Maximum deflection of simple span steel box girder bridge using stress data

M. Suangga¹,², David Surachmat²

¹Civil Engineering Department, Faculty of Engineering, Bina Nusantara University Jakarta, Indonesia 11480
²Master Program in Civil Engineering, Tarumanagara University, Jakarta, Indonesia 11480

Corresponding author: suangga@binus.edu

Abstract. The Structural Health Monitoring System is part of tool and method for bridge operation and maintenance to make sure that the bridge is in good condition. Deflection is one of the main parameters to be measured and various methods has been introduced to measure deflection. Accuracy and economically are two main aspects when selecting the method for determine the real time deflection. This study presents a method of determining the maximum deflection of simple span continuous bridge using strain data obtained from a strain gauge sensor for simple span steel box girder bridge. Initial data were obtained from FEM simulations under various load conditions to obtain the maximum deflection value and the strain value. Linear regression and quadratic regression were carried out to obtain the relationship between the strains data and the maximum deflection. The accuracy of the maximum deflection value is then compared with the results of the analysis using FEM. It was found that the accuracy is about 91.16 % for quadratic regression and 9.07 for linear regression 90.93 %.

Keywords: Bridges, Structural Health Monitoring Systems, Maximum Deflection, Strain

1. Introduction

The bridge is a connecting construction crossing the obstacle such as rivers, roads, and other physical obstacles. To ensure that the bridge is always in good condition, an effort is needed to monitor the condition of the bridge structure called a structural health monitoring system. Structural health monitoring aims to detect structural damage, predict the service life of the structure, and provide data so that the maintenance process is as optimal as possible in terms of cost (Liu, 2009). In the last few decades, computer-based structural health monitoring systems have been implemented so that structural health information is obtained in a timely, sustainable, and economical manner (Brownjohn, 2006).

Vertical deflection is a very important parameter to be monitored to ensure the bridge remains in adequate condition. There are many ways that can be done to monitor the condition of the bridge, one of which is by using GPS. According to Haripriambodo (2019), although it produces accurate data, the use of GPS is seen as a relatively large cost. A more practical and inexpensive solution to predict deflection is to use a strain gauge then predicting the maximum deflection using equation from strain
data. Therefore, it is important to know the deflection correlation of the strain data and its accuracy. A better understanding of the relationship between deflection and strain, will make it easier for practitioners to assess the condition of the bridge based on deflection economically.

2. Objectives

The objective of the research is to obtain a maximum deflection equation based on strain data on a simple span steel box girder bridge modeled with a 3-dimensional finite element model and to determine the accuracy of the maximum deflection - strain equation.

3. Methodology

The methodology of this research is as follow
a. The research was carried out using the simple span steel box girder bridge data located at Java, Indonesia. The bridge is under design stage
b. Two-dimensional Finite Element Method model of the bridge is developed for this study
c. The actual maximum deflection and stress and strain data are obtained by applying various load condition to the 2-dimensional Finite Element Method model of the bridge.
d. Equations to calculate maximum deflection from strain data is obtained by implementing Multiple Regression which using Statistics software.
e. The maximum deflection obtained using the statistic equation then verified by comparing the value with the maximum deflection obtained from 2D structural analysis using the FEM structure analysis software.

4. Case Study

The case study used for this study is simple span steel box girder with a span of 60 m. The longitudinal and transversal sections of the bridge are presented in Figures 1 and Figure 2.

Figure 1. Longitudinal Section of the Bridge

Figure 2. Cross Section of The Bridge
Two-dimensional Finite Element Model of the bridge has been developed to represent the actual condition of the bridge. The stress and strain is measured at the middle of the bridge span as illustrated in Figure 3.

