Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents

Liubov Muzychka1 · Alona Voronkina2 · Valentine Kovalchuk3 · Oleg B. Smolii1 · Marcin Wysokowski4,5 · Iaroslav Petrenko9 · Diaa T. A. Youssef6,7 · Irina Ehrlich8 · Hermann Ehrlich5,9

Received: 27 October 2020 / Accepted: 23 November 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes.

Keywords Chitin · Biomimetics · Bromotyrosines · Antibacterial · Sponges · Secondary metabolites · Spherulocytes

1 Introduction
In the last decade, marine demosponges belonging to the Verongiida order (Demospongiae: Porifera) [1] have come worldwide to the focus of researchers for a number of reasons. It has been reliably established [2] that the first
representatives of this order lived in the waters of the world ocean in the province of Alberta on the territory of present-day Canada 505 million years ago. Modern representatives of the order retained the presence of the basic morphological principles of the structural organization of their skeleton, including their unique chitinous nature [3–15]. Due to the biomineralization of their branched chitinous skeletons, which can grow up to 1.5 m long [16, 17] these sessile sponges were able to effectively use their stiff and porous constructs for extracting feed by filtering water. However, as a result of water filtration, a huge number of pathogenic viruses, bacteria and fungi enter the inner space of sponge body and must be neutralized. Now, it is well recognized that verongiid sponges developed sophisticated and highly dynamic chemical defense system [18] due to biosynthesis over than 300 diverse brominated compounds (mostly bromotyrosines), which exhibit a rich variety of chemical structures [19–28] and have been classified into six main categories, including simple bromotyrosine derivatives, oximes, bastadin, spirocyclohexadienylisoxazolines, spirooxepin-isoxazolines and other structural classes (see for overview [20]). Functionally, they are recognized as multitarget drugs [29, 30], with prominent antiviral, antibacterial, antifungal, cytotoxic as well as anti fouling activities (see for overview [31–42]). Some of poriferan bromotyrosines showed antimetastatic activity [43, 44] as well as have been reported as effective inhibitors of acetylcholinesterase (AChE), that is a clinical marker of Alzheimer’s disease [45].

The indisputable advantages of the Verongiida sponges in comparison with other demosponges include their unique ability to regenerate tissues [46, 47], which determines the progress in their cultivation using marine farming methods [48–51]. These marine sponges are now considered as renewable sources of both biological materials (i.e. chitin) and biologically active bromotyrosines, which suggests the possibility of organizing large-scale waste-free production in their natural habitats (Mediterranean, Caribbean, Indonesia, Australia, Guam and Florida). Perspectives of verongiid bioeconomy with respect to bromotyrosines and chitin have been recently analyzed in detail [39].

After early reports of isolation and characterization of such bromotyrosines as 3,5-dibromoverongiaquinol and the dimethyl ketal from two verongiid sponges Verongia fistularis and V. cauliformis in 1967 [52, 53] and 1970 [54], numerous experimental and review reports concerning extraction, identification, biosynthesis, synthesis and modifications as well as practical applications of bromotyrosines of verongiids’ origin have been published (see for overview [20, 55–64]). If the multitarget functionality of the biological action of bromotyrosines and their high pharmacological potential are no longer in doubt, the strategies for their extraction from biological raw materials or the development of corresponding analogous substances remain a controversial point. In connection with the latest developments in methods for cultivating verongiid sponges and extracting bromotyrosines with almost 90% yield, this direction is promising, although it may be limited by the specifics of environmental legislation in different countries [39]. An alternative way through the development of appropriate reactions for the synthesis of analogs takes place and is widely presented in the literature (see as examples [65–67]). However, in this case, synthesis can be an expensive and multistep procedure. Organic solvents (i.e. methanol, chloroform, less often ethanol) are mainly used in most of the reported works for extraction of bromotyrosines from verongiid sponges, because of their hydrophobic nature. However, biologists are well aware that there are bromotyrosines that easily and very quickly diffuse into and miscible with seawater after mechanical damage of the sponge tissue due to predatory mollusk or fish [68–70]. Moreover, it is well known that bromotyrosines in representatives of Aplysinae family within Verongiida order are synthesized within spherulocytes [68, 71], highly specialized cells found within skeletal highly brominated [72, 73] chitinous fibers [37] (Fig. 1). These cells seem to be very sensitive to changes in their environment. They are capable of rapid self-destruction and the release of selected bromotyrosines (i.e. aerothionin and homoaerothionin) into sponge mesophyll as well as surrounding seawater [69, 70].

