CASE REPORT

Breast cancer metastasis to the spleen: a case report and literature review

Mohammed EL Fadli1,*, Khaldoun Kerrou2, Hasnae Alaoui Mhamdi1, Sandrine Richard3, Ahmed Khalil3, Jean-pierre Lotz3,4, Rhizlane Belbaraka1 and Joseph Gligorov3,4

1Department of Medical Oncology, CHU Mohamed VI and Université Cadi Ayyad, BP 2360, Marrakech, Morocco, 2Department of Nuclear Medicine, Hospital Tenon (Public Assistance—Paris Hospitals, AP-HP), 75020 Paris, France, 3Department of Medical Oncology, Hospital Tenon (Public Assistance—Paris Hospitals, AP-HP), 75020 Paris, France, and 4Sorbonne Universities, University Pierre et Marie Curie (IUC-UPMC Univ Paris 06), 4 Place Jussieu, 75005 Paris, France

*Correspondence address. Department of Medical Oncology, CHU Mohamed VI, Avenue Ibn Sina, Amerchich, BP 2360, Marrakech, Morocco.
Tel: +212-6-44-13-30-73; Fax: +212-5-24-07-30-07; E-mail: simonfadli86@gmail.com

Abstract

Splenic metastasis from cancers is extremely rare. They usually occur and are detected simultaneously with metastasis to other organs. We present a case of splenic metastasis from carcinoma of the breast occurring 5 years after initial treatment. The metastatic recurrence was an oligometastic form made from the association of a unique bone metastasis to a rib and the metastasis to the spleen. Treatment of the metastatic recurrence was a second line hormonotherapy as the primitive tumor was estrogen receptors positive and gave a 2 year’s long control of the disease. A clinical progression occurred then, the patient complained from pain in the left hypochondrium and was objective on [18F]-FDG PET which leaded to splenectomy. This case is being reported because of the rarity of the lesion and its originality is the first reported case with use of an in vivo demonstration of estrogen receptors expression in the spleen metastasis using PET/CT with 16α-[18F]-Fluoroestradiol.

INTRODUCTION

Spleen metastases of epithelial tumors were previously regarded as rare [1]. However, in several studies, meticulous autopsy has shown that the spleen is affected by metastatic carcinoma in ~6–13% of the cases [2].

Spleen metastases tend to occur late during evolution of the disease. They are rarely symptomatic and therefore are rarely detected by clinicians. The most frequent primary tumors causing splenic metastases are melanoma, breast cancer, ovary, lung and colo-rectal carcinoma respectively by order of decreasing frequency [3].
Angiogenesis is a vital process in tumor growth and development of new metastasis. One of the hypotheses that may explain that the spleen remains immune from metastasis compared to other organ is the fact that it produces an antiangiogenic factor named angiostatin. It is suggested also that immunological monitoring made by immuno-competent cells, which is abundant in the spleen, promotes resistance of the implantation of tumor cells.

By dint of medical imaging progress, reported case of solids tumors metastasis to the spleen has increased. We here reported a case of a breast cancer patient hormone receptor positive/epidermal growth factor receptor 2 (Her2) negative who present, 5 years later after initial management, a metastatic relapse in the spleen which was overexpressing estrogens receptors attested by 16α-[18F]-fluoro-oestradiol ([18F]-FES) hybrid positron emission tomography/computerized tomography (PET/CT) scan. After 2 years of disease control under second line endocrine therapy, the patient underwent splenectomy when become painful at the left hypochondrium following disease progression.

CASE REPORT

The patient, a 65 year's old aged woman who was operated in 2008 by radical left mastectomy for luminal B invasive ductal carcinoma of the breast (estrogen receptor [ER]:100%/progesterone receptor [PR]:0%/human epidermal growth factor receptor 2 [HER2]—/proliferation index [Ki67] of 30%), staged pT3N1M0, followed by adjuvant sequential chemotherapy with four cycles of Adriamycine + Cyclophosphamide then four cycles of Docetaxel followed by external radiotherapy and was on adjuvant hormone therapy with aromatase inhibitor Letrozole.

Five years later, as part of an annual follow-up, ACE was increased at 25 IU/mL, CA 15-3 was normal at 4.6 IU/mL, a complementary CT scan of the thorax, abdomen and pelvis showed an heterogeneous splenic nodule measuring 2.5 cm of great axis, which was intensely hypermetabolic on the complementary [18F]-fluorodeoxyglucose ([18F]-FDG) PET/CT scan reaching a maximal standard uptake value (SUVmax.) of 10.1 and was associated with another right anterior costal hypermetabolic lesion (SUVmax. = 5.7). As part of a French prospective phase II multicentric trial (ESTROTEPRIDC, Clinical trials identifier: NCT0162 7704) she underwent a 16α-[18F]-fluoro-oestradiol ([18F]-FES) PET/CT aiming at checking the estrogen receptors alpha in vivo that showed an increased uptake of the [18F]-FES ligand by both metastatic lesions, attesting the in vivo overexpression of estrogens receptors.

