Use of Shear Wall Belt at Optimum Height to Increase Lateral Load Handling Capacity in Multistory Building

*Neeraj Patel, #Sagar Jamle
*M. Tech. Scholar, #Assistant Professor, *,#Department of Civil Engineering, Oriental University, Indore, India.
*neeraj.patel7676@gmail.com, #sj.sagarjamle@gmail.com

Abstract: The improvement of the tall building has been quickly expanding around the world because now a days, people try to live in multistory structures. As per design criteria, the main focus is to resist the structures from lateral loads mainly from severe earthquake. The shear wall came into practice to resist lateral loads. But why complete shear wall is to be used from foundation to top. That’s why shear wall belt criteria came into existence. The study is conducted on a 25-storied high-rise residential building. A standard floor plan with plinth area of 825 m² used in this work. Different cases are created with shear belt at different floors. Response spectrum method with SRSS combinations used to determine various parameters such as base shear, maximum nodal displacement in longitudinal and transverse direction, drift values and load cases that creates maximum drift. With this view, this paper presents the criteria of provision of shear belt at different heights with the use of Staad pro software. Recommendations made to choose optimum location of wall belt position in structure along with the best of all.

Keywords —Drift control, Lateral load handling, Optimum height, Response spectrum, Structural system, Wall belt.

I. INTRODUCTION

The examination of the seismic practice of any structure falsely by means of auxiliary programming uncovers that at whatever point the R.C.C. multistory structure has situated around the zone of epicenter of any shock, the waves makes a destructive impact on it.

Along these lines, to check the parallel powers in the plan of tall structures, the parameters to be kept up are quality, obstruction against sidelong redirection, dependability to stay away from basic and non-auxiliary decimation. For the plan prerequisites, auxiliary inspectors have offered new frameworks to keep up the above parameters are to utilize shear divider, bracket frameworks, minute opposing edges, base confinement frameworks and one of them is outrigger and belt bolstered frameworks. In this framework, when the structure pivots against sidelong impacts experience avoidance and revolution. To check this, firm center is given amidst structure associated by hardened arms that oppose the entire structure and exchange all the sidelong loads around the shaft segment associations. Henceforth the execution of the multistory building relies on the firmness created framework.

IS: 1893, conveys the run of the mill strategy to assess the planning methodology for seismic loads alongside various factors, for example, hazard coefficient, geology factor, territory harshness and stature factor taken from IS 875 Part III from various provisos. The weight acquired for any tallness will be specifically connected to the powerful region of the structure. Since code stays indistinct about how the structure will act on the equivalent processed load when the structure is pivoted along its vertical hub with plan normality and additionally an abnormality.

In this way, it is proposed to perform wind investigation longitudinally and transversely for various expelled plan reached out to a wide region, for example, sporadic L formed multistoried building. Subsequently, the pursuit will finish when the correct area is resolved. Besides, seek additionally expand when the connected breeze strikes the structure and makes the impacts on neighboring structures.

II. OBJECTIVES

This study is based on the use of shear belt at optimum height in multistory building. By exploring many research papers, it is highly recommend increasing lateral load handling capacity when considering tall structures. Response of the building taken in this work leads to fulfill the following objectives:-

- To examine maximum base shear obtained from various location of shear belt of structure.
- To find Maximum displacements in X, Y and Z directions when load and its combinations are applied on the structure.
- To obtain Story drift for different Cases used in this study.
- To determine Load cases that creates maximum drift.
To analyze the optimum height for placing shear wall belt to increase lateral load handling capacity from above objective parameters.

III. Methodology & Structure Modeling in Seismic Analysis

Method of analysis is done by Staat pro. Since Indian Standard codal provision recommend the seismic effect is more than wind effects and cannot be used as simultaneously. The effects of earthquake in this study are considered as seismic waves are coming from longitudinal along with transverse direction.

Tall structure is analyzed on the basis of how much deflection generated by seismic forces and what is the modal shape it would be adopted.

Seismic Base shear is calculated as:

$$ VB = Ah \times W $$

In eq. 1, W is calculated seismic weight of building. Ah is design horizontal seismic coefficient.

The value of Ah is calculated as:

$$ Ah = \frac{(ZxIySa)}{2Rxg} $$

In eq. 2, Z is Zone factor, I is Importance factor, R is response acceleration factor, Sa/g is average response acceleration coefficient based upon Fundamental time period Ta.

$$ Ta = \left(\frac{0.09xh}{d}\right) $$

In eq. 3, h is the height of the structure and d is maximum plan area of a particular side. This equation is used only when brick infill panel is used in the structure.

