Tracheostomy outcomes in critically ill patients with COVID-19: a systematic review, meta-analysis, and meta-regression

Denise Battaglini¹,²,* Lavienraj Premraj³,⁴,* Nicole White⁵, Anna-Liisa Sutt⁴,⁶, Chiara Robba¹,⁷, Sung-Min Cho⁸, Ida Di Giacinto⁹, Filippo Bressan¹⁰, Massimiliano Sorbello¹¹, Brian H. Cuthbertson¹²,¹³, Gianluigi Li Bassi⁴,⁵,¹⁴,¹⁵, Jacky Suen⁴,⁵,¹⁴,¹⁵, John F. Fraser⁴,⁵,⁸,¹⁴,¹⁵ and Paolo Pelosi¹,⁷,*

¹Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy, ²Department of Medicine, University of Barcelona, Barcelona, Spain, ³Griffith University School of Medicine, Gold Coast, QLD, Australia, ⁴Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia, ⁵Australian Centre for Health Services Innovation (AusHSI) and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology (QUT), Brisbane, QLD, Australia, ⁶Faculty of Medical and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia, ⁷Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy, ⁸Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anaesthesiology and Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA, ⁹Unit of Anesthesia and Intensive Care, Mazzoni Hospital, Ascoli Piceno, Italy, ¹⁰Anesthesia and Intensive Care, Anestesia e Rianimazione Ospedale Santo Stefano di Prato, Prato, Italy, ¹¹Anesthesia and Intensive Care, Policlinico San Marco University Hospital, Catania, Italy, ¹²Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada, ¹³University Department of Anaesthesiology in Pain Medicine, University of Toronto, Toronto, ON, Canada, ¹⁴Queensland University of Technology, Brisbane, QLD, Australia and ¹⁵Critical Care Medicine, UnitingCare Health, Brisbane, QLD, Australia

*Corresponding author. E-mail: battaglini.denise@gmail.com
*These authors contributed equally.
¹Senior contribution.

Abstract

Background: We performed a systematic review of mechanically ventilated patients with COVID-19, which analysed the effect of tracheostomy timing and technique (surgical vs percutaneous) on mortality. Secondary outcomes included intensive care unit (ICU) and hospital length of stay (LOS), decannulation from tracheostomy, duration of mechanical ventilation, and complications.

Methods: Four databases were screened between January 1, 2020 and January 10, 2022 (PubMed, Embase, Scopus, and Cochrane). Papers were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population or Problem, Intervention or exposure, Comparison, and Outcome (PICO) guidelines. Meta-analysis and meta-regression for main outcomes were performed.

Results: The search yielded 9024 potentially relevant studies, of which 47 (n=5268 patients) were included. High levels of between-study heterogeneity were observed across study outcomes. The pooled mean tracheostomy timing was 16.5 days (95% confidence interval [CI]: 14.7–18.4; I²=99.6%). Pooled mortality was 22.1% (95% CI: 18.7–25.5; I²=89.0%). Meta-regression did not show significant associations between mortality and tracheostomy timing, mechanical ventilation duration, time to decannulation, and tracheostomy technique. Pooled mean estimates for ICU and hospital LOS were 29.6 (95% CI: 24.0–35.2; I²=98.6%) and 38.8 (95% CI: 32.1–45.6; I²=95.7%) days, both associated with mechanical ventilation duration (coefficient 0.8 [95% CI: 0.2–1.4], P=0.02 and 0.9 [95% CI: 0.4–1.4], P=0.01, respectively) but not tracheostomy...
During exponential increases of novel coronavirus (COVID-19) spread, extraordinary pressure on hospitals has been exerted worldwide. Patients with severe disease, requiring intensive care unit (ICU) admission and mechanical ventilation (MV) presented similar mortality rates in different pandemic periods. Prolonged MV has been frequently observed in COVID-19 with tracheostomy being commonly used to facilitate weaning from respiratory support and accelerate discharge from ICU. Tracheostomy practice has changed during the pandemic with a higher rate of performance compared with patients without COVID-19. Considering that patients with COVID-19 typically experience longer periods of MV than those with other pneumonias, it is possible that tracheostomy yields a potential survival benefit, perhaps by facilitating weaning from ventilatory support and by streamlining the critical care management of airways. Nevertheless, the potential benefits of a tracheostomy; its optimal timing and technique choice; and burden for patients, staff, and resources in COVID-19 have yet to be defined.

Few meta-analyses of tracheostomy practice in COVID-19 have been published at the beginning of the pandemic, but none of them was able to compare outcomes beyond mortality facing the issues around timing and technique of tracheostomy. We performed an updated systematic review and meta-analysis at the tail end of the COVID-19 pandemic to summarise and assess all published evidence regarding overall mortality in patients with COVID-19 and a tracheostomy, also investigating tracheostomy timing and technique (percutaneous or surgical). Secondary outcomes included ICU and hospital length of stay (LOS); timing of tracheotomy from intubation, proportion, and timing of decannulation after tracheostomy; MV duration; and tracheostomy complications.

Editor’s key points
- Tracheostomy practice has changed during the COVID-19 pandemic. The benefits of a tracheostomy, its optimal timing, and technique are yet to be thoroughly investigated.
- In this systematic review and meta-analysis, the authors explore important outcomes in critically ill patients with COVID-19 and a tracheostomy, examining associations with the timing of tracheostomy and the technique (percutaneous or surgical) used.
- The timing and type of tracheostomy appeared to have no impact on outcome. The authors conclude that decisions around timing and technique should include the multidisciplinary team, considering patient and their family’s wishes.

Methods
This systematic review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Joanna Briggs Institute (JBI) Reviewers’ Manual for Systematic Reviews of Literature (Supplementary material item S1). The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) on August 20, 2021 (Registration number: CRD42021272220).

Search strategy and study selection
Two reviewers (DB and LP) systematically searched PubMed, Embase, Scopus, and the Cochrane trial registry for all published observational studies as of January 10, 2022, aiming to investigate the timing of tracheotomy from intubation, mortality, length of hospital and ICU stay, prevalence and timing of decannulation, duration of MV, and complications in a critically ill population with COVID-19. We used a combination of headings and keywords specific for each database based on the following Medical Subject Headings (MeSH) ‘(tracheostomy OR tracheotomy OR trachea)’ AND ‘(COVID-19 OR ncov OR coronavirus OR COVID OR coronavirus disease OR SARS-CoV-2 OR acute severe respiratory syndrome coronavirus)’. The extended list of the MeSH terms is reported in the Supplementary material item S2. Titles and abstracts of all identified studies were independently screened by two authors (DB and LP) and retrieved for duplication checking. The references of all these papers were also reviewed to identify other studies of interest potentially missed during the primary search. In addition, peer-reviewed publications, preprints, and press releases were eligible for inclusion. There were no restrictions placed on language or geographic region. After screening the titles and abstracts, the same two authors independently screened the full text of all selected articles for possible inclusion. In the case of uncertain selection, discrepancies were resolved by a consensus. If a consensus was not reached, a third reviewer was involved in the process (IDG, FB, or MS).

