Abstract

We examine words w satisfying the following property: if x is a subword of w and $|x|$ is at least k for some fixed k, then the reversal of x is not a subword of w.

1 Introduction

Let Σ be a finite, nonempty set called an alphabet. We denote the set of all finite words over the alphabet Σ by Σ^*. The empty word is represented by ϵ. Let Σ_k denote the alphabet $\{0, 1, \ldots, k-1\}$.

Let \mathbb{N} denote the set $\{0, 1, 2, \ldots\}$. An infinite word is a map from \mathbb{N} to Σ. The set of all infinite words over the alphabet Σ is denoted Σ^ω.

A map $h : \Sigma^* \to \Delta^*$ is called a morphism if h satisfies $h(xy) = h(x)h(y)$ for all $x, y \in \Sigma^*$. A morphism may be defined by specifying its action on Σ. Morphisms may also be applied to infinite words in the natural way.

If $w \in \Sigma^*$ is written $w = w_1w_2 \cdots w_n$, where each $w_i \in \Sigma$, then the reversal of w, denoted w^R, is the word $w_nw_{n-1} \cdots w_1$.

If y is a nonempty word, then the word $yyy \cdots$ is written as y^ω. If an infinite word w can be written in the form y^ω for some nonempty y, then w is said to be periodic. If w can be written in the form $y'y^\omega$ for some nonempty y, then w is said to be ultimately periodic.

A square is a word of the form xx, where $x \in \Sigma^*$ is nonempty. A word w' is called a subword (resp. a prefix or a suffix) of w if w can be written in the form $uw'v$ (resp. $w'v$ or uw') for some $u, v \in \Sigma^*$. We say a word w is squarefree (or avoids squares) if no subword of w is a square.
2 Avoiding reversed subwords

Szilard [5] has asked the following question:

Does there exist an infinite word \(w \) such that if \(x \) is a subword of \(w \), then \(x^R \) is not a subword of \(w \)?

Clearly there must be some restriction on the length of \(x \): if \(|x| = 1 \), then all nonempty words fail to have the desired property. For \(|x| \geq 2 \), however, we have the following result.

Theorem 1. There exists an infinite word \(w \) over \(\Sigma_3 \) such that if \(x \) is a subword of \(w \) and \(|x| \geq 2 \), then \(x^R \) is not a subword of \(w \). Furthermore, \(w \) is unique up to permutation of the alphabet symbols.

Proof. Note that if \(|x| \geq 3 \) and both \(x \) and \(x^R \) are subwords of \(w \), then there is a prefix \(x' \) of \(x \) such that \(|x'| = 2 \) and \((x')^R \) is a suffix of \(x^R \). Hence it suffices to show the theorem for \(|x| = 2 \). We show that the infinite word

\[
 w = (012)^\omega = 012012012012 \cdots
\]

has the desired property. To see this, consider the set \(\mathcal{A} \) consisting of all subwords of \(w \) of length two. We have \(\mathcal{A} = \{01, 12, 20\} \). Noting that if \(x \in \mathcal{A} \), then \(x^R \not\in \mathcal{A} \), we conclude that if \(x \) is a subword of \(w \) and \(|x| \geq 2 \), then \(x^R \) is not a subword of \(w \).

To see that \(w \) is unique up to permutation of the alphabet symbols, consider another word \(w' \) satisfying the conditions of the theorem, and suppose that \(w' \) begins with 01. Then 01 must be followed by 2, 12 must be followed by 0, and 20 must be followed by 1. Hence,

\[
 w' = (012)^\omega = 012012012012 \cdots = w.
\]

Note that the solution given in the proof of Theorem 1 is periodic. In the following theorem, we give a nonperiodic solution to this problem for \(|x| \geq 3 \).

Theorem 2. There exists an infinite nonperiodic word \(w \) over \(\Sigma_3 \) such that if \(x \) is a subword of \(w \) and \(|x| \geq 3 \), then \(x^R \) is not a subword of \(w \).

Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for \(|x| = 3 \). Let \(w' \) be an infinite nonperiodic word over \(\Sigma_2 \). For example, if \(w' = 1010010001 \cdots \), then \(w' \) is nonperiodic. Define the morphism \(h : \Sigma_2^\omega \to \Sigma_3^\omega \) by

\[
\begin{align*}
0 & \to 0012 \\
1 & \to 0112.
\end{align*}
\]

Then \(w = h(w') \) has the desired property. Consider the set \(\mathcal{A} \) consisting of all subwords of \(w \) of length three. We have

\[
\mathcal{A} = \{001, 011, 012, 112, 120, 200, 201\}.
\]
Noting that if \(x \in A \), then \(x^R \not\in A \), we conclude that if \(x \) is a subword of \(w \) and \(|x| \geq 3 \), then \(x^R \) is not a subword of \(w \).

