Association of Air Pollution and Lung Function of Young Adult Females in New Delhi

Harshita Kelkar, Arun Kumar Sharma, Sanjay Chaturvedi
Department Community Medicine, University College of Medical Sciences, New Delhi India
Corresponding author: Harshita Kelkar
harshitakelkar13@gmail.com

Introduction

Lung function tests help to evaluate the respiratory health of an individual as they reflect the underlying physiological condition of the airways and the alveoli. Lung function is compromised far before appearance of signs and symptoms of chronic respiratory diseases. Air pollution adversely affects lung function. Exposure to sources of pollution differ between men and women due to commuting and smoking habits. The present study was carried out in Delhi to assess the association of exposure to air pollution sources with lung function of young adult females, as this younger age group is expected to have a different exposure profile than older women.

Methods. The present study was conducted on the campus of a central university in Delhi among 18- to 25-year old females (n=200). A pre-tested, close-ended and interviewer-administered questionnaire was used that consisted of information on sociodemographic details of the participants and self-reported exposure to air pollution sources at the residence of participants, during their commute to and from college, and at school. Both active and passive smoking status were recorded. Lung function was assessed using a digital spirometer.

Results. A significant association was observed between percentage of predicted value of forced expiratory volume in one second (FEV₁)/forced vital capacity (FVC) and peak expiratory flow (PEF) with the number of years the participant had resided in Delhi (p<0.05). Forced vital capacity and FEV₁ of those using closed transport methods such as car, metro, and air-conditioned (A/C) bus were significantly better than those who used open transport methods such as non-A/C bus and scooter (p<0.05). Forced vital capacity and FEV₁ were significantly decreased among those who had a smoke-producing factory in the vicinity of their residence (p<0.05). A significant decrease in FVC and FEV₁ was observed among active smokers and among those who were exposed to passive smoking by family members in comparison to those who were not exposed (p<0.05).

Conclusions. The results of the present study suggest that air pollution exposure plays a role in determining the lung function profile of young adult females. This study provides baseline data on lung function of young adult females which could be used in future longitudinal cohort studies.

Participant Consent. Obtained
Ethics Approval. The study was approved by the Institutional Ethics Committee of University College of Medical Sciences.
Competing Interests. The authors declare no completing financial interests.

Keywords. spirometry, lung function, PFTs, air pollution, young adults, passive smoking

Received December 18, 2018. Accepted May 8, 2019.
J Health Pollution 22: (190611) 2019
© Pure Earth
females were selected for the present study. There is a gap in knowledge regarding sources of air pollution exposure and its association with lung function in young women in particular. This study was carried out in Delhi to assess the association of exposure to air pollution sources with lung function of young adult females.

Methods

This cross-sectional study was conducted on the campus of a central university in Delhi between November 2016 and April 2018. Two hundred female students who were enrolled in regular courses at the university were recruited for the present study. The participants were adult females between 18 to 25 years age who were enrolled in undergraduate, postgraduate or PhD courses on a regular basis. Inclusion criteria included residence in Delhi for the past six months or more. Women who were being treated for chronic diseases like COPD, asthma, tuberculosis, heart and kidney ailments, musculoskeletal disorders affecting respiratory functions, pregnant and lactating females, and those with a body mass index greater than 30 kg/m² were excluded, as these conditions might modify the measured respiratory parameters. The study was approved by the Institutional Ethics Committee of University College of Medical Sciences. Each eligible student was solicited for participation in the present study and those who gave written informed consent were included in the study until the desired sample size was reached. An attempt was made to include day-scholars (students who live off-campus) and hostel residents in equal proportion. Students were informed that performing spirometry might cause hypoxia, resulting in giddiness. After data collection, study participants were encouraged to seek professional help for their respiratory ailments, if any were identified. Lung function measurements were disclosed to the participants on demand.