We believe that spherulocytes remain to be responsible for the explosive release of bromotyrosines and, correspondingly for antimicrobial properties of aqueous extracts isolated from the verongiid sponge Aplysina aerophobaas have been reported in 1997 for the first time [74]. We anticipate that insertion of spherulocytes–rich skeletons of this sponge will lead to exudation of large amounts of bromotyrosines determined by osmotic shock. Due to the promising nature of this group of sponges in terms of their cultivation under marine farming conditionsand the prospects for practical application [39], we considered it expedient to determine the presence of water-soluble bromotyrosines in them. Such bromotyrosines acted as an inspiration for the in vitro syntheses of corresponding analogs. Consequently, an additional goal of this study was an attempt to synthesize an analogue of water-soluble bromotyrosines in laboratory conditions and to conduct comparative antimicrobial tests on selected pathogenic and clinical bacterial strains.

In this study, a water extraction approach of the sponge A. aerophoba was achieved. Fractionation of the aqueous extract and purification of the antimicrobial fractions of the extracts gave three bromotyrosin derivatives, including 3,5-dibromoquinolacetic acid (2) along with the previously reported aeroplysinin-2 (1) and aeroplysinin-1 (3). In addition, compound 2 was prepared synthetically and the antimicrobial activities of the compounds was evaluated. Interestingly, the natural and synthetic 3,5-dibromoquinolacetic
acid (2) displayed significant activity especially against pathogene Propionibacterium acnes.

2 Materials and methods

2.1 Sample collection

The demosponge Aplysina aerophoba (Nardo) was collected in the Adriatic Sea (Kotor Bay, Montenegro, 42° 26’ 10.2” N 18° 45’ 51.7” E) from the marine aquaculture facility from the depths of 3–5 m by SCUBA diving in 2019. Sponge samples were collected in ziplock bags underwater, brought to the laboratory on ice and washed with water to remove salts. Selected specimens were air-dried in shade for 7 days prior to further treatment.

2.2 General experimental procedures

1H and 13C NMR spectra were acquired on Varian Unity Plus 400 (Varian Inc, CA, USA) and Bruker Avance DRX 500 (Bruker, Switzerland) spectrometers using DMSO-d_6 as a solvent and tetramethylsilane as an internal standard. Mass spectra were recorded on an LC–MS instrument with chemical ionization (CI). LC–MS data were recorded on an Agilent 1100 HPLC equipped with a diode-matrix and mass-selective detector Agilent LC/MSD SL. Column: Zorbax SB-C18, 4.6 mm × 15 mm. Eluent: A, acetonitrile–H$_2$O with 0.1% of trifluoroacetic acid (TFA; 95:5); B, H$_2$O with 0.1% of TFA. Flow rate: 1.8 mL/min. Thin layer chromatography (TLC) was detected on Polygram SIL G/UV254 plate (Machery-Nagel, Germany) using CHCl$_3$–MeOH (19:1) as eluent. Column chromatography was performed using silica gel 60 (230–400 mesh, Merck, Germany) as the stationary phase. Melting points were determined using a Boetius melting point apparatus (Boetius Franz Kustner, Germany).

2.3 Isolation and purification of compounds 1–3

The dried A. aerophoba sponge (220.0 g) was treated with deionized H$_2$O (1 L) for 8 days at room temperature. The combined intensive reddish colored aqueous extracts (pH 5.3) were concentrated under vacuum, dissolved in MeOH and the MeOH soluble fraction (17 g) was partitioned on a silica gel column (80 × 5 cm) eluted with CHCl$_3$–MeOH gradients (from 100:0 to 0:100) to afford 57 fractions. Fractions 31–38 were combined and the residue (110 mg) was dissolved in CH$_2$Cl$_2$-hexane (2:1), where aeroplysinin-2 (1) (13 mg) was obtained by crystallization as white crystals. The remaining filtrate was left for another 3-5 days, where 3,5-dibromoquinolacetic acid (2) (26 mg) was obtained with CH$_2$Cl$_2$ as a white solid. Similarly, fractions 44–46 were combined, and the residue (34 mg) was dissolved in CHCl$_3$, where aeroplysinin-1 (3) (18 mg) was obtained by crystallization. The structures of compounds 1-3 are shown in Fig. 2.

