Knapsack Pruning with Inner Distillation

Yonathan Aflalo 1 Asaf Noy 1 Ming Lin 2 Itamar Friedman 1 Lihi Zelnik 1

Abstract

Neural network pruning reduces the computational cost of an over-parameterized network to improve its efficiency. Popular methods vary from ℓ_1-norm sparsification to Neural Architecture Search (NAS). In this work, we propose a novel pruning method that optimizes the final accuracy of the pruned network and distills knowledge from the over-parameterized parent network’s inner layers. To enable this approach, we formulate the network pruning as a Knapsack Problem which optimizes the trade-off between the importance of neurons and their associated computational cost. Then we prune the network channels while maintaining the high-level structure of the network. The pruned network is fine-tuned under the supervision of the parent network using its inner network knowledge, a technique we refer to as the Inner Knowledge Distillation. Our method leads to state-of-the-art pruning results on ImageNet, CIFAR-10 and CIFAR-100 using ResNet backbones. To prune complex network structures such as convolutions with skip-links and depth-wise convolutions, we propose a block grouping approach to cope with these structures. Through this we produce compact architectures with the same FLOPs as EfficientNet-B0 and MobileNetV3 but with higher accuracy, by 1% and 0.3% respectively on ImageNet, and faster runtime on GPU.

1 Introduction

Deep and wide networks such as VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2015) and EfficientNet (Tan & Le, 2019) achieve high classification accuracy on challenging benchmarks such as ImageNet (Deng et al., 2009). While these architectures perform well, in many scenarios it is desired to reduce their computational cost and model size. One approach to achieve this goal is via network pruning which has been a topic of research for decades (Lecun et al., 1989). Network pruning is a way to identify and remove the insignificant parameters of a network. Previous pruning methods show promising results. However, they suffer from two key shortcomings. The first is the relying on a coarse approximation of the contribution of each weight on the final accuracy. For example, NetAdapt (Yang et al., 2018) measures the post-factum empirical influence of several pruning options in order to choose the best one. The second is not leveraging the expressive power of the parent network. Knowledge Distillation (KD) (Hinton et al., 2015) from the unpured network could improve performance as shown by (Dong & Yang, 2019) who used KD on the network outputs to fine-tune the child network. Their approach, however, does not leverage the fact to the full extent that the inner structures of the unpured and pruned networks are highly isomorphic.

Figure 1. Top-1 accuracy v.s. FLOPs for pruned ResNets on ImageNet. We can see that pruning ResNet-101 with our method provides a network with less FLOPs and better accuracy than ResNet-50 and other networks.
In this paper we present a pruning approach that optimizes explicitly on the trade-off between accuracy and computational cost. Our first key idea is to formulate the pruning as a Knapsack Problem which enables the trade-off optimization. The second key idea is to introduce an Inner Knowledge Distillation (IKD) mechanism between the inner layers of the pruned and unpruned network. The IKD guides the child network to reproduce the inner layer’s mapping patterns of the unpruned parent network as much as possible, leading to higher accuracy after fine-tuning.

The integration of the above two key ideas allows us to develop a novel method with strong empirical performance. Our method is a one-shot method. It is fast and does not require iterative re-training during pruning. The Knapsack formulation we suggest enables the pruning of non-sequential convolutions such as skip-connections and Squeeze-and-Excitation modules which are common in modern architectures, for example, ResNet and EfficientNet (Tan & Le, 2019). We show that our method leads to state-of-the-art results on ImageNet, CIFAR-10 and CIFAR-100 when using ResNets and EfficientNets as backbones.

The structure of the paper is as follows: In Section 2, we briefly review previous works on pruning and knowledge distillation. In Section 3, we describe the technical aspects of our method to prune sequential convolutions or convolutions that are not connected to a skip-connection. In Section 4, we extend our method to more complicated architectures, that include skip-connections, dilated convolutions or Squeeze-and-Excitation modules which enforce constraints on the convolutional channels to be pruned. In Section 5, we describe our fine-tuning method with IKD. Finally, in Section 6, we present the results of our pruning method on different benchmarks and backbones.

2 Related Works

In this section, we briefly review previous works on pruning and knowledge distillation that closely relate to our work.

Network Pruning Network pruning dates back to (Lecun et al., 1989) where the importance of a neuron is estimated by the diagonal elements of the Hessian matrix of the network’s loss function. For modern neural networks estimating the Hessian matrix is prohibitive due to the high dimensionality. Therefore, inspired by the success of the Compressed Sensing (Donoho, 2006), many ℓ_1-norm sparsification methods and sparse proximal projection methods have been introduced to prune over-parameterized networks (Liu et al., 2015; Ding et al., 2019b; Liu et al., 2017). These methods require iterative pruning during training which makes them inapplicable to pre-trained networks.

