Prognostic value of miR-21 for prostate cancer: a systematic review and meta-analysis

MY Cynthia Stafford¹, Colin E Willoughby¹, Colum P Walsh¹,², Declan J McKenna¹*

¹Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine, UK, BT52 1SA

²Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden

*Correspondence:

Declan McKenna
Biomedical Science Research Institute
University of Ulster
Cromore Road
Coleraine
Northern Ireland
BT52 1SA
Tel. +44 (0)2870 124356
E. dj.mckenna@ulster.ac.uk

Running Title: miR-21 in prostate cancer prognosis

Key Words: Prostate cancer, microRNA, miR-21, systematic, meta-analysis, prognostic

Funding: Department for the Economy (DfE), Northern Ireland

Disclosure / Conflict of Interest Statement: All authors declare no conflicts of interest.
ABSTRACT:

Elevated levels of miR-21 expression are associated with many cancers, suggesting it may be a promising clinical biomarker. In prostate cancer (PCa), however, there is still no consensus about the usefulness of miR-21 as an indicator of disease progression. This systematic review and meta-analysis was conducted to investigate the value of miR-21 expression as a prognostic measurement in PCa patients. Medline (Ovid), EMBASE, Web of Science, Scopus and Cochrane Library databases were systematically searched for relevant publications between 2010 to 2021. Studies exploring the relationship between miR-21 expression, PCa prognosis and clinicopathological factors were selected for review. Those reporting hazard ratio (HR) and 95% confidence intervals (CIs) were subject to meta-analyses. Fixed-effect models were employed to calculated pooled HRs and 95% CIs. Risk of bias in each study was assessed using QUIPS tool. Certainty of evidence in each meta-analysis was assessed using GRADE guidelines. A total of 64 studies were included in the systematic review. Of these, 11 were eligible for inclusion in meta-analysis. Meta-analyses revealed that high miR-21 expression was associated with poor prognosis: HR=1.58 (95% CI=1.19-2.09) for biochemical recurrence, MODERATE certainty; HR=1.46 (95% CI=1.06-2.01) for death, VERY LOW certainty; and HR=1.26 (95% CI=0.70-2.27) for disease progression, VERY LOW certainty. Qualitative summary revealed elevated miR-21 expression was significantly positively associated with PCa stage, Gleason score and risk groups. This systematic review and meta-analysis suggests that elevated levels of miR-21 are associated with poor prognosis in PCa patients. miR-21 expression may therefore be a useful prognostic biomarker in this disease.

Key Words: Prostate cancer, microRNA, miR-21, systematic, meta-analysis, prognostic
INTRODUCTION:

Prostate cancer (PCa) is the most commonly diagnosed cancer for males in 105 countries including North and South America, Western Europe and Australia. The majority of PCa cases are localised disease with very high survival rate after initial treatment (~100% 5-year survival), but recurrence may occur in about 40% as biochemical recurrence (BCR) or distant metastasis that has a significantly poorer prognosis (~30% 5-year survival). Additionally, some may progress as castration-resistant prostate cancer (CRPC) or develop chemoresistance.

Currently, prognosis is predicted by considering cancer stage, Gleason score, prostate-specific antigen (PSA) level, patient’s health condition, treatment choice and treatment response. However, these clinicopathological factors still have certain limitations. For example, Gleason score is a histological method which is subject to inter-observer variability, and clinicians can find the grading system confusing. Staging may vary between clinical and pathological estimation, forcing clinicians to alter treatment regime, and prognosis for lower stage cancer is less than predictable. PSA lacks specificity and BCR, defined by rise in PSA level, does not necessarily predict clinical recurrence or metastasis with sufficient accuracy. Therefore, there is still a clear clinical need for novel molecular markers that may overcome some of these limitations.

MicroRNAs (miRNAs) are a class of non-coding molecules which have emerged as strong candidates for useful clinical biomarkers. Over the past decade, they have been actively researched in a wide range of diseases, including prostate cancer. miRNAs are estimated to regulate 60% of gene expression in human and some specifically target oncogenes or tumour suppressor genes. The aberrant expression of miRNAs can therefore contribute to cancer development and several dysregulated miRNAs have been associated with PCa progression. Importantly, miRNAs can be detected in blood and urine, as well as tissue. Indeed, they are known to be more stable in biofluids than other nucleic acids which gives them potential as diagnostic or prognostic markers.
However, more research is needed to understand which miRNAs are most relevant in prostate cancer.

miR-21 is one of the most studied miRNAs and there is a large body of evidence to suggest that it has a predominantly oncogenic function since it is over-expressed in many cancers14. As one of the first miRNAs to be categorized as an ‘oncomiR’, it has been subsequently evaluated for its potential use as a clinical biomarker in various cancers15, 16, 17. Several recent systematic reviews have found evidence that circulating miR-21 levels can predict poor prognosis in oesophageal, pancreatic, colorectal and breast cancers18, 19. In urological cancers, including PCa, Chen et al. found some evidence that miR-21 over-expression was significantly associated with unfavourable prognosis in their integrated analysis20. However, despite evidence that it can contribute to PCa development, no systematic review or meta-analysis to date has been carried out specifically for miR-21 in this setting. Therefore, the purpose of this paper is to systematically evaluate studies related to prognostic value of miR-21 in PCa, appraising study qualities and synthesising evidence by meta-analyses, data association and qualitative summary.
MATERIALS & METHODS:

Protocol and registration

This review was conducted following a protocol which was registered with the International Prospective Register of Systematic Reviews (PROSPERO; https://www.crd.york.ac.uk/prospero/) under the registration ID: CRD42020183408 on 23rd June 2020. The protocol was developed following guidance on PRISMA-P \(^\text{21}\), systematic review and meta-analysis of prognostic factor studies \(^\text{22}\) and the checklist of items recommended in the PRISMA statement \(^\text{23}\).

Search Strategy

Electronic databases from which records were retrieved include Medline (Ovid), EMBASE, Web of Science, Scopus and Cochrane Library, covering publications from 2010 to 2021 and they were last searched on 8th November 2021. Additionally, reference lists of included studies and relevant review papers were searched manually. Prognostic factor studies were prone to selective reporting in that miRNAs with insignificant findings might not be reported \(^\text{24}\), therefore a high-sensitivity approach was used in the search strategy as shown in Supplementary Table ST 1. Key words related to miRNAs, in addition to miR-21, were included to broaden the search to cover relevant studies that measured miR-21 but did not report the result. Retrieved records from databases were exported to systematic review manager Rayyan where duplicates were removed \(^\text{25}\). Titles and abstracts of remaining records were screened for relevance independently by two reviewers. Full text of studies selected for inclusion were subsequently imported into another systematic review manager Covidence (www.covidence.org) where studies were assessed for eligibility in duplicate. Any disagreements were resolved through discussion.

Eligibility criteria

For inclusion in the systematic review, original peer-reviewed human studies published in English from year 2010 to 2021 with full-text available online or from Ulster University Library were
included. *In vitro, in silico and in vivo* studies that did not include human participants were excluded. Studies without original human data which analysed publicly available human data (e.g., from The Cancer Genome Atlas repository) were not included to avoid multiple counting of sample size. Review-type studies and duplicate reports were excluded for the same reason. If the same study was published in multiple journals, only the most informative or the most recent one was included. Studies published before 2010 were excluded due to advances in miRNA technology.

For meta-analyses, studies with characteristics specified by PICOT (*Table 1*) were eligible for inclusion in meta-analysis. Length of follow-up was not restricted to broaden the number of inclusions and increase the number of eligible studies.

Data collection process

A data extraction form adapted from CHARMS-PF checklist was created within *Covidence* to capture information about each study, source of data, PICOT details, sample size, missing data, statistical analysis methods, survival outcome results and/or association analysis results (*Supplementary Table ST 2*). Data was extracted independently in duplicate into separate forms. Completed forms were compared, and conflicts were resolved through discussion. Authors of 12 studies were contacted for missing data or clarifications (*Supplementary Table ST 3*). Only data relevant to prognosis were considered, therefore data related to diagnosis and healthy or benign prostatic hyperplasia (BPH) controls were disregarded.

Risk of bias in individual studies

Judgment was made independently in duplicate using the Quality in Prognostic Factor Studies (QUIPS) tool which assesses risk of bias as HIGH, MODERATE, LOW or UNCLEAR in six domains (*Supplementary Table ST 4*) (*Table 2*). For domain 3 “Prognostic factor measurement”, methods accepted as reliable for miR-21 measurement were qPCR, sequencing and array technology. For domain 5
“Adjustment for covariates”, the core set of desired adjustment covariates was predefined as Gleason score/grade and pathological/clinical stage.

Statistical Analysis

The principal summary measure for meta-analysis was hazard ratio (HR), presented with 95% confidence interval (CI) and p-value. Kaplan Meier plot presented with log-rank p-value was also accepted. Eligible studies of similar design in terms of outcome and handling of miR-21 data were grouped into separate meta-analyses. For each meta-analysis effect estimates were pooled as HR (95% CI) based on fixed-effect inverse variance method in the review manager RevMan5.4 27. Statistical heterogeneity was assessed by visual inspection of the forest plot, chi-square (Chisq) test and I² test (Chisq p≤0.1 indicates significant heterogeneity; I² <30% denotes low/unimportant heterogeneity, 30-60% moderate heterogeneity, 50-90% substantial heterogeneity, and 75-100% considerable heterogeneity). Impact on the robustness of analyses by the presence of an outlier and the inclusion of a study that introduced clinical heterogeneity was assessed by sensitivity analyses.

For qualitative summary, association measure included but was not limited to correlation, fold change (FC) or mean difference.

Certainty of evidence

For each analysis the certainty of evidence was rated according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines 28. This review estimated the prognostic value of miR-21 in PCa as an exploratory study without direct association with clinical decision making, therefore, certainty was rated based on the non-contextualised setting as HIGH, MODERATE, LOW or VERY LOW certainty. Starting from HIGH certainty, evidence could be rated down in five domains: risk of bias, inconsistency, indirectness, imprecision and publication bias; or rated up in three domains: large effect, dose response and plausible confounding. Assessment of publication bias was not possible due to low number of studies eligible for each analysis, which meant any test of bias would be underpowered.
RESULTS:

Study selection

Study selection was as shown in the flow diagram (Figure 1). Up until 23rd July 2020, 4859 records were retrieved from database searching and a further 90 were identified from manual searching of reference lists of included studies and relevant reviews. After duplicates were removed (n=2800), record screening identified 76 eligible studies for full-text assessment. 13 full-text articles were ineligible due to lack of prognostic data (n=8), lack of miR-21 data (n=4) and lack of original human prognostic data (n=1) (Supplementary Table ST 5). The remaining 63 studies 29-77, 78-92 were included in the systematic review, with 10 eligible for meta-analysis. On 8th November 2021, an update screening for meta-analysis identified one more eligible study 78, bringing the total number of included studies to 64, with 11 eligible for meta-analysis.

Study characteristics

Characteristics of all 64 studies included in this systematic review are summarised in Supplementary Table ST 6. Each included study was assigned a Study ID composed of first author’s name and publication year. The PICOT eligibility criteria (Table 1) identified studies on PCa patient cohorts which could be stratified against measurable parameters and outcomes for inclusion in the meta-analysis. A total of 11 studies, with study sizes ranging from 31 to 478 participants, encompassing 1485 PCa patients total, were eligible for meta-analysis (Tables 2 & 3). Amankwah2013 31 indicated that the recurrent group was oversampled, no rationale was provided. Sharova2021 78 was clearly indicated as prospective; Zedan2017 85 and Zhao2019a 89 were clearly indicated as retrospective studies. Cohort types were projected for the rest judging by the details contained. Thus, six studies appeared to be prospective (Guan2016 42; Leite2015 60; Lin2014 64; Lin2017 65; Sharova2021 78; Yang2016 84) and four were retrospective (Amankwah2013 31; Melbø-Jørgensen2014 68; Zedan2017 85; Zhao2019a 89); it was unclear for Li2012 61.
For population “P”, two studies from the same research group (Lin2014 & Lin2017) included male patients diagnosed with CRPC that underwent docetaxel chemotherapy (a different set of patients was used for each study, therefore no double counting). Participants of Guan2016 and Sharova2021 received androgen deprivation therapy (ADT) and androgen receptor-targeted agents (ARTA) respectively; However, Sharova2021 only included metastatic castration-resistant prostate cancer (mCRPC) patients. The rest of the studies (n=7) included male PCa patients that underwent resection surgeries such as radical prostatectomy (RP) and/or regional lymph node dissection. Not all studies reported the age range of participants, but it is apparent from available information that they were all around middle to old age groups at baseline (≥ 40 years).

For index prognostic factor “I”, Lin2014, Lin2017, Sharova2021 and Yang2016 measured circulating miR-21 in plasma, serum or peripheral blood mononuclear cell (PBMC) samples while the rest (n=7) measured tissue miR-21 in formalin-fixed paraffin-embedded (FFPE) tumour samples; Li2012 and Zedan2017 measured miR-21 level by in situ hybridisation (ISH) methods that are semi-quantitative, while the rest (n=9) used real-time quantitative polymerase chain reaction (RT-qPCR) techniques that are highly sensitive and specific.

For comparator prognostic factors “C”, the most frequently included ones were Gleason score/grade (GS/GG; n=10 except Lin2017), PSA (n=10 except Amankwah2013) and pathological/clinical stage (pT/cT; n=8 except Lin2014, Lin2017 and Sharova2021). These were followed by age (n=6), haemoglobin (n=3), surgical margin (n=3), lymph node metastasis (pN; n=2) and alkaline phosphatase (n=2). Body mass index (BMI), capsular invasion, visceral metastasis, perineural infiltration, tumour size, vascular infiltration, digital rectal examination (DRE), prostate volume, neutrophil/lymphocyte ratio and time to CRPC were each included once between 6 studies (Amankwah2013; Li2012; Lin2014; Melbø-Jørgensen2014; Sharova2021; Zhao2019a).

For outcomes of interest “O”, Lin2014, Lin2017, Sharova2021 and Yang2016 observed for overall survival (OS) defined as time from the date of treatment to the date of death; Guan2016.
and Sharova2021 78 observed for progression-free survival (PFS), defined as time to development of CRPC from initiation of ADT by Guan2016 42, and as time to radiological/clinical progression from initiation of ARTA by Sharova2021 78. The rest (n=6) observed for recurrence-free survival (RFS), generally defined as time from the date of treatment to the date of biochemical recurrence (BCR) with slight variations as indicated in Table 2 footnotes d, f and g. Latest follow-up times across studies ranged from 45 months (Lin2017 65) to 254 months (Amankwah2013 31), averaging up to 125 months (~10 years). Not enough information was provided in Zedan2017 85 to estimate the follow-up period.

Risk of bias within studies

Risk of bias within each eligible study was assessed using the QUIPS tool 26; two independent judgments were made before reaching consensus. Final ratings of risk of bias within the 11 studies eligible for meta-analyses are summarised in Table 4.

Overall, no eligible study achieved LOW risk of bias in all domains. Most concerns in risk of bias were around domain 5 and 6 mainly due to inadequate adjustment for predefined important prognostic factors and selective reporting. The lack of rationale for sample size appears to be a common problem across the majority of eligible studies.

Meta-analyses & Sensitivity Analyses

For all outcomes, results of each study eligible for meta-analyses are summarised in Table 5 (n=11). Six studies observed RFS, four observed OS, and two observed PFS. Effect estimates were pooled as HR (95% CI) based on fixed-effect inverse variance method. Statistical heterogeneity was determined by visual inspection of the forest plot, Chi² test and I² test (Chi² p≤0.1 indicates significant heterogeneity; I² <30% denotes low/unimportant heterogeneity, 30-60% moderate heterogeneity, 50-90% substantial heterogeneity, and 75-100% considerable heterogeneity).

