ON LANDAU-GINZBURG SYSTEMS AND $D^b(X)$ OF PROJECTIVE BUNDLES

YOCHAY JERBY

Abstract. Let $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^s} \oplus \bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^s}(a_i))$ be a Fano projective bundle over \mathbb{P}^s and denote by $Crit(X) \subset (\mathbb{C}^*)^n$ the solution scheme of the Landau-Ginzburg system of equations of X. We describe a map $E : Crit(X) \to Pic(X)$ whose image $E = \{E(z) | z \in Crit(X)\}$ is the full strongly exceptional collection described by Costa and Miró-Roig in [15]. We further show that $Hom(E(z), E(w))$ for $z, w \in Crit(X)$ can be described in terms of a monodromy group acting on $Crit(X)$.

1. Introduction and Summary of Main Results

Let X be a smooth algebraic manifold and let $D^b(X)$ be the bounded derived category of coherent sheaves on X, see [22, 42]. A fundamental question in the study of $D^b(X)$ is the question of existence of exceptional collections $E = \{E_1, ..., E_N\} \subset D^b(X)$. Such collections satisfy the property that the adjoint functors

$$RHom_X(T, -) : D^b(X) \to D^b(A_L) ; \quad - \otimes_{A_L} T : D^b(A_L) \to D^b(X)$$

are equivalences of categories where $T := \bigoplus_{i=1}^N E_i$ and $A_L = End(T)$ is the corresponding endomorphism ring. The first example of such a collection is

$$E = \{\mathcal{O}, \mathcal{O}(1), ..., \mathcal{O}(s)\} \subset Pic(\mathbb{P}^s)$$

found by Beilinson in [7]. When X is a toric manifold one further asks the more refined question of wether $D^b(X)$ admits an exceptional collection whose elements are line bundles $E \subset Pic(X)$, rather than general elements of $D^b(X)$?

Let X be a s-dimensional toric Fano manifold given by a Fano polytope Δ and and let Δ° be the polar polytope of Δ. Let $f_X = \sum_{n \in \Delta^\circ \cap \mathbb{Z}^s} z^n \in \mathbb{C}[z_1^+, ..., z_s^+]$ be the Landau-Ginzburg potential associated to X, see [3, 21, 36]. Recall that the Landau-Ginzburg system of equations is given by

$$z_i \frac{\partial}{\partial z_i} f_X(z_1, ..., z_s) = 0 \quad \text{for} \quad i = 1, ..., s$$

and denote by $Crit(X) \subset (\mathbb{C}^*)^s$ the corresponding solution scheme. Consider the following example:
In this work we consider the next simplest case \[\rho \in \mathbb{E} \] and the solution scheme \(\text{Crit} \in \mathbb{E}^s \) is given by \(z_k = (e^{\frac{2\pi ki}{s+1}}, \ldots, e^{\frac{2\pi ki}{s+1}}) \) for \(k = 0, \ldots, s \).

In particular, in the case of projective space, one has the map \(E : \text{Crit}(\mathbb{P}^s) \to \text{Pic}(\mathbb{P}^s) \) given by \(z_k \mapsto \mathcal{O}(k) \), associating elements of the Beilinson exceptional collection to elements of the solution scheme \(\text{Crit}(\mathbb{P}^s) \). In [26] we asked, motivated by the Dubrovin-Bayer-Manin conjecture, whether it is possible to similarly introduce exceptional maps \(E : \text{Crit}(X) \to \text{Pic}(X) \) for more general classes of toric Fano manifolds \(X \).

In this work we consider the next simplest case \(\rho(X) := rk(\text{Pic}(X)) = 2 \) which, according to Kleinschmidt’s classification theorem [29], consists of projective bundles of the form

\[
X = \mathbb{P} \left(\mathcal{O}_{\mathbb{P}^s} \oplus \bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^s}(a_i) \right) \quad \text{with} \quad \sum_{i=1}^{r} a_i \leq s, a_i \leq a_{i+1}
\]

The Picard group is expressed in this case by \(\text{Pic}(X) = \pi^*H \cdot \mathbb{Z} \oplus \xi \mathbb{Z} \) where \(\pi^*H \) is the pull-back of the positive generator \(H \in \text{Pic}(\mathbb{P}^s) \) via \(\pi : X \to \mathbb{P}^s \) and \(\xi \) is the tautological line bundle of \(X \). On the “derived category side”, it follows from a result of Costa and Miró-Roig in [15] that the collection \(\mathcal{E}_X = \{ E_{kl} \}_{k=0, l=0}^{s, r} \subset \text{Pic}(X) \) where

\[
E_{kl} := k \cdot \pi^*H + l \cdot \xi \in \text{Pic}(X) \quad \text{for} \quad 0 \leq k \leq s, 0 \leq l \leq r
\]

is a full strongly exceptional collection. On the other hand, on the ”Landau-Ginzburg side”, the Landau-Ginzburg potential is given by

\[
f(z, w) = \sum_{i=1}^{s} z_i + \sum_{i=1}^{r} w_i + \frac{w_1^{a_1} \cdots w_r^{a_r}}{z_1 \cdots z_s} + \frac{1}{w_1 \cdots w_r}
\]

In the trivial case, when \(X = \mathbb{P}^s \times \mathbb{P}^r \) is a product, that is \(a_1 = \ldots = a_r = 0 \), one can readily verify that the solution scheme is given by

\[
\text{Crit}(\mathbb{P}^s \times \mathbb{P}^r) = \{ (z_k, w_l) | z_k \in \text{Crit}(\mathbb{P}^s), w_l \in \text{Crit}(\mathbb{P}^r) \} \subset (\mathbb{C}^*)^{s+r}
\]

Hence set \(E(z_k, w_l) := E_{kl} \in \text{Pic}(\mathbb{P}^s \times \mathbb{P}^r) \). However, in general, the solution scheme \(\text{Crit}(X) \) is not given in terms of roots of unity. In order to overcome this and define the map \(E \) in general we note that the Landau-Ginzburg potential \(f_X \) is an element of the space

\[
L(\Delta^0) := \left\{ \sum_{n \in \Delta^0 \cap \mathbb{Z}^d} e^{u_n z^n} | u_n \in \mathbb{C} \right\} \subset \mathbb{C}[z^\pm]
\]
Theorem A: \(\lim_{t \to -\infty} (\Theta(Crit(X; f_i)))\) = \(\left\{ \left(e^{2\pi i \left(\frac{1}{(k+1)(l+1)} + \frac{1}{s+t} \right)} , e^{2\pi i t} \right) \right\}_{k=0, l=0}^{s, r} \subset T^2\).

In particular, the collection of roots of unity of (a) enables us to generalize the definition of the exceptional map \(E : Crit(X) \to Pic(X)\) to any Fano projective bundle.

