In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014

M. A. Pfaller, H. S. Sader, P. R. Rhomberg, R. K. Flamm
JMI Laboratories, North Liberty, Iowa, USA; University of Iowa, Iowa City, Iowa, USA

ABSTRACT

The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae. Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections.

KEYWORDS

MRSA, delafloxacin

The fluoroquinolone class of antibiotics is currently used as standard empirical therapy in health care-associated infections and community-acquired infections; specifically, antibiotics of this class are indicated for the treatment of urinary tract infections (UTI), respiratory tract infections (RTI), acute bacterial skin and skin structure infections (ABSSSI), and intra-abdominal infections (1–6). A recent point-prevalence study of antimicrobial use in U.S. acute care hospitals found levofloxacin to be the third most common antimicrobial agent prescribed to treat both community-acquired infections and health care-acquired infections (7). In the face of such broad utilization, the emergence of fluoroquinolone resistance has been observed in both Gram-positive cocci (GPC) and Gram-negative bacilli (GNB) (1, 6, 8).

Fluoroquinolones are the only class of antibiotics in clinical use that directly target two essential bacterial enzymes in DNA replication: DNA gyrase and topoisomerase IV (1, 9). Resistance to fluoroquinolones is primarily caused by target mutations (e.g., mutations in chromosomal genes that encode the subunits of DNA gyrase and topoisomerase IV), efflux pumps, and reduced target expression (9). These mechanisms may occur in various combinations in resistant strains of staphylococci, Pseudomonas aeruginosa, and Enterobacteriaceae (1, 6). Efforts to combat this resistance to the fluoroquinolone class have focused on improving activity against multidrug-resistant bacteria and providing a lower potential for the development of bacterial resistance (1, 4, 5, 8).

Delafloxacin is an anionic investigational fluoroquinolone with documented efficacy in phase 2 trials for the treatment of RTI and ABSSSI and has recently completed phase 3 trials for the treatment of ABSSSI (1, 10). Unlike other quinolones, which usually have a binding affinity for either DNA gyrase or topoisomerase IV, delafloxacin is equally potent against both enzymes (1, 11–13). This dual targeting is believed to help reduce the selection of resistant mutants in vitro and in vivo (11, 12, 14). Unlike other fluoroquinolones, the mutant prevention concentration for delafloxacin is within 1- to 2-log₂ dilutions of the MIC value (13). Additionally, the anionic structure of delafloxa-
cin may enhance its potency in acidic environments, characteristic of the milieu at an infection site (1, 13, 15).

Delafloxacin is active in vitro against a broad range of Gram-positive and Gram-negative bacteria, including anaerobes and atypical respiratory tract pathogens (e.g., *Legionella, Chlamydia, and Mycoplasma*) (1, 13, 16–18). Delafloxacin exhibits very low MIC values against Gram-positive pathogens, including fluoroquinolone-resistant strains of *Staphylococcus aureus*, coagulase-negative staphylococci (CoNS), and *Streptococcus pneumoniae* (1, 12, 13, 19). It has been shown to be highly active against *Klebsiella pneumoniae* and *Providencia*, and anaerobes (10, 11, 13, 16, 20). Delafloxacin is also active against bacteria associated with RTIs, including *S. pneumoniae*, *Haemophilus influenzae*, and *Moraxella catarrhalis* (19).

The aim of the present study was to examine the susceptibility profiles of delafloxacin and comparator agents when tested against contemporary clinical isolates collected from European and U.S. medical centers during surveillance year 2014.

RESULTS AND DISCUSSION

Overall activity of delafloxacin. The MIC distributions for select organisms or organism groups from U.S. and European medical centers are shown in Table 1. The MIC₉₀ values for U.S. and European isolates of GPC were within ±1 log₂ dilution step for each organism group except methicillin-susceptible *S. aureus* (MSSA) (MIC₉₀, 0.03 and ≤0.004 µg/ml for U.S. and European isolates, respectively) and methicillin-susceptible coagulase-negative staphylococci (MS-CoNS; MIC₉₀, 0.12 and 0.008 µg/ml for U.S. and European isolates, respectively) (data not shown).

Delafloxacin showed very low MICs against Gram-positive pathogens (Table 1). Among the *S. aureus* isolates, 99.5% of MSSA isolates from both U.S. and European study sites were inhibited at the pharmacodynamic breakpoint of ≤0.5 µg/ml (1, 13, 21). European isolates of MRSA, MS-CoNS, and MR-CoNS were slightly more susceptible to delafloxacin than U.S. isolates at an MIC of ≤0.5 µg/ml (for MRSA isolates, 95.3 and 91.2% isolates from Europe and the United States, respectively; for MS-CoNS isolates, 100.0 and 97.6% isolates from Europe and the United States, respectively; and for MR-CoNS isolates, 95.5 and 84.5% isolates from Europe and the United States, respectively) (data not shown). Notably, among fluoroquinolone-resistant (FQr) strains of *S. aureus* and CoNS, 88.3% (484/548) were inhibited by ≤0.5 µg/ml of delafloxacin (data not shown).

The potency of delafloxacin against U.S. and European isolates of enterococci and streptococci was similar (Table 1). Delafloxacin was most active against isolates of *S. pneumoniae* and beta-hemolytic streptococci (MIC₉₀ and MIC₉₀, 0.008 and 0.015 µg/ml, respectively, for each group of organisms) and viridans group streptococci (MIC₉₀ and MIC₉₀, 0.015 and 0.03 µg/ml, respectively). All FQr strains of *S. pneumoniae* (S/S) were inhibited by ≤0.25 µg/ml of delafloxacin. The MIC₉₀ and MIC₉₀ against U.S. and European isolates of *E. faecalis* were 0.06 and 1 µg/ml, respectively, whereas isolates of *Enterococcus faecium* were not susceptible to delafloxacin (Table 1).

Similar to the activity of delafloxacin against GPC, the activity of delafloxacin was comparable against isolates of GNB from the United States and Europe, with the exception of *Enterobacter* spp. (MIC₉₀, 0.5 µg/ml for U.S. isolates and 2 µg/ml for European isolates), *Providencia* spp. (MIC₉₀, >4 µg/ml for U.S. isolates and 1 µg/ml for European isolates), other *Enterobacteriaceae* (MIC₉₀, 0.5 µg/ml for U.S. isolates and 0.12 µg/ml for European isolates), and *Acinetobacter baumannii*-A. *calcoaceticus* (MIC₉₀, 0.5 µg/ml for U.S. isolates and 4 µg/ml for European isolates). Delafloxacin was most active against *Klebsiella oxytoca* (MIC₉₀ and MIC₉₀, 0.06 and 0.12 µg/ml, respectively), *Enterobacter aerogenes* (MIC₉₀ and MIC₉₀, 0.12 and 0.25 µg/ml, respectively), *Citrobacter koseri* (MIC₉₀ and MIC₉₀, 0.015 and 0.06 µg/ml, respectively), and other *Enterobacteriaceae* (MIC₉₀ and MIC₉₀, 0.06 and 0.25 µg/ml, respectively) and was the least active against *Klebsiella pneumoniae*, *Providencia* spp., *P. aeruginosa*, and *Acinetobacter baumannii*-A.
TABLE 1
Cumulative frequency distribution of delafloxacin in MIC results for Europe and the United States

Organism or organism group	No. (%) of isolates for which MIC (µg/ml) was:	MIC₅₀ (µg/ml)	MIC₉₀ (µg/ml)	Total
Staphylococcus aureus				
US	1,100	666 (60.5)	68 (62.0)	
EU	250	193 (77.2)	12 (84.8)	
MSSA				
US	591	515 (87.1)	2 (58.0)	
EU	186	176 (94.6)	2 (58.0)	
MRSA				
US	509	151 (29.7)	2 (29.9)	
EU	64	17 (26.6)	2 (29.9)	
Coagulase-negative staphylococci				
US	100	51 (51.0)	2 (60.4)	
EU	100	43 (43.0)	8 (58.0)	
Enterococcus faecalis				
US	300	0 (0.0)	2 (0.7)	
EU	150	2 (1.3)	0 (0.7)	
Enterococcus faecium				
US	195	0 (0.0)	1 (0.5)	
EU	100	0 (0.0)	1 (0.5)	
Streptococcus pneumoniae				
US	300	34 (11.3)	9 (30.0)	
EU	150	16 (10.7)	40 (93.3)	
Viridans group streptococci				
US	196	34 (17.3)	30 (96.0)	
EU	98	19 (19.4)	30 (96.0)	
Streptococcus pyogenes				
US	283	67 (23.7)	46 (100.0)	
EU	150	33 (22.0)	94 (64.7)	
Streptococcus agalactiae				
US	150	18 (12.0)	70 (58.7)	
EU	75	5 (6.7)	30 (96.0)	
Streptococcus dysgalactiae				
US	82	19 (23.2)	11 (98.8)	
EU	50	18 (36.0)	1 (98.0)	
Enterobacteriaceae				
US	1,500	3 (0.2)	8 (62.0)	
EU	750	1 (0.1)	8 (62.0)	
Escherichia coli				
US	300	2 (0.7)	37 (50.0)	
EU	200	1 (0.5)	37 (50.0)	

(Continued on following page)
TABLE 1 (Continued)

