Essay

Competency-Based Reforms of the Undergraduate Biology Curriculum: Integrating the Physical and Biological Sciences

Katerina V. Thompson,* Jean Chmielewski,† Michael S. Gaines,‡ Christine A. Hrycyna,† and William R. LaCourse§

*College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742; †Department of Chemistry, Purdue University, West Lafayette, IN 47907; ‡Department of Biology, University of Miami, Coral Gables, FL 33124; §College of Natural and Mathematical Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250

Submitted September 2, 2013; Revised March 19, 2013; Accepted March 19, 2013

Monitoring Editor: Nancy Pelaez

The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students’ conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

INTRODUCTION

A growing series of reports on undergraduate life sciences education (e.g., National Research Council [NRC], 2003; Steen, 2005; Project Kaleidoscope, 2006; American Association for the Advancement of Science [AAAS], 2011; Association of American Universities, 2011; President’s Council of Advisors on Science and Technology, 2012) has found standard curricula sorely lacking in both content and pedagogy. There is strong evidence that traditional didactic instruction is ineffective, but most science courses are still taught from a strict disciplinary focus, using predominantly teacher-centered and content-focused instructional approaches. Despite a strong consensus among scientists and educators on the need for change, the pace of broad educational reform has been frustratingly slow (Wieman et al., 2010).

One perceived impediment to undergraduate life sciences education reform has been the very specific course requirements of the medical school admissions process. Because the majority of life sciences students are contemplating careers in the health professions and therefore must complete premedical course prerequisites as part of their undergraduate education, the biology and life sciences majors at many institutions reflect a curriculum heavily prescribed by medical school admissions requirements. Institutions have generally been very reluctant to make major changes in the undergraduate life sciences curriculum for fear that their students...
Table 1. Examples of concepts and skills relevant to the physical sciences that will be emphasized on the 2015 revision of the MCAT

Foundational concept 4	Complex living organisms transport materials, sense their environment, process signals, and respond to changes using processes understood in terms of physical principles.
4A. Translational motion, forces, work, energy, and equilibrium in living systems	
4B. Importance of fluids for the circulation of blood, gas movement, and gas exchange	
4C. Electrochemistry and electrical circuits and their elements	
4D. How light and sound interact with matter	
4E. Atoms, nuclear decay, electronic structure, and atomic chemical behavior	
Scientific inquiry and reasoning skill 2	Scientific reasoning and evidence-based problem solving
Scientific inquiry and reasoning skill 3	Reasoning about the design and execution of research
Scientific inquiry and reasoning skill 4	Data-based and statistical reasoning

AAMC (2012).

Future Physicians and medical students. Their report, *Recommendations regarding educational objectives for premedical students has stimulated a great deal of discussion among those involved in premedical admissions testing, so we can expect these discussions to continue for the near term. The SFFP report was one of several sources of inspiration for the AAMC MR5 committee charged with shaping a revised MCAT exam that will take effect in 2015 (MCAT²⁰¹⁵). The MCAT is a rigorous, high-stakes test that, in combination with other application components, provides information on a student’s preparation for medical school. The revised MCAT will test higher-order cognitive ability, placing greater weight on a student’s ability to demonstrate skills and integrate knowledge across the natural, physical, and social sciences, as opposed to testing factual recall within well-defined disciplines. Student preparation will be assessed along two dimensions: understanding of basic, foundational concepts and the ability to demonstrate specific scientific inquiry and reasoning skills (AAMC, 2012). The MCAT²⁰¹⁵ exam will be designed to test a student’s performance at the intersection of these dimensions, for example, by asking them to use their understanding of fluid dynamics to understand the physiological implications of cardiovascular diseases such as atherosclerosis. The concepts and skills with particular relevance to physics instruction are shown in Table 1.

While the vision for interdisciplinary premedical and life sciences education may have crystallized, we are still a long way from realizing competency-based curriculum reform on a national scale. Even so, these imminent changes in the expectations for premedical students have stimulated a great deal of discussion among those involved in premedical advising and undergraduate curriculum development (Begley et al., 2010; Presson and Thompson, 2011). The medical school admissions process is continuing to evolve in response to these anticipated changes in undergraduate curriculum and admissions testing, so we can expect these discussions to continue for the near term.