![Figure 3. Two-dimensional finite element modelling of the bridge](image)

5. Maximum Deflection and Stress/Strain Data

To generate the maximum deflection and stress data, 87 load configurations are considered. Sample of Load Configurations are presented in Table 1. The maximum deflection value based Two-dimensional FEM analysis are sorted by the smallest deflection and presented in Table 2.
Table 2 Two-dimensional FEM results sorted by the smallest deflection

Load Config.	δ (mm)	σt (N/mm²)	Load Config.	δ (mm)	σt (N/mm²)	Load Config.	δ (mm)	σt (N/mm²)
PB58	-2.194	3.337	PB62	-12.8037	23.052	PB24	-22.7578	47.863
PB1	-3.0735	4.884	PB86	-12.8061	22.271	PB84	-23.0422	41.807
PB15	-3.0735	4.884	PB5	-13.4894	24.42	PB23	-23.3793	54.7
PB72	-3.2976	6.447	PB11	-13.4894	24.42	PB77	-25.6075	46.104
PB16	-4.303	6.838	PB68	-13.8035	25.787	PB35	-26.9788	48.839
PB30	-4.303	6.838	PB63	-14.5828	27.932	PB41	-26.9788	48.839
PB73	-4.3881	6.675	PB6	-15.1542	29.304	PB83	-27.6069	51.574
PB59	-5.1827	8.4	PB10	-15.1542	29.304	PB78	-29.1655	55.872
PB71	-6.0431	11.135	PB67	-15.3605	30.671	PB36	-30.3084	58.607
PB2	-6.0532	9.768	PB64	-15.8181	32.429	PB40	-30.3084	58.607
PB14	-6.0532	9.768	PB19	-15.897	27.35	PB82	-30.7211	61.342
PB31	-6.1471	9.768	PB27	-15.897	27.35	PB81	-31.5211	71.094
PB45	-6.1471	9.768	PB75	-16.0195	26.569	PB79	-31.6361	64.859
PB87	-6.5951	12.894	PB7	-16.2556	34.188	PB37	-32.511	68.375
PB60	-8.0098	13.367	PB9	-16.2556	34.188	PB39	-32.511	68.375
PB17	-8.4744	13.675	PB66	-16.2605	35.555	PB80	-32.8307	72.087
PB29	-8.4744	13.675	PB65	-16.4154	36.043	PB38	-33.399	78.143
PB70	-8.805	16.54	PB88	-16.6995	39.072	PB80	-62.1	117.215
PB3	-8.845	14.652	PB85	-17.6099	33.081	PB51	-62.1	117.215
PB13	-8.845	14.652	PB33	-17.6899	29.304	PB46	-124.2	234.429
PB74	-10.3653	16.801	PB43	-17.6899	29.304	PB52	-124.2	234.429
PB61	-10.5814	18.168	PB20	-18.8852	34.188	PB13	-124.2	234.429
PB4	-11.355	19.536	PB26	-18.8852	34.188	PB47	-248.5	468.858
PB12	-11.355	19.536	PB76	-21.1629	36.337	PB54	-310.6	586.073
PB69	-11.9211	20.903	PB21	-21.2159	41.025	PB55	-310.6	586.073
PB32	-12.1063	19.536	PB25	-21.2159	41.025	PB48	-621.2	1172.146
PB44	-12.1063	19.536	PB34	-22.71	39.072	PB56	-621.2	1172.146
PB18	-12.3829	20.513	PB42	-22.71	39.072	PB87	-621.2	1172.146
PB28	-12.3829	20.513	PB22	-22.7578	47.863	PB49	-1242.4	2344.292

6. Regression Equation to Determine Maximum Deflection

The deflection and stress values presented in Table 2 then processed by multiple regression analysis to obtain a maximum deflection – stress regression equation. The regression equations are presented in Equation 1 and Equation 2 for Linear regression and Quadratic Equation.

a. Linear regression

\[\delta = 0.139 - 0.530 \sigma_t \]

(1)

b. Quadratic Regression

\[\delta = 0.081 - 0.529 \sigma_t - 6.126 \times 10^{-7} \sigma_t^2 \]

(2)
7. Accuracy of the Maximum Deflection Value

The accuracy of the approach has been investigated by comparing the maximum deflection from FEM model with the maximum deflection from the regression equation. The result of accuracy check is presented in Table 3.

