ON LOCAL TIME AT TIME VARYING CURVE

ANASS BEN TALEB

Abstract. Let \((X_t)_{t \geq 0}\) be a continuous semimartingale. Let \(L_t^z(X)\) its family of local times. In [7] Yor showed that the family \((L_t^z(X))_{z \in \mathbb{R}, t \geq 0}\) has a version that is continuous in \(t\), cad-lag in \(z\). In this paper we extend this result by showing that for a 'regular' family of curves parametrized by \(z\), the corresponding family of local times has a 'regular' version. This result was used in [1] to prove a change of variable formula for continuous semimartingales.

1. Introduction

Let \((B_t)_{t \geq 0}\) a Brownian motion, we define for each \(t > 0\) the occupation time random measure on the space \((\mathbb{R}, \mathcal{B}(\mathbb{R})):\)

\[
\forall A \in \mathcal{B}(\mathbb{R}), \mu_t(A) = \int_0^t 1_{(B_s \in A)} ds
\]

In [6], Trotter shows that almost surely for all \(t > 0\), \(\mu_t\) has a density with respect to the Lebesgue measure: \(L_t^z(B)\) meaning almost surely \(\forall t > 0\) and \(\forall f: \mathbb{R} \to \mathbb{R}\) borelian function we have:

\[
\int_0^t f(B_s) ds = \int_{-\infty}^{+\infty} f(z)L_t^z(B) dz
\]

furthermore the family \(L_t^z(B)_{z \in \mathbb{R}, t \geq 0}\) is continuous in \(t\) and \(z\), we denote by \(L^z(B)\) the map \(t \mapsto L_t^z(B)\) and we call it the local time of \(B\) in \(z\), the family \((L_t^z(B))_{z \in \mathbb{R}, t \geq 0}\) is also called the family of local times of \(B\). The notion of local time was studied extensively in the litterature (see [5] for a complete bibliography on the subject), this theory was expanded in many directions: from the point of view of continuous semimartingales Meyer in [3] after earlier results of Tanaka for the Brownian motion defines the local time of continuous semimartingales via a generalization of Ito’s Formula: Let \((X_t)_{t \geq 0}\) be a continuous semimartingale then for all \(z \in \mathbb{R}\) there exists a process \((L_t^z(X))_{t \geq 0}\) continuous and increasing such that for all \(t \geq 0\) we have almost surely (Tanaka’s Formula):

\[
|X_t - z| = |X_0 - z| + \int_0^t \text{sgn}(X_s - z) dX_s + L_t^z(X)
\]

with \(\text{sgn}\) is the function defined by:

\[
\text{sgn}(x) = \begin{cases}
1 & x > 0 \\
-1 & x \leq 0
\end{cases}
\]

In addition, the measure \(dL_t^z(X)\) is almost surely carried by the set \((s \geq |X_s = z|)\) (see proposition 1.6 of chapter 6 in [5]). We also have in analogy to (2) a formula
called the occupation times formula. Almost surely for all \(\Phi : \mathbb{R} \to \mathbb{R} \) borelian non negative function and for all \(t \geq 0 \):

\[
\int_0^t \Phi (X_s) \, d \langle X, X \rangle_s = \int_{-\infty}^{+\infty} \Phi(z) L_t^z (X) \, da
\]

In [7] Yor’s result extends Trotter’s theorem in the following way: there exists a version of \((L_t^z (X))_{t \geq 0, z \in \mathbb{R}}\) continuous in \(t \) and càdlàg in \(z \). Furthermore almost surely \(\forall t \geq 0, \forall z \in \mathbb{R} \):

\[
L_t^z (X) - L_t^{z^-} (X) = 2 \times \int_0^t 1_{\{X_s = z\}} \, dX_s
\]

In this paper we shall extend Yor’s result to a family of local times at time varying curves. First let us define the local time at a curve, this notion was mentioned briefly as a limit in probability of occupation times in [4]:

Definition 1.1. Let \((X_t)_{t \geq 0}\) a continuous semimartingale and \(\gamma : \mathbb{R}_+ \to \mathbb{R} \) a function with finite total variation, hence \(X - \gamma \) is a continuous semimartingale we set :

\[
\Lambda^\gamma (X) = L^0 (X - \gamma)
\]

Thus \(\Lambda^\gamma (X) \) is an increasing continuous process, its Lebesgue-Stieltjes measure \(d\Lambda^\gamma (X) \) is carried by the set \(\{ s \geq 0 | X_s = \gamma(s) \} \), we shall call this process the local time of \(X \) at the curve \(\gamma \) and we have almost surely :

\[
\forall t \geq 0, \Lambda_t^\gamma (X) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t 1_{0 < X_s - \gamma(s) < \epsilon} \, d \langle X, X \rangle_s
\]

Remark 1.1. Let \(t_0 > 0 \), in the same manner we can define the local time of \(X \) at the curve \(\gamma \) with basis point \(t_0 \) by :

\[
\forall t \geq 0, \Lambda_t^{\gamma,t_0} (X) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{t_0}^t 1_{0 < X_s - \gamma(s) < \epsilon} \, d \langle X, X \rangle_s
\]

Note that for all \(u, t \in \mathbb{R}_+ \):

\[
\Lambda_t^{\gamma,t_0} (X) - \Lambda_u^{\gamma,t_0} (X) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_u^t 1_{0 < X_s - \gamma(s) < \epsilon} \, d \langle X, X \rangle_s
\]

So for all \(t, u \) \(\Lambda_t^{\gamma,t_0} (X) - \Lambda_u^{\gamma,t_0} (X) \) is independant of the choice of the basis point.

Remark 1.2. The previous remark enables us to define the local time of \(X \) at \(\gamma \) when \(\gamma \) is only defined on interval \(I \subset \mathbb{R}_+ \).

