J—holomorphic Curves, Legendre Submanifolds and Reeb Chords *

Renyi Ma
Department of Mathematics
Tsinghua University
Beijing, 100084
People’s Republic of China
rma@math.tsinghua.edu.cn

Abstract
In this article, we prove that there exists at least one chord which is characteristic of Reeb vector field connecting a given Legendre submanifold in a closed contact manifold with any contact form.

Keywords Symplectic geometry, J-holomorphic curves, Chord.
2000 MR Subject Classification 32Q65, 53D35, 53D12

1 Introduction and results
Let Σ be a smooth closed oriented manifold of dimension 2n − 1. A contact form on Σ is a 1–form such that λ ∧ (dλ)n−1 is a volume form on Σ. Associated to λ there are two important structures. First of all the so-called Reeb vectorfield ħ = X defined by

\[i_X \lambda \equiv 1, \quad i_X d\lambda \equiv 0;\]

*Project 19871044 Supported by NSF
and secondly the contact structure \(\xi = \xi_\lambda \mapsto \Sigma \) given by

\[
\xi_\lambda = \ker(\lambda) \subset T\Sigma.
\]

By a result of Gray, [7], the contact structure is very stable. In fact, if \((\lambda_t)_{t \in [0,1]}\) is a smooth arc of contact forms inducing the arc of contact structures \((\xi_t)_{t \in [0,1]}\), there exists a smooth arc \((\psi_t)_{t \in [0,1]}\) of diffeomorphisms with \(\psi_0 = Id\), such that

\[
T\psi_t(\xi_0) = \xi_t.
\]

(1.1)

here it is important that \(\Sigma\) is compact. From (1.1) and the fact that \(\psi_0 = Id\) it follows immediately that there exists a smooth family of maps \([0,1] \times \Sigma \mapsto (0,\infty) : (t,m) \mapsto f_t(m)\) such that

\[
\psi_t^*\lambda_t = f_t\lambda_0
\]

(1.2)

In contrast to the contact structure the dynamics of the Reeb vectorfield changes drastically under small perturbation and in general the flows associated to \(X_t\) and \(X_s\) for \(t \neq s\) will not be conjugated.

Concerning the dynamics of Reeb flow, there is a well-known conjecture raised by Arnold in [2] which concerned the Reeb orbit and Legendre submanifold in a contact manifold. If \((\Sigma, \lambda)\) is a contact manifold with contact form \(\lambda\) of dimension \(2n - 1\), then a Legendre submanifold is a submanifold \(L\) of \(\Sigma\), which is \((n-1)\)dimensional and everywhere tangent to the contact structure \(\ker \lambda\). Then a characteristic chord for \((\lambda, L)\) is a smooth path

\[
x : [0,T] \to M, T > 0
\]

with

\[
\dot{x}(t) = X_\lambda(x(t)) \text{ for } t \in (0,T),
\]

\[
x(0), x(T) \in L
\]

Arnold raised the following conjecture:

Conjecture (see [2]). Let \(\lambda_0\) be the standard tight contact form

\[
\lambda_0 = \frac{1}{2}(x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2)
\]

on the three sphere

\[
S^3 = \{(x_1, y_1, x_2, y_2) \in \mathbb{R}^4 | x_1^2 + y_1^2 + x_2^2 + y_2^2 = 1\}.
\]
If \(f : S^3 \to (0, \infty) \) is a smooth function and \(\mathcal{L} \) is a Legendre knot in \(S^3 \), then there is a characteristic chord for \((f\lambda_0, \mathcal{L})\).

The main results of this paper as following:

Theorem 1.1 Let \((\Sigma, \lambda)\) be a contact manifold with contact form \(\lambda \), \(X_\lambda \) its Reeb vector field, \(\mathcal{L} \) a closed Legendre submanifold, then there exists at least one characteristic chord for \((X_\lambda, \mathcal{L})\).

Corollary 1.1 ([15, 16]) Let \((S^3, f\lambda_0)\) be a tight contact manifold with contact form \(f\lambda_0 \), \(X_{f\lambda_0} \) its Reeb vector field, \(\mathcal{L} \) a closed Legendre submanifold, then there exists at least one characteristic chord for \((X_{f\lambda_0}, \mathcal{L})\).

Sketch of proofs: We work in the framework as in [4, 8, 15]. In Section 2, we study the linear Cauchy-Riemann operator and sketch some basic properties. In section 3, first we construct a Lagrangian submanifold \(W \) under the assumption that there does not exists Reeb chord connecting the Legendre submanifold \(\mathcal{L} \); second, we study the space \(\mathcal{D}(V,W) \) of contractible disks in manifold \(V \) with boundary in Lagrangian submanifold \(W \) and construct a Fredholm section of tangent bundle of \(\mathcal{D}(V,W) \). In section 4, following [4, 8, 15], we prove that the Fredholm section is not proper by using a special anti-holomorphic section as in [4, 8, 15]. In section 5-6, we use a geometric argument to prove the boundaries of \(J^- \)-holomorphic curves remain in a finite part of Lagrangian submanifold \(W \). In the final section, we use nonlinear Fredholm trick in [4, 8, 15] to complete our proof.

2 Linear Fredholm Theory

For \(100 < k < \infty \) consider the Hilbert space \(V_k \) consisting of all maps \(u \in H^{k,2}(D, C \times C^n) \), such that \(u(z) \in \{izR\} \times R^n \subset C \times C^n \) for almost all \(z \in \partial D \). \(L_{k-1} \) denotes the usual Sobolev space \(H_{k-1}(D, C \times C^n) \). We define an operator \(\bar{\partial} : V_k \mapsto L_{k-1} \) by

\[
\bar{\partial}u = u_s + iu_t
\]

(2.1)

where the coordinates on \(D \) are \((s, t) = s + it, D = \{z||z| \leq 1\}\). The following result is well known (see[19]).
Proposition 2.1 \(\partial : V_k \mapsto L_{k-1} \) is a surjective real linear Fredholm operator of index \(n + 3 \). The kernel consists of \((a_0 + i s z - \bar{a}_0 z^2, s_1, \ldots, s_n) \), \(a_0 \in C \), \(s, s_1, \ldots, s_n \in R \).

Let \((\bar{C}^n, \sigma = -Im(\cdot, \cdot)) \) be the standard symplectic space. We consider a real \(n \)-dimensional plane \(R^n \subset C^n \). It is called Lagrangian if the skew-scalar product of any two vectors of \(R^n \) equals zero. For example, the plane \(\{(p, q) | p = 0\} \) and \(\{(p, q) | q = 0\} \) are two transversal Lagrangian subspaces. The manifold of all (nonoriented) Lagrangian subspaces of \(R^{2n} \) is called the Lagrangian-Grassmanian \(\Lambda(n) \). One can prove that the fundamental group of \(\Lambda(n) \) is free cyclic, i.e. \(\pi_1(\Lambda(n)) = Z \). Next assume \((\Gamma(z))_{z \in \partial D} \) is a smooth map associating to a point \(z \in \partial D \) a Lagrangian subspace \(\Gamma(z) \) of \(C^n \), i.e. \((\Gamma(z))_{z \in \partial D} \) defines a smooth curve \(\alpha \) in the Lagrangian-Grassmanian manifold \(\Lambda(n) \). Since \(\pi_1(\Lambda(n)) = Z \), one have \([\alpha] = k \epsilon \), we call integer \(k \) the Maslov index of curve \(\alpha \) and denote it by \(m(\Gamma) \), see([3, 19]).

Now let \(z : S^1 \mapsto \{R \times R^n \subset C \times C^n\} \in \Lambda(n + 1) \) be a constant curve. Then it defines a constant loop \(\alpha \) in Lagrangian-Grassmanian manifold \(\Lambda(n + 1) \). This loop defines the Maslov index \(m(\alpha) \) of the map \(z \) which is easily seen to be zero.

