LOCAL NORMAL FORMS OF SINGULAR LEVI-FLAT HYPERSURFACES

ARTURO FERNÁNDEZ-PÉREZ AND GUSTAVO MARRA

Abstract. We study normal forms of germs of singular real-analytic Levi-flat hypersurfaces. We prove the existence of rigid normal forms for singular Levi-flat hypersurfaces which are defined by the vanishing of the real part of complex quasihomogeneous polynomials with isolated singularity. This result generalizes previous results of Burns-Gong [6] and Fernández-Pérez [14]. Furthermore, we prove the existence of two new rigid normal forms for singular real-analytic Levi-flat hypersurfaces which are preserved by a change of isochore coordinates, that is, a change of coordinates that preserves volume.

1. Introduction

In this paper we study normal forms of germs of singular real-analytic Levi-flat hypersurfaces. Our first result is the following.

Theorem 1. Let \(M = \{ F = 0 \} \) be a germ of an irreducible singular real-analytic Levi-flat hypersurface at \(0 \in \mathbb{C}^2 \) such that

(a) \(F(z) = \text{Re}(Q(z)) + H(z, \bar{z}) \);

(b) \(Q \) is a complex quasihomogeneous polynomial of quasihomogeneous degree \(d \) with isolated singularity at \(0 \in \mathbb{C}^2 \).

(c) \(H \) is a germ of real-analytic function at \(0 \in \mathbb{C}^2 \) of order strictly greater than \(d \) and \(H(z, \bar{z}) = \overline{H(z, \bar{z})} \).

Then there exists a germ of biholomorphism \(\phi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0) \) such that

\[
\phi(M) = \left\{ \text{Re} \left(Q(z) + \sum_{j=1}^{s} c_j e_j(z) \right) = 0 \right\},
\]

\(e_1, \ldots, e_s \) are the elements of the monomial basis of the local algebra of \(Q \) of quasihomogeneous degree strictly greater than \(d \) and \(c_j \in \mathbb{C} \).

When \(M \) is a germ of a singular real-analytic Levi-flat hypersurface at \(0 \in \mathbb{C}^n, n \geq 3 \), the same result was proved by Fernández-Pérez in [13]. Therefore, the above theorem completes the study of normal forms of real-analytic Levi-flat hypersurfaces which are defined by the vanishing of real part of complex quasihomogeneous polynomials with isolated singularity. We also note

2010 Mathematics Subject Classification. Primary 32V40 - 32S65.

Key words and phrases. Levi-flat hypersurfaces, holomorphic foliations, isochoric coordinates.

This work is partially supported by CNPq Brazil grant number 427388/2016-3.
that Theorem 1 generalizes the main results of [6] and [14], because the authors considered the same theorem for a generic Morse singularity and Arnold singularities of type A_k, D_k, E_6, E_7 and E_8, which are given by complex quasihomogeneous polynomials with inner modality zero (see for instance [2]).

Topics about singular real-analytic Levi-flat hypersurfaces have been previously studied by several authors, see for instance [5], [7], [15], [16], [22], and normal forms of CR singular codimension two Levi-flat submanifolds was studied in [20]. On the other hand, the study of normal forms of real-analytic hypersurfaces with Levi-form non-degenerate is given by the theory of Cartan [9] and Chern-Moser [10].

The second part of this paper is devoted to prove the existence of normal forms of singular real-analytic Levi-flat hypersurfaces which are preserved by a change of isochore coordinates, that is, a change of coordinates that preserve volume. Our main motivation are the Morse-type results for singularities of holomorphic functions given by J. Vey [25] and J-P Françoise [17]. More precisely, Vey proved an isochore version of Lemma of Morse for germs of holomorphic functions at $0 \in \mathbb{C}^n$, $n \geq 2$, and Françoise gave a new proof of the same result. A much more general statement was given by Garay [19]. In this same spirit, we propose here an analogous version of Vey’s theorem for singular real-analytic Levi-flat hypersurfaces which are defined by the vanishing of the real part of a generic Morse function. We state the following result.

Theorem 2. Let $M = \{F = 0\}$ be a germ of an irreducible singular real-analytic Levi-flat hypersurface at $0 \in \mathbb{C}^n$, $n \geq 2$, such that

$$F(z) = \text{Re}(z_1^2 + \ldots + z_n^2) + H(z, \bar{z}),$$

where $H(z, \bar{z}) = O(|z|^3)$ and $H(z, \bar{z}) = H(\bar{z}, z)$. Then, there exists a germ of a volume-preserving biholomorphism $\phi: (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^n, 0)$ and a germ of an automorphism $\psi: (\mathbb{C}, 0) \rightarrow (\mathbb{C}, 0)$ such that

$$\phi(M) = \{\text{Re}(\psi(z_1^2 + \ldots + z_n^2)) = 0\}.$$

The above theorem can be viewed as an isochore version of Burns-Gong’s theorem [6]. On the other hand, in order to establish our next result we consider some definitions and notations that will be explained in the section 2: for a germ of a singular real-analytic Levi-flat hypersurface M with Levi foliation \mathcal{L} and singular set $\text{Sing}(M)$, we will define the complexification \mathcal{M}_C of M, which will be a germ of complex analytic subvariety contained M. The singular set of \mathcal{M}_C will be denoted by $\text{Sing}(\mathcal{M}_C)$. We will see that \mathcal{M}_C is equipped with a germ of a singular codimension-one holomorphic foliation \mathcal{L}_C, which will be the complexification of the Levi foliation \mathcal{L}. The singular set of \mathcal{L}_C will be denoted by $\text{Sing}(\mathcal{L}_C)$.

Recently in [24], A. Szawlowski presented a volume-preserving normal form for germs of holomorphic functions that are right-equivalent to the product of all coordinates. Motivated by [24], we will prove an analogous version for singular real-analytic Levi-flat hypersurfaces.

Theorem 3. Let $M = \{F = 0\}$ be a germ of an irreducible singular real-analytic Levi-flat hypersurface at $0 \in \mathbb{C}^n$, $n \geq 2$, such that $F(z) = \text{Re}(z_1 \cdots z_n) + H(z, \bar{z})$, where $H(z, \bar{z}) =$
$O(|z|^{n+1})$ and $H(z,\bar{z}) = \overline{H(z,\bar{z})}$. Suppose that

$$\text{Sing}(M_C) = \bigcup_{1 \leq i < j \leq n, 1 \leq k < \ell \leq n} V_{ijkl},$$

where $V_{ijkl} = \{(z,w) \in \mathbb{C}^n \times \mathbb{C}^n : z_i = z_j = w_k = w_\ell = 0\}$ and $\text{Sing}(M_C) \subset \text{Sing}(L_C)$. Then, there exists a germ of codimension-one holomorphic foliation F_M tangent to M, with a non-constant holomorphic first integral $f(z) = z_1 \cdots z_n + O(|z|^{n+1})$ such that

$$M = \{\text{Re}(f(z)) = 0\}.$$

As a consequence of above theorem and the main result of Szawlowski [24] we have the following corollary.

Corollary 1. Let M be a germ of an irreducible singular real-analytic Levi-flat hypersurface as in Theorem 3. If f is right equivalent to the product of all coordinates, $f \sim_R z_1 \cdots z_n$. Then there exists a germ of a volume-preserving biholomorphism $\Phi : (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ and a germ of an automorphism $\Psi : (\mathbb{C},0) \to (\mathbb{C},0)$ such that

$$\Phi(M) = \{\text{Re}(\Psi(z_1 \cdots z_n)) = 0\},$$

where Ψ is uniquely determined by f up to a sign.

Let us recall that two germs of holomorphic functions f and g are right equivalent $f \sim_R g$, if there exist a germ of biholomorphism ϕ around the origin such that $f \circ \phi^{-1} = g$. We remark that the normal forms of Theorem 3 and Corollary 1 are germs of real-analytic Levi-flat hypersurfaces whose singular set are of positive dimension. In general, the problem of finding normal forms of germs of real-analytic Levi-flat hypersurfaces with non-isolated singularities is very difficult and there are few results about it, see for instance [15].

To prove theorems 1, 2 and 3 we use the techniques of holomorphic foliations developed by D. Cerveau and A. Lins Neto in [8] and the first author in [12]. These are fundamental in order to find normal forms of Levi-flat hypersurfaces. Specifically, we apply a result of Cerveau-Lins Neto that gives sufficient conditions for a real-analytic Levi-flat hypersurface to be defined by the zeros of the real part of a holomorphic function and a key Lemma that will be stated in section 5.

This paper is organized as follows: in section 2, we recall some properties and known results about singular Levi-flat hypersurfaces. In section 3, we state some results about normal forms for a complex quasihomogeneous polynomial. Section 4 is devoted to recall the notions of weighted projective space and weighted blow-ups. In section 5 we prove Theorem 1 and give an application of Theorem 1. The section 6 is dedicated to establish the isochore normal forms for holomorphic functions given by Vey and Szawlowski. In section 7, we proved Theorem 2 and finally in section 8, we proved Theorem 3 and Corollary 1.

2. Singular Levi-flat hypersurfaces and holomorphic foliations

The following notation will be used in this paper:
Let X be a compact connected complex manifold of complex dimension $n \geq 2$. A codimension-one singular holomorphic foliation \mathcal{F} on X is given by a covering of X by open subsets $\{U_j\}_{j \in J}$ and a collection of integrable holomorphic 1-forms ω_j on U_j, $\omega_j \wedge d\omega_j = 0$, having zero set of complex codimension at least two such that, on each non-empty intersection $U_j \cap U_k$, we have

\begin{equation}
\omega_j = g_{jk} \omega_k, \quad \text{with} \quad g_{jk} \in \mathcal{O}^*(U_j \cap U_k).
\end{equation}

Let $\text{Sing}(\omega_j) = \{p \in U_j : \omega_j(p) = 0\}$. Condition (1) implies that $\text{Sing}(\mathcal{F}) := \bigcup_{j \in J} \text{Sing}(\omega_j)$ is a complex subvariety of complex codimension at least two in X.

Let M be a germ of a real codimension-one irreducible real-analytic subvariety at $0 \in \mathbb{C}^n$, $n \geq 2$. Without loss of generality we may assume that $M = \{F(z) = 0\}$, where F is a germ of irreducible real-analytic function at $0 \in \mathbb{C}^n$. We define the singular set of M as

$$
\text{Sing}(M) = \{F(z) = 0\} \cap \{dF(z) = 0\}
$$

and its regular part is defined as $M^* = M \setminus \text{Sing}(M)$. Consider the distribution of complex hyperplanes L on M^* given by

$$
L_p := \ker(\partial F(p)) \subset T_p M^* = \ker(dF(p)), \quad p \in M^*.
$$

This distribution is called Levi distribution. When L is integrable, in the sense of Frobenius, then we say that M is Levi-flat. Since M^* admits an integrable complex distribution, it is foliated locally by a real-analytic codimension-one foliation L on M^*, the Levi foliation. Each leaf of L is a codimension-one holomorphic submanifold immersed in M^*.

