Maternal Cypermethrin Exposure during the Perinatal Period Impairs Testicular Development in C57BL Male Offspring

Chaobin Huang, Xiangdong Li*
State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China

Abstract

Numerous studies have demonstrated that endocrine-disrupting compounds (EDC) are a possible cause of male reproductive organ malfunction and malformation. Cypermethrin (CYP) is a widely used synthetic pyrethroid and a potential EDC. This study aimed to examine the effects of perinatal exposure to low-dose CYP on the development and function of the offspring testes. Pregnant mice were intragastrically administered 0.12 to 12 mg/kg/day CYP from embryonic day 0.5 (E0.5) to weaning (PD21.5, postnatal day 21.5). Maternal exposure to 0.12, 1.2, and 12 mg/kg/day CYP affected the body and organ weight of the offspring. Exposure of CYP led to a dose-dependent decrease in the male-to-female sex ratio. A histopathological analysis revealed a thinner seminiferous epithelium layer at PD21.5, interstitial hyperplasia at PD45.5, and germ cell vacuolization at PD90.5 in the 12 mg/kg/day CYP group. The TUNEL assay results revealed increased germ cell apoptosis in the 12 mg/kg/day CYP group. The serum testosterone (T) level decreased, whereas the estradiol level increased with age in the 1.2 and 12 mg/kg/day CYP groups. The RT-PCR analysis demonstrated decreased expression of T and Sry. The authors have declared that no competing interests exist.

Introduction

Compounds that can mimic and block natural hormones and cause adverse health effects in humans and wildlife are referred to as endocrine-disrupting compounds (EDCs) [1,2]. Studies have demonstrated that a wide range of EDCs can lead to serious problems, such as infertility [3–7].

Cypermethrin (CYP), a type II synthetic pyrethroid insecticide, replaces traditional organochlorine and organophosphate pesticides and has been widely used [8]. Different studies had indicated that CYP treatment decreases the layers of spermatogenic cells, increases the inside diameter of seminiferous tubules, decreases Star expression in adolescent mice [9], disturbs the array of spermatogenic cells [10], reduces sperm count and motility in male mice [7,11–14], decreases serum testosterone (T) levels, and increases serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels [15]. It has been demonstrated that CYP exerts anti-androgen effects in androgen receptor reporter gene assays [16,17] and can induce ER transactivity [3]. Most studies have used higher doses of CYP, ranging from 39.66 mg/kg/day [7] to 485 mg/kg/day [12] and even toxicological doses, and most studies have focused on postnatal exposure [9,10,12,15,18]. However, there are no reports describing the effects of lower dosage or environmental exposure levels during fetal exposure on the growth and development of testes. Various studies have investigated the effects of EDCs on the growth and development of the fetus, which is sensitive to hormonal fluctuations [19–22]. Impaired reproductive development has been demonstrated in the sons of female gardeners or farmers where pesticides have been used [23–28]. This study aimed to assess CYP exposure during the perinatal period to determine its effect on fetal development and its long-term impact on male reproduction in C57BL mice.

Materials and Methods

In vivo experimental design, treatment, and sample collection

It has been reported that the LD50 of CYP in mice is 250.0 mg/kg when administered orally in corn oil [15]. Some toxicological studies have used a dosage equal to 1/5LD50 or higher [12,15]. It has been reported that the environmental residue of CYP in surface water varies in different countries from 0.022 to 5.6 ppb [29–32], whereas the CYP residue in human milk can be as high as 945.1 to 1443.8 ppb [33]. Based on these studies, we chose CYP exposure doses of 0.12, 1.2, and 12.0 mg/kg/day for the in vivo experiment. Gestating C57BL/6 mice were treated with different doses of CYP through intragastric administration from embryonic day 0.5 (E0.5, day of plug) to weaning (postnatal day 21.5, PD21.5). The gestating control group was treated with vehicle (corn oil; n = 8–10 female mice/group). After birth, sex determination was conducted through y chromosome amplification [34] (Fig.
Table 1. Antibodies information.

Antibody	Dilution	Cat No.	Source
B-Actin	1:500	sc-47778	mouse monoclonal IgG
Star	1:500	sc-25806	rabbit polyclonal IgG
3β-HSD	1:200¹ or 1:500¹	sc-30820	goat polyclonal IgG
Cyp17a1	1:500	sc-66850	rabbit polyclonal IgG
17β-HSD3	1:500	sc-66415	goat polyclonal IgG
Pcn/a	1:200² or 1:500²	sc-7907	rabbit polyclonal IgG
AR	1:500	sc-816	rabbit polyclonal IgG
ERα	1:500	sc-542	rabbit polyclonal IgG

¹represents dilution used in Western blot assay,
²represents dilution used in immunohistochemical assay.

Table 2. The sequences of primers, annealing temperature and amplified products of PCR.

