On stochastic integrals with controlled growth of their containing range

Nikolai Dokuchaev
Department of Mathematics & Statistics, Curtin University,
GPO Box U1987, Perth, 6845 Western Australia
August 11, 2018

Abstract

This short note suggests special examples of stochastic Itô integrals with controlled growth of their containing range. The integrands for this integrals are presented explicitly. The construction does not involve neither stopping times nor forecasting or calculation of the conditional expectations of a contingent claim.

Key words: stochastic integrals, Itô calculus, containing range

Mathematical Subject Classification (2010): 65C30, 65C50, 65C60

1 Introduction

The paper considers stochastic processes represented as stochastic Itô integrals (possibly, with a drift term). Usually, these integrals have unlimited range of possible values. However, there are special cases of integrals with limited range. These integrals can be obtained, for instance, as conditional expectations of random variables with limited range, or via restriction of the integration interval by a random Markov stopping times preventing the range growth. These approaches may be inconvenient in some cases. For example, calculation of a condition expectation is essentially a forecast of a contingent claim depending on the future values, and this procedure can be difficult. Besides, one would need to specify first this contingent claims. On the other hand, restriction of the integration interval by stopping times leads to stochastic integrals with some paths being frozen at that stopping times. Obviously, this feature could be undesirable.
The present paper suggests special examples of stochastic Itô integrals with controlled growth of their containing range. The integrands for this integrals are presented explicitly. The paper uses an original approach does not involve neither stopping times nor forecasting or calculation of the conditional expectations of a contingent claim. This approach does not involve neither forecasting nor calculation of the conditional expectations of a contingent claim.

2 The main result

We are also given a standard complete probability space \((\Omega, \mathcal{F}, P)\) and a right-continuous filtration \(\{\mathcal{F}_t\}_{t \geq 0}\) of complete \(\sigma\)-algebras of events. In addition, we are given an one-dimensional Wiener process \(w(t)\) such that \(w(0) = 0\) and that \(\mathcal{F}_t\) is independent from \(w(s) - w(q)\) if \(t \geq s > q \geq 0\).

Consider a continuous time one-dimensional random process \(x(t)\) such that
\[
dx(t) = a(t)dt + \sigma(t)dw(t).
\]
Here \(a(t)\) and \(\sigma(t)\) are bounded real-valued one-dimensional \(\mathcal{F}_t\)-adapted processes.

Let \(u(t) : (0, +\infty) \rightarrow \mathbb{R}\) be a real valued random \(\mathcal{F}_t\)-adapted process that is integrable on any finite time interval. For simplicity, we assume that \(\text{ess sup}_{\omega \in \Omega} \int_0^t |u(s)|ds < +\infty\) for any \(t > 0\).

Let \(\{\mathcal{G}_t\}_{t \geq 0}\) be the filtration of complete \(\sigma\)-algebras of events generated by the process \((x(t), u(t))\).

It can be noted that, since the process \(\sigma(t)\) is adapted to the filtration generated by \(x(t)\), it follows that \(\{\mathcal{G}_t\}_{t \geq 0}\) is also the filtration generated by the process \((x(t), u(t), \sigma(t))\); see e.g. Remark 1.1 in [5], p.10, or Proposition 7.1 in [9], where this was shown for a log-normal types of processes which was rather technical.

Theorem 2.1 Consider processes \(X(t)\) and \(Y(t)\) defined for \(t \in [0, +\infty)\) as
\[
X(t) = \int_0^t \cos(x(t) - x(s))u(s)ds
\]
and
\[
Y(t) = \int_0^t \sin(y(t) - y(s))u(s)ds.
\]
In this case,
\[
\int_0^t X(s)dx(s) = Y(t) + \frac{1}{2} \int_0^t \sigma(s)^2 Y(t)ds.
\]
Then

$$\sqrt{X(t)^2 + Y(t)^2} \leq \int_0^t |u(s)| \, dt \quad \text{a.s.} \quad \forall a(\cdot).$$

Clearly, the process $X(t)$ is bounded uniformly in all $a(\cdot)$ almost surely on any finite time interval and \mathcal{G}_t-adapted. Hence the stochastic integral (1) is well defined and is bounded uniformly in all $a(\cdot)$ almost surely on any finite time interval.

