Thick Spanier groups and the first shape group

Jeremy Brazas and Paul Fabel

May 2, 2014

Abstract

We develop a new route through which to explore ker Ψ_X, the kernel of the π_1-shape group homomorphism determined by a general space X, and establish, for each locally path connected, paracompact Hausdorff space X, ker Ψ_X is precisely the Spanier group of X.

1 Introduction

It is generally challenging to understand the fundamental group of a locally complicated space X. A common tactic is to consider the image $\Psi_X(\pi_1(X, x_0))$ as a subgroup of the first shape homotopy group $\hat{\pi}_1(X, x_0)$ via the natural homomorphism $\Psi_X : \pi_1(X, x_0) \to \hat{\pi}_1(X, x_0)$ arising from the Čech expansion. In particular, if Ψ_X is injective, X is said to be π_1-shape injective and one gains a characterization of the elements of $\pi_1(X, x_0)$ as sequences in an inverse limit of fundamental groups of polyhedra. Thus ker Ψ_X can be thought of as the data of the fundamental group forgotten when passing to the first shape group. In this paper, we develop a new lens in which to study Ψ_X and identify new characterizations of ker Ψ_X in terms of familiar subgroups of the fundamental group.

The Spanier group $\pi^{Sp}(X, x_0)$ of a space X, introduced in $[12]$, is a subgroup of $\pi_1(X, x_0)$ useful for identifying loops deformable into arbitrarily small neighborhoods $[17, 21, 22]$. Moreover the existence of generalized covering maps $[2, 14, 6]$ is intimately related to both $\pi^{Sp}(X, x_0)$ and ker Ψ_X.

It is apparently an open question to understand exactly when $\pi^{Sp}(X, x_0) = \text{ker } \Psi_X$. On the one hand, for a general space X, the inclusion $\pi^{Sp}(X, x_0) \subseteq \text{ker } \Psi_X$ holds $[14]$. On the other hand, examples show inclusion can be strict if X fails to be non-locally path connected $[14, 12]$. Our main result, Theorem $[35]$, captures a decent class of spaces such that $\pi^{Sp}(X, x_0) = \text{ker } \Psi_X$.

If X is a locally path connected paracompact Hausdorff space, then ker Ψ_X is precisely the Spanier group $\pi^{Sp}(X, x_0)$.
In particular if X is a Peano continuum then $\ker \Psi_X = \pi^S p(X, x_0)$. A variety of 2-dimensional examples help motivate this paper’s content as follows.

The occurrence of π_1-shape injectivity (i.e. the vanishing of $\ker \Psi_X$) has been studied in a number of cases: For example if X has Lebesgue covering dimension ≤ 1 [7, 3], if X is a subspace of a closed surface (or a planar set) [13], or if X is a fractal-like tree of manifolds [11], then $\ker \Psi_X = 1$. The equality $\pi^S p(X, x_0) = \ker \Psi_X$ now indicates X is π_1-shape injective iff $\pi^S p(X, x_0) = 1$.

At the other extreme, the equality $\ker \Psi_X = \pi_1(X, x_0)$ can happen if X is a 2-dimensional Peano continuum (e.g. if X is the join of two cones over the Hawaiian earring). In particular, this equality will occur if every loop in X is a “small loop” [21] [22] or, more generally, if X is a Spanier space [17]. For such spaces, understanding $\pi_1(X, x_0)$ is equivalent to understanding $\ker \Psi_X$.

Finally, there is a rich “middle ground” where $\ker \Psi_X$ lies strictly between 1 and $\pi_1(X, x_0)$. Two important such Peano continua appear in [4] [12], one of which is “homotopically path Hausdorff” and one of which is “strongly homotopically path Hausdorff”. In both cases, the verification of the aforementioned properties and the attempts to manufacture generalized notions of covering spaces, rely heavily on an understanding of $\pi^S p(X, x_0)$.

To investigate when $\ker \Psi_X = \pi^S p(X, x_0)$, we first modify the familiar definition. The Spanier group with respect to an open cover \mathcal{U} (denoted $\pi^S p(\mathcal{U}, x_0)$) was introduced in Spanier’s celebrated textbook [20]. Recall $\pi^S p(X, x_0)$ is defined as the intersection of the groups $\pi^S p(\mathcal{U}, x_0)$ over all open covers \mathcal{U}. While the usual groups $\pi^S p(\mathcal{U}, x_0)$ are useful for studying covering space theory and its generalizations, our modified version, the so-called thick Spanier group of X with respect to \mathcal{U} (denoted $\Pi^S p(\mathcal{U}, x_0)$) is useful for studying the shape homomorphism Ψ_X. In particular, the main technical achievement of this paper, Theorem 19, states:

If \mathcal{U} is an open cover consisting of path connected sets and $p_{\mathcal{U}} : X \to \left| N(\mathcal{U}) \right|$ is a canonical map to the nerve of \mathcal{U}, then there is a short exact sequence

$$1 \longrightarrow \Pi^S p(\mathcal{U}, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{p_{\mathcal{U}}^*} \pi_1(\left| N(\mathcal{U}) \right|, U_0) \longrightarrow 1.$$

The utility of this short exact sequence is the identification of a convenient set of generators of $\ker p_{\mathcal{U}}$. The same sequence with the ordinary Spanier group $\pi^S p(\mathcal{U}, x_0)$ in place of $\Pi^S p(\mathcal{U}, x_0)$ fails to be exact even in simple cases: See Example 6.

This paper is structured as follows:

In Section 2, we include necessary preliminaries on simplicial complexes and review the constructions of the Čech expansion of a space X in terms of canonical maps $p_{\mathcal{U}} : X \to \left| N(\mathcal{U}) \right|$ (where $\left| N(\mathcal{U}) \right|$ is the nerve of an open cover \mathcal{U} of X), the first shape group, and the homomorphism Ψ_X.

In Section 3, we define and study thick Spanier groups and their relationship to ordinary Spanier groups. Thick Spanier groups are constructed by specifying generators represented by loops lying in pairs of intersecting elements of \mathcal{U}; Section 4 is then devoted to characterizing generic elements of $\Pi^S p(\mathcal{U}, x_0)$ in
terms of a homotopy-like equivalence relation on loops which depends on the
given open cover \(U \).

Section 5 is devoted to a proof of Theorem [19] guaranteeing the exactness of
the above sequence.

Sections 6 and 7 include applications of the above level short exact se-
quences: In Section 6, we obtain an exact sequence:

\[
1 \longrightarrow \pi^Sp(X, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{\Psi_X} \hat{\pi}_1(X, x_0)
\]

and thus identify \(\ker \Psi_X \) and \(\pi^Sp(X, x_0) \) for a large class of spaces (See Theorem
[35]). Finally, in Section 7, we find application in the theory of a topologically
enriched version of the fundamental group. By construction, the first shape
group \(\hat{\pi}_1(X, x_0) \) is the inverse limit of discrete groups; the fundamental group
\(\pi_1(X, x_0) \) inherits the structure of a topological group when it is given the
pullback topology with respect to \(\Psi_X \) (the so-called shape topology). We apply
the above results to identify a convenient basis for the topology of \(\pi_1(X, x_0) \) and
show this topology consists precisely of the data of the covering space theory
of \(X \).

2 Preliminaries and Definitions

Throughout this paper, \(X \) is assumed to be a path connected topological space
with basepoint \(x_0 \).

2.1 Simplicial complexes and paths

We call upon the theory of simplicial complexes in standard texts such as [16]
and [19]. Much of the notation used is in line with these sources.

If \(K \) is an abstract or geometric simplicial complex and \(n \geq 0 \) is an integer, \(K_n \)
denotes the \(n \)-skeleton of \(K \) and if \(v \) is a vertex of \(K \), \(St(v, K) \) and \(\overline{St}(v, K) \) denote
the open and closed star of the vertex \(v \) respectively. When \(K \) is abstract, \(|K| \)
denotes the geometric realization. If vertices \(v_1, ..., v_n \) span an \(n \)-simplex of
\(|K| \), then \([v_1, v_2, ..., v_n] \) denotes the \(n \)-simplex with the indicated orientation. Finally,
for each integer \(n \geq 0 \), \(sd^n[K] \) denotes the \(n \)-th barycentric subdivision of \(K \).

We frequently make use of the standard abstract 2-simplex \(\Delta_2 \) which consists
of a single 2-simplex and its faces and whose geometric realization is \(|\Delta_2| = \{(t_1, t_2) \in \mathbb{R}^2| t_1 + t_2 \leq 1, t_1, t_2 \geq 0 \} \). The boundary \(\partial\Delta_2 \subseteq \Delta_2 \) is the 1-skeleton \((\Delta_2)_1 \),
and its realization \(|\partial\Delta_2| \) is homeomorphic to the unit circle. If \(K \) is a geometric
subcomplex of a subdivision of \(|\Delta_2| \) containing the origin, then the origin is
assumed to be the basepoint.

We use the following conventions for paths and loops in simplexes and
general spaces. A path in a space \(X \) is a map \(p : [0, 1] \to X \) from the unit
interval. The reverse path of \(p \) is the path given by \(\overline{p}(t) = p(1-t) \) and the constant
path at a point \(x \in X \) will be denoted \(c_x \). If \(p_1, p_2, ..., p_n : [0, 1] \to X \) are paths in \(X \)
such that $p_j(1) = p_{j+1}(0)$, the concatenation of this sequence is the unique path $p_1 * p_2 * \cdots * p_n$, sometimes denoted $*_{j=1}^n p_j$, whose restriction to $\left[\frac{j-1}{n}, \frac{j}{n} \right]$ is p_j.

A path $p : [0, 1] \to X$ is a loop if $p(0) = p(1)$. Quite often it will be convenient to view a loop as a map $|\partial \Delta^2| \to X$ where $|\partial \Delta^2|$ is identified with $[0, 1]/\{0, 1\} \cong S^1 \subseteq \mathbb{R}^2$ by an orientation preserving homeomorphism in \mathbb{R}^2. A loop $p : |\partial \Delta^2| \to X$ is inessential if it extends to a map $|\Delta^2| \to X$ and is essential if no such extension exists. Two loops $p, p' : |\partial \Delta^2| \to X$ are freely homotopic if there is a homotopy $H : |\partial \Delta^2| \times [0, 1] \to X$ such that $H(x, 0) = p(x)$ and $H(x, 1) = p'(x)$. If p, p' are loops based at $x_0 \in X$, then they are homotopic rel. basepoint if there is a homotopy H as above such that $H((0, 0)] \times [0, 1]) = x_0$.

We use special notation for edge paths in a geometric simplicial complex K: If v_1, v_2 are vertices in K, we identify the oriented 1-simplex $[v_1, v_2]$ with the linear path from vertex v_1 to v_2 on $[v_1, v_2]$. Similarly, $[v, v]$ denotes the constant path at a vertex v. An edge path is a concatenation $E = [v_0, v_1] * [v_1, v_2] * \cdots * [v_{n-1}, v_n]$ of linear or constant paths in the 1-skeleton of K. If $E(0) = E(1)$, then E is an edge loop. It is a well-known fact that all homotopy classes (rel. endpoints) of paths from v_0 to v_1 are represented by edge paths.

2.2 The Čech expansion and the first shape group

We now recall the construction of the first shape homotopy group $\pi_1(X, x_0)$ via the Čech expansion. For more details, see [16].

Let $O(X)$ be the set of open covers of X direct by refinement. Similarly, let $O(X, x_0)$ be the set of open covers with a distinguished element containing the basepoint, i.e. the set of pairs (\mathscr{U}, U_0) where $\mathscr{U} \in O(X)$, $U_0 \in \mathscr{U}$ and $x_0 \in U_0$. We say (\mathscr{V}, V_0) refines (\mathscr{U}, U_0) if \mathscr{V} refines \mathscr{U} as a cover and $V_0 \subseteq U_0$.

