Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3

Martin, D., Li, Y., Yang, J., Wang, G., Margariti, A., Jiang, Z., Yu, H., Zampetaki, A., Hu, Y., Xu, Q., & Zeng, L. (2014). Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3. Journal of Biological Chemistry, 289(44), 30625-30634. https://doi.org/10.1074/jbc.M114.571984

Published in:
Journal of Biological Chemistry

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Signal Transduction: Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3

Daniel Martin, Yi Li, Junyao Yang, Gang Wang, Andriana Margariti, Zhixin Jiang, Hui Yu, Anna Zampetaki, Yanhua Hu, Qingbo Xu and Lingfang Zeng

J. Biol. Chem. 2014, 289:30625-30634.
doi: 10.1074/jbc.M114.571984 originally published online September 4, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.571984

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 48 references, 25 of which can be accessed free at http://www.jbc.org/content/289/44/30625.full.html#ref-list-1
Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3*

Received for publication, April 8, 2014, and in revised form, August 28, 2014. Published, JBC Papers in Press, September 4, 2014. DOI 10.1074/jbc.M114.571984

Daniel Martin1, Yi Li1, Junyao Yang3, Gang Wang3, Andriana Margariti1, Zhixin Jiang3, Hui Yu2, Anna Zampetaki1, Yanhua Hu1, Qingbo Xu1,2, and Lingfang Zeng1,3

From the 1Cardiovascular Division, King’s College London, London SE5 9NU, United Kingdom, the 2Department of Emergency Medicine, the Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an 710004, China, the 3Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Institute of Clinical Sciences, Belfast BT12 6BL, United Kingdom, the 4Centre Laboratory, 305th Hospital of the People’s Liberation Army, Beijing 100017, China, and the **Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China

Background: The role of the unspliced XBP1 remains unclear.
Results: Disturbed flow concomitantly up-regulates XBP1u and HDAC3, which form a complex with Akt1 and mTOR, leading to Nrf2-mediated HO-1 expression.
Conclusion: XBP1u and HDAC3 synergistically exert a protective effect on disturbed flow-induced oxidative stress via regulation of HO-1 expression.
Significance: This study provides new insights into the physiological roles of XBP1u and HDAC3.

It is well known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated antioxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box-binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a VEGF receptor and PI3K/Akt-dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Overexpression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization, and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbance-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression.

It is widely accepted that atherosclerosis occurs geographically at branch points where disturbed flow can trigger endothelial cell (EC)* dysfunction via oxidative stress and inflammation (1). Under physiological conditions, cells can naturally establish homeostasis in response to different stimuli. Theoretically, the activation of oxidative stress under disturbed flow should be accompanied by the up-regulation of anti-oxidative mechanisms to maintain homeostasis within ECs. This may be a mechanism through which vascular integrity is maintained. The development of atherosclerosis could be a consequence of the disruption of the homeostasis by the intervention of other risk factors such as hyperlipidemia, diabetes, hypertension, smoking, and etc. (2, 3).

Heme oxygenase 1 (HO-1) is an inducible isoform of the heme oxygenase family, which catalyzes the degradation of heme, producing biliverdin, iron, and carbon monoxide (4).
HO-1 was originally identified as a 32-kDa stress responsive protein to UV-irradiation, hydrogen peroxide, and sodium arsenite (5). HO-1 is induced ubiquitously in cells in response to oxidative stress, hypoxia, heavy metal ions, cytokines, glutathione depletion, and etc. (6). The induction of HO-1 and the derived carbon monoxide plays a protective role against cell apoptosis (7). Disruption of the HO-1 gene (HMOX-1) does not affect mouse survival but increases end-organ damage and mortality during endotoxemia due to increased oxidative stress (8). In EC, HO-1 can be induced by both laminar flow and disturbed flow through oxidative stress and Nrf2 (NF-E2-related factor 2) activation (9). However, the existence of a signaling pathway between the mechanosensor and Nrf2-mediated HO-1 expression remains unknown.

The x-box binding protein 1 (XBP1) is also a stress responsive gene. In contrast to most stress responsive genes, XBP1 mRNA undergoes alternative splicing via inositol-requiring enzyme 1 α (IRE1α). This occurs in response to endoplasmic reticulum (ER) stress, resulting in an open reading frameshift (10, 11). XBP1 protein exists as 29-kDa unspliced (XBP1u) and 56-kDa spliced (XBP1s) isoforms. Both isoforms have an identical N-terminal dimerization domain and internal DNA binding domain but differ in the C terminus. XBP1s contains a transcriptional activation domain in the C terminus and functions as an intact transcription factor (10). The majority of the previously described XBP1 functions are assigned to XBP1s. Our previous studies have demonstrated that XBP1s plays multiple roles in EC proliferation, autophagy response, and apoptosis (12–14). The C terminus of XBP1u contains a signal for proteasome-mediated degradation, negatively regulating XBP1s function (15). There remains very little investigation into the role of XBP1u compared with XBP1s.

