The vascular phenotype in pseudoxanthoma elasticum and related disorders: contribution of a genetic disease to the understanding of vascular calcification

Georges Lefthériotis1,2, Loukman Omarjee1,2, Olivier Le Saux3, Daniel Henrion3, Pierre Abraham1,2, Fabrice Prunier1,2, Serge Willetoeux4,5 and Ludovic Martin1,2

1 PXE Health and Research Centre, University Hospital of Angers, Angers, France
2 L’UNAM, UMR CNRS 6214 - Inserm 1083, Medical School of Angers, Angers, France
3 John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
4 Université d’Angers, 4 rue Larrey, 49933 Angers Cedex 9, France.
5 Correspondence: geleftheriotis@chu-angers.fr

Vascular calcification is a complex and dynamic process occurring in various physiological conditions such as aging and exercise or in acquired metabolic disorders like diabetes or chronic renal insufficiency. Arterial calcifications are also observed in several genetic diseases revealing the important role of unbalanced or defective anti- or pro-calcifying factors. Pseudoxanthoma elasticum (PXE) is an inherited disease (OMIM 264800) characterized by elastic fiber fragmentation and calcification in various soft conjunctive tissues including the skin, eyes, and arterial media. The PXE disease results from mutations in the ABCC6 gene, encoding an ATP-binding cassette transporter primarily expressed in the liver, kidneys suggesting that it is a prototypic metabolic soft-tissue calcifying disease of genetic origin. The clinical expression of the PXE arterial disease is characterized by an increased risk for coronary (myocardial infarction), cerebral (aneurysm and stroke), and lower limb peripheral artery disease. However, the structural and functional changes in the arterial wall induced by PXE are still unexplained. The use of a recombinant mouse model inactivated for the Abcc6 gene is an important tool for the understanding of the PXE pathophysiology although the vascular impact in this model remains limited to date. Overlapping of the PXE phenotype with other inherited calcifying diseases could bring important informations to our comprehension of the PXE disease.

Keywords: pseudoxanthoma elasticum, calcium, vessels, cardiovascular diseases, elasticity, ankle-brachial index

ARTERIAL CALCIFICATION IS AN INDEPENDENT RISK FACTOR OF CARDIOVASCULAR DISEASES

Arterial calcification is gaining an increasing interest as an independent marker for cardiovascular (CV) diseases in acquired metabolic diseases, such as type II diabetes (Becker et al., 2008) and chronic renal insufficiency (Goodman et al., 2000). Vascular calcification increases physiologically with age and studies from Egyptian mummies have revealed that arterial calcification is not a feature of modern life style due to the absence of risk factors such as smoking, high fat cholesterol diets encountered in these ancient civilizations (Allam et al., 2011).

Calcification of the intimal layers can complicate atherosclerotic plaques favoring the risk of rupture whereas deposit within the medial layer contributes to stiffen arterial wall leading to hypertension, cardiac hypertrophy, and heart failure (Demer and Tintut, 2008). Similarly to the bone, ectopic calcium sediment within the arterial wall is a dynamic and tightly regulated biological process involving a large number of cytokines and cellular pathways (Giachelli, 2004; Persy and D’Haese, 2009). Contrary to the bones, the artery is a tubular organ that should remain soft and flexible but resilient to the high distending blood pressure. The elastic properties of the arterial wall plays a key role in damping the cyclic pressure changes produced by the beating heart (C’Rourke et al., 2002). This dampening effect predominates within the large elastic vessels such as aorta and progressively decreases downstream as the vessel wall becomes more muscular in the medium and small-sized arteries allowing a continuous flow and to protect the thin walled capillaries against high pressures. Therefore, any changes in arterial wall elasticity, i.e., the recolling force, and distensibility (the capacity to be distended), either physiologically with aging (so called arteriosclerosis) or in response to abnormal metabolic conditions such as type II diabetes or chronic renal insufficiency, contribute to stiffen the arterial wall. Stiffening of the arterial wall will reduce the damping effect leading to the increase in systemic arterial pressure, mainly pulse pressure, and ultimately damage the small capillaries in end-organs such as brain, kidneys, or heart (Laurent et al., 2009).

Our understanding of the direct or indirect contribution of calcification in the vascular system remains limited due to the multifactorial mechanisms. Although both elastic lamina and medial calcification could share similar genetic determinants, whether or not calcification precedes or follows the disruption and/or the degeneration of the elastic fibers is often difficult to establish (Wang et al., 2009). The resulting elasto-calcinosis refers to a timely...
and well-balanced interaction between several local and remote factors (see review Atkinson, 2008). The mechanisms underlying calcification of the elastic fibers are multifactorial including physico-chemical conditions, inflammation and oxidative stress, metabolic dysfunction, and unbalanced promoters/inhibitors of calcification. This process can occur focally in the intimal layer and may complicate atheromatous plaques whereas it occurs more diffusely in the media.

The role of genetics in the calcification process is likely to take an important place since >40% of the variance of aortic and coronary calcification phenotype could be under the control of genes. The roles of genes have been deciphered in various monogenic diseases but also in the general population (O’Donnell et al., 2002; Assimes et al., 2008; Rampersaud et al., 2008) and have been recently reviewed by Rutsch et al. (2011).

The pathophysiology of calcification in metabolic diseases is of a particular concern and the present review will focus mainly on pseudoxanthoma elasticum (PXE), an inherited disease displaying specific and unusual characteristics that belong to a larger group of genetically and metabolically determined calcifying vascular diseases.

