Fibered \mathcal{F}-Algebra

Aleks Kleyn

Abstract. The concept of \mathcal{F}-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered \mathcal{F}-algebra in fiber. The paper presents the representation theory of fibered \mathcal{F}-algebra as well as a comparison of representation of \mathcal{F}-algebra and of representation of fibered \mathcal{F}-algebra.

Theory of representation of algebra has long and extensive history. During XX century representation theory became an integral part of different applications. Transition from algebra to algebra bundle opens new opportunities. I have ventured to write this paper where I want to discover new properties of algebra bundle.

Since a cut of the bundle may be not defined on the whole bundle, all statements assume a specific domain. Such statements are modelled on statement about existence of trivial tangent bundle on manifold.

However there exists other group of statements restricting the domain of fibered \mathcal{F}-algebra. I give appropriate examples in the text. The explanation follows.

We suppose that transformation of fiber caused by parallel transfer is one-to-one map. Continuously moving along base, we continuously move from one fiber to other. Assumption that map between fibers is homeomorphism warranties continuous deformation of fiber.

If we choose the point in fiber, then the trajectory of its movement when its projection moves along base is parallel to base. In differential geometry such lines are called horizontal. We also will use this definition.

Since we assume that there is structure of \mathcal{F}-algebra on fiber, then we expect that corresponding map is isomorphism of \mathcal{F}-algebra. Continuity allows to save considered structures when we use parallel transfer, it allows to make smooth transfer from fiber to fiber.

This picture works well in the small. When we consider finite intervals on base, continuity becomes responsible for impossibility to extend the structure of \mathcal{F}-algebra as far as we please. For instance, there may apear points where homeomorphism is broken. It happens when horizontal lines have intersection or topological properties of fiber change. Corresponding fiber is called degenerate, and its projection is called point of degeneracy.

It is not easy to say how many points of degeneracy there are. It is clear by intuition that this set is small in comparison with the base. However, this set may prove to be essential for the study of geometry of bundles or physical processes associated with this bundle.

The problem to extend the solution of differential equation is one of such events in the theory of differential equations. At the same time, there exist two types of

Key words and phrases. differential geometry, bundle, algebra.

Aleks.Kleyn@MailAPS.org.
solution of differential equation. Regular solution belongs to family of functions dependent on arbitrary constants. Singular solution is envelope of family of regular solutions.

The problem of describing fibers of bundle, regardless whether they are degenerate or not, has an interesting solution. Any path on the base of bundle is map of interval \(I = [0, 1] \) into base of bundle. Let us assume that fibers of bundle are not homeomorphic, but homotopic.

The holonomy group of bundle also has constrains for structure of fibered \(\mathcal{F} \)-algebra \(\mathcal{A} = p[A] \). It is natural to assume that using parallel transfer we have homomorphism of \(\mathcal{F} \)-algebra from one fiber into another. Therefore, we assume that transformation caused by parallel transfer along loop is homomorphism of \(\mathcal{F} \)-algebra. Thus, everything is fine when the holonomy group of bundle \(\mathcal{A} \) is subgroup of group of homomorphisms of \(\mathcal{F} \)-algebra \(\mathcal{A} \). In this case fibered \(\mathcal{F} \)-algebra \(\mathcal{A} \) is called holonomic. Otherwise fibered \(\mathcal{F} \)-algebra \(\mathcal{A} \) is called anholonomic.

From theory of vector bundles we know that there exist fibered \(\mathcal{F} \)-algebra which is not holonomic. At the same time, the theory of vector bundles has answer how we can work with anholonomic fibered \(\mathcal{F} \)-algebra.

We apply this remark also to the theory of representations of fibered \(\mathcal{F} \)-algebra. A new design is illustrated through the use of corresponding diagrams.

Where it is possible I use the same notation for operations and relations as we use them in the set theory. It does not bring to ambiguity because we use different notation for set and bundle. I use the same letter in different alphabets to denote bundle and fiber.

We assume that projection of bundle, section and fibered map are smooth maps.

1. Bundle

Let \(M \) be a manifold and

\[
p[E] : E \to M
\]

be a bundle over \(M \) with fiber \(E \). The symbol \(p[E] \) means that \(E \) is a typical fiber of the bundle. Set \(E \) is domain of map \(p[E] \). Set \(M \) is range of map \(p[E] \). We identify the smooth map \(p[E] \) and the bundle \((1.1)\). Denote by \(\Gamma(p[E]) \) the set of sections of bundle \(p[E] \).

Cartesian power of set \(B \) is the set \(B^A \) of mappings \(f : A \to B \) ([5], page 5). Let us consider subsets of \(B^A \) of the form

\[
W_{K,U} = \{ f : A \to B | f(K) \subset U \}
\]

where \(K \) is compact subset of space \(A \), \(U \) is open subset of space \(B \). Sets \(W_{K,U} \) form base of topology on space \(B^A \). This topology is called **compact-open topology**.

Cartesian power \(A \) of set \(B \) is equipped by compact-open topology is called **mapping space** ([6], page 213).

According to [6], page 214, given spaces \(A, B, C, D \) and mappings \(f : A \to C \), \(g : D \to B \) we define morphism of mapping spaces

\[
g^f : D^C \to B^A
\]
by law
\[g^f(h) = fhg \quad h : C \to D \quad g^f(h) : A \to B \]
Thus, we can represent the morphism of mapping spaces using diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow{g^f(h)} & & \downarrow{h} \\
B & \xleftarrow{g} & D
\end{array}
\]

Set \(\Gamma(\mathcal{E}) \) is subset of set \(\mathcal{E}^M \). This is why for set of sections we can use definitions established for mapping set. This is why for set of sections we can use methods defined for mapping space. We define sets \(W_{K,U} \) by law
\[W_{K,U} = \{ f \in \Gamma(\mathcal{E}) | f(K) \subset U \} \]
where \(K \) is compact subset of space \(M \), \(U \) is open subset of space \(\mathcal{E} \).

Remark 1.1. I use arrow \(\longrightarrow \) to represent projection of bundle on diagram. □

Remark 1.2. I use arrow \(\longrightarrow \) to represent section of bundle on diagram. □

Let \(f \) be a fibered map from \(\mathcal{E} \) to \(\mathcal{E}' \)

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{f} & \mathcal{E}' \\
\downarrow{|p[\mathcal{E}]} & & \downarrow{|p'[\mathcal{E}']} \\
M & \xrightarrow{F} & M'
\end{array}
\]

The map \(F \) is the base of map \(f \). The map \(f \) is the lift of map \(F \).

Suppose map \(F \) is bijection. Then the map \(f \) defines morphism \(f^{F^{-1}} \) of spaces of sections \(\Gamma(p[E]) \) to \(\Gamma(p'[E'])\)

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{f} & \mathcal{E}' \\
\downarrow{f^{P-1}} & & \downarrow{u'} \\
M & \xrightarrow{F} & M'
\end{array}
\]

\[u' = f^{F^{-1}}(u) = fuF^{-1} \]

It is enough to prove continuity of \(F^{-1} \) to prove continuity of \(u' \). However this is evident, because \(F \) is continuous bijection.

Since \(F = id \), then \(id^{-1} = id \). In this case we use notation \(f^{id} \) for morphism of spaces of sections. It is evident, that

\[f^{id}(u) = fu \]

2. Cartesian Product of Bundles

Remark 2.1. Let \(A_1 \times ... \times A_n \) be Cartesian product of sets \(A_1, ..., A_n \)
According to [1] we can represent the map
\[f : A \to A_1 \times \ldots \times A_n \]
as tuple \(f = (f_1, \ldots, f_n) \) where \(f_i = f p_i \).

Let \(p_i[E_i] : E_i \to M_i \), \(i = 1, \ldots, n \) be the set of bundles. For any \(i \) let \(\{U_{i\alpha}\} \) be a cover of \(M_i \) such that for any \(U_{i\alpha} \), there exists a local chart \(\varphi_{i\alpha} \), of the bundle \(p_i[E_i] \).

Definition 2.2. For any point \(x_i \in M_i \) there exists open set \(U_{i\alpha} \), \(i = 1, \ldots, n \) such, that \(x_i \in U_{i\alpha} \). By \((x_i, a_i) \), \(x_i \in U_{i\alpha} \), \(a_i \in E_i \) denote a point of set \(E_i|U_{i\alpha} \). For tuple \(\alpha = (\alpha_1, \ldots, \alpha_n) \) we introduce trivial bundle
\[e_\alpha : E_\alpha = \prod_{i=1}^n E_i \]
with \(E_\alpha \) consisting of tuples \((x_1, \ldots, x_n, a_1, \ldots, a_n) \). Cartesian product \(\prod_{i=1}^n U_{i\alpha} \) is a base of this bundle. Cartesian product \(\prod_{i=1}^n U_{i\alpha} \) is a base of this bundle.

Continuity of projection of this bundle follows from Corollary 1 of Proposition 1 ([8], page 44).

To define a bundle over manifold \(\prod_{i=1}^n M_i \), we need to define gluing functions. Let \(\psi_{i\alpha, \beta} \) be gluing functions of bundle \(p_i[E_i] \).

Suppose \(U_{\alpha} \cap U_{\beta} \neq \emptyset \). Then we define gluing function using diagram
\[U_{i\alpha} \times E_i \xrightarrow{\varphi_{i\alpha}} E_i|U_{i\alpha} \]
\[U_{i\beta} \times E_i \xrightarrow{\varphi_{i\beta}} E_i|U_{i\beta} \]

Bundle
\[p_1[E_1] \times \ldots \times U_n = \prod_{i=1}^n p_i[E_i] = p[\prod_{i=1}^n E_i] : E \to M \]
is called **Cartesian product of bundles** \(p_i[E_i] \). We also speak that the total space \(\mathcal{E} \) is **Cartesian product of total spaces** \(\mathcal{E}_i \) and use notation

\[
\mathcal{E} = \mathcal{E}_1 \times \ldots \times \mathcal{E}_n = \prod_{i=1}^{n} \mathcal{E}_i
\]

Remark 2.3. According to remark 2.1 we can represent a section of Cartesian product of bundles \(p_1[E_1] \times \ldots \times p_n[E_n] \) as tuple of sections \(a = (a_1, \ldots, a_n) \).

We will use following diagrams to represent Cartesian product of bundles

\[
\begin{array}{c}
\xymatrix{
\mathcal{E} \ar[dr]_{p_1} \ar[dd] & & \mathcal{E} \ar[dl]^{p_n} \ar[dd] \\
\times \ldots \times & & \prod_{i=1}^{n} p_i \\
M_1 & & M_n
}\\
\end{array}
\]

On the diagram, the arrows connected by either symbol \(\times \) or \(\prod \) denote the arrow corresponding to projection of bundle \(\mathcal{E} \). The notation is intended to show the structure of map.

Product of any two fibers is defined in the Cartesian product of bundles. As we see below, such bundle reproduces the structure of the base. This substantially restricts the application of Cartesian product of bundles.

3. Reduced Cartesian Product of Bundles

Since bundles are defined over common base we can change definition of Cartesian product of bundles.

Let \(p_i[E_i] : \mathcal{E}_i \rightarrow M, \ i = 1, \ldots, n \) be the set of bundles over manifold \(M \). For any \(i \) let \(\{U_{i\alpha}\} \) be a cover of \(M \) such that for any \(U_{i\alpha} \), there exists a local chart \(\varphi_{i\alpha} \) of the bundle \(p_i[E_i] \)

\[
U_{i\alpha} \times E_i \xrightarrow{\varphi_{i\alpha}} \mathcal{E}_i|_{U_{i\alpha}}
\]

Definition 3.1. For any point \(x \in M \) there exist open sets \(U_{i\alpha}, \ i = 1, \ldots, n \) such, that \(x \in U_{i\alpha} \). By \((x,a_i), \ x \in U_{i\alpha}, \ a_i \in E_i \) denote a point of set \(\mathcal{E}_i|_{U_{i\alpha}} \). For tuple \(\alpha = (\alpha_1, \ldots, \alpha_n) \) we introduce trivial bundle \(p_\alpha : \mathcal{E}_\alpha \rightarrow U_\alpha = \bigcap_{i=1}^{n} U_{i\alpha} \), with \(\mathcal{E}_\alpha \) consisting of tuples \((x,a_1,\ldots,a_n) \). Cartesian product \(\prod_{i=1}^{n} E_i \) is a fiber of this bundle. The set \(U_\alpha \) is a base of this bundle.

According to definition, we can represent the bundle over set \(U_\alpha \) as

\[
U_\alpha \times \prod_{i=1}^{n} E_i
\]

According to [8], page 44, given \(U \) belongs to the base of topology of space \(U_\alpha \), then \(U \times \prod_{i=1}^{n} E_i \) belongs to the base of topology of space \(\mathcal{E}_\alpha \). We can represent
set U as $U = \bigcup_{i \in I} U_i$, where U_i belong to the base of topology of space M, if U is open set of space M. Accordingly, the set

$$p_\alpha^{-1}(U) = U \times \prod_{i=1}^{n} E_i$$

can be represented as

$$p_\alpha^{-1}(U) = \bigcup_{i \in I} (U_i \times \prod_{i=1}^{n} E_i)$$

and it is an open set. Therefore, projection p_α is continuous mapping.

