1. Introduction

Ebola virus (EBOV) belongs to the family Filoviridae, the genus *Ebolavirus*, and frequently causes fatal infection in humans[1]. EBOV disease (EVD) may show multiple, serial, and nonspecific-disease symptoms including high fever, headache, vomiting, anorexia, diarrhea, and aching muscles[1-4]. Unexplained bleeding in the eyes, nose, gums, and gut occurs in the advanced stages[1-4]. The first outbreak of EVD was reported in 1976 in the Democratic Republic of the Congo. Until 2013, most outbreaks occurred in the Central African region, including Zaire, Sudan and Uganda. However, between March and October 2014, over 10,000 cases of EVD have been recorded in West Africa, such as in Guinea, Liberia, Sierra Leone, and Nigeria, and a few hospital or secondary infections of EVD have occurred in Spain and the United States of America. EVD is presently one of the world’s most feared diseases. In this literature review, we describe the epidemiology, clinical features, diagnosis, and treatment of EVD.
Table 1. EVD first emerged in 1976 in the Democratic Republic of Congo (DRC) and at around the same time in Sudan. Among these epidemic areas, 318 cases were recorded in DRC (case fatality rate [CFR]: 88%) and 284 cases in Sudan (CFR: 53%). As the first reports of the epidemic occurred near the Ebola River, DRC, the disease became known as Ebola hemorrhagic fever (EHF)[7,10], and two different species of EBOV were confirmed: EBOV-Zaire (EBOV-Z) and EBOV-Sudan (EBOV-S). In 1977, one fatal case due to EBOV-Z was reported in Zaire, and EBOV-S subsequently reemerged with 34 cases, 22 of which were fatal, in Sudan in 1979.

No further cases were recorded until 1994, when a new species of EBOV was confirmed in a non-fatal case in the Ivory Coast and named EBOV-IC. One case was confirmed who had traveled from Liberia to Sierra Leone and had antibodies to EBOV, suggesting existence of EBOV-IC in Liberia[11]. These episodes suggest that EBOV had spread from areas in Central Africa to West Africa. In 1995, EVD due to EBOV-Z reemerged in the DRC[12]. An estimated 315 cases and 250 deaths (CFR: 81%) occurred during this large epidemic. The EBOV-Z species identified was shown to have a close genetic relationship with the strains isolated in 1976 in Zaire[13]. EBOV-S then emerged in Uganda during 2000-2001, resulting in an estimated 425 cases and 224 deaths (CFR: 53%). The EBOV species identified could be clearly placed among the EBOV-S strains isolated in 1976 in Sudan[14,15]. In 2004, an EBOV-S outbreak of 17 cases and 7 deaths (CFR: 41%) was reported in Yambio County, South Sudan. The index case had butchered a monkey, and human-to-human transmission was mainly through direct contact[16]. Outbreak of EBOV-Z occurred in the Republic of Congo in 2002-2003 with 143 cases (128 deaths, CFR: 89%) and in the DRC in 2007, with 264 suspected cases and 187 deaths (CFR: 71%) recorded[17,18]. In November 2007, a new EBOV species, designated Bundibugyo ebolavirus (EBOV-B), was identified in Western Uganda, and 149 suspected cases and 37 deaths had been reported by January 2008 as the outbreak neared conclusion[19]. In the 2008 Ebola outbreak, there were 32 cases including 15 deaths (CFR: 47%) in Kasaï Occidental Province in the DRC[20,21]. In May 2011, a patient with suspected EHF died after contacting EBOV-S in Luwero District, Uganda[22], and the following year an outbreak among 11 patients resulted in 4 deaths from EHF in Kibaale District[23]. Another EVD outbreak occurred in the DRC

