Lattice coupling and Franck–Condon effects in K-edge resonant inelastic x-ray scattering

To cite this article: J N Hancock et al 2010 New J. Phys. 12 033001

View the article online for updates and enhancements.

Related content
- Uncovering selective excitations using the resonant profile of indirect inelastic x-ray scattering in correlated materials: observing two-magnon scattering and relation to the dynamical structure factor
 C J Jia, C-C Chen, A P Sorini et al.
- Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L3 resonant inelastic x-ray scattering
 M Moretti Sala, V Bisogni, C Aruta et al.
- Theoretical description of charge excitations in low-dimensional undoped cuprates
 C. Waidacher, J. Richter and K. W. Becker

Recent citations
- Experimental signatures of phase interference and subfemtosecond time dynamics on the incident energy axis of resonant inelastic x-ray scattering
 L. Andrew Wray et al.
- Charge-orbital-lattice coupling effects in the dd excitation profile of one-dimensional cuprates
 J. J. Lee et al.
- The angular- and crystal-momentum transfer through electron–phonon coupling in silicon and silicon-carbide: similarities and differences
 P S Miedema et al.
Lattice coupling and Franck–Condon effects in K-edge resonant inelastic x-ray scattering

J N Hancock¹,², G Chabot-Couture³ and M Greven³,⁴

¹ Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309, USA
² Département de Physique de la Matière Condensée, 24 quai Ernest-Ansermet, Université de Genève, Genève, CH-1211, Switzerland
³ Department of Applied Physics, Stanford, CA 94305, USA
⁴ School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

E-mail: jason.hancock@unige.ch

New Journal of Physics 12 (2010) 033001 (10pp)
Received 19 October 2009
Published 3 March 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/3/033001

Abstract. In this paper, we discuss our recent Cu K-edge resonant inelastic x-ray scattering (RIXS) results for CuB₂O₄, a model system consisting of electronically isolated CuO₄ plaquettes, which exhibits anomalies in the incident photon energy dependence that are not captured by electron-only models. We show that these anomalous features can be qualitatively described by extending the electron-only considerations to include the lattice degrees of freedom. Our findings have important general implications for the interpretation of K-edge RIXS results for electronically higher-dimensional transition metal oxides.

Contents

1. Introduction 2
2. The electron-only model 2
3. Molecular orbital (MO) excitation in experiments 4
4. Effect of lattice degrees of freedom 4
5. Implications, conclusions and outlook 8
Acknowledgments 9
References 9
1. Introduction

Resonant inelastic x-ray scattering (RIXS) can be regarded as a resonant Raman process that results in electronically excited final states reached through intermediate core-hole states of x-ray edges. This species-specific, momentum-tunable probe is enabling the study of Mott–Hubbard physics [1]–[4], Kondo phenomena in rare-earth intermetallics [5], \(d \rightarrow d\) excitations of transition metal species in complex oxides [6, 7] and, more recently, orbital [8] and magnetic [9, 10] excitations. While this promising technique has led to new insights into the excitation spectra of complex materials, its status as an experimental probe is relatively immature in comparison with the fields of optical or photoemission spectroscopy.

Here, we describe the consequences of common considerations [7, 11] of the RIXS cross-section of a single CuO\(_4\) plaquette, resonantly excited through the Cu K (1s \(\rightarrow\) 4p) x-ray absorption edge. Motivated by recent experimental work for the relatively simple model system CuB\(_2\)O\(_4\), we then point out aspects of the data [7, 15, 16] that cannot be explained by electron-only considerations [7, 11]. The discrepancies can be directly addressed through consideration of the coupling of lattice degrees of freedom through the standard Franck–Condon formalism. We conclude that similar considerations are necessary in the analysis of K-edge RIXS results of more complex transition metal oxides.

2. The electron-only model

With only one hole, the ground state of the single CuO\(_4\) plaquette transforms as \(x^2 − y^2\), with a completely filled 1s electronic core shell, a completely empty Cu 4p shell, and one hole shared among the Cu 3d and O 2p orbitals [12]. A photon with sufficient energy (\(\sim 8995\) eV) can be absorbed, inducing a dipole-allowed optical transition, which results in a 4p electron and a 1s core hole. In the simplest treatment of Cu K-edge RIXS, the influence of the core hole is to locally repel valence holes, thereby disturbing the Cu 3d and O 2p valence subsystem, while the extended 4p electron is considered to have a relatively limited influence on the dynamics [7, 11]–[14]. The RIXS process is completed when the 4p electron radiatively recombines with the 1s core hole, emitting a photon that leaves behind an amount of energy reflective of a core-hole-induced excitation created in the valence system. Because the core-hole potential is localized, the resulting spectroscopic process induces electronic transitions among valence states of the same symmetry; hence, we may limit our attention to states with \(x^2 − y^2\) character, as is commonly done in considerations of core-level photoemission spectroscopy [12, 13].