Organism or organism group	No. (%) of isolates for which MIC (µg/ml) was:	0.004	0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	> 4
E. coli isolates of the ESBL phenotype													
US	52 0 (0.0) 1 (1.9) 2 (5.8) 2 (9.6) 2 (13.5) 1 (15.4) 1 (17.3) 1 (19.2) 4 (26.9) 17 (59.6) 14 (86.5) 7 (100.0)	2	>4										
EU	40 0 (0.0) 3 (7.5) 4 (17.5) 0 (17.5) 1 (20.0) 2 (25.0) 0 (25.0) 2 (30.0) 11 (57.5) 11 (85.0) 6 (100.0)	2	>4										
Klebsiella pneumoniae													
US	225 0 (0.0) 2 (0.9) 30 (14.2) 108 (46.2) 25 (73.3) 11 (78.2) 11 (83.1) 6 (85.8) 4 (87.6) 11 (92.4) 17 (100.0)	0.06	4										
EU	164 0 (0.0) 1 (0.6) 12 (7.9) 64 (47.0) 14 (55.5) 2 (56.7) 5 (59.8) 7 (64.0) 10 (70.1) 17 (80.5) 32 (100.0)	0.12	>4										
K. pneumoniae isolates of the ESBL phenotype													
US	35 0 (0.0) 1 (2.9) 1 (5.7) 0 (5.7) 2 (11.4) 4 (22.9) 2 (28.6) 9 (54.3) 16 (100.0)	4	>4										
EU	67 0 (0.0) 4 (6.0) 2 (9.0) 0 (9.0) 1 (10.4) 4 (16.4) 8 (28.4) 17 (53.7) 31 (100.0)	4	>4										
Klebsiella oxytoca													
US	75 0 (0.0) 3 (4.0) 44 (62.7) 23 (93.3) 3 (97.3) 2 (100.0)	0	0.06	0.12									
EU	36 0 (0.0) 4 (11.1) 18 (61.1) 11 (91.7) 1 (94.4) 1 (97.2) 1 (100.0)	0	0.06	0.12									
Pseudomonas aeruginosa													
US	100 0 (0.0) 1 (1.0) 1 (2.0) 7 (9.0) 26 (35.0) 22 (57.0) 8 (85.0) 10 (75.0) 7 (82.0) 6 (88.0) 12 (100.0)	0.25	>4										
EU	100 0 (0.0) 1 (1.0) 3 (4.0) 22 (26.0) 28 (54.0) 11 (65.0) 8 (73.0) 1 (74.0) 7 (81.0) 19 (100.0)	0.25	>4										
Acinetobacter baumannii- A. calcoaceticus													
US	100 0 (0.0) 1 (1.0) 10 (11.0) 21 (32.0) 11 (43.0) 4 (47.0) 7 (54.0) 5 (59.0) 8 (67.0) 8 (75.0) 25 (100.0)	0.5	>4										
EU	100 0 (0.0) 3 (3.0) 8 (11.0) 5 (16.0) 1 (17.0) 5 (22.0) 7 (29.0) 18 (47.0) 27 (74.0) 26 (100.0)	4	>4										

Abbreviations: EU, Europe; US, United States; MSSA, methicillin-susceptible S. aureus; MRSA, methicillin-resistant S. aureus; ESBL, extended-spectrum β-lactamase.
The activity of delafloxacin was considerably greater against strains of *E. coli* of the non-extended-spectrum β-lactamase [ESBL]-producing phenotype (non-ESBL phenotype) than strains of *E. coli* of the ESBL-producing phenotype (ESBL phenotype) (MIC$_{50}$, 0.03 µg/ml versus 2 µg/ml, respectively), non-ESBL-phenotype and ESBL-phenotype strains of *K. pneumoniae* (MIC$_{50}$, 0.06 µg/ml versus 4 µg/ml, respectively), and non-ESBL-phenotype and ESBL-phenotype strains of *P. mirabilis* (MIC$_{50}$, 0.06 µg/ml versus 2 µg/ml, respectively). Delafloxacin retained potent activity against ESBL-phenotype strains of *K. oxytoca* (MIC$_{50}$ and MIC$_{90}$, 0.06 and 0.12 µg/ml, respectively) and was more active against ceftazidime-susceptible than ceftazidime-nonsusceptible strains of *P. aeruginosa* (MIC$_{50}$, 0.25 µg/ml versus 4 µg/ml, respectively). More than 90% of FQR GNB showed decreased susceptibility (MIC, ≥2 µg/ml) to delafloxacin.

Susceptibilities of European and U.S. Gram-positive isolates to delafloxacin and comparator agents. The activities of delafloxacin and comparator agents tested against European (250 isolates) and U.S. (1,100 isolates) isolates of *S. aureus* are shown in Table 2. Delafloxacin was the most potent antimicrobial agent tested against isolates of MSSA (MIC$_{50}$ and MIC$_{90}$, ≤0.004 and 0.008 µg/ml, respectively) and on the basis of the MIC$_{50}$ was 8- to at least 64-fold more potent than ceftaroline and at least 64-fold more potent than levofloxacin (Table 2). Tigecycline (MIC$_{50}$ and MIC$_{90}$, 0.06 and 0.06 µg/ml, respectively), delafloxacin (MIC$_{50}$ and MIC$_{90}$, 0.06 and 0.5 µg/ml, respectively), and daptomycin (MIC$_{50}$ and MIC$_{90}$, 0.25 and 0.5 µg/ml, respectively) were the most potent agents tested against MRSA (Table 2). Delafloxacin was at least 64-fold more potent than levofloxacin (according to the MIC$_{50}$s) and at least 8-fold more potent than ceftaroline against MRSA. MRSA strains exhibited high levels of resistance against levofloxacin (68.9% and 68.9% according to Clinical and Laboratory Standards Institute [CLSI] and European Committee on Antimicrobial Susceptibility Testing [EUCAST] criteria, respectively) and erythromycin (79.9 and 83.8% according to CLSI and EUCAST criteria, respectively) (Table 2). The greatest coverage of all *S. aureus* isolates (MSSA and MRSA isolates from both Europe and the United States) was provided by linezolid, tigecycline, and vancomycin (to which 100.0% of isolates were susceptible). Isolates from both Europe and United States also exhibited high levels of susceptibility to daptomycin (99.8% of isolates were susceptible), ceftaroline (98.0%), and trimethoprim-sulfamethoxazole (98.5%) (Table 2).

The delafloxacin MIC$_{50}$ and MIC$_{90}$ values for all coagulase-negative staphylococci (CoNS) were 0.008 and 0.5 µg/ml, respectively (Table 1). Tigecycline (MIC$_{50}$ and MIC$_{90}$, 0.03 and 0.06 µg/ml, respectively) and delafloxacin (MIC$_{50}$ and MIC$_{90}$, ≤0.004 and 0.06 µg/ml, respectively) were the most potent agents tested against MS-CoNS (Table 2). When delafloxacin was tested against isolates of MS-CoNS, it was 4-fold more potent than ceftaroline, 8-fold more potent than linezolid, 32-fold more potent than vancomycin, and >64-fold more potent than levofloxacin (according to the MIC$_{50}$s). European isolates of MS-CoNS were more susceptible than U.S. isolates to levofloxacin (97.0% versus 81.0%, respectively), clindamycin (90.9% versus 78.6%, respectively), erythromycin (72.7% versus 66.7%, respectively), tetracycline (93.9% versus 85.7%, respectively), and trimethoprim-sulfamethoxazole (100.0% versus 85.7%, respectively) (data not shown).

The antibiogram results for MR-CoNS isolates from both Europe (67 isolates) and the United States (58 isolates) showed higher MIC values for all tested drugs except daptomycin (to which 99.2% of isolates were susceptible), linezolid (to which 100.0% of isolates were susceptible), and vancomycin (to which 100.0% of isolates were susceptible). Tigecycline (MIC$_{50}$ and MIC$_{90}$, 0.06 and 0.12 µg/ml, respectively), delafloxacin (MIC$_{50}$ and MIC$_{90}$, 0.06 and 0.5 µg/ml, respectively), linezolid (MIC$_{50}$ and MIC$_{90}$, 0.5 and 0.5 µg/ml, respectively), and ceftaroline (MIC$_{50}$ and MIC$_{90}$, 0.5 and 1 µg/ml, respectively) were the most potent antimicrobials tested against both European and U.S. strains of MR-CoNS. Levofloxacin, clindamycin, erythromycin, and trimethoprim-sulfamethoxazole all showed limited activity against MR-CoNS isolates from both regions.
TABLE 2 Activities of delafloxacin and comparator antimicrobial agents when tested against U.S. and European Gram-positive isolates

