1 Introduction

This document is the statistical supplement to “Urban form and scale shaped the agroecology of early cities in northern Mesopotamia, the Aegean and central Europe”. We test for an effect due to site size on manure level in the archaeological sites presented in the main paper. We consider new datasets from two archaeological contexts for this test: one from Early Neolithic-Late Bronze Age Greece (the aegean data), and a second from Early Neolithic- Early Iron Age south-west Germany (the swgermany data). The results given in section 5.3 are reported in the main paper. Our analysis follows the supplement to Styring et al. (2017) in substance. Those authors test for the same effect in similarly structured archaeological data from urban centres in northern Mesopotamia. We use methods from that source throughout this document. However, we improve on the statistical methodology of Styring et al. (2017) in the section 5.

The document is organised as follows. In section 2 we summarise the two new archaeological datasets and the modern dataset we use for calibration. In section 3 we present a single imputation analysis, which introduces the statistical models in a simple inferential framework. In section 4 we repeat the test using Bayesian Multiple Imputation (BMI), which accounts for uncertainty in the imputation. Up to this point we are using the same methods as Styring et al. (2017). One weakness of multiple imputation, noted by Styring et al. (2017), is that it usually gives conservative estimates for the strength of any effect. The effect is “diluted” in the sense of Knuijim et al. (1998) due to “imputation noise”.

This could be ignored by Styring et al. (2017) as the effect-size of interest remained significant despite dilution. In section 5 we repeat the analysis using Semi-Modular Inference (SMI) (Carmona and Nicholls, 2020). This method is closely related to BMI. It measures model misspecification and down-weights but does not remove misspecified model components at the imputation stage. Down-weighting reduces dilution and gives a more accurate measure of evidence than BMI.

Our analyses show a clear (negative) effect due to site size on manure-level in the nmeso and aegean data, and a potential positive effect in the swgermany data. Along the way we reproduce the results of Styring et al. (2017) using a completely independent code base and get good agreement. The results in this supplement can be reproduced using the accompanying scripts in R. Data and functions are bundled in the agricurbayes package.

```r
> require("agricurbayes")
> arc_datasets = c("nmeso","aegean","swgermany")
> agricurb_data <- agricurbayes::get_agricurb_data( arc_datasets=arc_datasets, 
+ vars_scale_int_0_1=NULL )
> manure_levels = c("low","medium","high")
> agricurb_data = agricurb_data %>%
+ dplyr::mutate( log_size=log(1+size) ) %>%
+ dplyr::mutate( log_rainfall=log(1+rainfall) ) %>%
+ dplyr::mutate( manure_level=factor(manure_level, levels=manure_levels, ordered=TRUE) ) %>%
+ dplyr::mutate( category=factor(category, levels=c("barley","wheat")) ) %>%
+ dplyr::mutate( dataset=factor(dataset, levels=c("nmeso","aegean","swgermany","modern")) )
```

Our model for Bayesian Multiple Imputation differs slightly from Styring et al. (2017), as we incorporate the effect due to date in the PD module (See section 4). The conclusions and evidence for extensification remain unchanged.
2 Data description

2.1 Modern calibration data

The modern data consist of agricultural records gathered in experimental settings in which manure level is an independent variable and nitrogen isotope ratio is the measured outcome. This modern calibration dataset is the same as the one used by Styring et al. (2017). The dataset has observations on 268 grain samples. Six variables are of interest here.

normd15n Measured cereal grain-sample nitrogen isotope ratio.

manure_level The level of manuring treatment the cereal grain-sample received. A 3 level ordinal variable with levels “low”, “medium” and “high”.

site : The name of the site where the grain-sample was gathered. A 19-level categorical variable.

Year : The year in which the grain-sample was gathered.

category : The grain-sample cereal species. A 2-level variable with levels “barley” and “wheat”.

rainfall : annual rainfall estimate for the cereal grain sample site, obtained by interpolation of average monthly local climate data for 1960 - 1990, taken from the WorldClim database.

The data were gathered in experiments conducted under different conditions at different times at different sites. The manuring treatments vary qualitatively and quantitatively from site to site. These manure-level records were mapped to a 3-level ordinal scale with levels low, medium and high. In fig. 10 of appendix A we plot pairwise relations between key variables in the modern data. In particular, note the positive association between Nitrogen Isotope (**normd15n**) and Manure levels (**manure_level**), and the negative relation between **normd15n** and rainfall levels. These are further illustrated in fig. 1.

```r
> mod.dat <- agricurb_data %>%
+   dplyr::filter( dataset=="modern" )
```

![Figure 1: Key relations in the modern Data. Left: Positive relation between Nitrogen Isotope (**normd15n**, y-axis) and **manure_level** (x-axis). Right: Negative relation between **normd15n** (y-axis) and **log(rainfall)** (x-axis), with point shapes and colours distinguishing different manure levels.](image-url)
2.2 The Archaeological data

The aegaean and swgermany datasets contain observations on 181 and 435 grain-samples respectively. The variables are the same as those used in [Styng et al. (2017)] in the Mesopotamian context. We include the Northern Mesopotamia dataset (nmeso, 269 observations) studied in [Styng et al. (2017)] for comparison in all analyses.

