ABSTRACT

One of the most important steps is accurate impression making for fabrication of fixed partial denture.

The two different putty-wash techniques that are commonly used are: (1) Putty-wash one-step technique, (2) putty-wash two-step technique.

A uniform wash space is needed for an accurate impression. Nissan et al recommended the use of two-step technique for accurate impression making as there is uniform wash space for the light body material to polymerize.

The aim of the present study was to compare the accuracy of stone casts obtained from different putty-wash impression techniques using various spacer thickness.

The critical factor that influences the accuracy of putty-wash impression techniques is the controlled wash bulk which is absent in one-step putty-wash impression technique and with polyethylene spacer was used.

Keywords: Putty-wash techniques, Impression techniques, Wash space, Different spacers thickness, Comparison, Accuracy.

INTRODUCTION

One of the most important steps is accurate impression making for fabrication of fixed partial denture. The two different putty-wash techniques that are commonly used are: (1) putty-wash one-step technique, (2) putty-wash two-step technique. A uniform wash space is needed for an accurate impression. Nissan et al recommended the use of two-step technique for accurate impression making as there is uniform wash space for the light body material to polymerize.

Putty acts as a tray for wash material. Light body being less viscous has good flow to record the fine details resulting in an accurate impression. An accurate impression produces the stone casts with minimal dimensional change in regard to the vertical and horizontal dimension between the prepared abutments. Clinical success of fixed prosthodontic procedure is dependent upon the dimensional accuracy of elastomeric impression material and impression procedures.

AIMS AND OBJECTIVES

• To compare the accuracy of various impression techniques made with putty-wash impression material.
• To determine the effect of wash space on the accuracy of impressions made with different techniques.
• Clinical recommendations based on study and observation.

MATERIALS AND METHODS

In the present study, putty-wash impression techniques with different spacer thickness of 1 and 2 mm and polyethylene spacer has been used. The two putty-wash impression techniques that have been compared for dimensional accuracy are one-step and two-step procedures.

Materials

1. Master model, containing three complete crown fixed partial denture abutment preparations.
2. Six metal copings, three each of 1 and 2 mm thickness.
3. Polyethylene separating sheets.
4. Perforated metal tray.
5. Addition silicone impression material. (Flextime, Heraeus Kulzer) (easy putty and light-bodied polyvinyl siloxane).
6. Tray adhesive (Heraeus Kulzer, universal adhesive).
7. Die stone (Kalrock, super hard die stone class IV, Kalabhai Karson, Mumbai).
8. Debubblizer (Dentofill).

Armamentarium

1. Vacuum mixer
2. Automatic mixing syringe and dispensing gun (Heraeus Kulzer)
3. Vibration
4. Rubber bowl
5. Mixing spatula
6. Base former
7. Stopwatch
8. Coordinate measurement machine (CMM, Llyod, Germany) (Fig. 1).

PREPARATION OF MASTER MODEL

A metal master model, containing three complete crown fixed partial denture abutment preparations, was fabricated for making the measurements. The abutments were prepared with occlusal taper of 6° and two perpendicular cross grooves on the occlusal surface as reference points for taking measurements.
Grouping of Impressions

The impressions were categorized into four groups as follows:

Group I: One-step technique in which putty and wash impression materials were used simultaneously and the casts obtained from them were categorized as group I casts (Fig. 2).

Group II: Two-step technique in which primary impression with putty was made with 1 mm thick metal copings placed over the abutments. The copings were removed to create a uniform 1 mm wash space. Wash impression material was syringed around the abutments and the primary putty impression was seated to get a complete two-step putty-wash impression. The casts obtained from them were categorized as group II casts (Fig. 3).

Group III: Two-step technique in which primary impression with putty was made with 2 mm thick metal copings placed over the abutments. The copings were removed to create a uniform 2 mm wash space. Wash impression material was syringed around the abutments and the primary putty impression was seated to get a complete two-step putty-wash impression. The casts obtained from them were categorized as group III casts (Fig. 3).

Group IV: Two-step technique in which a polyethylene spacer was used with putty impression and later the polyethylene spacer was removed to create a wash space. The wash impression material was syringed around the abutments and the putty impression was seated to get a complete two-step putty-wash impression. The casts obtained from them were categorized as group IV casts (Fig. 4).