Methods that perform post-training pruning over pre-trained neural networks are under active research recently (Han et al., 2015; Li et al., 2017; Yang et al., 2018; Yu et al., 2018; Hu et al., 2016). Their key idea is to estimate the importance of a neuron via some heuristics. A comprehensive comparison of pruning heuristics is presented in (Molchanov et al., 2017), including Minimum ℓ_2 Weight, Activation, Mutual Information, Taylor Expansion, and Average Percentage of Zeros. They show that the best criterion is the Taylor Expansion which approximates the change in the loss function induced by the pruning.

More recently, (Molchanov et al., 2019) demonstrated the high correlation between the importance approximation to a reliable estimate of the true importance of the neurons. However, their decision of removing N neurons with the smallest importance scores is rather heuristic and does not account for the induced change of FLOPs.

Knowledge Distillation Knowledge distillation refers to training a student network using a teacher network by distilling information from the teacher to the student. (Hinton et al., 2015) uses a penalty term consisting of the cross entropy between the output logits of the teacher and that of the student in the loss function. A few methods use knowledge distillation inside the network. For example, (Li et al., 2019; Wang et al., 2018) consider the ℓ_2 distance between the teacher and the student feature maps. When the dimensions of the feature maps of the two networks differ, a popular method is to penalize the distance between the embeddings of the features maps in a subspace of lower dimension. For instance, (Crowley et al., 2018) computes the ℓ_2 distance between the squared sum of the teacher and the student feature maps while (Tung & Mori, 2019) penalizes the distance between the activation correlation matrices.

Knapsack Problem The knapsack problem is extensively used in a wide variety of fields including financial trading (Markowitz & Manne, 1957), cryptography (Odlyzko, 1990) and resource distribution (Vanderster et al., 2009). Recent works utilize deep neural networks for efficient and accurate optimization for solving the knapsack problem (Gu & Hao, 2018; Martini, 2019) To the best of our knowledge, this work is the first to utilize a Knapsack Problem to improve deep neural networks pruning.

3 Methodology to Prune Sequential Convolutions

In this section, we present our method for pruning sequential convolutions. This allows us to prune networks such as VGG, as well as all the convolutions inside ResNet that
Knapsack Pruning with Inner Distillation

![Diagram](image)

Figure 2. Iterative pruning procedure: Start with a pre-trained network, then iterate between pruning and fine-tuning the network, until reaching a target compactness. Our method shows strong performance even with only one pruning iteration.

are not preceding a skip-connection. Generalization to non-sequential operations such as skip-connections or integration of operations, is presented in Section 4.

Our method adopts the generic pipeline presented in Figure 2. First, we train the parent network. Next, we prune its weights, according to a Knapsack formulation. And lastly, we fine-tune the pruned network using the Inner Knowledge Distillation. The pruning and fine-tuning steps could be iterated for self-boosting. In practice a single iteration typically suffices to achieve good results.

3.1 Knapsack Problem and Pruning

Suppose we have a knapsack with a capacity C and a collection of n items I where every item $o_i \in I$ has a weight f_i and a value v_i. The Knapsack Problem aims to fill the knapsack with maximal value, considering the weight capacity C. That is

$$
\max_b \sum_i v_i b_i \quad \text{subject to} \quad \sum_i f_i b_i \leq C, \ b_i \in \{0, 1\} \quad 1 \leq i \leq n
$$

where the indicator variable b_i equals 1 if o_i is selected and 0 otherwise.

The above formulation is an integer programming problem which is NP-hard. If the weights f_i are integers, the problem has an exact solution that can be found with a Dynamic Programming algorithm in a $O\left(n \max_i f_i\right)$ time complexity. An approximate solution of the problem can also be found with a greedy approximation algorithm (Dantzig, 1957) in $O(n \log(n))$ time complexity. The method relaxes the original problem by replacing the constraint $b_i \in \{0, 1\}$ with $0 \leq b_i \leq 1$. Then the approximated solution can be derived in a closed form.

The network pruning is actually a Knapsack problem. Given a network \mathcal{N} with convolutional layers \mathcal{C}_l, $1 \leq l \leq L$, we seek to prune its output channels with the least impact on the classification accuracy under a target maximal FLOPs budget C. Denote by $\mathcal{P}_\mathcal{N}$ the space of pruned versions of \mathcal{N} and by Acc the accuracy on a validation set \mathcal{X}.

We formulate the problem as follows:

$$
\max_{\mathcal{N}_{\text{pruned}}} \text{Acc}(\mathcal{N}_{\text{pruned}}, \mathcal{X})
\text{s.t. } \mathcal{N}_{\text{pruned}} \in \mathcal{P}_\mathcal{N}, \ \text{FLOPs}(\mathcal{N}_{\text{pruned}}) \leq C
$$

Optimizing the above problem is not straightforward as the accuracy Acc is not differentiable. Therefore, it is common to use an approximated formulation that minimize the cross-entropy loss to replace the Acc.

