Identification of a General O-linked Protein Glycosylation System in *Acinetobacter baumannii* and Its Role in Virulence and Biofilm Formation

Jeremy A. Iwashkiw¹, Andrea Seper², Brent S. Weber¹, Nichollas E. Scott¹,², Evgeny Vinogradov⁴, Chad Stratilo⁵, Bela Reiz⁶, Stuart J. Cordwell³, Randy Whittal⁶, Stefan Schild², Mario F. Feldman¹*
¹Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, ²Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria, ³School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia, ⁴Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada, ⁵Defence Research and Development Canada Suffield, Medicine Hat, Alberta, Canada, ⁶Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada

Abstract

Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although *A. baumannii* is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that *A. baumannii* ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven *A. baumannii* glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae *Dictyostelium discoideum* and the larvae of the insect *Galleria mellonella*, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite *A. baumannii* genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in *A. baumannii* is required for full virulence and therefore represents a novel target for the development of new antibiotics.

Citation: Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, et al. (2012) Identification of a General O-linked Protein Glycosylation System in *Acinetobacter baumannii* and Its Role in Virulence and Biofilm Formation. PLoS Pathog 8(6): e1002758. doi:10.1371/journal.ppat.1002758
Editor: Ralph R. Isberg, Tufts University School of Medicine, United States of America
Received March 5, 2012; Accepted May 1, 2012; Published June 7, 2012
Copyright: © 2012 Iwashkiw et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This work was supported by grants from Alberta Innovates Technology Futures, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Alberta Glycomics Centre to MFF, Austrian Science Fund (FWF) grants F3005-B12 LIPOTOX, P229686 and W901 (DK Molecular Enzymology) to A.S. and S.S. NES is the recipient of a CJ Martin Overseas Biomedical Postdoctoral Research Fellow supported by The National Health and Medical Research Foundation of Australia (grant number: APP1037373). MFF is an Alberta Heritage Foundation for Medical Research (AHFMR) scholar and a Canadian Institutes of Health Research (CIHR) New Investigator. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The authors have declared that no competing interests exist.
* E-mail: mfeldman@ualberta.ca

Introduction

Acinetobacter baumannii is a strictly aerobic Gram negative, non-fermentative, opportunistic pathogen. Since the 1970’s, this organism has frequently been isolated from healthcare facilities, but was easily controlled with antibiotics [1,2]. However, many clinical isolates of *A. baumannii* have recently emerged with extreme resistance to antibiotics, disinfectants, and desiccation, which has permitted *A. baumannii* to disseminate throughout healthcare facilities worldwide [3–7]. One recent study showed that from 2001 to 2008 the percentage of *A. baumannii* isolates resistant to at least three classes of antibiotics increased from 4% to 55%, and 17% of all isolates were resistant to at least four drug classes [8]. Panresistant strains of *A. baumannii* have also been isolated [9]. Because of its importance as an emerging pathogen, attention towards *A. baumannii* has increased considerably. Most of the efforts have focused on antibiotic resistance mechanisms, but little is known about its virulence factors. A significant amount of work has been done to characterize biofilm formation, which seems to play a role in pathogenesis [10,11]. Other suggested virulence factors for *A. baumannii* include the capsule, exopolysaccharide, pili and lipopolysaccharide (LPS) [11–14]. Undoubtedly, more research is needed in order to understand *A. baumannii* pathogenesis.

Genomic analysis of all sequenced *A. baumannii* strains revealed the presence of homologous genes to those encoding enzymes involved in the *Neisseria meningitidis* protein O-glycosylation system. Many different mucosal pathogenic bacteria require protein glycosylation for virulence, and glycoproteins seem to play a role in adhesion, motility, DNA uptake, protein stability, immune evasion, and animal colonization [15]. Whereas N-glycosylation seems to be restricted to epsilon and a few delta proteobacteria, O-glycosylation appears to be more widespread among bacteria. Gram negative bacteria including *Neisseria spp.* and *Bacteroides*...
Author Summary

Multidrug resistant (MDR) Acinetobacter baumannii strains are an increasing cause of nosocomial infections worldwide. Due to the remarkable ability of A. baumannii to gain resistance to antibiotics, this bacterium is now considered to be a “superbug”. A. baumannii strains resistant to all clinically relevant antibiotics known have also been isolated. Although MDR A. baumannii continues to disseminate globally, very little is known about its pathogenesis mechanisms. Our experiments revealed that A. baumannii ATCC 17978 has a functional O-linked protein glycosylation system, which seems to be present in all strains of A. baumannii sequenced to date and several clinical isolates. We identified seven glycoproteins and elucidated the structure of the glycans moieties. A glycosylation-deficient strain was generated. This strain produced severely reduced biofilms, and exhibited attenuated virulence in amoeba, insect, and murine models. These experiments suggest that glycosylation may play an important role in virulence and may lay the foundation for new drug discovery strategies that could stop the dissemination of this emerging human pathogen, which has become a major threat for healthcare systems.

Results

Identification of an O-OTase homologue in A. baumannii and construction of an in-frame knockout mutant

We initially searched the A. baumannii ATCC 17978 genome for homologues of known O-OTases. Via a BLAST analysis, we identified a homolog to the N. meningitidis O-OTase PgL (A1S_3176; E-value 1e-9) that contained a Wzy_C motif. This motif is conserved in all O-OTases, but is also found in WaaL ligases, which catalyze the transfer of the O antigen to the Lp lipid A core (21,22). To date, only experimental determination allows the assignment of an ORF containing the Wzy_C motif as either an O-OTase or a ligase (23). No other ORFs contained a Wzy_C motif in the A. baumannii ATCC 17978 genome. A1S_3176 is not predicted to be part of an operon (24). We carried out mutagenesis of the A1S_3176 gene by homologous recombination to evaluate if its encoded protein is an O-OTase or a WaaL ligase. PCR and DNA sequencing confirmed the creation of an A1S_3176 knockout strain, in which the targeted gene was replaced with a gentamicin resistance cassette. There was no significant difference between the growth curves of the wild-type and the A1S_3176 mutant strains at 37°C, indicating that growth in these conditions was not affected by the mutation (Data not shown).

A1S_3176 (PgL_{Ab}) is required for glycosylation of membrane proteins in A. baumannii ATCC 17978

Most of the Neisseria O-glycoproteins identified to date are associated to membranes (16). Membrane extracts from wild type and ΔA1S_3176 A. baumannii strains were analyzed by SDS-PAGE followed by PAS staining, a technique that is specific for detecting glycols, but presents low sensitivity (Fig. 1). A broad band migrating from 25 to 33 kDa was visualized in the extract of A. baumannii WT. Although the membrane protein profile between the WT and the ΔA1S_3176 strains appeared similar, the band detected via PAS stain was not visible in the mutant strain, suggesting that A1S_3176 is required for glycosylation of at least one protein (Fig. 1B). The PAS-reactive band disappeared upon treatment with proteinase K, associating the glycan signal with proteinaceous material. Complementation of A1S_3176 was achieved in trans, and analysis of A. baumannii ΔA1S_3176-pWH1266-pgL membrane extract showed the reappearance of the PAS stained band. Due to the aforementioned similarity between O-OTases and ligases, we carried out a conventional LPS extraction and analyzed the extract of the different strains via SDS-PAGE. Silver stain showed no obvious differences in the carbohydrate pattern were observed, suggesting that A1S_3176 is not involved in LPS synthesis (Fig S1). To further determine if A1S_3176 effected LPS biosynthesis, whole cells were digested with proteinase K and analyzed by Silver stain and no differences were observed (data not shown). However, it has been reported that the O-antigen chains of certain A. baumannii strains are not detectable by Silver stain and therefore we cannot conclusively exclude a role of A1S_3176 in LPS synthesis (25). Together these results suggest that A1S_3176 is an O-OTase responsible for O-glycosylation in A. baumannii.
glycosylation in *A. baumannii* and will be referred from here on as PgLAb, as per its *N. meningitidis* ortholog.

