Non-linear Laplace equation, de Sitter vacua and information
geometry

Farhang Loran

Department of Physics, Isfahan University of Technology (IUT)
Isfahan, Iran

Abstract

Three exact solutions say \(\phi_0 \) of massless scalar theories on Euclidean space, i.e. \(D = 6 \phi^3 \), \(D = 4 \phi^4 \) and \(D = 3 \phi^6 \) models are obtained which share similar properties. The information geometry of their moduli spaces coincide with the Euclidean AdS\(_7\), AdS\(_5\) and AdS\(_4\) respectively on which \(\phi_0 \) can be described as a stable tachyon. In \(D = 4 \) we recognize that the SU(2) instanton density is proportional to \(\phi_0^4 \). The original action \(S[\phi] \) written in terms of new scalars \(\tilde{\phi} = \phi - \phi_0 \) is shown to be equivalent to an interacting scalar theory on \(D\)-dimensional de Sitter background.

AdS/CFT correspondence [1], as a bulk/boundary correspondence, is a quantitative realization of the holographic principle. In [2] Witten showed that the metric on the boundary of the AdS space is well-defined only up to a conformal transformation and the correlation functions of the CFT on the boundary are given by the dependence of the supergravity action on the asymptotic behavior at infinity, see also [3]. Using the metric

\[
ds^2 = \frac{1}{x_0^2} (dx_0^2 + dx_1^2 + \cdots + dx_d^2)
\]

for the Euclidean AdS\(_{d+1}\) Witten showed that the generating function for CFT correlators,

\[
I[\phi] = \ln \langle \exp \int \phi \mathcal{O} \rangle
\]

is

\[
I[\phi] = \int d^d y d^d z \frac{\phi_0(\vec{y}) \phi_0(\vec{z})}{|\vec{y} - \vec{z}|^{2(d+\lambda_+)}},
\]

where \(\phi_0 \) here, is some scalar field on the boundary, determined by the asymptotic behavior of scalar fields \(\Phi \) in the bulk: \(\Phi \sim x_0^{-\lambda_+} \phi_0 \) as \(x_0 \to 0 \). Here, \(\lambda_+ \) is the larger root of the equation \(\lambda(\lambda + d) = m^2 \). These results led us to a classical interpretation for EAdS/CFT correspondence as the relation between the solutions of the Klein-Gordon equation \(\phi(x_0, \vec{x}) \) (bulk fields) and the Cauchy data \(\phi(0, \vec{x}) \) (boundary fields) [5]. In fact under the conformal transformation

\[
d_{\mu\nu} \to g_{\mu\nu} = x_0^{-2}\delta_{\mu\nu}
\]

that gives the EAdS\(_{d+1}\) metric mentioned above in terms of \(\delta_{\mu\nu} \), the metric of the \(D\)-dimensional flat Euclidean space \(R^{d+1} \), massless fields \(\phi \) on \(R^{d+1} \) transform to massive scalars \(\Phi = x_0^{-\lambda_+} \phi \) with mass \(-\frac{d^2-1}{4} \). From the classical equation of motion \(\delta S[\phi] = 0 \) one can determine \(\phi(x_0, \vec{x}) \) in terms of the Cauchy data \(\phi_0(\vec{x}) = \phi(0, \vec{x}) \). Inserting the solution in \(S[\phi] \) one obtains \(I[\phi] \) given in Eq.(1). By the same method, though only for scalars with
specific mass \(m^2 = \frac{d^2 - 1}{4} \), the correlation functions of the boundary operators in dS_{d+1}/CFT\(d \) correspondence that Strominger [4] explicitly calculated for \(d = 2 \) and proposed for general \(d \) can be obtained [5]. By generalizing the method to free spinors the boundary term to be added to the bulk Dirac action necessary for AdS/CFT and dS/CFT correspondence [6] are obtained for general free massive spinors in (A)dS space [7].

