Supporting Information

Selective C9orf72 G-quadruplex-binding small molecules ameliorate pathological signatures of ALS/FTD models

Aifang CHENG,1, 2 Changdong LIU,3, 4 Wenkang YE,1, 2, 5 Duli HUANG,1, 2 Weiyi SHE,1, 2, 5 Xin LIU,1, 2 Chun P. FUNG,3 Naining XU,3, 6 Monica C. SUEN,3 Wei YE,1, 2 Herman H. Y. SUNG,7 Ian D. WILLIAMS,7 Guang ZHU,3, 4, * Pei-Yuan QIAN1, 2, *

1 Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
2 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China, 511458.
3 Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
4 Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen, China, 518057.
5 SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China, 518060.
6 Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China, 518036.
7 Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.

Corresponding Author Information: Pei-Yuan QIAN (boqianpy@ust.hk) and Guang ZHU (gzhu@ust.hk).
Contents of SI

TITLE PAGE ...S1

SUPPORTING INFORMATION ..S1

CONTENTS OF SI ...S2

FIGURE S1. 1D 1H NMR SPECTRA OF DNA AND RNA G4C2 G4s WITH COMPOUNDS.S3
FIGURE S2. CD SPECTRA OF DNA AND RNA G4C2 G4s WITH COMPOUNDS AT DIFFERENT pH.S4
FIGURE S3. ISOLATION OF COMPOUND CHREXANTHOMYCIN A (CA) AND ITS UV SPECTRUM.S5
FIGURE S4. POSITIVE ION HRMS SPECTRUM OF CA (CALC: 621.1239, FOUND: 621.1235).S6
FIGURE S5. 1H NMR SPECTRUM OF CA (800 MHz, CD3OD). ...S7
FIGURE S6. 13C NMR SPECTRUM OF CA (200 MHz, CD3OD). ..S8
FIGURE S7. COSY SPECTRUM OF CA (800 MHz, CD3OD). ...S9
FIGURE S8. HSQC SPECTRUM OF CA (800 MHz, CD3OD) ...S10
FIGURE S9. HMBC SPECTRUM OF CA (800 MHz, CD3OD) ...S11
FIGURE S10. NOESY SPECTRUM OF CA (800 MHz, CD3OD) ...S12
FIGURE S11. ISOLATION OF COMPOUND CHREXANTHOMYCIN B (CB) AND ITS UV SPECTRUM.S13
FIGURE S12. POSITIVE ION HRMS SPECTRUM OF CB (CALC: 635.1395, FOUND: 635.1387)S14
FIGURE S13. 1H NMR SPECTRUM OF CB (800 MHz, DMSO-D6) ..S15
FIGURE S14. 13C NMR SPECTRUM OF CB (200 MHz, DMSO-D6) ..S16
FIGURE S15. COSY SPECTRUM OF CB (800 MHz, DMSO-D6) ...S17
FIGURE S16. HSQC SPECTRUM OF CB (800 MHz, DMSO-D6) ...S18
FIGURE S17. HMBC SPECTRUM OF CB (800 MHz, DMSO-D6) ...S19
FIGURE S18. NOESY SPECTRUM OF CB (800 MHz, DMSO-D6) ...S20
FIGURE S19. ISOLATION OF COMPOUND CHREXANTHOMYCIN C (CC) AND ITS UV SPECTRUM.S21
FIGURE S20. POSITIVE ION HRMS SPECTRUM OF CC (CALC: 639.1344, FOUND: 639.1332)S22
FIGURE S21. 1H NMR SPECTRUM OF CC (800 MHz, CD3OD) ..S23
FIGURE S22. 13C NMR SPECTRUM OF CC (200 MHz, CD3OD) ..S24
FIGURE S23. COSY SPECTRUM OF CC (800 MHz, DMSO-D6) ...S25
FIGURE S24. HSQC SPECTRUM OF CC (800 MHz, CD3OD) ...S26
FIGURE S25. HMBC SPECTRUM OF CC (800 MHz, CD3OD) ...S27
FIGURE S26. NOESY SPECTRUM OF CC (800 MHz, CD3OD) ...S28
FIGURE S27. OPEN FORM SINGLE-CRYSTAL STRUCTURE OF CA ...S29
FIGURE S28. CYCLIC FORM SINGLE-CRYSTAL STRUCTURE OF CA ...S30
FIGURE S29. CA DOES NOT BIND OTHER G4C2 STRUCTURES ...S31
FIGURE S30. CA DOES NOT BIND NON-G4C2 G4s AND AT-RICH SEQUENCESS32
FIGURE S31. DB1246 NON-SELECTIVELY BINDS DIFFERENT G4s ..S33
FIGURE S32. COMPOUND CA COULD ENTER CELLS ..S34

TABLE S1. CRYSTAL DATA AND STRUCTURE REFINEMENT FOR CA ...S35

TABLE S2. FRACTIONAL ATOMIC COORDINATES (×104) AND EQUIVALENT ISOTROPIC DISPLACEMENT
PARAMETERS (Å2×103) FOR CA ...S36

TABLE S3. ANISOTROPIC DISPLACEMENT PARAMETERS (Å2×103) FOR CA ..S37

TABLE S4. BOND LENGTHS FOR CA ..S40

TABLE S5. BOND ANGLES FOR CA ..S41

TABLE S6. HYDROGEN BONDS FOR CA ...S43

TABLE S7. TORSION ANGLES FOR CA ...S44

TABLE S8. HYDROGEN ATOM COORDINATES (Å×104) AND ISOTROPIC DISPLACEMENT PARAMETERS (Å2×103)
FOR CA ...S46

TABLE S9. ATOMIC OCCUPANCY FOR CA ...S48

TABLE S10. ESTIMATED INTERMOLECULAR ENERGY OF THE INTERACTION MODELS OF DNA (G4C2)4 G4 WITH
COMPOUNDS CA, CB, AND CC ...S49

TABLE S11. OLIGONUCLEOTIDES ADOPTING DIFFERENT STRUCTURES USED IN THIS STUDYS50

TABLE S12. MOLECULAR FORMULA STRINGS (SMILES) OF CA, CB, AND CC ...S51

REFERENCES ..S54
Figure S1. 1D 1H NMR spectra of DNA and RNA G4C2 G4s with compounds.

A. 1D 1H NMR spectra of DNA (G4C2)$_4$ G4 with compounds cA, cB, and cC at pH7 (top panels) and pH6 (bottom panels) at a temperature of 25°C (left panels), 35°C (middle panels), and 45°C (right panels), respectively. B. 1D 1H NMR spectra of RNA (G4C2)$_2$ G4 with compounds cA, cB, and cC at pH7 (top panels) and pH6 (bottom panels) at a temperature of 25°C (left panels), 35°C (middle panels), and 45°C (right panels), respectively.
Figure S2. CD spectra of DNA and RNA G4C2 G4s with compounds at different pH.

A. CD spectra (left panels) and CD melting curves (right panels) of DNA (G4C2)$_4$ G4 with compounds cA, cB, and cC at pH6 and pH7, respectively. B. CD spectra (left panels) and CD melting curves (right panels) of RNA (G4C2)$_2$ G4 with compounds cA, cB, and cC at pH6 and pH7, respectively.
Figure S3. Isolation of compound chrexanthomycin A (cA) and its UV spectrum.

The purity percentage of compound cA (Peak 2) is 99.2%.

Peak	Retention time	Area	%Area	Height
1	14.225	12272	0.8	1252
2	15.242	1529906	99.2	113437
Figure S4. Positive ion HRMS spectrum of cA (Calcd:621.1239, found:621.1235).