Identification of two glycoproteins in *A. baumannii* via 2D-DIGE and preliminary characterization of the O-glycan by MALDI-TOF/TOF MS and MS/MS analysis

To identify the glycoprotein(s) in *A. baumannii*, we performed two dimensional in-gel electrophoresis (2D-DIGE) experiments [26]. Membrane samples of both WT and ΔpggL were isolated by ultracentrifugation and the lipidic components were removed as previously described [27]. Most of the signals corresponding to the wild type (Fig 2A, green) and ΔpggL (Fig 2B, red) proteins co-localized in the gel (Fig 2C, yellow), indicating that these proteins were likely not glycosylated. However, a few proteins exhibited differential electrophoretic behavior (Fig 2). These proteins spots were excised, in-gel digested, and analyzed by MALDI-TOF/TOF MS and MS/MS. We identified two separate pairs of proteins, which according to their threedimensional electrophoretic migration, appeared to be larger and more acidic in the WT strain (WT1 and WT2) than in the ΔpggL strain (MT1 and MT2). Mass spectrometric analysis determined WT1 and MT1 samples to be *A1S_3626* protein, whereas WT2 and MT2 were identified as *A1S_3744* protein. Both, *A1S_3626* and *A1S_3744* are annotated as hypothetical proteins, and BLAST searches yielded homologues of at least two different proteins with a pentasaccharide with a preliminary structure of HexNAc-Hex-(HexNAc)-300. We observed other spots possibly corresponding to proteins migrating differently in *A. baumannii* WT and ΔpggL strains. The most prominent was marked as WT3, and was observed only in the WT extract (Fig 2C). Mass spectroscopy analysis determined this spot corresponded to OmpA (*A1S_2840*). However, manual analysis using MS/MS of WT3 indicated that OmpA was not glycosylated. Western blot analysis of whole cell extracts of the WT and ΔpggL strains revealed no difference in OmpA expression levels, which implies that manipulation of membrane samples could account for apparent differences observed in expression levels of proteins detected by 2D-DIGE (Fig S2).

Identification of additional O-glycosylated proteins in *A. baumannii* ATCC 17978 by zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) MS/MS

To determine if additional glycoproteins were present in *A. baumannii* ATCC 17978, we employed ZIC-HILIC glycopeptide enrichment. Utilizing membrane extracts previously shown to contain *A1S_3626* and *A1S_3744* putative glycopeptides were enriched and analyzed using an LTQ-Orbitrap Velos. HCD scans containing oxonium ion were manually inspected and searched using MASCOT resulting in the identification of at least 9 different glycosylation sites on 7 different glycoproteins in *A. baumannii* ATCC 17978 (Table 1; Fig 4). This peptide-centric approach enabled multiple novel glycoproteins to be identified of which six of the seven proteins are annotated as uncharacterized hypothetical proteins, with the remaining being annotated as MotB (*A1S_1193*). (Table 1). This demonstrates that PgLAb is able to glycosylate multiple proteins in *A. baumannii* ATCC 17978.

Structure determination of the O-linked glycan by 2D NMR

Identification of the O-glycan of *A. baumannii* ATCC 17978 was achieved by 2D NMR analysis. The Pronase E digested membrane protein extracts characterized in Fig 3C were analyzed by 1H:13C HSQC 2D NMR and revealed the structure of the pentasaccharide to be β-GlcNAc3NAcA4OAc-4-β-GlcNAc-6-)β-Glc-3-β-GalNAc-6-)α-Gal-6β-Glc-3-β-GalNAc-, with the amino acids S, E, and A attached in any combination (Fig S4, Table 2), β-GlcNAc3NAcA4OAc (corresponding to m/z 300; Fig 3) is an O-acetylated derivative of glucuronic acid, and can account for the more acidic migration of the WT glycopeptides compared to the ΔpggL in the 2D-DIGE analysis.

Figure 2. Comparison of *A. baumannii* WT and ΔpggL membrane extracts by 2D-DIGE. Analysis of the membrane proteome of *A. baumannii* WT strain (A), ΔpggL strain (B), and merge (C). Spots WT1 and WT2 only present in the WT strain (green) whereas MT1 and MT2 were only present in the ΔpggL strain (red). MALDI-TOF MS analysis identified WT1 and MT1 spots as *A1S_3626* protein and WT2 and MT2 spots as *A1S_3744* protein. doi:10.1371/journal.ppat.1002758.g002
PgLAb is required for efficient biofilm formation

