Title
Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana.

Permalink
https://escholarship.org/uc/item/5z66s29k

Journal
Proceedings of the National Academy of Sciences of the United States of America, 116(36)

ISSN
1091-6490

Authors
Taylor, Mark A
Wilczek, Amity M
Roe, Judith L
et al.

Publication Date
2019-09-01

DOI
10.1073/pnas.1902731116

Peer reviewed
Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana

Mark A. Taylor,1 Amity M. Wilczek, Judith L. Roe, Stephen M. Welch, Daniel E. Runcie, Martha D. Cooper, and Johanna Schmitt

*Department of Evolution and Ecology, University of California, Davis, CA 95616; †Deep Springs College, Big Pine, CA 93513; ‡College of Arts and Sciences, University of Maine at Presque Isle, Presque Isle, ME 04769; §Department of Agronomy, Kansas State University, Manhattan, KS 66506; and ¶Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912

Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments.

Significance

Mutations are often assumed to be largely detrimental to fitness, but they may also be beneficial, and mutations with large phenotypic effects can persist in nature. One explanation for these observations is that mutations may be beneficial in specific environments because these conditions shift trait expression toward higher fitness. This hypothesis is rarely tested due to the difficulty of replicating mutants in multiple natural environments and measuring their phenotypes. We did so by planting Arabidopsis thaliana genotypes with large-effect flowering time mutations in field sites across the species’ European climate range. We quantified the adaptive value of mutant traits, finding that certain mutations increased fitness in some environments but not in others.

Author contributions: A.M.W., J.L.R., S.M.W., and J.S. designed research; A.M.W., J.L.R., M.D.C., and J.S. performed research; M.A.T., D.E.R., and J.S. analyzed data; and M.A.T., D.E.R., and J.S. wrote the paper.

Reviewers: J.K.K., University of Kansas; and R.G.S., University of Minnesota.

The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence should be addressed. Email: maketaylor@ucdavis.edu or jschmitt@ucdavis.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902731116/-/DCSupplemental.

Published online August 16, 2019.
Both flowering time and branching architecture are potentially important adaptive traits in *A. thaliana* and other annual plants. The timing of flowering determines the critical transition from vegetative to reproductive growth; aligning this transition with favorable environmental conditions is critical to successful reproduction. Flowering time varies clinaly across the species’ range (53, 56, 60, 62–66), evidence for adaptive differentiation in this trait across different environments. This clinal differentiation is due to natural variation in responses to environmental signals like temperature and day length (66–69). Flowering time is closely linked to branching architecture through development. Prior to flowering, *Arabidopsis* plants produce rosette leaves and rarely secondary branches. However, after commitment to flowering, side branches are produced from axillary meristems, and these side branches also produce flowers (70, 71). The number of axillary meristems and branches available to produce seeds depends upon flowering time since prolonged vegetative growth due to delayed flowering allows a plant to develop more leaves and axillary meristems (72–74). Thus fecundity is at least partially a function of flowering time-dependent branching architecture (75). Importantly, the hormone gibberellin (GA) partially decouples branching from fecundity since it promotes branching but simultaneously inhibits flower formation (76). This decoupling enables branching and reproductive phenology to act as partially independent developmental modules that may be independently selected upon but that are still partially united. Thus, plant fitness depends on a balance between branching and the timing of flowering to determine fitness in morphological and phenological space. Since both flowering time and gibberellin flux depend upon growing conditions (77–79), this balance is likely to shift among environments.

The genotype–phenotype map is further complicated by the complex and nonlinear relationships among genes, especially for quantitative traits like branching and flowering time with highly polygenic bases. Genes influencing these traits interact through multilevel networks. Some are hubs that influence a large number of other genes, but others are subject to multiple inputs. These highly connected genes within regulatory networks may allow mutations in them to be buffered against producing pernicious phenotypes (80–82). The degree of this buffering is a function of both a gene’s network connectedness and redundancy permitting increases or decreases in these factors, respectively, to lead to more severe deviation in phenotype when mutated (80, 83–86). Together, this implies that potentially adaptive mutations may be masked due to network topography, robustness, and redundancy. Thus, adaptive zones in fitness landscapes may be accessible only through mutations in large-effect hub genes. On the other hand, such robustness is also a function of the environment so that mutations buffered in one environment may be exposed in another (87–90). In this way, genetic network position can interact with environment to shift mutants in fitness landscapes.

Although the accumulation of many small-effect mutations can collectively alter phenotypes, we focus on individual large-effect allelic variants induced by chemical and radiation mutagenesis. Single, large-effect mutations represent a crucial evolutionary step by which a lineage can explore more distant regions of the fitness landscape than it can by single small-effect mutations (91). We define “large-effect” as mutations that cause specific, replicable, and major changes in flowering time and have been extensively experimentally validated (Table 1 and SI Appendix, Table S1). The majority of our mutations were loss-of-function, ascertained at the gene expression and protein levels (SI Appendix, Table S1). This is realistic for alleles segregating in natural populations of *A. thaliana* that underlie adaptive phenotypic variation in metabolic, defensive, morphometric, and phenological traits (14–16, 92–100). We also included a single instance of gain-of-function through introgression of a strong functional allele to replace a nonfunctional variant of the gene *FRIGIDA* in the reference ecotype (101). We do not speculate about the precise nature of DNA sequence-level change since there are many potential paths to large effect, but rather we seek to understand how large-effect mutations interact with the environment to influence selection on phenotypes. In order to disentangle the effects of correlated environmental signals