Measuring Procedure

The measurements of master model and stone casts (Fig. 5) were done using coordinate measurement machine (three-dimensional measurement machine) (Fig. 6) with accuracy up to 0.001 mm. It is mechanical system designed to move a measuring probe to locate reference points on the occlusal and horizontal platform. It consists of four components: The machine itself, measuring probe, the control or computing system and measuring software. The probe used can be either mechanical optical or a laser probe.
OBSERVATION AND RESULTS

The difference between the mean of stone model (msm) and mean of master model (mmm) divided by mean of master model multiplied by 100 was expressed as percentage deviation from master model for each impression technique of each measurement location:

\[\text{Percentage of deviation} = \frac{\text{msm} - \text{mmm}}{\text{mmm}} \times 100 \]

All the measurements obtained for all four groups were tabulated and statistically analyzed (Tables 1 to 4 and Fig. 7).

DISCUSSION

- The aim of the present study was to compare the accuracy of stone casts obtained from different putty/wash impression techniques using various spacer thickness (Graphs 1 to 4).
- The critical factor that influences the accuracy of putty-wash impression techniques is the controlled wash bulk which is absent in one-step putty-wash impression technique and with polyethylene spacer was used.
- The above results showed that when stone casts and master model were compared, the vertical distance (intra-abutment) of the stone dies decreased, whereas horizontal distance (interabutment) increased.
- In the present study, the controlled wash space is essential for accuracy of putty-wash impressions. The controlled wash space was provided by uniform spacer thickness of 1 and 2 mm. The uncontrolled wash bulk was seen in one-step impression technique and two-step impression technique with polyethylene spacer.
- The results of present study do not agree with Hung et al and Idris et al. Hung et al and Idris et al investigated the importance of impression techniques and reported that impression accuracy is not technique dependent.
- Based on the observation of the present study, two-step putty-wash technique with 1 and 2 mm spacer thickness is more acceptable and viable alternative to obtain accurate impressions.

Table 1: Measurements of interabutment distances on the master model and stone casts for all four groups in mm

S. no.	Master model	Group I	Group II	Group III	Group IV			
	1-2	2-3	1-2	2-3	1-2	2-3	1-2	2-3
1	17.771	17.428	17.826	17.49	17.807	17.473	17.648	17.336
2	17.825	17.491	17.789	17.455	17.808	17.464	17.662	17.341
3	17.828	17.484	17.79	17.464	17.806	17.476	17.645	17.334
4	17.829	17.486	17.792	17.458	17.817	17.463	17.644	17.328
5	17.83	17.489	17.791	17.465	17.816	17.472	17.653	17.325
6	17.823	17.488	17.795	17.459	17.809	17.466	17.646	17.339
7	17.827	17.49	17.798	17.462	17.794	17.471	17.663	17.324
8	17.833	17.487	17.793	17.463	17.805	17.473	17.643	17.332
9	17.824	17.489	17.797	17.457	17.802	17.466	17.665	17.326
10	17.834	17.491	17.787	17.46	17.804	17.473	17.651	17.338
Table 2: Measurements of intra-abutment distances on the master model and stone casts for all the four groups in mm

S.no.	Master model	Group I	Group II	Group III	Group IV							
1	8.053	8.011	7.817	8.032	7.983	7.788	8.022	7.982	7.776	7.796	7.786	7.685
2	7.753	7.673	7.551	8.026	7.986	7.855	8.024	7.983	7.786	7.793	7.782	7.689
3	7.758	7.671	7.548	8.029	7.985	7.783	8.019	7.979	7.783	7.786	7.775	7.695
4	7.748	7.667	7.562	8.033	7.981	7.784	8.025	7.977	7.777	7.8	7.77	7.678
5	7.751	7.666	7.555	8.027	7.984	7.786	8.017	7.98	7.781	7.806	7.771	7.676
6	7.864	7.599	8.025	7.982	7.792	8.014	7.975	7.784	7.786	7.772	7.692	
7	7.756	7.669	7.558	8.031	7.979	7.787	8.018	7.971	7.771	7.799	7.77	7.677
8	7.747	7.675	7.594	8.034	7.987	7.784	8.011	7.982	7.779	7.791	7.789	7.681
9	7.755	7.672	7.553	8.024	7.983	7.789	8.019	7.984	7.776	7.789	7.776	7.683

Table 3: Mean values, standard deviation, deviation of interabutment distances from master model of all the groups

Interabutment distance	Master model	Group I	Group II	Group III	Group IV					
1-2	17.771	17.428	17.83	17.49	17.79	17.46	17.81	17.47	17.65	17.33
1-3	17.83	17.49	17.79	17.46	17.81	17.47	17.65	17.33		
Standard deviation	0.004	0.002	0.004	0.0035	0.007	0.005	0.008	0.006		
Deviation from master model (mm)	0.057	0.060	0.021	0.032	0.036	0.042	-0.119	-0.096		
Deviation from master model (µm)	57	60	21	32	36	42	-119	-96		
Percent of deviation	0.321	0.344	0.118	0.184	0.203	0.241	-0.670	-0.551		