Year	Outbreak location	Species	Human cases	Report number of human cases	Report number of deaths among cases	CFR (%)
1976	Democratic Republic of Congo (formerly Zaire)	Zaire	318	280	88	
1976	Sudan (South Sudan)	Sudan	284	151	53	
1976	England	Sudan	1	0	0	
1977	Zaire	Zaire	1	1	100	
1979	Sudan (South Sudan)	Sudan	34	22	65	
1989	USA	Reston	0	0	0	
1990	USA	Reston	4 (asymptomatic)	0	0	
1989-1990	Philippines	Reston	3 (asymptomatic)	0	0	
1992	Italy	Reston	0	0	0	
1994	Gabon	Zaire	52	31	60	
1994	Côte d'Ivoire (Ivory Coast)	Tai Forest	1	0	0	
1995	Democratic Republic of the Congo	Zaire	315	250	81	
1996 (January - April)	Democratic Republic of the Congo	Zaire	37	21	57	
1996-1997 (July - January)	Gabon	Zaire	60	45	74	
1996	South Africa	Zaire	2	1	50	
1996	USA	Reston	0	0	0	
1996	Philippines	Reston	0	0	0	
1996	Russia	Russia	1	1	100	
2000-2001	Uganda	Sudan	425	224	53	
October 2001-March 2002	Gabon	Zaire	65	53	82	
October 2001-March 2002	Republic of the Congo	Zaire	57	43	75	
December 2002-April 2003	Republic of the Congo	Zaire	143	128	89	
November-December 2003	Republic of the Congo	Zaire	35	29	83	
2004	Sudan (South Sudan)	Sudan	17	7	41	
2004	Russia	Zaire	1	1	100	
2007	Democratic Republic of Congo	Zaire	264	187	71	
December 2007-January 2008	Uganda	Bundibugyo	149	37	25	
November 2008	Philippines	Reston	6 (asymptomatic)	0	0	
December 2008-February 2009	Democratic Republic of the Congo	Zaire	32	15	47	
May 2011	Uganda	Sudan	1	1	100	
June-October 2012	Uganda	Sudan	11			
June-November 2012	Democratic Republic of the Congo	Bundibugyo	36	13	36	
November 2012-January 2013	Uganda	Sudan	6	3	50	
March 2014-Present	Various countries	Zaire	15113	5406	36	

* These data are based on earlier reports[1-28]; CFR: Case fatality rate.
in 2012, and 13 of the 36 laboratory-confirmed cases died[24,25]. None of the abovementioned outbreaks had epidemiologic links[1].

3. Initial EVD epidemiology in 2014

An epidemiologic investigation of laboratory-confirmed cases indicated that the first fatality of the current 2014 outbreak occurred in December 2013 in Guinea[4]. The patient was a 2-year-old child, and 8 other deaths were confirmed between December 2013 and February 2014 in the same village (Méliandou village, Guéckédou Prefecture). The disease may have spread from some of these patients to others in neighboring prefectures such as Macenta, Nzérékoré, and Kissidougou[4]. Guéckédou and Macenta prefectures are bordered to the north by Liberia and Sierra Leone. The epidemiologic investigation reported 15 fatal laboratory-confirmed EVD cases[4]. EBOV-Z was identified as the causative agent and phylogenetic analysis suggested that an independent cluster had formed from the previously identified EBOV strains from the DRC and Gabon[4].

4. EVD epidemics in West Africa in 2014

The relatively small EVD outbreaks in Guinea may have spread to neighboring countries such as Liberia and Sierra Leone[26]. As of 16 November 2014, 15,113 EVD cases have been reported (confirmed, probable and suspected cases) in eight countries since the epidemic began. Among them, 5,406 deaths have occurred (CFR: 35.8%)[27]. As of November 2014, EVD cases in Guinea, Liberia, and Sierra Leone amount to 1,971 (CFR: 60.4%), 7,069 (CFR: 41.9%) and 6,073 (CFR: 20.6%), respectively[27], with some cases being reported further afield in Mali, Nigeria, and Senegal[27]. Four EVD patients reported in the United States of America and one in Spain have all involved in medical personnel or those who worked in the epidemic areas[27]. Detailed geometric data are shown in Figure 1.

5. Virology of EBOV

EBOV belongs to the family Filoviridae and the genus Ebolavirus[1,10]. Five EBOV species have been identified: EBOV-Z, EBOV-S, EBOV-IC, EBOV-B, and Reston ebolavirus. The prefix of the family name “filo” originates from the Latin word for thread or string. Virions have multiple morphological forms of very long filamentous rods or compact convoluted shapes (diameter around 80 nm, length 800-14,000 nm)[1]. The EBOV genome is a single negative-sensed RNA (genome size 19 Kb). The virions contain 7 proteins: nucleoprotein, viral proteins 24, 30, 35, and 40, glycoprotein (GP), and L protein. The structure of the genome is similar among the species, but phylogenetic analysis has shown the species have formed independent lineages with wide genetic divergence (Figure 2). Notably, the virulence of each species may differ markedly from the others[1,3]. For example, EVD cases due to EBOV-Z and EBOV-S show high CFRs of over 70% and 50%, respectively, while the CFR for EBOV-B is around 27%[3,28]. Reston ebolavirus may have low or no virulence in humans, but it is thought that the virus is highly virulent in simians[1].

