Attenuation of Macroseismic Intensity for Crustal Romanian Earthquakes: Calibrating the Bakun-Wentworth's Method

Eugen Oros¹, Anica Otilia Placinta¹, Mihaela Popa¹², Maria Rogozea¹, Daniel Paulescu¹

¹ National Institute for Earth Physics, Calugareni Street, No. 12, Magurele 077125, Ilfov, Romania
² Academy of Romanian Scientists, Splaiul Independentei, No. 54, sector 5, 050094 Bucharest, Romania
eugenoros@gmail.com

Abstract. The purpose of the present study is to elaborate a new model of the macroseismic intensity attenuation using all observed intensities data for the crustal earthquakes in Romania and then, based on this relationship, to calibrate the Bakun-Wentworth method, one of the modern methods most used to estimate the parameters of the historical earthquakes (localization, moment magnitude - Mw). The study is based on 14 calibrating earthquakes (4.5 ≤ Mw ≤ 5.7, 811 IDPs, II ≤ I ≤ VIII⁰ EMS) and 7 validation earthquakes (3.5 ≤ Mw ≤ 5.4, 215 IDPs, II ≤ I ≤ VIII⁰ EMS) produced mainly in western part of Romania and for which the reported macroseismic intensities were revised in a homogeneous manner and their locations and moment magnitudes were instrumentally determined. The method was tested using earthquakes produced in neighbouring regions, expanding its application space for earthquakes produced, for example, in the extra-Carpathian areas and Pannonian Depression. The comparative analysis with the results obtained with other methods confirms the high performance and the scientific rigour of the new attenuation relationship and of the Bakun-Wentworth method and their effective applicability for testing and validation of the results obtained in the process of the Romanian earthquakes catalogue revision.

1. Introduction
Earthquake catalogues represent the most important product of seismology being of fundamental importance in seismotectonic studies, recent crustal deformation and seismic hazard. They invariably have two components, a historical one with parameters of estimated source based on macroseismic data and a modern one, built on instrumental data. The homogenization of earthquake catalogues depending on the magnitude and locations of the recorded seismic events was and is one of the main concerns of seismologists with the aim to obtaining high quality databases and covering time periods longer, comparable to the return periods of strong earthquakes that define hazard and seismic risk. This homogenization process first involves the calibration of historical earthquakes produced before the year 1900. In the last decades, several modern methods of setting up historical earthquakes have developed and applied. among them, the most used being the methods Boxer [1], Meep [2] and Bakun-Wentworth [3,4]. These methods require the development of models for attenuation of macroseismic intensity using.
high quality macroseismic data obtained for earthquakes whose source parameters (moment magnitude, localization, focal depth) were computed based on instrumental data.

Figure 1. Earthquakes epicenters used for calibration (red dots), validation blue triangle) and testing (brown diamond) and associated IDPs distribution.

