A wireless pressure parameters visualization system of a powered roof support on the example of Polish mines

The introduction of pressure monitoring for powered roof support in recent years by coal companies has been one of the main objectives of the Industry 4.0 programme. The development of the monitoring of operating parameters of powered roof supports in a longwall complex was aimed at increasing the safety of workers and improving the economic result associated with longwall downtime. One of the main objectives of monitoring is to observe the correct spreading of the sections in the excavation and to diagnose damage in the hydraulic systems and the occurrence of internal leakage in the hydraulic cylinders. A system for monitoring the operating parameters of powered roof support has been developed for this purpose. This article describes the advantages of DOH-DROPSY monitoring and its implementation based on the experience of the authors on the example of a production longwall.

Key words: pressure monitoring, powered roof supports, load-bearing capacity, improved occupational safety

1. INTRODUCTION

Powered roof support sections in the Polish mining sector, as compared to other longwall system equipment, were not covered by pressure monitoring until 2000. The first reports on their implementation can be found in the literature [1]. The main task of a powered roof support is its interaction with the rock mass [2–4]. This requires the proper selection of the powered roof support [5–7] according to mining and geological conditions prior to the launch of mining operations. Properly selected powered roof supports adequately maintain the roof, which has a significant impact on the efficiency and safety of people working in the longwall [8, 9]. This, in turn, affects the safety of longwall operation and the economic performance of the coal companies. In order to ensure safety and comfort at work, reduce the negative impact of mining on the environment and maintain operational efficiency, increasingly modern technologies and reliable technical means are being implemented, in particular advanced machinery and equipment. An example of this approach is the implementation of the solutions proposed in the concept of the fourth industrial revolution [10–12].

A noticeable development of pressure monitoring for powered roof support can be seen in Polish coal companies [13–15]. The works [16–18] present problems related to the supportability of powered roof support and the possibilities offered by monitoring. The use of monitoring for the analysis of operational parameters of longwall support has a significant impact on the earlier detection of leaks and of a drop in the required pressure and a sudden increase in pressure in the spaces under the hydraulic legs caused by sudden overloading of the rock mass [9, 19].
The development of the monitoring system for powered roof supports and its application in a longwall complex has a significant impact on the safety of other machinery and equipment [20, 21]. The purpose of this publication is to present the development of the DOH-DROPSY monitoring system and its implementation at longwalls in Polish coal mines. Figure 1 shows the design of a wireless pressure monitoring system.

![Fig. 1. The solution of a monitoring system for powered roof support:](image)

1 – control stand, 2 – surface server, 3 – diagnostic and analysis server, 4 – wireless signaller DAISY-01, 5 – wireless pressure sensor DROPS-01, 6 – powered roof support, 7 – intrinsically safe radio converter DILER-01, 8 – underground visualisation station, 9 – underground transmission converter

### 2. DESIGN OF THE MONITORING SYSTEM

In its basic version, the system consists of pressure sensors that take measurements with a high degree of accuracy and transmit them between each other by radio. The lack of a neighbouring sensor does not cause a break in communication, as is the case with the wired transmission. The transmission continuity is ensured within the range of the radio signal and can reach up to two break sections between successive sensors. The sensors, as autonomous modules, have high-efficiency interchangeable power sources, ensuring trouble-free operation of the system for approximately one year depending on the configuration parameters. The wireless signal finally reaches the converter, which provides a local database for the system. It is equipped with radio systems and a cable interface for communication with a face-to-face computer, on which the visualization and configuration application provides a constant view of the pressure values measured in the longwall. These include the pressure values in the legs of the powered roof support, on the supply or supply bus, as well as the supply voltage values of the sensors, so that links replacements can be planned in advance. This is carried out under underground conditions without the need to dismantle the sensor itself and transport it away from the hazardous area. This system is an open system, which makes it possible to monitor other parameters, such as the position of section elements from inclinometric sensors. Configuration of the system takes place at the customer’s location, making the system user-friendly and non-hermetic. The sensors are suitable for warehouse storage without the need for cell disassembly and initial configuration/reconfiguration.

An additional feature of the system is the DAISY-01 signalling device. It is a wireless device for emitting light signals. It can be mounted anywhere and allows more convenient control of the correct spreading of the sections through visual indication of the level of the measured pressure in relation to the set threshold values.

Located in the main gate, the computer is the local data server (Fig. 2). Using specialised software, it continuously visualises and analyses the transmitted data. It enables network diagnostics, reporting and viewing of measurement history by authorised users. All the data collected by the system in the longwall is transferred to a server on the surface, whose application provides an on-line view of the data, its archiving with the possibility of generating reports and carrying out analyses. It is presented in Figure 3.

![Fig. 2. System components](image)
The wireless pressure monitoring system consists of sensors that are built directly into the hydraulic leg block and the canopy support cylinder. On the basis of the measurements obtained and the data collected, it is possible to visualise the working cycle of a powered roof support, and it is possible to analyse the emergence of leaks in the hydraulic systems and the power hydraulics. The data obtained from the monitoring system is compiled as a map with the pressure distribution of each support section. One of the objectives of this system is to improve safety and comfort at work.

