“Ups and Downs in Dark Energy”

phase transition in dark sector as a proposal to lessen cosmological tensions

Abdolali Banihashemi,1,* Nima Khosravi,1,† and Amir H. Shirazi1,‡

1Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran

(Dated: August 14, 2018)

Based on tensions between the early and late time cosmology, we propose a double valued cosmological constant which could undergo a phase transition in its history. It is named “double-Λ Cold Dark Matter”: $\Lambda\Delta$CDM. An occurred phase transition results in (micro-) structures for the dark sector with a proper (local) interaction. We consider the background data set including BAO distances and Riess et al.’s H_0 data point, with and without a prior on $\Omega_m h^2$ we could show our model can lessen the H_0 tension by $\Delta \chi^2_{\text{total}} = -7.49$ and $\Delta \chi^2_{\text{total}} = -7.15$ respectively with two more free parameters. We also examine our model to check if we can reduce the $f \sigma_8$ tension. In the presence of Planck 2015 prior on $\Omega_m h^2$ it will be shown that our model is much better than ΛCDM by $\Delta \chi^2_{\text{total}} = -7.26$ where H_0 tension is removed while we do not have any better results for $f \sigma_8$. If we relax the prior on Ω_m then our model behaves in a very non-trivial way. Our 1 σ likelihood has two extrema at $z_t \sim 0$ and one around $z_t \sim 2.25$. The former corresponds to $\Delta \chi^2_{f \sigma_8} = -6.93$ and $\Delta \chi^2_{f \sigma_8} = +0.74$ which means we could only solve H_0 tension without any success on $f \sigma_8$ one. However for the latter case, $z_t = 2.25$, we have $\Delta \chi^2_{f \sigma_8} = -5.26$ while $\Delta \chi^2_{f \sigma_8} = -2.89$ and $\Delta \chi^2_{f \sigma_8} = -2.01$. This case shows we can reduce both tensions together which is a hint for our idea that the dark sector underwent a phase transition and it may have (micro-) structures.

I. INTRODUCTION:

The standard model of cosmology, ΛCDM, is very successful in describing the cosmological data from the early universe [1, 2] as well as the late time observations [3]. Its constitutes are cold dark matter (CDM) and the cosmological constant, Λ. CDM and Λ are responsible for matter structure formation and the late time acceleration phase, respectively. However due to mysterious (dark) nature of its main elements, it is a relevant question to ask if dark matter and dark energy are fundamental or not. On the other hand both theoretically and observationally there are few issues which should be answered in the context of ΛCDM. One of the outstanding (theoretical) question is the cosmological constant fine-tuning problem [4]. On the other hand, recently, some tensions have been reported between ΛCDM predictions and the observations. To address these issues there are different approaches which go beyond standard ΛCDM. We think these tensions can be phrased as follows: a ΛCDM which its free parameters are fixed by early universe data (mainly CMB) is not consistent (up to few σ’s) with a ΛCDM which is constrained by late time observations (i.e. LSS data). A recent work in this direction claims that dynamical dark energy is favored by 3.5 σ over ΛCDM [5]. Their approach is interesting because they look for the dark energy equation of state by reconstructing it directly from the observational data.

The most famous tension is H_0 tension which is between measurements of Hubble parameter at $z = 0$ by CMB [1] and supernovae [6–8] where late time direct measurement predicts higher value for H_0 in comparison to Planck 2015. This tension was reported in the literature and became worse with the recent measurements [7] although it can be a systematic error in the observations. The other reported tension is $f \sigma_8$ tension where again the measurement of matter density between late time observations [9] and CMB [1] are not compatible. Although in this paper we focus on these two tensions, there are other (mild) tensions e.g. BAO Lyman-α [10], void phenomenon [11] and missing satellite problem [12] where the last two ones are in non-linear regime. On the theory side, there are different strategies to address these tensions but all of them need to go beyond standard model of cosmology. An interesting candidate for this purpose is massive neutrinos but it cannot address both H_0 and $f \sigma_8$ tensions together [1]. There are also other ideas trying to solve either H_0 or $f \sigma_8$ tensions e.g. interacting dark energy [13, 14], neutrino-dark matter interaction [15], varying Newton constant [16, 17], viscous bulk cosmology [18], massive graviton [19] and many more. Recently, another idea, named $\upsilon\Lambda$CDM, has been studied in the literature to address H_0 tension by assuming two different behavior in high and low redshifts [20] which is very similar to [21–23]. This model is based on some theoretical motivations [24, 25]. In $\upsilon\Lambda$CDM, cosmological model switches, at a transition redshift z_t, from the standard ΛCDM model to $R = R_0$ model, where R is the Ricci scalar and R_0 is a constant. This feature of $\upsilon\Lambda$CDM model brings us to a new idea to solve the cosmological tensions.

