Analysis of Trauma Patients with Massive Transfusion in the Emergency Department

Eusang Ahn, Sung-hyuk Choi, Jung-youn Kim, Jong-hak Park, Young-duck Cho
Department of Emergency Medicine, Korea University Guro Hospital, Seoul, Korea

Background: It is important that proper protocols are in place for trauma patients who require massive transfusion upon arrival at the emergency department. This study is a preliminary analysis of massive transfusion cases at the emergency department of our institution aimed to review the characteristics and situations in which massive transfusion occurs in an effort to better manage trauma patients receiving massive transfusion in the emergency department.

Methods: This study was conducted at the Department of Emergency Medicine in the Korea University Guro Hospital. We retrospectively reviewed the medical charts of trauma-related patients who required massive blood transfusions between January 2013 and December 2015. The inclusion criteria were as follows: patients who were over the age of 18 years and received more than 4 packed RBC (pRBC) units per hour, or 10 or more pRBC units during a period of 24-hours.

Results: A total of 669 patients were included in the study. There were significant differences of initial systolic blood pressure ($P<0.0001$), diastolic blood pressure ($P<0.0001$), and Injury Severity Score ($P<0.0001$) between those who survived and those who expired.

Conclusion: Proper initial resuscitation is essential for the improvement of outcome in trauma patients that require a massive transfusion. The findings from this study may serve as preliminary data in developing proper transfusion protocols for massive transfusion among trauma patients. (Korean J Blood Transfus 2016;27:130-136)

Key words: Blood transfusion, Transfusion reaction, Emergency medicine, Multiple trauma

Introduction

Trauma accounts for approximately 41 million visitations to the emergency department (ED) and 3 million hospital admissions across the United States, annually. It is the leading cause of death for Ameri-
cans between the ages of 1 and 44 years, and it is
the third leading cause of death overall.1) In South
Korea, the preventable trauma-related mortality rate
in 2010 was estimated to be 35.2\%, owing to the lack
of a proper trauma system.2) Devastating central ner-
vous system injuries and massive exsanguination are
the major causes of acute mortality in trauma patients.
Many trauma patients who do not die immediately
have enough blood loss to cause hypotension or
hemorrhagic shock. However, with proper pre-hospi-
tal care and resuscitation, it is possible for these pa-
tients to survive long enough to arrive and be treated
at trauma centers. It is important to recognize that
proper organization—rapid assessment, triage, resus-
citation, diagnosis, and therapeutic intervention—is
necessary for efficient patient management.3)
Massive hemorrhage is not only the second most
common cause of trauma-related deaths, but also
contributes considerably to mortality associated with
any kind of surgery.4,5) In addition to bleeding con-
trol, massive blood transfusion is a critical part of
treatment, and is defined as 4 packed red blood cell
(pRBC) units per hour, or as 10 or more pRBC
units during a period of 24 hours.6) The number of trauma
patients who require a transfusion is increasing yearly.
Thus, a course of action is necessary to ensure that
proper protocols are in place for trauma patients who
require massive transfusion (MT) upon arrival at the
ED. This study is a preliminary analysis of patients
with MT at the ED of our institution over the course
of 2 years. We reviewed the characteristics and sit-
tuations in which MT takes place in an effort to better
manage trauma patients who require MT in the ED.

\textbf{Materials and Methods}

This was a single-center, retrospective study based
on a medical record review. It was conducted at the
ED of a tertiary teaching hospital, which receives
approximately 60,000 annual visits. It is a nation-
ally-designated Level II trauma center. We reviewed
the medical charts of trauma-related patients who re-
quired massive blood transfusions between January
2013 and December 2015.

Non-trauma patients—cases for which the etiology
of the suspected hemorrhagic shock was uncertain—and patients who expired during transfusion were
excluded. The inclusion criteria were as follows: 1) age over 18 years, 2) patients who received more
than 4 pRBC units per hour or more than 10 pRBC
units during a 24-hour period.

The general patient demographics and character-
istics were reviewed. Standard deviation was calcu-
lated for the mean age, and ratios were derived for
patient sex. Characteristics included the mean sys-
tolic blood pressure (SBP), diastolic blood pressure
(DBP), and heart rate (HR). The means were calcu-
lated with 95\% confidence intervals. The final status
of patients (admission, expiry, or discharge) was also
included.

In addition to the type and mechanism of injury,
the injury severity score (ISS) was also calculated.
ISS is an established medical score, which was used
to assess trauma severity, and is correlated with
mortality, morbidity, and hospitalization time after
trauma. Moreover, it is also often used to define ma-
jor trauma, which is defined as an ISS score greater
than 15.7)

Patient characteristics were compared between
Table 1. General characteristics of the study group

Characteristics	Total (n=669)	Non-survivor (n=150)	Survivor (n=519)	P value
Mean age (years) (SD)	53.9	56.5	51.4	0.145
Male:female	2.9:1	2.7:1	2.9:1	0.994
Mean systolic blood pressure (mmHg)	73	65	92	<0.0001
Mean diastolic blood pressure (mmHg)	47	40	57	<0.0001
Mean heart rate	108	109	105	0.163
Mean injury severity score	25	35	17	<0.0001

Abbreviations: SD, standard deviation; CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; ISS, injury severity score.

