Stricter national standards are required for credentialing of endoscopic-retrograde-cholangiopancreatography in the United States

Mitchell S Cappell, David M Friedel

ORCID number: Mitchell S Cappell (0000-0003-3445-5428); David M Friedel (0000-0001-8051-7410).

Author contributions: Cappell MS initiated this opinion piece; Cappell MS and Friedel DM wrote the manuscript.

Conflict-of-interest statement: None for either Dr. Cappell or Dr. Friedel. In particular, Dr. Cappell, as a consultant for the United States Food and Drug Administration (FDA) Advisory Committee for Gastroenterology Drugs, affirms that this paper does not discuss any proprietary confidential pharmaceutical data submitted to the FDA and reviewed by Dr. Cappell. Dr. Cappell was until 1 year ago a member of the speaker’s bureau for AstraZeneca and Daiichi Sankyo, co-marketers of Movantik. Dr. Cappell has had one-time consultancies for Mallinckrodt and Shire. This work does not discuss any drug manufactured or marketed by AstraZeneca, Daiichi Sankyo, Shire, or Mallinckrodt.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and

Abstract

Endoscopic-retrograde-cholangiopancreatography (ERCP) is now a vital modality with primarily therapeutic and occasionally solely diagnostic utility for numerous biliary/pancreatic disorders. It has a significantly steeper learning curve than that for other standard gastrointestinal (GI) endoscopies, such as esophagogastroduodenoscopy or colonoscopy, due to greater technical difficulty and higher risk of complications. Yet, GI fellows have limited exposure to ERCP during standard three-year fellowships because ERCP is much less frequently performed than esophagogastroduodenoscopy/colonoscopy. This led to adding an optional year of training in therapeutic endoscopy. Yet many graduates from standard three-year fellowships without advanced training intensely pursue independent/unsupervised ERCP privileges despite inadequate numbers of performed ERCPs and unacceptably low rates of successful selective cannulation of desired (biliary or pancreatic) duct. Hospital credentialing committees have traditionally performed ERCP credentialing, but this practice has led to widespread flouting of recommended guidelines (e.g., planned privileging of applicant with 20% successful cannulation rate, or after performing only 7 ERCPs); and intense politicking of committee members by applicants, their practice groups, and potential competitors. Consequently, some gastroenterologists upon completing standard fellowships train and learn ERCP “on the job” during independent/unsupervised practice, which can result in bad outcomes: high rates of failed bile duct cannulation. This severe clinical problem is indicated by publication of ≥ 12 ERCP competency studies/guidelines during
INTRODUCTION

Endoscopic retrograde cholangiopancreatography (ERCP) compared to the other standard gastrointestinal (GI) procedures of esophagogastroduodenoscopy (EGD) and colonoscopy is technically far more difficult, requires greater skill, and entails a higher rate of clinically significant complications. Yet GI fellows have limited exposure to ERCP during a standard three years GI fellowship because ERCP is much less frequently performed than EGD or colonoscopy. This combination of a steep learning curve and limited exposure motivated the institution of an optional extra year of advanced endoscopy training, primarily devoted to ERCP but also devoted to endoscopic ultrasound (EUS). Yet many graduates from standard three years fellowships without an extra year of advanced training intensely pursue independent (unsupervised) ERCP privileges[1]. Sometimes these requests are reasonable, but they may be unjustified if the applicant did not perform an adequate number of ERCPs during standard fellowship training and has a low rate of successful selective cannulation of the desired (biliary or pancreatic) duct[2-3]. At least 18 studies, recommended guidelines, and editorials on ERCP credentialing have been published in the last 30 years, including 12 published since 2015 (Table 1). However, lack of mandatory, quantitative, written, criteria for ERCP credentialing has permitted ambiguities and neglect of recommended guidelines. Consequently, some
gastroenterologists upon completing standard fellowship training learn ERCP “on the job” during independent unsupervised practice, which can result in bad ERCP outcomes: Extremely high rates of failed bile duct cannulation which necessitates that patients undergo repeat ERCP by another gastroenterologist at another time.

Fifty years after the institution of ERCP in 1968, this opinion piece calls for establishment of mandatory, written, and quantitative national criteria to prevent ambiguities and disregard of recommended guidelines. The monitor of the mandatory criteria should not ideally be an in-hospital committee because this committee is subject to intense political pressure by the applicants themselves and their employers (personal unpublished data, Cappell as Chief of Gastroenterology and Hepatology for last 12 years), but a truly independent entity. This work suggests consideration of establishing an independent national board, similar to the National Board of Medical Examiners or American Board of Internal Medicine, to maintain uniform national standards divorced from political pressure by local applicants, their private practice groups, competing gastroenterology groups, or hospitals. This work reviews prior recommended criteria for ERCP credentialing and their rationale; the compelling need for quantitative, mandatory criteria; and provides an example of mandatory credentialing criteria, which are merely illustrative because criteria should be established by consensus of a committee of ERCP experts preferably assembled under the auspices of the American Society of Gastrointestinal Endoscopy (ASGE), or similar professional GI organization.

METHODS

Literature on ERCP credentialing and training was comprehensively searched by computer using PubMed and Ovid with the following medical subject headings/keywords: (“ERCP” OR “endoscopic retrograde cholangiopancreatography” OR “endoscopic retrograde cholangiography”) AND (“privileges” OR “privileging” OR “credentials” OR “credentialing” OR “guidelines” OR “position paper” OR “recommendation” OR “American Society for Gastrointestinal Endoscopy” OR “ASGE” OR “competence” OR “competency” OR “competent” OR “training” OR “trainee” OR “quality” OR “independent practice”). The two authors independently performed literature searches, and decided on which articles to incorporate into this review according to appropriateness of article content and article priority based on consensus. This review was rendered up-to-date by repeating a computerized literature search just before submitting this work for publication which identified one new article just e-published ahead of print one week before submission of this opinion piece.

This work is restricted to privileging of adult gastroenterologists for ERCP in the United States because practice patterns, standards of care, and medical malpractice litigation patterns differ in the rest of the world; and excludes ERCP credentialing for pediatric gastroenterologists, or GI, hepatobiliary, and pancreatic surgeons because they have different practice patterns.

RESULTS

History and clinical significance of ERCP

ERCP is currently the procedure of choice for many biliary and pancreatic disorders. About 350000-500000 ERCP’s are currently performed annually in the United States. Common indications include cholecodocholithiasis, obstructive jaundice, biliary pancreatitis, malignant biliary obstruction, and benign biliary strictures; while uncommon indications include recurrent pancreatitis of unknown etiology, biliary or pancreatic duct leaks, pancreatic stones, pancreatic strictures, chronic pancreatitis, and sphincter of Oddi dysfunction.

After William McCune, an obstetrician, performed the first ERCP in 1968, Peter Cotton, a gastroenterologist, reported a clinical series of 60 diagnostic ERCP’s in 1972. Critical developments in diagnostic ERCP technology included side-viewing endoscopes to view the mural papilla en face, cannulation catheters, endoscopic elevators to facilitate papillary cannulation, guide-wires, biopsy forceps, and brushes. Classen and Demling in Germany, and Kawai and colleagues in Japan, pioneered ERCP therapy using sphincterotomes to open the ampulla and endoscopic devices to extract cholecodocholithiasis. ERCP has become increasingly therapeutic because of critical advances in therapeutic technology, including sphincterotomes for sphincterotomy, inflatable balloons or stents to dilate strictures, electrocautery to stem hemobilia, and baskets or inflatable balloons to retrieve cholecodocholithiasis.
Table 1 Literature review of criteria for endoscopic retrograde cholangiopancreatography privileging and practice

