Design and Implementation of a Post-Quantum Group Authenticated Key Exchange Protocol With the LibOQS Library: A Comparative Performance Analysis From Classic McEliece, Kyber, NTRU, and Saber

José Ignacio Escribano Pablos, Misael Enrique Marrigga, and Ángel L. Pérez del Pozo

ABSTRACT
Group authenticated key exchange protocols (GAKE) are cryptographic tools enabling a group of several users communicating through an insecure channel to securely establish a common shared high-entropy key. In the last years, the need to design cryptographic tools which provide security in the presence of attackers with access to quantum resources has become unquestionable; the field dealing with these types of protocols is usually referred to as Post-Quantum Cryptography. The U.S. National Institute for Standards and Technology (NIST) launched in 2017 an open call to find suitable post-quantum public-key algorithms for standardization. In this work, we design a GAKE that can be instantiated with any key encapsulation mechanism (KEM) that satisfies the strong security notion IND-CCA, matching NIST’s requirements for this primitive. We have implemented our GAKE with the four finalist KEMs from the NIST process: Classic McEliece, Kyber, NTRU, and Saber, making use of the open-source library LibOQS where these algorithms are provided. We have conducted a detailed comparative performance analysis of the resulting GAKE protocols, taking into account all the parameter sets proposed in the submissions. We have also made a performance analysis of all the involved building pieces, including the four finalist KEMs. Finally, we also compare our GAKE with a previous proposal implemented with Kyber.

INDEX TERMS
Cryptography, cryptographic protocols, system implementation, post-quantum cryptography, public key cryptography.

I. INTRODUCTION
Group authenticated key exchange (GAKE) protocols are cryptographic constructions that allow a group of $n \geq 2$ users or parties, communicating through an insecure network, to agree on common session keys. These keys are then typically used to provide security guarantees, such as confidentiality, integrity, and/or authentication, for further communication among the group members.

In the last years, we have seen a growing concern about the threat that quantum computation presents to the security of many existing cryptographic primitives based on mathematical problems related to integer factorization or computation of discrete logarithms. This led the U.S. National Institute of Standards and Technology (NIST) to launch an open call in 2017 asking for proposals of post-quantum algorithms
that could be subsequently standardized. The term “post-quantum” in this context refers to algorithms that could be considered to offer security against attackers that have access to quantum computational resources. In the NIST call for proposals, two types of cryptographic primitives were allowed: Key Encapsulations Mechanisms (KEMs) and digital signatures. At the beginning of 2022, there were three rounds of announcements from NIST stating which candidates advanced in the process. After round 3, there were 7 finalists: 4 KEMs and 3 signature schemes. NIST also proposed a list of alternate candidates for further study and future consideration; it was composed of 5 KEMs and 4 signature schemes. During the revision process of this paper, NIST announced the algorithms selected for standardization, namely Kyber as the KEM and Dilithium, Falcon and SPHINC+ as digital signatures. In this work, we focus on the four finalist KEMs, as they are known to be a basic building block from which GAKE protocols can be constructed.

A. RELATED WORK

There have been several recent proposals of group key exchange protocols that provide some kind of resistance against quantum attacks (see Table 1 for a comparison between the main GAKE protocols). The protocol presented in [1] by Fujioka et al. is based on the problem of finding isogeny mappings between two supersingular elliptic curves with the same number of points. In the same line, Hougaard and Miyaji presented in [2] several designs based on isogenies. The authenticated protocols are named A-SIT and A-P2P-SIT, with the latter being the peer-to-peer version of A-SIT, which means that it reduces the protocol complexity in terms of communication and memory. Both are authenticated protocols, resistant to active attacks, and achieve authentication through a signature scheme. Apon et al. ([3]) constructed an unauthenticated protocol proven secure under the ring learning with errors (RLWE) assumption. This scheme may be transformed into an authenticated one by using the Katz and Yung compiler ([12]), that adds a signature scheme and an additional round to the original protocol. The protocols from Choi et al. ([4], [5]) are also based in the same problem; the authors build on [12] and propose three different protocols: the first is unauthenticated, the second (STAG) adds authentication, and the third is, in addition, dynamic (meaning that users may join or leave the group at any time). Choi et al. [6] proposed a generic GAKE also relying on the RLWE assumption, built on a tree structure in the dynamic setting. In more detail, this protocol has been instantiated with NewHope [13]: a KEM submitted to the NIST standardization process, but which has not been selected as a finalist in Round 3. Takashima constructed in [7] two different families of GAKEs based on static lattice and isogeny assumptions respectively, where static means that the size of the computational problem does not depend on the number of participants in the group.

There also exist protocols, like the one we propose in this work, that use compilers, which produce a quantum-resistant GAKE from simpler post-quantum primitives. In this line, the protocol from Persichetti et al. ([8]) was constructed from a KEM and a signature scheme. González Vasco et al. ([9]) introduced a protocol derived from a KEM and a Message Authentication Code (MAC). However, this construction cannot be considered completely post-quantum; security holds in the future-quantum scenario, where adversaries do not have access to quantum resources during the protocol execution but only later. Escobedo et al. ([11]) used the compiler from Abdalla et al. ([14]) to obtain a GAKE from the IND-CPA Public Key Encryption (PKE) scheme included in the Kyber suite ([15]) and the FO_{AKE} transformation, and proved it to be secure in the Quantum Random Oracle Model (QROM). The compiler introduced in [10] allows to obtain a GAKER protocol using any two-party key exchange, being a generalization of the Burmester and Desmedt [16] protocol in the G-CK+ security model. Two versions of the compiler have been proposed: the original version known as GKE-C and the peer-to-peer version (P2P-GKE-C). The latter reduces the resources consumption (memory and communication) compared to the original compiler.

B. OUR CONTRIBUTION

In this work, we propose a generic post-quantum GAKER protocol in the same line of [11]. We rely only on three primitives: an IND-CCA secure KEM, a one-time symmetric encryption scheme, and a cryptographic hash function. The FSXY transformation by Fujioka et al. ([17]) provides a two-party authenticated key exchange 2AKE from the KEM. Then we use Abdalla et al.’s compiler ([14]) to obtain the GAKER from the 2AKE. The compiler also requires a commitment scheme satisfying certain properties, but we show that it can be obtained from the same KEM used for the FSXY transformation. Whereas this construction may be seen as a generalization of [11] (which also builds on Abdalla et al.’s compiler and a generic transformation from KEM to AKE), this is not exactly so, as here the FSXY transformation is used instead of the FO_{AKE} (see [18] and [19]), which is used in [11].

Our aim is to design a generic protocol that may be implemented with any of the four Round 3 KEM finalists from the NIST post-quantum standardization process, namely Classic McEliece, Kyber, NTRU, and Saber. In fact, our design can be implemented with any IND-CCA KEM (yet its final security against quantum adversaries is of course not guaranteed if the KEM is not post-quantum). We would like to point out that the FO_{AKE} transformation offers some advantages over FSXY, such as having a security proof in the Quantum Random Oracle Model (QROM) and being simpler. However, it cannot be directly applied to the public key encryption schemes described in the Classic McEliece and NTRU submissions, as they are deterministic and cannot satisfy the IND-CPA requirement from [18] and [19]. Therefore, our rationale for choosing FSXY is that it is
TABLE 1. Main features of the GAKE protocols claimed to be quantum-resistant.

Name	Type	Assumption	Authenticated	Static or Dynamic?	Compiled design?	Scenario	Users signatures	Instanciated with NIST KEM finalist?
Fujisaki et al. [1]	Protocol	Isogeny	✔️	Static	✗	Post-Quantum	✗	✗
Hougaard and Miyaji [2]	Protocol	Isogeny	✔️	Static	✔️	Post-Quantum	✔️	✗
Apon et al. [3]	Protocol	Lattice (RLWE)	✗	Static	✗	Post-Quantum	✗	✗
Choi et al. [4], [5]	Protocol	Lattice (RLWE)	✔️	Dynamic	✔️	Post-Quantum	✔️	✗
Choi et al. [6]	Protocol	Lattice (RLWE)	✗	Dynamic	✔️	Post-Quantum	✗	✗
Takahshima [7]	Protocol	Lattice (RLWE), Isogeny	✔️	Static	✔️	Post-Quantum	✔️	✗
Presicetti et al. [8]	Compiler	Inherited from KEM	✔️	Static	—	Post-Quantum	✔️	✗
Gonzalez et al. [9]	Compiler	Inherited from KEM	✔️	Static	—	Post-Quantum	✗	✗
Hougaard and Miyaji [10]	Compiler	Inherited from 2AKE	✔️	Static	—	Post-Quantum	✗	No
Escrivano et al. [11]	Protocol	Lattice (Modular LWE)	✔️	Static	✔️	Kyber	✗	✗

As every NIST finalist must include a KEM, this allows us to provide full and working implementations of our GAKE with all the finalists.

We have instantiated and implemented our GAKE protocol with the aforementioned four finalists from the NIST competition. Our implementations make use of the open-source library LibOQS and they cover the four KEMs and all the different parameter sets proposed for each one. We have conducted a performance analysis of the whole GAKE protocol and compared the different versions.

In addition, we have independently studied the performance of the different building blocks, including each of the KEMs. We consider this comparative performance analysis of the Round 3 finalists to be an interesting additional and independent contribution.

Finally, we provide performance figures comparing our GAKE implemented with Kyber to the GAKE presented in [11], which is also Kyber based but uses the \(F^{\text{NKE}} \) transformation ([18], [19]) to obtain the 2AKE. The GAKE in [11] is the only one in the previous literature, as far as we know, to have been implemented with one of the four KEM finalists from NIST competition.

C. PAPER ROADMAP

We start by providing some preliminaries in Section II, which will help the reader understand our GAKE design, subsequently depicted in Section IV. The security model we are considering is described in Section III and we provide a security proof for our protocol in Section IV. Section V describes the different implementation possibilities and gives a detailed explanation of our comparative experiments, which results are further analyzed in Section VI. We finalize with a brief summary of our conclusions in Section VII, which is followed by two appendices. Appendix A depicts a complete run of the GAKE protocol using Classic McEliece as a building block, whereas Appendix B shows some numerical results (linked to the graphics from Section VI).

II. PRELIMINARIES

A. ABDALLA ET AL.’S COMPILER: FROM 2-PARTY AKE TO GAKE

Here, we briefly describe the compiler due to Abdalla et al. ([14]), which derives a group authenticated key exchange protocol GAKE from an arbitrary 2-party key exchange protocol 2AKE. Abdalla et al.’s compiler only adds 2 additional rounds of communication to 2AKE, i.e., if 2AKE needs in \(r \) rounds to run, GAKE requires \(r + 2 \) rounds. Moreover, the compiler does not require any authentication method beyond the ones required by 2AKE. It only assumes that participants in GAKE are distributed on a ring, i.e., user \(U_i \) is aware of the identity of its left neighbour \(U_{i-1} \) and its right neighbour \(U_{i+1} \).