Table 3. Maximum Deflection from FEM Analysis vs Deflection from Regression Equation sorted by smallest deflection

Load Config.	\(\delta \) FEM (mm)	Linear Regression	Quadratic Regression	
	\(\delta \) Equation (mm)	\(\Delta \) (mm) (%)	\(\delta \) Equation (mm)	\(\Delta \) (mm) (%)
PB58	-2.194	-1.62883 0.56517186 25.759884	-1.68407 0.50993515 23.2420915	
PB1	-3.0735	-2.44856 0.62493775 20.333097	-2.50212 0.57138118 18.5905688	
PB15	-3.0735	-2.44856 0.62493775 20.333097	-2.50212 0.57138118 18.5905688	
PB72	-3.2976	-3.27677 0.02082546 0.63153383	-3.32863 0.031039 0.94107735	
PB16	-4.403	-3.48396 0.81903992 19.034164	-3.53539 0.76760583 17.8388529	
PB30	-4.403	-3.48396 0.81903992 19.034164	-3.53539 0.76760583 17.8388529	
PB73	-4.3881	-3.39759 0.99051138 22.572671	-3.4492 0.93890044 21.3965139	
PB59	-5.1827	-4.31164 0.87105751 16.807022	-4.36138 0.82131688 15.8472763	
PB71	-6.0431	-5.76088 0.28221847 4.67009444	-5.80766 0.23543566 3.89594053	
PB2	-6.0532	-5.03653 1.01667305 16.795630	-5.08479 0.96841294 15.9983634	
PB14	-6.0532	-5.03653 1.01667305 16.795630	-5.08479 0.96841294 15.9983634	
PB31	-6.1471	-5.03653 1.11057305 18.066618	-5.08479 1.06231290 17.2815301	
PB45	-6.1471	-5.03653 1.11057305 18.066618	-5.08479 1.06231290 17.2815301	
PB87	-6.5951	-6.69295 0.09785153 1.48370005	-6.73784 0.142737 2.16288088	
PB60	-8.0098	-6.94359 1.06621225 13.311347	-6.98796 1.02183642 12.7573273	
PB17	-8.4744	-7.10679 1.36760727 16.138101	-7.15084 1.32356310 15.6183694	
PB29	-8.4744	-7.10679 1.36760727 16.138101	-7.15084 1.32356310 15.6183694	
PB70	-8.805	-8.62492 0.18008301 2.04523588	-8.66588 0.13911854 1.57999434	
PB3	-8.845	-7.62449 1.22050835 13.798851	-7.66748 1.17751555 13.3127814	
PB13	-8.845	-7.62449 1.22050835 13.798851	-7.66748 1.17751555 13.3127814	
PB74	-10.3653	-8.76322 1.60208268 15.456211	-8.8039 1.56139822 15.0637052	
PB61	-10.581	-9.48757 1.09382811 10.337272	-9.52679 1.05460911 9.96663106	
PB4	-11.355	-10.2125 1.14254365 10.062031	-10.2502 1.10478889 9.72936461	
PB12	-11.355	-10.2125 1.14254365 10.062031	-10.2502 1.10478889 9.72936461	
PB69	-11.5211	-10.9368 0.58428907 5.07146959	-10.9731 0.54799551 4.75648412	
PB32	-12.1063	-10.2125 1.89384365 15.643455	-10.2502 1.85608889 15.3315948	
PB44	-12.1063	-10.2125 1.89384365 15.643455	-10.2502 1.85608889 15.3315948	
PB18	-12.3829	-10.7302 1.65274473 13.346992	-10.7669 1.61603430 13.0505314	
PB28	-12.3829	-10.7302 1.65274473 13.346992	-10.7669 1.61603430 13.0505314	
Table 3. Maximum Deflection from FEM Analysis vs Deflection from Regression Equation sorted by smallest deflection (continued)

