Angiopoietin-Like 4 Is Over-Expressed in Rheumatoid Arthritis Patients: Association with Pathological Bone Resorption

Catherine Swales1, Nicholas A. Athanasou2, Helen J. Knowles1*

1 Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom, 2 Pathology Department, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom

Abstract

Introduction: Osteoclasts are responsible for the bone loss associated with rheumatoid arthritis (RA). The secreted adipokine angiopoietin-like 4 (ANGPTL4) specifically increases osteoclast-mediated bone resorption. We have investigated expression of ANGPTL4 and its regulatory transcription factor, hypoxia-inducible factor-1 alpha (HIF-1α), in osteoclasts and other cells within rheumatoid synovium. We have also examined whether circulating levels of ANGPTL4 differ in RA patients compared with that in normal controls or patients with osteoarthritis (OA).

Results: Immunohistochemical analysis revealed that bone-apposing osteoclasts within the rheumatoid synovium express both ANGPTL4 and HIF-1α. ANGPTL4 was also strongly expressed in synovial lining cells, endothelial cells, stromal cells, CD68+ macrophages and plasma cells within RA synovium. Little ANGPTL4 was evident in normal synovial tissue. This reflected the over-expression of HIF-1α in rheumatoid versus normal synovial tissue. The concentration of ANGPTL4 was higher in both the serum and the synovial fluid of RA patients than in patients with OA or normal controls. High serum ANGPTL4 associated with elevated levels of the serum marker of bone resorption, receptor activator for nuclear factor κB ligand (RANKL).

Conclusions: Over-expression of ANGPTL4 in multiple cell types within the rheumatoid synovium potentially provides a local pool of ANGPTL4 to stimulate osteoclast-mediated bone resorption in RA. Additionally, correlation of high serum ANGPTL4 with circulating RANKL suggests that ANGPTL4 may represent a novel marker for bone destruction in RA.

Citation: Swales C, Athanasou NA, Knowles HJ (2014) Angiopoietin-Like 4 Is Over-Expressed in Rheumatoid Arthritis Patients: Association with Pathological Bone Resorption. PLoS ONE 9(10): e109524. doi:10.1371/journal.pone.0109524

Editor: Luc Malaval, Université Jean Monnet, France

Received May 7, 2014; Accepted September 10, 2014; Published October 7, 2014

Copyright: © 2014 Swales et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This work was supported by an Arthritis Research UK grant to HJK, grant number MP/19200 (www.arthritisresearchuk.org). Additional support was received from the Oxford National Institute for Health Research (NIHR) Biomedical Research Unit. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: helen.knowles@ndorms.ox.ac.uk

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by erosion of articular cartilage and subchondral bone, leading to joint destruction, pain and loss of function. Bone loss in RA, comprising both juxta-articular bone erosions and systemic osteoporosis, is associated with progressive disability and is predictive of poor prognosis [1,2]. Both types of bone loss are mediated by osteoclasts [3,4], multinucleated cells specialised to carry out lacunar bone resorption. Inhibition of osteoclast activity effectively inhibits both the formation of new focal bone erosions and systemic bone loss [5,6].

In contrast to normal synovial tissue the rheumatoid synovium is hypoxic. Low tissue oxygen levels are also a poor prognostic indicator in RA [7,8]. Synovial lining cells, endothelial cells, fibroblasts, lymphocytes, plasma cells and CD68+ macrophages within the RA synovium express the hypoxia-inducible transcription factor, HIF [9–11]. HIF is a heterodimer comprising a hypoxia-inducible alpha subunit and a constitutively expressed beta subunit. Hypoxic accumulation and activation of HIF-alpha allows transcription of genes involved in processes including angiogenesis, inflammation, apoptosis and regulation of immune function [12].

HIF has not been described in osteoclasts in RA, although HIF-1α-positive osteoclasts are present in other osteoclast-rich pathologies such as the primary bone tumour Giant Cell Tumour of Bone [13]. Transient hypoxia increases osteoclast formation [14,15] by stimulating the fusion and differentiation of circulating CD14+ mononuclear precursors or synovial macrophages in the presence of macrophage-colony stimulating factor (M-CSF) and RANKL [16,17]. Hypoxia also causes increased bone resorption, via a HIF-1α-dependent mechanism to enhance osteoclast activity by increasing production of ATP under hypoxic conditions [14,18].