Representation (2) in Theorem 2.1 implies that the boundaries for the range of the stochastic integral $Y(t)$ are defined by the choice of the process u. Respectively, Theorem 2.1 allows to construct stochastic processes with preselected on a given time interval time depending boundaries for their range.

2.1 Proof of Theorem 2.1

The proof follows the idea of the proof of Lemma 3.2 from [11] (see also [12]).

Consider a process

$$dZ(t) = iZ(t) dx(t) - \frac{1}{2} \sigma(t)^2 Z(t) dt + u(t) dt, \quad t \in (0, \infty),$$

$$Z(0) = 0.$$ \hspace{1cm} (4)

In (4), $i = \sqrt{-1}$ is the imaginary unit.

Lemma 2.2 For any $T > 0$, we have that

$$Z(t) = i \int_0^t e^{i[x(t)-x(s)]} u(s) ds$$

and

$$\text{Im } Z(t) = \int_0^t \text{Re } Z(s) dx(s) \quad \forall t > 0.$$

The process $Z(s)$ is \mathcal{G}_t-adapted and such that

$$|Z(t)| \leq \int_0^t |u(s)| ds \quad \forall t > 0.$$ \hspace{1cm} (5)

Proof of Lemma 2.2. Let $F(t,s)$ be defined as the solution of the Itô equation

$$dF(t,s) = iF(t,s)[a(t)dt + \sigma(t)d\omega(t)] - \frac{1}{2} F(t,s)\sigma(t)^2 dt, \quad t > s \geq 0,$$

$$F(s,s) = 1.$$
By the Itô formula,

\[F(t, s) = F(s, s) \exp \left(i \int_s^t a(r)dr + i \int_s^t \sigma(r)dw(r) - \frac{i^2}{2} \int_s^t \sigma(r)^2 dr - \frac{1}{2} \int_s^t \sigma(r)^2 dr \right) \]

\[= \exp \left(i \int_s^t a(r)dr + i \int_0^t \sigma(r)dw(r) \right) \]

\[= \exp (i[y(t) - y(s)]) \text{ a.s.} \]

In particular, we have that

\[|F(t, s)| = 1 \text{ a.s.} \]

Direct differentiation gives that

\[Z(t) = \int_0^t F(t, s)u(s)ds. \]

Hence

\[|Z(t)| \leq \int_0^t |F(t, s)||u(s)|ds \leq \int_0^t |u(s)|ds. \]

Let \(X(t) = \text{Re } Z(t) \) and \(Y(t) = \text{Im } Z(t) \). Then (1) and (2) hold. Further, we have from (4) that

\[dX(t) = -Y(t)dx(t) + u(t)dt - \frac{1}{2} \sigma(t)^2 X(t)dt, \]

\[dY(t) = X(t)dx(t) - \frac{1}{2} \sigma(t)^2 Y(t)dt. \]

Then the proof of Lemma 2.2 follows. \(\square \)

Proof of Theorem 2.1 follows from this and from (5). \(\square \)

Remark 2.3 Consider the case where \(a(t) \equiv 0 \). In this case, it follows from the proof above that, for any \(\mathcal{F}_t \)-adapted process \(\sigma(\cdot) \), there exists a \(\mathcal{F}_t \)-adapted process \(U : [0, T] \times \Omega \to \mathbb{C} \) such that \(|U(t)| = 1 \) and that the integral \(\int_0^T \sigma(t)U(t)dw(t) \) has a limited range in \(\mathbb{C} \). To see this, it suffices to select \(U(t) = F(t, 0) \) and observe that \(i \int_0^T \sigma(t)F(t, 0)dw(t) = F(T, 0) - 1 + \frac{1}{2} \int_0^T \sigma(t)^2 F(t, 0)dt \) and that

\[\left| F(T, 0) - 1 + \frac{1}{2} \int_0^T \sigma(t)^2 F(t, 0)dt \right| \leq |F(T, 0)| + 1 + \frac{1}{2} \int_0^T \sigma(t)^2 |F(t, 0)|dt \]

\[\leq 2 + \frac{1}{2} \int_0^T \sigma(t)^2 dt. \]
3 Some modifications

The approach demonstrated above allows many modifications. Let us provide one of possible modifications,