Questionnaire

A pre-tested, close ended and interviewer-administered questionnaire was used for recording information. The questionnaire consisted of information on sociodemographic details of the participants and self-reported exposure to potential sources of air pollution at the respondent’s residence, during their commute, and at school. Details were collected regarding distance of commute to school, mode of transport, extent and nature of residential pollution as determined by overcrowding, ventilation, method of cooking, presence of air-conditioner (A/C) and heavy rugs/carpets, etc. The questionnaire also inquired about the presence of smoke-producing factories, construction sites, gas stations, or petrol pumps in the vicinity of residence (within 1 km). Presence of any one or more of the above was considered to be a source of residential pollution. Questions were asked regarding smoking and exposure to environmental tobacco smoke due to overcrowding, ventilation, method of cooking, presence of air-conditioner (A/C) and heavy rugs/carpets, etc. Overcrowding is said to occur if persons per room exceed these numbers. Ventilation was assessed by presence or absence of windows. For assessment of smoke exposure, active smoker was defined as smoking tobacco in the past 30 days. Passive smoker was defined as exposure to environmental tobacco smoke due to smoking by either family members or friends in the past 30 days. Frequent exposure to tobacco smoke was defined as exposure to tobacco smoke more than two times a week and non-frequent exposure as less than once a week. The questionnaire can be found in Supplemental Material.

Spirometry

Pulmonary functions were assessed according to American Thoracic Society criteria using a digital, portable spirometer (Spiromin, Universal Medical Equipment). A bronchodilator was not administered prior to spirometry.

Procedure

One of the study investigators was trained in performing spirometry. Each participant was shown how to perform a spirometry test. Height and weight of the participants were measured with shoes removed. The breathing tube with a disposable mouthpiece was inserted into the participant’s mouth so that the lips were sealed around the mouthpiece.
A nose clip was used or nares were manually occluded before starting the maneuver. For safety reasons, testing was done in a seated position, using a chair with arms and without wheels. Each participant was instructed to perform at least three forced expiratory maneuvers. Using a computer assisted quantitative assessment, the best maneuver was determined. The data was compared with predicted values based on age, sex, height, and weight. Flow volume loops were generated. Flow was plotted against volume to display a continuous loop from inspiration to expiration and the results were interpreted.

Recorded lung function parameters included forced vital capacity (FVC), i.e. the maximum amount of air that can be expired after a maximal inspiratory effort; forced expiratory volume in one second (FEV₁), i.e. the volume of air expired during the first second of a forced expiration; ratio of FEV₁ to FVC (FEV₁/FVC) expressed as percentage; forced expiratory flow at 25-75% (FEF 25-75%), the average expiration flow rate during the middle 50% of the FVC; and peak expiratory flow (PEF), the peak flow rate during

Ambient air pollution	N	%
Number of years in Delhi		
Less than five years	79	39.5
Five to eighteen years	45	22.5
More than eighteen years	76	38
Commuting distance between residence and university		
One km or less	86	43
More than one km	114	57
Mode of transport (those commuting a distance of more than one km between residence and university)		
Closed (car, metro, A/C bus)	70	61.4
Open (two or three-wheeler, non-A/C bus)	44	38.6

| Source of pollution exposure in vicinity of residence |
Smoke producing factory	17	8.5
Gas station	61	30.5
Construction site	90	45

| Indoor air pollution |
| Presence of overcrowding (person/ room criteria) (21) | 56 | 28 |
| Presence of artificial ventilation | 52 | 26 |
| Cooking method |
Liquefied petroleum gas	188	94
Others	12	6
A/C at residence	129	64.5
Heavy rugs/ Carpets	71	35.5
Smoking status		
Active smoking	14	7
Passive smoking (either family or friends)		
From family members	46	23
From friends	57	28.5

Table 1 — Air Pollution Exposure and Smoking Status of Study Participants (N=200)
expiration. The percentage predicted values of FEV₁, FVC, FEV₁/FVC ratio, FEF and PEF were determined.

