Supplementary Information

Genomics- and Metabolomics-Based Investigation of the Deep-Sea Sediment-Derived Yeast, *Rhodotorula mucilaginosa* 50-3-19/20B

Larissa Buedenbender 1,*, Abhishek Kumar 2,3,†, Martina Blümel 1, Frank Kempken 3,* and Deniz Tasdemir 1,4,*

1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; 2 Present Address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066 & Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India 3 Department of Botany, Kiel University, Olshausenstr. 40, Kiel 24098, Germany 4 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany † Equal contribution * Correspondence: dtasdemir@geomar.de; Tel.: +49-431-600-4430 and fkempken@bot.uni-kiel.de, Tel.: +49 431 880-4274

List of Tables

Table S1. Bioactivity screening of extracts derived from six deep-sea *Rhodotorula* spp.	Page
Table S2. Overview of the genomic locus for exo-inulinase enzyme in marine *R. mucilaginosa* 50-3-19/20B, as deduced via Omicsbox and Pfam annotations	3
Table S3. Annotation summary of putative exo-inulinase enzyme from *R. mucilaginosa* 50-3-19/20B and its homologs in different fungi	4
Table S4. Cytotoxic activity (% inhibition at 100µg/mL) of the fractionated PDA-K-DCM subextract of *R. mucilaginosa* 50-3-19/20B against the breast cancer cell line MDA-MB-231	6
Table S5. Putative annotations of compounds detected in deep-sea *R. mucilaginosa* 50-3-19/20B extracts	17
Table S6. Theoretical masses of acetylated PEFAs	18
Table S7. MS/MS fragment ions indicative of the type of polyol group in PEFAs	24
Table S8. NMR data of compound 1 (MeOD, 600/150 MHz)	25
Table S9. NMR data for compound 2 (MeOD, 600/150 MHz)	26
Table S10. NMR data of compound 5 (MeOD, 600/150 MHz)	27
List of Figures

Figure S1. Differential metabolomes of *R. mucilaginosa* 50-3-19/20B 29
Figure S2. Overview of genomic statistics based on *de novo* genome assembly 29
Figure S3. GNPS MS/MS mirror plot of experimental and library data of 9-oxo-10E,12Z-octadecadienoic acid 30
Figure S4. GNPS MS/MS mirror plot of experimental and library data of cyclo-(Leu-Phe) 30
Figure S5. GNPS MS/MS mirror plot of experimental and library data of DL-Indole-3-lactic acid 31
Figure S6. GNPS MS/MS mirror plot of experimental and library data of 5α,8α-epidioxyergosta-6,22-dien-3β-ol 31
Figure S7. GNPS MS/MS mirror plot of experimental and library data of C17-sphinganine 32
Figure S8. GNPS MS/MS mirror plot of experimental and library data of 9,10-Epoxy-12-octadecenoic acid 32
Figure S9. (a) HR-ESIMS and (b) MS/MS spectra of 1 33
Figure S10. 1H NMR spectrum of compound 1 (MeOD, 600 MHz) 34
Figure S11. HSQC spectrum of compound 1 (MeOD, 600/150 MHz) 34
Figure S12. COSY spectrum of compound 1 (MeOD, 600 MHz) 35
Figure S13. HMBC spectrum of compound 1 (MeOD, 600/150 MHz) 35
Figure S14. NOESY spectrum of compound 1 (MeOD, 600 MHz) 36
Figure S15. TOCSY spectrum of compound 1 (MeOD, 600 MHz) 36
Figure S16. (a) HR-ESIMS and (b) MS/MS spectra of 2 37
Figure S17. 1H NMR spectrum of compound 2 (MeOD, 600 MHz) 38
Figure S18. HSQC spectrum of compound 2 (MeOD, 600/150 MHz) 38
Figure S19. COSY spectrum of compound 2 (MeOD, 600 MHz) 39
Figure S20. NOESY spectrum of compound 2 (MeOD, 600 MHz) 40
Figure S21. HMBC spectrum of compound 2 (MeOD, 600/150 MHz) 41
Figure S22. (a) HR-ESIMS and (b) MS/MS spectra of 3 42
Figure S23. (a) HR-ESIMS and (b) MS/MS spectra of 4 43
Figure S24. (a) HR-ESIMS and (b) MS/MS spectra of 5 43
Figure S25. 1H NMR spectrum of compound 5 (MeOD, 600 MHz) 44
Figure S26. 13C NMR spectrum of compound 5 (MeOD, 150 MHz) 44
Figure S27. HSQC spectrum of compound 5 (MeOD, 600/150 MHz) 45
Figure S28. COSY spectrum of compound 5 (MeOD, 600 MHz) 45
Figure S29. HMBC spectrum of compound 5 (MeOD, 600/150 MHz) 46
Figure S30. NOESY spectrum of compound 5 (MeOD, 600 MHz) 46
Figure S31. Metabolites reported in the Dictionary of Natural Products for the genus *Rhodotorula* 47

References 48
Table S1. Bioactivity screening of extracts derived from six deep-sea *Rhodotorula* spp.

Sample	Cell culture	ESKAPE panel																				
	MB231	A375	HaCaT	Efm	exp.	MRSA	exp.	Kp	exp.	Ab	Psa	Ec	Pss	Ea	Rs	Ca	Cn	Pi	Po	Bc	Tr	Tm
50-3-19/20B_W	-	-	-	32	1	59	99	96	-	-	-	-	-	-	-	-	-	-	-	-	-	-
50-3-19/20B_P	74	73	20	-	2	37	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
52-1-0/1B_W	-	-	-	24	1	100	99	99	-	-	-	-	-	-	-	-	-	-	-	-		
52-1-0/1B_P	-	-	-	78	1	100	99	99	100	100	22	22	59	99	22	22	59	99	22	22		
54-4-0/1B_W	-	-	-	91	1	100	99	99	-	-	-	-	-	-	-	-	-	-	-	-		
54-4-0/1B_P	-	-	-	100	1	100	99	99	-	-	-	-	-	-	-	-	-	-	-	-		
LR 28-14-1-1-1_W	-	-	-	62	1	86	99	96	-	-	-	-	-	-	-	-	-	-	-	-		
LR 28-14-1-1-1_P	-	-	-	100	1	71	94	93	-	-	-	-	-	-	-	-	-	-	-	-		
LR 28-17-4-1_W	-	-	-	61	1	90	99	99	-	-	-	-	-	-	-	-	-	-	-	-		
LR 28-17-4-1_P	-	-	-	85	1	100	94	97	-	-	-	-	-	-	-	-	-	-	-	-		
LR 5-2-4-1_W	-	-	-	79	1	79	98	96	-	-	-	-	-	-	-	-	-	-	-	-		
LR 5-2-4-1_P	-	-	-	83	1	53	88	92	-	-	-	-	-	-	-	-	-	-	-	-		
WSP-30blank	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
PDA blank	40	28	44	24	1	47	40	-	-	-	-	-	-	-	-	-	-	-	-	-		
positive control	83	97	66	97	1	91	97	96	97	96	99	99	42	99	96	64	92	94	98	99		
solvent control	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		

MB231: breast cancer; A375: lung carcinoma; HaCaT: non-cancerous keratinocyte; Efm: *Enterococcus faecium*; MRSA: methillicin-resistant *Staphylococcus aureus*; Kp: *Klebsiella pneumoniae*; Ab: *Acinetobacter baumannii*; Psa: *Pseudomonas aeruginosa*; Ec: *Escherichia coli*; Pss: *Pseudomonas syringae*; Ea: *Erwinia amylovora*; Rs: *Ralstonia solanacearum*; Ca: *Candida albicans*; Cn: *Cryptococcus neoformans*; P: *Phytophthora infestans*; Po: *Pyricularia oryzae*; Bc: *Botrytis cinerea*; Tr: *Trichophyton rubrum*; Tm: *T. mentagrophytes*
Table S2. Overview of the genomic locus for exo-inulinase enzyme in marine \textit{R. mucilaginosa} 50-3-19/20B, as deduced via Omicsbox and Pfam annotations.

