Evidence for spin-polarized bound states in semiconductor-superconductor-ferromagnetic-insulator islands

Vaitieknas, S.; Souto, R. Seoane; Liu, Y.; Krogstrup, P.; Flensberg, K.; Leijnse, M.; Marcus, C. M.

Published in: Physical Review B

DOI: 10.1103/PhysRevB.105.L041304

Publication date: 2022

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Vaitieknas, S., Souto, R. S., Liu, Y., Krogstrup, P., Flensberg, K., Leijnse, M., & Marcus, C. M. (2022). Evidence for spin-polarized bound states in semiconductor-superconductor-ferromagnetic-insulator islands. Physical Review B, 105(4), [L041304]. https://doi.org/10.1103/PhysRevB.105.L041304
Evidence for spin-polarized bound states in semiconductor–superconductor–ferromagnetic-insulator islands

S. Vaitiekūnas, R. Seoane Souto, Y. Liu, P. Krogstrup, K. Flensberg, M. Leijnse, and C. M. Marcus

1Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
2Division of Solid State Physics and NanoLund, Lund University, 22100 Lund, Sweden

DOI: 10.1103/PhysRevB.105.L041304

We report Coulomb blockade transport studies of semiconducting InAs nanowires grown with epitaxial superconducting Al and ferromagnetic insulator EuS on overlapping facets. Comparing experiment to a theoretical model, we associate cotunneling features in even-odd bias spectra with spin-polarized Andreev levels. Results are consistent with zero-field spin splitting exceeding the induced superconducting gap. Energies of subgap states are tunable on either side of zero via electrostatic gates.

In hybrid quantum devices with both ferromagnetic and superconducting components, competition to align electron spins or pair them into singlets can result in complex ground states and corresponding electrical properties [1–9]. Recently, the coexistence of proximity-induced superconductivity and ferromagnetism has been demonstrated in hybrid semiconducting nanowires [10]. Coulomb-blockade spectroscopy of superconducting quantum dots provides a window into subgap states and corresponding electrical properties [1–9]. Recently, spin-polarized Andreev scatterings at superconducting boundaries of a small normal conductor give rise to Andreev bound states (ABSs) [12]. The states can carry supercurrent through the normal region and appear in tunneling spectroscopy as discrete levels below the superconducting gap [13,14]. Coulomb effects modify transport via ABSs [15,16], for instance, resulting in supercurrent reversal [17,18]. When magnetic fields [19,20] or magnetic materials [21] are involved, spin-degenerate ABSs split and become spin selective, as seen in tunneling spectroscopy [22] and circuit quantum electrodynamics measurements [23]. The spin-active interface between a superconductor and, for example, a ferromagnetic insulator [24] can also lead to spin-split ABSs [25] or, in some cases, triplet superconductivity [26].

Recently, a new class of triple-hybrid materials was realized based on semiconducting InAs nanowires with strong spin-orbit coupling and large g factor, coated with epitaxial superconducting Al, and ferromagnetic insulator EuS shells [27,28]. We investigate nanowires with hexagonal cross-sections and partly overlapping two-facet shells, as shown schematically in Fig. 1(a). Tunneling spectroscopy into the ends of long grounded hybrid wires [10] showed signatures consistent with topological superconductivity, as recently investigated theoretically [29–34].

Here we report transport through Coulomb islands, 400 and 800 nm in length, made from the same batch of wires with normal metal leads and several top- and side-gate electrodes that independently control tunnel-barrier conductances and charge occupancy [Fig. 1(b)]. We observe characteristic features in Coulomb blockade that indicate gate-dependent, discrete subgap states whose energy can be tuned to zero. Qualitative comparison of cotunneling spectra to theoretical models suggests that the subgap states are spin polarized at zero magnetic field, as discussed in detail below.

Spectroscopy of four Coulomb island devices fabricated on two wires (denoted wire 1 and wire 2) showed similar results. Measurements were carried out using standard low-noise lock-in techniques in a dilution refrigerator with a base temperature of 20 mK, equipped with a three-axis vector magnet (see Supplemental Material [35]).