2.4 Spectral data of compounds 1–3 (see Supplementary Data)

2.4.1 Aeroplysinin-2 (1) [75, 76]

White crystals. Mp = 109–111 °C. 1H NMR (400 MHz, DMSO-d_6): δ_{H} 6.56 (s, 1H, H-5 or OH), 6.51 (s, 1H, OH or H-5), 5.14 (s, 1H, H-1), 3.70 (s, 3H, H$_3$-9), 2.99 (1H, d, J = 16.8 Hz, H-7a), 2.88 (1H, d, J = 16.8 Hz, H-7b); 13C NMR (125 MHz, DMSO-d_6): δ_{C} 172.9 (qC, C-8), 149.6 (qC, C-3), 135.5 (CH, C-5), 117.1 (qC, C-4), 105.9 (qC, C-2),
87.3 (CH, C-1), 75.4 (qC, C-6), 60.4 (CH$_3$, C-9), 41.6 (CH$_2$, C-7); MS (CI): m/z = 339.4 [M – H]$^+$.

2.4.2 3,5-Dibromoquinolacetic acid

[(3,5-dibromo-1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)acetic acid] (2)

White solid. Mp = 192–194 °C (decomp.). 1H NMR (400 MHz, DMSO-d_6): δH 12.48 (br s, 1H, COOH), 7.65 (s, 2H, H-2 and H-6), 6.41 (br s, 1H, OH), 2.79 (s, 2H, H$_2$-7); 13C NMR (125 MHz, DMSO-d_6): δC 172.8 (qC, C-4), 170.3 (qC, C-8), 153.3 (2 × CH, C-2 and C-6), 119.9 (2 × qC, C-3 and C-5), 71.7 (qC, C-1), 43.8 (CH$_2$, C-7); MS (CI): m/z = 324.7 [M – H]$^+$.

2.4.3 Aeroplysinin-1 (3) [39, 75]

White crystals. Mp = 119–120 °C. 1H NMR (400 MHz, DMSO-d_6): δH 6.30 (s, 1H, H-5), 6.19 (d, J = 8.0 Hz, 1H, OH), 6.13 (s, 1H, OH), 3.92 (d, J = 8.0 Hz, 1H, H-1), 3.62 (s, 3H, H$_3$-9), 2.77 (s, 2H, H$_2$-7); 13C NMR (125 MHz, DMSO-d_6): δC 147.1 (qC, C-3), 133.7 (CH, C-5), 119.4 (qC, C-2), 118.6 (qC, C-8), 113.7 (qC, C-4), 77.5 (CH, C-1), 73.6 (qC, C-6), 59.8 (CH$_3$, C-9), 26.4 (CH$_2$, C-7); MS (CI): m/z = 339.8 [M + H]$^+$.

2.5 Synthesis of 3,5-dibromoquinolacetic acid (2)

The synthesis of 3,5-dibromoquinolacetic acid (2) started bromination of a commercial sample of (4-hydroxyphenyl)acetic acid (4) under the previously reported conditions [54] to afford (3,5-dibromo-4-hydroxyphenyl)acetic acid (5), which was converted to the dienone-derivative (2) by further oxidation using a mixture of nitric and acetic acids (1:20). 3,5-Dibromoquinolacetic acid (2) was not obtained in a high yield as a result of a parallel replacement reaction occurred, in addition to the oxidation, in which one bromine atom in 5 was replaced by a nitro group into give (3-bromo-4-hydroxy-5-nitrophenyl)acetic acid (6). Despite that, the synthesized 3,5-dibromoquinolacetic acid (2) was obtained as an individual white solid without the need of column chromatography in contrast to the previously described methods [54, 77] (Scheme 1).

Scheme 1 Synthesis of 3,5-dibromoquinolacetic acid (2). Reagents and conditions: a Br$_2$, AcOH, rt, 72 h; b HNO$_3$, AcOH, 10 °C, 15 h
2.6 Synthesis of (3,5-dibromo-4-hydroxyphenyl)acetic acid (5)

Compound 5 was synthesized by bromination of (4-hydroxyphenyl)acetic acid (4) according to the method described in [54].

2.7 Spectral data of (3,5-dibromo-4-hydroxyphenyl)acetic acid (5)

Colorless needle-shaped crystals. Mp = 197–198 °C. 1H NMR (400 MHz, DMSO-d_6): δ_H 12.40 (br s, 1H, OH), 9.82 (br s, 1H, OH), 7.44 (s, 2H, Ar), 3.52 (s, 2H, CH$_2$); 13C NMR (125 MHz, DMSO-d_6): δ_C 172.7 (qC, C=O), 149.7 (qC), 133.7 (2 x CH), 130.1 (qC), 111.9 (2 x qC), 38.8 (CH$_2$); MS (CI): m/z = 310.9 [M + H]$^+$.

