Unforeseen high temperature and humidity stability of FeCl$_3$ intercalated few layer graphene

Wehenkel, Dominique Joseph; Bointon, Thomas Hardisty; Booth, Tim; Bøggild, Peter; Craciun, Monica Felicia; Russo, Saverio

Published in:
Scientific Reports

Link to article, DOI:
10.1038/srep07609

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Wehenkel, D. J., Bointon, T. H., Booth, T., Bøggild, P., Craciun, M. F., & Russo, S. (2015). Unforeseen high temperature and humidity stability of FeCl$_3$ intercalated few layer graphene. Scientific Reports, 5, Article 7609. https://doi.org/10.1038/srep07609
We present the first systematic study of the stability of the structure and electrical properties of FeCl$_3$ intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforeseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150 °C in atmosphere and to a temperature as high as 620 °C in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl$_3$ intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications.
is conducted, show no measurable change in the structure of the material. The stability of FeCl₃-FLG to high humidity and temperatures widens considerably the range of potential applications targeted by graphene materials.

Results

Few layer graphene are prepared by micromechanical cleavage of natural graphite on standard Si/SiO₂ substrates and transmission electron microscopy (TEM) grids. The intercalation with FeCl₃ is conducted using an established vapour transport method in a two-zone furnace. The stage of intercalation represented by the number of carbon layers separating two subsequent intercalated layers, is determined using Raman spectroscopy. The electrical properties are characterized using multi-terminal devices fabricated with standard electron-beam lithography, deposition of Cr/Au (10/50 nm) followed by lift-off, see inset in Figure 1a. The electrical resistance is measured (1) in situ while controlling the humidity in a closed chamber and (2) in air after heating the samples using a hotplate.

Figure 1a shows the G-peaks of the Raman spectrum at the same location of a representative FeCl₃-FLG after exposing the sample to an atmosphere with relative humidity $H > 95\%$ for various days as indicated in the graph. In contrast to the case of pristine graphene for which a single G-peak is measured at 1585 cm^{-1} ($G₀$), in the intercalated material this peak shifts to 1615 cm^{-1} ($G₁$) and 1625 cm^{-1} ($G₂$) can be observed. Both $G₁$ and $G₂$ are the consequence of stiffening of the $E₂g$ phonon mode caused by charge transfer from FeCl₃ to graphene. More specifically, $G₁$ is characteristic of a graphene layer being doped by only one adjacent FeCl₃ layer whereas $G₂$ corresponds to a graphene layer sandwiched between two layers of FeCl₃ (see crystal structure illustrations in Figure 1a). No measurable shift of the $G₁$- and $G₂$-peaks is observed even after exposing the flake for 25 days to high humidity, suggesting that the intercalated compound is indeed not affected by the humidity.

To demonstrate that the structure of FeCl₃-FLG is stable against prolonged exposure to extremely high levels of humidity, we conduct a detailed study of the Raman maps of the $G₁$- and $G₂$-peaks before and after exposing a representative flake to $H > 95\%$ for 25 days, see Figure 1b–g. We find that overall the position of the aforementioned Raman peaks does not change significantly. Indeed, the distribution of the Raman shifts of $G₁$ (see Figure 1c–d) and $G₂$ (see Figure 1f–g) before and after exposure to humidity only exhibit at most a shift of $\approx 1 \text{ cm}^{-1}$ that is within the accuracy of the Raman spectroscopy tool used for this experiment.