THE NATIONAL EXPERIMENT IN UNDERGRADUATE SCIENCE EDUCATION (NEXUS) COLLABORATION

The NEXUS project, funded by a 2010 HHMI Undergraduate Science Education grant, is a direct response to the SFFP report. For more than two decades, HHMI has supported initiatives that nurture future scientific researchers and science educators, as well as efforts that enhance science literacy among all citizens. To date, more than $900 million in...
The four NEXUS universities have embarked on a collaboration to develop introductory undergraduate science curricula in a modular format that will address the SFFP competencies and be easily adaptable to a variety of institutional contexts. We are focusing on the introductory science courses that have been traditionally required for premedical students, which also form the core of most biological science curricula. Our strategy of developing a modular set of teaching materials, rather than wholly transdisciplinary courses, stems from our belief that educational innovations that can be woven into the existing curricular structures are more likely to be widely adopted. While each of our institutions has a different focus and approach to revising the introductory life sciences curriculum (Table 2), we are working together to develop shared strategies for designing and assessing competency-based curricula. In addition, modules developed at each site will be implemented at the other sites to assess their portability and efficacy across institutional contexts. Our intent is to establish the NEXUS project as an example of the power of collaborating across both disciplinary and institutional boundaries to effect curriculum reform.

As an integral part of the curriculum development process, the project is examining what it means to be competent, how competency can be measured, and how existing and planned curricula can be evaluated for their ability to help students achieve competency. The project is structured to facilitate communication across strategic goals and institutions. Leadership is provided by an executive steering committee and a global assessment committee that are composed of representatives from each of the four partner institutions. The executive steering committee holds monthly virtual meetings to establish overall project objectives, coordinate curriculum development activities, facilitate collaborative activities (e.g., adoption of teaching modules across multiple institutions), and develop dissemination strategies. The global assessment committee coordinates the identification and development of common assessment strategies among the participating institutions. An external advisory board composed of university science faculty, assessment experts, and individuals involved in drafting the new medical school recommendations provides guidance on all aspects of the project and serves as a link to the national biology and premedical education community. Once or twice each year, the entire group meets face-to-face to work out the details of development, assessment, and dissemination.

This collaborative structure allows the project to transcend the efforts of any single institution working in isolation. The foci of the four institutions are complementary, encompassing all of the introductory science subjects that form the traditional premedical curriculum. Although each institution is taking the lead on a specific aspect of curriculum development, each effort is designed to draw from the expertise of faculty at all four institutions. This is intended to ensure that the final modules are useful in multiple educational settings. In addition, when faculty members are actively engaged in developing instructional materials, they are more likely to use those materials in their teaching (Henderson and Dancy, 2008), so we expect our collaborative approach to facilitate cross-institutional module assessment and refinement.

An important part of the collaboration is increasing the capacity of faculty to contribute meaningfully to curriculum reform. Here again, the collaborative nature of the project is of great benefit. Each institutional team consists of faculty with expertise in the relevant science disciplines, faculty with experience in science education research, and assessment specialists. Among the collaborative activities that the group has organized is a series of workshops on active assessment (Hanauer et al., 2009) guided by David Hanauer, who serves as a consultant to the project. These workshops have allowed each institution to develop a comprehensive assessment plan for its component of the overall project, with constructive feedback and input from partner institution faculty. The initial phases of assessment have focused on formative assessment and validation of newly developed tools, including one for mapping assessment questions to specific knowledge and competencies. Ultimately, these collaborative workshops will facilitate the creation of tools that can be used more generally to assess students’ development of specific competencies.

INTEGRATING THE BIOLOGICAL AND PHYSICAL SCIENCES CURRICULA

All four NEXUS institutions are developing modules that interweave the biological and physical sciences to some extent, but we focus here primarily on the University of Maryland,
College Park (UMCP), which is taking the lead on developing a prototype two-semester physics for life sciences sequence. The course teaches students the classical physical principles that lead to a deeper understanding of biological phenomena, including those needed to understand processes that occur at thermal energies and in liquids. Beyond providing a basic understanding of physical principles, the course focuses on the development of general scientific skills, including scientific modeling, problem solving, moving between multiple scientific representations, and experimental design. These approaches are traditionally emphasized in introductory physics courses but often receive less emphasis in biology courses, even though they have great utility across all scientific disciplines. A concerted effort is being made to build the course around topics and problems authentic to both biology and physics, to motivate students and help them understand the role of basic physics principles in biology (Watkins et al., 2012). Ultimately, we seek to help students see the physical principles and constraints that affect living systems and understand their biological implications.