The distribution L can be defined by the real-analytic 1-form $\eta = i(\partial F - \overline{\partial} F)$, the Levi form of F. The integrability condition is equivalent to

$$(\partial F - \overline{\partial} F) \wedge \partial \overline{\partial} F|_{M^*} = 0$$

which using the fact that $\partial F + \overline{\partial} F = dF$, is equivalent to

$$\partial F(p) \wedge \overline{\partial} F(p) \wedge \partial \overline{\partial} F(p) = 0 \quad \forall \ p \in M^*.$$

We refer to the book [3] for the basic language and background about Levi-flat hypersurfaces.

Suppose that M is Levi-flat as above. If $\text{Sing}(M) = \emptyset$, then we say that M is smooth. In this case, according to Cartan [3], around the origin of \mathbb{C}^n one may find suitable coordinates $(z_1, ..., z_n)$ of \mathbb{C}^n such that the germ of M at $0 \in \mathbb{C}^n$ is given by

$$\{\Re(z_n) = 0\}.$$
This is called the *local normal form* for a smooth real-analytic Levi-flat hypersurface M at $0 \in \mathbb{C}^n$.

In order to build singular real-analytic Levi-flat hypersurfaces which are irreducible, we consider the following lemma from [8].

Lemma 2.1. Let $f \in \mathcal{O}_n$, $f \neq 0$, $f(0) = 0$ which is not a power in \mathcal{O}_n. Then $\text{Im}(f)$ and $\text{Re}(f)$ are irreducible in $\mathbb{A}_{n \mathbb{R}}$.

Before proving our results, let us describe some known results and examples.

Example 2.1. Let $f \in \mathcal{O}_n$ be a germ of non-constant holomorphic function with $f(0) = 0$. Then the set $M = \{\text{Re}(f) = 0\}$ is Levi-flat and its singular set is given by $\text{crit}(f) \cap M$, where $\text{crit}(f)$ is the set of critical points of f. The leaves of the Levi foliation \mathcal{L} on M are the imaginary levels of f.

Example 2.2. In \mathbb{C}^n, $n \geq 2$, let M be given as the set of zeros of

$$F(z_1, z_2, \ldots, z_n) = z_1z_1 - z_2z_2.$$

Then M is Levi-flat and its singular set biholomorphic to \mathbb{C}^{n-2}. This real-analytic hypersurface is called *quadratic complex cone*. The leaves of the Levi foliation \mathcal{L} on M are the hyperplanes

$$L_c = \{(z_1, z_2, \ldots, z_n) \in \mathbb{C}^n : z_1 - c \cdot z_2 = 0\} \quad \text{where} \quad c \in \mathbb{R}.$$

Example 2.3. Let M be a germ of real-analytic hypersurface at $0 \in \mathbb{C}^n$ given by $\{F = 0\}$, where

$$F(z_1, \ldots, z_n) = \text{Re}(z_1^2 + \ldots + z_n^2) + H(z, \bar{z}), \quad \text{and} \quad H(z, \bar{z}) = O(|z|^3).$$

If M is Levi-flat, then, according to [9], there exists a holomorphic coordinate system such that $M = \{\text{Re}(x_1^2 + \ldots + x_n^2) = 0\}$. We remark that this result was generalized in [13], where the first author considered the real part of a complex homogeneous polynomial of degree $k \geq 2$ with an isolated singularity.

Example 2.4. We consider the famous A_k, D_k, E_k singularities or simple singularities of Arnold [1, 2]:

Type	Normal form	Conditions
A_k	$z_1^2 + z_2^{k+1} + \ldots + z_n^2$	$k \geq 1$
D_k	$z_1^2z_2 + z_2^{k-1} + z_3^2 + \ldots + z_n^2$	$k \geq 4$
E_6	$z_1^3 + z_2^3 + z_3^2 + \ldots + z_n^2$	
E_7	$z_1^3z_2 + z_2^3 + z_3^3 + \ldots + z_n^2$	
E_8	$z_1^4 + z_2^4 + z_3^4 + \ldots + z_n^4$	

Let M be a germ of singular real-analytic Levi-flat hypersurface at $0 \in \mathbb{C}^2$ defined by $\{F = 0\}$, where

$$F(z) = \text{Re}(Q(z)) + H(z, \bar{z}),$$
where \(Q \) is a complex quasihomogeneous polynomial of \(A_k, D_k, \) or \(E_k \) type of quasihomogeneous degree \(d \). Then in [14] it has been proved that there exists a holomorphic coordinate system such that
\[
M = \{ \Re e(Q(z)) = 0 \}.
\]
We remark that, in this case, the elements \(e_1, \ldots, e_s \) of the monomial basis of the local algebra of \(Q \) of quasihomogeneous degree strictly greater than \(d \) are zero, because the inner modality of the \(A_k, D_k, E_k \) singularities are zero.

2.1. Complexification of singular Levi-flat hypersurfaces. Let \(M \) be a germ of a singular real-analytic Levi-flat hypersurface at \(0 \in \mathbb{C}^n \) defined by the set of zeros of \(F \in \mathbb{A}_{n,\mathbb{R}} \). Let \(\text{Sing}(M) \), \(M^* \) and \(L \) be the singular set, the regular part and the Levi foliation on \(M^* \) respectively.

We write the Taylor series of \(F \) around \(0 \in \mathbb{C}^n \) as
\[
F(z) = \sum_{\mu, \nu} F_{\mu \nu} z^\mu \bar{z}^\nu,
\]
where \(F_{\mu \nu} \in \mathbb{C}, \mu = (\mu_1, \ldots, \mu_n), \nu = (\nu_1, \ldots, \nu_n), z^\mu = z_1^{\mu_1} \cdots z_n^{\mu_n} \) and \(\bar{z}^\nu = \bar{z}_1^{\nu_1} \cdots \bar{z}_n^{\nu_n} \). Since \(F \in \mathbb{A}_{n,\mathbb{R}} \), the coefficients verify \(F_{\mu \nu} = F_{\nu \mu} \). We define the complexification \(F_C \in \mathcal{O}_{2n} \) of \(F \) as the function defined by the power series
\[
F_C(z, w) = \sum_{\mu, \nu} F_{\mu \nu} z^\mu w^\nu.
\]
If the power series for \(F \) converges in a polydisc \(D^n_r = \{ z \in \mathbb{C}^n : |z_j| \leq r \} \) then the power series of the complexification \(F_C \) of \(F \) is convergent in the polydisc \(D^{2n}_r \) and therefore is holomorphic at \(0 \in \mathbb{C}^{2n} \). Moreover,
\[
F(z) = F_C(z, \bar{z}) \quad \forall z \in D^n_r.
\]
This complexification does not depend on choice of coordinate system, see for instance [8].

As seen before, the Levi 1-form is given by \(\eta = i(\partial F - \bar{\partial} F) \). Its complexification is the germ of holomorphic 1-form
\[
\eta_C = i \sum_{j=1}^n \left(\frac{\partial F_C}{\partial z_j} dz_j - \frac{\partial F_C}{\partial w_j} dw_j \right) = i \sum_{\mu, \nu} (F_{\mu \nu} w^\nu d(z^\mu) - F_{\mu \nu} z^\mu d(w^\nu)).
\]
The complexification of \(M \) is defined as \(M_C = \{ F_C = 0 \} \). As before, \(M_C \) does not depend on choice of coordinate system. The regular part of \(M_C \) is
\[
M^*_C = M_C \setminus \{ dF_C = 0 \}
\]
and the singular part of \(M_C \) is
\[
\text{Sing}(M_C) = M_C \cap \{ dF_C = 0 \}.
\]
Since \(\eta \) is integrable on \(M^* \), then also \(\eta_C|_{M^*_C} \) is integrable and defines a codimension-one holomorphic foliation on \(M^*_C \), which will be denoted by \(L_C \). Such foliation is called complexification of \(L \).
Remark 2.1. We can write $\eta_C = i(\alpha - \beta)$, where
\[
\alpha := \sum_{j=1}^{n} \frac{\partial F}{\partial z_j} dz_j \quad \text{and} \quad \beta := \sum_{j=1}^{n} \frac{\partial F}{\partial w_j} dw_j.
\]
Note that $dF = \alpha + \beta$, then
\[
\eta_C\big|_{M^*} = (\eta_C + idF_C)|_{M^*} = 2i\alpha|_{M^*}.
\]
Analogously
\[
\eta_C\big|_{M^*} = (\eta_C - idF_C)|_{M^*} = -2i\beta|_{M^*}.
\]
In particular, $\alpha|_{M^*}$ and $\beta|_{M^*}$ define L_C on M^* and $\text{Sing}(L_C) = \text{Sing}(\eta_C|_{M^*})$.

Definition 2.1. Let $M = \{F = 0\}$ be a germ at $0 \in \mathbb{C}^n$ of a real-analytic Levi-flat hypersurface and M_C its complexification. We define the algebraic dimension of $\text{Sing}(M)$ as the complex dimension of $\text{Sing}(M_C)$.

Let $W = M_C \setminus \text{Sing}(\eta_C|_{M^*})$ and let L_p be the leaf of L_C through $p \in W$. We have the following lemma from [8].

Lemma 2.2. For any $p \in W$, the leaf L_p is closed (with the induced topology) in M^*_C.

The following theorem, due to D. Cerveau and A. Lins Neto [8] is the key ingredient for finding normal forms of singular Levi-flat hypersurfaces.

Theorem 2.3. Let $M = \{F = 0\}$ be a germ of an irreducible real-analytic Levi-flat hypersurface at $0 \in \mathbb{C}^n$, $n \geq 2$, with Levi 1-form η. Assume that the algebraic dimension of $\text{Sing}(M)$ is at most $2n - 4$. Then there exists a unique germ at $0 \in \mathbb{C}^n$ of codimension-one holomorphic foliation F_M tangent to M, if one of the following conditions is fulfilled:

(a) $n \geq 3$ and $\text{cod}_{M^*_C}(\text{Sing}(\eta_C|_{M^*_C})) \geq 3$.

(b) $n \geq 2$, $\text{cod}_{M^*_C}(\text{Sing}(\eta_C|_{M^*_C})) \geq 2$ and L_C has a non-constant holomorphic first integral. Moreover, in both cases the foliation F_M has a non-constant holomorphic first integral f such that $M = \{\Re(f) = 0\}$.

We recall that germ of holomorphic function h is called a holomorphic first integral for a germ of codimension-one holomorphic foliation F if its zeros set is contained in $\text{Sing}(F)$ and its level hypersurfaces contain the leaves of F.

3. Normal forms for a quasihomogeneous polynomial

The local algebra of $f \in \mathcal{O}_n$ is defined as
\[
A_f = \frac{\mathcal{O}_n}{\langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle}.
\]

The number $\mu(f, 0) = \text{dim}_\mathbb{C}(A_f)$ is the Milnor number of f at $0 \in \mathbb{C}^n$. This number is finite if and only if f has an isolated singularity at the origin. With these definitions, Morse lemma may be stated as follows: if $0 \in \mathbb{C}^n$ is an isolated singularity of $f \in \mathcal{O}_n$ with $\mu(f, 0) = 1$, then
f is right equivalent to its second jet $j^2_0(f)$. The Morse lemma has the following generalization, and the proof can be found in [3].