Name	Description	Protein Length	Pfam annotation	Pfam Domain	Pfam ID	E-value	Start	End	
g1614.t1	Endonuclease/exonuclease/phosphatase domain-containing protein	1604	Endonuclease/Exonuclease/phosphatase family	Exo_endo_phos	PF03372.22	9.0E-6	99	472	
g1615.t1	hypothetical protein RHOSPDRAFT_19222	463	Translation initiation factor SUI1	SUI1	PF01253.21	3.6E-27	353	429	
g1616.t1	---NA---	663	Permease for cytosine/purines, uracil, thiamine, allantoin	Transp_cyt_pur	PF02133.14	3.7E-42	326	579	
g1617.t1	hypothetical protein BMF94_3082	66							
g1618.t1	FAD/NAD(P)-binding domain-containing protein	592	GDP dissociation inhibitor	GDI	PF00996.17	2.2E-32	5	284	
g1619.t1	---NA---	101	Vacuolar protein sorting 55	Vps55	PF04133.13	1.2E-24	6	97	
g1620.t1	hypothetical protein RHOSPDRAFT_34835	812							
g1621.t1	actin-like ATPase domain-containing protein	1956							
g1622.t1	NAD-P-binding protein	1910	short chain dehydrogenase	adh_short	PF00106.24	5.1E-24	1641	1861	
g1623.t1	---NA---	1041							
g1624.t1	ARM repeat-containing protein	1943							
g1625.t1	hypothetical protein RHOSPDRAFT_35524	1198							
g1626.t1	L-iditol 2-dehydrogenase	617	Alcohol dehydrogenase GroES-like domain	ADH_N	PF08240.11	3.5E-24	59	171	
g1627.t1	ferric reductase transmembrane component	778	Ferric reductase like transmembrane component	Ferric_reduct	PF01794.18	6.5E-18	186	302	
g1628.t1	protein of ctr copper transporter family	216	Ctr copper transporter family	Ctr	PF04145.14	6.2E-33	22	193	
g1629.t1	beta-fructofuranosidase	679	Glycosyl hydrolases family 32 N-terminal domain	Glyco_hydro_32N	PF00251.19	6.5E-76	178	485	
g1630.t1	Dynactin, subunit p25	696	RING-variant domain	RINGv	PF12906.6	9.5E-13	341	391	
Gene	Description	Start	End	Description	Accessory	Score 1	Score 2	Score 3	Score 4
--------	--	-------	-----	---------------------------------	-----------	---------	---------	---------	---------
g1631.t1	gpi anchored protein	275							
g1632.t1	lipoyl(octanoyl) transferase	356							
g1633.t1	hypothetical protein RHOSPDRAFT_32393	744		Glycine-rich domain-containing protein-like	GRDP-like				
g1634.t1	voltage-gated chloride channel	1809		Voltage gated chloride channel	Voltage_CLC				
				Rab-GTPase-TBC domain	RabGAP-TBC				
				CBS domain	CBS				
g1635.t1	hypothetical protein RHOSPDRAFT_24861	600							
g1636.t1	E3 ubiquitin-protein ligase UBRI	2049		Putative zinc finger in N-recogin (UBR box)	zf-UBR				
				ATP-dependent Clp protease adaptor protein ClpS	ClpS				
g1637.t1	carbon-nitrogen hydrolase	332		Carbon-nitrogen hydrolase	CN_hydrolase				
g1638.t1	hypothetical protein RHOSPDRAFT_24864	805							
g1639.t1	hypothetical protein RHOSPDRAFT_24865	920							
g1640.t1	hypothetical protein RHOSPDRAFT_24865	564							
g1641.t1	NAD(P)-binding protein	303		Enoyl-(Acyl carrier protein) reductase	adh_short_C2				
g1642.t1	Other/IRE protein kinase	1382		Ribonuclease 2-5A	Ribonuc_2-5A				
				Protein kinase domain	Pkinase				
				Protein kinase domain	Pkinase				
g1643.t1	C6 transcription factor	1042							
g1644.t1	taurine catabolism dioxygenase	377		Taurine catabolism dioxygenase TauD, TfdA family	TauD				

Score Notes:
- **Score 1:** E-value
- **Score 2:** Protein length
- **Score 3:** ClustalW score
- **Score 4:** SWISS-PROT similarity score
Table S3. Annotation summary of putative exo-inulinase enzyme from *Rhodotorula mucilaginosa* 50-3-19/20B and its homologs in different fungi

Sequence ID	Species Description	Protein Length	e-Value sim mean	GO IDs	GO Names	Enzyme Codes	Enzyme Names	InterPro IDs	InterPro GO IDs	InterPro GO Names	
g1629.t1 R. mucilaginosa 50-3-19/20B	glycoside hydrolase family 32 protein	679	0.07414	3	P:GO:0005987; F:GO:0004575; C:GO:000324	P:sucrose catabolic process; F:sucrose alpha-glucosidase activity; C:fungal-type vacuole	EC:3.2.1.20; EC:3.2.1.26; EC:3.2.1.48	Alpha-glucosidase; Beta-fructofuranosidase; Sucrose alpha-glucosidase	IPR013189 (PFAM); G3DSA:2.60.120.560 (GENE3D); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013148 (PFAM); mobidb-lite (MOBIDB_LITE); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY)	no GO terms	no GO terms
AZR37516.1 Rhodotorula paludigena	beta-fructofuranosidase	617	0.0687	3	P:GO:0005987; F:GO:0004575; C:GO:000324	P:sucrose catabolic process; F:sucrose alpha-glucosidase activity; C:fungal-type vacuole	EC:3.2.1.20; EC:3.2.1.26; EC:3.2.1.48	Alpha-glucosidase; Beta-fructofuranosidase; Sucrose alpha-glucosidase	IPR023296 (G3DSA:2.115.10.GENE3D); IPR013148 (PFAM); G3DSA:2.60.120.560 (GENE3D); mobidb-lite (MOBIDB_LITE); mobidb-lite (MOBIDB_LITE); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS);	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds	6
Accession	Organism	Protein Name	M / E	Percent Identity	Percent Similarity	GO Terms	Domain/Taxa				
--------------	-----------------------	-------------------------------------	-------	------------------	-------------------	---	--				
TKA53735.1	Rhodotorula sp. CCFEE 5036	glycoside hydrolase family 32 protein	676	0	74.85	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds	IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY)				
						P:GO:0005975; F:GO:0004553					
KWU45911.1	Rhodotorula sp. JG-1b	glycoside hydrolase family 32 protein	559	0	74.92	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds	IPR013189 (PFAM); IPR013148 (PFAM); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013148 (PFAM); mobidb-lite (MOBIDB_LITE); mobidb-lite (MOBIDB_LITE); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY)				
Accession	Organism	Enzyme Name	Activity Scores	GO Terms	EC Numbers						
-----------	---------------------------	----------------------------------	-----------------	----------	---------------------------------						
POY72393.1	Rhodotorula taiwanensis	beta-fructofuranosidase	614 0.07396 2	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds	G3DSA:2.60.120.560 (GENE3D); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013189 (PFAM); IPR013148 (PFAM); mobidb-lite (MOBIDB_LITE); PTHR42800 (PANTHER); PTHR42800.SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY)						
GFZ51952.1	Saitozyma sp. JCM 24511	beta-fructofuranosidase	523 0.07708 4	P:sucrose catabolic process; F:sucrose alpha-glucosidase activity; C:fungal-type vacuole; C:integral component of membrane	IPR013189 (PFAM); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013148 (PFAM); G3DSA:2.60.120.560 (GENE3D); mobidb-lite (MOBIDB_LITE); PTHR42800.SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY)						