Our main result is the following theorem:

Theorem 1.1. Let \((X_t)_{t \geq 0}\) be a continuous semimartingale defined on filtered probability space \((\Omega, \mathcal{A}, \mathbb{P}, \mathcal{G} = (\mathcal{G}_u)_{u \geq 0})\), let \(\Gamma \in C^1 (\mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}) \). For \(T > 0 \) one

\[\text{Footnotes:}
\begin{enumerate}
\item French: “continue à droite limite à gauche”, which translates to continuous on the right limit on the left): meaning there exist a family of random variables \(\tilde{L}_t^z (X) \) such that for each \(z \in \mathbb{R} \) almost surely the map \(t \to \tilde{L}_t^z (X) \) is continuous, for each \(t \geq 0 \) almost surely the map \(z \to \tilde{L}_t^z (X) \) is càdlàg, and for each \(z \in \mathbb{R}, t \geq 0 \) almost surely we have \(\tilde{L}_t^z (X) = \hat{L}_t^z (X) \)
\item i.e there exists \(\epsilon > 0 \) such that \(\Gamma \in C^1 (\mathbb{R}_- | - \epsilon, +\infty[\to \mathbb{R}) \)
\item one can interpret \((\Gamma(z, \cdot))_{z \in \mathbb{R}} \) as a family of class \(C^1 \) curves ‘regular’ in \(z \)
considers the open sets
\[\Omega^1_T = \left\{ z \in \mathbb{R} | \forall t \in [0, T], \frac{\partial \Gamma}{\partial z} (z, t) > 0 \right\} \]
\[\Omega^2_T = \left\{ z \in \mathbb{R} | \forall t \in [0, T], \frac{\partial \Gamma}{\partial z} (z, t) < 0 \right\} \]

There exists a version of \(\left(\Lambda_t^{\Gamma(z, \cdot)} (X) \right)_{t \geq 0, z \in \mathbb{R}} \) satisfying:

(a) For \(T > 0 \), if \(\Omega^1_T \) is nonempty then \(\left(\Lambda_t^{\Gamma(z, \cdot)} (X) \right)_{0 \leq t \leq T, z \in \Omega^1_T} \) is continuous in \(t \) càdlàg in \(z \). We have almost surely for all \(t \in [0, T], z \in \Omega^1_T \):

\[\Lambda_t^{\Gamma(z, \cdot)} (X) = \Lambda_t^{\Gamma(z, \cdot)} (X) = 2 \times \left(\int_0^t 1_{X_s = \Gamma(z, s)} dX_s - \int_0^t 1_{X_s = \Gamma(z, s)} \frac{\partial \Gamma}{\partial t} (z, s) \, ds \right) \]

(b) For \(T > 0 \), if \(\Omega^2_T \) is nonempty then \(\left(\Lambda_t^{\Gamma(z, \cdot)} (X) \right)_{0 \leq t \leq T, z \in \Omega^2_T} \) is continuous in \(t \) càdlàg in \(z \) (French: "limite à droite continue à gauche" meaning limit on the right continuous on the left). We have almost surely for all \(t \in [0, T], z \in \Omega^2_T \):

\[\Lambda_t^{\Gamma(z, \cdot)} (X) - \Lambda_t^{\Gamma(z^+, \cdot)} (X) = 2 \times \left(\int_0^t 1_{X_s = \Gamma(z, s)} dX_s - \int_0^t 1_{X_s = \Gamma(z, s)} \frac{\partial \Gamma}{\partial t} (z, s) \, ds \right) \]

Remark 1.3. Consequently:

(1) If \(\Omega^1 = \bigcap_{T > 0} \Omega^1_T \) is a non empty open set then the family \(\left(\Lambda_t^{\Gamma(z, \cdot)} (X) \right)_{t \geq 0, z \in \Omega^1} \) is continuous in \(t \) càdlàg in \(z \). We have almost surely for all \(t \geq 0, z \in \Omega^1 \):

\[\Lambda_t^{\Gamma(z, \cdot)} (X) = \Lambda_t^{\Gamma(z, \cdot)} (X) = 2 \times \left(\int_0^t 1_{X_s = \Gamma(z, s)} dX_s - \int_0^t 1_{X_s = \Gamma(z, s)} \frac{\partial \Gamma}{\partial t} (z, s) \, ds \right) \]

(2) Similarly if \(\Omega^2 = \bigcap_{T > 0} \Omega^2_T \) is a non empty open set then the family \(\left(\Lambda_t^{\Gamma(z, \cdot)} (X) \right)_{t \geq 0, z \in \Omega^2} \) is continuous in \(t \) càdlàg in \(z \). We have almost surely for all \(t \geq 0, z \in \Omega^1 \):

\[\Lambda_t^{\Gamma(z, \cdot)} (X) - \Lambda_t^{\Gamma(z^+, \cdot)} (X) = 2 \times \left(\int_0^t 1_{X_s = \Gamma(z, s)} dX_s - \int_0^t 1_{X_s = \Gamma(z, s)} \frac{\partial \Gamma}{\partial t} (z, s) \, ds \right) \]

Remark 1.4. Note that when \(\Gamma(z, t) = z \) we have \(\forall t, z \frac{\partial \Gamma}{\partial z} (z, t) = 1 > 0 \) hence we recover Yor’s result.

Moreover we can extend the previous result to the general case when \(\Gamma \) is defined on a open subset of \(\mathbb{R} \times \mathbb{R}_+^\ast \):

Corollary 1.1. Let \(\Omega \subset \mathbb{R} \times \mathbb{R}_+^\ast \) an open set and \(\Gamma : \Omega \rightarrow \mathbb{R} \) a map of class \(C^1 \), let \((X_t)_{t \geq 0} \) be a continuous semimartingale. Then there exists a version of the family \(\left(\Lambda_t^{\Gamma(z, \cdot)} (X) - \Lambda_s^{\Gamma(z, \cdot)} (X) \right)_{s \leq t, [z, t] \subseteq \Omega} \) verifying: almost surely we have for all \(z, s, t \) such that \(\{z\} \times [s, t] \subseteq \Omega \):

(1) If \(\forall u \in [s, t], \frac{\partial \Gamma}{\partial z} (z, u) > 0 \) the map \(\Gamma' \rightarrow \Lambda_t^{\Gamma(z, \cdot)} (X) - \Lambda_s^{\Gamma(z, \cdot)} (X) \) is càdlàg in \(z \) meaning:

\[\lim_{z' \rightarrow z^+} \Lambda_t^{\Gamma(z', \cdot)} (X) - \Lambda_s^{\Gamma(z', \cdot)} (X) = \Lambda_t^{\Gamma(z, \cdot)} (X) - \Lambda_s^{\Gamma(z, \cdot)} (X) \]
We set:

\(\Lambda_t^\Gamma(z,.) (X) = 2 \times \left[(X_t - \Gamma(z,t))^+ - (X_0 - \Gamma(z,0))^+ - \int_0^t 1_{X_s > \Gamma(z,s)} dX_s \right] \)

\[= 2 \times \left[(X_t - \Gamma(z,t))^+ - (X_0 - \Gamma(z,0))^+ - \int_0^t 1_{X_s > \Gamma(z,s)} dM_s \right] \]

\[= 2 \times \left[\int_0^t 1_{X_s > \Gamma(z,s)} dV_s \right] + 2 \times \left[\int_0^t 1_{X_s > \Gamma(z,s)} \frac{\partial \Gamma}{\partial t} (z,s) ds \right] \]