Yet, Eq. (2) remains costly to solve, therefore we next propose an additional approximation. Instead of maximizing the accuracy (minimizing the cross-entropy loss), we minimize the change of the loss due to zeroing-out the pruned network neurons. Correspondingly, we adjust the constraint of FLOPs to constrain the accumulated FLOPs that are associated with the selected weights. The space $\mathcal{P}_\mathcal{N}$ can be represented with a binary indicator vector \mathbf{b} where $b_i \in \{0, 1\}$ indicates if the network’s weight w_i is zero or not. We denote by $I(w_i)$ the change of the loss $\mathcal{L}_{\text{CE}}(\mathbf{x}, \mathcal{N}_{\text{pruned}})$ and by $F(w_i)$ the saving of the FLOPs when setting b_i to zero. Problem (2) can be now approximated as:

$$
\max_b \sum_i b_i I(w_i) \quad \text{s.t. } \sum_i b_i F(w_i) \leq C, \ b_i \in \{0, 1\} \forall i
$$

The above Eq. (3) is equivalent to the Knapsack Problem Eq. (1). We will describe how we compute $I(w_i)$ and $F(w_i)$ in the following paragraph.

The change of loss $I(w_i)$ can be approximated by the first order Taylor Expansion of the loss function (Molchanov et al., 2017). Formally, given a function $f : \mathbb{R}^n \to \mathbb{R}$ and a vector $\mathbf{w} \in \mathbb{R}^n = \sum_i w_i \mathbf{e}_i$ where \mathbf{e}_i is the i-th canonical vector of \mathbb{R}^n filled with 0 everywhere except for the 1-th coordinate. Denote $\tilde{\mathbf{w}}^j = \sum_i w_i \mathbf{e}_i$ a copy of the vector \mathbf{w} with the j-th coordinate replaced by zero. We have

$$f(\tilde{\mathbf{w}}^j) = f(\sum_{i \neq j} w_i \mathbf{e}_i) \approx f(\mathbf{w}) - w_j \frac{\partial f(\mathbf{w})}{\partial w_j}.$$

Therefore the impact on the loss of zeroing the weight w_i of the o-th output channel of the l-th layer can be approximated by:

$$I(w_i^o) \approx -\mathbb{E}_x \left(w_i^o x^o \frac{\partial \mathcal{L}(\mathbf{x}, \mathbf{w})}{\partial w_i^o}\right)$$

where \mathbf{x} is the input instances (images for example). The higher this value, the higher the impact of the weight on
Knapsack Pruning with Inner Distillation

the total loss. Unfortunately, the above approximation may be too noisy since the expectation of the gradient is zero at the convergence point of the loss function. Following (Molchanov et al., 2017), the variance of the quantity $v_i^o = w_i^o \frac{\partial L(x, w)}{\partial u_i^o}$ is usually non-zero and correlates with the stability of the local function with respect to w_i^o. Therefore, we follow this idea and use the following approximation instead:

$$I(w_i^o) \approx E_x \left| w_i^o \frac{\partial L(x, w)}{\partial u_i^o} \right|.$$ \hspace{1cm} (5)

In practice, the expectation in Eq. (4) can be approximated by averaging over a validation set. Last, we need a formula to calculate the saving of FLOPs $F(w_i)$ after removing the network weight w_i^o. Up to now, we focus on the single weight. But in pruning we remove weights in groups. More particularly, we remove a group of weights that are used to compute a channel, such as a filter in a common convolutional layer. Given a convolution with C_i^l input channels of size $H_i^l \times W_i^l$ and C_o^l output channels with kernel size $k^l \times k^l$ and stride s^l, its FLOPs is $C_o^l C_i^l H_i^l W_i^l (k^l)^2 / (s^l)^2$. Zeroing a group of weights related to w_i^o requires removing both an output channel from layer C_l and an input channel from layer C_{l+1}. Therefore, the saving of FLOPs is given by

$$F(w_i^o) = \frac{C_o^l C_i^l H_i^l W_i^l (k^l)^2}{(s^l)^2} + \frac{C_o^{l+1} C_i^{l+1} H_i^{l+1} W_i^{l+1} (k^{l+1})^2}{(s^{l+1})^2}.$$ \hspace{1cm} (6)

Solving the Knapsack Problem (3) could be done via dynamic programming. The complexity of the dynamic programming is $O(n F_{\text{max}})$, and in our case, $F_{\text{max}} = \max_i F(w_i^o)$ represents the maximum FLOPs required by a convolutional channel of the network, and can be computed with Eq. (6). In practice, we can reduce the computational complexity from $O(n F_{\text{max}})$ to $O\left(\frac{n F_{\text{max}}}{g}\right)$, where g is the Greatest Common Divisor (GCD) of the set $\{ F(w_i^o) \forall 1 \leq l \leq L \}$. Dividing both $F(w_i^o)$ and C by g accelerates the convergence time without changing the solution. The total knapsack runtime is negligible in comparison to the network fine-tuning process discussed in Section 5. The details of the optimization procedure are described in Algorithm (1) in the supplementary.

