A Virulent Strain of *Salmonella enterica* Serovar London Isolated in Infants with Enteritis Traced by Active Surveillance and Molecular Epidemiological Study*

A total of 74 isolates of *Salmonella enterica* serovar London were collected through the Laboratory-Based Diarrheal Diseases Surveillance in 2000-2001. In order to characterize the isolates and investigate the source of the epidemic, we performed antimicrobial susceptibility tests and *Xba* I Pulsed-field gel electrophoresis (PFGE) of 44 *Salmonella* London isolates. Forty isolates were from feces of infants and four isolates were from adults aged 30, 52, 54, and 59 yr. Two subtypes were identified: a tetracycline-susceptible A 0 PFGE pattern and a tetracycline-resistant A 1 PFGE pattern. Interestingly, the isolates from all infants and one 30-yr-old adult were A 0 PFGE pattern and tetracycline-susceptible. Furthermore, the A 0 PFGE pattern strain was approximately 2 times more virulent than the A 1 PFGE pattern strain, according to the results of in vitro invasion assay using J774A.1 macrophage-like cells. These results indicate that the active surveillance with molecular epidemiological tools would be valuable for promptly finding new epidemic strains. Our results also suggested that the virulent *Salmonella* London strain might infect the infants through a common contaminated source.

Key Words: *Salmonella enterica*; *Salmonellosis*; Infants; Epidemiology; Sentinel Surveillance; Electrophoresis, gel, Pulsed-Field; Biological Assay

INTRODUCTION

Salmonella enterica serovar London (*Salmonella* London hereafter) belongs to *Salmonella* serogroup E and is one of 2,400 *Salmonella* serovars that have ever been found worldwide (1). In Korea, more than 2,000 *Salmonella* isolates of various serotypes have been reported to our institute yearly nationwide through the passive surveillance system. However the incidence of *Salmonella* London was very low until 1999 (2). In 2000, for the purpose of finding and controlling pathogens causing diarrheal diseases, our institute organized and launched the Laboratory-Based Diarrheal Diseases Surveillance—an active surveillance system with 17 Research Institutes of Health and Environment from various cities and provinces. In this system, microbiologists at 17 Research Institutes of Health and Environment in cities and provinces visited their regional hospitals periodically to obtain and identify bacterial samples isolated from diarrheal patients. Our institute gathered and stored these bacteria with the related information sheets for further studies. The data was analyzed for understanding the trends of infectious diseases.

A few literature on the infection due to *Salmonella* London has been available. An epidemic in Hungary was reported in 1980 (3), which reported that raw meat and meat products transmitted *Salmonella* London infections and that the bacterial strains collected between 1976 and 1978 were first susceptible then became multiple resistant strains. In recent years, Yu et al. reported that *Salmonella* London was isolated from the intraocular tissues of a 3-month-old infant. The infant suffered from redness, leukocoria in her right eye and a mild fever with bloody diarrhea (4).

In this study, we investigated 44 *Salmonella* London isolates collected in 2000 and 2001, which grew from stools obtained from infant and adult patients via the Laboratory-Based Diarrheal Diseases Surveillance.

MATERIALS AND METHODS

Bacteria and growth conditions

Forty-four epidemiological unrelated isolates were selected...
from 74 *Salmonella* London isolates collected from infant and adult patients in different geographical regions of Korea through the Laboratory-Based Diarrheal Diseases Surveillance in 2000-2001 for characterization of antibiotic resistance patterns and XbaI PFGE (Table 1). Three *Salmonella* London strains and one *Salmonella typhimurium* Definitive Type (DT) 104 were tested for in vitro invasion assay and are listed in Table 2. All isolates were identified and confirmed by biochemical and serological tests using API 20E (bioMerieux, Durham, NC, U.S.A.) kit and antisera from Difco (Detroit Michigan, U.S.A.), respectively. Bacterial strains were maintained in Tryptic soy agar (TSA, Difco, U.S.A.) and cultured in Luria-Bertani (LB) medium for in vitro invasion assay.

Table 1. Number of *Salmonella* London isolated in different areas, 2000-2001

Year	Area	Feces	10^5	10^6	10^7	10^10	10^11	10^12	10^13	10^14	Total
2001	SE	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
2000	GJ	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0

*Area abbreviation SE, Seoul; GG, Gyeonggi-Do; IC, Incheon; GW, Gangwon-Do; CN, Chungcheongnam-Do; GB, Gyeongsangbuk-Do; JB, Jeolla-buk-Do; JN, Jeollanam-Do; DJ, Daejeon. Denominators represent total number of *Salmonella* London isolates and numerators stand for number of *Salmonella* London isolates from infant patients.