(16)

We set:

\[\hat{M}^z_t = \int_0^t 1_{X_s > \Gamma(z,s)} dM_s\]

as in Yor’s proof the main idea is to show that \(\left(\hat{M}^z_t \right)_{t \geq 0, z \in \mathbb{R}} \) has a version that is continuous in \(z \) and in \(t \), to this end we use Kolmogorov’s continuity theorem (theorem 2.8 in [2]) in a well suited space: ideally if such space is equipped with a distance \(d \), we want to prove that there is a constant \(C \) and \(k \geq 1 \) such that \(\forall z_1, z_2 \in \mathbb{R} \):

\[\mathbb{E} \left[d \left(\hat{M}^z_1, \hat{M}^z_2 \right)^{2k} \right] \leq C \times |z_1 - z_2|^k \]

(18)

We fix \(t > 0 \) and a compact \(\mathcal{K} = [-m, m] \), first we shall prove that the family \(\left(\hat{M}^z_s \right)_{0 \leq s \leq t, z \in \mathcal{K}} \) has a bicontinuous version: For \(z \in]-m, m[\), the process \(\left(\hat{M}^z_s \right)_{0 \leq s \leq t} \) is an element of the Banach space \(C([0, t], \mathbb{R}) \) equipped with the distance \(d(f, g) = \sup_{0 \leq s \leq t} |f(s) - g(s)| \).

Let \(\left\{ s^n_0, s^n_1, ..., s^n_{N_n+1} \right\}_{n \in \mathbb{N}} \) be a sequence of partitions of \([0, t]\) with \(s^n_0 = 0 \), \(s^n_{N_n+1} = t \) with mesh \(\max_k |s^n_{i+k} - s^n_i| \) converging to 0 , for all \(n \) let \(\left\{ s^n_{ij} \right\}_{1 \leq j \leq N_n} \) be those \(s^n_k \) such that \(\Gamma(z_1, s^n_{ij}) \neq \Gamma(z_2, s^n_{ik}) \) with \(s^n_{ij} < s^n_{i+1} \) (if \(s^n_{iN_n} = t \) then \(s^n_{iN_n+1} = t \)), let...
\(\left(L^z_t(X) \right)_{z \in \mathbb{R}, t \geq 0} \) be the family of local times of \(X \) continuous in \(t \) and càdlàg in \(z \). For all \(s \in [0, t] \) we set:

\[\Gamma_1(s) = \min(\Gamma(z_1, s), \Gamma(z_2, s)), \Gamma_2(s) = \max(\Gamma(z_1, s), \Gamma(z_2, s)) \]

In the first subsection the goal is to show that for \(k \geq 1, z_1, z_2 \in \mathcal{K} \)

\[\mathbb{E} \left[\sup_{0 \leq u \leq t} |\hat{M}^{z_1}_u - \hat{M}^{z_2}_u|^{2k} \right] \leq C_k \times \liminf_{n \to +\infty} \mathbb{E} \left[\left(\int_{-\infty}^{+\infty} dz \left(\sum_{j=1}^{N_n} 1_{\Gamma_1(s^n_j) < z < \Gamma_2(s^n_j)} \times \left(L^z_{s^n_{i,j+1}}(X) - L^z_{s^n_{i,j}}(X) \right) \right) \right)^k \right] \]

where \(C_k \) is a constant that depends only on \(k \). Note that the existence of \(s^n_{i,j} \) for all \(i, j \leq N_n \) is justified by the fact that if \(\forall s \in [0, t], \Gamma(z_1, s) = \Gamma(z_2, s) \) the inequality is trivial.

2.1. **Proof of inequality** \((20)\). Using the fact:

\[\begin{cases} 1_{M_s > a} - 1_{M_s > b} = 1_{\text{min}(a, b) < M_s \leq \text{max}(a, b)} & a \leq b \\ 1_{M_s > a} - 1_{M_s > b} = -1_{\text{min}(a, b) < M_s \leq \text{max}(a, b)} & a > b \end{cases} \]

and Burkholder-Davis-Gundy inequality (theorem 4.1 of chapter 4 in \[5\]) we have:

\[\mathbb{E} \left[\sup_{0 \leq u \leq t} |\hat{M}^{z_1}_u - \hat{M}^{z_2}_u|^{2k} \right] \leq C_k \mathbb{E} \left[\left(\int_0^t 1_{\Gamma_1(s) < X_s \leq \Gamma_2(s)} d \langle M, M \rangle_s \right)^k \right] \]

Since \(X - \Gamma_2 \) and \(X \) have the same bracket, by the occupation times formula (corollary 1.6 of chapter 6 in \[5\]) we have:

\[\int_0^t 1_{X_s = \Gamma_2(s)} d \langle X, X \rangle_s = \int_{-\infty}^{+\infty} 1_{z=0} L^z_t(X - \Gamma_2) d z = 0 \]

so:

\[\int_0^t 1_{\Gamma_1(s) < X_s \leq \Gamma_2(s)} d \langle X, X \rangle_s = \int_0^t 1_{\Gamma_1(s) < X_s < \Gamma_2(s)} d \langle X, X \rangle_s \]

By the generalized occupation times formula (Exercise 1.35 of chapter 6 in \[5\]) we obtain:

\[\mathbb{E} \left[\sup_{0 \leq u \leq t} |\hat{M}^{z_1}_u - \hat{M}^{z_2}_u|^{2k} \right] \leq C_k \mathbb{E} \left[\left(\int_{-\infty}^{+\infty} dz \int_0^t 1_{\Gamma_1(s) < z < \Gamma_2(s)} dL^z_s(X) \right)^k \right] \]

Let \(z \in \mathbb{R} \), since the set \((s| \Gamma_1(s) < z < \Gamma_2(s)) \) is open then the function \(s \to 1_{\Gamma_1(s) < z < \Gamma_2(s)} \) is lower semi-continuous, in other words when \((s^n)_n \) converges to \(s \) we have:

\[1_{\Gamma_1(s) < z < \Gamma_2(s)} \leq \liminf_{n \to +\infty} 1_{\Gamma_1(s^n) < z < \Gamma_2(s^n)} \]
For $s \in [0, t]$, we set:

$$F_n^z(s) = \sum_{i=0}^{n} 1_{[s^n_i, s^n_{i+1}]} \times 1_{\Gamma_1(s^n_i) < z < \Gamma_2(s^n_i)} + 1_{(t)} 1_{\Gamma_1(s^n_t) < z < \Gamma_2(s^n_t)}$$

and let $\sigma_n(s) \in [0, n + 1]$ the integer satisfying:

$$s^n_{\sigma_n(s)} \leq s \leq s^n_{\sigma_n(s)+1}$$

(we set for convenience $s^n_{n+2} = t$) As $\lim_{n \to +\infty} s^n_{\sigma_n(s)} = s$, by inequality (26)

$$1_{\Gamma_1(s) < z < \Gamma_2(s)} \leq \liminf_{n \to +\infty} 1_{\Gamma_1(s^n_{\sigma_n(s)}) < z < \Gamma_2(s^n_{\sigma_n(s)})} = \liminf_{n \to +\infty} F_n^z(s)$$