4 Pruning Non-Sequential Convolutions

To date, most pruning methods are restricted to sequential connections as non-sequential connections are non trivial to prune. For example, pruning a filter whose output is to be added to the output of another filter is problematic, because the addition operation implies that their impact is intertwined. Even though there are several methods that prune ResNet, most of them will either avoid pruning the convolutions connected to a skip-connection, or provide a network whose inherent structure is not pruned per-se but contains sparse convolutions. (Dong & Yang, 2019) suggested to clone the feature maps tensor with the higher dimensionality and perform an addition with the second tensor over the corresponding indices. Our experiments with this approach found it to be impractical, because the memory access time required for cloning and rearranging the tensor made the method sub-optimal with regard to inference time. Another approach, proposed by (He et al., 2019), is to set to zero selected weights in the parent network, without actually removing these items from the architecture. This approach is less effective in terms of computation since modern GPUs do not take advantage of sparse convolutions.

We next suggest a method that allows pruning of non-sequential connections as part of the proposed knapsack framework. The key idea is to group operations that together directly form a channel or a group of channels in a feature map. For example all the convolutions whose outputs are connected through a summation, a multiplication or any inherent constraint like the one in separable convolution. In this setting, the channels of every group are pruned together, and the pruned network structure is consistent with the unpruned one.

To make this more clear we take as an example a cell called inverted residual as shown in Figure 3 where we neglect activation functions for brevity. This cell appears in EfficientNet (Tan & Le, 2019), MNASnet (Tan et al., 2018) and MobileNet (Howard et al., 2019). This cell contains both Squeeze-and-Excitation components (Hu et al., 2018) and dilated convolutions.

There are three constraints on the inverted residual block. First, the output channels of the ‘Point-wise linear projection’ have to match the input of the current block because of the skip-connection. Second, the output channels of the ‘Point-wise expansion’ have to match the output channels of the ‘Depth-wise convolution’ since a Depth-wise convolution has a number of output channels that corresponds the the number of input channels. Lastly, the output channels of the ‘Depth-wise convolution’ have to match the output
channels of the 'Squeeze-and-Excitation Expansion Convolution' because of the skip multiplication.

In order to prune this cell we build three groups of convolutions. The first includes the successive ‘Point-wise linear projections’ of the different blocks. The second includes the ‘Point-wise expansions’, the ‘Depth-wise convolutions’ and ‘Squeeze-and-Excitation Expansion convolutions’ of the same block. The third consists of the ‘Squeeze-and-Excitation Reduction Convolutions’. As mentioned above, for each of these three groups we prune their associated channels together.

To the best of our knowledge, we are the first to suggest a pruning method that applies effectively to a non-sequential architecture such as EfficientNet.

5 Inner Knowledge Distillation and Fine-Tuning

After we get the architecture of the pruned network, we fine-tune its weights. Here we present a method that accelerates the process of fine-tuning by reducing the number of steps. For instance, in TAS (Dong & Yang, 2019), they require 236 GPU hours to search for the pruned version of ResNet-18 using NVIDIA Tesla V100 GPUs. Our method finds the pruned network in less that 0.1 GPU hours and requires 19 GPU hours using the same NVIDIA Tesla V100 GPUs to fine-tune the network. That is 12 times faster.

A common practice in fine-tuning is to incorporate a Knowledge Distillation term (Hinton et al., 2015; Tian et al., 2020) in the loss function. This has proven to be very efficient and increases the final accuracy of a student network when using a high accuracy teacher network.

Denote by \(\mathcal{N}_{\text{Teacher}}, \mathcal{N}_{\text{Student}} \), the teacher and student networks, and their respective output logits by \(\mathcal{F}_{\text{out}}^{t}, \mathcal{F}_{\text{out}}^{s} \). Let \(\text{SM}(\cdot) \) denote the softmax operator defined by
\[
\text{SM}(y)_i = \frac{\exp(y_i)}{\sum_j \exp(y_j)}.
\]

The KD enforces the output logits distributions of the teacher and student networks to be as similar as possible. This is achieved by adding Kullback-Leibler divergence in the loss function as
\[
\mathcal{L}_{\text{KD}} = \sum_{x,l} \log (\text{SM}(\mathcal{F}_{\text{out}}^{s}(x), \mathcal{F}_{\text{out}}^{t}(x))) \quad \text{(7)}
\]