- **normd15n**: measured grain-sample nitrogen isotope ratio.
- **site**: site name for sample-context. A categorical variable with a level for each site ID, (5 levels for nmeso, 6 for aegaean, and 9 for swgermany).
- **phase**: phase name for grain-sample context. A categorical variable with a level for each phase ID, giving the temporal context of the sample (14 levels for nmeso, 31 for aegaean, and 5 for swgermany).
- **date**: date of grain-sample context.
- **size**: size of context-site in hectares at sample-context date.
- **category**: grain-sample species. A 2-level categorical variable with levels “barley” and “wheat”.
- **min_rainfall, max_rainfall**: upper and lower bounds on rainfall at grain-sample context at context date.
- **rainfall**: estimated annual rainfall at sample-context at context-date.

Note the negative relation between normd15n and \log(rainfall) in all datasets in fig. 2. In contrast the relation between normd15n and site size shown in fig. 3 varies across datasets. For the nmeso and aegaean datasets this relation is negative, whereas for the swgermany dataset it may be slightly positive, if there is any relation at all.

In figs. 12 and 13 in appendix A we plot pairwise relations between all key variables in the aegaean and swgermany datasets.

![normd15n vs rainfall](image1.png)

Figure 2: Negative relation between levels of Nitrogen isotope and (log) rainfall. Color indicates a dataset. Solid lines regress these two variables, separately for each dataset.

![normd15n vs size](image2.png)

Figure 3: Relation between levels of Nitrogen isotope and site size for the three archaeological datasets. Solid lines regress these two variables.

3 Single Imputation Analysis

In this section we use single imputation to test for an effect due to site size on manuring levels. The aim is to introduce the reader to the models and reasoning in a simple inferential setting. The results here give a sanity check for the more sophisticated analysis in the sections to follow.
In this simple analysis we use the rainfall values in the Archaeological data. These should be seen as unreliable compared to the more conservative upper and lower bounds max_rainfall and min_rainfall. We return to this in sections 4 and 5. Our analysis in this section follows Section 3 of the statistical supplement to [Styring et al. (2017)].

Our plan is (Step 1) use the modern dataset to capture the relation between manure_level and normd15n. Then (Step 2), invert that relation to estimate the missing manure_level-values in the archaeological data from their observed normd15n values. This determines manure_level.imputed values for the archaeological data. Finally (Step 3), we model the relation between the manure_level.imputed-values and size, the size of the site associated with the grain-sample context.

3.1 (Step 1) Select the model linking normd15n and manure_level

We first fit a model linking normd15n and manure_level. We have the same modern data as [Styring et al. (2017)] and the same model, a hierarchical normal linear model, denoted HM, regressing normd15n on log(rainfall), with a random effect on the intercept due to site, a random effect due to manure_level within site, and a variance offset for wheat over barley. In R formula notation, (using the nlme package [Pinheiro et al. (2019)]):

```
> HMmodel <- nlme::lme( normd15n ~ log_rainfall + manure_level,
+     random=~1|site/manure_level,
+     weights=varIdent(form=1|category),
+     data=mod.dat, method='REML'
```

The variable-dependencies in this model were chosen using physical considerations, deviance tests, goodness-of-fit plots and predictive testing as described in Section 3.2.1 and Appendix B of the statistical supplement of [Styring et al. (2017)]. We include our own calculations leading to the same model selected by [Styring et al. (2017)] in our accompanying scripts. We fit this model to the modern data and estimate model parameters.

3.2 (Step 2) Impute the missing manure_level values

Single imputation is carried out as described in Section 3.2.2 of the statistical supplement to [Styring et al. (2017)]. When we fix a value for an unknown manure level we fix the fitted normd15n-value for that observation in the HM module. Imputed manuring level values manure_level.imputed are chosen to minimise the sum of squared differences between fitted and observed values for normd15n.

![Figure 4: Observed normd15n-values colored by imputed manure level for the three archaeological datasets. Each panel shows the relation between normd15n and log(rainfall); each point corresponds to a single cereal grain-sample. modern(Archeological) data plotted with open(filled) circles. Colors correspond to manuring level (red=low, green=medium, blue=high). For the modern data the manuring levels are known, for the Archaeological data, these are the manure_level.imputed-values.](image-url)
3.3 (Step 3) Test for an association between the imputed manure level and site size

We can now estimate the effect of site size on \textit{manure_level.imputed} in the archaeological data. We use a \textit{Proportional Odds model} (denoted as PO hereafter) [McCullagh, 1980] with 3-level ordinal response \textit{manure_level.imputed} and size as a potential explanatory variable. Proportional Odds models are GLM-like models widely used for modelling the dependence of an ordinal response on categorical and continuous covariates. See e.g. [Agresti, 2002] for more details of the model. HMM and PO are submodels or \textit{modules} of the overall model.

We carry out model selection on the covariates of the archaeological data in order to choose the model for PO. Physical considerations must play a role as there are many models, and we need to avoid data-dredging. We compare models using information criteria (BIC and AIC) and deviance tests. In [Styring et al., 2017] model selection was carried out on the \textit{nmesso} dataset. Effects due to date and random effects due to phase must be investigated on physical grounds. However these effects were not supported by the data in the \textit{nmesso} case. The final selected model has a fixed effect due to size, a random effect on the site id, and a logit link function. In R formula notation (using the ordinal package [Christensen, 2010]),

```
> PO_nmeso = ordinal::clmm( manure_level.imputed ~ scale(size) + (1|site),
>                           link = "logit",
>                           data = agricurb_data %>%
>                           dplyr::filter( dataset="nmesso" ) %>%
>                           dplyr::mutate( site=as.factor(site) ) )
```

The estimated coefficient for size, -0.4636, is negative and significant (p-value=0.0069). This means that the probability for a higher manure level tends to decrease as site-size increases, in agreement with Styring et al. (2017), and supporting their main finding of agricultural extensification in the \textit{nmesso} dataset.

