A HYBRID PARAMETRIZATION APPROACH FOR A CLASS OF NONLINEAR OPTIMAL CONTROL PROBLEMS

M. ALIPOUR
Department of Mathematics, Faculty of Mathematics
University of Sistan and Baluchestan, Zahedan, Iran

M. A. VALI
Department of Applied Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman, Kerman, Iran

A. H. BORZABADI
Department of Applied Mathematics,
University of Science and Technology of Mazandaran
Behshahr, Iran

(Communicated by Bülent Karasören)

Abstract. In this paper, a suitable hybrid iterative scheme for solving a class of non-linear optimal control problems (NOCPs) is proposed. The technique is based upon homotopy analysis and parametrization methods. Actually an appropriate parametrization of control is applied and state variables are computed using homotopy analysis method (HAM). Then performance index is transformed by replacing new control and state variables. The results obtained from the given method are compared with the results which are obtained using the spectral homotopy analysis method (SHAM), homotopy perturbation method (HPM), optimal homotopy perturbation method (OHPM), modified variational iteration method (MVIM) and differential transformations. The existence and uniqueness of the solution are presented. The comparison and ability of the given approach is illustrated via two examples.

1. Introduction. Recently theory and applications of optimal control problem have been widely used in different fields such as biomedicine [10], spacecraft [4, 15], robotic [37], and so on. Because of the important role of non-linear optimal control problems (NOCPs) in science and engineering, considerable attentions have been received on this kind of problems. However, most practical problems are too difficult to solve analytically. Therefore, there is a need for new computational methods to overcome these problems. Many methods have been proposed to solve these equations. Stryk and Bulirsch [33] gives a brief list of commonly used direct and indirect efficient methods for the numerical solution of OCPs. In (6, [33]) converts the problem into a non-linear programming by using the discretization or parametrization techniques. Recently solutions based on He’s variational iteration

2010 Mathematics Subject Classification. 49J22, 49M30.
Key words and phrases. Optimal control problem, Parametrization method, Homotopy analysis method.
method [32], boubaker polynomials expansion scheme [17], the control parameterization method [26], OHPM [12], SHAM [31], differential transform method [9, 29], Galerkin approximation solutions [38], homotopy analysis method [2], optimal homotopy analysis method [14], modified homotopy perturbation method [3], RBF collocation method [28], Legendre approximations [16] have been used for solving NOCPs.

Computational methods for solving more general optimal control problems are also available; see, for example, [5, 13, 34, 18, 24, 25, 20, 27, 30, 35].

In 1992, Liao employed the basic ideas of the homotopy in topology to propose a general analytic method for non-linear problems, namely homotopy analysis method (HAM)[21]. This method has been used effectively to solve various non-linear problems in science and engineering such as Davey-Stewartson equation [11], Kawahara equations [1], and so on. The advantage of the HAM method is the presence of the auxiliary parameter h that provides a way to adjust and control the convergence region and the rate of convergence of solution series.

It is well-known that NOCPs are much more difficult to solve than linear OCP, especially by means of analytic methods. Our goal is to offer a method that can easily solve NOCPs. For this purpose, we combined the methods of parametrization [36] and homotopy analysis method [23] for solving a class of nonlinear optimal control problems, in which control variable is considered as continuous function. In this method, the control variables can be approximated by choosing an appropriate function with finitely many unknown parameters as follows:

$$u(t) = \sum_{j=0}^{k} a_j z_j(t),$$ \hspace{1cm} (1)

where a_j denote unknown parameters, $z_j(t)$ are some polynomial functions and state variables will be computed by HAM. High accuracy and ease of applying this method for OCPs are two important advantages. Comparison between the results obtained by the proposed method with the numerical results obtained by SHAM, HPM, OHPM, MVIM and differential transformations methods demonstrate the efficiency of the given method. The proposed method is a direct method that the advantage to indirect methods, is their broader radius of convergence to an optimal solution. In addition, since the necessary conditions are difficult to obtain, the direct methods can quickly be utilized to solve a number of practical trajectory optimization [7]. Examples show that the proposed method is suitable for its simplicity and small computation costs. This paper is organized as follows: Section 2 is devoted to the basic idea of HAM. State the problem mentioned in section 3. In section 4, talk about the method of solution. The convergence analysis stated in Section 5. In Section 6, we demonstrate the accuracy of the method by considering two test examples. We sum up the section 7 with conclusion.

