The topology of local commensurability graphs

Khalid Bou-Rabee* Daniel Studenmund†

August 27, 2015

Abstract

We initiate the study of the p-local commensurability graph of a group, where p is a prime. This graph has vertices consisting of all finite-index subgroups of a group, where an edge is drawn between A and B if $[A:A \cap B]$ and $[B:A \cap B]$ are both powers of p. We show that any component of the p-local commensurability graph of a group with all nilpotent finite quotients is complete. Further, this topological criterion characterizes such groups. In contrast to this result, we show that for any prime p the p-local commensurability graph of any large group (e.g. a nonabelian free group or a surface group of genus two or more or, more generally, any virtually special group) has geodesics of arbitrarily long length.

Keywords: commensurability, nilpotent groups, free groups, very large groups

Let G be a group and p a prime number. Recall that two subgroups $\Delta_1 \leq G$ and $\Delta_2 \leq G$ are commensurable if $\Delta_1 \cap \Delta_2$ is finite-index in both Δ_1 and Δ_1. We define the p-local commensurability graph of G to be the graph with vertices consisting of finite-index subgroups of G where two subgroups $A, B \leq G$ are adjacent if and only if $[A:A \cap B]$ and $[B:A \cap B]$ are both powers of p. We denote this graph by $\Gamma_p(G)$. For a warm-up example, see Figure 1.

The goal of this paper is to draw algebraic information of G from the topology of $\Gamma_p(G)$.

Theorem 1. Let G be a group. The following are equivalent:

1. For any prime p, every component of $\Gamma_p(G)$ is complete.

2. All of the finite quotients of G are nilpotent.

The proof of Theorem 1 is in §2. The classification of finite simple groups and the structure theory of solvable groups play important roles in our proofs. Theorem 1 applies, for example, to Grigorchuk’s group [Gri83], which is a 2-group and therefore has only nilpotent finite quotients.

In contrast to the above theorem, we show that components of the local commensurability graphs of free groups are far from complete:

Theorem 2. Let F be a rank two free group. For any prime p and $N > 0$, there exist infinitely many geodesics γ, each in a different component of $\Gamma_p(F)$, such that the length of each γ is greater than N.

We prove Theorem 2 in §3. A result of Robert Guralnick (which uses the classification of finite simple groups) concerning subgroups of prime power index in a nonabelian finite simple group is used in an essential way in our proof [Gur83]. Moreover, in our proof we get a clean description of an entire component of the p-local commensurability graph of many finite alternating groups. See Figure 2 for example.

Our next result demonstrates that arbitrarily long geodesics in the p-local commensurability graph of a free group cannot possibly all come from a single component. We prove this at the end of §4.

*K.B. supported in part by NSF grant DMS-1405609
†D.S. supported in part by NSF grant DMS-1246989
The topology of local commensurability graphs

Figure 1: Let Sym_3 be the symmetric group on 3 elements (note Sym_3 is solvable and not nilpotent). The figure above displays $\Gamma_2(\text{Sym}_3)$, $\Gamma_3(\text{Sym}_3)$, and $\Gamma_5(\text{Sym}_3)$ in that order. All $\Gamma_p(\text{Sym}_3)$ for primes $p > 3$ are discrete spaces.

Proposition 3. Let G be any group. Let Ω be a connected component of $\Gamma_p(G)$. Then there exists $C > 0$ such that any two points in Ω are connected by a path of length less than C. That is, the diameter of Ω is finite. Moreover if any vertex of Ω is a normal subgroup of G then the diameter of Ω is bounded above by 3.

As a consequence of Theorem 2 and Proposition 3 there exists components of the p-local commensurability graph of a nonabelian free group with no normal subgroups as vertices (see Corollary 22 at the end of §3).

Recall that a group is large if it contains a finite-index subgroup that admits a surjective homomorphism onto a non-cyclic free group. Such groups enjoy the conclusion of Theorem 2. See the end of §3 for the proof.

Corollary 4. Let G be a large group. For any prime p and $N > 0$, there exists infinitely many geodesics γ, each in a different component of $\Gamma_p(G)$, such that the length of each γ is greater than N.

Experiments that led us to the above theorems were done using GAP [GAP15] and Mathematica [Res15].

This paper sits in the broader program of studying infinite groups through their residual properties, which is an area of much activity (see, for instance, [KT], [BRK12], [BRM11], [GK], [BRHP], [BRS], [KMT1], [Riv12], [Pat13], [LS03]). Specifically, a similar object is studied in the recent article [AAH+15]. There a graph is constructed with vertices consisting of subgroups of finite index, and an edge is drawn between two vertices if one is a prime-index subgroup (the prime is not fixed) of the other. They show that for every group G, their graph is bipartite with girth contained in the set $\{4, \infty\}$ and if G is a finite solvable group, then their graph is connected.

Acknowledgements We are grateful to Ben McReynolds and Sean Cleary for useful and stimulating conversations.

1 Preliminaries and basic facts

In this section we record some basic facts that will be used throughout. We start with a couple of elementary results.

Lemma 5. Let $\pi : G \to G/N$ be a quotient map. For subgroups $K \leq H \leq G$ we have

$$[H : K] = [\pi(H) : \pi(K)] [H \cap N : K \cap N].$$
Proof. We know that
\[[H : K : K \cap N] = [H : K \cap N] \quad \text{and} \quad [H : H \cap N][H \cap N : K \cap N] = [H : K \cap N]. \]

Equating left hand sides and rearranging terms yields
\[\frac{[H : H \cap N]}{[K : K \cap N]} = \frac{[H : K]}{[H \cap N : K \cap N]}. \]

Because \(\pi(K) = KN/N = K/(K \cap N) \), and similarly for \(H \), we see that
\[[\pi(H) : \pi(K)] = \frac{[\pi(H)]}{[\pi(K)]} = \frac{[H : H \cap N]}{[K : K \cap N]} \cdot \]

The desired result follows. \[\square\]

Lemma 6. Let \(N \) be a normal subgroup of \(G \) and \(p \) a prime. If \(A \) and \(N \) are both subgroups of index a power of \(p \) in \(G \), then \([G : A \cap N] \) is also a power of \(p \).