Theorem 3.1 Consider a process \(\tilde{Y}(t) \) defined as

\[
\tilde{Y}(t) = \int_0^t \cos(x(t) - x(s))u(s)e^{\frac{1}{2} \int_s^t \sigma(r)^2 dr} ds,
\]

where \(t \in [0, +\infty) \). Further, let a process \(\tilde{X}(t) \) be defined as the stochastic integral

\[
\tilde{X}(t) = - \int_0^t \tilde{Y}(s)dx(s),
\]

Then \(\tilde{X}(t) \) can be represented as

\[
\tilde{X}(t) = - \int_0^t \sin(y(t) - y(s))e^{\frac{1}{2} \int_s^t \sigma(r)^2 dr} u(s)ds.
\]

Clearly, the process \(\tilde{Y}(t) \) is bounded uniformly in all \(a(\cdot) \) almost surely on any finite time interval and \(\mathcal{G}_t \)-adapted. Hence the stochastic integral (7) is well defined.

Representation (8) in Theorem 3.1 implies that the boundaries for the range of the stochastic integral \(\tilde{X}(t) \) are defined by the choice of the process \(u \). Respectively, Theorem 3.1 allows to construct stochastic processes with preselected on a given time interval time depending boundaries for their range.

Corollary 3.2 Let \(T > 0 \) be fixed, and let \(\psi(t) : (0, T) \to \mathbb{R} \) be a integrable function. Let \(u(t) = e^{-\frac{1}{2} \int_t^T \sigma(s)^2 ds} \psi(t) \). Then

\[
\tilde{X}(t) = - \int_0^t \sin(y(t) - y(s))\psi(s)ds,
\]

\[
\tilde{Y}(t) = \int_0^t \cos(y(t) - y(s))\psi(s)ds, \quad t \in [0, T], \quad T \in (0, \infty),
\]

and

\[
|\tilde{X}(t)| \leq \sqrt{\tilde{X}(t)^2 + \tilde{Y}(t)^2} \leq \int_0^t |\psi(s)|dt \quad a.s. \quad \forall a(\cdot).
\]

Example 3.3 (i). if \(|\psi(t)| = \alpha^{-1} t^{\alpha-1} \) for \(\alpha > 1/2 \), then \(\sqrt{\tilde{X}(t)^2 + \tilde{Y}(t)^2} \leq t^\alpha \) a.s. for all \(a(\cdot) \).

(ii). If \(|\psi(t)| = 1/(a + t) \) for some \(q > 0 \), then \(\sqrt{\tilde{X}(t)^2 + \tilde{Y}(t)^2} \leq \ln(q + t) - \ln q \) a.s. for all \(a(\cdot) \).
3.1 Proof of Theorem 3.1

The proof is similar to the proofs of Theorem 2.1; we provide it for completeness.

Consider a process

\[d\tilde{Z}(t) = i[\tilde{Z}(t)dx(t) + u(t)dt], \quad t \in (0, \infty), \]
\[\tilde{Z}(0) = 0. \] \hspace{1cm} (11)

In (11), \(i = \sqrt{-1} \) is the imaginary unit.

Lemma 3.4 For any \(T > 0 \), we have that

\[\tilde{Z}(t) = i \int_0^t e^{i[x(t) - x(s)]} e^{\frac{1}{2} \int_s^t \sigma(r)^2 dr} u(s) ds \]

and

\[\text{Re} \tilde{Z}(t) = \int_0^t \text{Im} \tilde{Z}(s)dx(s) \quad \forall t > 0. \]

The process \(\tilde{Z}(s) \) is \(\mathcal{G}_t \)-adapted and such that

\[|\tilde{Z}(t)| \leq e^{\frac{1}{2} \int_0^T \sigma(s)^2 ds} |u(t)| \quad \forall T > 0, \quad \forall t \in [0, T]. \]

Proof of Lemma 3.1. Let \(\tilde{F}(t, s) \) be defined as the solution of the Itô equation

\[d\tilde{F}(t, s) = i\tilde{F}(t, s)[a(t)dt + \sigma(t)dw(t)], \quad t > s \geq 0, \quad \tilde{F}(s, s) = 1. \]

