Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs

Jie Yang¹,², Lusheng Huang³, Ming Yang³, Yin Fan², Lin Li², Shaoming Fang², Wenjiang Deng², Leilei Cui², Zhen Zhang², Huashui Ai², Zhenfang Wu¹,³, Jun Gao² & Jun Ren²

Vertnin (VRTX) variants have been associated with the number of thoracic vertebrae in European pigs, but the association has not been evidenced in Chinese indigenous pigs. In this study, we first performed a genome-wide association study in Chinese Erhualian pigs using one VRTN candidate causative mutation and the Illumina Porcine 60K SNP Beadchips. The VRTN mutation is significantly associated with thoracic vertebral number in this population. We further show that the VRTN mutation has pleiotropic and desirable effects on teat number and carcass (body) length across four diverse populations, including Erhualian, White Duroc × Erhualian F₂ population, Duroc and Landrace pigs. No association was observed between VRTN genotype and growth and fatness traits in these populations. Therefore, testing for the VRTN mutation in pig breeding schemes would not only increase the number of vertebrae and nipples, but also enlarge body size without undesirable effects on growth and fatness traits, consequently improving pork production. Further, by using whole-genome sequence data, we show that the VRTN mutation was possibly introgressed from Chinese pigs into European pigs. Our results provide another example showing that introgressed Chinese genes greatly contributed to the development and production of modern European pig breeds.
Vertin (VRTN) has been proposed to be the gene responsible for the SSC7 QTL affecting thoracic vertebral number. Unlike the alleles at the SSC1 QTL, the SSC7 QTL alleles are segregating in the European commercial breeds, and are thus of significant interest for the pig industry by selecting the favorable allele to increase thoracic vertebral number and pork production. In our previous study, we provided additional evidence that VRTN is the underlying gene for the SSC7 QTL. By a battery of genetic analyses, we identified two VRTN variants as strong candidate QTN for this QTL effect. One of the two variants is a SNP in the promoter region, and the other is an Indel in intron 1 of the VRTN gene. Both variants reside in conserved functional elements and possibly affect the expression of VRTN. We further showed that the favorable allele for increased thoracic vertebrae at the QTN is also segregating in some of Chinese indigenous breeds and is possibly of Chinese origin. Recently, Kensuke et al. (2013) reported that the VRTN mutation is significantly associated with body length and intramuscular fat content (IMF) in a Duroc population. However, two subsequent reports indicated that there was no significant association between this mutation and IMF in Duroc pigs. Therefore, the associations of VRTN mutations with production traits related to vertebral number need further investigations.

In this study, we demonstrate that the VRTN candidate QTNs are significantly associated with the number of thoracic vertebrae in Chinese Erhualian pigs. We further show that the VRTN candidate QTNs are associated with thoracic vertebrae, carcass/body length and teat number in divergent populations. Further, we resequenced the VRTN region using representative individuals from Chinese and European pig breeds. We illustrate that the VRTN mutation was possibly introgressed from Chinese pigs into European pigs. These findings advance our understanding of the molecular basis of vertebral number, and have immediate transition into breeding practices to improve meat production in both European commercial pigs and Chinese indigenous pigs. Moreover, our results provide another example showing that introgressed Chinese (Asian) genes greatly contributed to the development and production of modern European pig breeds.

Methods

Ethics statement. All procedures involving animals followed the guidelines for the care and use of experimental animals that were approved by the State Council of the People's Republic of China. The ethics committee of Jiangxi Agricultural University specifically approved this study.

Animals and phenotype recording. In this study, experimental animals were from five populations, including one White Duroc × Erhualian F1 intercross (referred hereafter as the F2 cross), one Chinese purebred (Erhualian) population, and three European purebred populations (Duroc, Landrace and Large White).

The F2 cross was developed and managed as described previously. Briefly, two White Duroc boars were mated to 17 Erhualian sows. Nine F1 boars and 59 F1 sows were then intercrossed to produce a total of 1,912 F2 animals in 6 batches. Of the 1,912 F2 animals, 1,034 individuals were slaughtered for genotype recording at the age of 240 ± 3 days. A total of 928 F1 individuals with phenotypic data of thoracic vertebral number, carcass length, teat number, body weight, average daily gain, intramuscular fat content and backfat thickness were used in this study.

