CONSTRaining THE MASS PROFILES OF STELLAR SYSTEMs: SCHWARZSCHILD MODELING OF DISCRETE VELOCITY DATA SETs

JULIO CHANAMÉ,¹ JAN KLEYNA,² AND R OELAND VAN DER MAREL¹

Received 2007 September 5; accepted 2008 April 14

ABSTRACT

We present a new Schwarzschild orbit superposition code designed to model discrete data sets composed of velocity measurements of individual kinematic tracers in a dynamical system. This constitutes an extension of previous implementations that can only address continuous data in the form of (the moments of) velocity distributions, thus avoiding potentially important losses of information due to data binning. The code can handle any combination of velocity components, i.e., only line-of-sight velocities, only proper motions, or both. The code determines the combination of orbital mass weights as a function of the three integrals of motion E, L_z, and I_3 that best reproduces, in a maximum likelihood sense, the available kinematic and photometric observations in a given axisymmetric gravitational potential. The fully numerical approach ensures considerable freedom on the form of the distribution function $f(E, L_z, I_3)$, avoiding restrictive assumptions about the degree of orbital (an)isotropy. We describe the implementation of the discrete code and present a series of performance tests based on the modeling of simulated data sets generated from a known distribution function. Exploring pseudo—data sets with varying degrees of overall rotation and different inclinations on the sky, we study the results as a function of relevant observational variables such as the size of the data set and the type of velocity information available. The discrete Schwarzschild code recovers the original orbital structure, mass-to-light ratio, and inclination of the input data sets to satisfactory accuracy. The code will be valuable, e.g., for modeling stellar motions in Galactic globular clusters and the motions of individual stars, planetary nebulae, or globular clusters in nearby galaxies. This can shed new light on the total mass distributions of these systems, with central black holes and dark halos being of particular interest.

Subject headings: dark matter — galaxies: halos — galaxies: kinematics and dynamics — methods: numerical — stellar dynamics

1. INTRODUCTION

The study of the internal dynamics of stellar systems plays an essential role in astronomy. From the observed positions and velocities of the stars in galaxies and globular clusters it is possible to infer their total (dark + luminous) mass distribution, which, in particular, provides information on the presence and properties of dark halos and massive black holes. In turn, this structural knowledge constrains theories for the formation and evolution of these systems.

The dynamical state of a stellar system is determined by its phase-space distribution function (DF), $f(r, v)$, which counts the stars as a function of position r and velocity v. Typically, however, only three of the six phase-space coordinates are available observationally: the projected sky position (x', y'), and the velocity v_z along the line of sight (LOS). Proper-motion observations can provide the additional velocities ($v_{x'}$, v_y), but such data are generally not available (with the notable exception of some Galactic globular clusters). To make progress with the limited information available, the dynamical theorist is often forced to make simplifying assumptions about geometry (e.g., that the system is spherical) or about the velocity distribution (e.g., that it is isotropic). Such assumptions can have strong effects on the inferred mass distribution (Binney & Mamon 1982). To obtain the most accurate results, it is therefore important to make models that are as general as possible. Of particular importance for collisionless, unrelaxed systems such as galaxies is to constrain the velocity anisotropy using available data, rather than to assume it a priori.

In a collisionless system the DF satisfies the collisionless Boltzmann equation. Analytical methods to find solutions of this equation usually rely on the Jeans theorem, which states that the DF must depend on the phase-space coordinates through integrals of motion (quantities that are conserved along a stellar orbit). In a spherical system all integrals are known analytically; namely, the energy E and the components of the angular momentum vector L. Analytical models for spherical systems are therefore fairly easily constructed. In an axisymmetric system things are more complicated (e.g., Binney & Tremaine 1987; Merritt 1999). Only two integrals are known analytically, E and the vertical component L_z of the angular momentum vector, but there is generally a third integral for which no analytical expression exists. Therefore, it is not generally possible to construct an axi-symmetric model analytically. The special class of so-called two-integral [$f = f(E, L_z)$] models (e.g., Batsleer & Dejonghe 1993; Dehnen & Gerhard 1994; Verolme & de Zeeuw 2002) has its uses (e.g., Magorrian et al. 1998, van der Marel & van Dokkum 2007), but these have an isotropic velocity distribution in their meridional plane, which need not be a good fit to real dynamical systems. The most practical way to model a general axisymmetric system is to do it numerically. While a few methods exist to do this (e.g., Syer & Tremaine 1996; de Lorenzi et al. 2007), the most common approach uses Schwarzschild’s (1979) method. One starts with a trial guess for the gravitational potential Ψ and then

¹ Space Telescope Science Institute, Baltimore, MD 21218.
² Institute for Astronomy, University of Hawaii, Honolulu, HI 96822.
numerically calculates an orbit library that samples integral space in some complete and uniform way. The orbits are integrated for several hundred orbital periods, and the time-averaged intrinsic and projected properties (density, LOS velocity, etc.) are stored as the integration progresses. The construction of a model consists of finding a weighted superposition of the orbits that (1) reproduces the observed stellar or surface brightness distribution on the sky and (2) reproduces all available kinematical data to within the observational error bars. Additional constraints can be added to enforce that the PDF in phase space be smooth and reasonably well behaved, e.g., through regularization or by requiring maximum entropy.

Several axisymmetric Schwarzschild codes have been developed in the last decade (e.g., van der Marel et al. 1998; Cretton et al. 1999; Gebhardt et al. 2000; Valluri et al. 2004; Thomas et al. 2004). These codes deal with the situation in which information on the LOS velocity distribution (LOSVD) is available for a set of positions on the projected plane of the sky. This is the case, e.g., when the kinematical data are from long-slit or integral-field spectroscopic observations of unresolved galaxies. The optimization problem for such data can be reduced to a linear matrix equation for which one needs to find the least-squares solution with nonnegative weights (Rix et al. 1997). One dimension of the matrix corresponds to the number of orbits in the library, while the other corresponds to the number of (luminosity, kinematical, and regularization) constraints that must be reproduced. Both dimensions are typically in the range 10^3–10^4. Nonetheless, efficient numerical algorithms exist to find the solution, which yield the orbital and the velocity distribution of the model, as well as the χ^2 of the fit to the kinematical data. The procedure must then be iterated with different gravitational potentials, to determine the potential that provides the overall best χ^2. The existing codes have been used and tested extensively (e.g., Cretton et al. 2000; Cappellari et al. 2002, 2006; Gebhardt et al. 2003; Bender et al. 2005; Davies et al. 2006). Some questions remain, e.g., about the importance of smoothing in phase space, the exact meaning of the confidence regions determined using $\Delta \chi^2$ contours, and, in some situations, valid concerns have been raised regarding whether the available data contain enough information so as to warrant the conclusions of the Schwarzschild modeling (Valluri et al. 2004; Cretton & Emsellem 2004; Krajnović et al. 2005). Nevertheless, on the whole Schwarzschild codes have now been established as an accurate and versatile tool to study a wide range of dynamical problems.

A disadvantage of the existing codes is that they cannot be easily applied to the large class of problems in which the kinematical observations come in the form of discrete velocity measurements, rather than as LOSVDs. This is encountered, e.g., when modeling the dynamics of galaxies at large radii, where the low surface brightness prevents integrated-light spectroscopy. The only available data are then often of a discrete nature, e.g., via the LOS velocities of individual stars in galaxies of the Local Group (e.g., Kunkel et al. 1997, 2000; Kley na et al. 2001, 2002; Łokas 2002; Wilkinson et al. 2004; Łokas et al. 2005; Walker et al. 2006; Geha et al. 2006), or via planetary nebulae (e.g., Douglas et al. 2002; Romanowsky et al. 2003; Teodorescu et al. 2005) and globular clusters (e.g., Côté et al. 2001; Richtler et al. 2004) surrounding giant ellipticals. The kinematical data available for clusters of galaxies, consisting of redshifts for individual galaxies, are of a similarly discrete nature (e.g., Łokas & Mamon 2003). The typical data sets in all these cases consist of tens to hundreds of LOS velocities. Galactic globular clusters constitute another class of object for which kinematical data are often available only as discrete measurements, rather than in the form of LOSVDs.

From ground-based observations, data sets of individual LOS velocities can be available for up to thousands of stars in these systems (e.g., Suntzeff & Kraft 1996; Mayor et al. 1997; Gebhardt et al. 1997; Reijns et al. 2006), and for ω Cen it has been possible to assemble large samples of proper motions as well (van Leeuwen et al. 2000). With the capabilities of the Hubble Space Telescope (HST), accurate proper-motion data sets with up to $\sim 10^4$ stars are now becoming available for several more Galactic globular clusters (e.g., McNamara et al. 2003; McLaughlin et al. 2006). Note that discrete data sets do not necessarily provide better or worse information than data sets obtained from integrated-light measurements. Both types of data have their advantages and disadvantages. For discrete data sets, for example, interloper contamination can be a problem (see also the end of §2). By contrast, for integrated-light measurements, it is often difficult to constrain the wings of the LOSVD due to uncertainties associated with continuum subtraction. Which type of data is most appropriate and most easily obtained depends on the specific object under study. This is therefore not a question that we address in this paper. Instead, we focus on the issue of how to best analyze discrete data, if that happens to be what is available.

Analyses of discrete data sets have often been more simplified than the analyses that are now common for integrated-light data. For example, the observations are analyzed using the Jeans equations (e.g., Gerssen et al. 2002; Łokas & Mamon 2003; Côté et al. 2003; Douglas et al. 2007), often with the help of data binning to calculate rotation velocity and velocity dispersion profiles (see, however, the “spherical” Schwarzschild models of M87 of Romanowsky & Kochanek 2001). The disadvantage of such an approach is that not all the information content of the data is used, including information on deviations of the velocity histograms from a Gaussian. Such deviations are important because they constrain the velocity dispersion anisotropy of the system (e.g., van der Marel & Franx 1993; Gerhard 1993; Gerhard et al. 1998). This anisotropy is an important ingredient in some existing controversies, e.g., regarding the presence of dark halos around elliptical galaxies (Romanowsky et al. 2003; Dekel et al. 2005). Loss of information can be avoided when large numbers of data points are available, as is often the case for globular clusters. It is then possible to create velocity histograms for binned areas on the projected plane of the sky, after which analysis can be done with existing Schwarzschild codes (e.g., van den Bosch et al. 2006). While this is possible for large data sets, such an approach is not viable for the more typical, smaller data sets that are often available. The availability of Schwarzschild codes that can fully exploit the information content of such smaller data sets would therefore be valuable to advance this subject.

Motivated by these considerations, we set out to adapt our existing Schwarzschild code (van der Marel et al. 1998) to deal with discrete data sets. This does not constitute a trivial change, since it changes the constrained superposition procedure from a linear matrix problem to a more complicated maximum likelihood one. For each observed velocity of a particle in the system the question becomes, what is the probability that this velocity would have been observed if the model is correct? The overall likelihood of the data, given a trial model, is the product of these probabilities for all observations. Such likelihood problems have previously been solved for spherical systems (Merritt 1993; van der Marel et al. 2000; Wu & Tremaine 2006) and the special class of axisymmetric $f(L_s, L_z)$ systems (Merritt et al. 1997; Wu 2007). However, for the axisymmetric Schwarzschild modeling approach the problem corresponds to finding the minimum of a function in a space with a dimension of 10^3–10^4. We show in this work, via the Schwarzschild modeling of simulated data sets, that this
problem can indeed be solved successfully and efficiently. Moreover, we follow van de Ven et al. (2006) and implement in our new code the ability to calculate and fit proper motions in addition to LOS velocities. Applications of the code to real data sets will be presented in forthcoming papers.

The structure of the paper is as follows. In §2 we phrase the new problem of fitting a Schwarzschild model to a data set of discrete velocities (of one, two, or three dimensions) of individual kinematic tracers in terms of a likelihood formalism. In §3 we describe the implementation of the discrete fitting procedure into our existing Schwarzschild code. At the same time, we summarize here the major steps involved in the construction of the probability matrix that describes the likelihood of a given kinematic data point belonging to some particular orbit of the library. We then present in §4 sets of simulated data that we use for the purpose of testing the performance of the discrete Schwarzschild code. We also describe the known input DFs from which these data were drawn. The application of the code to the simulated data sets is presented in §5. We present a thorough analysis of the accuracy with which our discrete Schwarzschild code recovers the known DF, mass-to-light ratio, and inclination used to generate the simulated data. Finally, in §6 we summarize our findings and present our conclusions.