Phylogenetic analysis based on the GP gene sequences of EBOV detected in patients from the current epidemic areas have been confirmed as EBOV-Z strains and they have close genetic relationships.
However, the genetic properties of these strains may be different from typical EBOV-Z\cite{29}. In addition, the CFR for the present EBOV-Z epidemics is relatively low (around 40%-50%) compared with typical EBOV-Z\cite{30}, while in a recent report with laboratory confirmed cases, the CFR is 74% in Sierra Leone\cite{31}. The reason for the difference in virulence among the strains is not known.

6. Transmission routes

Although the life cycles of EBOV species are not precisely known, the natural hosts (reservoirs) of EBOV are thought to be a species of fruit bat\cite{32,33}. It is known that EBOV can transmit from bats to some species of simians\cite{9}, so EBOV-infected bats and simians may be an infectious source of EBOV when handled or consumed by humans\cite{9}. It is thought that almost all human-to-human EBOV infections are due to direct contact with blood and/or body fluids (e.g., saliva, mucus, vomit, feces, sweat, tears, breast milk, urine, and semen) from symptomatic/dead patients\cite{7}. Thus, extreme care must be taken when handling the body fluids of patients with EVD to avoid infection\cite{7}. Indeed, two thirds of the EVD cases in the Guinea epidemic during 2014 may have contacted the virus via unprotected (or unsuitably protected) contact with infected corpses during Guinean burial rituals.

7. Clinical features of EVD

EVD tends to cause the severest form of viral hemorrhagic fever in humans. Most EVD cases manifest as a sudden onset of influenza-like symptoms, such as high fever, chills, malaise, and myalgia\cite{1,3,6,34}, which may develop to systemic gastrointestinal symptoms (vomiting and diarrhea) and respiratory (chest pain and cough), vascular (conjunctival injection and edema), and neurological (headache, confusion, and coma) symptoms\cite{1,3,6}. Hemorrhagic symptoms may follow, including petechiae, ecchymosis, and uncontrolled mucosal hemorrhage\cite{1,3,6}. These symptoms can resemble other diseases however, such as malaria, cholera, typhoid fever, meningitis, and other viral hemorrhagic fevers. Cause of death is usually from multiple organ failure due to these complications\cite{1,3,6}.

General laboratory data are nonspecific to EVD\cite{1,3,35}. In the early phase of the disease, leukocytopenia and lymphocytopenia may be evident in peripheral blood, and subsequent neutrophilia and thrombocytopenia are often seen\cite{1,3}. In addition, elevation of ectopic enzymes such as aspartate transaminase and alanine aminotransferase is common\cite{1,3}. Abnormalities may occur in the blood coagulation system, such as prolonged prothrombin and partial thrombin time. At the end stage, secondary bacterial infections such as pneumonia may develop\cite{1,3}. In nonfatal cases, a high fever may continue for about 5 to 9 d, but symptoms improve around 7 to 10 days after onset\cite{1,3,36}. At that time, a humoral antibody response may be noted. There are no specific symptoms in the early stage of EVD; thus, laboratory confirmation is essential\cite{1}. RT-PCR and/or immunological methods (ELISA) are generally used for detection, as with other viral infections\cite{1}.

8. Present status of therapeutic drug developments for EVD

At present, there is no approved definitive treatment, such as vaccines or anti-viral drugs, for EVD\cite{1,3,34}. Therefore, symptomatic treatment methods including infusion of electrolyte and/or antibiotics are mainly used\cite{1,3}.
Two promising candidate vaccines against EVD have been reported to date. The US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline line have developed one candidate EVD vaccine, cAd3-ZEBOV[37]. The vaccine is a chimpanzee-derived adenovirus vector with an Ebola virus gene inserted. The second candidate, rVSV-ZEBOV, has been developed by the Public Health Agency of Canada in Winnipeg[38]. The availability of these drugs for clinical use is eagerly awaited.

The experimental drug ZMapp has been administered in 3 cases so far. It contains three monoclonal antibodies (mAbs) that are designed to neutralize EBOV[39]. The mAb cocktail binds to and neutralizes the GP protein of EBOV and has been shown to prevent infection in monkeys[39]. ZMapp was administered to 2 American EVD patients who were infected while treating EVD patients in Liberia during the recent epidemic[40], and both completely recovered from serious EVD; however, another Spanish patient treated with the same drug has died[40]. It is too early to tell how effective this experimental treatment will be.