For modeling in software, the structure made up of a standard plan. Complete details regarding its description for this study consists of various structural element sizes with materials are provided in Table 1. Table 2 provides details of loading used in analysis. The earthquake load consists of various definitions provided in Table 3. Table 4 provides the load combinations as per IS 1893. Different cases assumed are provided in Table 5 from A to B14. Plan of general structure and General Structure with Shear Wall at Corners are shown in figure 1 and 2 respectively. Figure 3 shows Structure with shear strip connected with shear Wall at Corners. 3D view of Multi-story building is shown in Figure 5 and Figure 6 shows 3D view of Structure with shear strip connected to shear wall at 13th floor.

Table 1: Description of structure taken for this study

Particulars	Value
Plinth area	825 m²
Support	Fixed
Size of column	1200 mm x 900 mm
Size of beam	700 mm x 450 mm
Height of building above ground level	91.50 m
Depth of footing	3.66 m deep

Table 2: Details of loading

Particulars	Value
Floor Finish load	2.5 KN/m²
Wall load (External)	14.27 KN/m
Wall load (Internal)	8.015 KN/m
Wall load (Roof Parapet)	2.67 KN/m
Water proofing (including terrace finish)	3.2 KN/m²
Live load for floor and roof	4.5 KN/m² & 2 KN/m²

Table 3: Details of Seismic loading taken for this study

Particulars	Value
Zone factor	Z=0.36 (ZONE V)
Response reduction factor	R = 4
Importance factor	I = 1
Fundamental Natural Period for X direction	$Ta_x = 1.4476$ Seconds
Fundamental Natural Period for Z direction	$Ta_z = 1.4476$ Seconds
Brick infill panels used	Yes
Damping Ratio	5 %

Table 4: Particulars of load combinations as per IS 1893

S. No.	Load Combinations
1	1.5 (DL+LL)
2	1.2 (DL+LL+EQ)
3	1.2 (DL+LL+EQ)
4	1.5 (DL+EQ)
5	1.5 (DL-1.5EQ)
6	0.9 (DL+1.5EQ)
7	0.9 (DL-1.5EQ)
8	0.9 (DL-1.5EQ)
9	0.9 (DL-1.5EQ)

Table 5: Details of different cases used in this study

Case No.	General Structure
A	General structure without shear wall
B	General structure with shear wall at corners
B1	Structure with shear belt at 0 m
B2	Structure with shear strip at 1st floor
B3	Structure with shear strip at 2nd floor
B4	Structure with shear strip at 3rd floor
B5	Structure with shear strip at 4th floor
B6	Structure with shear strip at 5th floor
B7	Structure with shear strip at 6th floor
B8	Structure with shear strip at 7th floor
B9	Structure with shear strip at 8th floor
B10	Structure with shear strip at 9th floor
B11	Structure with shear strip at 10th floor
B12	Structure with shear strip at 11th floor
B13	Structure with shear strip at 12th floor
B14	Structure with shear strip at 13th floor
B15	Structure with shear strip at 14th floor
B16	Structure with shear strip at 15th floor
B17	Structure with shear strip at 16th floor
B18	Structure with shear strip at 17th floor
B19	Structure with shear strip at 18th floor
B20	Structure with shear strip at 19th floor
B21	Structure with shear strip at 20th floor
B22	Structure with shear strip at 21st floor

© 2019, IJREAM All Rights Reserved.
IV. RESULTS AND DISCUSSIONS

After the applications of various dead loads, live loads and Seismic Load with their combinations on multistory building, comparative results for structure located in seismic
zone V having medium soil condition for various cases are as follows:

Table 6: Base Shear observed for all 15 cases during seismic ground motions

Different Cases	Maximum Base Shear (KN)
CASE A	5921.46
CASE B	6506.65
CASE B1	7194.02
CASE B2	7400.52
CASE B3	7867.03
CASE B4	8203.14
CASE B5	8148.27
CASE B6	7919.97
CASE B7	7711.31
CASE B8	7632.42
CASE B9	7573.47
CASE B10	7529.92
CASE B11	7577.15
CASE B12	7609.04
CASE B13	7545.77
CASE B14	7434.07

Graph 1: Graphical representation of Base Shear observed for all 15 cases during seismic ground motions

