Model-independent reconstruction of the expansion history of the Universe from Type Ia supernovae

S. Benitez-Herrera,1*, F. Röpke,2,1 W. Hillebrandt,1 C. Mignone,3 M. Bartelmann3 and J. Weller4,5,6

1Max Planck Institute für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany
2Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany
3Zentrum für Astronomie, ITA, Universität Heidelberg, Albert-Überle-Str. 2, 69120 Heidelberg, Germany
4Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany
5University Observatory, Ludwig-Maximilians University Munich, Scheinerstr. 1, 81679, Munich, Germany
6Max Planck Institute für Extraterrestrische Physik, Giessenbachstr., 85748, Garching, Germany

Accepted 2011 August 26. Received 2011 August 26; in original form 2010 November 16

ABSTRACT
Based on the largest homogeneously reduced set of Type Ia supernova luminosity data currently available – the Union2 sample – we reconstruct the expansion history of the Universe in a model-independent approach. Our method tests the geometry of the Universe directly without reverting to any assumptions made on its energy content and thus allows us to constrain dark energy models in a straightforward way. This is demonstrated by confronting the expansion history reconstructed from the supernova data to predictions of several dark energy models in the framework of the w cold dark matter (wCDM) paradigm. In addition, we test various non-standard cosmologies such as braneworlds, $f(R)$ and kinematical models. This is mainly intended to demonstrate the power of the method. Although statistical rigour is not the aim of our current study, some extreme cosmologies clearly disagree with the reconstructed expansion history. We note that the applicability of the presented method is not restricted to testing cosmological models. It can be a valuable tool for pointing out systematic errors hidden in the supernova data and planning future Type Ia supernova cosmology campaigns.

Key words: supernovae: general – cosmological parameters – cosmology: observations – cosmology: theory.

1 INTRODUCTION

Type Ia supernovae (SNe Ia) are currently the best (relative) distance indicators out to redshifts of $z \sim 1$ (Tammann 1978; Colgate 1979; Riess, Press & Kirshner 1996; Schmidt et al. 1998; Perlmutter et al. 1999). As such, they have been instrumental in shaping our current picture of the Universe (Leibundgut 2001, 2008). In particular, the notion of an accelerated expansion rate of the Universe was established a decade ago based on SN Ia distance measurements (Riess et al. 1998; Perlmutter et al. 1999).

For lack of a deeper understanding, the cause of this acceleration is commonly parametrized in standard Λ cold dark matter (ΛCDM) cosmology as a dark energy component that currently dominates the energy contents of the Universe (see, e.g. Turner & Huterer 2007, for a recent review). The most plausible explanation for it may be the vacuum energy (or cosmological constant) with a constant equation of state $w = p/\rho = -1$ (Turner & White 1997). In this case, dark energy would be an elastic and smooth fluid exerting a repulsive gravity that produces the observed accelerated expansion (Ostriker & Steinhardt 1995; Liddle et al. 1996; Turner & White 1997).

So far, however, all attempts to compute the vacuum energy have led to values that are about 55–120 orders of magnitude off the observed value (Weinberg 1988; Sahni 2002). Other possibilities allow for a dark energy equation of state varying with time and avoid the cosmic coincidence and the previously mentioned fine-tuning problems (Zlatev, Wang & Steinhardt 1999; Frieman, Turner & Huterer 2008).

These concepts describe the vacuum energy to be a dynamical, evolving scalar-field slowly rolling towards its lowest energy state (Freese et al. 1987; Frieman et al. 1995; Wetterich 1995; Turner & White 1997; Caldwell, Dave & Steinhardt 1998; Steinhardt 1999). In this context, the simplest parametrization of the dark energy equation of state $w(a)$ depending on the cosmic scalefactor a reads

$$w(a) = w_0 + w_1(1 - a),$$

where w_0 is the present-day value of the equation of state and w_1 accounts for its time dependence.

*E-mail: benitez@mpa-garching.mpg.de
Alternative approaches describe cosmic acceleration as a manifestation of new gravitational physics rather than dark energy (see, e.g. Deffayet 2001; Deffayet, Dvali & Gabadadze 2002; Carroll et al. 2004; Nojiri & Odintsov 2006; Amendola et al. 2007). Instead of adding an extra term to the energy–momentum tensor on the right-hand side of Einstein’s equations, these modify the geometry terms on their left-hand side in order to reproduce the observations.

Hence, we face the situation that apart from ΛCDM a large variety of cosmological models has been proposed to account for cosmic acceleration. Testing their validity is an important but challenging task. The present-day nearby Universe is fairly well known and therefore all models under consideration reproduce its characteristics, or contain free parameters that can be tuned to do so. This degeneracy is difficult to break with currently available data.

Usually, dark energy models are constrained by starting out from a Friedman cosmology in which the expansion function \(H \) is parametrized in terms of the contributions of radiation \((r)\), matter \((m)\), curvature \((k)\), and dark energy \((de)\) to the energy density as

\[
H^2(a) = H_0^2 E^2(a) = H_0^2 \left[\frac{\Omega_{r0}}{a^3} + \frac{\Omega_{m0}}{a^3} + \frac{\Omega_{k0}}{a^3} + \Omega_{de0} F(a) \right],
\]

where \(H_0 \) and \(\Omega_{de0} \) denote the Hubble constant and the present-day density parameters corresponding to the different components, respectively. A possible time dependence of the dark energy equation of state is captured by the function \(F(a) \):

\[
F(a) = \exp \left\{ -3 \int_1^a \left[1 + w(a') \right] \frac{da'}{a'} \right\}.
\]

The cosmological parameters occurring in equation (2) are determined from fits to observations and dark energy models are usually assessed by confronting their predictions to these parameters. The significance of this approach is, however, limited since it automatically assumes a Friedman model. When working with SNe Ia this constraint is unnecessary as they probe the geometry of the Universe directly and no assumptions on the form of the energy–momentum tensor are required to derive the expansion history of the Universe.

