Do the radiological changes seen at mid term follow up of stemless shoulder prosthesis affect outcome?

Mohamed Moursy1*, Milan Niks2, Aditya S. Kadavkolan3 and Lars J. Lehmann4

Abstract

Background: The Eclipse® (Eclipse® is a trademark of Arthrex, Naples, Florida) stemless shoulder prosthesis offers the surgeon the advantage of bone stock preservation and at the same time avoids the drawbacks of a resurfacing arthroplasty. Previous studies have shown radiographic changes on serial follow up of the Eclipse prosthesis. This study attempts to assess the significance of these radiographic changes and effect of cuff related pathology on the mid-term outcome of the Eclipse prosthesis.

Methods: Between July 2005 and October 2008, 29 shoulders underwent shoulder arthroplasty with the Eclipse prosthesis; 23 shoulders, (seven women and 16 men) were available for the final follow up. The range of motion, Constant Score; age adjusted Constant Score, Subjective Shoulder Value and radiographs were assessed at serial follow-ups.

Results: Significant improvements were seen in the Constant Score (78.9 ±20.1) compared to pre-operative score (32.9 ±5.2); also forward elevation, abduction and external rotation improved to 142.9 ± 36.6 °, 135.2 ± 40.5 ° and 49.8 ± 21.9 ° at 72 months (p < 0.001). Radiolucent lines and localised osteopenia, did not statistically impact on the clinical outcome. Partial tears of the supraspinatus and subscapularis had a negative impact on the Subjective Shoulder Value (p < 0.05) Partial or complete tears of the subscapularis led to worse Constant Score on follow up (p < 0.05).

Conclusions: The presence of radiolucent lines or localised osteopenia does not influence the mid term clinical outcome. Pre -operative partial supraspinatus tears or tears of the subscapularis lead to an inferior outcome.

Keywords: Shoulder arthroplasty, Shoulder arthritis, Stemless arthroplasty, Eclipse prosthesis, Total shoulder arthroplasty

Background

Modularity in current third and fourth generation prosthesis allows for restoration of shoulder biomechanics [1–3]. The last decade has seen an increase in the stemless implants so as to circumvent the complications associated with a stemmed prosthesis namely periprosthetic fractures and loosening. The average interval for loosening has been found to be 7.7 ± 4 years and for periprosthetic fractures the duration has been found to be 5.8 ± 4.7 years [4]. Intra operative perioperative fractures may occur due to forceful manipulation or a mistake in introduction of the stem in the diaphysis [5]. In a meta-analysis 27 of 414 complications in shoulder arthroplasty were due to loosening of the stem [6] To overcome the loss of bone stock and the stem associated complications humeral resurfacing arthroplasty was introduced [7]. The resurfacing offers accurate offset, as there is no stem; however angulation is prone to major errors [8]. Good results with shoulder resurfacing have been recorded in cases of rheumatoid arthritis, gelenohumeral arthritis, in malunited humeral shaft fractures and in cases where there is an implant occupying the humeral shaft canal; difficulties are however seen in proximal humeral malunions and in patients with advanced collapse of the humeral head [5, 9, 10]. Also the procedure is
technically demanding, requiring a circumferential capsu-
lolotomy for the glenoid exposure and humeral head protec-
tion during the glenoid preparation [7, 9].

Stemless implants offer the advantages of both resur-
facing as well as the conventional stemmed prosthesis-
a) accurate offset since there is no stem, b) correct head
angulation and version c) easy extraction during revision
[8] d) less compromise of bone stock and e) avoidance of
diaphyseal stress shielding as more of the metaphyseal
bone is loaded [11].

Previous studies have shown radiographic changes
around the implant at sequential follow up, many of
which were asymptomatic [12, 13].

Whereas rotator cuff disease limited to the supraspina-
tus with minimal or no retraction has not shown to
affect the outcomes of anatomical total shoulder arthro-
plasty; worse outcomes are observed in individuals with
fatty infiltration and degeneration of the infraspinatus
and to a lesser extent the subscapularis [14]. Similar out-
comes have been noted by Ianotti et.al who observed no
significant effect of a repairable supraspinatus tear on
the increase in American Shoulder Elbow Society scores
for pain, function and patient satisfaction in individuals
undergoing anatomical prosthetic replacement [15].

In the present study it was hypothesized that the radi-
ographic changes were mainly due to bone adaptation /
stress redistribution around the implant and would not in-
fluence the clinical outcome. As has been discussed previ-
ously, anatomic total shoulder arthroplasty in gives
predictable outcomes in individuals with isolated supraspi-
natus tear; whether the same applies to a stemless shoulder
arthroplasty has not been assessed. Hence one of the objec-
tives of the current study was to evaluate the effect of rota-
tor cuff tears on the clinical outcome of the stemless
prosthesis.