To define a bundle over manifold M, we need to define gluing functions. Let $\psi_{i\alpha,\beta}$ be gluing functions of bundle $p_i[E_i]$

$$U_{\alpha_i} \times E_i \overset{\varphi_{i\alpha}}{\longrightarrow} \mathcal{E}|_{U_{\alpha_i}}$$

$$\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow$$

$$U_{\beta_i} \times E_i \overset{\varphi_{i\beta}}{\longrightarrow} \mathcal{E}|_{U_{\beta_i}}$$

Suppose $U_\alpha \cap U_\beta \neq \emptyset$. Then we define gluing function using diagram

$$U_\alpha \times E_1 \times \ldots \times E_n \overset{id}{\longrightarrow} \mathcal{E}|_{U_\alpha}$$

$$\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow$$

$$U_\beta \times E_1 \times \ldots \times E_n \overset{id}{\longrightarrow} \mathcal{E}|_{U_\beta}$$

Bundle

$$p_1[E_1] \odot \ldots \odot p_n[E_n] = \bigodot_{i=1}^{n} p_i[E_i] = p_i[\prod_{i=1}^{n} E_i] : E \rightarrow M$$

is called **reduced Cartesian product of bundles** $p_i[E_i]$. We also speak that the total space \mathcal{E} is **reduced Cartesian product of total spaces** \mathcal{E}_i and use notation

$$\mathcal{E} = \mathcal{E}_1 \odot \ldots \odot \mathcal{E}_n = \bigodot_{i=1}^{n} \mathcal{E}_i$$

Remark 3.2. According to remark 2.1 we can represent a section of reduced Cartesian product of bundles $p_1[E_1] \odot \ldots \odot p_n[E_n]$ as tuple of sections $a = (a_1, \ldots, a_n)$. □

We will use following diagrams to represent reduced Cartesian product of bundles

On the diagram, the arrows connected by symbol \odot denote the arrow corresponding to projection of bundle \mathcal{E}. The notation is intended to show the structure of map.

In reduced Cartesian product we define product of fibers over selected point. This makes the structure of product more rich.
Definition 3.3. For \(n \geq 0 \) we define Cartesian power of bundle\(^2\)

\[
\begin{align*}
 p[E]^0 &= id : M \rightarrow M & n &= 0 \\
 p[E]^n &= \bigcap_{i=1}^{n} p[E] : \mathcal{E}^n \rightarrow M & n &> 0
\end{align*}
\]

\[\square\]

4. FIBERED \(F \)-ALGEBRA

Definition 4.1. An \(n \)-ary operation on bundle \(p[E] \) is a fibered map

\[f : \mathcal{E}^n \rightarrow \mathcal{E} \]

\(n \) is arity of operation. \(0 \)-arity operation is a section of \(\mathcal{E} \).

We can represent the operation using the diagram

\[\begin{array}{c}
\mathcal{E}^n \\
P = \cdots \\
\xrightarrow{\omega} \mathcal{E} \\
\xrightarrow{id} M
\end{array}\]

Theorem 4.2. Let \(U \) be an open set of base \(M \). Suppose there exist trivialization of bundle \(p[E] \) over \(U \). Let \(x \in M \). Let \(\omega \) be \(n \)-ary operation on bundle \(p[E] \) and

\[\omega(p_1, \ldots, p_n) = p \]

in the fiber \(E_x \). Then there exist open sets \(V \subseteq U, W \subseteq E, W_1 \subseteq E_1, \ldots, W_n \subseteq E_n \) such, that \(x \in V \), \(p \in W \), \(p_1 \in W_1 \), \ldots, \(p_n \in W_n \), and for any \(x' \in V \), \(p' \in W \cap \omega V \) there exist \(p'_1 \in W_1 \), \ldots, \(p'_n \in W_n \) such, that

\[\omega(p'_1, \ldots, p'_n) = p' \]

in the fiber \(E_{x'} \).

Proof. According to [8], page 44, since \(V \) belongs to the base of topology of space \(U \) and \(W \) belongs to the base of topology of space \(E \), then set \(V \times W \) belongs the base of topology of space \(\mathcal{E} \). Similarly, since \(V \) belongs to the base of topology of space \(U \) and \(W_1, \ldots, W_n \) belong to the base of topology of space \(E \), set \(V \times W_1 \times \ldots \times W_n \) belongs the base of topology of space \(\mathcal{E}^n \).

Since mapping \(\omega \) is continuous, then for an open set \(V \times W \) there exists an open set \(S \subseteq \mathcal{E}^n \) such, that \(\omega S \subseteq V \times W \). Suppose \(x' \in V \). Let \((x', p') \in \omega S \) be an arbitrary point. Then there exist such \(p'_1 \in E_{x'}, \ldots, p'_n \in E_{x'} \), that

\[\omega(p'_1, \ldots, p'_n) = p' \]

in fiber \(E_{x'} \). According to this there exist sets \(R, R' \) from base of topology of space \(U \), and sets \(T_1, \ldots, T_n, T'_1, \ldots, T'_n \) from base of topology of space \(E \), such that \(x \in R \), \(x' \in R' \), \(p_1 \in T_1 \), \(p'_1 \in T'_1 \), \ldots, \(p_n \in T_n \), \(p'_n \in T'_n \), \(R \times T_1 \times \ldots \times T_n \subseteq S \), \(R' \times T'_1 \times \ldots \times T'_n \subseteq S \). We proved the theorem since \(W_1 = T_1 \cup T'_1 \), \ldots, \(W_n = T_n \cup T'_n \) are open sets.

\[\square\]

\(^2\)Since I use definition of Cartesian power of bundle only in frame of reduced Cartesian product, I do not use respective adjective for power. I use this remark for all following definitions related to Cartesian power of bundle.
Theorem 4.2 tells about continuity of operation \(\omega \), however this theorem tells nothing regarding sets \(W_1, ..., W_n \). In particular, it is possible that these sets are not connected.

We suppose \(W = \{p\} \), \(W_1 = \{p_1\} \), ..., \(W_n = \{p_n\} \), if topology on fiber \(A \) is discrete. This leads one to assume that in the neighborhood \(V \) the operation does not depend on a fiber. We call the operation \(\omega \) locally constant. However, it is possible that a condition of constancy is broken on bundle in general. Thus the covering space \(R \to S^1 \) of the circle \(S^1 \) defined by \(p(t) = (\sin t, \cos t) \) for any \(t \in R \) is bundle over circle with fiber of group of integers.

Let us consider the alternative point of view on the continuity of operation \(\omega \) to get a better understanding of role of continuity. Let us consider the continuity of operation \(\omega \) to better see what does it mean. We need to consider sections, if we want to show that infinitesimal change of operand when moving along base causes infinitesimal change of operation. This change is legal, because we defined operation on bundle in fiber.

Theorem 4.3. An \(n \)-ary operation on bundle maps sections into section.

Proof. Suppose \(f_1, ..., f_n \) are sections and we define map

\[
(4.1) \quad f = \omega^{id}(f_1, ..., f_n) : M \to E
\]
as

\[
(4.2) \quad f(x) = \omega(f_1(x), ..., f_n(x))
\]

Let \(x \in M \) and \(u = f(x) \). Let \(U \) be a neighborhood of the point \(u \) in the range of the map \(f \).

Since \(\omega \) is smooth map, then according to [8], page 44, for any \(i, 1 \leq i \leq n \) the set \(U_i \) is defined in the range of section \(f_i \) such that \(\prod_{i=1}^n U_i \) is open in the range of section \((f_1, ..., f_n) \) of the bundle \(E^n \) and

\[
\omega(\prod_{i=1}^n U_i) \subseteq U
\]

Let \(u' \in U \). Since \(f \) is a map, then there exist \(x' \in M \) such that \(f(x') = u' \). From equation \((4.2) \) it follows that there exist \(u'_1, ..., u'_n \) such, that \(\omega(u'_1, ..., u'_n) = u' \). Since \(f_i \) is a section, then there exist a set \(V_i \subseteq M \) such that \(f_i(V_i) \subseteq U_i \) and \(x \in V_i, x' \in V_i \). Therefore, the set

\[
V = \cap_{i=1}^n V_i
\]
is not empty, it is open in \(M \) and \(x \in V, x' \in V \). Thus the map \(f \) is smooth and \(f \) is the section.

We can represent the operation using the diagram

\[
\begin{array}{c}
\mathcal{E}^n \xrightarrow{\omega} \mathcal{E} \\
M \xrightarrow{id} M \\
a_1 \times ... \times a_n
\end{array}
\]
Theorem 4.4. \(\omega_{id} \) is continuous on \(\Gamma(\mathcal{E}) \).

Proof. Let us consider a set \(W_{K,U} \), where \(K \) is compact set of space \(M, U \) is open set of space \(\mathcal{E} \). We can represent set \(U \) as \(V \times E \), where \(V \) is open set of space \(M, K \subset V \). \(\omega^{-1}(V \times E) = V \times E^n \) is open set. Therefore, \((\omega_{id})^{-1}W_{K,V \times E} = W_{K,V \times E^n} \) from (4.3) continuity of \(\omega_{id} \) follows. \qed

Definition 4.5. Let \(A \) be \(\mathcal{F} \)-algebra ([2]). We can extend \(\mathcal{F} \)-algebraic structure from fiber \(A \) to bundle \(p[A] : A \rightarrow M \). If operation \(\omega \) is defined on \(\mathcal{F} \)-algebra \(A \)

\[
a = \omega(a_1, ..., a_n)
\]

then operation \(\omega \) is defined on bundle

\[
a(x) = \omega(a_1, ..., a_n)(x) = \omega(a_1(x), ..., a_n(x))
\]

We say that \(p[A] \) is a fibered \(\mathcal{F} \)-algebra. \qed

Depending on the structure we talk for instance about fibered group, fibered ring, or vector bundle.

Main properties of \(\mathcal{F} \)-algebra hold for fibered \(\mathcal{F} \)-algebra as well. Proving appropriate theorems we can refer on this statement. However in certain cases the proof itself may be of deep interest, allowing a better view of the structure of the fibered \(\mathcal{F} \)-algebra. However properties of \(\mathcal{F} \)-algebra on the set of sections are different from properties of \(\mathcal{F} \)-algebra in fiber. For instance, if the product in fiber has inverse element, it does not mean that the product of sections has inverse element. Therefore, fibered continuous field generates ring on the set of sections. This is the advantage when we consider fibered algebra. I want also to stress that the operation on bundle is not defined for elements from different fibers.

Let transition functions \(g_{\alpha\delta} \) determine bundle \(B \) over base \(N \). Let us consider maps \(V_\epsilon \in N \) and \(V_\delta \in N, V_\epsilon \cap V_\delta \neq \emptyset \). Point \(q \in B \) has representation \((y, q_\epsilon) \) in map \(V_\epsilon \) and representation \((y, q_\delta) \) in map \(V_\delta \). Therefore,

\[
p_\alpha = f_{\alpha\beta}(p_\beta)
\]

\[
q_\epsilon = g_{\alpha\delta}(q_\delta)
\]

When we move from map \(U_\alpha \) to map \(U_\beta \) and from map \(V_\epsilon \) to map \(V_\delta \), representation of correspondence changes according to the law

\[
(x, y, p_\alpha, q_\epsilon) = (x, y, f_{\alpha\beta}(p_\beta), g_{\alpha\delta}(q_\delta))
\]

This is consistent with the transformation when we move from map \(U_\alpha \times V_\epsilon \) to map \(U_\beta \times V_\delta \) in the bundle \(A \times B \).

Theorem 4.6. Let transition functions \(f_{\alpha\beta} \) determine fibered \(\mathcal{F} \)-algebra \(p[A] : A \rightarrow M \) over base \(M \). Then transition functions \(f_{\alpha\beta} \) are homomorphisms of \(\mathcal{F} \)-algebra \(A \).

Proof. Let \(U_\alpha \in M \) and \(U_\beta \in M, U_\alpha \cap U_\beta \neq \emptyset \) be neighborhoods where fibered \(\mathcal{F} \)-algebra \(p[A] \) is trivial. Let

\[
a_\beta = f_{\beta\alpha}(a_\alpha)
\]
Aleks Kleyn
Fibered F-Algebra

be map from bundle $p[A]|_{U_a}$ into bundle $p[A]|_{U_b}$. Let ω be n-ary operation and points $e_1, ..., e_n$ belong to fiber A_x, $x \in U_1 \cap U_2$. Suppose

\begin{equation}
(4.5) \quad e = \omega(e_1, ..., e_n)
\end{equation}

We represent point $e \in p[A]|_{U_a}$ as (x, e_α) and point $e_i p[A]|_{U_a}$ as $(x, e_i \alpha)$. We represent point $e \in p[A]|_{U_b}$ as (x, e_β) and point $e_i \in p[A]|_{U_b}$ as $(x, e_i \beta)$. According to (4.4)

\begin{equation}
(4.6) \quad e_\beta = f_{\beta \alpha}(e_\alpha)
\end{equation}

\begin{equation}
(4.7) \quad e_i \beta = f_{\beta \alpha}(e_i \alpha)
\end{equation}

According to (4.5), the operation in the bundle A_x over neighborhood U_β is

\begin{equation}
(4.8) \quad e_\beta = \omega(e_{1\beta}, ..., e_{n\beta})
\end{equation}

Substituting (4.6), (4.7) into (4.8) we get

\[f_{\beta \alpha}(e_{\alpha}) = \omega(f_{\beta \alpha}(e_{1\alpha}), ..., f_{\beta \alpha}(e_{n\alpha})) \]

This proves that $f_{\beta \alpha}$ is homomorphism of F-algebra.

Definition 4.7. Let $p[A] : A \to M$ and $p'[A'] : A' \to M'$ be two fibered F-algebras. Bundle map

\[f : A \to A' \]

is called **homomorphism of fibered F-algebra** if respective fiber map

\[f_x : A_x \to A'_x \]

is homomorphism of F-algebra A.