Organism group (no. of isolates tested)/antimicrobial agent	% of isolates susceptible by the following criteria:	CLSI	EUCAST	MIC (μg/ml)	50%	90%	Range
Staphylococcus aureus (1,350)							
Delafloxacin							
Levofloxacin	64.4	64.4	0.004	0.25		0.004 to 4	
Cefaroline	98.0	98.0	0.25	1		0.12 to 2	
Ciprofloxacin	0.0	0.0		0.25	2		0.12 to 2
Clindamycin	87.0	86.8		0.25	2		0.12 to 2
Daptomycin	99.8	99.8		0.25	0.5		0.06 to 2
Erythromycin	45.9	46.3	4				
Linezolid	100.0	100.0		1	1		0.25 to 2
Oxaclillin	57.6	57.6	0.5				
Tetracycline	94.3	92.5		0.5			
Tigecycline	100.0	100.0	0.06		0.06		0.015 to 0.5
Trimethoprim-sulfamethoxazole	98.5	98.5	0.5			0.05 to 4	
Vancomycin	100.0	100.0	1	1		0.25 to 2	
MSSA (777)							
Delafloxacin							
Levofloxacin	89.8	89.8	0.004	0.25		0.004 to 4	
Cefaroline	100.0	100.0	0.25				
Ciprofloxacin	0.0	0.0		>128	>128		128 to 128
Clindamycin	94.0	93.7		0.25	0.25		0.12 to 2
Daptomycin	100.0	100.0		0.25	0.5		0.06 to 1
Erythromycin	69.6	69.8	0.25				
Linezolid	100.0	100.0		1	1		0.25 to 2
Oxaclillin	100.0	100.0	0.5				
Tetracycline	95.9	94.2		0.5			
Tigecycline	100.0	100.0	0.06		0.06		0.015 to 0.5
Trimethoprim-sulfamethoxazole	99.0	99.0		0.5			
Vancomycin	100.0	100.0	1	1		0.25 to 2	
MRSA (573)							
Delafloxacin							
Levofloxacin	30.0	30.0	4				
Cefaroline	95.3	95.3		1	1		0.25 to 2
Ciprofloxacin	0.0	0.0		>128	>128		>128 to 128
Clindamycin	77.5	77.5		0.25	0.25		0.12 to 2
Daptomycin	99.5	99.5		0.25	0.5		0.12 to 2
Erythromycin	13.8	14.3		>16	>16		>12 to 16
Linezolid	100.0	100.0		1	1		0.25 to 2
Oxaclillin	0.0	0.0		>2	>2		>2 to 2
Tetracycline	92.1	90.2		0.5			
Tigecycline	100.0	100.0	0.06		0.06		0.015 to 0.5
Trimethoprim-sulfamethoxazole	97.9	97.9		0.5			
Vancomycin	100.0	100.0	1	1		0.5 to 2	
MS-CoNS (75)							
Delafloxacin							
Levofloxacin	88.0	88.0	0.004	0.25		0.004 to 1	
Cefaroline	84.0	84.0	0.25				
Clindamycin	100.0	100.0		0.25	0.5		0.06 to 1
Daptomycin	69.3	69.3		0.12	0.16		0.12 to 16
Erythromycin	100.0	100.0		0.5			
Linezolid	100.0	100.0	0.03		0.06		0.015 to 0.12
Oxaclillin	92.0	92.0		0.5			
Tetracycline	100.0	100.0		1			
Tigecycline	100.0	100.0		2			
Trimethoprim-sulfamethoxazole	100.0	100.0		1			
Vancomycin	100.0	100.0	1	1		0.25 to 4	
MR-CoNS (125)							
Delafloxacin							
Levofloxacin	38.4	38.4	4				
Cefaroline	70.4	67.2		0.25	2		0.25 to 2

(Continued on following page)
TABLE 2 (Continued)

Organism group (no. of isolates tested)/ antimicrobial agent	% of isolates susceptible by the following criteria:	MIC (µg/ml)			
	CLSI	EUCAST	50%	90%	Range
Daptomycin	99.2	99.2	0.5	0.5	≤0.06 to 2
Erythromycin	25.6	25.6	>16	>16	≤0.12 to >16
Linezolid	100.0	100.0	0.5	0.5	≤0.12 to 1
Oxacillin	0.0	0.0	≥2	≥2	0.5 to >2
Tetracycline	80.8	77.6	1	>8	≤0.5 to >8
Tigecycline	100.0	100.0	0.06	0.12	≤0.015 to 0.25
Vancomycin	100.0	100.0	1	2	0.5 to >2

Enterococcus faecalis (450)

Delafloxacin	0.06	1	≤0.004 to 2		
Levofloxacin	70.7	70.7	1	>4	0.25 to >4
Ampicillin	100.0	99.6	1	2	≤0.25 to 8
Ceftriaxone	83.6	94.2	0.015	0.12	≤0.015 to 1
Clindamycin	84.7	84.9	0.06	1	≤0.06 to 8
Erythromycin	59.9	59.9	0.12	>2	≤0.12 to >2
Daptomycin	99.0	99.0	1	1	0.25 to 4
Enterococcus faecium (295)					

Delafloxacin	>4	>4	0.008 to >4		
Levofloxacin	7.8	10.8	>4	>4	0.5 to >4
Ampicillin	10.8	10.8	>8	>8	≤0.25 to >8
Enterococcus faecalis (450)					

Delafloxacin	0.004	0.015	≤0.004 to 0.25		
Levofloxacin	98.9	98.9	1	1	0.5 to >4
Amoxicillin-clavulanic acid	91.1	1	2	1 to >8	
Ceftriaxone	99.6	99.3	≤0.015	0.12	≤0.015 to 1
Ceftriaxone	83.6	83.6	0.06	1	≤0.06 to 8
Clindamycin	84.7	84.9	0.25	>2	≤0.25 to >2
Erythromycin	59.9	59.9	0.12	≥16	≤0.12 to >16
Meropenem	84.4	84.4	0.015	0.5	≤0.015 to 2
Moxifloxacin	98.9	98.7	0.12	0.25	≤0.12 to 2
Penicillin	63.8	63.8	0.06	2	≤0.06 to 8
Tetracycline	78.4	78.4	0.5	>8	≤0.5 to >8
Trimepram-sulfamethoxazole	68.9	75.3	0.5	>4	≤0.5 to >4

Viridans group streptococci (294)

Delafloxacin	0.015	0.03	≤0.004 to 2		
Levofloxacin	94.1	79.7	1	2	≤0.12 to >4
Amoxicillin-clavulanic acid	91.1	1	2	1 to >8	
Ceftriaxone	90.9	86.4	0.25	1	≤0.06 to 8
Clindamycin	89.5	89.9	0.25	>2	≤0.25 to >2
Erythromycin	53.0	86.4	0.12	8	≤0.12 to >16
Meropenem	93.7	99.0	0.06	0.25	≤0.015 to 4
Moxifloxacin	73.1	73.1	0.12	0.25	≤0.12 to >4
Penicillin	64.3	64.3	0.06	1	≤0.06 to 8
Tetracycline	64.3	64.3	0.5	>8	≤0.5 to >8
Trimepram-sulfamethoxazole	64.3	64.3	0.5	>4	≤0.5 to >4

(Continued on following page)
All isolates of *E. faecalis* from Europe and the United States were susceptible to ampicillin (Table 2). A small number of *E. faecalis* strains were resistant to vancomycin (2.2%). Delafloxacin (MIC₅₀ and MIC₉₀, 0.06 and 1 μg/ml, respectively) and linezolid (MIC₅₀ and MIC₉₀, 1 and 1 μg/ml, respectively) were the most potent antimicrobials tested (Table 2).

Delafloxacin (MIC₅₀ and MIC₉₀, >4 and >4 μg/ml, respectively; 10.5% of isolates were susceptible to delafloxacin at ≤1 μg/ml), levofloxacin (MIC₅₀ and MIC₉₀, >4 and >4 μg/ml, respectively; 7.8% of isolates were susceptible according to CLSI breakpoints, respectively), erythromycin (MIC₅₀ and MIC₉₀, >16 and >16 μg/ml, respectively; 3.7% of isolates were susceptible according to the CLSI criterion), and ampicillin (MIC₅₀ and MIC₉₀, >8 and >8 μg/ml, respectively; 10.8% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) displayed

TABLE 2 (Continued)

Organism group (no. of isolates tested)/ antimicrobial agent	% of isolates susceptible by the following criteria:	MIC (μg/ml)			
	CLSI	EUCAST	50%	90%	Range
Streptococcus pyogenes (433)					
Delafloxacin	99.8	96.5	0.008	0.015	≤0.004 to 0.03
Levofloxacin	100.0	100.0	0.5	1	0.25 to >4
Amoxicillin-clavulanic acid	100.0	100.0	≤1	≤1	≤1 to ≤1
Ceftaroline	100.0	100.0	≤0.015	≤0.015	≤0.015 to ≤0.015
Ceftaxone	100.0	100.0	≤0.06	≤0.06	≤0.06 to 0.05
Clindamycin	91.5	91.9	≤0.25	≤0.25	≤0.25 to >2
Erythromycin	85.2	85.2	≤0.12	>16	≤0.12 to >16
Meropenem	100.0	100.0	≤0.015	≤0.015	≤0.015 to 0.12
Moxifloxacin	100.0	100.0	≤0.12	0.25	≤0.12 to 0.5
Penicillin	100.0	100.0	≤0.06	≤0.06	≤0.06 to 0.12
Tetracycline	80.2	78.6	≤0.5	>8	≤0.5 to >8
Vancomycin	100.0	100.0	0.25	0.5	≤0.12 to 0.5