2.1. Wireless pressure transmitter type DOH DROPSY-01

The purpose of the wireless pressure transmitter (Fig. 4) is to measure pressure every 1 second when connected to the hydraulic system. The transmitter is an intrinsically safe device. The measuring element of the transmitter is a piezoresistive pressure sensor. The sensor uses a piezoresistive process, whereby the resistance of the measuring bridge changes in proportion to the pressure being measured. Tasks (Fig. 5) that the wireless pressure transmitter performs include:

- measure pressure in section legs, as standard for all sections in the longwall,
- measure pressure in the supply and discharge mains, typically at three points in the longwall,
- measure pressure in the canopy support, by default, both pistons of the support are monitored on selected sections in the longwall, for example, every 10 sections.

2.2. Intrinsically safe radio converter DILER-01

This is a device (Fig. 6) that provides a connection between devices on a wireless network and wired communicating devices. It has the following functions:

- converts a wireless signal into a wired one,
- visual indicator: status of wireless communication with DROPS-01 transmitters, the status of wired communication with the underground computer,
- assembly within 1 to 5 sections of a powered roof support.

2.3. Underground visualisation station

The underground visualisation station (Fig. 7) is located in the main gate; it is a computer in an Exd flameproof case (Fig. 6).
Its tasks include:
– preview of the current pressure distribution in the longwall for the legs, the supply and drainage lines and the floor support actuator,
– review of archive data,
– generating a map of pressure distribution in the longwall.

Fig. 7. Method of communication within the longwall:
1 – underground transmission converter,
2 – underground visualisation station

2.4. Data transmission between the excavation site and the surface server

The transmission of data obtained from pressure measurements is carried out via:
– fibre optic cable directly to the surface or,
– twisted pair, using DSL-OPTO signal media converters.

2.5. Surface server with the control station

The task of the surface server (Fig. 8) is to:
– provide measurement data via a website,
– preview the current pressure distribution in the legs of the powered roof support in the longwall,
– review of archive data,
– generate a map of pressure distribution in the longwall,
– visualise the operation of the system on any number of computer stations in the mine.

Fig. 8. A means of communication on the surface:
1 – control station, 2 – surface server

3. EXAMPLE OF USE

Longwall 7a, exploited in seam 402/K at depths of 913 m to 952 m, is characterised by a thickness of approximately 2.1 m to 3.1 m, with a transverse slope of 2° and a longitudinal slope of approximately 3°. The seam is overgrown by coal shale with a thickness ranging from about 0.45 m to about 0.9 m. The longwall was mined to the full thickness of the seam without leaving a layer of coal in the roof or floor. There are no discontinuous geological disturbances in the preparatory excavations for longwall 7a in the form of slip faults, etc.

The average compressive strengths are:
– for rocks of the direct roof:
  • shale – 16.7–32.2 MPa,
  • sandy shale – 20.7–94.9 MPa,
  • sandstone – 40.2–79.1 MPa;
– for rocks of the direct floor:
  • shale – 25.0–44.96 MPa;
  • for coal bed 402 – 7.9–20.2 MPa.

The above results make it possible to classify the roof rocks in classes from A(II), which defines weak roof falling after a certain delay, to E(VI), which defines very strong and durable roofs. The floors are classified as highly compact [22].

The longwall 7a was carried out in a longitudinal system with roof rock caving with panel lengths of approximately 750 m. The length of the longwall was up to 235 m.

In longwall 7a, the mine used type KW-16/32-POz/ZRP powered roof support sections with a working height of up to 3.1 m and DOH-DROPSY pressure monitoring system. The roof support was a support and shield structure based on an articulated
quadrilateral with a lemniscate stabilisation system for the canopy. The selection of the powered roof support and its yielding was carried out by the Central Mining Institute, which determined the roof maintenance index $g$ (0.8, correct roof maintenance conditions) and the ability to absorb loads as a result of a rockburst (according to the loading factor) $n_{tc} = 1.4$ [23].

The measuring system allowed pressure measurements to be taken with an accuracy of 0.1 MPa at a frequency of 1 second in each leg of all sections of the powered roof support. The parameters of the system therefore allowed the pressure in the piston cavities of the legs to be measured under basically static conditions only. The pressure measurements covered 152 sections during 350 days of measurement. The measured pressure values in the spaces under the piston of the legs were compared with the area of the longwall, as shown in the following figures.

Pressure monitoring is fundamental to the operation of a longwall complex to ensure that the powered roof support operates at the correct parameters. Based on the monitoring, it is possible to control the working cycle of the powered roof support, such as withdrawing, sliding, and spreading.

This pressure monitoring registers values mainly in the piston spaces of the hydraulic legs and in the supports of the canopy. The DOH-DROPSY wireless monitoring system enables pressure measurements with an accuracy of 0.1 MPa and a frequency of 1 second to be taken. The pressure values for maintaining the required maximum pressure of a given section for proper operation are marked in green. The red colour marks the pressure values indicating that the required pressure has not been reached, which may be the cause of, among other things, insufficient spreading of the sections, the occurrence of external or internal leakage in the piston space of the legs. Figure 9 shows the pressure distribution for the powered roof support section and Figure 10 shows a map of the pressure distribution in the longwall field.