Gene name	Primer	Annealing (°C)	Product size (bp)
L19	F: 5′-gaatctgcaagcttgaac-3′ R: 5′-tgagactgcaagccgtaa-3′	56	406
Star	F: 5′-gatggcgaattcctcctc-3′ R: 5′-gtatgcaagcttgaac-3′	56	387
Cyp11a1	F: 5′-gctgtggccgtggtggtg-3′ R: 5′-ggagcagcatgtgctg-3′	53.5	548
3β-HSD	F: 5′-aatgacaatgctcctcctc-3′ R: 5′-tcacatcgatgtgctg-3′	51.5	360
Cyp17a1	F: 5′-ccagcaacggtttcctcctc-3′ R: 5′-gctgcctgggatgtgattt-3′	56	250
17β-HSD3	F: 5′-attttacaccaagaagagatctc-3′ R: 5′-gagcttgcctgtatgtg-3′	52	260
Cyp19a1	F: 5′-gctgttcctcagctcagttc-3′ R: 5′-agaggtggtttcctcctcctc-3′	56	266
AR	F: 5′-ctggaagggctcaggtctc-3′ R: 5′-gttctctggcgtaaagagag-3′	55	128
ERα	F: 5′-ctggtcgtattgcaacgctc-3′ R: 5′-ggagctgctgtgctgctg-3′	55	199
Pcn/a	F: 5′-cacattgcaacgccagagac-3′ R: 5′-ttaacatgccctgctgctg-3′	53	294
Nanos3	F: 5′-tcagcaggacccagttggagt-3′ R: 5′-ctgcctgtatgtgctg-3′	60	101
Cyclin D2	F: 5′-ctcagctgtgcaagccttg-3′ R: 5′-ggagctgctgtgctgctg-3′	54	128
Stra8	F: 5′-tgttgcctgtggttccacagg-3′ R: 5′-tcaacagccagctcctcctc-3′	54	150
Cyclin A1	F: 5′-tgacagctgtgcaagccttg-3′ R: 5′-tggtgcggtggttccacagg-3′	54	168
Sry	F: 5′-tcttatgatgtgcaagccttg-3′ R: 5′-tggtgcggtggttccacagg-3′	55	91
InsL3	F: 5′-ggagcagcagctcctcctc-3′ R: 5′-tggtgcggtggttccacagg-3′	55	186

F, forward; R, reverse.

doi:10.1371/journal.pone.0096781.t001
doi:10.1371/journal.pone.0096781.t002
Table 3. Offspring body and organs weight.

Group	Body weight (g)	Liver weight (g)	
	PD21.5	PD45.5	PD90.5
	PD21.5	PD45.5	PD90.5
Con	13.65 ± 0.97a	32.74 ± 1.30	38.21 ± 2.57b
0.12 mg/kg/day	11.09 ± 0.29b	33.95 ± 0.76	39.76 ± 0.81b
1.2 mg/kg/day	9.31 ± 0.97b	34.42 ± 1.30	41.10 ± 1.13b
12 mg/kg/day	10.35 ± 0.72b	34.82 ± 0.63	44.17 ± 0.73b

Group	Testis weight (g)	Epididymis weight (g)	
	PD21.5	PD45.5	PD90.5
	PD21.5	PD45.5	PD90.5
Con	0.08 ± 0.00a	0.17 ± 0.04a	0.29 ± 0.01
0.12 mg/kg/day	0.06 ± 0.01b	0.20 ± 0.02b	0.28 ± 0.03
1.2 mg/kg/day	0.04 ± 0.01b	0.22 ± 0.01b	0.27 ± 0.02
12 mg/kg/day	0.04 ± 0.01b	0.23 ± 0.01b	0.28 ± 0.01

Con, control group. Different superscripts (a, b) depict significant differences among body or organs weight (P<0.05).

CYP detection

The CYP levels of the prepared dosages and serum were measured by ELISA following the manufacturer's protocol (R&D Systems, USA). Briefly, after proper dilution, the standards and samples were added to a 96-well plate (coated with CYP-coupling antigen). The antibody-enzyme conjugate was then added, and the plate was incubated for 30 min at 37°C and washed. The color-reagents A and B were then added to each of the wells and the plate was incubated for 10 min at 37°C. The stop solution was then added, and the absorbance value at 420 nm was read. The standard curve was generated according to the standard values to calculate the concentration of each of the samples.

Morphological and histological analyses

The testes were embedded in paraffin, and sections (5-μm thick) were deparaffinized using xylene and then stained with hematoxylin and eosin (HE) through standard procedures for histopathological examination. The mounted slides were examined with a light microscope (IX71, Olympus, Japan), and photos were taken with a Nikon D5300 camera (Nikon, Japan). The quantification of germ cell numbers and germ cell vacuolation was conducted by counting 5–20 related slides.

Immunohistochemical analyses

The immunohistochemical analyses were performed as previously described [36]. The slides were stained with the following antibodies for chromatic visualization: goat anti-3β-HSD, rabbit anti-CYP17A1 (further information on the primary antibodies is provided).

Table 4. Number of offspring and sex ratio of male to female.