We applied the same reasoning to our two new datasets. For the \textit{aegean} dataset, we arrive at a similar model, with the difference that size is included on a logarithmic scale for best fit.

```
> PO_aegean = ordinal::clmm( manure_level.imputed ~ scale(log_size) + (1|site),
>                           link = "logit",
>                           data = agricurb_data %>%
>                           dplyr::filter( dataset="aegean" ) %>%
>                           dplyr::mutate( site=as.factor(site) ) %>%
>                           dplyr::mutate( phase=as.factor(phase) ) )
```

The estimated coefficient for size, -0.5077, is negative and significant (p-value=0.0297), providing evidence that manure level outcome decreases with increasing site size at this site as well.

We found no effect due to date in the \textit{aegean} data. However, a model with random effects on site and phase but not size performs as well as PO_aegean given above. We have then to choose between size and phase. The experimental design in the \textit{aegean} data makes it hard to disentangle the two variables. This is due to colinearity between size and site:phase: there are few observations at each level defined by site:phase and they share the same value of size within each level. Any change in the linear predictor associated with variation of the variable size can be reproduced using a linear combination of the dummy variables associated with site:phase. We kept size and dropped phase based on two considerations: 1) the results from the \textit{nmesso} data, where the experimental design allows us to separate the effects of the two factors, and the high-level similarities between
agricultural practices in the two cultures; and 2) the higher dimension of the random effects for the categorical variable phase make it possible for any effect attributable to the one dimensional continuous variable size to be represented as an effect due to phase, but not in general vice-versa. We accept the more parsimonious explanation.

In the swgermany data, we will see that size is not a significant explanatory variable. If it is included, the associated coefficient is positive, but not significant. The swgermany data also show qualitatively different covariate dependence to the other datasets. The model selected using information criteria and deviance tests includes random effects on site ID, but does not include size. We preserve log-size in the model in later analysis as this effect is of interest. However we can expect the associated parameter to be close to zero.

```r
> PO_swgermany = ordinal::clmm( manure_level.imputed ~ scale(log_size) + (1|site),
+   link = "logit",
+   data = agricurb_data %>%
+   dplyr::filter( dataset=="swgermany" ) %>%
+   dplyr::mutate( site=as.factor(site) )
> coefficients(summary(PO_swgermany))

    Estimate Std. Error   z value Pr(>|z|)
low|medium -5.4747248  0.7170897 -7.6346445 0.00000000000002264445
medium|high  -1.1441110  0.4281816  -2.6720230 0.00753954827467872256
scale(log_size)  0.2503616  0.3679126   0.6804919 0.49619307069162338353
```

The estimated coefficient associated with size in the swgermany data, 0.2504, is positive but not significant (p-value=0.4962).

3.4 Conclusions from Single Imputation

The effect of site size on manure_level.imputed in the nmeso and aegean datasets is significant at level 0.05 (respectively, p=0.0069 and p=0.0297). This agrees with previous work on the nmeso data and supports the hypothesis of extensification in the new aegean data. The effect due to size in the aegean data is hard to separate from the effect due to phase. We report the test for the more parsimonious model. The effect in the swgermany data is not significant (p=0.5), so we find no support for extensification at the swgermany sites.

Single imputation conditions on a single set of manure_level.imputed-values, so it does not allow for uncertainty in imputed values. Our analysis above also ignored uncertainty in rainfall values for Archaeological contexts. However, we will see that the results from our most careful analysis (SMI, summarised in section 5.3) are in good agreement, on all three datasets, with the conclusions of the simple analysis given in this section.

4 Bayesian Multiple Imputation (BMI)

In this section we give a Bayesian analysis of the effect of site size on manuring levels in the archaeological data. We account for essentially all sources of uncertainty in this analysis. In section 4.2 we report that model misspecification undermines a conventional full Bayesian approach to this particular problem. In section 4.3 we use Bayesian Multiple Imputation (BMI), following the Styring et al. (2017) analysis of the nmeso data. We expand the model used by those authors by including a possible effect due to date in the PO module. The effect due to date was not found significant in the single imputation analysis. We nevertheless include it in the Bayesian analysis in order to make that analysis self-contained, and because it is has been raised as a possible confounder. BMI is relatively robust to misspecification (see Lunn et al. (2009); Plummer (2015) where it is referred to as a “cut model”). Thousands of sets of manure_level.imputed values are sampled according to their posterior distribution in the HM module. Each set of manure_level.imputed values determines a posterior distribution for the size-effect. These distributions are averaged to get a posterior for the effect of interest which allows for uncertainty in the unknown manure levels (and rainfall).

Our full R-implementation of the methods used in this document is available via the R package agricurbayes. Supplementary scripts replicate the results and figures in this section using functions available in that package.

