636 | 4113 | 1-2 | 19.50 | 2.00 | 11 |
| -74.59 | -61.05 | e10-18 | me12634 | 4777 | 0-1 | 16.12 | 1.00 | 11 |
| -82.45 | -55.57 | e10-2 | me12634 | 4777 | 0-1 | 16.12 | 1.00 | 11 |
| -82.50 | -57.11 | e10-3 | me12635 | 4695 | 4-5 | 20.30 | 2.50 | 11 |
| -78.53 | -56.58 | e10-30 | me12635 | 4695 | 4-5 | 20.30 | 2.50 | 11 |
| -82.54 | -61.01 | e10-6 | me12634 | 4777 | 0-1 | 16.12 | 1.00 | 11 |
| -82.54 | -61.01 | e10-6 | me12634 | 4777 | 0-1 | 16.12 | 1.00 | 11 |
| -83.18 | -62.14 | e10-7 | me12635 | 4695 | 4-5 | 20.30 | 2.50 | 11 |
| -83.18 | -62.14 | e10-7 | me12635 | 4695 | 4-5 | 20.30 | 2.50 | 11 |
| -114.42 | -54.54 | e11-1 | me12634 | 4777 | 0-1 | 16.12 | 1.00 | 11 |
| -114.28 | -64.51 | e11-11 | me12554 | 4704 | 0-2 | 7.40 | 19.00 | 11.03 |
| -115.05 | -65.52 | e11-12 | me12554 | 4704 | 0-2 | 7.40 | 19.00 | 11 |
| -115.01 | -65.49 | e11-13 | me12554 | 4704 | 0-2 | 7.40 | 19.00 | 11 |
| -114.44 | -68.17 | e11-15 | me12637 | 4240 | 0-1 | 5.35 | 2.40 | 11 |
| -114.44 | -68.17 | e11-15 | me12637 | 4240 | 0-1 | 5.35 | 2.40 | 11 |
| -110.46 | -64.51 | e11-17 | me12555 | 3458 | 0-2 | 17.99 | 3.15 | 11 |
| -110.46 | -64.51 | e11-17 | me12555 | 3458 | 0-2 | 17.99 | 3.15 | 11 |
| -115.06 | -56.04 | e11-2 | me12638 | 4258 | 0-1 | 18.94 | 3.25 | 11 |
| -90.50 | -67.56 | e11-22 | me12638 | 4258 | 0-1 | 18.94 | 3.25 | 11 |
| -89.39 | -67.09 | e11-23 | me12638 | 4258 | 0-1 | 18.94 | 3.25 | 11 |
| -90.03 | -65.53 | e11-24 | me12639 | 4631 | 0-1 | 19.50 | 2.60 | 11 |
| -86.36 | -63.30 | e11-26 | me12639 | 4631 | 0-1 | 19.50 | 2.60 | 11 |
| -115.14 | -56.54 | e11-3 | me12551 | 4004 | 0-2 | 5.75 | 47.10 | 11.03 |
| -115.14 | -56.54 | e11-3 | me12551 | 4004 | 0-2 | 5.75 | 47.10 | 11.09 |
| -115.13 | -57.41 | e11-4 | me12552 | 5005 | 0-2 | 0.00 | 21.20 | 11.03 |
| -114.43 | -58.57 | e11-5 | me12552 | 5005 | 0-2 | 0.00 | 21.20 | 11 |
| -114.56 | -59.54 | e11-6 | me12552 | 5005 | 0-2 | 0.00 | 21.20 | 11 |
| -114.47 | -60.55 | e11-7 | me12553 | 4986 | 0-2 | 2.26 | 23.20 | 11.03 |
| -115.10 | -61.57 | e11-8 | me12553 | 4986 | 0-2 | 2.26 | 23.20 | 11 |
| -115.04 | -62.50 | e11-9 | me12553 | 4986 | 0-2 | 2.26 | 23.20 | 11 |
| -29.48 | -61.09 | e12-11 | me12553 | 4986 | 0-2 | 2.26 | 23.20 | 11 |
| | | | |
|----------|----------|----------|----------|
| -28.35 | -60.34 | e12-14 | 0.03 |
| -31.06 | -60.52 | e12-15 | 0.03 |
| -31.16 | -59.23 | e12-17 | 0.03 |
| -34.01 | -59.02 | e12-19 | 0.03 |
| -37.01 | -59.05 | e12-20 | 0.03 |
| -54.25 | -60.31 | e12-26 | 0.03 |
| -107.03 | -65.40 | e13-14 | 0.03 |
| -121.18 | -65.37 | e13-16 | 0.03 |
| -124.07 | -65.41 | e13-17 | 0.03 |
| -130.16 | -65.37 | e13-18 | 0.03 |
| -90.03 | -56.05 | e13-2 | 0.03 |
| -129.47 | -62.01 | e13-20 | 0.03 |
| -130.34 | 59.35 | e13-21 | 0.03 |
| -89.29 | -57.00 | e13-3 | 0.03 |
| -90.59 | -58.49 | e13-5 | 0.03 |
| -89.28 | -59.36 | e13-6 | 0.03 |
| -89.41 | -61.14 | e13-7 | 0.03 |
| -90.08 | -61.58 | e13-8 | 0.03 |
| -89.40 | -63.06 | e13-9 | 0.03 |
| -125.09 | -59.57 | e14-14 | 0.03 |
| -159.55 | -51.55 | e14-2 | 0.03 |
| -159.59 | -53.54 | e14-3 | 0.03 |
| -159.52 | -54.55 | e14-4 | 0.03 |
| -160.06 | -57.01 | e14-6 | 0.03 |
| -160.09 | -58.03 | e14-7 | 0.03 |
| -160.17 | -59.40 | e14-8 | 0.03 |
| -95.00 | -61.58 | e15-1 | 0.03 |
| -109.55 | -60.07 | e15-11 | 0.03 |
| -119.55 | -56.03 | e15-16 | 0.03 |
| -149.49 | 56.01 | e15-28 | 0.03 |
| -99.58 | -61.03 | e15-7 | 0.03 |
| -104.58 | -61.04 | e15-8 | 0.03 |
| -90.48 | -57.46 | e16-4 | 0.03 |
| 161.55 | -58.59 | e16-6 | 0.03 |
| -134.52 | -65.01 | e17-10 | 0.03 |
| -134.40 | -66.00 | e17-11 | 0.03 |
| -134.36 | -67.08 | e17-12 | 0.03 |
| -130.44 | -68.07 | e17-14 | 0.03 |
| -126.45 | -68.08 | e17-15 | 0.03 |
| -124.27 | -67.30 | e17-16 | 0.03 |
| -110.46 | -67.54 | e17-18 | 0.03 |
| -106.48 | -68.04 | e17-19 | 0.03 |
| -103.04 | -67.55 | e17-20 | 0.03 |
| -103.04 | -67.55 | e17-20 | 0.03 |
| -97.59 | -67.58 | e17-23 | 0.03 |
| -95.07 | -64.47 | e17-26 | 0.03 |
| -95.07 | -64.47 | e17-26 | 0.03 |
| -94.58 | -64.18 | e17-27 | 0.03 |
| -95.06 | -63.00 | e17-28 | 0.03 |
| -94.42 | 62.05 | e17-29 | 0.03 |
| -135.17 | -62.01 | e17-8 | 0.03 |
| -99.19 | -58.00 | e18-4 | 0.03 |
| -104.54 | -62.05 | e19-5 | 0.03 |
| -78.35 -41.20 e25-5 | mel12654 3746 | 0- 1 7.50 3.60 | 11 |
| -94.54 -50.06 e25-7 | mel12566 4542 | 0- 2 5.75 14.10 | 11 |
| -94.54 -50.06 e25-7 | mel12566 4542 | 0- 2 5.75 14.10 | 11 |
| -100.02 -50.02 e25-8 | mel12567 4049 | 0- 2 3.90 41.65 | 11 |
| -100.02 -50.02 e25-8 | mel12567 4049 | 0- 2 3.90 41.65 | 11 |
| -105.07 -50.04 e25-9 | mel12568 3822 | 0- 2 5.99 5.20 | 11 |
| -105.07 -50.04 e25-9 | mel12568 3822 | 0- 2 5.99 5.20 | 11 |
| 176.30 -66.04 e27-3 | 1934 | 0.04 |
| 174.36 -68.03 e27-4 | 1886 | 0.04 |
| -159.49 -68.03 e33-3 | 1940 | 0.04 |
| -120.01 -63.14 e33-16 | 2687 | 0.04 |
| -61.50 -60.03 e4-10 | 3- 4 14.69 3.35 | 11 |
| -87.51 -69.24 e42-10 | mel12658 3019 | 3- 4 14.69 3.35 | 11 |
| -87.51 -69.24 e42-10 | mel12658 3019 | 3- 4 14.69 3.35 | 11 |
| -89.07 -68.59 e42-12 | mel12659 3536 | 3- 4 6.60 2.65 | 11 |
| -89.07 -68.59 e42-12 | mel12659 3536 | 3- 4 6.60 2.65 | 11 |
| -119.44 -64.56 e42-7 | mel12655 4841 | 0- 1 0.00 36.40 | 11 |
| -119.44 -64.56 e42-7 | mel12655 4841 | 0- 1 0.00 36.40 | 11 |
| -92.30 -64.31 e42-8 | mel12656 4615 | 5- 6 10.45 1.70 | 11 |
| -92.30 -64.31 e42-8 | mel12656 4615 | 5- 6 10.45 1.70 | 11 |
| -80.24 -69.59 e42-9 | mel12657 564 | 0- 1 17.15 2.80 | 11 |
| -80.24 -69.59 e42-9 | mel12657 564 | 0- 1 17.15 2.80 | 11 |
| -114.07 -55.05 e45-62 | 2250 | 0.09 |
| -114.26 -47.33 e45-74 | 1900 | 0.09 |
| -114.25 -46.27 e45-77 | 2081 | 0.09 |
| -114.22 -45.03 e45-79 | 2000 | 0.09 |
| -68.35 -60.06 e5-10 | 0.03 |
| -67.50 -59.01 e5-11 | 0.03 |
| -67.55 -62.16 e5-15 | 0.03 |
| -67.53 -62.57 e5-16 | 0.03 |
| -68.10 -63.57 e5-17 | 0.03 |
| -71.21 -63.12 e5-25 | 0.03 |
| -69.14 -57.09 e5-8 | 0.03 |
| -109.59 -60.04 e50-15 | 2335 | 0.09 |
| -56.03 -55.44 e6-11 | 0.03 |
| -56.32 -57.01 e6-12 | 0.03 |
| -56.02 -58.55 e6-14 | 0.03 |
| -58.56 -59.07 e6-29 | 0.03 |
| -59.08 -57.03 e6-30 | 0.03 |
| -58.24 -56.15 e6-5 | 0.03 |
| -58.50 -57.10 e6-6 | 0.03 |
| -44.50 -54.06 e7-1 | 0.03 |
| -48.10 -66.34 e7-12 | 0.03 |
| -48.58 -59.02 e7-17 | 0.03 |
| -48.53 -53.01 e7-18 | 0.03 |
| -49.10 -55.56 e7-4 | 0.03 |
| -44.49 -58.09 e7-6 | 0.03 |
| -44.45 -58.43 e7-7 | 0.03 |
| -27.27 -54.14 e8-5 | 0.03 |
| -39.56 -49.50 e9-4 | 0.03 |
| -39.52 -46.50 e9-5 | 0.03 |
| -119.50 -19.25 gc2 | 0.07 |
| -119.53 -19.24 gc5 | 0.07 |
| -119.44 -19.24 gc6 | 0.07 |
| Value | Description | Unit | Quantity |
|---------|-------------------------|------|----------|
| -116.50 | -18.56 gc8 | | |
| 114.58 | -19.30 gc16 | | |
| -106.02 | -9.59 k71042610dho5442 | 6-11 | |
| -110.03 | -10.32 k71042611dho5434 | 5-7 | |
| -110.02 | -10.44 k71042611dho5440 | 5-10 | |
| -110.30 | -10.37 k71042612dho5338 | 5-9 | |
| -110.13 | -10.33 k71042612dho5432 | 5-10 | |
| -110.27 | -10.23 k71042612dho5435 | 5-10 | |
| -106.32 | -6.07 k71042615dho5441 | 7-10 | |
| 158.03 | -11.19 1sdh48 | | |
| 163.13 | -6.40 1sdh76 | | |
| 145.23 | -9.49 novaa28 | | |
| 145.25 | -10.27 novaa29 | | |
| 145.30 | -10.15 novaa30 | | |
| 145.50 | -12.17 novaa31 | | |
| 152.55 | -14.08 novaa32 | | |
| 167.23 | -21.41 novaa36 | | |
| 172.14 | -21.41 novaa37 | | |
| 164.58 | -23.00 novaa40 | | |
| 158.13 | -28.12 novaa48 | | |
| 158.19 | -28.08 novaa50 | | |
| 161.31 | -28.16 novaa53 | | |
| 168.59 | -27.37 novaa64 | | |
| 176.39 | -12.53 novah20 | | |
| 179.19 | -12.34 novah34 | | |
| 171.12 | -28.18 novahv15 | | |
| 153.15 | -28.24 novahv9 | | |
| -107.37 | -7.17 oc7312 | | |
| -103.34 | -12.56 oc7313 | | |
| -113.44 | -20.42 oc7324 | | |
| -106.09 | -23.52 oc7325 | | |
| -95.18 | -20.03 oc7336 | | |
| -101.04 | -17.52 oc7337 | | |
| -102.01 | -18.08 oc7338 | | |
| -103.29 | -13.04 oc7343 | | |
| 165.02 | -33.30 opr476108tu08655 | 2 | |
| 153.33 | -31.34 opr476156tu08653 | 3770 | |
| 159.27 | -33.09 opr476184tu08654 | 3610 | |
| 166.32 | -33.32 opr476223ty8656 | 2860 | |
| 166.32 | -33.32 opr476223uo8956 | 2860 | |
| -172.51 | -46.19 rc-79 | | |
| -114.48 | -34.52 rc-890 | | |
| -114.48 | -34.52 rc-890 | | |
| -146.28 | -4.16 rc10-106 | | |
| -162.55 | -11.11 rc10-114 | | |
| -162.55 | -11.11 rc10-114 | | |
| -163.18 | -10.35 rc10-115 | | |
| -165.22 | -6.49 rc10-117 | | |
| 157.58 | -14.32 rc10-131 | | |
| 151.32 | -15.22 rc10-133 | | |
| 153.07 | -13.17 rc10-134 | | |
| 153.21 | -12.25 rc10-135 | | |
| 154.32 | -10.22 rc10-136 | | |
| 154.34 | -4.85 rc10-138 | | |
| 177.06 | -14.31 | rc13-38 | t18775 2867 | 0 | 2.34 | 31.36 | 7.09 |
| 177.06 | -14.31 | rc13-38 | t110876 2867 | 0 | 2.08 | 25.58 | 67.8900 | 7 |
| 177.06 | -14.31 | rc13-38 | t18775 2867 | 0 | 2.34 | 31.36 | 7 |
| 177.06 | -14.31 | rc13-38 | t110876 2867 | 0 | 2.08 | 25.58 | 67.8900 | 7 |
| 176.50 | -15.53 | rc13-39 | t18776 2116 | 0 | 2.72 | 9.35 | 9 |
| 176.41 | -17.23 | rc13-40 | t108777 2798 | 0 | 6.49 | 21.20 | 9 |
| -177.10 | -15.40 | rc13-41 | t108778 2221 | 0 | 3.08 | 0.00 | 9 |
| -173.39 | -13.26 | rc13-42 | t108779 4729 | 0 | 3.64 | 23.89 | 9 |
| -167.00 | -8.33 | rc13-45 | t108781 3948 | 0 | 3.43 | 41.19 | 9 |
| -152.53 | -0.09 | rc13-64 | mL07931 4766 | 0 | 0.00 | 0.00 | 36.1200 | 0 |
| -152.51 | -1.54 | rc13-65 | mL07932 4887 | 0 | 0.00 | 0.00 | 40.9300 | 0 |
| -152.38 | -4.48 | rc13-66 | mL07933 5332 | 0 | 0.00 | 0.00 | 0.9400 | 0 |
| -151.45 | -8.24 | rc13-69 | mL07934 5015 | 0 | 0.00 | 0.00 | 0.3700 | 0 |
| -151.11 | -10.23 | rc13-71 | mL07935 5088 | 0 | 0.00 | 0.00 | 0 |
| -124.14 | -19.01 | rc13-81 | mL12676 3751 | 0 | 0.81 | 6.06 | 2 |
| -124.14 | -19.01 | rc13-81 | mL12677 3751 | 10 | 1.50 | 8.56 | 2.09 |
| -124.14 | -19.02 | rc13-81 | mL12676 3751 | 0 | 0.81 | 6.06 | 7 |
| -120.41 | -18.58 | rc13-82 | dlo6023 3555 | 3-8 | 50.2869 |
| -117.33 | -19.02 | rc13-83 | dlo6024 3418 | 4-9 | 90.5953 |
| -114.54 | -18.48 | rc13-84 | dlo6025 3285 | 4-9 | 81.2174 |
| -111.16 | -17.09 | rc13-85 | dlo6026 3349 | 4-9 | 93.1682 |
| -112.32 | -17.29 | rc13-87 | dlo6027 3025 | 7-12 | 81.9213 |
| -115.10 | -18.25 | rc13-88 | dlo6028 3210 | 4-9 | 77.7079 |
| -111.17 | -18.26 | rc13-89 | dlo6029 3340 | 4-9 | 91.5810 |
| -109.26 | -19.00 | rc13-90 | dlo6030 3667 | 5-10 | 89.1803 |
| -106.33 | -19.00 | rc13-91 | dlo6031 3935 | 4-9 | 38.5202 |
| -103.39 | -18.53 | rc13-92 | dlo6032 4122 | 8-13 | 15.4133 |
| -100.55 | -18.47 | rc13-93 | dlo6033 4162 | 6-12 | 29.9866 |
| -98.09 | -18.31 | rc13-94 | dlo6034 4151 | 10-15 | 0.2654 |
| -95.38 | -18.20 | rc13-95 | dlo6035 4268 | 10-15 | 2.8000 |
| -92.53 | -17.58 | rc13-96 | mL08187 4290 | 0-1 | 7.09 | 5.50 | 11 |
| -92.53 | -17.58 | rc13-96 | mL08187 4290 | 0-1 | 7.09 | 5.50 | 11 |
| -86.52 | -16.59 | rc13-98 | mL08038 4437 | 0-2 | 9.74 | 7.20 | 11 |
| -86.52 | -16.59 | rc13-98 | mL08038 4437 | 0-2 | 9.74 | 7.20 | 11 |
| -84.34 | -16.31 | rc13-99 | mL08185 4684 | 0-2 | 10.99 | 6.90 | 11 |
| -84.34 | -16.31 | rc13-99 | mL08185 4684 | 0-2 | 10.99 | 6.90 | 11 |
| -171.41 | -12.15 | rc14-43 | t108780 4872 | 0 | 5.07 | 8.46 | 9 |
| -138.26 | -25.07 | rc15-31 | mL09165 4212 | 1 | 2.05 | 0.00 | 9 |
| -135.24 | -26.47 | rc15-32 | mL09166 4248 | 1 | 2.09 | 0.00 | 9 |
| -129.12 | -27.04 | rc15-37 | mL09167 3860 | 0 | 3.43 | 0.00 | 9 |
| -127.51 | -33.14 | rc15-40 | mL09168 3720 | 1 | 3.22 | 0.00 | 9 |
| -120.05 | -26.56 | rc15-41 | dlo6036 3484 | 5-10 | 84.5314 |
| -117.18 | -25.59 | rc15-42 | dlo6037 3601 | 5-10 | 53.2306 |
| -113.10 | -26.23 | rc15-43 | mL11897 2595 | 0-4 | 0.10 | 0.00 | 11 |
| -113.10 | -26.23 | rc15-43 | mL11897 2595 | 0-4 | 0.10 | 0.00 | 1.3152 | 11 |
| -116.45 | -23.32 | rc15-45 | dlo6039 3200 | 15-22 | 63.0641 |
| -111.06 | -24.51 | rc15-47 | dlo6040 3045 | 5-10 | 89.8841 |
| -101.13 | -26.54 | rc15-49 | dlo6041 3286 | 4-8 | 84.8678 |
| -96.18 | -27.44 | rc15-50 | dlo6042 3722 | 15-20 | 41.5334 |
| -93.54 | -28.11 | rc15-51 | mL11853 3952 | 0-3 | 0.49 | 1.62 | 17.8532 | 11 |
| -93.54 | -28.11 | rc15-51 | mL11853 3952 | 0-3 | 0.49 | 1.62 | 11 |
| -85.59 | -29.14 | rc15-52 | mL08043 3780 | 0-2 | 3.60 | 5.30 | 11.09 |
| -85.59 | -29.14 | rc15-52 | mL08043 3780 | 0-2 | 3.60 | 5.30 | 11 |
| -82.07 | -29.58 | rc15-53 | mL08044 4085 | 0-2 | 5.42 | 6.50 | 11 |
| Value | Column | Row | Value | Column | Row | Value | Column | Row |
|---------|--------|-----|---------|--------|-----|---------|--------|-----|
| -82.07 | 2 | 5 | 5.42 | 0 | 2 | 6.50 | 11 | |
| -78.13 | 1 | 30 | 0.88 | 0 | 2 | 2.60 | 11 | |
| -78.13 | 1 | 30 | 0.88 | 0 | 2 | 2.60 | 11 | |
| -74.56 | 5 | 31 | 8.03 | 0 | 2 | 9.80 | 11 | |
| -74.56 | 5 | 31 | 8.03 | 0 | 2 | 9.80 | 11 | |
| -73.27 | 5 | 34 | 14.73 | 0 | 2 | 3.70 | 11 | |
| -73.27 | 5 | 34 | 14.73 | 0 | 2 | 3.70 | 11 | |
| -71.12 | 5 | 40 | 4078 | 0 | 2 | 0.09 | 11 | |
| -77.13 | 5 | 45 | 15.17 | 0 | 2 | 2.03 | 11 | |
| -77.13 | 5 | 45 | 15.17 | 0 | 2 | 2.03 | 11 | |
| -77.59 | 5 | 47 | 13.58 | 0 | 2 | 2.85 | 11 | |
| -77.59 | 5 | 47 | 13.58 | 0 | 2 | 2.85 | 11 | |
| -76.25 | 5 | 51 | 39.89 | 0 | 2 | 3.22 | 11 | |
| -76.25 | 5 | 51 | 39.89 | 0 | 2 | 3.22 | 11 | |
| -80.35 | 5 | 60 | 15.65 | 0 | 1 | 2.80 | 11 | |
| -80.35 | 5 | 60 | 15.65 | 0 | 1 | 2.80 | 11 | |
| -71.22 | 5 | 65 | 16.92 | 0 | 2 | 2.67 | 11 | |
| -71.22 | 5 | 65 | 16.92 | 0 | 2 | 2.67 | 11 | |
| -66.36 | 5 | 59 | 0.44 | 2 | 21 | 21.96 | 11 | |
| -66.36 | 5 | 59 | 0.44 | 2 | 21 | 21.96 | 11 | |
| -62.17 | 5 | 66 | 0.82 | 2 | 16 | 16.41 | 11 | |
| -62.17 | 5 | 66 | 0.82 | 2 | 16 | 16.41 | 11 | |
| -141.09 | 5 | 23 | 0.41 | 1 | 3.22 | 11 | |
| -108.53 | 5 | 29 | 3.85 | 0 | 1 | 3.85 | 11 | |
| -108.53 | 5 | 29 | 3.85 | 0 | 1 | 3.85 | 11 | |
| -106.24 | 5 | 36 | 2.02 | 0 | 1 | 2.02 | 11 | |
| -106.24 | 5 | 36 | 2.02 | 0 | 1 | 2.02 | 11 | |
| -101.42 | 5 | 48 | 18.70 | 0 | 1 | 4.56 | 11 | |
| -101.42 | 5 | 48 | 18.70 | 0 | 1 | 4.56 | 11 | |
| -84.58 | 5 | 51 | 6.90 | 0 | 2 | 16.50 | 11 | |
| -84.58 | 5 | 51 | 6.90 | 0 | 2 | 16.50 | 11 | |
| -77.00 | 5 | 52 | 2.86 | 0 | 2 | 21.85 | 11 | |
| -77.00 | 5 | 52 | 2.86 | 0 | 2 | 21.85 | 11 | |
| -76.51 | 5 | 47 | 2.60 | 0 | 2 | 14.30 | 11 | |
| -76.51 | 5 | 47 | 2.60 | 0 | 2 | 14.30 | 11 | |
| -57.45 | 5 | 56 | 2.04 | 0 | 2 | 33.73 | 11 | |
| -57.45 | 5 | 56 | 2.04 | 0 | 2 | 33.73 | 11 | |
| -94.59 | 5 | 46 | 3.03 | 0 | 2 | 4.44 | 11 | |
| -94.59 | 5 | 46 | 3.03 | 0 | 2 | 4.44 | 11 | |
| -56.38 | 5 | 60 | 2.87 | 0 | 2 | 25.05 | 11 | |
| -56.38 | 5 | 60 | 2.87 | 0 | 2 | 25.05 | 11 | |
| -74.26 | 5 | 58 | 5.44 | 0 | 2 | 16.62 | 11 | |
| -74.26 | 5 | 58 | 5.44 | 0 | 2 | 16.62 | 11 | |
| 155.44 | 5 | 58 | 3.09 | 1 | 7 | 17.87 | 11 | |
| 155.44 | 5 | 58 | 3.09 | 1 | 7 | 17.87 | 11 | |
| -175.46 | 5 | 44 | 2.12 | 0 | 2 | 20.05 | 11 | |
| -175.46 | 5 | 44 | 2.12 | 0 | 2 | 20.05 | 11 | |
| -175.46 | 5 | 44 | 2.12 | 0 | 2 | 20.05 | 11 | |
| -162.54 | 5 | 48 | 2.20 | 0 | 4 | 14.03 | 11 | |
| -159.03 | 5 | 47 | 2.42 | 0 | 2 | 14.06 | 11 | |
| -154.15 | 5 | 46 | 6.37 | 0 | 6 | 11.05 | 11 | |
| -149.45 | 5 | 45 | 7.44 | 0 | 2 | 11.07 | 11 | |
| -133.12 | 5 | 41 | 3.12 | 0 | 5 | 6.99 | 11 | |
| -125.30 | 5 | 39 | 0.00 | 0 | 6 | 2.83 | 11 | |
| -125.30 | 5 | 39 | 0.00 | 0 | 6 | 2.83 | 11 | |
| Value 1 | Value 2 | Value 3 | Value 4 | Value 5 | Value 6 |
|--------------|--------------|--------------|--------------|--------------|--------------|
| -125.30 | -39.28 | mll1885 4583 | 0-2 | 2.12 | 0.42 |
| -125.30 | -39.28 | mll1885 4583 | 0-2 | 2.12 | 0.42 |
| -121.55 | -38.00 | mll1886 4583 | 0-2 | 2.70 | 0.19 |
| -121.55 | -38.00 | mll1886 4583 | 0-2 | 2.70 | 0.19 |
| -118.06 | -36.23 | m109141 3900 | 2 | 4.77 | 9.76 |
| -111.54 | -33.25 | m109142 2723 | 2 | 5.13 | 9.66 |
| -111.54 | -33.25 | mll1888 2723 | 0-2 | 1.25 | 0.94 |
| -111.54 | -33.25 | mll1888 2723 | 0-2 | 1.25 | 0.94 |
| -108.30 | -31.33 | m109143 3157 | 4 | 0.39 | 6.20 |
| -102.05 | -27.17 | mlo4868 3074 | 10-15 | 87.2870 | 0.09 |
| -97.11 | -22.38 | mlo4869 3926 | 5-10 | 32.6273 |
| -95.37 | -19.45 | mlo4870 3334 | 5-10 | 92.5390 |
| -94.07 | -16.50 | mlo4871 2737 | 4-9 | 94.9114 |
| -92.35 | -13.28 | mlo8180 3853 | 0-1 | 7.34 | 14.60 |
| -92.35 | -13.28 | mlo8180 3853 | 0-1 | 7.34 | 14.60 |
| -117.36 | -25.34 | dio6019 642 | 0-15 | 0.8198 |
| -118.28 | -25.50 | dio6020 3043 | 3-8 | 83.6549 |
| -119.56 | -23.26 | dio6021 3368 | 2-7 | 84.3527 |
| -120.34 | -26.32 | dio6022 3488 | 6-11 | 85.0490 |
| 179.33 | -44.13 | t108718 931 | 0 | 19.06 | 3.18 |
| 179.34 | -44.13 | t108719 902 | 0 | 19.24 | 3.19 |
| 177.22 | -45.45 | t108720 4314 | 0 | 18.49 | 2.64 |
| -174.34 | -45.08 | m109144 3351 | 0 | 9.99 | 1.10 |
| -172.01 | -42.52 | t18721 1917 | 0 | 17.34 | 3.35 | 53.2277 | 7.09 |
| -172.01 | -42.52 | t110938 1917 | 0 | 13.92 | 2.82 | 7.1910 | 3.09 |
| -172.01 | -42.52 | t110938 1917 | 0 | 13.92 | 2.82 | 53.2300 | 7 |
| -172.01 | -42.52 | t108721 1917 | 0 | 17.34 | 3.35 |
| -168.45 | -39.51 | t108722 4777 | 0 | 7.97 | 0.98 |
| -168.08 | -38.48 | t108723 3146 | 0 | 8.40 | 1.14 |
| -167.03 | -36.43 | t108724 4751 | 0 | 7.94 | 2.52 |
| -165.03 | -33.41 | m109145 5453 | 0 | 11.47 | 2.66 |
| -163.43 | -31.23 | m109146 5376 | 0 | 10.28 | 4.05 |
| -166.47 | -26.26 | m109147 5634 | 0 | 11.03 | 3.84 |
| -168.45 | -24.31 | m109148 5720 | 0 | 12.57 | 3.28 |
| -179.41 | -24.46 | t108725 2153 | 0 | 2.35 | 30.50 |
| -174.40 | -26.34 | t108726 4244 | 0 | 2.95 | 9.96 |
| -172.36 | -28.45 | t108727 2540 | 0 | 5.39 | 1.82 | 9.09 |
| -170.13 | -31.37 | t108728 4125 | 0 | 9.69 | 22.22 |
| -168.44 | -33.14 | t110959 0 0 | 13.60 | 15.60 |
| -168.44 | -33.14 | t18729 2060 0 | 13.43 | 12.33 |
| -168.44 | -33.14 | t110959 2060 0 | 13.60 | 15.60 | 68.5359 | 3.09 |
| -168.44 | -33.14 | t108729 2060 0 | 13.43 | 12.33 |
| -168.44 | -33.14 | t110959 2060 0 | 13.60 | 15.60 | 68.5400 |
| -167.54 | -34.01 | t108730 1353 | 0 | 16.84 | 11.06 |
| -166.07 | -36.13 | t108731 1234 | 0 | 14.15 | 5.66 |
| -163.08 | -39.31 | t18732 2836 | 0 | 16.87 | 10.27 | 7.09 |
| -163.08 | -39.31 | t18732 2836 | 0 | 16.87 | 10.27 |
| -163.08 | -39.31 | t110979 2836 5 | 15.21 | 10.43 | 82.4934 | 3.09 |
| -156.54 | -45.59 | t108733 4603 | 0 | 15.66 | 6.86 |
| -152.48 | -44.47 | t108734 4709 | 0 | 19.53 | 7.12 |
| 148.22 | -45.45 | t108735 4082 | 0 | 19.52 | 14.67 | 9 |
143.47 -44.05 rc9-134 t108736 4570 0 24.96 3.50

