Synthesis of Jacaranone-derived Nitrogenous Cyclohexadienones and Their Antiproliferative and Antiprotozoal Activities

Armin Presser1 \& Gunda Lainer1 \& Nadine Kretschmer2 \& Wolfgang Schuehly2 \& Robert Saf3 \& Marcel Kaiser4,5 \& Marc-Manuel Kalt1

1 Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria
2 Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
3 Institute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
4 Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
5 University of Basel, Petersplatz 1, 4003 Basel, Switzerland

Supporting Information

Table of contents

1. Compared overall yields of the key products \quad S2-S4
2. Calculated physicochemical parameters and models \quad S5-S9
3. Results of the XTT viability assay \quad S10-11
3. Data and NMR spectra of the prepared compounds \quad S12-S45
Table 1: Synthesis and compared overall yields of compounds 7, 11 and 12, final oxidation step to the dienones 13 – 15

Entry	X	Method^a	Product	Yield/%^b	
1	O	A	7a	71	
2	O	B	7a	73	
3	O	C	7a	23	
4	O	A	7b	58	
5	O	B	7b	55	
6	O	C	7b	51	
7	O	A	7c	62	
8	O	B	7c	58	
9	O	C	7c	98	
10	O	B	7d	89	
11	O	C	7d	67	
12	O	B	7e	90	
13	O	C	7e	67	
14	O	B	7f	0	
----	---	---	---	---	---
15	O	C	7f	86	
16	O	B	7g	0	
17	O	C	7g	71	
18	O	B	7h	86	
19	O	C	7h	79	
20	O	B	7i	92	
21	O	C	7i	98	
22	O	B	7j	79	
23	O	C	7j	98	
24	H, H	B→D	11a	53	
25	H, H	F	11a	48	
27	H, H	D	11b	0	
28	H, H	E	11b	42	
29	H, H	F	11b	64	
30	H, H	D	11c	0	
31	H, H	F	11c	69	
32	H, H	D	11d	0	
33	H, H	F	11d	61	
34	H, H	B→D	11e	53	
35	O, OH	B→D	12	76	

1 Reaction conditions: (i) 13a-j, 15: PhI(OAc)₂, CH₃CN/H₂O (12:5), 0 °C, 7 min (13a: 67%, 13b: 17%, 13c: 55%, 13d: 40%, 13e: 64%, 13f: 19%, 13g: 18%, 13h: 79%, 13i: 88%, 13j: 49%, 15: 65%); 14a-e: PhI(OAc)₂,
CH₃CN/H₂O/phosphate buffer (12:3:2), pH = 6.4, 0 °C, 7 min (14a: 16%, 14b: 0%, 14c: 28%, 14d: 0%, 14e: 0%).

Method A: preparation of imides via Mitsunobu reaction; method B: AcOH-assisted condensation of tyramine; method C: PEG 400-assisted condensation of tyramine; method D: preparation of amines from imides; method E: preparation of amines by catalytic amination; method F: preparation of amines via alkyl bromides

Isolated yield.
Table 2: Calculated physicochemical properties of the tested compounds.

compd	MW	logP	logS	HBD	HBA	tPSA (Å²)	ASA (Å²)	ASapho (Å²)	ASapol (Å²)
		pH 7.4							
13a	283.28	0.85	-4.38	1	4	74.68	398.81	297.48	101.33
13b	233.22	-0.18	-3.11	1	4	74.68	309.98	200.20	109.77
13c	235.24	-0.60	-2.09	1	4	74.68	347.12	241.44	105.68
13d	352.17	1.89	-5.79	1	4	74.68	433.57	332.23	101.34
13e	302.11	-0.38	-4.12	1	4	74.68	348.25	231.55	116.70
13f	284.27	-0.06	-1.76	1	5	87.57	391.80	273.57	118.23
13g	251.24	-1.13	-2.34	1	5	83.91	361.20	242.04	119.16
13h	289.33	0.81	-3.86	1	4	74.68	395.92	302.04	93.88
13i	287.32	0.66	-4.34	1	4	74.68	400.77	305.51	95.26
13j	287.32	0.55	-3.15	1	4	74.68	371.43	276.99	94.44
14a	255.32	1.89	0.00	1	3	41.74	401.42	337.80	63.62
14c	223.27	0.04	0.58	1	4	49.77	363.97	285.49	78.49
15	291.35	0.58	-3.83	2	4	77.84	397.62	303.73	93.89
The molecular weight (MW), log\(P\), log\(S\), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), topological polar surface area (tPSA), accessible surface area (ASA), hydrophobic accessible surface area (ASAp\(ho\)) and polar accessible surface area (ASAp\(ol\)) were calculated using Marvin 18.10.0, ChemAxon (https://www.chemaxon.com).
Table 3: Calculated ligand efficiency metrics of the tested compounds.