Angiopoietin-like 4 (ANGPTL4) is a HIF-1α-inducible proangiogenic adipokine [19,20]. It is over-expressed in the hypoxic, perinecrotic regions of solid tumours [19] and induced by hypoxia.
in multiple cell types including endothelial cells [19], articular chondrocytes [21], osteoclasts, osteoblasts [13] and fibroblast-like RA synoviocytes [22]. We have previously demonstrated that ANGPTL4 directly stimulates osteoclast activity and promotes bone resorption in vitro via a mechanism independent of RANKL [13].

This study investigates the over-expression of both ANGPTL4 and HIF-1α in RA, with specific reference to their expression in osteoclasts. We also assess correlations between the serum concentration of ANGPTL4 and markers of pathological bone resorption in RA.

Materials and Methods

Patients

RA patients were recruited through the rheumatology clinics at the Nuffield Orthopaedic Centre and sample serum were stored at −80°C until analysis. Synovial fluid was aspirated from the knee joints of patients with RA and non-inflammatory OA as previously described [23], OA being defined as non-inflammatory when neutrophils comprised <25% of the total synovial fluid cell population sampled. Serum from OA and injury repair patients and all formalin-fixed, paraffin-embedded tissue sections were obtained from the Oxford Musculoskeletal BioBank. RA was defined according to the 1987 American College of Rheumatology criteria and OA was diagnosed on clinical, radiographic and histologic criteria. Samples and/or data obtained were collected with informed written donor consent in full compliance with national and institutional ethical requirements, the United Kingdom Human Tissue Act and the Declaration of Helsinki. This study was approved under Oxford Musculoskeletal BioBank ethics (HTA Licence 12217, Oxfordshire Research Ethics Committee C, 09/H0606/11). RA and OA synovial fluid samples were collected with approval of the Oxford Central University Research Ethics Committee, 06/Q1606/139.

Immunohistochemistry and immunofluorescence

Wax-embedded samples of rheumatoid synovial tissue were sectioned and H&E stained. Antigen retrieval of deparaaffinised sections was performed by microwaving in 1 mM EDTA (pH 8). Sections were exposed to anti-ANGPTL4 (H-200; Santa Cruz Biotechnology), anti-cathepsin K (clone 182-12G5, Calbiochem), anti-CD20 (clone L26; Dako), anti-CD68 (clone KP1; Dako), anti-HIF-1α (clone 54; BD Biosciences) or a serum control. For standard immunohistochemistry, staining was visualized with the Vectastain Elite ABC Kit (Vector Laboratories). For immunofluorescence, secondary antibodies were DyLight 488 or 594 conjugates (Thermo Scientific). Image acquisition was performed using a Zeiss AxioImager MI microscope, AxioCam HRC camera and AxioVision software.

Osteoclasts in tissue sections were considered as large, multinucleated cells containing >3 nuclei; a widely accepted identification criterion in RA [23–26]. Osteoclast identification was additionally confirmed by staining for cathepsin K; an enzyme expressed at high levels in osteoclasts [27,28] and a validated osteoclast marker in RA [29,30].

Cell culture

Peripheral blood mononuclear cells were isolated from the blood of patients with RA using Histopaque (Sigma). CD14+ monocytes were selected (AutoMACS cell separator; Miltenyi Biotec), seeded into α-MEM (without ribonucleosides/deoxyribonucleosides, containing 10% FBS, 2 mM L-glutamine, 50 IU/ml penicillin and 50 μg/ml streptomycin sulphate) and differen-

Results

ANGPTL4 is strongly expressed by osteoclasts in RA

Rheumatoid synovial sections were screened for the presence of multi-nucleated cells (>5 nuclei) morphologically characteristic of osteoclasts. Numerous synovial osteoclasts were identified in 3/8 cases. In each instance, immunohistochemical analysis of the hyperplastic synovial tissue (Figure 1A) and synovium-bone interface (Figure 1B) revealed strong expression of ANGPTL4 in multi-nucleated cells that were confirmed as osteoclasts by double staining with cathepsin K (Figure 1C). Although other synovial cells were also ANGPTL4-positive, over 95% of osteoclasts expressed ANGPTL4 more strongly than the surrounding synovial cells in any given section. Scattered osteoclasts present in OA synovial sections were smaller (fewer nuclei) than those in RA and did not express immuno-detectable ANGPTL4 as revealed by either immunohistochemistry or immunofluorescence (Figure 1D).

