Cushion plants act as facilitators for soil microarthropods in high alpine Sweden

Authors: Peter Ľuptáčik¹, Peter Čuchta², Patrícia Jakšová¹, Dana Miklisová³ Lubomír Kováč¹, and Juha M. Alatalo⁴,*

¹Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; ²Biology Centre, Institute of Soil Biology, Academy of Science of the Czech Republic, 370 05 České Budějovice, Czech Republic; ³Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia;
⁴Environmental Science Center, Qatar University, PO Box 2713, Doha, Qatar

Orcid:
Peter Luptacik: https://orcid.org/0000-0002-8998-6130
Dana Miklisová: https://orcid.org/0000-0001-8364-3404
Lubomir Kovac: https://orcid.org/0000-0001-8194-2128
Juha M. Alatalo*: https://orcid.org/0000-0001-5084-850X

*Corresponding author: jalatalo@qu.edu.qa
Summary:

1. Cushion plants can have positive impacts on plant richness in severe environments and possibly across trophic levels on arthropods, an under-studied topic.

2. This study examined whether soil communities under cushions of *Silene acaulis* and *Diapensia lapponica* have higher richness and abundance of soil microarthropods (Acari, Collembola) than adjacent non-cushion vegetation; and whether differences in collembolan and mite abundance and species richness between *S. acaulis* cushions and adjacent vegetation increase with elevation.

3. In total, 5199 individuals of Collembola (n=1392) and mites (n=3807) were identified to order/species level in samples along an elevation transect (1000, 1100, 1200, 1320, and 1400 m a.s.l.), and an exposed ridge above the treeline (1000 m a.s.l.) in northern Sweden. Paired soil samples were taken within cushions of *Silene acaulis* (along the elevation gradient) and *Diapensia lapponica* (on the exposed ridge) and adjacent non-cushion plant vegetation.

4. *Silene acaulis* had a positive effect on species richness and abundance of Collembola, with richness effects from 1100 m a.s.l. upwards. Oribatid mite abundance and richness were also higher in *S. acaulis* compared with adjacent vegetation.

5. Species richness of Collembola and Oribatida declined with increasing elevation from 1200 m a.s.l. Collembola abundance peaked at mid-elevation (1200 m a.s.l.) in both *S. acaulis* and adjacent vegetation, while oribatid mite abundance peaked at 1300 m a.s.l. in both vegetation types.

6. Cushions of *D. lapponica* on the exposed ridge had a significant positive effect on species richness, abundance and diversity of Collembola, and abundance of Oribatida.

7. Alpine cushion plants play an important role in supporting biodiversity of soil fauna in severe alpine environments, with the positive effect of cushion plants increasing with environment severity.

Keywords: alpine tundra, cushion plants, facilitation, plant animal facilitation, plant animal interaction, soil fauna, soil mites, springtails
Introduction

Facilitation is defined as an interaction in which the presence of one species alters the environment in a way that enhances growth, survival, or reproduction of a second, neighboring species (Bronstein, 2009). Facilitation effects tend to occur in high-stress environments such as Arctic and alpine ecosystems (Antonsson, Björk, & Molau, 2009), and the impact of facilitation tends to increase with environmental stress (Brooker et al., 2008; Choler, Michalet, & Callaway, 2001). However, studies of positive interactions have been primarily focused on plant-plant interactions (Brooker et al., 2008; Callaway & Walker, 1997; Choler et al., 2001).

Binding of various organisms to certain plant species within terrestrial habitats is relatively well-known, in particular for pollinators and phytophagous larvae of insects or phytoparasites. Data on plant-arthropod interactions in natural alpine habitats are generally scarce. Such important interactions within alpine environments have been studied, but mainly for pollinators and benthic or soil surface species (Cardinale, Palmer, & Collins, 2002; Molenda, Reid, & Lortie, 2012; Molina-Montenegro, Badano, & Cavieres, 2006; Anya M. Reid & Lortie, 2012; Sieber et al., 2011), with fewer studies on cushion plant-soil arthropod interactions (Coulson, Hodkinson, & Webb, 2003; Minor, Babenko, Ermilov, Khaustov, & Makarova, 2016).

Cushions-forming plant species are a common component of communities in alpine locations around the world. Globally, 338 cushion plants have been recorded in 78 genera and 34 families, mainly in harsh alpine and other cold regions (Arredondo-Núñez, Badano, & Bustamante, 2009; Hauri & Schröter, 1914). Cushion plants offer a broad scope of research topics to study and the preliminary ecological evidence to date strongly suggests that cushion plants can be keystone species in their ecosystems (A. M. Reid, Lamarque, & Lortie, 2010). Predicted changes associated with a changing climate in regions with a high cushion plant distribution make such plants very suitable for ecological observations and experiments.

Cushion plants act as foundation and nurse species in alpine ecosystems, providing structurally unique microhabitats with more stable environmental conditions, and positively influencing the diversity and abundance of other organisms (E. Badano & Cavieres, 2006; L. A. Cavieres, Badano, Sierra-Almeida, & Molina-Montenegro, 2007; Molenda et al., 2012). (Bonanomi et al., 2015). Soils under Silene acaulis cushions have been shown to have higher organic carbon (C) content, salinity, total nitrogen (N), and C/N ratio, and lower pH compared with soil under adjacent vegetation (Bonanomi et al., 2015). In a study in a rocky alpine meadow in British Columbia, Canada, S. acaulis was found to have higher visitation rate and diversity of both surface arthropods and pollinators relative to 11 species of non-cushion plants (Anya M. Reid...
& Lortie, 2012). Higher richness, abundance, and diversity of ground arthropods and higher richness and abundance, but not diversity, of plants have been observed in cushions of *S. acaulis* in comparison with non-cushion adjacent vegetation in the same territory (Molenda et al., 2012). Coulson *et al.* (2003) found higher soil microarthropod densities in *S. acaulis* cushions than in five other vascular plants in a high-Arctic vegetation mosaic.

The aims of the present study were to: i) compare soil microarthropod communities inhabiting two cushion plant species, *Silene acaulis* and *Diapensia lapponica*, with those inhabiting adjacent non-cushion vegetation; and ii) evaluate the effect of elevation gradient and facilitation by cushion plants on microarthropod communities under these two types of vegetation. The hypotheses tested were that: 1) soil communities under cushions of *S. acaulis* and *D. lapponica* have higher richness and abundance of the soil microarthropods (Acari, Collembola) than soil communities under adjacent non-cushion vegetation; and that 2) a facilitation effect, measured as the difference in collembolan and mite abundance and species richness between *S. acaulis* cushions and adjacent vegetation, increases with increasing elevation.

Methods and study area

The study was carried out in northernmost Sweden, at Latnjajaure Field Station (LFS) in the Latnjavagge valley (68°21'N, 18°30'E). The valley is covered with snow for most of the year, and the climate is classified as sub-Arctic (Alatalo & Molau, 1995; Polunin, 1951). It has cool summers and relatively mild, snow-rich winters, with mean annual air temperature ranging from -0.76 to -2.92 °C between 1993 and 2013 (Alatalo, Jägerbrand, Chen, & Molau, 2017). Mean annual precipitation since 1993 is 846 mm, but in individual years it ranged from 607 mm (1996) to 1091 mm (2003). July is the warmest month, with mean temperature ranging from 5.9 °C in 1995 to 13.1 °C in 2013 (Alatalo, Jägerbrand, Chen, et al., 2017). The vegetation in the valley comprises a wide range of communities, varying from dry to wet and poor and acidic to base-rich (Molau & Alatalo, 1998).

Cushion plants

Silene acaulis L. (Caryophyllaceae) is a herbaceous cushion plant characteristic of alpine and Arctic tundra habitats in Asia, Europe, Greenland, and North America. It has a disjunct circumpolar distribution in sub-Arctic, Arctic, and alpine locations and a gap in the Siberia region (Gussarova et al., 2015; Junttila & Robberecht, 1993). In Europe, the southernmost populations of *S. acaulis* are found in the Alps, Balkans, British Isles, Carpathian mountains,
Silene acaulis is widespread in the Latnjavagge valley (1000 m a.s.l.) to the peak of Latnjačorru mountain (1446 m a.s.l.). As at other sites, the cushion morphology of *S. acaulis* changes with elevation, with the cushions becoming smaller and more compact at higher elevation (Alatalo & Molau, 1995; Bonanomi et al., 2015). It is a long-lived perennial that forms light-green, moss-like dwarf cushions with pink flowers (Morris & Doak, 1998). *Silene acaulis* has high germination rates, and the cushion growth form enables its seedlings to tolerate frost and drought (Milbau, Graae, Shevtsova, & Nijs, 2009). Its small seeds can be dispersed by wind (Gehring & Delph, 1999).

Silene acaulis is polymorphic, with reproductive systems and gender frequencies varying between populations (Alatalo & Molau, 1995; Philipp, 1997).