Analysis 1: Recurrence-free survival; dichotomous miR-21 data (n=4)
This analysis includes Amankwah2013 31, Leite2015 60, Leite2012 61 and Melbø-Jørgensen2014 68 as they have observed RFS as outcome and dichotomised tissue miR-21 expression data into high and low groups (median as cut-off for Amankwah2013 31, Leite2015 60 and Li2012 61; 4th quartile for Melbø-Jørgensen2014 68). Unadjusted and adjusted effect estimates of all four studies were combined in Analysis 1.1 (Figure 2a) and Analysis 1.2 (Figure 3a) respectively for comparison to examine the effect of heterogeneity caused by differences in covariate adjustment. Overall number of participants is 838 (364 with BCR; 474 without BCR).

The overall effect of unadjusted estimates, as shown in the forest plot of Analysis 1.1, favours low miR-21, suggesting high miR-21 expression is associated with higher risk of BCR (HR=1.54, 95% CI=1.23-1.92). Statistical heterogeneity tests indicate significantly considerable heterogeneity (Chi^2 p<0.00001; I^2=90%), most likely caused by the presence of an outlier (Amankwah2013 31) which showed an opposite direction of effect estimate to the other studies. To probe this further, the impact of the outlier on this meta-analysis was assessed by sensitivity analysis. Results of sensitivity analysis (Figure 2b) confirmed the data from Amankwah2013 31 as the source of statistical heterogeneity (I^2=0% without outlier). However, the inclusion of the outlier did not change the effect estimate significantly, therefore the results of Analysis 1.1 are still valid.

The overall effect of adjusted estimates (Analysis 1.2) is very close to that of unadjusted estimates (Analysis 1.1) supporting the same conclusion, i.e., it favours low miR-21, suggesting high miR-21 expression is associated with higher risk of BCR (HR=1.58, 95% CI=1.19-2.09; Figure 3a). However, different from Analysis 1.1, Melbø-Jørgensen2014 68 now occupied over half of the overall weight (52.8%) with Li2012 61 weighing only 18.8%. Amankwah2013 31 still appears to be outlying, and statistical heterogeneity tests also indicate significantly substantial heterogeneity (Chi^2 p=0.05; I^2=62%). Again, sensitivity analysis repeating Analysis 1.2 without Amankwah2013 31 reduced statistical heterogeneity to insignificant and low/unimportant (I^2=30%; Figure 3b), verifying the outlying estimate as the source of statistical heterogeneity. The slight difference in overall effect
reveals that the inclusion of the outlier has limited impact, and that the results of Analysis 1.2 are robust.

Comparing the two analyses, covariate adjustment in Analysis 1.2 had brought Amankwah2013 closer to the other studies with the upper CI arm crossing the line of no effect and overlapping with others', that might explain the lower statistical heterogeneity indicated by I^2 values compared to Analysis 1.1 (62% vs 90%). However, eliminating the effect of outlier, higher I^2 value of adjusted estimates compared to unadjusted (30% vs 0%) implies that differences in covariate adjustment might have introduced some heterogeneity, though low and insignificant.

Analysis 2: Recurrence-free survival; continuous miR-21 data (n=2)

This analysis includes Zedan2017 and Zhao2019a as both have observed RFS as outcome against continuous miR-21 expression in tissue samples. Only unadjusted effect estimates were combined in Analysis 2 (Figure 4) because of lack of multivariate analysis data for Zedan2017. Overall number of participants is 255 (117 with BCR; 138 without BCR).

The overall effect estimate (HR=1.12, 95% CI=1.01-1.26) favours lower miR-21, indicating that higher miR-21 expression is associated with higher risk of BCR. The overall effect in the forest plot showed high precision from the tight CI and statistical heterogeneity is very low (Chi2 p=0.75; I^2=0%). However, the data points are very close to the line of no effect with the lower CI of Zedan2017 across. The overall weight is dominated by Zhao2019a (96.2%) between only two studies.

Analysis 3: Overall survival; dichotomous miR-21 data (n=4)

This analysis included Lin2014, Lin2017, Sharova2021 and Yang2016 as they are similar in outcome observed (OS), handling of miR-21 data (dichotomised) and source of miR-21 (circulating samples). Only unadjusted effect estimates were combined in Analysis 3 (Figure 5a) because of lack of multivariate analysis data for Lin2014 and differences in covariate adjustment and handling of
miR-21 data in multivariate analysis for Lin2017. Overall number of participants is 307 (163 dead; 144 alive).

The overall effect in *Analysis 3* favours low miR-21, suggesting high miR-21 expression is associated with higher risk of death (HR=1.46, 95% CI=1.06-2.01; *Figure 5a*). Sharova2021 was outlying in the opposite direction to the rest and mostly likely have caused the considerable heterogeneity (Chi² p=0.0008; I²=82%); Therefore the impact of including Sharova2021 in *Analysis 3* was examined in sensitivity analysis (*Figure 5b*). Sensitivity analysis repeating *Analysis 3* without Sharova2021 significantly reduced heterogeneity to low/unimportant level (Chi² p=0.25; I²=27%; *Figure 5b*), confirming an outlier as the main source of heterogeneity, and that had brought the overall effect estimate closer to the line of no effect.

Analysis 4: Progress-free survival; dichotomous miR-21 data (n=2)

Analysis 4 included Guan2016 and Sharova2021 because both studies observed PFS as outcome. Overall number of participants is 116 (73 with progression; 43 without progression). *Figures 6a* and 6b showed meta-analysis results along with forest plots of combined unadjusted and adjusted effect estimates respectively (*Analyses 4.1* and 4.2). Neither analysis reached a significant overall effect (CIs crossing line of no effect), most likely since only two studies with opposite effect estimates were available, which also contributed to considerable heterogeneities (Chi²<0.1; I²>80%). Therefore, no meaningful conclusion could be drawn from *Analysis 4*.

Qualitative Summary & Associations

Most of the 64 studies included in this review compared the association of miR-21 with commonly used clinicopathological prognostic factors (*Table 6*). These included Gleason score/grade (n=28); pathological/clinical stage (n=18); serum PSA level (n=18); risk stratification (n=12); and age at diagnosis (n=9). Association of miR-21 expression with recurrence (n=19) and metastasis (n=14) were also examined in many included studies. A few studies have compared miR-21 levels in/with...
prostate volume (n=4), chem-response (n=3), digital rectal examination (DRE) result (n=3), ethnicity (n=2) and surgical margin (n=2). Other comparisons made include genitourinary radiotoxicity (Kopcalic2019 53), neuroendocrine-like vs Adeno PCa (Ostano2020 71), follow-up time, family history (Shen2012 79) and reclassification (Zhao2019b 90).

Results were grouped according to statistical significance (p<0.05/p>0.05), association direction (positive/negative) and sample source (tissue/circulating). Association measures varied between studies, these include fold change (FC), mean difference and correlation, meaning it was impractical to summarise findings according to comparison methods. Therefore, findings were summarised according to association directions. When higher miR-21 expression was associated with higher degree/presence of the comparators it was indicated as positive; when it was associated with lower degree/absence of the comparators it was negative.

Additional figures demonstrating association results can be found in Supplementary Figure SF 1a-g.

Twelve out of 28 studies (43%) that compared miR-21 levels in different Gleason scores/grades found significant positive association of miR-21 levels from tissue and circulating samples. Twelve out of 18 studies (67%) that compared miR-21 levels in different pathological/clinical stages found significant positive association of miR-21 mostly from circulating samples as well as tissue. In contrast, only three studies reported significant positive association in circulating miR-21 and serum PSA. Seven out of 19 studies (37%) found significant positive association between tissue/circulating miR-21 and biochemical recurrence, defined generally as biochemical recurrence determined by rise in serum PSA≥0.2-0.4 ng/ml after treatment. Ten out of 14 studies (71%) that compared miR-21 levels in samples of metastatic vs localised PCa patients found significant positive association between metastatic PCa and miR-21 mostly in circulating samples (n=8; tissue n=2). 11 out of 12 studies (92%) that examined risk stratification reported positive association of higher risk with elevated miR-21 expression, although only 4 (33%) of these were found to be statistically significant.

Certainty of evidence – GRADE
Publication bias was not assessed due to low number of studies eligible for each analysis. No analysis was rated up for large effect, dose response or plausible confounding. Table 7 presented judgments of rate-downs and overall certainties of each analysis. Overall certainty is MODERATE for Analysis 1.2; LOW for Analyses 1.1 and 2; VERY LOW for Analyses 3, 4.1 and 4.2. See Supplementary Table ST 7 for full rationales for rating down certainty of evidence.
DISCUSSION:

In this report, we have performed the first systematic review and meta-analysis of miR-21 as a prognostic factor in PCa. miR-21 is one of the most studied miRNAs in cancer and has been shown to play a role in many different cellular mechanisms which can contribute to cancer progression, including PCa. Although miR-21 targets many genes and thus regulates many genetic pathways, it appears to act in a primarily oncogenic fashion with many studies reporting elevated levels in samples taken from cancer patients. Despite this body of evidence, there is still doubt about whether it may be a useful biomarker for cancer prognosis, so robust analyses of existing studies are needed to determine its value for clinical application and to inform the optimal design of future studies.

The pooled results of all meta-analyses reported here supported an association between high miR-21 expression and poor prognosis in PCa. Regarding RFS, Analysis 1.2 estimated a 58% increased risk of BCR for high baseline expression of tissue miR-21 (HR=1.58, 95% CI=1.19-2.09) with MODERATE certainty of evidence. For OS, Analysis 3 estimated a 75% increased risk of death for high baseline expression of circulating miR-21 with VERY LOW certainty of evidence (HR=1.75, 95% CI=1.26-2.45). No meaningful conclusion could be drawn for PFS in Analysis 4 due to considerable heterogeneity between only two eligible studies. The heterogeneity could be attributed to differences in population, miR-21 source and PFS definition. Guan2016 recruited pathologically confirmed PCa patients while Sharova2021 only included mCRPC patients; Guan2016 detected miR-21 from FFPE tissue samples while Sharova2021 examined it in plasma samples; Guan2016 defined PFS as time to development of CRPC while Sharova2021 defined it as time to radiological/clinical progression. Analysis 4 demonstrated the importance of only combining results of similar studies as a basic principle of meta-analysis. The limited certainty in OS result and lack of similar studies in PFS for a meaningful meta-analysis indicated that more high-quality prognostic studies are needed for OS and PFS. Nevertheless, our systematic approach and meta-analyses found consistent evidence...
that miR-21 may have prognostic value in PCa. This data suggests miR-21 can be put forward as a strong candidate for the prognosis of the disease, although further work is clearly needed to prove its value more conclusively as a biomarker.

Our results agreed with systematic reviews in other cancers such as non-small cell lung, pancreatic and colorectal cancers. These suggested high tissue miR-21 as an unfavourable prognostic biomarker. Circulating miR-21 overexpression was also associated with poor prognosis in digestive system and breast cancers. This is not unexpected, given that it is generally agreed to act as an oncogene, but this understanding of its functional role in the cell can only be translated into medical application when the literature available is subject to methodical evaluation in studies such as these.

However, it is worth noting that the authors of the papers subject to meta-analysis here all indicated limitations with their studies. We recorded this as part of our data gathering process and further probed it through our quality assessment of individual studies. Pooled evidence by QUIPS and GRADE methodologies revealed sources of risk of bias and down-rate of certainty of evidence. In several studies, selective reporting and failure to adjust for the core set of covariates increased risk of bias and imprecision, thus decreased certainty of evidence. Furthermore, publication bias could not be properly assessed due to inadequate number of studies included in individual analysis. This was mainly due to high heterogeneity across studies, such as differences in outcome, handling of miR-21 data and sample source. The limited similarities meant that eligible studies had to be split into separate small analyses, therefore reducing the impact of meta-analyses. It was unfortunate that so few of the published studies met the required criteria for inclusion in meta-analysis, which limits the strength of the analyses and our subsequent ability to draw firm conclusions. Although the very nature of a properly conducted meta-analysis is to be robust and consistent in the application of the methodology, limitations in selected studies are inevitably reflected in the limitations of the subsequent meta-analyses, since the patient numbers and/or measured parameters are less than
ideal. Perhaps that is to be expected since miRNAs as biomarkers is a relatively recent field of research, but it is clear that a lack of standardised approach to these type of biomarker studies makes it difficult to evaluate the clinical usefulness of miRNAs as prognostic biomarkers. Therefore, for any researchers carrying out future cancer prognostic studies of this type, it is highly recommended that they adhere to the Reporting Recommendations for Tumour Marker Prognostic Studies (REMARK) guidelines for proper study design, conduct, analysis and reporting. This will reduce risk of bias and heterogeneity across studies to generate higher quality evidence and more opportunity for comparison in meta-analyses like the ones presented here. Evidently, Zhao2019a was the only included study that followed the guidelines and achieved LOW risk of bias in most QUIPS domains.

Although several of the full-text studies reviewed were not eligible for meta-analysis, they nevertheless contained useful data about the association of miR-21 with PCa, which is important to discuss since it can inform future study design. Overall, several studies in this review supported the hypothesis that there is a significant positive association between miR-21 expression and various clinical measurements of PCa progression, such as stage, Gleason score, risk groups, metastasis and recurrence. Notably, very few studies found a significant association between miR-21 expression and serum PSA level or age at diagnosis.

However, for clinical application of miR-21 analysis, several barriers must be overcome. A standardised method for measuring miR-21 must be decided upon. RT-qPCR, as used in many of the studies reported here, would seem the most appropriate technique at present in terms of sensitivity and applicability. Nevertheless, agreement is needed on common normalisation approaches and comparable internal controls, such as reference genes. Even with these measures in place, a consensus would then be needed on an appropriate cut-off value for prognostic outcome, which was very variable in the studies evaluated here. Another important consideration is that the correct miR-21 strand is being measured, since there is no guarantee that expression of miR-21-3p and miR-21-
5p will be similar. The majority of the studies in this review did not specify miR-21 strand, which is also another reason to be cautious about the interpretation of the results presented here.

Even if standardised approaches meant RT-qPCR was accepted as suitably sensitive and accurate method, the sample type in which to measure the miR-21 target is a further complication. Among 63 studies included in this review, 31 measured miR-21 levels in circulating samples, including plasma, serum, PBMC, urine, exosome and whole blood; 30 measured miR-21 levels in tissue samples; Zedan2018 86 measured from both sample types; and Samaan2014 74 did not clearly state the sample source. Zedan2018 86 found significant correlation of miR-21 levels between matched tissue and plasma samples from 25 healthy patients (r=0.58, p<0.01) but not in 21 PCa patients (p=0.42). It is not certain that tissue and biofluid levels of miR-21 will be directly comparable, and it is also possible that different outcomes might be better predicted by miR-21 expression in one particular sample type. Thus, further inter- and intra-individual analyses would be needed to determine the relative value of these different sample types. It is therefore clear that for miR-21, or any other miRNA, to gain clinical acceptance as disease biomarker, it requires well-designed, prospective clinical studies to validate the findings reported here. Ideally, these studies should utilise the same PICOT criteria, ensuring common outcomes and measurements can then be compared between studies and across different research centres.