Table 2. Origin, antibiogram and PFGE patterns of *Salmonella* London isolates from different area

Area	Year	Source	No. of isolates	Age (y)	Antibiogram	PFGE pattern
IC	2000	Feces	1	<2	Susceptible	A0
GW	2000	Feces	23	<2	Susceptible	A0
GW	2000	Feces	1	30	Susceptible	A0
JN	2000	Feces	6	<2	Susceptible	A0
DJ	2000	Feces	1	<2	Susceptible	A0
DJ	2000	Feces	2	<2	Susceptible	A0
CN	2000-2001	Feces	7	<2	Susceptible	A0
CN	2000	Feces	3	52, 54, 59	Tetracycline	A1

*Area abbreviations: IC, Incheon; GW, Gangwon-Do; JN, Jeollanam-Do; DJ, Daejeon; GB, Gwangju; CN, Chungcheongnam-Do. *Salmonella* London isolates from different area patterned as recommended by the manufacturer, except that the intermediate and sensitive isolates were grouped together.

Antimicrobial susceptibility test

The strains were tested for their antibiotic susceptibility on Mueller-Hinton agar plates by the disk diffusion method (5). The media and disks were purchased from BBL (Becton Dickinson Microbiology Systems, Cockeysville, MD, U.S.A.). Resistance to the following antibiotics was tested with disks containing: ampicillin 10 μg, chloramphenicol 30 μg, gentamicin 10 μg, streptomycin 10 μg, tetracycline 30 μg, nalidixic acid 30 μg, ciprofloxacin 5 μg, ceftriaxone 30 μg, cefoxitin 10 g, kanamycin 30 g, sulfamethoxazole/trimethoprim 23.75 μg/1.25 μg, ampicillin/sulbactam 20 μg, ticarcillin 75 μg, cefotaxime 30 μg, amoxicillin/clavulanic acid 30 μg, and amikacin 30 μg. The inhibition zones were interpreted as recommended by the manufacturer, except that the intermediate and sensitive isolates were grouped together. *Escherichia coli* ATCC 25922 was used as a reference strain for quality control.

Pulsed field gel electrophoresis (PFGE)

The preparation of genomic DNA blocks and digestion with a restriction enzyme were carried out, as described by Gautom (6). All *Salmonella* London isolates were analysed by using restriction enzymes XbaI, NcoI or SfiI (New England Biolabs, MA, U.S.A.). Typing by Pulsed field gel electrophoresis (PFGE) of genomic DNA digested with XbaI was carried out in a CHEF Mapper system (Bio-Rad Laboratories, CA, U.S.A.).

Susceptibility to reactive oxygen species

The resistance of bacteria to reactive oxygen species was assayed as described by Groote et al. (7) and Allen et al. (8) with some modifications. The direct broths of *Salmonella* colonies selected from LB plates incubated overnight were made to 0.5 McFarland turbidity (approx. 2×10^6 cfu/mL) using VITEK colorimeter (Hach Co., Colorado, U.S.A.). Then the broths were plated on M9 minimal plates containing 0.2% glucose using cotton swabs. Fifteen microliters of 3% hydrogen peroxide was spotted onto 6-mm-diameter 3M paper disks, and the discs were placed onto the bacterial lawn and incubated overnight at 37 °C. The diameter of inhibition zone was measured, averaged, and plotted. Three independent experiments were performed.

