Supplementary information

A unified formulation of dichroic signals using the Borrmann effect and twisted photon beams

Stephen P Collins¹ and Stephen W Lovesey¹,²

1. Diamond Light Source Ltd, Oxfordshire OX11 0DE, UK
2. ISIS Facility, STFC, Oxfordshire OX11 0QX, UK

A scattering length f derived from the Kramers-Heisenberg dispersion function is,

$$f = \frac{-F}{E - \Delta + i\Gamma/2}, \quad (A1)$$

where E is the photon energy, and Δ and Γ are the energy and total width of the atomic resonance labelled η. The amplitude $F = \{V'_{2\eta} V_{1\eta}\}$ where matrix elements of the electron-photon interaction operator V between states 1 & 2 and the intermediate state $V'_{2\eta} V_{1\eta}$ account for photon creation and annihilation [32]. V is proportional to the photon polarization vector ϵ. In consequence, F contains a product $\epsilon'_{\alpha} \epsilon_{\beta}$ that is usefully expressed through a tensor product,

$$X^{K'' Q''} = \sum_{\alpha, \beta} \epsilon'_{\alpha} \epsilon_{\beta} (1\alpha 1\beta|K'' Q'') = (\epsilon' \otimes \epsilon)^{K'' Q''}. \quad (A2)$$

The Clebsch-Gordan coefficient and Wigner 3-j symbol in (A2) are standard with,

$$(a \alpha b \beta|KQ) = (-1)^{-a+b-q} \sqrt{(2K+1)} \left(\begin{array}{ccc} a & b & K \\ \alpha & \beta & -Q \end{array}\right).$$

One finds $X^{K'' Q''} = (-1)^{K'' + Q''} (X^{K'' Q''})^*$ and,

$$X^0_0 = -(1/\sqrt{3}) [\epsilon' \cdot \epsilon], \quad X^1_1 = (i/\sqrt{2}) [\epsilon' \times \epsilon], \quad X^2_0 = (1/\sqrt{6}) [3\epsilon'_{0\epsilon_0} - \epsilon' \cdot \epsilon],$$

$$X^{2+1}_2 = (1/\sqrt{2}) [\epsilon'_{0\epsilon_{+1}} + \epsilon'_{+1\epsilon_0}], \quad X^{2+2}_2 = \epsilon'_{+1\epsilon_{+1}}. \quad (A3)$$

Our Cartesian coordinate scheme is depicted in Fig. 1a. For a normal dichroic signal and linear polarization the required values of $X^{K''}$ use $\epsilon' \cdot \epsilon = 1$, with $X^2_0 = -(1/\sqrt{6})$, $X^2_{+1} = 0$ and $X^{2+2}_2 = 1/2$. Upon averaging over circular polarization in the primary photon beam $(X^1_{av} = -(1/\sqrt{2}) \hat{q}) P_2$, where P_2 is a Stokes parameter for circular polarization [4] and $\hat{q} = (0, 0, 1)$.

We calculate the the value of F produced by the interaction of twisted radiation with ions, and adopt the standard assumptions. A dipole matrix element of the type needed in F has been calculated by Alexandrescu et al. with the same assumptions [11]. Radiation is treated classically in the paraxial approximation. The spatial spread of electronic states is assumed to be small compared to the waist w of the twisted beam. In these circumstances the electric field E can be expressed in terms of solid spherical-harmonics $\mathcal{R}^l_{\alpha}(b)$ with an argument b proportional to the transverse component r_\perp of the position of an electron. The angular
orientation of \(\mathbf{b} \) is carried by a spherical harmonic in \(\mathcal{R}_n^l(\mathbf{b}) \). For a transverse component \(\mathbf{r}_\perp \)
the topological charge and its projection must satisfy \(l + n \) even and,

\[
E \propto \epsilon \mathcal{R}_n^l(\mathbf{b}),
\]

with \(n = \pm l \) and \(\mathbf{b} = \mathbf{r}_\perp / w \). The polarization vector \(\epsilon \) and \(\mathbf{r}_\perp \) are confined to the plane normal to
the direction of propagation of the beam, which is taken to be the z-axis in Fig. 1 of the main
text. The proportionality factor in (A4) is purely real. The corresponding dipole interaction
operators are,

