Abstract—Web query log data contain information useful to research; however, release of such data can re-identify the search engine users issuing the queries. These privacy concerns go far beyond removing explicitly identifying information such as name and address, since non-identifying personal data can be combined with publicly available information to pinpoint an individual. In this work we model web query logs as unstructured transaction data and present a novel transaction anonymization technique based on clustering and generalization techniques to achieve the \(k\)-anonymity privacy. We conduct extensive experiments on the AOL query log data. Our results show that this method results in a higher data utility compared to the state-of-the-art transaction anonymization methods.

Index Terms—Query logs data, privacy-preserving data publishing, transaction data anonymization, item generalization.

I. INTRODUCTION

WEB search engines generally store query logs data for the purpose of improving ranking algorithms, query refinement, user modeling, fraud/abuse detection, language-based applications, and sharing data for academic research or commercial needs. On the other hand, the release of query logs data can seriously breach the privacy of search engine users. The privacy concern goes far beyond just removing the identifying information from a query. Sweeney [17] showed that even non-identifying personal data can be combined with publicly available information, such as census or voter registration databases, to pinpoint an individual. In 2006 the America Online (AOL) query log data, over a period of three months, was released to the public [2]. Although all explicit identifiers of searchers have been removed, by examining query terms, the searcher No. 4417749 was traced back to the 62-year-old widow Thelma Arnold. Since this scandal, data publishers become reluctant to provide researchers with public anonymized query logs [7].

An important research problem is how to render web query log data in such a way that it is difficult to link a query to a specific individual while the data is still useful to data analysis. Several recent works start to examine this problem, with [10] and [11] from web community focusing on privacy attacks, and [8], [18], and [19] from the database community focusing on anonymization techniques. Although good progresses are made, a major challenge is reducing the significant information loss of the anonymized data.

The subject of this paper falls into the field of privacy preserving data publishing (PPDP) [6], which is different from access control and authentication associated with computer security. The work in these latter areas ensures that the recipient of information has the authority to receive that information. While such protections can safeguard against direct disclosures, they do not address disclosures based on inferences that can be drawn from released data. The subject of PPDP is not much on whether the recipient can access to the information or not, but is more on what values will constitute the information the recipient will receive so that the privacy of record owners is protected.

A. Motivations

This paper studies the query log anonymization problem with the focus on reducing information loss. One approach is modeling query logs data as a special case of transaction data, where each transaction contains several “items” from an item universe \(I\). In the case of query logs, each transaction represents a query and each item represents a query term. Other examples of transaction data are emails, online clicking streams, online shopping transactions, and so on. As pointed out in [18] and [19], for transaction data, the item universe \(I\) is very large (say thousands of items) and a transaction contains only a few items. For example, each query contains a tiny fraction of all query terms that may occur in a query log. If each item is treated as a binary attribute with 1/0 values, the transaction data is extremely high dimensional and sparse. On such data, traditional techniques suffer from extreme information loss [18] and [19].

Recently, the authors of [8] adapted the top-down Mondrian [12] partition algorithm originally proposed for relational data to generalize the set-valued transaction data. We refer to this algorithm as \(\text{Partition}\) in this paper. They adapted the traditional \(k\)-anonymity [15] and [16] to the set valued transaction data. A transaction database is \(k\)-anonymous if transactions are partitioned into equivalence classes of size at least \(k\), where all transactions in the same equivalence class are exactly identical. This notion prevents linking attacks in the sense that the probability of linking an individual to a specific transaction is no more than \(1/k\).

Our insight is that \(\text{Partition}\) method suffers from significant information loss on transaction data. Consider the transaction data \(S = [t_1, t_2, t_3, t_4, t_5]\) in the second column of Table I and the item taxonomy in Fig. 1. Assume \(k = 2\). \(\text{Partition}\) works as...
follows. Initially, there is one partition $P_{\{\text{food}\}}$ in which the items in every transaction are generalized to the top-most item food. At this point, the possible drill-down is $\text{food} \rightarrow \{\text{fruit, meat, dairy}\}$, yielding $2^3 - 1$ sub-partitions corresponding to the non-empty subsets of $\{\text{fruit, meat, dairy}\}$, i.e., $P_{\{\text{fruit}\}}$, $P_{\{\text{meat}\}}$, ..., and $P_{\{\text{fruit,meat,dairy}\}}$, where the curly bracket of each sub-partition contains the common items for all the transactions in that sub-partition. All transactions in $P_{\{\text{food}\}}$ are then partitioned into these sub-partitions. All sub-partitions except $P_{\{\text{meat}\}}$ violate k-anonymity (for $k=2$) and thus are merged into one partition $P_{\{\text{food}\}}$. Further partitioning of $P_{\{\text{meat}\}}$ also violates k-anonymity. Therefore, the algorithm stops with the result shown in the last column of Table I.

One drawback of Partition is that it stops partitioning the data at a high level of the item taxonomy. Indeed, specializing an item with n children will generate $2^n - 1$ possible sub-partitions. This exponential branching, even for a small value of n, quickly diminishes the size of a sub-partition and causes violation of k-anonymity. This is especially true for query logs data where query terms are drawn from a large universe and are from a diverse section of the taxonomy.