In vitro invasion assay using J774A.1 macrophage-like cells

Bacterial infection of macrophage was performed with a modified version of the assays, as described by Tang et al. (9) and Rathman et al. (10). J774A.1 cells (ATCC no. TIB-67) which are BALB/c mouse macrophage-like cell line, were grown in Dulbecco’s minimal essential medium (DMEM, Gibco Life Technologies, NY, U.S.A.) containing 10% fetal bovine serum (FBS) in 5% CO₂. J774A.1 cells were seeded at 4×10^6 cells/well (24-well dishes, Corning Inc., NY, U.S.A.) and incubated overnight in 5% CO₂ at 37 °C. *Salmonella* strains (Table 3) were prepared for the infection, which were grown overnight in 3 mL of LB broth with shaking at 200 rpm, subcultured...
at a 1:20 dilution in new 3 mL of LB broth for additional 1 hr. The J774A.1 cells were infected for 1 hr with Salmonella London strain KJ3320 (from adult), KJ3132 (from infant), Salmonella London ATCC 8389 or Salmonella typhimurium DT104 (strain #54) at a multiplicity of infection (MOI) of 10 bacteria to one macrophage. Salmonella typhimurium DT104 human isolate and Salmonella London ATCC 8389 were used as control strains. Thereafter, the cells were washed with PBS and incubated for 1 hr in DMEM containing 100 μg/mL gentamicin, which killed any extracellular Salmonella remaining in the DMEM after the washes (11). Finally, the J774A.1 cells were lysed with 1% Triton X-100 for 5 min, and the lysates were 10 fold serial diluted and spread on LB plates. The LB plates were incubated in 37°C overnight. Viable Salmonella were counted by plating for colony-forming units (cfu) on LB agar medium. The experiment was performed at least in duplicate.

RESULTS

Surveillance

After the surveillance, Salmonella isolates belonging to serogroup E appeared approximately 10 times more frequently than in the past two years (Fig. 1). The serotype of the isolates was Salmonella London, and surprisingly, most of these isolates were obtained from the stools of infant patients in hospitals (Table 1). Most patients were under two years of age and suffered from fever, diarrhea and vomiting.

Antimicrobial susceptibility

Forty-four Salmonella London isolates were tested for identifying antimicrobial susceptibility pattern. The isolates obtained from infant patients and a 30-yr-old woman were all susceptible to 16 antibiotics, but the isolates from three old patients in Chungnam province were resistant to tetracycline (Table 2). Each tetracycline resistant isolate had an approximately 11 kb-size plasmid, but the remaining isolates did not show any discrete DNA band on agarose gel when we performed plasmid isolation. When the DH5α, an Escherichia coli strain, was transformed with this plasmid, the transformants were resistant to tetracycline (data not shown).

PFGE

In order to compare genetic clonality and subtype the Salmonella London isolates, we performed PFGE with the restriction enzyme, XbaI. The PFGE pattern of every isolate obtained from infant patients and the 30-yr-old woman was A 0, but the pattern of the isolates from the three old patients was A 1 (Fig. 2, Table 2). Similar results were observed with the restriction enzymes NotI and SfiI. For sub-typing the Salmonella London isolates by PFGE, XbaI restriction enzyme was more suitable than NotI and SfiI because the band patterns of PFGE by NotI or SfiI were too obscure to compare the similarity (data not shown).

Susceptibility to reactive oxygen species

Salmonella typhimurium DT104 #54 and Salmonella London ATCC 8389 were used as control experiments (Table 3). Salmonella typhimurium DT104, which is now frequently
isolated worldwide as well as in Korea (12-14), was found to be multidrug-resistant (15, 16). Salmonella London strains isolated from an infant and an adult did not show enhanced resistance to hydrogen peroxide compared with Salmonella London ATCC 8389 and S. typhimurium DT104 #54 (Fig. 3).

Virulence in vitro

When the invasiveness of Salmonella typhimurium DT104 #54 was set 100%, Salmonella London KJ3320 was able to invade and survive in J774A.1 cells at similar levels to those of Salmonella typhimurium DT104 #54. On the contrary, Salmonella London KJ3132 was approximately 2 times more virulent than Salmonella typhimurium DT104 #54 and KJ3320 (Fig. 4). The invasiveness of Salmonella London ATCC 8389 was very low—no more than one-tenth of KJ3320 (data not shown). This result may be due to the fact that Salmonella London ATCC 8389 has not been a recent clinical isolate. Furthermore, since it was stored for a long time in laboratory freezers, its invasiveness might not have been expressed (17).

DISCUSSION

As shown in Fig. 1 and Table 1, most Salmonella London bacteria were isolated from infants nationwide after the year 2000. Salmonella sero-group B (S. typhimurium, S. derby, S. agona, etc.) and D (S. enteritidis, S. typhi, S. dublin, etc.) were major sero-groups in Korea, while sero-group E was rare (2). In 2000 and 2001 Korea National Institute of Health and Research Institutes of Health & Environment in provinces and cities collected and serotyped unexpectedly Salmonella E group bacteria. The serotype for all these salmonella was Salmonella KJ3320. When Salmonella infection occurs sporadically, the origin of occurrence is obscure but usually food-related. It is strongly assumed that specific foods or milk consumed by babies were contaminated with Salmonella London. Salmonella anatum infections through powdered milk have been reported in England and France (18). Furthermore, dairy product-related Salmonella infections have been reported (19-21).