The seismic hazard on Romanian territory is due to the crustal and intermediate depth earthquakes occurred in the Vrancea area. Historical crustal earthquakes produced in Romania prior to 1980, studied mainly on the basis of the macroseismic data, and which are the subject of our study, are grouped at the contact between the Pannonian Depression and the Carpathian Orogen, in the central area of the Southern Carpathians and in the Foreland of the Eastern Carpathians, in the immediate vicinity of the Vrancea area. Sporadically, such earthquakes are noted in the Transylvanian Basin and at the contact between the orogenic structures and the Eastern-European and Moesian Platforms (Figure 1). The maximum observed intensity is Imax = IX° EMS and it was noted in the case of Mw = 6.4 earthquake, produced on October 15, 1834, north of Oradea, at the border between Romania and Hungary, [5]. The most recent revision of the parameters of the Romanian historical crustal earthquakes was made within the international project Share [6] and [7, 8]. However, the parameters obtained by [6] must be revised because they were obtained on the basis of regional calibrated relationships without considering the strong influence of local attenuation factors as shown [9, 10]. On the other hand, [7] only revised earthquakes in the West and South-West of Romania. Recently, [9, 10] have calibrated instrumentaly, using a large number of reference earthquakes and observation data 1) direct conversion relationships of epicentre intensity or isoseismic areas at the moment magnitude, Mw and 2) Meep's method [2], one of the most effective methods of setting up historical earthquakes based on macroseismic data (epicentre intensity, Io, intensities data points, IDPs) and instrumentals (coefficient of crustal attenuation, Q, locations, focal depth, moment magnitude, Mw, attenuation relationships). The revision of the Romplus earthquake catalog [11] is currently underway in two NIEP projects, for the crustal earthquakes applying the results from [9, 10, 12].
In this paper, we have proposed to calibrate the Bakun and Wentworth Method (BWM from now on), using an attenuation of macroseismic intensity model determined for the tectonic and structural conditions of Romania. This method uses all available intensity data (intensity data points, IDPs), rather than the subjective isoseismal lines to determine epicenter locations, equivalent moment magnitude and the associated uncertainties and it that have been applied in many other regions (e.g. [13] and references therein). Once calibrated, the BWM can be used as an alternative method for reviewing the parameters of the Romanian historical crustal earthquakes and / or as a method of validating the results obtained with other methods. It has the advantage that the results obtained are functions of probability which sustain the analyst's intervention to optimize the final solution, the most credible in a wider geoinformational context given by the knowledge of the active geological structures, the crustal deformations and the historical and recent seismicity. Moreover, its applicability is tested for a small number of observation data or an incomplete azimuth covering with macroseismic observation data, especially in adjacent areas but with similar geotectonic peculiarities (e.g. Pannonian Depression zone or the Moesian Platform depressions and surrounding areas).

2. Data and analysis

In order to ensure a homogeneous dataset, we selected the calibration and validation earthquakes produced after the year 1900, including all available IDPs (IPD ≥ M0 EMS) from the databases developed by [7, 8, 9, 10], based on the studies developed by [14-27] and references therein. The dataset has been completed with information from the literature or some international agencies databases (e.g. www. isc.uk). Instrumental data for calibration and validation historical earthquakes are those obtained by [12].

The BWM allows the analysis of the macroseismic intensities collected for an earthquake on the basis of which the location of the source as a macroseismic epicenter or intensity centre, IC is determined and the macroseismic magnitude or magnitude of the intensity, MI, equivalent to the moment magnitude Mw (Mw estimated or MwI) is estimated. In the first step of the procedure the attenuation model, that expresses the relationship between the values of individual intensity (IDPs), the moment magnitude and the hypocentral distance between each IDP and the instrumental epicenter. The relationship that defines this model is presented typically in the following form:

\[I_{ij} = C_0 + C_1 M_{Wj} + C_2 D_{ihj} + C_3 \log D_{ihj} \]

(1)

where \(M_{Wj} \) is the instrumental moment magnitude of the earthquake \(j \) (\(j = 1 \ldots n \) earthquakes), \(I_{ij} \) is the observed intensity value for an earthquake \(j \) in the point \(i \), and \(D_{ihj} \) is the hypocentral distance, in km, of the location \(i \) (event \(j \)) and \(D_0 = \sqrt{D_i^2 + h^2} \) for each IDP (\(D_i \) is the epicentral distance, \(h \) is the focal depth). The coefficients \(C_0 \) and \(C_1 \) highlight the link between magnitude and intensities \(I \), \(C_2 \) describes intrinsic attenuation or absorption and \(C_3 \) the geometric one. By inverting the model, we determine the magnitude of \(MI_{ij} \) in each observation point and for each earthquake \(j \), as follows:

\[MI_{ij} = \frac{1}{C_1} [I_{ij} - C_0 - C_3 D_{ihj} - C_2 \log D_{ihj}] \]

(2)