We denote with \(P \) the set of users that can participate in the protocol GAKE and with \(G \) the subset \(\{U_0, U_1, \ldots, U_{n-1}\} \subset \)
\mathcal{P} of $n \geq 2$ users that want to agree on a session key. A user U_i can run a polynomial number of (parallel) instances of GAKE. 2AKE assumes long-term authentication keys that have been established in a trusted authentication phase. It allows a pair of public/secret keys for each user U_i, a high entropy symmetric key, or a low entropy symmetric key, shared for each pair of users, and a common secret for all users.

The compiler depends on the following cryptographic tools: A non-interactive non-malleable commitment scheme \mathcal{C} that is perfectly binding and achieves non-malleability for multiple commitments, a collision-resistant pseudorandom function family \mathcal{F}, and a hash function \mathcal{H} selected from a family of universal hash functions.

We briefly describe the compiler (see details in [14]): in Round 1 $\sim r$, each user U_i runs 2AKE with U_i and U_{i+1}, obtaining two keys $\overrightarrow{K_i}$ and $\overleftarrow{K_i}$, shared with U_{i+1} and U_{i-1}. In Round $r + 1$, each user U_i computes a commitment $C_i = C(i, X_i, r_i)$, where $X_i = \overrightarrow{K_i} \oplus \overleftarrow{K_i}$ and r_i is chosen at random. U_i broadcast $M_i^1 = (U_i, C_i)$. Finally, in Round $r + 2$, each user U_j broadcasts $M_i^2 = (U_j, X_i, r_i)$, checks that $\bigoplus_{i=0}^{n-1} X_i = 0$ and the correctness of the commitments C_i. If any one of last two conditions fails, then user U_i ends the protocol at this point. Then, U_i computes the master key $K = (K_0, K_1, \ldots, K_{n-1}, \mathcal{G})$, where $K_{j,i} = \overrightarrow{K_i} \oplus X_{i-1} \oplus \cdots \oplus X_{i-j}$, $j = 1, 2, \ldots, n-1$.

U_i sets the session key sk_i and the session identifier sid_i, derived from \mathcal{F} and \mathcal{H}, respectively.

B. POST-QUANTUM KEMs

We instantiate both the 2AKE and the commitment scheme \mathcal{C} (needed for the compiler described in Section IV) from a post-quantum KEM. Next we recall the formal definition of a KEM: it is a triple of algorithms $\text{KEM} = (\text{KeyGen}, \text{EncCap}, \text{DeCap})$ such that:

- The probabilistic key generation algorithm $\text{KeyGen}(1^\ell)$ takes as input the security parameter ℓ and outputs a key pair (dk, ek).
- The probabilistic encapsulation algorithm $\text{EncCap}(ek; r)$ takes as input a public encapsulation key ek and outputs a ciphertext c and a key k. The value r corresponds to the random coins used by EncCap. We include it as an explicit input as we will need to refer to it in the description of our GAKE.

- The deterministic decapsulation algorithm $\text{DeCap}(dk, c)$ takes as input a secret decapsulation key dk and a ciphertext c and outputs a key k or \perp (meaning decryption failure).

We will consider the four Round 3 KEM finalists from NIST’s Post-Quantum standardization process. All of them target the IND-CCA2 security notion as required by NIST in its call for proposals, which is also usually named just IND-CCA; we will use the latter denomination throughout this paper. A KEM is considered to be IND-CCA secure if, given an encapsulated ciphertext and a key which is either the encapsulated key or a random one, an adversary (modeled as a probabilistic polynomial-time algorithm) with access to a decapsulation oracle is unable to distinguish between these two options with a probability non-negligibly better than a random guess. For a more formal definition see, for instance, [20].

Concerning the practical security strength of the candidates, NIST establishes 5 security levels ([21]). These security levels ask for resistance against attacks that use computer resources comparable to or greater than those required for key search against a block cipher or collision search for a certain hash function. More precisely, the security levels are summarized in Table 2.

Next, we briefly overview the four finalists KEMs. The full description of all the algorithms submissions to Round 3 can be found in the NIST webpage [22].

1) CLASSIC McEliece

Classic McEliece [23] is the only candidate based on codes. The KEM is built from an OW-CPA deterministic PKE, namely Niederreiter’s dual version of McEliece’s PKE, which uses binary Goppa codes ([24]). The Round 3 submission of McEliece comes with 5 different parameter sets, each one with two versions, depending on whether the parity check matrix of the code is reduced to systematic or semi-systematic form. The names of the parameter sets and their claimed security levels are shown in Table 3.

2) CRYSTALS-KYBER

Kyber [25], like two other finalists, NTRU and Saber, bases its security on a lattice problem, in this case, the Module learning with errors (MLWE) problem. The proposal is based on an IND-CPA PKE that allows decryption failures to occur with a negligible probability. Then, a modification of the Fujisaki-Okamoto transformation is used to obtain an IND-CCA KEM. The submission includes 3 different parameter sets pointing at NIST security levels 1, 3, and 5, respectively, depicted in Table 4.

3) NTRU

The NTRU submission for Round 3 is a merger of two different previous submissions, namely NTRUEncrypt and NTRU-HRSS-KEM ([26]), both based in the NTRU cryptosystem ([27]). Although the original NTRU was a partially correct probabilistic PKE, this submission starts
by defining a correct and deterministic PKE, which is assumed to be OW-CPA. Then an IND-CCA KEM is obtained from it by making small changes to the Saito-Xagawa-Yamakawa variant of NTRU-HRSS-KEM ([28]). The Round 3 submission proposes parameter sets which are shown in Table 5. The authors of the NTRU submission make two different estimations for the security level of their parameter sets, depending on whether the computation model is non-local or local. Details about these models and the motivation for differentiating the security levels depending on them can be found in the submission ([22]).

4) SABER
Saber (first proposed in [29]) is similar to Kyber, in the sense that the authors present in their Round 3 submission an IND-CPA PKE, and then they use a Fujisaki-Okamoto-like transformation to obtain an IND-CCA KEM. In addition, the PKE also comes with a negligible decryption failure probability, and the security is reduced to a lattice problem, in this case, the Module Learning With Rounding (MLWR) problem. The authors propose three different parameter sets for the KEM which are shown in Table 6 together with their claimed security levels.

C. FSXY: A GENERIC CONSTRUCTION FROM KEM TO POST-QUANTUM AKE

Generic transformations that convert secure KEMs into AKEs have been proposed in the standard model in [30] and [31]. These transformations give AKE protocols from IND-CCA secure KEM schemes using pseudorandom functions (PRFs). The resulting AKEs are proven secure in widely accepted security models, CK [32] and CK+ [31], respectively. Unfortunately, KEM schemes secure in the standard model are computationally inefficient for both classical and post-quantum communications.

In [17], Fujioka et al., proposed an efficient generic construction of AKE protocols from OW-CCA secure KEM schemes (which we denote by FSXY) by relaxing the security model to the Random Oracle Model (ROM). The resulting AKE protocols were proved to be CK+ secure in the ROM. Moreover, it was shown that the (ring-)LWE, McEliece one-way, NTRU one-way (among others) post-quantum assumptions can be used to construct secure AKE protocols. In addition, it was shown that by adapting the ROM in the security proof of the FSXY construction, the AKE protocols obtained from each post-quantum assumption become efficient on the communication cost.

The FSXY construction is as follows. Let $KEM_1 = (\text{KeyGen}_1, \text{EnCap}_1, \text{DeCap}_1)$ be a OW-CCA secure KEM and $KEM_2 = (\text{KeyGen}_2, \text{EnCap}_2, \text{DeCap}_2)$ be a OW-CPA secure KEM. Let ℓ be the security parameter $H_1: \{0, 1\}^\ell \rightarrow \text{RSE}$ and $H_2: \{0, 1\}^\ell \rightarrow \{0, 1\}^f$ be hash functions modeled as random oracles, where RSE is a randomness space. The random values r and r_1 are chosen from $\{0, 1\}^f(\ell)$, where f is a polynomial function of the security parameter. The two-pass key exchange protocol involving users U_A (the initiator) and U_B (the responder) is shown in Fig. 1.

The session state of a session owned by U_A contains an ephemeral secret key r and a KEM key K_A. Similarly, the session state of a session owned by U_B contains ephemeral secret keys (r_1, r_2) and KEM keys $(K_{B,1}, K_{B,2})$.

It was shown in [17] that if KEM_1 is OW-CCA secure, and if KEM_2 is OW-CPA secure, then the FSXY transformation is CK+ secure under the Random Oracle Model.

D. BUILDING THE COMMITMENT SCHEME FROM THE KEM

The compiler described in Section II-A requires as a building block, a non-interactive non-malleable commitment scheme that is perfectly binding and achieves non-malleability for multiple commitments. Such a commitment scheme is realized by applying the transformation proposed in [33] to a KEM scheme (in particular, any Post-Quantum KEM described in Section II-B) to obtain an IND-CCA PKE from the KEM. As pointed out in [14], the commitment scheme with the required security properties follows readily from the PKE.

Let $KEM = (\text{KeyGen}, \text{Encap}, \text{Decap})$ be a key encapsulation mechanism and let $\text{SKE} = (\text{Enc}, \text{Dec})$ be a one-time symmetric key encryption scheme (as defined in Section 7.2 of [33]). The key lengths of both primitives must be the same for any value of the security parameter ℓ. Then, a PKE scheme PKE is obtained as follows.

The key generation algorithm for PKE is the same as that of KEM, and, hence, the secret and public keys for PKE are the same as those of KEM. That is, PKE runs KeyGen and obtains (sk, pk), where sk and pk are the secret and public key, respectively.
The encryption algorithm for PKE runs as follows. Upon receiving a message m, PKE runs the encapsulation algorithm of KEM and obtains $(k, \xi) \leftarrow \text{EnCap}(pk; r)$, where k is a symmetric key, r are random coins, and ξ is a ciphertext encrypting k. The message m is encrypted using the key k and the encryption algorithm of SKE, $\nu \leftarrow \text{Enc}(k, m)$. The output of the encryption algorithm is $c = (\xi, \nu)$.

The decryption algorithm is defined as follows. Given a ciphertext $c = (\xi, \nu)$, PKE runs the decapsulation algorithm of KEM and obtains $k = \text{DeCap}(sk, \xi)$, and then runs the decryption algorithm of SKE with the key k to obtain $m = \text{Dec}(k, \nu)$. The output of the decryption algorithm is the plaintext m.

As shown in [33], the IND-CCA security of PKE is inherited from the IND-CCA security of KEM and SKE. As pointed out in [14], it is known that in the CRS model with a common reference string ρ, the required commitment schemes depending on ρ can be constructed from any public-key encryption scheme that is non-malleable and secure for multiple encryptions (in particular, from any IND-CCA secure public-key encryption scheme).