Proof. Let \(\pi : G \to G/N \) be the quotient map. Then \([A : A \cap N] = |\pi(A)| \). Because \(G/N \) is a \(p \)-group, it follows that \([A : A \cap N] \) is a power of \(p \). Therefore \([G : A \cap N] = [G : A][A : A \cap N] \) is a power of \(p \). \[\square\]

Our next couple of lemmas give control of local commensurability graphs under some maps.

Lemma 7. If \(G \) is a group, \(\pi : G \to Q \) is a surjection, and \(\gamma \) a path in \(\Gamma_p(G) \), then \(\pi(\gamma) \) is a path in \(\Gamma_p(Q) \) with length bounded above by the length of \(\gamma \).

Proof. If \(K \leq H \leq G \) then \([\pi(H) : \pi(K)] \) divides \([H : K] \) by Lemma 5. Therefore adjacent vertices in \(\gamma \) map to adjacent vertices in \(\pi(\gamma) \), or are possibly identified in \(\Gamma_p(Q) \). \[\square\]

Lemma 8. Suppose \(G \) is a group and \(p \) is prime.

1. If \(N \) is a normal subgroup of \(G \), then the quotient map \(\pi : G \to G/N \) induces an isometric graph embedding \(\Gamma_p(G/N) \to \Gamma_p(G) \) as an induced subgraph.

2. If \(H \) is a finite-index subgroup of \(G \), then the inclusion \(i : H \to G \) induces a graph embedding \(\Gamma_p(H) \to \Gamma_p(G) \) as an induced subgraph.

3. If \(N \) is a finite-index normal subgroup of \(G \), then the inclusion \(i : N \to G \) induces an isometric graph embedding \(\Gamma_p(N) \to \Gamma_p(G) \) as an induced subgraph.

Proof. For 1, if \(\pi : G \to G/N \) is a quotient map, then the assignment \(K \mapsto \pi^{-1}(K) \) defines a graph embedding \(\Gamma_p(G/N) \to \Gamma_p(G) \) whose image is an induced subgraph. This embedding is isometric by Lemma 2.

For 2, if \(H \leq G \) has finite-index, then the assignment \(K \mapsto i(K) \) defines a graph embedding \(\Gamma_p(H) \to \Gamma_p(G) \) whose image is an induced subgraph.

For 3, let \(N \triangleleft G \) be a finite-index subgroup, with assignment \(\phi : K \mapsto i(K) \) defined over all subgroups \(K \) in \(N \). Let \(H_1, H_2 \in \phi(\Gamma_p(N)) \) and let \(H_1 = J_1, \ldots, J_n = H_2 \) be a path in \(\Gamma_p(G) \) from \(H_1 \) to \(H_2 \). Then for each \(i = 1, \ldots, n - 1 \), we have that
\[[J_i : J_i \cap J_{i+1}][J_{i+1} : J_i \cap J_{i+1}] \]
is a power of \(p \). By Lemma 7, \(\pi(J_1), \ldots, \pi(J_n) \) is a path in \(\Gamma_p(G/N) \). Because \(J_1 \leq N \), this is a path of \(p \)-subgroups of \(G/N \). Therefore \([J_i : J_i \cap N] \) is a power of \(p \) for all \(i = 1, \ldots, n \). Thus, by Lemma 6 applied to \(J_i \cap N \) and \(J_{i+1} \cap J_i \), we have for \(i = 1, \ldots, n - 1 \),
\[[J_i : (J_i \cap N) \cap (J_i \cap J_{i+1})][J_{i+1} : (J_{i+1} \cap N) \cap (J_i \cap J_{i+1})], \]
is a power of p. Hence, for $i = 1, \ldots, n - 1$,

$$[J_i : N \cap J_i][N : J_i \cap J_{i+1}] = [J_i : N \cap J_i \cap J_{i+1}]$$

is a power of p giving that $[N \cap J_i : N \cap J_i \cap J_{i+1}]$ is a power of p, since above we showed that $[J_i : N \cap J_i]$ is a power of p. By a similar argument, we get that $[N \cap J_{i+1} : N \cap J_i \cap J_{i+1}]$ is a power of p, and thus $N \cap J_i$ and $N \cap J_{i+1}$ are adjacent in $\Gamma_p(G)$. It follows that the path J_1, \ldots, J_n can be replaced by the path (which possibly has repeated vertices) $J_1 = J_1 \cap N, J_2 \cap N, \ldots, J_{n-1} \cap N, J_n \cap N = J_n$, which is entirely contained in $\Gamma_p(H)$. It follows that $\Gamma_p(H)$ is a geodesic metric space in the path metric induced from $\Gamma_p(G)$, as desired. \hfill \square

Note that the hypothesis of normality in \cite{3} cannot be removed. For example, suppose S and T are disjoint sets with $|S| = |T| = 5$ and consider the non-normal subgroup $\operatorname{Alt}_S \times \operatorname{Alt}_T \leq \operatorname{Alt}_{S \cup T}$. It can be shown using Lemma \cite{18} below that Alt_S and Alt_T are in the same component of $\Gamma_5(\operatorname{Alt}_{S \cup T})$ but in different components of $\Gamma_5(\operatorname{Alt}_S \times \operatorname{Alt}_T)$.

Our next lemma will lead us to proving our first result concerning free groups.

Lemma 9. Let A be a vertex in $\Gamma_p(G)$. Suppose B shares an edge with A. If q^k divides $|G : A|$ for some prime $q \neq p$ then d^k divides $|G : B|$.

Proof. In this case, we have

$$|G : A \cap B| = |G : A||A : A \cap B| = |G : B||B : A \cap B|.$$

Hence, if q^k divides $|G : A|$, then q^k must divide $|G : B|$ because $|B : A \cap B|$ is a power of p. \hfill \square

Proposition 10. The p-commensurability graph of a free group has infinitely many components.

Proof. Any free group has subgroups N_1, N_2, \ldots with distinct prime indices q_1, q_2, \ldots. By the previous lemma, any vertex that is in the connected component of N_i has index divisible by q_i. Thus, no path exists between N_i and N_j for distinct i, j. \hfill \square

We finish this section by proving a general result: for any group G, any component of $\Gamma_p(G)$ has finite diameter.

