Heavy baryon spectroscopy

Rudolf N. Faustov1 and Vladimir O. Galkin1

1Institute of Cybernetics and Informatics in Education, FRC CSC RAS, Moscow, Russia

Abstract. Masses of heavy baryons are calculated in the relativistic quark-diquark picture. Obtained results are in good agreement with available experimental data including recent measurements by the LHCb Collaboration. Possible quantum numbers of excited heavy baryon states are discussed.

1 Introduction

Recently significant experimental progress has been achieved in studying heavy baryon spectroscopy. Many new heavy baryon states have been observed. The main contribution was made by the LHCb Collaboration. Thus last year the amplitude analysis of the decay $\Lambda_c^0 \to D^0 p\pi^−$ was performed in the region of the phase space containing $D^0 p$ resonant contributions which revealed three Λ_c excited states and allowed to measure precisely their masses and decay widths \cite{1}: the $\Lambda_c(2880)^+$ with the preferred spin $J = 5/2$; the new state $\Lambda_c(2860)^+$ with quantum numbers $J^P = 3/2^+$, its parity was measured relative to that of the $\Lambda_c(2880)^+$; the $\Lambda_c(2940)^+$ with the most likely spin-parity assignment $J^P = 3/2^−$ but other solutions with spins from 1/2 to 7/2 were not excluded. Then five new, narrow excited Ω_c states decaying to $\Xi_c^+ K^−$ were observed \cite{2}: the $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$, and $\Omega_c(3119)^0$. These states were later confirmed by Belle \cite{3}. Soon the discovery of the long-awaited doubly charmed baryon Ξ_b^{++} was reported \cite{4}. This year the new $\Xi_b(6227)^−$ resonance was observed as a peak in both the $\Lambda_0^b K^−$ and $\Xi_0^b \pi^−$ invariant mass spectra \cite{5}. Finally, the first observation of two structures $\Sigma(6097)^\pm$ consistent with resonances in the final states $\Lambda_0^b \pi^−$ and $\Lambda_0^b \pi^+$ was reported by the LHCb \cite{6}.

In this talk we compare these new data with the predictions of the relativistic quark-diquark model of heavy baryons \cite{7–9}.

2 Relativistic quark-diquark model of heavy baryons

Our approach is based on the relativistic quark-diquark picture and the quasipotential equation. The interaction of two quarks in a diquark and the quark-diquark interaction in a baryon are described by the diquark wave function Ψ_d of the bound quark-quark state and by the baryon wave function Ψ_B of the bound quark-diquark state respectively. These wave functions satisfy the relativistic quasipotential equation of the Schrödinger type \cite{7}

$$\left(\frac{b^2(M)}{2\mu_R} - \frac{p^2}{2\mu_R}\right)\Psi_{d,B}(p) = \int \frac{d^3q}{(2\pi)^3} V(p,q;M)\Psi_{d,B}(q),$$

\cite{1}
where μ_R is the relativistic reduced mass, $b^2(M)$ is the center-of-mass relative momentum squared on the mass shell, p, q are the off-mass-shell relative momenta, and M is the bound state mass (diquark or baryon).

The kernel $V(p, q; M)$ in Eq. (1) is the quasipotential operator of the quark-quark or quark-diquark interaction which is constructed with the help of the off-mass-shell scattering amplitude, projected onto the positive energy states. We assume that the effective interaction is the sum of the usual one-gluon exchange term and the mixture of long-range vector and scalar linear confining potentials, where the vector confining potential contains the Pauli term. The vertex of the diquark-gluon interaction takes into account the diquark internal structure and effectively smears the Coulomb-like interaction. The corresponding form factor is expressed as an overlap integral of the diquark wave functions. Explicit expressions for the quasipotentials of the quark-quark interaction in a diquark and quark-diquark interaction in a baryon can be found in [8]. All parameters of the model were fixed previously from considerations of meson properties and are kept fixed in the baryon spectrum calculations.

