A generalized action for \((2 + 1)\)-dimensional Chern–Simons gravity

J Díaz\(^1\), O Fierro\(^2\), F Izaurieta\(^3\), N Merino\(^2,4\), E Rodriguez\(^3\), P Salgado\(^2\) and O Valdivia\(^2\)

\(^1\) Departamento de Física y Matemáticas, Universidad Arturo Prat, Casilla 121, Iquique, Chile
\(^2\) Departamento de Física, Universidad de Concepción, Casilla 160C, Concepción, Chile
\(^3\) Departamento de Matemática y Física Aplicadas, Universidad de la Santísima Concepción, Avda Alonso de Ribera 2850, Chile
\(^4\) Dipartimento di Física, Politecnico di Torino, C.so Duca degli Abruzzi 24, 1-10129 Torino, Italy

E-mail: pasalgad@udec.cl

Received 6 February 2012, in final form 14 May 2012
Published 7 June 2012
Online at stacks.iop.org/JPhysA/45/255207

Abstract

We show that the so-called semi-simple extended Poincaré (SSEP) algebra in \(D\) dimensions can be obtained from the anti-de Sitter algebra \(so(D − 1, 2)\) by means of the \(S\)-expansion procedure with an appropriate semigroup \(S\). A general prescription is given for computing Casimir operators for \(S\)-expanded algebras, and the method is exemplified for the SSEP algebra. The \(S\)-expansion method also allows us to extract the corresponding invariant tensor for the SSEP algebra, which is a key ingredient in the construction of a generalized action for Chern–Simons gravity in \((2 + 1)\) dimensions.

PACS numbers: 02.20.Sv, 04.50.Kd

1. Introduction

In [1–4], the Poincaré algebra of rotations \(J_{ab}\) and translations \(P_a\) in \(D\)-dimensional spacetime have been extended by the inclusion of the second-rank tensor generator \(Z_{ab}\) in the following way:

\[
[J_{ab}, J_{cd}] = \eta_{ad}J_{bc} + \eta_{bc}J_{ad} - \eta_{ac}J_{bd} - \eta_{bd}J_{ac},
\]

\[
[J_{ab}, P_c] = \eta_{bc}P_a - \eta_{ac}P_b,
\]

\[
[P_a, P_b] = cZ_{ab},
\]

\[
[J_{ab}, Z_{cd}] = \eta_{ad}Z_{bc} + \eta_{bc}Z_{ad} - \eta_{ac}Z_{bd} - \eta_{bd}Z_{ac},
\]

\[
[Z_{ab}, P_c] = \frac{4a^2}{c}(\eta_{bc}P_a - \eta_{ac}P_b),
\]
\[[Z_{ab}, Z_{cd}] = \frac{4a^2}{c} [\eta_{bd}Z_{bc} + \eta_{bc}Z_{bd} - \eta_{ac}Z_{ad} - \eta_{ad}Z_{ac}], \]

(6)

where \(a\) and \(c\) are constants. It is remarkable that the Lie algebra (1)–(6) is semi-simple, in contrast to the Poincaré and extended Poincaré algebras (cf equations (1.1) and (1.2) of [3]). Note that in the \(a \to 0\) limit, the algebra (1)–(6) reduces to the algebra in equation (1.2) of [3]. The semi-simple extended Poincaré (SSEP) algebra (1)–(6) can be rewritten in the form

\[[N_{ab}, N_{cd}] = \eta_{bd} N_{bc} + \eta_{bc} N_{bd} - \eta_{ac} N_{ad} - \eta_{ad} N_{ac}, \]

(7)

\[[L_{AB}, L_{CD}] = \eta_{AD} N_{BC} + \eta_{BC} N_{AD} - \eta_{AC} N_{BD} - \eta_{BD} N_{AC}, \]

(8)

\[[N_{ab}, L_{cd}] = 0, \]

(9)

where the metric tensor \(\eta_{AB}\) is given by

\[\eta_{AB} = \begin{bmatrix} \eta_{ab} & 0 \\ 0 & -1 \end{bmatrix} \]

(10)

and the \(N_{ab}\) generators read

\[N_{ab} = J_{ab} - \frac{c}{4a^2} Z_{ab}. \]

(11)

The \(N_{ab}\) generators form a basis for the Lorentz algebra \(\mathfrak{so} (D - 1, 1)\). The \(L_{AB}\) generators, on the other hand, are given by

\[L_{AB} = \begin{bmatrix} L_{ab} & L_{a,D} \\ L_{D,a} & L_{D,D} \end{bmatrix} = \begin{bmatrix} \frac{c}{4a^2} Z_{ab} & \frac{1}{2a} P_a \\ -\frac{1}{2a} P_a & 0 \end{bmatrix} \]

(12)

and form a basis for the anti-de Sitter (AdS) \(\mathfrak{so} (D - 1, 2)\) algebra. The SSEP algebra (7)–(9) is thus seen to be the direct sum \(\mathfrak{so} (D - 1, 1) \oplus \mathfrak{so} (D - 1, 2)\) of the \(D\)-dimensional Lorentz algebra and the \(D\)-dimensional AdS algebra.

Using (11) and (12) in (7)–(9), we find that the SSEP algebra (1)–(6) can be written in the form

\[[N_{ab}, N_{cd}] = \eta_{bd} N_{bc} + \eta_{bc} N_{bd} - \eta_{ac} N_{ad} - \eta_{ad} N_{ac}, \]

(13)

\[[L_{ab}, L_{cd}] = \eta_{bd} L_{bc} + \eta_{bc} L_{bd} - \eta_{ac} L_{ad} - \eta_{ad} L_{ac}, \]

(14)

\[[L_{ab}, L_{c,D}] = \eta_{bc} L_{a,D} - \eta_{ac} L_{b,D}, \]

(15)

\[[L_{a,D}, L_{c,D}] = L_{ac}, \]

(16)

\[[N_{ab}, L_{cd}] = 0, \]

(17)

\[[N_{ab}, L_{c,D}] = 0. \]

(18)

It is the purpose of this paper to show that the SSEP algebra \(\mathfrak{so} (D - 1, 1) \oplus \mathfrak{so} (D - 1, 2)\) can be obtained from the AdS algebra \(\mathfrak{so} (D - 1, 2)\) via the \(S\)-expansion procedure with an appropriate semigroup \(S\) [6, 7]. The \(S\)-expansion method also allows us to compute an invariant tensor for SSEP algebra, which is a key ingredient in the construction of the more general action for Chern–Simons gravity in \((2 + 1)\) dimensions.
2. The \(S \)-expansion procedure