2. LINEAR AND NONLINEAR CONSTRAINTS IN THE LIKELIHOOD FORMALISM

In the Schwarzschild scheme the properties of every orbit \(j \) in the orbit library are computed and stored. The modeling consists in finding the superposition of orbital weights \(a_j^2 \), i.e., the fraction of particles in the system residing in each orbit, that best reproduces some set of constraints. The weights are written as squares to ensure that they never become negative. Linear constraints are of the form

\[
\gamma_k^j = \gamma_k \pm \sigma_k \quad (k = 1, \ldots, M).
\]

Here \(\gamma_k \) is a constraint value that needs to be reproduced, \(\sigma_k \) is its uncertainty, and \(\gamma_k^j \) is its model prediction

\[
a_j^2 = \frac{\sum_j B_{kj} a_j^2}{\sum_j a_j^2}.
\]

The matrix \(B_{kj} \) represents here, for orbit \(j \), the probability distribution corresponding to the constraint \(\gamma_k \). The constraints are generally one of the following: (1) the integrated light (surface brightness) of a stellar population in some aperture number in the projected plane of the sky, necessary to reproduce an observational measurement of the surface brightness; (2) the mean LOS velocity, velocity dispersion, or for data of sufficient quality, a higher order Gauss-Hermite moment in some aperture number in the projected plane of the sky, necessary to reproduce an observational measurement of the stellar kinematics; (3) the integrated mass in some meridional \((R, z)\)-plane grid point, necessary to provide a consistent model; (4) a combination of DF moments in some meridional \((R, z)\)-plane grid point, if a model with a particular dynamical structure is desired [e.g., one may want a model with \(\rho(r^2 - z^2) \) equal to zero in order to simulate a two-integral \(f(E, L_z) \) model]; (5) a combination of orbit weights, if regularization constraints are desired to enforce smoothness of the model in phase space (e.g., one can set the Nth-order divided difference of adjacent orbit weights to zero, with an uncertainty \(\Delta \gamma_k \) that measures the desired amount of smoothing).

It is natural to choose the best-fitting model to be the one that produces the maximum likelihood. To determine the likelihood, we need to write down an expression for the probability of measuring \(\gamma_k \) among all its possible values. To do this, we recall that any model is not an attempt to reproduce a set of observations to infinite accuracy, but instead to do it within the uncertainty \(\sigma_k \). For observational constraints, such as those of type 1 and 2 above, \(\sigma_k \) is equal to the measurement uncertainty. For other constraints, such as those of type 3–5 above, \(\sigma_k \) can be used as a forcing parameter that compels how accurately the likelihood needs to peak around a particular value of \(\gamma_k \). If one assumes that these uncertainties have a normal (Gaussian) distribution, then the probability we are interested in is given by

\[
P(\gamma_k) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp \left[-\frac{1}{2\sigma_k^2} (\gamma_k - \gamma_k^j)^2 \right].
\]

The combined probability for the simultaneous occurrence of all \(M \) linear constraints is then given by the product of the single probabilities, \(L_{\text{linear}} = \prod_k P(\gamma_k) \). Using equation (3), the logarithm of this linear part of the likelihood is therefore

\[
\ln L_{\text{linear}} = -\sum_{k=1}^M \ln \left(\frac{1}{\sqrt{2\pi\sigma_k}} \exp \left[-\frac{1}{2\sigma_k^2} (\gamma_k - \gamma_k^j)^2 \right] \right).
\]

The first sum on the right-hand side of this expression does not depend on the orbital weights \(a_j^2 \) and, therefore, does not affect the likelihood maximization. The second term has the exact form of the \(\chi^2 \) statistic. Maximizing the likelihood is therefore equivalent to the minimization of this \(\chi^2 \). This can be done by finding the solution of the set of equations (1) and (2), which can be rewritten as an overdetermined matrix equation. This matrix equation can be solved with the use of standard nonnegative least-squares (NNLS) algorithms (for a detailed description see Rix et al. 1997).

In the case of discrete data, however, the introduction of constraints of a “nonlinear” type is inevitable in order to adequately exploit the entire information content available, avoiding restrictive simplifications and loss of information due to binning. This occurs because the individual probabilities do not necessarily have the simple, Gaussian form of equation (3). The procedure for finding the maximum likelihood then cannot be cast as the solution of a linear matrix equation anymore.

Suppose we have a kinematic data set consisting of discrete measurements that we are trying to model using the Schwarzschild technique. Let \(P_j(q) \) be the phase-space probability distribution of any given orbit, properly averaged azimuthally, and normalized such that \(\int P_j(q)^2 r d^3v = 1 \). We use \(q \) to denote a vector of up to six Euclidean spatial and velocity coordinates. Whenever \(q \) is shorter than six elements, it is understood that the distribution has been marginalized over the missing dimensions. Then the total probability of drawing a particle from a superposition of orbits representing the whole system is

\[
P(q) = \frac{\sum_j a_j^2 P_j(q)}{\sum_j a_j^2}.
\]

We now need to consider the total probability of the ensemble of \(N \) particles with kinematic information that constitute our discrete data set. Before this, however, it is necessary to make the distinction, in the language of probabilities, between the possible modes of sampling of the tracers available in a system of particles. The two main possibilities depend on whether the particles are randomly or nonrandomly drawn from their spatial distribution,
and we may refer to these, respectively, as random positional sampling and incomplete positional sampling. In addition, particles may be drawn with or without velocity information, thus adding up to a total of four possibilities. The case with incomplete positional sampling and no velocity information, however, does not provide any useful constraint to the analysis; therefore, we restrict the discussion to the remaining three cases.

For particles drawn randomly from the spatial distribution with no velocity information, the probability \(P(q) \) is

\[
P(q) = P(r) = \frac{\sum a_j^2 P_j(r)}{\sum a_j^2},
\]

where \(r \) represents a two- or three-dimensional position. This type of data set could result from imaging of the resolved populations of a stellar system, where the positional information could be used as actual constraints. This would force the model to fit the underlying spatial distribution of discrete tracers, instead of making use of a parameterization of the (continuous) brightness profile of the system. Of course, a data set without velocity information cannot by itself constrain the dynamical state or the mass of the system.

In the case of random positional sampling including velocity information, particles are randomly drawn from both the spatial and velocity distributions. In this case, \(P(q) \) has the form

\[
P(q) = P(r, v) = \frac{\sum a_j^2 P_j(r, v)}{\sum a_j^2}.
\]

where \(r \) is the same as above and \(v \) represents a general one-, two-, or three-dimensional velocity. This would be the case when being able to obtain the velocities of particles in a given field without introducing any spatial or velocity bias, such as the proper motions of all stars (brighter than some magnitude limit) in a sufficiently sparse stellar cluster, or when LOS velocities are obtained for a complete (or possibly magnitude limited) set of globular clusters or planetary nebulae in a galaxy.

In contrast, having incomplete positional sampling means that the particles are drawn from a velocity distribution, with a priori fixed positions. This can occur, for example, when, because of the usually limited availability of telescope time and resources, LOS velocities are measured only for stars within some distance from the photometric major or minor axes of a galaxy, or when, because of the finite size of fibers in a fiber-fed spectrograph, not all the potentially observable kinematic tracers in the field can be actually acquired. Incomplete positional sampling also arises when, even though particles can be randomly drawn spatially, this is the case only for a limited area. This occurs, for example, when the observations have to avoid the innermost regions of a galaxy or globular cluster, where, because of crowding, stars cannot be individually resolved. In these cases, \(P(q) \) has the form

\[
P(q) = P(v|r) = \frac{\sum a_j^2 P_j(r) P_j(v|r)}{\sum a_j^2 P_j(r)},
\]

where, rather than just \(a_j^2 \), the effective weights when summing together the individual orbital distributions are \(a_j^2 P_j(r) \).

Once the individual probabilities for all possible cases of spatial sampling that comprise the data have been properly assigned, we can proceed to the construction of the total probability of observing the entire data set. Let \(N_1 \) and \(N_2 \) be the number of observational data points obtained under the mode of random positional sampling without and with velocity information, respectively, and \(N_3 \) the number of data points obtained with incomplete positional sampling with kinematic information. Then, the total probability is simply the product of the individual probabilities, with logarithm given by \(\ln L_{\text{discrete}} = \sum_{i=1}^{N_1} \ln P(r_i) + \sum_{i=1}^{N_2} \ln P(r_i, v_i) + \sum_{i=1}^{N_3} \ln P(r_i, v_i) \).

Using equations (6)–(8), and adopting the abbreviated notation \(p^{(r)}_{i,j} = P(r_i, v_i) \), \(p^{(v)}_{i,j} = P(v_i|r_i) \), and \(p^{(r,v)}_{i,j} = P(v_i|r_i) \) (all known for each orbit \(j \) and particle \(i \) from the orbit library calculation; see § 3), the quantity to maximize becomes

\[
\ln L_{\text{discrete}} = \sum_{i=1}^{N_1} \left(\ln \sum_j a_j^2 p^{(r)}_{i,j} - \ln \sum_j a_j^2 \right) + \sum_{i=1}^{N_2} \left(\ln \sum_j a_j^2 p^{(v)}_{i,j} - \ln \sum_j a_j^2 \right)
\]

\[
+ \sum_{i=1}^{N_3} \left(\ln \sum_j a_j^2 p^{(r,v)}_{i,j} - \ln \sum_j a_j^2 \right) \quad \text{(9)}
\]

Joining the results in equations (4) and (9), the complete log-likelihood for a general application of the Schwarzscild method, which is the full expression to be maximized with respect to the orbital weights \(a_j \), is the sum of the log-likelihoods for linear and discrete constraints

\[
\ln L = \ln L_{\text{linear}} + \ln L_{\text{discrete}} \quad \text{(10)}
\]

Finding the maximum likelihood corresponds to finding the solution of \(\partial \ln L / \partial a_j = 0 \), for all \(L \). Denoting \(s = \sum_j a_j^2 \), the expression for the first derivative is

\[
\frac{\partial \ln L}{\partial a_j} = -\frac{2a_j}{s} \sum_{k=1}^{M} \frac{1}{\sigma_k^2} (\gamma_k - \gamma_k^*) (-B_{1j} + \gamma_k^*)
\]

\[
+ 2a_j \sum_{i=1}^{N_1} \left(\frac{p^{(r)}_{i,j}}{\sum_j a_j^2 p^{(r)}_{i,j}} - \frac{1}{s} \right)
\]

\[
+ 2a_j \sum_{i=1}^{N_2} \left(\frac{p^{(v)}_{i,j}}{\sum_j a_j^2 p^{(v)}_{i,j}} - \frac{1}{s} \right)
\]

\[
+ 2a_j \sum_{i=1}^{N_3} \left(\frac{p^{(r,v)}_{i,j}}{\sum_j a_j^2 p^{(r,v)}_{i,j}} - \frac{p^{(r,v)}_{i,j}}{\sum_j a_j^2 p^{(r,v)}_{i,j}} \right) \quad \text{(11)}
\]

One important question that remains is regarding the estimation of confidence regions around the parameters of the best-fitting model, i.e., the (statistical) uncertainties around the likelihood maximum in the case of nonlinear constraints. Recalling that maximizing \(\ln L \) is equivalent to minimizing the quantity \(\lambda = -2 \ln L \), it is easy to realize that, if the probabilities involved in equation (9) were all of Gaussian form, \(\lambda \) would simply reduce to the well-known \(\chi^2 \) statistic, as we have already seen for the case with linear constraints in equation (4). When dealing with nonlinear constraints, however, the likelihood does not reduce to a simple \(\chi^2 \) form. Nevertheless, one still can use another well-known theorem of statistics, used before by Merritt & Saha (1993) and van der Marel et al. (2000), that states that the “likelihood ratio” statistic \(\lambda - \lambda_{\text{min}} \) does tend to a \(\chi^2 \) statistic in the limit of large \(N_i \), with the number of degrees of freedom equal to the number of free parameters that have not yet been varied and chosen so as to optimize the fit. Therefore, the likelihood ratio statistic
reduces to the $\Delta \chi^2$ statistic for $N \to \infty$, even though the probabilities in equation (9) are not all individually Gaussian. Since in the present work we explore data sets consisting of 100 kinematic measurements or more, the condition of large N should be reasonably fulfilled. Therefore, following the likelihood ratio statistic, we assume $\Delta \chi^2 = -2(\ln L - \ln L_{\text{max}})$ and compute the confidence regions around the best-fit parameters in the usual way (e.g., Press et al. 1992), i.e., with the 1 σ error for a single parameter corresponding to wherever $\Delta \chi^2 = 1$, and so forth. Other approaches to quantify the uncertainties exist as well, e.g., using Bayesian statistics, but these are generally more difficult to implement (e.g., Magorrian 2006).