The selected studies included (i) observational studies and randomised trials if present; (ii) adult patients with suspected or confirmed SARS-CoV-2 infection; (iii) patients with COVID-19, who received a tracheostomy during their ICU course; and (iv) studies including 20 or more patients. Exclusion criteria were the paediatric population and non-compliance with the aforementioned inclusion criteria.
Definitions

Time to tracheostomy was defined as the mean time between initiation of MV and tracheostomy performance (days). Time to decannulation was defined as the mean timing between tracheostomy performance and tracheostomy removal (days). Prevalence of decannulation was defined as the number of alive patients who underwent decannulation from tracheostomy during their hospital stay. MV duration was defined as the timing between initiation of MV and its discontinuation. Primary analysis treated time to tracheostomy as a continuous variable to maximise information reported across studies. As a sensitivity analysis, we considered meta-analysis of outcomes based on published definitions of early vs late tracheostomy. Time to tracheostomy was defined as early when <14 or <16.5 days and late when ≥14 or ≥16.5 days. These cut-offs were based on the COVID-19 literature to date (14 days) and the mean tracheostomy time in our cohort of patients (16.5 days).

Outcomes

Primary outcome was all-cause mortality in patients with COVID-19 and tracheostomy. For this outcome, we applied meta-regression to mortality as a function of mean time to tracheostomy, study follow-up time, study start date, and study time frame to examine associations related to pandemic phase and hospital stress. Additionally, outcomes for surgical vs percutaneous tracheostomy groups were also compared. Secondary outcomes included ICU and hospital LOS in patients with COVID-19 and a tracheostomy, timing of insertion of tracheostomy, timing of decannulation of tracheostomy, duration of MV, and complications after tracheostomy.

Data extraction and risk-of-bias assessment

According to the Population or Problem, Intervention or exposure, Comparison, and Outcome (PICO) approach, two reviewers independently extracted data (DB and LP) on tracheostomy specifics and outcomes. The following data were extracted for each study: study design characteristics (case–control, cohort studies, or case series), study information (first author, date of publication, publication type, study site, and first/second wave), COVID-19 population characteristics (number of patients with or without tracheostomy, with surgical/percutaneous tracheostomy, with early/late tracheostomy, decannulated, with complications, and who died), patient characteristics (age, country, sex, total sample size, missing patients, severity of COVID-19, death, ICU LOS, and hospital LOS), and tracheostomy characteristics (type of tracheostomy, definition of timing, setting, duration of tracheostomy, duration of MV, time to decannulation, and type of tracheostomy complications [bleeding, infection of stoma, air leak, lower respiratory tract infections, hypoxia, closure, and others]). When necessary, the corresponding authors of the included studies were contacted to obtain missing data related to trial demographics, methods, and outcomes.

For each study, two reviewers (DB and LP) independently assessed the risk of bias for type and timing of tracheostomy, and outcome features, such as decannulation, ventilator weaning, complications, and mortality using the modified 8-item Newcastle–Ottawa scale (NOS) and the COVID-19 adapted NOS (see Supplementary material item S3). Disagreements amongst reviewers were discussed with a third author until a consensus was reached (IDG, FB, or MS).

Strategy for data synthesis

We provided a narrative and tabular synthesis of the findings from the included studies, structured with the aim to assess the characteristics and outcomes of critically ill patients with COVID-19 and a tracheostomy. Numerical data on the prevalence of time and type of tracheostomy and outcome features, such as mortality, LOS, decannulation, MV ventilation duration, and complications, were collected for pooled prevalence analysis.

Statistical analysis

Data were expressed as mean (standard deviation [SD]) for continuous variables and number (percentages, %) for categorical variables. Transformation from medians (inter-quartile range) to estimated means (sd) was performed using the following formula (l, lower; m, median; ss, sample size; u, upper):

\[
\text{Estimate mean} = \frac{[l + 2m + u]}{4} + \frac{([l - 2m + u]/4) + (u - l)^2}{4ss}
\]

And

\[
\text{Estimate } \text{sd} = 1/12 \left(\frac{([l - 2m + u]/4) + (u - l)^2}{4} \right)
\]

A meta-analysis was conducted to obtain pooled estimates for timing of tracheostomy, type of tracheostomy, mortality, ICU and hospital LOS, decannulation, MV, and complications in critically ill patients with COVID-19. Pooled estimates were obtained using a random effects model to account for expected study heterogeneity using the inverse variance method. Heterogeneity was assessed using both Cochrane Q test, \(\chi^2\), and Higgins \(I^2\) statistic. Confidence intervals (CIs) for binary outcomes were calculated using Wilson scores with between-study variation estimated using the DerSimonian–Laird estimator.23

We utilised meta-regression to assess evidence of associations between outcomes and moderators as sources of between-study heterogeneity, including the possible effects of study duration and study start date. Random effects meta-regression with residual maximum likelihood (REML) model was used; residual Q statistic and Wald’s \(\chi^2\) test results were also displayed. Binary outcomes were analysed on the logit scale. Ninety-five percent CIs were calculated for individual studies, and pooled estimates with 95% CI were displayed using Forest plots. Statistical significance was set at \(P<0.05\). All statistical analyses were computed with STATA® (StataCorp LLC, College Station, TX, USA) and R® software (R Foundation for Statistical Computing, Vienna, Austria).

Results

The initial search yielded 9024 potentially relevant studies, of which 3520 were excluded as duplicate studies and 3194 were excluded after revision of titles and abstracts. After full-text review, 47 studies were included in this systematic review and meta-analysis.5–9,18,19,24–64 The search and selection strategies are shown in Fig 1.

Characteristics of included studies and patients

All included studies were published in English between January 1, 2020 and January 10, 2022. Table 1 depicts the main characteristics of the 47 included studies, comprising 5268 patients (2252 males, 891 females, and 2125 unknowns, with a male/female ratio of 2.53). The mean age (so) of patients was...
60.1 (25.3) yr. In the overall study population, the mean pooled estimate timing of tracheostomy was 16.5 (95% CI: 14.7–18.4; $I^2=99.6\%$) days. There were 2202 patients who underwent percutaneous tracheostomy and 2798 surgical tracheostomies, and for 268 patients the method of insertion was not clearly defined (surgical technique adopting percutaneous dilators or percutaneous technique completed by surgical approach). Forty-five studies reported mortality data, including 5218 patients, 1785 were decannulated (six studies in the surgical group and 19 in the percutaneous group). Duration of MV ($P=0.02$; Supplementary material item S7).