As literature [5, 24, 25] indicates, a powered roof support is characterised by three support capacities. The initial support obtained at the moment of expansion resulting from the supply pressure in the mains. The nominal bearing capacity is the maximum that a powered support section can achieve at static load and depends on the opening pressure of the safety valve. The support that the section reaches at a given moment under the influence of the pressure of the rock mass is the working support; its value is between the working support and the nominal support. Ensuring the required support that a powered roof support set develops is shown in Figure 11, which also interprets the work cycle of a powered roof support section. The location of the pressure sensors in the powered roof support section is shown in Figure 12, where a pressure signaller is placed on the canopy to provide light information on the pressure status. The list of applications of working monitoring in Polish mines is summarised in Table 1.

![Fig. 9. Pressure distribution in a powered roof support section](image)
Fig. 10. Map of pressure distribution in powered roof support sections

Fig. 11. The workflow of a powered roof support section: 1 – left leg, 2 – right leg, 3 – a time associated with the withdrawal, rearrangement and spragging, 4 – monitoring of section spreading in the longwall, 5 – initial support, 6 – nominal bearing capacity, 7 – working bearing capacity

Fig. 12. Arrangement of sensors monitoring pressure parameters for powered roof supports: 1 – pressure monitoring sensor for the hydraulic leg, 2 – pressure monitoring sensor for the floor support cylinder, 3 – pressure signalling device located in the canopy
4. CONCLUSION

Pressure monitoring of powered roof support sections is one of the key elements of Industry 4.0. The changes taking place in the energy sector are forcing companies to act to ensure profitability, increase efficiency and improve safety. The only solution is to invest in innovative solutions and modern machinery and devices.

The mining industry, characterised by a high accident rate and several natural hazards, is a testing ground for investment opportunities in innovative solutions. An additional element that will allow energy companies to secure their future in the market is increased control and supervision of the works carried out through monitoring systems. In the course of mining work, it is necessary to continuously monitor the changes taking place in the excavation. This guarantees that the continuity of the excavation roof and the proper level of stress in the coal seam and roof rock are maintained. Monitoring will enable unprecedented operational efficiency and increased safety. Valuable information can be obtained in the course of mining operations using the pressure monitoring system in the powered roof support sections.

This article describes the DOH-DROPSY monitoring system and the process of its implementation based on own experience of the authors in longwalls. The main objective of the monitoring is to detect the abnormal expansion of the sections in the excavation and to diagnose failures in hydraulic systems.

Table 1

List of applications of DOH-DROPSY type wireless pressure monitoring in coal mine longwalls

| Mine                                | Longwall | Seam    | Panel length [m] | Length [m] | Roof support type         | No. of longwall sections |
|-------------------------------------|----------|---------|------------------|------------|---------------------------|--------------------------|
| PGG S.A. KWK ROW Ruch Marcel I      | C-3      | 507     | 448              | 180        | Hydromel-16/41-POz        | 118 pcs. 3 pcs.         |
| PGG S.A. KWK ROW Ruch Marcel I      | W-7      | 505     | 1430             | 190        | Hydromel-16/41-POz        | 113 pcs. 26 pcs.        |
| PGG S.A. KWK ROW Ruch Marcel I      | C-4      | 507     | 620              | 180        | Hydromel-16/41-POz        | 125 pcs.                |
| PGG S.A. KWK ROW Ruch Marcel II     | C-3      | 505     | 1056             | 128        | Glinik-14/34-POz          | 89 pcs.                  |
| PGG S.A. KWK ROW Ruch Marcel II     | Z-2      | 502/1   | 650              | 160        | Glinik-14/34-POz          | 109 pcs.                |
| PGG S.A. KWK Ruda Ruch Halemba      | 7a       | 402/K   | 730              | 230        | KW-16/32-Poz/ZRP          | 152 pcs.                |
| PGG S.A. KWK Sośnica                | tb103    | 414/2   | 860              | 235        | ZRP-15/35-POz             | 156 pcs.                |
| PGG S.A. KWK Piast-Ziemowit Ruch Piast | 393a   | 209     | 440              | 165        | Glinik-21/46-POz          | 109 pcs.                |
| JSW S.A. KWK Knurów-Szczygłowice Ruch Szczygłowice | XXI    | 405/1   | 825              | 210        | FRS-19/45-POz             | 138 pcs.                |
| PGG S.A. KWK Mysłowice-Wesola       | 411      | 416     | 980              | 142        | ZRP-15/35-POz             | 95 pcs.                  |
| PGG S.A. KWK Murcki-Staszic          | 3b-S     | 510/III | 921              | 155        | KW-17/43-POzW1/ZRP        | 103 pcs.                |
| JSW S.A. KWK Budryk                 | Bw-1     | 402     | 1100             | 150        | BW JZR-13/37-POz          | 98 pcs.                  |
| JSW S.A. KWK Knurów-Szczygłowice Ruch Knurów | 14      | 355     | 1400             | 250        | Glinik-08/25-POz          | 158 pcs.                |
References

[1] Liduchowski L.: Monitoring stanu obudowy zmechanizowanej przy zastosowaniu sterowania elektrohydraulicznego firmy Tiefenbach, Prace Naukowe GIG, Seria “Konferencje”, 2018, 4, 123–128.

[2] Krauze K., Rączka W., Stopka G.: Project and test results of new solution for powered roof support for low seams, “Mining – Informatics, Automation and Electrical Engineering” 2019, 1, 537: 29–34.