Having established that the structure of this intercalated compound does not change upon exposure to humid atmosphere, we proceed to characterize the stability of the electrical properties under the same experimental conditions. Figure 1h shows a plot of the measured R_{sq} in dry atmosphere after subsequent exposures to high

Figure 1 | (a) Shows a plot of Raman spectra measured in a representative FeCl₃-FLG sample before (0 days) and after exposure to $H > 95\%$ for 7, 14 and 25 days shifted for clarity along the y-axis. The peaks $G₁$ and $G₂$ are highlighted on the graph, and the corresponding crystal structure is shown in the illustrations on the right side of the graph. Panel (b) shows the colour coded Raman maps of the $G₁$ peak before (D0) and after (D25) exposure to $H > 95\%$. The white scale bar corresponds to 2 μm. (c) and (d) are the corresponding histograms of the Raman shift of $G₁$ for D0 and D25 respectively. Graphs in (e) are colour coded Raman maps of $G₂$ before (D0) and after (D25) exposure to high levels of humidity. The white scale bar corresponds to 2 μm. (f) and (g) are graphs of the histograms of the Raman shift of $G₂$ for D0 and D25 respectively. The main graph in (h) is a plot of the value of R_{sq} in dry atmosphere after subsequent exposures to high...
levels of humidity for the sample shown in the micrograph image in the inset. We observe that the initial value of $R_{sq} = 13 \Omega/sq$ is unchanged after exposing the sample to $H > 95\%$ for 25 days. Furthermore, in situ measurements of R_{sq} while exposing the device to high levels of humidity show that R_{sq} decreases when the sample is exposed to high levels of humidity (see graph in the inset of Figure 1h). This drop in resistance is a reversible process, since the initial value of R_{sq} is restored in the sample in dry atmosphere. These observations suggest that water molecules condensed on the surface of FeCl$_3$-FLG might contribute to an increase of electrical conductivity without causing irreversible changes to the material. Insight in the microscopic origin behind the stability of this material in atmosphere can be gained when considering that in bulk intercalated graphite the carbon interlayer spacing of non intercalated regions in close proximity to intercalated regions have values similar to the pristine case. Consequently, the large interlayer binding energy characterizing these non-intercalated regions can effectively act as a diffusion barrier for intercalants. In FeCl$_3$-FLG a similar mechanism is likely to occur near the edges of the flakes, whereby a narrow de-intercalated edge blocks the diffusion of FeCl$_3$ molecules out of the structure.

To further evaluate the suitability of FeCl$_3$-FLG for future electronic applications, we also need to characterize the stability of this material to high temperatures. Also in this case we conduct a comparative study of Raman spectroscopy and electrical transport characterization before and after heating FeCl$_3$-FLGs in atmosphere on a hot plate. Figure 2a shows the colour coded maps of the Raman shift of G$_1$ and G$_2$ before (top graphs) and after (bottom graphs) heating the sample for 1h on a hotplate in atmosphere at 100 °C. It is apparent that Raman shifts of just a few cm$^{-1}$ are measured, corresponding to the accuracy of the spectrometer. This is more clearly seen when comparing the corresponding histograms of the Raman shifts for G$_1$ and G$_2$ peaks before (Figure 2b) and after heating the sample (Figure 2c). The electrical transport measurements also show no significant change of the room temperature square resistance after heating the sample to subsequently higher temperatures from 50 °C up to 150 °C in multiple steps of 1h duration, see Figure 2d.

Discussion

To elucidate the microscopic origin of the thermal stability we have conducted a study of the structure of FeCl$_3$-FLG upon heating up to 620 °C in vacuum with an FEI Titan E-Cell 80-300ST aberration-corrected transmission electron microscope equipped with an inconel-based heating holder. A few layer graphene flake was transferred to a standard TEM grid (see Fig. 3a) using a published technique and intercalated with FeCl$_3$ with the two zone method (see Fig. 3b–c). Imaging is performed at 80 keV to reduce the effects of knock-on damage. After intercalation additional lattice periodicities are visible in the multilayer flake and can be observed both in selected area diffraction patterns and high-resolution imaging.