First author, Journal, Year study published	Type of study	Proposed Minimum number of ERCPs or other criteria for determining competence	Quality indicator or comments
Wigton et al[53], American College of Physicians, Ann Intern Med 1988	Position paper, American College of Physicians	35 supervised ERCPs. No quality indicators specified.	Document to include degree of success of ERCP. Types of ERCP not specified.
Watkins et al[50], Gastrointest Endosc 1996	Original prospective report of point at which GI fellow achieves 85% rate of cannulation of both pancreatic and bile ducts	100 supervised ERCPs	Point at which GI fellow achieves 85% rate of cannulation of desired duct (either pancreatic duct or bile duct)
Jowell et al[45], Ann Intern Med 1996	Prospective study involved grading of 1796 ERCPs among 17 GI fellows	180 supervised ERCPs	Number of ERCPs for individual skills: 160 for cholangiography, 160 for pancreatic duct cannulation, 120 for stone extraction, and 60 for stent insertion.
Eisen et al[41], Gastrointest Endosc 2002	Position paper, American Society for Gastrointestinal Endoscopy	180 supervised ERCPs	80% ability to cannulate the duct of interest (either bile duct or pancreatic duct)
Garcia-Canal[38], Surg Endosc 2007	Letter to editor based on personal experience as surgeon training in ERCP	200 ERCPs	Based on personal experience at point at which achieved 80% rate of cannulation of bile duct. Anecdotal evidence.
Verma et al[42], Gastrointest Endosc 2007	Retrospective review of single operator ERCP learning curve	> 80% rate of successful deep cannulation of bile duct	Achieved at performing 350-400 ERCPs
Shahidi et al[43], Gastrointest Endosc 2015	Systematic review encompassing 9 studies	Competency achieved after 79 to 300 ERCPs, depending upon learning curve of individual trainee	Competency for specific quality indicators: 70 to 160 ERCPs for pancreatic duct cannulation, and 160 to 400 ERCPs for deep bile duct cannulation
Cotton[39], Gastrointest Endosc 2015	Editorial	Supports guidelines set by Australian Conjoint Committee of 200 ERCPs	---
Adler et al[44], Gastrointest Endosc 2015	Position paper, American Society for Gastrointestinal Endoscopy Quality Assurance in Endoscopy Committee	> 90% rate of deep cannulation of duct of interest with native papilla, > 90% rate of extraction of common bile duct stone < 1 cm in patient with normal bile duct anatomy, > 90% successful stent placement in patient with normal anatomy	---
Ekkelenkamp et al[40], Endoscopy 2015[1]	Nationwide analysis of 8575 ERCPs by 171 endoscopists in Holland during 1 yr.	Overall rate of “successful” ERCPs was 83.4% for native papilla and 89.4% after sphincterotomy.	Provides a reasonable estimate of expected success rate for ERCP operators.
Wani et al[41], Gastrointest Endosc 2016	Prospective multicenter trial conducted among 5 advanced GI endoscopy fellows at 5 medical centers	Number of ERCPs to achieve successful cannulation rate > 90% of biliary duct varied from 26 to 211 ERCPs.	Demonstrates variability in learning curves to achieve competence in ERCP as determined by > 90% rate of bile duct cannulation
Wani et al[42], Clin Gastroenterol Hepatol 2017	Prospective multicenter study of 22 advanced GI endoscopy trainees at 20 medical centers	Demonstrated substantial variability in learning curves for cognitive and technical ability in ERCP. This suggests basing criteria for competence not on volume, but on achieving landmarks for quality indicators (e.g., successful cannulation rate).	Variable learning curves for achieving cognitive and technical success in ERCPs upon completion of advanced endoscopy fellowship
Wani et al[43], Gastrointest Endosc 2018	Gastrointestinal Endoscopy white paper	Developed comprehensive data collection and reporting tool for assessing ERCP performance	Demonstrated feasibility of using a central database to monitor GI fellow performance
Faulx et al[44], Gastrointest Endosc 2017	American Society for Gastrointestinal Endoscopy Standards of Practice Committee Guideline	200 supervised ERCP procedures for assessing competency. Additionally, independently perform > 80 sphincterotomies and > 60 biliary stent placements	This work shows that advanced endoscopy fellowship training leads to successful ERCP performance in private practice.
Wani et al[45], Gastroenterology 2018	Prospective multicenter clinical trial involving 22 advanced GI endoscopy fellows	After completing an advanced endoscopy fellowship, ERCP operators achieved an average successful cannulation rate of 94.9% in private practice.	---
ERCP: Endoscopic retrograde cholangiopancreatography; GI: Gastrointestinal.

Therapeutic ERCP often produces dramatic cures of life-threatening conditions, and is less invasive and safer than surgical options for various disorders, such as ascending cholangitis from choledocholithiasis[14]. ERCP therapies have largely obviated surgery for choledocholithiasis and choledochal strictures, and can improve survival in patients with cholangiocarcinoma[12,13]. The relatively recent change of ERCP to become a predominantly therapeutic modality has also been fostered by development of less invasive and safer pancreatico-biliary diagnostic tests than ERCP, including EUS and magnetic resonance cholangiopancreatography (MRCP).

ERCP entails greater risks of clinically significant complications than other standard GI endoscopic procedures, such as EGD or colonoscopy[14]. ERCP has a reported mortality ranging from 0.2%[15] to 1%[16], depending upon patient age, medical status, and planned therapeutic intervention. Kalaitzakis et al[12] reported a dramatic 12% mortality at 3 mo from post-ERCP pancreatitis, though patient-related factors, including cancer diagnosis and advanced age were contributing factors. Moreover, ultimately fatal post-ERCP pancreatitis is probably under-reported[16-20]. Life-threatening complications after ERCP and sphincterotomy include post-sphincterotomy bleeding, unremitting cholangitis, bile leak, and duodenal perforation. ERCP is a relatively common cause of medical malpractice litigation against gastroenterologists, and engenders a much higher rate of medical malpractice suits than other GI endoscopic procedures[20].

ERCP is uncommonly performed relative to the other two standard GI endoscopic procedures of EGD and colonoscopy. For example, at William Beaumont Hospital in Royal Oak, one of the ten largest hospitals in the United States, ERCP represents only about 700 (3%) of a total of 24000 annual GI endoscopies. Moreover, this percentage probably overestimates its relative frequency in the United States because this tertiary hospital is a referral center for ERCPs. The technically demanding skills and relatively high risks of severe complications of ERCP vs. relatively infrequent exposure to ERCP during standard three years of GI fellowship prompted gastroenterologist-administrators to establish a year of advanced endoscopy fellowship training primarily devoted to ERCP. Advanced endoscopy programs also generally incorporate training in diagnostic and therapeutic EUS, and increasingly offer other relatively recently introduced advanced endoscopic procedures, including; Double balloon enteroscopy, ablation therapy for Barrett’s mucosa, endoscopic mucosal resection, endoscopic submucosal dissection, peroral endoscopic myotomy, endoscopic clips to close GI perforations, endoscopic suturing, and peroral cholangiopancreatoscopy. Advanced GI fellows also need to generate clinical income by performing routine EGDs and colonoscopies because their salaries are not funded by Medicare. Training in these other advanced techniques and performance of routine GI endoscopies can adulterate the advanced fellowship experience in ERCP. The core curriculum outlines ERCP trainee goals in terms of expectations and experiences[22,23] (Table 2). In one survey, graduating advanced fellows were generally satisfied with their advanced endoscopy training, but some of them would have skipped the extra year of advanced training altogether if they had more exposure to ERCP and EUS during their standard GI fellowship[24].

History and rationale of ERCP credentialing criteria

After the introduction of diagnostic ERCP in 1968 and therapeutic ERCP in 1974, clinical demand for ERCP burgeoned with scant regulation of ERCP privileges
Table 2 Core Curriculum for endoscopic-retrograde-cholangiopancreatography trainees

Cognitive
1 Obtain written, witnessed, and informed patient consent with discussion of the indication for the ERCP; potential complications including pancreatitis, hemorrhage, duct leak, perforation and infection; alternative tests or therapies; and adequately answer patient questions
2 Realize appropriate indications for ERCP and accessory interventions
3 Evaluate patient prior to procedure and optimize outcomes, in terms of potential bleeding (i.e., hold antiplatelet and anticoagulants if possible), and administer antibiotics as necessary to prevent subsequent sepsis
4 Understand and practice prophylactic interventions, especially to prevent post-ERCP pancreatitis
5 Know “best practice” recommendations as to technical approaches during ERCP
6 Knowledge of optimal management of ERCP complications
7 Manage the patient after ERCP as in-patient or outpatient, as appropriate
8 Manage complications occurring during or after ERCP
9 Knowledgably discuss findings and consult with allied specialists: hepatobiliary or pancreatic surgeons and interventional radiologists

Technical (not comprehensive)
1 Evaluate ampulla in a knowledgeable fashion
2 Access necessary ductal system via deep cannulation ≥ 90% attempts
3 Procure required fluoroscopic images of the biliary and pancreatic ductal systems
4 Working knowledge to interpret fluoroscopic images
5 Perform optimal biliary and/or pancreatic sphincterotomy as required
6 Extract biliary and pancreatic duct stones via basket or balloon.
7 Insert plastic and metal stents into pancreatic and biliary system as required
8 Perform intraductal endoscopy and associated diagnostic or therapeutic maneuvers, as required: EHL, laser, biopsies, and brushings

Adopted with major modifications from Jorgensen et al. [23]. ERCP: Endoscopic retrograde cholangiopancreatography; EHL: electrohydraulic lithotripsy.

because of a severe shortage of endoscopists trained and proficient in this novel procedure. Cappell vividly recalls how Jerry Siegel, a highly talented pioneer clinical ERCP practitioner, travelled to numerous major academic hospitals throughout New York City totting a briefcase containing his own ERCP endoscope and endoscopic accessories to perform ERCP on referred patients, after being granted temporary, emergency, ERCP privileges at these hospitals. This lightly regulated “Wild West” of “have ERCP scope will travel” was prevalent in the mid-to-late 1970s [25]. Notable other ERCP pioneers included Peter Cotton at Duke University Hospital who has become the primary advocate of tighter regulation of ERCP privileges, Meinhard Classen in Germany, and Ito in Japan.