Nevertheless, even though there are not yet enough well-designed studies to conclusively prove biomarker potential of miRNAs, it does appear increasingly likely that they will be used in future as non-invasive, liquid biomarkers for cancer and other diseases.101, 102 With this in mind, miR-21 is a very attractive candidate to profile, since it is abundantly expressed in both tissue and biofluids, making it easy to measure.14, 103 In relation to PCa specifically, its involvement in promoting cancer growth, and related roles in important pathological changes, such as epithelial-to-mesenchymal transition (EMT), is now well established.14, 104, so there is a strong biological rationale for measuring its expression as a marker of disease progression. It is worth remembering however that miRNAs
often work synergistically as a regulatory network for gene expression, so the involvement of miR-21 with other miRNAs should be considered. For instance, while this paper was being prepared, another systematic review and meta-analysis was published which reported the prognostic significance of 15 microRNAs related to metastasis and EMT process in PCa patients. Surprisingly, miR-21 was not included among them, but the authors did acknowledge the link between their selected miRNAs and miR-21 in their discussion, and they concluded that a miRNA panel of biomarkers would be optimal to determine progression risk. Similarly, another recent paper used meta-analysis methods to identify miR-21 as one of several miRNAs which could predict response to ADT. Profiling different miRNAs in parallel makes sense, since many miRNAs are known to be involved in PCa development. It is also unlikely that miR-21 (or any other miRNA) as a single biomarker would be sufficient to accurately predict any given patient outcome. Therefore, the ability to measure expression levels of other miRNAs, or other genetic parameters, in combination with miR-21 should be built into the design of future studies investigating its prognostic value in cancer. A multivariate profiling approach to PCa prognosis, which includes measurement of miR-21, would be a sensible approach to take.

CONCLUSIONS:

Meta-analyses of 11 studies in this report showed that high miR-21 expression was associated with poor prognosis in PCa. Qualitative summary of all 64 studies also found positive association of miR-21 expression with various prognostic factors for PCa. These findings corroborate data from other systematic reviews which have shown similar findings for miR-21 in various cancers. However, further research is needed, including more high-quality investigations that follow standardised guidelines for study design. With continued effort, miR-21 could prove to be a clinically useful prognostic biomarker in prostate cancer.

DATA AVAILABILITY:

The datasets analysed in the present study are available from the published papers that have been cited in this manuscript.
AUTHOR CONTRIBUTIONS:

MYCS and DJM were responsible for study design, literature search, data extraction, data analysis and drafting the manuscript. CEW and CPW reviewed the manuscript and contributed intellectual input to the study. All authors approved the final version of the manuscript.

ACKNOWLEDGEMENTS:

We would like to thank Ms Joan Atkinson, Ulster University, for reviewing our search strategy; and Dr Marialena Trivella, University of Oxford, for providing statistical advice and an Excel calculator for the estimation of Hazard ratios.
REFERENCES:

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 11;68(6):394-424.

2. Mahdy A, Patil R, Parajuli S. Biochemical Recurrence in Prostate Cancer and Temporal Association to Bone Metastasis. Am J Case Rep. 2019;20:1521-1525.

3. Suárez C, Morales-Barrera R, Ramos V, Núñez I, Valverde C, Planas J, et al. Role of Immunotherapy in Castration-Resistant Prostate Cancer (CRPC). BJU Int. 2013;113(3):367.

4. Prostate Cancer UK. What is my outlook? 2019; Available at: https://prostatecanceruk.org/prostate-information/just-diagnosed/what-is-my-outlook. Accessed May 4, 2021.

5. Lichner Z, Ding Q, Samaan S, Saleh C, Nasser A, Al-Haddad S, et al. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. J Pathol. 2015;237(2):226.

6. Gordetsky J, Epstein J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn Pathol. 2016;11:25.

7. Cheng L, Montironi R, Bostwick DG, Lopez-Beltran A, Berney DM. Staging of prostate cancer. Histopathol. 2012;60(1):87-117.

8. Gasinska A, Jaszczynski J, Rychlik U, Łuczynska E, Pogodzinski M, Palaczynski M. Prognostic Significance of Serum PSA Level and Telomerase, VEGF and GLUT-1 Protein Expression for the Biochemical Recurrence in Prostate Cancer Patients after Radical Prostatectomy. Pathol Oncol Res. 2020;26(2):1049-1056.
9. Bertoli G, Cava C, Castiglioni I. MicroRNAs as Biomarkers for Diagnosis, Prognosis and Theranostics in Prostate Cancer. Int J Mol Sci. 2016;17(3):421.

10. Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci. 2016;17(10):1712.

11. Ali Syeda Z, Langden SSS, Munkhzel C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci. 2020;21(5):1723.

12. Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, et al. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur Urol. 2016;70(2):312-322.

13. Stuopelyte K, Daniunaite K, Bakavicius A, Lazutka JR, Jankevicius F, Jarmalaite S. The utility of urine-circulating miRNAs for detection of prostate cancer. Br J Cancer 2016;115(6):707-715.

14. Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez, Inti Alberto, González-Barrios R, Contreras-Espinosa L, et al. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol Ther Nucl Acids. 2020;20:409-420.

15. Wang W, Li J, Zhu W, Gao C, Jiang R, Li W, et al. MicroRNA-21 and the clinical outcomes of various carcinomas: a systematic review and meta-analysis. BMC Cancer. 2014;14:819.

16. Wang Y, Gao X, Wei F, Zhang X, Yu J, Zhao H, et al. Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene. 2014;533(1):389-397.

17. Fu X, Han Y, Wu Y, Zhu X, Lu X, Mao F, et al. Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest. 2011;41(11):1245-1253.

18. Guraya S. Prognostic significance of circulating microRNA-21 expression in esophageal, pancreatic and colorectal cancers; a systematic review and meta-analysis. Int J Surg. 2018;60:41-47.
19. Jinling W, Sijing S, Jie Z, Guinian W. Prognostic value of circulating microRNA-21 for breast cancer: a systematic review and meta-analysis. Artif Cells Nanomed Biotechnol. 2017;45(6):1-6.

20. Chen Z, Zhan Y, Chi J, Guo S, Zhong X, He A, et al. Using microRNAs as Novel Predictors of Urologic Cancer Survival: An Integrated Analysis. EBioMedicine 2018;34:94-107.

21. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.

22. Riley RD, Moons KGM, Snell KIE, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ. 2019;364:k4597.

23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 2009;6(7):e1000097.

24. Kempf E, de Beyer JA, Cook J, Holmes J, Mohammed S, Nguyễn TL, et al. Overinterpretation and misreporting of prognostic factor studies in oncology: a systematic review. Br J Cancer. 2018;119(10):1288-1296.

25. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210

26. Hayden JA, van der Windt, Danielle A., Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280-286.

27. The Cochrane Collaboration. Review Manager (RevMan). 2020;5.4.

28. Foroutan F, Guyatt G, Zuk V, Vandvik PO, Alba AC, Mustafa R, et al. GRADE Guidelines 28: Use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. J Clin Epidemiol. 2020;121:62-70.
29. Agaoglu FY, Kovancilar M, Dizdar, Y Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21 miR-141 and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32(3):583-588.

30. Al-Qatati A, Akrong C, Stevic I, Pantel K, Awe J, Saranchuk J, et al. Plasma microRNA signature is associated with risk stratification in prostate cancer patients Int J Cancer. 2017;141(6):1231-1239.

31. Amankwah EK, Anegbe E, Park H, Pow-Sang J, Hakam A, Park JY. miR-21 miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases Asian J Androl. 2013;15(2):226.

32. Arisan ED, Rencuzogullari O, Freitas IL, Radzali S, Keskin B, Kothari A, et al. Upregulated Wnt-11 and miR-21 expression trigger epithelial mesenchymal transition in aggressive prostate cancer cells. Biology. 2020;9(3):52.

33. Bell EH, Kirste S, Fleming JL, Stegmaier P, Drendel V, Mo X, et al. A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy. PLOS One 2015;10(3):e0118745.

34. Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F, et al. A microRNA code for prostate cancer metastasis. Oncogene. 2016;35(9):1180-1192.

35. Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608-616

36. Bryant R, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768-774.

37. Danarto R, Astuti I, Umbas R, Haryana SM. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer. Turk J Urol. 2020;46(1):26.

38. Endzelinš E, Berger A, Melne V, Bajo-Santos C, Sobolevska K, Ābols A, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17(1):1-13.
39. Farran B, Dyson G, Craig D, Dombkowski A, Beebe-Dimmer JL, Powell IJ, et al. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis. 2018;39(4):556-561.

40. Fendler A, Jung M, Stephan C, Honey RJ, Stewart RJ, Pace KT, et al. miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression. Int J Oncol. 2011;39(5):1183-1192.

41. Foj L, Ferrer F, Serra M, Arévalo A, Gavagnach M, Giménez N, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. The Prostate. 2017;77(6):573-583.

42. Guan Y, Wu Y, Liu Y, Ni J, Nong S. Association of microRNA-21 expression with clinicopathological characteristics and the risk of progression in advanced prostate cancer patients receiving androgen deprivation therapy. The Prostate. 2016;76(11):986-993.

43. Gurbuz V, Kiliccioglu I, Dikmen AU, Bilen CY, Sozen S, Konac E. Comparative analysis of epimicroRNA expression levels in local/locally advanced and metastatic prostate cancer patients. Gene. 2020;758:144963.

44. Hart M, Nolte E, Wach S, Szczyba J, Taubert H, Rau TT, et al. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol. Cancer Res. 2014;12(2):250-263.

45. Hoey C, Ahmed M, Ghiam AF, Vesprini D, Huang X, Commissio K, et al. Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy. J Translat Med. 2019;17(1):1-11.

46. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33-41.

47. Huang W, Kang XL, Cen S, Wang Y, Chen X. High-level expression of microRNA-21 in peripheral blood mononuclear cells is a diagnostic and prognostic marker in prostate cancer. Genet Test Mol Biomarkers. 2015;19(9):469-475.
48. Ibrahim NH, Abdellateif MS, Thabet G, Kassem SH, El-Salam MA, El-Leithy AA, et al. Combining PHI and miRNAs as biomarkers in prostate cancer diagnosis and prognosis. Clin Lab 2019;65(7):10.

49. Ibrahim NH, Abdellateif MS, Kassem SHA, Abd El Salam MA, El Gammal MM. Diagnostic significance of miR-21 miR-141 miR-18a and miR-221 as novel biomarkers in prostate cancer among Egyptian patients. Andrologia. 2019;51(10):e13384.

50. Ju G, Lian J, Wang Z, Cao W, Lin J, Li Y, et al. Correlation between miRNA-21 expression and diagnosis metastasis and prognosis of prostate cancer. Int J Clin Exp Med. 2019;12(7):8172-8180.

51. Katz B, Reis ST, Viana NI, Morais DR, Moura CM, Dip N, et al. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. PLOS One; 20149(11):e113700.

52. Kelly BD, Miller N, Sweeney KJ, Durkan GC, Rogers E, Walsh K, et al. A circulating microRNA signature as a biomarker for prostate cancer in a high risk group J Clin Med. 2015;4(7):1369-1379.

53. Kopcalic K, Petrovic N, Stanojkovic TP, Stankovic V, Bukumiric Z, Roganovic J, et al. Association between miR-21/146a/155 level changes and acute genitourinary radiotoxicity in prostate cancer patients: A pilot study. Pathol Res Pract. 2019;215(4):626-631.

54. Kotb S, Mosharafa A, Essawi M, Hassan H, Meshref A, Morsy A. Circulating miRNAs 21 and 221 as biomarkers for early diagnosis of prostate cancer. Tumor Biol. 2014;35(12):12613-12617.

55. Kristensen H, Thomsen AR, Haldrup C, Dyrrskjøt L, Høyer S, Borre M, et al. Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. Oncotarget. 2016;7(21):30760.

56. Kurul NO, Ates F, Yilmaz I, Narli G, Yesildal C, Senkul T. The association of let-7c miR-21 miR-145 miR-182 and miR-221 with clinicopathologic parameters of prostate cancer in patients diagnosed with low-risk disease. The Prostate. 2019;79(10):1125-1132.
57. Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sañudo A, et al. Change in expression of miR-let7c miR-100 and miR-218 from high grade localized prostate cancer to metastasis. In Urol Oncol. 2011;29(3):265-269.

58. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sañudo A, Dall’Oglio MF, et al. MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. J Urol. 2011;185(3):1118-1122.

59. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sañudo A, Camara-Lopes LH, et al. MicroRNA expression profiles in the progression of prostate cancer—from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol. 2013;31(6):796-801.

60. Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA, et al. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer. 2015;6(3):292.

61. Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM, et al. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol. 2012;187(4):1466-1472

62. Lichner Z, Fendler A, Saleh C, Nasser AN, Boles D, Al-Haddad S, et al. MicroRNA signature helps distinguish early from late biochemical failure in prostate cancer. Clin Chem. 2013;59(11):1595-1603

63. Lichner Z, Ding Q, Samaan S, Saleh C, Nasser A, Al-Haddad S, et al. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix cytoskeleton and androgen receptor pathways. J Pathol. 2015;237(2):226-237.

64. Lin HM, Castillo L, Mahon KL, Chiam K, Lee BY, Nguyen Q, et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer. 2014;110(10):2462-2471.
65. Lin HM, Mahon KL, Spielman C, Gurney H, Mallesara G, Stockler MR, et al. Phase 2 study of circulating microRNA biomarkers in castration-resistant prostate cancer. Br J Cancer 2017;116(8):1002-1011.

66. Long Q, Johnson BA, Osunkoya AO, Lai YH, Zhou W, Abramovitz M, et al. Protein-coding and microRNA biomarkers of recurrence of prostate cancer following radical prostatectomy. Am J Pathol. 2011;179(1):46-54.

67. McDonald AC, Vira M, Walter V, Shen J, Raman JD, Sanda MG, et al. Circulating microRNAs in plasma among men with low-grade and high-grade prostate cancer at prostate biopsy. The Prostate. 2019;79(9):961-968.

68. Melbø-Jørgensen C, Ness N, Andersen S, Valkov A, Dønnem T, Al-Saad S, et al. Stromal expression of MiR-21 predicts biochemical failure in prostate cancer patients with Gleason score 6. PLOS One. 2014;9(11):e113039.

69. Mortensen MM, Høyer S, Ørntoft TF, Sørensen KD, Dyrskjøt L, Borre M. High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy. BMC Cancer. 2014;14(1):1-7.

70. Nam RK, Wallis CJ, Amemiya Y, Benatar T, Seth A. Identification of a novel MicroRNA panel associated with metastasis following radical prostatectomy for prostate cancer. Anticancer Res. 2018;38(9):5027-5034.

71. Ostano P, Mello-Grand M, Sesia D, Gregnanin I, Peraldo-Neia C, Guana F, et al. Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma. Int J Mol Sci. 2020;21(3):1078.

72. Reis ST, Pontes-Junior J, Antunes AA, Dall’Oglio MF, Dip N, Passerotti CC, et al. miR-21 may acts as an oncomir by targeting RECK a matrix metalloproteinase regulator in prostate cancer. BMC Urol. 2012;12(1):1-7.

73. Ren Q, Liang J, Wei J, Basturk O, Wang J, Daniels G, et al. Epithelial and stromal expression of miRNAs during prostate cancer progression Am J Transl Res. 2014;6(4):329
74. Samaan S, Lichner Z, Ding Q, Saleh C, Samuel J, Streutker C, et al. Kallikreins are involved in an miRNA network that contributes to prostate cancer progression. Biol Chem. 2014;395(9):991-1001.

75. Sapre N, Hong MK, Macintyre G, Lewis H, Kowalczyk A, Costello AJ, et al. Curated microRNAs in urine and blood fail to validate as predictive biomarkers for high-risk prostate cancer. PLOS One. 2014;9(4):e91729.