Before discussing this idea let us repeat that it seems all of the cosmological tensions have the same format if we phrase them as: the physics of late time is different from the early universe physics. According to this viewpoint we suggest a new concept/idea in the physics of cosmological models: phase transition in dark sector. In this work we pursue this idea that a phase transition has happened in the dark sector (here we focus on dark energy). The reason for this can be
The temperature the system can go either to almost spin-up or spin-down state if the temperature becomes less than a critical temperature, T_c, and for the absolute zero temperature all the spins will be aligned as we have shown in line a in FIG. 1. Physically, it means our system transits from the critical temperature very quickly.

Critical phenomena are revisited in a variety fields of physics, which local interactions of a many-body system result in a global phase transition. Usually, an ordered phase emerges by lowering the free parameter of the model, e.g., temperature, beyond a critical point. For example, Ising model is classic model of critical phenomena, which describes the phase transition from para-magnet to ferro-magnet at Curie temperature. It consists of two-directions magnetic dipoles, i.e., spins, which interacts with each other on a lattice and enforce their neighbors to align with them. In high temperature regime, spins take directions randomly regardless of their neighbors’ directions. Close enough to the critical temperature, however, neighbor interactions result in the emergence of aligned islands. Consequently, there is one dominant direction at low temperature regime.

In the next section we propose a model inspired by Ising model for dark energy which (possibly) experiences a phase-transition. In the section III we constrain our model free parameters with background data. Then in section IV we study our model in the presence of the $f\sigma_8$ data points. We will show how our model can reduce both tensions together. In section V we will conclude and give future perspective on our idea in section VI.

II. ΛCDM MODEL

We realize a phase transition behavior in dark energy sector by an inspiration from Ising model. In the Ising model two-valued spin is at work and a local interaction between these two spins govern the behavior of the system. By reducing the temperature the system can go either to almost spin-up or spin-down state if the temperature becomes less than a critical temperature, T_c, and for the absolute zero temperature all the spins will be aligned as we have shown in line a in FIG. 1. Physically, it means our system transits from the critical temperature very quickly.

Critical phenomena are revisited in a variety fields of physics, which local interactions of a many-body system result in a global phase transition. Usually, an ordered phase emerges by lowering the free parameter of the model, e.g., temperature, beyond a critical point. For example, Ising model is classic model of critical phenomena, which describes the phase transition from para-magnet to ferro-magnet at Curie temperature. It consists of two-directions magnetic dipoles, i.e., spins, which interacts with each other on a lattice and enforce their neighbors to align with them. In high temperature regime, spins take directions randomly regardless of their neighbors’ directions. Close enough to the critical temperature, however, neighbor interactions result in the emergence of aligned islands. Consequently, there is one dominant direction at low temperature regime.

In the next section we propose a model inspired by Ising model for dark energy which (possibly) experiences a phase-transition. In the section III we constrain our model free parameters with background data. Then in section IV we study our model in the presence of the $f\sigma_8$ data points. We will show how our model can reduce both tensions together. In section V we will conclude and give future perspective on our idea in section VI.

II. ΛCDM MODEL

We realize a phase transition behavior in dark energy sector by an inspiration from Ising model. In the Ising model two-valued spin is at work and a local interaction between these two spins govern the behavior of the system. By reducing the temperature the system can go either to almost spin-up or spin-down state if the temperature becomes less than a critical temperature, T_c, and for the absolute zero temperature all the spins will be aligned as we have shown in line a in FIG. 1. Physically, it means our system transits from the critical temperature very quickly.

Critical phenomena are revisited in a variety fields of physics, which local interactions of a many-body system result in a global phase transition. Usually, an ordered phase emerges by lowering the free parameter of the model, e.g., temperature, beyond a critical point. For example, Ising model is classic model of critical phenomena, which describes the phase transition from para-magnet to ferro-magnet at Curie temperature. It consists of two-directions magnetic dipoles, i.e., spins, which interacts with each other on a lattice and enforce their neighbors to align with them. In high temperature regime, spins take directions randomly regardless of their neighbors’ directions. Close enough to the critical temperature, however, neighbor interactions result in the emergence of aligned islands. Consequently, there is one dominant direction at low temperature regime.

In the next section we propose a model inspired by Ising model for dark energy which (possibly) experiences a phase-transition. In the section III we constrain our model free parameters with background data. Then in section IV we study our model in the presence of the $f\sigma_8$ data points. We will show how our model can reduce both tensions together. In section V we will conclude and give future perspective on our idea in section VI.

