Clinical Trial Enrollment, Ineligibility, and Reasons for Decline in Older vs Younger Patients With Cancer in the National Cancer Institute Community Oncology Research Program

Mina S. Sedrak, MD, MS; Jingran Ji, MD; Abhay Tiwari, BS; Supriya G. Mohile, MD, MS; William Dale, MD, PhD; Jennifer G. Le-Rademacher, PhD

Introduction

Although barriers to older adult participation in cancer clinical trials are frequently studied, enrollment has not changed over time. 1 One reason for this lack of change is that few studies have examined barriers that hinder older adult enrollment in community settings, where more than 80% of older adults receive their cancer care. 2 We sought to compare enrollment patterns, ineligibility, and reasons for decline among older and younger adult cancer patients in community settings.

Methods

We examined a clinical trial screening logs database from January 1, 2016, to December 31, 2019, in the National Cancer Institute (NCI) Community Oncology Research Program (NCORP). 3 The NCI developed screening logs to collect data obtained by NCORP research staff during active screening. Logs included trial characteristics, enrollment (yes or no), and reasons for nonenrollment (ineligible vs eligible but the patient declined). Additional reasons why participants were ineligible or eligible but chose not to enroll were also identified. This analysis was determined by City of Hope Institutional Review Board to be exempt from review because it included only deidentified administrative data. This cross-sectional study followed the STROBE reporting guideline. 4

We included and grouped entries in 2 age cohorts: younger (age 50-69 years) and older (age ≥70 years). We chose the cut-off of 70 years because those older than 70 years are severely underrepresented in both NCI and US Food and Drug Administration (FDA) trials. 5 We chose to include ethnicity as a study variable because White patients continue to be overrepresented in cancer clinical trials, whereas racial and ethnic minority subgroups are underrepresented. Patient characteristics, enrollment rates, and reasons for nonenrollment were compared by age group using χ² tests. A 2-sided P < .05 was considered to be statistically significant.

Results

Demographic, clinical, and trial characteristics are given in the Table. Of 2298 patients screened and offered a clinical trial, 1709 (74%) were younger and 589 (26%) were older adults (P < .001). Among all approached patients, 1540 (67%) enrolled, and enrollment rate did not differ by age group (68% [1156/1709] younger vs 65% [384/589] older; P = .28). Reasons for nonenrollment included being ineligible (18% [315/1709] younger vs 23% [133/589] older) or being eligible but declined (13% [224/1709] younger vs 11% [67/589] older). The most common reasons for ineligibility among both groups were the presence of comorbidity (23% [72/315] younger vs 26% [35/133] older), failure to meet the protocol-specific stage and cancer histologic stage (30% [95/315] younger vs 24% [32/133] older), and biomarker criteria not met (7% [22/315] younger vs 13% [17/133] older) (Figure, A). Among both groups, the most common reasons for eligible patients to decline enrollment were perceived adverse effects being too great (22% [49/224] younger vs 21% [14/67] older) and no desire to participate in research (20% [45/224] younger vs 18% [12/67] older) (P = .85) (Figure, B).
Table. Participant Demographic, Clinical, and Trial Characteristics by Age Group

Characteristic	Age category, y	50-69 (n = 1709)	≥70 (n = 589)
Age, mean (SD) [range], y	60.0 (5.7) [50-69]	74.7 (4.4) [70-92]	
Sex			
Female		1371 (80)	375 (64)
Male		338 (20)	214 (36)
Ethnicity			
Hispanic or Latinx		96 (6)	16 (3)
Not Hispanic or Latinx		1605 (94)	563 (96)
Unknown		8 (0.5)	10 (2)
Marital status			
Married or domestic partnership		1142 (67)	378 (64)
Divorced or separated		335 (20)	80 (14)
Widowed		98 (6)	111 (19)
Never married		134 (8)	20 (3)
Rural site		364 (21)	143 (24)
Educational level			
Less than high school graduate		99 (6)	53 (9)
High school graduate		396 (23)	186 (32)
College or greater		1203 (70)	344 (58)
Employment			
Working		827 (49)	56 (10)
Not working, not retired		387 (22)	495 (84)
Retired		486 (29)	38 (6)
Income, $			
≤50 000		575 (34)	279 (47)
≥51 000		773 (45)	174 (30)
Patient did not respond		361 (21)	136 (23)
No. of comorbidities			
0		650 (38)	99 (17)
1		539 (32)	188 (32)
≥2		520 (30)	302 (51)
Type of comorbidities			
Hypertension		721 (42)	365 (62)
Hypercholesterolemia		446 (26)	224 (38)
Heart disease		133 (8)	120 (20)
Diabetic neuropathy		38 (2)	23 (4)
Other cancer		73 (4)	46 (8)
Other systemic		184 (11)	77 (13)
Cancer type			
Breast		1073 (63)	178 (30)
Lung		358 (21)	252 (43)
Genitourinary		15 (0.9)	49 (8)
Gastrointestinal		8 (0.5)	38 (6)
Hematologic		10 (0.6)	12 (2)
Other		125 (7.6)	57 (9)
Cancer stage			
I-III		1484 (96)	464 (92)
IV		62 (4)	38 (8)
Clinical trial type			
Therapeutic clinical trial		798 (53)	308 (58)
Nontherapeutic clinical trial		723 (48)	220 (42)