Histone deacetylase 3 (HDAC3) is a class I HDAC (16). Disruption of the HDAC3 gene is lethal at an early embryonic stage (17). It is reported that cigarette smoke reduces HDAC3 activity via posttranslational modification (18), which is the first indirect evidence that HDAC3 is involved in response to oxidative stress. Our previous study provides direct evidence that up-regulation of HDAC3 by disturbed flow is essential for EC survival under oxidative stress via activation of Akt phosphorylation (19). HDAC3 deficiency in ECs accelerates vessel injury-induced neointima formation. Our studies have also demonstrated that HDAC3 homeostasis is essential for EC differentiation from stem/progenitor cells (20, 21), inflammatory reactions (22), and endothelial-to-mesenchymal transition (23). In this study, we found that HDAC3 cooperated with XBP1u to modulate HO-1 expression in response to disturbed flow. To scrutinize the molecular mechanisms of this process, the present study aims to clarify the role of XBP1 interaction with the partners in maintaining endothelial functions. We demonstrated that an interaction between XBP1 and HADC3 resulted in PI3K/Akt1 activation and HO-1 expression. This process is crucial for endothelial survival in response to oxidative stress.

EXPERIMENTAL PROCEDURES

Materials—All cell culture medium and serum were purchased from Invitrogen, whereas cell culture supplements were purchased from Sigma. Antibodies against XBP1 (sc-7160), HDAC3 (sc-136290) phospho-Akt (sc-7985R), Akt1 (sc-1619), Nrf2 (sc-722), mTOR (sc-1549), histone H3 (sc-10809), IRE1α (sc-20790), and GAPDH (sc-25778) were purchased from Santa Cruz Biotechnology; antibodies against FLAG (F2426, F1804, and F7425), HA (H6908) and tubulin (T8203) were from Sigma; antibody against HO-1 (ab13248) was purchased from Abcam. Antibodies against XBP1u and XBP1s were raised in rabbits with peptides CRSSQRSTQKDPVPY and DSGGDSDSSES-DIC, respectively, by GenScript Corp. All secondary antibodies were from DakoCytomation. Inhibitors LY294002, PD98059, SU5416, actinomycin D, cycloheximide, and Tin proteoprophyrin IX were purchased from Sigma. AZD2014 was purchased from Selleckchem. All inhibitors were dissolved in DMSO. All other chemicals were also from Sigma.

Cell Culture—Human umbilical vein ECs (HUVECs) were cultured on 0.04% gelatin-coated flasks in M199 medium supplemented with 1 ng/ml β-EC growth factor, 3 μg/ml EC growth supplement from bovine neural tissue, 10 μ/ml heparin, 1.25 μg/ml thymidine, 10% fetal bovine serum (FBS), 100 μ/ml penicillin, and streptomycin in a humidified incubator supplemented with 5% CO₂. The cells were split every 3 days at a ratio of 1:3. Cells up to passage 10 were used in this study. HEK293 cells were maintained in DMEM supplemented with 10% FBS and penicillin/streptomycin and were split every 3 days at a ratio of 1:4. Mouse embryonic fibroblasts were isolated from XBP1⁺/− cross-bred embryonic day 8.5 embryos (12), cultured in DMEM supplemented with 10% FBS and penicillin/streptomycin. The genotype of the cells was verified by PCR with primer triplet of P1 (5′-atcctgtcttgaaatggcaagtgttgg-3′), P2 (5′-tgcaagctgctagctgc-3′), and P3 (5′-ggaactagagataccactgag-3′), giving rise to a 265-bp band for wild type and a 365-bp band for XBP1⁻/⁻ homozygous and double bands for XBP1⁺/+ heterozygous.

Disturbed Flow—Flow experiments were performed exactly as described previously (14). Briefly, the disturbed flow was created by placing the flask on a platform shaker (Labnet, model Rocker 25) with parameters of 2.0-mm culture medium depth, 10-cm length flask, ±7° rotating angle and frequency of 0.5 Hz (i.e. 2 s per cycle), respectively. Unshaken cells were kept for same duration as static control. For inhibitor assays, the inhibitors were included in culture medium for 1 h prior to flow and maintained during the flow process.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyterrazolium Bromide Cell Proliferation Assay—HUVECs were challenged with 50 μmol/liter H₂O₂ for 24 h after 24 h post-infection with Ad-null or Ad-XBP1u virus at 10 MOI or with 20 μmol/liter H₂O₂ for 24 h after 72 h post-infection with non-target shRNA or XBP1 shRNA lentivirus at 10 MOI, followed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyterrazolium bromide cell proliferation assay with the CellTiter 96 Aqueous One Solution Cell Proliferation assay kit according to the protocol provided (Promega). Briefly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyterrazolium bromide reagent was diluted at 1:4 with M199 containing 2% FBS, applied to HUVECs at 300 μ/ml/well in 24-well plate and incubated at 37 °C for 30 min to 2 h. 300 μ/ml/well of 0.2% SDS was then added to stop the reaction. The absorbance at 490 nm was measured with a laminator luminometer. The relative cell
survival was defined as the ratio of $A_{490 \text{ nm}}$ of the test group to that of control group with that of control group set as 1.0.

Cell Apoptosis Analysis—Mouse embryonic fibroblasts were challenged with 50 μM/liter H$_2$O$_2$ for 24 h, followed by apoptosis analysis using the Apo-Direct flow cytometry kit (Chemicon) with protocol provided. PBS was included as control. Briefly, the treated cells were detached with trypsin and fixed in solution with 1% paraformaldehyde on ice for 1 h and washed three times with PBS. The cell pellet was resuspended in 50 μl of staining solution (TdT reaction buffer, TdT enzyme, fluorescein-dUUTP) and incubated for 60 min at 37 °C, with shaking every 15 min. The reaction was stopped through the addition of 1 ml of rinse buffer and washed three times with the rinse buffer. The cell pellet was resuspended in 500 μl of propidium iodide/RNase A solution and incubated in the dark at room temperature for 30 min, followed by flow cytometry analysis of fluorescence at 520 nm with a 488-nm Argon laser.