Following van Veenendaal et al [13], we therefore need only consider the \(x^2 − y^2\) state \(|d^0\rangle\) with hole density on the Cu and on the O 2p ligand state of the same symmetry, which we call \(|d^{10}L\rangle\) (sometimes called \(|p_{x^2−y^2}\rangle\) [13]). The wavefunctions for these states are shown in figure 1(a). These basis states are energetically separated by the bare charge-transfer energy \(\Delta\), but are further split under the hybridization \(t_{pd}\), and the new ground state is formed as a bonding combination of two basis states: \(|g\rangle = \cos \theta |d^{10}L\rangle + \sin \theta |d^0\rangle\). The antibonding state \(|MO\rangle = − \sin \theta |d^{10}L\rangle + \cos \theta |d^0\rangle\) is generally referred to as the MO excitation. Transitions from the ground to the MO state are RIXS active at the Cu K edge because they do not involve changes in the symmetry of the electronic wavefunction [7, 11, 15]. This is very different from the case of soft x-ray RIXS at the Cu L\(_3\) edge [6, 8, 10, 17], where symmetry-changing \(d \rightarrow d\) transitions are favored over these symmetry-preserving ‘charge-transfer’ excitations.
Figure 1. (a) Hilbert subspace of a single CuO$_4$ plaquette. Basis states (d^9 and d^{10}L) are shown as black arrows. The effect of introducing hybridization t_{pd} and rediagonalization is effectively a rotation in this picture, giving the red arrows, which show the ground (g) and molecular orbital (MO) states. Further introduction of the core-hole potential gives the purple arrows, depicting the well-screened (WS) and poorly screened (PS) states. The matrix elements for various spectroscopic processes are represented by dotted lines. Hole wavefunctions are shown around the perimeter, and the angles θ and ϕ used in the text are defined. (b) Energy level diagram for this system, showing the effect of including t_{pd} and the core-hole potential. Colors used correspond to (a). (c) RIXS profile of the single plaquette; after [7]. State energies are $E_g = 0$, $E_{MO} = 6$ eV, $E_{WS} = 8990$ eV and $E_{PS} = 8998$ eV.

During the Cu K-edge RIXS process, a deeply bound 1s electron makes a dipole-allowed transition to a spatially extended, high-energy 4p state, leaving behind a 1s core hole. This strong perturbation affects the structure of valence electronic states, giving rise to two new states, shown as purple arrows in figure 1(a). The lower-energy ‘well-screened’ state $|WS\rangle = \cos \phi |d^{10}L\rangle + \sin \phi |d^9\rangle$ has a large electron density screening the core-hole potential, while the ‘poorly screened’ state $|PS\rangle = -\sin \phi |d^{10}L\rangle + \cos \phi |d^9\rangle$ has a higher hole density. In Cu L$_3$ x-ray photoemission spectroscopy (XPS) [13], the projection of the ground state onto each of these states determines the spectral profile (e.g. $I_{XPS} \propto |\langle WS|g\rangle|^2$). However, in a resonant elastic or inelastic scattering experiment (REXS or RIXS), the signal arises from double projections, first from the ground state (g) onto highly excited intermediate states (WS or PS), and then back to the lower-energy excited state (the MO state in the present example). In this case, the double projection has a particular property: $\langle MO|WS\rangle\langle WS|g\rangle = -\langle MO|PS\rangle\langle PS|g\rangle$, independent of t_{pd} or core-hole interaction strength, as can be seen graphically in figure 1(a).
This fact implies that there is equal strength of RIXS scattering through each of the two intermediate states into the MO final state, leading to a double-peak pattern (figure 1(c)). A streak of intensity between these two resonances occurs due to constructive interference for intermediate photon energies, and is a consequence of the resonant Raman process for two non-degenerate intermediate states with equal and opposite matrix elements [7].