The curriculum development team consists of physicists, biologists, and science education researchers. It also draws upon the expertise of a wider pool of faculty members in biology, physics, chemistry, and math teaching the same population of students in upstream or downstream courses, who have provided insight into prerequisite course content and the physics conceptual knowledge necessary for success in upper-level biology courses. One of the most productive outcomes of these discussions has been the recognition of areas of overlap among introductory biology, chemistry, organic chemistry, and physics courses. The instructors of these courses have identified instances (e.g., the treatment of the concept of energy) in which disciplinary differences in conventions and terminology may lead to confusion on the part of students and are working together to ensure that students experience reinforcement across related courses rather than the perception that entirely new concepts are being presented. The specific content of the course has been the result of many months of negotiation between physics and biology faculty (for a firsthand account of this process, see Redish and Cooke, 2013).

The resultant course differs from most traditional introductory physics courses in prerequisites, content, and pedagogy. It requires students to have completed two semesters of calculus, one semester of introductory biology, and one semester of general chemistry. This allows us to more fully integrate students’ prior scientific knowledge into their learning of physics, which will facilitate their development of interdisciplinary fluency. Rather than being a watered-down version of physics courses developed for engineers, the new course excludes topics that have limited relevance to biology (e.g., fluid dynamics; diffusion; dissipative forces; thermodynamics, including chemical energy).

In terms of pedagogy, the course follows a student-centered, active-engagement model that is the culmination of decades of research into how students learn physics (Redish and Hammer, 2009). Before each class meeting, students complete brief background readings and write essay responses or pose follow-up questions via an online homework system. Responses are reviewed by the instructor and used to shape each class meeting’s activities (Just in Time Teaching; Novak et al., 1999). The majority of in-class time is taken up by demonstrations, conceptual clicker questions (following Eric Mazur’s peer instruction model [Mazur, 1997]), and problem-solving activities in which students work out solutions collaboratively using whiteboards. Extensive use is made of instructional technology, including simulations (e.g., PhET [Wieman et al., 2008]), videos, and data analysis tools (e.g., ImageJ). In the accompanying laboratory, students carry out statistical physics experiments using a 40× projection microscope and video analysis software to analyze the movement of plastic microspheres within microfluidic cells. Collectively, these activities encourage students to develop analytical and problem-solving skills, rather than rely on rote memorization. While we have chosen to create a single coherent course, the materials are being developed in a modular format that is organized into “threads” (e.g., mathematical modeling, energy and chemical bonds, action potentials). Adopters can use individual instructional resources (e.g., readings, clicker questions, homework problems) or insert an entire thread into their existing courses. All resources have been developed and organized using an open-source format (wiki) that will enable the resources to grow and evolve in response to the changing scientific and instructional landscape. Although the process of fine-tuning the curriculum is still underway, current versions of instructional and assessment resources can be found at http://NEXUSPhysics.umd.edu.

Instructional materials and assessments have been specifically designed to support competence building. This has involved identifying the measurable subcomponents that constitute a competency (Table 3) and then designing the learning tasks to allow students to develop each competency over the two-semester course sequence. While the process of measuring learning outcomes requires that these skills be specified precisely, we recognize that our goals for students go beyond simple recognition to encompass cognitively demanding tasks, such as being able to integrate discrete ideas into more complex schemas and being able to draw appropriately from different kinds of problem-solving approaches, depending on the context. Thus, the competencies can be envisioned as multiple strands that run through the curriculum. The intersection of multiple strands is embodied in individual learning tasks (e.g., homework problems, group work, clicker questions) that simultaneously address more than one competency. These learning tasks allow students repeated opportunities to build competencies in differing combinations and contexts. In measuring student progress in building competencies, we are using an array of qualitative and quantitative approaches to provide a multidimensional representation of student learning, as recommended by the NRC (2012).