Ex Vivo Experiments—The artery ex vivo survival experiments were performed as described previously (14). Briefly, arteries were isolated from Tie2-LacZ/ApoE$^{-/-}$ mice and cut into an ~2-mm2 segment. The segments were incubated with 0.5 ml of M199 medium plus 15% FBS containing no virus (control), empty virus (Ad-null), or Ad-XBP1u virus at 1 × 106 plaque-forming unit/ml in 24-well plate for 6 h. Three segments were included in each group. The virus solutions were then removed, and 1 ml of fresh medium was added to each well. Twenty-four hour post infection, the segments were treated with PBS or 50 μM/liter H$_2$O$_2$ for 24 h. The segments were fixed in solution with 1% paraformaldehyde for 1 h and washed three times with PBS. The cell pellet was resuspended in 500 μl of propidium iodide/RNase A solution and incubated in the dark at room temperature for 30 min, followed by flow cytometry analysis of fluorescence at 520 nm with a 488-nm Argon laser.

Adenoviral and shRNA Lentiviral Infection—For adenoviral infection, HUVECs were incubated with Ad-null, Ad-HDAC3, or Ad-XBP1u virus at 10 MOI for 6 h and then cultured in fresh complete growth medium for time duration indicated in figure legends. For shRNA lentiviral infection, HUVECs were incubated with 100 transduction unit/cell of non-target shRNA or XBP1 siRNA or IRE1α siRNA or HDAC3 shRNA lentiviruses in the presence of 10 μg/ml polybrene for 16 h, followed by culture in fresh complete growth medium for 72 h, and subjected to further treatments.

siRNA Transfection—Human Nr2f2 siRNA (sc-37030) was purchased from Santa Cruz Biotechnology and reconstituted accordingly. For siRNA transfection assay, HUVECs in 75-ml flasks were transfected with 50 μl of 10 μM/liter control siRNA or Nr2f2 siRNA with 50 μl of Lipofectamine RNAiMax (Invitrogen) according to protocol provided. For virus infection assays, 48 h post-transfection, the cells were infected with 10 MOI Ad-null, Ad-XBP1u or Ad-HDAC3 viruses and incubated for 24 h, followed by Western blot analysis. For shear stress assays, 72 h post-transfection, the cells were subjected to disturbed flow for 4 h, followed by Western blot analysis.

Immunoprecipitation, Immunoblotting, and Immunofluorescence Staining—Immunoprecipitation and immunoblotting were performed according to standard procedures described elsewhere. One milligram lysate was used for immunoprecipitation, whereas 25 μg was used for input or direct immunoblotting. For unconjugated antibody, 2 μg of antibody and 10 μl of protein G beads (Sigma) were used for one immunoprecipitation assay. For agarose-conjugated antibody, 10 μl of such beads were directly used for each immunoprecipitation assay. Immunofluorescence staining was performed using standard procedures. Briefly, adenovirus-infected or uninfected HUVECs were seeded on 0.04% gelatin-coated glass slides with or without flow treatment. The cells were fixed with methanol and permeabilized with 0.1% Triton X-100, blocked with 5% normal swine serum, incubated with primary antibodies, followed by incubation with Alexa Fluor 488- or 594-labeled secondary antibodies and counterstain-
ing with DAPI. Images were taken by using SP5 confocal microscope (Leica) and were processed by Adobe Photoshop software. Magnification was indicated in figures.

Cellular Fractionation—HUVECs were infected with Ad-null, Ad-XBP1u, or Ad-HDAC3 at 10 MOI for 6 h and incubated for another 18 h. Fresh medium containing DMSO or 5 μmol/liter AZD2014 were added and incubated for 24 h. The cytosol and nuclear extracts were harvested with procedures described previously (12).

Chromatin Immunoprecipitation—Chromatin immunoprecipitation was performed with ChIP assay kit (17-295, Millipore) according to the protocol provided. Briefly, HUVECs were subjected to disturbed flow for 2 h, followed by the ChIP assay. Rabbit anti-XBP1u and anti-XBP1s were used, and normal rabbit IgG was included as negative control. Six sets of primer pairs were used to cover the 1.5-kb HDAC3 promoter region (GenBank™ accession no. AB457579.1). The sequences include the following: position +1 ~ −276, 5′-ccaggcttcggcc-caggtgc-3′ versus 5′-tcggcttcggaggaagtctgc-3′; position −276 ~ −520, 5′-tcagatccctctggagcgg-3′ versus 5′-ggcggcttcggtgag-3′; position −520 ~ −720, 5′-ctccatccggca-ccactc-3′ versus 5′-gctgagagcggtggcaggctc-3′; position −720 ~ −960, 5′-gacctgcccagccgtcctcag-3′ versus 5′-tttcccagc-cctgacacagt-3′; position −960 ~ −1195, 5′-gcagggctgaggtggag-3′ versus 5′-agctctctaccagcaccatgg-3′; position −1195 ~ −1467, 5′-ccatctcgtctgtagagac-3′ versus 5′-aagagcata tatagcccatgttgg-3′. Routine PCR was performed using these primer sets to amplified XBP1u- or XBP1s-bound DNA fragment.

Statistical Analysis—Data expressed as the mean ± S.E. were analyzed using GraphPad Prism software (version 5) with t test for pair-wise comparisons or analysis of variance, when t test was inappropriate, followed by Dunnett’s multiple comparison tests, and significance was depicted by asterisks (*, p < 0.05).