Consequently, our analysis follows a recently developed method (Mignone & Bartelmann 2008) to reconstruct the expansion history of the Universe in a model-independent fashion from luminosity distance data. The idea of a model-independent reconstruction extracted straight from the data was already proposed in Starobinsky (1998) and reconstructions of this kind were carried out by Shafieloo et al. (2006); Shafieloo (2007) using SN Ia data, by Fay & Tavakol (2006) adding constraints from measurements of baryon acoustic oscillations (BAO) to the SN Ia data, and by Daly & Djorgovski (2003, 2004) combining SNe Ia luminosity distances with angular-diameter distances from radio galaxies. Seikel & Schwarz (2008, 2009) tested the significance of cosmic expansion directly from SN Ia data in a model-independent way.

The goal of this work is to apply the method of Mignone & Bartelmann (2008) to the most complete SN Ia data set currently available and to constrain some flavours of dark energy models. This is intended as a demonstration of the general power of SN Ia distance measurements for testing dark energy models when analysed in a model-independent way. A rigorous statistical treatment that would let us rule out specific models is beyond the scope of this paper.

The paper is organized as follows. In Section 2, the essential aspects of the model-independent methodology are reviewed. The application of the method to luminosity–distance measurements is discussed in Section 3. A comparison between SN Ia data and several dark energy models is presented in Section 4. In Section 5, the predictions for the expansion history of the Universe of several non-standard cosmologies are confronted with our reconstruction from SN Ia data. Ways of improving the reconstruction with new data that may become available through current surveys are pointed out in Section 6. This shows that our model-independent analysis can be instrumental in planning observational campaigns. Moreover, it can also point to potential systematics in the data that do not generally arise from traditional ways of analysis. This aspect is highlighted in Section 7. Finally, conclusions are drawn and future perspectives are discussed in Section 8.

2 MODEL-INDEPENDENT METHOD

The minimal assumptions adopted by Mignone & Bartelmann (2008) are that the expansion rate is a reasonably smooth function and that the Universe is topologically simply connected, homogeneous and isotropic, i.e. it is characterized by a Robertson–Walker metric:

\[
dx^2 = c^2 dt - a(t)^2 \left[d\chi^2 + f_k(\chi)(d\theta^2 + \sin^2 \theta d\phi^2) \right].
\]

The Robertson–Walker metric allows us to define an angular-diameter distance by

\[
D_\Lambda(a) = af_k(\chi(a)),
\]

with the comoving angular-diameter distance

\[
f_k(\chi) = \left\{ \begin{array}{ll} \sin \chi & (k = 1, \text{spherical}) \\ \chi & (k = 0, \text{flat}) \\ \sinh \chi & (k = -1, \text{hyperbolic}) \end{array} \right.
\]

and the comoving distance

\[
\chi(a) = \frac{c}{H_0} \int_a^1 \frac{dx}{x^2 E(x)}.
\]

Through Etherington’s relation (Etherington 1933), which holds for any space–time, we can relate the luminosity distance to the angular-diameter distance:

\[
D_L(a) = \frac{1}{a^2} D_\Lambda(a).
\]

This allows us to write the former as an integral of the inverse of the expansion rate:

\[
D_L(a) = \frac{c}{H_0} \int_a^1 \frac{dx}{x^2 E(x)} \equiv \frac{c}{H_0} \int_a^1 \frac{dx}{x^2 e(x)},
\]

with \(e(a) = E^{-1}(a) \) and \(k = 0 \) set in equation (6) for simplicity of notation. It is worth noticing that the choice of \(k = 0 \) does not affect the fundamental method and can be dropped without change of principle if needed. The Hubble length \(c/H_0 \), by which the luminosity distance is scaled, shall be dropped in the following for the sake of brevity.

From equation (9) the derivative with respect to \(a \) is taken:

\[
D_L'(a) = -\frac{1}{a^2} \int_a^1 \frac{dx}{x^2 e(x)} = \frac{e(a)}{a^2}.
\]

This expression can be transformed to a Volterra integral equation of the second kind for the unknown function \(e(a) \):

\[
e(a) = -a^2 D_L'(a) + \chi \int_1^a \frac{dx}{x^2} e(x),
\]

with the inhomogeneity \(f(a) = -a^2 D_L'(a) \) and the simple kernel \(K(a, x) = x^{-2} \). The general parameter \(\lambda \) will later be fixed to

© 2011 The Authors, MNRAS 419, 513–521
Monthly Notices of the Royal Astronomical Society © 2011 RAS
Model-independent reconstruction of \(H(a) \)

\(\lambda = a \). For now it is introduced to make the connection to a class of equations for which solutions are known to exist and to be uniquely described in terms of a Neumann series (see Arfken & Weber 1995):

\[
e(a) = \sum_{j=0}^{\infty} \lambda^j e_j(a).
\]

(12)

A possible choice for the function \(e_j \) would be

\[
e_0(a) = f(a),
\]

(13)

\[
e_n(a) = \int_{a}^{\infty} K(a, t) e_{n-1}(t) \, dt,
\]

(14)

where, for the guess of \(e_0 \), the approximation of either the integral or \(\lambda \) to be small has been made in equation (11). This approximation is valid in all important cosmological cases and it has been subsequently improved until convergence was reached. It essentially means that starting, for instance, from the \(\Lambda \)CDM cosmology observations say that deviations must be small, if they exist at all.