\[
V \propto \mathbf{r} \cdot \epsilon \mathcal{R}_n^l(\mathbf{b}), \text{ and } V' \propto V^* \text{ using a polarization vector } \epsilon',
\]

with the electron position \(\mathbf{r} \propto \mathcal{R}^l(\mathbf{r}) \) measured relative to an origin at \(\mathbf{R} \), giving \(\mathbf{w} = \mathbf{R}_\perp + \mathbf{r}_\perp \). For a
topological charge \(l = 1 \) the interaction \(V \) is evidently a sum of \((\alpha_\mathbf{R}_\perp) \) and \((\alpha_\mathbf{r}_\perp) \). Application of the triangle-rule for the product of two dipoles, \((\alpha_\mathbf{r}_\perp) \) say, tells us that it
can be represented by the sum of a scalar, dipole and a quadrupole \(\mathcal{R}_\mu^2(\mathbf{r}) \). An expansion of
\(\mathcal{R}_n^l(\mathbf{b}) \) in products \(\mathcal{R}_a^\mu(\mathbf{R}_\perp / w) \) & \(\mathcal{R}_c^\chi(\mathbf{r}_\perp / w) \) with \(c \leq l \), where \(a + \alpha \) & \(c + \chi \) are even integers,
facilitates the evaluation of matrix elements for \(l \geq 2 \).

Returning to the amplitude, we consider a typical term in \(F \) that is diagonal with respect
to the topological charge. The product of the interesting matrix elements is,

\[
F = \langle \lambda | \mathbf{r} \cdot \epsilon' \{ \mathcal{R}_n^l(\mathbf{b}) \}^* | \eta \rangle \langle \eta | \mathbf{r} \cdot \epsilon \mathcal{R}_n^l(\mathbf{b}) | \lambda' \rangle = \sum_{K', \lambda} \sum_{K''} \sum_{K, \lambda'} (2K' + 1)(2k + 1) \, \Upsilon^K_{K, \lambda'} (k', k)
\]

\[
\times (-1)^{\ell + Q} \left(\frac{1}{0} \frac{l}{0} \frac{k'}{0} \frac{1}{0} \frac{l}{0} \frac{k}{0} \right) \left(\Pi^K \otimes X^K \right)_{K', \lambda'} [(2K' + 1)(2K'' + 1)]^{1/2} \left(\frac{K'}{l} \frac{K''}{1} \frac{K}{k} \right),
\]

where \(\Pi^K_{K'} = (\ln l - n | K' \ Q') \) that is different from zero when \(Q' = 0 \). We assume that the
intermediate state is spatially isotropic, to a good approximation, leaving it characterized solely
by total angular momentum \(J_c \) that resides in the atomic tensor \(\Upsilon^K_{K, \lambda'} (k', k) \). This simplification
of the product of matrix elements is not necessary, however. A general result, with all quantum
labels of the intermediate state, is given by Balcar and Lovesey together with steps in its
reduction to (A6) [22]. The spherical tensor \(\Upsilon^K_{K, \lambda'} (k', k) \) is also a function of quantum labels in
\(| \lambda \rangle \) and \(| \lambda' \rangle \) that belong to the ground-sate of an ion, whereas intermediate states \(| \eta \rangle \) are virtual
and do not obey Hund's rules. Not shown explicitly in (A6) is a product of reduced matrix
elements (RMEs) for spherical harmonics \([(l, l \parallel C(k') || l_k) (l, l \parallel C(k) || l_k)] \), where \(l \) and \(l \) are angular
momenta for the valence and core states, respectively. An RME of this type is different from
zero for \(l + l + k \) even, say, so the aforementioned product is different from zero for \((k + k') \)
even. The 3-j symbols in (A6) are different from zero for \((l + k') \) and \((l + k) \) odd integers, which
leads to the same condition on \((k + k') \). Variables in each row and each column of the 9-j symbol
are subject to a triangular condition.