Statistical analysis

Data were entered in a Microsoft Excel spreadsheet which was checked for errors and cleaned before analysis. The Statistical Package for the Social Sciences (SPSS) 20.0 software was used for statistical computations and simple descriptive tabulations were made. Exploratory data analysis was performed to determine distribution of different variables. Continuous variables such as lung function values were presented as means and standard deviations. Bivariate analysis was performed to determine the association of air pollution exposure and smoking status with lung function. Significance tests such as the t-test and analysis of variance (ANOVA) were used. All tests were two-tailed and a P-value of less than 0.05 was considered to be statistically significant.

Results

The mean age of the participants was 20.1±1.9 years. The participation rate among eligible subjects was 96%. Only two subjects were married. The majority of the participants identified as Hindu (87.5%). Most of the respondents (85.5%) were classified as upper middle socio-economic status as per the revised Kuppuswamy scale. Table 1 summarizes the sources of exposure to air pollution and smoking status of the participants. Thirty-eight percent (38%) of the participants had resided in Delhi for eighteen years or more. Almost two-thirds of the participants were commuters (lived over one km from the school). Two-thirds of the commuters used closed

Lung function parameters	Percentage of predicted value (Mean ± SD)
	Residence *
	p value (Mean ± SD)
	Commuting distance
	p value (Mean ± SD)
	Mode of transport
	p value (Mean ± SD)

	Less than five years	Five to eighteen years	More than eighteen years
	(n=79)	(n=45)	(n=76)
FVC	66.37±11.82	68.52±13.18	66.82±14.66
FEV₁	72.09±12.07	73.13±13.2	70.94±14.97
FEV₁/FVC	108.93±4.4	107.22±6.77	106.38±5.99
PEF	72.5±13.81	70.52±19.91	68.63±15.84
FEF (25-75%)	79.36±18.6	82.31±24.23	73.9±19.43

Table 2a — Association of Ambient Pollution Exposure (Residence, Commuting Distance and Mode of Transport) with Lung Function

* ANOVA, Post hoc Test (Tukey’s) was used.

The post hoc test is presented using the superscripts a and b. Categories with the same superscript are not significantly different whereas categories with different superscripts are significantly different.

Bold signifies p value less than 0.05

In the rest of the variables, unpaired t test was used.

Abbreviation: SD, standard deviation.
transport methods such as the metro, car or an air conditioned (A/C) bus and one-third used open transport methods such as a two- or three-wheeler or non-A/C bus. None of the participants reported use of unclean fuels (i.e. those that produce smoke like wood and kerosene) for cooking purposes at their residence. The majority reported the use of A/C at their residence and of these, one-third reported spending more than eight hours per day in air-conditioned rooms. One-third reported the presence of heavy rugs or carpets at the residence.

The prevalence of cigarette smoking among respondents was 7% (n=14). Of these, thirteen reported hookah smoking as well, but it was practiced infrequently. Half of the cigarette smokers were frequent smokers.

Twenty-three percent (23%, N=46) of respondents were exposed to passive smoking from family members and 28.5% (N=57) were exposed from friends.

Table 2a depicts the association of ambient pollution exposure (residence, commuting distance and mode of transport) with lung function. Study participants who had resided in Delhi for 18 years or more showed significantly lower values of FEV₁/FVC and PEF in comparison to those who had resided in Delhi for five years or less. Participants who used open transport methods for commuting from home to college had significantly lower values of FVC and FEV₁ compared to those who used closed transport. Table 2b depicts the association of ambient pollution exposure (source of pollution exposure in vicinity of residence) with lung function. A similar decrease in FVC and FEV₁ was observed among those who reported that a factory was located near their residence.

Table 3a shows the association of indoor pollution exposure (overcrowding and ventilation) with lung function and Table 3b depicts the association of indoor pollution exposure (cooking method, A/C at residence and heavy rugs/ carpets) with lung function. No significant association was observed between various possible sources of indoor pollution exposure and lung function.