Gene	Pathway	Effect on flowering time
FVE*	Autonomous	Pos. regulator that suppresses *FLC* expression
HUA2*	Autonomous	Neg. regulator that enhances late flowering in *FRI* functionals
LD*	Autonomous	Pos. regulator that suppresses *FLC* expression
FT*	Integrator	Florigen integrating all pathways to activate floral meristem genes
TFL2*	Integrator	Floral meristem identity; maintains high *FLC* despite brief warmth
GAI**	Hormone	Pos. regulator by up-regulating *FT* and gibberellin synthesis
SPY*	Hormone	Neg. regulator downstream of GAI that suppresses gibberellin
CO*	Photoperiod	Sensor of inductive long days, downstream of *PHYs*
CRY1*	Photoperiod	Pos. regulator of *CO*; perceives blue light of long days
GI*	Photoperiod	Integrates circadian clock information to perceive long days
PHYA*	Photoperiod	Pos. regulator of *CO*; perceives red light of long days
PHYB*	Photoperiod	Neg. regulator of *CO*; perceives red:far-red ratio of light of long day
PHYD*	Photoperiod	Neg. regulator of *CO*; obligately interacts with *PHYB*
PHYE*	Photoperiod	Neg. regulator of *CO*; obligately interacts with *PHYB*
FRL1	Vernalization	Constituent of *FRI* activation complex; up-regulates *FLC*
FRL2	Vernalization	Acts as *FLC*, conferring vernalization requirement
FLC*	Vernalization	*FT* repressor that is epigenetically down-regulated by vernalization
VIN3	Vernalization	Required for vernalization response in *FRI:FLC* functionals

Pathways are not exclusive since some genes act in multiple pathways simultaneously. Some mutant genotypes harbored multiple mutations. For example, *phyabde* is a quadruple mutant with LoF in *PHYA, PHYB, PHYD*, and *PHYE*. Neg., negative; Pos., positive.

*Mutations in this gene were not combined with any natural allele.
*Mutations in this gene were induced in a background with a functional *FRI* allele introgressed from the *Sf-2* ecotype.
Natural alleles only by introgressing a functional *SF-2* version without induced mutation.
like day length and temperature, we selected field sites in a latitudinal gradient, in which day length and temperature covary; a longitudinal gradient, in which temperature varies independent of day length; and a seasonal gradient, in which plantings were repeated within a site for several seasons (SI Appendix, Fig. S1A and C) (55, 58, 102, 103). We report morphometric, phenological, and fecundity data from this common garden experiment to answer 3 main questions:

1) How do large-effect mutations in flowering time genes affect phenology, morphology, and fitness in different natural environments?
2) How do phenotype–fitness and genotype–phenotype–fitness landscapes change with the environment?
3) How does gene position within a regulatory network modulate mutational effects on the genotype–phenotype–fitness map?

Results

Here, we analyze subsets of the genotype–phenotype–fitness map across environments and then combine these components. First, we examine the genotype–phenotype landscape by quantifying genotype-phenology and genotype-branching relationships in each environment. Second, we examine the phenotype–fitness landscape by quantifying phenology-fitness and branching-fitness relationships in each environment. Finally, we synthesize these across environments to describe the environmental dependence of mutational effects on phenology, branching, and fitness. Large-effect mutations in environmental signaling pathways are especially useful in these environmental comparisons because plants harboring these mutations are unable to respond to specific environmental inputs. By comparing their phenotypes to those of the same background genotype without the mutation, these mutants can be used as phytometers to gauge the relative importance of specific environmental cues for determining phenology and branching (103).

Phenology. To describe how these mutations affected phenological traits relative to ecotype background across 8 natural environments, we used a 2-part hierarchical clustering algorithm to uncover environmental and mutant trends (Fig. 1). A linear model detected significant heterogeneity in mutant bolting times measured in photothermal units (BPTUs) among plantings, among genotypes, and among multifactorial combinations of planting and genotype (SI Appendix, Table S2). In particular, we identified genotype × environment interactions, with the majority of mutants showing magnitude differences in mutant effects in different environments and several showing both magnitude and directional differences (SI Appendix, Table S3). Together, these

![Heat map of least-square means of accumulated photothermal units to bolting (BPTUs) in mutants relative to ecotype background on a log₂ scale, centered within plantings, visualizing two-step hierarchical cluster by a Euclidian distance, average-based algorithm for both genotype (rows) and planting (columns). All mutant pathways are represented, although not all genotypes, since some were not planted in all 8 sites and seasons. The first word of the row identifiers shows which pathway was manipulated in a mutant, as defined by FLOR-ID (51). Lowercase gene names indicate diminished function alleles, and uppercase, functional. Colons between pathways or genes indicate multiple genetic manipulations within a line, not gene fusions. Col and Ler indicate each line's ecotype background, Col-0 and Ler-1, respectively. Genotypes with an induced mutation combined with a functional FRIGIDA (denoted by "FRI") were relativized against FRI Col instead of Col-0.](https://www.pnas.org/cgi/doi/10.1073/pnas.1902731116)
results quantify the environmental contingency of genetic effects in determining bolting time among these different environments. Specifically, we identified 3 distinct mutant classes: late-bolting, early-bolting, and sign plasticity clusters (Fig. 1). The late-bolting cluster was dominated by mutations in the vernalization and autonomous pathways known to enhance the expression of the floral repressor FLOWERING LOCUS C (FLC) or to impair its down-regulation (i.e., FRIGIDA/vernalization insensitive 3 [FRI:vin3], FRI:vin3, FRI防卫, FRI防卫), as well as mutants impaired in photoperiod response and signal integration (i.e., fr, cry1). The early-bolting cluster showed a mix of pathways. Many upstream photoperiod mutants accelerated bolting, the most consistent of which were deficient in PHYTOCHROME B (PHYB) in the Ler background. The hormone pathway mutant syp showed accelerated phenology, and gibberellic acid insensitive (gai) did not. Acceleration of bolting in the syp mutant was expected because functional SPY is a repressor of inductive gibberellins (104). The hormone pathway’s importance for accelerated flowering has often been emphasized in short days (105), but syp also accelerated flowering in summer and spring plantings that mainly experienced long days. The vernalization pathway mutations fr, hua, and flc accelerated bolting in the Col-FRI background. These loss-of-function mutations all reduce expression of FLC, allowing flowering without vernalization. Finally, the sign plasticity group consisted of genotypes that accelerated flowering in some environments and delayed flowering in others. Genotypes showing this sign plasticity most strongly included 4 mutants deficient in phytochromes (phyb, phyabe, phyad, phyabe) which are involved in photoperiod and ambient temperature sensing (106–108) as well as the photoperiod integrators gi and co (SI Appendix, Table S3). A detailed discussion of gene-specific results is presented in the SI Appendix, Supplemental Results.