What can one learn about AdS/CFT correspondence if one uses this method for interacting scalar theories instead of free scalars? The scalar field theories that can be considered are massless \(D = 6 \) \(\phi^3 \), \(D = 4 \) \(\phi^4 \) and \(D = 3 \) \(\phi^6 \) models [7, 8] given by the action,

\[
S[\phi] = \int d^{D}x \left(\frac{1}{2} \delta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{g}{(2D-2)} \phi^{2D-2} \right), \quad D = 3, 4, 6, \tag{2}
\]

which is classically invariant under rescaling \(x \rightarrow \lambda x, \phi \rightarrow \lambda^{\frac{2-D}{2}} \phi \). Using the conformal transformation from \(R^{D} \) (D-dimensional Minkowski space-time) to EAdS\(D \) (dS\(D \)) one obtains the same interacting theory, i.e. \(\Phi^{2D-2} \)-model but for scalars with mass \(m^2 = \pm \frac{d^2 - 1}{4} \) on \(D = d + 1 \)-dimensional (A)dS space. The corresponding generating function for boundary CFT correlators can be obtained by solving (by perturbation) \(\phi(x^0, \vec{x}) \) in terms the Cauchy data and inserting the solution in \(S[\phi] \) [8]. As is discussed in [8] finding the solution of the equation of motion as power series in \(g \) the coupling constant, is necessary for applicability of the above mentioned method. As we will see, there are exact solutions of the corresponding non-linear Laplace equation which although are not useful for that purpose but open a new window to the AdS/CFT correspondence for critical scalar field theories (2).

The Information Geometry

As is shown in [8], critical scalar field theories (2) are particular in the sense that the \(SO(D) \)-invariant (in flat Euclidean space) nonlinear Laplace equation, \(\nabla^2 \phi + g\phi^n = 0 \), \((g > 0) \), in which \(\nabla^2 = \delta^{\mu \nu} \partial_{\mu} \partial_{\nu} \), has solutions like

\[
\phi_0(s) = \frac{\alpha}{(\beta^2 + (s-a)^2)^{\gamma}}, \quad (s-a)^2 = \delta_{\mu \nu}(x-a)^\mu (x-a)^\nu. \tag{3}
\]

for some constants \(a^\mu, \alpha, \beta \) and \(\gamma \) only if \(n = \frac{2D}{D-2} - 1 \) and \(D = 3, 4, 6 \). In these cases \(\gamma = \frac{D-2}{2} \), and

\[
\beta^2 = g \frac{1}{2(D-2)\alpha^{\frac{1}{n-1}}}, \tag{4}
\]

which for example for \(D = 4 \) gives,

\[
\phi_0 \sim \frac{\beta}{\beta^2 + (x-a)^2} \tag{5}
\]

We note that \(\phi_0(x; \beta, a_\mu) \) is invariant under rescaling, see appendix A and is a stable classical solution of an unstable model \((V(\phi) \sim -\phi^4) \). An interesting observation is that in \(D = 4 \), the SU(2) instanton density is [10]

\[
\text{tr} F^2 = 96 \frac{\beta^4}{(\beta^2 + (x-a)^2)^4} \sim \phi_0^4. \tag{6}
\]
In [10] β in Eq.(6) is considered as the size of the instanton, suggesting to call β in Eq.(3) the size of ϕ_0. Considering $\theta^I = \beta, a^a, I = 0, \cdots, D$ in Eq.(3) as moduli, the Hitchin information metric of the moduli space, defined as follows [9]:
\[
\mathcal{G}_{IJ} = \frac{1}{N(D)} \int d^D x \mathcal{L}_0 \partial_I (\log \mathcal{L}_0) \partial_J (\log \mathcal{L}_0),
\]
Equation (7) can be shown to describe Euclidean AdS$_{D+1}$ space:
\[
\mathcal{G}_{IJ} d\theta^I d\theta^J = \frac{1}{\beta^2} \left(d\beta^2 + da^2\right).
\]
Equation (8)

$N(D)$ is a normalization constant,
\[
N(D) = \frac{D^3}{D+1} \int d^D x \mathcal{L}_0,
\]
Equation (9)
and
\[
\mathcal{L}_0 = -\frac{1}{2} \phi_0 \nabla^2 \phi_0 - \frac{g}{(D-2)^2} \phi_0^{\frac{D}{D-2}} = \frac{g}{D} \phi_0^{\frac{D}{D-2}},
\]
Equation (10)
is the Lagrangian density calculated at $\phi = \phi_0$. See appendix B for details. Similar results are obtained for the information geometry of instantons on R^4, for $N = \frac{1}{2}$ U(N) theories and for instantons on noncommutative space. See for example [10, 11].

