Highly dispersive spin excitations in the chain cuprate Li$_2$CuO$_2$

W. E. A. Lorenz$^{1(a)}$, R. O. Kuzian1,2, S.-L. Drechsler$^{1(b)}$, W.-D. Stein3, N. Wizent1, G. Behr1, J. Málek1,7, U. Nitzsche1, H. Rosner6, A. Hiess4, W. Schmidt5, R. Klingeler1, M. Loewenhaupt3 and B. Büchner1

1 Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) - Dresden, Germany, EU
2 Institute for Problems of Materials Science - Krzhizhanovskogo 3, 03180 Kiev, Ukraine
3 Institut für Festkörperphysik, Technische Universität Dresden - 01062 Dresden, Germany, EU
4 Institut Laue Langevin - F-38042 Grenoble Cedex 9, France, EU
5 Jülich Centre for Neutron Science JCNS - Jülich, Germany, EU
6 Max-Planck-Institut für Chemische Physik fester Stoffe - Dresden, Germany, EU
7 Institute of Physics, ASCR - Prague, Czech Republic, EU

received 29 September 2009; accepted in final form 25 October 2009
published online 12 November 2009

PACS 74.72.Jt – Other cuprates, including TI and Hg-based cuprates
PACS 78.70.Nx – Neutron inelastic scattering
PACS 75.30.Bs – Spin waves

Abstract – We present an inelastic neutron scattering investigation of Li$_2$CuO$_2$ detecting the long-sought quasi-1D magnetic excitations with a large dispersion along the CuO$_2$-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral $J_1 = -228$ K. An anomalous quartic dispersion near the zone center and a pronounced minimum near $(0,0.11,0.5)$ r.l.u. (corresponding to a spiral excitation with a pitch angle of about 41°) point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Néel temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.

Copyright © EPLA, 2009

Introduction. – Li$_2$CuO$_2$ is the first [1] and the most frequently studied compound of the growing class of edge-shared spin-chain cuprates [2–7]. Owing to its structural simplicity with ideally planar CuO$_2$-chains (see fig. 1) it has been considered as a model quasi-one-dimensional (1D) frustrated quantum spin system. In almost all edge-shared cuprate chain compounds the spins are expected to be coupled along the chains via nearest neighbor (NN) ferromagnetic (FM) and next-nearest neighbor (NNN) antiferromagnetic (AFM) exchange interactions, J_1 and J_2, respectively. Due to the induced frustration FM and spiral in-chain correlations are competing. While in the 1D model the ground state is governed by the ratio $\alpha = -J_2/J_1$, the actual 3D magnetic order sensitively depends on the strength of the inter-chain couplings and anisotropy. In Li$_2$CuO$_2$, below $T_N \approx 9$ K [8,9] a long-range collinear commensurate AFM inter-chain with FM in-chain (CC-AFM-FM) magnetic ordering evolves. However, a clear understanding, necessary for a critical evaluation of theoretical studies, especially
Fig. 2: (a) Constant energy scans for momentum transfer along the chains with $q = (0, K, 1)$ at IN12 ($\Delta E \leq 3$ meV; open symbols) and $q = (0, 1 + K, 0)$ for IN8 data ($\Delta E \geq 5$ meV; filled symbols). (b) Intensity map of the low-energy spectrum, interpolated from the IN12 data points (\bullet). The sizeable intensity below the gap energy, i.e. at energy transfer $\Delta E \lesssim 1$ meV and q_b around -0.05 is a spurious Bragg tail. (c) The dispersion perpendicular to the chains was measured by constant q-scans; lines are Gaussian fits. Filled symbols: the measured intensity at the zone center for $T > T_N$.

of electronic/magnetic structure calculations [10–14], is still missing. In particular, this concerns a precisely enough knowledge of the main exchange interactions. The knowledge of realistic values is helpful also for the understanding of related “frustrated ferromagnets” [15,16] such as Ca$_2$Y$_2$Cu$_5$O$_{10}$ [17], La$_6$Ca$_8$Cu$_{24}$O$_{41}$ [1] with FM in-chain ordering and LiVCo$_4$, LiCu$_2$O$_2$ with helimagnetism and multiferroicity, all being of considerable current interest.