PSEUDOXANTHOMA ELASTICUM: AN ENIGMATIC CALCIFYING GENETIC DISEASE

Pseudoxanthoma elasticum is an inherited autosomal recessive multisystem disorder affecting connective tissues. Its phenotypic expression is characterized by the fragmentation and mineralization of elastic fibers in the skin termed elastorrhexis, the Bruch’s membrane of the retina and the vasculature (Neldner, 1988; Hu et al., 2003; Uitto et al., 2011). Its prevalence is estimated from 1/25,000 to 1/50,000 and the causative mutations have been identified in the ABCG6 gene encoding a trans-membrane ATP-binding cassette transporter, subfamily G, member 6 (ABCG6/MRP6; Le Saux et al., 2000) that is primarily expressed in the liver and the kidney, but with much lower expression in other affected tissues such as skin, eyes, or arteries (Kool et al., 1999). The biological function of the ABCG6 transporter and its substrates remains totally unknown to date. The phenotype seems to result from an unknown defect originating from the liver and the kidney as well as from the extracellular calcium sediment but probably intracellular (Martin et al., 2012). Several studies have demonstrated that normal tissues exposed to the serum from PXE patients or mice knockout for Abcg6 are able to calcify (Le Saux et al., 2006; Jiang et al., 2007, 2010). Therefore, PXE is considered as a prototypical metabolic calcifying disease of genetic origin (Jiang and Uitto, 2006). PXE is also characterized by its delayed onset and a variability in its phenotypic expression suggesting that a large number of co-factors contribute to its phenotype. The classical risk factors involved in arteriosclerosis, such as tobacco, hypertension, dyslipidemia, could be greatly suspected to interfere with the severity of the vascular expression of the disease, although most of the vascular complications in PXE occur later during the life (>40 years) than the skin and eyes lesions, with an unexplained female preponderance (Uitto et al., 2010). The 2:3 female:1 male ratio in PXE leads to an unusual and unexplained prevalence of arterial disease in female compared to the general population. A PXE-like phenotype has also been reported in other genetic diseases such as beta-thalassemia and sickle cell anemia (Fabbri et al., 2009), cutis laxa (vanakker et al., 2007), generalized arterial calcification in infancy (Kalal et al., 2012), a defect in gamma-glutamyl carboxylase (vanakker et al., 2007), familial idiopathic basal ganglia (Wang et al., 2012) and more rarely induced by pharmacological substances such as seen with D penicillamine (Ratnavel and Norris, 1994). The fact that PXE phenotype could overlap with other genetic diseases suggests that these diseases share a common pathophysiology (Nitschke et al., 2012). The main phenotypical differences reported in the literature between the genetic calcifying diseases are summarized in Table 1.

Table 1

A number of candidate substrates for ABCG6 have been hypothesized. The observation that PXE patients exhibit a low plasma vitamin K level and that anti-vitamin K drugs accelerate calcification in normal and in Abcg6−/− mice (Li et al., 2012) raised the hypothesis for a role of vitamin K in the calcification process. Vitamin K is a key factor for the activation of tissue calcification inhibitor factors such as matrix Gla proteins (MGP). This hypothesis has not been confirmed due to no changes in the calcification process occurring in PXE animal models supplemented with vitamin K (Brampton et al., 2011; Fülöp et al., 2011; Gorgels et al., 2011). The implication of adenosine as a calcifying factor in PXE has also been hypothesized (Markello et al., 2011), as well as oxidative stress (Paquili-Ronchetti et al., 2006; Zarbock et al., 2007), although the role of oxidative stress has not been evidenced by endothelial dysfunction at present in PXE.

THE VASCULAR LESIONS AND HISTOLOGICAL FINDINGS IN PXE

The elementary arterial lesions observed in PXE are characterized by mineralization of the elastic fibers of the medial layer, predominantly within the medium and small-sized musculo-elastic arteries. Abnormal elastic fibers are thought to be produced by the PXE skin fibroblasts (Quaglino et al., 2000), or in presence of elastin degradation products (Simionescu et al., 2005). These findings suggest that PXE is a disorder of the mechanisms controlling the production of matrix constituents and that elastic fiber mineralization is caused by factors abnormally produced and entrapped within the fiber during elastin fibrillogenesis (Baccarani-Contri et al., 1994). These findings called for the “elastosis hypothesis” as the primary mechanism in PXE and that calcification is secondary. A primary role for intermediate cell and fibroblasts (Uitto et al., 2011) is suggested as they are a source of many regulatory proteins involved in the calcification process such as alkaline phosphatase and MGP (Shanahan et al., 1999, Simionescu et al., 2003). Finally, an abnormal balance between elevated proteolysis activity with increased P-selectin (Gottling et al., 2008), matrix metallo-proteinase (MMP) 2 and 9 (Diekmann et al., 2009), suggests an abnormal remodeling of the extra cellular matrix (ECM) in PXE. Despite unknown mechanism sequence for elastosis and calcification, the nature and affected sites of calcification lead to different functional expression.

The macroscopic distribution of the calcification along the arterial tree can be mapped using standard X-ray, although 3D...
Table 1 | Comparative characteristics of the arterial phenotype in PXE and other related disorders.

Elementary arterial phenotype	Beta-thalassemia/ Sickle cell disease	PXE-like + cutis laxa	PXE	GACI	ACDC (or CALJA)
Intima-media thickness	Increased	Unknown	Increased	Unknown	Unknown
Endothelial dysfunction	Defective	Unknown	Unknown	Unknown	Unknown
Stenosis	Yes (26.7% mostly cerebral)	Unknown	Yes (PAD 50%)	Yes (mostly coronary, and cerebral)	Yes (mostly coronary, cerebral, and renal)
Dilation/aneurysm	Infrequent	Infrequent	Infrequent	Peptidal	Peptidal
Calcification	Present	Present	Present	Present	Present
Calculus defects	Present (50%)	Present	Secondary?	Present	Present
Defective gene	HBB/HBF	GGCX	ABCB	ENPP1	NTSE

For each disorder, bibliographical references for vascular phenotype are indicated. GACI, generalized arterial calcification of infancy (Rutsch et al., 2001; Kalal et al., 2003); ACDC, arterial calcification of CALJA; calcification of joints and arteries due to deficiency of GGT (Markello et al., 2011; HBB/HBF, hemoglobinopathies Beta and S (Bapoupy et al., 1989; Fabbi et al., 2000; Musallam et al., 2011); GGCX, gamma-glutamyl carboxylase (vanakker et al., 2007, 2011; Li et al., 2009a); ABCC6, ataxia telangiectasia mutant kinase ABCG (Koutouzoglou et al., 2007, 2011; Kornet et al., 2012); ENPP1, ectonucleotide pyrophosphatase/phosphodiesterase (Blachon et al., 2012; Tatschke et al., 2012); NTSE, Ecto-5′-nucleotidase (Markello et al., 2011; B. Polane et al., 2011).