ϕ_0 as a function of θ^I's is a free stable-tachyon field on EAdS$_{D+1}$ as it satisfies the Klein-Gordon equation given in terms of the metric (8),
\[
\left(\beta^2 \partial_\beta^2 + (1 - D) \beta \partial_\beta + \beta^2 \partial_a^2 + \frac{D^2 - 4}{4}\right) \phi_0 = 0.
\]
Equation (11)
The tachyon is stable as far as $-\frac{D^2}{4} < m^2 < 0$ [2].

ϕ_0 as a function of g the coupling constant (or β^2), can not be analytically continued to $g = 0$. For $g = 0$, ϕ_0 is the Green function of the Laplacian operator i.e. $\nabla^2 \phi(x, a) = \delta^D(x - a)$ and does not satisfy the Klein Gordon equation $\nabla^2 \phi = 0$ for free scalar theory. This shows that ϕ_0 can not be obtained by perturbation around $g = 0$. In [10], the same asymptotic behavior for the instanton density is observed and trF^2 is interpreted as the boundary to bulk propagator of a massless scalar field on AdS$_5$.

ϕ_0 as classical de Sitter vacua

Rewrite the action (2) in terms of new fields $\tilde{\phi} = \phi - \phi_0$, one obtains
\[
S[\tilde{\phi}] = S[\phi_0] + S_{\text{free}}[\tilde{\phi}] + S_{\text{int}}[\tilde{\phi}],
\]
Equation (12)
where $S[\phi_0] = \int d^D x \mathcal{L}_0$ (see Eq.(10)),
\[
S[\phi_0] = \frac{D+2}{2D-1} \frac{\pi^{D+1} g^{2-\frac{D}{2}}}{\Gamma(D+1)} \quad \text{with}
\begin{align*}
&\text{for } D = 6, \\
&\quad \frac{192\pi^3}{3g^2} \\
&\text{for } D = 4, \\
&\quad \frac{8\pi^2}{3g} \\
&\text{for } D = 3, \\
&\quad \frac{\pi^2}{4}\sqrt{\frac{2}{g}}.
\end{align*}
\]
Equation (13)
and
\[S_{\text{free}}[\phi] = \int d^D x \left(\frac{1}{2} \delta^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} M^2(x) \phi^2 \right) \]
(14)
in which,
\[M^2(x) = -g \left(\frac{D+2}{D-2} \right) \phi^2 = -\left(2 + D \right) \frac{\beta^2}{\left(\beta^2 + (x-a)^2 \right)^2}. \]
(15)

Defining \(\bar{\phi} = \Omega^{\frac{D+2}{D-2}} \phi \), one can show that \(S_{\text{free}}[\phi] \) given in Eq.(14) is the action of the scalar field \(\phi \) on some conformally flat background with metric \(g_{\mu\nu} = \Omega \delta_{\mu\nu} \):
\[S_{\text{free}}[\phi] = \int d^D x \sqrt{|g_{\mu\nu}|} \left(\frac{1}{2} \left[g^\mu\nu \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} (\xi R + m^2) \phi^2 \right] \right). \]
(16)

Here, \(m^2 \Omega = M^2(x) \), where \(m^2 \) is the mass of \(\phi \) (undetermined) and \(M^2(x) \) is given in Eq.(15). \(R \) is the curvature scalar and \(\xi = \frac{D-2}{4(D-1)} \) is the conformal coupling constant. This result is surprising as one can show that the Ricci tensor \(R_{\mu\nu} = \Lambda_D g_{\mu\nu} \), where
\[\Lambda_D = -m^2 \frac{4(D-1)}{D(D+2)}. \]
(17)

Since \(-m^2 > 0 \) as far as \(\Omega > 0 \), one verifies that \(\Lambda_D > 0 \) which means that \(\phi \) lives on \(D \)-dimensional de Sitter space which radius is proportional to \(-m^{-2} \). See Appendix C for details.