Branching. Flowering time mutants pleiotropically expanded variation in branching in both ecotypic backgrounds, and, similarly to bolting time, mutant branching varied among seasons, sites, and genotypes (SI Appendix, Fig. S5). Most late-bolting mutants, especially in the vernalization pathway, produced more branches, and most early-bolting mutants in the photoperiod and hormone pathways produced fewer branches than their parental ecotypes. Specifically, gai had fewer branches than its ecotype background, and all FRI alleles consistently had the fewest branched flowers in spring plantings (SI Appendix, Fig. S6). Several phytochrome mutants had many fewer branches than either the parental ecotypes or most other mutants, consistent with the constitutive shade avoidance phenotype expected with loss of photoreceptor function. Combined with their bolting time effects, it is also possible that these mutants had fewer branches because they flowered rapidly and therefore developed fewer nodes from which branches could emerge. Several mutants also exhibited sign plasticity for branch production, including the phytochrome mutants phya, phyl, phyad, and phybe, and the vernalization mutant FRI:vin3. Flowering time mutants generated in the Col-0 background had more branches than those in Ler-1 in most plantings (SI Appendix, Fig. S6). This is likely because Ler-1 harbors a loss-of-function allele of ERECTA, a positive regulator of aerial organogenesis (109), and has fewer branches than Col-0.

Univariate Selection. The fitness effects of flowering time mutations differed in sign and magnitude across the 5 plantings for which fecundity data were collected: Norwich fall, Norwich spring, Norwich summer, Halle fall, and Valencia fall (SI Appendix, Fig. S7). In particular, nearly half of all mutant genotypes switched between positive or negative relative fitness among environments (SI Appendix, Fig. S7). We quantified phenotype–fitness landscapes separately for the phenology and morphometric traits for each planting. Univariate directional selection for earlier bolting and flowering occurred in 4 plantings while delayed flowering was favored in the Norwich summer planting (Table 2). Furthermore, selection for phenology measured in calendar time was stronger than for photothermal time (SI Appendix, Table S4), which we used to scale environmentally dependent phenologies across sites (SI Appendix, Supplemental Methods). We did not detect significant stabilizing selection in most of the plantings. Significant negative quadratic selection was detected for calendar days to bolting in Valencia, which indicated monotonous selection toward a theoretical maximum on the selection surface for an extremely early bolting time that did not fall within the range expressed by any genotype (Table 2). Directional selection consistently favored increased branching in all sites, with no evidence of stabilizing selection on branching traits (Table 2 and SI Appendix, Table S4).

Multivariate Selection. Taken together, univariate selection gradients indicated that fast-developing and highly branched phenotypes were generally favored. One possible genetic mechanism for reaching this optimal fitness zone is giberellin’s simultaneous promotion of a more branched architecture and fast development; however, high gibberellin activity also suppresses flower formation early in development, which could decrease fecundity. To determine how bivariate selection on phenology and branching occurred, we modeled both in a multivariate generalized additive model (GAM) (Table 3). This showed that directional selection for greater branching was strong in all sites, but direct selection for phenology was significant in only 2 sites: Later flowering was favored in Norwich summer, and earlier flowering in Halle fall. No γ terms, which denote stabilizing, disruptive, or negative selection, were significant. Together, this implicates the role of indirect selection on phenology while selection operated more strongly on branching (110). However, consistent with previous findings of high heritability for phenology traits and low heritability for fitness estimates (111), the ratio of genetic variation to phenotypic variation of morphometric and fitness traits (0.27 to 0.5) was much lower than phenological traits (>0.7) (SI Appendix, Table S5). Since these mutants were selected for their effects on flowering time, phenology’s stronger genetic basis was expected but allows us to gauge the relative contribution of these underlying mutations in determining phenotype and fitness values.

Genotype–Phenotype–Fitness Landscapes. Modeling genotype means in 2D fitness landscapes revealed remarkable variation in the genotype–fitness map among environments (Fig. 2). Ecotype background fitness relative to mutant fitness changed dramatically among environments. Although generally more fit than mutants, our reference ecotypes (Col-0 and Ler-1) showed lower relative fitness than specific mutants in certain environments. For example, in Valencia and Halle, the Col-0 ecotype was more fit than all of its mutants except one, but, in Norwich fall, both ecotypes were less fit than the majority of their mutants. Together, these patterns show that mutants achieved higher fitness through alternative phenotypic paths. For example, some mutants were invariant in phenology in certain environments but were more highly branched whereas others bolted in the direction of higher fitness but were invariant in branching. The mutations underlying these phenotypic shifts were adaptive in conditions that shifted phenotypic expression toward fitness peaks.

