Fusion of 9Li with 70Zn and 208Pb

By W. Loveland*

Dept. of Chemistry, Oregon State University, Corvallis, OR 97331, USA

(Received November 26, 2009; accepted in final form November 11, 2010)

Fusion / Halo nucl / 9Li / 208Pb

Summary. The fusion excitation functions for the reaction of 9Li with 70Zn and 208Pb were measured. In the reaction with 70Zn, the evaporation residues (EVRs) were detected by a radiochemical separation of the As and Ge EVRs followed by β-counting. In the reaction with 208Pb, the At EVRs were detected by α-counting. In both systems, one observes substantial sub-barrier fusion enhancement that cannot be explained by coupled channels calculations. The implication of these studies for the study of the 11Li + 208Pb reaction are discussed.

1. Introduction

One of the most active areas of research with radioactive beams is the study of the fusion of weakly bound nuclei, such as the halo nuclei. The central issue is whether the fusion cross section will be enhanced due to the large nuclear size of the halo nucleus or whether fusion-limiting breakup of the weakly bound valence nucleons will lead to a decreased fusion cross section. Most theoretical calculations have dealt with the 11Li + 208Pb reaction, with a wide variety of outcomes. Fig. 1 (taken from a review article of Signorini [1]) shows the range of predictions for the sub-barrier fusion cross sections, which span four orders of magnitude. It is clear that a measurement of the fusion excitation function for the 11Li + 208Pb reaction would be valuable in resolving the differences between the various predictions shown in Fig. 1.

In this context, the nuclear structure and nuclear reactions of 9Li are of interest for three reasons. (a) It is the core nucleus of the two-neutron halo nucleus 11Li that is of great current interest and an understanding of 9Li is important for an understanding of 11Li. (b) 9Li is itself a very neutron-rich nucleus ($N/Z \approx 2$) with a significant neutron skin [2] and an understanding of its reactions may be helpful in understanding the interactions of very neutron-rich nuclei. (c) 9Li is a well-characterized nucleus with a simple shell-model structure, which should be helpful in modeling its interactions.

2. Experimental

The measurement of the fusion cross sections for the 9Li + 70Zn (9Li + 208Pb) reaction was carried out at the ISAC (ISAC2) facility at TRIUMF. Proton beams (500 MeV) with intensities ranging from 50–85 μA struck Ta metal production targets. Beams of radioactive 9Li were extracted with energies up to 18.4 keV, mass separated by passage through two dipole magnets and accelerated to their final energy by radiofrequency quadrupole and drift tube linear accelerators. The details of the production of these secondary beams are discussed elsewhere [3, 4].

2.1 9Li + 70Zn

In the 9Li + 70Zn experiment, the beam was delivered to the HEBT straight-through beam line in the ISAC facility. The experiment was carried out in a large-volume (~ 40 L) scattering chamber, known as the Laval chamber, at the end of this beam line. The beams struck 70Zn targets mounted in the chamber. Targets of ~ 95% enriched 70Zn (thickness ~ 0.8–1.1 mg/cm2) were prepared by electrodeposition on Al backing foils (0.54–0.71 mg/cm2). Beam intensities were monitored by detecting elastic scattering at $\pm 16.2^\circ$, with additional monitoring of the beam by a suppressed Faraday cup at the end of the beam line. Typical beam intensities were 4–6 \times 106 particles/s. PACE [5] and HIVAP [6] calculations indicated the entire evaporation residue cross section is concentrated in the three isotopes of As, stable 75As, 1.09-d 76As, and 38.8-h 77As. Both simulations show the largest predicted component is 76As.

*E-mail: lovelanw@onid.orst.edu.
For each of the 9Li energies studied, a fresh 70Zn target was installed in the scattering chamber and it was irradiated for 1–3 d. The irradiated target foil was counted with a Ge γ-ray spectrometer for about 1 d prior to commencing a radiochemical analysis of the target. Following γ-ray spectroscopy, the irradiated target foil and backing material were dissolved in acid and the As and Ge residues were separated by standard radiochemical separations [7]. Then the As and Ge fractions were assayed using a Tennelec LB1000 Low Background Beta Counter (efficiency \sim 52.5%) and the decay of the sample was followed for several days. The yields of the As chemical separation ranged from 27 to 100% (average yield = 63%), whereas the yields of the Ge separations ranged from 3 to 32% (average yield = 22%). (These yields were determined by post irradiation neutron activation analysis of the samples.) The residue nuclei were identified by their atomic number (established by chemistry) and their observed decay half-life. The only detected activity in any irradiation was 76As. Upper limits (2σ) for the production of 72Ge and 77As were \sim 0.1 mb. After correction for chemical yields, branching ratios, detector efficiency, temporal variation of the beam intensity during the irradiations, etc., the production cross sections for the residue nuclei were calculated.