Group	Number of offspring	Male to female ratio		
	Male	Female	Total	
Con	31	30	61	1.03:1
0.12 mg/kg/day	13	15	28	0.87:1
1.2 mg/kg/day	29	38	67	0.76:1
12 mg/kg/day	22	32	54	0.69:1

Con, control group. Different superscripts (a, b) depict significant differences among body or organs weight (P<0.05).

Sex determination of offspring

The expression of the Sry gene [35] was detected through the amplification of tail DNA. The extracted DNA was denatured at 95°C for 5 min and amplified through 30 cycles of PCR using the following conditions: 95°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec. The PCR product was subjected to agarose gel electrophoresis and was visualized by ethidium bromide staining. L19 was amplified as an internal control.

Ethics statements

The Ethics Committee for Animal Experimentation of the China Agricultural University approved all of the animal experiments (Register No. SKLAB-2011-01-03).

Table 4. Number of offspring and sex ratio of male to female.

Group	Number of offspring	Male to female ratio		
	Male	Female	Total	
Con	31	30	61	1.03:1
0.12 mg/kg/day	13	15	28	0.87:1
1.2 mg/kg/day	29	38	67	0.76:1
12 mg/kg/day	22	32	54	0.69:1
presented in Table 1, purchased from Santa Cruz, USA), biotinylated rabbit-anti-goat, goat-anti-rabbit IgG (all at 1:200 dilution, Vector Laboratories, USA), and streptavidin-conjugated HRP (1:200 dilution, Jackson ImmunoResearch, USA). The specific binding was visualized using DAB (1:20 dilution, Leica, Germany). The sections were counterstained with hematoxylin and mounted for further microscopic analyses. The numbers of positive cells in the testes at PD21.5 and the testes at PD45.5 and PD90.5 were counted in five randomly and ten randomly selected fields, respectively. A total of 5-20 related slides were used to quantify the number of positive cells.

Figure 1. Effects of maternal perinatal CYP-exposure on the testicular histology of offspring. (A) Testicular histology of the control group offspring at PD21.5. (B) Testicular histology of the 12 mg/kg/day CYP-treated group offspring at PD21.5: the seminiferous epithelium layer was thinner than that of the control. (C) Testicular histology of the control group offspring at PD45.5: normal spermatogenesis was observed. (D) Testicular histology of the 12 mg/kg/day CYP-treated group offspring at PD45.5. Some of the germ cells displayed vacuolation (arrow) and hyperplasia of interstitial cells (arrowhead). (E) Testicular histology of the control group offspring at PD90.5. The lumen of the seminiferous tubules was filled with spermatooza. (F) Testicular histology of the 12 mg/kg/day CYP-treated group offspring at PD90.5. More severe vacuolation of germ cells and destruction of the seminiferous epithelium were observed. All of the images were taken at 400× magnification. Scale bars, 40 μm. (G) Quantification of germ cells in 5–20 related slides of A–F. (H) Quantification of germ cell vacuolation in 5–20 related slides of A–F. The data represent the mean ± SEM. *P<0.05.

doi:10.1371/journal.pone.0096781.g001

Cypermethrin and F1 Testicular Development
Terminal dUTP nick-end labeling staining

The paraffin-embedded slides were stained with the terminal dUTP nick-end labeling (TUNEL) technique to detect the apoptosis of germ cells. An in situ cell death detection kit (AP, Roche, Switzerland) was applied according to the manufacturer’s protocols. The number of TUNEL-positive cells was counted through immunohistochemical analyses. The quantification of the positive cell number was conducted by counting 5-20 related slides.

RNA extraction and semi-quantitative RT-PCR

The total RNA from the testes and mLTC-1 cells (CRL-2065, ATCC, USA) was isolated using the TRIzol reagent (Invitrogen, USA). In addition, pre-PCR was performed to synthesize the cDNA for the semi-quantitative RT-PCR analyses. One microgram of total RNA was incubated with 10 U of avian myeloblastosis virus reverse transcriptase (Promega, USA), dNTP mix, and oligo-dT primers at 42°C for 1 h. The cDNAs were then denatured at 95°C for 5 min and amplified through 20–36 cycles of PCR using the following conditions: 95°C for 30 sec, 51.5°C to 61°C for 30 sec, and 72°C for 30 sec. An aliquot of the RT-PCR

Figure 2. Effects of maternal perinatal CYP-exposure on testicular steroidogenesis-related genes in offspring. (A) The mRNA levels of Star, Cyp11a1, 3β-HSD, Cyp17a1, 17β-HSD3, and Cyp19a1 in the testes at PD21.5 using RT-PCR. Star, Cyp17a1, and 17β-HSD3 were significantly downregulated in the CYP exposure groups. Cyp11a1 displayed a downward trend, but this trend was not significant. However, Cyp19a1 was upregulated, and there was no change in 3β-HSD. (B) mRNA levels of steroidogenesis-related genes at PD45.5. Star, 3β-HSD, and 17β-HSD3 were significantly downregulated in the CYP exposure groups. Cyp19a1 was upregulated, and there were no changes in the Cyp11a1 and Cyp17a1 expression levels. (C) mRNA levels of steroidogenesis-related genes at PD90.5. Star, 3β-HSD, and 17β-HSD3 were downregulated significantly in the CYP exposure groups, and Cyp19a1 was upregulated significantly. The data represent the mean ± SEM. *P<0.05.

doi:10.1371/journal.pone.0096781.g002
product was subjected to agarose gel electrophoresis and visualized by ethidium bromide staining. The density of the gel bands was quantified using the ImageJ software, version 1.34 (NIH). L19 was amplified as an internal control of the total amount of RNA used. The primer sets are given in Table 2.