RA osteoclasts express HIF-1α protein

Cytoplasmic expression of HIF-1α was observed in 22–50% of osteoclasts in any given rheumatoid synovial tissue section (Figure 2A). Where resorbing osteoclasts were visible at the synovium-bone interface, co-localised expression of HIF-1α and ANGPTL4 was also evident (Figure 2B). Osteoclasts derived from the circulating CD14+ monocytes of RA patients exhibited increased expression of ANGPTL4 mRNA following exposure to hypoxia (Figure 2G; mean induction 5.5-fold, range 1.7- to 17.2-fold). Expression of other HIF target genes was also increased (e.g. SLC2A1; mean induction 3.0-fold, range 1.2- to 5.6-fold).
Table 1. Clinical characteristics of RA patients in serum cohort.

Patient no.	Sex (M/F)	Age (yrs)	Seropositive (Y/N)	DAS score	CRP (µg/ml)
R1	F	70	Y	3.52	9.15
R2	F	72	Y	1.4	5.26
R3	F	87	Y	2.71	1.17
R4	F	67	Y	2.9	10.97
R5	F	45	Y	4.5	5.48
R6	F	69	N	2.14	2.39
R7	F	73	Y	2.68	0.42
R8	M	64	-	2.5	0.5
R9	M	40	Y	7.35	13.46
R10	F	48	Y	3.5	0.31
R11	F	59	Y	2.03	4.24
R12	F	34	Y	6.2	36.67
R13	F	66	Y	2	8.12
R14	F	44	N	3.32	0.79
R15	M	63	-	1.81	1.35
R16	M	76	Y	1.4	1.68
R17	F	65	Y	3.05	15.0
R18	F	70	-	-	4.36
R19	F	68	Y	4.1	8.7

DAS = disease activity score. CRP = C-reactive protein.
doi:10.1371/journal.pone.0109524.t001

Figure 1. ANGPTL4 is expressed by osteoclasts in RA. (A) ANGPTL4 is strongly expressed by osteoclasts (arrows) in the RA synovium. Inset: Representative isotype control image. (B) Resorbing osteoclasts adjacent to bone (starred) express ANGPTL4. (C) ANGPTL4 (red) expression co-localises with cathepsin K-positive (green) osteoclasts. Representative images from n = 3 cases. (D) Cathepsin K-positive (green) osteoclasts in the OA synovium do not express detectable ANGPTL4 (red). All scale bars represent 100 µM.
doi:10.1371/journal.pone.0109524.g001
ANGPTL4 is over-expressed in synovial tissue in RA

As ANGPTL4 reactivity was observed in the synoviocytes adjacent to osteoclasts, we also studied ANGPTL4 expression in 5 additional osteoclast-negative cases of RA. ANGPTL4 was strongly expressed by the synovial lining cells, endothelial cells and stromal fibroblasts within RA synovial tissue (Figure 3A), compared with general low-level expression in normal synovium (Figure 3B). The expression pattern of ANGPTL4 was similar to that for HIF-1α in RA synovial sections (Figure 3C). HIF-1α was rarely detected in normal synovium (Figure 3D).

ANGPTL4 was also strongly expressed in the immediate vicinity of lymphoid aggregates in RA, in cells morphologically characteristic of macrophages and plasma cells (Figure 3E). Immunofluorescence confirmed that ANGPTL4 was not expressed by B cells (Figure 3F) or T cells (data not shown), but was expressed by CD68-positive macrophages (Figure 3G).

Both ANGPTL4 (Figure 3H, left panel) and HIF-1α (Figure 3H, right panel) were over-expressed in OA synovial tissue in comparison with the normal synovium, although not to the same degree (number of positive cells per field of view) as in RA synovial tissue.

ANGPTL4 is elevated in the serum and synovial fluid of RA patients

Given the striking over-expression of ANGPTL4 by multiple cell types within RA synovial tissue, we next assessed whether concentrations of secreted ANGPTL4 were also elevated in RA synovial fluid. ANGPTL4 was measured in synovial fluid aspirated from the knee joints of patients with RA and non-inflamed OA controls. The ANGPTL4 concentration was significantly higher in the clarified synovial fluid of the RA population (Figure 4A).