76. Schubert M, Spahn M, Kneitz S, Scholz CJ, Joniau S, Stroebel P, et al. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer. PLOS One. 2013;8(6):e65064.

77. Selth LA, Townley SL, Bert AG, Stricker PD, Sutherland PD, Horvath LG, et al. Circulating microRNAs predict biochemical recurrence in prostate cancer patients. Br J Cancer. 2013;109(3):641-650.

78. Sharova E, Maruzzo M, Del Bianco P, Cavallari I, Pierantoni F, Basso U, et al. Prognostic Stratification of Metastatic Prostate Cancer Patients Treated With Abiraterone and Enzalutamide Through an Integrated Analysis of Circulating Free microRNAs and Clinical Parameters. Front Oncol. 2021;11:626104.

79. Shen J, Hruby GW, McKiernan JM, Gurvich J, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. The Prostate 2012;72(13):1469-1477.

80. Singh PK, Preus L, Hu Q, Yan L, Long MD, Morrison CD, et al. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget. 2014;5(3):824.

81. Stuopelytė K, Daniūnaitė K, Jankevičius F, Jarmalaitė S. Detection of miRNAs in urine of prostate cancer patients. Medicina. 2016;52(2):116-124.

82. Suer I, Guzel E, Karatas OF, Creighton CJ, Ittmann M, Ozen M. MicroRNAs as prognostic markers in prostate cancer. The Prostate. 2019;79(3):265-271.
83. Watahiki A, Macfarlane RJ, Gleave ME, Crea F, Wang Y, Helgason CD, et al. Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. Int J Mol Sci. 2013;14(4):7757-7770.

84. Yang B, Liu Z, Ning H, Zhang K, Pan D, Ding K, et al. MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer Biomark. 2016;17(2):223-230.

85. Zedan AH, Blavnsfeldt SG, Hansen TF, Nielsen BS, Marcussen N, Plekaitis M, et al. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations. PLOS One. 2017;12(6):e0179113.

86. Zedan AH, Hansen TF, Assenholt J, Plekaitis M, Madsen JS, Osth PJ. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumor Biol. 2018;40(5):1010428318775864.

87. Zedan AH, Hansen TF, Assenholt J, Madsen JS, Osth PJ. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. The Prostate. 2019;79(4):425-432.

88. Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. The Prostate. 2011;71(3):326-331.

89. Zhao Z, Weickmann S, Jung M, Lein M, Kilic E, Stephan C, et al. A novel predictor tool of biochemical recurrence after radical prostatectomy based on a five-microRNA tissue signature. Cancers. 2019;11(10):1603.

90. Zhao F, Vesprini D, Liu R, S Olkhov-Mitsel E, Klotz LH, Loblaw A, et al. Combining urinary DNA methylation and cell-free microRNA biomarkers for improved monitoring of prostate cancer patients on active surveillance. Urol Oncol. 2019;37(5): e9-297.e17
91. Zheng Q, Peskoe SB, Ribas J, Rafiqi F, Kudrolli T, Meeker AK, et al. Investigation of miR-21 miR-141 and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy. The Prostate. 2014;74(16):1655-1662.

92. Zhu L, Zhu Q, Wen H, Huang X, Zheng G. Mutations in GAS5 affect the transformation from benign prostate proliferation to aggressive prostate cancer by affecting the transcription efficiency of GAS5. J Cell Physiol. 2019;234(6):8928-8940.

93. Dave VP, Ngo TA, Pernestig A, Tilevik D, Kant K, Nguyen T, et al. MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Laboratory investigation 2019 Apr;99(4):452-469.

94. Trivella M. Systematic Reviews of Prognostic Factor Studies (Section: Estimating the Hazard Ratio). University of Oxford (Altman DG, thesis advisor); 2006.

95. Pfeffer SR, Yang CH, Pfeffer LM. The Role of miR-21 in Cancer. Drug Dev Res. 2015;76(6):270-277.

96. Yuan Y, Xu X-, Zheng H-, Hua B-. Elevated miR-21 is associated with poor prognosis in non-small cell lung cancer: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(13):4166-4180.

97. Negoi I, Hostiuc S, Sartelli M, Negoi RI, Beuran M. MicroRNA-21 as a prognostic biomarker in patients with pancreatic cancer - A systematic review and meta-analysis. Am J Surg. 2017;214(3):515-524.

98. Peng Q, Zhang X, Min M, Zou L, Shen P, Zhu Y. The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(27):44893-44909.
99. Yin C, Zhou X, Dang Y, Yan J, Zhang G. Potential Role of Circulating MiR-21 in the Diagnosis and Prognosis of Digestive System Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2015;94(50):e2123.

100. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting Recommendations for Tumour Marker Prognostic Studies (REMARK): explanation and elaboration. PLOS Med. 2012;9(5):e1001216.

101. Fabris L, Ceder Y, Chinnaiany AM, Jenster GW, Sorensen KD, Tomlins S, et al. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur Urol. 2016;70(2):312-22.

102. Wang J, Ni J, Beretov J, Thompson J, Graham P, Li Y. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol. 2020;145:102860.

103. Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H. MicroRNAs as Diagnostic, Prognostic, and Therapeutic Biomarkers in Prostate Cancer. Crit Rev Eukaryot Gene Expr. 2019;29(2):127-139.

104. Cozar JM, Robles-Fernandez I, Rodriguez-Martinez A, Puche-Sanz I, Vazquez-Alonso F, Lorente JA, et al. The role of miRNAs as biomarkers in prostate cancer. Mutat Res Rev Mutat Res. 2019;781:165-174.

105. Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med. 2021;19:28.

106. Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and androgen deprivation therapy for prostate cancer. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188625.
Figure 1. Study flow diagram (Adapted from Moher et al.23).
Figure 2. **Analysis 1.1: Meta-analysis of dichotomous miR-21 expression with recurrence-free survival (unadjusted).**

(a) Unadjusted results and forest plot, RevMan5.4 snapshot. (b) Sensitivity analysis of impact of outlier (Amankwah2013).
(a)

Study or Subgroup	log(Hazard Ratio)	SE	With BCR Total	Without BCR Total	Weight	Hazard Ratio IV, Fixed, 95% CI
Amankwah 2013	-0.6882	0.5315	28	37	7.3%	0.50 [0.18, 1.42]
Leite 2015	0.9203	0.3127	50	57	21.1%	2.51 [1.36, 4.63]
Li 2012	0.7227	0.331	116	109	18.8%	2.06 [1.08, 3.94]
Melbø-Jørgensen 2014	0.3365	0.1978	170	205	52.8%	1.40 [0.95, 2.06]
Total (95% CI)	**364**	**474**	**100.0%**			1.58 [1.19, 2.09]

Heterogeneity: $\chi^2 = 7.85$, df = 3 ($P = 0.05$); $I^2 = 62$
Test for overall effect: $Z = 3.19$ ($P = 0.001$)

(b)

Analysis 1.2	Chi² p-value	I^2	HR	LCI	UCI
All studies (with outlier)	0.05	62%	1.58	1.19	2.09
Without outlier	0.24	30%	1.73	1.29	2.32

Figure 3. Analysis 1.2: Meta-analysis of dichotomous miR-21 expression with recurrence-free survival (adjusted).

(a) Adjusted results and forest plot, RevMan5.4 snapshot. (b) Sensitivity analysis of impact of outlier (Amankwah 2013).

BCR: Biochemical recurrence; CI: Confidence interval; HR: Hazard ratio; IV: Inverse variance; LCI: Lower confidence interval; SE: Standard error; UCI: Upper confidence interval
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	Hazard Ratio IV, Fixed, 95% CI
Zedan 2017	0.2078	0.2903	19	30	3.8%	1.23 [0.70, 2.17]
Zhao 2019a	0.1133	0.0576	98	108	96.2%	1.12 [1.00, 1.25]
Total (95% CI)			117	138	100.0%	1.12 [1.01, 1.26]

Heterogeneity: Chi² = 0.10, df = 1 (P = 0.75); I² = 0%
Test for overall effect: Z = 2.07 (P = 0.04)

Figure 4. Analysis 2: Meta-analysis of continuous miR-21 expression with recurrence-free survival.

Unadjusted results and forest plot, RevMan5.4 snapshot.

BCR: Biochemical recurrence; **CI**: Confidence interval; **HR**: Hazard ratio; **IV**: Inverse variance; **SE**: Standard error
Figure 5. Analysis 3: Meta-analysis of miR-21 expression with Overall Survival.

(a) Unadjusted results and forest plot, RevMan5.4 snapshot. (b) Sensitivity analysis of impact of outlier (Sharova2021).

CI: Confidence interval; HR: Hazard ratio; IV: Inverse variance; LCI: Lower confidence interval; SE: Standard error; UCI: Upper confidence interval.
Figure 5. Meta-analyses of miR-21 expression with progression-free survival.

(a) Analysis 4.1: Unadjusted results and forest plot, RevMan5.4 snapshot. (b) Analysis 4.2: Adjusted results and forest plot, RevMan5.4 snapshot.

CI: Confidence interval; HR: Hazard ratio; IV: Inverse variance; SE: Standard error
FIGURE LEGENDS:

Figure 1. Study flow diagram (Adapted from Moher et al.23).

Figure 2. Analysis 1.1: Meta-analysis of dichotomous miR-21 expression with recurrence-free survival (unadjusted).
(a) Unadjusted results and forest plot, RevMan5.4 snapshot. (b) Sensitivity analysis of impact of outlier (Amankwah201331).

BCR: Biochemical recurrence; **CI:** Confidence interval; **HR:** Hazard ratio; **IV:** Inverse variance; **LCI:** Lower confidence interval; **SE:** Standard error; **UCI:** Upper confidence interval

Figure 3. Analysis 1.2: Meta-analysis of dichotomous miR-21 expression with recurrence-free survival (adjusted).
(a) Adjusted results and forest plot, RevMan5.4 snapshot. (b) Sensitivity analysis of impact of outlier (Amankwah201331).

BCR: Biochemical recurrence; **CI:** Confidence interval; **HR:** Hazard ratio; **IV:** Inverse variance; **LCI:** Lower confidence interval; **SE:** Standard error; **UCI:** Upper confidence interval

Figure 4. Analysis 2: Meta-analysis of continuous miR-21 expression with recurrence-free survival.
Unadjusted results and forest plot, RevMan5.4 snapshot.

BCR: Biochemical recurrence; **CI:** Confidence interval; **HR:** Hazard ratio; **IV:** Inverse variance; **SE:** Standard error
Figure 5. Analysis 3: Meta-analysis of miR-21 expression with Overall Survival.

(a) Unadjusted results and forest plot, RevMan5.4 snapshot. (b) Sensitivity analysis of impact of outlier (Sharova2021 [78]).

Ci: Confidence interval; HR: Hazard ratio; IV: Inverse variance; LCI: Lower confidence interval; SE: Standard error; UCI: Upper confidence interval

Figure 6. Meta-analyses of miR-21 expression with progression-free survival.

(a) Analysis 4.1: Unadjusted results and forest plot, RevMan5.4 snapshot. (b) Analysis 4.2: Adjusted results and forest plot, RevMan5.4 snapshot.

Ci: Confidence interval; HR: Hazard ratio; IV: Inverse variance; SE: Standard error
Table 1: PICOT eligibility criteria

P	Population	Male patients of any age worldwide diagnosed with PCa.
I	Index prognostic factor	Measurement of miR-21 levels in tissue or circulating/fluid samples such as tumour tissue, blood, plasma, serum, urine and seminal fluid.
C	Comparator prognostic factors	Clinicopathological factors such as stage, grade, Gleason score, PSA level and health condition (e.g., recurrence, metastasis).
O	Outcomes of interest	Survival outcomes of any type (e.g., OS, RFS) estimated in HR, 95% CI, p-value and/or survival curves with log-rank p-value.
T	Timing	Samples taken as baseline at the start of follow-up of any length.

Studies with characteristics specified by PICOT were eligible for inclusion in meta-analysis.

CI: Confidence interval; HR: Hazard ratio; OS: Overall survival; PCa: Prostate cancer; PSA: Prostate-specific antigen; RFS: Recurrence-free survival
Table 2: Characteristics of 11 studies eligible for meta-analyses

Study ID, Type	Study size	P	I	C	O	Follow-up period	
Amankwah 2013 *	65	Retrospective	PCa histologically confirmed; Underwent RP	High/low miR-21, -221 & -222 in FFPE tissue (TaqMan RT-qPCR)	Age; BMI; cT; GS	RFS	3-254 months
Guan2016 *	85	Prospective	PCa pathologically confirmed; Underwent ADT	High/low levels of 7 miRNAs (including miR-21) in FFPE tissue (TaqMan RT-qPCR)	Age; cT; GS; PSA	PFS	14-95 months
Leite2015 *	127	Prospective	Localised PCa; Underwent RP	High/low miR-21 in FFPE tissue (TaqMan RT-qPCR)	GG; PSA; pT	RFS	2-120 months
Li2012 *	168	(unclear)	PCa pathologically confirmed; Underwent RP & regional lymph node dissection	High/low miR-21 in FFPE tissue (LNA-ISH)	Age; Capsular invasion; GS; pN; PSA; pT; Surgical margin	RFS	2-80 months
Lin2014 *	97	Prospective	CRPC patients; Underwent docetaxel chemotherapy	High/low levels of 46 miRNAs (including miR-21) in plasma/serum (TaqMan RT-qPCR)	Age; Alkaline phosphatase; GS; Haemoglobin; PSA; Visceral metastasis	OS	3-62 months
Lin2017 *	87	Prospective	CRPC patients; Underwent docetaxel chemotherapy	High/low levels of 14 miRNAs (including miR-21) in plasma (TaqMan RT-qPCR)	Alkaline phosphatase; Haemoglobin; PSA	OS	0.7-45 months
Melbs-Jørgensen 2014 *	478	Retrospective	PCa patients; Underwent RP	High/low levels of 7 miRNAs (including miR-21-5p) in FFPE tissue (RT-qPCR)	GG; Perineural infiltration; PSA; pT; Surgical margins; Tumour size; Vascular infiltration	RFS	6-188 months
Sharova 2021 *	31	Prospective	mCRPC patients; Treated with ARTA	High/low levels of miR-21, -141 & -223 in plasma (TaqMan RT-qPCR)	GS; Haemoglobin; Neutrophil/lymphocyte ratio; PSA; Time to CRPC	OS	Median = 36.6 months
Yang2016 *	92	Prospective	PCa pathologically confirmed; Underwent resection	High/low miR-21 in PBMC (TaqMan RT-qPCR)	Age; cT; GS; PSA	OS	21-69 months
Zedan2017 *	49	Retrospective	Localised PCa; Underwent RP & regional lymph node dissection	Continuous levels of 6 miRNAs (including miR-21) in FFPE tissue (ISH analysed by computer software)	GS; PSA; pT	RFS	(Not stated)
Zhao2019a *	206	Retrospective	PCa patients; Underwent RP	Continuous levels of 20 miRNAs (including miR-21-5p) in FFPE tissue (TaqMan RT-qPCR)	Age; DRE; PSA; ISUP grade; pN; Prostate volume; pT; Surgical margin	RFS	17-180 months