Proof of Proposition 5. Let G be any group and Ω a component of $\Gamma_p(G)$. Take any vertex A in Ω and let N be the normal core of A. Let $\pi : G \to G/N$ be the quotient map. Let $D = \{BN : B \in \Omega\}$. We claim that the diameter of $\Gamma_p(G)$ is less than $|D| + 2$.

Let B be a subgroup in Ω. Let V_1, \ldots, V_m be a path in $\Gamma_p(G)$ connecting A to B. Then by Lemma \cite{5} $\pi(V_1), \ldots, \pi(V_m)$ is a path in $\Gamma_p(G/N)$ connecting $\pi(A)$ to $\pi(B)$. Hence

$$\pi(V_1)N, \ldots, \pi(V_m)N$$

is a path connecting A to BN, and so BN is an element of Ω. Further, if $[G : B] = np^r$ where $\gcd(n, p^r) = 1$, then $[G : BN] = np^r$ by Lemma \cite{9} Since $B \leq BN$ and $[G : BN][BN : B] = [G : B]$, we get

$$np^r[BN : B] = np^k$$

and therefore $[BN : B] = p^{k-r}$. Hence BN and B are adjacent in $\Gamma_p(G)$. It follows that there is an edge from any element in Ω to one in D, and so the diameter of Ω is bounded above by the diameter of the subgraph induced by D plus 2. This gives the desired bound $|D| + 2$.

If Ω contains a normal subgroup as a vertex then we can pick $A = N$ in the above argument. Therefore D is the set of p-subgroups of G/N. Any two such subgroups are connected by an edge, so the diameter of Ω is bounded above by 3. \hfill \square
2 Nilpotent groups: The Proof of Theorem 1

We will prove Theorem 1 in two steps, as Propositions 12 and 13 below. For a finite nilpotent group G let $S_p(G)$ denote the unique Sylow p-subgroup of G. Recall that G is the direct product of its Sylow subgroups.

Lemma 11. Suppose $G = S_{p_1}(G) \times \cdots \times S_{p_k}(G)$ for primes p_1, \cdots, p_k. Let $\pi_i : G \to S_{p_i}(G)$ be the quotient map for each i. Then any subgroup $H \leq G$ has the form $H = \pi_1(H) \times \cdots \times \pi_k(H)$.

Proof. Choose ℓ_1, \ldots, ℓ_k so that $g^{\ell_i} = 1$ for all $g \in S_{p_i}(G)$. Choose N so that

$$Np_1^{\ell_1} \cdots p_k^{\ell_k} \equiv 1 \pmod{p_k^{\ell_k}}.$$

Take any $h \in H$ and write $h = (h_1, \ldots, h_k)$ for $h_i \in S_{p_i}(G)$ for all i. Then

$$h^Np_1^{\ell_1} \cdots p_k^{\ell_k} = (1, \ldots, 1, h_k).$$

Therefore $(1, \ldots, 1, h_k) \in H$, and so we may identify $\pi_k(H)$ with a subgroup of H. Applying this argument to each other factor, the result follows. \hfill \Box

Proposition 12. If G is a finitely generated group such that every finite quotient of G is nilpotent, then every component of $\Gamma_p(G)$ is complete for all p.

Proof. Suppose A and B are subgroups of G in the same component of $\Gamma_p(G)$ for some prime p and take any path $A = P_0, P_1, \ldots, P_n = B$ from A to B. Let N be a normal, finite-index subgroup of G contained in P_i for every i. Then G/N is a nilpotent group and $\pi(P_0), \pi(P_1), \ldots, \pi(P_n)$ is a path in $\Gamma_p(G/N)$, where $\pi : G \to G/N$ is the quotient map.

Let \mathcal{P} be a finite set of primes so that $G/N = \prod_{q \in \mathcal{P}} S_q(G/N)$. By Lemma 11 we have decompositions $\pi(P_i) = \prod_{q \in \mathcal{P}} S_q(\pi(P_i))$ for each i. It is straightforward to see that

$$\pi(P_i) \cap \pi(P_{i+1}) = \prod_{q \in \mathcal{P}} S_q(\pi(P_i)) \cap S_q(\pi(P_{i+1}))$$

for any i, and so for $j = i$ or $j = i + 1$ we have

$$[\pi(P_i) : \pi(P_i) \cap \pi(P_{i+1})] = \prod_{q \in \mathcal{P}} [S_q(\pi(P_i)) : S_q(\pi(P_i)) \cap S_q(\pi(P_{i+1}))].$$

Since $\pi(P_i)$ and $\pi(P_{i+1})$ are adjacent in the p-local commensurability graph of G/N, it follows that $S_q(\pi(P_i)) = S_q(\pi(P_{i+1}))$ for all i and all $q \neq p$. Therefore $S_q(\pi(A)) = S_q(\pi(B))$ for all $q \neq p$, and so $[\pi(A) : \pi(A) \cap \pi(B)][\pi(B) : \pi(A) \cap \pi(B)]$ is a power of p. Because $[K : L] = [\pi(K) : \pi(L)]$ for any subgroups $L \leq K \leq G$ containing N, this shows that A and B are adjacent in $\Gamma_p(G)$. \hfill \Box

Lemma 13. If Q is a finite solvable group that is not nilpotent then there is some prime p so that a connected component of $\Gamma_p(Q)$ is not complete.