Now 50 years after its inauguration, mandatory, written, and strict regulations of training and credentialing of ERCP, based on national guidelines, should be adopted. Regulation is required because of: (1) High risks inherent to ERCP, especially of post-ERCP pancreatitis, bile leaks, and post-sphincterotomy bleeding; (2) Extremely high level of technical expertise and cognitive skills needed to master therapeutic ERCP, especially given the ever increasingly innovative and more sophisticated therapeutic technologies; and (3) Diverse ERCP training backgrounds of applicants for ERCP privileges. As GI Division Director, Dr. Cappell and the Credentials Committee members have “denied” five applicants’ applications for ERCP privileges because of insufficient documentation of ERCP training during their standard three year GI fellowship, low rate of bile duct cannulation, or request to perform ERCP at this tertiary university hospital while primarily based at a satellite hospital without arranging for emergency coverage to handle post ERCP emergencies on their patients at the academic teaching hospital. Indeed, one GI attending was denied ERCP privileges at a major academic hospital because of an extremely low volume of ERCP during a standard three year GI fellowship, and only a 20% rate of biliary cannulation afterwards in clinical practice[3]. Cotton[34] reported in 2015 that one GI fellow upon entering private GI practice was requested to join the ERCP rotation after having performed precisely 7 ERCPs during a standard three year GI fellowship. Contrariwise, applicants may be granted ERCP privileges despite inadequate training during a standard three years GI fellowship due to political pressure from a prominent GI group that the applicant is joining (Cappell, personal unpublished data). Such credentialing problems are exceedingly rare for other endoscopic procedures (Cappell, personal experience as Chief of Gastroenterology and Hepatology at an academic medical center during the last 12 years).

Concerns regarding ERCP training, competency, standard of practice, and
credentialing began to appear in the literature about 25 years after its introduction\(^{[2,29]}\). At the time, few medical institutions offered one year advanced endoscopy training programs focused on diagnostic and therapeutic ERCP after standard GI fellowship. Graduating GI fellows who did not train via this extra year were still eligible to obtain ERCP privileges if they had adequate training and experience during the standard three years of GI fellowship, pursued extra training abroad, or simply were self-trained. The landscape began to change around the new millennium as advanced training programs became relatively common. About 66 advanced endoscopy training programs currently exist in the United States. Concurrently, administrators of advanced endoscopy fellowships formulated a core curriculum to help standardize ERCP training and practice\(^{[22,29]}\). The ASGE has resolved that competency in ERCP is not required during standard GI fellowship training, and strongly recommended advanced endoscopy fellowship training to achieve clinical competence in ERCP\(^{[22,29]}\). Despite these recommendations, a survey of GI fellows graduating from standard three year GI fellowships reported in 2003 that 91% of them intended to perform ERCP, even though only one-third had met ERCP volume thresholds for independent ERCP practice during fellowship training\(^{[41]}\). This disparity between clinical practice and professional guidelines continues to some extent even today, despite criticism of “low-volume” operators and endorsement of quality metrics, including highly successful biliary cannulation rates and low ERCP complication rates\(^{[3,31,32]}\). For example, a survey conducted in 2015 showed that 40% of graduating third year GI fellows believed that they would be able to perform ERCP independently upon graduation, even though only 19% of them had performed ≥ 200 ERCPs\(^{[29]}\).

Competency

ERCP competency is defined as thoroughly understanding the cognitive aspects of ERCP, and reliably achieving its technical goals\(^{[33]}\). Patient outcome, patient satisfaction, and ERCP complication profile are also important. Criteria for competency, however, still remain controversial during the present era of numerous advanced GI fellowships (Table 3). One perspective suggested that biliary cannulation rate is a better parameter to assess competency than absolute ERCP numbers\(^{[34]}\). ERCP practitioners and trainees should incorporate best practice guidelines and prevention strategies to minimize complications, especially to prevent post-ERCP pancreatitis\(^{[35,36]}\). Overestimating ERCP skills or embellishing credentials can have dire clinical consequences\(^{[3]}\).

Competency in ERCP was initially determined by numbers performed during GI fellowship training. An early study recommended an extremely low threshold of 35 ERCPs to achieve competency\(^{[37]}\). A prospective six-year study suggested a minimal threshold of 100 ERCPs to achieve competency, with a > 85% biliary cannulation rate\(^{[38]}\). An important prospective study set 180-200 ERCPs as the threshold for competency, including 120 gallstone extractions, and 60 stent deployments\(^{[39]}\). An anecdotal Spanish study similarly recommended 200 ERCPs as the threshold for competency for surgeons\(^{[40]}\), as was also recommended for gastroenterologists by the ASGE Standards of Practice Committee\(^{[41]}\). A systematic review, published in 2015, reported that in five studies, the minimum threshold for competency, as determined by very high rate of successful selective, duct cannulation, ranged from 79 to 300 ERCPs\(^{[42]}\). Cotton\(^{[43]}\) published an editorial applauding these findings, and reiterating that too many low-volume operators were performing ERCP.

Recent published recommendations have become stricter. The Mayo Clinic study\(^{[44]}\) recommended > 350 ERCPs performed on a native papilla as a threshold for competency. Other studies included ERCPs on patients with prior sphincterotomy that renders biliary cannulation much easier. Recent studies suggest a ≥ 90% selective cannulation rate is an appropriate metric for a native ampulla\(^{[35]}\), but a “competent” ERCP operator should attain a ≥ 95% rate in a papilla status post sphincterotomy or with precut maneuvers\(^{[35]}\).

Assessment of ERCP competency based solely on numbers is flawed because of wide variability in: training programs, individual experiences within given training programs, exposure to ERCP during standard three-year GI fellowships, innate endoscopic ability of individual trainees, and difficulty in translating training results during GI fellowship into clinical practice\(^{[40]}\). For example, individual GI fellow experience at a given ERCP may vary from passive observation, attempting only one bile duct cannulation, performing the diagnostic ERCP, or performing the entire diagnostic and therapeutic ERCP. Also, individual learning curves for ERCP are nonlinear. Relative difficulty of ERCP procedures can be graded according to patient characteristics (e.g., stable patient vs acutely septic patient from ascending cholangitis), biliary anatomy (e.g., status post Billroth II vs native anatomy), procedural indication (e.g., obstructive jaundice vs recurrent idiopathic pancreatitis), and procedure intervention (e.g., solely diagnostic vs sphincterotomy and stone.
Table 3 Ongoing controversies in endoscopic-retrograde-cholangiopancreatography training and privileging

Ongoing controversies in endoscopic-retrograde-cholangiopancreatography training and privileging
1 What minimum number (if any) of ERCPs should be performed during a dedicated advanced training fellowship to justify credentialing?
2 What minimum number of ERCPs should be documented by a physician who seeks credentialing in ERCP after completing a standard 3 yr GI fellowship?
3 What should the profile of submitted ERCPs consist of in terms of therapeutic interventions?
4 Should all new physicians granted ERCP privileges have a probation period with monitoring by a proctor, and if so for how long?
5 What criteria, other than numbers, should be used to assess competency in ERCP?
Cannulation of desired duct(s)
Procedure outcome
Patient outcome
Complication rate
Monitoring of ERCPs during a probation period.
6 Should administrators of standard gastroenterology fellowship training programs that are 3 yr long be allowed to certify GI fellows in ERCP or should credentialing be restricted only to GI fellows who have completed an extra year of advanced endoscopy training?
7 Is post-training proctoring acceptable as a means to attain ERCP competency?
8 Should EUS training be mandatory for ERCP performance?
9 Should advanced GI fellowship training programs offer only a dedicated EUS or ERCP pathway but not both?
10 Should curriculum content for advanced therapeutic training be nationally standardized? Are there a sufficient number of advanced GI endoscopy program fellowships and are they of sufficient duration?
11 Should manpower concerns affect ERCP credentialing or should standards for competency be the only consideration?
12 Should individual hospital needs for ERCP operators affect credentialing?
13 Should all ERCP practitioners be compelled to participate in an on-call rotation for emergency ERCPs to be performed at night or on weekends?
14 Should all GI endoscopists with staff privileges for ERCP be compelled to join a rotation to perform ERCPs on public uninsured patients?
15 Should all ERCP practitioners be required to perform a minimum number of ERCPs per annum to maintain ERCP privileges (proficiency)? If so, what is the minimum number: 25 or 50 ERCPs per annum?
16 Should a national board exam, similar in concept to the examination in Gastroenterology by the American Board of Medicine be required for certification in ERCP to assess cognitive knowledge in ERCP and related clinical disciplines?