The last inequality is true for all $z \in \mathbb{R}$, by applying Fatou’s lemma for the measure μ defined on $\mathcal{B}(\mathbb{R} \times \mathbb{R}^+)$ by:

$$\mu(A) = \int_{-\infty}^{+\infty} dz \int_{0}^{t} 1_{A}(s, z) dL^z_s(X)$$

we get:

$$\left(\int_{-\infty}^{+\infty} dz \int_{0}^{t} 1_{\Gamma_1(s) < z < \Gamma_2(s)} dL^z_s(X) \right)^k$$

$$\leq \liminf_{n \to +\infty} \left(\int_{-\infty}^{+\infty} dz \int_{0}^{t} F_n^z(s) dL^z_s(X) \right)^k$$

applying Fatou’s lemma again:

$$\mathbb{E} \left[\left(\int_{-\infty}^{+\infty} dz \int_{0}^{t} 1_{\Gamma_1(s) < z < \Gamma_2(s)} dL^z_s(X) \right)^k \right]$$

$$\leq \liminf_{n \to +\infty} \mathbb{E} \left[\left(\int_{-\infty}^{+\infty} dz \int_{0}^{t} F_n^z(s) dL^z_s(X) \right)^k \right]$$

We have:

$$\int_{-\infty}^{+\infty} dz \int_{0}^{t} F_n^z(s) dL^z_s(X) = \int_{-\infty}^{+\infty} dz \left(\sum_{i=0}^{n} 1_{\Gamma_1(s^n_i) < z < \Gamma_2(s^n_i)} \times \left(L^z_{s^n_{i+1}}(X) - L^z_{s^n_i}(X) \right) \right)$$

if i verifies $\Gamma(z_1, s^n_i) = \Gamma(2z_2, s^n_i)$ then $1_{\Gamma_1(s^n_i) < z < \Gamma_2(s^n_i)} = 0$, otherwise $\exists j \in [1, N_n]$ such that $s^n_i = s^n_{i+1}$ and since $s^n_i < s^n_{i+1}$ then $L^z_{s^n_{i+1}}(X) \leq L^z_{s^n_i}(X)$ we deduce that

$$\int_{-\infty}^{+\infty} dz \left(\sum_{i=0}^{n} 1_{\Gamma_1(s^n_i) < z < \Gamma_2(s^n_i)} \times \left(L^z_{s^n_{i+1}}(X) - L^z_{s^n_i}(X) \right) \right)$$

$$\leq \int_{-\infty}^{+\infty} dz \left(\sum_{j=1}^{N_n} 1_{\Gamma_1(s^n_j) < z < \Gamma_2(s^n_j)} \times \left(L^z_{s^n_{j+1}}(X) - L^z_{s^n_j}(X) \right) \right)$$

thus we proved (20).
We have:

\[(34)\]
\[
\mathbb{E} \left[\left(\int_{-\infty}^{+\infty} dz \left(\sum_{j=1}^{N_n} 1_{\Gamma_1(s^n_{ij}) < z < \Gamma_2(s^n_{ij})} \times \left(L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) \right) \right) \right)^k \right] \\
\leq \mathbb{E} \left[\left(\sum_{j=1}^{N_n} 1_{\Gamma_1(s^n_{ij})} \Gamma_2(s^n_{ij}) \left(L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) \right) dz \right)^k \right] \\
\leq \mathbb{E} \left[\left(\sum_{j=1}^{N_n} \left| \Gamma_2(s^n_{ij}) - \Gamma_1(s^n_{ij}) \right| \times \left(s^n_{ij+1} \right)^k \Gamma_1(s^n_{ij}) \left(L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) \right) dz \right)^k \right] \\
\leq \sup_{1 \leq j \leq N_n} \left| \Gamma_2(s^n_{ij}) - \Gamma_1(s^n_{ij}) \right|^k \mathbb{E} \left[\left(\sum_{j=1}^{N_n} \left(s^n_{ij+1} \right)^k \Gamma_1(s^n_{ij}) \left(L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) \right) dz \right)^k \right] \\
\]

In the following subsection we control the last term.

2.2. Control of the term \(\mathbb{E} \left[\left(\sum_{j=1}^{N_n} \left(s^n_{ij+1} \right)^k \Gamma_1(s^n_{ij}) \left(L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) \right) dz \right)^k \right] \). By Tanaka’s theorem:

Formula:

\[(35)\]
\[L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) = 2 \times \left(X_{s^n_{ij+1}} - z \right)^+ - \left(X_{s^n_{ij}} - z \right)^+ \times \int_{s^n_{ij}}^{s^n_{ij+1}} 1_{X_{s^n_{ij}} > z} dX_s \]
\[= 2 \times \left(X_{s^n_{ij+1}} - z \right)^+ - \left(X_{s^n_{ij}} - z \right)^+ \times \int_{s^n_{ij}}^{s^n_{ij+1}} 1_{X_{s^n_{ij}} > z} dV_s - \int_{s^n_{ij}}^{s^n_{ij+1}} 1_{X_{s^n_{ij}} > z} dM_s \]

hence:

\[(36)\]
\[L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) = 2 \times \int_{s^n_{ij}}^{s^n_{ij+1}} 1_{X_{s^n_{ij}} > z} dM_s - 2 \times \left(X_{s^n_{ij+1}} - z \right)^+ - \left(X_{s^n_{ij}} - z \right)^+ \]
\[\leq 2 \times \left(\int_{s^n_{ij}}^{s^n_{ij+1}} \left| dV \right| \right) \]

and so inequality \((36)\) implies:

\[(37)\]
\[\sum_{j=1}^{N_n} \int_{s^n_{ij}}^{s^n_{ij+1}} \left(L_{s^n_{ij+1}}^z (X) - L_{s^n_{ij}}^z (X) \right) dz \leq 2 \times \left(\int_{0}^{t} \left| dV \right| \right) + E_1 + E_2 \]
where:

$$E_1 = -2 \times \left(\sum_{j=1}^{N_n} \frac{\int_{\Gamma_1(s_{i_j}^n)}^{\Gamma_2(s_{i_j}^n)} \left(\int_{s_{i_j}^n}^{s_{i_j}^n+1} 1_{X_{s_{i_j}^n} > z} dM_s \right) dz}{\Gamma_2(s_{i_j}^n) - \Gamma_1(s_{i_j}^n)} \right)$$

$$E_2 = 2 \times \left(\sum_{j=1}^{N_n} \frac{\int_{\Gamma_1(s_{i_j}^n)}^{\Gamma_2(s_{i_j}^n)} \left((X_{s_{i_j}^n} - z) + (X_{s_{i_j}^n} - z)^+ \right) dz}{\Gamma_2(s_{i_j}^n) - \Gamma_1(s_{i_j}^n)} \right)$$

