Dexamethasone Reduces Energy Expenditure and Increases Susceptibility to Diet-Induced Obesity in Mice

Raffaella Poggioli, Cintia B. Ueta, Rafael Arrojo e Drigo, Melany Castillo, Tatiana L. Fonseca, and Antonio C. Bianco

Objective: To investigate how long-term treatment with dexamethasone affects energy expenditure and adiposity in mice and whether this is influenced by feeding on a high-fat diet (HFD).

Design and Methods: Mice were placed on a HFD for 2 weeks and started on dexamethasone at 5 mg/kg every other day during the next 7 weeks.

Results: Treatment with dexamethasone increased body fat, an effect that was more pronounced in the animals kept on HFD; dexamethasone treatment also worsened liver steatosis caused by the HFD. At the same time, treatment with dexamethasone lowered the respiratory quotient in chow-fed animals and slowed nightly metabolic rate in the animals kept on HFD. In addition, the acute VO2 acceleration in response to β3 adrenergic-stimulation was significantly limited in the dexamethasone-treated animals, as a result of marked decrease in UCP-1 mRNA observed in the brown adipose tissue of these animals.

Conclusions: Long-term treatment with dexamethasone in a mouse model of diet-induced obesity decreases brown adipose tissue thermogenesis and exaggerates adiposity and liver steatosis.

Introduction

Cortisol is the main naturally occurring glucocorticoid in humans and its excess increases the total mass of adipose tissue, redistributing the fat from peripheral to central depots (1). In fact, long-term glucocorticoid treatment is associated with central obesity in humans (2,3), which is also typically observed in most patients with Cushing’s syndrome (4). However, obese patients do not exhibit elevated serum cortisol concentrations. Instead, higher cortisol levels have been reported within their adipose tissue as a result of increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD 1) activity, an enzyme that converts cortisone to cortisol (5).

The mechanisms by which exogenous glucocorticoids alter metabolism and induce weight gain are poorly understood. Despite stimulating leptin synthesis and secretion (directly or through insulin) by adipocytes in humans (6,7), glucocorticoids increase appetite by limiting leptin-induced satiety and favoring NPY orexigenic activity (8,9). For example, it has been suggested that an increase in dietary energy intake explains the increase in body weight and fat mass observed in healthy female volunteers treated with glucocorticoids (10). On the other hand, glucocorticoids are stress hormones with well-known lipolytic effects; these steroids are thought to be involved in cancer-associated cachexia through increased lipid mobilization from adipose tissue (11). Furthermore, the involvement of other systems is also likely as illustrated in the recent report that osteoblasts mediate many of the adverse effects of exogenous glucocorticoids on fuel metabolism (12).

One possible mechanism by which exogenous glucocorticoids affect adiposity and the size of various white adipose tissue depots is by slowing down the rate of energy expenditure (EE). This includes the resting EE and the inducible EE that is associated with physical activity, feeding on a high-fat diet (HFD) or triggered by environmental stimuli such as cold exposure (13). Whereas muscle contraction and ATP breakdown explains the EE linked to physical activity, mitochondrial uncoupling in the brown adipose tissue (BAT) underlies a substantial fraction of the diet- and cold-inducible EE (13). However, glucocorticoids do not seem to play a major role in regulating resting EE. For example, there is poor correlation between basal EE and cortisol levels in mice (14) and in humans EE is not altered with acute inhibition of glucocorticoid action (15) or glucocorticoid excess, e.g., in patients with Cushing’s syndrome (16).

Little is known about inducible EE and exogenous glucocorticoids, with short-term studies in healthy male participants reporting a significant increase in EE and accelerated fat oxidation during exercise (17,18); whereas in other similar studies inducible EE was not affected by glucocorticoids (19). However, there is consensus that acute administration of glucocorticoids inhibits the expression of uncoupling protein-1 (UCP-1), the key mitochondrial protein involved in BAT EE (20,21). Administration of corticosterone in
rats reduced UCP-1 mRNA and protein levels as well as responsiveness to cold exposure or epinephrine administration (21). Also, ob/ob mice, which exhibit higher levels of corticosterone, have reduced levels of UCP-1 and decreased EE (22). Notably, if the glucocorticoid-mediated reduction in UCP-1 expression were to slow down the rate of EE then it would then explain why chronic treatment with dexamethasone aggravates diet-induced obesity and dyslipidemia in mice (23). This is potentially of great interest in view of the observation that BAT is retained by humans during adulthood (24-26).