Now let \((V, \omega) \) be a symplectic manifold, \(W \subset V \) a closed Lagrangian submanifold. Let \((\bar{V}, \bar{\omega}) = (D \times V, \omega_0 + \omega) \) and \(\bar{W} = \partial D \times W \). Let \(\bar{u} = (id, u) : (D, \partial D) \mapsto (D \times V, \partial D \times W) \) be a smooth map homotopic to the map \(u_0 = (id, u_0) \), here \(u_0 : (D, \partial D) \mapsto p \in W \subset V \). Then \(\bar{u}^*TV \) is a symplectic vector bundle on \(D \) and \((\bar{u}|_{\partial D})^*\bar{W} \) is a Lagrangian subbundle in \(\bar{u}^*TV|_{\partial D} \). Since \(\bar{u} : (D, \partial D) \mapsto (\bar{V}, \bar{W}) \) is homotopic to \(\bar{u}_0 \), i.e., there exists a homotopy \(h : [0, 1] \times (D, \partial D) \mapsto (\bar{V}, \bar{W}) \) such that \(h(0, z) = (z, p), h(1, z) = \bar{u}(z) \), we can take a trivialization of the symplectic vector bundle \(h^*\bar{V} \) on \([0, 1] \times (D, \partial D)\) as

\[
\Phi(h^*\bar{V}) = [0, 1] \times D \times C \times C^n
\]

and

\[
\Phi((h|_{[0,1] \times \partial D})^*\bar{W}) \subset [0, 1] \times S^1 \times C \times C^n
\]

Let

\[
\pi_2 : [0, 1] \times D \times C \times C^n \rightarrow C \times C^n
\]

then

\[
\bar{h} : (s, z) \in [0, 1] \times S^1 \rightarrow \pi_2\Phi(h|_{[0,1] \times \partial D})^*\bar{W}|(s, z) \in \Lambda(n + 1).
\]
Lemma 2.1 Let $\bar{u} : (D, \partial D) \to (V, W)$ be a C^k-map ($k \geq 1$) as above. Then,

$$m(\bar{u}) = 2.$$

Proof. Since \bar{u} is homotopic to \bar{u}_0 in \bar{V} relative to W, by the above argument we have a homotopy Φ_s of trivializations such that

$$\Phi_s(\bar{u}^*TV) = D \times C \times C^n$$

and

$$\Phi_s((\bar{u}|_{\partial D})^*T\bar{W}) \subset S^1 \times C \times C^n$$

Moreover

$$\Phi_0((\bar{u}|_{\partial D})^*T\bar{W}) = S^1 \times izR \times R^n$$

So, the homotopy induces a homotopy \tilde{h} in Lagrangian-Grassmanian manifold. Note that $m(\tilde{h}(0, \cdot)) = 0$. By the homotopy invariance of Maslov index, we know that $m(\tilde{u}|_{\partial D}) = 2$.

Consider the partial differential equation

$$\bar{\partial} \bar{u} + A(z)\bar{u} = 0 \text{ on } D$$

$$\bar{u}(z) \in \Gamma(z)(izR \times R^n) \text{ for } z \in \partial D$$

$$\Gamma(z) \in GL(2(n+1), R) \cap Sp(2(n+1))$$

$$m(\Gamma) = 2$$ (2.2)

For $100 < k < \infty$ consider the Banach space \bar{V}_k consisting of all maps $u \in H^{k,2}(D, C^n)$ such that $u(z) \in \Gamma(z)$ for almost all $z \in \partial D$. Let L_{k-1} the usual Sobolev space $H_{k-1}(D, C \times C^n)$

Proposition 2.2 $\bar{\partial} : \bar{V}_k \to L_{k-1}$ is a real linear Fredholm operator of index $n+3$.

3 Nonlinear Fredholm Theory

3.1 Constructions of Lagrangian submanifolds

Let (Σ, λ) be a contact manifolds with contact form λ and X its Reeb vector field, then X integrates to a Reeb flow η_t for $t \in R^1$. Consider the form $d(e^{\theta} \lambda)$
on the manifold \((R \times \Sigma)\), then one can check that \(d(e^a \lambda)\) is a symplectic form on \(R \times \Sigma\). Moreover, one can check that

\[
i_X(e^a \lambda) = e^a \quad \text{(3.1)}
\]
\[
i_X(d(e^a \lambda)) = -de^a \quad \text{(3.2)}
\]

So, the symplectization of Reeb vector field \(X\) is the Hamilton vector field of \(e^a\) with respect to the symplectic form \(d(e^a \lambda)\). Therefore, the Reeb flow lifts to the Hamilton flow \(h_s\) on \(R \times \Sigma\) (see[3]).

Let \(\mathcal{L}\) be a closed Legendre submanifold in \((\Sigma, \lambda)\), i.e., there exists a smooth embedding \(Q : \mathcal{L} \to \Sigma\) such that \(Q^* \lambda |_{\mathcal{L}} = 0\), \(\lambda |_{Q(L)} = 0\). We also write \(\mathcal{L} = Q(\mathcal{L})\). Let

\[
(V', \omega') = (R \times \Sigma, d(e^a \lambda))
\]

and

\[
W' = \mathcal{L} \times R, \quad W'_s = \mathcal{L} \times \{s\}; \quad L' = (0, \cup_s \eta_s(Q(\mathcal{L}))), \quad L'_s = (0, \eta_s(Q(\mathcal{L})))
\]

(3.3)

define

\[
G' : W' \to V'
\]
\[
G'(w') = G'(l, s) = (0, \eta_s(Q(l)))
\]

(3.4)

Lemma 3.1 There does not exist any Reeb chord connecting Legendre submanifold \(\mathcal{L}\) in \((\Sigma, \lambda)\) if and only if \(G'(W'_s) \cap G'(W'_{s'})\) is empty for \(s \neq s'\).

Proof. Obvious.

Lemma 3.2 If there does not exist any Reeb chord for \((X_\lambda, \mathcal{L})\) in \((\Sigma, \lambda)\) then there exists a smooth embedding \(G' : W' \to V'\) with \(G'(l, s) = (0, \eta_s(Q(l)))\) such that

\[
G'_{K} : \mathcal{L} \times (-K, K) \to V'
\]

(3.5)

is a regular open Lagrangian embedding for any finite positive \(K\). We denote

\[
W'(-K, K) = G'_{K}(\mathcal{L} \times (-K, K))
\]

Proof. One check

\[
G'^*(d(e^a \lambda)) = \eta(\cdot, \cdot)^*d\lambda = (\eta^*_s d\lambda + i_X d\lambda \wedge ds) = 0
\]

(3.6)
This implies that G' is a Lagrangian embedding, this proves Lemma 3.2.

In fact the above proof checks that

$$G'^*(\lambda) = \eta(\cdot, \cdot)\lambda = \eta_\nu^*\lambda + i_X\lambda ds = ds. \quad (3.7)$$

i.e., W' is an exact Lagrangian submanifold.

Now we construct an isotopy of Lagrangian embeddings as follows:

$$F': \mathcal{L} \times R \times [0,1] \rightarrow R \times \Sigma$$

$$F'(l,s,t) = (a(s,t), G'(l,s)) = (a(s,t), \eta_s(Q(l)))$$

$$F'_t(l,s) = F'(l,s,t) \quad (3.8)$$

Lemma 3.3 If there does not exist any Reeb chord for (X_λ, \mathcal{L}) in (Σ, λ) and we choose the smooth $a(s,t)$ such that $\int_0^s a(\tau, t) d\tau$ and $\int_s^0 a(\tau, t) d\tau$ exists, then F' is an exact isotopy of Lagrangian embeddings (not regular). Moreover if $a(s,0) \neq a(s,1)$, then $F'_0(\mathcal{L} \times R) \cap F'_1(\mathcal{L} \times R) = \emptyset$.

Proof. Let $F'_t = F'(\cdot, t) : \mathcal{L} \times R \rightarrow R \times \Sigma$. It is obvious that F'_t is an embedding. We check

$$F'^*(d(e^a\lambda)) = d(F'^*(e^a\lambda))$$

$$= d(e^{a(s,t)} G'^*\lambda)$$

$$= d(e^{a(s,t)} ds)$$

$$= e^{a(s,t)} (a_s ds + a_t dt) \wedge ds$$

$$= e^{a(s,t)} a_t dt \wedge ds \quad (3.9)$$

which shows that F'_t is a Lagrangian embedding for fixed t. Moreover for fixed t,

$$F'_t(e^a\lambda) = e^{a(s,t)} ds$$

$$= \left\{ \begin{array}{ll}
 d(\int_0^s e^{a(\tau,t)} d\tau) & \text{for } s \geq 0 \\
 d(- \int_s^0 e^{a(\tau,t)} d\tau) & \text{for } s \leq 0
\end{array} \right. \quad (3.10)$$

which shows that F'_t is an exact Lagrangian embedding, this proves Lemma 3.3.

Now we take $a(s,t) = \frac{a_{0t}}{8} e^{-s^2}$ which satisfies the assumption in Lemma 3.3, then

$$F' : \mathcal{L} \times R \times [0,1] \rightarrow R \times \Sigma$$

7
Let \(\psi_0(s, t) = se^{a(s, t)}a_s = -2\frac{a_0^s}{8}e^{\left(\frac{\partial}{\partial s}e^{-s^2}\right)}s^2 \) \hspace{1cm} (3.11)

\[\psi_1(s, t) = \int_{-\infty}^{s} \psi_0(\tau, t)d\tau \] \hspace{1cm} (3.12)

\[\psi = \frac{\partial \psi_1}{\partial t} - s e^{a(s, t)}a_t \] \hspace{1cm} (3.13)

and compute

\[F'(\varepsilon^a) = e^{a(s, t)}ds \]
\[= d(se^{a(s, t)}) - se^{a(s, t)}a_ds - se^{a(s, t)}a_t dt \]
\[= d(se^{a(s, t)}) - ds\psi_1 - se^{a(s, t)}a_t dt \]
\[= d((se^{a(s, t)} - \psi_1) + \frac{\partial \psi_1}{\partial t} dt - se^{a(s, t)}a_t dt \]
\[= d\Psi' + \frac{\partial \psi_1}{\partial t} dt - se^{a(s, t)}a_t dt \]
\[= d\Psi' - \psi(s, t)dt \]
\[= d\Psi' - \bar{l} \] \hspace{1cm} (3.14)

Let \((V', \omega') = (R \times \Sigma, d(e^a\lambda)), W' = L \times R, \) and \((V, \omega) = (V' \times C, \omega' \oplus \omega_0)\). As in [8], we use figure eight trick invented by Gromov to construct a Lagrangian submanifold in \(V \) through the Lagrange isotopy \(F' \) in \(V' \). Fix a positive \(\delta < 1 \) and take a \(C^\infty \)-map \(\rho : S^1 \to [0, 1] \), where the circle \(S^1 \) via parametrized by \(\Theta \in [-1, 1] \), such that the \(\delta \)-neighbourhood \(I_0 \) of \(0 \in S^1 \) goes to \(0 \in [0, 1] \) and \(\delta \)-neighbourhood \(I_1 \) of \(\pm 1 \in S^1 \) goes \(1 \in [0, 1] \). Let

\[\bar{l} = -\psi(s, \rho(\Theta)) \rho'(\Theta)d\Theta \]
\[= -\Phi d\Theta \] \hspace{1cm} (3.15)

be the pull-back of the form \(\bar{l} = -\psi(s, t)dt \) to \(W' \times S^1 \) under the map \((w', \Theta) \to (w', \rho(\Theta))\) and assume without loss of generality \(\Phi \) vanishes on \(W' \times (I_0 \cup I_1) \).