Equation (11) involves the derivative of the luminosity distance with respect to the scalefactor \(a \). Observations of SNe Ia provide measurements of the distance modulus, \(\mu_i \), and redshifts, \(z_i \) [or scalefactors \(a_i = (1 + z_i)^{-1} \)]. Thus one could think of taking the derivative of the luminosity distance directly from the data. However, this is an inconvenient procedure since the result would be extremely noisy and the determination of \(D_L(a) \) would be unreliable. Therefore, it is necessary to suitably smooth the data in the first place by fitting an adequate function \(D_L(a) \) to the measurements \(D_L(a) \). The derivative in equation (11) can then be approximated by the derivative of \(D_L(a) \). Thus, the derivative of the fitted data is taken as a representation of the derivative of the real data. The method proposed by Mignone & Bartelmann (2008) achieves this goal via the expansion of the luminosity distance \(D_L(a) \) into a series of (in principle) arbitrarily chosen orthonormal functions \(p_j(a) \):

\[
D_L(a) = \sum_{j=0}^{J} c_j p_j(a).
\]

(15)

Suitable orthonormal function sets can be constructed by Gram–Schmidt orthonormalization from any linearly independent function set. The \(J \) coefficients \(c_j \) are those which minimize the \(\chi^2 \) statistic function when fitting to the data. Therefore, with this representation of the data, the derivative of the luminosity distance function is simply given by

\[
D_L'(a) = \sum_{j=0}^{J} c_j p_j'(a).
\]

(16)

Due to the linearity of equation (11), it is possible to solve it for each mode \(j \) of the orthonormal function set separately. Thus, the final solution in terms of a Neumann series is

\[
e(a) = \sum_{j=0}^{J} c_j e^{j(a)}.
\]

(17)

derived from principal component decomposition of cosmological observables. The use of this optimal basis would certainly reduce the coefficients needed to obtain an accurate reconstruction and we will do so in future work. In the current analysis, however, we settle for the arbitrarily chosen basis proposed by Mignone & Bartelmann (2008), which uses the linearly independent set

\[
u_j(x) = x^{j/2-1},
\]

(18)
orthonormalized via the Gram–Schmidt method. The orthonormalization interval is chosen to be \([z_{min}, 1] \), where \(z_{min} = (1 + z_{max})^{-1} \) is the scalefactor corresponding to the maximum redshift \(z_{max} \) in the supernova sample. This way, an arbitrary set of orthonormal functions \(p_j(a) \) is constructed. When projecting the luminosity distance \(D_L(a) \) on to these basis functions, we can solve for the expansion coefficients. In this case, at least the first five coefficients are different from zero (see Mignone & Bartelmann 2008). However, as shown in Table 1, only the first three can be determined with current data; the fourth and fifth coefficients lose significance. With future space-based telescopes, new and better quality data will become available for this kind of analysis. This should procure an improvement on the accuracy of the reconstruction by allowing for determining more coefficients in the expansion.

3 APPLICATION TO SN Ia DATA: THE UNION2 SAMPLE

We apply the model-independent method to the largest homogeneously reduced SN Ia sample currently available. The Union2 sample (Amanullah et al. 2010) consists of 557 SNe Ia. It includes the recently extended data set of distant supernovae observed with the \(HST \) (Riess et al. 2007; Amanullah et al. 2010), the data from the Supernovae Legacy Survey (SNLS; Astier et al. 2006), Equation of State: Supernovae Trace Cosmic Expansion (ESSENCE; Miknaitis et al. 2007; Wood-Vasey et al. 2007) and Sloan Digital Sky Survey (SDSS; Holtzman et al. 2008) surveys, several compilations from literature (e.g. Hamuy et al. 1996), and the new data from nearby SNe Ia of Hicken et al. (2009).

In Fig. 1 the Union2 sample is shown, together with the best fit of the luminosity distances to equation (15) when using the first three terms in the expansion (dotted line, see Table 1 for values). There is considerable scatter around the fit, mainly introduced by the distant SNe which are more difficult to calibrate and are usually afflicted by host-galaxy extinction and survey selection effects.

In the following two sections, we compare the expansion history derived from the Union2 sample with predictions of various cosmological models. This comparison, however, is not fully consistent. SNe Ia are not standard candles but have to be calibrated as distance indicators applying an empirical calibration. This calibration procedure introduces a dependence between the calibrated measurements that gives rise to finite non-diagonal entries in the covariance matrix for the distance modulus.
Moreover, the parameters of the calibration are determined simultaneously with the cosmological parameters in the SALT2 light-curve fitter (Guy et al. 2007) assuming a ΛCDM model. As the Union2 sample was calibrated with SALT2, this applies to the data used in the following and implies that the parameters are model-dependent. This clearly contradicts the intended model-independence of our method and would prevent precise fits to non-ΛCDM cosmologies. Such fits, however, are not our goal here. Apart from that, ΛCDM happens to be an extraordinary good fit to the data and models with more degrees of freedom do not improve the quality of the fit more than statistically expected. That means the correction parameters will not change significantly if one assumes a different model, as long as it roughly matches ΛCDM. Models that show an $H(z)$ drastically different from ΛCDM could also have different parameters in the calibration, but are not interesting as they would not agree with the data. Additionally, the calibration parameters should be redshift independent and therefore, essentially decoupled from cosmology. Consequently, we argue that the induced covariance is small and the variation of the parameters with cosmology is negligible for our purposes.