Streptococcus agalactiae (225)					
Delafloxacin	97.8	96.9	0.008	0.015	≤0.004 to 0.05
Levofloxacin	100.0	100.0	0.5	1	0.25 to >4
Amoxicillin-clavulanic acid	100.0	100.0	≤1	≤1	≤1 to ≤1
Ceftaroline	100.0	100.0	≤0.015	≤0.03	≤0.015 to ≤0.03
Ceftaxone	100.0	100.0	≤0.06	0.12	≤0.06 to 0.25
Clindamycin	70.7	72.4	≤0.25	>2	≤0.25 to >2
Erythromycin	52.4	52.4	≤0.12	>16	≤0.12 to >16
Meropenem	100.0	100.0	0.03	0.06	≤0.015 to 0.12
Moxifloxacin	97.8	100.0	≤0.12	0.25	≤0.12 to >4
Penicillin	100.0	100.0	≤0.06	≤0.06	≤0.06 to ≤0.06
Tetracycline	17.4	17.0	>8	>8	≤0.5 to >8
Vancomycin	100.0	100.0	0.5	0.5	0.25 to 1

Streptococcus dysgalactiae (132)					
Delafloxacin	99.2	97.0	0.008	0.015	≤0.004 to 0.03
Levofloxacin	100.0	100.0	0.5	1	0.25 to >4
Amoxicillin-clavulanic acid	100.0	100.0	≤1	≤1	≤1 to ≤1
Ceftaroline	100.0	100.0	≤0.015	≤0.015	≤0.015 to ≤0.015
Ceftaxone	100.0	100.0	≤0.06	≤0.06	≤0.06 to 0.05
Clindamycin	88.6	90.2	≤0.25	0.5	≤0.25 to >2
Erythromycin	68.9	68.9	≤0.12	>16	≤0.12 to >16
Meropenem	100.0	100.0	≤0.015	≤0.015	≤0.015 to 0.06
Moxifloxacin	100.0	100.0	≤0.12	0.25	≤0.12 to 0.25
Penicillin	100.0	100.0	≤0.06	≤0.06	≤0.06 to ≤0.06
Tetracycline	61.8	59.5	≤0.5	>8	≤0.5 to >8
Vancomycin	100.0	100.0	0.25	0.25	≤0.12 to 1

- Breakpoints from FDA package insert, revised December 2014.
- Uncomplicated UTI only.
- Using nonmeningitis breakpoints.
- Using meningitis breakpoints.
- Using oral breakpoints.
- Using parenteral, meningitis breakpoints.
- Using parenteral, nonmeningitis breakpoints.
limited activity against *E. faecium* strains regardless of geographic region or vancomycin susceptibility patterns (Table 2).

Delafloxacin was the most active agent tested against *S. pneumoniae* (MIC$_{50}$ and MIC$_{90}$, 0.008 and 0.015 μg/ml, respectively) (Table 2). All European isolates (100.0%) and 98.0% of U.S. isolates were inhibited by \leq0.03 μg/ml of delafloxacin; the highest delafloxacin MIC value for U.S. isolates was 0.25 μg/ml (Table 1 and 2). Delafloxacin was 8-fold more active than ceftaroline (MIC$_{50}$ and MIC$_{90}$, \leq0.015 and 0.12 μg/ml, respectively), 16-fold more active than moxifloxacin (MIC$_{50}$ and MIC$_{90}$, \leq0.12 and 0.25 μg/ml, respectively), and 64-fold more active than levofloxacin (MIC$_{50}$ and MIC$_{90}$, 1 and 2 μg/ml, respectively) (Table 2). For other common-use antimicrobials, the rate of penicillin resistance (MIC, \geq2 μg/ml, oral breakpoint) was 11.3% (0.7%; MIC, \geq8 μg/ml, parenteral, nonmeningitis breakpoint), the rate of erythromycin resistance was 39.0%, the rate of tetracycline resistance was 21.6%, and the rate of trimethoprim-sulfamethoxazole resistance was 18.9% (Table 2). The delafloxacin MIC for the three high-level penicillin-resistant (MIC, $>$4 μg/ml) strains was 0.008 μg/ml (data not shown).

The most active agents tested against the viridans group streptococci were delafloxacin (MIC$_{50}$ and MIC$_{90}$, 0.015 and 0.03 μg/ml; Tables 1 and 2), moxifloxacin (MIC$_{50}$ and MIC$_{90}$, \leq0.12 and 0.25 μg/ml, respectively), and ceftaroline (MIC$_{50}$ and MIC$_{90}$, 0.03 and 0.12 μg/ml, respectively) (Table 2). The rate of resistance to penicillin and ceftriaxone was higher among European isolates (11.2% and 12.2%, respectively) than U.S. isolates (2.6 and 3.1%, respectively). The rates of resistance to levofloxacin and erythromycin were comparable for European isolates (5.1% and 44.9%, respectively) and U.S. isolates (5.6% and 44.6%, respectively) (Table 2). Meropenem exhibited the highest coverage against viridans group streptococci and was more active against U.S. isolates (96.4 and 100.0% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) than European isolates (88.8 and 96.9% of isolates were susceptible according to CLSI and EUCAST criteria, respectively).

The activities of delafloxacin and comparator antimicrobial agents against a total of 790 isolates of beta-hemolytic streptococci (433 isolates of *Streptococcus pyogenes*, 225 of *Streptococcus agalactiae*, and 132 of *Streptococcus dysgalactiae*) were tested (Tables 1 and 2). Delafloxacin was highly potent against these organisms (Table 1). All delafloxacin MIC values for *S. pyogenes* and *S. dysgalactiae* were \leq0.03 μg/ml. The highest delafloxacin MIC value for *S. agalactiae* was 0.5 μg/ml, and 97.3% of *S. agalactiae* isolates were inhibited by delafloxacin at \leq0.03 μg/ml (Table 1). All beta-hemolytic streptococcal isolates were susceptible to ceftaroline, ceftriaxone, meropenem, penicillin, and vancomycin (Table 2). The rates of resistance to levofloxacin were 0.2% for *S. pyogenes*, 2.2% for *S. agalactiae*, and 0.8% for *S. dysgalactiae* (Table 2). The rate of resistance to erythromycin was higher among isolates of *S. agalactiae* (46.7%) and *S. dysgalactiae* (29.5%) than among isolates of *S. pyogenes* (14.1%). The rate of resistance to clindamycin among isolates of beta-hemolytic streptococci ranged from 8.1% to 27.6% (Table 2).

Susceptibilities of European and U.S. Gram-negative isolates to delafloxacin and comparator agents.

Delafloxacin was active against the majority of the *Enterobacteriaceae*, exhibiting MIC$_{50}$ and MIC$_{90}$ values of 0.06 and 4 μg/ml, respectively, and with 80.9% of isolates being inhibited by delafloxacin at \leq1 μg/ml (Table 1). The rates of susceptibility to fluoroquinolones, as measured by the use of ciprofloxacin and levofloxacin, for the *Enterobacteriaceae* were 81.6% and 83.8%, respectively (Table 3). More than 90% of FQ-resistant *Enterobacteriaceae* isolates showed decreased susceptibility (MIC, $>$1 μg/ml) to delafloxacin (data not shown). The rates of susceptibility to aztreonam, ceftriaxone, cefepime, and ceftazidime ranged from 80.3% to 90.8% (Table 3). Meropenem (MIC$_{50}$ and MIC$_{90}$, 0.03 and 0.06 μg/ml, respectively; 97.5 and 97.9% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) and tigecycline (MIC$_{50}$ and MIC$_{90}$, 0.25 and 1 μg/ml, respectively; 99.2 and 95.2% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) were the most active agents (Table 3).
TABLE 3 Activity of delafloxacin and comparator antimicrobial agents when tested against U.S. and European Gram-negative isolates