HRMS(m/z): calcd for C$_{31}$H$_{25}$O$_{14}$, 621.1239 [M+H]$^+$, found 621.1235.
Figure S5. 1H NMR spectrum of cA (800 MHz, CD$_3$OD).

1H NMR (800 MHz, Methanol-d_4) δ 8.0 (d, $J = 8.2$ Hz, 1H), 7.8 (d, $J = 7.9$ Hz, 1H), 7.4 (t, $J = 8.0$ Hz, 1H), 6.8 (s, 1H), 6.2 (d, $J = 3.7$ Hz, 1H), 5.8 (d, $J = 5.5$ Hz, 1H), 4.3 (t, $J = 4.3$ Hz, 1H), 4.2 (t, $J = 5.1$ Hz, 1H), 2.7 (s, 1H), 1.7 (s, 2H).
Figure S6. 13C NMR spectrum of cA (200 MHz, CD$_3$OD).

13C NMR (200 MHz, Methanol-d_4) δ 182.9, 170.9, 165.1, 160.1, 152.1, 150.6, 148.4, 146.4, 144.8, 142.2, 138.8, 134.2, 134.0, 125.8, 125.0, 122.7, 121.3, 120.2, 118.9, 115.2, 114.9, 113.9, 108.2, 107.6, 72.1, 68.3, 24.3, 22.9.
Figure S7. COSY spectrum of cA (800 MHz, CD$_3$OD).
Figure S8. HSQC spectrum of cA (800 MHz, CD$_3$OD).
Figure S9. HMBC spectrum of cA (800 MHz, CD$_3$OD).
Figure S10. NOESY spectrum of cA (800 MHz, CD$_3$OD).
Figure S11. Isolation of compound chreanthomycin B (cB) and its UV spectrum.

The purity percentage of compound cB (Peak 2) is 99.2%.

Peak	Retention time	Area	%Area	Height
1	17.765	13644	0.08	2650
2	18.079	18177452	99.2	1214549
Figure S12. Positive ion HRMS spectrum of cB (Calcd: 635.1395, found: 635.1387).

HRMS(m/z): calcd for C\textsubscript{32}H\textsubscript{27}O\textsubscript{14}, 635.1395 [M+H]+, found 635.1387.
Figure S13. 1H NMR spectrum of cB (800 MHz, DMSO-d_6).

1H NMR (800 MHz, DMSO-d_6) δ 13.1 (s, 1H), 11.9 (s, 1H), 7.9 (dd, $J = 8.1$, 1.5 Hz, 1H), 7.8 (d, $J = 8.1$ Hz, 1H), 7.5 (t, $J = 7.9$ Hz, 1H), 6.8 (d, $J = 15.8$ Hz, 1H), 6.1 (d, $J = 4.7$ Hz, 1H), 5.9 (d, $J = 4.4$ Hz, 1H), 4.1 (t, $J = 4.0$ Hz, 1H), 4.0 (t, $J = 3.5$ Hz, 1H), 4.0 (s, 3H), 3.3 (s, 2H), 1.7 (s, 1H).
Figure S14. 13C NMR spectrum of cB (200 MHz, DMSO-d_6).

13C NMR (200 MHz, DMSO-d_6) δ 181.7, 169.2, 163.0, 153.4, 149.0, 147.6, 146.7, 145.0, 143.2, 139.9, 138.0, 135.8, 124.5, 123.5, 121.2, 119.1, 117.8, 116.3, 113.6, 113.5, 107.4, 106.3, 99.1, 70.0, 66.0, 61.6, 50.1, 29.5, 23.4, 22.3.
Figure S15. COSY spectrum of cB (800 MHz, DMSO-d$_6$).
Figure S16. HSQC spectrum of cB (800 MHz, DMSO-d$_6$).
Figure S17. HMBC spectrum of cB (800 MHz, DMSO-d$_6$).
Figure S18. *NOESY spectrum of cB (800 MHz, DMSO-d$_6$).*
Figure S19. Isolation of compound chrexanthomycin C (cC) and its UV spectrum.

The purity percentage of compound cC (Peak 2) is 99.84%.

Peak	Retention time	Area	%Area	Height
1	15.191	1565	0.02	256
2	15.6	6580915	99.84	512863
3	16.575	9140	0.14	910
Figure S20. Positive ion HRMS spectrum of cC (Calcd: 639.1344, found: 639.1332).

HRMS(m/z): calcd for $C_{31}H_{27}O_{15}$, 639.1344 [M+H]$^+$, found 639.1332.
Figure S21. 1H NMR spectrum of cC (800 MHz, CD$_3$OD).

1H NMR (800 MHz, Methanol-d_4) δ 7.71-7.76 (m, 1H), 7.29-7.21 (m, 2H), 6.78-6.71 (m, 1H), 3.8 (s, 1H), 3.7 (t, $J = 8.6$ Hz, 1H), 3.6 (t, $J = 9.4$ Hz, 1H), 3.6 – 3.6 (m, 1H), 1.8 – 1.7 (m, 2H).
Figure S22. 13C NMR spectrum of cC (200 MHz, CD$_3$OD).

13C NMR (201 MHz, Methanol-d_4) δ 183.5, 173.0, 172.4, 147.5, 145.8, 134.5, 125.7, 122.3, 121.7, 119.0, 117.5, 116.6, 108.7, 77.4, 76.6, 75.5, 73.0, 31.1, 20.9, 14.5.
Figure S23. COSY spectrum of cC (800 MHz, DMSO-d$_6$).
Figure S24. HSQC spectrum of cC (800 MHz, CD$_3$OD).
Figure S25. HMBC spectrum of cC (800 MHz, CD$_3$OD).
Figure S26. NOESY spectrum of cC (800 MHz, CD$_3$OD).
Figure S27. Open form single-crystal structure of cA.

Figures are 40% probability atom displacement ellipsoids, with labeling schemes.
Figure S28. Cyclic form single-crystal structure of cA.

Figures are 40% probability atom displacement ellipsoids, with labeling schemes.
Figure S29. cA does not bind other G4C2 structures.

A-E. The 1D ¹H-NMR spectra of DNA (G4C2)₂ G4 (A), double-stranded DNA G4C2 (B), single-stranded two-repeat G4C2 (C), RNA G4C2 hairpin form (D), double-stranded RNA G4C2 (E) and those titrated with cA at 1:10 (pink) ratio. The imino region of (A), (B), (D) and (E) and the sugar ring proton region of (C) were shown. To prepare the RNA G4C2 hairpin form, a four-repeat G4C2 sequence was dissolved in 10 mM sodium phosphate buffer with 100 mM LiCl. For single-stranded two-repeat G4C2, oligonucleotide was dissolved in 100% D₂O. Other samples were prepared following the procedure described in Experimental Section.
Figure S30. cA does not bind non-G4C2 G4s and AT-rich sequences.

A-F: Imino proton region of 1D 1H-NMR spectra of htel21_T18 G4 (A), htel23_hybrid G4 (B), c-kit G4 (C), aptamer RNA hairpin form (D), double-stranded AT-rich DNA (E) and aromatic proton region of single-stranded T rich DNA (F) and those titrated with cA at the ratio of 1:10 (pink). To prepare the single-stranded T-rich DNA, oligonucleotide was dissolved in 100% D$_2$O. Other samples were prepared following the procedure described in **Experimental Section**.
Figure S31. DB1246 non-selectively binds different G4s.

