Robustness enhancement of cloud computing network based on coupled networks model

Zibin Su
School of Computer Science
Beijing University of Posts and Telecommunications
Beijing, China
Email: su_zibin@163.com

Jing Yuan
School of Computer Science
Beijing University of Posts and Telecommunications
Beijing, China
Email: yuanjing_sky@163.com

Abstract

As a novel technology, cloud computing attracts more and more people including technology enthusiasts and malicious users. Different from the classical network architecture, cloud environment has many its own features which make the traditional defense mechanism invalid. To make the network more robust against a malicious attack, we introduce a new method to mitigate this risk efficiently and systematically. In this paper, we first propose a coupled networks model which adequately considers the interactions between physical layer and virtual layer in a practical cloud computing environment. Based on this new model and our systematical method, we show that with the addition of protection of some specific nodes in the network structure, the robustness of cloud computing’s network can be significantly improved whereas their functionality remains unchanged. Our results demonstrate that our new method can effectively settle the hard problems which cloud computing now is facing without much cost.

1. Introduction

The flourish of cloud computing technology nowadays is largely due to its outstanding features, on-demand self-service, resource pooling, rapid elasticity, etc.[1] All users in cloud environment share a public pool of configurable and virtualized computing resources, such as CPUs, disks or network. Users can easily scale-up or scale-down their cloud resources according to their real time demands. For example, before the landing of NASA’s Curiosity rover, IT engineers are allowed to deploy as many servers running on the AWS (Amazon Web Services) cloud as they need. Then, when they are done, they may shut down additional servers to avoid paying for those resources [2]. Besides, the centralization of servers makes cloud computing technology more environment friendly and energy saving. Compared to setting up their own data center, individuals and enterprises are now becoming more favorable to deploy their businesses on cloud [3] [4]. Cloud computing has leveraged users from hardware requirements, while reducing overall client side requirements and complexity [5].

As the fast growth of cloud computing, security issues are considered as the obstacles on the highway, which largely hinder the big enterprises’ wills of porting their business from traditional data center to cloud. Apparently, the security of cloud computing seems to be improved due to the centralization of data and increased security-focused resources [6]. The fact, however, is that the security of cloud computing now is considered still in infancy [7], especially the network security which faces many new challenges.

Generally, to protect an enterprise network against cyber-attack, we traditionally adopt network security devices such as firewalls, DMZ hosts or intrusion detection systems (IDS) [8]. These traditional network defense strategies, however, can not be applied to cloud computing environment adaptively due to not only the attacks can rise internally but also the dynamic and elastic features of cloud computing [9]. To settle such problems, new methods are proposed continually in the past years, such as distributed cloud intrusion detection model proposed by Irfan Gul and M. Husein[10], integrating an IDS into cloud computing environment proposed by Claudio Mazzariello, Roberto Bifulco and Roberto Canonico[11] or control the inter-
communication among virtual machines method proposed by Hanqian Wu, Yi Ding[12], etc. These novel methods, however, merely try to reinforce cloud computing’s internal network via porting traditional network defense means. Such methods are not only unsystematic but also impossible to implement when the scale of physical hosts reaches at least half a million [13]. Besides, once the cyber-attack causes some VMs overloaded which in turn causes physical hosts which they reside overloaded, all the services on this overloaded physical hosts will be affected or even be corrupted. Moreover, due to the logical coupling between VMs in a common virtual sub-network, for example, the coupling relationship between load-balancers and servers or between servers and databases, disasters will spread dramatically and then quickly collapse a large part of cloud network.

In this paper, we first propose a new two layers model to describe the cloud’s complex internal network with the full consideration of the interactions between physical and virtual networks. Based on this model and complex network theory, a novel solution is introduced to systematically and globally settle such a problem that the traditional network defense strategies are no longer suitable for cloud. This solution can make the whole network in cloud computing environment more robust to resist the malicious cyber attacks and to maintain the infrastructures as operatively as possible, even before collapsing.