compd	$P. falciparum$	$T. brucei rhodesiense$							
	LE	LLE	LELP	LE	LLE	LELP	LE	LLE	LELP
13a	0.35426	4.3071	3.1496	0.37897	4.6853	2.9443			
13b	0.43214	5.9852	-1.4583	0.4574	6.2982	-1.3778			
13c	0.40866	5.4188	-0.86821	0.41635	5.5141	-0.85216			
13d	0.32745	3.1621	7.1088	0.31276	2.9158	7.4427			
13e	0.2981	3.9202	0.6991	0.4076	5.4367	0.51128			
13f	0.29739	4.3834	0.56794	0.28413	4.1803	0.59445			
13g	0.37554	6.1041	-3.1336	0.36695	5.9914	-3.207			
13h	0.36037	4.9418	1.5945	0.37696	5.1957	1.5243			
13i	0.38487	5.2504	1.6655	0.3984	5.4575	1.6089			
13j	0.35311	5.1061	0.84732	0.3928	5.7136	0.76171			
14a	0.39973	4.7611	1.9388	0.45074	5.4676	1.7194			
14c	0.42541	5.0059	-0.10437	0.56335	6.6146	-0.078814			
15	0.3403	4.4189	2.3224	0.38014	5.0287	2.079			
The ligand efficiency (LE), lipophilic ligand efficiency (LLE) and ligand efficiency lipophilic price (LELP) are based on IC$_{50}$ values in nmol/L and were calculated using the DataWarrior software, version 4.7.2 (http://www.openmolecules.org/datawarrior.html).
Fig. 1 BOILED-Egg analysis of all synthesized dienones. Substances within the white ellipse (egg white) are anticipated to have good intestinal absorption (passive absorption); the yellow region (yolk) is the physicochemical space of molecules with high probability to permeate the blood-brain barrier. The BOILED–Egg model also reflects the variability in IC$_{50}$ values of our evaluated compounds after altering the dienone skeleton.

The plot was prepared by using the free web tool SwissADME (www.swissadme.ch).
compd	CCRF-CEM	MDA-MB-231	HCT 116	U251	MRC-5					
	5 µg/mL	50 µg/mL	5 µg/mL	50 µg/mL	5 µg/mL	50 µg/mL	5 µg/mL	50 µg/mL	5 µg/mL	50 µg/mL
13a	4.42 ± 1.95	1.15 ± 0.57	37.76 ± 3.13	17.38 ± 1.50	55.36 ± 4.79	1.76 ± 0.15	90.65 ± 4.53	3.21 ± 0.65	43.74 ± 4.17	1.93 ± 0.27
13b	-1.08 ± 0.41	3.46 ± 0.46	1.71 ± 0.23	6.61 ± 0.28	0.13 ± 0.22	-0.32 ± 0.14	95.21 ± 2.89	-0.41 ± 0.13	14.61 ± 3.58	0.62 ± 0.05
13c	79.06 ± 7.04	2.15 ± 0.08	79.79 ± 4.02	5.72 ± 0.95	99.04 ± 2.69	1.10 ± 0.14	93.33 ± 4.65	0.59 ± 0.06	139.35 ± 3.57	3.55 ± 0.63
13d	13.80 ± 3.18	3.33 ± 0.82	28.59 ± 1.24	24.84 ± 2.30	41.24 ± 4.07	0.44 ± 0.13	72.11 ± 9.10	1.79 ± 0.51	46.44 ± 5.26	1.01 ± 0.14
13e	-2.60 ± 0.50	0.59 ± 0.16	81.32 ± 1.60	9.53 ± 0.37	45.33 ± 5.40	-0.43 ± 0.12	95.64 ± 2.66	1.95 ± 0.25	97.01 ± 5.81	0.38 ± 0.05
13f	99.83 ± 2.36	21.74 ± 6.20	112.14 ± 5.31	23.02 ± 1.33	90.99 ± 5.01	23.81 ± 7.25	91.76 ± 3.22	93.66 ± 2.82	108.57 ± 2.95	111.87 ± 2.68
13g	86.92 ± 6.14	8.05 ± 0.88	104.42 ± 2.43	7.63 ± 0.24	96.00 ± 3.74	68.10 ± 5.16	94.70 ± 1.74	65.60 ± 2.29	115.85 ± 3.68	89.59 ± 1.80
	13h	13i	13j	14a	14c	15				
-----	--------	--------	--------	--------	--------	--------				
	15.70	0.69	70.84	16.36	44.30	0.49				
	± 3.62	± 0.47	± 2.20	± 0.39	± 1.15	± 0.19				
	2.26	1.23	32.44	16.56	1.04	0.15				
	± 0.96	± 0.31	± 2.46	± 1.75	± 0.50	± 0.16				
	89.92	15.39	87.73	89.02	98.62	63.27				
	± 6.44	± 1.27	± 2.33	± 2.76	± 1.23	± 1.00				
	94.58	57.97	95.02	92.47	97.28	62.12				
	± 7.31	± 6.28	± 4.23	± 4.39	± 2.36	± 1.80				
	22.81	-0.18	56.75	4.33	87.72	1.58				
	± 2.79	± 0.21	± 2.79	± 0.17	± 3.25	± 0.21				
	42.39	0.57	105.06	6.05	111.43	1.44				
	± 2.45	± 0.14	± 7.90	± 0.29	± 6.45	± 0.31				