The UCP-1 is a cAMP-inducible inner-membrane mitochondrial protein that disrupts the proton gradient across this membrane, thus rapidly accelerating the oxidation of energy substrates uncoupled from ATP synthesis in BAT. Both UCP-1 and the adrenergic stimulation are critical for diet-induced EE in the BAT, as mice with the UCP-1 knock out (27), triple adrenergic receptor knock out (28), or knock out of the β1 adrenergic receptor (29) exhibit defective BAT thermogenesis, developing severe cold intolerance and obesity. However, the key question addressed by the present studies is whether the reduction in UCP-1 caused by the administration of glucocorticoids can significantly slow down basal or inducible BAT-mediated EE and hence contribute to metabolic dysregulation in a mouse model of diet-induced obesity.

Methods and Procedures

Animals

The animal Care and Use Committee of the Miami Miller School of Medicine approved all procedures. Two-month-old male C57BL/6J mice were obtained from Jackson Laboratory (Bar Harbor, ME) and were housed under standard conditions with food and water ad libitum, at 22°C and a 12-h light/dark cycle. Animals were treated with HFD (HFD: 4.5 kcal/g; 42.7% carbohydrate, 15.3% protein, 42% fat; TD95121; Harlan Teklad, Indianapolis, IN) or remained on standard chow diet (3.5 kcal/g; 58.5% carbohydrate, 28.8% protein, 12.7% fat; 5010; PMI Nutrition, Richmond, IN) for a total of 10 weeks. Mice were allowed to adjust to the environment for at least 1 week before starting the diet. After 2 weeks of diet, animals were treated with i.p. injections of dexamethasone sodium phosphate (APP Pharmaceutical, LLC; 5 mg/kg) or 0.9% sodium chloride (Baxter, Deerfield, IL) on alternate days until the end of the experimental period. As indicated, data are presented as (i) the variance of the mean (SEM). Data were analyzed by PRISM Parallel-GraphPad software (San Diego, CA). Student’s t-test was used to compare the differences between two independent groups. Statistical significance was considered at a level of P < 0.05. ANOVA was used to compare more than two groups, followed by the student-Newman-Keuls post-test to detect differences between groups.

Metabolic parameters

Body weight was measured every other day until euthanasia. The caloric intake was measured individually during 8-day period after 2 weeks of dexamethasone or saline treatment and the results expressed as a function of body weight (kcal/g BW/day). Body composition (lean body mass, fat % and fat mass) was measured in mice fasted overnight and anesthetized with ketamine and xylazine (200 and 7-20 mg/kg) using Dual-Energy X-ray Absorptiometry (DXA, Lunar Pixi, Janesville, WI) at selected time points.

Indirect calorimetry and β3-selective adrenergic stimulation

For these studies, animals were admitted to a comprehensive lab animal monitoring system (C.L.A.M.S.; Oxymax System, Columbus Instruments, Columbus OH), in individual cages and allowed to acclimatize for 2 days. Metabolic profiles of 24 h were obtained during the following 5 days. Equipment was calibrated against a defined gas mixture of O2 and CO2 (Airgas, Tampa, FL). Respiratory quotient (RQ) was calculated as a ratio between CO2 production (liters) and O2 consumption (liters). Oxygen consumption (VO2) was expressed in ml O2/min and normalized by lean body mass as defined by DXA. VO2 was also assessed for 4 h before and after the s.c. injections of a β3-selective adrenergic receptor agonist-CL 316243 (Sigma Chemical Co. St Louis, MO; 1 mg/kg).

Euthanasia and post-mortem analysis

At the end of the experimental period, overnight fasted mice were killed by cardiac puncture after brief exposure to CO2. Interscapular BAT and liver were removed, weighted and rapidly frozen in liquid nitrogen. The tissue weight was normalized by femoral length measured using an electronic digital caliper (Control Company, Friendswood, TX purchased through VWR). Liver triglycerides were measured after extraction with chloroform:methanol (2:1) and 0.05% sulfuric acid from a 0.2-g sample of frozen liver using a commercially available kit (Sigma-Aldrich, St. Louis, MO), as previously published (30).

