An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices

Anirban Banerjee1,2 and Ranjit Mehatari1

1Department of Mathematics and Statistics
2Department of Biological Sciences
Indian Institute of Science Education and Research Kolkata
Mohanpur-741246, India
\{anirban.banerjee, ranjit1224\}@iiserkol.ac.in

May 2, 2016

Abstract

A square matrix is called stochastic (or row-stochastic) if it is non-negative and has each row sum equal to unity. Here, we constitute an eigenvalue localization theorem for a stochastic matrix, by using its principal submatrices. As an application, we provide a suitable bound for the eigenvalues, other than unity, of the Randić matrix of a connected graph.

AMS classification: 15B51, 15A42, 05C50
Keywords: Stochastic matrix, eigenvalue localization, Randić matrix, normalized Laplacian;

1 Introduction

Stochastic matrices occur in many fields of research, such as, computer-aided-geometric designs [17], computational biology [16], Markov chains [20], etc. A stochastic matrix S is irreducible if its underlying directed graph is strongly connected. In this paper, we consider S to be irreducible. Let e be the column vector whose all entries are equal to 1. Clearly, 1 is an eigenvalue of S with the corresponding eigenvector e. By Perron-Frobenius theorem (see Theorem 8.4.4 in [8]), the multiplicity of the eigenvalue 1 is one and all other eigenvalues of S lie in the closed unit disc $\{z \in \mathbb{C} : |z| \leq 1\}$. The eigenvalue 1 is called the Perron eigenvalue (or Perron root) of the matrix S, whereas, the eigenvalues other than 1 are known as non-Perron eigenvalues of S.

Here, we describe a method for localization of the non-Perron eigenvalues of S. The eigenvalue localization problem for stochastic matrices is not new. Many researchers gave significant contribution to this context \cite{6, 9, 10, 12, 13}. In this paper, we use Geršgorin disc theorem \cite{7} to localize the non-Perron eigenvalues of S. Cvetković et al. \cite{6} and Li et al. \cite{12, 13} derived some useful results, using the fact that any non-Perron eigenvalue of S is also an eigenvalue of the matrix $S-(ee^T)\text{diag}(c_1, c_2, \cdots, c_n)$, where $c_1, c_2, \cdots, c_n \in \mathbb{R}$.

In \cite{6}, Cvetković et al. found a disc which contains all the non-Perron eigenvalues of S.

Theorem 1.1. \cite{6} Let $S = [s_{ij}]$ be a stochastic matrix, and let s_i be the minimal element among the off-diagonal entries of the i-th column of S. Taking $\gamma = \max_{i \in \mathbb{N}}(s_{ii} - s_i)$, for any $\lambda \in \sigma(S) \setminus \{1\}$, we have

$$|\lambda - \gamma| \leq 1 - \text{trace}(S) + (n - 1)\gamma.$$

Theorem \[1.1\] was further modified by Li and Li \cite{12}. They found another disc with different center and different radius.

Theorem 1.2. \cite{12} Let $S = [s_{ij}]$ be a stochastic matrix, and let $S_i = \max_{j \neq i} s_{ji}$. Taking $\gamma' = \max_{i \in \mathbb{N}}(S_i - s_{ii})$, for any $\lambda \in \sigma(S) \setminus \{1\}$, we have

$$|\lambda + \gamma'| \leq \text{trace}(S) + (n - 1)\gamma' - 1.$$

In this paper, we show that there exist square matrices of order $n - 1$, whose eigenvalues are the non-Perron eigenvalues of S. We apply Geršgorin disc theorem to those matrices in order to obtain our results. We provide an example where our result works better than Theorem 1.1 and Theorem 1.2.

