Assessment of landslide susceptibility for Meghalaya in North Eastern Region of India using bivariate and multi-criteria decision analysis models

Navdeep Agrawal
Shiv Nadar University

Jagabandhu Dixit (jagabandhu.dixit@snu.edu.in)
Shiv Nadar University https://orcid.org/0000-0002-5450-578X

Research Article

Keywords: Landslide, GIS, AHP, Fuzzy, Entropy, Northeast India, Hazard, AUC

Posted Date: October 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-993819/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Assessment of landslide susceptibility for Meghalaya in North Eastern Region of India
using bivariate and multi-criteria decision analysis models

Navdeep Agrawal, Jagabandhu Dixit*

Disaster Management Laboratory, Shiv Nadar University, Delhi NCR, Greater Noida, Uttar Pradesh 201314, India

E-mail address of authors: na655@snu.edu.in; jagabandhu.dixit@snu.edu.in

*Corresponding Author: Jagabandhu Dixit, Email: jagabandhu.dixit@snu.edu.in

Abstract

The state of Meghalaya of the North Eastern Region (NER) of India, situated in the India Himalayan Region (IHR), is the rainiest place in the country and falls under seismic zone V. The Himalayan ranges account for 80% of total landslide hazards in India. The main goal of the present study is to generate the GIS-based landslide susceptibility map (LSM) of Meghalaya by using frequency ratio (FR), Shannon entropy (SE), analytical hierarchy process (AHP), and fuzzy-AHP (FAHP) models and compare these models for the study area. Fifteen landslide conditioning factors are used for susceptibility mapping includes a slope, aspect, elevation, plan curvature, stream power index (SPI), topographic wetness index (TWI), land use land cover (LULC), normalized difference vegetation index (NDVI), distance from the river, road and faults, rainfall (30 years mean annual rainfall), soil texture, geomorphology, and lithology. Landslide inventory of 1330 landslide events is prepared and mapped from various sources. The inventory dataset is randomly split in a 70/30 ratio to make the training dataset (70%) used in the model and testing dataset (remaining 30%) for validation purposes. The southern escarpment, the southeast region of the study area, and hillslope along the roadside show high susceptibility for landslide occurrence in all four models. The LSMs produced in the present study are validated using the area under curve (AUC) value. The
presented LSMs can help concerned authorities and planners to make sustainable development plans and formulate risk mitigation strategies keeping in mind the critical areas for landslide hazards.

Keywords: Landslide, GIS, AHP, Fuzzy, Entropy, Northeast India, Hazard, AUC

1. **Introduction**

Landslide is a natural disaster, defined as the movement of a mass of rock, debris, or soil mass down a slope. It is one of the most frequently occurring natural hazards and has caused massive damage to infrastructure, human settlements, and loss of lives worldwide. After China, India is the second most affected country in Asia by this disaster, as per the Centre for Research on the Epidemiology of Disasters (CRED) (Guha-Sapir et al. 2012). The entire Himalayan range of India is very susceptible to landslides which accounts for approximately 80% of total landslide events in the country (Onagh et al. 2012). Due to landslides, significant damage to roads and other infrastructure, economic and human losses have been reported in Himalayan regions (Sur et al. 2020). The North Eastern Region (NER) of India is lying in the Eastern Himalayas, is highly prone to seismic hazards (seismic zone V), and experiences heavy rainfall. The region has numerous faults, shear zones, and other tectonic features. Together rainfall, high seismicity, and numerous tectonic features make the region highly susceptible to hazard like a landslide.

To reduce the adverse impact of landslides, prepare risk mitigation strategies and plan the infrastructural development accordingly, the landslide susceptibility studies are proven to be an effective tool (Kanungo et al. 2006; Pourghasemi et al. 2012b). The outcome of such studies is in the form of landslide susceptibility maps (LSM) which show the spatial distribution of different susceptibility classes and locations with high risks (Chen and Li 2020). However, the reliability of the LSM depends upon the selected conditioning factors, historical landslides,
quality of data, and the applied methodology for the analysis and modeling (Sarkar and Kanungo 2004). The conditioning factors are the factors associated with topography, geomorphology, geology, land use land cover (LULC), anthropogenic activity, rainfall, seismicity, etc. (Shano et al. 2020) and are responsible for the slope failure. The relation of these factors with the past landslides forms the basis for estimating the future susceptibility of landslide occurrence (Chimidi et al. 2017).

In recent times, with the use of GIS and remote sensing, several landslide susceptibility studies have been carried out worldwide using various methods/models (Sarkar and Kanungo 2004; Yilmaz 2009; Pradhan and Lee 2010; Pourghasemi et al. 2012a,b,c; Shahabi et al. 2014; Jazouli et al. 2019; Sur et al. 2020). The landslide susceptibility models can be divided into qualitative and quantitative approaches (Shano et al. 2020). The qualitative approach includes geomorphic and landslide inventory techniques and an indirect process involving multi-criteria decision analysis (MCDA) methods based on expert judgment for weight evaluation of different thematic data layers (Yilmaz 2009). The most popular MCDA methods are analytical hierarchy process (AHP) and fuzzy set-based analysis (Ercanoglu and Gokceoglu 2004; Kamp et al. 2008; Akgun et al. 2012; Pourghasemi et al. 2012b; Kayastha et al. 2013; Kavzoglu et al. 2014; Shahabi et al. 2014; Shahabi and Hasim 2015; Zhao et al. 2017; Jazouli et al. 2019; Sur et al. 2020). The quantitative approaches include statistical (bivariate or multivariate), deterministic, probabilistic methods, and artificial intelligence-based techniques (artificial neural network, decision trees, support vector machine (SVM), hybrid approaches) (Kanungo et al. 2006; Shano et al. 2020). Among the various quantitative approaches, bivariate statistical methods: frequency ratio (FR), Shannon entropy (SE), the weight of evidence method (WoE); multivariate statistical methods: logistic regression (LR); SVM and ANN are prevalent (Yilmaz 2009; Pradhan and Lee 2010; Pourghasemi et al. 2012b,c; Kavzoglu et al. 2014;
In the present study, four models, namely FR, SE, AHP, and Fuzzy-AHP, are utilized to evaluate the landslide susceptibility of the state of Meghalaya. Meghalaya is situated in the NER of India, on the Shillong Plateau of the lesser Himalayas, and is one of the major tourist destinations in NER. There are few landslide susceptibility studies available for western and central Himalayan regions of Lesser and Shivalik Himalayas (Sarkar and Kanungo 2004; Mathew et al. 2009; Pareek et al. 2010; Kayastha et al. 2013; Pham et al. 2019a,b; Sur et al. 2020). However, studies of eastern Himalayas are limited. The objective of the present study is to develop the LSM of Meghalaya and identify the major factors governing the landslide occurrence in the area using the four above-mentioned models. Also, to evaluate the prediction power of the most popular bivariate statistical model and MCDA model for the selected study area. The details of the study area, various conditioning factors applied, methodology, and results obtained are discussed in the following sections.
2. Description of the study area

The study area is Meghalaya, one of the states of NER India, located on the Shillong Plateau of the Indian Himalayan Region (IHR), covering about 22400 km² area (between longitudes 89.821° E to 92.804° E and latitudes 25.031° N to 26.118° N, Fig. 1). It shares its boundary with Assam in the north and east while forming an international border with Bangladesh in the south and west. The elevation of the area ranges from 7 m to 1962 m above mean sea level. Being in the IHR, it is one of the most tectonic-active regions and rainiest places globally (Prokop 2014). The area received an average yearly rainfall of 1234.31 to 7467.48 mm between
1991 and 2020 (30-year period) (Fig. 1). The southern escarpment received the highest rainfall, as high as 12000 mm annual rainfall (recorded in Cherrapunji). The elevation of the southern escarpment of the study area is about 1200-1500 m and is related to the Dauki fault (along the southern boundary), which is much steeper than the northern slope. Due to this sudden rise in elevation over a short distance, the southern escarpment controls rainfall distribution over the region. In the study area, the slope ranges from 0° to 76°.