ADT: Androgen deprivation therapy; ARTA: Androgen receptor-targeted agents; BMI: Body mass index; C: Comparator prognostic factor; CRPC: Castration-resistant prostate cancer; cT: Clinical tumour stage; DRE: Digital rectal examination; FFPE: Formalin-fixed paraffin-embedded; GG: Gleason grade; GS: Gleason score; I: Index prognostic factor; ISH: In situ hybridisation; ISUP: International Society of Urological Pathology; LNA-ISH: Locked nucleic acid in situ hybridisation; mCRPC: Metastatic castration-resistant prostate cancer; O: Outcomes of interest; OS: Overall survival; P: Population; PBMC: Peripheral blood mononuclear cell; PCa: Prostate cancer; PFS: Progression-free survival; pN: Lymph node metastasis; PSA: Prostate-specific antigen; pT:
Pathological tumour stage; **RFS**: Recurrence-free survival; **RP**: Radical prostatectomy; **RT-qPCR**: Real-time quantitative polymerase chain reaction

aNADT included surgical castration or luteinising hormone-releasing hormone agonist combined with an antiandrogen according to **Guan2016**42.
bnARTA included abiraterone (n=10) and enzalutamide (n=21) according to **Sharova2021**78.
cISUP grading system was based on Gleason score according to **Zhao2019a**89.
dEndpoint included biochemical recurrence defined as serum PSA≥0.2ng/ml after treatment, clinical metastasis or PCa-specific death.
ePFS defined as time to development of CRPC from initiation of ADT where progression to CRPC was defined as three consecutive monthly increases in serum PSA level against ADT according to **Guan2016**42.
fBiochemical recurrence defined as serum PSA≥0.2ng/ml after treatment.
gBiochemical recurrence defined as serum PSA≥0.4ng/ml after treatment.
hPFS defined as time to radiological/clinical progression from initiation of ARTA according to **Sharova2021**78.
Table 3: Allocation of eleven studies into 4 meta-analyses

Outcome	Handling of miR-21 data	No. of studies	Total no. of participants	Study IDs	Analysis
RFS	Dichotomous	4	838	Amankwah2013³¹; Leite2015⁶⁰; Li2012⁶¹; Melbø-Jørgensen2014⁶⁸	1
	Continuous	2	255	Zedan2017⁸⁵; Zhao2019^{a89}	2
OS	Dichotomous	4	307	Lin2014⁶⁴; Lin2017⁶⁵; Sharova2021⁷⁸; Yang2016⁸⁴	3
PFS	Dichotomous	2	116	Guan2016⁸²; Sharova2021⁷⁸	4

Eleven eligible studies were allocated into four separate meta-analyses according to outcomes and handlings of miR-21 data. Note: Sharova2021⁷⁸ with two outcomes was allocated into Analyses 3 and 4.

OS: Overall survival; **PFS**: Progression-free survival; **RFS**: Recurrence-free survival
Table 4: Risk of bias within studies assessed using QUIPS tool

Study ID	QUIPS domains	1 Study participation	2 Study attrition	3 Prognostic factor measurement	4 Outcome measurement	5 Adjustment for covariates	6 Statistical analysis & reporting
Amankwah2013	HIGH	LOW	LOW	LOW	LOW	LOW	LOW
Guan2016	UNCLEAR	LOW	LOW	LOW	LOW	HIGH	LOW
Leite2015	UNCLEAR	LOW	LOW	LOW	HIGH	HIGH	MODERATE
Li2012	UNCLEAR	LOW	MODERATE	LOW	LOW	HIGH	MODERATE
Lin2014	UNCLEAR	LOW	LOW	LOW	HIGH	MODERATE	LOW
Lin2017	UNCLEAR	LOW	LOW	LOW	HIGH	MODERATE	LOW
Melbø-Jørgensen2014	LOW	LOW	LOW	LOW	MODERATE	LOW	MODERATE
Sharova2021	MODERATE	LOW	LOW	LOW	HIGH	LOW	LOW
Yang2016	UNCLEAR	MODERATE	LOW	LOW	LOW	UNCLEAR	UNCLEAR
Zedan2017	MODERATE	LOW	MODERATE	LOW	UNCLEAR	UNCLEAR	UNCLEAR
Zhao2019a	LOW	LOW	LOW	LOW	HIGH	LOW	LOW
Outcome (Analysis)	Study ID	Event/Total	Univariate analysis: Unadjusted HR (95% CI)	Multivariate analysis: Adjusted HR (95% CI)	Covariates adjusted for *		
-------------------	----------	-------------	---	---	--------------------------		
RFS (1)	Amankwah 2013 31	28/65 (43%)	(Cut-off=median; log-rank p<0.0001)	1.99 (0.70-5.64), p=0.20	Age GS ct		
			KM plot favouring high miR-21				
			Estimated HR (95% CI) a: =4.83 (2.26-10.35), p=0.00005				
			Inverse b: =0.21 (0.10-0.44), p=0.00005				
	Leite2015 60	50/127 (39%)	(Cut-off=median; log-rank p=0.003)	2.505 (1.356-4.629), p=0.003	GG PSA pT		
			KM plot favouring low miR-21				
			Estimated HR (95% CI) a: =2.32 (1.33-4.03), p=0.003				
	Li2012 61	116/168 (69%)	(Cut-off=median; log-rank p<0.001)	2.059 (1.075-3.944), p=0.029	Age Capsular invasion GS pN PSA pT Surgical margin		
			KM plot favouring low miR-21				
			Estimated HR (95% CI) a: =1.91 (1.33-2.75), p=0.0005				
	Melbø-Jørgensen 2014 68	170/478 (36%)	(Cut-off=4th quartile; log-rank p=0.006)	1.4 (1.0-1.9), p=0.089	Apical PSM GG Non-apical PSM Perineural infiltration PSA pT Vascular infiltration		
RFS (2)	Zedan2017 85	19/49 (39%)	(Continuous miR-21) 1.231 (0.697-2.177), p=0.474	(No multivariate analysis data)	(N/A)		
	Zhao2019a 89	98/206 (48%)	(Continuous miR-21) 1.12 (1.01-1.24), p=0.049	(Continuous miR-21) 1.35 (0.86-2.12), p=0.188	15 other miRNAs of interest		
OS (3)	Lin2014 64	55/97 (57%)	(High vs low miR-21, cut-off=median) 2.3 (1.3-3.9), log-rank p=0.004	(No multivariate analysis data)	(N/A)		
	Lin2017 65	53/87 (61%)	(High vs low miR-21, cut-off=median) 1.2204 (0.7028-2.1192), p=0.477	(Continuous miR-21) 1.1488 (0.8849-1.4916), p=0.303	Alkaline phosphatase Haemoglobin PSA		
	Sharova2021 78	13/31 (42%)	(Cut-off=2.69; log-rank p=0.0067)	5.8 (1.0-33.1), p=0.049	Haemoglobin Time to CRPC		
Study	Cases/Total (Percentage)	PFS (Years)	Estimated HR (95% CI)	Inverse^b:			
---------------	-------------------------	-------------	-----------------------	------------			
Yang2016^a	42/92 (46%)	3.567 (1.287-9.882), p=0.014	=0.192 (0.064-0.588), p=0.0191				
Guan2016^b	47/85 (55%)	1.985 (1.032-3.817), p=0.040	Age BCR Bone metastasis				
Sharova2021^c	26/31 (84%)	4.8 (1.3-17.8), p=0.019	Inverse^b: =0.208 (0.056-0.769), p=0.019				

Notes:
- KM plot favouring high miR-21
 5.2 (1.7-15.7), p=0.0191
 Inverse^b:
 =0.172 (0.03-1.0), p=0.049
- Estimated HR (95% CI)^a:
 =2.02 (1.09-3.73), p=0.025
- Estimated HR (95% CI)^a:
 =2.381 (1.25-4.537), p=0.008
- Estimated HR (95% CI)^a:
 =7.4 (2.6-21.2), p=0.0021
- Estimated HR (95% CI)^a:
 =4.8 (1.3-17.8), p=0.019
- Estimated HR (95% CI)^a:
 =0.135 (0.047-0.385), p=0.0021

GS/GG and pT/cT were predefined as important prognostic factors that should be adjusted for in multivariate analysis.

Abbreviations:
BCR: Biochemical recurrence; CI: Confidence interval; CRPC: Castration-resistant prostate cancer; cT: Clinical tumour stage; GG: Gleason grade; GS: Gleason score; HR: Hazard ratio; KM: Kaplan Meier; N/A: Not applicable; OS: Overall survival; PFS: Progression-free survival; pN: Lymph node metastasis; PSA: Prostate-specific antigen; PSM: Positive surgical margins; pT: Pathological tumour stage; RFS: Recurrence-free survival

^a Unadjusted HR (95% CI) was not reported; hence it was estimated using an Excel calculator.
^b The direction of effect estimates in Amankwah2013^31 and Sharova2021^78 were opposite to the rest of eligible studies; hence they were inverted (i.e. divided by 1) to obtain the complimentary value.
Most of the 64 studies included in this review compared the association of miR-21 with commonly used clinicopathological prognostic factors (Gleason score/grade; pathological/clinical stage; serum PSA level; risk stratification; age at diagnosis), as well as recurrence and metastasis.

Study IDs in **bold** were eligible for meta-analysis (n=11). Possible part overlap of participants between Ibrahim2019a 48 and Ibrahim2019b 49.

* Zedan2018 86 was counted twice as both tissue and plasma miR-21 expressions were measured.
** 3p strand of miR-21 was measured.

C: Circulating miR-21; corr: Correlation; diff: Difference; Neg: Negative association; Pos: Positive association; PSA: Prostate-specific antigen; T: Tissue miR-21; U: Unknown miR-21 source

Table 6: Summary of association results of included studies

Association result	Gleason (n=28) *	Stage (n=18)	PSA (n=18) *
p<0.05 Pos T	Arisan2020; Guan2016; Li2012; Melbø-Jørgensen2014; Zhao2019a	Li2012; Melbø-Jørgensen2014; Reis2012; Zhao2019a	
C	Al-Qatari2017; Gurbuz2020; Ibrahim2019a; Ibrahim2019b; Ju2019; Yang2016	Al-Qatari2017; Gurbuz2020; Ibrahim2019a; Ibrahim2019b; Ju2019; Stuopelyte2016; Yang2016	Al-Qatari2017; Gurbuz2020; Ibrahim2019b
U	Samaan2014		
p>0.05 Neg T	Katz2014; Kurui2019; Lichner2015; Reis2012; Zedan2017; Zedan2018	Zedan2017	Li2012; Reis2012; Zedan2018; Zhao2019a
C	Shen2012	Shen2012; Zedan2019	Ju2019; Shen2012; Zedan2018; Zedan2019
Neg T	Kristensen2016 **	Katz2014	Zedan2017
C	Kotb2014; Zedan2018; Zedan2019		
No diff T	Amankwah2013	Guan2016; Katz2014	
C	Farran2018; Foj2017; Stuopelyte2016		
No pos T	Hart2014		Agaoglu2011
p-value	No corr T		

### Association result	Recurrence (n=19)	Metastasis (n=14)	Risk (n=12)	Age (n=9)
p<0.05 Pos T	Leite2015; Li2012; Melbø-Jørgensen2014; Reis2012	Guan2016; Li2012	Zhu2019	
C	Huang2015b; Ju2019; Yang2016	Agaoglu2011; Brase2011; Huang2015b; Ibrahim2019a; Ibrahim2019b; Watahiki2013; Yang2016; Ju2019	Foj2017; Ju2019; Shen2012; Zedan2019	Zedan2019
Neg T	Suer2019 **; Amankwah2013	Ren2014	Ren2014	
C				
p>0.05 Pos T	Kurui2019; Leite2011; Ren2014	Katz2014; Leite2013; Zedan2017		
C	Stuopelyte2016	Al-Qatari2017; Hoey2019; Sapre2014; Zedan2019		Huang2015b; Yang2016
Neg T	Katz2014	Leite2011	Lichner2013	Zhao2019a; Li2012
C	Selth2013; Shen2012			
No diff/corr T	Kristensen2016 **; Zheng2014			Guan2016
C	Singh2014			
No p-value Pos T	Bonci2016			

Downloaded from http://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20211972/926844/bsr-2021-1972.pdf by guest on 21 December 2021
Analysis	Outcome	Pooled result (HR 95% CI)	No. of participants	Certainty rate-downs	Overall certainty*
1.1	RFS a, c	1.54 (1.23-1.92)	838 (4 studies)	- RoB: High RoB in 3 studies - Imprecision: Estimated HR in all studies	LOW
1.2	RFS b, c	1.58 (1.19-2.09)	838 (4 studies)	- RoB: High RoB in 3 studies	MODERATE
2	RFS a, d	1.12 (1.01-1.26)	255 (2 studies)	- RoB: Unadjusted HR & high RoB in 1 study - Imprecision: CI close to HR 1	LOW
3	OS a, c	1.46 (1.06-2.01)	307 (4 studies)	- RoB: Unadjusted HR & high RoB in 3 studies - Indirectness: Lin 2014 & Lin 2017 recruited CRPC patients to address chemo-response - Imprecision: Estimated HR in 1 study; CI close to HR 1	VERY LOW
4.1	PFS a, c	1.09 (0.63-1.88)	116 (2 studies)	- RoB: High RoB in both studies - Inconsistency: Opposite direction results - Imprecision: Wide CI crossing HR 1	VERY LOW
4.2	PFS b, c	1.26 (0.70-2.27)	116 (2 studies)	- RoB: High RoB in both studies - Inconsistency: Opposite direction results - Imprecision: Wide CI crossing HR 1	VERY LOW

CI: Confidence interval; CRPC: castration-resistant prostate cancer; HR: Hazard ratio; OS: Overall survival; RFS: Recurrence-free survival; RoB: Risk of bias

a Unadjusted effect estimates
b Adjusted effect estimates
c Dichotomised miR-21 levels
d Continuous miR-21 levels
e HIGH: We are very confident that the variation in risk associated with miR-21 expression lies close to that of the estimate
MODERATE: We are moderately confident that the variation in risk associated with miR-21 expression is likely to be close to the estimate, but substantial difference is possible
LOW: We have limited certainty in the estimate, the variation in risk associated with miR-21 expression may be substantially different from the estimate
VERY LOW: We have very little certainty in the estimate, the variation in risk associated with miR-21 expression is likely to be substantially different from the estimate (GRADE 28).
ST 1: Search strategies in electronic databases

Medline (Ovid)
1. exp MicroRNAs/
2. (microRNA or miRNA or microRNA-21 or microRNA21 or miRNA-21 or miR-21 or miR21)
3. exp Prostatic Neoplasms/
4. (prostat* cancer* or prostat* carcinoma* or prostat* tumo?r* or prostat* neoplasm* or prostat* adenocarcinoma* or PRAD)
5. exp Biomarkers/
6. exp Prognosis/
7. exp Survival Analysis/
8. (biomarker* or marker* or prognos* or survival)
9. 1 or 2
10. 3 or 4
11. 5 or 6 or 7 or 8
12. 9 and 10 and 11
13. limit 12 to yr="2010-Current"
14. limit 13 to english language
15. limit 14 to (case reports or editorial or english abstract or letter or meta analysis or "review" or "systematic review")
16. 14 not 15

EMBASE
1. exp microRNA 21/
2. exp microRNA/
3. (microRNA or miRNA or microRNA-21 or microRNA21 or miRNA-21 or miR-21 or miR21)
4. 1 or 3
5. exp prostate cancer/
6. (prostat* cancer* or prostat* carcinoma* or prostat* tumo?r* or prostat* neoplasm* or prostat* adenocarcinoma* or PRAD)
7. 5 or 6
8. exp prognosis/
9. exp biological marker/
10. exp survival/ or exp survival analysis/
11. (biomarker* or marker* or prognos* or survival)
12. 8 or 9 or 10 or 11
13. 4 and 7
14. 12 and 13
15. limit 14 to yr="2010-Current"
16. limit 15 to english language
17. limit 16 to (meta analysis or "systematic review")
18. limit 16 to (books or chapter or conference abstract or editorial or letter or "review" or short survey)
19. 17 or 18
20. 16 not 19