Among the anti-viral drugs under development, a nucleic acid analog known as “favipiravir” may be applicable to the treatment of EVD[41]. It is a prodrug of a purine nucleoside analog, ribavirin, that inhibits the synthesis of viral RNA through the action of RNA-dependent RNA polymerase (RdRp) of influenza virus[42]. Some mechanisms of viral RNA synthesis are similar between EBOV and influenza viruses[43], so it is expected that the drug will have similar effects on the RNA synthesis of EBOV. Indeed, significant effects against EVD have been reported in mice[43]. We may therefore see favipiravir being tried clinically in the present EVD epidemic.

9. Conclusion

We have described current knowledge of EVD based on a review of the literature. With the knowledge we have thus far, it appears that it will be difficult to predict the extent and outcomes of EVD epidemics in the future. However, about 30 years ago, human immunodeficiency virus (HIV) infection suddenly emerged and spread throughout the world, and now, thanks to continuous efforts by the medical community, effective treatment methods against HIV infection are available, although the disease cannot yet be eradicated. EBOV and EVD are poorly understood at present, but there is hope that effective treatment methods to combat EVD will soon be developed.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Feldman H, Sanchez A, Geisbert WT. Filoviridae: Marburg and Ebola viruses. In: Knipe DM, Howley PM, editors. Fields in virology. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 923-956.

[2] Sureau PH. Firsthand clinical observations of haemorrhagic manifestations in Ebola haemorrhagic fever in Zaire. Rev Infect Dis 1989; 11(Suppl 4): S790-S793.

[3] Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011; 377(9768): 849–862.

[4] Baille S, Pannetier D, Oestreicher L, Rieger T, Kiovogui L, Magassouba N, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014; 371(15): 1418–1425.

[5] Burke J, Ghysdebrecht SG, Pattyn SR, Piot P, Ruppol JF, Thonon D, et al. Ebola haemorrhagic fever in Zaire, 1976. Bull World Health Organ 1978; 56(2): 271–293.

[6] Muyembe-Tamum JJ, Mulanga S, Masumu J, Kayembe JM, Kemp A, Paweska JT. Ebola virus outbreak in Africa: past and present. Onderstepoort J Vet Res 2012; 79(2): 451.

[7] Chowell G, Nishiura H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med 2014; 12(1): 196.

[8] Gulland A. Fifteen countries are at risk of Ebola outbreak, says WHO. BMJ 2014; 349: g6305.

[9] Groseth A, Feldmann H, Strong JE. The ecology of Ebola virus. Trends Microbiol 2007; 15(9): 408–416.

[10] Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, et al. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 2010; 155(12): 2083–2103.

[11] Le Guenno B, Formenty P, Boesch C. Ebola virus outbreaks in the Ivory Coast and Liberia, 1994-1995. Curr Top Microbiol Immunol 1999; 235: 77-84.

[12] Khan AS, Tshioko FK, Heymann DL, Le Guenno B, Nabeth P, Kershnars B, et al. The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Épidémies à Kikwit. J Infect Dis 1999; 179(Suppl 1): S76–S86.

[13] Carroll SA, Towner JS, Sealy TK, McMullan LK, Khristova ML, Burt FJ, et al. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol 2013; 87(5): 2608–2616.

[14] Okware SI, Omaswa FG, Zaramba S, Opiyo A, Lutwama JJ, Kamugisha J, et al. An outbreak of Ebola in Uganda. Trop Med Int Health 2002; 7(12): 1068–1075.

[15] Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol 2004; 78(8): 4330–4341.

[16] Outbreak of Ebola hemorrhagic fever in Yambio, south Sudan, April-June 2004. Wkly Epidemiol Rec 2005; 80(43): 370–375.

[17] Outbreak news. Ebola virus haemorrhagic fever, Democratic Republic
of the Congo. Wkly Epidemiol Rec 2007; 82(38): 329.

[18] Outbreak news. Ebola virus hemorrhagic fever, Democratic Republic of the Congo-Update. Wkly Epidemiol Rec 2007; 82(40): 345–346.

[19] Towner JS, Sealy TK, Khristova ML, Albarrião CG, Conlan S, Reeder SA, et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog 2008; 4(11): e1000212.