Load Config.	δ FEM (mm)	Linear Regression	Quadratic Regression		
	δ Equation (mm)	Δ (mm) (%)	δ Equation (mm)	Δ (mm) (%)	
PB62	-12,8037	-12,0755 0,728163	5,687133	-12,1095 0,694161	5,421569
PB86	-12,8061	-11,6617 1,144405	8,936402	-11,6965 1,10957	8,664389
PB5	-13,4894	-12,8004 0,688979	5,107558	-12,833 0,656433	4,866287
PB11	-13,4894	-12,8004 0,688979	5,107558	-12,833 0,656433	4,866287
PB68	-13,8035	-13,5248 0,278724	2,01923	-13,5559 0,247631	1,793973
PB63	-14,5828	-14,6614 0,078582	0,538866	-14,6902 0,1074	0,736485
PB6	-15,1542	-15,3884 0,234186	1,545352	-15,4158 0,261552	1,725938
PB10	-15,1542	-15,3884 0,234186	1,545352	-15,4158 0,261552	1,725938
PB67	-15,3605	-16,1127 0,75224	4,897239	-16,1387 0,778162	5,065995
PB64	-15,8181	-17,0443 1,22618	7,751756	-17,0683 1,250248	7,903908
PB19	-15,897	-14,353 1,540012	9,7126	-14,3824 1,514577	9,527439
PB27	-15,897	-14,353 1,540012	9,7126	-14,3824 1,514577	9,527439
PB75	-16,0195	-13,9391 2,080353	12,98638	-13,9694 2,05009	12,79747
PB7	-16,2556	-17,9764 1,72075	10,58559	-17,9986 1,742966	10,72225
PB9	-16,2556	-17,9764 1,72075	10,58559	-17,9986 1,742966	10,72225
PB66	-16,2605	-18,7007 2,440205	15,00695	-18,7215 2,460985	15,13474
PB65	-16,4154	-18,9593 2,54389	15,49697	-18,9796 2,564157	15,62044
PB8	-16,6995	-20,5643 3,868415	23,1433	-20,5814 3,88191	23,24567
PB85	-17,6099	-17,3898 0,220134	1,250056	-17,4131 0,196753	1,117286
PB33	-17,6899	-15,3884 2,301514	13,01033	-15,4158 2,274148	12,85563
PB43	-17,6899	-15,3884 2,301514	13,01033	-15,4158 2,274148	12,85563
PB20	-18,8852	-17,9764 0,90885	4,812496	-17,9986 0,886634	4,694859
PB26	-18,8852	-17,9764 0,90885	4,812496	-17,9986 0,886634	4,694859
PB76	-21,1629	-19,1151 2,047824	9,67648	-19,135 2,027865	9,582169
PB21	-21,2159	-21,5992 0,383283	1,806584	-21,6142 0,398338	1,877546
PB25	-21,2159	-21,5992 0,383283	1,806584	-21,6142 0,398338	1,877546
PB34	-22,71	-20,5643 2,145685	9,448194	-20,5814 2,12859	9,372919
PB42	-22,71	-20,5643 2,145685	9,448194	-20,5814 2,12859	9,372919
PB22	-22,7578	-25,2225 2,464746	10,83033	-25,2305 2,472696	10,86527
Table 3. Maximum Deflection from FEM Analysis vs Deflection from Regression Equation sorted by smallest deflection (continued)