RESULTS

Disturbed Flow Activates XBP1u in a Similar Manner to HDAC3—Our previous studies have demonstrated that disturbed flow sustainably activates XBP1 expression and splicing (14) and that disturbed flow activates HDAC3 in a KDR/PI3K-Akt pathway-dependent manner (19). In this study, we found that disturbed flow-induced up-regulation of XBP1u was ablated by the presence of KDR inhibitor SU5416 and PI3K/Akt inhibitor LY294002, whereas XBP1 splicing was only ablated by SU5416 (Fig. 1A). This suggests that XBP1u was regulated by a similar mechanism to HDAC3 (19). As disturbed flow concomitantly up-regulated HDAC3, XBP1u, and XBP1s, we wondered whether there was cross-talk between HDAC3 and both XBP1 isoforms. XBP1s is produced by IRE1α activation (11) and down-regulation of XBP1s can be achieved by knockdown of IRE1α. Knockdown of XBP1 or IRE1α abolished disturbed flow-induced HDAC3 up-regulation (Fig. 1B), indicating that there is relationship between both XBP1 isoforms and HDAC3 under disturbed flow. To further examine the involvement of XBP1s in flow-induced HDAC3 up-regulation, exogenous overexpression of XBP1s was introduced into HUVECs via adenoviral gene transfer. As shown in Fig. 1C, overexpression of XBP1s actually decreased HDAC3 protein due to transcriptional repression as revealed by the HDAC3-Luc reporter analysis (Fig. 1D). Overexpression of XBP1u had no effect on HDAC3 transcription (Fig. 1D) but antagonized the effect of XBP1s and protected HDAC3 protein levels (Fig. 1E). A ChIP assay revealed that both XBP1u and XBP1s could bind to the −960 ~ −1195 region of HDAC3 promoter (Fig. 1F). Under static condition, more XBP1u bound to this region, whereas during disturbed flow, more XBP1s bound to this region. These results suggest that there may be a cross-talk between HDAC3 and XBP1u.
XBP1u Level Is Related to EC Survival under Oxidative Stress—HDAC3 has been demonstrated to protect cells from oxidative stress (19, 25). To assess whether up-regulation of XBP1u has a similar protective effect, arterial segments were isolated from wild type (XBP1u/+) and XBP1 null (XBP1−/−) embryos and the PCR strategy to verify the disruption of the XBP1u gene. The right panel indicates the effect of 20 μmol/liter H2O2 on cell apoptosis. Data presented are representatives or average from three independent experiments. *p < 0.05.

FIGURE 2. XBP1u protected cell survival under oxidative stress. A, overexpression of XBP1u increased EC survival ex vivo under 50 μmol/liter H2O2. The left panel shows the X-gal staining images, whereas the right panel indicates the relative cell numbers that were defined as cells/mm2 with that of uninfected (CTL)/PBS group set as 1.0. B, overexpression of XBP1u attenuated H2O2-induced cell loss in HUVECs. C, knockdown of XBP1 enhanced H2O2 (20 μmol/liter)-induced cell loss in HUVECs. D, H2O2-induced significant cell apoptosis in XBP1−/− mouse embryonic fibroblasts. The left panel shows the morphology of mouse embryonic fibroblasts isolated from wild type (XBP1+/+) and XBP1-null (XBP1−/−) embryos and the PCR strategy to verify the disruption of the XBP1u gene. The right panel indicates the effect of 20 μmol/liter H2O2 on cell apoptosis. Data presented are representatives or average from three independent experiments. *p < 0.05.

FIGURE 3. XBP1u-mediated cell survival was through regulation of HO-1 expression. A, HO-1 inhibitor SnPPIX abolished the protective effect of XBP1u overexpression on cell survival under H2O2 challenging. B, quantitative RT-PCR revealed that over-expression of XBP1u or HDAC3 up-regulated HMOX-1 mRNA level without effect on Nrf2 mRNA level. C, Western blot analysis showed that overexpression of XBP1u or HDAC3 up-regulated both Nrf2 and HO-1 protein levels. D, knockdown of Nrf2 abolished XBP1u or HDAC3-induced HO-1 expression. CTLsi, control siRNA. E, overexpression of XBP1u or HDAC3 increased Nrf2 nuclear translocation and HO-1 expression in the infected and adjacent cells. Double immunofluorescence staining was performed with anti-Akt1 (red) and anti-Nrf2 (green) antibodies or with anti-FLAG (red) for exogenous XBP1u or HDAC3 and anti-HO-1 (green) antibodies. Data presented are representatives or average from three independent experiments. *p < 0.05.
transcription factor Nrf2 (29) remained unchanged (Fig. 3B), but the protein level was significantly up-regulated by XBP1u or HDAC3 (Fig. 3C), which might be through post-translational stabilization (30). Knockdown of Nrf2 by siRNA abolished Ad-XBP1u-induced and significantly attenuated Ad-HDAC3-induced HO-1 proteins (Fig. 3D). Immunofluorescence staining revealed that overexpression of XBP1u or HDAC3 increased the nuclear localization of Nrf2 protein (Fig. 3E). Importantly, overexpression of XBP1u or HDAC3 not only increased HO-1 protein in the infected cells but also in adjacent cells (Fig. 3E), suggesting that some secreted factors are involved. These results suggest that XBP1u or HDAC3 promotes EC survival under oxidative stress through Nrf2-mediated HO-1 expression.