P: carbohydrate metabolic process; F: hydrolase activity, hydrolyzing O-glycosyl compounds
Accession	Species	Description	P:GO:0005975; F:GO:0004553	(SUPERFAMILY); IPR013320 (SUPERFAMILY)
KKY24889.1	*Diplodia*	glycoside hydrolase family 32 protein	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds	
	seriata			IPR023296 (G3DSA:2.115.10.GENE3D); IPR013148 (PFAM); IPR013189 (PFAM); G3DSA:2.60.120.560 (GENE3D); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY)
OMP85659.1	*Diplodia*	glycoside hydrolase family 32 protein	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds	
	seriata			IPR013148 (PFAM); IPR013189 (PFAM); IPR023296 (G3DSA:2.115.10.GENE3D); G3DSA:2.60.120.560 (GENE3D); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY)

The table lists the accessions, species, descriptions, and additional information for two glycoside hydrolase proteins from *Diplodia seriata*. Each entry includes the accession number, species name, protein type, and a set of functional annotations provided by GO and other databases such as SUPERFAMILY, IPRs, and PROSITE patterns.
Accession	Organism	Gene Name	E value	Score	GO Terms	Domain Information
XP_035362863.1	Lasiodiplodia theobromae	glycoside hydrolase family 32 protein	562	0	86.11 2	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds
XP_02129257.1	Diplodia corticola	glycoside hydrolase family 32 protein	563	0	85.81 2	P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds
KAF4312946.1	Botryosphaeria dothidea	glycoside hydrolase family 32 protein	562	0	85.72 3	P:carbohydrate metabolic process; F:hydrolase activity,

Domain Information:
- IPR013148 (PFAM); IPR013189 (PFAM); G3DSA:2.115.10.GENE3D; G3DSA:2.60.120.560 (GENE3D);
- PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS);
- cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY)
| KJ52043.1 | Sphaerobulus stellatus SS14 | glycoside hydrolase family 32 protein | 562 | 0 | 84.23 | 2 | hydrolyzing O-glycosyl compounds; Cintegral component of membrane | PTHR42800 (PANTHER); PTHR42800:SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY) | |
| THU96730.1 | Dendrothele bispora CBS 962.96 | glycoside hydrolase family 32 protein | 523 | 0 | 84.95 | 3 | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds | IPR013148 (PFAM); IPR013189 (PFAM); IPR023296 (G3DSA:2.115.10.GENE3D); G3DSA:2.60.120.560 (GENE3D); PTHR42800 (PANTHER); PTHR42800:SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY) | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds |
| Accession | Species | Type | MSA | E-value | Location | GO Terms | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| XP_008034329.1 | Trametes versicolor | glycoside hydrolase family 32 protein | 540 | 0 | 83.59 3 | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds; C:integral component of membrane | cd18622 (CDD); IPR013320 (SUPERFAMILY); IPR023296 (SUPERFAMILY) |
| KAF5355425.1 | Tetrapyrgos nigripes | glycoside hydrolase family 32 protein | 521 | 0 | 83.08 3 | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds; C:integral component of membrane | IPR013148 (PFAM); G3DSA:2.60.120.560 (GENE3D); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013189 (PFAM); PTHR42800 (PANTHER); PTHR42800:SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY) |
| Accession | Species | Type | Entrez Gene | Score | Identity | E-value | GO:0005987 | GO:0004575 | GO:0000324 | EC:3.2.1.20 | EC:3.2.1.126 | EC:3.2.1.48 | Description |
|-------------|-----------------------|-----------------------|-------------|--------|----------|---------|-------------|-------------|-------------|--------------|--------------|--------------|---|
| KAE8543285.1| Cryptococcus cf. gattii| beta-fructofuranosidase| 519 | 0 | 97.55 | 3 | P | F | C | Alpha-glucosidase; Beta-fructofuranosidase; Sucrose alpha-glucosidase |
| | | | | | | | P:0005987 | F:0004575 | C:0000324 | G3DSA:2.60.120.560 (GENE3D); IPR013189 (PFAM); IPR023296 (GENE3D); IPR013148 (PFAM); mobidb-lite (MOBIDB_LITE); PTHR42800 (PANTHER); PTHR42800:SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY) | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds |
| OSD00128.1 | Trametes coccinea BRFM310| glycoside hydrolase family 32 protein| 524 | 0 | 83.56 | 3 | P:0005975 | F:0004553 | C:016021 | IPR013148 (PFAM); G3DSA:2.60.120.560 (GENE3D); IPR013189 (PFAM); IPR023296 (GENE3D); PTHR42800 (PANTHER); PTHR42800:SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY) | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds |
| EOD51241.1 | Neofusicoccum parvum UCRNP2 | glycoside hydrolase family 32 protein | 563 | 0 | 84.03 | 2 | P:GO:0005975; F:GO:0004553 | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds | IPR013148 (PFAM); IPR023296 (G3DSA:2.115.10.GENE3D); G3DSA:2.60.120.560 (GENE3D); mobildb-lite (MOBIDB_LITE); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY) | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds |
|----------|---------------------------------|------------------------------------|-----|----|--------|---|---------------------------|---|---|--|
| KAF2091127.1 | Saccharatus proteae CBS 121410 | SCF E3 ubiquitin ligase complex F-box protein | 537 | 0 | 79.88 | 4 | P:GO:0005975; P:GO:0006629; F:GO:0004553; F:GO:0008081 | P:carbohydrate metabolic process; P:lipid metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds; F:phosphoric diester hydrolase activity | G3DSA:2.60.120.560 (GENE3D); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013148 (PFAM); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY) | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds |
| KIR51126.1 | Cryptococcus gattii Ru294 | beta-fructofuranosidase | 519 | 0 | 97.81 | 3 | P:GO:0005987; F:GO:0004557; C:GO:000324 | P:sucrose catabolic process; F:sucrose alpha-glucosidase EC:3.2.1.20; EC:3.2.1.26; EC:3.2.1.48 | Alpha-glucosidase; Beta-fructofuranosidase; IPR023296 (G3DSA:2.115.10.GENE3D); G3DSA:2.60.120.560 (GENE3D) | P:carbohydrate metabolic process; F:hydrolase activity, hydrolyzing O-glycosyl compounds |
| Accession | Organism | Enzyme Family | Gene ID | Description | GO Terms |
|------------|-------------------|---------------|-----------|--|-----------------------------------|
| XP_567775.1 | Cryptococcus neofor... | beta-fructofuranosidase | 519 0 96.37 3 | P: sucrase catabolic process; F: sucrase alpha-glucosidase activity; C: fungal-type vacuole | P: GO:0005987; F: GO:0004575; C: GO:0000324 |
| KIR83202.1 | Cryptococcus gattii VGIV IND107 | beta-fructofuranosidase | 519 0 97.96 3 | P: sucrase catabolic process; F: sucrase alpha-glucosidase activity; C: fungal-type vacuole | P: GO:0005987; F: GO:0004575; C: GO:0000324 |