Definition 4.8. Let $p[A] : A \to M$ and $p'[A'] : A' \to M'$ be two fibered F-algebras. Homomorphism of fibered F-algebras f is called **isomorphism of fibered F-algebras** if respective fiber map

\[f_x : A_x \to A'_x \]

is isomorphism of F-algebra A.

Definition 4.9. Let $p[A] : A \to M$ be an F-fibered F-algebra and A' be F-subalgebra of the F-algebra A. An fibered F-algebra $p[A'] : A' \to M'$ is a **fibered F-subalgebra** of the fibered F-algebra $p[A]$ if homomorphism of fibered F-algebras $A' \to A$ is fiber embedding.

The homomorphism of fibered F-algebra is essential part of this definition. We can break continuity, if we just limit ourselves to the fact of the existence of F-subalgebra in each fiber.

We defined an operation based reduced Cartesian product of bundles. Suppose we defined an operation based Cartesian product of bundles. Then the operation is defined for any elements of the bundle. However, since $p(a_i) = p(b_j)$, $i = 1, ..., n$, then $p(\omega(a_1, ..., a_n)) = p(\omega(b_1, ..., b_n))$. Therefore, the operation is defined between fibers. We can map this operation to base using projection. This structure is not different from quotient F-algebra and does not create new element in bundle theory. The same time mapping between different maps of bundle and opportunity to define an operation over sections create problems for this structure.
5. Representation of Fibered \mathcal{F}-Algebra

Definition 5.1. We call the fibered map

$$t : \mathcal{E} \to \mathcal{E}$$

transformation of bundle, if respective fiber map

$$t_x : E_x \to E_x$$

is transformation of a fiber. □

Theorem 5.2. Let U be open set of base M such that there exists a local chart of the bundle $p[E]$. Let t be transformation of bundle $p[E]$. Let $x \in M$ and $p' = t_x(p)$ in fiber E_x. Then for an open set $V \subseteq M$, $x \in V$ and for an open set $W' \subseteq E$, $p' \in W'$ there exists an open set $W \subseteq E$ such that if $x_1 \in V$, $p_1 \in W$, then $p'_1 = t_{x_1}(p_1) \in W$.

Proof. According to [8], page 44, sets $V \times W$, where V forms base of topology of space U and W forms base of topology of space E, form base of topology of space \mathcal{E}.

Since map t is continuous, then for open set $V \times W'$ there exists open set $V \times W$ such that $t(V \times W) \subseteq V \times W'$. This is the statement of theorem. □

Theorem 5.3. Transformation of bundle $p[E]$ maps section into section.

Proof. We define the image of section s over transformation t using commutative diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{t} & \mathcal{E} \\
\downarrow{s} & & \downarrow{s'} \\
M & & M
\end{array}
\]

Continuity of map s' follows from theorem 5.2. □

Definition 5.4. Transformation of bundle is left-side transformation or T^\star-transformation of bundle if it acts from left

$$u' = t u$$

We denote $^\star \mathcal{E}$ or $^\star p[E]$ or the set of nonsingular T^\star-transformations of bundle $p[E]$. □

Definition 5.5. Transformations is right-side transformations or $\star T$-transformation of bundle if it acts from right

$$u' = u t$$

We denote \mathcal{E}^\star or $[pA]^\star$ the set of nonsingular $\star T$-transformations of bundle $p[E]$. □

We denote e identical transformation of bundle.

Since we define T^\star-transformation of bundle by fiber, then set $^\star p[E]$ is bundle isomorphic to the bundle $p[\mathcal{E}]$.

Definition 5.6. Suppose we defined the structure of fibered \mathcal{F}-algebra on the set $^\star p[A]$ (\cite{2}). Let $p[B]$ be fibered \mathcal{F}-algebra. We call homomorphism of fibered \mathcal{F}-algebras

$$f : p[B] \to p[A]$$

left-side representation or T^\star-representation of fibered \mathcal{F}-algebra $p[B]$. □
Definition 5.7. Suppose we defined the structure of fibered \(\mathcal{F} \)-algebra on the set \(p[A]^* \) \(^{(2)}\). Let \(p[B] \) be fibered \(\mathcal{F} \)-algebra. We call homomorphism of fibered \(\mathcal{F} \)-algebras

\[
f : p[B] \to p[A]^*
\]

right-side representation or \(\ast T \)-representation of fibered \(\mathcal{F} \)-algebra \(p[B] \).

We extend to bundle representation theory convention described in remark \([3]-2.2.14\). We can write duality principle in the following form

Theorem 5.8 (duality principle). Any statement which holds for \(T \ast \)-representation of fibered \(\mathcal{F} \)-algebra \(p[A] \) holds also for \(\ast T \)-representation of fibered \(\mathcal{F} \)-algebra \(p[A] \).

There are two ways to define a \(T \ast \)-representation of \(\mathcal{F} \)-algebra \(B \) in the bundle \(p[A] \). We can define or \(T \ast \)-representation in the fiber, either define \(T \ast \)-representation in the set \(\Gamma(p[A]) \). In the former case the representation defines the same transformation in all fibers. In the latter case the picture is less restrictive, however we do not have the whole picture of the diversity of representations in the bundle. Studying the representation of the fibered \(\mathcal{F} \)-algebra, we point out that representations in different fibers are independent. Demand of smooth dependence of transformation on fiber put additional constrains for \(T \ast \)-representation of fibered \(\mathcal{F} \)-algebra. The same time this constrain allows learn \(T \ast \)-representation of the fibered \(\mathcal{F} \)-algebra when in the fiber there defined \(\mathcal{F} \)-algebra with parameters (for instance, the structure constants of Lie group) smooth dependent on fiber.

Remark 5.9. Using diagrams we can express definition 5.6 the following way.

Map \(F \) is injection. Because we expect that representation of fibered \(\mathcal{F} \)-algebra acts in each fiber, then we see that map \(F \) is bijection. Without loss of generality, we assume that \(M = M' \) and map \(F \) is the identity map. We tell that we define the representation of the fibered \(\mathcal{F} \)-algebra \(p[B] \) in the bundle \(p[A] \) over the set \(M \).

Since we know the base of the bundle, then to reduce details on the diagram we will describe the representation using the following diagram

\[\square \]
Definition 5.10. Suppose map (5.1) is an isomorphism of the fibered \mathcal{F}-algebra $p[B]$ into $\ast p[A]$. Then the $T\ast$-representation of the fibered \mathcal{F}-algebra $p[B]$ is called effective. □

Remark 5.11. Suppose the $T\ast$-representation of fibered \mathcal{F}-algebra is effective. Then we identify an element of fibered \mathcal{F}-algebra and its image and write $T\ast$-transformation caused by element $a \in A$ as

$$v' = av$$

Suppose the $\ast T$-representation of \mathcal{F}-algebra is effective. Then we identify an element of fibered \mathcal{F}-algebra and its image and write $\ast T$-transformation caused by element $a \in A$ as

$$v' = va$$

Definition 5.12. We call a $T\ast$-representation of fibered \mathcal{F}-algebra transitive if for any $a, b \in V$ exists such g that

$$a = f(g)b$$

We call a $T\ast$-representation of fibered \mathcal{F}-algebra single transitive if it is transitive and effective. □

Theorem 5.13. $T\ast$-representation is single transitive if and only if for any $a, b \in M$ exists one and only one $g \in A$ such that $a = f(g)b$

Proof. Colorary of definitions 5.10 and 5.12. □

6. Representation of fibered group

Definition 6.1. Let $p[G] : G \rightarrow M$ and $p'[G'] : G' \rightarrow M'$ be two fibered groups. Bundle map

$$f : G \rightarrow G'$$

is called homomorphism of fibered groups if respective fiber map

$$f_x : G_x \rightarrow G'_x$$

is homomorphism of groups. □

Definition 6.2. Let $p[G] : G \rightarrow M$ and $p'[G'] : G' \rightarrow M'$ be two fibered groups. Bundle map

$$f : G \rightarrow G'$$

is called antihomomorphism of fibered groups if respective fiber map

$$f_x : G_x \rightarrow G'_x$$

is antihomomorphism of groups. □

Definition 6.3. Let $p[G]$ be fibered group. We call map

$$(6.1) \quad f : p[G] \rightarrow \ast p[A]$$

$T\ast$-representation of fibered group $p[G]$ in bundle $p[A]$ if map f holds

$$(6.2) \quad f(ab)\mu = f(a)(f(b)\mu)$$

$$(6.3) \quad f(e) = e$$

□
Definition 6.4. Let \(p[G] \) be fibered group. We call map

\[
(6.4) \quad f : p[G] \to p[A]
\]

\(\star T \)-representation of fibered group \(p[G] \) in bundle \(p[A] \) if map \(f \) holds

\[
(6.5) \quad \mu f(ab) = (\mu f(a))f(b) \\
(6.6) \quad f(\varepsilon) = e
\]

Theorem 6.5. For any \(a \in p[G] \)

\[
(6.7) \quad f(a^{-1}) = f(a)^{-1}
\]

Proof. Since (6.2) and (6.3), we have

\[
\mu = e\mu = f(aa^{-1})\mu = f(a)(f(a^{-1})\mu)
\]

This completes the proof. \(\square \)

Theorem 6.6. Let \(\star p[A] \) be a fibered group with respect to multiplication

\[
(6.8) \quad (t_1t_2)\mu = t_1(t_2\mu)
\]

and \(e \) be unit of group \(\star p[A] \). Let map (6.1) be a homomorphism of fibered group

\[
(6.9) \quad f(ab) = f(a)f(b)
\]

Then this map is representation of fibered group \(p[G] \) which we call \textbf{covariant \(\star T \)-representation of fibered group.}

Proof. Since \(f \) is homomorphism of fibered group, we have \(f(\varepsilon) = e \).

Since (6.8) and (6.9), we have

\[
f(ab)\mu = (f(a)f(b))\mu = f(a)(f(b)\mu)
\]

According definition 6.3 \(f \) is representation of fibered group. \(\square \)

We use following diagram to represent covariant \(\star T \)-representation of fibered group on the bundle.
Theorem 6.7. Let \(*p[A] \) be a fibered group with respect to multiplication

\[(t_2t_1)\mu = t_1(t_2\mu)\]

and \(e \) be unit of fibered group \(*p[A] \). Let map (6.1) be an antihomomorphism of fibered group

\[(6.11) \quad f(ba) = f(a)f(b)\]

Then this map is representation of fibered group \(p[G] \) which we call contravariant \(T^*- \)representation of fibered group.

Proof. Since \(f \) is antihomomorphism of fibered group, we have \(f(\epsilon) = e \).

Since (6.10) and (6.11), we have

\[f(ab)\mu = (f(b)f(a))\mu = f(a)(f(b)\mu)\]

According definition 6.3 \(f \) is representation of fibered group. \(\square \)

Example 6.8. The group composition on fibered group determines two different presentations on the fibered group: the \(T^*- \)shift on the fibered group which we introduce by the equation

\[(6.12) \quad b' = a^*b = ab\]

and the \(*T^* \)-shift on fibered group which we introduce by the equation

\[(6.13) \quad b' = b^*a = ba\]

Example 6.9. Let \(p[GL] \) be bundle over set of real numbers. Given the matrix \(A \), we can define section \(a(t) = exp(tA) \), and this section will cause respective \(T^*- \)shift.

Definition 6.10. Let \(f \) be representation of fibered group \(p[G] \) in bundle \(p[A] \). For any cut \(u \) of bundle \(p[A] \) we define its orbit of representation of fibered group as set

\[\mathcal{O}(u, g \in \Gamma(p[G]), f(g)u) = \{v = f(g)u : g \in \Gamma(p[G])\}\]

Since \(f(\epsilon) = e \) we have \(u \in \mathcal{O}(u, g \in \Gamma(p[G]), f(g)u) \).

Theorem 6.11. Suppose

\[(6.14) \quad v \in \mathcal{O}(u, g \in \Gamma(p[G]), f(g)u)\]

Then

\[\mathcal{O}(u, g \in \Gamma(p[G]), f(g)u) = \mathcal{O}(v, g \in \Gamma(p[G]), f(g)v)\]

Proof. From (6.14) it follows that there exists \(\mu \in \Gamma(p[G]) \) such that

\[(6.15) \quad v = f(\mu)u\]

Suppose \(\delta \in \mathcal{O}(v, g \in \Gamma(p[G]), f(g)v) \). Then there exists \(\nu \in \Gamma(p[G]) \) such that

\[(6.16) \quad \delta = f(\nu)v\]

If we substitute (6.15) into (6.16) we get

\[(6.17) \quad \delta = f(\nu)f(\mu)u\]
Since (6.2) we see that from (6.17) it follows that $\delta \in \mathcal{O}(u, g \in \Gamma(p[G]), f(g)u)$. Thus

$$\mathcal{O}(v, g \in \Gamma(p[G]), f(g)v) \subseteq \mathcal{O}(u, g \in \Gamma(p[G]), f(g)u)$$

Since (6.7), we see that from (6.15) it follows that

$$(6.18) \quad u = f(\mu)^{-1}v = f(\mu^{-1})v$$

From (6.18) it follows that $u \in \mathcal{O}(v, g \in \Gamma(p[G]), f(g)v)$ and therefore

$$\mathcal{O}(u, g \in \Gamma(p[G]), f(g)u) \subseteq \mathcal{O}(v, g \in \Gamma(p[G]), f(g)v)$$

This completes the proof. \qed

Let us define the representation of group G on the bundle $p[A] : E \rightarrow M$.