2.8 Synthesis of 3,5-dibromoquinolacetic acid (2) and (3-bromo-4-hydroxy-5-nitrophenyl)acetic acid (6)

(3,5-Dibromo-4-hydroxyphenyl)acetic acid (5) (500 mg) was added to a solution of a mixture 70% nitric acid (0.25 mL) and acetic acid (5 mL) at 10 °C, and the reaction mixture was stirred at 10 °C for 3 h. Water (100 mL) was added to the reaction mixture after leaving overnight at 10 °C, followed by filtration of the resulting precipitate (compound 6, 160 mg). The remaining filtrate was extracted with EtOAc (3 x 20 mL) and the combined organic layers were dried over Na$_2$SO$_4$. The solvent was removed under reduced pressure. The oily residue was dissolved in CH$_2$Cl$_2$ (10 mL) resulting in a white precipitate. After filtration of the supernatant, compound was obtained as a solid, which was crystallized from EtOAc/CH$_2$Cl$_2$ (3:1) to give an analytical sample of 2 (90 mg).

2.9 Spectral data of the synthetic 3,5-dibromoquinolacetic acid (2)

White solid. Mp = 193–194 °C (decomp.). 1H NMR (400 MHz, DMSO-d_6): δ_H 12.44 (br s, 1H, OH), 7.64 (s, 2H, Ar), 6.39 (br s, 1H, OH), 2.79 (s, 2H, CH$_2$); 13C NMR (125 MHz, DMSO-d_6): δ_C 172.9 (qC, C=O), 170.4 (qC, C=O), 153.5 (2 x CH), 119.9 (2 x qC), 71.8 (qC), 43.9 (CH$_2$); MS (CI): m/z = 324.9 [M − H]$^+$.

2.10 Spectral data of (3-bromo-4-hydroxy-5-nitrophenyl)acetic acid (6)

Yellow needle-shaped crystals. Mp = 198–199 °C. 1H NMR (400 MHz, DMSO-d_6): δ_H 12.52 (br s, 1H, OH), 10.96 (br s, 1H, OH), 7.91 (s, 1H, Ar), 7.89 (s, 1H, Ar), 3.65 (s, 2H, CH$_2$); 13C NMR (125 MHz, DMSO-d_6): δ_C 172.6 (qC, C=O), 148.6 (qC), 140.7 (CH), 137.3 (qC), 128.2 (qC), 125.7 (CH), 113.7 (qC), 38.7 (CH$_2$); MS (CI): m/z = 375.9 [M − H]$^+$.

2.11 Antimicrobial evaluation of the compounds

For the determination of antimicrobial activity, S. aureus (ATCC 6538-P) and clinical multiresistant strains of P. acnes 41 (isolated from selected papules of patients with acne), E. faecalis VNMU068 (NCBI Biosample ID SAMN13701844) and K. pneumoniae VNMU131 (NCBI Biosample ID SAMN13701847) (isolated from selected infected wounds) were used. The clinical strains were isolated and cultured in Department of Microbiology of the National Pirogov Memorial Medical University, Vinnytsya, Ukraine. A separate stock solution of each compound under evaluation were prepared using 10 mg of each compound in 1 mL of DMSO: H$_2$O (1:5) solution.

2.11.1 Qualitative antimicrobial evaluation of the compounds

For qualitative antimicrobial evaluations of the compounds, S. aureus, P. acnes and K. pneumoniae were used. The antimicrobial evaluation was carried out using a well-diffusion susceptibility test [78–80] using meat peptone agar (MPA). The inocula of the strains were spread into sterile agar plate surfaces. Then, 5-mm diameter holes were made aseptically. In each hole, 20 µL (0.2 mg of substance) of the stock solution of the compounds were added. All agar plates were incubated for 24 h at 37 °C.

2.11.2 Evaluation of the MIC and MBC of 3,5-dibromoquinolacetic acid (2)

For the quantitative antimicrobial determination of 3,5-dibromoquinolacetic acid (2), S. aureus, P. acnes and E. faecalis were used. The MIC and MBC were evaluated using a broth dilution method [81]. To 0.5 mL of liquid nutritive environment, 0.5 mL of a water–DMSO (9:1) mixture containing 5 mg of compound 2 was added, followed by double serial dilutions. 0.1 mL of inoculum with 10^6 colony-forming units (CFU) of bacteria was added with calibrated bacteriological loop to all solutions, than they were incubated for 24 h at 37 °C.

In all experiments, sterility control of nutritive environment, control of microorganism growth without compound, as well as control of diluents for antimicrobial activity and a positive control of cultures with a commercially available antibiotics (i.e. with erythromycin for qualitative antimicrobial evaluations of the compounds using well-diffusion method for S. aureus, P. acnes and K. pneumonia;
with erythromycin and benzoyl peroxide for *S. aureus* and
P. acnes MIC and MBC evaluation (broth dilution method)
and with vancomycin for *E. faecalis* (due to resistance of the
strain to Erythromycin and Benzoyl peroxide) were used.