3. Molecular orbital (MO) excitation in experiments

To date, the MO excitation has been observed in cuprates of various electronic dimensionalities: quasi-zero dimensional [7], edge-shared one-dimensional [11, 16], corner-shared one-dimensional [18], two-dimensional planar [1–4], [19] and three dimensional [20]. The electronic structure is far more complicated in the higher-dimensional systems than in the molecular limit, but a localized MO excitation is nonetheless observed [15]. As discussed above, it appears that this excitation resonates strongly at both the WS and PS states of the low-dimensional systems [7, 11]. In general, an approximate correspondence can be made with the WS and PS states discussed above, and it is through a higher-energy PS-like state that the MO excitation resonates most strongly, due to the localized nature of the dominantly d^9 character. A WS-like intermediate state can also be identified, but because this state involves the displacement of hole density away from the Cu site and onto the neighboring O, it couples most directly to extended excitations of both the charge-transfer [1–4], [19] and magnetic [9, 10] types.

Figure 2(a) shows Cu K-edge RIXS data for electronically quasi-zero-dimensional CuB$_2$O$_4$. Data were collected at SPring-8 BL11XU with instrumental energy resolution 380 meV full-width at half-maximum (FWHM). The strong Raman-dispersing peak at \sim7 eV transfer is the MO excitation [7]. The low-energy $d \rightarrow d$ and higher-energy 4p excitations are identified and discussed in detail elsewhere [7]. Figure 2(b) shows an anomalous 20% sharpening of the excitation at an incident energy of 9002 eV. Figure 2(c) shows that there is a clear step-like incident energy dependence to the MO feature’s energy, which mimics the behavior found in the edge-shared cuprate Li$_2$CuO$_2$ [16], also shown in figure 2(c). These observations cannot be understood in the electron-only treatment discussed above, and were not reproduced by the purely electronic cluster calculations of Hancock et al [7] or Vernay et al [11]. A third puzzling aspect of data is the broad Gaussian lineshape, which is unexpected for a long-lived electronic final state that is weakly coupled to its environment. We interpret these salient, but enigmatic properties to imply that purely electronic considerations are insufficient to fully understand the data.

4. Effect of lattice degrees of freedom

We now make the simplest possible extension of the above model to include the lattice degrees of freedom of the system, and show that these three puzzling aspects of data can be succinctly addressed. The procedure follows the Franck–Condon (FC) treatment for a molecular system [17, 21, 22], wherein we consider as before transitions among the electronic degrees of freedom (e), but with additional coupling to the vibrational continuum (v) within the sudden approximation at each stage of the two-step RIXS process. This process is shown schematically in figure 3(a).
Figure 2. (a) Line scans for CuB$_2$O$_4$ [7] showing the incident energy dependence of the MO excitation. (b) Incident energy dependence of the MO Gaussian width. The line shows the same for the model discussed in the text, multiplied by a factor of 2.5. (c) Incident energy dependence of the MO peak position of CuB$_2$O$_4$ (incident polarization $\epsilon_{||} \langle 001 \rangle$) [7] (solid circles) and Li$_2$CuO$_2$ [16]. The line shows the position from the model calculation (figure 3(b)). (d) The incident energy dependence of the Gaussian position for La$_2$CuO$_4$ (from [1]).

The RIXS cross-section for this model is then given by the Kramers–Heisenberg formula:

$$\frac{d\sigma}{d\Omega} \propto \sum_{m=0}^{\infty} |\mathcal{M}|^2 \delta(h(v_{in} - v_{sc}) - (E_{MO} + m_{MO}h\omega_0 - E_g)),$$

(1)

with the amplitude

$$\mathcal{M} = \sum_{n=0}^{\infty} \sum_{i=WS,PS} \frac{\langle \text{MO} | i \rangle \langle i | g \rangle_{sc} \langle m_{MO} | n_i \rangle \langle n_i | 0_g \rangle}{h v_{in} - (E_i^0 + h\omega_0 n_i - E_g) - i\Gamma}.$$

(2)

Here, ω_0 is the natural frequency of the harmonic potential, Γ is the core-hole decay rate, E_{MO}, E_i and E_g are the (electronic) energies of MO, intermediate (WS or PS) and ground states, respectively, and hv_{in} ($h v_{sc}$) is the energy of the incident (scattered) photon.