II. ΛCDM MODEL

We realize a phase transition behavior in dark energy sector by an inspiration from Ising model. In the Ising model two-valued spin is at work and a local interaction between these two spins govern the behavior of the system. By reducing the temperature the system can go either to almost spin-up or spin-down state if the temperature becomes less than a critical temperature, T_c, and for the absolute zero temperature all the spins will be aligned as we have shown in line a in FIG. 1. Physically, it means our system transits from the critical temperature very quickly.

Critical phenomena are revisited in a variety fields of physics, which local interactions of a many-body system result in a global phase transition. Usually, an ordered phase emerges by lowering the free parameter of the model, e.g., temperature, beyond a critical point. For example, Ising model is classic model of critical phenomena, which describes the phase transition from para-magnet to ferro-magnet at Curie temperature. It consists of two-directions magnetic dipoles, i.e., spins, which interacts with each other on a lattice and enforce their neighbors to align with them. In high temperature regime, spins take directions randomly regardless of their neighbors’ directions. Close enough to the critical temperature, however, neighbor interactions result in the emergence of aligned islands. Consequently, there is one dominant direction at low temperature regime.

In the next section we propose a model inspired by Ising model for dark energy which (possibly) experiences a phase-transition. In the section III we constrain our model free parameters with background data. Then in section IV we study our model in the presence of the $f\sigma_8$ data points. We will show how our model can reduce both tensions together. In section V we will conclude and give future perspective on our idea in section VI.

II. ΛCDM MODEL

We realize a phase transition behavior in dark energy sector by an inspiration from Ising model. In the Ising model two-valued spin is at work and a local interaction between these two spins govern the behavior of the system. By reducing the temperature the system can go either to almost spin-up or spin-down state if the temperature becomes less than a critical temperature, T_c, and for the absolute zero temperature all the spins will be aligned as we have shown in line a in FIG. 1. Physically, it means our system transits from the critical temperature very quickly.

Critical phenomena are revisited in a variety fields of physics, which local interactions of a many-body system result in a global phase transition. Usually, an ordered phase emerges by lowering the free parameter of the model, e.g., temperature, beyond a critical point. For example, Ising model is classic model of critical phenomena, which describes the phase transition from para-magnet to ferro-magnet at Curie temperature. It consists of two-directions magnetic dipoles, i.e., spins, which interacts with each other on a lattice and enforce their neighbors to align with them. In high temperature regime, spins take directions randomly regardless of their neighbors’ directions. Close enough to the critical temperature, however, neighbor interactions result in the emergence of aligned islands. Consequently, there is one dominant direction at low temperature regime.

In the next section we propose a model inspired by Ising model for dark energy which (possibly) experiences a phase-transition. In the section III we constrain our model free parameters with background data. Then in section IV we study our model in the presence of the $f\sigma_8$ data points. We will show how our model can reduce both tensions together. In section V we will conclude and give future perspective on our idea in section VI.

II. ΛCDM MODEL

We realize a phase transition behavior in dark energy sector by an inspiration from Ising model. In the Ising model two-valued spin is at work and a local interaction between these two spins govern the behavior of the system. By reducing the temperature the system can go either to almost spin-up or spin-down state if the temperature becomes less than a critical temperature, T_c, and for the absolute zero temperature all the spins will be aligned as we have shown in line a in FIG. 1. Physically, it means our system transits from the critical temperature very quickly.

Critical phenomena are revisited in a variety fields of physics, which local interactions of a many-body system result in a global phase transition. Usually, an ordered phase emerges by lowering the free parameter of the model, e.g., temperature, beyond a critical point. For example, Ising model is classic model of critical phenomena, which describes the phase transition from para-magnet to ferro-magnet at Curie temperature. It consists of two-directions magnetic dipoles, i.e., spins, which interacts with each other on a lattice and enforce their neighbors to align with them. In high temperature regime, spins take directions randomly regardless of their neighbors’ directions. Close enough to the critical temperature, however, neighbor interactions result in the emergence of aligned islands. Consequently, there is one dominant direction at low temperature regime.

In the next section we propose a model inspired by Ising model for dark energy which (possibly) experiences a phase-transition. In the section III we constrain our model free parameters with background data. Then in section IV we study our model in the presence of the $f\sigma_8$ data points. We will show how our model can reduce both tensions together. In section V we will conclude and give future perspective on our idea in section VI.
TABLE I: The background dataset. Θ represents the distance of the last scattering surface to us. We also use five BAO volume distances. The additional data point is the Hubble parameter at the present time, H₀, which is reported by analysis of supernovae. We do our χ² with and without a prior on Ωₘh² given by Planck 2015.

