Search for top squarks in R-parity-violating supersymmetry using three or more leptons and b-tagged jets

The CMS Collaboration

Abstract

A search for anomalous production of events with three or more isolated leptons and bottom-quark jets produced in pp collisions at $\sqrt{s} = 8$ TeV is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 19.5 fb$^{-1}$ collected by the CMS experiment at the LHC in 2012. No excess above the standard model expectations is observed. The results are interpreted in the context of supersymmetric models with signatures that have low missing transverse energy arising from light top-squark pair-production with R-parity-violating decays of the lightest supersymmetric particle. In two models with different R-parity-violating couplings, top-squarks are excluded below masses of 1020 GeV and 820 GeV when the lightest supersymmetric particle has a mass of 200 GeV.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.111.221801.
Supersymmetric (SUSY) extensions of the standard model (SM) solve the hierarchy problem while unifying particle interactions [1,2]. Among SUSY models, “natural” supersymmetry refers to those characterized by small fine tuning needed to describe particle spectra. It requires top squarks (stops), the top-quark superpartners, to be lighter than about 1 TeV. These models have received substantial interest in light of the discovery of a Higgs boson with mass near 125 GeV [3,4] because the stop should be the superpartner most strongly coupled to the Higgs.

Natural models feature pair production of stops that decay to a number of final states. To fully test supersymmetric naturalness, searches for all possible decay chains should be carried out. These can be broadly categorized as R-parity conserving (RPC) or violating (RPV) [5], where R-parity is defined by $R = (-1)^{3B+L+2s}$, with B and L the baryon and lepton numbers, and s the particle spin. All SM particle fields have $R = +1$ while all superpartner fields have $R = -1$. When R-parity is conserved, superpartners are produced in pairs, the lightest superpartner (LSP) is stable and a dark-matter candidate, and proton stability is ensured. Most recent searches for naturalness have focused on RPC models [6–8].

Supersymmetric models with RPV interactions violate either B or L but can avoid proton decay limits [9,10]. The superpotential W_{RPV} includes three trilinear terms parametrized by the Yukawa couplings λ_{ijk}, λ'_{ijk}, and λ''_{ijk}:

$$W_{\text{RPV}} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k,$$

where $i, j,$ and k are generation indices; L and Q are the $SU(2)_L$ doublet superfields of the lepton and quark; and the E, D, and U are the $SU(2)_L$ singlet superfields of the charged lepton, down-like quark, and up-like quark. The third term violates baryon number conservation, while the first two terms violate lepton number conservation. These terms do not preclude a natural hierarchy [11].

The RPV interactions allow for single production of SUSY particles (sparticles) and for sparticle decay into SM only particles. The latter is explored in this Letter. Prior searches for RPV interactions in multilepton final states include those at LEP [12–14], the Tevatron [15,16], at HERA [17,18], and at the Large Hadron Collider (LHC) [19–21].

Because the LSP is unstable in RPV models, a common experimental strategy of SUSY searches — selecting events with large missing transverse energy (E_T^{miss}) — is not effective [9]. Instead, we use S_T, the scalar sum of E_T^{miss} and the transverse energy of jets and charged leptons, to differentiate between signal and standard model backgrounds.

In this Letter we present the result of a search for pair production of top squarks with RPV decays of the lightest sparticle, using multilepton events and bottom-tagged (b-tagged) jets. The dataset used here corresponds to an integrated luminosity of 19.5 fb^{-1}, recorded in 2012 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 8 TeV.

The coordinate system in CMS is right-handed, with the origin at the nominal interaction point. Pseudorapidity is given by $\eta \equiv -\ln[\tan(\theta/2)]$, where the polar angle θ is defined with respect to the counterclockwise beam direction. The azimuthal angle ϕ is measured relative to the direction to the center of the LHC ring.

The CMS detector [22] has cylindrical symmetry around the pp beam axis with tracking and muon detectors covering the pseudorapidity range $|\eta| < 2.4$. The tracking system measures the trajectory and momentum of charged particles and consists of multilayered silicon pixel and strip detectors in a 3.8 T solenoidal magnetic field. Particle energies are measured with
concentric electromagnetic and hadron calorimeters, which cover $|\eta| < 3.0$ and $|\eta| < 5.0$, respectively. Muon detectors consisting of wire chambers are embedded in the steel return yoke outside the solenoid. The trigger thresholds in a two-level trigger system are tuned to accept a few hundred data events per second from the pp interactions.