The result for the purely electronic model in figure 1(c) is recovered if we assume negligible lattice coupling and molecular potential deformations. As before, we would have a strong MO excitation, resonating equally at the WS and PS states, whose position is given by the bare
Figure 3. (a) Schematic of the FC process. Electronic transitions are accompanied by a manifold of vibrational transitions, so that overlaps of nuclear wavefunctions between ground, intermediate and final states need to be considered. The overlaps strongly depend on the relative displacement of these three states (coordinates x_g, x_{WS}, x_{PS} and x_{MO}), which enter the FC amplitudes as $\gamma_{a\rightarrow b} = \sqrt{\mu \omega_0 / 2 \hbar} (x_b - x_a)$. The one-dimensional spatial ordering of these four states is implied by the fit to the model shown in figure 2(c). (b) Plot of equation (1) for the FC factors given in equation (2) with $\gamma_{g\rightarrow WS} = -4, \gamma_{WS\rightarrow MO} = 8, \gamma_{g\rightarrow PS} = 6$ and $\gamma_{PS\rightarrow MO} = -2$, with $\hbar \omega_0 = 75$ meV. The vertical line at 5.55 eV shows the bare electronic excitation energy. Incident energy-dependent (c) position and (d) width for fixed $\gamma_{g\rightarrow WS} = +3$ and various values of $\gamma_{g\rightarrow MO}$.

Electronic transition energy $E_{MO} - E_g$, and whose width is narrow, determined by the intrinsic lifetime of the final electronic state. The new elements are FC factors that represent the overlap of nuclear wavefunctions from the ground- and excited-state potential energy surfaces. These overlaps can be analytically calculated [22] if we assume a purely translational shift of a one-dimensional harmonic potential. FC factors are then calculated as simple overlaps of harmonic wavefunctions (figure 3(a)), e.g.

$$[(m_a|n_b)]_{\nu} = e^{-\gamma_{a\rightarrow b}^2 / 2} \frac{(-1)^{n-N} \sqrt{m!n!} \gamma_{a\rightarrow b}^{n+m-2N}}{(n+m-N)!} L_N^{n+m-2N}(\gamma_{b\nu}^2),$$

(3)

where $N = \min(n, m), L_N^m$ is the associated Laguerre polynomial and $\gamma_{a\rightarrow b} = \sqrt{\mu \omega_0 / 2 \hbar} (x_b - x_a)$ is the electronic transition-induced displacement of harmonic potential in units of the ground state positional uncertainty.

Parameters of the model that express the influence of phonon coupling are $\gamma_{g\rightarrow i}$ and $\gamma_{i\rightarrow MO}$, where $i \in \{WS, PS\}$ and the phonon frequency ω_0. The latter sets the energy scale
for coarse changes in both directions of the energy transfer/incident energy plane. In this plane, the core-hole broadening ($I \sim 1$ eV) provides a large electronic energy uncertainty in the incident energy direction. Therefore, the summation over the intermediate state phonon index n has highly overlapping, interfering contributions, with relative phases that are energy dependent close to the resonance. The result of this summation also depends on the final state phonon index m, and therefore weakly affects the lineshape in the energy-transfer direction. The model therefore supports incident energy-dependent lineshape properties, even with only one electronic transition, in contrast to purely electronic models [7, 11].

In more detail, the lineshape is dependent on the relationship between $\gamma_{g\rightarrow i}$ and $\gamma_{i\rightarrow MO}$. If $\gamma_{g\rightarrow i} + \gamma_{i\rightarrow f} = \gamma_{g\rightarrow f} = 0$, there is no net displacement of the potential energy surface and no effect in the energy transfer direction: we again recover figure (c), with an expected narrow Lorentzian. For a fixed $\gamma_{g\rightarrow i}$, moving $\gamma_{i\rightarrow f}$ in either direction away from the symmetry point $\gamma_{g\rightarrow f} = 0$, the lineshape blueshifts and quickly becomes Gaussian for even the modest value of $|\gamma_{g\rightarrow f}| \sim 3$. Figures 3(c) and (d) show the position and width for a range of values of $\gamma_{i\rightarrow f}$ with $\gamma_{g\rightarrow i} = +3$, respectively. In addition to the blueshift of order $h\omega_0|\gamma_{g\rightarrow f}$ and a broadening of order $h\omega_0|\gamma_{i\rightarrow f}$, step-like modulations appear in the energy position and width, when the incident photon energy passes through resonance. The direction of the step in incident energy position depends on whether $0 < \gamma_{g\rightarrow f}$ (region A) or $0 > \gamma_{g\rightarrow f}$ (region B). These two limits are sketched in figure 3(a) as a set of red or blue arrows, respectively.