Theorem 3.1. If $f \in \mathcal{M}_n$ has an isolated singularity at $0 \in \mathbb{C}^n$ with Milnor number μ, then f is right equivalent to $j^{\mu+1}_0(f)$.

Definition 3.1. A germ of function $f \in \mathcal{O}_n$ is quasihomogeneous with weights $w_1, \ldots, w_n \in \mathbb{Z}^*$ if, for each $\lambda \in \mathbb{C}^*$,

$$f(\lambda^{w_1} z_1, \ldots, \lambda^{w_n} z_n) = \lambda^d f(z_1, \ldots, z_n).$$

The number d is the quasihomogeneous degree of it.

The previous definition is equivalent to the following: $f(z)$ is quasihomogeneous of type (w_1, \ldots, w_n) if it can be expressed as a linear combination of monomials $z_1^{i_1} \cdots z_n^{i_n}$ for which the equality

$$i_1 w_1 + \cdots + i_n w_n = d$$

holds. The number d is the quasihomogeneous degree defined above.

Definition 3.2. The Newton support of germ $f = \sum a_{i_1 \ldots i_n} x_1^{i_1} \cdots x_n^{i_n}$ is defined as

$$\text{supp}(f) = \{(i_1, \ldots, i_n) : a_{i_1 \ldots i_n} \neq 0\}.$$

In the above situation, if $f = \sum a_I x^I$, $I = (i_1, \ldots, i_n)$, $x^I = x_1^{i_1} \cdots x_n^{i_n}$, then

$$\text{supp}(f) \subset \Gamma = \{I : w_1 i_1 + \cdots + w_n i_n = d\}.$$

The set Γ is called the diagonal. One can define the quasihomogeneous filtration of the ring \mathcal{O}_n. It consists of the decreasing family of ideals $\mathcal{A}_d \subset \mathcal{O}_n$, $\mathcal{A}_{d'} \subset \mathcal{A}_d$ for $d < d'$. Here $\mathcal{A}_d = \{Q : \text{degrees of monomials from } \text{supp}(Q) \text{ are } \deg(Q) \geq d\}$; (the degree is quasihomogeneous). When $i_1 = \cdots = i_n = 1$, this filtration coincides with the usual filtration by the usual degree.

Definition 3.3. A function f is semiquasihomogeneous if $f = Q + F'$, where Q is quasihomogeneous of quasihomogeneous degree d and $\mu(Q, 0) < \infty$, and $F' \in \mathcal{A}_{d'}$, $d' > d$.

From [2] we have the following result of V.I. Arnold.

Theorem 3.2. Let $f = Q + F'$ be a semiquasihomogeneous function. Then f is right-equivalent to a function $Q(z) + \sum_j c_j e_j(z)$ where e_1, \ldots, e_j are elements of the monomial basis of the local algebra \mathcal{A}_Q of quasihomogeneous degree strictly greater than d and $c_j \in \mathbb{C}$.

Example 3.1. Let $f = Q + F'$, where $Q(x, y) = x^2 y + y^k$, then f is right equivalent to Q. Indeed, the basis of the local algebra

$$\mathcal{A}_Q = \mathcal{O}_2/(xy, x^2 + ky^{k-1})$$

is $1, x, y, y^2, \ldots, y^{k-1}$. Here $\mu(Q, 0) = k + 1$.

In the proof of Theorem 1 we will used the following Lemma of Saito [23].
Lemma 3.3. If $f \in \mathcal{M}_2$ is a complex quasihomogeneous polynomial, then f factors uniquely as

$$f(z_1, z_2) = \mu z_1^{m_1} z_2^{m_2} \prod_{\ell=1}^{k} (z_2^p - \lambda_\ell z_1^q),$$

where $m, n, p, q \in \mathbb{Z}_+, \mu, \lambda_\ell \in \mathbb{C}^*$ for each $\ell = 1, \ldots, k$, and $\gcd(p, q) = 1$.

4. Weighted projective varieties and weighted blow-ups

In this section we present an overview of weighted projective spaces and weighted blow-ups. We refer to [11] and [21] for a more extensive presentation of the subject.

Let $\sigma := (a_0, \ldots, a_n)$ be positive integers. The group \mathbb{C}^* acts on $\mathbb{C}^{n+1}\{0\}$ by

$$\lambda \cdot (x_0, \ldots, x_n) = (\lambda^{a_0} x_0, \ldots, \lambda^{a_n} x_n).$$

The quotient space under this action is the weighted projective space of type σ, $\mathbb{P}(a_0, \ldots, a_n) := \mathbb{P}_\sigma$. In case $a_i > 1$ for some i, \mathbb{P}_σ is a compact algebraic variety with cyclic quotient singularities.

Let $[x_0 : \ldots : x_n]$ be the homogeneous coordinates on $\mathbb{P}(a_0, \ldots, a_n)$. The affine piece $x_i \neq 0$ is isomorphic to $\mathbb{C}^n / \mathbb{Z}_{a_i}$, here \mathbb{Z}_{a_i} denote the quotient group modulo a_i. Let ϵ be an a_ith-primitive root of unity. The group acts by

$$z_j \mapsto \epsilon^{a_i} z_j$$

for all $j \neq i$, on the coordinates $(z_0, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n)$ of \mathbb{C}^n; here z_j is thought of as $x_j / x_i^{1/a_i}$. Compare this to the case of \mathbb{P}^n where the affine coordinates on $x_i \neq 0$ are $z_j = x_j / x_i$.

Definition 4.1. $\mathbb{P}(a_0, \ldots, a_n)$ is well-formed if for each i

$$\gcd(a_0, \ldots, a_i, \ldots, a_n) = 1.$$

We have a natural orbifold map $\phi_\sigma : \mathbb{P}^n \to \mathbb{P}_\sigma$ defined by

$$[x_0 : \ldots : x_n] \mapsto [x_0^{a_0} : \ldots : x_n^{a_n}]_\sigma$$

(2)

Definition 4.2. Let X be a closed subvariety of a weighted projective space \mathbb{P}_σ, and let $\rho : \mathbb{C}^{n+1}\{0\} \to \mathbb{P}_\sigma$ be the canonical projection. The punctured affine cone C^*_X over X is given by $C^*_X = \rho^{-1}(X)$, and the affine cone C_X over X is the completion of C^*_X in \mathbb{C}^{n+1}.

Observe that \mathbb{C}^* acts on C^*_X giving $X = C^*_X / \mathbb{C}^*$. Note that we have the following fact.

Lemma 4.1. C^*_X has no isolated singularities.

Definition 4.3. We say that X in \mathbb{P}_σ is quasi-smooth of dimension m if its affine cone C_X is smooth of dimension $m + 1$ outside its vertex $0 \in \mathbb{C}^{n+1}$.

When $X \subset \mathbb{P}_\sigma$ is quasi-smooth the singularities of X are given by the \mathbb{C}^*-action and hence are cyclic quotient singularities. Notice that this definition is not equivalent to the smoothness of the inverse image $\phi_\sigma^{-1}(X)$ under the quotient map given in (2).

Another important fact (cf. [11], Theorem 3.1.6) is that a quasi-smooth subvariety X of \mathbb{P}_σ is a V-variety, that is, a complex space which is locally isomorphic to the quotient of a complex manifold by a finite group of holomorphic automorphisms.
Now, let \(X = \mathbb{C}^n / \mathbb{Z}_m(a_1, \ldots, a_n) \) be a cyclic quotient singularity. That is, \(X \) is the quotient variety \(\mathbb{C}^n / \tau \), where \(\tau \) is given by

\[
x_i \mapsto e^{\epsilon_i} x_i
\]

for all \(i \), where \(\epsilon \) is a \(m \)-th primitive root of unity.

4.1. **Weighted blow-ups.** In this part we will construct the blow-up of \(X \). First, we describe \(X \) using the theory of toric varieties (cf. [18]). Let

\[
e_1 = (1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1) \text{ and } e = \frac{1}{m}(a_1, \ldots, a_n).
\]

Then \(X = \mathbb{C}^n / \mathbb{Z}_m(a_1, \ldots, a_n) \) is the toric variety corresponding to the lattice \(N = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n + \mathbb{Z}e \) and the cone \(C = \mathbb{R}_{\geq 0} e_1 + \cdots + \mathbb{R}_{\geq 0} e_n \). Denote by \(\triangle \) the fan associated to \(X \) consisting of all the faces of \(C \).

Take \(\nu = \frac{1}{m}(a_1, \ldots, a_n) \in N \) with \(a_1, \ldots, a_n > 0 \) and assume that \(e_1, \ldots, e_n \) and \(\nu \) generate the lattice \(N \). Such \(\nu \in N \) will be called a weight. We can construct the weighted blow-up

\[
E : \tilde{X} \to X = \mathbb{C}^n / \mathbb{Z}_m(a_1, \ldots, a_n)
\]

with weight \(\nu \) as follows: we divide the cone \(C \) by adding the 1-dimensional cone \(\mathbb{R}_{\geq 0} \nu \), that is, we divide \(C \) into \(n \) cones

\[
C_i = \mathbb{R}_{\geq 0} e_1 + \cdots + \mathbb{R}_{\geq 0} \nu + \cdots + \mathbb{R}_{\geq 0} e_n \quad (i = 1, \ldots, n).
\]

Let \(\triangle' \) be the fan consisting of all the faces of \(C_1, \ldots, C_n \). Then \(\tilde{X} \) is the toric variety corresponding to \(N \) and \(\triangle' \), while \(E \) is the morphism induced from the natural map of fans \((N, \triangle') \to (N, \triangle) \).

The variety \(\tilde{X} \) is covered by \(n \) affine open sets \(\tilde{U}_1, \ldots, \tilde{U}_n \) which correspond to the cones \(C_1, \ldots, C_n \) respectively. These affine open sets and \(E \) are described as follows:

\[
(3) \quad \tilde{U}_i = \mathbb{C}^n / \mathbb{Z}_m(-a_1, \ldots, \frac{1}{m}, \ldots, -a_n)
\]

\[
(4) \quad E|_{\tilde{U}_i} : \tilde{U}_i \ni (y_1, \ldots, y_n) \mapsto \left(y_1 y_i^{a_1/m}, \ldots, y_i^{a_i/m}, \ldots, y_n y_i^{a_n/m} \right) \in X.
\]

The exceptional divisor \(D \) of \(E \) is isomorphic to the weighted projective space \(\mathbb{P}(a_1, \ldots, a_n) \) and \(D \cap \tilde{U}_i = \{ y_i = 0 \} / \mathbb{Z}_m \).

5. FIRST INTEGRAL FOR THE LEVI FOLIATION AND THE PROOF OF THEOREM [1]

In this section, we give sufficient conditions (dynamical criteria) to find a non-constant holomorphic first integral for the complexification of the Levi foliation \(\mathcal{L}_C \) on \(M_C \) and then we prove Theorem [1].

Let \(\pi \) be a weighted blow-up on \(M_C \) with exceptional divisor \(E \). Denote by \(\tilde{M}_C \) the strict transform of \(M_C \) by \(\pi \) and by \(\tilde{F} = \pi^*(\mathcal{L}_C) \) the induced foliation on \(\tilde{M}_C \). Suppose that \(\tilde{M}_C \) is a
smooth variety and consider $\tilde{C} = \tilde{M}_C \cap E$. Assume that \tilde{C} is invariant by \tilde{F}; i.e., it is a union of leaves and singularities of \tilde{F}.