Diapensia lapponica L. (Diapensiaceae) is another cushion-forming and long-lived circumpolar Arctic-alpine evergreen perennial species, adapted to the harshest of environments with exposed cold, windswept conditions (R. T. Day & Scott, 1984; Molau, 1997). *Diapensia lapponica* is a long-lived (up to 400 years) (Molau, 1997). Its plants form cushion domes or mats, radiating from a single, stout, woody tap-root, which act as solar heat traps and warm up the soil beneath the cushions (R. T. Day & Scott, 1984; Molau, 1997). The leaves are glabrous, and frost-resistance of the cushion is imparted by extremely dense leaf aggregation (Molau, 1997). *Diapensia lapponica* is common at exposed sites, such as windswept ridge crests, and is indifferent to substrate acidity. In locations with active soil processes, e.g., solifluction, *D. lapponica* can be found in microhabitats with longer duration of annual snow cover (Molau, 1996). It is a slow-growing species, e.g., at Latnjaure the average age at which the plant becomes reproductive is 18 years (Molau, 1997). Seed recruitment of *D. lapponica* typically takes place during colder years, e.g., in the Latnjavagge valley there is a negative correlation between seedling recruitment and mean annual temperature (Molau, 1997). Although *D. lapponica* is a weak competitor, it can grow in adverse habitats, often on acid soils or low-nutrient soils (R. T. Day & Scott, 1984; Molau, 1997). Where the climate and soil permit, *D. lapponica* clumps can be invaded and overgrown by competing species (R. T. Day & Scott, 1984). Research to date on this plant species has focused on recruitment and persistence of *D. lapponica* seedlings (Sutton, Hermanutz, & Jacobs, 2006), age-related growth and reproduction (Molau, 1997), survival and genetic divergence (Ikeda, Senni, Fujii, & Setoguchi, 2008), and pollen limitation of reproduction (Elberling, 2001). There is a lack of data on the influence of *D. lapponica* cushions on soil fauna.

Sampling and identification of soil fauna
In peak summer (25 July) 2013, five soil cores were extracted from individual cushions of *S. acaulis* and five from adjacent non-cushion vegetation (50-100 cm distance from *S. acaulis* cushions), in a pairwise design (at each elevation) along an elevation gradient from the bottom of the Latnjavagge valley (above treeline) along the south-west facing slope to the peak of Latnjačorru mountain (1446 m a.s.l.). Sampling was carried out at (m a.s.l.): 1000 (68°21'30.24"N, 18°29'49.5"E), 1100 (68°21'30.06"N, 18°30'7.08"E), 1200 (68°21'30.84"N, 18°30'27.36"E), 1300 (68°21'33.78"N, 18°30'46.57"E), and 1400 (68°21'45.80"N, 18°31'13.27"E), along the same elevation transect as in a previous study on the facilitation effect of *S. acaulis* on plants (Antonsson et al., 2009).

On 27 July 2013, 14 soil cores were taken from cushions of *D. lapponica* and 14 from adjacent non-cushion vegetation in a pairwise design along a ridge at 1000 m a.s.l. (68°21'23.7"N, 18°29'41.16"E) in the Latnjavagge valley (Molau, 1996). Photo documentation of the vegetation along the elevation gradient and the exposed ridge is provided in supplementary electronic materials to this paper (Figs. S1-S6). The samples comprised soil cores 3.6 cm in diameter (10 cm² in area) and with a maximum depth of 6-12 cm (depending on soil depth) (Figs. S7-S8). The samples were stored in plastic bags in coolboxes until extraction of soil fauna, which was performed within five days of field sampling using a modified high-gradient extraction apparatus applied over seven days (Crossley & Blair, 1991).

Collembola and Acari were sorted under a binocular stereomicroscope and identified under a phase-contrast microscope (Leica DM2500). Collembola were identified to species level using basic taxonomic keys (Bretfeld, 1999; Fjellberg, 1998, 2007; Janssens & Christiansen, 2011; Potapov, 2001; Thibaud, Schulz, & da Gama Assalino, 2004; Zimdars & Dunger, 1994). Within Acari, Oribatida were identified to species level using taxonomic keys (Olszanowski, 1996; Walter & Proctor, 1999; Weigmann, 2006).

Statistical analyses

To characterize Collembola and Oribatida communities at the sites, abundance (A), dominance (D), and species richness (S) were analyzed as community parameters. The dominance of an individual species was expressed as $D = N_i/N \times 100\%$, where N_i = total number of individuals of species i and N = total number of individuals at each site. Diversity indices were calculated, namely Shannon diversity index (H') and Pielou evenness index (J'), to document the character of the microarthropod communities. Species dominance rank curves with a comparison of trend lines between *Silene* cushions and adjacent vegetation along the elevation gradient were
constructed, to assess the differences in structure of soil microarthropod communities (MS Excel 2016).

Repeated-measure ANOVA was used to test the significance of abundance variance of soil microarthropods between vegetation types along the elevation gradient. When the data were not normally distributed, Box-Cox transformation was applied. Species of Collembola with more than 100 specimens and species of Oribatida more than 50 specimens in the total material were tested to detect significant differences in ecological parameters between S. acaulis cushions and adjacent vegetation along the elevation gradient. The Wilcoxon matched pairs test was used to confirm significant differences between S. acaulis cushions and adjacent vegetation for mean abundance, species richness, and diversity indices of Collembola and Oribatida, and mean abundance of dominant Collembola and Oribatida species for every elevation separately.

Significance of variance in mean abundance of soil microarthropod groups, species richness of Collembola and Oribatida, and mean abundance of dominant collembolan and oribatid mite species (species with more than 15 specimens in total material) between Diapensia lapponica and adjacent vegetation was tested using the Mann-Whitney test. All tests were performed using Statistica for Windows, version 12 (Statistica, 2013).

Non-metric multidimensional scaling (NMDS) ordination was used to display patterns of soil microarthropod distribution in S. acaulis cushions and adjacent vegetation. A two-dimensional solution was generated without data transformation in the autopilot mode, with the slow and thorough option and Sørensen (Bray-Curtis) distance (appropriate for community data). NMDS was performed using PC-ORD version 7.2 (McCune & Mefford, 2016), using a data matrix of the abundance of selected Collembola and Oribatida species (Collembola with more than 100 specimens and Oribatida more than 50 specimens in total material) calculated for every vegetation type and elevation.

Results

Comparison of Silene acaulis and adjacent vegetation along an elevation gradient

In total, 3807 individuals of soil mites and 1392 individuals of Collembola were recorded along the elevation gradient with S. acaulis cushions and adjacent vegetation. Within the mites, Oribatida (2835 individuals), Prostigmata (745 individuals), and Gamasina (193 individuals) were the most numerous groups. Astigmatina represented only a negligible proportion of the total Acari numbers, and were therefore were excluded from statistical analyses. Recorded Collembola individuals belonged to 41 species, 30 genera, and 10 families. Oribatida,
the dominant group in soil mites, were identified to species level, with 107 species belonging
to 52 genera and 28 families.

Abundances of total Acari and dominant Acari groups were higher in *S. acaulis* cushions
than in adjacent vegetation at all elevations, but only total Acari at 1100 m a.s.l. showed a
significant difference (Table 1). Oribatida had the highest abundance of all Acari across the
elevation transect (Table 1), representing more than 70% of all mite individuals collected.
Oribatid abundance in *Silene* cushions increased with elevation to 1400 m a.s.l., at which there
was a decrease. The abundance of the mites in adjacent vegetation plots showed no distinct
trend. The predatory groups Prostigmata and Gamasina had different abundance distributions
between the two vegetation types at different elevation levels. Gamasina showed higher
abundance in adjacent vegetation at 1000 and 1100 m a.s.l., but appeared in distinctly higher
abundance in *Silene* cushions at higher elevations, with a significant difference (*p*<0.05) only
at the highest elevation (Table 1). Prostigmata showed the opposite abundance distribution
trend. These mites were distinctly more abundant in *Silene* plots up to 1200 m a.s.l., while their
abundances at higher elevations were similar within both vegetation types. Similarly to
Oribatida, Collembola showed higher abundances in *Silene* cushions, except at 1400 m a.s.l.,
where the abundance was higher in adjacent vegetation. A statistically significant effect
(*p*<0.01) of vegetation type on total Acari, Collembola, and the Oribatida, and Gamasina groups
was obtained (Table 2). A significant effect of elevation or a combined effect of elevation and
vegetation type on these microarthropod groups was not observed.

Total species richness of Collembola in *Silene* cushions along the whole elevation
transect was slightly higher (*S*=34) than in adjacent vegetation (*S*=31). Species richness within
all *Silene* cushions at the different elevations studied was also higher than in adjacent
vegetation, except at 1000 m a.s.l. (Table 1). Total species richness of Collembola at elevation
levels and mean species richness per sample in both vegetation types decreased continuously
towards the highest elevation, with a significant difference at 1300 m a.s.l. (*p*<0.05). For
Oribatida, differences in total species richness between *Silene* cushions (*S*=87) and adjacent
vegetation (*S*=67) across the elevation transect were much more noticeable than in Collembola.
At all elevation levels studied except 1100 m a.s.l., *Silene* cushions showed higher per plot
species richness than adjacent vegetation (Table 1). Mean species richness of Oribatida was
significantly higher in *Silene* cushions at 1300 and 1400 m a.s.l. (*p*<0.05).