In this section we briefly review the general Abelian semigroup expansion procedure (\(S \)-expansion for short; for details, see [6]). Consider a Lie algebra \(\mathfrak{g} \) and a finite Abelian semigroup \(S = \{\lambda_\alpha\} \). According to theorem 3.1 from [6], the direct product \(S \times \mathfrak{g} \) is also a Lie algebra. Interestingly, there are cases when it is possible to systematically extract subalgebras from \(S \times \mathfrak{g} \). Start by decomposing \(\mathfrak{g} \) in a direct sum of subspaces, as in \(\mathfrak{g} = \bigoplus_{I \in \mathbb{I}} \mathfrak{g}_I \), where \(\mathbb{I} \) is a set of indices. The internal structure of \(\mathfrak{g} \) can be codified through the mapping \(i : I \times I \rightarrow 2^I \) according to \([\mathfrak{g}_I, \mathfrak{g}_J] \subseteq \bigoplus_{(p,q) \in \mathbb{I} \times \mathbb{I}} \mathfrak{g}_{Ipq} \). When the semigroup \(S \) can be decomposed in subsets \(S_p \), \(S = \bigcup_{p \in \mathbb{I}} S_p \), such that they satisfy the ‘resonant condition’ \(S_p \cdot S_q \subseteq \bigcap_{(p,q) \in \mathbb{I} \times \mathbb{I}} S_r \), then we have that \(\mathfrak{g}_R = \bigoplus_{p \in \mathbb{I}} S_p \times \mathfrak{g}_p \) is a ‘resonant subalgebra’ of \(S \times \mathfrak{g} \) (see theorem 4.2 from [6]).

An even smaller algebra can be obtained when there is a zero element in the semigroup, i.e. an element \(0_\alpha \in S \) such that, for all \(\lambda_\alpha \in S, 0_\alpha \lambda_\alpha = 0_\alpha \). When this is the case, the whole \(0_\alpha \times \mathfrak{g} \) sector can be removed from the resonant subalgebra by imposing \(0_\alpha \times \mathfrak{g} = 0 \). The remaining piece, to which we refer as the \(0_\alpha \)-reduced algebra, continues to be a Lie algebra (see \(0_\alpha \)-reduction and theorem 6.1 from [6]).

3. \(S \)-expansion of the AdS algebra

In this section, we sketch the steps to be undertaken in order to obtain the SSEP algebra, \(\mathfrak{so}(D-1,1) \oplus \mathfrak{so}(D-1,2) \), as an \(S \)-expansion of the AdS algebra \(\mathfrak{so}(D-1,2) \).

The first step consists of splitting the AdS algebra in subspaces, i.e. \(\mathfrak{g} = \mathfrak{so}(D-1,2) = \mathfrak{V}_0 \oplus \mathfrak{V}_1 \), where \(\mathfrak{V}_0 \) corresponds to the Lorentz subalgebra \(\mathfrak{so}(D-1,1) \), which is generated by \(J_{ab} \), and \(\mathfrak{V}_1 \) corresponds to the AdS ‘boosts’, generated by \(P_a \). The generators \(J_{ab} \) and \(P_a \) satisfy the following commutation relations:

\[
\begin{align*}
[\mathfrak{P}_a, \mathfrak{P}_b] &= \mathfrak{J}_{ab}, \\
[\mathfrak{J}_{ab}, \mathfrak{P}_c] &= \eta_{bc} \mathfrak{P}_a - \eta_{ca} \mathfrak{P}_b, \\
[\mathfrak{J}_{ab}, \mathfrak{J}_{cd}] &= \eta_{ad} \mathfrak{J}_{bc} + \eta_{bd} \mathfrak{J}_{ac} - \eta_{ac} \mathfrak{J}_{bd} - \eta_{bc} \mathfrak{J}_{ad}.
\end{align*}
\]

The subspace structure can be written as

\[
\begin{align*}
[\mathfrak{V}_1, \mathfrak{V}_1] &\subseteq \mathfrak{V}_0, \\
[\mathfrak{V}_0, \mathfrak{V}_1] &\subseteq \mathfrak{V}_1, \\
[\mathfrak{V}_0, \mathfrak{V}_0] &\subseteq \mathfrak{V}_0.
\end{align*}
\]

The second step consists of finding an Abelian semigroup \(S \) which can be partitioned in a ‘resonant’ way with respect to equations (22)–(24). We shall consider the expansion using two different semigroups.

3.1. Semigroup \(S_{33} \)

Let us consider first the semigroup \(S_{33} = \{\tilde{\lambda}_0, \tilde{\lambda}_1, \tilde{\lambda}_2, \tilde{\lambda}_3\} \) defined by the following multiplication table:

\[
\begin{array}{cccc}
\tilde{\lambda}_0 & \tilde{\lambda}_1 & \tilde{\lambda}_2 & \tilde{\lambda}_3 \\
\tilde{\lambda}_0 & \tilde{\lambda}_2 & \tilde{\lambda}_3 & \tilde{\lambda}_0 \\
\tilde{\lambda}_1 & \tilde{\lambda}_3 & \tilde{\lambda}_1 & \tilde{\lambda}_3 \\
\tilde{\lambda}_2 & \tilde{\lambda}_0 & \tilde{\lambda}_3 & \tilde{\lambda}_2 \\
\tilde{\lambda}_3 & \tilde{\lambda}_3 & \tilde{\lambda}_3 & \tilde{\lambda}_3.
\end{array}
\]
A straightforward but important observation is that for each \(\lambda_\alpha \in S \), we have that \(\tilde{\lambda}_3 \lambda_\alpha = \tilde{\lambda}_3 \), so that \(\tilde{\lambda}_3 \) is seen to play the role of a zero element inside \(S \).