Hospital and ICU lengths of stay

The pooled estimated mean ICU and hospital LOS of all patients with a tracheostomy were 29.6 (95% CI: 24.0–35.2; $I^2=98.5\%$) and 38.8 (95% CI: 32.1–45.6; $I^2=95.7\%$) days, respectively (Fig 4). Neither hospital LOS nor ICU LOS was associated with mean time to tracheostomy or time to decannulation (Supplementary material item S6). Notably, ICU and hospital LOS were significantly associated with duration of MV, although the strength of correlation was weak (coefficient 0.8
The pooled prevalence of decannulation in the overall population was 47.5% (95% CI: 35.4–59.6; $I^2=98.6\%$). Average times to tracheostomy did not appear to impact the prevalence of decannulation (Supplementary material item S6), with no differences between early and late tracheostomy (Supplementary material item S7). Prevalence of decannulation did not significantly differ between percutaneous and surgical groups (47.5 [95% CI: 26.6–68.4; $I^2=98.0\%$] vs 46.6 [95% CI: 20.2–72.9; $I^2=96.2\%$]; P=0.96). In the overall study population, the time to decannulation was 23.8 (95% CI: 19.7–27.8; $I^2=98.7\%$) days (Fig 4). Time to decannulation was not associated with timing of tracheostomy (Supplementary material item S8). No differences in decannulation time were observed based on definitions of early and late

Table 1 Characteristics of included studies. NC, not clear; NR, not reported; P, percutaneous; P/S, percutaneous and surgical; S, surgical. Data are expressed as mean (standard deviation [SD]).

Authors	Year	Country	Age, mean (so [yr])	Overall population, n patients	Tracheostomy timing, mean, (so [days])	S, P, or p/s	Mortality, n patients
Ahmed and colleagues	2021	USA	63.00 (11.85)	64.00	20.00 (7.04)	P/S	21.00
Ahn and colleagues	2021	Korea	68.80 (41.72)	27.00	15.80 (9.00)	P/S	11.00
Angel and colleagues	2021	USA	NR	178.00	NR	P	44.00
Arnold and colleagues	2022	USA	66.00 (7.41)	59.00	19.00 (5.19)	P	23.00
Avilés-Jurado and colleagues	2020	Spain	63.80 (9.70)	50.00	9.00 (16.30)	P	8.00
Bartier and colleagues	2021	France	56.00 (12.00)	59.00	NR	P/S	6.00
Battaglini and colleagues	2021	Italy	63.40 (9.34)	153.00	15.00 (15.75)	P/S	65.00
Berti and colleagues	2021	Italy	64.00 (11.25)	47.00	NR	P/S	14.00
Boujaoude and colleagues	2021	USA	54.00 (12.00)	32.00	22.00 (8.00)	P	9.00
Breik and colleagues	2020	UK	55.00 (12.00)	100.00	19.90 (4.50)	P/S	15.00
Cagino and colleagues	2021	USA	56.00 (15.75)	25.00	22.00 (17.03)	P/S	NR
Cardasis and colleagues	2022	USA	61.10 (10.00)	24.00	18.60 (10.37)	S	3.00
Chao and colleagues	2020	USA	62.00 (14.30)	53.00	19.70 (6.90)	P/S	6.00
Cohen and colleagues	2022	UK	59.90 (15.10)	24.00	31.90 (12.30)	P	9.00
Courtney and colleagues	2021	UK	54.00 (8.60)	20.00	16.50 (3.70)	S	0.00
Cornai/Trach Collaborative	2021	UK	NR	563.00	16.75 (6.94)	P/S	62.00
Floyd and colleagues	2020	USA	NR	38.00	24.00 (5.33)	P/S	2.00
Forni and colleagues	2020	Switzerland	NR	53.00	NR	P	8.00
Gilbrey and colleagues	2020	UK	60.50 (12.40)	28.00	17.00 (4.40)	P/S	2.00
Illuzi and colleagues	2020	Not clear	NR	111.00	NR	P	33.00
Krishnamoorthy and colleagues	2020	USA	62.54 (13.55)	143.00	25.00 (6.60)	P/S	13.00
Kumar and colleagues	2021	India	45.50 (9.59)	38.00	11.60 (4.63)	P	6.00
Kwak and colleagues	2021	USA	58.10 (15.80)	148.00	12.23 (6.82)	P/S	30.00
Livneh and colleagues	2021	USA	64.00 (21.33)	38.00	7.50 (4.08)	NC	22.00
Long and colleagues	2021	USA	62.00 (0.00)	67.00	20.00 (22.96)	P/S	5.00
Mahmood and colleagues	2021	USA	53.87 (42.19)	118.00	21.75 (4.10)	P/S	18
Martin-Villares and colleagues	2021	Spain	NR	1890.00	17.50 (130.42)	P/S	383.00
Mata-Gastro and colleagues	2021	Spain	66.40 (6.20)	29.00	15.20 (9.50)	P/S	5.00
Picetti and colleagues	2020	Italy	58.70 (8.70)	66.00	6.10 (2.10)	S	9.00
Riestra-Ayora and colleagues	2020	Spain	67.55 (10.60)	27.00	NR	P/S	11.00
Rosano and colleagues	2022	Italy	64.00 (9.00)	121.00	6.00 (1.48)	P	54.00
Rouhani and colleagues	2021	UK	57.00 (11.25)	41.00	24.00 (29.63)	P/S	4.00
Rovira and colleagues	2021	UK	55.60 (11.20)	201.00	17.00 (5.93)	P/S	29.00
Siffer and colleagues	2022	Slovenia	65.50 (26.67)	25.00	NR	S	NR
Singh and colleagues	2020	UK	55.70 (9.45)	47.00	18.60 (6.70)	S	1.00
Taboada and colleagues	2021	Spain	69.59 (8.16)	29.00	15.00 (4.07)	NC	12.00
Takhar and colleagues	2020	UK	52.94 (8.70)	87.00	16.00 (5.19)	NC	7.00
Tang and colleagues	2020	China	63.90 (14.00)	80.00	17.50 (11.63)	P/S	43.00
Tonnard and colleagues	2020	UK	57.28 (45.77)	78.00	16.25 (4.10)	P/S	0.00
Turri-Zanoni and colleagues	2020	Italy	62.00 (53.00)	32.00	15.00 (15.00)	P/S	5.00
Valchanov and colleagues	2021	India	45.50 (9.59)	38.00	11.66 (4.63)	P	9.00
Volo and colleagues	2021	Italy	69.00 (31.11)	23.00	13.00 (0.00)	P/S	9.00
Weiss and colleagues	2021	USA	55.19	28.00	26.00 (9.00)	P/S	3.00
Williamson and colleagues	2021	UK	66.00 (8.15)	29.00	4.00 (8.88)	P	7.00
Yeung and colleagues	2020	UK	57.70 (10.48)	72.00	17.00 (5.19)	P/S	7.00
Yokokawa and colleagues	2021	Japan	NR	35.00	NR	S	17.00
Zuazua-Gonzalez and colleagues	2020	Spain	60.80 (8.43)	30.00	NR	S	17.00
tracheostomy timing (Supplementary material item S7). Time to decannulation was similar for percutaneous and surgical groups (21.0 [95% CI: 15.7–26.3] vs 18.4 [95% CI: 12.4–24.3] days; difference: 2.6 [95% CI: −5.4 to 10.6]; P=0.52).