A previous inelastic neutron scattering (INS) study aimed to determine the exchange integrals was not conclusive [18]. It revealed an anomalous low-lying branch of hardly dispersive and overdamped spin excitations in chain direction. Its linear spin-wave (LSW) analysis results in unrealistically small in-chain exchange integrals. The missing, but expected, dispersive quasi-1D spin-chain excitation remained as a challenging puzzle for the community [10,11,19]. In the third section we present new INS data which unambiguously show the presence of a strongly dispersive in-chain spin mode. The main exchange integrals are derived applying the LSW theory [20] and in the fourth section we compare our results with those of related chain cuprates as well as with predictions of band structure and cluster calculations. A criticism of improper Curie-Weiss analysis of spin susceptibility data is provided and consequences for the direct FM Cu-O exchange parameter K_{pd} entering extended Hubbard models are discussed.

Experiment. – A single crystal of 7Li$_2$CuO$_2$ was grown for our INS study by the travelling-solvent floating-zone technique under high pressure [21]. To avoid vaporization of Li$_2$O during growth a $4:1$ Ar:O$_2$ atmosphere at 50 bar was chosen. A fast growth rate of 10 mm/h inhibits growth of impurity phases. Isotope enriched 7Li was employed to avoid the significant neutron absorption coefficient of 6Li. The sample was characterized by X-ray powder diffraction (XRD), polarized-light microscopy, magnetization and specific-heat measurements. By XRD no impurity phase was found. Our macroscopic magnetization and specific-heat data agree with literature data, i.e. AFM ordering below $T_N = 9.2$ K and a weak FM component below $T_2 = 2.6$ K [9,22,23]. INS experiments were performed with thermal and cold neutrons at the three-axis-spectrometers IN8 and IN12 at the ILL, Grenoble, France. Four single crystals with a total mass of 3.8 g were mounted together in the $(0 K L)$ scattering plane with a resulting sample mosaicity of 3°. For both instruments, focusing PG(002) monochromator and analyzer have been utilized. The measurements at IN8 were taken with fixed final momentum $k_f = 2.662$ Å$^{-1}$ with PG-filter on k_f. IN12 was configured with $k_f = 1.5$ Å$^{-1}$ and Be-filter on k_f. Most scans have been done in the CC-AFM-FM phase at $T = 4.1$ K well above another not yet well understood magnetic phase below T_2. Anyhow, the observed changes of the INS spectra in this low-T phase (not shown here) are weak.
Results and data analysis. – The results of our INS studies are summarized in fig. 2. Representative spectra of constant energy scans as taken at IN12 and IN8 for moment transfer along the chains (b^*) are displayed in fig. 2(a). The main result is the observation of a highly dispersive excitation with high intensity at the magnetic zone center and significantly weaker at higher energies. With the chosen experimental setup the magnetic branch could be traced up to energy transfer of 25 meV. The measured data points along $(0,K,1)$ taken at IN12 with cold neutrons are summarized in the color map fig. 2(b). Note, that the reflections are periodic with the magnetic unit cell and their strongly reduced intensity above T_N observed up to energy transfers of 15 meV does confirm their magnetic nature (see fig. 2(c)). At the magnetic zone center $(0,0,1)$, a gap of $\Delta = 1.36$ meV is observed. The excitations for momentum transfer along $(0,0.1 + L)$ are only weakly dispersive in agreement with the results of ref. [18]. Respective constant q-scans are shown in fig. 2(c). Note, that the mosaicity of the sample broadens the excitations along L which is less pronounced for moment transfer along K due to the longer b^*-axis.

As shown in fig. 2(b) we observe further inelastic features for moment transfer along the chain. The data in fig. 2(b) also exhibit weak and presumably incommensurate (IC) magnetic scattering below Δ. The origin of these low-energy excitations is not yet clear and will be addressed in future studies. Furthermore, there is a continuous feature appearing at double the energy of the anisotropy gap which is possibly attributed to two-magnon scattering. We also mention that we have observed low-lying and strongly broadened excitations along b^* similarly as in ref. [18]. However, their intensity was roughly two orders of magnitude weaker than that reported ibidem.

