Hypergraph States in $SU(N)_1$, N odd prime, Chern-Simons Theory

Howard J. Schnitzer

Martin Fisher School of Physics, Brandeis University, Waltham MA 02453

E-mail: schnitzr@brandeis.edu

Abstract: Graph states and hypergraph states can be constructed from products of basic operations that appear in $SU(N)_1$. The level-rank dual of a theorem of Salton, Swingle, and Walter implies that these operations can be prepared topologically in the n-torus Hilbert space of Chern-Simons theory for $N \neq 5 \mod 4$.

For $SU(N)_1$, $N = 5 \mod 4$, only stabilizer states can be prepared on the n-torus Hilbert space, which restricts the construction to graph states.
1 Introduction

The generalized Pauli group and Clifford operators [1–3] are obtained from products of basic operations of SU($N)_1$ Chern-Simons theory for N odd prime. Graph and hypergraph states [4–8] are described as products of such operations, which allow for explicit representations of graph and hypergraph states. For N odd prime, $N \neq 5 \mod 4$, these operations can be obtained topologically in the n-torus Hilbert space of Chern-Simons theory as a result of the level rank dual [9] of a theorem of Salton, Swingle, and Walter [10]. Thus graph and hypergraph states of SU($N)_1$, $N \neq 5 \mod 4$, are topological on the n-torus Hilbert space of Chern-Simons theory.

For SU($N)_1$, $N = 5 \mod 4$, only graph states are topological, as in this case only stabilizer states are obtained from the n-torus Hilbert space. Hypergraph states for SU($N)_1$, $N = 5 \mod 4$, are therefore not topological in the above sense.

In Section 2 the construction of the generalized Pauli group and Clifford operations for SU($N)_1$ is reviewed. Section 3 presents the construction of graph and hypergraph states in terms of basic operations of SU($N)_1$. Section 4 is a discussion of related issues.
SU\((d)\), \(d\) odd prime

We first review the generalized Pauli group and Clifford operations for \(SU(d)\), \(d\) odd prime, following [1–3].

2.1 The \(SU(d)\) Pauli group

Representations of \(SU(d)\) describing qudits are given by a single column Young tableau, with zero, one, \ldots, \((d - 1)\) boxes. The fusion tensor of the theory is

\[
N_{ab}^c; \quad a + b = c \mod d
\]

so that

\[
N |a \rangle |b \rangle = |a \rangle |a + b, \mod d \rangle.
\]

The modular transformation matrix \(S_{ab}\) satisfies

\[
|a \rangle = \sum_{b=0}^{d-1} S_{ab} |b \rangle, \quad a = 0 \ldots d - 1.
\]

For \(\omega\) a primitive \(d\)th root of unity

\[
\omega = \exp\left(\frac{2\pi i}{d}\right)
\]

so that

\[
S^\ast = \frac{1}{\sqrt{d}} \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} \omega^{ab} |a \rangle \langle b|
\]

which is the \(d\)-dimensional generalization of the Hadamard gate.

The Pauli operator \(Z\) is given by

\[
Z_{ac} = \sum_{b=0}^{d-1} S_{ab} \left(S_{b+1,a}^\dagger\right) \delta_{ac}
\]

so that

\[
Z = \sum_{a=0}^{d-1} \omega^a |a \rangle \langle a|.
\]

The Pauli operator \(X\) is obtained from the fusion matrix, since

\[
N_{a,b}^1 |a \rangle = |a + 1, \mod d \rangle
\]

which is identical to

\[
X |a \rangle = |a + 1, \mod d \rangle
\]
The single qudit Pauli group is the collection of operators
\[\omega^r X^a Z^b; \quad a, b, r \in \mathbb{Z}_d. \] (2.10)

Thus the one-qudit Pauli group is constructed from basic operations of \(SU(d)_1, d \) odd.

The \(n \)-qudit Pauli group is obtained from products of operators of the one-qudit Pauli group. That is
\[X^a Z^b = X^{a_1} Z^{b_1} \otimes X^{a_2} Z^{b_2} \otimes \cdots \otimes X^{a_n} Z^{b_n} \] (2.11)

The operator \(X^a Z^b \), along with all scalar multiples thereof,
\[\{ \omega^c X^a Z^b \mid c \in \mathbb{Z}_d \} \] (2.12)
defines the \(n \)-qudit Pauli group.