The interacting part of the action, \(S_{\text{int}}[\phi] = \int d^D x \sqrt{|g_{\mu\nu}|} L_{\text{int}} \) is well-defined in terms of \(\phi \) on the corresponding dS\(_D\):
\[L_{\text{int}} = \begin{cases}
-\frac{g}{3} \phi^3, & D = 6, \\
-g \sqrt{-m^2} \phi^3 - \frac{4}{3} \phi^4, & D = 4, \\
-\frac{10}{3} g \left(\frac{-m^2}{3g} \right)^\frac{2}{3} \phi^3 - \frac{5}{2} g \left(\frac{-m^2}{3g} \right)^\frac{1}{2} \phi^4 - g \left(\frac{-m^2}{3g} \right)^\frac{1}{2} \phi^5 - \frac{g}{6} \phi^6, & D = 4.
\end{cases} \]
(18)

It is interesting to note that in \(D = 4 \), by a shift of the scalar field \(\phi \to \phi - \sqrt{-m^2/3g} \) the action (12) can be written in the dS\(_4\) as follows:
\[S[\phi] = \int d^D x \sqrt{|g_{\mu\nu}|} \left(\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} (\xi R) \phi^2 - \frac{g}{4} \phi^4 \right) + \int d^D x \sqrt{|g_{\mu\nu}|} \left(\frac{-m^4}{36g} \right). \]
(19)

\(\phi_0 \) on Minkowski space-time

After a Wick rotation \(x^0 \to ix^0 \), \(\phi_0 \) given in (3) can be shown to satisfy the corresponding non-linear wave equation on Minkowski space-time. These solutions have a time-like singularity. The singularity is a hypersurface given by the equation \(-(x^0-a)^2 + (x^1-a^1) + \cdots + (x^D-a^D)^2 = -\beta^2 \), which can be considered as a \(D-1 \) dimensional anti de Sitter space.\(^1\) The idea, here, is to some extend similar to the holographic reduction of Minkowski space-time [12] where the Minkowski space-time is sliced in terms of Euclidian AdS and Lorentzian dS slices which correspond to

\(^1\)The singularity becomes space-like i.e. a dS\(_{D-1}\) hypersurface if the coupling \(g \) is negative.
the time-like and space-like regions respectively. Considering only the free part of the scalar action $S_{\text{free}}(\tilde{\phi})$ given in Eq. (14), one can verify that D-dimensional free scalar theory given by $S_{\text{free}}(\tilde{\phi})$, induces a free (but unstable) scalar theory on the AdS hypersurface, the singularity. To show this, first note that the equation of motion for the scalars $\tilde{\phi}$ is

$$\left(\Box + \frac{D(D+2)\beta^2}{(\beta^2 + x^2)^2}\right) \tilde{\phi} = 0, \quad x^2 = -x^0^2 + \vec{x}^2,$$

(20)

where without losing the generality we have assumed $a^\mu = 0$. Defining new coordinates

$$x^0 = (R + \beta) \cosh \rho,$$
$$x^i = (R + \beta) \sinh \rho \, z_i, \quad \sum_{i=1}^{D-1} z_i^2 = 1,$$

(21)

which locates the singularity at $R = 0$, Eq. (20) can be written as follows,

$$\left(\Box_{R} + \frac{1}{R^2} \Box_{\rho,z_i} + \frac{D(D+2)\beta^2}{R^2(R+2\beta)^2}\right) \tilde{\phi}(R; \rho, z_i) = 0.
$$

(22)

