Constraints on the spectral index for the inflation models in string landscape

Qing-Guo Huang

School of physics, Korea Institute for Advanced Study, 207-43, Cheongryang-Dong, Dongdaemun-Gu, Seoul 130-722, Korea

(Dated: February 1, 2008)

We conjecture that the inflation models with trans-Planckian excursions in the field space should be in the swampland. We check this conjecture in a few examples and investigate the constraints on the spectral index for the slow-roll inflation model in string landscape where the variation of inflaton during the period of inflation is less than the Planck scale M_p. A red primordial power spectrum with a lower bound on the spectral index is preferred. Both the tensor-scalar ratio and the running can be ignored.

PACS numbers: 98.80.Cq,11.25.Wx

Inflation model\cite{1,2,3} has been remarkably successful in not only explaining the large-scale homogeneity and isotropy of the universe, but also providing a natural mechanism to generate the observed magnitude of inhomogeneity. In the new version of inflation, inflationary potential and the equations of motion are simplified to

\begin{equation}
H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3M_p^2} \left(\frac{\dot{\phi}^2 + V(\phi)}{2}\right),
\end{equation}

\begin{equation}
\ddot{\phi} + 3H\dot{\phi} = -V',
\end{equation}

where $V(\phi)$ is the potential of inflaton ϕ. The equations of motion for an expanding spatially flat universe containing a homogeneous scalar field take the form

\begin{equation}
\epsilon = \frac{M_p^2}{2} \left(\frac{V'}{V}\right)^2, \quad \eta = M_p^2 \frac{V''}{V}, \quad \xi = M_p^4 \frac{V'V''}{V^2}.
\end{equation}

If $\epsilon \ll 1$ and $|\eta| \ll 1$ the inflaton field slowly rolls down its potential and the equations of motion are simplified to be

\begin{equation}
H^2 = \frac{V}{3M_p^2}, \quad 3H\dot{\phi} = -V'.
\end{equation}

In this paper, we assume, without loss of generality, $\dot{\phi} < 0$, so that $V' > 0$. The number of e-folds N before the end of inflation is related to the vev (vacuum expectation value) of inflaton by

\begin{equation}
dN = -H dt = -\frac{H}{\dot{\phi}} d\phi = \frac{1}{\sqrt{2\epsilon}M_p} d\phi.
\end{equation}
The slow-roll parameters also characterize the feature of the primordial power spectrum for the fluctuations: the amplitude of the scalar and tensor perturbations are respectively \[\Delta_K^2 = \frac{H^2 M_p^2}{8\pi^2 \epsilon}, \quad \Delta_T^2 = \frac{H^2 M_p^2}{\pi^2/2}. \] (8)

The tensor-scalar ratio takes the form \[r = \Delta_T^2 / \Delta_K^2 = 16e, \] (9) and the spectral index and its running are given by

\[n_s = 1 - 6e + 2\eta, \quad \alpha_s = -24e^2 + 16e\eta - 2\xi, \] (10)

where we use

\[\frac{d\epsilon}{dN} = 2\epsilon(\eta - 2\epsilon), \quad \frac{d\eta}{dN} = \xi - 2\epsilon\eta. \] (12)

In \cite{21} Lyth connects detectably large gravitational wave signals to the motion of the inflaton over Planckian distances in the field space. There is a long-term debate \cite{21,22} on whether the classical evolution of the scalar field can probe the trans-Planckian region where the low energy field theory is still an effective field theory. String theory gives us an opportunity to answer this question. In this note, we conjecture that the probing region of the scalar field is limited by the Planck scale \(M_p \) in the string landscape. A few examples to check our conjecture will be proposed as follows.