Erhualian, a Chinese indigenous pig breed, was originally distributed in Jiangsu Province. This breed is characterized by its prolificacy (litter size > 16), excellent maternity and favorable meat quality. We purchased 332 Erhualian pigs from Jiangsu Province. The 322 pigs included 166 barrows and 166 gilts from 9 sire families. All Erhualian pigs were fed with consistent diet under a standardized feeding and management regimen, and given free access to water, and then slaughtered at 300 ± 3 days of age in the same commercial abattoir. Phenotypes including thoracic vertebral number, lumber vertebral number, carcass length, teat number, body weight at slaughter, intramuscular fat content and average backfat thickness at the shoulder, first rib and hip were measured in the Erhualian population as described recently.

A total of 3,495 European purebred pig samples were collected from 3 pig breeding farms, including 1,050 Duroc boars, 1,097 Landrace sows, and 1,348 Large White sows. Of the 3,495 animals, 3,338 Large White sows were not recorded for any phenotypic traits, while 833 Duroc pigs and 596 Landrace pigs were recorded for teat number, average daily gain, body length, backfat thickness and intramuscular fat content at the weight of 100 ± 5 kg. Backfat thickness and intramuscular fat content were measured between the 10th and 11th rib using a Preg-Alert Pro B-ultrasound machine (Renco Corporation, USA). The average daily gains were calculated as linear regressions of body weight from 30 ± 5 kg to 100 ± 5 kg.

SNP genotyping. Genomic DNA was extracted from ear tissue of each pig using a standard phenol/chloroform method. DNA quality was determined by a Nanodrop-100 spectrophotometer (Thermo Fisher, USA). The Erhualian (n = 332) and Duroc (n = 833) pigs were genotyped for 62,163 SNPs on the Porcine SNP 60K Beadchips (Illumina, USA) according to the supplier's protocol. The quality control criteria were applied for the SNP data by the check.marker function of GenABEL. Animals with SNP call rates ≤ 95%, minor allele frequencies (MAF) ≤ 0.1 and significance levels of deviation from Hardy-Weinberg equilibrium ≥ 10^-6 were included for further statistical analysis. The 60K SNP data of the F2 cross (n = 1,015) that passed quality control are available from our previous studies.

A total of 4,832 pigs including 1,015 individuals from the F2 cross (19 F0, 68 F1 and 928 F2 pigs), 322 Erhualian pigs, 1,050 Duroc boars, 1,097 Landrace sows and 1,348 Large White sows were genotyped for the VRTN g.20311_20312ins291 mutation (referred hereafter as the VRTN mutation), a strong candidate QTN underlying the SSC7 QTL effect on thoracic vertebral number. The genotypes of this mutation were judged using a PCR-based test. Primer pairs (VRTN-FP: GCC AGG GAA GAT GTT GTT TA and VRTN-RP: GAC TGG CCT CTT G) were designed using Primer Premier 5.0 based on the VRTN sequence (GenBank accession no. AB554652).1) The PCR reaction was performed using a reaction mix of 25 µL containing 40 ng of genomic DNA, 2.5 µL Buffer, 1.5 µL MgCl2, forward and reverse primers (2 pM each), and 2.5 U Taq. PCR products were...
separated by 2% agarose gel electrophoresis and the genotypes were visually recorded according to the length of amplicon. The mutant allele (ins) was represented by amplicons of 411 bp and the wild-type allele (del) by amplicons of 120 bp.