4.1 Common notation

We begin with the HM module introduced in section 3. Let Y_{arc}, Y_{mod} be the normd15n-values in the archaeological and modern data, respectively. Let M_{arc} and R_{arc} respectively denote the unknown true manure and rainfall levels.
for the archaeological data. Here M_{arc} plays the same role as `manure_level.imputed` in the single imputation above. Let $\beta = (\beta_1, \ldots, \beta_4)$ be the four fixed effects in the HM module associated with the intercept, R_{arc} and M_{arc} (three levels, so two offsets for medium and high levels relative to baseline which is low-level manuring). The sets of site-level ID’s are

$$S_M = \{s; s \text{ is an ID for a site in the modern dataset}\},$$

and

$$S_A = \{s; s \text{ is an ID for a site in the archaeological dataset under analysis}\},$$

and let $\zeta = (\zeta_s)_{s \in S_{arc}}$ be the mean-zero normal random effects for site-levels for the modern and archaeological site, with variance σ_ζ^2. We make a separate analysis for each archaeological dataset, so the site ID’s in S_A, the dimension of ζ, and σ_ζ^2 vary from one analysis to another. Finally, let σ^2 be the variance of the normdist response given the value of its linear predictor. Denote by $P(Y_{mod} | \beta, \zeta)$ the observation model density for the modern data in the HM module, where manuring levels are known, and by $P(Y_{arc} | \beta, \zeta, M_{arc})$ the same for the archaeological data, where they are unknown.

For the Proportional Odds module P0, let γ denote the effect due to size on manure level M_{arc} in the archaeological data under analysis. Let τ denote the corresponding effect due to date. Let $\alpha = (\alpha_1, \alpha_2)$ be the intercepts for our two-level ordinal P0-response M_{arc}. Let $\xi = (\xi_s)_{s \in S_A}$ be mean-zero normal random effects due to site on manure-level (only relevant for archaeological sites), with variance σ_ξ^2. Let $P(M_{arc} | \alpha, \gamma, \tau, \xi)$ be the (proportional-odds) probability mass function for the missing manure-levels in the archaeological data.

Denote by $\phi = (\alpha, \tau, \xi, \sigma)$ all the variables of the P0 module except γ. Denote by $\theta = (\beta, \zeta, \sigma, \zeta, R_{arc})$ all the variables of the HM module except M_{arc}.

Our parameter of interest is γ, the effect due to size on manure level, which is linked to the hypothesis of extensification.

4.2 Remarks on full Bayesian Inference and priors

In the following we take flat prior distributions, $P(\beta) \propto 1$, $P(\alpha, \gamma, \tau) \propto 1$, subject to conservative upper and lower bounds $(\alpha, \gamma, \tau) \in [-5, 5]^3$ on the P0 module parameters. These are justified below.

The prior for the variance of the random effects in both models is an inverse gamma, $\sigma_\zeta, \sigma_\xi \sim \text{InvGamma}(\alpha = 2, \beta = 1)$. This prior concentrates most of its probability (around 70%) in values smaller than 1 and gives enough room for larger values.

The prior for rainfall $P(R_{arc})$ is $R_{arc} \sim U(\text{min_rainfall}, \text{max_rainfall})$ as these bounds are fairly tight. The joint posterior distribution conditional on all observed data is

$$P(\alpha, \gamma, \tau, \xi, M_{arc}, \beta, \zeta, M_{arc}, R_{arc} | Y_{mod}, Y_{arc}) \propto P(Y_{mod} | \beta, \zeta) P(Y_{arc} | \beta, \zeta, M_{arc}, R_{arc}) \cdot P(R_{arc}) P(\zeta | \sigma_\zeta) P(\beta | \sigma_\zeta) \cdot P(M_{arc} | \alpha, \gamma, \tau, \xi) P(\xi | \sigma_\xi) P(\alpha, \gamma, \tau, \sigma_\zeta).$$

(1)

Explicit expressions for these densities and probability mass functions are given in Styring et al. [2017].

The parameters of the HM module are well-informed by the data, and any reasonable prior leads to the same conclusions, so we make no careful prior elicitation for that module. However, Styring et al. [2017] point out that, without a proper prior for the parameters of the P0 module, the posterior is improper (the normalising constant is infinite).

This is related to the problem of linear separability in multinomial logistic regression [Albert and Anderson 1984], where a maximum likelihood estimate need not exist, and is compounded by our use of data-augmentation in the P0 module, where M_{arc} is missing data. Our conservative bounds make the prior proper and remove this problem.

We have then to justify our choice of bounds. Firstly, values of α and γ outside $[-5, 5]$ give models in which very little variation in manure-level is allowed at a site. It may be argued that this is not completely un-physical. However, values as large as ± 4, ± 5 are already strongly informative. Also, the outcome of our test is not sensitive to the choice of bounds: we measure evidence for the hypothesis that $\gamma < 0$: the absolute value of γ is not of interest. We have experimented with more extreme bounds and find that the evidence for $\gamma < 0$ in the nmeso and aegean data only increases. However, although the dependence of the evidence on widening bounds is understood, accurate MCMC estimation of the evidence becomes impractical for significantly wider bounds. Further exploration was in any case uninteresting for the reasons given above.

However, there is a further problem. There is model misspecification in the P0 module, at least for the nmeso and aegean data. This is discussed in Styring et al. [2017] and motivated their use of misspecification-robust BMI. The
most straightforward evidence for misspecification is found in the SMI analysis below, where the control parameter \(\eta \) is a summative measure of misspecification. Our estimated values show that misspecification is present. The model elaborations we explored to identify and correct misspecification did not remove the problem.