The study area is covered by various lithologic formations, including Proterozoic (Paleoproterozoic, Mesoproterozoic) (Pr), Late Carboniferous-Permian (LcP), Mesozoic (Jurassic, Cretaceous) (Ms), Paleogene (Oligocene, Eocene, Palaeocene) (Pl), Neogene (Miocene, Pliocene) (Neo) and Cenozoic (Holocene, Quaternary, Meghalyan, Middle-late Pleistocene) (Cn) types of formations (Fig. 2), the details of which are given in Table 1. The region also consists of many lineaments and structural discontinuities and is associated with active tectonics. With respect to land use land cover, most of the study area is covered by dense vegetation (76.06%) followed by light vegetation (17.25%), human settlements and built spaces (3.22%), agricultural land (2.96%), water bodies (0.45%), and rock outcrop and bare lands (0.05%) (Fig. 2 and Table 1). These topological, geological, and other geoenvironmental factors make the study area more prone to disastrous events like landslides.

Table 1 Description of lithological units in the study area

Lithologic Formation	Symbol	Approximate areal coverage (%)
Proterozoic formation (quartz, quartzite with thin phyllite interband, mica gneiss, migmatite, amphibolite, pyroxene granulite, dolerite)	Pr	51
Late carboniferous-Permian (diamictite, phyllite, quartzite, conglomerate, feldspathic sandstone, and carbonaceous shale) LcP 12.5

Paleogene (shale, sandstone, siltstone, fossiliferous limestone, limestone, phosphatic nodules, fireclay, coal) Pl 24

Neogene (conglomerate, sandstone, siltstone, mudstone, and marl) Neo 6.5

Cenozoic (fluvial sediments- sand, silt and clay, loamy sand, pebble, laterite) Cn 3

Mesozoic (gritty sandstone alternating with conglomerate, basaltic/gabbroic and doleritic dykes, conglomerate, and sandstone with pebbles) Ms 3

Fig. 2 Lithological units in the study area

3. Material and methods

3.1. Data collection
In the present study, the data is collected from several sources such as the Bhukosh-Geological Survey of India (GSI) (https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx) for the creation of landslide inventory, geomorphology map, and maps of other geological features. The USGS earth explorer portal (https://earthexplorer.usgs.gov/) is used to collect the SRTM digital elevation model (DEM) of 30 m resolution. The DEM dataset is utilized to create topographic maps (like slope, aspect, curvature) and to obtain the stream network of the study area.

3.1.1. Landslide inventory

The prediction accuracy of the LSM primarily depends upon the accuracy of the inventory of the past landslide data (Reichenbach et al. 2018). Landslide data points are collected from the Bhukosh-GSI and Google-Earth images. A sum of 1330 landslides is obtained and mapped to produce the landslide inventory map (Fig. 1). The size of mapped landslides varies from 100 m2 to 1,24,319 m2. As landslides smaller than one cell size (10 m × 10 m) cannot be drawn, the minimum size is fixed at 100 m2, and landslides equal to or larger than this size are considered for the study. Identified landslides are generally rainfall-induced and some due to anthropogenic activity. The failure mechanism is either shallow rotational or translational failure with debris and rock-cum-debris movement.

Finally, the landslide inventory data are randomly distributed in a 70/30 ratio to create the training and testing dataset, respectively (Chen and Li 2020). The training dataset (at 933 locations ≈ 70%) is used to build the model, and the testing dataset (397 sites ≈ 30%) is used to validate the model.

3.1.2. Landslide conditioning factor

After creating the landslide inventory, selection of factors influencing/governing the landslide, i.e., conditioning factors, are central for any GIS-based landslide susceptibility model (Sarkar and Kanungo 2004). Based on the analysis of previous studies and regional geological-
environmental characteristics, fifteen landslide conditioning factors are considered in this study. These factors are discussed in detail in the following section.

3.1.2.1. Slope (degrees), aspect, and elevation

The slope angles have a direct impact on landslides (Pourghasemi et al. 2012b), as with the increase in the angle of slope, the effect of stress and gravity on the slope forming material increases. The amount of sunshine, rainfall, and other hydrological processes are affected by the slope aspect, which describes the direction of the slope face. It impacts the surface material properties, wetness index, weathering condition, and land cover (Galli et al. 2008). On the other hand, elevation influences landslides indirectly by affecting rainfall, surface forming material, land use/cover, geological, and tectonics (Pham et al. 2019a). Therefore, these factors are frequently used in landslide susceptibility studies (Ercanoglu and Gokceoglu 2004; Sarkar and Kanungo 2004; Mathew et al. 2009; Yilmaz 2009; Pourghasemi et al. 2012a; Chen and Li 2020). In this study, the slope map, aspect map, and elevation map of the study area are derived from DEM using ArcMap 10.8, resampled to 10 m resolution (Figs. 3a-c).

3.1.2.2. Plan curvature

The plan curvature is derived from DEM using ArcMap 10.8 with a resolution of 10 m. Curvature influences the surface erosion processes, especially during the rainfall, by either converging or diverging the downhill flow and thus becomes one of the critical factors controlling the landslide event (Oh and Pradhan 2011). The plan curvature classified into three classes (concave (<-0.05), flat (-0.05-0.05), and convex (>0.05)) (Fig. 3d).

3.1.2.3. Stream power index (SPI) and topographic wetness index (TWI)

Stream power index (SPI) is a topographic factor that reflects the erosive power of streams in any catchment assuming the discharge is proportional to a specific catchment area (As) (Moore et al. 1991). The SPI can be obtained using Equation 1 (Moore et al. 1991).
SPI = \(A_s \times \tan \beta \) \hspace{1cm} (1)

Where \(\beta \) is the local slope (in degrees).

Topographic wetness index (TWI) is another topographic factor frequently used in landslide susceptibility studies, suggesting the tendency of water to accumulate at any point in the catchment and the tendency of movement of water along the slope under gravitational forces (Bordoni et al. 2020). Water accumulation at any point can affect the stability of the slope, depending on the surface forming material and its effect on the geotechnical properties like permeability, pore water pressure, and shear strength (Yilmaz 2009). It can be defined by Equation 2.

\[
TWI = \ln \left(\frac{a}{\tan \beta} \right)
\]

(2)

Where \(a \) is upslope catchment area, and \(\tan(\beta) \) is the slope angle.

The present study prepared the SPI and TWI map using SAGA GIS tools in QGIS and classified it into five classes, as shown in Figs. 3e-f.

3.1.2.4. Distance from the river

Distance from the river is inversely related to landslides, as the closer the river the more the chance of the slope being unstable. The proximity to streams increases the soil moisture and erodes the toe of the slope, making the area in the vicinity more susceptible to landslides (Pourghasemi et al. 2012b). The stream network map of order four or more is obtained by using DEM in ArcMap. Finally, the area is divided into five different buffer zones from the river at a 150 m distance (Fig. 3g).

3.1.2.5. Distance from road
An anthropogenic activity like road construction alters the natural slope of the hilly area and increases the slope instability. In the past, numerous landslides have occurred in the vicinity of roads either constructed or under construction (Wang et al. 2015; Roodposhti et al. 2016; Pham et al. 2019b). In the present study, the road network data is collected from the Openstreet map (https://www.openstreetmap.org/export). In this study, highways, primary, secondary, and tertiary roads are considered. Finally, the area is divided into five different buffer zones from the roads at a 150 m distance (Fig. 3h).

3.1.2.6. Distance from fault

Fault represents structural discontinuities with reduced rock strength, making the area vulnerable to landslides (Chen and Li 2020). In this study, major structural discontinuities are obtained from Bhukosh-GSI and buffered into five different zones at 1000 m distance intervals (Fig. 3i).

3.1.2.7. Land use land cover (LULC)

The land use land cover (LULC) of any region has a direct influence on slope stability. The bare land and built space have shown a positive impact of landslides in the past. In the present study, a global LULC map derived from Sentinel-2 imagery at 10 m resolution by ESRI is used. The map is available with ten land use classes: water, trees (forested area/dense vegetation), grass, flooded vegetation, crops, shrub, built space, bare ground snow/ice, and clouds. The LULC map is extracted by mask for the study area, and classes like grass and shrub are grouped into a single category named light vegetation. In contrast, flooded vegetation and crop are grouped into agricultural land (Fig. 3j). Further, the accuracy assessment of reclassified LULC map is done through randomly generated 300 points falling under different land-use classes (Table 2). The overall accuracy is 85.33%, while the kappa coefficient (k) value is 0.824. The value of $k > 0.8$ shows that the used map is reasonably accurate.
Table 2 Accuracy assessment of LULC map using kappa coefficient (k)

LULC Classes	Water	Dense veg.	Light veg.	Agri land	Built space	Bare land	Total (User)
Water	1	49	0	1	0	0	50
Dense veg.	2	0	43	5	1	0	50
Light veg.	3	0	1	35	10	0	50
Agri land	4	1	0	5	41	0	50
Built space	7	0	2	4	3	41	50
Bare land	8	2	0	1	0	47	50
Total (Producer)	52	46	50	56	41	55	300

Overall accuracy 85.33%

kappa coefficient(k) 0.82

3.1.2.8. Normalized difference vegetation index

Normalized difference vegetation index (NDVI) is an indicator of green cover over an area and the health of the biomass. Higher NDVI values indicate more vegetation cover, and a healthy vegetation cover offers higher stability to slopes and reduces the probability of landslide (Nohani et al. 2019). The NDVI map is derived using Sentinel-2 multispectral imagery with 10 m resolution using ArcMap 10.8 and grouped into six classes (Fig. 3k).