Association analysis. Prior to the association analysis, we checked the distribution of all phenotypes with the Shapiro test\(^\text{29}\). All phenotypic data conformed to the Gaussian distribution. In genome-wide association studies (GWAS) on the number of vertebrae and teats in the Erhualian and Duroc populations, the allelic effect of each SNP on phenotypic traits was tested by using a general linear mixed model\(^\text{27}\) that included a random polygenic effect and a variance–covariance matrix proportionate to genome-wide identity–by–state\(^\text{28}\). The formula of the model is: \(y = \mu + Xb + s + Za + e\), where \(y\) is the vector of phenotypes; \(\mu\) is the overall mean; \(b\) is the vector of fixed effects including sex and batch effects; \(c\) is the effect of each SNP; \(a\) is the vector of random additive genetic effects with \(\alpha \sim N(0, \sigma_a^2)\), where \(G\) is the genomic relationship matrix calculated from the Illumina Porcine 60K SNP Beadchips and \(\sigma_e^2\) is the polygenic additive variance; \(e\) is the vector of residual errors with \(e \sim N(0, \sigma_e^2)\), where \(I\) is the identity matrix and \(\sigma_e^2\) is the residual variance. \(X\) and \(Z\) are incidence matrices for \(b\) and \(a\), respectively; \(s\) is the vector representing the SNP genotype for each individual. The GWAS were conducted by using the GenABEL package\(^\text{33}\). The genome-wide significance threshold was determined by the Bonferroni method, in which conventional \(P\)-value was divided by the number of tests performed\(^\text{29}\). A SNP was considered to have genome-wide significance at \(P < 0.05/N\) and chromosome-wide significance at \(P < 1/N\), where \(N\) is the number of SNPs tested in the analyses. Quantile–quantile plots with genome control \(L_C\)-values are shown in Supplementary Fig. 1. We found no evidence of systematic inflation of the GWAS results.

Associations between the \(VRTN\) mutation and phenotypes were evaluated using the following model identical to the GWAS model: \(y = \mu + Xb + s + Za + e\), where \(\mu\) is the overall mean for each trait, \(b\) is the vector of fixed effects including sex and batch effects; \(c\) is the additive effect of the \(VRTN\) mutation; \(a\) is the vector of random additive genetic effects with \(a \sim N(0, \sigma_a^2)\), where \(G\) is the genomic relationship matrix calculated from the 60K SNP markers in the \(F_2\), Erhualian and Duroc populations and \(\sigma_e^2\) is the polygenic additive variance; for the Landrace population that was not genotyped for the 60K Beadchips, \(a\) is the vector of random additive genetic effects with \(a \sim N(0, \sigma_a^2)\), where \(A\) is the relationship matrix based on the pedigree of the Landrace population and \(\sigma_e^2\) is the polygenic additive variance; \(e\) is the vector of residual errors with \(e \sim N(0, \sigma_e^2)\), where \(I\) is the identity matrix and \(\sigma_e^2\) is the residual variance; \(s\) is the vector representing the genotype of the \(VRTN\) mutation for each individual, \(X\) and \(Z\) are incidence matrices for \(b\) and \(a\), respectively.

Introggression analysis. Two publicly available whole-genome sequence data sets were explored in the introgression analysis. One included whole-genome sequences (\(\sim 25 \times\) depth) of 69 Chinese pigs from 3 populations of wild boars and 11 geographically diverse breeds, including Bamaxiang, Luchuan, Wuzhishan, Erhualian, Laiwu, Min, Hetao, Tibetan (Gansu), Tibetan (Sichuan), Tibetan (Yunnan) and Tibetan (Tibet)\(^\text{31}\). The other contained whole-genome data (\(\sim 8 \times\) depth) of 55 European and Asian pigs from wild boars, Duroc, Hampshire, Pietrain, Landrace, Large White, Meishan, Jiangquhai, Xiang and Bearded pigs (\(Sus\) \(barbatus\))\(^\text{35}\). The sequence reads of the two data sets are publicly available at the NCBI Sequence Read Archive under accession numbers SRA096093 and ERP001813. We first retrieved a 200 kb genomic sequence (Chr7: 103,357,506–103,567,075) flanking (100 kb upstream and downstream) the \(VRTN\) gene from the \(Sus\) \(scrofa\) 10.2 assembly (http://www.animalgenome.org/repository/pig/Genome_build_10.2_mappings/). Then, we mapped clean pair-end sequence reads of the 69 Chinese pigs\(^\text{30}\) and the 55 European and Asian pigs\(^\text{30}\) to the 200 kb sequence using the Bowtie2 software\(^\text{31}\) with the parameters of “–fr–no-discordant–no-mixed–no-contain–no-overlap–no-unal”. Next, we selected mapped sam files by filtering with parameters of “–GL 1 –doMaf 2 –doMajorMinor 1 –doGeno 5 –doPost 1 –postCutoff 0.95”. “–GL 1” represents that the SAMtools model was used to call SNPs. “–doMaf 2” implicates that the major allele was assumed to be known (inferred or given by user) while the minor allele was not determined. “–doMajorMinor 1” means that the major and minor allele can be inferred directly from likelihoods using a maximum likelihood approach to choose the major and minor alleles. “–doGeno 5” indicates that the major and minor alleles followed by the genotypes (AA, AC …) for each individual. “–doPost 1” means that the posterior probability of each genotype was estimated based on the allele frequency as a prior. “–postCutoff 0.95” implicates that a genotype with a posterior above this threshold would be called. The final set of SNP data were obtained by allowing at most 4 mismatches per read using in-house Perl scripts. Population based genotypes were further allowing at most 4 mismatches per read using in-house Perl scripts. Population based genotypes were further