Organism group (no. of isolates tested)/ antimicrobial agent	% of isolates susceptible by the following criteria:	MIC (µg/ml)	50%	90%	Range
Enterobacteriaceae (2,250)					
Delafloxacin	83.8	0.06	4		≤0.004 to >4
Levofloxacin	81.9	≤0.12	>4	≤0.12 to >4	
Ampicillin-sulbactam	47.4	16	>32	0.5 to >32	
Aztreonam	86.3	≤0.12	>16	≤0.12 to >16	
Cefepime	90.8	≤0.5	2	≤0.5 to >16	
Ceftazidime	86.3	0.25	16	0.03 to >32	
Ceftriaxone	80.3	0.12	>8	≤0.06 to >8	
Ciprofloxacin	81.6	≤0.03	>4	≤0.03 to >4	
Gentamicin	90.7	≤1	4	0.03 to >8	
Meropenem	97.5	0.03	0.06	≤0.015 to >32	
Piperacillin-tazobactam	89.3	2	32	≤0.5 to >64	
Tigecycline	99.2b	0.25	1	0.03 to 4	
Escherichia coli (500)					
Delafloxacin	69.6	≤0.12	>4	≤0.12 to >4	
Levofloxacin	69.6	16	>32	0.5 to >32	
Ampicillin-sulbactam	49.6	≤0.12	16	≤0.12 to >16	
Aztreonam	86.4	≤0.5	8	≤0.5 to >16	
Cefepime	87.0	0.12	8	0.03 to >32	
Ceftazidime	89.2	≤0.06	>8	≤0.06 to >8	
Ceftriaxone	84.0	≤0.03	>4	≤0.03 to >4	
Ciprofloxacin	69.4	≤1	>8	≤1 to >8	
Gentamicin	86.4	≤0.15	0.03	≤0.015 to 4	
Meropenem	99.6	≤0.15	0.03	≤0.015 to >64	
Piperacillin-tazobactam	94.2	2	8	≤0.5 to >64	
Tigecycline	100.0b	0.06	0.12	0.03 to 1	
E. coli isolates of the ESBL phenotype (92)					
Delafloxacin	21.7	>4	>4	≤0.12 to >4	
Levofloxacin	21.7	32	>32	2 to >32	
Ampicillin-sulbactam	16.3	≤0.12	16	≤0.12 to >16	
Aztreonam	26.1	16	>16	≤0.5 to >16	
Cefepime	31.5	16	>16	≤0.5 to >16	
Ceftazidime	41.3	8	32	0.06 to >32	
Ceftriaxone	13.0	8	>8	0.25 to >8	
Ciprofloxacin	20.7	>4	8	≤0.03 to >4	
Gentamicin	63.0	≤1	>8	≤1 to >8	
Meropenem	97.8	≤0.15	0.03	≤0.015 to >64	
Piperacillin-tazobactam	81.5	8	>64	1 to >64	
Tigecycline	100.0b	0.12	0.12	0.06 to 0.5	
Klebsiella pneumoniae (389)					
Delafloxacin	81.5	≤0.12	>4	≤0.12 to >4	
Levofloxacin	80.2	8	>32	1 to >32	
Ampicillin-sulbactam	63.2	8	>32	≤0.12 to >4	
Aztreonam	77.1	≤0.12	>16	≤0.12 to >16	
Cefepime	77.9b	≤0.5	>16	≤0.015 to >16	
Ceftazidime	76.9	0.12	>32	0.03 to >32	
Ceftriaxone	75.3	≤0.06	>8	≤0.06 to >8	
Ciprofloxacin	77.4	≤0.03	>4	≤0.03 to >4	
Gentamicin	86.4	≤1	>8	≤1 to >8	
Meropenem	90.2	1	≤1	≤0.015 to >32	
Piperacillin-tazobactam	81.2	4	>64	≤0.5 to >64	
Tigecycline	99.7b	0.25	0.5	0.06 to 4	
K. pneumoniae isolates of the ESBL phenotype (102)					
Delafloxacin	34.3	>4	>4	≤0.12 to >4	
Levofloxacin	32.4	>32	>32	4 to >32	
Ampicillin-sulbactam	1.0	>16	>16	≤0.12 to >16	
Aztreonam	12.7	>16	>16	≤0.05 to >16	
Cefepime	15.7	>16	>16	≤0.05 to >16	
Ceftazidime	11.8	>32	>32	0.25 to >32	

(Continued on following page)
TABLE 3 (Continued)

Organism group (no. of isolates tested)/antimicrobial agent	% of isolates susceptible by the following criteria:	MIC (µg/ml)			
	CLSI	EUCAST	50%	90%	Range
Ceftriaxone	5.9	5.9	>8	>8	0.12 to >8
Ciprofloxacin	18.6	15.7	>4	>4	≤0.03 to >4
Gentamicin	48.0	43.1	>8	>8	≤1 to >8
Meropenem	62.7	65.7	0.06	>32	≤0.015 to >32
Piperacillin-tazobactam	31.4	23.5	>64	>64	2 to >64
Tigecycline	99.0	96.1	0.25	0.5	0.12 to 4

Klebsiella oxytoca (111)

Delafloxacin	100.0	100.0	≤0.12	≤0.12	0.03 to 1
Levofloxacin	78.7	71.1	≤0.12	>4	≤0.12 to >4
Ampicillin-sulbactam	86.7	86.7	2	16	0.5 to >32
Aztreonam	99.5	98.1	≤0.12	≤0.12	≤0.12 to 8
Cefepime	97.2	96.7	≤0.5	≤0.5	≤0.5 to >16
Ceftazidime	97.2	94.3	0.06	0.12	0.03 to 32
Ceftriaxone	93.4	93.4	≤0.06	≤0.06	≤0.06 to >8
Ciprofloxacin	71.6	67.8	≤0.03	>4	≤0.03 to >4
Gentamicin	88.6	85.3	≤1	8	≤1 to >8
Meropenem	100.0	100.0	0.06	0.12	≤0.015 to 1
Piperacillin-tazobactam	100.0	100.0	≤0.5	1	≤0.5 to 8
Tigecycline	94.3	64.5	0.25	0.25	0.12 to 4

Proteus mirabilis (211)

Delafloxacin	0.06	2	≤0.004	>4	
Levofloxacin	96.6	95.8	≤0.12	0.5	≤0.12 to >4
Ampicillin-sulbactam	24.1	24.1	32	32	0.5 to >32
Aztreonam	76.6	73.7	≤0.12	>16	≤0.12 to >16
Cefepime	93.7	85.6	≤0.5	2	≤0.5 to >16
Ceftazidime	75.7	73.0	0.25	>32	0.03 to >32
Ceftriaxone	70.6	70.6	0.25	>8	≤0.06 to >8
Ciprofloxacin	95.5	94.5	≤0.03	0.25	≤0.03 to >4
Gentamicin	96.9	96.9	≤1	≤1	≤1 to >8
Meropenem	97.9	99.0	0.06	0.06	≤0.015 to >32
Piperacillin-tazobactam	81.2	77.2	2	64	≤0.5 to >64
Tigecycline	100.0	97.6	0.25	0.25	0.03 to 2

Enterobacter spp. (384)

Delafloxacin	0.06	2	≤0.008	>4	
Levofloxacin	93.8	92.7	≤0.12	0.5	≤0.12 to >4
Ampicillin-sulbactam	68.5	68.5	4	32	1 to >32
Aztreonam	89.3	87.1	≤0.12	16	≤0.12 to >16
Cefepime	97.2	94.9	≤0.5	0.5	≤0.5 to >16
Ceftazidime	87.6	86.0	0.25	16	0.06 to >32
Ceftriaxone	87.1	87.1	0.12	>8	≤0.06 to >8
Ciprofloxacin	92.1	91.0	≤0.03	0.5	≤0.03 to >4
Gentamicin	95.5	94.4	≤1	≤1	≤1 to >8
Meropenem	97.8	98.3	≤0.015	0.03	≤0.015 to 8
Piperacillin-tazobactam	90.4	85.4	2	16	≤0.5 to >64
Tigecycline	100.0	99.4	0.12	0.25	0.06 to 2

(Continued on following page)
TABLE 3 (Continued)

Organism group (no. of isolates tested)/antimicrobial agent	% of isolates susceptible by the following criteria:	MIC (µg/ml)		
	CLSI	50%	90%	Range
Indole-positive Proteus spp. (249)				
Delafloxacin	75.2	0.12	4	0.008 to >4
Levofoxacin	70.0	≤0.12	>4	≤0.12 to >4
Ampicillin-sulbactam	29.6	16	32	0.5 to >32
Aztreonam	96.0	≤0.12	1	≤0.12 to >16
Cefepime	95.2^a	≤0.5	≤0.5	≤0.5 to >16
Ceftazidime	87.2	0.12	16	0.03 to >32
Ceftriaxone	75.6	≤0.06	8	≤0.06 to >8
Ciprofloxacin	73.6	≤0.03	>4	≤0.03 to >4
Gentamicin	85.8	≤1	8	≤1 to >8
Meropenem	100.0	0.06	0.12	≤0.015 to 1
Piperacillin-tazobactam	95.2	≤0.5	4	≤0.5 to >64
Tigecycline	98.4^b	0.5	1	0.12 to 4
Serratia spp. (193)				
Delafloxacin	95.9	1	2	0.03 to >4
Levofoxacin	93.3	≤0.12	1	≤0.12 to >4
Ampicillin-sulbactam	5.2	>32	>32	4 to >32
Aztreonam	94.3	≤0.12	1	≤0.12 to >16
Cefepime	96.4^a	≤0.5	≤0.5	≤0.5 to >16
Ceftazidime	96.4	0.25	1	0.03 to >32
Ceftriaxone	84.5	0.25	4	≤0.06 to >8
Ciprofloxacin	93.8	0.12	1	≤0.03 to >4
Gentamicin	96.4	≤1	2	≤1 to >8
Meropenem	97.3	0.03	0.06	≤0.015 to 8
Piperacillin-tazobactam	92.7	2	16	≤0.5 to >64
Tigecycline	99.0^b	0.5	0.5	0.06 to 4
Pseudomonas aeruginosa (200)				
Delafloxacin	72.5	0.25	>4	0.015 to >4
Levofoxacin	62.5	0.5	>4	≤0.12 to >4
Amikacin	93.5	2	16	≤0.25 to >32
Aztreonam	55.5	8	>16	0.25 to >16
Cefepime	83.0	2	16	≤0.5 to >16
Ceftazidime	78.5	2	>32	0.25 to >32
Ceftriaxone	84.5	>8	>8	1 to >8
Ciprofloxacin	75.0	0.25	>4	≤0.03 to >4
Gentamicin	98.5	2	2	≤0.5 to 4
Meropenem	97.3	≤1	8	≤0.015 to >32
Piperacillin-tazobactam	74.4	0.5	8	≤0.5 to >64
Acinetobacter baumannii-A. calcoaceticus (200)				
Delafloxacin	34.0	2	>4	0.015 to >4
Levofoxacin	33.0	>4	>4	≤0.12 to >4
Amikacin	53.5	8	>32	1 to >32
Ampicillin-sulbactam	40.2	16	>32	0.5 to >32
Aztreonam	>16	>16	4 to >16	
Cefepime	36.0	>16	>16	≤0.5 to >16
Ceftazidime	38.5	>32	>32	0.5 to >32
Ciprofloxacin	32.5	>4	>4	0.06 to >4
Gentamicin	92.0	1	2	≤0.5 to >8
Meropenem	48.0	8	>8	≤1 to >8
Piperacillin-tazobactam	41.2	16	>32	0.06 to >32
Tigecycline	35.2	>64	>64	≤0.5 to >64

^aIntermediate is interpreted as susceptible-dose dependent.
^bBreakpoints from the FDA package insert, revised December 2014.