Moreover, the Partition does not deal with item duplication. As an example, the generalized t_3 in the third column of Table I contains only one occurrence of food, which clearly has more information loss than the generalized transaction $\langle\text{food, food, food}\rangle$ because the latter tells more truthfully that the original transaction purchases at least three items. Indeed, the Tfidf used by many ranking algorithms critically depends on the term frequency of a term in a query or document. Preserving the occurrences of items (as much as possible) would enable a wide range of data analysis and applications.

B. Contributions

To render the input transaction data k-anonymous, our observation is: if “similar” transactions are grouped together, less generalization and suppression will be needed to render them identical. As an example, grouping two transactions $\langle\text{Apple}\rangle$ and $\langle\text{Milk}\rangle$ (each having only one item) entails more information loss than grouping two transactions $\langle\text{Apple}\rangle$ and $\langle\text{Orange}\rangle$, because the former results in the more generalized transaction $\langle\text{Food}\rangle$ whereas the latter results in the less generalized transaction $\langle\text{Fruit}\rangle$. Therefore, with a proper notion of transaction similarity, we can treat the transaction anonymization as a clustering problem such that each cluster must contain at least k transactions and these transactions should be “similar”. Our main contributions are as follows:

Contribution 1 For a given item taxonomy, we introduce the notion of the Least Common Generalization (LCG) as the generalized representation of a subset of transactions, and as a way to measure the similarity of a subset of transactions. The distortion of LCG models the information loss caused by both item generalization and item suppression. We devise a linear-time algorithm to compute LCG.

Contribution 2 We formulate the transaction anonymization as the problem of clustering a given set of transactions into clusters of size at least k such that the sum of LCG distortion of all clusters is minimized.

Contribution 3 We present a heuristic linear-time solution to the transaction anonymization problem.

Contribution 4 We evaluate our method on the AOL query logs data.

The structure of the paper is as follows. Section II describes problem statements. Section III gives our clustering algorithm. Section IV presents the detailed algorithm for computing LCG. Section V presents the experimental results. Section VI reviews related works. We conclude in Section VII.

II. PROBLEM STATEMENTS

This section defines our problems. We use the terms “transaction” and “item”. In the context of web query logs, a transaction corresponds to a query and an item corresponds to a query term.

A. Item Generalization

We assume that there is a taxonomy tree T over the item universe I, with the parent being more general than all children. This assumption was made in the literature [15], [16], [8], [18]. For example, WordNet [5] could be a source to obtain the item taxonomy.

The process of generalization refers to replacing a special item with a more general item (i.e., an ancestor), and the process of specialization refers to the exact reverse operation. In this work, an item is its own ancestor and descendant.

Definition 1 (Transactions and generalization) A transaction is a bag of items from I (thus allowing duplicate items). A transaction t' is a Generalized Transaction of a transaction t, if for every item $i \in t'$ there exists one distinct item $i' \in t$ such that i' is an ancestor of i. In this case, t is the Specialized Transaction of t'.

The above transaction model is different from [8] in several ways. First, it allows duplicate items in a transaction. Second, it allows items in a transaction to be on the same path in the item taxonomy, in which case, each item represents a distinct
leaf item. For example, we interpret the transaction \langle Fruit, Food \rangle as: Fruit represents (the generalization of) a leaf item under Fruit and Food represents a leaf item under Food that is not represented by Fruit. Also, if \(t' \) is a generalized transaction of \(t \), each item \(i \in t' \) represents one distinct item \(i \in t \). We say that an item \(i \in t \) is suppressed in \(t' \) if no \(i \in t' \) represents the item \(i \). Hence, our generalization also models item suppression.

Example 1 Consider the taxonomy tree in Fig. 1 and the transaction \(t = \langle Orange, Beef \rangle \). All possible generalized transactions of \(t \) are \(\langle \rangle, \langle Orange \rangle, \langle Beef \rangle, \langle Orange, Beef \rangle, \langle Orange, Meat \rangle, \langle Fruit, Beef \rangle, \langle Fruit, Meat \rangle, \langle Fruit, Food \rangle, \langle Orange, Food \rangle, \langle Food, Beef \rangle, \langle Fruit, Food \rangle, \langle Beef, Food \rangle, \langle Orange, Food, Meat \rangle, \langle Food, Fruit \rangle, \langle Food, Food \rangle, \langle Beef, Food \rangle, \langle Orange, Food, Meat, Fruit \rangle, \langle Fruit, Food, Fruit \rangle, \langle Food, Food, Food \rangle \). For \(t' = \langle Fruit \rangle \), Fruit represents (the generalization of) some item under the category Fruit (i.e., Orange), and Beef is a suppressed item since no more item in \(t' \) represents it. For \(t' = \langle Food \rangle \), Food represents one item under Food, therefore, one of Orange and Beef in \(t \) is suppressed. For \(t' = \langle Food, Food \rangle \), each occurrence of Food represents a different item in \(t \).

B. Least Common Generalization

The main idea of transaction anonymization is to build groups of identical transactions through generalization. We introduce the following notion to capture such generalizations.

Definition 2 (LCG) The Least Common Generalization of a set of transactions \(S \), denoted by LCG(\(S \)), is a common generalized transaction for all transactions in \(S \), and there is no other more special common generalized transaction.

The following properties follow from the above definition.

The proof has been omitted due to the space limit.

Property 1 LCG(\(S \)) is unique for a given \(S \).

