Revisiting Rolling Shutter Bundle Adjustment:
Toward Accurate and Fast Solution

Bangyan Liao1,2,* Delin Qu1,3,* Yifei Xue4 Huiping Zhang1 Yizhen Lao1,†

1College of Computer Science and Electronic Engineering, Hunan University
2College of Electrical and Information Engineering, Hunan University
3Shanghai AI Laboratory
4Jiangxi Provincial Natural Resources Cause Development Center

Abstract

We propose an accurate and fast bundle adjustment (BA) solution that estimates the 6-DoF pose with an independent RS model of the camera and the geometry of the environment based on measurements from a rolling shutter (RS) camera. This tackles the challenges in the existing works, namely, relying on high frame rate video as input, restrictive assumptions on camera motion and poor efficiency. To this end, we first verify the positive influence of the image point normalization to RSBA. Then we present a novel visual residual covariance model to standardize the reprojection error during RSBA, which consequently improves the overall accuracy. Besides, we demonstrate the combination of Normalization and covariance standardization Weighting in RSBA (NW-RSBA) can avoid common planar degeneracy without the need to constrain the filming manner. Finally, we propose an acceleration strategy for NW-RSBA based on the sparsity of its Jacobian matrix and Schur complement. The extensive synthetic and real data experiments verify the effectiveness and efficiency of the proposed solution over the state-of-the-art works.

1. Introduction

Bundle adjustment (BA) is the problem of simultaneously refining the cameras’ relative pose and the observed points’ coordinate in the scene by minimizing the reprojection errors over images and points [8]. It has made great success in the past two decades as a vital step for two 3D computer vision applications: structure-from-motion (SfM) and simultaneous localization and mapping (SLAM).

The CMOS camera has been widely equipped with the rolling shutter (RS) due to its inexpensive cost, lower energy consumption, and higher frame rate. Compared with the CCD camera and its global shutter (GS) counterpart, RS camera is exposed in a scanline-by-scanline fashion. Consequently, as shown in Fig. 1(a)(b), images captured by moving RS cameras produce distortions known as the RS effect [17], which defeats vital steps (e.g. absolute [1] and relative [4] pose estimation) in SfM and SLAM, including BA [2,9,11,12,14]. Hence, handling the RS effect in BA is crucial for 3D computer vision applications.

1.1. Related Work

Video-based Methods. Hedborg et al. [10] use an RS video sequence to solve RSSM and present an RSBA algorithm under the smooth motion assumption between consecutive frames in [9]. Similarly, Im et al. [11] propose a small motion interpolation-based RSBA algorithm specifically for narrow-baseline RS image sequences. Zhuang et al. [24] further address this setting by presenting 8pt and 9pt linear solvers, which are developed to recover the relative pose of

![Figure 1. Images were captured at the same time with fast motion with (a) global shutter and (b) rolling shutter in sequence 10 of the TUM-RSFI dataset [21]. (c) classical Orb-SLAM [18] with GS input. (d) classical Orb-SLAM [18] with RS input. (e) Orb-SLAM with NM-RSBA [2]. (f) Orb-SLAM with proposed NW-RSBA.](image-url)
an RS camera that undergoes constant velocity and acceleration motion, respectively. Differently, a spline-based trajectory model to better reformulate the RS camera motion between consecutive frames is proposed by [19].

Unordered RSBA. An unordered image set is the standard input for SfM. Albl et al. [2] address the unordered RSSfM problem and point out the planar degeneracy configuration of RSSfM. Ito et al. [12] attempt to solve RSSfM by establishing an equivalence with self-calibrated SfM based on the pure rotation instantaneous-motion model and affine camera assumption, while the work of [15] draws the equivalence between RSSfM and non-rigid SfM. A camera-based RSBA has been proposed in [14] to simulate the actual camera projection which has the resilience ability against planar degeneracy.