Table 4: Mean values, standard deviation, deviation of intra-abutment distances from master model of all the groups

Intra-abutment distance	Master model	Group I	Group II	Group III	Group IV							
Mean (mm)	8.053	8.011	7.817	8.029	7.983	7.87	8.019	7.8	7.786	7.793	7.777	7.685
Standard deviation	-0.004	-0.005	-0.004	-0.003	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.007	-0.007
Deviation from master model (mm)	-0.300	-0.340	-0.262	-0.024	-0.028	-0.030	-0.034	-0.037	-0.037	-0.260	-0.234	-0.132
Deviation from master model (µm)	-300	-340	-262	-24	-28	-30	-34	-37	-37	-260	-234	-132
Percent of deviation	-3.725	-4.244	-3.352	-0.298	-0.35	-0.384	-0.422	-0.473	-0.473	-3.229	-2.921	-1.689
SUMMARY AND CONCLUSION

1. A two-step technique with uniform and controlled wash space is recommended for the fabrication of stone dies which will result in precise fitting of the restoration.
2. The two-step putty-wash technique with 1/2 mm spacer thickness produced casts within accepted clinical range. The one-step and two-step with polyethylene spacer produced the most uneven dimensional changes.
3. The clinical implication of this study will be to use temporary crowns to create controlled wash space.

BIBLIOGRAPHY

1. Amorrortu PJ, Brown D. The relative dimensional stability addition cuffed silicone and other elastomeric impression natural. J Dent Res 1979;58:1272.
2. Beaumont AJ. Proper loading of impression tray minimizes inaccuracies. J Prosthet Dent 2002;88(1):108.
3. Brown D. An update on elastomeric impression materials. Br Dent J 1981;150(2):35-40.
4. Chai J, Takahashi Y, Lautenschlager EP. Clinically relevant mechanical properties of elastomeric impression. Int J Prosthodont 1998;11(3):219-223.
5. Chee WW, Donovan TE. Polyvinyl siloxane impression materials: A review of properties and techniques. J Prosthet Dent 1992;68(5):728-732.
6. Chong YH, Soh G. Effectiveness of intraoral delivery tips in reducing voids in elastomeric impressions. Quintessence Int 1991;22(11):897-900.
7. Ciesco JN, Malone WF, Sandrik JL, Mazur B. Comparison of elastomeric impression materials used is fixed prosthodontics. J Prosthet Dent 1981;45(1):89-94.
8. Craig RG, Urguida NJ, Lui CC. Compares on of commercial elastomeric impression materials used is fixed prosthodontics. Oper Dent 1990;15(3):94-104.
9. Cullen DR, Sandrik JL. Tensile strength of elastomeric impression materials, adhesive and cohesive bonding. J Prosthet Dent 1989;62(2):142-145.
10. Dounis GS, Ziebert GJ, Dounis KS. A comparison of impression materials for complete arch fixed partial dentures. J Prosthet Dent 1991;65(2):165-168.

11. Drummond JL, Randolph RG. Comparative study of elastic impression material. J Prosthet Dent 1986;56(2):188-192.

12. Eames WB, Wallace SW, Sunway NB, Rogers LB. Accuracy and dimensional stability of elastomeric impression materials. J Prosthet Dent 1979;42(2):159-162.

13. Eames WB, Sieweke JC, Wallace SW, Rogers LB. Elastomeric impression material: Effect of bulk on accuracy. J Prosthet Dent 1979;41(3):304-307.

14. Gilmore WH, Schnell RJ, Phillips RW. Factors influencing the accuracy of silicone impression materials. J Prosthet Dent 1959;9(2):304-314.

15. Gordon GE, Johnson GH, Drennon DG. The effect and tray selection on the accuracy of elastomeric impression materials. J Prosthet Dent 1990;63(1):12-15.

16. Hung S, Purk JH, Tira DE, Eick JD. Accuracy of one-step versus two-step putty-mash addition silicon impression technique. J Prosthet Dent 1942;67(5):583-589.

17. Idris B, et al. Comparison of the dimensional accuracy of one and two-step technique with the use of putty-wash addition silicone impression materials. J Prosthet Dent 1995;74(5):535-41.

18. Johnson GH, Craig RG. Accuracy of four types of rubber impression materials compared with time of pour and repeat pour of models. J Prosthet Dent 1985;53(4):484-490.

19. Johnson GH, Lepe X, Aw TC. The effect of moisture on detail reproduction of elastomeric impressions. J Prosthet Dent 2003;90(4):354-364.