To see that \(w \) is not periodic, suppose the contrary; i.e., suppose that \(w = y^\omega \) for some \(y \in \Sigma_2^* \). Clearly, \(|y| > 4 \). Suppose then that \(y \) begins with \(h(0) \). Noting that the only way to obtain \(00 \) from \(h(ab) \), where \(a, b \in \Sigma_2 \), is as a prefix of \(h(0) \), we see that \(y = h(y') \) for some \(y' \in \Sigma_2^* \). Hence, \(w = (h(y'))^\omega = h((y')^\omega) \), and so \(w' = (y')^\omega \) is periodic, contrary to our choice of \(w' \).

Over a two letter alphabet we have the following negative result.

Theorem 3. Let \(k \leq 4 \) and let \(w \) be a word over \(\Sigma_2 \) such that if \(x \) is a subword of \(w \) and \(|x| \geq k \), then \(x^R \) is not a subword of \(w \). Then \(|w| \leq 8 \).

Proof. As mentioned previously, if \(k = 1 \) the result holds trivially. If \(k = 2 \), note that all binary words of length at least three must contain one of the following words: \(00, 11, 010, \) or \(101 \). Similarly, if \(k = 3 \), note that all binary words of length at least five must contain one of the following words: \(000, 010, 101, 111, 0110, \) or \(1001 \); and if \(k = 4 \), note that all binary words of length at least nine must contain one of the following words: \(0000, 0110, 1001, 1111, 00100, 01010, 01110, 10001, 10101, \) or \(11011 \). Hence, \(|w| \leq 8 \), as required.

For \(|x| \geq 5 \), however, we find that there are infinite words with the desired property.

Theorem 4. There exists an infinite word \(w \) over \(\Sigma_2 \) such that if \(x \) is a subword of \(w \) and \(|x| \geq 5 \), then \(x^R \) is not a subword of \(w \).

Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for \(|x| = 5 \). We show that the infinite word
\[
w = (001011)^\omega = 001011001011001011 \cdots
\]
has the desired property. To see this, consider the set \(A \) consisting of all subwords of \(w \) of length five. We have
\[
A = \{01010, 10110, 01100, 10010, 10110, 11001\}.
\]
Noting that if \(x \in A \), then \(x^R \not\in A \), we conclude that if \(x \) is a subword of \(w \) and \(|x| \geq 5 \), then \(x^R \) is not a subword of \(w \).

Let \(z \) be the word \(001011 \). We denote the complement of \(z \) by \(\bar{z} \), i.e., the word obtained by substituting 0 for 1 and 1 for 0 in \(z \). Let \(B \) be the set defined as follows:
\[
B = \{x \mid x \text{ is a cyclic shift of } z \text{ or } \bar{z} \}.
\]
We have the following characterization of the words satisfying the conditions of Theorem 4.

Theorem 5. Let \(w \) be an infinite word over \(\Sigma_2 \) such that if \(x \) is a subword of \(w \) and \(|x| \geq 5 \), then \(x^R \) is not a subword of \(w \). Then \(w \) is ultimately periodic. Specifically, \(w \) is of the form \(y'y^\omega \), where \(y' \in \{\epsilon, 0, 1, 00, 11\} \) and \(y \in B \).
Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for \(|x| = 5\). We call a word \(w \in \Sigma_2^*\) *valid* if \(w\) satisfies the property that if \(x\) is a subword of \(w\) and \(|x| = 5\), then \(x^R\) is not a subword of \(w\). We have the following two facts, which may be verified computationally.

1. All valid words of length 9 are of the form \(y'y^ny''\), where \(y' \in \{\epsilon, 0, 1, 00, 11\}\), \(y \in \mathcal{B}\), and \(y'' \in \Sigma_2^*\).

2. Let \(w\) be a valid word of the form \(yy''\), where \(y \in \mathcal{B}\) and \(y'' \in \Sigma_2^*\). Then if \(|w| = 15\), \(y\) is a prefix of \(y''\).

We will prove by induction on \(n\) that for all \(n \geq 1\), \(y'y^n\) is a prefix of \(w\), where \(y' \in \{\epsilon, 0, 1, 00, 11\}\) and \(y \in \mathcal{B}\).

If \(n = 1\), then by applying the first fact to the prefix of \(w\) of length 9, we have that \(y'y\) is a prefix of \(w\), as required.

Assume then that \(y'y^n\) is a prefix of \(w\). We can thus write \(w = y'y^{n-1}yw'\), for some \(w' \in \Sigma_2^*\). By applying the second fact to the prefix of \(yw'\) of length 15, we have that \(y\) is a prefix of \(w'\). Hence \(w = y'y^{n-1}yyw'' = y'y^{n+1}w''\), for some \(w'' \in \Sigma_2^*\), as required.

We therefore conclude that if \(w\) satisfies the conditions of the theorem, then \(w\) is of the form \(y'y^\omega\), where \(y' \in \{\epsilon, 0, 1, 00, 11\}\) and \(y \in \mathcal{B}\).