3.1.2.9. Rainfall

Precipitation, especially in the form of rain, is one of the foremost reasons for landslide occurrence on hill slopes. However, the influence of rainfall on landslides is governed by the slope forming material, land cover, lithology, etc. (Can et al. 2005). For this study, rainfall data of the last 30 years (1991-2020) is collected from the India Meteorological Department (Pai et al. 2014) (https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html). The mean annual rainfall (1991-2020) is calculated and mapped in the GIS environment (Fig. 3l).

3.1.2.10. Soil texture
The topsoil cover of any area influences the landslide susceptibility (Sarkar and Kanungo 2004). In the present study, the soil map is derived from a world soil map (FAO soil map). The soil present in the area is mostly loam, sandy loam, and clay (Fig. 3m).

3.1.2.11. Geomorphology

The geomorphology of an area influences the landslide occurrence in the area and is considered in many susceptibility studies (Pham et al. 2019b). A geomorphological map for the study area is obtained from the Bhukosh-GSI and the region is classified into seven geomorphological units (highly dissected plateau (HDP), moderate to low dissected plateau (MDP), highly dissected hills and valley (HDHV), moderate to low dissected hills and valley (MDHV), pediment-pediplain complex (PC), alluvial-flood plain (AP) and water bodies (W)) (Fig. 3n).

3.1.2.12. Lithology

The lithology of an area often governs the rock strength and permeability of the rocky soils. Therefore, in landslide susceptibility studies, it is considered one of the essential factors (Pradhan and Lee 2010; Wang et al. 2015; Chen and Li 2020). The lithological map of the study area is obtained from Bhukosh-GSI (at a scale of 1:2M). The lithological formations are grouped into six classes depending upon the geological era, as mentioned in section 2 (Fig. 2). All fifteen landslide conditioning factors are transformed into the spatial resolution of 10 m before using for the susceptibility studies.
3.2. Methodology

For landslide susceptibility assessment, the present study utilizes the bivariate models (frequency ratio and Shannon entropy) and MCDA models (AHP and Fuzzy-AHP), elaborated in the following section.
3.2.1. Frequency ratio (FR)

This approach suggests the possibility of a future event based on past information and it is used in various studies (Yilmaz 2009; Pradhan and Lee 2010; Chimidi et al. 2017; Nohani et al. 2019; Shano et al. 2020). This method derives the spatial relation between landslide location (number of landslide pixels) and each landslide conditioning factor. As it represents the possibility of occurrence, the greater FR value shows higher chances of landslide occurrence and higher corresponding hazard (Pradhan and Lee 2010). FR of each class of all the conditioning factors can be obtained using Equation 3.

\[
FR_i = \frac{(LS_i/LS)}{(A_i/A)}
\]

(3)

Where \(FR_i\) = frequency ratio of \(i^{th}\) class, \(LS_i\) = total landslide area (number of landslide pixels) in the \(i^{th}\) class, \(LS\) = total landslide area (total number of landslide pixels) in the study area, \(A_i\) = area falling under \(i^{th}\) class (total number of pixels of \(i^{th}\) class), and \(A\) = total area (total number of pixels of the entire map).

These FR values of different classes (Table 5) are then used to obtain the prediction rate (PR) of each factor which depicts the weightage of individual factors, using Equations 4-6.

\[
RF_j = \frac{FR_j}{\sum FR}
\]

(4)

\[
R_j = MAX(RF_{i,j}) - MIN(RF_{i,j})
\]

(5)

\[
PR_j = R_j / MIN(R)
\]

(6)

Where \(RF\) is relative frequency, \(MAX(RF_{i,j})\) is the maximum value of \(RF\) of \(j^{th}\) factor, \(MIN(RF_{i,j})\) is the minimum value of \(RF\) of \(j^{th}\) factor, \(PR_j\) is the prediction rate of \(j^{th}\) factor.
The PR\(j\) will be the weight of the \(j^{th}\) factor, i.e., \(W_{j,FR}\). Finally, to obtain the landslide susceptibility map, the FR of different classes of influencing parameters and \(W_{j,FR}\) of each parameter is integrated and summed up together, as in Equation 7 (Yilmaz 2009).

\[
LSM_{FR} = \sum_{j=1}^{n} \sum_{i=1}^{m} (FR_{ij} \times W_{j,FR})
\]

3.2.2. Shannon entropy (SE)

Entropy is the quantitative measurement of deviation, variability, instability, and uncertainty of a system and can be used to predict the future trend of a specified system (Lotfi and Fallahnejad 2010). The Shannon entropy has been widely used for the weighted index calculation in the landslide and other hazard studies (Wang et al. 2011; Pourghasemi et al. 2012c; Zhao et al. 2017; Nohani et al. 2019). It analyses the dissimilarity in the system in susceptibility studies, demonstrating the potential for each contributing factor to cause a landslide. A higher SE index indicates a more significant impact of the factor on the landslide occurrence (Roodposhti et al. 2016). Equations 8-10 are used for the calculation of information coefficient (weighted index) based on SE (Pourghasemi et al. 2012c; Zhao et al. 2017).

\[
P_{ij} = FR_{ij} / \sum_{i=1}^{m} FR_{ij}
\]

\[
D_j = \left(-\frac{1}{\log_2(m_j)} \right) \sum_{i=1}^{m} \frac{P_{ij} \log_2 P_{ij}}{P_{ij}} \quad i = 1, 2 \ldots m \text{ and } j = 1, 2 \ldots n
\]

\[
W_{j,SE} = (1 - D_j) \left/ \sum_{j=1}^{n} (1 - E_j) \right.
\]

Where \(FR\) = frequency ratio, \(P_{ij}\) = probability density for each class, \(D_j\) = entropy of the \(j^{th}\) conditioning factor, \(m_j\) = number of classes in the \(j^{th}\) factor, \(n\) = number of factors, and \(W_{j,SE}\) =
entropy weight of each factor. Table 5 shows entropy weights obtained for all the conditioning factors. These are normalized and used to get the LSM shown in Fig. 6.

3.2.3. Analytical hierarchy process (AHP)

It is a semi-quantitative, multi-criteria decision-making approach developed by Saaty (Saaty 2000, 2008). It involves problem definition, objective, alternatives, pairwise comparison matrix for weight determination, and overall priority of the factors (or sub-factors) contributing to landslide (Saaty 2008; Shano et al. 2020). In landslide susceptibility studies, it is one of the frequently used methods for assigning the weightage to conditioning factors and sub-factors (Kamp et al. 2008; Kayastha et al. 2013; Shahabi and Hasim 2015; Jazouli et al. 2019).

In AHP, conditioning factors (or their classes) are arranged in the hierarchic order and assigned a numerical value subjective to judgment based on their relative importance, forming a pairwise comparison matrix (Table 6 and 7). In the matrix, the scale of assigned value can vary between 1 and 9 based on degrees of preference of one factor (on the vertical axis) over the other (on the horizontal axis) (Table 3). A higher value shows greater dominance of that factor. Similarly, these values can vary inversely (1/9 to 1) when the element on the horizontal axis is more dominant than that on a vertical axis (Table 3). In the present study, for assigning the degree of preference scale to a factor (or their classes), the relative percentage of area affected by landslide in that class category is used to make the judgment. Thus, it allows the consideration of “previous knowledge” and reduces the bias in the scheme (Yılmaz 2009). After the comparison matrix is built up, the next step is to find criteria weights and consistency ratio (CR) in Equation 11.

\[
CR = CI / RI
\]
\[
CI = (\lambda_{max} - 1) / (n - 1)
\]
Where $CI = \text{consistency index}$, $\lambda_{\text{max}} = \text{principal Eigenvalue}$, and $n = \text{order of the matrix}$. And $RI = \text{random consistency index}$ that depends upon the order of the matrix (Table 4).