[3] Pruszk T., Rajwa S., Wiara A., Krzemie A.: Assessment of roof fall risk in longwall coal mines, “International Journal of Mining, Reclamation and Environment” 2016: 1–17.

[4] Rajwa S., Janoszcz T., Pruszk S.: Influence of canopy ratio of powered roof support on longwall working stability – A case study, “International Journal of Mining Science and Technology” 2019, 29, 4: 591–598.

[5] Stoński K. red.: Zmechanizowane obudowy ścianowe dla warunków zagrożenia wtrącaniami górotworu, Wydawnictwo GIG, Katowice 2018.

[6] Szurgacz D.: Sposób dostosowania obudowy ścianowej do warunków obciążenia dynamicznego, “Przegląd Górnicy” 2016, 7: 57–62.

[7] Siwacek N., Szurgacz D.: The identification of the damage causes of the hydraulic control system components in powered roof support by means of tests and calculations, “AIP Conferences Proceedings” 2020, 2209: 020003.

[8] Siwacek N.: Powered roof support in conditions of mining tremors in Upper Silesian Coal Basin – current state in terms of statistical analysis, “Mining – Informatics, Automation and Electrical Engineering” 2019, 2, 538, 21–27.

[9] Rajwa S., Lubosik Z., Płonka M.: Bezpieczeństwo eksploatacji ścian zawiółych w świetle danych z systemów monitoringu, “Maszyny Górnice” 2019, 4, 24–34.

[10] Brodny J., Tutak M.: Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition System: A Case Study, “Energies” 2019, 12, 3: 2505.

[11] Palka D., Paczesny B., Gurdziel M., Wieloch W.: Industry 4.0 in development of new technologies for underground mining, “E3S Web of Conferences” 2020, 174, 01002.

[12] Szołc P., Sprawozdanie GIG nr 583 17039-152: Określenie warunków poprawności oraz współpracy różnych typów obudów zmechanizowanych w polu ściany 7a w pokładzie 402 w partii “K” dla KWK Ruda Ruch Halemba, Katowice 2019 [unpublished].

[13] Brodny J., Tustik M.: Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition System: A Case Study, “Energies” 2019, 12, 3: 2505.

[14] Jasiulek D., Bartoszek S., Lubryka J.: Efektywność wykorzystania i bezpieczeństwa górniczej obudowy zmechanizowanej – PRASS III, “System Zasilania, Sterowania, Monitoringu i Diagnostyki” 2019, 1: 73–79.

[15] DAWID SZURGACZ, Ph.D., Eng.
Polska Grupa Górnica S.A.
KWK ROW Ruch Chwałowice
ul. Przewozowa 4, 44-206 Rybnik, Poland
dawidszurgacz@vp.pl

ŁUKASZ BAZAN, M.Sc., Eng.
RYSZARD DIEDERICHS, M.Sc., Eng.
Centrum Hydrauliki DOH Sp. z o.o.
ul. Konstytucji 148, 41-906 Bytom, Poland
{lukaszbazan, ryszarddiederichs}@doh.com.pl

KONRAD TRZOP, M.Sc., Eng.
Polska Grupa Górnica S.A.
KWK Ruda Ruch Bielszowice
ul. Halemska 160, 41-711 Ruda Śląska, Poland
konrad.trzop.kt@gmail.com

© 2020 Authors. This is an open access publication, which can be used, distributed and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.
Bezprzewodowy system wizualizacji parametrów ciśnienia zmechanizowanej obudowy ścianowej na przykładzie polskich kopalń

Wprowadzenie w ostatnich latach monitoringu ciśnienia zmechanizowanej obudowy ścianowej przez spółki węglowe było jednym z głównych celów realizacji programu Przemysł 4.0. Rozwój monitorowania parametrów pracy zmechanizowanej obudowy w kompleksie ścianowym miał na celu zwiększenie bezpieczeństwa pracy ludzi oraz poprawienie wyniku ekonomicznego związanego z przestojem ścian wydobywczych. Jednym z głównych celów monitoringu jest obserwowanie poprawności rozparcia sekcji w wyrobisku oraz diag nostyka uszkodzeń w układach hydraulicznych oraz powstawania nieszczelności wewnętrznej w silników hydraulicznych. W tym zakresie został opracowany układ monitorowania parametrów pracy zmechanizowanej obudowy ścianowej. W prezentowanym artykule opisano zalety monitoringu DOH-DROPSY oraz jego wdrożenie na przykładzie ściany wydobyw czej.

Słowa kluczowe: monitoring ciśnienia, zmechanizowana obudowa ścianowa, podpor ność, poprawa bezpieczeństwa pracy