As mentioned, when studying exceptional collections, one is interested in the endomorphism algebra \(A_{E} = End \left(\oplus_{i=1}^{N} E_{i} \right) \simeq \oplus_{i=1,j=1}^{N} Hom(E_i, E_j)\). A choice of basis for the \(Hom\)-groups expresses the algebra \(A_{E}\) as the path algebra of a quiver with relations whose vertex set is \(E\), see [18, 28]. In our case there is a natural choice of such bases and we denote the resulting quiver by \(\tilde{Q}(a)\). In the Landau-Ginzburg setting, we introduced in [26], the monodromy action

\[M : \pi_1(L(\Delta^0) \setminus R_X, f_X) \to Aut(Crit(X)) \]

where \(R_X \subset L(\Delta^0)\) is the hypersurface of all elements such that \(Crit(X; f)\) is non-reduced. The main feature of the exceptional map \(E\) is that the quiver \(\tilde{Q}(a)\) and, in particular, the structure of \(Hom(E(z_i), E(z_j))\), could further be related to the geometry of the monodromy action \(M\).

For any \((n, m) \in (\mathbb{Z}^+)^{s+1} \times (\mathbb{Z}^+)^{r+1}\) and \(t \in \mathbb{R}\) consider the loop \(\gamma_{(n,m)}^t : [0, 1) \to L(\Delta^0)\) given by

\[\gamma_{(n,m)}^t(\theta) := \sum_{i=1}^{s} e^{2\pi i m_{0i} \theta} z_i + \sum_{i=1}^{r} e^{2\pi i m_{0i} \theta} w_i + e^{t} e^{2\pi i m_{0i} \theta} \prod_{j=1}^{r} w_j \frac{1}{\prod_{i=1}^{s} z_i} + e^{2\pi i m_{0i} \theta} \prod_{i=1}^{r} w_i \]

Let \(\eta_t : [0, 1] \to L(\Delta^0)\) be the segment connecting \(f_X\) to \(f_t\). Each loop \(\gamma_{(n,m)}^t\) gives rise to a monodromy element:

\[\Gamma_{(n,m)} := \lim_{t \to -\infty} [\eta_t^{-1} \circ \gamma_{(n,m)}^t \circ \eta_t] \in \pi_1(L(\Delta^0 \setminus R_X, f_X)) \]
We use the exceptional map E to express the solution scheme as

$$\text{Crit}(X) = \{(k, l)\}_{k, l=0}^{s, r} \simeq \mathbb{Z}/(s+1) \oplus \mathbb{Z}/(r+1)\mathbb{Z}$$

where (k, l) is the solution such that $E((k, l)) = E_{kl}$. For $(n, m) \in (\mathbb{Z}^+)^{s+1} \times (\mathbb{Z}^+)^{r+1}$ set

$$|(n, m)|_1 := \sum_{i=0}^s n_i - \sum_{i=0}^r a_i m_i ; \quad |(n, m)|_2 := \sum_{i=0}^r m_i$$

and consider the rectangle

$$D^+(k, l) = \left\{ (n, m) \left| -k < |(n, m)|_1 \leq s - k, \quad 0 < |(n, m)|_2 \leq r - l \right\} \subset (\mathbb{Z}^+)^{s+1} \times (\mathbb{Z}^+)^{r+1}$$

We define the following spaces via the monodromy action

$$\text{Hom}_{\text{mon}}((k_1, l_1), (k_2, l_2)) := \bigoplus_{(n, m) \in M((k_1, l_1), (k_2, l_2))} \mathbb{C} \Gamma_{(n, m)} \quad \text{for} \quad (k_1, l_1), (k_2, l_2) \in \text{Crit}(X)$$

where

$$M((k_1, l_1), (k_2, l_2)) = \{(n, m) | M(\Gamma_{(n, m)})(k_1, l_1) = (k_2, l_2) \text{ and } (n, m) \in D^+(k, l)\}$$

We show the following property of the map E:

Theorem B (M-aligned property): For any two solutions $(k, l), (k', l') \in \text{Crit}(X)$ the following holds

$$\text{Hom}(E_{k_1 l_1}, E_{k_2 l_2}) \simeq \text{Hom}_{\text{mon}}((k_1, l_1), (k_2, l_2))$$

The rest of the work is organized as follows: In section 2 we recall relevant facts on projective Fano bundles and their derived categories of coherent sheaves. In section 3 we study variations of the Landau-Ginzburg system, prove Theorem A and define the exceptional map. In section 4 we prove Theorem B and describe the quiver monodromy correspondence. In section 5 we discuss concluding remarks and relations to further topics of mirror symmetry.

2. Relevant Facts on Toric Fano Manifolds

Let $N \simeq \mathbb{Z}^n$ be a lattice and let $M = N^\vee = \text{Hom}(N, \mathbb{Z})$ be the dual lattice. Denote by $N_\mathbb{R} = N \otimes \mathbb{R}$ and $M_\mathbb{R} = M \otimes \mathbb{R}$ the corresponding vector space. Let $\Delta \subset M_\mathbb{R}$ be an integral polytope and let

$$\Delta^\circ = \{ n \mid (m, n) \geq -1 \text{ for every } m \in \Delta \} \subset N_\mathbb{R}$$

be the *polar* polytope of Δ. The polytope $\Delta \subset M_\mathbb{R}$ is said to be *reflexive* if $0 \in \Delta$ and $\Delta^\circ \subset N_\mathbb{R}$ is integral. A reflexive polytope Δ is said to be *Fano* if every facet of Δ° is the convex hull of a basis of M.

To an integral polytope $\Delta \subset M_\mathbb{R}$ associate the space

$$L(\Delta) = \bigoplus_{m \in \Delta \cap M} \mathbb{C} m$$

of Laurent polynomials whose Newton polytope is Δ. Denote by $i_\Delta : (\mathbb{C}^*)^n \to \mathbb{P}(L(\Delta)^\vee)$ the embedding given by $z \mapsto [z^m \ | \ m \in \Delta \cap M]$. The toric variety $X_\Delta \subset \mathbb{P}(L(\Delta)^\vee)$ corresponding to the polytope $\Delta \subset M_\mathbb{R}$ is defined to be the compactification of the image $i_\Delta((\mathbb{C}^*)^n) \subset \mathbb{P}(L(\Delta)^\vee)$. A toric variety X_Δ is said to be Fano if its anticanonical class $-K_{X}$ is Cartier and ample. In [4] Batyrev shows that X_Δ is a Fano variety if Δ is reflexive and, in this case, the embedding i_Δ is the anti-canonical embedding. The Fano variety X_Δ is smooth if and only if Δ° is a Fano polytope.

Denote by $\Delta(k)$ the set of k-dimensional faces of Δ and denote by $V_X(F) \subset X$ the orbit closure of the orbit corresponding to the facet $F \in \Delta(k)$ in X, see [20, 35]. In particular, consider the group of toric divisors

$$Div_T(X) := \bigoplus_{F \in \Delta(n-1)} \mathbb{Z} \cdot V_X(F)$$

Assuming X is a smooth the group $Pic(X)$ is described in terms of the short exact sequence

$$0 \to M \to Div_T(X) \to Pic(X) \to 0$$

where the map on the left hand side is given by $m \to \sum_F \langle m, n_F \rangle \cdot V_X(F)$ where $n_F \in \mathbb{N}_\mathbb{R}$ is the unit normal to the hyperplane spanned by the facet $F \in \Delta(n-1)$. In particular, note that

$$\rho(X) = \text{rank}(Pic(X)) = |\Delta(n-1)| - n$$

Moreover, when Δ is reflexive one has $\Delta^\circ(0) = \{n_F \mid F \in \Delta(n-1)\} \subset N_\mathbb{R}$. We thus sometimes denote $V_X(n_F)$ for the T-invariant divisor $V_X(F)$. We denote by $Div_T^+(X)$ the semi-group of all toric divisors $\sum_F m_F \cdot V_X(F)$ with $0 \leq m_F$ for any $F \in \Delta(n-1)$.