The first one is called “extra-natural inflation” \cite{23}. Consider a U(1) gauge theory with gauge coupling \(g_5 \) in five dimensions. Compactifying this gauge theory on a circle with size \(R \), we obtain four-dimensional gravity as well as a periodic scalar \(\theta = \oint A_5 dx^5 \) associated with the Wilson line around the circle. The effective Lagrangian for \(\theta \) in four dimensions takes the form

\[\mathcal{L} = \frac{f^2}{2} (\partial \theta)^2 - \frac{1}{R^2} (1 - \cos \theta), \] (13)

where \(f^2 = \frac{1}{g^2 R^2} = \frac{1}{g_5^2 R^2} \) and \(g \) is the gauge coupling in four dimensions. The canonical scalar field \(\phi \) is given by \(\phi = f \theta \). The period of \(\theta \) is \(2\pi \) and the vev of \(\phi \) takes the same order of magnitude as \(f \). It is easily seen that \(f \) can be bigger than \(M_p \) for sufficiently small \(g \) and the slow-roll conditions are achieved. However the weak gravity conjecture \cite{7} says \(\Lambda \sim 1/R \leq g M_p \) which implies \(f = \frac{1}{g^2 R} \leq M_p \). With the viewpoint of string theory, \(g = g_s^{1/2} / \sqrt{M_s V_6} \) and \(M_p = M_s \sqrt{M_s V_6} / g_s \), where \(M_s \) is the string scale and \(V_6 \) is the volume of the compactified space. Thus we have \(f = \frac{1}{g^2 R} = \frac{M_s}{g^2} M_p < M_p \) in the perturbative region \((g_s < 1) \), where we also require that the size of the compactified space is larger than string length \(M_s^{-1} \). In this case, the over Planckian excursion of the scalar field cannot be embedded into string theory and it is in the swampland.

The second is chaotic inflation \cite{24}. For an instance, we consider \(V(\phi) = \lambda \phi^4 \) inflation model. The Hubble scale \(H = \sqrt{\frac{V_6 + \lambda \phi^4}{3M_p^2}} \) can be taken as the IR cutoff for the effective field theory. In \cite{8} an upper bound on the UV cutoff \([2] \) is proposed. Naturally the IR cutoff should be lower than the UV cutoff. Requiring \(H < \Lambda \) yields \(\phi < M_p \). Furthermore, we take into account the inflation model with potential \(V = V_0 + \lambda \phi^4 \). If the potential is dominated by the constant term \(V_0 \), it is a typical potential for hybrid inflation \cite{22}. Since \(H = \sqrt{V_0 + \frac{\lambda \phi^4}{3M_p^2}} \), requiring \(H \leq \Lambda \) leads to \(\phi < M_p \) as well. The trans-Planckian excursion in the field space cannot be achieved.

The third example is the inflation driven by the motion of a D3-brane in the warped background. The authors in \cite{20} found the maximal variation of the canonical inflaton field as

\[|\Delta \phi| = \sqrt{3} R \leq \frac{2}{\sqrt{\eta N B}} M_p, \] (14)

where \(R \) is the size of the throat and \(n_B \) is the number of the background D3 charge. Since \(n_B \gg 1 \) for the validity of the background geometry, the variation of the inflaton is not larger than the Planck scale.

Fourth Ooguri and Vafa in \cite{21} propose several conjectures to limit the observable regions of moduli spaces. For a massless scalar field \(\phi \), the change of its vev is \(|\Delta \phi| \sim |\frac{M_p}{\sqrt{\varepsilon}} \ln \varepsilon| \), where \(\varepsilon \) is the mass scale for the low energy effective theory. There is an infinite tower of light particles at infinite distance from any point inside the moduli space, the effective field theory in the interior breaks down and a new description takes over. This example also hints that the variation of the scalar field should be less than \(M_p \) in string landscape.

In the following we will investigate the constraints on the spectral index by considering that the variation of the inflaton during the period of inflation is less than \(M_p \). We re-parameterize the slow-roll parameter \(\epsilon \) as a function of \(N \). Eq. (7) becomes

\[\int_0^{N_{\text{tot}}} \sqrt{2\epsilon(N)} dN = \int \frac{d\phi}{M_p} = \frac{|\Delta \phi|}{M_p} \leq 1. \] (15)

We cannot really achieve a model-independent analysis, because the function \(\epsilon(N) \) for the string landscape is unknown. Here we consider three typical parameterizations. Actually these parameterizations are quite general and many well-known inflation models are included in them.