Differential conductance, $G = dI/dV$, of the 400 nm island on wire 1 as a function of source-drain voltage bias, V, and upper-gate voltage, V_u, showed Coulomb diamonds of alternating height [Fig. 1(c)]. Once the tunneling barriers were coarsely tuned, this behavior is typical of all measured devices. Within a Coulomb valley, low-bias G was suppressed below the experimental noise floor. At higher bias, G showed a step-like increase at an alternating bias, as seen in Fig. 1(c). The value of V at which this first-step feature occurs could be tuned using the lower-gate voltage, V_l. A less pronounced second step in G at higher bias [around $V = 120 \mu V$ in Fig. 1(c)] did not alternate from valley to valley nor varied with V_l (see Fig. S1 in the Supplemental Material [35]). The charging energy, $E_C = 300 \mu V$, measured from the Coulomb diamonds, is larger than the superconducting gap of the parent Al shell, $\Delta_{Al} = 230 \mu eV$, hence also larger than the induced gap, Δ, which is reduced by the coupling to EuS [10]. The 800 nm island on wire 1 showed similar even-odd periodic Coulomb blockade with step-like cotunneling features at finite bias (see Fig. S2 in the Supplemental Material [35]).

To understand the conductance features and relate them to ABSs and spin, we model transport through a superconducting Coulomb island, including a single subgap state, spin-split by Zeeman energy, E_Z. Sequential single-electron tunneling through an ABS on the island yields characteristic Coulomb diamonds [11,36]. To account for intermediate strengths of tunnel couplings to both leads we also include cotunneling...
processes [37] through a next-to-leading order expansion in the T matrix (see Supplemental Material [35]). Elastic cotunneling gives a bias independent background conductance, while inelastic cotunneling leaves the system in an excited state yielding steps in G when the bias matches excitation energies.

Theoretical values for differential conductance, g, of a Coulomb island containing a single spin-split ABS as a function of voltage bias, v, and gate-induced charge offset, n_G, is shown in Fig. 2(a), where $\Delta^+ > \Delta$ and $\Delta^- \equiv \Delta$ are energies of the two spin branches. The main experimental features are captured qualitatively in this simple theoretical model. In particular, the bias value of the conductance step alternates between even (e) and odd (o) island parities. Steps in differential conductance, marked by the red and blue ticks, correspond to transitions between ground and lowest excited states, as illustrated in Figs. 2(b) and 2(c). Red lines marking $\Delta - \epsilon$ for odd valleys and $\Delta + \epsilon$ for even valleys correspond to processes that change the parity of the subgap state, while the blue lines marking 2Δ for both valleys correspond to processes that break Cooper pairs without changing parity. Cotunneling processes involving higher-energy intermediate states with ± 1 charge on the island are shown in Figs. 2(d)–2(f).

Theoretical spectra for spin-degenerate or weakly spin-split ABS show a denser pattern of cotunneling steps associated with excitations to spin-flipped states at fixed charge, as shown in Fig. S3 in the Supplemental Material [35]. A qualitative comparison shows that the experimental data from Fig. 1(c) agree better with the spin-polarized rather than the spin-degenerate theory (see the discussion and Figs. S4 and S6 in the Supplemental Material [35]). Previous measurements of a similar hybrid island, but without the EuS shell, had shown Coulomb spectra that are consistent with the theory for a spin-degenerate bound state; see Fig. S7 in the Supplemental Material [35].

Returning to experiment, transport data for the 400 nm device on wire 2 shown in Fig. 1(c) yield $\Delta + \epsilon = 120 \mu eV$ and $\Delta - \epsilon = 60 \mu eV$, giving $\epsilon = 30 \mu eV$ and $\Delta = 90 \mu eV$, consistent with the 2Δ feature at 180 μeV. The data in Fig. 1(c) give a slightly smaller $\Delta = 60 \mu eV$. We note that Δ can be gate-voltage dependent. In general, the induced gap is
on the more positive side. The measured charging energy E_C is smaller than the parent Al gap in these wires. The deduced $E_C = 430 \, \mu eV$ is larger than Δ, consistent with the even-odd periodic Coulomb pattern. The sharp spectral features at the degeneracy points indicate a discrete subgap state.