Due to low patient numbers in the synovial fluid cohort, we expanded the study to look at serum concentrations of ANGPTL4. ANGPTL4 levels were significantly higher in the serum of patients with RA than in either OA patients or normal controls (Figure 4B). Within the RA population, serum ANGPTL4 positively correlated with age ($r = 0.460, p = 0.048$).

The RA cohort comprised 2 sub-groups based on the serum level of ANGPTL4: ‘low ANGPTL4’ (≤170 ng/ml; serum ANGPTL4 within the normal range) and ‘high ANGPTL4’ (> 170 ng/ml; serum ANGPTL4 more than 10% above normal range). We therefore considered whether having ‘high’ serum ANGPTL4 might be indicative of disease severity. No significant difference was found between ‘high’ and ‘low’ groups with respect to age, DAS score or CRP.

Given the stimulatory effect of ANGPTL4 on osteoclast activity, we also assessed possible correlations with the circulating marker of bone erosion, RANKL. Considering all patient groups, serum concentrations of RANKL ranged from 0–392.7 ng/ml, with most individuals having undetectable serum RANKL. To prevent skewing of the analysis by high value data points in a small sample size, we assessed this data according to whether patients exhibited detectable circulating RANKL (RANKL-positive or RANKL-negative). 85.7% of ‘high ANGPTL4’ RA patients were RANKL-positive, compared with only 16.7% of ‘low ANGPTL4’ RA patients ($p = 0.05$) and 20.0% of controls ($p = 0.01$) (Figure 4C).
Discussion

Inhibition of osteoclast-mediated bone resorption is a crucial component of targeted strategies to alleviate bone destruction in RA. ANGPTL4, a hypoxia-induced adipokine, has previously been shown to stimulate osteoclast activity in vitro. This study demonstrates increased expression of ANGPTL4 within rheumatoid synovial tissue, as well as increased secretion of ANGPTL4 into the synovial fluid and serum of patients with RA.

This is the first description of ANGPTL4 expression in RA synovial tissue. We have previously reported that ANGPTL4 functions in a paracrine manner to stimulate osteoclast activity and induce bone resorption [13]. This effect was independent of RANKL, as ANGPTL4 prevented both loss of osteoclast viability

Figure 3. ANGPTL4 and HIF-1α are expressed in RA synovial tissue. (A) The RA synovium is strongly positive for ANGPTL4, as are adjacent blood vessels and surrounding stromal cells; (B) normal synovium shows weak, heterogeneous expression of ANGPTL4; (C) RA synovium is strongly positive for HIF-1α, as are adjacent blood vessels; (D) normal synovium generally does not express HIF-1α. (E) Synovial lining cells and stromal cells adjacent to lymphoid aggregates express ANGPTL4. Inset: ANGPTL4-positive plasma cells. (F) ANGPTL4 (red) is not expressed by B cells (CD20, green). (G) ANGPTL4 (red) is expressed by CD68-positive (green) macrophages adjacent to a lymphoid aggregate. (H) The OA synovium expresses elevated levels of both ANGPTL4 (left panel) and HIF-1α (right panel) compared with the normal synovium. Scale bars (A–F, H) represent 100 μM, scale bar (G) represents 50 μM.

doi:10.1371/journal.pone.0109524.g003
and loss of bone resorption following RANKL inhibition with the soluble decoy receptor osteoprotegerin [13]. Expression of ANGPTL4 in bone-apposing resorbing osteoclasts, as well as strong expression in other cells of the rheumatoid synovium, could generate an environment that supports and promotes bone erosion. This makes it potentially attractive as a secondary target, outside the RANKL/RANK pathway, for strategies to specifically prevent osteolytic bone disease in RA [5].

ANGPTL4 also has the potential to contribute to cartilage matrix destruction. Multi-nucleated cells resorbing cartilage in RA have an osteoclast-like phenotype and human monocyte-derived osteoclasts are capable of cartilage matrix resorption in vitro [24]. RA articular chondrocytes over-express ANGPTL4 which, when induced by hypoxia in vitro, stimulates production of the matrix metalloproteinases MMP-1 and MMP-3 [21]. ANGPTL4 might therefore induce both bone and cartilage erosion in RA, via effects on MMP production and osteoclast activation, to increase joint destruction.