Results

A total of 2,778 patients received a transfusion of pRBC blood products pursuant to the definition of MT during the study period. Of them, 2,109 patients were excluded on the basis of age, unknown etiology of shock, or death during the transfusion period. The remaining 669 trauma patients were included for analysis.

The general characteristics of the study group were analyzed. The male-to-female ratio was 2.9:1, and the mean age of the study population was 53.9 years. The mean SBP was 73 mmHg, and the mean DBP was 47 mmHg. The mean ISS was 25 (Table 1).

For the type of injury, blunt injury (n=427, 63.8%) was the most common, followed by compound injury (n=205, 30.6%) (Fig. 1). Motor vehicle accident (n=273, 40.8%) and pedestrian traffic accident (n=186, 27.8%) were the most and second-most common mechanisms of injury, respectively. These were followed by fall from height (n=122, 18.2%), fall of a heavy object (n=42, 6.3%), and stab wound (n=27, 4.0%), in order of frequency (Fig. 2).

An analysis of the outcome of post-transfusion
status in patients with MT showed that 513 patients (76.7%) were admitted, 150 patients (22.4%) expired within 48 hours, and 6 patients (0.9%) were transferred out to a different hospital (Fig. 3).

In comparing the survivor and non-survivor groups, there were significant differences in the mean SBP (\(P<0.0001\)), mean DBP (\(P<0.0001\)), and ISS (\(P<0.0001\)) (Table 1). Age, sex, and HR showed no differences between the two groups. There was no significant difference of survival rate according to the type of injury (\(P=0.361\)); however, that of injury mechanism (\(P\leq 0.001\)) between the two groups was significantly different (Table 2). Among those who expired, pedestrian traffic accident was the most common mechanism, while motor vehicle accident was most common among survivors.

Discussion

The majority of preventable early-stage death by major trauma still originates from uncontrolled hemorrhage.8-12) In recent years, there has been an emphasis to develop protocols for rapid initiation of MT in trauma cases.13) At our ED, MT can be ini-

Table 2. Number (%) of survivors vs. non-survivors by injury type and mechanism

Non-survivors (n=150)	Survivors (n=519)
Type of injury (survival rate)	
Blunt injury (25.5%)	87 (58%)
Penetrating injury (72.2%)	22 (14.7%)
Compound injury (80.0%)	41 (27.3%)
Injury mechanism	
Motor vehicle accident (83.7%)	41 (27.3%)
Pedestrian traffic accident (71.6%)	57 (38%)
Fall from height (71.3%)	37 (24.7%)
Fall of heavy object (100.0%)	0 (0%)
Stab wound (55.6%)	12 (8%)
Crush wound (84.2%)	3 (2%)

- 133 -
tiated by an attending emergency physician and by third- or fourth-year residents when one or more of the following criteria is met during trauma resuscitation: SBP of less than 90 mmHg, initial Glasgow Coma Scale (GCS) score of less than 12 points accompanied by injury of trunk or extremity, and unstable pelvic bone fracture of 2 or more skeletal bone fractures.

In making a comparison between survivors and non-survivors in our study, we found that the initial mean of SBP and DBP was significantly lower, and that the ISS score was significantly higher among non-survivors; while age, sex, as well as type and mechanism of injury did not show significant differences. Other studies have demonstrated that SBP is often the best available surrogate for shock, and hypotensive patients with major injuries are most likely to have internal bleeding that cannot be controlled easily.14) This suggests that regardless of age and sex, as well as of the method in which trauma was sustained, immediate assessment of blood pressure and ISS for the rapid identification of patients requiring MT can potentially lead to improved mortality in trauma patients.

There are limitations to this study that one must consider, particularly those inherent to a retrospective chart-based review. Selection bias may have confounded some results, as this study only looked at specific trauma cases in which MT was implemented. Furthermore, as our institution does not have official MT protocols, the results may differ from other MT studies. Without guidelines that use viscoelastic hemostatic assays, such as rotational thromboelastometry or thromboelastography for trauma cases, making a diagnosis of early traumatic coagulopathy can be difficult.15) In recent practice, such assays use different coagulation triggers that are helpful in the early recognition and prevention of possible complications. Moreover, other studies have shown that MT can be somewhat predicted via a scoring system, i.e. the shock index.16) In retrospect, it would have also been of value to verify a correlation between our ISS and need for MT, as well as the amount of transfusion in our study as well.