The ansatz for scalar fields living on the singularity is $\phi^*(\rho, z_i) = \phi(0; \rho, z_i)$, which from Eq. (22) satisfy the following Klein-Gordon equation:

$$\left(\Box_{\rho,z_i} - m^*^2\right) \phi^* = 0.
$$

(23)

Since $-m^*^2 = -\frac{D(D+2)}{4} < -\frac{(D-1)^2}{4}$, the scalar theory is not stable. The interacting theory in terms of $\tilde{\phi} = \phi - \phi_0$ is still well-defined and the corresponding conformally flat background is a D-dimensional de Sitter space which horizon is located at the singularity. It is interesting to note that $m^*^2 = m^2\ell^2$, where m is the mass of scalars ϕ on dS_D with radius ℓ, see appendix C.

Acknowledgement

The author gratefully thanks S. J. Rey and F. Shahbazi for useful discussions. The financial support of Isfahan University of Technology is acknowledged.

Appendix A

In this appendix we show that $\phi_0(x)$ is scale-invariant. We assume for simplicity that $D = 4$. Under rescaling $x \to x' = \lambda x$ the scalar field changes as $\phi(x) \to \phi'(x') = \lambda^{-1} \phi(x)$. By a scale-invariant object we mean a field that satisfies the relation $\delta_\epsilon \phi = 0$ where $\delta_\epsilon \phi(x) = \phi'(x) - \phi(x)$ is the infinitesimal scale transformation given by $\lambda = 1 + \epsilon$ for some infinitesimal ϵ. To this aim we first note that under a general rescaling $\phi(0) \to \phi'(0) = \lambda^{-1} \phi(0)$, thus, in fact, $\phi(x; \phi(0)) \to \phi'(x; \phi(0)) = \lambda^{-1} \phi(\lambda^{-1} x; \lambda \phi(0))$. Defining $\beta^{-1} = \beta(0)$, one can show that $\delta_\epsilon \phi(x) = -\epsilon(1 + x'\partial_1)\phi(x)$, where $x' \in \{x^u, \beta\}$. The $SO(D)$ invariant solutions of equation $\delta_\epsilon \phi = 0$ satisfying the condition $\phi(0; \phi(0)) = \phi(0)$ are $\phi_k = \beta^{-1} \left(\frac{\beta}{\sqrt{\beta^2 + x^2}}\right)^{k+2}$. It is easy to see that the action (2) is invariant under the variation generated by δ_ϵ and ϕ_0, among the others, is the solution of classical equation of motion.
Appendix B

Here we give a detailed calculation of Hitchin information metric on the moduli space of ϕ_0 (3):

$$
\phi_0 = \left(\frac{(D(D - 2)}{g} \right)^{\frac{D-2}{2}} \left(\frac{\beta}{\beta^2 + (x - a)^2} \right)^{\frac{D-2}{2}}.
$$

From Eq.(10) one verifies that

$$
L_0 = \frac{g}{D} \left(\frac{D(D - 2)}{g} \right)^{\frac{D}{2}} \left(\frac{\beta}{\beta^2 + (x - a)^2} \right)^{D}.
$$

Therefore

$$
\partial_\beta \log L_0 = D \left(\frac{1}{\beta} - \frac{2\beta}{\beta^2 + (x - a)^2} \right),
$$

$$
\partial_a \log L_0 = \frac{2D(x - a)_i}{\beta^2 + (x - a)^2}.
$$

Using these results and after some elementary calculations one can show that,

$$
G_{ij} = \frac{1}{N(D)} \int d^Dx L_0 \partial_{a_i} \log L_0 \partial_{a_j} \log L_0 = \frac{4K(D)}{N(D)\beta^2} \delta_{ij} \int d^Dy \frac{y^2}{(1 + y^2)^{D+2}},
$$

$$
G_{i\beta} = \frac{1}{N(D)} \int d^Dx L_0 \partial_{a_i} \log L_0 \partial_{\beta} \log L_0 = 0,
$$