Web of Science (Core Collection)
1. TOPIC: ("microRNA-21" OR "microRNA21" OR "miRNA-21" OR "miRNA21" OR "miR-21" OR "miR21" OR microRNA OR miRNA)
2. TOPIC: ("prostat* cancer*" OR "prostat* carcinoma*" OR "prostat* tumo?r*" OR "prostat* neoplasm*" OR "prostat* adenocarcinoma*" OR PRAD)
3. TOPIC: (biomarker* OR marker* OR prognostic OR survival)
4. #3 AND #2 AND #1 Refined by: [excluding] PUBLICATION YEARS: (2008 OR 2007 OR 2006 OR 2009) AND LANGUAGES: (ENGLISH) AND [excluding] DOCUMENT TYPES: (EDITORIAL MATERIAL OR LETTER OR REVIEW OR PROCEEDINGS PAPER OR RETRACTED PUBLICATION OR RETRACTION OR MEETING ABSTRACT OR BOOK CHAPTER)

Scopus
(TITLE-ABS-KEY (biomarker* OR marker* OR prognostic OR survival)) AND ((TITLE-ABS-KEY ("microRNA-21" OR "microRNA21" OR "miRNA-21" OR "miRNA21" OR "miR-21" OR "miR21" OR "circulating microRNA")) AND (TITLE-ABS-KEY ("prostat* cancer*" OR "prostat* carcinoma*" OR "prostat* tumo?r*" OR "prostat* neoplasm*" OR "prostat* adenocarcinoma*" OR PRAD))) AND (EXCLUDE (PUBYEAR , 2009) OR EXCLUDE (PUBYEAR , 2008)) AND (LIMIT-TO (LANGUAGE , "English")) AND (EXCLUDE (DOCTYPE , "ch") OR EXCLUDE (DOCTYPE , "ed") OR EXCLUDE (DOCTYPE , "sh") OR EXCLUDE (DOCTYPE , "no")) AND (LIMIT-TO (DOCTYPE , "ar"))

Cochrane Library
microRNA-21 or microRNA21 or miRNA-21 or miRNA21 or miR-21 or miR21 or microRNA or miRNA or miR in All Text AND prostate or prostatic in Title Abstract Keyword AND cancer or carcinoma or tumour or tumor or neoplasm or adenocarcinoma or PRAD in Title Abstract Keyword AND biomarker or marker or prognostic or prognosis or survival in Title Abstract Keyword
ST 2: Data items included in Covidence data extraction form (Adapted from CHARMS-PF checklist22)

General information
Study ID
Title
Lead author and contact details
Country in which the study conducted
Study funding sources
Possible conflicts of interest for study authors
Notes

Source of data
Source of data (e.g., cohort, case control, randomised trial or registry data)

Participants
Participant eligibility and recruitment method
Participant description
Details of treatments received (if relevant)
Study dates

Outcomes to be predicted
Definition and method for measurement of outcomes
Was the same outcome definition (and method for measurement) used in all participants?
Types of outcomes
Were the outcomes assessed without knowledge of the candidate prognostic factors (i.e., blinded)?
Were candidate prognostic factors part of the outcome?
Time of outcome occurrence or summary of duration of follow-up

Prognostic factors (index and comparator)
Number and type of prognostic factors
Definition and method for measurement of prognostic factors
Timing of prognostic factor measurement
Were prognostic factors assessed blinded for outcome, and for each other (if relevant)?
Handling of prognostic factors in the analysis

Sample size
Was a sample size calculation conducted and, if so, how?
Number of participants and number of outcomes or events
Number of outcomes or events in relation to the number of candidate prognostic factors (events per variable)

Missing data
Number of participants with any missing value
Number of participants with missing data for miR-21 expression
Details of attrition (loss to follow-up) and, for time-to-event outcomes, number of censored observations
Handling of missing data

Analysis (N/A for studies excluded from meta-analysis)
Modelling method
How modelling assumptions were checked; the method for assessing non-proportional hazards
Method for selection of prognostic factors for inclusion in multivariable modelling
Method for selection or exclusion of prognostic factors during multivariable modelling, and criteria used for any selection or exclusion
Method of handling each continuous prognostic factor, including values of any cut points used and their justification

Results of studies included in meta-analysis
Unadjusted and adjusted prognostic effect estimates for miR-21 expression, the corresponding 95\% confidence interval with p-value.
For the extracted adjusted prognostic effect estimate of interest, the set of adjustment factors used

Results of studies excluded from meta-analysis
Prognostic factors or stratification used for association analysis
Type of association analysis and estimates with p-value

Interpretation and discussion
Interpretation of presented results
Comparison with other studies, discussion of generalisability, strengths and limitations
ST 3: Records of authors contacted (12 studies)

Study ID	Author contacted	Response	Additional data
Bryant2012	Freddie Hamdy <freddie.hamdy@nds.ox.ac.uk><richard.bryant@nds.ox.ac.uk>	Yes	miR-21 raw data excel file including 78 PCa patients
Fendler2011	Klaus Jung <klaus.jung@charite.de>	Yes	No (Communication stopped without useful data)
Huang2015a	Liang Wang liwang@mcw.edu	No	
Kelly2015	Brian Kelly dbriankelly@hotmail.com	Yes	No (Communication stopped without useful data)
Leite2013	Katia Ramos Moreira Leite katiaramos@usp.br	Yes	Clarification on results reported
Leite2015	Updated: <katiaramos@usp.br>	Yes	Details of multivariate analysis
Lin2014	Hui-Ming Lin b.lin@garvan.org.au	Yes	Clarification on analysis method
Lin2017	Updated: <b.lin@garvan.org.au>	Yes	Results of univariate & multivariate analyses
McDonald2019	Alicia McDonald amcdonald3@phs.psu.edu	Yes	No (miR-21 measured but not analysed because it did not meet criteria)
Mortensen2014	Lars Dyrskjet Andersen lars@clin.au.dk	Yes	Raw unanalysed data
Schubert2013	Maria Schubert schubert_m@klinik.uni-wuerzburg.de Burkhard Kneitz kneitz_b@klinik.uni-wuerzburg.de	No	
Stuopelyte2016	Sonata Jarmalaite sonata.jarmalaite@gf.vu.lt sonata.jarmalaite@nvi.lt	No	
ST 4: QUIPS (Quality in Prognostic Factor Studies) risk of bias classification tool			
---	---	---	
Signalling items	**1. Study participation**		
	(a) Adequate participation in the study by eligible persons	HIGH	
	(b) Description of the target population or population of interest	MODERATE	
	(c) Description of the baseline study sample	LOW	
	(d) Adequate description of the sampling frame and recruitment		
	(e) Adequate description of the period and place of recruitment		
	(f) Adequate description of inclusion and exclusion criteria		
Risk of bias ratings	The relationship between the PF and outcome is very likely to be different for participants and eligible non-participants		
	The relationship between the PF and outcome may be different for participants and eligible non-participants		
	The relationship between the PF and outcome is unlikely to be different for participants and eligible non-participants	**	
Signalling items	**2. Study attrition**		
	(a) Adequate response rate for study participants	HIGH	
	(b) Description of attempts to collect information on participants who dropped out	MODERATE	
	(c) Reasons for loss to follow-up are provided	LOW	
	(d) Adequate description of participants lost to follow-up		
	(e) There are no important differences between participants who completed the study and those who did not		
Risk of bias ratings	The relationship between the PF and outcome is very likely to be different for completing and non-completing participants		
	The relationship between the PF and outcome may be different for completing and non-completing participants		
	The relationship between the PF and outcome is unlikely to be different for completing and non-completing participants	**	
Signalling items	**3. Prognostic factor measurement**		
	(a) A clear definition or description of the PF is provided	HIGH	
	(b) Method of PF measurement is adequately valid and reliable	MODERATE	
	(c) Continuous variables are reported or appropriate cut-points are used	LOW	
	(d) The method and setting of measurement of PF is the same for all study participants		
	(e) Adequate proportion of the study sample has complete data for the PF		
	(f) Appropriate methods of imputation are used for missing PF data		
Risk of bias ratings	The measurement of the PF is very likely to be different for different levels of the outcome of interest		
	The measurement of the PF may be different for different levels of the outcome of interest		
	The measurement of the PF is unlikely to be different for different levels of the outcome of interest	**	
Signalling items	**4. Outcome measurement**		
	(a) A clear definition of the outcome is provided	HIGH	
	(b) Method of outcome measurement used is adequately valid and reliable	MODERATE	
	(c) The method and setting of outcome measurement is the same for all study participants	LOW	
Risk of bias ratings	The measurement of the outcome is very likely to be different related to the baseline level of the PF		
	The measurement of the outcome may be different related to the baseline level of the PF		
	The measurement of the outcome is unlikely to be different related to the baseline level of the PF	**	
Signalling items	**5. Adjustment for covariates**		
	(a) All other important covariates are measured	HIGH	
	(b) Clear definitions of the important covariates measured are provided	MODERATE	
	(c) Measurement of all important covariates is adequately valid and reliable	LOW	
	(d) The method and setting of covariate measurement are the same for all study participants		
	(e) Important covariates are accounted for in the analysis		
	(f) Important covariates are accounted for in the analysis		
Risk of bias ratings	The observed effect of the covariate on the outcome is very likely to be distorted by another factor related to PF and outcome		
	The observed effect of the covariate on outcome may be distorted by another factor related to PF and outcome		
	The observed effect of the covariate on outcome is unlikely to be distorted by another factor related to PF and outcome	**	
Signalling items	**6. Statistical analysis and reporting**		
	(a) Sufficient presentation of data to assess the adequacy of the analytic strategy	HIGH	
	(b) Strategy for model building is appropriate and is based on a conceptual framework or model	MODERATE	
	(c) The selected statistical model is adequate for the design of the study	LOW	
	(d) There is no selective reporting of results		
Risk of bias ratings	The reported results are very likely to be spurious or biased related to analysis or reporting		
	The reported results may be spurious or biased related to analysis or reporting		
	The reported results are unlikely to be spurious or biased related to analysis or reporting	**	

* Risk of bias is rated as **Unclear** when there is insufficient information to inform judgment.

PF: Prognostic factor
ST 5: Reasons for exclusion of 13 full-text articles

Reason for exclusion	Full-text articles
No prognostic data (n=4)	Benoist2020; Egidi2013; Li2015; Liu2018; Martens-Uzunova2012; Osipov2016; Valera2020; Yang2015
miR-21 not studied (n=4)	Haldrup2014; Knyazev2016; Moltzahn2011; Nam2015
Non-original human prognostic data (n=1)	Kumar2018

Benoist2020
Benoist, G.E., van Oort, I.M., Boerigter, E., Verhaegh, G.W., van Hooij, O., Groen, L., Smit, F., de Mol, P., Hamberg, P., Dezentjé, V.O. and Mehra, N., 2020. Prognostic Value of Novel Liquid Biomarkers in Patients with Metastatic Castration-Resistant Prostate Cancer Treated with Enzalutamide: A Prospective Observational Study. *Clinical Chemistry*, 66(6), pp.842-851.

Egidi2013
Egidi, M.G., Cochetti, G., Serva, M.R., Guelfi, G., Zampini, D., Mechelli, L. and Mearini, E., 2013. Circulating microRNAs and kallikreins before and after radical prostatectomy: are they really prostate cancer markers? *BioMed research international*, 2013.

Haldrup2014
Haldrup, C., Kosaka, N., Ochiya, T., Borre, M., Høyer, S., Orntoft, T.F. and Sorensen, K.D., 2014. Profiling of circulating microRNAs for prostate cancer biomarker discovery. *Drug delivery and translational research*, 4(1), pp.19-30.

Knyazev2016
Knyazev, E., Samatov, T., Fomicheva, K., Nyushko, K., Alekseev, B. and Shkurnikov, M., 2016. MicroRNA hsa-miR-4674 in hemolysis-free blood plasma is associated with distant metastases of prostatic cancer. *Bulletin of Experimental Biology & Medicine*, 161(1).

Kumar2018
Kumar, B., Rosenberg, A.Z., Choi, S.M., Fox-Talbot, K., De Marzo, A.M., Nnon, L., Brennen, W.N., Marchionni, L., Halushka, M.K. and Lupold, S.E., 2018. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. *Scientific reports*, 8(1), pp.1-13.

Li2015
Li, M., Rai, A.J., DeCastro, G.J., Zeringer, E., Barta, T., Magdaleno, S., Setterquist, R. and Vlassov, A.V., 2015. An optimized procedure for exosome isolation and analysis using serum samples: application to cancer biomarker discovery. *Methods*, 87, pp.26-30.

Liu2018
Liu, R.S., Olikhov-Mitsel, E., Jeyapala, R., Zhao, F., Commissos, K., Klotz, L., Loblaw, A., Liu, S.K., Vesprini, D., Fleshner, N.E. and Bapati, B., 2018. Assessment of serum microRNA biomarkers to predict reclassification of prostate cancer in patients on active surveillance. *The Journal of urology*, 199(6), pp.1475-1481.

Martens-Uzunova2012
Martens-Uzunova, E.S., Jalava, S.E., Dits, N.F., Van Leenders, G.J.L.H., Møller, S., Trapman, J., Bangma, C.H., Litman, T., Visakorpi, T. and Jenster, G., 2012. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. *Oncogene*, 31(8), pp.978-991.

Moltzahn2011
Moltzahn, F., Olshen, A.B., Baehner, L., Peek, A., Fong, L., Stöppler, H., Simko, J., Hilton, J.F., Carroll, P. and Blelho, R., 2011. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. *Cancer research*, 71(2), pp.550-560.

Nam2015
Nam, R.K., Amemiya, Y., Benatar, T., Wallis, C.J., Stoijic-Bendavid, J., Bapopulos, S., Sherman, C., Sugar, L., Naeim, M., Yang, W. and Zhang, A., 2015. Identification and validation of a five microRNA signature predictive of prostate cancer recurrence and metastasis: a cohort study. *Journal of Cancer*, 6(11), p.1160.

Osipov2016
Osipov, I.D., Zaporozhchenko, I.A., Bondar, A.A., Zaripov, M.M., Voyitsitskii, V.E., Vlassov, V.V., Laktionov, P.P. and Morozkin, E.S., 2016. Cell-free miRNA-141 and miRNA-205 as prostate cancer biomarkers. In *Circulating Nucleic Acids in Serum and Plasma–CNAPS IX* (pp. 9-12). Springer, Cham.

Valera2020
Valera, V.A., Parra-Medina, R., Walter, B.A., Pinto, P. and Merino, M.J., 2020. microRNA expression profiling in young prostate cancer patients. *Journal of Cancer*, 11(14), p.4106.

