Unsupervised Tokenization for Machine Translation

Tagyoung Chung Daniel Gildea

Computer Science Department
University of Rochester
Tokenization

• Usually the first step of the SMT

• Two different problems for different languages
 – Finding unknown word boundaries
 (isolating languages such as Chinese)
 – Finding morpheme groupings of right granularity
 (agglutinative languages such as Korean)

• Supervised methods require training data or set of rules

• We present two unsupervised methods for MT
Problem of Granularity - Examples

- Korean word *meok-eoss-da* consists of three morphemes
 - *eat-past-indicative* (*TRANSLATION*: *ate*)
 - No reason to separate morphemes

- Korean word *hakgyo-e* consists of two morphemes
 - *school-locative* (*TRANSLATION*: *at school*)
 - It is desirable to separate morphemes in this case

- Bilingual model may help with this issue
Overview

- Monolingual model
 - Model description
 - Handling overfitting

- Bilingual model
 - Model description
 - Inference
 - Handling overfitting

- Results
Monolingual Model

• A quick way to learn tokenization

• Easiest solution: substring counts
 \[P(w_i) = \frac{\text{count}(w_i)}{\sum_k \text{count}(w_k)} \]
 - Single pass through corpus
 - Learning probability with EM overfits
 - Simple substring counts overfits as well
Overfitting

• Problem: Longer substrings are preferred under this model

• However, shorter tokens are more frequent in the real world
Solution to Overfitting

• Control token size with length factor

• \(P(w_i) \propto \text{count}(w_i) \phi(|w_i|) \)

• Geometric distribution would be a natural choice:
 \[\phi_1(\ell) = P(s)(1 - P(s))^{\ell-1} \]

• Observation: Heavier penalty for longer tokens is desired

• Doubly exponential length factor:
 \[\phi_2(\ell) = 2^{-\ell^\lambda} \]
Length Factor

- Length factor vs. empirical token length distribution

\[
P(s) = 0.58
\]

\[
\lambda = 2.13
\]
Setting the Parameter

• Both ϕ_1 and ϕ_2 have a single parameter

• We set the parameter such that number of tokens in the half of the parallel corpus match the other half

• Justification:
 – Hypothesis: Tokenizing this way will produce tokens that are closer to an ideal situation thus result in better MT system
 – Ideal case: one-to-one correspondence between tokens of two languages
Related Work

- Goldwater et al. (2006) use geometric distribution as base distribution for Dirichlet process in their Bayesian segmentation model to model word acquisition in infants.

- Liang and Klein (2009) use doubly exponential length factor in their word segmentation model to test an online EM algorithm.

- Chang et al. (2008) use a feature in their CRF Chinese segmenter to tweak average size of tokens to improve MT performance.
Bilingual Model

- Can we learn segmentation of one language from the other language in parallel corpus?

- Our generative Model:

 ![Diagram]

 The model learns alignments and segmentation is by-product of alignments.
Inference

• The model uses IBM word alignment model 1
 \[P(f | e) = \prod_i \sum_j P(f_i | e_j) P(a_i = j) \]

• \(f \) is unknown
 \[f = s \circ c \]

• Apply dynamic programming over hidden segmentation \(s \)
 – Analogous to HMM’s forward-backward algorithm
 – Transition: segmentation
 – Emission: alignment
Forward-Backward Algorithm

\[s = 0 \]

\[s = 1 \]

\[c_1 \quad c_2 \quad \ldots \quad c_i \quad \ldots \quad c_j \quad \ldots \quad c_m \]

\[e_1 \quad \ldots \quad e_k \quad \ldots \quad e_n \]

\[
P(c_{i+1}^j, a = k | e) = \frac{\alpha(i)P(c_{i+1}^j | e_k)P(a = k)\beta(j)}{P(c | e)}
\]

\[
\alpha(i) = P(c_1^i, s_i = 1 | e)
\]

\[
\beta(j) = P(c_{j+1}^m, s_j = 1 | e)
\]
Overfitting

- We know the solution has to be **very** sparse
 - Solution: use a sparse prior
 \[
 \theta_e \mid \alpha \sim \text{Dir}(\alpha),
 \]
 \[
 f_i \mid e_i = e \sim \text{Multi}(\theta_e).
 \]
 - Use VB: minor change to inference (Johnson 2007)

- Further controlling overfitting with length factor
 - \(\phi_1 \) can be embedded in the model
 (the parameter can be learned)
 - \(\phi_2 \) can be used in the same manner as the first model
Related Work

• Kikui and Yamamoto (2002) use similar word alignment-based unsupervised segmentation to find new translation pairs from untokenized corpus.

• Xu et al. (2008) use similar word alignment-based segmentation model (using Gibbs sampling for inference) as part of their Chinese word segmenter.
Summary of Models

• Both models are unigram segmentation model

• Both models have explicit means to control size of tokens

• Monolingual model uses substring count to estimate \(P(f) \)

• Bilingual model uses word alignment to estimate

\[
P(f) = \sum_e P(f \mid e)P(e)
\]

• Both models use the Viterbi algorithm to find the best segmentation according to \(P(f) \)

• Both models limit maximum size of \(f \) for practical reasons
Experiments

- MT Systems for Chi-Eng, and Kor-Eng language pairs
 - 2M words on English side for both language pairs
 - monolingual/bilingual models with length factors
 - Moses (Koehn et al., 2007)

- Three Questions:
 - How do the models compare to other tokenization?
 - What are the effects of length factors?
 - Does bilingual model learn to segment better?
Comparison to Supervised Segmentation

Supervised	Chinese	Korean
Rule-based morphological analyzer		7.27
LDC segmenter	20.03	
Xue’s segmenter	23.02	
Stanford segmenter (pku)	21.69	
Stanford segmenter (ctb)	22.45	

Unsupervised	Chinese	Korean
Bilingual model with $\phi_1 \ P(s) = 0.9$	20.75	7.46
Bilingual model with ϕ_2	22.31	7.35
Effect of length factor

Chinese
Monolingual vs. Bilingual

Model Description	Chinese	Korean
Bilingual model with ϕ_1, $P(s) = learned$	20.04	7.06
Bilingual model with ϕ_1, $P(s) = 0.9$	20.75	**7.46**
Bilingual model with ϕ_1, $P(s) = 0.7$	20.59	7.31
Bilingual model with ϕ_1, $P(s) = 0.5$	19.68	7.18
Bilingual model with ϕ_1, $P(s) = 0.3$	20.02	7.38
Bilingual model with ϕ_2	**22.31**	7.35
Monolingual model with ϕ_1	20.93	6.76
Monolingual model with ϕ_2	20.72	7.02
Summary

• Unsupervised tokenization methods are comparable to supervised ones in use for MT

• Bilingual model does learn better token probability for MT

• Heavier penalty for longer tokens is a useful means to prevent overfitting in segmentation

• Need to optimize parameters for end-to-end translation quality
Additional Results

Model	Chinese Score
Monolingual model with ϕ_1 (EM)	15.70
Monolingual model with ϕ_2 (EM)	21.30
Monolingual model with ϕ_1	20.93
Monolingual model with ϕ_2	20.72