2. Basic idea of HAM. Consider the following nonlinear equation:

$$N[u(t)] = 0,$$ \hspace{1cm} (2)

where N is a non-linear operator, t denotes independent variable, and $u(t)$ is an unknown function. By means of generalizing the traditional homotopy method, Liao [22] constructed the so-called zero-order deformation equation

$$(1 - q)L[\phi(t; q) - u_0(t)] = qhN[\phi(t; q)],$$ \hspace{1cm} (3)
where \(q \in [0, 1] \) is an embedding parameter, \(h \) is a non-zero auxiliary parameter, \(L \) is an auxiliary linear operator with the property \(L(c_1) = 0 \), where \(c_1 \) is an integral constant, \(u_0(t) \) is an initial guess of \(u(t) \) and \(\phi(t; q) \) is an unknown function. It is important to note that one has great freedom to choose auxiliary objects such as \(h \) and \(L \) in HAM. Obviously, when \(q = 0 \) and \(q = 1 \), both \(\phi(t; 0) = u_0(t) \) and \(\phi(t; 1) = u(t) \), hold. Thus, as \(q \) increases from 0 to 1, the solutions \(\phi(t; q) \) varies from the initial guess \(u_0(t) \) to the solution \(u(t) \). Expanding \(\phi(t; q) \) in Taylor series with respect to \(q \), we have

\[
\phi(t; q) = u_0(t) + \sum_{m=1}^{+\infty} u_m(t)q^m, \tag{4}
\]

where

\[
u_m(t) = \frac{1}{m!} \frac{\partial^m \phi(t; q)}{\partial q^m} \big|_{q=0}; \tag{5}\]

if the auxiliary linear operator, the initial guess, the auxiliary parameter \(h \), and the auxiliary function are properly chosen, then the series equation (4) converges at \(q = 1 \) and have

\[
u(t) = u_0(t) + \sum_{m=1}^{+\infty} u_m(t), \tag{6}\]

which must be one of the solutions of the original non-linear equation, as proved by Liao [22]. With \(h = -1 \) equation (3) becomes

\[
(1 - q)L[\phi(t; q) - u_0(t)] + qN[\phi(t; q)] = 0, \tag{7}\]

which is mostly used in the HPM [8]. As stated in (5), the governing equations can be concluded from the zero-order deformation equations (3). Define the vectors

\[
u_n \rightarrow = [u_0(t), u_1(t), ..., u_n(t)]. \tag{8}\]

Differentiating equation (3), \(m \) times with respect to the embedding parameter \(q \) and then setting \(q = 0 \) and finally dividing them by \(m! \), we have the so-called \(m \)th-order deformation equations

\[
L[u_m(t) - \chi_m u_{m-1}(t)] = hR_m(v_{m-1} \rightarrow), \tag{9}\]

subject to initial condition

\[
u_m(0) = 0, \tag{10}\]

where

\[
R_m(v_{m-1} \rightarrow) = \frac{1}{(m-1)!} \frac{\partial^{m-1}N[\phi(t; q)]}{\partial q^{m-1}} \big|_{q=0}, \tag{11}\]

and

\[
\chi_m = \left\{ \begin{array}{ll} 0, & m \leq 1, \\ 1, & m > 1. \end{array} \right. \tag{12}\]

If we are not able to determine the sum of series in (6) then we can accept the partial sum of this series

\[
u(t) \approx \sum_{i=0}^{m} u_i(t), \tag{13}\]

as the approximate solution of the considered equation.