CMB	BAO	BAO	BAO
CMB first peak [2]	6dFGS (z = 0.106) [26]	LOWZ (z = 0.320) [28]	DES (z = 0.81) [30]
100Θ = 1.04085 ± 0.00047	Dᵥ = 456.0 ± 27.0	Dᵥ = 1264.0 ± 25.0	Dₐ/rₐ = 10.75 ± 0.43

CMB perturbations [2]	MGS (z = 0.150) [27]	CMASS (z = 0.570) [29]	Local H₀ [7]
Ωₘh² = 0.1415 ± 0.0019	Dᵥ = 664.0 ± 25.0	Dᵥ = 2056.0 ± 20.0	H₀ = 73.48 ± 1.66 km/s/Mpc

TABLE II: The best fit values for ΛCDM and ΔCDM for two sets of background data. In both cases, with and without prior on Ωₘh², our model ΔCDM is better by few χ² in comparison to ΛCDM. We also introduced another measure for comparing different models as γ = χ²_min/(N_data - N_model) where N_data is number of data points and N_model is number of free parameters in the model. If a model’s γ is closer to one it means that model is more favored for the same set of the data points. Obviously, in both cases ΔCDM is more favored than ΛCDM by using both χ² and γ measures.

\[
\begin{array}{|c|c|c|}
\hline
\text{model} & \chi^2 & \gamma \\
\hline
\text{ΛCDM} & 4.57 & 1.52 \\
 & H₀ = 72.5^{+2.5}_{-3.0} & \\
 & Ωₘh² = 0.1409 ± 0.0017 & \\
 & Ωₐ = 0.5 ± 0.1 & \\
 & z₁ = 0.00^{+0.14}_{-0.1} & \\
 & \chi^2 = 11.72 & \gamma = 2.34 \\
 & H₀ = 69^{+0.5}_{-1.0} & \\
 & Ωₘh² = 0.1400^{+0.0012}_{-0.0007} & \\
\hline
\end{array}
\]

and the volume distance, \(Dᵥ\),

\[
Dᵥ(z) = \left(\frac{c}{H(z)} \right) (1 + z)^2 Dₐ²(z) \right)^{1/3}.
\]

We will constrain our free parameters by background data points including five BAO volume distances \(Dᵥ(z)\), \(H₀\) and CMB distance. We also repeat our analysis by assuming a prior on \(Ωₘh²\) from perturbation data. We summarized these data points in TABLE I where one can find their original references. We have used mainly the BAO data points which are used by Planck 2015 [2] as well as a recent data point by DES collaboration [30]. For \(H₀\) we use the recent report by Riess et al. [7] which measured a little bit higher value for \(H₀\) from the previous results [6]. The data we have used are summarized in TABLE I.

We did χ² analysis for our model and standard ΛCDM by using all the background data points in TABLE I with and without prior on \(Ωₘh²\). The results are shown in TABLE II. For both cases our model is more consistent with the data in comparison to ΛCDM. In addition for our model in its best-fit predicts \(H₀ = 72.5^{+2.5}_{-3.0}\) km/s/Mpc which produces χ² = 0.35 for both with and without prior on \(Ωₘh²\). This means our model has no inconsistency with local measurements on Hubble parameter [7]. We plotted volume distance versus redshift for our best fits in FIG. 3.

IV. PERTURBATION ANALYSIS: \(f \sigmaₘ TENSION\)

In this section we will consider linear perturbation theory i.e. \(f \sigmaₘ\) and will add corresponding data, see TABLE III. The \(f \sigmaₘ\) is a measurement on the growth of structure \(f(z)\) which satisfies the following equation

\[
\frac{df}{dz} + f \left[\frac{d \ln E}{dz} - \frac{2}{1+z} \right] - \frac{f^2}{1+z} + \frac{3 \Omegaₐ(m+1)^2}{2 E^2(z)} = 0
\]