Table 4 depicts the association of participant smoking status with lung function. Participants who were active smokers showed a significant decrease
Second-hand smoke exposure from family members was also associated with a significant decrease in FVC and FEV$_1$. Among those who were exposed to second-hand smoke in comparison to those who were not.

Discussion

Delhi is one of the most polluted cities in India. The levels of pollutants in ambient air as well as in indoor environments have increased substantially due to an increase in vehicles and construction activity. Longer durations of exposure were found to be associated with decreased FEV$_1$/FVC in the present study. Those who had resided in Delhi for less than five years had better lung function values compared to those who had been in Delhi for 18 years or more. In 2008, Bran et al. reported an annual mean PM 2.5 of 72±4 µg/m3 in Delhi, indicating that those who had lived in Delhi for 18 years or more had comparatively higher exposures to pollution. Similar findings were observed in a study by the Central Pollution Control Board (CPCB) in India that found that those residing in Delhi for at least 18 years had an increased prevalence of restrictive, obstructive, and combined lung function deficits compared to the residents of West Bengal (controls). In the present study, no statistically significant association was observed between lung function and distance between college and residence, but better FVC and FEV$_1$ values were observed among those who resided near campus. Among those who resided over one kilometer from college, a significant association was found between mode of transport for commuting and FVC and FEV$_1$ values. Those who used closed transport methods such as car, metro, or air-conditioned bus had better values than those who used open transport vehicles such as a two- or three-wheeler or non-A/C bus. This may be because those travelling by open transport have higher exposures to pollution in comparison to those who use closed transport. Vehicular exhaust contributes greatly to particulate matter in ambient atmosphere and is a matter of concern. Studies have shown that high to critical levels of pollutants are present at traffic intersections. Residing close to busy roads with high traffic volume has been associated with acute respiratory

Lung function parameters	Percentage of predicted value (Mean ± SD)	p value	Percentage of predicted value (Mean ± SD)	p value
	Overcrowding		Ventilation	
	Present (n=148)		Present (n=52)	
	Absent (n=56)		Absent (n=144)	
FVC	68.64±14.33	0.286	67.83±13.61	0.149
FEV$_1$	72.96±13.57	0.479	72.6±13.89	0.199
FEV$_1$/FVC	106.9±16.98	0.369	107.3±15.67	0.325
PEF	72.06±15.62	0.921	72.49±16.81	0.374
FEF (25-75%)	76.37±20.99	0.521	77.53±20.38	0.695

Abbreviation: SD, standard deviation.

Table 3a — Association of Indoor Pollution Exposure (Overcrowding and Ventilation) with Lung Function

Table 3a — Association of Indoor Pollution Exposure (Overcrowding and Ventilation) with Lung Function

Lung function parameters	Percentage of predicted value (Mean ± SD)	p value	Percentage of predicted value (Mean ± SD)	p value
	Overcrowding		Ventilation	
	Present (n=148)		Present (n=52)	
	Absent (n=56)		Absent (n=144)	
FVC	68.64±14.33	0.286	67.83±13.61	0.149
FEV$_1$	72.96±13.57	0.479	72.6±13.89	0.199
FEV$_1$/FVC	106.9±16.98	0.369	107.3±15.67	0.325
PEF	72.06±15.62	0.921	72.49±16.81	0.374
FEF (25-75%)	76.37±20.99	0.521	77.53±20.38	0.695

Abbreviation: SD, standard deviation.