Duration of mechanical ventilation

In the overall population of patients with COVID-19 and a tracheostomy, the mean MV duration was 23.4 days (95% CI: 22.5–24.3). The pooled estimate of mortality in the overall population, with an I² of 89%, was 21.09% (95% CI: 18.65–25.53). This figure depicts the forest plots of prevalence of mortality in the overall population of patients with COVID-19 and a tracheostomy. CI, confidence interval.

Table:

Author, Year	Mortality (%)	Estimate 95% CI
Ahmed and colleagues, 2021	32.81	[22.57; 45.00]
Ahn and colleagues, 2021	40.74	[24.51; 59.27]
Angel and colleagues, 2021	24.72	[18.96; 31.55]
Arnold and colleagues, 2021	38.98	[27.58; 51.73]
Avilés-Jurado and colleagues, 2020	16.00	[8.34; 28.51]
Bartier and colleagues, 2021	10.17	[4.74; 20.46]
Battaglini and colleagues, 2021	42.48	[34.93; 50.41]
Botti and colleagues, 2021	29.79	[18.65; 43.98]
Boujaoude and colleagues, 2021	28.12	[15.56; 45.37]
Breik and colleagues, 2020	15.00	[9.31; 23.28]
Cardasis and colleagues, 2022	12.50	[4.34; 31.00]
Chao and colleagues, 2020	11.32	[5.29; 22.58]
Cohen and colleagues, 2022	37.50	[21.16; 57.29]
COVIDTrach Collaborative, 2020	11.01	[8.69; 13.87]
Floyd and colleagues, 2020	5.26	[1.46; 17.28]
Forni and colleagues, 2020	15.09	[7.85; 27.05]
Glibbery and colleagues, 2020	7.14	[1.98; 22.65]
Iluzzi and colleagues, 2020	29.73	[22.02; 38.79]
Krishnamoorthy and colleagues, 2020	9.09	[5.39; 22.65]
Kumar and colleagues, 2021	15.79	[7.44; 30.42]
Kwak and colleagues, 2021	20.27	[14.58; 27.46]
Livneh and colleagues, 2021	57.89	[42.19; 72.15]
Long and colleagues, 2021	7.46	[3.23; 16.31]
Mahmood and colleagues, 2021	15.25	[9.87; 22.83]
Martin-Villares and colleagues, 2021	20.26	[18.51; 22.14]
Mata-Castro and colleagues, 2021	17.24	[7.60; 34.55]
Picetti and colleagues, 2020	13.64	[7.34; 23.93]
Riestra-Ayora and colleagues, 2020	40.74	[24.51; 59.27]
Rosano and colleagues, 2022	44.63	[36.07; 53.51]
Rouhani and colleagues, 2021	9.76	[3.86; 22.55]
Rovira and colleagues, 2021	14.43	[10.24; 19.95]
Singh and colleagues, 2020	2.13	[0.38; 11.11]
Taboada and colleagues, 2021	41.38	[25.51; 59.26]
Takhar and colleagues, 2020	8.05	[3.95; 15.69]
Tang and colleagues, 2020	53.75	[42.90; 64.25]
Turri-Zanoni and colleagues, 2020	15.62	[8.66; 31.75]
Valchanov and colleagues, 2021	23.68	[12.99; 39.21]
Volo and colleagues, 2021	39.13	[22.16; 59.21]
Weiss and colleagues, 2021	10.71	[3.71; 27.20]
Williamson and colleagues, 2021	24.14	[12.22; 42.11]
Yeung and colleagues, 2020	9.72	[4.79; 18.74]
Yokokawa and colleagues, 2021	48.57	[32.99; 64.43]
Zuazua-Gonzalez and colleagues, 2020	56.67	[39.20; 72.62]

Pooled estimate

χ²=393.74 (P<0.01)

Fig 2. Forest plot of mortality in the overall population. This figure depicts the forest plots of prevalence of mortality in the overall population of patients with COVID-19 and a tracheostomy. CI, confidence interval.
19.2–27.7; I^2=99.3%; Fig 4). MV duration was not associated with tracheostomy timing (Supplementary material item S6), and no differences in MV duration were found between early and late tracheostomy timing (Supplementary material item S7). MV duration was not computable between surgical and percutaneous groups because of insufficient data. MV duration did not correlate with decannulation timing, ICU LOS, or hospital LOS (Supplementary material item S11).

Tracheostomy complications

Data regarding complications were not always available for comparison between the groups. Table 2 presents pooled prevalence of tracheostomy complications. Where available for comparison, tracheostomy complications for timing and surgical vs percutaneous tracheostomy groups are reported in the table legend.

Discussion

The main findings of our study were (i) the pooled prevalence of mortality in patients with COVID-19 and a tracheostomy was 22.1% without influence of timing to tracheostomy, tracheostomy technique, time to decannulation, and duration of MV. When applying definitions for early and late tracheostomy timing, the late tracheostomy group showed greater mortality than the early group (cut-off 16.5 days). (ii) The pooled estimated mean ICU and hospital LOS of all patients with a tracheostomy were 29.6 and 38.8 days, respectively, being both influenced by MV duration but not tracheostomy timing. No data for surgical vs percutaneous comparison were available. (iii) The mean time to decannulation was 23.8 days, and the pooled prevalence of decannulation was 47.5% of patients, both without influence by tracheostomy timing and technique. (iv) The mean duration of MV was 23.4 days, and it was not influenced by tracheostomy time. No data for surgical vs percutaneous comparison were available. (v) The most prevalent complications of tracheostomy were stoma infection/breakdown/ulcers or necrosis, followed by bleeding.