20. Lacy M, Fukui H, Bellman T, Jendresen MD. Time dependent accuracy of elastomer impression materials (part II). Polyether, polysulphides and polyvinyl siloxane. J Prosthet Dent 1981;45:329-333.

21. Laufer BZ, Baharav H, Ganor Y, Cardash HS. The effect of marginal thickness on the distortion of different impression materials. J Prosthet Dent 1990;67(5):466-471.

22. Marcinak CF, Dugaigh RA. Linear dimensional changes in addition curing silicone impression materials. J Prosthet Dent 1982;47(4):411-413.

23. Marshak B, Assif D, Pilo R. A controlled putty-wash impression technique. J Prosthet Dent 1990;64(6):635-638.

24. Millar BJ, Dunne SM, Robinson PB. In vitro study of the number of surface defects in monophase and two-phase addition silicone impressions. J Prosthet Dent 1998;80(1):32-35.

25. Naylor WP, Beatty MW. Materials and techniques in fixed prosthodontics. Dent Clin North Am 1992;36(3):665-692.

26. Nissan J, Laufer BZ, Brosh T, Assif D. Accuracy of three polyvinyl siloxane putty-wash impression techniques. J Prosthet Dent 2000;83(2):161-165.

27. Panichuttra R, Jones RM, Goodacre C, Munoz CA, Moore BK. Hydrophilic poly (vinyl siloxane) impression materials: Dimensional accuracy, wettability and effect on gypsum hardness. Int J Prosthodont 1991;4(3):240-248.

28. Petersen GF, Aasmussen E. Distortion of impression materials used in the double-mix technique. Scand J Dent Res 1991;99(4):343-348.

29. Park JH, Willes MG, Tira DE, Eick JD, Hung SH. The effect of different storage conditions on polyether and polyvinylsiloxane impression. J Am Dent Assoc 1998;129(7):1014-1021.

30. Ragain, et al. Detail reproduction, contact angels and die hardness of elastomeric impression and gypsum die materials combinations. Int J Prosthodont 2000;13(3):214-220.

31. Reisbick MH. Effect of viscosity on the accuracy and stability of elastomeric impression materials. J Dent Res 1973;52(3):407-417.

32. Reitz CD, Clark NP. The setting of vinyl polysiloxane and condensation silicone putties when mixed with gloved hands. J Am Dent Assoc 1988;116(3):371-374.

33. Reports of councils and Bureaus. Revised American Dental Association Specification No. 19 for non-aqueous, elastomeric dental impression materials. J Am Dent Assoc 1977;94:733-41.

34. Robinson PB, Dunne SM, Millar BJ. An in vitro study of a surface wetting agent for addition reaction silicone impressions. J Prosthet Dent 1994;71(4):390-393.

35. Sandrik JL, Vaccio JL. Tensile and bond strength of putty wash elastomeric impression material. J Prosthet Dent 1983;50(3):358-360.

36. Saunders WP, Sharkey SW, Smith GM, Taylor WG. Effect of impression tray design and impression technique upon the accuracy of stone casts produced from a putty-wash polyvinyl siloxane impression material. J Dent 1991;19(5):283-289.

37. Schell E, Mazzocco CV, Jones JD, Prihoda T. Compatibility of type IV dental stone with polyvinyl siloxane impression materials. J Prosthet Dent 1987;58(1):19-22.

38. Soh G, Chong YH. Defects in automated addition silicone elastomers prepared by putty wash impression technique. J Oral Rehabilitation 1991;18:547-552.

39. Stockhouse JA. A comparison of elastic impression materials. J Prosthet Dent 1975;34(3):305-313.

40. Takahashi H, Finger WJ. Effects of the setting stage on the accuracy of stone casts produced from a putty-wash polyvinyl siloxane impression material. J Prosthet Dent 1991;19(5):283-289.

41. Tjan AH, Whang SB, Tjan AH, Sarkissian R. Clinically oriented evaluation of the accuracy of commonly used impression materials. J Prosthet Dent 1986;56(1):4-8.

42. Williams PT, Jackson DG, Bergman W. An evaluation of the time dependent dimensional stability of eleven elastomeric impression materials. J Prosthet Dent 1984;52(1):120-125.

ABOUT THE AUTHORS

Anshul Chugh (Corresponding Author)
Assistant Professor, Department of Prosthodontics and Implantology, Government Dental College, Ut-7, Medical Campus, Rohtak, Haryana, India, e-mail: dr.anshulchugh@rediffmail.com

Aman Arora
Professor and Head, Department of Prosthodontics, DAV Dental College, Yamunanagar, Haryana, India

Vijay Pratap Singh
Professor, Department of Prosthodontics, DAV Dental College, Yamunanagar, Haryana, India