If we naively apply full Bayesian inference then we find the posterior for \(\gamma \) puts all its mass close to the lower bound \(\gamma \simeq -5 \) and follows the lower bound as it is moved to lower values. This cannot be accepted as evidence that \(\gamma \) is negative as the model is misspecified. Repeating the analysis on synthetic data with the same covariates as the real data, where there is no model misspecification, gives posteriors for \(\gamma \) which cover the fixed synthetic true value, with tails which go rapidly to zero, so that conservative upper and lower limits on \(\gamma \) play no practical role in the analysis. This qualitatively different behaviour for synthetic data is further evidence for misspecification.

Continuing the reasoning of Styring et al. (2017), we could impose strongly informative prior distributions for parameters of the PO module or \(M_{arc} \) itself.

However, we have no concrete prior information justifying informative priors on the PO-module parameters, or restrictions on \(M_{arc} \). Styring et al. (2017) refer to the literature on model misspecification in evidence combination. This treats misspecification by replacing full Bayesian inference with BMI, also known as “cut models”. This is the approach we now apply.

4.3 Bayesian Multiple Imputation analysis

The analysis presented here follows the BMI-analysis for the \textit{nmeso} data in Styring et al. (2017). We make some slight revisions and extend the analysis to the \textit{aegean} and \textit{sugermany} data. The analysis is applied to one dataset at a time (with the same modern calibration data used throughout).

Step 1 This is the imputation step. We sample the posterior for \(M_{arc} \) in the \textit{HM} module. In the full Bayesian analysis the PO module acts as a prior on \(M_{arc} \). Here we cut that feedback and take a flat prior, \(P(M_{arc}) \). Parameter priors, collectively \(P(\theta) \), are otherwise unchanged. The imputation posterior is

\[
P(M_{arc}, \theta | Y_{mod}, Y_{arc}) \propto P(Y_{mod}, Y_{arc} | \theta, M_{arc}) \, P(\theta)P(M_{arc}).
\]

In terms of the low-level variables,

\[
P(Y_{mod}, Y_{arc} | \theta, M_{arc}) = P(Y_{mod} | \beta, \zeta) \, P(Y_{arc} | \beta, \zeta, M_{arc}, R_{arc}),
\]

as before (first line of eq. (1)).

Step 2 We now treat \(M_{arc} \) as data in the PO module. All PO priors, collectively \(P(\phi) \), are unchanged. The PO posterior conditioned on \(M_{arc} \) is

\[
P(\gamma, \phi | M_{arc}) = \frac{P(M_{arc} | \phi, \gamma) \, P(\phi)}{D(M_{arc})},
\]

where \(D(M_{arc}) \) is an intractable normalising constant. In terms of the low-level variables,

\[
P(M_{arc} | \phi, \gamma) = P(M_{arc} | \alpha, \gamma, \tau, \xi),
\]

as in eq. (1).

Many of the model elements are unchanged from the deprecated full Bayes analysis. However, we now carry out MCMC targeting

\[
P_{BMI}(\gamma, \phi, M_{arc}, \theta | Y_{mod}, Y_{arc}) \equiv P(\gamma, \phi | M_{arc})P(M_{arc}, \theta | Y_{mod}, Y_{arc}),
\]

the revised BMI-posterior for \(\gamma \).

The dependence on \(D(M_{arc}) \) may look awkward, but is straightforward to handle using Monte Carlo methods. The \(M_{arc} \) distribution is determined by the posterior in eq. (2), and then for any fixed \(M_{arc} \), we can sample from \(P(\gamma, \phi | M_{arc}) \) in eq. (3) using standard MCMC methods. This sampling scheme follows Plummer (2015). The MCMC algorithm is outlined in Styring et al. (2017). The \textit{agricurbayes} package contains our independent implementation set out in detail in the supplement to Carmona and Nicholls (2020). fig. 5 shows the posterior distribution of \(\gamma \) under \(P_{BMI} \).

We measure evidence in favour of extensification (manure level outcome decreases with increasing site size) using the posterior probability that the effect of size, \(\gamma \), is negative.

\[
P(\gamma < 0 | Y_{mod}, Y_{arc}) = \int_{-\inf}^{0} P_{BMI}(\gamma | Y_{mod}, Y_{arc}) \, d\gamma
\]

This probability is estimated using output from our MCMC algorithm targeting \(P_{BMI} \) in eq. (4).
> # Posterior probability of negative gamma #
> p_gamma_leq_0 <- apply(mcmc_gamma < 0, 2, mean)
> p_gamma_leq_0

nmeso aegean swgermany
0.8421000 0.6926333 0.4554000

The posterior probability for $\gamma < 0$ in the nmeso data is 0.8421. The corresponding posterior probabilities for the other datasets may be read off from the output table. Our prior for γ puts equal weight on the two hypotheses $\gamma < 0$ and $\gamma \geq 0$ so the Bayes Factor (Kass and Raftery, 1995) $B_{\gamma<0}$ comparing these two hypotheses is

$$B_{\gamma<0}^{(BMI)} = \frac{P_{BMI}(\gamma < 0 \mid Y_{mod}, Y_{arc})}{P_{BMI}(\gamma \geq 0 \mid Y_{mod}, Y_{arc})}.$$ (6)

