Experiments using in-vivo microdialysis methods were conducted to investigate whether blood pressure changes cause an alteration in the release of noradrenaline (NA) in the median preoptic nucleus (MnPO) and whether the γ-aminobutyric acid (GABA) receptor mechanism is involved in the modulation of the pressure response-induced alteration in the NA release. In urethane-anesthetized male rats, intravenous administration of metaraminol, an α-agonist, significantly produced an increase in dialysate NA concentration in the MnPO area accompanied by an elevation in the mean arterial pressure (MAP). Perfusion with GABA (10 μM) through the dialysis probe elicited a significant decrease in either MAP or the NA concentration in the MnPO area. Similar perfusion with either the GABA_A receptor antagonist bicuculline (10 μM) or the GABA_B receptor antagonist phaclofen (10 μM) caused a significant increase in both MAP and the NA release in the MnPO area. Either bicuculline or phaclofen administered together with the metaraminol further enhanced the metaraminol-induced MAP and NA release in the MnPO area. The degree of increases in the both MAP of the NA release was significantly greater in the bicuculline-treated group than in the phaclofen-treated group. These results suggest that the NA release in the MnPO area may be potentiated during an elevation in arterial pressure caused by the metaraminol injection and imply that the NA release may be mediated through GABA_A receptors rather than GABA_B receptors in the MnPO area. NeuroReport 28:485–491 Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc.

Keywords: γ-aminobutyric acid, arterial pressure, bicuculline, median preoptic nucleus, noradrenaline, phaclofen

*Department of Special Needs Education and †Department of Behavioural and Physiological Sciences, Neuroscience Unit, Naruto University of Education, Naruto, Tokushima, Japan

Correspondence to Junichi Tanaka, PhD, Department of Special Needs Education, Naruto University of Education, Takashima, Naruto-cho, Naruto, Tokushima 772-8502, Japan

Tel/fax: +81 88 687 6277; e-mail: tanakaj@naruto-u.ac.jp

Received 7 March 2017 accepted 21 March 2017

Materials and methods

The experiment was conducted according to the guiding principles of the Physiological Society of Japan.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Microdialysis
Microdialysis in the MnPO area and measurement of NA were performed using procedures described in our previous studies [6,9,11,17–19]. Briefly, after the implantation of the guide cannula, the dialysis probe was inserted into the implanted guide cannula. The probe was perfused continuously at a rate of 2 μl/min using a microinfusion pump (EP-60; Eicom Co.) and a gas-tight syringe (Hamilton Co., Reno, Nevada, USA) with Ringer’s solution (147 mM NaCl, 4 mM KCl, 2.3 mM NaHCO3, 1.3 mM CaCl2). The samples were collected every 20 min into plastic tubes. Five to six hours after the beginning of the perfusion, stable basal NA levels in the dialysates were obtained.

Statistical analysis
Changes in MAP and the concentrations of NA in brain dialysate were expressed as a percent of the basal level calculated from the last four samples before the first perfusion with the antagonist or the first intravenous injection of metaraminol. Data are presented as mean ± SEM. The results were analyzed by one-way repeated-measures analysis of variance and a subsequent t-test. A P value of less than 0.05 was required for significance.

Results
The dialysis probe placements
Histological analysis from the rat brains showed that 49 out of 52 rats tested had the probe placement in the region of the MnPO (Fig. 1). The data from the remaining three rats with the probe placement outside the MnPO were not included in the analysis.
Changes in MAP and the NA release in the MnPO to intravenous metaraminol

Basal concentrations (immediately before the first drug administration) of NA in 20-min dialysate samples from the MnPO area were 14.9 ± 0.5 pg/40 μl dialysate ($n=46$). The first intravenous injection of metaraminol elicited significant increases in the NA release that accompanied 42.0 ± 6.9 mmHg (range: 28–52 mmHg) elevation in MAP ($n=6$, Fig. 2).

The effects of repeated injections of metaraminol on MAP and the NA release in the MnPO area (Fig. 2) were examined. In
both the first and the second injections, metaraminol injected intravenously led to a significant increase in MAP and the NA release in the MnPO area \((n=6) \). There were no significant differences between the first and the second treatments in the degree of the elevation in MAP and the release of NA. Vehicle (isotonic saline) perfusions did not cause any changes in MAP and the NA release in the MnPO area in response to the metaraminol injection \((n=4, \text{data not shown}) \).