Decreasing V_L from +0.2 V to 0 modifies the Coulomb blockade peaks from distinctly even-odd to 1e-periodic at zero bias, with consecutive diamonds differing only by the intensity of step features at finite bias, as seen in Fig. 3(b). The onsets of the lower-energy steps in both valleys align with $\Delta = 90 \, \mu eV$, indicating that $\epsilon \approx 0$.

We interpret the evolution as reflecting a subgap state that gradually decreases to zero energy as V_L is varied. In other words, the gate-induced electric fields change the electrostatic environment of the hybrid nanowire, thus modifying the parameters of the subgap state and effectively changing its energy. In the present context, the evolving spin-mixing angle at the superconductor-ferromagnetic insulator interface [25] contributes to the gate dependence of ϵ.

Similar measurements at various V_L are shown in Fig. S8 in the Supplemental Material [35]. The even-odd structure in the amplitude of the finite bias conductance steps is expected theoretically and reflects the relative phase difference between electron and hole components of the subgap state (see the discussion and Fig. S9 in the Supplemental Material [35]).

To investigate ϵ dependence on the electrostatic environment we look over a wider range of gate voltages. The observed even-odd pattern crosses smoothly through 1e periodicity, reflecting the continuous evolution of ϵ across zero. This is shown in Fig. 4(a) as a function of upper-gate voltage, V_U, for the 800 nm island on wire 2. Both the onsets of the high-bias features, at values c_{1i} and the peak spacings, s_{1i}, alternate in magnitude. Subscripts $i = 1$ and 2 denote the two different charge occupancies of the island. We define $c_{1} = (\Delta + \epsilon)/\epsilon$ and $c_{2} = (\Delta - \epsilon)/\epsilon$, then take the difference between consecutive c_{1i} to extract the subgap-state energy ϵ as a function of V_U as shown in Fig. 4(b). Within the measured

![Graph](https://example.com/graph1.png)

FIG. 3. (a) Differential conductance, G, as a function of source-drain bias, V, and upper-gate voltage, V_U, for the 400 nm island on wire 2. A clear even-odd Coulomb diamond pattern is visible with an inelastic onset in V at $\Delta + \epsilon = 120 \, \mu eV$ for the bigger diamond and $\Delta - \epsilon = 60 \, \mu eV$ for the smaller one, as well as an additional step at $2\Delta = 180 \, \mu eV$ in both diamonds, giving $\Delta = 90 \, \mu eV$ and $\epsilon = 30 \, \mu eV$. The data were taken at a fixed lower-gate voltage $V_L = 0.2 \, V$. (b) Similar to (a) measured at $V_L = 0$, giving nearly 1e-periodic Coulomb diamonds with two steps in G for all diamonds at $\Delta = 90 \, \mu eV$ and $2\Delta = 180 \, \mu eV$, indicating $\epsilon \approx 0$. The measured charging energy $E_C = 430 \, \mu eV$.

![Graph](https://example.com/graph2.png)

FIG. 4. (a) Differential conductance, G, measured for the 800 nm island on wire 2 as a function of source-drain bias, V, over an extended range of the upper-gate voltage, V_U. The Coulomb blockade pattern evolves from even-odd at $V_U = -1.47 \, V$, through 1e around $V_U = -1.43 \, V$, to even-odd periodicity again at $V_U = -1.35 \, V$, visible in both inelastic cotunneling onsets c_{1i} and peak spacings s_{1i}, where $i = 1$ and 2 denote Coulomb valleys. The larger $i = 1$ diamonds on the negative side of the measured gate voltage range become smaller than the $i = 2$ diamonds on the more positive side. The measured charging energy $E_C = 320 \, \mu eV$ is smaller than for the 400 nm island. The data were taken at $V_L = -0.7 \, V$. (b) Subgap state energy, ϵ, inferred from step heights (black) and peak-spacing differences (red); ϵ decreases monotonically from roughly $10 \, \mu eV$ through 0 to $-10 \, \mu eV$ as the gate voltage is increased. Black error bars represent standard errors from the c_{1i} measurement at the positive and negative V; red error bars were estimated by propagation of error from the Lorentzian peak fitting and lever arm, η, measurement.
range of V_{1}, ε decreases monotonically from +10 μeV to −10 μeV. Independently, values for ε were extracted from Coulomb peak spacing at zero bias [11,20,38]. For $E_C > \Delta > \varepsilon$, peak spacings are given by $s_1 = (E_C + \varepsilon)/e\eta$ and $s_2 = (E_C - \varepsilon)/e\eta$, where η is a dimensionless lever arm measured from the slopes of the Coulomb diamonds. The subgap-state energy inferred from the Coulomb peak spacing difference agrees well with ε deduced from finite bias steps, as shown in Fig. 4(b). Good qualitative agreement between measured and computed spectra is shown in Fig. S10 in the Supplemental Material [35]. A similar analysis for ε as a function of V_0, where the subgap state approaches but does not cross zero energy, is shown in Fig. S11 in the Supplemental Material [35].