The approach in this section is usually known as the \textit{KEM-DEM paradigm}, where DEM stands for data encapsulation mechanism. Here the algorithm SKE plays the latter role, so we will usually refer to it as the DEM.

\section{Security Model}

In this section we present the security model under which our protocol is proven to be secure. The model is taken from [14] which is in turn based on the one from Bellare et al. [34]. We assume a fully connected communication network, that is, each pair of users are able to communicate through a point-to-point channel. We consider an active adversary who is in full control of the network: it has the power to eavesdrop, delay, insert or delete messages in communication flow at will.

\subsection{Protocol Instances}

Let $U_0, U_1, U_2, \ldots, U_{n-1}$ be the set of participants. Each of them may run any polynomial number of protocol instances in parallel. Given $i \in \{0, 1, \ldots, n - 1\}$ and $s_i \in \mathbb{N}$ we denote with $\Pi_{i}^{s_i}$ the s_i-th instance vinculated to user U_i. Each instance $\Pi_{i}^{s_i}$ has seven variables associated with it:
First we need a definition of several oracles during a security game (described later). The adversarial power is modelled by providing A

Definition 1: Instances Π_i^A and Π_j^B are partnered if $\text{pid}_i = \text{pid}_j$, $\text{sid}_i = \text{sid}_j$, $\text{sk}_i = \text{sk}_j$ and also $\text{acc}_i = \text{acc}_j = \text{true}$.

Against a passive adversary which does not interfere with protocol execution, all involved users should accept and end with the same session key. This is captured in the definition of correctness.

Definition 2: A group key establishment protocol is correct if, in the presence of a passive adversary A (that is, A does not have access to the Send and Corrupt oracles), the following condition holds: for all i,j with $\text{sid}_i = \text{sid}_j$ and $\text{acc}_i = \text{acc}_j = \text{true}$, we have $\text{sk}_i = \text{sk}_j \neq \text{null}$ and $\text{pid}_i = \text{pid}_j$.

The notion of integrity, introduced in [35], ensures that, even with adversarial intervention, honest users (meaning that Corrupt has not been queried on them) have some guarantees of holding the same key.

Definition 3: A correct group key establishment protocol is said to have integrity if, with overwhelming probability, all instances of honest participants that have accepted with the same session identifier sid_i hold the same session key sk_i and partner identifier pid_i.

Before providing the definition of a secure protocol we need to limit when a query to the Test oracle, to avoid trivial attacks from the adversary.

Definition 4: A Test query should only be allowed to instances holding a key that is not for trivial reasons known to the adversary. To achieve this, an instance Π_i^A is called fresh if none of the following condition holds:

- For some $U_j \in \text{pid}_i^A$ a query $\text{Send}(U_k, s_k, M)$ after a query $\text{Corrupt}(U_j)$.
- The adversary has queried $\text{Reveal}(U_j, s_j)$ with Π_i^A and Π_i^A being partnered.

The last notion we need before defining a secure group key establishment protocol is adversarial advantage.

Definition 5: Given a security parameter ℓ and an adversary A, the advantage $\text{Adv}_A(\ell)$ in attacking the protocol is a function in ℓ, defined as

$$\text{Adv}_A(\ell) = |2 \cdot \text{Succ} - 1|$$

where Succ is the probability that the adversary queries Test only on fresh instances and outputs correctly the bit b used by the Test oracle (without later breaking the freshness of those instances queried with Test).

Definition 6: We say that an authenticated group key establishment protocol is secure if for every adversary A we have that

$$\text{Adv}_A(\ell) \leq \text{negl}(\ell)$$

where negl is a negligible function.

IV. OUR GAKE CONSTRUCTION

In this section we describe our GAKE protocol for $n \geq 2$ users or parties $U_0, U_1, U_2, \ldots, U_{n-1}$. They are organized in a cycle: each user U_i has as his left neighbour U_{i-1} and as his right neighbour U_{i+1}. The indices are taken modulo n, so U_n...
means U_0 and U_{-1} means U_{n-1}. We assume that each user is aware of his index and the rest of the indices identifying the other users of the protocol.

For the construction of the GAKE we use the following primitives:

- **KEM** = (KeyGen, EnCap, DeCap) is an IND-CCA KEM.
- **SKE** = (Enc, Dec) is an one-time symmetric key encryption scheme used as a DEM.
- **H** is a hash function (theoretically modeled as a random oracle).

To obtain the GAKE, we feed the tools described in Sections II-A, II-C and II-D with these primitives (Fig. 2). First we instantiate a 2-party AKE with the FSXY transformation from Section II-C, using KEM as both KEM₁ and KEM₂. Note that the security notion IND-CCA is well known to imply both the OW-CPA and OW-CCA requirements for KEM₁ and KEM₂. The resulting 2AKE satisfies the strong security notion CK⁺ ([31]), which is enough for the compiler described in Section II-A. We would like to stress that, as pointed out in [35], an integrity property is also needed for 2AKE in order to attain the claimed security notion. It is a straightforward conformation that the 2AKE obtained from FSXY has integrity because of the way session identifiers are computed. The other ingredient needed for the compiler is a commitment scheme, which is also obtained from KEM as described in Section II-D. Note that all the KEMs enumerated in Section II-B fulfill the IND-CCA security and can be used in our construction. Finally, the hash function H is used to derive session identifiers and keys, both in the 2AKE and the final step of the protocol. It is worth pointing out that the resulting GAKE achieves security in the model described in Section II-A, which covers strong adversaries that are in full control of the communication network and may delay, eavesdrop, insert, and delete messages at will.

Next, we describe the resulting GAKE protocol which is composed of 4 rounds of communication:

Init: Each U_i is assumed to hold a pair (dk_i, ek_i) generated with KeyGen. Here ek_i is the long-term public encapsulation key for U_i and is assumed to be certified and known by the rest of the users, whereas dk_i is the long-term secret decapsulation key for U_i.

Round 1-2: For each $i \in \{0, 1, \ldots, n-1\}$ the 2AKE is run between U_i and U_{i+1}. The two rounds are as follows:

Round 1: Each U_i follows these steps:
- Generates randomness $\overrightarrow{r_i} \leftarrow \{0, 1\}^{|\ell|}$.
- Generates encapsulated key $\overrightarrow{(C_i, \overrightarrow{k_i})} \leftarrow \text{EnCap}(ek_{i+1}; H(\overrightarrow{r_i}, dk_i))$.
- Generates an ephemeral key pair $(dk_i, ek_i) \leftarrow \text{KeyGen}()$.
- Sends $(U_i, U_{i+1}, \overrightarrow{C_i}, ek_i)$ to U_{i+1}.

Round 2: Each U_i follows these steps:
- Generates randomness $\overrightarrow{r_i} \leftarrow \{0, 1\}^{|\ell|}$ and $\overrightarrow{\rho_i} \leftarrow \text{RSE}$.
- Generates encapsulated key $\overrightarrow{(C_i, \overrightarrow{k_i})} \leftarrow \text{EnCap}(ek_{i-1}; H(\overrightarrow{r_i}, dk_i))$.
- Generates another encapsulated key $\overrightarrow{(\overrightarrow{T_i}, \overrightarrow{\lambda_i})} \leftarrow \text{EnCap}(ek_{i-1}; \overrightarrow{\rho_i})$.
- Sends $(U_{i-1}, U_i, \overrightarrow{C_i}, \overrightarrow{T_i})$ to U_{i-1}.

After receiving Round 2 message from U_{i+1} each U_i:
- Decapsulates the keys $\overrightarrow{\kappa_{i-1}}, \overrightarrow{\kappa_{i+1}}, \overrightarrow{\lambda_{i+1}}$ from received messages.
- Sets $\overrightarrow{\text{sid}} = (U_{i-1}, U_i, ek_{i-1}, ek_i, \overrightarrow{C_{i-1}}, \overrightarrow{C_i}, \overrightarrow{T_i})$.
- Computes key (shared with U_{i-1}) $\overrightarrow{\kappa_i} = H(\overrightarrow{\kappa_{i-1}}, \overrightarrow{\kappa_i}, \overrightarrow{\lambda_i}, \overrightarrow{\text{sid}})$
- Sets $\overrightarrow{\text{sid}} = (U_i, U_{i+1}, ek_i, ek_{i+1}, \overrightarrow{C_i}, \overrightarrow{C_{i+1}}, \overrightarrow{T_{i+1}})$.
Computes key (shared with U_{i+1})

$$\overline{K}_i = H(\overline{k}_i, \overline{K}_{i+1}, \overline{X}_{i+1}, \overline{sid}).$$

Round 3: Each U_i follows these steps:
- Computes $X_i = \overline{K}_i \oplus K_i$.
- Generates randomness $r_i' \leftarrow RSE$ for KEM and a random IV_i for DEM.
- Generates encapsulated key $(C_i, \kappa_i) \leftarrow \text{EnCap}(ek_i; r_i')$.
- Sets commitment to $com_i = (C_i, C_i)$ and stores randomness $r_i = (IV_i, r_i')$.
- Broadcasts $M_{i}^{0} = (U_i, com_i)$.

Round 4: Each U_i follows these steps:
- Broadcasts $M_{i}^{1} = (U_i, X_i, r_i)$.
- Checks that $X_0 \oplus X_1 \oplus \cdots \oplus X_{n-1} = 0$ and the correctness of the commitments. If any of these conditions fails, then U_i ends the protocol execution.
- Computes the $n-1$ values K_j for $j = 0, 1, 2, \ldots, n-1$ with $j \neq i$,

$$K_{i-j} = \overline{K}_i \oplus X_{i-1} \oplus \cdots \oplus X_{i-j}.$$

- Defines session key sk_i and session identifier sid_i as

$$(sk_i||sid_i) = H(K_0, \ldots, K_{n-1}, U_0, \ldots, U_{n-1}).$$

Next, we provide some comments pointing out differences between the compiler described in Section II-A and our implementation and also explaining some design choices and protocol steps in more detail:

- The input of KeyGen() in the asymptotic description of the KEM is the security parameter. In our implementation, KeyGen() outputs keys of fixed length for each KEM and parameter set, so it has no input. The sets $\{0, 1\}^{||}$ and RSE are the randomness spaces described in Section II-C.

- To compute the commitment com_i to X_i, first an encapsulated key k_i is generated with EnCap. Then the message $i||X_i$ (where $||$ denotes concatenation) is encrypted with Enc using key k_i. The randomness r_i used by EnCap needs to be stored by U_i to open the commitment in the next round. Therefore we needed to modify EnCap for each KEM in our implementation to make the randomness an explicit output of the algorithm instead of being generated by the algorithm itself.

- The verification of the commitments in Round 4 is done by recovering the key k_i from r_i with EnCap, then generating a new commitment com_i' with X_i and r_i and checking that com_i and com_i' are equal.

- In the original compiler, the final key and session identifier derivation is done with a collision-resistant pseudorandom function family. The reason for using this tool is that, if the 2AKE has a security proof in the standard model, the compiled GAKE is also secure in the standard model. As the FSXY transformation already uses a hash function, our GAKE is only secure in the random oracle model, so we have chosen to simplify the compiler and use the same hash function for key and session identifier derivation.