Yang2015
Yang, C.H., Pfeffer, S.R., Sims, M., Yue, J., Wang, Y., Linga, V.G., Paulus, E., Davidoff, A.M. and Pfeffer, L.M., 2015. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. *Journal of Biological Chemistry*, 290(10), pp.6037-6046.
Ref no.	Study ID	Study size	miR-21 source	miR-21-5p/-3p	Comparator	Association
29	Agaoglu2011	51	plasma	Not specified	PSA, metastasis	Correlation, median diff
30	Al-Qatati2017	79	plasma	miR-21-5p	GS, pT, PSA, risk groups	FC
31	Amankwah2013	65	tissue	Not specified	Aggressiveness (determined by GS or stage), recurrence (BCR/clinical metastasis/PCa death)	% diff
32	Arisan2020	40	tissue	Not specified	GS	% diff
33	Bell2015*	43	tissue	Not specified	(Raw data of m-R-21 in GEO not analysed. No other miR-21 data available.)	
34	Bonci2016	15	tissue	Not specified	Metastasis	% diff
35	Brase2011	21	serum	Not specified	Metastasis	FC
36	Bryant2012*	78	plasma	Not specified	(Author provided miR-21 raw data excel file.)	
37	Danarto2020	60	urine	miR-21-5p	Metastasis	Mean diff
38	Endzelinski2017*	50	plasma or exosome	miR-21-5p	(Comparison and ROC curve of miR-21 expression between GS≥8 & ≤6 were done but not shown due to insignificant result.)	
39	Farran2018	114	plasma	Not specified	Aggressiveness (determined by GS)	OR
40	Fendler2011*	52	tissue	Not specified	(Communication with authors failed to obtain full list of differentially expressed miRNAs.)	
41	Foj2017	60	urine, urine exosome	miR-21-5p	GS, D'Amico risk groups	Mean diff
42	Guan2016	85	tissue	Not specified	GS, PSA, metastasis, age	Correlation
43	Gurbuz2020	65	whole blood	Not specified	GS, TNM, PSA	FC diff
44	Hart2014	20	tissue	Not specified	pT	FC diff
45	Hoey2019	75	serum	miR-21-5p	Risk groups	FC
46	Huang2015a*	Screening =23 Follow-up =100	plasma exosome	miR-21-5p	(miR-21 raw data in supplemental materials; overall survival might have been analysed but contact author failed.)	
47	Huang2015b	75	PBMC	Not specified	pT, ct, pN, metastasis, recurrence, age	Mean diff
48	Ibrahim2019a	100	plasma	Not specified	GS, pT, metastasis, DRE, prostate volume	Correlation, mean diff
49	Ibrahim2019b	80	plasma	Not specified	GS, pT, PSA, metastasis, DRE, prostate volume	Median diff
50	Ju2019	88	serum	Not specified	GS, pT, PSA, metastasis, BCR, risk groups	Mean diff
51	Katz2014	51	tissue	Not specified	GS, pT, PSA, BCR, risk groups	Mean diff
52	Kelly2015*	75	whole blood	Not specified	(miR-21 was among the 12 selected for expression profiling, but data wasn't presented. Author stopped communication.)	
53	Kopcalic2019	15	PBMC	Not specified	Acute genitourinary radiotoxicity	Mean diff
54	Kotb2014	10	serum	Not specified	GS	Correlation
55	Kristensen2016	Training =134	tissue	miR-21-3p	GS, BCR	FC, correlation
Validation	Leite2015	Discovery 53	tissue	miR-21-5p, miR-21-3p	BCR	FC, mean diff
---	---	---	---	---	---	---
Leite2011a	22	tissue	Not specified	Metastasis	Mean diff	
Leite2011b	49	tissue	Not specified	BCR	Mean diff	
Leite2013 **	48	tissue	Not specified	Risk groups (favourable vs non-favourable)	Mean diff	
Leite2015	Discovery 53	tissue	miR-21-5p, miR-21-3p	BCR	FC, mean diff	
Li2012	168	tissue	Not specified	GS, pT, PSA, pN, BCR, age, surgical margin, capsular invasion, organ confined disease	% diff	
Lichner2013	Discovery 41	tissue	miR-21-5p, miR-21-3p	Risk groups	FC	
Lichner2015	Discovery 45	tissue	miR-21-5p, miR-21-3p	GG	FC	
Lin2014 *	97	plasma or serum	Not specified	(Pre-docetaxel median diff and post-docetaxel median FC in responder vs non-responder compared. Results for miR-21 not shown due to insignificant p-values.)	(No association analysis with comparator.)	
Lin2017 *	87	plasma	Not specified	(miR-21 expression relating to BCR prediction raw data in supplemental materials.)		
Long2011 *	Training 70	tissue	Not specified	(miR-21 expression measured but not analysed because it did not meet study criteria.)		
McDonald 2019 *	66	plasma	Not specified	(miR-21 expression measured but not analysed.)		
Melbø-Jørgensen 2014	535	tissue	miR-21-5p	GS, pT, BCR, perineural infiltration, vascular infiltration	Correlation, FC	
Mortensen2014 *	36	tissue	Not specified	(miR-21 expression measured but not analysed.)		
Nam2018 *	38	tissue	miR-21-5p, miR-21-3p	(miR-21 normalised read count available in GEO, not analysed.)		
Ostano2020	48	tissue	miR-21-3p	Neuroendocrine-like vs Adeno PCa	FC	
Reis2012	53	tissue	Not specified	GS, pT, PSA, BCR	Mean diff	
Ren2014	204	tissue	Not specified	GS, pT, metastasis, BCR, age, ethnicity, survival, tissue type, hormone therapy	FC, mean diff	
Samaan2014	95	Not stated	Not specified	GG	FC	
Sapre2014	36	urine	Not specified	Risk groups	Ct FC	
Schubert 2013 *	13	tissue	Not specified	(miR-21 tested in microarray; raw data deposited in GEO (GSE18671); not included in further tests because of insignificant differential expression in high-risk PCa compared to BPH.)		
	Study Year	Study Type	Sample Type	Sample Source	Biomarkers	Endpoints
---	------------	------------	-------------	---------------	-------------	-----------
77	Selth2013	Screening	serum	Not specified	BCR	FC
78	Sharova2021	Validation	plasma	miR-21-5p	Haemoglobin; Neutrophil/lymphocyte ratio; PSA; Time to CRPC	Correlation
79	Shen2012	Validation	plasma	Not specified	GS, pT, PSA, BCR, risk groups (CAPRA, D’Amico), age, prostate volume, ethnicity, follow-up time, family history of PCa	Mean diff (copy number)
80	Singh2014	Validation	serum	Not specified	Biochemical progression	Mean diff (delta Ct)
81	Stuopelyte 2016	Validation	urine	Not specified	GS, pT, BCR	FC
82	Suer2019	Validation	tissue	miR-21-3p	BCR	FC
83	Watahiki2013	Validation	plasma	Not specified	mCRPC	Mean diff
84	Yang2016	Validation	PBMC	Not specified	GS, cT, PSA, metastasis (bone), BCR, age	Mean diff
85	Zedan2017	Validation	tissue	Not specified	GS, pT, PSA, risk groups (D’Amico, NCCN)	Correlation
86	Zedan2018	Validation	tissue or plasma	Not specified	GS, PSA	Mean diff
87	Zedan2019	Validation	plasma	Not specified	GS, cT, PSA, risk groups (EAU), age, prostate volume	Correlation
88	Zhang2011	Validation	serum	Not specified	Chemo-resistance	
89	Zhao2019a	Validation	tissue	miR-21-5p	ISUP (based on GS), pT, PSA, age, DRE, margin	Correlation
90	Zhao2019b	Validation	urine	Not specified	PSA, age, %core, reclassification	Correlation
91	Zheng2014	Validation	tissue	Not specified	Recurrence (CBR/local recurrence/systemic metastases/PCa death)	Mean diff, OR
92	Zhu2019	Validation	tissue	Not specified	Risk groups (identified by GAS5 SNPs)	FC

Studies in bold are eligible for meta-analyses (n=11). Possible part overlap of participants between Ibrahim2019a and Ibrahim2019b.

* miR-21 expression measured but no useful data for narrative summary (n=13).

** (Leite2013) A corrigendum would be published in Urologic Oncology.

ARTA: Androgen receptor-targeted agents; BCR: Biochemical recurrence; BPH: Benign prostate enlargement; CAPRA: Cancer of the Prostate Risk Assessment; CRPC: Castration-resistant prostate cancer; cT: Clinical tumour stage; Ct: Threshold cycle; diff: Difference; DRE: Digital rectal examination; EAU: European Association of Urology; FC: Fold change; GAS5: Growth Arrest Specific 5; GEO: Gene Expression Omnibus; GG: Gleason grade; GS: Gleason score; ISUP: International Society of Urological Pathology; mCRPC: Metastatic castration resistant prostate cancer; miRNAs: microRNAs; NCCN: National Comprehensive Cancer Network; OR: Odds ratio; PBMC: Peripheral blood mononuclear cell; PCA: Prostate cancer; pN: Lymph node metastasis; PSA: Prostate-specific antigen; pT: Pathological tumour stage; ROC: Receiver operating characteristic; SNPs: Single-nucleotide polymorphisms; TNM: Tumour, Node, Metastasis staging.
Agaoglu2011
Agaoglu, F.Y., Kovancilar, M., Dizdar, Y., Darendeliler, A., Holdenrieder, S., Dalay, N. and Gezer, U., 2011. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biology, 32(3), pp.583-588.

Al-Qatati2017
Al-Qatati, A., Akrong, C., Stevic, I., Pantel, K., Awe, J., Saranchuk, J., Drachenberg, D., Mai, S. and Schwarzenbach, H., 2017. Plasma microRNA signature is associated with risk stratification in prostate cancer patients. International journal of cancer, 141(6), pp.1231-1239.

Amankwah2013 (Analysis 1)
Amankwah, E.K., Anegbe, E., Park, H., Pow-Sang, J., Hakam, A. and Park, J.Y., 2013. miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. Asian journal of andrology, 15(2), p.226.

Arisan2020
Arisan, E.D., Rencuzogullari, O., Freitas, I.L., Radzali, S., Keskin, B., Kothari, A., Warford, A. and Uysal-Onganer, P., 2020. Upregulated Wnt-11 and miR-21 expression trigger epithelial mesenchymal transition in aggressive prostate cancer cells. Biology, 9(3), p.52.

Bell2015
Bell, E.H., Kirste, S., Fleming, J.L., Stegmaier, P., Drendel, V., Mo, X., Ling, S., Fabian, D., Manring, I., Jill, C.A. and Schultze-Seemann, W., 2015. A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy. Plos one, 10(3), p.e0118745.

Bonci2016
Bonci, D., Coppola, V., Patrizii, M., Addario, A., Cannistraci, A., Francescangeli, F., Pecchi, R., Muto, G., Collura, D., Bedini, R. and Zeuner, A., 2016. A microRNA code for prostate cancer metastasis. Oncogene, 35(9), pp.1180-1192.

Brase2011
Brase, J.C., Johannes, M., Schlom, T., Fälth, M., Haese, A., Steuber, T., Beissbarth, T., Kuner, R. and Sültemann, H., 2011. Circulating miRNAs are correlated with tumor progression in prostate cancer. International journal of cancer, 128(3), pp.608-616.

Bryant2012
Bryant, R., Pawlowski, T., Catto, J.W.F., Marsden, G., Vessella, R.L., Rhee, B., Kuslich, C., Visakorp, T. and Hamdy, F.C., 2012. Changes in circulating microRNA levels associated with prostate cancer. British journal of cancer, 106(4), pp.768-774.

Danarto2020
Danarto, R., Astuti, I., Umbas, R. and Haryana, S.M., 2020. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer. Turkish journal of urology, 46(1), p.26.

Endzelis2017
Endzelis, E., Berger, A., Melne, V., Bajo-Santos, C., Sobolovska, K., Ābols, A., Rodríguez, M., Šantare, D., Rudnickiha, A., Lietuvietis, V. and Llorente, A., 2017. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC cancer, 17(1), pp.1-13.

Farran2018
Farran, B., Dyson, G., Craig, D., Dombkowski, A., Beebe-Dimmer, J.L., Powell, I.J., Podgorski, I., Heilbrun, L., Bolton, S. and Bock, C.H., 2018. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis, 39(4), pp.556-561.

Fendler2011
Fendler, A., Jung, M., Stephan, C., Honey, R.J., Stewart, R.J., Pace, K.T., Erbersdobler, A., Samaan, S., Jung, K. and Yousef, G.M., 2011. miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression. International journal of oncology, 39(5), pp.1183-1192.

Foj2017
Foj, L., Ferrer, F., Serra, M., Arévalo, A., Gavagnach, M., Giménez, N. and Filella, X., 2017. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. The Prostate, 77(6), pp.573-583.

Guan2016 (Eligible for meta-analysis but no similar studies)
Guan, Y., Wu, Y., Liu, Y., Ni, J. and Nong, S., 2016. Association of microRNA-21 expression with clinicopathological characteristics and the risk of progression in advanced prostate cancer patients receiving androgen deprivation therapy. The Prostate, 76(11), pp.986-993.

Gurbuz2020
Gurbuz, V., Kiliccioglu, I., Dickmen, A.U., Bilen, C.Y., Sozen, S. and Konac, E., 2020. Comparative analysis of epi-miRNA expression levels in local/locally advanced and metastatic prostate cancer patients. Gene, 758, p.144963.

Hart2014

Hart, M., Nolte, E., Wach, S., Szczyrba, J., Taubert, H., Rau, T.T., Hartmann, A., Grässer, F.A. and Wullich, B., 2014. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Molecular cancer research, 12(2), pp.250-263.

Hoey2019
Hoey, C., Ahmed, M., Ghiam, A.F., Vesprini, D., Huang, X., Commissio, K., Commissio, A., Ray, J., Fokas, E., Loblaw, D.A. and He, H.H., 2019. Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy. Journal of translational medicine, 17(1), pp.1-11.

Huang2015a
Huang, X., Yuan, T., Liang, M., Du, M., Xia, S., Dittmar, R., Wang, D., See, W., Costello, B.A., Quevedo, F. and Tan, W., 2015. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. European urology, 67(1), pp.33-41.

Huang2015b
Huang, W., Kang, X.L., Cen, S., Wang, Y. and Chen, X., 2015. High-level expression of microRNA-21 in peripheral blood mononuclear cells is a diagnostic and prognostic marker in prostate cancer. Genetic testing and molecular biomarkers, 19(9), pp.469-475.

Ibrahim2019a
Ibrahim, N.H., Abdellateif, M.S., Thabet, G., Kassem, S.H., El-Salam, M.A., El-Leithy, A.A. and Selim, M.M., 2019. Combining PHI and miRNAs as biomarkers in prostate cancer diagnosis and prognosis. Clin Lab, 65(7), p.10.

Ibrahim2019b (Possible part overlap of participants with Ibrahim 2019a)
Ibrahim, N.H., Abdellateif, M.S., Kassem, S.H.A., Abd El Salam, M.A. and El Gamal, M.M., 2019. Diagnostic significance of miR-21, miR-141, miR-18a and miR-221 as novel biomarkers in prostate cancer among Egyptian patients. Andrologia, 51(10), e13384.

Ju2019
Ju, G., Lian, J., Wang, Z., Cao, W., Lin, J., Li, Y. and Yin, L., 2019. Correlation between miRNA-21 expression and diagnosis, metastasis and prognosis of prostate cancer. International Journal of Clinical and Experimental Medicine, 12(7), pp.8172-8180.

Katz2014
Katz, B., Reis, S.T., Viana, N.J., Morais, D.R., Moura, C.M., Dip, N., Silva, I.A., Iscaife, A., Srougi, M. and Leite, K.R., 2014. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. PloS one, 9(11), p.e113700.

Kelly2015
Kelly, B.D., Miller, N., Sweeney, K.J., Durkan, G.C., Rogers, E., Walsh, K. and Kerin, M.J., 2015. A circulating microRNA signature as a biomarker for prostate cancer in a high risk group. Journal of clinical medicine, 4(7), pp.1369-1379.