It should be emphasized that \(u_m(t) \) for \(m \geq 1 \) is governed by linear equation (3) under the linear boundary condition that come from the original problem, which can be easily solved by symbolic computation softwares such as Mathematica and
Maple. For the convergence of the above method we refer the reader to Liao’s work [22]. If Eq. (2) admits unique solution, then this method will produce the unique solution. If Eq. (2) does not possess unique solution, the HAM will give a solution among many other (possible) solutions.

3. **Non-linear quadratic optimal control problem.** Consider the non-linear dynamical system

\[x'(t) = f(t, x(t)) + g(t, x(t))u(t), \quad t \in [t_0, t_f], \quad (14) \]

\[x(t_0) = x_0, \quad x(t_f) = x_f, \quad (15) \]

With \(x(t) \in \mathbb{R}^n \) denoting the state variable, \(u(t) \in \mathbb{R}^p \) the control variable and \(x_0 \) and \(x_f \) the given initial and final states at \(t_0 \) and \(t_f \), respectively. Moreover, \(f(t, x(t)) \in \mathbb{R}^n \) and \(g(t, x(t)) \in \mathbb{R}^{n \times p} \) are two continuously differentiable functions in all arguments. Aim is to minimize the convex quadratic objective functional

\[J[x, u] = \frac{1}{2} \int_{t_0}^{t_f} (x^T(t)Qx(t) + u^T(t)Ru(t))dt, \quad (16) \]

subject to the nonlinear system (14), where \(Q \in \mathbb{R}^{n \times n} \) and \(R \in \mathbb{R}^{p \times p} \) are positive semi-definite and positive definite matrices, respectively.

4. **Method of solution.** First, consider \(z_k(t) \) as a polynomial basis, which is dense in the space of \(C(\Omega) \). The continuous control function \(u(t) \) can be approximated by a finite combination from elements of this basis. Now consider NOCP mentioned in section (3). For solving this problem using the hybrid method, first solve equation (14) with the HAM. Let \(x = (x_1, x_2, ..., x_n) \) and \(u = (u_1, u_2, ..., u_p) \), in the given scheme consider the control function as follows:

\[u_s(t) = \sum_{j=0}^{k} a_{s,j}z_j(t), \quad s = 1, ..., p, \quad (17) \]

let \(L_r \) be the linear operator defined by

\[L_r = \frac{\partial \phi_r(t, q)}{\partial t}, \quad r = 1, ..., n, \quad (18) \]

define a non-linear operator as follows:

\[N_r[\phi_r(t, q)] = \frac{\partial \phi_r(t, q)}{\partial t} - f(t, \phi_r(t, q)) - g(t, \phi_r(t, q))u_s(t), \quad (19) \]

such that

\[x_r(t) = \phi_r(t, q), \quad u_s(t) = \sum_{j=0}^{k} a_{s,j}z_j(t); \quad (20) \]

the zero order deformation equation is

\[(1-q)L_r[\phi_r(t, q) - x_r,0(t)] = qh_rN_r[\phi_r(t, q)]. \quad (21) \]

Differentiating equation (21), \(m \) times with respect to the embedding parameter \(q \), then setting \(q = 0 \) and finally dividing them by \(m! \), we have the so-called \(m \)th-order deformation equation for \((m \geq 1) \)

\[L_r[x_{r,m}(t, a_{s,0}, ..., a_{s,k}) - \chi_m x_{r,m-1}(t, a_{s,0}, ..., a_{s,k})] = h_rR_{r,m-1}, \quad (22) \]

subject to

\[\phi_{r,m}(0) = 0, \quad (23) \]
A HYBRID PARAMETRIZATION APPROACH FOR A CLASS... 497

\[R_{r,m-1} = \frac{1}{(m-1)!} \frac{\partial^{m-1} N_r[\phi_r(t;q)]}{\partial q^{m-1}} \bigg|_{q=0}. \]

(24)

Now the solution of the \(m \)th-order \((m \geq 1)\) deformation equation (22) becomes

\[x_{r,m}(t, a_s, 0, \ldots, a_s, k) = x_{r,0}(t) + \left. \sum_{m=1}^{+\infty} x_{r,m}(t, a_s, 0, \ldots, a_s, k) \right|_{q=0}. \]