Let $S := \tilde{C} \setminus \text{Sing}(\tilde{F})$. Then S is a smooth leaf of \tilde{F}. Take a point p_0 in S and a transverse section Σ passing through p_0. Let $G \subset \text{Diff}(\Sigma, p_0)$ be the holonomy group of the leaf S; since $\dim(\Sigma) = 1$, we assume that $G \subset \text{Diff}(\Sigma, 0)$. In this context, we have the following result of Fernández-Pérez [14].

Lemma 5.1. Assume the following:

(a) For any $p \in S \setminus \text{Sing}(\tilde{F})$, the leaf L_p of \tilde{F} through p is closed in S.

(b) $g'(0)$ is a primitive root of unity, for all $g \in G$, $g \neq id$.

Then L_C has a non-constant holomorphic first integral.

To continue, we use the above lemma to prove the following proposition.

Proposition 5.2. Let M be a germ of an irreducible singular real-analytic Levi-flat hypersurface at $0 \in \mathbb{C}^2$ satisfying the hypotheses of Theorem 1. Then we have the following:

(a) the algebraic dimension of $\text{Sing}(M)$ is 0;

(b) $\text{cod}_{M_C}(\text{Sing}(L_C)) = 2$;

(c) L_C has a non-constant holomorphic first integral.

Proof. Let M be as in Theorem 1. Then M is given by $M = \{F = 0\}$, where

$$F(z) = \Re(Q(z)) + H(z, \bar{z}),$$

Q is a complex quasihomogeneous polynomial of quasihomogeneous degree d of type (a, b) with an isolated singularity at $0 \in \mathbb{C}^2$ and H is a germ of real-analytic function at $0 \in \mathbb{C}^2$ of order strictly greater than d. It follows from Lemma 3.3 that Q can be written as

$$Q(x, y) = \mu x^m y^n \prod_{\ell=1}^{k} (y^p - \lambda_\ell x^q),$$

where $m, n, p, q \in \mathbb{Z}_+^*$, $\mu, \lambda_\ell \in \mathbb{C}^*$ for each $\ell = 1, \ldots, k$, and $\gcd(p, q) = 1$. Since Q has an isolated singularity at $0 \in \mathbb{C}^2$, then we necessarily that both m and n are either 0 or 1.

On the other hand, since Q has weights (a, b) with $\gcd(a, b) = 1$ we have each polynomial $(y^p - \lambda_\ell x^q)$ has also weights (a, b), which implies that $aq = bp$. Since p, q are relatively prime, we get $a = p$ and $b = q$.

For simplicity, using (5), we write

$$Q(x, y) = \mu x^m y^n \prod_{\ell=1}^{k} Q_\ell(x, y),$$

where $Q_\ell(x, y) = (y^p - \lambda_\ell x^q)$. Without loss of generality, we can assume that Q has real coefficients. Then the complexification F_C of F is given by

$$F_C(x, y, z, w) = \frac{1}{2} Q(x, y) + \frac{1}{2} Q(z, w) + H_C(x, y, z, w).$$
Since \(Q \) has an isolated singularity at \(0 \in \mathbb{C}^2 \), we get \(M_C = \{ F_C = 0 \} \subset (\mathbb{C}^4, 0) \) has an isolated singularity at \(0 \in \mathbb{C}^4 \) and so the algebraic dimension of \(\text{Sing}(M) \) is zero. Hence item (a) is proved. Consider the algebraic subvariety contained in \(\mathbb{P}(a, b, a, b) \)

\[
V_{M_C} = \{ Q(Z_0, Z_1) + Q(Z_2, Z_3) = 0 \},
\]

where \([Z_0 : Z_1 : Z_2 : Z_3] \in \mathbb{P}(a, b, a, b) \). It is not difficult to see that \(\text{Sing}(M_C) = \text{Sing}(V_{M_C}) \). Note that \(V_{M_C} \) can be considered as \(V \)-variety

\[
V_{M_C} \subset Z \simeq \mathbb{C}^4 / \mathbb{Z}(a, b, a, b).
\]

Now we consider the weighted blow-up \(E : \tilde{Z} \to Z \), with weight \(\delta = (a, b, a, b) \). Let \(\tilde{M}_C \)
be the strict transform of \(M_C \) by \(E \) and \(D \simeq \mathbb{P}_\delta \) the exceptional divisor, with coordinates \((Z_0, Z_1, Z_2, Z_3) \in \mathbb{C}^4 \setminus \{ 0 \} \). The intersection of \(\tilde{M}_C \) with \(\mathbb{P}_\delta \) is

\[
\tilde{C} := \tilde{M}_C \cap \mathbb{P}_\delta = \{ Q(Z_0, Z_1) + Q(Z_2, Z_3) = 0 \}.
\]

It follows from Remark [2.1] that \(\mathcal{L}_C \) can be defined by \(\alpha|_{M_C} = 0 \), where

\[
(6) \quad \alpha = Q(x, y) \left[\left(\frac{m}{x} - qx^{q-1} \sum_{i=1}^{k} \frac{\lambda_i}{Q_i(x, y)} \right) dx + \left(\frac{n}{y} + py^{p-1} \sum_{i=1}^{k} \frac{1}{Q_i(x, y)} \right) dy \right] + \theta
\]

and \(\theta = 2 \left(\frac{\partial \alpha}{\partial x} dx + \frac{\partial \alpha}{\partial y} dy \right) \) is a holomorphic 1-form with order strictly greater than \(d \). It follows from (6) that \(\text{Sing}(\mathcal{L}_C) \) has codimension two proving item (b). The rest of the proof is devoted to the proof of item (c). Note that the leaves of \(\mathcal{L}_C \) are closed in \(M_C \setminus \text{Sing}(\mathcal{L}_C) \) by Lemma [2.2]. To apply Lemma [5.1] we need calculate the holonomy group associated to \(\mathcal{L}_C \).

For each \(i = 1, 2, 3, 4 \), we have the affine open sets

\[
\tilde{U}_i = \mathbb{C}^4 / \mathbb{Z}_a, (-a, ..., \frac{1}{1-ih}, ..., -b).
\]

We work in \(\tilde{U}_3 \) with coordinates \((x_1, y_1, z_1, w_1) \). In this open subset, the blow-up \(E \) has the following expression

\[
E(x_1, y_1, z_1, w_1) = (x_1^q, y_1^q, z_1^q, w_1z_1^q),
\]

with \(D \cap \tilde{U}_3 = \{ z_1 = 0 \} / \mathbb{Z}_a \). In this chart, the pull-back of \(\alpha \) by \(E \) is given by

\[
E^* \alpha = z_1^{pm+qn+kpq-1} \alpha_1,
\]

where

\[
(7) \quad \alpha_1 = Q(x_1, y_1) \left[\left(\frac{mz_1}{x_1} - qx_1^{q-1} z_1 \sum_{i=1}^{k} \frac{\lambda_i}{Q_i(x_1, y_1)} \right) dx_1 + \left(\frac{nz_1}{y_1} + py_1^{p-1} z_1 \sum_{i=1}^{k} \frac{1}{Q_i(x_1, y_1)} \right) dy_1 + \left(pm + qn - pqx_1^{q-1} \sum_{i=1}^{k} \frac{\lambda_i}{Q_i(x_1, y_1)} \right) dz_1 \right] + z_1 \theta_1
\]
and \(\theta_1 = E^*\theta/\omega_1^{pm+qn+kpq} \). The pull-back foliation \(\tilde{\mathcal{C}} \) is defined by \(\alpha_1|_{\tilde{\mathcal{C}}} = 0 \). The intersection of \(\tilde{\mathcal{C}} \) with the open subset \(\tilde{U}_3 \) is

\[
\tilde{C} \cap \tilde{U}_3 = \{ z_1 = Q(x_1, y_1) + Q(1, w_1) = 0 \}/\mathbb{Z}_a,
\]
which implies that \(\tilde{C} \) is invariant by \(\tilde{\mathcal{C}} \) by (7), and

\[
\text{Sing}(\tilde{\mathcal{C}}) \cap \tilde{U}_3 = \{ z_1 = Q(x_1, y_1) = Q(1, w_1) = 0 \}/\mathbb{Z}_a.
\]

In the chart \(\tilde{U}_4 \), with coordinates \((x_2, y_2, z_2, w_2) \), the blow-up is

\[
E(x_2, y_2, z_2, w_2) = (x_2 w_2^2, y_2 w_2^k, z_2 w_2^2, w_2^3)
\]
and \(D \cap \tilde{U}_4 = \{ w_2 = 0 \}/\mathbb{Z}_a \). In this chart, the pull-back of \(\alpha \) is

\[
E^*\alpha = w_2^{pm+qn+kpq-1}\alpha_2,
\]
where

\[
\alpha_2 = Q(x_2, y_2) \left[\left(\frac{mw_2}{x_2} - qx_2^{-1}w_2 \sum_{\ell=1}^{k} \frac{\lambda_{\ell}}{Q_{\ell}(x_2, y_2)} \right) dx_2 + \left(\frac{nw_2}{y_2} + py_2^{2}w_2 \sum_{\ell=1}^{k} \frac{1}{Q_{\ell}(x_2, y_2)} \right) dy_2 + \left(pm + qn - pqx_2^{2} \sum_{\ell=1}^{k} \frac{\lambda_{\ell}}{Q_{\ell}(x_2, y_2)} + pqy_2^{2} \sum_{\ell=1}^{k} \frac{1}{Q_{\ell}(x_2, y_2)} \right) dw_2 \right] + w_2 \theta_2
\]
and \(\theta_2 = E^*\theta/\omega_2^{pm+qn+kpq} \). The pull-back foliation \(\tilde{\mathcal{C}} \) is given by \(\alpha_2|_{\tilde{\mathcal{C}}} = 0 \). Similarly as before, the intersection of \(\tilde{C} \) with the open subset \(\tilde{U}_4 \) is

\[
\tilde{C} \cap \tilde{U}_4 = \{ w_2 = Q(x_2, y_2) + Q(z_2, 1) = 0 \}/\mathbb{Z}_a,
\]
which is invariant by \(\tilde{\mathcal{C}} \) by (8), and

\[
\text{Sing}(\tilde{\mathcal{C}}) \cap \tilde{U}_4 = \{ w_2 = Q(x_2, y_2) = Q(z_2, 1) = 0 \}/\mathbb{Z}_a.
\]
Now, we focus in the chart \(\tilde{U}_3 \). In this open subset, the action of the group is given by

\[
\begin{align*}
x_1 &\mapsto x_1, \\
y_1 &\mapsto e^\frac{2\pi i}{m} y_1, \\
w_1 &\mapsto e^\frac{2\pi i}{n} w_1.
\end{align*}
\]