Possibility of infection by Salmonella is increased if the patient is an infant, an anacidity patient, or a patient whose stomach has been resected due to low gastric acid levels (22). All patients in this study suffered from the typical symptoms of enteritis, such as fever, diarrhea, and vomiting. No deaths was recognized. As mentioned earlier, Yu et al. reported that Salmonella London was isolated from the intraocular tissues of a 3-month-old infant being ill with endogenous endo-phthalmitis (4). Although we did not confirm whether this Salmonella London strain is identical with isolates obtained from this study’s infants, it is assumed that Salmonella London exposed to infants since 2000 was a dangerous bacterium to infants’ health.

According to PFGE and antimicrobial susceptibility test results, the isolates obtained from infants had different genetic
clonality from the isolates obtained from the three old adults. These results suggested that the
Salmonella London infant epidemic was independent from adult cases, and might have been caused by a common contaminated source. The isolate obtained from the 30-yr-old woman had the same PFGE pattern as that of the infants. It was assumed that she was either a mother or a relative of a certain infant patient, but we could not confirm this.

Resistance to reactive oxygen species produced by macrophage is an important factor for bacterial virulence (23, 24). However, we could not observe any difference between
Salmonella London and the control bacteria, while invasion rate into macrophage showed a difference. For the purpose of the assessment of relative virulence in vitro, we performed the in vitro invasion assay using J774A.1 macrophage-like cells because the ability of
Salmonella to survive and replicate within macrophage cells is an essential virulence mechanism (25). To avoid variations of
Salmonella invasiveness due to bacterial growth state (26), we infected the J774A.1 cells with the
Salmonella of log-phase state in every in vitro invasion assay. Although we used only the J774A.1 macrophage-like cells for in vitro invasion assay, our results suggested that the
Salmonella London strain isolated from the infants was a more virulent enteric bacterium than the strain isolated from adults and the prevailing pathogen,
Salmonella typhimurium DT104.

Our findings in this study deserve closer attention. First, active surveillance with molecular epidemiological study was an efficient strategy in finding new epidemic strain promptly. Many microbiologists in provincial health institutes were able to isolate more bacteria than the passive surveillance system by collecting the samples from patients stools in regional hospitals. PFGE and other sub-typing methods differentiated
Salmonella into the clonal lineages. These will help us trace the origin of infection. Secondly, the virulent
Salmonella London strain was determined to be a dangerous factor to infants health. Powdered milk and dairy products fell under suspicion. Therefore, more circumstantial epidemiological investigation is needed. In order to prevent and control infectious diseases efficiently, a closer cooperation system (hospital-laboratory-government) must be constructed.

ACKNOWLEDGEMENTS

We thank many microbiologists at the Health and Environment Institutes in Korean provinces and cities who provided the isolates included in the study.

This study was supported by the intramural grant of National Institute of Health, Korea.