Methods
Between July 2005 and October 2008, 29 shoulders
underwent shoulder arthroplasty with the Eclipse pros-
thesis performed by the senior author.

The patients were assessed clinically pre-operatively
with the Constant –Murley score (CS) and the range of
motion of the shoulder was evaluated. The clinical assess-
ment was done by MM & MN; passive and active range of
motion of the shoulder with regards to forward elevation,
abduction and external rotation at side were assessed with
a clinical goniometer. These measurements were again re-
peated at 6 weeks, 3 months, 6, 12, 24, 36 and 72 months.
Additionally the age adjusted Constant Score and Sub-
jective Shoulder Value (SSV) was used for measuring the
outcome.

Radiographic evaluation was done with AP and axillary
radiographs; radiolucencies and osteopenia were mea-
sured in three zones a, b and c around the implant base
and coring screw as previously described by Habermeyer
et.al in the Anteroposterior (AP) and axillary views of
the shoulder [13] (Fig. 1). Stress shielding was assessed
from tuberosity resorption, cortical thinning, and calcar
osteolysis [16]. The radiographic observations were made
by two observers trained and experienced in shoulder sur-
gery MM & MN as per the system devised by Habermeyer
[13]. The final conclusion of the radiological changes were
based on inter observer agreement.

Pre operatively the rotator cuff was evaluated with the
help of a 3 Tesla MRI with standard sequences. We
assessed the MRI for presence rotator cuff tear, presence
of fatty infiltration and retraction. Rotator cuff tears in-
volving the supraspinatus, infraspinatus or the subsca-
pularis were graded as nil (0), partial tear (1) or complete
tear (2). Fatty infiltration was graded absent (1) (≤ 2 Goutallier)
or present (≥ 2 Goutallier).

All the surgeries were performed under General An-
aesthesia with the patient in the beach chair position. A
deltopectoral approach from the coracoac extending in-
ferior and laterally over the superior aspect of the axill-
ary fold was used. The deltoid muscle was mobilized
laterally and retracted. The lateral end of the subscapu-
laris was identified and tag sutures with no. 5 fiberwire1
were taken for later attachment of the muscle to the
bone. A long head of biceps tenotomy was performed in
all the cases. A capsular release till 6 o’clock position of
the humerus was done and the head was dislocated an-
teriorly for resection. The arm was positioned at more
than 90 ° external rotation and 30 ° extension and ad-
duction for head resection.

The Eclipse prosthesis is an uncemented humeral head
replacement prosthesis, which has a central coring screw
for fixation to the humeral metaphysis. The implant is
available in sequential sizes and progressive thickness to
replicate the proximal humerus geometry. The coring
screw is available in Small, Medium and Large. However
there is no modularity between the humeral head and
the screw. The cemented polythene glenoid component
comes in two variants; a keeled and a pegged back both
of which have reverse bars and fenestration to improve
the fixation. The decision to implant the glenoid was
based on the Walch classification [17]. Eccentric gle-
noids were implanted while A1 glenoids were left alone.

Following the removal of osteophytes the head was
resected with a resection guide, the triunion size was de-
termined and the metaphysis was drilled for the coring
screw. The sterile and sized triunion was finally placed
and impacted and the coring screw placed through the
central hole following which the head was impacted. In
shoulders that required the placement of the glenoid
component, the glenoid preparation was done after the

1Fiberwire® is a trademark of Arthrex Inc. Naples, Florida
humeral head osteotomy. For glenoid component preparation the humerus was subluxed posteriorly after tenotomy of the superior aspect of the tendon of the pectoralis major. It is paramount to achieve complete visualization of the glenoid to achieve optimal component placement. A guide was introduced at the centre of the glenoid followed by reaming and placement of a polythene glenoid component.

The arm was left postoperatively in a Gilchrist immobilization bandage for three weeks during which passive range of motion was permitted after which active range of motion exercises and active mobilization was initiated.

Data were entered in Microsoft Excel and analysed using Stata Version 15.1 (© StataCorp, College Station, Texas, USA). The mean and standard deviations for the linear variables were calculated. The means between two groups were compared using the t-test. The analysis of variance to assess the difference in means in more than two groups was used. The Pearson’s correlation co-efficient was used to estimate the correlation between two linear variables; \(p < 0.05 \) was considered to be statistically significant.

Results
No intra-operative complications were observed in any of the patients. subscapularis lengthening was performed in 17 patients. Two patients required a repair of the supraspinatus during the surgery. The mean operative time was 73± 15.2 min and the blood loss was 215 ±29.2ml.