By Fubini’s theorem for stochastic integrals. (see chapter 4 in [5] for instance):

$$E_1 = -2 \times \left(\sum_{j=1}^{N_n} \frac{\int_{\Gamma_1(s_{i_j}^n)}^{\Gamma_2(s_{i_j}^n)} \left(\int_{s_{i_j}^n}^{s_{i_j}^n+1} 1_{X_{s_{i_j}^n} > z} dM_s \right) dz}{\Gamma_2(s_{i_j}^n) - \Gamma_1(s_{i_j}^n)} \right) = -2 \times \int_0^t H_s^n dM_s$$

$$(H_s^n)_{0 \leq s \leq t}$$ is the process defined by:

$$H_s^n = \sum_{j=1}^{N_n} 1_{s \in [s_{i_j}^n, s_{i_j}^n+1]} \times \frac{\int_{\Gamma_1(s_{i_j}^n)}^{\Gamma_2(s_{i_j}^n)} 1_{X_{s_{i_j}^n} > z} dz}{\Gamma_2(s_{i_j}^n) - \Gamma_1(s_{i_j}^n)}$$

It’s easy to see that H^n is adapted to the filtration $(\mathcal{G}_n)_{0 \leq n \leq t}$ and that $|H^n| \leq 1$. We deduce that the process $(\int_0^t H_s^n dM_s)_{0 \leq n \leq t}$ is a local martingale starting from 0 and so by Burkholder-Davis-inequality there is a constant C_k such that:

$$\mathbb{E} \left(\sup_{0 \leq u \leq t} \left(\int_0^u H_s^n dM_s \right)^{2k} \right) \leq C_k \times \mathbb{E} \left(\left(\int_0^t H_s^n d\langle M, M \rangle_s \right)^k \right)$$

$$\leq C_k \times \mathbb{E} \left(\langle M, M \rangle_t^k \right)$$

For the term E_2, we write via integration by substitution $(z = \overline{z} \times \Gamma_2(s_{i_j}^n) + (1 - \overline{z}) \times \Gamma_1(s_{i_j}^n))$

$$\int_{\Gamma_1(s_{i_j}^n)}^{\Gamma_2(s_{i_j}^n)} \left((X_{s_{i_j}^n} - z) + (X_{s_{i_j}^n} - z)^+ \right) dz \frac{\Gamma_2(s_{i_j}^n) - \Gamma_1(s_{i_j}^n)}{\Gamma_2(s_{i_j}^n) - \Gamma_1(s_{i_j}^n)}$$

$$= \int_0^1 \left((X_{s_{i_j}^n} - \overline{z} \Gamma_2(s_{i_j}^n) - (1 - \overline{z}) \Gamma_1(s_{i_j}^n))^+ \right) d\overline{z}$$

$$- \int_0^t \left((X_{s_{i_j}^n} - \overline{z} \Gamma_2(s_{i_j}^n) - (1 - \overline{z}) \Gamma_1(s_{i_j}^n))^+ \right) d\overline{z}$$
So:
\[\sum_{j=1}^{N_n} \int_{\Gamma_1(s^n_{i,j})}^{\Gamma_2(s^n_{i,j})} \left((X_{s^n_{i,j+1}} - z) - (X_{s^n_{i,j}} - z) \right) \, dz \]
\[= \sum_{j=1}^{N_n} \left[\int_0^1 \left((X_{s^n_{ij+1}} - z\Gamma_2(s^n_{ij}) - (1 - z)\Gamma_1(s^n_{ij})) \right) \, d\bar{z} \right] \]
\[- \sum_{j=1}^{N_n} \left[\int_0^1 \left((X_{s^n_{ij}} - z\Gamma_2(s^n_{ij}) - (1 - z)\Gamma_1(s^n_{ij})) \right) \, d\bar{z} \right] \]
\[= \sum_{j=2}^{N_n+1} \left[\int_0^1 \left((X_{s^n_{ij-1}} - z\Gamma_2(s^n_{ij-1}) - (1 - z)\Gamma_1(s^n_{ij-1})) \right) \, d\bar{z} \right] \]
\[- \sum_{j=1}^{N_n} \left[\int_0^1 \left((X_{s^n_{ij}} - z\Gamma_2(s^n_{ij}) - (1 - z)\Gamma_1(s^n_{ij})) \right) \, d\bar{z} \right] \]
\[= \int_0^1 \left((X_{s^n_{i,N+1}} - \hat{\Gamma}(\bar{z}, s^n_{i,N})) \right) \, d\bar{z} - \int_0^1 \left((X_{s^n_{i1}} - \hat{\Gamma}(\bar{z}, s^n_{i1})) \right) \, d\bar{z} \]
\[+ \sum_{j=2}^{N_n} \left[\int_0^1 \left((X_{s^n_{ij}} - \hat{\Gamma}(\bar{z}, s^n_{ij-1})) - (X_{s^n_{ij}} - \hat{\Gamma}(\bar{z}, s^n_{ij})) \right) \, d\bar{z} \right] \]

where \(\hat{\Gamma} \) is given by:
\[\hat{\Gamma}(\bar{z}, s) = z\Gamma_2(s) + (1 - z)\Gamma_1(s) \]

we have:
\[\left| \int_0^1 \left((X_{s^n_{i,N+1}} - \hat{\Gamma}(\bar{z}, s^n_{i,N})) \right) \, d\bar{z} - \int_0^1 \left((X_{s^n_{i1}} - \hat{\Gamma}(\bar{z}, s^n_{i1})) \right) \, d\bar{z} \right| \]
\[\leq \int_0^1 \left| \left(X_{s^n_{i,N+1}} - \hat{\Gamma}(\bar{z}, s^n_{i,N}) \right) - \left(X_{s^n_{i1}} - \hat{\Gamma}(\bar{z}, s^n_{i1}) \right) \right| \, d\bar{z} \]
\[\leq \int_0^1 \left| X_{s^n_{i,N+1}} - X_{s^n_{i1}} \right| + \left| \hat{\Gamma}(\bar{z}, s^n_{i,N}) - \hat{\Gamma}(\bar{z}, s^n_{i1}) \right| \, d\bar{z} \]
\[\leq \sup_{u,v \in [0,t]} \left| X_u - X_v \right| + 2c_1 \]