Results and Discussion

The \(VRTN\) mutation is segregating in both Chinese Erhualian and European commercial breeds. In our previous study, we reported the frequencies of the \(VRTN\) mutation on 1,371 pigs representing 20 diverse breeds and wild boars\(^\text{13}\). Here we genotyped this mutation in a larger sample of 3,827 pigs from the Chinese Erhualian breed and 3 European commercial breeds (i.e. Duroc, Large White and Landrace). As expected, we observed a similar distribution pattern of the \(VRTN\) allele frequencies in the present study compared...
to the previous report (Table 1). We found that both Chinese Erhualian and European breeds are segregating for this mutation, while the mutant \((\text{ins})\) allele associated with more vertebral number predominantly exist in European commercial breeds (Duroc: 0.59; Large White: 0.65; Landrace: 0.82). Interestingly, the Landrace breed that is known for long body length has the highest frequency (82%) of the mutant \((\text{ins})\) allele. This indicates that strong selection for body length in Landrace pigs likely enhanced the frequency of the mutant allele of \(\text{VRTN}\) that is significantly associated with thoracic vertebral number.

Table 1. The frequencies of the VRTN mutation (g.20311_20312ins291) in four purebred pigs. Frequency of each genotype and the mutant allele \((\text{ins})\) associated with increased vertebral number at the VRTN mutation site are shown in this table. The number of pigs within each genotype is given in parentheses.

Breed	No. of animals	Genotype frequency	Allele frequency	
Erhualian	332	0.87 (288)	0.13 (44)	0.00 (0) 0.07
Duroc	1050	0.30 (319)	0.49 (510)	0.21 (221) 0.59
Large White	1348	0.13 (170)	0.44 (595)	0.43 (583) 0.65
Landrace	1097	0.05 (51)	0.26 (282)	0.70 (764) 0.82

Figure 1. GWAS mapping for the number of thoracic vertebrae in the Erhualian population. (a) Manhattan plots of the GWAS for the number of thoracic vertebrae in the Erhualian population. In the Manhattan plots, negative log\(_{10}\) \(P\) values of the quantified SNPs were plotted against their genomic positions. Different colors indicate different chromosomes. The red dot represents the VRTN mutation, and the top GWAS SNP (DLAS0000795) on the Illumina Porcine 60K Beadchips is indicated. The solid and dashed lines indicate the 5% genome-wide and chromosome-wide Bonferroni-corrected thresholds, respectively. (b) When the VRTN mutation was include as a fixed effect in the GWAS model, no other SNP on SSC7 showed association signal.

The VRTN mutation is associated with thoracic vertebral number in Erhualian pigs. To test if the VRTN mutation is associated with vertebral number in Chinese indigenous pigs, we performed a genome-wide association study (GWAS) on vertebral number in Erhualian pigs. After quality control, a total of 35,974 SNPs were included for the GWAS on 332 Erhualian pigs. The genome-wide and chromosome-wide significant thresholds were 1.39E-06 (0.05/35,974) and 2.78E-05 (1/35,974), respectively. SSC7 contained the most significant locus \((P = 1.80E-12)\) for thoracic vertebral number, with the top SNP (DIAS0000795) at 103.6 Mb (Fig. 1a), 127.7 kb
we found a significantly positive correlation (in the F2 cross (Supplementary Fig. 3)). We have previously identified a significant QTL for teat number around investigated the association between the mutation and the number of teats in the F2, Erhualian, Duroc and VRTN daily gain; IMF, intramuscular fat content; BF, backfat thickness; BL, body length; BW1, body weight at 240 days; BW2, body weight at 300 ± 3 days; BW1, body weight at 240 ± 3 days; BW2, body weight at 300 ± 3 days. Not all traits have been measured in four pig populations. Phenotypic values are shown in mean ± standard error. The number of individuals within each genotype is given in brackets.