According to ESR measurements [24] the exchange interactions show an uniaxial anisotropy with the easy axis directed along the crystallographic a-axis. We describe the corresponding Cu momenta by the spin-Hamiltonian

$$\hat{H} = \frac{1}{2} \sum_{m,r} \left[J_{r,m}^z \hat{S}_{m}^z \hat{S}_{m+r}^z + J_r \hat{S}_{m}^+ \hat{S}_{m+r}^- + J_r \hat{S}_{m}^- \hat{S}_{m+r}^+ \right] + H_{\text{anisotropy}},$$

(1)

where m enumerates the sites in the magnetic (Cu) lattice, the vector r connects sites with an exchange coupling J_r (see footnote 1). The z-axis is taken along the easy axis, i.e. the a-axis. Within the LSW theory [20], the dispersion law reads

$$\omega_q = \sqrt{(J_q - J_0 + \tilde{J}_0 - D)^2 - (\tilde{J}_q)^2},$$

(2)

where $J_q \equiv (1/2) \sum_{r} J_r \exp(\text{q}r)$ is the Fourier transform of the in-chain exchange and analogously for the inter-chain exchange \tilde{J}_q. The exchange anisotropy

Footnote 1: We use the same notation as in ref. [2] different from that of ref. [18]: we denote the interaction of a pair of spins S_m^z and S_{m+r}^z as $J_{r,m}^z$. We use positive (negative) signs for AFM (FM) exchange, respectively.
Table 1: The fitted exchange integrals (in K) as determined from the INS data using eqs. (2), (3) compared with microscopic theory (see text) and other recent theoretical results. Values in parentheses are estimates from less accurate fits.

INS/present work	J_1	α	$J_2 = -\alpha \cdot J_1$	J_3	J_2	D	J_1
3dO2p/present work (see footnote 2):	-228 ± 5	0.332 ± 0.005	76 ± 2	3.8	9.04 ± 0.05	-3.29 ± 0.2	1
3dO2p [29]:	-218	0.30	66	-0.4			
3dO2p [10]:	-103	0.47	49	-2			
Two-chain phenomenol. [19]:	-100	0.40	40		16		16
LSDA + U, $U = 6$ eV [38]:	-216 ± 4	0.31	66 ± 4	5 ± 4	13 ± 4		0 ± 2
GGA + U, $U = 6$ eV [14]:	-171	0.60	98		18		0.23
RFPLO, LAPW + SO [41]:							

$D \equiv J_3 - J_0 - \tilde{J}_2 + \tilde{J}_0$ causes the above-mentioned spin gap $\Delta = \omega_0$ in our case (see fig. 3). Their relation reads

$$\Delta = \sqrt{D(D - 2\tilde{J}_0)}, \quad \tilde{D} = \tilde{J}_0 - \sqrt{\tilde{J}_0^2 + \Delta^2}. \quad (3)$$

In the summations over r we retain only the leading terms (see fig. 1). According to our L(S)DA $+$ U they are given by the in-chain integrals: J_1, J_2, J_3 (corresponding to $r = b$, $2b$, $3b$ respectively) and inter-chain integrals: \tilde{J}_{111}, \tilde{J}_{131} (corresponding to $r_{111} = (a + b + c)/2$, $r_{131} = (a + 3b + c)/2$). For q, a_0 or $q, c = \pi$ the inter-chain dispersion caused by \tilde{J}_q vanishes and eq. (2) simplifies:

$$\omega_q = J_q - J_0 + \tilde{J}_0 - D = \tilde{J}_q - J_0 + \Delta_1, \quad (4)$$

i.e. the single-chain dispersion can be read off directly by subtracting the effective gap Δ_1, only.