Out of the 29 shoulders, 23 (seven women and 16 men) were available for the final follow up of which three were followed up through a self-assessment form. Only the individuals who had completed a minimum of 72 months were included in the study. Six patients were lost to follow up and not included in the study; one patient had developed bronchogenic carcinoma and had expired; one individual developed sepsis necessitating implant removal; four patients developed worsening of the cuff tear necessitating a conversion to a reverse prosthesis. Of the 23 patients included in the study patients 21 had undergone hemi replacement and 2 had undergone total shoulder replacement arthroplasty (Fig. 2). The aetiology was idiopathic osteoarthritis (63.2%), congenital dysplasia (10.2%), osteonecrosis (10.5%), cuff arthropathy (5.3%) and post-traumatic arthritis (10.5%). One patient with bilateral shoulder dysplasia underwent a bilateral staged procedure for the same. The preoperative MRI demonstrated partial tear of the supraspinatus in 13 shoulders of which four had a fatty degeneration, partial tear of the infraspinatus in one shoulder, total rupture of the subscapularis in four and partial subscapularis tear in six shoulders. One patient had Nickel allergy and a gold-coated implant was used for the same.

Two patients required revision surgery, one in whom the glenoid base plate was changed from a metallic to polyethylene and the other patient had a periprosthetic fracture of the humerus.

Mean age at the time of surgery was 59.9 ± 9.2 yrs.; the mean duration of follow-up was 7.57 ± 1.09 yrs. The mean age adjusted Constant Score was 32.9 ± 5.2 preoperative that improved to 78.9 ±20.1 at last follow up. The increase in the Constant Score was found to be
statically significant between the pre-operative values and at the last follow up \((p < 0.0001) \). The post op Subjective Shoulder Value (SSV) was measured to be \(70.5 \pm 21.1 \).

The change in the range of motion of the shoulder has been described in Table 1. There was a significant increase in the range of motion with respect to flexion, extension and external rotation between the pre-operative values and at the last follow up \((p < 0.0001) \).

Serial AP and axillary lateral radiographs were done at follow up. The mean duration of the radiological follow up was \(88.1 \pm 21.4 \) months. The system developed by Habermeyer was used to classify the radiolucent lines < 2 mm \[13 \] (Fig. 1). Radiolucent lines > 2 mm were observed in three shoulders. The presence of radiolucent lines < 2 mm did not influence the clinical outcome with regards to the post operative age adjusted CS, shoulder range of active or passive movement or the SSV (Table 2).

Progressive cranial migration of the humeral head, with a decrease in acromio-humeral interval from \(9.05 \pm 3.6 \) mm to \(5.01 \pm 2.3 \) mm was observed at final follow up. Decrease in acromio-humeral interval correlated with poorer external rotation at follow up (Coefficient of correlation = 1).

Secondary glenoid wear was seen in 10 shoulders, secondary osteophytes were seen in 7 shoulders. Radiolucent glenoid lines were not seen in any shoulders. The glenoid wear and secondary glenoid osteophytes had no significant bearing on the clinical outcome at the last follow up in terms of the measured parameters, age adjusted CS, SSV, post operative shoulder range both active and passive (Table 3).

There were two variations in the pattern of stress shielding observed: of the 13 shoulders with centred prosthesis 11 had evidence of bone on growth on the calcar (Fig. 3); three out of six patients with a decentred prosthesis showed evidence of stress shielding around the coring screw (Fig. 4). Clinical instability was not observed in any of the shoulders. On the glenoid aspect sclerosis was seen in 13 patients who had undergone hemi replacement.

The statistical assessment revealed that the presence of pre-operative partial supraspinatus tear led to inferior SSV \((p = 0.01) \). Complete / partial tears of the subscapularis similarly had a negative impact on the outcome with worse SSV \((p = 0.04) \), CS \((0.01) \) and post-operative increase in external rotation \((p < 0.5) \). However fatty infiltration of the supraspinatus, infraspinatus partial tears did not influence on the postoperative SSV, the age adjusted CS or the postoperative shoulder active /passive range (Table 4).

Localised osteopenia was observed in the zones \(a, b, c \) in the anteroposterior and axillary radiographs. The presence of localised osteopenia did not influence the clinical outcome with regards to the measured clinical

Table 1 Clinical assessment of the outcome

Duration	Flexion	Abduction	External rotation	CS	Age adjusted CS		
	Active	Passive	Active				
			Passive				
Pre-op	71.4 ± 15.9	90.9 ± 22.5	68.1 ± 13.2	27.6 ± 11.9	33.1 ± 9.1	32.9 ± 5.2	33.76 ± 5.1
72 mo	142.9 ± 36.6	160.5 ± 32.3	135.2 ± 40.5	49.8 ± 21.9	51.6 ± 14.8	78.9 ± 20.1	83 ± 15.9

CS Constant Score, mo months, w weeks, y years
Flexion/Abduction and external rotation in degrees (°)
parameters (Table 2). Similar results were seen in other studies in this regard (Table 5).