- The hash function we have chosen in our implementation has output length which is double of the GAKE session key length. So the hash value $H(\overline{K}_0, \overline{K}_1, \ldots, \overline{K}_{n-1}, U_0, U_1, \ldots, U_{n-1})$ is computed and sk_i is set to be the first half of this value and sid_i is set to be the second one.

A. SECURITY OF OUR PROPOSED GAKE PROTOCOL

Next we prove a security result for our protocol under the security model described in Section III.

Theorem 1: In the random oracle model, the protocol presented in Section IV is a correct and secure authenticated group key establishment protocol fulfilling integrity.

Proof: We follow the security proof of Theorem 1 in [14].

Correctness. It is easily verified that in an honest execution of the protocol, all participating users will terminate by accepting and computing the same session identifier and session key.

Integrity. As a consequence of the collision-resistance of the random oracle H, all oracles that accept with the same session identifiers also hold, with overwhelming probability, identical session keys K_0, \ldots, K_{n-1} and associated these keys with the same participants U_0, \ldots, U_{n-1}.

Key secrecy. The proof of the secrecy is organized in a sequence of games, starting with a real attack of an adversary A against the key secrecy of the GAKE protocol and ending in a game in which the advantage of the adversary is negligible. The idea is that we can bound the difference of the adversary’s advantage between any two consecutive games. We denote the advantage of the adversary in Game i, as usual, by $\text{Adv}(A, G_i)$. For the sake of clarity, we classify the Send queries into three categories depending on the stage of the protocol to which the query is associated. More precisely, Send denotes the Send query associated with round t.

The first three games of this proof coincide with the same as those in Theorem 1 of [14]. Here we summarize the bounding of the adversary’s advantage and refer the interested reader to the original paper for the details.

Game 0. In this game, a real attack is performed by the adversary A, in which all the parameters such as the public parameters and the long-term secrets of each user are chosen as in the actual scheme. By definition we have $\text{Adv}(A, G_0) = \text{Adv}(A)$.

Game 1. For $i = 0, 1, \ldots, n-1$, we modify the simulation of the Send and Execute oracles so that whenever an instance Π_i^0 is still considered fresh at the end of Round 2, the keys \overline{K}_i and \overline{K}_i that it shares with instances Π_{i-1} and Π_{i+1}, respectively, are replaced with random values from the range of the random oracle H.

It is not difficult to see that the difference between the advantage of this game and the previous one is bounded by the probability that the adversary breaches the security of any of the underlying 2AKE protocols executions. Therefore,
we have
\[|\text{Adv}(A, G_1) - \text{Adv}(A, G_0)| \leq 2 \cdot \text{Adv}_{2\text{AKE}}(\ell, 2 \cdot q_{\text{send}}), \]
where \(q_{\text{send}} \) denotes the number of distinct protocol instances in Send queries.

Game 2. Here, the simulation of the Send oracle is modified so that a fresh instance \(\Pi_j^0 \) does not accept in Round 4 whenever one commitment \(\text{com}_j, j \neq i \) it receives in Round 3 was generated by the simulator but not generated by the respective instance \(\Pi_i^0 \) in the same session.

If the adversary \(A \) replays a commitment that should have let to acceptance in Round 4 in Game 1, then \(A \) detects the difference between this and the previous games. Therefore,
\[|\text{Adv}(A, G_2) - \text{Adv}(A, G_1)| \leq \text{negl}(\ell). \]

Game 3. In this game, the simulation of the Send oracle changes so that a fresh instance \(\Pi_j^0 \) does not accept in Round 4 whenever one commitment \(\text{com}_j, j \neq i \) it receives in Round 3 was generated by the adversary. The advantage of the adversary differs from the previous game by a negligible amount, that is,
\[|\text{Adv}(A, G_3) - \text{Adv}(A, G_1)| \leq \text{negl}(\ell). \]

Game 4. Here the simulations of the Execute and Send oracles are modified at the point of computing the session key. On one hand, in this game, all session keys are chosen uniformly at random and the adversary has no advantage. Hence,
\[\text{Adv}(A, G_4) = 0. \]

On the other hand, the simulator keeps a list of strings \((K_0, \ldots, K_{n-1}, U_0, \ldots, U_{n-1})\) and once an instance receives the last Send-4 query, the simulator computes \(K_0, \ldots, K_{n-1} \) and checks if for the corresponding string \((K_0, \ldots, K_{n-1}, U_0, \ldots, U_{n-1})\) has already been used. If this is the case, the simulator assigns the corresponding string to the instance. If no such strings exist, the simulator assigns a session key \(sk_j^0 \in \{0, 1\}^l \) uniformly at random. Note that even if the messages from Round 4 are sent out, the list of strings still contains sufficient entropy so that the output of the random oracle \(H \) is indistinguishable from a random \(sk_j^0 \) with overwhelming probability. Consequently,
\[|\text{Adv}(A, G_4) - \text{Adv}(A, G_3)| \leq \text{negl}(\ell). \]

Together, all the bounds obtained in the games imply that
\[\text{Adv}(A) \leq 2 \cdot \text{Adv}_{2\text{AKE}}(\ell, 2 \cdot q_{\text{send}}) + \text{negl}(\ell). \]

\[\Box \]

V. IMPLEMENTING THE GAKEs

In the following, we describe the implementation of the GAKE protocol, which is publicly available at https://github.com/jiep/pq-gake-fsxy. To do so, we describe separately each of the building blocks that make up the protocol.

A. BUILDING BLOCKS

1) KEM

The KEMs are taken from the open-source library LibOQS ([37]). It provides all the finalist implementations submitted to the NIST standardization process.\(^2\) It has been developed by the Open Quantum Safe project, which aims at prototyping and experimenting with post-quantum cryptography, but as of today, it is not production-ready. It is written in C99 and its advantages include:

- Dynamic management of the KEMs, making it possible to exchange one for the other without the need to modify the code of the protocol.
- Building the library with only the KEM implementations that are needed in the application.
- Easy cross-compilation.
- Provides common functions (e.g. hash and random bits functions, among others).

LibOQS provides 10 parameter sets for Classic McEliece, 3 for Kyber,\(^3\) 4 for NTRU, and 3 for Saber. Table 7 shows the key sizes (public and secret), the size of the shared secret and ciphertext, as well as the claimed security level and security model of all parameter sets in LibOQS. It can be noted that the public key size of Classic McEliece is several orders of magnitude larger than the other KEMs. On the other hand, the ciphertext size is smaller than the other finalists in the standardization process.

Two different implementations come from each parameter set: the reference implementation (called ref, clean, or vec by the KEMs) and the optimized implementation (named avx2 or avx). All information on these implementations can be found in Table 8. It can be noted that the reference implementations do not present any architecture or operating system limitation, whereas the optimized implementation runs only on the x86_64 architecture for macOS and Linux operating systems. It is noteworthy that the Classic McEliece implementations have large stack usage and may cause failures when run on threads or in constrained environments ([36]).

The KEM is the basic building block on which the subsequent ones depend.

2) 2-PARTY AKE

The 2AKE has been implemented by following the FSXY transformation of Fig. 1. It has been split into three algorithms:

- \(\text{Init} \): the algorithm that runs \(U_A \) at the beginning of the protocol and outputs message \(M \).
- \(\text{AlgB} \): the algorithm that runs \(U_B \) by taking the message \(M \) and outputs the message \(\overline{M} \) and the session key \(sk \).

\(^2\) It also provides all the implementations of the finalist digital signatures, but for the implementation of this protocol, they are not required.

\(^3\) It provides 6 parameter sets, but the so-called 90s variants will not be considered because they are intended for legacy hardware and do not support SHA-3, and our implementations depends on it.
AlgA: the algorithm that runs U_A at the end of the protocol by taking as input the message \overrightarrow{M} and outputs the session key SK.

Note that Init corresponds to Round 1 of our GAKE description in Section IV whereas AlgB and AlgA constitute Round 2.

In the implementation, $KEM_1 = KEM_2$ and the hash functions H_1 and H_2 are SHA3-256 provided by LibOQS.

3) COMMITMENT SCHEME

The commitment scheme has been implemented as an IND-CCA PKE with the KEM/DEM approach (see details in Section II-D), with the KEM being any of those implemented in LibOQS and the DEM being set to AES256-GCM imported from OpenSSL 1.1.1f ([38]). The commitment is given by the ciphertext of the KEM and the tag of the DEM. The randomness r_i is given by the coins of the KEM and the tag of the DEM. The randomness r_i is given by the coins of the KEM and the tag of the DEM. Note that in Round 4 of the GAKE protocol, r_i is broadcast, so it was required to modify all LibOQS implementations (see Table 8) to make the KEM deterministic to preserve the randomness.

Three algorithms are implemented:

- Init allocates space for KEM and DEM ciphertexts.
- Commit creates a commitment as described in Section II-D.
- Check creates a commitment and checks if it is equal to a commitment created previously.

B. GAKE PROTOCOL

The GAKE protocol has been implemented using the aforementioned building blocks. All hash functions come from the SHA-3 hash functions implemented in LibOQS. In addition, the implementation assumes a zero-delay communications network.

The protocol allows for a polynomial number of instances running in parallel. Hence, certain variables are required to keep the state of the instance. These are inherited from the Abdalla et al.’s compiler ([14]):

- public_key contains authentication public key.
- secret_key contains authentication secret key.
- pid contains the user identifiers U_i that are involved in the protocol instance.
- sk is the session key. Its size is 32 bytes. By default, its value is set to 0^{256}.
- sid is the public identifier for sk. Its size is 32 bytes.
- $term$ is a boolean variable that indicates whether an instance has terminated. In the implementation, 0 indicates false and 1, true.
- acc is a boolean variable that indicates whether an instance has been accepted.
- Other variables that contain all the needed values for the protocol (e.g. $\overrightarrow{K_i}$, $\overrightarrow{K_j}$, X_i, r_j, K, etc.).

1) INIT

During the Init phase, all parties generate their long-term authentication keys, and all the public keys are assumed to be known by the rest of the users.

2) ROUND 1-2

During Round 1-2, two types of messages are exchanged:

- Message \overrightarrow{M} contains a public key, a ciphertext, and U_A and U_B. The size of U_A and U_B is set to 20 bytes.
- Message \overrightarrow{M} contains two ciphertexts, as well as U_A and U_B. Their size depends on the KEM in use (see Table 7).
3) ROUND 3
During Round 3, the messages $M^i_1, i = 0, \ldots, n - 1$, are broadcast to all other users. The message M^i_1 contains the user identifier U_i, the KEM ciphertext, and the DEM ciphertext and tag. The randomness r_i keeps the coins of the KEM and the IV of the DEM. The size of U_i is set to 20 bytes and to encrypt $i || X_i$, 36 bytes are needed ($|X_i| = 32$ and $|i| = 4$). The tag size is 16 bytes.
4) ROUND 4
In Round 4, \(n \) messages \(M_i^2 \) are broadcast. The message contains \(U_i \) and the randomness \(r_i \) (coins of the KEM and IV of the DEM). The size of \(X_i \) is 32 bytes and the IV is 12 bytes. The size of coins depends on the KEM being used (see Table 7).

