Broadband microwave study of SrRuO$_3$ and CaRuO$_3$ thin films

Diana Geiger1, Marc Scheffler1, Martin Dressel1, Melanie Schneider2, Philipp Gegenwart2

11. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
2I. Physikalisches Institut, Georg-August-Universität, D-37073 Göttingen, Germany
E-mail: scheffl@pi1.physik.uni-stuttgart.de

Abstract. We study the microwave properties of SrRuO$_3$ and CaRuO$_3$ thin films in the frequency range 45 MHz to 40 GHz, and at temperatures between 80 K and 300 K, using a broadband Corbino technique. The films are grown on SrTiO$_3$ and MgO substrates, and we discuss how dielectric substrate resonances complicate the study of the film properties, in particular in the case of SrTiO$_3$ with its large dielectric constant. For SrRuO$_3$ on MgO substrate we find signatures of the ferromagnetic transition throughout our spectral range.

1. Introduction
Quantum phase transitions (QPTs) and their role for non-Fermi-liquid (NFL) behavior in electronic systems are a highly investigated topic, both theoretically and experimentally [1, 2]. While antiferromagnetic QPTs are found in a number of different materials (e.g. heavy fermion compounds [3]), one of the established examples of a ferromagnetic QPT [4] is the doped system Sr$_{1-x}$Ca$_x$RuO$_3$ [5, 6, 7] at the critical concentration $x \approx 0.8$. In optical measurements the frequency acts as tuning parameter which can be adjusted to probe the relevant energy scales of the system. For the pure compounds of our material system, SrRuO$_3$ and CaRuO$_3$, NFL behavior of the optical conductivity has been reported for infrared and THz frequencies [8, 9, 10], but it is unclear to which extent this is related to the ferromagnetic QPT. To match the characteristic low energy scales of QPTs and strongly correlated electron systems [11], in the present study we address the optical properties of SrRuO$_3$ and CaRuO$_3$ at very low energies, in the microwave frequency range.

2. Experiment
We have grown epitaxial thin films of SrRuO$_3$ and CaRuO$_3$ on SrTiO$_3$ substrates and polycrystalline SrRuO$_3$ films on MgO substrates using metalorganic aerosol deposition [7, 12, 13]. These films are in the range of 50 nm thick, i.e. much thinner than their microwave skin depth. We have measured the microwave properties of these samples in the frequency range 45 MHz to 40 GHz and at temperatures between 80 K and 300 K with a broadband Corbino technique as described in [14], but with a different cryostat that was optimized for intermediate and higher temperatures (similar to the one in [15]). Here the thin film sample under investigation terminates a coaxial cable: a vector network analyzer (NWA) sends the microwave signal through the cable onto the sample, where it is reflected and therefore probes its electromagnetic
properties. The reflected signal is detected by the NWA. To allow for a precise data analysis, we perform a thorough three-standard calibration procedure [14]. From the calibrated reflection coefficient we directly calculate the impedance and conductivity of the sample.

3. Results
In Fig. 1 we present reflection coefficient S_{11}, impedance Z, and conductivity $\sigma = \sigma_1 + i\sigma_2$ spectra for SrRuO$_3$ films on SrTiO$_3$ and MgO substrates, measured at 300 K. In this frequency range and at this temperature we expect a nearly constant σ_1 and a vanishing σ_2, consistent with metallic Drude behavior [16]. This is what we find for the film on MgO, see Fig. 1(f): $\sigma_1 \approx 0.23 \cdot 10^4 \text{ } \Omega^{-1} \text{ cm}^{-1}$ is almost constant and σ_2 is smaller. On top of these flat curves, there are two weak resonant features around 7 GHz and 13 GHz; these are not intrinsic to the SrRuO$_3$ film, but they are due to dielectric resonances in the substrate [17]. As these resonances are limited to small frequency regions, we can still analyze the microwave properties of the SrRuO$_3$ film in the broad frequency range outside the substrate resonances.

The SrRuO$_3$ on SrTiO$_3$ spectra in Fig. 1(a)-(c) show a rather different behavior: strong resonances cover the entire frequency range. These numerous resonances are a result of the very high dielectric constant of the SrTiO$_3$ substrate [18, 19], which shifts substrate resonances from higher frequencies into the measured microwave frequency range [17]. Here the influence of the substrate overwhelms the contributions of the SrRuO$_3$ film, and we cannot deduce the intrinsic microwave properties of the film from the measured overall response.