Table 3a — Association of Indoor Pollution Exposure (Overcrowding and Ventilation) with Lung Function

Lung function parameters	Percentage of predicted value (Mean ± SD)	p value	Percentage of predicted value (Mean ± SD)	p value
	Overcrowding		Ventilation	
	Present (n=148)		Present (n=52)	
	Absent (n=56)		Absent (n=144)	
FVC	68.64±14.33	0.286	67.83±13.61	0.149
FEV$_1$	72.96±13.57	0.479	72.6±13.89	0.199
FEV$_1$/FVC	106.9±16.98	0.369	107.3±15.67	0.325
PEF	72.06±15.62	0.921	72.49±16.81	0.374
FEF (25-75%)	76.37±20.99	0.521	77.53±20.38	0.695

Abbreviation: SD, standard deviation.

Table 3a — Association of Indoor Pollution Exposure (Overcrowding and Ventilation) with Lung Function

Lung function parameters	Percentage of predicted value (Mean ± SD)	p value	Percentage of predicted value (Mean ± SD)	p value
	Overcrowding		Ventilation	
	Present (n=148)		Present (n=52)	
	Absent (n=56)		Absent (n=144)	
FVC	68.64±14.33	0.286	67.83±13.61	0.149
FEV$_1$	72.96±13.57	0.479	72.6±13.89	0.199
FEV$_1$/FVC	106.9±16.98	0.369	107.3±15.67	0.325
PEF	72.06±15.62	0.921	72.49±16.81	0.374
FEF (25-75%)	76.37±20.99	0.521	77.53±20.38	0.695

Abbreviation: SD, standard deviation.

Table 3a — Association of Indoor Pollution Exposure (Overcrowding and Ventilation) with Lung Function

Lung function parameters	Percentage of predicted value (Mean ± SD)	p value	Percentage of predicted value (Mean ± SD)	p value
	Overcrowding		Ventilation	
	Present (n=148)		Present (n=52)	
	Absent (n=56)		Absent (n=144)	
FVC	68.64±14.33	0.286	67.83±13.61	0.149
FEV$_1$	72.96±13.57	0.479	72.6±13.89	0.199
FEV$_1$/FVC	106.9±16.98	0.369	107.3±15.67	0.325
PEF	72.06±15.62	0.921	72.49±16.81	0.374
FEF (25-75%)	76.37±20.99	0.521	77.53±20.38	0.695

Abbreviation: SD, standard deviation.

Table 3a — Association of Indoor Pollution Exposure (Overcrowding and Ventilation) with Lung Function
infections and diseases like asthma, COPD, and chronic bronchitis.11-13,15,16 Individuals with occupational exposure to vehicular pollution such as traffic police have been found to have significantly deteriorated lung function in comparison to the normal population, as demonstrated by Gupta et al.17,18 Hence, there is strong evidence of decline in lung function among those exposed to vehicular exhaust. In the present study, both FVC and FEV\textsubscript{1} of the participants were significantly associated with the presence of a factory near their residence. This could be because smoke contains harmful pollutants which contaminate the air and lead to air quality deterioration, eventually harming respiratory health. Patel et al. reported that those living in proximity to an industrial area had higher prevalence of respiratory symptoms, lower FVC and FEV\textsubscript{1} values, and restrictive lung abnormalities.19 Presence of an industrial site was identified as a predictor of asthma and respiratory symptoms by Barakat et al.20 No association was observed between lung function and presence of a construction site near the residence of participants in the present study.

No significant association between lung function parameters with presence or absence of windows or presence of overcrowding at the residence of the respondents was observed. However, a trend of better indicators of lung function among those with windows and without overcrowding in their residences was observed, especially for FVC and FEV\textsubscript{1}. This may be due to the fact that lack of windows and overcrowding result in the accumulation of indoor pollutants, which in turn may harm lung function.21-23 In addition, FVC and FEV\textsubscript{1} were significantly lower in smokers compared to non-smokers. This may be because smoking is a major risk factor for COPD, as reported in studies by Mahmood et al.24 and Hooper et al.25 This in turn affects respiratory health.24,25 No significant association between lung function and presence of A/C or heavy rugs or carpets at participants’ residences was found. In a study among adolescents in the United Arab Emirates, similar results were observed by Barakat et al.,20 even though heavy rugs and carpets have a tendency to accumulate dust and resuspend it during anthropogenic activity.20