Among ESBL-phenotype isolates of *E. coli* and *K. pneumoniae*, the potencies of all comparator agents were markedly decreased (Table 3). Meropenem (97.8 and 97.8% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) retained potent activity against ESBL-phenotype strains of *E. coli*, whereas the rate of meropenem resistance was high (34.3 and 26.5% of isolates were susceptible according to...
CLSI and EUCAST criteria, respectively) among isolates of ESBL-producing *K. pneumoniae* (Table 3). ESBL-phenotype *K. pneumoniae* isolates remained susceptible to tigecycline (99.0 and 96.1% of isolates were susceptible according to CLSI and EUCAST criteria, respectively). Only 28.3% of ESBL-phenotype *E. coli* isolates and 18.6% of ESBL-phenotype *K. pneumoniae* isolates were inhibited by delafloxacin at ≤1 μg/ml (Table 1).

In contrast to the results observed with *K. pneumoniae*, the activity of delafloxacin was higher against *K. oxytoca* isolates (100.0% of *K. oxytoca* isolates but only 76.6% of *K. pneumoniae* isolates were inhibited by delafloxacin at ≤1 μg/ml; Table 1), including ESBL-phenotype strains (Table 1). The rates of susceptibility to ciprofloxacin, levofloxacin, cefepime, meropenem, gentamicin, and tigecycline for *K. oxytoca* were >96.0% (Table 3), despite the inclusion of 22 ESBL-phenotype isolates.

Delafloxacin was active against species of *Enterobacteriaceae* with high rates of ceftazidime resistance due to AmpC β-lactamase production, including *Enterobacter*, *Citrobacter*, and *Serratia* isolates (Tables 1 and 3). Delafloxacin at ≤1 μg/ml inhibited 91.4% of *Enterobacter* spp. (87.4 and 92.7% of isolates from Europe and the United States, respectively). Delafloxacin MIC values were ≤1 μg/ml for 87.6% of *Citrobacter* spp. (88.3 and 87.3% of isolates from Europe and the United States, respectively) and 76.7% of *Serratia* spp. (73.8 and 78.0% of isolates from Europe and the United States, respectively) (Table 1). The rates of susceptibility of isolates of these three genera to ciprofloxacin, levofloxacin, cefepime, meropenem, and tigecycline were >90.0% (Table 3). *Proteus mirabilis* and indole-positive *Proteae* were generally susceptible to aztreonam, cefepime, meropenem, and piperacillin-tazobactam but showed decreased susceptibility to the fluoroquinolones, including delafloxacin. Among European and U.S. isolates of *P. aeruginosa*, only amikacin (93.5 and 89.5% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) and colistin (98.5 and 100.0% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) were active against >90% of isolates tested (Table 3). Delafloxacin at ≤1 μg/ml inhibited 74.0% of *P. aeruginosa* isolates (Table 1). The rates of susceptibility to ciprofloxacin were 75.0 and 70.0% according to CLSI and EUCAST criteria, respectively, and the rates of susceptibility to levofloxacin were 72.5 and 62.5% according to CLSI and EUCAST criteria, respectively. Among 40 levofloxacin-resistant isolates of *P. aeruginosa*, delafloxacin MIC values were >1 μg/ml for 39 isolates (data not shown). The rates of resistance to ceftazidime among isolates of *P. aeruginosa* were 16.5 and 21.5% according to CLSI and EUCAST criteria, respectively (Table 3). The susceptibility of ceftazidime-resistant *P. aeruginosa* isolates to all agents except colistin was poor (data not shown).

A. baumannii-A. calcoaceticus isolates were nonsusceptible (intermediate or resistant by CLSI and EUCAST criteria) to most agents tested (Table 3). Delafloxacin at ≤1 μg/ml inhibited 44.0% of isolates (Table 1). The rates of susceptibility to ciprofloxacin and levofloxacin were 32.5% and 34.0%, respectively (Table 3), and ranged from 48.0% to 50.0% for U.S. isolates and from 17.0% to 18.0% for European isolates (data not shown). Only the rate of susceptibility to colistin (MIC₉₀ and MIC₉₀ 1 and 2 μg/ml, respectively; 92.0 and 92.0% of isolates were susceptible according to CLSI and EUCAST criteria, respectively) achieved a value of >90.0% (Table 3). In general, resistance to the tested agents was greater for European isolates than U.S. isolates of *Acinetobacter*.

Antibiotic resistance is a growing problem in both European and U.S. medical centers (22). Active surveillance and antimicrobial stewardship efforts are essential to combat this threat to patient safety across all health care settings (23, 24). In the present survey, we examined the *in vitro* susceptibility profiles of 6,485 isolates of GPC and GNB from European and U.S. medical centers for the year 2014. The data from the present survey document the comparable activity of delafloxacin against European and U.S. bacterial isolates. Overall, the broadest coverage of the tested pathogens was observed with meropenem and tigecycline in both Europe and the United States (Tables 2 and 3). The most active agents against staphylococci and streptococci were delafloxacin, daptomycin, and tigecycline, whereas meropenem and tigecycline were...
the most active agents against GNB. Delafloxacin was active against MRSA, MR-CoNS, viridans group streptococci, beta-hemolytic streptococci, and penicillin- and macrolide-resistant \textit{S. pneumoniae} strains (Tables 1 and 2). Isolates of \textit{E. faecium}, ESBL-phenotype \textit{Enterobacteriaceae}, ceftazidime-nonsusceptible \textit{P. aeruginosa}, and \textit{Acinetobacter} were considerably less susceptible to delafloxacin than the GPC and wild-type GNB. In contrast, delafloxacin showed activity comparable to that of the other fluoroquinolones tested against AmpC-producing strains of \textit{Enterobacteriaceae}.

These data build on reports by previous investigators (11, 12, 14, 19, 20) and indicate that delafloxacin merits further study for the treatment of ABSSSI, RTI, and urinary tract infections where an acid environment and mixed GPC and GNB infections are common.

MATERIALS AND METHODS

Organisms. A total of 6,485 nonduplicate bacterial isolates were collected prospectively from 69 medical centers located in the United States (4,410 isolates) and from 44 medical centers located in 25 European countries (2,075 isolates) in the year 2014. All organisms were isolated from hospitalized patients with bloodstream infections (1,373 isolates), RTI (1,368 isolates), ABSSSI (2,177 isolates), UTI (735 isolates), intra-abdominal infections (267 isolates), and other types of infections (565 isolates). Isolates were identified to the species level at each participating medical center, and the identity was confirmed by the monitoring laboratory (JMI Laboratories, North Liberty, IA, USA) using standard bacteriological algorithms and methodologies or matrix-assisted laser desorption ionization–time of flight mass spectrometry (Bruker, Billerica, MA, USA), when necessary.

Antimicrobial susceptibility testing. MICs were determined using the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method (25). Quality control (QC) and interpretation of results were performed in accordance with the CLSI M100-S26 standard (26) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2016 guidelines (27). \textit{Escherichia coli}, \textit{Klebsiella pneumoniae}, \textit{Klebsiella oxytoca}, and \textit{Proteus mirabilis} were grouped as ESBL-phenotype strains on the basis of the CLSI screening criteria for potential ESBL production (i.e., a ceftazidime, ceftriaxone, or aztreonam MIC of $\geq 2 \mu g/ml$) (26). Isolates of \textit{P. aeruginosa} were classified as ceftazidime susceptible (MIC, $\leq 8 \mu g/ml$) and ceftazidime nonsusceptible (MICs, $>8 \mu g/ml$). QC strains were tested concurrently and included \textit{E. coli} ATCC 25922 and ATCC 35218, \textit{S. aureus} ATCC 29213, \textit{P. aeruginosa} ATCC 27853, \textit{Enterococcus faecalis} ATCC 29212, and \textit{S. pneumoniae} ATCC 49619. All QC results were within published ranges.

ACKNOWLEDGMENTS

We thank L. R. Duncan, M. D. Huband, M. Janechek, J. Oberholser, J. Schuchert, and J. M. Streit, staff members at JMI Laboratories (North Liberty, IA, USA), for technical support.

This study was performed by JMI Laboratories and supported by Melinta Pharmaceuticals, Inc., which included funding for services related to preparing the manuscript.