and the definition of \(\sigmaₘ(z)\) is as follow

\[
\sigmaₘ(z) = \sigmaₘ(0) \exp \left[- \int_0^z \frac{f(z')}{1+z'} dz' \right].
\]
As it was mentioned in the introduction, there is a tension between CMB’s and LSS’s prediction for $f \sigma_8$ which is however milder than H_0 tension. Here we tried to investigate if our model can lessen this tension or not while we also keep R17 data point for H_0. It means, in contrast to many models in the literature, we try to see if we can loose both H_0 and Θ_{CMB} tensions together and not one or another separately. For our analysis we used $f \sigma_8$ data points as reported in TABLE III. The χ^2 analysis results in the best fit of our free parameter written in TABLE IV. As it is clear in TABLE IV the result is more or less same as the case without $f \sigma_8$ results in TABLE II. This means the model prefers to solve H_0 tension but leave $f \sigma_8$ without any touch. However if we relax the prior on $\Omega_m h^2$ from Planck’15 then we can see a non-trivial behaviour from our model. This behaviour is shown in FIG. 4 where we have plotted total χ^2 with respect to transition redshift z_t. It is obvious there are two different disjoint islands. The best fit values for the parameters and their χ^2 is summarized in TABLE V. The one which is around $z_t \sim 0$ was expected due to the other results. This case solves H_0 tension but it does not touch $f \sigma_8$ tension. This case has $\chi^2_{total} = 11.72$ which gives $\Delta \chi^2 = -6.74$ in comparison to standard ΛCDM. The more interesting case is the case which is still in 1 σ likelihood but for $z_t \gtrsim 0.57$. The χ^2 analysis shows slightly smaller value $\chi^2_{total} = 13.20$ as our best fit for this case. This case is worse than the previous one but it is still much better than ΛCDM by $\Delta \chi^2 = -5.26$. Note that we could not close the 1 σ from above in z_t which is understandable. The reason is that when $z_t \gtrsim 0.86$ then there is no low redshift data points above transition redshift. This means all the low redshift data points constrain H_0 and Ω_m while effectively $\Omega_{\Lambda 2}$ is a free parameter which is determined by CMB distance i.e. Θ. This means for any $z_t \gtrsim 0.86$ we always can find a value for $\Omega_{\Lambda 2}$ to be fit with one data point i.e. Θ while there is no prior on Ω_m. What we see in our model can be related to what has been

Dataset	$f \sigma_8$ Values (z)
6dFGS+SNa [31]	0.428 ± 0.0465 (z = 0.92)
SDSS-MGS [32]	0.490 ± 0.145 (z = 0.15)
SDSS-LRG [33]	0.3512 ± 0.0583 (z = 0.25)
BOSS-LOWZ [34]	0.384 ± 0.095 (z = 0.32)
SDSS-CMASS [35]	0.488 ± 0.060 (z = 0.59)
WiggleZ [36]	0.413 ± 0.080 (z = 0.44)
WiggleZ [36]	0.390 ± 0.063 (z = 0.60)

TABLE III: $f \sigma_8$ Values.

Dataset	$f \sigma_8$ Values (z)
6dFGS+SNa [31]	0.428 ± 0.0465 (z = 0.92)
SDSS-MGS [32]	0.490 ± 0.145 (z = 0.15)
SDSS-LRG [33]	0.3512 ± 0.0583 (z = 0.25)
BOSS-LOWZ [34]	0.384 ± 0.095 (z = 0.32)
SDSS-CMASS [35]	0.488 ± 0.060 (z = 0.59)
WiggleZ [36]	0.413 ± 0.080 (z = 0.44)
WiggleZ [36]	0.390 ± 0.063 (z = 0.60)

TABLE IV: The best fit values for ΛCDM and $\Omega_m h^2$.

Dataset	$f \sigma_8$ Values (z)
6dFGS+SNa [31]	0.428 ± 0.0465 (z = 0.92)
SDSS-MGS [32]	0.490 ± 0.145 (z = 0.15)
SDSS-LRG [33]	0.3512 ± 0.0583 (z = 0.25)
BOSS-LOWZ [34]	0.384 ± 0.095 (z = 0.32)
SDSS-CMASS [35]	0.488 ± 0.060 (z = 0.59)
WiggleZ [36]	0.413 ± 0.080 (z = 0.44)
WiggleZ [36]	0.390 ± 0.063 (z = 0.60)

FIG. 3: The volume distance, $D_V(z)$, normalized to Planck 2015 best fit values’ prediction. Note that in addition to above data points, we also have used H_0 and Θ_{CMB} data points in χ^2 calculation. Since we could not plot them here then it is not very obvious that ΩCDM is better than ΛCDM by looking just at this plot. The results are given in TABLE II.
reported in the literature as a different behaviour than ΛCDM above redshift $z \sim 0.6$ [8]. This makes a degenerate situation which can be broken if we have more data from mid-range redshift $z \sim 2 - 10$. However even in this case if z_t be above all the late time data points then we will have this degenerate situation again. Although the latter case is a little bit worse than the case $z_t \sim 0$ but it has a more interesting property. We plotted volume distance and $f \sigma_8$ versus redshift in FIGS. 5 and 6 respectively.