Discussion

In the current study, presence of radiolucent lines < 2 mm did not influence the clinical outcome with regards to the post operative age adjusted CS, shoulder range of active or passive movement or the SSV. Two patterns of stress shielding were observed, in centred prosthesis it was observed around the calcar in 11/13 shoulders while in decentred prosthesis it was seen around the coring screw in 3 out of 6 shoulders. Decrease in acromio-humeral distance on the radiographs led to a worsening outcome. Presence of pre-operative partial supraspinatus tear was a predictor for a poorer outcome with inferior SSV ($p = 0.01$). Complete / partial tears of the subscapularis similarly had a negative impact on the outcome with worse SSV ($p = 0.04$), CS (0.01) and post-operative increase in external rotation ($p < 0.5$).

Restoration of the proximal humeral anatomy involves accurate reproduction of the offset, version, the angulation of the head, the neck length and lastly the head diameter. The stemless Eclipse® prosthesis allows an accurate reproduction of these parameters; lack of a stem ensures replication of the offset, the neck cut allows accurate restoration of the angulation, the retroversion and the neck length [8].

The results of the current study are better compared to other studies done to assess the outcome of stemmed shoulder arthroplasty in terms of the Constant Score and the shoulder range of motion [4, 18–21] (Table 6) [4, 18–23]. However it must be mentioned that the duration of the follow up in our study was minimum 72 months, which was less than some of these studies. The clinical results of the stemless prosthesis are superior compared to the Copeland resurfacing. Additionally due to head resection the complications associated with the glenoid exposure in surface replacement are avoided [10] (Table 7) [5, 9, 10, 24–26].

The results of the current study are similar in terms of the post-operative Constant Score and range of motion when compared to the other studies of stemless implants [5, 13, 27, 28] (Table 7).

Churchill et al. investigated the outcome of Simpliciti stemless prosthesis (Wright medical) in 157 patients with glenohumeral osteoarthritis. Of 157 patients 149 patients were available with a minimal follow up of 2 years. Range of motion increased from 103 ° to 147 ° and external rotation from 31 ° to 57 °. The authors described a subjective method of assessing the metaphyseal bone stock by compressing it with operating surgeons thumb; if there was no indentation the bone stock was considered adequate for implantation else a conventional prosthesis was used. The authors did not observe any component loosening, proximal migration of the humeral head [29].

Habermeyer et al. in a study of 78 patients with a minimal follow up of 72 months compared the results of Eclipse prosthesis in a osteoarthritis group ($n = 39$) to that of post traumatic arthritis group ($n = 26$). Both populations showed a significant increase in the CS and active range of motion post surgery. The osteoarthritis group had better increase in abduction compared to the post-traumatic arthritis group. The results of hemiarthroplasty

Table 2 Influence of radiological parameters on clinical outcome

Parameter	CS Absent	CS Present	p value	SSV Present	SSV Absent	p value		
	n	Absent	Present		Absent			
ap-a	19	3	43.7 ± 21.5	49.0 ± 21.6	0.5	90.0 ± 10	68.7 ± 21	0.1
ap-b	20	2	46.1 ± 21.6	45.0 ± 21.2	0.9	65.0 ± 49.5	73.2 ± 18.9	0.61
ap-c	19	3	46.8 ± 21.2	30.0	0	66.6 ± 32.1	73.4 ± 20	0.61
ax-a	20	2	46.6 ± 22.1	43.2 ± 17.7	0.78	85 ± 7	71.2 ± 21.7	0.39
ax-b	20	2	45.5 ± 22	49.0 ± 16.5	0.79	95 ± 7	70.2 ± 20.8	0.11
ax-c	18	4	43.4 ± 22.6	54.2 ± 13.7	0.3	75.0 ± 31	71.9 ± 19.4	0.8
AP-A	12	10	43.2 ± 21.4	62.6 ± 4.9	0.1	74.5 ± 23.1	70.8 ± 20.2	0.69
AP-B	20	2	45.7 ± 21.3	48.0 ± 25.4	0.8	60.0 ± 42.4	73.7 ± 19.5	0.39
AP-C	21	1	45.22 ± 21.8	50.6 ± 18.3	0.6	30.0	74.5 ± 19.36	–
AX-A	18	4	44.4 ± 21.5	61 ± 5.6	0.3	70.0 ± 28.2	73.0 ± 20.2	0.8
AX-B	19	3	44.3 ± 21.4	61.5 ± 6.3	0.2	70.0 ± 34.6	72.8 ± 19.6	0.8
AX-C	17	5	44 ± 21.8	54.5 ± 16.8	0.3	75.0 ± 26.9	71.7 ± 20.0	0.7

ap a,b,c represent zones for measurement on the AP radiograph and ax a,b,c represent zones on the axillary radiograph