To the best of our knowledge, this is the first systematic review, meta-analysis, and meta-regression in critically ill patients with COVID-19 and a tracheostomy, which reports the associations between outcomes and moderators as sources of between-study heterogeneity accounting for the effects of study duration (partial accounting for time-varying associations) and study start date (hospital strain), and the comparison between early vs late at different cut-offs and technique (surgical vs percutaneous tracheostomy) for several outcomes, including mortality, hospital and ICU LOS, decannulation, duration of MV, and complications. Previous meta-analyses reported the comparison between such subgroups of patients only for a few outcomes.12–14,65

Mortality

Considering 45 studies for the outcome mortality, our results showed a pooled tracheostomy mortality in COVID-19 of 22.1% (95% CI: 18.7–25.5; I^2=89.0%), similarly to that previously reported by Ferro and colleagues13 of 19.2% (95% CI: 15.2–23.6), including 37 studies, and Ji and colleagues,14 including 14 studies but higher than that reported by Benito and colleagues12 of 13.1% (95% CI: 8.5–18.4), including 14 studies. Ferro and colleagues13 reported no differences in cumulative mortality between early and late tracheostomy (relative risk [RR] 1.6; 95% CI: 0.2–11.8) and surgical vs percutaneous tracheostomy (RR 2.0; 95% CI: 0.2–20.4). Other meta-analyses by Benito and colleagues13 and Chong and Tan66 used a cut-off at 7 and 14 and 10 and 14 days, finding no differences in mortality between the early and late groups. In our study, the mean timing of tracheostomy in patients with COVID-19 was 16.5 days. To reduce heterogeneity and the bias related to pandemic phase and hospital stress, and to face the unclear benefit of using the tracheostomy timing as dichotomic variable, we performed a meta-regression for mortality using the mean time to tracheostomy as continuous variable, and accounting for the effects of study duration (partial accounting for time-varying associations) and study start date (hospital strain). We found that neither time to tracheostomy nor
tracheostomy technique (percutaneous vs surgical) explained the heterogeneity in mortality results. Adopting the statistical inverse variance REML method and the generalised linear mixed model method, a small difference in mortality was observed between groups followed-up for >30 and ≤30 days, whereas an overlap in CIs suggests no notable effect. Further significant heterogeneity was observed in both groups. The existing literature in COVID-19 reported a mean tracheostomy timing to be closer to 14 rather than 10 or 7 days described in the non-COVID-19 literature.67 When applying definitions for early and late tracheostomy timing (14 or 16.5 days as cut-offs), only 16.5 days cut-off reported differences in mortality being higher in the late group than in the early tracheostomy group, not confirming the results of other meta-analyses.12–14,68 An early tracheostomy performance demonstrated possible beneficial effects on outcome in patients without COVID-19.69 However, this does not really account for the real impact in terms of benefits or harm on patients’ outcomes, because critically ill patients present a high likelihood of evolving to multiple organ dysfunction that cannot be optimally predicted during the first days of ICU admission.11 Early tracheostomy is often thought to be accompanied by reduced laryngeal injury and laryngeal dysfunction associated with prolonged tracheal intubation; reduced cumulative burden of sedative agents; better pulmonary hygiene through secretion clearance; earlier return to eating, drinking, and talking; and earlier rehabilitation.72 However, a late tracheostomy could be considered in some patients who are clinically unstable and may require prone positioning that might be at risk of tracheostomy dislodgement or who present with multi-

Author (Year)	Estimate [95% CI]
Ahmed and colleagues, 2021	27.75 [24.81; 30.69]
Battaglini and colleagues, 2021	37.25 [34.67; 39.83]
Glibbery and colleagues, 2020	38.07 [35.41; 41.63]
Kumar and colleagues, 2021	33.12 [29.50; 36.74]
Kwak and colleagues, 2021	19.20 [15.31; 23.09]
Livneh and colleagues, 2021	23.50 [20.92; 26.08]
Long and colleagues, 2021	51.29 [47.48; 55.10]
Mahmood and colleagues, 2021	30.00 [23.01; 36.99]
Mata-Castro and colleagues, 2021	12.79 [–2.36; 27.94]
Breik and colleagues, 2020	36.26 [31.35; 41.17]
Picetti and colleagues, 2020	57.07 [8.06; 106.08]
Taboada and colleagues, 2021	23.20 [21.54; 24.86]
Yeung and colleagues, 2020	38.42 [28.90; 47.94]
Q=997.89, df=14, ⍺=0.000; I²=98.5%	11.07 [10.03; 12.11]

Author (Year)	Estimate [95% CI]
Ahmed and colleagues, 2021	29.62 [24.00; 35.24]
Battaglini and colleagues, 2021	27.75 [24.81; 30.69]
Cagino and colleagues, 2021	37.25 [34.67; 39.83]
Glibbery and colleagues, 2020	38.07 [35.41; 41.63]
Kumar and colleagues, 2021	33.12 [29.50; 36.74]
Kwak and colleagues, 2021	19.20 [15.31; 23.09]
Livneh and colleagues, 2021	23.50 [20.92; 26.08]
Mahmond and colleagues, 2021	51.29 [47.48; 55.10]
Mata-Castro and colleagues, 2021	30.00 [23.01; 36.99]
Breik and colleagues, 2020	12.79 [–2.36; 27.94]
Picetti and colleagues, 2020	36.26 [31.35; 41.17]
Taboada and colleagues, 2021	57.07 [8.06; 106.08]
Yeung and colleagues, 2020	23.20 [21.54; 24.86]
Q=144.27, df=9, ⍺=0.000; I²=95.7%	38.42 [28.90; 47.94]

Fig 4. Forest plots of secondary outcomes in the overall population. Forest plots of mean estimate of (a) ICU and (b) hospital length of stay, (c) decannulation after tracheostomy and (d) mean duration of mechanical ventilation in overall patients with COVID-19 and a tracheostomy. CI, confidence interval.
c) Duration of mechanical ventilation, days: Mean (95% CI)