The equations described above assume that any possible “interloper” contaminants have already been removed and that the targets with observed velocities that enter the likelihood equations all belong to the system under study. For realistic data sets, contamination by interlopers can certainly be a problem (Lokas et al. 2005); i.e., targets that happen to lie close to the LOS of the stellar system under study are difficult to reject from the sample. However, efficient interloper rejection schemes do exist for various types of samples, and these have been well described in the literature (Wojtak & Lokas 2007; Wojtak et al. 2007). Moreover, the use of empirically calibrated selection criteria (independent of the measured velocity) can produce extraordinarily clean samples for kinematic analysis (Gilbert et al. 2006, 2007; Simon & Geha 2007). Either way, interloper rejection is best discussed in the context of specific data sets. We therefore do not discuss it further in the present paper. Interloper rejection for discrete data sets can also be built in as part of the likelihood analysis (van der Marel et al. 2000), so a simple modification of the likelihood equations given above could deal with interlopers explicitly. However, we have not yet explored this in the present context.

3. COMPUTATIONAL IMPLEMENTATION

Given equations (10) and (11), fitting a Schwarzschild model to the data requires the following two steps: (1) determination of all the individual probabilities $p_{i,j}$ and matrix elements $B_{k,j}$, so that the only unknowns in equation (11) are the coefficients a_l; and (2) performing the maximization of the total likelihood, i.e., finding the set of orbital weights a_l that satisfies $\partial(\ln L)/\partial a_l = 0$, for all l, and therefore best fits the available constraints. The elements of the matrix $B_{k,j}$, corresponding to the linear constraints discussed in § 2, are calculated in the same way as in the old (continuous) implementation of the code, and for them we refer to Rix et al. (1997), van der Marel et al. (1998), and Cretton et al. (1999). In what follows we concentrate on the probabilities $p_{i,j}$ associated with the discrete treatment that is the subject of this work.

3.1. Calculation of Individual Probabilities

The matrix elements $p_{i,j}$ in equation (11), which keep track of the probability that orbit j of the library would have produced the measurement i of the data set (each j corresponding to some combination of the three integrals of motion E, L_z, and I_3), are stored as the orbit in question is being computed. That is, at every time step during the orbit integration, we check whether the position and velocity along the orbit are consistent with any of the observational data points. To accomplish this, it is necessary to implement some degree of smoothing, in both position and velocity space, since otherwise the probability of having a particle on an orbit at exactly the observed position and velocity would be infinitesimally small.

Smoothing in the spatial coordinates is accomplished through the definition of an aperture around the position of each particle in the data set, with the size of the aperture controlling the amount of smoothing. The optimal aperture size will be somewhat dependent on the sampling characteristics of the data. In general, apertures should not be too small, or otherwise few time steps during orbit integration will fall on any one of them. This would lead to large shot noise in the computed probabilities $p_{i,j}$, unless the orbits are integrated for very long times. Nor should the apertures be too large, so that information on the orbital structure of the model is not erased by excessive spatial smoothing. The choice of aperture shape is arbitrary and a matter of numerical convenience. We adopt square apertures as in previous implementations of the code (long-slit observations naturally produce data for rectangular apertures) and set their sizes to a user-supplied fraction of R, the radius in the projected plane at the aperture’s position.

Once the spatial apertures are defined, and every time the projected position along the orbit being integrated falls within an aperture, we need to keep track of whether the orbital velocity matches the observed velocity. In the old (continuous) implementation, the LOSVD was computed and stored for every orbit j at each aperture i, with the size of the bins in the histogram determining the amount of smoothing in velocity space. In our discrete treatment of the problem, $p_{i,j}$ would simply be the histogram value for the bin that contains the observed velocity. A direct, although informationally incomplete, generalization of this implementation to kinematical data in three dimensions would be to keep track of two additional histograms at each aperture to account for μ_x, μ_y, μ_z, and μ_x, μ_y. This has been done by van de Ven et al. (2006) and van den Bosch et al. (2006), who calculated moments of the three model velocity distributions and fitted them to those obtained from binning LOS and proper-motion observations of stars in ω Cen and M15, respectively (note that these studies still handle the data in a continuous fashion, by reducing the initially discrete data sets to binned velocity distributions at a number of apertures on the sky, an approach only possible thanks to the very large number of stars with measured velocities in these systems).

While reproducing the three-dimensional mean velocities and dispersions of the stars in a stellar system is already an improvement over all previous implementations of the Schwarzschild technique, doing so is nevertheless a simplification of the problem. The reason is that it implicitly assumes that the three velocity components are independent of each other, i.e., it does not account for the fact that there is a velocity ellipsoid whose axes are, in the most general case, not identical to zero. The most complete treatment would be to store a cube with entries for all possible combinations of (μ_x, μ_y, μ_z) and (v_x, v_y, v_z) and do this at each spatial aperture where there are kinematical data available. This implementation would be, however, expensive in terms of memory storage and, moreover, not absolutely necessary, simply because we are not interested in the entire probability cube. Instead, we need only probabilities in the cases when the model velocities are close to the observed ones. Thus, in the framework of velocity histograms or full velocity cubes, and because of the discrete nature of the data, the large majority of the bins or entries would be filled with weights that do not affect the likelihood in equation (10).

Therefore, we adopt an approach in which, instead of storing velocity histograms or cubes, every time an orbit j passes through an aperture i with kinematical data, we add a Gaussian contribution to $p_{i,j}$. This contribution is centered on the observed (any dimensional) velocity and has a dispersion that reflects the measurement errors and, if desired, any amount of extra velocity smoothing. Thus, denoting the actually measured components of the particle’s velocity in aperture i as $v_{l,k}$ and their associated uncertainties as $\sigma_{l,k}$, with $k = 1, \ldots, 3$ corresponding to v_x, v_y, and v_z. This contribution would be

$$p_{i,j} = p_{i,j} + \frac{1}{\sqrt{2\pi}\sigma_{l,k}} e^{-\frac{(v_{l,k} - \mu_{l,i})^2}{2\sigma_{l,k}^2}},$$

where $\mu_{l,i}$ is the mean velocity in aperture i of the model.

Finally, we would like to briefly mention that once a viable model has been found, the entire process can be repeated with the new model taken as the library of orbits. This approach would be more likely to yield a more complete picture of the system being studied.
\[v_{z'} = v_{\text{los}}, \] the multiplicative contribution \(w_{ik}^{(f)} \) to the probability has the form

\[w_{ik}^{(f)} = \frac{1}{\sqrt{2\pi (\xi_k^2 + \epsilon_k^2)}} \exp\left[-\frac{(v_{ik} - v_{ik})^2}{2(\xi_k^2 + \epsilon_k^2)} \right], \tag{12} \]

where \(v_{ik} \) is the component \(k \) of the velocity of a test particle on orbit \(j \). The quantity \(\xi_k \) is the numerical smoothing assigned to velocity component \(k \). Whenever a particular component \(k \) of the velocity is not available, we set \(w_{ik}^{(f)} = 1 \).

In order to account for the fact that we represent a continuous orbit by a discrete sequence of time steps, we weight this Gaussian factor by multiplying it by the time step \(\Delta t_j \). Therefore, for every orbit \(j \), and every time the orbit integration falls within an aperture, the probability is increased according to

\[p_{i,j} = p_{i,j} + \Delta t_j \left(\prod_{k=1}^{3} w_{ik}^{(f)} \right). \tag{13} \]

When the integration of orbit \(j \) is done, the \(p_{i,j} \) elements for all data points (apertures) are written to a file for later use by the algorithm that performs the maximization of the likelihood.

In most practical applications one can set \(\xi_k = 0 \), since the error bars \(\epsilon_k \) on the data already provide sufficient natural smoothing for numerical efficiency. We do this throughout the rest of this paper. However, we note that there may be situations in which nonzero \(\xi_k \) may be beneficial. For example, if the observational errors \(\epsilon_k \) are much smaller than the velocity dispersions \(\sigma_k \) of the system. It then takes very long integrations to beat down the shot noise in the orbital distributions \(p_{i,j} \). Addition of a numerical smoothing \(\xi_k \) with \(\epsilon_k \ll \xi_k \ll \sigma_k \) can then speed up the calculations without affecting the accuracy of the results.

The approach of equations (12) and (13) assumes that the errors \(\epsilon_k \) for the different data points are uncorrelated. Sometimes this is not true, as in the case of the proper motions of stars in the globular cluster \(\omega \) Centauri, where relative rotation between the old photographic plates used in their derivation produces an artifact overall rotation of the cluster (van de Ven et al. 2006). If problems like these cannot be removed before modeling, a more complicated treatment than the one described here will be necessary.

3.2. Finding the Maximum Likelihood Solution

The nonlinear nature of the discrete problem addressed in this paper requires the use of a nonlinear optimizer, and there is no guarantee of a unique optimum. After experimentation with various optimization algorithms, we settled on the TOMS 500 conjugate gradient optimizer of Shanno & Phua (1980). This code uses the function value and gradient to optimize along successive vectors (lines) in the space of the orbital weights, choosing the optimization direction at every pass in a manner that attempts to minimize the number of such line minimizations needed (for details on conjugate gradient methods see Press et al. 1992, pp. 413–418).

In our code, we rely on the fact that the majority of orbits do not contribute to any particular linear constraint, or to the likelihood of any particular observational datum. In the notation of equation (11), the linear constraints \(B_{i,j} \), and also the \(p_{i,j} \), are sparse matrices. Accordingly, the code to evaluate the gradient in equation (11) is written to store and evaluate only nonzero terms of \(B_{i,j} \) and \(p_{i,j} \), reducing the computational burden by a factor of 4 or 5.

To evaluate convergence and estimate the proximity of our final likelihood maximum to the true (possibly local) maximum, we plot the magnitude of the improvement of the likelihood \(\delta \lambda_{\text{max}} \) as a function of the number of function evaluations \(N \). See Figure 1. We find that \(\delta \lambda \) is well represented by an exponential relation \(\delta \lambda \sim \exp(-aN) \), where \(a \approx 10^{-5} \). Therefore, the future change in the likelihood if the optimizer were allowed to run forever would be \(\Delta \ln L \sim \int_{\lambda_0}^{\infty} \delta \lambda \, dN = a^{-1}(\delta \lambda_0) \), where \(\delta \lambda_0 \) is the current change in likelihood at step \(N_0 \). In practice, we terminate the optimization at \(\delta \lambda = 10^{-6} \) to \(10^{-7} \) so that we expect to be within an additive factor of \(\pm 0.1 \) of the true likelihood maximum. This typically occurs after a number \(N \sim 10^5 \) of function evaluations.

The final accuracy is merely linear in the exponential coefficient \(a \), so that this accuracy estimate should be reasonably robust.

We ran a variety of tests in order to establish whether the algorithm has a tendency of finding local extrema as opposed to global ones. In particular, for some of the test cases to be discussed later in § 5, we started the iterative algorithm from different initial conditions, to verify that the solutions thus obtained were always in (statistical) agreement. Also, as is shown in § 5, we find that the algorithm recovers the properties of known input models with reasonable accuracy. While this does not prove that the Schwarzschild code cannot end up in a local maximum, at least it shows that the code does not end up in (potential) local maxima that are far from the correct solution.

In practice, we usually start the maximization procedure from a homogeneous set of initial mass weights. We also investigated whether the convergence to a solution can be sped up by starting the iterative process from initial conditions that may already be reasonably close to the final solution. For example, we ran tests starting from a set of weights corresponding to a two-integral DF of the form \(f(E, L_z) \) that already fit the light (surface brightness) profile followed by the input data. Such a solution is easily obtained as the NNLS solution of a matrix equation. We found that the same final answer was reached in essentially the same number of iterations.

4. PSEUDODATA AND COMPARISON DISTRIBUTION FUNCTIONS

In order to test the performance of our discrete Schwarzschild code, we generate sets of simulated data drawn from a known...
phase-space DF. Unlike the case of using actual observations of a real stellar system, this approach offers the advantage of unambiguously knowing in advance the input properties underlying the data, which an optimally working code should be able to “recover.” It also provides flexibility by allowing the possibility of adapting the input data at will in order to test different aspects of the code (§5). We discuss here the construction of various sets of pseudodata and the properties of the underlying models.

4.1. Simulated Data Sets

Our simulated input data are obtained from a set of $f(E, L_z)$ DFs derived by van der Marel et al. (1998) with the methodology for drawing N-body initial conditions from these DFs described in van der Marel et al. (1997). The models have a constant mass-to-light ratio T and have neither a central black hole nor extended dark halo. They provide good fits to available photometric and kinematic observations of the galaxy M32 over the radial range from 1° to 20°. However, this property has no bearing on the present analysis. We only use the fact that there is a known DF, and not that this DF resembles any realistic stellar system. A two-integral $f(E, L_z)$ DF provides a useful test case (see also Cretton et al. 1999; Verolme & de Zeeuw 2002) and does not mean that the model results would be less valid for more general DFs. Also, the use of a constant T is motivated only to simplify the test environment. Central black holes (e.g., van der Marel et al. 1998; Gebhardt et al. 2000) and extended dark halos (e.g., Rix et al. 1997; Cappellari et al. 2006) can be easily implemented in any Schwarzschild code.