Measurements of UCP-1 expression

Total RNA was extracted using the QuiagenRNeasy kit according to the manufacturer’s protocol (Qiagen, Valencia, CA) and the concentration determined with a Nanodrop spectrophotometer. cDNA was prepared from 1 μg of mRNA by using high-capacity cDNA reverse Transcription Kit according to the manufacturer’s protocol (Applied Biosystems, Foster City, CA). The gene of interest was assessed by RT-qPCR against a calibration curve of pooled mouse samples (Bio-Rad iCycleriQ Real-Time PCR Detection System) and normalized by the housekeeping gene glycylphilin, A, as previously described (31). The primer sequences used are: UCP-1: 5’AGGTGTGCCAGTGTTCTGATTG-3’, 3’CTGTCCTGGGAGAGATGTGATG-5’. Cyclo-A: 5’GCCATGACGAGCCCTTG-3’, 3’TGGCCGATGCGCTATTAG-5’.

Data analysis

Throughout the manuscript, all data are expressed as mean ± standard error of the mean (SEM). Data were analyzed by PRISM Parallel-GraphPad software (San Diego, CA). Student’s t-test was used to compare the differences between two independent groups. Statistical significance was considered at a level of P < 0.05. ANOVA was used to compare more than two groups, followed by the student-Newman-Keuls post-test to detect differences between groups.

Results

Treatment with dexamethasone increases adiposity

To define the effects of dexamethasone on metabolic parameters of mice kept on a HFD, mice that had been on chow or HFD for 2 weeks were treated with saline or dexamethasone for an additional 7 weeks while remaining on the same diets. As expected, the body weight gain was approximately doubled in mice kept on a HFD (Figure 1A). Body fat mass (Figure 1B), body percentage of fat
(Figure 1C), and liver triglyceride content (Figure 1D) were also substantially increased; no significant effects of HFD were observed on caloric intake (0.50 ± 0.06 vs. 0.42 ± 0.01 kcal/g BW/day; chow diet versus HFD; n = 3/group) in the saline-treated animals as measured on the fifth week of the experiment.

Treatment with dexamethasone reduced by almost half the body weight gain of the animals kept on a HFD (Figure 1A), while increasing body fat mass (Figure 1B) and percentage of fat (Figure 1C), on both types of diet; however, the effects were more pronounced in the animals kept on the HFD (Figure 1B and C). Likewise, only in dexamethasone-treated mice kept on the HFD was hepatic triglyceride content approximately doubled (Figure 1D). Notably, at least part of the effect of dexamethasone on reducing body weight gain was due to a decrease in linear growth, evidenced by the reduced femoral length (14.6 ± 0.20 vs. 15.5 ± 0.04 mm; n = 3/group; P < 0.05). Treatment with dexamethasone did not affect caloric intake, regardless of the type of diet (0.46 ± 0.02 vs. 0.50 ± 0.06 kcal/g BW/day in chow diet; n = 3/group; 0.43 ± 0.02 vs. 0.42 ± 0.01 kcal/g BW/day in HFD; n = 3/group).

VO2 and RQ are reduced by treatment with dexamethasone

The analysis of the 24-h-indirect calorimetry indicated that treatment with dexamethasone did not affect VO2 in the animals kept on chow diet (nightly data shown in Figure 2A) but it did significantly reduce the nightly RQ (Figure 2C and D). This is an indication that fatty acid oxidation was accelerated by treatment with dexamethasone. However, in the animals kept on the HFD, treatment with dexamethasone promoted a marked reduction in VO2 that reached statistical significance during the nightly period (Figures 2A and B). This, however, was not associated with a further reduction in RQ probably because fatty acid oxidation was already accelerated by keeping the animals on the HFD (Figure 2C).

Treatment with dexamethasone slows down β3 agonist-induced VO2 acceleration

β3-induced acceleration of VO2 reflects the potential for adaptive thermogenesis and is thought to take place predominantly in BAT (13,32). Notably, the absolute and relative BAT weights were substantially increased by treatment with dexamethasone (Table 1). However, treatment with dexamethasone resulted in a marked drop in UCP-1 mRNA levels, both in chow and in high-fat-fed animals (Table 1), indicating that the potential for adaptive thermogenesis is reduced in these animals.