The comparison in figure 2(b) of these trends in the incident energy-dependent position in the data for CuB$_2$O$_4$ and the calculation suggests that the PS state is in region A. This assignment is consistent with the fact that there is an abrupt stiffening and narrowing of the feature as $h\nu_{in}$ passed through the PS resonance around 8998 eV. The situation for the WS state is less clear, due to a lack of narrowing at lower incident energies, as well as likely interference from the approaching $K\beta_{2.5}$ fluorescence line, which is a relatively strong 3d \rightarrow 1s radiative transition at a fixed scattered photon energy of 8976 eV (figure 2(a)). Despite ambiguities regarding the description of the WS state, we tentatively put the WS state in region B based on the step in the MO position near 8994 eV. Figure 3(b) shows the model results with $E_{PS} - E_{WS} = 5.55$ eV and $(\gamma_{g\rightarrow WS}, \gamma_{WS\rightarrow MO}, \gamma_{WS\rightarrow PS}$ and $\gamma_{PS\rightarrow MO}) = (-4, 8, 6, -2)$, corresponding to $\gamma_{g\rightarrow f} = 4$. The vibrational energy was chosen to be $h\omega_0 = 75$ meV, which is a typical value for bond-stretching phonons in cuprates [23]. Values of the four parameters γ imply a spatial ordering to the equilibrium positions shown in the schematic of figure 3(a).

Having established that the phonon-coupled model in equations (1)–(3) is capable of describing the data at a qualitative level, we point out limitations that may be important to a quantitative application. First, the experimental value of the MO width (~ 760 meV) is about 2.5 times larger than the model value. The quantitative comparison has several potential shortcomings. One is the large uncertainty in the intrinsic width of the electronic excitation, which could strongly effect a quantitative analysis based on the width of the MO feature. If we assume a larger intrinsic width, we can partially remedy the discrepancy, but still underestimate the narrowing near $h\nu_{in} = 9000$ eV. Another point is that the curvature of the internuclear potential energy is not likely to be the same at each stage of the process, as we have assumed. Such effects would manifest themselves as different values of ω_0 for the g, MO, WS and PS states. In an extreme case, the potential energy surfaces may not even support bound vibrational states, but rather have an unstable, dissociative nature. Additional complications arise from the fact that CuB$_2$O$_4$ contains two crystallographically distinct plaquette types, which may inhomogeneously broaden the lineshape, leading to an overestimate of the importance of
phonons based on the width alone. Furthermore, there exist scattering channels that are not included in the above considerations, such as those that give rise to the $d \rightarrow d$ and 4p transitions described in [7]. It is therefore possible that the peak is composed of several electronic transitions, further obfuscating an interpretation of its width. While a detailed quantitative application of the FC model with quantum chemistry methods is beyond the scope of the present work, we have shown that this model has the desired properties to describe the Gaussian lineshape with concurrent resonance-induced narrowing and step in energy transfer for the PS state.

5. Implications, conclusions and outlook

We now discuss some general implications of our observations. Kim et al [15] performed a systematic study of the MO excitation energy for a wide range of cuprates and obtained the surprising result that this energy scales with the copper–oxygen bond length $d_{\text{Cu-O}}$ as $d_{\text{Cu-O}}^{-\alpha}$ with $\alpha \sim 8 \pm 2$. This behavior is very different from that expected based on Harrison’s rules [24] and band structure calculations [25], for which the exponent is in the range $\alpha \sim 3.5$–4. We identify the feature observed in RIXS as the maximum of an FC band (at energy $E_{\text{MO}} + \hbar\omega_0\gamma_{i \rightarrow f}^2 - E_g$), and not as the bare electronic transition (zero-phonon line at $E_{\text{MO}} - E_g$), which would reside at a much lower energy (e.g. the vertical line in figure 3(b)). Consequently, in addition to a purely electronic contribution with a small exponent, we expect a significant additive contribution that arises from the bond length ($d_{\text{Cu-O}}$) dependence of the molecular potential shifts ($\gamma_{i \rightarrow f}$ and $\gamma_{g \rightarrow i}$). In our interpretation, this dependence is determined by the way the relevant phonon frequencies and potential shifts depend on the bond length. Our result suggests that the parameter combination $\hbar\omega_0\gamma_{i \rightarrow f}^2$ behaves approximately as $d_{\text{Cu-O}}^{-8\pm2}$.