The nerve of a cover $(\mathscr{U}, U_0) \in O(X, x_0)$ is the abstract simplicial complex $N(\mathscr{U})$ whose vertex set is $N(\mathscr{U})_0 = \mathscr{U}$ and vertices $A_0, \ldots, A_n \in \mathscr{U}$ span an n-simplex if $\bigcap_{i=0}^n A_i \neq \emptyset$. The vertex U_0 is taken to be the basepoint of the geometric realization $|N(\mathscr{U})|$. Whenever (\mathscr{V}, V_0) refines (\mathscr{U}, U_0), construct a simplicial map $p_{\mathscr{U}, \mathscr{V}} : N(\mathscr{U}) \to N(\mathscr{V})$, called a projection, given by sending a vertex $V \in N(\mathscr{U})$ to a vertex $U \in \mathscr{V}$ such that $V \subseteq U$. In particular, V_0 must be sent to U_0. Any such assignment of vertices extends linearly to a simplicial map. Moreover, the induced map $p_{\mathscr{U}, \mathscr{V}} : |N(\mathscr{U})| \to |N(\mathscr{V})|$ is unique up to based homotopy. Thus the homomorphism $p_{\mathscr{U}, \mathscr{V}} : \pi_1(|N(\mathscr{U})|, V_0) \to \pi_1(|N(\mathscr{V})|, U_0)$ induced on fundamental groups is independent of the choice of simplicial map.

Recall that an open cover \mathscr{U} of X is normal if it admits a partition of unity subordinate to \mathscr{U}. Let Λ be the subset of $O(X, x_0)$ (also directed by refinement) consisting of pairs (\mathscr{U}, U_0) where \mathscr{U} is a normal open cover of X and such that there is a partition of unity $\{\phi_U\}_{U \in \mathscr{U}}$ subordinate to \mathscr{U} with $\phi_{U_0}(x_0) = 1$. It is well-known that every open cover of a paracompact Hausdorff space X is normal. Moreover, if $(\mathscr{U}, U_0) \in O(X, x_0)$, it is easy to refine (\mathscr{U}, U_0) to a cover (\mathscr{V}, V_0) such that V_0 is the only element of \mathscr{V} containing x_0 and therefore $(\mathscr{V}, V_0) \in \Lambda$. Thus, for paracompact Hausdorff X, Λ is cofinal in $O(X, x_0)$.
The first shape homotopy group is the inverse limit
\[\tilde{\pi}_1(X, x_0) = \lim_{\longrightarrow} (\pi_1([N(\mathcal{U})], U_0), p_\mathcal{U} \circ \tau, \Lambda). \]

Given an open cover \((\mathcal{U}, U_0) \in O(X, x_0)\), a map \(p_\mathcal{U} : X \to [N(\mathcal{U})]\) is a (based) canonical map if \(p_\mathcal{U}^{-1}(St(U, N(\mathcal{U}))) \subseteq U\) for each \(U \in \mathcal{U}\) and \(p_\mathcal{U}(x_0) = U_0\). Such a canonical map is guaranteed to exist if \((\mathcal{U}, U_0) \in \Lambda\): find a locally finite partition of unity \(\{\phi_U\}_{U \in \mathcal{U}}\) subordinated to \(\mathcal{U}\) such that \(\phi_U(x_0) = 1\). When \(U \in \mathcal{U}\) and \(x \in U\), determine \(p_\mathcal{U}(x)\) by requiring its barycentric coordinate belonging to the vertex \(U\) of \([N(\mathcal{U})]\) to be \(\phi_U(x)\). According to this construction, the requirement \(\phi_U(x_0) = 1\) gives \(p_\mathcal{U}(x_0) = U_0\).

A canonical map \(p_\mathcal{U}\) is unique up to based homotopy and whenever \((\mathcal{V}, V_0)\) refines \((\mathcal{U}, U_0)\); the compositions \(p_\mathcal{V} \circ p_\mathcal{U}\) and \(p_\mathcal{V}\) are homotopic as based maps. Therefore the homomorphisms \(p_\mathcal{V,*} : \pi_1(X, x_0) \to \pi_1([N(\mathcal{V})], U_0)\) satisfy \(p_\mathcal{V,*} \circ p_\mathcal{U} = p_\mathcal{V}\). These homomorphisms induce a canonical homomorphism
\[\Psi_X : \pi_1(X, x_0) \to \tilde{\pi}_1(X, x_0) \]
given by \(\Psi_X([a]) = ([p_\mathcal{U} \circ a])\) to the limit.

It is of interest to characterize \(\ker \Psi_X\) since, when \(\ker \Psi_X = 1\), \(\tilde{\pi}_1(X, x_0)\) retains all the data in the fundamental group of \(X\). A space for which \(\ker \Psi_X = 1\) is said to be \(\pi_1\)-shape injective.

3 Thick Spanier groups and their properties

We begin by recalling the construction of Spanier groups \([12, 20]\). Let \(\tilde{X}\) denote the set of homotopy classes (rel. endpoints) of paths starting at \(x_0\), i.e. the star of the fundamental groupoid of \(X\) at \(x_0\). As in \([20]\), multiplication of homotopy classes of paths is taken in the fundamental groupoid of \(\tilde{X}\) so that \([a][\beta] = [a \ast \beta]\) when \(a(1) = \beta(0)\).

Definition 1. Let \(\mathcal{U}\) be an open cover of \(X\). The Spanier group of \(X\) with respect to \(\mathcal{U}\) is the subgroup of \(\pi_1(X, x_0)\), denoted \(\pi^{Sp}(\mathcal{U}, x_0)\), generated by elements of the form \([a][\gamma][\overline{a}]\) where \([a] \in \tilde{X}\) and \(\gamma : [0, 1] \to U\) is a loop based at \(a(1)\) for some \(U \in \mathcal{U}\).

Note, in the above definition, \([a]\) is left to vary among all homotopy (rel. endpoint) classes of paths starting at \(x_0\) and ending at \(\gamma(0) = \gamma(1)\). Thus \(\pi^{Sp}(\mathcal{U}, x_0)\) is a normal subgroup of \(\pi_1(X, x_0)\). Also observe that if \(\mathcal{V}\) is an open cover of \(X\) which refines \(\mathcal{U}\), then \(\pi^{Sp}(\mathcal{V}, x_0) \subseteq \pi^{Sp}(\mathcal{U}, x_0)\).

Definition 2. The Spanier group of \(X\) is the intersection
\[\pi^{Sp}(X, x_0) = \bigcap_{\mathcal{U} \in O(X)} \pi^{Sp}(\mathcal{U}, x_0) \]
of all Spanier groups with respect to open covers of \(X\). Equivalently, \(\pi^{Sp}(X, x_0)\) is the inverse limit \(\lim \pi^{Sp}(\mathcal{U}, x_0)\) of the inverse system of inclusions \(\pi^{Sp}(\mathcal{V}, x_0) \to \pi^{Sp}(\mathcal{U}, x_0)\) induced by refinement in \(O(X)\).
Note the Spanier group of X is a normal subgroup of $\pi_1(X, x_0)$.

Remark 3. In the previous two definitions, we are actually using the *unbased* Spanier group as defined by the authors of [12]. These authors also define the *based* Spanier group by replacing covers with covers by pointed sets; the two definitions agree when X is locally path connected. The unbased version is sufficient for the purposes of this paper since our main results apply to locally path connected spaces.

To study ΨX, we require similar but potentially larger versions of the Spanier groups constructed above.

Definition 4. Let U be an open cover of X. The *thick Spanier group* of X with respect to U is the subgroup of $\pi_1(X, x_0)$, denoted $\Pi^{sp}(U, x_0)$, generated by elements of the form $[\alpha][\gamma_1][\gamma_2][\alpha]$ where $[\alpha] \in \tilde{X}$ and $\gamma_1 : [0, 1] \to U_1$ and $\gamma_2 : [0, 1] \to U_2$ are paths for some $U_1, U_2 \in U$.

![Figure 1: A loop representing a generator of the thick Spanier group of X with respect to U.](image)

Proposition 5. For every open cover U of X, $\Pi^{sp}(U, x_0)$ is a normal subgroup of $\pi_1(X, x_0)$ such that $\pi^{sp}(U, x_0) \subseteq \Pi^{sp}(U, x_0)$. If V is an open cover of X which refines U, then $\Pi^{sp}(V, x_0) \subseteq \Pi^{sp}(U, x_0)$.

Proof. The subgroup $\Pi^{sp}(U, x_0)$ is normal in $\pi_1(X, x_0)$ for the same reason $\pi^{sp}(U, x_0)$ is normal. We have $\pi^{sp}(U, x_0) \subseteq \Pi^{sp}(U, x_0)$ since the generators $[\alpha][\gamma_1][\gamma_2][\pi]$ of $\Pi^{sp}(U, x_0)$ where γ_1, γ_2 have image in $U_1 = U_2 \in U$ are precisely the generators of $\pi^{sp}(U, x_0)$. The second statement follows as it does for ordinary Spanier groups. □

Example 6. It is not necessarily true that $\pi^{sp}(U, x_0) = \Pi^{sp}(U, x_0)$ even in the simplest cases. Suppose $U = \{U_1, U_2\}$ is an open cover of the unit circle $X = S^1$ consisting of two connected intervals U_1, U_2 such that $U_1 \cap U_2$ is the disjoint union of two connected intervals. Since both U_1, U_2 are simply connected, we have $\pi^{sp}(U, x_0) = 1$. On the other hand, $\Pi^{sp}(U, x_0)$ contains a generator of $\pi_1(S^1, x_0)$ and thus $\Pi^{sp}(U, x_0) = \pi_1(S^1, x_0)$.
Remark 7. Spanier groups and thick Spanier groups with respect to covers are natural in the following sense: If \(f : X \to Y \) is a map such that \(f(x_0) = y_0 \) and \(\mathcal{U} \) is open cover of \(Y \), then \(f^{-1}(\mathcal{U}) = \{ f^{-1}(W) | W \in \mathcal{U} \} \) is an open cover of \(X \). Observe if \(f : \pi_1(X, x_0) \to \pi_1(Y, y_0) \) is the homomorphism induced on fundamental groups, then \(f_*(\pi^S(f^{-1}(\mathcal{U}), x_0)) \subseteq \pi^S(\mathcal{U}, y_0) \) and \(f_*(\pi^S(f^{-1}(\mathcal{U}), x_0)) \subseteq \pi^S(\mathcal{U}, y_0) \).

Definition 8. The thick Spanier group of \(X \) is the intersection

\[
\pi^S(X, x_0) = \bigcap_{\mathcal{U} \in \mathcal{O}(X)} \pi^S(\mathcal{U}, x_0)
\]

of all thick Spanier groups with respect to open covers of \(X \). Equivalently \(\pi^S(X, x_0) \) is the inverse limit \(\lim_{\leftarrow} \pi^S(\mathcal{U}, x_0) \) of the inverse system of inclusions \(\pi^S(\mathcal{U}, x_0) \to \pi^S(\mathcal{U}, x_0) \) induced by refinement in \(\mathcal{O}(X) \).

The following proposition follows directly from previous observations.

Proposition 9. For every space \(X \), \(\pi^S(X, x_0) \subseteq \pi^S(X, x_0) \). If every open cover \(\mathcal{U} \) of \(X \) admits a refinement \(\mathcal{V} \) such that \(\pi^S(\mathcal{V}, x_0) \subseteq \pi^S(\mathcal{U}, x_0) \), then \(\pi^S(X, x_0) = \pi^S(X, x_0) \).

We apply Proposition 9 to find two conditions (those in Proposition 10 and Theorem 13) guaranteeing the equality of the Spanier group and thick Spanier group.