\(c_1 = \sup_{z \in K, u \in [0,t]} |\Gamma(z, u)| \) is a constant that depends only on \(\Gamma, t \) and \(K \). We establish now two necessary inequalities: Let \(A, B, C, D \in \mathbb{R} \), we have:
\[|\min(A, B) - \min(C, D)| = \frac{1}{2} \times |A - B + |A - B| - (C - D + |C - D|)| \]
\[\leq \frac{1}{2} \times |A - (B - D) + ||A - B| - |C - D||| \]
\[\leq \frac{1}{2} \times ||A - C| + |B - D| + |A - C - (B - D)|| \]
\[\leq |A - C| + |B - D| \]
similarly:
\[
|\max(A, B) - \max(C, D)| = | - \min(-A, -B) + \min(-C, -D)| \\
\leq |A - C| + |B - D|
\]

For \(s, s' \in [0, t] \), applying inequality 46 we get:
\[
|\Gamma_1(s) - \Gamma_1(s')| \leq |\Gamma(z_1, s) - \Gamma(z_1, s')| + |\Gamma(z_2, s) - \Gamma(z_2, s')| \\
\leq 2 \times c_2 \times |s - s'|
\]

where \(c_2 = \sup_{z \in \kappa, u \in [0, t]} |\frac{\partial}{\partial t} (z, u)| \), in the same way by applying inequality 47:
\[
|\Gamma_2(s) - \Gamma_2(s')| \leq 2 \times c_2 \times |s - s'|
\]

thus \(\forall \bar{z} \in [0, 1] \):
\[
|\hat{\Gamma}(\bar{z}, s) - \hat{\Gamma}(\bar{z}, s')| \leq 2 \times c_2 \times |s - s'|
\]

Now by the last inequality we obtain:
\[
\sum_{j=2}^{N_n} \left[\int_0^1 \left((X_{s_{t_j}} - \hat{\Gamma}(\bar{z}, s_{n_{t_j-1}})^n) - (X_{s_{t_j}} - \hat{\Gamma}(\bar{z}, s_{n_{t_j}}))^n \right) d\bar{z} \right] \\
\leq \sum_{j=2}^{N_n} \left[\int_0^1 \left((X_{s_{t_j}} - \hat{\Gamma}(\bar{z}, s_{n_{t_j-1}})^n) - (X_{s_{t_j}} - \hat{\Gamma}(\bar{z}, s_{n_{t_j}}))^n \right) d\bar{z} \right] \\
\leq 2 \times c_2 \times \sum_{j=2}^{N_n} |s_{n_{t_j-1}} - s_{n_{t_j}}| \\
\leq 2 \times c_2 \times t
\]

By the estimate 37, the identity 39 and the estimates 43, 45, 51 we obtain:
\[
\left(\sum_{j=1}^{N_n} \left[\int_{\Gamma_1(s_{t_j})}^{\Gamma_2(s_{t_j})} \frac{\left(L_{s_{t_j+1}}^n(X) - L_{s_{t_j}}^n(X)\right) dz}{|\Gamma_2(s_{t_j}) - \Gamma_1(s_{t_j})|} \right]^k \right)^k \\
\leq 2^k \times \left(c_2 t + c_1 + \sup_{u,v \in [0, t]} |X_u - X_v| + \sup_{0 \leq u \leq t} \left| \int_0^u H^n dM_s \right| + \int_0^t |dV| \right)^k
\]

and so by the inequality 44 there is a constant \(D_k \) that depends only on \(\Gamma, \kappa, t \) such that:
\[
\mathbb{E} \left(\sum_{j=1}^{N_n} \left[\int_{\Gamma_1(s_{t_j})}^{\Gamma_2(s_{t_j})} \frac{\left(L_{s_{t_j+1}}^n(X) - L_{s_{t_j}}^n(X)\right) dz}{|\Gamma_2(s_{t_j}) - \Gamma_1(s_{t_j})|} \right]^k \right)^k \\
\leq D_k \times \mathbb{E} \left[t^k + 1 + \sup_{u,v \in [0, t]} |X_u - X_v|^k + \left(\int_0^t |dV| \right)^k + \langle M, M \rangle_t^k \right]
\]

2.3. **End of proof of theorem 1.1** For \(j \in [1, N_n] \) we have:

\[
\Gamma_2\left(s^n_{i_j} - s^n_{i_j}\right) - \Gamma_1\left(s^n_{i_j}\right) = \left|\Gamma(z_2, s^n_{i_j}) - \Gamma(z_1, s^n_{i_j})\right| \leq |z_2 - z_1| \times \sup_{0 \leq s \leq t, z \in \mathcal{K}} |\frac{\partial \Gamma}{\partial z}(z, s)|
\]

owing to the estimates \([1,1,20, 24, 25, 54, 55, 56]\) we deduce the existence of a constant \(G_k\) that depends only on \(\Gamma, \mathcal{K}, t\) such that:

\[
\mathbb{E}\left[\sup_{0 \leq u \leq t} |\hat{M}^{z_1}_u - \hat{M}^{z_2}_u|^{2k}\right] \\
\leq G_k \times |z_2 - z_1|^k \times \mathbb{E}\left[t^k + 1 + \sup_{u,v \in [0,t]} |X_u - X_v|^k + \left(\int_0^t |dV|\right)^k + \langle M, M \rangle^k_t\right]
\]

thus if:

\[
\mathbb{E}\left[\sup_{u,v \in [0,t]} |X_u - X_v|^k + \left(\int_0^t |dV|\right)^k + \langle M, M \rangle^k_t\right] < +\infty
\]

the inequality \([13]\) is true \(\forall z_1, z_2 \in \overset{\circ}{\mathcal{K}}\), in fact without loss of generality we can suppose that \([56]\) holds by considering the sequence of stopping times \((T_n)_n\) defined by:

\[
T_n = \inf \left(t \geq 0 \mid \sup_{u,v \in [0,t]} |X_u - X_v|^k + \left(\int_0^t |dV|\right)^k + \langle M, M \rangle^k_t \geq n \right)
\]

for the sake of completeness let us be more precise: we set

\[
\hat{M}^{z,n}_s = \int_0^{\min(s,T_n)} 1_{X_u \geq \Gamma(z,u)}dM_u
\]

by the previous subsection \(\forall n\) we can find a modification \((\hat{M}^{z,n}_s)_{0 \leq s \leq t, z \in \mathcal{K}}, \hat{\Gamma}^{z,n}_s \hat{N}^{z,n}_s\) continuous in \(z\) and \(t\). Note that since the stochastic integral is continuous, \(\forall z \in \mathcal{K}\) we have almost surely \(\forall s \leq T_n\): \(\hat{M}^{z,n+1}_s = \hat{M}^{z,n}_s\) hence almost surely \(\forall n \geq 0, \hat{N}^{z,n+1}_s|_{[0,T_n]} = \hat{N}^{z,n}_s\), let us define:

\[
\hat{N}^{z}_s = \sum_{n=0}^{+\infty} 1_{[T_n,T_{n+1}]}(s)\hat{N}^{z,n+1}_s
\]