It has been suggested that biofilm formation is important for *A. baumannii* virulence [28]. We tested if O-glycosylation has an impact on biofilm formation in this organism. Biofilm formation was detected using crystal violet staining and quantitatively analyzed by comparing the ratio between cell growth (OD\textsubscript{600}) and biofilm formation (OD\textsubscript{580}) at 30°C after 48 hours incubation (Fig. 5A). High absorbance values corresponding to a strong ability to create biofilms (1.23 ± 0.48 and 1.12 ± 0.40) were obtained for the WT strain and the ΔpgL strain complemented in trans, respectively. On the contrary, the ΔpgL strain and the ΔpgL strain transformed with pWH1266 exhibited severely reduced levels of absorbance (0.18 ± 0.07 and 0.20 ± 0.04). Similar results were also observed at 37°C (data not shown). We further characterized the role of O-glycosylation in biofilm formation by employing a flow cell system. *A. baumannii* strains were stained with the green fluorescent stain SYTO 9, visualized by confocal laser scanning microscopy, and quantitative analysis of the biofilms was performed with COMSTAT. Assessment of the initial attachment after 2 hours shows that ΔpgL strain and vector control had significantly less surface coverage (4.12% and 2.32% respectively) than the WT and in trans complemented strain (6.41% and 6.45% respectively; Fig. 5B). Confocal microscopy and subsequent analysis of biofilms biomass, as well as average and maximal thickness after 24 hours showed significantly higher levels for the WT compared to the ΔpgL strain, and the phenotype was restored to WT levels when pglAb was complemented in trans (Fig. 5 C, D, E, F; *P<0.05). These data indicate that the *A. baumannii* strain...
Precursor m/z [Da]	MH+ [Da]	Charge	Peptide mass [Da]	Mascot Ion score	Sequence	protein name	Annotation for A. baumannii ATCC 17978
749.02	2245.040	3	1214.68	31	301AKPASTPAVKSA5 133	Putative uncharacterized protein A15_0556	
1000.47	1999.943	2	969.57	49	301AKPASTPAVK113	Putative uncharacterized protein A15_0556	
999.95	3996.794	4	2966.41	40	108AAQADKTEASAAATTEQDSDSFAQVOR 135	Putative uncharacterized protein A15_0556	
1090.53	5448.631	5	4418.21	39	301AAGAVEAAAPATLTLTTDGGAVSGQCQAGIGDOGLATQTVK 267	OmpA/MotB A15_1193	
1144.20	3430.587	3	2400.20	81	72NLOKAEDONGSDGIAASTPVAK 191	Putative uncharacterized protein A15_2371	
1344.64	4031.899	3	3001.51	86	72ASTLONLOKAEDONGSDGIAASTPVAK 191	Putative uncharacterized protein A15_2371	
1469.05	4405.132	3	3374.73	51	32ASTTEQILNPKNVSAPVEDDPIDPLAATVAK 34	Putative uncharacterized protein A15_2371	
1210.52	2420.037	2	1389.66	53	243DQFGASEAADAPTR 86	Putative uncharacterized protein A15_3580	
1281.56	2562.115	2	1531.73	74	59EADQGASEAAPPATR 15	Putative uncharacterized protein A15_3580	
1283.06	2565.111	2	1534.73	47	2QASDIAATATDNASK67	Putative uncharacterized protein A15_3626	
1406.62	4217.856	3	3187.46	77	4SKAGDOAASDIAATDN(1)ASAKIDAADHADATKA 49	Putative uncharacterized protein A15_3626	
965.75	2895.252	3	1864.85	45	36SKAGDOAASDIAATDNASK 49	Putative uncharacterized protein A15_3626	
1054.98	4216.890	4	3186.48	66	36SKAGDOAASDIAATDNASAKIDAADHADATKA 49	Putative uncharacterized protein A15_3626	
755.54	3019.146	4	1988.77	24	29NDMG(16)HEAsPASHTDM(16)NK 69	Putative uncharacterized protein A15_3658	
996.39	2987.158	3	1956.78	80	29NDMGHEAsPASHTDMNK 65	Putative uncharacterized protein A15_3658	
797.81	3188.233	4	2157.86	22	29NDMGHEAsPASHTDMNKNS 57	Putative uncharacterized protein A15_3658	
1001.72	3003.153	3	1972.78	42	29NDMG(16)HEAsPASHTDMNK 65	Putative uncharacterized protein A15_3658	
1133.18	3397.538	3	2367.17	44	29EDEQKTEASAAATTEQDSDSFAQVOR 135	Putative uncharacterized protein A15_3744	
880.42	2639.328	3	1608.86	55	29VEAVSEPQPKPAK 49	Putative uncharacterized protein A15_3744	
defective in O-glycosylation has a severely diminished capacity to form biofilms.

\textbf{PgL\textsubscript{AB} is required for virulence towards Dictyostelium discoideum, and Galleria mellonella}

Two well-established virulence models for \textit{A. baumannii} are the \textit{D. discoideum} predation and the \textit{G. mellonella} infection models [5,29–33]. \textit{D. discoideum} is an unicellular amoeba that feeds on bacteria and previous work has demonstrated similarity between phagocytosis of the amoebae and mammalian phagocytes [34]. We examined if protein glycosylation was required for virulence towards \textit{D. discoideum} by co-incubation of \textit{A. baumannii} strains with the amoeba on SM/5 nutrient agar. \textit{A. baumannii} was previously shown to inhibit amoeba growth in the presence of 1\% ethanol [5]. The WT strain was virulent and inhibited all \textit{D. discoideum} growth in the presence of 1\% ethanol, which resulted in no plaque being formed. However the \textit{DpgL} strain was avirulent towards the amoeba, which resulted in plaque formation in the bacterial lawn within 48 hours and clearing of the plate within 4–5 days (Fig S5).

\textit{G. mellonella} have been used to study many host-pathogen interactions, and have several advantages over other virulence models including the presence of both humoral (ie. antimicrobial peptides) and cellular immune response systems (phagocytic cells) [32]. Most importantly, a correlation has been established between the virulence of several bacteria in \textit{G. mellonella} and mammalian models [35,36]. For the \textit{G. mellonella}, while a similar bacterial load \((2.31\pm1.13\times10^5\text{ CFU})\) was injected for each of the strains, only the WT and complemented strains were able to kill the wax moth larvae after 36 hours, (20\% and 0\% survival), whereas larvae injected with \textit{DpgL} and the \textit{DpgL} vector control strains had significantly higher survival rates (100\% and 80\%; Fig. 6). The \textit{LD}\textsubscript{50} of the WT and complemented strains were determined to be approximately \(2.6\times10^4\) and \(1.4\times10^4\) respectively after 36 hours. No additional killing was observed in the \textit{DpgL} or vector control strains up to 96 hours. A PBS injected control maintained 100\% survival throughout the length of the virulence assay. These results demonstrate a critical role for O-glycosylation in the virulence of \textit{A. baumannii} in these two model systems.

\textbf{PgL\textsubscript{AB} is required for competitive fitness in BALB/c mice}

We then tested \textit{A. baumannii} \textit{DpgL} virulence \textit{in vivo} using a previously described murine septicemia competition model [37–39]. We first determined the \textit{LD}\textsubscript{50} of \textit{A. baumannii ATCC 17978} strain by injecting groups of 5 BALB/c mice with serially diluted bacteria cultures (Fig. 7A). A very small dose range between full survival and full killing was observed, and the \textit{LD}\textsubscript{50} was determined to be \(6.49\times10^4\text{ CFU/mouse}\). The competition index (CI) was defined as the number of \textit{DpgL} CFUs recovered/number of WT CFUs recovered, divided by the number of \textit{DpgL} CFUs inoculated/number of WT CFUs inoculated. Cultures of each
strains were mixed at a ratio of 1:1, serial diluted, and plated to determine the initial CI. A CFU of the mixed strains were injected intraperitoneally into the BALB/c mice, which were subsequently sacrificed 18 hrs post injection. The spleens were aseptically harvested, serial diluted, and plated. All of the mice had a high spleen CFU load of 3.75×10^8 CFU/gram and were moribund at the time of sacrifice. While the initial prescreen showed a CI of 1.18 favoring the ApglL mutant, the spleen counts after 18 hrs showed a CI of 0.10±0.03 (Fig 7B). This data suggests that A. baumannii has a competitive disadvantage as compared to the WT strain. Together, these results indicate that A. baumannii strains lacking O-glycosylation are attenuated in mice.

Protein glycosylation appears to be ubiquitous in Acinetobacter sp.

To determine the degree of conservation of the O-glycosylation system in Acinetobacter sp., we searched for the presence of PglL-Ab homologues in different species within the genus. This genomic search showed that PglL-Ab was present in all the genomes analyzed with high sequence homology (Fig S6A). We obtained eight isolates identified by 16S rDNA and clinical isolates from the University of Alberta Hospital. The isolates were sequenced to be different species within the Acinetobacter genus (A. baumannii, A. nosocomialis, A. pittii, and A. calcoaceticus). Membranes of these strains were purified and analyzed by PAS staining for the presence of glycoproteins (Fig S6B). While there appears to be variation in the size and intensity of the PAS stained band, all the isolates were positive for glycoproteins, demonstrating that PglL-Ab was active in all these strains. This indicates that despite the plasticity of Acinetobacter sp. genomes [40], there is a strong evolutionary pressure to retain a functional O-glycosylation system.