We next suggest a further loss term that aims for similarity between \(\mathcal{N}_{\text{Teacher}} \) and \(\mathcal{N}_{\text{Student}} \), not only between their output logits but also between their internal feature maps. Let \(\mathcal{F}_{l}^{t} \) be the output feature map at the \(l \)-th layer of \(\mathcal{N}_{\text{Teacher}} \) with \(C_l^{t} \) channels. Similarly, the output feature map at the \(l \)-th layer of \(\mathcal{N}_{\text{Student}} \) is \(\mathcal{F}_{l}^{s} \) with \(C_l^{s} \) channels. In our case, \(\mathcal{N}_{\text{Teacher}} \) and \(\mathcal{N}_{\text{Student}} \) have the same structure apart from their convolutional channel numbers. Hence we could transfer the knowledge inside the network at the level of the convolutional layers. Since the convolution before activation is a linear operator, we require the pruned network to reconstruct the original feature map. We call this the Inner Knowledge Distillation (IKD). Mathematically, we define the IKD loss term as
\[
\mathcal{L}_{\text{IKD}} = \sum_{x,l} \left(\left\| M_l \mathcal{F}_{l}^{t}(x, W_l) - \mathcal{F}_{l}^{s}(x, W_s) \right\|_2^2 \right) \quad \text{(8)}
\]

where \(W_l \) represents the weight matrix at layer \(l \) and \(M_l \) is a \((C_l^t \times C_l^s) \) matrix that aims to reconstruct the features maps \(\mathcal{F}_{l}^{t} \) from \(\mathcal{F}_{l}^{s} \), and is added to the list of learnable variables in the fine-tuning process. To avoid degenerate solutions, we add a weight decay regularization term to \(M_l \), that behaves like a ridge regression regularizer.

The final loss used in the fine-tuning combines the original cross-entropy loss \(\mathcal{L}_{\text{CE}} \), the Knowledge Distillation loss (7) and the Inner Knowledge Distillation loss (8):
\[
\mathcal{L} = \mathcal{L}_{\text{CE}} + \lambda_{\text{IKD}} \mathcal{L}_{\text{IKD}} + \lambda_{\text{KD}} \mathcal{L}_{\text{KD}} \quad \text{(9)}
\]

where \(\lambda_{\text{IKD}} \) and \(\lambda_{\text{KD}} \) are the hyper-parameters.

We summarize our procedure in Algorithm 1.

Algorithm 1 Knapsack Pruning with IKD

input Network to be pruned \(\mathcal{N} \)

input Target FLOPs \(C \)

\(i \leftarrow 0 \)

for all layer \(l \) of \(\mathcal{N} \) do

\(i \leftarrow 0 \)

for all output channel \(o \) of layer \(l \) do

Compute \(I_i \leftarrow I(w_i^o) \) according to (5)

Compute \(F_i \leftarrow F(w_i^o) \) according to (6)

\(i \leftarrow i + 1 \)

end for

end for

Solve (3) to output vector \(b \)

Build the pruned network \(\mathcal{N}_{\text{pruned}} \) according to \(b \);

Fine-tune \(\mathcal{N}_{\text{pruned}} \) using loss (9)

output \(\mathcal{N}_{\text{pruned}} \)

6 Experiments

In this section, we present empirical results of our pruning method on three different benchmarks: ImageNet (Deng et al., 2009), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). To show robustness to the architecture, we experiment with a variety of depths of ResNet (He et al., 2015) as well as EfficientNet (Tian & Le, 2019). We further present more experiments on ImageNet since this benchmark is more challenging than CIFAR, and is the standard benchmark for evaluating modern networks.
The experimental protocol is as follows: We first train a full-size baseline network on the selected dataset, next we prune it using our Knapsack formulation and last we apply fine-tuning with IKD for 50 epochs only, even though most of the other methods fine-tune for more than 100 epochs.

Since our IKD fine-tuning step leverages the representative power of the unpruned baseline network, our method could benefit from a baseline with high accuracy. This is different from other pruning methods that do not maintain the baseline network knowledge. Therefore, we ran experiments with three baselines: (i) A high accuracy baseline, trained by us, (ii) a baseline with same accuracy as the one used by TAS, and (iii) the official PyTorch pre-trained weights, which is the standard used by other methods. In addition, we further present an ablation study, that measures the impact of the IKD by removing it from the fine-tuning process.

6.1 ImageNet

Comparison to other pruning methods

To test our method on ImageNet, we used three versions of ResNet (He et al., 2015): ResNet-18, ResNet-50, and ResNet-101. We train the baseline networks for 200 epochs, using label smoothing 0.1; mixup 0.2; AutoAugment policy (Cubuk et al., 2019); learning rate 0.1; weight decay 10^{-4}. During the fine-tuning, λ_{KD} and λ_{IKD} are set to 10. The classification top-1 accuracy of the baselines is: 71.19% for ResNet-18, 78.47% for ResNet-50, and 80.42% for ResNet-101.

Table 3 and Figure 4 compare our results for different pruning ratios with previous works. It can be seen that our results are consistently better than the state-of-the-art. For example, pruning 35.77% of the FLOPs of ResNet-18 led to a Top-1 accuracy of 69.96%, which is just 1.23% less than the baseline network. Pruning 40.64% of ResNet-50 gives Top-1 accuracy of 78.00%, which is 1.80% higher than the state-of-the-art results of TAS (Dong & Yang, 2019), and with an accuracy drop of only 0.47% compared to the baseline. For ResNet-101, we can prune 77.50% of the FLOPs, yielding a new network with only 1.81 GFLOPs and 78.36% Top-1 accuracy. Note, that this network has less than half the FLOPs of ResNet-50 and gives a similar Top-1 accuracy. In the supplementary material we present the number of channels before and after pruning 50% of ResNet-50 and the pruning ratio per channel.