Let X be a smooth projective variety and let $\mathcal{D}^b(X)$ be the derived category of bounded complexes of coherent sheaves of O_X-modules, see [22, 42]. For a finite dimensional algebra A denote by $\mathcal{D}^b(A)$ the derived category of bounded complexes of finite dimensional right modules over A. Given an object $T \in \mathcal{D}^b(X)$ denote by $A_T = Hom(T,T)$ the corresponding endomorphism algebra.

Definition 2.1: An object $T \in \mathcal{D}^b(X)$ is called a tilting object if the corresponding adjoint functors

$$RHom_X(T,-) : \mathcal{D}^b(X) \to \mathcal{D}^b(A_T) \ ; \ - \otimes^L_{A_T} T : \mathcal{D}^b(A_T) \to \mathcal{D}^b(X)$$

are equivalences of categories. A locally free tilting object is called a tilting bundle.
An object $E \in D^b(X)$ is said to be exceptional if $\text{Hom}(E, E) = \mathbb{C}$ and $\text{Ext}^i(E, E) = 0$ for $0 < i$. We have:

Definition 2.2: An ordered collection $\mathcal{E} = \{E_1, ..., E_N\} \subset D^b(X)$ is said to be an exceptional collection if each E_j is exceptional and $\text{Ext}^i(E_k, E_j) = 0$ for $j < k$ and $0 \leq i$. An exceptional collection is said to be strongly exceptional if also $\text{Ext}^i(E_j, E_k) = 0$ for $j \leq k$ and $0 < i$. A strongly exceptional collection is called full if its elements generate $D^b(X)$ as a triangulated category.

The importance of full strongly exceptional collections in tilting theory is due to the following properties, see [8, 28]:

- If \mathcal{E} is a full strongly exceptional collection then $T = \bigoplus_{i=1}^N E_i$ is a tilting object.

- If $T = \bigoplus_{i=1}^N E_i$ is a tilting object and $\mathcal{E} \subset \text{Pic}(X)$ then \mathcal{E} can be ordered as a full strongly exceptional collection of line bundles.

By a result of Kleinschmidt’s [29] the class of toric manifolds with $rk(\text{Pic}(X)) = 2$ consists of the projective bundles

$$X_a = \mathbb{P} \left(O_{\mathbb{P}^s} \oplus \bigoplus_{i=1}^r O_{\mathbb{P}^s}(a_i) \right) \quad \text{with} \quad 0 \leq a_1 \leq ... \leq a_r$$

see also [17]. Set $a_0 = 0$. Consider the lattice $N = \mathbb{Z}^{s+r}$ and let $v_1, ..., v_s$ be the standard basis elements of \mathbb{Z}^s and $e_1, ..., e_r$ be the standard basis elements of \mathbb{Z}^r. Set $v_0 = -\sum_{i=1}^s u_i + \sum_{i=1}^r a_i e_i$ and $e_0 = -\sum_{i=1}^r e_i$. Let $\Delta_a^0 \subset N_\mathbb{R}$ be the polytope whose vertex set is given by

$$\Delta_a^0(0) = \{v_0, ..., v_s, e_0, ..., e_r\}$$

It is straightforward to verify that Δ_a, the polar of Δ_a^0, is a Fano polytope if and only if $\sum_{i=1}^r a_i \leq s$. In particular, in this case $X_a \simeq X_{\Delta_a}$, see [17]. One has

$$\text{Pic}(X_a) = \xi \cdot \mathbb{Z} \oplus \pi^*H \mathbb{Z}$$

where ξ is the class of the tautological bundle and π^*H is the pullback of the generator H of $\text{Pic}(\mathbb{P}^s) \simeq H \cdot \mathbb{Z}$ under the projection $\pi : X_a \to \mathbb{P}^s$. Note that the following holds

$$[V_X(v_i)] = \pi^*H \quad ; \quad [V_X(e_0)] = \xi \quad ; \quad [V_X(e_j)] = \xi - a_i \cdot \pi^*H$$

for $0 \leq i \leq s$ and $1 \leq j \leq r$.
It follows from results of Costa and Miró-Roig in [15] that the collection of line bundles $\mathcal{E} = \{E_{kl}\}_{k=0,l=0}^{s,r} \subset \text{Pic}(X)$ where

$$E_{kl} := k \cdot \pi^*H + l \cdot \xi$$

for $0 \leq k \leq s$, $l \leq r$

is a full strongly exceptional collection. In the next section we describe how the solution scheme $\text{Crit}(X) \subset (\mathbb{C}^*)^{r+s}$ can be associated with similar invariants by considering asymptotic variations of the Landau-Ginzburg system of equations of X_a.

3. Variations of the LG-system and roots of unity

Let X be a n-dimensional toric Fano manifold given by a Fano polytope $\Delta \subset M_{\mathbb{R}}$ and let $\Delta^o \subset N_{\mathbb{R}}$ be the corresponding polar polytope. Set

$$L(\Delta^o) := \left\{ \sum_{n \in \Delta^o \cap \mathbb{Z}^n} u_n z^n | u_n \in \mathbb{C}^* \right\} \subset \mathbb{C}[z_1^\pm, ..., z_n^\pm]$$

We refer to

$$z_i \frac{\partial}{\partial z_i} f_u(z_1, ..., z_n) = 0 \quad \text{for} \quad i = 1, ..., n$$

as the LG-system of equations associated to an element $f_u(z) = \sum_{n \in \Delta^o \cap \mathbb{Z}^n} u_n z^n$ and denote by $\text{Crit}(X; f_u) \subset (\mathbb{C}^*)^n$ the corresponding solution scheme. We refer to the element $f_X(z) = \sum_{n \in \Delta^o \cap \mathbb{Z}^n} z^n$ as the LG-potential of X. In particular for the projective bundle X_a the Landau-Ginzburg potential is given by

$$f(z, w) = 1 + \sum_{i=1}^s z_i + \sum_{i=1}^r w_i + \frac{w_1^{a_1} \cdot ... \cdot w_r^{a_r}}{z_1 \cdot ... \cdot z_s} + \frac{1}{w_1 \cdot ... \cdot w_r} \in L(\Delta^o_a)$$