> # Bayes factor for negative gamma #
> BF_gamma_leq_0 = p_gamma_leq_0 / (1-p_gamma_leq_0)
> BF_gamma_leq_0

nmeso aegean swgermany
5.3331222 2.2534432 0.8362101

The nmeso and aegean datasets give Bayes factors equal to 5.3331 and 2.2534 respectively, evidence for $\gamma < 0$. This is in line with the findings in Styring et al. (2017) and section 3. These Bayes factors are likely to underestimate the strength of the evidence due to dilution from noise in the imputation. The swgermany data gave a Bayes factor equal to 0.8362, close to 1, and indicating no evidence for a negative γ. The posterior distribution is centred around zero so the effect is not significant here. This is all in line with our findings in section 3.

4.4 Conclusions from Bayesian Multiple Imputation

We find moderate evidence for a negative effect of site size on manure level in the nmeso and aegean datasets (respectively, $B_{\gamma<0}^{(BMI)} =5.33$ and $B_{\gamma<0}^{(BMI)} =2.25$). This agrees with previous work on the nmeso data and does not contradict the hypothesis of extensification in the new aegean data. We find no evidence for an effect in the swgermany data ($B_{\gamma<0}^{(BMI)} =0.8362$) so no support for extensification at the swgermany sites. These measures allow for all major sources of uncertainty (including now any possible confounding due to date). They are conservative due to the effect of dilution in BMI.

5 Semi-Modular Inference

The strength of the evidence for $\gamma < 0$, the effect of size on M_{arc}, measured using BMI in the nmeso and aegean datasets in section 4 is real but not overwhelming. Recent work on evidence combination, in particular Semi-Modular Inference (SMI) (Carmona and Nicholls, 2020), adjusts for misspecification without dilution.
5.1 Outline of SMI

Semi-Modular Inference (SMI) combines BMI (Liu et al., 2009; Lunn et al., 2009; Plummer, 2015) and the power-posterior (Bissiri et al., 2016; Holmes and Walker, 2017; Grünwald and van Ommen, 2017), two inferential procedures treating model misspecification in Bayesian inference. The contribution each module (here HM and PO) makes to the inference is controlled by a parameter η so that misspecified modules can be down-weighted. In a misspecified setting this may give more accurate imputation and hence better downstream inference than either of fully Bayesian inference or BMI. It will not in general do worse. This is because SMI defines a continuum of inference procedures, indexed by η, interpolating between BMI (at $\eta = 0$) and fully Bayesian inference (at $\eta = 1$). It includes these methods as special cases, and selects the procedure with best predictive performance.

In our context, we impute M_{arc} using an η-tempered version of the full model, which reduces (but does not eliminate) the influence of the PO module by raising its likelihood to a power $\eta \in [0, 1]$. This setup is used in the imputation of M_{arc}. The second stage of the analysis is the same as step 2 of BMI. In the notation of section 4, the SMI posterior for our model is

$$P(\gamma, \phi, M_{arc} \mid Y_{mod}, Y_{arc}) = P(\gamma, \phi \mid M_{arc}) P(\tilde{\gamma}, \tilde{\phi}, M_{arc} \mid Y_{mod}, Y_{arc}).$$

Here $\tilde{\gamma}$ and $\tilde{\phi}$ are parameters used only at the imputation stage, $P(\gamma, \phi \mid M_{arc})$ is unchanged from eq. (3) and

$$P(\gamma, \phi, M_{arc} \mid Y_{mod}, Y_{arc}) \propto P(Y_{mod} \mid \beta, \zeta) P(Y_{arc} \mid \beta, \zeta, M_{arc}, R_{arc}) P(R_{arc}) P(\zeta \mid \sigma_{\zeta}) P(\beta \mid \sigma_{\beta}).$$

$$P(M_{arc} \mid \alpha, \gamma, \tau, \xi) \eta P(\xi \mid \sigma_{\xi}) P(\alpha, \gamma, \tau, \sigma_{\xi}).$$

Note the similarity between eq. 4 (BMI-posterior) and eq. 7 (SMI posterior). The two-stage inference set out in Plummer (2015) remains, but the BMI imputation posterior in eq. 4 is replaced in the SMI imputation posterior (eq. 3) by something very like the full posterior in eq. 1. The change is that the PO module likelihood in eq. 8 is raised to a power η to reduce its influence. The SMI-imputation step uses a power posterior.

We have finally to choose a value for η. Following Carmona and Nicholls (2020), we define the optimal η as the value $\eta = \eta^*$ say, which maximises the Expected Log Predictive Density or ELPD (Vehtari et al., 2017) for the normd15n-data. This is a natural performance measure, accounting for uncertainty in unknown parameters. It is equivalent to carrying out Leave-One-Out Cross-Validation (LOOCV) on held out normd15n responses and selecting the η-value that minimises the mean square error for prediction. It can be computed from the MCMC output. Further details of SMI are given in Carmona and Nicholls (2020).

We use the priors given in section 4.2 and the observations models HM and PO given in section 3.

5.2 Results from SMI

We use MCMC to sample P_η in a two-step procedure similar to that outlined for P_{BMI}.

In fig. 6 we show the estimated ELPD as a function of $\eta \in [0, 1]$.