Discussion

Isolation of MDR strains of A. baumannii is increasing at impressive rates. Despite its growing incidence as nosocomial pathogen, only a few A. baumannii virulence factors have been characterized. In this article we describe a general O-glycosylation system in A. baumannii ATCC 17978. Although once considered rare in prokaryotes, both N- and O-glycoproteins are present in all domains of life. In most bacterial species known to synthesize glycoproteins, glycosylation is restricted to a few proteins including adhesins, flagellins or pilins [15]. Only a few “general” glycosylation systems in which more than a single protein is glycosylated have been characterized. C. jejuni N-glycosylates more than 65 proteins with the same heptasaccharide. Inactivation of the glycosylation pathway does not have an effect on growth in vitro, but does reduce adhesion and invasion to cells in culture, and affects chicken and mice colonization [41]. Neisseria gonorrhoeae is able to O-glycosylate at least 12 proteins with a highly variable glycanc structure [42]. The glycan has recently been shown to be important for infection of cervical epithelial cells [43]. Bacteroides fragilis also has a general O-glycosylation system, where hundreds of proteins are predicted to be glycosylated [44]. Inactivation of the glycosylation system results in severe growth defects in vitro [17]. It was then not surprising to see that the glycosylation mutant strain was outcompeted by the wild-type strain in gnotobiotic mice colonization experiments. Seven proteins are shown to be O-glycosylated by the PglL OTase encoded by the A1S_3176 gene. Cells unable to perform protein glycosylation do not show any differential growth phenotype in vitro, while exhibiting a diminished capacity to form biofilms and reduced virulence in D. discoideum, G. mellonella, and murine septicemia pathogenesis models.
Two glycoproteins were identified using 2D-DIGE. To our knowledge, this is the first time this technique is applied to study bacterial glycoproteomics. The structure of the glycan used to decorate these proteins in *A. baumannii* was determined by a combination of MS and NMR techniques. The sugar was determined to be a pentasaccharide of the formula \(\beta\text{-GlcNAc}_3\text{-NAcA}_4\text{OAc-4-}(\beta\text{-GlcNAc-6-})\text{-a-Gal-6-}\beta\text{-Glc-3-}\beta\text{-GalNAc-S/T} \) (Fig S4). The glycan contains a terminal O-acetylated glucuronic acid derivative that is negatively charged and has not previously been described. A similar monosaccharide was found in *Pseudomonas aeruginosa* and *Bordetella pertussis* [45]. Of the glycoproteins identified, only one (A1S_1193; MotB) has any significant homology outside of the genus *Acinetobacter*, with the remaining being annotated as hypothetical proteins. MotB has homology with proteins such as Pal from *Haemophilus influenzae* that have been shown to bind to peptidoglycan and stabilize the outer membrane [46]. Functional characterization of *A. baumannii* glycoproteins will be crucial to explain the phenotypes associated with lack of glycosylation.

Biofilms are proposed to be a virulence factor that is associated with increased antibiotic resistance, pathogenicity, and persistence of a bacterial population [47–49]. We have found that O-glycosylation in *Acinetobacter baumannii*...
glycosylation enhances biofilm formation by *A. baumannii* ATCC 17978. Biofilm formation is a multistep process that involves an initial weak association leading to an irreversible attachment, which leads eventually to a complex maturation into sophisticated superstructures [50]. We observed by flow cell and confocal imaging that glycosylation enhances the initial attachment as well as mature biofilm mass and density. It is tempting to speculate that glycans of the glycoproteins may have a function in cell-to-cell adhesion [51]. Further work will elucidate in which aspect protein glycosylation is required for efficient biofilm formation.

The basic mechanisms of phagocytic cells are used in both amoebae and mammalian macrophages. As an infection model, the amoebae *D. discoideum* is considered a primitive macrophage. *D. discoideum* cells were unable to predate on *A. baumannii* WT lawns, but were able to efficiently predate on lawns of the glycosylation-deficient bacteria. It is uncertain how protein O-glycosylation protects *A. baumannii* from *D. discoideum* but we can hypothesize that glycosylation may help in the inhibition of phagocytosis by the amoebae, and/or prevent bacterial lysis by reactive oxygen species produced by the amoebae [52]. Another possibility is that glycosylation of certain proteins is required to interfere with bacterial degradation and intracellular vesicle transport and/or fusion, as shown for *Legionella* [53]. We also analyzed if protein O-glycosylation plays a role in pathogenesis in *G. mellonella* caterpillars. This model system has been recently shown to recreate the mammalian humoral immune system, with similar antimicrobial peptides, toll-like receptors, and the complement-like mechanism of melanization [54]. Similar to the *D. discoideum* model, *A. baumannii* ΔpglL strain was unable to kill *G. mellonella*. O-glycosylation could mediate killing of the larvae by stabilizing the bacterial outer membrane of *A. baumannii*, which could prevent killing by antimicrobial peptides. The negative charges of the glycan chains could play a role in this process. Alternatively, glycosylation could mask signals detected by the larvae or prevent phagocytosis by *G. mellonella* haemocytes, among other possibilities. The involvement of glycoproteins in virulence is further supported by the demonstration that the ΔpglL strain is outcompeted by wild type bacteria in a murine septicemia model. Thus, our experiments showed that glycosylation is critical for virulence in three different model systems. Further work using strains carrying mutations in individual glycoproteins will help to elucidate the exact role of protein glycosylation in pathogenesis.

Glycoproteins are usually immunodominant in bacteria, and therefore, the glycoproteins identified in this study may be the base of future vaccine formulations and diagnostic methods. The prevalence of the O-glycosylation machinery in *Acinetobacter* sp., together with its role in virulence in the three different pathogenesis models, suggest that protein O-glycosylation represents a novel
Table 3. List of strains, plasmids, and primers used in this work.

Strains	Reference
A. baumannii ATCC 17978	[68]
A. baumannii ATCC 17978 ΔpgL	This work

Plasmid	Reference
pEXT20	[69]
pWH1266	[70]
pFLP2	[71]
pSPG1	[55]

Primers	Sequence (5’-3’)
pglL_{fwd} EcoRI	gcgaaattcagttttctagtaaatgggtgcctttgcagcag
pglL_{rev} XbaI 10His	gagggaattacatttgcctttggatacaccaccaccaccaccaccaccaccaccactaa
aacC_{fwd} K/O	catcgcgcttgctgccttcgaccaagaagc
K/O pglL_{fwd} EcoRI	gaggaattacatgacctaaagttctattaatgactatagt
K/O pglL_{rev} XbaI	cccaggtgttcaactccccaaatcatacatcaggtcagatgt

Materials and Methods

Bacterial strains, plasmids, growth conditions, and antimicrobial agents

The bacterial strains and plasmids used in this study are listed in Table 3. A. baumannii strains were grown in Luria Bertani broth/agar at 37°C. The antibiotics ampicillin (Ap) 100 μg/mL, gentamicin (Gm) 50 μg/mL, and tetracycline (Tc) 5 μg/mL were added for selection as needed.