Direct Methods. Unlike the feature-based BA methods that minimize reprojection errors of keypoints, photometric-based BA methods maximize the photometric consistency among each pair of frames instead (e.g. [6, 7]). To handle the RS effect, the works of [13] and [20] present direct semi-dense and direct sparse SLAM pipelines, respectively.

1.2. Motivations

Although existing works of RSBA have shown promising results, we argue that they generally lead to either highly complex constraints on inputs, overly restrictive motion models, or time-consuming which limit application fields.

More general: 1) Video-based [9, 11, 19, 24] and direct methods [13, 20] that use video sequence as input are often not desirable to be processed frame by frame which results in high computational power requirements. 2) The unordered image set is the typical input for classical SfM pipeline (e.g. [23]). 3) Even the BA step in current popular SLAM systems (e.g. [18]) only optimizes keyframes instead of all the consecutive frames.

More effective: [2] points out that when the input images are taken with similar readout directions, RSBA fails to recover structure and motion. The proposed solution is simply to avoid the degeneracy configurations by taking images with perpendicular readout directions. This solution considerably limits the use in common scenarios.

More efficient: GSSBA argumentation with the RS motion considerably limits the use in common scenarios. However, the acceleration of unordered RSBA has never been addressed in the existing works [2, 12, 14, 15].

In summary, an accurate and fast solution to unordered images RSBA without camera motion assumptions, readout direction is still missing. Such a method would be a vital step in the potential widespread deployment of 3D vision with RS imaging systems.

1.3. Contribution

In this paper, we present a novel RSBA solution and tackle the challenges that remained in the previous works. To this end, 1) we investigate the influence of normalization to the image point on RSBA performance and show its advantages. 2) Then we present an analytical model for the visual residual covariance, which can standardize the reprojection error during BA, consequently improving the overall accuracy. 3) Moreover, the combination of Normalization and covariance standardization Weighting in RSBA (NW-RSBA) can avoid common planar degeneracy without constraining the capture manner. 4) Besides, we propose its acceleration strategy based on the sparsity of the Jacobian and Schur complement. As shown in Fig. 1 that NW-RSBA can be easily implemented and plugin GSSfM and GSSLAM as RSSfM and RSSLAM solutions.

In summary, the main contributions of this paper are:

- We first thoroughly investigate image point normalization’s influence on RSBA and propose a probability-based weighting algorithm in the cost function to improve RSBA performance. We apply these two insights in the proposed RSBA framework and demonstrate its acceleration strategy.

- The proposed RSBA solution NW-RSBA can easily plugin multiple existing GSSfM and GSSLAM solutions to handle the RS effect. The experiments show that NW-RSBA provides more accurate results and 10× speedup over the existing works. Besides, it avoids planar degeneracy with the usual capture manner.

2. Formulation of RSBA

We formulate the problem of RSBA and provide a brief description of three RSBA methods in existing works. Since this section does not contain our contributions, we give only the necessary details to follow the paper.

Direct-measurement-based RS model: Assuming a 3D point $P_i = [X_i Y_i Z_i]$ is observed by a RS camera j represented by measurement m^j_i in the image domain. The projection from 3D world to the image can be defined as:

$$
\begin{align*}
 m^j_i & = [u^j_i, v^j_i]^T = \Pi(KP^j_i), \\
 P^j_i & = [X^j_i Y^j_i Z^j_i]^T = R^j(v^j_i)P_i + t^j(v^j_i),
\end{align*}
$$

where $\Pi([X Y Z]^T) = \frac{1}{Z}[X Y]^T$ is the perspective division and K is the camera intrinsic matrix [8]. $R^j(v^j_i) \in SO(3)$ and $t^j(v^j_i) \in \mathbb{R}^3$ define the camera rotation and translation respectively when the row index of measurement v^j_i is acquired. Assuming constant camera motion during frame capture, we can model the instantaneous-motion as:

$$
\begin{align*}
 R^j(v^j_i) & = (I + [\omega^j_i \times v^j_i])R_0, \\
 t^j(v^j_i) & = t_0 + d^j v^j_i,
\end{align*}
$$
where $[\omega^j]$, represents the skew-symmetric matrix of vector ω^j and t_0^j. R_0^j is the translation and rotation matrix when the first row is observed. While $d^j_0 = [d^j_x, d^j_y, d^j_z]^\top$ is the linear velocity vector and $\omega^j = [\omega_x^j, \omega_y^j, \omega_z^j]^\top$ is the angular velocity vector. Such model was adopted by [2,4,15]. Notice that RS instantaneous-motion is a function of v_i^j, which we named the direct-measurement-based RS model.

- **Normalized-measurement-based RS model:** By assuming a pre-calibrated camera, one can transform an image measurement m_i^j with K to the normalized measurement $[q_{0}^{j^\top}, 1]^\top = K^{-1}[m_i^{j^\top}, 1]^\top$. Thus, the projection model and camera instantaneous-motion become:

$$ q_i^j = [r_i^j, r_i^j]^\top = \Pi(R^j(r_i^j)P_i + t^j(r_i^j)), \quad \text{(4)} $$

$$ R^j(r_i^j) = (I + [\omega_i^j]_\times r_i^j)R_0^j, \quad t^j(r_i^j) = t_0^j + d^j_i. \quad \text{(5)} $$

In contrast to the direct-measurement-based RS model, t_0^j and R_0^j are the translation and rotation when the optical centre row is observed. ω_i^j, d_i^j are scaled by camera focal length. We name such model the normalized-measurement-based RS model, which was used in [2,9,12,24].

- **Rolling Shutter Bundle Adjustment:** The non-linear least squares optimizers are used to find a solution θ^* including camera poses R^*, t^*, instantaneous-motion ω^*, d^* and 3D points P^* by minimizing the reprojection error e_i^j from point i to camera j over all the camera index in set F and corresponding 3D points index in subset P_j:

$$ \theta^* = \{P^*, R^*, t^*, \omega^*, d^*\} = \arg\min_\theta \sum_{j \in F} \sum_{i \in P_j} \left\| e_i^j \right\|_2^2. \quad \text{(6)} $$

(1) **Direct-measurement-based RSBA:** [5] uses the direct-measurement-based RS model and compute the reprojection error as: $e_i^j = m_i^j - \Pi(K(R^j(v_i^j)P_i + t^j(v_i^j)))$. We name this strategy DM-RSBA.

(2) **Normalized-measurement-based RSBA:** [2] uses the normalized-measurement-based RS model and compute the reprojection error as: $e_i^j = q_i^j - \Pi(R^j(r_i^j)P_i + t^j(r_i^j))$. We name this strategy NM-RSBA.

(3) **Direct-camera-base RSBA:** Lao et al. [14] argue both DM-RSBA and NM-RSBA can not simulate the actual projection. So [14] proposes a camera-based approach that uses camera pose and instantaneous motion to compute the reprojection without using either v_i^j or r_i^j*. We name this strategy DC-RSBA.

3. **Methodology**

In this section, we present a novel RSBA algorithm called normalized weighted RSBA (NW-RSBA). The main idea is to use measurement normalization (section 3.1) and covariance standardization weighting (section 3.2) jointly during the optimization. Besides, we provide a two-stage Schur complement strategy to accelerate NW-RSBA in section 3.3. The main differences between NW-RSBA and existing methods [2,5,14] are summarized in Tab. 1.
3.1. Measurement Normalization

To the best of our knowledge, no prior research has investigated the influence of normalization on RSBA performance. Thus, we conduct a synthetic experiment to evaluate the impact of normalization by comparing the performances of DM-RSBA [5] and NM-RSBA [2]. The results in Fig. 8 show that the normalization significantly improves the RSBA accuracy. The improvement comes from the more precise instantaneous-motion approximation of low-order Taylor expansion in NM-RSBA. In DM-RSBA, the errors on the image plane induced by the approximate have the same directions and grow exponentially with the increase of the row index. Thus, the optimizer will shift the solution away from the ground truth to equally average the error among all observations. In contrast, the error distribution in NM-RSBA is inherently symmetrical due to the opposite direction with the row varying from the optical center, thus exhibiting significantly lower bias. A synthetic example shown in Fig. 2 verifies our insight that NM-RSBA has an unbiased local minimum over DM-RSBA.