A-D: Imino region of 1D 1H-NMR spectra of DNA (G4C2)$_4$ G4 (A), RNA (G4C2)$_2$ G4 (B), DNA (G4C2)$_2$ G4 (C) and human telomeric htel21 T18 G4 (D) and those titrated with DB1246 at 1:5 ratio (pink).
Figure S32. Compound cA could enter cells.

The UPLC-MS spectra of samples from cell lysates and the corresponding culture media of cA-treated Neuro2a cell cultures. The UPLC spectra (Extracted Ion Chromatogram, EIC with the [M+H] of 621.1±0.1) in the top and middle panels in different colors were recognized to be black (pure cA as a positive control), light purple (cA:10 μg/mL ≈ 16.13 μM, 24h, cell lysate), light blue (cA:10 μg/mL ≈ 16.13 μM, 24h, culture medium), red (cA:10 μg/mL ≈ 16.13 μM, 48h, cell lysate), green (cA:10 μg/mL ≈ 16.13 μM, 48h, culture medium), dark red (cA:20 μg/mL ≈ 32.26 μM, 48h, cell lysate), dark blue (cA:20 μg/mL ≈ 32.26 μM, 48h, culture medium). The bottom panel showed the UV Chromatogram of the cA peak (a red triangle and a blue dashed line labeled in the top and middle panels) at the retention time of 9.8 minutes and the MS spectrum of cA (red triangle labeled peak: [M+H] = 621.1239).
Table S1. Crystal data and structure refinement for cA.

Property	Value
Identification code	ye6CuLT
Empirical formula	C_{31.5}H_{32}O_{17.5}
Formula weight	690.595
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2₁
a/Å	4.3814(3)
b/Å	15.5179(7)
c/Å	22.1729(13)
α/°	90
β/°	91.317(5)
γ/°	90
Volume/Å³	1507.14(15)
Z	2
ρcalc/g/cm³	1.522
μ/mm⁻¹	1.084
F(000)	725.0
Crystal size/mm³	0.2 × 0.08 × 0.02
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	6.96 to 144.9
Index ranges	-3 ≤ h ≤ 5, -19 ≤ k ≤ 18, -24 ≤ l ≤ 27
Reflections collected	8054
Independent reflections	5136 [R_{int} = 0.0588, R_{sigma} = 0.1042]
Data/restraints/parameters	5136/326/608
Goodness-of-fit on F²	1.000
Final R indexes [I>=2σ (I)]	R₁ = 0.0598, wR₂ = 0.1153
Final R indexes [all data]	R₁ = 0.0892, wR₂ = 0.1285
Largest diff. peak/hole / e Å⁻³	0.26/-0.29
Flack parameter	0.1(3)
Table S2. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2\times 10^3$) for cA.

Atom	x	y	z	$U(\text{eq})$
O1	8429(18)	5751(4)	2906(3)	33.2(16)
O1A	10096(18)	5717(4)	2929(3)	34.8(17)
O2	10549(16)	6182(4)	3756(3)	35.1(14)
O2A	8796(16)	6517(4)	3689(3)	32.6(14)
O3	5390(20)	5844(5)	4396(4)	26.5(18)
O3A	5835(19)	5911(4)	4559(4)	21.8(18)
O4	971(7)	5651.1(18)	5087.9(14)	29.4(7)
O5	-2009(8)	6330.6(19)	5928.7(14)	33.0(7)
O6	-547(7)	4248.6(19)	8147.2(14)	29.9(7)
O7	1072(7)	4425.0(18)	7064.5(13)	26.0(6)
O8	4815(7)	3161.9(19)	6719.4(14)	27.7(7)
O9	6328(14)	3320(4)	2451(3)	33.8(14)
O9A	6439(17)	4960(5)	2373(4)	58(2)
O10	862(7)	4652.2(19)	9090.4(14)	31.7(7)
O11	-2289(7)	2624(2)	8512.9(14)	34.9(7)
O12	679(10)	2168(2)	9662.6(17)	48.3(10)
O13	3510(20)	4982(7)	10589(4)	36(2)
O13A	2610(20)	5013(7)	10619(4)	38(2)
O14	3380(20)	5829(6)	9767(4)	58(2)
O14A	4708(15)	5603(4)	9779(3)	31.5(14)
C1	8880(40)	5647(9)	3422(8)	30(2)
C1A	8770(40)	5777(9)	3481(8)	28(2)
C2	7790(30)	4857(7)	3754(7)	29.4(17)
C2A	7690(30)	5026(7)	3792(7)	26.9(16)
C3	6090(40)	5019(9)	4280(8)	26.6(19)
C3A	6270(50)	5105(9)	4350(8)	27.8(16)
C4	5392(10)	4350(3)	4677(2)	26.4(8)
C5	4088(9)	4417(3)	5289.4(19)	23.7(9)
C6	2075(9)	5052(3)	5478(2)	24.5(9)
C7	1024(9)	5089(3)	6077(2)	24.5(9)
C8	-1053(9)	5755(3)	6272(2)	25.6(9)
C9	-1992(9)	5713(3)	6901.1(19)	23.7(9)
C10	-3967(10)	6313(3)	7154(2)	27.5(9)
C11	-4793(10)	6238(3)	7745(2)	29.4(10)
C12	-3683(10)	5564(3)	8103(2)	28.8(10)
C13	-1779(9)	4955(3)	7863.2(19)	23.5(9)
C14	-889(9)	5039(3)	7258(2)	24.1(9)
C16	1992(9)	4452(3)	6484.9(19)	22.9(9)
C17	3896(9)	3789(3)	6305.4(19)	22.5(8)
C18	4890(10)	3758(3)	5715(2)	24.4(9)
C19	6706(10)	2996(3)	5510(2)	26.1(9)
Table S2. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2\times 10^3$) for cA.

Atom	x	y	z	$U(\text{eq})$
C20	5647(10)	2770(3)	4869(2)	29.2(10)
C21	6226(10)	3524(3)	4468(2)	28.5(9)
C22	7820(30)	3354(8)	3954(6)	28.0(19)
C22A	7550(30)	3486(8)	3883(6)	27.6(16)
C23	8610(30)	4028(7)	3601(6)	25.7(18)
C23A	8340(30)	4214(7)	3547(6)	27.4(17)
C24	10500(20)	3869(7)	3048(4)	30(2)
C24A	10050(30)	4133(7)	2958(5)	32(2)
C25	8630(20)	3740(6)	2452(4)	33(2)
C25A	9570(20)	4941(7)	2570(5)	43(2)
C26	9810(30)	4147(10)	1875(5)	61(4)
C26A	11760(30)	5023(8)	2061(5)	46(3)
C31	-1136(10)	4103(3)	8752(2)	27.4(9)
C32	-375(10)	3152(3)	8872(2)	28.3(9)
C33	-872(12)	2955(3)	9533(2)	34.3(11)
C34	440(12)	3676(3)	9912(2)	38.7(11)
C35	1246(11)	4431(3)	9683(2)	34.6(9)
C36	2610(40)	5164(9)	10011(7)	40(2)
C36A	3230(30)	5069(8)	10047(7)	35(2)
O1S	1530(40)	7062(12)	8940(8)	107(6)
C1S	4180(40)	7654(13)	8985(7)	86(5)
O1W	-48(7)	2531(2)	7358.8(14)	31.2(7)
O2W	5931(9)	6213(2)	11159(2)	60.2(11)
O3W	1110(30)	6880(7)	9167(5)	63(3)
O4W	5970(20)	7863(6)	8738(4)	62(2)