Trait	No.	del/del	ins/del	ins/ins	P value
White Duroc x Erhualian F2 intercross					
TVN	927	14.17±0.04(130)	14.91±0.02(454)	15.49±0.03(343)	2.08E-16
CL	925	94.82±0.66(130)	96.10±0.32(343)	96.64±0.42(342)	0.04
TN	925	16.59±0.11(129)	17.18±0.07(452)	17.59±0.07(344)	1.61E-04
BW1	927	95.14±1.72(130)	97.66±0.80(454)	97.66±0.98(343)	0.40
ADG	925	433.65±8.29(129)	447.74±3.90(453)	447.46±4.85(343)	0.38
IMF	852	2.32±0.11(117)	2.14±0.05(418)	2.14±0.06(317)	0.06
BF	928	2.83±0.08(130)	3.00±0.04(454)	3.12±0.05(344)	0.85
Erhualian					
TVN	332	13.91±0.02(288)	14.34±0.07(44)	—	1.48E-17
BL	319	111.11±0.62(277)	115.55±1.71(42)	—	0.03
TN	320	20.31±0.10(277)	20.81±0.23(43)	—	0.03
BW2	332	83.098±0.91(288)	89.245±2.27(44)	—	0.02
IMF	276	0.03±0.00(236)	0.035±0.00(40)	—	0.56
BF	276	3.372±0.05(236)	3.543±0.09(40)	—	0.65
Duroc					
BL	666	115.95±0.19(247)	116.81±0.17(329)	117.44±0.33(90)	8.95E-35
TN	833	10.42±0.06(268)	10.69±0.05(410)	11.21±0.09(155)	3.40E-10
ADG	833	975.20±6.66(268)	959.71±5.31(410)	964.28±7.72(155)	0.90
IMF	833	1.65±0.04(268)	1.69±0.03(410)	1.67±0.05(155)	0.14
BF	833	10.75±0.12(268)	10.69±0.10(410)	10.62±0.13(155)	0.36
Landrace					
BL	596	—	116.66±0.37(93)	117.24±0.14(503)	0.14
TN	538	—	12.35±0.08(84)	12.71±0.04(454)	7.21E-04
ADG	595	—	852.60±8.13(93)	847.32±3.23(502)	0.45
BF	595	—	13.44±0.14(93)	13.48±0.07(502)	0.68

Table 2. Association of the VRTN mutation (g.20311_20312ins291) with economically important traits in four pig populations. TVN, thoracic vertebral number; CL, carcass length; TN, teat number; ADG, average daily gain; IMF, intramuscular fat content; BF, backfat thickness; BL, body length; BW1, body weight at 240 days; BW2, body weight at 300 ± 3 days; BW1, body weight at 240 ± 3 days; BW2, body weight at 300 ± 3 days. Not all traits have been measured in four pig populations. Phenotypic values are shown in mean ± standard error. The number of individuals within each genotype is given in brackets.

downstream of the VRTN gene. We then genotyped all 332 individuals for the VRTN mutation and included the VRTN genotypes in the GWAS model. The VRTN mutation appeared to be the top marker associated with the number of thoracic vertebrae (P = 3.14E-13, Fig. 1a), having a stronger strength of association than the original GWAS top SNP (DIAS0000795). The heterozygous (ins/del) pigs (14.34 ± 0.07) have more vertebrae than homozygous (del/del) animals (13.91 ± 0.02) (Table 2). However, this locus was not associated with lumbar vertebral number (Supplementary Fig. 2). When the VRTN mutation was included as a fixed effect in the GWAS model, the SSC7 QTL effects on thoracic vertebral number vanished in the Erhualian population (Fig. 1b). This finding favors the assumption that the VRTN mutation has a causative effect on thoracic vertebral number in the Erhualian breed.