Author (Year)	Estimate [95% CI]
Ahmed and colleagues, 2021	26.79 [20.84; 32.74]
Ahn and colleagues, 2021	48.20 [41.42; 54.98]
Arnold and colleagues, 2022	25.25 [19.06; 31.44]
Avilés-Jurado and colleagues, 2020	23.70 [20.37; 27.03]
Bartier and colleagues, 2021	20.00 [16.88; 23.12]
Chao and colleagues, 2020	16.60 [15.25; 17.95]
Courtney and colleagues, 2021	11.90 [11.01; 12.79]
Glibbery and colleagues, 2020	15.80 [13.21; 18.39]
Krishnamoorthy and colleagues, 2020	42.00 [37.90; 46.10]
Kumar and colleagues, 2021	18.00 [16.61; 19.39]
Kwak and colleagues, 2021	30.16 [27.58; 32.74]
Livneh and colleagues, 2021	43.00 [36.64; 49.36]
Breik and colleagues, 2020	25.78 [18.53; 33.03]
Mahmood and colleagues, 2021	28.37 [16.05; 40.69]
Nankivell and colleagues, 2020	12.70 [11.50; 13.90]
Rouhani and colleagues, 2021	15.00 [12.14; 17.86]
Rovira and colleagues, 2021	21.63 [18.37; 24.89]
Singh and colleagues, 2020	12.47 [10.70; 14.24]
Tomari and colleagues, 2021	16.61 [15.26; 17.96]
Valchanov and colleagues, 2021	18.00 [16.13; 19.87]
Volo and colleagues, 2021	23.63 [21.33; 35.93]
Weiss and colleagues, 2021	30.47 [29.30; 34.64]
Yokokawa and colleagues, 2021	28.14 [24.76; 31.52]
Q=729.50, df=22, P=0.000; I^2=98.7%	23.78 [19.73; 27.82]

d) Time to decannulation: Mean (95% CI)

Author (Year)	Estimate [95% CI]
Ahmed and colleagues, 2021	39.74 [34.47; 45.01]
Arnold and colleagues, 2022	35.76 [33.99; 37.53]
Avilés-Jurado and colleagues, 2020	17.90 [16.65; 19.15]
Cardasis and colleagues, 2022	23.70 [20.37; 27.03]
Glibbery and colleagues, 2020	13.40 [9.81; 16.99]
Kumar and colleagues, 2021	18.00 [16.61; 19.39]
Kwak and colleagues, 2021	30.16 [27.58; 32.74]
Livneh and colleagues, 2021	43.00 [36.64; 49.36]
Breik and colleagues, 2020	25.78 [18.53; 33.03]
Mahmood and colleagues, 2021	28.37 [16.05; 40.69]
Nankivell and colleagues, 2020	12.70 [11.50; 13.90]
Rouhani and colleagues, 2021	15.00 [12.14; 17.86]
Rovira and colleagues, 2021	21.63 [18.37; 24.89]
Singh and colleagues, 2020	12.47 [10.70; 14.24]
Tomari and colleagues, 2021	16.61 [15.26; 17.96]
Valchanov and colleagues, 2021	18.00 [16.13; 19.87]
Volo and colleagues, 2021	23.63 [21.33; 35.93]
Weiss and colleagues, 2021	30.47 [29.30; 34.64]
Yokokawa and colleagues, 2021	28.14 [24.76; 31.52]
Q=729.50, df=22, P=0.000; I^2=98.7%	23.78 [19.73; 27.82]
organ failure.73,74 During the pandemic, some factors that may have influenced the choice of performing a tracheostomy have changed. Hence, a tracheostomy procedure in patients with COVID-19 could have been associated with staff procedural risks as a result of aerosol generation, thus delaying the procedure earlier in the pandemic.75,76 Therefore, we can assume that tracheostomy in patients with COVID-19 could have been associated with staff procedural risks that influenced the choice of performing a tracheostomy.75,76

In the current study, the mean duration of MV was 23.4 days, whereas in our study we found a shorter duration of MV for early tracheostomy,85 again not confirmed by other studies.85 In COVID-19, Staibano and colleagues85 reported no association between early tracheostomy (<14 days) and decannulation. A pre-pandemic survey revealed that patient level of consciousness, cough effectiveness, secretions, and oxygenation are important determinants of clinicians’ decision to decannulate;84 however, the association between tracheostomy timing, decannulation, and outcome remains unclear.

Tracheostomy decannulation

This study found that time to decannulation was 23.8 days with a prevalence of 47.5%, with no significant impact of timing and technique of tracheostomy, not different from Ferro and colleagues.13 Benito and colleagues12 reported an incidence of decannulation of 34.9 (25.4–44.9) by including 15 studies with a mean duration of 18.6 days (so 5.7). Staibano and colleagues85 reported no association between early tracheostomy (<14 days) and decannulation. A pre-pandemic survey revealed that patient level of consciousness, cough effectiveness, secretions, and oxygenation are important determinants of clinicians’ decision to decannulate;84 however, the association between tracheostomy timing, decannulation, and outcome remains unclear.

Tracheostomy and duration of mechanical ventilation

In the current study, the mean duration of MV was 23.4 days, and the duration of MV significantly influenced the ICU and hospital LOS. Additionally, the duration of MV was not influenced by the tracheostomy timing. Previous study in patients without COVID-19 found a correlation between tracheostomy timing and duration of MV,80 a result not duplicated in this study. A systematic review in non-COVID-19 concluded a shorter duration of MV for early tracheostomy,85 again not confirmed by other studies.85 In COVID-19, Staibano and colleagues85 found no association between early tracheostomy (<14 days) and duration of MV, whereas in our study we found an interesting effect of duration of MV on LOS. The supposed benefit of earlier tracheostomy is that it allows for decreased sedation and earlier mobilisation. However, this analysis suggests that even with early tracheostomy, patients are subjected to prolonged periods of ventilatory support, likely because of protracted severe respiratory failure that might affect the patients’ outcomes.

Tracheostomy complications

The most prevalent complication of tracheostomy was stoma infection/breakdown/ulcers or necrosis, followed by bleeding. These findings are not clearly supported by the non-COVID-19 and previous COVID-19 literature.7,86 Our results showed that early tracheostomy was more likely associated with bleeding and less likely associated with stoma infection/breakdown or ulcers than late. The reason for such results could be explained by the increased risk of bleeding, anticoagulant therapies, or anti-platelet medications that often characterise the initial phase of disease treatment.87–89 No clear advantages for percutaneous or surgical technique were found with regard to bleeding. A percutaneous approach involves less bleeding complications, which may facilitate early tracheostomy.90

Table 2 Tracheostomy complications

Complication	Overall prevalence (95% CI) (%)	Heterogeneity I^2 (%)
Bleeding	7.0 (7.4–8.7)	52.6
Cuff or air leak	2.4 (1.1–3.7)	31.7
False passage or dislodgement*	2.3 (1.0–3.6)	100.0
Peri-procedural hypoxaemia or desaturation	3.1 (0.8–5.4)	74.0
Pneumothorax or pneumomediastinum	0.0 (0.0–0.0)	0.03
Stenosis or obstruction	2.0 (0.5–3.6)	14.7
Stoma infection, breakdown/ulcers, or necrosis	7.6 (3.5–11.8)	90.0