XBP1u and HDAC3 Activate Akt1 Phosphorylation via mTOR Complex—The PI3K/Akt pathway plays a key role in HO-1 expression (31). Our previous study has demonstrated that overexpression of HDAC3 increases Akt phosphorylation (19). In this study, Western blot analysis revealed that overexpression of XBP1u induced simultaneous increase in Akt phosphorylation and HO-1 expression in a dose- and time-dependent manner (Fig. 4, A and B). Knockdown of XBP1 decreased the basal level of Akt1 phosphorylation and HO-1 expression. Non-target shRNA lentivirus (NTsh) was included as control. D, knockdown of XBP1 via shRNA lentivirus (XBP1sh) abolished disturbed flow-induced HO-1 expression. Non-target shRNA lentivirus (NTsh) was included as control. E, Nrf2 was necessary for flow-induced HO-1 expression. HUVECs were transfected with control siRNA (CTls) or Nrf2 siRNA (Nrf2si) for 72 h, followed by disturbed flow for 4 h. F, flow stabilized Nrf2 via post-translational modification. HUVECs were treated with 1 μmol/liter actinomycin D (AD) or 30 mg/liter cycloheximide (CH) for 1 h, followed by disturbed flow for 4 h or kept at static conditions in the presence of the inhibitors. DMSO (DM) was included as vehicle control. G, AZD2014 abolished Ad-XBP1u (X1u) or Ad-HDAC3 (HD3)-induced pAkt Ser-473 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. HUVECs were infected with Ad-null or Ad-XBP1u or Ad-HDAC3 at 10 MOI for 24 h and then treated with 5 μmol/liter AZD2014 for 24 h, followed by cellular fraction isolation and Western blot analysis. DMSO was included as vehicle control. The anti-FLAG antibody was included to detect exogenous XBP1u and HDAC3. Antibodies against α-tubulin and histone H3 were included to indicate cytosol and nuclear extract, respectively. The samples from cytosol and nuclear extraction were run on separate gels but performed Western blot at the same time and exposed to x-ray film exactly at the same time period. H, AZD2014 attenuated XBP1u/HDAC3-induced Akt1 phosphorylation in nucleus. HUVECs were infected with Ad-null or Ad-XBP1u or Ad-HDAC3 at 10 MOI for 24 h and then treated with 5 μmol/liter AZD2014 for 24 h, followed by double immunofluorescence staining with anti-mTOR (red) and anti-pAkt Ser-473 (green) antibodies. I, AZD2014 reduced flow-induced Nrf2 nuclear translocation. HUVECs were treated with 5 μmol/liter AZD2014 for 1 h, followed by disturbed flow for 4 h or being kept at static conditions in the presence of AZD2014. DMSO was included as vehicle control. Double immunofluorescence staining was performed with anti-mTOR (red) and anti-Nrf2 (green) or pAkt Ser-473 (green) antibodies. Data presented are representatives of three independent experiments.
level of Akt phosphorylation and HO-1 protein (Fig. 4C). Disturbed flow is reported to activate HO-1 expression (32). We also detected the up-regulation of HO-1, Nrf2, and Akt1 phosphorylation by disturbed flow (Fig. 4D). As expected, these effects were totally abolished by XBP1 knockdown via shRNA lentiviral infection (Fig. 4D). Further experiments confirmed that Nrf2 was necessary for flow-induced HO-1 up-regulation, as siRNA-mediated knockdown of Nrf2 abolished flow-induced HO-1 expression (Fig. 4E). The addition of the transcription inhibitor (actinomycin D) or translation inhibitor (cycloheximide) also abolished flow-induced HO-1 up-regulation (Fig. 4F). These results suggest that the increase in observed Nrf2 protein is due to post-translational modification, whereas the increase in observed HO-1 protein is due to de novo biosynthesis. The phosphorylation of the Ser-473 site in Akt1 protein is reported to be activated by the Rapamycin-insensitive companion of mammalian target of rapamycin-mTOR complex (mTORC2) (33, 34). To test whether XBP1u or HDAC3 induced Akt1 phosphorylation in a similar manner, the Rapamycin-insensitive companion of mammalian target of rapamycin-mTOR complex inhibitor, AZD2014 (35) was added to Ad-XBP1u or Ad-HDAC3-infected cells. Cellular fractionation was performed to analyze Akt1 phosphorylation and Nrf2 nuclear translocation. Overexpression of XBP1u or HDAC3 increased Akt1 Ser-473 phosphorylation, the nuclear translocation of phosphorylated Akt1 and Nrf2 and up-regulated HO-1 (Fig. 4G). However, in the presence of 5 μmol/liter of AZD2014, all of these effects were diminished (Fig. 4G). The presence of XBP1u or HDAC3-induced pAkt1 Ser-473 in the nucleus was confirmed by immunofluorescence staining. This was significantly attenuated by AZD2014 (Fig. 4H). The presence of AZD2014 also abolished flow-induced Nrf2 nuclear translocation (Fig. 4I). These results suggest that XBP1 is essential for basal and disturbed flow-induced HO-1 expression via regulation of the Akt1/Nrf2 pathway in a Rapamycin-insensitive companion of mammalian target of rapamycin-mTOR dependent manner.