Hancock et al [7] assign the weak ~ 2 eV of CuB$_2$O$_4$ (reproduced in figure 2(a)) to a $d \rightarrow d$ excitation and showed that this transition is a robust, one-plaquette effect, and not the result of local symmetry-lowering distortions. This transition is anomalous because it necessarily involves a change in symmetry, an effect unexpected at the Cu K edge. In the context of phonon coupling, we can address its appearance by considering the effect of the 4p electron on the molecular potential surface. If the photoelectron reaches, say, a 4px state, anisotropic screening could force the magnitude of molecular displacement of the O placed along the $\pm x$-axis to be different from the displacement of the O placed along the $\pm y$-axis. This distortion of the plaquette in the B_{1g} channel in the intermediate state could open a pathway to a $d_{3z^2-r^2}$ final state, for example. In [7], it was found that the $d \rightarrow d$ excitation resonates more strongly at the WS and PS states with 4p$_{x,y}$ polarization than with 4p$_z$ polarization, thus supporting this scenario for $d \rightarrow d$ genesis. Future high-resolution data for CuB$_2$O$_4$ or other low-dimensional cuprate systems may help give better insight into the nature of the $d \rightarrow d$ transition and the plausibility of this scenario.

Finally, we discuss the possible extension of the lattice-coupled RIXS cross-section to planar cuprates. Abbamonte et al [1] reported a 6 eV excitation at the K edge of Cu in La$_2$CuO$_4$, which was described by a Gaussian lineshape dressed by resonant denominators representing the incident and scattered photon poles. This description of data is phenomenological in the sense that it describes the data only up to a function S_K, which is a property of the material. Our result may be consistent with this approach in many cases, but addresses the remaining ambiguities through considering the microscopic Hamiltonian in a system where the allowed electronic excitations are known, and few in number. Experiments in a different scattering geometry
[3, 4, 19] resolved a fine structure of the 6 eV excitation; hence, the original work in [1] should be regarded as a measure of the overall inelastic spectral weight, containing both the MO excitation and charge-transfer excitations. As can be seen from figure 2, the incident energy-dependent position of this spectral weight exhibits qualitative similarities to the MO excitation results for CuB$_2$O$_4$ and Li$_2$CuO$_2$ as well as our model calculation. The magnitude of the shift is much larger for La$_2$CuO$_4$, perhaps reflecting the enhanced range of influence of the core-hole potential in generating phonons, or additional effects due to the complex electronic structure of the CuO$_2$ plane. More recent experimentation [1, 2, 4, 19, 26] revealed that a sharp, relatively weak 2.2 eV charge-transfer feature resonates at the WS state of La$_2$CuO$_4$ and appears to have a temperature-dependent lineshape [26]. The latter observation may be addressed already within a simple extension of our model: we have considered transitions only from the electronic-vibrational ground state, but transitions from the ensemble of thermally activated vibrational states would inevitably change the line profile, suggesting a route to understanding the observed temperature dependence at the relatively high energy of ~2.2 eV.

In conclusion, we have shown that the electron-only models are incapable of describing even salient experimental results at the transition metal K-edge. On the other hand, we demonstrate for the molecular–orbital excitation of the simple model system CuB$_2$O$_4$ that consideration of the coupling of the lattice to electronic degrees of freedom leads to a natural interpretation of the observed line shapes and (incident) photon-energy dependence. Nonadiabatic effects were first observed in C K-edge RIXS of ethylene [17], and our results show that such effects exist at the 3d transition metal edges as well. Phonon coupling is likely present in existing RIXS data for cuprates [2]–[4] and other transition metal oxides [8, 27], as we have shown here for Li$_2$CuO$_2$ [15] and La$_2$CuO$_4$ [1]. We have also identified the important property of the model that the lineshape away from resonance is most heavily influenced by the electron–phonon coupling between the ground and final states—it is only near resonance that the intermediate state effects play a role. Finally, we emphasize that the process discussed here is only one possible channel for RIXS scattering, in which the photo-electron recombines and the charge excitations occur only via the core-hole interaction. In the case of $d \rightarrow d$ excitations [6], orbiton scattering [8] and magnetic [9, 10] excitations, the applicability of the present consideration is not as clear. We expect future experiments with higher energy resolution, coupled with more refined theoretical considerations, to directly address the role of the electron–phonon interaction in determining RIXS lineshapes.