Load Config.	δ FEM (mm)	Linear Regression	Quadratic Regression				
	δ Equation (mm)	Δ (mm)	(%)	δ Equation (mm)	Δ (mm)	(%)	
PB24	-22.7578	-25.2225	2.46476	10.83033	-25.2305	2.472696	10.86527
PB84	-23.0422	-22.0136	1.028646	4.464182	-22.0278	1.014406	4.402383
PB23	-23.3793	-28.8454	5.466078	23.37999	-28.8463	5.466983	23.38863
PB77	-25.6075	-24.2905	1.317024	5.14312	-24.3002	1.307252	5.104956
PB35	-26.9788	-25.7397	1.239085	4.592811	-25.7467	1.232144	4.567082
PB41	-26.9788	-25.7397	1.239085	4.592811	-25.7467	1.232144	4.567082
PB83	-27.6069	-27.189	0.417946	1.51392	-27.1931	0.413827	1.498999
PB78	-29.1655	-29.4664	0.300905	1.031716	-29.4661	0.300607	1.030695
PB36	-30.3084	-30.9156	0.607244	2.00355	-30.9125	0.604148	1.993334
PB40	-30.3084	-30.9156	0.607244	2.00355	-30.9125	0.604148	1.993334
PB82	-30.7211	-32.3649	1.643783	5.350665	-32.359	1.637897	5.331506
PB81	-31.5211	-37.5323	6.011234	19.07051	-37.5166	6.005476	19.02052
PB79	-31.6361	-34.2285	2.592393	8.194415	-34.219	2.582934	8.164513
PB37	-32.511	-36.0916	3.580573	11.01342	-36.0786	3.567556	10.97338
PB39	-32.511	-36.0916	3.580573	11.01342	-36.0786	3.567556	10.97338
PB80	-32.8307	-38.0585	5.227811	15.92355	-38.0418	5.211055	15.87251
PB38	-33.399	-41.2675	7.868503	23.5591	-41.2447	7.845682	23.49077
PB50	-62.1	-61.9712	0.12878	0.207374	-61.9104	0.189647	0.30539
PB51	-62.1	-61.9712	0.12878	0.207374	-61.9104	0.189647	0.30539
PB46	-124.2	-124.081	0.118686	0.095561	-123.918	0.282468	0.22743
PB52	-124.2	-124.081	0.118686	0.095561	-123.918	0.282468	0.22743
PB53	-124.2	-124.081	0.118686	0.095561	-123.918	0.282468	0.22743
PB47	-248.5	-248.302	0.19797	0.079666	-247.983	0.517077	0.208079
PB54	-310.6	-310.413	0.187348	0.060318	-310.041	0.558865	0.179931
PB55	-310.6	-310.413	0.187348	0.060318	-310.041	0.558865	0.179931
PB48	-621.2	-620.965	0.235293	0.037877	-620.584	0.616341	0.099218
PB56	-621.2	-620.965	0.235293	0.037877	-620.584	0.616341	0.099218
PB57	-621.2	-620.965	0.235293	0.037877	-620.584	0.616341	0.099218
PB49	-1242.4	-1242.07	0.331183	0.026657	-1242.93	0.531311	0.042765
Average		**1.335541**	**9.0757**	**1.353634**	**8.848111**		
It can be seen in Table 3 that the average difference of FEM maximum deflection and regression equation is 8.84% for quadratic regression and 9.07 for linear regression. The difference in maximum deflection value is relatively small. The difference for PB 19, PB 22, PB 24 and PB 26 are relatively high, these are due to the relatively small deflection value of the load configuration considered.

8. Conclusion and Recommendation

Based on the results of the analysis of the research conducted, it can be concluded that:

a. This study shows that the application of regression formula to predict the maximum deflection value at simple span steel box girder bridge provide relatively good accuracy.

b. Therefore, strain gauge sensor can be utilized to measure the strain for maximum deflection of bridge to provide economical structural monitoring system.

c. The accuracy increases by using higher order of regression.

d. It is suggested to conduct field test application of the system in the real bridge.

References

[1] Brownjohn, J., M., W. (2006), Structural Health Monitoring of Civil Structures, Philosophical Transactions Royal Society A, published online on 13 December 2006.

[2] Harpriambodo, T (2019). Numerical analysis of three span continuous bridge deflection by using rotation. International Journal of Innovative Research in Science, Engineering and Technology, 9-12.

[3] Chen, Hua-Peng. (2018), Structural Health Monitoring of Large Civil Engineering Structures, John Wiley & Sons, Inc., 111 River Street, Hoboken NJ, USA.

[4] FHWA (2014), State of the Practice and Art for Structural Health Monitoring of Bridge Substructures, Publication No. FHWA-HRT-09-040 May 2014, Federal Highway Administration, USA.

[5] Hou, X., Yang, X. and Huang, Q. (2005), Using Inclinometers to Measure Bridge Deflection, Journal of Bridge Engineering, ©ASCE, September, 2005.

[6] Ozakgul, K., Caglayan, O., Uzgider, E. (2009), Load Testing of Bridges Using Tiltmeters, Proceedings of the SEM Annual Conference June 1-4, 2009 Albuquerque New Mexico USA ©2009 Society for Experimental Mechanics Inc.

[7] Ruijie X., Weiping J., Xiaolin M., Hua C., Qusen C., Bridge Monitoring Using BDS-RTK and GPS-RTK Techniques.

[8] Sousa, H., Cavadasa, F., Henriquesa, A., Bentob, J., Figueirasa, J. (2013), Bridge Deflection Evaluation using Strain and Rotation Measurements, Article in Smart Structures and Systems, April 2013.