We consider the 1-parametric family of Laurent polynomials

$$f_u(z, w) := 1 + \sum_{i=1}^s z_i + \sum_{i=1}^r w_i + e^u \cdot \frac{w_1^{a_1} \cdot ... \cdot w_r^{a_r}}{z_1 \cdot ... \cdot z_s} + \frac{1}{w_1 \cdot ... \cdot w_r} \in L(\Delta^o_a)$$

for $u \in \mathbb{C}$. Let $\text{Arg} : (\mathbb{C}^*)^n \to \mathbb{T}^n$ be the argument map given by

$$(r_1 e^{2\pi i \theta_1}, ..., r_n e^{2\pi i \theta_n}) \mapsto (\theta_1, ... \theta_n)$$

In general, the image $A(V) := \text{Arg}(V) \subset \mathbb{T}^n$ of an algebraic subvariety $V \subset (\mathbb{C}^*)^n$ under the argument map is known as the co-amoeba of V, see [37]. For $1 \leq i \leq s$ and $1 \leq j \leq r$ consider the following sub-varieties of $(\mathbb{C}^*)^{s+r}$:

$$V^u_i = \left\{ z_i - e^u \prod_{l=1}^r w_i^{a_l} / z_i = 0 \right\} \quad ; \quad W^u_j = \left\{ w_i + a_i e^u \prod_{l=1}^r w_i^{a_l} - 1 / w_i = 0 \right\}$$

Clearly, by definition $\text{Crit}(X; f_u) = (\bigcap_{i=1}^s V^u_i) \cap (\bigcap_{i=1}^r W^u_i)$. For the co-amoeba one has

$$A(\text{Crit}(X; f_u)) \subset \left(\bigcap_{i=1}^s A(V^u_i) \right) \cap \left(\bigcap_{i=1}^r A(W^u_i) \right) \subset \mathbb{T}^{s+r}$$
Let \((\theta_1, ..., \theta_s, \delta_1, ..., \delta_r)\) be coordinates on \(T^{s+r}\). We have, via straight-forward computation:

Lemma 3.1: For \(1 \leq i \leq s\) and \(1 \leq j \leq r\):

1. \(\lim_{t \to -\infty} A(V^t_i) = \left\{ \theta + \sum_{i=1}^s \theta_i - \sum_{j=1}^r a_j \delta_j = 0 \right\} \subset T^{s+r}\)

2. \(\lim_{t \to -\infty} A(W^t_j) = \left\{ \delta_j + \sum_{j=1}^r \delta_j = 0 \right\} \subset T^{s+r}\)

Let \(\Theta : (\mathbb{C}^*)^{s+r} \to (\mathbb{C}^*)^2\) be the map given by

\[(z_1, ..., z_s, w_1, ..., w_r) \mapsto Arg\left(\frac{\prod_{i=1}^s w_{a_i}}{\prod_{i=1}^s z_i} \cdot \frac{1}{\prod_{i=1}^r w_i} \right)\]

We have:

Proposition 3.2:

\[
\lim_{t \to -\infty} (\Theta(Crit(X; f_i))) = \left\{ \left(\frac{l \sum_{i=1}^r a_i}{(s+1)(r+1)} + \frac{k}{s+1} \cdot \frac{l}{r+1} \right) \right\}^{s,r}_{k=0, l=0} \subset T^2
\]

Proof: Set \(A_i = \lim_{t \to -\infty} A(V^t_i)\) and \(B_j = \lim_{t \to -\infty} A(W^t_j)\) for \(1 \leq i \leq s\) and \(1 \leq j \leq r\). If \((\theta, \delta) \in \bigcap_{j=1}^r B_j\) then \(\delta = \delta_1 = ... = \delta_r\) and \((r+1)\delta = 0\) in \(T\). If

\[
(\theta, \delta) \in \left(\bigcap_{i=1}^s A_i \right) \cap \left(\bigcap_{j=1}^r B_j \right)
\]

then \(\theta = \theta_1 = ... = \theta_s\) and \(\delta = \frac{l}{r+1}\) for some \(0 \leq l \leq r\). As \((s+1)\theta - \sum_{j=1}^r a_j \delta\) we get \(\theta = \sum_{j=1}^r \frac{a_j}{(s+1)(r+1)} + \frac{k}{s+1}\) for \(1 \leq k \leq s\). As there are exactly \((r+1)(s+1)\) such elements \((\theta, \delta)\) we get \(\lim_{t \to -\infty} A(Crit(X; f_i)) = (\bigcap_{i=1}^s A_i) \cap (\bigcap_{j=1}^r B_j)\). □

Each solution \((z, w) \in Crit(X)\) extends to a unique smooth curve \((z(t), w(t)) \subset (\mathbb{C}^*)^{s+r}\) for \(t \leq 0\) satisfying \((z^t, w^t) \in Crit(X; f_i)\). Set \(\rho_n := \frac{2\pi i}{(n+1)}\) and \(\theta_{n,m}(a) := \frac{2\pi i \sum a_k}{(n+1)(m+1)}\) for \(n, m \in \mathbb{Z}\). By Proposition 3.2 we have

\[
\lim_{t \to -\infty} \Theta(z(t), w(t)) = (l \cdot \theta_{r,s}(a) + k \cdot \rho_s, l \cdot \rho_r)
\]

For some \(0 \leq k \leq s\) and \(0 \leq l \leq r\). In particular, set \(k(z, w) := k\) and \(l(z, w) := l\). We are now in position to define:

Definition 3.3 (Exceptional map): Let \(E : Crit(X) \to Pic(X)\) be the map given by

\[
E(z, w) := k(z, w) \cdot \pi^*H + l(z, w) \cdot \xi
\]
for \((z, w) \in Crit(X)\).

Let us note the following remark:

Remark 3.4 (Geometric viewpoint): Consider the Riemann surface

\[
C_s(a) := \left\{ \left(\frac{w_1^{a_1} \cdots w_r^{a_r}}{z_1 \cdots z_s}, \frac{1}{w_1 \cdots w_r}, u \right) \mid (z, w) \in Crit(X; f_u) \right\} \subset (\mathbb{C}^*)^3
\]

Denote by \(\pi : C_s(a) \to \mathbb{C}^*\) the projection on the third factor which expresses \(C_s(a)\) as an algebraic fibration over \(\mathbb{C}^*\) of rank \(N = \chi(X)\). Denote by \(C_s(a; u) = \pi^{-1}(u)\) for \(u \in \mathbb{C}^*\). A graphic illustration of \(C_s(a)\) together with the curves \(C(a; t)\) for \(0 \leq t \leq \infty\) for the Hirzebruch surface \(X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))\) is as follows:

An amusing analogy can be drawn between the resulting dynamics and the cue game of "pool". Indeed, consider the Riemann surface \(C_s(a)\) as a "pool table", the cusps of the surface as the "pockets", and the set \(C_s(a; 0) \simeq Crit(X)\) as an initial set of "balls". In this analogy the dynamics of \(C_s(a; t)\) describes the path in which the balls approach the various "pockets" of the table as \(t \to \pm \infty\).