Table 7: Maximum displacement observed for all 15 cases during seismic ground motions

Cases	Maximum Displacement in X – direction (mm)	Maximum Displacement in Z – direction (mm)	Maximum Displacement (Resultant) (mm)
CASE A	388.904	410.963	412.191
CASE B	328.777	345.503	348.449
CASE B1	317.944	329.902	331.686
CASE B2	303.872	315.607	317.482
CASE B3	290.963	302.409	304.373
CASE B4	280.891	292.019	294.057
CASE B5	273.763	284.638	286.727

Graph 2: Graphical representation of Maximum displacement observed for all 15 cases during seismic ground motions

Table 8: Story drift in X direction observed for cases A to B2 during seismic ground motions

Height (m)	Story Drift For X Direction (cm)			
	CASE A	CASE B	CASE B1	CASE B2
0	0	0	0	0
3.66	0.5882	0.4912	0.1773	0.235
7.32	1.2598	1.053	0.555	0.4314
10.98	1.5686	1.3126	0.8123	0.4412
14.64	1.7181	1.4393	0.9984	0.7679
18.3	1.7962	1.5062	1.1428	0.9993
21.96	1.8403	1.5445	1.2572	1.1553
25.62	1.8665	1.5675	1.3478	1.2689
29.28	1.8813	1.5804	1.4182	1.3545
32.94	1.8872	1.5854	1.4713	1.4189
36.6	1.8852	1.5831	1.5091	1.4654
40.26	1.8752	1.5736	1.5331	1.4965
43.92	1.8572	1.5565	1.5446	1.5137
47.58	1.8307	1.5314	1.5447	1.5183
51.24	1.7953	1.4981	1.5342	1.5116
54.9	1.7506	1.4561	1.5139	1.4944
58.56	1.6963	1.405	1.4845	1.4676
62.22	1.6318	1.3445	1.4469	1.432
65.88	1.5568	1.2743	1.4017	1.3886
69.54	1.471	1.1944	1.35	1.3382
Table 9: Story drift in X direction observed for cases B3 to B6 during seismic ground motions

Height (m)	0	0	0	0	0
3.66	0.2599	0.2693	0.276	0.2811	
7.32	0.3521	0.3645	0.3848	0.3996	
10.98	0.6565	0.7298	0.7664	0.7918	
14.64	0.6664	0.8334	0.8945	0.9324	
18.3	0.5617	0.8762	0.9838	1.0381	
21.96	0.8876	0.8207	1.0328	1.1125	
25.62	1.1063	0.6474	1.0271	1.1561	
29.28	1.2404	0.9644	0.9244	1.165	
32.94	1.3308	1.1676	0.7036	1.1235	
36.6	1.3942	1.2817	1.0063	0.9877	
40.26	1.4377	1.3515	1.1921	0.7352	
43.92	1.4646	1.395	1.2867	0.1083	
47.58	1.477	1.4195	1.3371	1.1843	
51.24	1.4765	1.4264	1.3619	1.2593	
54.9	1.4644	1.4237	1.3687	1.291	
58.56	1.4417	1.407	1.3608	1.2885	
62.22	1.4096	1.3797	1.345	0.8885	
65.88	1.3689	1.3429	1.3093	1.2655	
69.54	1.3208	1.298	1.2689	1.2315	
73.2	1.2665	1.2463	1.2207	1.1883	
76.86	1.2073	1.1891	1.1664	1.138	
80.52	1.1449	1.1284	1.1079	1.0826	
84.18	1.0808	1.0656	1.047	1.0241	
87.84	1.0149	1.0007	0.9835	0.9626	
91.5	0.941	0.9278	0.9119	0.8927	
95.16	0.8458	0.8339	0.8196	0.8025	

Table 10: Story drift in X direction observed for cases B7 to B10 during seismic ground motions

Height (m)	0	0	0	0	0
3.66	0.2849	0.2863	0.2876	0.2895	
7.32	0.6105	0.6147	0.6182	0.6237	
10.98	0.81	0.8171	0.823	0.8321	
14.64	0.959	0.9692	0.9777	0.9908	
18.3	1.0745	1.0883	1.0998	1.1175	
21.96	1.1611	1.1791	1.1942	1.217	
25.62	1.221	1.2443	1.2635	1.2925	
29.28	1.2558	1.2859	1.3103	1.3466	
32.94	1.2651	1.3048	1.3358	1.3813	
36.6	1.2439	1.3001	1.3407	1.3978	