JMI Laboratories also contracted to perform services in 2016 for Achaogen, Actelion, Allecra, Allergan, Ampliphil, API, Astellas, AstraZeneca, Baselica, Bayer, BD, Biomodels, Cardeas, CEM-102 Pharma, Cempra, Cedara, Comedix, CSA Biotech, Cubist, Debiopharm, Dipexium, Duke, Durata, Entasis, Fortress, Fox Chase Chemical, GSK, Medpace, Merck, Micurx, Motif, N8 Medical, Nabivra, Nexcida, Novartis, Paratek, Pfizer, Polyphor, Rempex, Scynexis, Shionogi, Spero Therapeutics, Therapeutic Targets, Theravance, Theravance, ThermoFisher, Venatorx, Wockhardt, and Zavante. Some JMI employees are advisors/consultants for Allergan, Astellas, Cubist, Pfizer, Cempra, and Theravance. There are no speakers’ bureaus or stock options to declare.

REFERENCES

1. Bassetti M, Dellia Siega P, Pecori D, Scarpano C, Righi E. 2015. Delafloxacin for the treatment of respiratory and skin infections. Expert Opin Investig Drugs 24:433–442. https://doi.org/10.1517/13543784.2015.1005205.

2. Dryden MS. 2010. Complicated skin and soft tissue infection. J Antimicrob Chemother 65(Suppl 3):i435–i44. https://doi.org/10.1093/jac/dkq302.

3. Falagas ME, Matthaiou DK, Biliziotis IA. 2007. Systematic review: fluoroquinolones for the treatment of intra-abdominal surgical infections. Aliment Pharmacol Ther 25:123–131. https://doi.org/10.1111/j.1365-2036.2006.03154.x.

4. Hooper DC. 2000. New uses for new and old quinolones and the challenge of resistance. Clin Infect Dis 30:243–254. https://doi.org/10.1086/313677.

5. Van Bambeke F. 2014. Renaissance of antibiotics against difficult infections: focus on oritavancin and new ketolides and quinolones. Ann Med 46:512–529. https://doi.org/10.3109/07853890.2014.935470.

6. Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. 2005. Quinolones in 2005: an update. Clin Microbiol Infect 11:256–280. https://doi.org/10.1111/j.1469-0691.2005.01131.x.

7. Magill SS, Edwards JR, Beldavs ZG, Dumyati G, Janelle SJ, Kainer MA, Lynfield R, Nadel J, Neuhauser MM, Ray SM, Richards K, Rodriguez R,
In Vitro Activity of Delafloxacin

Antimicrobial Agents and Chemotherapy

Thompson DL, Fridkin SK. Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. 2014. Prevalence of antimicrobial use in United States acute care hospitals, May-September 2011. JAMA 312:1438–1446. https://doi.org/10.1001/jama.2014.12923.

8. Dalhoff A. 2012. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis 2012:976273. https://doi.org/10.1155/2012/976273.

9. Hooper DC. 1999. Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2:38–55. https://doi.org/10.1016/S1288-4513(99)00014-2.

15. O’Riordan W, Mehra P, Manos P, Kingsley J, Lawrence L, Cammarata S. 2015. A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int J Infect Dis 30:67–73. https://doi.org/10.1016/j.ijid.2014.10.009.

16. Nilius AM, Shen LL, Hensey-Rudloff D, Almer LS, Beyer JM, Balli DJ, Cai Y, Flamm RK. 2003. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob Agents Chemother 47:3260–3269. https://doi.org/10.1128/AAC.47.10.3260-3269.2003.

17. Hammerschlag MR, Roblin PM. 2004. The in vitro activity of a new fluoroquinolone, ABT-492, against recent clinical isolates of Chlamydia pneumoniae. J Antimicrob Chemother 54:281–282. https://doi.org/10.1093/jac/dkh304.

18. Waites KB, Crabbe DM, Duffy LB. 2003. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother 47:3973–3975. https://doi.org/10.1128/AAC.47.12.3973-3975.2003.

19. Flamm RK, Rhomberg PR, Huband MD, Farell DJ. 2016. In vitro activity of delafloxacin tested against isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother 60:6381–6385. https://doi.org/10.1128/AAC.00941-16.

20. Almer LS, Hoffrage JB, Keller EL, Flamm RK, Shortridge DV. 2004. In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms. Antimicrob Agents Chemother 48:2771–2777. https://doi.org/10.1128/AAC.48.7.2771-2777.2004.

21. Lepak AJ, Andes DR. 2016. In vivo pharmacodynamic target assessment of delafloxacin against Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae in a murine lung infection model. Antimicrob Agents Chemother 60:4764–4769. https://doi.org/10.1128/AAC.00647-16.

22. Friedman ND, Temkin E, Carmeli Y. 2016. The negative impact of antibiotic resistance. Clin Microbiol Infect 22:416–422. https://doi.org/10.1016/j.cmi.2015.12.002.

23. Perez F, Villegas MV. 2015. The role of surveillance systems in confronting the global crisis of antibiotic-resistant bacteria. Curr Opin Infect Dis 28:375–383. https://doi.org/10.1097/QIN.0000000000000182.

24. Schuts EC, Hulscher ME, Mouton JW, Stuart JW, Overdiek HW, van der Linden PD, Natsch S, Hertogh CM, Wolfs TF, Schouten JA, Kullberg BJ, Prins JM. 2016. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis 16:847–856. https://doi.org/10.1016/S1473-3099(16)00065-7.

25. Clinical and Laboratory Standards Institute. 2015. M07-A10. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, tenth edition. Clinical and Laboratory Standards Institute, Wayne, PA.

26. Clinical and Laboratory Standards Institute. 2016. M100-S26. Performance standards for antimicrobial susceptibility testing: 26th informational supplement. Clinical and Laboratory Standards Institute, Wayne, PA.

27. EUCAST. 2016. Breakpoint tables for interpretation of MICs and zone diameters, version 6.0, January. http://www.eucast.org/clinical_breakpoints/. Accessed January 2016.
Erratum for Pfaller et al., “In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014”

M. A. Pfaller,a,b H. S. Sader,a P. R. Rhomberg,a R. K. Flamm,a

JMI Laboratories, North Liberty, Iowa, USAa; University of Iowa, Iowa City, iowa, USAa

Volume 61, no. 4, e02609-16, 2017, https://doi.org/10.1128/AAC.02609-16. Pages 6 to 8: In Table 2, there should be no ciprofloxacin data for any organism, as ciprofloxacin was not tested against the collection of isolates. The corrected table is shown below.
TABLE 2 Activities of delafloxacin and comparator antimicrobial agents when tested against U.S. and European Gram-positive isolates

Organism group (no. of isolates tested)/antimicrobial agent	% of isolates susceptible by the following criteria: MIC (µg/ml)	MIC (µg/ml)	Range
	CLSI 50%	90%	Range
Staphylococcus aureus (1,350)			
Delafloxacin	≤0.004	0.25	≤0.004 to 4
Levofloxacin	64.4	64.4	0.25 to >4
Ceftaroline	98.0	98.0	0.25 to 1
Clindamycin	87.0	86.8	≤0.25 to >2
Daptomycin	99.8	99.8	0.25 to 0.5
Erythromycin	45.9	46.3	4 to >16
Linezolid	100.0	100.0	1 to 1
Oxacillin	57.6	57.6	0.5 to >2
Tetracycline	94.3	92.5	≥0.5 to ≤0.5
Tigecycline	100.0a	100.0	0.06 to 0.06
Trimethoprim-sulfamethoxazole	98.5	98.5	≤0.5 to ≤0.5
Vancomycin	100.0	100.0	1 to 1

MSSA (777)			
Delafloxacin	≤0.004	0.008	≤0.004 to 4
Levofloxacin	89.8	89.8	0.25 to 2
Ceftaroline	100.0	100.0	0.25 to 0.25
Clindamycin	94.0	93.7	≤0.25 to ≤0.25
Daptomycin	100.0	100.0	0.25 to 0.5
Erythromycin	69.6	69.8	≤0.25 to >16
Linezolid	100.0	100.0	1 to 1
Oxacillin	100.0	100.0	0.5 to 0.5
Tetracycline	95.9	94.2	≥0.5 to ≤0.5
Tigecycline	100.0a	100.0	0.06 to 0.06
Trimethoprim-sulfamethoxazole	99.0	99.0	≤0.5 to ≤0.5
Vancomycin	100.0	100.0	1 to 1

MRSA (573)			
Delafloxacin	0.06	0.5	≤0.004 to 4
Levofloxacin	30.0	30.0	4 to >4
Ceftaroline	95.3	95.3	1 to 1
Clindamycin	77.5	77.5	≤0.25 to >2
Daptomycin	99.5	99.5	0.25 to 0.5
Erythromycin	13.8	14.3	>16 to >16
Linezolid	100.0	100.0	1 to 1
Oxacillin	0.0	0.0	>2 to >2
Tetracycline	92.1	90.2	≤0.5 to 1
Tigecycline	100.0a	100.0	0.06 to 0.06
Trimethoprim-sulfamethoxazole	97.9	97.9	≤0.5 to ≤0.5
Vancomycin	100.0	100.0	1 to 1