Let $\Gamma = (V, E)$ be a simple, connected, undirected graph on n vertices. Two vertices $i, j \in V$ are called neighbours, written as $i \sim j$, if they are connected by an edge in E. For a vertex $i \in V$, let d_i be its degree and N_i be the set neighbours of the vertex i. For two vertices $i, j \in V$, let $N(i, j)$ be the number of common neighbours of i and j, that is, $N(i, j) = |N_i \cap N_j|$. Let A denote the adjacency matrix \cite{5} of Γ and let D be the diagonal matrix of vertex degrees of Γ. The Randić matrix R of Γ is defined by $R = D^{-1/2}AD^{-1/2}$ which is similar to the matrix $R = D^{-1}A$. Thus, the matrices R and R have the same eigenvalues. The matrix R is an irreducible stochastic matrix and its (i,j)-th entry is

$$R_{ij} = \begin{cases} \frac{1}{d_i}, & \text{if } i \sim j, \\ 0, & \text{otherwise.} \end{cases}$$

The name Randić matrix was introduced by Bozkurt et al. \cite{3} because R has a connection with Randić index \cite{14, 18}. In recent days, Randić matrix becomes more popular to researchers. The Randić matrix has a direct connection with normalized Laplacian matrix $L = I_n - R$ studied in \cite{4} and with $\Delta = I_n - R$ studied is \cite{11, 15}. Thus, for any graph Γ, if λ is an eigenvalue of the normalized Laplacian matrix, then $1 - \lambda$ is an eigenvalue of the Randić matrix.
In Section 3, we localize non-Perron eigenvalues of \mathcal{R}. We provide an upper bound for the largest non-Perron eigenvalue and a lower bound for the smallest non-Perron eigenvalue of \mathcal{R} in terms of common neighbours of two vertices and their degrees. The eigenvalue bound problem was studied previously in many articles [2, 4, 11, 19], but the lower bound of the smallest eigenvalue of \mathcal{R} given by Rojo and Soto [19] is the only one which involves the same parameters as in our bound. We recall the Rojo-Soto bound for Randić matrix.

Theorem 1.3. [19] Let Γ be a simple undirected connected graph. If ρ_n is the eigenvalue with the largest modulus among the negative Randić eigenvalues of Γ, then

$$|\rho_n| \leq 1 - \min_{i \sim j} \left\{ \frac{N(i,j)}{\max\{d_i, d_j\}} \right\},$$

where the minimum is taken over all pairs (i, j), $1 \leq i < j \leq n$, such that the vertices i and j are adjacent.

One of the drawbacks of Theorem 1.3 is that it always produces the trivial lower bound of ρ_n, if the graph contains an edge which does not participate in a triangle. Though the bound in Theorem 1.3 and our bound (Theorem 3.1) are incomparable but, in many occasions, our bound works better than Rojo-Soto bound. We illustrate this by a suitable example.

2 Localization of the eigenvalues of an irreducible stochastic matrix

Let e_1, e_2, \ldots, e_n be the standard orthonormal basis for \mathbb{R}^n and let $e' = [1 \ -1 \ -1 \ \cdots \ -1]^T$. For $k \geq 1$, let j_k be the $k \times 1$ matrix with each entry equal to 1 and 0_k be the $k \times 1$ zero matrix. We define the matrix P as

$$P = [\ e \ e_2 \ e_3 \ \cdots \ e_n \].$$

It is easy to verify that the matrix P is nonsingular and its inverse is

$$P^{-1} = [\ e' \ e_2 \ e_3 \ \cdots \ e_n \].$$

We use $S(i|i)$ to denote the principal submatrix of S obtained by deleting i-th row and the i-th column. Now we have the following theorem.

Theorem 2.1. Let S be a stochastic matrix of order n. Then S is similar to the matrix

$$\begin{bmatrix} 1 & x^T \\ 0_{n-1} & B \end{bmatrix}$$

where $x^T = [s_{12} \ s_{13} \ \cdots \ s_{1n}]$, and $B = S(1|1) - j_{n-1}x^T$.