Proposition 10. If \(\mathcal{V} \) is an open cover of \(X \) such that \(V \cap V' \) is path connected (or empty) for every pair \(V, V' \in \mathcal{V} \), then \(\pi^S(\mathcal{V}, x_0) = \pi^S(\mathcal{V}, x_0) \). Consequently, if every open cover \(\mathcal{U} \) of \(X \) has an open refinement \(\mathcal{V} \) with this property, then \(\pi^S(X, x_0) = \pi^S(X, x_0) \).

Proof. Suppose \(\mathcal{V} \) is as in the statement of the proposition. It suffices to show \(\pi^S(\mathcal{V}, x_0) \subseteq \pi^S(\mathcal{V}, x_0) \). Let \(g = [\alpha][\gamma_1][\gamma_2][\pi] \) be a generator of \(\pi^S(\mathcal{V}, x_0) \) where \([\alpha] \in \pi_1, \gamma_1 : [0, 1] \to V_1 \) for \(V_1 \in \mathcal{V} \). Since, by assumption, \(V_1 \cap V_2 \) is path connected and the points \(x_1 = \alpha(1) \) and \(x_2 = \gamma_1(1) = \gamma_2(0) \) both lie in \(V_1 \cap V_2 \), there is a path \(\beta : [0, 1] \to V_1 \cap V_2 \) from \(x_1 \) to \(x_2 \). Note \(g_1 = [\alpha][\gamma_1 \cdot \beta][\pi] \) and \(g_2 = [\alpha][\beta \cdot \gamma_2][\pi] \) are generators of \(\pi^S(\mathcal{V}, x_0) \). Since \(g = g_1g_2 \), it follows that \(g \in \pi^S(\mathcal{V}, x_0) \). The second statement in the current proposition now follows from Proposition 9.

Example 11. Let \(K \) be a geometric simplicial complex and \(v \in K \) be a vertex. It is well-known that the open star \(St(v, K) \) is contractible (and thus path connected). Therefore \(\mathcal{V} = \{ St(v, K) \} \) is an open cover of \(K \) such that \(\pi^S(\mathcal{V}, v_0) = 1 \).

Moreover, if \(St(v_1, K) \cap St(v_2, K) \neq \emptyset \), then the open 1-simplex \((v_1, v_2) \subset St(v_1, K) \cap St(v_2, K) \), and hence there is a canonical strong deformation from \(St(v_1, K) \cap St(v_2, K) \) onto \((v_1, v_2) \). For a given point \(p \in St(v_1, K) \cap St(v_2, K) \), fix the coefficients of \(v_1 \) and \(v_2 \) while linearly contracting to 0 the remaining barycentric coordinates of \(p \). Hence, since \((v_1, v_2) \) is contractible, \(St(v_1, K) \cap St(v_2, K) \) is contractible and, in particular, path connected. Thus it follows from Proposition 10 that \(\pi^S(\mathcal{V}, v_0) = \pi^S(\mathcal{V}, v_0) = 1 \).
It is known that $\pi^{Sp}(X, x_0) \subseteq \ker \Psi_X$ for any space X: see Proposition 4.8 of [14]. Thus the Spanier group of X vanishes whenever X is π_1-shape injective. We use Proposition 10 to prove the analogous inclusion for the thick Spanier group; note the proof is similar to that in [14].

Proposition 12. For any space X, $\Pi^{Sp}(X, x_0) \subseteq \ker \Psi_X$.

Proof. Let $g \in \Pi^{Sp}(X, x_0)$ and suppose \mathcal{U} is an open cover of X. It suffices to show $g \in \ker p_\mathcal{U}$, where the Spanier group of X is a group of the form $[\alpha] [\gamma_1] [\gamma_2] [\alpha]$ with \mathcal{U} a product of generators of the form $[\alpha] [\gamma_1] [\gamma_2] [\alpha]$ as follows.

Recall that for each $U \in \mathcal{U}$, we have $p^{-1}_{\mathcal{U}}(St(U, N(\mathcal{U}))) \subseteq U$. Therefore $\mathcal{V} = \{p^{-1}_{\mathcal{U}}(St(U, N(\mathcal{U})))\} \subseteq U$ is an open cover of X which refines \mathcal{U}. Since $g \in \Pi^{Sp}(\mathcal{V}, x_0)$ by assumption, g is a product of generators of the form $[\alpha] [\gamma_1] [\gamma_2] [\alpha]$ where $[\alpha] \in X$ and $\gamma_i : [0, 1] \to p^{-1}_{\mathcal{U}}(St(U_i, N(\mathcal{U})))$ for $U_i \in \mathcal{U}$, $i = 1, 2$. Note $p_{\mathcal{V}} \circ \gamma$ is a path in $N(\mathcal{V})$ based at x_0 with $p_{\mathcal{V}}(\alpha(1)) \in St(U_1, N(\mathcal{V})) \cap St(U_2, N(\mathcal{V}))$ and $p_{\mathcal{U}} \circ \gamma : [0, 1] \to St(U, N(\mathcal{U}))$ for $i = 1, 2$. Thus if $\mathcal{I} = \{St(U, N(\mathcal{U}))\} \subseteq U$ is the cover of $N(\mathcal{U})$ by open stars, then

$$p_{\mathcal{U}} \circ ([\alpha] [\gamma_1] [\gamma_2] [\alpha]) = [p_{\mathcal{V}} \circ \gamma] [p_{\mathcal{V}} \circ \gamma_1] [p_{\mathcal{V}} \circ \gamma_2] [p_{\mathcal{V}} \circ \gamma]$$

is a generator of $\Pi^{Sp}(\mathcal{V}, x_0)$. But it is observed in Example 11 that $\Pi^{Sp}(\mathcal{V}, x_0) = 1$. Since generators multiplying to g lie in the subgroup $\ker p_{\mathcal{U}}$, of $\pi_1(X, x_0)$, so does g. \square

In the non-locally path connected case, the inclusion $\Pi^{Sp}(X, x_0) \subseteq \ker \Psi_X$ need not be equality; a counterexample is given later in Example 37.

The following theorem calls upon the theory of paracompact spaces. Recall if \mathcal{U} is an open cover of X and $x \in X$, the star of x with respect to \mathcal{U} is the union $\text{St}(x, \mathcal{U}) = \bigcup\{U \in \mathcal{U} \mid x \in U\}$. A barycentric refinement of \mathcal{U} is an open refinement \mathcal{V} of \mathcal{U} such that for each $x \in X$, there is a $U \in \mathcal{U}$ with $\text{St}(x, \mathcal{V}) \subseteq U$. It is known that a T_1 space is paracompact if and only if every open cover has an open barycentric refinement [8, 5.1.12].

Theorem 13. If X is T_1 and paracompact, then $\Pi^{Sp}(X, x_0) = \pi^{Sp}(X, x_0)$.

Proof. We apply the second statement of Proposition 10. Given an open cover \mathcal{U} of X take \mathcal{V} to be a barycentric refinement of \mathcal{U}. Suppose $g = [\alpha] [\gamma_1] [\gamma_2] [\alpha]$ is a generator of $\Pi^{Sp}(\mathcal{V}, x_0)$ where $[\alpha] \in X$ and $\gamma_i : [0, 1] \to V_i$ for $V_i \in \mathcal{V}$, $i = 1, 2$. Since $\alpha(1) \in V_1 \cap V_2$ and \mathcal{V} is chosen to be a barycentric refinement, we have $V_1 \cup V_2 \subseteq St(\alpha(1), \mathcal{V}) \subseteq U$ for some $U \in \mathcal{U}$. Note $\gamma_1 \star \gamma_2$ is a loop in U based at $\alpha(1)$ and $g = [\alpha] [\gamma_1 \star \gamma_2] [\alpha]$. Thus $g \in \pi^{Sp}(\mathcal{V}, x_0)$ and the inclusion $\Pi^{Sp}(\mathcal{V}, x_0) \subseteq \pi^{Sp}(\mathcal{U}, x_0)$ follows. \square

Corollary 14. If X is metrizable, then $\Pi^{Sp}(X, x_0) = \pi^{Sp}(X, x_0)$.

4 Thick Spanier groups and \mathcal{U}-homotopy

While the definition of the thick Spanier group $\Pi^{Sp}(\mathcal{U}, x_0)$ in terms of generators is often convenient, it is desirable to characterize generic elements. We do this...
by replacing homotopies as continuous deformations of paths with finite step homotopies through open covers. This approach is closely related to that of Dugundji in [3] and differs from the notions of \(\mathcal{U} \)-homotopy in [15] and [16].

Fix an open cover \(\mathcal{U} \) of \(X \) and define a relation \(\sim_{\mathcal{U}} \) on paths in \(X \). If \(\alpha, \beta : [0,1] \to X \) are paths in \(X \), let \(\alpha \sim_{\mathcal{U}} \beta \) when \(\alpha(0) = \beta(0), \alpha(1) = \beta(1), \) and there are partitions \(0 = a_0 < a_1 < \cdots < a_n = 1 \) and \(0 = b_0 < b_1 < \cdots < b_n = 1 \) and a sequence \(U_1, \ldots, U_n \in \mathcal{U} \) of open neighborhoods such that \(\alpha([a_{i-1}, a_i]) \subseteq U_i \) and \(\beta([b_{i-1}, b_i]) \subseteq U_i \) for \(i = 1, \ldots, n \). Note if \(\gamma \) is an open refinement of \(\mathcal{U} \), then \(\alpha \sim_{\gamma} \beta \Rightarrow \alpha \sim_{\mathcal{U}} \beta \).

Definition 15. Two paths \(\alpha \) and \(\beta \) in \(X \) are said to be \(\mathcal{U} \)-homotopic if \(\alpha(0) = \beta(0), \alpha(1) = \beta(1), \) and there is a finite sequence \(\alpha = \gamma_0, \gamma_1, \ldots, \gamma_n = \beta \) such that \(\gamma_{j-1} \sim_{\mathcal{U}} \gamma_j \) for each \(j = 1, 2, \ldots, n \). The sequence \(\gamma_0, \gamma_1, \ldots, \gamma_n \) is called a \(\mathcal{U} \)-homotopy from \(\alpha \) to \(\beta \). If a loop \(\alpha \) is \(\mathcal{U} \)-homotopic to the constant path, we say it is null-\(\mathcal{U} \)-homotopic.

Note \(\mathcal{U} \)-homotopy defines an equivalence relation \(\simeq_{\mathcal{U}} \) on the set of paths in \(X \).

Lemma 16. If two paths are homotopic (rel. endpoints), then they are \(\mathcal{U} \)-homotopic.

Proof. Suppose \(\alpha, \beta \) are paths in \(X \) with \(\alpha(0) = \beta(0) \) and \(\alpha(1) = \beta(1) \) and \(H : [0,1] \times [0,1] \to X \) is a homotopy such that \(H(s,0) = \alpha(s), H(s,1) = \beta(s), H(0,t) = \alpha(0), \) and \(H(1,t) = \beta(1) \) for all \(s, t \in [0,1] \). Find an integer \(n \geq 1 \) such that for each square \(S_{i,j} = \left[\frac{i-1}{n}, \frac{i}{n} \right] \times \left[\frac{j-1}{n}, \frac{j}{n} \right], i, j \in \{1, 2, \ldots, n\}, H(S_{i,j}) \subseteq U_{i,j} \) for some \(U_{i,j} \in \mathcal{U} \). Let \(\gamma_j \) be the path which is the restriction of \(H \) to \([0,1] \times (j/n) \). We have \(\alpha = \gamma_0, \beta = \gamma_n \), and \(\gamma_{j-1} \sim_{\mathcal{U}} \gamma_j \) for each \(j = 1, 2, \ldots, n \) and thus \(\alpha \simeq_{\mathcal{U}} \beta \).