Since almost surely \(\forall n, \forall z \hat{N}^{z,n+1}_{T_{n+1}} = \hat{N}^{z,n+2}_{T_{n+1}}\), it is clear that almost surely the map \((s,z) \rightarrow \hat{N}^{z}_s\) is continuous in \(s\) and \(z\). Finally for \(s \in [0, t]\), \(z \in \overset{\circ}{\mathcal{K}}\) we have almost surely \(1_{[T_n,T_{n+1}]}(s)\hat{N}^{z,n+1}_s = 1_{[T_n,T_{n+1}]}(s)\hat{M}^{z,n+1}_s\) thus:

\[
\hat{N}^{z}_s = \sum_{n=0}^{+\infty} 1_{[T_n,T_{n+1}]}(s)\hat{N}^{z,n+1}_s = \sum_{n=0}^{+\infty} 1_{[T_n,T_{n+1}]}(s)\hat{M}^{z,n+1}_s = \hat{M}^{z}_s
\]

in other words \((\hat{N}^{z}_s)_{0 \leq s \leq t, z \in \overset{\circ}{\mathcal{K}}}\) is a bicontinuous version of \((\hat{M}^{z}_s)_{0 \leq s \leq t, z \in \overset{\circ}{\mathcal{K}}}\).

It should be easy to extend the modification to the whole \(\mathbb{R}_+ \times \mathbb{R}\) but again for the sake of completeness we do it here: for all \(n \in \mathbb{N}, m \in \mathbb{N} > 0\) let \((\hat{N}^{z,n,m}_t)_{t \in [0,n], z \in [-m,m]}\)
be a bicontinuous version of z, t of $\left(\hat{M}_t^z\right)_{t \in [0, n]}$. For $z \in [-m, n[, t \in [0, n]$ we have almost surely $\hat{N}^{z,n,m}_t = \hat{N}^{z,n+1,m+1}_t = \hat{M}^z_t$, as both maps $(t, z) \to \hat{N}^{z,n,m}_t$, $(t, z) \to \hat{N}^{z,n+1,m+1}_t$ are continuous in t and z, we conclude that almost surely $\forall n, m, \hat{N}^{z,n,m+1}_t|_{[0, n[\times]m, m[} = \hat{N}^{z,n,m}_t$. Let us define:

$$\hat{N}_t^z = \sum_{n \geq 0, m \geq 0} \hat{N}^{z,n+1,m+1}_t \left[1_{n \leq t < n+1, m \leq |z| < m+1}\right]$$

since almost surely

$$\forall n, \forall m, \forall z, \forall t \hat{N}^{z,n,m+1}_t = \hat{N}^{z,n+2,m+1}_t = \hat{N}^{z,n+1,m+1}_t = \hat{M}^{z+1}_t$$

it is clear $(t, z) \to \hat{N}_t^z$ is bicontinuous in t and z. For fixed t, z, m, n we have almost surely

$$1_{n \leq t < n+1, m \leq |z| < m+1} \hat{N}^{z,n+1,m+1}_t = 1_{n \leq t < n+1, m \leq |z| < m+1} \hat{M}^z_t$$

and thus

$$\hat{N}_t^z = \sum_{n \geq 0, m \geq 0} 1_{n \leq t < n+1, m \leq |z| < m+1} \hat{N}^{z,n+1,m+1}_t$$

(62)

$$= \sum_{n \geq 0, m \geq 0} 1_{n \leq t < n+1, m \leq |z| < m+1} \hat{M}^z_t$$

thus we proved $\left(\hat{N}_t^z\right)_{t \geq 0, z \in \mathbb{R}}$ is bicontinuous version of $\left(\hat{M}_t^z\right)_{t \geq 0, z \in \mathbb{R}}$ now we write:

$$\Lambda^\Gamma_{\{z, t\}}(X) = 2 \times \left[(X_t - \Gamma(z, t))^+ - (X_0 - \Gamma(z, 0))^+ - \hat{M}^z_t - \hat{V}^z_t\right]$$

(63)

$$+ 2 \times \left[\int_0^t 1_{X_s > \Gamma(z, s)} \frac{\partial \Gamma}{\partial t}(z, s) \, ds\right]$$

here $\left(\hat{M}_t^z\right)_{t \geq 0, z \in \mathbb{R}}$ is bicontinuous and $\hat{V}_t^z = \int_0^t 1_{X_s > \Gamma(z, s)} dV_s$. Now we check point (a) of 1.1 Let $T > 0$, suppose that Ω_1^T is nonempty and let $z \in \Omega_1^T$, then for all $s \in [0, T]$ the function $z \to \Gamma(z, s)$ is strictly increasing, by the dominated convergence theorem almost surely and $\forall t \in [0, T]$:

$$\tilde{V}_t^{z^+} = \lim_{z' \to z^+, z' \in \Omega_1^T} \int_0^t 1_{X_s > \Gamma(z', s)} dV_s = \int_0^t 1_{X_s > \Gamma(z, s)} dV_s = \hat{V}_t^z$$

and:

$$\tilde{V}_t^{z^-} = \lim_{z' \to z^-, z' \in \Omega_1^T} \int_0^t 1_{X_s > \Gamma(z', s)} dV_s = \int_0^t 1_{X_s \geq \Gamma(z, s)} dV_s$$

(65)

similarly:

$$\lim_{z' \to z^+, z' \in \Omega_1^T} \int_0^t 1_{X_s > \Gamma(z', s)} \frac{\partial \Gamma}{\partial t}(z', s) \, ds = \int_0^t 1_{X_s > \Gamma(z, s)} \frac{\partial \Gamma}{\partial t}(z, s) \, ds$$

(66)

$$\lim_{z' \to z^-, z' \in \Omega_1^T} \int_0^t 1_{X_s \geq \Gamma(z', s)} \frac{\partial \Gamma}{\partial t}(z', s) \, ds = \int_0^t 1_{X_s \geq \Gamma(z, s)} \frac{\partial \Gamma}{\partial t}(z, s) \, ds$$