3.2. Normalized Weighted RSBA

Based on the measurement normalization, we further present a normalized weighted RSBA (NW-RSBA) by modelling image noise covariance.

- **Weighting the reprojection error:** In contrast to existing works [2, 5, 14], we consider the image noise in RSBA by weighting the squared reprojection error with the inverse covariance matrix of the error, which is also known as standardization of the error terms [22]. Thus the cost function in Eq. (6) becomes:

$$\theta^* = \arg \min_{\theta} \sum_{j \in J} \sum_{i \in P_j} e_i^j \Sigma_i^{-1} e_i^j,$$

where e_i^j is the reprojection error computed by normalized-measurement-based approach described in Eq. (4). By assuming the image measurement q_i^j follows a prior Gaussian noise: $n_i^j \sim \mathcal{N}(0, W \Sigma W^\top)$, the newly introduced covariance matrix of the error Σ_i is defined as follows (proof in the supplemental material):

$$\Sigma_i = C_i^j W \Sigma W^\top C_i^j \top,$$ \hfill (8) $$

$$C_i^j = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \frac{1}{z_i^j} & 0 \\ 0 & \frac{1}{z_i^j} \end{bmatrix} \begin{bmatrix} \frac{1}{z_i^j} & 0 \\ 0 & \frac{1}{z_i^j} \end{bmatrix} \top = \begin{bmatrix} 0 & \frac{1}{z_i^j} \\ \frac{1}{z_i^j} & 0 \end{bmatrix} \top,$$ \hfill (9) $$

$$W = \begin{bmatrix} 1/f_x & 0 \\ 0 & 1/f_y \end{bmatrix},$$ \hfill (10) $$

where C_i^j and W are 2×2 auxiliary matrices. f_x and f_y are focal lengths.

- **Advantages of noise covariance weighting:** Note that the standardisation in Eq. (7) scaling every term by its inverse covariance matrix Σ_i^{-1}, so that all terms end up with isotropic covariance [22]. In Fig. 3, we visualize the influence of error terms standardization, which re-scales the prior covariance ellipse back to a unit one. We interpret the re-weighting standardization leads two advantages:

 1. **More accurate:** With the re-weighting standardization in Eq. (7), features with a high variance which means a high probability of a large reprojection error, are offered less confidence to down-weighting their influence on the total error. Synthetic experiments in section 4.1 demonstrate it outperforms NM-RSBA under various noise levels.
Handle planar degeneracy: Though the proposed NW-RSBA uses measurement-based projection during degeneracy, it still provides stable BA results and even outperforms C-RSBA with the noise covariance weighting. As demonstrated in [2], under the planar degeneracy configuration, the y-component of the reprojection error will reduce to zero, which denotes that the covariance matrix holds a zero element in the y direction. NW-RSBA explicitly modeled the error covariance and standardized it to isotropy. Thus, the proposed method exponentially amplifies the error during degeneracy, as shown in Fig. 4, and prevents the continuation of the decline from ground truth to the degenerated solution (proofs can be found in the supplemental material). A synthetic experiment shown in Fig. 5 verifies that NW-RSBA can easily collapse into degeneracy situations while NW-RSBA provides stable result and outperforms the GSBA.