Next, consider a map \(\alpha \) of the annulus \(S^1 \times [5\Phi_-, 5\Phi_+] \) into \(R^2 \), where \(\Phi_- \) and \(\Phi_+ \) are the lower and the upper bound of the function \(\Phi \) correspondingly, such that
(i) The pull-back under α of the form $dx \wedge dy$ on R^2 equals $-d\Phi \wedge d\Theta$.

(ii) The map α is bijective on $I \times [5\Phi_-, 5\Phi_+]$ where $I \subset S^1$ is some closed subset, such that $I \cup I_0 \cup I_1 = S^1$; furthermore, the origin $0 \in R^2$ is a unique double point of the map α on $S^1 \times 0$, that is

$$0 = \alpha(0, 0) = \alpha(\pm 1, 0),$$

and α is injective on $S^1 = S^1 \times 0$ minus $\{0, \pm 1\}$.

(iii) The curve $S^1_0 = \alpha(S^1 \times 0) \subset R^2$ “bounds” zero area in R^2, that is

$$\int_{S^1_0} xdy = 0,$$

for the 1-form xdy on R^2.

Proposition 3.1 Let V', W' and F' as above. Then there exists an exact Lagrangian embedding $F : W' \times S^1 \to V' \times R^2$ given by $F(w', \Theta) = (F'(w', \rho(\Theta)), \alpha(\Theta, \Phi))$.

Proof. We follow as in [8, 2.3]. Now let $F^* : W' \times S^1 \to V' \times R^2$ be given by $(w', \Theta) \to (F'(w', \rho(\Theta)), \alpha(\Theta, \Phi))$. Then

(i) The pull-back under F^* of the form $\omega = \omega' + dx \wedge dy$ equals $dF^* - d\Phi \wedge d\Theta = 0$ on $W' \times S^1$.

(ii) The set of double points of F^* is $W'_0 \cap W'_1 \subset V' = V' \times 0 \subset V' \times R^2$.

(iii) If F^* has no double point then the Lagrangian submanifold $W = F^*(W' \times S^1) \subset (V' \times R^2, \omega' + dx \wedge dy)$ is exact if and only if $W'_0 \subset V'$ is such.

This completes the proof of Proposition 3.1.

3.2 Formulation of Hilbert bundles

Let (Σ, λ) be a closed $(2n-1)$-dimensional manifold with a contact form λ. Let $SS = R \times \Sigma$ and put $\xi = \ker(\lambda)$. Let J_λ' be an almost complex structure on SS tamed by the symplectic form $d(e^a\lambda)$.

We define a metric g_λ on $SS = R \times \Sigma$ by

$$g_\lambda = d(e^a\lambda)(\cdot, J_\lambda')$$

which is adapted to J_λ and $d(e^a\lambda)$ but not complete.

In the following we denote by $(V', \omega') = ((R \times \Sigma), d(e^a\lambda))$ and $(V, \omega) = (V' \times R^2, \omega' + dx \wedge dy)$ with the metric $g = g' \oplus g_0$ induced by $\omega(\cdot, J)(J = J' \oplus i)$ and $W \subset V$ a Lagrangian submanifold which was constructed in section 3.1.
Let $\bar{V} = D \times V$, then $\pi_1 : \bar{V} \to D$ be a symplectic vector bundle. Let J be an almost complex structure on \bar{V} such that $\pi_1 : \bar{V} \to D$ is a holomorphic map and each fibre $\bar{V}_z = \pi_1(z)$ is a J complex submanifold. Let $H^k(D)$ be the space of H^k-maps from D to \bar{V}, here H^k represents Sobolev derivatives up to order k. Let $\bar{W} = \partial D \times W$, $\bar{p} = \{1\} \times p$, $W^\pm = \{\pm i\} \times W$ and $\bar{u} \in H^k(D)|\bar{u}(x) \in \bar{W}$ a.e for $x \in \partial D$ and $\bar{u}(1) = \bar{p}, \bar{u}(\pm i) \in \{\pm i\} \times \bar{W}$

$D^k = \{\bar{u} \in H^k(D)|\bar{u}(x) \in \bar{W}$ a.e for $x \in \partial D$ and $\bar{u}(1) = \bar{p}, \bar{u}(\pm i) \in \{\pm i\} \times \bar{W}\}$

for $k \geq 100$.

Lemma 3.4 Let W be a closed Lagrangian submanifold in V. Then, D^k is a pseudo-Hilbert manifold with the tangent bundle

$$TD^k = \bigcup_{\bar{u} \in D^k} \Lambda^{-1}$$

(3.17)

here

$$\Lambda^{-1} = \{\bar{w} \in H^{-1}(\bar{u}^*(T\bar{V})|\bar{w}(1) = 0, and \bar{w}(\pm i) \in T\bar{W}\}$$

Note 3.1 Since W is not regular we know that D^k is in general complete, however it is enough for our purpose.

Proof: See [4, 13].

Now we consider a section from D^k to TD^k follows as in [4, 8], i.e., let $\bar{\partial} : D^k \to TD^k$ be the Cauchy-Riemann section

$$\bar{\partial} \bar{u} = \frac{\partial \bar{u}}{\partial s} + J \frac{\partial \bar{u}}{\partial t}$$

(3.18)

for $\bar{u} \in D^k$.

Theorem 3.1 The Cauchy-Riemann section $\bar{\partial}$ defined in (3.18) is a Fredholm section of Index zero.

Proof. According to the definition of the Fredholm section, we need to prove that $\bar{u} \in D^k$, the linearization $D\bar{\partial}(\bar{u})$ of $\bar{\partial}$ at \bar{u} is a linear Fredholm operator. Note that

$$D\bar{\partial}(\bar{u}) = D\bar{\partial}_{[\bar{u}]}$$

(3.19)
where
\[(D\bar{\partial}_{[\bar{u}]})v = \frac{\partial \bar{v}}{\partial s} + J\frac{\partial \bar{v}}{\partial t} + A(\bar{u})\bar{v}\]
(3.20)

with
\[\bar{v}|_{\partial D} \in (\bar{u}|_{\partial D})^* T\bar{W}\]

here \(A(\bar{u})\) is \(2n \times 2n\) matrix induced by the torsion of almost complex structure, see [4, 8] for the computation.

Observe that the linearization \(D\bar{\partial}(\bar{u})\) of \(\bar{\partial}\) at \(\bar{u}\) is equivalent to the following Lagrangian boundary value problem
\[
\frac{\partial \bar{v}}{\partial s} + J\frac{\partial \bar{v}}{\partial t} + A(\bar{u})\bar{v} = \bar{f}, \quad \bar{v} \in \Lambda^k(\bar{u}^* TV)
\]
\[
\bar{v}(t) \in T_{\bar{u}(t)} W, \quad t \in \partial D
\]
(3.21)

One can check that (3.21) defines a linear Fredholm operator. In fact, by proposition 2.2 and Lemma 2.1, since the operator \(A(\bar{u})\) is a compact, we know that the operator \(\bar{\partial}\) is a nonlinear Fredholm operator of the index zero.

Definition 3.1 Let \(X\) be a Banach manifold and \(P : Y \rightarrow X\) the Banach vector bundle. A Fredholm section \(F : X \rightarrow Y\) is proper if \(F^{-1}(0)\) is a compact set and is called generic if \(F\) intersects the zero section transversally, see [4, 8].

Definition 3.2 \(\text{deg}(F, y) = \sharp\{F^{-1}(0)\}\mod 2\) is called the Fredholm degree of a Fredholm section (see[4, 8]).

