Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli

Likai Liu and Jin-Lin Liu

Abstract: Using differential subordination, we consider conditions of \( \beta \) so that some multivalent analytic functions are subordinate to \((1 + z)^{\gamma}(0 < \gamma \leq 1)\). Notably, these results are applied to derive sufficient conditions for \( f \in A \) to satisfy the condition \(|\left(\frac{zf'(z)}{f(z)}\right)^{2} - 1| < 1\). Several previous results are extended.

Keywords: analytic function; differential subordination; starlike function; lemniscate of Bernoulli

MSC: 30C45

1. Introduction

Let \( A(p) \) denote the class of multivalent functions of the form

\[
f(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k}z^{k}, \quad (p \in N = \{1, 2, 3, \ldots\})
\]

which are analytic in the open unit disk \( D = \{z \in C : |z| < 1\} \). Additionally, let \( A := A(1) \).

For the two functions \( f \) and \( g \) analytic in \( D \), the function \( f \) is said to be subordinate to \( g \), written as \( f(z) \prec g(z) \), if there exists a function \( w \) analytic in \( D \) with \( w(0) = 0 \) and \(|w(z)| < 1 \), such that \( f(z) = g(w(z)) \). Notably, if \( g \) is univalent in \( D \), then \( f(z) \preceq g(z) \) is equivalent to \( f(0) = g(0) \) and \( f(D) \subseteq g(D) \).

In [1] Sokół and Stankiewicz defined and studied the class

\[
SL := \left\{ f \in A : \left| \frac{zf'(z)}{f(z)} \right|^{2} - 1 < 1, \quad z \in D \right\}.
\]

From (2), one can see that a function \( f \in SL \) if \( zf'(z)/f(z) \) lies in the region bounded by the right-half of the lemniscate of Bernoulli, given by \(|w^{2} - 1| < 1\). All functions in \( SL \) are univalent starlike functions. Several authors ([2–5]) considered differential subordination for functions belonging to the class \( SL \).

Recently, many scholars introduced and investigated various subclasses of multivalent analytic functions (see, e.g., [3–15] and the references cited therein). Some properties, such as distortion bounds, inclusion relations and coefficient estimates, were considered. In [16], Ssewanyana and Shamamkay introduced a class of multivalently Bazilevič functions involving the Lemniscate of Bernoulli and obtained subordination properties, inclusion relation, convolution result, coefficients estimate, and Fekete–Szegő problems for this class. In [14], Xu and Liu investigated some geometric properties of multivalent analytic functions associated with the lemniscate of Bernoulli and obtained a radius of starlikeness of the order \( \rho \). In [2], Ali, Cho, Ravichandran and Kumar considered conditions on \( \beta \) so that \( 1 + \beta zp'(z) \) subordinate to \( \sqrt{1 + z} \). Furthermore, Srivastava [8] carried out a systematic
investigation of various analytic function classes associated with operators of \( q \)-calculus and fractional \( q \)-calculus. In this paper, we will consider conditions of \( \beta \) so that some multivalent analytic functions are subordinate to \((1 + z)^{\gamma}\) \((0 < \gamma \leq 1)\), and derive several sufficient conditions of multivalent analytic functions associated with the lemniscate of Bernoulli. Some previous results are extended.

In order to prove our results, the following lemmas will be recalled.

**Lemma 1** ([17]). Let \( q \) be univalent in \( D \), and let \( \varphi \) be analytic in a domain containing \( q(D) \). Also let \( \frac{zq'(z)}{\varphi(q(z))} \) be starlike. If \( \phi \) is analytic in \( D \), \( \phi(0) = q(0) \) and satisfies

\[
\varphi(z) \varphi(\phi(z)) < zq'(z)\varphi(q(z)),
\]

then \( \phi(z) \prec q(z) \), and \( q \) is the most dominant.