We select events with three or more leptons (including tau leptons) that are accepted by a trigger requiring two light leptons, which may be electrons or muons. Any opposite-sign, same-flavor (OSSF) pair of electrons or muons must have an invariant mass $m_{\ell\ell} > 12$ GeV, removing low-mass bound states and $\gamma^* \rightarrow \ell^+ \ell^-$ production.

Electrons and muons are reconstructed using the tracker, calorimeter, and muon systems. Details of reconstruction and identification can be found in Ref. [23] for electrons and in Ref. [24] for muons. We require that at least one electron or muon in each event have transverse momentum of $p_T > 20$ GeV. Additional electrons and muons must have $p_T > 10$ GeV and all of them must be within $|\eta| < 2.4$.

The majority of hadronic decays of tau leptons (τ_h) yield either a single charged track (one-prong) or three charged tracks (three-prong), occasionally with additional electromagnetic energy from neutral pion decays. We use one- and three-prong τ_h candidates that have $p_T > 20$ GeV, reconstructed with the “hadron plus strips” method [25]. Leptonically decaying taus are included with other electrons and muons.

To ensure that electrons, muons, and τ_h candidates are isolated, we use a particle-flow (PF) algorithm [26] to identify the source of transverse energy deposits in the trackers and calorimeters. We then sum the energy deposits in a cone of radius 0.3 in $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ around the candidate and subtract the lepton p_T to calculate $E_{T,\text{cone}}$. We remove energy from additional proton-proton collisions that occur simultaneously by subtracting a per-event correction [23, 28]. For electrons and muons, we divide $E_{T,\text{cone}}$ by the lepton p_T to find the relative isolation $I_{\text{rel}} = E_{T,\text{cone}}/p_T$, which has to be less than 0.15. We require $E_{\text{cone}} < 2$ GeV for τ_h candidates.

We use jets reconstructed from PF candidates [28] using the anti-k_T algorithm [29] with a distance parameter of 0.5, that have $|\eta| < 2.5$ and $p_T > 30$ GeV. Jets are required to be a distance $\Delta R > 0.3$ away from any isolated electron, muon, or τ_h candidate. To determine if the jet originated from a bottom quark, we use the combined secondary-vertex algorithm, which calculates a likelihood discriminant using the track impact parameter and secondary-vertex information. This discrimination selects heavy-flavor jets with an efficiency of 70% and suppresses light-flavor jets with a misidentification probability of 1.5% [30].

Monte Carlo (MC) simulations are used to estimate some of the SM backgrounds and to understand the efficiency and acceptance of the signal models. The SM background samples are generated using MadGraph [31] with parton showering and fragmentation modeled using Pythia (version 6.420) [32] and passed through a Geant4-based [33] representation of the CMS detector. Signal samples [11] are generated with MadGraph and Pythia and passed through the CMS fast-simulation package [34]. Next-to-leading- and next-to-leading-log cross sections and their uncertainties for the SUSY signal processes are from the LHC SUSY cross sections working group [35–39].

Multilepton signals have two main sources of backgrounds, the first arising from processes that produce genuine multilepton events. The most significant examples are WZ and ZZ production, but rare processes such as $t\bar{t}W^\pm$ and $t\bar{t}Z$ also contribute. We assess the contribution from these processes using samples simulated by MadGraph. Samples simulating WZ and ZZ have been validated in control regions in data. For the rarer background processes, we rely
solely on simulation.

The second source originates from objects that are misclassified as prompt, isolated leptons, but are actually hadrons, leptons from a hadron decay, etc. Misidentified leptons are classified in three categories: misidentified light leptons (electrons and muons), misidentified τ_h leptons, and light leptons originating from asymmetric internal conversions. The methods used in this paper are described in more detail in Ref. [20].

We estimate the contribution of misidentified light leptons by measuring the number of isolated tracks and applying a scale factor between isolated leptons and isolated tracks. These scale factors are measured in control regions that contain leptonically decaying Z-bosons and a third, isolated track, as well as in control regions with opposite-sign, opposite-flavor leptons, which are $t\bar{t}$-dominated. The scale factor is then the probability for the third track to pass the lepton identification criteria. We find the scale factors to be $(0.9 \pm 0.2)\%$ for electrons and $(0.7 \pm 0.2)\%$ for muons. The scale factors are applied to the sideband region with two light leptons and an isolated track. The scale factors depend on the heavy-flavor content in the different signal regions. We parameterize this dependance as a function of the impact parameter distribution of non-isolated tracks. The $t\bar{t}$ contribution is taken from simulation.