Applying this method requires the computing of the attenuation relationship coefficients using calibration and validation earthquakes for which: 1) there are very good quality macroseismic observations (IDPs), revised in a homogeneous manner on the same intensity scale (here European Macroseismic Scale, EMS98) azimuthally distributed as completely as possible around the epicenter, 2) IDPs cover a wide range of intensities, 3) moment magnitude, Mw is well constrained instrumental and 4) locations and focal depths are robust, based on instrumental data. In the second step of the BMW procedure, the location and magnitude of each earthquake \(j \) are estimated by calculating \(MI_{ij} \) in hypothetical epicenters \(x_i \) arranged in a grid-type network, the \(MI \) magnitude of each earthquake being the average of \(MI_{ij} \) magnitudes. Then, we compute the average root mean square rms(M^2_i) for each
hypothesised Ii-epicentre pair using a weights system defined according to the distance [3]. For each earthquake the rms(Mi) outlines the epicenter area, [3] associating the values of these contours with probabilistic confidence levels of 50%, 67%, 80%, 90% and 95% statistically equivalent to rms(Mi) variations of not more than \(\pm 1 \sigma \), respectively \(\pm 2 \sigma \) (\(\sigma \) = standard deviation). The intensity center (IC) for the \(j \) earthquake is the hypothetical epicenter \(x_k \) for which the rms(Mi) is minimal, it represents more the centroid moment than the epicenter [28] and can be realistically adjusted within the level of confidence in which is depending on the tectonic characteristics. The IC selection is optimized by the bootstrap procedure. The earthquake magnitude \(M_w \) is equal to the magnitude of the IC intensity center with quantified uncertainty according to the level of statistical confidence and the number of IDPs (details in [3,4]).

3. Results and discussions

3.1. The attenuation model

To calibrate the relationship (1) we used the mean values of the hypocentral distances obtained from 14 calibration earthquakes with instrumental constraint source parameters (1038 IDPs, 4.8 \(\leq M_w \leq 5.7 \), \(I_i = \text{II-VIII} \) EMS). The results, validated and tested with the observations of 408 IDPs obtained from 12 validation earthquakes (4.0 \(\leq M_w \leq 6.4 \), \(I_i = \text{II-VIII} \) EMS) of which, 416 IDPs from 3 test earthquakes (5.7 \(\leq M_w \leq 6.4 \), \(I_i = \text{II-VIII} \) EMS) (Figure 1). The attenuation model determined on the basis of calibration earthquakes is defined by the relationship:

\[
I_i = 1.940 (\pm 1.04) + 1.961 (\pm 0.17)Mw + 0.004(\pm 0.003)D_{ih} - 4.576logD_{ih}
\]

(3)

with \(R^2 = 0.927, \sigma = 0.385 \). The magnitude calculated in points \(i \) will be:

\[
M_{it} = [I_i - (1.940 + 0.004D_{ih} - 4.576logD_{ih})]/1.961
\]

(4)