Property 2 The length of LCG(\(S \)) (i.e., the number of items in it) is equal to the length of the shortest transaction in \(S \). This property can be ensured by padding the root item to LCG if necessary.

Example 2 Consider the taxonomy tree in Fig. 1. Let \(S_1 = \{ \langle Orange, Beef \rangle, \langle Apple, Chicken, Beef \rangle \} \), LCG(\(S_1 \)) = \langle Fruit, Beef \rangle. LCG(\(S_1 \)) cannot be \langle Fruit, Meat \rangle since \langle Fruit, Beef \rangle is a more specialized common transaction. For \(S_2 = \{ \langle Orange, Milk \rangle, \langle Apple, Cheese, Butter \rangle \} \), LCG(\(S_2 \)) = \langle Fruit, Dairy \rangle. Dairy represents Milk in the first transaction and represents one of Cheese and Butter in the second transaction. Thus one of Cheese or Butter is considered as a suppressed item. For \(S_3 = \{ \langle Orange, Apple \rangle, \langle Orange, Banana, Milk \rangle, \langle Banana, Apple, Beef \rangle \} \), LCG(\(S_3 \)) = \langle Fruit, Fruit \rangle, which represents that all three transactions contain at least two items under Fruit. Milk and Beef are suppressed items. For \(S_4 = \{ \langle Orange, Beef \rangle, \langle Apple, Milk \rangle \} \), LCG(\(S_4 \)) = \langle Fruit, Food \rangle, where Food represents Beef in the first transaction and Milk in the second transaction. Here LCG contains both a parent and a child item.

Various metrics have been proposed in the literature to measure the quality of generalized data including Classification Metric (CM), Generalized Loss Metric (LM) [9], and Discernibility Metric (DM) [3]. We use LM to measure item generalization distortion. The similar notion of NCP has also been employed for set-valued data [18] and [8]. Let \(M \) be the total number of leaf nodes in the taxonomy tree \(T \), and let \(M_p \) be the number of leaf nodes in the subtree rooted at a node \(p \). The Loss Metric for an item \(p \), denoted by LM(\(p \)), is defined as \((M_p-1)/(M-1) \). For the root item \(p \), LM(\(p \)) is 1.

In words, LM captures the degree of generalization of an item by the percentage of the leaf items in the domain that are indistinguishable from it after the generalization. For example, considering taxonomy in Fig. 1, LM(\(Fruit \)) = 2/7.

Suppose that we generalize every transaction in a subset of transactions \(S \) to a common generalized transaction \(t \), and we want to measure the distortion of this generalization. Recall that every item in \(t \) represents one distinct item in each transaction in \(S \) (Definition 1). Therefore, each item in \(t \) generalizes exactly \(|S| \) items, one from each transaction in \(S \), where \(|S| \) is the number of transactions in \(S \). The remaining items in a transaction (that are not generalized by any item in \(t \)) are suppressed items. Therefore, the distortion of this generalization is the sum of the distortion for generalized items, \(|S| \cdot \Sigma_{i \in t} LM(i) \), and the distortion for suppressed items. For each suppressed item, we charge the same distortion as if it is generalized to the root item, i.e., 1.

Definition 3 (GGD) Suppose that we generalize every transaction in a set of transactions \(S \) to a common generalized transaction \(t \). The Group Generalization Distortion of the generalization is defined as \(GGD(S, t) = |S| \cdot \Sigma_{i \in t} LM(i) + N_r \), where \(N_r \) is the number of occurrences of suppressed items.

To minimize the distortion, we shall generalize \(S \) to the least common generalization LCG(\(S \)), which has the distortion \(GGD(S, LCG(S)) \).

Example 3 Consider the taxonomy in Fig. 1 and \(S_1 = \{ \langle Orange, Beef \rangle, \langle Apple, Chicken, Beef \rangle \} \). We have LCG(\(S_1 \)) = \langle Fruit, Beef \rangle. LM(\(Fruit \)) = 2/7, LM(\(Beef \)) = 0, and \(|S_1| = 2 \). Since Chicken is the only suppressed item, \(N_r = 1 \). Thus \(GGD(S_1, LCG(S_1)) = 2 \cdot (2/7 + 0) + 1 = 11/7 \).

C. Problem Definition

We adopt the transactional \(k \)-anonymity in [8] as our privacy notion. A transaction database \(D \) is \(k \)-anonymous if for every transaction in \(D \), there are at least \(k \)-1 other identical transactions in \(D \). Therefore, for a \(k \)-anonymous \(D \), if one transaction is linked to an individual, so are at least \(k \)-1 other transactions, so the adversary has at most \(1/k \) probability to link a specific transaction to the individual. For example, the last column in Table I is a 2-anonymous transaction database.

Definition 4 (Transaction anonymization) Given a transaction database \(D \), a taxonomy of items, and a privacy parameter \(k \), we want to find the clustering \(C = \{ S_1, ..., S_m \} \) of \(D \) such that \(S_i \cup \ldots \cup S_m \) is pair-wise disjoint subsets of \(D \) with each \(S_i \) containing at least \(k \) transactions from \(D \), and \(\Sigma_{i=1}^{m} |C| GGD(S_i, LCG(S_i)) \) is minimized.