By the Itô formula,

\[\tilde{F}(t, s) = \tilde{F}(s, s) \exp \left(i \int_s^t a(r) dr + i \int_s^t \sigma(r)dw(r) - \frac{i^2}{2} \int_s^t \sigma(r)^2 dr \right) \]
\[= \exp \left(i \int_s^t a(r) dr + i \int_0^t \sigma(r)dw(r) + \frac{1}{2} \int_s^t \sigma(r)^2 dr \right) \]
\[= \exp \left(i[y(t) - y(s)] + \frac{1}{2} \int_s^t \sigma(r)^2 dr \right) \quad \text{a.s.} \]

In particular, we have that

\[|\tilde{F}(t, s)| = \exp \left(\frac{1}{2} \int_s^t \sigma(r)^2 dr \right) \quad \text{a.s.} \]

Direct differentiation gives that

\[\tilde{Z}(t) = i \int_0^t \tilde{F}(t, s)u(s)ds. \]
Hence
\[|\tilde{Z}(t)| \leq \int_0^t \tilde{F}(t,s)|u(s)|ds \leq \int_0^t e^{\frac{1}{2} \int_0^s \sigma(r)^2 dr} |u(s)|ds. \]

Let \(\tilde{X}(t) = \text{Re} \tilde{Z}(t) \) and \(\tilde{Y}(t) = \text{Im} \tilde{Z}(t) \). We have that
\[d\tilde{X}(t) = -\tilde{Y}(t) dx(t), \]
\[d\tilde{Y}(t) = \tilde{X}(t) dx(t) + u(t). \]

It follows that
\[X(T) = \int_0^T \gamma(t) dx(t), \]
where \(\gamma(t) = -\tilde{Y}(t) \). We have that
\[\int_0^t |\gamma(s)|ds \leq \int_0^t |\tilde{Z}(s)|ds \leq \int_0^t e^{\frac{1}{2} \int_0^s \sigma(r)^2 dr} |u(s)|ds \leq e^{\frac{1}{2} \int_0^T \sigma(r)^2 dr} \int_0^t |u(s)|ds \quad \forall T > 0, \quad t \in [0,T]. \]

Hence \(|\gamma(t)| \leq |\tilde{Z}(t)| \leq e^{\frac{1}{2} \int_0^T \sigma(r)^2 dt} |u(t)| \) for any \(T > 0 \) and \(t \in [0,T] \).

Then the proof of Lemma follows. \(\square \)

The proof of Theorem 3.1 follows from the lemma. The proof of Corollary 3.2 follows from the theorem applied to the corresponding choice of \(u \).

Remark 3.5 For the case where \(a(t) \equiv 0 \), similarly Remark 2.3, it can be shown that, that, for any \(\mathcal{F}_t \)-adapted process \(\sigma(\cdot) \), there exists a \(\mathcal{F}_t \)-adapted process \(U : [0,T] \times \Omega \rightarrow \mathbb{C} \) such that \(|U(t)| = \exp \left(\frac{1}{2} \int_0^t \sigma(r)^2 dr \right) \) and that the integral \(\int_0^T \sigma(t) U(t) dw(t) \) has a limited range in \(\mathbb{C} \). To see this, it suffices to select \(U(t) = i\tilde{F}(t,0) \) and observe that \(\int_0^T \sigma(t)i\tilde{F}(t,0) dw(t) = \tilde{F}(T,0) - 1. \)

4 Possible applications for financial modelling

One of core problems of financial mathematics is the portfolio selection problem. Application of classical methods of optimal stochastic control for portfolio optimization problems requires forecasting of market parameters. This forecasting is usually difficult. This problem is related to the open problem of validation of the so-called technical analysis methods that offer trading strategies based on historical observations. There are many different strategies suggested in this framework (see, e.g., [1, 2, 4, 14, 15, 5, 6] and the references therein. It is known that mean-reverting market models and market models with bounded range for the prices generate some special speculative opportunities (see, e.g., [3, 4, 7, 8, 10, 13, 16, 17, 18]). Theorems 2.1-3.1 give
a possibility to convert a stock price process \(x(t) \) into processes \(Y(t) \) or \(X(t) \) that could have features similar to mean-reverting market models and market models with bounded range for the prices. For this new artificial asset, one can apply strategies from \([3, 4, 7, 8, 10, 13]\). We leave this for the future research.