As per Saaty (2008), CR should be less than 0.10, only then the formed comparison matrix is consistent, and if not so, it represents inconsistency in the factor ratings. One must revise the matrix until it becomes consistent. In the present study, for the pairwise comparison matrix of conditioning factors, the CR is equal to 0.049. Also, for the comparison matrix of classes of each factor, the CR value is less than 0.10 (Table 6 and 7).

Finally, the criteria weights can be integrated to generate the LSM using Equation 13.

$$\text{LSM}_{\text{AHP}} = \sum_{j=1}^{n} \sum_{i=1}^{m} (w_{ij,\text{AHP}} \times W_{j,\text{AHP}})$$

Where $W_{j,\text{AHP}} = \text{weight of } j^{th} \text{ conditioning factor}$ and $w_{ij,\text{AHP}} = \text{weight of an } i^{th} \text{ class of the } j^{th}$ factor using AHP. Fig. 8 shows the LSM using this model.

Table 3 The scale of preference in AHP (Saaty 2000) and triangular fuzzy scale in FAHP (Kannan et al. 2013)

Degree of preference (AHP)/Linguistic Variables (FAHP)	The scale of preferences (Saaty, 2000)	Triangular Fuzzy Scale of preference (Kannan et al. 2013)
Equal	1	1,1,1
Moderate	3	2,3,4
Strong	5	4,5,7
Very strong	7	6,7,8
Extremely strong	9	9,9,9
Intermediate	2	1,2,3
	4	3,4,5
	6	5,6,7
	8	7,8,9
Reciprocals	1/2, 1/3, ..., 1/9	Inverse (e.g. $(2,3,4)^{-1} = (1/4,1/3,1/2)$)

Table 4 Random consistency index as per Saaty (2000)
n	1	2	3	4	5	6	7	8	9	10	11	12	13
RI	0.00	0.00	0.58	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.53	1.56	1.57
Table 5 Frequency ratio of classes of various conditioning factors and weights assigned using FR and SE models

Sl. No	Conditioning Factors	Class	Pixels (%)	Landslide Pixels (%)	FR \(W_{j,FR} \)	PR \(W_{i,SE} \)
1	Slope (degrees)	<10°	48.70	4.31	0.08	4.79
		10°-20°	34.11	17.58	0.51	
		20° - 30°	12.43	29.11	2.34	
		30° - 40°	3.91	33.04	8.45	
		>40°	0.85	15.95	18.69	
2	Aspect	Flat (-1)	1.77	0.00	0.00	1.27
		North (0-22.5, 337.7-360)	6.37	5.04	0.79	
		Northeast (22.5-67.5)	10.59	14.05	1.32	
		East (67.5-112.5)	12.93	14.51	1.12	
		Southeast (112.5-157.5)	14.98	16.50	1.10	
		South (157.5-202.5)	14.75	16.86	1.14	
		Southwest (202.5-247.5)	13.18	14.65	1.11	
		West (247.5-292.5)	12.99	8.81	0.67	
		Northwest (292.5-337.5)	12.45	9.59	0.77	
3	Elevation (m)	<300	29.73	28.00	0.94	1.00
		300 - 500	15.60	12.89	0.82	
		500 - 700	10.75	11.87	1.10	
		700 - 900	11.46	9.42	0.82	
		900 - 1100	10.13	8.77	0.86	
		1100 - 1300	8.09	12.40	1.53	
		1300 - 1500	6.35	11.31	1.78	
		>1500	7.90	5.34	0.67	
4	Plan curvature (100/m)	Concave (<-0.05)	35.83	51.13	1.42	
		Flat (-0.05-0.05)	21.52	9.43	0.43	
		Convex (>0.05)	42.65	39.43	0.92	
5		<150	8.35	4.02	0.48	1.15
		>150	91.65	96.02	0.52	

...
Distance from river (m)	150 - 300	300 - 450	450 - 600	>600		
	7.80	7.37	7.02	69.46		
	6.93	6.10	6.22	76.73		
	0.88	0.82	0.88	1.10		
Distance from road (m)	<150	150 - 300	300 - 450	450 - 600	>600	
	5.97	5.12	4.62	4.24	80.06	
	22.06	7.50	10.88	6.00	53.56	
	3.69	1.46	2.35	1.41	0.66	
Distance from faults (m)	<1000	1000 - 2000	2000 - 3000	3000 - 4000	>4000	
	7.27	7.09	7.00	6.79	71.86	
	5.02	6.99	13.36	12.38	62.27	
	0.69	0.98	1.90	1.82	0.86	
LULC	Waterbodies	Dense Vegetation	Light Vegetation	Agricultural Land	Built Area	Bare Land
	0.45	76.06	17.25	2.96	3.22	0.05
	0.35	79.89	16.95	0.05	2.35	0.42
	0.77	1.05	0.98	0.01	0.73	8.48
NDVI	<0.015	0.015 - 0.14	0.14 - 0.18	0.18 - 0.27	0.27 - 0.36	0.36 - 0.999
	0.08	1.24	2.32	12.90	20.12	63.33
	0.01	2.52	4.13	15.24	20.63	57.48
	0.07	2.02	1.78	1.18	1.02	0.90
SPI	< 0.13523	0.13523 - 0.3	0.3 - 0.6	0.6 - 1.2		
	44.64	21.29	19.05	11.26		
	13.34	8.93	16.26	28.92		
	0.29	0.41	0.85	2.56		
	TWI					
---	------	---	---	---	---	
11	<5	2.14	16.27	7.58	5.92	14.01
	05-07.0	61.77	68.4	1.10		
	07-09.0	23.59	11.80	0.50		
	09-11.0	6.70	2.69	0.40		
	>11	5.77	0.82	0.14		
12	Rainfall (mm/year)					
	<2200	23.14	5.66	0.24	4.17	7.28
	2200 - 3500	47.01	27.14	0.57		
	3500 - 4800	13.39	16.26	1.21		
	4800 - 6100	11.65	24.98	2.14		
	>6100	4.79	25.93	5.41		
13	Soil texture					
	Loam	41.33	13.80	0.33	4.14	10.25
	Sandy Clay	44.40	10.11	0.22		
	Clay Loam	10.26	49.46	4.81		
	Clay	3.99	26.62	6.67		
14	Geomorphology					
	MDHV	14.26	38.12	2.67	3.16	9.37
	HDP	30.07	3.10	0.10		
	MDP	40.50	14.80	0.36		
	PC	0.28	0	0.00		
	AP	0.96	0.02	0.02		
	W	2.53	4.63	1.82		
	HDHV	11.38	39.30	3.45		
15	Lithology					
	Cn	3.15	0.01	0.00	5.53	12.67
	Neo	6.46	2.73	0.42		
	PI	24.09	34.09	1.41		
	Ms	2.93	22.99	7.84		
	LeP	12.30	8.00	0.65		
	Pr	51.05	32.15	0.63		
Table 6 Pairwise comparison matrix, consistency ratio, and weights assigned to each class of different conditioning factors by AHP