4 COMPARISON TO ΛCDM AND DARK ENERGY MODELS

4.1 ΛCDM cosmology

The result of our reconstruction of the expansion rate $H(a)$ from the Union2 sample is compared with a ΛCDM model in Fig. 2. Here, we adopt the values for today’s density parameters from the best fits to the Union2 sample given by Amanullah et al. (2010): $\Omega_m = 0.274^{+0.040}_{-0.037}$. The Hubble constant is assumed to be $h = 0.7$ ($H_0 = 100 h$ km s$^{-1}$ Mpc$^{-1}$) and the equation of state to be constant ($w = -1$).

Thanks to the improved quality and size of the Union2 data set, the reconstruction has smaller error bars than those of Mignone & Bartelmann (2008), who only made use of the SNLS data. The ΛCDM model is in a good agreement with the supernova data, although its slope is slightly different. This leads to a deviation at intermediate values of a, but, within the error bars, the ΛCDM model is still consistent with our reconstruction.

4.2 Dark energy models

Relaxing the assumption of a constant equation of state, we analyse a dark energy model proposed by Rapetti, Allen & Weller (2005). It is an extension of the parametrization in equation (1) proposed by Chevallier & Polarski (2001) and Linder (2003), which assumes a fixed transition redshift ($z_t = 1$) between the current value of the equation of state and the value at early times, $w(z_t) = w_0 + w_1$. In contrast, the model discussed by Rapetti et al. (2005) introduces z_t as an extra free parameter so that the equation of state w can be written as

$$w(a) = \frac{w_0 + w_1 z}{z + z_t} = \frac{w_0(1 - a_t)a_t + w_1(1 - a_t)a}{a_t(1 - 2a_t) + a_t},$$

(19)

where a_t is the transition scalefactor. From the Friedmann equation, the expansion function in terms of redshift is then given by

$$H(z) = H_0 \sqrt{\Omega_m(1 + z)^3 + \Omega_k f(z)} + \Omega_de(z + 1)^2,$$

(20)

with

$$f(z) = (1 + z)^{3(1 + w_1)} e^{-3(w_0 - w_1)(z - z_t)}.$$

(21)

Here, the function $g(z; z_t)$ is defined as

$$g(z; z_t) = \frac{z_t}{z_t - 1} \ln \left(\frac{z_t}{z + z_t} \right).$$

(22)

Rapetti et al. (2005) constrained the best-fitting cosmological parameters for different possibilities within this model, varying the number of free parameters. They made use of SN Ia (the Gold sample by Riess et al. 2004), X-ray galaxy clusters and cosmic microwave background (CMB) data for this analysis. In Fig. 3, we compare those possibilities to the model-independent reconstruction of the expansion function extracted from the Union2 sample. This is meant to illustrate that standard cosmologies within the wCDM paradigm with different choices of parameters do not fit the data in all cases. This is not easy to see in other analyses which are model-dependent. Our reconstruction of $H(z)$ can be a useful tool since it allows us to rule out cosmological models based entirely on the data. For example, the two most extreme models shown in Fig. 3 – one with a fixed $z_t = 0.35$ (green dashed–dotted line) which...
splits the SN and the cluster data sets into similarly low and high redshift subsamples, and the one with arbitrary z_c (blue dashed line) – are clearly inconsistent with our reconstruction. The other models (marginally) agree with the SN measurements within the error bars. However, they have slightly different slopes and – as for the ΛCDM model – some tension exists at intermediate and small values of a (intermediate and high redshifts).

5 GOING BEYOND ΛCDM

Despite the good agreement with cosmological observations, the ΛCDM model is conceptually problematic, as it leaves the fine-tuning and coincidence problems unresolved. A number of alternatives to the ΛCDM parametrization have been suggested in order to address those difficulties. We study some of these alternatives here and compare them to our reconstruction.

5.1 Modified gravity

The idea of modified gravity differs from dark energy models. It does not describe the late-time acceleration as being caused by some unknown energy component but suggests that General Relativity may be inaccurate at large scales. Such scenarios are likely to diverge in their predictions for $H(z)$ from ΛCDM and therefore they can be constrained from the reconstructed expansion history of the Universe.