2. Avalanche Effect in Cloud Computing’s Cyber Attack

Different from the traditional networks, network in cloud computing environment can be divided into two layers: the virtual layer and the physical layer. The physical layer contains chunks of physical network facilities, such as switchers, routers, servers or other common network devices. The virtual layer, however, is built on the physical layer and is implemented via various virtualization technologies, such as container technologies, virtual machine technologies or software define network technologies [14]. All these virtual resources, such as VM instances, distributed databases or distributed storage, run on physical hosts and are inter-connected via virtual networks which also run on some physical hosts [15]. Fig 1 shows the relationship between virtual and physical layers.

Due to the sharing of physical resource pool, crash of one VM instance can cause other VM instances on the same physical host to collapse. Furthermore, because of the logical coupling of different components in a sub-virtual network, such collapsing may spread along different paths on both physical layer and virtual layer. This process is the avalanche effect in cloud computing’s cyber attack. Fig. 2 shows the avalanche process when only one VM instance in the network is attacked by malicious hacker. According to the complex network theory, such avalanche effect can ruin a network rapidly, even the scale of a network is really large [16].

3. Model of Cloud Computing’s Network

3.1. Modeling Virtual and physical layer

In the real cloud environment, VM instances and other virtual components compose the virtual sub-network which represents a full functional application, such as a web application or scientific computing platform. The whole virtual layer consists of various
virtual sub-networks that have different scales. In this article, we use scale-free network to model such a virtual sub-network, due to the fact that many kinds of practical computer networks, including the internet and local area networks, are all scale-free [17]. Here, we suppose that the distribution of virtual sub-virtual networks with different scale obey the Power Law distribution, i.e. the larger the virtual sub-network is, the litter it appears [18]. After this, we can deploy these virtual components onto physical machines randomly.

The modeling process can be divided into two steps: 1) Generate various scale-free networks whose scale distribution obey the Power Law distribution. Each vertex in this network represents a virtual component, such as VM instance on which runs different services. 2) Create the two-layers model by adding physical vertices into the network and randomly add edges between these physical vertices and the vertices in virtual layer.

3.2. Simplify the model

To apply complex network methods to the model, we need to simplify the two layers’ model into single layer. Ignoring the specific functions of facilities in the two layers, all virtual or physical components in cloud can be treated as a vertex in network, and inter-connections between vertices can be abstracted as edges. Due to that virtual network is built on the physical network, edges between vertices on physical layer can be omitted. So, this two-layer network can be further simplified to a single layer network as we can see from Fig. 3 [19]. This simplification reduces the complexity of analysis and makes it possible to use the mature complex network theory and tools.

Then, we come to analyze the robustness of this system. We usually use the size of giant component after initially removing a fraction q of nodes to measure the robustness of a network. First, we consider the situation in which no immune nodes are set up to guarantee the function of the whole network. Bond percolation process can be a great tool to model the dynamic process in the system. Edges are occupied only when the end nodes of the edges are not initially removed and both the end nodes are not infected (node i are infected with probability $1 - P_{imu}(i)$, we will discuss it later). We define $\pi_i(s)$ as the probability that node i belongs to a small clusters of exactly s nodes. Since the network is sparse enough, we can assume that the network topology is locally tree-like. This means that in the limit of large network size an arbitrarily large neighborhood around any nodes takes the form of a tree, then the calculation using message-passing algorithms can give a good approximation of the clusters.

Assuming that the networks to be locally tree-like, according to Brian Karrer and M. E. J. Newman’s recent theory [22], $\pi_i(s)$ can be write as:
\[\pi_i(s) = \sum_{s_j \in N_i} \left[\prod_{j \in N_i} \pi_{i-j}(s_j) \right] \delta(s - 1, \sum s_j) \]
(1)

Where \(\delta(a, b) \) is the kronecker delta which is defined as follows:

\[\delta(a, b) = \begin{cases} 0 & a - b = 0 \\ 1 & a - b \neq 0 \end{cases} \]
(2)

We can now introduce a probability generating function \(G_i(z) = \sum_{s=1}^{\infty} \pi_i(s) z^s \), whose value is given by [22]:

\[G_i(z) = \sum_{s=1}^{\infty} z^s \sum_{s_j \in N_i} \left[\prod_{j \in N_i} \pi_{i-j}(s_j) \right] \delta(s - 1, \sum s_j) = z \prod_{j \in N_i} \sum_{s_j=0}^{\infty} \pi_{i-j}(s_j) z^{s_j} \]
(3)

We can simplify the equation as [22]:

\[G_i(z) = z \prod_{j \in N_i} H_{i-j}(z) \]
(4)

Where \(\prod_{j \in N_i} H_{i-j}(z) = \sum_{s=0}^{\infty} \pi_{i-j}(s) z^s \).