ERCP: Endoscopic retrograde cholangiopancreatography; GI: Gastrointestinal.

A recent trend is to emphasize learning curves rather than mere numbers. A Dutch study showed widely variable individual rates of acquisition of cognitive ability and technical skills, with a steeper learning curve for selective cannulation than for other technical skills, such as stent deployment. A sophisticated multi-center American study of > 1000 advanced endoscopy trainees reported a wide range of individual acquisition of cognitive ability and technical skills, which was only mildly-to-moderately correlated with ERCP volume. Another large American study found that only 60% of advanced endoscopy trainees attained technical ERCP competence, even though all trainees achieved cognitive competency. This study demonstrated the feasibility of a central database to determine individual learning curves for ERCP. The authors called their database tool TEESAT, an acronym for The EUS and ERCP Skills Assessment Tool. The 2017 ASGE Practice Guidelines recommended that ≥ 200 ERCP’s should be performed before competency is assessed, and that this minimum threshold should include > 80 sphincterotomies, and > 60 biliary stent deployments. A national board examination may be required in the future to assess cognitive ERCP skills.

Training

Advanced endoscopy fellowship training will eventually become the predominant route for ERCP practice. Paradigm shifts regarding advanced endoscopy training during the last two decades include: (1) Not mandating ERCP training during standard GI fellowships; (2) Exponential increase in number of advanced endoscopic fellowship training programs; and (3) Recent transition from an “apprenticeship” to “milestones” model for medical education. In the apprenticeship model, trainees are evaluated in relation to their peers at the same year of fellowship training. In the milestone model, trainees are evaluated by reaching appropriate interim milestones until they are evaluated for the ultimate milestone at graduation of competence for “independent practice”. The ASGE permits trainees to designate preference for
Table 4 Grading System for endoscopic-retrograde-cholangiopancreatography difficulty

Grade	Description
I	Deep cannulation of CBD or main pancreatic duct
	Extraction of small-to-medium (≤ 10 mm) biliary stones
	Biliary stenting for leaks
II	Treatment of extra-hepatic benign or malignant ductal strictures
	Placement of prophylactic pancreatic stents
	Extraction of larger biliary stones
III	Pancreatic stricture dilation and stenting
	Removal of mobile pancreatic stones ≤ 5 mm
	Hilar tumor stenting
	Treatment of hilar and intrahepatic biliary stricture
	Sphincter of Oddi manometry
	Limited pancreatic sphincterotomy
	Removal of migrated pancreatic stents
IV	Removal of impacted and larger pancreatic stones
	Pseudocyst drainage or necrosectomy
	Ampullectomy
	ERCP in patient with altered anatomy (e.g., status post Billroth II surgery)
	Minor papilla therapy
V	“Rendezvous” procedure to access and stent the biliary and pancreatic systems - requires endoscopic ultrasound training

Adapted with modifications from Cotton[3]. ERCP: Endoscopic retrograde cholangiopancreatography; CBD: Common bile duct.

Training in EUS, ERCP or both, but applicants are generally more interested in ERCP, which is a more highly valued and marketable skill.

Under the milestones paradigm, most advanced GI fellows achieved cognitive and technical goals, and were judged ready for independent practice[45], but the rate of skill acquisition was highly variable[42,45,48,49]. Number of ERCPs is deemed relevant only as a threshold to initiate formal assessment of achieving milestones for ERCP skills[45].

Various endoscopic simulators, including mechanical devices, virtual (computer-generated) models, organ explants, and live animals can help teach and train GI fellows in ERCP[51]. An inexpensive, simple, fabricated device boosted trainee confidence in performing actual ERCPs[52], while an elaborate, expensive European mechanical simulator was also helpful[53]. Computer simulators can improve ERCP skills[54]. Trainees can practice cannulation, sphincterotomy, and stent deployment using neo-papillae and neo-bile duct fashioned from chicken heart and trachea, respectively[57]. Simulators are useful adjuncts to formal training, but cannot replace actual clinical experience. Experienced ERCP operators can further improve their hands-on skills with workshops, such as those offered by the ASGE, especially for training in new and emerging technologies[58,59].

Credentialing

Credentialing is potentially contentious. A gastroenterologist without ERCP privileges is barred from performing ERCP. One-time denial is potentially tantamount to lifelong denial of this privilege because ERCP skills generally atrophy over time with disuse. Denial may decrease professional reputation because ERCP is perceived as a prestigious endoscopic procedure, and may decrease referrals for standard GI endoscopies because the gastroenterologist may be perceived as incapable of performing complex endoscopies.

Credential committee members have legitimate concerns about patient safety and potential malpractice litigation if applicants with borderline credentials are granted ERCP privileges, but the committee members could theoretically be biased against granting ERCP privileges to newly graduating GI attendings to stifle competition. However, institutional manpower needs and economic incentives may trump such
concerns because patients with pancreatobiliary diseases could be rerouted or transferred by ambulance to other hospitals if a given hospital has too few GI attendings with ERCP privileges.

A recent survey demonstrated that 21% of United States hospitals lack formal guidelines for initial credentialing for ERCP privileges, 59% of them lack formal guidelines for renewal of such privileges, 67% of them do not collect data on sphincterotomy rate or volume, and 85% of them do not collect data on rates of successful biliary cannulation[63]. After performing this survey, Cotton et al.[60] reiterated his plea for adherence to credentialing guidelines, and establishing standardized national certification for ERCP. He recommended different criteria for initial credentialing for ERCP after completing GI fellowship, credentialing after one year of GI practice, and subsequent credentialing for renewal of ERCP privileges. Clinical studies suggest that 40 to 50 ERCP with sphincterotomy annually is a reasonable number to maintain ERCP proficiency, as evidenced by such high volume operators having a lower risk of ERCP complications than low volume operators[61-66]. The accompanying editorial endorsed Cotton’s proposal, called the current credentialing process “alarming”, and urged credential committees to analyze more data on ERCP outcomes and hospital course[61]. Publications on ERCP competency including original articles, position papers, recommended guidelines, and editorials are listed in Table 5. Most authorities believe that endoscopists performing high volumes of ERCPs generally provide higher quality ERCPs and improve patient outcome compared to endoscopists performing low volumes of ERCPs[61,64-66]. Low-volume operators derive less personal satisfaction from performing ERCP, possibly because of greater stress, and may be viewed less favorably by endoscopy personnel[66].

GI endoscopists who perform ERCPs at several hospitals pose another problem. How can endoscopists who rarely perform ERCPs at a given hospital be evaluated for re-credentialing based on the limited data available at this given hospital? Who manages patient complications after ERCP when the performing gastroenterologist is away at another hospital? Should all endoscopists with ERCP privileges be compelled to participate in on-call rotations for emergency ERCPs that must be performed at night or on weekends, and should all of them be compelled to participate in a rotation to perform ERCPs on patients without medical insurance? At Beaumont Hospital at Royal Oak, renewal of privileges has been linked to enrolling in an on-call rotation for emergency ERCPs and in a rotation for uninsured patients requiring ERCPs.

Manpower needs
Few studies analyze United States manpower needs for ERCP. The approximately 350000-500000 ERCPs performed annually in the United States[3,5] are mostly performed by endoscopists without advanced endoscopy training, and this predominance will likely persist for years to come. In Cotton’s survey published in 2017[60-62], only one-quarter of surveyed ERCP operators in the United States had advanced ERCP training, and these practitioners typically practiced in academic urban or suburban hospitals. Rigorous vetting of applicants for ERCP privileges could limit the number of operators. Rigorous vetting should work well in densely populated urban areas with high concentrations of ERCP operators, but may be problematic in rural and inner-city hospitals that are likely underserved in number of ERCP operators. This phenomenon may explain the reluctance of some hospitals to rigorously follow professional ERCP guidelines. Transferring patients from inner city or rural hospitals to academic medical centers for emergency ERCPs, for indications such as acute cholangitis or bile leaks, is problematic. Gastroenterologists at low-volume ERCP centers may solicit medical advice by telephone or video communications from ERCP experts at high-volume centers[61]. To adapt to local shortages of gastroenterologists performing ERCPs, surgeons could increase their rate of performing intraoperative cholangiography and could potentially perform ERCP themselves[63,65], while interventional radiologists could perform transhepatic cholangiography as a substitute for ERCP.

