A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential Equations

Osama Moaaz, Jan Awrejcewicz and Omar Bazighifan

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; o_moaaz@mans.edu.eg
2 Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland
3 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen; o.bazighifan@gmail.com

* Correspondence: jan.awrejcewicz@p.lodz.pl
† These authors contributed equally to this work.

Received: 17 January 2020; Accepted: 31 January 2020; Published: 5 February 2020

Abstract: Based on the comparison with first-order delay equations, we establish a new oscillation criterion for a class of even-order neutral differential equations. Our new criterion improves a number of existing ones. An illustrative example is provided.

Keywords: even-order differential equations; neutral delay; oscillation

1. Introduction

In the last decade, many studies have been carried out on the oscillatory behavior of various types of functional differential equations, see [1–24] and the references cited therein. As a result of numerous applications in technology and natural science, the issue of oscillation of nonlinear neutral delay differential equation has caught the attention of many researchers, see [1,3–5,8,12,17,19,22–24]. For instance, they are frequently used for the study of distributed networks containing lossless transmission lines, see [11].

In this paper, we are concerned with improving the oscillation criteria for the even-order neutral differential equation of the form

\[r(t) \left(\left(z^{(n-1)}(t) \right)^{\frac{1}{\alpha}} \right) + p(t) x^{\sigma}(\tau(t)) = 0, \quad (1) \]

where \(t \geq t_0, n \geq 4 \) is an even natural number and \(z(t) := x(t) + p(t) x(\tau(t)) \). In this work, we assume that \(\alpha \) is a quotient of odd positive integers, \(r \in C[t_0, \infty), r(t) > 0, r'(t) \geq 0, \int_{t_0}^{\infty} r^{-1/\alpha}(s) \, ds = \infty, p, q \in C[t_0, \infty), q(t) > 0, 0 \leq p(t) < p_0 < \infty, q(t) \) is not identically zero for large \(t, \tau \in C[t_0, \infty), \sigma \in C[t_0, \infty), \tau'(t) > 0, \tau(t) \leq t \) and \(\lim_{t \to \infty} \tau(t) = \lim_{t \to \infty} \sigma(t) = \infty \).

By a solution of (1) we mean a function \(x \in C^3[t_y, \infty), t_y \geq t_0 \), which has the property \(r(t) \left(\left(z^{(n-1)}(t) \right)^{\frac{1}{\alpha}} \right) \in C^1[t_y, \infty), \) and satisfies (1) on \([t_y, \infty)\). We consider only those solutions \(x \) of (1) which satisfy \(\sup \{ |x'(t)| : t \geq T \} > 0 \), for all \(T \geq t_y \). A solution \(x \) of (1) is said to be non-oscillatory if it is positive or negative, ultimately; otherwise, it is said to be oscillatory.

A neutral delay differential equation is a differential equation in which the highest-order derivative of the unknown function appears both with and without delay.

In the following, we briefly review some important oscillation criteria obtained for higher-order neutral equations which can be seen as a motivation for this paper.
In 1998, based on establishing comparison theorems that compare the \(n\)th-order equation with only one first-order delay differential equations, Zafer [23] proved that the even-order differential equation
\[
z^{(n)}(t) + q(t)x(\sigma(t)) = 0
\]
(2)
is oscillatory if
\[
\liminf_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, ds > \frac{(n-1)!}{e},
\]
(3)
or
\[
\limsup_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, ds > (n-1)! \sigma'(t) \geq 0.
\]
where \(Q(t) := q^{n-1}(t) (1 - p(\sigma(t))) \hat{q}(t)\). In a similar approach, Zhang and Yan [24] proved that (2) is oscillatory if either
\[
\liminf_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, ds > \frac{(n-1)!}{e},
\]
(4)
or
\[
\limsup_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, ds > (n-1)! \sigma(t) \geq 0.
\]
It’s easy to note that \((n-1)! < (n-1)! 2^{(n-1)(n-2)}\) for \(n > 3\), and hence results in [24] improved results of Zafer in [23].