Consider now the partition \(S = S_0 \cup S_1 \), with

\[
S_0 = \{ \tilde{\lambda}_1, \tilde{\lambda}_2, \tilde{\lambda}_3 \}.
\]

\[
S_1 = \{ \tilde{\lambda}_0, \tilde{\lambda}_3 \}.
\]

This partition is said to be resonant, since it satisfies (cf equations (22)–(24))

\[
S_0 \cdot S_0 \subset S_0,
\]

\[
S_0 \cdot S_1 \subset S_1,
\]

\[
S_1 \cdot S_1 \subset S_0.
\]

Theorem 4.2 from [6] now ensures that

\[
\mathfrak{g}_R = W_0 \oplus W_1
\]

is a resonant subalgebra of \(S_{\mathfrak{g}_3} \times g \), where

\[
W_0 = (S_0 \times V_0) = \{ \tilde{\lambda}_1, \tilde{\lambda}_2, \tilde{\lambda}_3 \} \otimes \{ J_{ab} \} = \{ \tilde{\lambda}_1 J_{ab}, \tilde{\lambda}_2 J_{ab}, \tilde{\lambda}_3 J_{ab} \},
\]

\[
W_1 = (S_1 \times V_1) = \{ \tilde{\lambda}_0, \tilde{\lambda}_3 \} \otimes \{ P_a \} = \{ \tilde{\lambda}_0 P_a, \tilde{\lambda}_3 P_a \}.
\]

As a last step, impose the condition \(\lambda_3 \times g = 0 \) on \(\mathfrak{g}_R \) and relabel its generators as \(J_{ab,1} = \tilde{\lambda}_1 J_{ab}; J_{ab,2} = \tilde{\lambda}_2 J_{ab}; \) and \(P_{a,0} = \lambda_0 P_a \). This procedure leads us to the following commutation relations:

\[
[J_{ab,1}, J_{cd,1}] = \tilde{\lambda}_1 \lambda_1 [J_{ab}, J_{cd}] = \tilde{\lambda}_1 [J_{ab}, J_{cd}]
= \eta_{bc} J_{cd,1} + \eta_{ac} J_{bd,1} - \eta_{ad} J_{bc,1}
\]

\[
[J_{ab,2}, J_{cd,2}] = \tilde{\lambda}_2 \lambda_2 [J_{ab}, J_{cd}] = \tilde{\lambda}_2 [J_{ab}, J_{cd}]
= \eta_{bc} J_{cd,2} + \eta_{ac} J_{bd,2} - \eta_{ad} J_{bc,2}
\]

\[
[J_{ab,1}, J_{cd,2}] = \tilde{\lambda}_1 \lambda_2 [J_{ab}, J_{cd}] = \tilde{\lambda}_3 [J_{ab}, J_{cd}] = 0
\]

\[
[J_{ab,1}, P_{a,0}] = \tilde{\lambda}_1 \lambda_0 [J_{ab}, P_a] = \tilde{\lambda}_3 [J_{ab}, P_a] = 0
\]

\[
[P_{a,0}, P_{b,0}] = \tilde{\lambda}_0 \lambda_0 [P_a, P_b] = \tilde{\lambda}_2 [P_a, P_b] = \tilde{\lambda}_3 J_{ab} = J_{ab,2},
\]

where we have used the commutation relations of the AdS algebra and the multiplication law (25) of the semigroup.

The identification \(N_{ab} = J_{ab,1}; L_{ab} = J_{ab,2}; L_{abD+1} = P_{a,0} \) shows that the algebra (34)–(39), obtained by \(S_{\mathfrak{g}_3} \)-expansion and \(O_2 \)-reduction of the AdS algebra \(SO(D - 1, 2) \), coincides with the SSEP algebra (13)–(18) obtained by semi-simple extension of the Poincaré algebra in [1–3].
3.2. Semigroup S_{22}

Let us now consider the semigroup $S_{22} = \{\lambda_0, \lambda_1, \lambda_2\}$ defined by the multiplication law

$$\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha + \beta} & \text{if } \alpha + \beta \leq 2 \\
\lambda_{\alpha + \beta - 2} & \text{if } \alpha + \beta > 2
\end{cases} \quad (40)$$

or, equivalently, by the multiplication table

\[
\begin{array}{c|ccc}
\lambda_0 & \lambda_0 & \lambda_1 & \lambda_2 \\
\lambda_0 & \lambda_0 & \lambda_1 & \lambda_2 \\
\lambda_1 & \lambda_1 & \lambda_2 & \lambda_1 \\
\lambda_2 & \lambda_2 & \lambda_1 & \lambda_2
\end{array}
\]

(41)

Take now the partition $S = S_0 \cup S_1$, with

$$S_0 = \{\lambda_0, \lambda_2\}, \quad (42)$$

$$S_1 = \{\lambda_1\}. \quad (43)$$

This partition is said to be resonant, since it satisfies (cf equations (22)–(24))

$$S_0 \cdot S_0 \subseteq S_0, \quad (44)$$

$$S_0 \cdot S_1 \subseteq S_1, \quad (45)$$

$$S_1 \cdot S_1 \subseteq S_0. \quad (46)$$

Theorem 4.2 from [6] now ensures that

$$\mathfrak{g}_R = W_0 \oplus W_1 \quad (47)$$

is a resonant subalgebra of $S_{22} \times \mathfrak{g}$, where

$$W_0 = (S_0 \times V_0) = \{\lambda_0, \lambda_2\} \otimes \{\tilde{I}_{ab}\} = \{\lambda_0 \tilde{I}_{ab}, \lambda_2 \tilde{I}_{ab}\}, \quad (48)$$

$$W_1 = (S_1 \times V_1) = \{\lambda_1\} \otimes \{\tilde{P}_a\} = \{\lambda_1 \tilde{P}_a\}. \quad (49)$$

Relabeling the generators of the resonant subalgebra as $\tilde{J}_{ab,0} = \lambda_0 \tilde{I}_{ab}$; $\tilde{J}_{ab,2} = \lambda_2 \tilde{I}_{ab}$; and $\tilde{P}_{a,1} = \lambda_1 \tilde{P}_a$, we are left with the following commutation relations:

$$[\tilde{J}_{ab,0}, \tilde{J}_{cd,0}] = \lambda_0 [\tilde{J}_{ab,0}, \tilde{J}_{cd,0}] = \lambda_0 [\tilde{I}_{ab,0}, \tilde{I}_{cd,0}] = \eta_{ab} \tilde{I}_{bc,0} + \eta_{bc} \tilde{I}_{ab,0} - \eta_{ac} \tilde{I}_{bd,0} - \eta_{bd} \tilde{I}_{ac,0} \quad (50)$$

$$[\tilde{J}_{ab,2}, \tilde{J}_{cd,2}] = \lambda_2 [\tilde{J}_{ab,2}, \tilde{J}_{cd,2}] = \lambda_2 [\tilde{I}_{ab,2}, \tilde{I}_{cd,2}] = \eta_{ad} \tilde{I}_{bc,2} + \eta_{bc} \tilde{I}_{ad,2} - \eta_{ac} \tilde{I}_{bd,2} - \eta_{bd} \tilde{I}_{ac,2} \quad (51)$$