The duties of the individual GI fellow applying for ERCP privileges, of the supervisory attending, and of the credentialing committee at which the GI fellow is applying for ERCP privileges upon completion of the fellowship are summarized in Table 5. Upon graduation of a GI fellow, training programs should issue a nationally standardized certificate regarding ERCPs that provides quantitative data on numbers of ERCPs and percentages of successful therapeutic interventions (proposed ERCP report card illustrated in Table 6). Credentialing should grant preference to trainees who performed an extra year of GI fellowship mostly devoted to ERCP training.

This work has proposed that national criteria be mandatory rather than recommended. One reasonable method of enforcement is for chairs of credentialing committees to certify that the physician was granted ERCP privileges in accord with
Table 5 Determining competency for endoscopic-retrograde-cholangiopancreatography

Duties of GI fellow applying for ERCP privileges at a hospital	Duties of GI supervisor of ERCP training/GI fellowship program director	Duties of hospital committee voting on ERCP privileges for applying physician
Contemporaneously sign each ERCP note in which actively participated	Ascertain GI fellow signs ERCP notes when the fellow actively participated in case	Passive observation of an ERCP should be meaningful in enhancing cognitive skills for ERCP, but cannot count towards minimum threshold for performed ERCP.
Can contemporaneously sign each note in which merely observed ERCP, but observer status should be reflected in note	Allow fellow to sign on note as an observer (not active participant) in cases in which fellow was passive observer	Ascertain that received data is complete
ERCP note in which GI fellow participated should specify what technical procedures performed during ERCP: e.g., sphincterotomy, stone extraction, dilation of stenosis, etc.	Ascertain that endoscopy report includes all technical aspects of the performed ERCP	
Collate all numbers performed for ERCP: Number performed, number (%) cannulated, number with sphincterotomy, number with stone retrieval, number of strictures dilated, and etc.	Review total numbers of ERCPs and number of ERCPs in which special techniques were employed as appropriate. Record rate (% of success of special techniques.	Review total numbers of ERCPs and number (%) of ERCP special procedures and determine whether these data satisfy minimal numbers and minimal % of successful result required for competency
Make sure packet with ERCP numbers and recommendations is submitted in a timely manner at hospital applicant is applying for ERCP privileges	Sign form containing total number of ERCPs, and write whether GI fellow is recommended for independent privileges in ERCP	Decide in a timely manner whether physician granted ERCP privileges. If decision is negative, provide internal due process to appeal decision

Duties of graduating gastrointestinal fellow, endoscopic-retrograde-cholangiopancreatography supervisors during fellowship training, and credentialing committee at hospital to which applicant is applying for endoscopic-retrograde-cholangiopancreatography privileges. ERCP: Endoscopic retrograde cholangiopancreatography; GI: Gastrointestinal.

The advent of MRCP and EUS has improved the landscape so that ERCP is now rarely indicated solely for diagnosis. Current diagnostic ERCP indications are restricted to subtle primary sclerosing cholangitis, chronic pancreatitis, and indeterminate biliary strictures[70]. MRCP is limited by contraindications from implanted metal devices, high imaging cost, technical expertise required for performance and interpretation, and occasionally claustrophobia. EUS is often performed by the same operator who would perform the contemplated ERCP. Acquisition of endoscopic skills in both ERCP and EUS is therefore highly desirable during advanced GI fellowship training. A “negative” MRCP or EUS can obviate the need for ERCP[70] in about 70% and 50% of cases, respectively[71]. Such avoidance of ERCP is desirable because patients without evident malignancy or choledocholithiasis may be more susceptible to ERCP-induced pancreatitis[72].

CONCLUSION

ERCP training and credentialing has become a growing concern during the last thirty years. ERCP differs from most other endoscopic procedures in its predominantly therapeutic intent, necessity for typical performance in hospitals, steep learning curve, and penchant for occasionally causing severe complications. ERCP training has undergone several paradigms shifts during the past 50 years including: (1) Change to not requiring ERCP training during standard GI fellowship; (2) Recommendation for training in advanced endoscopy fellowships to obtain privileges in ERCP; (3) Recent exponential growth in number of advanced endoscopy fellowships; and (4) recent shift in ERCP training from an apprenticeship to milestone model, which emphasizes progressive milestones in competence until ultimately achieving independent practice at graduation. Advanced fellows and advanced fellowships have been increasingly the national criteria. This certification may, however, prove to be an inadequate remedy. An ultimate solution is to establish a Board for ERCP certification similar to the American Board of Internal Medicine that would remove politically difficult decisions on privileging from hospital committees. Cappell has personal experiences of enduring political pressures during 6 cases of applicants denied ERCP privileges and in 1 case of an applicant approved ERCP privileges despite borderline credentials (personal unpublished data, Cappell). Requiring certification by a national board would dissociate deliberations from local political considerations and would avoid flouting of the numerous recommended guidelines, position papers, and recommendations promulgated during the past 30 years.
Table 6 Proposed standardized gastroenterology fellowship report card for endoscopic-retrograde-cholangiopancreatography training and performance

Proposed standardized gastroenterology fellowship report card for ERCP

Achievements:

- Number of ERCPs in which trainee was only a passive observer.
- Number of ERCPs in which trainee actively participated (excludes ERCPs in which trainee was only a passive observer).
- Number and % of ERCPs in which trainee personally successfully cannulated at least one duct (includes either common bile duct or pancreatic duct).
- Number and % of ERCPs in which trainee personally successfully performed sphincterotomy.
- Number and % of ERCPs in which trainee successfully personally performed stone retrieval by basket or balloon pull through.
- Number of ERCPs in which trainee successfully dilated a biliary or pancreatic stricture.
- Number of ERCPs in which trainee successfully personally deployed a stent.
- Number of ERCPs in which trainee successfully retrieved a stent.
- Number of ERCPs in which trainee successfully used daughter endoscope (e.g., Spyscope) technology.

Adverse events:

Number and percent of total ERCPs in which trainee participated in which adverse events occurred:

- For fatal complications: Number_____ Percent of total _____
- For major adverse events: Number_____ Percent of total _____
- For minor adverse events: Number_____ Percent of total _____

Has the trainee been a defendant in a medical malpractice suit in any ERCP in which the trainee participated? Yes _____ No. Has the trainee had privileges in ERCP revoked or restricted or received a written warning? Yes _____ No. Has the trainee voluntarily given up ERCP privileges in lieu of these privileges being revoked or restricted? Yes _____ No.

ERCP: Endoscopic retrograde cholangiopancreatography.

scrutinized regarding ERCP skills, as reflected by at least 12 publications on this subject during the past 5 years (Table 1), including analysis of trainee learning curves and criteria for ultimate competency. ERCP authorities frequently call to improve standardization of ERCP competence and performance, including quality metrics, such as high rates of successful biliary cannulation and low rates of procedural complications. The advanced endoscopy-trained pool remains relatively limited, and most ERCP operators have been trained during a standard GI fellowship or by other means. Hospital credentialing committees have to balance patient safety and risk of medical malpractice litigation versus real-world needs for available ERCP operators and desire for increased hospital revenue from treating patients requiring ERCPs. Credentialing in ERCP by any route other than advanced endoscopy training is expected to become increasingly difficult.

All hospitals need to establish or adopt written criteria for ERCP privileges that are standardized according to national guidelines. Hospitals should be granted a transition period to implement these criteria. Criteria should include minimum number of ERCPs required to apply for privileges and minimum annual volume to maintain privileges. These criteria may specify numbers required for specialized ERCP procedures, including sphincterotomy, stricture dilatation, stent deployment, stone extractions, and per-oral cholangiopancreatoscopy. Hospitals will have to develop criteria for minimally acceptable rates of successful biliary cannulation, sphincterotomy, and gallstone extraction. Hospitals may also have to determine maximal acceptable rates of major post-ERCP complications, especially for ERCP-induced pancreatitis, clinically significant post-sphincterotomy bleeding, and bile leaks. These criteria would benefit hospitals by establishing firm criteria for granting versus denying ERCP privileges, protect applying physicians from being denied ERCP privileges for competitive rather than professional reasons, and protect patients from inadequately trained ERCP operators. Institutional GI morbidity and mortality committees should review all mortality from major ERCP complications including ERCP-induced pancreatitis, post-sphincterotomy bleeding, bile leaks, or duodenal perforations.