Our INS data are well fitted by Gaussian distributions. The maxima of the main branch of the spectrum were analyzed within LSW theory eq. (2). The inspection of fig. 3 reveals a strong in-chain dispersion and a much weaker one in the perpendicular c and a (not shown) directions. The results of the fit are given in table 1. The total width $W = \omega_{\pi/b} - \omega_{\pi/b} = 2|J_1 + J_3 + J_5 + \cdots - 0.5(\tilde{J}_0 - D)| - \Delta \approx 2|J_1|$, i.e. the in-chain dispersion yields a direct measure of the NN coupling since W is unaffected by J_2, J_4, J_6, \cdots. Supposing a monochromatic behaviour of ω_q up to the zone boundary at $Q = 0.5$ (corresponding to $q = \pi/b$), from the measured part of the full ω_q-curve one obtains already a rigorous lower bound for $|J_1| \gtrsim 150$ K. Our analysis shows that the in-chain NN interaction J_1 is strongly FM, but frustrated by an AFM NNN-coupling J_2 which affects the shape of ω_q. In comparison, the AFM inter-chain coupling is weak, clearly demonstrating the magnetically quasi-ID character of the compound. For the in-chain coupling we find $\alpha = -J_2/J_1 = 0.33$, unambiguously above the critical ratio $\alpha_{\text{crit}} = 1/4$ for an isotropic Heisenberg chain [25]. Note that the dispersion near the zone center behaves like $\omega(q) \propto q^4$ to be discussed below. We confirm also theoretical predictions [12,14] (see also table 1 for our results) that the main inter-chain coupling is indeed the NNN coupling along $(\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})$. The NN inter-chain exchange has a negligible effect on the dispersion in the $(0,K,L)$-plane. Although further couplings cannot be accessed from our fits, the main J values given here do not change much, if the INS data are analyzed in more complex models with additional exchange paths, especially J_3 and J_1. When taken into account, both remain small (≈ 4 K and 1 K, respectively) in full accord with L(S)DA $+$ U (see table 1).

Discussion. – The actual CC-AFM-FM ordering seemingly contradicts the IC “spiral” phase expected for a frustration ratio of $\alpha = 0.33$ in a 1D approach (in the sense of the wave vector $q_0 \neq 0$, π/b where the magnetic structure factor $S(q)$ becomes maximal [25]). Hence, the obtained relatively small but frustrated AFM inter-chain coupling may hinder the spiral formation. Thus, the 3D critical point compared with α^{1D}_c is upshlifted:

$$\alpha^{3D,\text{iso}}_c = \alpha^{1D}_c(1 + \beta_1 + 9/2 + 25\beta_2 + \cdots), \quad (5)$$

where $\beta_n = -\tilde{J}_n/J_1$. Equation (5) has been derived in the isotropic (iso) case [26]. Ignoring all other very weak inter-chain couplings J_n, we arrive with our results $J_1 = 9.0$ K and $J_2 = -228$ K at $\alpha^{3D,\text{iso}}_c = 0.339$. Anisotropies (aniso), as found here, further stabilize the CC-AFM-FM state. From eqs. (2), (3) we estimate finally $\alpha^{3D,\text{aniso}}_c \approx 0.39$. The combined effect of AFM inter-chain coupling and easy-axis anisotropy is also responsible for the anomalous q^4-dependence of the spin excitations mentioned above. In the limit $q_0 b \rightarrow 0$ we expand eq. (2) and obtain

$$\omega(q) \approx \Delta + A\Gamma(q_0 b)^2 + B\Gamma(q_0 b)^4, \quad (6)$$

$A\Gamma$ and the quadratic dispersion vanish exactly at

$$\alpha^{3D}_c = \frac{1}{4} \left(1 + \frac{9\beta_2}{\delta}\right) = 0.33098, \quad \delta = 1 - \frac{D}{4J_2}. \quad (7)$$

Accidentally Li$_2$CuO$_2$ is very close to this point and its dispersion near the zone center is quasi-quartic. But in the presence of a spin gap Δ caused by the anisotropy D this vanishing of the quadratic dispersion does not yet signal an instability of the CC-AFM-FM state. The high sensitivity of the inter-chain dispersion and especially of
the quadratic coefficient A_T to the actual magnitude of the inter-chain coupling J_2 (see fig. 3) is noteworthy.

Near the Z-point $(0, 0, \pi/c)$ the quadratic coefficient A_Z is already essentially negative (see fig. 3 (right panel of (b))). Since along the line $Z - R (0, \pi/b, \pi/c)$ the inter-chain dispersion vanishes one can easily read off the 1D Fourier components of the exchange interactions J_a (see eq. (4)). A similar rare situation occurs in the 2D frustrated CsCuCl_4 system in a high magnetic field above its saturation limit [27]. The clearly visible minima at $q_R, 0, b = \cos^{-1}(1/4n) \approx \pm 0.72 = \pm 0.11$ (t.u.) correspond to the two equivalent propagation vectors of a low-lying spiral excitation [28] with a pitch angle of about 41.2° above a CC-AFM-FM ground state observed to the best of our knowledge for the first time.