- Jacobian of NW-RSBA: For more convenient optimization, we reformulate covariance matrix Σ_i as a standard least square problem using decomposition:

$$\Sigma_i^{-1} = C_i^{-\top} W^{-1} \Sigma^{-\frac{1}{2}} \Sigma^{-\frac{1}{2}} W^{-1} C_i^{-1}.$$ \hspace{1cm} (11)

By substituting Eq. (11) into (7), we get a new cost function:

$$\theta^* = \arg \min_{\theta} \sum_{j \in F} \sum_{i \in P_j} \hat{e}_i^T \tilde{e}_i^j,$$ \hspace{1cm} (12)

where, $\hat{e}_i^j = \Sigma^{-\frac{1}{2}} W^{-1} C_i^{-1} e_i^j$. \hspace{1cm} (13)

We derive the analytical Jacobian matrix of \hat{e}_i^j in Eq. (12) using the chain rule in the supplemental material.

3.3. NW-RSBA Acceleration

Based on the sparsity of the Jacobian, the marginalization [16, 22] with Schur complement has achieved significant success in accelerating GSBA. However, the acceleration strategy has never been addressed for the general unordered RSBA in [2, 5, 14]. As shown in Fig. 6(b)(c), we can organize the RSBA Jacobian in two styles:

(I) Series connection: By connecting camera pose and instantaneous-motion in the Jacobian matrix (Fig. 7(b)) as an entirety, we can use the one-stage Schur complement technique [16] to marginalize out the 3D point and compute the update state vector for R, t, ω, d first, followed by back substitution for update state vector of points P.

(2) Parallel connection: Due to the independence between camera pose and instantaneous-motion in the Jacobian matrix (Fig. 7(c)), we propose a two-stage Schur complement strategy to accelerate RSBA. When solving the non-linear least square problem (e.g. Gauss-Newton), the approximate Hessian matrix for Eq. (12) is defined as

$$J^T J = \begin{bmatrix} J_{rs}^T J_{rs} & J_{rs}^T J_{gs} & J_{rs}^T J_p \\ J_{gs}^T J_{rs} & J_{gs}^T J_{gs} & J_{gs}^T J_p \\ J_p^T J_{rs} & J_p^T J_{gs} & J_p^T J_p \end{bmatrix} = \begin{bmatrix} R^T S^T T^T \\ S^T U^T W^T \\ T^T W^T V^T \end{bmatrix},$$ \hspace{1cm} (14)

$$J = \begin{bmatrix} J_{rs} & J_{gs} & J_p \end{bmatrix} = \begin{bmatrix} \frac{\partial e}{\partial \theta_{rs}} & \frac{\partial e}{\partial \theta_{gs}} & \frac{\partial e}{\partial \theta_p} \end{bmatrix},$$ \hspace{1cm} (14a)

$\hat{e} = \{ \hat{e}_i^j \}, \quad x_{gs} = \{ R^j \}, \quad \{ t^j \},$ \hspace{1cm} (14b-1)

$\hat{e} = \{ \hat{e}_i^j \}, \quad x_{gs} = \{ R^j \}, \quad \{ t^j \}, \quad \{ \omega^j \}, \quad \{ d^j \}, \quad \{ P_i \},$ \hspace{1cm} (14b-2)

where R, U, V, S, T and W are submatrices computed by the derivations J_{rs}, J_{gs} and J_p. As Alg. 2 shown that the two-stage Schur complement strategy consists of 3 steps:

- Step 1: Construct normal equation. In each iteration, using this form of the Jacobian and corresponding state vectors and the error vector, the normal equation follows

$$J^T J \delta = \begin{bmatrix} R & S & T^T \\ S^T & U & W \\ T^T & W^T & V \end{bmatrix} \begin{bmatrix} \delta_{rs} \\ \delta_{gs} \\ \delta_p \end{bmatrix} = \begin{bmatrix} t \\ u \\ v \end{bmatrix} = -J^T \hat{e},$$ \hspace{1cm} (15)
General Scene

Critical Scene

incremental GSBA pipeline with the proposed module and can be easily plug-in such context: NW-RSBA in C++. The implemented NW-RSBA achieves an order of magnitude faster than \textit{NM-RSBA}.