First we assume \(\epsilon \) is roughly a constant and then \(\eta = 2\epsilon \). Eq. (15) reads

\[\epsilon \leq \epsilon_m = \frac{1}{2N_{\text{tot}}^2}. \] (16)

Now the spectral index and the tensor-scalar ratio are

\[n_s = 1 - 2\epsilon \geq 1 - \frac{1}{N_{\text{tot}}^2}, \quad r = 16\epsilon \leq \frac{8}{N_{\text{tot}}}. \] (17)
Generically the total number of e-folds should be larger than 60 in order to solve the flatness and horizon problem. In this case, the scalar power spectrum is the scale-invariant Harrison-Zel’dovich-Peebles (HZ) spectrum with ignoring tensor perturbations $r \leq 0.002$. WMAP normalization is $\Delta_T^2 = 2 \times 10^9$ [28]. Thus $\Delta_T^2 = r \cdot \Delta_R^2 \leq 4 \times 10^{-12}$ and $V^{1/4} \leq 6.8 \times 10^{15}$ GeV which is lower than the GUT scale.

Second we consider the case with

$$\epsilon(N) = \frac{c^2/2}{N^2-2\beta^2},$$ \hspace{1cm} (18)

where both c and β are constants. Since $\epsilon < 1$ for $N = 60$, it is reasonable to assume that the value of β is not larger than 1. Requiring that the integration in the left hand side of eq. (15) is finite yields $\beta > 0$. Therefore the reasonable range for β is

$$0 < \beta \leq 1.$$ \hspace{1cm} (19)

Using eq. (12) and (18), we obtain

$$\eta = 2\epsilon - \frac{1 - \beta}{N},$$ \hspace{1cm} (20)

$$\xi = \frac{1 - \beta - 6(1 - \beta)}{N^2} \epsilon + 4c^2.$$ \hspace{1cm} (21)

The spectral index and its running and the tensor-scalar ratio are respectively

$$n_s = 1 - 2\epsilon - \frac{2(1 - \beta)}{N},$$ \hspace{1cm} (22)

$$\alpha_s = -\frac{4(1 - \beta)}{N} \epsilon,$$ \hspace{1cm} (23)

$$r = 16\epsilon.$$ \hspace{1cm} (24)

Now eq. (15) implies

$$c \leq \beta N^{-\beta}.$$ \hspace{1cm} (25)

It comes back to the previous results for $\beta = 1$. Eq. (25) leads to an upper bound on ϵ

$$\epsilon \leq \frac{\beta^2}{2N^2} \left(\frac{N}{N_{tot}} \right)^{2\beta}.$$ \hspace{1cm} (26)

Since $0 \leq \beta \leq 1$ and $N \leq N_{tot}$, $\epsilon \leq \frac{1}{2N^2} = 1.4 \times 10^{-4}$ for $N = 60$. The tensor-scalar ratio satisfies $r \leq 0.002$. Thus $\Delta_T^2 = r \cdot \Delta_R^2 \leq 4 \times 10^{-12}$ and $V^{1/4} \leq 6.8 \times 10^{15}$ GeV. Since the maximum value of ϵ takes the order of magnitude 10^{-4}, we can ignore the terms with ϵ. Now the spectral index and its running become

$$n_s = 1 - \frac{2(1 - \beta)}{N}, \quad \alpha_s = -\frac{2(1 - \beta)}{N^2}.$$ \hspace{1cm} (27)

Since $\beta > 0$, there are the lower bounds on the spectral index and its running:

$$1 - \frac{2}{N} \leq n_s < 1, \quad -\frac{2}{N^2} \leq \alpha_s < 0.$$ \hspace{1cm} (28)

A red tilted primordial power spectrum ($n_s < 1$) with ignoring running and tensor perturbations arises in string landscape. On the other hand, WMAP data [28] prefers a red tilted power spectrum:

$$n_s = 0.951 \pm 0.016, \quad r \leq 0.65,$$ \hspace{1cm} (29)

and the running can be ignored. We compare our constraints on the inflation models in the string landscape with WMAP in fig. 1. Our analysis is consistent with observations.