(67)
hence the family \(\left(\Lambda^\Gamma_{t}(\varepsilon_{z})(X) \right)_{0 \leq t \leq T, z \in \mathbb{R}^1} \) is continuous in \(t \) càdlàg in \(z \) and we have:

\[
\Lambda^\Gamma_{t}(\varepsilon_{z})(X) - \Lambda^\Gamma_{t}(\varepsilon_{z}^{-})(X) = 2 \times \left(\widetilde{V}_{t}^{z-} - \widetilde{V}_{t}^{z+} - \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} \frac{\partial \Gamma}{\partial t}(z, s) \, ds \right)
\]

\[
= 2 \times \left(\int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} dV_{s} - \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} \frac{\partial \Gamma}{\partial t}(z, s) \, ds \right)
\]

\[
= 2 \times \left(\int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} dX_{s} - \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} \frac{\partial \Gamma}{\partial t}(z, s) \, ds \right)
\]

the last equality is justified by \(\int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} dM_{s} = 0 \) because:

\[
\left\langle \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} dM_{s}, \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} dM_{s} \right\rangle = \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} d\langle M, M \rangle_{s}
\]

\[
= \int_{0}^{t} 1_{\Lambda_{s} = \Gamma(z,s)} d\langle X, X \rangle_{s} = 0
\]

in the same way we can check point (b).

3. PROOF OF COROLLARY 1.1

Let \(z \) such that \(\{z\} \times [s, t] \subset \Omega \), by remark \(\box{1.1} \) \(\Lambda^\Gamma_{t}(\varepsilon_{z})(X) - \Lambda^\Gamma_{t}(\varepsilon_{z}^{-})(X) \) can be defined independently of basis point. Note that there exists \(\eta > 0 \) such that \([z - \eta, z + \eta] \times [s, t] \subset \Omega \): in fact for all \(t' \in [s, t] \) there exists \(\eta_{t'} > 0 \) such that \(z - \eta_{t'} > 0 \) and \(\eta_{t'}(x) \in (\omega - \eta_{t'}, \omega + \eta_{t'}) \subset \Omega \), the family of open sets \((\omega - \eta_{t'}, \omega + \eta_{t'}) \) is a cover of \([s, t] \) and hence we can extract from it a finite cover \(\{\omega - \eta_{t'}, \omega + \eta_{t'}\}_{t \in \{1, 2\}} \), let \(\eta = \frac{\min_{t \in \{1, 2\}} \eta_{t'}}{2} \) it is easy to verify that \([z - \eta, z + \eta] \times [s, t] \subset \Omega \). We can then conclude that the limits \(\lim_{z \to z^+} \Lambda^\Gamma_{t}(\varepsilon_{z})(X) - \Lambda^\Gamma_{t}(\varepsilon_{z}^{-})(X) \), \(\lim_{z \to z^-} \Lambda^\Gamma_{t}(\varepsilon_{z})(X) - \Lambda^\Gamma_{t}(\varepsilon_{z}^{-})(X) \) can be defined \(a \ priori \). We set:

\[
C = \{[x, y]_u, v] \times [u, v] \subset \Omega, x, y \in \mathbb{Q}^2, u, v \in (\mathbb{Q}_+)^2 \}
\]

\[
= \{[x_n, y_n]_u, v_n] \}_{n \in \mathbb{N}}
\]

one knows that there exist \(s' < s, s' \in \mathbb{Q}, t' > t, t' \in \mathbb{Q} \) such that \(\{z\} \times [s', t'] \subset \Omega \) and so by the previous proof we can choose \(\eta_1, \eta_2 \) sufficiently small such that \(z - \eta_1, z + \eta_2 \in \mathbb{Q} \) and:

\[
\{z\} \times [s, t] \subset [z - \eta_1 + \eta_1, z + \eta_2 - \eta_2] \subset [s', t'] \subset \Omega
\]

therefore one can ensure that:

\[
((z, s, t)) \{z\} \times [s, t] \subset \Omega = \bigcup_{n \in \mathbb{N}} ((z, s, t)) \{z\} \times [s, t] \subset [x_n, y_n]_u, v_n]
\]

By the proof of theorem \(\box{1.1} \) it suffices to prove that there is a version of \(\left(\hat{M}_t^{z,n} - \hat{M}_s^{z,n} \right) \) continuous in \(z, s, t \). We know that for all \(n \) there exists a version of \(\left(\hat{M}_t^{z,n} - \hat{M}_s^{z,n} \right) \) continuous in \(z, t, s \) (in the sense of corollary \(\box{1.1} \), for \(N \in \mathbb{N} \) and since almost surely \(\forall n \in [0, N] \) the map \(t, s, z \rightarrow \hat{M}_t^{z,n} - \hat{M}_s^{z,n} \) is continuous in \((t, s, z) \), we conclude that almost surely the \(\hat{M}_t^{z,n} - \hat{M}_s^{z,n} \)
are identical on each possible intersection (there are a finite number of them) of \([x_n, y_n] \times [u_n, v_n], n \in [0, N] \) in other words by setting \(C_N = \bigcup_{n=0}^N [x_n, y_n] \times [u_n, v_n] \) we can find a continuous version of \((M_t^{z,N} - M_s^{z,N})_{\{z\} \times [s,t] \subset C_N} \).

We leave to the reader the task of verifying that \(\sum_{N=0}^{+\infty} (M_t^{z,N} - M_s^{z,N}) \times 1_{\{z\} \times [s,t] \in \mathcal{O}_{N+1}} \mathcal{O}_N \) is the desired modification.

References

[1] Anass Ben Taleb. Change of variable formula for local time of continuous semimartingale. preprint, 2018.
[2] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. New York, first edition, 1988.
[3] Paul-André Meyer. Un cours sur les intégrandes stochastiques (exposés 1 à 6). Séminaire de probabilités de Strasbourg, 10:245–400, 1976.
[4] Goran Peskir. A change-of-variable formula with local time on curves. J Theor Probab, 2005.
[5] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.
[6] H. F. Trotter. A property of brownian motion paths. Illinois J. Math., 2(3):425–433, 09 1958.
[7] Marc Yor. Sur la continuité des temps locaux associés à certaines semimartingales. Astérisque 52-53, pages 23–36, 1978.

CERMICS, ÉCOLE DES PONTS ET CHAUSSÉES 6-8 AVENUE BLAISE PASCAL, CHAMPS-SUR-MARNE, 77455 MARNE LA VALLÉE CEDEX 2, FRANCE

E-mail address: mohamed-anass.ben-taleb@enpc.fr