For each disorder, bibliographical references for vascular phenotype are indicated.

The functional impacts of the arterial lesions, represented by elastocalcinosis and proteoglycans accumulation, have been examined in a limited number of studies. Most of our knowledge is derived from non-invasive structural and dynamic observations using ultrasound techniques in living subjects and have provided important data for the understanding of the arterial lesions in PXE and their clinical expression. Three functional studies involving a small number (≤25) of PXE patients have focused on the carotid artery, an easily accessible large-sized muscular-elastic artery (Boustuyte et al., 2001; Germain et al., 2003; Kornet et al., 2004). One of these studies has reported changes in the radial artery, a medium-sized muscular artery and the aorta, the main large-sized elastic artery of the body (Germain et al., 2003).

INCREASED INTIMA MEDIA THICKNESS

An increased carotid intima media thickness (IMT) has been reported in two human studies (Germain et al., 2003; Kornet et al., 2004) and another more recently involving mice (Kupenky-Rincon et al., 2012). Compared to age and gender-matched patients, these changes were more marked in older patients than in younger ones under the age of 40. An increased carotid IMT is independently associated with a higher risk for CV events which could represent a relevant argument to explain an accelerated arteriosclerosis in PXE with higher than normal CV incidents (Eagenbrodt et al., 2008). This increase in IMT was not associated with an enlargement of the lumen size and was responsible for a 19% increase in the arterial wall mass. By contrast, the radial arteries exhibited a smaller lumen with a thicker IMT, suggesting an inward remodeling (Germain et al., 2003).

The larger IMT seems to result from the higher amount of proteoglycans without proliferative change in the vascular smooth muscle cells (VSMC). Proliferation of the VSMC toward the lumen leads to arterial stenosis and occlusion, and is observed in response to an abnormal mechano-transductive signaling in elastic deficiency diseases, such as Williams–Beuren syndrome (Li et al., 1998). But this may not be the sole mechanism since a higher IMT with a progressive loss of VSMC has also been reported in Progeria (Gerhard-Herman et al., 2011). More complex
FIGURE 1 | Anterior and posterior 3D-views of lower limb arterial calcification in pseudoxanthoma elasticum revealed with helicoidal X-ray tomodensitometry. Calcification in the femoral artery is tagged in green, the popliteal in purple, and the visible distal arteries are tagged in blue. Note the absence of calcifications within the middle popliteal segment.

changes have also been reported with multilayered aspects in PXE coronary (Miyazaki et al., 2004) or mammary arteries (Sarraj et al., 1999).

Although these conclusions remain to be confirmed in larger cohorts, the arterial remodeling in PXE peripheral arteries exhibits differences from other arterial remodeling such as aging, hypertension, and atherosclerosis. This remodeling is characterized by intima-media thickening predominantly in the large and medium-sized musculo-elastic arteries (Boutouyrie et al., 1992). Aging is also defined by an outward remodeling whereas hypertension and atherosclerosis are rather characterized by an inward remodeling. This remodeling is variable along the arterial tree (Bortolotto et al., 1999; Bjarnegard and Länne, 2010) and with gender, women exhibiting a higher wall/lumen ratio than men (Green et al., 2010).

The use of imaging techniques with higher spatial resolution will be very helpful to confirm and discriminate the relative changes of thickness between the intimal and media layers, and between the different vascular beds.

Arterial wall stiffness and elasticity in PXE arteries: It is expected that both fragmentation of elastic fibers and calcification will affect the arterial elasticity of the PXE arteries. Compared to age and sex-matched controls, the distensibility was found either unchanged (Germain et al., 2003) or higher (Kornet et al., 2004) in the large-sized artery, such as carotid, and in medium-sized arteries such as radial (Germain et al., 2003). Furthermore, in the older female patients, the elastic modulus was found unchanged in small-sized but was higher in the medium-sized artery. A lower or unchanged compressibility of the small-sized arterial wall was also reported in the ankle arteries of PXE patients (Leftheriotis et al., 2011).

Therefore, it is likely that the complex rearrangement of the extracellular matrix in PXE arterial wall resulting from the combination of elastin fragmentation associated to proteoglycans replacement, focal accumulation of calcium and activated MMP (Zachbock et al., 2010) in the media could mask a predicted arterial stiffness.

CLINICAL EXPRESSION OF THE VASCULAR PXE PHENOTYPE

The keystone clinical manifestations in PXE are represented by visual impairment due to the loss of central vision, large skin folds of esthetic concern, and CV complications (Neldner, 1988; Uitto et al., 2011). The vascular lesion in PXE takes a major place in the complications and the clinical outcome. Although, it seems that the lifespan of these patients is relatively preserved despite no clear reports on this point, the vascular impact of the disease is crucial and will be detailed in the following paragraphs.

ARTERIAL HYPERTENSION

Since the earliest reports, the presence of an arterial hypertension in PXE has been controversial with a highly variable prevalence reported in the literature ranging from 8% (Neldner, 1988) and up to 25% of the patients (Gotting et al., 2005). Even for the highest range, this reported prevalence remains within the overall limits of hypertension estimated to be 26.4% of the world’s population (Kearney et al., 2005). In PXE, a higher than normal prevalence was likely explained on the basis of a renal artery stenosis or increased arterial stiffness resulting from the elastocalcinosis (Goodman et al., 1963). A higher serum xylosyltransferase (XT-1), a fibrosis marker of the extracellular matrix was found in hypertensive PXE patients (Gotting et al., 2005), though this is not supported by functional data (cf paragraph above). The association between ABCC6 and angiotensin polymorphisms (T174M and M235T) was not demonstrated in hypertensive PXE compared to normals (Gotting et al., 2005). Therefore, the higher prevalence of arterial hypertension in PXE remains to be demonstrated.

ANEURYSMS AND DISSECTIONS

An abnormally dilated and/or ruptured arterial wall is the most life-threatening complication of the PXE disease. Contrary to other genetic diseases where the connective tissues are affected, as in Marfan’s or Ehlers-Danlos diseases, reports of aneurysm in PXE patients are sparse and almost anecdotic.