ΛCDM	ΛCDM $z_t = 0$	ΛCDM $z_t = 2.25$
$H_0 = 69.0$	$H_0 = 72.5$	$H_0 = 70.0$
$\Omega_m h^2 = 0.1400$	$\Omega_m h^2 = 0.1400$	$\Omega_m h^2 = 0.1223$
$\Omega_{\Lambda_2} = 0.5$	$\Omega_{\Lambda_2} = 49.8$	
$z_t = 0.0$	$z_t = 2.25$	
$\chi^2_{total} = 18.46$	$\chi^2_{total} = 11.72$	$\chi^2_{total} = 13.20$
$\gamma = 1.32$	$\gamma = 0.98$	$\gamma = 1.10$
$\chi^2_{H_0} = 7.28$	$\chi^2_{H_0} = 0.35$	$\chi^2_{H_0} = 4.39$
$\chi^2_{f \sigma_8} = 6.80$	$\chi^2_{f \sigma_8} = 7.24$	$\chi^2_{f \sigma_8} = 4.79$

TABLE V: The details of $1 \sigma \chi^2$ analysis for both ΛCDM and ΛCDM models without any prior on $\Omega_{\Lambda_2} h^2$. In this case we have two local minimums as it is obvious from FIG. 4. The interesting result is that for $z_t = 2.25$ our model can lessen both H_0 and $f \sigma_8$ tensions simultaneously. Note that ΛCDM is more favored than ΛCDM by using both χ^2 and γ measures where γ is defined in TABLE II.

FIG. 6: We plotted $f \sigma_8$ with respect to redshift. When we relax the prior on $\Omega_m h^2$, $\Omega_m h^2$ can go down enough, so the $f \sigma_8$ tension as well as H_0 tension decreases as expected (c.f. TABLE V). Note that the orange dashed-dotted and green dotted curves are almost on top of each other.

V. CONCLUDING REMARKS

Based on the structure of cosmological tensions, e.g. H_0 and $f \sigma_8$, we proposed a dark energy model which says dark sector underwent a phase transition in its history. In this work, our idea has been realized by the simplest scenario: instead of a cosmological constant we have two distinctive values for the cosmological constant and we named our model: ΛCDM. In addition we supposed inspired by the Ising model we have a cosmological constant we have two distinctive values for the tension decreases as expected (c.f. TABLE V). Note that the orange dashed-dotted and green dotted curves are almost on top of each other.

FIG. 4: In this figure we have plotted the total χ^2 with respect to transition redshift z_t when we do not have any prior on $\Omega_m h^2$. It is clear that we have two distinguishable islands with a minimum at $z_t = 0$ and the other one at $z_t = 2.25$. The former one has less χ^2 which means it fits the data better but it can only solve H_0 tension without any success about $f \sigma_8$ one. The latter case, i.e. for $z_t > 0.57$, is more interesting since it can lessen both tensions simultaneously. In this case there is a degeneracy for z_t and Ω_{Λ_2}. Since there is no data point above $z > 0.89$ then when z_t is above 0.89 effectively Ω_{Λ_2} should address just one data point i.e. the Θ_{CMB}. This means for any value of $z_t > 0.89$ we can find a proper value for Ω_{Λ_2} with a small deviation in χ^2. Consequently, we cannot close the likelihood for the second part.

FIG. 5: Here we plot the volume distance normalized to Planck 2015 best fit values’ prediction $D_\gamma (z)/D_\gamma^{Planck} (z)$. But this time best fit values of free parameters are calculated by using both background and $f \sigma_8$ data sets TABLES I and III respectively.
(which corresponds to a transition redshift in cosmology). Before the transition redshift the universe switches between Λ_1 and Λ_2 while it settles into the standard ΛCDM model after the transition redshift.

We have checked our model by considering the background cosmological distances i.e. CMB distance to us, BAO’s and H_0 measurement. We summarized the results in TABLE II which shows much less χ^2 for our model: $\Delta \chi^2_{\text{total}} = -7.49$ and $\Delta \chi^2_{\text{total}} = -7.15$ with and without a prior on $\Omega_m h^2$. This means our model can remove the H_0 tension albeit with two more free parameters. For the next step we examined our model by adding the $f \sigma_8$ data points. This is crucial since we do not know if there is any fundamental idea that can solve both H_0 and $f \sigma_8$ tensions together. The result has been summarized in TABLE IV which shows we have less χ^2 when we have a prior on $\Omega_m h^2$ while we could not lessen the $f \sigma_8$ tension. But without any prior on $\Omega_m h^2$ we have a chance to lessen both tensions together as one can see in FIG. 4 and TABLE V. We could show in $1 \sigma \chi^2$ we have a local minimum at $z_t = 2.25$ which can lessen both H_0 and $f \sigma_8$ tensions together. This case means a phase transition should be occurred in redshifts above $z_t > 0.57$. This is an interesting results and is in agreement with previous studies on the pure analysis of $H(z)$ data. For example in Figure 10 in [8] it is clear that if one reconstructs $H(z)$ from the data then around $z \sim 0.6$ it starts to deviate from the ΛCDM predictions however for above this redshift the exact form of $H(z)$ is ambiguous. These results are totally in agreement with what we could get theoretically: to resolve tensions we see a transition in dark energy behavior above $z_t > 0.57$. Even more as it is obvious from FIG. 4 for above $z_t > 0.57$ the results of our analysis are not distinguishable at 1σ level. However additional data points for mid range redshifts i.e. $z \sim 2 - 6$ will break this degeneracy.