Construction of A. baumannii ΔpgL knockout and in trans complementation

In order to create a ΔpgL via homologous recombination, we cloned a ~3500 bp fragment consisting of ~1000 bp upstream and downstream of A1S_3176 into pEXT20 using primers K/O pglL_{fwd} and K/O pglL_{rev} from A. baumannii ATCC 17978 genomic DNA (Table 3). The construct was subsequently subcloned from pEXT20 into pFLP2. We then digested pFLP2-ΔpgL with PsiI and replaced A1S_3176 with a Smal excised Gentamicin resistance cassette (aacC₁) from pSPG1 [55]. The plasmid pFLP2 does not replicate in A. baumannii ATCC 17978. This final construct was transformed into electro-competent A. baumannii WT cells and selection for a single recombination event was analyzed using media supplemented with gentamicin. Positive colonies were grown in 5 mL LB at 37°C for 72 hours, with 1/1000 reinoculations into fresh LB media every 24 hour period. After 72 hours, the liquid culture was plated on LB agar supplemented with gentamicin and 10% sucrose to select for a double recombination event. Colony PCR using both internal and external primers showed the allelic exchange of A1S_3176 with aacC₁, generating a knockout mutant of A. baumannii ΔpgL.

SDS-PAGE and Periodic acid stain (PAS) analysis of membrane extracts

Bacterial cultures were pelleted by centrifugation for 15 mins at 10,000×g, washed with PBS, resuspended in PBS, and subsequently lysed by French Press. Unbroken cells were pelleted by centrifugation for 15 mins @ 5,000×g. The supernatant was ultracentrifugated for 1 hr @ 100,000×g (4°C) to pellet cell membrane. Samples were quantified by Bradford protein quantification (Biorad) and analyzed on a 12% SDS-PAGE. The PAS stain protocol used was previously described [56].

LPS extraction protocol

LPS was extracted according to Marolda et al [57]. Samples were resuspended in 50 μL of dH₂O and analyzed by Silverstain on a 15% SDS-PAGE.

2D-DIGE analysis of A. baumannii membrane extracts

Lipid-free membranes were obtained for 2D-DIGE analysis according to [27]. The material was resuspended in 6.5 M Urea, 2.2 M thiourea, 1% w/v ASB-14, 5 mM Tris-HCl pH 8.8, 20 mM DTT, 0.5% IPG buffer. The samples were labeled using CyDye minimal labeling protocol (Amersham Biosciences). A. baumannii WT membranes were labeled with Cy5 and ΔpgL were labeled with Cy3. Samples were quantified by 2D-Quant kit (GE Healthcare) and 600 μg of each WT and ΔpgL membranes were mixed in Destreak solution (GE Healthcare) to a final volume of 450 μL. 24 cm pH 3–11 NL IPG strips were simultaneously rehydrated and sample loaded for 24 hrs at room temperature in the dark. Isoelectric focusing was done using the Ettan IPGphor system for a total of 56,000 Vhr in the dark. The strip was then incubated in 10 mL of equilibration solution (2% SDS, 50 mM Tris-HCl, 6 M Urea, 30% (v/v) glycerol, 0.002% bromophenol blue) for 15 mins with 100 μg DTT and then 10 mL equilibration solution with 250 mg iodoacetamide. The strip was then sealed into a DALT 12.5 pretcast gel with 0.5% agarose. The system was run at 2.5 W/gel for 30 mins, the 17 W/gel until the dye front exited the bottom. The gel was visualized using FLA-5000 (FujiFilm) and the images analyzed by ImageQuant 5.0. The gel was subsequently stained with Coomassie brilliant blue, and individual spots excised and prepared for mass spectrometry.

MALDI-TOF/TOF MS and MS/MS analysis of glycoproteins

Samples were in gel tryptically-digested and the peptides were desalted using C₁₈ Zip-Tips and eluted with 60% CH₃CN/40%
H2O. Samples were spotted on a Bruker Daltonics MTP ground steel or Bruker Daltonics MTP AC600 Anchorchip target plate and air dried. 1 μL for ground steel and 0.4 μL for the AC600 target of 2,5-dihydroxybenzoic acid (DHB, 10 mg/mL in 30% H2O, 70% CH3CN) was spotted on top and allowed to dry. Mass spectra were obtained in the positive mode of ionization using a Bruker Daltonics Bremen, GmbH UltrafleXtreme MALDI TOF/TOF mass spectrometer. The FlexAnalysis software provided by the manufacturer was used for analysis of the mass spectra. The MS/MS spectra were obtained manually. The exact m/z used as the precursor m/z for MS/MS was determined first on a Bruker Daltonics Billerica, MA Apex Qe MALDI FTICR MS instrument and the MS/MS spectrum was automatically re-calibrated based upon this m/z.

MALDI TOF-TOF MS characterization of the A. baumannii O-glycan from membrane extracts

Lipid free membrane extracts were digested for 72 hrs at 37°C with 2 μL Pronase E (20 mg/mL) being freshly added every 24 hrs. Glycosylated peptides were enriched using Active charcoal Micro SpinColumn (HARVARD Apparatus). Briefly, the column was prewashed 3× with 400 μL of 0.1% TFA in 60% ACN and 20% ddH2O and centrifuged at 500 RCF for 2 minutes. The column was equilibrated 3× with 400 μL of H2O. The sample was loaded 3× at 500 RCF for 2 minutes. The column was washed 2× with 200 μL of ddH2O at 500 RCF for 2 minutes. The glycan was eluted 3× with 100 μL 0.1% TFA in 50% ACN and 50% H2O at 1000 RCF for 2 minutes. The sample was dried by vacuum centrifugation and analyzed by MALDI-TOF/TOF MS and MS/MS.

Purification of glycans for NMR analysis

For NMR analysis glycoproteins were digested with a large excess of proteinase K at pH 8 (adjusted by addition of ammonium) at 37°C for 48 hours. Products of digestion or free oligosaccharides were separated on Sephadex G-15 column (1.5x60 cm) and each fraction eluted before salt peak was dried and analyzed by 1H NMR. Fractions containing desired products were separated by anion exchange chromatography on Hitrap Q column (5 mL, Sigma-Aldrich) and glycan eluted with a linear gradient of NaCl (0–1 M, 1 h). Desalting was performed on Sephadex G15 prior to analysis by NMR.

NMR spectroscopy analysis

NMR experiments were carried out on a Varian INOVA 600 MHz (1H) spectrometer with 3 mm gradient probe at 25°C with acetone internal reference (2.225 ppm for 1H and 31.45 ppm for 13C) using standard pulse sequences DQ COSY, TOCSY (mixing time 120 ms), ROESY (mixing time 500 ms), HSOQC and HMBC (100 ms long range transfer delay). AQ time was kept at 0.3–1 sec for H-H correlations and 0.25 sec for HSQC; 256 increments was acquired for t1. Assignment of spectra was performed using Topspin 2 (Bruker Biospin) program for spectra visualization and overlap. Monosaccharides were identified by COSY, TOCSY and NOESY cross peak patterns and 13C NMR chemical shifts. Amino group location was concluded from high field signal position of aminated carbons (CH at 45–60 ppm). Connections between monosaccharides were determined from transglycosidic NOE and HMBC correlations.