79.09 18.00 rc9-77 2905
-73.08 -17.34 rc9-82 m109622 5000 0-1 24.86 4.40
-73.08 -17.34 rc9-82 m109622 5000 0-1 24.86 4.40
-73.54 -21.20 rc9-83 m109121 4332 0-1 7.00 2.10
-73.54 -21.20 rc9-83 m109121 4332 0-1 7.00 2.10
-72.29 -23.33 rc9-86 m108042 4208 0-2 10.28 10.60
-72.29 -23.33 rc9-86 m108042 4208 0-2 10.28 10.60
-76.21 -23.05 rc9-87 m108041 4508 2-4 7.93 5.60
-76.21 -23.05 rc9-87 m108041 4508 2-4 7.93 5.60
-81.03 -22.27 rc9-89 m108040 4422 0-3 7.28 10.10
-81.03 -22.27 rc9-89 m108040 4422 0-3 7.28 10.10
-87.13 -21.47 rc9-90 m108186 4190 0-1 6.80 6.90
-87.13 -21.47 rc9-90 m108186 4190 0-1 6.80 6.90 90.6665
-90.58 -21.26 rc9-91 m108049 5110 2-4 6.60 8.40
-90.58 -21.26 rc9-91 m108049 5110 2-4 6.60 8.40 90.5738
-102.14 -20.19 rc9-94 ml11891 3939 0-2 3.36 0.05
-102.14 -20.19 rc9-94 ml11891 3939 0-2 3.36 0.05 16.1668
-110.59 -22.47 rc9-96 ml11892 3577 0-2 2.52 0.00 72.2381
-110.59 -22.47 rc9-96 ml11892 3577 0-2 2.52 0.00
-112.46 -23.30 rc9-97 m1o4878 3394 0-5 77.4285
-115.27 -24.36 rc9-99 m1o4879 2625 5-10 82.1827
162.02 -0.51 s68pc11lamh02014 3988 8.84 24.52 71.7300 0
158.46 -1.36 s68pc15 th08651 0 0 5.89 21.18 9
160.04 -1.00 s68pc15lamh02012 2532 6.97 28.91 76.9400 0
165.41 -4.54 s68pc20lamh02015 2236 6.11 24.34 86.0500 0
168.11 -3.47 s68pc21a mh02009 5569 4.76 9.49 0.2700 0
172.04 -4.20 s68pc22 th08652 0 0 5.16 21.63 9
172.04 -4.20 s68pc22lamh02016 3397 5.65 26.73 79.4900 0
-178.45 -2.03 s68pc24lamh02017 5290 2.59 32.73 0.6600 0
173.50 -9.07 s68pc4 mh02010 5288 2.38 18.49 0.5000 0
161.17 -7.15 s68pc6 mh02011 1680 3.44 21.09 72.9300 0
159.29 -7.14 s68pc8 mh02013 2172 3.80 18.48 52.5200 0
-102.38 -7.26 scan94pg doo4816 3990 15-20 64.5069
-82.30 -3.15 v15-32 1529 0.009
-82.41 -6.08 v15-33 m108178 4040 0-2 14.94 7.80 11.009
-82.41 -6.08 v15-33 m108178 4040 0-2 14.94 7.80 11
-81.47 -7.36 v15-42 2438 0.009
-84.28 -12.51 v15-46 m108183 4583 0-2 9.55 7.20 11
-84.28 -12.51 v15-46 m108183 4583 0-2 9.55 7.20 11
-73.40 -33.27 v15-53 ml112784 3915 0-2 7.74 2.80 11
-73.40 -33.27 v15-53 ml112784 3915 0-2 7.74 2.80 11.09
-77.45 -34.22 v15-56 m108047 4137 0-3 7.34 9.40 11
-77.45 -34.22 v15-56 m108047 4137 0-3 7.34 9.40 11
-74.25 -38.07 v15-62 ml11873 2316 0-3 10.52 2.90 11
-74.25 -38.07 v15-62 ml11873 2316 0-3 10.52 2.90 11
171.30 -46.42 v16-122 t111135 1265 0 23.92 4.07 43.4200 7.09
171.30 -46.42 v16-122 t111135 1265 0 23.92 4.07 43.4200 7.09
-163.19 -54.30 v16-127 m109122 4471 0 13.68 4.63 9
-142.53 -59.22 v16-129 m109123 3651 0 0.54 19.86 9
-117.24 -59.19 v16-131 m109124 5029 0 2.85 33.00 9
-117.24 -59.20 v16-131 m11876 5029 0-3 1.90 74.10 11
-117.24 -59.20 v16-131 m11876 5029 0-3 1.90 74.10 11
-95.03 -61.56 v16-133 m11877 5062 0-2 18.47 3.94 11
Value	Column	Row	Description						
153.34	-15.27	v24-163	t108697 4656 0 11.82 6.74 9						
153.58	-13.52	v24-164	t108698 4526 0 16.00 3.38 9						
152.21	-15.21	v24-165	t108699 4063 0 13.91 4.20 9						
150.47	-16.31	v24-166	t111206 781 5 6.36 11.21 10.8950 3						
150.47	-16.31	v24-166	t108700 781 0 4.14 3.23 9						
148.03	-15.71	v24-167	t108701 1143 0 7.81 2.30 9						
146.52	-16.20	v24-168	t108702 1785 0 14.74 3.91 9						
148.01	-14.13	v24-169	t108703 2056 0 1.86 0.13 9						
146.53	-13.31	v24-170	t108704 2243 0 14.92 9.62 9						
145.51	-14.18	v24-171	t108705 2714 0 19.31 1.85 9						
146.49	-14.41	v24-172	t108706 1690 0 16.56 10.17 9						
148.06	-11.46	v24-173	t108707 3360 0 15.50 4.92 9						
150.52	-11.07	v24-174	t108708 1004 0 9.04 13.60 9						
150.18	-11.25	v24-175	t108709 2618 0 12.72 14.39 9						
150.49	-12.14	v24-176	t108710 4422 0 12.92 3.82 9						
149.40	-13.12	v24-177	t108711 4535 0 18.65 2.79 9						
148.50	-14.06	v24-178	t108712 3997 0 11.52 9.26 9						
148.47	-15.49	v24-179	t108713 1053 0 6.14 4.76 9						
149.00	-18.30	v24-181	t108714 1099 0 13.35 4.36 9						
147.30	-17.31	v24-182	t108715 1369 0 13.71 5.73 9						
146.15	-15.20	v24-183	t108716 2215 0 27.29 6.57 9						
146.12	-12.52	v24-184	t108717 2992 0 14.75 8.74 9						
179.29	-0.57	v28-203	3243 0.09						
167.46	-8.24	v28-229	t111226 3669 0 2.80 16.48 60.6100 7						
167.46	-8.24	v28-229	t111226 3669 0 2.80 16.48 8.3900 3.09						
166.45	-5.30	v28-230	t112706 2992 0 3.81 30.34 80.4241 2.09						
160.29	-5.27	v28-235	t111247 1740 0 3.52 21.94 9.6950 3						
160.29	-5.27	v28-235	t111247 1746 0 3.52 21.94 44.9400 7.09						
-160.29	-1.01	v28-238	ml2228 3120 0 4.17 27.03 72.5499 7.09						
166.45	-5.30	v28-239	ml22707 2992 25 4.49 25.88 80.7933 2						
-82.26	-0.05	y69103p	m08014 1808 1-3 3.72 22.60 30.5277 11						
-82.26	-0.05	y69103p	m08014 1808 1-3 3.72 22.60 11						
-81.31	-2.18	y69104mg	m08015 3892 0-5 10.85 13.90 0.5740 9						
-81.31	-2.18	y69104mg	m08015 3892 0-5 10.85 13.90 11						
-91.51	-1.01	y6980mg	m08193 3408 0-4 1.60 65.90 18.4575 11						
-91.51	-1.01	y6980mg	m08193 3408 0-4 1.60 65.90 9.11						
82.05	-10.14	y7127p	m08034 4569 2-4 0.4957 11						
-85.56	-1.39	y71312	zuo6849 2584 0-1 58.3996 11						
-85.36	-1.12	y71316	zuo6903 2227 0-1 67.3376 11						
-85.01	-1.06	y71324	zuo6947 2099 0-1 51.5968 11						
-85.07	-0.59	y71325	zuo6998 2395 0-1 56.8759 11						
-85.42	-0.32	y71331	zuo7065 2840 0-1 83.5322 11						
-77.34	-16.26	y71612p	m08036 2734 2-4 11.97 7.90 2.8512 11.09						
-77.34	-16.26	y71612p	m08036 2734 2-4 11.97 7.90 11						
-75.47	-17.40	y716162	m08037 4625 1-3 8.94 8.80 0.4165 11						
-75.47	-17.40	y716162	m08037 4625 1-3 8.94 8.80 11						
-74.21	-16.56	y71618g2	m09619 7280 1-2 24.86 4.40 11						
-74.21	-16.56	y71618g2	m09619 7280 1-2 24.86 4.40 11						
-76.19	-15.16	y71624p	zoo4829 4899 13-14 69.1608 11						
-79.07	-14.37	y7164p	m08035 4518 3-4 13.42 9.30 11						
-79.07	-14.37	y7164p	m08035 4518 3-4 13.42 9.30 0.3849 11						
-82.05	-10.14	y71727p	m08034 4569 2-4 17.35 6.70 11						
-82.05	-10.14	y71727p	m08034 4569 2-4 17.35 6.70 11						
Date	Location	Code	Age (Ma)	Depth (m)	C14 (ppm)	Ratio	C14 Age (Ma)	Ratio	Depth (m)
------------	----------	------	----------	-----------	-----------	-------	--------------	-------	-----------
-104.52	-5.57	y799l	1.47	47.50	46.8307	11			
-104.52	-5.57	y799l	1.47	47.50		11			
161.37	-33.23	z21081	22.48	4.08	78.1963	7.09			
Appendix III: Organic Carbon Concentration, Age and Depth to Stratigraphic Marker
The following is a list of the table headings and their definitions:

- **ORG C %** = organic carbon concentration.
- **AGE** = age of stratigraphic marker (in thousands of years).
- **DEPTH** = depth to that stratigraphic marker (in centimeters).