For nonlinear equation, Xing et al. [22] proved that (1) is oscillatory if
\[
\left(\sigma^{-1}(t)\right)' \geq \sigma_0 > 0, \quad \tau'(t) \geq \tau_0 > 0, \quad \tau^{-1}(\sigma(t)) < t
\]
and
\[
\liminf_{t \to \infty} \int_{\tau^{-1}(\sigma(t))}^{t} \frac{\hat{q}(s)}{r(s)} \left(s^{-1}\right)^{\alpha} \, ds > \left(\frac{1}{\sigma_0} + \frac{\hat{p}_0}{\sigma_0 \tau_0}\right) \frac{(n-1)!^{\alpha}}{e},
\]
(5)
where \(\hat{q}(t) := \min\{q(\sigma^{-1}(t)), q(\sigma^{-1}(\tau(t)))\}\).

If we apply the previous results to the equation
\[
\left(x(t) + \frac{7}{8}x\left(\frac{1}{e}t\right)\right)'' + \frac{q_0}{\tau^2} x\left(\frac{1}{e^2}t\right) = 0, \quad t \geq 1,
\]
(6)
then we get that (6) is oscillatory if

\[
\begin{array}{c|c|c|c}
\text{The condition} & (3) & (4) & (5) \\
\hline
\text{The criterion} & q_0 > 113,981.3 & q_0 > 3561.9 & q_0 > 3008.5 \\
\end{array}
\]

Hence, Xing et al. [22] improved the results in [23,24].

By establishing a new comparison theorem that compare the higher-order Equation (1) with a couple of first-order delay differential equations, we improve the results in [22–24]. An example is presented to illustrate our main results.

In order to discuss our main results, we need the following lemmas:

Lemma 1 ([13]). If the function \(x\) satisfies \(x^{(i)}(t) > 0, \ i = 0, 1, \ldots, n, \) and \(x^{(n+1)}(t) < 0, \) then
\[
\frac{x(t)}{t^n/n!} \geq \frac{x'(t)}{t^{n-1}/(n-1)!}.
\]
Lemma 2 ([2] Lemma 2.2.3). Let \(x \in C^n ([t_0, \infty), (0, \infty)) \). Assume that \(x^{(n)} (t) \) is of fixed sign and not identically zero on \([t_0, \infty)\) and that there exists a \(t_1 \geq t_0 \) such that \(x^{(n-1)} (t) x^{(n)} (t) \leq 0 \) for all \(t \geq t_1 \). If \(\lim_{t \to \infty} x (t) \neq 0 \), then for every \(\mu \in (0, 1) \) there exists \(t_\mu \geq t_1 \) such that

\[
x (t) \geq \frac{\mu}{(n-1)!} t^{n-1} |x^{(n-1)} (t)| \quad \text{for} \quad t \geq t_\mu.
\]

Lemma 3 ([3] Lemmas 1 and 2). Assume that \(u, v \geq 0 \) and \(\beta \) is a positive real number. Then

\[
(u + v)^\beta \leq 2^{\beta-1} (u^\beta + v^\beta), \quad \text{for} \quad \beta \geq 1
\]

and

\[
(u + v)^\beta \leq u^\beta + v^\beta, \quad \text{for} \quad \beta \leq 1.
\]

2. Main Results

Here, we define the next notation:

\[
P_k (t) = \frac{1}{(\tau - 1) (t)} \left(1 - \frac{(\tau - 1) (t)}{(\tau - 1) (t)} \right), \quad \text{for} \quad k = 2, n,
\]

\[
R_0 (t) = \left(\frac{1}{r (t)} \int_t^{\infty} q (s) P_n (\sigma (s)) \, ds \right)^{1/\alpha}
\]

and

\[
R_m (t) = \int_t^{\infty} R_{m-1} (s) \, ds, \quad m = 1, \ldots, n - 3.
\]