$$[\tilde{J}_{ab,0}, \tilde{J}_{cd,2}] = \lambda_0 \lambda_2 [\tilde{J}_{ab,0}, \tilde{J}_{cd,2}] = \lambda_2 [\tilde{I}_{ab,0}, \tilde{I}_{cd,2}] = \eta_{ad} \tilde{I}_{bc,2} + \eta_{bc} \tilde{I}_{ad,2} - \eta_{ac} \tilde{I}_{bd,2} - \eta_{bd} \tilde{I}_{ac,2} \quad (52)$$

$$[\tilde{J}_{ab,0}, \tilde{P}_{c,1}] = \lambda_0 \lambda_1 [\tilde{J}_{ab,0}, \tilde{P}_{c,1}] = \lambda_1 [\tilde{J}_{ab,0}, \tilde{P}_{c,1}] = \eta_{bc} \tilde{P}_{a,1} - \eta_{ac} \tilde{P}_{b,1} \quad (53)$$

$$[\tilde{J}_{ab,2}, \tilde{P}_{c,1}] = \lambda_2 \lambda_1 [\tilde{J}_{ab,2}, \tilde{P}_{c,1}] = \lambda_1 [\tilde{J}_{ab,2}, \tilde{P}_{c,1}] = \eta_{bc} \tilde{P}_{a,1} - \eta_{ac} \tilde{P}_{b,1} \quad (54)$$

$$[\tilde{P}_{a,1}, \tilde{P}_{b,1}] = \lambda_1 \lambda_1 [\tilde{P}_{a,1}, \tilde{P}_{b,1}] = \lambda_2 [\tilde{P}_{a,1}, \tilde{P}_{b,1}] = \lambda_2 \tilde{I}_{ab} = \tilde{J}_{ab,2}. \quad (55)$$
where we have used the commutation relations of the AdS algebra and the multiplication law (40) of the semigroup S_{S^2}.

The identification $\tilde{J}_{ab} = \tilde{J}_{ab,0}$; $\tilde{Z}_{ab} = \tilde{J}_{ab,2}$; and $\tilde{P}_a = \tilde{P}_{a,1}$ lead to the following algebra:

$$\{ \tilde{J}_{ab}, \tilde{J}_{cd} \} = \eta_{ad} \tilde{J}_{bc} + \eta_{bc} \tilde{J}_{ad} - \eta_{ac} \tilde{J}_{bd} - \eta_{bd} \tilde{J}_{ac},$$
(56)

$$\{ \tilde{J}_{ab}, \tilde{P}_c \} = \eta_{bc} \tilde{P}_a - \eta_{ac} \tilde{P}_b,$$
(57)

$$\{ \tilde{P}_a, \tilde{P}_b \} = \tilde{Z}_{ab},$$
(58)

$$\{ \tilde{J}_{ab}, \tilde{Z}_{cd} \} = \eta_{ad} \tilde{Z}_{bc} + \eta_{bc} \tilde{Z}_{ad} - \eta_{ac} \tilde{Z}_{bd} - \eta_{bd} \tilde{Z}_{ac},$$
(59)

$$\{ \tilde{Z}_{ab}, \tilde{P}_c \} = \eta_{bc} \tilde{P}_a - \eta_{ac} \tilde{P}_b,$$
(60)

$$\{ \tilde{Z}_{ab}, \tilde{Z}_{cd} \} = \eta_{ad} \tilde{Z}_{bc} + \eta_{bc} \tilde{Z}_{ad} - \eta_{ac} \tilde{Z}_{bd} - \eta_{bd} \tilde{Z}_{ac},$$
(61)

which matches the SSEP algebra (1)–(6) obtained in [1–4] up to (inessential) numerical factors.

3.3. Relationship between multiplication tables of semigroups S_{S^3} and S_{S^2}

In section 3.1, the SSEP algebra (13)–(18) was obtained through an S-expansion using the semigroup S_{S^3}, whose multiplication table given in equation (25) was constructed by following the procedure given in [5]. The process also involves imposing the condition known as 0_S-reduction [6].

In section 3.2, the SSEP algebra (1)–(6) was obtained (up to inessential numerical factors) through an S-expansion using the semigroup S_{S^2}, whose multiplication table is given in (41). In stark contrast with the previous case, the procedure does not involve imposing 0-reduction.

This curious state of affairs can be clarified by promoting the semigroup S_{S^2} to a ring (here we do not require that the elements of the ring form a group under multiplication, but rather only a semigroup) and setting

$$\lambda_1 = \lambda_0 - \lambda_2$$

$$\lambda_2 = \lambda_2$$

$$\lambda_0 = \lambda_1.$$
(62)

This amounts to a change of basis in S_{S^2} and leads to the following multiplication table:

$\tilde{\lambda}_0$	$\tilde{\lambda}_1$	$\tilde{\lambda}_2$
λ_0	$\tilde{\lambda}_2$	λ_0
λ_1	$\tilde{\lambda}_1$	λ_1
λ_2	$\tilde{\lambda}_0$	λ_2

This multiplication table exactly matches the multiplication table of the S_{S^3} semigroup (see equation (25)) except for the rows and columns involving λ_3. In place of λ_3, the symbol ‘0’ in (63) now stands for the additive zero of the S_{S^2} ring.

The generators N_{ab} and L_{AB} can be recovered by setting

$$N_{ab} = \tilde{\lambda}_1 \tilde{J}_{ab} = (\lambda_0 - \lambda_2) \tilde{J}_{ab}$$
(64)

$$L_{ab} = \tilde{\lambda}_2 \tilde{J}_{ab} = \lambda_2 \tilde{J}_{ab}$$
(65)

$$L_{aD} = \tilde{\lambda}_0 \tilde{P}_a = \lambda_1 \tilde{P}_a$$
(66)

without invoking 0_S-reduction. The advantage of not using 0_S-reduction is that it facilitates the construction of Casimir operators, as discussed in section 4.
4. Casimir operators for S-expanded Lie algebras

In this section we consider the construction of Casimir operators for S-expanded Lie algebras. We then compute the Casimir operators for the SSEP algebra obtained by Soroka et al in [1–4].