ICU and hospital lengths of stay

In the present study, the mean ICU and hospital LOS for patients with a tracheostomy were significantly influenced by the duration of MV. A recent meta-analysis by Deng and colleagues in patients without COVID-19 in the ICU revealed that early tracheostomy was associated with MV duration and a shorter ICU stay.7 Other studies in patients without COVID-19 reported that early tracheostomy was associated with shorter overall ICU stay when compared with late tracheostomy,7,73 confirming an association between tracheostomy timing and hospital ICU LOS,70 but this was not clearly confirmed in our study. A late group might be expected to survive and be less sick at the time of tracheostomy, whereas an early group of patients might be expected to be sicker, being less clear whether they will survive, thus with possible longer hospital LOS.11 However, our results did not confirm the influence of tracheostomy timing on ICU and hospital LOS. In COVID-19, two previous meta-analyses reported reduced ICU stay with early tracheostomy (less than 14 days),4,65; this contrasting result can be explained by the limited number of studies included and the different definition of early and late tracheostomy timing. However, despite its other potential advantages, early tracheostomy in patients in general ICU and in COVID-19 to shorten the LOS is not clearly supported by the literature.77,79,81–83

Data Table

Complication	Overall prevalence (95% CI) (%)	Heterogeneity I^2 (%)
Bleeding	7.0 (7.4–8.7)	52.6
Cuff or air leak	2.4 (1.1–3.7)	31.7
False passage or dislodgement*	2.3 (1.0–3.6)	100.0
Peri-procedural hypoxaemia or desaturation	3.1 (0.8–5.4)	74.0
Pneumothorax or pneumomediastinum	0.0 (0.0–0.0)	0.03
Stenosis or obstruction	2.0 (0.5–3.6)	14.7
Stoma infection, breakdown/ulcers, or necrosis	7.6 (3.5–11.8)	90.0
dissection and a smaller stoma but with limited direct visualisation that may have an impact on peri-procedural complications.73

Limitations

This study has several limitations to address. First, possibly related to the nature of the COVID-19 pandemic, the qualities of some included studies were low with absence of long-term follow-up, short periods of available research, and incomplete data. Second, the weighted means are estimated with assumption of normal distribution, probably causing a selection bias. Moreover, it was not possible to report the values as medians because of insufficient data from the selected studies. The selection of patients (not evaluated for severity of illness) included in the mortality analysis may lead to a significant bias, impossible to control for by meta-regression analysis. We were not able to look at trends in tracheostomy performance, but it may change with time. Important, we found a huge heterogeneity across studies, which was impossible to explain even accounting immortality time bias in meta-regression. Inferring causal relationships from observational studies is difficult to ascertain, particularly in the context of meta-analyses, which are constrained by the availability of published data on both potential moderators and outcomes. In our analysis, we have examined evidence of potential associations between the mean time to tracheostomy (as a continuous variable) and expected outcomes, without implying causality attributable to limited data.

Finally, by pooling studies from across the world across the period examined, it was impossible to control for the effect of the evolving treatment strategies and infection control measures (impacting tracheostomy practice) used by the various studies (i.e. the introduction of steroids, etc.), even when assessing a meta-regression analysis. An analysis able to adjust for such secular trends would be of interest.

Conclusions

Our findings suggest that in mechanically ventilated patients with COVID-19, the timing (early vs late) and type (surgical vs percutaneous) of tracheostomy have no clear impact on outcome. Decisions surrounding optimal timing and technique should include a multidisciplinary team, and patients’ and families’ wishes, and be informed by further evidence generation.

Authors’ contributions

Study conception: DB
Study design: DB, PP
Database screening: DB, LP, AS, CR, S-MC, IDG, FB, BHC, MS
Literature search: DB, LP
Statistical analysis: DB, LP, NW
Writing of article: DB
Editing of article: DB, AS, CR, S-MC, IDG, FB, BHC, MS, GLB, JS, JFF, PP
Approval of article: AS, CR, S-MC, IDG, FB, BHC, MS, NW, GLB, JS, JFF, PP

Acknowledgements

GLB acknowledges receipt of a Biomedicine International Training Research programme for Excellent Clinician-Scientists (BITRECS) fellowship. The BITRECS project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 754550 and from the “La Caixa” Foundation (ID 100010434) under the agreement LCF/PR/GN18/50310006.

Declarations of interest

MS received consultancy fees from Teleflex Medical (Athlone, Ireland) and from Verathon Medical (USA), Boston Scientific (France), and MSD (Italy). The other authors declare that they have no conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bja.2022.07.032.