Third we consider

$$\epsilon(N) = \epsilon_0 + \frac{c^2/2}{N^2-2\beta},$$ \hspace{1cm} (30)

1 For example, Brane inflation [29] (KKLMMT model [30]) takes $\beta = 1/6$.

FIG. 1: The lower bounds on n_s and α_s are showed for the single-field inflation model with sub-Planckian excursion in the field space. With a high inflation scale, and radiation and/or matter domination between the end of inflation and nucleosynthesis, $47 \leq N \leq 61$. More generally the range has to be $14 \leq N \leq 75$ [31].
where \(\epsilon_0, c \) and \(\beta \) are constant. Here we assume \(\epsilon_0 > 0 \) and then the range of \(\beta \) is still \(\beta \in [0, 1] \). In this case the constraints on \(\epsilon_0 \) and \(c \) should be more stringent than those in the previous two cases, because both terms on the right hand side of eq. (30) are positive. For simplicity, we still take \(\epsilon_0 \leq \epsilon_m \) and \(c \leq \beta N_{\text{tot}}^{-\beta} \), and thus the terms with \(c \) can be ignored. Now the slow-roll parameters take the form

\[
\eta = -\alpha \frac{1 - \beta}{N}, \quad \xi = \frac{1 - \beta}{N^2},
\]

where \(\alpha = 1/(1 + 2\epsilon_0 N^{-2-2\beta}/c^2) \leq 1 \) and \(\gamma = 3 - 2\alpha^2 - 2(1 - \alpha^2)\beta \leq 3 \). Since \(n_s = 1 - 2\eta = 1 - \frac{2\epsilon_0}{N^2} \) and \(\alpha \leq 1 \), a more blue tilted power spectrum than the previous case with \(\epsilon = c^2/(2N^{-2-2\beta}) \) is obtained. In this case the running of the spectral index can be ignored as well. The lower bound on the spectral index in eq. (28) is still available.

The previous discussions are only valid for the single-field inflation model in string landscape. For multi-field inflation, the previous constraints may be relaxed. To be simple, we consider the assisted inflation \([32]\) with potential \(\sum_{i=1}^{n} V(\phi_i) \). In the assisted inflation, there is a unique late-time attractor with all the scalar fields equal, i.e. \(\phi_1 = \phi_2 = \ldots = \phi_n \). With this ansatz, the equations of motion for the slow-roll assisted inflation are given by

\[
H^2 = \frac{nV(\phi)}{3M_p^2}, \quad 3H\dot{\phi} = -V',
\]

where \(\phi = \phi_i, i = 1, \ldots, n \). It is convenient for us to define a new slow-roll parameter \(\epsilon_H \) as

\[
\epsilon_H = -\frac{\dot{H}}{H^2}.
\]

Slow-roll condition reads \(\epsilon_H \ll 1 \). Using eq. (32), we find

\[
\epsilon_H = \frac{1}{n} \frac{M_p^2}{2} \left(\frac{V'}{V} \right)^2 = \frac{1}{n} \eta.
\]

Because of the factor \(1/n \) in the above equation, the slow-roll condition for the inflation model without flat enough potential (\(\epsilon \gg 1 \)) can be achieved if the number of the inflatons is sufficiently large. Replacing \(\epsilon \) in eq. (15) with \(\epsilon_H \), we obtain

\[
\int_0^{N_{\text{tot}}} \sqrt{2\epsilon_H(N)} dN = \sqrt{n} |\Delta \phi|/M_p.
\]