To test this hypothesis, we acutely injected the β3-adrenergic receptor agonist CL316243 (1 mg/kg BW) to activate adaptive thermogenesis and subsequently followed by the VO2 acceleration during the next 4 h. In chow-fed control animals, administration of CL316243 led to an immediate VO2 acceleration, jumping from a baseline of 2635.7 ± 53.9 ml/(kg·h) to 3811.4 ± 53.3 ml/(kg·h); n = 3/group; P < 0.0001 (Figure 3A). This was associated with a drop in RQ from 0.83 ± 0.007 to 0.79 ± 0.006; n = 3/group (Figure 3C). Treatment with dexamethasone did not substantially affect the VO2 response to β3 agonist administration (Figure 3A) as the integrated response (area under the curve) remained largely unaffected (Figure 3B); dexamethasone only slightly limited the peak response to CL316243 at one time-point (Figure 3A). At the same time, the drop in RQ that normally followed the β3 agonist administration...
(before treatment with dexamethasone) was only marginal in these animals given that the baseline was already reduced by treatment with dexamethasone (Figure 3C).

In contrast, in the animals kept on a HFD, treatment with dexamethasone slowed down the VO2 acceleration caused by the administration of CL316243 (Figure 3D). This was observed at every time-point that followed the β3 agonist injection (Figure 3D) as well as when the VO2 response was expressed in terms of integrated area under the curve (Figure 3E). The drop in RQ that followed CL316243 administration in the animals fed with a HFD was not affected by treatment with dexamethasone (Figure 3F).

FIGURE 2 Impact of dexamethasone (DEXA) treatment in the metabolic profile. (A) Oxygen consumption in dark cycle before (pre-dexa) and after (post-dexa) DEXA treatment in chow diet and HFD mice. (B) VO2 was measured during a 24-hours period in mice on HFD, before and after treatment with DEXA. (C) Same as in (A), except that RQ is shown. (D) RQ in a 24-h measure period in mice on chow diet, before and after treatment with DEXA. Results are expressed as mean ± SEM (n = 3). HFD, high-fat diet. Dexa, dexamethasone.* P < 0.05; ** P < 0.001.

TABLE 1 Interscapular BAT weight and UCP-1 mRNA levels in mice placed on a high-fat diet and treated with dexamethasone

	High-fat diet	Chow diet		
	Control	Dexamethasone		
BAT weight (g)	0.13 ± 0.018	0.21 ± 0.005*	0.06 ± 0.01	0.17 ± 0.05
BAT/BW (mg/g BW)	4.3 ± 0.3	8.0 ± 0.5*	2.0 ± 0.3	10 ± 1.0**
UCP-1/Cyclo A mRNA (fold)	0.35 ± 0.02	0.17 ± 0.04*	0.77 ± 0.08	0.17 ± 0.03**

Data are expressed as mean ± SEM; n = 3-6 per group.

*P < 0.05 vs. control (saline) on high fat diet;

** P < 0.05 vs. control (saline) on chow diet.

Discussion

This study demonstrates that long-term treatment with dexamethasone in mice is associated with slower nightly EE (Figure 2A and B) and, in chow-fed animals, accelerated fatty acid oxidation (lowered the RQ) (Figure 2C and D). Whereas glucocorticoids were known for disrupting cold- or norepinephrine-induced UCP-1 expression (21), slowing down basal and inducible EE during high fat feeding is to our knowledge a novel finding. In fact, treatment with dexamethasone reduced β3-stimulated EE in the HFD animals (Figure 3A-B, D-E), explained by the marked decrease in UCP-1 mRNA observed in the BAT of these animals (Table 1). These effects of dexamethasone treatment on diet-induced EE provide new insights into the mechanisms by
which glucocorticoids aggravate diet-induced obesity and dyslipidemia in mice (23) and promote their well-known increase in the percentage of body fat (Figure 1B and C) and liver steatosis (Figure 1D).

The mechanisms by which dexamethasone dysregulates fuel metabolism are not completely understood. Whereas glucocorticoids exhibit orexigenic effects by acting directly in the central nervous system (8,9), no significant changes in caloric intake were observed in the dexamethasone-treated animals in this study. This indicates that the changes in EE are likely to play a major role in worsening the metabolic phenotype of mice placed on HFD. In fact, a key observation that is likely to contribute to increased body fat is the reduction in nightly EE during treatment with dexamethasone, when mice are awake and eating, particularly while on a HFD (Figure 2A and B). While this should largely reflect the basal metabolic rate, it also reflects adaptive EE given that mice were kept at room temperature, a condition previously shown to activate BAT (30). At the same time, dexamethasone also inhibited \(\beta_3 \)-stimulated EE (Figure 3D and E), which largely reflects BAT activation (33).