Network Effect of Mutational Perturbation. We were interested in how gene network connectivity affected mutational perturbations on phenotypes independent of the pathway in which a mutation was induced. To answer this question, we first assessed how connected the genes in a mutant line were, summing these connections for multiple mutants. We then regressed this metric of connectivity against relativized phenotypic perturbation. Although only 3 of 15 regressions were significant after Bonferroni correction, all showed negative relationships between connectivity and phenotypic perturbation across all 3 traits and all 5 environments.
Overall, the magnitude of bolting time change was considerably dampened relative to branching or fitness. This indicates that bolting time is relatively robust to genetic perturbation in flowering time networks, but that branching and fitness are much less robust. In particular, mutations in more highly connected genes led to consistent and, in at least one environment, significant decreases in fitness.

Discussion

A major goal in evolutionary biology is to understand the relationship among mutations, traits, and fitness in natural environments. Directly inferring these relationships is frequently constrained by limited knowledge of genetic mechanisms in ecological systems and by the difficulty of testing mutants in multiple natural environments. However, by leveraging the well-characterized genetic architecture of flowering time and branching in the model organism *A. thaliana*, we investigated how mutations in multiple flowering time pathways altered the distribution of *A. thaliana* genotypes across fitness landscapes, the traits that composed these landscapes, and how they depended upon the environment a plant experienced.

Phenology, branching, and fitness all expressed both magnitude and sign plasticity to growth environment (Fig. 2 and SI Appendix, Figs. S5 and S7). The largest number of lines showed clear sign plasticity for fitness and the fewest for phenology, evidence that fitness was more environmentally labile than phenology. Overall, mutants were more frequently less fit than their parental backgrounds. However, for several mutants, we identified specific natural environments in which they actually had greater fitness. There are 2 explanations for this finding of greater mutant fitness only in certain environments: 1) Mutations’ phenotypic effects might differ between environments, and 2) the underlying selection surface might change. Here, we detected evidence for both mechanisms since certain environments selected for different directions and magnitudes of trait values (evidence of changing selection surfaces) and mutants’ phenological and branching effects differed among plantings (evidence of different mutant effects). Thus, we explain our patterns of conditional fitness advantage in terms of the dramatically different positions in phenotypic and fitness space that the mutants occupied upon exposure to new environments, as well as of those environments’ different selection regimes. This finding points to the importance of empirical tests of fitness in the field. While phenotypic effects may be predictable under limited laboratory conditions, the ramification of genetic perturbation on fitness in nature, mediated by environmentally influenced phenotypes, is highly environmentally contingent.

Mutation Effects on Traits. Natural environments are far more complex than the controlled laboratory conditions in which most mutations are assessed so we might expect the unexpected when observing mutants in the wild. For example, for *A. thaliana* flowering time, recent empirical work showed that realistic daily amplitudes in temperature considerably decreased the delay caused by introgressing a strong *FRI* allele to a nonfunctional background compared to the extreme delay that occurred in constant laboratory temperatures (112). Many of our experimental mutants altered flowering in the direction we expected, but others showed complex and unexpected patterns and were likely responding to multivariate cues in their natural environments that have not yet been tested for these genes. For example, the autonomous pathway mutants *luminidependens* (*ld*) and *fve* were constitutively late-bolting (Figs. 1 and 2). *LD* and *FVE* down-regulate the floral repressor *FLC* in an environmentally insensitive manner (113–115) so we expected mutations in those genes to delay flowering in all sites. However, *HUA2* is also an activator of *FLC*; the *hua2* mutant in the low *FLC* ecotype background Col caused acceleration but, in the high *FLC* Col *FRI* background, switched between slight delays in Cologne, Halle, and Valencia falls and acceleration in the other plantings.

Table 2. Univariate selection coefficients for *A. thaliana* traits in 5 field environments, analogous to partial derivatives of polynomial regression techniques

Planting	DTB β	SE	γ	SE	BPTU β	SE	γ	SE	Branching β	SE	γ	SE
Halle fall	−0.144	0.023	−0.517	0.062	−0.083	0.07	−4.222	3.180	0.766	0.067	0.174	0.380
Norwich fall	0.204	0.13	0.021	0.08	0.192	0.092	10.014	11.045	1.136	0.157	0.620	0.846
Norwich spring	−0.350	0.087	−0.001	0.043	−0.270	0.050	0.000	8.310	0.789	0.044	−0.106	0.165
Norwich summer	0.151	0.040	−0.071	0.038	0.159	0.042	−6.998	6.013	0.530	0.041	0.085	0.169
Valencia fall	−0.214	0.060	−0.230	0.029	−0.180	0.057	−17.385	15.921	0.740	0.082	0.044	0.323

β, analogous to the directional selection coefficient; BPTU, accumulated photothermal units to bolting; Branching, total branch number; DTB, calendar days to bolting; γ, analogous to the stabilizing or disruptive coefficient; SE, numerically approximated SE for the term immediately to the left.

Bolded estimates with asterisks represent significance from Bonferroni-corrected P values <0.01.

Table 3. Bivariate selection gradient analysis

Term	Halle fall	Norwich fall	Norwich spring	Norwich summer	Valencia fall
/BPTU	−0.13*	0.10	0.33	0.17	
/branch	0.72*	0.05	1.15*	0.11	
γ/BPTU	−9.10	120	5.84	146	
γ/branch	0.06	0.31	0.90	1.11	
γ/BPTU,branch	−0.11	0.14	0.28	0.31	

β, analogous to the directional selection coefficient; BPTU, accumulated photothermal units to bolting; branch, total number of branches; Est., estimate of the coefficient; γ, analogous to the stabilizing or disruptive coefficient; SE, numerically approximated SE.