Implementing and following stricter ERCP regulations would likely introduce new direct costs from the work required to closely monitor ERCP practitioners, and indirect costs from reduction in the number of ERCP operators. Public health administrators need to realize that increased regulation is costly and budget these inherent costs to benefit patient care. Criteria for ERCP competency still remain controversial in 2019 and are sometimes flouted by hospitals despite the numerous
REFERENCES

1. Kowalski T, Kanchana T, Punngpauq S. Perceptions of gastroenterology fellows regarding ERCP competency and training. *Gastroint Endosc* 2003; 58: 345-349 [PMID: 14528206 DOI: 10.1067/mge.2003.50006-3]

2. Cappell MS. Adverse patient consequences from inadequately trained endoscopists obtaining privileges for advanced endoscopic procedures: Case reports suggesting a need for stricter enforcement of fellowship procedure certification and hospital privileging guidelines. *Minerva Gastroenterol Dietol* 2014; 60: 202-203 [PMID: 2517056]

3. cotton PB. Are low-volume ERCPists a problem in the United States? A plea to examine and improve ERCP practice. *Gastroint Endosc* 2011; 74: 161-166 [PMID: 21704815 DOI: 10.1016/j.gie.2011.03.123]

4. Wani S, Han S, Simon V, Hall M, Early D, Aagaard E, Abidi WM, Banerjee S, Baron TH, Bartel M, Bowman E, Brauer BC, Buscaglia JM, Carlin L, Chak A, Chaiatrith H, Choudhary A, Confer B, Coté GA, Das KK, DiMaio CJ, Dries AM, Edmundowicz SA, El Haji J, Elbert S, Ferrari A, Gamba A, Gianis, Gangarosa L, Gannavarapu B, Gordon SR, Guda NM, Hammond HT, Harris C, Jalaj S, Jowell P, Kemshl S, Klappman J, Kochman ML, Komanduri S, Lang G, Lee LS, Loren DE, Lukens F, Mullady D, Muthusamy RV, Nett AS, Olyaei MS, Pakseresht K, Perera P, Pflaum C, Pirarka C, Pomeroy GM, Rastogi A, Razzaq A, Riffl B, Saligram S, Scheiman JM, Schuster I, Shah RJ, Sharma R, Spaete JP, Singh A, Sohal M, Sreenarasimhaiah J, Stevens T, Tabibian JH, Tzimas D, Upali DS, Urayama S, Vitterbo D, Wang AY, Wassef W, Yachinovski P, Zepeda-Gomez S, Zucchini T, Keswani RN. Setting minimum standards for training in EUS and ERCP: Results from a prospective multicenter study evaluating learning curves and competence among advanced endoscopic trainees. *Gastroint Endosc* 2019; 89: 1160-1168.e9 [PMID: 30738965 DOI: 10.1016/j.gie.2019.01.030]

5. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellow ES, Williams JL Jr, Jensen ET, Shaheen NJ, Brarrt AS, Lieber SR, Kochar B, Barnes EL, Fan YC, Pate V, Galanco J, Baron TH, Sandler RS. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. *Gastroenterology* 2019; 156: 254-272.e11 [PMID: 30315778 DOI: 10.1053/j.gastro.2018.08.063]

6. ASGE Standards of Practice Committee. Chathadi KV, Chandrasekhara V, Acosta RD, Deckr GA, Early DS, Estelleb MA, Evans JA, Fausl AL, Fanelli RD, Fisher DA, Foley K, Fonkalsrud L, Hwang JH, Jue TL, Klasshab MA, Lightdale JR, Muthusamy VR, Pasha SF, Saltzmann JR, Sharaf R, Shaukat A, Sargent AK, Wang A, Cash BD, DeWitt JM. The role of ERCP in benign diseases of the biliary tract. *Gastroint Endosc* 2015; 81: 795-803 [PMID: 25665931 DOI: 10.1016/j.gie.2014.11.019]

7. ASGE Standards of Practice Committee. Early DS, Ben-Mamenach T, Deckr GA, Evans JA, Fanelli RD, Fish DA, Fukami N, Hwang JH, Jain R, Jue TL, Khan KM, Malpass PM, Maple JT, Sharaf AS, Dominitz JA, Cash BD. Appropriative use of GI endoscopy. *Gastroint Endosc* 2012; 75: 1127-1131 [PMID: 22624807 DOI: 10.1016/j.gie.2012.01.011]

8. Kozarek RA. The Past, Present, and Future of Endoscopic Retrograde Cholangiopancreatography. *Gastroenterol Hepatol (N Y)* 2017; 13: 620-622 [PMID: 29203149]

9. Claessen M, Demling L. [Endoscopic sphincterotomy of the papilla of vater and extraction of stones from the choledochal duct (author's transl)]. *Dtsch Med Wochenschr* 1974; 99: 496-497 [PMID: 4835515 DOI: 10.1007/s0028-1107790]

10. Kawai K, Akakatu Y, Murakami K, Tada M, Koli Y. Endoscopic sphincterotomy of the ampulla of Vater. *Gastroint Endosc* 1974; 20: 148-151 [PMID: 441]

11. Allen NL, Leht RE, Finnen KR, Tishler DS, Vickers SM, Wilcox CM, Hawn MT. Outcomes of cholecystectomy after endoscopic sphincterotomy for choledocholithiasis. *J Gastroint Surg* 2006; 10: 292-296 [PMID: 16455461 DOI: 10.1007/s11617-005-0013]

12. Cassani LS, Choudhary J, Chan C, Lanke G, Chen HC, Wang X, Weston B, Ross WA, Raju GS, Lee JH. Biliary Decompression in Perihilar Cholangiocarcinoma Improves Survival: A Single-Center Retrospective Analysis. *Dig Dis Sci* 2019; 64: 561-569 [PMID: 30238201 DOI: 10.1007/s10620-018-5877-x]

13. Huang RJ, Thosani NC, Barakat MT, Choudhary A, Mithal A, Singh G, Sethi S, Banerjee S. Evolution in the utilization of biliary interventions in the United States: Results of a nationwide longitudinal study from 1998 to 2013. *Gastroint Endosc* 2017; 86: 319-326.e5 [PMID: 28062313 DOI: 10.1016/j.gie.2016.12.021]

14. Nebel OT, Silvis SE, Rogers G, Sugawa C, Mandelstam P. Complications associated with endoscopic retrograde cholangiopancreatography. Results of the 1974 A/S/G/E survey. *Gastroint Endosc* 1975; 22: 34-36 [PMID: 1205101 DOI: 10.1016/0016-5107(75)91861-7]

15. Deans GT, Sedman P, Martin DF, Royston CM, Leow CK, Thomas WE, Brough WA. Are complications of endoscopic sphincterotomy age related? *Gut* 1974; 15: 545-548 [PMID: 4835515 DOI: 10.1007/s10620-018-5877-x]

16. Cappell MS et al. Standards for ERCP credentialing in USA. *J Gastroint Surg* 2019; 23: 133-140 [PMID: 2220422]

17. Kalaizakis E. All-cause mortality after ERCP. *Endoscopy* 2016; 48: 977-994 [PMID: 27494454 DOI: 10.1055/s-0042-111319]

18. Silva E, Seanon MJ, Porhinsly B, Prosicki MP, Daroswamy WA, Wang CF, Lorenzo M, Truitt M, Bibbo J, Jarvis AM, Narula VK, Steinberg SM, Szawicki SP. Complications related to endoscopic retrograde cholangiopancreatography: A comprehensive clinical review. *J Gastrointestin Liver Dis* 2009; 18: 73-82 [PMID: 19337638 DOI: 10.1111/j.1440-1746.2009.05821.x]
Predicting native papilla biliary cannulation in patients with native papillary anatomy.

Chutkan RK, Ahmad AS, Cohen J, Cruz-Correa MR, Desilets DJ, Dominitz JA, Dunkin BJ, Kante SV, McHenry L, Mishra G, Perdue D, Petriani JL, Piaia PR, Savides TJ, Telford JJ, Vargo JF. ERCP Core Curriculum prepared by the ASGE Training Committee. ERCP core curriculum. Gastrointest Endosc 2006; 63: 361-376 [DOI: 10.1016/j.gie.2006.01.010]

ASGE Training Committee. Jorgensen J, Kubiuln N, Law JK, Al-Haddad MA, Bingenger-Casey J, Christie JA, Davila RE, Kwon RS, Obstein KL, Qurashi WA, Seidack RE, Wagh MS, Zanchetti D, Coyle WJ, Cohen J. Endoscopic retrograde cholangiopancreatography (ERCP). Core curriculum. Gastrointest Endosc 2016; 83: 279-289 [DOI: 2678081] [DOI: 10.1016/j.gie.2015.11.006]

Rosenthal LS. Is a fourth year of training necessary to become competent in EUS and ERCP? Notes from the 2008 class of advanced endoscopy fellows. Gastrointest Endosc. 2008; 68: 1150-1152 [DOI: 1902822] [DOI: 10.1016/j.gie.2008.09.020]

Cappell MS. Famous endoscopy quotes. Gastroenterol Nurs 2012; 35: 129-132 [DOI: 22472673] [DOI: 10.1097/SGA.0b013e3182184b9b]