VBN (0.01 µg/mL)	CCRF-CEM	MDA-MB-231	HCT 116	U251	MRC-5
	23.60 ± 7.62	42.05 ± 7.97	38.99 ± 5.10	45.31 ± 3.81	63.82 ± 5.29

The XTT viability assay included leukemia (CCRF-CEM), breast cancer (MDA-MB-231), colon cancer (HCT-116) and glioblastoma cells (U251) as well as non-tumorigenic lung fibroblasts (MRC-5), the results are expressed as metabolic active cells in % of control, vinblastine (VBN) was used as reference compound.
2-[4-(Thexyldimethylsilyloxy)phenyl]ethanol (5): Colourless oil, 98%, R_f

$= 0.27$ (CH:EtOAC = 2:1); 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.08$ (d, $J = 8.5$ Hz, 2H, H-2/6), 6.78 (d, $J = 8.5$ Hz, 2H, H-3/5), 3.82 (t, $J = 6.5$ Hz, 2H, H-8), 2.80 (t, $J = 6.5$ Hz, 2H, H-7), 1.73 (hept, $J = 6.9$ Hz, 1H, CH-(CH$_3$)$_2$), 0.94 (d, $J = 6.9$ Hz, 6H, (CH$_3$)$_2$-CH), 0.94 (s, 6H, (CH$_3$)$_2$-C), 0.21 (s, 6H, (CH$_3$)$_2$-Si) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 154.1$ (C-4), 130.8 (C-1), 129.9 (C-2/6), 120.2 (C-3/5), 63.8 (C-8), 38.4 (C-7), 34.1 (CH-(CH$_3$)$_2$), 25.0 (C-(CH$_3$)$_2$), 20.1 ((CH$_3$)$_2$-C), 18.6 ((CH$_3$)$_2$-CH), -2.5 ((CH$_3$)$_2$-Si) ppm; HRMS (ESI) calcd. for C$_{16}$H$_{29}$O$_2$Si ([M+H]$^+$): 281.1937; Found: 281.1931.
1. \(N-[4-(\text{Thexyldimethylsilyloxy})\text{phenethyl}]\text{phthalimide (6a)} \)

2. Yellowish solid; Yield 90\%; \(R_f = 0.26 \) (CH:EtOAC = 7:1).
1. \(N-[4-(\text{Thexyldimethylsilyloxy})\text{phenethyl}]\text{maleimide} \ (6b)\)

2. Yellowish solid; Yield 70\%; \(R_f = 0.64 \) (CHCl\(_3\):EtOAC = 9:1).
1. \(N\-[4\-(\text{Thyldimethylsilyloxy})\text{phenethyl}]\text{succinimide} \ (6c) \)

2. White solid; Yield 77\%; \(R_f = 0.43 \) (CHCl\(_3\):EtOAC = 9:1).
1 *N-(4-Hydroxyphenethyl)phthalimide (7a)*

2 White solid; Yield 73% (AcOH), 23% (PEG 400); $R_f = 0.44$ (CH:EtOAC = 1:1).
1. *N-(4-Hydroxyphenethyl)maleimide (7b)*

2. Slightly yellow solid; Yield 55% (AcOH), 51% (PEG 400); $R_f = 0.38$ (CH:EtOAC = 1:1).
1. \textit{N-(4-Hydroxyphenethyl)succinimide (7c)}

2. White solid; Yield 58\% (AcOH), 98\% (PEG 400); \(R_f = 0.17\) (CH:EtOAC = 1:1).
4,5-Dichloro-N-(4-hydroxyphenethyl)phthalimide (7d)

White solid; Yield 89% (AcOH), 67% (PEG 400); R_f = 0.52 (CH:EtOAC = 1:1).
3,4-Dichloro-N-(4-hydroxyphenethyl)maleimide (7e)

White solid; Yield 90% (AcOH), 67% (PEG 400); $R_f = 0.47$ (CH:EtOAC = 1:1).
N-(4-Hydroxyphenethyl)pyridine-2,3-dicarboximide (7f)

White solid; Yield 0% (AcOH), 86% (PEG 400); $R_f = 0.40$ (CH:EtOAC = 1:1).