Western blot analyses

The Western blots were performed as described previously [36]. Briefly, the total protein from the cells was extracted using RIPA buffer. Aliquots of protein were electrophoresed in SDS-PAGE and transferred to a PVDF membrane. The membrane was
incubated with mouse anti-β-Actin, rabbit anti-Star, goat anti-3β-HSD, rabbit anti-CYP17A1, goat anti-17β-HSD3, rabbit anti-Pcna, rabbit anti-AR, and rabbit anti-ERα (further information on the primary antibodies are shown in Table 1, purchased from Santa Cruz, USA). After washing with TBST buffer, the membrane was then incubated with HRP-labeled goat-anti-mouse IgG, goat-anti-rabbit, and rabbit-anti-goat IgG (all at 1:2000 dilution, Jackson ImmunoResearch, USA). The final exposure was obtained using enzymatic chemiluminescence (GE Healthcare, USA). The film was then scanned, and the band density was quantified using the ImageJ software, version 1.34 (NIH).

Figure 4. Effects of maternal CYP-exposure on the AR, ERα, Pcna, and E2/T levels of offspring. (A) The mRNA level of AR was not affected at PD21.5. The ERα level was upregulated significantly in the 12 mg/kg/day-exposure group, and there was an increasing trend in the other exposure group. Pcna expression was not altered. (B) AR expression was downregulated significantly in the exposure groups, and ERα and Pcna were upregulated, which may explain the hyperplasia of interstitial cells. (C) AR and Pcna were downregulated significantly, and ERα was upregulated, as observed at PD21.5 and PD45.5. (D) Serum T and E2 levels and the E2/T ratio at the three time points. The T level was lower, and the E2 level was higher in the CYP exposure groups at PD45.5 and PD90.5. The data represent the mean ± SEM. *P<0.05.
doi:10.1371/journal.pone.0096781.g004
It has been reported that the pyrethroid metabolic concentration in human urine ranges from 0.318 to 189 ppb [37–41] and that the CYP residue in human serum can be as high as 0.3 ppm [42]. We chose to use a CYP concentration of 1 × 10^{-7} - 1 × 10^{-5} M (0.42–42 ppb) in the medium. Leydig mLTC-1 cells were cultured in RPMI1640 containing 100 U/ml penicillin and 100 μg/ml streptomycin at 37°C under a 5% CO₂ atmosphere. Serum starvation was performed for 24 h before treatment, and the cells were then treated with three doses of CYP (10^{-7} M, 10^{-6} M, and 10^{-5} M) at 70% confluence for 24 h. DMSO (1/10) was used as the vehicle control, and LH (5 IU/ml) was used as a positive control. The total RNA and protein were extracted for further analyses.

Measurement of hormone levels

The T and E₂ levels in the serum or culture medium were measured by radioimmunoassay after diethyl ether extraction following the manufacturer’s protocol, as described previously [36].

Statistical analyses

The Data were analyzed for statistical significance using SPSS 12.0.1 (SPSS, USA). The data for all of the groups were first tested for normality through the Shapiro-Wilk test. If normally distributed, they were then compared using one-way ANOVA to determine the differences between the treated groups and the vehicle group. Pearson’s correlation analysis was performed to determine the dose-response relationship. P values less than 0.05 were set as statistically significant. All of the values are presented as the means ± SEM (standard error of mean). All of the graphs were generated with GraphPad Prism 5.0 (GraphPad, USA).

Results

The serum CYP residues of mothers and F1 male mice were determined using the ELISA method (Fig. S2). The concentrations ranged from 5.04 to 169.84 ppb in the mothers and from 0.57 to 7.63 ppb in the F1 male mice. We speculated that CYP can be transmitted from the mother to the offspring through blood and (or) milk. There was a nonsignificant difference between the treated groups and the control group in overall body weight (BW) (PD0.5–PD90.5) with no observed abnormalities in the liver histology among the groups. At PD21.5, the exposure of pregnant mice to 0.12, 1.2, and 12 mg/kg/day CYP significantly decreased the BW, testis weight (TW), and liver weight (LW) in the male offspring. At PD45.5, the TWs of the two treated groups were increased compared with that of the control group. At PD90.5, the BWs of the treated groups were increased. There were nonsignificant differences in the epididymis weight among all of the groups (Table 3). Interestingly, the male-to-female ratio decreased in a dose-dependent manner (Table 4). In addition, lethal embryos were observed at E14.5 of pregnancy, and there were more sites of lethal embryos in the CYP group than in the control group (Fig. S3).