XBP1u Physically Interacts with HDAC3—As described above, both XBP1u and HDAC3 up-regulate HO-1 expression, whereas flow-induced HDAC3 is XBP1-dependent. Therefore, we hypothesized that there was cross-talk between XBP1u and HDAC3 during the regulation of HO-1. To test this, co-expression of HDAC3 and XBP1u was first introduced into HUVECs by co-infection with two viruses. As shown in Fig. 5A, overexpression of either XBP1u or HDAC3 alone up-regulated Akt1 phosphorylation, Nrf2 and HO-1, whereas co-expression of XBP1u and HDAC3 had a synergistic effect. Further experiments revealed that knockdown of HDAC3 attenuated XBP1u-induced Akt1 phosphorylation and HO-1 expression (Fig. 5B). Co-immunoprecipitation assays revealed that XBP1u physically bound to HDAC3 in transfected cells (Fig. 5C). Using truncated HDAC3 mutants, the binding domain in HDAC3 molecule could be defined to the amino acid 201–323 region (Fig. 5D). Immunoprecipitation with antibody against endogenous XBP1u revealed that XBP1u bound to HDAC3 and Akt1 under disturbed flow (Fig. 5E). Double immunofluorescence staining showed that mTOR/Akt1, Akt1/HDAC3, Akt1/XBP1u, and HDAC3/XBP1u co-localized in the cytoplasm (Fig. 5F). These results suggest XBP1u/HDAC3/Akt1/mTOR may form a complex to regulate Akt1 phosphorylation, leading to Nrf2 stabilization and HO-1 expression.

DISCUSSION

The maintenance of redox homeostasis is essential for cell survival and normal cellular functions. It is well known that disturbed flow can activate oxidative stress, which is proatherogenic. In this study, we demonstrate that disturbed flow can also activate anti-oxidative effects via the up-regulation of HO-1 protein in an XBP1u/HDAC3/Akt1/Nrf2 pathway-dependent manner. XBP1u, HDAC3, Akt1, and mTOR may form a complex, which provides a novel mechanism in regulating HO-1 expression, leading to cell survival under oxidative stress.

HMOX-1 belongs to a group of antioxidant response element (ARE)-regulated genes. The ARE in the promoter of HMOX-1 is also a shear stress response element, through which the transcription is up-regulated by hemodynamic forces, including laminar shear stress (32, 36–38), oscillatory shear stress (32, 37), and cyclic stretch (39) in ECs and/or smooth muscle cells. Laminar shear stress is more effective as compared with oscillatory shear stress, but the latter seems more effective over long time periods (32, 37). The ARE-regulated HMOX-1 expression is mediated by the antioxidant transcription factor Nrf2 (40). Shear stress activates Nrf2 posttranslational stabilization and nuclear localization (9, 41). Several signal pathways have been reported to stabilize Nrf2 (42), one of which is PI3K/Akt (31). It is well known that shear stress activates Akt phosphorylation. Thus, flow-induced Akt phosphorylation may be responsible for Nrf2 stabilization, leading to HO-1 up-regulation. However, the signal between the shear stress sensor and Akt/Nrf2 remains unclear. In this study, we observed that oscillatory flow up-regulated XBP1u, HDAC3, Akt phosphorylation, and Nrf2 and HO-1 protein levels, of which the latter four depended on the presence of XBP1. Knockdown of XBP1 via shRNA lentiviral infection not only abolished flow-induced but also decreased the basal level of Akt1 phosphorylation and HO-1 expression. In contrast, overexpression of XBP1u induced Akt1 phosphorylation and HO-1 up-regulation at mRNA and protein levels. XBP1u does not affect the mRNA level of Nrf2, but increased its protein level potentially through posttranslational stabilization. Indeed, in the presence of transcription and translation inhibitors, disturbed flow still increased Nrf2 protein. Knockdown of Nrf2 abolished flow-induced HO-1 expression. These results suggest that XBP1 may play a fundamental role in HO-1 expression in an Nrf2-dependent way. There are multiple mechanosensors on the cell surface, which transform the mechanical forces into cellular signaling. One of these sensors is the VEGF receptor, which can be activated by flow in a ligand-independent manner (43). In the present study, we found that VEGF receptor inhibitor SU5416 abolished flow-induced XBP1u up-regulation. Therefore, it is possible that XBP1u functions as a signal transducer between the mechanosensor, VEGF receptor, and the Akt1/Nrf2/HO-1 pathway.
Oxidized lipids are a known atherosclerosis risk factor, triggering oxidative stress and ER stress. The three ER stress signal pathways IRE1α/XBP1 splicing, ATF6, and PERK phosphorylation are activated with concomitant up-regulation of HO-1 (44, 45), whereas the up-regulation of HO-1 may inhibit ER stress-triggered EC apoptosis (46). Concerning the ER stress response, most studies have focused on the XBP1 splicing event, the role of XBP1u has been underestimated. In the present study, we found that XBP1u is involved in the basal level expression of HO-1 in cultured ECs and responsible for flow-induced HO-1 up-regulation and that overexpression of XBP1u could induce HO-1 expression. Under ER stress, the activation of ATF6 can trigger XBP1 transcription, leading to the increase of both XBP1u and XBP1s (10, 11, 47). Therefore, a protective role of XBP1u via HO-1 in ER stress may be studied.

Our previous study demonstrated that HDAC3 protects ECs from oxidative stress via Akt phosphorylation (19). In this study, we found that overexpression of HDAC3 could stabilize Nrf2 and up-regulate HMOX-1 transcription. HO-1 may be the final effector for antioxidant protection. Flow-induced HDAC3 and Akt1 phosphorylation is XBP1-dependent, whereas XBP1u-induced Akt1 phosphorylation and
in a ligand-independent manner, which in turn induces the formation of a complex among mTORC2, Akt1, XBP1u, and HDAC3. The formation of this complex stabilizes both XBP1u and HDAC3 and activates Akt1 phosphorylation, leading to Nrf2 stabilization. Nrf2 translocates into the nucleus and binds to the ARE in the HMOX-1 gene promoter, promoting HMOX-1 transcription. HO-1 catalyzes heme degradation and produces the antioxidant biliverdin and carbon monoxide. Through these mechanisms, ECs protect themselves from disturbed flow-induced oxidative stress, therefore maintaining the redox homeostasis (Fig. 6).