Proof. Let \mathcal{P} be the set of prime divisors of the order of the finite solvable group Q. For any prime $q \in \mathcal{P}$ there is a Hall subgroup H_q so that $[Q : H_q] = q^k$ for some k and q does not divide the order of H_q. Because Q is not nilpotent, there is some prime p and a Hall subgroup H_p so that $g^{-1}H_pg \neq H_p$ for some $g \in Q$. Then both H_p and $g^{-1}H_pg$ are adjacent to Q in $\Gamma_p(Q)$, but there is no edge between H_p and $g^{-1}H_pg$ in $\Gamma_p(Q)$. \hfill \Box

Lemma 14. If Q is a non-abelian finite simple group then Q contains a non-nilpotent solvable subgroup.
Proof. By Theorem 1 in [BW97] any non-abelian finite simple group contains a minimal simple group, a non-abelian simple group all of whose proper subgroups are solvable. By the Main Theorem of [Tho73], minimal simple groups come from the following list:

\[\text{PSL}_2(q), \text{Sz}(q), \text{PSL}_3(3), M_{11}, 2F_4(2), \text{and } \text{Alt}_7. \]

We show that each of these subgroups contains a solvable and non-nilpotent subgroup:

1. The groups \(\text{PSL}_2(2) \cong \text{SL}_2(2) \cong \text{Sym}_3 \) and \(\text{PSL}_2(3) \cong \text{Alt}_4 \) are non-nilpotent and solvable. Suppose now that \(q - 1 > 2 \). As the group of units in a finite field of order \(q \) form a cyclic subgroup of order \(q - 1 \), there exists \(a \) such that \(a^2 \neq 1 \). Hence, there exists \(a, b \) in any finite field of order \(q \) such that \(ab = 1 \) and \(a \neq b \). The group in \(\text{SL}_2(q) \) generated by

\[
A := \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \quad \text{and} \quad B := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]

is solvable. Moreover, the order of \(A \) divides \((q - 1) \) and the order of \(B \) divides \(q \). Moreover, we have

\[
ABA^{-1}B^{-1} = \begin{pmatrix} 1 & a/b - 1 \\ 0 & 1 \end{pmatrix},
\]

which is not central (the only central elements in \(\text{SL}_2(q) \) are diagonal matrices). Hence, \(\langle A, B \rangle \) has non-nilpotent image in \(\text{PSL}_2(q) \), as elements of coprime order in a finite nilpotent group must commute.

2. Any Suzuki group by [Suz60, 4.] has a cyclic subgroup that is maximal nilpotent and of index 4 in its normalizer. Because every group of order 4 is nilpotent, this normalizer is solvable. Since the cyclic subgroup is maximal nilpotent, this normalizer cannot be nilpotent.

3. \(\text{PSL}_3(3) \cong \text{SL}_3(3) \) contains \(\text{SL}_2(3) \), which is solvable and not nilpotent.

4. \(\text{M}_{11} \) contains \(\text{Sym}_5 \) as a maximal subgroup by [Hun80] and hence contains \(\text{Sym}_3 \).

5. \(2F_4(2) \) contains \(\text{PSL}_2(25) \) as a maximal subgroup by [Hun80] and hence contains a subgroup that is solvable and not nilpotent by the above.

6. \(\text{Alt}_7 \) contains \(\text{Alt}_4 \).

\[\square\]

Proposition 15. Suppose \(G \) is a finitely generated group with a finite-index, normal subgroup \(N \) such that \(G/N \) is not nilpotent. Then there is some \(p \) so that a component of \(\Gamma_p(G) \) is not complete.

Proof. Take \(G \) and \(N \) as above, let \(Q = G/N \) and let \(\pi : G \to Q \) be the quotient map. If \(Q \) is solvable, then by Lemma 13 there is a prime \(p \) and subgroups \(A, B \leq Q \) in the same component of \(\Gamma_p(Q) \) that are not adjacent. Then \(\pi^{-1}(A) \) and \(\pi^{-1}(B) \) are non-adjacent vertices in the same component of \(\Gamma_p(G) \) by Lemma 8, so \(\Gamma_p(G) \) is not complete.

Now consider the case that \(Q \) is not solvable. Let \(Q = N_0 \geq N_1 \geq \cdots \geq N_{k-1} \geq N_k = \{1\} \) be any chain of subgroups such that \(N_{i+1} \) is a maximal normal subgroup of \(N_i \) for all \(i \). Because \(Q \) is not solvable, there is some \(j \) so that \(N_j/N_{j+1} \) is not abelian. Then by Lemma 14 there is a non-nilpotent solvable subgroup \(S \leq N_j/N_{j+1} \). By Lemma 13 there is some prime \(p \) with a component \(\Omega \) of \(\Gamma_p(S) \) that is not complete. By Lemma 8 the component \(\Omega \) fully embeds in a component of \(\Gamma_p(G) \), which is therefore not complete. \[\square\]
3 Free groups: The Proof of Theorem 2

Let F be the free group of rank two. Let p be a prime and $N \in \mathbb{N}$ be given. By Lemma 8 to prove Theorem 2 it suffices to find a finite quotient Q of F with subgroups $A, B \leq Q$ such that the length of any geodesic in $\Gamma_p(Q)$ connecting A to B is greater than N. Our candidate for Q is Alt_X, the alternating group on a set X of more than $p^k > N$ elements, and our candidates for A and B are conjugates of Alt_S for a subset $S \subseteq X$ with p^k elements.

We first need a couple technical group theoretic results. First, we give a description of a connected component in $\Gamma_p(\text{Alt}_X)$. This requires a simple lemma.

Lemma 16. If $T_1 \cap T_2$ has more than one element and $|T_1|, |T_2| \geq 4$, then $\langle \text{Alt}_{T_1}, \text{Alt}_{T_2} \rangle = \text{Alt}_{T_1 \cup T_2}$.

Proof. We prove this by induction on $|T_1 \cup T_2|$. The case that $T_1 = T_2$ is clear, so suppose $T_1 \neq T_2$. The base case, when $|T_1| = |T_2| = 4$ and $|T_1 \cap T_2| \in \{2, 3\}$, follows by computation (we did this in GAP15). For the inductive step, suppose without loss of generality that $x \in T_1 \setminus T_2$. By inductive hypothesis $\langle \text{Alt}_{T_1 \setminus \{x\}}, \text{Alt}_{T_2} \rangle = \text{Alt}_{T_1 \cup T_2 \setminus \{x\}}$. Arguing similarly if $T_2 \setminus T_1$ is nonempty, we reduce to the case when $T_1 \setminus T_2 \setminus T_1 \cap T_2$ consists of at most two points. To finish, we claim that any 3-cycle on points in $T_1 \cup T_2$ is in $\langle \text{Alt}_{T_1}, \text{Alt}_{T_2} \rangle$. Let v_1, v_2, v_3 be distinct points in $T_1 \cup T_2$. If $\{v_1, v_2, v_3\} \subseteq T_1$ or $\{v_1, v_2, v_3\} \subseteq T_2$, then we are done. Thus, by suitably relabeling, we may assume $v_1, v_2 \in T_1$ and $v_3 \in T_2$. Further, since $T_1 \cup T_2 \setminus T_1 \cap T_2$ consists of at most two points, then by relabeling again, we may assume $v_2 \in T_2$. Select $w_1, w_2 \in T_1 \cap T_2$ that are distinct from v_1, v_2, and v_3. Then, by the base case applied to $\langle v_1, v_2, v_3, w_1 \rangle \leq \text{Alt}_{T_1}$ and $\langle v_1, v_2, v_3, w_2 \rangle \leq \text{Alt}_{T_2}$, we obtain that $\langle v_1, v_2, v_3, w_1, w_2 \rangle$ is contained in $\langle \text{Alt}_{T_1}, \text{Alt}_{T_2} \rangle$, and hence the desired 3-cycle is found. This completes the proof. □