The core identification codes ending with >* signify that the DEPTH is a minimum, due to possible hiatuses.
INDIAN OCEAN

CORE ID	ORG C ID	AGE (Ka)	DEPTH (cm)	SOURCE	
al5558	18	98	1.1		
arb-52	12.3	35	0.2		
arb-52	8.2	15	0.2		
arb-52	17.5	55	0.2		
arb-54	7.3	45	0.2		
arb-54	4.3	15	0.2		
arb-54	29.9	85	0.2		
e4527	18	30	1.1		
e4528	18	31	1.1		
e4811	18	32	1.1		
e4822	18	82	1.1		
e4823	18	32	1.1		
e4827	18	62	1.1		
e483	18	22	1.1		
md73025	17.2	327	0.08		
rcl11-101	0.42	18	84	1.0001	
rcl11-120	0.41	18	80	1.1001	
rcl11-121	0.32	18	50	1.0001	
rcl11-145	0.46	18	50	1.0001	
rcl11-147	0.75	18	80	1.1001	
rcl12-336	0.46	18	100	1.3001	
rcl14-09	18	70	0.1		
rcl14-09	18	100	0.3		
rcl14-11	18	80	1.3		
rcl14-12	0.46	18	100	1.3001	
rcl14-145	0.32	18	35	1.1001	
rcl14-147	0.46	18	40	1.1001	
rcl17-113	0.32	18	30	0.1	
rcl17-69	18	50	1.1		
rcl17-73	18	20	1.1		
rcl17-98	18	53	0.1		
rc8-39	0.42	18	40	1.3001	
rc8-39	0.42	18	90	1.1001	
rc8-43	18	40	1.3		
rc8-52	0.4	18	60	1.1001	
rc9-150	18	60	1.1		
rc9-160	1.14	18	170	1.1001	
rc9-162	0.26	18	50	1.1001	
rc9-162	0.26	18	40	1.1001	
vl4-101a	18	70	1.1		
vl4-102	18	40	1.1		
vl4-77	18	29	0.1		
vl4-81	18	35	1.1		
Code	Value	Unit	Code	Value	Unit
--------	-------	------	--------	-------	------
V16-65	18	40	V17-42	18	52
V17-43	18	40	V17-44	18	40
V18-337	18	220	V19-178	18	40
V19-185	18	30	V19-188	18	50
V19-201	18	70	V19-202	18	30
V19-204	18	20	V19-25	18	55
V19-27	18	30	V19-28	18	130
V19-28	18	130	V19-29	18	56
V19-30	18	100	V19-41	18	30
V19-64	18	13	V20-170	18	20
V20-175	18	20			
V20-190		0.61	V21-214	18	63
V21-30	18	250	V21-33	18	45
V22-203	18	180	V29-29	18	80
V29-30	18	80	V29-45		0.28
V29-48	18	30	V29-49	18	120
V29-87	18	20	V29-88	18	120
V29-90	18	60	V34-53	19	20
V34-88	18	98.5	V6971p	18	140
V6973p	18	130	V71612p	18	24
CORE ID	ORG C	AGE (Ka)	DEPTH (cm)	SOURCE	
---------	-------	----------	------------	--------	
a15-63	11.4	74	0.5		
a15-64	18	750	1.6		
a15-65	18	126	1.6		
a16-424	18	75	1.6		
a16-45	18	171	1.6		
a16-46	18	109	1.6		
a16-461	6.4	37	1.5		
a16-461	18	100	1.6		
a16-713	18	80	1.6		
a16-714	18	100	1.6		
a17-21	18	40	1.6		
a17-22	18	60	1.6		
a17-26	18	50	1.6		
a17-915	18	138	1.6		
a17-94	18	40	1.6		
a18-016	18	70	1.6		
a18-032	18	30	1.6		
a18-039	18	30	1.6		
a18-047	18	312	0.6		
a18-048	18	500	1.6		
a18-056	18	100	1.6		
a18-072	18	40	1.6		
a18-073	18	38	1.6		
a18-074	18	50	1.6		
a18-09	18	60	0.6		
ads	1.33		0.004		
ber5	0.15		0.001		
ber6	0.15		0.001		
ber7	0.22		0.001		
cl	1.24		0.001		
dl	0.42		0.001		
demera-e	0.30		0.002		
dos1	1.00		0.004		
dos2	1.30		0.004		
ds1	1.90		0.004		
dsdp502	0.41	690	1225	0.0002	
dwd	1.21		0.004		
e3	0.52		0.001		
en66-10g	1.03	14	26.5	0.06	
fl	1.45		0.005		
fb1	0.43		0.005		
fb2	0.23		0.005		
fb3	0.96		0.005		
fc1	0.19		0.005		
fc2	0.09		0.005		
fsl1	1.11		0.005		
fsl2	1.56		0.005		
fsl3	1.16		0.005		
fsl4	1.11		0.005		
fsl5	1.04		0.005		
Column	Value1	Value2	Value3		
-------------	--------	--------	--------		
fs16	1.05		0.005		
gl	0.59		0.001		
gh	0.80		0.001		
gme10-ave	0.41		0.007		
gme2-ave	0.39		0.007		
gme24-ave	0.47		0.007		
gme37-ave	0.44		0.007		
hh3	0.56		0.001		
ii	0.44		0.001		
jj	0.08		0.004		
jj3	0.34		0.001		
k-11	13	27	0.4		
k708-1	18	134	0.6		
k708-4	18	90	0.6		
k708-6	18	60	0.6		
k708-7	18	63	0.6		
k708-8	18	106	0.6		
kk	0.69		0.004		
knorr78-1	0.61		0.003		
lb1	0.26		0.005		
lb2	0.40		0.005		
lb3	0.91		0.005		
lb4	1.82		0.005		
lc1	0.06		0.005		
lc2	0.06		0.005		
li1	0.23		0.001		
ls11	1.70		0.005		
ls12	1.90		0.005		
ls13	1.23		0.005		
ls14	1.11		0.005		
m-12392		19	197	0.06	
mml	0.28		0.001		
na1	0.35		0.007		
na14	0.22		0.007		
na15	0.26		0.007		
na19	0.27		0.007		
na5	0.32		0.007		
na8	0.32		0.007		
nap12	0.38		0.007		
nap14-2	0.52		0.007		
nap14-3	0.47		0.007		
nap15	0.34		0.007		
nap21	0.36		0.007		
nap26	0.36		0.007		
nap48-ave	0.13		0.007		
nap56-ave	0.38		0.007		
nap60-ave	0.27		0.007		
nap8	0.42		0.007		
nap9	0.35		0.007		
nn	0.64		0.004		
nn1	0.31		0.001		
oo2	0.24		0.001		
rc10-2		18	60	1.6	
rc10-288		5.5	45	0.5	
Code	Value1	Value2	Value3		
----------	--------	--------	--------		
rc10-50	18	100	1.6		
rc13-151	18	60	1.6		
rc13-152	18	60	1.6		
rc13-153	18	60	1.6		
rc13-154	18	60	1.6		
rc13-158	18	80	1.6		
rc13-159	18	83	1.6		
rc13-189	16.2	61.5	0.06		
rc24-01	18.5	78	0.06		
rc5-34	18	40	1.6		
rc5-36	18	93	1.6		
rc5-54	18	10	1.6		
rc5-57	18	100	1.6		
rc9-225	18	135	0.6		
rc9-49	18	30	1.6		
s1469	0.03		0.8		
s1470	0.72		0.8		
s1471	0.13		0.8		
s1472	0.06		0.8		
s1473	0.05		0.8		
s1474	0.14		0.8		
s1475	0.02		0.8		
s1476	0.02		0.8		
s1477	0.08		0.8		
s1478	0.07		0.8		
s1479	0.02		0.8		
s1480	0.04		0.8		
s1481	0.05		0.8		
s1482	0.1		0.8		
s1484	0.07		0.8		
s1485	0.01		0.8		
s1486	0.09		0.8		
s1487	0.03		0.8		
s1488	0.2		0.8		
s1489	0.68		0.8		
s1490	0.08		0.8		
s1491	0.07		0.8		
s1492	0.03		0.8		
s1493	0.05		0.8		
s1494	0.07		0.8		
s1495	0.02		0.8		
s1497	0.02		0.8		
s1498	0.08		0.8		
s1499	0.09		0.8		
s1500	0.09		0.8		
s1501	0.07		0.8		
s1502	0.03		0.8		
s1503	0.28		0.8		
s1504	0.08		0.8		
s1505	0.05		0.8		
s1506	0.07		0.8		
s1507	0.04		0.8		
s1508	0.11		0.8		
s1509	0.09		0.8		
s1510	0.07	0.8			
-------	------	-----			
s1511	0.06	0.8			
s1512	0.08	0.8			
s1513	0.08	0.8			
s1514	0.09	0.8			
s1515	1.06	0.8			
s1516	1.35	0.8			
s1517	0.16	0.8			
s1518	1.22	0.8			
s1520	0.95	0.8			
s1521	0.2	0.8			
s1522	0.09	0.8			
s1523	8.26	0.8			
s1524	0.11	0.8			
s1525	0.07	0.8			
s1526	0.15	0.8			
s1527	0.08	0.8			
s1528	0.06	0.8			
s1529	0.16	0.8			
s1530	0.09	0.8			
s1531	0.09	0.8			
s1539	0.09	0.8			
s1545	0.08	0.8			
s1550	0.13	0.8			
s1551	6.24	0.8			
s1553	0.09	0.8			
s1565	0.07	0.8			
s1570	0.14	0.8			
s1571	0.23	0.8			
s1572	0.18	0.8			
s1573	0.14	0.8			
s1574	0.16	0.8			
s1575	0.23	0.8			
s1576	0.36	0.8			
s1580	0.278	0.8			
s1581	0.16	0.8			
s1583	0.1	0.8			
s1584	0.12	0.8			
s1585	0.05	0.8			
s1586	0.57	0.8			
s1587	0.1	0.8			
s1588	0.15	0.8			
s1589	0.23	0.8			
s1590	0.18	0.8			
s1591	0.26	0.8			
s1592	0.46	0.8			
s1593	0.12	0.8			
s1594	0.16	0.8			
s1595	0.4	0.8			
s1596	0.21	0.8			
s1597	0.39	0.8			
s1598	0.21	0.8			
s1599	0.53	0.8			
s1600	0.22	0.8			
s1601	0.16	0.8			
-------	------	-----			
s1602	0.11	0.8			
s1603	0.09	0.8			
s1604	0.14	0.8			
s1605	0.1	0.8			
s1606	0.17	0.8			
s1607	0.28	0.8			
s1608	0.2	0.8			
s1609	0.23	0.8			
s1610	0.15	0.8			
s1611	0.17	0.8			
s1612	0.13	0.8			
s1613	0.2	0.8			
s1614	0.3	0.8			
s1615	0.29	0.8			
s1616	0.23	0.8			
s1617	0.3	0.8			
s1618	0.55	0.8			
s1619	0.81	0.8			
s1620	0.16	0.8			
s1621	0.15	0.8			
s1622	0.85	0.8			
s1623	0.93	0.8			
s1624	0.79	0.8			
s1625	0.4	0.8			
s1626	0.62	0.8			
s1627	0.5	0.8			
s1628	0.36	0.8			
s1629	0.14	0.8			
s1630	0.12	0.8			
s1631	0.19	0.8			
s1632	0.64	0.8			
s1633	1.22	0.8			
s1634	1.28	0.8			
s1635	1.37	0.8			
s1636	0.4	0.8			
s1637	0.6	0.8			
s1638	1.18	0.8			
s1639	1.34	0.8			
s1641	0.09	0.8			
s1642	0.05	0.8			
s1643	0.14	0.8			
s1644	0.11	0.8			
s1645	0.21	0.8			
s1647	0.1	0.8			
s1648	0.15	0.8			
s1649	0.27	0.8			
s1650	0.09	0.8			
s1653	0.06	0.8			
s1654	0.09	0.8			
s1655	0.08	0.8			
s1656	0.09	0.8			
s1658	0.32	0.8			
s1695	0.06	0.8			
s1696	0.08				
s1714	0.11	0.8			
s1715	0.12	0.8			
s1718	0.25	0.8			
s1720	0.19	0.8			
s1721	0.63	0.8			
s1722	1.16	0.8			
s1723	0.75	0.8			
s1724	0.43	0.8			
s1725	0.85	0.8			
s1726	0.58	0.8			
s1727	0.47	0.8			
s1728	0.35	0.8			
s1729	0.2	0.8			
s1731	0.08	0.8			
s1732	0.15	0.8			
s1733	0.15	0.8			
s1734	0.14	0.8			
s1735	0.14	0.8			
s1738	0.1	0.8			
s1739	0.1	0.8			
s1741	0.03	0.8			
s1742	0.06	0.8			
s1743	0.07	0.8			
s1744	0.17	0.8			
s1745	0.23	0.8			
s1748	0.1	0.8			
s1749	0.09	0.8			
s1753	0.55	0.8			
s1756	0.2	0.8			
s1763	0.77	0.8			
s1764	0.07	0.8			
s1765	0.08	0.8			
s1766	0.08	0.8			
s1767	0.07	0.8			
s1768	0.07	0.8			
s1770	0.26	0.8			
s1771	0.7	0.8			
s1772	0.19	0.8			
s1773	0.67	0.8			
s1781	0.21	0.8			
s1782	0.32	0.8			
s1783	0.5	0.8			
s1784	0.44	0.8			
s1785	0.46	0.8			
s1786	0.32	0.8			
s1787	0.18	0.8			
s1788	0.18	0.8			
s1789	0.11	0.8			
s1790	0.16	0.8			
s1791	0.21	0.8			
s1792	0.16	0.8			
s1793	0.15	0.8			
s1794	0.27	0.8			
Variable	Value1	Value2			
----------	--------	--------			
s1795	0.34	0.8			
s1796	0.47	0.8			
s1798	0.47	0.8			
s1799	0.41	0.8			
s1800	0.48	0.8			
s1801	0.42	0.8			
s1802	0.17	0.8			
s1803	0.15	0.8			
s1804	0.18	0.8			
s1805	0.3	0.8			
s1806	0.29	0.8			
s1807	0.19	0.8			
s1808	0.42	0.8			
s1809	0.45	0.8			
s1810	0.33	0.8			
s1811	0.79	0.8			
s1812	0.44	0.8			
s1813	0.26	0.8			
s1814	0.22	0.8			
s1815	0.26	0.8			
s1816	0.27	0.8			
s1817	0.04	0.8			
s1818	0.06	0.8			
s1819	0.04	0.8			
s1820	0.07	0.8			
s1821	0.04	0.8			
s1822	0.06	0.8			
s1823	0.06	0.8			
s1824	0.09	0.8			
s2194	0.64	0.8			
s2195	0.96	0.8			
s2196	0.6	0.8			
s2197	1.86	0.8			
s2200	0.81	0.8			
s2201	0.5	0.8			
s2202	0.36	0.8			
s2203	0.71	0.8			
s2204	0.33	0.8			
s2205	0.3	0.8			
s2206	0.5	0.8			
s2209	0.55	0.8			
s2210	0.11	0.8			
s2211	0.82	0.8			
s2212	0.97	0.8			
s2217	0.06	0.8			
s2218	0.05	0.8			
s2219	14.6	0.8			
s2220	3.19	0.8			
s2221	1.62	0.8			
s2222	1.7	0.8			
s2223	2.58	0.8			
s2224	1.63	0.8			
s2225	1.2	0.8			
s2226	3.18	0.8			
s2227	0.3	0.8			
-------	------	------			
s2228	1.45	0.8			
s2229	0.09	0.8			
s2230	0.27	0.8			
s2231	0.19	0.8			
s2232	0.31	0.8			
s2233	0.11	0.8			
s2234	0.72	0.8			
s2235	0.12	0.8			
s2236	1.97	0.8			
s2237	9.0	0.8			
s2238	0.22	0.8			
s2239	1.79	0.8			
s2240	4.26	0.8			
s2241	2.38	0.8			
s2242	0.19	0.8			
s2243	0.83	0.8			
s2244	4.79	0.8			
s2245	3.93	0.8			
s2246	3.79	0.8			
s2247	0.25	0.8			
s2248	0.22	0.8			
s2249	0.13	0.8			
s2250	0.05	0.8			
s2250u	0.07	0.8			
s2251	0.1	0.8			
s2252	0.08	0.8			
s2253	0.05	0.8			
s2254	0.11	0.8			
s2255	0.18	0.8			
s2256	0.09	0.8			
s2257	0.04	0.8			
s2258	0.04	0.8			
s2261	0.06	0.8			
s2262	0.15	0.8			
s2264	0.22	0.8			
s2265	0.06	0.8			
s2266	0.08	0.8			
s2267	0.26	0.8			
s2268	0.07	0.8			
s2270	0.13	0.8			
s2271	0.27	0.8			
s2272	0.4	0.8			
s2273u	0.47	0.8			
s2277	0.47	0.8			
s2282	0.9	0.8			
s2284	0.07	0.8			
s2286	1.88	0.8			
s2291	0.11	0.8			
s2292	0.06	0.8			
s2293	0.2	0.8			
s2294	0.06	0.8			
s2300	1.7	0.8			
s2301	0.97	0.8			
s2302	0.13	0.8			
s2303	1.25	0.8			
s2304	0.03	0.8			
s2305	0.03	0.8			
s2306	0.24	0.8			
s2307	0.06	0.8			
s2308	0.09	0.8			
s2309	0.06	0.8			
s2310	0.08	0.8			
s2311	0.12	0.8			
s2312	0.22	0.8			
s2313	0.13	0.8			
s2314	0.14	0.8			
s2315	0.15	0.8			
s2316	0.09	0.8			
s2317	0.17	0.8			
s2318	0.08	0.8			
s2319	0.16	0.8			
s2320	0.1	0.8			
s2321	0.14	0.8			
s2322	0.13	0.8			
s2323	0.13	0.8			
s2324	0.11	0.8			
s2325	0.1	0.8			
s2326	0.07	0.8			
s2327	0.06	0.8			
s2328	0.1	0.8			
s2329	0.09	0.8			
s2330	0.09	0.8			
s2331	0.06	0.8			
s2332	0.11	0.8			
s2333	0.11	0.8			
s2334	0.45	0.8			
s2335	0.18	0.8			
s2336	0.9	0.8			
s2337	0.53	0.8			
s2338	0.58	0.8			
s2340	0.23	0.8			
s2341	0.03	0.8			
s2342	0.11	0.8			
s2343	0.05	0.8			
s2344	0.07	0.8			
s2345	0.15	0.8			
s2346	0.13	0.8			
s2347	0.2	0.8			
s2348	0.15	0.8			
s2349	0.08	0.8			
s2350	0.09	0.8			
s2351	0.1	0.8			
s2352	0.09	0.8			
s2353	0.07	0.8			
s2354	0.06	0.8			
s2356	0.12	0.8			
s2357	0.14	0.8			
s2358	0.07	0.8			
-------	------	-----			
s2359	0.09	0.8			
s2360	0.06	0.8			
s2361	0.13	0.8			
s2362	0.1	0.8			
s2363	0.11	0.8			
s2364	0.08	0.8			
s2365	0.1	0.8			
s2366	0.06	0.8			
s2367	0.11	0.8			
s2368	0.12	0.8			
s2369	0.09	0.8			
s2370	0.06	0.8			
s2371	0.11	0.8			
s2372	0.06	0.8			
s2373	0.04	0.8			
s2374	0.05	0.8			
s2375	0.04	0.8			
s2376	0.04	0.8			
s2377	0.06	0.8			
s2378	0.1	0.8			
s2379	0.05	0.8			
s2380	0.06	0.8			
s2381	0.08	0.8			
s2382	0.09	0.8			
s2383	0.08	0.8			
s2384	0.11	0.8			
s2385	0.09	0.8			
s2386	0.05	0.8			
s2387	0.06	0.8			
s2388	0.05	0.8			
s2389	0.05	0.8			
s2390	0.03	0.8			
s2391	0.05	0.8			
s2392	0.05	0.8			
s2393	0.05	0.8			
s2394	0.03	0.8			
s2395	0.05	0.8			
s2396	0.05	0.8			
s2397	0.06	0.8			
s2400	0.19	0.8			
s2401	0.13	0.8			
s2402	0.14	0.8			
s2403	0.11	0.8			
s2404	0.1	0.8			
s2405	0.09	0.8			
s2406	0.17	0.8			
s2407	0.15	0.8			
s2408	0.08	0.8			
s2409	0.13	0.8			
s2410	0.07	0.8			
s2411	0.07	0.8			
-------	-------	-------			
s2449	0.08	0.8			
s2450	0.34	0.8			
s2451	0.43	0.8			
s2452	0.12	0.8			
s2453	0.08	0.8			
s2454	0.31	0.8			
s2455	0.12	0.8			
s2456	0.09	0.8			
s2457	0.11	0.8			
s2458	0.09	0.8			
s2459	0.06	0.8			
s2460	0.13	0.8			
s2461	0.07	0.8			
s2462	0.66	0.8			
s2463	0.09	0.8			
s2464	0.09	0.8			
s2465	0.08	0.8			
s2466	0.09	0.8			
s2467	0.05	0.8			
s2468	0.12	0.8			
s2469	0.18	0.8			
s2470	0.09	0.8			
s2471	0.11	0.8			
s2472	0.07	0.8			
s2473	0.03	0.8			
s2474	0.08	0.8			
s2475	0.07	0.8			
s2476	0.19	0.8			
s2477	0.1	0.8			
s2478	0.06	0.8			
sap-ave	0.42	0.007			
sapl2	0.58	0.007			
sapl5	0.46	0.007			
sap20	0.59	0.007			
sap39	0.46	0.007			
sap40	0.36	0.007			
sap53	0.38	0.007			
sl2	0.37	0.001			
sl3	0.33	0.001			
sl4	0.60	0.001			
sohm-s2	0.50	0.002			
sp8-4					
stat2	2.39				
t78-30	10.5	672.5	0.02		
t78-33	13.9	61.5	0.02		
t78-34	19.9	616	0.02		
t78-42	11.9	8	0.02		
t78-45	11.6	45	0.02		
t78-46	20	475	0.02		
t78-49	26.9	256	0.02		
t80-10	15.3	264.5	0.02		
t80-4	8.6	102.5	0.02		
t80-6	32.9	132.5	0.02		
t80-7	13.5	72.5	0.02		
t80-8	13	134	0.02		
-----	----	----			
tr148-5tw	0.59	0.0001			
tr149-6tw	0.67	0.0001			
tr174-4tw	0.3	0.0001			
tr21-az02	0.38	0.0001			
tr41-2g	0.31	0.0001			
tr41-4a	1.07	0.0001			
tr41-7	0.56	0.0001			
tr85-9	0.3	0.0001			
vl5-168	18	100	1.6		
vl6-20	18	50	1.6		
vl6-25	18	35	1.6		
vl7-165	18	40	1.6		
vl7-178	12.1	148	0.5		
vl7-178	10.6	226	0.5		
vl7-39	18	100	1.6		
vl8-357	18	50	1.6		
vl9-19	18	80	1.6		
vl9-21	18	60	1.6		
vl9-291	18	80	1.6		
vl9-309	18	31	1.6		
vl20-241	18	30	1.6		
vl20-242	18	29	1.6		
vl21-2	4.3	43	0.5		
vl22-186	18	30	1.6		
vl22-188	18	20	1.6		
vl22-197	18	72	1.6		
vl23-110	14	18	0.06		
vl23-143	11.8	94	0.5		
vl23-23	24	140	1.08		
vl23-58	18	40	0.6		
vl23-60	18	70	1.6		
vl23-63	18	20	1.6		
vl23-74	18	60	1.6		
vl23-82	18	106	1.6		
vl23-83	18	99	1.6		
vl23-84	18	90	1.6		
vl23-98	18	80	1.6		
vl24-1	8.1	60	1.5		
vl24-28	18	60	1.6		
vl25-44	18	30	1.6		
vl25-59	18	40	1.6		
vl25-60	15.6	42.5	0.06		
vl25-75	14.7	102	0.06		
vl26-107	18	100	1.6		
vl26-124	18	60	1.6		
vl26-176	3.8	44	0.5		
vl26-176	24.8	560	0.5		
vl26-176	8.2	163	0.5		
vl26-177	9.6	95	0.5		
vl26-41	18	43	1.6		
vl26-46	18	40	1.6		
vl27-17	18	35	1.6		
vl27-178	18	55	1.6		
vl27-19	18	39	1.6		
Code	Value 1	Value 2	Value 3	Value 4	Value 5
--------	---------	---------	---------	---------	---------
v27-20	18	85	1.6		
v27-248	18	82	1.6		
v27-263	18	20	0.6		
v27-46	18	30	1.6		
v27-47	18	20	1.6		
v27-84	18	40	1.6		
v27-86	18	20	0.6		
v28-119	13	25	1.4		
v28-122	18	100	1.6		
v28-127	18	60	1.6		
v28-128	18	40	1.6		
v28-129	18	80	1.6		
v28-14	18	140	1.6		
v28-25	18	20	1.6		
v28-56	18	40	0.6		
v29-172	18	50	1.6		
v29-173k	18	25	0.6		
v29-174	18	40	1.6		
v29-175	18	40	1.6		
v30-36	16.5	38	0.06		
v30-41k	18.7	45	0.06		
v30-49	19	88	1.08		
v30-51k	18.6	55	0.06		
v30-97	16	100	1.08		
v32-8	14	60	0.06		
v4-1	6.7	56	0.5		
v4-32	18	30	1.6		
v4-8	18	60	1.6		
x164012	1				0.01
x164021	0.46	8.2	42.64	0.01	
x164032	0.45	8.2	30.34	0.01	
x164041	0.42	8.2	26.24	0.01	
x164051	0.43	8.2	27.88	0.01	
x164061	0.64	8.2	28.7	0.01	
x164071	0.49	8.2	22.14	0.01	
x164081	0.47	8.2	24.6	0.01	
x164101	0.49	8.2	29.52	0.01	
x164111	0.42	8.2	17.22	0.01	
x164121	0.57	8.2	24.6	0.01	
x164131	0.63	8.2	30.34	0.01	
x164151	0.61	8.2	22.14	0.01	
x164161	0.59	8.2	26.24	0.01	
x164171	0.65	8.2	30.34	0.01	
x164182	0.07			0.01	
x164191	0.62			0.01	
x164201	1.36	8.2	41	0.01	
x164212	0.59			0.01	
x164222	0.6	8.2	10.66	0.01	
x164241	0.63	8.2	18.86	0.01	
x164251	0.65	8.2	22.14	0.01	
x164263	0.72	8.2	32.8	0.01	
x164272	0.72	8.2	29.438	0.01	
XL64291	0.7	8.2	31.16	0.01	
XL64301	0.64	8.2	17.22	0.01	
XL64311	0.48	8.2	15.58	0.01	
XL64321	0.52	8.2	44.28	0.01	
XL64331	0.53			0.01	
XL64351	0.52			0.01	
XL64373	1.48			0.01	
ID	ORG C	AGE (Ka)	DEPTH (cm)	SOURCE	
----------	-------	----------	------------	--------	
ai160-13	15	10	0.7		
ai8-074	18	50	0.6		
ai8-076	18	40	1.6		
chn-11588	20	10	0.7		
chn115-70	19	30	0.7		
chn115-89	18	30	0.7		
chn115-90	18	6	0.7		
chn115-91	18	10	0.7		
chn115-92	18	25	0.7		
rc11-118	18	40	0.3		
rc11-119	18	40	0.3		
rc11-120	18	80	0.3		
rc11-78	18	180	1.3		
rc11-80	18	80	8.3		
rc11-83	18	340	8.3		
rc12-234	0.35	1.0001			
rc12-267	18	60	1.3		
rc12-289	18	60	1.3		
rc13-243	18	40	1.3		
rc13-251	18	20	1.3		
rc13-253	18	40	1.3		
rc13-254	18	60	1.3		
rc13-255	18	140	0.3		
rc13-256	18	400	0.3		
rc13-257	18	20	0.3		
rc13-261	18	80	1.3		
rc13-273	18	60	1.3		
rc13-275	18	60	1.3		
rc13-276	0.35	18	40	1.3001	
rc15-93	18	100	1.3		
rc15-94	18	110	0.3		
rc15-98	18	100	1.3		
rc24-16	14	60	0.06		
rc24-7	17.5	115	0.06		
t78-33	1.11	11	62	0.02	
t78-38	0.63	11	7	0.02	
t78-42	0.54	11	15	0.02	
t78-45	1.5	14	50	0.02	
t78-46	2.07	18.6	469	0.02	
t80-11	3.17	500	1796	0.02	
v15-137	0.39	1.0001			
v18-35	18	120	0.3		
v22-108	18	100	8.3		
v22-177	17.6	63	0.06		
v22-182	14.9	55	0.06		
v22-38	14	32.5	0.06		
v22-86	18	60	1.3		
v25-56	18	60	1.6		
v26-104	18	150	1.6		
v27-232	1.76	1.0001			
------	------	------	------		
v27-239	0.51	14	1.0001		
v29-144		70	0.06		
v30-40	12.4	44.5	0.06		
NORTH PACIFIC OCEAN