Small caps indicate bone density loss, Capitals indicate radiolucent lines

n number

CS Constant score

SSV Subjective shoulder value
Outcome Measure	SST Partial tear	IST Partial tear	SSC tears	SST FD									
	No Tear(7)	PSST(21)	p-value	No Tear (10)	PSSC(7)	CT(4)	P value	Nil(17)	FD	P value			
SSV	88.5 ± 12.1	65.3 ± 21.6	0.01	72 ± 21.4	95	–	82 ± 17.5	57.1 ± 236	78.7 ± 118	0.04	75.5 ± 21.9	62.5 ± 18.9	0.28
CS Increase	57.1 ± 17.2	40.43 ± 21	0.08	45.2 ± 21.3	61	–	51.5 ± 17.06	292 ± 222	61.5 ± 32	0.01	49.4 ± 21	31.2 ± 15.2	0.1
FE Increase(°)	84.2 ± 43.9	65 ± 36.9	0.3	70.5 ± 40.1	90	–	79 ± 39.5	54.2 ± 468	82.5 ± 15	0.3	74.1 ± 41.4	60 ± 28.2	0.5
Abduction Increase(°)	87.1 ± 23.6	57.1 ± 46.6	0.1	65.5 ± 42.7	100	–	75 ± 30.6	40 ± 55	95 ± 10	0.07	73.5 ± 43.9	40 ± 27	0.1
ER Increase(°)	35.7 ± 9.3	15.3 ± 30.6	0.1	21.2 ± 27.4	40	–	39 ± 14.3	7.8 ± 22.1	32.5 ± 95	0.00	20.2 ± 24.9	30 ± 38.3	0.5

CS Constant score, FE Forward Elevation, ER External rotation, SST Supraspinatus, PSST Partial tear of the supraspinatus, IST Infraspinatus, PIST Partial tear of the infraspinatus, SSC Subscapularis, PSSC Partial tear of the subscapularis, CT Complete tear of the subscapularis, FD Fatty degeneration
compared to total shoulder arthroplasty were similar in both groups [13]. In our study the sample size of patients belonging to each aetiology group was less to derive a statistically significant correlation.

Uschok et al. in a randomised trial compared the outcomes of the Eclipse prosthesis to a conventional stemmed prosthesis and obtained similar results in terms of post operative Constant Score and improvement in range of movement over a period of the study of five years; they also observed that the positive results were maintained during the follow up. Also it was noted that the bone density was lowered in the calcar region (Zone c AP radiograph) in more individuals undergoing the conventional stemmed prosthesis compared to the Eclipse prosthesis [30].

Radiolucent lines were observed in zones a, b, c as described by Habermyer in the AP and axillary radiographs (Table 2, Fig. 1). Similarly localised osteopenia was observed on examination of the follow up radiographs; the results of which are summed up in Table 2 and comparison to other studies in this regard in Table 5. Golkhe et al. in a cadaveric study has suggested that radiolucent lines around stemless prosthesis may be a radiation artefact due to radiation scatter rather than true bone loss or stress shielding [31].

Stress shielding was another phenomenon observed during our study. The adaptation of the host bone in response to a prosthesis inserted in the medullary cavity is called stress shielding as per Wolff’s law [32]. Stress shielding can manifest as tuberosity resorption, cortical thinning, calcar osteolysis and occurs because of sharing of load between the prosthesis and bone; both material with different Young’s moduli [16]. The degree of stress shielding and the location varies depending on the prosthesis size and design [16]. Previous studies have indicated stress shielding around humeral resurfacing implants; especially around the rim and the core [33]. External stress shielding in form of calcar sclerosis was seen in the shoulders with a centred implant, whereas the internal stress shielding was seen in de-centred implant. Lesser bone density loss is seen in stemless prosthesis compared to stemmed prosthesis [30].
Study	No of shoulders	Duration of follow up	Prosthesis	Mean CS	Age adjusted CS	Range of motion (in degrees)					
						Flexion	Abduction	External rotation			
						A	P	A	P	A	P
Raiss et al (2012)	46	10y	Aq	61 ± 18.2	79 ± 43	133 ± 36.7	123 ± 41.6	35 ± 15.8			
Deshmukh (2005)	72	14 y ± 2.7	N	–	–	Elevation-80 (58–100)	109 (84–124)	25 (15–41)			
Levine et al (2012)	27	17.2y (13–21)	N	–	–	Elevation-141.89 (45–180)	61 (30–90)				
Sandow (2013)	33	3y	G	54.5 ± 4°	77 ± 6°	–	–	52.8 ± 14.3			
Favard (2012)	110	8y	Anatomic/ Reverse	62.8 ± 14.3	47.5 ± 14.3	–	–	–			
Orfaly et al (2003)	65	4.3y (2–8)	G	–	–	Elevation 147	–	39			
Denard (2013)	50	115.5mo (60–211)	Aq	58.4 ± 20.7	73.4 ± 23.9	128 ± 36	–	33 ± 24			
Current study	21	59y (4.5–7.9)	E	71.2 ± 16.6	83 ± 15.9	149.5 ± 38.9	160.4 ± 32.3	138 ± 43.4	46.1 ± 17.3	52.3 ± 14.3	