3
Proof. Let \(y = [s_{21} \ s_{31} \ \ldots \ s_{n1}]^T \). Then the matrices \(S, P, P^{-1} \) can be partitionoid as,

\[
S = \begin{bmatrix}
s_{11} & x^T \\
y & S(1|1)
\end{bmatrix},
\]

\[
P = \begin{bmatrix}
1 & 0^T_{n-1} \\
j_{n-1} & I_{n-1}
\end{bmatrix},
\]

\[
P^{-1} = \begin{bmatrix}
1 & 0^T_{n-1} \\
-j_{n-1} & I_{n-1}
\end{bmatrix}.
\]

Now

\[
P^{-1}SP = \begin{bmatrix}
1 & 0^T_{n-1} \\
-j_{n-1} & I_{n-1}
\end{bmatrix} \begin{bmatrix}
1 & 0^T_{n-1} \\
y & S(1|1)
\end{bmatrix} \begin{bmatrix}
1 & 0^T_{n-1} \\
j_{n-1} & I_{n-1}
\end{bmatrix} = \begin{bmatrix}
1 & 0^T_{n-1} \\
j_{n-1} & I_{n-1}
\end{bmatrix}
\]

\[
\sum_{j=1}^{n}s_{1j}x^T - s_{11}j_{n-1} + S(1|1)j_{n-1} - j_{n-1}x^Tj_{n-1} - S(1|1)j_{n-1}x^T.
\]

For \(i = 2, 3, \ldots, n \), we have \((P^{-1}SP)_i = s_{i1} - s_{11} + \sum_{j=2}^{n}s_{ij} - \sum_{j=2}^{n}s_{1j} = 0\) and hence the result follows.

\[\square\]

Theorem 2.2. Let \(S = [s_{ij}] \) be a stochastic matrix of order \(n \). Then any eigenvalue other than 1 is also an eigenvalue of the matrix

\[
S(k) = S(k|k) - j_{n-1}s(k)^T, \ k = 1, 2, \ldots, n
\]

where \(s(k)^T = [s_{k1} \ \ldots \ s_{k,k-1} \ s_{k,k+1} \ \ldots \ s_{kn}] \) is the \(k \) deleted row of \(S \).

Proof. If \(k = 1 \) then the proof is straightforward from Theorem 2.1.

For \(k > 1 \), consider the permutation matrix \(P_k = [e_2 \ e_3 \ \ldots \ e_k \ e_1 \ e_1+1 \ \ldots \ e_n] \).

Therefore, the matrix \(S \) is similar to the matrix

\[
P_k^{-1}SP_k = \begin{bmatrix}
s_{kk} & x^T \\
y & S(k|k)
\end{bmatrix},
\]

where \(x = s(k) = [s_{k1} \ \ldots \ s_{k,k-1} \ s_{k,k+1} \ \ldots \ s_{kn}]^T \)

and \(y = [s_{1k} \ \ldots \ s_{k-1,k} \ s_{k+1,k} \ \ldots \ s_{nk}]^T \).

Now, applying Theorem 2.1 to \(P_k^{-1}SP_k \), we get that \(S \) is similar to the matrix

\[
\begin{bmatrix}
1 & s(k) \\
0_{n-1} & S(k|k) - j_{n-1}s(k)^T
\end{bmatrix}.
\]

Thus, any eigenvalue of \(S \), other than 1, is also an eigenvalue of the matrix \(S(k), k = 1, 2, \ldots, n \). \[\square\]
Theorem 2.3. (Geršgorin[7]) Let $A = [a_{ij}]$ be an $n \times n$ complex matrix. Then the eigenvalues of A lie in the region
\[G_A = \bigcup_{i=1}^{n} \left\{ z \in \mathbb{C} : |z - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| \right\}. \]

Theorem 2.4. Let S be a stochastic matrix of order n. Then the eigenvalues of S lie in the region
\[\bigcap_{i=1}^{n} \left[G_{S(i)} \cup \{1\} \right], \]
where $G_{S(i)} = \bigcup_{k \neq i} \{ z \in \mathbb{C} : |z - s_{kk} + s_{ik}| \leq \sum_{j \neq k} |s_{kj} - s_{ij}| \}$.