The τ_h misidentification rate is measured in jet-dominated data by comparing the number of τ_h candidates in the signal region defined by $E_{\text{cone}} < 2\text{ GeV}$ to the number of non-isolated τ_h candidates, which have $6 < E_{\text{cone}} < 15\text{ GeV}$. We measure the average misidentification rate as 15% with a systematic uncertainty of 30% based on the variation in different control samples. We apply this scale factor to the sideband region with two light leptons and one non-isolated τ_h candidate.

Another source of background leptons is internal conversions, where a virtual photon decays to a dilepton pair. These conversions produce muons almost as often as electrons, and have been discussed in detail elsewhere [20]. We measure the conversion factors of photons to light leptons in a control region (low E_{miss} and low hadronic activity). The ratio of the number of $\ell^+\ell^-\ell^\pm$ candidates to the number of $\ell^+\ell^-\gamma$ candidates in the Z boson decays defines the conversion factor, which is $2.1\% \pm 1.0\% (0.5\% \pm 0.3\%)$ for electrons (muons).

A systematic uncertainty of 4.4% in the normalization of the simulated samples accounts for imperfect knowledge of the integrated luminosity of the data sample [40]. Signal cross sections have uncertainties from 15% to 51% in for stop masses between 250 GeV and 1.5 TeV, which come from the parton distribution function uncertainties and the renormalization and factorization scale uncertainties [41]. We scale the WZ and ZZ simulation samples to match data in control regions. The overall systematic uncertainty on WZ and ZZ contributions to the signal regions varies between 15% and 30% depending on the kinematics, and is the combination of the normalization uncertainties with resolution uncertainties. Muon identification efficiency uncertainty is 11% at muon p_T of 10 GeV and 0.2% at 100 GeV. For electrons the uncertainties are 14% at 10 GeV and 0.6% at 100 GeV. The uncertainty on the efficiency of the bottom-quark tagger is 6%. The uncertainty on the E_{miss} resolution contributes a 4% uncertainty and the jet energy scale uncertainty contributes 0.5% [42]. An uncertainty of 50% for the $t\bar{t}$ background contribution is due to the low event counts in the isolation distributions in high-S_T bins, which are used to validate the misidentification rate. We apply a 50% uncertainty to the normalization of all rare processes.

We define eight mutually exclusive signal regions (SRs) depending on the total number of leptons and the number of τ_h candidates in the event, which are defined in Table 1. Since our signal does not contain any Z bosons and does contain two to four bottom quarks, in SR1–
Table 1: Observed yields for three- and four-lepton events from 19.5 fb⁻¹ recorded in 2012. The channels are split by the total number of leptons (N_L), the number of τ, candidates (N_τ), and the S_T. Expected yields are the sum of simulation and estimates of backgrounds from data in each channel. SR1–SR4 require a b-tagged jet and veto events containing Z bosons. SR5–SR8 contain events that either contain a Z boson or have no b-tagged jet. The channels are mutually exclusive. The uncertainties include statistical and systematic uncertainties. The S_T values are given in GeV.

Channel	N_L	N_τ	0 < S_T < 300	300 < S_T < 600	600 < S_T < 1000	1000 < S_T < 1500	S_T > 1500										
	obs	exp															
SR1	3	0	110	± 16	124	± 10	130	± 9	69.1 ± 2.7	746	± 37	83.1 ± 4.8	97.5 ± 4.8	1	1.43 ± 0.01	0	0.28 ± 0.008
SR2	3	1	694	± 28	619	± 20	90.1 ± 6.7	1	1.43 ± 0.01	0	0.28 ± 0.008						
SR3	4	0	0	0.18 ± 0.074	0	0.19 ± 0.02	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.003					
SR4	4	1	1	0.89 ± 0.42	1	1.31 ± 0.48	0	0.59 ± 0.19	0	0.016 ± 0.026	0	0.000 ± 0.003					
SR5	3	0	—	—	—	—	152	164 ± 51	15	21.0 ± 8.6	10	3.45 ± 1.77					
SR6	3	1	1	1	1	2	3	3.2 ± 0.9	0	0.28 ± 0.13	0	0.08 ± 0.05					
SR7	4	0	5	8.2 ± 2.6	2	0.51 ± 0.36	0	0.18 ± 0.08									
SR8	4	1	2	5.2 ± 0.18	0	0.09 ± 0.05	0	0.00 ± 0.001									

SR4, we veto events in which any OSSF dilepton pairs have an invariant mass consistent with that of the Z boson (75–105 GeV) and require at least one b-tagged jet. Each of these eight SRs is divided into five bins in S_T: [0–300], [300–600], [600–1000], [1000–1500], and [> 1500] GeV. We gain additional sensitivity in regions with S_T > 600 GeV by removing the b-tag and Z-veto requirements for events, so the SR5–SR8 contain the events that fail one or both of these requirements.