U_{eq} is defined as $1/3$ of the trace of the orthogonalised U_{ij} tensor.
Table S3. Anisotropic displacement parameters ($\text{Å}^2 \times 10^3$) for cA.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O1	40(4)	27(3)	33(2)	-4(2)	3.9(15)	0.7(11)
O1A	43(4)	24(3)	38(3)	-1(2)	11.7(17)	1.1(14)
O2	40(3)	31(2)	34(3)	-5.7(17)	5.8(19)	-1.8(13)
O2A	34(4)	25.0(19)	39(3)	0.2(15)	8(2)	-0.1(13)
O3	28(3)	25.0(18)	26(3)	1.8(9)	-0.9(13)	0.7(9)
O3A	24(3)	15(2)	26(3)	-0.5(12)	-0.2(13)	2.7(13)
O4	38.9(18)	18.4(14)	31.1(17)	3.6(13)	6.6(14)	2.1(12)
O5	45.1(19)	18.9(14)	35.1(18)	7.5(13)	4.6(15)	3.0(13)
O6	37.2(17)	24.7(15)	28.1(16)	8.9(13)	5.0(13)	1.9(12)
O7	31.9(16)	18.0(13)	28.1(16)	2.3(12)	1.6(13)	-0.1(12)
O8	30.6(16)	19.9(13)	32.7(17)	4.5(12)	1.5(13)	0.5(12)
O9	30(3)	32(3)	39(4)	-6(3)	5(3)	-10(3)
O9A	47(4)	44(4)	82(6)	-8(4)	2(4)	-2(4)
O10	40.0(18)	24.7(14)	30.5(17)	-2.2(13)	7.1(14)	0.2(12)
O11	44.2(19)	26.2(14)	34.4(18)	-4.3(14)	5.4(15)	1.3(14)
O12	73(3)	25.5(16)	46(2)	0.5(17)	-6(2)	10.2(16)
O13	36(4)	33(3)	40(2)	-1.0(17)	3.3(13)	-6.1(11)
O13A	40(4)	34(3)	38.4(19)	-3.4(17)	3.1(12)	-5.2(10)
O14	84(5)	41(2)	49(3)	-18.2(16)	-7.3(18)	0.7(13)
O14A	26(3)	27(2)	42(3)	7.0(14)	1.7(15)	-2.0(13)
C1	33(5)	26(2)	32(2)	-0.2(14)	5.7(13)	-0.4(10)
C1A	27(5)	25.3(18)	33(3)	1.6(11)	3.4(16)	1.5(9)
C2	31(3)	26.2(19)	31(2)	-0.2(9)	3.9(12)	-0.1(8)
C2A	25(3)	26.1(17)	29.7(19)	0.6(8)	0.3(9)	0.4(7)
C3	25(4)	25.7(15)	29(2)	0.4(8)	0.1(14)	-0.3(7)
C3A	26(3)	26.9(16)	30(2)	-0.0(8)	1.1(10)	-0.1(7)
C4	23.7(18)	26.9(12)	28.6(14)	-0.8(7)	-0.9(8)	-0.6(6)
C5	21(2)	21.0(19)	29(2)	-5.4(16)	-3.8(17)	-3.8(16)
C6	21.1(19)	16.7(18)	36(2)	-6.2(16)	-2.2(18)	-1.3(17)
C7	23(2)	18.0(18)	32(2)	-6.8(16)	-1.1(17)	-2.7(17)
C8	25(2)	18.9(19)	33(2)	-5.5(16)	-0.4(18)	0.0(18)
C9	28(2)	16.4(18)	26(2)	-3.1(17)	-1.0(17)	-2.1(16)
C10	30(2)	18.1(19)	35(2)	1.2(17)	-0.6(18)	1.9(17)
C11	31(2)	22(2)	35(3)	3.2(18)	2.4(19)	-8.5(18)
C12	30(2)	24(2)	32(2)	1.2(18)	3.5(19)	-3.1(18)
C13	22(2)	19.8(19)	29(2)	-0.2(16)	-1.1(17)	-0.2(17)
C14	23(2)	19.0(19)	30(2)	1.0(17)	1.6(17)	-0.0(17)
C16	17.9(19)	21.4(19)	29(2)	-6.8(15)	-0.6(17)	-5.0(16)
C17	21(2)	21.3(19)	25(2)	-2.7(16)	-4.0(17)	-1.3(16)
C18	27(2)	17.4(18)	29(2)	0.5(16)	-1.7(17)	-2.3(16)
C19	25(2)	20.9(19)	33(2)	-0.1(16)	2.1(18)	-4.7(17)
C20	25(2)	23(2)	40(3)	-1.7(17)	8.4(19)	-6.2(18)
Table S3. Anisotropic displacement parameters (Å²×10³) for eA.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
C21	28(2)	26.8(12)	30.3(14)	-0.6(7)	1.9(9)	-0.6(6)
C22	27(4)	26(2)	30(2)	-0.7(9)	1.4(14)	-0.6(8)
C22A	27(3)	26.1(18)	29.5(18)	0.3(8)	1.1(10)	-0.0(7)
C23	22(4)	26.1(19)	29(2)	-1.1(10)	-1.2(13)	-0.8(8)
C23A	26(3)	26.3(17)	29.8(19)	0.7(8)	0.9(10)	0.6(7)
C24	30(4)	27(3)	32(3)	-0.1(18)	3.8(16)	-0.1(13)
C24A	36(5)	26(3)	34(2)	1.0(18)	6.7(16)	0.7(12)
C25	33(5)	33(5)	34(5)	6(4)	4(4)	-3(4)
C25A	43(6)	33(5)	52(7)	-9(5)	9(5)	3(5)
C26	70(8)	82(9)	32(6)	-29(7)	18(6)	-10(6)
C26A	50(6)	47(6)	40(6)	-1(5)	10(5)	12(5)
C31	27(2)	24(2)	32(2)	3.2(17)	6.9(18)	4.8(18)
C32	32(2)	22.6(19)	31(2)	-0.1(17)	5.6(19)	1.7(17)
C33	43(3)	27(2)	34(3)	-5(2)	4(2)	2.0(18)
C34	57(3)	34(2)	26(2)	-4(2)	5(2)	3.1(19)
C35	38(2)	30.7(18)	35.6(18)	-0.2(12)	3.6(12)	-3.3(10)
C36	46(5)	33(2)	42(2)	-1.8(14)	0.0(13)	-5.4(10)
C36A	36(4)	30(3)	38(2)	0.9(16)	2.7(11)	-4.5(10)
O1S	105(8)	93(8)	122(10)	-1(4)	3(4)	-10(4)
C1S	99(8)	88(9)	70(10)	5(5)	15(7)	-21(8)
O1W	32.4(17)	28.0(14)	33.4(17)	2.3(13)	2.1(13)	-1.7(13)
O2W	60(2)	32.4(18)	88(3)	3.8(17)	-2(2)	-16.1(19)
O3W	107(8)	46(5)	38(5)	35(5)	9(5)	-8(4)
O4W	75(6)	46(5)	65(6)	10(4)	-10(5)	-4(4)