Lemma 4 ([20] Lemma 1.2). Assume that \(x \) is an eventually positive solution of (1). Then, there exist two possible cases:

(\text{I}_1) \quad z (t) > 0, z^\prime (t) > 0, z^{(n)} (t) > 0, z^{(n-1)} (t) > 0, z^{(n)} (t) < 0, \\
(\text{I}_2) \quad z (t) > 0, z^{(j)} (t) > 0, z^{(j+1)} (t) < 0 \quad \text{for all odd integer} \quad j \in \{1, 3, \ldots, n - 3\}, z^{(n-1)} (t) > 0, z^{(n)} (t) < 0,

for \(t \geq t_1 \), where \(t_1 \geq t_0 \) is sufficiently large.

Theorem 1. Let

\[
\frac{(\tau - 1) (t)^{n-1}}{(\tau - 1) (t)^{n-1} p (\tau - 1) (t))} \leq 1.
\]

Assume that there exist positive functions \(\eta, \zeta \in C^1 ([t_0, \infty), \mathbb{R}) \) satisfying

\[
\eta (t) \leq \sigma (t), \quad \eta (t) < \tau (t), \quad \zeta (t) \leq \sigma (t), \quad \zeta (t) < \tau (t), \quad \zeta^\prime (t) \geq 0 \quad \text{and} \quad \lim_{t \to \infty} \eta (t) = \lim_{t \to \infty} \zeta (t) = \infty.
\]

If there exists a \(\mu \in (0, 1) \) such that the differential equations

\[
\psi^\prime (t) + \left(\frac{\mu (\tau - 1) (\eta (t))^{n-1}}{(n-1)! (\tau - 1) (\eta (t))} \right)^{1/\alpha} q (t) P_n (\sigma (t)) \psi \left(\tau - 1 (\eta (t)) \right) = 0
\]

and

\[
\phi^\prime (t) + (\tau - 1) (\zeta (t)) R_{n-3} (t) \phi \left(\tau - 1 (\zeta (t)) \right) = 0
\]

are oscillatory, then Equation (1) is oscillatory.