The session key \(sk \) and \(sid \) is generated from master key \(K \) with SHA3-512, where first 32 bytes are set to be the \(sk \) and last 32 bytes are set to be the \(sid \).

Fig. 3 shows a run of GAKE protocol for Kyber1024 and Classic-McEliece-8192128f with 100 parties. See Appendix A for a complete run of the protocol.

C. BENCHMARKING ENVIRONMENT

A workflow has been developed on GitHub Actions that allows reproducing the experiments in an isolated environment. The workflow is described in Fig. 4 and includes all the required steps from building the GAKE protocol binaries to executing them and obtaining the experimental results. The workflow runs on an Ubuntu 20.04 runner hosted on GitHub Actions and consists of 4 steps:

1) Build: It builds all the binaries and the libraries they depend on. Fig. 5 shows the complete process. A custom library is built from the LibOQS v0.7.0 library ([37]). In it, all the KEM implementations have been modified to be deterministic to keep the randomness of the commitment scheme. Its building has been automated with CMake by enabling the options \(-\text{DOQS_DIST_BUILD} = \text{ON} \) and \(-\text{DOQS_MINIMAL_BUILD} = "\{\text{ENABLED_ALGS}\}"\), where \text{ENABLED_ALGS} is an array that enables desired KEMs (see details in [36]). It enables only the algorithms specified in the LibOQS library in Table 7. In addition, OpenSSL 1.1.1f is statically linked, which is a dependency required by LibOQS. With the options enabled, a static library is built and gcc has been used as the C compiler.

B The GAKE protocol code is built with CMake and gcc as in the previous step. The latter uses the \(-\text{O3} \) and \(-\text{fwrapv} \) options. The custom LibOQS library and OpenSSL 1.1.1f are statically linked. The latter is used to implement AES256-GCM in the commitment scheme. A series of tests with ctest is launched to guarantee that the generated binaries work properly. These include the correct functioning of all the building blocks that integrate the GAKE protocol: AES256-GCM, the AKE, the commitment scheme, and the implementation of the GAKE protocol itself for each of the KEM implementations in LibOQS.

2) Run tests: This step measures the performance of each of the building blocks of the GAKE protocol. Performance is measured in terms of the number of CPU cycles and execution time. For this purpose, we used the LibOQS header ds_benchmark.h available at https://github.com/open-quantum-safe/liboqs/blob/0.7.0/tests/ds_benchmark.h. It implements two macros to measure performance:

- \text{TIME_OPERATION_ITERATIONS}: It executes a piece of code for a given number of iterations.
- \text{TIME_OPERATION_SECONDS}: It executes a piece of code for a given number of seconds.

All experiments are run with the former macro. This step is run on a self-hosted runner with Ubuntu 20.04 on WSL2 ([39]) under Windows 10 on with specifications given in Table 9. This was done with this approach because runners hosted on GitHub Actions can only run for a maximum of 6 hours ([40]), which is not enough time to run all the necessary experiments.

The tests defined in this step are:

- \text{test_speed_kem}: This test measures the performance (in CPU cycles and execution time) of each KEM implemented in LibOQS (see Table 7). Key generation, encapsulation, and decapsulation are measured separately. The result of this test is an average of 10000 iterations.
- \text{test_speed_ake}: It measures the performance of the FSXY transformation for each of the KEMs implemented in LibOQS. Each algorithm of the transformation is measured independently.
The result is an average of the execution of 10,000 iterations.

- **test_speed_commitment**: It measures the performance of the commitment scheme for each of the KEMs implemented in LibOQS. The DEM is always fixed to AES256-GCM. 10,000 iterations are run to measure the performance of key generation, generate a commitment and check it.

- **test_speed_gake**: It measures the performance of the GAKE protocol for each of the KEMs implemented in LibOQS based on the number of parties, \(n \), running the protocol. It is run for \(n = 2, 2^2, \ldots, 2^{11} = 2048 \). In addition, the performance of each round of the protocol is measured separately.

All of the tests above generate tables that are converted to CSV format to be processed in the subsequent steps.

3) **Generate graphics**: This step generates the graphics of Section VI. The graphics are plotted with Python and the seaborn visualization library ([41]). All graphics are saved in png format.

4) **Release**: It creates a new release on GitHub and uploads all the data that has been generated during the workflow, which was stored in Artifacts on GitHub Actions ([42]): binaries, graphics, and CSV files.

VI. EXPERIMENTAL RESULTS: COMPARISON AMONG THE FOUR KEMs

In this section, we compare the experimental results achieved from the aforementioned tests. More precisely, we present the results of the tests described in Section V-C. For each of the four KEMs and each security level, we compare the performance of all the cryptographic primitives involved, including all the underlying operations (algorithms) of each of them. Namely, KEM, the two-party AKE, the commitment scheme and, finally, the GAKE protocol. Note that we only compare the optimized implementation of each parameter set (see Table 8). Numerical results can be found in Appendix B.

Fig. 6 shows the performance of each KEM operation for each security level. It can be observed that, for all security levels, the **KeyGen** algorithm is significantly slower on Classic McEliece than on the other KEMs. This is caused by the huge size of the keys in Classic McEliece (see Table 7). The **Encaps** algorithm does not show significant differences, whereas the **Decap** algorithm does show this difference Classic McEliece vs. other KEMs, but it is not as meaningful as in the case of the **KeyGen** algorithm.

Fig. 7 shows the performance of the AKE achieved from the FSXY transformation (Fig. 1). It can be seen that, for...
each security level and each AKE algorithm, the performance difference between Classic McEliece and the rest of the schemes is significant. This is because the AKE is KEM dependent, with the KeyGen and Decap algorithms being slower in Classic McEliece than in the other KEMs.

Concerning the commitment scheme (Fig. 8), Classic McEliece is faster during the Init algorithm. This is mainly because Classic McEliece ciphertexts are smaller than the rest (see Table 7). The Commit and Check algorithms perform better with NTRU, at any security level.

Fig. 9 shows the performance of the GAKE protocol in each round. The Init round initializes the structure and variables needed to store the state of the protocol instance. It can be observed that Kyber is noticeably more efficient than the rest of the schemes, at any security level. In Round 1-2 (AKE) and Round 3 (commitment generation), the same applies: Kyber parameter sets offer the best performance. Finally, in Round 4 (commitment checking, master key derivation, and session key generation) the performance at security level 1 is very similar among the parameter sets. The most efficient is NTRU-HPS-2048-677 for level 3 and NTRU-HPS-4096-821 for level 5.

Fig. 10 shows the performance of the GAKE protocol as a function of the number of parties participating in the protocol. It can be noted that, at all security levels, Classic McEliece is significantly less efficient than the rest of the KEMs and this is found to worsen as the number of parties in the protocol increases. The most efficient at security level 1 is Kyber 512, at level 3 is NTRU-HRSS-701, and at level 5 is Kyber1024.
In this section, we compare experimentally the performance of the FSXY transformation described in Section II-C with the FOAKE transformation ([18], [19]) used in [11] on Kyber. The latter is a novel transformation analogous to FSXY, i.e., it derives a secure two-party AKE from another cryptographic primitive (in this case, from an IND-CPA public-key novel encryption scheme). FOAKE is proved to be secure in the QROM, but it cannot be applied to just any KEM, only to those that satisfy several properties (see details in [19] and [11]). It is shown in [11] that it can be applied to Kyber. Table 10 shows a theoretical comparison between FSXY and FOAKE transformations. The FOAKE transformation consists of 2 messages in the same way as the FSXY transformation, but the former sends messages \overrightarrow{M} and \overleftarrow{M} that do not contain U_A and U_B, which, consequently, produces messages of a smaller size. As in Section VI,

Table 10. Theoretical comparison between FSXY and FOAKE transformations.

Property	FSXY	FOAKE
Security model	ROM	QROM
Initial cryptographic primitive	IND-CCA KEM	IND-CCA public-key encryption scheme
Transformation result	Secure 2-party AKE	Secure 2-party AKE
Additional hypothesis on the initial primitive?	No	Yes. Disjoint Simulatability [18], [19]
Sent messages	2	2, but shorter

In this section, we provide experimental comparisons between the performance of the the FSXY transformation described in Section II-C with the FOAKE transformation ([18], [19]) used in [11] on Kyber.
we compare the performance of all the involved operations of each security level of Kyber.

Fig. 11 shows the comparison between both transformations with Kyber. It can be seen that the \(FO_{AKE} \) transformation performs better than \(FSXY \). The results show that, if Kyber is applied as KEM on this GAKE protocol, \(FO_{AKE} \) should be considered instead of \(FSXY \) providing, in addition, a higher level of security by being secure in the QROM.

VII. CONCLUSION

This paper shows the performance of a post-quantum key authenticated key exchange (GAKE) protocol constructed by applying the generic \(FSXY \) transformation to the all NIST finalist post-quantum KEMs. The protocol has been implemented with LibOQS, an open-source library that provides all the finalist KEMs of the NIST standardization process. We show experimentally that Classic McEliece is not suitable in this GAKE because it is significantly slower than the other KEMs. The most appropriate KEM for security level 1 is Kyber 512, for level 3 is Kyber768 and NTRU-HRSS-701, and, for level 5 is Kyber1024. In addition, the \(FO_{AKE} \) transformation is compared against \(FSXY \) on Kyber, showing that the latter is significantly faster than \(FSXY \) and provides a higher level of security by being QROM secure. This last result is especially noteworthy considering that Kyber is the first post-quantum KEM that will be standardized by NIST.