The Anisotropic displacement factor exponent takes the form: -2π²[h²a²U_{11}+2hka*b*U_{12}+...].
Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	1.168(19)	C5	C6	1.393(6)
O1A	C1A	1.369(18)	C5	C18	1.430(6)
O1	C25A	1.460(13)	C6	C7	1.418(6)
O2	C1	1.320(18)	C7	C8	1.449(6)
O2A	C1A	1.238(15)	C7	C16	1.398(6)
O3	C3	1.342(14)	C8	C9	1.465(6)
O3A	C3A	1.348(14)	C9	C10	1.397(6)
O4	C6	1.352(5)	C9	C14	1.391(6)
O5	C8	1.240(5)	C10	C11	1.373(7)
O6	C13	1.369(5)	C11	C12	1.393(7)
O6	C31	1.390(5)	C12	C13	1.376(6)
O7	C14	1.359(5)	C13	C14	1.412(6)
O7	C16	1.356(5)	C16	C17	1.389(6)
O8	C17	1.391(5)	C17	C18	1.390(6)
O9	C25	1.201(11)	C18	C19	1.501(6)
O9A	C25A	1.429(11)	C19	C20	1.526(6)
O10	C31	1.424(6)	C20	C21	1.495(6)
O10	C35	1.365(6)	C21	C22	1.375(14)
O11	C32	1.407(5)	C21	C22A	1.434(14)
O12	C33	1.424(6)	C22	C23	1.357(16)
O13	C36	1.363(19)	C22A	C23A	1.402(16)
O13A	C36A	1.31(2)	C23	C24	1.513(16)
O14	C36	1.216(18)	C23A	C24A	1.526(16)
O14A	C36A	1.215(17)	C24	C25	1.551(12)
C1	C2	1.51(2)	C24A	C25A	1.533(15)
C1A	C2A	1.44(2)	C25	C26	1.527(15)
C2	C3	1.42(2)	C25A	C26A	1.502(14)
C2	C23	1.379(14)	C31	C32	1.534(6)
C2A	C3A	1.40(2)	C32	C33	1.518(6)
C2A	C23A	1.405(15)	C33	C34	1.505(7)
C3	C4	1.399(19)	C34	C35	1.328(7)
C3A	C4	1.433(18)	C35	C36	1.470(12)
C4	C5	1.489(6)	C35	C36A	1.534(12)
C4	C21	1.414(6)	O1S	C1S	1.48(2)
Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°		
----------------	---------	----------------	---------		
C25A O1A C1A	118.6(9)	C16 C17 O8	119.7(4)		
C31 O6 C13	119.6(3)	C18 C17 O8	120.3(4)		
C16 O7 C14	118.8(3)	C18 C17 C16	119.9(4)		
C35 O10 C31	114.7(3)	C17 C18 C5	121.3(4)		
O2 C1 O1	122.9(14)	C19 C18 C5	119.2(4)		
C2 C1 O1	122.6(13)	C19 C18 C17	119.5(4)		
C2 C1 O2	114.4(14)	C20 C19 C18	108.1(4)		
O2A C1A O1A	113.3(13)	C21 C20 C19	108.7(3)		
C2A C1A O1A	121.6(11)	C20 C21 C4	117.8(4)		
C2A C1A O2A	125.0(13)	C22 C21 C4	125.8(6)		
C3 C2 C1	115.6(10)	C22 C21 C20	116.0(6)		
C23 C2 C1	123.4(13)	C22A C21 C4	116.5(6)		
C23 C2 C3	120.7(13)	C22A C21 C20	125.7(6)		
C3A C2A C1A	120.7(11)	C22A C21 C22	113.8(6)		
C23AC2A C1A	118.0(12)	C23 C22 C21	118.2(10)		
C23AC2A C3A	121.1(12)	C23A C22AC21	123.9(11)		
C2 C3 O3	116.9(14)	C22 C23 C2	120.4(13)		
C4 C3 O3	122.2(13)	C24 C23 C2	120.0(11)		
C4 C3 C2	120.7(10)	C24 C23 C22	119.6(10)		
C2A C3A O3A	116.8(14)	C22A C23AC2A	117.5(12)		
C4 C3A O3A	122.9(14)	C24A C23AC2A	120.9(10)		
C4 C3A C2A	120.3(11)	C24A C23AC22A	121.4(10)		
C3A C4 C3	8.7(11)	C25 C24 C23	115.1(9)		
C5 C4 C3	128.0(7)	C25A C24AC23A	110.4(9)		
C5 C4 C3A	121.1(7)	C24 C25 O9	119.9(9)		
C21 C4 C3	113.9(7)	C26 C25 O9	121.4(9)		
C21 C4 C3A	120.1(7)	C26 C25 C24	118.6(9)		
C21 C4 C5	118.0(4)	O9A C25AO1A	106.8(8)		
C6 C5 C4	125.6(4)	C24A C25AO1A	110.5(9)		
C18 C5 C4	117.3(4)	C24A C25AO9A	107.9(9)		
C18 C5 C6	117.1(4)	C26A C25AO1A	104.1(8)		
C5 C6 O4	120.9(4)	C26A C25AO9A	113.1(9)		
C7 C6 O4	116.9(4)	C26A C25AC24A	114.1(9)		
C7 C6 C5	122.1(4)	O10 C31 O6	106.6(3)		
C8 C7 C6	121.8(4)	C32 C31 O6	106.3(3)		
C16 C7 C6	118.5(4)	C32 C31 O10	110.8(3)		
C16 C7 C8	119.7(4)	C31 C32 O11	109.7(3)		
C7 C8 O5	122.5(4)	C33 C32 O11	109.4(3)		
C9 C8 O5	121.2(4)	C33 C32 C31	109.1(4)		
C9 C8 C7	116.3(4)	C32 C33 O12	106.8(4)		
C10 C9 C8	122.8(4)	C34 C33 O12	110.6(4)		
C14 C9 C8	118.3(4)	C34 C33 C32	109.1(4)		
Table S5. Bond angles for cA.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C14	C9	C10	118.9(4)	C35	C34	C33	123.0(5)
C11	C10	C9	120.4(4)	C34	C35	O10	124.2(4)
C12	C11	C10	120.7(4)	C36	C35	O10	108.8(8)
C13	C12	C11	120.2(4)	C36	C35	C34	127.0(8)
C12	C13	O6	127.5(4)	C36A	C35	O10	113.5(7)
C14	C13	O6	113.4(3)	C36A	C35	C34	121.4(7)
C14	C13	C12	119.1(4)	C36A	C35	C36	11.9(10)
C9	C14	O7	124.1(4)	O14	C36	O13	121.2(11)
C13	C14	O7	115.2(4)	C35	C36	O13	114.2(12)
C13	C14	C9	120.7(4)	C35	C36	O14	123.3(13)
C7	C16	O7	122.8(4)	O14A	C36A	O13A	130.1(11)
C17	C16	O7	116.3(4)	C35	C36A	O13A	109.9(11)
C17	C16	C7	120.9(4)	C35	C36A	O14A	119.0(11)
Table S6. Hydrogen bonds for cA.