Comparison to common classification networks

To further evaluate the benefits of our pruning approach we present in Figure 1 a comparison of the performance of our pruned networks with popular architectures: Inception (Szegedy et al., 2016), DenseNet (Huang et al., 2017), ResNext (Xie et al., 2017) and Xception (Chollet, 2017). We compare both Top-1 accuracy and computational cost (FLOPs). It can be seen that our pruned networks consistently provide higher accuracy than other networks, for a given number of FLOPs.

Ablation study

Next, we present an ablation study, to assess the contribution of the various components of our approach. We took ResNet-50 as backbone and experimented with two variants: (i) With and without IKD, and (ii) our baseline training vs. PyTorch baseline. Results are presented in Table 1. For a fair comparison with regard to the impact of our baseline, we take the original implementation of FPGM (He et al., 2019) and prune our own baseline ResNet-50 instead of the original PyTorch one. In addition, for a fair comparison with TAS that uses another baseline, we prune ResNet-50 using the same baseline of 77.46% top-1 accuracy they use. In both cases, we can see that our method provides better results, no matter the baseline we start from as can be seen in Figure 4.

IKD: When using IKD to prune 50% of ResNet-50, the Top-1 accuracy is 77.70%, which is more than 1% higher than the 76.70% obtained without IKD. For 41% pruning, we get 77.01% accuracy without IKD, again, 1% less than when using IKD. As could be expected, when using as baseline the low-accuracy network provided with PyTorch, the performance improvement by the IKD step is smaller, going from 76.04% without IKD to 76.23% with IKD.

Baseline: To measure the impact of the baseline on our method, we choose to prune ResNet-50 with the official PyTorch (Paszke et al., 2019) pre-trained weights that leads to 76.15% Top-1 accuracy on ImageNet. This is the common evaluation scheme adopted by most works. Comparing our results in Table 1 with those of previous work in Table 3 shows that our method still provides the highest accuracy. Interestingly, applying our knapsack pruning of 40% to the PyTorch baseline leads to an improvement in the Top-1 accuracy, were we reach 76.23%. When pruning 51% of the network, the accuracy drops to 75.80% that is still a better score than the other methods with the same baseline that use a lower pruning ratio. When pruning using a baseline with same accuracy as the one used by TAS (77.46%), we get a final accuracy of 77.50%, meaning that the top-1 accuracy of the pruned network does not get lower even though we have removed channels. As a reminder, we wish to clarify that during all of our experiments, we perform only 50 epochs of fine-tuning without any enhanced training procedure. These results stand to show that the accuracy we achieve is not due to using a higher baseline.
As described in Section 4, our approach can be applied also to prune architectures with non-sequential convolutions and skip-connections such as EfficientNet (Tan & Le, 2019). To the best of our knowledge, this is the first attempt to prune this network. Pruning EfficientNet is more challenging since it has been designed using NAS method that performed a grid search for width, depth and resolution which values are centered around those of MNASNet (Tan et al., 2018). Thus, the network they obtain is very compact, making it harder to prune channels from its layers.

We experimented with 4 variants, comparing pruned EfficientNet B\{n\} with EfficientNet B\{n − 1\}, where n ∈ \{1, 2, 3, 4\}. For a fair comparison with the unpruned baselines, we followed the published EfficientNet training protocol without IKD. Results are presented in Table 2. It can be observed that the pruned networks achieve higher accuracy than the baselines with the same number of FLOPs. An interesting observation is that despite having the same theoretical computational complexity, the pruned networks run faster than the unpruned ones. Furthermore, our pruned version of EfficientNet B0 led to a network with the same amount of FLOPs as MobileNetV3-large (Howard et al., 2019) and a better accuracy.

6.3 CIFAR

For the CIFAR datasets, we train ResNet-56 on CIFAR-10 and CIFAR-100 according to the same protocol used for ImageNet while changing the number of epochs to 300. Our top-1 accuracy baseline is 94.2\% for CIFAR-10 and 73.55\% for CIFAR-100. Results and comparisons to other works can be seen on the left of Table 4.
art accuracy of 72.62%, which is 0.37% higher than the previous state-of-the-art results held by (Dong & Yang, 2019).

7 Conclusion

In this paper we have presented a new formulation and method for the pruning task, which enables us to simultaneously optimize over both accuracy and FLOPs measures, as well as distill knowledge from the unpruned network. This method has provided state-of-the-art empirical results on ImageNet and CIFAR datasets, which demonstrate the effectiveness of our proposed solution. We have observed that pruning a heavy deep network with our method can provide better accuracy than a shallower one with the same computational complexity (rather the later was designed with a Network Architecture Search method or manually). These findings may suggest that the Network Architecture Search task should focus on finding inflated over-parametrized networks, while leaving the designing of efficient networks for the pruning and knowledge distillation methods.