2.2 9Li + 208Pb

The measurement of the fusion cross section for the 9Li + 208Pb reaction was carried out at the ISAC2 facility at TRIUMF. The experiment was setup on the straight-through beam line of the ISAC2 facility. The experiment was carried out in a large (~ 35 L) thin-walled spherical scattering chamber mounted on this beam line. The 9Li (7Li) beams struck 208Pb (209Bi) targets mounted at the center of the chamber. Beam intensities were monitored by detecting elastic scattering at $\pm 1^\circ$ with additional monitoring of the beam by a suppressed Faraday cup at the end of the beam line. (A 0.008 m3 5% boron-loaded paraffin shield was used to reduce the neutron emission from the Faraday cup to acceptable levels (1 Sv/h at 3 m). 9Li is a 178 ms emitter with a Q_s \sim 13.6 MeV with \sim 50% of the decays resulting in neutron emission.) The average on-target 9Li intensity was 10^7/s and the average on-target 7Li intensity was 2.5×10^7 s. Both beams were pulsed with the beam being on for 172 ns, then off for 172 ns. The 208Pb target was 0.903 mg/cm2 thick and the 209Bi target was 0.465 mg/cm2 thick. An array of 18 (300 mm2) Si detectors surrounding the target was used to detect decay-particles emitted from evaporation residues (EVRs) that stopped in the Pb/Bi targets in the beam-off period. The geometrical efficiency of the array for detecting decay-particles emitted by the EVRs that stopped in the targets was evaluated by a Monte Carlo simulation to be 20%. To check this estimate, we also measured the yield of the evaporation residues 212,213Rn formed in the reaction of 34.95 MeV 7Li with 209Bi and compared our results to the previous measurement of Dasgupta, et al. [8] The agreement was excellent indicating we are able to reproduce known information about similar reactions.

In both reactions, one expects a negligible rate for the fusion-fission reaction (HIVAP) and the EVR cross section is taken as the fusion cross section. In the 9Li + 70Zn reaction, the observed 76As cross section was multiplied by 1.2-1.4 (depending on beam energy) to represent the fusion cross section (PACE, HIVAP). In the 9Li + 208Pb reaction, the observed cross sections ($^{211-214}$At) were used to compute the fusion cross section. This technique was checked with measurements of the known fusion cross sections for the 9Li + 209Bi reaction.

3. Results and discussion

3.1 9Li + 70Zn

We show the fusion excitation function for the 9Li + 70Zn reaction in Fig. 2 along with predictions of a coupled-channels calculation. We used the code CCFULL [9] to make this calculation. We included the inelastic excitation of the first vibrational 2^+ and 3^+ states in 70Zn [10] and the rotational states in 9Li [10]. We assumed a potential with $V_0 = 105$ MeV, $r_0 = 1.12$ fm and a diffuseness parameter $a = 0.65$ fm. There is a large sub-barrier fusion enhancement that is not described by the coupled-channels calculation. Zagrebaev et al. [11] found that standard coupled channels calculations along with neutron transfer were not able to describe the observed sub-barrier fusion and postulated “di-neutron transfer” to account for the observed data. Balantekin and Kocak [12] also found that coupled channels calculations including inelastic excitation and one-neutron transfer failed to reproduce the data and suggested the possible formation of a molecular bond accompanied by two-neutron transfer to account for the observed behavior. In this approach, the neutron-rich 70Zn contributes two neutrons to form the 31Li halo structure in the nuclei at contact, which enhances the fusion cross section. The data are well represented by this model (Fig. 3).

3.2 9Li + 208Pb

In Fig. 4, we compare the measured fusion excitation function for the 9Li + 208Pb reaction with coupled channels calculations for this reaction. As with the 70Zn reaction, the coupled channels calculations were done with CCFULL [9] with the same parameters for the 9Li and the interaction as before. We included the first vibrational 3^- state in 208Pb at 2.615 MeV, $B(E3; 0^+ \rightarrow 3^-) = 0.611e^2b^3$ [10]. We also included a simple one-dimensional barrier penetration calculation with no coupled channels. The measured excitation

![Fig. 2. Comparison of the fusion excitation function for the 9Li + 70Zn reaction with coupled channel calculations [9].](image-url)
Fusion of 9Li with 70Zn and 208Pb

Fig. 3. The fusion excitation function for the 9Li + 70Zn reaction showing the effect of molecular bonding (dashed line) and coupled channels calculations (solid line).