Table 11: Story drift in X direction observed for cases B11 to B14 during seismic ground motions

Height (m)	0	0	0	0	0
3.66	0.2908	0.2917	0.2924	0.2929	
7.32	0.6275	0.6301	0.632	0.6334	
10.98	0.8384	0.8428	0.8459	0.8482	
14.64	0.9999	1.0062	1.0107	1.0139	
18.3	1.1296	1.1381	1.144	1.1483	
21.96	1.2327	1.2435	1.2511	1.2566	
25.62	1.3123	1.3258	1.3353	1.3421	
29.28	1.3712	1.388	1.3995	1.4078	
32.94	1.4116	1.4322	1.4462	1.4562	
36.6	1.4352	1.4602	1.4772	1.489	
40.26	1.4429	1.4733	1.4937	1.5078	
43.92	1.4533	1.4723	1.4968	1.5136	
47.58	1.4125	1.4478	1.4873	1.5072	
51.24	1.3742	1.43	1.4656	1.4893	
54.9	1.3187	1.3891	1.4322	1.4604	
58.56	1.2412	1.3345	1.3873	1.421	
62.22	1.128	1.2648	1.3309	1.3714	
65.88	0.943	1.1759	1.2627	1.312	
69.54	0.6686	1.056	1.1818	1.2429	
73.2	0.8277	0.8739	1.0849	1.1641	
76.86	0.8961	0.6148	0.9624	1.0751	
80.52	0.8964	0.7367	0.7887	0.9736	
84.18	0.8678	0.781	0.5517	0.8522	
87.84	0.8251	0.7667	0.6356	0.6894	
91.5	0.77	0.7237	0.6513	0.4729	
95.16	0.6964	0.6582	0.6094	0.5018	

Table 12: Story drift in Z direction observed for cases A to B2 during seismic ground motions

Height (m)	0	0	0	0	0
3.66	0.7432	0.6219	0.1783	0.2712	
7.32	1.4779	1.238	0.5838	0.4648	
Table 13: Story drift in Z direction observed for cases B3 to B6 during seismic ground motions

Height (m)	CASE B3	CASE B4	CASE B5	CASE B6
0	0	0	0	0
6.36	0.2904	0.3	0.307	0.3123
7.32	0.5654	0.3956	0.6163	0.6341
10.98	0.6936	0.7587	0.7957	0.8216
14.64	0.7023	0.8692	0.9281	0.967
18.3	0.5415	0.9243	1.0223	1.0775
21.96	0.9325	0.8644	1.0772	1.155
25.62	1.1614	0.6254	1.0817	1.201
29.28	1.2916	1.0135	0.9724	1.2141
32.94	1.382	1.2266	0.6806	1.1818
36.6	1.4471	1.3349	1.0575	1.038
40.26	1.492	1.4036	1.2529	0.7121
43.92	1.5197	1.448	1.3404	1.07
47.58	1.5325	1.4732	1.3887	1.2449
51.24	1.5318	1.4822	1.4137	1.312
54.9	1.5192	1.4772	1.4205	1.3409
58.56	1.4956	1.4598	1.4122	1.3476
62.22	1.4623	1.4314	1.3909	1.3374
65.88	1.4202	1.3393	1.3585	1.3134
69.54	1.3704	1.3468	1.3166	1.278
73.2	1.3141	1.2932	1.2667	1.2332
76.86	1.2529	1.2341	1.2105	1.181
80.52	1.883	1.1712	1.1499	1.1237
84.18	1.1223	1.1065	1.0871	1.0633
87.84	1.0557	1.041	1.023	1.0012
91.5	0.9815	0.9678	0.9512	0.9311
95.16	0.8716	0.8593	0.8445	0.8268

Table 14: Story drift in Z direction observed for cases B7 to B10 during seismic ground motions

Height (m)	0	0	0	0	
CASE B7	3.66	0.3162	0.3177	0.519	0.321
CASE B8	7.32	0.6425	0.6469	0.6506	0.6562
CASE B9	10.98	0.8402	0.8475	0.8536	0.863
CASE B10	14.64	0.9942	1.0046	1.0134	1.027
CASE B11	18.3	1.1148	1.2189	1.1408	1.159
CASE B12	21.96	1.2049	1.2234	1.2388	1.2623
CASE B13	25.62	1.2672	1.2912	1.3109	1.3406
CASE B14	29.28	1.3035	1.3344	1.3594	1.3967