Proof. Let \(x \) be a non-oscillatory solution of (1) on \([t_0, \infty)\). Without loss of generality, we can assume that \(x \) is eventually positive. It follows from Lemma 4 that there exist two possible cases (I\(_1\)) and (I\(_2\)).
Assume that Case (I₁) holds. From the definition of \(z(t) \), we see that
\[
x(t) = \frac{1}{p(\tau^{-1}(t))} \left(z(\tau^{-1}(t)) - x(\tau^{-1}(t)) \right).
\]
By repeating the same process, we find that
\[
x(t) = \frac{z(\tau^{-1}(t))}{p(\tau^{-1}(t))} - \frac{1}{p(\tau^{-1}(t))} \left(z(\tau^{-1}(t)) - \frac{x(\tau^{-1}(t))}{p(\tau^{-1}(t))} \right).
\]
Using Lemma 1, we get \(z(t) \geq \frac{1}{(n-1)!} t^n z'(t) \) and hence the function \(t^{1-n} z(t) \) is nonincreasing, which with the fact that \(\tau(t) \leq t \) gives
\[
(\tau^{-1}(t))^{n-1} z(\tau^{-1}(t)) \leq (\tau^{-1}(\tau^{-1}(t)))^{n-1} z(\tau^{-1}(t)). \tag{12}
\]
Combining Equations (11) and (12), we conclude that
\[
x(t) \geq \frac{1}{p(\tau^{-1}(t))} \left(1 - \frac{(\tau^{-1}(\tau^{-1}(t)))^{n-1}}{(\tau^{-1}(t))^{n-1} p(\tau^{-1}(\tau^{-1}(t)))} \right) z(\tau^{-1}(t)) = P_n(t) z(\tau^{-1}(t)). \tag{13}
\]
From Equations (1) and (13), we obtain
\[
\left(r(t) \left(z^{(n-1)}(t) \right)^{\alpha} \right)' + q(t) P_n^\alpha(\sigma(t)) z^\alpha(\tau^{-1}(\sigma(t))) \leq 0.
\]
Since \(\eta(t) \leq \sigma(t) \) and \(z'(t) > 0 \), we get
\[
\left(r(t) \left(z^{(n-1)}(t) \right)^{\alpha} \right)' \leq -q(t) P_n^\alpha(\sigma(t)) z^\alpha(\tau^{-1}(\eta(t))). \tag{14}
\]
Now, by using Lemma 2, we have
\[
z(t) \geq \frac{\mu}{(n-1)!} t^{n-1} z^{(n-1)}(t), \tag{15}
\]
for some \(\mu \in (0,1) \). It follows from (14) and (15) that, for all \(\mu \in (0,1) \),
\[
\left(r(t) \left(z^{(n-1)}(t) \right)^{\alpha} \right)' + \left(\frac{\mu (\tau^{-1}(\eta(t)))^{n-1}}{(n-1)!} q(t) P_n^\alpha(\sigma(t)) \left(z^{(n-1)}(\tau^{-1}(\eta(t))) \right)^\alpha \right) \leq 0.
\]
Thus, if we set \(\psi(t) = r(t) \left(z^{(n-1)}(t) \right)^{\alpha} \), then we see that \(\psi \) is a positive solution of the first-order delay differential inequality
\[
\psi'(t) + \left(\frac{\mu (\tau^{-1}(\eta(t)))^{n-1}}{(n-1)! \tau^\alpha(\tau^{-1}(\eta(t)))} \right) q(t) P_n^\alpha(\sigma(t)) \psi(\tau^{-1}(\eta(t))) \leq 0.
\]
It is well known (see [21] (Theorem 1)) that the corresponding Equation (9) also has a positive solution, which is a contradiction.
Assume that Case (I₂) holds. Using Lemma 1, we get that
\[z(t) \geq tz'(t) \]
(16)
and thus the function \(t^{-1}z(t) \) is nonincreasing, eventually. Since \(\tau^{-1}(t) \leq \tau^{-1}(\tau^{-1}(t)) \), we obtain
\[\tau^{-1}(t) z \left(\tau^{-1} \left(\tau^{-1}(t) \right) \right) \leq \tau^{-1} \left(\tau^{-1}(t) \right) z \left(\tau^{-1}(t) \right). \]
(17)
Combining (11) and (17), we find
\[x(t) \geq \frac{1}{p(\tau^{-1}(t))} \left(1 - \frac{\tau^{-1}(\tau^{-1}(t))}{(\tau^{-1}(t))} \right) \tau^{-1}(t) z \left(\tau^{-1}(t) \right) \]
\[= p_2(t) z \left(\tau^{-1}(t) \right), \]
which with (1) yields
\[\left(r(t) \left(\zeta^{(n-1)}(t) \right)^{\alpha} \right)' + q(t) p_2^\alpha(\sigma(t)) z^\alpha \left(\tau^{-1}(\sigma(t)) \right) \leq 0. \]
Since \(\zeta(t) \leq \sigma(t) \) and \(z'(t) > 0 \), we have that
\[\left(r(t) \left(\zeta^{(n-1)}(t) \right)^{\alpha} \right)' \leq -q(t) p_2^\alpha(\sigma(t)) z^\alpha \left(\tau^{-1}(\zeta(t)) \right). \]
(18)
Integrating the (18) from \(t \) to \(\infty \), we obtain
\[z^{(n-1)}(t) \geq R_0(t) z \left(\tau^{-1}(\zeta(t)) \right). \]
Integrating this inequality from \(t \) to \(\infty \) a total of \(n - 3 \) times, we obtain
\[z''(t) + R_{n-3}(t) z \left(\tau^{-1}(\zeta(t)) \right) \leq 0. \]
(19)
Thus, if we set \(\phi(t) := z'(t) \) and using (16), then we conclude that \(\phi \) is a positive solution of
\[\phi'(t) + \tau^{-1}(\zeta(t)) R_{n-3}(t) \phi \left(\tau^{-1}(\zeta(t)) \right) \leq 0. \]
(20)
It is well known (see [21] (Theorem 1)) that the corresponding Equation (10) also has a positive solution, which is a contradiction. The proof is complete. □