4. Experimental Evaluation

In our experiments, the proposed method is compared to three state-of-the-art unordered RSBA solutions: 1) \textit{GSBA}: SBA \cite{16}. 2) \textit{DC-RSBA}: direct camera-based RSBA \cite{14}. 3) \textit{DM-RSBA}: direct measurement-based RSBA \cite{5}. 4) \textit{NM-RSBA}: normalized-measurement-based RSBA \cite{2}. 5) \textit{NW-RSBA}: proposed normalized weighted RSBA.

4.1. Synthetic Data

Settings and metrics. We simulate 5 RS cameras located randomly on a sphere pointing at a cubical scene. We compare all methods by varying the speed, the image noise, and the readout direction. The results are obtained after collecting the errors over 300 trials per epoch. We measure the reconstruction errors and pose errors.

Results. 1) \textit{Varying Speed.} The results in Fig. 8(a)(b)(c) show that the estimated errors of \textit{GSBA} grow with speed while \textit{DC-RSBA}, \textit{DM-RSBA}, and \textit{NM-RSBA} achieve better results with slow kinematics. The proposed \textit{NW-RSBA} provides the best results under all configurations. 2) \textit{Varying Noise Level.} In Fig. 8(d)(e)(f), \textit{GSBA} shows better robustness to noise but with lower accuracy than RS methods. The proposed \textit{NW-RSBA} achieves the best performance with all noise levels. 3) \textit{Varying Readout Direction.} We evaluate five methods with varying readout directions of the cameras by increasing the angle from parallel to perpendicular. Fig. 8(g)(h)(i) show that under a small angle, the reconstruction error of \textit{DM-RSBA}, \textit{DC-RSBA} and \textit{DM-RSBA} grow dramatically even bigger than \textit{GSBA}, suggesting a degenerated solution. In contrast, \textit{NW-RSBA} provides stable results under all settings, even with the parallel readout direction.

Runtime. As shown in Fig. 9 that without analytical Jacobian, \textit{DC-RSBA} is the slowest one while the proposed \textit{NW-RSBA} achieves similar efficiency as \textit{NM-RSBA}. However, by using acceleration strategies, \textit{NW-RSBA-1S} and \textit{NW-RSBA-2S} reduce the overall runtime. Note that \textit{NW-RSBA-2S} achieves an order of magnitude faster than \textit{NM-RSBA}. 4868
Table 2. Statistics of 10 sequences from TUM-RSVI [21] and 2 sequences from WHU-RSVI [3] datasets. The realtime factor ϵ and tracking duration DUR of Orb-SLAM, Orb-SALM+NM-RSBA [2], and proposed Orb-SLAM+NW-RSBA.

Seq	Duration [s]	length [m]	Realtime factor ϵ	Tracking duration DUR
#1	40	46	1.47 0.50	1.48 0.25
#2	27	37	1.51 0.90	1.40 0.81
#3	50	44	1.47 0.58	1.41 0.36
#4	38	30	1.61 1.1	1.35 1.0
#5	85	57	1.51 1.1	1.28 1.3
#6	43	51	1.47 0.76	1.37 0.76
#7	39	45	1.61 0.89	1.47 0.97
#8	53	46	1.56 0.79	1.37 0.96
#9	45	46	1.61 0.14	1.51 0.23
#10	54	41	1.56 0.79	1.46 0.29
#1-fast	28	50	1.92 1.1	1.51 1.3
#2-fast	29	53	1.92 1.1	1.40 1.3

4.2. Real Data

Datasets and metrics. We compare all the RSBA methods in two publicly available RS datasets: WHU-RSVI [3] dataset1, TUM-RSVI [21] dataset2. In this section, we use three evaluation metrics, namely ATE (absolute trajectory error) [21], tracking duration DUR (the ratio of the successfully tracked frames out of the total frames) and realtime factor ϵ (sequence’s actual duration divided by the algorithm’s processing time).