The observed and expected yields for SR1–SR8 are shown in Table 1. We also show the S_T distribution for SR1 in Fig. 1 with the background expectations from different sources shown separately. Data are in good agreement with the SM predictions everywhere. Please see Appendix A for additional S_T distributions.

Figure 1: The S_T distributions for SR1 including observed yields and background contributions.

We demonstrate natural SUSY with RPV couplings in a stop RPV model where the light stop decays to a top quark and intermediate on- or off-shell bino, \(\tilde{t}_1 \rightarrow \chi_1^{0*} + t \). The bino decays to two leptons and a neutrino through the leptonic RPV interactions, \(\chi_1^{0*} \rightarrow \ell_i + \nu_j + \ell_k \) and \(\nu_i + \ell_j + \ell_k \), or through the semileptonic RPV interactions, \(\chi_1^{0*} \rightarrow \ell_i + q_j + q_k \) and \(\nu_i + q_j + q_k \), where the indices \(i, j, k \) refer to those appearing in Eq. 1. The stop is assumed to be right-handed and RPV couplings are large enough that all decays are prompt.

We generate samples to evaluate models with simplified mass spectra and leptonic RPV couplings \(\lambda_{122} \) or \(\lambda_{233} \). The stop masses in these samples range from 700–1250 GeV in 50 GeV steps, and bino masses range from 100–1300 GeV in 100 GeV steps. In a model with only the semileptonic RPV coupling \(\lambda_{233} \), we use stop masses 300–1000 GeV and bino masses 200–850 GeV, both in 50 GeV steps. In both cases, slepton and sneutrino masses are 200 GeV above the bino mass. Other particles are irrelevant in these models. Efficiency times acceptance figures for
Table 2: Kinematically allowed stop decay modes with RPV coupling λ'_{233}. The allowed neutralino decay modes for $m_t < m_{\tilde{\chi}^0_1} < m_{\tilde{\nu}}$ are $\tilde{\nu} \rightarrow \mu t \bar{b}$ and νb.

Label	Kinematic region	Decay mode
A	$m_t < m_{\tilde{\chi}^0_1} < 2m_t, m_{\tilde{\chi}^0_1}$	$\tilde{t_1} \rightarrow \nu b \bar{b}$
B	$2m_t < m_{\tilde{\chi}^0_1} < m_{\tilde{\chi}^0_1}$	$\tilde{t_1} \rightarrow \nu b \bar{b}$ or $\nu b b$
C	$m_{\tilde{\nu}} < m_{\tilde{\chi}^0_1} < m_{\tilde{\chi}^0_1} + m_{\tilde{\chi}^0_1}$	$\tilde{t_1} \rightarrow \nu \bar{b} \tilde{\chi}^0_1$ or $j j b \tilde{\chi}^0_1$
D	$m_{W^\pm} + m_{\tilde{\chi}^0_1} < m_{\tilde{\chi}^0_1} < m_t + m_{\tilde{\chi}^0_1}$	$\tilde{t_1} \rightarrow b W^\pm \tilde{\chi}^0_1$
E	$m_t + m_{\tilde{\chi}^0_1} < m_{\tilde{\chi}^0_1}$	$\tilde{t_1} \rightarrow t \tilde{\chi}^0_1$

these models can be found in the Appendix [A].

To determine which regions of phase space are excluded, we divide the channels shown in Table 1 by lepton flavor and perform a counting experiment using the observed event yields, the background expectations, and the signal expectations as inputs to an LHC-type CLs limit calculation [43–45]. A table with the finer binning is available in the Appendix [A].

In the models with leptonic couplings, the limits are mostly independent of the bino mass, and, using the conservative minus-one-standard-deviation of the theoretical cross section with the observed result where the bino mass is 200 GeV, we exclude models with the stop mass below 1020 GeV when λ_{122} is non-zero, and below 820 GeV when λ_{233} is non-zero. These limits are shown in Fig. 2. There is a change in kinematics at the line $m_{\tilde{\chi}^0_1} = m_{\tilde{\nu}} - m_t$, below which the stop decay is two-body, while above it is a four-body decay. Near this line, the $\tilde{\chi}^0_1$ and top are produced almost at rest, which results in soft leptons, reducing our acceptance. This loss of acceptance is more pronounced in the $\lambda_{233} = 0$ case and causes the loss of sensitivity near the line at $m_{\tilde{\chi}^0_1} = 800$ GeV. This feature is enhanced in the observed limit because the data has a larger statistical uncertainty in the relevant signal regions than the simulated signal samples.