1. WPROWADZENIE

W polskim przemyśle wydobywczym sekcje zmechanizowanej obudowy ścianowej w porównaniu z pozostałymi urządzeniami kompleksu ścianowego do 2000 roku nie były objęte monitori e ciśnienia. Pierwsze informacje o wdrożeniu możemy znaleźć w literaturze [1]. Podstawowym zadaniem zmechanizowanej obudowy ścianowej jest jej współpraca z górotworem [2–4], aby to osiągnąć, wymagany jest odpowiedni dobór obudowy ścianowej [5–7] do warunków górniczo-geologicznych przed uruchomieniem eksploatacji. Odpowiednio dobrana zmechanizowana obudowa ścianowa wpływa prawidłowo na utrzymanie stropu, co ma znaczący wpływ na efektywność i bezpieczeństwo ludzi pracujących w ścianie [8, 9]. To z kolei przekłada się na bezpieczeństwo prowadzenia ściany oraz wyniki ekonomiczne spółek węglowych. W celu zapewnienia bezpieczeństwa i komfortu pracy, ograniczenia negatywnego wpływu górnictwa na śro dowisko oraz utrzymanie efektywności eksploatacji sięga się po nowoczesne technologie oraz niezawodne środki techniczne, a w szczególności zaawansowane maszyny i urządzenia. Przykładem takiego podejścia jest wdrażanie rozwiązań proponowanych w koncepcji czwartej rewolucji przemysłowej [10–12]. Widoczny rozwój monitoringu ciśnienia dla zmechanizowanej obudowy ścianowej można zauważyć w polskich spółkach węglowych [13–15]. W pracach [16–18] przedstawiono problemy związane z podpornością obudowy ścianowej oraz możliwości, jakie daje monitoring. Zastosowanie monitoringu do analizy parametrów pracy obudowy ścianowej wpływa znacznie na wcześniejsze wykrywanie nieszczelności oraz spadku wymaganego ciśnienia oraz nagłego przyrostu ciśnienia w przestrzeniach podtłokowych stojaków hydraulicznych spowodowanych nagłym dociążeniem górotworu [9, 19]. Rozwój systemu monitoringu obudowy zmechanizowanej oraz jego zastosowanie w kompleksie ścianowym mają istotny wpływ na bezpieczeństwo
pozostałych maszyn i urządzeń [20, 21]. Celem niniejszej publikacji jest przedstawienie rozwoju systemu monitoringu DOH-DROPSY oraz jego wdrożenia w ścianach wydobywczych w polskich kopalniach węgla kamiennego. Na rysunku 1 przedstawiono koncepcję systemu bezprzewodowego monitoringu ciśnienia.

**Rys. 1. Koncepcja wykorzystania systemu monitoringu dla zmechanizowanej obudowy ścianowej:**
1 – stanowisko dyspozytorskie, 2 – serwer powierzchniowy, 3 – serwis diagnostyki i analizy, 4 – bezprzewodowy sygnalizator DAISY-01, 5 – bezprzewodowy czujnik ciśnienia DROPS-01, 6 – obudowa zmechanizowana, 7 – iskrobezpieczny konwerter radiowy DILER-01, 8 – dołowe stanowisko wizualizacji, 9 – dołowy konwerter transmisji

### 2. BUDOWA SYSTEMU MONITORINGU

System w swojej podstawowej edycji składa się z czujników ciśnienia, które dokonują pomiarów z dużą dokładnością i drogą radiową przesyłają je między sobą. Brak sąsiedniego czujnika nie powoduje przerywania komunikacji, jak to ma miejsce w transmisji przewodowej. Ciągłość transmisji zapewniona jest w granicach zasięgu sygnału radiowego i może sięgać do dwóch sekcji przerywanych kolejnymi czujnikami. Sensory, jako moduły autonomiczne, mają wysoko sprawne wymienne źródło zasilania zapewniające bezawaryjną pracę systemu przez okres około dwóch lat w zależności od parametrów konfiguracyjnych. Sygnał bezprzewodowy trafia finalnie do konwertera, który stanowi lokalną bazę danych dla systemu. Wyposażony jest w układy radiowe i interfejs kablowy do komunikacji z komputerem podścianowym, na którym aplikacja wizualizacyjno-konfiguracyjna zapewnia stały przegląd wartości mierzonych w ścianie. Są to zarówno wartości ciśnienia w stojakach obudów zmechanizowanych na magistrali zasilającej czy spływowej, jak również wartości napięcia zasilania czujników, dzięki którym z wyprzedzeniem można zaplanować wymianę ogniw. Jest to realizowane w warunkach dołowych bez konieczności demontażu samego czujnika i wywożenia go poza strefę zagrożenia wybuchem. System w swojej architekturze jest systemem otwartym, co umożliwia monitorowanie innych parametrów, np. położenia elementów sekcji z czujników inklinometrycznych. Konfiguracja systemu odbywa się u klienta, dzięki czemu system staje się przyjazny dla użytkownika i nie jest hermetyczny. Czujniki przystosowane są do składowania magazynowego bez konieczności demontażu ogniw i wstępnej konfiguracji/rekonfiguracji.

Dodatkową opcją w systemie jest sygnalizator DAISY-01. Jest to urządzenie bezprzewodowe do emitowania sygnałów świetlnych. Jego montaż może odbyć się w dowolnym miejscu, co umożliwia wygodniejszą kontrolę prawidłowego rozparcia sekcji przez optyczną sygnalizację poziomu mierzonego ciśnienia względem zadań wartości progowych.