activity; C:fungal-type vacuole

Sucrose alpha-glucosidase

IPR013189 (PFAM); IPR013148 (PFAM); PTHR42800 (PANTHER); PTHR42800:SF2 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY)

F: hydrolase activity, hydrolyzing O-glycosyl compounds

G3DSA:2.60.120.560 (GENE3D); IPR023296 (G3DSA:2.115.10.GENE3D); IPR013189 (PFAM); IPR013148 (PFAM); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY)

P: carbohydrate metabolic process; F: hydrolase activity, hydrolyzing O-glycosyl compounds

G3DSA:2.115.10.GENE3D; IPR023296 (G3DSA:2.115.10.GENE3D); IPR013189 (PFAM); IPR013148 (PFAM); PTHR42800:SF2 (PANTHER); PTHR42800 (PANTHER); IPR018053 (PROSITE_PATTERNS); cd18622 (CDD); IPR023296 (SUPERFAMILY); IPR013320 (SUPERFAMILY)

P: carbohydrate metabolic process; F: hydrolase activity, hydrolyzing O-glycosyl compounds
glycosyl compounds
Table S4. Cytotoxic activity (%-inhibition at 100 µg/mL) of the fractionated PDA-K-DCM subextract of *R. mucilaginosa* 50-3-19/20B against the breast cancer cell line MDA-MB-231

Fraction	MDA-MB-231
F1	-
F2	-
F3	-
F4	27
F5-8	22
F9-12	-
F13-16	-
F17	-
F18	-
F19	44
F20	51
F21	**86**
F22	94
F23	88
F24	97
F25	52
F26	-
F27	-
F28	-
F29	-
F30	-
F31	-
Table S5. Putative annotations of compounds detected in deep-sea *R. mucilaginosa* 50-3-19/20B extracts. Annotations were based on GNPS and manual dereplication of m/z ([M+H]+ or [M+Na]+), retention time (ts), fragmentation pattern and predicted molecular formula against Dictionary of Natural Products, DEREP_NP and other literature data. Confidence levels of putative identification according to Sumner et al. [1] and Blaženović et al. [2].

LD	m/z	ts (min)	MS/MS (m/z)*	Ion type	Molecular formula (M)	Identified compound	Compound class	Confidence	Reference
261.1304	2.15	233.17; 216.14; 188.14; 120.08	[M+H]+	C₃₀H₃₁NO₂	Cyclo-(Leu-Phe)	Diketopiperazine	2	[3]	
188.0713	3.83	170.06; 146.06; 118.07	[M-H₂O+H]+	C₁₅H₂₀NO₂	DL-Indole-3-lactic acid	Indole alkaloid	2	[4]	
160.0764	3.84	132.08; 118.07	[M+H]+	C₁₅H₁₅NO₂S	1-Hydroxy-2-(1H-indol-3-yl)ethanesulfonic acid	Indole alkaloid	3		
206.08	3.94	188.07; 170.06; 160.06; 146.06; 130.07	[M+H]+	C₁₅H₁₅NO₂	DL-Indole-3-lactic acid	Indole alkaloid	2	[4]	
603.5312	9.54	273.10; 235.21; 231.09; 217.20; 189.08; 171.07; 161.13; 153.06; 135.12; 121.10; 111.04; 95.09; 81.07	[M+H]+	C₄₀H₅₈O₄C	Tetrahydroxydihydrolycopene	Carotenoid	3	[5]	
571.6362	10.37	263.24; 245.23; 231.09; 189.08; 175.15; 161.13; 153.06; 147.12; 133.10; 121.10; 111.05; 93.03; 81.07	[M+H]+	C₁₅H₁₅NO₂	Dihydroxylycopene	Carotenoid	3	[5]	
553.5593	15.17	451.34; 391.32; 293.28; 275.27; 233.23; 219.21; 201.08; 177.16; 163.15; 149.13; 141.06; 135.12; 121.10; 109.10; 97.10; 81.03	[M+H]+	C₁₅H₁₅NO₂	Cryptoxanthin	Carotenoid	3	[5]	
5	220.0983	202.09; 170.06; 160.08; 132.08; 118.07	[M+H]+	C₁₅H₁₅NO₂	Methyl 2-hydroxy-3-(1H-indol-2-yl)propanoate	Indole	1	[6]	
411.3263	14.01	21635.14; 191.11; 173.10; 145.10	[M-H₂O+H]+	C₁₅H₁₅NO₂	5α,8α-Epidioxyergosta-6,22-dien-3β-ol	Sterol	2	[7]	
288.2906	7.76	270.28; 106.09; 88.08	[M+H]+	C₁₅H₁₅NO₂	C₁₇-Sphinganine	Aminolipid	2	[8]	

PEFA (Polyol ester of fatty acid) glycolipid annotations (in molecular clusters as per Figure 4 in the main text)