(26)

Since we are not able to determine the sum of series in (26), then we truncate the series to approximate \(x(t) \) as follows:

\[x_r(t, a_s, 0, \ldots, a_s, k) = x_{r,0}(t) + \sum_{m=1}^{l} x_{r,m}(t, a_s, 0, \ldots, a_s, k), \]

(27)

now by substituting (17) and (27) in (16) for \(r = 1, \ldots, n \), and \(s = 1, \ldots, p \), obtain an approximate solution of the OCP for \(J \). Consider

\[\text{Minimize} \ J_k(a_s, 0, \ldots, a_s, k) + \left(x_{r, t_f, a_s, 0, \ldots, a_s, k} \right)^2. \]

(30)

Equation (30) can be solved by Mathematica optimization Toolbox (FindMinimum) or any other suitable optimization Toolbox. Assuming \(J^*_k \) as the optimal value of (28) in the \(k \)th iteration, a stopping criterion may be considered as follows:

\[|| J^*_k - J^*_{k-1} || < \epsilon, \]

(31)

that \(\epsilon \) is a small positive number and should be chosen according to the accuracy desired.

5. Convergence Analysis. In this section, the convergence of the proposed method is discussed. Define \(U \) as the set of admissible control functions

\[U = \{ u : \Omega \to W | u(.) \in C(\Omega) \}, \]

in which \(W \subseteq \mathbb{R}^p \) is a compact set.

Definition 5.1. The pair \((x, u) \) is called an admissible pair, if it satisfies in (14) and (15). Define \(\Xi \) as the set of admissible pairs. Define \(\Xi^m \) and \(\Xi^m_k \) as follows:
\[\xi^m := \{(x_m(;u), u(\cdot))|u \in U\}, \]
\[\xi^m_k := \{(x_m(;u_k), u_k(\cdot))|u_k \in P_k \cap U\}, \]
\[(33)\]
where \(P_k \) is the set of all polynomials of degree at most \(k \). Define
\[\alpha^m_k := \inf_{(x_m, u_k) \in \xi^m_k} J(x_m, u_k), \]
\[\alpha^m := \inf_{(x_m, u) \in \xi^m} J(x_m, u). \]
\[(34)\]

Assumption: Assume \(\alpha^m_k, \alpha^m \) exist for all \(m, k \in \mathbb{N} \).

Now consider the system (14) which can be written as follows:
\[L[x(t)] + N[x(t)] = \phi(t), \]
\[(35)\]
where \(L \) is a linear operator of (14) and \(N \) is the remaining nonlinear component. Define the nonlinear operator \(N \) as follows:
\[N[x(t)] = \sum_{k=0}^{\infty} N_k(x_0, x_1, ..., x_k). \]
\[(36)\]
With HAM method we have the following equation, which is referred to as the \(m \)th order (or higher order) deformation equation
\[L[x_m(t) - \chi_m x_{m-1}(t)] = hR_m(x_{m-1}), \]
\[(37)\]
subject to the initial condition
\[x_m(0) = 0, \]
\[(38)\]
where
\[R_m(x_{m-1}) = L[x_{m-1}] + N_{m-1}(x_0, x_1, ..., x_m) - (1 - \chi_m)\phi(t). \]
\[(39)\]
From (37) have
\[x_1(t) = hR_1(x_0), \]
\[(40)\]
and for \(m \geq 2 \)
\[x_m(t) = x_{m-1}(t) + hR_m(x_{m-1}), \]
\[(41)\]
and
\[x(t) = \sum_{m=0}^{\infty} x_m(t). \]
\[(42)\]

Theorem 5.2. If the series solution defined in (42) is convergent, then it converges to an exact solution of the non-linear problem (14).