Diversity and equitability indices of Oribatida and Collembola in *Silene* cushions
compared with adjacent vegetation showed higher mean values at all elevation levels. For
Collembola, Shannon diversity index was significantly different for elevation at level 1300 m
a.s.l. (p<0.05), while for Oribatida the index was significantly different at elevation 1400 m a.s.l. (p<0.05) (Table 1). A significant effect of elevation and vegetation type on Collembola diversity and vegetation type on equitability index was detected (Table 2). Oribatida diversity was significantly affected by elevation and vegetation type.

In NMDS ordination, the best three-dimensional solution, for which the first two dimensions are shown in (Fig. 1), had final stress of 17.12 (p<0.001) after 500 iterations. This was confirmed by a Monte Carlo permutation test with p<0.005, and mean stress of 17.45 for real data and 250 runs for both real and randomized data. The first three axes explained 38.1%, 20.3%, and 16.5% of the variance, respectively. The NMDS results confirmed the impact of higher elevations on community composition. The diagram revealed the similarity of communities at lower elevations (1000 to 1200 m), and more different communities at the two highest elevations (Fig. 1). Using species dominance rank curves revealed greater differences in Collembola and Oribatida community structure between Silene cushions and adjacent vegetation at two highest elevations (Fig. 2 and Fig. 3).

Species of Collembola and Oribatida were divided into three groups depending on their preference for vegetation types. The first group, with the majority of species, preferred Silene cushions (Collembola: Ceratophysella scotica, Desoria violacea, Folsomia palearctica, F. quadrioculata, Friesea mirabilis, F. truncata, Isotomiella minor, Parisotoma notabilis; Oribatida: Ceratozetes thienemanni, Dissohina ornata, Eupelops plicatus, Nothrus aff. silvestris, Oribatula tibialis, Platynothrus peltifer) (Table S1). The second group, which showed higher abundances in adjacent vegetation, comprised a few Collembola species, namely Desoria olivacea, Folsomia brevicauda and Tetracanthella wahlgreni, and the oribatid mite Tectoce ps velatus velatus. The third group of species showed no distinct preference for vegetation type along the elevation gradient (Collembola: Isotoma viridis, Pseudanurophorus binoculatus, Pseudisotoma sensibilis; Oribatida: Oppiella neerlandica).

Variance of abundance between Silene cushions and adjacent vegetation was tested for the most abundant Collembola and Oribatida species (Table 3), but no significant differences were observed.

Comparison of Diapensia lapponica and adjacent vegetation

In total, 313 individuals of Collembola and 341 individuals of soil mites were collected in D. lapponica and adjacent vegetation on the exposed mountain ridge (1000 m a.s.l.). Collembola belonged to 17 species, 14 genera, and six families. More than 90% of total Acari consisted of
Oribatida, represented by 18 species, 14 genera, and nine families. Astigmatina were not detected in *Diapensia* cushions or in adjacent vegetation.

Total Acari, saprophagous Oribatida, and Collembola showed significantly (p<0.05) higher abundance in *Diapensia lapponica* cushions than in adjacent vegetation (Table 4). Predatory Gamasina mites showed higher abundance in *Diapensia* cushions, but this relationship was not significant (p>0.1). The abundance of mostly predaceous Prostigmata did not differ between vegetation types.

Per-plot species richness was higher in *Diapensia* cushions than in adjacent vegetation in both main microarthropod groups (Collembola and Oribatida). Mean species richness (per sample) also showed higher values in *Diapensia* cushions than in adjacent vegetation, but only Collembola showed a significant difference (Table 4). All Collembola species recorded in adjacent vegetation also appeared in *Diapensia* cushions. The majority of Oribatida and Collembola species common to both treatments were more abundant in *Diapensia* cushions (Table S2). Only the oribatid mite *Mycobates sarakensis* showed higher abundance in adjacent vegetation. Tests on variance of abundance were performed on more than 15 species in total. Significantly higher abundances of the springtails *Friesea truncata* and *Folsomia quadrioculata* and the oribatid mite *Ceratozetes thienemanni* were observed in *Diapensia* cushions (Table 5). Within the dominant microarthropod groups, only Collembola showed significantly higher diversity indices in *Diapensia* cushions compared with the adjacent vegetation (Table 4).

Discussion

Nurse plants modify the conditions in stressful environments by providing a microclimate within their canopies. Thus they can increase species richness (Arroyo & Cavieres, 2003; E. I. Badano & Marquet, 2009; Nuñez, Aizen, & Ezcurra, 1999), abundance (E. I. Badano, Villarroel, Bustamante, Marquet, & Cavieres, 2007; L. Cavieres & Arroyo, 2002; Sklenář, 2009), phylogenetic diversity (Butterfield et al., 2013), and survival of other plant species (E. I. Badano et al., 2007; L. A. Cavieres et al., 2007; L. A. Cavieres, Quiroz, & Molina-Montenegro, 2008). In this study in an alpine region in Sweden, we observed a positive effect of cushion plants upon soil microarthropods. As hypothesized, we found that the cushion plants *Silene acaulis* and *Diapensia lapponica* had higher species richness of Collembola and Oribatida than adjacent vegetation. The positive facilitation effect of *S. acaulis* was found to increase with increasing elevation. In contrast, a study in high-elevation New Zealand only found a positive impact of cushion plants on abundance and richness of mites, while Collembola
abundance was higher in adjacent vegetation (Minor et al., 2016). Those authors suggested that the difference between organisms groups may have been due to mites being more sensitive to disturbances. Collembola are more mobile and more generalist feeders, are more opportunist, and colonize new patches between cushion plants (Minor et al., 2016).

Soils under *S. acaulis* and other cushion plants have been shown to have higher soil moisture, organic C content, salinity, total N, and C/N ratio, and lower pH than soils under adjacent vegetation (Antonsson et al., 2009; Bonanomi et al., 2015; L. A. Cavieres et al., 2007; Minor et al., 2016). As bacterial and fungal communities are frequently positively associated with higher soil moisture and organic C and N, soils under cushions could potentially have larger biomass of bacteria and fungi, both of which are important food sources for Collembola and Acari (Zumsteg, Bååth, Stierli, Zeyer, & Frey, 2013). The morphology of *S. acaulis* changes along the elevation gradient, with looser and flatter cushions at lower elevation and more dense and tight dome-shaped cushions at higher elevation (Bonanomi et al., 2015). More dense *Silene* cushions might retain moisture and stabilize temperature more effectively, thus supporting richer bacterial and fungal communities.

A previous study on the microscale distribution of microarthropods in high-Arctic Svalbard found that Collembola, but not mites, showed higher abundance in cushions of *S. acaulis* than in five other plant species in the adjacent vegetation, with no difference in species richness of Collembola or mites between the other plant species (Coulson et al., 2003). However, high-Arctic Svalbard encompasses more extreme environments, with markedly diminished species diversity (6 Collembola species, 7 mite species) compared with our alpine sub-Arctic site in Sweden (41 Collembola species, 107 Oribatida species).

Similarly, a study carried out in high-alpine Chile found that ladybird beetle abundance was higher in cushion plants than in the surrounding habitat, while a greenhouse experiment showed that, under milder temperature, the beetles did not prefer cushions (Molina-Montenegro et al., 2006). Thus, the facilitation effect was only expressed under harsher microclimate conditions.

A study examining *S. acaulis* and its role as a facilitator species in the Canadian Rocky Mountains found that *S. acaulis* had higher visitation rate and diversity of both ground arthropods and pollinators than all non-cushion plants (Anya M. Reid & Lortie, 2012). Similarly, arthropod richness, abundance, and diversity of above-ground invertebrates were all higher in cushions of *S. acaulis* compared with adjacent vegetation in a study in the same territory (Molenda et al., 2012). Another study at Latnjajaure, covering the same transect as in
the present study, found that cushions of *S. acaulis* had a facilitator effect on other plants at higher elevations (Antonsson et al., 2009).

Rank–abundance (relative abundance) diagrams are widely used to document a complex community structure (Begon *et al.*, 1990). Steeper curves indicate more unbalanced community structure with high portion of recidvent species and greater changes in local environment (e.g. Lindberg *et al.*, 2002; Camann *et al.*, 2008; Ľuptáčik *et al.*, 2012). In the species dominance rank curves obtained in the present study, collembolan and oribatid mite communities displayed more visible differences between *Silene* cushions and adjacent vegetation at the two highest elevations with harsher microclimate conditions, while communities with more similar structure were observed at lower elevations with a milder microclimate.