References

1. Iacobucci G. Covid-19: how is vaccination affecting hospital admissions and deaths? BMJ 2021; 374: n2306
2. Karagiannidis C, Windsch W, McAuley DF, Welte T, Busse R. Major differences in ICU admissions during the first and second COVID-19 wave in Germany. Lancet Respir Med 2021; 9: e47–8
3. Gamberini L, Tonetti T, Spadaro S, et al. Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: multicenter observational study in fifteen Italian ICUs. J Intensive Care 2020; 8: 80
4. Richards-Belle A, Orzechowska I, Gould DW, et al. COVID-19 in critical care: epidemiology of the first epidemic wave across England, Wales and Northern Ireland. Intensive Care Med 2020; 46: 2035–47
5. Mehta AB, Syeda SN, Bajpayee L, Cooke KR, Walkey AJ, Wiener RS. Trends in tracheostomy for mechanically ventilated patients in the United States, 1993–2012. Am J Respir Crit Care Med 2015; 192: 446–54
6. McGrath BA, Wallace S, Lynch J, et al. Improving tracheostomy care in the United Kingdom: results of a guided quality improvement programme in 20 diverse hospitals. Br J Anaesth 2020; 125: e119–29
7. Breik O, Nankivell P, Sharma N, et al. Safety and 30-day outcomes of tracheostomy for COVID-19: a prospective observational cohort study. Br J Anaesth 2020; 125: 872–9
8. Martin-Villares C, Perez Molina-Ramirez C, Bartolome-Benito M, et al. Outcome of 1890 tracheostomies for critical COVID-19 patients: a national cohort study in Spain. Eur Arch Otorhinolaryngol 2021; 278: 1605–12
9. Battaglini D, Missale F, Schiavetti I, et al. Tracheostomy timing and outcome in severe COVID-19: the WeanTrach multicenter study. J Clin Med 2021; 10: 2651
10. Avilés-Jurado FX, Prieto-Alhambra D, González-Sánchez N, et al. Timing, complications, and safety of tracheostomy in critically ill patients with COVID-19. JAMA Otolaryngol Head Neck Surg 2020; 147: 1–8
11. Williams T, McGrath BA. Tracheostomy for COVID-19: evolving best practice. Crit Care 2021; 25: 316
12. Benito DA, Bestourov DE, Tong JY, Pasick LJ, Sataloff RT. Tracheostomy in COVID-19 patients: a systematic review and meta-analysis of weaning, decannulation, and survival. Otolaryngol Head Neck Surg 2021; 165: 398–405
57. Yokokawa T, Ariizumi Y, Hiramatsu M, et al. Management of COVID-19 in patients with COVID-19. Eur Arch Otorhinolaryngol 2022; 279: 891–7
58. Zuazua-Gonzalez A, Collazo-Lorduy T, Coello-Casariego G, et al. Tracheostomy, ventilatory wean, and decannulation in COVID-19 patients: a machine learning approach. Crit Care Explor 2020; 2: e0279
59. Long SM, Chern A, Feit NZ, et al. Percutaneous and open tracheostomy for prolonged respiratory wean in critically ill coronavirus disease 2019 patients: a machine learning approach. Crit Care 2021; 25: 312
60. Tornari C, Surda P, Ahmad I, et al. Timing of tracheostomy for COVID-19. Arch Bronconeumol 2021; 57: 54–6
61. Bartier S, La Croix C, Evrard D, et al. Tracheostomies after tracheostomy in patients with COVID-19. Arch Bronconeumol 2021; 57: 54–6
62. Forni R, Besana T, Amitrano A, Voinea C, Ogna A. Ventilatory weaning and early rehabilitation in COVID-19-related acute respiratory distress syndrome: the experience at Locarno hospital, canton of Ticino, Switzerland. Swiss Med Wkly 2020; 150: w20397
63. Ahmed Y, Cao A, Thal A, et al. Tracheostomy outcomes in 64 ventilated COVID-19 patients at a high-volume center in Bronx, NY. Laryngoscope 2021; 131: E1797–804
64. Ahn D, Lee GJ, Choi YS, et al. Timing and clinical outcomes of tracheostomy in patients with COVID-19. Br J Surg 2021; 108: e27–8
65. Staibano P, Levin M, McHugh T, Gupta M, Sommer DD. Association of tracheostomy with outcomes in patients with COVID-19 and SARS-CoV-2 transmission among health care professionals. JAMA Otolaryngol Head Neck Surg 2021; 147: 646–55
66. Chong WH, Tan CK. Clinical outcomes of early versus late tracheostomy in coronavirus disease 2019 patients: a systematic review and meta-analysis. J Intensive Care Med 2022; 37: 1121–32
67. Bier-Laning C, Cramer JD, Roy S, et al. Tracheostomy during the COVID-19 pandemic: comparison of international perioperative care protocols and practices in 26 countries. Otolaryngol Head Neck Surg 2021; 164: 1136–47
68. Trouillet JL, Collange O, Belafia F, et al. Tracheostomy in the intensive care unit: guidelines from a French expert panel. Ann Intensive Care 2018; 8: 37
69. McGrath BA, Ashby N, Birchall M, et al. Multidisciplinary guidance for safe tracheostomy care during the COVID-19 pandemic: the NHS national patient safety improvement programme (NatPatSIP). Anaesthesia 2020; 75: 1659–70
70. Nahar T, Roberts A, Bracque W, et al. HYPER-EARLY™ tracheostomy within 48 hours has less complications and better prognosis compared to traditional tracheostomy. Am Surg 2022; 88: 1517–21
71. Chorath K, Hoang A, Rajasekaran K, Moreira A. Association of early vs late tracheostomy placement with pneumonia and ventilator days in critically ill patients. JAMA Otolaryngol Head Neck Surg 2021; 147: 450–9
72. Sutt AL, Tronstad O, Barnett AG, Kitchenman S, Fraser JF. Earlier tracheostomy is associated with an earlier return to walking, talking, and eating. Aust Crit Care 2020; 33: 213–8
73. McGrath BA, Brenner MJ, Warrillow SJ, et al. Tracheostomy in the COVID-19 era: global and multidisciplinary guidance. Lancet Respir Med 2020; 8: 717–25
74. Brodsky MB, Levy MJ, Jedlancik E, et al. Laryngeal injury and upper airway symptoms after oral endotracheal intubation with mechanical ventilation during critical care. Crit Care Med 2018; 46: 2010. –7
75. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020; 382: 1177–9
76. Sorbello M, Rosenblatt W, Hofmeyr R, Greif R, Urdaneta F. Aerosol boxes and barrier enclosures for airway management in COVID-19 patients: a scoping review and narrative synthesis. Br J Anaesth 2020; 125: 880–94
77. Deng H, Fang Q, Chen K, Zhang X. Early versus late tracheostomy in ICU patients. Medicine (Baltimore) 2021; 100, e24329
78. Hosokawa K, Nishimura M, Egi M, Vincent J-L. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care 2015; 19: 424
79. Meng L, Wang C, Li J, Zhang J. Early vs late tracheostomy in critically ill patients: a systematic review and meta-analysis. Clin Respir J 2016; 10: 684–92
80. Freeman BD, Borecki IB, Coopersmith CM, Buchman TG. Relationship between tracheostomy timing and duration of mechanical ventilation in critically ill patients. Crit Care Med 2005; 33: 2513–20
81. Griffiths J, Barber VS, Morgan L, Young JD. Systematic review and meta-analysis of studies of the timing of
82. Huang H, Li Y, Ariani F, Chen X, Lin J. Timing of tracheostomy in critically ill patients: a meta-analysis. PLoS One 2014; 9, e92981

83. Siempos II, Ntaidou TK, Filippidis FT, Choi AMK. Effect of early versus late or no tracheostomy on mortality and pneumonia of critically ill patients receiving mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med 2015; 3: 150–8

84. Stelfox H, Crimi C, Berra L, et al. Determinants of tracheostomy decannulation: an international survey. Crit Care 2008; 12: R26

85. Adly A, Youssef TA, El-Begermy MM, Younis HM. Timing of tracheostomy in patients with prolonged endotracheal intubation: a systematic review. Eur Arch Otorhinolaryngol 2018; 275: 679–90

86. Putensen C, Theuerkauf N, Guenther U, Vargas M, Pelosi P. Percutaneous and surgical tracheostomy in critically ill adult patients: a meta-analysis. Crit Care 2014; 18: 544

87. Lavinio A, Ercole A, Battaglini D, et al. Safety profile of enhanced thromboprophylaxis strategies for critically ill COVID-19 patients during the first wave of the pandemic: observational report from 28 European intensive care units. Crit Care 2021; 25: 155

88. Lazzaroni MG, Piantoni S, Masneri S, et al. Coagulation dysfunction in COVID-19: the interplay between inflammation, viral infection and the coagulation system. Blood Rev 2021; 46, 100745

89. Robba C, Battaglini D, Ball L, et al. Coagulative disorders in critically ill COVID-19 patients with acute distress respiratory syndrome: a critical review. J Clin Med 2021; 10: 140

Handling editor: Jonathan Hardman