Conditioning factors	Classes	1	2	3	4	5	6	7	8	9	CR	Weight (w_{ij},AHP)	
Slope (degree)	<10°	1	1	0.50	0.33	0.20	0.14				0.017	0.052	
	10°-20°	2	1	0.50	0.33	0.20						0.087	
	20° - 30°	3	1	0.50	0.33						0.150	0.239	
	30° - 40°	4	1	0.33								0.471	
	>40°	5	1										
Aspect	Flat (-1)	1	1	0.11	0.11	0.13	0.13	0.13	0.14	0.14	0.054	0.014	
	North (0-22.5)	2	1	1	2	3	3	4	5	4	0.235		
	Northeast (22.5-67.5)	3	1	2	2	3	2	3	3		0.193		
	East (67.5-112.5)	4	1	1	2	2	6	7			0.159		
	Southeast (112.5-157.5)	5	1	1	2	5	3				0.123		
	South (157.5-202.5)	6	1	1	3	3					0.095		
	Southwest (202.5-247.5)	7	1	3	2						0.085		
	West (247.5-292.5)	8	1	0.50							0.043		
	Northwest (292.5-337.5)	9	1								0.053		
Elevation (m)	<300	1	1	1	0.50	0.50	0.20	0.20	0.20	0.33	0.031	0.040	
	300 - 500	2	1	0.33	0.50	0.33	0.25	0.25	0.33			0.044	
	500 - 700	3	1	1	0.25	0.25	0.20	0.50				0.071	
	700 - 900	4	1	0.50	0.33	0.33	0.33				0.072		
	900 - 1100	5	1	1	0.50	0.50					0.159		
	1100 - 1300	6	1	1		2					0.217		
	1300 - 1500	7	1	2							0.241		
	>1500	8	1									0.156	
Plan curvature (100/m)	Concave (<-0.05)	1	1	4	1						0.000	0.444	
	Flat (-0.05-0.05)	2	1	0.25								0.111	
Convex (>0.05)	3	1	0.444										
----------------	---	---	-------										
Distance from river (m)													
<150	1	1	0.50	2	2	3	0.020	0.247					
150 - 300	2	1	2	3	4			0.370					
300 - 450	3	1	2	3				0.189					
450 - 600	4	1	2					0.120					
>600	5		1					0.073					
Distance from road (m)													
<150	1	1	2	3	4	5	0.015	0.416					
150 - 300	2	1	2	3	4			0.262					
300 - 450	3	1	2	3				0.161					
450 - 600	4	1	2					0.099					
>600	5		1					0.062					
Distance from faults (m)													
<1000	1	1	1	2	2	3	0.020	0.292					
1000 - 2000	2	1	1	3	4			0.289					
2000 - 3000	3	1	2	3				0.220					
3000 - 4000	4	1	2					0.124					
>4000	5		1					0.075					
LULC													
Waterbodies	1	1	0.50	0.25	0.50	0.20	0.17	0.047	0.046				
Dense Vegetation	2	1	0.33	0.33	0.33	0.33	0.20		0.065				
Light Vegetation	3	1	2	2	0.33				0.199				
Agricultural Land	4	1	0.33	0.33	0.25				0.106				
Built Area	5	1	0.33					0.184					
Bare Land	6		1					0.401					
NDVI													
<0.015	1	1	0.17	0.17	0.33	0.33	0.50	0.028	0.045				
0.015 - 0.14	2	1	0.50	2	3	4			0.266				
0.14 - 0.18	3	1	2	3	4				0.335				
0.18 - 0.27	4	1	2	3				0.167					
0.27 - 0.36	5	1	3					0.120					
0.36 - 0.999	6		1					0.066					
SPI													
< 0.13523	1	1	0.50	0.33	0.25	0.14		0.048	0.05				
0.13523 - 0.3	2	1	0.33	0.20	0.14				0.07				
TWI	<5	1	3	5	6	7	0.050	0.49					
-----------	------	-----	-----	-----	-----	-----	-------	------					
05-07.0	2	1	3	5	7	0.27							
07-09.0	3	1	2	5	0.13								
09-11.0	4	1	2		0.07								
>11	5	1			0.04								
Rainfall	<2200	1	1	0.50	0.33	0.20	0.14	0.044	0.05				
	2200-3500	2	1	0.33	0.20	0.14		0.07					
	3500-4800	3	1	0.33	0.20			0.13					
	4800-6100	4	1	0.33				0.26					
	>6100	5	1					0.50					
Soil texture	Loam	1	1	0.50	0.17	0.14		0.037	0.06				
	Sandy clay	2	1	0.17	0.14			0.08					
	Clay loam	3	1	0.50				0.34					
	Clay	4	1					0.52					
Geomorphology	MDHV	1	1	5	4	7	7	3	1	0.052	0.29		
	HDP	2	1	0.33	3	3	0.33	0.14		0.06			
	MDP	3	1	3	3	0.33	0.14			0.09			
	PC	4	1	1	0.20	0.14				0.03			
	AP	5	1	0.20	0.14					0.03			
	W	6	1	0.25						0.15			
	HDHV	7	1							0.35			
Lithology	Cn	1	1	0.50	0.20	0.14	0.33	0.33		0.030	0.04		
	Neo	2	1	0.25	0.20	0.50	0.33			0.06			
	Pl	3	1	0.33	3	2				0.22			
	Ms	4	1	5	5					0.45			
	LeP	5	1	1						0.10			
	Pr	6	1							0.12			
Table 7 Pairwise comparison matrix and the weight assigned to each landslide conditioning factor by AHP

| S. No. | Conditioning Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Criteria Weight (W_j,AHP) |
|--------|---------------------|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|-------------------------|
| 1 | Slope | 1 | 4 | 2 | 3 | 5 | 6 | 3 | 4 | 2 | 3 | 4 | 3 | 3 | 2 | 0.156 |
| 2 | Aspect | 1 | 3 | 2 | 2 | 0.33| 2 | 0.33| 1 | 0.33| 0.50| 1 | 0.50| 0.33| 0.33| 0.046 |
| 3 | Elevation | 1 | 2 | 3 | 2 | 6 | 2 | 3 | 1 | 2 | 2 | 1 | 0.50| 0.33| 0.33| 0.078 |
| 4 | Plan curvature | 1 | 2 | 0.50| 2 | 1 | 2 | 0.33| 0.50| 1 | 0.50| 0.50| 0.50| 0.040 |
| 5 | Distance from river | 1 | 0.20| 1 | 0.50| 1 | 0.50| 0.25| 1 | 0.50| 0.33| 0.20| 0.025 |
| 6 | Distance from road | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 1 | 2.00| 0.50| 0.094 |
| 7 | Distance from faults| 1 | 0.50| 1 | 0.25| 0.20| 1 | 0.33| 0.25| 0.14| 0.021 |
| 8 | TWI | 1 | 2 | 0.50| 1 | 2 | 0.50| 0.33| 0.33| 0.048 |
| 9 | SPI | 1 | 0.33| 0.33| 0.50| 0.33| 0.33| 0.25| 0.025 |
| 10 | LULC | 1 | 2 | 2 | 2 | 0.50| 0.50| 0.080 |
| 11 | NDVI | 1 | 3 | 2 | 1 | 0.50| 0.33| 0.20| 0.032 |
| 12 | Soil texture | 1 | 0.50| 0.33| 0.20| 1 | 0.50| 0.070 |
| 13 | Geomorphology | 1 | 0.50| 0.33| 0.061 |
| 14 | Lithology | 1 | 0.50| 0.090 |
| 15 | Rainfall | 1 | 0.135 |

CR 0.049
3.2.4. Fuzzy-AHP (FAHP)

In this method, a fuzzy pairwise comparison matrix is constructed based on the linguistic variables defined by the triangular fuzzy scale number (TFN) in Table 3 (Kannan et al. 2013). Five fundamental methods of Fuzzy-AHP are frequently employed in various decision-making studies (Pehlivan et al. 2017). FAHP, using a geometric mean method developed by Buckley (1985), is employed in the present study. It is an extension of AHP using the linguistic variables, and the steps involved are summarised below (Buckley 1985; Pehlivan et al. 2017):

Step 1: Fuzzification

Fuzzification is the conversion of a linguistic term into a membership function. A triangular membership function is shown in Fig. 4. The parameter \(l_1, m_1, u_1 \) denotes the lowest value, most likely value (middle value), and the upper value that forms a fuzzy value (\(\mu_A \), e.g., \(\mu_{A,l_1} = (l_1, m_1, u_1) \)) and is called TFN (Kahraman et al. 2003).

Fig. 4. Triangular membership function (TFN)

Using TFN, a pairwise comparison matrix \(\tilde{M} = [\mu_{ij}] \) is constructed (Table 8 & 9).
\[
\tilde{M} = \begin{bmatrix}
(1,1,1) & \mu_{12} & \cdots & \mu_{1n} \\
\mu_{21} & (1,1,1) & \cdots & \mu_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{n1} & \mu_{n2} & \cdots & (1,1,1)
\end{bmatrix}_{n \times n}
\] (14)

Where \(\mu_{ij} = (l_{ij}, m_{ij}, u_{ij}) \), \(i, j = 1, 2, ..., n \) is TFN.