3 Results

3.1 Purification of compounds 1–3 from the aqueous extract of *A. aerophoba*

The resulted aqueous extract of the cultivated *A. aerophoba*
sponge was evaporated under reduced pressure, and the
residue was dissolved in MeOH. The MeOH-soluble resi-
due was concentrated and partitioned on a silica gel column
using a CHCl₃-MeOH gradients (from 100–0 to 0–100%)
to purify aeroplysinin-2 (1), 3,5-dibromoquinolacetic acid
[(3,5-dibromo-1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ace-
tic acid] (2) and aeroplysinin-1 (3) (Fig. 2). In this report,
the isolated compounds (1-3) were identified by comparing
their spectroscopic data (^1H, ^13C NMR and MS data) with
the previously reported data in the literature. 3,5-Dibromo-
quinolacetic acid (2) is reported here for the first time from
a natural source. It was previously synthesized by Sharma
and co-workers [54]. The compounds were also identified
by comparing its spectral data with the reported values [54].
Furthermore, compound 2 was synthesized and its NMR and
MS spectroscopic data were found to be identical with the
natural compound.

The purity of all isolated and synthesized compounds
was proved using spectroscopic data (^1H, ^13C NMR and MS
data). All substances are individual (100% purity), which
is confirmed by the presented spectra (for details see Sup-
plementary Data). In addition, to achieve 100% purity, some
is confirmed by the presented spectra (for details see Sup-
porting data for more details). It is worth to mention that
this is the first report about isolation of compound 2 from
a natural source. It was previously reported as a synthetic
compound [54].

3.2 Structural determination of compounds 1–3

The compounds were determined by interpretation of
their ^1H and ^13C and MS spectroscopic data. All data are
in good agreement with the previously reported values in
the literature. Therefore compounds 1-3 were assigned as
eaeroplysinin-2 (1) [75, 76], 3,5-dibromoquinolacetic acid(2)
[54], and aeroplysinin-1 (3) [39, 75], respectively (See Sup-
porting data for more details). It is worth to mention that
this is the first report about isolation of compound 2 from
a natural source. It was previously reported as a synthetic
compound [54].

3.3 Results of the antimicrobial activities of the compounds

The results of the quantitative antimicrobial evaluation
of the synthetic and natural 3,5-dibromoquinolacetic acid
against *P. acnes* were reported here for the first time. The
MIC and MBC values against the clinical strain of *P.acnes*
under the study were determined at 7.8 and 31.2 µg/mL,
respectively (Table 2). For the synthetic (2A) and natural
(2B) 3,5-dibromoquinolacetic acid, the minimum inhibitory
concentrations (MIC) and minimum bactericidal concentra-
tions (MBC) against *S. aureus, P. acnes* and *Enterococcus
faecalis* were evaluated separately (Table 2).

4 Discussion

In contrast to previously reported organic reagents based
methods (i.e. EtOH, MeOH and CH₂Cl₂) for extraction of bromotyrosines from *A. aerophoba* [39, 76–79], we used a
new biomimetic approach here including water extraction
at room temperature for the first time to avoid destruction/
change of thermolabile ingredients including artifacts. The
compounds 1-3 have been previously reported to be pre-
sent in *A. aerophoba* and other representatives of the order
Verongiida [39, 75–77, 82–88], but this is the first report
where these compounds were obtained from a room tem-
perature aqueous extract of the sponge.

3,5-Dibromoquinolacetic acid (2) (Fig. 2) was first
obtained by [54] as a component of the mixture resulted
by acidic hydrolysis of the new brominated derivative
obtained from the MeOH extract of the marine sponge

Table 1 Results of the qualitative antimicrobial evaluation of the compounds

Sample ID	*S. aureus*	*P. acnes*	*K. pneumoniae*
Compound 1	+	+	−
Compound 2A (synthetic)	+	+	−
Compound 2B (natural)	+	+	−
Fraction C	+	+	+
Compound 5	−	−	−

* + Observed growth inhibition, − no observed growth inhibition
Verongia fistularis. These authors also described first the direct synthesis of the 3,5-dibromoquinolacetic acid [54], which included stages of bromination and oxidation as well as the final phase of chromatographic purification. The structure of the 3, 5-dibromoquinolacetic acid was confirmed by spectral data.