For any subset $S \subseteq X$, we denote the symmetric group on S by Sym_S and the alternating group on S by Alt_S. For a subgroup $P \leq \text{Sym}_S$ we define the support to be the complement of the fixed point set of the action of P on S.

Lemma 17. Let p be a prime number and k an integer so that $p^k > 4$. Let X be a finite set, $S \subseteq X$, and $P \leq \text{Sym}_S$ a p-group with support disjoint from S. Let E be an index p^k subgroup of $\text{Alt}_S \times P$. If $|S| = p^k$ or $|S| = p^k - 1$, then we have the decomposition $E = \text{Alt}_T \times P'$ for some $P' \leq P$ and some $T \subseteq S$ with $|T| = p^k$ or $|T| = p^k - 1$.

Proof. Let $\pi : \text{Alt}_S \times P \rightarrow \text{Alt}_S$ be the projection map. By Lemma 5 we have

$$[\text{Alt}_S \times P : E] = [\text{Alt}_S : \pi(E)][1 \times P : E \cap (1 \times P)].$$

The left hand side of this equation is a power of p, so $[\text{Alt}_S : \pi(E)]$ is a power of p. Because $|S| = p^k$ or $|S| = p^k - 1$ by assumption, Theorem 1(a) in [Our88] immediately implies that either $\pi(E) = \text{Alt}_S$ or $|S| = p^k$ and $\pi(E) = \text{Alt}_{S \setminus \{v\}}$ for some $v \in S$. Let T denote the set such that $\pi(E) = \text{Alt}_T$. Let q be 3 if $p \neq 3$ and q be 2 if $p = 3$. For the case $p \neq 3$, recall that Alt_T is generated by 3-cycles by elementary properties of alternating groups. In the case $p = 3$, note that $p^k > 6$. Because Alt_S is generated by an element of order 2 and one of order 4, Lemma 16 implies that Alt_T is generated by elements of order 2 or 4 in this case. Therefore in either case it follows that Alt_T is generated by elements g_1, \ldots, g_k each with order dividing a power of q. Since π maps onto Alt_T, we have that for each $i = 1, \ldots, k$, there exists $v_i \in P$ such that $(g_i, v_i) \in E$. Since $v_i \in P$, we have that the order of v_i is coprime with g_i, hence as $q \neq p$, there exists ℓ such that

$$(g_i, v_i)^\ell = (g_i, 1).$$

It follows then that E contains all of $\text{Alt}_T \times 1$, and hence $E = \text{Alt}_T \times P'$ where $P' \leq P$, as desired. □

Let $\Omega_{S,X}$ be the component of $\Gamma_p(\text{Alt}_X)$ containing Alt_S, and let $B_{S,X}$ denote the set of subgroups in $\Omega_{S,X}$ isomorphic to Alt_T for some $|T| \in \{p^k, p^k - 1\}$. For odd primes p, we get the following description:
Lemma 18. Let \(S \subseteq X \) be a set of cardinality \(p^k \) for some odd prime \(p \) such that \(p^k > 4 \). Vertices of the component \(\Omega_{S,X} \) in \(\Gamma_p(Alt_X) \) consist of two classes of subgroups:

Type 1. subgroups of the form \((Alt_T, P) \), where \(|T| = p^k \) and \(P \leq Alt_X \), and

Type 2. subgroups of the form \((Alt_T, P) \), where \(|T| = p^k - 1 \) and \(P \leq Alt_X \).

In either case, the subgroup is \(Alt_T \times P \), where \(P \) is a \(p \)-group with support in \(T^c \). Moreover, for all primes \(p \), if \(V \) is of Type 1 or Type 2, the set \(T \) is uniquely determined by \(V \).

Proof. We first show uniqueness of \(T \). This implies that Type 1 and Type 2 are disjoint classes. Let \(V \) be a vertex with distinct decompositions \(Alt_T \times P_i \) with \(|T_i| > 3 \) and \(p \)-group \(P_i \) with support in \(T_i^c \) for \(i = 1, 2 \) such that \(T_1 \neq T_2 \). If \(T_i \cap T_j \) is empty, then

\[
[V : Alt_{T_1} \times Alt_{T_2} \times 1 : Alt_{T_1} \times 1] = |V : Alt_{T_1} \times 1| = |P_1|,
\]

and thus \([Alt_{T_1} \times Alt_{T_2} \times 1 : Alt_{T_1} \times 1] = |Alt_{T_2}| \) must be a power of \(p \). But this is impossible as \(|Alt_{T_2}| \) is either \((p^k)!/2 \) or \((p^k - 1)!/2 \) for \(p^k > 4 \). Thus, \(T_1 \) and \(T_2 \) overlap. If \(T_1 \neq T_2 \) then \(Alt_{T_1} \times 1 \) cannot be normal because \(Alt_{T_2} \) acts transitively on \(T_2 \). But \(Alt_{T_1} \times 1 \) is clearly normal in \(Alt_{T_1} \times P_1 \), so this is a contradiction. Therefore \(T_1 = T_2 \).

Since elements in \(B_{S,X} \) are of Type 1 or 2, it suffices to show that any \(E \) that is adjacent to an element of Type 1 or 2 must itself be of Type 1 or 2.