The exceptional divisor in this chart is given by

\[
\text{Sing}(D) \cap \tilde{U}_3 = \{ y_1 = z_1 = w_1 = 0 \}/\mathbb{Z}_a
\]
and therefore the intersection of the singular set of \(\tilde{\mathcal{C}} \) with the singular set of the exceptional divisor is

\[
\text{Sing}(D) \cap \text{Sing}(\tilde{\mathcal{C}}) \cap \tilde{U}_3 = \{ y_1 = z_1 = w_1 = Q(1, 0) = 0 \}/\mathbb{Z}_a.
\]
Due to the factorization of \(Q \) given in (5), we investigated four cases.
\begin{itemize}
 \item $m = n = 1$. In this case, $Q(1,0) = 0$ and, since $Q(1,w_1)$ is a complex polynomial in w_1, there exists another complex polynomial \tilde{Q} such that $Q(1,w_1) = w_1\tilde{Q}(w_1)$ such that $\tilde{Q}(0) \neq 0$. Note that the power for w_1 may not be higher than one, because this would conflict with the fact that $n = 1$ in the factorization of Q. Now, if r is a root of \tilde{Q}, then $r \neq 0$ and therefore $(0,0,0,0) \in \text{Sing}(\tilde{L}_C) \cap \tilde{U}_3$ and $(0,0,0,0) \notin \text{Sing}(D) \cap \tilde{U}_3$. Hence, we get $\text{Sing}(D) \cap \tilde{U}_3 \subseteq \text{Sing}(\tilde{L}_C) \cap \tilde{U}_3$.
 \item $m = 0$, $n = 1$. The same argument as the previous one holds in this case and therefore we have $\text{Sing}(D) \cap \tilde{U}_3 \subseteq \text{Sing}(\tilde{L}_C) \cap \tilde{U}_3$.
 \item $m = 1$, $n = 0$. In this case, $Q(1,0) \neq 0$ and therefore $\text{Sing}(D) \cap \text{Sing}(\tilde{L}_C) \cap \tilde{U}_3 = \emptyset$.
 \item $m = 0$. Same as before, we conclude that $\text{Sing}(D) \cap \text{Sing}(\tilde{L}_C) \cap \tilde{U}_3 = \emptyset$.
\end{itemize}

We arrive to the same conclusions working in the chart \tilde{U}_4. In both cases we have shown that, either $\text{Sing}(D) \cap \text{Sing}(\tilde{L}_C) = \emptyset$ or that $\text{Sing}(D) \subseteq \text{Sing}(\tilde{L}_C)$.

Consider the set $S := \tilde{C} \setminus \text{Sing}(\tilde{L}_C)$. This set is a leaf of \tilde{L}_C. Let q_0 be a point in $S \setminus \text{Sing}(D)$ and a section Σ transverse to S passing through q_0. Working on the chart \tilde{U}_3, we may assume without loss of generality that $q_0 = (1,0,0,0)$ and $\Sigma = \{(1,0,t,0) : t \in \mathbb{C}\}$. Let G be the holonomy group of the leaf S of \tilde{L}_C in Σ. Recall that

$$\text{Sing}(\tilde{L}_C) \cap \tilde{U}_3 = \{z_1 = Q(x_1,y_1) = Q(1,w_1)\} / \mathbb{Z}_a.$$

This set splits into several connected components, separated in the following cases:

\begin{itemize}
 \item $m = 1$, $n = 1$. In this case,
 $$Q(x,y) = xy \prod_{\ell=1}^k Q_{\ell}(x,y),$$

 where $Q_{\ell}(x,y) = (y^p - \lambda_\ell x^q)$, $\gcd(p,q) = 1$ and $aq = pb = d$. The set $\text{Sing}(\tilde{L}_C) \cap \tilde{U}_3$ splits as the union of the following connected components:

 $$C^{e}_{\ell \, rs} = \{z_1 = Q_{\ell}(x_1,y_1) = w_1 - \varepsilon^{(r)}_{\ell}(\lambda_s) = 0\} / \mathbb{Z}_a,$$

 $$C^{e_{rs}}_{\ell} = \{z_1 = x_1 = w_1 - \varepsilon^{(r)}_{\ell}(\lambda_s) = 0\} / \mathbb{Z}_a,$$

 $$C^{g_{rs}}_{\ell} = \{z_1 = y_1 = w_1 - \varepsilon^{(r)}_{\ell}(\lambda_s) = 0\} / \mathbb{Z}_a,$$

 where $s, \ell \in \{1,\ldots,k\}$ and $r \in \{1,\ldots,p\}$ and for each r, $\varepsilon^{(r)}_{\ell}(\lambda_s)$ is an p-th root of λ_s. According to [29], the fundamental group $\pi_1(S,q_0)$ may be written in terms of generators and its relations as

 $$\pi_1(S,q_0) = \langle \gamma_{\ell \, rs}, \delta_{\ell \, rs}, \xi_{\ell \, rs}, \tau_{\ell \, rs} : \gamma^p_{\ell \, rs} = \delta^r_{\ell \, rs} \rangle, \quad \ell, s = 1,\ldots,k; \quad r = 1,\ldots,p,$$

 where, for each ℓ, r, s, the elements $\gamma_{\ell \, rs}$ and $\delta_{\ell \, rs}$ are loops around the connected component $C^{e}_{\ell \, rs}$ of $\text{Sing}(\tilde{L}_C) \cap \tilde{U}_3$, $\xi_{\ell \, rs}$ are loops around $C^{e_{rs}}_{\ell}$ and $\tau_{\ell \, rs}$ a loop around $C^{g_{rs}}_{\ell}$. If G is the holonomy group of the leaf S of \tilde{L}_C in the section Σ, then

 $$G = \langle f_{\ell \, rs}, g_{\ell \, rs}, h_{\ell \, rs}, k_{\ell \, rs} : \gamma^p_{\ell \, rs} = \delta^r_{\ell \, rs} \rangle, \quad \ell, s = 1,\ldots,k; \quad r = 1,\ldots,p.$$
where \(f_{\ell rs}, g_{\ell rs}, h_{\ell rs} \) and \(k_{\ell rs} \) correspond to the equivalence classes of the loops \(\gamma_{\ell rs}, \delta_{\ell rs}, \xi_{\ell rs}, \tau_{\ell rs} \) in \(\pi_1(S,q_0) \), respectively. Each one of these loops lifts up to \(\Gamma_{\ell rs}(t), \Delta_{\ell rs}(t), \Xi_{\ell rs}(t), \Upsilon_{\ell rs}(t) \), respectively, under the condition that each one of these belong on the leaves of \(\tilde{L}_C \) and that this foliation is defined by \(\alpha_1|\lambda_{rs}^t = 0 \) (see for instance \(7 \)). We have the coefficients of the linear terms of the holonomy maps are given by

\[
\begin{align*}
 f'_{\ell rs}(0) &= e^{-\frac{2(p+q)}{3} \pi i}, \\
 g'_{\ell rs}(0) &= e^{-\frac{2}{3} \frac{(p+q)^2}{p+q} \pi i}, \\
 h'_{\ell rs}(0) &= 1, \\
 k'_{\ell rs}(0) &= e^{-2 \left(\frac{1+p}{p+q} \right) \pi i}.
\end{align*}
\]

According to Lemma \ref{lemma:holonomy}, the foliation \(\tilde{L}_C \) has a holomorphic non-constant first integral and the proof in this case is finished.

- \(m = 0, n = 1 \). In this case,

\[
Q(x, y) = y^{\prod_{\ell=1}^k} Q_{\ell}(x, t),
\]

where \(Q_{\ell} = (y^p - \lambda_\ell x^q) \), gcd\((p, q) = 1 \) and \(aq = pb = d \). The set \(\text{Sing}(\tilde{L}_C) \cap \tilde{U}_3 \) splits as the union of the following connected components:

\[
C_{\ell rs}^k = \{ z_1 = Q_\ell(x_1, y_1) = w_1 - \varepsilon^{(r)}_p(\lambda_s) = 0 \}/\mathbb{Z}_q,
\]

\[
C_{\ell rs}^y = \{ z_1 = y_1 = w_1 - \varepsilon^{(r)}_p(\lambda_s) = 0 \}/\mathbb{Z}_q,
\]

where \(s, \ell \in \{1, \ldots, k\}, r \in \{1, \ldots, p\} \) and, for each \(r, \varepsilon^{(r)}_p(\lambda_s) \) is a \(p \)-th root of \(\lambda_s \). The group \(\pi_1(S,q_0) \) is written in terms of generators and its relations as

\[
\pi_1(S,q_0) = \langle \gamma_{\ell rs}, \delta_{\ell rs}, \tau_{rs} : \gamma_{\ell rs}^p = \delta_{\ell rs}^p \rangle_{s=1,\ldots,k}^{r=1,\ldots,p}
\]

where, for each \(\ell, r, s, \gamma_{\ell rs} \) and \(\delta_{\ell rs} \) are loops around \(C_{\ell rs}^k \) and \(\tau_{rs} \) a loop around \(C_{\ell rs}^y \). If \(G \) is the holonomy group of the leaf \(S \) of \(\tilde{L}_C \) in the section \(\Sigma \) then

\[
G = \langle f_{\ell rs}, g_{\ell rs}, k_{\ell rs} \rangle_{s=1,\ldots,k}^{r=1,\ldots,p}
\]

where \(f_{\ell rs}, g_{\ell rs} \) and \(k_{\ell rs} \) correspond to the equivalence classes of the loops \(\gamma_{\ell rs}, \delta_{\ell rs}, \tau_{rs} \) in \(\pi_1(S,q_0) \), respectively. Each one of these loops lifts up to \(\Gamma_{\ell rs}(t), \Delta_{\ell rs}(t), \Upsilon_{\ell rs}(t) \), respectively, under the condition that each one of these belong on the leaves of \(\tilde{L}_C \) and that this foliation is defined by \(\alpha_1|\lambda_{rs}^t = 0 \) (see for instance \(7 \)), we have the coefficients of the linear terms of the holonomy maps are given by

\[
\begin{align*}
 f'_{\ell rs}(0) &= e^{-\frac{2p}{3} \pi i}, \\
 g'_{\ell rs}(0) &= e^{-\frac{2}{3} \frac{p^2}{p+q} \pi i}, \\
 k'_{\ell rs}(0) &= 1.
\end{align*}
\]