The Clebsch-Gordan coefficient \(\Pi^K_{K, \lambda'} = (\ln l - n | K' \ 0) = (-1)^K (l - n ln | K' \ 0) \), i.e., \(\Pi^K_{K, \lambda'} \)
is an odd function of \(n \) for \(K' \) odd and an even function of \(n \) for \(K' \) even. In an experiment this
finding translates to a powerful selection rule on atomic information available from a difference \(\Delta F \) of dichroic signals produced with opposite handedness in the photon beam. The selection rule becomes even more influential when it is combined with specific polarization in the primary beam, e.g., \(K'' = 1 \) for circular polarization.

The photon tensor for a twisted beam \((l = 1)\) and circular polarization can be different from zero for zero projection \((Q = 0)\), and we write it as \(H^K_0(n, P_2) \). One finds,

\[
H^K_0(\text{+,+}) = -\sqrt{(2K + 1)} \binom{2 & 2 & K}{-2 & 2 & 0} = (-1)^K H^K_0(\text{--,}),
\]

and,

\[
H^K_0(\text{+-}) = H^K_0(\text{--}) = -(1/6)\sqrt{(2K + 1)} \binom{2 & 2 & K}{0 & 0 & 0},
\]

is different from zero for \(K \) even. Specific values of \(H^K_0(n, P_2) \) appear in Table 4. The result \(H^4_0(\text{++,}) = H^4_0(\text{++,}) \) accounts for the absence of a hexadecapole in the difference signal listed in Table 1.

For dichroism created with topological charge \(l = 1 \), application of the triangular condition shows that the rank \(K' = 0, 1, 2 \). Discussions in the main text concern quadrupole events and \(k = k' = 2 \) in (A6). Electronic multipoles then obey \(0 \leq K \leq 4 \), and in the application to dichroic signals \(\Upsilon^K_0(k', k) \) reduces to a multipole \(\langle T^K_0 \rangle \) associated with the electronic ground state, even though it depends on the total angular momentum of the core state \(J_c \). The spherical tensor operator is Hermitian and \(\langle T^K_0 \rangle^* = (-1)^Q \langle T^K_{-Q} \rangle \). The atomic multipole is completely specified by its RME (equation (73) in reference [4]), multiplied by \((l||C(2)||l_c)^2 \) in an application [4]. The RME uses a standard unit-tensor that contains fractional parentage coefficients, and the unit-tensors have been listed for d and f atomic states [20]. A dependence on \(J_c \) creates sum rules for integrated signals [2, 4].

32. Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Course of Theoretical Physics vol. 4 2nd ed. (Pergamon Press, 1982)
| Process | Tensor | Prefactor | Projection (Q) |
|-------------------------|--------|-----------|---------------|
| Normal absorption | X_Q^0 | $-\frac{1}{\sqrt{3}}$ | 1 ±1 ±2 ±3 ±4 |
| E1-E1 | X_Q^1 | 0 | |
| Linear polarization (x) | X_Q^2 | $-\frac{1}{\sqrt{6}}$ | 1 0 $-\sqrt{3}/2$ |
| Normal absorption | H_Q^0 | $\frac{1}{2\sqrt{5}}$ | 1 ±1 ±2 ±3 ±4 |
| E2-E2 | H_Q^1 | 0 | |
| Linear polarization (x) | H_Q^2 | $-\frac{1}{2\sqrt{14}}$ | 1 0 $\sqrt{3}/2$ |
| | H_Q^3 | 0 | |
| | H_Q^4 | $-\frac{2}{\sqrt{70}}$ | 1 0 $-\sqrt{10}/4$ 0 0 |
| Normal absorption | X_Q^0 | $-\frac{1}{\sqrt{3}}$ | 1 ±1 ±2 ±3 ±4 |
| E1-E1 | X_Q^1 | $-\frac{1}{\sqrt{2}}$ | ±1 0 ±1 0 ±1 |
| Circular polarization P_2 ±1 | X_Q^2 | $-\frac{1}{\sqrt{6}}$ | 1 0 0 |
| Normal absorption | H_Q^0 | $\frac{1}{2\sqrt{5}}$ | 1 ±1 ±2 ±3 ±4 |
| E2-E2 | H_Q^1 | $-\frac{1}{2\sqrt{10}}$ | ±1 0 ±1 0 ±1 |
| Circular polarization P_2 = ±1 | H_Q^2 | $-\frac{1}{2\sqrt{14}}$ | 1 0 0 0 0 0 |
| | H_Q^3 | $\frac{1}{\sqrt{10}}$ | ±1 0 0 0 0 0 |
| | H_Q^4 | $-\frac{2}{\sqrt{70}}$ | 1 0 0 0 0 0 0 |