[Diagram of the compound]
\textit{N-(4-Hydroxyphenethyl)morpholine-3,5-dione (7g)}

White solid; Yield 0\% (AcOH), 71\% (PEG 400); \(R_f = 0.36\) (CH:EtOAC = 1:1).
N-(4-Hydroxyphenethyl)hexahydropthalimide (7h)

White solid; Yield 86% (AcOH), 79% (PEG 400); $R_f = 0.50$ (CH:EtOAC = 1:1).
1 *N-(4-Hydroxyphenethyl)-3,4,5,6-tetrahydrophthalimide (7i)*

White solid; Yield 92% (AcOH), 98% (PEG 400); R_f = 0.41 (CH:EtOAC = 3:1).
1. *N-(4-Hydroxyphenethyl)-1,2,3,6-tetrahydrophthalimide (7j)*

White solid; Yield 79% (AcOH), 98% (PEG 400); $R_f = 0.32$ (CH:EtOAC = 3:1).
4-(Thexyldimethylsilyloxy)phenethyl bromide (9)

Yellow oil, 81%, \(R_f = 0.70 \) (CH:EtOAC = 1:1); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.05 \) (d, \(J = 8.4 \) Hz, 2H, H-2/6), 6.77 (d, \(J = 8.5 \) Hz, 2H, H-3/5), 3.52 (t, \(J = 7.8 \) Hz, 2H, H-8), 3.08 (t, \(J = 7.8 \) Hz, 2H, H-7), 1.72 (hept, \(J = 6.9 \) Hz, 1H, CH-(CH\(_3\))\(_2\)), 0.94 (d, \(J = 6.9 \) Hz, 6H, (CH\(_3\))\(_2\)-CH), 0.94 (s, 6H, (CH\(_3\))\(_2\)-C), 0.21 (s, 6H, (CH\(_3\))\(_2\)-Si) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 154.4 \) (C-4), 131.5 (C-1), 129.6 (C-2/6), 120.2 (C-3/5), 38.8 (C-7), 34.1 (CH-(CH\(_3\))\(_2\)), 33.3 (C-8), 25.0 (C-(CH\(_3\))\(_2\)), 20.1 ((CH\(_3\))\(_2\)-C), 18.6 ((CH\(_3\))\(_2\)-CH), -2.5 ((CH\(_3\))\(_2\)-Si) ppm; HRMS (EI) Calcd. for C\(_{16}\)H\(_{27}\)SiOBr [M]\(^+\) = 342.1014; Found: 342.1017.
N-(4-Hydroxyphenethyl)isoindoline (11a)

White solid; Yield 60% (proton-sponge[®]), 0% (conventional); \(R_f = 0.30 \) (CH:EtOAC = 1:3). \(^1\)H NMR (400 MHz, DMSO-d₆): \(\delta = 9.15 \) (s, 1H, 4-OH), 7.24 – 7.16 (m, 4H, ArH), 7.05 (d, \(J = 8.4 \) Hz, 2H, H-2/6), 6.67 (d, \(J = 8.3 \) Hz, 2H, H-3/5), 3.87 (s, 4H, CH₂-N), 2.86 – 2.81 (m, 2H, H-8), 2.69 (t, \(J = 7.7 \) Hz, 2H, H-7) ppm; \(^13\)C NMR (100 MHz, DMSO-d₆): \(\delta = 155.9 \) (C-4), 140.5 (ArC), 130.7 (C-1), 129.9 (C-2/6), 127.0 (ArC), 122.6 (ArC), 115.4 (C-3/5), 58.9 (CH₂-N), 57.9 (C-8), 34.3 (C-7) ppm; HRMS (EI) calcd. for C₁₆H₁₇NO [M]⁺ = 239.1310; Found: 239.1303.
1. *N-(4-Hydroxyphenethyl)pyrrolidine (11b)*

White solid; Yield 81% (proton-sponge®), 86% (conventional); $R_f = 0.22$

(CHCl\textsubscript{3}:MeOH = 1:1); 1H NMR (400 MHz, CDCl\textsubscript{3}): $\delta = 6.99$ (d, $J = 8.3$ Hz, 2H, H-2/6), 6.63 (d, $J = 8.3$ Hz, 2H, H-3/5), 2.75 (s, 4H, H-7/8), 2.69 – 2.62 (m, 4H, CH\textsubscript{2}-N), 1.88 – 1.79 (m, 4H, CH\textsubscript{2}-CH\textsubscript{2}-N) ppm; 13C NMR (100 MHz, CDCl\textsubscript{3}): $\delta = 155.2$ (C-4), 130.6 (C-1), 129.5 (C-2/6), 115.7 (C-3/5), 58.6 (C-8), 54.0 (CH\textsubscript{2}-N), 34.2 (C-7), 23.3 (CH\textsubscript{2}-CH\textsubscript{2}-N) ppm; HRMS (El) calcd. for C\textsubscript{12}H\textsubscript{17}NO [M]+ = 191.1310; Found: 191.1304.
N-(4-Hydroxyphenethyl)morpholine (11c)

