CLINICAL RESEARCH

Effect of anesthesia induction on cerebral tissue oxygen saturation in hypertensive patients: an observational study

Yasin Taşkıldıran MD *, Özlem Şen, Tuğba Aşkın, Süheyla Ünver

Anesthesiology and Reanimation, Health Sciences University Dr. Abdurrahman Yurtaslan Oncology Health Application and Research Center, Ankara, Turkey

Received 7 January 2019; accepted 25 October 2020
Available online 6 February 2021

KEYWORDS
Anesthesia induction; Cerebral tissue oxygen saturation; Hypertension

Abstract

Objective: In hypertensive patients, the autoregulation curve shifts rightward, making these patients more sensitive than normotensive individuals to hypotension. Hypotension following the induction of anesthesia has been studied in normotensive patients to determine its effects on brain tissue oxygenation, but not enough studies have examined the effect of hypotension on brain oxygenation in hypertensive patients. The current study aimed to use near-infrared spectroscopy to evaluate brain tissue oxygen saturation after the induction of anesthesia in hypertensive patients, who may have impaired brain tissue oxygen saturation.

Methods: The study included a total of 200 patients aged > 18 years old with ASA I–III. Measurements were taken while the patient was breathing room air, after the induction of anesthesia, when the lash reflex had disappeared following the induction of anesthesia, after intubation, and in the 5th, 10th, and 15th minutes of surgery. The patients were divided into nonhypertensive and hypertensive groups.

Results: There was a significant difference in age between the groups (p = 0.000). No correlation was found between cerebral tissue oxygen saturation and age (r = 0.015, p = 0.596). Anesthesia induction was observed to decrease mean arterial blood pressure in both groups (p = 0.000). Given these changes, there was no significant difference in brain tissue oxygen saturation between the nonhypertensive and hypertensive groups (p > 0.05).

Conclusion: There was no difference between hypertensive and normotensive groups in terms of the change rates in cSO2 values. However, there was a difference between the groups in terms of cSO2 values.

© 2021 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail: yasintaskaldiran@gmail.com (Y. Taşkıldıran).

https://doi.org/10.1016/j.bjane.2021.02.010
© 2021 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

During anesthesia induction, hypotension occurs and may affect the blood supply to the organs. The cerebral autoregulation mechanism protects the blood supply from hypotension. When an individual’s mean blood pressure is between 60 and 150 mmHg, cerebral blood flow remains constant. However, when this autoregulation changes, hypotension may lead to a decrease in cerebral blood flow, which may then cause a decrease in cerebral oxygenation. Cerebral oxygenation can be measured using a noninvasive method, the Near-Infrared Spectroscopy (NIRS). In hypertensive patients, there is a change in cerebral autoregulation, and this alteration causes the cerebral autoregulation curve to shift rightward. Hypotension due to anesthesia induction has been studied in normotensive patients in terms of its effects on brain tissue oxygenation, but to the best of our knowledge, not enough studies have examined the effect of hypotension on brain oxygenation in hypertensive patients. The current study aimed to use NIRS to evaluate brain tissue oxygen saturation after the induction of anesthesia in hypertensive patients, who may have impaired brain tissue oxygen saturation.

Methods

Two hundred patients who were aged over 18 years old, with American Society of Anesthesiologists (ASA) status I–III, and scheduled to undergo elective general anesthesia, were prospectively enrolled in the study after ethics committee approval (local ethics committee number: 2017–12/6, trial registry n° ACTRN12618000506291) was obtained, and the patients signed informed consent forms. Patients who represented emergency cases, were pregnant, had unstable hemodynamics, had cerebrovascular disease, underwent cranial surgery, had known cardiac disease or previous carotid surgery, were allergic to the drugs of interest in the current study, or did not want to participate were not included in the study. In addition, patients who had a blood pressure > 180/90 mmHg were also excluded.