APPENDIX A

COMPLETE RUN OF THE GAKE PROTOCOL

Here, we show a complete run of GAKE protocol with Classic-McEliece-8192128f for 3 parties (for brevity).
J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum CAKE With the LibOQS Library
Commitments:
c0: 00
cl: 00
c2: 00
Master Key:
k0: 00
kl: 00
x2: 00
Pids:
pid0: Party 0
pid1: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 2
Public key: 82ba5d6099df021b00932...354e329a95e3ed5d87
Secret key: ffe16d5a10b18b3b2c8c...37e996644c8de670c2b
Left key: 2f055bd8d8e460e5358...7a007e4e7d118e59f
Right key: 9b9d417f0d79771b3a...14a4fda239588e9c66
Session id: 00
Session key: 00
X:
x0: 00
x1: 00
x2: 00
Coins:
r0: 00
r1: 00
r2: 00
Commitments:
c0: 00
cl: 00
x2: 00
Master Key:
k0: 00
kl: 00
k2: 00
Pids:
pid0: Party 0
pid1: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Round 3
Party 0
Public key: ef36ce9975ef95084a00...3af8707e36c6f28625c
Secret key: 7786f299723d3f6b93e7...1851e6954bab7493627
Left key: 981a6417d6b407971a3...1a4a9fda239588e9c66
Right key: 2a88fa68d1035adebe37d...226727415e4563d113
Session id: 00
Session key: 00
X:
x0: 3395e2930eb1a9a2bd2e...3bec3b897d1107238955
x1: 84899b5bcb4cd4c5d9252...a8e720a519e9e23d40c
x2: b7c1c3f8b237657222f...930498364f489005a9
Coins:
r0: 00
r1: 00
r2: 00
Commitments:
c0: 00
cl: 00
cl: 00
Master Key:
k0: 00
kl: 00
k2: 00
Pids:
pid0: Party 0
pid1: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 1
Public key: Daa123ba6c84a03f87b...ba9a4a03b57074e575f
Secret key: e2e2de6632a67b5...2e2d230945e3e2eb6
Left key: ab88fa68d1035adebe37d...226727415e4563d113
Right key: 2f065d46d8e60e5358...7a007e4e7d118e59f
Session id: 00
Session key: 00
X:
J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

Round 1-2
Party 0
Public key: c63c3c95f5e9508d00...3f98778e3c628e25c
Secret key: 77d6d9c3d5e6b39e7...18d1e69f54bab7439627
Left key: 983a6417d9b9407971a3...14a49fda239588e9c6
Right key: ab8f568da035abc37d...2f6727415e485f2d1193
Session id: 00
Session key: e00
X:
X0: 00
X1: 00
X2: 00
Coins:
r0: 00
r1: 00
r2: 00
Commissions:
c0: 00
C1: 00
C2: 00
Master Key:
k0: 00
k1: 00
k2: 00
Pids:
pid0: Party 0
pid1: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0

Round 1-2
Party 1
Public key: 0a9129ba6c64803f87b...baa4a03b57075e755fe
Secret key: 6b8ae20e2e4632ae67b5...2ed2399845ca526ba6
Left key: ab8f6544d1035abc37d...2f6727415e485f2d1193
Right key: 2f605b9d706e5358...87a074476d18ec59f
Session id: 00
Session key: e00
X:
X0: 00
X1: 00
X2: 00
Coins:
r0: 00
r1: 00
r2: 00
Commissions:
c0: 00
C1: 00
C2: 00
Master Key:
k0: 00
k1: 00
k2: 00
Pids:
pid0: Party 0
pid1: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
APPENDIX B

NUMERICAL RESULTS OF TESTS

Tables 11–18 show numerical results for each graphic shown in Section VI.

TABLE 11. CPU cycles for each operation on KEM.

Parameter set	decaps	encaps	keygen
Classic-McEliece-348864	123636	39442	35020985
Classic-McEliece-460896	123316	39679	42829701
Classic-McEliece-460897	357779	75205	10163568
Classic-McEliece-668812	351315	75432	77796873
Classic-McEliece-668813	382416	124901	142221367
Classic-McEliece-668818	384330	180361	222641603
Classic-McEliece-690119	349284	122261	131269058
Classic-McEliece-690128	347672	123114	89402713
Classic-McEliece-812128	380697	136072	134511827
Classic-McEliece-812128	392884	136633	973372927
FireSaber-KEM	94797	98948	91801
Kyber1024	51014	70850	57722
Kyber512	22730	33506	28819
Kyber68	35993	53185	43089
LightSaber-KEM	39431	43959	42212
NTRU-HPS-2048-509	29134	31251	134086
NTRU-HPS-2048-677	42862	42405	217540
NTRU-HPS-4096-821	53396	48300	799511
NTRU-HRSS-701	45244	30143	209976
Saber-KEM	63544	68726	63409

TABLE 12. CPU cycles for each operation on AKE.

Parameter set	algA	algB	init
Classic-McEliece-348864	858059	858736	32393667
Classic-McEliece-348864	8569345	8612752	243414602
Classic-McEliece-460896	17700937	17730416	931398068
Classic-McEliece-460896	19521974	20018038	767502668
Classic-McEliece-668812	41542425	40623605	1476796001
Classic-McEliece-668812	21021351	37142750	1063334356
Classic-McEliece-690119	35253033	35449125	130841572
Classic-McEliece-690119	35693068	35588478	9586935355
Classic-McEliece-812128	47284442	44764384	1346369051
Classic-McEliece-812128	46678824	40703072	958258184
FireSaber-KEM	252384	382050	220898
Kyber1024	157702	275832	152475
Kyber512	74852	132841	75748
Kyber68	116833	208207	112594
LightSaber-KEM	106402	171794	102198
NTRU-HPS-2048-509	85414	132512	176955
NTRU-HPS-2048-677	125943	184092	276924
NTRU-HPS-4096-821	156025	214513	364665
NTRU-HRSS-701	137014	166123	265199
Saber-KEM	173708	269199	156085
TABLE 13. CPU cycles for each operation on the commitment scheme.

Parameter set	check	commit	init
Classic-McEliece-348864	29197	26110	504
Classic-McEliece-348864f	27409	26154	507
Classic-McEliece-460896	46800	46610	579
Classic-McEliece-460896f	44406	44034	631
Classic-McEliece-6688128	83966	83803	721
Classic-McEliece-6688128f	87638	79644	730
Classic-McEliece-6960119	87490	87024	529
Classic-McEliece-6960119f	87350	87096	685
Classic-McEliece-8192128	99463	106419	522
Classic-McEliece-8192128f	116952	108657	752
FireSaber-KEM	95846	97015	3376
Kyber1024	64164	63844	3499
Kyber512	29839	29204	1531
Kyber768	50658	50824	2653
LightSaber-KEM	39516	39006	1710
NTRU-HPS-2048-509	18166	17824	1740
NTRU-HPS-2048-677	26137	25647	2118
NTRU-HPS-4096-821	29673	29643	2850
NTRU-HRSS-701	21728	21212	2669
Saber-KEM	64943	64084	2503

TABLE 14. Time (in us) for each round on GAKE protocol.

Parameter set	\(n\)	init	round12	round3	round4
Classic-McEliece-348864	2	615431324	1696747143	214368	118846
Classic-McEliece-348864	4	1583603828	2869072109	490660	78044
Classic-McEliece-348864	8	2367403159	850125364	719104	195208
Classic-McEliece-348864	16	858591986	1920440006	1279658	8055160
Classic-McEliece-348864	32	1554079507	1355677857	263843	4554024
Classic-McEliece-348864	64	2818234753	679532571	5516502	20208740
Classic-McEliece-348864	128	4010991978	2435017956	12636566	834462290
Classic-McEliece-348864	256	3911923429	3232859700	36204592	3417393020
Classic-McEliece-348864	512	1004661476	803441999	286293883	1669956478
Classic-McEliece-348864	1024	564876830	2321618938	494598324	711534243
Classic-McEliece-348864	2048	2225555345	1254861332	243603057	572706871
Classic-McEliece-348864f	2	488943030	107269180	231969	117684
Classic-McEliece-348864f	4	975847422	2069043740	364754	481170
Classic-McEliece-348864f	8	1946928856	4143706238	695710	1910756
Classic-McEliece-348864f	16	3871425313	3975704069	1291402	782339
Classic-McEliece-348864f	32	3459567823	3645043765	2628756	43810472
Classic-McEliece-348864f	64	2634568672	3270145154	5745522	201125972
Classic-McEliece-348864f	128	922596822	1816343482	13297466	83517934
Classic-McEliece-348864f	256	2119659048	4180954250	32626524	3438590182
Classic-McEliece-348864f	512	338168335	1679142040	113538214	1387490533
Classic-McEliece-348864f	1024	1217596450	889263199	421270974	963786826
Classic-McEliece-348864f	2048	4166382218	721092034	1925740795	3960384406
Classic-McEliece-460896	2	1912024768	3921837646	362890	200634
Classic-McEliece-460896	4	3415015131	2835097176	653708	87246
Classic-McEliece-460896	8	3927924184	2779169586	1205896	5070148
Classic-McEliece-460896	16	890839526	4016145298	2228700	19678514
Classic-McEliece-460896	32	1089735463	2424453689	5206710	108774642
Classic-McEliece-460896	64	2411407737	4113391356	995120	373476180
Classic-McEliece-460896	128	397558273	2035324370	21195804	1515298786
TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

Protocol	Time (in us)
Classic-McEliece-460896	120976
Classic-McEliece-460896	512
Classic-McEliece-460896	1024
Classic-McEliece-460896	2048
Classic-McEliece-460896f	2
Classic-McEliece-460896f	4
Classic-McEliece-460896f	8
Classic-McEliece-460896f	16
Classic-McEliece-6688128	32
Classic-McEliece-6688128	4
Classic-McEliece-6688128	8
Classic-McEliece-6688128	16
Classic-McEliece-6688128	32
Classic-McEliece-6688128	64
Classic-McEliece-6688128	128
Classic-McEliece-6688128	256
Classic-McEliece-6688128	512
Classic-McEliece-6688128	1024
Classic-McEliece-6688128	2048
Classic-McEliece-6688128f	2
Classic-McEliece-6688128f	4
Classic-McEliece-6688128f	8
Classic-McEliece-6688128f	16
Classic-McEliece-6688128f	32
Classic-McEliece-6688128f	64
Classic-McEliece-6688128f	128
Classic-McEliece-6688128f	256
Classic-McEliece-6688128f	512
Classic-McEliece-6688128f	1024
Classic-McEliece-6688128f	2048

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library
Protocol	Time (in us)
Classic-McEliece-6960119f	1362125798
Classic-McEliece-6960119f	128
Classic-McEliece-6960119f	2397190546
Classic-McEliece-6960119f	1543625822
Classic-McEliece-6960119f	256
Classic-McEliece-6960119f	2011115315
Classic-McEliece-6960119f	1279615086
Classic-McEliece-6960119f	2048
Classic-McEliece-8192128	2407516062
Classic-McEliece-8192128	4
Classic-McEliece-8192128	2520870316
Classic-McEliece-8192128	16
Classic-McEliece-8192128	32
Classic-McEliece-8192128	64
Classic-McEliece-8192128	128
Classic-McEliece-8192128	256
Classic-McEliece-8192128	512
Classic-McEliece-8192128	1024
Classic-McEliece-8192128	2048
Classic-McEliece-8192128f	2
Classic-McEliece-8192128f	4
Classic-McEliece-8192128f	3897540184
Classic-McEliece-8192128f	8
Classic-McEliece-8192128f	345283495
Classic-McEliece-8192128f	16
Classic-McEliece-8192128f	32
Classic-McEliece-8192128f	64
Classic-McEliece-8192128f	128
Classic-McEliece-8192128f	256
Classic-McEliece-8192128f	512
Classic-McEliece-8192128f	1024
Classic-McEliece-8192128f	2048
FireSaber-KEM	607290
FireSaber-KEM	4
FireSaber-KEM	8
FireSaber-KEM	16
FireSaber-KEM	32
FireSaber-KEM	64
FireSaber-KEM	128
FireSaber-KEM	256
FireSaber-KEM	512
FireSaber-KEM	1024
FireSaber-KEM	2048
Kyber1024	569818
Kyber1024	4
Kyber1024	8
Kyber1024	16
Kyber1024	32
Kyber1024	64
Kyber1024	128
Kyber1024	256
Kyber1024	512
Kyber1024	1024
Kyber1024	2048
Kyber12	498940
Kyber12	4
Kyber12	8
Kyber12	2
Kyber12	4
Kyber12	8