Observe that \(\mathcal{U} \)-homotopy respects inversion and concatenation of paths in the sense that if \(\alpha \simeq_{\mathcal{U}} \beta \) and \(\alpha' \simeq_{\mathcal{U}} \beta' \) then \(\alpha' \simeq_{\mathcal{U}} \beta' \) and \(\alpha \ast \alpha' \simeq_{\mathcal{U}} \beta \ast \beta' \) when the concatenations are defined.

Since inessential loops are null-\(\mathcal{U} \)-homotopic by Lemma [16] the set \(\nu(\mathcal{U}, \pi_0) \) of null-\(\mathcal{U} \)-homotopic loops is a subgroup of \(\pi_1(X, x_0) \). In fact, \(\nu(\mathcal{U}, \pi_0) \) is normal in \(\pi_1(X, x_0) \) since, if \(\alpha \) is null-\(\mathcal{U} \)-homotopic and \([\beta] \in \pi_1(X, x_0) \), then

\[
\beta \ast \alpha \simeq_{\mathcal{U}} \beta \ast c_{x_0} \ast \beta \simeq_{\mathcal{U}} c_{x_0}.
\]

We now compare \(\Pi^{\mathcal{U}}(\mathcal{U}, x_0) \) and \(\nu(\mathcal{U}, x_0) \) as subgroups of \(\pi_1(X, x_0) \).

Lemma 17. Suppose \(\mathcal{U} \) is an open cover of \(X \) consisting of path connected sets. If \(\alpha \) and \(\beta \) are \(\mathcal{U} \)-homotopic paths with \(\alpha(0) = x_0 = \beta(0) \), then \([\alpha \ast \beta] \in \Pi^{\mathcal{U}}(\mathcal{U}, x_0) \).

Proof. First, consider the case when \(\alpha \sim_{\mathcal{U}} \beta \). Take open neighborhoods \(U_1, \ldots, U_n \in \mathcal{U} \) and partitions \(0 = a_0 < a_1 < \cdots < a_n = 1 \) and \(0 = b_0 < b_1 < \cdots < b_n = 1 \) such that \(\alpha([a_{i-1}, a_i]) \subseteq U_i \) and \(\beta([b_{i-1}, b_i]) \subseteq U_i \). Since \(U_i \) is path connected, there are paths \(e_i : [0,1] \to U_i \) from \(\alpha(a_i) \) to \(\beta(b_i) \) for \(i = 1, \ldots, n - 1 \). Additionally, there are paths \(\delta_i : [0,1] \to U_{i+1} \) from \(\alpha(a_i) \) to \(\beta(b_i) \) for \(i = 1, \ldots, n - 1 \). Let \(\delta_0 \) be the
constant path at x_0 and e_n be the constant path at $\alpha(1) = \beta(1)$. Observe $e_i * \delta_i$ is a loop in $U_i \cup U_{i+1}$ based at $\alpha(a_i)$ for $i = 1, ..., n - 1$.

Let a_i and β_i be the paths given by restricting α and β to $[a_{i-1}, a_i]$ and $[b_{i-1}, b_i]$ respectively. Note the following paths g_i are generators of $\pi_1^p(\mathcal{W}, x_0)$:

1. $g_1 = [\alpha_0] \langle \alpha_1 * e_1 * \beta_1, \delta_1 \rangle [\delta_0]$
2. $g_i = [\beta_1 * \beta_2 * \cdots * \beta_{i-1} \langle \delta_{i-1} * \alpha_i * e_i * \beta_i, \delta_i \rangle [\beta_1 * \beta_2 * \cdots * \beta_{i-1}] for i = 2, ..., n - 1$
3. $g_n = [\beta_1 * \cdots * \beta_{n-1} \langle \delta_{n-1} * \alpha_n * \beta_n, \delta_n \rangle [\beta_1 * \cdots * \beta_{n-1}]$

Since $\pi_1^p(\mathcal{W}, x_0) \subseteq \pi_1^{\mathcal{W}}(\mathcal{W}, x_0)$, we have $g_i \in \pi_1^p(\mathcal{W}, x_0)$ for $i = 1, ..., n$. Additionally, for $i = 1, ..., n - 1,$

$$h_i = [\beta_1 * \cdots * \beta_i \langle \delta_i \rangle [\delta_i] [\beta_1 * \cdots * \beta_i]$$

is a generator of $\pi_1^p(\mathcal{W}, x_0)$. Note

$$[\alpha * \beta] = [\alpha_1] \langle \alpha_2, \cdots, \alpha_n \rangle [\beta_n] \cdots [\beta_2] [\delta_1] [\beta_1] = g_1 g_2 g_3 \cdots g_{n-1} h_{n-1} g_n$$

and thus $[\alpha * \beta] \in \pi_1^p(\mathcal{W}, x_0)$.

For the general case, suppose there is a \mathcal{W}-homotopy $\beta = \gamma_0 * \gamma_1 \cdots * \gamma_n = \beta$ where $\gamma_{j-1} \sim_{\mathcal{W}} \gamma_j$ for each $j = 1, 2, ..., n$. The first case gives $[\gamma_{j-1} * \gamma_j] \in \pi_1^p(\mathcal{W}, x_0)$ for each $i = 1, ..., n$ and thus

$$[\alpha * \beta] = [\gamma_0 * \gamma_1] [\gamma_1 * \gamma_2] \cdots [\gamma_{n-1} * \gamma_n] \in \pi_1^p(\mathcal{W}, x_0).$$

\[\square\]

Theorem 18. For every open cover \mathcal{W}, $\pi_1^p(\mathcal{W}, x_0) \subseteq \nu(\mathcal{W}, x_0)$. Moreover, if \mathcal{W} consists of path connected sets, then $\pi_1^p(\mathcal{W}, x_0) = \nu(\mathcal{W}, x_0)$.

Proof. Since $\nu(\mathcal{W}, x_0)$ is a subgroup of $\pi_1(X, x_0)$, the inclusion $\pi_1^p(\mathcal{W}, x_0) \subseteq \nu(\mathcal{W}, x_0)$ follows from showing $\nu(\mathcal{W}, x_0)$ contains the generators of $\pi_1^p(\mathcal{W}, x_0)$. Suppose $[\beta] = [\alpha] [\gamma_1] [\gamma_2] [\alpha]$. Then $\beta \sim_{\mathcal{W}} \alpha * \alpha$.

Find a sequence of neighborhoods V_1, \ldots, V_n in \mathcal{W} and a partition $0 = s_0 < s_1 < \cdots < s_n = 1$ such that $\alpha([s_{j-1}, s_j]) \subseteq V_j$. Since $\alpha(1) \in U_1 \cap U_2$, we may assume $\alpha([s_{n-1}, 1]) \subseteq U_1 \cap U_2$.

For $c > 0$, let $L_c : [0, 1] \to [0, c]$ be the order-preserving, linear homeomorphism. Define a partition $0 = t_0 < t_1 < \cdots < t_{2n} = 1$ by $t_k = L_{1/2}(s_k)$ if $0 \leq k \leq n - 1$, $t_n = 1/2$, and $t_k = 1 - L_{1/4}(s_{2n-k})$ for $n + 1 \leq k \leq 2n$. Rewrite the sequence $V_{1}, \ldots, V_{n-1}, U_{1}, U_{2}, V_{n-1}, \ldots, V_{1}$ in \mathcal{W} as W_{1}, \ldots, W_{2n}. Note $\alpha * \overline{\alpha}(t_{k-1}, t_k) \subseteq W_k$ for $k = 1, \ldots, 2n$.

Define a partition $0 = r_0 < r_1 < \cdots < r_{2n} = 1$ by $r_k = L_{1/4}(s_k)$ if $0 \leq k \leq n - 1$, $r_n = 1/2$, and $r_k = 1 - L_{1/4}(s_{2n-k})$ for $n + 1 \leq k \leq 2n$. Note $\beta([r_{k-1}, r_k]) \subseteq W_k$ for $k = 1, \ldots, 2n$ and thus $\beta \sim_{\mathcal{W}} \alpha * \alpha$. Since $\alpha * \overline{\alpha}$ is an inessential loop, β is null-\mathcal{W}-homotopic by Lemma 16.

In the case that \mathcal{W} consists of path connected sets, note that if α is a null-\mathcal{W}-homotopic loop based at x_0, then $[\alpha] = [\alpha * \overline{\alpha}] \in \pi_1^p(\mathcal{W}, x_0)$ by Lemma 17. This gives the inclusion $\nu(\mathcal{W}, x_0) \subseteq \pi_1^p(\mathcal{W}, x_0)$.

\[\square\]
5 A Čech-Spanier short exact sequence

The following theorem, which identifies the kernel of the homomorphism \(p_{\mathcal{U}} : \pi_1(X, x_0) \to \pi_1([N(\mathcal{U})], U_0) \) for certain covers \(\mathcal{U} \), is the main technical achievement of this paper.

Theorem 19. Suppose \((\mathcal{U}', U_0) \in \Lambda \) is such that \(\mathcal{U} \) consists of path connected sets and \(p_{\mathcal{U}} : X \to [N(\mathcal{U})] \) is a canonical map. The sequence

\[
1 \longrightarrow \Pi^{\mathcal{U}}(\mathcal{U}', x_0) \longrightarrow 1
\]

where \(i_{\mathcal{U}} \) is inclusion is exact.

The above theorem is proved in the following three subsections in which the hypotheses of the statement are assumed; exactness follows from Theorems 24, 26 and 34. Note if \((\mathcal{V}, V_0) \in \Lambda \) is a normal refinement of \((\mathcal{U}, U_0)\), where \(\mathcal{V} \) also consists of path connected sets and \(p_{\mathcal{V}} : X \to [N(\mathcal{V})] \) is a canonical map, then there is a morphism

\[
1 \longrightarrow \Pi^{\mathcal{V}}(\mathcal{V}', x_0) \longrightarrow \Pi^{\mathcal{U}}(\mathcal{U}', x_0) \longrightarrow 1
\]

of short exact sequences of groups where the left square consists of three inclusion maps and (at least) one identity.

Corollary 20. Suppose \(X \) is paracompact Hausdorff and \(\Lambda' \) is a directed subset of \(\Lambda \) such that if \((\mathcal{U}, U_0) \in \Lambda' \), then \(\mathcal{U} \) contains only path connected sets. There are level morphisms of inverse systems \(i : (\Pi^{\mathcal{U}}(\mathcal{U}', x_0), i_{\mathcal{U}}, x_0, \Lambda') \to (\pi_1(X, x_0), id, \Lambda') \) and \(p : (\pi_1(X, x_0), id, \Lambda') \to (\pi_1([N(\mathcal{U})], U_0), p_{\mathcal{U}}, \Lambda') \) such that

\[
1 \longrightarrow \Pi^{\mathcal{U}}(\mathcal{U}', x_0) \longrightarrow \Pi^{\mathcal{U}}(\mathcal{U}', x_0) \longrightarrow 1
\]

is exact for each \((\mathcal{U}, U_0) \in \Lambda' \). Moreover,

\[
1 \longrightarrow (\Pi^{\mathcal{U}}(\mathcal{U}', x_0), i_{\mathcal{U}}, \Lambda') \longrightarrow (\pi_1(X, x_0), id, \Lambda') \longrightarrow 1
\]

is an exact sequence in the category of pro-groups.

Proof. The level sequences, i.e. the sequences for each element of \(\Lambda' \), are exact by Theorem 19. This gives rise to the exact sequence in the category of pro-groups [16 Ch. II, §2.3, Theorem 10]. □
Theorems 18 and 19 combine to give a characterization of \(\ker p_{\mathcal{W}} \), in terms of the \(\mathcal{W} \)-homotopy of the previous section.

Corollary 21. If \(\mathcal{W} \) consists of path connected sets and \(\alpha : [0, 1] \to X \) is a loop based at \(x_0 \), then \([\alpha] \in \ker p_{\mathcal{W}}\), if and only if \(\alpha \) is null-\(\mathcal{W} \)-homotopic.