First-line metastatic hormone therapy was then initiated by Fulvestrant and the addition of bone-targeted agent Denosumab. A metabolic ([18F]-FDG PET/CT) and biological (ACE,CA15-3) evaluation was conducted every 3 months that showed a initial metabolic response after 6 months of endocrine therapy then a stability over 18 months. After 2 years of metastatic disease control, the patient becomes clinically symptomatic with left abdominal pain at the left hypochondrium level at palpation and a new biological progression with increase in serological markers ACE: 99 IU/mL and CA15-3: 34 IU/mL was found. 18F-FDG PET/CT confirmed a morpho-metabolic increase in splenic lesion (+30%) which was also confirmed by magnetic resonance imaging (MRI) of the spleen with the unique metastatic foci measuring 7 cm.

A splenectomy was decided by the multidisciplinary meeting regarding to the risk of spleen rupture and further subsequent peritoneal carcinomatosis after a primary splenic biopsy was performed which confirmed the mammary carcinoma origin of the lesion; histologic examination showed a poorly differentiated adenocarcinoma with immunohistochemistry expression of estrogen receptors at 100%; progesterone receptors at 0%, Her2 negative and Ki67 was 40%.

DISCUSSION

Breast metastasis to the spleen is a rare localization. However, the reported cases are increasing due to the improvement of imaging modality and a more attentive patient follow-up. Often asymptomatic, the discovery of these lesions occurs on...
On 28 July 2018 by guest Downloaded from https://academic.oup.com/omcr/article-abstract/2017/12/omx069/4756475

Publications purposes and this, according to the French rules for protection of individuals rights of patients undergoing examinations and participating to clinical trials.

The PET/CT using 18FES was realized as par to the ESTROTPEREDIC (Fluoroestradiol PET Imaging in Predicting Response to hormone Therapy of Breast Cancer) registered at ClinicalTrials.gov under number NCT01627704.

Guarantor
Pr. Joseph Gligorov.

References
1. Compérat E, Bardier-Dupas A, Camparo P, Capron F, Charlotte F. Splenic metastases clinicopathologic presentation, differential diagnosis, and pathogenesis. Arch Pathol Lab Med 2007;131:965–9.
2. Cummings OW, Mazur MT. Breast carcinoma diffusely metastatic to the spleen. A report of two cases presenting as idiopathic thrombocytopenic purpura. Am J Clin Pathol 1992;97:484–9.
3. Lam KY, Tang V. Metastatic tumors to the spleen: a 25-year clinicopathologic study. Arch Pathol Lab Med 2000;124:526–30.
4. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994;79:185–8.
5. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell 1994;79:315–28.
6. Spencer RP. Intrasplicen metastasis: radio-colloid studies of growth rate, response to therapy and possible splenic immunity. Invest Radiol 1980;15:379.
7. Resta G, Vedana L, Marino S, ScagliaRini L, Bandi M, Anania G. Isolated splenic metastasis of ovarian cancer. Case report and literature review. G Chir 2014;35:181–4.
8. Metser U, Miller E, Kessler A, Lerman H, Lievshitz G, Oren R, et al. Solid splenic masses: evaluation with 18F-FDG PET/CT. J Nucl Med 2005;46:52–9.
9. Talbot JN, Gligorov J, Lotz JB, Kerrou K. Current applications of PET imaging of sex hormone receptors with a fluorinated analogue of estradiol or of testosterone. J Nucl Med Mol Imaging 2015;59:4–17.
10. Caraway NP, Fanning CV. Use of fine-needle aspiration biopsy in the evaluation of splenic lesions in a cancer center. Diagn Cytopathol 1997;16:312–6.
11. Ando K, Kaneko N, Yi L, Sato C, Yasui D, Inoue K, et al. Splenic metastasis of lung cancer. Nihon Kokyuki Gakkai Zasshi 2009;47:581–4.
12. Slavin JD, Mathews J, Spencer RP. Splenectomy for splenic metastasis from carcinoma colon. Clin Nucl Med 1986;11:491–2.

Conflict of Interest Statement
None declared.

Funding
There was no funding for this report.

Disclosure
The authors declare no conflict of interest.

Ethical Approval
No ethical approval required.

Consent
This report has been writing with the approval of the patient. The patient gave an informed consent to use the data of her medical folder as well as the medical imaging folder, especially all the PET/CT scans, for teaching and/or medical and scientific publications purposes and this, according to the French rules