CORE ID	ORG C %	AGE (Ka)	DEPTH (cm)	SOURCE	
660410	1.7341	18	462	0.09	
66095	1.6047				
66095	1.9196				
68088	2.0844				
69102	1.9215				
69103	1.7863				
69104	1.528				
70041	1.4653				
70114	0.2743				
ahlf0614	0.2743			7	
ahlf0614	5.2879	13	125	5	
ahlf0626	6.6218	18	300	0.09	
ahlf11343		18	279.5	0.09	
aries40pg	0.3198				
aries40pg	0.4156				
aries45pg	1.128				
aries45pg	0.665				
aries48g	0.3242				
aries48g	0.7661				
bnfc43	1.8227	18	19	5.09	
bnfc43pgz		18	17	7.09	
cuspl1g	0.3967	18	30	0.09	
cuspl1g	0.0422				
cuspl7g	0.1857				
cuspl7g	0.3553				
cuspl1g	0.1867				
cusplg	0.3242				
cuspl22g	0.1565				
cuspl22g	0.1888				
cuspl9g	0.526				
cuspl9g	0.1142				
dwbg2	1.3768	0			
fanbg22	0.5793	0			
g76-510	0.597	12.3	34.5		
g76-514	0.396	13.5	41		
g76-527	1.157				
g76-528	1.195				
g76-55	0.763	10.5	25		
hilo12g	0.264				
hilo12g	0.1566				
hilo2g	0.2887	0			
hilo3g	0.3176	0			
hilo5g	0.2284	0			
jnyi110g	0.3725				
jnyi110g	0.3555				
jnyi110g	0.0427				
jnyi112g	0.0445				
jnyi112g	0.3436				
jnyi117	0.6744				
	18	32	5.09		
---------	-----	-----	------		
jny1i1g	0.1073				
jny1i1g	0.2865				
jny1i20	5.7228				
jny1i3	1.1069				
jny1i4g	0.353				
jny1i4g	0.107				
jny1i5g	0.4676				
jny1i5g	0.2292				
jny1i6g	0.0721				
jny1i6g	0.3992				
jny1i7	0.2103				
jny1i8g	0.411				
jny1i8g	0.6902				
jny1v12	0.0635				
jny1v41	0.3795				
l-35	1.0445				
l-39	0.6985				
l-43	0.6151				
l-45	5.3559				
l-46	1.1496				
lapdlg	3.5589		5		
lfgs47g	0.6355		0		
lfgs49g	0.8641		0		
lirlffcl0	1.3620	0			
lirlffcl1a	1.0735	0			
lsdh103g	0.3488		0		
lsdh104g	0.5612		0		
m77-7b	1.229				
m77-9b	0.639				
men20g	0.0514				
men20g	0.261				
men25g	0.3112				
men26g	0.0525				
mfu1gc4	0.2620		0		
mfu2002	0.3067		0		
mfu2gcl	0.2444		0		
mfu4fc4	0.4448		0		
mfu6pc121a	0.1780	0			
msn158g	0.3748		0		
msn3g	0.3184		0		
msn4g	0.4568		0		
mukb6	0.702				
mukb7g	0.2956				
mukb7g	0.0366				
mukb8g	0.0916				
mukb8g	0.2778				
mukh7	0.1784				
mukh7	0.3786				
mukh8g	0.1293				
mukh8g	0.3731				
mukh9g	0.0519				
pap2g	0.5790		0		
rc10-102	0.5038		0		
rc10-153	0.2263				0
rc10-158	0.3880	690	103.5	0.9	
rc10-159	0.4042	690	200.1	0.9	
rc10-160	0.6836	690	496.8	0.9	
rc10-161	18	8	7.09		
rc10-161	1.8816	18	8	0.09	
rc10-163					
rc10-164	1.1091	690	1518	0.9	
rc10-165	1.1091	18	44	7.09	
rc10-167	690	662.4	0.9		
rc10-170	690	814.2	0.9		
rc10-171	0.2627	690	552	0.9	
rc10-172	690	207	0.9		
rc10-175	690	848.7	0.9		
rc10-176	18	31	7.09		
rc10-179	1.6228	690	669.3	0.9	
rc10-181	0.6003	690	765.9	0.9	
rc10-182	0.2914	690	814.2	0.9	
rc10-183	690	1104	0.9		
rc10-187	690	1152.3	0.9		
rc10-188	0.3666	690	393.3	0.9	
rc10-189	690	1145.4	0.9		
rc10-190	0.5132	690	772.8	0.9	
rc10-191	0.4145				
rc10-192	0.1261	18	10.5	0.09	
rc10-193	0.5011				
rc10-194	0.7199				
rc10-195	0.4689				
rc10-196	0.2647				
rc10-197	2.8041				
rc10-198	18	67	0.09		
rc10-199	0.5965				
rc10-200	0.3611				
rc10-201	2.3060				
rc11-166	690	1097.1	0.9		
rc11-167	690	972.9	0.9		
rc11-170	18	20	7.09		
rc11-171	0.6100	690	434.7	0.9	
rc11-172	18	40	7.09		
rc11-173	0.4978				
rc11-174	18	40.5	7.09		
rc11-175	0.8400				
rc11-176	0.5478				
rc11-177	1.0123				
rc11-178	0.4217				
rc11-179	0.4815	690	179.4	0.9	
rc11-180	690	172.5	0.9		
rc11-181	0.2817	690	207	0.9	
rc11-182	690	207	0.9		
rc11-183	0.3764				
rc11-184	0.4715	690	144.9	0.9	
rc11-185	0.5000				
rcl1-208	1.2926	18	33	0.09	
rcl1-209	1.4040	18	41	7.09	
rcl1-210	0.7266	0			
rcl1-134	0.6587	0			
rcl1-176	0.5420	18	9.5	0.09	
rcl1-179	18	60.5	0.09		
rcl1-183	0.3261	0			
rcl1-30	18	344	0.008		
rcl1-32	84	300	0.008		
rcl1-361	18	20.5	0.09		
rcl1-401	18	260	5.09		
rcl1-402	0.3737	0			
rcl1-406	0.3900	0			
rcl1-412	18	37.5	2.09		
rcl1-413	0.6420	18	32	2.09	
rcl1-415	0.3694	0			
rcl1-416	18	25	2.09		
rcl1-419	18	60	2.09		
rcl1-431	0.4645	0			
rcl1-433	18	10	2.09		
rcl1-434	0.2499	0			
rcl1-57	0.5500	0			
rcl1-58	0.5900	0			
rcl1-59	0.3100	0			
rcl1-65	2.0100	0			
rcl1-7	1.5800	0			
rcl1-83	1.6700	0			
rcl1-85	2.9500	0			
rcl2-17	18	30.5	0.09		
rcl2-63	18	55.5	0.09		
rcl2-105	18	110	7.09		
rcl2-106	18	80	0.09		
rcl2-99	18	98	7.09		
ris125g	0.3665	0			
s68ff1	0.0000	0			
s68pc25	0.0000	0			
s68pc291a	2.5582	0			
s68pc301a	2.0087	0			
s68pc311a	1.0950	0			
s68pc33	0.2596	0			
s68pc351a	0.7215	0			
tr63-31	8	260	0		
tr113g	0.6178	0			
tr19g	0.5036	0			
v15-30	230	612	0.009		
v17-42	5.03	18	84.5	2.09	
v17-43	2.44	18	73.5	2.09	
v18-318	18	15.5	7.09		
v18-318	0.861	18	15	2.09	
v18-319	1.791	0			
v18-324	3.2126	0			
v18-328	2.4601	0			
v18-333	1.6249	0			
Entry	Value	Unit	Value	Unit	
----------	-------	------	-------	------	
v18-337	3.7269	18	220.5	2.09	
v18-338	1.3995	7.5	746.5		
v18-349	0.9836	84	36	0.008	
v19-101	1.7785				
v19-102	1.25				
v19-104	0.69				
v19-105	0.45				
v19-108	0.52				
v19-109	1.24				
v19-112	0.58				
v19-115	0.45				
v19-25	4.05	18	80.5	0.09	
v20-100	1.9	690	241.5	0.9	
v20-101	1.38	690	179.4	0.9	
v20-102	0.47	690	172.5	0.9	
v20-103	1.49	18	23.5	0.09	
v20-104	0.42	690	607.2	0.9	
v20-105	0.58	18	5	0.09	
v20-106	0.38				
v20-107	0	18	12	0.09	
v20-108	0.3	690	793.5	0.9	
v20-109	0.61	690	269.1	0.9	
v20-118	1.89				
v20-119	0.2473	18	21	7.09	
v20-119	1.22	690	634.8	0.9	
v20-120	1.9	54	7.09		
v20-120	1.9	54	0.09		
v20-121	1.9	59	2.09		
v20-122	0.53	18	79	0.09	
v20-123	1.92	18	121	0.09	
v20-124	0.64	18	111	0.09	
v20-125	1.89				
v20-126	0.71	18	139	0.09	
v20-127	0.71	18	139	0.09	
v20-128	0.52				
v20-129	0.42				
v20-130	1.06				
v20-131	0.47				
v20-132	1.1				
v20-133	0.57				
v20-134	1.93				
v20-135	0.31				
v20-136	0.98				
v20-137	0.39				
v20-138	0.34	690	89.7	0.9	
v20-139	0.35	690	62.1	0.9	
v20-140	0.39	690	131.1	0.9	
v20-141	0.45				
v20-142	0.4				
v20-143	1.84	690	131.1	0.9	
v20-144	2.69	690	4140	0.9	
v20-145	2.69	690	4133.1	0.9	
v20-78*	0.5	690	924.6	0.9	
v20-79*	1.56	690	752.1	0.9	
v20-80	0.31	690	248.4	0.9	
v20-81*	0.56	690	110.4	0.9	
v20-82*	690	103.5	0.9		
v20-84*	690	365.7	0.9		
v20-85	1.23	18	4.5	0.09	
v20-86*	0.43	690	986.7	0.9	
v20-87	1.87	690	186.3	0.9	
v20-88	0.57	690	110.4	0.9	
v20-89	0.38	690	6624	0.9	
v20-90	0.39	690	151.8	0.9	
v20-91	1.87	690	151.8	0.9	
v20-93	1.56	0			
v20-94	690	220.8	0.9		
v20-95	0.5393	690	220.8	0.9	
v20-96	0.54	690	124.2	0.9	
v20-97	0.44	690	220.8	0.9	
v20-98	0.4	690	220.8	0.9	
v21-101	0.36	0			
v21-109	0	0			
v21-115	0.27	0			
v21-119	0.1187	0			
v21-119	0.287	0			
v21-124	0.4	0			
v21-126	0.38	0			
v21-127	0.5	0			
v21-135	1.95	0			
v21-138	0.47	0			
v21-139	0.38	690	1104	0.9	
v21-140	0.31	690	255.3	0.9	
v21-141	690	296.7	0.9		
v21-142	690	358.8	0.9		
v21-144	690	731.4	0.9		
v21-145	1.9	690	476.1	0.9	
v21-146	1.0642	18	68.5	0.09	
v21-147*	2.2315	690	952.2	0.9	
v21-148	0.39	18	20	0.09	
v21-149*	690	1200.6	0.9		
v21-150*	0.56	690	883.2	0.9	
v21-151	1.93	18	10	0.09	
v21-156	1.94	0			
v21-170	0.7614	18	16	0.09	
v21-171	1.95	18	25	2.09	
v21-171*	0.1543	690	23.04	2.9	
v21-172	0.22	18	35	2.09	
v21-172	0.1782	690	565.8	0.9	
v21-173	0.63	18	17.5	0.09	
v21-174	1.95	18	25	2.09	
v21-174	0.3664	18	25	0.09	
v21-175	0.64	18	12	0.09	
v21-176	0.34	18	25	0.09	
v21-177	0.4	18	34.5	0.09	
v21-178	0.49	18	110.4	0.09	
v21-179	0.27	18	172.5	0.09	
v21-180	0.64	18	69	0.09	
v21-181	0.9	690	117.3	0.09	
v21-182	0.34	690	117.3	0.09	
v21-183	0.36	690	165.6	0.09	
v21-184	0.3714	690	165.6	0.09	
v21-189	0.49	690	117.3	0.09	
v21-203	1.18	18	60.5	2.09	
v21-207	2.48	18	105.5	2.09	
v21-212	1.2407	18	165.5	2.09	
v21-213	2.0282	18	165.5	2.09	
v21-214	2.1099	18	165.5	2.09	
v21-215	1.7134	18	165.5	2.09	
v21-216	1.6516	18	165.5	2.09	
v21-217	1.6914	18	165.5	2.09	
v21-218	1.4854	18	165.5	2.09	
v21-219	0.9391	18	165.5	2.09	
v21-220	1.6434	18	165.5	2.09	
v21-221	0.25	18	165.5	2.09	
v21-222	0.35	18	165.5	2.09	
v21-223	0.36	18	165.5	2.09	
v21-224	0.3714	18	165.5	2.09	
v21-225	0.3492	18	165.5	2.09	
v21-226	0.49	18	165.5	2.09	
v21-227	0.51	18	165.5	2.09	
v21-228	0.47	18	165.5	2.09	
v21-229	0.49	18	165.5	2.09	
v21-230	1.1	18	165.5	2.09	
v21-231	0.81	18	165.5	2.09	
v21-232	0.32	18	165.5	2.09	
v21-233	0.42	18	165.5	2.09	
v21-234	0.37	18	165.5	2.09	
v21-235	1.09	18	165.5	2.09	
v21-236	1.472	18	165.5	2.09	
v21-237	1.47	18	165.5	2.09	
v21-238	0.83	18	165.5	2.09	
v21-239	0.71	18	165.5	2.09	
Code	Value 1	Value 2	Value 3	Value 4	
---------	---------	---------	---------	---------	
v24-112	0.8			0	
v24-113	0.44			0	
v24-114	0.25			0	
v24-115	0.22			0	
v24-117	1.6			0	
v24-118	0.28			0	
v24-119	0.14			0	
v24-121	0.25			0	
v24-122	0.39			0	
v24-139	1.63			0	
v24-141	1.31			0	
v24-143	1.43			0	
v24-146	1.26			0	
v24-147	0.46			0	
v24-40	1.35			0	
v24-46	1.39			0	
v24-47	1.7			0	
v24-49	1.46			0	
v24-51	2.5			0	
v24-52b	0			0	
v24-53	2.3			0	
v24-54	0			0	
v24-56	1.53			0	
v24-60	2.74			0	
v24-64	0.43			0	
v24-65	2.26			0	
v24-69	0.49			0	
v24-71	1.97			0	
v24-73	0.36			0	
v24-74	0.43			0	
v24-76	0.14			0	
v24-78	0.43			0	
v24-85	0.22			0	
v24-87	0.3			0	
v24-89	0.24			0	
v24-95	0.38			0	
v24-96	0.73			0	
v24-97	690	103.5	0.9	0	
v24-98	0.32	690	62.1	0.9	
v28-181	2.23			0	
v28-185	2.68			0	
v28-201	18	20.5	0.09		
v28-203	18	40	0.09		
v28-238	1.25	18	36	7.09	
v28-239	0.8	18	27	7.09	
v28-243	18	20	7.09		
v28-249	18	20	2.09		
v28-255	0.4641	18	15	7.09	
v28-294	1.0399	18	15	2.09	
v28-304	18	72.5	0.09		
v32-126	18	40.5	0.09		
v32-139	18	5.5	0.09		
v36-1247p				8	
wah8ff2	18	32	0.09		
y660410	1.93	18	222	0.09	
y66095	1.84	18.2	372	0.09	
y69102	1.92	18	118	0.09	
y69106p	1.8719	18	33.5	0.09	
y69108p	3.3383	3.0526			
y6971p	2.51	18	175	4.09	
y6973p	0	18	132.5	4.09	
y7011lp	0.3156				
y7011lp	0.0118				
y7011lp	0.3161				
y7011lp	0.2709				
y7011lp	0.1734				
y7011lp	0.2916				
y7011lp	0.1002				
y7011lp	0.2701				
y7011lp	0.121				
y70120p	0.0926				
y70120p	0.1666				
y70120p	0.0169				
y70120p	0.0543				
y70120p	0.0304				
y70120p	0.0759				
y70120p	0.3924				
y70120p	0.4453				
y7013p	0.4234				
y7013p	0.0724				
y7014p	0.1799				
y7014p	0.4934				
y7015p	0.5893				
y7015p	0.1264				
y7016p	0.3619				
y7017p	0.2915				
y7017p	0.116				
y70230p	0.8059				
y70230p	0.0905				
y70230p	0.2002				
y70230p	0.6969				
y70230p	0.7344				
y70230p	0.1002				
y70230p	0.7051				
y70230p	0.1785				
y70451	0.2769				
y70451	95.34				
y70452p	0.2061				
y70452p	0.8935				
y70452p	0.2178				
y70452p	0.775				
y70452p	0.232				
y70452p	0.106				
y70460g	0.1869				
y70460g	0.6404				
y70460g	0.6404				
y70460g	0.1869				
y7110117	3.9487				
y7110117p	4.2541				
y7131	3.6327				
y7132	3.1681				
y7133	1.2771				
y7133p	1.2464				
y7134	3.2678				
y7135	4.1326				
y7136	2.9115				
y7137	2.8819				
y71990p	1.2788				
y71993p	1.3705				
y71994p	1.2444				
y7324mg4	1.1395	14.5	410	5	
y74218mg	1.2787	5			
y74222mg	1.5584	5			
ztsvii139g	0.31	0			
ztsvii140g	0.27	0			
SOUTH PACIFIC OCEAN