In the cerebral vasculature, the prevalence of intracranial aneurysms is difficult to estimate. A Belgian PXE cohort (n=100) based on self-reported data concluded that it was an unrelated association (van den Berg et al., 2000) while the association
between intracranial malformations, including aneurysms, and PXE may not be fortuitous (Vassey et al., 2011). Aneurysms in the other vascular beds such as aorta or lower limbs are very rarely reported. ABCG6 mutations were found in a minority of non-PXE patients (3/133) with abdominal aortic aneurysms (Schull et al., 2003), but this was not statistically significantly different from healthy controls and could not be considered as a genetic risk factor for aortic aneurysms. Aorto-coronary aneurysm has also been reported (Heno et al., 1998) but seems not specific to PXE as it has also been reported in other PXE-like syndromes, such as beta-thalassemia (Farmakis et al., 2004). Common genetic factors underlie medial calcification, such as ABCG6 and aneurysm development, suggesting that although medial disruption and calcification may occur in parallel, medial disruption does not strictly occur as a result of vascular calcification (Wang et al., 2009). The possibility for a higher prevalence for arterial dissection, such as the spontaneous disruption of the internal layers of an artery, common in the carotids of PXE, is still under discussion (Brandt et al., 2005), but remains anecdotal at present. Although several missense mutations (H623Q, R3190W, and R1268Q) were found in the patients with carotid dissection, these mutations were not disease-causing as they were also detected in healthy subjects (Morchê et al., 2003).

ISCHEMIC STROKE

Besides the risk of stroke due to cerebral hemorrhage with ruptured intracranial aneurysms, the risk of ischemic stroke (IS) is another feared complication in PXE but remains difficult to establish. IS was reported in 15% of the PXE patients from a cohort of 38 patients compared to the general population (0.3–0.5%; Vanakker et al., 2008). In a cohort of 100 patients, IS was reported in seven patients with one patient having recurrent IS leading to a relative risk of 3.6 (95% confidence interval 3.3–4.0) of ISs in patients under 65 years (van den Berg et al., 2000). Focal cerebral ischemia in PXE was predominantly caused by small-vessel occlusive disease. Atherosclerotic plaques could co-exist with PXE lesions, but results from our cohort (unpublished data) showed that carotid plaques were absent in 55/93 (59.1%), unilateral in 17/93 (18.3%), and bilateral in 21/93 (22.6%) compared to age-matched controls (p = 0.987) suggesting that it is not a primary mechanism for stroke in PXE. Transient cerebral ischemic attack could result from intermittent hemodynamic cerebral insufficiency due to intracranial arterial malformation (Vasseur et al., 2011).

CARDIAC DISEASES

Cardiac diseases in PXE are mainly represented by myocardial infarction, angina pectoris, and valvular malfunction (Neldner, 1988; Vanakker et al., 2008). Data from the largest cohorts (Neldner, 1988; Vanakker et al., 2008) have reported symptoms of myocardial origin ranging from 13 to 15% for angina pectoris but lower for infarction (1–5%) of the patients occurring at age <55 years and sometimes causing death. In the coronary arterial bed, the association with a heterozygous R141X mutation in ABCG6 and ischemic vascular events including stroke, was not demonstrated in the general population (n = 66831 participants; Hornstrup et al., 2011), although a strong association was reported only with coronary artery disease (Kobbol et al., 2010). Additionally, AACS deficiency was found to increase infarct size and apoptosis in a mouse cardiac ischemia–reperfusion model, although there were no differences in cardiac calcification following ischemia/reperfusion (Mungrue et al., 2012). Abnormal coronary wall suggests that specific structural factors are likely present in these vascular beds (Miwaa et al., 2004). Interestingly, the transferability of the PXE phenotype, i.e., calcification, to the arterial graft is still questioned (Sarraj et al., 1999; Isipoulou et al., 2002; Song et al., 2004).

PERIPHERAL ARTERIAL DISEASE

Contrary to the other arterial beds, an early and severe peripheral arterial disease (PAD) described as a slowly worsening lower limb claudication is consistently and extensively reported in PXE patients without obvious CV risk factors. PAD is detected clinically by absence of ankle pulse, and the presence/absence of symptoms of a lower limb claudication such as a calf pain that limits or interrupts a walk. Additionally, the severity of PAD can be objectively determined by measuring the ankle-brachial systolic pressure index (ABI) which corresponds to the ratio of the systolic ankle and brachial pressures that normally ranges from 0.9 to 1.39, and the treadmill walking distance with the help of transcutaneous PO2 (Abraham et al., 2003). The prevalence of lower limb claudication, the symptomatic expression of PAD, is very high in PXE (53% in the Belgian cohort Vanakker et al., 2008 and 42% in ours) (Leftheriotis et al., 2011), a proportion clearly higher than the 9% men and 5% women with PAD reported in the general population. By contrast, the treadmill test, an objective evaluation of the arterial claudication, showed that only 56% of PXE with an ABI <0.90 were symptomatic during the test. The discrepancy between a high proportion of PAD detected by ABI with relatively less symptoms of intermittent claudication suggests that the PAD is well compensated by an efficient collateral circulation in PXE. This tolerance to ischemia was further demonstrated in our cohort by relatively well-preserved tissue oxygenation in PXE patients during walking. Interestingly, a relatively high incidence of subclinical peripheral artery disease (41%) was also reported in the carrier population (n = 21) suggesting that PAD could represent a frequent clinical manifestation, even in heterozygous patients. In addition to the presence/absence of ankle artery pulse, the ABI is a validated diagnostic tool for the detection of PAD and estimation of its severity, mainly in the asymptomatic patient (Dinh et al., 2009). PAD is also an independent marker of atherosclerosis associated with higher rates of CV diseases in the general population (Golomb et al., 2006). Calcifications in the tunica media of PXE patients are expected to increase arterial stiffness and thus decrease arterial wall compressibility (Kim et al., 2012). Although calcification predominates in the small-sized ankle arteries, the preserved arterial compressibility in these arteries remains unexplained.