A previous study in the Latnjajaure valley found that Collembola in three different plant communities were resistant to two decades of experimental warming (Alatalo, Jägerbrand, & Čuchta, 2015). However, juvenile mites declined with long-term warming (Alatalo, Jägerbrand, Juhanson, Michelsen, & Ľuptáčik, 2017), most likely because they are more soft-bodied than adults and thus more vulnerable to desiccation (Bokhorst *et al.*, 2012; T. A. Day *et al.*, 2009). However, it should be noted that the sampling in those studies was not focused on cushion plants, but performed randomly in the vegetation within experimental plots. Similarly, experimental warming in laboratory and field environment in high-Arctic Svalbard had no direct negative effect on Collembola and Acari, while warming combined with decreased moisture levels in the field had a large negative impact on Collembola (Hodkinson *et al.*, 1996). Mites were unaffected in that study, suggesting that Collembola are more vulnerable to desiccation than mites.

While Collembola and Acari in alpine and Arctic areas are not likely to be directly negatively affected by increased temperatures due to climate change, mites are under severe threat globally due to habitat destruction and degradation (Sullivan & Ozman-Sullivan, 2020). However, both experimental (Alatalo & Little, 2014; Villellas, García, & Morris, 2019) and monitoring studies (Doak & Morris, 2010) suggest that *S. acaulis* may be vulnerable to climate change. In addition, recent modeling studies have estimated that more than 50% current locations of *S. acaulis* are likely to be outside the future species climatic hypervolume in North America (Ferrarini, Dai, et al., 2019). In the British Islands, the majority of its current locations will likely become unsuitable in the future (Ferrarini, Alsafran, Dai, & Alatalo, 2019). Similarly, *D. lapponica* is vulnerable to climate change, as earlier onset of snowmelt will expose it to increased risk of early frost events, which increase mortality when the plant is not protected by snow cover (Molau, 1996). In this study, the species richness of both collembolans
and mites was higher in cushions of *S. acaulis* and *D. lapponica* than in adjacent vegetation. If
the abundance of these cushion plants declines in the future, this could have adverse effects on
microarthropod diversity in alpine and Arctic regions.

Conclusions
Abundance, species richness, and diversity indices of soil microarthropods were all higher in
Silea and *Diapensia* cushions than in adjacent vegetation, suggesting that cushion plants
facilitate soil microarthropod communities. A significant impact of elevation and vegetation
type on Collembola and soil mites was demonstrated. NMDS analysis and species rank curves
revealed the differing microarthropod communities in two different vegetation types at high-
elevation sites (above 1300 m a.s.l.). This indicates that facilitation of soil microarthropods by
cushion plants increases with elevation and plays a more critical role in harsher environmental
conditions.

Author contributions
The study was designed by J.M.A. Fieldwork was performed by J.M.A., P.C., and P.L. Micro-
arthropod identification was made by P.C, P.J., and P.L. D.M performed statistical analyses.
J.M.A., P.L. and L.K. were the main authors of the paper. All co-authors contributed to
manuscript revisions and agree with the final version.

Acknowledgements
This study was funded by Carl Tryggers stiftelse för vetenskaplig forskning and Qatar
Petroleum (through J.M.A). We thank the Abisko Scientific Research Station for hospitality
during fieldwork.

Conflict of interests
The authors declare no conflict of interests.

Supplementary materials
Electronic supplementary materials accompany this article at ...

References
Alatalo, J. M., Jägerbrand, A. K., Chen, S., & Molau, U. (2017). Responses of lichen communities to 18 years of natural and experimental warming. *Annals of Botany, 120*(1), 159–170.

Alatalo, J. M., Jägerbrand, A. K., & Čuchta, P. (2015). Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. *Scientific Reports, 5*, 18161. doi: 10.1038/srep18161

Alatalo, J. M., Jägerbrand, A. K., Juhanson, J., Michelsen, A., & Ľuptáčik, P. (2017). Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities. *Scientific Reports, 7*, 44489. doi: 10.1038/srep44489

Alatalo, J. M., & Little, C. J. (2014). Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. *SpringerPlus, 3*, 157. doi: 10.1186/2193-1801-3-157

Alatalo, J. M., & Molau, U. (1995). Effect of altitude on the sex ratio in populations of *Silene acaulis* (Caryophyllaceae). *Nordic Journal of Botany, 15*(3), 251–256. doi: 10.1111/j.1756-1051.1995.tb00150.x

Antonsson, H., Björk, R. R. G., & Molau, U. (2009). Nurse plant effect of the cushion plant *Silene acaulis* (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. *Plant Ecology & Diversity, 2*(1), 17–25.

Arredondo-Núñez, A., Badano, E., & Bustamante, R. (2009). How beneficial are nurse plants? A meta-analysis of the effects of cushion plants on high-Andean plant communities. *Community Ecology, 10*(1), 1–6.

Arroyo, M., & Cavieres, L. (2003). Positive associations between the cushion plant *Azorella monantha* (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. *Plant Ecology, 169*, 121–129.

Badano, E., & Cavieres, L. (2006). Impacts of ecosystem engineers on community attributes: effects of cushion plants at different elevations of the Chilean Andes. *Diversity and Distributions.* Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1366-9516.2006.00248.x/full
Badano, E. I., & Marquet, P. A. (2009). Biogenic habitat creation affects biomass–diversity relationships in plant communities. *Perspectives in Plant Ecology, Evolution and Systematics*, 11(3), 191–201.

Badano, E. I., Villarroel, E., Bustamante, R. O., Marquet, P. A., & Cavieres, L. A. (2007). Ecosystem engineering facilitates invasions by exotic plants in high-Andean ecosystems. *Journal of Ecology, 95*(4), 682–688. doi: 10.1111/j.1365-2745.2007.01262.x

Bokhorst, S., Phoenix, G. K., Bjerke, J. W., Callaghan, T. V., Huyer-Brugman, F., & Berg, M. P. (2012). Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. *Global Change Biology, 18*(3), 1152–1162.

Bonanomi, G., Stinca, A., Chirico, G. B., Ciaschetti, G., Saracino, A., & Incerti, G. (2015). Cushion plant morphology controls biogenic capability and facilitation effects of *Silene acaulis* along an elevation gradient. *Functional Ecology, n/a-n/a*. doi: 10.1111/1365-2435.12596

Bretfeld, G. (1999). Synopses on Palaeartic Collembola: Symphypleona. In W. Dunger (Ed.), *Abhandlungen und Berichte des Naturkundemuseums* (Vol. 2). Görlitz: Staatlicjes Museum für Naturkunde.

Bronstein, J. L. (2009). The evolution of facilitation and mutualism. *Journal of Ecology, 97*(6), 1160–1170.

Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. a., Kunstler, G., ... Michalet, R. (2008). Facilitation in plant communities: the past, the present, and the future. *Journal of Ecology, 96*, 18–34. doi: 10.1111/j.1365-2745.2007.01295.x

Butterfield, B. J., Cavieres, L. A., Callaway, R. M., Cook, B. J., Kikvidze, Z., Lortie, C. J., ... Brooker, R. W. (2013). Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. *Ecology Letters, 16*(4), 478–86. doi: 10.1111/ele.12070
Callaway, R., & Walker, L. (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. *Ecology*. Retrieved from http://www.esajournals.org/doi/abs/10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2

Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. *Nature, 415*(6870), 426–429.

Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. *Nature, 415*(6870), 426–429.

Cavieres, L. A., Badano, E. I., Sierra-Almeida, A., & Molina-Montenegro, M. A. (2007). Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. *Arctic, Antarctic, and Alpine Research, 39*, 229–236.

Cavieres, L. A., Quiroz, C. L., & Molina-Montenegro, M. A. (2008). Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? *Functional Ecology, 22*(1), 148–156.

Cavieres, L., & Arroyo, M. (2002). Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes. *Journal of Vegetation Science, 13*(4), 547–554.

Choler, P., Michalet, R., & Callaway, R. M. (2001). Facilitation and competition on gradients in alpine plant communities. *Ecology, 82*(12), 3295–3308. doi: 10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2

Coulson, S. J., Hodkinson, I. D., & Webb, N. R. (2003). Microscale distribution patterns in high Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. *Ecography, 26*, 801–809.

Crossley, D. A., & Blair, J. M. (1991). A high-efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. *Agriculture, Ecosystems & Environment, 34*, 187–192. doi:10.1016/0167-8809(91)90104-6

Day, R. T., & Scott, P. J. (1984). Biology of Diapensia lapponica in Newfoundland. *Canadian Field-Naturalist, 98*, 425–439.
Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. *Global Change Biology, 15*(7), 1640–1651. doi: 10.1111/j.1365-2486.2009.01919.x

Doak, D. F., & Morris, W. F. (2010). Demographic compensation and tipping points in climate-induced range shifts. *Nature, 467*(7318), 959–62. doi: 10.1038/nature09439

Elberling, H. (2001). Pollen limitation of reproduction in a subarctic-alpine population of Diapensia lapponica (Diapensiaceae). *Nordic Journal of Botany, 21*(3), 277–282.

Ferrarini, A., Alsafzan, M. H., Dai, J., & Alatalo, J. M. (2019). Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study. *Climate Dynamics, 52*, 1413–1423. doi: 10.1007/s00382-018-4200-9

Ferrarini, A., Dai, J., Bai, Y., & Alatalo, J. M. (2019). Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change. *Science of The Total Environment, 671*, 1086–1093.