CORE ID	ORG C	AGE (Ka)	DEPTH (cm)	SOURCE	
amph18	1.8453				
amph19	1.1036				
amph21	0.9598				
amph23	0.9781				
amph25	1.0974				
amph27	0.2191				
amph30	0.6308				
amph31	0.3998				
amph32	1.6871				
amph33	1.1533				
e10-18		690	2500	0.03	
e10-2		690	800	0.03	
e10-3		690	5800	0.03	
e10-30		690	10000	0.03	
e11-1		18	41	0.09	
e11-11		690	4000	0.03	
e11-12		690	15400	0.03	
e11-13		690	14100	11.03	
e11-2		18	41	0.09	
e11-22		690	10200	0.03	
e11-24		690	10500	0.03	
e11-3		18	61	11.09	
e11-3		690	11300	11.03	
e11-4		690	7600	0.03	
e11-5		690	4500	0.03	
e11-6		690	5300	0.03	
e11-7		690	8900	11.03	
e11-8		690	14500	0.03	
e11-9		690	9600	11.03	
e12-11		690	300	0.03	
e12-14		690	3600	0.03	
e12-15		690	6900	0.03	
e12-17		690	12500	0.03	
e12-19		690	7200	0.03	
e12-20		690	7600	0.03	
e12-26		690	12000	0.03	
e13-14		690	2600	0.03	
e13-16		690	4700	0.03	
e13-17		690	4600	0.03	
e13-18		690	5600	0.03	
e13-2		690	3400	0.03	
e13-20		690	1600	0.03	
e13-21		690	1600	0.03	
e13-3		690	2400	0.03	
e13-5		690	2500	0.03	
e13-6		690	1500	11.03	
e13-7		690	1200	0.03	
e13-8		690	900	0.03	
e13-9		690	2900	0.03	
e14-14		690	5700	0.03	
el14-2	690	1800	0.03		
--------	-----	------	------		
el14-3	690	1400	0.03		
el14-4	690	6500	0.03		
el14-6	690	5200	0.03		
el14-7	690	4200	0.03		
el14-8	690	5300	0.03		
el15-1	690	2200	0.03		
el15-11	690	1100	0.03		
el15-16	690	1300	0.03		
el15-28	690	4800	0.03		
el15-7	690	4400	0.03		
el15-8	690	2600	0.03		
el16-4	690	4400	0.03		
el16-6	690	300	0.03		
el17-10	690	4100	0.03		
el17-11	690	7800	0.03		
el17-12	690	3800	0.03		
el17-14	690	5300	0.03		
el17-15	690	4000	0.03		
el17-16	690	500	0.03		
el17-18	690	12100	0.03		
el17-19	690	5100	0.03		
el17-23	690	13500	0.03		
el17-27	690	1100	0.03		
el17-28	690	1400	0.03		
el17-29	690	1800	0.03		
el17-8	690	7800	0.03		
el18-4	690	3700	0.03		
el19-5	690	600	0.03		
el19-6	690	5300	0.03		
el19-7	690	1400	11.03		
e20-18	18	31	11.09		
e20-2	690	5300	0.03		
e20-3	690	5500	0.03		
e21-15	18	41	11.09		
e21-17	690	1100	0.03		
e21-20	690	11400	0.03		
e21-21	690	2900	11.03		
e21-22	690	9600	11.03		
e25-10	18	41	11.09		
e27-3	690	489.9	0.04		
e27-4	690	669.3	0.04		
e33-16	690	476.1	0.04		
e33-3	690	793.5	0.04		
e4-10	690	6100	0.03		
e45-62	18	38.5	0.09		
e45-74	18	40.5	0.09		
e45-77	18	31.5	0.09		
e45-79	18	38.5	0.09		
e5-10	690	2000	0.03		
e5-11	690	3300	0.03		
e5-15	690	4600	0.03		
e5-16	690	7400	0.03		
e5-17	690	10400	0.03		
Key	Value	Length	Width	Height	Angle
-------------	-------	--------	-------	--------	-------
k710426106	1.0466				
k7104261110	1.0129				
k7104261112	0.9441				
k7104261114	1.7104				
k710426120	1.3501				
k710426123	1.6207				
k710426155	1.1213				
oc7312	0.9026				
oc7313	0.8728				
oc7324	1.5494				
oc7325	1.7418				
oc7336	0.7408				
oc7337	0.9894				
oc7338	1.3955				
oc73433	0.9346				
opr476223		18	45		7.09
rc10-106	0.8398				
rc10-114	0.1664	18	18		2.09
rc10-115	0.0000				
rc10-139	0.8897				
rc10-139	0.1451	18	31.5		3.09
rc10-140	0.1451				
rc10-140	18	35	9.09		
rc10-97	0.0979				
rc11-211	0.8819				
rc11-213	18	15	7.09		
rc11-220	18	11	2.09		
rc11-230	1.0605				
rc11-230	1.0605	18	45		11.09
rc11-232	0.4020				
rc11-235	0.6371				
rc12-103	0.5046 18 41.5 9.09				
rc12-103	18 41.5 7.09				
rc12-107	0.8002 18 41.5 7.09				
rc12-109	0.9813 18 21.5 7.09				
rc12-121	18 31.5 3.09				
rc12-121	1.1882 7				
rc12-225	18 30 11.09				
rc12-86	2.1400				
rc13-113	18 5 7.09				
rc13-140	230 833 0.009				
rc13-38	18 35 7.09				
rc13-38	0.4684 7				
rc13-64	2.3300 0				
rc13-65	1.9700 0				
rc13-66	0.4700 0				
rc13-69	0.5500 0				
rc13-71	0.5000 0				
rc13-81	18 10 2.09				
rc13-82	5.0160				
rc13-83	0.2237				
rc13-84	0.4749				
rc13-85	0.1007				
rc13-87	0.4952				
rc13-88	0.5608				
rc13-89	0.4012				
rc13-90	0.1242				
rc13-91	1.2629				
rc13-92	15.4133				
rc13-93	0.9552				
rc13-94	0.3432				
rc13-95	0.9074				
rc15-41	0.4670				
rc15-42	1.9828				
rc15-43	55.2329 11				
rc15-45	0.7579				
rc15-47	0.2798				
rc15-49	0.3617				
rc15-50	1.5964				
rc15-51	1.3978 11				
rc15-52	18 12.5 11.09				
rc15-61	18 68.5 0.09				
rc8-71	1.5374 7				
rc8-71	18 50 3.09				
rc8-78	1.2365 18 45 3.09				
rc8-92	0.9552				
rc8-93	26.7 22.5 9				
rc8-94	0.6164 18 16.5 0.09				
rc8-95	0.835				
rc8-96	0.3062				
rc8-97	0.2715				
rc9-100	0.1916				
rc9-101	0.4922				
--------	-------				
rc9-102	0.3785				
rc9-103	0.3749				
rc9-110	0.8032				
rc9-110	18	30	7.09		
rc9-124	1.3196				
rc9-126	1.009				
rc9-129	18	30.5	3.09		
rc9-77	0.8093				
rc9-90	0.4009				
rc9-91	0				
rc9-92	0.6439				
s68pc111a	1.1977				
s68pc151a	0.9679				
s68pc201a	0.6015				
s68pc21a	0.4607				
s68pc221a	0.8924				
s68pc241a	0.5457				
s68pc4	0.3198				
s68pc6	0.8889				
s68pc8	1.278				
scan94pg	1.6648				
v15-32	230	608	0.009		
v15-33	230	1034	11.009		
v15-42	230	615	0.009		
v15-53	18	36.5	11.09		
v16-122	1.56				
v17-44	18	75.5	2.09		
v18-222	1.84				
v18-222	9.9	17.5			
v18-260	28	24			
v18-311	2.42				
v18-312	1.3443				
v18-312	18	25	7.09		
v18-314	2.2568				
v18-68	6.7	17.5			
v19-27	2.04	18	110.5	0.09	
v19-28	2.49	18	180.5	2.09	
v19-29	18	180.5	0.09		
v19-30	12	87	11.08		
v19-30	2.76	18	170.5	11.09	
v19-40	0.8073				
v19-41	1.37	18	30.5	2.09	
v19-44	0.7624				
v19-45	0.674				
v19-46	0.1681				
v19-49	0.022				
v19-50	0.0337				
v19-51	0.7871				
---	---	---	---		
v19-52	0.7182	18	38	2.09	
v19-53	1.6232	18	20	2.09	
v19-54	1.7915				
v19-55	1.404	18	20	2.09	
v19-57	1.1297				
v19-58	0.932				
v19-59	0.4963				
v19-60	0.4914				
v19-61	0.5889				
v19-64	1.389	18	3.5	2.09	
v19-65	1.5754	18	15	2.09	
v19-66	1.2707	18	15	0.09	
v21-30	0.1451	18	250.5	2.09	
v21-33	1.6431	18	45.5	2.09	
v21-35	11.36				
v21-36	2.0635				
v21-37	2.0282				
v21-38	1.7134				
v21-39	1.6914				
v21-40	1.9391				
v21-41	0.9252				
v21-42	1.0532				
v21-43	0.7026	18	45	7.09	
v21-44	1.1179	18	40	0.09	
v21-45					
v21-46					
v24-103p	2.517				
v24-104mg	3.1578				
v24-150	3.1353				
v24-166	0.4749	18	20.5	2.09	
v28-203	4.3029	18	40.5	7.09	
v28-204	1.2547	18	38	7.09	
v28-205	0.7946				
y69103p	2.517				
y69104mg	3.1578				
y6980mgl	3.1353				
y7127p	0.9855				
y71312	2.0526				
y71316	1.6651				
y71324	3.4564				
y71325	2.7604				
y71331	0.8969				
y71612p	8.4076	18	24.5	11.09	
y7161462	1.23				
y7161464	1.3664				
y7161p	0.7013				
y71728g2	0.4494				
y71730g2	0.6298				
y71732p	1.3667				
y71733g4	1.9325				
y71735	1.9009				
y71736g1	1.075				
y71738g3	0.7735				
y71739mg1	0.3937				
Variable	Value				
----------	--------				
y71743mgl	1.0824				
y71744p	1.2719				
y71745p	18	9.5	0.09		
y71746mg3	0.7411				
y71747mg2	0.8867				
y71748p	0.7661				
y71749mg3	1.1855				
y71751ff	1.6346				
y71752p	1.6891				
y71753p	1.7452				
y71754mg3	0.5902				
y71870p	1.3788				
y71877p	2.4326				
y719101g	1.5607				
y719102g	1.5115				
y719103ff	1.2768				
y719104ff	67.2431				
y719106ff	1.2099				
y719109g	0.0271				
y719110p	1.7421				
y719111p	2.0415				
y719115ff	1.4419				
y71984p	2.7302				
y71985p	2.9494				
y71986p	2.0524				
y71987p	2.3404				
y71988p	2.227				
y71989p	1.7559				
y71996p	1.2534				
y71997g	1.1233				
y71998ff	1.103				
y7991p	1.8358				
z21081	0.8147	18	45	7.09	
Appendix IV: Sedimentation and Accumulation Rates
The following is a list of the table headings and their definitions:

SED RATE = Sedimentation rate (in cm/kyr).
SED ACCUM = Bulk sediment accumulation rate (in g/cm²/kyr x10).
ORG C % = Organic carbon concentration (in whole sediment sample).
ORG C ACCUM = Organic carbon accumulation rate (in mg/cm²/kyr divided by 10).
OPAL ACCUM = Opal accumulation rate (in mg/cm²/kyr divided by 10).
OPAL % = Opal concentration (in whole sediment sample).