To obtain an unaltered calibration of incomplete data at low intensities we only use values \(I_i > I_{\text{min}} + 1 \) or \(I_i > I_{\text{min}} + 1.5 \). The relationship obtained for modeling the attenuation is represented graphically, for exemplification, using 3 reference events (Figure 2), three validation events (Figure 3) and three test events (Figure 4). We notice in Figures 2 and 3 that our attenuation model is robust, with a very good fit between the observation data (\(I_i \)) and those estimated by relation (3) regardless of the number of IDPs and the earthquake magnitude. Also, as noted by [7], the IDPs azimuth does not significantly affect the estimated intensities values, the residues being equal to zero and the regression mean slope of the between residues \(I_i \) and azimuth, calculated for the reference and validation earthquakes has very low values \((0.00034 \pm 0.00099) \) (e.g. Figure 2, bottom). However, there can be noticed differences between the observed intensities and those estimated with the relation (3) at low values of the intensities due to the very small number of observations which negatively influence the calculated average values of the hypocentral distances (e.g. Figure 3b - events of 23.11.2006, \(M_w = 4.5 \) and 16.01.1916, \(M_w = 6.4 \); Figure 4b - events of 15.08.1985, \(M_w = 5.3 \) and 21.11.2014, \(M_w = 5.7 \)). The regression line slope, slightly different to zero, from the residual graph \(I_i \) versus the hypocentral distance (Figure 4c) shows that local effects, source directivity and/or misalignment of the observed intensities (observer's subjectivity, land conditions with unpopulated or slightly populated areas) may be the main causes of variance of residues by distance. The regression coefficient roughly equal to zero and the positive \(I_i \); residues for \(D_{ih} > 75 \) km support the idea of overshooting of the intensities due to local effects, the more so as the attenuation model we have obtained has been shown above to be very robust. There is a high degree of correlation between the observed values intensities and magnitudes and those computed with relations (3) and (4), respectively \(R^2 = 0.7 \) and \(R^2 = 0.9 \), the deviations from the \(I_{\text{ESTIM}} = I_{\text{OBS}} \) and \(M_{w_{\text{estimated}}} = M_{w_{\text{instrumental}}} \) curves being very small, respectively \(\sigma_{I_{\text{M}}} = 0.5 \) degrees of intensity at extreme intensity values and \(\sigma_{M_{w_{\text{M}}} = 0.15 \) magnitude units at small magnitude values (Figure 3d).
The analysis of three test earthquakes located and felt on large areas of the Pannonian Depression and the extra-Carpathian Area (Focsani and Getica Depressions and the East European and Moesian Platforms) shows the compatibility of the attenuation model with the morphostructural conditions specific to these regions (Figure 4) and thus the applicability of relations (3) and (4) for reviewing the historical earthquakes produced and recorded in these territories is argued. We have also successfully tested the applicability of the relationship for magnitude estimation in case of a low number of IDP (N = 14, earthquake on 29.11.1988, Mw = 4.2, Io = V° EMS). The relationship (4) can be used together with the relationships developed by [10] and if we have a single point of observation, if it is located in the epicentre area of a strong earthquake (observation associated with a aftershock) or in an area with recent known tectonics and seismicity (clusters, focal mechanisms).

Figure 2. Examples of three calibration earthquakes used to develop the attenuation model. a) The IDPs distributions for earthquakes from 02.04.1901, Mw= 5.3 (IDPs from [18] and [7]), 12.07.1991, Mw=5.6 and 02.12.1991, Mw=5.5 ([7]); red stars are instrumental epicenters. b) Intensity vs hypocentral distance plots and attenuation curve for the three events (black dashed lines). c) Ii residuals vs azimuth of IDPs.
Figure 3. Examples of three validation earthquakes. **a**) the IDPs distributions and the attenuation curves for the validation earthquakes on 29.11.1988, Mw=4.2 (IDPs from [7], 23.11.2006, Mw=4.5 (IDPs from [26], Mw after [19], and 02.12.1991, Mw=5.5 (after [7]); red stars are instrumental epicenters. **b**) Intensity vs hypocentral distance scatter plots and attenuation curve for the three events (black dashed lines). **c**) Ii residuals vs Mw, hypocentral distance and observed intensities; red lines are least-squares linear fits; black dashed lines are regressions for Dh>75 km. **d**) Ii and average MwI estimated with the relationships (3) and (4) for the calibration and validation earthquakes compared with those observed and instrumental ones, respectively.
3.2. Location and magnitude M_{W_I} estimation

With the attenuation model (3), we followed the BWM procedure to determine the locations (IC) and their corresponding magnitudes (M_{W_I}) for the calibration and validation earthquakes, to verify the method capability to obtaining source parameters comparable to the instrumental ones. We used the method for a test earthquake to check its applicability in surrounding regions, with similar (depressions, thinning crust) or different (platforms) morpho-structural peculiarities. For this, we used the computing program applied by the Neries project partners [30]. In Table 1 and Figure 5 are presented the results of the method application to a calibration (02.04.1901, $Io = VII^0_{OSMS}$, $M_{W_I} = 5.3$), calibration (29.11.1988, $Io = VI^0_{OSMS}$, $M_{W_I} = 4.2$) and test (Oct 14, 1892, $Io = VIII^0_{OSMS}$, $M_{W_I} = 6.5$) earthquakes.