VI. FUTURE PERSPECTIVES

We think the idea of phase transition in dark sector is a very rich concept both phenomenologically and theoretically. This idea is supported with the way that we understand the cosmological tensions: all of these tensions can be phrased as inconsistencies between early and late time physics and so a phase transitions in mid redshifts can address the different behaviors of the universe in early and late times. A phase-transition in dark energy has a very interesting deep consequence: dark energy has (micro-)structures.

This idea can be checked phenomenologically by checking the bare observations and see if there is a kind of different behaviors for cosmological parameters in different redshifts. For example as we mentioned above the behavior of $H(z)$ is different for low and high redshift as it is reported in [8]. In addition in [5] the behavior of equation of state of dark energy seems is not $w = -1$ and it oscillates. This is also in agreement with our idea where we assume dark energy switches between two different values. However the frequency of oscillations is very larger in our model and we should check our model for lower frequencies too in future works.

In the theoretical side is a vast era of exploration: in this work we focused on the simplest scenario inspired by the Ising model. We will generalize our approach for more precise models e.g. by removing fast phase transition. In addition we can think about other models e.g. Heisenberg model, Potts model and etc. One way to think about this idea is working in a continuum regime which is remained for the future work.

Acknowledgments: We are grateful to S. Baghram, M. Farhang and S.M.S. Movahed for fruitful discussions as well as their comments on the early draft. We also thank A. Hosseiny and B. Mostaghel for useful discussions. NK thanks School of Physics at IPM where he is a part time researcher.

[1] N. Aghanim et al. [Planck Collaboration], “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].
[2] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594, A13 (2016) [arXiv:1502.01589 [astro-ph.CO]].
[3] M. Tegmark et al. [SDSS Collaboration], “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D 69, 103501 (2004) [astro-ph/0310723].
[4] S. Weinberg, “The cosmological constant problem?, Review of Modern Physics 61 (1989) 1, J. Martin, “Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask)”, Comptes Rendus Physique 13 (2012) 566, arXiv:1205.3365 [astro-ph.CO].
[5] G. B. Zhao et al., “Dynamical dark energy in light of the latest observations,” Nat. Astron. 1 (2017) no.9, 627 [arXiv:1701.08165 [astro-ph.CO]].
[6] A. G. Riess et al., “A 2.4% Determination of the Local Value of the Hubble Constant,” Astrophys. J. 826, no. 1, 56 (2016) [arXiv:1604.01424 [astro-ph.CO]].
[7] A. G. Riess et al., “New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant,” Astrophys. J. 855, no. 2, 136 18 (2018) [arXiv:1801.01120 [astro-ph.SR]].
[8] J. L. Bernal, L. Verde and A. G. Riess, “The trouble with H_0,” JCAP 1610, no. 10, 019 (2016) [arXiv:1607.05617 [astro-ph.CO]].
[9] T. M. C. Abbott et al. [DES Collaboration], “Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing,” arXiv:1708.01530 [astro-ph.CO].
[10] H. du Mas des Bourboux et al., “Baryon acoustic oscillations from the complete SDSS-III Ly-α quasar cross-correlation function at z = 2.4,” arXiv:1708.02225 [astro-ph.CO].

[11] P. J. E. Peebles, “The void phenomenon,” Astrophys. J. 557, 495 (2001) [astro-ph/0101127].

[12] A. A. Klypin, A. V. Kravtsov, O. Valenzuela and F. Prada, “Where are the missing Galactic satellites?”, Astrophys. J. 522, 82 (1999) [astro-ph/9901240].

[13] E. Di Valentino, A. Melchiorri and O. Mena, “Can interacting dark energy solve the H_0 tension?,” Phys. Rev. D 96 (2017) no.4, 043503 [arXiv:1704.08342 [astro-ph.CO]].

[14] W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi and D. F. Mota, “Tale of stable interacting dark energy, observational signatures, and the H_0 tension,” arXiv:1805.08252 [astro-ph.CO].

[15] E. Di Valentino, C. Behm, E. Hivon and F. R. Bouchet, “Reducing the H_0 and f_σ_8 tensions with Dark Matter-neutrino interactions,” Phys. Rev. D 97 (2018) no.4, 043513 [arXiv:1710.02559 [astro-ph.CO]].

[16] S. Nesseris, G. Pantazis and L. Perivolaropoulos, “Tension and constraints on modified gravity parametrizations of G_m(z) from growth rate and Planck data,” Phys. Rev. D 96 (2017) no.2, 023542 [arXiv:1703.10538 [astro-ph.CO]].