Theorem 3.2 Assume that \(\bar{J} = i \oplus J\) on \(\bar{V}\) and \(i\) is complex structure on \(D\) and \(J\) the almost complex structure on \(V\) which is integrable near point \(p\). Then the Fredholm section \(F = \bar{\partial} : D^k \rightarrow T\bar{D}^k\) constructed in (3.18) has degree one, i.e.,
\[\text{deg}(F, 0) = 1\]

Proof: We assume that \(\bar{u} : D \rightarrow \bar{V}\) be a \(\bar{J}\)–holomorphic disk with boundary \(\bar{u}(\partial D) \subset W\) and by the assumption that \(\bar{u}\) is homotopic to the map \(\bar{u}_1 = (id, \bar{p})\). Since almost complex structure \(\bar{J}\) splits and is tamed by the symplectic form \(\bar{\omega}\), by stokes formula, we conclude the second component \(u : D \rightarrow V\) is a constant map. Because \(u(1) = p\), We know that \(F^{-1}(0) = (id, p)\). Next
we show that the linearization $DF_{(id,p)}$ of F at (id,p) is an isomorphism from $T_{(id,p)}D^k$ to E. This is equivalent to solve the equations

\[
\frac{\partial \bar{v}}{\partial s} + J \frac{\partial \bar{v}}{\partial t} = f
\]

(3.22)

\[
\bar{v}|_{\partial D} \subset T_{(id,p)}\bar{W}
\]

(3.23)

here $\bar{J} = i + J(p)$. By Lemma 2.1, we know that $DF((id,p))$ is an isomorphism. Therefore $\deg(F,0) = 1$.

4 Anti-holomorphic sections

In this section we construct a Fredholm section which is not proper as in [4, 8].

Let $(V', \omega') = (S\Sigma, d(e^\alpha \lambda))$ and $(V, \omega) = (V' \times C, \omega' \oplus \omega_0)$, W as in section 3 and $J = J' \oplus i$, $g = g' \oplus g_0$, g_0 the standard metric on C.

Now let $c \in C$ be a non-zero vector. We consider c as an anti-holomorphic homomorphism $c : TD \to TV' \oplus TC$, i.e., $c(\frac{\partial}{\partial z}) = (0, c \cdot \frac{\partial}{\partial z})$. Since the constant section c is not a section of the Hilbert bundle in section 3 due to c is not tangent to the Lagrangian submanifold W, we must modify it as follows:

Let c as above, we define

\[
c_{\chi, \delta}(z, v) = \begin{cases}
c & \text{if } |z| \leq 1 - 2\delta, \\
0 & \text{otherwise} \end{cases}
\]

(4.1)

Then by using the cut off function $\varphi_h(z)$ and its convolution with section $c_{\chi, \delta}$, we obtain a smooth section c_{δ} satisfying

\[
c_{\delta}(z, v) = \begin{cases}
c & \text{if } |z| \leq 1 - 3\delta, \\
0 & \text{if } |z| \geq 1 - \delta. \end{cases}
\]

\[|c_{\delta}| \leq |c|\]

(4.2)

for h small enough, for the convolution theory see [12, ch1.p16-17, Th1.3.1]. Then one can easily check that $\bar{c}_{\delta} = (0, 0, c_{\delta})$ is an anti-holomorphic section tangent to \bar{W}.

Now we put an almost complex structure $\bar{J} = i \oplus J$ on the symplectic fibration $D \times V \to D$ such that $\pi_1 : D \times V \to D$ is a holomorphic fibration.
and $\pi_1^{-1}(z)$ is an almost complex submanifold. Let $g = \bar{\omega}(\cdot, J\cdot)$ be the metric on $D \times V$.

Now we consider the equations

$$
\bar{v} = (id, v) = (id, v', f) : D \to D \times V' \times C
$$

$$
\bar{\partial}_J v = c_\delta \quad \text{or}
$$

$$
\bar{\partial}_{J'} v' = 0, \partial f = c_\delta \text{ on } D
$$

$$
v|_{\partial D} : \partial D \to W \tag{4.3}
$$

here v homotopic to constant map $\{p\}$ relative to W. Note that $W \subset V \times B_{R}(0)$ for $\pi R^2 = 2\pi R(\varepsilon)^2$, here $R(\varepsilon) \to 0$ as $\varepsilon \to 0$ and ε as in section 3.1.

Lemma 4.1 Let $\bar{v} = (id, v)$ be the solutions of (4.3), then one has the following estimates

$$
E(v) = \left\{ \int_D (g'\left(\frac{\partial v}{\partial x}, J'\frac{\partial v'}{\partial x}\right) + g'\left(\frac{\partial v}{\partial y}, J'\frac{\partial v'}{\partial y}\right)
+ g_0\left(\frac{\partial f}{\partial x}, i\frac{\partial f}{\partial x}\right) + g_0\left(\frac{\partial f}{\partial y}, i\frac{\partial f}{\partial y}\right))d\sigma \right\} \leq 4\pi R(\varepsilon)^2. \tag{4.4}
$$

Proof: Since $v(z) = (v'(z), f(z))$ satisfy (4.3) and $v(z) = (v'(z), f(z)) \in V' \times C$ is homotopic to constant map $v_0 : D \to \{p\} \subset W$ in (V, W), by the Stokes formula

$$
\int_D v^*(\omega' \oplus \omega_0) = 0 \tag{4.5}
$$

Note that the metric g is adapted to the symplectic form ω and J, i.e.,

$$
g = \omega(\cdot, J\cdot) \tag{4.6}
$$

By the simple algebraic computation, we have

$$
\int_D v^*\omega = \frac{1}{4} \int_{D^2} (|\partial v|^2 - |\bar{\partial} v|^2) = 0 \tag{4.7}
$$

and

$$
|\nabla v| = \frac{1}{2} (|\partial v|^2 + |\bar{\partial} v|^2) \tag{4.8}
$$
Then
\[E(v) = \int_D |\nabla v| \]
\[= \int_D \left(\frac{1}{2} (|\partial v|^2 + |\bar{\partial} v|^2) \right) d\sigma \]
\[= \int_D |c_\delta|^2 d\sigma \] (4.9)

By Cauchy integral formula,
\[f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \int_D \frac{\bar{\partial} f(\xi)}{\xi - z} d\xi \wedge d\bar{\xi} \] (4.10)

Since \(f \) is smooth up to the boundary, we integrate the two sides on \(D_r \) for \(r < 1 \), one get
\[\int_{\partial D_r} f(z) dz = 0 + \frac{1}{2\pi i} \int_{\partial D_r} \frac{\bar{\partial} f(\xi)}{\xi - z} d\xi \wedge d\bar{\xi} \] (4.11)

Let \(r \to 1 \), we get
\[\int_{\partial D} f(z) dz = \int_D \bar{\partial} f(\xi) d\xi \wedge d\bar{\xi} \] (4.12)

By the equations (4.3), one get
\[\bar{\partial} f = c \text{ on } D_{1-2\delta} \] (4.13)

So, we have
\[2\pi i (1 - 2\delta) c = \int_{\partial D} f(z) dz - \int_{D - D_{1-2\delta}} \bar{\partial} f(\xi) d\xi \wedge d\bar{\xi} \] (4.14)

So,
\[|c| \leq \frac{1}{2\pi(1 - 2\delta)} |\int_{\partial D} f(z) dz| + |\int_{D - D_{1-2\delta}} \bar{\partial} f(\xi) d\xi \wedge d\bar{\xi}| \]
\[
\leq \frac{1}{2\pi(1-2\delta)} 2\pi |\text{diam}(pr_2(W)) + c_1c_2|c|(\pi - \pi(1-2\delta)^2)) \quad (4.15)
\]

Therefore, one has
\[
|c| \leq c(\delta)R(\varepsilon) \quad (4.16)
\]

and
\[
E(v) = \pi \int_D |c_\delta|_g^2 = \pi c(\delta)^2 R(\varepsilon)^2. \quad (4.17)
\]

This finishes the proof of Lemma.

Proposition 4.1 For \(|c| \geq 2c(\delta)R(\varepsilon)|, then the equations (4.3) has no solutions.

Proof. By 4.16, it is obvious.

Theorem 4.1 The Fredholm section \(F_1 = \bar{\partial}j + c_\delta : D^k \to E\) is not proper.

Proof. By the Proposition 4.1 and Theorem 3.2, it is obvious (see [4, 8]).

5 **J–holomorphic section**

Recall that \(W(-K, K) \subset W \subset V' \times R^2\) as in section 3. The Riemann metric \(g\) on \(V' \times R^2\) induces a metric \(g|W\).

Now let \(c \in C\) be a non-zero vector and \(c_\delta\) the induced anti-holomorphic section. We consider the nonlinear inhomogeneous equations (4.3) and transform it into \(\bar{J}\)–holomorphic map by considering its graph as in [8, p319,1.4.C] or [4, p312, Lemma 5.2.3].

Denote by \(Y(1) \to D \times V\) the bundle of homomorphisms \(T_s(D) \to T_v(V)\). If \(D\) and \(V\) are given the disk and the almost Kähler manifold, then we distinguish the subbundle \(X(1) \subset Y(1)\) which consists of complex linear homomorphisms and we denote \(\bar{X}(1) \to D \times V\) the quotient bundle \(Y(1)/X(1)\).