Proof. By Theorem 2.2, we have, for all i,
\[\sigma(S) = \sigma(S(i)) \cup \{1\}. \]

By Geršgorin disc theorem, $\sigma(S(i)) \subseteq G_{S(i)}$, for $i = 1, 2, \ldots, n$. Therefore,
\[\sigma(S) \subseteq \bigcap_{i=1}^{n} \left[G_{S(i)} \cup \{1\} \right]. \]

Again, applying Theorem 2.3 to $G_{S(i)}$, we get
\[G_{S(i)} = \bigcup_{k=1, k \neq i}^{n} \left\{ z \in \mathbb{C} : |z - S(i)_{kk}| \leq \sum_{j \neq k} |S(i)_{kj}| \right\} \]
\[= \bigcup_{k=1, k \neq i}^{n} \left\{ z \in \mathbb{C} : |z - s_{kk} + s_{ik}| \leq \sum_{j \neq k} |s_{kj} - s_{ij}| \right\}. \]

Hence, the proof is completed.

Remark. Theorem 2.4 works nicely in some occasions even if Geršgorin disc theorem fails to provide a non-trivial result. For example, let S be an irreducible stochastic matrix with at least one diagonal element zero. Then, by Geršgorin disc theorem, $G_S \supseteq \{ z \in \mathbb{C} : |z| \leq 1 \}$. But, in this case, Theorem 2.4 may provide a non-trivial eigenvalue inclusion set (see Example 2.1 and Example 3.1). Again, Theorem 1.1 and Theorem 1.2 always provide larger single discs, whereas, the eigenvalue inclusion set in Theorem 2.4 is a union of smaller regions. Example 2.1 gives a numerical explanation to this interesting fact.

Example 2.1. Consider the 4×4 stochastic matrix
\[S = \begin{bmatrix} 0.25 & 0.25 & 0.3 & 0.2 \\ 0 & 0.5 & 0.33 & 0.17 \\ 0.6 & 0.4 & 0 & 0 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{bmatrix}. \]
Then we have

\[S(1) = \begin{bmatrix} 0.25 & 0.03 & -0.03 \\ 0.15 & -0.3 & -0.2 \\ -0.05 & 0 & 0.2 \end{bmatrix}, \]

\[S(2) = \begin{bmatrix} 0.25 & -0.03 & 0.03 \\ 0.6 & -0.33 & -0.17 \\ 0.1 & -0.03 & 0.23 \end{bmatrix}, \]

\[S(3) = \begin{bmatrix} -0.35 & -0.15 & 0.2 \\ -0.6 & 0.1 & 0.17 \\ -0.5 & -0.2 & 0.4 \end{bmatrix}, \]

\[S(4) = \begin{bmatrix} 0.15 & 0.05 & 0 \\ -0.1 & 0.3 & 0.03 \\ 0.5 & 0.2 & -0.3 \end{bmatrix}. \]

The eigenvalues of \(S \) are \(-0.307, 0.174, 0.282, 1\). Figure 1 shows that any eigenvalue other than 1 lies in each \(G_{S(k)} \). Also, from Figure 1, it is clear that \(\sigma(S) \subseteq \cap_{k=1}^{4} \{G_{S(k)} \cup \{1\}\} = G_{S(1)} \cup \{1\} \).

Now, we estimate the eigenvalue inclusion sets in Theorem 1.1 and Theorem 1.2. We have \(s_1 = 0, s_2 = 0.2, s_3 = 0.3, s_4 = 0 \) and \(S_1 = 0.6, S_2 = 0.4, S_3 = 0.33, S_4 = 0.2 \). Therefore,

\[\gamma = \max\{0.25, 0.3, -0.3, 0.4\} = 0.4 \]

and

\[\gamma' = \max\{0.35, -0.1, 0.33, -0.2\} = 0.35. \]

By Theorem 1.1, any eigenvalue \(\lambda \neq 1 \) of \(S \) satisfies

\[|\lambda - 0.4| \leq 1.05. \]

Again, by Theorem 1.2, for any \(\lambda \in \sigma(S) \setminus \{1\} \), we have

\[|\lambda + 0.35| \leq 1.2. \]

It is easy to verify that \(G_{S(1)} \) is contained in both the discs. Therefore, in this example, Theorem 2.4 works better than the other two.