It can be observed that all IC locations, both, instrumental and macroseismic, determined with the MEEP method of [2], recently calibrated by [10], are in the confidence zone of 50%, at very low distances between them. The moment magnitudes are also comparable (Table 1) which proves the scientific rigor of the new attenuation model, reflecting also the validity and credibility of the results obtained in this study. In the case of strong earthquakes ($M_{W_I} > 5.0$) it can be noted an apparent elongation of the confidence intervals of residues in a direction parallel to the active tectonic as possible effect of the source directivity, the obvious effect in the epicentral area where the stronger movements are generated by sliding on the fault near the centroid moment [28]. To determine the foci depth, the Blake method, instrumentally calibrated, will be used [10].

Figure 4. Examples of test earthquakes. a) IDPs distributions and attenuation curves for test earthquakes 14.10.1892, $M_{W_I}=6.5$ $Io=VIII^0_{OSMS}$, 4.2 (IDPs from [27], M_{W_I} after [6]), 15.08.1985, $M_{W_I}=5.3$ (IDPs from [17, M_{W_I} after [29]) and 21.11.2014, $Io=VI^0_{OSMS}$, $M_{W_I}=5.5$ (after [15]). b) Intensity vs hypocentral distance scatter plots and attenuation curve (black dashed lines) for the three events.
Table 1. The results of BWM application for test earthquakes represented in Figure 5.

	Instrumental data location	Mw	Meep location	Meep Mw	BWM location	BWM Mw
02.04.1901	45.513/20.638	5.3	45.482/20.640	5.5 ± 0.1	45.590/20.700	5.39 ± 0.03^a
29.11.1988	45.675/21.585	4.2	45.660/21.579	4.2 ± 0.4	45.625/21.580	4.3 ± 0.1^b
14.10.1892[*]	-	-	43.714/26.845	7.3 ± 0.1	43.669/27.024	6.6 ± 0.4^a

^a average Mw_I using all IDPs; ^b range of magnitude following the confidence parameters criteria [Bakun1999];
 [*] magnitude after [31] is between 6.0 and 7.0.

Figure 5. BWM application: location and Mw_I determination for calibration (02.04.1901), validation (29.11.1988) and test (14.10.1892) earthquakes and comparing results with instrumental and macroseismic data obtained with the Meep calibrated method [10]. Tectonic after [32].

4. Conclusions
We calibrated instrumental, using high-quality data, the attenuation relationship of macroseismic intensity with distance and moment magnitude for the Romanian crustal earthquakes. The relationship was validated based on a data set that fulfilled the same quality conditions as calibration. The method was used to test the Bakun-Wentworth method of historical earthquakes parameterization using macroseismic data. Our results show that the method can be used in a transparent, homogenous and
repetitive manner for the historical earthquakes re-evaluation, produced throughout the Carpathian - Panonic Basin, including wider, neighbouring, extra-Carpathian regions, being a viable, rigorous scientific alternative for the MEEP method used to revise the Romanian earthquake catalogue. The attenuation relationship can also be used only for magnitude estimation of the historical earthquakes for which there is a small number of macroseismic data being thus, useful and efficient for validating the results obtained with simple conversion relationships between intensity and magnitude, this new relationship introducing the characteristics of the crustal attenuation between the foci and the observation point.

Acknowledgment(s)
This paper was carried out within Nucleu Program MULTIRISC, supported by MCI, projects no. PN19080101 and PN19080102.