Let \(E \) be adjacent to \(V = Alt_T \times P \) where \(P \) is a \(p \)-group with support in \(T^c \) and \(|T| = p^k \) or \(|T| = p^k - 1 \). Then \(E \cap V \) is a subgroup of \(Alt_T \times P \) of index a power of \(p \). By Lemma 17, \(E \cap V = Alt_T \times P' \) or \(E \cap V = Alt_T \times P' \) where \(P' \leq P \) and \(v \in T \). We will therefore assume without loss of generality that \(E \) contains \(Alt_T \times 1 \) and \(Alt_T \) as a subgroup of \(p \)-power index.

Suppose that \(E \) does not leave \(T \) invariant. Let \(T_1, T_2, \ldots, T_k \) be the orbit of \(T \) acting on \(T \) and note that \(E \) contains \(Alt_T \) for each \(i \). Suppose \(T_i \cap T_{i+1} \) has fewer than two elements for some \(i \). The group \(Alt_T \) contains \(Alt_{T \setminus T_i \cup T_{i+1}} \), which includes a permutation of order 2 since \(|T_i| > 4 \). Hence \(E \) contains \(Alt_T \times \mathbb{Z}/2 \mathbb{Z} \). But this is impossible, as \(Alt_T \) is of index \(p^k \) in \(E \) for an odd prime \(p \). We therefore know that \(T_i \cap T_{i+1} \) has more than two elements for every \(i \). Then by applying Lemma 16, we conclude that \(E \) contains \(Alt_{T_1 \cup T_2 \cup \cdots \cup T_k} \). Since \(E \) contains \(Alt_T \) as a subgroup of prime power index and \(T_1 \cup T_2 \cup \cdots \cup T_k \neq T_1 \), it follows that \(|T_1 \cup T_2 \cup \cdots \cup T_k| = p^k \) and in fact \(E \) contains \(Alt_{T_1 \cup T_2 \cup \cdots \cup T_k} \) as a subgroup of index \(p^k \) for some \(\ell \).

We may therefore assume, after replacing \(T \) with \(T_1 \cup T_2 \cup \cdots T_k \) if necessary, that \(E \) leaves \(T \) invariant. Then \(E \leq Sym_T \times Q \) where \(Q \) is a group with support disjoint from \(T \). Let \(\pi : Sym_T \times Q \rightarrow Sym_T \) be the projection onto the first coordinate. By Lemma 5, \([\pi(E) : Alt_T] \) divides \(|E : Alt_T| \) and hence is a power of \(p \). It follows that \(\pi(E) = Alt_T \), as \(Alt_T \) is a maximal subgroup of \(Sym_T \) of index two. Further, since \(Alt_T \) is normal, we apply Lemma 5 to the map \(\psi : Alt_T \times Q \rightarrow Q \) to see that \(|\psi(E)| \) is a power of \(p \). Applying Lemma 17, we obtain the desired conclusion.

The prime \(p = 2 \) requires relaxing the conclusion of Lemma 18 since any symmetric group on three or more elements contains an alternating group of index 2.

Lemma 19. Let \(S \subseteq X \) be a set of cardinality \(2^k \) such that \(k > 2 \). Vertices of the component \(\Omega_{S,X} \) in \(\Gamma_p(Alt_X) \) is at least one of two types:

Type 1'. subgroups \(V \) such that \(Alt_T \times 1 \leq V \leq Sym_T \times P \), where \(|T| = 2^k \) and \(P \leq Alt_X \), and

Type 2'. subgroups \(V \) such that \(Alt_T \times 1 \leq V \leq Sym_T \times P \), where \(|T| = 2^k - 1 \) and \(P \leq Alt_X \).

In either case, \(P \) is a \(2 \)-group with support in \(T^c \).

Proof. Since elements in \(B_{S,X} \) are of Type 1’ or 2’, it suffices to show that any \(E \) that is adjacent to an element of one of the types must itself be of one of the types.
Let E be adjacent to some V with $\text{Alt}_T \times 1 \leq V \leq \text{Sym}_T \times P$ where P is a 2-group. Because V has index a power of 2 in $\text{Sym}_T \times P$, we know that $E \cap V$ also has index a power of 2 in $\text{Sym}_T \times P$. Since $\text{Alt}_T \times P$ is a normal subgroup of $\text{Sym}_T \times P$, we have by Lemma 6 that $(\text{Alt}_T \times P) \cap E \cap V$ has index a power of 2 in $\text{Sym}_T \times P$, and hence in $\text{Alt}_T \times P$. By Lemma 17 $E \cap V \cap (\text{Alt}_T \times P) = \text{Alt}_T \times P'$ or $E \cap V \cap (\text{Alt}_T \times P) = \text{Alt}_{T \setminus \{v\}} \times P'$ where $P' \leq P$ and $v \in T$. We conclude that $\text{Alt}_T \times 1$ or $\text{Alt}_{T \setminus \{v\}} \times 1$ has index a power of 2 in $E \cap V \cap (\text{Alt}_T \times P)$, and hence has index a power of 2 in E. We will therefore assume without loss of generality that E contains $\text{Alt}_T \times 1 = \text{Alt}_T$ as a subgroup with index a power of 2, where $|T'| = 2^k$ or $|T'| = 2^k - 1$.

Suppose that E does not leave T invariant. Let T_1, T_2, \ldots, T_k be the orbit of E acting on T and note that E contains Alt_T for each i. Suppose $T_1 \cap T_{i+1}$ has fewer than two elements for some i. The group Alt_T contains $\text{Alt}_{T_1 \cap T_{i+1}}$, which includes a permutation of order 3 because $|T_i| > 3$. Hence E contains $\text{Alt}_T \times \mathbb{Z}/3\mathbb{Z} \geq \text{Alt}_T$. This is impossible, as Alt_T is of 2 power index in E. We therefore know that $T_1 \cap T_{i+1}$ has more than two elements for every i. Then by applying Lemma 16 we conclude that E contains $\text{Alt}_{T_1 \cup T_2 \cup \cdots \cup T_k}$. Since E contains Alt_T as a subgroup of prime power index and $T_1 \cup T_2 \cup \cdots \cup T_k \neq T_1$, it follows that $|T_1 \cup T_2 \cup \cdots \cup T_k| = 2^k$ and in fact E contains $\text{Alt}_{T_1 \cup T_2 \cup \cdots \cup T_k}$ as a subgroup of index 2^k for some ℓ.