Since we call the representation transitive, then orbit of a point is the manifold E.

In the case of representation of fibered group $p[G]$ the orbit of a point is the fiber the point belongs to.

Theorem 6.12. Suppose f_1 is representation of fibered group $p[G]$ in bundle $p[A_1]$ and f_2 is representation of fibered group $p[G]$ in bundle $p[A_2]$. Then we introduce the direct product of representations f_1 and f_2 of fibered group $p[G]$

$$f = f_1 \otimes f_2 : p[G] \rightarrow p[A_1] \otimes p[A_2]$$

$$f(g) = (f_1(g), f_2(g))$$

Proof. To show that f is representation it is enough to prove that f satisfy to definition 6.3.

$$f(e) = (f_1(e), f_2(e)) = (e_1, e_2) = e$$

$$f(ab)u = (f_1(ab)u_1, f_2(ab)u_2)$$

$$= (f_1(a)(f_1(b)u_1), f_2(a)(f_2(b)u_2))$$

$$= f(a)(f_1(b)u_1, f_2(b)u_2)$$

$$= f(a)(f(b)u)$$

\qed

7. Single Transitive Representation

Definition 7.1. We call *kernel of inefficiency* of representation of fibered group $p[G]$ a set

$$K_f = \{ g \in \Gamma(p[G]) : f(g) = e \}$$

If $K_f = \{ e \}$ we call representation of fibered group G effective. \qed

Theorem 7.2. A kernel of inefficiency is a subgroup of fibered group G.

Proof. The proof does not depend on whether we use covariant representation or contravariant representation. Assume f is covariant representation and $f(a_1) = \delta$ and $f(a_2) = \delta$. Then

$$f(a_1a_2) = f(a_1)f(a_2) = \delta$$

$$f(a^{-1}) = f^{-1}(a) = \delta$$

\qed
Theorem 7.3. Representation is single transitive if and only if for any \(a,b \in \Gamma(p[A])\) exists one and only one \(g \in p[G]\) such that \(a = f(g)b\)

Proof. Statement is corollary of definitions 5.10 and 7.1 and of the theorem 7.2. □

Definition 7.4. We call a bundle \(p[A]\) **homogeneous bundle of fibered group** \(p[G]\) if we have single transitive representation of fibered group \(p[G]\) on \(p[A]\). □

Theorem 7.5. If we define a single transitive \(T\)\(^*\)-representation \(f\) of the fibered group \(p[G]\) on the bundle \(p[A]\) then we can uniquely define coordinates on \(p[A]\) using coordinates on the fibered group \(p[G]\).

Proof. The representation of the fibered group \(p[G]\) in the bundle \(p[A]\) is single transitive iff the representation of the group \(G\) in the fiber \(A_x\) for any \(x\) is single transitive. Let representation \(f\) of the fibered group \(p[G]\) be a covariant single transitive representation. Let \(u, v\) be sections of the bundle \(p[A]\). and \(x \in M\). According to theorem 3.4.5 we get the only element \(g_x \in G\) such that

\[
u(x) = f(g_x)v(x) = g_xv(x)
\]

a contravariant single transitive representation Thus the map \(x \rightarrow g_x\) is the section of the fibered group \(p[G]\).

The same way we prove the statement for a covariant single transitive representation.

To prove the first statement, we need to select the map on the manifold \(M\), where both bundles are trivial. Then we can represent coordinates of the point \(u \in p[A]\) as tuple of coordinates \((x, y)\) where \(x\) are coordinates of projection to the manifold \(M\) and \(y\) are coordinates of the point in the fiber. We can represent coordinates of the point \(a \in p[G]\) as tuple of coordinates \((x, g)\) where \(x\) are coordinates of projection to the manifold \(M\) and \(g\) are coordinates of the point in the group. Respectively, coordinates of the section of the bundle \(p[A]\) are the map \(y : M \rightarrow A\), and coordinates of the section of the bundle \(p[G]\) are the map \(y : M \rightarrow G\).

We select a section \(v \in \Gamma(p[A])\) and define coordinates of a point \(w \in \Gamma(p[A])\) as coordinates of \(a \in p[G]\) such that \(w = f(a)v\). Coordinates defined this way are unique up to choice of an initial section \(v \in \Gamma(p[A])\) because the action is effective. □

Remark 7.6. We will write effective \(T\)\(^*\)-covariant representation of the fibered group \(p[G]\) as

\[
v' = a \ast v = av
\]

Orbit of this representation is

\[
p[G]v = p[G] \ast v
\]

Remark 7.7. We will write effective \(\ast T\)-covariant representation of the fibered group \(p[G]\) as

\[
v' = v \ast a = va
\]

Orbit of this representation is

\[
vp[G] = v \ast p[G]
\]
Theorem 7.8. Left and right shifts on the fibered group $p[G]$ are commuting.
Proof. This is the consequence of the associativity on the fibered group $p[G]$
$$(a \star b) c = a (b c) = (ac) b = (b \star a)c$$

Theorem 7.9. If we defined a single transitive covariant T^\star-representation f of the
fibered group $p[G]$ on the bundle $p[A]$ then we can uniquely define a single transitive
covariant T^\star-representation h of the fibered group $p[G]$ on the bundle $p[A]$ such that

$$\begin{array}{c}
g \\
\downarrow \\
h(a)
\end{array}$$

is commutative for any $a, b \in \Gamma(p[G])$.

Proof. Let f be a single transitive covariant T^\star-representation. In each fiber A_x
the representation f defines a single transitive covariant T^\star-representation f_x of
group G. According to theorem [3]-3.4.10 in fiber A_x we uniquely define a single
transitive covariant T^\star-representation h_x comutable with representation f_x. For a
section $a \in \Gamma(p[G])$ we define the section
$$h(a): x \rightarrow h_x(a)$$

Map h is homomorphism of fibered group.

We call representations f and h twin representations of the fibered group
$p[G]$.

8. References

[1] Serge Lang, Algebra, Springer, 2002
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982),
eprint http://www.math.uwaterloo.ca/ snburris/htdocs/ualg.html
(The Millennium Edition)
[3] Aleks Kleyn, Lectures on Linear Algebra over Skew Field,
eprint arXiv:math.GM/0701238 (2007)
[4] Aleks Kleyn, Biring of Matrices,
eprint arXiv:math.OA/0612111 (2006)
[5] Paul M. Cohn, Universal Algebra, Springer, 1981
[6] C. R. F. Maunder, Algebraic Topology, Dover Publications, Inc, Mineola, New York, 1996
[7] J.-F. Pommaret, Partial Differential Equations and Group Theory, Springer, 1994
[8] N. Bourbaki, General Topology, Chapters 1 - 4, Springer, 1989
[9] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
9. Index

antihomomorphism of fibered groups 13
arity of operation 7
base of map 3

Cartesian power A of set B 2
Cartesian power of bundle 7
direct product of bundles 5
direct product of total spaces 5
compact-open topology 2
contravariant T^\ast-representation of fibered group 15
covariant T^\ast-representation of fibered group 14

direct product of representations of fibered group 16
effective representation of fibered \mathcal{F}-algebra 13
effective T^\ast-representation of fibered group 16

fibered \mathcal{F}-algebra 9
fibered \mathcal{F}-subalgebra 10
fibered group 9
fibered ring 9

homogeneous bundle of fibered group 17
homomorphism of fibered \mathcal{F}-algebras 10
homomorphism of fibered groups 13
isomorphism of fibered \mathcal{F}-algebras 10
kernel of inefficiency of representation of fibered group 16

left shift on fibered group 15
left-side representation of fibered \mathcal{F}-algebra 11
left-side transformation on bundle 11

lift of map 3
mapping space 2
operation on bundle 7
orbit of representation of fibered group 15

reduced Cartesian product of bundles 6
reduced Cartesian product of total spaces 6

right-side representation of fibered \mathcal{F}-algebra 12
single transitive representation of fibered \mathcal{F}-algebra 13
$\star T$-shift on fibered group 15

$\star T$-representation of fibered \mathcal{F}-algebra 12
$\star T$-representation of fibered group 14
$\star T$-transformation on bundle 11

transformation on bundle 11
transitive representation of fibered \mathcal{F}-algebra 13
T^\ast-representation of fibered \mathcal{F}-algebra 11
T^\ast-representation of fibered group 13
T^\ast-transformation on bundle 11
twin representations of fibered group 18

vector bundle 9
10. Special Symbols and Notations

- $b \star a$ $*$T-shift 15
- $a \star b$ $T*$-shift 15

B^A Cartesian power A of set B 2

- E^n Cartesian power of total spaces 7
- $\mathcal{E}_1 \times \cdots \times \mathcal{E}_n$ Cartesian product of total spaces 5
- e identical transformation of bundle 11

- $\mathcal{E}_1 \odot \cdots \odot \mathcal{E}_n$ reduced Cartesian product of total spaces 6
- \mathcal{E}^* set of nonsingular $*$T-transformations of bundle \mathcal{E} 11
- $^{*}\mathcal{E}$ set of nonsingular $T*$-transformations of bundle \mathcal{E} 11
- f homomorphism of fibered F-algebras 10
- $f = (f_1, \ldots, f_n)$ map to Cartesian product 4

- $vp[G]$ orbit of effective covariant $*$T-representation of fibered group 17
- $p[G]v$ orbit of effective covariant $T*$-representation of fibered group 17

- $\mathcal{O}(u, g \in \Gamma[p[G]), f(g)u)$ orbit of representation of fibered group G 15

- $p[E] : \mathcal{E} \twoheadrightarrow M$ bundle 2
- $p[E]^n$ Cartesian power of bundle 7
- $p_1[E_1] \times \cdots \times p_n[E_n]$ Cartesian product of bundles 4
- $p_1[E_1] \odot \cdots \odot p_n[E_n]$ reduced Cartesian product of bundles 6
- $p[A]^*$ set of nonsingular $*$T-transformations of bundle $p[E]$ 11
- $^{*}p[E]$ set of nonsingular $T*$-transformations of bundle $p[E]$ 11

- $\Gamma(p[E])$ set of sections of bundle 2
- $\prod_{i=1}^n p_i[E_i]$ Cartesian product of bundles 4
- $\prod_{i=1}^n \mathcal{E}_i$ Cartesian product of total spaces 5
- $\bigodot_{i=1}^n p_i[E_i]$ reduced Cartesian product of bundles 6
- $\bigodot_{i=1}^n \mathcal{E}_i$ reduced Cartesian product of total spaces 6
Расслоенная \mathcal{F}-алгебра

Александр Клейн

Аннотация. Понятие \mathcal{F}-алгебры и её представления может быть перено- сено на произвольное расслоение. Операции расслоенной \mathcal{F}-алгебры определены носильно. В статье рассмотрена теория представлений расслоенной \mathcal{F}-алгебры, а также проведено сравнение представления \mathcal{F}-алгебры и представления расслоенной \mathcal{F}-алгебры.

Теория представления алгебры имеет длинную и богатую историю. На протяжении XX столетия теория представления стала неотъемлемой частью многих приложений. Переход от алгебры к расслоенной алгебре открывает новые возможности. Я предпринял попытку написать эту статью с целью увидеть новые свойства расслоенной алгебры.

Так как сечения расслоения может быть не определено на всех расслоениях, все утверждения предполагают некоторую область определения. Подобные утверждения строятся по образцу утверждения о существовании тривимального касательного расслоения на многообразии.

Однако существует другая группа утверждений, ограничивающих область определения расслоенной \mathcal{F}-алгебры. В тексте приведены соответствующие примеры. Данная ситуация сводится к следующему.

Преобразование слоя при параллельном переносе предполагается взаимно однозначным отображением. Непрерывно перемещаясь вдоль базы, мы непрерывно переходим от слоя к другому. Предположение, что отображение между слоями является гомеоморфизмом, гарантирует непрерывную деформацию слоя.

Если мы выберем точку в слое, то её траектория при движении проекции вдоль базы будет параллельна базе. В дифференциальной геометрии подобные кривые называются горизонтальными. Мы так же будем придерживаться этого термина.

Если мы предполагаем на слое структуру \mathcal{F}-алгебры, то соответствующее отображение должно быть изоморфизмом \mathcal{F}-алгебры. Непрерывность позволяет сохранить при параллельном переносе изучаемые конструкции, сделать переход от слоя к слою практически незаметным.

Эта картина хорошо работает в мада. Когда мы переходим к конечным отрезкам на базе, непрерывность становится ответственной за то, что мы не можем продрать структуру \mathcal{F}-алгебры сколь угодно далеко. Например, могут появиться точки, где гомеоморфизм может быть нарушен. Это происходит, когда пересекаются горизонтальные кривые или изменяются топологические свойства слоя. Соответствующий слой мы называем вырожденным, а его проекцию - точкой вырождения.

Key words and phrases. дифференциальная геометрия, расслоения, алгебра.

AlexK_Kleyn@MailAPS.org.
Александр Клейн
Расслоенная \mathcal{F}-алгебра

Вопрос о том, как много точек выражения, вообще говоря, непростой. Интуитивно ясно, что это множество невелико по сравнению с базой. Тем не менее, это множество может оказаться существенным для изучения геометрии расслоения или физических процессов, связанных с этим расслоением.

К подходным явлениям в теории дифференциальных уравнений относится задача предельности решения дифференциального уравнения. В этом случае, дифференциальное разложение может иметь два типа решения. Регулярное решение принадлежит некоторому семейству функций, зависящих от произвольных постоянных. Особое решение является огибающей семейства регулярных решений.