4.2.1 RSSLAM

We compare the performance of conventional GS-based Orb-SLAM [18] versus augmented versions with NM-RSBA [2] and proposed NW-RSBA on 12 RS sequences. Real-time factor and tracking duration. Tab. 2 shows the statistics about 12 RS sequences and the performance of three approaches run on an AMD Ryzen 7 CPU. The results verify that all three methods achieve real-time performance. One can also confirm that the proposed Orb-SLAM+NW-RSBA is slower than Orb-SLAM by a factor roughly around 1.2 but is slightly faster than Orb-SLAM+NM-RSBA. As for tracking duration, Orb-SLAM and Orb-SLAM+NM-RSBA [2] fail with an average $DUR < 0.5$ in most sequences once the camera moves aggressively enough. In contrast, the proposed Orb-SLAM+NW-RSBA achieves completed tracking with $DUR = 1$ in almost all sequences.

Absolute trajectory error. The ATE results on WHU-RSVI and TUM-RSVI datasets demonstrate that the proposed Orb-SLAM+NW-RSBA is superior to Orb-SLAM and Orb-SLAM+NM-RSBA when dealing with RS effect. Qualitatively, this is clearly visible in Figs. 1 and 10. The sparse 3D reconstructions look much cleaner for Orb-SLAM+NW-RSBA and close to the ground truth. The quantitative difference also becomes apparent in Tab. 3. Orb-SLAM+NW-RSBA outperforms Orb-SLAM and Orb-SLAM+NM-RSBA both in terms of accuracy and stability.

4.2.2 RSSfM

Quantitative Ablation Study. We randomly choose 8 frames from each of the 12 RS sequences to generate 12 unordered SfM datasets and evaluate the RSBA performance via average ATE and runtime. Besides, we ablate the NW-RSBA and compare quantitatively with related approaches. The results are presented in Tab. 4. The baseline methods’ performance show that NW-RSBA obtains ATE of 0.007, which is half of the second best method DC-RSBA and nearly 3% of GSBA. The removal of normalization from proposed NW-RSBA adversely increases ATE up to 100%. The removal of covariance weighting from NW-RSBA adversely impacts the camera pose estimation quality with ATE growth from 0.007 to 0.020. We believe that covariance weighting helps BA leverage the RS effect and random
Table 3. Absolute trajectory error (ATE) of different RSBA methods after Sim(3) alignment to ground truth. The best results are shown in green. Since some methods will lose tracking without processing the whole sequence, thus we highlight the background of each cell with different colours depending on its corresponding DUR value. Specifically, $\text{DUR} > 0.9$, $0.5 < \text{DUR} \leq 0.9$ and $\text{DUR} \leq 0.5$ are highlighted in light green, cyan, and orange.

Input	Methods	TUM-RSVI [21]	WHU-RSVI [3]
		#1 #2 #3 #4 #5 #6 #7 #8 #9 #10	t1-fast t2-fast
GS data	Orb-SLAM [18]	0.015 0.013 0.018 0.107 0.030 0.013 0.054 0.053 0.020 0.024	0.044 0.008
RS data	Orb-SLAM [18]	0.059 0.100 0.411 0.126 0.055 0.044 0.217 0.218 0.176 0.373	0.237 0.018
	Orb-SLAM+NM-RSBA [2]	0.115 0.088 0.348 0.120 0.062 0.060 0.251 0.246 0.156 0.307	0.204 0.030
	Orb-SLAM+NW-RSBA (ours)	0.011 0.008 0.031 0.071 0.034 0.008 0.260 0.115 0.028 0.108	0.054 0.012

Figure 11. Three-view graph of reconstructions using SfM pipeline with GSBA [16], NM-RSBA [2] and proposed NW-RSBA.

Table 4. Quantitative ablation study of RSSfM on TUM-RSVI [21] and WHU-RSVI [3] datasets. ATE: absolute trajectory error of estimated camera pose in meters (m), Runtime: time cost in seconds (s). Best and second best results are shown in green and blue respectively.