Effects of perfusion with the GABA or its antagonists on the metaraminol-induced changes in MAP and the NA release in the MnPO

Perfusion with GABA through the dialysis probe (Fig. 1b) elicited a significant reduction in either MAP \((n=5; F(1,8)=20.003, P<0.01 \text{ for the first injection}; F(1,8)=29.673, P<0.001 \text{ for the second injection}) \) or the NA release in the MnPO area \((n=5; F(1,8)=36.486, P<0.001 \text{ for the first injection}; F(1,8)=39.418, P<0.001 \text{ for the second injection}; \text{Fig. 3}a) \). In both the first and the second GABA administrations, no significant changes in the amounts of MAP and the NA release compared with the control level (immediately before the GABA administration) in 20-min dialysate samples were observed (Fig. 3).

Perfusion with bicuculline (Fig. 1c) significantly enhanced both MAP \((n=5, F(1,8)=38.203, P<0.001 \text{ for the first injection}; F(1,8)=40.114, P<0.001 \text{ for the second injection}; \text{Fig. 3a}) \) and the release of NA in the MnPO area \((n=5, F(1,8)=36.486, P<0.001 \text{ for the first injection}; F(1,8)=39.418, P<0.001 \text{ for the second injection}; \text{Fig. 3b}) \). Perfusion with phaclofen (Fig. 1d) also produced a significant elevation in both MAP \((n=5, F(1,8)=14.625, P<0.05 \text{ for the first injection}; F(1,8)=21.974, P<0.01 \text{ for the second injection}; \text{Fig. 3a}) \) and the NA release \((n=5, F(1,8)=13.670, P<0.05 \text{ for the first injection}; F(1,8)=14.449, P<0.01 \text{ for the second injection}; \text{Fig. 3b}) \). The effects of repeated perfusions with the GABA antagonists on MAP and the NA release in the MnPO area were also examined. In either the bicuculline-treated or the phaclofen-treated group, there were no significant differences between the first and the second treatments in the number of changes in

Fig. 3

(a) Effects of repeated perfusions with \(\gamma \)-aminobutyric acid (GABA) \((n=5, \text{circles}) \), bicuculline \((n=5, \text{triangles}) \), or phaclofen \((n=5, \text{squares}) \) through the dialysis probe on mean arterial pressure (MAP) \((a) \) and the noradrenaline (NA) release in the median preoptic nucleus area \((b) \). Closed horizontal bars indicate the period of the perfusion with the drugs. \(^* P<0.05, ^{**} P<0.01, ^{***} P<0.001 \text{ compared with the immediately before the first perfusion of each drug (0 min).} \ ^{**} P<0.01, ^{***} P<0.001 \text{ compared with the corresponding value in the phaclofen perfusion.} \)
MAP and the NA release (Fig. 3). Vehicle (Ringer’s solution) perfusions did not cause any change in MAP and the NA release in the MnPO area in the drug application \((n = 4;\) data not shown).

Perfusion with bicuculline significantly enhanced the amount of the increase in either MAP \([n = 8; F(1,12) = 41.812, P < 0.001;\) Figs 2 and 4a] or the NA concentration in the MnPO area \([n = 8, F(1,12) = 43.051, P < 0.001,\) Figs 2 and 4b] in response to the metaraminol injection. Similar perfusion with phaclofen also significantly potentiated the amount of the metaraminol-evoked MAP \([n = 8, F(1,12) = 27.738, P < 0.01;\) Figs 2 and 4a] and the release of NA in the MnPO area \([n = 8, F(1,12) = 27.740, P < 0.01;\) Figs 2 and 4b].

A comparison between the effects of the GABA antagonists on the metaraminol-induced changes in MAP and the NA release

In an attempt to determine whether the influences in MAP and the NA release resulting from the metaraminol injection were mediated by GABA\(_A\) or GABA\(_B\) receptors, the difference between the degree of the change in the condition combining the metaraminol injection with the antagonist application and the total amount of the change in the metaraminol injection alone was calculated in each animal, and compared. In MAP, the differences in the amount in the bicuculline-treated and phaclofen-treated groups were 29.8 \(\pm\) 7.6 and 12.8 \(\pm\) 4.6\%, respectively (Figs 2 and 4a). The difference in the amount was significantly greater in the bicuculline-treated group than in the phaclofen-treated group \([F(1,14) = 26.748, P < 0.01].\) In the NA release, the differences in the amount in the bicuculline-treated and phaclofen-treated groups were 29.8 \(\pm\) 7.6 and 12.8 \(\pm\) 4.6\%, respectively (Figs 2 and 4a). The difference in the amount was significantly greater in the bicuculline-treated group than in the phaclofen-treated group \([F(1,14) = 21.980, P < 0.01].\)

Discussion

In the present study, we found that the release of NA in the MnPO area is increased during the elevation in
arterial pressure caused by intravenous injections of the α-agonist metaraminol, suggesting that the increased NA release in the MnPO area may be caused by activation of the peripheral baroreceptors in response to an increase in arterial pressure. Previous findings have been shown that the neural projections from the A1 noradrenergic region of the ventrolateral medulla to the MnPO may transmit the peripheral baroreceptor information [8,11]. Thus, the present results lead to the proposition that the noradrenergic inputs from the A1 region may be modulated by GABAergic receptor mechanisms in the MnPO.