Figure 2 | (a) Shows four colour coded Raman maps of the G$_1$ and G$_2$ peaks before (top panels) and after (bottom panels) heating of a representative FeCl$_3$-FLG to 100 °C for 1 h. The white scale bar corresponds to 5 μm. The graphs in (b) and (c) are the corresponding histograms of the Raman shift of G$_1$ and G$_2$ before and after heating the sample. The plots in (d) show the values of R_{sq} measured at room temperature (top graph) after heating the sample to subsequently higher temperatures for 1 h (bottom graph). The black, red and blue data points refer to three different choices of contact probes on the same flake.
intercalated multilayer graphene. Nanoparticles of FeCl\(_3\) can be seen on the surface. Scale bar 250 nm. (d) Selected area diffraction pattern of region indicated in (c). (e) High resolution image of FeCl\(_3\)-intercalated few layer graphene after heating to 850 K. Scale bar 5 nm. (f) Fourier transform of region in (e). (g) Edge of folded bilayer after heating to 850 K - FeCl\(_3\) periodicity is visible up to 1–2 nm from the edge of the folded bilayer. Scale bar 2 nm.

Figure 3 | (a), (b) Optical images of a few-layer graphene flake before and after intercalation. Scale bar 100 µm. (c) Low magnification image of intercalated multilayer graphene. Nanoparticles of FeCl\(_3\) can be seen on the surface. Scale bar 250 nm. (d) Selected area diffraction pattern of region indicated in (c). (e) High resolution image of FeCl\(_3\)-intercalated few layer graphene after heating to 850 K. Scale bar 5 nm. (f) Fourier transform of region in (e). (g) Edge of folded bilayer after heating to 850 K - FeCl\(_3\) periodicity is visible up to 1–2 nm from the edge of the folded bilayer. Scale bar 2 nm.

(Fig. 3d–f). These periodicities are also visible in a folded bilayer region of the intercalated graphene flake (Fig. 3g), proving that this is a stage I intercalated compound. More specifically, the intercalated material is visible throughout the bilayer region except for some 1–2 nm away from the edge of a folded bilayer, which is not intercalated and that is measured prior to any heating process. It is likely that a small radius of curvature in the bilayer graphene results in the exclusion of intercalated material here - the width of this observed exclusion region corresponds well to the typically observed minimum diameters of double-walled carbon nanotubes\(^{21}\).

The TEM studies also show on the surface of the suspended graphene flake the presence of nanoparticles, probably consisting of FeCl\(_3\) of less than 250 nm diameter, resulting from an excess of intercalant species condensing on the surface of graphene (Fig. 3c). During heating of the sample up to 620 °C over 1500 sec at a pressure of 10\(^{-5}\)–10\(^{-4}\) mbar and concurrent imaging no change is observed in the structure of the sample - FeCl\(_3\) intercalated bilayer graphene retains additional periodicities due to the graphene and intercalant (Supplementary Video S1). We note that the nanoparticles visible on the surface of intercalated graphene also do not change structure during this ramped heating. FeCl\(_3\) has a melting point of 315 °C, as compared to the melting point of FeCl\(_2\) of 677 °C, indicating that the particles on the surface are likely formed by FeCl\(_2\). These studies show that the intercalation of FeCl\(_3\) is stable at least up to 620 °C in vacuum.

In conclusion, we demonstrate that FeCl\(_3\) intercalated few-layer graphene is highly stable to high levels of humidity and to high temperature. This is supported by a systematic comparative study of the measurements obtained from three complementary techniques: (1) Raman spectroscopy, (2) high resolution transmission electron microscopy, and (3) electrical transport. The Raman spectra and the square resistance of this material are unchanged upon exposing continually FeCl\(_3\)-FLG to an atmosphere with relative humidity up to 100% at room temperature for at least 25 days, and to a temperature up to 150 °C in atmosphere. At the same time high resolution transmission microscopy confirms that the structure of the material is unaffected by heating FeCl\(_3\)-FLG up to 620 °C in vacuum.

The surprising stability of the structure and electrical properties of FeCl\(_3\)-FLG together with its unique values of low square resistance and high optical transparency, makes this material an attractive replacement for ITO in future transparent and flexible electronic applications.