$$
G_{\beta\beta} = \frac{1}{N(D)} \int d^Dx L_0 (\partial_\beta \log L_0)^2 = \frac{DK(D)}{N(D)\beta^2} \int d^Dy \frac{1}{(1 + y^2)^{D}} \left(1 - \frac{2}{(1 + y^2)^2} \right)^2.
$$

where $K(D) = g^{1-D/2} D^{D/2 + 1} (D - 2)^{D/2}$. By performing the integrations and using Eq.(9), one obtains,

$$
G_{IJ} = \frac{1}{\beta^2} \delta_{IJ},
$$

in which $\delta_{IJ} = 1$ if $I = J$ and vanishes otherwise.

Appendix C

In this appendix we briefly review free scalar field theory in $D + 1$ dimensional (Euclidean) curved space-time [13] and say few words about the classical geometry of de Sitter space [14]. The action for the scalar field ϕ is

$$
S = \int d^Dx \sqrt{|g|} \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + (m^2 + \xi R)\phi^2 \right),
$$

for which the equation of motion is

$$
(\Box - m^2 - \xi R) \phi = 0, \quad \Box \phi = |g|^{-1/2} \partial_\mu \left(|g|^{1/2} g^{\mu\nu} \partial_\nu \phi \right).
$$

(With \hbar explicit, the mass m should be replaced by m/\hbar.) The case with $m = 0$ and $\xi = \frac{D-2}{4(D-1)}$ is referred to as conformal coupling.

The curvature tensor $R^\mu_{\nu\rho\sigma}$ in term of Levi-Civita connection,

$$
\Gamma^\mu_{\nu\rho} = \frac{1}{2} \eta^{\mu\alpha} (\partial_\rho g_{\alpha\nu} + \partial_\nu g_{\alpha\rho} - \partial_\alpha g_{\nu\rho}),
$$

(31)
is given as follows,

\[R^\mu_{\nu\rho\sigma} = \partial_\rho \Gamma^\mu_{\nu\sigma} - \partial_\nu \Gamma^\mu_{\rho\sigma} + \Gamma^\mu_{\rho\alpha} \Gamma^\alpha_{\nu\sigma} - \Gamma^\mu_{\alpha\sigma} \Gamma^\alpha_{\nu\rho}. \]

(32)

The Ricci tensor \(R_{\nu\sigma} = R^\mu_{\nu\mu\sigma} \) and the curvature scalar \(R = g^{\nu\sigma} R_{\nu\sigma} \).

The metric of a conformally flat space-time can be given as \(g_{\mu\nu} = \Omega \delta_{\mu\nu} \), where \(\Omega \) is some function of space-time coordinates. One can easily show that,

\[R_{\mu\nu} = \frac{2 - D}{2} \partial_\mu \partial_\nu (\log \Omega) - \frac{1}{2} \delta_{\mu\nu} \nabla^2 (\log \Omega) \]

\[+ \frac{D - 2}{4} (\partial_\mu (\log \Omega) \partial_\nu (\log \Omega) - \delta_{\mu\nu} \delta^{\rho\sigma} \partial_\rho (\log \Omega) \partial_\sigma (\log \Omega)) \]

\[\Omega R = (1 - D) \nabla^2 (\log \Omega) + \frac{(1 - D)(D - 2)}{4} \delta_{\mu\nu} \partial_\mu (\log \Omega) \partial_\nu (\log \Omega). \]

(33)

By inserting \(\tilde{\phi} = \Omega^{\frac{D-2}{2}} \phi \) in the action \(S[\tilde{\phi}] = \int d^Dx \frac{1}{2} \delta_{\mu\nu} \partial_\mu \tilde{\phi} \partial_\nu \tilde{\phi} \), one obtains,

\[S[\tilde{\phi}] = \int d^Dx \left(\frac{1}{2} \Omega^{\frac{D-2}{2}} \delta_{\mu\nu} \partial_\mu \tilde{\phi} \partial_\nu \tilde{\phi} - \frac{1}{2} \left(\frac{\Omega^{\frac{D-2}{2}} \nabla^2 \Omega^{\frac{D-2}{4}}}{\Omega^{\frac{D-2}{4}}} \right) \tilde{\phi}^2 \right) \]

\[= \int d^Dx \sqrt{g} \left(\frac{1}{2} g^{\mu\nu} \partial_\mu \tilde{\phi} \partial_\nu \tilde{\phi} + \frac{1}{2} \xi R \tilde{\phi}^2 \right). \]