Table 15: Story drift in Z direction observed for cases B11 to B14 during seismic ground motions

Height (m)	0	0	0	0	
CASE B11	3.66	0.3224	0.3234	0.324	0.3246
CASE B12	7.32	0.6601	0.6629	0.6648	0.6663
CASE B13	10.98	0.8695	0.8741	0.8773	0.8797
CASE B14	14.64	1.0364	1.0429	1.0475	1.0509
CASE B15	18.3	1.1716	1.1803	1.1864	1.1909
CASE B16	21.96	1.2786	1.2898	1.2976	1.3033
CASE B17	25.62	1.361	1.3751	1.3849	1.3919
CASE B18	29.28	1.4221	1.4394	1.4514	1.4599
CASE B19	32.94	1.464	1.4852	1.4998	1.5101
CASE B20	36.6	1.4885	1.5143	1.5318	1.5441
CASE B21	40.26	1.4966	1.5279	1.549	1.5636
CASE B22	43.92	1.4888	1.5269	1.5522	1.5695
CASE B23	47.58	1.4654	1.5119	1.5423	1.5628
CASE B24	51.24	1.4257	1.4832	1.5198	1.5442
CASE B25	54.9	1.3688	1.4408	1.4852	1.5142
CASE B26	58.56	1.2914	1.3843	1.4386	1.4733
CASE B27	62.22	1.1823	1.3125	1.3802	1.4218
CASE B28	65.88	0.9879	1.2229	1.3095	1.3602
Graph 3: Graphical representation of Story drift in X direction observed for cases A to B6 during seismic ground motions

Graph 4: Graphical representation of Story drift in X direction observed for cases B7 to B14 during seismic ground motions

Graph 5: Graphical representation of Story drift in Z direction observed for cases A to B6

Graph 6: Graphical representation of Story drift in Z direction observed for cases B7 to B14 during seismic ground motions

Table 10: Load Cases that creates Maximum Drift

LOAD CASES THAT CREATES MAXIMUM DRIFT	For X direction	For Z direction
EQ +X	1.2 (DL+LL+EQ_X)	1.2 (DL+LL+EQ_Z)
EQ -X	1.2 (DL+LL-EQ_X)	1.2 (DL+LL-EQ_Z)
1.5 (DL+EQ_X)	1.5 (DL+EQ_Z)	1.5 (DL+EQ_Z)
0.9 DL+1.5EQ_X	0.9 DL+1.5EQ_Z	0.9 DL+1.5EQ_Z
0.9 DL-1.5EQ_X	0.9 DL-1.5EQ_Z	0.9 DL-1.5EQ_Z

V. CONCLUSIONS

Response spectrum method has applied in the study, from the seismic effects various results obtained and the following conclusion has drawn:-

- Case B7 to Case B9 seems to be minimum parametric values. For efficiency, Case B8 also included and the final result based upon efficient case shown in belt location when Structure with shear strip at 12th floor.
- Maximum Base shear obtained when Structure with shear strip is at 5th floor and minimum at Case A i.e. when General structure without shear wall is considered.
- Maximum nodal displacements observed for X, Z and Resultant as maximum in Case A and when wall belt placed at different locations, the nodal displacement values lowering down up to Case B8 which is a sag point in the graph then from this point value again increasing.
- For different cases, story drift in X direction and in Z direction seems to be least values of all where location of shear belt has applied.
- It is investigated in this study that Load (0.9 DL-1.5EQ_X) for X direction and 0.9 DL+1.5EQ_Z for Z direction creates maximum drift for all the cases.
- Optimum height for placing shear wall belt to increase lateral load handling capacity from above objective parameters will be at 47.58m i.e. structure with shear strip at 12th floor.
ACKNOWLEDGMENT
I take the opportunity to express my heartily gratitude to Mr. Sagar Jamle, Assistant Professor, Department of Civil Engineering, Oriental University, Indore (M.P.) for the valuable guidance and inspiration throughout the work. I feel thankful to him, for his innovative ideas, which led to successful completion of this work.