D	H	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O2	H2	O3	0.8399	2.133(11)	2.746(11)	129.7(3)
O3	H3	O4	0.8400	1.70(3)	2.517(10)	162(8)
O3A	H3A	O2A	0.8400	1.87(6)	2.530(11)	134(8)
O4	H4	O5	0.8400	1.83(3)	2.531(4)	140(4)
O8	H8b	O1W	0.8400	2.16(8)	2.765(4)	129(9)
O11	H11	O1W	0.8400	1.930(9)	2.766(4)	173(6)
O12	H12	O3W\(^1\)	0.8400	1.946(17)	2.764(11)	164(5)
O13	H13	O2W	0.8400	1.73(5)	2.512(11)	154(11)
O13A	H13A	O2W	0.8402	1.800(11)	2.634(11)	171.7(3)
O1S	H1S	O14	0.8399	1.94(2)	2.76(2)	163.8(6)
O1W	H1W	O8\(^2\)	0.8694	1.956(4)	2.808(4)	166.16(12)
O1W	H1WaO8	0.8704	1.944(4)	2.765(4)	156.71(13)	
O1W	H1WbO1A\(^3\)	0.8704	2.030(8)	2.887(8)	168.3(2)	
O2W	H2WaO12\(^4\)	0.8708	1.961(6)	2.801(6)	161.53(17)	
O2W	H2WbO11\(^5\)	0.8703	1.983(5)	2.815(5)	159.50(16)	
O3W	H3WbO14A	0.8706	2.16(11)	2.856(13)	136(14)	
O4W	H4WaO3W	0.8701	1.966(17)	2.802(17)	160.9(4)	
O4W	H4WbO3W\(^6\)	0.8699	2.007(15)	2.865(15)	168.8(4)	

\(^1\)\(-X,-1/2+Y,2-Z; \(^2\)\(-1+X,+Y,+Z; \(^3\)\(-1/2+Y,1-Z; \(^4\)\(-X,1/2+Y,2-Z; \(^5\)\(-X,1/2+Y,2-Z; \(^6\)\(-1+X,+Y,+Z)\)
Table S7. Torsion angles for cA.

A	B	C	D	Angle/°	A	B	C	D	Angle/°
O1	C1	C2	C3	-127.8(16)	C1	C2	C3	C4	-169.4(13)
O1	C1	C2	C23	58(2)	C1	C2	C23	C22	173.1(16)
O1A	C1A	C2A	C3A	-178.5(15)	C1	C2	C23	C24	-4.8(18)
O1A	C1A	C2A	C23A	7.0(19)	C1A	C2A	C3A	C4	-175.6(14)
O1A	C25A	C24A	C23A	48.5(9)	C1A	C2A	C23A	C22A	173.7(15)
O2	C1	C2	C3	56.2(17)	C1A	C2A	C23A	C24A	-1.9(16)
O2	C1	C2	C23	-117.6(12)	C2	C3	C4	C3A	130(4)
O2A	C1A	C2A	C3A	6(2)	C2	C3	C4	C5	169.4(10)
O2A	C1A	C2A	C23A	-168.0(16)	C2	C3	C4	C21	-6.7(17)
O3	C3	C2	C1	5.8(18)	C2	C23	C22	C21	-1.0(14)
O3	C3	C2	C23	179.9(13)	C2	C23	C24	C25	-88.8(13)
O3	C3	C4	C3A	-45(4)	C2A	C3A	C4	C3	-40(3)
O3	C3	C4	C5	-6(2)	C2A	C3A	C4	C5	175.6(12)
O3	C3	C4	C21	178.3(12)	C2A	C3A	C4	C21	6(2)
O3A	C3A	C2A	C1A	3(2)	C2A	C23A	C22A	C21	-2.4(15)
O3A	C3A	C2A	C23A	177.7(13)	C2A	C23A	C24A	C25A	-26.1(14)
O3A	C3A	C4	C3	141(4)	C3	C4	C5	C6	31.6(10)
O3A	C3A	C4	C5	-3(2)	C3	C4	C5	C18	-150.6(10)
O3A	C3A	C4	C21	-172.6(12)	C3	C4	C21	C20	178.5(9)
O4	C6	C5	C4	4.2(5)	C3	C4	C21	C22	5.5(12)
O4	C6	C5	C18	-173.7(4)	C3	C21	C22A	-2.0(11)	
O4	C6	C7	C8	-2.2(4)	C3A	C4	C5	C6	38.1(11)
O4	C6	C7	C16	176.7(3)	C3A	C4	C5	C18	-144.1(10)
O5	C8	C7	C6	-0.5(5)	C3A	C4	C21	C20	171.5(10)
O5	C8	C7	C16	-179.3(4)	C3A	C4	C21	C22	-1.4(12)
O5	C8	C9	C10	-0.7(5)	C3A	C4	C21	C22A	-8.9(12)
O5	C8	C9	C14	178.6(4)	C4	C5	C6	C7	-177.6(4)
O6	C13	C12	C11	-178.6(4)	C4	C5	C18	C17	176.9(4)
O6	C13	C14	O7	-1.4(4)	C4	C5	C18	C19	-6.2(4)
O6	C13	C14	C9	178.6(3)	C4	C21	C20	C19	-45.4(4)
O6	C31	O10	C35	-162.2(3)	C4	C21	C22	C23	-1.7(8)
O6	C31	C32	O11	-62.0(3)	C4	C21	C22A	C23A	7.2(8)
O6	C31	C32	C33	178.2(3)	C5	C6	C7	C8	179.5(3)
O7	C14	C9	C8	1.6(5)	C5	C6	C7	C16	-1.6(4)
O7	C14	C9	C10	-179.1(4)	C5	C18	C17	C16	2.5(5)
O7	C14	C13	C12	178.0(3)	C5	C18	C19	C20	-36.6(4)
O7	C16	C7	C6	-178.9(4)	C6	C7	C8	C9	179.3(4)
O7	C16	C7	C8	-0.1(4)	C6	C7	C16	C17	-1.1(4)
O7	C16	C17	O8	-1.8(4)	C7	C8	C9	C10	179.6(3)
O7	C16	C17	C18	178.6(3)	C7	C8	C9	C14	-1.2(4)
O8	C17	C16	C7	-179.8(3)	C7	C16	C17	C18	0.7(5)
O8	C17	C18	C5	-177.1(4)	C8	C9	C10	C11	179.4(4)