5.1 Surjectivity of \(p_{\mathcal{W}} \)

Lemma 22. Let \(K \) be a simplicial complex and \(L, L' : [0, 1] \to |K| \) be loops where \(L(0) = z_1 = L(1) \) and \(L'(0) = z_2 = L'(1) \). If there are vertices \(v_1, v_2, ..., v_m \in K \) and partitions

\[
0 = s_0 < s_1 < s_2 < \cdots < s_m = 1 \quad \text{and} \quad 0 = t_0 < t_1 < t_2 < \cdots < t_m = 1
\]

such that \(L([s_{k-1}, s_k]) \cup L'([t_{k-1}, t_k]) \subset \text{St}(v_k, K) \) for each \(k = 1, 2, ..., m \), then \(L \) and \(L' \) are freely homotopic in \(|K| \). If \(z_1 = z_2 \), then \(L \) and \(L' \) are homotopic rel. basepoint.

Proof. Since a non-empty intersection of two stars in a simplicial complex is path connected, there is a path \(\gamma_L : [0, 1] \to \text{St}(v_k, K) \cap \text{St}(v_{k+1}, K) \) from \(L(s_k) \) to \(L'(t_k) \) for \(k = 1, ..., m - 1 \). Let \(\gamma_0 = \gamma_m \) be a path in \(\text{St}(v_m, K) \cap \text{St}(v_1, K) \) from \(z_1 \) to \(z_2 \). Each loop \(L|_{[s_0, s_1]} \gamma_k \ast L'|_{[t_{k-1}, t_k]} \gamma_{k-1} \), \(k = 1, ..., m \), has image in the star of a vertex and is therefore inessential. Thus \(L \) and \(L' \) are freely homotopic. If \(z_1 = z_2 \), the same argument produces a basepoint-preserving homotopy when we take \(\gamma_0 = \gamma_m \) to be the constant path at \(z_1 = z_2 \). \(\square \)

Lemma 23. If \(\mathcal{W} \) consists of path connected sets and \(E = [U_1, U_2] \ast [U_2, U_3] \ast \cdots \ast [U_{n-1}, U_n] \) is an edge loop in \(|N(\mathcal{W})| \) such that \(U_1 = U_0 = U_n \), then there is a loop \(\alpha : [0, 1] \to X \) based at \(x_0 \) such that \(L = p_{\mathcal{W}} \circ \alpha \) and \(E \) are homotopic rel. basepoint.

Proof. Since each \(U_j \) is path connected and \(U_j \cap U_{j+1} \neq \emptyset \), there is a loop \(\alpha : [0, 1] \to X \) based at \(x_0 \) such that \(\alpha([\frac{k-1}{n}, \frac{k}{n}]) \subset U_j \) for each \(j = 1, ..., n \). We claim \(E \) is homotopic to \(L = p_{\mathcal{W}} \circ \alpha \).

Recall \(\mathcal{V}_U = p_{\mathcal{W}}(\text{St}(U, N(\mathcal{W}))) \subset U \) for each \(U \in \mathcal{W} \) so that \(\mathcal{V} = \{ \mathcal{V}_U \mid U \in \mathcal{W} \} \) is an open refinement of \(\mathcal{W} \). Consequently, for each \(j = 1, ..., n \), there is a subdivision \(\frac{j-1}{n} = s_0 < s_1 < \cdots < s_m = \frac{j}{n} \) and a sequence \(W_1, ..., W_m \in \mathcal{W} \) such that \(\alpha([s_{k-1}^+, s_k^+]) \subset V_{W_k} \subset W_k \cap U_j \) for \(k = 1, ..., m \). We may assume \(W_j = W_{j+1}^1 \) for \(j = 1, ..., n - 1 \) and, since \(x_0 \in V_{U_n} \), we may assume \(W_1 = U_0 = W_m^2 \). Note that \(L([s_{k-1}^+, s_k^+]) \subset \text{St}(W_k, N(\mathcal{W})) \).

Define an edge loop \(L' \) based at the vertex \(U_0 \) as

\[
(s_{k+1}^1 \star [W_1^1, W_1^{k+1}]) \ast \cdots \ast (s_{k+1}^n \star [W_n^1, W_n^{k+1}]) = \ast \ast \ast \ast \ast
\]

To see \(L' \) is homotopic to \(L \), observe the set of intervals \([s_{k-1}^+, s_k^+]\), and consequently the set of neighborhoods \(W_j^k \), inherits an ordering from the natural ordering of \([0, 1]\). Suppose the intervals \([s_{k-1}^+, s_k^+]\) are ordered as \(A_1, ..., A_N \subset [0, 1] \)
and the neighborhoods W^k are ordered as $w_1, ..., w_N$ so that $L(A_t) \subseteq St(w_t, N(\mathcal{W}))$.

For $\ell = 1, ..., N - 1$, let b_t be the barycenter of $[w_{t}, w_{t+1}]$. Find a partition $0 = t_0 < t_1 < \cdots < t_N = 1$ such that $L'(t_{i-1}, t_i) \subseteq St(w_t, N(\mathcal{W}))$ for $\ell = 1, ..., N$ by choosing t_ℓ so that $L'(t_\ell) = b_\ell$ for $\ell = 1, ..., N$. Lemma 22 applies and gives a basepoint preserving homotopy between L and L'.

It now suffices to show the edge loops L' and $E = [U_1, U_2] \ast [U_2, U_3] \ast \cdots \ast [U_{n-1}, U_n]$ are homotopic. We do so by showing $L' \ast E$ is homotopic to a concatenation of inessential loops based at U_0. First, for each $j = 1, ..., n$, let $E_j = [U_1, U_2] \ast \cdots \ast [U_{j-1}, U_j]$. Observe $E_1 = [U_1, U_1]$ is constant and $E_n = E$.

1. For $j = 1, ..., n$ and $k = 1, ..., m_j - 1$, let

 $d^k_j = E_j \ast [U_j, W^k_j] \ast [W^k_j, W^{k+1}_j] \ast [W^{k+1}_j, U_j] \ast E_j$.

 These loops are well-defined and inessential since $U_j \cap W^k_j \cap W^{k+1}_j \neq \emptyset$ determines a 2-simplex in $N(\mathcal{W})$. Even in the case two or more of U_j, W^k_j, W^{k+1}_j are equal, d^k_j is still inessential.

2. For $j = 1, ..., n - 1$, let

 $b_j = E_j \ast [U_j, W^m_j] \ast [W^m_j, U_{j+1}] \ast [U_{j+1}, U_j] \ast E_j$.

 These loops are well-defined and inessential since $U_j \cap W^m_j \cap U_{j+1} \neq \emptyset$.

Therefore the product

$p = \left(\sum_{k=1}^{m_j-1} d^k_j\right) \ast b_1 \ast \cdots \ast \left(\sum_{k=1}^{m_j-1} d^k_j\right) \ast b_j \ast \cdots \ast b_{n-1} \ast \left(\sum_{k=1}^{m_n-1} d^k_n\right)$

is inessential. We observe p is homotopic to $L' \ast E$ by reducing words. Indeed, for each $j = 1, ..., n - 1$, $\left(\sum_{k=1}^{m_j-1} d^k_j\right) \ast b_j$ reduces to

$E_j \ast [U_j, W^1_j] \ast \left(\sum_{k=1}^{m_n-1} [W^k_j, W^{k+1}_j]\right) \ast [W^{m_j}_j, U_{j+1}] \ast E_j$.

and the last factor $\left(\sum_{k=1}^{m_n-1} d^k_n\right)$ reduces to $E_{n-1} \ast [U_n, W^1_n] \ast \left(\sum_{k=1}^{m_n-1} [W^k_n, W^{k+1}_n]\right) \ast E_n$ (recall that $W^{m_n}_n = U_0 = U_n$). Using the fact that $W^1_1 = U_1 = U_n$ and $W^m_n = W^1_{n+1}$ to identify constant paths, it follows that p reduces to $L' \ast E_n = L' \ast E$.

Theorem 24. If $(\mathcal{W}, U_0) \in \Lambda$ where \mathcal{W} consists of path connected sets and $p_\mathcal{W} : X \to |N(\mathcal{W})|$ is a canonical map, then $p_\mathcal{W}$ is surjective.

Proof. Since edge loops in $|N(\mathcal{W})|$ represent all homotopy classes in $\pi_1(|N(\mathcal{W})|, U_0)$, the theorem follows from Lemma 22. \qed
5.2 \(\Pi^s(\mathcal{U}, x_0) \subseteq \ker p_{\mathcal{U}}. \)

The flavor of the proof of the following Lemma is quite similar to that of Lemma \[23 \]
but holds when the elements of \(\mathcal{U} \) are not necessarily path connected.

Lemma 25. Let \(\mathcal{U} \) be an open cover of \(X \). Suppose \(\gamma_1, \gamma_2 \) are paths in \(X \) such that \(\gamma_1(1) = \gamma_2(0) \) and \(\gamma_1(0) = \gamma_2(1) \). If \(\gamma_1 \) has image in \(U_i \in \mathcal{U} \), then \(L = p_{\mathcal{U}} \circ (\gamma_1 * \gamma_2) \) is an inessential loop in \(|N(\mathcal{U})| \).

Proof. We again use that \(\mathcal{Y} = \{ V_U = p^{-1}_U(St(U, N(\mathcal{U}))) | U \in \mathcal{U} \} \) is open refinement of \(\mathcal{U} \). Find partitions \(0 = s^0_1 < s^1_1 < \cdots < s^{m_1}_1 = \frac{1}{2} \) and \(\frac{1}{2} = s^0_2 < s^1_2 < \cdots < s^{m_2}_2 = 1 \) and a sequence of neighborhoods \(W^1_1, ..., W^{m_1}_1, W^1_2, ..., W^{m_2}_2 \in \mathcal{U} \) such that \(\gamma_i([s^k_{i-1}, s^k_i]) \subseteq V_{W^k_i} \subseteq W^k_i \) for \(j = 1, 2 \) and \(k = 1, ..., m_i \). Since \(\gamma_1(0) = \gamma_2(1) \), we may assume \(W^1_1 = W^{m_1}_1 \) and since \(\gamma_1(1) = \gamma_2(0) \), we may assume \(W^1_2 = W^{m_2}_2 \). Observe that \(L([s^k_{i-1}, s^k_i]) \subseteq St(W^k_i, N(\mathcal{U})) \).

Let \(\mathcal{L}' \) be the loop defined as the concatenation
\[
\left(s^m_1 \{ W^k_1, W^{k+1}_1 \} \right) * \left(s^{m-1}_2 \{ W^k_2, W^{k+1}_2 \} \right).
\]

Find a partition
\[
0 = t^0_1 < t^1_1 < \cdots < t^{m_1}_{i-1} = t^0_2 < t^1_2 < \cdots < t^{m_2}_2 = 1
\]
such that \(\mathcal{L}'([t^k-1_1, t^k_1]) \subseteq St(W^k_i, N(\mathcal{U})) \). By Lemma \[22 \] \(\mathcal{L} \) and \(\mathcal{L}' \) are freely homotopic.

It now suffices to show \(\mathcal{L}' \) is inessential. We do so by showing \(\mathcal{L}' \) is homotopic to a concatenation of inessential loops. First, let \(E_1 = [W^1_1, U_1] \) and \(E_2 = [W^1_2, U_1] * [U_1, U_2] \).