The quark-diquark picture of heavy baryons reduces a very complicated relativistic three-body problem to a significantly more simpler two step two-body calculation. First we determine the properties of diquarks. We consider a diquark to be a composite (qq') system. Thus diquark in our approach is not a point-like object. Its interaction with gluons is smeared by the form factor expressed through the overlap integral of diquark wave functions. These form factors enter the diquark-gluon interaction and effectively take diquark structure into account [8, 9]. Note that the ground state diquark composed from quarks with different flavours can be both in scalar and axial vector state, while the ground state diquarks composed from quarks of the same flavour can be only in the axial vector state due to the Pauli principle. Solving the quasipotential equation numerically we calculate the masses, determine the diquark wave functions and use them for evaluation of the diquark form factors. Only ground-state scalar and axial vector diquarks are considered for heavy baryons. While both ground-state as well as orbital and radial excitations of heavy diquarks are necessary for doubly heavy baryons, since the lowest excitations of such baryons originate from the excitations of the doubly heavy diquark.

Next we calculate the masses of heavy baryons in the quark–diquark picture [8, 9]. The heavy baryon is considered as a bound state of a heavy-quark and light-diquark. All excitations are assumed to occur between heavy quark and light diquark. On the other hand, the doubly heavy baryon is considered as a bound state of a light-quark and heavy-diquark. Both excitations in the quark-diquark system and excitations of the heavy diquark are taken into account. It is important to note that such approach predicts significantly less excited states of baryons compared to a genuine three-quark picture. We do not expand the potential of the quark–diquark interaction either in $p/m_{q,Q}$ or in p/m_d and treat both diquark and quark fully relativistically.

3 Heavy baryons

The calculated masses of heavy baryons are given in Tabs. 1-5. In the first column we show the baryon total isospin I, spin J and parity P. The second column lists the quark-diquark state. The next three columns refer to the charm and the last there columns to the bottom baryons. There we first give our prediction for the mass, then available experimental data [10]: baryon status and measured mass. The charm and bottom baryon states recently discovered by the LHCb Collaboration [1, 2, 4–6] are marked as new.

From Tabs. 1, 2 we see that the $\Lambda_c(2765)$ (or $\Sigma_c(2765)$), if it is indeed the Λ_c state, can be interpreted in our model as the first radial (2S) excitation of the Λ_c. If instead it is the Σ_c state, then it can be identified as its first orbital excitation (1P) with $J = \frac{3}{2}$ (see Tab. 2). The
Table 1. Masses of the $\Lambda_Q (Q = c, b)$ heavy baryons (in MeV)

$I(J^P)$	Qd state	$Q = c$	$Q = b$				
		M	M^{exp}	M	M^{exp}		
0(4\frac{1}{2}^+)	1S	2286	****	2286.46(14)	5620	***	5619.51(23)
	2S	2769	*	2766.6(2.4)?	6089		
	3S	3130			6455		
	4S	3437			6756		
	5S	3715			7015		
	6S	3973			7256		
0(4\frac{3}{2}^-)	1P	2598	***	2592.25(28)	5930	***	5912.11(26)
	2P	2983	***	2944.8(1.4)?	6326		
	3P	3303			6645		
	4P	3588			6917		
	5P	3852			7157		
0(4\frac{1}{2}^-)	1P	2627	***	2628.1(6)	5942	***	5919.81(23)
	2P	3005			6333		
	3P	3322			6651		
	4P	3606			6922		
	5P	3869			7171		
0(4\frac{3}{2}^+)	1D	2874	new	2856.13(2.3)^{(5,9)}	6190		
	2D	3189			6526		
	3D	3480			6811		
	4D	3747			7060		
0(3\frac{1}{2}^-)	1D	2880	***	2881.75(35)	6196		
	2D	3209			6531		
	3D	3500			6814		
	4D	3767			7063		
0(3\frac{1}{2}^-)	1F	3097			6408		
	2F	3375			6705		
	3F	3656			6964		
	4F	3900			7196		
0(3\frac{1}{2}^-)	1G	3270			6598		
	2G	3546			6867		
0(3\frac{1}{2}^-)	1G	3284			6599		
	2G	3564			6868		
0(3\frac{1}{2}^-)	1H	3444			6767		
	0(3\frac{1}{2}^-)	1H	3460		6766		
Table 2. Masses of the $\Sigma_Q (Q = c, b)$ heavy baryons (in MeV)