Bolded estimates with asterisks represent significance from Bonferroni-corrected P values <0.05.

17894 | www.pnas.org/cgi/doi/10.1073/pnas.1902731116 Taylor et al.
We speculate that this unexpected sign plasticity may result from either 1) the ecotype's unmutilated background allele being responsive to an uncharacterized or multiple environmental inputs or 2) the ecotype background allele epistatically regulates an environmentally responsive module of the flowering time network. The former possibility is especially relevant for complex environments since flowering time genes have been shown to respond to a diverse set of environmental signals. For example, CO has classically been considered a photoperiod pathway gene whose primary role for flowering time is the perception of long days (114, 116, 117). However, recent work has shown that, in addition to this role, CO also integrates ambient temperature information to promote flowering (107, 118–120). The co mutant in the Ler background was delayed in the long-day plantings of summer and spring, which was likely influenced by a combination of the diminished perception of inductive photoperiods and high ambient temperatures. Remarkably, co in the Col background reversed this trend by accelerating bolting in most plantings, a dramatic demonstration of epistasis with genetic background. Thus, the effect of a mutation might change among environments as the relative importance of its roles as a photoperiod- and temperature-sensor also changes.

Fitness Landscapes. Environmental variation in the phenotypic effects of mutations does not completely explain why the relative fitness among mutants varies across environments. Variation in the strength and direction of multivariate selection was also critically important. This is exemplified by the autonomous mutant Ia, which was consistently late-bolting but switched between relative fitness increases and decreases among environments (SI Appendix, Fig. S7). Thus, the topography of the selection surface shifted so that, although broad phenotypic trends remained constant, relative fitness among mutants changed. Fitness is the most composite phenotype expressed by an organism, integrating all preceding traits and developmental contingencies (111, 121). Thus, it is expected that growing conditions could perturb critical junctures during a plant's developmental program, resulting in different fitness outcomes.

Although these mutants were chosen to expand phenological variation, they also pleiotropically expanded morphological variation in branching. Branching proved to be under stronger selection than phenology (Table 3) although both appeared to be under selection when analyzed in a univariate framework (Table 2). Predictions of responses to selection often center on highly heritable traits like phenology; however, in this experiment, phenology was under weaker selection than branching, which was much less heritable. Since a trait’s response to selection is a function of both its heritability and the strength of selection, phenology may show a marked response to selection due to its greater genetic basis, but this may represent an indirect evolutionary response to stronger selection on branching. Together,
this points to the importance of considering the pleiotropy of mutations’ phenotypic effects since they may affect suites of traits with different selective potentials.

Gene Regulatory Networks. Flowering time genes have been conceptually organized into distinct pathways such as the photoperiod and vernalization pathways (51, 122, 123). This conceptual organization is a consequence of the cue-specific manner in which the functional effects of flowering time genes are initially characterized (124, 125). However, as the interactome has been elucidated by protein–protein and genetic interaction screens, the complexity of gene regulatory networks has grown (126, 127). Indeed, recent work has shown that genes often act outside of their canonical pathways to respond to multiple environmental variables (51). For example, several “photoperiod genes” have also been shown to act as ambient temperature thermosensors (106, 119, 128). Here, we challenged mutants with natural environmental inputs and found evidence that, indeed, more highly connected genes caused greater changes in phenotypes and greater reductions in fitness, indicating that their connections within the regulatory network were nonredundant (Fig. 3). However, this relationship was not significant for all environments or traits. This indicates that some environments exposed a gene’s connectedness more than others, possibly due to responses to different multivariate environmental inputs.

Conditionally Adaptive Mutations in Genotype–Phenotype–Fitness Landscapes. Our results point to genotype × environment interaction as an important explanation for recent findings of nonnegligible frequencies of large-effect mutations segregating in natural populations of many species (14–16, 92–100). Contrary to the predictions of mutation-selection balance, which emphasizes inefficient negative selection to explain why mutations linger in a population (129, 130), we found evidence for balancing selection.
selection by environmentally dependent fitness. In several cases, the same flowering time pathway mutation had opposite effects on fitness in different environments, and environmentally dependent positive or negative selection acted upon conditionally adaptive traits that ramified from these specific mutations. As these targeted flowering time mutations were grown in different environments, some formed a path to high fitness through phenotype, some through branching, and some through a combination of both. Phenological deviations in mutants were more predictable than branching or fitness but still differed among environments. The branching path was under stronger selection, but the phenological path had a stronger genetic basis. Thus, adaptation to natural selection on large-effect mutations is a contingent process that must be measured across multiple settings to gauge the pleiotropic adaptive value of underlying mutations.

Methods

Plant Materials. In 2006 and 2007, the mutants were planted as part of a larger field experiment in common gardens in 5 locations (Norwich, United Kingdom; Halle, Germany; Cologne, Germany; Valencia, Spain; and Oulu, Finland) and several seasons (summer, spring, and fall) (55, 102, 103, 106, 131). Mutant genes, their primary flowering time pathway designation, and relevant environmental or genetic interactions are summarized in Table 1. All mutants were nontransgenic, induced by radiation or chemical mutagenesis, identified by screens for major effects on flowering time and experimentally confirmed (SI Appendix, Table S1). The single exception was the introgression of FRIGIDA allele from the Sf-2 ecotype to complement allele. Relativized traits were log multiplied by an average-length silique base to seed proxy units. These were calculated as a plant number was the total number of primary, secondary, and cauline branches branching as a morphological trait; bolting time as a phenological trait; and fecundity as a fitness metric. Days to bolting was the number of days from germination flushes observed in natural houses at each field site, and seedlings were transplanted to the field synchronously with germination. Genotypes were assigned to ecotypes A. thaliana plants within each. Between 2006 and 2012 replicated each genotype were transplanted in a randomized block design. See SI Appendix, Supplemental Methods for further details.