Oral intake was stopped 8 hours before the operation. Patients were given fluids at 100 mL.h⁻¹ until the operation. Prior to the operation, 0.01 mg.kg⁻¹ intravenous (IV) midazolam premedication was administered. In the operating room, standard monitoring of the patients was performed, including electrocardiography, noninvasive blood pressure, capnography, and pulse oximetry. In addition, two NIRS sensors were placed on the frontal region of the patients. Cerebral tissue oxygen saturation (cSO₂) measurements were obtained using an INVOSTM 5100C (Medtronic, Minnesota, USA) cerebral/somatic oximeter. Preoxygenation was induced by asking the patient to take three deep breaths of 100% O₂ (total flow: 6 L.min⁻¹) prior to the induction of anesthesia. The induction of general anesthesia was performed using 2 mg.kg⁻¹ propofol, 0.7–0.9 mg.kg⁻¹ rocuronium, 1 mg.kg⁻¹ lidocaine and 1 μg.kg⁻¹ fentanyl and was followed by endotracheal tube placement. There were no pharmacological interventions between anesthesia induction and tracheal intubation. Anesthetic management was ensured using 1 MAC of sevoflurane, 50% O₂ and N₂O. Volume-controlled ventilation was established with a tidal volume: 6 mL.kg⁻¹, PEEP: 5 mmHg, I/E: 1/2, and FiO₂: 40% at a frequency of 12 minutes. All patients’ Mean Arterial Pressure (MAP), Heart Rate (HR), Peripheral Oxygen Saturation (SpO₂), End-Tidal Carbon Dioxide (ETCO₂) and bilateral cSO₂ were measured. The measurement times were as follows: T1 – First measurement in room air; T2 – After the induction of anesthesia; T3 – After orotracheal intubation; T4 – 5 minutes after induction; T5 – 10 minutes after induction; and T6 – 15 minutes after induction. During anesthesia induction and measurements, noxious stimuli were not applied to the patients, and only the cleaning and disinfection procedures were performed.

The patients were divided into two groups. The Hypertensive Group (HT) included patients who were diagnosed with hypertension before surgery and received anti-hypertensive therapy. Hypertension was diagnosed by doctors who followed up the patients; in addition, the diagnosis was checked by health reports. The nonhypertensive group included patients not diagnosed with hypertension.

All data were analyzed using the Statistical Package for the Social Sciences (SPSS), version 24.0 (SPSS Company, Chicago, IL, USA). The Kolmogorov-Smirnov test was used to determine normality of data distribution. Differences between mean values for normally distributed variables were compared by using the Student’s t-test. For data without normal distribution, Mann Whitney U test was performed. Chi-Squared test and Fisher’s Exact test were used for categorical data where appropriate. The relationships between the variables were evaluated with Pearson correlation tests. A p-value < 0.05 was considered statistically significant. It was estimated that including 200 patients (100 patients in each group) would provide a power of 94% (α = 0.05, d = 0.5).

Results

A total of 200 patients were evaluated. In terms of age, the patients in the hypertensive group were older. No correlation was found between age and cSO₂ (cSO₂, Right: r = 0.015, p = 0.596; cSO₂, Left: r = 0.022, p = 0.448). There were no differences between the groups in terms of sex (Table 1). The mean length of time to a diagnosis was 8.0 (± 5.8) years. For hypertensive patients, the mean length of time the patients had taken anti-hypertensive drugs prior to surgery was 5.6 (± 2.3) hours. In the hypertensive group, 42% of the patients used a single medication, and 58% used double medication (Table 2). After the induction of anesthesia, the mean arterial blood pressure decreased, but it then increased after intubation (p = 0.000). After anesthesia induction, the SpO₂ levels of the patients increased to more than 98%. End-Tidal CO₂ levels did not differ between the groups (p > 0.05) (Figure 1). The differences in MAP and cSO₂ measurements at T2 and T1 were evaluated for all patients. A weak correlation was detected between the MAP and cSO₂ levels (r = 0.287, p = 0.000) (Figure 2). After induction of anesthesia, MAP decreased from 113.1 (± 14.5) mmHg to 85.3 (± 18.1) mmHg in the hypertensive group and from 109.6 (± 15.3) mmHg to 87.5 (± 17.6) mmHg in the nonhypertensive group. The decreased rate of MAP in both groups was over 20%.
Figure 1 Vital signs: Comparison of nonhypertensive and hypertensive patients. (●) Comparison between the groups of nonhypertensive and hypertensive patients, $p < 0.05$; HR, Heart Rate; MAP, Mean Arterial Pressure; SpO$_2$, Peripheral Oxygen Saturation; EtCO$_2$, End-Tidal Carbon Dioxide; cSO$_2$, Cerebral Tissue Oxygen Saturation; T$_1$, First measurement in room air; T$_2$, After the induction of anesthesia; T$_3$, After orotracheal intubation; T$_4$, 5 min after induction; T$_5$, 10 min after induction; T$_6$, 15 min after induction.