REFERENCES

1. Popoff MY, Minor LL. Antigenic formulas of the Salmonella serovars. WHO collaborating center for reference and research on Salmonella. Institute Pasteur, France. 1997: 5-11.
2. Kim HH, Park MS, Yu JY, Kim SH, Shin YH, Kim MJ, Lee BK. Epidemiological characteristics of
Salmonella strains isolated recently in Korea. J Korean Soc Microbiol 1999; 34: 595-8.
3. Lantos J, Marjai E. In vitro transfer of multiple resistance observed in vivo during a
Salmonella London epidemic. Acta Microbiol Acad Sci Hung 1980; 27: 47-53.
4. Yu YS, Hwang SW, Lee HJ.
Salmonella london endogenous endophthalmitis in a healthy infant. Pediatr Infect Dis J 2002; 21: 578.
5. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility test; approved standards, NCCLS document M2-A7. National Committee for Clinical Laboratory Standards, Wayne, Pa. 7th ed. 2000.
6. Gautom RK. Rapid pulsed-field gel electrophoresis protocol for typing of
Escherichia coli O157:H7 and other Gram-negative organisms in 1 day. J Clin Microbiol 1997; 35: 2977-80.
7. De Groote MA, Ochsner UA, Shiloh MU, Nathan C, McCord JM, Dinauer MC, Libby SJ, Vazquez-Torres A, Xu Y, Fang FC. Periplasmic superoxide dismutase protects
Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 1997; 94: 13997-4001.
8. Allen CA, Fedorka-Cray PJ, Vazquez-Torres A, Suyemoto M, Altey C, Ryder LR, Fang FC, Libby SJ. In vitro and in vivo assessment of
Salmonella enterica serovar typhimurium DT104 virulence. Infect Immun 2001; 69: 4673-7.
9. Tang F, Fouibuster V, Puccierelli MG, Finlay BB. Methods to study bacterial invasion. J Microbiol Methods 1993; 18: 227-40.
10. Rathman M, Barker LP, Falkow S. The unique trafficking pattern of
Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect Immun 1997; 65: 1475-85.
11. Vaudaux P, Waldvogel FA. Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes. Antimicrob Agents Chemother 1997; 16: 743-9.
12. Threlfall EJ, Frost JA, Ward LR, Rowe B. Increasing spectrum of resistance in multiresistant
Salmonella typhimurium. Lancet 1996; 347: 1053-4.
13. Villar RG, Macek MD, Simons S, Hayes PS, Goldof MJ, Lewis JH, Rowan LL, Hursh D, Patnode M, Mead PS. Investigation of multidrug-resistant
Salmonella serotype Typhimurium DT104 infections linked to raw-milk cheese in
Washington State. JAMA 1999; 281: 1811-6.
14. Yang SJ, Park KY, Kim SH, No KM, Besser TE, Yoo HS, Kim SH, Lee BK, Park YH. Antimicrobial resistance in
Salmonella enterica serovars Enteritidis and Typhimurium isolated from animals in Korea: comparison of phenotypic and genotypic resistance characterization. Vet Microbiol 2002; 86: 295-301.
15. Ribot EM, Wierzba RK, Angulo FJ, Barrett T.
Salmonella enterica serotype Typhimurium DT104 isolated from humans, United States, 1985, 1990, and 1995. Emerg Infect Dis 2002; 8: 387-91.
16. Boyd D, Peters GA, Cloeckaert A, Boumédine KS, Chaslus-Dancla E, Imberechts H, Mulvey MR. Complete nucleotide sequence of a 43-kilo-base genomic island associated with the multidrug resistance region of
Salmonella enterica serovar Typhimurium DT104 and its identi-
17. Finlay BB, Heffron F, Falkow S. Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science 1989; 243: 940-3.

18. Threlfall EJ, Ward LR, Hampton MD, Ridley AM, Rowe B, Roberts D, Gilbert RJ, Van Someren P, Wall PG, Grimont P. Molecular fingerprinting defines a strain of Salmonella enterica serotype Anatum responsible for an international outbreak associated with formula-dried milk. Epidemiol Infect 1998; 121: 289-93.

19. De Valk H, Delarocque-Astagneau E, Colomb G, Ple S, Godard E, Vaillant V, Haeghebaert S, Bouvet PH, Grimont F, Grimont P, Desenclos JC. A community-wide outbreak of Salmonella enterica serotype Typhimurium infection associated with eating a raw milk soft cheese in France. Epidemiol Infect 2000; 124: 1-7.

20. Cody SH, Abbott SL, Marfin AA, Schulz B, Wagner P, Robbins K, Mohle-Boetani JC, Vugia DJ. Two outbreaks of multidrug-resistant Salmonella serotype typhimurium DT104 infections linked to raw-milk cheese in Northern California. JAMA 1999; 281: 1805-10.

21. Maguire H, Cowden J, Jacob M, Rowe B, Roberts D, Bruce J, Mitchell E. An outbreak of Salmonella dublin infection in England and Wales associated with a soft unpasteurized cows' milk cheese. Epidemiol Infect 1992; 109: 389-96.

22. Boyd JF. Pathology of the alimentary tract in Salmonella typhimurium food poisoning. Gut 1985; 26: 935-44.

23. Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC. DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 1995; 95: 1047-53.

24. Buchmeier N, Bossie S, Chen CY, Fang FC, Guiney DG, Libby SJ. SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect Immun 1997; 65: 3725-30.

25. Lindgren SW, Stojiljkovic I, Heffron F. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci USA 1996; 93: 4197-201.

26. Lee CA, Falkow S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA 1990; 87: 4304-8.