[20] World Health Organization. End of the Ebola outbreak in the Democratic Republic of the Congo. Geneva: WHO; 2009. [Online] Available from: http://www.who.int/csr/don/2009_02_17/en/ [Accessed on 20 November 2014].

[21] GEF, Shoemaker T, MacNeil A, Balinandi S, Campbell S, Wamala JF, Mbala Kingebeni P, et al. Ebola virus disease in the Democratic Republic of the Congo. Wkly Epidemiol Rec 2012; 87(44): 421.

[22] Shoemaker T, MacNeil A, Balinandi S, Campbell S, Wamala JF, McMullan LK, et al. Reemerging Sudan Ebola virus disease in Uganda, 2011. Emerg Infect Dis 2012; 18(9): 1480–1483.

[23] Albarrião CG, Shoemaker T, Khristova ML, Wamala JF, Muyembe JJ, Balinandi S, et al. Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012. Virology 2013; 442(2): 97–100.

[24] Outbreak news. Ebola, Democratic Republic of the Congo. Wkly Epidemiol Rec 2012; 87(44): 421.

[25] Tambo E, Ugwu EC, Ngogang JY. Need of surveillance response systems to combat ebola outbreaks and other emerging infectious diseases in African countries. Infect Dis Poverty 2014; 3: 29.

[26] Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanhe L, et al. Genomic surveillance elucidates ebola virus origin and transmission during the 2014 outbreak. Science 2014; 345(6202): 1369–1372.

[27] World Health Organization. Ebola response roadmap: situation report-19 November 2014. Geneva: WHO; 2014. [Online] Available from: http://apps.who.int/iris/bitstream/10665/144032/1/roadmapsitrep_19Nov14_eng.pdf?ua=1 [Accessed on 20 November 2014].

[28] Meheди M, Grosset A, Feldmann H, Ebihara H. Clinical aspects of Marburg hemorrhagic fever. Future Virol 2011; 6(9): 1091–1106.

[29] Maganga GD, Kapetshi J, Berethet N, Kebela Ilunga B, K abange F, M bala K ingbeni P, et al. Ebola virus disease in the Democratic Republic of Congo. N Engl J Med 2014; 371(22): 2083-2091.

[30] WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N Engl J Med 2014; 371(16): 1481–1495.

[31] Schieffelin JS, Shaffer JG, GobaA, Gbakie M, Gire SK, Colubri A, et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N Engl J Med 2014; 371(22): 2092-2100.

[32] Hayman DT, Emmerich P, Yu M, Wang LF, Suu-ire R, Fooks AR, et al. Long-term survival of an urban fruit bat seropositive for Ebola and L agos bat viruses. PLoS One 2010; 5(8): e11978.

[33] Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005; 438(7068): 575–576.

[34] Muyembe-Tamifu JJ, M ulangu S, M asumu J, K ayembe J M, Kemp A, P aweska J T. Ebola virus outbreaks in Africa: past and present. Onderstepoort J Vet Res 2012; 79(2): 451.

[35] Jeffs B. A clinical guide to viral hemorrhagic fevers: Ebola, Marburg and Lassa. Trop Doct 2006; 36(1): 1–4.

[36] Ksiazek TG, Rollin PE, Williams AJ, Bressler DS, Martin ML, Swanepoel R, et al. Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis 1999; 179(Suppl 1): S177–S187.

[37] Kanapathipillai R, RESTREPO A M, FAST P, WOOD D, DYE C, KIENY MP, et al. Ebola vaccine - an urgent international priority. N Engl J Med, Forthcoming 2014.

[38] Jones SM, Feldmann H, Stöhrer U, Geisbert JB, Fernando L, Grolla A, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 2005; 11(7): 786-790.

[39] Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, et al. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res 2014; 104: 153–155.

[40] World Health Organization. Ebola response roadmap: situation report-31 October 2014. Geneva: WHO; 2014. [Online] Available from: http://apps.who.int/iris/bitstream/10665/10665/144032/1/roadmapsitrep_31Oct2014_eng.pdf?ua=1 [Accessed on 20 November 2014].

[41] Gatherer D. The 2014 Ebola virus disease outbreak in West Africa. J Gen Virol 2014; 95(Pt 8): 1619–1624.

[42] Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100(2): 446–454.

[43] Smith, J.F., Easaugh, L.S., Steward, J.A., Nelson, M., Lenk, R.P., Lever, M.S. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res 2014; 104: 153–155.