2.2 SU(\(d \)) Clifford operators, \(d \) odd

The necessary gates for the single-qudit Clifford operators are [1–3] i) the QFT gate, Eq. (2.5), and ii) the phase gate
\[P |j\rangle = \omega^{j(j-1)/2} |j\rangle. \] (2.13)

The multi-qudit Clifford operators are obtained from the generalizations of (2.5) and (2.8) as well as the SUM gate,
\[C_{\text{SUM}} |i\rangle |j\rangle = N |i\rangle |j\rangle \]
\[= |i\rangle |i + j, \quad \text{mod} \; d \rangle \] (2.14)

3 Graph and hypergraph states

3.1 Graph states

There are many equivalent constructions of graph states [4–8]. We follow arxiv:1612.06418 for a definition of qudit graph states. The multigraph is \(G = (V, E) \), with vertices \(V \) and edges \(E \), where an edge has multiplicity \(m_e \in \mathbb{Z}_d \). To \(G \) associate a state \(|G\rangle \) such that to each vertex \(i \in V \), there is a local state
\[|+\rangle = |p_0\rangle = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} |q\rangle \] (3.1)
Recall that the Hadamard gate generalizes to (2.5), so that
\[S^* |0\rangle = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} |q\rangle \]
\[= |+\rangle = |p_0\rangle. \] (3.2)

To each edge \(e = \{i, j\} \) apply the unitary
\[Z_{me} = \sum_{q_i=0}^{d-1} |q_i\rangle \langle q_i| \otimes (Z_{m_e})^{q_i} \] (3.3)
to the state
\[|+\rangle^V = \bigotimes_{i \in V} |+\rangle_i \] (3.4)

The graph state is
\[|G\rangle = \prod_{e \in E} Z_{me} |+\rangle^V \] (3.5)
\[= \prod_{e \in E} Z_{me} \bigotimes_{i \in V} |+\rangle_i \] (3.6)

The level-rank dual [9] of Theorem 1 of Salton, Swingle, and Walter [10] for \(d \) odd prime implies that the graph state \(|G\rangle \) can be constructed from topological operations on the \(n \)-torus Hilbert space of Chern-Simons SU(\(d \)) by means of the operations detailed in Section 2. Every stabilizer state is LC equivalent to a graph state, while the Clifford group enables conversion between different multigraphs [4–8].

3.2 Hypergraph states

We again follow arxiv:1612.06418 for the construction of qudit multi-hypergraph states. Given a multi-hypergraph \(H = (V, E) \), associate a quantum state \(|H\rangle \), with \(m_e \in \mathbb{Z}_d \) the multiplicity of the hyperedge \(e \). To each vertex \(i \in V \), associate a local state
\[|+\rangle = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} |q\rangle \]
\[= S^* |0\rangle \] (3.7)

To each hyperedge \(e \in E \), with multiplicity \(m_e \), apply the controlled unitary \(Z_{me} \) to the state
\[|+\rangle^V = \bigotimes_{i \in V} |+\rangle_i \] (3.8)
The hypergraph state is
\[|H\rangle = \prod_{e \in E} Z_{m_e}^{e} |+\rangle^V \] (3.9)

The elementary hypergraph state is
\[|H\rangle = \sum_{q=0}^{d-1} |q\rangle \otimes \left(Z_{m_{\{1\}}}^{e} \right)^q |+\rangle^V \] (3.10)

For \(d \) prime, all \(n \)-elementary hypergraph states are equivalent under SLOCC.