The histological analysis indicated that the seminiferous epithelium of the CYP-treated testes appeared thinner and that the germ cell number was decreased compared with the vehicle-treated group at PD21.5 and PD90.5 (Figs. 1A/B, and E–G). The number of Leydig cells was increased at PD45.5 in the CYP group (Figs. 1C/D). The number of germ cell vacuolations in the CYP group was markedly higher at PD45.5 and PD90.5 than in the control group (Figs. 1C–F and H).

We then examined the steroidogenesis of all of the groups. The expressions levels of these genes were increased with increased age (Fig. S4). The analysis of the different treatment groups revealed that Star expression was decreased significantly at the three time points in the CYP groups, and the same results were observed in the analysis of the expression of 3β-HSD and 17β-HSD3 (Fig. 2). The expression of Cyp11a1 and Cyp17a1 was decreased at PD21.5, whereas Cyp19a1 was upregulated at the three time points in the CYP groups. The immunohistological results indicated that the number of 3β-HSD-positive cells in the CYP group was lower than that observed in the vehicle group at PD21.5 and PD90.5, but the number was higher at PD45.5 (Figs. 3A–F, 3S). Th serum T and estradiol (E₂) levels (Fig. 4D) verified the RT-PCR results.
and the T levels of the two CYP-treated groups were lower than that of the vehicle group (Fig. 4D left), whereas the E_2 level was higher in the CYP groups at PD45.5 and PD90.5 (Fig. 4D right). AR was downregulated at PD45.5 and PD90.5 (Figs. 4A–C). In contrast, ERα was upregulated at all three time points (Figs. 4A–C). Pcna was upregulated at PD45.5 but downregulated at PD90.5 in the CYP groups (Figs. 4A–C). The same results were found with the immunohistological analysis (Figs. 3G–L, 3T).

Insl3, an important regulatory factor in testicular descent and germ cell apoptosis [43], was also decreased in the CYP groups (Fig. S5). Because of the altered germ cell number, we investigated the gene expression level of mitosis and meiosis markers. At PD21.5, Nano3 and Cyclin D2 were decreased in the CYP groups (Fig. 5A). At PD45.5, the Nano3, Stra8, and Cyclin A1 mRNA levels were decreased (Fig. 5B). At PD90.5, Stra8 and Cyclin A1 were significantly decreased in the CYP groups (Fig. 5C). The number of Pcna-positive proliferating germ cells was decreased in the CYP groups at the three time points (Figs. 3G–L, 3T), whereas the TUNEL assay results indicated increased number of apoptotic germ cells in the CYP group at the three time points (Figs. 3M–R, 3U).

The in vivo results indicated the disruption of steroidogenesis after maternal exposure. We treated the mLTC-1 Leydig cell line with CYP (LH was used as a positive control) to determine the effect of CYP on the basal expression level of related genes. LH treatment increased the Star mRNA expression level. CYP treatment decreased Star, Cyp11a1, 3β-HSD, Cyp17a1, and 17β-HSD3 expression, whereas Cyp19a1 was increased. The Star protein level was elevated significantly post-LH induction. The protein levels of Star, 3β-HSD, Cyp17a1, and 17β-HSD3 were decreased post-CYP treatment (Figs. 6B/C). CYP treatment led to decreased T production (Fig. 6D). The expression of AR was downregulated in the CYP group. In contrast, the expression of ERα was downregulated, and the expression of Pcna was upregulated at both the mRNA and protein levels (Figs. 7A–C). Another set of in vitro experiments was also conducted, and these

Figure 6. Effects of CYP-treatment on steroidogenesis-related genes and media T levels in mLTC-1 cells. (A) The mRNA levels of mLTC-1 steroidogenesis-related genes. (B) The protein levels of mLTC-1 steroidogenesis-related genes. (C) Quantitative analysis of scanning densitometry of protein levels of mLTC-1 steroidogenesis-related genes from (B). (D) Media T levels of mLTC-1 cells. The mRNA and protein levels of Star, 3β-HSD, Cyp17a1, and 17β-HSD3 were downregulated significantly compared with the control group. The mRNA and protein levels of Cyp19a1 were upregulated after CYP treatment. The media T levels were downregulated. LH was used as a positive control. The data represent the mean ± SEM. *P<0.05. C, CYP.

doi:10.1371/journal.pone.0096781.g006
Androgen is a prerequisite for normal spermatogenesis and development [45], and the binding of androgen to the AR plays an important role in the induction of the male external genitalia during embryonic differentiation and spermatogenesis [46]. In fetal and neonatal testes, AR expression is restricted to the interstitial compartment [47,48]. Merlet et al. observed testicular dysgenesis during the embryonic period of gender differentiation in AR knockout mice [49]. Thus, perinatal CYP exposure may affect the precursors of adult Leydig cells. Star and 3β-HSD were downregulated significantly in the CYP groups; in addition, in these groups, the T level was reduced, and the Cyp19a1b and E2 levels were increased. Moreover, the AR hormone receptor was downregulated, and ERα was upregulated. An imbalance of androgenic and estrogenic signals may lead to serious structural abnormalities. Previous results have demonstrated that mice overexpressing human aromatase possess a multitude of structural and functional alterations in the reproductive organs [50,51], and a decreased male-to-female ratio may arise from this overexpression. Taken together, the current results indicate that the inhibition of the androgenic signal during the prenatal and neonatal periods impairs the ability of Leydig cells to produce T in favor of E2 due to the overexpression of aromatase.