HEMORRHAGE

Hemorrhages are a frequent ophthalmologic complication in PXE due to the rupture of proliferative choroidal neovascularization.
secondary to angiod streak. To a lesser extent, gastrointestinal hemorrhage have also been reported and represent a life-threatening condition in PXE. The mechanism of hemorrhage remains unknown, but suggests sub-mucosal arterial malformations fragilized by the medial calcification with risk of rupture likely to the Bruch’s membrane in the eyes. Neovessels and/or malformation could also result from defective regulatory pathways and vascular endothelial growth factor (VEGF) gene polymorphisms such as the c.460T and the c.674C alleles that are independent risk factors for development of severe retinopathy (Zaebck et al., 2009). The genetic deficiency gamma-glutamyl carboxylase (GGCX), which is a PXE-like syndrome associated with an abnormal production of coagulation factors, are more prone to severe uncontrolled bleeding (Li et al., 2009a).

WHAT DOES PXE MODELS TEACH US ABOUT CARDIOVASCULAR DISEASES?

Similar to other genetic diseases, the use of genetically engineered organisms such as mouse or zebrafish (*Danio rerio*) is helpful in our understanding of the PXE pathophysiology. *Abcc6*−/− mice exhibit a low-to-mild level of nodal arterial calcifications (Gorgels et al., 2005; Klement et al., 2005), although most calcification processes develop markedly in specific organs such as the vibrissae, and represents an interesting marker of peripheral calcification (Le Corre et al., 2012). Other mouse strains such as C3H/HeOul are spontaneously prone to soft connective tissues calcification, due to the defective function of Abcc6, that can be easily followed and quantified using X-rays (Le Corre et al., 2012). Finally, the zebrafish model exhibits severe abnormal development that were fully rescued by co-injection of mouse Abcc6 mRNA (Li et al., 2010). Although the mechanism of the arterial lesions in PXE remains unexplained, the fact that exteriorized tissue lesions develop remotely from the predominant sites of ABCG6 demonstrates that modifying factors are at play and limits our conclusions from these mouse models. There is now a constellation of data arguing for the concomitant role of modifying genes (Li et al., 2007; Hesdigr et al., 2008), polymorphisms (Schon et al., 2006) and mutations, regulatory pathways (Martin et al., 2011) as well as nutritional and environmental factors (Zarbock et al., 2007, 2009, 2010; Pisciotto et al., 2009) considerably widening the phenotypic expression and severity of the disease. Furthermore, the selective involvement of anatomical sites such as skin, eyes, arteries is usually explained by the presence of elastic fibers (with the exception of the lungs), but recent data suggests that collagen fibers could also be involved (Gorgels et al., 2012).

THERAPEUTIC ISSUES IN THE PXE ARTERIAL DISEASE

In absence of validated and specific therapeutic targets in PXE, the treatment of arteriopathy remains limited. Vitamin K was not proven as an efficient treatment, although no data are presently available in human but the lack of a consistent result in proof-of-concept studies conducted in mice are not encouraging (Gorgels et al., 2011; Jiang et al., 2012). Despite disappointing initial results from a pilot study conducted in humans (Yoo et al., 2012), attempt to reduce calcification using phosphate binder (LaRusso et al., 2009) or magnesium supplementation has recently gained renewed interest with conclusive results in *Abcc6−/−* mice (LaRusso et al., 2009; Li et al., 2009b; Kupetsky-Rincon et al., 2012). Treatment of acute ischemic complications is sporadically reported in the literature without obvious difference compared to the general population, although reports of limb amputation in the literature have never been made to our knowledge.

Finally, the careful management of CV risk factors remains an important point since atheroma could mask pre-existing lesions. Factors that could aggravate arterial calcification should be avoided in these patients such as anti-vitamin K which is an oral anticoagulant drug known to favor calcification (Price et al., 1998) that can now be advantageously replaced by anti-Xa oral therapy after the hemorrhage risk/benefit balance has been properly evaluated. The question of preventive anti-platelet therapy for IS is unsolved at present. In the general population, anti-platelet treatment such as aspirin is advised for secondary prevention of IS, but the higher prevalence of upper gastrointestinal hemorrhages in PXE remains a firm contraindication for the use of aspirin as well as for anticoagulants. A major challenge for all clinical trials attempted in PXE is the need for an objective and reproducible quantification of the soft-tissue calcification. In this way, quantification of the arterial calcification could be an interesting tool complementary to skin biopsy or ultrasound imaging and ophthalmologic follow-up since the severity of cutaneous manifestations and angiod streak of PXE are likely predictive of CV involvement (Utani et al., 2010).

In conclusion, although the arterial remodeling observed in PXE shares some of the features of arteriosclerosis and other calcifying vascular diseases of metabolic origin, it is not readily comparable to atherosclerosis. This raises challenging questions on the central role of the hepato-renal axis in the soft-tissue calcifying processes and PXE represents a prototypical systemic metabolic disease of genetic origin. The severity of the disease is progressive and highly variable in which CV symptoms and PAD seems a constant finding in these patients. Furthermore, the higher than expected compressibility of the arterial wall may represent a useful marker as well as quantification of the arterial calcium load. Data from larger cohorts are awaited with more detailed phenotypic descriptions. From a clinical point of view, the absence of efficient therapy, the follow-up of these patients first requires a tight control and management of the usual CV risk factors in addition to the limitation of pro-calcifying factors. The place of other anti-calcifying drugs, such as denosumab remains unknown at present. Finally a comparative analysis of the overlapping phenotypes such as PXE, generalized arterial calcification of infancy (GACI), and other PXE-like diseases is likely to add valuable information on the elusive mechanism of calcifying genetic diseases.