In the semileptonic RPV model with λ'_{233}, there are several different kinematic regions, which are described in Table 2. The most significant effect is when the decay $\tilde{\chi}^0_1 \rightarrow \mu + t + b$ is disfavored, reducing the number of leptons. The different regions where this effect is pronounced drive the shape of the exclusion for λ'_{233}. The area inside the curve is excluded. The observed limit is stronger than the expected one, which allows the observed exclusion region to reach into the regime where the bino decouples.

We have performed a search for RPV supersymmetry in models with top-squark pair production using a variety of multilepton final states. Good agreement between observations and SM expectations allows us to set stringent limits on the top-squark mass in models with leptonic RPV couplings λ_{122} and λ_{233}. For a bino mass of 200 GeV, these limits are 1020 GeV and 820 GeV, respectively. We also set limits in a model with the semi-leptonic RPV coupling λ'_{233}.

We thank Jared Evans and Yevgeny Kats for providing guidance on the signal models examined in this letter.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS,
Figure 2: The 95% confidence level limits in the stop and bino mass plane for models with RPV couplings λ_{122}, λ_{233}, and λ'_{233}. For the couplings λ_{122} and λ_{233}, the region to the left of the curve is excluded. For λ'_{233}, the region inside the curve is excluded. The different kinematic regions, A, B, C, D, and E, for the λ'_{233} exclusion are explained in Table 2.
MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] H. P. Nilles, “Supersymmetry, Supergravity and Particle Physics”, Phys. Rept. 110 (1984) 1, doi:10.1016/0370-1573(84)90008-5.

[2] H. E. Haber and G. L. Kane, “The Search for Supersymmetry: Probing Physics Beyond the Standard Model”, Phys. Rept. 117 (1985) 75, doi:10.1016/0370-1573(85)90051-1.

[3] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[4] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[5] G. R. Farrar and P. Fayet, “Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry”, Phys. Lett. B 76 (1978) 575, doi:10.1016/0370-2693(78)90858-4.

[6] CMS Collaboration, “Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV”, Phys. Lett. B 725 (2013) 243, doi:10.1016/j.physletb.2013.06.058, arXiv:1305.2390.

[7] CMS Collaboration, “Search for top-squark pair production in the single-lepton final state in pp collisions at \(\sqrt{s} = 8\) TeV”, (2013), arXiv:1308.1586.

[8] ATLAS Collaboration, “Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \(\text{sqrts} = 8\) TeV pp collisions with the ATLAS detector”, (2013), arXiv:1308.2631.

[9] R. Barbier et al., “R-parity violating supersymmetry”, Phys. Rept. 420 (2005) 1, doi:10.1016/j.physrep.2005.08.006, arXiv:hep-ph/0406039.

[10] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, Phys. Rev. D 86 (2012) 010001, doi:10.1103/PhysRevD.86.010001.

[11] J. A. Evans and Y. Kats, “LHC coverage of RPV MSSM with light stops”, JHEP 04 (2013) 028, doi:10.1007/JHEP04(2013)028, arXiv:1209.0764.

[12] ALEPH Collaboration, “Search for supersymmetric particles with R-parity violating decays in \(\text{e}^+\text{e}^-\) collisions at \(\sqrt{s}\) up to 209 GeV”, Eur. Phys. J. C 31 (2003) 1, doi:10.1140/epjc/s2003-01311-5, arXiv:hep-ex/0210014.
[13] DELPHI Collaboration, “Search for supersymmetric particles assuming R-parity nonconservation in e+ e- collisions at $\sqrt{s} = 192 \text{ GeV}$ to 208 GeV”, Eur. Phys. J. C 36 (2004) 1, doi:10.1140/epjc/s2004-01881-6, arXiv:hep-ex/0406009.

[14] L3 Collaboration, “Search for R parity violating decays of supersymmetric particles in e^+e^- collisions at LEP”, Phys. Lett. B 524 (2002) 65, doi:10.1016/S0370-2693(01)01367-3, arXiv:hep-ex/0110057.

[15] D0 Collaboration, “Search for R-parity violating supersymmetry via the $LL\bar{E}$ couplings $\lambda_{121}, \lambda_{122}$ or λ_{133} in $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$”, Phys. Lett. B 638 (2006) 441, doi:10.1016/j.physletb.2006.05.077, arXiv:hep-ex/0605005.