(Continued.) Time (in us) for each round on GAKE protocol.
TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

Protocol	Round	Time (in us)
Kyber512	16	1857542
Kyber512	32	4882138
Kyber512	64	16119412
Kyber512	128	56363002
Kyber512	256	229336298
Kyber512	512	839032092
Kyber512	1024	3444274237
Kyber512	2048	371370860
Kyber768	2	577860
Kyber768	4	761194
Kyber768	8	1230752
Kyber768	16	2316806
Kyber768	32	6308418
Kyber768	64	2085368
Kyber768	128	75010626
Kyber768	256	270613704
Kyber768	512	1046487012
Kyber768	1024	48885311
Kyber768	2048	3548206715
LightSaber-KEM	2	496816
LightSaber-KEM	4	629846
LightSaber-KEM	8	961000
LightSaber-KEM	16	1887810
LightSaber-KEM	32	5124908
LightSaber-KEM	64	16425678
LightSaber-KEM	128	57217068
LightSaber-KEM	256	225489147
LightSaber-KEM	512	847092706
LightSaber-KEM	1024	3389600373
LightSaber-KEM	2048	211324268
NTRU-HPS-2048-509	2	981000
NTRU-HPS-2048-509	4	1245528
NTRU-HPS-2048-509	8	2446550
NTRU-HPS-2048-509	16	4932194
NTRU-HPS-2048-509	32	14072786
NTRU-HPS-2048-509	64	44271612
NTRU-HPS-2048-509	128	175005570
NTRU-HPS-2048-509	256	600702206
NTRU-HPS-2048-509	512	2349192856
NTRU-HPS-2048-509	1024	1539923810
NTRU-HPS-2048-509	2048	2590192843
NTRU-HPS-2048-677	2	1091314
NTRU-HPS-2048-677	4	1562378
NTRU-HPS-2048-677	8	3215126
NTRU-HPS-2048-677	16	6950574
NTRU-HPS-2048-677	32	18987826
NTRU-HPS-2048-677	64	57640154
NTRU-HPS-2048-677	128	208377538
NTRU-HPS-2048-677	256	792694984
NTRU-HPS-2048-677	512	298360364
NTRU-HPS-2048-677	1024	1068468532
NTRU-HPS-2048-677	2048	3842053389
NTRU-HPS-4096-821	2	1323266
NTRU-HPS-4096-821	4	2123426
TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

Parameter set	4	8	16	32	64
Classic-McEliece-348644	92788.0	178346.0	289386.0	460470.0	1274000.0
Classic-McEliece-400K	60287.0	117905.0	230679.0	468796.0	936692.0
Classic-McEliece-40896	225094.0	460915.0	921878.0	1861680.0	3639741.0
Classic-McEliece-408964	1754855.0	3601946.0	7195912.0	1482067.0	2953638.0
Classic-McEliece-648128	3066597.0	7000197.0	1508732.0	2669367.0	5362399.0
Classic-McEliece-648128F	2250711.0	4572701.0	9004607.0	1729725.0	3601801.0
Classic-McEliece-648119	3603944.0	6396253.0	12348363.0	25451437.0	5234633.0
Classic-McEliece-648119F	2313379.0	4358284.0	8684243.0	1734679.0	3464277.0
Classic-McEliece-819228	3447378.0	6520993.0	1331885.0	2583188.0	5366245.0
Classic-McEliece-819228F	2377773.0	4759007.0	9531537.0	1912292.0	3820634.0
FireSaber-KEM	1911.0	3795.0	8784.0	21540.0	43840.0
KyBer/204	15897.0	2870.0	6289.0	15308.0	30317.0
KyBer/262	948.0	1550.0	3522.0	7600.0	15200.0
LightSaber-KEM	1029.0	1935.0	4177.0	9541.0	19094.0
NTRU-HPS-2048-909	1221.0	2311.0	4201.0	9588.0	19589.0
NTRU-HPS-2048-677	1541.0	2678.0	5014.0	11016.0	22432.0
NTRU-HPS-6254-8121	1859.0	3406.0	7496.0	16530.0	33060.0
NTRU-HRSS-701	1544.0	2908.0	5464.0	12351.0	25465.0
Saber-KEM	1392.0	2814.0	5109.0	11548.0	23094.0

TABLE 15. Total running time (in us) of the GAKE protocol for each number of parties.

Parameter set	2	4	8	16	32	64
Classic-McEliece-348644	892788.0	178346.0	289386.0	460470.0	1274000.0	2462760.0
Classic-McEliece-400K	60287.0	117905.0	230679.0	468796.0	936692.0	1873384.0
Classic-McEliece-40896	225094.0	460915.0	921878.0	1861680.0	3639741.0	7279482.0
Classic-McEliece-408964	1754855.0	3601946.0	7195912.0	1482067.0	2953638.0	5907276.0
Classic-McEliece-648128	3066597.0	7000197.0	1508732.0	2669367.0	5362399.0	10724798.0
Classic-McEliece-648128F	2250711.0	4572701.0	9004607.0	1729725.0	3601801.0	7203602.0
Classic-McEliece-648119	3603944.0	6396253.0	12348363.0	25451437.0	5234633.0	10469266.0
Classic-McEliece-648119F	2313379.0	4358284.0	8684243.0	1734679.0	3464277.0	6928554.0
Classic-McEliece-819228	3447378.0	6520993.0	1331885.0	2583188.0	5366245.0	10732370.0
Classic-McEliece-819228F	2377773.0	4759007.0	9531537.0	1912292.0	3820634.0	7641267.0
FireSaber-KEM	1911.0	3795.0	8784.0	21540.0	43840.0	87680.0
KyBer/204	15897.0	2870.0	6289.0	15308.0	30317.0	60634.0
KyBer/262	948.0	1550.0	3522.0	7600.0	15200.0	30317.0
LightSaber-KEM	1029.0	1935.0	4177.0	9541.0	19094.0	38188.0
NTRU-HPS-2048-909	1221.0	2311.0	4201.0	9588.0	19589.0	39178.0
NTRU-HPS-2048-677	1541.0	2678.0	5014.0	11016.0	22432.0	44864.0
NTRU-HPS-6254-8121	1859.0	3406.0	7496.0	16530.0	33060.0	66120.0
NTRU-HRSS-701	1544.0	2908.0	5464.0	12351.0	25465.0	50930.0
Saber-KEM	1392.0	2814.0	5109.0	11548.0	23094.0	46188.0
TABLE 16. CPU cycles for each operation on AKE scheme between FSXY and FOAKE transformations.

Parameter set	type	algA	algB	init
Kyber1024	fo-ake	61272	164921	103966
Kyber1024	fsxy	157702	275832	152475
Kyber512	fo-ake	24129	64225	40741
Kyber512	fsxy	74852	132814	75748
Kyber768	fo-ake	42554	114265	74408
Kyber768	fsxy	116833	208207	112594

TABLE 17. CPU cycles for each operation on GAKE protocol between FSXY and FOAKE transformations.

Parameter set	type	n	init	round12	round3	round4
Kyber1024	fo-ake	2	352728	1455104	190636	240810
Kyber1024	fo-ake	4	435276	2878382	322330	932940
Kyber1024	fo-ake	8	957022	5556222	562612	3529734
Kyber1024	fo-ake	16	2115684	11209454	1106828	141031608
Kyber1024	fo-ake	32	6124772	21877848	2261222	55572826
Kyber1024	fo-ake	64	20678658	44261601	6373372	225249026
Kyber1024	fo-ake	128	77548204	88040096	15884218	899885456
Kyber1024	fo-ake	256	285147300	165981610	35437206	3596092132
Kyber1024	fo-ake	512	1094344170	342508865	128393108	1828211446
Kyber1024	fo-ake	1024	4281287051	672156610	504682447	1344193494
Kyber1024	fo-ake	2048	4063233753	1387462198	3724341955	3413607674
Kyber1024	fsxy	2	569818	2996082	249696	294682
Kyber1024	fsxy	4	803884	5137618	389362	1109024
Kyber1024	fsxy	8	1362792	9885126	685716	436241
Kyber1024	fsxy	16	2754268	19360662	1316186	17536258
Kyber1024	fsxy	32	7859682	38739572	2498038	67571944
Kyber1024	fsxy	64	26334516	75688836	5218650	272631328
Kyber1024	fsxy	128	90258852	150989577	11764600	1125447114
Kyber1024	fsxy	256	347379710	30596352	30854094	203874448
Kyber1024	fsxy	512	1362064436	626489624	118268879	1450552719
Kyber1024	fsxy	1024	1306379099	1201640936	376335071	463196417
Kyber1024	fsxy	2048	143981347	2418133628	1432070771	1939460493
Kyber512	fo-ake	2	172880	597112	140126	91336
Kyber512	fo-ake	4	244948	1108004	265502	349942
Kyber512	fo-ake	8	457206	2493920	293888	1389898
Kyber512	fo-ake	16	1126550	4318414	557998	7792834
Kyber512	fo-ake	32	3547112	8893216	1156686	2306240
Kyber512	fo-ake	64	11532644	17044954	2675020	87354510
Kyber512	fo-ake	128	42822396	33423604	7119092	358312410
Kyber512	fo-ake	256	162999452	64532826	21795546	1447317430
Kyber512	fo-ake	512	642910434	134759080	89890960	1794799431
Kyber512	fo-ake	1024	26826064673	260979316	342297686	1200990103
Kyber512	fo-ake	2048	1555164747	527148304	1803526899	3942602428
Kyber512	fsxy	2	498940	1391742	169900	133814
Kyber512	fsxy	4	614774	2540226	238504	566142
Kyber512	fsxy	8	971834	5323738	412224	2415210
Kyber512	fsxy	16	1857542	9684790	696384	7663526
Kyber512	fsxy	32	4882138	19159176	1431924	30344334
Kyber512	fsxy	64	16119412	36680564	2909726	119957652
Kyber512	fsxy	128	56363002	73662228	6650430	496642586
Kyber512	fsxy	256	229336298	145675628	17999734	2023890528
Kyber512	fsxy	512	839032092	308417712	95626794	4235688616
TABLE 17. (Continued.) CPU cycles for each operation on GAKE protocol between FSXY and FOAKE transformations.