Phenotypic and Fitness Measurements. We report 12 morphometric, phenological, and fitness traits (SI Appendix, Table S1). Together with branching’s partial independence as a developmental module and its mechanistic interactions with flowering time and fitness (see Introduction), we focused on branching as a morphological trait; bolting time as a phenological trait; and fecundity as a fitness metric. Days to bolting was the number of days from transplant into the field until an inflorescence shoot was visible at the center of a rosette. To convert these measurements to environmental time, we scaled by temperature greater than 3°C during daylight, resulting in photothermal units to bolting (PUs) as in Wilczek et al. (103). Total branch number was the total number of primary, secondary, and cauline branches longer than 1 cm. We estimated fitness as the number of seeds produced by a plant in seed proxy units. These were calculated as a plant’s silique number multiplied by an average-length silique’s distance from its valve’s base to apex. Seed set is a direct measurement of fitness, and, since seeds are minute and numerous in each silique, silique length is a practical and reliable proxy for the number of seeds (132, 133). Fitness was scored as 0 for plants that died before producing siliques.

Statistical Methods. All analyses were performed in R version 3.0.2 (134). To estimate the ratio of genetic variation to phenotypic variation for a trait, we used ANOVA procedures to calculate broad-sense heritability. In order to identify phenotype classes responding to genetic perturbation and to growth environment, we hierarchically clustered phenotypes by genotype and phenotype, using average, Euclidian-based clustering. To scale phenotypes for visualization in heat maps, we relativized mutant least-square means against within-planting least-square means of 1) Col-0 if the mutant was generated in a Col-0 background; 2) Ler-1 if in a Ler-1 background; or 3) Col-FRI if the mutant was in the Col-0 background with an introgressed functional Sf-2 FRI allele. Relativized traits were log transformed for decrease–increase symmetry, centering within plantings. The identified clusters were robust to clustering method. For phenological traits, calendar and photothermal time clusters were similar (SI Appendix, Figs. S2–S4).

To construct fitness landscapes for the 5 plantings for which fitness and growth metrics were taken, we first fit a generalized additive model (GAM) under a Gaussian distribution for each planting. To test for correlated selection on these traits, we included the interaction term BP = x total branching. Since we wished to simultaneously estimate the magnitude, direction, and curvature of selection gradients, as well as to perform hypothesis testing on whether this selection was significant, we assessed the significance of GAM coefficient estimates with case bootstrapping procedures (32, 33, 135). This analysis combined the biological interpretability of traditional regression techniques with splines’ ability to explain complex surfaces, producing GAM coefficients that are analogous to partial derivatives, directional selection coefficient (β) and stabilizing selection coefficient (γ) (136). P values were adjusted for multiple testing by Bonferroni corrections.

In order to quantify the network position of the mutant genes, we manually curated nonredundant genetic and physical interactions deposited in the gene network databases BioGRID 3.5.167 (137) and IntAct (European Molecular Biology Laboratory–European Bioinformatics Institute) (138). We connected each mutant gene and its nearest experimentally validated phenotypic interaction as a connection, and the sum of these connections as its connectedness. We considered these interactions to be edges in our network analysis, and the mutant genes as nodes. In this analysis, we regressed connectedness against relative phenotype deviation from ecotype background, reporting Bonferroni-corrected results.

ACKNOWLEDGMENTS. We thank M. Blazquez, G. Coupland, C. Dean, M. Hoffmann, M. Koonneef, and O. Savolainen for hosting field plantings, as well as L. Albertson, J. F. Egan, L. Martin, C. Muir, R. Petipas, S. Sim, A. Walker, J. Anderson, D. Eaton, B. Moryers, R. Scheaffer, and C. Lopez-Gallego for growing plant data. We also thank B. Robertson, M. Gosling, T. Kauppila, and H. Eissner for assistance in establishing field sites, and E. Albright, Y. Cheng, C. Cooper, M. F. Cooper, M. Dinneen, E. Hsieh, B. Lagninhas, W. Jackson, C. Lung, S. Makava, W. Miller, C. M. Sales, L. Sigalla, S. Stein, J. Wilcox, A. Wilde, A. Willard, and H. Willard for counting siliques for fitness estimates. Jeffrey Ross-Ibarra provided helpful comments on the manuscript. This work was supported by National Science Foundation Grants EF-0425759, DEB-1754102, and GFFG-2014157993.

