Mobility Irregularity Detection with Smart Transit Card Data

Xuesong Wang, Lina Yao, Wei Liu, Can Li, Lei Bai, and S. Travis Waller

University of New South Wales
What is mobility irregularity?

Smart Transit records inconsistent with the normal passenger profiles:
repetitive stops and preferred time slots

Why detecting irregularity is important?
Refine future transit routes and stops
Avoid financial loss of passengers

Chatswood Station	North Sydney Station	Vehicle
4/22 17:27	4/22 18:01	Train 1

Milsons Point Station	Town Hall Station	Vehicle
4/04 8:14	4/04 8:25	Train 9
4/05 8:15	4/05 8:26	Train 1
...
4/19 8:23	4/19 8:32	Train 9
4/20 8:21	4/20 8:31	Train 9
Related Works and Major Challenges

- Passenger profiling:

 How to represent a passenger profile with route-stop features?

 convolutional-based [1] or graph-based methods [2, 3] to extract spatial layout of routes

 sequential models [4] to represent temporal relations between historical records

 Challenge:

 passenger information are fused within a certain region to compute node features

 can not provide personalized extraction, typical graph convolutional networks don’t work
Related Works and Major Challenges

- Irregularity detection

How to distinguish irregular patterns from normal patterns of a passenger?

Similarity-based [5] and reconstruction-based [6, 7] methods are proposed to filter out anomalies

Challenge:

High intra-class variance

A normal record of a passenger can be irregular to other passengers

Hard to detect irregularity within few shots
Methodology: Personalised spatial-temporal similarity learning

- Personalized spatial-temporal passenger profiling

Route-to-Stop Embedding (R2S)

\[e_i = E(s_{i1}, s_{i2}, r_i) = (F[h(r_i) \circ s_{i1}], F[h(r_i) \circ s_{i2}]) \]

Repetitive and Time Invariant Pattern

\[
 u_i = LSTM(e_i, u_{i-1}), \quad \text{s.t.} \quad 2 \leq i \leq N, u_1 = 0
\]

\[
 a = \text{softmax}(u \ast W^u) \in \mathbb{R}^{N \times 1}, \quad u_N = \sum_{i=0}^{N} a_i u_i
\]

Recency Mobility Pattern

\[u_{N+1} = FCN(e_{N+1}) \]
Methodology: Personalised spatial-temporal similarity learning

- Few shot similarity learning

\[
P_{\text{fraud}} = (u_{N+1})^T M_1 u_N + b_1
\]
\[
P_{\text{normal}} = (u_{N+1})^T M_2 u_N + b_2
\]
\[
P(u_{N+1}, u_N) = \text{softmax}(P_{\text{fraud}}, P_{\text{normal}})
\]

Loss function:

\[
\mathcal{L}(u_{N+1}, u_N) = -\mathbb{E}_{u_{N+1} \sim u_N} \log[P(u_{N+1}, u_N)]
- \mathbb{E}_{u_{N+1} \neq u_N} \log[1 - P(u_{N+1}, u_N)]
\]
Experiments and Results

- A case study on Sydney Opal Transit Card Data is tested for three months.
- Our model (R2S-Sim) model gains significant improvements on F1 and accuracy.
- Using only 5 historical records could achieve SOTA results.
Experiments and Results

- KL divergence between normal and irregular records are displayed
- A clearer decision boundary is learnt
Conclusions

- Route-to-stop embedding explores spatial correlations between routes and transit stops.

- A learnable similarity function measures the distance between repetitive invariant mobility pattern and recency pattern.

- We conduct experiments on a large-scale real-world dataset. Using 20% of the total fraudulent data can achieve SOTA performance.
References

[1] Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. AAAI, 2019

[2] Bai, L., Yao, L., Kanhere, S., Wang, X., Sheng, Q., et al.: Stg2seq: Spatial-temporal graph to sequence model for multi-step passenger demand forecasting. IJCAI, 2019

[3] Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. AAAI, 2019

[4] Lan, W., Xu, Y., Zhao, B.: Travel time estimation without road networks: An urban morphological layout representation approach. IJCAI, 2019

[5] Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. KDD, 2019

[6] Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H., Chawla, N.V.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. AAAI, 2019

[7] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. KDD, 2018
THANK YOU

Stay Healthy and Safe 😊

xuesong.wang1@unsw.edu.au

05/2020