Next, we briefly compare our results with those obtained so far by INS-studies for $\text{Ca}_2\text{Y}_2\text{Cu}_5\text{O}_{10}$ (CYCO) [17] with a similar FM in-chain ordering and a frustrating AFM inter-chain interaction. There the reported J_1 read -80 K and -93 K for fits where $J_2 = 0$ and $J_2 = 4.6$ K, respectively. However, such tiny values of J_1 are unlikely [10,19,29]. For a standard Cu-O hybridization a much larger value is expected [30] in accord with the observed sizable part of the total magnetic moment (22%) residing at O [31]. Re-fitting their INS data yields J_1, J_2 values of the same order as we found for $\text{Li}_2\text{Cu}_2\text{O}_2$ (LCO) $J_2^{\text{CYCO}} \sim J_1^{\text{LCO}}$ and $J_2^{\text{CYCO}} \sim 0.5 J_2^{\text{LCO}}$. A detailed comparison of both systems will be given elsewhere [30]. With respect to their large J_1 values the following question may arise: why have they not been recognised so far in analysing thermodynamic properties? In this context a critical evaluation of the reported AFM “Curie-Weiss” (CW) temperatures $\Theta_{\text{CW}} \approx -15$ K [32] or small FM values: $5-10$ K [33] and $\Theta_{\text{CW}} \approx -40$ K [8,18] or -8 K [34] is very instructive. All these data have been derived from the linear fits of inverse susceptibility plots below 300–400 K (denoted as “pseudo”-CW laws in fig. 4). But here we arrive at sizeable FM Θ_{CW}-values for both cases:

\[\Theta_{\text{CW}} \approx \frac{1}{2} \left(J_1 - J_2 - \frac{z_{\text{int-ch}}}{2} (J_1 + J_2) \right) \gtrsim +50 \text{ K}, \]

where the inter-chain coordination number $z_{\text{int-ch}} = 4.8$ for CYCO and LCO, respectively. The inspection of fig. 4 clearly shows that very high T (see footnote 2) far above any available data would be required to extract Θ_{CW} from $1/\chi (T)$ data. To satisfy the incorrect Θ_{CW}-values strongly underestimated J_1-values have been adopted in refs. [10,18,32–34]. Even the 2nd order of high-T series expansion (HTS) approaches the experimental curve only above 400 K. Hence, even more any attempt to detect even a Curie law [10] near 300 K must fail. Our J_1-values for LCO and CYCO from INS data provide support for the large value we found in $\text{Li}_2\text{ZrCuO}_4$ from thermodynamic properties [6] but puzzle the tiny value reported for LiVCuO_4 [5] with a similar Cu-O-Cu bond angle. In this context the suggested large value $J_1 \sim -200$ K [35] is of interest.

Finally, we turn to a microscopic analysis. In table 1 and fig. 3 we compare our INS derived exchange integrals with theoretical results. First, we list the in-chain couplings J_n from a mapping of a five-band extended Hubbard pd model (on open Cu$_n$O$_{2n+1}$-clusters $n = 5, 6$) (see footnote 3) on a J_1-J_2-J_3-Heisenberg model (see fig. 1). But here, to reproduce the main experimental exchange integrals, a refinement has been performed most importantly by considering a larger direct FM Cu-O exchange K_{pd} = 81 meV compared with 50 meV adopted in ref. [19]. Note that only J_1 is significantly affected by K_{pd}. Thereby $|J_1| \ll K_{pd}$ holds approximately. The contribution of K_{pd} is much more important for the large negative (FM) value of J_1 than that of the intra-atomic FM Hund’s rule coupling on O. Since the available spectroscopic data at 300 K depend only weakly on K_{pd} not much is known on its magnitude. In the past K_{pd} has been used mostly as a fitting parameter for thermodynamic properties ranging from 50 to 110 meV for CuGeO$_3$ [10,37]. The INS data reported here provide a unique way to approach its value phenomenologically and open a door for systematic studies of this very important interaction and well-founded comparisons with other edge-shared CuO$_2$-chain compounds.