Protocol	Operation	CPU Cycles
Kyber512	fsxy	1024
Kyber512	fsxy	2048
Kyber768	fo-ake	2
Kyber768	fo-ake	4
Kyber768	fo-ake	8
Kyber768	fo-ake	16
Kyber768	fo-ake	32
Kyber768	fo-ake	64
Kyber768	fo-ake	128
Kyber768	fo-ake	256
Kyber768	fo-ake	512
Kyber768	fo-ake	1024
Kyber768	fo-ake	2048
Kyber768	fsxy	2
Kyber768	fsxy	4
Kyber768	fsxy	8
Kyber768	fsxy	16
Kyber768	fsxy	32
Kyber768	fsxy	64
Kyber768	fsxy	128
Kyber768	fsxy	256
Kyber768	fsxy	512
Kyber768	fsxy	1024

TABLE 18. Mean running time that runs every party (in us) of the GAKE protocol as a function of the number of parties.

Parameter set	Parties	fo-ake	fsxy
Kyber1024	2	433.0	793.5
Kyber1024	4	441.25	717.5
Kyber1024	8	511.625	786.125
Kyber1024	16	688.875	988.0
Kyber1024	32	1034.96875	1406.65625
Kyber1024	64	1787.796875	2289.96875
Kyber1024	128	3259.359375	4154.8203125
Kyber1024	256	6152.765625	7809.76953125
Kyber1024	512	12266.849609375	15625.9609375
Kyber1024	1024	25217.29296875	32006.654296875
Kyber1024	2048	54962.12158203125	69890.1923828125
Kyber512	2	194.0	424.0
Kyber512	4	190.25	382.5
Kyber512	8	223.625	440.25
Kyber512	16	332.8125	480.0
Kyber512	32	442.03125	673.4375
Kyber512	64	715.015625	1059.0
Kyber512	128	1331.2890625	1908.8984375
Kyber512	256	2556.94140625	3642.390625
Kyber512	512	5242.50390625	7364.724609375
Kyber512	1024	11399.52734375	16064.0166015625
Kyber512	2048	26556.4296875	38339.2978515625
Kyber768	2	305.5	584.0
Kyber768	4	321.75	589.5
TABLE 18. (Continued.) Mean running time that runs every party (in us) of the GAKE protocol as a function of the number of parties.

Kyber768	8	364.625	596.625
Kyber768	16	598.25	753.5625
Kyber768	32	746.96875	1083.34375
Kyber768	64	1234.828125	1732.203125
Kyber768	128	2315.6640625	3081.3125
Kyber768	256	4355.17578125	5854.5078125
Kyber768	512	8726.408203125	11618.892578125
Kyber768	1024	18668.8976490375	24514.66796875
Kyber768	2048	40742.357421875	54436.67626953125

ACKNOWLEDGMENT
The authors would like to thank María I. González Vasco for her help during the process of elaboration of the manuscript, through fruitful discussions and useful comments and suggestions.

REFERENCES

[1] A. Fujioka, K. Takashima, and K. Yoneyama, “One-round authenticated group key exchange from isogenies,” in Proc. ProvSec, in Lecture Notes in Computer Science, vol. 11821. Cham, Switzerland: Springer, 2019, pp. 330–338.

[2] H. B. Hougaard and A. Miyaji, “Authenticated logarithmic-order supersingular isogeny group key exchange,” Int. J. Inf. Secur., vol. 21, pp. 207–221, May 2021.

[3] D. Apon, D. Dachman-Soled, H. Gong, and J. Katz, “Constant-round group key exchange from the ring-LWE assumption,” in PQCrypt, in Lecture Notes in Computer Science, vol. 11505. Cham, Switzerland: Springer, 2019, pp. 189–205.

[4] R. Choi, D. Hong, and K. Kim, “Constant-round dynamic group key exchange from RLWE assumption,” Cryptol. ePrint Arch., Paper 2020/035, vol. 2020, p. 35, 2020.

[5] R. Choi, D. Hong, S. Han, S. Baek, W. Kang, and K. Kim, “Design and implementation of constant-round dynamic group key exchange from RLWE,” IEEE Access, vol. 8, pp. 94610–94630, 2020.

[6] R. Choi, D. Hong, and K. Kim, “Implementation of tree-based dynamic group key exchange with newhope,” in Proc. Int. Conf. Netw. Syst. Secur., vol. 2020, p. 35, 2020.

[7] K. Takashima, “Post-quantum constant-round group key exchange from static assumptions,” in Proc. Int. Symp. Math., Quantum Theory, Cryptogen: Singapore: Springer, 2021, p. 251.

[8] E. Persichetti, R. Steinwandt, and A. S. Corona, “From key encapsulation to authenticated group key establishment—A compiler for post-quantum primitives,” Entropy, vol. 21, no. 12, p. 1183, Nov. 2019.

[9] M. I. G. Vasco, L. A. P. D. Pozo, and R. Steinwandt, “Group key establishment in a quantum-future scenario,” Informatica, vol. 31, no. 4, pp. 751–768, 2020.

[10] H. B. Hougaard and A. Miyaji, “Group key compiler extractors from generic key exchanges,” in Proc. Int. Conf. Netw. Syst. Secur. Cham, Switzerland: Springer, 2021, pp. 162–184.

[11] J. I. E. Pablos, M. I. G. Vasco, M. E. Marriaga, and Á. L. P. D. Pozo, “Compiled constructions towards post-quantum group key exchange: A design from kyber,” Mathematics, vol. 8, no. 10, p. 1853, Oct. 2020.

[12] J. Katz and M. Yung, “Scalable protocols for authenticated group key exchange,” in Advances in Cryptology—CRYPTO 2003, vol. 2729, D. Boneh, Ed. Santa Barbara, CA, USA: Springer, Aug. 2003, pp. 110–125.

[13] E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe, “Post-quantum key exchange—a new hope,” in Proc. 25th USENIX Secur. Symp. (USENIX Security), 2016, pp. 327–343.

[14] M. Abdalla, J. Bohli, M. I. G. Vasco, and R. Steinwandt, “(Password) authenticated key establishment: From 2-party to group,” in Proc. TCC, in Lecture Notes in Computer Science, vol. 4392. Berlin, Germany: Springer, 2007, pp. 499–514.

[15] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS—Kyber: ACCA-secure module-lattice-based KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&IP), Apr. 2018, pp. 353–367.

[16] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution system,” in Proc. EUROCRYPT, in Lecture Notes in Computer Science, vol. 950. Berlin, Germany: Springer, 1994, pp. 275–286.

[17] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism,” in Proc. 5th ACM SIGSAC Symp. Inf., Comput. Commun. Secur., 2013, pp. 83–94.

[18] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh, “Generic authenticated key exchange in the quantum random Oracle model,” Cryptol. ePrint Arch., Paper 2018/928, vol. 2018, p. 928, 2018.

[19] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh, “Generic authenticated key exchange in the quantum random Oracle model,” in Public-Key Cryptography—PKC 2020, A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, Eds. Cham, Switzerland: Springer, 2020, pp. 389–422.

[20] T. Saito, K. Xagawa, and T. Yamakawa, “Tightly-secure key-encapsulation mechanism in the quantum random Oracle model,” Cryptol. ePrint Arch., Paper 2017/1005, 2017.

[21] Post-Quantum Cryptography. Security (Evaluation Criteria), NIST, Gaithersburg, MD, USA. [Online]. Available: https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-evaluation-criteria

[22] Post-Quantum Cryptography. Round 3 Submissions, NIST, Gaithersburg, MD, USA. [Online]. Available: https://csrc.nist.gov/Projects/post-quantum-cryptography-post-quantum-cryptography-standardization/round-3-submissions

[23] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilch, T. Lange, V. Maram, J. V. Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Thyai, M. Tomlinson, and W. Wang, “Classic McEliece: Conservative code-based cryptography,” NIST, Tech. Rep., 2020. [Online]. Available: https://classic.mceliece.org/nist/mceliece-postquantum-cryptography.pdf

[24] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Problems Control Inf. Theory, vol. 15, no. 2, pp. 157–166, 1960.

[25] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-kycer algorithm specifications and supporting documentation,” NIST, Tech. Rep., 2021. [Online]. Available: https://pq-cry.stals.org/kyber/data/kyber-specification-round3-20210804.pdf

[26] Post-Quantum Cryptography. Round 1 Submissions, NIST, Gaithersburg, MD, USA.

[27] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem,” in Algorithmic Number Theory (Lecture Notes in Computer Science), vol. 1423. J. Buhler, Ed. Portland, OR, USA: Springer, Jun. 1998, pp. 267–288.
[28] T. Saito, K. Xagawa, and T. Yamakawa, “Tightly-secure key-encapsulation mechanism in the quantum random Oracle model,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Cham, Switzerland: Springer, 2018, pp. 520–551.

[29] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber: Module-LWR based key exchange. CPA-secure encryption and CCA-secure KEM.” Cryptol. ePrint Arch., Paper 2018/230, p. 230, 2018.

[30] C. Boyd, Y. Cliff, J. G. Nieto, and K. G. Paterson, “Efficient one-round key exchange in the standard model,” in Proc. ACISP, in Lecture Notes in Computer Science, vol. 5107. Berlin, Germany: Springer, 2008, pp. 69–83.

[31] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Strongly secure authenticated key exchange from factoring, codes, and lattices,” Des., Codes Cryptogr., vol. 76, no. 3, pp. 469–504, Sep. 2015.

[32] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use for building secure channels,” in Proc. EUROCRYPT, in Lecture Notes in Computer Science, vol. 2045. Berlin, Germany: Springer, 2001, pp. 453–474.

[33] R. Cramer and V. Shoup, “Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack,” SIAM J. Comput., vol. 33, no. 1, pp. 167–226, 2003.

[34] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key exchange secure against dictionary attacks,” in Advances in Cryptology—EUROCRYPT 2000, vol. 1807, B. Preneel, Ed. Bruges, Belgium: Springer, May 2000, pp. 139–155.

[35] J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt, “Secure group key establishment revisited,” Int. J. Inf. Secur., vol. 6, no. 4, pp. 243–254, Jun. 2007.

[36] Algorithms in LibOQS, Open Quantum Safe, 2022.

[37] D. Stebila and M. Mosca, “Post-quantum key exchange for the internet and the open quantum safe project,” in Proc. SAC, in Lecture Notes in Computer Science, vol. 10532. Cham, Switzerland: Springer, 2016, pp. 14–37.

[38] Cryptography and SSL/TLS Toolkit, OpenSSL, 2022.

[39] What is the Windows Subsystem for Linux?, Microsoft, 2022.

[40] Usage Limits, Billing, and Administration, GitHub Actions, 2022.

[41] M. L. Waskom, “Seaborn: Statistical data visualization,” J. Open Source Softw., vol. 6, no. 60, p. 3021, 2021.

[42] Storing Workflow Data as Artifacts, GitHub Actions, 2022.