Step 2: Calculation of fuzzy geometric mean value \((r_i) \) for \(i^{th} \) criteria

\[
\tilde{r}_i = \left(\mu_{11} \times \mu_{12} \times \cdots \times \mu_{nn} \right)^{1/n}
\] (15)

Step 3: For each criterion, calculation of fuzzy weights \((w_i) \)

\[
\tilde{w}_i = \tilde{r}_i \times \left(\sum \tilde{r}_i \right)^{(-1)}
\] (16)

Where \(\left(\sum \tilde{r}_i \right)^{(-1)} = \left(\frac{1}{\sum l_i} - \frac{1}{\sum m_i} - \frac{1}{\sum u_i} \right) \)

Step 4: De-Fuzzification

In this step, the fuzzy weights are de-fuzzified using the center of area (COA) method

\[
w_i = \left(\frac{l_i + m_i + u_i}{3} \right)
\] (17)

Where \(w_i \) is non-fuzzy weights.

The normalized de-fuzzified weights are obtained for both conditioning factors \((W_{i,FAHP}) \) and their classes \((w_{ij,FAHP}) \). These weights are integrated using Equation 18 and used to generate LSM (Fig. 9). In the past, very few landslide susceptibility studies have been performed using the FAHP model (Roodposhti et al. 2014; Mallick et al. 2018; Sur et al. 2020).
The landslide susceptibility maps obtained using all the methods are classified into five susceptibility classes (very low, low, moderate, high, and very high) based on the natural breaks classification system (Pourghasemi et al. 2012b) (Fig. 5, 6, 7 & 8).

3.3. Validation of models

In susceptibility studies, model validation is a non-disposable step that suggests the prediction accuracy of the model. For validating the models, produced LSM are compared with testing landslide dataset (30% of landslide inventory) locations. The receiver operating characteristics (ROC) curve is plotted, which represents the true positives (sensitivity) versus false positives (specificity), and AUC (area under the curve) is utilized for prediction accuracy assessment (Ayalew and Yamagishi 2005; Mathew et al. 2009). Higher AUC values imply a better model, and its value range from 0.5 to 1 (Shahabi and Hashim 2015). If AUC is more than 0.8, it is considered a good fit (Yilmaz 2009). Fig. 10 shows the ROC curve for all four models used in the study.

4. Results and discussion

4.1. Identification of most influential factors and their classes

In GIS-based susceptibility studies, it is essential to identify the relative influence of each conditioning factor and its classes on the occurrence of the event. The weights corresponding to each factor and their classes are calculated using FR and SE method, listed in Table 5. The FR value shows a spatial correlation between factors and landslide inventory. Therefore, it is assumed that the higher the FR, the larger the influence of a particular factor on the landslide. In the present study, pixels with slopes equal to or greater than 30° have higher FR than others.
In AHP and FAHP models, the subcategory of 30°-40° and >40° slope also show more significant influence than others (Table 6 and 9). In the case of FR and SE model, subfactor of bare land of LULC, clay of soil texture, Mesozoic of factor lithology, and areas with SPI>1.2, TWI<5, rainfall>6100 mm/year in the study region are showing greater susceptibility for landslide than other class categories of the respective conditioning factors (Table 5). Among 15 conditioning factors, slope, LULC, TWI, SPI, lithology are the most influential factors as per the FR model. In the SE model, along with these factors, soil texture also shows a significant influence on landslide occurrence (Table 5). Using AHP, conditioning factors, such as slope, rainfall, distance from road, lithology, and LULC are found with higher weight share than others, while the distance from fault is found with the least weightage (Table 7). In the FAHP model, the dominant landslide factors remain the same as AHP (Table 8).

4.2. Spatial distribution Landslide susceptibility using selected models

The present study employs the four susceptibility models, namely frequency ratio, Shannon entropy, AHP, and fuzzy-AHP, to develop the LSM of Meghalaya. For this purpose, 15 landslide conditioning factors and landslide training datasets are used in the model construction. The result shows that the area under the southern escarpment and southeast portion of the study area has moderate to very high susceptibility for landslide in all four cases (Figs. 5, 6, 8, and 9). According to the FR model (Fig. 5), 2.17%, 5.98%, and 13.10% areas of the total study region are classified as very high, high, and moderate susceptibility categories, respectively (Fig. 7). For the SE model (Fig. 6), 2.07%, 5.38%, and 10.87% areas have very high, high, and moderate susceptibility classes. Similarly, using the AHP model (Fig. 8), 4.01%, 12.04%, and 26.85% area falls under very high, high, and moderate susceptibility classes, respectively. For the FAHP model (Fig. 9), 3.88% and 12.15% area (second largest after AHP) show very high and high susceptibility categories. In comparison, 27.35% area shows moderate susceptibility to landslide, the highest among all four models (Fig. 7). Along
with the southern escarpment and southeast region of the study area, these classes are concentrated along highways of the study area in the case of AHP and FAHP models (Fig. 8 and 9).

4.3. Validation of landslide susceptibility maps

The LSM produced using adopted models is validated using the receiver operating characteristics (ROC) curves and the AUC method. For this purpose, 397 landslide testing datasets are used. The ROC curve can also be drawn using a training dataset called the success rate curve; however, the success rate is not a correct method for evaluating the prediction capability of the models (Pourghasemi et al. 2012b). Therefore, ROC using the testing dataset only is adopted in the present study. The ROC curve produced using the testing dataset (prediction curve) for all four models is shown in Fig. 10. On comparing the AUC values, the AHP model demonstrates the highest prediction accuracy (AUC = 0.913). For FAHP, FR, and SE models, AUC values are 0.903, 0.896, and 0.888, respectively. However, all the models show good prediction accuracy as the AUC value is more than 0.8 in all four cases.

4.4. Discussion

For landslide hazard assessment and risk mitigation, landslide susceptibility mapping is one of the most applied approaches. The outcome of such susceptibility studies depends upon the applied conditioning factors (Nohani et al. 2019). However, there are no fixed criteria for selecting the conditioning factors at present (Pham et al. 2019b). Therefore, based on the published literature on landslide susceptibility and past landslide characteristics, 15 landslide conditioning factors are adopted in the present study. Among the selected set of factors, slope (degrees) is found as the most significant factor influencing landslides in the area. In this study, the landslides are primarily associated with the locations having slope ranges from 30°-40° and >40°, similar to Mathew et al. 2008. Other than Slope, Lithology, LULC, Rainfall, TWI, and
Distance from Road are also identified as critical factors influencing landslides, consistent with the previous studies (Pourghasemi et al. 2012b; Shahabi and Hashim 2015; Chen and Li 2020). The present study applies prevalent and widely used bivariate statistical models (FR and SE) and MCDA (AHP and FAHP) for LSM of Meghalaya, India. The prediction power of each model is obtained using a testing dataset. We identified AHP (AUC_{AHP} = 0.913) as the best model following FAHP (0.903), FR (0.896), and SE (0.888) for considered study area. Kavzoglu et al. 2013 also reported the MCDA model (AHP) as a better model than other applied models in their study. Some studies reported fuzzy-AHP as a better model than AHP (Mallick et al. 2018; Sur et al. 2020). Zhao et al. 2017 also compared fuzzy-based SE and AHP models and reported SE with higher prediction accuracy than fuzzy AHP. In Fuzzy-AHP, the fuzzy comparison matrix lacks consistency (Duru et al. 2012), which may explain the better performance of AHP over FAHP in the present study. The prediction accuracy of SE is comparable to that of FR in the present study (Fig. 10), which is consistent with others (Youssef et al. 2015 and Nohani et al. 2019). However, the spatial distribution of high to very high landslide susceptibility class for all four models is approximately consistent and concentrated along the southern-escarpment and southeast portion of the study area.