Proof. Since, by hypothesis, the series is convergent, it holds:
\[s(t) = \sum_{m=0}^{\infty} x_m(t). \]
\[(43)\]
So, the necessary condition for the convergence of the series is valid; that is,
\[\lim_{m \to \infty} x_m(t) = 0. \]
\[(44)\]
Lemma 5.3. The following relations hold:

Using (37), (44) and \(L\) is linear operator, we have

\[
\lim_{n \to \infty} \sum_{m=1}^{n} L[x_m(t) - \chi_m x_{m-1}(t)] = \lim_{n \to \infty} \sum_{m=1}^{n} L[x_m(t)] = 0.
\]

Since \(h \neq 0\), we must have

\[
\sum_{m=1}^{\infty} R_m(x_{m-1}) = 0.
\]

On the other side, we have according to the definition (39)

\[
\sum_{m=1}^{\infty} R_m(x_{m-1}) = \sum_{m=1}^{\infty} \left(L[x_{m-1}] + N_{m-1}(x_0, x_1, ..., x_m) - (1 - \chi_m)\phi(t) \right)
\]

\[
= \sum_{m=1}^{\infty} L[x_{m-1}] + \sum_{m=1}^{\infty} N_{m-1}(x_0, x_1, ..., x_m) - \phi(t).
\]

From (36) and (42) have

\[
L[x(t)] + N[x(t)] - \phi(t) = 0,
\]

this completes the proof. ~

Lemma 5.3. The following relations hold:

1. \(\alpha_1^m \geq \alpha_2^m \geq ... \geq \alpha_k^m \geq \alpha^m\);
2. \(\lim_{k \to \infty} \alpha_k^m = \alpha^m\);
3. \(\lim_{m \to \infty} \lim_{k \to \infty} \alpha_k^m = \alpha\), in which \(\alpha = \inf_{(x,u) \in \xi} J(x,u) \equiv J(x^*, u^*)\).

The proof can be found in [19].

6. Numerical experiments and practical applications. In this section, hybrid homotopy analysis and the parametrization method is applied to obtain approximate solutions of OCPs. To assess the advantages and the accuracy of this method for solving OCPs, consider the following examples.

Example 1.

Consider the optimal maneuvers of a rigid asymmetric spacecraft [15]. The Euler equations for the angular velocities of the spacecraft are given by:

\[
x'(t) = \begin{bmatrix} x_1'(t) \\ x_2'(t) \\ x_3'(t) \end{bmatrix} = \begin{bmatrix} -\frac{I_2-I_3}{I_3} x_2(t)x_3(t) \\ -\frac{I_1-I_3}{I_3} x_1(t)x_3(t) \\ -\frac{I_1-I_2}{I_2} x_1(t)x_2(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{I_1} & 0 \\ 0 & 0 & \frac{1}{I_2} \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \end{bmatrix},
\]

where \(x_1, x_2\) and \(x_3\) are angular velocities of the spacecraft, \(u_1, u_2,\) and \(u_3\) are control torques, \(I_1 = 86.24, I_2 = 85.07\) and \(I_3 = 113.59kgm^2\) are the spacecraft principle inertia.

The quadratic cost functional to be minimized is given by:

\[
J[x,u] = \frac{1}{2} \int_0^{100} (x^T(t)Qx(t) + u^T(t)Ru(t))dt,
\]

where \(Q\) and \(R\) are positive definite matrices, and \(x(0) = x_0, x(100) = x_1\).
Table 1. Minimum of performance index value J_k of the proposed method

Itr	CPU time (sec.)	HAM and parametrization approaches
m=4, k=1	0.109	0.00468778
m=4, k=2	0.121	0.00468778

Table 2. The Max error of the proposed method for $x_1(t)$ that $k = 2$ and $h = -1$ in comparison to SHAM and HPM

Method	CPU time (sec.)	Max error
proposed method (m=4, k=2)	1.55	2.93152×10^{-17}
SHAM (Legendre) (m=6, N=50, h=-1.2)	0.224	1.0589×10^{-9}
SHAM (Chebyshev) (m=6, N=50, h=-1.2)	0.224	1.0586×10^{-9}
HPM (m=6)	46.401	3.1420×10^{-8}