The sign of ε depends on the definition of c_i and s_i. Assuming strong zero-field spin splitting at zero applied magnetic field leaves it ambiguous whether or not a level has crossed zero energy. We therefore cannot label the even and odd valleys with certainty. We note that while in principle the evolution of ε with applied magnetic field contains information on the spin projection of the bound state and hence the ground-state parity, we are not able to determine if the field predominantly affects the Zeeman splitting or the magnetization of the EuS (see Ref. [10]). Representative magnetic-field data for both islands on wire 2 are shown in Figs. S11 and S12 in the Supplemental Material [35].

Finally, we note that for specific gate configurations there are no inelastic cotunneling steps present in Coulomb diamonds (see Fig. S14 in the Supplemental Material [35]). This can be understood within the model as resulting from the condition $\varepsilon > \Delta$, yielding a cotunneling background for all voltage-bias values within odd valleys and nonzero conductance above 2Δ in even valleys.

We thank Claus Sørensen for contributions to materials growth and Shivendra Upadhyay for assistance with nanofabrication. We acknowledge support from the Danish National Research Foundation, European Research Council (Grants Agreement No. 716655 and No. 856526), Microsoft, NanoLund, QuantERA (Project “2D hybrid materials as a platform for topological quantum computing”), and a research grant (Project 43951) from VILLUM FONDEN.