Задача описания слоёв расслоения, независимо от того выражены они или нет, имеет интересное решение. Любой путь на базе расслоения является отображением отрезка $I = [0,1]$ в базу расслоения. Мы можем предположить, что слои расслоения не гомеоморфны, но гомотопны.

Группа гомононимий расслоения также накладывает ограничение на структуру расслоенной \mathcal{F}-алгебры $A = p[A]$. Естественно предположить, что если параллельным переносом мы переводим расслоение \mathcal{F}-алгебру из одного слоя в другой. Следовательно, предполагается, что преобразование, порождённое параллельным переносом вдоль замкнутого контура является гомононимом \mathcal{F}-алгебры.

Таким образом, всё хорошо, если группа гомононимий расслоения A является подгруппой группы гомононимов \mathcal{F}-алгебры A. В этом случае мы будем называть расслоенную \mathcal{F}-алгебру A гомононимой. В противном случае мы будем называть расслоенную \mathcal{F}-алгебру A негомононимой.

Из теории векторных расслоений известно, что не всякая расслоенная \mathcal{F}-алгебра является гомононимой. В этом случае, теория векторных расслоений предлагает рецепт каким образом мы можем работать с негомононимой расслоенной \mathcal{F}-алгеброй.

Это замечание относится также к теории представления расслоенной \mathcal{F}-алгебры.

Чтобы сделать новые конструкции более наглядными, я строю соответствующие диаграммы.

Обозначения операций и отношений по возможности сохраняются как они введены в теории множеств. Это не приводит к недоразумениям, так как обозначения расслоений отличны от обозначений множеств. Для обозначения расслоения и слоя я буду пользоваться одной и той же буквой в разных алфавитах.

Проекция расслоения, сечение, морфизм расслоений предполагаются непрерывными отображениями.

1. Расслоение

Допустим M - многообразие и

$$p[E] : \mathcal{E} \rightarrow M$$

расслоение над M со слоем E. Символ $p[E]$ означает, что E является типичным слоем расслоения. Множество \mathcal{E} является областью определения отображения $p[E]$. Множество M является областью значений отображения $p[E]$. Мы будем

1 Так как мне приходится иметь дело с различными расслоениями, я буду пользоваться следующим соглашением: Для обозначения расслоения я слоя я буду пользоваться одной и той же буквой в разных алфавитах.
отождествлять непрерывное отображение \(p[E] \) и расслоение (1.1). Обозначим через \(\Gamma(p[E]) \) множество сечений расслоения \(p[E] \).

Декартова степень \(A \) множества \(B \) - это множество \(B^A \) отображений \(f : A \rightarrow B \) ([3], стр. 18). Рассмотрим подмножества \(B^A \) вида
\[
W_{K,U} = \{ f : A \rightarrow B | f(K) \subset U \}
\]
где \(K \) - компактное подмножество пространства \(A \), \(U \) - открытое подмножество пространства \(B \). Множества \(W_{K,U} \) образуют базис топологии пространства \(B^A \). Эта топология называется компактно-открытой топологией. Декартова степень \(A \) множества \(B \), снабжённая компактно-открытой топологией называется пространством отображений ([6], стр. 213).

Согласно [6], стр. 214 для данных пространств \(A, B, C, D \) и отображений \(f : A \rightarrow C, g : D \rightarrow B \) мы определим морфизм пространства отображений
\[
g^f : D^C \rightarrow B^A
\]
равенством
\[
g^f(h) = fhg \quad h : C \rightarrow D \quad g^f(h) : A \rightarrow B
\]
Таким образом, морфизм пространства отображений можно представить с помощью диаграммы

Диаграмма:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow{g^f(h)} & & \downarrow{h} \\
B & & D \\
\end{array}
\]

Множество \(\Gamma(\mathcal{E}) \) является подмножеством множества \(\mathcal{E}^M \). Поэтому мы можем перенести на множество сечений понятие, определённые для пространства отображений. Множества \(W_{K,U} \) мы определим следующим образом
\[
W_{K,U} = \{ f \in \Gamma(\mathcal{E}) | f(K) \subset U \}
\]
где \(K \) - компактное подмножество пространства \(M, U \) - открытое подмножество пространства \(\mathcal{E} \).

Замечание 1.1. Я пользуюсь стрелкой \(\rightarrow \) на диаграмме для обозначения проекции расслоения.

Замечание 1.2. Я пользуюсь стрелкой \(\longrightarrow \) на диаграмме для обозначения сечения расслоения.

Пусть \(f \) - морфизм расслоения \(\mathcal{E} \) в \(\mathcal{E}' \)

Диаграмма:

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{f} & \mathcal{E}' \\
\downarrow{p[E]} & & \downarrow{p'[E']} \\
M & \xrightarrow{F} & M'
\end{array}
\]

Отображение \(F \) называется базой отображения \(f \). Отображение называется лифтом отображения \(F \).
Если отображение F - биекция, то отображение f определяет морфизм $f^{F^{-1}}$ пространств сечений $\Gamma(p[E])$ в $\Gamma(p'[E'])$.

$$\xymatrix{ \mathcal{E} \ar[r]^f & \mathcal{E}' \ar[d]^{u'} \ar[u]^{f^{F^{-1}}} \cr M \ar[r]_F & M' } \quad u' = f^{F^{-1}}(u) = fuF^{-1}$$

Чтобы доказать непрерывность u', достаточно доказать непрерывность F^{-1}. Но это очевидно, так как F непрерывная биекция.

Если $F = \text{id}$, то $\text{id}^{-1} = \text{id}$. Поэтому морфизм пространств сечений мы будем обозначать f^id. Очевидно

$$f^\text{id}(u) = fu$$

2. Декартово произведение расслоений

Замечание 2.1. Пусть $A_1 \times \ldots \times A_n$ является декартовым произведением множеств A_1, \ldots, A_n.

Согласно [1] отображение

$$f : A \to A_1 \times \ldots \times A_n$$

можно представить в форме кортежа $f = (f_1, \ldots, f_n)$, где $f_i = fp_i$.

Допустим $p_i[E_i] : \mathcal{E}_i \to M_i$, $i = 1, \ldots, n$ - семейство расслоений. Для каждого i пусть задано покрытие $\{U_{\alpha i}\}$ базы M_i такое, что для любого $U_{\alpha i}$ существует локальная тривиализация $\varphi_{\alpha i}$ расслоения $p_i[E_i]$.

$$\xymatrix{ U_{\alpha i} \times E_i \ar[r]^\varphi_{\alpha i} & \mathcal{E}_i|U_{\alpha i} \ar[dd]_{U_{\alpha i}} \cr & \ar[lu]_e }$$

Определение 2.2. Для произвольной точки $x_i \in M_i$ выберем открытую множества $U_{\alpha i}, i = 1, \ldots, n$ такое, что $x_i \in U_{\alpha i}$. Мы можем представить точку множества $\mathcal{E}_i|U_{\alpha i}$ в виде кортежа (x_i, a_i), $x_i \in U_{\alpha i}$, $a_i \in E_i$. Для кортежа $\alpha = (\alpha_1, \ldots, \alpha_n)$ рассмотрим тривиальное расслоение

$$e_\alpha : \mathcal{E}_\alpha \to U_\alpha = U_{\alpha 1} \times \ldots \times U_{\alpha n}$$
элементами которого являются точки \((x_1, \ldots, x_n, a_1, \ldots, a_n)\). Сложим это расслоения является декартовым произведением \(\prod_{i=1}^n E_i\). База расслоения является декартовым произведением \(\prod_{i=1}^n U_{i\alpha_i}\).

Непрерывность проекции этого расслоения следует из следствия 1 предложения 1 ([8], стр. 59).

Чтобы определить расслоение над многообразием \(\prod_{i=1}^n M_i\), мы должны определить функции склейивания. Пусть заданы функции склейивания \(\psi_{i\alpha_i\beta_i}\) расслоения \(p_i[E_i]\)

\[
\begin{align*}
U_{i\alpha_i} \times E_i & \xrightarrow{\varphi_{i\alpha_i}} E_{i|U_{i\alpha_i}} \\
(p_i, \psi_{i\alpha_i\beta_i}) & \longmapsto (p_i, \psi_{i\alpha_i\beta_i}) \\
U_{i\beta_i} \times E_i & \xrightarrow{\varphi_{i\beta_i}} E_{i|U_{i\beta_i}}
\end{align*}
\]

Если \(U_{i\alpha} \cap U_{i\beta} \neq \emptyset\), то мы определим склеивающее отображение, пользуясь диаграммой

\[
\begin{align*}
U_{i\alpha} \times E_1 \times \ldots \times E_n & \xrightarrow{id} E_{i|U_{i\alpha}} \\
(p, \psi_{i\alpha\beta}, \ldots, \psi_{\alpha\beta\gamma}) & \longmapsto (p, \psi_{i\alpha\beta}, \ldots, \psi_{\alpha\beta\gamma}) \\
U_{i\beta} \times E_1 \times \ldots \times E_n & \xrightarrow{id} E_{i|U_{i\beta}}
\end{align*}
\]

Расслоение

\[
p_1[E_1] \times \ldots \times p_n[E_n] = \prod_{i=1}^n p_i[E_i] = p_\prod_{i=1}^n E_i : \mathcal{E} \rightarrow M
\]

называется декартовым произведением расслоений \(p_i[E_i]\). Мы будем также говорить, что расслоенное пространство \(\mathcal{E}\) является декартовым произведением расслоенных пространств \(E_i\) и пользоваться обозначением

\[
\mathcal{E} = E_1 \times \ldots \times E_n = \prod_{i=1}^n E_i
\]

Замечание 2.3. Согласно замечанию 2.1 сечение декартового произведения расслоений \(p_1[E_1] \times \ldots \times p_n[E_n]\) можно представить в виде кортежа сечений \(a = (a_1, \ldots, a_n)\). □

Мы будем пользоваться следующими диаграммами для представления декартового произведения расслоений

\[
\begin{tikzpicture}
 \node (E) at (0,0) {\mathcal{E}};
 \node (E1) at (-2,-2) {E_1};
 \node (En) at (2,-2) {E_n};
 \node (Ei) at (0,-2) {$\prod_{i=1}^n E_i$};
 \node (M1) at (-4,-4) {M_1};
 \node (Mn) at (4,-4) {M_n};
 \node (Pi) at (-2,-4) {p_1};
 \node (Pn) at (2,-4) {p_n};
 \draw[->] (E) -- (Ei);
 \draw[->] (E1) -- (Ei);
 \draw[->] (En) -- (Ei);
 \draw[->] (M1) -- (Pi);
 \draw[->] (Mn) -- (Pn);
 \draw[->] (Pi) -- (E1);
 \draw[->] (Pn) -- (En);
 \draw[->] (Ei) -- (M1) node[midway, below] {ψ_1};
 \draw[->] (Ei) -- (Mn) node[midway, below] {ψ_n};
\end{tikzpicture}
\]

На диаграмме стрелки, объединенные знаком \(\times\) или \(\prod\), символизируют стрелку, соответствующую проекции расслоения \(\mathcal{E}\). Цель обозначения — показать структуру отображения.
В декартовом произведении расслоений определено произведение любых двух слоёв. Как мы увидим ниже, такое расслоение воспроизводит структуру базы. Это существенно ограничивает применимость декартова произведения расслоений.

3. ПРИВЕДЕННОЕ ДЕКАРТОВО ПРОИЗВЕДЕНИЕ РАССЛОЕНИЙ

Если расслоения определены над общей базой мы можем изменить определение декартова произведения расслоений.

Допустим \(p_i[E_i] : \mathcal{E}_i \to M, i = 1, \ldots, n \) - семейство расслоений над многообразием \(M \). Для каждого \(i \) пусть задано покрытие \(\{ U_{\alpha_i} \} \) базы \(M \) такое, что для любого \(U_{\alpha_i} \) существует локальная тривиализация \(\varphi_{\alpha_i} \) расслоения \(p_i[E_i] \)

\[
\begin{align*}
U_{\alpha_i} \times E_i & \xrightarrow{\varphi_{\alpha_i}} \mathcal{E}_i \mid_{U_{\alpha_i}} \\
& \rightarrow U_{\alpha_i}
\end{align*}
\]

Определение 3.1. Для произвольной точки \(x \in M \) выбираем открытые множества \(U_{\alpha_i}, i = 1, \ldots, n \) такие, что \(x \in U_{\alpha_i} \). Мы можем представить точку множества \(\mathcal{E}_i \mid_{U_{\alpha_i}} \) в виде кортежа \((x, a_i) \), \(x \in U_{\alpha_i}, a_i \in E_i \). Для кортежа \(\alpha = (\alpha_1, \ldots, \alpha_n) \) рассмотрим тривиальное расслоение \(p_\alpha : \mathcal{E}_\alpha \to U_\alpha = \bigcap_{i=1}^n U_{\alpha_i} \), элементами которого являются кортежи \((x, a_1, \ldots, a_n) \). Слоем этого расслоения является декартово произведение \(\prod_{i=1}^n E_i \). База расслоения является множеством \(U_\alpha \).