Now, we assign to each \(C^1\)-map \(v : D \to V\) the section \(\bar{\partial}v\) of the bundle \(\bar{X}(1)\) over the graph \(\Gamma_v \subset D \times V\) by composing the differential of \(v\) with the quotient homomorphism \(Y(1) \to \bar{X}(1)\). If \(c_\delta : D \times V \to \bar{X}\) is a \(H^k\)–section we write \(\bar{\partial}v = c_\delta\) for the equation \(\bar{\partial}v = c_\delta|\Gamma_v\).
Lemma 5.1 (Gromov[8, 1.4.C]) There exists a unique almost complex structure J_g on $D \times V$ (which also depends on the given structures in D and in V), such that the (germs of) J_g-holomorphic sections $v : D \to D \times V$ are exactly and only the solutions of the equations $\delta v = c_5$. Furthermore, the fibres $z \times V \subset D \times V$ are J_g-holomorphic (i.e. the subbundles $T(z \times V) \subset T(D \times V)$ are J_g-complex) and the structure $J_g|z \times V$ equals the original structure on $V = z \times V$. Moreover J_g is tamed by $k\omega \oplus \omega$ for k large enough which is independent of δ.

6 Gromov’s C^0–convergence theorem

6.1 Analysis of Gromov’s figure eight

Since $W' \subset S\Sigma$ is an exact Lagrangian submanifold and F'_ρ is an exact Lagrangian isotopy (see section 3.1). Now we carefully check the Gromov’s construction of Lagrangian submanifold $W \subset V' \times R^2$ from the exact Lagrangian isotopy of W' in section 3.

Let $S^1 \subset T^*S^1$ be a zero section and $S^1 = \bigcup_{i=1}^3 S_i$ be a partition of the zero section S^1 such that $S_1 = I_0$, $S_3 = I_1$. Write $S^1 \setminus \{I_0 \cup I_1\} = I_2 \cup I_3$ and $I_0 = (-\delta, -\frac{5\delta}{4}) \cup (-\frac{5\delta}{4}, \frac{5\delta}{4}) \cup \left[\frac{5\delta}{4}, \delta\right]$, similarly $I_1 = (1-\delta, 1-\frac{5\delta}{4}) \cup (1-\frac{5\delta}{4}, 1+\frac{5\delta}{4}) \cup [1+\frac{5\delta}{4}, 1+\delta) = I_1^- \cup I_1^+$. Let $S_2 = I_0^- \cup I_2 \cup I_1^-$, $S_4 = I_1^+ \cup I_3 \cup I_1^+$. Moreover, we can assume that the double points of map α in Gromov’s figure eight is contained in $(I_0 \cup I_1) \times \Phi_-, \Phi_+$, here $I_0 = (-\frac{5\delta}{12}, \frac{5\delta}{12})$ and $I_1 = (1-\frac{5\delta}{12}, 1+\frac{5\delta}{12})$. Recall that $\alpha : (S^1 \times [5\Phi_-, 5\Phi_+]) \to R^2$ is an exact symplectic immersion, i.e., $\alpha^*(-ydx) - \Psi d\Theta = dh$, $h : T^*S^1 \to R$. By the construction of figure eight, we can assume that $\alpha'_i = \alpha|((S^1 \setminus I_i') \times [5\Phi_-, 5\Phi_+])$ is an embedding for $i = 0, 1$. Let $Y = \alpha(S^1 \times [5\Phi_-, 5\Phi_+]) \subset R^2$ and $Y_i = \alpha(S_i \times [5\Phi_-, 5\Phi_+]) \subset R^2$. Let $\alpha_i = \alpha|Y_i(S^1 \times [5\Phi_-, 5\Phi_+])$. So, α_i puts the function h to the function $h_{i0} = \alpha_{i0}^{-1}h$ on Y_i. We extend the function h_{i0} to whole plane R^2. In the following we take the liouville form $\beta_{i0} = -ydx - dh_{i0}$ on R^2. This does not change the symplectic form $dx \wedge dy$ on R^2. But we have $\alpha_i^*\beta = \Phi d\Theta$ on $(S_i \times [5\Phi_-, 5\Phi_+])$ for $i = 1, 2, 3, 4$. Finally, note that

$$F : W' \times S^1 \to V' \times R^2;$$
$$F(w', \Theta) = (F'_\rho(\Theta)(w'), \alpha(\Theta, \Phi(w'), \rho(\Theta)).$$

(6.1)
Since $\rho(\Theta) = 0$ for $\Theta \in I_0$ and $\rho(\Theta) = 1$ for $\Theta \in I_1$, we know that $\Phi(w',\rho(\Theta)) = 0$ for $\Theta \in I_0 \cup I_1$. Therefore,

$$F(W' \times I_0) = W' \times \alpha(I_0); F(W' \times I_1) = W' \times \alpha(I_1).$$

(6.2)

6.2 Gromov’s Schwartz lemma

In our proof we need a crucial tool, i.e., Gromov’s Schwartz Lemma as in [8]. We first consider the case without boundary.

Proposition 6.1 Let (V, J, μ) be as in section 4 and V_K the compact part of V. There exist constants ϵ_0 and C (depending only on the C^0 norm of μ and on the C^α norm of J and A_0) such that every J–holomorphic map of the unit disc to an ϵ_0-ball of V with center in V_K and area less than A_0 has its derivatives up to order $k + 1 + \alpha$ on $D^\pm_1(0)$ bounded by C.

For a proof, see [8].

Now we consider the Gromov’s Schwartz Lemma for J–holomorphic map with boundary in a closed Lagrangian submanifold as in [8].

Proposition 6.2 Let (V, J, μ) as above and $L \subset V$ be a closed Lagrangian submanifold and V_K one compact part of V. There exist constants ϵ_0 and C (depending only on the C^0 norm of μ and on the C^α norm of J and K, A_0) such that every J–holomorphic map of the half unit disc D^+ to a ϵ_0-ball of V with boundary in L and area less than A_0 has its derivatives up to order $k + 1 + \alpha$ on $D^+_1(0)$ bounded by C.

For a proof see [8].

Since in our case W is a non-compact Lagrangian submanifold, Proposition 6.2 can not be used directly but the proofs of Proposition 6.1-2 still holds in our case.

Lemma 6.1 Recall that $V = V' \times R^2$. Let (V, J, μ) as above and $W \subset V$ be as above and V_c the compact set in V. Let $\bar{V} = D \times V$, $\bar{W} = \partial D \times W$, and $\bar{V}_c = D \times \bar{V}_c$. Let $Y = \alpha(S^1 \times [5\Phi_-, 5\Phi_+]) \subset R^2$. Let $Y_j = \alpha(S_j \times [5\Phi_-, 5\Phi_+]) \subset R^2$. Let $\{X_j\}_{j=1}^q$ be a Darboux covering of Σ and $V_j' = R \times X_j$. Let $\partial D = S^1_+ \cup S^1_-$. There exist constant c_0 such that every J–holomorphic map v
of the half unit disc D^+ to the $D \times V'_i \times R^2$ with its boundary $v((−1, 1)) \subset (S^{1±}) \times F(\mathcal{L} \times R \times S_i) \subset \tilde{W}, i = 1, .., 4$ has

$$\text{area}(v(D^+)) \leq c_0 l^2(v(\partial^D+)). \quad (6.3)$$

here $\partial^D+ = \partial D \setminus [−1, 1]$ and $l(v(\partial^D+)) = \text{length}(v(\partial^D+))$.

Proof. Let $\tilde{W}_i = S^{1±} \times F(W'_i \times S_i)$. Let $v = (v_1, v_2): D^+ \to \tilde{V} = D \times V$ be the J–holomorphic map with $v(\partial D^+) \subset \tilde{W}_i \subset \partial D \times W$, then

$$\text{area}(v) = \int_{D^+} v^*(\alpha_0 \oplus \alpha) = \int_{D^+} dv^*(\alpha_0 \oplus \alpha) = \int_{\partial D^+} v^*(\alpha_0 \oplus \alpha) = \int_{\partial D^+} v_1^*\alpha_0 + \int_{\partial D^+} v_2^*\alpha = \int_{\partial D^+ \cup [−1, +1]} v_1^*\alpha_0 + \int_{\partial D^+ \cup [−1, +1]} v_2^*(e^a\lambda - ydx - dh_{i0}) = \int_{\partial D^+ \cup [−1, +1]} v_1^*\alpha_0 + \int_{\partial D^+} v_2^*(e^a\lambda - ydx - dh_{i0}) + B_1, \quad (6.4)$$

here $B_1 = \int_{[−1, +1]} v_2^*(-d\Psi')$. Now take a zig-zag curve C in $V'_j \times Y_i$ connecting $v_2(−1)$ and $v_2(+1)$ such that

$$\int_C (e^a\lambda + ydx) = B_1$$

$$\text{length}(C) \leq k_1 \text{length}(v_2(\partial^D+)) \quad (6.5)$$

Now take a minimal surface M in $V'_j \times R^2$ bounded by $v_2(\partial^D+) \cup C$, then by the isoperimetric inequality(see[9, p283]), we get

$$\text{area}(M) \leq m_1 \text{length}(C + v_2(\partial^D+))^2 \leq m_2 \text{length}(v_2(\partial^D+))^2, \quad (6.6)$$

here we use the (6.5).