$I(J^P)$	Qd state	$Q = c$	status	M^exp	$Q = b$	status	M^exp
1($\frac{1}{2}^-$)	1S	2443	****	2453.76(18)	5808	***	5807.8(2.7)
	2S	2901			6213		
	3S	3271			6575		
	4S	3581			6869		
	5S	3861			7124		
1($\frac{3}{2}^-$)	1S	2519	***	2518.0(5)	5834	***	5829.0(3.4)
	2S	2936	***	2939.3(1.4)?	6226		
	3S	3293			6583		
	4S	3598			6876		
	5S	3873			7129		
1($\frac{1}{2}^+$)	1P	2799	***	2802(\frac{2}{1})	6101		
	2P	3172			6440		
	3P	3488			6756		
	4P	3770			7024		
	1P	2713			6095		
	2P	3125			6430		
	3P	3455			6742		
	4P	3743			7008		
1($\frac{3}{2}^+$)	1P	2798	***	2802(\frac{2}{1})	6096	new	6095.8(1.8)
	2P	3172			6430		
	3P	3486			6742		
	4P	3768			7009		
	1P	2773	*	2766.6(2.4)?	6087		
	2P	3151			6423		
	3P	3469			6736		
	4P	3753			7003		
1($\frac{1}{2}^-$)	1D	2789			6084		
	2D	3161			6421		
	3D	3475			6732		
	4D	3757			6999		
1($\frac{1}{2}^+$)	1D	3041			6311		
	2D	3370			6636		
1($\frac{3}{2}^+$)	1D	3043			6326		
	2D	3366			6647		
	1D	3040			6285		
	2D	3364			6612		
1($\frac{5}{2}^-$)	1D	3038			6284		
	2D	3365			6612		
	1D	3023			6270		
	2D	3349			6598		
1($\frac{7}{2}^-$)	1D	3013			6260		
	2D	3342			6590		
Table 3. Masses of the $\Xi_Q (Q = c, b)$ heavy baryons with the scalar diquark (in MeV)

$I(J^P)$	Qd state	$Q = c$	$Q = b$				
		M	M^{exp}	M	M^{exp}		
$\frac{1}{2}(1^+)$	1S	2476	***	2470.88$^{(34)}_{(80)}$	5803	***	5790.5(2.7)
	2S	2959			6266		
	3S	3323			6601		
	4S	3632			6913		
	5S	3909			7165		
$\frac{1}{2}(1^-)$	1P	2792	***	2792.8(1.2)	6120		
	2P	3179			6496		
	3P	3500			6805		
	4P	3785			7068		
	5P	4048			7302		
$\frac{1}{2}(3^+)$	1D	2819	***	2820.22(32)	6130		
	2D	3201			6502		
	3D	3519			6810		
	4D	3804			7073		
	5D	4066			7306		
$\frac{1}{2}(5^+)$	1D	3076	*	3079.9(1.4)	6373		
	2D	3407			6696		
	3D	3699			6970		
	4D	3965			7212		

$\Lambda_c(2880)$ baryon corresponds to the second orbital excitation ($2D$) with $J = \frac{5}{2}^+$ in accord with the LHCb analysis [1]. The other charmed baryon, denoted as $\Lambda_c(2940)$, probably has $I = 0$, since it was discovered in the pD^0 mass spectrum and not observed in pD^+ channel, but $I = 1$ is not ruled out [10]. If it is really the Λ_c state, then it could be both an orbitally and radially excited ($2P$) state with $J = \frac{1}{2}^-$, whose mass is predicted to be about 40 MeV heavier. A better agreement with experiment (within few MeV) is achieved, if the $\Lambda_c(2940)$ is interpreted as the first radial excitation ($2S$) of the Σ_c with $J = \frac{1}{2}^-$. The $\Sigma_c(2800)$ can be identified with one of the first orbital ($1P$) excitations of the Σ_c with $J = \frac{1}{2}^-$ or $\frac{3}{2}^-$, which have very close masses compatible with experimental value within errors (see Tab. 2). The new state $\Lambda_c(2860)$ with quantum numbers $\frac{5}{2}^+$ [1] can be well interpreted as second orbital excitation ($2D$ state). In the bottom sector the $\Lambda_b(5912)$ and $\Lambda_b(5920)$ correspond to the first orbitally excited ($1P$) states with $\frac{1}{2}^-$ and $\frac{3}{2}^-$, respectively. The new $\Sigma_b(6097)$ state [6] can be the first orbital excitation ($1P$) with quantum numbers $\frac{3}{2}^-$. In the Ξ_Q baryon sector as we see from Tabs. 3,4 the $\Xi_c(2790)$ and $\Xi_c(2815)$ can be assigned to the first orbital ($1P$) excitations of the Ξ_c containing a scalar diquark with $J = \frac{1}{2}^-$ and $J = \frac{3}{2}^-$, respectively. On the other hand, the charmed baryon $\Xi_c(2930)$ can be considered as either the $J = \frac{1}{2}^-$, $J = \frac{3}{2}^-$ or $J = \frac{5}{2}^-$ state (all these states are predicted to have close masses) corresponding to the first orbital ($1P$) excitations of the Ξ_c with an axial vector diquark. While the $\Xi_c(2980)$ can be viewed as the first radial ($2S$) excitation with $J = \frac{1}{2}^+$.
Table 4. Masses of the Ξ_Q ($Q = c, b$) heavy baryons with the axial vector diquark (in MeV)