Capital letters following the sedimentation rate data indicate type of stratigraphic datum used to determine sedimentation rate. O is oxygen isotope picks, B is biostratigraphic markers, M is magnetostratigraphic markers, L is lithostratigraphic markers, and C is carbon-14 dating. The core identification symbols ending with @ signify that the calcium concentration was estimated for the purposes of calculating the dry bulk density.
CORE ID	SED RATE	SED ACCUM	ORG C ACCUM	OPAL ACCUM	OPAL % DENSITY	DRY BULK	SOURCE
al5558@	5.444 O	3.037	44.50	14.65	0.5578	1.1	
arb-52@	1.829 C	0.784			0.4284	0.2	
arb-52@	2.846 C	1.219			0.4284	0.2	
arb-52@	3.143 C	1.346			0.4284	0.2	
arb-54@	2.843 C	1.218			0.4284	0.2	
arb-54@	3.488 C	1.495			0.4284	0.2	
arb-54@	6.164 C	2.641			0.4284	0.2	
e4527@	1.667 O	1.050	15.52	14.78	0.6303	1.1	
e4528@	1.722 B	1.085	17.00	15.66	0.6303	1.1	
e4811@	1.778 O	1.261	4.25	3.37	0.7090	1.1	
e4822@	4.556 O	3.422	15.84	4.63	0.7511	1.1	
e4823@	1.778 O	1.261	10.32	8.19	0.7090	1.1	
e4827@	3.444 O	2.442	21.30	8.72	0.7090	1.1	
e483@	1.222 B	0.867	5.79	6.68	0.7090	1.1	
md73025@	19.012 C	8.727	0.00	0.00	0.4590	0.08	
rc11-120@	4.667 O	2.941	20.95	7.12	0.6303	1	
rc11-121	4.444 B	3.369	1.82	18.79	5.58	0.7580	1.1001
rc11-145@	2.778 O	1.858	19.69	10.60	0.6688	9	
rc11-147@	2.778 O	1.858	20.51	11.04	0.6688	1.1	
rc12-339@	4.444 O	2.040	7.23	3.55	0.4590	1.1	
rc14-07@	3.333 O	2.363	5.67	2.40	0.7090	1.1	
rc14-09@	3.889 O	1.228			0.3159	0.1	
rc14-09@	5.556 O	4.173			0.7511	0.3	
rc14-11@	4.444 O	2.972	43.58	14.66	0.6688	1.3	
rc14-12	5.556 O	3.710	2.56	40.07	10.80	0.6679	1.3001
rc14-29@	1.111 O	0.510	17.32	33.96	0.4590	1.1	
rc14-35@	1.944 O	1.361	0.62	5.61	4.12	0.6999	1.1001
rc14-37@	2.222 O	1.020	5.76	5.65	0.4590	1	
rc17-113@	1.667 O	0.765			0.4590	0.1	
rc17-69@	2.778 O	1.029	2.28	2.22	0.3703	1.1	
rc17-73@	1.111 O	0.700	0.87	1.24	0.6303	1.1	
rc17-98@	2.944 O	2.088			0.7090	0.1	
rc8-39	2.222 O	1.388	0.93	21.46	15.46	0.6244	1.3001
rc8-39	5.000 O	3.122	2.10	74.30	23.80	0.6244	1.1001
rc8-43@	2.222 O	0.702		0.53	0.75	0.3159	1.3
rc9-150@	3.333 O	2.229	31.85	14.29	0.6688	1.1	
rc9-161@	9.444 O	4.335	18.53	4.28	0.4590	1.1	
rc9-162	2.778 O	1.616	0.72	4.87	3.02	0.5817	1.0001
vl4-101a@	3.889 O	2.451	15.72	6.41	0.6303	1.1	
vl4-102@	2.222 O	1.239	29.45	23.76	0.5578	1.1	
vl4-77@	1.611 B	0.740			0.4590	0.1	
vl4-81@	1.944 O	1.226	2.27	1.85	0.6303	1.1	
vl6-65@	2.222 O	1.020	18.82	18.45	0.4590	1.3	
vl7-42	2.889 O	1.455	17.76	12.20	0.5037	7	
vl7-43	2.222 O	0.854	20.16	23.59	0.3845	7	
vl7-44@	2.222 O	0.823	18.81	22.85	0.3703	7	
vl8-337	12.222 O	2.494			0.2040	7	
vl9-178@	2.222 O	1.486	6.55	4.41	0.6688	1	
vl9-185@	1.667 O	0.765	1.60	2.09	0.4590	1.1	
vl9-188@	2.778 O	1.751	3.15	1.80	0.6303	1	
Code	Value 1	Value 2	Value 3	Value 4	Value 5		
--------	---------	---------	---------	---------	---------		
vl9-201	3.889 B	2.036	8.18	4.02	0.5236		
vl9-202	1.667 0	0.818	2.89	3.53	0.4907		
vl9-204	1.111 0	0.351	9.53	27.16	0.3159		
vl9-25	3.056 O	1.429	28.62	20.02	0.4678		
vl9-27	1.667 0	0.705	15.22	21.59	0.4228		
vl9-28	7.222 O	3.914	65.87	16.83	0.5419		
vl9-28@	7.222 O	3.914	65.87	16.83	0.5419		
vl9-29	3.111 O	1.085	30.35	18.85	0.2899		
vl9-30	5.556 O	1.610	7.86	19.63	0.2402		
vl9-41@	1.667 O	0.400	1.53	4.61	0.4590		
vl9-64@	0.722 O	0.332	5.84	8.34	0.6303		
vl9-170@	1.111 O	0.700	5.87	8.38	0.6303		
vl9-175@	1.111 O	0.700	5.87	8.38	0.6303		
vl1-214@	3.500 O	0.841	18.38	21.87	0.2402		
vl1-30	13.889 O	8.253	34.44	4.17	0.5942		
vl1-33	2.500 O	1.227	0.90	0.42	0.2164		
vl2-203@	10.000 O	2.164	25.05	12.28	0.4590		
vl2-30	4.444 O	2.040	36.27	42.24	0.1932		
vl2-48@	1.667 O	0.930	0.36	0.39	0.5578		
vl2-84@	6.667 O	1.601	90.22	56.35	0.2402		
vl2-87@	1.111 O	0.240	12.86	53.50	0.2164		
vl2-98@	6.667 O	1.601	40.15	25.07	0.2402		
vl2-90@	3.333 O	2.363	6.92	2.93	0.7090		
v34-53@	1.053 C	0.483	0.4590	0.05			
v34-88@	5.442 C	2.670	0.4907	0.05			
y6971p	7.778 O	3.234	112.10	34.66	0.4158		
y6973p	7.222 O	4.391	112.10	34.66	0.4158		
y1612p	1.333 O	0.310	112.10	34.66	0.4158		
CORE ID	SED RATE	SED ACCUM	ORG C ACCUM	OPAL ACCUM	% DENSITY	DRY BULK SOURCE	
---------	----------	-----------	-------------	------------	-----------	----------------	
a15-63@	64.048 C	13.857		52.05	0.2164	0.02	
a15-64@	41.667 O	16.620		3.13	0.3989	1.6	
a15-65@	30.955 C	6.697		82.89	0.2164	0.02	
a16-42@	27.778 O	6.941		11.94	0.2499	1.6	
a16-45@	23.750 C	5.139		0.2164	0.3989	0.5	
a16-46@	22.581 C	9.007		0.2164	0.3989	0.5	
a16-461@	21.321 C	4.613		0.2164	0.3989	0.5	
a16-466@	19.878 C	7.929		0.3989	0.5		
a16-71@	17.333 C	4.331		0.2499	0.6		
a16-714@	17.288 C	3.740		0.2164	0.02		
a17-21@	12.231 C	2.646		0.2164	0.5		
a17-22@	11.919 C	2.579		0.2164	0.02		
a17-26@	11.579 C	4.619		0.3989	0.5		
a17-915@	10.368 C	5.783		0.5578	0.06		
a17-94@	10.308 C	2.230		0.2164	0.02		
a18-016@	10.000 C	3.989		0.3989	0.5		
a18-032@	9.896 C	3.947		0.3989	0.5		
a18-039@	9.517 C	2.059		0.2164	0.02		
a18-047@	9.500 O	3.789		0.3989	1.6		
a18-048@	8.358 C	3.095		0.3703	0.5		
a18-056@	8.182 C	3.264		0.3989	0.5		
a18-072@	7.966 C	2.516		0.3159	0.5		
a18-073@	7.778 O	1.868		52.84	0.2402	1.6	
a18-074@	7.667 O	5.128		5.84	0.6688	1.6	
a18-09@	7.500 O	2.369		0.3159	0.6		
dsdp502	7.444 O	4.152		0.5578	0.6		
dsdp502	7.407 O	2.955		9.15	0.3989	1.5	
en66-10@	7.000 O	2.792		8.93	0.3989	1.6	
k-110	6.939 C	1.667		0.2402	0.06		
k708-10@	6.491 C	2.589		0.3989	0.5		
k708-48	6.250 C	4.432		4.63	0.7090	1.08	
k708-68	6.056 O	2.075		6.12	0.3427	1.6	
k708-78	5.889 O	3.712		6.93	0.6303	1.6	
k708-88	5.889 O	3.712		0.6303	0.6		
m-12392@	5.833 C	1.843		12.26	0.3159	1.08	
rc1-02@	5.781 C	1.676		5.86	0.2899	1.5	
rc10-288@	5.556 O	1.470		26.88	0.2647	1.6	
rc10-50@	5.556 O	2.216		4.51	0.3989	1.6	
rc13-151@	5.556 O	3.501		8.27	0.6303	1.6	
rc13-152@	5.556 O	3.501		16.82	0.6303	1.6	
rc13-153@	5.556 O	1.904		7.09	0.3427	1.6	
rc13-154@	5.556 O	1.904		6.78	0.3427	1.6	
rc13-158@	5.556 O	3.296		14.19	0.5933	1.6	
rc13-159@	5.556 O	1.610		5.63	0.2899	1.6	
rc13-189@	5.556 O	1.610		3.61	0.2899	1.6	
rc24-01@	5.500 O	3.466		18.47	0.6303	1.6	
rc5-34@	5.400 C	2.479	1.29	0.4590	0.01		
rc5-36@	5.370 C	1.162		0.2164	0.02		
rc5-54@	5.200 C	1.643	0.76	0.3159	0.01		
rc5-57@	5.167 O	2.214		5.45	0.4284	1.6	
v26-176@	2.957 C	1.095	0.3703	0.06			
v26-177@	2.778 O	1.648	3.39 2.06	0.5933	1.6		
v26-41@	2.778 O	2.086	4.96 2.38	0.7511	1.6		
v26-46@	2.778 O	0.805	3.16 3.93	0.2899	1.6		
v27-178@	2.778 O	0.877	4.88 5.57	0.3159	1.6		
v27-17@	2.778 O	1.751	9.75 5.57	0.6303	1.6		
v27-19@	2.724 C	1.932	0.7090	1.6			
v27-20@	2.700 C	0.925	0.56	0.3427	0.01		
v27-248@	2.700 C	0.925	0.60	0.3427	0.01		
v27-263@	2.700 C	1.000	0.49	0.3703	0.01		
v27-84@	2.778	0.877	4.88 5.57	0.3159	1.6		
v27-86@	2.778	1.751	9.75 5.57	0.6303	1.6		
v28-119@	2.778	0.877	4.88 5.57	0.3159	1.6		
v28-122@	2.778	1.751	9.75 5.57	0.6303	1.6		
v28-127@	2.778	0.877	4.88 5.57	0.3159	1.6		
v28-25@	2.778	0.877	4.88 5.57	0.3159	1.6		
v28-56@	2.778	0.877	4.88 5.57	0.3159	1.6		
v28-56@	2.778	0.877	4.88 5.57	0.3159	1.6		
v29-172@	2.778	0.877	4.88 5.57	0.3159	1.6		
v29-173k@	2.778	0.877	4.88 5.57	0.3159	1.6		
v29-174@	2.778	0.877	4.88 5.57	0.3159	1.6		
v29-175@	2.778	0.877	4.88 5.57	0.3159	1.6		
v30-36@	2.778	0.877	4.88 5.57	0.3159	1.6		
v30-41k@	2.778	0.877	4.88 5.57	0.3159	1.6		
v30-49@	2.778	0.877	4.88 5.57	0.3159	1.6		
v30-51k@	2.778	0.877	4.88 5.57	0.3159	1.6		
v30-97@	2.778	0.877	4.88 5.57	0.3159	1.6		
x164021@	1.893 C	1.056	0.5578	0.06			
x164032@	1.775 M	0.798 0.33	0.4497 0.0002				
x164041@	1.722 O	1.221	0.65 0.53	0.7090	1.6		
x164051@	1.667 O	0.571	3.69 6.47	0.3427	1.6		
x164061@	1.667 O	0.526	4.26 8.09	0.3159	1.6		
x164071@	1.667 O	1.252	1.06 0.85	0.7511	1.6		
x164081@	1.667 O	0.873	2.34 2.68	0.5236	1.6		
x164101@	1.667 O	1.115	1.26 1.13	0.6688	1.6		
x164111@	1.667 O	0.930	0.5578	0.6			
x164121@	1.667 O	0.873	2.29 2.63	0.5236	1.6		
x164131@	1.667 O	1.115	0.96 0.86	0.6688	1.6		
x164151@	1.667 O	0.930	0.77 0.83	0.5578	0.6		
x164161@	1.667 O	1.078	1.84 1.71	0.6688	1.6		
x164171@	1.389 O	0.775	0.5578	0.6			
x164201@	1.300 C	0.481 0.29	0.3703 0.01				
x164222@	1.286 C	0.810	0.6303 0.06				
x164241@	1.110 O	0.510	0.4590	0.6			
Code	X	Y	Z1	Z2	Z3	Z4	Z5
----------	-----	-----	-----	-----	-----	-----	-----
x164251@	1.11	0	0.38	1.25	3.28	0.342	1.6
x164263@	1.11	0	0.35	2.07	5.91	0.315	1.6
x164282@	1.11	0	0.78	2.07	5.91	0.709	0.6
x164291@	1.11	0	0.38	1.10	2.88	0.342	1.6
x164301@	1.11	0	0.62	3.30	5.33	0.557	1.6
x164311@	0.67	C	0.15	0.80	2.75	0.230	0.02
x164321@	0.56	0	0.29	0.80	2.75	0.523	1.6
SOUTH ATLANTIC OCEAN