Согласно определению построенное расслоение над множеством \(U_\alpha \) можно представить в виде

\[
U_\alpha \times \prod_{i=1}^n E_i
\]

Согласно [8], стр. 58, если \(U \) принадлежит базису топологии пространства \(U_\alpha \), то \(U \times \prod_{i=1}^n E_i \) принадлежит базису топологии пространства \(\mathcal{E}_\alpha \). Если \(U \) открыто множество пространства \(M \), то мы можем представить множество \(U \) в виде \(U = \bigcup_{i \in I} U_i \), где \(U_i \) принадлежат базису топологии пространства \(M \). Соответственно, множество

\[
p_\alpha^{-1}(U) = U \times \prod_{i=1}^n E_i
\]

может быть представлено в виде

\[
p_\alpha^{-1}(U) = \bigcup_{i \in I}(U_i \times \prod_{i=1}^n E_i)
\]

и является открытым множеством. Следовательно, проекция \(p_\alpha \) является непрерывным отображением.
Чтобы определить расслоение над многообразием M, мы должны определить функции склеивания. Пусть заданы функции склеивания $\psi_{i\alpha,\beta}$, расслоения $p_i[E_i]$

$$U_{i\alpha} \times E_i \xrightarrow{\psi_{i\alpha}} \mathcal{E}|_{U_{i\alpha}}$$

Если $U_\alpha \cap U_\beta \neq \emptyset$, то мы определим склеивающее отображение, пользуясь диаграммой

$$U_\alpha \times E_1 \times \ldots \times E_n \xrightarrow{id} \mathcal{E}|_{U_\alpha}$$

Расслоение

$$p_1[E_1] \circ \ldots \circ p_n[E_n] = \bigodot_{i=1}^n p_i[E_i] = p[\prod_{i=1}^n E_i] : \mathcal{E} \to M$$

называется приведенным декартовым произведением расслоений $p_i[E_i]$. Мы будем также говорить, что расслоенное пространство \mathcal{E} является приведенным декартовым произведением расслоенных пространств \mathcal{E}_i и пользоваться обозначением

$$\mathcal{E} = \mathcal{E}_1 \circ \ldots \circ \mathcal{E}_n = \bigodot_{i=1}^n \mathcal{E}_i$$

Замечание 3.2. Согласно замечанию 2.1 сечение приведенного декартового произведения расслоений $p_1[E_1] \circ \ldots \circ p_n[E_n]$ можно представить в виде кортежа сечений $a = (a_1, \ldots, a_n)$.

Мы будем пользоваться следующими диаграммами для представления приведенного декартового произведения расслоений

На диаграмме стрелки, объединённые знаком \circ, символизируют стрелку, соответствующую проекции расслоения \mathcal{E}. Цель обозначения - показать структуру отображения.

В приведенном декартовом произведении определено произведение слоёв над заданной точкой. Это делает структуру произведения богаче.
Определение 3.3. Для $n \geq 0$ мы определим декартову степень расслоения:

$$
\begin{align*}
\{ p[E]^0 & = \text{id} : M - \rightarrow M \quad n = 0 \\
p[E]^n & = \bigodot_{i=1}^{n} p[E] : E^n - \rightarrow M \quad n > 0
\end{align*}
$$

\[\square \]

4. Расселонная F-алгебра

Определение 4.1. n-арная операция на расслоении $p[E]$ - это морфизм расслоений

$$
f : E^n \rightarrow E
$$

n - это арность операции. 0-арная операция - это сечение расслоения $p[A]$. \[\square \]

Операция на расслоении может быть представлена диаграммой

\[\text{дiаграмма} \]

Теорема 4.2. Пусть U - открытое множество базы M, и на U существует привилегированная, расслоения $p[E]$. Пусть $x \in M$. Пусть ω - n-арная операция на расслоении $p[E]$ и

$$
\omega(p_1, ..., p_n) = p
$$

в слое E_x. Тогда существуют открытие множества $V \subseteq U$, $W \subseteq E$, $W_1 \subseteq E_1$, ..., $W_n \subseteq E_n$ такие, что $x \in V$, $p \in W$, $p_1 \in W_1$, ..., $p_n \in W_n$, и для любых $x' \in V$, $p' \in W \cap \omega V$ существуют $p'_1 \in W_1$, ..., $p'_n \in W_n$ такие, что

$$
\omega(p'_1, ..., p'_n) = p'
$$

в слое $E_{x'}$.

Доказательство. Согласно [8], стр. 58, множества вида $V \times W$, где V принадлежит базису топологии пространства U и W принадлежит базису топологии пространства E, образуют базис топологии пространства E. Аналогично множества вида $V \times W_1 \times ... \times W_n$, где V принадлежит базису топологии пространства U и $W_1, ..., W_n$ принадлежат базису топологии пространства E, образуют базис топологии пространства E^n.

Так как отображение ω непрерывно, то для открытое множества $V \times W$ существует открытое множество $S \subseteq E^n$ такое, что $\omega S \subseteq V \times W$. Пусть $x' \in V$. Выберем произвольную точку $(x', p') \in \omega S$. Тогда существуют такие $p'_1 \in E_{x'}$, ..., $p'_n \in E_{x'}$, что

$$
\omega(p'_1, ..., p'_n) = p'
$$

2Поскольку я рассматриваю определение декартовой степени расслоения только в рамках приведенного декартова произведения, я не буду пользоваться соответствующим прямым для степени. Это замечание справедливо для всех последующих определений, связанных с декартовой степенью расслоения.
в слое E_n. Согласно сказанному выше существуют множества R, R', принадлежащие базису топологии пространства U, и множества $T_1, ..., T_n, T'_1, ..., T'_n$, принадлежащие базису топологии пространства E, такие, что $x \in R, x' \in R'$, $p_1 \in T_1, p'_1 \in T'_1, ..., p_n \in T_n, p'_n \in T'_n, R \times T_1 \times \ldots \times T_n \subseteq S, R' \times T'_1 \times \ldots \times T'_n \subseteq S$. Теорема доказана, так как $W_1 = T_1 \cup T'_1, ..., W_n = T_n \cup T'_n$ - открытые множества.

Теорема 4.2 говорит о непрерывности операции ω, однако эта теорема ничего не говорит о множествах $W_1, ..., W_n$. В частности, эти множества могут быть не связными.

Если топология на слое A - дискретна, то мы можем положить $W = \{p\}$, $W_1 = \{p_1\}, ..., W_n = \{p_n\}$. Возникает ощущение, что в окрестности V операция не зависит от слоя. Мы будем говорить, что операция ω локально постоянна. Однако на расслоении в целом условие постоянства может быть нарушено. Так расслоение над окружностью со слоем группы целых чисел может оказаться накрытием окружности $R \to S^1$ действительной прямой, определённым формулой $p(t) = (\sin t, \cos t)$ для любого $t \in R$.

Рассмотрим альтернативную точку зрения на непрерывность операции ω, чтобы лучше понять значение непрерывности. Если мы хотим показать, что бесконечно малые изменения операндов при движении вдоль базы приводят к бесконечно малому изменению операции, нам надо перейти к сечениям. Этот переход допустим, так как операция на расслоении определена последовательно.

Теорема 4.3. n-арная операция на расслоении отображает сечение в сечение.

Доказательство. Допустим $f_1, ..., f_n$ - сечения и отображение

$$f = \omega^d(f_1, ..., f_n) : M \to \mathcal{E}$$

определенное равенством

$$f(x) = \omega(f_1(x), ..., f_n(x)).$$

Пусть $x \in M$ и $u = f(x)$. Пусть U - окрестность точки u в области значений отображения f.

Так как ω непрерывное отображение, то согласно [8], стр. 58, для любого значения i, $1 \leq i \leq n$ в области значений сечения f_i определено открытое множество U_i так, что $\prod_{i=1}^n U_i$ открыто в области значений сечения $(f_1, ..., f_n)$ расслоения \mathcal{E}^n и

$$\omega(\prod_{i=1}^n U_i) \subseteq U.$$

Пусть $u' \in U$. Поскольку f - отображение, существует $x' \in M$ такая, что $f(x') = u'$. На основании равенства (4.2) существуют $u'_i \in U_i, p(u'_i) = x'$ такие, что $\omega(u'_1, ..., u'_n) = u'$. Так как f_i сечение, то существует открытое в M множество V_i такое, что $f_i(V_i) \subseteq U_i$ и $x \in V_i, x' \in V_i$. Следовательно, множество

$$V = \cap_{i=1}^n V_i$$

непусто, открыто в M и $x \in V, x' \in V$. Следовательно отображение f непрерывно и является сечением.

□
Операция на расслоении может быть представлена диаграммой

![Diagram](https://example.com/diagram.png)

Теорема 4.4. ω^id непрерывна на $\Gamma(\mathcal{E})$.

Доказательство. Рассмотрим множество $W_{K,U}$, где K - компактное подмножество пространства M, U - открытое подмножество пространства \mathcal{E}. Множество U мы можем представить в виде $V \times E$, где V - открытое множество пространства M, $K \subset V$. $\omega^{-1}(V \times E) = V \times E^n$ является открытым множеством. Следовательно,

$$\left(\omega^\text{id}\right)^{-1}W_{K,V \times E} = W_{K,V \times E^n}$$

Из (4.3) следует непрерывность ω^id. \square

Определение 4.5. Пусть A является \mathcal{F}-алгеброй (2). Мы можем переопределить \mathcal{F}-алгебраическую структуру со слоя A на расслоение $p[A]: A \rightarrow M$. Если на \mathcal{F}-алгебре A определена операция ω

$$a = \omega(a_1, ..., a_n)$$

tо на расслоении определена операция ω

$$a(x) = \omega(a_1, ..., a_n)(x) = \omega(a_1(x), ..., a_n(x))$$

Мы будем говорить, что $p[A]$ - это рассложенная \mathcal{F}-алгебра. \square

В зависимости от структуры мы будем говорить, например, о рассложенной группе, рассложенном колышце, векторном расслоении.

Основные свойства \mathcal{F}-алгебры сохраняются и для рассложенной \mathcal{F}-алгебры. При доказательстве соответствующих теорем, мы можем ссылаться на это утверждение. Однако в некоторых случаях доказательство может представлять самостоятельный интерес, так как позволяет лучше увидеть структуру рассложенной \mathcal{F}-алгебры. Однако свойства \mathcal{F}-алгебры, возникшей на множестве сечений, могут отличаться от свойств \mathcal{F}-алгебры в слое. Например, умножение в слое может иметь обратный элемент. В тоже время умножение сечений может не иметь обратного элемента. Следовательно, рассложенное непрерывное поле порождает кольцо на множестве сечений. Это является преимуществом при изучении рассложенной алгебры.

Точка $p \in A$ имеет представление (x, p_α) в карте U_α и представление (x, p_β) в карте U_β. Допустим функции перехода $g_{\alpha \beta}$ определяют расслоение B над базой N. Рассмотрим карты $V_\epsilon \subset N$ и $V_\delta \subset N$, $V_\epsilon \subset V_\delta \neq \emptyset$. Точка $q \in B$ имеет представление (y, q_e) в карте V_ϵ и представление (y, q_δ) в карте V_δ. Следовательно,

$$p_\alpha = f_{\alpha \beta}(p_\beta)$$
Представление соответствия при переходе от карты U_α к карте U_β и от карты V_ϵ к карте V_δ изменяется согласно закону

$$(x, y, p_\alpha, q_\epsilon) = (x, y, f_{\alpha\beta}(p_\beta), g_{\epsilon\delta}(q_\delta))$$

Это согласуется с преобразованием при переходе от карты $U_\alpha \times V_\epsilon$ к карте $U_\beta \times V_\delta$ в расслоении $A \times B$.

Теорема 4.6. Допустим функции перехода $f_{\alpha\beta}$ определяют расслоенную \mathcal{F}-алгебру $p[A] : A \rightarrow M$ над базой M. Тогда функции перехода $f_{\alpha\beta}$ являются гомоморфизмами \mathcal{F}-алгебры A.

Доказательство. Пусть $U_\alpha \in M$ и $U_\beta \in M$, $U_\alpha \cap U_\beta \neq \emptyset$ - окрестности, в которых расслоенная \mathcal{F}-алгебра $p[A]$ тривиальна. Пусть

$$(4.4) \quad a_\beta = f_{\beta\alpha}(a_\alpha)$$

функция перехода из расслоения $p[A]|_{U_\alpha}$ в расслоение $p[A]|_{U_\beta}$. Пусть ω - n-арная операция и точки $e_1, ..., e_n$ принадлежат слою A_x, $x \in U_1 \cap U_2$. Положим

$$(4.5) \quad e = \omega(e_1, ..., e_n)$$

Мы можем представить точку $e \in p[A]|_{U_\alpha}$ в виде (x, e_α) и точку $e_\alpha \in p[A]|_{U_\alpha}$ в виде $(x, e_{\alpha\alpha})$. Мы можем представить точку $e \in p[A]|_{U_\beta}$ в виде (x, e_β) и точку $e_\beta \in p[A]|_{U_\beta}$ в виде $(x, e_{\beta\alpha})$. Согласно (4.4)

$$(4.6) \quad e_\beta = f_{\beta\alpha}(e_\alpha)$$

$$(4.7) \quad e_{\beta\alpha} = f_{\beta\alpha}(e_{\alpha\alpha})$$

Согласно (4.5), операция в слое A_x над окрестностью U_β имеет вид

$$(4.8) \quad e_\beta = \omega(e_{\beta\alpha}, ..., e_{\alpha\beta})$$

Подставив (4.6), (4.7) в (4.8) мы получим

$$f_{\beta\alpha}(e_{\alpha\alpha}) = \omega(f_{\beta\alpha}(e_{\alpha\alpha}), ..., f_{\beta\alpha}(e_{\alpha\alpha}))$$

Это доказывает, что $f_{\beta\alpha}$ является гомоморфизмом \mathcal{F}-алгебры. \[\square\]

Определение 4.7. Пусть $p[A] : A \rightarrow M$ и $p'[A'] : A' \rightarrow M'$ - две расслоенные \mathcal{F}-алгебры. Мы будем называть морфизм расслоений

$$f : A \rightarrow A'$$

гомоморфизмом рассложенных \mathcal{F}-алгебр, если соответствующее отображение слоёв

$$f_x : A_x \rightarrow A'_x$$

является гомоморфизмом \mathcal{F}-алгебры A.

\[\square\]

Определение 4.8. Пусть $p[A] : A \rightarrow M$ и $p'[A'] : A' \rightarrow M'$ - две рассложенные \mathcal{F}-алгебры. Мы будем называть гомоморфизм рассложенных \mathcal{F}-алгебр f изоморфизмом рассложенных \mathcal{F}-алгебр, если соответствующее отображение слоёв

$$f_x : A_x \rightarrow A'_x$$

является изоморфизмом \mathcal{F}-алгебры A.

\[\square\]
Определение 4.9. Пусть \(p[A] : A \rightarrow M \) - расслоенная \(\mathcal{F} \)-алgebra и \(A' \) - \(\mathcal{F} \)-подалgebra \(\mathcal{F} \)-алgebры \(A \). Расслоенная \(\mathcal{F} \)-алgebra \(\bar{p}[A'] : A' \rightarrow M \) является расслоенной \(\mathcal{F} \)-подалgebra расслоенной \(\mathcal{F} \)-алгебры \(p[A] \), если гомоморфизм расслоенных \(\mathcal{F} \)-алгебр \(A' \rightarrow A \) является вложением слоёв. □

Важным обстоятельством в этом определении является гомоморфизм расслоенных \(\mathcal{F} \)-алгебр. Если мы просто ограничимся фактом существования \(\mathcal{F} \)-подалгебры в каждом слое, то мы можем разрушить непрерывность.