Later, Minale et al. [76] obtained another secondary metabolite named aeroplysinin-2 (1) (Fig. 2) from the sponge A. aerophoba and defined its stereochemical structure. When aeroplysinin-2 was left, it was converted into 3,5-dibromoquinolacetic acid via a probable photochemical reaction [76]. Despite the species was later revised by researchers to A. cavernicola [20, 89], aeroplysinin-2 was confirmed to be present in A. aerophoba [82, 84].

With regards to the reports about the role of the light as a stimulating factor on the growth of colonies of selected marine verongid sponges [90] and the effect of the depth on the colonies on the variation bromotyrosins' compositions [68], the probability of effect of photochemical reactions in the bioconversion of bromotyrosines [91] is poorly investigated. In natural environment, bioconversion of complex brominated isoxazoline derivatives into simple molecules occurs in 40 s [92] that represent a “vivid example for dynamic bioconversions of natural products that generate highly efficient chemical weapons precisely when and where needed” [34]. The rates of aerothionin exudate into artificial seawater were measured as 7.7×10^{-4} μg min$^{-1}$ g$^{-1}$ dry weight of the verongid sponge A. fistularis for

![Fig. 3](image-url) Growth inhibition by samples represented in Table 1 against S. aureus (a–e); P. acnes (d) and K. pneumoniae (e) (scale bar 1 cm)

Table 2	Results of quantitative antimicrobial evaluation of natural and synthetic 2								
Compound	(mg/mL)	S. aureus			P. acnes			E. faecalis	
	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	
2A (synthetic)	125	125	7.8	31.2	31.2	31.2	31.2		
2B (natural)	125	125	7.8	31.2	31.2	31.2	31.2		
Unfortunately, exact mechanisms of antibacterial activity of Cutibacterium acnes. Our results presented here represent the potential of using 3,5-dibromoquinolacetic acid against Propionibacterium acnes previously showed an MIC value of 15 μg/mL against Sargassum macrocarpum isolated from the brown algae. In contrast to previously reported data, while defining MIC and MBC for the synthetic and natural 3,5-dibromoquinolacetic acid against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are in progress now in our Lab.

We also suggest that occurrence of poriferan chitin that is loaded with bromotyrosines in native state will stimulate the development of highly sensitive analytical methods for identification.

5 Conclusions

In conclusion, we anticipate, with confidence that the evolutionary success of Verongiida sponges to survive in the oceans over than 500 million years of existence may be due to their unique ability of to protect themselves through their chitinous skeleton, production of chemical warfare like the bromotyrosines, which could be lipophilic or hydrophilic. Previously, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were logically based on the use of appropriate organic solvents. Without a doubt, this was not a biomimetic approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. We suggest that, the existence of such water-soluble bromotyrosine derivatives, including 3,5-dibromoquinolacetic acid in an aqueous extract of the dried demosponge A. aerophoba, after a storage of the sponge at room temperature in the light, is an example of a chemical conversion of more complex bromotyrosines, that is originally exist in the sponge into smaller molecules. Such phenomenon reported in this study can be used as the basis for the development of new, effective and easy-to-solve key way for the extraction of certain bromotyrosines from aqueous extracts of their sponges.

Acknowledgments This work was partially supported by DFG Project HE 394/3, SMWK Project no. 02010311 (Germany), by Alexander von Humboldt Polish Honorary Research Scholarship (FNP, Poland) and by the Ministry of Science and Higher Education (Poland) through a financial subsidy to PUT, No. 0912/SBAD/2006.

Funding This work was partially supported by DFG Project HE 394/3, SMWK Project no. 02010311 (Germany), by Alexander von Humboldt.
Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article contains no animal studies by any of the authors re-quiring endorsement from the ethical committee. In fact, according to the current regulatory studies, no ethical authorization is required for invertebrates like A. aerophoba.

Consent to participate All of the co-workers have agreed to participate.

Consent for publication All of the co-workers have agreed to publication.