REFERENCES

1. Nigro, P., Abe, J., and Berk, B. C. (2011) Flow shear stress and atherosclerosis: a matter of site specificity. *Antioxid. Redox Signal.* 15, 1405–1414

2. Davies, P. F., Civelek, M., Fang, Y., Guerarraty, M. A., and Passerini, A. G. (2010) Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. *Semin. Thromb. Hemost.* 36, 265–275

3. Nitsenberg, A., Cosson, E., and Pham, I. (2006) Postprandial endothelial dysfunction: role of glucose, lipids and insulin. *Diabetes Metab.* 32, 2S28–33

4. Kikuchi, G., Yoshida, T., and Noguchi, M. (2005) Heme oxygenase and heme degradation. *Biochem. Biophys. Res. Commun.* 338, 558–567

5. Keyse, S. M., and Tyrell, R. M. (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium ascorbate. *Proc. Natl. Acad. Sci. U.S.A.* 86, 99–103

6. Siow, R. C., Ishii, T., Sato, H., Taketani, S., Leake, D. S., Sweiry, J. H., Pearson, J. D., Bannai, S., and Mann, G. E. (1995) Induction of the antioxidant stress proteins heme oxygenase-1 and MSP23 by stress agents and oxidised LDL in cultured vascular smooth muscle cells. *FEBS Lett.* 368, 239–242

7. Brouard, S., Berberat, P. O., Tobiasch, E., Seldon, M. P., Bach, F. H., and Soares, M. P. (2002) Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-κB to protect endothelial cells from tumor necrosis factor-α-mediated apoptosis. *J. Biol. Chem.* 277, 17950–17961

8. Wiesel, P., Patel, A. P., DiFonzo, N., Marriz, P. B., Pellacani, A., Maemura, K., LeBlanc, B. W., Marino, K., Roessch, C. M., Yet, S. F., Lee, M. E., and Perrella, M. A. (2000) Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not reflexatory hypotension, in heme oxygenase-1-deficient mice. *Circulation* 102, 3015–3022

9. Warabi, E., Takabe, W., Minami, T., Inoue, K., Ishii, T., Yamamoto, M., Ishii, T., Kodama, T., and Noguchi, N. (2007) Shear stress stabilizes NF-κB-related factor 2 and induces antioxidant genes in endothelial cells-role of reactive oxygen/nitrogen species. *Free Radic. Biol. Med.* 42, 260–269

10. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. *Cell* 107, 881–891

11. Lee, K., Tirapraphos, W., Chen, X., Michalak, M., Pyrewes, R., Okada, T., Yoshida, H., Mori, K., and Kaufman, R. J. (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. *Genes Dev.* 16, 452–466

12. Zeng, L., Xiao, Q., Chen, M., Margariti, A., Martin, D., Ivetic, A., Xu, H., Mason, J., Wang, W., Cockerill, G., Mori, K., Li, Y. Y., Chien, S., Hu, Y., and Xu, Q. (2013) Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. *Circulation* 127, 1712–1722

13. Margariti, A., Li, H., Chen, T., Martin, D., Vizcarra-Barrena, G., Alam, S., Karamariti, E., Xiao, Q., Zampetaki, A., Zhang, Z., Wang, W., Jiang, Z., Gao, C., Ma, B., Chen, Y. G., Cockerill, G., Hu, Y., Xu, Q., and Zeng, L. (2013) XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. *J. Biol. Chem.* 288, 859–872

14. Zeng, L., Zampetaki, A., Margariti, A., Pepe, A. E., Alam, S., Martin, D., Xiao, Q., Wang, W., Jin, Z. G., Cockerill, G., Mori, K., Li, Y. S., Hu, Y,
XBP1 Interaction with HDAC3

Chen, S., and Xu, Q. (2009) Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc. Natl. Acad. Sci. U.S.A. 106, 8326–8331

15. Yoshida, H., Oku, M., Suzuki, M., and Mori, K. (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator XBP1(S) in mammalian ER stress response. J. Cell Biol. 172, 565–575

16. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., and van Kuikenburg, A. B. (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749

17. Bhaskara, S., Chyla, B. J., Amann, J. M., Knutsson, S. K., Cortez, D., Sun, Z. W., and Hiebert, S. W. (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell 30, 61–72

18. Yang, S. R., Chida, A. S., Bauter, M. R., Shafiq, N., Seweryniak, K., Maggir, S. B., Kilty, I., and Rahman, I. (2006) Cigarette smoke induces proinflammatory cytokine release by activation of NF-κB and posttranslational modifications of histone deacetylase in macrophages. Ann. J. Physiol. Lung Cell. Mol. Physiol. 291, L46–57

19. Zampetaki, A., Zeng, L., Margariti, A., Xiao, Q., Li, H., Zhang, Z., Pepe, A. E., Wang, G., Habì, O., deFalco, E., Cockrell, G., Mason, J. C., Hu, Y., and Xu, Q. (2010) Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation 121, 132–142