Figure 2 The differences between T$_2$ and T$_1$ among all 200 patients. MAP, Mean Arterial Pressure; cSO$_2$, Cerebral Tissue Oxygen Saturation.
Table 1 Demographic information.

Patients	Hypertensive (n = 100)	Nonhypertensive (n = 100)	p \(^a\)
Age (years)	62.5 ± 9.4	49.0 ± 11.1	0.000\(^b\)
Female/Male	76:24	73:27	0.626\(^c\)
ASA (II/III)	60:40	88:12	0.000\(^c\)
Surgery			
Abdominal surgery	46	40	
Modified radical mastectomy	35	39	
Total thyroidectomy	11	11	
Orthopedic surgery	8	5	

ASA, American Society of Anesthesiologists physical status.
\(^a\) p < 0.05.
\(^b\) Independent Samples t-test.
\(^c\) Chi-square test.

Table 2 Hypertension drugs.

Class of Drugs	Hypertensive (n = 100)
CCB	20
ACE inhibitor	12
Beta blocker	10
ARB + Thiazide diuretic	37
ACE Inhibitor + CCB	12
ACE Inhibitor + Thiazide diuretic	6
ARB + Beta blocker	3

ACE inhibitor, Angiotensin-Converting Enzyme Inhibitor; ARB, Angiotensin-2 Receptor Antagonist; CCB, Calcium Channel Blocker.

Table 3 Comparison of cSO\(_2\) rates of change between the groups.

Difference between times	Hypertensive (n = 100)	Nonhypertensive (n = 100)	p \(^a\)
T2−T1	3.6 ± 6.5	4.5 ± 5.3	0.310
T3−T2	6.0 ± 5.5	6.5 ± 4.9	0.553
cSO\(_2\), Right (%)			
T4−T3	−2.8 ± 4.9	−2.9 ± 4.0	0.874
T5−T4	−2.4 ± 3.8	−2.0 ± 3.7	0.443
T6−T5	−1.5 ± 3.3	−0.7 ± 2.7	0.075
T2−T1	3.6 ± 5.7	4.9 ± 5.7	0.130
T3−T2	5.4 ± 5.3	5.9 ± 5.3	0.525
T4−T3	−2.5 ± 4.8	−2.9 ± 4.8	0.577
T5−T4	−2.2 ± 3.2	−2.3 ± 3.9	0.876
T6−T5	−1.3 ± 3.8	−0.3 ± 3.3	0.051

cSO\(_2\), Cerebral Tissue Oxygen Saturation; T1, First measurement in room air; T2, After the induction of anesthesia; T3, After orotracheal intubation; T4, 5-min after induction; T5, 10-min after induction; T6, 15-min after induction.
\(^a\) p < 0.05, Independent Samples t-test.

The cSO\(_2\) values were lower in hypertensive patients than in the nonhypertensive group (p < 0.05) (Figure 1). However, there were no differences between the groups in terms of the rate of cSO\(_2\) change (p > 0.05) (Table 3).

Discussion

While the limits of cerebral autoregulation are generally known in healthy individuals, they remain vaguely understood in hypertension patients. Animal studies have shown that the autoregulation curve shifts rightward in hypertension. However, in those studies, the ranges for the limits of cerebral autoregulation were wide, and therefore how much the autoregulation curve shifts rightward is not clear.\(^5\)-\(^7\) This makes the prediction of the oxygen supply to the brain is affected after hypotension in patients with hypertension difficult. Therefore, instantaneous noninvasive methods that enable the prediction of supply to the brain can be useful in operations. For this purpose, it is believed that using NIRS to monitor patients during surgery can be informative regarding the autoregulation of the brain.\(^8\)