Abbreviations:
- y: year
- mo: months
- h: hemiarthroplasty
- r: total shoulder arthroplasty
- a: osteoarthritis
- h: rheumatoid arthritis
- c: cuff arthropathy
- E: Eclipse Prosthesis
- Aq: Aequalis prosthesis
- G: Global Arthroplasty system
- Neer II
| Study | No of shoulders | Follow up | Prosthesis | CS | Age adjusted CS | Range of motion | Abduction | External rotation | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | Flexion | A | P |
| | | | | | | Active | P | P |
| | | | | | | Abduction | A | A |
| | | | | | | External rotation | P | P |
| | | | | | | | | |
| Thomas et al. (2005) | 48 | 34.2 mo (24–63) | Co | 48.6r | 58o 54c | 120 o | 97 r | 99 o | 75 r | 46 o | 39 r |
| Mullet (2007) | 21 | 53.6 mo (25–111) | Co | 56.4 | 77 (25–100) | 105.9 (73.5 – 137.5) | 83 ± 45 b | 44 ± 24 b | 47 ± 26 a |
| Levy et al. (2004) | 62 | 6.5 yr (2–16) | Co | 53.4 ± 13.8 | 47.9 ± 17.6 | 71 ± 198 b | 76 ± 134 a | 101 ± 41 b | 104 ± 42 b | 87 ± 43 a | 44 ± 24 b | 47 ± 26 a |
| Berth et al. (2013) | 41 | 30.8 ± 4.6 | T | 54.7 ± 7.3 | 73.2 ± 11.3 | 115.9 ± 9.8 | 105 ± 12.1 | 54.4 ± 10.7 |
| Razmjou et al. (2013) | 17 t 39b | 24 mo | T, B, N | 92 ± 22 T | 135 ± 35 T | 121 ± 40 T | 54 ± 17 T |
| | 18n | | | 89 ± 18 | 142 ± 24 B | 126 ± 33 B | 51 ± 18 b | 43 ± 19 |
| Huguet et al. (2010) | 61 | 36 mo (36–51) | T | 75 | 75 | 145 | 40 |
| Churchill et al. (2016)| 149 | 2 | S | 80.7 ± 10.5 | 104.1 ± 14.8 | 146.6 ± 23.7 | – | – | 56.4 ± 15.4 |
| Current study | 21 | 5.9 y (4.5–79) | E | 71.2 ± 16.6 | 83 ± 159 | 149.5 ± 38.9 | 160.4 ± 323 | 138 ± 434 | 148.5 ± 38.5 | 46.1 ± 17.3 | 52.3 ± 143 |
| Habermyer (2015) | 78 | 72.9 mo | E | 75 ± 31 | – | 140.7 ± 35.9 | 1299 ± 293 | 44.2 ± 20 |
| Havi (2017) | 43 | 9y (90-127mo) | E | 79 ± 21 | – | 118 ± 43 | 105 ± 43 | 43 ± 19 |
| Gallacher (2018) | 100 | 35.4 (24–76) mo | E | OSS: 28/48 (36-40) | – | – | – | – |
| Ushchok (2017) | 14 | 68 (59–84) mo | E | 72.8 ± 11 | – | 154 ± 8.5 | 1493 ± 149 | 48.6 ± 15.6 |

aTotal shoulder arthroplasty, bHemiarthroplasty
o Osteoarthritis, r Rheumatoid arthritis, c Cuff arthropathy
T TESS: Total evolutive shoulder system
B Bigliani – Flatow
N Neer
Co Copeland (Mark III)
S Simpliciti shoulder prosthesis
E Eclipse shoulder prosthesis
Table 6 Comparison of the radiological parameters compared to other studies on the Eclipse prosthesis

Study	n	Radiolucent lines				Glenoid RL < 1 mm			Bone density loss						
		ap-a	ap-b	ap-c	ax-a	ax-b	ax-c	ap-a	ap-b	ap-c	ax-a	ax-b	ax-c		
Habermeyer (2015)	78	27%	7.9%	7.9%	22.2%	1.6%	1.6%	71.9%	8.3%	53.3%	41.3%				
Uschok (2017)	14	–	–	–	–	–	–	–	2	4	1	0	1	0	0
Gallacher (2018)	100	14	1	7	11	1	21	–	–	–	–	–	–	–	
Hawi (2017)	43	23%	–	–	–	–	–	27.3%	29.4%						
Current Study	23	3	2	3	2	2	4	8	10	2	1	4	3	5	

*aUncemented Metal back component

bAll polythene glenoid

HA group

n = number of shoulders

ap-a,b,c represent zones in the anterioposterior radiographs

ax-a,b,c represent zones in axillary radiographs
Edwards et al. in a multi centre study observed that supraspinatus tear in individuals undergoing shoulder arthroplasty had no influence on the post-op constant score or patient satisfaction. Repairing the supraspinatus tear had no influence on the clinical outcome other than an improvement in post operative external rotation; individuals with supraspinatus tears had lesser strength than individuals without the tear. Fatty infiltration of the infraspinatus, subscapularis had more negative impact on the outcome [14]. In contrast in our study we observed worse postoperative SSV in individuals having partial supraspinatus tear as well as tears of the subscapularis. Fatty infiltration of the supraspinatus had no influence on the final result.