Fjellberg, A. (1998). The Collembola of Fennoscandia and Denmark, Part I: Poduromorpha. In N. P. Kristensen & V. Michelsen (Eds.), *Fauna Entomologica Scandinavica* (Vol. 35). Leiden: Brill.

Fjellberg, A. (2007). The Collembola of Fennoscandia and Denmark, Part II: Entomobryomorpha and Symphypleona. In N. P. Kristensen & V. Michelsen (Eds.), *Fauna Entomologica Scandinavica* (Vol. 42). Leiden: Brill.

Gehring, J. L., & Delph, L. F. (1999). Fine-scale genetic structure and clinal variation in Silene acaulis despite high gene flow. *Heredity, 82*(6), 628–637.

Gussarova, G., Allen, G. A., Mikhailylova, Y., McCormick, L. J., Mirré, V., Marr, K. L., ... Brochmann, C. (2015). Vicariance, long-distance dispersal, and regional extinction–recolonization dynamics explain the disjunct circumpolar distribution of the arctic-alpine plant Silene acaulis. *American Journal of Botany, 102*(10), 1703–1720.
Hauri, H., & Schröter, C. (1914). Versuch einer Uebersicht der siphonogamen Polsterpflanzen. *Engler’s Botanische Jahrbücher, 50*, 618–656.

Ikeda, H., Senni, K., Fujii, N., & Setoguchi, H. (2008). Survival and genetic divergence of an arctic-alpine plant, Diapensia lapponica subsp. obovata (Fr. Schm.) Hultén (Diapensiaceae), in the high mountains of central Japan during climatic oscillations. *Plant Systematics and Evolution, 272*(1–4), 197–210.

Janssens, F., & Christiansen, K. A. (2011). Class Collembola Lubbock, 1870. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness - zt03148p194.pdf. *Zootaxa, 3148*, 192–194.

Junttila, O., & Robberecht, R. (1993). The influence of season and phenology on freezing tolerance in Silene acaulis L., a subarctic and arctic cushion plant of circumpolar distribution. *Annals of Botany, 71*(5), 423–426.

McCune, B., & Mefford, M. J. (2016). *PC-ORD, version 7.2* (*Multivariate analysis of ecological data*). MjM Software.

Milbau, A., Graae, B. J., Shevtsova, A., & Nijs, I. (2009). Effects of a warmer climate on seed germination in the subarctic. *Annals of Botany, 104*(2), 287–296. doi: 10.1093/aob/mcp117

Minor, M. A., Babenko, A. B., Ermilov, S. G., Khaustov, A. A., & Makarova, O. L. (2016). Effects of cushion plants on high-altitude soil microarthropod communities: cushions increase abundance and diversity of mites (Acari), but not springtails (Collembola). *Arctic, Antarctic, and Alpine Research, 48*(3), 485–500.

Molau, U. (1996). Climatic Impacts on Flowering, Growth, and Vigour in an Arctic-Alpine Cushion Plant, Diapensia Lapponica, under Different Snow Cover Regimes. *Ecological Bulletins, 45*, 210–219.

Molau, U. (1997). Age-related growth and reproduction in Diapensia lapponica, an arctic-alpine cushion plant. *Nordic Journal of Botany, 17*(3), 225–234. doi: 10.1111/j.1756-1051.1997.tb00314.x
Molau, U., & Alatalo, J. M. (1998). Responses of Subarctic-Alpine Plant Communities to Simulated Environmental Change: Biodiversity of Bryophytes, Lichens, and Vascular Plants. *Ambio*, 27(4), 322–329.

Molenda, O., Reid, A., & Lortie, C. J. (2012). The alpine cushion plant Silene acaulis as foundation species: a bug’s-eye view to facilitation and microclimate. *PloS One*, 7(5), e37223. doi: 10.1371/journal.pone.0037223

Molina-Montenegro, M. A., Badano, E. I., & Cavieres, L. A. (2006). Cushion Plants as Microclimatic Shelters for Two Ladybird Beetles Species in Alpine Zone of central Chile. *Arctic, Antarctic, and Alpine Research*, 38(2), 224–227.

Morris, W. F., & Doak, D. F. (1998). Life history of the long-lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices. *American Journal of Botany*, 85(6), 784–793. doi: 10.2307/2446413

Núñez, C. I., Aizen, M. A., & Ezcurra, C. (1999). Species associations and nurse plant effects in patches of high-Andean vegetation. *Journal of Vegetation Science*, 10(3), 357–364.

Olszanowski, Z. (1996). *A monograph of the Nothridae and Camisiidae of Poland (Acari: Oribatida: Crotonoidea)*. Wroclaw: Genus.

Philipp, M. (1997). Genetic diversity, breeding system, and population structure in Silene acaulis (Caryophyllaceae) in west Greenland. *Opera Botanica*, 132, 89–100.

Poulin, N. (1951). The real Arctic: suggestions for its delimitation, subdivision and characterization. *Journal of Ecology*, 39, 308–315. doi: 10.2307/2257914

Potapov, M. B. (2001). Synopses on Palaeartic Collembola: Isotomidae. In W. Dunger (Ed.), *Abhandlungen und Berichte des Naturkundemuseums* (Vol. 3). Görlitz: Staatliches Museum für Naturkunde.

Reid, A. M., Lamarque, L. J., & Lortie, C. J. (2010). A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation. *Web Ecology*, 10(1), 44–49. doi: 10.5194/we-10-44-2010
Reid, Anya M., & Lortie, C. J. (2012). Cushion plants are foundation species with positive effects extending to higher trophic levels. *Ecosphere, 3*(11), art96. doi: 10.1890/ES12-00106.1

Sieber, Y., Holderegger, R., Waser, N. M., Thomas, V. F., Braun, S., Erhardt, A., ... Wirth, L. R. (2011). Do alpine plants facilitate each other’s pollination? Experiments at a small spatial scale. *Acta Oecologica, 37*(4), 369–374.

Sklenář, P. (2009). Presence of cushion plants increases community diversity in the high equatorial Andes. *Flora-Morphology, Distribution, Functional Ecology of Plants, 204*(4), 270–277.

Statistica (Version 12). (2013). StatSoft Inc. Retrieved from www.statsoft.com

Sullivan, G. T., & Ozman-Sullivan, S. K. (2020). Alarming evidence of widespread mite extinctions in the shadows of plant, insect and vertebrate extinctions. *Austral Ecology*. doi: 10.1111/aec.12932

Sutton, J. T., Hermanutz, L., & Jacobs, J. D. (2006). Are frost boils important for the recruitment of arctic-alpine plants? *Arctic, Antarctic, and Alpine Research, 38*(2), 273–275.

Thibaud, J.-M., Schulz, H.-J., & da Gama Assalino, M. M. (2004). Synopses on Palaeartic Collembola: Hypogastruridae. In W. Dunger (Ed.), *Abhandlungen und Berichte des Naturkundemuseums* (Vol. 4). Görlitz: Staatliches Museum für Naturkunde.

Villellas, J., García, M. B., & Morris, W. F. (2019). Geographic location, local environment, and individual size mediate the effects of climate warming and neighbors on a benefactor plant. *Oecologia, 189*(1), 243–253.

Walter, D. E., & Proctor, H. C. (1999). *Mites: ecology, evolution, and behaviour*. Springer. Retrieved from http://link.springer.com/content/pdf/10.1007/978-94-007-7164-2.pdf

Weigmann, G. (2006). *Hornmilben (Oribatida)*. In *Die Tierwelt Deutschlands* (Vol. 1–76, p. 520). Keltern: Goecke & Evers.

Zimdars, B., & Dunger, W. (1994). Synopses on Palaeartic Collembola: Tullbergiinae. In W. Dunger (Ed.), *Abhandlungen und Berichte des Naturkundemuseums* (Vol. 1). Görlitz: Staatliches Museum für Naturkunde.
Zumsteg, A., Bååth, E., Stierli, B., Zeyer, J., & Frey, B. (2013). Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. *Soil Biology and Biochemistry, 61*, 121–132.

Figure legends

Fig. 1. Non-metric multidimensional scaling (NMDS) ordination plot of Collembola and Oribatida communities in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient in an alpine region in northern Sweden. S – *Silene* cushions centroids, C – adjacent vegetation centroids, 1000-1400 – elevation levels; for species abbreviations see Table 3.

Fig. 2. Rank of Collembola species dominance in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. Silene - dominance of species observed in *Silene acaulis* cushions, ad. veg. - dominance of species observed in adjacent vegetation.

Fig. 3. Rank of Oribatida species dominance in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. Silene - dominance of species observed in *Silene acaulis* cushions, ad. veg. - dominance of species observed in adjacent vegetation.

Table legends

Tab. 1 Mean abundance [ind.m$^{-2}$], species richness, diversity and equitability indices of microarthropod groups in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. Legend: A - abundance, St - total species richness, Sm - mean species richness per sample, H´ - Shannon´s diversity index, J´ - Pielou´s evenness index, Silene - *Silene acaulis*, adj.veg. - adjacent vegetation. Significance of variance was tested using Wilcoxon's matched pairs test. Significant differences provided in bold.