[16] CDF Collaboration, “Search for anomalous production of multilepton events in $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$”, Phys. Rev. Lett. 98 (2007) 131804, doi:10.1103/PhysRevLett.98.131804, arXiv:0706.4448.

[17] H1 Collaboration, “A search for squarks of Rp-violating SUSY at HERA”, Z. Phys. C 71 (1996) 211, doi:10.1007/BF02906978, arXiv:hep-ex/9604006.

[18] ZEUS Collaboration, “Search for stop production in R-parity-violating supersymmetry at HERA”, Eur. Phys. J. C 50 (2007) 269, doi:10.1140/epjc/s10052-007-0240-8, arXiv:hep-ex/0611018.

[19] CMS Collaboration, “Search for Physics Beyond the Standard Model Using Multilepton Signatures in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$”, Phys. Lett. B 704 (2011) 411, doi:10.1016/j.physletb.2011.09.047, arXiv:1204.5341.

[20] CMS Collaboration, “Search for anomalous production of multilepton events in pp collisions at $\sqrt{s} = 7 \text{ TeV}$”, JHEP 06 (2012) 169, doi:10.1007/JHEP06(2012)169, arXiv:1204.5341.

[21] ATLAS Collaboration, “Search for R-parity-violating supersymmetry in events with four or more leptons in $\sqrt{s} = 7 \text{ TeV}$ pp collisions with the ATLAS detector”, JHEP 12 (2012) 124, doi:10.1007/JHEP12(2012)124, arXiv:1210.4457.

[22] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 03 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[23] CMS Collaboration, “Electron Reconstruction and Identification at $\sqrt{s} = 7 \text{ TeV}$”, CMS Physics Analysis Summary CMS-PAS-EGM-10-004, (2010).

[24] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7 \text{ TeV}$”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.

[25] CMS Collaboration, “Performance of τ-lepton reconstruction and identification in CMS”, JINST 7 (2012) P01001, doi:10.1088/1748-0221/7/01/P01001, arXiv:1109.6034.

[26] CMS Collaboration, “Study of tau reconstruction algorithms using pp collisions data collected at $\sqrt{s} = 7 \text{ TeV}$”, CMS Physics Analysis Summary CMS-PAS-PFT-10-004, (2010).

[27] CMS Collaboration, “CMS Strategies for tau reconstruction and identification using particle-flow techniques”, CMS Physics Analysis Summary CMS-PAS-PFT-08-001, (2009).
[28] CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-002, (2010).

[29] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[30] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462

[31] F. Maltoni and T. Stelzer, “MadEvent: automatic event generation with MadGraph”, JHEP 02 (2003) 027, doi:10.1088/1126-6708/2003/02/027, arXiv:hep-ph/0208156

[32] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A brief introduction to PYTHIA 8.1”, Comput. Phys. Commun. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820

[33] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[34] CMS Collaboration, “Fast simulation of the CMS detector”, J. Phys. Conf. Ser. 219 (2010) 032053, doi:10.1088/1742-6596/219/3/032053

[35] W. Beenakker et al., “Production of charginos, neutralinos, and sleptons at hadron colliders”, Phys. Rev. Lett. 83 (1999) 3780, doi:10.1103/PhysRevLett.83.3780, arXiv:hep-ph/9906298

[36] A. Kulesza and L. Motyka, “Threshold resummation for squark-antisquark and gluino-pair production at the LHC”, Phys. Rev. Lett. 102 (2009) 111802, doi:10.1103/PhysRevLett.102.111802, arXiv:0807.2405

[37] A. Kulesza and L. Motyka, “Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC”, Phys. Rev. D 80 (2009) 095004, doi:10.1103/PhysRevD.80.095004, arXiv:0905.4749

[38] W. Beenakker et al., “Soft-gluon resummation for squark and gluino hadroproduction”, JHEP 12 (2009) 041, doi:10.1088/1126-6708/2009/12/041, arXiv:0909.4418

[39] W. Beenakker et al., “Squark and gluino hadroproduction”, Int. J. Mod. Phys. A 26 (2011) 2637, doi:10.1142/S0217751X11053560, arXiv:1105.1110

[40] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer 2012 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-12-001, (2012).

[41] M. Krämer et al., “Supersymmetry production cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, (2012), arXiv:1206.2892

[42] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002.