**Lemma 2** ([17]). Let \( q \) be univalent in the unit disk \( D \), and let \( \theta \) and \( \varphi \) be analytic in a domain containing \( q(D) \) with \( \varphi(w) \neq 0 \) when \( w \in q(D) \). Set \( Q(z) = zq'(z)\varphi(q(z)), h(z) = \theta(q(z)) + Q(z) \). Suppose that

1. either \( h \) is convex, or \( Q \) is starlike univalent in \( D \), and
2. \( \text{Re}\frac{zq'(z)}{Q(z)} > 0 \) for \( z \in D \).

If \( \phi \) is analytic in \( D \), \( \phi(0) = q(0) \) and satisfies

\[
\theta(\phi(z)) + z\varphi(z)\varphi(\phi(z)) < \theta(q(z)) + zq'(z)\varphi(q(z)),
\]

then \( \phi(z) \prec q(z) \), and \( q \) is the best dominant.

2. Main Results

**Theorem 1.** Let \( 0 < \gamma \leq 1 \), \( \beta_0 = \frac{2-2^{1-\gamma}}{\gamma} \) and \( f \in A(p) \) with \( f(z) \neq 0 \) when \( z \neq 0 \). If \( f \) satisfies the subordination

\[
1 + \beta \left[ \frac{zf'(z)}{pf(z)} + \frac{z^2f''(z)}{pf(z)} - \frac{1}{p} \left( \frac{zf'(z)}{f(z)} \right)^2 \right] < (1 + z)^{\gamma}, \quad \beta \geq \beta_0,
\]

then \( \frac{zq'(z)}{pf(z)} < (1 + z)^{\gamma} \). The lower bound \( \beta_0 \) is sharp.

**Proof.** We first prove the following conclusion. If \( \phi \) is analytic in \( D \) and \( \phi(0) = 1 \), then

\[
1 + \beta z\varphi'(z) < (1 + z)^{\gamma} \Rightarrow \phi(z) < (1 + z)^{\gamma},
\]

where \( \beta \geq \beta_0 \) and the lower bound \( \beta_0 \) is the best possible.

Define the function \( q(z) = (1 + z)^{\gamma} \) with \( q(0) = 1 \). Then \( q(z) \) is univalent in \( D \). It can be seen that \( zq'(z) \) is starlike. By Lemma 1, we observe that if \( 1 + \beta z\varphi'(z) \prec 1 + \beta zq'(z) \), then \( \phi(z) \prec q(z) \).

Next, we need only to prove \( q(z) < 1 + \beta zq'(z) \). Consider the function \( h \) by

\[
h(z) := 1 + \beta zq'(z) = 1 + \frac{\beta\gamma z}{(1 + z)^{1-\gamma}} \quad (z \in D).
\]

Since \( q^{-1}(w) = w^{\frac{1}{\gamma}} - 1 \), we obtain

\[
q^{-1}(h(z)) = \left( 1 + \frac{\beta\gamma z}{(1 + z)^{1-\gamma}} \right)^{\frac{1}{\gamma}} - 1.
\]

For \( z = e^{it}, t \in [-\pi, \pi] \), we have
\begin{align*}
|q^{-1}(h(z))| &= |q^{-1}(h(e^{i\theta}))| = \left| 1 + \frac{\beta \gamma e^{i\theta}}{(1+e^{i\theta})^{1-\gamma}} \right|^\frac{1}{\gamma} - 1.
\end{align*}

The minimum of \(|q^{-1}(h(e^{i\theta}))|\) is obtained at \(t = 0\). Thus
\begin{align*}
|q^{-1}(h(e^{i\theta}))| &\geq \left(1 + \frac{\beta \gamma}{21-\gamma}\right)^\frac{1}{\gamma} - 1 \geq 1,
\end{align*}
provided \(\beta \geq \frac{2-2^{1-\gamma}}{\gamma}\). Thus \(h(D) \supset q(D)\). It follows that \(q(z) \prec h(z)\), and the conclusion (4) is proved.