4.1. Construction of Casimir operators for S-expanded Lie algebras

Let g be a Lie algebra and let $\{T_A, A = 1, \ldots, \dim g\}$ be the generators of g. A Casimir operator C_m of degree m can be written as

$$ C_m = C^{A_1 \ldots A_m} T_{A_1} \ldots T_{A_m} \tag{67} $$

which, by definition, satisfies the condition that $\forall T_{A_0} \in g$,

$$ [T_{A_0}, C_m] = 0. \tag{68} $$

where the coefficient $C^{A_1 \ldots A_m}$ forms a symmetric invariant tensor for the corresponding Lie group. This means that the operators C_m ($m = 2, 3, \ldots$) are invariants of the enveloping algebra. From (67) and (68), we have

$$ [T_{A_0}, C_m] = \left(\sum_{p=1}^{m} s_{A_B}^{(A_1 \ldots A_p-1)B} A_p A_0 C_B^{A_1 \ldots A_m} \right) T_{A_1} \ldots T_{A_m} \tag{69} $$

where f_{AB}^C are the structure constants of g. Therefore, the ‘Casimir condition’ (68) is seen to be equivalent to

$$ \sum_{p=1}^{m} s_{A_B}^{(A_1 \ldots A_p-1)B} A_p A_0 C_B^{A_1 \ldots A_m} = 0. \tag{70} $$

For the standard, quadratic (i.e. $m = 2$) Casimir operator, equation (70) reads

$$ f_{AB} A_1 C_B^{A_1 A_2} + f_{AB} A_2 C_B^{A_2 A_1} = 0. \tag{71} $$

The structure constants of an S-expanded Lie algebra are given by

$$ f_{(A, \alpha)(B, \beta)}^{(C, \gamma)} = K_{\alpha \gamma}^\beta f_{AB}^C, \tag{72} $$

where $K_{\alpha \gamma}^\beta$ stands for the ‘2-selector’ of the semigroup S [6]. The (quadratic) Casimir condition for an S-expanded Lie algebra thus reads

$$ K_{\alpha \gamma}^\beta f_{AB}^{(A_1 \ldots A_2)(B_1 \ldots B_2)} + K_{\alpha \gamma}^\beta f_{AB}^{(A_2 \ldots A_1)(B_1 \ldots B_2)} = 0. \tag{73} $$

Consider now the following ansatz for the components of the (quadratic) Casimir operator of an S-expanded algebra

$$ C^{(A_1, \alpha_1)(B, \beta)} = m^{AB} C^{AB}, \tag{74} $$

where C^{AB} are the components of the (quadratic) Casimir operator for the original algebra g and m^{AB} are the components of a symmetric tensor, associated with the semigroup S, which must be determined.

Introducing (72) in (73), we obtain

$$ K_{\alpha \gamma}^\beta f_{AB}^{(A_1 \ldots A_2)B_2} + K_{\alpha \gamma}^\beta f_{AB}^{(A_2 \ldots A_1)B_2} = 0. \tag{75} $$

Equation (75) is satisfied if the following condition holds:

$$ K_{\alpha \gamma}^\beta f_{AB}^{(A_1 \ldots A_2)} = K_{\alpha \gamma}^\beta f_{AB}^{(A_2 \ldots A_1)}. \tag{76} $$
To check this, let us plug equation (76) into equation (75) to find
\[K_{\alpha_1\alpha_0\beta} \alpha_2 f_{\alpha_2\beta} A_1 C^{\alpha_1} + K_{\alpha_0\beta} \alpha_2 m^{\alpha_1\beta} f_{\alpha_2\beta} A_2 C^{\alpha_0} + f_{\alpha_2\beta} A_2 C^{\alpha_0} = 0, \]
where the expression in parentheses vanishes because \(C^{\alpha_1\beta} \) are the components of the (quadratic) Casimir operator for the original algebra \(g \) (cf equation (72)).

The following theorem provides us with a way of finding a tensor \(m^{\alpha\beta} \) with the required properties.

Theorem. Let \(K_{\alpha\beta} \) be the 2-selector for an Abelian semigroup \(S \), and define
\[m_{\alpha\beta} = \alpha_y K_{\alpha\beta}^y, \]
where \(\alpha_y \) are numerical coefficients. If \(\alpha_y \) are chosen in such a way that \(m_{\alpha\beta} \) is an invertible ‘metric’, then its inverse \(m_{\alpha\beta} \), (which, by definition, satisfies \(m^{\alpha\lambda} m_{\lambda\beta} = \delta_{\alpha\beta} \)) fulfils equation (76).

Proof. From the associativity and commutativity of the inner binary operation (multiplication) of the semigroup \(S \), we have
\[(\lambda_{\alpha\lambda\beta} \lambda_{\mu})_{\nu} = (\lambda_{\alpha\lambda\beta} \lambda_{\mu})_{\nu}. \]
In terms of the 2-selectors \(K_{\alpha\beta} \), equation (79) may be cast as
\[K_{\alpha_1\lambda} \alpha_1 \lambda = m_{\alpha_1\lambda} K_{\lambda\mu} \lambda. \]
Multiplying (80) by \(\alpha_\lambda \), we find
\[K_{\alpha_1\lambda} \alpha_1 \lambda = m_{\alpha_1\lambda} K_{\lambda\mu} \lambda, \]
so that
\[m_{\alpha_1\lambda} = K_{\alpha_1\lambda} K_{\lambda\mu} \lambda. \]

This means that if \(C = C^{\alpha\beta} T_{\alpha} T_{\beta} \) is the (quadratic) Casimir operator for the original algebra \(g \), then
\[C = m^{\alpha\beta} C^{\alpha\beta} T_{\alpha} T_{\beta}, \]
is the (quadratic) Casimir operator for the \(S \)-expanded Lie algebra.

4.2. Casimir operators for AdS algebra

In this section we apply the general procedure developed in section 5 to the case of the SSEP algebra.

Using the representation given by the Dirac matrices for the AdS algebra,
\[P_a = \frac{1}{2} \Gamma_a, \]
\[J_{ab} = \frac{1}{2} \Gamma_{ab}, \]
we have that the Killing metric k_{AB} for the AdS algebra can be written as
\[k_{AB} = \frac{1}{\text{Tr}T} \left(T_A T_B \right) \]
which for $d \geq 4$ is given by
\[k_{a,b} = \frac{1}{4} \eta_{ab} \]
\[k_{ab,cd} = -\frac{1}{2} \eta_{[ab][cd]} \]
\[k_{ab,c} = 0. \]
where
\[\eta_{[ab][cd]} = \delta_{mn} \eta_{mc} \eta_{nd}. \]
For an arbitrary algebra, the quadratic Casimir operator is given by
\[C = k^{AB} T_A T_B, \]
where k^{AB} stands for the inverse of the Killing metric k_{AB}.