References
[1] P. Gasperini, F., Bernardini, G., Valensise, F., Boschi, “Defining seismogenic sources from historical earthquakes felt reports. Bulletin of the Seismological Society of America, 89, 94-110, 1999.
[2] M. W. Musson and M-J. Jimenez, “Macroseismic estimation of earthquake parameters,” NERIES project report, Module N44, Deliverable D3 (Edinburgh), 41 pp, 2008.
[3] W. H. Bakun, C. M. Wentworth, Estimating earthquake location and magnitude from Seismic Intensity Data, Bulletin of Seismological Society of America, 87, 6, 1502 – 1521, 1997.
[4] W. H. Bakun, C. M. Wentworth, Erratum to Estimating earthquake location and magnitude from seismic intensity data, Bulletin of Seismological Society of America, 89, 557, 1999.
[5] T. Zsiros, “The Seismicity and Seismic Risk of Carpathian Basin: Hungarian Earthquake Catalogue (456-1995),” GGRI, Hungarian Academy of Sciences, 2000.
[6] M. Stuchi, A. Rovida, A. A. Gomez Capera, P. Alexandre, T. Camelbeck, M. B. Demircioglu, P. Gasperini, V. Kouskouna, R. M. W. Musson, M. Radulian, K. Sesetyan, S. Vilanova, D. Baumont, H. Bungum, D. Fah, W. Lenhardt, K. Makropoulos, J. M. Martinez Solares, O. Scotti, M. Zivcic, P. Albin, J. Batillo, C. Papaioannou, R. Tatevossian, M. Locati, C. Meletti, D. Vigano, and D. Giardini, “The SHARE European Earthquake Catalogue (SHEEC) 1000–1899.” Journal of Seismology, 17, 523–544, 2013.
[7] E. Oros, “Research on seismic hazard for Banat Seismic Region of Romania”, PhD Thesis, University of Bucharest, 2011.
[8] E. Oros, M. Popa, I. A. Moldovan, “Seismological DataBase for Banat Seismic Region (Romania)-Part 1: The Parametric Earthquake Catalogue”. Romanian Journal of Physics, 53, 7-8, 955-964, 2008.
[9] E. Oros, M. Popa, M. Rogozea, “Calibration of crustal historical earthquakes from IntraCarpathian region of Romania,” WMESS 2017 Conference Proceedings, IOP Publishing Earth and Environmental Science, 032004, 2017, doi:10.1088/1755-1315/95/3/032004.
[10] E. Oros, A. O. Placinta, M. Popa, “Calibration and validation of MEEP method for location and magnitude estimation of historical earthquakes from IntraCarpathian Region of Romania.” WMESS 2018 Conference Proceedings, IOP Publishing Earth and Environmental Science IOP Praga, 221:012057, doi: 10.1088/1755-1315/221/1/012057, 2018.
[11] M. C., Oncescu, V., Marza, M. Rizescu, M., Popa, “The Romanian earthquakes catalogue, 984-1997”. In Vrancea Earthquakes: Tectonics, Hazard Risk Mitigation; Wenzel Lungu (eds.), Kluwer Publication, 43-47, 1999.
[12] E. Oros, E., Constantinescu, D., Paulescu, M., Popa, A. O., Placinta, Using early instrumental data to determine the source parameters of the strongest historical earthquakes occurred in West Romania (1900-1980). Paper presented at the XIXth International Multidisciplinary Scientific GeoConference SGEM2019, 28 June-7 July, 2019, Albena, Bulgaria, Proceedings SGEM 2019, (accepted), 2019.
[13] A. A. Gómez-Capera, J. García-Peláez, T. Chuy-Rodriguez, E. de Jesús Salcedo-Hurtado, M. Stucchi, “Calibration and validation of Bakun and Wentworth algorithm for computing location and magnitudes of historical earthquakes from macroseismic data in eastern Cuba”, (in Spanish), Boletín de Geología, 35, 2, 113-127, 2013.

[14] C. Radu, “Contributions to the study of seismicity of Romania and comparisons with the seismicity of Mediterranean Basin and the seismicity of southeast France,” These PhD, Université de Strasbourg, 1974.

[15] A. P. Constantin, I. A. Moldovan, A. Craiu, M. Radulian, C. Ionescu, “Macroseismic intensity investigation of the November 2014, M=5.7, Vrancea (Romania) crustal earthquake,” Annals of Geophysics, 59, 5, S0542; doi:10.4401/ag-6998, 2016.