3 Bound for Randić eigenvalues

In this section, we give a nice bound for non-Perron eigenvalues of the Randić matrix of a connected graph \(\Gamma \). Since \(R \) is symmetric, the eigenvalues of \(R \) (or \(R \)) are all real and lie in the closed interval \([-1, 1]\). We arrange the eigenvalues of \(R \) as

\[-1 \leq \lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_2 < \lambda_1 = 1.\]

Now we have the following theorem.
Theorem 3.1. Let Γ be a simple connected graph of order n. Then

$$-2 + \max_{i \in \Gamma} \min_{k \neq i} \{\alpha_{ik} \} \leq \lambda_n(\mathcal{R}) \leq \lambda_2(\mathcal{R}) \leq 2 - \max_{i \in \Gamma} \min_{k \neq i} \{\beta_{ik} \},$$

where, for $k \neq i$, α_{ik} and β_{ik} are given by

$$\alpha_{ik} = \begin{cases}
\frac{1}{d_k} + \frac{2N(i,k)}{\max\{d_i, d_k\}}, & \text{if } k \sim i \\
\frac{2N(i,k)}{\max\{d_i, d_k\}}, & \text{if } k \not\sim i
\end{cases}$$

and

$$\beta_{ik} = \begin{cases}
\frac{1}{d_k} + \frac{2}{d_i} + \frac{2N(i,k)}{\max\{d_i, d_k\}}, & \text{if } k \sim i \\
\frac{2N(i,k)}{\max\{d_i, d_k\}}, & \text{if } k \not\sim i
\end{cases}$$

Proof. Let λ be a non-Perron eigenvalue of \mathcal{R}. By Theorem 2.2, λ is also an eigenvalue of $\mathcal{R}(i) = \mathcal{R}(i|i) - j_{n-1}r(i)^T$, where $r(i)^T$ is the i-deleted row of \mathcal{R}, for $i = 1, 2, \ldots, n$. So λ lies
in the regions $G_{R(i)}$ with

$$G_{R(i)} = \bigcup_{k \neq i} \left\{ z \in \mathbb{C} : |z + r_{ik}| \leq \sum_{j \neq k} |r_{kj} - r_{ij}| \right\} = \bigcup_{k=1}^{n} G_{R(i)(k)},$$

where $G_{R(i)(k)}$ are the Geršgorin discs for $R(i)$. Now, we consider each individual disc of $G_{R(i)}$. For the vertex $k \in \Gamma$, $k \neq i$, we calculate the centre and the radius of $G_{R(i)(k)}$. Here two cases may arise.

Case I: Let $k \sim i$. Then $r_{ik} = \frac{1}{d_i}$ and $r_{ki} = \frac{1}{d_k}$. Thus, the disc $G_{R(i)(k)}$ is given by

$$|z + \frac{1}{d_i}| \leq \sum_{j \neq i,k} |r_{kj} - r_{ij}| = \sum_{j \sim i, j \neq k} |r_{kj} - r_{ij}| + \sum_{j \sim i, j = k} |r_{kj} - r_{ij}| + \sum_{j \sim i, j = k} |r_{kj} - r_{ij}| = N(i, k) \left(\frac{1}{d_k} \right) + \frac{d_k - N(i, k) - 1}{d_k} + \frac{d_i - N(i, k) - 1}{d_i} + 0
$$

$$= 2 - \frac{1}{d_k} - \frac{1}{d_i} - \frac{2N(i, k)}{\max\{d_i, d_k\}}.$$

Case II: If $k \not\sim i$. Then $r_{ik} = 0$ and $r_{ki} = 0$. Thus, we have the disc