Мы определили операцию на базе приведённого декартова произведения расслоений. Если мы определим операцию на базе декартова произведения расслоений, то операція будет определена для любых элементов расслоений. Однако, если \(p(a_i) = p(b_i), i = 1, \ldots, n, \) то \(p(\omega(a_1, \ldots, a_n)) = p(\omega(b_1, \ldots, b_n)) \). Следовательно, операція определена между слоями и посредством проекции переносится на базу. Эта конструкция не отличается от факторизации \(\mathcal{F} \)-алгебры и не создаёт новый элемент в теории расслоений. В то же время эта конструкция донельзя проблематична с точки зрения перехода между различными картами расслоения и возможности определения операции над сечениями.

5. Представление расслоенной \(\mathcal{F} \)-алгебры

Определение 5.1. Мы будем называть морфизм расслоений

\[t : \mathcal{E} \rightarrow \mathcal{E} \]

преобразованием расслоения, если соответствующее отображение слоёв

\[t_x : E_x \rightarrow E_x \]

является преобразованием слоя. □

Теорема 5.2. Пусть \(U \) - открытое множество базы \(M \), на котором существует тривиализация расслоения \(p[E] \). Пусть \(t \) - преобразование расслоения \(p[E] \). Пусть \(x \in M \) и \(x' = t_x(x) \) в слое \(E_x \). Тогда для открытоого множества \(V \subseteq M \), \(x' \in V \) и для открытоого множества \(W \subseteq E \), \(V' \in W \) существует открытое множество \(W' \subseteq E \), такое, что если \(x_1 \in V, p_1 \in W \), то \(p_1' = t_x(p_1) \in W' \).

Доказательство. Согласно [8], стр. 58, множества вида \(V \times W \), где \(V \) принадлежит базису топологии пространства \(U \) и \(W \) принадлежит базису топологии пространства \(E \), образуют базис топологии пространства \(E \).

Так как отображение \(t \) непрерывно, то для открытого множества \(V \times W \) существует открытое множество \(V \times W \), такое, что \(t(V \times W) \subseteq V \times W' \). Это и есть содержание теоремы. □

Теорема 5.3. Преобразованием расслоения \(p[E] \) отображает сечение в сечение.

Доказательство. Образ сечения \(s \) при преобразовании \(t \) определён из коммутативности диаграммы

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{t} & \mathcal{E} \\
\downarrow{s} & & \downarrow{s'} \\
M & \rightarrow & M
\end{array}
\]

Непрерывность отображения \(s' \) следует из теоремы 5.2. □
Определение 5.4. Преобразование расслоения называется левосторонним преобразованием или T^*-преобразованием расслоения, если оно действует слева

$$u' = tu$$

Мы будем обозначать $^*\mathcal{E}$ или $^*p[E]$ множество невырожденных T^*-преобразований расслоения $p[E]$.

Определение 5.5. Преобразование называется правосторонним преобразованием или *T-преобразованием расслоения, если оно действует справа

$$u' = ut$$

Мы будем обозначать \mathcal{E}^* или $p[E]^*$ множество *T-невырожденных преобразований расслоения $p[A]$.

Мы будем обозначать e тождественное преобразование расслоения.

Так как T^*-преобразованием расслоения определено последовательно, то множество $^*p[E]$ является расслоением, изоморфным расслоению $p[E]$.

Определение 5.6. Пусть на множестве $^*p[A]$ определена структура расслоенной \mathcal{F}-алгебры ([2]). Пусть $p[B]$ является расслоенной \mathcal{F}-алгеброй. Мы будем называть гомоморфизм расслоенных \mathcal{F}-алгебр

(5.1) \[f : p[B] \to ^*p[A] \]

левосторонним представлением или T^*-представлением расслоенной \mathcal{F}-алгебры $p[B]$.

Определение 5.7. Пусть на множестве $p[A]^*$ определена структура расслоенной \mathcal{F}-алгебры ([2]). Пусть $p[B]$ является расслоенной \mathcal{F}-алгеброй. Мы будем называть гомоморфизм расслоенных \mathcal{F}-алгебр

\[f : p[B] \to p[A]^* \]

правосторонним представлением или *T-представлением расслоенной \mathcal{F}-алгебры $p[B]$.

Мы распространяем на теорию расслоенных представлений соглашение, описанное в замечании 3-2.2.14. Мы можем записать принцип двойственности в следующей форме:

Теорема 5.8 (принцип двойственности). Любое утверждение, справедливое для T^*-представления расслоенной \mathcal{F}-алгебры $p[A]$, будет справедливо для *T-представления расслоенной \mathcal{F}-алгебры $p[A]$.

Существует два способа определить T^*-представление \mathcal{F}-алгебры B в расслоении $p[A]$. Мы можем определить T^*-представление в слое, либо определить T^*-представление на множестве $\Gamma(p[A])$. В первом случае представление определяется одно и то же преобразование во всех слоях. Во втором случае картина менее ограничена, однако она не даёт полной картины разнообразия представлений в расслоении. Когда мы рассматриваем представление расслоенной \mathcal{F}-алгебры, мы сразу оговорим, что преобразований в разных слоях независимы. Требование непрерывной зависимости преобразования от слоя накладывает дополнительные ограничения на T^*-представление расслоенной \mathcal{F}-алгебры. В то же время это ограничение позволяет изучать представления расслоенных \mathcal{F}-алгебр, когда в слое определена \mathcal{F}-алгебра, параметры которой (например, структурные константы группы Ли) непрерывно зависят от слоя.
Замечание 5.9. На языке диаграмм определение 5.6 означает следующее.

Отображение F - инъекция. Так как мы ожидаем, что представление расслоенной \mathcal{F}-алгебры действует в каждом слое, то мы видим, что отображение F - биекция. Не нарушая общности, мы можем положить, что $M = M'$ и отображение F - тождественное отображение. Мы будем говорить, что задано представление расслоенной \mathcal{F}-алгебры $p[B]$ в расслоении $p[A]$ над множеством M. Поскольку база расслоения известна, то, чтобы не перегружать диаграмму деталями, мы будем описывать представление с помощью диаграммы

Определение 5.10. Мы будем называть T^*-представление расслоенной \mathcal{F}-алгебры $p[B]$ эффективным, если отображение (5.1) - изоморфизм расслоенной \mathcal{F}-алгебры $p[B]$ в $*p[A]$.

Замечание 5.11. Если T^*-представление расслоенной \mathcal{F}-алгебры эффективно, мы можем отождествлять элемент расслоенной \mathcal{F}-алгебры с его образом и записывать T^*-преобразование, порождённое элементом $a \in A$, в форме

$$v' = av$$

Если $*T$-представление расслоенной \mathcal{F}-алгебры эффективно, мы можем отождествлять элемент \mathcal{F}-алгебры с его образом и записывать $*T$-преобразование, порождённое элементом $a \in A$, в форме

$$v' = va$$

Определение 5.12. Мы будем называть T^*-представление расслоенной \mathcal{F}-алгебры транзитивным, если для любых $a, b \in V$ существует такое g, что

$$a = f(g)b$$

Мы будем называть T^*-представление расслоенной \mathcal{F}-алгебры однотранзитивным, если оно транзитивно и эффективно.

Теорема 5.13. T^*-представление однотранзитивно тогда и только тогда, когда для любых $a, b \in M$ существует одно и только одно $g \in A$ такое, что

$$a = f(g)b$$
Доказательство. Следствие определений 5.10 и 5.12.

6. Представление расслоенной группы

Определение 6.1. Пусть \(p[G] : \mathcal{G} \to M \) и \(p'[G'] : G' \to M' \) - две расслоенные группы. Мы будем называть морфизм расслоений

\[f : \mathcal{G} \to \mathcal{G}' \]

гомоморфизмом расслоенных групп, если соответствующее отображение слоёв

\[f_x : G_x \to G'_x \]

является гомоморфизмом групп.

Определение 6.2. Пусть \(p[G] : \mathcal{G} \to M \) и \(p'[G'] : G' \to M' \) - две расслоенные группы. Мы будем называть морфизм расслоений

\[f : \mathcal{G} \to \mathcal{G}' \]

антигомоморфизмом расслоенных групп, если соответствующее отображение слоёв

\[f_x : G_x \to G'_x \]

является антигомоморфизмом групп.

Определение 6.3. Пусть \(p[G] \)- расслоенная группа. Мы будем называть отображение

(6.1)

\[f : p[G] \to *p[A] \]

\(T^*\)-представлением расслоенной группы \(p[G] \) в расслоении \(p[A] \), если отображение \(f \) удовлетворяет условиям

(6.2)

\[f(ab)\mu = f(a)(f(b)\mu) \]

(6.3)

\[f(\varepsilon) = e \]

Определение 6.4. Пусть \(p[G] \)- расслоенная группа. Мы будем называть отображение

(6.4)

\[f : p[G] \to p[A]^* \]

\(*T\)-представлением расслоенной группы \(p[G] \) в расслоении \(p[A] \), если отображение \(f \) удовлетворяет условиям

(6.5)

\[\mu f(ab) = (\mu f(a))f(b) \]

(6.6)

\[f(\varepsilon) = e \]

Теорема 6.5. Для любого \(a \in p[G] \)

(6.7)

\[f(a^{-1}) = f(a)^{-1} \]

Доказательство. На основании (6.2) и (6.3), мы можем записать

\[\mu = e\mu = f(aa^{-1})\mu = f(a)(f(a^{-1})\mu) \]

Это завершает доказательство.
Теорема 6.6. Пусть \(p[A] \) - расслоенная группа относительно умножения (6.8)
\[
(t_1 t_2) \mu = t_1(t_2 \mu)
\]
и \(e \) - единица расслоенной группы \(p[A] \). Если отображение (6.1) является гомоморфизмом расслоенных групп (6.9)
\[
f(ab) = f(a)f(b)
\]
то это отображение является представлением расслоенной группы \(p[G] \), которое мы будем называть **ковariantным** \(T^* \)-представлением расслоенной группы.

Доказательство. Так как \(f \) - гомоморфизм расслоенных групп, то \(f(e) = e \).

Согласно (6.8) и (6.9)
\[
f(ab)\mu = (f(a)f(b))\mu = f(a)(f(b)\mu)
\]

Согласно определению 6.3 \(f \) является представлением расслоенной группы. □

Ковариантное \(T^* \)-представление расслоенной группы на расслоении может быть представлено диаграммой

![Diagram](image)

Теорема 6.7. Пусть \(p[A] \) - расслоенная группа относительно умножения (6.10)
\[
(t_2 t_1) \mu = t_1(t_2 \mu)
\]
и \(e \) - единица расслоенной группы \(p[A] \). Если отображение (6.1) является антиморфизмом расслоенных групп (6.11)
\[
f(ba) = f(a)f(b)
\]
то это отображение является представлением расслоенной группы \(p[G] \), которое мы будем называть **контравариантным** \(T^* \)-представлением расслоенной группы.

Доказательство. Так как \(f \) - антиморфизм расслоенных групп, то \(f(e) = e \).

Согласно (6.10) и (6.11)
\[
f(ab)\mu = (f(b)f(a))\mu = f(a)(f(b)\mu)
\]
Согласно определению 6.3 f является представлением расслоенной группы.

Пример 6.8. Групповая операция на расслоении группы определяет два различных представлений на расслоении группы: $T*$-сдвиг на расслоении групп, который мы определяем равенством

\[(6.12) \quad b' = a * b = ab\]

и *T*-сдвиг на расслоении групп, который мы определяем равенством

\[(6.13) \quad b' = b * a = ba\]

Пример 6.9. Пусть $p(GL)$ расслоение над осью вещественных чисел. Задавшись матрицей A, мы можем определить сечение $a(t) = exp(tA)$, и это сечение будет порождать соответствующий $T*$-сдвиг.