Kopcalic2019
Kopcalic, K., Petrovic, N., Stanojkovic, T.P., Stankovic, V., Bukumiric, Z., Roganovic, J., Malisic, E. and Nikitovic, M., 2019. Association between miR-21/146a/155 level changes and acute genitourinary radiotoxicity in prostate cancer patients: A pilot study. Pathology-Research and Practice, 215(4), pp.626-631.

Kotb2014
Kotb, S., Mosharafa, A., Essawi, M., Hassan, H., Meshref, A. and Morsy, A., 2014. Circulating miRNAs 21 and 221 as biomarkers for early diagnosis of prostate cancer. Tumor Biology, 35(12), pp.12613-12617.

Kristensen2016
Kristensen, H., Thomsen, A.R., Haldrup, C., Dyrskøj, L., Høyer, S., Borre, M., Mouritzen, P., Ørntoft, T.F. and Sørensen, K.D., 2016. Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. Oncotarget, 7(21), p.30760.

Kurul2019
Kurul, N.O., Ates, F., Yilmaz, I., Narli, G., Yesildal, C. and Senkul, T., 2019. The association of let-7c, miR-21, miR-145, and miR-221 with clinicopathologic parameters of prostate cancer in patients diagnosed with low-risk disease. The Prostate, 79(10), pp.1125-1132.

Leite2011a
Leite, K.R., Sousa-Canavez, J.M., Reis, S.T., Tomiyama, A.H., Camara-Lopes, L.H., Sañudo, A., Antunes, A.A. and Srougi, M., 2011, May. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. In Urologic Oncology: Seminars and Original Investigations (Vol. 29, No. 3, pp. 265-269). Elsevier.

Leite2011b
Leite, K.R., Tomiyama, A., Reis, S.T., Sousa-Canavez, J.M., Sañudo, A., Dall'Oglio, M.F., Camara-Lopes, L.H. and Srougi, M., 2011. MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. The Journal of urology, 185(3), pp.1118-1122.
Leite2013 (A corrigendum will be published in Urologic Oncology)

Leite, K.R., Tomiyama, A., Reis, S.T., Sousa-Canavez, J.M., Sañudo, A., Camara-Lopes, L.H. and Srougi, M., 2013, August. MicroRNA expression profiles in the progression of prostate cancer—from high-grade prostate intraepithelial neoplasia to metastasis. In Urologic Oncology: Seminars and Original Investigations (Vol. 31, No. 6, pp. 796-801). Elsevier.

Leite2015 (Analysis 1)

Leite, K.R., Reis, S.T., Viana, N., Morais, D.R., Moura, C.M., Silva, I.A., Pontes Jr, J., Katz, B. and Srougi, M., 2015. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. Journal of Cancer, 6(3), p.292.

Li2012 (Analysis 1)

Li, T., Li, R.S., Li, Y.H., Zhong, S., Chen, Y.Y., Zhang, C.M., Hu, M.M. and Shen, Z.J., 2012. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. The Journal of urology, 187(4), pp.1466-1472.

Lichner2014

Lichner, Z., Fendler, A., Saleh, C., Nasser, A.N., Boles, D., Al-Haddad, S., Kupchak, P., Dharsee, M., Nuin, P.S., Evans, K.R. and Jung, K., 2013. MicroRNA signature helps distinguish early from late biochemical failure in prostate cancer. Clinical chemistry, 59(11), pp.1595-1603.

Lichner2015

Lichner, Z., Ding, Q., Samaan, S., Saleh, C., Nasser, A., Al-Haddad, S., Samuel, J.N., Fleshner, N.E., Stephan, C., Jung, K. and Yousef, G.M., 2015. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. The Journal of pathology, 237(2), pp.226-237.

Lin2014 (Analysis 3)

Lin, H.M., Castillo, L., Mahon, K.L., Chiam, K., Lee, B.Y., Nguyen, Q., Boyer, M.I., Stockler, M.R., Pavlakis, N., Marx, G. and Mallessara, G., 2014. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. British journal of cancer, 110(10), pp.2462-2471.

Lin2017 (Analysis 3)

Lin, H.M., Mahon, K.L., Spielman, C., Gurney, H., Mallesara, G., Stockler, M.R., Bastick, P., Briscoe, K., Marx, G., Swarbrick, A. and Horvath, L.G., 2017. Phase 2 study of circulating microRNA biomarkers in castration-resistant prostate cancer. British journal of cancer, 116(8), pp.1002-1011.

Long2011

Long, Q., Johnson, B.A., Osunkoya, A.O., Lai, Y.H., Zhou, W., Abramovitz, M., Xia, M., Bouzyk, M.B., Nam, R.K., Sugar, L. and Stanimirovic, A., 2011. Protein-coding and microRNA biomarkers of recurrence of prostate cancer following radical prostatectomy. The American journal of pathology, 179(1), pp.46-54.

McDonald2019

McDonald, A.C., Vira, M., Walter, V., Shen, J., Raman, J.D., Sanda, M.G., Patil, D. and Taioli, E., 2019. Circulating microRNAs in plasma among men with low-grade and high-grade prostate cancer at prostate biopsy. The Prostate, 79(9), pp.961-968.

Melbø-Jørgensen2014 (Analysis 1)

Melbø-Jørgensen, C., Ness, N., Andersen, S., Valkov, A., Dønnem, T., Al-Saad, S., Kiselev, Y., Berg, T., Nordby, Y., Bremnes, R.M. and Busund, L.T., 2014. Stromal expression of MiR-21 predicts biochemical failure in prostate cancer patients with Gleason score 6. PloS one, 9(11), p.e113039.

Mortensen2014

Mortensen, M.M., Høy, S., Ørntoft, T.F., Sørensen, K.D., Dyrskjøt, L. and Borre, M., 2014. High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy. BMC cancer, 14(1), pp.1-7.

Nam2018

Nam, R.K., Wallis, C.J., Amemiya, Y., Benatar, T. and Seth, A., 2018. Identification of a novel MicroRNA panel associated with metastasis following radical prostatectomy for prostate cancer. Anticancer research, 38(9), pp.5027-5034.

Ostano2020

Ostano, P., Mello-Grand, M., Sesia, D., Gregnanin, I., Peraldo-Neia, C., Guana, F., Jachetti, E., Farsetti, A. and Chiorino, G., 2020. Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma. International journal of molecular sciences, 21(3), p.1078.

Reis2012

Reis, S.T., Pontes-Junior, J., Antunes, A.A., Dall’Oglio, M.F., Dip, N., Passerotti, C.C., Rossini, G.A., Morais, D.R., Nesrallah, A.J., Piantino, C. and Srougi, M., 2012. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC urology, 12(1), pp.1-7.

Ren2014

Ren, Q., Liang, J., Wei, J., Basturk, O., Wang, J., Daniels, G., Gellert, L.L., Li, Y., Shen, Y., Osman, I. and Zhao, J., 2014. Epithelial and stromal expression of miRNAs during prostate cancer progression. American journal of translational research, 6(4), p.329.
Samaan2014
Samaan, S., Lichner, Z., Ding, Q., Saleh, C., Samuel, J., Streutker, C. and Yousef, G.M., 2014. Kallikreins are involved in an miRNA network that contributes to prostate cancer progression. Biological chemistry, 395(9), pp.991-1001.

Sapre2014
Sapre, N., Hong, M.K., Macintyre, G., Lewis, H., Kowalczyk, A., Costello, A.J., Corcoran, N.M. and Hovens, C.M., 2014. Curated microRNAs in urine and blood fail to validate as predictive biomarkers for high-risk prostate cancer. PloS one, 9(4), p.e91729.

Schubert2013
Schubert, M., Spahn, M., Kneitz, S., Scholz, C.J., Joniau, S., Stroebel, P., Riedmiller, H. and Kneitz, B., 2013. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer. PloS one, 8(6), p.e65064.

Selth2013
Selth, L.A., Townley, S.L., Bert, A.G., Stricker, P.D., Sutherland, P.D., Horvath, L.G., Goodall, G.J., Butler, L.M. and Tilley, W.D., 2013. Circulating microRNAs predict biochemical recurrence in prostate cancer patients. British journal of cancer, 109(3), pp.641-650.

Sharova, 2021
Sharova, E., Maruzzo, M., Del Bianco, P., Cavallari, I., Pierantoni, F., Basso, U., Ciminale, V. and Zagonel, V., 2021. Prognostic Stratification of Metastatic Prostate Cancer Patients Treated With Abiraterone and Enzalutamide Through an Integrated Analysis of Circulating Free microRNAs and Clinical Parameters. Frontiers in Oncology, 11: 626104.

Shen2012
Shen, J., Hruby, G.W., McKiernan, J.M., Gurvich, I., Lipsky, M.J., Benson, M.C. and Santella, R.M., 2012. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. The Prostate, 72(13), pp.1469-1477.

Singh2014
Singh, P.K., Preus, L., Hu, Q., Yan, L., Long, M.D., Morrison, C.D., Nesline, M., Johnson, C.S., Koochekpour, S., Kohli, M. and Liu, S., 2014. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget, 5(3), p.824.

Stuopelytė2016
Stuopelytė, K., Daniūnaitė, K., Jankevičius, F. and Jarmalaitė, S., 2016. Detection of miRNAs in urine of prostate cancer patients. Medicina, 52(2), pp.116-124.

Suer2019
Suer, I., Guzel, E., Karatas, O.F., Creighton, C.J., Iitmann, M. and Ozen, M., 2019. MicroRNAs as prognostic markers in prostate cancer. The Prostate, 79(3), pp.265-271.

Watahiki2013
Watahiki, A., Macfarlane, R.J., Gleave, M.E., Crea, F., Wang, Y., Helgason, C.D. and Chi, K.N., 2013. Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. International journal of molecular sciences, 14(4), pp.7757-7770.

Yang2016 (Analysis 3)
Yang, B., Liu, Z., Ning, H., Zhang, K., Pan, D., Ding, K., Huang, W., Kang, X.L., Wang, Y. and Chen, X., 2016. MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer biomarkers, 17(2), pp.223-230.

Zedan2017 (Analysis 2)
Zedan, A.H., Blavnsfeldt, S.G., Hansen, T.F., Nielsen, B.S., Marcussen, N., Pleckaitis, M., Oster, P.J.S. and Sørensen, F.B., 2017. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations. PLoS One, 12(6), p.e0179113.

Zedan2018
Zedan, A.H., Hansen, T.F., Assenholt, J., Pleckaitis, M., Madsen, J.S. and Oster, P.J.S., 2018. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumor Biology, 40(5), p.1010428318775864.

Zedan2019
Zedan, A.H., Hansen, T.F., Assenholt, J., Madsen, J.S. and Oster, P.J., 2019. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. The Prostate, 79(4), pp.425-432.

Zhang2011
Zhang, H.L., Yang, L.F., Zhu, Y., Yao, X.D., Zhang, S.L., Dai, B., Zhu, Y.P., Shen, Y.J., Shi, G.H. and Ye, D.W., 2011. Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. The prostate, 71(3), pp.326-331.

Zhao2019a (Analysis 2)
Zhao, Z., Weickmann, S., Jung, M., Lein, M., Kilic, E., Stephan, C., Erbersdobler, A., Fendler, A. and Jung, K., 2019. A novel predictor tool of biochemical recurrence after radical prostatectomy based on a five-microRNA tissue signature. *Cancers*, 11(10), p.1603.

Zhao2019b
Zhao, F., Vesprini, D., Liu, R.S., Olkhov-Mitsel, E., Klotz, L.H., Loblaw, A., Liu, S.K. and Bapat, B., 2019, May. Combining urinary DNA methylation and cell-free microRNA biomarkers for improved monitoring of prostate cancer patients on active surveillance. In *Urologic Oncology: Seminars and Original Investigations* (Vol. 37, No. 5, pp. 297-e9). Elsevier.

Zheng2014
Zheng, Q., Peskoe, S.B., Ribas, J., Rafiqi, F., Kudrolli, T., Meeker, A.K., De Marzo, A.M., Platz, E.A. and Lupold, S.E., 2014. Investigation of miR-21, miR-141, and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy. *The Prostate*, 74(16), pp.1655-1662.

Zhu2019
Zhu, L., Zhu, Q., Wen, H., Huang, X. and Zheng, G., 2019. Mutations in GAS5 affect the transformation from benign prostate proliferation to aggressive prostate cancer by affecting the transcription efficiency of GAS5. *Journal of cellular physiology*, 234(6), pp.8928-8940.
ST 7: Rationales for rating down certainty of evidence - GRADE

Domains	Analysis 1.1	Analysis 1.2	Analysis 2	Analysis 3	Analysis 4.1	Analysis 4.2
RoB	Estimate was unadjusted but sensitivity analysis showed limited difference in HR, rate-down not necessary.	Visual inspection of the point estimates and CI showed limited difference caused by difference in covariate adjustments, rate-down not necessary.	Unadjusted estimate and high RoB in 1 study (Zhao2019a – Domain 5), rate down 1 point.	Unadjusted estimate and high RoB in 3 studies (Lin2014, Lin2017 & Sharova2021 – Domain 5), rate down 1 point.	High RoB in both studies (Domain 5), rate down 1 point.	High RoB in both studies (Domain 5), rate down 1 point.
Inconsistency	Amankwah2013 outlying but low weight (8.5%), rate-down not necessary.	Amankwah2013 outlying but low weight (8.5%), rate-down not necessary.	Both studies showed positive association and CI overlapped, no rate-down.	Sharova2021 outlying but low weight (8.2%), rate-down not necessary.	The two studies showed opposite direction results, rate down 1 point.	The two studies showed opposite direction results, rate down 1 point.
Indirectness	Amankwah2013 RFS endpoint included clinical metastasis and PCa death but low weight, rate-down not necessary.	Amankwah2013 RFS endpoint included clinical metastasis and PCa death but low weight, rate-down not necessary.	No rate-down.	Lin2014 & Lin2017 included CRPC patients, not representing entire PCa population; main aim was to address chemo-response, rate down 1 point.	No rate-down.	No rate-down.
Imprecision	Pooled CI well excluded HR of 1 but individual HRs were not reported and hence estimated from available data, rate down 1 point.	Pooled CI well excluded HR of 1, no rate-down.	Pooled CI close to HR of 1 (CI: 1.01-1.26), rate down 1 point.	HR was not reported and hence estimated from available data in Yang 2016. Pooled CI close to HR of 1 (CI: 1.06-2.01), rate down 1 point.	Wide pooled CI crossing HR of 1 (CI: 0.63-1.88), rate down 1 point.	Wide pooled CI crossing HR of 1 (CI: 0.70-2.27), rate down 1 point.

Publication bias

- Publication bias was not assessed because there was inadequate number of studies for proper assessment by funnel plot and statistical tests.

Overall certainty

| LOW | MODERATE | LOW | VERY LOW | VERY LOW | VERY LOW |

Note:
- CI: Confidence interval; CRPC: Castration-resistant prostate cancer; HR: Hazard ratio; mCRPC: metastatic castration-resistant prostate cancer; PCa: Prostate cancer; RFS: Recurrence-free survival; RoB: Risk of bias
SUPPLEMENTARY FIGURES

SF 1: Associations of miR-21 expression with clinicopathological measurements. (a) Gleason score/grade, (b) Stage, (c) PSA, (d) Recurrence, (e) Metastasis, (f) Risk stratification and (g) Age at diagnosis.
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, ST1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6, ST3
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6, ST2
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7, ST4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I² for each meta-analysis).	7
Section/topic	#	Checklist item	Reported on page #
----------------------------------	----	---	------------------
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7

RESULTS

Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8-9, Table 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	10, Table 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10, Table 5
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	15, Table 7
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-13

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	16-20
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	20

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 1, 21 |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.