Now, we define the function \(\phi\) by
\begin{align*}
\phi(z) = \frac{zf'(z)}{pf(z)},
\end{align*}
then \(\phi\) is analytic in \(D\) and \(\phi(0) = 1\). By a simple calculation, we have
\begin{align*}
z\phi'(z) = \frac{zf'(z)}{pf(z)} + \frac{z^2 f''(z)}{pf(z)} - \frac{1}{p} \left(\frac{zf'(z)}{f(z)}\right)^2.
\end{align*}
(5)

From (3)–(5), we obtain
\begin{align*}
\frac{zf'(z)}{pf(z)} &\prec (1+z)\gamma.
\end{align*}
The proof of the theorem is completed. \(\Box\)

For \(\gamma = \frac{1}{2}\) and \(p = 1\), we have the following result, obtained in [2].

**Corollary 1.** Let \(\beta_0 = 2(2 - \sqrt{2}) \approx 1.17\) and \(f \in A\) with \(f(z) \neq 0\) when \(z \neq 0\). If \(f\) satisfies the subordination
\begin{align*}
1 + \beta \left[\frac{zf'(z)}{f(z)} + \frac{z^2 f''(z)}{f(z)} - \left(\frac{zf'(z)}{f(z)}\right)^2\right] < \sqrt{1+z}, \quad \beta \geq \beta_0,
\end{align*}
then \(f \in SL\) or \(zf'(z)/f(z)\) lies in the region bounded by the right-half of the lemniscate of Bernoulli. The lower bound \(\beta_0\) is sharp.

**Theorem 2.** Let \(0 < \gamma \leq 1\), \(\beta_0 = \frac{2(\gamma-1)}{\gamma}\) and \(f \in A(p)\) with \(f(z)f'(z) \neq 0\) when \(z \neq 0\). If \(f\) satisfies the subordination
\begin{align*}
1 + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) < (1+z)^\gamma, \quad \beta \geq \beta_0,
\end{align*}
(6)
then \(\frac{zf'(z)}{pf(z)} \prec (1+z)\gamma\). The lower bound \(\beta_0\) is sharp.

**Proof.** We first derive the following conclusion:
\begin{align*}
1 + \beta \frac{zf'(z)}{\phi(z)} \prec (1+z)^\gamma \Rightarrow \phi(z) \prec (1+z)^\gamma,
\end{align*}
(7)
where \(\phi\) is analytic in \(D\) with \(\phi(0) = 1\), \(\beta \geq \beta_0\) and the lower bound \(\beta_0\) is the best possible.

Let \(q(z) = (1+z)^\gamma\) with \(q(0) = 1\). We consider the subordination
\begin{align*}
1 + \frac{\beta zf'(z)}{q(z)} \prec 1 + \frac{\beta q'(z)}{q(z)}.
\end{align*}
This shows that
\[
\frac{\beta zq'(z)}{q(z)} = \frac{\beta \gamma z}{1+z}
\]
is starlike in \(D\). By Lemma 1, we know that \(\phi(z) < q(z)\).

Now, we define the function \(h\) by
\[
h(z) := 1 + \frac{\beta zq'(z)}{q(z)} = 1 + \frac{\beta \gamma z}{1+z} \quad (z \in D).
\]

Since
\[
h(D) = \left\{ w : \text{Re} w < 1 + \frac{\beta \gamma}{2} \right\}
\]
and
\[
q(D) \subset \{ w : \text{Re} w < 2\gamma \},
\]
this shows that \(q(D) \subset h(D)\) if \(2\gamma \leq 1 + \frac{\beta \gamma}{2}\). Hence, \(q(z) < h(z)\) for \(\beta \geq \frac{2(2\gamma-1)}{\gamma}\), and conclusion (7) is proved.

Define the function \(\phi\) by
\[
\phi(z) = \frac{zf'(z)}{pf(z)},
\]
then, \(\phi\) is analytic in \(D\) and \(\phi(0) = 1\). A simple calculation shows that
\[
\frac{zf'(z)}{\phi(z)} = 1 + \frac{zf''(z)}{f(z)} - \frac{zf'(z)}{f(z)}.
\]

From (6)–(8), we obtain
\[
\frac{zf'(z)}{pf(z)} < (1+z)^\gamma.
\]

Now, we complete the proof of Theorem 2. \(\square\)

For \(\gamma = \frac{1}{2}\) and \(p = 1\), we obtain the following result, given in [2].