Let \(C = \{ S_1, ..., S_n \} \) be a solution to the above anonymization problem. A \(k \)-anonymized database of \(D \) can be obtained by generalizing every transaction in \(S_i \) to LCG(\(S_i \)), \(i = 1, ..., n \).
III. Clustering Approach

In this section we present our algorithm \textit{Clump} for solving the problem defined in Definition 4. In general, the problem of finding optimal k-anonymization is \textit{NP}-hard for \(k \geq 3 \) [13]. Thus, we focus on an efficient heuristic solution to this problem and evaluate its effectiveness empirically. In this section, we assume that the functions \(LCG(S) \) and \(GGD(S, LCG(S)) \) are given. We will discuss the detail of computing these functions in Section IV.

The central idea of our algorithm is to group transactions in order to reduce \(\Sigma GGD(S_i, LCG(S_i)) \), subject to the constraint that \(S_i \) contains at least \(k \) transactions. Recall \(GGD(S, LCG(S)) = |S| \Sigma_{S \subseteq LCG(S)} LM(i) + N_i \) and from Property 2, \(LCG(S) \) has the length equal to the minimum length of transactions in \(S \). All “extra” items in a transaction that do not have a generalization in \(LCG(S) \) are suppressed and contributes to the suppression distortion \(N_i \). Since the distortion of generalizing an item is no more than the distortion of suppressing an item, one heuristic is to group transactions of similar length into one cluster in order to minimize the suppression distortion \(N_i \).

Based on this idea, we present our algorithm \textit{Clump}. Let \(D \) be the input transaction database and let \(n = \lfloor |D|/k \rfloor \) be the number of clusters, where \(|D| \) denotes the number of transactions in \(D \).

Step 1 (line 2-5): We arrange the transactions in \(D \) in the decreasing order of the transaction length, and we initialize the \(i \)th cluster \(S_i \), \(i=1,\ldots,n \), with the transaction at the position \((i-1)k+1 \) in the ordered list. Since earlier transactions in the arranged order have longer length, earlier clusters in this order tend to contain longer transactions.

For the comparison purpose, we also implement other transaction assignment orders, such as random assignment order and the increasing transaction length order (i.e., the exact reverse order of the above algorithm). Our experiments found that the decreasing order by transaction length produced better results.

Step 2 (line 6-12): For each remaining transaction \(t_i \) in the arranged order, we assign \(t_i \) to the cluster \(S_j \) such that \(|S_j| < k \) and \(GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\})) \) is minimized. Since this step requires computing \(GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\})) \), we can restrict the search to the first \(r \) clusters \(S_j \) with \(|S_j| < k \), where \(r \) is a pruning parameter. Our order of examining transactions implies that longer transactions tend to be assigned to earlier clusters.

Step 3 (line 13-17): After all of the \(n \) clusters contain \(k \) number of transactions, for each remaining transaction \(t_i \) in the sorted order, we assign it to the cluster \(S_j \) with the minimum \(GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\})) \).

The major work of the algorithm is computing \(GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\})) \), which requires the \(LCG(S_j \cup \{t_i\}) \). We will present an algorithm for computing \(LCG(S_i) \) in time \(O(|T| \Sigma |S_i|) \) in the next section, where \(|T| \) is the size of the taxonomy tree \(T \) and \(|S_i| \) is the number of transactions in \(S_i \). It is important to note that each cluster \(S_j \) has a size at most \(2k \). Since \(k \) is small, \(LCG \) can be computed efficiently. In fact, the next lemma says that \(LCG(S_j \cup \{t_i\}) \) can be computed incrementally from \(LCG(S_i) \).

Algorithm 1 Clump: Transaction Clustering
Input: Transaction database: \(D \), Taxonomy: \(T \). Anonymity parameter: \(k, n = \lfloor
Output: \(k \)-anonymous transaction database: \(D^* \)
Method:
1. Initialize \(S \leftarrow \emptyset \) for \(i=1,\ldots,
2. Sort the transactions in \(D \) in the descending order of length
3. for \(i = 1 \) to \(n \) do
4. assign the transaction at the position \((i-1)k+1\) to \(S_i \)
5. end for
6. while \(
7. for each unassigned transaction \(t_i \) in sorted order do
8. Let \(S_j \) be the cluster such that \(
9. \(LCG(S_j) \leftarrow LCG(S_j \cup \{t_i\}) \)
10. \(S_j \leftarrow S_j \cup \{t_i\} \)
11. end for
12. end while
13. for each unassigned transaction \(t_i \) do
14. Let \(S_j \) be the cluster such that \(GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\})) \) is minimized
15. \(LCG(S_j) \leftarrow LCG(S_j \cup \{t_i\}) \)
16. \(S_j \leftarrow S_j \cup \{t_i\} \)
17. end for
18. return \(LCG(S_i) \) and \(S_i, i=1,\ldots,n \)

Lemma 1 Let \(t \) be a transaction, \(S \) be a subset of transactions, and \(S' = \{LCG(S) \cup \{t\} \} \) consist of two transactions. Then \(LCG(S \cup \{t\}) = LCG(S') \).

Proof: Omitted due to the space limit. □

In words, the lemma says that the \(LCG \) of \(S \cup \{t\} \) is equal to the \(LCG \) of two transactions, \(LCG(S) \) and \(t \). Thus if we maintain \(LCG(S_j) \) for each cluster \(S_j \), the computation of \(LCG(S_j \cup \{t\}) \) involves only two transactions and takes the time \(O(|T|) \).