Protease digestion and enrichment of glycopeptides by zwitterionic hydrophilic interaction chromatography (ZIC-HILIC)

Dried membrane protein-enriched fractions were resuspended in 6 M urea, 2 M thiourea, 40 mM NH4HCO3. Samples were reduced, alkylated, digested with Lys-C (1/200 w/w) and then trypsin (1/50 w/w) as described previously [20]. Digested samples were then dialyzed against ultra-pure water overnight using a Mini Dialysis Kit with a molecular mass cut off of 1000 Da (Amersham Biosciences, Buckinghamshire, UK) and on completion were collected and lyophilized. ZIC-HILIC enrichment was performed according to [20] with minor modifications. Micro-columns composed of 10 μm ZIC-HILIC resin (SeQuant, Umeå, Sweden) were packed into P10 tips on a stage of Empire C6 material (Sigma) to a bed length of 0.5 cm and washed with ultra-pure water prior to use. Dried digested samples were resuspended in 80% acetonitrile (ACN), 5% formic acid (FA) and insoluble material removed by centrifugation at 20,000 x g for 5 min at 4°C. Samples were adjusted to a concentration of 2 μg/μL and 100 μg of peptide material loaded onto a column and washed with 10 load volumes of 80% ACN, 5% FA. Peptides were eluted with 3 load volumes of ultra-pure water into low-bind tubes and concentrated using vacuum centrifugation.

Identification of glycopeptides using reversed phase LC-MS and HCD MS-MS

ZIC-HILIC fractions were resuspended in 0.1% FA and loaded onto a Acclaim PepMap 100 μm C18 Nano-Trap Column (Dionex Corporation, Sunnyvale, CA) for 10 min using a UltiMate 3000 intelligent LC system (Dionex Corporation). Peptides were eluted and separated on 20 cm, 100 μm inner diameter, 360 μm outer diameter, ReproSil – Pur C18 AQ 3 μm (Dr. Maisch, Ammerbuch-Entringen, Germany) in house packed column. Enriched peptides derived from tryptic digests were analysed using an LTQ-Orbitrap Velos (Thermo Scientific, San Jose CA). Samples were eluted using a gradient from 100% buffer A (0.5% acetic acid) to 40% buffer B (0.5% acetic acid, 80% MeCN) over 120 mins at a constant flow of 200 nL/min enabling the infusion of sample in the instrument using ESI. The LTQ-Orbitrap Velos was operated using Xcalibur v2.2 (Thermo Scientific) with a capillary temperature of 200°C in a data-dependent mode automatically switching between MS ion trap CID and HCD MS-MS. For each MS scan, the three most abundant precursor ions were selected for fragmentation with CID, activation time 30 ms and normalized collision energy 35, followed by HCD, activation time 30 ms and normalized collision energy 45. MS resolution was set to 60,000 with an AGC of 1e6, maximum fill time of 500 ms and a mass window of m/z 600 to 2000. MS-MS fragmentation was carried out with an AGC of 3e5 / 2e5 for CID/HCD and maximum fill time of 100 ms/500 ms CID/HCD. For HCD events an MS resolution of 7500 was set. A total of six HILIC enrichments were performed and analyzed by the above protocol.

Database interrogation of identified glycopeptides

Raw files were processed within Proteome Discover version 1.0 Build 43 (Thermo Scientific) to generate .mgf files. To identify possible glycopeptides within exported scans, the MS-MS module of GPMAW 8.2 called ‘.mgf graph’ was utilized. This module allowed the identification of all scan events within the generated .mgf files containing the diagnostic oxonium m/z 301.10 ion. These scan events were manually inspected and identified as possible glycopeptides based on the presence of the deglycosylated peptide ion with a tolerance of 20 ppm. To facilitate glycopeptide assignments from HCD scan events, ions below the mass of the predicted deglycosylated peptides were extracted with Xcalibur v2.2 using the Spectrum list function. Ions with a deconvoluted mass above the deglycosylated peptide mass and ions corresponding to known carbohydrate oxonium ions such as 204.08 and
366.14 were removed in a similar approach to post-spectral processing of ETD data [58, 59]. Mascot v2.2 searches were conducted via the Australasian Proteomics Computational Facility (www.apcf.edu.au) with the Proteobacteria taxonomy selected. Searches were carried out with a parent ion mass accuracy of 20 ppm and a product ion accuracy of 0.02 Da with no protease specificity, instrument selected as MALDI-QIT-TOF (use of this instrumentation setting was due to the observation of multiple internal cleavage products, extensive NH$_3$ and H$_2$O loss from a, b, y ions, which are all included within this scoring setting) as well as the fixed modification carbamidomethyl (C) and variable modifications, oxidation (M) and deamidation (N). An ion score cut-off of 20 was accepted and all data were searched with the decoy setting activated generating a zero false positive rate generated against the decoy database.

Biofilm analysis using 96 well polystyrene plates

Cultures were grown overnight and re-inoculated at an OD$_{600}$ 0.05 in 100 µL into replicates in a 96 well polystyrene plate (Costar). The cultures were subsequently grown without shaking for 48 hours at 30°C. Bacterial growth was determined by measuring the absorbance at OD$_{600}$ nm. The cultures were removed and the wells washed with ddH$_2$O, followed by the addition of 100 µL of 1% crystal violet in ethanol to stain the cells. The plate was incubated for 30 mins with gentle agitation to stain the cells. The plate was incubated for 30 mins with gentle agitation, then thoroughly washed with ddH$_2$O, and the stained biofilms solubilized with 100 µL of 2% SDS for 30 minutes with gentle agitation. The amount of biofilm formed was quantified by measuring the absorbance at OD$_{580}$ nm. The data was normalized using the ratio between OD$_{580}$/OD$_{600}$.

Flow cell biofilm experiments, fluorescent staining and confocal laser scanning microscopy

Flow cell experiments and fluorescent staining were performed as described previously by Seper et al. [60]. Briefly, the respective overnight cultures were adjusted to OD$_{600}$ = 0.1 using 50-fold diluted LB (2%). Per channel, approximately 250 µL of the dilutions were inoculated. After static incubation for 2 h, flow of pre-warmed 2% LB (37°C) was initiated (3 ml/h). Biosys were allowed to form in a time period of 24 h and were stained with SYTO 9 (Invitrogen) for visualization. Images of biofilms were allowed to form for a time period of 24 h and were thoroughly washed with ddH$_2$O, and the stained biofilms resuspended with 100 µL of 2% SDS for 30 minutes with gentle agitation. The amount of biofilm formed was quantified by measuring the absorbance at OD$_{580}$ nm. The data was normalized using the ratio between OD$_{580}$/OD$_{600}$.

Dictyostelium discoideum virulence assay

This assay was performed essentially as described by [62]. Briefly, mid-logarithmic cultures of *D. discoideum* were mixed with overnight cultures of bacteria to a final concentration of 1x104 amoebae ml$^{-1}$. 0.2 ml of the suspension was then plated on SM/5 agar containing 1% ethanol. Plates were incubated at room temperature and monitored for *D. discoideum* plaques for 3–5 days. Wild-type bacteria are toxic to the amoebae. Appearance of plaques indicates attenuation.

Galleria mellonella virulence assay

This assay was performed as previously described [32]. *Galleria mellonella* larvae were bred in sterile conditions at 37°C by Dr. Andrew Keddie (University of Alberta). After injection of bacteria, caterpillars were incubated at 37°C, and the number of dead caterpillars was scored every 5 hours. Caterpillars were considered dead when they were nonresponsive to touch. This experiment is representative of 3 biological replicates.