1. For \(k = 1, ..., m_1 - 1 \), let
 \[
a^k_1 = E_1 * [U_1, W^k_1] * [W^k_1, W^{k+1}_1] * [W^k_1, U_1] * \bar{E}_1.
 \]
2. Let \(b_1 = E_1 * [U_1, W^{m_1}_1] * [W^1_2, U_2] * [U_2, U_1] * \bar{E}_1. \)
3. For \(k = 1, ..., m_2 - 1 \), let
 \[
a^k_2 = E_2 * [U_2, W^k_2] * [W^k_2, W^{k+1}_2] * [W^k_2, U_2] * \bar{E}_2.
 \]
4. Let \(b_2 = E_2 * [U_2, W^1_2] = [W^1_2, U_1] * [U_1, U_2] * [U_2, W^1_1]. \)

Note the loop \(a^k_1 \) is well-defined and inessential since \(U_1 \cap W^k_1 \cap W^{k+1}_1 \neq \emptyset \) determines a 2-simplex in \(N(\mathcal{U}) \). Similarly, the loops defined in 2.-4. are well-defined and inessential.
Consequently, the concatenation
\[p = \left(\ast_{k=1}^{m_1-1} a_k^1 \right) \ast b_1 \ast \left(\ast_{k=1}^{m_2-1} a_k^2 \right) \ast b_2 \]
is an inessential loop based at \(W_1 \). We observe \(p \) is homotopic to \(L' \) by reducing words. Indeed, \(\left(\ast_{k=1}^{m_1-1} a_k^1 \right) \ast b_1 \) reduces to \(\left(\ast_{k=1}^{m_1-1} \left[W_{k+1}^1, W_1 \right] \right) \ast \left[W_{2}^1, U_2 \right] \ast E_2 \) and \(\left(\ast_{k=1}^{m_2-1} a_k^2 \right) \ast b_2 \) reduces to \(E_2 \ast \left[U_2, W_1 \right] \ast \left(\ast_{k=1}^{m_2-1} \left[W_{k+1}^2, W_2 \right] \right) \).

Theorem 26. If \((U, U_0) \in \Lambda \) and \(p_{U} : X \to |N(U)| \) is a canonical map, then \(\Pi^S(U, x_0) \subseteq \ker p_{U} \).

Proof. Suppose \(g = [\alpha][\gamma_1 \ast \gamma_2][\overline{\alpha}] \) is a generator of \(\Pi^S(U, x_0) \) where \(\gamma_i \) is a path with image in \(U_i \in U \). Since \(p_{U}(g) = [p_{U} \circ \alpha][p_{U} \circ (\gamma_1 \ast \gamma_2)][p_{U} \circ \overline{\alpha}] \) and \(p_{U} \circ (\gamma_1 \ast \gamma_2) \) is inessential by Lemma 25, \(p_{U}(g) \) is trivial in \(\pi_1(|N(U)|, U_0) \).

5.3 \(\ker p_{U} \subseteq \Pi^S(U, x_0) \)

To show the inclusion \(\ker p_{U} \subseteq \Pi^S(U, x_0) \) holds under the hypotheses of Theorem 19, we work to extend loops \(|\partial \Delta_2| \to X \) to maps on the 1-skeleton of subdivisions of \(|\partial \Delta_2| \).

Definition 27. An edge loop \(L \) is **short** if it is the concatenation \(L = [v_0, v_1] \ast [v_1, v_2] \ast [v_2, v_3] \) of three linear paths. A **Spanier edge loop** is an edge loop of the form \(E \ast L \ast \overline{E} \) where \(E \) is an edge path and \(L \) is a short edge loop.

Lemma 28. Let \(H \) be a subgroup of \(\pi_1(X, x_0) \) and \(n \geq 1 \) be an integer. Let \(f : (sd^n|\partial \Delta_2)|_1 \to X \) be a based map on the 1-skeleton of \(sd^n|\partial \Delta_2| \), and \(\beta = f|_{\partial \Delta_2} : |\partial \Delta_2| \to X \) be the restriction. If \(f \circ \sigma \in H \) for every Spanier edge loop \(\sigma \) in \(sd^n|\partial \Delta_2| \), then \([\beta] \in H \).

Proof. It follows from elementary planar graph theory that \(\pi_1((sd^n|\partial \Delta_2)|_1, (0, 0)) \) is generated by the homotopy classes of Spanier edge loops. Thus if \(f \circ \sigma \in H \) for every Spanier edge loop \(\sigma \) in \(sd^n|\partial \Delta_2| \), then \(f_1(\pi_1((sd^n|\partial \Delta_2)|_1, (0, 0))) \subseteq H \). In particular \([\beta] \in H \).

Let \(sd^1|\partial \Delta_2| \) be the first barycentric subdivision of \(|\partial \Delta_2| \). The 0-skeleton consists of six vertices: Let \(v_1, v_2, v_3 \) be the vertices \((0, 0), (1, 0), (0, 1)\) of \(|\partial \Delta_2| \), respectively, and \(m_i \) be the vertex which is the barycenter of the edge opposite \(v_i \) for \(i = 1, 2, 3 \).

Definition 29. Let \(U \) be an open cover of \(X \). A map \(\delta : |\partial \Delta_2| \to X \) is **admissible** if there are open neighborhoods \(U_1, U_2, U_3 \in U \) such that \(\bigcap_i U_i \neq \emptyset \) and \(\delta(|\partial \Delta_2|) \subseteq U_i \) for \(i = 1, 2, 3 \).

Remark 30. The condition \(\delta(|\partial \Delta_2|) \subseteq U_i \) in the previous definition means precisely that \(\delta([v_1, m_2] \cup [v_1, m_3]) \subseteq U_1, \delta([v_2, m_1] \cup [v_2, m_3]) \subseteq U_2, \) and \(\delta([v_3, m_1] \cup [v_3, m_2]) \subseteq U_3 \).
Lemma 31. Let \mathcal{U} be an open cover of X consisting of path connected sets. If $\delta : \partial \Delta_2 \to X$ is \mathcal{U}-admissible and $\alpha : [0,1] \to X$ is a path from x_0 to $\delta(v_1)$, then $[\alpha][\delta][\tau] \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$.

Proof. Since $\delta : \partial \Delta_2 \to X$ is \mathcal{U}-admissible there are sets $U_1, U_2, U_3 \in \mathcal{U}$ such that $\cap_i U_i$ contains a point z and $\delta(Si(v_i, \partial \Delta_2)) \subseteq U_i$ for $i = 1, 2, 3$. Whenever $j, k \in \{1, 2, 3\}$ and $j \neq k$, let γ_{jk} be the path which is the restriction of δ to $[v_j, m_k]$. With this notation

$$[\delta] = [\gamma_{1,3}][\gamma_{2,3}][\gamma_{2,1}][\gamma_{3,1}][\gamma_{3,2}].$$

Note $\text{Im}(\gamma_{jk}) \subseteq U_j$ for all choice of j, k. Thus if $j, k, l \in \{1, 2, 3\}$ are distinct, the endpoint of γ_{jk} lies in $U_j \cap U_l$.

Define six paths in X: Whenever $j, k \in \{1, 2, 3\}$ and $j \neq k$, let η_{jk} be a path in U_i from $\delta(m_k)$ to z. Such paths are guaranteed to exist since each element of \mathcal{U} is path connected. Now given any path $\alpha : [0,1] \to X$ from x_0 to $\delta(v_1)$ let

$$\zeta_1 = [\alpha][\gamma_{1,3} * \eta_{1,3} * \eta_{2,2} * \gamma_{1,2}][\alpha],$$
$$\zeta_2 = [\alpha * \gamma_{1,2} * \eta_{1,2}][\eta_{1,3}][\tau][\alpha * \gamma_{1,2} * \eta_{1,2}],$$
$$\zeta_3 = [\alpha * \gamma_{1,2} * \eta_{1,2}][\eta_{1,3}][\eta_{2,2}][\tau][\alpha * \gamma_{1,2} * \eta_{1,2}],$$
$$\zeta_4 = [\alpha * \gamma_{1,2} * \eta_{1,2}][\eta_{1,3}][\eta_{2,2}][\tau][\alpha * \gamma_{1,2} * \eta_{1,2}],$$
$$\zeta_5 = [\alpha * \gamma_{1,2} * \eta_{1,2}][\eta_{1,3}][\eta_{2,2}][\tau][\alpha * \gamma_{1,2} * \eta_{1,2}],$$
$$\zeta_6 = [\alpha * \gamma_{1,2} * \eta_{1,2}][\eta_{1,3}][\eta_{2,2}][\tau][\alpha * \gamma_{1,2} * \eta_{1,2}].$$

Note each ζ_i is written as a product to illustrate that $\zeta_1, \zeta_3, \zeta_5 \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$ and $\zeta_2, \zeta_4, \zeta_6 \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$. Since $\Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0) \subseteq \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$, we have $\zeta_i \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$ for each i. A straightforward check gives $[\alpha][\delta][\tau] = \zeta_1 \zeta_2 \zeta_3 \zeta_4 \zeta_5 \zeta_6$ and thus $[\alpha][\delta][\tau] \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$. □

Lemma 32. If $f : (sd^n|\Delta_2)|_1 \to X$ is a map such that the restriction of f to the boundary $\delta \tau$ of every 2-simplex τ in $sd^n|\Delta_2$ is \mathcal{U}-admissible and $\beta = f|_{\partial \Delta_2}$, then $[\beta] \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$.

Proof. By Lemma 28 it suffices to show $[f \circ \sigma] \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$ for any Spanier edge loop σ in $sd^n|\Delta_2$. Suppose $\sigma = E * L * E$ is such a Spanier edge loop where E is an edge path from $(0,0)$ to a vertex of $\delta \tau$ and L is a short edge loop traversing $\delta \tau$. Let $\alpha = f \circ E$ and $\delta = f \circ L$. Since δ is \mathcal{U}-admissible by assumption, $[f \circ \sigma] = [\alpha][\delta][\tau] \in \Pi^{\delta \mathcal{U}}(\mathcal{U}, x_0)$ by Lemma 31. □

Lemma 33. Suppose $(\mathcal{U}, U_0) \in \Lambda$ where \mathcal{U} consists of path connected sets and $p_\mathcal{U} : X \to |N(\mathcal{U})|$ is a canonical map. If $\beta : |\partial \Delta_2| \to X$ is a loop such that $[\beta] \in \ker p_\mathcal{U}$, then there exists an integer $n \geq 1$ and an extension $f : (sd^n|\Delta_2)|_1 \to X$ of β such that the restriction of f to the boundary $\delta \tau$ of every 2-simplex τ in $sd^n|\Delta_2$ is \mathcal{U}-admissible.

Proof. Since $p_\mathcal{U} \circ \beta : |\partial \Delta_2| \to |N(\mathcal{U})|$ is a null-homotopic loop based at the vertex U_0, it extends to a map $h : |\Delta_2| \to |N(\mathcal{U})|$. Since, by the definition of $p_\mathcal{U}$, we have $V_U = p_\mathcal{U}^{-1}(Si(U, N(\mathcal{U}))) \subseteq U$ for each $U \in \mathcal{U}$, the cover $\mathcal{V} = |V_U|U \in \mathcal{U}$ is
an open refinement of \mathcal{W}. Additionally, if $W_U = h^{-1}(St(U, N(\mathcal{W})))$, the collection $\mathcal{W} = \{W_U | U \in \mathcal{W}\}$ is an open cover of $|\Delta_2|$. Following Theorem 16.1 (finite simplicial approximation) in [19], find a simplicial approximation for h using the cover \mathcal{W}: let λ be a Lebesgue number for \mathcal{W} so that any subset of $|\Delta_2|$ of diameter less than λ lies in some element of \mathcal{W}. Choose an integer n such that each simplex in $sd^n|\Delta_2|$ has diameter less than $\lambda/2$. Thus the star $St(a, sd^n|\Delta_2)$ of each vertex a in $sd^n|\Delta_2|$ lies in a set W_{U_a} for some $U_a \in \mathcal{W}$. The assignment $a \mapsto U_a$ on vertices extends to a simplicial approximation $h' : sd^n\Delta_2 \to N(\mathcal{W})$ of h, i.e. a simplicial map h' such that

$$h(St(a, sd^n\Delta_2)) \subseteq St(h'(a), N(\mathcal{W})) = St(U_a, N(\mathcal{W}))$$

for each vertex a [19, Lemma 14.1].