ACKNOWLEDGMENTS

The authors wish to thank the French Society of Vascular Medicine, the PXE-France Patients’ Association for continuing support and Jeffrey Fay for help in manuscript preparation. This work was granted by the French Society of Vascular Medicine and the "Appel d’offre interne Ca ART PXE1" from the University Hospital of Angers.
REFERENCES
Abraham, P., Picquet, J., Vieille, R., Signeaud-Resnoy, D., Parent-Therese, F., Enon, B., et al. (2005). Transcarotid angioplasty pressure measurements on the buckets during exercise to detect proximal arterial ischemia comparison with arteriography. Circulation 107, 1889–1900.
Aasen, A., Samarakos, M., Voskaridou, E., Papamikos, D., Torez, M., Kawasaki, E., et al. (1999). Arterial calcifications in beta-thalassemia. Angiology 49, 139–145.
Allan, A. H., Thompson, R. C., Wann, L. S., MinBORnt, M. J. M., Nor el Din, A. E. H., el-Mahrous, G. A., et al. (2011). Atherosclerosis in ancient Egyptian mummies: the Horus study. JACC Cardiovasc Imaging 4, 315–327.
Assumé, T. L., Knowles, J. W., Ruo, A., Irbarum, C., Southwell, H., Tang, H., et al. (2008). Susspensibility loss for clinical and subclinical coronary artery disease at chromosome 9q21 in the multi-ethnic ADVANCE-study. Hum Mol Genet. 17, 220–2218.
Atkinson, J. (2000). Age-related medial sclerosis in arteries: mechanisms, animal models, and physiological consequences. J Appl Physiol 98, 1649–1651.
Baccarani-Contri, M., Vincenzi, D., Arterial properties along the upper arm in humans: age-related effects. Hypertension 34, 889–892.
Bortolotto, L. A., Hanon, O., Franconi, B., Bjarnegard, N., and Länne, T. (2010). Calcium deposition increases vitamin K tissue content in beta-thalassemia. Cell Cycle 9, 207–212.
Boothroyd, P., Laurent, S., Benos, A., Giesler, X. J., Hook, A. P., and Safar, M. E. (1992). Opposing effects of aging on arterial and proximal large arteries in hypertensives. J Hypertens Suppl. 10, S97–S91.
Bruntom, G., Yamaguchi, Y., Yamakita, O., Van Leeuwen, C., Chen, L. H., Thakore, M., et al. (2011). Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum. J Cell Physiol 226, 1850–1862.
Brandt, T., Marchesi, M., and Hausser, M. (2005). Association of cervical artery dissection with connective tissue disease. Circulation 112, 2930–2948.
Buchin, D., Altenberg J. R., Pitmore, D., Mahn, M., Topol, G., Haberl, R. L., et al. (2009). Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation 120, 2053–2061.
Dokuma, K., Urquhart, K., Haimi, D., Sokhsa, C., Klasson, K., and Gotting, C. (2009). Elevated circulating levels of matrix metalloproteinases MMP-2 and MMP-9 in pseudoxanthoma elasticum patients. J Mol Med. [Adv. Ser.], 87, 865–870.
Eibergerick, M. L., Buss, Z., Tracy, M. P., Williams, E. L., Li, L. A., Ross, K. M., and Cooper, D. J. (2008). 8-mole ultrasoned common carotid artery intima-media thickness and external diameter: cross-sectional and longitudinal association with carotid atherosclerosis in a large population sample. Carotid Ultrasound 16, 10.
Fabbrini, E., Form, G., Masurai, G., and Borgna-Pignatti, C. (2009). Circulating fibromodulin levels in multiple connective tissues in a mouse model of pseudoxanthoma elasticum. J Mol Med. (Berl.) 87, 983–992.
Fabbri, E., Forni, G. L., Guerrini, P., Gerhard-Herman, M., Smoot, L. B., et al. (2011). Extracellular matrix and local regulatory factors. Am J Pathol 179, 1691–1697.
Fujita, T., Urquhart, K., Gordon, D. P., Boutouyrie, P., Laloux, B., Carenzi, M., et al. (2004). Stimulated proteoglycan biosynthesis in pseudoxanthoma elasticum. J. Invest. Dermatol. 123, 836–841.
Ghaddi, C. M. (2004). Vascular calcification mechanisms. J Am Soc Nephrol 15, 2599–2594.
Golomb, B. A., Dang, T. T., and Crispi, M. H. (2006). Peripheral arterial disease: morbidity and mortality implications. Circulation 114, 688–695.
Gutiérrez, L., Sibilla, A., Girerd, X. J., Hoeks, A. P., and Almería, J. M. (2008). [α-toco-cyanorophan and pseudoxanthoma elasticum: a mouse model of pseudoxanthoma elasticum (PXE) patients as a marker of vascular calcification]. Arch. Mal. Coeur Vaiss 101, S87–S91.
Hense, P., Fourcade, L., Duc, H. N., Bonilla, R., Roux, O., Van de Wal, J. P., et al. (1998). [α-toco-empurorophan and pseudoxanthoma elasticum]. Arch. Mal. Coeur Vaiss 91, 415–418.
Hossmann, S. L., Tybjerg-Hansen, A., Haase, C. L., Nordengard, B. B. G., Nilsson, H., Grande, P., et al. (2011). Histoneglycine for B141M in ABOCC and risk of ischemic vascular disease: a nested case-control study. Cardiovase Genet. 20, 54–61.
Hu, X., Huang, S. F., van Soo, B., Win- knock, I., de Jong, F. J., and Berenson, A. A. (2005). Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. J. Hypertens. 23, 429–438.
Iribarren, C., Southwick, A., Tang, M., Papaioannou, D., Tsinon, B., et al. (2009). Elevated circulating vitamin K3-glutathione conjugate in young adults with end-stage renal disease: morbidity and mortality implications. Circulation 119, 1760–1773.
Jiang, Q., Golomb, B. A., Dang, T. T., and Crispi, M. H. (2006). Pseudoxanthoma elasticum: a metabolic disease? J Invest. Dermatol. 126, 1440–1441.
Jiang, Q., Li, Q., Grandi-Pierro, A. E., Schurman, L. J., and Uitto, J. (2012). Administration of vitamin K1 does not counteract the ectopic mineralization of connective tissues in Abcc6−/− mice, a model for pseudoxanthoma elasticum. J Cell Biol. 190, 701–707.
Jiang, Q., Li, Q., and Uitto, J. (2007). Aberrant mineralization of connective tissue in a mouse model of pseudoxanthoma-elasticum: systemic and local regulatory factors. J Invest. Dermatol. 127, 1392–1392.
Jiang, Q., Odengren, B., Othman, S., Grandi-Pierro, A. E., Hori, E., and Utt, J. (2010). Paroxysmal hematuric purpura in a patient with pseudoxanthoma elasticum. Am. J. Pathol. 176, 1855–1862.
Kabala, I. G., Serioka, D., Panda, A., Nitikiah, Y., and Buntik, I. Vascular phenotype in pseudoxanthoma elasticum.
Kool, M., van der Linden, M., de Kim, H. G., Park, S. C., Lee, S. L., Shin, Lefthériotis et al. Vascular phenotype in pseudoxanthoma elasticum.