1. R. Fisher, The Genetical Theory of Natural Selection (Clarendon Press, Oxford, 1930).
2. M. Lynch et al., Perspective: Spontaneous deleterious mutation. Evolution 53, 645–663 (1999).
3. A. Eyre-Walker, P. D. Keightley, The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).
4. D. W. Hall, R. Mahmoudzadeh, A. W. Hurd, S. B. Joseph, Spontaneous mutations in diploid Saccharomyces cerevisiae: Another thousand cell generations. Genet. Res. 90, 229–241 (2008).
5. M. T. Rutter et al., Fitness of Arabidopsis thaliana mutation accumulation lines whose spontaneous mutations are known. Evolution 66, 2335–2339 (2012).
6. M. T. Rutter, F. H. Shaw, C. B. Fenster, Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 64, 1825–1835 (2010).
7. F. H. Shaw, J. J. O’Shea, C. B. Fenster, A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 56, 453–463 (2002).
8. A. Garcia-Dorado, J. L. Monedero, C. Lopez-Fanjul, The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster. Genetica 102, 255–265 (1998).
9. L. Perfetto, L. Fernandes, C. Passos, I. Gordo, Adaptive mutations in bacteria: High-rate and small effects. Science 317, 813–815 (2007).
10. R. Kassen, T. Bataillon, Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nat. Genet. 38, 484–488 (2006).
11. N. P. Sharp, A. F. Agrawal, An experimental test of the mutation-selection balance model for the maintenance of genetic variance in fitness components. Proc. Biol. Sci. 285, 20181684 (2018).
12. D. Houle, Comparing evolvability and variability of quantitative traits. Genetics 130, 195–204 (1992).
13. B. Charlesworth, Causes of natural variation in fitness: Evidence from studies of Drosophila populations. Proc. Natl. Acad. Sci. U.S.A. 112, 1662–1669 (2015).
14. M. Esposto-Alonso et al., The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genet. 14, e1007155 (2018).
15. C. Toomajian et al., A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol. 4, e137 (2006).
16. U. Johanson et al., Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flower time. Science 290, 344–347 (2000).
17. A. J. Roles, M. T. Rutter, C. B. Fenster, J. K. Conner, Field measurements of fitness, genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 70, 1039–1050 (2016).
18. D. L. Halligan, P. D. Keightley, Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172 (2009).

Taylor et al.
20. S. Wright, “The roles of mutation, inbreeding, crossing and selection in evolution,” in Proceedings of the Sixth International Congress on Genetica, D. F. Jones, Ed. (Brooklyn Botanic Garden, Brooklyn, NY, 1932), vol. 1, pp. 356-366.

21. S. Gavrilets, *Fitness Landscapes and the Origin of Species* (Princeton University Press, Princeton, NJ, 2004).

22. A. Orr, *Fitness and its role in evolutionary genetics*. *Nat. Rev. Genet.* 10, 531–539 (2009).

23. D. Schluter, *The Ecology of Adaptive Radiation* (Oxford University Press, Oxford, 2000).

24. A. M. Siepielski et al., “The spatial patterns of directional phenotypic selection. *Ecol. Lett.* 16, 1382–1392 (2013).

25. S. J. Arnold, Performance surfaces and adaptive landscapes. *Integr. Comp. Biol.* 43, 367–375 (2003).

26. J. A. G. M. de Visser, J. Krug, Empirical fitness landscapes and the predictability of evolution. *Nat. Rev. Genet.* 15, 480–490 (2014).

27. G. G. Simpson, *Tempo and Mode in Evolution* (Columbia University Press, New York, NY, 1944).

28. J. B. Brodie 3rd, A. J. Moore, F. J. Janzen, Visualizing and quantifying natural selection. *Trends Ecol. Evol.* 10, 313–318 (1995).

29. J. G. Kingsolver et al., “The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–251 (2001).

30. J. J. Blows, J. B. Plotkin, Inference fitness landscapes by regression produces biased estimates of epistasis. *Proc. Natl. Acad. Sci. U.S.A.* 111, E2301–E2309 (2014).

31. P. Gravish, C. J. Geyer, Inference fitness landscapes. *Evolution* 64, 2510–2520 (2010).

32. R. Lande, S. J. Arnold, The measurement of selection on correlated characters. *Proc. Natl. Acad. Sci. U.S.A.* 97, 12155–12160 (2000).

33. M. B. Morrisey, K. Sakrejda, Unification of regression-based methods for the analysis of natural selection. *Evolution* 67, 2094–2103 (2013).

34. C. Weinig, J. R. Stinchcombe, J. Schmitt, QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. *Mol. Ecol.* 12, 1153–1163 (2003).

35. D. L. Erickson, C. F. Benster, H. K. Stenie, D. Price, Quantitative trait locus analysis and the study of evolutionary process. *Mol. Ecol.* 13, 2505–2522 (2004).

36. J. R. Stinchcombe, C. Weinig, K. D. Heath, M. T. Brock, J. Schmitt, Polygenic-pheno trends of major effect: Consequences for variation, selection and evolution in Arabidopsis thaliana. *Genetics* 182, 911–922 (2009).

37. C. O. Willis, C. Adami, Interaction between directional epistasis and average mutational effects. *Proc. Biol. Sci.* 268, 1469–1474 (2001).

38. T. Hinkley et al., A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. *Nat. Genet.* 43, 487–489 (2011).

39. B. G. Hall, Predicting evolution by in vitro evolution requires determining evolutionary pathways. *Antimicrob. Agents Chemother.* 46, 3035–3038 (2002).

40. J. N. Pitt, A. R. Ferré-D’Amare, Rapid construction of empirical RNA fitness landscapes. *Science* 330, 376–379 (2010).

41. R. D. Kousky et al., Exploring the complexity of the HIV-1 fitness landscape. *PLoS Genet.* 8, e1002551 (2012).

42. J. Jiménez, R. Xulvi-Brunet, G. W. Campbell, R. Turk-MacLeod, I. A. Chen, Comprehensive experimental fitness landscape and evolutionary network for small RNA. *Science* 339, 1498–1502 (2012).