Umieszczony w chodniku podścianowym komputer jest lokalnym serwerem danych (rys. 2). Za pomocą specjalistycznego oprogramowania na bieżąco wizualizuje i analizuje przesyłane dane. Dzięki niemu możliwa jest diagnostyka sieci, raportowanie i przeglądanie historii pomiarów przez uprawnionych użytkowników. Wszystkie dane zbierane przez system w ścianie, gromadzone w komputerze podścianowym przekazywane są do serwera na powierzchni, którego aplikacja zapewnia przegląd danych online, ich archiwizację z możliwością generowania raportów i przeprowadzania analiz. Zostało to zobrazowane na rysunku 3.
System bezprzewodowego monitoringu ciśnienia składa się z czujników które są zabudowane bezpośrednio do bloku stojaka hydraulicznego oraz silownika podpory stropnicy. Na podstawie uzyskanych pomiarów oraz zebranych danych można zobrazować cykl pracy zmechanizowanej obudowy, a także można przeanalizować powstanie nieszczelności w układach hydraulicznych oraz hydraulice siłowej. Dane pozyskiwane z systemu monitoringu zostawiane są w postaci mapy z rozkładem ciśnienia każdej sekcji obudowy. Jednym z celów tego systemu jest poprawa bezpieczeństwa i komfortu pracy.

2.1. Bezprzewodowy przetwornik ciśnienia typu DOH DROPSY-01

Zadaniem bezprzewodowego przetwornika ciśnienia (rys. 4) jest pomiar ciśnienia co sekundę po podłączeniu go do układu hydraulicznego. Przedmiotowy przetwornik jest urządzeniem budowy iskrobezpiecznej. Elementem pomiarowym przetwornika jest piezorezystancyjny czujnik ciśnienia. Sensor czujnika wykorzystuje zjawisko piezorezystancyjne, polegające na zmianie rezystancji mostka pomiarowego proporcjonalnie do mierzonego ciśnienia. Bezprzewodowy przetwornik ciśnienia wykonuje następujące zadania (rys. 5):

- pomiar ciśnienia w stojakach sekcji, standardowo dla wszystkich sekcji w ścianie,
- pomiar ciśnienia w magistrali zasilającej i spływowej, standardowo w trzech punktach w ścianie,
- pomiar ciśnienia w podporze stropnicy, standardowo monitorowany jest podtłok oraz natłok podpory na wybranych sekcjach w ścianie, np. co dziesięć sekcji.

2.2. Iskrobezpieczny konwerter radiowy DILER-01

Jest to urządzenie (rys. 6) zapewniające połączenie pomiędzy urządzeniami w sieci bezprzewodowej a urządzeniami komunikującymi się przewodowo. Charakteryzuje się następującą pracą:

- konwersją sygnału bezprzewodowego na przewodowy,
- status bezprzewodowej komunikacji z przetwornikami DROPS-01,
- status przewodowej komunikacji z komputerem dolowym,
- montaż w odległości od pierwszej do piątej sekcji obudowy zmechanizowanej.

2.3. Dołowe stanowisko wizualizacji

Dołowe stanowisko (rys. 7) wizualizacji umieszczone jest w chodniku podściawnym – jest to komputer w osłonie ognioszczelnej Exd (rys. 6).
Do jego zadań należy:
- podgląd aktualnego rozkładu ciśnienia w ścianie dla stojaków, magistrali zasilającej oraz spływowej oraz siłownika podpory stropniczy,
- przegląd danych archiwalnych,
- generowanie mapy rozkładu ciśnienia w ścianie.

2.4. Transmisja danych pomiędzy wyrobiskiem a serwerem powierzchniowym

Transmisja danych uzyskanych z pomiarów ciśnienia odbywa się za pośrednictwem światłowodu bezpośrednio na powierzchnię lub skrętki teletechnicznej kopalni przy zastosowaniu mediakonwerterów sygnału DSL-OPTO.

2.5. Serwer powierzchniowy wraz ze stanowiskiem dyspozytorskim

Zadaniem serwera powierzchniowego (rys. 8) jest:
- udostępnianie danych pomiarowych poprzez stronę internetową,
- podgląd aktualnego rozkładu ciśnienia w stojakach obudowy zmechanizowanej w ścianie,
- przegląd danych archiwalnych,
- generowanie mapy rozkładu ciśnienia w ścianie,
- wizualizacja pracy systemu na dowolnej liczbie stanowisk komputerowych w kopalni.

3. PRZYKŁAD WYKORZYSTANIA

Ściana 7a, eksploatowana w pokładzie 402/K na głębokości od 913 m do 952 m, charakteryzuje się miąższością około 2,1 m do 3,1 m, jej nachylenie po-przeczne wynosi 2°, a nachylenie podłużne około 3°. W pokładzie występuje przerost łupka węglowego o miąższości od około 0,45 m do około 0,9 m. Ściana eksploatowana była na całą grubość pokładu bez po-zostawania warstwy węgla w stropie lub spągu. W wyko-nanych wyrobiskach przygotowawczych dla ściany 7a nie występują zaburzenia geologiczne o charakterze nieciągłym w postaci uskoków nasunięć itp.

Średnie wytrzymałości na ściskanie wynoszą:
- dla skał stropu bezpośredniego:
  • łupek ilasty – 16,7–32,2 MPa,
  • łupek piaszczysty – 20,7–94,9 MPa,
  • piaskowiec – 40,2–79,1 MPa;
- dla skał spągu bezpośredniego:
  • łupek ilasty – 25,0–44,96 MPa;
  • dla węgla pokładu 402 – 7,9–20,2 MPa.