We may therefore assume, after replacing T with $T_1 \cup T_2 \cup \cdots \cup T_k$ if necessary, that E leaves T invariant. Then $\text{Alt}_T \times 1 \leq E \leq \text{Sym}_T \times Q$ where Q is a 2-group with support disjoint from T, as desired.

Note that groups of Type 1 and Type 2 are of Type 1’ and Type 2’ respectively. The next result allows us to restrict attention to geodesics in $B_{S,X}$ when computing distances there.

Lemma 20. Let $S \subseteq X$ be a set of cardinality $p^k > 4$ for some prime p and integer k. Then $B_{S,X}$ is a geodesic metric space in the path metric induced from $\Omega_{S,X}$.

Proof. We first need a local fact. Let V_1, V_2 be two adjacent vectors in $\Omega_{S,X}$. If p is odd, then by Lemma 18 we have $V_i = \text{Alt}_{T_i} \times P_i$, where $|T_i| = p^k$ or $|T_i| = p^k - 1$ and the support of P_i is disjoint from T_i for $i = 1, 2$. If $p = 2$, then by Lemma 19 $\text{Alt}_T \times 1 \leq V_i \leq \text{Sym}_T \times P_i$, where $|T_i| = p^k$ or $|T_i| = p^k - 1$ and the support of P_i is disjoint from T_i for $i = 1, 2$. We claim that in either case, Alt_{T_1} and Alt_{T_2} are connected by an edge in $\Gamma_p(\text{Alt}_X)$.

Since V_1 and V_2 are adjacent, we have that

$$[V_1 : V_1 \cap V_2][V_2 : V_1 \cap V_2]$$

is a power of p. Thus, when p is odd, Lemma 17 applied twice along with the uniqueness in Lemma 18 gives that $V_1 \cap V_2$ is $\text{Alt}_T \times P$ where $S \subseteq T_1 \cap T_2$ satisfies $|S| = p^k$ or $|S| = p^k - 1$ and $P \leq P_1 \cap P_2$. Thus it is straightforward to see that Alt_T is adjacent to Alt_{T_2}.

When $p = 2$, set $H_i = \text{Alt}_{T_i} \times 1$ and $\Lambda = V_1 \cap V_2$. Then H_i is normal in V_i, thus $H_i \cap \Lambda$ is normal in Λ. Since $[\text{Sym}_T \times P_i : H_i]$ is a power of 2 and

$$[\text{Sym}_T \times P_i : V_i][V_i : H_i] = [\text{Sym}_T \times P_i : H_i],$$

we get $[V_i : H_i]$ is a power of 2. Since H_i is normal in V_i, Lemma 6 implies that $[V_i : H_i \cap \Lambda]$ is a power of 2. Further, as $[V_i : \Lambda]$ is a power of 2 and

$$[V_i : \Lambda][\Lambda : H_i \cap \Lambda] = [V_i : H_i \cap \Lambda]$$

we conclude that $[\Lambda : H_i \cap \Lambda]$ is a power of 2 for $i = 1, 2$. Thus, applying Lemma 6 to $H_1 \cap \Lambda \triangleleft \Lambda$ and $H_2 \cap \Lambda \triangleleft \Lambda$, we have that $H_1 \cap H_2 \cap \Lambda$ has index a power of 2 in Λ. As

$$[V_i : \Lambda][\Lambda : H_i \cap H_2 \cap \Lambda] = [V_i : H_i \cap H_2 \cap \Lambda],$$

it follows that $[V_i : H_1 \cap H_2 \cap \Lambda]$ is a power of 2. Because $[V_i : H_i]$ is also a power of 2 (shown above) and

$$[V_i : H_i][H_i : H_1 \cap H_2 \cap \Lambda] = [V_i : H_i \cap H_2 \cap \Lambda]$$
The topology of local commensurability graphs

we have $|H_i : H_1 \cap H_2 \cap \Lambda|$ is a power of 2 for each i. By applying Theorem 1(a) in [Gur83] and the uniqueness in Lemma 18, we have $H_1 \cap H_2 \cap \Lambda$ is Alt_S for some $S \subseteq T_1 \cap T_2$ with $|S| = p^k$ or $|S| = p^k - 1$. Thus, Alt_{T_i} is adjacent to Alt_{T_j}, as claimed.

Now let γ be a path in $\Omega_{S,X}$ that, except for its endpoints, is entirely in the complement of $B_{S,X}$. Enumerate the vertices of γ in the order they are traversed,

$$V_1, V_2, \ldots, V_m,$$

where $\text{Alt}_{T_i} \times 1 \leq V_i \leq \text{Sym}_{T_i} \times P_i$ for all $i = 1, \ldots, m$.

Then by the previous claim, we may form a new path (after throwing out repeated vertices)

$$\text{Alt}_{T_1}, \text{Alt}_{T_2}, \ldots, \text{Alt}_{T_m},$$

that is entirely contained in $B_{S,X}$ and has the same endpoints as γ. It follows that $B_{S,X}$ is geodesic in $\Omega_{S,X}$, as desired.

Proposition 21. Let $S \subseteq X$ be a set of cardinality $p^k > 4$ for some prime p and integer k. There exists $V, W \in B_{S,X}$ such that any path in $\Omega_{S,X}$ connecting V to W has length at least $p^k - \max\{0, 2p^k - |X|\}$.