The findings in the present study can be used for the estimation of the socioeconomic vulnerability to landslides in the study area in terms of socioeconomic losses and downtime (Agrawal et al. 2021). Overall, all four models are acceptable for the landslide susceptibility study of Meghalaya. The landslide susceptibility study is data-driven and controlled by geologic conditions, anthropogenic activity, and LULC. Therefore, the study has some inherent limitations, which can be reduced by applying a high-resolution dataset with advanced data mining techniques and considering temporal variations in the dataset.
Fig. 5 Landslide susceptibility map of Meghalaya using frequency ratio

Fig. 6 Landslide susceptibility map of Meghalaya using Shannon entropy
Fig. 7 Distribution of different susceptibility classes in the study area

Fig. 8 Landslide susceptibility map of Meghalaya using AHP
Table 8 Fuzzy-Comparison matrix using TFN, and the weight assigned to each conditioning factor using geometric mean FAHP

Sl. No.	Conditioning Factor	1	2	3	4	5	6	7	8
1	Slope (degrees)	1	1	1					
2	Aspect					1	1	1	1
3	Elevation					1	1	1	
4	Plan curvature					1	2	3	1
5	Distance from river					1	1	1	0.17 0.2 0.25
6	Distance from road							1	1 1 1 2 3 4 1 2 3
7	Distance from faults								1 1 1 0.33 0.5 1
8	TWI								
9	SPI								
10	LULC								
11	NDVI								
12	Soil texture								
13	Geomorphology								
14	Lithology								
15	Rainfall (mm/year)								
Sl. No.	Conditioning Factor	9	10	11	12	13	14	15	W_{FAHP}
--------	-------------------------------------	-----	-----	-----	-----	-----	-----	-----	-----------
1	Slope (degrees)	3	4	5	1	2	3	1	0.154
2	Aspect	1	1	1	0.25	0.33	0.50	1	0.040
3	Elevation	2	3	4	1	1	1	1	0.072
4	Plan curvature	1	2	3	0.25	0.33	0.50	1	0.043
5	Distance from river	1	1	1	0.33	0.50	1	1	0.026
6	Distance from road	2	3	4	1	2	3	1	0.092
7	Distance from faults	1	1	1	0.20	0.25	0.33	1	0.022
8	TWI	1	2	3	0.33	0.50	1	1	0.050
9	SPI	1	1	1	0.25	0.33	0.50	1	0.027
10	LULC	1	1	1	1	2	3	1	0.082
11	NDVI	1	1	1	1	2	3	1	0.069
12	Soil texture	1	1	1	1	1	1	1	0.034
13	Geomorphology	1	1	1	1	1	1	1	0.062
14	Lithology	1	1	1	0.33	0.50	1	1	0.090
15	Rainfall (mm/year)	1	1	1	1	1	1	1	0.136

Table 9: Fuzzy-comparison matrix for different class of each conditioning factors and weight assigned to each class by FAHP.
Aspect	Flat (-1)	North (0-22.5)	Northeast (22.5-67.5)	East (67.5-112.5)	Southeast (112.5-157.5)	South (157.5-202.5)	Southwest (202.5-247.5)	West (247.5-292.5)	Northwest (292.5-337.5)
Elevation	<300	2	2	2	2	2	2	2	2
	300 - 500	3	3	3	3	3	3	3	3
	500 - 700	4	4	4	4	4	4	4	4
	700 - 900	5	5	5	5	5	5	5	5
	900 - 1100	6	6	6	6	6	6	6	6
	1100 - 1300	7	7	7	7	7	7	7	7
	1300 - 1500	8	8	8	8	8	8	8	8
	>1500								
Plan curvature	Concave (<-0.05)	1	1	1	1	1	1	1	1
	Flat (-0.05-0.05)	2	2	2	2	2	2	2	2
	Convex (>0.05)	3	3	3	3	3	3	3	3
Distance from river (m)	<150	1	1	1	1	1	1	1	1
	150 - 300	2	2	2	2	2	2	2	2
	300 - 450	3	3	3	3	3	3	3	3
	450 - 600	4	4	4	4	4	4	4	4
	>600	5	5	5	5	5	5	5	5
Distance from road (m)	1	2	3	4	5	6			
-----------------------	---	---	---	---	---	---			
<150	1	1	1	2	3	4			
150 - 300	1	1	1	2	3	2			
300 - 450	1	1	1	1	2	3			
450 - 600	1	1	1	1	2	3			
>600	1	1	1	1	2	3			

Distance from faults (m)	1	2	3	4	5	6
<1000	1	1	1	1	2	3
1000 - 2000	1	1	1	1	2	3
2000 - 3000	1	1	1	1	2	3
3000 - 4000	1	1	1	1	2	3
>4000	1	1	1	1	2	3

LULC	Waterbodies	1	2	3	4	5	6
Dense Vegetation	1	1	1	0.33	0.50	1	
Light Vegetation	2	1	1	0.25	0.33	0.50	
Agricultural Land	3	1	1	0.25	0.33	0.50	
Built Area	4	1	1	0.25	0.33	0.50	
Bare Land	5	1	1	0.25	0.33	0.50	

NDVI	<0.015	1	2	3	4	5	6
0.015 - 0.14	1	1	1	0.14	0.17	0.20	
0.14 - 0.18	1	1	1	0.14	0.17	0.20	
0.18 - 0.27	1	1	1	0.14	0.17	0.20	
0.27 - 0.36	1	1	1	0.14	0.17	0.20	
0.36 - 0.999	1	1	1	0.14	0.17	0.20	

SPI	<0.13523	1	2	3	4	5	6
0.13523 - 0.3	1	1	1	0.33	0.50	1	
0.3 - 0.6	1	1	1	0.25	0.33	0.50	
0.6 - 1.2	1	1	1	0.25	0.33	0.50	
>1.2	1	1	1	0.25	0.33	0.50	

TWI	<5	1	2	3	4	5	6
05-07.0	1	1	1	2	3	4	

42
Rainfall	Classes	3	4	5	6	7	8	9	W_{i, FAHP}
<2200	1	1	1	1	0.33	0.50	1		
2200 - 3500	2	1	1	1	0.25	0.33	0.50		
3500 - 4800	3	1	1	1	0.17	0.20	0.25		
4800 - 6100	4	1	1	1	0.25	0.33	0.50		
>6100	5	1	1	1	0.13	0.14	0.17		
Soil texture	Loam	1	1	1	0.33	0.50	1		
Sandy Clay	2	1	1	1	0.25	0.33	0.50		
Clay Loam	3	1	1	1	0.17	0.20	0.25		
Clay	4	1	1	1	0.25	0.33	0.50		
Geomorphology	MDHV	1	1	1	4	5	6		
HDP	2	1	1	1	3.00	4.00	5.00		
MDP	3	1	1	1	2	3	4		
PC	4	1	1	1	1	1	1		
AP	5	1	1	1	1	1	1		
W	6	1	1	1	1	1	1		
Lithology	Cn	1	1	1	0.33	0.50	1		
Neo	2	1	1	1	0.17	0.20	0.25		
PI	3	1	1	1	0.13	0.14	0.17		
Ms	4	1	1	1	0.25	0.33	0.50		
LcP	5	1	1	1	0.25	0.33	0.50		
Pr	6	1	1	1	0.25	0.33	0.50		

Table 9 (continued)
Slope(degree)					
<10°	1	0.054			
10° - 20°	2	0.091			
20° - 30°	3	0.157			
30° - 40°	4	0.237			
>40°	5	0.461			
Aspect	Flat (-1)	1	0.11	0.13	0.14
North (0-22.5)	2	0.11	0.13	0.14	
Northeast (22.5-67.5)	3	0.125	0.143	0.167	
East (67.5-112.5)	4	0.13	0.14		
Southeast (112.5-157.5)	5	0.14			
South (157.5-202.5)	6	0.15			
Southwest (202.5-247.5)	7	0.16			
West (247.5-292.5)	8	0.17			
Northwest (292.5-337.5)	9	0.18			
Elevation	<300	1	0.17	0.20	0.25
300 - 500	2	0.17	0.20	0.25	
500 - 700	3	0.20	0.25	0.33	
700 - 900	4	0.20	0.25	0.33	
900 - 1100	5	0.25	0.33	0.50	
1100 - 1300	6	0.25	0.33	0.50	
1300 - 1500	7	1.00			
>1500	8	1.00			
Plan curvature	Concave (<-0.05)	1	0.054		
Flat (-0.05-0.05)	2	0.091			
Convex (>0.05)	3	0.157			
Distance from river (m)	<150	1	0.237		