Powyższe wyniki pozwalają zaliczyć skały stropowe do klasy od A(II), która określa stropy słabe opadające po ich odsłonięciu z pewnym opóźnieniem do klasy E(VI), która określa stropy bardzo mocne i trwałe. Natomiast skały spągowe pozwalają zaliczyć spągi do spągów bardzo zwięzłych [22].

Ściana 7a prowadzona była systemem podłużnym z zawałem skał stropowych na wybiegu około 750 m. Długość ściany wynosiła do 235 m.

W ścianie 7a kopalnia zastosowała sekcje obudowy zmechanizowanej typu KW-16/32-POz/ZRP o wysokości roboczej do 3,1 m z systemem monitoringu ciśnienia typu DOH-DROPSY. Obudowa ta stanowiła
konstrukcję podporowo-osłonową opartą na czworo-

boku przegubowym z lemniskatowym układem stabi-

lizacji stropnicy. Dobór zmechanizowanej obudowy

ścianowej oraz jej upodatnienie przeprowadził Główny

Instytut Górnictwa. Określono wtedy wskaźnik

utrzymania stropu (0,8 poprawne warunki utrzyma-

nia stropu) oraz możliwość przejmowania obciążeń

jako wynik wstrząsu górotworu (według współczynni-

ka dociażenia) \( n_{lz} = 1,4 \) [23].

System pomiarowy umożliwiał wykonywanie po-

miarów ciśnienia z dokładnością do 0,1 MPa z często-

ścią sekundy w każdym ze stojaków wszystkich sekcji

obudowy zmechanizowanej. Parametry układu po-

zwałały więc na prowadzenie pomiarów ciśnienia

w przestrzeniach podtłokowych stojaków w warun-

kach w zasadzie wyłącznie statycznych. Pomiary ciś-

nienia objęły zakresem ilościowym 152 sekcje pod-

czas 350 dni pomiarowych. Zmierzone wartości

ciśnienia w przestrzeniach podtłokowych stojaków

odniesiono do obszaru pola ściany, co przedstawiono

na rysunkach 9 i 10.

Podstawą funkcjonowania kompleksu ścianowego

w celu zapewnienia odpowiednich parametrów pracy

zmechanizowanej obudowy ścianowej jest monitor-

ing ciśnienia. Na podstawie monitoringu jesteśmy

w stanie kontrolować cykl pracy zmechanizowanej

obudowy, to znaczy rabowanie, przesuwanie i rozpie-

ranie. Omawiany monitoring ciśnienia rejestruje wartość

głównie w przestrzeniach podtłokowych stojaków

hydraulicznych oraz w podporach stropnicy. System

bezprzewodowego monitoringu DOH-DROPSY umoż-

liwia wykonanie pomiarów ciśnienia z dokładno-

ścią 0,1 MPa i częstością sekundy. Wartości ciśnień dla

zachowania wymaganego maksymalnego ciśnienia

danej sekcji, aby mogła prawidłowo pracować, oznacza-

zono kolorem zielonym. Natomiast kolorem czerwo-

nym oznaczono wartości ciśnienia wskazujące na nie-

uzyskanie wymaganego ciśnienia, które mogą być

przyczyną między innymi niedostatecznego rozparcia

sekcji, wystąpienia nieszczelności zewnętrznej lub

wewnętrznej w przestrzeni podtłokowej stojaków.

Na rysunku 9 przedstawiono rozkład ciśnienia dla

sekcji zmechanizowanej obudowy ścianowej, a na

rysunku 10 przedstawiono mapę rozkładu ciśnień

w polu ściany.

Zmechanizowana obudowa ścianowa, jak podaje

literatura [5, 24, 25], charakteryzuje się trzema

podpornościami. Podpornością wstępną uzyskiwaną

w momencie rozparcia wynikającą z ciśnienia zasila-

nia w magistrali. Podporność nominalna jest maksy-

malną, jaką może osiągnąć zestaw obudowy przy ob-

ciąganiu statycznym zależną od otworu zaworu

bezpieczeństw. Podporność, jaką osiąga sekcja w da-

nej chwili pod wpływem nacisku górotworu jest pod-

pornością roboczą, której wartość mieści się między

podpornością roboczą a nominalną. Zapewnienie wy-

maganego podporności, jaką rozwija zestaw obudowy

zmechanizowanej, przedstawiono na rysunku 11, na

którym też zinterpretowano cykl pracy sekcji zmecha-

nizowanej obudowy ścianowej. Rozmieszczenie czuj-

ników ciśnienia w sekcji obudowy zmechanizowanej

przedstawiono na rysunku 12, gdzie sygnalizator ciś-

nienia umieszczony jest na stropnicy w celu informa-

cji świetlnej o stanie ciśnienia. Natomiast wykaz

zastosowania pracującego monitoringu w polskich ko-

palniach zestawiono w tabeli 1.