S44
A	B	C	D	Angle/°	A	B	C	D	Angle/°
---	---	---	---	---------	---	---	---	---	---------
O8	C17	C18	C19	6.0(4)	C8	C9	C14	C13	-178.4(4)
O9	C25	C24	C23	-40.7(10)	C9	C10	C11	C12	-0.1(5)
O9A	C25A	C24A	C23A	-67.9(10)	C9	C14	C13	C12	-2.0(5)
O10	C31	C32	O11	-177.4(3)	C10	C11	C12	C13	-1.1(5)
O10	C31	C32	C33	62.8(4)	C11	C12	C13	C14	2.1(5)
O10	C35	C34	C33	2.9(6)	C16	C17	C18	C19	-174.4(4)
O10	C35	C36	O13	-171.0(9)	C17	C18	C19	C20	140.4(4)
O10	C35	C36	O14	-3.6(8)	C18	C19	C20	C21	60.9(4)
O10	C35	C36A	O13A	156.8(9)	C19	C20	C21	C22	128.2(8)
O10	C35	C36A	O14A	-13.3(6)	C19	C20	C21	C22A	135.1(8)
O11	C32	C33	O12	76.8(4)	C20	C21	C22	C23	-174.8(9)
O11	C32	C33	C34	-163.7(4)	C20	C21	C22A	C23A	-173.3(11)
O12	C33	C32	C31	-163.2(4)	C21	C22	C23	C24	176.9(10)
O12	C33	C34	C35	130.8(4)	C21	C22A	C23AC24A	173.2(12)	
O13	C36	C35	C34	10.2(17)	C22	C23	C24	C25	93.3(12)
O13	C36	C35	C36A	-55(3)	C22A	C23A	C24AC25A	158.4(13)	
O13A	C36AC35	C34	-33.3(13)	C23	C24	C25	C26	140.0(10)	
O13AC36AC35	C36	88(3)	C23AC24AC25AC26A	165.4(10)					
O14	C36	C35	C34	177.6(12)	C31	C32	C33	C34	-43.7(4)
O14	C36	C35	C36A	112(3)	C32	C33	C34	C35	13.6(5)
O14AC36AC35	C34	156.5(9)	C33	C34	C35	C36	-178.4(9)		
O14AC36AC35	C36	-82(3)	C33	C34	C35	C36A	-165.8(8)		
Atom	x	y	z	U(eq)					
------	--------	--------	--------	--------					
H2	9615(16)	6316(4)	4069(3)	53(2)					
H3	3750(130)	5865(6)	4580(40)	40(3)					
H3A	7260(120)	6230(16)	4440(40)	33(3)					
H4	-620(70)	5870(30)	5227(12)	44.0(10)					
H8b	3870(180)	3230(40)	7042(17)	41.6(10)					
H8a	3880(7)	2700.3(19)	6644.0(14)	41.6(10)					
H9A	6122(17)	5423(5)	2185(4)	87(3)					
H11	-1690(90)	2630(30)	8156(6)	52.3(11)					
H12	480(140)	2040(20)	10028(8)	72.4(14)					
H13	4800(200)	5360(40)	10712(18)	54(3)					
H13A	3510(20)	5410(7)	10809(4)	57(3)					
H10	-4744(10)	6775(3)	6915(2)	33.0(11)					
H11a	-6136(10)	6650(3)	7912(2)	35.2(12)					
H12a	-4243(10)	5525(3)	8513(2)	34.6(11)					
H19a	8909(10)	3138(3)	5518(2)	31.3(11)					
H19b	6381(10)	2500(3)	5782(2)	31.3(11)					
H20a	6776(10)	2260(3)	4725(2)	35.0(12)					
H20b	3441(10)	2630(3)	4862(2)	35.0(12)					
H22	8340(30)	2780(8)	3849(6)	34(2)					
H22A	7910(30)	2934(8)	3714(6)	33(2)					
H24a	11890(20)	4364(7)	2997(4)	36(3)					
H24b	11770(20)	3351(7)	3121(4)	36(3)					
H24c	12260(30)	4055(7)	3048(5)	38(3)					
H24d	9310(30)	3620(7)	2733(5)	38(3)					
H26a	8370(130)	4030(60)	1541(11)	92(5)					
H26b	10000(200)	4771(13)	1931(17)	92(5)					
H26c	11800(120)	3900(50)	1780(30)	92(5)					
H26d	13770(60)	5190(60)	2222(7)	68(4)					
H26e	11920(150)	4468(16)	1850(20)	68(4)					
H26f	11000(110)	5460(40)	1780(20)	68(4)					
H31	-3319(10)	4229(3)	8841(2)	32.9(11)					
H32	1805(10)	3040(3)	8774(2)	33.9(11)					
H33	-3102(12)	2890(3)	9609(2)	41.2(13)					
H34	703(12)	3587(3)	10334(2)	46.5(14)					
H1S	1980(40)	6618(12)	9139(8)	160(9)					
H1Sa	4400(200)	7850(70)	9403(15)	128(7)					
H1Sb	6030(60)	7350(30)	8860(60)	128(7)					
H1Sc	3830(140)	8150(50)	8720(50)	128(7)					
H1W	-1811(7)	2667(2)	7197.7(14)	46.9(10)					
H1Wa	1437(7)	2849(2)	7228.8(14)	46.9(10)					
H1Wb	213(7)	1994(2)	7260.9(14)	46.9(10)					
Table S8. Hydrogen atom coordinates ($\text{Å} \times 10^4$) and isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for cA.

Atom	x	y	z	U(eq)
H2Wa	6671(9)	6472(2)	10846(2)	90.3(17)
H2Wb	4969(9)	6617(2)	11351(2)	90.3(17)
H3Wa	-820(100)	6850(90)	9250(80)	95(5)
H3Wb	1700(300)	6350(30)	9190(70)	95(5)
H4Wa	4280(20)	7579(6)	8789(4)	93(4)
H4Wb	7400(20)	7504(6)	8848(4)	93(4)
Table S9. Atomic occupancy for cA.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
O1	0.500000	O1A	0.500000	O2	0.500000
H2	0.500000	O2A	0.500000	O3	0.500000
H3	0.500000	O3A	0.500000	H3A	0.500000
H8b	0.500000	H8a	0.500000	O9	0.500000
O9A	0.500000	H9A	0.500000	O13	0.500000
H13	0.500000	O13A	0.500000	H13A	0.500000
O14	0.500000	O14A	0.500000	C1	
C1A	0.500000	C2	0.500000	C2A	0.500000
C3	0.500000	C3A	0.500000	C22	0.500000
H22	0.500000	C22A	0.500000	H22A	0.500000
C23	0.500000	C23A	0.500000	C24	0.500000
H24a	0.500000	H24b	0.500000	C24A	0.500000
H24c	0.500000	H24d	0.500000	C25	0.500000
C25A	0.500000	C26	0.500000	H26a	0.500000
H26b	0.500000	H26c	0.500000	C26A	0.500000
H26d	0.500000	H26e	0.500000	H26f	0.500000
C36	0.500000	C36A	0.500000	O1	0.500000
H1S	0.500000	C1S	0.500000	H1S	0.500000
H1Sb	0.500000	H1Sc	0.500000	H1Wa	0.500000
H1Wb	0.500000	O3W	0.500000	H3Wa	0.500000
H3Wb	0.500000	O4W	0.500000	H4Wa	0.500000
H4Wb	0.500000				
Table S10. Estimated intermolecular energy of the interaction models of DNA (G4C2)$_4$ G4 with compounds cA, cB, and cC.

Energy	DNA (G4C2)$_4$ G4/cA	DNA (G4C2)$_4$ G4/cB	DNA (G4C2)$_4$ G4/cC
van der Waals forces + hydrogen bonds	-8.23 kcal/mol	-7.99 kcal/mol	-7.13 kcal/mol
Electrostatic Energy	-3.21 kcal/mol	-2.13 kcal/mol	-1.49 kcal/mol
Table S11. Oligonucleotides adopting different structures used in this study.

Name	Sequence
two-repeat DNA G4C2 G4\([1, 2]\)	5'-GGGGCCGGGGCCG -3'
four-repeat DNA G4C2 G4\([3]\)	5'-GGGGCCGGGGCCG -3'
ssDNA G4C2\([1]\)	5'-GGGGCCGGGGCCG -3'
ssDNA T rich (17 bp)\([4]\)	5'-GGCCCTTTTTTTTTCTAG -3'
dsDNA G4C2\([5]\)	5'-CTAGGGCCTAG -3'
dsDNA AT rich (17bp)\([4]\)	3'-GATCCGGGATC -5'
htel21_T18 G4\([6]\)	5'-GGGTTAGGGTTAGGGTTAGGG -3'
htel23 G4\([7]\)	5'-TAGGGTTAGGGTTAGGGTTAGGG -3'
c-kit G4\([8]\)	5'-AGGGAGGGCGCTGGGAGGAGG -3'
two-repeat RNA G4C2 G4\([9]\)	5'-GGGGCCGGGGCCG -3'
RNA G4C2 hairpin form\([10]\)	5'-GGGGCCGGGGCCG -3'
dsRNA G4C2\([5]\)	5'-CUAGGGCCUAG -3'
aptamer RNA hairpin form\([11]\)	5'-GGAGAUCGCACUCCA -3'
Table S12. Molecular Formula Strings (SMILES) of cA, cB, and cC.