The luminous mass density is assumed to be axisymmetric and is parameterized according to

$$\rho(R, z) = \rho_0(m/b)^{\alpha}
\left[1 + (m/b)^{2}\right]^{\beta}\n\left[1 + (m/c)^{2}\right]^\gamma,$$

with $m^2 \equiv R^2 + (z/q)^2$. Here q is the (constant) intrinsic axis ratio, related to the projected (observed) axis ratio q_{obs} via the inclination angle i, $q_{\text{obs}} = \cos^2 i + q^2 \sin^2 i$. The parameters in equation (14) are set to $\alpha = -1.435$, $\beta = -0.423$, $\gamma = -1.298$, $b = 0.55'$, $c = 102.0'$, $q_0 = 0.73$, and $\rho_0 = j_0 Y_0$, with the V-band luminosity density $j_0 = 0.463 \times 10^5 (q_0/q) L_{\odot} \text{pc}^{-3}$ and Y_0 the mass-to-light ratio in the V band and in solar units. The adopted distance is 0.7 Mpc. The models share the property of appearing the same in projection on the sky but correspond to different intrinsic axis ratios as determined by the inclination angle i.

The even part f_e, of the DF $f(E, L_z)$ is uniquely determined by the mass density $\rho(R, z)$ (e.g., Binney & Tremaine 1987). To specify the odd part f_o of the DF, we follow van der Marel et al. (1994) and write

$$f_o = f_e(2 \eta - 1) h_u \left[L_z / L_z, \text{max}(E) \right],$$

with $L_{z, \text{max}}(E)$ being the angular momentum of a circular orbit of energy E in the equatorial plane ($z = 0$), and the auxiliary function h_u defined by

$$h_u(u) = \begin{cases}
\frac{\tanh(ux/2)}{\tanh(u/2)}, & u > 0, \\
x, & u = 0, \\
\frac{2}{u} \tanh^{-1} \left[x \tanh \left(\frac{u}{2} \right) \right], & u < 0.
\end{cases}$$

The choice of the parameters η and u determines the degree of streaming of the data set. These free parameters can have values in the ranges $0 \leq \eta \leq 1$ and $-\infty < u < \infty$, with η controlling the fraction of stars in the equatorial plane with clockwise rotation, and u controlling the behavior of the stellar streaming with orbital shape. The family of functions h_u is shown in Figure 1 of van der Marel et al. (1994). Combinations of (η, u) that fit data for $M32$ are also discussed in that paper. Here we explore a variety of input data sets with different amounts of mean streaming and test the recovery of these properties by our discrete Schwarzschild code.

We generated six different data sets to test our discrete Schwarzschild code. By data set we mean a number of particle (x', y') positions on the sky with corresponding proper motions $(\mu_{x'}, \mu_{y'})$ and LOS velocities v_L. For two chosen inclinations on the sky, $i = 90^\circ$ and 55°, we produced three data sets resembling systems with varying degrees of rotation: a nonstreaming system ($\eta = 0.5$ and $u = 1$), a maximally streaming system ($\eta = 1$ and $u = \infty$), and a third system with intermediate streaming ($\eta = 1$ and $u = 0$). We label our different data sets as 90ns, 90is, and 90ms to indicate the nonstreaming, intermediate-streaming, and maximally streaming cases of $i = 90^\circ$, respectively. Similarly, for the $i = 55^\circ$ case, we have the 55ns, 55is, and 55ms data sets. The mass-to-light ratio used to generate the data sets is $Y_0 = 2.51$ for $i = 90^\circ$ and $Y_0 = 2.55$ for $i = 55^\circ$, in units of $M_{\odot} L_\odot^{-1}$. Although we examined the performance of our Schwarzschild code with tests that involve all of the six simulated data sets introduced above, we chose to use the 55is data set to show most of our results. Figure 2 shows some projections of the phase-space coordinates for the 55is data set.

4.2. Comparison DF

In order to quantitatively judge the performance of the three-integral Schwarzschild code, it is desirable to make a comparison between the properties of the input DF (i.e., that from which the pseudodata were obtained) and those of the fitted DF (i.e., that found as the solution to the fitting or minimization problem). It is important to note in this context that the direct output of our Schwarzschild code is not in the form of a proper DF f, but rather in the form of “mass weights” ζ associated with each set of integrals of motion (E, L_z, I_3) that uniquely define an orbit. The relation between the DF and the orbital mass weights is through a volume element dependent on the three integrals and an integration over the three-dimensional space associated with the particular orbit (for a detailed discussion see Vandervoort 1984). Such a conversion can be done in Schwarzschild codes (e.g., Thomas et al. 2004), but this is not necessary for the goals of the present paper. We therefore limit ourselves to the comparison between the input and the fitted orbital mass weight distributions, which from now on we denote by $\zeta_{\text{in}}(E, L_z, I_3)$ and $\zeta_{\text{fit}}(E, L_z, I_3)$, respectively.

To validate the weights $\zeta_{\text{fit}}(E, L_z, I_3)$ returned by the Schwarzschild code, we need to know the weights $\zeta_{\text{in}}(E, L_z, I_3)$ for the model DF $f(E, L_z)$. This is not a simple problem in the absence of an analytic expression for I_3. However, two related functions are more easily accessible. The first is $\zeta_{\text{in}}(E, L_z)$, defined as the projection of $\zeta_{\text{in}}(E, L_z, I_3)$ over the E-L_z plane (i.e., integrated over I_3). Having the means of drawing N-body initial conditions from the DF (van der Marel et al. 1997), we know that the energy and z-component of the angular momentum of each particle are given by $E = \psi - 1/2 \, v^2$ and $L_z = R \psi$, respectively. Therefore, $\zeta_{\text{in}}(E, L_z)$ is easily obtained by binning a large N-body data set ($N \sim 10^6$) in E and L_z. The second related function that is easily accessible is $\zeta_{\text{fit}}(E, L_z, I_3)$, the distribution of mass weights for an $f(E, L_z)$ model of axial ratio q and a power-law
density profile with logarithmic slope \(\lambda \) in a spherical Kepler potential. This function is calculated analytically in de Bruijne et al. (1996; their eq. [38]) and has the form

\[
\zeta_{\text{Kep}, \lambda}(E, L_z, I_3) = E^{\lambda-1} j_\lambda \left[L_z/L_{z, \text{max}}(E), I_3 \right]. \tag{17}
\]

Here \(\lambda \) is the logarithmic slope of the mass distribution and \(j_\lambda \) is a known function. The spherical Kepler potential is of course only an accurate approximation to our model at asymptotically large radii. Nonetheless, we can combine \(\zeta_{\text{in}}(E, L_z) \) and \(\zeta_{\text{Kep}, \lambda}(E, L_z, I_3) \) to obtain a reasonable approximation for \(\zeta_{\text{in}}(E, L_z, I_3) \) throughout the system, namely,

\[
\zeta_{\text{in}}(E, L_z, I_3) \approx \zeta_{\text{in}}(E, L_z) g(I_3), \tag{18}
\]

with

\[
g(I_3) = \frac{j_\lambda \left[L_z/L_{z, \text{max}}(E), I_3 \right]}{\int j_\lambda \left[L_z/L_{z, \text{max}}(E), I_3 \right] dI_3}. \tag{19}
\]

For \(\lambda \) we take the slope of the mass distribution of equation (14) at \(r = R_c \), the radius of the circular orbit of energy \(E \) in the equatorial plane \((z = 0) \). The function \(\zeta_{\text{in}} \) in equation (18) is correct (i.e., reduces to \(\zeta_{\text{in}} \)) when projected on the \(E-L_z \) plane and has approximately the correct distribution over \(I_3 \) at fixed \((E, L_z)\). In this way, we construct sets of orbital mass weights for each of our six simulated data sets described in \(\S \) 4.1.

5. PERFORMANCE TESTS

Using all the kinematic (pseudo) data sets and their corresponding input DFs described in \(\S \) 4, we now proceed to examine how accurately the discrete Schwarzschild code can recover the properties of the galaxy models used to generate the input data sets. By “recovery” we mean to determine how close or how far is the obtained solution from the known DF, known mass-to-light ratio \(\Upsilon \), and known inclination \(i \) of the galaxy model corresponding to the simulated data set that was provided as input to the code. At the same time, we investigate the reliability of the uncertainties provided by the code on each of these properties.

In the general case of modeling real observations of an actual stellar system, the true radial mass density profile is not known a priori and is typically described following some parameterization. Since mass may not necessarily follow light, or may do so in some complicated way, different plausible mass models should be attempted, as well as allowing for possible variations of the mass-to-light ratio with position. For the purposes of the present tests, however, the underlying mass distribution is assumed to be perfectly known from equation (14), except for the value of \(\Upsilon \). Therefore, the assumed parameterization for the mass distribution is only a one-parameter family and includes the “correct” distribution \((\Upsilon = \Upsilon_0) \). In applications to real data, higher parameter families may be necessary, and there is no guarantee that any member of the family would provide a good approximation to the true underlying distribution.

The results of our tests are examined via three different exercises, which can be performed on each of the six different input
data sets, providing a good baseline to judge the performance of our discrete Schwarzschild code. First, we explore the recovery of the internal orbital structure of the input data set (i.e., the input DF, or more specifically, the input mass weights c_m) by feeding the code with the correct inclination and mass-to-light ratio Υ (§5.2). Second, we fix the inclination to the correct value of the input data set and study whether the code finds the minimum of the $\Delta \chi^2$ function at the correct value of Υ (§5.3). Third, we explore grids of Schwarzschild models with different (i, Υ) combinations to study how well these two properties are recovered when they are both assumed unknown (§5.4).

We run all the above exercises for various subsets of each of our six data sets in order to explore the results as a function of relevant observational variables, particularly the size of the input data set and the type of kinematical constraints available (i.e., only LOS velocities, only proper motions, or the complete three-dimensional velocities). This adds even more elements for a thorough assessment of the code’s performance. It also provides insights into the types of data sets that will be necessary to constrain i or Υ to some given uncertainty in realistic situations.

Our Schwarzschild code has the capability of computing and storing, during a single orbit integration, the orbital properties for a series of different values of Υ. Thus, during the construction of the orbit library, different values of Υ are converted into a dimensionless factor v_Υ that multiplies all our original velocities, thus with Υ scaling simply as v_Υ^2. We stress that this allows us to explore several values of Υ while computing only one orbit library. In our tests, we explore models for velocity factors in the range $0.8 \leq v_\Upsilon \leq 1.2$. Given that our galaxy models with different inclinations have slightly different mass-to-light ratios Υ_0, the use of this dimensionless representation also facilitates the visualization of the results in §§5.3 and 5.4. The correct (input) value of Υ is always at $v_\Upsilon = (\Upsilon/\Upsilon_0)^{1/2} = 1$.

5.1. Standard Settings

At each of its different steps, the Schwarzschild code requires the user to specify several settings (or dials) that control a corresponding number of tasks and functions of the modeling procedure. Here we list the settings that we use for our standard run. We concentrate on the settings that are new to the discrete implementation. All other settings that are needed to fit a Schwarzschild model (e.g., the resolution and limits of the polar grids used to compute the gravitational potential Ψ, the required numerical accuracies in the fitting of the mass in the meridional plane and/or the projected plane of the sky, etc.) are identical to previous implementations of the code, so for those we refer to van der Marel et al. (1998) and Cretton et al. (1999).

At the heart of the Schwarzschild method lies the generation of a comprehensive library of orbits that should be representative of all types of orbits possible in the gravitational potential under study. This is achieved by adequately sampling the ranges of values that the three integrals of motion (E, L_z, I_3) can acquire, each set of values uniquely determining one possible orbit. In this work we build models using two libraries that only differ in their size. Most of our runs consist of the generation of initial conditions and libraries with $20 \times 14 \times 7 = 1960$ orbits, obtained by sampling the available integral space with 20 energies E, 14 angular momenta L_z (7 positive and 7 negative), and 7 third integrals I_3. In order to study the dependency of the results on the size of the orbit library, we also compute Schwarzschild models using a much larger orbit library, with $40 \times 28 \times 14 = 15,680$ combinations of (E, L_z, I_3).