We construct an extension $f : (sd^n|\Delta_2)_0 \to X$ of β such that the restriction of f to the boundary of each 2-simplex of $sd^n|\Delta_2$ is \mathcal{W}-admissible. First, define f on vertices: for each vertex $a \in (sd^n|\Delta_2)_0$, pick a point $f(a) \in U_a$. In particular, if a is a vertex of the subcomplex $sd^n|\partial\Delta_2$ of $(sd^n|\Delta_2)_0$, take $f(a) = \beta(a)$. This choice is well defined since whenever $a \in sd^n|\partial\Delta_2$, we have $p_\mathcal{W} \circ \beta(a) = h(a) \in St(U_a, N(\mathcal{W}))$ and thus $\beta(a) \in V_{U_a} \subseteq U_a$.

Observe if $[a, b, c]$ is any 2-simplex in $sd^n\Delta_2$, then $h'([a, b, c])$ is a simplex of $N(\mathcal{W})$ spanned by the set of vertices $\{U_a, U_b, U_c\}$ (possibly containing repetitions). By the construction of $N(\mathcal{W})$, the intersection $U_a \cap U_b \cap U_c$ is non-empty. Extend f to the interiors of 1-simplices of $(sd^n|\Delta_2)_1$ to define f on a given 1-simplex $[a, b]$, consider two cases:

Case I: Suppose 1-simplex $[a, b]$ is the intersection of two 2-simplices in $sd^n|\Delta_2$. Extend f to the interior of $[a, b]$ by taking $f_{[a,b]}$ to be a path in $U_a \cup U_b$ from $f(a)$ to $f(b)$ such that if m is the barycenter of $[a, b]$, then $f_{[a,b]}([a, m]) \subseteq U_a$ and $f_{[a,b]}([m, b]) \subseteq U_b$. Such a path is guaranteed to exist since U_a, U_b are path connected and have non-trivial intersection.

Case II: Suppose 1-simplex $[a, b]$ is the face of a single 2-simplex or equivalently that $[a, b]$ is a 1-simplex of $sd^n|\partial\Delta_2$. In this case, let $f_{[a,b]} = \beta_{[a,b]}$. Again, note $U_a \cap U_b \cap U_c \neq \emptyset$. Since $St(a, sd^n|\Delta_2) \subseteq W_{U_a}$ and $St(b, sd^n|\Delta_2) \subseteq W_{U_b}$, we have

$$p_\mathcal{W} \circ \beta(int([a, b])) = h(int([a, b])) \subseteq St(U_a, N(\mathcal{W})) \cap St(U_b, N(\mathcal{W})).$$

Thus $\beta(int([a, b])) \subseteq V_{U_a} \cup V_{U_b} \subseteq U_a \cup U_b$. Note if m is the barycenter of $[a, b]$, then $f([a, m]) \subseteq U_a$ and $f([m, b]) \subseteq U_b$.

Now $f : (sd^n|\Delta_2)_1 \to X$ is a map extending β such that the restriction of f to the boundary $\partial \tau$ of every 2-simplex τ in $sd^n|\Delta_2$ is \mathcal{W}-admissible. □

Theorem 34. If $(\mathcal{W}, U_0) \in \Lambda$ where \mathcal{W} consists of path connected sets and $p_\mathcal{W} : X \to |N(\mathcal{W})|$ is a canonical map, then $ker p_\mathcal{W} \subseteq \prod^0(\mathcal{W}, x_0)$.

Proof. The theorem follows directly from Lemma 32 and Lemma 33. □
6 Characterizations of \(\ker \Psi_X \)

Theorem 19 allows us to characterize the kernel of the natural map \(\Psi_X : \pi_1(X, x_0) \to \pi_1(X, x_0) \) as the Spanier group \(\pi^{Sp}(X, x_0) \).

Theorem 35. If \(X \) is a locally path connected, paracompact Hausdorff space, then there is a natural exact sequence

\[
1 \longrightarrow \pi^{Sp}(X, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{\Psi_X} \pi_1(X, x_0) \quad \text{where the second map is inclusion.}
\]

Proof. It suffices to show \(\ker \Psi_X = \pi^{Sp}(X, x_0) \). The inclusion \(\pi^{Sp}(X, x_0) \subseteq \ker \Psi_X \) holds for arbitrary \(X \); this fact follows from Propositions 9 and 12 and is proved directly in [14]. Since \(X \) is paracompact Hausdorff, \(\pi^{Sp}(X, x_0) = \Pi^{Sp}(X, x_0) \) by Theorem 13. Thus, it suffices to show \(\ker \Psi_X \subseteq \Pi^{Sp}(X, x_0) \).

Suppose \([\beta] \in \ker \Psi_X \) (equivalently \([\beta] \in \ker p_{\Psi, x} \) for every \((\Psi, W_0) \in \Lambda \)) and \(\Psi \) is a given open cover of \(X \). It suffices to show \([\beta] \in \Pi^{Sp}(\Psi, x_0) \). Let \(V_0 \) be a path connected neighborhood of \(x_0 \) contained in \(W_0 \). Every point \(x \in X \setminus V_0 \) is an element of some \(U_x \in \Psi \). Let \(V_x \) be a path connected neighborhood of \(x \) contained in \(U_x \) which is disjoint from \(\{x_0\} \). Now \(\Psi = \{V_0\} \cup \{V_x | x \in X \setminus V_0\} \) is an open cover of \(X \) which contains path connected sets, is a refinement of \(\Psi \), and such that there is a single set \(V_0 \) having the basepoint \(x_0 \) as an element. Since \(X \) is paracompact Hausdorff, \(\Psi \) is normal and therefore \((\Psi, V_0) \in \Lambda \).

Since \([\beta] \in \ker p_{\Psi, x} \) and \(\ker p_{\Psi, x} \subseteq \Pi^{Sp}(\Psi, x_0) \) by Theorem 19, we have \([\beta] \in \Pi^{Sp}(\Psi, x_0) \). Not that \(\Pi^{Sp}(\Psi, x_0) \subseteq \Pi^{Sp}(\Psi, x_0) \) since \(\Psi \) refines \(\Psi \). Thus \([\beta] \in \Pi^{Sp}(\Psi, x_0) \).

Regarding naturality, it is well-known that \(\Psi_X \) is natural in \(X \). Thus it suffices to check that if \(f : X \to Y, f(x_0) = y_0 \) is a map, then \(f_*(\pi^{Sp}(X, x_0)) \subseteq \pi^{Sp}(Y, y_0) \). This follows directly from Remark 2.

Corollary 36. If \(X \) is a locally path connected, paracompact Hausdorff space, then \(X \) is \(\pi_1 \)-shape injective if and only if \(\pi^{Sp}(X, x_0) = 1 \).

Example 37. Theorem 35 fails to hold in the non-locally path connected case. A counterexample is the compact space \(Z \subset \mathbb{R}^3 \) of [12] obtained by rotating the closed topologist’s sine curve so the linear path component forms a cylinder and connecting the two resulting surface components by attaching a single arc. We have \(\pi_1(Z, z_0) \cong \mathbb{Z} \) and \(\pi^{Sp}(Z, z_0) = 1 \), yet \(\ker \Psi_Z = \pi_1(Z, z_0) \).

The identification \(\pi^{Sp}(X, x_0) = \ker \Psi_X \) in Theorem 35 allows us to give two alternative characterizations of \(\ker \Psi_X \): one in terms of \(\Psi \)-homotopy (from Section 3) and one in terms of covering spaces of \(X \). Here covering spaces and maps are meant in the classical sense [20].

Corollary 38. Suppose \(X \) is a locally path connected, paracompact Hausdorff space and \(\alpha : [0, 1] \to X \) is a loop based at \(x_0 \). The following are equivalent:
1. $[\alpha] \in \ker \Psi_X$

2. For every open cover \mathcal{U} of X, α is null-\mathcal{U}-homotopic.

3. For every covering map $r : Y \to X$, $r(y_0) = x_0$, the unique lift $\tilde{\alpha} : [0, 1] \to Y$ of α (i.e. such that $r \circ \tilde{\alpha} = \alpha$) starting at y_0 is a loop in Y.

Proof. (1. \Leftrightarrow 2.) By Theorems [13] and [35] we have $\Pi^p(X, x_0) = \pi^p(X, x_0) = \ker \Psi_X$. Since X is locally path connected, every open cover \mathcal{U} admits an open refinement \mathcal{V} whose elements are path connected and thus $\Pi^p(\mathcal{V}, x_0) = \nu(\mathcal{V}, x_0)$ by Theorem [18]. Since $\Pi^p(\mathcal{V}, x_0) = \nu(\mathcal{V}, x_0)$ for all \mathcal{V} in a cofinal subset of $O(X)$ the equality $\Pi^p(X, x_0) = \bigcap_\mathcal{U} \nu(\mathcal{U}, x_0)$ follows.

(1. \Leftrightarrow 3.) Since $\pi^p(X, x_0) = \ker \Psi_X$, we show $\pi^p(X, x_0)$ is the intersection of all images $r_\alpha(\pi_1(Y, y_0))$ where $r : Y \to X$, $r(y_0) = x_0$ is a covering map. This equality follows directly from the following well-known result from the covering space theory of locally path connected spaces (see Lemma 2.5.11 and Theorem 2.5.13 in [20]): given a subgroup H of $\pi_1(X, x_0)$, there is an open cover \mathcal{U} of X such that $\pi^p(\mathcal{U}, x_0) \subseteq H$ if and only if there is a covering map $r : Y \to X$, $r(y_0) = x_0$ with $r_\alpha(\pi_1(Y, y_0)) = H$.

Example 39. Consider the Peano continua Y' and Z' of [12] constructed as subspaces of \mathbb{R}^3 (these spaces also appear as the spaces A and B in [4] respectively). The space Y' is constructed by rotating the topologists sine curve $T = \{(x, 0, \sin(1/x))| 0 < x \leq 1\} \cup \{(0)\} \times [0, 0] \times [0, 1]$ about the “central axis” (i.e. the portion $[0] \times [0] \times [0, 1]$ of the z-axis) and attaching horizontal arcs so Y' is locally path connected and so the arcs become dense only on the central axis. The space Z' is an inverted version of Y' in the sense that T is now rotated around the vertical line passing through $(1, 0, \sin 1)$ and arcs are attached becoming dense around the outside cylinder. Take the basepoint z_0 of Z' to lie on the outer cylinder.

The authors of [12] observe both spaces have non-vanishing Spanier group and thus fail π_1-shape injectivity. The Spanier group of Y' is known to be non-trivial [12] Prop 3.2(1)], however slightly more effort is required to show a simple closed curve L, based at z_0, traversing the outer cylinder of Z' is homotopically non-trivial [4] Lemma 3.1 and satisfies $[L] \in \pi^p(Z', z_0)$. To do so, one can, given an open cover \mathcal{U} of X, look for small arcs in the intersections of elements of \mathcal{U} and factor $[L]$ as a product of generators of $\pi^p(\mathcal{U}, z_0)$.