To calculate \(H_{i-j}(z) \), we note that \(\pi_{i-j}(s) \) is zero if the edge between \(i \) and \(j \) is unoccupied (with probability 1 - \(p_{i-j} \)) and nonzero otherwise (\(p_{i-j} \)), which means that \(\pi_{i-j}(0) = 1 - p_{i-j} \) in which:

\[p_{i-j} = (1 - \eta)^2 P_{imu}(j) \]
(5)

Where \(\eta \) stands for the fraction of nodes initially removed. And for \(s \geq 1 \):

\[\pi_{i-j}(s) = p_{i-j} \sum_{\{s_k \mid k \in N_{j \setminus i}\}} \left[\prod_{k \in N_{j \setminus i}} \pi_{j-k}(s_k) \right] \delta(s - 1, \sum s_k) \]
(6)

Where the \(N_{j \setminus i} \) denotes that the set of neighbors of \(j \) without \(i \). Substituting this equation into the definition of \(H_{i-j}(z) \) above, we then find that:

\[H_{i-j}(z) = 1 - p_{i-j} + p_{i-j} z \prod_{k \in N_{j \setminus i}} H_{j-k}(z) \]
(7)

Then the expected fraction \(S \) of the network occupied by the entire percolating cluster is given by the average over all nodes:

\[S = \frac{1}{n} \sum_{i=1}^{n} \left[1 - G_i(1) \right] = 1 - \frac{1}{n} \sum_{i=1}^{n} \prod_{j \in N_i} H_{i-j}(1) \]
(8)

Setting \(z = 1 \) in equation (7) we have:

\[H_{i-j}(1) = 1 - p_{i-j} + p_{i-j} \prod_{j \in N_{j \setminus i}} H_{i-j}(1) \]
(9)

We can calculate the size of the remaining greatest connected component of the networks, i.e. the percolating cluster by solving this equation.

3.3. Vertices with immune ability

Some nodes in this network may have the immune ability against malicious attacks due to that they are well protected by some virtual network security equipments which are deployed by professional network administrators. Usually, large corporations have enough money and awareness to employ professional security counselors and managers to protect their IT facilities (physical or virtual) from cyber-attacks. According to this common sense, in our model, vertices in a large virtual sub-network will have a high probability to avoid crash when they are attacked by hackers. The immunity probability \(P_{imu} \) of a specific node \(V \) can be calculated as:

\[P_{imu} = 1 - S \frac{T}{T'}, C \]
(10)

where \(S \) is the number of vertices in a virtual sub-network which node \(V \) belongs to and \(T \) is the number of vertices in the whole virtual layer. Coefficient \(C \) stands for that even a virtual sub-network is well protected, it is also possible to be ruined inevitably by some cases.

3.4. Solution

To enhance the robustness of cloud computing network, we may place some key vertices behind virtual network security components, such virtual firewall, virtual IDS etc. [21] In our virtual layer model, we don’t take account of virtual network security components due to that they are transparent to the application users and can’t be attacked directly. Virtual network security components can be deployed rapidly and conveniently without much more consumptions. The key vertices which are selected to protect are that have the highest degrees in the network. Usually, vertex has high degree somehow means that they are important or even crucial.
To simulate the crashing process, initially, we randomly remove some vertices from the network to simulate that some VMs are ruined. Then all the vertices which are the neighbors of crashed nodes are affected. Due to that each node in the network has its own immune coefficient which we have mentioned before, the neighboring nodes may survive and avoid crashing during the process. These new crashed nodes in turn affected their own neighbors. This process will continue until the system reaches a stable state that no more vertices are affected. In each spreading step, we use the number of nodes in the largest connected cluster to represents the current state of network.