White solid; Yield 87% (proton-sponge®), 87% (conventional); $R_f = 0.27$

CHCl\textsubscript{3}:MeOH (15:1); 1H NMR (400 MHz, DMSO-d\textsubscript{6}): $\delta = 9.14$ (s, 1H, 4-OH), 6.99 (d, $J = 8.5$ Hz, 2H, H-2/6), 6.65 (d, $J = 8.5$ Hz, 2H, H-3/5), 3.56 (t, $J = 4.6$ Hz, 4H, CH\textsubscript{2}-O), 2.62 – 2.57 (m, 2H, H-7), 2.44 – 2.39 (m, 2H, H-8), 2.41 – 2.35 (m, 4H, CH\textsubscript{2}-N) ppm; 13C NMR (100 MHz, DMSO-d\textsubscript{6}): $\delta = 155.9$ (C-4), 130.7 (C-1), 129.9 (C-2/6), 115.5 (C-3/5), 66.6 (CH\textsubscript{2}-O), 61.1 (C-8), 53.8 (CH\textsubscript{2}-N), 32.1 (C-7) ppm; HRMS (El) calcd. for C\textsubscript{12}H\textsubscript{17}NO\textsubscript{2} [M+] = 207.1259; Found: 207.1255.
N-(4-Hydroxyphenethyl)octahydroisoindole (11d)

White solid; Yield 77% (proton-sponge®), 79% (conventional); $R_f = 0.19$

(CHCl$_3$:EtOH = 5:21H NMR (400 MHz, CDCl$_3$): $\delta = 6.93$ (d, $J = 8.3$ Hz, 2H, H-2/6), 6.77 (d, $J = 8.3$ Hz, 2H, C-3/5), 3.18 (dd, $J = 10.7$, 6.3 Hz, 2H, CH$_2$(a)-N), 3.06 – 3.00 (m, 2H, H-8), 2.93 – 2.87 (m, 2H, CH$_2$(b)-N), 2.86 – 2.80 (m, 2H, H-7), 2.34 – 2.24 (m, 2H, CH-CH$_2$), 1.67 – 1.58 (m, 2H, CH$_2$(a)-CH), 1.54 – 1.45 (m, 2H, CH$_2$(a)-CH$_2$-CH), 1.52 – 1.43 (m, 2H, CH$_2$(b)-CH), 1.39 – 1.31 (m, 2H, CH$_2$(b)-CH$_2$-CH) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 156.4$ (C-4), 129.5 (C-2/6), 128.1 (C-1), 115.9 (C-3/5), 59.0 (C-8), 57.1 (CH$_2$-N), 36.7 (CH-CH$_2$), 32.3 (C-7), 25.9 (CH$_2$-CH), 22.5 (CH$_2$-CH$_2$-CH) ppm; HRMS (El) calcd. for C$_{16}$H$_{23}$NO [M]$^+ = 245.1780$; Found: 245.1772.
N-(4-Hydroxyphenethyl)-4,5,6,7-tetrahydroisoindole (11e)

Slightly yellow oil; Yield 100%; $R_f = 0.69$ (EtOAc); 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.00$ (d, $J = 8.2$ Hz, 2H, H-2/6), 6.75 (d, $J = 8.2$ Hz, 2H, H-3/5), 6.31 (s, 2H, CH-N), 3.97 – 3.91 (m, 2H, H-8), 3.01 – 2.90 (m, 2H, H-7), 2.59 – 2.52 (m, 4H, CH$_2$-C=), 1.76 – 1.68 (m, 4H, CH$_2$-CH$_2$-C=) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 154.3$ (C-4), 130.7 (C-1), 129.8 (C-2/6), 119.4 (C=C(H)-N), 115.9 (CH-N), 115.4 (C-3/5), 51.3 (C-8), 37.6 (C-7), 24.2 (CH$_2$-CH$_2$-C=), 22.0 (CH$_2$-C=) ppm; HRMS (El) calcd. for C$_{16}$H$_{19}$NO $[M]^+ = 241.1467$; Found: 241.1465.
1. **3-Hydroxy-N-(4-hydroxyphenethyl)octahydroisoindole-1-one (12)**

2. White solid; Yield 88%; $R_f = 0.28$ (CH:EtOAc = 1:3).
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]phthalimide) (13a)

White crystals; Yield 67%; $R_f = 0.42$ (CH:EtOAc = 1:3); mp: 161-162°C;

1H NMR (300 MHz, DMSO-d$_6$): $\delta = 7.88 - 7.80$ (m, 4H, ArH), 6.97 (d, $J = 10.2$ Hz, 2H, H-2/6), 6.10 (d, $J = 10.2$ Hz, 2H, H-3/5), 5.88 (s, 1H, 1-OH), 3.68 – 3.50 (m, 2H, H-8), 2.08 – 1.88 (m, 2H, H-7) ppm; 13C NMR (100 MHz, DMSO-d$_6$): $\delta = 185.0$ (C-4), 167.7 ((CO)N), 152.2 (C-2/6), 134.4 (ArC), 131.7 (ArC), 127.1 (C-3/5), 123.0 (ArC), 67.5 (C-1), 37.8 (C-7), 33.1 (C-8) ppm; HRMS (EI) calcd. for C$_{16}$H$_{13}$NO$_4$ [M]$^+$ = 283.0845; Found: 283.0845.
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]maleimide (13b)

Yellow crystals; Yield 17%; $R_f = 0.40$ (CH:EtOAc = 1:5); mp: 151-152°C;