The VRTN mutation is associated with teat number in divergent pig populations. In this study, we found a significantly positive correlation (r = 0.32) between teat number and the number of thoracic vertebrae in the F2 cross (Supplementary Fig. 3). We have previously identified a significant QTL for teat number around the VRTN region in the F2 intercross35. To test if the VRTN mutation has pleiotropic effects on teat number, we investigated the association between the VRTN mutation and the number of teats in the F2, Erhualian, Duroc and Landrace populations (Table 2). We observed a significant (P = 1.61E-04) association between VRTN genotype and teat number in the F2 intercross. The average teat number of ins/ins animals (17.59 ± 0.07) is greater than that of del/del animals (16.59 ± 0.11). When we included the VRTN mutation in the GWAS, it was the most significant marker for teat number on SSC7 and exhibited the same strength of association with the top SNP on the Illumina 60K Beadchips (data not shown).

In the Erhualian population, the ins/del pigs had more (P = 0.03) teats than del/del pigs (20.81 ± 0.23 vs. 20.31 ± 0.10). In the Landrace pigs, the number of teats in this population was also significantly associated with the VRTN mutation (P = 7.21E-04), and the ins/ins pigs (12.71 ± 0.04) have more teats than ins/del pigs (12.35 ± 0.08).

We performed GWAS for teat number in the Duroc population. After quality control, a total of 41,793 SNPs were included for the GWAS on 830 Duroc pigs. The genome-wide and chromosome-wide significant thresholds
were 1.20E-06 (0.05/41,793) and 2.39E-05 (1/41,793), respectively. A genome-wide significant association with teat number was observed for SNP MARC0038565 at 103.49 Mb on SSC7 ($P = 3.40E-10$, Fig. 2a), which was 28 kb downstream of the \textit{VRTN} gene. When we included the \textit{VRTN} mutation in the GW AS, the mutation stood out to be the most significantly associated marker (Fig. 2a). The average teat number of \textit{ins/ins} animals (11.21 \pm 0.09) is greater than that of \textit{del/del} animals (10.42 \pm 0.06). When \textit{VRTN} genotype was included as a fixed effect in the GW AS model, the association signal on SSC7 disappeared in the Duroc population (Fig. 2b). This supports the conclusion that the \textit{VRTN} mutation has pleiotropic effects on teat number.

The \textit{VRTN} mutation is also significantly associated with body length. The significant association of the \textit{VRTN} variation with body length and its related traits has been reported in two Duroc populations14,16. Here we tested the association between the \textit{VRTN} mutation and body (carcass) length in the F2, Erhualian, Duroc and Landrace populations (Table 2).

In the F2 cross population, we detected a significant ($P = 0.04$) difference in carcass length between animals with the \textit{ins} allele and those with the wild-type allele. In the Erhualian population, significant associations of the \textit{VRTN} mutation with body length were also observed ($P = 0.03$). The heterozygous (\textit{ins/del}) pigs have 44.4 mm longer body length than homozygous (\textit{del/del}) animals (115.55 \pm 1.71 vs. 111.11 \pm 0.62). In the Duroc population, the \textit{VRTN} mutation was strongly ($P = 8.95E-35$) associated with body length, with an additive effect of 7.5 mm. In the Landrace population, a tendency towards longer body length was found in \textit{ins/ins} pigs compared to \textit{ins/del} individuals, although the difference did not reach statistical significance ($P = 0.14$), possibly due to a low frequency (7.8%) of the \textit{del} allele in the population.

The \textit{VRTN} mutation has no effect on fatness and production traits. There are contradictory reports about the association of the \textit{VRTN} mutation with intramuscular fat content14,16. We herein analyzed the relationship between \textit{VRTN} genotype and two fatness traits (IMF and backfat thickness) and one production trait (ADG) that were recorded in 928 F2 individuals from the White Duroc \times Erhualian intercross, 332 Erhualian pigs, 666 Duroc pigs and 596 Landrace pigs. We did not detect any significant association between the \textit{VRTN} mutation and IMF, backfat thickness and ADG in the tested populations (Table 2). This indicates that selection for the favorable allele at the \textit{VRTN} mutation site would not have undesirable effects on growth and fatness traits in pigs.