Hypergraph and graph states admit a representation in terms of Boolean functions,
\[|H\rangle = \sum_{q=0}^{d-1} \omega^{f(q)} |q\rangle \] (3.11)

with \(f : \mathbb{Z}_d^n \rightarrow \mathbb{Z}_d \), where
\[f(x) = \sum_{\{i_1, \ldots, i_k\} \in E} x_{i_1} \cdots x_{i_k} \] (3.12)

For graph states, \(f(x) \) is quadratic, i.e.
\[f(x) = \sum_{\{i_1, i_2\} \in E} x_{i_1} x_{i_2} \] (3.13)

while for \(f(x) \) cubic or higher, \(|H\rangle \) is a hypergraph state. Therefore, for quadratic \(f(x) \), one has a representation of stabilizer states, up to LC equivalence. For \(f(x) \) cubic or higher, \(|H\rangle \) represents hypergraph states which contain “magic” states. Examples of magic states are the CCZ state and Toffoli states, constructed from appropriate gates [3, 11–18]. Thus
\[\text{CCZ } |x_1 x_2 x_3\rangle = \omega^{x_1 x_2 x_3} |x_1 x_2 x_3\rangle \] (3.14)

with
\[|\text{CCZ}\rangle = \text{CCZ } |+ \otimes^3\rangle \] (3.15)

as an example of a magic hypergraph state. Similarly
\[|\text{Toff}\rangle = \text{Toff } |+ \otimes^3\rangle \] (3.16)

where the Toffoli gate can be expressed in terms of the fusion matrix (2.2). Explicitly,
\[\text{Toff } |i, j, k\rangle = N_{i, j, k}^{(i j + k)} = |i, j, i j + k, \text{ mod } d\rangle \] (3.17)
where the Young tableau for \((ij)\) has \(i + j\) vertical boxes, \(\mod d\).

For \(SU(d)_1\), \(d \) odd prime, \(d \neq 5 \mod 4\), both graph and hypergraph states can be obtained from operators which can be constructed from products of topological operations on the \(n\)-torus Hilbert space [10].

For \(SU(d)_1\), \(d = 5 \mod 4\), the topological argument does not apply, since in this case Theorem 1 of Salton et al [10] implies that only stabilizer states can be constructed on the \(n\)-torus Hilbert space. Thus, graph states can be so constructed but not hypergraph states with cubic or higher functions (3.12).

4 Discussion

It was shown above that graph states and hypergraph states for \(SU(d)_1\), \(d \) odd, can be constructed from the basic operations \(N_{ab}^c\), \(S_{ab}\), \(Z\), and \(X\) of \(SU(d)_1\) Chern-Simons theory. For \(d \) odd prime, \(d \neq 5 \mod 4\), these operations can be constructed topologically on the \(n\)-torus Hilbert space of Chern-Simons theory. A subset of hypergraph states are “magic.” For \(d \neq 5 \mod 4\), they are topological in the above sense.

Fliss [19] has studied knot and link states of \(SU(2)_d\) Chern-Simons theory, and has shown that knot and link states are generically magical. However for \(U(1)_d\), magic is absent for all knot and link states. Since \(U(1)_d\) is level-rank dual to \(SU(d)_1\), the knot and link states for this theory also have zero magic [19–21],[22].

There is a great deal of recent interest in magic states [6, 23–25]. One feature that deserves further study is to understand which magic states are topological. For example, universal topological computing is possible for \(SU(2)_3\) [26] and \(SU(3)_2\) [27] Chern-Simons theory. Implicitly this implies that magic states are present in these theories, presumably due to the braiding operations. It would be interesting to make this explicit.

Acknowledgments

We thank Zi-Wen Liu for clarifying the difference between hypergraph / stabilizer cones [28–31], and hypergraph / stabilizer states, and for emphasizing that universal quantum computation models for \(SU(2)_3\) and \(SU(3)_2\) have gates / actions which are magical.

We are grateful to Greg Bentsen and Isaac Cohen for their assistance in the preparation of the paper.
References

[1] H.J. Schnitzer, *Clifford group and stabilizer states from Chern-Simons theory*, [arXiv:1903.06789].

[2] H.J. Schnitzer, *SU(N)_1 Chern-Simons theory, the Clifford group, and entropy cone*, [arXiv:2008.02406].

[3] H.J. Schnitzer, *Clifford operators in SU(N)_1; N not odd prime*, [arXiv:2011.06035].

[4] F.E. Steinhoff, C. Ritz, N. Miklin and O. Gühne, *Qudit hypergraph states*, Physical Review A 95 (2017) 052340 [arXiv:1612.06418].

[5] M. Englbrecht and B. Kraus, *Symmetries and entanglement of stabilizer states*, Physical Review A 101 (2020) 062302 [arXiv:2001.07106].