Table 3b — Association of Indoor Pollution Exposure (Cooking method, A/C at residence and heavy rugs/ carpets) with Lung Function

Lung function parameters	Cooking method	Percentage of predicted value (Mean ± SD)	Heavy rugs/ carpets	p value					
	Liquefied petroleum gas (n=188)	Present (n=129)	Absent (n=71)	Present (n=71)	Absent (n=129)				
FVC	66.54±12.69	74.72±19.46	0.177	67.21±13.29	66.71±13.32	0.8	67.53±12.97	66.75±13.47	0.692
FEV\textsubscript{1}	71.37±12.99	79.67±18.75	0.158	72.1±13.48	71.46±13.58	0.747	72.08±12.87	71.76±13.86	0.872
FEV\textsubscript{1}/FVC	107.57±5.78	107.09±4.93	0.778	107.62±5.33	107.39±6.42	0.784	107.1±5.59	107.78±5.81	0.419
PEF	71.36±16.22	80.03±16.74	0.075	72.11±16.86	71.45±15.47	0.784	71.75±17.32	71.95±15.85	0.935
FEF (25-75%)	77.37±20.18	85.72±24.49	0.171	78.76±20.54	76.25±20.44	0.408	75.4±18.67	79.23±21.37	0.207

Abbreviation: SD, standard deviation.
Unpaired t test was used.
In addition to active smoking, passive smoking also has a serious impact on respiratory health. In the present study, a highly significant decrease in FVC and FEV\textsubscript{1} was observed among those who were exposed to passive smoking by family members in comparison to those without this exposure. Among participants who were exposed to passive smoking from their friends, no significant decrease in lung function was observed. This could be because participants spend more time with their family members compared to with their friends at university, and therefore exposure to second-hand smoke may be greater at the participants' residence compared to at school. Passive smoking results in the accumulation of indoor air pollutants, and an increase in sulfur dioxide and suspended particulate matter has been observed in homes where there was a positive history of smoking by any family members.21,22 Those households where smoking took place inside the house had a higher prevalence of respiratory symptoms among women and children.26

Limitations

This study was conducted among female college students in an urban area, therefore the results cannot be extrapolated to the community at large. A self-designed pretested questionnaire was used. Air pollution exposure was empirically assessed and was not quantified using a monitoring instrument. The study was conducted in Delhi where all households were using liquid petroleum gas for cooking and no unclean fuels were used. The exposure of smoke produced from combustion of biomass fuels affecting indoor air quality could not be assessed. The present study was cross-sectional in design, hence the temporal association of risk factors with pulmonary function could not be assessed.

Conclusions

Significant differences in lung function parameters were observed based on duration of residence, mode of transport, proximity of residence to a factory, as well as active and passive...
smoking. A similar study of young men and pulmonary function is currently being conducted. Additional analyses examining these factors as independent predictors of lung function are under way and gender will be included in these future studies.

The present study was a cross-sectional study. Thus, the changes in different lung function parameters due to various sources of pollution exposure were not able to be detected. Further longitudinal studies are recommended for future research. The present study provides baseline data on lung function of young adult females which could be used for longitudinal cohort studies in the future. Actual observation and quantitative monitoring and personal monitoring of actual pollution data is also recommended.

Acknowledgements
This study was self-funded. It was conducted as a part of an MD thesis.

Copyright Policy
This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).

References

1. Diseases of respiratory system: COPD. In: Wintrobe WM, Thorn GW, Adams R, editors. Harrison’s principles of internal medicine. 7th ed. Vol. 2. New York, NY: McGraw-Hill; 1974. p. 1635-6.

2. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med [Internet]. 2017 Sep [cited 2019 May 15];5(9):691-706. Available from: https://doi.org/10.1016/S2213-2609(17)30293-X

3. Sharma AK, Bafyan P, Kumar P. Air pollution and public health: the challenges for Delhi, India. Rev Environ Health [Internet]. 2018 Mar 28 [cited 2019 May 15];33(1):77-86. Available from: https://doi.org/10.1515/reveh-2017-0032 Subscription required to view.

4. Arora S, Rasania SK, Bachani D, Gandhi A, Chhabra SK. Air pollution and environmental risk factors for altered lung function among adult women of an urban slum area of Delhi: A prevalence study. Lung India [Internet]. 2018 May-Jun [cited 2019 May 15];35(3):193-8. Available from: http://www.lungindia.com/text.asp?2018/35/3/193/231214

5. Kesavachandran CN, Bihari V, Pangney BS, Kamal R, Singh A, Srivastava AK. Gender Disparity in lung function abnormalities among a population exposed to particulate matter concentration in ambient air in the national capital region, India. J Health Pollut [Internet]. 2015 Dec [cited 2019 May 15];5(9):47-60. Available from: https://doi.org/10.5696/2156-9614-5.9-47

6. Environment and health. In: Park P. Park’s textbook of preventive and social medicine. 24th ed. Jabalpur, India: Banarasidas Bhanot Publishers; 2017. 789 p.

7. Singh T, Sharma S, Nagesh S. Socio-economic status scales updated for 2017. Int J Res Med Sci. 2017 Jul;5(7):3264-7.

8. India takes steps to curb air pollution. Bull World Health Organ [Internet]. 2016 [cited 2019 May 15];94:487-8. Available from: http://dx.doi.org/10.2471/BLT.16.020716

9. Bran SH, Srivastava R. Investigation of PM2.5 mass concentration over India using a regional climate model. Environ Pollut [Internet]. 2017 May [cited 2019 May 15];224:484-493. Available from: https://doi.org/10.1016/j.envpol.2017.02.030

10. Epidemiological study on effect of air pollution on human health (adults) in Delhi [Internet]. Delhi, India: Central Pollution Control Board; 2012 Jul [cited 2018 Feb 1]. 342 p. Available from: http://www.indiaenvironmentportal.org.in/files/file/Epidemiological_study_AP_Report.pdf

11. Rumana HS, Sharma RC, Beniwal V, Sharma AK. A retrospective approach to assess human health risks associated with growing air pollution in urbanized area of Thar Desert, western Rajasthan, India. J Environ Health Sci Eng. 2014;12(1):23.

12. Lawrence A, Fatima N. Urban air pollution & its assessment in Lucknow City—the second largest city of North India. Sci Total Environ [Internet]. 2014 Aug 1 [cited 2019 May 15];488-489:447-55. Available from: https://doi.org/10.1016/j.scitotenv.2013.10.106 Subscription required to view.

13. Chattopadhyay BP, Mukherjee A, Mukherjee K, Roychowdhury A. Exposure to vehicular pollution and assessment of respiratory function in urban inhabitants. Lung [Internet]. 2007 Sep-Oct [cited 2019 May 15];185(4):263-70. Available from: https://doi.org/10.1007/s00408-007-9015-0 Subscription required to view.

14. Hansel NN, McCormack MC, Belfi AJ, Matsui EC, Peng RD, Aloe C, Paulin L, Williams DL, Diette GB, Breyesse PN. In-home air pollution is linked to respiratory morbidity in former smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med [Internet]. 2013 May 15 [cited 2019 May 15];187(10):1085-90. Available from: https://doi.org/10.1164/rcrm.201211-1987OC.

15. Salameh P, Salame J, Khayat G, Akhdar A, Ziadeh C, Aziri S, Khoury F, Akiki Z, Nasser Z, Abou Abbass I, Saadeh D, Waked M. Exposure to outdoor air pollution and chronic bronchitis in adults: a case-control study. Int J Occup Environ Med [Internet]. 2012 Oct [cited 2019 May 19];3(4):165-77. Available from: http://www.theijoem.com/ijoem/index.php/ijoem/article/view/168.