Corollary 1. Assume that (7) holds and there exist positive functions \(\eta, \zeta \) such that (8) holds. If
\[\liminf_{t \to \infty} \int_{\tau^{-1}(\eta(t))}^{t} \left(\frac{\tau^{-1}(\eta(s))}{\tau^{-1}(t)} \right)^{n-1} q(s) p_2^\alpha(\sigma(s)) ds > \frac{(n-1)!}{e} \]
(21)
and
\[\liminf_{t \to \infty} \int_{\tau^{-1}(\zeta(t))}^{t} \tau^{-1}(\zeta(s)) R_{n-3}(s) ds > \frac{1}{e}, \]
(22)
then (1) is oscillatory.

Proof. It is well-known (see, e.g., [14] (Theorem 2)) that Condition (21) and (22) imply oscillation of (9) and (10), respectively. □
Example 1. Consider the equation

\[(x(t) + p_0 x(\delta t))^{(n)} + \frac{q_0}{p_0^n} x(\lambda t) = 0,\]

(23)

where \(t \geq 1, q_0 > 0, \delta \in (p_0^{-1/(n-1)}, 1)\) and \(\lambda \in (0, \delta)\). We note that \(r(t) = 1, p(t) = p_0, \tau(t) = \delta, \sigma(t) = \lambda t\) and \(q(t) = q_0/t^n\). Thus, if we choose \(\eta(t) = \xi(t) = \lambda t\), then it’s easy to see that (7) and (8) are satisfied. Moreover, we have

\[P_k(t) = \frac{1}{p_0} \left(1 - \frac{\delta^{1-k}}{p_0}\right), \text{ for } k = 2, n,\]

\[R_0(t) = \frac{q_0}{p_0} \left(1 - \frac{1}{\delta p_0}\right) \frac{1}{(n-1)!},\]

and

\[R_{n-3}(t) = \frac{1}{(n-3)!} \frac{q_0}{p_0} \left(1 - \frac{1}{\delta p_0}\right) \frac{1}{(n-2) (n-1) t^2}.\]

Hence, Condition (21) and (22) become

\[q_0 \frac{1}{p_0} \left(\frac{\lambda}{\delta}\right)^n = \frac{1}{p_0^n} \left(1 - \frac{\delta^{1-n}}{p_0}\right) \ln \frac{\delta}{\lambda} > \frac{(n-1)!}{e},\]

(24)

and

\[q_0 \frac{1}{p_0} \frac{\lambda}{\delta} \left(1 - \frac{1}{\delta p_0}\right) \ln \frac{\delta}{\lambda} > \frac{(n-1)!}{e},\]

(25)

respectively. It’s easy to see that (24) implies (25). Therefore, by Corollary 1, we conclude that (23) is oscillatory if (24) holds.

Remark 1. For Equation (23), in particular case that \(n = 4, p_0 = 16, \delta = 1/2\) and \(\lambda = 1/3\), Condition (24) yields \(q_0 > 587.93\). Whereas, the criterion obtained from the results of [22] is \(q_0 > 4850.4\). Hence, our results improve the results in [22].