CORE ID	SED RATE	SED ACCUM	SED ACCUM	ORG C ACCUM	ORG C ACCUM %	OPAL	OPAL ACCUM	OPAL DRY BULK	DENSITY	SOURCE
al18-074@	2.778	1.549	1.549	16.60	13.39	0.5578	0.6			
al18-076@	2.222	1.239	1.239	13.39	0.5578	0.6				
al160-13@	0.567	0.372	0.372	0.5578	0.6					
chn-11588@	0.500	0.171	0.171	0.3703	0.7					
chn115-70@	1.579	0.585	0.585	0.3703	0.7					
chn115-89@	1.667	0.571	0.571	0.3703	0.7					
chn115-90@	0.333	0.114	0.114	0.3427	0.7					
chn115-91@	0.556	0.190	0.190	0.3427	0.7					
chn115-92@	1.389	0.476	0.476	0.3427	0.7					
rcl1-118@	2.222	1.401	1.401	0.6303	0.3					
rcl1-119@	2.222	1.452	1.452	0.3427	0.7					
rcl1-120@	4.444	0	0	0.6303	0.3					
rcl1-78@	10.000	2.306	2.306	0.2306	1.3					
rcl1-80	4.444	2.605	2.605	0.5861	8.3					
rcl1-83	18.889	5.573	5.573	0.2950	8.3					
rcl12-267@	3.333	0.966	0.966	0.2899	1.3					
rcl12-289@	3.333	0.882	0.882	0.2647	1.3					
rcl13-243@	2.222	0.588	0.588	0.2647	1.3					
rcl13-251@	1.111	0.381	0.381	0.3427	1.3					
rcl13-253@	2.222	1.239	1.239	0.5578	1.3					
rcl13-254@	3.333	1.053	1.053	0.3159	1.3					
rcl13-255@	7.778	1.868	1.868	0.2402	0.3					
rcl13-256@	22.222	5.124	5.124	0.2306	0.3					
rcl13-257@	1.111	0.240	0.240	0.2164	0.3					
rcl13-261@	4.444	0.962	0.962	0.2164	1.3					
rcl13-273@	3.333	0.721	0.721	0.2164	1.3					
rcl13-275@	3.333	0.882	0.882	0.2647	1.3					
rcl13-276	2.222	0.429	0.429	0.1932	1.3001					
rcl15-93@	5.556	3.716	3.716	0.6688	1					
rcl15-94@	6.111	4.087	4.087	0.6688	0.3					
rcl15-98@	5.556	1.610	1.610	0.2899	1.3					
rcl24-16@	4.286	3.219	3.219	0.7511	0.06					
rcl24-78@	6.571	3.665	3.665	0.5578	0.06					
t78-33	5.636	1.565	1.565	0.2777	0.02					
t78-38	0.636	0.187	0.187	0.2940	0.02					
t78-42	1.364	0.465	0.465	0.3410	0.02					
t78-45	3.571	0.832	0.832	0.2330	0.02					
t78-46	25.215	5.279	5.279	0.2093	0.02					
t80-11	3.592	0.709	0.709	0.1973	0.02					
v18-35@	6.667	1.569	1.569	0.2354	0.3					
v22-108	5.556	3.849	3.849	0.6927	1					
v22-177@	3.580	2.689	2.689	0.7511	1					
v22-182@	3.691	2.326	2.326	0.6303	1					
v22-38@	2.321	0.733	0.733	0.3159	1					
v22-86@	3.333	0.721	0.721	0.2164	1.3					
v25-56@	3.333	1.859	1.859	0.5578	1.6					
v26-104@	8.333	2.632	2.632	0.3159	1.6					
v29-144@	5.000	2.295	2.295	0.4590	0.06					
v30-40@	3.589	2.129	2.129	0.5933	0.06					
CORE ID	SED RATE	SED ACCUM	ORG C ACCUM	OPAL ACCUM	OPAL %	DRY BULK DENSITY	SOURCE			
---------	----------	-----------	-------------	------------	--------	------------------	--------			
660410	25.667 O	4.998	8.67	3.11	0.1947	0.09				
ahf10614@	9.615 C	3.561	18.83		0.3703	5				
ahf10626	16.667 C	6.286	41.62	19.53	0.3771	0.09				
ahf11343	15.528 O	4.589	8.67	3.11	0.2955	0.09				
bnf043	1.056 O	0.596	1.09	7.27	12.20	0.5646	5			
bnf043pgz	0.944 O	0.533	6.51	12.20	0.5646	7.09				
dsdp503	1.570 M	0.679	0.31		0.4326	0.0002				
dwbg2	1.667 O	1.313	0.26	0.20	0.7879	0.09				
g76-510@	2.805 C	0.674	0.40		0.2402					
g76-514@	3.037 C	0.657	0.26		0.2164					
g76-55@	2.381 C	0.515	0.39		0.2164					
lapd1g@	1.778 O	0.352			0.1978	5				
rcl0-158	0.150 M	0.030	0.01	0.06	2.00	0.1967	0.9			
rcl0-159	0.290 M	0.057	0.02	0.23	3.95	0.1965	0.9			
rcl0-160	0.720 M	0.142	0.10	0.37	2.62	0.1969	0.9			
rcl0-161	0.444 O	0.175	0.33	0.59	3.38	0.3945	0.09			
rcl0-162	0.444 O	0.175	0.59	3.38	0.3945	7.09				
rcl0-163@	0.490 M	0.096			0.1968	0.9				
rcl0-167	2.200 M	0.430	0.48		0.1955	0.9				
rcl0-167	2.444 B	0.478	0.53	1.87	3.91	0.1955	0.09			
rcl0-167	2.444 B	0.481	1.59	3.30	0.1967	7.09				
rcl0-168@	0.960 M	0.189			0.1968	0.9				
rcl0-169@	1.180 M	0.231			0.1955	0.9				
rcl0-170@	0.370 M	0.073			0.1968	0.9				
rcl0-171	0.800 M	0.156	0.04	0.80	5.10	0.1956	0.9			
rcl0-172@	0.300 M	0.059			0.1968	0.9				
rcl0-175@	1.230 M	0.421			0.3427	0.9				
rcl0-178@	1.722 B	0.373			0.2164	7.09				
rcl0-179	0.970 M	0.194	0.31	1.16	5.97	0.2000	0.9			
rcl0-181	1.110 M	0.216	0.13	1.56	7.22	0.1950	0.9			
rcl0-182	1.180 M	0.230	0.07	1.36	5.90	0.1947	0.9			
rcl0-201@	1.600 M	0.316			0.1978	0.9				
rcl0-202@	1.670 M	0.330			0.1978	0.9				
rcl0-203	0.570 M	0.111	0.04	0.51	4.59	0.1941	0.9			
rcl0-205@	1.660 M	0.328			0.1978	0.9				
rcl0-206	1.120 M	0.221	0.11	0.59	2.68	0.1973	0.9			
rcl0-216	0.583 B	0.115	0.01	0.54	4.73	0.1973	0.09			
rcl0-65@	3.722 O	2.489			0.6688	0.09				
rcl1-166@	1.590 M	0.311			0.1955	0.9				
rcl1-169@	1.410 M	0.276			0.1955	0.9				
rcl1-170@	1.111 B	0.217			0.1955	7.09				
rcl1-171	0.630 M	0.123	0.07	0.88	7.13	0.1950	0.9			
rcl1-172@	2.222 B	0.439			0.1978	7.09				
rcl1-179@	2.250 B	0.445			0.1978	7.09				
rcl1-193	0.260 M	0.051	0.02	0.05	1.04	0.1950	0.9			
rcl1-194@	0.250 M	0.049			0.1955	0.9				
rcl1-195	0.300 M	0.059	0.02	0.03	0.49	0.1956	0.9			
rcl1-196@	0.300 M	0.059			0.1955	0.9				
rcl1-198	0.210 M	0.041	0.02	0.07	1.77	0.1950	0.9			
rcl1-209	1.833 C	1.140	1.60	26.40	23.16	0.6216	0.09			
v20-81	0.360 M	0.071	0.02	0.12	1.75	0.1973	0.9			
-------	-------	-------	-------	-------	-------	--------	-----			
v20-82	0.160 M	0.031	0.02	0.14	4.50	0.1964	0.9			
v20-83	0.150 M	0.033				0.2211	0.9			
v20-84	0.530 M	0.104				0.1968	0.9			
v20-85	0.250 B	0.055	0.07	0.08	1.36	0.2215	0.09			
v20-86	1.430 M	0.281	0.12	0.56	1.98	0.1967	0.9			
v20-87	0.270 M	0.054	0.10	0.10	1.91	0.1983	0.9			
v20-88	0.160 M	0.031	0.02	0.09	2.92	0.1968	0.9			
v20-89	9.600 M	1.899				0.1978	0.9			
v20-90	3.800 M	0.754	0.29	0.71	0.94	0.1983	0.9			
v20-91	0.210 M	0.041				0.1968	0.9			
v20-92	0.220 M	0.043	0.02	0.12	2.68	0.1965	0.9			
v20-93	0.220 M	0.043				0.1968	0.9			
v20-94	0.220 M	0.043				0.1968	0.9			
v20-95	0.320 M	0.063	0.03			0.1970	0.9			
v20-96	0.180 M	0.036	0.02	0.12	3.29	0.1974	0.9			
v20-97	0.320 M	0.063	0.03	0.06	0.89	0.1970	0.9			
v20-98	0.320 M	0.063	0.03	0.06	0.93	0.1970	0.9			
v21-139	1.600 M	0.313	0.12	3.93	12.52	0.1959	0.9			
v21-140	0.370 M	0.072	0.02	0.49	6.81	0.1945	0.9			
v21-141	0.430 M	0.085				0.1968	0.9			
v21-142	0.520 M	0.102				0.1968	0.9			
v21-144	1.060 M	0.209				0.1968	0.9			
v21-145	0.690 M	0.136	0.26	0.30	2.21	0.1970	0.9			
v21-146	3.806 O	0.874	0.93	2.88	3.29	0.2296	0.9			
v21-146	1.380 M	0.350	0.78			0.2538	0.09			
v21-147	1.740 M	0.341	0.66	0.15	0.43	0.1959	0.9			
v21-148	1.111 B	0.219	0.09	1.71	7.78	0.1973	0			
v21-149	1.740 M	0.340				0.1955	0.9			
v21-150	1.280 M	0.252	0.14	3.20	12.67	0.1972	0.9			
v21-151	0.556 B	0.109	0.21	0.74	6.82	0.1954	0.09			
v21-171	0.889 B	0.173	0.34	3.18	18.36	0.1946	0.09			
v21-171	0.033 M	0.007	0.00	0.01	2.11	0.1954	2.9			
v21-172	1.944 B	0.381	0.08	0.59	1.54	0.1957	0.9			
v21-172	0.820 M	0.160	0.03			0.1957	2.09			
v21-173	0.972 B	0.190	0.12	0.45	2.37	0.1952	0.09			
v21-174	1.389 B	0.271	0.43	1.59	0.1950	2.09				
v21-174	1.389 B	0.271	0.53			0.1950	0.09			
v21-175	0.667 B	0.130	0.08	0.10	0.81	0.1950	0.09			
v21-175	0.690 M	0.136	0.05	0.50	3.69	0.1968	2.9			
v21-176	0.220 M	0.043				0.1968	0.9			
v21-176	0.220 M	0.043				0.1968	0.9			
v21-178	0.150 M	0.030	0.01	0.08	2.68	0.1980	0.9			
v21-179	0.050 M	0.010				0.1978	0.9			
v21-180	0.300 M	0.059	0.03	0.09	1.61	0.1954	0.9			
v21-180	0.160 M	0.031				0.1968	0.9			
v21-180	0.160 M	0.031				0.1968	0.9			
v21-189	0.170 M	0.033	0.05	0.33	9.89	0.1945	0.9			
v21-212	3.361 B	1.440				0.4284	2.09			
v21-214	5.861 B	2.187	34.28	15.67	0.3731	2.09				
v21-29	9.194 O	3.667				0.3989	2.09			
v21-59	0.917 O	0.180				0.1968	0.09			
v21-63	0.150 M	0.030	0.01			0.1983	0.9			
V21-64@	0.170 M	0.034	0.1978	0.9						
---------	---------	-------	--------	----						
V21-65	0.240 M	0.048	0.02	0.1985	0.9					
V21-67	0.170 M	0.034	0.01	0.1972	0.9					
V21-69	0.110 M	0.021	0.08	3.51	0.1950	0.9				
V21-70	0.090 M	0.018	0.05	2.60	0.1964	0.9				
V21-71	0.130 M	0.026	0.07	2.86	0.1963	0.9				
V21-73	0.760 M	0.150	0.15	1.03	0.1974	0.9				
V21-74	0.200 M	0.039	0.08	1.98	0.1967	0.9				
V21-75	0.650 M	0.128	0.06	2.00	0.1963	0.9				
V21-76	1.300 M	0.256	0.20	0.79	0.1972	0.9				
V21-87@	1.220 M	0.238	0.1955	0.9						
V21-89@	0.170 M	0.037	0.2164	0.9						
V24-109@	2.778 O	1.858	1.54	0.6688	0					
V24-97@	0.150 M	0.030	0.1968	0.9						
V24-98	0.090 M	0.018	0.01	0.1947	0.9					
V28-201@	1.139 B	0.274	0.2402	0.09						
V28-203@	2.222 O	0.534	0.2402	0.09						
V28-238@	2.000 O	1.369	1.71	0.6847	0					
V28-239	1.500 O	1.013	0.81	6.18	6.10	0.6751	7			
V28-243@	1.111 B	0.510	0.4590	2						
V28-249@	1.111 B	0.510	0.4590	2.09						
V28-255	0.833 O	0.361	0.17	1.55	4.29	0.4335	2			
V28-294	0.833 O	0.378	0.39	1.97	5.22	0.4531	7			
V28-304@	4.028 O	1.607	0.3989	0.09						
V32-126@	2.250 B	0.540	0.2402	0.09						
V32-193@	0.306 B	0.060	0.1968	0.09						
wah8ff2	1.778 O	1.313	0.7383	0.09						
y660410	12.333 C	2.441	4.71	14.98	6.14	0.1980	0.09			
y66095	20.440 O	4.071	7.49	0.1991	0.09					
y69102	6.556 O	1.285	2.47	4.78	3.72	0.1960	0.09			
y69106p	1.861 O	0.369	0.69	0.1981	0.09					
y6971p	9.722 C	4.043	10.15	140.13	34.66	0.4158	4.09			
y6973p	7.361 O	4.606	0.00	4.17	0.91	0.6257	4			
y7324mg4	28.276 C	5.482	6.25	26.93	4.91	0.1939	5			
CORE ID	SED RATE	SED ACCUM	ORG C ACCUM	OPAL ACCUM	OPAL % DENSITY	DRY BULK	SOURCE			
---------	----------	-----------	-------------	------------	---------------	----------	--------			
e10-18	0.362 M	0.078			0.2164 0.03					
e10-20	0.116 M	0.025			0.2164 0.03					
e10-30	1.449 M	0.314			0.2164 0.03					
e10-3l	0.841 M	0.182			0.2164 0.03					
e11-1l	0.580 M	0.125			0.2164 0.03					
e11-12	2.232 M	0.483			0.2164 0.03					
e11-13	2.043 M	0.442	7.98 18.05	0.2164 11						
e11-10	2.278 B	0.909			0.3989 0.09					
e11-22	1.478 M	0.320			0.2164 0.03					
e11-24	1.522 M	0.329			0.2164 0.03					
e11-28	7.833 B	2.684			0.3427 0.09					
e11-30	1.638 M	0.561	18.50 32.97	0.3427 11.03						
e11-36	3.389 B	1.161	38.29 32.97	0.3427 11.09						
e11-44	1.101 M	0.506			0.4590 0.03					
e11-56	0.652 M	0.141			0.2164 0.03					
e11-61	0.768 M	0.166			0.2164 0.03					
e11-76	1.290 M	0.279	5.62 20.14	0.2164 11.03						
e11-86	2.101 M	0.455			0.2164 0.03					
e11-96	1.391 M	0.301	6.63 22.04	0.2164 11.03						
e12-11	0.043 M	0.009			0.2164 0.03					
e12-14	0.522 M	0.113			0.2164 0.03					
e12-15	1.000 M	0.216			0.2164 0.03					
e12-17	1.812 M	0.392			0.2164 0.03					
e12-19	1.043 M	0.226			0.2164 0.03					
e12-20	1.101 M	0.238			0.2164 0.03					
e12-26	1.739 M	0.376			0.2164 0.03					
e13-11	0.377 M	0.082			0.2164 0.03					
e13-16	0.681 M	0.147			0.2164 0.03					
e13-17	0.667 M	0.144			0.2164 0.03					
e13-18	0.812 M	0.176			0.2164 0.03					
e13-20	0.232 M	0.050			0.2164 0.03					
e13-21	0.232 M	0.050			0.2164 0.03					
e13-28	0.493 M	0.107			0.2164 0.03					
e13-35	0.348 M	0.075			0.2164 0.03					
e13-55	0.362 M	0.084			0.2306 0.03					
e13-66	0.217 M	0.047	0.80 17.10	0.2164 11.03						
e13-76	0.174 M	0.038			0.2164 0.03					
e13-86	0.130 M	0.028			0.2164 0.03					
e13-96	0.420 M	0.091			0.2164 0.03					
e14-14	0.826 M	0.239			0.2899 0.03					
e14-26	0.261 M	0.076			0.2899 0.03					
e14-38	0.203 M	0.059			0.2899 0.03					
e14-48	0.942 M	0.273			0.2899 0.03					
e14-66	0.754 M	0.199			0.2647 0.03					
e14-76	0.609 M	0.161			0.2647 0.03					
e14-86	0.768 M	0.203			0.2647 0.03					
e15-11	0.159 M	0.034			0.2164 0.03					
e15-16	0.188 M	0.041			0.2164 0.03					
e15-18	0.319 M	0.069			0.2164 0.03					
e15-28	0.696 M	0.167			0.2402 0.03					
-----	-----	-----	-----	-----	-----	-----	-----			
e15-7@	0.638 M	0.138								
e15-8@	0.377 M	0.082								
e16-4@	0.638 M	0.153								
e16-6@	0.043 M	0.012								
e17-10@	0.594 M	0.129								
e17-11@	1.130 M	0.245								
e17-12@	0.551 M	0.119								
e17-14@	0.768 M	0.166								
e17-15@	0.580 M	0.125								
e17-16@	0.072 M	0.016								
e17-18@	1.754 M	0.379								
e17-19@	0.739 M	0.160								
e17-23@	1.957 M	0.423								
e17-27@	0.159 M	0.044								
e17-28@	0.203 M	0.054								
e17-29@	0.261 M	0.056								
e17-88@	1.130 M	0.245								
e18-4@	0.536 M	0.116								
e19-5@	0.087 M	0.019								
e19-6@	0.768 M	0.166								
e19-7@	0.203 M	0.044								
e20-18@	1.722 M	1.152								
e20-28@	0.768 M	0.184								
e20-30@	0.797 M	0.191								
e21-15@	2.278 B	1.351								
e21-17@	0.159 M	0.034								
e21-20@	1.652 M	0.357								
e21-21@	0.420 M	0.091								
e21-22@	1.391 M	0.301								
e25-10@	2.278 B	1.523								
e27-3@	0.710 M	0.171								
e28-8@	0.970 M	0.210								
e33-16@	0.690 M	0.149								
e33-3@	1.150 M	0.249								
e4-10@	0.884 M	0.191								
e45-62@	2.139 O	0.853								
e45-74@	2.250 O	1.505								
e45-77@	1.750 O	1.170								
e45-79@	2.139 O	1.431								
e5-10@	0.290 M	0.063								
e5-11@	0.478 M	0.103								
e5-15@	0.667 M	0.144								
e5-16@	1.072 M	0.232								
e5-17@	1.507 M	0.326								
e5-25@	1.217 K	0.263								
e5-8@	0.899 M	0.216								
e50-15@	1.194 O	0.258								
e6-11@	0.130 M	0.031								
e6-12@	0.710 M	0.164								
e6-14@	0.478 M	0.103								
e6-29@	0.986 M	0.213								
e6-30@	0.406 M	0.097								
e6-5@	0.101 M	0.024								
e6-6@	0.348 M	0.075								
---	---	---	---	---	---					
e7-12@ & 1.072 M & 0.232 & 0.2164 & 0.03										
e7-17@ & 0.826 M & 0.190 & 0.2306 & 0.03										
e7-18@ & 0.493 M & 0.130 & 0.2647 & 0.03										
e7-19 & 0.623 M & 0.165 & 0.2647 & 0.03										
e7-4@ & 0.128 M & 0.047 & 0.3703 & 0.03										
e7-6@ & 0.812 M & 0.195 & 0.2402 & 0.03										
e7-7@ & 0.899 M & 0.216 & 0.2402 & 0.03										
e8-5@ & 0.319 M & 0.069 & 0.2164 & 0.03										
e9-4@ & 0.841 M & 0.194 & 0.2306 & 0.03										
e9-5@ & 0.739 M & 0.170 & 0.2306 & 0.03										
gc16 & 0.150 C & 0.061 & 0.4090 & 0.07										
gc2 & 0.039 C & 0.030 & 0.7520 & 0.07										
gc5 & 0.040 C & 0.026 & 0.6600 & 0.07										
gc6 & 0.040 C & 0.025 & 0.6260 & 0.07										
gc8 & 0.232 C & 0.174 & 0.7490 & 0.07										

opr476223 & 2.500 B & 1.483 & 7.88 & 5.31 & 0.5933	9
rc10-114 & 1.000 O & 0.756 & 0.13 & 4.14 & 5.48 & 0.7560	2
rc10-139 & 1.750 B & 0.412 & 10.00 & 24.26 & 0.2356	7
rc10-140@ & 1.944 B & 0.467 & 3.94 & 8.44 & 0.2402	7
rc10-97@ & 2.361 L & 1.579 & 6.63 & 7.40 & 0.7511	7.09
rc11-213@ & 0.833 B & 0.626 & 4.63 & 7.40 & 0.7511	7.09
rc11-220@ & 0.611 O & 0.454 & 0.52 & 1.15 & 0.7425	2.09
rc11-230 & 2.500 O & 1.538 & 1.63 & 7.06 & 4.59 & 0.6153	11.09
rc12-103 & 2.306 B & 1.577 & 0.80 & 3.10 & 1.96 & 0.6841	7.09
rc12-103 & 2.306 B & 0.475 & 19.67 & 41.43 & 0.2059	7
rc12-107 & 2.306 B & 1.543 & 1.23 & 6.82 & 4.42 & 0.6691	7
rc12-107 & 2.306 B & 0.558 & 16.65 & 29.83 & 0.2421	3.09
rc12-109 & 1.194 B & 0.738 & 0.72 & 1.86 & 2.51 & 0.6177	7
rc12-121 & 1.750 B & 0.424 & 13.46 & 31.72 & 0.2425	7
rc12-225@ & 1.667 B & 0.989 & 5.38 & 5.44 & 0.5933	11.09
rc13-113@ & 0.278 B & 0.186 & 3.62 & 19.48 & 0.6688	7.09
rc13-140@ & 3.622 A & 1.144 & 0.3159 & 0.009	
rc13-388@ & 1.944 B & 0.467 & 13.18 & 28.22 & 0.2402	7
rc13-81@ & 0.556 O & 0.394 & 0.51 & 1.28 & 0.7090	7
rc15-52@ & 0.694 O & 0.219 & 0.87 & 3.98 & 0.3159	11
rc15-61@ & 3.806 O & 1.747 & 0.4590 & 0.09	
rc8-71 & 2.778 O & 0.591 & 10.11 & 17.12 & 0.2126	3.09
rc8-78 & 2.500 B & 0.956 & 1.18 & 4.51 & 4.71 & 0.3824	7
rc8-93@ & 0.843 C & 0.500 & 0.93 & 1.86 & 0.5933	9
rc8-94 & 0.917 O & 0.667 & 0.41 & 0.96 & 2.62 & 0.2267	7
rc9-110 & 1.611 B & 0.365 & 0.96 & 2.62 & 0.2267	7
rc9-110 & 1.667 B & 0.799 & 0.64 & 1.25 & 1.57 & 0.4793	3.09
rc9-124@ & 1.750 O & 1.170 & 0.43 & 0.36 & 0.6688	9.09
rc9-126 & 1.194 C & 0.696 & 0.92 & 3.42 & 4.91 & 0.5827	7
rc9-129 & 1.806 B & 1.243 & 1.25 & 2.27 & 1.83 & 0.6887	3.09
rc9-129 & 1.667 O & 1.148 & 2.06 & 1.80 & 0.6887	9
rc17-77 & 1.143 C & 0.221 & 0.1932 & 0.009	
v15-32@ & 2.643 A & 0.835 & 0.3159 & 0.009	
v15-33@ & 4.496 A & 2.008 & 8.14 & 4.06 & 0.4467	11
v15-42@ & 2.674 A & 1.194 & 0.4467 & 0.009	
v15-53@ & 2.028 O & 0.931 & 1.30 & 1.40 & 0.4590	11.09
v16-122 & 1.750 B & 0.733 & 1.69 & 2.30 & 0.4190	7.09
v17-44 & 4.194 B & 1.877 & 2.93 & 34.22 & 18.23 & 0.4476	2.09
v18-222 & 2.139 B & 0.497 & 0.75 & 1.51 & 0.2324	3.09
v18-260@	1.768
v18-262@	0.857
v18-312	1.389
v18-312	1.389
v18-68@	2.612
v19-27	6.139
v19-28	10.028
v19-29	10.028
v19-30	9.472
v19-30@	7.250
v19-41	1.694
v19-53	2.111
v19-55	1.111
v19-64	0.750
v19-65@	0.861
v19-96	0.833
v21-30	13.917
v21-33	2.528
v24-166	2.500
v28-203@	2.222
v28-229	2.306
v28-230	1.139
v28-235	2.250
v28-238	2.111
y71612p	1.361
y71745p@	0.528
z21081	2.500
BI B L I O G R A P H Y

Anastaskis, G.C. and D.J. Stanley, Sapropels and organic-rich variants in the Mediterranean: sequence development and classification, in Fine-Grained Sediments: Deep-Water Processes and Facies, edited by D.A. Stow and D.J.W. Piper, pp.497-510, London, Blackwell Scientific Publications, 1984.

Arthur, M.A., The carbon cycle - controls on atmospheric CO$_2$ and climate in the geologic past, in Climate in Earth History, pp.55-67, National Academy Press, 1982.

Arthur, M.A., W.E. Dean, and S.O. Schlanger, Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO$_2$, in The Carbon Cycle and Atmospheric CO$_2$: Natural Variations Archean to Present, edited by E.T. Sundquist and W.S. Broeker, pp.504-529, Geophysical Monograph 32, 1985.

Balsam, W., Late Quaternary sedimentation in the western North Atlantic: stratigraphy and paleoceanography, Paleogeography, Paleoclimatology, Paleoecology, 35, 215-240, 1981.

Berger, W.H., Biogenous deep-sea sediment fractionation by deep-sea circulation, GSA Bulletin, 81, 1385-1402, 1970.

Berger, W.H., C.G. Adelsec, and L.A. Mayer, Distribution of carbonate in surface sediments of the Pacific Ocean, Journal of Geophysical Research, 81, 2617-2627, 1976.
Berger, W.H., K. Fischer, C. Lai, and G. Wu, Primary production and organic carbon flux in the world ocean, poster presented at the Ocean Sciences Meeting, AGU/ASLO, New Orleans, LA, Jan. 13-17, 1986.

Berner, R.A., Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance, American Journal of Science, 282, 451-473, 1982.