Figures 1-6 shows sample paths of processes introduced above and obtained via Monte-Carlo simulation under the assumption that \(T = 5 \), \(\sigma(t) \equiv \sigma = 1 \), \(a(t) \equiv a = 2 \), and \(u(t) \equiv 1 \). We used natural discretization in time with \(10^5 \) grid point on the interval \([0, T]\). Calculations were executed using R and RStudio programmes.

References

[1] Barmish, B. Ross, Primbs, A. (2016) On a new paradigm for stock trading via a model-free feedback controller. IEEE Transactions on Automatic Control. 61 (3), 662–676.

[2] Baumann M.H., Grüne, L. (2017) Simultaneously long short trading in discrete and continuous time. Systems & Control Letters 99, 85-99.

[3] Carcanoa, G., Falbo, P. , and S. Stefania. (2005) Speculative trading in mean reverting markets. European Journal of Operational Research 163, iss. 1, 132–144.

[4] Cover, T.M. (1991) Universal portfolios. Mathematical Finance 1 (1), 1–29.

[5] Dokuchaev, N.G. (2002) Dynamic portfolio strategies: quantitative methods and empirical rules for incomplete information. Boston: Kluwer Academic Publishers.

[6] Dokuchaev, N.G., and A. Savkin (2004) Universal strategies for diffusion markets and possibility of asymptotic arbitrage. Insurance: Mathematics and Economics 34, 409-419.

[7] Dokuchaev, N.G. (2006) Speculative opportunities for currency exchange under soft peg. Applied Financial Economics Letters 2, 371-374.

[8] Dokuchaev, N.G. (2007) Mean-reverting market model: speculative opportunities and non-arbitrage. Applied Mathematical Finance 14, iss. 4, 319-337.

[9] Dokuchaev, N. (2007), Mathematical Finance: Core Theory, Problems, and Statistical Algorithms, London: Routledge

[10] Dokuchaev, N. (2012). Mean-reverting discrete time market models: speculative opportunities and absence of arbitrage. IMA Journal of Management Mathematics 23, 17-27.
[11] Dokuchaev, N. (2014). Volatility estimation from short time series of stock prices. *Journal of Nonparametric Statistics* 26 (2), pp. 373–384.

[12] Dokuchaev, N. A pathwise inference method for the parameters of diffusion terms. *Journal of Nonparametric Statistics*. In press; accepted 23.06.2017.

[13] Falbo, P., Frittelli, M., and S. Stefani. (1999) Profitable decision rules in mean reverting markets, Rapporti di Ricerca del Dipartimento di Metodi Quantitativi dell’Università di Brescia, No. 162. Brescia, Italy.

[14] Hsu, P.-H., and C.-M. Kuan. (2005) Reexamining the profitability of the technical analysis with data snooping checks. *Journal of Financial Econometrics* 3, iss. 4, 606-628.

[15] Hsu, P.-H., M. P. Taylor, Z. Wang. (2016) Technical trading: Is it still beating the foreign exchange market? Journal of International Economics 102 188208

[16] Lo, A.W., Mamaysky, H., and Wang, Jiang. (2000). Foundation of technical analysis: computational algorithms, statistical inference, and empirical implementation. *Journal of Finance* 55 (4), 1705-1765.

[17] Lorenzoni, G., Pizzinga, A., Atherino, R., Fernandes, C., Freire, R.R.. (2007). On the Statistical Validation of Technical Analysis. *Revista Brasileira de Finanças*. Vol. 5, No. 1, pp. 1-28. .

[18] Shiryaev, A.N. (1999) Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific Publishing Co., NJ, 1999.
Figure 1: $x(t)$.

Figure 2: $X(t)$.

Figure 3: $Y(t)$.

10
Figure 4: $Z(t) = X(t) + iY(t)$.

Figure 5: $|Z(t)|$.

Figure 6: $\int_0^t X(s) dx(s)$.