Set \(\Theta_{\pm}(X) = \lim_{t \to \pm \infty} \Theta(Crit(X; f_t)) \subset \mathbb{T}^2\). Note that defintion 3.3 of the exceptional map utilized only the sets \(\Theta_{-}(X)\). It is interesting to ask whether \(\Theta_{+}(X)\) can also be interpreted in terms of the exceptional map \(E\). Consider the following example:

Example 3.5 (The Hirzebruch surface): Let \(X = \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(1))\) be the Hirzebruch surface. Recall that

\[
X = \{ ([z_0 : z_1 : z_2], [\lambda_0 : \lambda_1]) | \lambda_0 z_0 + \lambda_1 z_1 = 0 \} \subset \mathbb{P}^2 \times \mathbb{P}^1
\]

Denote by \(p : X \to \mathbb{P}^2\) and \(\pi : X \to \mathbb{P}^1\) the projection to the first and second factor, respectively. Note that \(p\) expresses \(X\) as the blow up of \(\mathbb{P}^2\) at the point \([0 : 0 : 1]\) \(\in \mathbb{P}^2\) and \(\pi\) is the fibration map. The group \(Pic(X)\) is described, in turn, in the following two ways

\[
Pic(X) \simeq p^*H_{\mathbb{P}^2} \cdot \mathbb{Z} \oplus E \cdot \mathbb{Z} \simeq \pi^*H_{\mathbb{P}^1} \cdot \mathbb{Z} \oplus \xi \cdot \mathbb{Z}
\]
Where \(E \) is class of the the line bundle whose first Chern class \(c_1(E) \in H^2(X; \mathbb{Z}) \) is the Poincare dual of the exceptional divisor and \(\xi \) is the class of the tautological bundle of \(\pi \). The exceptional collection is expressed in these bases by

\[
\mathcal{E}_X = \{0, p^*H_{p^2} - E, 2p^*H_{p^2} - E, p^*H_{p^2} \} = \{0, \pi^*H_{\pi^1}, \pi^*H_{\pi^1} + \xi, \xi \}
\]

Let us note that we have \(p_* \{0, p^*H_{p^2}, 2p^*H_{p^2} - E \} = \{0, H_{p^2}, 2H_{p^2} \} = \mathcal{E}_{p^2} \), while we think of the additional element \(p^*H - E \) as "added by the blow up".

On the other hand, direct computation gives \(\Theta_+(X) = \mu(3) \cup \mu(1) \) where \(\mu(n) = \{ e^{\frac{2\pi i}{n}} | k = 0, ..., n - 1 \} \subset \mathbb{T} \) is the set of \(n \)-roots of unity for \(n \in \mathbb{N} \) (see illustration in Remark 3.4). For \((k, l) \in \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) let \(\gamma_{kl}(t) = (z_{kl}(t), w_{kl}(t)) \in (\mathbb{C}^*)^{s+r} \) be the smooth curve defined by the condition \((z_{kl}(t), w_{kl}(t)) \in \text{Crit}(X; f_t) \) for \(t \in \mathbb{R} \) and \(E(z_{kl}(0), w_{kl}(0)) = E_{kl} \). Define the map \(I^+: \text{Crit}(X) \to \Theta_+(X) \) by

\[
I^+(z_{kl}, w_{kl}) := \lim_{t \to -\infty}(\Theta(z_{kl}(t), w_{kl}(t)))
\]

By direct computation

\[
I^+((z_{00}, w_{00})) = \rho_3^0 ; \quad I^+((z_{01}, w_{01})) = \rho_3^1 ; \quad I^+((z_{11}, w_{11})) = \rho_3^2 ; \quad I^+((z_{10}, w_{10})) = 1
\]

where \(\rho = e^{\frac{2\pi i}{3}} \in \mu(3) \). Similarly, define the map \(I^- : \text{Crit}(X) \to \Theta_-(X) \), on the other hand, taking \(t \to -\infty \) in the limit. Note that this is the way we defined the exceptional map \(E \) in the first place. We thus view the map \(I : \Theta_-(X) \to \Theta_+(X) \) given by \(I = I^+ \circ (I^-)^{-1} \) as a "geometric interpolation" between the bundle description of \(\mathcal{E}_X \) and the blow up description of \(\mathcal{E}_X \).

4. Monodromies and the Endomorphism Ring

Given a full strongly exceptional collection \(\mathcal{E} = \{E_i\}_{i=1}^N \subset \text{Pic}(X) \) one is interested in the structure of its endomorphism algebra

\[
A_{\mathcal{E}} = \text{End} \left(\bigoplus_{i=1}^N E_i \right) = \bigoplus_{i,j=0}^N \text{Hom}(E_i, E_j) = \bigoplus_{i,j=0}^N H^0(X; E_j \otimes E_i^{-1})
\]

Our aim in this section is to show how this algebra is naturally reflected in the monodromy group action of the Landau-Ginzburg system, in our case. Note that, in our case

\[
\text{Div}_T(X) = \left(\bigoplus_{i=1}^s \mathbb{Z} \cdot V_X(v_i) \right) \bigoplus \left(\bigoplus_{i=0}^r \mathbb{Z} \cdot V_X(e_i) \right)
\]

First, we have:
Proposition 4.1 Let $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^s} \oplus \bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^s}(a_i))$ be a projective Fano bundle and let $L_{kl} = k \cdot \pi^* H + l \cdot \xi \in \text{Pic}(X)$ be any element. Then

$$H^0(X; L_{kl}) \simeq \left\{ \sum_{i=0}^{s} n_i V_X(v_i) + \sum_{i=0}^{r} m_i V_X(e_i) \middle| m \mid = l \text{ and } |n| = k + \sum_{i=0}^{r} m_i a_i \right\} \subset \text{Div}_T^+(X)$$

Recall that a quiver with relations $\tilde{Q} = (Q, R)$ is a directed graph Q with a two sided ideal R in the path algebra $\mathbb{C}Q$ of Q, see [18]. In particular, a quiver with relations \tilde{Q} determines the associative algebra $A_{\tilde{Q}} = \mathbb{C}Q/R$, called the path algebra of \tilde{Q}. In general, a collection of elements $C \subset \mathcal{D}^b(X)$ and a basis $B \subset A_C := \text{End}(\bigoplus_{E \in C} E)$ determine a quiver with relations $\tilde{Q}(C, B)$ whose vertex set is C such that $A_C \simeq A_{\tilde{Q}(C, B)}$, see [28]. By Proposition 4.1 the algebra A_C comes with the basis \{ $V(v_0), ..., V(v_s), V(e_0), ..., V(e_r)$ \}. We denote the resulting quiver by $Q_s(a_0, ..., a_r)$. For example, the quiver $Q_3(0, 1, 2)$ for $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1) \oplus \mathcal{O}_{\mathbb{P}^3}(2))$ is the following:

\[
\begin{array}{cccc}
E_{00} & \rightarrow & E_{10} & \rightarrow & E_{20} & \rightarrow & E_{30} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
E_{01} & \rightarrow & E_{11} & \rightarrow & E_{21} & \rightarrow & E_{31} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
E_{02} & \rightarrow & E_{12} & \rightarrow & E_{22} & \rightarrow & E_{32}
\end{array}
\]