1H NMR (300 MHz, DMSO-d$_6$): $\delta = 6.99$ (s, 2H, CH-(CO)N), 6.91 (d, $J = 10.1$ Hz, 2H, H-2/6), 6.08 (d, $J = 10.1$ Hz, 2H, H-3/5), 5.85 (s, 1H, 1-OH), 3.45 - 3.38 (m, 2H, H-8), 1.93 - 1.85 (m, 2H, H-7) ppm; 13C NMR (100 MHz, DMSO-d$_6$): $\delta = 185.0$ (C-4), 170.8 ((CO)N), 152.1 (C-2/6), 134.6 (CH-(CO)N), 127.1 (C-3/5), 67.4 (C-1), 37.9 (C-7), 32.8 (C-8) ppm;

HRMS (EI) calcd. for C$_{12}$H$_{11}$NO$_4$ [M]$^+$ = 233.0688; Found: 233.0686.
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]succinimide (13c)

White solid; Yield 55%; $R_f = 0.51$ (CHCl$_3$:CH$_3$CN = 1:3); mp: 128-129°C;

1H NMR (400 MHz, DMSO-d$_6$): $\delta = 6.93$ (d, $J = 10.2$ Hz, 2H, H-2/6), 6.10 (d, $J = 10.2$ Hz, 2H, H-3/5), 5.86 (s, 1H, 1-OH), 2.57 (s br, 4H, CH$_2$-(CO)N), 3.38-3.31 (m, 2H, H-8), 1.89 – 1.77 (m, 2H, H-7) ppm; 13C NMR (100 MHz, DMSO-d$_6$): $\delta = 185.5$ (C-4), 178.0 ((CO)N), 152.6 (C-2/6), 127.5 (C-3/5), 67.9 (C-1), 37.5 (C-7), 33.9 (C-8), 28.4 (CH$_2$-(CO)N) ppm;

HRMS (EI) calcd. for C$_{12}$H$_{13}$NO$_4$ [M]$^+$ = 235.0845; Found: 235.0826.
4,5-Dichloro-N-[2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]phthalimide (13d)

White crystals; Yield 40%; \(R_f = 0.22 \) (CH:EtOAc = 1:1); mp: 213-214°C;

\(^1\)H NMR (400 MHz, DMSO-\(d_6 \)): \(\delta = 8.17 \) (s, 2H, ArH), 6.96 (d, \(J = 10.1 \) Hz, 2H, H-2/6), 6.10 (d, \(J = 10.1 \) Hz, 2H, H-3/5), 5.89 (s, 1H, 1-OH), 3.62 – 3.56 (m, 2H, H-8), 2.02 – 1.95 (m, 2H, H-7) ppm; \(^{13}\)C NMR (100 MHz, DMSO-\(d_6 \)): \(\delta = 185.5 \) (C-4), 166.4 ((CO)N), 152.6 (C-2/6), 137.7 (C(Cl)=), 132.1 (C=C(CO)N), 127.6 (C-3/5), 125.6 (ArC), 67.9 (C-1), 38.0 (C-7), 34.0 (C-8) ppm; HRMS (EI) calcd. for \(C_{16}H_{11}Cl_2NO_4 \) [M]\(^+\) = 351.0065; Found: 351.0090.
3,4-Dichloro-N-[2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]maleimide (13e)

Yellowish crystals; Yield 64%; $R_f = 0.30$ (CH:EtOAc = 1:1); mp: 168-169°C; 1H NMR (400 MHz, DMSO-d$_6$): $\delta = 6.95$ (d, $J = 10.1$ Hz, 2H, H-2/6), 6.11 (d, $J = 10.1$ Hz, 2H, H-3/5), 5.91 (s br, 1H, 1-OH), 3.53 – 3.46 (m, 2H, H-8), 1.95 – 1.90 (m, 2H, H-7) ppm; 13C NMR (100 MHz, DMSO-d$_6$): $\delta = 185.4$ (C-4), 163.3 ((CO)N), 152.5 (C-2/6), 132.9 (C(Cl)=), 127.6 (C-3/5), 67.8 (C-1), 37.9 (C-7), 34.8 (C-8) ppm; HRMS (EI) calcd. for C$_{12}$H$_6$Cl$_2$NO$_4$ [M]$^+$ = 300.9909; Found: 300.9914.
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]pyridine-2,3-dicarboximide (13f)

White crystals; Yield 19%; Rf = 0.37 (CHCl₃:CH₃CN = 1:1); mp: 167-168°C; ¹H NMR (400 MHz, DMSO-d₆): δ = 8.95 (dd, J = 5.0, 1.5 Hz, 1H, ArH), 8.27 (dd, J = 7.7, 1.5 Hz, 1H, ArH), 7.77 (dd, J = 7.7, 5.0 Hz, 1H, ArH), 6.98 (d, J = 10.1 Hz, 2H, C-2/6), 6.11 (d, J = 10.1, 2H, H-3/5), 5.88 (s, 1H, 1OH), 3.69 – 3.57 (m, 2H, C-8), 2.05 – 1.94 (m, 2H, H-7) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ = 185.5 (C-4), 166.6 ((CO)N), 155.2 (ArC), 152.6 (C-2/6), 152.0 (ArC), 131.6 (ArC), 128.3 (ArC), 127.7 (ArC), 127.6 (C-3/5), 68.0 (C-1), 38.1 (C-7), 33.7 (C-8) ppm; HRMS (EI) calcd. for C₁₅H₁₂N₂O₄ [M]⁺ = 284.0797; Found: 284.0792.
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]morpholine-3,5-dione (13g)