The energy E is sampled via the corresponding radius R_e of the circular orbit of that energy (that with maximum angular momentum) in the equatorial plane ($z = 0$). This radius is logarithmically sampled from a minimum value that we choose to be much smaller than the spatial resolution of the data to a maximum value set much beyond the point at which most of the mass of the input distribution is actually encompassed. Since totally unconstrained by the data, therefore, the few first and last energy bins will mostly be of no interest (i.e., no mass gets assigned to them in the process of optimization). The vertical component of the angular momentum, L_z, is linearly sampled using the variable $\eta = L_z/L_{z,\text{max}}$, where $\eta \in (0, 1)$ and $L_{z,\text{max}}$ is the angular momentum of the circular orbit with energy E. While orbits with both positive and negative L_z are included in the library, the latter need not be individually integrated because they are simply obtained by reversing the velocity vector at each point along the orbit. The third integral I_3 is sampled via an angle $w \in (0, w_{\text{th}})$, where w_{th} determines the position at which the “thin tube” orbit at the given (E, L_z) touches its zero-velocity curve (defined by the equation $E = \Psi_{\text{eff}}$, where $\Psi_{\text{eff}} = \Psi - \frac{1}{2} L_z^2/R^2$ is the effective gravitational potential; for a detailed presentation see van der Marel et al. 1998).

Finally, in order to help alleviate the discrete nature of the numerical orbit library, some extra radial smoothing of the orbits is performed by randomly generating a small variation to the energy and computing and storing the contribution to the probabilities from the “new” orbit with integrals $(E + \delta E, L_z, I_3)$. It is possible to implement similar smoothing in L_z and I_3 as well (e.g., Krajnović et al. 2005; Cappellari et al. 2006), but we leave this for a future version of our code. This energy smoothing is repeated, at each time step, for seven random δE values. Azimuthal averaging is also performed by randomly drawing seven ϕ-values at each time step.

Smoothing in phase space is accomplished with the use of apertures (§3.1). The size of the (square shaped) spatial apertures is defined as a fraction of R, the distance to the center of the stellar system in the projected plane, and we set this fraction to 10%. In velocity space, and for most practical applications, the measurement errors $e_{v_{\text{th}}}$ themselves will provide sufficient “natural” smoothing for numerical purposes. Thus, we set the factors ξ_k in equation (12) to zero for all our tests (see also discussion in §3.1). In practice, the optimal value of ξ_k will depend on the characteristics of the data (particularly the size of the velocity errors), as well as the stellar system under study. When dealing with actual data, therefore, at least a few different values should be tried in order to explore their impact on the results. In addition, the extra smoothing provided by ξ_k can also be useful to explore the validity of the quoted errors in any given application.

The uncertainties $e_{v_{\text{th}}}$ in the LOS velocities and/or proper motions are in practice determined by the details of the observations and, since obtained by different techniques (spectroscopy vs. astrometry), are of different size in general. Furthermore, the uncertainties in the velocities tangential to the plane of the sky are affected by the uncertainty in the distance to the stellar system under study. Here, however, since we deal with simulated data, we assume kinematical data of nowadays typical good quality and simply set all these errors to a moderate and arbitrary value of $e_{v_{\text{th}}} = 7.1$ km s$^{-1}$.

The large majority of our tests were done on the simulated data sets as described in §4.1 without the addition of simulated observational errors (i.e., random Gaussian deviates with dispersion $e_{v_{\text{th}}}$. This simplification was made early on in our project, based on the fact that the velocity errors should not matter much as long as they are much smaller than the average one-dimensional velocity dispersion of the system under study. However, we realized later that this does induce a slight bias in our estimated mass-to-light ratios. Our typical simulated data sets have dispersions of 48.4
and 46.3 km s$^{-1}$, for the 55is and 90is cases, respectively. Therefore, by not adding any random velocity errors, the one-dimensional velocity dispersion of the pseudodata that we actually analyzed is too small by a factor $h = [1 + (\epsilon L/h)^2]^{1/2}$. As a consequence of the virial theorem, it follows that we should expect to infer a mass-to-light ratio that is too small by a factor of h^2, corresponding to about 2.2% and 2.4% for the 55is and 90is data sets, respectively. Instead of rerunning all our calculations, which would have been computationally expensive, we therefore simply corrected for this bias post facto. So when studying the recovery of the mass-to-light ratio in §5.3 and 5.4, instead of comparing the inferred values to the value γ_0 of the input model, we compare to the slightly smaller $\gamma_0 = \gamma_0/h^2$. This quantity is $\gamma_0 = 2.451$ for $i = 90^\circ$ and $\gamma_0 = 2.498$ for $i = 55^\circ$.

The sizes of currently existing kinematic data sets of discrete nature range from a few hundred data points (red giants in Local Group dwarf galaxies, planetary nebulae in the outskirts of giant ellipticals) to a few thousands (stars in Galactic globular clusters, systems of globular clusters around giant ellipticals). For our standard tests we adopt data sets with 1000 kinematic observational points, although we also study the consequences of studying data sets with sizes ranging from 100 to 2000 data points. In these tests, the small-N data sets are subsets of the largest data set ($N = 2000$), which means that there will be some correlation between the results of experiments done as a function of the number of available observations. This approach, we note, is of no substantial difference than having all the data sets of different N but within the same simulation to be completely disjoint. The progression with N should still follow the expected $N^{-1/2}$ statistical convergence behavior (see Fig. 9 and § 5.3). The generation of one of our smaller $20 \times 14 \times 7$ orbit libraries, simultaneously storing discrete probabilities for a set of 1000 observational points with both LOS velocities and proper motions, takes 2.5 hr on a 3.6 GHz, Pentium 4, 64 bit CPU with 2 GB memory. An additional 0.5 hr are needed to find the maximum likelihood fit to the data. In practice, these steps must be iterated over a grid of gravitational potential parameterizations.

5.2. Recovery of the Distribution Function

In order to determine whether the best-fitting solution obtained by the discrete Schwarzschild code actually resembles the properties of the input data, we start by making detailed comparisons between the input and fitted DFs. To do this, we feed the code with the correct inclination and mass-to-light ratio γ used to generate the input data sets and compare the fitted mass weights ζ_{fit} to those corresponding to the input data, $\zeta_{\text{in}}(E, L_z, I_z)$, approximated using equation (18). We use data sets with 1000 LOS velocities and proper motions and present results for both the small and big orbit libraries detailed in § 5.1.

The comparison is best achieved via the analysis of corresponding one- and two-dimensional projections of the cubes of mass weights $\zeta_{\text{in}}(E, L_z, I_z)$ and $\zeta_{\text{fit}}(E, L_z, I_z)$, obtained by integrating over two and one of the integrals of motion, respectively (Figs. 3–5). Also, we make comparisons of two-dimensional L_z-I_z slices of both cubes at selected values of the energy (Fig. 6). For all of these projections we quantify the agreement between fits and input data by computing the rms and median absolute deviation of the quantity $(\zeta_{\text{fit}} - \zeta_{\text{in}})/\zeta_{\text{in}}$, i.e., the difference between fit and input mass weights normalized by the input mass weights. These statistics are listed for Schwarzschild models run on all our input data sets in Table 1. Since the rms can be biased disproportionately by a small number of large outliers, in our discussion below we use preferentially the median absolute residual.

Figure 3 shows, for the 55is case, the integrated mass weights as a function of each of the three integrals of motion, for both the input data set and the discrete Schwarzschild fit. Inside the region actually constrained by kinematic data (containing 99.83% of the total mass), the mean absolute deviations between the fitted and input distributions of mass weights are 3%, 16%, and 18%, for the integrated distributions as a function of E, L_z, and I_z, respectively. As listed in Table 1, similar numbers are obtained for the other five simulated data sets, with the agreement between both distributions as a function of energy always better than 5%. As a function of L_z, the largest disagreement actually corresponds to the one shown in Figure 3, the 55is case. It goes down to 7% for our case of closest agreement, the case labeled 55ns. The net rotation inherent to the 55is data set (reflected in the middle panel by
Fig. 4.—Comparison of the input and fitted distributions of mass weights as a function of energy and L_z for the 55ns data set ($i = 55^\circ$ with no streaming) with 1000 LOS velocities and proper motions. Only the energy range containing most of the total mass is shown. The top panels show the weight distribution obtained by the Schwarzschild fit when the inclination and mass-to-light ratio are assumed to be known a priori, and the bottom panels show the weights distribution associated with the simulated input data. The right panels show the results of the Schwarzschild code for an orbit library with $20 \times 14 \times 7$ orbits, while the left panels show the results for a library 8 times bigger, with $40 \times 28 \times 14$ combinations of (E, L_z, I_3). Black corresponds to zero weight, and the white (brightest) color in each pair of panels (fit and model, or upper and lower) has been assigned to the maximum orbital weight among the two panels, so that the comparison between fits and models is made using the same color scale. The images in this and subsequent figures are based on two-dimensional spline curves fitted to the gridded information. While the two bottom panels represent the same input data, their visualizations differ due to a different coarseness in the gridding of integral space.

Fig. 5.—Same as in Fig. 4, but for the 55is data set ($i = 55^\circ$ with intermediate streaming).
all the mass weights with positive L_z being larger than those with negative L_z) is clearly reproduced by the Schwarzschild fit. As a function of the third integral, the median absolute deviation varies from 16% for the 55ns case to up to 25% for the 90ns case. Note that, since we are showing orbital mass weights instead of the actual DF, the I_3 distributions are not expected to be constant over I_3, even though the input DF underlying all simulated data sets is of the form $f(E, L_z)$.

Next, integrating only over I_3, we show in Figures 4 and 5 the agreement between the fitted and input sets of mass weights as a function of E and L_z, for the 55ns and 55is cases, respectively. The top panels of these figures show the results of the Schwarzschild fit and input distribution of orbital mass weights as a function of L_z and I_3 at fixed (nonconsecutive) values of energy, for the 55is case with 1000 kinematic measurements with LOS velocities and proper motions (i.e., the same case as depicted in Fig. 5). These results correspond to our orbit library with $40 \times 28 \times 14$ combinations of (E, L_z, I_3). From left to right, the panels show the weight distribution at increasing distances from the center of the galaxy, as indicated at the top of each pair of panels by the value R_c (in arcmin) of the circular orbit at the corresponding energy. The fraction (in %) of the total mass contained in each energy slice is indicated at the bottom of each panel. As in Figs. 4 and 5, black corresponds to zero weight and the white (brightest) color in each pair of panels (fit and model, or upper and lower) has been assigned to the maximum orbital weight among the two panels, so that the comparison between fits and models is made using the same color scale.

Figure 6.—Input (top) and fitted (bottom) distributions of orbital mass weights as a function of L_z and I_3 at fixed (nonconsecutive) values of energy, for the 55is case with 1000 kinematic measurements with LOS velocities and proper motions (i.e., the same case as depicted in Fig. 5). These results correspond to our orbit library with $40 \times 28 \times 14$ combinations of (E, L_z, I_3). From left to right, the panels show the weight distribution at increasing distances from the center of the galaxy, as indicated at the top of each pair of panels by the value R_c (in arcmin) of the circular orbit at the corresponding energy. The fraction (in %) of the total mass contained in each energy slice is indicated at the bottom of each panel. As in Figs. 4 and 5, black corresponds to zero weight and the white (brightest) color in each pair of panels (fit and model, or upper and lower) has been assigned to the maximum orbital weight among the two panels, so that the comparison between fits and models is made using the same color scale.

TABLE 1

DATA SET	NO PROJECTION	I_3	L_z, I_3	E, I_3	E, L_z					
	rms	med								
55ns......	4.5138	0.4531	0.2297	0.1404	0.0908	0.0359	0.1080	0.0719	0.2634	0.1591
55is......	6.6525	0.5630	0.3677	0.1915	0.0939	0.0309	0.1912	0.1598	0.2460	0.1855
55ms......	3.1524	0.4208	0.2123	0.1207	0.0884	0.0334	0.1845	0.0903	0.2505	0.1122
90ns......	3.7560	0.5939	0.2683	0.1633	0.1419	0.0425	0.2202	0.1365	0.2361	0.2491
90is......	2.7956	0.6410	0.6253	0.1629	0.1366	0.0347	0.4826	0.1178	0.2566	0.2364
90ms......	1.4893	0.4927	0.2298	0.1714	0.1216	0.0384	0.1456	0.1149	0.2953	0.2333

Notes.—The tabulated numbers are the rms and median absolute deviation of the quantity $(\zeta_{\text{fit}} - \zeta_{\text{in}})/\zeta_{\text{in}}$, i.e., the difference between fit and input mass weights normalized by the input mass weights, for Schwarzschild models based on our small $(20 \times 14 \times 7)$ orbit library. The statistics are always computed inside the energy range constrained by the data (see Fig. 3) and are shown for the full cubes of mass weights (columns labeled “No Projection”) and for various projections of these cubes. The projected distributions are obtained by integrating over one or two of the integrals of motion (i.e., by collapsing the three-dimensional cubes in one or two dimensions) and appear under the columns labeled by the integral(s) of motion over which the integration has been done.
fit \((\mathcal{C}_n)\), and the bottom panels the original input distributions \((\mathcal{C}_{in})\). The left panels show the results for an \((E, L_z, I_3)\) library of 40 \(\times\) 28 \(\times\) 14 orbits, 8 times larger (i.e., finer) than that of the right panels, which correspond to our standard case of 20 \(\times\) 14 \(\times\) 7 orbits. Only the energy range constrained by the respective sets of data is shown. Black corresponds to zero weight, and the white (brightest) color in each pair of panels (fit and model, or upper and lower) has been assigned to the maximum orbital weight among the two panels, so that the comparison between fits and models is made using the same color scale.