Using the above results, we can observe $[L] \in \pi^p(Z', z_0)$ without having to construct explicit factorizations and without having to rely on convenient covers with “enough” arcs lying in intersections. For instance, to see $[L] \in \pi^p(Z', z_0)$, let \mathcal{U} be an open cover of Z' and find a subdivision of $0 = t_0 < t_1 < \ldots < t_n = 1$ so $L([t_{i-1}, t_i]) \subseteq U_i$ for $U_i \in \mathcal{U}$ and $U_1 = U_n$. There is an arc α connecting $L(0)$ to the surface portion with image in U_1 and a loop L' on the surface portion based at $\alpha(1)$ such that $L'([t_{i-1}, t_i]) \subseteq U_i$ for each i. Thus L is \mathcal{U}-homotopic to the homotopically trivial loop $\alpha \ast L' \ast \tilde{\alpha}$. Since $[L]$ is null-\mathcal{U}-homotopic for any given \mathcal{U}, we have $[L] \in \ker \Psi_X = \pi^p(Z', z_0)$ by Corollary [58].
Remark 40. If, in addition to the hypotheses on X in Theorem 35, Λ admits a cofinal, directed subsequence (\mathcal{U}_n, U_n) where $(\mathcal{U}_{k+1}, U_{k+1})$ refines (\mathcal{U}_k, U_k) (for instance, when X is compact metric), the exact sequence in Theorem 35 extends to the right via the first derived limit \lim^{-1} for non-abelian groups [16, Ch. II, §6.2]. In doing so, we obtain a connecting function δ and an exact sequence

$$1 \rightarrow \pi^{Sp}(X, x_0) \rightarrow \pi_1(X, x_0) \xrightarrow{\Psi_X} \pi_1(X, x_0) \xrightarrow{\delta} \lim^{-1} \Pi^{Sp}(\mathcal{U}_n, x_0) \rightarrow \ast$$

in the category of pointed sets. Thus elements in the image of Ψ_X are precisely those mapped to basepoint of the first derived limit of the inverse sequence

$$\ldots \subseteq \Pi^{Sp}(\mathcal{U}_3, x_0) \subseteq \Pi^{Sp}(\mathcal{U}_2, x_0) \subseteq \Pi^{Sp}(\mathcal{U}_1, x_0)$$

of thick Spanier groups.

7 A shape group topology on $\pi_1(X, x_0)$

For a general space X, the fundamental group $\pi_1(X, x_0)$ admits a variety of distinct natural topologies [1, 2, 10], one of which is the pullback from the product of discrete groups [9, 18] described as follows.

By definition, the geometric realization of a simplicial complex is locally contractible. Hence the inverse limit space $\tilde{\pi}_1(X, x_0)$ admits a natural topology as a subspace of the product of discrete groups $\Pi_{1\leq k\leq N} \pi_1(\mathcal{U}_k, U_0)$.

To impart a topology on $\pi_1(X, x_0)$, recall the homomorphism $\Psi_X : \pi_1(X, x_0) \rightarrow \tilde{\pi}_1(X, x_0)$ and declare the open sets of $\pi_1(X, x_0)$ to be precisely sets of the form $\Psi_X^{-1}(W)$ where W is open in $\tilde{\pi}_1(X, x_0)$. We refer to this group topology on $\pi_1(X, x_0)$ as the shape topology.

The space $\tilde{\pi}_1(X, x_0)$ is Hausdorff (since $\tilde{\pi}_1(X, x_0)$ is a subspace of the arbitrary product of Hausdorff spaces). Hence, if ψ_X is one-to-one, then $\psi_1(X, x_0)$ is Hausdorff (since in general the preimage under a continuous injective map of a Hausdorff space is Hausdorff). Conversely, if ψ_X is not one-to-one, then $\pi_1(X, x_0)$ is not Hausdorff (since, with the pullback topology, if $x \neq y$ and $\psi_X(x) = \psi_X(y)$ then x and y cannot be separated by open sets). The foregoing is summarized as follows.

Proposition 41. The following are equivalent for any space X:

1. X is π_1-shape injective.
2. $\pi_1(X, x_0)$ is Hausdorff.

We characterize a basis for the shape topology using the short exact sequences from Section 5.

Remark 42. Note if G is a topological group, H is a subgroup of G, and K is a subgroup of H which is open in G, then H is also open in G since H decomposes as a union of open cosets of K.

20
Lemma 43. If \(X \) is locally path connected, paracompact Hausdorff, then for every open cover \(\mathcal{U} \) of \(X \), both \(\pi^\mathcal{U}(\mathcal{U}, x_0) \) and \(\Pi^\mathcal{U}(\mathcal{U}, x_0) \) are open in \(\pi_1(X, x_0) \).

Proof. Suppose \(\mathcal{U} \) is an open cover of \(X \). Pick a set \(U_0 \in \mathcal{U} \) such that \(x_0 \in U_0 \). Since \(X \) is locally path connected, paracompact Hausdorff, there exists \((\mathcal{V}', V_0) \in \Lambda \) refining \((\mathcal{U}, U_0) \) such that \(\mathcal{V}' \) consists of path connected sets (e.g. see the second paragraph in the proof of Theorem 35). Let \(p_{\mathcal{V}'} : X \to |N(\mathcal{V}')| \) be a based canonical map. Recall \(\pi_1(|N(\mathcal{V}')|, V_0) \) is discrete and observe \(p_{\mathcal{V}'} : \pi_1(X, x_0) \to \pi_1(|N(\mathcal{V}')|, V_0) \) is continuous. Additionally, \(\Pi^\mathcal{V'}(\mathcal{V}', V_0) = \ker p_{\mathcal{V}'} \), by Theorem 19. Thus \(\Pi^\mathcal{V'}(\mathcal{V}', V_0) \) is an open subgroup of \(\pi_1(X, x_0) \). Since \(\mathcal{V}' \) refines \(\mathcal{U} \), we have \(\Pi^\mathcal{V'}(\mathcal{V}', x_0) \subseteq \Pi^\mathcal{U}(\mathcal{U}, x_0) \) and thus \(\Pi^\mathcal{U}(\mathcal{U}, x_0) \) is open by Remark 42.

Since \(X \) is paracompact Hausdorff, there is an open refinement \(\mathcal{W} \) of \(\mathcal{U} \) such that \(\Pi^\mathcal{W}(\mathcal{W}, x_0) \subseteq \Pi^\mathcal{U}(\mathcal{U}, x_0) \) (See the proof of Theorem 13). By the previous paragraph, \(\Pi^\mathcal{W}(\mathcal{W}, x_0) \) is open. Thus \(\pi^\mathcal{W}(\mathcal{W}, x_0) \) is open by Remark 42.

□

Theorem 44. If \(X \) is locally path connected, paracompact Hausdorff, the set of thick Spanier groups \(\Pi^\mathcal{W}(\mathcal{W}, x_0) \) form a neighborhood base at the identity of \(\pi_1(X, x_0) \).

Proof. The hypotheses on \(X \) allow us to replace \(\Lambda \) with the cofinal directed subset \(\Lambda' \) consisting of pairs \((\mathcal{W}, U_0) \) such that \(\mathcal{W} \) contains only path connected sets. We alter notation for brevity. For \(\lambda = (\mathcal{W}, U_0) \in \Lambda' \), let \(e_\lambda \) be the identity of \(G_\lambda = \pi_1(|N(\mathcal{W})|, U_0) \). Additionally, let \(S_\lambda = \Pi^\mathcal{W}(\mathcal{W}, x_0) \), and \(p_\lambda = p_{\mathcal{W},x} : \pi_1(X, x_0) \to G_\lambda \). If \(\lambda ' \geq \lambda \) in \(\Lambda' \), let \(p_{\lambda ' \lambda} : G_{\lambda'} \to G_\lambda \) be a homomorphism induced by the projection. Thus \(\pi_1(X, x_0) \cong \lim_{\lambda \in \Lambda'} (G_\lambda, p_{\lambda ' \lambda}, \lambda ' \geq \lambda) \subseteq \prod_{\lambda \in \Lambda'} G_\lambda \) and the basis in Corollary 45 shows the shape topology on \(\pi_1(X, x_0) \) consists precisely of the data of the covering space theory of \(X \).

□
Theorem 46. Suppose \(X \) is locally path connected, paracompact Hausdorff and \(H \) is a subgroup of \(\pi_1(X,x_0) \). The following are equivalent:

1. \(H \) is open in \(\pi_1(X,x_0) \).

2. There is an open cover \(\mathcal{U} \) of \(X \) such that \(\pi^\mathcal{U}(x_0) \subseteq H \).

3. There is a covering map \(r: Y \to X, r(y_0) = x_0 \) such that \(r_\ast(\pi_1(Y,y_0)) = H \).

Proof. \((1. \iff 2.)\) follows directly from Corollary 45 and Remark 42. \((2. \iff 3.)\) is a well-known result from covering space theory (used above in the proof of Corollary 38).

Thus the well-known classification of covering spaces can be extended to non-semilocally simply connected spaces in the following way: If \(X \) is locally path connected, paracompact Hausdorff, then there is a canonical bijection between the equivalence classes of connected coverings of \(X \) (in the classical sense) and conjugacy classes of open subgroups of \(\pi_1(X,x_0) \) with the shape topology.

References

[1] J. Brazas, The fundamental group as a topological group, Preprint, arXiv:1009.3972v5.

[2] N. Brodskiy, J. Dydak, B. LaBuz, A. Mitra, Covering maps for locally path-connected spaces, Preprint, arXiv:0801.4967v3.

[3] J. Cannon, G. Conner, On the fundamental group of one-dimensional spaces, Topology Appl. 153 (2006) 2648–2672.

[4] G.R. Conner, M. Meilstrup, D. Repovš, A. Zastrow, and M. Željko, On small homotopies of loops, Topology Appl. 155 (2008) 1089–1097.

[5] J. Dugundji, A topologized fundamental group, Proc. Natl. Acad. Sci. 36 (1950) no. 2 141–143.

[6] J. Dydak, Coverings and fundamental groups: a new approach, Preprint, arXiv:1108.3253v1.

[7] K. Eda, K. Kawamura, The fundamental groups of one-dimensional spaces, Topology Appl. 87 (1998) 163–172.

[8] R. Engelking, General topology, Heldermann Verlag Berlin, 1989.

[9] P. Fabel, The topological Hawaiian earring group does not embed in the inverse limit of free groups, Algebraic and Geometric Topology 5 (2005) 1585–1587.

[10] P. Fabel, Topological fundamental groups can distinguish spaces with isomorphic homotopy groups, Topology Proc. 30 (2006) no. 1, 187–195.
[11] H. Fischer, C. Guilbault, *On the fundamental groups of trees of manifolds*, Pacific J. Math. 221 (2005) 49–79.

[12] H. Fischer, D. Repovš, Z. Virk, and A. Zastrow, *On semilocally simply connected spaces*, Topology Appl. 158 (2011) no. 3, 397–408.

[13] H. Fischer, A. Zastrow, *The fundamental groups of subsets of closed surfaces inject into their first shape groups*, Algebraic and Geometric Topology 5 (2005) 1655–1676.

[14] H. Fischer and A. Zastrow, *Generalized universal covering spaces and the shape group*, Fund. Math. 197 (2007) 167–196.

[15] J.F. Kennison, *What is the fundamental group?*, Journal of Pure and Applied Algebra. 59 (1989) 187–200.

[16] S. Mardešić and J. Segal, *Shape theory*, North-Holland Publishing Company, 1982.

[17] B. Mashayekhy, A. Pakdaman, H. Torabi, *Spanier spaces and covering theory of non-homotopically path Hausdorff spaces*, Preprint, arXiv:1105.4010v1.

[18] S. Melikhov, *Steenrod Homotopy*, Russ. Math. Surveys 64 (2009) 469–551.

[19] J.R. Munkres, *Elements of algebraic topology*, Addison-Wesley Publishing Co., Menlo Park, CA., 1984.

[20] E.H. Spanier, *Algebraic topology*, McGraw-Hill, 1966.

[21] Z. Virk, *Small loop spaces*, Topology Appl. 157 (2010) 451–455.

[22] Z. Virk, *Homotopical smallness and closeness*, Topology Appl. 158 (2011) 360–378.