Kornet, L., Bergen, A. A., Hoeks, A. P., Kearney, P. M., Whelton, M., Reynolds, LaRusso, J., Li, Q., Jiang, Q., and Le Corre, Y., Le Saux, O., Froeliger, Laurent, S., Briet, M., and Boutouyrie, P.

Kupetsky-Rincon, E. A., Li, Q., and Aranyi, T. (2010). The R1141X loss-of-function mutation of the ABCC6 gene encoding an ABC transporter in tissues of patients with pseudoxanthoma elasticum: a novel treatment for patients with pseudoxanthoma elasticum. Clin. Genet. 25, 223–227.

Li, D. Y., Brooke, B., Daru, E. C., Machan, R. P., Norenson, J. K., Book, B. B., et al. (1998). Elastin is an essential determinant of arterial morphology. Nature 395, 278–280.

Li, Q., Grange, D. K., Armstrong, N. L., Weldon, A. J., Hartery, M. Y., Bobey, M. A., et al. (2002a). Mutations in the GGCX and ABCC6 genes in a family with pseudoxanthoma elasticum-like phenotype. J. Invest. Dermatol. 129, 896–902.

Li, Q., Larussu, J., Grand-Puerrte, A. E., and Uitto, J. (2005). Magnesium carbonate-containing phosphates fibroblasts presents connective tissue mineralization in Abcc6−/− mice potential for treatment of pseudoxanthoma elasticum. Clin. Dev. Sci. 2, 398–404.

Li, Q., Gao, F., Hsu, D., Harrington, S., Schoeller, J., Entry, S. F., et al. (2012). “Warfarin accelerates the connective tissue mineralization in Abcc6−/− mice – clinical relevance to pseudoxanthoma elasticum,” in 2012 PFE Research Meeting. September 24, Bethesda.

Li, Q., Jiang, J., Larussu, J., Kliment, J. F., Sartorini, A. C., Belinsky, M. G., et al. (2007). Targeted ablation of Abcc6 or Abcc6 in Abcc6−/− mice does not modify the sciotic nerve mineralization process. Exp. Dermatol. 16, 855–859.

Li, Q., Sadowski, S., Frank, M., Chou, V., Daru, E. S., et al. (2009). The alvea gene expression is restored for normal renal tubulointerstitial development. J. Invest. Dermatol. 130, 2948–2956.

Li, Q., Czestochowski, D., and Yolgs. N. (2003). Anomalous structure of urinary gyrocystinogens in patients with pseudoxanthoma elasticum. Clin. Genet. 49, 380–388.

Mackness, N. C., Haara, C., Burke, F., and Macrae, V. E. (2012). New insights into NPP1 function: lessons from clinical and animal studies. J. Hypertens. 30, 961–968.

Markellos, T. C., Pak, L. K., St Hlaire, C., Doward, H., Zugier, S. G., Chen, M. Y., et al. (2011). Vascular pathology of mesial arterial calcifications in NTD: definitions for the risk of atherosclerosis in pseudoxanthoma elasticum. Mol. Genet. Metab. 105, 44–50.

Martin, L., Douat, V., Vanuytsel, C. M., Helin, M. R., and Le Saux, O. (2011). A mouse model of beta-thalassemia shows a less specific down-regulation of Abct expression. Am. J. Pathol. 178, 774–785.

Martin, J. I., Lau, E., Singh, H., Vergnon, L., Talleg, J. E., Mehramian, M., et al. (2012). ABCC6 locus to the mitochondria-associated membrane. Circ. Res. 111, 516–520.

Messa, K., Higashikata, I., and Mabuchi, H. (2004). Intravascular ultrasound findings of coronary wall morphology in a patient with pseudoxanthoma elasticum. Heart 90, e61.

Mungrue, I. N., Zhao, P., Yao, Y., Meng, H., Rau, C., Havel, J. V., et al. (2012). Abct deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler. Thromb. Vasc. Biol. 31, 2006–2012.

Murphy, N. J., Zhao, P., Yao, Y., Meng, H., Rau, C., Havel, J. V., et al. (2012). Abct deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler. Thromb. Vasc. Biol. 31, 2006–2012.

Murphy, N. J., Zhao, P., Yao, Y., Meng, H., Rau, C., Havel, J. V., et al. (2012). Abct deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler. Thromb. Vasc. Biol. 31, 2006–2012.

Nirmale, K. M., Beydoun, A., Hourani, M., Hess, P., Post, W., Ryan, B. A., et al. (2002). The association between arterial calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 156, 1523–1532.

Ratnavel, R. C., and Norris, P. G. (1994). Intravascular ultrasound findings in coronary wall morphology in a patient with pseudoxanthoma elasticum. Heart 90, e61.

Rampersaud, E., Beulke, I. F., Parus, A., Shen, H., Post, W., Bryant, K. A., et al. (2008). The association between arterial calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 156, 1523–1532.

Ratnavel, R. C., and Norris, P. G. (1994). Intravascular ultrasound findings in coronary wall morphology in a patient with pseudoxanthoma elasticum. Heart 90, e61.

Rampersaud, E., Beulke, I. F., Parus, A., Shen, H., Post, W., Bryant, K. A., et al. (2008). The association between arterial calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 156, 1523–1532.

Ratnavel, R. C., and Norris, P. G. (1994). Intravascular ultrasound findings in coronary wall morphology in a patient with pseudoxanthoma elasticum. Heart 90, e61.

Rampersaud, E., Beulke, I. F., Parus, A., Shen, H., Post, W., Bryant, K. A., et al. (2008). The association between arterial calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 156, 1523–1532.

Ratnavel, R. C., and Norris, P. G. (1994). Intravascular ultrasound findings in coronary wall morphology in a patient with pseudoxanthoma elasticum. Heart 90, e61.