Figure 1. Approximate solution of $x_1(t)$ and $u_1(t)$ for $(m=4, k=2)$

where $Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. In addition, the following boundary conditions should be satisfied:

$$
x_1(0) = 0.01 r/s, \quad x_2(0) = 0.005 r/s, \quad x_3(0) = 0.001 r/s, \\
x_1(100) = x_2(100) = x_3(100) = 0 r/s.
$$

Consider initial conditions $x_1(0) = -0.0001t + 0.01, x_2(0) = -0.00005t + 0.005$ and $x_3(0) = -0.000001t + 0.001$. By applying the HAM and parametrization method (proposed method) the computed results for J_k are given in table 1. The maximum absolute error of proposed method, HPM and SHAM [31] are given in table 2. Furthermore, in table 3, minimum of J for our approach is obtained, and shows comparison between proposed method, SHAM, HPM, OHPM [12] and MVIM [27] of J. It is noteworthy that the given method improves the maximum absolute error. Also the obtained numerical solution for $m = 4, k = 2$ and $h = -1$ are depicted in Figures 1 to 3. In Figures 4 and 5 the h curves for $m = 4$ are plotted.
Table 3. Minimum of performance index value J of the proposed method and other methods

Method	Cost function	CPU time (sec.)
Proposed Method (m=4, k=2, h=-1)	0.0046877837	0.141
SHAM Chebyshev (m=6, N=50, h=-1.2)	0.0046877944625923	0.226
SHAM Legendre (m=6, N=50, h=-1.2)	0.0046877944625906	0.227
HPM (m=3)	0.004687795533	10.821
OHPM (m=1)	0.004688009428	-
MVIM (m=3)	0.004687986656	-

Figure 2. Approximate solution of $x_2(t)$ and $u_2(t)$ for (m=4, k=2)

Figure 3. Approximate solution of $x_3(t)$ and $u_3(t)$ for (m=4, k=2)

Figure 4. h-curve at 4-order of approximation of $x_1(t)$ and $x_2(t)$
Example 2.

Consider the following OCP for the Van Der Pol oscillator [9]

$$
\text{Min} J = \int_0^2 \frac{1}{2}(x_1^2 + x_2^2 + u^2) dt,
$$

subject to

$$
x_1' = x_2, \quad x_2' = -x_1 + x_2(1 - x_1^2) + u, \quad x_1(0) = 1, \quad x_2(0) = 0,
$$

where $x(t) \in \mathbb{R}^2$ and $u(t) \in \mathbb{R}$.

Consider initial conditions $x_1(0) = 1$ and $x_2(0) = 0$. By applying the proposed method and considering $\epsilon = 0.0002$, the computed results of applying our method for J_k are given in table 4. The maximum absolute errors of HAM and parametrization method (proposed method), DT [9] and SHAM [31] are given in table 5. Furthermore, in table 6, a minimum of J for HAM and parameterization method is obtained, and shows comparison between proposed method and other methods of J. Also the obtained numerical solution for $m = 7, k = 3$ and $h = -0.9$ are depicted in Figures 6 and 7. In Figure 8 the h curves for $m = 7$ are plotted.

7. Conclusions. In this paper proposed a method to solve NOCPs problem with efficient hybrid method based on homotopy analysis and parametrization. This method is a direct method to solve this kind of the problem. The suggested method has been compared with other methods, and numerical results affirm the effectiveness of the proposed method. This approach can be applied to any application of OCPs that the control function be continuous. In this method, the control functions can be parametrization based on Legendre and Chebyshev polynomial which may or may not be better. As a future research direction, we can apply this method for
Table 5. The Max error of our method of $x_1(t)$ in comparison to SHAM and HPM

Itr	Max error
Proposed Method (m=7, k=3, h=-0.9)	3.16673×10^{-5}
SHAM Chebyshev (m=15, N=50, h=-0.5)	4.2749×10^{-4}
SHAM Legendre (m=15, N=50, h=-0.5)	4.2749×10^{-4}
DT (m=15)	4.4380×10^{-4}