Using Lemma \ref{lemma:holonomy} the proof in this case is finished.
• \(m = 1, n = 0 \). In this case

\[
Q(x, y) = x \prod_{\ell=1}^{k} Q_\ell(x, t),
\]

where \(Q_\ell = (y^p - \lambda_\ell x^q) \), \(\gcd(p, q) = 1 \) and \(aq = pb = d \). The set \(\text{Sing}(\mathcal{C}) \cap \tilde{U}_3 \) splits as the union of the following connected components:

\[
C_{rs}^\ell = \{ z_1 = Q_\ell(x_1, y_1) = w_1 - \varepsilon_p^{(r)}(\lambda_s) = 0 \}/\mathbb{Z}_a,
\]

\[
C_{rs}^{\eta} = \{ z_1 = x_1 = w_1 - \varepsilon_p^{(r)}(\lambda_s) = 0 \}/\mathbb{Z}_a,
\]

where \(s, \ell \in \{1, ..., k\} \), \(r \in \{1, ..., p\} \) and, for each \(r \), \(\varepsilon_p^{(r)}(\lambda_s) \) is a \(p \)-th root of \(\lambda_s \). The group \(\pi_1(S, q_0) \) is written in terms of generators and its relations as

\[
\pi_1(S, q_0) = \langle \gamma_{\ell rs}, \delta_{\ell rs} : \gamma_{\ell rs}^p = \delta_{\ell rs}^{\eta} \rangle \quad \ell, s = 1, ..., k \quad r = 1, ..., p
\]

where, for each \(\ell, r, s \), \(\gamma_{\ell rs} \) and \(\delta_{\ell rs} \) are loops around \(C_{rs}^\ell \) and \(\xi_{rs} \) a loop around \(C_{rs}^{\eta} \). If \(G \) is the holonomy group of the leaf \(S \) of \(\mathcal{C} \) in the section \(\Sigma \) then

\[
G = \langle f_{\ell rs}, g_{\ell rs}, h_{\ell rs} \rangle \quad \ell, s = 1, ..., k \quad r = 1, ..., p
\]

where \(f_{\ell rs}, g_{\ell rs} \) and \(h_{\ell rs} \) correspond to the equivalence classes of the loops \(\gamma_{\ell rs}, \delta_{\ell rs}, \xi_{rs} \) in \(\pi_1(S, q_0) \), respectively. Each one of these loops lifts up to \(\Gamma_{\ell rs}(t), \Delta_{\ell rs}(t), \Xi_{rs}(t) \), respectively, under the condition that each one of these belong on the leaves of \(\mathcal{C} \) and that this foliation is defined by \(\alpha_1|_{M_{\ell}} = 0 \) (see for instance [7]), we have the coefficients of the linear terms of the holonomy maps are given by

\[
\begin{align*}
\int_{\ell rs}(0) & = e^{-\frac{2\pi i}{p}}, \\
g_{\ell rs}(0) & = e^{-\frac{2\pi i}{p}}, \\
k_{\ell rs}(0) & = 1,
\end{align*}
\]

Again by Lemma 5.1, the proof in this case is finished.

• \(m = 0, n = 0 \). In this case, \(Q(x, y) = \prod_{\ell=1}^{k} Q_\ell(x, t) \), where \(Q_\ell = (y^p - \lambda_\ell x^q) \), \(\gcd(p, q) = 1 \) and \(aq = pb = d \). The set \(\text{Sing}(\mathcal{C}) \cap \tilde{U}_3 \) splits as the union of the following connected components:

\[
C_{rs}^\ell = \{ z_1 = Q_\ell(x_1, y_1) = w_1 - \varepsilon_p^{(r)}(\lambda_s) = 0 \}/\mathbb{Z}_a,
\]

where \(s, \ell \in \{1, ..., k\} \), \(r \in \{1, ..., p\} \) and, for each \(r \), \(\varepsilon_p^{(r)}(\lambda_s) \) is a \(p \)-th root of \(\lambda_s \). The group \(\pi_1(S, q_0) \) is written in terms of generators and its relations as

\[
\pi_1(S, q_0) = \langle \gamma_{\ell rs}, \delta_{\ell rs} : \gamma_{\ell rs}^p = \delta_{\ell rs}^{\eta} \rangle \quad \ell, s = 1, ..., k \quad r = 1, ..., p
\]
where, for each \(\ell, r, s \), \(\gamma_{\ell rs} \) and \(\delta_{\ell rs} \) are loops around \(C_{\ell rs}^\ell \). If \(G \) is the holonomy of the leaf \(S \) of \(\tilde{L}_C \) in the section \(\Sigma \) then

\[
G = \langle f_{\ell rs}, g_{\ell rs} \rangle_{\ell, r, s = 1, \ldots, k, \ell, r = 1, \ldots, p}
\]

where \(f_{\ell rs}, g_{\ell rs} \) correspond to the equivalence classes of the loops \(\gamma_{\ell rs}, \delta_{\ell rs} \) in \(\pi_1(S, q_0) \), respectively. Each one of these loops lifts up to \(\Gamma_{\ell rs}(t), \Delta_{\ell rs}(t) \), respectively, under the condition that each one of these belong on the leaves of \(\tilde{L}_C \) and that this foliation is defined by \(\alpha_1|_{\mathcal{L}_C} = 0 \) (see for instance [1]), we have the coefficients of the linear terms of the holonomy maps are given by

\[
f'_{\ell rs}(0) = e^{-\frac{2\pi i q}{\alpha_1}}, \quad g'_{\ell rs}(0) = e^{-\frac{2\pi i p}{\alpha_1}}.
\]

Finally Lemma 5.1 implies that \(\tilde{L}_C \) has a holomorphic non-constant first integral. \(\Box \)

5.1. **Proof of Theorem 1.** Note that Proposition 5.2 implies that the hypotheses of Theorem 2.3, part (b) are verified. Then there exists a germ of holomorphic foliation \(F_M \) with a non-constant holomorphic first integral \(f \in \mathcal{O}_2 \) such that \(M = \{ \Re(f) = 0 \} \). Without loss of generality, we can assume that \(f \) is not a power in \(\mathcal{O}_2 \) and therefore so \(\Re(f) \) is irreducible by Lemma 2.1. This implies

\[
\Re(f) = U \cdot F,
\]

where \(U \in \mathcal{A}_{nR} \) and \(U(0) \neq 0 \). Since \(F(z) = \Re(Q(z)) + H(z, \bar{z}) \) and \(Q \) is a quasihomogeneous polynomial of quasihomogeneous degree \(d \) with weights \((a, b) \), we can write \(f \) as the decomposition

\[
f = \sum_{\ell \geq d} f_\ell,
\]

where each \(f_\ell \) is a quasihomogeneous polynomial of quasihomogeneous degree \(\ell \) with weights \((a, b) \) (see [2, p. 193]). If the power series of \(U \) at \(0 \in \mathbb{C}^2 \) is

\[
U(z) = U(0) + \tilde{U}(z) = U(0) + \sum_{\mu_1, \mu_2 \geq 1, \nu_1, \nu_2 \geq 1} c_{\mu_1, \mu_2, \nu_1, \nu_2} z^{\mu_1} z^2 \bar{z}^{\nu_1} \bar{z}^{\nu_2}
\]

then

\[
\Re(f) = \Re(U(0) + \tilde{U})(\Re(Q) + H) = U(0)\Re(Q) + \tilde{U}\Re(Q) + U(0)H + \tilde{U}H.
\]

We need to investigate what terms on the previous equality have quasihomogeneous degree \(d \) with weights \((a, b) \), the sum of these terms will be equal to \(\Re(f_d) \). Set \(\tilde{H} = U(0)H + \tilde{U}H \), note that the quasihomogeneous terms of \(\tilde{H} \) has order strictly greater than \(d \). Writing

\[
\Re(f) = \Re(f_d) + \sum_{\ell > d} \Re(f_\ell),
\]
we have, for all $\lambda \in \mathbb{C}^*$

\[
\Re(f(\lambda^a z_1, \lambda^b z_2)) = U(0)\Re(Q(\lambda^a z_1, \lambda^b z_2)) + \tilde{U}(\lambda^a z_1, \lambda^b z_2) \]

\[
+ \tilde{H}(\lambda^a z_1, \lambda^b z_2) = U(0)\Re(Q(z_1, z_2)) + \tilde{H}(\lambda^a z_1, \lambda^b z_2)
\]

\[
= U(0)\left(\frac{\lambda^a Q(z) + \lambda^b Q(z)}{2}\right) + \left(c_{1000}\lambda^a z_1 + c_{0100}\lambda^b z_2 + c_{0010}\lambda^a z_2 + \cdots + \tilde{H}(\lambda^a z_1, \lambda^b z_2)\right)
\]

\[
\text{generalized degree is } d
\]

\[
\text{generalized degree is greater than } d
\]

which means that $f_0(z) = U(0)Q(z)$, hence $f(z) = U(0)Q(z) + \sum_{\ell > d} f_\ell$. Without any loss of generality we may assume that $U(0) = 1$. In particular, $\mu(f, 0) = \mu(Q, 0)$, since Q has an isolated singularity at the origin. According to Theorem 3.2, there exists a germ of biholomorphism $\phi: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ such that

\[
f \circ \phi^{-1}(z) = Q(z) + \sum_j c_j e_j(z),
\]

where $c_j \in \mathbb{C}$ and e_j are elements of the monomial basis of A_Q with $\deg(e_j) > d$. Hence

\[
\phi(M) = \left\{ \Re \left(Q(z) + \sum_j c_j e_j(z) \right) = 0 \right\}
\]

and this finishes the proof of Theorem 1.

Example 5.1. Now we give an application of Theorem 1. Consider the complex quasihomogeneous polynomial

\[
Q(x, y) = x^a + \lambda x^2 y^2 + y^b
\]

where $a \geq 4, \ b \geq 5, \ \lambda \neq 0$.

We have Q has isolated singularity at $0 \in \mathbb{C}^2$ with $\mu(Q, 0) = a + b + 1$. According to [2, p. 33], every semiquasihomogeneous function f with principal part $Q(x, y)$ is right equivalent to $Q(x, y)$. Consequently, if we consider $F(x, y) = \Re(Q(x, y)) + H(x, y)$ as a germ of real-analytic function at $0 \in \mathbb{C}^2$ such that $M = \{F = 0\}$ is Levi-flat then Theorem 1 implies that
M is biholomorphic to germ at $0 \in \mathbb{C}^2$ of real-analytic Levi-flat hypersurface defined by
$$M' = \{\text{Re}(x^a + \lambda x^2 y^2 + y^b) = 0\}$$ for $a \geq 4$, $b \geq 5$, $\lambda \neq 0$.

6. Isochore normal forms for holomorphic functions

Let $f \in O_n$ be a germ of holomorphic function with an isolated singularity at $0 \in \mathbb{C}^n$ such that its Hessian form
$$h := \sum_{1 \leq i,j \leq n} \frac{\partial^2 f(0)}{\partial z_i \partial z_j} z_i z_j$$
is non-degenerate. The classical Morse’s lemma asserts that f is right equivalent to h.

Let $\omega = a(z)dz_1 \wedge \ldots \wedge dz_n$, $a(0) \neq 0$ be a holomorphic volume form on a coordinate system (z_1, \ldots, z_n) on an open set around $0 \in \mathbb{C}^n$. A coordinate system (x_1, \ldots, x_n) is isochore or volume-preserve, if ω can be written as $dx_1 \wedge \ldots \wedge dx_n$ on these coordinates. Then, we say that a biholomorphism $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ is isochore or volume-preserving if the coordinate system induced by it is isochore.

In 1977, J. Vey [25] has posed the following question: It is possible to find a coordinate system isochore such that f is right equivalent to h? Vey answered negatively to question and proved the following result.

Lemma 6.1 (Vey [25]). Let $f \in O_n$, $n \geq 2$, with isolated singularity at $0 \in \mathbb{C}^n$ such that its Hessian form h is non-degenerate. Then there exists a germ of a volume-preserving biholomorphism $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ and a germ of an automorphism $\psi \in O_1$, with $\psi(0) = 0$, such that
$$f \circ \phi^{-1} = \psi \circ h, \quad \psi(t) = t + c_2 t^2 + c_3 t^3 + \ldots$$
The function ψ is uniquely determined by f up to a sign.