$I(J^P)$	Qd state	$Q = c$	$Q = b$				
		M	status	M^{\exp}	M	status	M^{\exp}
$\frac{1}{2}(\frac{1}{2}^+)$	1S	2579	***	2577.9(2.9)	5936	***	5935.02(5)
	2S	2983		2971.4(3.3)	6329		
	3S	3377			6687		
	4S	3695			6978		
	5S	3978			7229		
$\frac{1}{2}(\frac{3}{2}^+)$	1S	2649	***	2645.9(0.5)	5963	***	5955.33(13)
	2S	3026			6342		
	3S	3396			6695		
	4S	3709			6984		
	5S	3989			7234		
$\frac{1}{2}(\frac{1}{2}^-)$	1P	2936	*	2931(6)	6233		
	2P	3313			6611		
	3P	3630			6915		
	4P	3912			7174		
	1P	2854			6227	new	6226.9(2.1)
	2P	3267			6604		
	3P	3598			6906		
	4P	3887			7164		
$\frac{1}{2}(\frac{3}{2}^-)$	1P	2935	*	2931(6)	6234		
	2P	3311			6605		
	3P	3628			6905		
	4P	3911			7163		
	1P	2912			6224	new	6226.9(2.1)
	2P	3293			6598		
	3P	3598			6900		
	4P	3887			7159		
$\frac{1}{2}(\frac{5}{2}^-)$	1P	2929	*	2931(6)	6226	new	6226.9(2.1)
	2P	3303			6596		
	3P	3619			6897		
	4P	3902			7156		
$\frac{1}{2}(\frac{1}{2}^+)$	1D	3163			6447		
$\frac{1}{2}(\frac{3}{2}^+)$	1D	3167			6459		
	1D	3160			6431		
$\frac{1}{2}(\frac{3}{2}^-)$	1D	3166			6432		
	1D	3153			6420		
$\frac{1}{2}(\frac{7}{2}^-)$	1D	3147	*	3122.9(1.3)	6414		

of the Ξ'_c, the $\Xi_c(3055)$ and $\Xi_c(3080)$ baryons can be interpreted as a second orbital ($2D$) excitations of the Ξ_c containing a scalar diquark with $J = \frac{3}{2}^+$ and $J = \frac{5}{2}^+$, and the $\Xi_c(3123)$ can be viewed as the corresponding ($2D$) excitation of the Ξ'_c with $J = \frac{7}{2}^+$. The recently observed excited bottom baryon $\Xi_b(6227)^-$ [5] can be one of the first radially excited states (1P) of the Ξ'_b baryon with the axial vector diquark and quantum numbers $\frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-$ which are predicted to have very close masses.
Masses of the Ω_Q ($Q = c, b$) heavy baryons (in MeV)