| PEFA (Polyol ester of fatty acid) glycolipid annotations | (in molecular clusters as per Figure 4 in the main text) | 767.4197 | 15.59 | 707.40; 679.37; 647.38; 619.34; 587.36; 517.31; 425.14; 365.12; 337.09; 265.25; 181.09; 153.05; 111.04 | [M+Na]+ | C₁₅H₁₅NO₂ | Mannitol-pentaacetate-3-acetlyoxy-C₂₀ | PEFA | 2 |
Mass (Da)	Charge	Formula	Name	PEFA	Number	References	
739.4256	15.48	[M+Na]⁺	C₁₈H₃₀O₁₄	Mannitol-pentaacetate-3-acetyloxy-C₁₈	PEFA	3	[9,10]
695.3984	15.40	[M+Na]⁺	C₁₈H₃₀O₁₄	Mannitol-pentaacetate-3-acetyloxy-C₁₈	PEFA	3	
613.2845	11.44	[M+Na]⁺	C₁₂H₂₄O₁₃	Mannitol-tetraacetate-3-acetyloxy-C₁₂	PEFA	2	
641.3152	12.62	[M+Na]⁺	C₁₄H₂₈O₁₃	Mannitol-tetraacetate-3-acetyloxy-C₁₄	PEFA	2	[10,11]
669.4626	13.61	[M+Na]⁺	C₁₆H₃₂O₁₃	Mannitol-tetraacetate-3-acetyloxy-C₁₆	PEFA	3	[9-11]
697.3560	14.51	[M+Na]⁺	C₁₈H₃₂O₁₃	Mannitol-tetraacetate-3-acetyloxy-C₁₈	PEFA	3	[9-11]
725.4203	15.22	[M+Na]⁺	C₂₀H₄₀O₁₃	Mannitol-tetraacetate-3-acetyloxy-C₂₀	PEFA	3	[10]
555.3145	12.70	[M+Na]⁺	C₁₆H₃₂O₁₃	Mannitol-tetraacetate-3-acetyloxy-C₁₆	PEFA	2	[10]
Mass (m/z)	Retention Time (min.)	M+Na⁺	Molecular Formula	Compound Description	TIC (a.u.)		
-----------	-----------------------	-------	-------------------	----------------------	------------		
583.5362	13.83	[M+Na⁺]	C₆₃H₁₁₂O₂₀	Mannitol-diacetate-3-acetyloxy-C₁₈	PEFA	3	
529.3364	9.33	[M+Na⁺]	C₆₃H₁₁₄O₁₁	Mannitol-diacetate-3-acetyloxy-C₁₂	PEFA	3	
557.2955	10.97	[M+Na⁺]	C₆₃H₁₁₄O₁₁	Mannitol-diacetate-3-acetyloxy-C₁₄	PEFA	2	
585.4353	12.32	[M+Na⁺]	C₆₃H₁₁₄O₁₁	Mannitol-diacetate-3-acetyloxy-C₁₆	PEFA	3	
613.3577	13.51	[M+Na⁺]	C₆₃H₁₁₄O₁₁	Mannitol-diacetate-3-acetyloxy-C₁₈	PEFA	2	

Mass (m/z)	Retention Time (min.)	M+Na⁺	Molecular Formula	Compound Description	TIC (a.u.)	
417.2099	6.63	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-3-acetyloxy-C₁₀	PEFA	2
445.2415	8.02	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-3-acetyloxy-C₁₂	PEFA	2
473.4443	9.44	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-3-acetyloxy-C₁₄	PEFA	3
501.2922	10.73	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-3-acetyloxy-C₁₆	PEFA	2
515.2836	10.11	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-monocetate-3-acetyloxy-C₁₈	PEFA	2
543.3145	11.54	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-monocetate-3-acetyloxy-C₁₆	PEFA	2
571.3468	12.57	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-monocetate-3-acetyloxy-C₁₈	PEFA	2