**Corollary 2.** Let \(\beta_0 = 4(\sqrt{2} - 1) \approx 1.65\) and \(f \in A\) with \(f(z)f'(z) \neq 0\) when \(z \neq 0\). If \(f\) satisfies the subordination
\[
1 + \beta \left( 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < \sqrt{1+z}, \quad \beta \geq \beta_0,
\]
then \(f \in SL\) or \(zf'(z)/f(z)\) lies in the region bounded by the right-half of the lemniscate of Bernoulli. The lower bound \(\beta_0\) is sharp.

**Theorem 3.** Let \(0 < \gamma \leq 1\), \(\beta_0 = \frac{2^{\gamma+1}(2\gamma-1)}{\gamma}\) and \(f \in A(p)\) with \(f(z)f'(z) \neq 0\) when \(z \neq 0\). If \(f\) satisfies the subordination
\[
1 + \beta pf(z) zf'(z) \left( \frac{zf''(z)}{f'(z)} + 1 - \frac{zf'(z)}{f(z)} \right) < (1+z)^\gamma, \quad \beta \geq \beta_0,
\]
then \(zf'(z)/f(z) \times (1+z)^\gamma\). The lower bound \(\beta_0\) is sharp.

**Proof.** We first prove the following conclusion:
\[
1 + \beta \frac{zf'(z)}{\phi(z)} \times (1+z)^\gamma \Rightarrow \phi(z) \times (1+z)^\gamma,
\]
where \(\phi\) is analytic in \(D\) with \(\phi(0) = 1\), \(\beta \geq \beta_0\) and the lower bound \(\beta_0\) is the best possible.
Let \( q(z) = (1 + z)^\gamma \) with \( q(0) = 1 \). Then, \( q \) is a convex function in \( D \). Define the function \( Q \) by

\[
Q(z) := \frac{zq'(z)}{q^2(z)} = \frac{\gamma z}{(1 + z)^{1+\gamma}}.
\]

This shows that

\[
\text{Re}zQ'(z) = \text{Re} \frac{1 - \gamma z}{1 + z} > 0.
\]

Therefore, \( Q \) is starlike in \( D \). By using Lemma 1, we obtain the subordination relation

\[
1 + \frac{\beta zq'(z)}{q^2(z)} \prec 1 + \frac{\beta zq'(z)}{q^2(z)} \Rightarrow \phi(z) \prec q(z).
\]

Further, we define \( h \) by

\[
h(z) := 1 + \frac{\beta zq'(z)}{q^2(z)} = 1 + \frac{\beta \gamma z}{(1 + z)^{1+\gamma}} \quad (z \in D).
\]

Since \( q^{-1}(w) = w^{1/\gamma} - 1 \), it follows that

\[
q^{-1}(h(z)) = \left(1 + \frac{\beta \gamma z}{(1 + z)^{1+\gamma}}\right)^{\frac{1}{\gamma}} - 1.
\]

For \( z = e^{it}, t \in [-\pi, \pi] \), we have

\[
|q^{-1}(h(z))| = |q^{-1}(h(e^{it}))| = \left| \left(1 + \frac{\beta \gamma e^{it}}{(1 + e^{it})^{1+\gamma}}\right)^{\frac{1}{\gamma}} - 1 \right|.
\]

The minimum of \( |q^{-1}(h(e^{it}))| \) is obtained at \( t = 0 \). Thus

\[
|q^{-1}(h(e^{it}))| \geq \left(1 + \frac{\beta \gamma}{2^{1+\gamma}(2\gamma - 1)}\right)^{\frac{1}{\gamma}} - 1 \geq 1
\]

for \( \beta \geq \frac{2^{1+\gamma}(2\gamma - 1)}{\gamma} \). Hence \( q(z) \prec h(z) \) and the conclusion (10) is proved.