Tab. 2 Statistical parameter estimates from repeated measure ANOVA analyses testing the effect of vegetation type, elevation and their interaction on microarthropod groups abundance, species richness, diversity and equitability. Legend: p - probability value, df - degrees of freedom, A - abundance, S - species richness, H´ - Shannon´s diversity index, J´ - Pielou´s evenness index. Data Box Cox transformed to normalized distribution. Significant differences
provided in bold. Oribatida eveness could not be tested due to not normal data distribution even after above mentioned transformation.

Tab. 3 Mean abundance [ind.m$^{-2}$] of dominant collembolan and oribatid mite species in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. Legend: Silene - *Silene acaulis*, adj.veg. - adjacent vegetation.

Table 4. Mean abundance [ind.m$^{-2}$] of soil microarthropod groups, species richness and diversity indices of Collembola and Oribatida in *Diapensia lapponica* cushions and adjacent vegetation. Legend: A - abundance, St - total species richness, Sm - mean species richness per sample, H´ - Shannon´s diversity index, J´ - Pielou´s evenness index. Astigmatina were not tested due to high number of zero values. Significance of variance tested using Mann-Whitney's test. Significant results provided in bold.

Tab. 5 Mean abundance [ind.m$^{-2}$] of dominant collembolan and oribatid mite species in *Diapensia lapponica* cushions and adjacent vegetation. Significance of variance estimated using Mann-Whitney's test. Significant differences provided in bold.

In electronic supplementary materials:

Table S1 Mean abundance [ind.m$^{-2}$] of Collembola and Oribatida species in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. Legend: Silene - *Silene acaulis*, adj.veg. - adjacent vegetation

Table S2 Mean abundance [ind.m$^{-2}$] of Collembola and Oribatida species in *Diapensia lapponica* cushions and adjacent vegetation.
Fig. 1. Non-metric multidimensional scaling (NMDS) ordination plot of Collembola and Oribatida communities in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient in an alpine region in northern Sweden. S – *Silene* cushions centroids, C – adjacent vegetation centroids, 1000-1400 – elevation levels; for species abbreviations see Table 3.
Fig. 2. Rank of Collembola species dominance in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. *Silene* - dominance of species observed in *Silene acaulis* cushions, ad. veg. - dominance of species observed in adjacent vegetation.
Fig. 3. Rank of Oribatida species dominance in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient. Silene - dominance of species observed in *Silene acaulis* cushions, ad. veg. - dominance of species observed in adjacent vegetation.
Tab. 1 Mean abundance [ind.m$^{-2}$], species richness, diversity and equitability indices of microarthropod groups in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient.

Legend: A - abundance, St - total species richness, Sm - mean species richness per sample, H' - Shannon’s diversity index, J’ - Pielou’s evenness index, Silene - *Silene acaulis*, adj.veg. - adjacent vegetation. Significance of variance was tested using Wilcoxon’s matched pairs test. Significant differences provided in **bold**.

Elevation (m a.s.l.)	1000 m a.s.l.	1100 m a.s.l.	1200 m a.s.l.	1300 m a.s.l.	1400 m a.s.l.							
	Silene	adj.veg.										
A - total Acari	80208	46788	**97311**	**70771**	109892	48360	123064	66446	75883	29685		
S.D.	48982	16070	**42363**	**12549**	115491	22126	83805	50646	14668	35823		
A - Prostigmata	28898	8060	30668	**10812**	25163	6881	8060	8453	10812	**8650**		
S.D.	30213	9985	51091	7156	38746	5247	6035	5672	9951	17739		
A - Gamasina	2949	3932	3342	6487	**5701**	1966	5701	1769	**5701**	**393**		
S.D.	3475	3743	**1645**	**3585**	**5126**	1554	3215	2899	2815	879		
A - Uropodina	1966	197	393	786	**0**	**197**	**393**	**0**	**0**	**0**		
S.D.	3333	440	**538**	**1758**	**0**	**440**	**879**	**0**	**0**	**0**		
A - Astigmatina	393	393	197	393	**1180**	**0**	**0**	**0**	**0**	**197**		
S.D.	583	538	440	**538**	**822**	**0**	**0**	**0**	**0**	**440**		
A - Oribatida	46001	34206	62711	52292	77849	**39317**	108909	56224	**59369**	**20445**		
S.D.	22771	8352	**12748**	**11926**	**75050**	**22089**	**76550**	**48101**	**18397**	**17548**		
A - Collembola	27719	26539	35386	26736	40694	**32437**	26343	23394	15924	**18479**		
S.D.	20914	11463	19174	9257	21497	**20299**	**11151**	**16917**	**9790**	**14268**		
	St - Collembola	19	23	20	16	21	18	17	14	16	**11**	
	Sm - Collembola	9.0	9.4	10.2	7.8	9.6	7.4	8.0	5.0	5.4	**3.6**	
	S.D.	**3.5**	**3.8**	**1.6**	**1.6**	**2.5**	**1.9**	**1.2**	**1.2**	**2.4**	**2.5**	
	H' - Collembola	S.D.	J' - Collembola	S.D.	St - Oribatida	S.D.	Sm - Oribatida	S.D.	H' - Oribatida	S.D.	J' - Oribatida	S.D.
----------------	-----------------	------	----------------	------	---------------	------	---------------	------	---------------	------	----------------	------
	1.8	0.5	0.9	0.1	29	4.4	9.4	4.4	1.9	0.7	0.9	0.1
	1.7	0.6	0.8	0.1	25	2.5	7.0	2.5	1.7	0.4	0.9	0.1
	2.0	0.2	0.9	0.1	34	2.3	13.4	2.3	2.2	0.3	0.9	0.1
	1.7	0.5	0.8	0.2	35	1.7	11.0	1.7	2.0	0.3	0.8	0.1
	1.9	0.2	0.9	0.1	38	6.9	11.6	6.9	2.0	0.5	0.9	0.1
	1.6	0.3	0.8	0.2	30	5.5	9.4	5.5	1.9	0.7	0.9	0.1
	1.7	0.1	0.8	0.1	23	2.1	9.0	2.1	1.9	0.3	0.9	0.1
	1.0	0.4	0.7	0.3	10	7.6	3.4	7.6	0.8	0.7	0.9	0.1
	1.3	0.5	0.8	0.1	44	4.0	13.6	4.0	2.2	0.6	0.9	0.1
	0.8	0.7	0.9	0.3	14	1.9	4.0	1.9	0.7	0.7	0.9	0.3
Tab. 2 Statistical parameter estimates from repeated measure ANOVA analyses testing the effect of vegetation type, elevation and their interaction on microarthropod groups abundance, species richness, diversity and equitability.

Legend: p - probability value, df - degrees of freedom, A - abundance, S - species richness, H´ - Shannon’s diversity index, J´ - Pielou’s evenness index. Data Box Cox transformed to normalized distribution. Significant differences provided in **bold**. Oribatida eveness could not be tested due to not normal data distribution even after above mentioned transformation.

Predictor	F	p	df
A - total Acari			
elevation	1.748	0.179	4
vegetation type	186.011	>0.001	1
altitude*vegetation type	2.095	0.119	4
A - Gamasina			
elevation	0.674	0.618	4
vegetation type	131.665	>0.001	1
altitude*vegetation type	2.095	0.119	4
A - Oribatida			
elevation	1.642	0.203	4
vegetation type	201.033	>0.001	1
altitude*vegetation type	1.461	0.251	4
A - Collembola			
elevation	2.089	0.120	4
vegetation type	12.252	>0.01	1
altitude*vegetation type	0.075	0.989	4
S - Collembola			
elevation	10.831	>0.001	4
vegetation type	5.446	0.030	1
altitude*vegetation type	0.706	0.597	4
H´ - Collembola			
elevation	10.223	>0.001	4
vegetation type	12.750	>0.01	1
altitude*vegetation type	0.477	0.752	4
J´ - Collembola			
elevation	1.138	0.367	4
vegetation type	77.253	>0.001	1
altitude*vegetation type	1.001	0.430	4
S - Oribatida			
elevation	2.624	0.065	4
vegetation type	13.305	>0.01	1
altitude*vegetation type	1.507	0.238	4
H´ - Oribatida			
Feature	Value 1	Value 2	Value 3
-------------------------	---------	---------	---------
elevation	3.049	0.041	4
vegetation type	14.706	>0.01	1
altitude*vegetation type	2.407	0.083	4
Tab. 3 Mean abundance [ind.m$^{-2}$] of dominant collembolan and oribatid mite species in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient.

Legend: Silene - *Silene acaulis*, adj.veg. - adjacent vegetation.