$I(J^P)$	Qd state	$Q = c$	$Q = b$				
		M	status	M^{exp}	M	status	M^{exp}
$0(\frac{1}{2}^-)$	1S	2698	***	2695.2(1.7)	6064	***	6046.4(1.9)
	2S	3088	new	3090.2(1.7)	6450		
	3S	3489		6804			
	4S	3814		7091			
	5S	4102		7338			
$0(\frac{3}{2}^-)$	1S	2768	***	2765.9(2.0)	6088		
	2S	3123	new	3119.1(1.7)	6461		
	3S	3510		6811			
	4S	3830		7096			
	5S	4114		7343			
$0(\frac{1}{2}^-)$	1P	3055		6339			
	2P	3435		6710			
	3P	3754		7099			
	4P	4037		7265			
	1P	2966		6330			
	2P	3384		6706			
	3P	3717		7003			
	4P	4099		7257			
$0(\frac{3}{2}^-)$	1P	3054	new	3065.6(1.7)	6340		
	2P	3433		6705			
	3P	3752		7002			
	4P	4036		7258			
	1P	3029	new	3000.4(1.7)	6331		
	2P	3415		6699			
	3P	3737		6998			
	4P	4023		7250			
$0(\frac{3}{2}^-)$	1P	3051	new	3050.2(1.7)	6334		
	2P	3427		6700			
	3P	3744		6996			
	4P	4028		7251			
$0(\frac{1}{2}^-)$	1D	3287		6540			
$0(\frac{1}{2}^-)$	1D	3298		6549			
	1D	3282		6530			
$0(\frac{3}{2}^-)$	1D	3297		6529			
	1D	3286		6520			
$0(\frac{1}{2}^-)$	1F	3533		6763			

Masses of the Ω_c and Ω_b baryons are given in Tab. 5. The ground state ($1S$) masses were predicted [7] before experimental discovery and agree well with measured values. Recently observed [2] five new, narrow excited Ω_c are also in accord with our predictions. Three lighter states $\Omega_c(3000)^0$, $\Omega_c(3050)^0$ and $\Omega_c(3066)^0$ are well described as first orbital ($1P$) excitations with $J = \frac{1}{2}^-, \frac{3}{2}^- \text{ and } \frac{5}{2}^-$, respectively. These states are expected to be narrow. The remaining $1P$ states with $\frac{1}{2}^-$ are expected to be broad and thus can escape detection. The small peak
Figure 1. Proposed assignment of spins and parities of excited Ω_c states observed by LHCb Collaboration in the low end of $\Xi^c K^-$ mass distribution (see Fig. 1) can correspond to $\frac{1}{2}^-$ state with the predicted mass 2966 MeV (see Tab. 5). The remaining two heavier states $\Omega_c(3090)^0$ and $\Omega_c(3119)^0$ are naturally described as first radial $(2S)$ excitations with quantum numbers $\frac{1}{2}^+$ and $\frac{3}{2}^+$, respectively. Their predicted masses coincide with the measured ones within a few MeV. The proposed assignment of spins and parities of excited Ω_c states observed by LHCb Collaboration is given in Fig. 1. In Tab. 6 we compare different quark model (QM), QCD sum rules (QCD SR), lattice QCD predictions and available experimental data for the masses of the Ω_c states.

State	our [8]	[11]	[12]	[14]	lattice	lattice	QCD SR	PDG + LHCb
$1S, \frac{1}{2}^+$	2698	2718	2695	2648(28)	2695(28)	2685(123)	2695.2(1.7)	
$2S, \frac{3}{2}^+$	3088	3152	3100	3294(73)	3066(138)	3090.2(8)		
$1S, \frac{3}{2}^+$	2768	2776	2767	2709(32)	2781(25)	2769(89)	2765.9(2.0)	
$2S, \frac{5}{2}^+$	3123	3190	3126	3355(92)	3119(114)	3119.1(1.0)		
$1P, \frac{1}{2}^-$	2966	2977	3028	2995(46)	3015(45)			
$1P, \frac{3}{2}^-$	3054	2986	2976	3016(69)	3065.6(9)			
$1P, \frac{5}{2}^-$	3028	2994	2993	3000.4(6)				
$1P, \frac{7}{2}^-$	3051	3014	2947	3050.2(6)				

4 Doubly heavy baryons

Mass spectra of doubly heavy baryons was calculated in the light-quark–heavy-diquark picture in [9]. The light quark was treated completely relativistically, while the expansion in the inverse heavy quark mass was used. Tab. 7 shows the Ξ_{cc} mass spectrum. Excitations inside doubly heavy diquark and light-quark–heavy-diquark bound systems are taken into account. We use the notations $(n_d L n_q L) P^o$, where we first show the radial quantum number of the diquark $(n_d = 1, 2, 3 \ldots)$ and its orbital momentum by a capital letter $(L = S, P, D \ldots)$, then
the radial quantum number of the light quark \((n_q = 1, 2, 3\ldots)\) and its orbital momentum by a lowercase letter \((l = s, p, d\ldots)\), and at the end the total angular momentum \(J\) and parity \(P\) of the baryon. In Tab. 8 we compare different theoretical predictions for the ground state masses of the doubly heavy baryons. Our prediction (2002) for the mass of the \(\Xi_{cc}\) baryon [9] excellently agrees with its mass recently measured (2017) by the LHCb Collaboration [6]:

\[M^{\text{exp}}(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \text{ MeV}. \]