The apoptosis of spermatogonia and spermatocytes occurs in the mitotic phase [52,53]. Studies have also found that deltamethrin and diethylstilbestrol induce a greater degree of apoptosis in adult male testes [34,55]. In this study, we found much greater apoptosis of germ cells in the CYP groups. Sufficient T plays a vital role in the inhibition of germ cell apoptosis [56]. Reduced T levels lead to the separation of germ cells from the epithelium of the seminiferous tubules [57]. In the present study, we found that the serum T levels were decreased significantly by maternal CYP exposure, which will weaken their ability to maintain spermatogenesis. Studies on bisphenol A [50,59] and hexachlorocyclohexane [60] have demonstrated that EDCs can affect mitosis and meiosis, and we also found that the expression of mitosis and meiosis marker genes was altered. The levels of Nanos3, which is important for maintaining undifferentiated spermatogonia [61], and the cell cycle regulator Cyclin D2 [62] were evaluated. We found that the expression of these two genes was decreased in the CYP groups at PD21.5 and PD45.5. The analysis of Stra8, which regulates meiotic initiation in spermatogenesis [63–65], and Cyclin A1, which is a meiosis-specific cyclin [66,67], revealed that these genes were decreased at PD45.5 and PD90.5. Our results illustrated that spermatogenesis and steroidogenesis were affected by CYP treatment and that the vacuolation of germ cells may be a result of the decreased expression of these key proteins and the reduced T levels.

The male-to-female ratio at birth is a marker of parental endocrine disruption [68]. In this study, we found that the sex ratio of the offspring was decreased in a dose-dependent manner. In utero exposure is widely considered to be the most sensitive exposure time in terms of reproductive effects [69]. Studies have shown that the mammalian hormone levels around the time of conception are associated with the sex of the resulting offspring [70]. Parental exposure to both dioxin and vinclozolin has been shown to cause excess female offspring [69,71] due to altered hormone concentrations. In the present study, we found that the serum E2/T ratio was higher in the CYP groups, which may account for the decreased male-to-female sex ratio. In addition, the observed fetal death sites in utero after CYP treatment indicated that CYP affects male fetal development. Even we could not figure out the precise mechanism in this study, this decreased sex ratio resulting from CYP exposure should arouse the attention of researchers and policy makers. Does CYP affect the proteins that regulate fetal formation and maternal-fetus interface, or could it directly affect

Discussion

Most studies have reported that direct exposure to high-dose of CYP impairs male reproduction [10,18,44]. We investigated the low-dose effects of CYP exposure during the perinatal stage and found impaired testicular development and steroidogenesis in the male offspring. The male-o-female ratio, BW, and TW were decreased at PD21.5. The structure of the seminiferous epithelium layer was also changed. The expression levels of steroidogenesis genes and hormone receptors were altered after CYP exposure both in vivo and in vitro. The mitosis and meiosis markers were also changed. The serum T levels were decreased, and E2 levels were increased.

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e96781
the genes controlling sex? The mechanism should be elucidated further.

Although the gene expression profiles were mostly similar between the in vivo and in vitro CYP treatment conditions, the gene expression of ERz differed between the two conditions. It is known that the localization of ERz is different during different testicular development stages [72]. In the fetal tests, ERz is present in Leydig cells only [73], whereas in the neonatal tests, ERz is present in Leydig cells, rete testis [74], and efferent ductules [74,75]. In the adult tests, ERz expression is also found in round spermatids [76]. CYP may not influence ERz expression in regions other than Leydig cells, which may explain the difference in the results between the in vivo and in vitro conditions.

In summary, our study determined that maternal low-dose CYP exposure during the perinatal stage impairs steroidogenesis and spermatogenesis in male offspring, which may have long-term effects on male fertility. These results have been found in mice, and our findings suggest that CYP may also impair testicular development in humans.

