Global existence and estimates of the solutions to nonlinear integral equations

Alexander G. Ramm
Department of Mathematics, Kansas State University,
Manhattan, KS 66506, USA
ramm@math.ksu.edu
http://www.math.ksu.edu/~ramm

Abstract

It is proved that a class of nonlinear integral equations of the Volterra-Hammerstein type has a global solution, that is, solutions defined for all \(t \geq 0 \), and estimates of these solutions as \(t \to \infty \) are obtained. The argument uses a nonlinear differential inequality which was proved by the author and has broad applications.

1 Introduction

Consider the equation:

\[
 u(t) = \int_0^t e^{-a(t-s)} h(u(s)) ds + f(t) := T(u), \quad t \geq 0; \quad a = \text{const} > 0.
\] (1)

that is, Volterra-Hammerstein equation. There is a large literature on nonlinear integral equations, [6], [1]. The usual methods to study such equations include fixed-point theorems such as contraction mapping principle and degree theory, (Schauder and Leray-Schauder theorems). The goal of this paper is to give a new approach to a study of equation (1). We give sufficient conditions for the global existence of solutions to (1) and their estimates as \(t \to \infty \).

Denote \(f' := \frac{df}{dt} \). By \(c > 0 \) various constants will be denoted.

Let us formulate our assumptions:

\[
 |h(u)| \leq c|u|^b, \quad |h'(u)| \leq c|u|^{b-1}, \quad b \geq 2,
\] (2)

\[
 |f(t)| + a|f'(t)| \leq ce^{-a_1t}, \quad a_1 = \text{const} > 0.
\] (3)

By \(c > 0 \) various constants are denoted.

MSC: 45G10.
Key words: nonlinear integral equations.
Our approach is based on the author's results on the nonlinear differential inequality formulated in Theorem 1 (see [2]–[5]). These results have been used by the author in a study of stability of solutions to abstract nonlinear evolution problems ([5]).

Denote \(R_+ = [0, \infty) \).

Theorem 1. Let \(g \geq 0 \) solve the inequality

\[
g'(t) \leq -ag(t) + \alpha(t, g) + \beta(t), \quad t \geq 0, \quad a = \text{const} > 0,
\]

where \(\alpha(t, g) \geq 0 \) and \(\beta(t) \geq 0 \) are continuous functions of \(t \), \(t \in \mathbb{R}_+ \) and \(\alpha(t, g) \) is locally Lipschitz with respect to \(g \). If there exists a function \(\mu(t) > 0 \), defined on \(\mathbb{R}_+ \), \(\mu \in C^1(\mathbb{R}_+) \), such that

\[
\alpha(t, \frac{1}{\mu(t)}) + \beta(t) \leq \frac{1}{\mu(t)} \left(a - \frac{\mu'(t)}{\mu(t)} \right), \quad \forall t \geq 0,
\]

and

\[
g(0)\mu(0) \leq 1,
\]

then \(g \) exists on \(\mathbb{R}_+ \) and

\[
0 \leq g(t) \leq \frac{1}{\mu(t)}, \quad \forall t \geq 0.
\]

A proof of Theorem 1 can be found in [5]. Its idea is described in Section 2.

The result of this paper is formulated in Theorem 2.

Theorem 2. Assume that \((2) \) and \((3) \) hold, \(a \geq 2, \ b \geq 2, \ c \in (0, 0.75), \ p \in (0, \min(0.75a, a_1)), \ R = (b-1)^{1/b} \). Then any solution to \((1) \) exists on \(\mathbb{R}_+ \) and satisfies the estimate

\[
|u(t)| \leq R^{-1}e^{-pt}, \quad \forall t \geq 0, \quad p \in (0, \min(0.25a_1, a)).
\]

In Section 2 Theorem 2 is proved.

2 Proof of Theorem 2

Let us reduce equation \((1) \) to the form suitable for an application of Theorem 1. Differentiate \((1) \) and get

\[
u' = f' - a \int_0^t e^{-a(t-s)}h(u(s))ds + h(u(t)).
\]

Let \(g(t) := |u(t)| \) and take into account that \(|F(t)| \leq ce^{a_1t} \).

From \((1) \) one gets \(\int_0^t e^{-a(t-s)}h(u(s))ds = u - f \). This and equation \((9) \) imply \(u' = f' - a(u - f) + h(u(t)) \). Therefore, one gets

\[
 u' = -au + h(u) + F, \quad F := f' + af
\]

Multiply \((10) \) by \(\overline{u} \), where \(\overline{u} \) stands for complex conjugate of \(u \), and get

\[
u'u = -ag^2 + h(u)\overline{u} + F\overline{u}.
\]
One has

\[u'u + u(\overline{u})' = \frac{dg^2}{dt} = 2gg'. \]

(12)

We define the derivative as \(g' = \lim_{h \to +0} \frac{g(t+h) - g(t)}{h} \). With this definition, \(g(t) \) is differentiable at every point if \(u(t) \) is continuously differentiable for all \(t \geq 0 \). Any solution \(u(t) \) to (11) is continuously differentiable under our assumptions. Take complex conjugate of (11), add the resulting equation to (11) and take into account (12). This yields

\[2gg' = -2ag^2 + 2Re(h(u)\overline{u}) + 2Re(F\overline{u}). \]

(13)

Since \(g \geq 0 \), one derives from (13), using assumptions (2) and (3), that

\[g'(t) \leq -ag(t) + cg^b + ce^{-a_1t}. \]

(14)