[17] L. Kazantzidis and L. Perivolaropoulos, “Evolution of the f_σ_8 tension with the Planck15/ΛCDM determination and implications for modified gravity theories,” Phys. Rev. D 97 (2018) no.10, 103503 [arXiv:1803.01337 [astro-ph.CO]].

[18] B. Mostaghel, H. Mosahi and S. M. S. Movahed, “Non-minimal Derivative Coupling Scalar Field and Bulk Viscous Dark Energy,” Eur. Phys. J. C 77 (2017) no.8, 541 [arXiv:1611.08196 [astro-ph.CO]].

[19] A. De Felice and S. Mukohyama, “Graviton mass might reduce tension between early and late time cosmological data,” Phys. Rev. Lett. 118 (2017) no.9, 091104 [arXiv:1607.03368 [astro-ph.CO]].

[20] N. Khosravi, S. Baghram, N. Afshordi and N. Altamirano, “μμΛCDM: H_0 tension as a hint for Über-Gravity,” arXiv:1710.09366 [astro-ph.CO].

[21] E. Di Valentino, E. V. Linder and A. Melchiorri, “Vacuum phase transition solves the H_0 tension,” Phys. Rev. D 97 (2018) no.4, 043528 [arXiv:1710.02153 [astro-ph.CO]].

[22] B. A. Bassett, M. Kunz, D. Parkinson and C. Ungarelli, “Condensate cosmology - Dark energy from dark matter,” Phys. Rev. D 68 (2003) 043504 [astro-ph/0211303].

[23] B. A. Bassett, M. Kunz, J. Silk and C. Ungarelli, “A Late time transition in the cosmic dark energy?,” Mon. Not. Roy. Astron. Soc. 336 (2002) 1217 [astro-ph/0203383].

[24] N. Khosravi, “Ensemble Average Theory of Gravity,” Phys. Rev. D 94, no. 12, 124035 (2016) [arXiv:1606.01887 [gr-qc]].

[25] N. Khosravi, “Über-gravity and the cosmological constant problem,” Phys. Dark Univ. 21 (2018) 21 [arXiv:1703.02052 [gr-qc]].

[26] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders and F. Watson, “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,” Mon. Not. Roy. Astron. Soc. 416, no. 4, 3017 (2011) [arXiv:1106.3366 [astro-ph.CO]].

[27] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, “The clustering of the SDSS DR7 main galaxy sample I. A 4 per cent distance measure at z = 0.15,” Mon. Not. Roy. Astron. Soc. 449, no. 1, 835 (2015) [arXiv:1409.3242 [astro-ph.CO]].

[28] L. Anderson et al. [BOSS Collaboration], “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples,” Mon. Not. Roy. Astron. Soc. 441, no. 1, 24 (2014) [arXiv:1312.4877 [astro-ph.CO]].

[29] H. Gil-Marin et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies,” Mon. Not. Roy. Astron. Soc. 460 (2016) no.4, 4210 [arXiv:1509.06373 [astro-ph.CO]].

[30] T. M. C. Abbott et al. [DES Collaboration], [arXiv:1712.06209 [astro-ph.CO]].

[31] D. Huterer, D. Shafer, D. Scolnic and F. Schmidt, “Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities,” JCAP 1705, no. 05, 015 (2017) [arXiv:1611.09862 [astro-ph.CO]].

[32] C. Howlett, A. Ross, L. Samushia, W. Percival and M. Manera, “The clustering of the SDSS main galaxy sample? II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15,” Mon. Not. Roy. Astron. Soc. 449, no. 1, 848 (2015) [arXiv:1409.3238 [astro-ph.CO]].

[33] L. Samushia, W. J. Percival and A. Raccanelli, “Interpreting large-scale redshift-space distortion measurements,” Mon. Not. Roy. Astron. Soc. 420, 2102 (2012) [arXiv:1102.1014 [astro-ph.CO]].

[34] A. G. Sanchez et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples,” Mon. Not. Roy. Astron. Soc. 440, no. 3, 2692 (2014) [arXiv:1312.4854 [astro-ph.CO]].

[35] C. H. Chuang et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering,” Mon. Not. Roy. Astron. Soc. 461, no. 4, 3781 (2016) [arXiv:1312.4889 [astro-ph.CO]].

[36] C. Blake et al., “The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1,” Mon. Not. Roy. Astron. Soc. 425, 405 (2012) [arXiv:1204.3674 [astro-ph.CO]].

[37] A. Pezzotta et al., “The VIMOS Public Extragalactic Redshift Survey (VIPERS): The growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample,” Astron. Astrophys. 604, A33 (2017) [arXiv:1612.05645 [astro-ph.CO]].