Cotton PB. ERCP (Ensuring Really Competent Practice): Enough words-action please! Gastrointest Endosc 2015; 81: 1343-1345 [DOI: 2598611] [DOI: 10.1016/j.gie.2015.02.026]

Baillie J, Jowell P. ERCP training in the 1990s. Time for new ideas. Gastrointest Endosc Clin N Am 1994; 4: 409-421 [DOI: 8193873] [DOI: 10.1016/S1052-5157(18)30513-0]

Bagillie J. ERCP for all? Gastrointest Endosc 1995; 42: 373-376 [DOI: 8536914] [DOI: 10.1016/S0016-5107(95)70144-3]

Chutkan RK, Ahmad AS, Cohen J, Cruz-Correa MR, Desilets DJ, Dominitz JA, Dunkin BJ, Kante SV, McHenry L, Mishra G, Perdue D, Petriani JL, Piaia PR, Savides TJ, Telford JJ, Vargo JF. ERCP Core Curriculum prepared by the ASGE Training Committee. ERCP core curriculum. Gastrointest Endosc 2006; 63: 361-376 [DOI: 16500380] [DOI: 10.1016/j.gie.2006.01.010]

Coyle WJ, Kedia PS, Kakaleh M. The advanced endoscopy fellowship match: an update and perspectives. Gastrointest Endosc 2012; 76: 1211-1213 [DOI: 2012.08.026. Epub 2012 Oct 6 [DOI: 25043850] [DOI: 10.1016/j.gie.2012.08.026]

Coté GA, Keswani RN, Jackson T, Fegel E, Lehman GA, McHenry L, Watkins J, Sherman S. Individual and practice differences among physicians who perform ERCP at varying frequency: A national survey. Gastrointest Endosc 2011; 74: 65-73.e12 [DOI: 21492851] [DOI: 10.1016/j.gie.2011.01.072]

Cotton PB, Romagnuolo J, Faigel DO, Aliperti G, Deal SE. The ERCP quality network: A pilot study of benchmarking practice and performance. Am J Med Qual 2013; 28: 256-260 [DOI: 22930708] [DOI: 10.1177/1062860612456255]

Rodrigues-Pinto E, Macedo G, Baron TH. ERCP competence assessment: Miles to go before standardization. Endosc Int Open 2017; 5: E718-E721 [DOI: 28791315] [DOI: 10.1055/s-0044-177780]

Rodrigues-Pinto E, Baron TH, Liberal R, Macedo G. Quality and competence in endoscopic retrograde cholangiopancreatography - Where are we 50 years later? Dig Liver Dis 2018; 50: 750-756 [DOI: 29804924] [DOI: 10.1016/j.dld.2018.04.019]

Freeman ML. Complications of endoscopic retrograde cholangiopancreatography: Avoidance and management. Gastrointest Endosc Clin N Am 2012; 22: 567-586 [DOI: 22748249] [DOI: 10.1016/j.gie.2012.05.001]

Matsubara H, Urano F, Kinoshita Y, Okamura S, Kawashima H, Goto H, Hirooka Y. Analysis of the risk factors for severity in post endoscopic retrograde cholangiopancreatography pancreatitis: The indication of prophylactic treatments. World J Gastroenterol 2017; 9: 189-195 [DOI: 28465786] [DOI: 10.4239/wjg.v9.14.189]

Clinical competence in diagnostic endoscopic retrograde cholangiopancreatography. Health and Public Policy Committee, American College of Physicians. Ann Intern Med 1988, 108: 142-144 [DOI: 3337493] [DOI: 10.7326/0003-4819-108-1-142]

Watkins JL, Ertzorn KP, Wiley TE, DeGuzman L, Harig JM. Assessment of technical competence during ERCP training. Gastroenterol Nurs 1996, 44: 411-415 [DOI: 8903559] [DOI: 10.1016/S0016-5107(96)70091-X]

Garcia-Cano J. 200 supervised procedures: The minimum threshold number for competency in performing endoscopic retrograde cholangiopancreatography. Surg Endosc 2007; 21: 1254-1255 [DOI: 17484011] [DOI: 10.1007/s00464-006-9013-y]

Jowell PS, Baillie J, Branch MS, Affronti J, Browning CL, Bute BP. Quantitative assessment of procedural competence. A prospective study of training in endoscopic retrograde cholangiopancreatography. Ann Intern Med 1996; 125: 983-989 [DOI: 8967710] [DOI: 10.7326/0003-4819-125-12-199612150-00009]

Eisen GM, Baron TH, Dominitz JA, Faigel DO, Goldstein JD, Johanson JF, Mallory JS, Raddawi HM, Vargo JF. EUS and ERCP for all? World J Gastroenterol 2012; 18: 411-415 [DOI: 9091154] [DOI: 10.1016/S1007-9570(12)57655-6]

Shahidi N, Ou G, Telford J, Ems R. When trainees reach competency in performing ERCP: A systematic review. Gastrointest Endosc 2015; 81: 1337-1342 [DOI: 25841759] [DOI: 10.1016/j.gie.2014.12.054]

Verma D, Gostout CJ, Petersen BT, Levy MJ, Baron TH, Adler DG. Establishing a true assessment of endoscopic competence in ERCP during training and beyond: A single-operator learning curve for deep biliary cannulation in patients with native papillary anatomy. Gastrointest Endosc 2007; 65: 394-400 [DOI: 17321237] [DOI: 10.1016/j.gie.2006.03.935]

Adler DG, Lieb JG 2nd, Cohen J, Pike IM, Park WG, Rizk MK, Sawhney MS, Scheiman JM, Shaheen NJ, Sherman S. Wani S. Quality indicators for ERCP. Gastrointest Endosc. 2015; 81: 54-66 [DOI: 25480099] [DOI: 10.1016/j.gie.2014.07.056]

Wani S, Keswani RN, Petersen B, Edmundowicz SA, Walsh CM, Huang C, Cohen J, Cote G. Training in EUS and ERCP: Standardizing methods to assess competence. Gastrointest Endosc 2018; 87: 1371-1382 [DOI: 29709305] [DOI: 10.1016/j.gie.2018.02.009]

Peng C, Vargo JF, Cotton PB, Lackland DT, Romagnuolo J. Predicting native papilla biliary cannulation
success using a multinational Endoscopic Retrograde Cholangiopancreatography (ERCP) Quality Network. BMC Gastroenterol 2013; 13: 147 [PMID: 24112846 DOI: 10.1186/1471-230X-13-147]

Ekkelenkamp VE, de Man RA, Ter Borg F, Borg PC, Bruno MJ, Groenen MJ, Hansen BE, van Tiltborg AJ, Rauws EA, Koch AD. Prospective evaluation of ERCP performance: Results of a nationwide quality registry. Endoscopy 2015; 47: 503-507 [PMID: 25900180 DOI: 10.1055/s-0034-1391231]

Wani S, Hall M, Wang YS, DiMaio CJ, Muthusamy VR, Keswani RN, Brauer BC, Easler JJ, Yen RD, El Hajj I, Fukami N, Ghassimi SF, Gonzalez S, Hosford L, Hollander TG, Wilson R, Kushnir VM, Ahmad J, Murad F, Prabhu A, Watson RR, Strand DS, Amatun SK, Atwell A, Shah RJ, Early D, Edmundowicz SA, Mulliday D. Variation in learning curves and competence for ERCP among advanced endoscopy trainees by using cumulative sum analysis. Gastrointest Endosc 2016; 83: 711-9.e11 [PMID: 26519570 DOI: 10.1016/j.gie.2015.10.022]

Wani S, Keswani R, Hall M, Han S, Ali MA, Brauer B, Carlin L, Chak A, Collins D, Cote GA, Diehl DL, DiMaio CJ, Dries A, El-Hajj I, Elliott S, Fairley K, Fauxs A, Fujii-Lau L, Gaiddam S, Gan SI, Gaspar JP, Gauty T, Gordon S, Harris C, Hyde R, Jones S, Komanduri S, Konrad R, Mullady D, Muthusamy VR, Olayae M, Pauo P, Saligram S, Piraka C, Rastogi A, Rosenkranz L, Rzouq F, Saxena A, Shah RJ, Simon VC, Small A, Sreenarasimhiaiah J, Walker A, Wang Y, Watson RR, Wilson RH, Yachiminski P, Yang D, Edmundowicz S, Early DS. A Prospective Multicenter Study Evaluating Learning Curves and Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography Among Advanced Endoscopy Trainees: The Rapid Assessment of Trainee Endoscopy Skills Study. Clin Gastroenterol Hepatol 2017; 15: 1758-1767.e11 [PMID: 28625816 DOI: 10.1016/j.cgh.2017.06.012]