3. Conclusions

In this paper, our method is based on presenting a new comparison theorem that compare the higher-order Equation (1) with a couple of first-order equations. There are numerous results concerning the oscillation criteria of first order Equations (9) and (10) (see, e.g., [14,25–27]), which include various forms of criteria as Hille/Nehari, Philos, etc. This allows us to obtain also various criteria for the oscillation of (1). Further, we can try to obtain oscillation criteria of (1) if \(z(t) := x(t) - p(t) x(\tau(t))\) in the future work.

Author Contributions: The authors claim to have contributed equally and significantly in this paper. All authors read and approved the final manuscript.

Funding: The authors received no direct funding for this work.

Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.

Conflicts of Interest: There are no competing interests between the authors.

References

1. Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794.
2. Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000.
3. Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. *Comput. Math. Appl.* 2011, 62, 4472–4478.

4. Baculikova, B.; Dzurina, J.; Li, T. Oscillation results for even-order quasi linear neutral functional differential equations. *Electron. J. Differ. Equ.* 2011, 1–9.

5. Baculikova, B.; Dzurina, J. Oscillation theorems for higher order neutral differential equations. *Appl. Math. Comput.* 2012, 219, 3769–3778.

6. Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations with Delayed Arguments. *Mathematics* 2019, 7, 619.

7. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. *J. Inequal. Appl.* 2019, 55, 1–9.

8. Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. *Adv. Differ. Equ.* 2019, 336, 1–9.

9. Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. *Symmetry* 2019, 11, 1434.

10. Elabbasy, E.M.; Hassan, T.S.; Moaaz, O. Oscillation behavior of second-order nonlinear neutral differential equations with deviating arguments. *Opusc. Math.* 2012, 32, 719–730.

11. Hale, J.K. *Theory of Functional Differential Equations*; Springer: New York, NY, USA, 1977.

12. Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of even-order neutral delay differential equations. *Adv. Differ. Equ.* 2010, 2010, 1–9.

13. Kiguradze, I.T.; Chanturiya, T.A. *Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations*; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1993.

14. Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. *Proc. Am. Math. Soc.* 1980, 78, 64–68.

15. Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. *Adv. Differ. Equ.* 2019, 2019, 484.

16. Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. *Adv. Differ. Equ.* 2017, 2017, 261.

17. Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. *Adv. Differ. Equ.* 2019, 297, 1–10.

18. Moaaz, O.; Elabbasy, E.M.; Shaaban, E. Oscillation criteria for a class of third order damped differential equations. *Arab. J. Math. Sci.* 2018, 24, 16–30.

19. Parhi, N.; Tripathy, A. Oscillation of even order nonlinear neutral differential equations—I. *Math. Slovaca* 2004, 54, 389–410.

20. Philos, C.G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations. *Bull. Acad. Pol. Sci. Sér. Sci. Math.* 1981, 39, 61–64.

21. Philos, C.G. On the existence of non-oscillatory solutions tending to zero at ∞ for differential equations with positive delays. *Arch. Math.* 1981, 36, 168–178.

22. Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi linear neutral differential equations. *Adv. Differ. Equ.* 2011, 2011, 45.

23. Zafer, A. Oscillation criteria for even order neutral differential equations. *Appl. Math. Lett.* 1998, 11, 21–25.

24. Zhang, Q.; Yan, J. Oscillation behavior of even order neutral differential equations with variable coefficients. *Appl. Math. Lett.* 2006, 19, 1202–1206.

25. Ladas, G.; Lakshmikantham, V.; Papadakis, L.S. *Oscillations of Higher-Order Retarded Differential Equations Generated by the Retarded Arguments, Delay and Functional Differential Equations and Their Applications*; Academic Press: New York, NY, USA, 1972; pp. 219–231.

26. Koplatadze, R.G.; Chanturiya, T.A. Oscillating and monotone solutions of first-order differential equations with deviating argument. *Differ. Uravn.* 1982, 18, 1463–1465.

27. Braverman, E.; Karpuz, B. On oscillation of differential and difference equations with non-monotone delays. *Appl. Math. Comput.* 2011, 218, 3880–3887.