For the AdS algebra, we have
\[k_{a,b} = 4 \eta^{ab} \]
\[k_{ab,c} = 0 \]
\[k_{ab,cd} = -\eta^{[ab][cd]} \]
so that
\[C_{\text{AdS}} = 4 \left[P^a P_a - \frac{1}{2} J_{ab} J^{ab} \right]. \]
This result is valid for any dimension $d \geq 4$.

There is another Killing ‘metric’ that can be constructed only in $d = 4$. This is given by
\[\tilde{k}_{(A,B)} = \frac{1}{\text{Tr}T} \text{Tr} \left(\Gamma^a T_A T_B \right), \]
where Γ^a is the usual γ_5 matrix. A direct calculation shows that
\[\tilde{k}_{a,b} = 0 \]
\[\tilde{k}_{ab,cd} = -\frac{1}{2} \epsilon_{abcd} \]
\[\tilde{k}_{ab,c} = 0. \]
This ‘metric’, however, is not invertible, so that we cannot construct a Casimir operator for the AdS algebra from it. On second thought, it is possible to use this ‘metric’ to construct a Casimir operator for the Lorentz subalgebra, because, when so restricted, the metric turns out to be invertible. We find
\[\tilde{k}^{(ab,cd)} = -\epsilon^{abcd}. \]
This means that a (quadratic) Casimir operator for the Lorentz group is given by
\[\tilde{C}_L = -\epsilon^{abcd} J_{ab} J_{cd}. \]
5. Casimir operators for the SSEP algebra

We consider the construction of the metric m_{ab} corresponding to the semigroup S_{S2}, whose multiplication law is given in equations (40) and (41). The semigroup S_{S2} is interesting because although it is not a group, it is cyclic (i.e. similar to \mathbb{Z}_3). The elements of the semigroup can be represented by the following set of matrices:

$$
\begin{align*}
\lambda_0 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \lambda_1 &= \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & \lambda_2 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.
\end{align*}
$$

(103)

It is straightforward to verify that the representation (103) faithfully satisfies equations (40) and (41). The 2-selectors K_{ab}^{ρ} of S_{S2} can be represented as (cf equations (1) and (2) from [5])

$$
K_{ab}^{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad K_{ab}^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad K_{ab}^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.
$$

(104)

This, in turn, implies that a generic metric m_{ab} for S_{S2} reads

$$
m_{ab} = \alpha_2 K_{ab}^\lambda
$$

(105)

where α_2 are numerical coefficients. The inverse metric is given by

$$
m^{\rho\sigma} = \frac{1}{\det(m_{ab})} \begin{pmatrix}
\alpha_2^2 - \alpha_1^2 & 0 & - (\alpha_2^2 - \alpha_1^2) \\
0 & \alpha_2 (\alpha_0 - \alpha_2) - \alpha_1 (\alpha_0 - \alpha_2) \\
- (\alpha_2^2 - \alpha_1^2) & -\alpha_1 (\alpha_0 - \alpha_2) & \alpha_0 \alpha_2 - \alpha_1^2
\end{pmatrix},
$$

(106)

where α_0, α_1 and α_2 must be chosen so that

$$
\det(m_{ab}) = (\alpha_0 - \alpha_2) (\alpha_2 + \alpha_1) (\alpha_2 - \alpha_1) \neq 0.
$$

(107)

The quadratic Casimir operators for the SSEP algebra have the form

$$
C = C^{(a,A)(b,B)} T_{(a,A)} T_{(b,B)} - m^{ab} C^{ab} T_{(a,A)} T_{(b,B)}
$$

$$
= m^{ab} C^{ab} T_{(a,A)} T_{(b,B)}
$$

$$
= m^{00} C^{ab,cd} J_{ab} J_{cd} + m^{11} C^{ab} P_a P_b + 2 m^{02} C^{ab,cd} J_{ab} Z_{cd} + m^{22} C^{ab,cd} Z_{ab} Z_{cd},
$$

$$
= \frac{1}{\det(m_{ab})} \left[(\alpha_2^2 - \alpha_1^2) C^{ab,cd} J_{ab} J_{cd} + \alpha_2 (\alpha_0 - \alpha_2) C^{ab} P_a P_b
$$

$$
- 2 (\alpha_2^2 - \alpha_1^2) C^{ab,cd} J_{ab} Z_{cd} + (\alpha_0 \alpha_2 - \alpha_1^2) C^{ab,cd} Z_{ab} Z_{cd} \right],
$$

(108)

where C^{ab} are the components of the Casimir operator for the AdS algebra. The m^{12} term is absent from the sum because the corresponding components of the Casimir operator for the AdS algebra in $d \geq 4$ vanish, $C^{ab,c} = C^{a,bc} = 0$ (see equation (94)).

Plugging equations (93)–(95) into equation (108), we find

$$
C = \frac{4}{\det(m_{ab})} \left[\frac{1}{2} (\alpha_2^2 - \alpha_1^2) J_{ab} J^{ab} + \alpha_2 (\alpha_0 - \alpha_2) P_a P^a
$$

$$
- (\alpha_2^2 - \alpha_1^2) J_{ab} Z^{ab} + \frac{1}{2} (\alpha_0 \alpha_2 - \alpha_1^2) Z_{ab} Z^{ab} \right].
$$

(109)

Defining

$$
\alpha = \alpha_2 \alpha_0 - \alpha_2^2; \quad \beta = \alpha_2 \alpha_0 - \alpha_1^2,
$$

(110)
equation (109) can be cast in the form
\[
C = \frac{4}{\det(m_{\alpha \beta})} \left[\frac{1}{2} (\beta - \alpha) J_{ab} J^{ab} + \alpha P_a P^a - (\beta - \alpha) J_{ab} Z^{ab} + \frac{1}{2} \beta Z_{ab} Z^{ab} \right].
\]
(111)