Theorem 1 For a database \(D \) and a taxonomy tree \(T \), Algorithm 1 runs in time \(O(|D| \times |T|) \), where \(r \) is the pruning parameter used by the algorithm.

Proof: We apply Counting Sort which takes \(O(|D|) \) time to sort all transactions in \(D \) by their length. Subsequently, the algorithm examines each transaction once to insert it to a cluster. To insert a transaction \(t_{nr} \), the algorithm examines \(r \) clusters and, for each cluster \(S_j \), it computes \(LCG(S_j \cup \{t_{nr}\}) \) and \(GGD(S_j \cup \{t_{nr}\}, LCG(S_j \cup \{t_{nr}\})) \), which takes \(O(|T| \Sigma |S_j|) \) according to Theorem 2 in Section IV, where \(|S_j| \) is the number of transactions in \(S_j \). With the incremental computing of \(LCG(S_j \cup \{t_{nr}\}) \) in Lemma 1, computing \(LCG(S_j \cup \{t_{nr}\}) \) takes time proportional to \(|T| \). Overall, the algorithm is in \(O(|D| \times |T|) \). □

Since \(|T|\) and \(r \) are constants, the algorithm takes a linear time in the database size \(|D|\).
IV. COMPUTING LCG

In the previous section, we make use of the functions LCG(S) and GGD(S, LCG(S)) to determine the cluster for a transaction. Since these functions are frequently called, an efficient implementation is crucial. In this section, we present a linear time algorithm for computing LCG and GGD. We focus on LCG because computing GGD is straightforward once LCG is found.

A. Bottom-Up Generalization

We present a bottom-up item generalization (BUIG) algorithm to build LCG(S) for a set S of transactions. First, we initialize LCG(S) with the empty set of items. Then, we examine the items in the taxonomy tree T in the bottom-up fashion: examine a parent only after examining all its children. For the current item i examined, if i is an ancestor of some item in every transaction in S, we add i to LCG(S). In this case, i is the least common generalization of these items. If i is not an ancestor of any item in some transaction in S, we need to examine the parent of i.

This algorithm is described in Algorithm 2. Let $S = \langle t_1, \ldots, t_m \rangle$. For an item i, we use an array $R[i\ldots m]$ to store the number of items in a transaction in which i is an ancestor. Specifically, $R[i]$ is set to the number of items in the transaction t_j of which i is an ancestor. $MinCount(R)$ returns the minimum entry in R, i.e., $\min_{i=1..m} R[i]$. If $MinCount(R[i])>0$, i is an ancestor of at least $MinCount(R)$ distinct items in every transaction in S, so we will add $MinCount(R[i])$ copies of the item i to LCG(S).

Algorithm 2 is a call to the recursive procedure BUIG(root) with the root of T. Line 1-6 in the main procedure initializes LCG and $R[i]$. Consider BUIG(i) for an item i. If i is a leaf in T, it returns. Otherwise, line 4-9 examines recursively the children i’ of i, by the call BUIG(i’). On return from BUIG(i’), if $MinCount(R[i'])>0$, i’ is an ancestor of at least $MinCount(R[i'])$ items in every transaction in S, so $MinCount(R[i'])$ copies of i’ are added to LCG. If $MinCount(R[i'])=0$, i’ does not represent any item for some transaction in S, so the examination moves up to the parent item i; in this case, line 8 computes R[i] by aggregating $R[i']$ for all child items i’ such that $MinCount(R[i'])=0$. Note that, by not aggregating $R[i']$ with $MinCount(R[i'])>0$, we stop generalizing such child items. If i is the root, line 10-11 adds $MinTranSize(S)\cdot LCG$ copies of the root item to LCG, where $MinTranSize(S)$ returns the minimum transaction length of S. This step ensures that LCG has the same length as the minimum transaction length of S (Property 2).

Example 5 Let $S = \{<\text{Orange, Apple}>, <\text{Orange, Banana, Milk}>, <\text{Banana, Apple, Beef}>\}$ and consider the taxonomy in Fig. 1. BUIG(Food) recurs until reaching leaf items. Then the processing proceeds bottom-up as depicted in Fig. 2. Next to each item i, we show $o: R[i, o]$, where o is the sequence order in which i is examined and $R[i]$ stores the number of items in each transaction of which i is an ancestor.

The first three items examined are Apple, Orange, and Banana. $R[\text{Apple}]=[1,0,1]$ (since Apple appeared in transactions 1 and 3), $R[\text{Orange}]=[1,1,0]$, and $R[\text{Banana}]=[0,1,1]$. $MinCount(R[i])=0$ for these items i. Next, the parent Fruit is examined and $R[\text{Fruit}] = R[\text{Apple}] + R[\text{Orange}] + R[\text{Banana}]=[2,2,2]$. With $MinCount(R[\text{Fruit}]) = 2$, two copies of Fruit are added to LCG, i.e., $LCG(S) = \langle \text{Fruit, Fruit}\rangle$ and we stop generalizing.