Both Figures 4 and 5 show that the main features of the input \(E-L_z\) distributions of mass weights are well reproduced by the three-integral Schwarzschild fits. In particular, the mean streaming properties of both data sets are satisfactorily recovered. In Figure 4, the two prominent phase-space blobs occupying symmetrical locations on the negative and positive sides of the \(L_z\) axis correspond well with the nonrotating overall nature of the 55ns data set. Moreover, this is recovered by both the models with standard and large orbit libraries (right vs. left panels). Similarly, in Figure 5, the single phase-space blob at positive \(L_z\) with a pronounced elongation toward negative \(L_z\) (in light blue and blue), indicative of the rotating nature of the 55is case, is reproduced by the Schwarzschild fit as well. The median absolute deviations between the fitted and input \(E-L_z\) distributions, always restricted to the energy range constrained by the data, are 14% and 19% for the 55ns and 55is cases, respectively (Table 1).

In Figure 6 we show the three-dimensional distributions of mass weights of our 55is case in the form of a series of \(L_z-I_3\) planes at different energies. Here again, the top panels show the results of the discrete Schwarzschild fit \((\mathcal{C}_n)\), the bottom panels the distribution of mass weights corresponding to the input data \((\mathcal{C}_{in})\), and the color scale is set up in the same way as in the \(E-L_z\) figures. As the energy \(E\) is sampled via the radius \(R_c\) of the circular orbit (its value in arcminutes indicated at the top of each pair of panels), this series of planes shows the variation of the \(L_z-I_3\) distribution with increasing distance from the center of the galaxy. The fraction of the total mass at each energy slice is given as a percentage at the bottom of each panel.

The bottom panels of Figure 6 indicate that, in the inner regions (inside 0.2\(r_h\)), most of the mass in the 55is data set is concentrated in orbits with \(L_z\) near zero. The corresponding top panels show that the Schwarzschild fit recovers this \(L_z \approx 0\) component, but it distributes more weight than the input model into orbits with positive \(L_z\). These inner regions, nevertheless, have a relatively low mass content in comparison with regions at larger radii. As the radius increases, the \(L_z \approx 0\) region of phase space begins to be filled with stars in favor of orbits with high \(L_z\). This transition is reasonably well reproduced by the Schwarzschild solution, and the agreement between fit and input data becomes better at large radii, at which point most of the mass at each energy is concentrated in orbits of high \(L_z\).

Note also that a common characteristic of Figures 4, 5, and 6 is that Schwarzschild fits typically present mass weight distributions that appear broader (more extended) and less peaked than the corresponding distributions displayed by the pseudodata. The effect is most obvious among the rightmost panels of Figure 6, where one can see that the \(L_z-I_3\) mass-weight distributions of the input data (bottom panels) have higher peaks and overall sharper features than the corresponding fitted distributions (top panels). This is an expected effect and is due to the combined smoothing of the fitted distribution introduced both by the (necessary) use of velocity apertures for the computation of likelihoods (see § 3.1) and by the regularization constraints imposed in order to enforce smoothness in phase space. While the first smoothing is particular to our discrete implementation, the second is a well-known procedure common to most Schwarzschild codes. Models without regularization tend to be unrealistically noisy (van der Marel et al. 1998) and unreliable for parameter estimation (Cretton & Emsellem 2004). Thus, although we choose to plot the input distribution of mass weights as they actually are, the most fair of comparisons would be one in which the Schwarzschild fit is compared with a smoothed version of the original mass weight distribution describing the input data. We explored this by convolving the input distribution of mass weights with a (circular) Gaussian kernel and then computing the same statistics shown in Table 1 (but this time using the smoothed version of the input distribution) for different widths of the Gaussian kernel. We have verified that indeed it is possible to find a kernel width for which the agreement between fit and input data is best, improving both the rms and mean absolute deviations of Table 1 by factors between 1.2 and 1.5. Finally, we also note that the comparison in Figure 6 might be affected by the accuracy of the approximation in equation (18), which means that the values in Table 1 are actually upper limits to the true accuracy of the Schwarzschild fits.

From these tests we conclude that our discrete Schwarzschild code can successfully recover the original DF inside the region constrained by the kinematic data, at least for the case in which the inclination and mass-to-light ratio are assumed known.

5.3. Recovering the Mass-to-Light Ratio

For a large range of potential applications of a Schwarzschild code, such as investigating dark matter halos in galaxies, the most important property that one is interested in measuring with confidence is the mass-to-light ratio. In the present tests, this quantity is a scalar, \(\Upsilon\), although in more general applications it could be a function of radius. In this section we study in detail the capacity of our code to infer the correct \(\Upsilon\) when the inclination of the system is assumed known. Tests were performed for a number of input data sets in order to investigate the dependence of the results on key observational variables such as the number of kinematic measurements and the type of kinematic constraints available (i.e., only LOS velocities, only proper motions, as well as both LOS velocities and proper motions). All models in this section were computed using our small orbit library, with 20 \(\times\) 14 \(\times\) 7 combinations of \((E, L_z, I_3)\). The results of these experiments are summarized in Figures 7–9.

For the 90is and 55is cases and using full three-dimensional velocity information, Figure 7 shows the \(\Delta \chi^2\) parabolas obtained when applying the discrete Schwarzschild code with a number of \(\Upsilon\)-values, distributed around the correct one \((\Upsilon_0)\), for data sets of varying sizes. The quantity \((\Upsilon/\Upsilon_0)^{-1/2}\) along the ordinate denotes the velocity scaling; \((\Upsilon/\Upsilon_0)^{-1/2} = 1\) corresponds to a Schwarzschild model with the input value \(\Upsilon_0\), defined in § 5.1. The zero point of the vertical axis (in both Figs. 7 and 8) is arbitrary, but the difference \(\Delta \chi^2\) between points on the same curve has its usual statistical meaning, and indeed we compute the (random) uncertainties on the determination of \(\Upsilon\) directly from them.

Figure 7 shows that the difference \(\Delta \chi^2\) between points on the same curve becomes larger (the parabola becomes narrower) as the number of available kinematic measurements increases. The determination of the best-fit \(\Upsilon\) also depends on the type of available kinematic measurements. This is illustrated in Figure 8, where we plot the \(\Delta \chi^2\) parabolas obtained when considering only LOS velocities, only proper motions, or the full three-dimensional velocity information. All cases are for the 55is data set with 1000 kinematic measurements. In this case, the \(\Delta \chi^2\) parabolas become narrower as the number of available velocity components increases.
Furthermore, the statistical errors are generally smaller for larger data sets, as well as when more velocity components are available. This is shown in Figure 9, where we plot the behavior of the best-fit $\Delta \chi^2$ and its uncertainties as a function of log N, where N is the number of data points. The uncertainties ΔT displayed in the top panel of Figure 9 represent the 1σ intervals around the minimum of the parabola in Figures 7 and 8 and are defined as half the distance between the points on the curve where $\Delta \chi^2 = 1$ with respect to the minimum. The statistical errors scale roughly as $N^{-1/2}$ over an interval of 1.3 dex in log N. Also, the errors in the best-fit T associated with data sets with only proper motions (triangles) are smaller than those associated with only LOS data sets (open circles) for any value of N. In other words, our discrete Schwarzschild code satisfies the fundamental statistical expectation that it should become easier for the method to distinguish between models with different T when the amount of observational information is larger. In the case of data sets with the full three-dimensional velocity information, the 55is uncertainties do not quite seem to follow the $N^{-1/2}$ behavior expected from statistics. We attribute this to our tests having reached a fundamental floor due to the discrete nature of the models, a limit that cannot be overcome by increasing the number N of available measurements. This can cause an apparent flattening with respect to the regular $N^{-1/2}$ behavior at large N.

To test the robustness of the errors estimated as above, we performed the following exercise. Selecting 10 different (disjoint) realizations of the N-body data (for the 55is case with 1000 measurements of only LOS velocities, the case most often found in practice), we repeated the exercise of Figures 7 and 8 and computed discrete Schwarzschild models for a set of different T-values distributed around the correct one (T^*). The lines connecting the computed models are polynomial fits of fifth order. When the number of data points N is smaller, the $\Delta \chi^2$ parabola is shallower, and the statistical uncertainty on the inferred T is larger. The lowest line is shown at its actual $\Delta \chi^2$. Each subsequent line was offset vertically by a value of 40 for visual clarity.

![Figure 7](image-url)
turns out to be 0.204, equivalent to a fractional error of 8%. This is a factor of 2.5 larger than the scatter in the results from multiple independent realizations of the pseudodata. This gap is smaller when additional information about the individual kinematics of the tracers is available. Indeed, repeating the above exercise for the same data sets, but now using two-dimensional proper motions instead of only LOS velocities, the average error in Υ computed from our $\Delta \chi^2$ parabolae is 0.112, a factor of 1.7 larger than the scatter of the best-fit values, which was 0.067. Therefore, we conclude that our error estimation using $\Delta \chi^2$ is conservative.

Despite the smaller statistical errors for the case with proper motions alone, the bottom panel of Figure 9 indicates that the best-fit Υ is closer to the real value, Υ_0, for the case with only LOS velocities. While the best-fit Υ from data sets with only LOS velocities are well within 1 σ of Υ_0 for any N, this is not the case for the data sets with only proper motions, with best-fit Υ-values that are 2–4 σ away from Υ_0. Still, the formal best-fit Υ for the case of full three-dimensional velocities (thick squares) is on average within 2 σ of the real value, Υ_0, corresponding to better than $\sim 6\%$ accuracy. One contribution to the small systematic bias in Υ may come from the fundamental nature of inverse problems in general (of which Schwarzschild modeling is an example), namely, that there may not necessarily be a unique solution: it may be possible to change the mass profile and the DF without appreciably changing the model predictions. If such is the case and there are multiple solutions, we do not necessarily expect a flat $\Delta \chi^2$ profile (i.e., with a number of equally acceptable solutions containing the correct one), most likely because of numerical noise and discretization effects. While we cannot rule this out, our results do show that this probably does not affect the recovered mass-to-light ratio at more than the $\sim 10\%$ level (based on Fig. 9, built with models using our smaller orbit library). Unless superb data are available, random uncertainties are likely larger than such systematic errors. Currently, the only exception to this are some Galactic globular clusters, for which thousands of proper motions are being measured. However, such systems are often closer to spherical than galaxies, and hence one expects any theoretical degeneracies to be smaller. Alternatively, numerical noise in the orbit library may be the cause of this systematic bias in Υ seen in the bottom panel of Figure 9. Numerical noise may be reduced in part by the use of larger orbit libraries. Indeed, we show in § 5.4 that a substantially larger orbit library tends to produce more accurate results overall.

The likelihood ratio statistic $\Delta \chi^2$ in Figures 7 and 8 allows us to find the best-fit model parameters and their confidence intervals. However, it does not shed light on the question whether the best-fit model is actually statistically consistent with the data. The likelihood $\ln L$ of the best-fit model also cannot be used for this purpose. There is no theorem of mathematics that states what the value of $\ln L$ should be for a statistically acceptable model, given that the underlying velocity distributions from which the particles are drawn are not known a priori (and are not generally Gaussian). Nonetheless, many other statistics can be defined to address this issue once the best-fit model has been found. For example, the velocity moments of the best-fit model can be calculated (as a function of position on the sky), and statistics can be defined that assess whether these moments are consistent with the observed data. Alternatively, one can draw random realizations of the data from the best-fit model and use a Kolmogorov-Smirnov test to assess whether the data and the realization are consistent with being drawn from the same underlying distribution. We have
explored a subset of these approaches, and these suggested that the best-fit models are indeed statistically consistent with the pseudodata they were designed to fit.