$$|z| \leq \sum_{j \neq i, k} |r_{kj} - r_{ij}| = \sum_{j \sim i} |r_{kj} - r_{ij}| + \sum_{j \sim i, j = k} |r_{kj} - r_{ij}| + \sum_{j \sim i, j = k} |r_{kj} - r_{ij}| = N(i, k) \left(\frac{1}{d_k} \right) + \frac{d_k - N(i, k) - 1}{d_k} + \frac{d_i - N(i, k) - 1}{d_i} + 0
$$

$$= 2 - \frac{2N(i, k)}{\max\{d_i, d_k\}}.$$

Now, we consider the whole region $G_{R(i)}$. Since the eigenvalues of R are real, by combining Case I and Case II, we obtain that any non-Perron eigenvalue λ of R must satisfy

$$-2 + \min_{k \neq i} \{ \alpha_{ik} \} \leq \lambda \leq 2 - \min_{k \neq i} \{ \beta_{ik} \},$$

for all $i = 1, 2, \ldots, n$.

Therefore, by Theorem 2.4 we obtain our required result. \qed

Corollary 3.1. Let Γ be a simple connected graph. If ρ_2 and ρ_n are the smallest and the largest nonzero normalized Laplacian eigenvalue of Γ, then

$$-1 + \max_{i \in \Gamma} \{ \min_{k \neq i} \{ \beta_{ik} \}, 1 \} \leq \rho_2 \leq \rho_n \leq 3 - \max_{i \in \Gamma} \{ \min_{k \neq i} \{ \alpha_{ik} \}, 1 \},$$

where α_{ik}, β_{ik} are the constants defined as in Theorem 3.1.

8
Corollary 3.2. Let γ be a connected r-regular graph on n vertices. If $\lambda \neq 1$ be any eigenvalue of R, then

$$-2 + \frac{1}{r} \max_i \min_{k \neq i} \{\gamma_{ik}\}, 1\} \leq \lambda \leq 2 - \frac{1}{r} \max_i \min_{k \neq i} \{\delta_{ik}\}, 1\},$$

where

$$\gamma_{ik} = \begin{cases} 1 + 2N(i, k), & \text{if } k \sim i \\ 2N(i, k), & \text{if } k \not\sim i \end{cases}$$

and

$$\delta_{ik} = \begin{cases} 3 + 2N(i, k), & \text{if } k \sim i \\ 2N(i, k), & \text{if } k \not\sim i. \end{cases}$$

Figure 2: A graph containing an edge which is not a part of a triangle.

Below we give an example where Theorem 1.3 is improved by Theorem 3.1.

Example 3.1. Let Γ be the graph as in Figure 2. The vertex degrees of Γ are $d_1 = 4$, $d_2 = 5$, $d_3 = d_4 = d_5 = d_6 = 4$, $d_7 = 3$. The sets of neighbours of each vertex are given by

$$N_1 = \{2, 3, 6, 7\},$$

$$N_2 = \{1, 3, 4, 5, 6\},$$

$$N_3 = \{1, 2, 4, 7\},$$

$$N_4 = \{2, 3, 5, 6\},$$

$$N_5 = \{2, 4, 6, 7\},$$

$$N_6 = \{1, 2, 4, 5\},$$

$$N_7 = \{1, 4, 5, 6\}.$$
Let $\alpha_i = \min_{k \neq i} \alpha_{ik}$ and $\beta_i = \min_{k \neq i} \beta_{ik}$.

The numbers of common neighbours of the vertex $2 \in \Gamma$ with all other vertices are $N(2, 1) = 2$, $N(2, 3) = 2$, $N(2, 4) = 3$, $N(2, 5) = 2$, $N(2, 6) = 3$ and $N(2, 7) = 3$. Also note that the vertex 2 is adjacent to all other vertices other than the vertex 7. Thus we obtain

$$\alpha_2 = \min \left\{ \frac{1}{4} + \frac{1}{4}, \frac{1}{4} + \frac{2}{5}, \frac{2}{5} + \frac{6}{5} \right\} = 1.05$$

and

$$\beta_2 = \min \left\{ \frac{1}{4} + \frac{2}{5} + \frac{1}{4} + \frac{4}{5}, \frac{2}{5} + \frac{6}{5} \right\} = 1.2$$

Similarly, for all other vertices of Γ we get, $\alpha_1 = 0.75$, $\beta_1 = 1.25$, $\alpha_3 = 0.75$, $\beta_3 = 1.25$, $\alpha_4 = 0.75$, $\beta_4 = 1$, $\alpha_5 = 0.333$, $\beta_5 = 0.833$, $\alpha_6 = 0.75$, $\beta_6 = 1$, $\alpha_7 = 1$, $\beta_7 = 1$.