[43] ATLAS and CMS Collaboration, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATLAS/CMS, Geneva, (2011).
[44] T. Junk, “Confidence level computation for combining searches with small statistics”,
Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[45] A. L. Read, “Presentation of search results: the CL_s technique”, J. Phys. G 28 (2002) 2693,
doi:10.1088/0954-3899/28/10/313.
A Supplementary Material

To assist in the interpretation of our results in additional models, we have included the following supplemental material.

Additional S_T distributions, corresponding to SR2, SR3, and SR4, show the background breakdowns for different channels and can be found in Figs. 3, 4, and 5 respectively. The efficiency times acceptance distributions in Figs. 6, 7, and 8 show how the sensitivity of our search changes in the different kinematic regimes of the three models we investigated. Table 3 breaks down the results shown in Table 1 into much more finely binned channels, which will allow our results to be easily applied to other searches.

Figure 3: The S_T distributions for SR2 (3 leptons including 1 τ) including observed yields and background contributions.

Figure 4: The S_T distributions for SR3 (4 leptons including 0 τ) including observed yields and background contributions.

Figure 5: The S_T distributions for SR4 (4 leptons including 1 τ) including observed yields and background contributions.
Figure 6: The efficiency times acceptance for each grid point in the stop and bino mass plane for the model with λ_{122} non-zero.

Figure 7: The efficiency times acceptance for each grid point in the stop and bino mass plane for the model with λ_{233} non-zero.

Figure 8: The efficiency times acceptance for each grid point in the stop and bino mass plane for the model with λ'_{233} non-zero.
Table 3: Observed yields for three- and four-lepton events from 19.5 fb⁻¹ recorded in 2012. The channels are split by the total number of leptons (N_{ℓL}), the number of τ'L candidates (N_{τL}), whether the event contains b-tagged jets (N_{b}), the number of OSSF pairs (N_{OSSF}), binning in the dilepton invariant mass (m_{ℓℓ}), and the S_T. Expected yields are the sum of simulation and estimates of backgrounds from data in each channel. The channels are mutually exclusive. The uncertainties include statistical and systematic uncertainties. The S_T values are given in GeV.

N_{ℓL}	N_{τL}	N_{b}	N_{OSSF}	m_{ℓℓ} (GeV)	0 < S_T < 400	400 < S_T < 800	800 < S_T < 1000	1000 < S_T < 1500	S_T > 1500				
					obs	exp							
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krämer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schönbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, A. Kalogeropoulos, J. Keaveney, M. Maes, A. Olbrechts, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, L. Pernèt, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cinammon, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basagmez, C. Belufi, G. Bruno, R. Castello, A. Caudron, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, A. Pin, K. Piotrzkowski, A. Popov, M. Selvaggi, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote, A. Vilela Pereira

Universidade Estadual Paulista, São Paulo, Brazil
C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez Tomei, E.M. Gregores, C. Lagana, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova
P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, M. Vander Donckt, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Pietta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, G. Fische, A. Geiser, I. Glushkov, P. Gummelini, S. Habib, I. Hauk, G. Hellwig, D. Horton, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, J. Leonard, K. Lipka, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M. Sahin, J. Salfeld-Nebgen, R. Schmidt, T. Schoerner-Sadenius, N. Sen, M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

V. Blobel, H. Enderle, J. Erfle, U. Gebbert, M. Görner, M. Gosselink, J. Haller, K. Heine,
R.S. Höing, G. Kaussen, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, I. Marchesini, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, J. Sibille, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, D. Troendle, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff, F. Hartmann, T. Hauth, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov, J.R. Komaragiri, A. Kornmayer, P. Lobelle Pardo, D. Martschei, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, B. Radics, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarb, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait, A. Gurru, G. Kole,
S. Kumar, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, H. Hesari, A. Jafari, M. Khakzad, M. Moghaddam Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Isaelli, G. Maggi, M. Maggi, B. Marangelli, S. My, N. Pacifico, A. Pompili, G. Pugliese, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, P. Verwilligen, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, M. Cuffiani, G.M. Dallavalle, F. Fabbrini, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, V. Gor, P. Lenzia, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbrini, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Fabbri, R. Misenich, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, F. De Guio, L. Di Matteo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M.T. Lucchini, S. Malvezzi, R.A. Manzoni, A. Martelli, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli di Fati

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy
S. Buontempo, N. Cavallo, A. De Cosa, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, M. Galanti, F. Gasparini, U. Gasparini, P. Giubilato, A. Gozzelino, K. Kanishchev, S. Lacaprara, I. Lazzizzera, M. Margoni, A.T. Meneguzzo,
F. Montecassiano, M. Passaseo, J. Pazzini, M. Pegoraro, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, A. Triossi, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, C. Riccardi, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, L. Fanè, P. Lariccia, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Saha, A. Santocchia, A. Spiezia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, M.T. Grippo, A. Kraan, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, F. Palla, A. Rizzi, A.T. Serban, P. Spagnolo, P. Squillacioti, F. Romeo, G.M. Bilei, M. Costa, F. Fiori, R. Sacchi, M. Tosi