Table 6. Minimum of performance index value J of the proposed method and other methods

Method	Cost function	CPU time (sec.)
Proposed Method (m=7, k=3, h=-0.9)	1.01184	0.032
SHAM Chebyshev (m=15, N=50, h=-0.5)	1.0472	0.200
SHAM Legendre (m=15, N=50, h=-0.5)	1.0472	0.188
DT (m=15)	1.0478	87.74

Figure 6. Approximate solution of $x_1(t)$ and $x_2(t)$ for (m=7, k=3)

Figure 7. Approximate solution of $u(t)$

Table 7. Minimum of performance index value J_k of the proposed method

Itr	CPU time (sec.)	HAM and parametrization approaches
m=7, k=1	0.016	1.07504
m=7, k=2	0.031	1.0136
m=7, k=3	0.032	1.01184
uncertainty problem in the field of optimal control that is an emerging real-world necessity. All calculations are done with the Mathematica software.

REFERENCES

[1] S. Abbasbandi, Homotopy analysis method for Kawahara equations nonlinear analysis, Real World Applications, 11 (2010), 307–312.
[2] S. Effati, H. Saberi Nik and M. Shirazian, Analytic-approximate solution for a class of nonlinear optimal control problems by homotopy analysis method, Asian-European Journal of Mathematics, 6 (2013), 1–22.
[3] S. Ganjefar and S. Rezaei, Modified homotopy perturbation method for optimal control problems using Pade approximant, Applied Mathematical Modelling, 40 (2016), 7062–7081.
[4] X. Gao, K. L. Teo and G. R. Duan, An optimal control approach to spacecraft rendezvous on elliptical orbit, Optim. Control Appl. Meth., 36 (2015), 158–178.
[5] C. K. Ghaddar, Rapid solution of optimal control problems by a functional spreadsheet paradigm: A practical method for the non-programmer, Mathematical and Computational Applications, 23 (2018), 54–82.
[6] C. J. Goh and K. L. Teo, Control parameterization: a unified approach to optimal control problem with general constraints, Automatica, 24 (1988), 3–18.
[7] Q. Gong, I. M. Ross, W. Kang and F. Fahroo, Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, *Comput. Optim. Appl.*, 41 (2008), 307–335.

[8] J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, *Appl. Math. Comput.*, 135 (2003), 73–79.

[9] I. Hwang, A computational approach to solve optimal control problems using differential transformation, *In Proceedings of the 2007 American Control Conference*, Marriott Marquis Hotel at Times Square, New York City, USA, 11–13, July 2007.

[10] M. Itik, M. U. Salami and S. P. Banksa, Optimal control of drug therapy in cancer treatment, *Nonlinear Analysis, 71* (2009), 1473–1486.

[11] H. Jafari and M. Alipour, Solution of the Davey Stewartson equation using homotopy analysis method, *Nonlinear Analysis: Modelling and Control, 15* (2010), 423–433.

[12] A. Jajarmi, N. Pariz, A. Vahidian Kamyad and S. Effati, A highly computational efficient method to solve nonlinear optimal control problems, *Scientia Iranica D, 19* (2012), 759–766.

[13] A. Jajarmi, M. Hajipour, E. Mohammadzadeh and Dumitru Baleanu, A new approach for the nonlinear fractional optimal control problems with external persistent disturbances, *Journal of the Franklin Institute, 355* (2018), 3938–3967.

[14] W. Jia, X. He and L. Guo, The optimal homotopy analysis method for solving linear optimal control problems, *Applied Mathematical Modelling, 45* (2017), 865–880.

[15] J. L. Junkins and J. D. Turner, *Optimal Spacecraft Rotational Maneuvers*, Elsevier-Amsterdam, 1986.

[16] M. El-Kady, Legendre approximations for solving optimal control problems governed by ordinary differential equations, *International Journal of Control Science and Engineering, 2* (2012), 54–59.