Therefore, using Theorem 3.1, we get

$$\lambda_2 \leq 0.75 \text{ and } \lambda_7 \geq -0.95.$$

Note that, since $N(5, 7) = 0$, the lower bound for λ_7 in [4] becomes -1.

4 Acknowledgement

We are very grateful to the referees for detailed comments and suggestions, which helped to improve the manuscript. We also thankful to Ashok K. Nanda for his kind suggestions during writing the manuscript. Ranjit Mehatari is supported by CSIR, India, Grant No. 09/921(0080)/2013-EMR-I.

References

[1] A. Banerjee, J. Jost, On the spectrum of the normalized graph Laplacian, Linear Algebra Appl., 428 (2008) 3015-3022.

[2] F. Bauer, J. Jost, S. Liu, Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator, Math. Res. Lett. 19 (2012) 1185-1205.

[3] Ş.B. Bozkurt, A.D. Güngör, I. Gutman, A.S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem., 64 (2010) 239-250.

[4] F. Chung, Spectral Graph Theory, AMS (1997).
[5] D. Cvetković, M. Doob, H. Sachs, *Spectra of Graphs - Theory and Application*, Academic Press (1980).

[6] L.J. Cvetković, V. Kostić, J.M. Peña, *Eigenvalue localization refinements for matrices related to positivity*, SIAM J. Matrix Anal. Appl. 32 (2011) 771-784.

[7] S. A. Geršgorin, *Über die Abgrenzung der Eigenwerte einer Matrix*, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk, 6 (1931) 749-754.

[8] R. A. Horn, C. R. Johnson, *Matrix analysis*, Cambridge University press (2013).

[9] S. Kirkland, *A cycle-based bound for subdominant eigenvalues of stochastic matrices*, Linear Multilinear Algebra, 57 (2009) 247-266.

[10] S. Kirkland, *Subdominant eigenvalues for stochastic matrices with given column sums*, Electron. J. Linear Algebra, 18 (2009) 784-800.

[11] J. Li, J-M. Guo, Y. C. Shiu, *Bounds on normalized Laplacian eigenvalues of graphs*, J. Inequal. Appl., (2014) 1-8.

[12] C. Li, Y. Li, *A modification of eigenvalue localization for stochastic matrices*, Linear Algebra Appl., 460 (2014) 221-231.

[13] C. Li, Q.Liu, Y. Li, *Geršgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices*, Linear Multilinear Algebra, 63 (2014) 2159-2170.

[14] X. Li, Y. Shi, *A survey on the Randić index*, MATCH Commun. Math. Comput. Chem. 59 (2008) 127-156.

[15] R. Mehatari, A. Banerjee, *Effect on normalized graph Laplacian spectrum by motif attachment and duplication*, Applied Math. Comput. 261 (2015) 382-387.

[16] M. Newman, *Networks: an introduction*, Oxford University Press (2010).

[17] J.M. Peña, *Shape Preserving Representations in Computer Aided-Geometric Design*, Nova Science Publishers, Hauppage, NY, 1999.

[18] M. Randić, *On characterization of molecular branching*, J. Am. Chem. Soc. 97 (1975) 6609-6615.

[19] O. Rojo, R. L. Soto, *A New Upper Bound on the Largest Normalized Laplacian Eigenvals*, Oper. Matrices, 7 (2013) 323-332.

[20] E. Seneta, *Non-Negative Matrices and Markov Chains* Springer-Verlag (1981).