Now, we define the function \( \phi \) by

\[
\phi(z) = \frac{zf'(z)}{pf(z)},
\]

then \( \phi \) is analytic in \( D \) and \( \phi(0) = 1 \). By a simple calculation, we have

\[
\frac{zf'(z)}{\phi(z)} = pf(z) \left(\frac{zf''(z)}{f(z)} + 1 - \frac{zf'(z)}{pf(z)}\right).
\]

From (9)–(11), we obtain

\[
\frac{zf'(z)}{pf(z)} \prec (1 + z)^\gamma.
\]

This completes the proof of Theorem 3. \( \square \)

For \( \gamma = \frac{1}{2} \) and \( p = 1 \), we derive the result obtained in [2].

**Corollary 3.** Let \( \beta_0 = 4\sqrt{2}(\sqrt{2} - 1) \approx 2.34 \) and \( f \in A \) with \( f(z) \neq 0 \) when \( z \neq 0 \). If \( f \) satisfies the subordination

\[
1 + \beta \frac{f(z)}{zf'(z)} \left(\frac{zf''(z)}{f'(z)} + 1 - \frac{zf'(z)}{f(z)}\right) \prec \sqrt{1 + z}, \quad \beta \geq \beta_0,
\]

then \( f(z) \) is starlike in \( D \).
Theorem 4. Let \( f \in A(p) \) with \( f(z)f'(z) \neq 0 \) when \( z \neq 0 \). If \( f \) satisfies the subordination

\[
\frac{zf''(z)}{pf(z)}\left(1 + \alpha \frac{zf''(z)}{f'(z)} - \alpha \left(1 - \frac{1}{p}\right) \frac{zf'(z)}{f(z)}\right) < (1 + z)^{\gamma}, \quad 0 < \alpha \leq 1, \tag{12}
\]

then \( \frac{zf'(z)}{pf(z)} < (1 + z)^{\gamma} \).

Proof. We first prove the following conclusion:

\[
(1 - \alpha)\phi(z) + a\phi^2(z) + az\phi'(z) < (1 + z)^{\gamma} \Rightarrow \phi(z) < (1 + z)^{\gamma} \tag{13}
\]

for \( 0 < \alpha \leq 1 \).

Let \( q(z) = (1 + z)^{\gamma} \) with \( q(0) = 1 \). Additionally, let \( \theta \) and \( \varphi \) be given by \( \theta(w) := (1 - \alpha)w + aw^2 \) and \( \varphi(w) := a \). Then, \( \theta \) and \( \varphi \) are analytic in \( D \) with \( \varphi(w) \neq 0 \). Define \( Q \) and \( h \) by

\[
Q(z) := zq'(z)\varphi(q(z)) = azq'(z),
\]

and

\[
h(z) := \theta(q(z)) + Q(z) = (1 - \alpha)q(z) + aq^2(z) + az\varphi(z)
\]

\[
= a\gamma z + (1 - \alpha)(1 + z) + a(1 + z)^{1+\gamma}
\]

\[
\frac{1}{(1 + z)^{1-\gamma}}.
\]

Since \( q \) is convex, the function \( Q \) is univalent starlike in \( D \). In view of \( \text{Re} q(z) > 0 \), this shows that

\[
\text{Re} \frac{zh'(z)}{Q(z)} = \frac{1}{a} \text{Re} \left[(1 - \alpha) + 2aq(z) + a \left(1 + \frac{zq''(z)}{q'(z)}\right)\right] > 0 \quad (z \in D)
\]

for \( 0 < \alpha \leq 1 \). From Lemma 2, we have \( \phi(z) \prec q(z) \).

Now, we find conditions on \( \alpha \) for \( q(z) \prec h(z) \). It follows that

\[
\left|h(e^{it})\right|^\frac{1}{\gamma} - 1 \geq \left|h^\frac{1}{\gamma}(1) - 1\right| > 1
\]

for \( z = e^{it}, \ t \in [-\pi, \pi] \), if

\[
h(1) = \frac{\gamma + 2(2^{\gamma} - 1)}{2^{1-\gamma}}a + 2^\gamma > 2^\gamma
\]

for \( \alpha > 0 \). Hence, the proof of the conclusion (13) is completed.