[17] B. Kafash, A. Delavarkhalafi, S. M. Karbassi and K. Boubaker, A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme, *Journal of Interpolation and Approximation in Scientific Computing, 2014* (2014), 1–18.

[18] S. L. Kek, K. L. Teo and M. I. A. Aziz, Efficient output solution for nonlinear stochastic optimal control problem with model-reality differences, *Mathematical Problems in Engineering, 2015* (2015), Article ID 659506, 9 pages.

[19] M. Keyanpour and M. Azizsefah, Numerical solution of optimal control problems by an iterative scheme, *AMO- Advanced Modeling and Optimization, 13* (2011), 25–37.

[20] R. Lia, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, *Mathematical and Computer Modelling, 43* (2006), 1393–1403.

[21] S. J. Liao, *The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems*, Ph.D. Thesis- Shanghai Jiao Tong University, 1992.

[22] S. J. Liao, *Beyond Perturbation: Introduction to the Homotopy Analysis Method*, CRC Press-Boca Raton, Chapman Hall, 2003.

[23] S. J. Liao, *Homotopy Analysis Method in Nonlinear Differential Equations*, Springer/Higher Education, 2012.

[24] Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependents stopping criteria, *Automatica, 48* (2012), 2116–2129.

[25] Q. Lin, R. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: Computational methods and applications, *JORC, 1* (2013), 275–311.

[26] Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, *Journal of Industrial and Management Optimization, 10* (2014), 275–309.

[27] M. Matinfar and M. Saeidy, A new analytical method for solving a class of nonlinear optimal control problems, *Optimal Control Applications and Methods, 35* (2014), 286–302.

[28] H. Mirinejad and T. Inanc, An RBF collocation method for solving optimal control problems, *Robotics and Autonomous Systems, 87* (2017), 219–225.

[29] A. Nazemi, S. Hesam and A. Haghibin, An application of differential transform method for solving nonlinear optimal control problems, *Computational Methods for Differential Equations, 3* (2015), 200–217.

[30] S. Nezhadhosein, A. Heyda and R. Ghanbari, A modified hybrid genetic algorithm for solving nonlinear optimal control problems, *Mathematical Problems in Engineering, 2015*, Article ID 139036, 21 pages.
[31] H. Saberi Nik, S. Effati, S. S. Motsa and M. Shirazian, Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems, *Numer. Algor.*, 65 (2014), 171–194.

[32] M. Shirazian and S. Effati, Solving a class of nonlinear optimal control problems via Hes variational iteration method, *International Journal of Control, Automation, and Systems*, 10 (2012), 249–256.

[33] O. Y. Stryk and R. Bulirsch, Direct and indirect methods for trajectory optimization, *Annals of Operations Research*, 37 (1992), 357–373.

[34] X. J. Tang, J. L. Wei and K. Chen, A Chebyshev-Gauss pseudospectral method for solving optimal control problems, *Acta Automatica Sinica*, 41 (2015), 1778–1787.

[35] K. L. Teo, C. J. Goh and K. H. Wong, *A Unified Computational Approach to Optimal Control Problems*, Longman Scientific and Technical, Essex, 1991.

[36] K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for constrained optimal control problems, *J. Austral. Math. Soc. B*, 40 (1999), 314–335.

[37] S. Wei, M. Zefran and R. A. Decarlo, Optimal control of robotic system with logical constraints: application to UAV path planning, Q6 Proceeding(s) of the IEEE International Conference on Robotic and Automation, Pasadena, CA, USA, 2008.

[38] X. S. Chen, X. K. Li, L. L. Zhang, and S. T. Cai, A new spectral method for the nonlinear optimal control, Proceedings of the 36th Chinese Control Conference, July 26–28, 2017, Dalian, China.

Received November 2018; 1st revision January 2019; Final revision April 2019.

E-mail address: m.alipour*math.usb.ac.ir
E-mail address: mvali@uk.ac.ir
E-mail address: akbar.h.borzabadi@gmail.com