The \textit{VRTN} mutation was possibly introgressed from Chinese pigs into European pigs. To test the hypothesis that the \textit{VRTN} mutation has been introgressed from Chinese pigs into European pigs, we performed the ML phylogenetic analysis for the \textit{VRTN} gene and its flanking region using whole-genome sequence data for 124 Chinese and European pigs. We first inferred haplotypes of the two regions for the 124 pigs (see Methods). Only major haplotypes with frequencies of greater than 0.04 (10/248) were then explored to construct ML phylogenetic trees (Fig. 3). For the 200 kb region flanking (not including) the \textit{VRTN} gene, all haplotypes of Chinese origin formed a branch, while all haplotypes of European origin defined another branch in the ML tree (Fig. 3b). This is consistent with the evolutionary split between Chinese and European pigs30. In the \textit{VRTN} region,
the Q-type haplotype containing the mutant allele (ins) at the VRTN mutation site was mainly from European domestic pigs (n = 22) and few from Chinese domestic pigs (n = 3). Surprisingly, the Q-type haplotype clustered with a q-type (wild-type) from Chinese domestic pigs (n = 51). All other three q-type haplotypes including q2 (n = 62), q3 (n = 63) and q4 (n = 11) from European and Chinese pigs defined another clade, which was separated with a long branch from the clade containing the Q-type haplotype. The haplotype of Beared pigs (Sus barbatus) appeared as a clear outgroup to all European and Chinese haplotypes (Fig. 3a). This observation suggests the introgression hypothesis, i.e, the VRTN Q-haplotype that carries the QTN allele increasing vertebral number was originated from Chinese pigs and may have been historically introgressed into European pigs. After the introgression event, the Q haplotype could have been selected for pork production, leading to significantly higher frequencies of the Q haplotype in European commercial breeds like Landrace, Large White and Duroc compared to Chinese indigenous pigs. It should be mentioned that the number of SNPs (n = 25) within the VRTN gene was much lower than that (n = 1,670) in the 200 kb flanking region due to the small size of the VRTN gene (9 kb). This may contributed to lower bootstrap values in the ML tree for the VRTN region compared with those in the ML tree for the 200 kb flanking region (Fig. 3). The low bootstrap support indicated that the two ML trees were not so definitive. Further investigations are required to confirm the introgression hypothesis.

References
1. Narita, Y. & Kuratani, S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool B Mol Dev Evol 304, 91–106 (2005).
2. King, J. & Roberts, R. Carcass length in the bacon pig: its association with vertebrae numbers and prediction from radiographs of the young pig. Anim Prod 2, 59–65 (1960).
3. Wang, L. et al. In Animal genetic resources in China: pigs. (eds China National Commission of Animal Genetic Resources) 2–16 (China Agricultural Press, 2011).
4. Borchers, N., Reinsch, N. & Kalin, E. The number of ribs and vertebrae in a Pietrain cross: variation, heritability and effects on performance traits. J Anim Breed Genet 121, 392–403 (2004).
5. Ciobanu, D. C., Lonergan, S. M. & Huff-Lonergan, E. J. Genetics of meat quality and carcass traits In The genetics of the pig 2nd edn (eds Rothschild, M. & Ruvinsky, A.) Ch. 15, 355–389 (CABI, 2011).
6. Wada, Y. et al. Quantitative trait loci (QTL) analysis in a Meishan x Gottingen cross population. Anim Genet 31, 376–384 (2000).
7. Ren, D. R. et al. Mapping and fine mapping of quantitative trait loci for the number of vertebrae in a White Duroc x Chinese Erhualian intercross resource population. Anim Genet 43, 545–551 (2012).
8. Edwards, D. B. et al. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass and meat quality traits. J Anim Sci 86, 254–266 (2008).
9. Uemoto, Y. et al. Quantitative trait loci analysis on Sus scrofa chromosome 7 for meat production, meat quality, and carcass traits within a Duroc purebreed population. J Anim Sci 86, 2833–2839 (2008).
10. Mikawa, S. et al. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet 12, 5 (2011).