References

1. P.R. Bergquist, S.C. de Cook, Syst Porifera (Springer, Berlin, 2002), p. 1081
2. H. Ehrlich, J.K. Rigby, J.P. Botting, M.V. Tsurkan, C. Werner, P. Schwille, Z. Petrásček, A. Piscer, P. Simon, V.N. Sivkov, D.V. Vyalikh, S.L. Molodtsov, D. Kurek, M. Kammer, S. Hunoldt, R. Born, D. Stawski, A. Steinhof, V.V. Bazhenov, T. Geisler, Sci. Rep. 3, 1–6 (2013)
3. H. Ehrlich, M. Krautter, T. Hanke, S. Paul, C. Knieb, S. Heine-mann, H. Worch, J. Exp. Zool. 308B, 473 (2007)
4. H. Ehrlich, P. Simon, W. Carrillo-Cabera, V.V. Bazhenov, J.P. Botting, M. Ilan, A.V. Ereskovsky, G. Muricy, H. Worch, A. Mensch, R. Born, A. Springer, K. Kummer, D.V. Vyalikh, S.L. Molodtsov, D. Kurek, M. Kammer, S. Paasch, E. Brunner, Chem. Mater. 22, 1462 (2010)
5. H. Ehrlich, E. Steck, M. Ilan, M. Maldonado, G. Muricy, G. Bav-estrello, Z. Kljaic, J.L. Carballo, S. Schiaparelli, A. Ereskovsky, P. Schupp, R. Born, H. Worch, V.V. Bazhenov, D. Kurek, V. Var-lamov, D. Vyalikh, K. Kummer, V.V. Sivkov, S.L. Molodtsov, H. Meissner, G. Richter, S. Hunoldt, M. Kammer, S. Paasch, V. Kra-sokhin, G. Patzke, E. Brunner, W. Richter, Int. J. Biol. Macromol. 47, 141 (2010)
6. H. Ehrlich, V.V. Bazhenov, C. Debitus, N. de Voogd, R. Galli, M.V. Tsurkan, M. Wysokowski, H. Meissner, E. Bulut, M. Kaya, T. Jesionowski, Int. J. Biol. Macromol. 104, 1706 (2017)
7. E. Brunner, H. Ehrlich, P. Schupp, R. Hedrich, S. Hunoldt, M. Kammer, S. Machill, S. Paasch, V.V. Bazhenov, D. Kurek, T. Arnold, S. Brockmann, M. Ruhnow, R. Born, J. Struct. Biol. 168, 539 (2009)
8. J.A. Cruz-Barraza, J.L. Carballo, A. Rocha-Olivares, H. Ehrlich, M. Hog, PLoS One 7, e42049 (2012)
9. M. Wysokowski, V.V. Bazhenov, M.V. Tsurkan, R. Galli, A.L. Stelling, H. Stöcker, S. Kaiser, E. Niederschlag, G. Gärtnert, T. Behm, M. Ilan, A.Y. Petrenko, T. Jesionowski, H. Ehrlich, Int. J. Biol. Macromol. 62, 94 (2015)
10. S. Zółtowska-Aksamitowska, M.V. Tsurkan, S.C. Lim, H. Meissner, K. Tabachnick, L.V. Muzychka, O.B. Smolii, R. Martinovic, Y. Joseph, T. Jesionowski, H. Ehrlich, Mar. Drugs 17, 110566 (2019)
11. J. Fromont, S. Zółtowska-Aksamitowska, R. Galli, H. Meissner, D. Erpenbeck, J. Vacelet, C. Diaz, M.V. Tsurkan, I. Petrenko, D.T.A. Youssef, H. Ehrlich, Zool. Anz. 280, 21 (2019)
12. M. Schubert, B. Binneweg, A. Voronkina, L. Muzychka, M. Wysokowski, I. Petrenko, V. Kovalchuk, M. Tsurkan, R. Martinovic, N. Bechmann, V.N. Ivanenko, A. Fursov, O.B. Smolii, J. Fromont, Y. Joseph, S.R. Bornstein, M. Giovine, D. Erpenbeck, K. Guan, H. Ehrlich, Int. J. Mol. Sci. 20, 5105 (2019)
13. J. Vacelet, D. Erpenbeck, C. Diaz, H. Ehrlich, J. Fromont, Zool. Anz. 280, 14 (2019)
14. C. Klinger, S. Zółtowska-Aksamitowska, M. Wysokowski, M.V. Tsurkan, R. Galli, I. Petrenko, T. Machałowski, A. Ereskovsky, R. Martinovic, L. Muzychka, O.B. Smolii, N. Bechmann, V. Ivanenko, P.J. Schupp, T. Jesionowski, M. Giovine, Y. Joseph, S.R. Bornstein, A. Voronkina, H. Ehrlich, C. Klinger, S. Zółtowska-Aksamitowska, M. Wysokowski, M.V. Tsurkan, R. Galli, I. Petrenko, T. Machałowski, A. Ereskovsky, R. Martinovic, L. Muzychka, O.B. Smolii, N. Bechmann, V. Ivanenko, P.J. Schupp, T. Jesionowski, M. Giovine, Y. Joseph, S.R. Bornstein, A. Voronkina, H. Ehrlich, Mar. Drugs 17, 131 (2019)