Figure 2: $\Omega_{S,X}$ with $|S| = 5$ and $|X| = 7$. The coloring gives the types and the numbers give the valence of each vertex. This figure was generated using GAP [GAP15] and Mathematica [Res15].
Proof. By Proposition 20, it suffices to show that there exists $V, W \in B_{S,Y}$ such that any path in $B_{S,Y}$ has length greater than $|X| - p^k$. Let $O_1, O_2 \subseteq X$ with $|O_1 \cap O_2| \leq \max\{0, 2p^k - |X|\}$. Let E_1, E_2, \ldots, E_m be distinct vertices in a non-back-tracking path in $B_{S,Y}$ connecting Alt_{O_1} to Alt_{O_2}. Let T_1, T_2, \ldots, T_m be subsets of X such that $E_i = Alt_{T_i}$ for $i = 1, \ldots, m$. For each $i = 1, \ldots, m$, we have one of three cases:

1. E_i is Type 1 and E_{i+1} is Type 1: In this case, $|T_{i+1} \cap T_i| = |T_i| - 1 = p^k - 1$.
2. E_i is Type 1 and E_{i+1} is Type 2: In this case, $T_{i+1} \subseteq T_i$ and $|T_{i+1}| = |T_i| - 1 = p^k - 1$.
3. E_i is Type 2 and E_{i+1} is Type 1: In this case, $T_{i+1} \supseteq T_i$ and $|T_{i+1}| = |T_i| + 1 = p^k$.
4. E_i is Type 2 and E_{i+1} is Type 2: This case never occurs, as $[Alt_T : Alt_U]$ is not a power of p for any proper subset $U \subset T$ with $|T| = p^k - 1$.

Thus, we see that for each i, we see that T_i and T_{i+1} differ by moving, adding, or removing at most one element. It follows that $m \geq p^k - |O_1 \cap O_2| \geq p^k - \max\{0, 2p^k - |X|\}$. \hfill \qed

Proof of Theorem 2. Let F be a rank two free group and p a prime. Given $N > 0$, choose k so that $p^k > N$ and $p^k > 4$. For any finite set X with $|X| > 2p^k$, let γ_k be a path of length p^k in $\Gamma_p(Alt_X)$ guaranteed by Proposition 21. Then pulling back γ_k over any surjection $\pi : G \to Alt_X$ produces a path of length p^k in $\Gamma_p(F)$ by Lemma 8. By Lemma 8, sets X_1 and X_2 with relatively prime cardinalities will produce geodesics in different components of $\Gamma_p(F)$. \hfill \qed

Proof of Corollary 4. Let G be a large group, p a prime, and $N > 0$. Since a finite-index subgroup of a nonabelian free group is nonabelian, there exists a normal finite-index subgroup $H \leq G$ that surjects onto F, the free group of rank 2. By Lemma 7 and Theorem 2, there exists vertices $V, W \in \Gamma_p(H)$ such that any path connecting them in $\Gamma_p(G)$ has length greater than N. The result now follows from Lemma 8 as $\Gamma_p(H)$ isometrically embeds into $\Gamma_p(G)$. \hfill \qed

Corollary 22. Let G be a large group and p a prime. There exists a connected component of $\Gamma_p(G)$ that does not contain any normal subgroup.

Proof. By Proposition 4, any component of $\Gamma_p(G)$ containing a normal subgroup as a vertex has diameter at most 3. By Corollary 4, there are components of G with arbitrarily long geodesics. \hfill \qed

References

[AH+15] S. Akbari, A. Ashtab, F. Heydari, M. Rezaee, and F. Sherafati, The prime index graph of a group, arXiv:1508.01133 (2015).

[BRHP] K. Bou-Rabee, M. Hagen, and P. Patel, Residual finiteness growths of virtually special groups, Math. Zeit. (to appear), arXiv:1402.6974.

[BRK12] Khalid Bou-Rabee and Tasho Kaletha, Quantifying residual finiteness of arithmetic groups, Compos. Math. 148 (2012), no. 3, 907–920. MR 2925403

[BRM11] K. Bou-Rabee and D. B. McReynolds, Asymptotic growth and least common multiples in groups, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1059–1068. MR 2861528

[BRS] Khalid Bou-Rabee and Brandon Seward, Arbitrarily large residual finiteness growth, Journal für die reine und angewandte Mathematik (to appear), arXiv:1304.1782.

[BW97] Michael J. J. Barry and Michael B. Ward, Simple groups contain minimal simple groups, Publ. Mat. 41 (1997), no. 2, 411–415. MR 1485492

[GAP15] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.8, 2015.
The topology of local commensurability graphs

Neha Gupta and Ilya Kapovich, *The primitivity index function for a free group, and untangling closed curves on hyperbolic surfaces*, arXiv:1411.5523.

R. I. Grigorchuk, *On the Milnor problem of group growth*, Dokl. Akad. Nauk SSSR **271** (1983), no. 1, 30–33. MR 712546 (85g:20042)

Robert M. Guralnick, *Subgroups of prime power index in a simple group*, J. Algebra **81** (1983), no. 2, 304–311. MR 700286 (84m:20007)

David C. Hunt, *A computer-based atlas of finite simple groups*, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 507–510. MR 604629 (82a:20022)

Martin Kassabov and Francesco Matucci, *Bounding the residual finiteness of free groups*, Proc. Amer. Math. Soc. **139** (2011), no. 7, 2281–2286. MR 2784792 (2012g:20085)

Gady Kozma and Andreas Thom, *Divisibility and laws in finite simple groups*, arXiv:1403.2324v3.

Alexander Lubotzky and Dan Segal, *Subgroup growth*, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431 (2004k:20055)

Priyam Patel, *Quantifying algebraic properties of surface groups and 3-manifold groups*, Ph.D. thesis, Rutgers, The State University of New Jersey, 2013, pp. 1–53.

Wolfram Research, *Mathematica*, 2015.

Igor Rivin, *Geodesics with one self-intersection, and other stories*, Adv. Math. **231** (2012), no. 5, 2391–2412. MR 2970452

Michio Suzuki, *A new type of simple groups of finite order*, Proc. Nat. Acad. Sci. U.S.A. **46** (1960), 868–870. MR 0120283 (22 #11038)

John G. Thompson, *Nonsolvable finite groups all of whose local subgroups are solvable. IV, V, VI*, Pacific J. Math. **48** (1973), 511–592; ibid. 50 (1974), 215–297; ibid. 51(1974), 573–630. MR 0369512 (51 #5745)

Khalid Bou-Rabee
Department of Mathematics, CCNY CUNY
E-mail: khalid.math@gmail.com

Daniel Studenmund
Department of Mathematics, University of Utah
E-mail: dhs@math.utah.edu