5.1.1 The $f(R)$ models

One way of modifying the gravity theory is by adding terms to the Ricci scalar (R) in the Einstein–Hilbert Lagrangian (Starobinsky 1980; Carroll et al. 2004). The Palatini formalism provides second-order differential field equations that can account for the present cosmic acceleration without any need of dark energy (Fay, Tavakol & Tsujikawa 2007). Several parametrizations of $f(R)$ are possible. For the sake of simplicity, we follow the parametrization of Carvalho et al. (2008) here (for details on other parametrizations see, e.g. Hu & Sawicki 2007; Fay et al. 2007). The general functional $f(R)$ is assumed to have the form

$$f(R) = R - \frac{\beta}{R^n}. \quad (23)$$

where R is the Ricci scalar, n, β and Ω_m are the parameters of the model. ΛCDM is recovered for $n = 0$. The expansion rate can be written as

$$H^2(z) = H_0^2 \left[\frac{3\Omega_m(1+z)^3 + f / H_0^2}{6 f^\xi} \right] \quad (24)$$

$$\xi = 1 + \frac{9}{2} f' \Omega_m (1+z)^3 - f - f'' R f'' f^2. \quad (25)$$

while gravity is free to propagate in the brane.
There are different scenarios within brane-world cosmology (see, e.g. Maartens 2004; Alam & Sahni 2006). We consider here, for example, the Dvali–Gabadadze–Porrati (DGP) model (Dvali, Gabadadze & Porrati 2000). This model allows the extra dimension to be large, and its generalization to a Friedmann–Robertson–Walker brane produces a self-accelerating solution (Deffayet 2001). The resulting Friedman equation is a modification of the General Relativistic case and reads

$$H^2 - \frac{H}{r_c} = \frac{8\pi G \rho}{3},$$

(26)

where the cross-over scale r_c is defined as

$$r_c = \frac{1}{H_0(1 - \Omega_m)}.$$

(27)

The additional term H/r_c in equation (26) behaves like a dark energy component with an effective equation of state that evolves from $w = -1/2$ for $z \gg 1$ to $w = -1$ in the distant future.

For a wCDM model [assuming that equation (1) holds] it is possible to obtain an expression for $w(a)$ which mimics the evolution of the DGP model (see Tang, Weller & Zablocki 2006):

$$w(a) = -1 + \frac{\Omega_m a^{-3}}{(r_c H_0)^3 + 2 \eta \Omega_m a^{-3}}.$$

(28)

with $\eta = \sqrt{\Omega_m a^{-3} + 1/2 (r_c H_0)^3}$. At the present day, this tends to

$$w(a = 1) = -1 + \frac{1}{1 + \Omega_m}.$$

(29)

This modification allows for a description of the expansion history as well as of the growth of large-scale structure.

One can even go beyond DGP as an isolated theory and consider a phenomenological model which is motivated by the concept of an extra dimension with infinite extent. This is the so-called mDGP model (Dvali & Turner 2003; Thomas, Abdalla & Weller 2009). It interpolates between ΛCDM and the DGP model and allows for the presence of an extra dimension through corrections to the Friedman equation by introducing a parameter α. The modified Friedman equation reads

$$H^2 - \frac{H^2 a^\alpha}{r_c^\alpha} = \frac{8\pi G \rho}{3},$$

(30)

with the cross-over scale r_c defined as

$$r_c = (1 - \Omega_m)^{1/(\alpha - 2)} H_0^{-1}.$$

(31)

In Fig. 5, the comparison of our model-independent reconstruction with some DGP and mDGP models is presented. The values of the model parameters are taken from previously reported fits to actual cosmological data.

We evaluate two pure DGP models ($\alpha = 1$) adopting the best-fitting values for Ω_m reported in Guo et al. (2006) and Liang & Zhu (2011) (green dash–dotted and black dashed lines, respectively). In the first case, the constraints were obtained from the Gold and SNLS samples in combination with BAO. In the second, the best-fitting values are found by combining cosmology-independent gamma-ray burst and SNe Ia data, with BAO, CMB and $H(z)$ measurements. The latter constitutes so far the strongest constraint obtained for the DGP model.

We also consider the results obtained by Thomas et al. (2009) adding weak-lensing data to BAO and SNe (red dotted line). In that particular study, the authors find an upper limit for the α parameter ($\alpha < 0.58$ at 68 per cent confidence level), but are not able to give constraints on the Ω_m parameter. Therefore, and to better understand the effect of changing Ω_m for a given α, here we make use of the best-fitting values reported in Liang & Zhu (2011) for the DGP model and in Amanullah et al. (2010) for the ΛCDM model.

For the sake of comparison, a ΛCDM model corresponding to $\alpha = 0$ (blue solid line) and a model with negative α (grey long-dashed line) are also included in Fig. 5.

As it has been found in prior studies (see, for example Fairbairn & Goobar 2006; Maartens & Majerotto 2006), a pure DGP cosmology is disfavoured by the SNe data. Models with negative values of α also disagree with our reconstruction. However, it is still early to break the degeneracy between ΛCDM and mDGP models with $0 \lesssim \alpha \lesssim 0.50$.