Supporting Information

Figure S1 Sex determination of offspring using through Sry gene analysis. The sex of the offspring was determined through morphology and amplification of the Sry gene. F1–F8, offspring of one maternal mouse treated with high-dose CYP, a negative and positive control were also used. L19 was used as an internal control. (TIF)

Figure S2 Concentration of CYP in the prepared dosages and the mother and offspring sera. The CYP concentrations of all of the samples were determined by ELISA. The concentrations of the prepared dosages were 20,243.5, 214,363.5, and 2,204,083.4 ppb, which are consistent with the expected values (23,980.81, 239,808.1 and 2,398,081 ppb). The serum concentrations of the CYP-treated maternal mice were 5.04, 34.82, and 169.8405 ppb, and those in the offspring were 20,243.5, 214,363.5, and 2,204,083.4 ppb, which are consistent with the expected values (23,980.81, 239,808.1 and 2,398,081 ppb). The data represent the mean ± SEM. *indicates a significant difference between the group and control group, #indicates a significant difference between the group and the PD21.5 group; ##indicates a significant difference between PD45.5 and PD90.5, * or ##P<0.05. (TIF)

Figure S3 Fetal death in utero of oil- and CYP-treated groups. (A) Utero at E14.5 from oil-treated mouse. (B) Utero at E14.5 from high dose CYP-treated mouse, several fetal death sites (arrow) were observed in CYP-treated mouse. C, CYP. (TIF)

Figure S4 Time course expression of steroidogenesis genes at PD21.5, PD45.5, and PD90.5. The mRNA levels of Star, Cyp11a1, 3β-HSD, Cyp17a1, 17β-HSD3, and Cyp19a1 in the testes at PD21.5, PD45.5, and PD90.5 were measured using RT-PCR. All of the genes were significantly increased at PD45.5 and PD90.5 compared with the levels observed at PD21.5. The data represent the mean ± SEM. *indicates a significant difference between the group and the PD21.5 group; #indicates a significant difference between PD45.5 and PD90.5, * or #P<0.05. (TIF)

Figure S5 Effects of maternal perinatal CYP exposure on Insl3 level of offspring. The mRNA levels of Insl3 in the different treatment groups at PD21.5, PD45.5, and PD90.5. CYP treatment can decrease the Insl3 level at the three time points. The data represent the mean ± SEM. *indicates a significant difference between the group and control group, * P<0.05. (TIF)

Figure S6 Effects of CYP+LH treatment on steroidogenesis-related genes and AR, Ertα, and Pena levels in mLTC-1 cells. (A) mRNA levels of steroidogenesis-related genes in mLTC-1 cells. (B) mRNA levels of mLTC-1 AR, Ertα, and Pena. (C) Media T levels of mLTC-1 cells. CYP+LH reduced the induction effect of LH on Star, Cyp11a1, AR, and Ertα, but the mRNA levels were still higher than those observed in the vehicle group. 3β-HSD, cyp17a1, and 17b-HSD3 were downregulated by CYP+LH treatment, whereas LH alone had a minor inhibitory effect on the expression of these genes. Cyp19a1 and Pena were upregulated by CYP+LH treatment, whereas LH alone increased the expression of these genes. The media T levels were decreased in the 10−6 and 10−3 M CYP+LH groups compared with the LH group. The data represent the mean ± SEM. *indicates a significant difference between the group and the control group, #indicates a significant difference between the group and LH group, *or ##P<0.05, C, CYP. (TIF)

Acknowledgments

We thank the Elsevier language service for revising the English language of our revised manuscript.

Author Contributions

Conceived and designed the experiments: XL CH. Performed the experiments: CH. Analyzed the data: CH XL. Contributed reagents/materials/analysis tools: XL CH. Wrote the paper: CH XL. Critical revision: XL CH.

References

1. Caserta D, Maranghi L, Mantovani A, Marcì R, Maranghi F, et al. (2008) Impact of endocrine disruptor chemicals in gynaecology. Hum Reprod Update 14: 59–72.
2. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101: 378–384.
3. Kjeldsen LS, Ghisari M, Bonefeld-Jørgensen EC (2013) Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol Appl Pharmacol.
4. Berteau Peter E, Knaack James B, Mengle Donald C, Schneider Jay B (1988) Insecticide Absorption from Indoor Surfaces. Biological Monitoring for Pesticide Parameters in the male rats. Arch Environ Contam Toxicol 41: 522–528.
5. Choe H, Moon JK, Liu KH, Park HW, Ihm YB, et al. (2006) Risk assessment of insecticide, cypermethrin, in mice in vivo. Toxicol Lett 41: 223–230.
6. Bhunya SP, Pati PC (1988) Genotoxic effects of a synthetic pyrethroid insecticide, cypermethrin, in mice in vivo. Toxicol Lett 41: 223–230.
7. Elbietieha A, Da'an SI, Khamaw M, Durmani H (2001) Evaluation of the toxic potentials of cypermethrin pesticide on some reproductive and fertility parameters in the male rats. Arch Environ Contam Toxicol 41: 522–528.
8. Choi H, Moon JK, Liu KH, Park HW, Ihm YB, et al. (2006) Risk assessment of human exposure to cypermethrin during treatment of mandarin fields. Arch Environ Contam Toxicol 50: 437–442.
9. Wang H, Wang SF, Ning H, Ji YL, Zhang C, et al. (2011) Maternal cypermethrin exposure during lactation impairs testicular development and spermatogenesis in male mouse offspring. Environ Toxicol 26: 382–394.
10. Bhunya SP, Pati PC (1988) Genotoxic effects of a synthetic pyrethroid insecticide, cypermethrin, in mice in vivo. Toxicol Lett 41: 223–230.
11. Rodriguez H, Tamayo G, Inostroza J, Soto C, Bustos-Oehrger E, et al. (2009) Cypermethrin effects on the adult mice seminal glands. Ecotoxicol Environ Saf 72: 650–662.
40. Becker K, Seiwert M, Angerer J, Kolossa-Gehring M, Hoppe HW, et al. (2006) Genetic evidence equating SRY and the testis-determining factor. Nature 348: 448–450.

34. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al. (1990) Northern Poland. Int J Hyg Environ Health 216: 295–300.

31. Jaensson A, Scott AP, Moore A, Kylin H, Olsen KH (2007) Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquat Toxicol 81: 1–9.

30. Laabs V, Amelung W, Pinto AA, Wantzen M, da Silva CJ, et al. (2002) Anti-androgenic activity in the amino- and carboxyl-terminal interaction of the androgen receptor. Toxicology 292: 99–104.

26. Kristensen P, Irgens LM, Andersen A, Bye AS, Sundheim L (1997) Birth defects and toxicological aspects. Environ Int 36: 138–151.

24. Carbone P, Giordano F, Nori F, Mantovani A, Taruscio D, et al. (2007) The possible role of endocrine disruptors on endocrine function during development. Environ Health Perspect 107 Suppl 4: 613–618.

20. Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16: 972–978.

1858–1863.

18. Al-Hamdani NM, Yajurvedi HN (2010) Cypermethrin reversibly alters sperm behaviour in male parr of brown trout (Salmo trutta L.). Aquat Toxicol 81: 1–9.

17. Hu JX, Li YF, Pan C, Zhang JP, Wang HM, et al. (2012) Anti-androgen effects of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int J Hyg Environ Health 216: 295–300.

14. Wu W, Zhang J, Zhu W, Zheng YF, Zhu HJ, et al. (2008) Impaired reproductive development in sons of women occupationally exposed to modern pesticides: a prospective study. Environ Health 10: 10–79.

13. Song L, Wang YB, Sun H, Yuan C, Hong X, et al. (2008) Effects of fenvalerate and cypermethrin on rat sperm motility patterns in vitro as measured by computer-assisted sperm analysis. J Toxicol Environ Health A 71: 325–332.

12. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al. (1990) Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect 106 Suppl 1: 5–10.

10. lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study. Environ Health 10 Suppl 1: 5–10.

9. Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, et al. (1998) Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20: 377–380.

8. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132: 1–6.

7. 42. Khan DA, Hashmi I, Mahjabeen W, Naqvi TA (2009) Urinary excretion of 3-phenoxbenzoic acid in middle-aged and elderly general population of Japan. Environ Res 109: 173–180.

6. 41. Ueyama J, Kimata A, Hamajima N, Ito Y, et al. (2009) Urinary excretion of 3-phenoxbenzoic acid in middle-aged and elderly general population of Japan. Environ Res 109: 173–180.

5. 40. Becker K, Seiwert M, Angerer J, Kolossa-Gehring M, Hoppe HW, et al. (2006) Urinary excretion of 3-phenoxbenzoic acid in middle-aged and elderly general population of Japan. Environ Res 109: 173–180.

4. 39. Dohle GR, Smit M, Weber RF (2003) Androgens and male fertility. World J Urol 21: 341–345.

3. 38. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al. (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348: 448–450.

2. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al. (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348: 448–450.

1. 37. Schrader M, Muller-Tidow C, Ravnik S, Muller M, Schulze W, et al. (2002) Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Dev Biol 253: 725–736.

70. James WH (2008) Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. Journal of Endocrinology 198: 3–15.
71. Zober A, Hoffmann G, Ott MG, Will W, Germann C, et al. (1995) Study of morbidity of personnel with potential exposure to vinclozolin. Occup Environ Med 52: 233–241.
72. O’Donnell L, Robertson KM, Jones ME, Simpson ER (2003) Estrogen and spermatogenesis. Endocr Rev 22: 289–310.
73. Greco TL, Farlow JD, Durlof TM, Gorski J (1992) Immunodetection of estrogen receptors in fetal and neonatal male mouse reproductive tracts. Endocrinology 130: 421–429.
74. Fisher JS, Millar MR, Majdic G, Saunders PT, Fraser HM, et al. (1997) Immunolocalisation of oestrogen receptor-alpha within the testis and excurrent ducts of the rat and marmoset monkey from perinatal life to adulthood. J Endocrinol 153: 485–495.
75. Nielsen M, Bjornsdottir S, Hoyer PE, Byskov AG (2000) Ontogeny of oestrogen receptor alpha in gonads and sex ducts of fetal and newborn mice. J Reprod Fertil 118: 195–204.
76. Pelletier G, Labrie C, Labrie F (2000) Localization of oestrogen receptor alpha, oestrogen receptor beta and androgen receptors in the rat reproductive organs. J Endocrinol 165: 359–370.