Murine bacterial competition model assay

A murine model of disseminated sepsis using BALB/c mice (16–20 gms) was used for bacterial challenge [63, 64]. *A. baumannii* strains were grown for 18 h at 37°C in Luria broth with appropriate antibiotics and adjusted to the appropriate concentration in physiologic saline. Inoculums were prepared by mixing the bacterial suspensions 1:1 (v/v) with a 10% solution (w/v) of porcine mucin (Sigma, St. Louis, MO) which increases the infectivity of *A. baumannii*, allowing for a lower concentration of bacteria to be used [65–67]. Mice were injected intraperitoneally with 0.2 ml of the bacterial/mucin inoculums. Bacterial concentrations were determined by plating dilutions on Luria agar. The wild type strain lethal dose for 50% of animals was determined by the limit test where groups of 5 mice were infected with dilutions of bacteria, at a range of concentrations within 2 logs of a concentration of bacteria that had previously been shown to be lethal with this species of bacteria using a disseminated sepsis model.

An *in vivo* competition assay was used to compare fitness between the wt and ppgL strains [37–39]. Liquid cultures containing individual strains were diluted and plated on LB agar. Mixed inoculums were established by mixing equal proportions of strains based on the OD$_{600}$. Once mixed the inoculums were serially diluted and plated on LB agar and LB agar with gentamycin to select for the ppgL. The expected ratio of CFU on LB compared to CFU on LB with gentamycin was 2:1.

For bacterial competition experiments *in vivo* an animal model of sepsis was used. Groups of 3 BALB/c female 16–20 g mice were inoculated intraperitoneally with 1x105 CFUs of mixed inoculums (50% of each strain). Groups of 3 mice were sacrificed at 18 h after inoculation. Mice at 18 hours of infection were showing clinical signs of illness and were often moribund. Spleens were aseptically removed, weighed, and homogenized via passage through a cell strainer (BD falcon 70 µm cell strainer) in physiologic saline before plating serial log dilutions on Luria agar plates for bacterial quantification. If the two strains had equal fitness in vivo the ratio established prior to infection should be maintained.

Ethics statement

All procedures and experiments involving animals (mice) were approved by the Institutional Animal Care Committee of Defence Research and Development Canada Suffield (protocol # CWS-08-1-1-1) and were in accordance with guidelines from the Canadian Council of Animal Care.

Supporting Information

Figure S1 Analysis of LPS extraction of *A. baumannii* strains resolved by SDS-PAGE and visualized by Silver-stain. Samples were as follows: lane 1 WT; lane 2 ΔpgL, lane 3 ΔpgL, pWH1266-ΔpgL, 4-ΔpgL, pWH1266 control. (TIF)
Figure S2 Western Immunoblot of OmpA (AIS_2840) in whole cell extracts of A. baumannii ATCC 19798 strains. Each lane was loaded with 0.2 OD600 of sample, and probed with OmpA monoclonal antibody with no observable differences between the WT and ΔpgIL. (TIF)

Figure S3 MALDI-TOF/TOF MS/MS fingerprint analysis of glycosylated peptides in A. baumannii. A) Sequencing of the peptide SAGDQQASDIATATDNASAK from the parental peak 2895.24 Da demonstrates the peptide matches the expected sequence of AIS_3626. B) Sequencing of the peptide ETPKKEEQDKVETAVSEPQPKPA from the parental peak 2822.33 Da demonstrates the peptide matches the expected sequence of AIS_3744. (TIF)

Figure S4 1H:13C HSQC 2D NMR spectra of the A. baumannii O-glycan. NMR data for the A. baumannii O-glycan (D2O, 28°C, 600 MHz). NAc: 1.95/23.0; 2.00/23.3; 2.04/23.5; 2.04/23.5 ppm, all C-1 at 175.9 ppm. OAc: 2.06/21.3, 174.0 ppm. The amino acids attached to the pentasaccharide were determined to be S-E-A (order not determined). * indicates impurity. (TIF)

Figure S5 Dictyostelium discoideum plaque assay comparing virulence of A. baumannii strains. Bacteria were mixed with ~500 amoebae, plated on SM/5 agar with 1% ethanol, and incubated at room temperature for 72 hours to allow for plaque formation. Results are representative of four independent experiments with 1 representing WT and 2 representing ΔpgIL. (TIF)

Figure S6 Protein glycosylation appears to be highly conserved in A. baumannii clinical isolates. A) 10 µg of membrane extract from A. baumannii clinical isolates obtained from the University of Alberta Hospital were resolved by SDS-PAGE and detection of carbohydrates was performed by PAS stain. 8/8 isolates have a similar PAS reactive band to A. baumannii and detection of carbohydrates was performed by PAS stain. B) Phylogenetic tree of hypothetical O-OTases of Acinetobacter sp. and known O-OTases and O-antigen ligases. Protein identification numbers are as follows: N. meningitidis MS5 PgI (NP_273640.1); N. gonorrhoeae MS11 PgO (ZP_04276763.1); P. aeruginosa PA01 PiO (AAP13787.1); A. baumannii ATCC 19798 (YP_001086175.1); A. baumannii AB900 (ZP_04661261.1); A. baumannii ACICU (YP_001848035.1); A. baumannii ATCC 19606 (ZP_05829417.1); A. baumannii ATCC 19606 Ligase (YP_001713970.1); A. baumannii SDF (YP_001705998.1); A. baumannii 1656-2 (ADX05061.1); A. baumannii 6014059 (ZP_08441731.1); A. calcoaceticus SUH2202 (ZP_06059388.1); A. baumannii AYE (YP_001712289.1); A. baumannii AB0057 (YP_003293903.1); A. calcoaceticus PHEA-2 (ADY18231.1); Acinetobacter sp. SH024 (ZP_06693023.1); Acinetobacter sp. DR1 (YP_003730587.1); Acinetobacter sp. RUH2624 (ZP_05825054.1); Acinetobacter sp. ATCC_2724 (ZP_03824224.1); A. junii SH205 (ZP_06066893.1); A. haemolyticus ATCC 19194 (ZP_06729056.1); Acinetobacter sp. ADPI ACIAID0103 (YP_044903.1); Acinetobacter sp. ADPI ACIAID3337 (YP_0478281.1); A. taylorii SH145 (ZP_06070928.1); Klebsiella pneumoniae WaaL (AAX2101.1). Phylogenetic tree was built using http://www.phylogeny.fr/version2_cgi/index.cgi (50). (TIF)

Acknowledgments
We would like to thank Dr. Tony Cornish for assistance with 2D-DIGE, Jenny Ng for technical assistance, Dr. Pakatchi’s lab for D. discoideum training, Robert Rennie and LeAnn Turbull at the University of Alberta hospital for providing the clinical isolates, S. D. Kohleinwand and H. Wolinski for access to the microscope facility, M. Grube and B. Klug for helpful assistance with the Amira software analysis, Dr. Andrew Keddie for providing Galleria mellonella larvae, Dr Mike McConnell for providing the OmpA antibody, and members of the Feldman lab for the critical reading of the manuscript.

Author Contributions
Conceived and designed the experiments: MFF JAI NES CS. Performed the experiments: JAI NES AS SS BR NES CS EV. Analyzed the data: JAI MFF. Contributed reagents/materials/analysis tools: NES CS EV. Wrote the paper: JAI MFF.