However, frequent drops in blood pressure after the induction of anesthesia cause uncertainty regarding cerebral oxygenation. Moreover, drops in blood pressure are seen
more frequently in hypertensive patients than in normoten-
sive patients.9 In normotensive patients, when cerebral
oxygenation was assessed upon a drop in blood pressure, it
was found that cerebral oxygenation was maintained.10,11
But the effect of hypotension on oxygenation after the
induction of anesthesia in hypertensive patients is not
known.
Propofol causes a decrease in cerebral blood flow.12
This may affect brain oxygenation when combined with the
hypotension that occurs following the induction of
anesthesia.3 However, propofol may preserve cerebral
oxygenation due to the depression of cerebral electrone-
cephalographic activity13 and a decrease in the cerebral
metabolic rate.14 In addition, propofol is also effective in
maintaining cerebral autoregulation15 or masking the
relationship between hypotension and cerebral oxygen
saturation.10
The body’s oxygen reserve also affects cerebral oxygena-
tion. With preoxygenation, the SpO2 levels of patients can be
increased to more than 97%.15 Because we used preoxy-
genation to increase our patient’s SpO2 levels from 93% to 98%,
we might have contributed to the maintenance of cerebral
oxygenation by increasing the oxygen reserve.
One of the factors that affects cerebral autoregulation is
hypertension treatment, but there are differences among
the efficacies of the drugs used in this treatment. For
instance, it was found that angiotensin-converting enzyme
inhibitors and beta-blockers have only little effect on cere-
blood flow and cerebral autoregulation.17-19 There is
not enough consensus regarding the effects of calcium chan-
nel antagonists on cerebral autoregulation and cerebral
blood flow. Studies on baboons revealed that there was an
increase in cerebral blood flow and no change in cerebral
autoregulation,20 while studies performed in rats showed
that cerebral blood flow did not change and that the cere-
bral autoregulation curve shifted leftward.21 Due to the
differences and uncertainties among the efficacy of the
drugs used in hypertension treatment, we did not group
the patients according to the anti-hypertensive medication
they were using. Nevertheless, it is known that despite the
differences among these drugs, with treatment, the cere-
bral autoregulation curve of these patients verges on that of
normotensives.22,23 We believe that the rates of cerebral tis-
sue oxygenation changes were similar between hypertensive
and normotensive patients as a result of this improvement
in autoregulation.
Normal cSO2 levels can be between 55% and 80%, which
is a wide range. Thus, it would be useful to monitor the
rate of change in measured cSO2 levels instead of check-
ing whether the measured cSO2 levels are within the normal
range. In this regard, medical intervention is recommended
if basal cSO2 levels drop by 20% or 25% or if the measured
levels are below 50%.24-26 In our study, we found that both
groups exhibited parallel cSO2 changes, and their rates of
change in cSO2 levels were similar (Figure 1). Moreover, the
graphs showed that there is a difference between the two
groups in terms of cSO2 levels; however, while this differ-
ence was not clinically significant, it was numerically
clear. We believe that this is due to the difference in cerebral
blood flow caused by hypertension. In a study on this sub-
ject, follow-up was performed in hypertensive patients who
were treated for 9 years. These follow-ups showed that pre-
frontal blood flow was lower in hypertensive patients under
treatment than in normotensive patients. It appears that
hypertension treatment is useful for cerebral autoregula-
tion but unable to prevent blood flow to different areas of
the brain.27
While blood pressure is one of the important factors
affecting cerebral blood flow, it is not the single determin-
ing factor for cerebral blood flow in patients whose cerebral
autoregulation is maintained. In our study, the correlation
between the rate of MAP change and the rate of cSO2 change
was weak. As shown in Figure 2, the changes in cSO2 lev-
els were not affected by the amount of decrease in MAP.
End-organ injury might occur when MAP decreases below 80
mmHg for more than 10 minutes.28 In our study, the mean
MAP did not decrease below 80 mmHg by induction. This may
have led to a weak relationship between MAP and cSO2.
Another factor that affects brain metabolism is age.
While aging affects brain metabolism, its effect on cerebral
autoregulation is uncertain. Cerebral autoregulation has
been shown to be similar between individuals between 50
and 75 years old and younger individuals. There is not enough
information on the cerebral autoregulation of individuals
over 75 years old.29 In our study, the cSO2 changes observed
in the older hypertensive group and the normotensive
group were found to be similar. Moreover, a weak correlation
was detected between age and cSO2 levels.
Limitations of this study include the observational nature
of this study and the recruitment of patients undergoing
elective surgery alone, which prevented an investigation of
the effect of nonregulated hypertension. Another limita-
tion was the noninvasiveness of the method used to monitor
blood pressure. Since the mean MAP value in our study did
not decrease below 80 mmHg, this was a limitation to eval-
uate to brain tissue oxygen saturation levels at lower blood
pressure.

Summary
In conclusion, the results of the study demonstrated that
hypotensive response to anesthesia induction did not make
any difference in terms of the change rates in cSO2 val-
es in patients receiving antihypertensive therapy when
comparing to normotensive patients. However, there was a
difference between hypertensive and normotensive groups
in terms of cSO2 values.