Mass (m/z)	Retention Time (min.)	M+Na⁺	Molecular Formula	Compound Description	TIC (a.u.)			
655.2946	12.32	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-pentacetate-3-acetyloxy-C₁₂	PEFA	2		
739.3934	14.86	[M+Na⁺]	C₆₃H₁₁₂O₁₀	Mannitol-pentacetate-3-acetyloxy-C₁₈	PEFA	2		
M/z	Intensity	Exact Mass	Spectrum	Molecular Formula	Compound Name	PEFA		
-----------	-----------	------------	----------	------------------	---	-------		
683.3955	14.87	623.38; 563.36; 503.33; 443.30; 435.31; 393.30; 313.09; 293.28; 253.07; 231.09; 211.06; 193.05; 189.08; 171.07; 153.06; 111.05	[M+Na]^+	C_{34}H_{60}O_{12} Mannitol-triacetate-3-acetyloxy-C20	PEFA 2	[10]		
655.3449	13.92	595.35; 535.33; 475.30; 453.32; 415.28; 365.27; 313.09; 265.25; 253.07; 231.09; 189.08; 153.06; 111.05	[M+Na]^+	C_{32}H_{56}O_{12} Mannitol-triacetate-3-acetyloxy-C18	PEFA 3	[9-11]		
653.3890	15.13	593.37; 533.35; 473.33; 451.34; 413.30; 393.30; 293.28; 283.08; 223.06; 201.08	[M+Na]^+	C_{33}H_{54}O_{12} Mannitol-triacetate-3-acetyloxy-C16	PEFA 3	[10]		
627.6426	12.82	567.32; 507.29; 447.27; 387.25; 379.25; 337.24; 313.09; 253.07; 237.22; 23.09; 189.08; 111.05	[M+Na]^+	C_{31}H_{54}O_{12} Mannitol-triacetate-3-acetyloxy-C18	PEFA 3	[9,10]		
625.3367	14.40	565.34; 505.31; 445.29; 423.31; 385.25; 365.27; 283.08; 265.25; 223.06; 202.08;	[M+Na]^+	C_{31}H_{54}O_{12} Mannitol-triacetate-3-acetyloxy-C18	PEFA 3	[9,10]		
599.4146	11.65	539.28; 479.26; 419.24; 397.26; 359.22; 351.21; 313.09; 253.07; 231.09; 209.19; 189.08; 153.06; 111.05	[M+Na]^+	C_{30}H_{52}O_{12} Mannitol-triacetate-3-acetyloxy-C14	PEFA 3	[10]		
597.3263	13.46	537.30; 477.28; 417.26; 395.28; 375.24; 337.24; 283.08; 255.11; 237.22; 223.06; 01.08	[M+Na]^+	C_{29}H_{50}O_{12} Mannitol-triacetate-3-acetyloxy-C16	PEFA 3	[9,10]		
571.4611	10.55	511.25; 451.23; 391.21; 396.23; 331.19; 313.08; 281.17; 253.07; 231.09; 189.08; 181.16; 153.06; 111.05	[M+Na]^+	C_{28}H_{48}O_{12} Mannitol-triacetate-3-acetyloxy-C12	PEFA 3			
569.3000	12.30	509.27; 449.25; 389.23; 367.25; 329.21; 309.20; 283.08; 255.11; 223.06; 209.19	[M+Na]^+	C_{27}H_{46}O_{12} Mannitol-triacetate-3-acetyloxy-C14	PEFA 3			
541.2764	10.93	481.24; 421.22; 361.20; 339.22; 301.18; 283.08; 223.06; 201.08; 181.16; 141.06	[M+Na]^+	C_{26}H_{44}O_{12} Mannitol-triacetate-3-acetyloxy-C12	PEFA 3			
655.3052	14.16	595.35; 535.33; 475.30; 453.32; 415.28; 365.27; 313.09; 265.25; 253.07; 231.09; 189.08; 153.06; 111.05	[M+Na]^+	C₃₀H₅₂O₁₂ Mannitol-triacetate-3-acetyloxy-C₁₈	PEFA	2		
627.3359	12.64	567.32; 507.29; 447.27; 425.29; 387.25; 337.24; 313.09; 253.07; 231.09; 189.08; 111.05	[M+Na]^+	C₃₀H₅₂O₁₂ Mannitol-triacetate-3-acetyloxy-C₁₆	PEFA	2		
599.3064	11.65	539.28; 479.26; 419.24; 397.26; 359.22; 335.21; 313.09; 309.20; 253.07; 231.09; 209.19; 189.08; 153.06; 111.05	[M+Na]^+	C₃₀H₅₂O₁₂ Mannitol-triacetate-3-acetyloxy-C₁₄	PEFA	2		
571.2739	10.59	511.25; 451.23; 391.21; 369.23; 311.13; 331.09; 281.17; 231.09; 197.04; 189.08; 171.01; 153.06; 111.05	[M+Na]^+	C₃₀H₅₂O₁₂ Mannitol-triacetate-3-acetyloxy-C₁₂	PEFA	2		
639.3936	14.00	579.32; 519.29; 497.31; 477.28; 459.27; 437.29; 399.31; 395.28; 349.29; 337.24; 325.09; 283.26; 265.07; 237.22; 210.08; 141.06	[M+Na]^+	C₃₀H₅₂O₁₂ Arabinol-tetraacetate-3-acetyloxy-C₁₆	PEFA	3	[9,10]	
667.4842	14.95	607.35; 547.33; 525.34; 505.31; 487.30; 465.31; 445.29; 427.28; 423.31; 365.27; 325.09; 303.11; 265.25; 247.24; 210.08; 141.06; 181.16	[M+Na]^+	C₃₀H₅₂O₁₂ Arabinol-tetraacetate-3-acetyloxy-C₁₈	PEFA	3	[9,10]	
459.2210	7.46	399.20; 339.18; 253.14; 229.07; 189.08; 169.05; 154.13; 129.06	[M+Na]^+	C₃₀H₅₂O₁₀ Mannitol-monoacetate-3-acetyloxy-C₁₀	PEFA	2		
487.2520	8.85	427.23; 367.21; 281.17; 229.07; 189.08; 181.16; 169.05; 129.06; 111.05	[M+Na]^+	C₃₀H₅₂O₁₀ Mannitol-monoacetate-3-acetyloxy-C₁₂	PEFA	2		
501.2312	8.39	441.21; 381.19; 321.17; 271.08; 253.14; 211.06; 189.08; 153.13; 129.06; 111.05	[M+Na]^+	C₃₀H₅₂O₁₁ Mannitol-diacetate-3-acetyloxy-C₁₀	PEFA	2		
529.2628	9.56	469.24; 409.22; 353.19; 349.20; 323.16; 281.17; 211.06; 189.08; 181.16; 111.05	[M+Na]^+	C₃₀H₅₂O₁₁ Mannitol-diacetate-3-acetyloxy-C₁₂	PEFA	2		
m/z	Retention Time	m/z Reference	Molecular Formula	Compound Name	PEFA	Charge	[10]	
---------	----------------	---------------	------------------	--	------	--------	------	
585.3253	12.33	525.30; 465.28; 409.26; 405.26; 379.25; 337.24; 271.08; 236.22; 211.06; 189.08; 111.05	[M+Na]^+	CaH5O11	Mannitol-diacetate-3-acetyloxy-C16	PEFA	2	[11]
583.2775	12.28	523.25; 463.23; 441.25; 421; 403.21; 381.23; 343.19; 339.22; 325.09; 281.17; 256.07; 201.08; 181.16; 141.06	[M+Na]^+	CaH5O11	Arabitol-tetraacetate-3-methoxy-C14	PEFA	3	
655.2927	11.14	595.31; 535.29; 513.30; 475.27; 453.29; 433.26; 415.26; 393.27; 353.23; 325.09; 293.21; 265.07; 235.21; 201.08; 141.06	[M+Na]^+	CaH5O14	Mannitol-pentaacetate-3-acetyloxy-C12	PEFA	3	
683.3435	12.51	623.34; 563.32; 541.34; 521.31; 503.30; 443.27; 481.31; 461.29; 421.28; 381.26; 325.09; 321.24; 303.11; 265.07; 201.08; 141.06	[M+Na]^+	CaH5O14	Mannitol-pentaacetate-3-acetyloxy-C14	PEFA	3	[10]
611.3049	10.68	551.28; 491.26; 431.24; 369.12; 351.21; 309.09; 291.19; 283.08; 223.06; 210.08; 141.05	[M+Na]^+	CaH5O10	Arabitol-triacetate-3-hydroxy-C20	PEFA	3	
653.3145	12.27	593.29; 533.27; 511.29; 491.26; 473.25; 432.24; 351.21; 325.09; 291.19; 265.07; 223.21; 201.08; 155.14; 141.06	[M+Na]^+	CaH5O11	Arabitol-pentaacetate-3-hydroxy-C20	PEFA	3	

* For PEFA annotations, fragments most indicative of loss of acetyl groups and the residual polyol moiety are highlighted in bold
Table S6. Theoretical masses of acetylated PEFAs

	Mannitol 0 acetyl hydroxyl	Mannitol 1 acetyl hydroxyl	Mannitol 2 acetyl hydroxyl	Mannitol 3 acetyl hydroxyl	Mannitol 4 acetyl hydroxyl	Mannitol 5 acetyl hydroxyl
C14	431	473	515	557	599	641
C16	459	501	543	585	627	669
C18	487	529	571	613	655	697
C20	515	557	599	641	683	725

	Mannitol 0 acetyl methoxy	Mannitol 1 acetyl methoxy	Mannitol 2 acetyl methoxy	Mannitol 3 acetyl methoxy	Mannitol 4 acetyl methoxy	Mannitol 5 acetyl methoxy
C14	445	487	529	571	613	655
C16	473	515	557	599	641	683
C18	501	543	585	627	669	711
C20	529	571	613	655	697	739

	Mannitol 0 acetyl acetoxy	Mannitol 1 acetyl acetoxy	Mannitol 2 acetyl acetoxy	Mannitol 3 acetyl acetoxy	Mannitol 4 acetyl acetoxy	Mannitol 5 acetyl acetoxy
C14	473	515	557	599	641	683
C16	501	543	585	627	669	711
C18	529	571	613	655	697	739
C20	557	599	641	683	725	767

	Arabitol 0 acetyl hydroxyl	Arabitol 1 acetyl hydroxyl	Arabitol 2 acetyl hydroxyl	Arabitol 3 acetyl hydroxyl	Arabitol 4 acetyl hydroxyl
C14	401	443	485	527	569
C16	429	471	513	555	597
C18	457	499	541	583	625
C20	485	527	569	611	653

	Arabitol 0 acetyl methoxy	Arabitol 1 acetyl methoxy	Arabitol 2 acetyl methoxy	Arabitol 3 acetyl methoxy	Arabitol 4 acetyl methoxy
C14	415	457	499	541	583
C16	443	485	527	569	611
C18	471	513	555	597	639
C20	499	541	583	625	667