Rampersaud, E., Beulke, I. F., Parus, A., Shen, H., Post, W., Bryant, K. A., et al. (2008). The association between arterial calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 156, 1523–1532.
Vascular phenotype in pseudoxanthoma elasticum

Schröder, S., Schulte, V., Prantl, C., Hendig, D., Silinka, C., Kahn, J., et al. (2004). Polymorphisms in the xyleltran-
terase gene cause higher serum XT-I activity in patients with pseudoxan-
thoma elasticum (PXE) and are involved in a severe disease course. J. Mucos. Genet. 43, 745–759.

Schulte, V., Hendig, D., Schillinger, M., Euster, M., Donnerstorfer, M., Rath, M., et al. (2005). Analysis of sequence variations in the ABCG5 gene among patients with abdom-
al aortic aneurysm and pseudoxan-
thoma elasticum. J. Vasc. Interv. Radiol. 16, 424–432.

Mandell, C. M., Cary, N. B., Sal-
abury, J. R., Prasad, D., Wain-
berg, P. L., and Edwards, M. E. (1999). Mevalocalization of mineralization-regulating proteins in association with Mandell’s elas-
tic evidence for smooth muscle cell-mediated vascular calcification. Circulation 100, 2169–2176.

Simonescu, A., Philipp, K., and Vou-
rah, N. (2003). Elastin-derived peptides and TGF-β1 induce osteogenic responses in smooth mus-
cle cells. Biochem. Biophys. Res. Com-
mun. 304, 524–532.

Song, H. K., Shih, C., Williams, B. Jr., Guyton, R. A., and Puskas, T. C., Brusco, A., Groden, C., Gill, W. I., et al. (2010). Relationship between the dis-
tribution of pseudoxanthoma elas-
ticum skin and mucous membrane lesions and cardiovascular involve-
ment. J. Invest. Dermatol. 130, 318–326.

Vanakker, O. M., Leroy, B. P., Grozea, P., Benrouicha, L. G., Uitto, J., van Oosterwijk, D., et al. (2008). Novel clinical-molecular insights in pseudoxanthoma elas-
ticum provide an efficient molecular screening method and a compre-
prehensive diagnostic flowchart. Hum Mutat. 29, 765–785.

Vanakker, O. M., Leroy, B. P., Schuppner, L. J., Vermeulen, C., Czacho, P. J., and De Pauw, A. (2011). Atypical presen-
tation of pseudoxanthoma elastica-
icum with abdominal cutis laxa: evidence for a spectrum of ectopic calcification disorders. J. Am. Acad. Dermatol. 65, 401–406.

Utts, J., Benrouicha, L., Terry, S. F., and Terry, P. F. (2011). Pseu-
doxanthoma elasticum: progress in diagnostics and research towards treatment: summary of the 2010 PXE International Research Meeting. Am. J. Med. Genet. A 155A, 1517–
1526.

Utts, J., Li, Q., and Jiang, Q. (2010). Pseudoxanthoma elasticum: molec-
ular genetics and putative pathome-
chanisms. J. Invest. Dermatol. 130, 661–670.

Utni, A., Tatsuki, M., Yamanoto, Y., Taku, K., Aoki, E., Tanaka, R., et al. (2010). Relationship between the di-
tribution of pseudoxanthoma elas-
ticum skin and mucous membrane lesions and cardiovascular involve-
ment. J. Dermatol. 37, 120–156.

van den Berg, J. S., Hennekam, R. C., Cruebsberg, J. R., Steffen, P. M., Swart, L., Tijmes, N., et al. (2010). Prevalence of symptomatic intraoc-
ular anomaly and systemic stroke in pseudoxanthoma elasticum. Cere-
brovasc. Dis. 30, 315–319.

Vassiliu, M., Garas-Nicul, B., Hyran, J. M., Willemsen, S., Martin, L., and Leftheriotis, G. (2011). Cerebral rete mirabile and pseudoxanthoma elasticum: an accidental association? J. Vasc. Interv. Radiol. 22, 292–294.

Wang, C., Li, Y., Shi, L., Ren, J., Petti, M., Wang, T., et al. (2012). Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phos-
phosphate homeostasis. Nat. Genet. 44, 254–256.

Wang, S. S., Martin, L. J., Schulte, E. E., Meng, H., Wang, X., Zhao, W., et al. (2009). Disruption of the aortic elastic lamina and medial cal-
cification share genetic determinants in mice. Circ. Cardiovasc. Genet. 2, 573–582.

Yoo, J. Y., Bham, R. R., Singier, S. K., Stern, D. F., Emanuel, P. O., Pach, W., et al. (2012). A randomized con-
trolled trial of oral phosphate binders in the treatment of pseudoxanthoma elasticum. J. Am. Acad. Dermatol. 65, 343–348.

Zarbock, B., Hendig, D., Silinka, C., Klossouk, K., and Getting, C. (2007). Pseudoxanthoma elasticum: genetic variations in anticoagulant genes are risk factors for early disease onset. Clin. Chim. Acta 378, 174–178.

Zarbock, B., Hendig, D., Silinka, C., Klossouk, K., and Getting, C. (2009). Vascular endothelial growth factor gene polymorphisms as diagnostic markers for ocular manifestations in pseudoxanthoma elasticum. Hum. Mol. Genet. 18, 3546–
3551.

Zarbock, B., Hendig, D., Silinka, C., Klossouk, K., and Getting, C. (2010). Analysis of MMP2 promoter poly-
merisms in patients with pseudoxan-
thoma elasticum. Clin. Chim. Acta 413, 1487–1490.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential con-
ict of interest.

Received: 30 October 2012; paper pending publication: 23 November 2012; accepted: 09 January 2013; published online: 12 February 2013.

Citation: Leftheriotis G, Omarjee L, Le Saux V, Hierson E, Abraham P, Proust P, Willameau S and Martin L (2013) The vascular phenotype in pseudoxanthoma elasticum and related disorders: contrib-
tion of a genetic abuse to the under-
standing of vascular calcification. Preni. Gene. 4, doi: 10.3389/fgene.2013.00089

This article was submitted to Frontiers in Systems Biology, a specialty of Frontiers in Genetics.

Copyright © 2013 Leftheriotis, Omarjee, Le Saux, Hierson, Abraham, Proust, Willameau and Martin. This is an open-
access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any forum, pro-
vided the original authors and source are credited and subject to any copy-
right notices concerning any third-party graphics etc.