Secondly, in the L(S)DA $+U$ there is practically only one adjustable parameter U_{dd}-J_H, where U_{dd} denotes the Coulomb onsite repulsion (~ 6 to 8 eV) and J_H denotes the intra-atomic exchange (≈ 1 eV) both on Cu-sites. Comparing the total energy of various ordered magnetic states, a set of in-chain and inter-chain integrals can be derived [14]. As a result one arrives again at very close numbers to our INS derived set [38]. Noteworthy, both the Hubbard as well as the L(S)DA $+ U$ approach

2\footnotetext{T > 1000–2000 K, where the 2nd order of the HTS approaches the Curie-Weiss line.}

3\footnotetext{Our parameters were adapted to describe optical, EELS and O 1s XAS-spectral data [29,36] at 300 K. Measurements in the whole T range down to 4 K as reported here for the INS are necessary for a further refinement, especially concerning the inter-site Coulomb interactions $V_{pd}, V_{pp},$ and V_{dd}. But here and in ref. [29] V_{pd} etc. have been ignored for the sake of simplicity. A detailed discussion will be given elsewhere.}
justifying the neglect of any long-range exchange beyond the third NN. The latter also explains why there is only one important inter-chain exchange integral J_2 (β_2). The excellent agreement between the INS data analysed in the LSW theory and the theoretical results/predictions suggests that in the present case the effect of quantum fluctuations as well as of spin-phonon interaction seems to be rather weak. The former point is also supported by the large value of the magnetic moment $m \approx 0.96(4) \mu_B$ [8.9] in the ordered state below T_N and as a consequence of the fact that the FM state is an eigenstate of the 1D spin-model in contrast to the Néel state. In fact, within the LSW theory we estimated the reduction of the spin moment at $T = 0$ as $\approx 3.6\%$ for our INS parameters to be compared with the larger value of 6.0% in the isotropic case for $D = 0$ and 11.9% [39] for the simple isotropic bcc antiferromagnet. Using $g = 2.624$ [40] for the gyromagnetic factor we arrive at $1.091 \mu_B$ slightly above the mentioned experimental value at $T = 1.5 \text{K}$. Thus, the easy-axis anisotropy, which opens a spin gap, together with the large FM J_1 have an important effect in quenching fluctuations. Concerning the spin anisotropy, there is no good agreement between a recent DFT calculation [41] and much smaller values obtained in various experiments [18,24] including our INS study (see table 1).

Summary. – The main results of our INS study are i) the relatively large dispersion of spin excitations in the CuO$_2$-chains of Li$_2$CuO$_2$ due to the large value of the FM NN in-chain coupling J_1 and ii) the observation of a low-energy spiral excitation over a commensurate collinear Néel ground state in the vicinity of the 3D critical point above the corresponding 1D point. The obtained main exchange integrals can be approximately reproduced adopting an enhanced value for the direct FM exchange K_{pd} between Cu 3d and O 2p states within an extended five-band Hubbard model. Further support for the empirical exchange integrals comes from L(S)DA+U calculations, if a moderate value of U somewhat smaller than the U_d in exact diagonalization for the extended Hubbard model is employed. The achieved detailed knowledge of the main exchange couplings derived from the INS data provides a good starting point for an improved general theoretical description of other CuO$_2$-chain systems and to adress a microscopic theory of their exchange anisotropy.

We thank the DFG (grants KL1824/2 (BB, RK and WEAL), DR269/3-1 (S-LD and JM), and the Emmy-Noether-program (HR)), the program PICS (contracts CNRS 4767, NASU 243 (ROK)), ASCR(AVOZ100520) (JM) for support. Discussions with M. Boehm, M. Matsuda, A. Boris, H. Eschrig, V. Ya. Krivnov, D. Dmitriev, S. Nishimoto, E. Plekhanov, R. Hayn, and J. Richter are acknowledged.