Species	Abbreviation	1000 m a.s.l.	1100 m a.s.l.	1200 m a.s.l.	1300 m a.s.l.	1400 m a.s.l.					
Collembola											
Folsomia quadrioculata	FOQU	2752	3539	4718	3145	10616	4423	1769	786	5898	2556
S.D.	4683	4318	4631	1758	4418	3260	1282	822	4285	3651	
Tetracanthella wahlgreni	TEWA	590	2752	983	0	2359	4522	7470	16906	197	983
S.D.	879	590	1390	0	1786	6652	5586	17016	440	1390	
Folsomia brevicauda	FOBRAV	1573	2949	3735	9240	4915	786	1180	590	0	
S.D.	1319	3260	4734	11068	4895	5604	1282	1758	879	0	
Friesea truncata	FRTR	2752	2162	5504	2162	3145	0	393	393	197	197
S.D.	5126	3139	6317	2899	3503	0	4662	538	440	440	
Pseudisotoma sensibilis	PISE	0	0	0	197	393	2359	983	393	11992	
S.D.	0	0	0	0	440	879	2038	983	3993	13977	
Oribatida											
Oppiella neerlandica	OPNE	2162	2556	4718	7863	8650	3735	1966	393	6881	1769
S.D.	2131	2656	2728	8982	5706	1282	2305	879	6739	3956	
Tectocepheus velatus velatus	TCVV	0	393	2162	2752	590	1769	6684	6094	1769	5701
S.D.	0	538	3433	4579	538	1282	5079	8524	1891	6498	
Oribatula tibialis	OBTI	1180	393	786	197	590	1769	8650	3342	786	197
S.D.	1758	879	822	440	538	2014	7136	1645	822	440	
Nothus cf. borussicus	NOAS	393	983	1769	1376	983	0	7667	2556	0	
S.D.	538	1702	822	1645	983	0	7068	5183	0	0	
Platynothrus peltifer	PLPE	1573	393	4718	983	2556	2556	2162	197	0	
											0
S.D.	EUPL										
------	------										
	2467	538	7876	983	3376	2263	2544	440	0	0	
Eupelops plicatus	1573	491	3145	786	3342	1180	3145	590	0	197	
S.D.	1491	983	3362	822	3077	1282	3362	1319	0	440	
Table 4. Mean abundance [ind.m$^{-2}$] of soil microarthropod groups, species richness and diversity indices of Collembola and Oribatida in *Diapensia lapponica* cushions and adjacent vegetation.

Legend: A - abundance, St - total species richness, Sm - mean species richness per sample, H´ - Shannon’s diversity index, J´ - Pielou’s evenness index. Astigmatina were not tested due to high number of zero values. Significance of variance tested using Mann-Whitney's test. Significant results provided in **bold**.

	Diapensia lapponica	adjacent vegetation
A - total Acari	16569	7372
S.D.	9139	4606
A - Prostigmata	351	351
S.D.	623	828
A - Gamasina	562	211
S.D.	743	419
A - Uropodina	70	70
S.D.	263	263
A - Oribatida	15587	6740
S.D.	9372	4078
A - Collembola	15165	6810
S.D.	9048	4713
St - Collembola	17	7
Sm - Collembola	**4.6**	**2.4**
S.D.	**2.1**	**1.3**
H´ - Collembola	**1.2**	**0.6**
S.D.	**0.3**	**0.4**
J´ - Collembola	0.8	0.7
S.D.	0.1	0.4
----------------	-------	-------
St - Oribatida	14	11
Sm - Oribatida	3.9	2.8
S.D.	1.4	1.4
H´ - Oribatida	1.1	0.8
S.D.	0.4	0.5
J´ - Oribatida	0.9	0.7
S.D.	0.2	0.4
Tab. 5 Mean abundance [ind.m$^{-2}$] of dominant collembolan and oribatid mite species in *Diapensia lapponica* cushions and adjacent vegetation.

Significance of variance estimated using Mann-Whitney's test. Significant differences provided in **bold**.

Species	Abbreviation	*Diapensia lapponica*	adjacent vegetation
Collembola			
Folsomia brevicauda	FOBR	3440	3651
S.D.	2719	4453	
Folsomia quadrioculata	FOQU	5055	1755
S.D.	2856	1598	
Friesea truncata	FRTR	**1896**	**140**
S.D.	1701	357	
Parisotoma notabilis	PSNO	1334	421
S.D.	3099	922	
Tetracanthella wahlgreni	TEWA	632	632
S.D.	2364	1131	
Oribatida			
Tectocephaeus velatus velatus	TCVV	2949	2036
S.D.	2726	2452	
Ceratozetes thienemanni	CZTH	**3791**	**1053**
S.D.	3948	980	
Oppiella acuminata	OPAC	1545	70
S.D.	2239	263	
Disso rhina ornata	DIOR	1194	140
S.D.	2118	357	
Mycobates sarekensis	MYSA	351	983
S.D.	489	944	
Table S1. Mean abundance [ind.m$^{-2}$] of Collembola and Oribatida species in *Silene acaulis* cushions and adjacent vegetation along an elevation gradient.

Legend: Silene - *Silene acaulis*, adj.veg. - adjacent vegetation

Species	1000 m a.s.l.	1100 m a.s.l.	1200 m a.s.l.	1300 m a.s.l.	1400 m a.s.l.					
Collembola	Silene	adj.veg.								
Ceratophysella scotica	1573	197	1376	590	197	0	0	0		
Desoria neglecta	590	197	983	2556	983	1573	0	197	590	0
Desoria olivacea	0	983	1376	197	3735	197	0	590	0	
Desoria violacea	786	197	197	1180	2162	2752	590	0	0	
Deuterosminthurus sp.	0	0	197	0	0	0	0	0	0	
Entomobrya corticalis	0	0	0	0	0	0	0	197	0	
Entomobryidae juv.	393	197	197	393	197	0	0	197	0	
Folsomia brevicauda	1573	2949	9240	4915	786	1180	590	0		
Folsomia inoculata	0	0	0	393	0	0	0	0	0	
Folsomia palearctica	1573	590	1180	4128	1180	0	0	0		
Folsomia quadrioculata	2752	3539	3145	16166	3539	1769	786	5898	2556	
Folsomides marchicus	1376	0	0	393	0	0	0	0	0	
Friesea mirabilis	1180	197	1180	983	0	393	197	0		
Friesea truncatata	2752	2162	2162	3145	0	393	393	197	197	
Heterosminthurus sp.	0	0	0	197	0	0	0	0		
Hypogastrura cf. sensilis	3932	0	393	590	0	0	0	0		
Isotoma viridis	0	4128	1966	197	590	7274	983	197	0	393
Isotomiella minor	1376	590	1573	2162	983	786	786	0	1769	393
Lepidocyrtus lanuginosus	0	590	0	0	0	0	0	0		
Lepidocyrtus lignorum	197	197	0	0	197	197	0	0	590	0
Species	1000 m a.s.l.	1100 m a.s.l.	1200 m a.s.l.	1300 m a.s.l.	1400 m a.s.l.					
---------------------------------	--------------	--------------	--------------	--------------	--------------					
Megalethorax minimus										
Mesaphorura jirii										
Mesaphorura tenuisensillata										
Micranurida forsslundi										
Micranurida pygmaea										
Neanura muscorum										
Parisotoma notabilis										
Pseudanurophorus binoculatus										
Protaphorura armata										
Protaphorura pseudovanderdrifti										
Pseudachorutes subcrassus										
Sphaeridia pumilis										
Tetracanthella wahlgreni										
Tomocerina minuta										
Willemia anophthalma										
Willowsia nigromaculata										
Xenylla maritima										
Adoristes ovatus										
Achipteria nitens										
Banksinoma cf. borealis										
Banksinoma lanceolata										
Belba compta										
Berniniella bicarinata										

Oribatida

Species	1000 m a.s.l.	1100 m a.s.l.	1200 m a.s.l.	1300 m a.s.l.	1400 m a.s.l.
Adoristes ovatus					
Achipteria nitens					
Banksinoma cf. borealis					
Banksinoma lanceolata					
Belba compta					
Berniniella bicarinata					