Distance from road (m)	150 - 300	300 - 450	450 - 600	>600			
Distance from road (m)	2	3	4	5			
Distance from faults (m)	<150	150 - 300	300 - 450	450 - 600	>600		
Distance from faults (m)	1	2	3	4	5		
LULC	Waterbodies	Dense Vegetation	Light Vegetation	Agricultural Land	Built Area	Bare Land	
LULC	1	2	3	4	5	6	
NDVI	<0.015	0.015 - 0.14	0.14 - 0.18	0.18 - 0.27	0.27 - 0.36	0.36 - 0.999	
NDVI	1	2	3	4	5	6	
SPI	< 0.13523	0.13523 - 0.3	0.3 - 0.6				
SPI	1	2	3				
TWI	0.6 - 1.2	4	>1.2	5	0.252	0.507	
-----	----------	---	------	---	-------	-------	
Rainfall	<5	1					0.485
	05-07.0	2					0.277
	07-09.0	3					0.126
	09-11.0	4					0.071
	>11	5					0.041
Soil texture	Loam	1					0.057
	Sandy Clay	2					0.077
	Clay Loam	3					0.353
	Clay	4					0.513
Geomorphology	MDHV	1	2 3 4	1 1 1	0.297	0.351	
	HDP	2	0.25 0.33 0.50	0.13 0.14 0.17		0.059	
	MDP	3	0.25 0.33 0.50	0.13 0.14 0.13		0.081	
	PC	4	0.17 0.20 0.25	0.13 0.14 0.13		0.032	
	AP	5	0.17 0.20 0.25	0.13 0.14 0.13		0.032	
	W	6	1 1 1	0.20 0.25 0.33		0.148	
	HDHV	7			1 1 1		0.351
Lithology	Cn	1	0.25 0.33 0.50				0.043
	Neo	2	0.25 0.33 0.50				0.065
	Pl	3	1 2 3				0.225
	Ms	4	4 5 6				0.442
	LcP	5	1 1 1				0.104
	Pr	6	1 1 1				0.121
503

Fig. 9 Landslide susceptibility map of Meghalaya using FAHP

504

Fig. 10 ROC curve for all four models using the testing dataset

506

5. Conclusion

In this study, FR, SE, AHP, and FAHP models are used to generate the landslide susceptibility map of Meghalaya state in NER of India. The landslide inventory consisting of 1330 landslide data points is prepared and distributed into a 70/30 ratio to form training and testing datasets. Based on the present study, slope is found as the most influencing factor among the selected
15 conditioning factors. The performance of each model is evaluated by the AUC value based on the testing dataset. The results showed that the prediction accuracy of the AHP model is better than the other three models in the present study, with an AUC value of 0.913 (91.3% prediction accuracy). The produced LSMs reveals that the southern escarpment of the study area, the area in the southeast, and hillslopes along the roads possess great susceptibility for future landslides. If the road network gets affected due to landslide events, the intra-district/state, inter-district/state connectivity get hampered and impart substantial economic losses to the population in the region. Therefore, the presented LSM for the considered study area can help the authorities and decision-makers to plan and manage the risk mitigation strategies for future landslides and plan the sustainable infrastructure development in the region accordingly.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or non-financial interests or personal relationships that are directly or indirectly related to the work submitted for publication that could have appeared to influence the work reported in this paper.

References

1. Agrawal N, Gupta L, Dixit J (2021) Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis. Sustainability 13(17):9652
2. Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers & Geosciences 38(1):23-34
3. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1-2):15–31

4. Bhukosh-Geological Survey India (2021) URL https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx (Last accessed: 10 September 2021)

5. Bordoni M, Galanti Y, Bartelletti C, Persichillo MG, Barsanti M, Giannecchini R, Avanzi GDA, Cevasco A, Brandolini P, Galve JP, Meisina C (2020) The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. Catena 193:104630

6. Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy sets and systems 17(3):233-247

7. Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72(1-4):250–271

8. Chen W, Li Y (2020) GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 195:104777

9. Chimidi G, Raghuvanshi TK, Suryabhagavan KV (2017) Landslide hazard evaluation and zonation in and around Gimbi town, western Ethiopia-a GIS-based statistical approach. Applied Geomatics 9(4):219–236

10. Duru O, Bulut E, Yoshida S (2012) Regime switching fuzzy AHP model for choice-varying priorities problem and expert consistency prioritization: A cubic fuzzy-priority matrix design. Expert Systems with Applications 39(5):4954–4964

11. El-Jazouli A, Barakat A, Khellouk R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters 6(1):1–12
12. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area. Engineering Geology 75(3-4):229–250

13. Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

14. Guha-Sapir D, Vos F, Below R, Ponsérre S (2012) Annual disaster statistical review 2011: the numbers and trends. CRED, Brussels

15. Kahraman C, Cebeci U, Ulukan Z (2003) Multi-criteria supplier selection using fuzzy AHP. Logistics Information Management 16(6):382–394

16. Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101(4):631–642

17. Kannan D, Khodaverdi R, Olfat L, Jafarian A, Diabat A (2013) Integrated fuzzy multi criteria decision making method and multi-objective program- ming approach for supplier selection and order allocation in a green supply chain. Journal of Cleaner Production 47:355–367

18. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology 85(3-4):347–366

19. Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439

20. Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences 52:398-408
21. Lotfi FH, Fallahnejad R (2010) Imprecise Shannon’s entropy and multi attribute decision making. Entropy 12(1):53–62

22. Mallick J, Singh RK, Alawadh MA, Islam S, Khan RA, Qureshi MN (2018) GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environmental Earth Sciences 77(7):1–25

23. Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6(1):17–26

24. Mattivi P, Franci F, Lambertini A, Bitelli G (2019) TWI computation: a comparison of different open-source GISs. Open Geospatial Data, Software and Standards 4(1):1–12

25. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5(1):3–30

26. Nohani E, Moharrami M, Sharafi S, Khosravi K, Pradhan B, Pham BT, Lee S, Melesse A (2019) Landslide susceptibility mapping using different GIS-based bivariate models. Water 11(7):1402

27. Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences 37(9):1264–1276

28. Onagh M, Kumra VK, Rai PK (2012) Landslide susceptibility mapping in a part of Uttarkashi district (India) by multiple linear regression method. International Journal of Geology, Earth and Environmental Sciences 2(2):102–120
29. Pai DS, Sridhar L, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25° X 0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65(1):1-18

30. Pareek N, Sharma ML, Arora MK (2010) Impact of seismic factors on landslide susceptibility zonation: a case study in part of Indian Himalayas. Landslides 7(2):191–201

31. Pehlivan NY, Paksoy T, Çalik A (2017) Comparison of methods in FAHP with application in supplier Selection. In Fuzzy Analytic Hierarchy Process, Chapman and Hall/CRC 45-76

32. Pham BT, Prakash I, Khosravi K, Chapi K, Trinh PT, Ngo TQ, Hosseini SV, Bui DT (2019a) A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International 34(13):1385–1407

33. Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Bui DT (2019b) Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena 175:203–218

34. Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

35. Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards 63(2):965–996

36. Pourghasemi HR, Pradhan B, Gokceoglu C (2012c) Remote sensing data derived parameters and its use in landslide susceptibility assessment using Shannon’s entropy and GIS. In Applied Mechanics and Materials 225:486–491
37. Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences 60(5):1037–1054

38. Prokop P (2014) The Meghalaya Plateau: landscapes in the abode of the clouds. Landscapes and landforms of India, Springer pp 173–180

39. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Science Reviews 180:60–91

40. Roodposhti MS, Rahimi S, Beglou MJ (2014) PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Natural Hazards 73(1):77–95

41. Roodposhti MS, Aryal J, Shahabi H, Safarrad T (2016) Fuzzy shannon entropy: A hybrid GIS-based landslide susceptibility mapping method. Entropy 18(10):343

42. Saaty TL (2000) Fundamentals of decision making and priority theory with the analytic hierarchy process. In Analytic Hierarchy Process Series 6, RWS Publications, Pittsburgh

43. Saaty TL (2008) Decision making with the analytic hierarchy process. International Journal of Services Sciences 1(1):83–98

44. Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70(5):617–625

45. Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports 5(1):1–15

46. Shahabi H, Khezri S, Ahmad BB, Hashim M (2014) Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 115:55–70
47. Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques—a review. Geoenvironmental Disasters 7:1–19
48. Sur U, Singh P, Meena SR (2020) Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomatics, Natural Hazards and Risk 11(1):2176–2209
49. USGS (2021) Earth Explorer, https://earthexplorer.usgs.gov/ (last accessed: 10 September 2021)
50. Wang F, Cao Y, Liu M (2011) Risk early-warning method for natural disasters based on integration of entropy and DEA model. Applied Mathematics 2(1): 23
51. Wang LJ, Guo M, Sawada K, Lin J, Zhang J (2015) Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena 135:271–282
52. Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Katlandsides (Tokat-Turkey). Computers & Geosciences 35(6):1125–1138
53. Youssef AM, Pradhan B, Jebur MN, El-Harbi HM (2015) Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environmental Earth Sciences 73(7):3745–3761
54. Zhao H, Yao L, Mei G, Liu T, Ning Y (2017) A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map. Entropy 19(8):396