Based on the model we have discussed before, we now consider the situation with immune nodes which are totally immune to the infections and will never collapse with some protection. In this paper, we select the nodes with greatest degrees as the immune nodes. As the introduce of immune nodes into the system, there will be some changes for $p_{i\leftarrow j}$.

$$p'_{i\leftarrow j} = (1-\eta)^2 \left(1 - \left[1-P_{\text{imm}}(j)\right](1-P_{j\in B})\right)$$ \hspace{1cm} (11)$$

Where $P_{j\in B}$ stands for the probability that j is in the selected group of immune nodes. If the immune nodes are randomly selected, $P_{j\in B} = \eta$ for all j and η is the fraction of protected nodes. It is obvious that $p_{i\leftarrow j} < p'_{i\leftarrow j}$, thus the expectation of size of giant component will be greater. In this paper, we select the nodes with greatest degrees as immune nodes. As the introduce of immune nodes into the system, there will be some changes for $p_{i\leftarrow j}$.

$$p'_{i\leftarrow j} = (1-\eta)^2 \left(1 - \left[1-P_{\text{imm}}(j)\right](1-P_{j\in B})\right)$$ \hspace{1cm} (11)$$

Where $P_{j\in B}$ stands for the probability that j is in the selected group of immune nodes. If the immune nodes are randomly selected, $P_{j\in B} = \eta$ for all j and η is the fraction of protected nodes. It is obvious that $p_{i\leftarrow j} < p'_{i\leftarrow j}$, thus the expectation of size of giant component will be greater. In this paper, we select the nodes with greatest degrees as immune nodes. Thus $P_{j\in B}$ will be a function of its degree and η. And if j is in the group with greatest degrees, the effect of protecting this node will be greater. Therefore the network will be more robust.

4. Results

From what we have discussed in the above sections, we can conclude that as long as the immune nodes are added into the network, the probability of existing larger cluster is improved as well. To verify the robustness improvement after applying our novel method to cloud computing’s network, we have simulated this avalanche process with different ratio of initial immune nodes and initial attacked nodes. We use 5000 physical hosts with 10 VM instances running on each of them to simulate the attack process. Here, we assume that the largest scale of virtual sub-network contains at most 500 VM instances.

The results in Fig. 5 show that the number of key nodes that have the ability to resist the cyber-attack will finally affect the robustness of the whole network, and the initial number of attacked nodes also affects the network’s robustness. As the ratio of initial attacked nodes increase, the number of survived nodes in the largest connected cluster decrease accordingly. Also, with different ratio of protected nodes, the robustness (measured by the number of nodes in the largest connected cluster) of network varies significantly. The more the nodes are protected, the higher the robustness is. Fig. 5 demonstrates that if we only select 5% (2500 VMs, 250 physical hosts) key nodes to give the ability to resist the cyber-attack, the ratio of final survived nodes to the total nodes can increased over 40% or even 70%. Also, if we protect 20% key nodes, this ratio will stably over 60% and in some optimistic cases it will over 90% (0.5% nodes initially be attacked).

In practice, benefited from the elastic and dynamic features of cloud computing, nodes can by rapidly protected by virtual network security devices on demand. Besides, the SDN technology has the ability to detect the real time topology and to re-calculate the degree of all nodes in network rapidly. So that, when we detect the change of network, no matter physical or virtual, we can re-select the key nodes (nodes have the highest degree) and protect those new key nodes by the virtual network components to obtain the immunity in a short period.

5. Conclusion

In summary, we have introduced a novel method based on complex network theory that can significantly improve the robustness of cloud computing’s network.
Figure 5. With different number of immune nodes, the ratio of survived nodes in largest connected cluster are significantly different. That only protect 0.05% nodes in the network will keep the ratio of survived nodes over 50%. If the ratio of immune nodes increased to 20%, in some common cases (5% nodes are attacked initially), ratio of survived nodes will even over 95%

to defense malicious attacks with low costs. Our approach shows that with a reasonable protection of some key nodes in the network, significant gains can be achieved for the robustness while the network’s functional topology keep unchanged. This result reveals the fact that instead of deploying security equipment on each rack, protecting the key nodes with virtual network security components is more efficient, economic and energy-saving. The applications of our results are imminent on one hand to guide the improvement of the existing cloud computing networks but also serve on the other hand to design future cloud infrastructures with improved robustness.