References

Chollet, F. Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 1800–1807, 2017.

Crowley, E. J., Gray, G., and Storkey, A. Moonshine: Distilling with cheap convolutions. In Advances in Neural Information Processing Systems, 2018.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. Autoaugment: Learning augmentation strategies from data. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 113–123, 2019.

Dantzig, G. Discrete-variable extremum problems. Operations Research, 5(2):266288, 1957. ISSN 0030-364X. doi: 10.1287/opre.5.2.266. URL https://doi.org/10.1287/opre.5.2.266.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

Ding, X., Ding, G., Guo, Y., Han, J., and Yan, C. Approximated oracle filter pruning for destructive CNN width optimization. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 1607–1616, 2019a.

Ding, X., Zhou, X., Guo, Y., Han, J., Liu, J., et al. Global sparse momentum sgd for pruning very deep neural networks. In Advances in Neural Information Processing Systems, pp. 6379–6391, 2019b.

Dong, X. and Yang, Y. Network pruning via transformable architecture search. In Neural Information Processing Systems (NeurIPS), 2019.

Dong, X., Huang, J., Yang, Y., and Yan, S. More is less: A more complicated network with less inference complexity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5840–5848, 2017. doi: 10.1109/CVPR.2017.205.

Donoho, D. L. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306, 2006.

Gu, S. and Hao, T. A pointer network based deep learning algorithm for 0–1 knapsack problem. In 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 473–477. IEEE, 2018.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights and connections for efficient neural network. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 28, pp. 1135–1143. Curran Associates, Inc., 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

He, Y., Zhang, X., and Sun, J. Channel pruning for accelerating very deep neural networks. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 1398–1406, 10 2017.

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, pp. 2234–2240. AAAI Press, 2018a. ISBN 978-0-9992411-2-7.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. Amc: Automl for model compression and acceleration on mobile devices. In ECCV (7), pp. 815–832, 2018b.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. In NIPS Deep Learning and Representation Learning Workshop, 2015.
Model	Method	Top-1 Prune Acc	Top-1 Acc Drop	Top-5 Prune Acc	Top-5 Acc Drop	FLOPs	Prune Ratio
		Prune		Prune			
ResNet-18	LCCL ([Dong et al., 2017](#))	66.33%	3.65%	86.94%	2.29%	1.19E9	34.6%
	SFP ([He et al., 2018a](#))	67.10%	3.18%	87.78%	1.85%	1.06E9	41.8%
	FPGM ([He et al., 2019](#))	68.41%	1.87%	88.48%	1.15%	1.06E9	41.8%
	TAS ([Dong & Yang, 2019](#))	69.15%	1.50%	89.19%	0.68%	1.21E9	33.3%
	Ours	69.96%	1.23%	89.60%	0.59%	1.17E9	35.77%
		69.35%	1.84%	89.23%	0.96%	1.09E9	40.01%
ResNet-50	SFP ([He et al., 2018a](#))	74.61%	1.54%	92.06%	0.81%	2.38E9	41.8%
	CP ([He et al., 2017](#))	76.00%	-	90.79%	2.07%	2.33E9	43.4%
	Taylor ([Liu & Liu, 2018](#))	75.50%	0.65%	92.63%	0.21%	2.36E9	42.2%
	AutoSlim ([Yu & Huang, 2019](#))	71.82%	4.30%	90.79%	2.07%	2.33E9	43.4%
	FPGM ([He et al., 2019](#))	75.50%	0.65%	92.62%	0.25%	2.13E9	48.8%
	SSS ([Huang & Wang, 2018](#))	75.50%	0.65%	92.63%	0.21%	2.36E9	42.2%
	Ours	78.00%	0.47%	93.98%	-0.10%	2.46E9	40.64%
		77.90%	0.57%	93.88%	0.00%	2.30E9	44.47%
		77.70%	0.77%	93.78%	0.10%	2.05E9	50.21%
ResNet-101	Taylor-FO-BN ([Molchanov et al., 2019](#))	75.38%	-	-	-	2.47E9	69.3%
	FPGM ([He et al., 2019](#))	77.32%	0.05%	93.56%	0.00%	4.51E9	42.2%
	RSNLIA ([Ye et al., 2018](#))	75.27%	2.10%	-	-	4.13E9	47.0%
	AOFP-D2 ([Ding et al., 2019a](#))	76.40%	0.23%	93.07%	0.22%	3.77E9	50.19%
	Ours	79.17%	1.25%	94.54%	0.63%	2.48E9	69.21%
		78.36%	2.06%	94.27%	0.90%	1.81E9	77.50%
		77.56%	2.86%	93.68%	1.49%	1.37E9	83.00%

Table 3: Comparison of different pruning algorithms for different ResNet backbones on ImageNet.