On the other hand, on the Landau-Ginzburg side, let $R_X \subset L(\Delta^\circ)$ be the hypersurface of all $f \in L(\Delta^\circ)$ such that $\text{Crit}(X; f)$ is non-reduced. Whenever $\text{Crit}(X)$ is reduced, one obtains, via standard analytic continuation, a monodromy map of the following form

$$M : \pi_1(L(X) \setminus R_X, f_X) \rightarrow \text{Aut}(\text{Crit}(X))$$

For a divisor $D = \sum_{i=0}^{s} n_i V_X(v_i) + \sum_{i=0}^{r} m_i V_X(e_i) \in \text{Div}_T(X)$ and $u \in \mathbb{C}$ consider the loop

$$\gamma^u_D(\theta) := \sum_{i=1}^{s} e^{2\pi in_i \theta} z_i + \sum_{i=1}^{r} e^{2\pi im_i \theta} w_i + e^u \cdot e^{2\pi in_0 \theta} \prod_{i=1}^{r} w_i^{a_i} \prod_{i=1}^{s} z_i + e^{2\pi im_0 \theta} \prod_{i=1}^{r} w_i$$
For $\theta \in [0, 1)$. To a loop $\gamma^t : [0, 1] \to L(\Delta^s)$ with base point $\gamma(0) = \gamma(1) = f_t$ we associate the loop
\[
\tilde{\gamma}^t(\theta) := \begin{cases}
(1 - 3\theta)f_X + 3\theta f_t & \theta \in [0, \frac{1}{3}) \\
\gamma^t(3\theta - 1) & \theta \in \left[\frac{1}{3}, \frac{2}{3}\right] \\
(3\theta - 1)f_t + (3\theta - 2)f_X & \theta \in (\frac{2}{3}, 1]
\end{cases}
\]
Define $\Gamma_D := \lim_{t \to -\infty} [\tilde{\gamma}^t_D] \in \pi_1(L(\Delta^s) \setminus R_X, f_X)$ and set $\tilde{M}_D := M(\Gamma_D) \in \text{Aut}(\text{Crit}(X))$. Express the solution scheme as
\[
\text{Crit}(X) = \{(z_{kl}, w_{kl})\}_{k=0,l=0}^{s+r} \simeq \mathbb{Z}/(r + 1)\mathbb{Z} \oplus \mathbb{Z}/(s + 1)\mathbb{Z}
\]
where $E((z_{kl}, w_{kl})) = E_{kl}$. We have:

Theorem 4.2 For $(k, l) \in \mathbb{Z}/(s + 1)\mathbb{Z} \oplus \mathbb{Z}/(r + 1)\mathbb{Z} \simeq \text{Crit}(X)$ the monodromy action satisfies:

(a) $\tilde{M}_{V(v_j)}(k, l) = (k + 1, l)$ for $j = 0, \ldots, s$.

(b) $\tilde{M}_{V(v_j)}(k, l) = (k - a_j, l + 1)$ for $j = 0, \ldots, r$.

Proof: For a divisor $D \in \text{Div}_T(X)$ and $\theta \in [0, 1)$ Set
\[
V^{u,\theta}_{D,i} := \left\{ e^{2\pi i n_0 \theta} z_i - e^u e^{2\pi in_0 \theta} \prod_{i=1}^{r} \frac{w_n^i}{z_i} = 0 \right\}; \quad W^{u,\theta}_{D,i} := \left\{ e^{2\pi in_j \theta} w_j + a_i e^u e^{2\pi in_0 \theta} \prod_{i=1}^{r} \frac{w_n^i}{z_i} - e^{2\pi in_0 \theta} = 0 \right\}
\]
where $1 \leq i \leq s$, $1 \leq j \leq r$ and $u \in \mathbb{C}$. Let $(\theta_1, \ldots, \theta_s, \delta_1, \ldots, \delta_r)$ be coordinates on T^{s+r}. It is clear that:

- $A^{\theta}_{D,j} := \lim_{t \to -\infty} A(V^{t,\theta}_{D,j}) = \left\{ \theta_i + \sum_{i=1}^{s} \theta_i - \sum_{j=1}^{r} a_j \delta_j + (n_i - n_0)\theta = 0 \right\} \subset T^{s+r}$

- $B^{\theta}_{D,j} := \lim_{t \to -\infty} A(W^{t,\theta}_{D,j}) = \left\{ \delta_j + \sum_{j=1}^{r} \delta_j + (m_j - m_0)\theta = 0 \right\} \subset T^{s+r}$

For $D = V(v_0)$ we have $(\theta, \delta) \in \bigcap_{j=1}^{r} B^{t,\theta}_{D,j}$ then $\delta := \delta_1 = \ldots = \delta_r$ and $(r + 1)\delta = 0$ hence $\delta = \frac{l}{r+1}$ for some $0 \leq l \leq r$. Assume further that $(\theta, \delta) \in \bigcap_{i=1}^{s} A^{t,\theta}_{D,i} \cap \bigcap_{j=1}^{r} B^{t,\theta}_{D,j}$ then $\tilde{\delta} = \delta_1 = \ldots = \delta_s$ and $(s + 1)\tilde{\delta} - \sum_{j=1}^{r} \frac{a_j l}{r+1} - \theta = 0$. Hence, $\tilde{\delta} = \frac{k}{s+1} + \frac{l \sum_{j=1}^{r} a_j}{(s+1)(r+1)} + \frac{\theta}{s+1}$ for some $0 \leq k \leq s$.

For $D = V(v_1)$ if $(\theta, \delta) \in \bigcap_{i=1}^{s} A^{t,\theta}_{D,i} \cap \bigcap_{j=1}^{r} B^{t,\theta}_{D,j}$ then $\tilde{\delta} = \theta_1 = \ldots = \theta_s$ and $\theta_i = \tilde{\theta} - \delta$ and again $(s + 1)\tilde{\delta} - \sum_{j=1}^{r} \frac{a_j l}{r+1} - \theta = 0$. Hence, $\tilde{\delta} = \frac{k}{s+1} + \frac{l \sum_{j=1}^{r} a_j}{(s+1)(r+1)} + \frac{\theta}{s+1}$ for some $0 \leq k \leq s$.

For $D = V(e_0)$ we have $(\theta, \delta) \in \bigcap_{j=1}^{r} B^{t,\theta}_{D,j}$ then $\delta := \delta_1 = \ldots = \delta_r$ and $(r + 1)\delta = \theta$ hence $\delta = \frac{\theta l}{r+1}$ for some $0 \leq l \leq r$. Assume further that $(\theta, \delta) \in \bigcap_{i=1}^{s} A^{t,\theta}_{D,i} \cap \bigcap_{j=1}^{r} B^{t,\theta}_{D,j}$ then $\tilde{\delta} = \theta_1 = \ldots = \theta_s$ and $\theta_i = \tilde{\theta} - \delta$ and again $(s + 1)\tilde{\delta} - \sum_{j=1}^{r} \frac{a_j l}{r+1} - \theta = 0$. Hence, $\tilde{\delta} = \frac{k}{s+1} + \frac{l \sum_{j=1}^{r} a_j}{(s+1)(r+1)} + \frac{\theta}{s+1}$ for some $0 \leq k \leq s$.