5.4. Recovering the Inclination and M/L

In general, neither the mass-to-light ratio nor the inclination of a stellar system under study is known in advance; thus, one has to explore models with several combinations of both parameters in a search for those values that provide the best fit to the data. In this section we present and discuss the results of running the discrete Schwarzschild code on grids of \((i, \bar{v})\) values to study whether the correct input combination is recovered. As in § 5.3, we perform tests on data sets with different types of kinematic constraints (LOS velocities and/or proper motions).

The results of tests are presented in Figures 10 and 11. They show \(\Delta x^2\) contours that result when computing discrete Schwarzschild models on a grid of \((i, \bar{v})\) values, including the correct input combination, for a variety of input data sets of the 55is and 90is cases. The goodness-of-fit parameter \(\Delta x^2\) is shown in these plots obtained by first rebinning with a much finer grid the \((i, \bar{v})\)-space explored by the models actually calculated (indicated by small filled circles), and then computing the values on this new grid via interpolation between the nearest calculated models. We then determine the minimum on the finer grid (whose location is indicated by the star) and subtract it from all grid points to obtain the \(\Delta x^2\) parameter, for which contours are shown. As in the case of Figures 7 and 8, the mass-to-light ratio is parameterized by the dimensionless velocity scaling \(v = (\bar{v}/\bar{v}_0)^{1/2}\), so that the input value corresponds to \(v = 1\).

We start by showing in Figure 10 the results of running grids of models for input data sets composed of only LOS velocities and only proper motions, in both cases for the 55is case with 1000 observational data points, and using our small orbit library with \(20 \times 14 \times 7\) combinations of \((E, L_z, I_3)\). Overall, and in agreement with the results of Figure 8 discussed in § 5.3, the \(\Delta x^2\) contours indicate that proper motions (bottom panel) better constrain the best-fit \((i, \bar{v})\) combination than a data set with only LOS velocities (top panel). The 3 \(\sigma\) uncertainties (thick contours) obtained from the only LOS data set are twice as large as those from the proper motions alone (31\% and 16\%, respectively). The input mass-to-light ratio \(\bar{v}_0\) is adequately recovered by both data sets (to within the 1 \(\sigma\) confidence region). The best-fit inclination, however, is offset from the actual input value \(i = 55^\circ\) for both data sets, although somewhat closer to the correct value in the case of proper motions only. The 3 \(\sigma\) uncertainties in the best-fit inclination are \(\pm 6^\circ\) and \(\pm 11^\circ\) for the only proper motions and only LOS cases, respectively.

Difficulties in constraining the inclination using Schwarzschild modeling of stellar kinematics have been encountered in the past. A good recent example is that of Krajnovi´c et al. (2005), who, based on integrated stellar LOS velocity profiles and ionized gas observations of the E4 galaxy NGC 2974, carried out a study analogous to the present one by constructing simulated observations of this galaxy, which they feed to their “continuous” (as opposed to discrete) Schwarzschild code in order to study the recovery of the input mass-to-light ratio and inclination. They find that even with artificially perfect input kinematics the inclination is very poorly constrained. The same conclusion is reached when attempting to fit the actually observed LOS velocity profiles with Schwarzschild models, so stellar LOS velocity profiles provide weak constraints on the inclination of this system, a statement they are confident about because the actual inclination of NGC 2974 is known from observations of its extended disk of neutral and ionized gas in rapid rotation.

While one could expect that the availability of proper-motion measurements in addition to LOS velocities would enhance the ability of the models to obtain useful constraints on the inclination of a stellar system in general, the reality is that the current state of the art of Schwarzschild modeling does not have a definitive answer on this issue yet. As recent studies of the kinematics of stars in globular clusters seem to indicate, the chances of success are highly dependable on the quality and quantity of available data on the system under study (compare, for example, the results of van de Ven et al. [2006] and van den Bosch et al. [2006] regarding the best-fit inclinations of \(\omega\) Cen and M15, respectively).

There are at least two factors that may contribute to the difficulty in recovering the inclination from stellar kinematics: degeneracies inherent to Schwarzschild models, and numerical noise. First, there is no guarantee that inclinations other than the correct one must fit the data worse. Indeed, in their modeling of high
signal-to-noise integral-field data of NGC 2974, Krajnović et al. (2005) already observe that the differences between Schwarzschild models with different inclinations are smaller than the differences between the best-fitting model and the data, which they interpret as an indication of a fundamental degeneracy in the recovery of the inclination with three-integral models. Numerical noise, on the other hand, is a consequence of Schwarzschild models being in the end only discrete representations of a smooth, continuous distribution of possible orbits, and it could be argued that this discreetness might have a more negative effect for high inclinations. For example, even a simple and smooth circular orbit presents cusps or discontinuities when viewed close to edge-on. The turning points of such an orbit may get smoothed out differently for different inclinations.

The issue of degeneracy, nevertheless, can be avoided in those cases where the inclination is known to be uniquely determined by the data. This is the case, e.g., in the situations where the following conditions are met: (1) the kinematical data set consists of proper-motion measurements and LOS velocities, (2) the stellar system is reasonably close to axisymmetric, and (3) there exists an independent measurement of the distance D to the system. As first used in practice by van de Ven et al. (2006), the inclination then follows directly from the following relationship between the mean LOS velocity (in units of km s$^{-1}$) and the mean proper motion along the short axis (in units of mas yr$^{-1}$):

$$\langle v_z \rangle = 4.74D \tan \left(\mu_y \right),$$

where D is the distance in kpc and the angle brackets denote an integration along the LOS. This relation is true at each projected position (x', y') in any axisymmetric system and has been successfully applied to the Galactic globular clusters ω Cen and M15 (van de Ven et al. 2006; van den Bosch et al. 2006).

Here, in order to explore the applicability of this simple relationship, we take advantage of our a priori knowledge of the

![Fig. 11.—Recovery of the input inclination and mass-to-light ratio, when both assumed unknown, for the 55is and 90is data sets (left and right panels, respectively). Shown are the $\Delta\chi^2$ contours obtained from grids of Schwarzschild models constructed using orbit libraries with different sampling of the available (E, L_z, I_3) integral space. The top panels correspond to libraries with $20 \times 14 \times 7$ orbits, while the bottom panels are based on libraries with $40 \times 28 \times 14$ orbits, i.e., with 8 times finer sampling. The input mass-to-light ratio M/L is satisfactorily recovered regardless of the number of orbits (in all cases inside the 2σ confidence level). In terms of inclination, the shapes of the contours indicate that there may be two separate maxima providing similarly good fits to the data. For the smaller orbit library, the best-fit inclinations converge to the wrong solution, $i = 70^\circ$, for both data sets. Nevertheless, the correct inclination is encompassed by the secondary maximum in the 55is case (top left), and a clear elongation of the contours toward higher inclination is seen in the 90is case (top right). When using the larger orbit library, however, the best-fit inclination is $i = 57^\circ$ for the 55is data set, and $i = 80^\circ$ for the 90is data set, in better agreement with the true values.](image-url)
correct inclination for our simulated data sets and study the circumstances under which the use of equation (20) provides an accurate result. Unlike the case of integrated-light measurements (where $\langle v_z \rangle$ is simply the average of the LOSVD at any given projected position on the sky), in the context of discrete data sets neither $\langle v_z \rangle$ nor $\langle \mu \rangle$ are quantities that can be rigorously obtained from the data at any given $\langle x', y' \rangle$. Both quantities may, nevertheless, be approximated by averaging a number of kinematic measurements that fall within one or more apertures of a given size around projected positions $\langle x', y' \rangle$. Following this, we applied equation (20) to a series of subsets of our six simulated data sets with varying number of kinematic measurements and verified that indeed the correct inclination is reproduced provided that (a) the system is rotating (otherwise, while the relation is still valid, both averages are nearly zero and hence the inclination is not really constrained), (b) most of the data points are not located close to the minor axis (where rotation velocities are too small), and (c) the averages are computed from a sufficiently large number of kinematical measurements (so that the error in θ_0 is not too large). These are conditions that are certainly fulfilled by data sets on some Galactic globular clusters, currently the only class of stellar system for which there is three-dimensional kinematic information available. Therefore, in those cases, equation (20) can be safely applied. The Schwarzschild modeling can then concentrate on recovering the more interesting properties such as the orbital structure and mass-to-light ratios, which we have shown are successfully recovered when the inclination is assumed known.

To better understand the problem of numerical noise, we explored the dependence of the results on the size of the orbit library used to construct the Schwarzschild models. We did this for cases with 1000 data points with complete three-dimensional velocities, so that because of equation (20) we know that there is no theoretical degeneracy in inclination. Figure 11 shows the $\Delta \chi^2$ contours resulting from fits of Schwarzschild models using our standard library of $20 \times 14 \times 7$ orbits (top panels; same library size as in Fig. 10) in comparison with fits that use a library 8 times larger, i.e., one with $40 \times 28 \times 14$ orbits (bottom panels). We show results for the 55is (left panels) and 90is (right panels) cases.

In all four panels of Figure 11, the best-fit mass-to-light ratio is always within 1 σ of the input value Υ_0, with the exception of the 55is case with the bigger library (bottom left), where they agree at the 2 σ level. The size of the confidence regions on the mass-to-light ratio does not change significantly when the orbit library is increased in size. Therefore, we conclude that libraries of $20 \times 14 \times 7$ orbits are large enough to properly constrain the mass-to-light ratio (provided that one uses regularization as we do here; see Cretton & Emsellem 2004). This provides further justification for our use of this library size in \S 5.3.

The top left panel in Figure 11 is directly comparable to the two panels of Figure 10, but now with three components of velocities observed, instead of just one or two, respectively. Consistent with the results in Figures 9 and 10, we see that the addition of an extra component of velocity decreases the size of the confidence regions. More interestingly, a secondary minimum in $\Delta \chi^2$ appears close to the (i, Υ) values for the correct input model. This suggests that indeed all three components of velocity may be necessary to uniquely constrain the inclination of an axisymmetric stellar system. The bottom left panel shows the effect of increasing the orbit library size. There is now only a single minimum, centered at an inclination that agrees with the input value at the $\sim 2\sigma$ level.

The right panels in Figure 11 show the situation for the 90is case. With the small library (top right panel), the best-fit inclination is at $i \approx 70^\circ$, substantially far from the input value. When the orbit library size is increased (bottom right panel), the best fit shifts to $i = 80^\circ$. This is only 10° from the correct input value, which may well be acceptable for many realistic applications. On the other hand, the best fit and the input value are inconsistent at the many sigma level, which is certainly reason for some concern. A possible cause for this is that the turning points of orbits in edge-on systems have very sharp edges in projection. Therefore, larger grid sizes than we have used may be necessary to correctly represent them in all the necessary detail. However, we have not explored this further for two reasons. First, information on all three velocity components may be necessary to be able to uniquely constrain the inclination. If that is available, then use of equation (20) will be more accurate and efficient than use of Schwarzschild modeling. Second, in practice one is generally much more interested in the mass distribution than in the inclination. Figure 11 shows that the mass-to-light ratio is correctly recovered, even when the inclination is systematically biased.

In conclusion, our tests demonstrate that the recovery of the most important properties of the system (its orbital structure and the mass-to-light ratio) by our discrete Schwarzschild models is robust. Correct recovery of the inclination appears to be the most complicated aspect of the modeling. Sufficient observational data must be available and a large enough orbit library must be used. Our code can then adequately recover the inclination of sufficiently inclined systems. However, for edge-on systems there remains a systematic inclination bias of $\sim 10^\circ$ that we have been unable to resolve. This is the primary shortcoming of our new approach that was unearthed by the pseudodata tests that we have presented. This may be a generic property of Schwarzschild codes, since other authors have also reported difficulties in recovering inclinations. Either way, this is not believed to be a significant limitation for most potential practical applications of our code.

6. SUMMARY AND CONCLUSIONS

Discrete kinematic data sets, composed of velocities of individual tracers (e.g., red giants, planetary nebulae, globular clusters, galaxies, etc.), are routinely being assembled for a variety of stellar systems of all scales (\S 1). These are not restricted to only LOS velocity surveys, as high-quality proper-motion databases already exist for Galactic globular clusters, and future facilities hold the promise of providing the same for stars in the nearest galaxies. However, the most sophisticated tools typically being used in the modeling of these observations were actually developed for the analysis of kinematic data in the form of LOSVDs, a rather different type of velocity information than the case of the velocities of kinematic tracers on a one-by-one basis. As a consequence, the information content of any particular data set of a discrete nature is likely not being fully exploited. We thus have developed a specific tool for the modeling of discrete data sets, which we have presented in this paper along with detailed tests of its performance based on the modeling of simulated data.