5 Conclusions

Recent observations of excited charm and bottom baryons confirm predictions of the relativistic heavy-quark–light-diquark model of heavy baryons [7, 8]. The new state \(\Lambda_c(2860)\) is in accord with the predicted \(1D^-\) state with \(J^P = \frac{3}{2}^-\). The experimentally preferred quantum numbers \(J^P = \frac{3}{2}^+\) of \(\Lambda_c(2880)\) agree with our assignment of this state to \(1D^-\) state with \(J^P = \frac{5}{2}^-\). The \(\Lambda_b(5912)\) and \(\Lambda_b(5920)\) are well described as the first orbitally excited \((1P)\) states with \(\frac{1}{2}^-\) and \(\frac{3}{2}^-\), respectively. The new \(\Sigma_b(6097)\) state can be the first orbital excitation

Table 7. Mass spectrum of \(\Xi_{cc}\) baryons (in GeV)

State	Mass	State	Mass		
\((n_d L_{n_d})_J^P\)	our	[16]	\((n_d L_{n_d})_J^P\)	our	[16]
\((1S 1s)_{1}^1\)	3.620	3.478	\((1P 1s)_{1}^1\)	3.838	3.702
\((1S 1s)_{1}^3\)	3.727	3.61	\((1P 1s)_{1}^3\)	3.959	3.834
\((1S 1p)_{1}^1\)	4.053	3.927	\((2S 1s)_{1}^1\)	3.910	3.812
\((1S 1p)_{1}^3\)	4.101	4.039	\((2S 1s)_{1}^3\)	4.027	3.944
\((1S 1p)_{1}^5\)	4.136	4.052	\((2P 1s)_{1}^5\)	4.085	3.972
\((1S 1p)_{1}^7\)	4.155	4.047	\((2P 1s)_{1}^7\)	4.197	4.104
\((1S 1p)_{1}^9\)	4.196	4.034	\((3S 1s)_{1}^9\)	4.154	4.072

Table 8. Mass spectrum of ground states of doubly heavy baryons (in GeV). \(QQ\) denotes the diquark in the axial vector state and \([QQ]\) denotes diquark in the scalar state.

Baryon	Quark content	\(J^P\)	our	[9]	[16]	[17]	[18]	[19]	[11]	[20]
\(\Xi_{cc}\)	\(\{cc\}q\)	\(\frac{1}{2}^+\)	3.620	3.478	3.66	3.69	3.510	3.676	3.627(12)	
\(\Xi_{cc}\)	\(\{cc\}q\)	\(\frac{3}{2}^+\)	3.727	3.61	3.74	3.548	3.753	3.690(12)		
\(\Omega_{cc}\)	\(\{cc\}s\)	\(\frac{1}{2}^+\)	3.778	3.59	3.74	3.719	3.815			
\(\Omega_{cc}\)	\(\{cc\}s\)	\(\frac{3}{2}^+\)	3.872	3.69	3.826	3.746	3.876			
\(\Xi_{bb}\)	\(\{bb\}q\)	\(\frac{1}{2}^+\)	10.202	10.093	10.34	10.16	10.130	10.340	10.162(12)	
\(\Xi_{bb}\)	\(\{bb\}q\)	\(\frac{3}{2}^+\)	10.237	10.133	10.37	10.144	10.367	10.184(12)		
\(\Omega_{bb}\)	\(\{bb\}s\)	\(\frac{1}{2}^+\)	10.359	10.18	10.37	10.342	10.454			
\(\Omega_{bb}\)	\(\{bb\}s\)	\(\frac{3}{2}^+\)	10.389	10.20	10.40	10.432	10.486			
\(\Xi_{cb}\)	\(\{cb\}q\)	\(\frac{1}{2}^+\)	6.933	6.82	7.04	6.96	6.792	7.011	6.914(13)	
\(\Xi_{cb}\)	\(\{cb\}q\)	\(\frac{3}{2}^+\)	6.963	6.85	6.99	6.825	7.047	6.933(12)		
\(\Xi_{cb}\)	\(\{cb\}q\)	\(\frac{5}{2}^+\)	6.980	6.90	7.06	6.827	7.074	6.969(14)		
\(\Omega_{cb}\)	\(\{cb\}s\)	\(\frac{1}{2}^+\)	7.088	6.91	7.09	7.13	6.999	7.136		
\(\Omega_{cb}\)	\(\{cb\}s\)	\(\frac{3}{2}^+\)	7.116	6.93	7.06	7.022	7.165			
\(\Omega_{cb}\)	\(\{cb\}s\)	\(\frac{5}{2}^+\)	7.130	6.99	7.12	7.024	7.187			
with quantum numbers $\frac{3}{2}^-$. The recently observed excited bottom baryon $\Xi_b(6227)^-$ can be one of the first radially excited states ($1P$) of the Ξ'_b baryon with the axial vector diquark and quantum numbers $\frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-$ which are predicted to have very close masses. Observation of five new narrow Ω_c states in the mass range 3000-3200 MeV agrees with our prediction of orbitally excited $1P$-states and radially excited $2S$-states in this mass region: $\Omega_c(3000)$, $\Omega_c(3066)$, $\Omega_c(3050)$ can be $1P$-states with $J^P = \frac{3}{2}^-, \frac{5}{2}^-$ while $\Omega_c(3090)$ and $\Omega_c(3119)$ states are most likely the first radially excited $2S$ states with $J^P = \frac{1}{2}^+, \frac{3}{2}^+$.