\[\tilde{\theta} = \theta_1 = \ldots = \theta_s \text{ and } (s + 1) \tilde{\theta} - \sum_{j=1}^{r} a_j \frac{(l+\theta)}{r+1} = 0. \] Hence, \[\tilde{\theta} = \frac{k}{s+1} + \frac{(l+\theta) \sum_{j=1}^{r} a_j}{(s+1)(r+1)} \] for some \(0 \leq k \leq s. \)

For \(D = V(e_j) \) we have \((\theta, \delta) \in \bigcap_{j=1}^{r} B^e_{D,j}\) then \(\delta := \delta_1 = \ldots = \delta_j = \ldots = \delta_r \) and \(\delta_j = \delta - \theta \) hence \((r + 1) \delta = \theta \) and \(\delta = \frac{l+\theta}{r+1} \) for some \(0 \leq l \leq r. \) Assume \((\theta, \delta) \in (\bigcap_{i=1}^{s} A^t_{D,i}) \cap (\bigcap_{j=1}^{r} B^e_{D,j}) \) then \(\tilde{\theta} = \theta_1 = \ldots = \theta_s \) and \((s + 1) \tilde{\theta} - \sum_{j=1}^{r} a_j \frac{(l+\theta)}{r+1} + a_j \theta = 0. \) Hence, \(\tilde{\theta} = -\frac{k-a_j \theta}{s+1} + \frac{(l+\theta) \sum_{j=1}^{r} a_j}{(s+1)(r+1)} \) for some \(0 \leq k \leq s. \ \Box \)

For instance, consider the following example:

Example (monodromies for \(X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1) \oplus \mathcal{O}_{\mathbb{P}^3}(2)) \)): The following diagram outlines the corresponding monodromies on \(\mathbb{T}^2: \)

Blue lines describe the monodromy action of \(v_0, v_1, v_2, v_3 \) (which are, in practice, all linear in the horizontal direction), black lines describe the action of \(e_0 \) while red and green lines describe the action of \(e_1, e_2 \) respectively.

For a divisor \(D \in \text{Div}_T(X) \) set

\[|D|_1 := \sum_{i=0}^{s} n_i - \sum_{i=0}^{r} a_i m_i \quad ; \quad |D|_2 = \sum_{i=0}^{r} m_i \]

Set

\[\text{Div}^+(k, l) := \{ \text{Div}0 < k + |D|_1 \leq s \text{ and } 0 < l + |D|_2 \leq r \} \subset \text{Div}^+_T(X) \]
For two solutions \((k_1, l_1), (k_2, l_2) \in \mathbb{Z}/(s + 1)\mathbb{Z} \oplus \mathbb{Z}/(r + 1)\mathbb{Z}\) we define

\[
\text{Hom}_{\text{mon}}((k_1, l_1), (k_2, l_2)) := \bigoplus_{D \in M((k_1, l_1), (k_2, l_2))} \tilde{M}_D \cdot \mathbb{Z}
\]

where

\[
M((k_1, l_1), (k_2, l_2)) := \left\{ D \mid \tilde{M}_D (k_1, l_1) = (k_2, l_2) \text{ and } D \in \text{Div}^+(k_1, l_1) \right\}
\]

We have:

Corollary 4.3 (M-Aligned property): For any two solutions \((k_1, l_1), (k_2, l_2) \in \text{Crit}(X)\) the following holds

\[
\text{Hom}(E_{k_1 l_1}, E_{k_2 l_2}) \simeq \text{Hom}_{\text{mon}}((k_1, l_1), (k_2, l_2))
\]

Furthermore, the composition map

\[
\text{Hom}(E_{k_1 l_1}, E_{k_2 l_2}) \otimes \text{Hom}(E_{k_2 l_2}, E_{k_3 l_3}) \to \text{Hom}(E_{k_1 l_1}, E_{k_3 l_3})
\]

is induced by the map

\[
\text{Mon}((k_1, l_1), (k_2, l_2)) \times \text{Mon}((k_2, l_2), (k_3, l_3)) \to \text{Mon}((k_1, l_1), (k_3, l_3))
\]

given by \((D_1, D_2) \mapsto D_1 + D_2\).

5. **Discussion and Concluding Remarks**

We would like to conclude with the following remarks and questions:

(a) **Monodromies and Lagrangian submanifolds:** A leading source of interest for the study of the structure of \(\mathcal{D}^b(X)\), in recent years, has been their role in the famous homological mirror symmetry conjecture due to Kontsevich, see [28]. For a toric Fano manifold \(X\) denote by \(X^\circ\) the toric variety given by \(\Delta^\circ\), the polar polytope of \(\Delta\). It is generally accepted, that in this setting, the analog of the HMS-conjecture relates the structure of \(\mathcal{D}^b(X)\) to the structure of \(\text{Fuk}(\tilde{Y}^\circ)\), where \(\tilde{Y}^\circ\) is a disingularization of a hyperplane section \(Y^\circ\) of \(X^\circ\), see [2, 32, 40]. It is thus natural to pose the following question:

Question: Is it possible to naturally associate a Lagrangian submanifold \(L(z) \subset \tilde{Y}^\circ\) to a solution \(z \in \text{Crit}(X)\) with the property

\[
\text{HF}(L(z), L(w)) \simeq \text{Hom}_{\text{mon}}(z, w) \quad \text{for } z, w \in \text{Crit}(X)
\]

where \(\text{HF}\) stands for Lagrangian Floer homology?
(b) **Further toric Fano manifolds:** The Landau-Ginzburg potential of a toric Fano manifold X could always be written in the form $f_X(z) := \sum_{i=1}^{n} z_i + \sum_{j=1}^{\rho(X)} z^{n_j}$ where $\rho(X) = \text{rk}(\text{Pic}(X))$, by taking an automorphism of the polytope Δ. Consider the map $\Theta : (\mathbb{C}^*)^n \to \mathbb{T}^\rho$ given by

$$(z_1, ..., z_n) \mapsto \text{Arg}(z_1^{n_1}, ..., z_1^{n_n})$$

For an element $f_u(z) := \sum_{i=1}^{n} z_i^n + \sum_{j=1}^{\rho} e^{u_j} z^{n_j} \in L(\Delta^o)$ and $i = 1, ..., n$ define the hypersurfaces

$$V_i(u_1, ..., u_n) = \left\{ z_i \frac{\partial}{\partial z_i} f_u = 0 \right\} \subset (\mathbb{C}^*)^n$$

It is interesting to ask to which extent the study of the properties of the "co-tropical LG-system of equations"

$$\bigcap_{i=1}^{n} \Theta(V_i(u_1, ..., u_n)) \subset \mathbb{T}^\rho$$

for $|u| \to \infty$ could be further related to exceptional collections $\mathcal{E}_X \subset \text{Pic}(X)$ and their quivers for other, more general, examples of toric Fano manifolds.