Algorithm 2 Bottom-up Item Generalization

Input: Taxonomy: T, Set of m transactions: S = $\langle t_1, \ldots, t_m \rangle$

Output: LCG(S)

Method:
1. $LCG \leftarrow \emptyset$
2. for each item i in T do
 3. for each $t_j \in S$ do
 4. if t_i contains i then $R[i,j] \leftarrow 1$ else $R[i,j] \leftarrow 0$
 5. end for
3. end for
4. BUIG(root);
5. return LCG;

BUIG(i);

1. if i is a leaf in T then
 2. return
3. else
 4. for each child i’ of i do
 5. BUIG(i’);
 6. if $MinCount(R[i’])>0$ then
 7. Add $MinCount(R[i’])$ copies of i’ to LCG
 7. else $R[i] \leftarrow R[i]+R[i’] /* examining the parent i */
 8. end for
10. if i = root then
 11. Add $MinTranSize(S)\cdot LCG$ copies of root to LCG
12. return

Theorem 2 Given a set of transactions S and a taxonomy tree T of items, BUIG produces LCG(S) and takes time $O(|T|\times|S|)$, where |S| is the number of transactions in S and |T| is the number of items in taxonomy tree T.

Proof: First, BUIG generalizes transactions by examining the items in T in the bottom-up order and stops generalization.
whenever encountering an item that is a common ancestor of some unrepresented item in every transaction in S. This property ensures that each item added to LCD is the earliest possible common ancestor of some unrepresented item in every transaction. Second, BUIG visits each node in T once, and at each node i, it examines the structures R_i and R_i of size $|i|$, where i is a child of i. So the complexity is $O(|T| \times |S|)$.

B. A Complete Example

Let us illustrate the complete run of Clump using the motivating example in Section I.A. We reproduce the five transactions t_1 to t_5 in Table II, arranged by the descending order of transaction length. Let $k=2$. First, the number of clusters is $m = \lfloor 5/2 \rfloor = 2$, and the first cluster S_1 is initialized to the first transaction t_1 and the second cluster S_2 is initialized to the third transaction t_3. Next, we assign the remaining transactions t_2, t_4, and t_5 in that order. Consider t_2. If we assign t_2 to S_1, $LCG(S_1 \cup \{t_{2}\}) =$ \{fruit, beef, food\}, and $GGD = 2 \times (2/7 + 0/1) + 1 = 2.57$. If we assign t_2 to S_2, we have $LCG(S_2 \cup \{t_{2}\}) =$ \{meat, dairy, food\} and $GGD = 2 \times (2/7 + 2/7 + 1) = 2.85$. Thus the decision is assigning t_2 to S_1 resulting in $S_1 = \{t_1, t_2\}$ and $LCG(S_1) =$ \{fruit, beef, food\}.

Next, we assign t_4 to S_2 because S_1 has the descending order of transaction length. So $S_2 = \{t_3, t_4\}$ and $LCG(S_2) =$ \{chicken, food\}. Next, we have the choice of assigning t_5 to S_1 or S_2 because both have contained 2 transactions. The decision is assigning t_5 to S_2 because it results in a smaller GGD, and $LCG(S_2) =$ \{chicken, food\}. Thus the final clustering is $S_1 = \{t_1, t_2\}$ and $S_2 = \{t_3, t_4, t_5\}$. The column last of Table II shows the final generalized transactions.

Table II

ID	Original Data	Partition	Clump
1	<orange, chicken, beef>	<fruit, meat>	<fruit, beef, food>
2	<banana, beef, cheese>	<food>	<fruit, beef, food>
3	<chicken, milk, butter>	<food>	<chicken, food>
4	<apple, chicken>	<fruit, meat>	<chicken, food>
5	<chicken, beef>	<food>	<chicken, food>

Let us compare this result of Clump with the result of Partition in the third column (which has been derived in Section I.A). For Clump, we measure the distortion by $\Sigma GGD(S_1, LCG(S))$ over all clusters S_i. For Partition, we measure the distortion by $\Sigma GGD(S_i, t_j)$ over all sub-partitions S_i where t_j is the generalized transaction for S_i. The GGD for Clump is $2 \times (2/7 + 0/1) + [3 \times (0/1 + 1)] = 6.57$, compared to $2 \times (2/7 + 1/7 + 1) + [3 \times (1/7 + 1)] = 8.85$ for the Partition.

V. EXPERIMENTS

We now evaluate our approach using the real AOL query logs [14]. We compared our method Clump with the state-of-the-art transaction anonymization method Partition [8]. The implementation of both algorithms was done in Visual C++ and the experiments were performed on a system with core-2 Duo 2.99GHz CPU with 3.83 GB memory.

1) Experiment Setup

Dataset information The AOL query log collection dataset consists of 20M web queries collected from 650K users over three months in the form of \{AnonID, QueryContent, QueryTime, ItemRank, ClickURL\} and are sorted by anonymous AnonID (user ID). Our experiments focused on anonymizing QueryContent. The dataset has a size of 2.2GB and is divided into 10 subsets, each of which has similar characteristics and size. In our experiment, we used the first subset. In addition, we merged the queries issued by the same AnonID into one transaction because each query is too short, and removed duplicate items, resulting in 53,058 queries or transactions with the average transaction length of 20.93.

We generated the item taxonomy T using the WordNet dictionary [5]. According to the WordNet, each noun has multiple senses. A sense is represented by a synset, i.e., a set of words with the same meaning. We used the first word to represent a synset. In pre-processing the AOL dataset, we discarded words that are not in the WordNet dictionary. We treated each noun as an item and interpreted each noun by its most frequently used sense i.e., the first synset. Therefore, nouns together with the is-a-kind-of links among them comprise a tree. The generated taxonomy tree contains 25645 items and has the height 18.