Since $\text{area}(M) \geq \int_M \omega$ and $\int_M \omega = \int_{D^+} v_2^*\omega = \text{area}(v)$, this proves the lemma.
Lemma 6.2 Let v as in Lemma 6.1, then we have

$$\text{area}(v(D^+)) \geq c_0(\text{dist}(v(0), v(\partial^+D)))^2,$$ \hspace{1cm} (6.7)

here c_0 depends only on $\Sigma, J, \omega, \ldots$, etc, not on v.

Proof. By the standard argument as in [4, p79].

The following estimates is a crucial step in our proof.

Lemma 6.3 Recall that $V = V' \times \mathbb{R}^2$. Let (V, J, μ) as above and $W \subset V$ be as above and V_c the compact set in V. Let $V = D \times V$, $W = \partial D \times W$, and $V_c = D \times V_c$. Let $Y = \alpha(S^1 \times [5\Phi_-, 5\Phi_+]) \subset \mathbb{R}^2$. Let $Y_i = \alpha(S_i \times [5\Phi_-, 5\Phi_+]) \subset \mathbb{R}^2$. Let $\partial D = S^{1+} \cup S^{1-}$. There exist constant c_0 such that every J–holomorphic map v of the half unit disc D^+ to the $D \times V' \times \mathbb{R}^2$ with its boundary $v((-1, 1)) \subset (S^{1\pm}) \times F(L \times R \times S_i) \subset \bar{W}, i = 1, \ldots, 4$ has

$$\text{area}(v(D^+)) \leq c_0 l^2(v(\partial^+D^)).$$ \hspace{1cm} (6.8)

here $\partial^+D = \partial D \setminus [-1, 1]$ and $l(v(\partial^+D)) = \text{length}(v(\partial^+D))$.

Proof. We first assume that ε in section 3.1 is small enough. Let l_0 is a constant small enough. If $\text{length}(\partial^+D^+) \geq l_0$, then Lemma 6.3 holds. If $\text{length}(\partial^+D^+) \leq l_0$ and $v(D^+) \subset D \times V_j' \times \mathbb{R}^2$, then Lemma6.3 reduces to Lemma6.1. If $\text{length}(\partial^+D^+) \leq l_0$ and $v(D^+) \subset D \times V_j' \times \mathbb{R}^2$, then Lemma6.2 implies $\text{area}(v) \geq \tau_0 > 100\pi R(\varepsilon)^2$, this is a contradiction. Therefore we proved the lemma.

Proposition 6.3 Let (V, J, μ) and $W \subset V$ be as in section 4 and V_K the compact part of V. Let \bar{V}, \bar{V}_K and \bar{W} as section 5.1. There exist constants ε_0 (depending only on the C^0– norm of μ and on the C^α norm of J) and C (depending only on the C^0 norm of μ and on the $C^{k+\alpha}$ norm of J) such that every J–holomorphic map of the half unit disc D^+ to the $D \times V' \times \mathbb{R}^2$ with its boundary $v((-1, 1)) \subset (S^{1\pm}) \times F(L \times R \times S_i) \subset \bar{W}, i = 1, \ldots, 4$ has its derivatives up to order $k + 1 + \alpha$ on $D^+_2(0)$ bounded by C.

Proof. One uses Lemma 6.3 and Gromov’s proof on Schwartz lemma to yield proposition 6.3.
6.3 Removal singularity of J–curves

In our proof we need another crucial tools, i.e., Gromov’s removal singularity theorem[8]. We first consider the case without boundary.

Proposition 6.4 Let (V, J, μ) be as in section 4 and V_K the compact part of V. If $v : D \setminus \{0\} \to V_K$ be a J–holomorphic disk with bounded energy and bounded image, then v extends to a J–holomorphic map from the unit disc D to V_K.

For a proof, see[8].

Now we consider the Gromov’s removal singularity theorem for J–holomorphic map with boundary in a closed Lagrangian submanifold as in [8].

Proposition 6.5 Let (V, J, μ) as above and $L \subset V$ be a closed Lagrangian submanifold and V_K one compact part of V. If $v : (D^+ \setminus \{0\}, \partial^+ D^+ \setminus \{0\}) \to (V_K, L)$ be a J–holomorphic half-disk with bounded energy and bounded image, then v extends to a J–holomorphic map from the half unit disc $(D^+, \partial^+ D^+)$ to (V_K, L).

For a proof see [8].

Proposition 6.6 Let (V, J, μ) and $W \subset V$ be as in section 4 and V_c the compact set in V. Let $\bar{V} = D \times V$, $\bar{W} = \partial D \times W$, and $\bar{V}_c = D \times V_c$. Then every J–holomorphic map v of the half unit disc $D^+ \setminus \{0\}$ to the \bar{V} with center in \bar{V}_c and its boundary $v((-1, 1) \setminus \{0\}) \subset (S^{1\pm}) \times F(L \times [-K, K] \times S_i) \subset \bar{W}$ and

\[
\text{area}(v(D^+ \setminus \{0\})) \leq E
\]

(6.9)

extends to a J–holomorphic map $\bar{v} : (D^+, \partial^+ D) \to (\bar{V}_c, \bar{W})$.

Proof. This is ordinary Gromov’s removal singularity theorem by K–assumption.

6.4 C^0–Convergence Theorem

We now recall that the well-known Gromov’s compactness theorem for cusp’s curves for the compact symplectic manifolds with closed Lagrangian submanifolds in it. For reader’s convenience, we first recall the “weak-convergence” for closed curves.
Cusp-curves. Take a system of disjoint simple closed curves γ_i in a closed surface S for $i = 1, \ldots, k$, and denote by S^0 the surface obtained from $S \setminus \bigcup_{i=1}^{k} \gamma_i$. Denote by \bar{S} the space obtained from S by shrinking every γ_i to a single point and observe the obvious map $\alpha : S^0 \rightarrow \bar{S}$ gluing pairs of points s'_i and s''_i in S^0, such that $\bar{s}_i = \alpha(s'_i) = \alpha(s''_i) \in \bar{S}$ are singular (or cuspidal) points in \bar{S} (see[8]).

An almost complex structure in \bar{S} by definition is that in S^0. A continuous map $\beta : \bar{S} \rightarrow V$ is called a (parametrized J–holomorphic) cusp-curve in V if the composed map $\beta \circ \alpha : S^0 \rightarrow V$ is holomorphic.

Weak convergence. A sequence of closed J–curves $C_j \subset V$ is said to weakly converge to a cusp-curve $\bar{C} \subset V$ if the following four conditions are satisfied

(i) all curves C_j are parametrized by a fixed surface S whose almost complex structure depends on j, say $C_j = f_j(S)$ for some holomorphic maps $f_j : (S, J_j) \rightarrow (V, J)$

(ii) There are disjoint simple closed curves $\gamma_i \in S$, $i = 1, \ldots, k$, such that $\bar{C} = \bar{f}(\bar{S})$ for a map $\bar{f} : \bar{S} \rightarrow V$ which is holomorphic for some almost complex structure \bar{J} on \bar{S}.

(iii) The structures J_j uniformly C^∞–converge to \bar{J} on compact subsets in $S \setminus \bigcup_{i=1}^{k} \gamma_i$.

(iv) The maps f_j uniformly C^∞–converge to \bar{f} on compact subsets in $S \setminus \bigcup_{i=1}^{k} \gamma_i$. Moreover, f_j uniformly C^0–converge on entire S to the composed map $S \rightarrow \bar{S} \xrightarrow{\bar{f}} V$. Furthermore,

\[
\text{Area}_\mu f_j(S) \rightarrow \text{Area}_\mu \bar{f}(\bar{S}) \text{ for } j \rightarrow \infty,
\]

where μ is a Riemannian metric in V and where the area is counted with the geometric multiplicity (see[8]).

Gromov’s Compactness theorem for closed curves. Let C_j be a sequence of closed J–curves of a fixed genus in a compact manifold (V, J, μ). If the areas of C_j are uniformly bounded,

\[
\text{Area}_\mu \leq A, \ j = 1, \ldots,
\]

then some subsequence weakly converges to a cusp-curve \bar{C} in V.

21
Cusp-curves with boundary. Let T be a compact complex manifold with boundary of dimension 1 (i.e., it has an atlas of holomorphic charts onto open subsets of C or of a closed half plane). Its double is a compact Riemann surface S with a natural anti-holomorphic involution τ which exchanges T and $S \setminus T$ while fixing the boundary ∂T. If $f : T \to V$ is a continuous map, holomorphic in the interior of T, it is convenient to extend f to S by

$$f = f \circ \tau$$

Take a totally real submanifold $W \subset (V, J)$ and consider compact holomorphic curves $C \subset V$ with boundaries, $(\tilde{C}, \partial \tilde{C}) \subset (V, W)$, which are, topologically speaking, obtained by shrinking to points some (short) closed loops in C and also some (short) segments in C between boundary points. This is seen by looking on the double $C \cup_{\partial C} \tilde{C}$.

Gromov's Compactness theorem for curves with boundary. Let V be a closed Riemannian manifold, W a totally real closed submanifold of V. Let C_j be a sequence of $J-$curves with boundary in W of a fixed genus in a compact manifold (V, J, μ). If the areas of C_j are uniformly bounded,

$$\text{Area}_{\mu}(C_j) \leq A, \ j = 1, \ldots,$$

then some subsequence weakly converges to a cusp-curve \tilde{C} in V.