	Arabitol 0 acetyl acetoxy	Arabitol 1 acetyl acetoxy	Arabitol 2 acetyl acetoxy	Arabitol 3 acetyl acetoxy	Arabitol 4 acetyl acetoxy
C14	443	485	527	569	611
C16	471	513	555	597	639
C18	499	541	583	625	667
C20	527	569	611	653	695
Table S7. MS/MS fragment ions indicative of the type of polyol group in PEFAs

	m/z [M+H]^+	m/z [M+NH4]^+	m/z [M+Na]^+			
Mannitol, 0 Ac	165.1	182.1	187.1			
Mannitol, 1 Ac	207.1	224.1	229.1			
Mannitol, 2 Ac	249.1	266.1	271.1			
Mannitol, 3 Ac	291.1	308.1	313.1			
Mannitol, 4 Ac	333.1	350.1	355.1			
Mannitol, 5 Ac	375.1	392.1	397.1			
Arabitol, 0 Ac	135.1	152.1	157.1			
Arabitol, 1 Ac	177.1	194.1	199.1			
Arabitol, 2 Ac	219.1	236.1	241.1			
Arabitol, 3 Ac	261.1	278.1	283.1			
Arabitol, 4 Ac	303.1	320.1	325.1			
Position	$\delta_H \text{ Multiplicity (f in Hz)}$	δ_C	COSY	HMBC $\text{H} \rightarrow \text{C}$	TOCSY	NOE
----------	--------------------------------	----------	------	--------------------------------	------	-----
1	3.63 (m), 3.80 (m)	64.8	H-2	C-3	H-6	H-1, H-3, H-4, H-5, H-6, H-2, H-5
2	3.79 (m)	70.3	H-1, H-3	C-1, C-3, C-4, C-11		
3	3.69 (m)	72.7	H-2, H-4	C-9	H-5	H-5
4	3.48 (m)	70.4	H-3, H-5	C-5	H-2, H-4, H-6, C-4	H-5
5	3.87 (m)	70.0	H-4, H-6	C-4	H-2, H-4, H-6, H-5, C-2	H-5
6	4.16 (m), 4.37 (m)	67.7	H-5	C-4, C-7		H-5
7	-	172.1				
8	2.05 (s)	20.3 - 20.8		C-7		
9	-	173.1				
10	2.03 (s)	20.3 - 20.8		C-9		
11	-	172.9				
12	2.08 (s)	20.6		C-11		
1'	-	172.3				
2'	2.61 (m), 2.65 (m)	39.8	H-3'	C-1', C-3', C-4'	H-3', H-4', H-5, H-4'	H-4'
3'	5.22 (m)	71.8	H-2', H-4'	C-1', C-2', C-4', C-5', C-17'	H-2', H-4', H-5	H-5'
4'	1.61 (m), 1.61 (m)	34.7	H-3', H-5'		H-2', H-3', H-5'	H-5'
5'	1.33 (m)	25.9	H-4'			
6' - 13'	1.29 – 1.33 (m)	30.2 – 31.0				
14'	1.29 (m)	32.9	H-13', H-15'			
15'	1.31 (m)	23.5	H-14', H-16'	C-14', C-16'		
16'	0.90 (t, 6.9)	14.1	H-15'	C-14', C-15'		
17'	-	172.3				
18'	2.02 (s)	20.8		C-17		
Table S9. NMR data for compound 2 (MeOD, 600/150 MHz)

Position	δ\textsubscript{n} Multiplicity (J in Hz)	δ\textsubscript{C}	COSY	HMBC H → C	NOE
1	3.63 (m), 3.80 (m)	64.7	H-2	C-2	H-2
2	3.79 (m)	70.3	H-1, H-3	C-3	H-1, H-3, H-5
3	3.69 (m)	72.5	H-2, H-4		H-2, H-4
4	3.47 (m)	70.7	H-3, H-5	C-7	H-3, H-5
5	3.87 (m)	70.0	H-4, H-6	C-4	H-2, H-4, H-6
6	4.18 (m), 4.39 (m)	67.8	H-5		H-5
7					
8	2.08 (s)	20.5		C-7	
1'		172.3			
2'	2.65 (m), 2.65 (m)	39.8	H-3'	C-1', C-3', C-4'	H-4'
3'	5.22 (m)	71.7	H-2', H-4'	C-1', C-17'	H-2', H-4', H-5'
4'	1.62 (m), 1.62 (m)	34.8	H-3', H-5'	C-5'	H-2', H-3', H-5'
5'	1.32 (m)	25.9		H-4'	
6' - 13'	1.29 – 1.33 (m)	30.2 – 31.0			
14'	1.29 (m)	32.8	H-13', H-15'		
15'	1.31 (m)	23.5	H-14', H-16'	C-14', C-16'	
16'	0.90 (t, 6.9)	14.2	H-15'	C-15'	
17'		172.3			
18'	2.02 (s)	20.8		C-17'	
Table S10. NMR data of compound 5 (MeOD, 600/150 MHz)

Position	δ m (J in ppm)	δ c	HMBC C\rightarrow H	NOE
1	175.7 H-1, H-2, H-3, OMe			
2	4.43 (dd, 6.9, 5.4) 72.6 H-3 H-3			
3	3.11 (dd, 14.5, 6.5, 0.7) 31.3 H-2 H-2			
	3.21 (dd, 14.5, 5.4, 0.7) 137.7 H-4', H-6'			
1'	124.5 H-3 H-3			
2'	7.09 (s) 110.8 H-3, H-2, H-4', H-2'			
3'	110.8 H-3, H-2, H-4', H-2'			
3a'	127.3 H-2, H-3, H-6'			
4'	7.53 (d, 7.8) 119.1 H-6' H-2, H-3, H-5', OMe			
5'	6.99 (t, 7.8) 119.4 H-7' H-4', H-6'			
6'	7.07 (t, 7.8) 122.0 H-4' H-5', H-7'			
7	7.31 (d) 111.9 H-5' H-6'			
7a'	110.1 H-4, H-2, H-6'			
OMe	3.64 (s) 52.0 H-2', H-4'			
Figure S1. Differential metabolomes of *R. mucilaginosa* 50-3-19/20B (a) on PDA medium; (b) on WSP30 medium

Figure S2. Overview of genomic statistics based on *de novo* genome assembly. (A) Genome Assembly statistics (B) Total repetitive elements

A	denovo Assembly	Definition
Assembled Size (Mb)	20.02	Total denovo assembled size
Total scaffolds	265	Total number of scaffolds in assembled genome
N25 (Kb)	498.8	Length of the scaffold until which sum of lengths of scaffolds are reached to 25% of 20.02 Mb
L25	8	Number of scaffolds in the assembled genome that constitute N25
N50 (Kb)	295.8	Length of the scaffold until which sum of lengths of scaffolds are reached to 50% of 20.02 Mb
L50	21	Number of scaffolds in the assembled genome that constitute N50
N75 (Kb)	163.5	Length of the scaffold until which sum of lengths of scaffolds are reached to 75% of 20.02 Mb
L75	44	Number of scaffolds in the assembled genome that constitute N75
%GC	60.47	Percentage of total G+C content of assembled genome (20.02 Mb)