This result was also proved by J-P Franoise [17]. The approach used by Franoise was later generalized by A. Szawlowski [24] to study of complex quasihomogeneous polynomials and to the germ of a holomorphic function that is right equivalent to the product of coordinates $z_1 \cdot \ldots \cdot z_n$, as stated by the following theorem.

Theorem 6.2 (Szawlowski [24]). Let $f \in O_n$, $n \geq 2$ be a germ of holomorphic function that is right equivalent to the product of all coordinates: $f \sim_R z_1 \cdot \ldots \cdot z_n$. Then there exists a germ of a volume-preserving biholomorphism $\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ and a germ of an automorphism $\Psi \in O_1$, with $\Psi(0) = 0$, such that
$$f \circ \Phi = \Psi(z_1 \cdot \ldots \cdot z_n).$$
The function Ψ is uniquely determined by f up to a sign.

Note that the above normal form for f is a germ of holomorphic function whose singular set is of positive dimension (non-isolated singularity). In general, normal forms of germs of functions with non-isolated singularities are very difficult of find, even for a change of coordinates non-isochore.
7. Theorem \[1\]

To prove Theorem 2, we use the following result proved in [13], although it is not stated as a separate theorem. We restate it here for completeness.

Theorem 7.1 (Fernández-Pérez [13]). Let \(M = \{ F = 0 \} \) be a germ of an irreducible singular real-analytic Levi-flat hypersurface at \(0 \in \mathbb{C}^n \), \(n \geq 2 \), such that

1. \(F(z) = \Re(P(z)) + H(z, \bar{z}) \),
2. \(P \) is a complex homogeneous polynomial of degree \(k \) with an isolated singularity at \(0 \in \mathbb{C}^n \),
3. \(j_k^0(H) = 0 \) and \(H(z, \bar{z}) = H(\bar{z}, z) \).

Then there exists a germ at \(0 \in \mathbb{C}^n \) of holomorphic codimension-one foliation \(F_M \) tangent to \(M \). Moreover, the foliation \(F_M \) has a non-constant holomorphic first integral \(f(z) = P(z) + O(|z|^{k+1}) \), and \(M = \{ \Re(f) = 0 \} \).

7.1. Proof of Theorem 2. Let \(M = \{ F = 0 \} \) be a germ at \(0 \in \mathbb{C}^n \), \(n \geq 2 \), of an irreducible real-analytic Levi-flat hypersurface such that \(F(z) = \Re(z_1^2 + \ldots + z_n^2) + H(z, \bar{z}) \), where \(j_k^0(H) = 0 \), \(H(z, \bar{z}) = H(\bar{z}, z) \). Since \(P(z_1, \ldots, z_n) = z_1^2 + \ldots + z_n^2 \) is a complex homogeneous polynomial of degree 2, we can apply Theorem 7.1 so that there exists a \(f \in \mathcal{O}_n \) such that \(f(z) = z_1^2 + \ldots + z_n^2 + O(|z|^3) \) and \(M = \{ \Re(f) = 0 \} \). On the other hand, applying Lemma 6.1 to \(f \), there exists a volume-preserving \(\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0) \) and an automorphism \(\psi_1 \in \mathcal{O}_1 \) with \(\psi_1(0) = 0 \), such that

\[
\psi_1(t) = t + c_2t^2 + c_3t^3 + \ldots
\]

Taking \(\psi := \psi_1(t/2) \in \mathcal{O}_1 \), we have \(f \circ \phi^{-1} = \psi \circ P \). Finally, \(\phi(M) = \{ \Re(\psi(z_1^2 + \ldots + z_n^2)) = 0 \} \) and the proof of Theorem 2 ends.

8. Proof of Theorem 3 and Corollary 1

Here we will use the same idea of the proof of Theorem 1. First of all, note that, in dimension two, under the change of variables \(z_1 = y + ix, \ z_2 = y - ix \), and we have \(z_1z_2 = x^2 + y^2 \) and then Theorem 3 follows from Theorem 2 because the singular set of \(M_{\mathbb{C}} \) is the origin of \(\mathbb{C}^4 \). Therefore, we only consider the case \(n \geq 3 \).

Proposition 8.1. Let \(M \) be a germ of a singular real-analytic Levi-flat hypersurface at \(0 \in \mathbb{C}^n \), \(n \geq 3 \), satisfying the hypotheses of Theorem 3. Then \(L_{\mathbb{C}} \) has a non-constant holomorphic first integral.

Proof. Let \(M \) be as in Theorem 3. Then, \(M \) is given by \(\{ F = 0 \} \) where

\[
F(z) = \Re(z_1 \cdots z_n) + H(z_1, \ldots, z_n),
\]
and \(j_0^\pi(H) = 0 \). Its complexification is

\[
F_\mathcal{C}(z, w) = \frac{1}{2}(z_1 \cdots z_n) + \frac{1}{2}(w_1 \cdots w_n) + H_\mathcal{C}(z, w),
\]

and therefore \(M_\mathcal{C} = \{ F_\mathcal{C} = 0 \} \subset (\mathbb{C}^2)^n \). By hypotheses, \(\text{Sing}(M_\mathcal{C}) \) is the union of the sets

\[
V_{ijk\ell} = \{ z_i = z_j = w_k = w_\ell = 0 \}, \quad 1 \leq i < j \leq n, \quad 1 \leq k < \ell \leq n.
\]

Since \(V_{ijk\ell} \) has complex dimension \(2n - 4 \), then the algebraic dimension of \(\text{Sing}(M) \) is \(2n - 4 \).

On the other hand, it follows from Remark 2.1 that \(\mathcal{L}_\mathcal{C} \) is given by \(\alpha |_{M_\mathcal{C}} = 0 \), where

\[
\alpha = \sum_{i=1}^n \frac{\partial F_\mathcal{C}}{\partial z_i} dz_i.
\]

Using (9) we can write \(\alpha \) in coordinates \((r_1, \ldots, r_n) \in \mathbb{C}^n \) as

\[
\alpha = \frac{1}{2} \sum_{i=1}^n \left(r_1 \cdots \hat{r}_i \cdots r_n + \frac{\partial R}{\partial r_i} \right) dr_i,
\]

where \(\frac{\partial R}{\partial r_i} = 2 \frac{\partial H_\mathcal{C}}{\partial r_i} \) for all \(i = 1, \ldots, n \). Then we can consider that \(\mathcal{L}_\mathcal{C} \) is defined by \(\tilde{\alpha} |_{M_\mathcal{C}} = 0 \), where

\[
\tilde{\alpha} = \sum_{i=1}^n \left(r_1 \cdots \hat{r}_i \cdots r_n + \frac{\partial R}{\partial r_i} \right) dr_i.
\]

Let us prove that \(\mathcal{L}_\mathcal{C} \) has a non-constant holomorphic first integral. We start with the blow-up \(\pi_1 \) at \(0 \in \mathbb{C}^n \) with exceptional divisor \(D_1 \cong \mathbb{P}^{2n-1} \). Let \([Z : Y] = [Z_1 : \ldots : Z_n : Y_1 : \ldots : Y_n] \) be the homogeneous coordinates of \(D_1 \). The intersection of \(M_\mathcal{C} = \pi_1^{-1}(M_\mathcal{C}) \) with the divisor \(D_1 \) is the algebraic hypersurface

\[
Q_1 := \tilde{M}_\mathcal{C} \cap D_1 = \{ [Z : Y] \in \mathbb{P}^{2n-1} : Z_1 \cdots Z_n + Y_1 \cdots Y_n = 0 \}.
\]

In the chart \((W; (r, \ell) = (r_1, \ldots, r_n, \ell_1, \ldots, \ell_n)) \) of \(\tilde{\mathbb{C}}^{2n} \) where

\[
\pi_1(r, \ell) = (\ell_1 r_1, \ldots, \ell_1 r_2, \ldots, \ell_1 r_n, \ell_2, \ldots, \ell_n),
\]

Then

\[
\tilde{F}_\mathcal{C}(r, \ell) = F_\mathcal{C} \circ \pi_1(r, \ell) = \ell_1^n r_1 \cdots r_n + \ell_2 \cdots \ell_n + R(\pi_1(r, \ell))
\]

\[
= \ell_1^n (r_1 \cdots r_n + \ell_2 \cdots \ell_n + \ell_1 R_1(r, \ell)),
\]

where \(R_1(r, \ell) = R(\pi_1(r, \ell))/\ell_1^{n+1} \). Therefore

\[
\tilde{M}_\mathcal{C} \cap W = \{ r_1 \cdots r_n + \ell_2 \cdots \ell_n + R_1(r, \ell) = 0 \},
\]

and

\[
Q_1 \cap W = \{ \ell_1 = r_1 \cdots r_n + \ell_2 \cdots \ell_n = 0 \}.
\]
On the other hand, the pull-back of $\tilde{\alpha}$ by π_1 is

$$\pi_1^*(\tilde{\alpha}) = \sum_{i=1}^n \ell_1^{-1} (\ell_1 r_1 \cdot \cdots \cdot r_n) d(\ell_1 r_1) + \theta$$

$$= \ell_1^{-1} \left(\sum_{i=1}^n \ell_1 r_1 \cdot \cdots \cdot r_n dr_i + nr_1 \cdot \cdots \cdot r_n d\ell_1 + \ell_1 \theta \right),$$

where $\theta_1 = \theta/\ell_1^3$. In the chart W, the exceptional divisor is written as $D_1 = \{ \ell_1 = 0 \}$ and \tilde{L}_C is given by $\alpha_1|_{\tilde{M}_C} = 0$, where

$$\alpha_1 = \sum_{i=1}^n \ell_1 r_1 \cdot \cdots \cdot r_n dr_i + nr_1 \cdot \cdots \cdot r_n d\ell_1 + \ell_1 \theta.$$

Note that $\tilde{M}_C \cap D_1$ is invariant by \tilde{L}_C and moreover

$$\text{Sing}(\tilde{M}_C) \cap W = \bigcup_{i,j,k,s} W_{i,j,k,s},$$

where

$$W_{i,j,k,s} := \{ r_i = r_j = \ell_k = \ell_s = 0 \} \text{ where } i \neq j, k \neq s \text{ and } k \neq 1, s \neq 1.$$

Consider the irreducible component $W_{1,2,2,3}$ of $\text{Sing}(\tilde{M}_C) \cap W$. We make a blow-up along this component; the process of desingularization around the other components of $\text{Sing}(\tilde{M}_C) \cap W$ are similarly obtained by exchanging coordinates. Let E be the exceptional divisor of $\pi_\ell : \mathbb{C}^{2n} \rightarrow \mathbb{C}^{2n}$. Let \tilde{M}_C be the strict transform of M_C and \tilde{L}_C be the pull-back of L_C by π_ℓ respectively. Let U be an open subset with coordinates (x_1, \ldots, x_{2n}) where the blow-up is

$$\pi_\ell(x_1, \ldots, x_{2n}) = (x_1 x_n + x_2 x_n + x_3, \ldots, x_1 x_n + x_2 x_n + x_n+1, x_n+2 x_n+3, x_n+3, x_n+4, \ldots, x_{2n}),$$

we have

$$\tilde{F}_C = \tilde{F}_C \circ \pi_\ell = x_n^2 \cdot x_n^3 \cdot \cdots \cdot x_n + x_n+1 x_n+2 x_n+3 \cdots x_{2n} + x_n+1 x_n+3 R_2,$$

where $R_2 = R_1(\pi_\ell(x_1, \ldots, x_{2n}))/x_n^3$. Therefore

$$\tilde{M}_C \cap U = \{ x_1 \cdot \cdots \cdot x_n + x_{n+2} x_{n+4} \cdots x_{2n} + x_{n+1} x_{n+2} R_2 = 0 \}$$

hence

$$\tilde{M}_C \cap E \cap U = \{ x_{n+1} = x_{n+3} = x_1 \cdot \cdots \cdot x_n + x_{n+2} x_{n+4} \cdots x_{2n} = 0 \}.$$