Multiple trauma patients are at risk for mortality and morbidity from injuries alone and often in varying states of hypovolemia. A rapid initiation of balanced transfusion through proper MT protocols is a key component of trauma resuscitation. Further study is necessary to determine the protocols for rapid identification of patients who may require MT.17) The findings from this study may serve as preliminary data in the development of proper transfusion protocols for MT among trauma patients.

요 약

배경: 대량 수혈을 필요로 하는 외상 환자는 응급실 도착 시 적절한 방법으로 치료가 시행되어야 한다. 이 연구는 응급실에서 대량 수혈을 필요하였던 외상 환자들의 특성과 예후를 분석하여 이들의 처치에 도움을 주고자 하였다.

방법: 본 연구는 고려대학교 구로병원 응급응급의학과에서 2013년 1월부터 2015년 12월까지 대량 수혈을 필요로 한 환자들의 기록을 후향적 연구로 검토하였다. 연구포함 대상은 18세 이상의 환자 중 응급실 내원 후 24시간 동안 시간당 농축적혈구 4단위 이상 또는 10단위 이상을 두여 받은 외상 환자로 정했다.

결과: 연구 기간 동안 대상 환자는 669명이었
대. 이중 생존 환자군과 사망 환자군의 차이를 비교한 결과 도착시 수축기 혈압\((P<0.0001)\), 이관기 혈압\((P<0.0001)\), 그리고 Injury Severity Score \((P<0.0001)\)에서 의미 있는 차이가 있었다. 대량수혈 환자의 22.4% \((150/669)\)는 사망하였다.

결론: 대량 수혈이 필요한 외상 환자에서 예후 개선을 위한 적절한 초기 대응이 필요하며 이러한 자료는 응급실에서 대량 수혈이 필요한 외상 환자들에 대한 기본 자료를 제공할 수 있을 것으로 여겨진다.

References

1. National Trauma Institute. National trauma institute web site on trauma statistics. http://www.nationaltraumainstitute.org/home/trau ma_statistics.html [Online] (last visited on 18 July 2016).
2. Lee KH. Optimal trauma care system in Korea. J Korean Med Assoc 2013;56:748-50
3. American College of Surgeons. Committee on trauma: resources for optimal care of the injured patients: 2014. http://www.facs.org/trauma/verification/resources-preview/resources.pdf [Online] (last visited on 28 February 2015).
4. Hess JR, Dutton RB, Holcomb JB, Scalea TM. Giving plasma at a 1:1 ratio with red cells in resuscitation: who might benefit? Transfusion 2008;48:1763-5
5. Copeland GP, Jones D, Walters M. POSSUM: a scoring system for surgical audit. Br J Surg 1991;78:355-60
6. Holcomb JB. Optimal use of blood products in severely injured trauma patients. Hematology Am Soc Hematol Educ Program 2010;2010:465-9
7. Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 1974;14:187-96
8. Callcut RA, Johannigman JA, Kadon KS, Hanseman DJ, Robinson BR. All massive transfusion criteria are not created equal: defining the predictive value of individual transfusion triggers to better determine who benefits from blood. J Trauma 2011;70:794-801
9. Moore FA, Nelson T, McKinley BA, Moore EE, Nathens AB, Rhee P, et al. Is there a role for aggressive use of fresh frozen plasma in massive transfusion of civilian trauma patients? Am J Surg 2008;196:948-58
10. Kashuk JL, Moore EE, Johnson JL, Haenel J, Wilson M, Moore JB, et al. Postinjury life threatening coagulopathy: is 1:1 fresh frozen plasma:packed red blood cells the answer? J Trauma 2008;65:261-70
11. Krug EG, Sharma GK, Lozano R. The global burden of injuries. Am J Public Health 2000;90:523-6
12. Niles SE, McLaughlin DF, Perkins JG, Wade CE, Li Y, Spinella PC, et al. Increased mortality associated with the early coagulopathy of trauma in combat casualties. J Trauma 2008;64:1459-63
13. McDaniel LM, Etchill EW, Raval JS, Neal MD. State of the art: massive transfusion. Transfus Med 2014;24:138-44
14. Clarke JR, Trooskin SZ, Doshi PJ, Greenwald L, Mode CJ. Time to laparotomy for intra-abdominal bleeding from trauma does affect survival for delays up to 90 minutes. J Trauma 2002;52:420-5
15. Rizoli S, Min A, Sanchez AP, Shek P, Grodecki R, Veigas P, et al. In trauma, conventional ROTEM and TEG results are not interchangeable but are similar in clinical applicability. Mil Med 2016;181(S):117-26
16. Rau CS, Wu SC, Kuo SC, Pao-Jen K, Shiun-Yuan H, Chen YC, et al. Prediction of massive transfusion in trauma patients with shock index, modified shock index, and age shock index. Int J Environ Res Public Health 2016;13:683

17. Tonglet ML, Greffenstein P, Pitance F, Degesves S. Massive bleeding following severe blunt trauma: the first minutes that can change everything. Acta Chir Belg 2016;116:11-5