Ablation Approach	TUM-RSVI	WHU-RSVI	
	ATE (m)	Runtime (s)	
GSBA [16]	0.210	2.9	
DC-RSBA [14]	0.016	1302	
No normalization & weighting	DM-RSBA [3]	0.023	740
No weighting	NM-RSBA [2]	0.020	15.8
No normalization	W-RSBA	0.013	16.1
No Schur complement with 1-stage Schur complement & Consolidated	NW-RSBA-0S	16.9	
	NW-RSBA-1S	0.007	13.0
	NW-RSBA-consolidated	9.8	

5. Conclusion

This paper presents a novel RSBA solution without any assumption on camera image manner and type of video input. We explain the importance of conducting normalization and present a weighting technique in RSBA, which leads to normalized weighted RSBA. Extensive experiments in real and synthetic data verify the effectiveness and efficiency of the proposed NW-RSBA method.

Acknowledgements. This work is supported by the National Key R&D Program of China (No. 2022ZD0119003), Nature Science Foundation of China (No. 62102145), and Jiangxi Provincial 03 Special Foundation and 5G Program (Grant No. 20224ABC03A05).
References

[1] Cenek Albl, Zuzana Kukelova, Viktor Larsson, and Tomas Pajdla. Rolling shutter camera absolute pose. PAMI, 2019.

[2] Cenek Albl, Akihiro Sugimoto, and Tomas Pajdla. Degeneracies in rolling shutter sfm. In ECCV, 2016.

[3] Like Cao, Jie Ling, and Xiaohui Xiao. The whu rolling shutter visual-inertial dataset. IEEE Access, 8:50771–50779, 2020.

[4] Yuchao Dai, Hongdong Li, and Laurent Kneip. Rolling shutter camera relative pose: generalized epipolar geometry. In CVPR, 2016.

[5] Gaspard Duchamp, Omar Ait-Aider, Eric Royer, and Jean-Marc Lavest. A rolling shutter compliant method for localisation and reconstruction. In VISAPP, 2015.

[6] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. PAMI, 2017.

[7] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam. In ECCV, 2014.

[8] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003.

[9] Johan Hedborg, Per-Erik Forssen, Michael Felsberg, and Erik Ringaby. Rolling shutter bundle adjustment. In CVPR, 2012.

[10] Johan Hedborg, Erik Ringaby, Per-Erik Forsén, and Michael Felsberg. Structure and motion estimation from rolling shutter video. In ICCV Workshops, 2011.

[11] Sunghoon Im, Hyowon Ha, Gyeongmin Choe, Ha-Gon Jeon, Kyungdon Joo, and In So Kweon. Accurate 3d reconstruction from small motion clip for rolling shutter cameras. PAMI, 2018.

[12] Eisuke Ito and Takayuki Okatani. Self-calibration-based approach to critical motion sequences of rolling-shutter structure from motion. In CVPR, 2016.

[13] J. H. Kim, C. Cadena, and I. Reid. Direct semi-dense slam for rolling shutter cameras. In ICRA, 2016.

[14] Yizhen Lao, Omar Ait-Aider, and Helder Araujo. Robustified structure from motion with rolling-shutter camera using straightness constraint. Pattern Recognition Letters, 2018.

[15] Yizhen Lao, Omar Ait-Aider, and Adrien Bartoli. Solving rolling shutter 3d vision problems using analogies with non-rigidity. IJCV, 2021.

[16] Manolis IA Lourakis and Antonis A Argyros. Sba: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software (TOMS), 36(1):1–30, 2009.

[17] M Meingast, C Geyer, and S Sastry. Geometric models of rolling-shutter cameras. In OMNIVIS, 2005.

[18] Raúl Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accurate monocular slam system. T-RO, 2015.

[19] Alonso Patron-Perez, Steven Lovegrove, and Gabe Sibley. A spline-based trajectory representation for sensor fusion and rolling shutter cameras. IJCV, 2015.