We investigate the following four quality indicators: a) distortion (i.e., information loss), b) average generalized transaction length, which reflects the number of items suppressed, c) average level of generalized items (with the root at level 1), and d) execution time. The distortion is measured by $\Sigma GGD(S_i, LCG(S_i))$ over the clusters S_i for Clump, and by $\Sigma GGD(S_i, t_j)$ over the sub-partitions S_i for Partition where t_j is the generalized transaction.

Parameters The first parameter is the anonymity parameter k. We set k to 5, 7, 10, and 15. Another parameter is the database size $|D|$ (i.e., the number of transactions). In our experiments, we used the first 1000, 10000, and 53,058 transactions to evaluate the runtime and the effect of “transaction density” on our algorithm performance. The transaction density is measured by the ratio $N_{total} / (|D| \times |L|)$, where N_{total} is the sum of number of items in all transactions, $|D|$ is the number of transactions, and $|L|$ is the number of leaf items in our taxonomy. $|D| \times |L|$ is the maximum possible number of items that can occur in $|D|$ transactions. Table III shows the density of the first $|D|$ transactions. Clearly, a database gets sparser as $|D|$ grows. Unless otherwise stated, we set the parameter $r=10$ (a parameter used by Clump).

Table III

| $|D|$ | 1,000 | 10,000 | 20,000 | 30,000 | 40,000 | 53,058 |
|--------|--------|--------|--------|--------|--------|--------|
| Density| 0.28% | 0.25% | 0.20% | 0.16% | 0.14% | 0.11% |

2) Results

As discussed in Section I.A, one of our goals is to preserve duplicate items after generalization because duplication of items tells some information about the number of items in an
original transaction, which is useful to data analysis. To study
the effectiveness of achieving this goal, we consider two
versions of the result produced by Clump, denoted by Clump1
and Clump2. Clump1 represents the result produced by Clump
as discussed in Section IV, thus, preserves duplicate items in
LCG. Clump2 represents the result after removing all duplicate
items from LCG.

Figures 3, 4, 5 show the results with respect to information
loss, average transaction length, and average level of
generalized items. Below, we discuss each in details.

Information loss Fig. 3 clearly shows that the information
loss is reduced by the proposed Clump compared with
Partition. The reduction is as much as 30%. As we shall see
shortly, this reduction comes from the lower generalization
level of the generalized items in LCG, which comes from the
effectiveness of grouping similar transactions in our clustering
algorithm. However, the difference between Clump1 and
Clump2 is very small.

A close look reveals that many duplicate items preserved by
Clump1 are at a high level of the taxonomy tree. For such
items, generalization has a GGD close to that of suppressing
an item. However, this does not mean that such duplicate items
carry no information. Indeed, duplicates of items tell some
information about the quantity or frequency of an item in an
original transaction. Such information is not modeled by the
GGD metric.

As the database gets larger, the data gets sparser; the
improvement of Clump over Partition gets smaller. In fact,
when data is too sparse, no algorithm is expected to perform
well. As the privacy parameter \(k \) increases, the improvement
reduces. This is because each cluster contains more
transactions, possibly of different lengths; therefore, more
generalization and more suppression are required for the LCG
of such clusters. Typically, \(k \) in the range of \([5,10]\) would
provide adequate protection.

Average generalized transaction length Fig. 4 shows the
average length of generalized transactions. Clump1 has
significantly larger length than Clump2 and Partition. This
longer transaction length is mainly the consequence of
preserving duplicate items in LCG by Clump1. As discussed
above, duplicate items carry useful information about the
quantity or frequency of items in an original transaction. The
proposed Clump preserves better such information than
Partition.

Average level of generalized items Fig. 5 shows that the
average level of generalized items for Clump2 is lower than
that for Partition which is lower than that for Clump1 (recall
that the root item is at level 1). This is due to the fact that
many duplicate items preserved by Clump1 are at a level close
to the root. When such duplicates are removed (i.e., Clump2),
the remaining items have a lower average level than Partition.

![Fig. 3. Comparison of information loss](image)

![Fig. 4. Comparison of average generalized transaction length](image)

![Fig. 5. Comparison of average level of generalized item](image)
shown in Fig. 6, we set increasing the number of clusters to examine, we may come up result since information loss. Our experiments show that setting with a locally optimal choice that later increases the overall runtime. In this experiment, we set $|D|=53,058$ and $k=5$. As shown in Fig. 6, we set r to 5, 10, 30, 50, and 100. This experiment shows that a larger r does not always give a better result since Clump works in a greedy manner and by increasing the number of clusters to examine, we may come up with a locally optimal choice that later increases the overall information loss. Our experiments show that setting $r=10$ achieves a good result.

Runtime Fig. 7 depicts the runtime comparison for $k=5$ and $r=10$. Clump takes longer time than Partition does. In fact, the small runtime of Partition is largely due to the fact that the top-down algorithm stops partitioning the data at a high level of the taxonomy because a sub-partition contains less than k transactions. Thus, this small runtime is in fact at the costly information loss. Clump takes a longer runtime but is still linearly scalable with respect to the data size. Considering the notably less information loss, the longer runtime of Clump is justified.