The new tool consists of a Schwarzschild orbit superposition code that, adapted from the implementation of van der Marel et al. (1998), can handle any number of (one-, two-, or three-dimensional) velocities of individual kinematic tracers without relying on any binning of the data. Under the only assumptions that the system is in steady state equilibrium (i.e., the gravitational potential is not changing in time) and may be well approximated as axisymmetric, the code finds the DF (a function of the three integrals of motion E, L_z, and I_3) that best reproduces the observations (the velocities of the tracers, as well as
the overall light distribution) in a given potential. The fact that the DF is free to have any dependence on the three integrals of motion allows for a very general description of the orbital structure, thus avoiding common restrictive assumptions about the degree of (an)isotropy of the orbits.

Unlike previous implementations of the Schwarzschild technique, we cast the problem of finding the best superposition of orbits using a probabilistic approach, i.e., by building a likelihood function representing the probability that the entire set of measurements would have been observed assuming a particular form for the gravitational potential (§2). In this case, and in contrast with the old continuous versions, the dependence of the likelihood function on the orbital weights is nonlinear, and the optimization problem cannot be reduced to a linear matrix equation. Instead, it becomes a problem of the maximization of a likelihood with respect to the set of weights associated with all possible combinations of the integrals \((E, L_z, I)\) that comprise the orbit library (§2), and which accounts for the observed positions and (any dimensional) velocities of all particles in the data set, including their uncertainties (§3.1). After extensive testing, a conjugate gradient algorithm was found to converge satisfactorily to the correct solution and was adopted for the remaining tests of the code’s overall performance (§3.2).

In order to assess the reliability of our discrete Schwarzschild code, we applied it to several sets of simulated data, i.e., artificially generated kinematic observations obtained from a model of an axisymmetric galaxy of which the orbital structure, mass distribution, and inclination are known in advance. Pseudo-data sets were generated from a two-integral phase-space DF with varying degrees of overall rotation, types of velocity information (only LOS, only proper motions, and both), total number of particles, and for two different inclinations on the plane of the sky (§4.1).

Using the various simulated data sets, we studied the recovery of the input orbital structure or DF, mass-to-light ratio, and inclination. For the purposes of these tests, we assumed complete knowledge of the radial profile of the underlying mass distribution and a mass-to-light ratio that remains constant as a function of radius. These restrictions are easily (and must be) lifted when modeling data on real systems, in which case one needs to explore a range of plausible underlying potentials and allow for variations of the mass-to-light ratio to properly account for the possibility of central black holes and dark halos.

Inside the region constrained by data, we find that the DF (represented by the corresponding distributions of orbital mass weights) and streaming characteristics of the input data sets are satisfactorily recovered by the Schwarzschild fits when the correct inclination and mass-to-light ratio are known (Figs. 3–6). As measured by the mean absolute deviations between the integrated weight distributions, the agreement between the fitted and input orbital weight distributions as a function of \(E, L_z,\) and \(I\) is typically of the order of 3%, 10%, and 20%, respectively (the numbers for our worst case being 5%, 16%, and 25%). When eliminating the dependence on \(I\), the agreement between the fitted and input \(E-L_z\) distributions is of the order of 15%, with the net rotational behavior of the input data sets cleanly recovered (Figs. 4 and 5). Thus, we conclude that the discrete Schwarzschild code can successfully recover the orbital structure of the system under study.

Assuming that the inclination of the system on the plane of the sky is known, we quantified the recovery of the input mass-to-light ratio as a function of the size of the input data set (Fig. 7) and of the type of kinematic information available (Fig. 8). We studied both the best-fit value and the uncertainty in its determination (Fig. 9). The statistical expectation of better results when the amount of observational information is larger (regardless either the number of data points or the number of velocity components) is clearly reproduced by our discrete Schwarzschild models. For the smallest data sets used in our testing \((N = 100),\) and regardless of whether using only LOS velocities, only proper motions, or both, the best-fit mass-to-light ratio is within 5%–10% of the input value, with formal \(1 \sigma\) uncertainties of the order of 15%. When increasing either the number of available measurements or the number of measured velocity components, the mass-to-light ratio is always recovered to better than \(\sim10\%\) accuracy, with the corresponding random \((1 \sigma)\) uncertainties in the range of 5%–10%. The discrete Schwarzschild code, therefore, recovers the mass-to-light ratio of the input data sets to satisfactory levels of accuracy.

The recovery of both the mass-to-light ratio and inclination when neither of these quantities are known in advance (as is usually the case with real observations) was studied using a grid of discrete Schwarzschild models, exploring also the dependence on the type of velocity components available (Fig. 10). We find that the mass-to-light ratio was again successfully recovered, but the best-fit inclination was not identified correctly using small orbit libraries. We found that this was remedied by better sampling the available \((E, L_z, I)\) integral space using a larger orbit library (Fig. 11). For our input data sets with \(i = 55^\circ\), the best-fit inclination obtained by our models with a large orbit library is 57°, while for input data sets with \(i = 90^\circ\) we obtain a best-fit model with \(i = 80^\circ\). Given the known difficulty of Schwarzschild models in general for determining the inclination of stellar systems, and considering the low relative importance of this parameter compared to other properties such as the orbital structure and the mass-to-light ratio, we regard this small disagreement for the high-inclination data sets as acceptable.

In summary, we have shown that our new Schwarzschild code, designed to adequately handle modern data sets composed of discrete measurements of kinematic tracers, and doing this without any loss of information due to data binning or restrictive assumptions on the DF, is able to constrain satisfactorily the orbital structure, mass-to-light ratio, and inclination of the system under study. Applications to data for Galactic globular clusters and nearby dE galaxies will be presented in future papers. These are only two examples of a large range of dynamical problems in astronomy to which a discrete Schwarzschild code like ours can be applied, so we expect that this new tool will contribute to the better understanding of stellar systems in general.

We are happy to thank Marla Geha and Raja Guhathakurta for their continued interest in the present work and its extension to the study of actual galaxies using their unique data on dwarf ellipticals. We also thank Glenn van de Ven for very useful discussions, his interest in the progress of this project, and, last but not least, his invaluable help with IDL routines. This paper also benefited by comments from Davor Krajnovic, Aaron Romanowsky, and David Merritt. Thanks also to George Meylan for his help with the writing of the \(HST\) theory proposal specified below, and to the anonymous referee, whose comments and suggestions improved the presentation of the paper. This work was carried out as part of \(HST\) Theory Project No. 9952 and was supported by NASA through a grant from STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
REFERENCES

McNamara, B., Harrison, T. E., & Anderson, J. 2003, ApJ, 595, 187

Batsleer, P., & Dejonghe, H. 1993, A&A, 271, 104
Bender, R., et al. 2005, ApJ, 631, 280
Binney, J., & Mamon, G. A. 1982, MNRAS, 200, 361
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
Cappellari, M., Verolme, E. K., van der Marel, R. P., Kleijn, G. A. V., Illingworth, G. D., Franx, M., Carollo, C. M., & de Zeeuw, P. T. 2002, ApJ, 578, 787
Cappellari, M., et al. 2006, MNRAS, 366, 1126
Côtcé, P., McNamara, D. E., Cohen, J. G., & Blakeslee, J. P. 2003, ApJ, 591, 850
Côtcé, P., et al. 2001, ApJ, 559, 828
Cretton, N., de Zeeuw, P. T., van der Marel, R. P., & Rix, H.-W. 1999, ApJS, 124, 383
Cretton, N., & Emsellem, E. 2004, MNRAS, 347, L31
Cretton, N., Rix, H.-W., & de Zeeuw, P. T. 2000, ApJ, 536, 319
Davies, R. I., et al. 2006, ApJ, 646, 754
de Bruijne, J. H. J., van der Marel, R. P., & de Zeeuw, P. T. 2006, MNRAS, 373, 425
Krajnović, D., Cappellari, M., Emsellem, E., McDermid, R. M., & de Zeeuw, P. T. 2006, MNRAS, 360, 472
Kunkel, W. E., Irwin, M. J., & Demers, S. 1997, A&AS, 122, 463
Kunkel, W. E., Demers, S., & Irwin, M. J. 2000, AJ, 119, 2789
Kuncic, W. E., Irwin, M. J., & Demers, S. 1999, A&A, 322, 463
Lokas, E. L. 2002, MNRAS, 333, 697
Lokas, E. L., & Mamon, G. A. 2003, MNRAS, 343, 401
Lokas, E. L., Mamon, G. A., & Prada, F. 2005, MNRAS, 363, 918
Magorrian, J. 2006, MNRAS, 373, 425
Magorrian, J., et al. 1998, AJ, 115, 2285
Mayor, M., et al. 1997, AJ, 114, 1087
McLaughlin, D. E., Anderson, J., Meylan, G., Gebhardt, K., Pryor, C., Minniti, D., & Phinney, S. 2006, ApJS, 166, 249
McNamara, B. J., Harrison, T. E., & Anderson, J. 2003, ApJ, 595, 187
Merritt, D. 1993, ApJ, 413, 79
———. 1999, PASP, 111, 129
Merritt, D., Meylan, G., & Mayor, M. 1997, AJ, 114, 1074
Merritt, D., & Saha, P. 1993, ApJ, 409, 75
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in FORTRAN (2nd ed.; Cambridge: Cambridge Univ. Press)
Reijns, R. A., Seitzer, P., Arnold, R., Freeman, K. C., Ingerson, T., van den Bosch, R. C. E., van de Ven, G., & de Zeeuw, P. T. 2006, A&A, 445, 503
Richler, T., et al. 2004, AJ, 127, 2094
Rix, H.-W., de Zeeuw, P. T., Cretton, N., van der Marel, R. P., & Carollo, C. M. 1997, ApJ, 488, 702
Romanowsky, A. J., Douglas, N. G., Arnaboldi, M., Kuijken, K., Merrifield, M. R., Napolitano, N. R., Capaccioli, M., & Freeman, K. C. 2003, Science, 301, 1696
Romanowsky, A. J., & Kochanek, C. S. 2001, ApJ, 553, 722
Schwarzschild, M. 1979, ApJ, 232, 236
Shanino, D. F., & Phu, K. H. 1980, ACM Trans. Math. Software, 6, 618
Simon, J. D., & Geha, M. 2007, ApJ, 670, 313
Suntzeff, N. B., & Kraft, R. P. 1996, AJ, 111, 1913
Syer, D., & Tremaine, S. 1996, MNRAS, 282, 223
Teodorescu, A. M., Méndez, R. H., Saglia, R. P., Riffeser, A., Kudritzki, R.-P., Gerhard, O. E., & Kleyna, J. 2005, ApJ, 635, 290
Thomas, J., Saglia, R. P., Bender, R., Thomas, D., Gebhardt, K., Magorrian, J., & Richstone, D. 2004, MNRAS, 353, 391
Valluri, M., Merritt, D., & Emsellem, E. 2004, ApJ, 602, 66
van den Bosch, R., de Zeeuw, T., Gebhardt, K., Noyola, E., & van de Ven, G. 2006, ApJ, 641, 852
van der Marel, R. P., Cretton, N., de Zeeuw, P. T., & Rix, H.-W. 1998, ApJ, 493, 613
van der Marel, R. P., Evans, N. W., Rix, H.-W., White, S. D. M., & de Zeeuw, P. T. 1994, MNRAS, 271, 99
van der Marel, R. P., & Franx, M. 1993, ApJ, 407, 525
van der Marel, R. P., Magorrian, J., Carlberg, R. G., Yee, H. K. C., & Ellingson, E. 2000, AJ, 119, 2038
van der Marel, R. P., Sigurdsson, S., & Hernquist, L. 1997, ApJ, 487, 153
van der Marel, R. P., & van Dokkum, P. G. 2007, ApJ, 668, 738
Vandervoort, P. O. 1984, ApJ, 287, 475
van den Bosch, R. C. E., Verolme, E. K., & de Zeeuw, P. T. 2006, A&A, 445, 513
van Leeuwen, F., & Phinney, S. 2006, ApJS, 166, 249
Verolme, E. K., & de Zeeuw, P. T. 2002, MNRAS, 331, 959
Walker, M. G., Mateo, M., Olszewski, E. W., Bernstein, R., Wang, X., & Woodroofe, M. 2006, AJ, 131, 2114
Wilkinson, M. I., Kleyna, J. T., Evans, N. W., Gilmore, G. F., Irwin, M. J., & Grebel, E. K. 2004, ApJ, 611, L21
Wojtak, R., & Lokas, E. L. 2007, MNRAS, 377, 843
Wojtak, R., Lokas, E. L., Mamon, G. A., Gottlöber, S., Prada, F., & Moles, M. 2007, A&A, 466, 437
Wu, X. 2007, preprint (astro-ph/0702233)
Wu, X., & Tremaine, S. 2006, ApJ, 643, 210