[6] Z.-W. Liu and A. Winter, *Many-body quantum magic*, [arXiv:2010.13817].

[7] M. Rossi, M. Huber, D. Bruß and C. Macchiavello, *Quantum hypergraph states*, New Journal of Physics 15 (2013) 113022 [arXiv:1211.5554].

[8] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest and H.-J. Briegel, *Entanglement in graph states and its applications*, [quant-ph/0602096].

[9] E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, *Group-level duality of WZW fusion coefficients and Chern-Simons link observables*, Nuclear Physics B 352 (1991) 863.

[10] G. Salton, B. Swingle and M. Walter, *Entanglement from topology in Chern-Simons theory*, Physical Review D 95 (2017) 105007 [arXiv:1611.01516].

[11] G. Heydon and E. Campbell, *A quantum compiler for qudits of prime dimension greater than 3*, [arXiv:1902.05634].

[12] A. Paetznick and B.W. Reichardt, *Universal fault-tolerant quantum computation with only transversal gates and error correction*, Physical review letters 111 (2013) 090505 [arXiv:1304.3709].

[13] J. O’Gorman and E.T. Campbell, *Quantum computation with realistic magic-state factories*, Physical Review A 95 (2017) 032338 [arXiv:1605.07197].

[14] B. Eastin, *Distilling one-qubit magic states into Toffoli states*, Physical Review A 87 (2013) 032321 [arXiv:1212.4872].

[15] C. Jones, *Low-overhead constructions for the fault-tolerant Toffoli gate*, Physical Review A 87 (2013) 022328 [arXiv:1212.5069].

[16] M. Howard and J. Vala, *Qudit versions of the qubit π/8 gate*, Physical Review A 86 (2012) 022316 [arXiv:1206.1598].
[17] L. Biswal, D. Bhattacharjee, A. Chattopadhyay and H. Rahaman, *Techniques for fault-tolerant decomposition of a multicontrolled Toffoli gate*, *Physical Review A* **100** (2019) 062326 [arXiv:1904.06920].

[18] J. Haah and M.B. Hastings, *Codes and protocols for distilling t, controlled-s, and Toffoli gates*, *Quantum* **2** (2018) 71 [arXiv:1709.02832].

[19] J.R. Fliss, *Knots, links, and long-range magic*, [arXiv:2011.01962].

[20] V. Balasubramanian, J.R. Fliss, R.G. Leigh and O. Parrikar, *Multi-boundary entanglement in Chern-Simons theory and link invariants*, *Journal of High Energy Physics* **2017** (2017) 61 [arXiv:1611.05460].

[21] V. Balasubramanian, M. DeCross, J. Fliss, A. Kar, R.G. Leigh and O. Parrikar, *Entanglement entropy and the colored Jones polynomial*, *Journal of High Energy Physics* **2018** (2018) 1 [arXiv:1801.01131].

[22] A. Jain and S. Prakash, *Qutrit and ququint magic states*, *Physical Review A* **102** (2020).

[23] C.D. White, C. Cao and B. Swingle, *Conformal field theories are magical*, [arXiv:2007.01303].

[24] C.D. White and J.H. Wilson, *Mana in Haar-random states*, [arXiv:2011.13937].

[25] V. Veitch, S.H. Mousavian, D. Gottesman and J. Emerson, *The resource theory of stabilizer quantum computation*, *New Journal of Physics* **16** (2014) 013009 [arXiv:1307.7171].

[26] M.H. Freedman, M. Larsen and Z. Wang, *A modular functor which is universal for quantum computation*, *Communications in Mathematical Physics* **227** (2002) 605 [quant-ph/0001108].

[27] H.J. Schnitzer, *Level-rank duality for a universal topological quantum computer*, [arXiv:1811.11861].

[28] N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, *The quantum entropy cone of hypergraphs*, [arXiv:2002.05317].

[29] M. Walter and F. Witteveen, *Hypergraph min-cuts from quantum entropies*, [arXiv:2002.12397].

[30] N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, *A gap between the hypergraph and stabilizer entropy cones*, [arXiv:2006.16292].

[31] N. Bao and J. Harper, *Bit threads on hypergraphs*, [arXiv:2012.07872].