It is interesting to consider whether the 3 out of 8 RA cases seen to contain numerous osteoclasts is a typical ratio. While it is consistent with what we have previously observed [23], it is not possible to tell from the literature whether this is a typical proportion. Although many papers measure expression and/or secretion of osteoclast-associated factors, very few actually show pictures of osteoclasts in human RA and we have found no mention of the frequency with which osteoclast-rich RA occurs. Furthermore, due to the flattening of some osteoclasts if the synovium pulls away from the bone during tissue processing, clear images cannot always be obtained. However, regardless of the proportion of cases where osteoclasts can be observed by immunohistochemistry, osteoclast-mediated bone erosion is a common and characteristic feature of RA.

This is also the first description of HIF-1α expression in RA osteoclasts. HIF-1α stimulates increased osteoclast-mediated bone resorption under hypoxic conditions [14]. HIF-1α also controls the over-expression of VEGF-A by large osteoclasts containing >10 nuclei, as found in RA, versus small osteoclasts containing 2–5 nuclei, as found in OA [31]. As ANGPTL4 is also a HIF target gene, this observation might explain why we only detected ANGPTL4 expression in RA-, but not OA-, associated osteoclasts. Promotion of pathological bone resorption in RA might be a crucial component of the mechanism by which HIF drives disease progression [32].

Co-localisation of HIF-1α and ANGPTL4 in bone-apposing osteoclasts supports our previous in vitro observations that ANGPTL4 is induced by HIF-1α in human osteoclasts [13]. However, not all ANGPTL4-positive osteoclasts expressed HIF-1α. This might be due to cytokine-mediated effects on gene expression. In fibroblast-like synoviocytes from RA, for example, TNFα induced expression of HIF-1α but not ANGPTL4, whereas IL-4 induced ANGPTL4 but not HIF [22]. ANGPTL4 is additionally regulated by the PPAR family of transcription factors [33], which might influence expression patterns. All other cell types within the RA synovium that we found to express ANGPTL4 also expressed HIF-1α, both in this study and as reported previously [9,12]. ANGPTL4 has been confirmed as a HIF target gene in human RA fibroblast-like synoviocytes in vitro [22].

ANGPTL4 mRNA and protein levels have previously been reported to increase in the early stages of murine collagen-induced arthritis, where expression was specific to the stromal fibroblast-like cells adjacent to blood vessels, suggestive of a role in angiogenesis [34] as reported in cancer [19,20]. Human RA fibroblast-like synoviocytes exposed to hypoxia in vitro also
展，已知血管生成因子ANGLT4 mRNA和蛋白表达增加 [22]。这与在RA关节炎症组织中观察到的ANGLT4 mRNA和蛋白表达增加一致。ANGLT4 mRNA和蛋白表达在RA中的其他细胞类型中也有报道，但未限制于CD68+的巨噬细胞、成体细胞等细胞中。除了促进血管生成外，ANGLT4还参与血细胞形成。广泛的诱导可以在RA中迅速形成一个较大的局部血流网，促进血管生成。

RA的浓度范围为ANGLT4 mRNA和蛋白表达在正常范围或至少10%以上(217.3–2235.0 ng/mL)。临床上或临床相关信息可能被发现，与ANGLT4 mRNA和蛋白表达水平有关。

RA骨侵蚀患者显著更可能检测到ANGLT4 mRNA和蛋白表达。然而，我们没有在当前研究中获得足够的样本，以证明ANGLT4 mRNA和蛋白表达与骨侵蚀的程度之间的相关性。

RA骨侵蚀的“高ANGLT4”患者中，未检测到ANGLT4 mRNA和蛋白表达。虽然RA骨侵蚀的“低ANGLT4”和“高ANGLT4”患者中，没有明显的区别，但在高ANGLT4 mRNA和蛋白表达的RA患者中，可以看到骨侵蚀。