15. D. Tsurkan, M. Wysokowski, I. Petrenko, A. Voronkina, Y. Khru-nyk, A. Fursov, H. Ehrlich, Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020)
16. I. Petrenko, Y. Khruny, A. Voronkina, V. Kovalchuk, A. Fursov, D. Tsurkan, Lett. Appl. NanoBioscience 9, 1004 (2020)
17. C. Thoms, R. Ebel, P. Proksch, J. Chem. Ecol. 32, 97 (2006)
18. K. Moody, R.H. Thomson, E. Fattorusso, L. Minale, G. Sodano, J. Chem. Soc. Perkin Trans. 1, 18 (1972)
19. J. Peng, J. Li, M.T. Hamann, Alkaloids. Chem. Biol. 61, 59 (2005)
20. R. C. Gandolfi, M. B. Medina, R. G. S. Berlinck, S. P. Lira, F. C. Estrello, M. B. Medina, R. G. S. Berlinck, S. P. Lira, F. C. De Sá Galetti, C. L. Silva, K. Veloso, A. G. Ferreira, E. Hajdu, and S. Peixinho, Quim. Nova 33, 1853 (2010)
21. N. Götzel, T. Sirirak, M. Köck, Beilstein J. Org. Chem. 11, 2334 (2015)
22. J.A. Kalaizitiz, P.A. de Leone, J.N.A. Hooper, R.J. Quinn, Nat. Prod. Res. 22, 1257 (2008)
23. K. Ragini, J. Fromont, A.M. Piggott, P. Karuso, J. Nat. Prod. 80, 215 (2017)
24. S.I. Kurimoto, T. Ohno, R. Hokari, A. Ishiyama, M. Iwatsuki, S. Ômura, J. Kobayashi, T. Kubota, Mar. Drugs 16, 3 (2018)
25. A. El-Demerdash, C. Morou, J. Touilce, M. Besson, S. Soulet, N. Schmitt, S. Petek, D. Leccini, C. Debitus, A. Al-Mourabit, Mar. Drugs 16, 146 (2018)
26. M. Miguel-Gordo, S. Geggnde, K. Calabro, L.K. Jennings, A. Alfonso, G. Genta-Jouve, J. Vacelet, L.M. Botana, O.P. Thomas, Mar. Drugs 17, 319 (2019)
27. M.N. Salib, M.T. Jamison, T.F. Molinski, J. Nat. Prod. 83, 1532 (2020)
28. R. Ebel, M. Brenzinger, A. Kunze, H. J. Gross, P. Proksch, Can. Field-Naturalist (1997)
29. J.A. García-Vilas, B. Martínez-Poveda, A.R. Quesada, M.Á. Medina, Mar. Drugs 14, 1 (2016)
30. R. Teeyapant, P. Kreis, P. Proksch, H.J. Woerdenberg, J. Hacker, V. Wray, L. Witte, Zeitschrift Fur Naturforsch. Sect. C J. Biosci. 48, 939 (1993)
31. M. Bayer, C. Hellio, J.P. Maréchal, W. Frank, W. Lin, H. Weber, P. Proksch, Mar. Biotechnol. 13, 1148 (2011)
32. L.G.G. Archila, W. Zapata, E. Galeano, A. Martínez, F.J. Díaz, M.T. Rugeles, Vitae (Medellín) 21, 114 (2019)
33. H. Niemann, A. Marmann, W. Lin, P. Proksch, Nat. Prod. Commun. 10, 219 (2015)
34. C. Florea, M. Schnekenburger, J.Y. Lee, K.R. Kim, A. Mazumder, S. Song, J.M. Kim, C. Grandjenette, J.G. Kim, A.Y. Yoon,
92. J. Shearman, Bromotyrosine-Derived Natural Products: Synthetic and Biological Studies (Doctoral Thesis), Univ. of Cambridge (2011)
93. M.A.T. Blaskovich, A.G. Elliott, A.M. Kavanagh, S. Ramu, M.A. Cooper, Sci. Rep. 9, 1 (2019)
94. Y. Kamei, M. Sueyoshi, K.I. Hayashi, R. Terada, H. Nozaki, J. Antibiot. 62, 259 (2009)
95. T. Martin, T. Jahn et al., Cell Host Microbe 26, 542–550 (2019)
96. J.E. Welsh, P. Steenhuis, K.R. de Moraes, J. van der Meer, D.W. Thielges, C.P.D. Brussaard, Sci. Rep. 10, 5221 (2020)
97. L.G. Gomez-Archila et al., Vitae 21, 114–125 (2014)
98. M. Tsurkan, A. Voronkina, Y. Khrunyk, M. Wysokowski, I. Petrenko, H. Ehrlich, Carb. Polym 252, 117204 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.