Biscaye, P.E., V. Kolla, and K.K. Turekian, Distribution of calcium carbonate in surface sediments of the Atlantic Ocean, Journal of Geophysical Research, 81, 2595-2603, 1976.

Bordovskiy, K.O., Accumulation and transformation of organic substances in marine sediments 3: accumulation of organic matter in bottom sediments, Marine Geology, 3, 33-82, 1965.

Borole, D.V., K. Kameswara Rao, R.V. Krishnamurthy, and B.L.K. Somayajulu, Late Quaternary faunal change in coastal Arabian Sea sediments, Quaternary Research, 18, 236-239, 1982.

Broecker, W.S., Ocean chemistry during glacial time, Geochimica et Cosmochimica Acta, 46, 1689-1705, 1982.

Calvert, S.E., Accumulation of diatomaceous silica sediments in the Gulf of California, Geological Society of America Bulletin, 77, 569-596, 1966.

Cita, M.B., M.A. Chierici, G. Ciampo, M. Zei, d'Onofrio, W.B.F. Ryan, and R. Scorziello, The Quaternary record
in the Tyrrhenian and Ionian Basins of the Mediterranean Sea, in *Initial Reports of the Deep Sea Drilling Project XIII* edited by W.B.F. Ryan, K.J. Hsu, et al., pp.1263-1339 U.S. Government Printing Office: Washington D.C., 1973.

CLIMAP Project Members, *The surface of the Ice age earth*, Science, 191, 1131-1137, 1976.

Cooke, D.W., and J.D. Hays, Glacial-interglacial sedimentation changes in the Antarctic Ocean, in *Third International Symposium on Antarctic Geology and Geophysics*, edited by C. Craddock, University of Wisconsin Press, 1981.

Corliss, J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, T.H. van Andel, Submarine thermal springs on the Galapagos Rift, Science, 203, 1073-1082, 1979.

Curry, W.B., Paleoceanographic reconstruction of flux records in Tropical Atlantic deep sediment, paper presented at International Conference on Paleoceanography, Woods Hole, MA, Sept. 8-12, 1986.

Curry, W.B., and G.P. Lohman, Carbon isotopic change in benthic foraminifera from the western South Atlantic: reconstruction of glacial abyssal circulation patterns, Quaternary Research, 18, 218-235, 1982.

Cwienk, D., and M. Leinen, Expression of global sediment component fluxes in surface sediment accumulation
rates, paper presented at the Ocean Sciences Meeting, AGU/ASLO, New Orleans, LA, Jan. 13-17, 1986.

Demaison, G.J. and G.T. Moore, Anoxic environments and oil source bed genisis, Organic Geochemistry, 2, 9-31, 1980.

DeMaster, D.J., The supply and accumulation of silica in the marine environment, Geochimica et Cosmochimica Acta, 45, 1715-1732, 1981.

Dominik, J. and A. Manganini, Late Quaternary sedimentation rate variations on the Mediterranean Ridge, as results from Th-230 excess method, Sedimentary Geology, 23, 95-112, 1979.

Dunn, D.A., Revised techniques for quantitative calcium carbonate analysis using the "Karbonat-Bomb" and comparisons to other quantitative carbonate analysis methods, Journal of Sedimentary Petrology, 50, 631-637, 1980.

Edmond, J.M., On the dissolution of carbonate and silicate in the deep ocean, Deep-Sea Research, 21, 455-480, 1974.

Ellis, D.B., Holocene sediment of the South Atlantic Ocean: the calcite compensation depth and concentration of calcite, opal, and quartz [M.S. thesis]: Corvallis, Oregon State University, 139pp., 1972.

Ellis, D.B., and T.C. Moore Jr., Calcium carbonate, opal, and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean,
Journal of Marine Research, 31, 210-277, 1973.

Emery, K.O., and E. Uchupi, North Atlantic Ocean:
Topography, Rocks, Structure, Water, Life, and Sediments, Memoir 17, American Association of Petroleum Geologists, Tulsa, 371pp., 1972.

Engleman, E.E., L.L. Jackson, and D.R. Norton, Determination of carbonate carbon in geological materials by coulometric titration, Chemical Geology, 53, 125-128, 1985.

Erlenkeuser, H., 14C-age and vertical mixing of deep sea sediments, Earth and Planetary Science Letters, 47, 319-326, 1980.

Freyer, H.D., Variations in the atmospheric CO2 content, in The Global Carbon Cycle, edited by B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, pp.79-99, New York, John Wiley and Sons, 1979.

Froelich, P.N., Marine phosphorus geochemistry, [Ph.D. thesis] Kingston, University of Rhode Island, 1979.

Froelich, P.N., Analysis of organic carbon in marine sediments, Limnology and Oceanography, 25, 564-572, 1980.

Gardner, J.V., High resolution carbonate and Quaternary organic carbon stratigraphies for the late Neogene and Quaternary from western Caribbean and eastern equatorial Pacific in Initial Reports of the Deep-Sea Drilling Project vol.68, edited by W.L. Prell and J.V. Gardner and others, pp.347-364, Washington D.C., U.S.
Garrels, R.M., and E.A. Perry, Cycling of carbon, sulfur, and oxygen throughout geologic time, in *The Sea vol. 5 Marine Chemistry*, edited by E.D. Goldberg, p.303-336, New York, John Wiley and Sons, 1974.

Gibbs, R.J., Effect of combustion temperature and time of the oxidation agent used in organic carbon and nitrogen analyses of sediments and dissolved organic material, *Journal of Sedimentary Petrology*, 47, 547-550, 1977.

Goodell, H.G., and N.D. Watkins, The paleomagnetic stratigraphy of the Southern Ocean: 20° west to 160° east longitude, *Deep-Sea Research*, 15, 89-112, 1968.

Hathaway, J.C., Data File, Continental Margin program, Atlantic Coast of the United States, vol. 2, Sample collection and Analytical Data, Woods Hole Oceanographic Institution Ref. No. 71-15, 496pp., 1971.

Hays, J.D., J.A. Lozano, N. Shackleton, G. Irving, Reconstruction of the Atlantic and western Indian Ocean sectors of the 18,000 B.P. Antarctic Ocean, in *Investigations of Late Quaternary Paleoceanography and Paleoclimate*, edited by R.M. Cline and J.D. Hays, pp.336-372, Geological Society of America Memior 145, 1976.

Heath, G.R., Dissolved silica and deep sea sediments, in *Studies in Paleo-oceanography*, edited by W.W. Hay, pp.77-73, Society of Economic Paleontologists and
Mineralogists, Special Publication 20, 1974.

Heath, G.R., T.C. Moore Jr., and J.P. Dauphin, Organic carbon in deep-sea sediments, in The Fate of Fossil Fuel CO$_2$ in the Oceans, edited by Neil R. Andersen and Alexander Malahof, pp.605-626, New York, Plenum Publishing Corporation, 1977.

Honjo, S., S.J. Manganin, J.J. Cole, Sedimentation of biogenic matter in the deep ocean, Deep-Sea Research, 29, 609-625, 1982.

Honjo, S., Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin, Science, 218, 883-884, 1982.

Huang, T.C., and N.D. Watkins, Contrasts between the Bruhnes and Matuyama sedimentary records of bottom water activity in the South Pacific, Marine Geology, 23, 113-132, 1977.

Huffman, E.W.D., Performance of a new automatic carbon dioxide coulometer, Microchemical Journal, 22, 567-573, 1977.

Imbrie, J., J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, and N.J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine $k^{18}O$ record, in Milankovitch and Climate, Part I, edited by A.L. Berger, et al, pp.269-305, D. Reidel Publishing Company, 1984.

Jansen, J.H.F., T.C.E. van Weering, R. Gieles, and J. van
Iperen, Middle and Late Quaternary oceanography and climatology of the Zaire-Congo Fan and the adjacent eastern Angola Basin, Netherlands Journal of Science, 17, 201-249, 1984.

Jenkins, J.A. and D.F. Williams, Nile water as a cause of Eastern Mediterranean sapropel formation: evidence for and against, Marine Micropaleontology, 9, 521-534, 1984.

Kempe, S., Carbon in the rock cycle, in The Global Carbon Cycle, edited by B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, pp.343-378, New York, John Wiley and Sons, 1979.

Kerr, R.A., The isolation and partial characterization of dissolved organic matter in seawater, [Ph.D. thesis] Kingston, University of Rhode Island, 163pp., 1977.

Koblenz-Mishke, O.J., V.V. Volkovinsky, and J.F. Kabanova, Plankton primary production in the world ocean, in Scientific Explorations of the South Pacific, edited by W.S. Wooster, pp.183-193, Washington D.C., National Academy of Sciences, 1970.

Kolla, V., A.W.H. Be, and P.E Biscaye, Calcium distribution in the surface sediments of the Indian Ocean, Journal of Geophysical Research, 81, 2605-2616, 1976.

Kolla, V., and P.E. Biscaye, Distribution and origin of quartz in the sediments of the Indian Ocean, Journal of Sedimentary Petrology, 47, 642-649, 1977.

Kolla, V., P.E. Biscaye, and F. Hanley, Distribution of
quartz in Late Quaternary Atlantic sediments in relation to climate, Quaternary Research, 11, 261-277, 1979.

Kolpack, R.L., and S.A. Bell, Gasometric determination of carbon in sediments by hydroxide adsorption, Journal of Sedimentary Petrology, 38, 617-620, 1968.

Kominz, M., G.R. Heath, and T.C. Moore Jr., Bulk density of pelagic sediments from the equatorial Pacific estimated from carbonate content, age, and subbottom depth, Journal of Sedimentary Petrology, 47, 1593-1597, 1977.

Kuehl, S.A., C.A. Nittrouer, and D.J. DeMaster, Modern sediment accumulation and strata formation on the Amazon Continental Shelf, Marine Geology, 49, 279-230, 1982.

Ledbetter, M.T., Tephrochronology of marine tephra adjacent to Central America, Geological Society of America Bulletin, 96, 77-82, 1985.

Leinen, M., Techniques for determining opal in deep-sea sediments: a comparison of Radiolarian counts and X-ray diffraction data, Marine Micropaleontology, 9, 375-383, 1985.

Leinen, M., and T. King, Measuring biogenic opal in sediments: an evaluation and improvement of the X-ray diffraction technique, Geological Society of America Abstracts with Programs, 13, 487, 1981a.

Leinen, M., and T. King, Pacific site assessment: Subseabed Disposal Program Annual Report, January to September 1981, Volume II, Appendices, Sandia Report, SAND82-
Leinen, M., D. Cwienk, G.R. Heath, P.E. Biscaye, V. Kolla, J. Theide, and J.P. Dauphin, Distribution of biogenic silica and quartz in recent deep-sea sediments, Geology, 14, 199-203, 1986.

Leinen, M., and A. Graybeal, Sedimentation in the vicinity of Leg 92 sites: studies of site survey cores, in the Initial Reports of the Deep Sea Drilling Project vol. 92, edited by M. Leinen, D.K. Rea, et al., Washington D.C., U.S. Government Printing Office, 1986.

Lisitzin, A.P., Sedimentation in the World Ocean, Society of Economic Paleonotologists and Mineralogists, Special Publication 17, Tulsa, 1972.

Lyle, M., and J. Dymond, Metal accumulation rates in the southeast Pacific: errors introduced from assumed bulk densities, Earth and Planetary Science Letters, 30, 164-168, 1976.

Menzel, D.W., and R.F. Vaccaro, The measurement of dissolved organic and particulate carbon in seawater, Limnology and Oceanography, 9, 138-142, 1964.

Miskell, K.J., G.W. Brass, and C.G.A. Harrison, Global patterns in opal deposition from late Cretaceous to late Miocene, AAPG Bulletin, 69, 996-1012, 1985.

Mix, A.C., and R.G. Fairbanks, North Atlantic surface-ocean control of Pleistocene deep-ocean circulation, Earth and Planetary Science Letters, 73, 231-243, 1985.
Mix, A.C., and W.F. Ruddiman, Structure and timing of the last deglaciation: oxygen isotope evidence, Quaternary Science Review, 4, 59-108, 1985.

Molina-Cruz, A., Paleo-oceanography of the subtropical southeastern Pacific during late Quaternary: a study of radiolaria, opal and quartz contents of deep-sea sediments [M.S. thesis]: Corvallis, Oregon State University, 178pp., 1976.

Moore, T.C., L.H. Burckle, K. Geitznauer, B. Luz, A. Molina-Cruz, J.H. Robertson, H. Sachs, C. Sancetta, J. Theide, P. Thompson, and C. Wenkam, The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P., Marine Micropaleontology, 5, 215-247, 1980.

Mopper, K. and E.T. Degens, Organic carbon in the ocean: nature and cycling, in The Global Carbon Cycle, edited by B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, pp.293-316, New York, John Wiley and Sons, 1979.

Morris, R.J., and S.E. Calvert, Fatty acid uptake by marine sediment particles. Geochimica et Cosmochimica Acta, 39, 377-381, 1975.

Müller, P.J., and E. Suess, Interaction of organic compounds with calcium carbonate III. amino acid composition of sorbed layers, Geochimica et Cosmochimica, 41, 941-949, 1977.

Müller, P.J., and E. Suess, Productivity, sedimentation rate, and organic matter in the oceans- I. organic carbon preservation, Deep-Sea Research, 26A, 1347-1362,
1979.

Müller, P.J., H. Erlenkeuser, R. von Grafenstein, Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores, in Coastal Upwelling part B edited by J. Theide and E. Suess, pp.365-393, Plenum Publishing Corporation, 1983.

Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn, Ice core sample measurements give atmospheric CO$_2$ content during the past 40,000 yr., Nature, 295, 220-223, 1982.

Ninkovitch, D., and N.J. Shackleton, Stratigraphic position and age of ash layer "L" in Panama Basin Region, Earth and Planetary Science Letters, 27, 20-34, 1975.

Opdyke, N., and J.H. Foster, Paleomagnetism of cores from the North Pacific, Geological Society of America Memior 126, pp.83-119, 1970.

Peterson, L.C., Calcium carbonate, organic carbon, and quartz in hemipelagic sediments off Oregon: a preliminary investigation [M.S. thesis]: Corvallis, Oregon State University, 44pp., 1969.

Peterson, L.C., and W.L. Prell, Carbonate preservation and rates of climatic change: an 800 Kyr. record from the Indian Ocean, in The Carbon Cycle and Atmospheric CO$_2$: Natural Variations Archean to Present, edited by E.T. Sundquist and W.S. Broeker, pp.251-269, Washington D.C., American Geophysical Union, 1985.
Pisias, N.G., Model of late Pleistocene-Holocene variations in rate of sediment accumulation: Panama Basin, eastern equatorial Pacific [M.S. thesis] Corvallis, Oregon State University, 77pp., 1974.

Pisias, N.G., and M. Leinen, Late Pleistocene variability of the northwest sector of the Pacific Ocean, in Milankovitch and Climate part I, ed. by Berger, A., et al, pp.307-330, New York, D. Riedel, 1984.

Prell, W.L., W.H. Hutson, D.F. Williams, A.W.H. Be, K. Geitznauer, and B. Molfin, Surface circulation of the Indian Ocean during the last glacial maximum, approximately 18,000 yr. B.P., Quaternary Research, 14, 309-336, 1980.

Prell, W.L., J. Imbrie, D.G. Martinson, J.J. Morley, N.G. Pisias, N.J. Shackleton, and H.F. Streeter, Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary, Paleoceanography, 1, 137-162, 1986.

Premuzic, E.T., C.M. Benkovitz, J.S. Gaffney, and J.J. Walsh, The nature and distribution of organic matter in the surface sediments of world oceans and seas, Organic Geochemistry, 4, 63-77, 1982.

Rex, R.W., Quartz in sediments of the central and north Pacific Basin [Ph.D. thesis] Los Angeles, University of California, 1110pp., 1958.

Rex, R.W., and E.D. Goldberg, Quartz contents of pelagic sediments of the Pacific Ocean, Tellus 1, 153-159,
Rossingnol-Strick, M., W. Nesteroff, P. Olive, and C. Vergnaud-Grazzini, After the deluge: Mediterranean stagnation and sapropel formation, Nature, 295, 105-110, 1982.

Ryan, W.B.F., Stratigraphy of Late Quaternary sediments on the eastern Mediterranean, in The Mediterranean Sea: A Natural Sedimentation Laboratory, edited by D.J. Stanley, pp.149-169, Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA, 1972.

Sanders, H.L., R.R. Hessler, and G.R. Hampson, Introduction to the study of deep sea benthic faunal assemblages along the Gay Head-Bermuda transect, Deep-Sea Research, 12, 845-867, 1965.

Sarnthein, M., K. Winn, and R. Zahn, Paleoproductivity of oceanic upwelling and the effect on atmospheric CO₂ and climatic change during deglaciation times, in press.

Schneider, S.H. and W.W. Kellog, The chemical basis for climate change, in Chemistry of the Lower Atmosphere, edited by S.I. Rasool, pp.203-250, Plenum, New York, 1973.

Smith, K.L., Benthic community respiration in the northwest Atlantic Ocean: in situ measurements from 40 to 5200 meters, Marine Biology, 47, 337-347, 1978.

Stanley, D.J., Ionian Sea sapropel distribution and late Quaternary paleoceanography in the eastern Mediterranean, Nature, 274, 149-152, 1978.
Streeter, S.S., P.E. Belanger, T.B. Kellog, and J.C. Duplessy, Late Pleistocene paleo-oceanography of the Norwegian-Greenland Sea: benthic forminiferal evidence, Quarternary Research, 18, 72-90, 1982.

Suess, E., Particulate organic carbon flux in the oceans - surface productivity and oxygen utilization, Nature, 288, 260-263, 1980.

Theide, J., Wind regimes over the late Quaternary southwest Pacific Ocean, Geology, 7, 259-262, 1979.

Tiedemann, R., [Thesis from Kiel, in german], 1985.

Tietjen, J.H., Ecology and distribution of deep-sea meiobenthos of North Carolina, Deep-Sea Research, 18, 941-957, 1971.

Trefry, J.H. and B.J. Presley, Manganese fluxes from Mississippi Delta sediments, Geochimica et Cosmochimica Acta, 46, 1715-1728, 1982.

Van Vleet, E.S., and J.G. Quinn, Diagensis of Marine lipids in ocean sediments, Deep-Sea Research, 26, 1225-1236, 1979.

Weiss, A., Organic derivations of clay minerals, zeolites, and related minerals, in Organic Geochemistry, edited by G. Eglinton and M.T.J. Murphy, pp.737-782, Springer Verlag, 1969.

Weliky, K., E. Suess, and C.A. Ungorer, Problems with accurate carbon measurements in marine sediments and particulate matter in seawater: a new approach, Limnology and Oceanography, 28, 1252-1259, 1983.
Wenkam, C., Late Quarternary changes in the oceanography of the eastern tropical Pacific [M.S. thesis]: Corvallis, Oregon State University, 143pp., 1976.

Wetzel, A. and B. Kohl, Accumulation rates of Mississippi Fan sediments cored during Deep Sea Drilling Project Leg 96, in Initial Reports of the Deep Sea Drilling Project, v.96, edited by A.H. Bouma, J.M. Coleman, A.W. Meyer, et al, pp.595-600, Washington D.C., U.S. Government Printing Office, 1986.

Whelan, J.K. and M. Tarafa, Organic matter in Leg 96 sediments: characterization by pyrolysis, in Initial Reports of the Deep Sea Drilling Project, v.96, edited by A.H. Bouma, J.M. Coleman, A.W. Meyer, et al, pp.757-766, Washington D.C., U.S. Government Printing Office, 1986.

Winters, G.V., D.E. Buckley, R.A. Cranston, R.A. Fitzgerald, M. Stoffyn, and P. Stoffyn-Egli, Geological and geochemical data for sediment and pore water samples from the Sohm Abyssal Plain in the North Western Atlantic Ocean, Geological Survey of Canada Open File Report 1082, 50pp., 1984a.

Winters, G.V., D.E. Buckley, R.A. Cranston, R.A. Fitzgerald, M. Stoffyn, and P. Stoffyn-Egli, Geological and geochemical data for sediment and pore water samples from the Nares Abyssal Plain in the North Western Atlantic Ocean, Geological Survey of Canada Open File Report 1108, 90pp., 1984b.
Yingst, J.Y. and R.C. Aller, Biological activity and associated sedimentary structures in Hebble-Area deposits, Western North Atlantic, Marine Geology, 48, m7-m15, 1982.