5.2 Kinematic approach

A different way of describing the cosmic expansion history is by means of the so-called kinematic models that do not use quantities from the dynamic description, such as Ω_m or w. Here we discuss the models of Elgarøy & Multamäki (2006) and Guimarães, Cunha & Lima (2009), which are based on different parametrizations of the deceleration parameter, q, and the jerk parameter, j. The deceleration parameter in terms of z is defined as

$$q \equiv -\frac{1}{H^2} \frac{\ddot{a}}{a} = \frac{1}{2} \left[1 + z \left(\frac{H(z)}{H_0} \right)^2 \right] - 1,$$

(32)

where the primed quantity denotes the derivative with respect to z. Similarly, the jerk parameter is given by

$$j \equiv -\frac{1}{H^3} \frac{d^3 a}{d^3 z} = -\left[\frac{1}{2} (1 + z)^2 \left(\frac{H^2}{H^2} \right) - (1 + z) \left(\frac{H^2}{H^2} \right)^2 + 1 \right].$$

(33)

We consider five realizations here: in the first and simplest model, M_0, the deceleration parameter is constant, $q(z) = q_0$. The second model, M_1, is a linear expansion of the deceleration parameter $q(z) = q_0 + q_1 z$. Model M_2 has two phases of constant deceleration, separated by an abrupt transition redshift, i.e. $q(z) = q_0$ for $z < z_1$ and $q(z) = q_1$ for $z > z_1$. The fourth model, M_4, is a constant-jerk parametrization, $j(z) = j_0$. The last model, M_5, derives from an...
expansion of the luminosity distance with free q_0 and j_0 parameters resulting in

$$D_L(z) = \frac{c}{H_0} \left[z + \frac{1}{3}(1 - q_0)z^2 - \frac{1}{6}(1 - q_0 - 3j_0^2 - j_0)z^3 \right]. \quad (34)$$

All these models make specific predictions for the cosmic expansion [see Guimarães et al. (2009) for the corresponding expressions of $H(z)$]. They are of particular interest because no assumption on the matter-energy content present in the Universe is made. Guimarães et al. (2009) constrained the different parameters in their models through a Bayesian statistical analysis from the previous Union compilation (Kowalski et al. 2008).

The comparison between the expansion history obtained from Union2 data and the theoretical expansion function calculated for each model is shown in Fig. 6. For the different parameters we adopt the best-fitting values obtained by Guimarães et al. (2009). Again, our goal here is to illustrate how the method performs and how families of models, with completely different parameters, can be confronted with the data in order to assess their validity. We note that, for example, model M_3 could be rejected based on current SN Ia data because its shape differs greatly from the reconstructed expansion history. Also, M_6 has a different slope which does not even fit the data at low redshifts. Models M_1, M_3 and M_4 agree with the SN data within the error bars up to values of the scalefactor $a \sim 0.6$ ($z \sim 0.66$). This is consistent with the transition redshifts z_t given in Guimarães et al. (2009). The good agreement may reflect the fact that the models were constructed in a way that mimics ΛCDM at low redshifts. At high redshifts $z > z_t$, however, none of the models is consistent with our reconstructed expansion history.

6 IMPROVING THE RECONSTRUCTION WITH MOCK SN Ia DATA

More data at various redshifts will be obtained in future SN Ia surveys. In order to test for the effects new data may have on the reconstructed expansion function $H(z)$, we create a mock data sample of nearby SNe Ia with fixed H_0. We generate a sample of 200 mock SNe Ia in a ΛCDM model with $\Omega_m = 0.274$, $\Omega_de = 0.726$ and $H_0 = 70$ km s$^{-1}$, with a uniform distribution in scalefactor from 0.86 to 1. The reason for adding 200 SNe is to approximately equal the number of nearby and distant SNe contained in Union2. We calculate the luminosity distances consistent with equation (9) and generate random errors with uncertainties 30 per cent smaller than those of Hicken et al. (2009). The random number is drawn from a normal distribution with mean 0 and a standard deviation of 1.

The result of the model-independent reconstruction based on the Union2 sample including the mock data is shown in Fig. 7. The improvement in the reconstruction is apparent from the significant decrease in the error bars. The reduction of the error at low redshifts was forced by constructing the mock data assuming a fixed H_0. This highlights the importance of a well-measured value of H_0 for cosmological studies. Although SNe Ia are the best relative distance indicators out to redshifts $z \gtrsim 1$, they do not provide reliable absolute distances. Therefore, the zero-point in our $H(z)$ reconstruction is not well determined. Fixing H_0 from other measurements as a prior in our analysis would be beneficial.

A ΛCDM model resulting from $\Omega_m = 0.274^{+0.046}_{-0.037}$ (Amanullah et al. 2010) is shown in Fig. 7 for comparison. This model is consistent with our reconstruction within the error interval. However, a small difference in slope is observed, similar to that for the original Union2 sample (cf. Fig. 2). The slight deviation at high redshifts is probably due to the additional weight put on the mock data which have smaller errors.

This analysis demonstrates the power of our method in testing redshift ranges in which more (and more accurate) SN data would help us to significantly improve the constraints on cosmological models. Such considerations may help with the design of future surveys.

7 TESTING FOR SYSTEMATICS IN SN Ia DATA COMPILATIONS

The method of model-independent reconstruction of the expansion history of the Universe can in principle be used as a tool to study systematics in SN Ia data. Given, for instance, two samples from different surveys, a question to ask is whether the respective cosmological parameters derived from both of them predict an expansion history that is consistent with the direct data analysis.

We demonstrate this on the example of the Union2 data set which is a collection of data from various SN Ia surveys. As noted in
Section 4.1, there is some tension between the reconstructed expansion history and the predictions of a ΛCDM cosmology at intermediate redshifts, although within the error bars they are consistent. One possibility is that this tension could be due to different characteristics and systematic errors of the subsamples. In the most extreme case, one subsample could be responsible for introducing the divergence from a ΛCDM model. This can be identified by reconstructing the expansion history for the subsamples individually. The two main components of the Union2 data set are the ESSENCE and the SNLS samples, as they both cover a wide range in redshifts with a relatively large number of objects.