Let us note that the zero set $V(f) = \{ f = 0 \} \subset (\mathbb{C}^*)^n$ of an element $f \in L(\Delta^o)$ is an affine Calabi-Yau hypersurface. In [4] Batyrev introduced $\mathcal{M}(\Delta^o)$ the toric moduli of such affine Calabi-Yau hyper-surfaces which is a $\rho(X)$-dimensional singular toric variety obtained as the quotient of $L(\Delta^o)$ by appropriate equivalence relations. In [4] Batyrev further shows that $\text{PH}^{n-1}(V(f)) \simeq \text{Jac}(f)$, where $\text{Jac}(f)$ is the function ring of the solution scheme $\text{Crit}(X; f) \subset (\mathbb{C}^*)^n$.

In this sense our approach could be viewed as a suggesting that in the toric Fano case homological data about the structure of $\mathcal{D}^b(X)$, could, in fact, be extracted from the local behavior around the boundary of the B-model moduli, which in our case is $\mathcal{M}(\Delta^o)$, rather than the Fukaya category appearing in the general homological mirror symmetry conjecture, whose structure is typically much harder to analyze.

Acknowledgements: This research has been partially supported by the European Research Council Advanced grant 338809.

References

[1] P. Achinger A note on the Frobenius morphism on toric varieties. arXiv:1012.2021.

[2] D. Auroux, L. Katzarkov, D. Orlov. Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math. 166 (2006), no. 3, 537–582.

[3] V. Batyrev. Quantum cohomology rings of toric manifolds. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). Astérisque No. 218 (1993), 9–34.

[4] V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3 (1994), no. 3, 493–535.
[5] V. Batyrev. On the classification of toric Fano 4-folds. Algebraic geometry, 9. J. Math. Sci. (New York) 94 (1999), no. 1, 1021–1050.
[6] V. Batyrev. Toric Fano threefolds. Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 4, 704–717, 927.
[7] A. Beilinson. The derived category of coherent sheaves on \mathbb{P}^n. Selected translations. Selecta Math. Soviet. 3 (1983/84), no. 3, 233–237.
[8] A. Bondal. Helices, representations of quivers and Koszul algebras. Helices and vector bundles, 75–95, London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press, Cambridge, 1990.
[9] A. Bondal. Representations of associative algebras and coherent sheaves. Math. USSR-Izv. 34 (1990), no. 1, 23–42.
[10] A. Bondal. Derived categories of toric varieties. Oberwolfach reports, 3 (1), 284–286, 2006.
[11] L. Borisov, Z. Hua. On the conjecture of King for smooth toric Deligne-Mumford stacks. Adv. Math. 221 (2009), no. 1, 277–301.
[12] A. Bernardi, S. Tirabassi. Derived categories of toric Fano 3-folds via the Frobenius morphism. Matematiche (Catania) 64 (2009), no. 2, 117–154.
[13] L. Costa, R. M. Miró-Roig. Derived category of toric varieties with small Picard number. Cent. Eur. J. Math. 10 (2012), no. 4, 1280–1291.
[14] L. Costa, R. M. Miró-Roig. Frobenius splitting and derived category of toric varieties. Illinois J. Math. 54 (2010), no. 2, 649–669.
[15] L. Costa, R. M. Miró-Roig. Derived categories of projective bundles. Proc. Amer. Math. Soc. 133 (2005), no. 9, 2533–2537.
[16] L. Costa, S. Di Rocco, R. M. Miró-Roig. Derived category of fibrations. Math. Res. Lett. 18 (2011), no. 3, 425–432.
[17] D. Cox, J.B. Little, H.K Schenck. Toric varieties. Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI, 2011.
[18] H. Derksen, J. Weyman. Quiver representations. Notices Amer. Math. Soc. 52 (2005), no. 2, 200–206.
[19] A. I. Efimov. Maximal lengths of exceptional collections of line bundles. 2010, arXiv:1010.3755.
[20] W. Fulton. Introduction to toric varieties. Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
[21] K. Fukaya, Y-G. Oh, H. Ohta, K. Ono. Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151 (2010), no. 1, 23–174.
[22] S. Gelfand, Y. Manin. Methods of homological algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[23] I. Gelfand, M. Kapranov, A. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory and Applications. Birkhauser Boston, Inc., Boston, MA, 1994.
[24] L. Hille, M. Perling. A counterexample to King’s conjecture. Compos. Math. 142 (2006), no. 6, 1507–1521.
[25] K. Hori, C. Vafa. Mirror Symmetry. arXiv:hep-th/0002222
[26] Y. Jerby. On Landau-Ginzburg systems, Quivers and Monodromy. arXiv:1310.2436v4.
[27] Y. Kawamata. Derived categories of toric varieties. Michigan Math. J. 54 (2006), no. 3, 517–535.
[28] A. King. Tilting bundles on some rational surfaces. preprint.
[29] P. Kleinschmidt. A classification of toric varieties with few generators. Aequationes Math. 35 (1988), no. 2-3, 254–266.
[30] A. G. Kushnirenko. Newton polytopes and the Bezout theorem. Functional Analysis and Its Applications Volume 10, Number 3 (1976), 233–235.
[31] M. Kontsevich. Homological algebra of mirror symmetry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 120-139, Birkhauser, Basel, 1995.
[32] M. Kontsevich. Course at ENS. 1998, http://arxiv.org/abs/hep-th/0002222
[33] M. Kreuzer, B. Nill. Classification of toric Fano 5-folds. Adv. Geom. 9 (2009), no. 1, 85–97.
[34] M. Lason, M. Michalek. On the full, strongly exceptional collections on toric varieties with Picard number three. Collect. Math. 62 (2011), no. 3, 275–296.
[35] T. Oda. Convex bodies and algebraic geometry - toric varieties and applications. I. Algebraic Geometry Seminar (Singapore, 1987), 89–94, World Sci. Publishing, Singapore, 1988.
[36] Y. Ostrover, I. Tyomkin. On the quantum homology algebra of toric Fano manifolds. Selecta Math. (N.S.) 15 (2009), no. 1, 121–149.
[37] M. Passare, A. Tsikh. Amoebas: their spines and their contours. Idempotent mathematics and mathematical physics, 275-288, Contemp. Math. 377, Amer. Math. Soc., Providence, RI 2005.
[38] M. Perling. Some Quivers Describing the Derived Category of the Toric del Pezzos. preprint.
[39] M. Perling. Examples for exceptional sequences of invertible sheaves on rational surfaces. Séminaires et Congrés 25 (2013), Soc. Math. France, Paris, 369-389.
[40] P. Seidel. More about vanishing cycles and mutation. Symplectic geometry and mirror symmetry (Seoul, 2000), 429–465, World Sci. Publ., River Edge, NJ, 2001.
[41] H, Sato. Toward the classification of higher-dimensional toric Fano varieties. Tohoku Math. J. (2) 52 (2000), no. 3, 383–413.
[42] R. Thomas Derived categories for the working mathematician. Providence, R.I, Mirror symmetry; Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds, Cambridge, MA, January 1999, Publisher: American Mathematical Society
[43] H. Uehara. Exceptional collections on toric Fano threefolds and birational geometry. 2010, arXiv:1012.4086.
[44] K. Watanabe, M. Watanabe. The classification of Fano 3 -folds with torus embeddings. Tokyo J. Math. 5 (1982), no. 1, 37–48.

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel

E-mail address: yochayjerby@post.tau.ac.il