The proofs of Gromov’s compactness theorem can found in [4, 8]. In our case the Lagrangian submanifold W is not compact, Gromov’s compactness theorem can not be applied directly but its proof is still effective since the W has the special geometry. In the following we modify Gromov’s proof to prove the C^0-compactness theorem in our case.

Now we state the C^0-convergence theorem in our case.

Theorem 6.1 Let (V, J, ω, μ) and W as in section 4. Let C_j be a sequence of $J_\delta-$holomorphic section $v_j = (id, ((a_j, u_j), f_j)) : D \to D \times V$ with $v_j : \partial D \to \partial D \times W$ and $v_j(1) = (1, p) \in \partial D \times W$ constructed from section 4. Then the areas of C_j are uniformly bounded, i.e.,

$$\text{Area}_{\mu}(C_j) \leq A, \ j = 1, \ldots,$$

and some subsequence weakly converges to a cusp-section \tilde{C} in V (see[4, 8]).
Proof. We follow the proofs in [8]. Write \(v_j = (id, (a_j, u_j), f_j) \) then \(|a_{ij}| \leq a_0 \) by the ordinary Monotone inequality of minimal surface without boundary, see following Proposition 7.1. Similarly \(|f_j| \leq R_1 \) by using the fact \(f_j(\partial D) \) is bounded in \(B_{R_1}(0) \) and \(I D |\nabla f_j| \leq 4\pi R^2 \) via monotone inequality for minimal surfaces. So, we assume that \(v_j(D) \subset V_c \) for a compact set \(V_c \).

1. **Removal of a net.**

1a. Let \(\bar{V} = D \times V \) and \(v_j \) be regular curves. First we study induced metrics \(\mu_j \) in \(v_j \). We apply the ordinary monotone inequality for minimal surfaces without boundary to small concentric balls \(B_{\varepsilon}(A_j, \mu_j) \) for \(0 < \varepsilon \leq \varepsilon_0 \) and conclude by the standard argument to the inequality

\[
\text{Area}(B_\varepsilon) \geq \varepsilon^2, \text{ for } \varepsilon \leq \varepsilon_0;
\]

Using this we easily find a interior \(\varepsilon - \text{net} \) \(F_j \subset (v_j, \mu_j) \) containing \(N \) points for a fixed integer \(N = (\bar{V}, \bar{J}, \mu) \), such that every topological annulus \(A \subset v_j \backslash F_j \) satisfies

\[
\text{Diam}_\mu A \leq 10 \text{length}_\mu \partial A.
\]

(6.10)

Furthermore, let \(A \) be conformally equivalent to the cylinder \(S^1 \times [0, l] \) where \(S^1 \) is the circle of the unit length, and let \(S^1_t \subset A \) be the curve in \(A \) corresponding to the circle \(S^1 \times t \) for \(t \in [0, l] \). Then obviously

\[
\int_a^b (\text{length}_{S^1}^2)dt \leq \text{Area}(A) \leq C_5.
\]

(6.11)

for all \([a, b] \subset [0, l]\). Hence, the annulus \(A_t \subset A \) between the curves \(S^1_t \) and \(S^1_{t-t} \) satisfies

\[
\text{diam}_\mu A_t \leq 20 \left(\frac{C_5}{t} \right)
\]

(6.12)

for all \(t \in [0, l] \).

1b. We consider the sets \(\partial v_j \cap ((S^1) \times F(W' \times I^\pm_i)), i = 0, 1 \). By the construction of Gromov’s figure eight, there exists a finite components, denote it by

\[
\partial v_j \cap ((S^1) \times F(\mathcal{L} \times R \times I^\pm_i)) = \{ \gamma^k_{ij} \}, i = 0, 1.
\]

(6.13)

Let \(m_i^\pm \) be the middle point of \(I^\pm_i \). If

\[
\gamma^k_{ij} \cap ((S^1) \times F(\mathcal{L} \times R \times m_i^\pm)) \neq \emptyset, i = 0, 1,
\]

(6.14)
we choose one point in $\bar{\gamma}^k_{ij}$ as a boundary puncture point in ∂v_j. Consider the concentric ε half-disks or quadrature $B_\varepsilon(p)$ with center p on $\bar{\gamma}^k_{ij}$, then

$$\text{Area}(B_\varepsilon(p)) \geq \tau_0.$$ \hfill (6.15)

Since $\text{Area}(v_j) \leq E_0$, there exists a uniform finite puncture points.

Consider the concentric ε half-disks or quadrature $B_\varepsilon(p)$ with center p on ∂v_j and

$$\text{Area}(B_\varepsilon(p)) \geq \tau_0,$$ \hfill (6.16)

we puncture one point on such half-disk or quadrature. Since $\text{Area}(v_j) \leq E_0$, there exists a uniform finite puncture points.

So, we find a boundary net $G_j \subset \partial v_j$ containing N_1 points for a fixed integer N_1 (\bar{V}, \bar{J}, μ), such that every topological quadrature or half annulus $B \subset v_j \setminus \{F_j, G_j\}$ satisfies

$$\partial' B = \partial B \cap \bar{W} \subset (S^{1\pm}) \times F(\mathcal{L} \times R \times S_i), i = 1, 2, 3, 4.$$ \hfill (6.17)

2. Poincare’s metrics. 2a. Now, let μ^*_j be a metric of constant curvature -1 in $v_j(D) \setminus F_j \cup G_j$ conformally equivalent to μ_j. Then for every μ^*_j--ball B_ρ in $v_j \setminus F_j \cup G_j$ of radius $\rho \leq 0.1$, there exists an annulus A contained in $v_j \setminus F_j \cup G_j$ such that $B_\rho \subset A_t$ for $t = 0.01|\log|(see Lemma 3.2.2in [4, chVIII]). This implies with (6.3) the uniform continuity of the (inclusion) maps $(v_j \setminus F_j, \mu^*_j) \rightarrow (\bar{V}, \bar{\mu})$, and hence a uniform bound on the r^{th} order differentials for every $r = 0, 1, 2, \ldots$

2b. Similarly, for every μ^*_j--half ball B^*_ρ in $v_j \setminus F_j \cup G_j$ of radius $\rho \leq 0.1$, there exists a half annulus or quadrature B contained in $v_j \setminus F_j \cup G_j$ such that $B^*_\rho \subset B$ with

$$\partial' B = \partial B \cap \bar{W} \subset (S^{1\pm}) \times F(\mathcal{L} \times R \times S_i), i = 1, 2, 3, 4.$$ \hfill (6.18)

Then, by Gromov’s Schwartz Lemma, i.e., Proposition 6.1-6.3 implies the uniform bound on the r^{th} order differentials for every $r = 0, 1, 2, \ldots$

3. Convergence of metrics. Next, by the standard (and obvious) properties of hyperbolic surfaces there is a subsequence(see[4]), which is still denoted by v_j, such that

(a). There exist k closed geodesics or geodesic arcs with boundaries in $\partial v_j \setminus F_j$, say

$$\gamma^j_i \subset (v_j \setminus F_j, \mu^*_j), i = 1, \ldots, k; j = 1, 2, \ldots,$$
whose \(\mu_j^* \)-length converges to zero as \(j \to \infty \), where \(k \) is a fixed integer.

(b). There exist \(k \) closed curves or geodesic arcs with boundaries in \(\partial S \) of a fixed surface, say \(\gamma_j \) in \(S \), and an almost complex structure \(J \) on the corresponding (singular) surface \(\bar{S} \), such that the almost complex structure \(J_j \) on \(v_j \setminus F_j \) induced from \((V, J) \) \(C^\infty \)-converge to \(\bar{J} \) outside \(\bigcup_{j=1}^k \gamma_j \). Namely, there exist continuous maps \(g^j : v_j \to \bar{S} \) which are homeomorphisms outside the geodesics \(\gamma_j^j \), which pinch these geodesics to the corresponding singular points of \(\bar{S} \)(that are the images of \(\gamma_j \)) and which send \(F_j \) to a fixed subset \(F \) in the non-singular locus of \(\bar{S} \). Now, the convergence \(J_j \to \bar{J} \) is understood as the uniform \(C^\infty \)-convergence \(g^j_j(J_j) \to \bar{J} \) on the compact subsets in the non-singular locus \(\bar{S}^* \) of \(\bar{S} \) which is identified with \(S \setminus \bigcup_{i=1}^k \gamma_i \).

4. \(C^0 \)-interior convergence. The limit cusp-curve \(\bar{v} : \bar{S}^* \to \bar{V} \), that is a holomorphic map which is constructed by first taking the maps

\[
\bar{v}_j = (g_j)^{-1} : S \setminus \bigcup_{i=1}^k \gamma_i \to \bar{V}
\]

Near the nodes of \(\bar{S} \) including interior nodes and boundary nodes, by the properties of hyperbolic metric \(\mu^* \) on \(\bar{S} \), the neighbourhoods of interior nodes are corresponding to the annuli of the geodesic cycles. By the reparametrization of \(v_j \), called \(\bar{v}_j \) which is defined on \(S \) and extends the maps \(\bar{v}_j : S \to S_j \to V \)(see[4, 8]). Now let \(\{z_i : i = 1, ..., n\} \) be the interior nodes of \(\bar{S} \). Then the arguments in [4, 8] yield the \(C^0 \)-interior converse near \(z_i \).