Acknowledgments

We acknowledge valuable conversations with Girsh Blumberg, Dirk van der Marel and François Vernay. JNH would like to acknowledge the continued support of Eleiza Braun. This work was supported by the DOE under Contract No. DE-AC02-76SF00515.

References

[1] Abbamonte P, Burns C A, Isaacs E D, Platzman P M, Miller L L, Cheong S W and Klein M V 1999 Phys. Rev. Lett. 83 860
[2] Hasan M Z, Isaacs E D, Shen Z X, Miller L L, Tsutsui K, Tohyama T and Maekawa S 2000 Science 288 1811
[3] Lu L et al 2005 Phys. Rev. Lett. 95 217003

New Journal of Physics 12 (2010) 033001 (http://www.njp.org/)
[4] Lu L, Hancock J N, Chabot-Couture G, Ishii K, Vajk O P, Yu G, Mizuki J, Casa D, Gog T and Greven M 2006 Phys. Rev. B 74 224509
[5] Dallera C, Grioni M, Shukla A, Vanko G, Sarrao J L, Rueff J P and Cox D L 2002 Phys. Rev. Lett. 88 196403
[6] Ghiringhelli G, Brookes N B, Annese E, Berger H, Dallera C, Grioni M, Perfetti L, Tagliaferri A and Braicovich L 2004 Phys. Rev. Lett. 92 117406
[7] Hancock J N, Chabot-Couture G, Li Y, Petakovskii G A, Ishii K, Jarrige I, Mizuki J-I, Devereaux T P and Greven M 2009 Phys. Rev. B 80 092509
[8] Ulrich C et al 2009 Phys. Rev. Lett. 103 107205
[9] Hill J P et al 2008 Phys. Rev. Lett. 100 097001
[10] Ament L, Ghiringhelli G, Moretti Sala M, Braicovich L and van den Brink J 2009 Phys. Rev. Lett. 103 117003
[11] Vernay F, Moritz B, Elfimov I S, Geck J, Hawthorn D, Devereaux T P and Sawatzky G A 2008 Phys. Rev. B 77 104519
[12] Tranquada J M, Heald S M, Kunnmann A R, Moodenbaugh A R, Qiu S L, Xu Y and Davies P K 1991 Phys. Rev. B 44 5176
[13] van Veenendaal M A, Eskes H and Sawatzky G A 1993 Phys. Rev. B 47 11462
[14] Kotani A and Shin S 2001 Rev. Mod. Phys. 73 203
[15] Kim Y-J et al 2004 Phys. Rev. B 70 205128
[16] Kim Y-J, Hill J P, Chou F C, Casa D, Gog T and Venkataraman C T 2004 Phys. Rev. B 69 155105
[17] Hennies F et al 2005 Phys. Rev. Lett. 95 163002
[18] Hasan M Z, Montano P A, Isaacs E D, Shen Z-X, Eisaki H, Sinha S K, Islam Z, Motoyama N and Uchida S 2002 Phys. Rev. Lett. 88 177403
[19] Kim Y-J, Hill J P, Burns C A, Wakimoto S, Birgeneau R J, Casa D, Gog T and Venkataraman C T 2002 Phys. Rev. Lett. 89 177003
[20] Doring G, Sternemann C, Kaprolat A, Mattila A, Hamalainen K and Schulke W 2004 Phys. Rev. B 70 08511
[21] Salek P, Gel'mukhanov F, Agren H, Bjorneholm O and Svensson S 1999 Phys. Rev. A 60 2786
[22] Castanos O, Lopez-Pena R and Lemus R 2007 J. Mol. Spectrosc. 241 51
[23] d’Astuto M, Mang P K, Giura P, Shukla A, Ghigna P, Mirone A, Braden M, Greven M, Krisch M and Sette F 2002 Phys. Rev. Lett. 88 177403
[24] Harrison W A 1989 Electronic Structure and the Properties of Solids (New York: Dover)
[25] Cooper S L, Thomas G A, Millis A J, Sulewski P E, Orenstein J, Rapkine D H, Cheong S W and Trevor P L 1990 Phys. Rev. B 42 10785
[26] Ellis D S, Hill J P, Birgeneau R J, Casa D, Gog D and Kim Y-J 2008 Phys. Rev. B 77 060501
[27] Grenier S et al 2005 Phys. Rev. Lett. 94 047203

New Journal of Physics 12 (2010) 033001 (http://www.njp.org/)