The optimal values for η, denoted η^*, are approximately 0.8 for nmeso, 0.55 for aegean, and 1 for swgermany. The fact that $\eta^* < 1$ in the nmeso and aegean data is evidence for misspecification. There is no evidence for misspecification in the swgermany data where the optimal imputation scheme is full Bayes itself.

We plot in fig. 7 credible intervals for the SMI-posterior of γ, the effect of size on manure level M_{arc}, as a function of the control parameter η.

The plots show the posterior mean (solid line) and the 95% and 50% credible intervals (shades) at each η-value (ie each vertical slice). Panels correspond to datasets nmeso (left), aegean (centre), and swgermany (right). The vertical lines give the optimal value of η in each dataset. Our selected SMI posterior is the posterior given by the credible intervals at this line and is shown in fig. 8 below. Referring to fig. 6 the nmeso and aegean datasets (left and centre) support similar negative values for the size effect γ at all values of the control parameter η, whereas the swgermany-posterior is close-to or slightly above zero.

The posterior credible interval for γ determined by BMI in section 4.3 (fig. 5), and Styring et al. (2017) supplement Figure 7. (left) page 16, can be read off at $\eta = 0$ in the leftmost nmeso plot. Credible intervals shrink towards zero as $\eta \rightarrow 0$ as imputation noise rises. The posterior diverges as η approaches 1 and we move towards fully Bayesian inference. This is a consequence of the combined effects of misspecification, linear separability and the conservative bounds used in our non-informative priors, as discussed in section 4.2.

Fig. 8 shows the posterior distribution of γ at $\eta = \eta^*$ for each dataset. For the nmeso and aegean datasets, the posterior distribution puts little weight on $\gamma > 0$, evidence of a negative effect of size on estimated M_{arc}-values.

The evidence in favor of the agricultural extensification hypothesis is measured by the posterior probability that the effect γ is negative, $P_\eta(\gamma < 0 \mid Y_{mod}, Y_{arc})$.
Figure 6: Estimated predictive performance measured by ELPD (y-axis) as a function of the control parameter η (x-axis) under SMI for each of the three datasets (see panel titles). Vertical lines give the optimal values $\eta = \eta^*$ of the control parameter for each dataset.

Figure 7: Posterior mean and credible intervals of γ under Semi-Modular Inference. The y-axis correspond to the value of γ, while the x-axis corresponds to values of the degree of influence $\eta \in [0, 1]$.

> # Posterior probability of negative gamma #
> p_gamma_leq_0_smi <- apply(mcmc_best_smi_gamma < 0, 2, mean)
> p_gamma_leq_0_smi

nmeso aegean swgermany
0.9849333 0.8615000 0.1554333

The posterior probabilities for $\gamma < 0$ is higher in nmeso and aegean than we saw in BMI, section 4 as dilution is reduced. Some evidence for $\gamma > 0$ in swgermany now appears.

The corresponding Bayes Factors for the hypothesis $\gamma < 0$ are given by

$$B^{(\eta^*)}_{\gamma<0} = \frac{P_{\eta^*}(\gamma < 0 \mid Y_{\text{mod}}, Y_{\text{arc}})}{1 - P_{\eta^*}(\gamma < 0 \mid Y_{\text{mod}}, Y_{\text{arc}})}$$

> # Bayes factor for negative gamma #
> BF_gamma_leq_0_smi = p_gamma_leq_0_smi / (1-p_gamma_leq_0_smi)
> BF_gamma_leq_0_smi
Figure 8: Posterior distribution of γ under SMI for the optimal degree of influence, η^\ast.

nmeso aegean swgermany
65.3716814 6.2202166 0.1840392

These Bayes factors (65 and 6) give strong support for $\gamma < 0$ in the nmeso and substantial support in the aegean data. The Bayes factor for $\gamma < 0$ in the swgermany data (0.184) gives substantial evidence for $\gamma > 0$.

5.3 Conclusions from SMI

We find evidence for a negative effect of site size on imputed manure level M_{arc} in the nmeso and aegean data-sets (respectively, $B_{\gamma<0}^{(\eta^\ast)} =65.3717$ and $B_{\gamma<0}^{(\eta^\ast)} =6.2202$). This improves on the conservative BMI estimate for the nmeso data (taking into account any possible effect due to date) and provides clear evidence for the hypothesis of extensification in the new aegean data.

There is some evidence for a positive effect in the swgermany data ($B_{\gamma<0}^{(\eta^\ast)} =0.184$, or in other words a Bayes factor of about 5.4 for the opposite hypothesis, that γ is positive). The conclusion is less clear in this case, and not only for the reason that the evidence is weaker. We entered the analysis aiming to measure evidence for $\gamma < 0$ and so there is no question, for the nmeso and aegean analyses, of our changing the hypothesis on seeing the data. In claiming evidence for $\gamma > 0$ in the swgermany analysis we would be changing our hypothesis after seeing the data. This undermines the analysis (see discussion in Cox (2006)) and, taken with the real but not overwhelming strength of the evidence (Bayes Factor 5.4), we would be inclined to leave this as undecided.