Figure 3. Possible introgression of the VRTN haplotype from Chinese pigs into European pigs. (a) Maximum likelihood (ML) phylogenetic tree for the 9 kb region containing the VRTN gene. (b) ML phylogenetic tree for the 200 kb region flanking (not including) the VRTN gene. Haplotypes of the two regions were first inferred, and then the two ML phylogenetic trees were built for major haplotypes with frequencies of greater than 0.04 (see Methods). Q denotes the major haplotype harboring the Q allele (the mutant allele, ins), q denotes major haplotypes containing the q allele (the wild-type allele, del). EW, European wild boar; ED, European domestic pig; CW, Chinese wild boar; CD, Chinese domestic pig; anc, Beared pigs (Sus barbatus) as an outgroup to European and Chinese pigs. Scale bars represent the number of nucleotide substitutions per SNP site. Values in the tree indicate percentages (%) of observations in 1,000 bootstrap replicates.
11. Mikawa, S. et al. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res 17, 586–593 (2007).
12. Rubin, C. J. et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci USA 109, 19529–19536 (2012).
13. Fan, Y. et al. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs. PLoS One 8, e62534 (2013).
14. Hirose, K. et al. Association of swine vertein (VRTN) gene with production traits in Duroc pigs improved using a closed nucleus breeding system. Anim Sci J 84, 213–221 (2013).
15. Hirose, K. et al. Evaluation of effects of multiple candidate genes (LEP, LEPR, MC4R, PIK3C3, and VRTN) on production traits in Duroc pigs. Anim Sci J 85, 198–206 (2014).
16. Nakano, H. et al. Effect of VRTN gene polymorphisms on Duroc pig production and carcass traits, and their genetic relationships. Anim Sci J 86, 125–131 (2015).
17. Ojeda, A. et al. Evolutionary study of a potential selection target region in the pig. Heredity 106, 330–338 (2011).
18. Wilkinson, S. et al. Signatures of diversifying selection in European pig breeds. PLoS Genet 9, e1003453 (2013).
19. Bosse, M. et al. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nat Commun 5, 4392 (2014).
20. Guo, Y. et al. A linkage map of the porcine genome from a large-scale White Duroc x Erhualian resource population and evaluation of factors affecting recombination rates. Anim Genet 40, 47–52 (2009).
21. Ai, H. et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 47, 217–225 (2015).
22. Liu, X. et al. Genome-wide association analyses for meat quality traits in Chinese Erhualian pigs and a Western Duroc x (Landrace x Yorkshire) commercial population. Genet Sel Evol 47, 44 (2015).
23. Qiao, R. et al. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations. Genet Sel Evol 47, 17 (2015).
24. Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).
25. Yang, B. et al. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues. PLoS One 8, e65554 (2013).
26. Shaprio, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611 (1965).
27. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38, 203–208 (2006).
28. Hayes, B. J. & Goddard, M. E. Technical note: prediction of breeding values using marker-derived relationship matrices. J Anim Sci 86, 2089–2092 (2008).
29. Yang, Q., Cui, J., Chazaro, I., Cupples, L. A. & Demissie, S. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet 6 Suppl 1, S134 (2005).
30. Groenen, M. A. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).
31. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012).
32. Korneliussen, T., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014).
33. Delaneau, O., Zagary, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods 10, 5–6 (2013).
34. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725–2729 (2013).
35. Ding, N. et al. Genome-wide QTl mapping for three traits related to teat number in a White Duroc x Erhualian pig resource population. BMC Genet 10, 6 (2009).

Acknowledgements
The authors appreciate the financial support by the Natural Science Foundation of China (31360539), the National 863 Programs of China (2011AA100304-4), and the program from Education Department of Jiangxi Province (KJLD13026).

Author Contributions
Conceived and designed the experiments: J.R. and L.H. Performed the experiments: J.Y., J.G., S.F. and Z.Z. Collected the samples and recorded the phenotypes: J.G., M.Y., Y.F., W.D. and J.R. Analysed the data: J.Y., H.A., W.D. and J.R. Acknowledgements

Additional Information Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yang, J. et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci. Rep. 6, 19240; doi: 10.1038/srep19240 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/