VI. RELATED WORK

A recent survey [4] discussed seven query log privacy-enhancing techniques from a policy perspective, including deleting entire query logs, hashing query log content, deleting user identifiers, scrubbing personal information from query content, hashing user identifiers, shortening sessions, and deleting infrequent queries. Although these techniques protect privacy to some extent, there is a lack of formal privacy guarantees. For example, the release of the AOL query log data still leads to the re-identification of a search engine user even after hashing user’s identifiers [2]. The challenge is that the query content itself may be used together with publicly available information for linking attacks.

In token based hashing [10] a query log is anonymized by tokenizing each query term and securely hashing each token to an identifier. However, if an unanonymized reference query log has been released previously, the adversary could employ the reference query log to extract statistical properties of query terms in the log and then processes the anonymized log to invert the hash function based on co-occurrences of tokens within queries.

Secret sharing [1] is another method which splits a query into k random shares and publishes a new share for each distinct user issuing the same query. This technique guarantees k-anonymity because each share is useless on its own and all the k shares are required to decode the secret. This means that a query can be decoded only when there are at least k users issuing that query. The result is equivalent to suppressing all queries issued by less than k users. Since queries are typically sparse, many queries will be suppressed as a result.

Split personality, also proposed in [1], splits the logs of each user on the basis of “interests” so that the users become dissimilar to themselves, thus reducing the possibility of reconstructing a full user trace (i.e. search history of a user). This distortion also makes it more difficult for researchers to correlate different facets.

The work on transaction anonymization is studied in the database and data mining communities. Other than the Partition algorithm [8] we discussed in Section I.A, some techniques such as $(h; k; p)$-coherence [19], using suppression technique, and k^p-anonymity [18], using generalization, have been proposed. Both works assume that a realistic adversary is limited by a maximum number of item occurrences that can be acquired as background knowledge. As pointed out in [8], if background knowledge can be on the absence of items, the adversary may exclude transactions using this knowledge and focus on fewer than k transactions. The k-anonymity avoids this problem because all transactions in the same equivalence class are identical.

VII. CONCLUSION

The objective of publishing query logs for research is constrained by privacy concerns and it is a challenging problem to achieve a good tradeoff between privacy and utility of query log data. In this paper, we proposed a novel solution to this problem by casting it as a special clustering problem and generalizing all transactions in each cluster to their least common generalization (LCG). The goal of clustering is to group transactions into clusters so that the overall distortion is minimized and each cluster has at least the size k.

We devised efficient algorithms to find a good clustering. Our studies showed that the proposed algorithm retains a better data utility in terms of less data generalization and preserving more items, compared to the state-of-the-art transaction anonymization approaches.
ACKNOWLEDGMENT
Authors would like to thank Junqiang Liu for his assistance in implementation and also reviewers of SECRIPT 2010 conference for their feedback.

REFERENCES

[1] E. Adar, “User 4XXXXX9: Anonymizing query logs”, In Query Log Workshop, In WWW 2007.
[2] M. Barbaro, and T. Zeller, “A face is exposed for AOL searcher no. 4417749”, In The New York Times. 2006-08-09.
[3] R. J. Bayardo, and R. Agrawal, “Data privacy through optimal k-anonymization”, In ICDE 2005.
[4] A. Cooper, “A survey of query log privacy-enhancing techniques from a policy perspective”, In ACM Transactions on the Web, Vol. 2, No. 4, 2008.
[5] C. Fellbaum, “WordNet, an electronic lexical database”, In MIT Press, Cambridge MA. 1998.
[6] B. Fang, K. Wang, R. Chen, P. Yu, “Privacy-preserving data publishing: a survey on recent developments”, ACM Computing Surveys, Vol. 42, Issue No 4, December 2010
[7] K. Hafner, “Tempting data, privacy concerns; researchers yearn to use AOL logs, but they hesitate”, In The New York Times. 2006-09-13.
[8] Y. He, and J. Naughton, “Anonymization of set valued data via top-down, local generalization”, In VLDB 2009.
[9] V. Iyengar, “Transforming data to satisfy privacy constraints”, In SIGKDD 2002.
[10] R. Kumar, J. Novak, B. Pang, and A. Tomkins, “On anonymizing query logs via token-based hashing”, In WWW 2007.
[11] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Incognito: Efficient full-domain k-anonymity”, In SIGMOD 2005.
[12] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-anonymity”, In ICDE 2006.
[13] A. Meyerson, and R. Williams, “On the complexity of optimal k-anonymity”, In PODS 2004.
[14] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search”, The 1st Intl. Conference on Scalable Information Systems, Hong Kong, 2006.
[15] P. Samarati, “Protecting respondents’ identities in microdata releases”, In TKDE, vol. 13, no. 6, 2001, pp. 1010–1027
[16] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and suppression”, International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10 (5), 2002, p.p 571–588.
[17] L. Sweeney, “Uniqueness of simple demographics in the U.S. population”, LIDAP-WP4 CMU, Laboratory for International Data Privacy, 2000
[18] M. Terrovitis, N. Mamoulis, and P. Kalnis, “Privacy preserving anonymization of set valued data”, In VLDB 2008.
[19] Y. Xu, K. Wang, A. Fu, A., and P. Yu, “Anonymizing transaction databases for publication”, In SIGKDD 2008.
[20] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu, “Utility-based anonymization using local recoding”, In SIGKDD 2006.