We are fine-tuning the course content via an iterative process (Figure 1). As learning tasks are developed, they are mapped to specific SFFP competencies and competency subcomponents. Tasks then undergo a rigorous process of analysis to ensure they foster development of the specified competencies; this is done by using a rubric that measures the degree to which the tasks integrate knowledge and reasoning strategies across disciplinary boundaries (Svoboda Gouvea et al., 2013). To provide formative assessment data, we are videotaping class meetings and recitation sessions in which students work in groups to solve complex problems. We are also using structured interviews and qualitative analysis of
not jeopardized their understanding of physics. This is being course more accessible and relevant to biology students have we want to ensure that our attempts to make the physics able problem-solving tool for the biological sciences. Second, whether students feel interdisciplinary approaches are a valu-
cation. Analysis, and assessment.
Creating a Competency-Based Curriculum

Two students discussing the process of ATP hydrolysis \((\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + \text{P}_i)\) make the following comments:

Justin: “The O-P bond in ATP is called a ‘high-energy bond’ because the energy released when ATP is hydrolyzed is large. That released energy can be used to do useful things in the body that require energy, like making a muscle contract.”

Kim: “I thought chemical bonds like the O-P bond in ATP could be modeled by a potential energy curve like this (she draws the picture at the right), where \(r\) is the distance between the O and the P. If that’s the case, then breaking the O-P bond in ATP would require me to input energy. I might not have to input much energy to break it, if that O-P happens to be a weak bond, but shouldn’t I have to input at least some energy?”

How did Kim infer from the PE graph that breaking the O-P bond requires an input of energy? Who’s right? Or can you reconcile their statements? (The chemical structures of this process are given if you find that useful.)

Note: This is an essay question. Your answer will be judged not solely on its correctness, but for its depth, coherence, and clarity.

Figure 2. Summative assessment question designed to reveal student competency with applying quantitative reasoning and physical principles to understand living systems.

Vol. 12, Summer 2013 167
DEVELOPING A SHARED VISION FOR CURRICULUM REFORM

Undergraduate science education reform has a long history of disjoint, solitary efforts that are neither sustainable nor replicable outside their original contexts. The theoretical framework for educational reform typically follows Rogers’ (1962) model of diffusion of innovations, in which faculty become aware of curricular innovations and subsequently adopt them without much modification. However, recent studies of instructional practices in physics indicate that faculty expect to be meaningfully involved in adapting existing teaching methods and creating new ones (Henderson and Dancy, 2008). Through a review of nearly 200 recently published undergraduate science education journal articles, Henderson et al. (2010, 2011) identified four categories of change strategies. Current practices are dominated by “disseminating curriculum/pedagogy” and “developing reflective teachers,” which operate at the level of the individual faculty member. A less widely seen approach, yet one that holds great promise for achieving sustainable change on a broad scale, is “developing shared vision.” This change strategy is aimed at the level of the department, institution, or disciplinary community, and involves groups of individuals working together to set goals and identify changes required for educational reform. It is this communal approach that characterizes the NEXUS project.

There are many challenges to a project of this scale. Although all participating institutions are research-extensive universities, each varies with respect to institutional culture, traditions, and educational priorities. This has required a complicated system of communication that involves wikis (for collaborative authoring and critiquing), online project-management systems (for setting goals and deadlines, as well as sharing documents), regular conference calls (for sharing progress and strategic planning), and periodic face-to-face meetings (for cultivating a sense of community). It has involved working to develop a common understanding, both between faculty within different scientific disciplines and between science researchers and educators. We have also learned to temper our ambitions regarding the scale and pace of our reform efforts—thoughtful, sustainable change takes time and effort.

In its short history, the NEXUS project has inspired cross-disciplinary conversations, engaged dozens of scientists in science education research, and facilitated a new approach to curriculum reform that focuses on the common goal of developing scientific competencies. These outcomes have been greatly enriched by the participation of faculty from different institutions, who bring different perspectives and experience. Working collaboratively, we can achieve something that we could not achieve by working alone (Cox, 2004). The collaboration has also highlighted some of the challenges associated with disseminating teaching innovations beyond their point of origin, an outcome that is essential to achieving broader science education reform. As we work through these challenges, we seek to create a road map for other institutions that aspire to implement the vision advocated in the SFFP and Vision and Change reports.