Despite the good clinical outcomes and clinic-radiological outcomes similar to other studies if the stemless prosthesis, this study has a few drawbacks. The patient cohort was small to assess the effect of each of the pathologies leading to glenohumeral arthritis on the outcome. A hemiarthroplasty was done in a majority of the cases, however our main aim of the study was to assess the radiolucent lines that have been observed on the humeral side following a stemless shoulder arthroplasty. Additionally we lacked a control cohort to compare the clinical and radiological outcomes, as it was a retrospective study.

Conclusions
An important message from the study is that localised osteopenia and radiolucent lines are common after stemless prosthesis implantation, and these are not predictors of worse clinical outcome in mid term; however it need to be seen in the longer run if these radiological findings assume any clinical significance. In presence of rotator cuff disease, stemless shoulder prosthesis needs to be approached with caution as inferior results are seen in presence of supraspinatus tears and subscapularis tears.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12891-019-2870-z.

Table 7 Radiological changes on the glenoid and effect on clinical outcome

Variable	Secondary Osteophytes	P value	Secondary Glenoid wear	P value		
	Absent	Present		Absent	Present	
SSV	70.3 ± 22.7	77.4 ± 17.9	0.49	72.1 ± 20	73.1 ± 24.3	0.9
CS increase	44.3 ± 21.7	50.1 ± 20.4	0.57	47 ± 20.3	44.3 ± 23.4	0.7

Abbreviations
CS: Constant score; L: Large; M: Medium; S: Small; SSV: Subjective shoulder value

Acknowledgements
Not applicable

Authors’ contributions
MM: Data collection, patient follow up and manuscript preparation. MN: Data collection, patient follow up. ASK: Data analysis and manuscript preparation. LJL: Senior Author, operating surgeon, concept and design of the study. All authors have read and approved the final manuscript.

Funding
No funding obtained for the study.

Availability of data and materials
All data generated or analysed during this study are included in this published article. The raw data is submitted as Additional files 1, 2, 3 and 4.

Ethics approval and consent to participate
Written informed consent was obtained from all individual participants to be included in the study. The ethics committee approval was obtained (Ref no: 2016-55 N-MA).

Ethics Committee:
- Medicine Faculty Mannheim,
- Medical ethics committee II
- Prof Dr. Med Jens P Stribel
- Centre for medical research
- House 42, Building 3
- Mannheim Medical University, Theodore –Kutzer-Ufer 1–3
- Mannheim, Germany-68167

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Orthopedics and Traumatology, Paracelsus Medical University, Salzburg, Austria. 2Dept. of Traumatology, Emergency hospital Graz, Graz, Austria. 3Consultant Arthroscopy, Sports Medicine & Shoulder surgery, Dr. LH Hiranandani Hospital, Powai, Mumbai 400076, India. 4Orthopedic & Trauma Centre, Medical Faculty Mannheim, Heidelberg University Mannheim, Mannheim, Germany.

Received: 24 March 2019 Accepted: 9 October 2019
Published online: 27 October 2019

References
1. Witth MA, Ondrlik J, Southworth C, Kaar K, Anderson BC, Rockwood CA. Replicating proximal humeral articular geometry with a third-generation implant: a radiographic study in cadaveric shoulders. J Shoulder Elbow Surg. 2007;16(3):511–56.
2. Norris TR, Laincarit JP. Functional outcome after shoulder arthroplasty for primary osteoarthritis: a multicenter study. J Shoulder Elbow Surg. 2002; 11(2):130–5.
3. Pearl ML, Kurutz S. Geometric Analysis of Commonly Used Prosthetic Systems for Proximal Humeral Replacement*. J Bone Joint Surg. 1999;81(S): 660–71.
4. Deshmukh AV, Koris M, Zurakowski D, Thornhill TS. Total shoulder arthroplasty: long-term survivorship, functional outcome, and quality of life. J Shoulder Elbow Surg. 2005;14(5):471–9.

5. Huguet D, DeClercq G, Rio B, Teisser J, Zipoli B, Group T. Results of a new stemless shoulder prosthesis: Radiologic proof of maintained fixation and stability after a minimum of three years’ follow-up. J Shoulder Elbow Surg. 2010;19(8):847–52.

6. Bohsali K, Wirth MA, Rockwood CA. Complications of total shoulder arthroplasty. J Bone Joint Surg. 2006;88(10):2279–92.