Table 2. Photon tensor components X^K (dipole transitions, equation (A2)) and H^K (quadrupole transitions, equations (1) or (4)) for normal absorption with linear polarization along the x-axis using $\mathbf{e} = \mathbf{e'} = (1, 0, 0)$. Polarization vectors $\mathbf{e} = (1, i, 0)/\sqrt{2}$ & $\mathbf{e'} = (1, -i, 0)/\sqrt{2}$ for right-handed circular polarization with Stokes parameter $P_2 = +1$. The photon wavevector is along the z-axis in Fig. 1a ($\vec{q} = (0,0,1)$).
Process	Tensor	Prefactor	Projection (Q)
Borrmann Effect (E1-E1)	X_Q^0	0	0 ±1 ±2 ±3 ±4
Borrmann Effect (E2-E2)	H_Q^0	$\frac{-1}{2\sqrt{5}}$	1
	H_Q^1	0	
Linear polarization	H_Q^2	$\frac{1}{\sqrt{14}}$	1 0 0
	H_Q^3	0	
	H_Q^4	$\frac{-1}{2\sqrt{70}}$	1 0 0 0 0

Table 3. The photon tensor H^K_Q is derived from either (1) or (4). Photon tensor components for the Borrmann case, with linear polarization along the x-axis using $\eta = \eta' = (1, 0, 0)$, $\hat{q} = \hat{\kappa} = (0, 1, 0)$ and $\hat{q}' = - \hat{\kappa}$.
Process	Tensor	Prefactor	Projection (Q)					
OAM (E1-E1,		X^K_Q	0	±	±2	±3	±4	
n>0)		X^K_Q	0	±	±2	±3	±4	
OAM (E2-E2, n = ±1)	H^0_Q	-7/12ν5	1	0				
E2-E2	H^1_Q	1/ν10	±1	0				
Linear polarization	H^2_Q	-5/6ν14	1	0	-ν5/5			
	H^3_Q	1/2ν10	±1	0	ν5/6	0		
	H^4_Q	-1/ν70	1	0	-ν10/4	0	0	
OAM circular polarization	H^0_Q	-1/ν5	1					
E2-E2	H^1_Q	1/ν10	±1	0				
P₂ = ±1 n = ±1	H^2_Q	-2/ν14	1	0	0			
	H^3_Q	1/ν10	±1	0	0	0		
	H^4_Q	-1/ν70	1	0	0	0	0	
OAM circular polarization	H^0_Q	-1/6ν5	1					
E2-E2	H^1_Q	0						
P₂ = ±1 n = 1	H^2_Q	1/3ν14	1	0	0			
	H^3_Q	0						
	H^4_Q	-1/ν70	1	0	0	0	0	

Table 4. The photon tensor H^K_Q for the OAM (twisted beam) case, with linear polarization (top), and circular polarization parallel and antiparallel to the OAM (middle and bottom). The effective wave vectors for winding number n = (±1), are \(\hat{q} = k \) and \(\hat{q}' = - (k)^* \) with \(k = (-i, 1, 0)/\sqrt{2} \) for \(n = +1 \), and \(k = (i, 1, 0)/\sqrt{2} \) for \(n = -1 \). Circular polarization \(P₂ = ±1 \) with vectors \(e = (1, i, 0)/\sqrt{2} \) & \(e' = (1, -i, 0)/\sqrt{2} \) for right-handed circular polarization \(P₂ = +1 \).