* Data are presented as number (percentage) of study participants unless otherwise indicated.

b Some row percentages may not total 100% because of rounding and missing data, including 111 missing cancer types, 87 missing disease stages, 61 missing clinical trial types, 6 missing educational levels, and 3 missing diagnoses.
Despite differences in education, income, and comorbid conditions, when screened and offered a clinical trial, enrollment rates among adult cancer patients in community settings were similar independent of age. Older adults were as willing to participate as their younger counterparts. Among eligible patients, the reasons for declining enrollment were similar across age groups; however, reasons for ineligibility differed. This study included actively screened cancer patients with access to clinics that offer NCI clinical trials, which limits generalizability. Nonetheless, our findings underscore that the disparity in cancer research participation among older adults is driven by factors upstream of the patient, such as restrictive eligibility criteria.

Efforts are under way to broaden eligibility criteria to make trials more generalizable for patients of all ages, including initiatives by the American Society of Clinical Oncology, Friends of Cancer Research, and the FDA.\(^6\) How these initiatives will help the geriatric population is not yet known. Given the rapidly aging population, this is a crucial time to address the multiple barriers to clinical trial participation in the geriatric population to ensure all patients with cancer receive the highest-quality, evidence-based care.
ARTICLE INFORMATION

Accepted for Publication: July 29, 2022.

Published: October 10, 2022. doi: 10.1001/jamanetworkopen.2022.35714

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Sedrak MS et al. JAMA Network Open.

Corresponding Author: Mina S. Sedrak, MD, MS, Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010 (msedrak@coh.org).

Author Affiliations: Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California (Sedrak, Ji, Tiwari, Dale); Department of Medicine, University of Rochester, Rochester, New York (Mohile); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (Le-Rademacher).

Author Contributions: Dr Sedrak had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Sedrak, Le-Rademacher.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Sedrak, Ji, Tiwari, Le-Rademacher.

Critical revision of the manuscript for important intellectual content: Sedrak, Mohile, Dale, Le-Rademacher.

Statistical analysis: Ji, Le-Rademacher.

Obtained funding: Sedrak, Dale.

Administrative, technical, or material support: Dale.

Supervision: Sedrak, Tiwari, Mohile, Dale.

Conflict of Interest Disclosures: Dr Sedrak reported receiving grants from the National Institutes of Health during the conduct of the study. No other disclosures were reported.

Funding/Support: This study was funded by grants R03AG064377 (Dr Sedrak), K76AG074918 (Dr Sedrak), K24AG056589 (Dr Mohile), K24AG055693 (Dr Dale), and R33AG059206 (Drs Dale and Mohile) from the National Institute of Aging, grant K12CA071727 from the National Cancer Institute (Dr Sedrak), Waisman Innovation (Dr Sedrak), and the Center for Cancer and Aging (Drs Sedrak and Dale).

Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Diane St Germain, RN, MS, CRNP, and Worta McCaskill-Stevens, MD, program leaders of the National Cancer Institute Community Oncology Research Program, developed the screening tool database and allowed us to use it for this analysis. This work builds on the legacy of our colleague Arti Hurria, MD, and we dedicate this research to her vision and mentorship. We thank all the participants for sharing their time and experiences; this study would not have been possible without their generosity. We also thank all National Cancer Institute Community Oncology Research Program sites that enrolled participants in this screening protocol. No compensation for given for any of this work.

REFERENCES

1. Sedrak MS, Freedman RA, Cohen HJ, et al; Cancer and Aging Research Group (CARG). Older adult participation in cancer clinical trials: a systematic review of barriers and interventions. CA Cancer J Clin. 2021;71(1):78-92. doi:10.3322/caac.21638

2. Sedrak MS, Mohile SG, Sun V, et al. Barriers to clinical trial enrollment of older adults with cancer: a qualitative study of the perceptions of community and academic oncologists. J Geriatr Oncol. 2020;11(2):327-334. doi:10.1016/j.jgo.2019.07.017

3. St Germain DC, McCaskill-Stevens W. Use of a clinical trial screening tool to enhance patient accrual. Cancer. 2021;127(10):1630-1637. doi:10.1002/cncr.33399

4. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Prev Med. 2007;45(4):247-251. doi:10.1016/j.ypmed.2007.08.012

5. Singh H, Kanapuru B, Smith C, et al. FDA analysis of enrollment of older adults in clinical trials for cancer drug registration: a 10-year experience by the US Food and Drug Administration. J Clin Oncol. 2017;35(15 suppl): 10009-10009. doi:10.1200/JCO.2017.35.15_suppl.10009
6. Kim ES, Bruinooge SS, Roberts S, et al. Broadening eligibility criteria to make clinical trials more representative: American Society of Clinical Oncology and Friends of Cancer Research Joint Research Statement. *J Clin Oncol.* 2017;35(33):3737-3744. doi:10.1200/JCO.2017.73.7916