If we still have \(|\Delta \phi| \leq M_p \) and

\[
\epsilon_H(N) = \frac{c^2/2}{N^2 - 2\beta},
\]

the bound on \(c \) becomes

\[
c \leq \sqrt{n} \beta N_{\text{tot}}^{-\beta}.
\]

The upper bound on the slow-roll parameter \(\epsilon_H \) is given by

\[
\epsilon_H \leq \frac{n^2\beta^2}{2N_{\text{tot}}^2} \left(\frac{N}{N_{\text{tot}}} \right)^{2\beta}.
\]

If the number of the inflatons \(n \) is large enough, we can get a larger slow-roll parameter \(\epsilon_H \), a larger tensor-scalar ratio \(r = 16\epsilon_H \) and a more red tilted power spectrum. Before the end of this paragraph, we also want to reconsider an example in string theory: brane inflation in the warped background. If the number of the probing D3-branes is \(n \) which is just the number of inflatons, we have \(\sqrt{n} |\Delta \phi| \leq 2\sqrt{n} M_p \). In order for the validity of the background geometry, \(n < n_p \); otherwise the back reaction of the probing D3-branes will significantly change the background geometry. In this case, \(\sqrt{n} |\Delta \phi| < M_p \).

If this is the generic result for the inflation models in the string landscape, our previous results for the single-field inflation are recovered even for the multi-field inflation models.

To summarize, the inflation model with over Planckian excursion in the scalar field space cannot be achieved in string theory. A red tilted primordial scalar power spectrum with a lower bound on the spectral index arises for the slow-roll inflation model in string landscape due to the observation that the observable region in the scalar field space is limited by the Planck scale. The tensor fluctuations and the running of the spectral index can be ignored. Even though our analysis is not really model-independent, the parameterizations in this note are already quite general. In some sense, our results can be taken as the predictions of string theory. For the assisted inflation, the constraints on the spectral index might be released.

At last we also want to remind that maybe the chain inflation \([33, 34, 35, 36]\) is generic in string landscape. In this model, the universe tunnelled rapidly through a series of metastable vacua with different vacuum energies. Since chain inflation is not really a slow-roll inflation model, it doesn’t suffer from the constraints in this paper. A detectable gravitational wave fluctuations is still available in this model \([36]\).

Acknowledgments We would like to thank K.M. Lee, F.L. Lin, E. Weinberg, P.J. Yi for useful discussions.

[1] A. H. Guth, “The Inflationary Universe: A Possible Solution To The Horizon And Flatness Problems,” Phys. Rev. D 23, 347 (1981).
[2] A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution Of The Horizon, Flatness, Homogeneity, Isotropy And Primordial Monopole Problems,” Phys. Lett. B 108, 389 (1982).

[3] A. Albrecht and P. J. Steinhardt, “Cosmology For Grand Unified Theories With Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett. 48, 1220 (1982).

[4] S. B. Giddings, S. Kachru and J. Polchinski, “Hierarchies from fluxes in string compactifications,” Phys. Rev. D 66, 106006 (2002) arXiv:hep-th/0105097.

[5] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68, 046005 (2003) arXiv:hep-th/0301240.

[6] C. Vafa, “The string landscape and the swampland,” arXiv:hep-th/0509212.

[7] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, “The string landscape, black holes and gravity as the weakest force,” arXiv:hep-th/0601001.

[8] Q. G. Huang, “Weak gravity conjecture constraints on inflation,” JHEP 0705, 096 (2007) arXiv:hep-th/0703071.

[9] S. Kachru, J. McGreevy and P. Svrcek, “Bounds on masses of bulk fields in string compactifications,” JHEP 0604, 023 (2006) arXiv:hep-th/0601111.

[10] M. Li, W. Song and T. Wang, “Some low dimensional evidence for the weak gravity conjecture,” JHEP 0603, 094 (2006) arXiv:hep-th/0601137.

[11] Q. G. Huang, M. Li and W. Song, “Weak gravity conjecture in the asymptotical dS and AdS background,” JHEP 0610, 050 (2006) arXiv:hep-th/0605127.