Next we give a nonperiodic solution to this problem for \(|x| \geq 6\).

Theorem 6. There exists an infinite nonperiodic word \(w\) over \(\Sigma_2\) such that if \(x\) is a subword of \(w\) and \(|x| \geq 6\), then \(x^R\) is not a subword of \(w\).

Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for \(|x| = 6\). Let \(w'\) be an infinite nonperiodic word over \(\Sigma_2\). Define the morphism \(h : \Sigma_2^* \rightarrow \Sigma_2^*\) by

\[
0 \rightarrow 0001011 \\
1 \rightarrow 0010111.
\]

We show that the infinite word \(w = h(w')\) has the desired property. To see this, consider the set \(A\) consisting of all subwords of \(w\) of length six. We have

\[
A = \{000101, 001011, 010110, 010111, 011000, 011001, 011100, 010010, 100101, 101100, 101110, 110001, 110010, 111000, 111001\}.
\]

Noting that if \(x \in A\), then \(x^R \not\in A\), we conclude that if \(x\) is a subword of \(w\) and \(|x| \geq 6\), then \(x^R\) is not a subword of \(w\).

To see that \(w\) is not periodic, suppose the contrary; i.e., suppose that \(w = y^\omega\) for some \(y \in \Sigma_2^*\). Clearly, \(|y| > 7\). Suppose then that \(y\) begins with \(h(0)\). Noting that the only way to obtain 000 from \(h(ab)\), where \(a, b \in \Sigma_2\), is as a prefix of \(h(0)\), we see that \(y = h(y')\) for some \(y' \in \Sigma_2^*\). Hence, \(w = (h(y'))^\omega = h((y')^\omega)\), and so \(w' = (y')^\omega\) is periodic, contrary to our choice of \(w'\).
Finally we consider words avoiding squares as well as reversed subwords. It is easy to check that no binary word of length ≥ 4 avoids squares. However, Thue [9] gave an example of a infinite squarefree ternary word. Over a four letter alphabet we have the following negative result, which may be verified computationally.

Theorem 7. Let w be a squarefree word over Σ_4 such that if x is a subword of w and $|x| \geq 2$, then x^R is not a subword of w. Then $|w| \leq 20$.

In contrast with the result of Theorem 7, Alon et al. have noted that over a four letter alphabet there exists an infinite squarefree word that avoids palindromes x where $|x| \geq 2$. (A palindrome is a word x such that $x = x^R$.) However, over a five letter alphabet there are infinite words with an even stronger avoidance property.

Theorem 8. There exists an infinite squarefree word w over Σ_5 such that if x is a subword of w and $|x| \geq 2$, then x^R is not a subword of w.

Proof. By reasoning similar to that given in the proof of Theorem 7 it suffices to show the theorem for $|x| = 2$. Let w' be an infinite squarefree word over Σ_3. Define the morphism $h : \Sigma_3^* \to \Sigma_5^*$ by

\[
\begin{align*}
0 & \to 012 \\
1 & \to 013 \\
2 & \to 014.
\end{align*}
\]

We show that the infinite word $w = h(w')$ has the desired property.

First we note that to verify that w is squarefree, it suffices by a theorem of Thue [7] (see also [2], [3], and [4]) to verify that $h(w)$ is squarefree for all 12 squarefree words $w \in \Sigma_3^*$ such that $|w| = 3$. This is left to the reader.

To see that if x is a subword of w and $|x| = 2$, then x^R is not a subword of w, consider the set \mathcal{A} consisting of all subwords of w of length 2. We have

\[
\mathcal{A} = \{01, 12, 13, 14, 20, 30, 40\}.
\]

Noting that if $x \in \mathcal{A}$, then $x^R \not\in \mathcal{A}$, we conclude that if x is a subword of w and $|x| \geq 2$, then x^R is not a subword of w.

References

[1] N. Alon, J. Grytczuk, M. Haluszczak, O. Riordan, “Nonrepetitive colorings of graphs”, *Random Structures Algorithms* 21 (2002), 336–346.

[2] D. Bean, A. Ehrenfeucht, G. McNulty, “Avoidable patterns in strings of symbols”, *Pacific Journal of Mathematics* 85 (1979), 261–294.
[3] J. Berstel, “Sur les mots sans carré définis par un morphisme”, *Automata, languages and programming (Sixth Colloq., Graz, 1979)*, pp. 16–25, Lecture Notes in Comput. Sci. **71**, Springer, Berlin-New York, 1979.

[4] M. Crochemore, “Sharp characterizations of squarefree morphisms”, *Theoret. Comput. Sci.* **18** (1982), 221–226.

[5] A. Szilard, personal communication, 2003.

[6] A. Thue, “Über unendliche Zeichenreihen”, *Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana* **7** (1906), 1–22.

[7] A. Thue, “Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen”, *Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana* **1** (1912), 1–67.