B	Types of repeats	No. of Repeats*	Total length (bp)	Percentage of genomic sequence
Retroelements	81	55667	0.28	
LINEs	18	3607	0.02	
LTR elements	63	52060	0.26	
Ty1/Copia	28	30103	0.15	
Gypsy/DIRS1	33	21758	0.11	
DNA transposons	9	581	0.00	
Tc1-IF630-Pogo	1	15	0.00	
Unclassified	2	887	0.00	
Small RNA	10	7904	0.04	
Simple repeats	8318	326295	1.63	
Low complexity	759	37594	0.19	
Total interspersed repeats	57135		0.29	
Total repeat contents	428912		2.14	
Figure S3. GNPS MS/MS mirror plot of experimental and library data of 9-oxo-10E,12Z-octadecadienoic acid

Figure S4. GNPS MS/MS mirror plot of experimental and library data of cyclo-(Leu-Phe)
Figure S5. GNPS MS/MS mirror plot of experimental and library data of DL-Indole-3-lactic acid

Figure S6. GNPS MS/MS mirror plot of experimental and library data of 5α,8α-epidioxyergosta-6,22-dien-3β-ol
Figure S7. GNPS MS/MS mirror plot of experimental and library data of C17-sphinganine

Figure S8. GNPS MS/MS mirror plot of experimental and library data of 9,10-Epoxy-12-octadecenoic acid
Figure S9. (a) HR-MS and (b) MS/MS spectra of 1
Figure S10. 1H NMR spectrum of compound 1 (MeOD, 600 MHz)

Figure S11. HSQC spectrum of compound 1 (MeOD, 600/150 MHz)
Figure S12. COSY spectrum of compound 1 (MeOD, 600 MHz)

Figure S13. HMBC spectrum of compound 1 (MeOD, 600/150 MHz)
Figure S14. NOESY spectrum of compound 1 (MeOD, 600 MHz)

Figure S15. TOCSY spectrum of compound 1 (MeOD, 600 MHz)
Figure S16. (a) HR-ESIMS and (b) MS/MS spectra of 2
Figure S17. 1H NMR spectrum of compound 2 (MeOD, 600 MHz)

Figure S18. HSQC spectrum of compound 2 (MeOD, 600/150 MHz)
Figure S19. COSY spectrum of compound 2 (MeOD, 600 MHz)

Figure S20. NOESY spectrum of compound 2 (MeOD, 600 MHz)
Figure S21. HMBC spectrum of compound 2 (MeOD, 600/150 MHz)
Figure S22. (a) HR-ESIMS and (b) MS/MS spectra of 3
Figure S23. (a) HR-ESIMS and (b) MS/MS spectra of 4
Figure S24. (a) HR-ESIMS and (b) MS/MS spectra of 5
Figure S25. 1H NMR spectrum of compound 5 (MeOD, 600 MHz)

Figure S26. 13C NMR spectrum of compound 5 (MeOD, 150 MHz)
Figure S27. HSQC spectrum of compound 5 (MeOD, 600/150 MHz)

Figure S28. COSY spectrum of compound 5 (MeOD, 600 MHz)
Figure S29. HMBC spectrum of compound 5 (MeOD, 600/150 MHz)

Figure S30. NOESY spectrum of compound 5 (MeOD, 600 MHz)
Figure S31. Metabolites reported in the Dictionary of Natural Products for the genus *Rhodotorula*

- **10-Undecenoic acid**
- **10-Undecynoic acid**
- **(R)-form, 2E-Hydroxy-3-pentanone**
- **1,5-Dihydroxy-2,2-dimethyl-3-pentanone**
- **3,4-Didehydro-γ-carotene**
- **7,8-Dihydrolycopene**
- **Torularhodin**
- **16'-Aldehyde Torularhodin**
- **16'-Alcohol Torularhodin**
- **3-Hydroxyhexadecanoic acid; (R)-form**
- **3-Hydroxyoctadecanoic acid; (R)-form**

Saccharide biosynthesis

- **NRPS/RiPP**
- **3-O-β-D-Mannopyranosyl-D-mannose**
- **4-O-β-D-Mannopyranosyl-D-mannose**

Terpene/Fatty acid biosynthesis

- **(S)-form, N-Hydroxy-3-Amino-2-piperidinone**

PKS Pathway

- **Oxaspirol A**
- **4-Ketone-Oxaspirol A**
References

1. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L. Proposed minimum reporting standards for chemical analysis. *Metabolomics* 2007, 3, 211-221.

2. Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. *Metabolites* 2018, 8, 31. https://doi.org/10.3390/metabo8020031

3. Szafranek, J.; Palacz, Z.; Grzonka, Z. A comparison of electron impact and field ionization spectra of some 2, 5-diketopiperazines. *Org. Mass Spectrom.* 1976, 11, 920-930.

4. Manna, S.K.; Patterson, A.D.; Yang, Q.; Krausz, K.W.; Idle, J.R.; Furnace Jr, A.J.; Gonzalez, F.J. UPLC–MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. *J. Proteome Res.* 2011, 10, 4120-4133.

5. Kaiser, P.; Geyer, R.; Surmann, P.; Fuhrmann, H. LC–MS method for screening unknown microbial carotenoids and isoprenoid quinones. *J. Microbiol. Methods* 2012, 88, 28-34.

6. Cimmino, A.; Nocera, P.; Linaldeddu, B.T.; Masi, M.; Gorecki, M.; Pescitelli, G.; Montecchio, L.; Maddau, L.; Evidente, A. Phytotoxic metabolites produced by *Diaporthella cryptica*, the causal agent of hazelnut branch canker. *J. Agric. Food. Chem.* 2018, 66, 3435-3442.

7. Wang, J.-F.; Huang, Y.-J.; Fang, M.-J.; Xie, W.-L.; Su, W.-J.; Zhao, Y.-F. 5α, 8α-Epidoxyergosta-6, 22-dien-3β-ol (ergosterol peroxide) methanol solvate. *Acta Crystallogr. Sect. E: Struct. Rep. Online* 2004, 60, o764-o765. https://doi.org/10.1107/S160053680400813X

8. Rana, N.A.; Singh, A.; Del Poeta, M.; Hannun, Y.A. Qualitative and quantitative measurements of sphingolipids by mass spectrometry. In *Bioactive Sphingolipids in Cancer Biology and Therapy*, Springer: 2015; pp. 313-338.

9. Wang, M.; Mao, W.; Wang, X.; Li, F.; Wang, J.; Chi, Z.; Chi, Z.; Liu, G. Efficient simultaneous production of extracellular polyol esters of fatty acids and intracellular lipids from inulin by a deep-sea yeast *Rhodotorula paludigena* P4R5. *Microb. Cell Factories* 2019, 18, 149. https://doi.org/10.1186/s12934-019-1200-3

10. Garay, L.A.; Sitepu, I.R.; Cajka, T.; Fiehn, O.; Cathcart, E.; Fry, R.W.; Kanti, A.; Nugroho, A.J.; Faulina, S.A.; Stephanandra, S. Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales. *J. Ind. Microbiol. Biotechnol.* 2017, 44, 923-936.

11. Cajka, T.; Garay, L.A.; Sitepu, I.R.; Boudry-Mills, K.L.; Fiehn, O. Multiplatform mass spectrometry-based approach identifies extracellular glycolipids of the yeast *Rhodotorula babjyeve* UCDFST 04-877. *J. Nat. Prod.* 2016, 79, 2580-2589.