The findings in which perfusion with either bicuculline or phaclofen applied alone to the MnPO dialysis site elicits an increase in dialysate NA concentrations suggest the possibility that endogenous GABA acting on both GABA_A and GABA_B receptor mechanisms may inhibit tonically the basal level of NA release in the MnPO area, which are in agreement with the results of previous investigations [17,18]. Our data imply that the increase in the NA release may be mediated at least in part by the reduction of GABAergic inhibitory inputs caused by enhanced arterial pressure. A microdialysis study has reported that a part of the efferent projections from the OVLT may exert the GABAergic inhibitory influence on the release of NA in the MnPO area through predominantly GABA_B receptor mechanisms [18]. Previous observations in several lines have shown that the MnPO receives GABAergic afferent projections from the subfornical organ (SFO), a circumventricular structure lacking a normal blood–brain barrier [4], plays important roles in pressor and drinking responses caused by circulating ANG II [21]. Thus, it is possible that the NA release in the MnPO area may be suppressed by the GABAergic inputs from the SFO through GABA_A receptor mechanisms.

Our results in this study indicate that the amount of antagonist-induced NA release is much greater in the bicuculline-treated group than in the phaclofen-treated group, suggesting that the GABAergic inhibitory effect on the NA release in the MnPO area may be mediated through GABA_A receptors rather than GABA_B receptors in response to an elevation in arterial pressure. Thus, it is tempting to speculate that the difference in the GABA receptor types in the MnPO area may contribute, in part, toward the functional role and/or the responsiveness of NA neurons to several stimuli. Indeed, the GABAergic inhibitory influence from the OVLT on the NA release in the MnPO area is mediated through GABA_B receptors [18].

Several reports have shown that the noradrenergic system in the MnPO plays vital roles in eliciting the pressor and drinking responses caused by ANG II [1,2,10]. Previous investigations have indicated that activation of GABA receptor mechanisms influences the ANG II-induced responses [10,16]. Microdialysis findings have suggested the participation of GABAergic receptor mechanisms in the enhanced NA release in the MnPO area caused by hypovolemia following a subcutaneous injection of polyethylene glycol [17]. Therefore, these data and the present results offer the possibility that the GABAergic system in the MnPO area may be involved in the control of cardiovascular function and body fluid balance by altering the release of NA.

It has been postulated that the interaction between the angiotensinergic and catecholaminergic systems in the MnPO is important for initiating dipsogenic and cardiovascular responses [1,2]. The MnPO receives angiotensinergic inputs from the SFO [22] that are deemed essential for generating these responses to ANG II [4,9,23]. Activation of the SFO increases the excitability of MnPO neurons through ANG II receptors [23] and the NA release in the MnPO area [9], indicating the attribution of the angiotensinergic pathways from the SFO to the control of NA release in the MnPO. The MnPO also receives afferent projections including GABAergic from the OVLT [18], a site known to contain neurons that participate in the osmoregulation [5]. It has been shown that neurons within the MnPO have glutamate (Glu) receptors like those in other regions of the brain [24,25] and that Glu receptors in the MnPO modulate glutamergic and GABAergic inputs from the SFO [24]. Our recent findings have shown that N-methyl-D-aspartate and non-N-methyl-D-aspartate Glu receptor mechanisms in the MnPO participate in the noradrenergic regulatory system for body fluid balance [19]. These experimental observations and our data raise the hypothesis that the GABAergic receptor mechanisms in the MnPO area may be involved in the control of vascular responses, body fluid volume, and plasma osmolality.

Conclusion
The present study shows that the NA release in the MnPO area is enhanced during an elevation in arterial pressure induced by an intravenous administration of metaraminol and the enhanced NA release may be mediated in part through GABA_A receptors rather than GABA_B receptors in the MnPO area.

Acknowledgements
Conflicts of interest
There are no conflicts of interest.

References
1 Bellin S, Landas SK, Johnson AK. Selective catecholamine depletion of structures along the ventral lamina terminals: effects on experimentally-induced drinking and pressor responses. Brain Res 1988; 456:9–16.
2 Cunningham JT, Johnson AK. Decreased norepinephrine in the ventral lamina terminalis region is associated with angiotensin II-induced drinking response deficits following local 6-hydroxydopamine injections. Brain Res 1989; 480:65–71.
GABA controls NA release to MAP changes Takahashi and Tanaka 491

3 Cunningham JT, Johnson AK. The effects of central norepinephrine infusions on drinking behavior induced by angiotensin after 6-hydroxydopamine injections into the anteroventral region of the third ventricle (AV3V). Brain Res Bull 1991; 558:112–116.