In the doubly heavy baryon sector, the mass of recently observed Ξ^{++}_{cc} baryon is in excellent agreement with our prediction made more than 15 years ago [9]. Masses of ground state doubly charm baryons are predicted to be in 3.5 - 3.9 GeV range. Masses of ground state doubly bottom baryons are predicted to be in 10.1 - 10.5 GeV range. Masses of ground state bottom-charm baryons are predicted to be in 6.8 - 7.2 GeV range. Rich spectra of narrow excited states below strong decay thresholds are expected. We strongly encourage experimenters to search for new excited states of heavy baryons and especially for doubly heavy baryons.

Acknowledgments. We are grateful to I. Belyaev, D. Ebert, M. Ivanov, M. Karliner and A. Martin for valuable discussions and support. We thank the organizers of XXIV International Baldin Seminar on High Energy Physics Problems.

References

[1] R. Aaij et al. [LHCb Collaboration], JHEP 1705, 030 (2017)
[2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 118(18), 182001 (2017)
[3] J. Yelton et al. [Belle Collaboration], Phys. Rev. D 97(5), 051102 (2018)
[4] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 119(11), 112001 (2017)
[5] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 121(7), 072002 (2018)
[6] R. Aaij et al. [LHCb Collaboration], arXiv:1809.07752 [hep-ex]
[7] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 72, 034026 (2005). Phys. Lett. B 659, 612 (2008)
[8] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011)
[9] D. Ebert, R. N. Faustov, V. O. Galkin and A. P. Martynenko, Phys. Rev. D 66, 014008 (2002)
[10] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98(3), 030001 (2018)
[11] W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)
[12] Z. Shah, K. Thakkar, A. K. Rai and P. C. Vinodkumar, Chin. Phys. C 40(12), 123102 (2016)
[13] Y. C. Chen et al. [TWQCD Collaboration], Phys. Lett. B 767, 193 (2017)
[14] P. Pérez-Rubio, S. Collins and G. S. Bali, Phys. Rev. D 92(3), 034504 (2015)
[15] S. S. Agaev, K. Azizi and H. Sundu, Eur. Phys. J. C 77(6), 395 (2017)
[16] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. I. Onishchenko, Phys. Rev. D 62, 054021 (2000)
[17] R. Roncaglia, D. B. Lichtenberg and E. Predazzi, Phys. Rev. D 52, 1722 (1995)
[18] I. M. Narodetskii and M. A. Trusov, Phys. Atom. Nucl. 65, 917 (2002) [Yad. Fiz. 65, 949 (2002)]
[19] A. P. Martynenko, Phys. Lett. B 663, 317 (2008)
[20] M. Karliner and J. L. Rosner, Phys. Rev. D 90(9), 094007 (2014)