(34)

To obtain the last equality the identities \(g_{\mu\nu} = \Omega \delta_{\mu\nu} \) and \(\xi \sqrt{g} R = -\Omega^{\frac{D-2}{4}} \nabla^2 \Omega^{\frac{D-2}{4}} \) are used. Consequently the free massless scalar theory on \(D \)-dimensional Euclidean space, is (classically) equivalent to some conformally coupled scalar theory on the corresponding conformally flat background.

A \(D \)-dimensional de Sitter (dS) space may be realized as the hypersurface described by the equation \(-X_0^2 + X_1^2 + \cdots + X_D^2 = \ell^2\). \(\ell \) is called the de Sitter radius. By replacing \(\ell^2 \) with \(-\ell^2\) the hypersurface is the \(D \)-dimensional anti de Sitter (AdS) space. (A)dS spaces are Einstein manifolds with positive (negative) scalar curvature. The Einstein metric \(G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \), satisfies \(G_{\mu\nu} + \Lambda g_{\mu\nu} = 0 \), where \(\Lambda = \frac{(D-2)(D-1)}{2\ell^2} \) is the cosmological constant. From Eq.(17) one obtains \(-4m^2\ell^2 = D(D + 2)\) which determines the radius of the dS\(_D\) background in terms of the mass of scalar field \(\phi \).
References

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, (1998) 231, hep-th/9711200.

[2] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.

[3] M. Duetsch and K. H. Rehren, Lett. Math. Phys. 62 (2002) 171-184, hep-th/0204123.

[4] A. Strominger, JHEP 0110 (2001) 034, hep-th/0106113.

[5] F. Loran, Phys. Lett. B601 (2004) 192-196, hep-th/0404067.

[6] M. Henneaux, Boundary terms in the AdS/CFT correspondence for spinor fields, hep-th/9902137;
W. Mück and K. S. Viswanathan, Phys. Rev. D58 (1998) 106006, hep-th/9805145;
M. Henningson and K. Sfetsos, Phys. Lett. B431 (1998) 63-68, hep-th/9803251;
G. E. Arutyunov and S. A. Frolov, Nucl. Phys. B544 (1999) 576-589, hep-th/9806216;
A. M. Ghezelbash, K. Kaviani, S. Parvizi and A. H. Fatollahi, Phys. Lett. B435 (1998) 291-298, hep-th/9805162.

[7] F. Loran, JHEP06(2004)054, hep-th/0404135.

[8] F. Loran, Phys. Lett. B605 (2005) 169-180, hep-th/0409267.

[9] N. J. Hitchin, The Geometry and Topology of Moduli Spaces in Global Geometry and Mathematical Physics 1451, (Springer, Heidelberg, 1988) 1-48.

[10] M. Blau, K. S. Narain and G. Thompson, Instantons, the Information Metric, and the AdS/CFT Correspondence, hep-th/0108122.

[11] R. Britto, B. Feng, O. Lunin and S. J. Rey, Phys. Rev. D69 (2004) 126004, hep-th/0311275;
S. Parvizi, Mod. Phys. Lett. A17 (2002) 341-354, hep-th/0202025.

[12] J. de Boer and S. N. Solodukhin, Nucl. Phys. B665 (2003) 545-593, hep-th/0303006;
S. N. Solodukhin, "Reconstructing Minkowski Space-Time, hep-th/0405252.

[13] T. Jacobson, Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect, gr-qc/0308048.

[14] M. Spradlin, A. Strominger and A. Volovich, Les Houches Lectures on De Sitter Space, hep-th/0110007.