20. Zeng, L., Xiao, Q., Margariti, A., Zhang, Z., Zampetaki, A., Patel, S., Capogrossi, M. C., Hu, Y., and Xu, Q. (2006) HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J. Cell Biol. 174, 1059–1069

21. Xiao, Q., Zeng, L., Zhang, Z., Margariti, A., Ali, Z. A., Channon, K. M., Xu, Q., and Hu, Y. (2006) Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler. Thromb. Vasc. Biol. 26, 2244–2251

22. Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A. M., and Cook, C. K., Wasserman, M. A., Medford, R. M., Jaiswal, A. K., and Kunisch, C. (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278, 703–711

23. Ali, F., Zakkar, M., Karu, K., Liddington, E. A., Hamdulay, S. S., Boyle, J. J., Zloh, M., Bauer, A., Haskard, D. O., Evans, P. C., and Mason, J. C. (2009) Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 284, 18882–18892

24. Freidig, M. L., Vessieres, E., Clerc, N., Desquiere, V., Guihot, A. L., Toutain, B., Loufrani, L., Jardel, A., Procaccio, V., Faure, S., and Henrion, D. (2011) Heme oxygenase-1 induction restores high-blood-flow dependent remodeling and endothelial function in mesenteric arteries of old rats. J. Hypertens. 29, 102–112

25. Wagner, C. T., Durante, W., Christodoulides, N., Hellums, J. D., and Schaffer, A. I. (1997) Hemodynamic forces induce the expression of heme oxygenase in cultured smooth muscle cells. J. Clin. Invest. 100, 589–596

26. Primiano, T., Sutter, T. R., and Kessler, T. W. (1997) Antioxidant-inducible genes. Adv. Pharmacol. 38, 293–328

27. Hsieh, C. Y., Hsiao, H. Y., Wu, W. Y., Liu, C. A., Tsai, Y. C., Chao, Y. J., Toutain, B., Loufrani, L., Jardel, A., Procaccio, V., Faure, S., and Henrion, D. (2011) Heme oxygenase-1 induction restores high-blood-flow dependent remodeling and endothelial function in mesenteric arteries of old rats. J. Hypertens. 29, 102–112

28. Wilson, S. J., and Keenan, A. K. (2003) Role of hemin in the modulation of HO-1 and heme oxygenase-1 on vascular endothelial growth factor signaling. Vascul. Pharmacol. 40, 109–118

29. Brun, K. R., Fenrich, K. K., Kiani, G., Tse, M. Y., Pang, S. C., Ward, C. A., and Melo, L. G. (2006) Protection of human vascular smooth muscle cells from H2O2-induced apoptosis through functional coexistence between HO-1 and AKT. Arterioscler. Thromb. Vasc. Biol. 26, 2027–2034

30. Gazcón, A., Espada, S., Pedraza-Chaverri, J., and Cuadrado, A. (2012) Signal from HO-1 and AKT. J. Biol. Chem. 287, 1895–1903

31. De Keulenaer, G. W., Chappell, D. C., Ishizaka, N., Nerem, R. M., Alexander, R. W., and Griendling, K. K. (1998) Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ. Res. 82, 1094–1101

32. Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101

33. Jancio, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S. Y., Huang, Q., Qin, J., and Su, B. (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137

34. Pike, K. G., Malagù, K., Hummersone, M. G., Menear, K. A., Duggan, H. M., Gomez, S., Martin, N. M., Ruston, L., Pass, S. L., and Pass, M. (2013) Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014. Bioorg. Med. Chem. Lett. 23, 1212–1216

35. Chen, X. L., Varner, S. E., Rao, A. S., Grey, J. Y., Thomas, S., Cook, C. K., Wasserman, M. A., Medford, R. M., Jaiswal, A. K., and Kunisch, C. (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278, 703–711

36. Hsieh, C. Y., Hsiao, H. Y., Wu, W. Y., Liu, C. A., Tsai, Y. C., Chao, Y. J., Toutain, B., Loufrani, L., Jardel, A., Procaccio, V., Faure, S., and Henrion, D. (2011) Heme oxygenase-1 induction restores high-blood-flow dependent remodeling and endothelial function in mesenteric arteries of old rats. J. Hypertens. 29, 102–112

37. Wagner, C. T., Durante, W., Christodoulides, N., Hellums, J. D., and Schaffer, A. I. (1997) Hemodynamic forces induce the expression of heme oxygenase in cultured smooth muscle cells. J. Clin. Invest. 100, 589–596

38. Primiano, T., Sutter, T. R., and Kessler, T. W. (1997) Antioxidant-inducible genes. Adv. Pharmacol. 38, 293–328

39. Lin, M. H., Yen, J. H., Weng, C. Y., Wang, L., Ha, C. L., and Wu, M. J. (2014) Lipid peroxidation end product 4-hydroxy-trans-2-nonenal triggers unfolded protein response and heme oxygenase-1 expression in PC12 cells: roles of ROS and MAPK pathways. Toxicology 315, 24–37

40. Haberzettl, P., and Hill, B. G. (2013) Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol. 1, 56–64

41. Kim, K. M., Pae, H. O., Zheng, M., Park, R., Kim, Y. M., and Chung, H. T. (2007) Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ. Res. 101, 919–927

42. Guo, F. J., Xiong, Z., Lu, X., Ye, M., Han, X., and Jiang, R. (2014) ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell. Signal. 26, 332–342

43. Su, Z. Y., Zhang, C., Lee, J. H., Shu, L., Wu, T. Y., Khor, T. O., Conney, A. H., Lu, Y. P., and Kong, A. N. (2014) Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev. Res. 7, 319–329