MS-CoNS (75)			
Delafloxacin	≤0.004	0.06	≤0.004 to 1
Levofloxacin	88.0	88.0	0.25 to 4
Ceftaroline	84.0	84.0	0.12 to 0.25
Clindamycin	100.0	100.0	0.25 to 0.5
Daptomycin	69.3	69.3	≤0.12 to >16
Erythromycin	100.0	100.0	0.5 to 0.5
Linezolid	100.0	100.0	0.5 to 2
Oxacillin	100.0	100.0	≤0.25 to 1
Tetracycline	89.3	86.7	≤0.5 to 8
Tigecycline	92.0	92.0	≥0.03 to 0.06
Trimethoprim-sulfamethoxazole	100.0	100.0	1 to 2
Vancomycin	38.4	38.4	4 to >4
MR-CoNS (125)			
Delafloxacin	38.4	38.4	4 to >4
Levofloxacin	70.4	67.2	0.05 to 0.5
Ceftaroline	99.2	99.2	0.05 to 0.5

(Continued on next page)
TABLE 2 (Continued)

Organism group/antimicrobial agent	CLSI	EUCAST	50%	90%	Range
Erythromycin	25.6	25.6	>16	>16	≤0.12 to >16
Linezolid	100.0	100.0	0.5	0.5	≤0.12 to 1
Oxacillin	0.0	0.0	>2	>2	0.5 to >2
Tetracycline	80.8	77.6	1	>8	≤0.5 to >8
Teigycline	100.0	100.0	0.06	0.12	≤0.015 to 0.25
Trimethoprim-sulfamethoxazole	65.6	65.6	≤0.5	>4	≤0.5 to >4
Vancomycin	100.0	100.0	1	2	0.5 to 2

Enterococcus faecalis (450)

Delafloxacin	0.06	1	≤0.004 to 2		
Levofloxacin	70.7	70.7b	1	>4	0.25 to >4
Ampicillin	100.0	99.6	1	2	≤0.25 to 8
Ceftaroline	2	8	0.25 to >32		
Clindamycin	>2	>2	≤0.25 to >2		
Daptomycin	100.0		1	2	0.12 to 4
Erythromycin	4.7	>16	≤0.12 to >16		
Linezolid	99.8	100.0	1	1	≤0.12 to 4
Teicoplanin	97.8	97.6	≤2	≤2	≤2 to >16
Tetracycline	23.1	>8	≤0.5 to >8		
Trimethoprim-sulfamethoxazole	≤0.5	≤0.5	≤0.5 to >4		
Vancomycin	97.8	97.8	1	2	0.5 to >16

Enterococcus faecium (295)

Delafloxacin	>4	>4	0.008 to >4		
Levofloxacin	7.8	10.8b	>4	>4	0.5 to >4
Ampicillin	10.8	10.8	>8	>8	≤0.25 to >8
Ceftaroline	>32	>32	0.12 to >32		
Clindamycin	>2	>2	≤0.25 to >2		
Daptomycin	99.0		2	4	0.12 to 8
Erythromycin	3.7	>16	≤0.12 to >16		
Linezolid	99.0	100.0	1	1	0.25 to 4
Teicoplanin	47.1	46.1	16	>16	≤2 to >16
Tetracycline	33.2	>8	≤0.5 to >8		
Trimethoprim-sulfamethoxazole	≤0.5	>4	≤0.5 to >4		
Vancomycin	43.4	43.4	>16	>16	0.25 to >16

Streptococcus pneumoniae (450)

Delafloxacin	0.008	0.015	≤0.004 to 0.25		
Levofloxacin	98.9	98.9	1	1	0.5 to >4
Amoxicillin-clavulanic acid	91.1	≤1	≤1 to >8		
Ceftaroline	99.6c	99.3	≤0.015	0.12	≤0.015 to 1
Ceftriaxone	83.6c, 94.2c	83.6	≤0.06	1	≤0.06 to 8
Clindamycin	84.7	84.9	≤0.25	>2	≤0.25 to >2
Erythromycin	59.9	59.9	≤0.12	>16	≤0.12 to >16
Meropenem	84.4	84.4, 100.0c	≤0.015	0.5	≤0.015 to 2
Moxifloxacin	98.9	98.7	≤0.12	0.25	≤0.12 to 2
Penicillin	63.8, 63.8, 63.8, 63.8	63.8, 63.8, 63.8	0.06	2	≤0.06 to 8
Tetracycline	78.4	78.4	≤0.5	>8	≤0.5 to >8
Trimethoprim-sulfamethoxazole	68.9	75.3	≤0.5	>4	≤0.5 to >4

Viridans group streptococci (294)

Delafloxacin	0.015	0.03	≤0.004 to 2		
Levofloxacin	94.1		1	2	≤0.12 to >4
Amoxicillin-clavulanic acid	98.7		≤1	2	≤1 to >8
Ceftaroline	0.03	0.12	≤0.015 to 1		
Ceftriaxone	90.9	86.4	0.25	1	≤0.06 to >8
Clindamycin	89.5	89.9	≤0.25	>2	≤0.25 to >2
Erythromycin	53.0		≤0.12	8	≤0.12 to >16
Meropenem	93.7	99.0	0.06	0.25	≤0.015 to 4
Moxifloxacin	≤0.12		0.25	≤0.12 to >4	

(Continued on next page)
Organism group	% of isolates susceptible by the following criteria:	MIC (µg/ml)	CLSI	EUCAST	50%	90%	Range
Penicillin			73.1	79.7	≤0.06	1	≤0.06 to >8
Tetracycline			64.3		≤0.5	>8	≤0.5 to >8
Trimethoprim-sulfamethoxazole					≤0.5	4	≤0.5 to >4
Streptococcus pyogenes (433)	Delafloxacin	99.8	96.5	0.5	1	0.25 to >4	
	Levofloxacin	100.0	100.0	≤1	≤1	≤1 to ≤1	
	Amoxicillin-clavulanic acid	100.0	100.0	≤0.015	≤0.015	0.0015	≤0.015 to ≤0.015
	Ceftriazone	100.0	100.0	≤0.06	≤0.06	≤0.06 to 0.5	
	Clindamycin	91.5	91.9	≤0.25	≤0.25	≤0.25 to >2	
	Erythromycin	85.2	85.2	≤0.12	>16	≤0.12 to >16	
	Meropenem	100.0	100.0	≤0.015	≤0.015	0.0015	≤0.015 to ≤0.015
	Moxifloxacin	100.0	100.0	≤0.12	0.25	≤0.12 to 0.5	
	Penicillin	100.0	100.0	≤0.06	≤0.06	≤0.06 to 0.12	
	Tetracycline	80.2	78.6	≤0.5	>8	≤0.5 to >8	
	Vancomycin	100.0	100.0	0.25	0.5	≤0.12 to 0.5	
Streptococcus agalactiae (225)	Delafloxacin	97.8	96.9	0.5	1	0.25 to >4	
	Levofloxacin	100.0	100.0	≤1	≤1	≤1 to ≤1	
	Amoxicillin-clavulanic acid	100.0	100.0	≤0.015	≤0.03	≤0.015	≤0.015 to ≤0.03
	Ceftriazone	100.0	100.0	≤0.06	0.12	≤0.06 to 0.25	
	Clindamycin	70.7	72.4	≤0.25	>2	≤0.25 to >2	
	Erythromycin	52.4	52.4	≤0.12	>16	≤0.12 to >16	
	Meropenem	100.0	100.0	0.03	0.06	≤0.015 to ≤0.12	
	Moxifloxacin	97.8	97.8	≤0.12	0.25	≤0.12 to >4	
	Penicillin	100.0	100.0	≤0.06	≤0.06	≤0.06 to ≤0.06	
	Tetracycline	17.4	17.0	>8	>8	≤0.5 to >8	
	Vancomycin	100.0	100.0	0.5	0.5	0.25 to 1	
Streptococcus dysgalactiae (132)	Delafloxacin	99.2	97.0	0.5	1	0.25 to >4	
	Levofloxacin	100.0	100.0	≤1	≤1	≤1 to ≤1	
	Amoxicillin-clavulanic acid	100.0	100.0	≤0.015	≤0.015	0.0015	≤0.015 to ≤0.015
	Ceftriazone	100.0	100.0	≤0.06	≤0.06	≤0.06 to 0.5	
	Clindamycin	88.6	90.2	≤0.25	0.5	≤0.25 to >2	
	Erythromycin	68.9	68.9	≤0.12	>16	≤0.12 to >16	
	Meropenem	100.0	100.0	≤0.015	≤0.015	0.0015	≤0.015 to ≤0.015
	Moxifloxacin	100.0	100.0	≤0.12	0.25	≤0.12 to 0.25	
	Penicillin	100.0	100.0	≤0.06	≤0.06	≤0.06 to ≤0.06	
	Tetracycline	61.8	59.5	≤0.5	>8	≤0.5 to >8	
	Vancomycin	100.0	100.0	0.25	0.25	≤0.12 to 1	

Breakpoints from FDA package insert, revised December 2014.
Uncomplicated UTI only.
Using nonmeningitis breakpoints.
Using meningitis breakpoints.
Using oral breakpoints.
Using parenteral, meningitis breakpoints.
Using parenteral, nonmeningitis breakpoints.