Since \(\alpha \) and \(\beta \) are arbitrary, subject only to the condition \(\det(m_{\alpha \beta}) \neq 0 \), we can conclude that equation (111) shows that the SSEP algebra possesses two independent Casimir operators, namely
\[
C_1 = \frac{4\alpha}{\det(m_{\alpha \beta})} \left(P_a P^a + J_{ab} Z^{ab} - \frac{1}{2} J_{ab} J^{ab} \right),
\]
(112)
\[
C_2 = \frac{2\beta}{\det(m_{\alpha \beta})} (Z_{ab} Z^{ab} - 2J_{ab} Z^{ab} + J_{ab} J^{ab}).
\]
(113)

There exists a third Casimir operator, but it is valid only for the subspace spanned by \(J_{ab} \) and \(Z_{ab} \), and not for the full SSEP algebra. This Casimir operator is constructed from \(\bar{C}_{IJZ} \) (cf equation (101)), and is given by
\[
\bar{C}_{IJZ} = -\frac{1}{\det(m_{\alpha \beta})} \left[(\alpha_2 - \alpha_1) e^{abcd} J_{ab} J_{cd} - 2(\alpha_2 - \alpha_1) e^{abcd} J_{ab} Z_{cd} \right.
\]
\[
+ \left(\alpha_0 \alpha_2 - \alpha_1^2 \right) e^{abcd} Z_{ab} Z_{cd} \right] = -\frac{1}{\det(m_{\alpha \beta})} \left[(\alpha_2 - \alpha_1) e^{abcd} Z_{ab} Z_{cd} - 2(\beta - \alpha) e^{abcd} J_{ab} Z_{cd} + (\beta - \alpha) e^{abcd} J_{ab} J_{cd} \right].
\]
(114)

The Casimir operators of the SSEP algebra obtained in [1–4] are apparently different from the ones shown in equations (112) and (113). The mismatch, however, is only superficial. Indeed, if we make \(c = 1 \) and \(a = i/2 \) in equations (2.2) and (2.3) of [3], we readily obtain the operators \(C_1 \) and \(\bar{C}_{IJZ} \) shown in equations (112) and (113).

Performing the same rescaling and choosing \(\alpha = 1 \) y \(\beta = 2 \) in \(\bar{C}_{IJZ} \), we can verify that the Casimir operator \(C_1 \) of [3] exactly matches our \(\bar{C}_{IJZ} \) Casimir operator.

6. A generalized action for Chern–Simons gravity in (2 + 1) dimensions

In this section we find a rank-2, symmetric invariant tensor for the SSEP algebra and use it to build the more general action for Chern–Simons gravity in (2 + 1) dimensions.

6.1. The invariant tensor

It is easy to see that the most general symmetric invariant tensor of rank 2 for the AdS algebra in three-dimensional spacetime is given by (see, e.g., [6])
\[
\langle J_{ab} J_{cd} \rangle = \tilde{\mu}_0 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd})
\]
(115)
\[
\langle J_{ab} P_c \rangle = \tilde{\mu}_1 \epsilon_{abc}
\]
(116)
\[
\langle P_a P_b \rangle = \tilde{\mu}_0 \eta_{ab},
\]
(117)
where \(\tilde{\mu}_0 \) and \(\tilde{\mu}_1 \) are arbitrary constants. Theorem 7.2 from [6] ensures us that the only nonzero components of the corresponding symmetric invariant tensor for the SSEP algebra are:
\[
\langle N_{ab} N_{cd} \rangle = \alpha_0 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd})
\]
(118)
\[
\langle L_{ab} L_{cd} \rangle = \alpha_2 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) \\
\langle L_{ab} L_{c3} \rangle = \alpha_1 \epsilon_{abc} \\
\langle L_{a3} L_{b3} \rangle = \alpha_2 \eta_{ab},
\]
where \(\alpha_0, \alpha_1 \) and \(\alpha_2 \) are arbitrary constants.

6.2. Chern–Simons action for the SSEP algebra in \((2 + 1)\) dimensions

A generic Chern–Simons Lagrangian in \((2 + 1)\)-dimensional spacetime reads [8, 9]

\[
L_{\text{CS}}^{2+1} = 2k \int_0^1 dt \langle A(tdA + r^2 A^2) \rangle = k \left(A \left(dA + \frac{2}{3} A^3 \right) \right),
\]

where \(A \) is a Lie algebra-valued 1-form gauge connection and \(k \) is an arbitrary coupling constant. For the SSEP algebra, we may write

\[
A = \frac{1}{2} \sigma^{ab} N_{ab} + \frac{1}{2} \omega^{ab} L_{ab} + \omega^{a3} L_{a3}.
\]

For the sake of convenience, let us define the SSEP-valued 1-form gauge fields \(\sigma = \frac{1}{2} \sigma^{ab} N_{ab}, \omega = \frac{1}{2} \omega^{ab} L_{ab}, \varphi = \omega^{a3} L_{a3} \). In terms of these, \(A \) takes on the simple form

\[
A = \sigma + \omega + \varphi.
\]

A straightforward calculation shows that the Chern–Simons Lagrangian for the SSEP algebra in three-dimensional spacetime may be written as

\[
L_{\text{SSEP}}^{(2+1)} = k \left[A(dA + \frac{2}{3} A^2) \right] = k \left[\sigma d\sigma + \sigma d\omega + \sigma d\varphi + \frac{1}{2} \sigma [\sigma, \sigma] \right]
+ k \left[\sigma d\omega + \sigma d\varphi + \sigma d\varphi + \frac{1}{2} \omega [\omega, \varphi] + \frac{1}{3} \omega [\varphi, \varphi] \right]
+ k \left[\omega d\sigma + \varphi d\omega + \varphi d\varphi + \frac{1}{2} \varphi [\omega, \varphi] + \frac{1}{3} \varphi [\varphi, \varphi] \right].
\]

The SSEP 2-form curvature reads

\[
F = dA + AA
= d\sigma + d\omega + d\varphi + \sigma \sigma + \omega \omega + \varphi \varphi + [\omega, \varphi]
\]

so that it proves convenient to define the following partial curvatures:

\[
\tilde{K} = d\sigma + \sigma \sigma = d\sigma + \frac{1}{4} [\sigma, \sigma]
\]

\[
R = d\omega + \omega \omega = d\omega + \frac{1}{4} [\omega, \omega]
\]

\[
\tilde{T} = d\varphi + \varphi \varphi + [\omega, \varphi] = T + \frac{1}{3} \varphi, \varphi.
\]

where \(T = d\varphi + [\omega, \varphi] \).