7. Copeland S. Cementless total shoulder replacement. Surgery of the shoulder St Louis. Mosby-Year Book. 1990;1990:289–93.

8. Bunker T. Stemless shoulder replacement, the best of both worlds: a personal view. Shoulder Elbow. 2011;3(2):64–73.

9. Mullett H, Levy O, Raj D, Even T, Abraham R, Copeland SA. Copeland surface replacement of the shoulder results of an hydroxyapatite-coated cementless implant in patients over 80 years of age. J Bone Joint Surg British Volume. 2007;89(11):1466–9.

10. Levy O, Funk L, Sforza G, Copeland SA. Copeland surface replacement arthroplasty of the shoulder in rheumatoid arthritis. J Bone Joint Surg. 2004;86(5):512–8.

11. Harmer L, Throckmorton T, Sperling JW. Total shoulder arthroplasty: are the humeral components getting shorter? Curr Rev Musculoskelet Med. 2016;9(1):17–22.

12. Hawi N, Tauber M, Messina MJ, Habermeyer P, Martetschläger F. Anatomic stemless shoulder arthroplasty and related outcomes: a systematic review. BMC Musculoskelet Disord. 2016;17(1):376.

13. Habermeyer P, Lichtenberg S, Tauber M, Magosch P. Midterm results of stemless shoulder arthroplasty: a prospective study. J Shoulder Elbow Surg. 2015;24(9):1463–72.

14. Edwards TB, Boulahia A, Kempf JF, Bolleau P, Nennor C, Walch G. The Influence of Rotator Cuff Disease on the Results of Shoulder Arthroplasty for Primary Osteoarthritis: Results of a Multicenter Study. Jbjs. 2002;84(12):2240–8.

15. Iannotti JP, Norris TR. Influence of Preoperative Factors on Outcome of Shoulder Arthroplasty for Glenohumeral Osteoarthritis. Jbjs. 2003;85(2):251–8.

16. Denard PJ, Rais P, Gobezie R, Edwards TB, Lederman E. Stress shielding of the humerus in press-fit anatomic shoulder arthroplasty: review and recommendations for evaluation. J Shoulder Elbow Surg. 2018;27(6):1139–47.

17. Walch G, Badet R, Boulahia A, Houyou X. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty. 1999;14(6):756–60.

18. Rais P, Schmitt M, Bruckner T, Kasten P, Pape G, Loew M, et al. Results of cemented total shoulder replacement with a minimum follow-up of ten years. J Bone Joint Surg. 2012;94(23):e171.

19. Levine WN, Fischer CR, Nguyen D, Flatow EL, Ahmad CS, Bigliani LU. Long-term follow-up of shoulder hemiarthroplasty for glenohumeral osteoarthritis. J Bone Joint Surg. 2012;94(22):e164.

20. Oxlæy IM, Rockwood CA, Eresen CY, Weh MA. A prospective functional outcome study of shoulder arthroplasty for osteoarthritis with an intact rotator cuff. J Shoulder Elbow Surg. 2003;12(3):214–21.

21. Sandow MJ, David H, Bentall SJ. Hemiarthroplasty vs total shoulder replacement for rotator cuff intact osteoarthritis: how do they fare after a decade? J Shoulder Elbow Surg. 2013;22(7):877–85.

22. Favad L, Katt D, Colmar M, Benkalfate T, Thomazeau H, Emily S. Total shoulder arthroplasty–Arthroplasty for glenohumeral arthropathies: Results and complications after a minimum follow-up of 8 years according to the type of arthroplasty and etiology. Orthop Traumatol Surg Res. 2012;98(4):S41–7.

23. Denard PJ, Rais P, Sowa B, Walch G. Mid-to-long-term follow-up of total shoulder arthroplasty using Arthrex Eclipse stemless humeral component with minimum 2 years’ follow-up. J Shoulder Elbow Surg. 2018;27(12):2191–7.

24. Thomas SR, Wilson AJ, Chamberl A, Harding I, Thomas M. Outcome of Copeland surface replacement shoulder arthroplasty. J Shoulder Elbow Surg. 2005;14(5):485–91.

25. Razmjou H, Hoilby R, Chistakis M, Axelrod T, Richards R. Impact of prosthetic design on clinical and radiologic outcomes of total shoulder arthroplasty: a prospective study. J Shoulder Elbow Surg. 2013;22(2):206–14.

26. Berth A, Pap G. Stemless shoulder prosthesis versus conventional anatomic shoulder prosthesis in patients with osteoarthritis. J Orthop Traumatol. 2013;14(1):131–7.

27. Gallacher S, Williams HLM, King A, Kitson J, Smith CD, Thomas WJ. Clinical and radiologic outcomes following total shoulder arthroplasty using Arthrex Eclipse stemless humeral component with minimum 2 years’ follow-up. J Shoulder Elbow Surg. 2018;27(12):2191–7.