Определение 6.10. Пусть f - представлением расслоенной группы $p[G]$ в расслоении $p[A]$. Для любого сечения u расслоения $p[A]$ мы определим его орбиту представления расслоенной группы как множество

\[O(u, g \in \Gamma(p[G]), f(g)u) = \{v = f(g)u : g \in \Gamma(p[G])\}\]

Так как $f(e) = e$.

Теорема 6.11. Если

\[(6.14) \quad v \in O(u, g \in \Gamma(p[G]), f(g)u)\]

то

\[O(u, g \in \Gamma(p[G]), f(g)u) = O(v, g \in \Gamma(p[G]), f(g)v)\]

Доказательство. Из (6.14) следует существование $\mu \in \Gamma(p[G])$ такого, что

\[(6.15) \quad v = f(\mu)u\]

Если $\delta \in O(v, g \in \Gamma(p[G]), f(g)v)$, то существует $\nu \in \Gamma(p[G])$ такой, что

\[(6.16) \quad \delta = f(\nu)v\]

Подставив (6.15) в (6.16), мы получим

\[(6.17) \quad \delta = f(\nu)f(\mu)u\]

На основании (6.2) из (6.17) следует, что $\delta \in O(u, g \in \Gamma(p[G]), f(g)u)$. Таким образом,

\[O(v, g \in \Gamma(p[G]), f(g)v) \subseteq O(u, g \in \Gamma(p[G]), f(g)u)\]

На основании (6.7) из (6.15) следует, что

\[(6.18) \quad u = f(\mu)^{-1}v = f(\mu^{-1})v\]

Равенство (6.18) означает, что $u \in O(v, g \in \Gamma(p[G]), f(g)v)$ и, следовательно,

\[O(u, g \in \Gamma(p[G]), f(g)u) \subseteq O(v, g \in \Gamma(p[G]), f(g)v)\]

Это завершает доказательство.
Допустим, что определено представление группы G на расслоении

$p[A] : \mathcal{E} \to M$

Если мы говорим, что представление транзитивно, то это означает, что орбита точки - это всё многообразие \mathcal{E}. В случае представления расслоенной группы $p[G]$ орбита точки является слоем, содержащим эту точку.

Теорема 6.12. Если определены представление f_1 расслоенной группы $p[G]$ в расслоении $p[A_1]$ и представление f_2 расслоенной группы $p[G]$ в расслоении $p[A_2]$, то мы можем определить прямое произведение представлений f_1 и f_2 расслоенной группы $p[G]$

$$f = f_1 \otimes f_2 : p[G] \to p[A_1] \otimes p[A_2]$$

$$f(g) = (f_1(g), f_2(g))$$

Доказательство. Чтобы показать, что f является представлением, достаточно показать, что f удовлетворяет определению 6.3.

$$f(e) = (f_1(e), f_2(e)) = (e_1, e_2) = e$$

$$f(ab)u = (f_1(ab)u_1, f_2(ab)u_2)$$

$$= (f_1(a)(f_1(b)u_1), f_2(a)(f_2(b)u_2))$$

$$= f(a)(f_1(b)u_1, f_2(b)u_2)$$

$$= f(a)(f(b)u)$$

7. ОДНОТРАНЗИТИВНОЕ ПРЕДСТАВЛЕНИЕ

Определение 7.1. Мы будем называть ядром неэффективности представления расслоенной группы $p[G]$ множество

$$K_f = \{g \in \Gamma(p[G]) : f(g) = e\}$$

Если $K_f = \{e\}$, мы будем называть представление расслоенной группы G эффективным.

Теорема 7.2. Ядро неэффективности - это подгруппа расслоенной группы G.

Доказательство. Доказательство не зависит от типа представления, которое мы используем: ковариантное или контравариантное. Пусть f - ковариантное представление и $f(a_1) = \delta$ и $f(a_2) = \delta$. Тогда

$$f(a_1a_2) = f(a_1)f(a_2) = \delta$$

$$f(a^{-1}) = f^{-1}(a) = \delta$$

Теорема 7.3. Представление однотранзитивное тогда и только тогда, когда для любых $a, b \in \Gamma(p[A])$ существует одно и только одно $g \in p[G]$ такое, что $a = f(g)b$

Доказательство. Утверждение является следствием определений 5.10 и 7.1 и теоремы 7.2.
Определение 7.4. Мы будем называть расслоение $p[A]$ однородным расслоением расслоенной группы $p[G]$, если мы имеем однотранзитивное представление расслоенной группы $p[G]$ на $p[A]$.

Теорема 7.5. Если мы определяем однотранзитивное $T\ast$-представление f расслоенной группы $p[G]$ в расслоении $p[A]$, то мы можем однозначно определить координаты на $p[A]$, пользуясь координатами на расслоенной группе $p[G]$.

Если f - ковариантное однотранзитивное представление, то $f(a)$ эквивалентно левому сдвигу $a\ast$ на расслоенной группе $p[G]$. Если $f = $ контравариантное однотранзитивное представление, то $f(a)$ эквивалентно правому сдвигу $a\ast$ на расслоенной группе $p[G]$.

Доказательство. Представление расслоенной группы $p[G]$ в расслоении $p[A]$ однотранзитивно тогда и только тогда, когда однотранзитивно представление группы G на слое A_x для любого x. Допустим представление f расслоенной группы $p[G]$ - ковариантное однотранзитивное представление. Пусть u, v - сечения расслоения $p[A]$. Выбрав произвольный x, мы найдём согласно теореме [3]-3.4.5 единственный элемент $g_x \in G$ такой, что

$$u(x) = f(g_x)v(x) = g_xv(x)$$

Таким образом, отображение $x \rightarrow g_x$ является искомым сечением расслоения группы $p[G]$.

Аналогично доказывается утверждение для контравариантного однотранзитивного представления.

Чтобы доказать первое утверждение, мы должны выделить карту на многообразии M, где оба расслоения тривиальны. В этом случае, мы можем представить координаты точки $u \in p[A]$ как упорядоченную пару координат (x, y), где x - координаты проекции на многообразие M, и y - координаты точки в слое. Мы можем представить координаты точки $a \in p[G]$ как упорядоченную пару координат (x, g), где x - координаты проекции на многообразие M, и g - координаты точки в группе. Соответственно, координаты сечения расслоения $p[A]$ - это отображение $y : M \rightarrow A$, и координаты сечения расслоения $p[G]$ - это отображение $y : M \rightarrow G$.

Мы выберем сечение $v \in \Gamma(p[A])$ и определим координаты сечения $w \in \Gamma(p[G])$ как координаты $a \in p[G]$ такого, что $w = f(a)v$. Координаты, определённые таким образом, однозначны с точностью до выбора начального сечения $v \in \Gamma(p[A])$, так как действие эффективно.

Замечание 7.6. Мы будем записывать $T\ast$-ковариантное эффективное представление расслоенной группы $p[G]$ в форме

$$v' = a\ast v = av$$

Орбита этого представления имеет вид

$$p[G]v = p[G]\ast v$$

Замечание 7.7. Мы будем записывать $\ast T\ast$-ковариантное эффективное представление расслоенной группы $p[G]$ в форме

$$v' = v\ast a = va$$
Орбита этого представления имеет вид

\[vp[G] = v \star p[G] \]

Теорема 7.8. Левые и правые сдвиги на расслоенной группе \(p[G] \) перестановочны.

Доказательство. Это следствие ассоциативности расслоенной группы \(p[G] \)

\[(a \star b)c = a(ch) = (ac)b = (b \star a)c\]

Теорема 7.9. Если мы определили однотранзитивное ковариантное \(T \star \)-представление \(f \) расслоенной группы \(p[G] \) на расслоении \(p[A] \), то мы можем однозначно определить однотранзитивное ковариантное \(\star T \)-представление \(h \) расслоенной группы \(p[G] \) на расслоении \(p[A] \) такое, что диаграмма

\[\begin{array}{ccc}
G & \xrightarrow{h(a)} & E \\
\downarrow & & \downarrow \\
M & \xrightarrow{f(b)} & E
\end{array}\]

коммутативна для любых \(a, b \in \Gamma(p[G]) \).

Доказательство. Предположим, что \(f \)-однотранзитивное ковариантное \(T \star \)-представление. В каждом слое \(A_x \) представление \(f \) определяет однотранзитивное ковариантное \(T \star \)-представление \(f_x \) группы \(G \). Согласно теореме [3]-3.4.10 в слое \(A_x \) однозначно определено однотранзитивное ковариантное \(\star T \)-представление \(h_x \), перестановочное с представлением \(f_x \). Для сечения \(a \in \Gamma(p[G]) \) определено сечение

\[h(a) : x \rightarrow h_x(a) \]

Отображение \(h \) является гомоморфизмом расслоенных групп.

Мы будем называть представления \(f \) и \(h \) парными представлениями расслоенной группы \(p[G] \).

8. Список литературы

[1] Серге Ленг, Алгебра, М. Мир, 1968
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982),
Eprint http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
(The Millennium Edition)
[3] Александр Клейн, Лекции по линейной алгебре над телом,
Eprint arXiv:math.GM/0701238 (2007)
[4] Александр Клейн, Бикокдо матриц,
Eprint arXiv:math.OA/0612111 (2006)
[5] П. Кон. Универсальная алгебра, М., Мир, 1968
[6] C. R. F. Maunder, Algebraic Topology, Dover Publications, Inc, Mineola, New York, 1996
[7] Ж. Поммаре, Системы уравнений с частными производными и псевдогруппы Ли, М., Мир, 1983
[8] Н. Бурбаки, Общая топология, основные структуры, перевод с французского Д. А. Райкова, М. Наука, 1968
[9] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
9. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

*T-сдвиг на расслоении групп 17
*T-представление расслоенной F-алгебры 13
*T-представление расслоенной группы 15
*T-преобразование расслоения 13
T-представление расслоенной группы 15
T-представление расслоенной F-алгебры 13
T-преобразование расслоения 13

антитоморфизм расслоенных групп 15
ареостичность операции 8
база отображения 3
векторное расслоение 10
гомоморфизм расслоенных F-алгебр 11
гомоморфизм расслоенных групп 15
декартова степень A множества B 3
dекартова степень расслоения 8
dекартово произведение расслоений 5
dекартово произведение расслоенных пространств 5
изоморфизм расслоенных алгебр 11
ковариантное T*-представление расслоенной группы 16
компактно-открытая топология 3
контравариантное T*-представление расслоенной группы 16

левостороннее представление расслоенной F-алгебры 13
gleвозворное преобразование расслоения 13
левый сдвиг на расслоении групп 17
лифт отображения 3

однородное расслоение расслоенной группы 19
одноточечное представление расслоенной F-алгебры 14
операция на расслоении 8
орбита представления расслоенной группы 17
парные представления расслоенной группы 20

правостороннее представление расслоенной F-алгебры 13
пространство отображений 3
прямое произведение представлений расслоенной группы 18
рациональная F-алгебра 10
рациональная F-подалгебра 12
рациональная группа 10
рациональное кольцо 10
транзитивное представление расслоенной F-алгебры 14

эффективное представление расслоенной F-алгебры 14
эффективное T*-представление расслоенной группы 18
ядро невозможности представления расслоенной группы 18
10. Специальные символы и обозначения

\(b \star a \) *T-единица 17
\(a \star b \) T*-единица 17

\(B^n \) декартова степень A множества B 3

\(E^n \) декартова степень расслоенного пространства 8

\(E_1 \times \ldots \times E_n \) декартово произведение расслоенных пространств 5

\(e \) тождественное преобразование расслоения 13

\(E_1 \otimes \ldots \otimes E_n \) приведенное декартово произведение расслоенных пространств 7

\(E^* \) множество невырожденных *T-

\(E \) преобразований расслоения \(E \) 13

\(*E \) множество невырожденных T*-

\(E \) преобразований расслоения \(E \) 13

\(f \) гомоморфизм расслоенных \(F \)-алгебр 11

\(f = (f_1, \ldots, f_n) \) отображение в декартово произведение 4

\(v[p(G)] \) орбита ковариантного эффективного *T-

\(p(G) \) представления расслоенной группы 20

\(p(G) \) орбита ковариантного эффективного T*-

\(p(G) \) представления расслоенной группы 19

\(O(u, g \in \Gamma(p[G]), f(g)u) \) орбита \n
\(\Gamma(p[G]) \) множество сечений расслоения 3

\(p[E] : E \to M \) расслоение 2

\(p[E]^n \) декартова степень расслоения 8

\(p_{1}[E_1] \times \ldots \times p_{n}[E_n] \) декартово \n
\(p_{1}[E_1] \otimes \ldots \otimes p_{n}[E_n] \) приведенное \n
\(p_{1}[E_1] \otimes \ldots \otimes p_{n}[E_n] \) декартово \n
\(p[E]^* \) множество невырожденных *T-

\(p[E]^* \) преобразований расслоения \(p[E] \) 13

\(*p[E] \) множество невырожденных T*-

\(*p[E] \) преобразований расслоения \(p[E] \) 13

\(\Gamma(p[E]) \) множество сечений расслоения 3

\(\Pi_{i=1}^{n} p_i[E_i] \) декартово произведение расслоений 5

\(\Pi_{i=1}^{n} E_i \) декартово произведение рассложенных пространств 5

\(\bigodot_{i=1}^{n} p_i[E_i] \) приведенное декартово \n
\(\bigodot_{i=1}^{n} E_i \) приведенное декартово \n
\(\bigodot_{i=1}^{n} \) произведение расслоений 7