Yellowish solid; Yield 18%; $R_f = 0.33$ (CHCl₃:EtOAc = 1:5); mp: 142-143°C; 1H NMR (400 MHz, DMSO-d₆): $\delta = 6.94$ (d, $J = 10.1$ Hz, 2H, H-2/6), 6.12 (d, $J = 10.0$ Hz, 2H, H-3/5), 4.36 (s, 4H, CH₂-(CO)N), 3.70–3.56 (m, 2H, H-8), 1.89–1.78 (m, 2H, H-7) ppm; 13C NMR (100 MHz, DMSO-d₆): $\delta = 185.5$ (C-4), 170.1 ((CO)N), 152.7 (C-2/6), 127.5 (C-3/5), 68.0 (C-1), 67.4 (CH₂-(CO)N), 37.8 (C-7), 33.8 (C-8) ppm; HRMS (EI) calcd. for C₁₂H₁₃NO₅ [M]$^+$ = 251.0794; Found: 251.0794.
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]hexahydropthalimide (13h)

Yellow crystals; Yield 79%; $R_f = 0.29$ (CH:EtOAc = 1:3); mp: 135-136°C;

1H NMR (400 MHz, DMSO-d_6): $\delta = 6.94$ (d, $J = 10.1$ Hz, 2H, H-2/6), 6.10 (d, $J = 10.1$ Hz, 2H, H-3/5), 5.84 (s, 1H, 1-OH), 3.40 – 3.35 (m, 2H, H-8), 2.93 – 2.82 (m, 2H, CH-(CO)N), 1.85 – 1.80 (m, 2H, H-7), 1.71 (s, 2H, CH$_2$(a)-CH), 1.60 – 1.51 (m, 2H, CH$_2$(b)-CH), 1.42 – 1.32 (m, 2H, CH$_2$(a)-CH$_2$-CH), 1.31 – 1.21 (m, 2H, CH$_2$(b)-CH$_2$-CH) ppm; 13C NMR (100 MHz, DMSO-d_6): $\delta = 185.4$ (C-4), 179.7 ((CO)N), 152.7 (C-2/6), 127.5 (C-3/5), 67.9 (C-1), 39.3 (CH-(CO)N), 37.6 (C-7), 33.8 (C-8), 23.5 (CH$_2$-CH), 21.6 (CH$_2$-CH$_2$-CH) ppm; HRMS (EI) calcd. for C$_{16}$H$_{19}$NO$_4$ [M]$^+$ = 289.1314; Found: 289.1310.
Orange solid; Yield 88%; $R_f = 0.18$ (CH:EtOAc = 1:1); mp: 93-94°C; 1H NMR (400 MHz, DMSO-d_6): $\delta = 6.92$ (d, $J = 10.1$ Hz, 2H, H-2/6), 6.08 (d, $J = 10.1$ Hz, 2H, H-3/5), 5.85 (s, 1H, 1-OH), 3.42 – 3.36 (m, 2H, H-8), 2.24 – 2.17 (m, 4H, CH$_2$-C=), 1.86 (dd, $J = 8.5$, 6.8 Hz, 2H, H-7), 1.69 – 1.62 (m, 4H, CH$_2$-CH$_2$-C=) ppm; 13C NMR (100 MHz, DMSO-d_6): $\delta = 185.5$ (C-4), 170.9 ((CO)N), 152.6 (C-2/6), 141.5 (C=C(CO)), 127.5 (C-3/5), 67.9 (C-1), 38.6 (C-7), 33.0 (C-8), 21.3 (CH$_2$-CH$_2$-C=), 19.9 (CH$_2$-C=) ppm; HRMS (EI) calcd. for C$_{16}$H$_{17}$NO$_4$ [M]$^+$ = 287.1158; Found: 287.1160.
"N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]-1,2,3,6-
tetrahydrophthalimide (13j)"

White crystals; Yield 49%; \(R_f = 0.28 \) (CH:EtOAc = 1:1); mp: 145-146°C;

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 6.90 \) (d, \(J = 10.1 \) Hz, 2H, H-2/6), 6.09

(d, \(J = 10.1 \) Hz, 2H, H-3/5), 5.87 (s, 1H, 1-OH), 5.85 – 5.82 (m, 2H, CH=CH), 3.31 - 3.36 (m, 2H, H-8), 3.11 – 3.06 (m, 2H, CH-(CO)N), 2.39