16. Padhi B, Padhy P. Assessment of intra-urban variability in outdoor air quality and its health risks. Inhal Toxicol [Internet]. 2008 [cited 2019 May 15];20(11):973-9. Available from: https://doi.org/10.1080/08958370701866420 Subscription required to view.

17. Gupta S, Mittal S, Kumar A, Singh KD. Respiratory effects of air pollutants among nonsmoking traffic policemen of Patiala, India. Lung India. 2011 Oct-Dec;28(4):253-7.

18. Makwana AH, Solanki JD, Gokhale PA, Mehta HB, Shah CJ, Gadhavi BP. Study of computerized spirometric parameters of traffic personnel of Saurashtra region, Gujarat, India. Lung India [Internet]. 2015 Sep-Oct [cited 2019 May 15];32(5):457-61. Available from: http://www.lungindia.com/text.asp?2015/32/5/457/161477.

19. Patel S, Ramaiyah Nellore MR, Sadhu HG, Kulkarni PK, Patel BD, Parikh DJ. Effects of industrial pollution on respiratory morbidity among female residents of India. Arch Environ Occup Health [Internet]. 2008 Summer [cited 2019 May 15];63(2):87-92. Available from: https://doi.org/10.3200/AEOH.63.2.87-92 Subscription required to view.

20. Barakat-Haddad C, Zhang S, Siddiqua A, Dghaim R. Air quality and respiratory health among...
adolescents from the United Arab Emirates. J Environ Public Health [Internet]. 2015 [cited 2019 May 15];2015:Article 284595 [13 p]. Available from: http://dx.doi.org/10.1155/2015/284595

21. Kulshreshtha P, Khare M, Seetharaman P. Indoor air quality assessment in and around urban slums of Delhi city, India. Indoor Air [Internet]. 2008 Dec [cited 2019 May 15];18(6):488-98. Available from: https://doi.org/10.1111/j.1600-0668.2008.00550.x Subscription required to view.

22. Firdaus G, Ahmad A. Indoor air pollution and self-reported diseases—a case study of NCT of Delhi. Indoor Air [Internet]. 2011 Oct [cited 2019 May 15];21(5):410-6. Available from: https://doi.org/10.1111/j.1600-0668.2011.00715.x Subscription required to view.

23. Kumar R, Nagar JK, Kumar H, Kushwah AS, Meena M, Kumar P, Raj N, Singhal MK, Gaur SN. Indoor air pollution and respiratory function of children in Ashok Vihar, Delhi: an exposure-response study. Asia Pac J Public Health [Internet]. 2008 [cited 2019 May 15];20(1):36-48. Available from: http://www.hindawi.com/journals/apjph/2008/906935/Subscription required to view.

24. Mahmood T, Singh RK, Kant S, Shukla AD, Chandra A, Srivastava RK. Prevalence and etiological profile of chronic obstructive pulmonary disease in nonsmokers. Lung India [Internet]. 2017 Mar-Apr [cited 2019 May 15];34(2):122-6. Available from: http://www.lungindia.com/text.asp?2017/34/2/122/201298

25. Hooper R, Burney P, Vollmer WM, McBurnie MA, Gislason T, Tan WC, Jithoo A, Kocabas A, Welte T, Buist AS. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. Eur Respir J. 2012 Jun;39(6):1343-53.

26. Rumchev K, Zhao Y, Spickett J. Health risk assessment of indoor air quality, socioeconomic and house characteristics on respiratory health among women and children of Tirupur, South India. Int J Environ Res Public Health [Internet]. 2017 Apr 17 [cited 2019 May 15];14(4):Article 429 [12 p]. Available from: https://doi.org/10.3390/ijerph14040429