Method	CIFAR-10 Prune Acc	CIFAR-10 Acc Drop	CIFAR-100 Prune Acc	CIFAR-100 Acc Drop		
PFEC ([Li et al., 2017](#))	93.06%	-0.02%	9.09E7 (27.6%)	-		
LCCL ([Dong et al., 2017](#))	92.81%	1.54%	7.81E7 (37.9%)	68.37%	2.96%	7.63E7 (39.3%)
AMC ([He et al., 2018b](#))	91.90%	0.90%	6.29E7 (50.0%)	-	-	
SFP ([He et al., 2018a](#))	93.35%	0.56%	5.94E7 (52.6%)	68.79%	2.61%	5.94E7 (52.6%)
FPGM ([He et al., 2019](#))	93.49%	0.42%	5.94E7 (52.6%)	69.66%	1.75%	5.94E7 (52.6%)
CCP ([Peng et al., 2019](#))	93.69%	-0.19%	6.61E7 (47.0%)	-	-	
TAS ([Dong & Yang, 2019](#))	93.69%	0.77%	5.95E7 (52.7%)	72.25%	0.93%	6.12E7 (51.3%)
Ours	93.83%	0.69%	4.33E7 (53.8%)	72.62%	0.93%	6.25E7 (50.2%)

Table 4: Comparison of different pruning algorithms for ResNet-56 on CIFAR. “Acc” = accuracy, “FLOPs” = FLOPs (pruning ratio).
Knapsack Pruning with Inner Distillation

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. Searching for MobileNetV3. arXiv e-prints, art. arXiv:1905.02244, May 2019.

Hu, H., Peng, R., Tai, Y., and Tang, C. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures. CoRR, abs/1607.03250, 2016. URL http://arxiv.org/abs/1607.03250.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation networks. 2018.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269, 2017.

Huang, Z. and Wang, N. Data-driven sparse structure selection for deep neural networks. ECCV, 2018.

Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, 2009.

Lecun, Y., Denker, J., and Solla, S. Optimal brain damage. volume 2, pp. 598–605, 01 1989.

Li, C., Peng, J., Yuan, L., Wang, G., Liang, X., Lin, L., and Chang, X. Blockwisely supervised neural architecture search with knowledge distillation, 2019.

Li, H., Kadav, A., Durandovic, I., Samet, H., and Graf, H. P. Pruning filters for efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Liu, B., Wang, M., Foroosh, H., Tappen, M. F., and Pensky, M. Sparse convolutional neural networks. In CVPR, pp. 806–814. IEEE Computer Society, 2015.

Liu, C. and Liu, Q. Improvement of pruning method for convolution neural network compression. In Proceedings of the 2018 2Nd International Conference on Deep Learning Technologies, ICDLT ’18, pp. 57–60. New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6473-7.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744, 2017.

Markowitz, H. M. and Manne, A. S. On the solution of discrete programming problems. Econometrica: journal of the Econometric Society, pp. 84–110, 1957.

Martini, D. Application of neural network for the knapsack problem. 2019.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. Pruning convolutional neural networks for resource efficient inference. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz, J. Importance estimation for neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Odlyzko, A. M. The rise and fall of knapsack cryptosystems. Cryptology and computational number theory, 42:75–88, 1990.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 32. pp. 8024–8035. Curran Associates, Inc., 2019.

Peng, H., Wu, J., Chen, S., and Huang, J. Collaborative channel pruning for deep networks. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5113–5122. Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2818–2826, 2016.

Tan, M. and Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Tan, M., Chen, B., Pang, R., Vasudevan, V., and Le, Q. V. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2018.
Tian, Y., Krishnan, D., and Isola, P. Contrastive representation distillation. In *International Conference on Learning Representations*, 2020.

Tung, F. and Mori, G. Similarity-preserving knowledge distillation. *ArXiv*, abs/1907.09682, 2019.

Vanderster, D. C., Dimopoulos, N. J., Purra-Hernandez, R., and Sobie, R. J. Resource allocation on computational grids using a utility model and the knapsack problem. *Future Generation computer systems*, 25(1):35–50, 2009.

Wang, H., Zhao, H., Li, X., and Tan, X. Progressive blockwise knowledge distillation for neural network acceleration. In *Proceedings of the 27th International Joint Conference on Artificial Intelligence*, IJCAI18, pp. 2769-2775. AAAI Press, 2018. ISBN 9780999241127.

Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. Aggregated residual transformations for deep neural networks. In *2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 5987–5995, 2017.

Yang, T., Howard, A. G., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., and Adam, H. Netadapt: Platform-aware neural network adaptation for mobile applications. In *Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part X*, pp. 289–304, 2018.

Ye, J., Lu, X., Lin, Z., and Wang, J. Z. Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers. In *International Conference on Learning Representations*, 2018.

Yu, J. and Huang, T. Network slimming by slimmable networks: Towards one-shot architecture search for channel numbers. 03 2019.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable neural networks. In *International Conference on Learning Representations*, 2019.

Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V., Han, X., Gao, M., Lin, C.-Y., and Davis, L. Nisp: Pruning networks using neuron importance score propagation. pp. 9194–9203, 06 2018. doi: 10.1109/CVPR.2018.00958.