[16] N. V. Shebalin, G. Leydecker, N. Mokrushina, O. Erteleva, Y. Vassiliev, “Earthquake Catalogue for Central-Southeastern Europe 342BC-1990AD,” Final Report to Contract ETNU-CT 93-0087, European Comm, Rep. ETNUCT93-0087, Brussels, 1998.

[17] T. Zsiros, “Macroseismic observations in Hungary (1983-1988),” Seismological Observatory, Geodet. and Geophys. Res. Institute, Hungarian Academy of Sciences, Preprint, 1989.

[18] T. Zsiros, “Seismicity of Banat Region”, Acta Geodaetica et Geophysica, 42(3), 361-374, 2007.

[19] T. Zsiros, “The Ermelek earthquake of 1834,” Acta Geodaetica, Geophysica et Montanists, Hungarica, 18 (1-2), 129 – 134, 1993.

[20] T. Zsiros, “Macroseismic observations in Hungary (1989-1993),” Seismological Observatory, Geodet. and Geophys. Res. Institute, Hungarian Academy of Sciences, Preprint, 1994.

[21] T. Zsiros, “The Seismicity and Seismic Risk of Carpathian Basin: Hungarian Earthquake Catalogue (456-1995),” GGRI, Hungarian Academy of Sciences, 2000.

[22] L. Toth, P. Monus, T. Zsiros, “Hungarian Earthquake Bulletin 1995, 1997 and 1999,” Georisk, Budapest, 1996, 1998 and 2000.

[23] L. Toth, P. Monus, T. Zsiros, M. Kiszely, and Z. Kosztyu, “Hungarian Earthquake Bulletin 2000 and 2001,”. Georisk, Budapest, 2001 and 2002.

[24] L. Toth, P. Monus, T. Zsiros, M. Kiszely, and T. Czifra, “Hungarian Earthquake Bulletin 2002 and 2011.”. Georisk-MTA GGKI, Budapest, 104 pp., 2003 and 2012.

[25] L. Toth, P. Monus, T. Zsiros, Z. Bus, M. Kiszely, T. Czifra, “Hungarian Earthquake Bulletin 2006, 2008 and 2010.”., Georisk-MTA GGKI, Budapest, 2007, 2009 and 2011.

[26] L. Toth., P. Monus, T. Zsiros, M. Kiszely, “Seismicity in the Pannonian Region – earthquake data”, EGU Stephan Mueller Special Publication Series, 3, 9–28, 2012.

[27] AHEAD Working Group. AHEAD, the European Archive of Historical Earthquake Data. DOI: http://doi.org/10.6092/INGV.IT-AHEAD.

[28] W. H. Bakun, “MMI Attenuation and Historical Earthquakes in the Basin and Range Province of Western North America”, Bulletin of the Seismological Society of America, Vol. 96, 6, 2220–2220, 2006.

[29] ISC, International Seismological Centre, On-line Bulletin, http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom, http://doi.org/10.31905/D808B830, 2016.

[30] A.A. Gómez Capera, C. Meletti, R. Musson, M. Stucchi and collaborators: Alvarez Rubio, S., Batlló, J., Cassera, A., D’Amico, V., Faeh, D., Locati, M., Mirto, C., Papaioannou, Ch., Rovida, A., Ventouzi, C., Gasperini, P., Scotti, O. Giardini, D., “The European Earthquake Catalogue (1000-1600), demo version. Part 1-The NA4 Calibration Initiative, Deliverable D5”. NERIES, Distributed Archive of Historical Earthquake Data (NA4), EC Project number 026130, Internal Report, 2009 (http://emidius.mi.ingv.it/neries_NA4/ deliverables).

[31] R. Glavcheva, C. Radu, “The earthquake of October 14th, 1892 in Central Balkans: a transfrontier case”, in Historical Investigation of European Earthquakes, Materials of the CEC project «Review of Historical Seismicity in Europe», edited by P. Albini and A. Moroni (CNR, Milano), vol. 2, 215-223, 1994.

[32] M. Sandulescu, “Geotectonic of Romania”, Romanian Academy Publishing House, 1984.