The expansion histories of both samples are compared with ΛCDM models based on the individual best-fitting parameters in Fig. 8. Generally, the error bars for the ESSENCE data are wider because they concentrate on a redshift range of about $0.6 < a < 0.8$ ($0.25 < z < 0.66$), whereas the SNLS data extend up to $a \sim 0.5$ ($z \sim 1$). But, apart from that, both samples show consistency of the reconstructed expansion with a ΛCDM model. The tension at intermediate redshifts is present in both of them. Therefore, the deviation of the slope of the reconstructed $H(z)$ from the ΛCDM prediction seen in the Union2 data is not introduced by a mismatch of the main subsamples or systematic errors in one of them.

8 CONCLUSIONS
In this work, we provided further constrains on the expansion history of the Universe in a model-independent way. The luminosity–distance measurements, obtained from SNe Ia, depend only on space–time geometry, and can be directly related to the Hubble function without need of assuming any dynamical model. To illustrate the power of this approach to investigate dark energy models, the method was used to reconstruct the expansion history from the Union2 sample (Amanullah et al. 2010) – the most complete compilation of SN Ia distances to date. Furthermore, a comparison with ΛCDM models with different values of the matter density, Ω_m, and the dark energy density, Ω_k, was presented. For the Union2 sample, we found a good agreement between a ΛCDM model with the best-fitting parameters obtained specifically from this sample and the data. However, the slope of the curve is not exactly the same and a systematic deviation seems to appear at intermediate values of the scalefactor.

General relativity can accommodate the detected acceleration of the Universe but cannot give a deeper understanding about its cause. Non-standard cosmological models have been suggested as alternative explanations for acceleration without dark energy. We made use of the model-independent method to quantitatively compare the ability of some dark energy models and non-standard cosmologies to represent the data. Comparing the reconstruction recovered from the Union2 sample data with some braneworld, $f(R)$, and kinematic models, we found that none of the considered cosmologies can be rejected rigorously on the basis of the current SN Ia data. Particular braneworld models, such as the mDGP/DGP with some parameters, however, as well as some $f(R)$ and some kinematic models, clearly disagree with our reconstruction and can be ruled out. Using an optimal set of functions based on principal component analysis instead of an arbitrary basis will strengthen this statement.

We argue that the model-independent method is also a promising tool in checking for biases and discrepancies in the SN Ia cosmology samples. This was tested by performing the reconstructions for subsamples of the Union2 set – specifically the ESSENCE and the SNLS data – separately and comparing them with the corresponding best-fitting ΛCDM models. We find a general agreement between the different data and the models, although some tension at intermediate redshifts seems to be present in both.

Although the method as employed here is indicative of viability of dark energy models, improvements are necessary to reach a full decisive power. Apart from constructing an optimal basis for the series expansion of the luminosity distance, the model dependence induced by the calibration of the SNe Ia as distance indicators has to be taken into account.

An increasing body of high-quality data will help us to reduce systematic uncertainties and will provide a better reconstruction of the expansion rate. To demonstrate this, we studied the effect that more nearby SNe Ia will have on the reconstruction of $H(a)$. We generated a sample of 200 SNe at very low redshifts, uniformly distributed in the range of $0.86 < a < 1$ and with 30 per cent smaller errors than those of Hicken et al. (2009). These mock data were added to the Union2 sample and we found a great decrease in the size of the error bars. This confirms the fact that not only an increased number of distant SNe, but also higher quality data and larger number of nearby SNe are indeed needed to reconstruct the expansion history more accurately.

The strength of the method employed here to derive the expansion history of the Universe is that it provides a purely geometrical test. Contrary to many other ways of analysing cosmological data,
it does not revert to assumptions on the energy contents of the Universe nor its dynamics. It thus offers a complementary way of detecting possible systematic effects which could affect the data and be overlooked within a traditional analysis based on physically motivated parametrization. Moreover, it can be used to discriminate between different cosmological models and break the degeneracy in the cosmological parameters. In future work, we will consider not only SNIa data but also other cosmological probes, such as the angular distances from BAO, in order to obtain tighter constrains on the expansion history of the Universe. Finally, it is worthwhile noting the potential of the method for the analysis of possible local inhomogeneities through comparison of the expansion history in different directions.

ACKNOWLEDGMENTS

It is a pleasure to thank M. Kowalski, B. Leibundgut and R. Foley for providing helpful comments and suggestions. We also wish to thank S. Appleby for discussions on the $f(R)$ and DGP models. SB-H thanks R. Angulo for helpful discussions. This work was partially supported by the Deutsche Forschungsgemeinschaft via the Transregional Collaborative Research Center “The Dark Universe” (TRR 33), the Emmy Noether Program (RO 3676/1-1), and the Excellence Cluster “Origin and Structure of the Universe” (EXC 153).