INFN Sezione di Roma, Università di Roma, Roma, Italy
L. Barone, F. Cavallari, D. Del Re, M. Diemoz, M. Grassi, E. Longo, F. Margaroli, P. Meridiani, S. Micheli, S. Nourbakhsh, G. Organtini, R. Paramatti, S. Rahatlou, P. Soffi

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, C. Biino, N. Cartiglia, S. Casasso, M. Costa, N. Demaria, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, M. Musich, M.M. Obertino, G. Ortona, N. Pastrone, M. Pelliccioni, A. Potenza, A. Romero, M. Ruspa, R. Sacchi, A. Solano, A. Staiano, U. Tamponi

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, D. Montanino, A. Penzo, A. Schizzerotto, A. Zanetti

Kangwon National University, Chuncheon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
I. Grigelionis, A. Juodagalvis
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz31, R. Lopez-Fernandez, J. Martínez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Miszura, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Rodrigues Antunes, J. Seixas2, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, I. Golutvin, I. Gorbunov, A. Kamenev, Y. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palchik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
S. Evstykhhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Trisol, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, I. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martin, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi, D. d’Enterria, A. Dabrowski, A. David, A. De Roeck, S. De Visscher, S. Di Guida, D. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, C. Hartl, A. Hinzmann, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, Y.-J. Lee, C. Lourenço, N. Magini, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijs, S. Mersi, E. Meschi, R. Moser, M. Mulders, P. Musella, E. Nesvold, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, M. Plagge, L. Quertenmont, A. Racz, W. Reece, G. Rolandi, C. Rovelli, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, M. Stoye, A. Tsirou, G.I. Veres, J.R. Vlimant, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Taroni, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, C. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, E. Olaiya, D. Petty, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey,
Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, O. Gutsche, D. Hare, R.M. Harris, J. Hirschauer, B. Hooper, S. Jindariani, M. Johnson, U. Joshi, B. Klima, S. Kunori, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitza, G. Martinez, J.L. Rodriguez

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khaltayan, P. Kurt, F. Lacroix, D.H. Moon, C. O’Brien, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilk, W. Clarida, K. Dilsiz, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, H. Ogul, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi
Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, G. Hu,
P. Maksimovic, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, R. Stringer,
J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha,
I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu,
M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes,
S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, W. Busza, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov,
Y. Kim, M. Klute, Y.S. Lai, A. Levin, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland,
G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, R. Wolf, B. Wyslouch,
M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klapoetke, Y. Kubota,
J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Clae, A. Domínguez, M. Eads, R. Gonzalez Suarez,
J. Keller, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D. Nash, T. Orimoto,
D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov,
M. Schmitt, S. Stonyrev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon,
W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite,
N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
L. Antonelli, B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh,
M. Rodenburg, G. Smith, C. Vuosalio, G. Williams, B.L. Winer, H. Wolfe
Princeton University, Princeton, USA
E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagoz, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, K. Jung, O. Koybasi, M. Kress, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, F. Wang, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
O. Bouhali60, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon61, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, K. Kaadze, P. Klabbers, J. Klukas, A. Lanaro, R. Loveless, A. Mohapatra, M.U. Mozer, I. Ojalvo, G.A. Pierro, G. Polese, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at National Centre for Nuclear Research, Swierk, Poland
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Joint Institute for Nuclear Research, Dubna, Russia
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at The University of Kansas, Lawrence, USA
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India
23: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
24: Now at King Abdulaziz University, Jeddah, Saudi Arabia
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Sharif University of Technology, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at INFN Sezione di Roma, Roma, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Cag University, Mersin, Turkey
44: Also at Mersin University, Mersin, Turkey
45: Also at Izmir Institute of Technology, Izmir, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Kafkas University, Kars, Turkey
48: Also at Suleyman Demirel University, Isparta, Turkey
49: Also at Ege University, Izmir, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
52: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
53: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
54: Also at Utah Valley University, Orem, USA
55: Also at Institute for Nuclear Research, Moscow, Russia
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Yildiz Technical University, Istanbul, Turkey
60: Also at Texas A&M University at Qatar, Doha, Qatar
61: Also at Kyungpook National University, Daegu, Korea