[12] M. Li, W. Song, Y. Song and T. Wang, “A weak gravity conjecture for scalar field theories,” arXiv:hep-th/0606011.

[13] Y. Kats, L. Motl and M. Padi, “Higher-order corrections to mass-charge relation of extremal black holes,” arXiv:hep-th/0606100.

[14] T. Banks, M. Johnson and A. Shomer, “A note on gauge theories coupled to gravity,” JHEP 0609, 049 (2006) arXiv:hep-th/0606277.

[15] Q. G. Huang, “Weak gravity conjecture with large extra dimensions,” arXiv:hep-th/0601016.

[16] A. J. M. Medved, “An implication of gravity as the weakest force,” arXiv:hep-th/0611196.

[17] Q. G. Huang and J. H. She, “Weak gravity conjecture for noncommutative field theory,” JHEP 0612, 014 (2006) arXiv:hep-th/0612111.

[18] Q. G. Huang, “Gravitational correction and weak gravity conjecture,” JHEP 0703, 053 (2007) arXiv:hep-th/0703039.

[19] T. Eguchi and Y. Tachikawa, “Rigid Limit in N=2 Supergravity and Weak-Gravity Conjecture,” arXiv:0706.2114 [hep-th].

[20] A. R. Liddle and D. H. Lyth, “Cosmological inflation and large-scale structure,” Cambridge, UK: Univ. Pr. (2000) 400 p.

[21] D. H. Lyth, “What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?” Phys. Rev. Lett. 78, 1861 (1997) arXiv:hep-ph/9606387.

[22] A. Linde, “Inflationary Cosmology,” arXiv:0705.0164 [hep-th].

[23] N. Arkani-Hamed, H. C. Cheng, P.Creminelli and L. Randall, “Extranatural inflation,” Phys. Rev. Lett. 90, 221302 (2003) arXiv:hep-th/0301218.

[24] A. D. Linde, “Chaotic Inflation,” Phys. Lett. B 129 (1983) 177.

[25] A. D. Linde, “Hybrid inflation,” Phys. Rev. D 49, 748 (1994) arXiv:astro-ph/9307002.

[26] D. Baumann and L. McAllister, “A microscopic limit on gravitational waves from D-brane inflation,” arXiv:hep-th/0610285.

[27] H. Ooguri and C. Vafa, “On the geometry of the string landscape and the swampland,” Nucl. Phys. B 766, 21 (2007) arXiv:hep-th/0605264.

[28] D. N. Spergel et al. [WMAP Collaboration], “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology,” arXiv:astro-ph/0603449.

[29] G. R. Dvali and S. H. H. Tye, “Brane inflation,” Phys. Lett. B 450, 72 (1999) arXiv:hep-ph/9812483.

[30] S. Kachru, R. Kallosh, A. Linde, J. M. Malda-cena, L. McAllister and S. P. Trivedi, “Towards inflation in string theory,” JCAP 0310, 013 (2003) arXiv:hep-th/0308055.

[31] L. Alabidi and D. H. Lyth, “Inflation models after WMAP year three,” JCAP 0608, 013 (2006) arXiv:astro-ph/0603539.

[32] A. R. Liddle, A. Mazumdar and F. E. Schunck, “Assisted inflation,” Phys. Rev. D 58, 061301 (1998) arXiv:astro-ph/9804177.

[33] K. Freese and D. Spolyar, “Chain inflation: Bubble bubble toil and trouble,” JCAP 0507, 007 (2005) arXiv:hep-ph/0412145.

[34] B. Feldstein and B. Tweedie, “Density perturbations in chain inflation,” JCAP 0704, 020 (2007) arXiv:hep-ph/0611286.

[35] K. Freese, J. T. Liu and D. Spolyar, “Chain inflation via rapid tunneling in the landscape,” arXiv:hep-th/0612056.

[36] Q. G. Huang, “Simplified Chain Inflation,” JCAP 0705, 009 (2007), arXiv:0704.2835 [hep-th].