REFERENCES
[1] A. Rutenberg, D. Tal, “Lateral load response of belted tall building structures”, Butterworth & Co (Publishers) Ltd, ISSN: 0141-029, Vol. 9, pp. 53-67, 1987.
[2] Abbas Haghhollahi, Mohsen Besharat Ferdous, Mehdi Kasiri, “Optimization of outrigger locations in steel tall buildings subjected to earthquake loads”, 15 WCEE LISBOA, 2012.
[3] Abeenamol N M, Rose mol K George, “Performance Of Different Outrigger Structural Systems”, International Research Journal of Engineering and Technology (IRJET), ISSN: 2395 -0056, Vol. 3, no. 9, pp. 1104-1107, 2016.
[4] Akshay A. Khanorkar, S. V. Denge, “Belt Truss as Lateral Load Resisting Structural System for Tall Building: A Review”, International Journal of Science Technology & Engineering (IJSTE), ISSN: 2349-784X, Vol. 2, no. 10, pp. 658-662, 2016.
[5] Archit Dangi, Sagar Jamle, “Determination of Seismic parameters of R. C. C. Building Using Shear Core Outrigger, Wall Belt and Truss Belt Systems”, International Journal of Advanced Engineering Research and Science (IJJAERS), ISSN: 2456-1908, Vol. 5, no. 9, pp. 305-309, 2018.
[6] IS 456: 2000, “Plain and Reinforced Concrete – Code of Practice”, fourth revision, Bureau of Indian Standards, New Delhi, India.
[7] IS: 875(Part 1)-1987, “Code of Practice for Design loads (other than Earthquake) for Buildings and Structures”, Part 1 Dead Loads — Unit Weights of Building Materials and Stored Materials, Second revision, Bureau of Indian Standards, New Delhi, India.
[8] IS: 875(Part 2)-1987, “Code of Practice for Design loads (other than Earthquake) for Buildings and Structures”, Part 2 Imposed Loads, Second revision, Bureau of Indian Standards, New Delhi, India.
[9] J.C.D. Hoender kamp, “Preliminary Design Of High-Rise Shear Wall With Outriggers And Basement Fin Walls On Non-Rigid Foundation”, 36th Conference on Our World in Concrete & Structures, Singapore, Article Online Id: 100036034, 2011.
[10] J.C.D. Hoender kamp, “The Influence of Non-Rigid Floor Structures on Facade Rigger Braced High-Rise Trussed Frames”, Advances in Structural Engineering, Vol. 12, no. 3, pp. 385-397, 2009.
[11] Lee, Kang-Kun, Loo, Yew-Chaye, Guan, Hong, “Simple Analysis of Framed-Tube Structures with Multiple Internal Tubes”, Journal of Structural Engineering, ASCE, ISSN: 0733-9445, pp. 01-28, 2001.
[12] Mohd. Abdus Sattar, Sanjeev Rao, Madan Mohan, Dr. Sreenath Reddy, “Deflection Control in High Rise Building Using Belt Truss and Outrigger Systems”, International Journal of Applied Sciences, Engineering and Management, ISSN: 2320-3439, Vol. 3, no. 6, pp. 37-46, 2014.
[13] P.M.B. Raj Kiran Nanduri, B. Suresh, M D. Ihtesham Hussain, “Optimum Position of Outrigger System for High-Rise Reinforced Concrete Buildings Under Wind And Earthquake Loadings”, American Journal of Engineering Research (AJER), ISSN: 2320-0847, Vol. 2, no. 8, pp. 76-89, 2013.
[14] Sagar Jamle et al., “Flat Slab Shear Wall Interaction for Multistoried Building Analysis When Structure Length is Greater Than Width Under Seismic Forces”, IJournals: International Journal of Software & Hardware Research in Engineering, (IJSHRE), ISSN: 2347-4890, Vol. 5, no. 3, pp. 32-53, 2017.
[15] Sagar Jamle et al., “Flat Slab Shear Wall Interaction for Multistoried Building Under Seismic Forces”, IJournals: International Journal of Software & Hardware Research in Engineering, (IJSHRE), ISSN: 2347-4890, Vol. 5, no. 3, pp. 14-31, 2017.
[16] Shivacharan K., Chandrakala S, Karthik N M, “Optimum Position of Outrigger System for Tall Vertical Irregularity Structures”, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), ISSN: 2278-1684, Vol. 12, no. 2, pp. 54-63, 2015.
[17] Y. Chen, D. M. McFarland, Z. Wang, B. F. Spencer, J. R. L. A. Bergman, “Analysis of tall buildings with damped outriggers”, Journal of structural engineering, ASCE, Vol. 136, no. 11, pp. 1435-1443.