Define the function \( \phi \) by

\[
\phi(z) = \frac{zf''(z)}{pf(z)},
\]

then \( \phi \) is analytic in \( D \) and \( \phi(0) = 1 \). A calculation shows that

\[
\phi(z) + \frac{z\phi'(z)}{\phi(z)} = 1 + \frac{zf''(z)}{f'(z)} - \left(1 - \frac{1}{p}\right) \frac{zf'(z)}{f(z)}. \tag{14}
\]

Clearly
\[
\frac{zf'(z)}{pf(z)} \left( 1 + \alpha \frac{zf''(z)}{f'(z)} - \alpha \left( 1 - \frac{1}{p} \right) \frac{zf'(z)}{f(z)} \right) = (1 - \alpha)\phi(z) + \alpha\phi^2(z) + \alpha z\phi'(z).
\]

From (12)–(15) we have
\[
\frac{zf'(z)}{pf(z)} \prec (1 + z)^{\gamma}.
\]

Thus we complete the proof of Theorem 4. \(\square\)

Author Contributions: Every author’s contribution is equal. Both authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Natural Science Foundation of China(Grant No.11571299).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express sincere thanks to the reviewers for careful reading and suggestions which helped us to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. *Zesz. Nauk. Politech. Rzesz.* 1996, *19*, 101–105.
2. Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with the lemniscates of Bernoulli. *Taiwan J. Math.* 2012, *16*, 1017–1026. [CrossRef]
3. Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. *Anal. Math. Phys.* 2019, *9*, 143–154. [CrossRef]
4. Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. *Southeast Asian Bull. Math.* 2016, *40*, 199–212.
5. Raza, M.; Sokół, J.; Mushtap, M. Differential subordinations for analytic functions. *Iran. J. Sci. Technol. Trans. A Sci.* 2019, *43*, 883–890. [CrossRef]
6. Kumar, S.; Ravichandran, V. Subordinations for functions with positive real part. *Complex Anal. Oper. Theory* 2018, *12*, 1179–1191. [CrossRef]
7. Oros, G.I.; Oros, G. Differential superordination for harmonic complex-valued functions. *Stud. Univ. Babes-Bolyai Math.* 2019, *64*, 487–496. [CrossRef]
8. Srivastava, H.M. Operators of basic (or \(q\)-) calculus and fractional \(q\)-calculus and their applications in Geometric Function Theory of complex analysis. *Iran. J. Sci. Technol. Trans. A Sci.* 2020, *44*, 327–344. [CrossRef]
9. Srivastava, H.M.; Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Certain subordination-preserving family of integral operators associated with \(p\)-valent functions. *Appl. Math. Inform. Sci.* 2017, *11*, 951–960. [CrossRef]
10. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of \(q\)-starlike functions associated with the Janowski functions. *Filomat* 2019, *33*, 2613–2626. [CrossRef]
11. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of \(q\)-starlike functions associated with the Janowski functions. *Symmetry* 2019, *11*, 292. [CrossRef]
12. Srivastava, H.M.; El-Ashwah, R.M.; Breaz, N. A certain subclass of multivalent functions involving higher-order derivatives. *Filomat* 2016, *30*, 113–124. [CrossRef]
13. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for \(q\)-starlike functions associated with the Janowski functions. *Hokkaido Math. J.* 2019, *48*, 407–425. [CrossRef]
14. Xu, Y.-H.; Liu, J.-L. On Subordinations for Certain Multivalent Analytic Functions in the Right-Half Plane. *J. Funct. Spaces* 2016, 2016, 1782916. [CrossRef]
15. Yan, C.-M.; Liu, J.-L. A family of meromorphic functions involving generalized Mittag-Leffler function. *J. Math. Inequal.* 2018, *12*, 943–951. [CrossRef]
16. Seoudy, T.M.; Shammary, A.E. On certain class of Bazilević functions associated with the Lemniscate of Bernoulli. *J. Funct. Spaces* 2020, 2020, 6622230.
17. Miller, S.S.; Mocanu, P.T. Differential Subordination. In *Theory and Application*; Marce Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000.