Rys. 9. Widok rozkładu ciśnienia w sekcjach zmechanizowanej obudowy ścianowej
Rys. 10. Mapa rozkładu ciśnienia sekcji zmechanizowanej obudowy ścianowej

Rys. 11. Przebieg pracy sekcji zmechanizowanej obudowy ścianowej: 1 – stojak lewy, 2 – stojak prawy, 3 – czas związany z cyklem rabowania, przestawiania oraz rozparcia, 4 – monitorowanie rozparcia sekcji w ścianie 5 – podporność wstępna, 6 – podporność nominalna, 7 – podporność robocza

Rys. 12. Rozmieszczenie czujników monitorujących parametry ciśnienia dla zmechanizowanej obudowy ścianowej: 1 – czujnik monitorujący ciśnienie dla stojaka hydraulicznego, 2 – czujnik monitorujący ciśnienie dla siłownika podpory stropnicy, 3 – sygnalizator ciśnienia umieszczony w stropnicy
4. PODSUMOWANIE

Monitoring ciśnienia sekcji obudowy zmechanizowanej jest jednym z elementów rozwiązań Przemysłu 4.0 w górnictwie. Zmiany zachodzące w sektorze energetycznym wymuszają na przedsiębiorstwach działania mające na celu zapewnienie rentowności, wzrost efektywności pracy oraz poprawę bezpieczeństwa. Jedynym rozwiązaniem, które umożliwi sprostanie tym wymogom, są inwestycje w nowoczesne metody oraz nowoczesny park maszyn i urządzeń.

Przemysł wydobywczy, który charakteryzuje się wysokim współczynnikiem wypadkowości oraz szeregiem zagrożeń naturalnych, to szerokie pole do inwestycji w innowacyjne metody oraz nowoczesny park maszyn i urządzeń.

W artykule, opierając się na własnych doświadczeniach, opisano system monitoringu ciśnienia typu DOH-DROPSY oraz proces jego wdrożenia na przykładzie ścian wydobywczego. Głównym celem monitoringu jest możliwość wykrywania nieprawidłowego poprzedzenia sekcji w wyrobisku oraz diagnozy uszkodzeń w układach hydraulicznych.
Literatura

[1] Liduchowski L.: Monitoring stanu obudowy zmechanizowanej przy zastosowaniu steronowania elektro-hydraulicznego firmy Tiefenbach, Prace Naukowe GIG, Seria „Konferencje”, 2013: 123–128.
[2] Krauze K., Rączka W., Stopka G.: Project and test results of new solution for powered roof support for low seams, „Mining, Informatics, Automation and Electrical Engineering” 2019, 1, 537: 29–34.
[3] Prusak S., Rajwa S., Whana A., Krzemień A.: Assessment of roof fall risk in longwall coal mines, „International Journal of Mining, Reclamation and Environment” 2016: 1–17.
[4] Rajwa S., Janoszek T., Prusak S.: Influence of canopy ratio of powered roof support on longwall working stability – A case study, „International Journal of Mining Science and Technology” 2019, 29, 4: 591–598.
[5] Stoiński K., red.: Zmechanizowane obudowy ścianowe dla warunków zagrożenia wstrząsami górotworów, Wydawnictwo GIG, Katowice 2018.
[6] Szurgacz D.: Sposób dostosowania obudowy ścianowej do warunków obcięć dynamicznych, „Przegląd Górnictwy” 2016, 7: 57–62.
[7] Świątek N., Szurgacz D.: The identification of the damage causes of the hydraulic control system components in powered roof support by means of tests and calculations, „AIP Conferences Proceedings” 2020, 2290: 020003.
[8] Świątek N.: Powered roof support in conditions of mining tremors in Upper Silesian Coal Basin – current state in terms of statistical analysis, „Mining, Informatics, Automation and Electrical Engineering” 2019, 2, 538: 21–27.
[9] Rajwa S., Lubosik Z., Płonka M.: Bezpieczeństwo eksploatacji ścian zawalowych w świetle danych z systemów monitoringu, „Maszyny Górnicze” 2019, 4: 24–34.
[10] Brodny J., Tutak M.: Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition System: A Case Study, „Energies” 2019, 12, 3: 2505.
[11] Palka D., Ptaszny B., Gurdziel M., Wieloch W.: Industry 4.0 in development of new technologies for underground mining, „E3S Web of Conferences” 2020, 174, 01002.
[12] Szołc P., Szpłamik M., Grudzięcki R., Palka D.: A Survey on the potential of monitoring of longwall complex parameters based on industry 4.0, „E3S Web of Conferences” 2020, 174, 01065.
[13] Bazan L., Diederichs R., Garda W., Lubryka J., Ptak K., Zych K.: Doświadczenia eksploatacyjne z wdrożenia systemu monitorowania ciśnienia EH-PressCater w kopalni soli „Napęd i Sterowanie” 2015, 3: 124–129.
[14] Oset K., Juzwa J.: Bezpieczeństwo pracy urządzeń hydraulicznej obudowy zmechanizowanej z osób w rejonie ściany wydobywczej na przykładzie innowacyjnego systemu X-MAN, „Napęd i Sterowanie” 2015, 12: 110–114.
[15] Kasprzuk A., Mikula S., Wojtas M.: Sterowanie elektro-hydraulicznym DOH-matic do automatyzacji pracy obudowy zmechanizowanej, „Wiadomości Górnicze” 2013, 5, 64: 275–282.
[16] Płonka M.: Obraz podporności sekcji obudowy zmechanizowanej wyciąganych na poziomach spłaszczenych na podstawie danych z systemu monitoringu, „Przegląd Górnictwy” 2018, 3: 34–40.

© 2020 Autorzy. Jest to publikacja ogólnodostępna, którą można wykorzystywać, rozpowszechniać i kopować w dowolnej formie zgodnie z licencją Creative Commons CC-BY 4.0.