With decreasing temperature, the influence of the SrTiO$_3$ substrate gets even stronger, due to its increasing dielectric constant [18, 19]. This is shown in Fig. 2, where we plot Re(Z) of the measured impedance for SrRuO$_3$ and CaRuO$_3$ on SrTiO$_3$ substrates as a function of frequency and temperature. Upon cooling, substrate resonances move to lower frequencies, thus increasing the total number of resonances in our frequency range. With this strong influence of the substrate at GHz frequencies, we find signatures of the intrinsic response of the metallic films only at frequencies below 1 GHz, with a temperature dependence consistent with dc measurements [7].
The situation is quite different for the SrRuO$_3$ film on MgO, as evident from the frequency and temperature dependence of σ_1 in Fig. 3. The surface of this plot is smooth up to 20 GHz, and the two substrate resonances in this range remain at the same frequency for all temperatures. For this sample, we measure intrinsic properties of the SrRuO$_3$ film. In Fig. 4 we show the temperature dependence of the real part ρ_1 of the resistivity ($\rho = 1/\sigma$) for different frequencies. The kink around 150 K indicates the ferromagnetic transition in the thin film and is known from the dc resistivity of SrRuO$_3$ [6, 7]. With increasing frequency, the kink slightly shifts toward lower temperatures. This is reminiscent of the behavior of a ferromagnetic antiresonance (FMAR) [20] in the sense that at higher probing frequencies the observed onset of ferromagnetism moves to lower temperatures. But contrary to FMAR, here we are not sensitive to the magnetic permeability of the sample and only sense the conductivity or resistivity, respectively. This kink at the ferromagnetic transition can also be identified for the SrRuO$_3$ film on SrTiO$_3$, see Fig. 2 at low frequencies, but the strong temperature dependence of the substrate excludes a detailed analysis. For CaRuO$_3$ no such kink is observed, consistent with dc data and the absence of ferromagnetic ordering [6, 7].

While we can easily determine the microwave properties of the SrRuO$_3$ film on MgO, this choice of substrate is disadvantageous compared to SrTiO$_3$ from a film growth point of view:
the lattice mismatch to the Sr$_{1-x}$Ca$_x$RuO$_3$ system is larger, and as a result the film quality is reduced [13]. This is evident from our data for the case of SrRuO$_3$, where for MgO substrate compared to SrTiO$_3$ the room temperature conductivity is much lower (Fig. 1); also the resistivity ratio upon cooling is smaller. For CaRuO$_3$ the lattice mismatch to MgO is even too big for successful film growth.

4. Conclusions and Outlook
We have measured the frequency-dependent impedance of SrRuO$_3$ and CaRuO$_3$ thin films on SrTiO$_3$ substrate and a SrRuO$_3$ thin film on MgO substrate at microwave frequencies. For SrRuO$_3$ on MgO, we clearly observe the signature of the ferromagnetic transition throughout our frequency range. While thin films on MgO substrate are well suited for optical measurements at low frequencies, thin films on SrTiO$_3$ show strong substrate contributions, which hamper a proper analysis. Since the high lattice mismatch of MgO and Sr$_{1-x}$Ca$_x$RuO$_3$ limits the film quality, an alternative substrate with low and temperature-independent dielectric constant and lower lattice mismatch should be tried for future studies e.g. NdGaO$_3$ [21].

Acknowledgements
We acknowledge financial support by the DFG, including SFB 602.

References
[1] Vojta T 2000 Ann. Phys. 9 403
[2] Löhneysen H v, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015
[3] Gegenwart P, Si Q, Steglich F 2008 Nature Physics 4 186
[4] Vojta T, Belitz D, Kirkpatrick T, Narayanan R 1999 Ann. Phys. 8 593
[5] Yoshimura K, Imai T, Kiyama T, Thumber K R, Hunt A W, Kosuge K 1999 Phys. Rev. Lett. 83 4397
[6] Khalilah F, Okubo I, Christen H M, Mandrus D G 2004 Phys. Rev. B 70 134426
[7] Schneider M, Moshnyaga V, Gegenwart P, 2010 Phys. Status Solidi B 247 577
[8] Kostic P, Okada Y, Collins N C, Schlesinger Z, Reiner J W, Klein L, Kapitulnik A, Geballe T H, Beasley M R 1998 Phys. Rev. Lett. 81 2498
[9] Dodge J S, Weber C P, Corson J, Orenstein J, Schlesinger Z, Reiner J W, Beasley M R 2000 Phys. Rev. Lett. 85 4932
[10] Lee Y S, Yu J, Lee J S, Noh T W, Gimm T H, Choi H Y, Eom C B 2002 Phys. Rev. B 66 041104
[11] Scheffler M, Dressel M, Jourdan M, Adrian H 2005 Nature 438 1335
[12] Moshnyaga V, Khoroshin I, Sidorenko A, Petrenko P, Weidinger A, Zeittler M, Rauschenbach B, Tidecks R, Samwer K 1999 Appl. Phys. Lett. 74 2842
[13] Schneider M, Moshnyaga V, Gegenwart P, 2010 J. Phys.: Conf. Ser. 200 012178
[14] Scheffler M, Dressel M 2005 Rev. Sci. Instrum. 76 074702
[15] Booth J C, Wu D H, Anlage S M 1994 Rev. Sci. Instrum. 65 2082
[16] Dressel M and Grüner G 2002 Electrodynamics of Solids (Cambridge: Cambridge University Press)
[17] Kitano H, Ohashi T, Maeda A 2008 Rev. Sci. Instrum. 79 074701
[18] Weaver H E 1959 J. Phys. Chem. Solids 11 274
[19] Krupka J, Geyer R G, Kuhn M, Hinken J H 1994 IEEE Trans. Microwave Theory Tech. 42 1886
[20] Schwartz A, Scheffler M, Anlage S A 2000 Phys. Rev. B 61 R870
[21] Ricci F, Bevilacqua M F, Granozio F M, di Uccio U S 2002 Phys. Rev. B 65 155428