Adoristes ovatus: 0 0 197 0 0 0 0 0 0 0 0 0
Achipteria nitens: 0 0 393 0 0 0 0 0 0 0 0 0
Banksinoma cf. borealis: 197 0 0 2162 1376 0 0 0 0 0 1180 0
Banksinoma lanceolata: 0 0 0 0 0 0 0 0 0 0 0 0
Belba compta: 197 197 0 197 983 0 197 197 0 0 0 0
Berniniella bicarinata: 393 0 0 0 0 0 0 0 0 0 0 0
Species	Length	Width	Height	Perimeter	Area	Perimeter	Area	Perimeter	Area	Perimeter	Area																								
Berniniella sigma	0	197	0	2556	0	0	0	0	393	0																									
Brachychochthonius sp.	0	0	0	197	0	0	0	0	0	0																									
Ceratoppia sphaerica	0	0	0	197	0	0	0	0	197	0																									
Ceratozetes thienemanni	1573	786	2359	1180	197	0	0	0	0	0																									
Conchogneta dalecarlica	0	0	0	0	0	0	0	0	393	197																									
Cultroribula bicultrata	0	0	0	197	786	0	0	0	0	0																									
Dissohina ornata	1573	0	1966	197	197	393	197	197	1966	0																									
Edwardzetes edwardsi	197	0	0	0	0	0	0	0	0	0																									
Eobrachychthonius latior	393	197	0	0	0	0	0	0	0	0																									
Eueremaeus valkanovi	0	0	0	0	0	0	0	0	0	197																									
Eupelops plicatus	1573	393	3145	786	3342	1180	3145	590	0	197																									
Eupelops strenzkei	197	0	0	0	0	0	0	0	0	0																									
Euzetes globulus	0	0	0	0	0	0	0	0	0	197																									
Fuscozetes setosus	0	393	0	0	0	393	0	0	0	0																									
Fuscozetes sp.	0	0	0	786	0	0	0	0	0	0																									
Galumna obvia	0	0	0	0	0	0	0	393	0	0																									
Haplozetes sp.	0	0	0	197	0	0	0	0	0	0																									
Heminothrus longisetosus	0	0	0	0	0	0	0	393	0	0																									
Chamobates birulai	0	0	0	0	0	0	0	0	0	0																									
Chamobates borealis	197	197	0	0	0	0	0	0	0	197																									
Chamobates cuspidatus	0	0	0	0	0	0	0	0	0	197																									
Chamobates sp.	0	197	197	0	0	197	0	0	0	0																									
Chamobates voigtsi	0	0	0	393	786	0	0	0	0	197																									
Liochthonius brevis	0	0	983	0	0	0	0	0	0	0																									
Liochthonius sellnicki	0	0	393	197	0	0	0	0	0	0																									
Liochthonius simplex	393	0	0	0	0	0	0	0	0	0																									
Liochthonius strenzkei	197	0	393	0	0	0	0	0	0	393																									
Malaconothrus monodactylus	0	0	0	0	0	393	0	0	0	0																									
Malaconothrus sp.	0	0	0	0	0	0	0	0	0	197																									
Species	Melanozetes meridianus	Metabelba pulverosa	Micropoppia minus	Minunthozetes pseudofusiger	Multioppia glabra	Mycobates sarekensis	Nanhermannia comitalis	Nanhermannia cf. coronata	Neotrichoppia confinis	Nothrus cf. borussicus	Ophidiotrichus vindobonensis	Oppiella cf. propinqua	Oppiella cf. splendens	Oppiella falcata	Oppiella marginedentata	Oppiella neerlandica	Oppiella nova	Oppiella sp.	Oppiella subpectinata	Oppiella uncarinata	Oribatella calcarata	Oribatula interrupta	Oribatula tibialis	Oromurcia sudetica	Pantelozetes paolii	Pantelozetes sp.	Pergalumna nervosa	Phauloppia sp.	Phthiracarus sp.						
---------------------------------	-------------------------	----------------------	-------------------	-----------------------------	------------------	----------------------	-----------------------	------------------------	-----------------------	------------------------	------------------------	----------------------	----------------------	------------------	-----------------------	----------------------	------------------	------------------	----------------------	----------------------	-----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2162	197	0	0	0	0	0	197	0	0	0	0	0	0	0	0	0	0	393	197
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2556	197	0	0	0	0	0	393	0	0	0	0	0	0	0	0	0	1769	197	
Species	Values																																		
---------	--------																																		
Platynothrus peltifer	1573 393 4718 983 2556 2556 2162 197 0 0																																		
Protoribates capucinus	0 0 0 197 0 0 0 0 0 0																																		
Puncoribates punctum	0 197 590 0 393 393 197 0 590 0																																		
Quadroppia galaica	0 0 0 2162 0 0 0 0 0 0																																		
Quadroppia hammerae	0 0 0 0 197 0 0 0 197 0																																		
Quadroppia maritalis	0 0 197 0 0 0 197 0 0 0																																		
Quadroppia monstruosa	0 0 197 0 0 0 0 0 0 0																																		
Quadroppia quadricarinata	1376 1180 1573 0 197 197 0 0 197 0																																		
Rhysotritia ardua	0 0 0 197 0 0 0 0 0 0																																		
Scheloribates initials	197 0 0 197 197 197 0 0 0 0																																		
Scheloribates laevigatus	0 0 197 0 0 0 0 0 0 393 0																																		
Scheloribates latipes	0 0 197 0 0 197 0 0 0 0																																		
Scheloribates pallidulus	0 0 197 0 0 0 0 0 0 0 0																																		
Steganacarus spinosus	0 0 0 0 0 0 197 0 0 0 0																																		
Suctobelba altvateri	0 0 0 0 0 0 0 0 0 0 0 0																																		
Suctobelba discrepans	0 0 0 0 0 0 0 0 0 197 0 0																																		
Suctobelba granulata	0 0 0 0 0 0 197 0 0 197 0 0																																		
Suctobelba reticulata	0 0 0 0 0 0 0 0 0 197 0 0																																		
Suctobelba secta	0 0 0 197 0 0 0 0 0 0 0 0																																		
Suctobelba trigona	0 393 197 0 0 0 0 393 0 197 0 0																																		
Suctobelbella acutidens	197 197 590 0 0 0 197 0 0 197 0 0																																		
Suctobelbella cf. arcana	0 0 786 0 0 0 0 0 0 0 0 0																																		
Suctobelbella arcana	0 0 393 590 197 0 0 0 0 197 0 0																																		
Suctobelbella cf. forsslundi	0 0 0 0 393 0 0 0 1180 0 0 0																																		
Suctobelbella cf. perforata	0 0 0 0 0 197 0 0 0 0 0 0																																		
Suctobelbella falcata	0 197 197 0 0 0 197 0 0 197 0 0																																		
Suctobelbella longirostris	0 0 197 786 0 0 197 0 0 0 0 0																																		
Suctobelbella palustris	0 0 0 0 0 0 0 0 0 0 197 0 0																																		
Suctobelbella perforata	197 0 0 0 0 0 0 0 0 0 197 0 0																																		
Species	590	393	1769	2162	197	0	197	0	0	0																									
--	-----	-----	------	------	-----	---	-----	---	---	---																									
Suctobelbella sarekensis																																			
Suctobelbella similis	0	0	0	0	0		0		0	197																									
Suctobelbella sp.1	0	0	0	197	0		0		0	0																									
Suctobelbella sp.2	0	0	0	590	0		0		0	0																									
Suctobelbella sp.3	0	0	0	197	0		0		0	0																									
Suctobelbella sp.4	0	0	0	197	0		0		0	0																									
Suctobelbella subcornigera			197	197	197	393	1966	0	0	393																									
Tectocepheus minor			0	590	0		0		0	0																									
Tectocepheus velatus knullei			0	590	0		0		0	0																									
Tectocepheus velatus sarekensis		590	0	197	0		197	0	0	197																									
Tectocepheus velatus velatus			0	393	2162	2752	590	1769	6684	6094	1769	5701																							
Trichoribates copperminensis		590	0	0	0		0		0	0																									
Trichoribates trimaculatus		0	0	0	0		393	0	0	0																									
Zygoribatula exilis		0	0	197	0		197	0	0	0																									
Table S2. Mean abundance [ind.m\(^{-2}\)] of Collembola and Oribatida species in *Diapensia lapponica*
cushions and adjacent vegetation.

Collembola	*Diapensia lapponica*	adjacent vegetation
Ceratophysella scotica	70	0
Desoria neglecta	211	0
Entomobrya nicoleti	351	70
Entomobryidae juv.	70	70
Folsomia brevicauda	3440	3651
Folsomia manolachei	843	0
Folsomia quadrioculata	5055	1755
Friesea mirabilis	140	0
Friesea truncata	1896	140
Hypogastrura cf. sensilis	211	0
Isotomiella minor	351	70
Lepidocyrtus lignorum	211	0
Mesaphorura tenuisensillata	70	0
Micranurida forsslundi	70	0
Parisotoma notabilis	1334	421
Protaphorura pseudovanderdrifti	140	0
Pseudanurophorus binoculatus	70	0
Tetracanthella wahlgreni	632	632

Oribatida	*Diapensia lapponica*	adjacent vegetation
Berniniella bicarinata	0	70
Camisiiidae juv.	70	140
Carabodes labyrinthicus	0	70
Ceratozetes thienemanni	3791	1053
Ceratozetidae juv.	2598	772
Disorhina ornata	1194	140
Mycobates sarakensis	351	983
Neonothrus humicolus	70	0
Nothrus juv.	70	70
Oppiella acuminata	1545	70
Oppiella hauseri	70	0
Oppiella neerlandica	70	140
Oppiella nova	0	140
Oppiella subpectinata	281	70
Oribatida indet. juv.	913	0
Oribatula tibialis	140	0
Phthiracarus sp.	0	70
Punctoribates punctum	70	0
Species	Count	Difference
-------------------------------------	-------	------------
Suctobelba trigona	281	0
Suctobelbella acutidens	70	0
Tectocepheus juv.	983	913
Tectocepheus velatus velatus	2949	2036
Trichoribates cf. trimaculatus	70	0