Compound	SMILE	DNA (G4C2)	RNA (G4C2)	Permeability (cm/s)
chrexa nthomycin A (cA)	O=C(C(C(O)=C(C(C=CC= C1O[C@@H]2O[C(O)=O]=C[C@H](O][C@H]2O)=C1O3)=O)C3=C4O)=C4CC 5)=C6)=C6CC(C)=O)O	2.2 ± 0.1	3.0 ± 0.1	2.823e-005
chrexa nthomycin B (cB)	O=C(C(C(O)=C(C(C=CC= C1O[C@@H]2O[C(O)=O]=C[C@H](O][C@H]2O)=C1O3)=O)C3=C4OC)=C4CC 5)=C6)=C6CC(C)=O)O	3.0 ± 0.1		2.619e-005
chrexa nthomycin C (cC)	O=C(C(C(O)=C(C(C=CC= C1O[C@@H]2O[C@H](O)[C@H](O)[C@H]2O)=C1O3)=O)C3=C4O)=C4CC5)=C6)=C6CC(C)=O)O	2.8 ± 0.1		2.199e-005
Refinement model description.

This report has been created with Olex2, compiled on 2021.04.04 svn.r0348f7ac for OlexSys.

Number of restraints - 326, number of constraints - 79.

Details:
1. Fixed Uiso
 At 1.2 times of: All C(H) groups, All C(H,H) groups
 At 1.5 times of: All C(H,H,H) groups, All O(H) groups, All O(H,H) groups, All O(H,H,H) groups

2. Restrained distances
 C25-C24 = C36-C35 1.52 with sigma of 0.02
 O9A-C25A 1.45 with sigma of 0.02
 O3-C3 ≈ O3A-C3 with sigma of 0.02
 O3-C3 ≈ O3A-C3A with sigma of 0.02
 C22A-C21 ≈ C22-C21 with sigma of 0.02

3. Uiso/Uaniso restraints and constraints
 Uanis(O1S) ≈ Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.015
 Uanis(O3A) ≈ Ueq, Uanis(O3) ≈ Ueq: with sigma of 0.003 and sigma for terminal atoms of 0.005
 Uanis(O3W) ≈ Ueq: with sigma of 0.02 and sigma for terminal atoms of 0.01
 Uanis(O3C) ≈ Ueq, Uanis(C2) ≈ Ueq, Uanis(C3) ≈ Ueq, Uanis(C22) ≈ Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.008
 Uanis(C22A) ≈ Ueq, Uanis(C23A) ≈ Ueq, Uanis(C2A) ≈ Ueq, Uanis(C3A) ≈ Ueq: with sigma of 0.003 and sigma for terminal atoms of 0.005
 Uanis(C36) ≈ Ueq, Uanis(C36A) ≈ Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.002
 Uanis(O13A) ≈ Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.01
 Uanis(O14) ≈ Ueq, Uanis(O14A) ≈ Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.01
 Uanis(C1A) ≈ Ueq: with sigma of 0.008 and sigma for terminal atoms of 0.015
 Uanis(C24) ≈ Ueq, Uanis(C24A) ≈ Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.003
 Uanis(O2W) ≈ Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.002
 Uanis(O13) ≈ Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.01
 Uanis(O14) ≈ Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.01

4. Rigid body (RIGU) restraints
 O1S, C1S, O3, C3, O1, O2, C1, C2, O3A, C3, C1A, C2A, C3A, C4, C21, C22A, C23A, C24A, O13A, O14A, C35, C36A, O1A, O2A, C1A, C2, C3, C4, C21, C22, C23, C24, O13, O14, C35, C36
 with sigma for 1-2 distances of 0.001 and sigma for 1-3 distances of 0.001

5. Others
 Fixed Sos: O1(0.5) O1A(0.5) O2(0.5) H2(0.5) O2A(0.5) O3(0.5) H3(0.5) O3A(0.5) H3A(0.5) H8b(0.5) H8a(0.5) O9(0.5) O9A(0.5) H9A(0.5) O13(0.5) H13(0.5) O13A(0.5) H13A(0.5) O14(0.5) O14A(0.5) C1(0.5) C1A(0.5) C2(0.5) C2A(0.5) C22a(0.5) H22(0.5) C23(0.5) C24(0.5) H24a(0.5) H24b(0.5) C24A(0.5) H24c(0.5) H24d(0.5) C25(0.5) C25A(0.5) C26(0.5) H26a(0.5) H26b(0.5) H26c(0.5) C26A(0.5) H26e(0.5) H26d(0.5) H26f(0.5) C36(0.5) C36A(0.5) H1Wa(0.5) H1Wb(0.5) C1S(0.5) H1Sa(0.5) H1Sb(0.5) H1Sc(0.5) O3W(0.5) H3Wa(0.5) H3Wb(0.5) O4W(0.5) H4Wa(0.5)
H4Wb(0.5) C22A(0.5) H22A(0.5) C23A(0.5) C2A(0.5) C3A(0.5) O1S(0.5) H1S(0.5)
6.a Riding coordinates:
O2(H2), O8(H8a), O9A(H9A), O13A(H13A), O1W(H1W,H1Wa,H1Wb),
O2W(H2Wa,H2Wb),
O4W(H4Wa,H4Wb), O1S(H1S)
6.b Free rotating group: O3W(H3Wa,H3Wb)
6.c Ternary CH refined with riding coordinates:
C31(H31), C32(H32), C33(H33)
6.d Secondary CH2 refined with riding coordinates:
C19(H19a,H19b), C20(H20a,H20b), C24(H24a,H24b), C24A(H24c,H24d)
6.e Aromatic/amide H refined with riding coordinates:
C10(H10), C11(H11a), C12(H12a), C22(H22), C34(H34), C22A(H22A)
6.f Idealised Me refined as rotating group:
C26(H26a,H26b,H26c), C26A(H26d,H26e,H26f), C1S(H1Sa,H1Sb,H1Sc)
6.g Idealised tetrahedral OH refined as rotating group:
O3(H3), O3A(H3A), O4(H4), O8(H8b), O11(H11), O12(H12), O13(H13)
References
1. Zhou, B., et al., Characterizations of distinct parallel and antiparallel G-quadruplexes formed by two-repeat ALS and FTD related GGGGCC sequence, Sci Rep, 2018, 8(1), 2366.
2. Geng, Y.Y., et al., The crystal structure of an antiparallel chair-type G-quadruplex formed by Bromo-substituted human telomeric DNA, Nucleic Acids Res, 2019, 47(10), 5395-5404.
3. Zhou, B., et al., Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci Rep, 2015, 5,16673.
4. Xu, N., et al., Structural basis of DNA replication origin recognition by human Orc6 protein binding with DNA. Nucleic Acids Res, 2020, 48(19), 11146-11161.
5. Maity, A., et al., Duplexes Formed by G4C2 Repeats Contain Alternate Slow- and Fast-Flipping G.G Base Pairs. Biochemistry, 2021, 60(14), 1097-1107.
6. Liu, C., et al., A chair-type G-quadruplex structure formed by a human telomeric variant DNA in K(+) solution, Chem Sci, 2019, 10(1), 218-226.
7. Phan, A.T., et al., Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution, Nucleic Acids Res, 2007, 35(19), 6517-25.
8. Phan, A.T., et al., Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter, J Am Chem Soc, 2007, 129(14), 4386-92.
9. Liu, C., et al., G-quadruplex structures formed by human telomeric DNA and C9orf72 hexanucleotide repeats, Biophys Rev, 2019, 11(3), 389-393.
10. Wang, Z.F., et al., The Hairpin Form of r(G4C2)(exp) in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules, Cell Chem Biol, 2019, 26(2), 179-190 e12.
11. Sakamoto, T., et al., NMR structures of double loops of an RNA aptamer against mammalian initiation factor 4A, Nucleic Acids Res, 2005, 33(2), 745-54.