References
1. Towner KJ (2009) Acinetobacter: an old friend, but a new enemy. J Hosp Infect 73: 355–363.
2. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21: 538–582.
3. Rello J, Diaz E (2003) Acinetobacter baumannii: a threat for the ICU? Intensive Care Med 29: 350–351.
4. Hanlon GW (2005) The emergence of multidrug resistant Acinetobacter baumannii as a universal threat to public health? Int J Antimicrob Agents 32: 106–119.
5. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, et al. (2007) Pyrosequencing and transposon mutagenesis. Genes Dev 21: 601–614.
6. Vik A, Aas FE, Anonsen JH, Bilsborough S, Schneider A, et al. (2009) Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 106: 4447–4452.
7. Fletcher CM, Coyne MJ, Villa OF, Chatzidaki-Livanis M, Comstock LE (2009) A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 137: 321–331.
8. Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N, et al. (2006) Two conserved mechanisms of virulence and resistance. Int J Antimicrob Agents 35: 219–226.
9. Gonzalez RH, Nusblat A, Nudel BC (2001) Detection and characterization of the pga operon in Escherichia coli. Microbiology 147: 1656-2 (ADX05061.1); A. baumannii group. Antimicrob Agents Chemother 53: 1295–1296.
10. Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litran T (2009) The spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 106: 4447–4452.
11. Fournier PE, Richet H (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42: 692–699.
12. Fletcher CM, Coyne MJ, Villa OF, Chatzidaki-Livanis M, Comstock LE (2009) A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 137: 321–331.
13. Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N, et al. (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. Embryo J 25: 967–976.
14. Faridmoayer A, Fentabil MA, Mills DC, Klassen JS, Feldman MF (2007) Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation. J Bacteriol 189: 2733–2739.
15. Choi CH, Hyun SH, Lee JY, Lee JS, Lee YS, et al. (2008) Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol 10: 309–319.
16. Liu J, Wexler NS, Kwon-Chung KI, Lathigra RK, Vingerling JR, et al. (1984) O-linked protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8: 765–778.
17. Vuk A, Aas FE, Anonsen JH, Bilsborough S, Schneider A, et al. (2009) Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 106: 4447–4452.
18. Fletcher CM, Coyne MJ, Villa OF, Chatzidaki-Livanis M, Comstock LE (2009) A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 137: 321–331.
19. Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N, et al. (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. Embryo J 25: 967–976.
20. Scott NE, Parker BL, Connolly AM, Paulieh J, Edwards AV, et al. (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction
chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the truncated glycopeptidomere of Campylobacter jejuni. Mol Cell Proteomics 10: M000301–M000302.

21. Power PM, Seib KL, Jennings MP (2006) PIlm glycosylation in Neisseria meningitidis occurs by a similar pathway to wayside-D-antigen biosynthesis in Escherichia coli. Biochem Biophys Res Commun 347: 904–908.

22. Gebhart C, Iehnini MV, Retz B, Price NL, Aas FE, et al. (2012) Characterization of the serogenous bacterial diaposycharyhacrylates in Escherichia coli reveals the potential for O-linked protein glycosylation in Fibrae chlorelae andBurkholderia rhizoides. Glycobiology. In press.

23. Hug J, Feldman MF (2011) Analogies and homologies in lipopolysaccharide and glycopolym erosion in bacteria. Glycoconjugate J 21:138–151.

24. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, et al. (2010) Dictyostelium discoideum biofilm and a Key Role for Histidine Metabolism. J Proteome Res 10: 3309–3417.

25. Pesenne E, Pesenne A, Lambeiri C, Coisson DJ, Riedel K, et al. (2009) First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study. Proteomics 9: 2695–2710.

26. Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4: 273–287.

27. Gaddy JA, Arrivet BA, McConnell MJ, Lopez-Rojas R, Pachon J, et al. (2012) Role of Acinetobacter-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galliera mellonella Caterpillars, and Mice. Infect Immun 80: 1013–1024.

28. Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4: 273–287.

29. Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, et al. (2012) Role of Acinetobacter-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galliera mellonella Caterpillars, and Mice. Infect Immun 80: 1013–1024.

30. Wand M, Bock LJ, Turton JF, Nagaret PG, Sutton JM (2011) Virulence of strains of Acinetobacter baumannii is enhanced in Galliera mellonella following biofilm adaptation. J Med Microbiol 60: 470–7.

31. Antunes LG, Imperi F, Carattoli A, Visca P (2011) Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One 6: e22674.

32. Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC, Jr., et al. (2009) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146 (Pt 10): 2395–2407.

33. Pukatzki S, Kessin RH, Mekalanos JJ (2002) Biochemical Biophys Res Commun 347: 904–908.

34. Hornsey M, Wareham DW (2011) Cryptococcus neoformans in vivo -antigen biosynthesis mutants in mice and insects. J Bacteriol 183: 3843–3845.

35. Yoshino E, Moreno R, El Khoury JB, Heitman J, et al. (2011) Galliera mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 55: 2605–2609.

36. Lumia I, Merase WH (2011) In vivo efficacy of glycopeptide-colistin combination therapies in a Galliera mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 55: 3534–3537.

37. Hasselbring BM, Patel MK, Schell MA (2011) Dictyostelium discoides as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun 79: 2079–2088.

38. Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L, et al. (2011) Genome-sequenced bacterial diaposycharyhacrylates in Escherichia coli reveals the potential for O-linked protein glycosylation in Fibrae chlorelae and Burkholderia rhizoides. Glycobiology. In press.

39. Hug J, Feldman MF (2011) Analogies and homologies in lipopolysaccharide and glycopolym erosion in bacteria. Glycoconjugate J 21:138–151.

40. Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4: 273–287.

41. Parson LM, Lin F, Orban J (2006) Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45: 2122–2128.

42. Johnson LR (2008) Microcolony and biofilm formation as a survival strategy for bacteria. J Theor Biol 251: 24–34.

43. Bazzka K, Crawford RJ, Nazarenko EL, Ivanova EP (2011) Bacterial microcolony polymorphism. Adv Exp Med Biol 715: 213–226.

44. Hobly N, Cofia O, Johansen HK, Song ZJ, Moser C, et al. (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3: 55–65.

45. Smani Y, Lopez-Rojas R, Dominguez-Herrera J, Docobo-Perez F, Marti S, et al. (2011) Proteomic and Functional Analyses Reveal a Unique Lifestyles for Acinetobacter baumannii Biofilms and a Key Role for Histidine Metabolism. J Proteome Res 10: 3309–3417.

46. Pesenne E, Pesenne A, Lambeiri C, Coisson DJ, Riedel K, et al. (2009) First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study. Proteomics 9: 2695–2710.

47. Johnson LR (2008) Microcolony and biofilm formation as a survival strategy for bacteria. J Theor Biol 251: 24–34.
Author/s:
Iwashkiw, JA; Seper, A; Weber, BS; Scott, NE; Vinogradov, E; Stratilo, C; Reiz, B; Cordwell, SJ; Whittal, R; Schild, S; Feldman, MF

Title:
Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation

Date:
2012-06-01

Citation:
Iwashkiw, J. A., Seper, A., Weber, B. S., Scott, N. E., Vinogradov, E., Stratilo, C., Reiz, B., Cordwell, S. J., Whittal, R., Schild, S. & Feldman, M. F. (2012). Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation. PLOS PATHOGENS, 8 (6), https://doi.org/10.1371/journal.ppat.1002758.

Persistent Link:
http://hdl.handle.net/11343/260688

File Description:
Published version

License:
CC BY