From the definition of the covariant derivative

\[
D\phi = d\phi + [A, \phi] = d\phi + [\sigma, \phi] + [\omega, \phi] + [\varphi, \phi],
\]

we can write

\[
D\sigma = d\sigma + [\sigma, \sigma]
\]

\[
D\omega = d\omega + [\omega, \omega] + [\omega, \varphi]
\]

\[
D\varphi = d\varphi + [\omega, \varphi] + [\varphi, \varphi] = T + \varphi, \varphi.
\]
Inserting equations (127) and (129) in (125), we have

\begin{equation}
L_{\text{SSEP}}^{(2+1)} = k \left[A \left(dA + \frac{2}{3} A^2 \right) \right] \quad (130)
\end{equation}

\begin{align*}
&= \frac{k}{4} \sigma^{ab} \left(d\sigma^{cd} + \frac{2}{3} \sigma^{c} \sigma^{ed} \right) \langle N_{ab} N_{cd} \rangle + \frac{k}{4} \omega^{ab} \left(d\omega^{cd} + \frac{2}{3} \omega^{c} \omega^{ed} \right) \langle L_{ab} L_{cd} \rangle \\
&+ k \left(R^{ab} \omega^c - \frac{2}{3} \omega^a \omega^b \omega^c \right) \langle L_{ab} L_{c3} \rangle + kD\omega^{a} \omega^{c} \langle L_{a3} L_{c3} \rangle \\
&- d \left(\frac{k}{2} \omega^{ab} \omega^c \langle L_{ab} L_{c3} \rangle \right). \\
&\quad (131)
\end{align*}

Introducing the invariant tensor (115)–(121) in equation (130), we find that the Chern–Simons action for the SSEP algebra, in the \{N_{ab}, L_{CD}\} basis, is given by

\begin{align*}
S_{\text{SSEP}}^{(2+1)} &= \int \frac{1}{M} \alpha_0 \sigma^{a} \left(d\sigma^{c} + \frac{2}{3} \sigma^{c} \sigma^{d} \right) + \alpha_1 \epsilon_{abc} \left(R^{ab} \omega^c + \frac{1}{3} \omega^a \omega^b \omega^c \right) \\
&+ \alpha_2 D\omega^a \omega^c + \frac{1}{2} \alpha_2 \omega^a \left(d\omega^c + \frac{2}{3} \omega^c \omega^d \right) - d \left(\alpha_1 \frac{1}{2} \epsilon_{abc} \omega^{ab} \omega^c \right),
\end{align*}

where we have absorbed \(k \) in \(\alpha \) constants.

Relabeling \(\omega^a \) \(= e^a/l \), where \(l \) is a length, we may write

\begin{align*}
S_{\text{SSEP}}^{(2+1)} &= \frac{\alpha_0}{2} \int \sigma^a \left(d\sigma^c + \frac{2}{3} \sigma^c \sigma^d \right) \\
&+ \frac{\alpha_1}{l} \left[\int \epsilon_{abc} \left(R^{ab} \omega^c + \frac{1}{3} \omega^a \omega^b \omega^c \right) - \frac{1}{2} \int \epsilon_{abc} \omega^{ab} \omega^c \right] \\
&+ \frac{\alpha_2}{2} \int \epsilon^a \left(d\omega^c + \frac{2}{3} \omega^c \omega^d \right) + \frac{2}{l^2} \epsilon^a T^a, \\
&\quad (132)
\end{align*}

where we have used \(D\omega^a = (D e^a)/l = T^a/l \). The action (132) is probably the most general action for Chern–Simons gravity in \((2 + 1)\) dimensions.

7. Comments

We have shown that: (i) the SSEP algebra \(so(D - 1, 1) \oplus so(D - 1, 2) \) of [1–4] can be obtained from the AdS algebra \(so(D - 1, 2) \) via the S-expansion procedure [6, 6] with an appropriate semigroup \(S \); (ii) there exists a prescribed method for computing Casimir operator for \(S \)-expanded algebras, which is exemplified through the SSEP algebra; and (iii) the above-mentioned \(S \)-expansion methods allowed us to obtain an invariant tensor for the SSEP algebra, which in turn permits the construction of the more general action for Chern–Simons gravity in \((2 + 1)\) dimensions.

The interesting facts here are that the resultant theory goes beyond the sum of the corresponding Chern–Simons forms associated with the direct sum of \(so(D - 1, 1) \oplus so(D - 1, 2) \) of the Lorentz and the AdS Lie algebras.

The action (132) includes among its terms: (i) a term corresponding to the so-called exotic Lagrangian for the connection \(\sigma \), which is invariant under the Lorentz algebra [10]; and (ii) the topologically Mielke–Baekler action for three-dimensional gravity (for details, see [11]).
Acknowledgments

PS was supported in part by Dirección de Investigación, Universidad de Concepción through Grant 212.011.056-1.0. Three of the authors (OF, NM and OV) were supported by grants from the Comisión Nacional de Investigación Científica y Tecnológica CONICYT and from Universidad de Concepción, Chile. JD was supported in part by Universidad Arturo Prat. FI and ER were supported in part by Fondecyt through grants 11080200 and 11080156, respectively.

References

[1] Soroka D V and Soroka V A 2005 Phys. Lett. B 607 302 (arXiv:hep-th/0410012)
[2] Duplij S A, Soroka D V and Soroka V A 2005 Nucl. Part. Fields 27 12
[3] Soroka D V and Soroka V A 2009 Adv. High Energy Phys. 2009 234147 (arXiv:hep-th/0605251)
[4] Soroka D V and Soroka V A 2010 arXiv:hep-th/1004.3194v2
[5] Caroca R, Kondrashuk I, Merino N and Nadal F 2011 Bianchi spaces and their 3-dimensional isometries as S-expansions of 2-dimensional isometries Semigroup Forum submitted (arXiv:1104.3541 [math-ph])
[6] Izaurieta F, Rodriguez E and Salgado P 2006 J. Math. Phys. 47 123512 (arXiv:hep-th/0606215)
[7] Izaurieta F, Perez A, Rodriguez E and Salgado P 2009 J. Math. Phys. 50 073511
[8] Chamseddine A H 1989 Phys. Lett. B 233 291
[9] Chamseddine A H 1990 Nucl. Phys. B 346 213
[10] Zanelli J 2008 Lectures on Chern–Simons (super)gravities 2nd edn arXiv:hep-th/0502193
[11] Mielke E W and Baekler P 1991 Phys. Lett. A 156 399