4 McKinley MJ, McAllen RM, Mendelsohn FAO, Oldfield BJ. Circumventricular organ: neuroendocrine interfaces between the brain and the hemal milieu. Front Neuroendocrinol 1990; 11:91–127.

5 McKinley MJ, Congiu M, Miselis RR, Oldfield BJ, Pennington GL. The lamina terminals and osmotically-stimulated vasopressin secretion. In: Yoshida S, Share L, editors. Recent progress in posterior pituitary hormones. Amsterdam, The Netherlands: Excerpta Medica; 1988. pp. 117–124.

6 Miyakubo H, Yamamoto K, Hatakenaka S, Hayashi Y, Tanaka J. Drinking decreases the noradrenaline release in the median preoptic area caused by hypovolemia in the rat. Behav Brain Res 2003; 145:1–5.

7 Silva de RK, Saad WA, Renzi A, Menani JV, Camargo LA. Effect of lateral hypothalamic lesions on the water and salt intake, and sodium and urine excretion induced by activation of the median preoptic nucleus in conscious rats. J Auton Nerv Syst 1995; 53:195–204.

8 Tanaka J, Nomura M, Kariya K, Nishimura J, Kimura F. Median preoptic area in rats. J Neurophysiol 1993; 60:338–341.

9 Tanaka J, Hayashi Y, Shimamura S, Hori K, Nomura M. Subfornical organ efferents enhance extracellular noradrenaline concentrations in the median preoptic area in rats. Neurosci Lett 1997; 230:171–174.

10 Tanaka J, Fujisawa S, Nomura M. GABAergic modulation of the ANG II-induced drinking response in the rat medial preoptic nucleus. Pharmacol Biochem Behav 2003; 76:43–51.

11 Tanaka J, Hatakenaka S, Miyakubo H, Nomura M. Noradrenaline release in the median preoptic nucleus area caused by hemorrhage in the rat. Brain Res Bull 2003; 60:233–240.

12 Wilkin LD, Patel KP, Schmid PG, Johnson AK. Increased norepinephrine turnover in the median preoptic nucleus following reduced extracellular fluid volume. Brain Res 1987; 423:369–372.

13 Kawano H, Masuko S. Synaptic inputs of neuropeptide Y-immunoreactive noradrenergic nerve terminals to neurons in the nucleus preopticus medianus which project to the paraventricular nucleus of the hypothalamus of the rat: a combined immunohistochemical and retrograde tracing method. Brain Res 1993; 600:74–80.

14 Saper CB, Levisohn D. Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region. Brain Res 1983; 558:21–31.

15 Muggiani E, Oertel WH. An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunocytochemistry. In: Bjorklund A, Hokfelt T, editors. Handbook of chemical neuroanatomy. New York, NY: Elsevier; 1985. pp. 436–608.

16 Unger T, Bles F, Ganten D, Lang RE, Rettig R, Schwab NA. GABAergic stimulation inhibits central actions of angiotensin II: pressor responses, drinking and release of vasopressin. Eur J Pharmacol 1983; 90:1–9.

17 Sakamaki K, Nomura M, Hatakenaka S, Miyakubo H, Tanaka J. GABAergic modulation of noradrenaline release in the median preoptic nucleus area in the rat. Neurosci Lett 2003; 342:77–80.

18 Ushigome A, Nomura M, Tanaka J. Modulation of noradrenaline release in the median preoptic area by GABAergic inputs from the organum vasculosum of the lamina terminals in the rat. Neurochem Int 2004; 44:139–144.

19 Takahashi M, Hayashi Y, Tanaka J. Glutamatergic modulation of noradrenaline release in the rat median preoptic area. Brain Res Bull 2017; 130:36–41.

20 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Sydney, NSW: Academic Press; 1986.

21 Guttmann MB, Jones DL, Cinello J. Effect of paraventricular nucleus lesions on drinking and pressor responses. Am J Physiol 1988; 255:R882–R887.

22 Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system: an immunohistochemical study. Neuroendocrinology 1985; 40:2–24.

23 Tanaka J. Involvement of the median preoptic nucleus in the regulation of paraventricular vasopressin neurons by the subfornical organ in the rat. J Neurophysiol 2010; 103:1104–1113.

24 Koiz M, Renaud LP. Metabotropic glutamate receptors in the median preoptic nucleus modulate neuronal excitability and glutamatergic and GABAergic inputs from the subfornical organ. J Neurophysiol 2010; 103:1104–1113.

25 Schwarts JA, Reilly NS. Angiotensin and NMDA receptors in the median preoptic nucleus mediate hemodynamic response patterns to stress. Am J Regul Integr Comp Physiol 2008; 295:R155–R165.