ACKNOWLEDGMENTS

This project was supported in part by a HHMI Undergraduate Science Education Program grant to Purdue University; UMCP; UMBC; and the University of Miami. Additional support was provided by a National Science Foundation Transforming Undergraduate Education in STEM grant (DUE-1122818) to E.F. (Joe) Redish. We are grateful to the entire UMCP NEXUS team for designing, developing, and evaluating the curriculum described above. We especially acknowledge the contributions of Joe Redish, Karen Carleton, Todd Cooke, Wolfgang Losert, Vashi Sawtelle, Julia Svboda, Chandra Turpen, Benjamin Dreyfus, and Benjamin Geller. We thank Joelle Presson, Gili Marbach-Ad, Cynthia Bauerle, Joe Redish, and two anonymous reviewers for their helpful comments on early drafts of the manuscript.

REFERENCES

American Association for the Advancement of Science (2011). Vision and Change: A Call to Action, Washington, DC.

Association of American Medical Colleges (2012). Preview Guide for MCAT2015. www.aamc.org/students/download/266006/data/2015previewguide.pdf (accessed 16 April 2013).

Association of American Medical Colleges–Howard Hughes Medical Institute (2009). Scientific Foundations for Future Physicians, Washington, DC: AAMC. www.hhmi.org/grants/pdf/08-209_AAMC-HHMI_report.pdf (accessed 16 April 2013).

Association of American Universities (2011). Five-Year Initiative for Improving Undergraduate STEM Education. www.aau.edu/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=12592 (accessed 16 April 2013).

Begley GS, DeMai J, De Souza-Hart J, Reichard-Brown J, Thurlow DL (2010). Medical competency and premedical curricular dialogues in Atlanta. The Advisor 39(3), 5–13.

Bialek W, Botstein D (2004). Introductory science and mathematics education for 21st-century biologists. Science 303, 788–790.

Cox MD (2004). Introduction to faculty learning communities. New Dir Teach Learn 97, 5–23.

Depelteau AM, Joplin KH, Govett A, Miller HA, Seier E (2010). SYMBIOSIS: development, implementation, and assessment of a model curriculum across biology and mathematics at the introductory level. CBE Life Sci Educ 9, 342–347.

Dreyfus BW, Geller BD, Sawtelle V, Svboda J, Turpen C, Redish EF (2013). Students' interdisciplinary reasoning about “high-energy bonds” and ATP. AIP Conf Proc 1513, 122–125.

Emanuel EJ (2006). Changing pre-med requirements and the medical curriculum. J Am Med Assoc 296, 1128–1131.

Gentile L et al. (2012). Challenging disciplinary boundaries in the first year: a new introductory integrated science course for STEM majors. J Coll Sci Teach 41, 44–50.

Gross JP, Mommaerts DE, DeVries G (2008). After a century of criticizing premedical education, are we missing the point? Acad Med 83, 516–520.

Hanauer DI, Hatfull GF, Jacobs-Sera D (2009). Active Assessment: Assessing Scientific Inquiry, New York: Springer Science+Business Media.
Henderson C, Beach A, Finkelstein N (2011). Facilitating change in undergraduate STEM instructional practices: an analytic review of the literature. J Res Sci Teach 48, 952–984.

Henderson C, Dancy MH (2008). Physics faculty and educational researchers: divergent expectations as barriers to the diffusion of innovations. Am J Phys 76, 70–91.

Henderson C, Finkelstein N, Beach A (2010). Beyond dissemination in college science teaching: an introduction to four core change strategies. J Coll Sci Teach 39, 18–25.

Mazur E. (1997). Peer Instruction: A User’s Manual, Upper Saddle River, NJ: Prentice Hall.

National Research Council (NRC) (2003). BIO2010: Transforming Undergraduate Education for Future Research Biologists, Washington, DC: National Academies Press.

NRC (2012). A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas, Washington, DC: National Academies Press.

Novak GM, Patterson ET, Gavrin AD, Christian W (1999). Just-in-Time-Teaching: Blending Active Learning with Web Technology, Upper Saddle River, NJ: Prentice Hall.

President’s Council of Advisors on Science and Technology (2012). Engage to Excel: Producing One Million Additional College Graduates with Degrees In Science, Technology, Engineering, and Mathematics. www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_feb.pdf (accessed 16 April 2013).

Presson J, Thompson K (2011). Preparing scientific physicians: undergraduate biology education reform as the path to the 21st century pre-medical curriculum. The Advisor 31(2), 5–10.