ANGLT4 mRNA和蛋白表达增加可能是一个有用的诊断或预后工具。

在与我们的假设一致的情况下，ANGLT4 mRNA和蛋白表达增加可能是一个有用的诊断或预后工具。这可能是一个在RA中骨侵蚀的“高ANGLT4”患者。

参考文献

1. Kaarela K (1999) Prognostic factors and diagnostic criteria in early rheumatoid arthritis. Scand J Rheumatol 38: 1–5.
2. Gough AK, Lilley J, Eye S, Holder RL, Emery P (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344: 23–27.
3. Bromley M, Woolley DE (1984) Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 27: 969–975.
4. Gough A, Sambrook P, Devlin J, Huissoon A, Njeh C, et al. (1998) Osteoclastic activation is the principal mechanism leading to secondary osteoporosis in rheumatoid arthritis. J Rheumatol 25: 1282–1289.
5. Tanaka S (2003) Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways. World J Orthop 4: 1–6.
6. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, et al. (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in patients with rheumatoid arthritis. J Bone Miner Res 23: 1757–1764.
7. Cheng X, Cheng H, Wang Y, Wang Y, Wang Z, et al. (2012) HIF-1α expression is associated with disease activity in rheumatoid arthritis. Osteoarthritis Cartilage 20: 1315–1322.
8. Sivakumar B, Akhavani MA, Winlove CP, Taylor PC, Paleolog EM, et al. (2008) Hypoxia-inducible factor-2α protein is expressed in hypoxic areas of synovial hyperplasia in rheumatoid arthritis. J Cell Physiol 216: 464–465.
9. Knowles HJ, Kishimoto T, Kono Y, Nakamura K, Tsuchiya T, et al. (2012) Hypoxia-inducible factor-2α regulates osteoclast-mediated bone resorption: role of angiopoietin-like-4. FEBS J 279: 4654–4665.
10. Hashimoto A, Turner IH, Bohle RM, Gaumann A, Manetti M, et al. (2007) Upregulated hypoxia-inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5: R193–201.
11. Hashimoto A, Turner IH, Bohle RM, Gaumann A, Manetti M, et al. (2007) Analysis of vascular gene expression in arthritic synovium by laser-mediated microdissection. Arthritis Rheum 56: 1094–1105.
12. Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44: 1540–1544.
13. Sabokbar A, Neale S, Athanasou NA (1996) Human osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 93: 3597–3602.
14. Morten KJ, Badder L, Knowles HJ (2013) Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J Cell Physiol 229: 755–764.
15. Le Jan S, Amy C, Cazes A, Momot C, Lamande N, et al. (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162: 1521–1528.
16. Fujikawa Y, Sabokbar A, Neale S, Athanasou NA (1996) Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis 55: 816–822.
17. Yasuda H, Shima N, Nakagawa Y, Yamaguchi K, Kinosaki M, et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597–3602.
18. Murata M, Yudo K, Nakamura H, Chiha J, Okamoto K, Suenatsu N, et al. (2009) Hypoxia upregulates the expression of angiopoietin-like-4 in human articular chondrocytes: role of angiopoietin-like-4 in the expression of matrix metalloproteinases and cartilage degradation. J Orthop Res 27: 50–57.
19. Larsen H, Mue B, Kohn TL, Feldmann M, Paleolog EM (2012) Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA. Arthritis Res Ther 14: R180.
patients with rheumatoid arthritis and is detected at sites of synovial bone destruction. J Rheumatol 25: 1887–1894.

30. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, et al. (2000) Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43: 250–258.

31. Trebec-Reynolds DF, Voronov I, Heersche JN, Manolson MF (2010) VEGF-A expression in osteoclasts is regulated by NF-kappaB induction of HIF-1alpha. J Cell Biochem 110: 341–351.

32. Zhao X, Yue Y, Cheng W, Li J, Hu Y, et al. (2013) Hypoxia-inducible factor: a potential therapeutic target for rheumatoid arthritis. Curr Drug Targets 14: 700–707.

33. Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, et al. (2004) The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (HIF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279: 34411–34420.

34. Hermann LM, Pinkerton M, Jennings K, Yang L, Grom A, et al. (2005) Angiopoietin-like-4 is a potential angiogenic mediator in arthritis. Clin Immunol 115: 93–101.

35. Robciuc MR, Tahvanainen E, Jauhiainen M, Ehnholm C (2009) Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J Lipid Res 51: 824–831.

36. Lanfant-Weybel K, Michot C, Daveau R, Millez PY, Auquit-Auckbur I, et al. (2012) Synovium CD20 expression is a potential new predictor of bone erosion progression in very-early arthritis treated by sequential DMARDs monotherapy: a pilot study from the VErA cohort. Joint Bone Spine 79: 574–580.