Trial registry number
ACTRN12618000506291

Conflicts of interest
The authors declare no conflicts of interest.

References
1. Stephan H, Sonntag H, Schenk H, et al. Effects of propofol on
cardiovascular dynamics, myocardial blood flow and myocar-
dial metabolism in patients with coronary artery disease. Br J
Anaesth. 1986;58:969-75.
2. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183-238.
3. Jaeger M, Soehle M, Schuhmann M, et al. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir. 2005;147:51-6.
4. Strandgaard S, Olesen J, Skinhej E, et al. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1:507-10.
5. Strandgaard S, MacKenzie ET, Sengupta D, et al. Upper limit of autoregulation of cerebral blood flow in the baboon. Circ Res. 1974;34:435-40.
6. Strandgaard S, Jones JV, MacKenzie ET, et al. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res. 1975;37:164-7.
7. Jones JV, Fitch W, MacKenzie ET, et al. Lower limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res. 1976;39:555-7.
8. Moerman A, De Hert S. Recent advances in cerebral oximetry. Assessment of cerebral autoregulation with near-infrared spectroscopy: myth or reality? F1000Res. 2017;6:1-9.
9. Prys-Roberts C, Meloche R, Foex P, et al. Studies of anaesthesia in relation to hypertension I: cardiovascular responses of treated and untreated patients. Br J Anaesth. 1971;43:122-37.
10. Meng L, Gelb A, McDonagh D. Changes in cerebral tissue oxygen saturation during anaesthetic - induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation. Anaesthesia. 2013;68:736-41.
11. Nissen P, Van Lieshout JJ, Nielsen HB, et al. Frontal lobe oxygenation is maintained during hypotension following propofol-fentanyl anesthesia. AANA J. 2009;77:271-6.
12. Ludbrook GL, Visco E, Lam AM, Ludbrook GL, Visco E, Lam AM. Propofol relation between brain concentrations, electroencephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology. 2002;97:1363-70.
13. Kochs E, Hofman WE, Werner C, et al. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology. 1992;76:245-52.
14. Alkire MT, Haier RJ, Barker SJ, et al. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology. 1995;82:393-403.
15. Ederberg S, Westerlund A, Houltz E, et al. The effects of propofol on cerebral blood flow velocity and cerebral oxygen extraction during cardiopulmonary bypass. Anesth Analg. 1998;86:1201-6.
16. Nimmagadda U, Chiravuri SD, Salem MR, et al. Preoxygenation with tidal volume and deep breathing techniques: the impact of duration of breathing and fresh gas flow. Anesth Analg. 2001;92:1337-41.
17. Waldemar G, Schmidt JF, Andersen AR, et al. Angiotensin converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hypertensive man. J Hypertens. 1989;7:229-35.
18. Britton KE, Granowska M, Nimmon CC, et al. Cerebral blood flow in hypertensive patients with cerebrovascular disease: technique for measurement and effect of captopril. Nucl Med Commun. 1985;6:251-61.
19. Giobus M, Keren A, Eldad M, et al. The effect of chronic propranolol therapy on regional cerebral blood flow in hypertensive patients. Stroke. 1983;14:964-7.
20. McCalden T, Nath R. Cerebrovascular autoregulation is resistant to calcium channel blockade with nimodipine. Cell Mol Life Sci. 1989;45:305-6.
21. Cai H, Yao H, Ibayashi S, et al. Amlodipine, a Ca2+ channel antagonist, modifies cerebral blood flow autoregulation in hypertensive rats. Eur J Pharmacol. 1996;313:103-6.
22. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circ Res. 1976;53:720-7.
23. Tryambake D, He J, Firbank MJ, et al. Intensive blood pressure lowering increases cerebral blood flow in older subjects with hypertension. Hypertension. 2013;61:1309-15.
24. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51-8.
25. Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thor Surg. 2009;87:36-45.
26. Edmonds HL. Detection and treatment of cerebral hypoxia key to avoiding intraoperative brain injuries. J Clin Monit Comput. 2000;16:69-74.
27. Beason-Held LL, Moghekar A, Zonderman AB, et al. Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke. 2007;38:1766-73.
28. Wesselingk EM, Kappen TH, Torn HM, et al. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br J Anaesth. 2018;121:706-21.
29. Van Beek AH, Claassen JA, Rikkert MGO, et al. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly. J Cereb Blood Flow Metab. 2008;28:1071-85.