Methods

Measurement techniques. The Raman spectra where measured in air and at room temperature with a Renishaw spectrometer using a 532 nm laser wavelength with a 1.5 µm spot size and 1 mW of incident power.

The electrical measurements where conducted in a four terminal geometry using an AC current bias (1 µA and 11Hz frequency) while the voltage was recorded using phase sensitive lock-in detection.

The relative humidity was detected using a HIH-4000 Humidity sensor from Honeywell, and controlled by passing dry nitrogen or ambient air through DI water in a gas bubbler.

1. Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based solar cells. Chem. Rev. 107, 1324–1338 (2007).
2. Ameri, T., Dennler, G., Lungenschmied, C. & Brabec, C. J. Organic tandem solar cells: A review. Energy Environ. Sci. 2, 347–363 (2009).
3. Lewis, J., Grego, S., Chalamala, B., Vick, E. & Temple, D. Highly flexible transparent electrodes for organic light-emitting diode-based displays. App. Phys. Lett. 85, 3450–3452 (2004).
4. Tak, Y. H., Kim, K. B., Park, H. G., Lee, K. H. & Lee, J. R. Criteria for ITO (indiumtin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 411, 12–16 (2002).
5. Wu, C. C., Wu, C. I., Sturm, J. C. & Kahn, A. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. App. Phys. Lett. 70, 1348–1350 (1997).
6. Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).
7. De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).
8. Cairns, D. R. et al. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. App. Phys. Lett. 76, 1425–1427 (2000).
9. Yu, Z. et al. Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes. Adv. Mater. 23, 664–668 (2011).
10. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
11. Bao, W. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Comm. 5, 4224 (2014).
12. Craciun, M. F., Khrapach, I., Barnes, M. D. & Russo, S. Properties and applications of chemically functionalized graphene. J. Phys. Condens. Matter. 25, 423201 (2013).
13. Bointon, T. H. et al. Approaching Magnetic Ordering in Graphene Materials by FeCl₃ Intercalation. Nano Lett. 14, 1751–1755 (2014).
14. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).
15. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
16. Zhan, D. et al. FeCl₃-based few-layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping. Adv. Func. Matter. 20, 3504–3509 (2010).
17. Zhao, W., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl₃: Raman determination of fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).
18. Meyer, J. C., Girir, C. O., Crommie, M. F. & Zettl, A. Hydrocarbon lithography on graphene membranes. Appl. Phys. Lett. 92, 123110 (2008).
19. Allen, C. S., Robertson, A. W., Kirkland, A. I. & Warner, J. H. The identification of inner tube defects in double-wall carbon nanotubes. Small 8, 3810–3815 (2012).
20. Thomas, J. M., Millward, G. R., Schlogl, R. F. & Boehm, H. P. Direct imaging of a graphite intercalate: evidence of interpenetration of ‘stages’ in graphite: ferric chloride. Mat. Res. Bull. 15, 671–676 (1980).

Acknowledgments
We acknowledge D. Horsell for letting us use a vacuum microscope stage, F. Withers for helping in the preparation of samples for HRTEM and A. De Sanctis for useful discussions on the interpretation of Raman spectroscopy measurements. SR and MFC acknowledge financial support from EPSRC (Grant no. EP/I000396/1, EP/K017/160/1, EP/K010650/1, EP/G036101/1, EP/M001024/1, EPS/M002438/1) and from Royal Society International Exchanges Scheme 2012/R3 and 2013/R2.

Author contributions
M.F.C. and S.R. conceived and directed the experiment. D.J.W. conducted the fabrication, Raman and electrical measurements. T.H.B. produced intercalated few-layer graphene and conducted the electrical measurements at high temperature in atmosphere. T.B. conducted the HRTEM measurements. T.B. and P.B. interpreted the HRTEM measurements.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wehenkel, D.J. et al. Unforeseen high temperature and humidity stability of FeCl₃ intercalated few layer graphene. Sci. Rep. 5, 7609; DOI:10.1038/srep07609 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/