REFERENCES

Alam U., Sahni V., 2006, Phys. Rev. D, 73, 084024
Amanullah R. et al., 2010, ApJ, 716, 712
Amarzguioui M., Elgarøy Ø., Mota D. F., Multamäki T., 2006, A&A, 454, 707
Amendola L., Gannouji R., Polarski D., Tsujikawa S., 2007, Phys. Rev. D, 75, 083504
Arfken G. B., Weber H. J., 1995, Mathematical Methods for Physicists. Academic Press, New York
Astier P. et al., 2006, A&A, 447, 31
Caldwell R. R., Dave R., Steinhardt P. J., 1998, Ap&SS, 261, 303
Carroll S. M., Duvvuri V., Trodden M., Turner M. S., 2004, Phys. Rev. D, 70, 043528
Carvalho F. C., Santos E. M., Alcaniz J. S., Santos J., 2008, J. Cosmol. Astropart. Phys., 9, 008
Chevallier M., Polarski D., 2001, Int. J. Modern Phys. D, 10, 213
Colgate S. A., 1979, ApJ, 232, 404
Daly R. A., Djorgovski S. G., 2003, ApJ, 597, 9
Daly R. A., Djorgovski S. G., 2004, ApJ, 612, 652
Deffayet C., 2001, Phys. Lett. B, 502, 199
Deffayet C., Dvali G., Gabadadze G., 2002, Phys. Rev. D, 65, 044023
Dvali G., Turner M. S., 2003, preprint (astro-ph/0301510v1)
Dvali G., Gabadadze G., Porrati M., 2000, Phys. Lett. B, 485, 208
Elgarøy Ø., Multamäki T., 2006, J. Cosmol. Astropart. Phys., 9, 2
Etherington I. M. H., 1933, Philos. Magazine, 15, 761
Fairbairn M., Goobar A., 2006, Phys. Rev. D, 74, 083513
Fay S., Tavakol R., 2006, Phys. Rev. D, 75, 083509
Freed K., Adams F. C., Frieman J. A., Mottola E., 1987, Nuclear Phys. B, 287, 797
Frieman J. A., Hill C. T., Stebbins A., Waga I., 1995, Phys. Rev. Lett., 75, 2077
Frieman J. A., Turner M. S., Huterer D., 2008, ARA&A, 46, 385
Guimarães A. C. C., Cunha J. V., Lima J. A. S., 2009, J. Cosmol. Astropart. Phys., 10, 010
Guo Z.-K., Zhu Z.-H., Alcaniz J. S., Zhang Y.-Z., 2006, ApJ, 646, 1
Guy J. et al., 2007, A&A, 466, 1
Hamuy M., Phillips M. M., Suntzef N. B., Schommer R. A., Maza J., Aviles R., 1996, AJ, 112, 2391
Hicken M., Wood-Vasey W. M., Blondin S., Challis P., Jha S., Kelly P. L., Rest A., Kirshner R. P., 2009, ApJ, 700, 1097
Holtzman J. A. et al., 2008, AJ, 136, 2306
Hu W., Sawicki I., 2007, Phys. Rev. D, 76, 064004
Kowalski M. et al., 2008, ApJ, 686, 749
Leibundgut B., 2001, ARA&A, 39, 67
Leibundgut B., 2008, Gen. Relativ. Gravitation, 40, 221
Liang N., Zhu Z.-H., 2011, Res. Astron. Astrophys., 11, 497
Liddle A. R., Lyth D. H., Viana P. T. P., White M., 1996, MNRAS, 282, 281
Linder E. V., 2003, Phys. Rev. Lett., 90, 091301
Maartens R., 2004, Living Rev. Relativ., 7, 7
Maartens R., Majerotto E., 2006, Phys. Rev. D, 74, 023004
Maturi M., Mignone C., 2009, A&A, 508, 45
Mignone C., Bartelmann M., 2008, A&A, 481, 295
Miknaitis G. et al., 2007, ApJ, 666, 674
Nojiri S., Odintsov S. D., 2006, preprint (hep-th/0601213v5)
Ostriker J. P., Steinhardt P. J., 1995, Nat, 377, 600
Perlmutter S. et al., 1999, ApJ, 517, 565
Riess A. G. et al., 1998, AJ, 116, 2391
Riess A. G. et al., 2004, ApJ, 607, 665
Riess A. G. et al., 2007, ApJ, 659, 98
Sahni V., 2002, Classical Quantum Gravity, 19, 3435
Schmidt B. P. et al., 1998, ApJ, 507, 46
Seikel M., Schwartz D. J., 2008, J. Cosmol. Astropart. Phys., 2, 7
Seikel M., Schwartz D. J., 2009, J. Cosmol. Astropart. Phys., 2, 24
Shafieloo A., 2007, MNRAS, 380, 1573
Shafieloo A., Alam U., Sahni V., Starobinsky A. A., 2006, MNRAS, 366, 1081
Starobinsky A. A., 1980, Phys. Lett. B, 91, 99
Starobinsky A. A., 1998, Soviet J. Exp. Theor. Phys. Lett., 68, 757
Steinhardt P. J., 1999, Phys. Lett. B, 462, 41
Tammann G. A., 1978, Mem. Soc. Astron. Ital., 49, 315
Tang J.-Y., Weller J., 2006, preprint (astro-ph/0609028v1)
Thomas S. A., Abdalla F. B., Weller J., 2009, MNRAS, 395, 197
Turner M. S., Huterer D., 2007, J. Phys. Soc. Jpn., 76, 111015
Turner M. S., White M., 1996, AJ, 112, 2391
Weinberg S., 1989, Rev. Modern Phys., 61, 1
Wetterich C., 1995, A&A, 301, 321
Wood-Vasey W. M. et al., 2007, ApJ, 666, 694
Zlatev I., Wang L., Steinhardt P. J., 1999, Phys. Rev. Lett., 82, 896

This paper has been typeset from a TEX file prepared by the author.