– 2.32 (m, 2H, CH\(_2\)(a)-CH), 2.21 – 2.13 (m, 2H, CH\(_2\)(b)-CH), 1.79 (td, \(J = 7.5, 1.5 \) Hz, 2H, H-7) ppm; \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)): \(\delta = 185.5 \) (C-4), 180.3 ((CO)N), 152.5 (C-2/6), 128.1 (CH=CH), 127.6 (C-3/5), 67.8 (C-1), 38.9 (CH-(CO)N), 37.8 (C-7), 34.1 (C-8), 23.5 (CH\(_2\)-CH) ppm; HRMS

(EI) calcd. for C\(_{16}\)H\(_{17}\)NO\(_4\) [M]\(^+\) = 287.1158; Found: 287.1154.
N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]isoindoline (14a)

Brownish solid; Yield 16%; $R_f = 0.50$ (CHCl$_3$:EtOH = 1:5); mp: 103-104°C; 1H NMR (400 MHz, DMSO-d$_6$): $\delta =$ 7.24 – 7.12 (m, 4H, ArH), 6.99 (d, $J = 10.1$ Hz, 2H, H-2/6), 6.06 (d, $J = 10.1$ Hz, 2H, H-3/5), 3.81 – 3.77 (m, 4H, CH$_2$-N), 2.70 – 2.62 (m, 2H, H-8), 1.93 – 1.85 (m, 2H, H-7) ppm; 13C NMR (100 MHz, DMSO-d$_6$): $\delta =$ 185.3 (C-4), 153.2 (C-2/6), 139.8 (ArC), 126.5 (ArC), 126.3 (C-3/5) 122.0 (ArC), 68.0 (C-1), 58.3 (CH$_2$-N), 50.0 (C-8), 38.6 (C-7) ppm; HRMS (EI) calcd. for C$_{16}$H$_{17}$NO$_2$ [M$^+$] = 255.1259; Found: 255.1251.
Brownish solid; Yield 28%; \(R_f = 0.37 \) (EtOAc:EtOH = 1:1); mp: 98-99°C;

\(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta = 6.95 \) (d, \(J = 10.0 \) Hz, 2H, H-2/6), 6.04 (d, \(J = 10.0 \) Hz, 2H, H-3/5), 3.56 - 3.46 (m, 4H, CH\(_2\)-O), 2.32 - 2.26 (m, 4H, CH\(_2\)-N), 2.25 - 2.20 (m, 2H, H-8), 1.79 (t, \(J = 7.6 \) Hz, 2H, H-7) ppm;

\(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta = 185.8 \) (C-4), 153.8 (C-2/6), 126.8 (C-3/5), 68.5 (C-1), 66.6 (CH\(_2\)-O), 53.7 (CH\(_2\)-N), 53.4 (C-8), 37.0 (C-7) ppm;

HRMS (EI) calcd. for C\(_{12}\)H\(_{17}\)NO\(_3\) [M]\(^+\) = 223.1208; Found: 223.1201.
3-Hydroxy-N-[2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]octahydroisoindole-1-one (15)

Beige solid; Yield 65%; $R_f = 0.14$ (EtOAc); mp: 127-128°C; 1H NMR (400 MHz, DMSO-d_6): $\delta = 6.97 - 6.91$ (m, 2H, H-2/6), 6.08 (d, $J = 11.0$ Hz, 2H, H-3/5), 5.90 (d, $J = 6.6$ Hz, 1H, 9'-OH), 5.82 (s, 1H, 1-OH), 4.55 (d, $J = 6.6$ Hz, 1H, H-9'), 3.39 – 3.31 (m, 1H, H-8(a)), 3.05 – 2.96 (m, 1H, H-8(b)), 2.63 – 2.56 (m, 1H, H-3'), 2.06 – 1.98 (m, 1H, H-8'), 1.89 – 1.82 (m, 1H, H-7(a)), 1.83 – 1.77 (m, 1H, H-4'(a)), 1.80 – 1.72 (m, 1H, H-7(b)), 1.72 – 1.66 (m, 1H, H-7'(a)), 1.49 – 1.35 (m, 3H, H-4'(/b)/5'/a/6'/a), 1.19 – 1.06 (m, 1H, H-6'(b)), 0.95 – 0.89 (m, 1H, H-5'(b)), 0.91 – 0.83 (m, 1H, H-7'(b)) ppm; 13C NMR (100 MHz, DMSO-d_6): $\delta = 185.6$ (C-4), 175.2 (C-2'), 153.2 (C-2/6), 127.3 (C-3/5), 85.6 (C-9'), 68.1 (C-1), 40.8 (C-8'), 38.5 (C-3'), 38.1 (C-7), 35.2 (C-8), 26.3 (C-7'), 23.3 (C-6'), 23.2 (C-4'), 23.1 (C-5') ppm; HRMS (EI) calcd. for C$_{16}$H$_{21}$NO$_4$ [M]$^+ = 291.1471$; Found: 291.1469.