43. M. Debieu, M. E. Costantini, J. Schmitt, C. J. de Visser, K. De Visser, D. Van Tiem, e1004936 (2015).

44. C. Li, W. Qian, C. J. Maclean, J. Zhang, The fitness landscape of a tRNA gene. *eLife* 4, e100255 (2015).

45. J. Otwinowski, I. Nemenman, Genotype to phenotype mapping and the fitness landscapes is facilitated by indirect paths. *Proc. Natl. Acad. Sci. U.S.A.* 111, 1551–1561 (2014).
94. L. Barboza et al., Arabidopsis semi-dwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc. Natl. Acad. Sci. U.S.A. 110, 15818–15823 (2013).
95. C. F. Mouchel, G. C. Briggs, C. S. Hardtke, Natural genetic variation in Arabidopsis identifies BREVIS RADIUS, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 18, 700–714 (2004).
96. M. R. Grant et al., Independent deletions of a pathogen-resistance gene in Brassica and Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95, 15843–15848 (1998).
97. Y. Xiang et al., Sequence polymorphisms at the REDUCED DORMANCY5 pseudo-phosphatase underlie natural variation in Arabidopsis dormancy. Plant Physiol. 171, 2659–2670 (2016).
98. J. G. Monroe et al., Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function. eLife 7, e41038 (2018).
99. V. Le Corre, Variation at two flowering time genes within and among populations of Arabidopsis thaliana: Comparison with markers and traits. Mol. Ecol. 14, 4181–4192 (2005).
100. Y.-C. Xu et al., Adaptation and phenotypic diversification in Arabidopsis through loss-of-function mutations in protein-coding genes. Plant Cell 31, 1012–1025 (2019).
101. I. Lee, R. M. Amasino, Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRI/GDA gene. Plant Physiol. 108, 157–162 (1995).
102. A. Fournier-Level et al., A map of local adaptation in Arabidopsis thaliana. Science 334, 86–89 (2011).
103. A. M. Wilczek et al., Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).
104. A. L. Silverstone et al., Functional analysis of SPINDLY in giberellin signaling in Arabidopsis. Plant Physiol. 143, 987–1000 (2007).
105. L. Conti, Hormonal control of the floral transition: Can one catch them all? Dev. Biol. 430, 288–301 (2017).
106. Y. H. Chew et al., An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol. 194, 654–665 (2012).
107. M. Legris et al., Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897–900 (2016).
108. Y. Qiu, M. Li, R. J. A. Kim, M. Chen, Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 10, 140 (2019).
109. E. D. Shpak, C. T. Berthiaume, E. J. Hill, K. U. Torii, Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development 131, 1491–1501 (2004).
110. T. Johnson, N. Barton, Theoretical models of selection and mutation on quantitative traits. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1411–1425 (2005).
111. J. Merlijn, B. C. Sheldon, Genetic architecture of fitness and nonfitness traits: Empirical patterns and development of ideas. Heredity 83, 103–109 (1999).
112. L. T. Burghardt et al., Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol. 210, 564–576 (2016).
113. G. G. Simpson, The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7, 570–574 (2004).
114. G. G. Simpson, C. Dean, Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289 (2002).
115. M. Pazhouhadeh, J. Molinier, A. Berr, P. Genschik, MSI4/PVE interacts with CUL4-DD1 and a PRZC-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 3430–3435 (2011).
116. K. A. Franklin, P. H. Quail, Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61, 11–24 (2010).
117. K. J. Halliday, M. Koornneef, G. C. Whitelam, Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiol. 104, 1311–1315 (1994).
118. K. J. Halliday, M. G. Saltzer, E. Thingnaes, G. C. Whitelam, Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral in- tegrator FT. Plant J. 33, 875–885 (2003).
119. V. Fernández, Y. Takahashi, J. Le Gourrrierc, G. Coupland, Photoperiodic and thermo- senory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J. 86, 426–440 (2016).
120. H. A. Kimmonth-Schultz et al., Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. New Phytol. 211, 208–224 (2016).
121. D. C. Laughlin, J. Messier, Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
122. A. Pajoro et al., The (re)evolution of gene regulatory networks controlling Arabi- dopsis plant reproduction: A two-decade history. J. Exp. Bot. 65, 4731–4740 (2014).
123. F. Fornera, A. de Montaigu, G. Coupland, SnapShot: Control of flowering in Arabi- dopsis. Cell 141, 550, 550.e1–550e2 (2010).
124. M. Romera-Branchat, F. Andrés, G. Coupland, Flowering responses to seasonal cues: What's new? Curr. Opin. Plant Biol. 21, 120–127 (2014).
125. F. Andrs, G. Coupland, The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).
126. D. P. Fraser, S. Hayes, K. A. Franklin, Photoreceptor crosstalk in shade avoidance. Curr. Opin. Plant Biol. 33, 1–7 (2016).
127. J. H. Jung, Y. Ju, P. J. Seo, J. H. Lee, C. M. Park, The SOC1-SPL module integrates photoperiod and gibberellin acid signals to control flowering time in Arabidopsis. Plant J. 69, 577–588 (2012).
128. J. H. Jung et al., Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016).
129. X. S. Zhang, W. G. Hill, Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).
130. R. Nielsen, M. Slatkin, An Introduction to Population Genetics: Theory and Appli- cations (Sinauer Associates, Oxford University Press, Sunderland, MA, 2013).
131. A. M. Wilczek et al., Genetic and physiological bases for phenological responses to current and predicted climates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3129–3147 (2010).
132. M. W. Horton et al., Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat. Genet. 44, 212–216 (2012).
133. C. Alonso-Blanco, H. Blankestijn-de Vries, C. J. Hanhart, M. Koornneef, Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 96, 4710–4717 (1999).
134. R Core Development Team, R: A Language and Environment for Statistical Com- puting (R Foundation for Statistical Computing, Vienna, Austria, 2015).
135. A. Diederich, Generalized additive models. An introduction with R. J. Math. Psychol. 51, 339 (2007).
136. M. Lynch, B. Walsh, Genetics and Analysis of Quantitative Traits (Sinauer Associates, Inc., Sunderland, MA, 1998).
137. A. Chatz-Arxamonti et al., The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45, D369–D379 (2017).
138. S. Orchard et al., The MintAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).