References

[1] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing." National Institute of Standards and Technology 53.6 (2009): 50.

[2] Cloud Insights. (2014, Aug). Case Study: Big Data Cloud Computing Helps NASA Rover Curiosity Land on Mars. [Online]. Available: https://www.cloudinsights.com/case-study-nasa-jpl-666995202.html

[3] RightScale. (2015). 2015 State of the Cloud Report. [Online]. Available: http://assets.rightscale.com/uploads/pdfs/RightScale-2015-State-of-the-Cloud-Report.pdf

[4] Amazon. (2014). Amazon.com Announces First Quarter Sales up 15% to $22.72 Billion. [Online]. Available: http://phx.corporateir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=2039598

[5] Zissis, Dimitrios, and Dimitrios Lekkas. "Addressing cloud computing security issues." Future Generation Computer Systems 28.3 (2012): 583-592.

[6] SO, Kuyoro. "Cloud computing security issues and challenges." International Journal of Computer Networks 3.5 (2011).

[7] Carlin, Sean, and Kevin Curran. "Cloud computing security." (2011).

[8] SANS Institute InfoSec Reading Room. (2002). Building a Secure Internet Data Center Network. [Online]. Available: http://www.sans.org/reading-room/whitepapers/modeling/building-secure-internet-data-center-network-infrastructure-73
[9] Shin, Seungwon, and Guofei Gu. "CloudWatcher: Network security monitoring using OpenFlow in dynamic cloud networks (or: How to provide security monitoring as a service in clouds?)." Network Protocols (ICNP), 2012 20th IEEE International Conference on. IEEE, 2012.

[10] Gul, Irfan, and M. Hussain. "Distributed cloud intrusion detection model." International Journal of Advanced Science and Technology 34 (2011): 71-82.

[11] Mazzariello, Claudio, Roberto Bifulco, and Roberto Canonico. "Integrating a network IDS into an open source cloud computing environment." Information Assurance and Security (IAS), 2010 Sixth International Conference on. IEEE, 2010.

[12] Wu, Hanqian, et al. "Network security for virtual machine in cloud computing." Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th International Conference on. IEEE, 2010.

[13] Amazon data center size. http://huanliu.wordpress.com/2012/03/13/amazon-data-center-size/.

[14] MALHOTRA, LAKSHAY, DEVYANI AGARWAL, and ARUNIMA JAISWAL. "Virtualization in Cloud Computing." J Inform Tech Softw Eng 4.136 (2014): 2.

[15] Openstack, OpenStack INSTALLATION GUIDE FOR RED HAT ENTERPRISE LINUX 7, CENTOS 7, AND FEDORA 21. [Online]. Available: http://docs.openstack.org/kilo/install-guide/install/yum/content/ch_overview.html

[16] Barrat, Alain, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on complex networks. Cambridge University Press, 2008.

[17] Mathematics and the internet: A source of enormous confusion and great potential. Defense Technical Information Center, 2009.

[18] Power law. [Online]. Available: https://en.wikipedia.org/wiki/Power_law.

[19] Kivel, Mikko, et al. "Multilayer networks."Journal of Complex Networks2.3 (2014): 203-271.

[20] Openstack, Firewall-as-a-Service (FWaaS) overview. [Online]. Available: http://docs.openstack.org/admin-guide-cloud/content/install_neutron-fwaas-agent.html

[21] Openstack, OpenStack Networking ("Neutron"). [Online]. Available: https://wiki.openstack.org/wiki/Neutron#Why_Neutron.3F

[22] Karrer, Brian, M. E. J. Newman, and Lenka Zdeborov. "Percolation on sparse networks."Physical review letters113.20 (2014): 208702.