Let

\[\mu(t) = Re^{pt}, \quad R = const > 0, \quad p \in (0, \min(0.25a, a_1)). \]

(15)

Condition (5) can be written as

\[\frac{c}{Re^{pt}} + ce^{-a_1t} \leq \frac{1}{Re^{pt}}(a - p), \quad t \in \mathbb{R}_+. \]

(16)

This inequality holds if

\[\frac{c}{Re^{pt}}e^{(b-1)pt} + cRe^{-(a_1-p)t} \leq \frac{3a}{4}, \quad t \in \mathbb{R}_+. \]

(17)

Inequality (17) holds if

\[\frac{1}{Re^{pt}} + R \leq \frac{3a}{4c}. \]

(18)

The minimum of the left side of (18) is attained at \(R = (b-1)^{1/b} \) and is equal to \(\frac{b}{(b-1)^{1/b}} \).

Thus, (18) holds if

\[\frac{b}{(b-1)^{1/b}} \leq \frac{3a}{4c}. \]

(19)

For example, assume that \(a \geq 2, \quad c \leq 0.75. \)

Then (19) holds if \(b \leq 2(b-1)^{(b-1)/b} \), that is, if

\[b^b \leq 2^b(b-1)^{b-1}. \]

(20)

Inequality (20) holds if \(b \geq 2 \). Thus, by Theorem1, any solution \(u(t) \) of (11) exists globally and

\[|u(t)| \leq \frac{e^{-pt}}{R}, \]

(21)

provided that

\[|u(0)|R \leq 1, \quad R = (b-1)^{1/b}, \quad a \geq 2, \quad b \geq 2, \quad c = 0.75, \quad p \in (0, \min(0.25a, a_1)). \]

(22)
Inequality $|u(0)|/R \leq 1$ holds if $f(0)/R \leq 1$. By assumption (3) this inequality holds if $c \leq 1/R$. Theorem 2 is proved. □

Let us prove existence of a solution to (1) using the contraction mapping principle and Theorem 2.

By estimate (21) one has $|u(t)| \leq 1/R$ for all $t \geq 0$. Therefore, using assumptions (2) and (3), one gets

$$\|Tu\| \leq c + \frac{c}{aR^b} \leq \frac{1}{R}, \quad (23)$$

provided that $cR \leq \frac{1}{1+aR^b}$. For $R = (b-1)^{1/b}$ this inequality holds if c is sufficiently small. If $cR \leq \frac{1}{1+aR^b}$, then T maps the ball $B_R := \{u : \|u\| \leq \frac{1}{R}\}$ into itself. Here $\|u\| = \max_{t \geq 0}|u(t)|$.

On the ball B_R the operator T is a contraction:

$$\|Tu - Tv\| \leq \| \int_0^t e^{-a(t-s)}c|\eta|^{b-1}|ds||u - v\| \leq \frac{c}{R^{b-1}a} \|u - v\|, \quad (24)$$

where the assumption (2) was used, and η is the "middle" element between u and v, $\|\eta\| \leq \frac{1}{R}$. The integral in (24) is estimated as follows:

$$\| \int_0^t e^{-a(t-s)}c|\eta|^{b-1}|ds\| \leq \frac{c}{R^{b-1}a} \max_{t \geq 0} \int_0^t e^{-a(t-s)}ds \leq \frac{c}{R^{b-1}a} \quad (25)$$

If

$$\frac{c}{R^{b-1}a} < 1, \quad (26)$$

then T is a contraction on B_R. Condition (26) holds if c is sufficiently small. Thus, if condition (26) and the assumptions of Theorem 2 hold, then, by the contraction mapping principle, there exists a unique solution to (1) in the ball B_R. □

For convenience of the reader we sketch the idea of the proof of Theorem 1 following [2]—[5].

Inequality (5) can be written for the function $w = \frac{1}{\mu}$ as follows:

$$-aw + \alpha(t, w) + \beta(t) \leq w'. \quad (27)$$

From (4) and (27) by a comparison lemma for ordinary differential equations it follows that

$$0 \leq g(t) \leq \frac{1}{\mu(t)}, \quad (28)$$

provided that $g(0) \leq w(0) = \frac{1}{\mu(0)}$. The last inequality is the assumption (3). Since $\mu(t) > 0$ and is assumed to be defined for all $t \geq 0$, the function $w = \frac{1}{\mu}$ is defined for all $t \geq 0$. Since $0 \leq g(t) \leq \frac{1}{\mu(t)}$, and $g(t) := |u(t)|$, the function u is defined for all $t \geq 0$.

If $\lim_{t \to \infty} \mu(t) = 0$, then $\lim_{t \to \infty} |u(t)| = 0$ by estimate (28).
References

[1] K. Deimling, *Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985.

[2] A.G. Ramm, Asymptotic stability of solutions to abstract differential equations, Journ. of Abstract Diff. Equations and Applications (JADEA), 1, N1, (2010), 27-34.

[3] A.G. Ramm, A nonlinear inequality and evolution problems, Journ, Ineq. and Special Funct., (JIASF), 1, N1, (2010), 1-9.

[4] A.G. Ramm, Stability of solutions to some evolution problems, Chaotic Modeling and Simulation (CMSIM), 1, (2011), 17-27.

[5] A.G. Ramm, Large-time behavior of solutions to evolution equations, Handbook of Applications of Chaos Theory, Chapman and Hall/CRC, (ed. C.Skiadas), pp. 183-200.

[6] P. Zabreiko, *Integral equations: a reference text*, Leyden, Noordhoff International Pub., 1975.