ASGE Standards of Practice Committee. Faulx AL, Lishdale JR, Acosta RD, Agrawal D, Braining D, Chandrasekara V, Elhouchi MA, Gurudas SR, Kelsey L, Khashab MA, Kohrih S, Muthusamy VR, Quanseby BJ, Shuaat A, Wang A, Wani SB, Yang J, DeWeit JM. Guidelines for privileging, credentialing, and proctoring to perform GI endoscopy. Gastrointest Endosc 2017; 85: 273-281 [PMID: 28089029 DOI: 10.1016/j.gie.2016.10.036]

Heller SJ, Tokar JL. Current status of advanced gastrointestinal endoscopy training fellowships in the United States. Adv Med Educ Pract 2011; 2: 25-34 [PMID: 23745070 DOI: 10.2147/AMEP.S13185]

Patel SG, Keswani R, El Hajj I, Saini S, Menard-Katcher P, Del Valle J, Hosford L, Myers A, Ahnen D, Schoendfeld P, Wani S. Status of Competency-Based Medical Education in Endoscopy Training: A Nationwide Survey of US ACGME-Accredited Gastroenterology Training Programs. Am J Gastroenterol 2015; 110: 956-962 [PMID: 23803401 DOI: 10.1038/ajg.2015.524]

Wani S, Keswani RN, Han S, Aagaard EM, Hall M, Simon V, Abidi WM, Banerjee S, Baron TH, Bartel M, Bowman E, Brauer BC, Bucsaglia JM, Carlin L, Chak A, Chatrath H, Choudhary A, Confer B, Coté GA, Das KK, DiMaio CJ, Dries AM, Edmundowicz SA, El Chafic AH, El Hajj I, Elliott S, Ferreira J, Gamboa A, Gan IS, Gangarosa LM, Gannavarup B, Gordon SR, Guda NM,hammad HT, Harris C, Jalal S, Jowell J, Kishnuli S, Klapman J, Kochman ML, Lande JD, Lee JS, Loren DE, Lukens FJ, Mullady D, Muthusamy VR, Ns AS, Olayae MS, Pakseresht K, Perera P, Pauo P, Piraka C, Pones J, Rastogi A, Razzak A, Riff B, Saligram S, Scheiman JM, Schuster I, Shah RJ, Sharma R, Spaete JP, Singh A, Sohail M, Sreenarasimhaiah J, Stevens T, Tabibian JH, Tzimas D, Uppal DS, Urayama S, Vitterbo D, Wang AY, Wasew F, Yachiminski P, Zepeda-Gomez S, Zucelli T, Early D. Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice. Gastroenterology 2018; 155: 1483-1494.e7 [PMID: 30056904 DOI: 10.1053.j.gastro.2018.07.024]

Schneider AR, Scheppe W. Do you yourself: Building an ERCP training system within 30 minutes (with videos). Gastrointest Endosc 2014; 79: 828-832 [PMID: 24518120 DOI: 10.1016/j.gie.2014.01.006]

van der Weel SE, Koch AD, Bruno MJ. Face and construct validity of a novel endoscopic ERCP simulator. Endosc Int Open 2018; 6: E758-E765 [PMID: 29881768 DOI: 10.1055/s-0044-101754]

Leung J, Lim B, Ngo C, Lao WC, Wing LY, Hung I, Li M, Leung FW. Head-to-head comparison of practice with endoscopic retrograde cholangiopancreatography computer and mechanical simulators by experienced endoscopists and trainees. Dig Endosc 2012; 24: 175-181 [PMID: 22507092 DOI: 10.1111/j.1443-1661.2011.01292.x]

Vélazquez-Avíña J, Sobrino-Cossio S, Chávez-Vargas C, Sulbaran M, Mönkemüller K. Development of a novel and simple ex vivo biologic ERCP training model. Gastrointest Endosc 2014; 80: 1161-1167 [PMID: 25306086 DOI: 10.1016/j.gie.2014.07.081]

Choi J, Malik N, Drachman D, Adler D, Nadir A. Endoscopic retrograde cholangiopancreatography (ERCP) outcomes can improve after further training for an individual already experienced in ERCP. Minerva Gastroenterol Dietol 2015; 61: 117-120 [PMID: 26161565]

Sedlack RE, Petersen BT, Kolars JC. The impact of a hands-on ERCP workshop on clinical practice. Gastrointest Endosc 2005; 61: 67-71 [PMID: 15672058 DOI: 10.1016/S0016-5107(05)70245-3]

Cotton PB, Feusner D, Dufault D, Cote G. A survey of credentialing for ERCP in the United States. Gastrointest Endosc 2017; 86: 866-869 [PMID: 28366439 DOI: 10.1016/j.gi.2017.03.1530]

Freeeman ML, Nelson DB, Sherman S, Haber GB, Herman ME, Dorsher PJ, Moore JP, Fennerty MB, Ryan ME, Shaw MJ, Lande JD, Phlemy AM. Complications of endoscopic biliary sphincterotomy. N Engl J Med 1996; 335: 909-918 [PMID: 8782497 DOI: 10.1056/NEJM199609263351301]

Rabenstein T, Schneider HT, Eils C, Nicklas M, Ruppert T, Katalinic A. A randomized, controlled trial: Impact of skill and experience of the endoscopist on the outcome of endoscopic sphincterotomy techniques. Gastrointest Endosc 1999; 50: 628-636 [PMID: 10536317 DOI: 10.1016/S0016-5107(99)0010-8]

Cassani LS, DiSario JA. Reporting progress in ERCP hospital credentialing and quality review: Stagnant is an understatement. Gastrointest Endosc 2017; 86: 870-871 [PMID: 29061258 DOI: 10.1016/j.gie.2017.07.001]

Disario JA. Hospital volume and ERCP outcomes: The writing is on the wall. Gastrointest Endosc 2006; 64: 348-350 [PMID: 16923480 DOI: 10.1016/j.gie.2006.01.068]

Côté GA, Imler TD, Xu H, Teal E, French DD, Imperiale TF, Rosenman MB, Wilson J, Hui SL, Sherman S. Lower provider volume is associated with higher failure rates for endoscopic retrograde cholangiopancreatography. Med Care 2013; 51: 1040-1047 [PMID: 24226304 DOI: 10.1097/MLR.0b013e3182a502de]

Colton JB, Curran CC. Quality indicators, including complications, of ERCP in a community setting: A prospective study. Gastrointest Endosc 2009; 70: 457-467 [PMID: 19482278 DOI: 10.1016/j.gie.2008.11.022]

Pålsson HI, Groth E, Fernet J, Swahn F, Lüöhr M, Enochsson L, Lundell L, Arneil U. Telemedicine:
An important aid to perform high-quality endoscopic retrograde cholangiopancreatography in low-volume centers. *Endoscopy* 2013; 45: 357-361 [PMID: 23468194 DOI: 10.1055/s-0032-1326269]

68 Poulose BK, Phillips S, Nealon W, Shelton J, Kammerow K, Penson D, Holzman MD. Choledocholithiasis management in rural America: Health disparity or health opportunity? *J Surg Res* 2011; 170: 214-219 [PMID: 21571311 DOI: 10.1016/j.jss.2011.03.040]

69 Cooper J, Desai S, Scalfi S, Gonczy C, Mellinger J. Volume, specialty background, practice pattern, and outcomes in endoscopic retrograde cholangiopancreatography: An analysis of the national inpatient sample. *Surg Endosc* 2017; 31: 2953-2958 [PMID: 27815746 DOI: 10.1007/s00464-016-5312-0]

70 Rösch T, Meining A, Frühmorgen S, Zillinger C, Schusdziarra V, Hellerhoff K, Classen M, Helmberger H. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. *Gastrointest Endosc* 2002; 55: 870-876 [PMID: 12024143 DOI: 10.1067/mge.2002.124206]

71 Scheiman JM, Carlos RC, Barnett JL, Elta GH, Nostrant TT, Chey WD, Francis IR, Nandi PS. Can endoscopic ultrasound or magnetic resonance cholangiopancreatography replace ERCP in patients with suspected biliary disease? A prospective trial and cost analysis. *Am J Gastroenterol* 2001; 96: 2900-2904 [PMID: 11693324 DOI: 10.1111/j.1572-0241.2001.04245.x]

72 Carlos RC, Scheiman JM, Hussain HK, Song JH, Francis IR, Fendrick AM. Making cost-effectiveness analyses clinically relevant: The effect of provider expertise and biliary disease prevalence on the economic comparison of alternative diagnostic strategies. *Acad Radiol* 2003; 10: 620-630 [PMID: 12809415 DOI: 10.1016/S1076-6332(03)80080-6]

73 Cotton PB. ERCP is most dangerous for people who need it least. *Gastrointest Endosc* 2001; 54: 535-536 [PMID: 11577330 DOI: 10.1067/mge.2001.118446]