Finally, we visualise the size effect. In fig. 9 we show the relation between size and manuring level estimated at $\eta = \eta^\ast$. The pair of plots in each row share a dataset, nmeso (top), aegean (middle), and swgermany (bottom). Plots in the left column show, for each missing manure level in M_{arc}, the posterior probability the missing level takes the value low as a function of size. The right column shows the posterior probability for the missing manure level to take either of the values low or medium. Tighter credible intervals (shaded area) indicate a clearer relation between estimated M_{arc} and size. The negative effect of γ is evident for nmeso and aegean: the posterior probability for lower manure levels grows as size increases. For swgermany the effect is positive.

6 Overall conclusions

We reported results from three analyses of our data. Single imputation gives a simple introduction to the models and inference problem and gave an easy-to-understand check on the more sophisticated analyses which followed. Bayesian Multiple Imputation is a familiar method, allowed direct comparison with Styring et al. (2017), and has much in common with Semi-Modular Inference.

All three analyses, single imputation (section 3), BMI (section 4) and SMI (section 5) give consistent evidence for the hypothesis of extensification in the nmeso and aegean data. In the main paper we report the SMI measures reported in section 5.3 as this is our favored analysis. It improves on single imputation as it allows for all major sources of uncertainty and improves on BMI as it greatly reduces the dilution effect we saw in BMI (see in particular our comments on fig. 7).
Figure 9: The posterior probability (y-axis) that a given archaeological cereal grain sample has a manuring level equal to or lower is plotted against site size (x-axis). (a) Manuring level $m=\text{low}$. (b) Manuring level $m=\text{medium}$. Shaded areas give 50% and 90% credible intervals for the probability. Each row corresponds to a dataset: \text{nmeso} (top), \text{aegean} (middle), and \text{swgermany} (bottom). Colors distinguish different sites.
References

Agresti, A. (2002). *Categorical Data Analysis*. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, USA.

Albert, A. and Anderson, J. A. (1984). On the Existence of Maximum Likelihood Estimates in Logistic Regression Models. *Biometrika*, 71(1):1.

Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). A general framework for updating belief distributions. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 78(5):1103–1130.

Carmona, C. U. and Nicholls, G. K. (2020). Semi-Modular Inference: enhanced learning in multi-modular models by tempering the influence of components. In *Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020*.

Christensen, R. H. B. (2010). Ordinal—regression models for ordinal data.

Cox, D. R. (2006). *Principles of Statistical Inference*. Cambridge University Press.

Grünwald, P. and van Ommen, T. (2017). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Bayesian Analysis*, 12(4):1069–1103.

Holmes, C. C. and Walker, S. G. (2017). Assigning a value to a power likelihood in a general Bayesian model. *Biometrika*, 104(2):497–503.

Kass, R. E. and Raftery, A. E. (1995). Bayes Factors. *Journal of the American Statistical Association*, 90(430):773–795.

Knuiman, M. W., Divitini, M. L., Buzas, J. S., and Fitzgerald, P. E. (1998). Adjustment for Regression Dilution in Epidemiological Regression Analyses. *Annals of Epidemiology*, 8(1):56–63.

Liu, F., Bayarri, M. J., and Berger, J. O. (2009). Modularization in Bayesian analysis, with emphasis on analysis of computer models. *Bayesian Analysis*, 4(1):119–150.

Lunn, D., Best, N., Spiegelhalter, D., Graham, G., and Neuenschwander, B. (2009). Combining MCMC with ‘sequential’ PKPD modelling. *Journal of Pharmacokinetics and Pharmacodynamics*, 36(1):19–38.

McCullagh, P. (1980). Regression Models for Ordinal Data. *Journal of the Royal Statistical Society. Series B (Methodological)*, 42(2):109–142.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2019). nlme: Linear and Nonlinear Mixed Effects Models.

Plummer, M. (2015). Cuts in Bayesian graphical models. *Statistics and Computing*, 25(1):37–43.

Styring, A. K., Charles, M., Fantone, F., Hald, M. M., McMahon, A., Meadow, R. H., Nicholls, G. K., Patel, A. K., Pitre, M. C., Smith, A., Soltysiaik, A., Stein, G., Weber, J. A., Weiss, H., and Bogaard, A. (2017). Isotope evidence for agricultural extensification reveals how the world’s first cities were fed. *Nature Plants*, 3(6).

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Statistics and Computing*, 27(5):1413–1432.
Appendix A. Pairwise relation of variables on modern and archaeological data

Figure 10: Pairwise relation between key variables in the modern data

Figure 11: Pairwise relation between key variables in the archaeological data from Northern Mesopotamia (nmeso)
Figure 12: Pairwise relation between key variables in the archaeological data from the Greece (aegean)

Figure 13: Pairwise relation between key variables in the archaeological data from the Germany (swgermany)
Appendix B. MCMC convergence analysis for SMI

Here we show simple convergence plots for the MCMC of the SMI posterior under the best η. The MCMC was ran for a total of 310,000 iterations, with a warm-up period of 10,000 and a thinning of 10. fig. 14 show the traces for the main parameters in the model, showing no sign of trending. Parameter correlations are displayed as a heatmap in fig. 15.

Figure 14: Trace plot of the Monte Carlo samples for the main parameters in the model.
Figure 15: Heatmap with correlations of the principal parameters in the model (\(\text{gamma}_\text{po}_1 \) corresponds to \(\gamma \), the effect due to \text{size} in \(\text{PO} \), whereas \(\text{gamma}_\text{po}_2 \) is the effect due to \text{date}, denoted by \(\tau \) in the text.)