[1] R. Meservey and P. Tedrow, Phys. Rep. 238, 173 (1994).
[2] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[3] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).
[4] M. Eschrig, Phys. Today 64(1), 43 (2011).
[5] J. Li, H. Chen, I. K. Drozdov, A. Yazdani, B. A. Bernevig, and A. H. MacDonald, Phys. Rev. B 90, 235433 (2014).
[6] J. Linder and J. W. Robinson, Nat. Phys. 11, 307 (2015).
[7] E. Strambini, V. Golovach, G. De Simoni, J. Moodera, F. S. Bergeret, and F. Giazotto, Phys. Rev. Materials 1, 054402 (2017).
[8] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkinä, Rev. Mod. Phys. 90, 041001 (2018).
[9] S. Manna, P. Wei, Y. Xie, K. T. Law, P. A. Lee, and J. S. Moodera, Proc. Natl. Acad. Sci. U.S.A. 117, 8775 (2020).
[10] S. Vaitiekėnas, Y. Liu, P. Kroghstrup, and C. Marcus, Nat. Phys. 17, 43 (2021).
[11] A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W. Chang, F. Kuemmeth, P. Kroghstrup, T. S. Jespersen, J. Nygård, K. Flensberg, and C. Marcus, Nat. Phys. 11, 1017 (2015).
[12] E. Prada, P. San-Jose, M. W. de Moor, A. Geresdi, E. J. Lee, K. Klinovaja, D. Loss, J. Nygård, R. Aguado, and L. P. Kouwenhoven, Nat. Rev. Phys. 2, 575 (2020).
[13] J. Pillet, C. Quay, P. Morfin, C. Bena, A. L. Yeyati, and P. Joyez, Nat. Phys. 6, 965 (2010).
[14] F. Nichele, E. Portolés, A. Fornieri, A. M. Whiticar, A. C. C. Drachmann, S. Gronin, T. Wang, G. C. Gardner, C. Thomas, A. T. Hatke, M. J. Manfra, and C. M. Marcus, Phys. Rev. Lett. 124, 226801 (2020).
[15] K. Grove-Rasmussen, H. I. Jørgensen, B. M. Andersen, J. Paaske, T. S. Jespersen, J. Nygård, K. Flensberg, and P. E. Lindelof, Phys. Rev. B 79, 134518 (2009).
[16] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygård, and C. M. Marcus, Phys. Rev. Lett. 110, 217005 (2013).
[17] J. A. van Dam, Y. V. Nazarov, E. P. Bakkers, S. De Franceschi, and L. P. Kouwenhoven, Nature (London) 442, 667 (2006).
[18] H. I. Jørgensen, T. Novotný, K. Grove-Rasmussen, K. Flensberg, and P. Lindelof, Nano Lett. 7, 2441 (2007).
[19] E. J. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. Lieber, and S. De Franceschi, Nat. Nanotechnol. 9, 79 (2014).
[20] J. Shen, S. Heedt, F. Borsoi, B. van Heck, S. Gazibegovic, R. L. O. het Veld, D. Car, J. A. Logan, M. Pendharkar, S. J. Ramakers et al., Nat. Commun. 9, 4801 (2018).
[21] B. W. Heinrich, J. I. Pascual, and K. J. Franke, Prog. Surf. Sci. 93, 1 (2018).
[22] A. M. Whiticar, A. Fornieri, A. Banerjee, A. C. C. Drachmann, S. Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra, and C. M. Marcus, Phys. Rev. B 103, 245308 (2021).
[23] M. Hays, V. Fatemi, K. Serniak, D. Bouman, S. Diamond, G. de Lange, P. Kroghstrup, J. Nygård, A. Geresdi, and M. Devoret, Nat. Phys. 16, 1103 (2020).
[24] T. Tokuyasu, J. A. Sauls, and D. Rainer, Phys. Rev. B 38, 8823 (1988).
[25] F. Hübner, M. Wolf, T. Scherer, D. Wang, D. Beckmann, and H. v. Löhneysen, Phys. Rev. Lett. 109, 087004 (2012).
[26] S. Diesch, P. Machon, M. Wolz, C. Sürgers, D. Beckmann, W. Belzig, and E. Scheer, Nat. Commun. 9, 5248 (2018).
[27] P. Kroghstrup, N. Ziino, W. Chang, S. Albrecht, M. Madsen, E. Johnson, J. Nygård, C. Marcus, and T. Jespersen, Nat. Mater. 14, 400 (2015).
[28] Y. Liu, S. Vaitiekėnas, S. Marti-Sanchez, C. Koch, S. Hart, Z. Cui, T. Kanne, S. A. Khan, R. Tanta, S. Upadhyay, M. Espineira Cachaza, C. M. Marcus, J. Arbiol, K. A. Moler, and P. Kroghstrup, Nano Lett. 20, 456 (2020).
[29] B. D. Woods and T. D. Stanescu, Phys. Rev. B 104, 195433 (2021).
[30] A. Maiani, R. S. Souto, M. Leijnse, and K. Flensberg, Phys. Rev. B 103, 104508 (2021).
[31] S. D. Escribano, E. Prada, Y. Oreg, and A. Levy Yeyati, Phys. Rev. B 104, L041404 (2021).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.105.L041304 for more detailed methods and simulation description, as well as additional measurements; Y. Liu, A. Luchini, S. Martí-Sáánchez, C. Koch, S. Schuwalow, S. A. Khan, T. Stankevic, S. Francoual, J. R. Mardegan, J. Krieger, V. N. Strocov, J. Stahn, C. A. F. Vaz, M. Ramakrishnan, U. Staub, K. Lefmann, G. Aeppli, J. Arbiol, and P. Krogstrup, ACS Appl. Mater. Interfaces 12, 8780 (2020); K. Grove-Rasmussen, G. Steffensen, A. Jelllinggaard, M. H. Madsen, R. Žaitko, J. Paaske, and J. Nygård, Nat. Commun. 9, 2376 (2018); H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, 2004); S. Koller, M. Grifoni, M. Leijnse, and M. R. Wegewijs, Phys. Rev. B 82, 235307 (2010); J. Koch, F. von Oppen, Y. Oreg, and E. Sela, ibid. 70, 195107 (2004); T. Ozaki, ibid. 75, 035123 (2007).