5. \(C^0 \)-boundary convergence. Now it is possible that the boundary of the cusp curve \(\bar{v} \) does not remain in \(\bar{W} \). Write \(\bar{v}(z) = (h(z), (a(z), u(z), f(z))) \), here \(h(z) = z \) or \(h(z) \equiv z_i, i = 1, ..., n, z_i \) is cusp-point or bubble point. We can assume that \(\bar{p} = (1, p) \in \bar{v}_n \) is a puncture boundary point. Let \(\bar{v}_1 \) be the component of \(\bar{v} \) which through the point \(\bar{p} \). Let \(D = \{z|z = re^{i\theta}, 0 \leq r < \theta < \delta \} \). We assume that \(\bar{v}_1 : D \setminus \{e^{i\theta_i}\}_{i=1}^k \to V_c \), here \(e^{i\theta_i} \) is node or puncture point. Near \(e^{i\theta_i} \), we take a small disk \(D_i \) in \(D \) containing only one puncture or node point \(e^{i\theta_i} \). By the reparametrization and the convergence procedure, we can assume that \(\bar{v}_{1i} = (\bar{v}_1|D_i) \) as a map from \(D^+ \setminus \{0\} \to V_\epsilon \) with \(\bar{v}_1([-1, 1] \setminus \{0\}) \subset S^1 \times F(W' \times S^1) \) and area\(\bar{v}_{1i}) \leq a_0, a_0 \) small enough. Since Area\(\bar{v}_{1i}) \leq a_0, \) there exist curves \(c_k \) near 0 such that \(l(\bar{v}_{1i}(c_k)) \leq \delta \). By the construction of convergence, we can assume that \(l(\bar{v}_{1i}(c_k)) \leq 2\delta \). If \(\bar{v}_{1i}(\partial c_k) \subset (S^1) \times F(S^1) \), we have \(\bar{v}_n(\partial c_k) \subset (S^1) \times F(S^1) \) for \(n \) large enough. Now \(\bar{v}_n(c_k) \) cuts \(\bar{v}_n(D) \) as two parts, one part corresponds to \(\bar{v}_{1i} \), say \(\bar{u}_n(D) \). Then area\(\bar{u}_n(D)) =
area(h_{n1}) + |Ψ'(u_{n2}(c_k^1)) - Ψ'(u_{n2}(c_k^2))|, here ∂c_k = \{c_k^1, c_k^2\}. Then by the proof of Lemma 6.1-6.3, we know that \bar{u}_n(∂D\setminus c_k) \subset (S^1) \times F(\mathcal{L} \times [-100N_0, 100N_0] \times S^1). So, \bar{v}_1([-1, 1] \setminus \{0\}) \subset S^1 \times F(\mathcal{L} \times [-100N_0, 100N_0] \times S^1). By proposition 6.6, one singularity of \bar{v}_1 is deleted. We repeat this procedure, we proved that \bar{v}_1 is extended to whole D. So, the boundary node or puncture points of \bar{v} are removed. Then by choosing the sub-sub-sequences of \mu_j and \bar{v}_j, we know that \bar{v}_j converges to \bar{v} in C^0 near the boundary node or puncture point. This proved the C^0-boundary convergence. Since \bar{v}_j(1) = \bar{p}, \bar{p} \in \bar{v}(∂D), \bar{v}(∂D) \subset \bar{W}.

6. Convergence of area. Finally by the C^0-convergence and \text{area}(v_j) = \int_D v_j^* \bar{ω}, one easily deduces

\text{area}(v(S)) = \lim_{j \to \infty} (v_j(S_j)).

6.5 Bounded image of J-holomorphic curves in W

Proposition 6.7 Let v be the solutions of equations (4.16), then

\[d_W(p, v(∂D^2)) = \max\{d_W(p, q)|q \in f(∂D^2)\} \leq d_0 < +\infty\]

Proof. It follows directly from Gromov’s C^0-convergence theorem.

7 Proof of Theorem 1.1

Proposition 7.1 If J-holomorphic curves C \subset \bar{V} with boundary

∂C \subset D^2 \times ([0, \varepsilon] \times \Sigma) \times \mathbb{R}^2

and

C \cap (D^2 \times \{-3\} \times \Sigma) \times \mathbb{R}^2 \neq \emptyset

Then

\text{area}(C) \geq 2l_0.

Proof. It is obvious by monotone inequality argument for minimal surfaces.
Note 7.1 we first observe that any J–holomorphic curves with boundary in $R^+ \times \Sigma$ meet the hypersurface $\{-3\} \times \Sigma$ has energy at least $2l_0$, so we take ε small enough such that the Gromov’s figure eight contained in $B_R(\varepsilon) \subset C$ for ε small enough and the energy of solutions in section 4 is smaller than l_0. we specify the constant a_0, ε in section 3.1-3 such that the above conditions satisfied.

Theorem 7.1 There exists a non-constant J–holomorphic map $u : (D, \partial D) \rightarrow (V', C, W)$ with $E(u) \leq 4\pi R(\varepsilon)^2$ for ε small enough such that $4\pi R(\varepsilon)^2 \leq l_0$. Proof. By Proposition 5.1, we know that the image $\bar{v}(D)$ of solutions of equations (4.3) remains a bounded or compact part of the non-compact Lagrangian submanifold W. Then, all arguments in [4, 8] for the case W is closed in $S \Sigma \times R^2$ can be extended to our case, especially Gromov’s C^0–convergence theorem applies. But the results in section 4 shows the solutions of equations (4.3) must denegerate to a cusp curves, i.e., we obtain a Sacks-Uhlenbeck-Gromov’s bubble, i.e., J–holomorphic sphere or disk with boundary in W, the exactness of ω rules out the possibility of J–holomorphic sphere. For the more detail, see the proof of Theorem 2.3.B in [8].

Proof of Theorem 1.1. If (Σ, λ) has no Reeb chord, then we can construct a Lagrangian submanifold W in $V = V' \times C$, see section 3. Then as in [4, 8], we construct an anti-holomorphic section c and for large vector $c \in C$ we know that the nonlinear Fredholm section or Cauchy-Riemann section has no solution, this implies that the section is non-proper, see section 4. The non-properness of the section and the Gromov’s compactness theorem in section 6 implies the existences of the cusp-curves. So, we must have the J–holomorphic sphere or J–holomorphic disk with boundary in W. Since the symplectic manifold V is an exact symplectic mainifold and W is an exact Lagrangian submanifold in V, by Stokes formula, we know that the possibility of J–holomorphic sphere or disk elimitated. So our priori assumption does not holds which implies the contact maifold (Σ, λ) has at least Reeb chord. This finishes the proof of Theorem 1.1.

References

[1] Abbas, C., Finite energy surface and the chord probems, Duke. Math.J., Vol.96, No.2,1999,pp.241-316.
[2] Arnold, V. I., First steps in symplectic topology, Russian Math. Surveys 41(1986),1-21.

[3] Arnold, V. & Givental, A., Symplectic Geometry, in: Dynamical Systems IV, edited by V. I. Arnold and S. P. Novikov, Springer-Verlag, 1985.

[4] Audin, M. & Lafontaine, J., eds.: Holomorphic Curves in Symplectic Geometry. Progr. Math. 117, (1994) Birkhäuser, Boston.

[5] Chaperon, M., Questions de géométrie symplectique, in Séminaire Bourbaki, Astérisque 105-106(1983), 231-249.

[6] Givental, A. B., Nonlinear generalization of the Maslov index, Adv. in Sov. Math., V.1, AMS, Providence, RI, 1990.

[7] Gray, J.W., Some global properties of contact structures. Ann. of Math., 2(69): 421-450, 1959.

[8] Gromov, M., Pseudoholomorphic Curves in Symplectic manifolds. Inv. Math. 82(1985), 307-347.

[9] Gromov, M., Partial Differential Relations, Springer-Verlag, 1986.

[10] Hofer, H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Inventions Math., 114(1993), 515-563.

[11] Hofer, H. & Viterbo, C., The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45(1992)583-622.

[12] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.

[13] Klingenberg, K., Lectures on closed Geodesics, Grundlehren der Math. Wissenschaften, vol 230, Springer-Verlag, 1978.

[14] Lalonde, F & Sikorav, J.C., Sous-Variétés Lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helvetici 66(1991) 18-33.
[15] Ma, R., Legendrian submanifolds and A Proof on Chord Conjecture, Boundary Value Problems, Integral Equations and Related Problems, edited by J K Lu & G C Wen, World Scientific, 135-142, 2000.

[16] Mohnke, K.: Holomorphic Disks and the Chord Conjecture, Annals of Math., (2001), 154:219-222.

[17] Sacks, J. and Uhlenbeck,K., The existence of minimal 2-spheres. Ann. Math., 113:1-24, 1983.

[18] Smale, S., An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87: 861-866, 1965.

[19] Wendland, W., Elliptic systems in the plane, Monographs and studies in Mathematics 3, Pitman, London-San Francisco, 1979.