REFERENCES

[1] HOPPE R. and RIECK H., Z. Anorg. Allg. Chem., 379 (1970) 157 and references therein.
[2] MATSUDA M. et al., Phys. Rev. B, 54 (1996) R15 626.
[3] MATSUDA M. et al., Phys. Rev. B, 63 (2001) 194050(R).
[4] MASUDA T. et al., Phys. Rev. B, 72 (2005) 014405.
[5] ENDERLE M. et al., Europhys. Lett., 70 (2005) 337.
[6] DRECHSLER S.-L. et al., Phys. Rev. Lett., 98 (2007) 077202.
[7] DRECHSLER S.-L. et al., J. Phys.: Condens. Matter, 19 (2007) 145230.
[8] SAPIÅA F. et al., Solid State Commun., 74 (1990) 779.
[9] CHUNG E. et al., Phys. Rev. B, 68 (2003) 144410.
[10] MIZUNO Y. et al., Phys. Rev. B, 57 (1998) 5326. The J_a given in table 1 in the 4th row we have estimated in the same way as proposed in the present work and ref. [29]. They slightly differ from those for a dimer and an artificial trimer (without the central Cu site) given by the authors.
[11] WEIT R. et al., Phys. Rev. Lett., 81 (1998) 2502.
[12] DE GRAAF C. et al., Phys. Rev. B, 66 (2002) 014448.
[13] DRECHSLER S.-L. et al., J. Magn. & Magn. Mater., 316 (2007) 306.
[14] XIANG H. J. et al., Phys. Rev. B, 76 (2007) 220411(R). The J-values shown in table 1 are linear interpolations between the values given for $U_{at} = U - J_a = 4$ and 6 eV by the authors since in our calculation the standard value $J_a = 1$ eV for Hund’s rule coupling has been used.
[15] DMITRIEV D. V. et al., Phys. Rev. B, 77 (2008) 024401.
[16] PLEKHanov E. et al., arXiv:0811.2973v1 (2008).
[17] MATSUDA M. et al., Phys. Rev. B, 71 (2005) 104414.
[18] BOEHM M. et al., Europhys. Lett., 43 (1998) 77.
[19] MIZUNO Y. et al., Phys. Rev. B, 60 (1999) 6230. The sizeable dispersion in view of $J_1 = 100$ K, only, (see fig. 3(c)) results from an adopted larger inter-chain coupling (see table 1) $J_1 = J_2 = 16$ K. Their sum exceeds our empirical INS or L(S)DA+U-derived value by a factor of 3.5.
[20] OGUCHI T., Phys. Rev., 117 (1960) 117.
[21] BEHR G. et al., J. Cryst. Growth, 310 (2008) 2268.
[22] ORTEGA R. J. et al., J. Appl. Phys., 83 (1998) 6542.
[23] STAUB U. et al., Physica B, 289-290 (2000) 299.
[24] Ohta H. et al., J. Phys. Soc. Jpn., 62 (1993) 785.
[25] BURSILL R., J. Phys.: Condens. Matter, 7 (1995) 8605.
[26] DRECHSLER S.-L. et al., J. Magn. & Magn. Mater., 290 (2005) 345.
[27] COLDEA R. et al., Phys. Rev. Lett., 88 (2002) 137203.
[28] Kuzian R. O. et al., Phys. Rev. B, 75 (2007) 024401.
[29] MALÉK J. et al., Phys. Rev. B, 78 (2008) 060508(R).
[30] Kuzian R. O. et al., in preparation (2009).
[31] MATSUDA M. et al., Appl. Phys. A, 74 (Suppl.) (2002) S637.
[32] YAMAGUCHI H. et al., Physica C, 320 (1999) 167.
[33] KUDO K. et al., Phys. Rev. B, 71 (2005) 104413.
[34] EBUSI S. et al., J. Phys. Chem. Solids, 59 (1998) 1407.
[35] SIRKER J., arXiv:0909.4579 (2009).
[36] NEUDECK R. et al., Phys. Rev. B, 60 (1999) 13413.
[37] BRADEN M. et al., Phys. Rev. B, 54 (1996) 1105.
[38] DRECHSLER S.-L. et al., J. Phys.: Cond. Ser., 145 (2009) 012060.
[39] DAVIS H. L., J. Phys. Chem. Solids, 23 (1962) 1348.
[40] KAWAMATA S. et al., J. Magn. & Magn. Mater., 272-276 (2004) 939.
[41] MERTZ D. et al., Phys. Rev. B, 72 (2005) 085133.