Fig. 4. The fusion excitation function for the 9Li + 208Pb reaction showing coupled channels calculations.

function shows evidence for enhanced sub-barrier fusion and suppression of fusion above the barrier relative to the coupled channels predictions.

What are the implications of these studies for studies of the fusion of 11Li with 208Pb (Fig. 1)? Clearly fusion of the “core” 9Li nucleus is complicated and has features that are not readily explainable with conventional ideas about fusion. The use of α-counting of short-lived EVRs can be carried out with reasonable efficiency in between ISAC2 beam bursts and can, using stacked targets, be used as a basis for studying the 11Li + 208Pb reaction [13].

4. Conclusions

What have we learned from this study?

1) We have used radiochemical techniques to measure evaporation residue cross sections in reactions induced by radioactive beams, thus enabling studies of the fusion of weakly bound nuclei.

2) In both reactions we have observed substantial sub-barrier fusion that is not accounted for by conventional coupled channels calculations. For the case of the 9Li + 70Zn reaction, the best explanation of the data involves the unusual concept of the formation of the molecular bond to enhance two neutron transfer.

3) Extension of these measurements to the study of the 11Li + 208Pb reaction seem feasible.

Acknowledgment. I want to acknowledge the participation of A. M. Vinodkumar, R. S. Naik, P. Sprunger, B. Matteson, L. Prisbey, J. Nee-way, M. Trinczek, M. Domsbsky, P. Machule, D. Otwell, D. Cross, K. Gagnon, W. Mills, J. J. Kolata and A. Roberts in this work. We thank the operations staff of the cyclotron and ISAC, and Marco Marchetti and Robert Laxdal for providing the 9Li beams. This work was supported, in part, by the Office of High Energy and Nuclear Physics, Nuclear Physics Division, U.S. Dept. of Energy, under Grant DE-FG06-97 ER41026 and TRIUMF and the Natural Sciences and Engineering Research Council of Canada and the U.S. National Science Foundation under Grant PHY06-52591.

References

1. Signorini, C.: Interaction at the barrier with unstable/loosely bound projectiles. J. Phys. G: Nucl. Part. Phys. 23, 1235–1244 (1997).

2. Dobrovolsky, A. V., et al.: Study of the nuclear matter distribution in neutron-rich Li isotopes. Nucl. Phys. A 766, 1–24 (2006).

3. Bricault, P., et al.: High power target developments at ISAC. Nucl. Instrum. Methods Phys. Res. B 204, 319–324 (2003).

4. Dombsky, M., et al.: Increasing beam currents at the TRIUMF-ISAC facility, techniques and experiences. Nucl. Phys. A 746, 32c–39c (2004).

5. Tarasov, O. B., Bazin, D.: Development of the program: application to fusion-evaporation. Nucl. Instrum. Methods Phys. Res. B 204, 174–178 (2003).

6. Reisdorf, W.: Analysis of fissionability data at high excitation energies. I. The level density problem. Z. Phys. A 300, 227–238 (1981).

7. NAS-NS-3002 (rev): Radiochemistry of As (1965), p. 34.

8. Dasgupta, M., et al.: Effect of breakup on the fusion of 6Li, 7Li, and 9Be with heavy nuclei. Phys. Rev. C 70, 024606/1–024606/20 (2004).

9. Hagino, K., et al.: A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999).

10. The energy levels for the nuclei in question were taken from the ENDF files at the National Nuclear Data Center (http://www.nndc.bnl.gov), whereas the deformations were taken from Raman, S., Nestor, C. W., Tikkanen, P.: Transition probability from the ground to the first-excited 2+ state of even-even nuclei. At. Data Nucl. Data Tables 78, 1–128 (2001); Spear, R. H.: Reduced electric-octupole transition probabilities, $B(E3, 01^+ \rightarrow 31^-)$, for even-even nuclei throughout the periodic table. At. Data Nucl. Data Tables 42, 55–104 (1989).

11. Zagrebaev, V. I., et al.: Sub-barrier fusion of neutron-rich nuclei and its astrophysical consequences. Phys. Rev. C 75, 035809/1–035809/11 (2007).

12. Balantekin, B., Kocak, G.: Sub-barrier fusion calculations for the 9Li + 70Zn system. AIP Conf. Proc. 1072, 289–292 (2008).

13. Loveland, W.: TRIUMF proposal S1236.