The pull-back of α_1 by π_ℓ is

$$\pi_\ell^*(\alpha_1) = \frac{x_{n+3}}{x_1} x_2 \cdots x_n x_{n+1} x_{n+3} dx_1 + x_1 x_3 \cdots x_n x_{n+1} x_{n+3} dx_2 + \sum_{i=3}^n \frac{x_{n+1} x_{n+3} dx_i}{x_1} + n x_1 x_n x_{n+3} dx_{n+1} + 2 x_1 x_2 \cdots x_n x_{n+1} dx_{n+3} + x_{n+1} x_{n+3} \theta_2,$$
where \(\theta_2 = \theta_1/x_{n+3}^2 \). In the chart \(U \), the exceptional divisor is written as
\[
D = D_1 \cup D_2 = \{ x_{n+1} = 0 \} \cup \{ x_{n+3} = 0 \}
\]
and \(\tilde{L}_C \) is given by \(\alpha_2|_{\tilde{L}_C} = 0 \), where
\[
\alpha_2 = x_2 \cdots x_n x_{n+1} x_{n+3} dx_1 + x_1 x_3 \cdots x_n x_{n+1} x_{n+3} dx_2 + \sum_{i=3}^{n} \frac{x_1 \cdots x_i x_{n+1} x_{n+3} dx_i}{x_i} + nx_1 \cdots x_n x_{n+3} dx_{n+1} + 2x_1 x_2 \cdots x_n x_{n+1} dx_{n+3} + x_{n+1} x_{n+3} \theta_2, \tag{10}
\]
which allows us to conclude that \(\tilde{M}_C \cap D \) is invariant by \(\tilde{L}_C \). The singularities of the foliation \(\tilde{L}_C \) on the exceptional divisor in this chart are given by
\[
\operatorname{Sing}(\tilde{L}_C) \cap D \cap U = \{ x_{n+1} = x_{n+3} = x_1 \cdots x_n = x_{n+2} x_{n+4} \cdots x_{2n} = 0 \}.
\]
If we define \(C_{i,n+j} = \{ x_{n+1} = x_{n+3} = x_i = x_{n+j} = 0 \} \cong \mathbb{C}^{2(n-2)} \), then we can write
\[
\operatorname{Sing}(\tilde{L}_C) \cap D \cap U = \bigcup_{1 \leq i,j \leq n, j \neq 1,3} C_{i,n+j}.
\]
Since \(\tilde{M}_C \cap D \) is invariant by \(\tilde{L}_C \), then
\[
S := (\tilde{M}_C \cap D) \setminus \operatorname{Sing}(\tilde{L}_C)
\]
is a leaf of \(\tilde{L}_C \). Let \(G \) be its holonomy group, and \(p_0 \in S \) given by
\[
p_0 = (x_1, \ldots, x_n, x_{n+1}, x_{n+3}, x_{n+4}, \ldots, x_{2n}) = (1, \ldots, 1, 0, -1, 0, 1, \ldots, 1).
\]
Take \(\Sigma \) the transversal section through \(p_0 \) given by
\[
\Sigma = \{(1, \ldots, 1, \lambda, -1, \lambda, 1, \ldots, 1) : \lambda \in \mathbb{C} \}.
\]
Let \(\delta_{i,j}(\theta) \) be a loop around \(C_{i,n+j} \), for \(1 \leq i \leq n \) and \(4 \leq j \leq n \), and \(\delta_{i,2}(\theta) \) a loop around \(C_{i,n+2} \), \(1 \leq i \leq n \) with \(\theta \in [0, 1] \). Each one of these loops lifts up to \(\Gamma_{i,j}(\lambda, \theta) \) and \(\Gamma_{i,2}(\lambda, \theta) \), respectively, such that \(\Gamma_{i,j}(0, \theta) = 0 \), \(\Gamma_{i,j}(\lambda, 0) = \lambda \) and \(\Gamma_{i,j}(\lambda, \theta) = \sum_{k=1}^{\infty} \delta_{i,j}^k(\theta) \lambda^k \), for \(i = 1, \ldots, n \) and \(j = 2, 4, 5, \ldots, n \). The holonomy map with respect to these loops are
\[
h_{\delta_{i,j}}(\lambda) = \Gamma_{i,j}(\lambda, 1).
\]
Using the expression of \(\alpha_2 \) given in \(\text{[10]} \), we get
\[
h_{\delta_{i,j}}'(0) = e^{-\frac{\pi i}{4}} \lambda, \quad \text{for } i = 1, \ldots, n \text{ and } j = 2, 4, 5, \ldots, n.
\]
It follows from Lemma \(\text{[5.1]} \) that \(L_C \) has a non-constant holomorphic first integral. \(\Box \)
8.1. **Proof of Theorem 3**. Note that Proposition 8.1 implies that the hypotheses of Theorem 2.3, part (b) are verified. Then we get $f \in O_n$ such that the foliation F given by $df = 0$ is tangent to M and $M = \{\text{Re}(f) = 0\}$. Without loss of generality we may assume that f is not a power in O_n and therefore $\text{Re}(f)$ is irreducible in A_{nR}. We must have that $\text{Re}(f) = U \cdot F$ where $U \in A_{nR}$, $U(0) \neq 0$. If the Taylor expansion of f at $0 \in \mathbb{C}^n$ is

$$f = \sum_{j \geq n} f_j,$$

where f_j is a homogeneous polynomial of degree j, then

$$\text{Re}(f_n) = j_0^n(\text{Re}(f)) = j_0^n(U \cdot F) = U(0)\text{Re}(z_1 \cdots z_n),$$

which means $f_n(z) = U(0)z_1 \cdots z_n$. We can assume that $U(0) = 1$ and therefore

$$f(z) = z_1 \cdots z_n + O(|z|^{n+1}).$$

This finishes the proof of Theorem 3.

8.2. **Proof of Corollary 1**. If we assume that $f(z) \sim_R z_1 \cdots z_n$, it follows from Theorem 6.2 that there exists a germ of a volume-preserving biholomorphism $\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ and a germ of an automorphism $\Psi : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$, such that

$$f \circ \Phi^{-1}(z) = \Psi(z_1 \cdots z_n).$$

Hence

$$\Phi(M) = \{\text{Re}(\Psi(z_1 \cdots z_n)) = 0\}.$$

This finishes the proof of Corollary 1.

Acknowledgments.– The authors gratefully acknowledges the many helpful suggestions of Rogério Mol (UFMG) during the preparation of the paper.

References

[1] V.I. Arnold: Normal forms of functions near degenerate critical points, the Weyl groups A_k, D_k, E_k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3-25.

[2] V.I Arnold: Normal forms of functions in the neighborhood of degenerate critical points. I. Uspehi Mat. Nauk 29 (1974), no. 2(176), 11-49.

[3] V.I. Arnold, S. M. Gusein-Zade and A. N. Varchenko: Singularities of differential maps. Monographs in Mathematics, 82, 1985.

[4] Baouendi, M. Salah, Ebenfelt, Peter Rothschild, Linda Preiss: Real submanifolds in complex space an their mappings. Princeton Mathematical Series, 47. Princeton University Press, Princeton, NJ, 1999.

[5] E. Bedford: Holomorphic continuation of smooth functions over Levi-flat hypersurfaces. Trans. Amer. Math. Soc. 232 (1977), 323-341.

[6] D. Burns, X. Gong: Singular Levi-flat real analytic hypersurfaces. Amer. J. Math. 121, (1999), no. 1, 23-53.

[7] M. Brunella: Singular Levi-flat hypersurfaces and codimension one foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 4, 661-672.

[8] D. Cerveau, A. Lins Neto: Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation. Amer. J. Math. 133, (2011), no. 3, 677-716.
[9] E. Cartan: Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I. Ann. Mat. Pura Appl. (4) 11, (1932), 17-90.
[10] S.S. Chern, J. K. Moser: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219-271.
[11] I. Dolgachev: Weighted projective spaces. Group actions and vector fields. (Proc. Vancouver, B.C., 1981), 34-71, Lecture Notes in Math. Springer, Berlin 1982.
[12] A. Fernández-Pérez: Singular Levi-flat hypersurfaces. An approach through holomorphic foliations. Ph.D. Thesis IMPA - Brazil, (2010).
[13] A. Fernández-Pérez: On normal forms of singular Levi-flat real hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 42(1) (2011), 75-85.
[14] A. Fernández-Pérez: Normal forms of Levi-flat hypersurfaces with Arnold type singularities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XIII (2014), 745-774.
[15] A. Fernández-Pérez: On normal forms for Levi-flat hypersurfaces with an isolated line singularity. Arkiv for Matematik., 53 (1) (2015), 65-78.
[16] A. Fernández-Pérez, J. Lebl: Global and local aspects of Levi-flat hypersurfaces. Publ. Mat. IMPA, Rio de Janeiro, 2015. x+65 pp.
[17] J-P. Françoise: Modèle local simultané d’une fonction et d’une forme de volume. Astérisque 59-60 (1978), 119-130.
[18] W. Fulton. Introduction to toric varieties. Princeton University Press, 1993.
[19] M. D. Garay: An isochore versal deformation theorem. Topology 43 (2004), 1081-1088.
[20] X. Gong, J. Lebl: Normal forms for CR singular codimension two Levi-flat submanifolds. Pacific J. Math. 275 no. 1 (2015), 115-165.
[21] J. Kollár: Lectures on resolution of singularities (AM-166). Princeton University Press, 2007.
[22] J. Lebl: Singular set of a Levi-flat hypersurface is Levi-flat. Math. Ann. (2013) 355: 1177. doi 10.1007/s00208-012-0821-1.
[23] K. Saito: Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. Math.,14 (1971), 123-142.
[24] A. Szawlowski: A volume-preserving normal form for a reduced normal crossing function germ. Journal of Singularities 4 (2012), 104-113.
[25] J. Vey: Sur le lemme de Morse. Inventiones Math. 40 (1977), 1-10.
[26] O. Zariski: On the Topology of algebroid singularities. Amer. J. Math. 54, (1932), 455-465.

(A. Fernández-Pérez) DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE MINAS GERAIS, UFMG Current address: Av. Antônio Carlos 6627, 31270-901, Belo Horizonte-MG, Brazil. E-mail address: fernandez@ufmg.br

(Gustavo Marra) DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE ITAJUBÁ Current address: Rua Irmã Ivone Drumond 200, 35903-087, Itabira-MG, Brazil. E-mail address: marra@unifei.edu.br