Despite the slower rate of EE, treatment with dexamethasone accelerated fatty acid oxidation, as evidenced in this study by the drop in RQ (Figure 2C and D), which is explained by the fact that glucocorticoids promote the availability of circulating energy substrates such as fatty acids and glucose that are to be used during the fight-flight response to stress (34,35). Nonetheless, even though fatty acid oxidation is increased, the net metabolic effect of long-term treatment with dexamethasone is an increase in body fat (Figure 1B and C) and liver steatosis (Figure 1D) (36).

In small rodents such as the mouse, most of the acceleration in the rate of EE caused by the high fat feeding takes place in the BAT. Thus, it is notable that UCP-1 gene expression was substantially decreased by prolonged treatment with dexamethasone (Table 1), which turns out to have an important metabolic impact, i.e., the limited \(\beta_3 \)-stimulated EE. In fact, short-term administration of corticosterone in rats inhibits BAT UCP-1 expression, both at the basal level and in response to adrenergic stimuli such as exposure to cold (21); similar results were also observed in the ob/ob mouse model (37).
In vitro studies on a brown adipocyte cell line have shown a direct inhibitory effect of glucocorticoids on UCP-1 gene expression (38). In addition to these direct effects at the BAT level, acute central administration of dexamethasone in rats was shown to increase BW gain and 11βHSD1 expression in subcutaneous adipose tissue, while at the same time decreasing BAT UCP-1; at variance, peripheral dexamethasone administration decreased BW gain and 11βHSD expression (39). This is in agreement with the present observation of reduced BW gain in mice treated with dexamethasone (Figure 1A), an effect that others have linked to the type II glucocorticoid receptor (40).

In summary, these findings indicate that chronic treatment with dexamethasone slows down EE and β3 agonist-inducible EE, particularly in animals on a HFD, largely due to a reduction in BAT UCP-1 mRNA. This is likely to contribute to the increased body fat and liver steatosis observed during treatment with dexamethasone.

Acknowledgments

This work was supported by the NIH through grant number DK65055.

© 2013 The Obesity Society

References

1. Lonn L, Kvist H, Ernest I, Sjostrom L. Changes in body composition and adipose tissue distribution after treatment of women with Cushing’s syndrome. *Metabolism* 1994;43:1517-1522.
2. Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. *J Clin Endocrinol Metab* 2005;88:5593-5602.
3. Kola B, Christ-Crain M, Lolli F, et al. Changes in adenosine 5′-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing’s syndrome. *J Clin Endocrinol Metab* 2008;93:4969-4973.
4. Resmini E, Farkas C, Murillo B, et al. Body composition after endogenous (Cushing’s syndrome) and exogenous (rhematoinduced arthritis) exposure to glucocorticoids. *Horm Metab Res* 2010;42:613-618.
5. Espindola-Antunes D, Kater CE. Adipose tissue expression of 11beta-hydroxysteroid dehydrogenase type 1 in Cushing’s syndrome and in obesity. *Arq Bras Endocrinol Metabol* 2007;51:1397-1403.
6. Halleux CM, Servais I, Reul BA, Detry R, Brichard SM. Multihormonal control of UCP1 expression in white adipose tissue of lep(ob)/lep(ob) mice. *J Endocrinology* 1994;139:1161-1170.
7. Castilho M, Hall JA, Correa-Medina M, et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. *Diabetes* 2011;60:1082-1089.
8. Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. *Int J Obes (Lond)* 2010;34(Suppl 1):S36-S42.
9. Arvaniti K, Ricquier D, Champigny O, Richard D. Leptin and corticosterone have opposite effects on diet-induced thermogenesis and obesity resistance. *Science* 2002;297:843-845.
10. Xu C, He J, Jiang H, et al. Direct effect of glucocorticoids on glucose tolerance and fat metabolism in a diet-induced obesity mouse model. *Endocrinology* 2008;149:758-766.
11. Grundy PN, Goloszobowa V, Cannon B, Nedergraaf J. UCPI induction ablates obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. *Cell Metab* 2009;9:203-209.
12. Bachman ES, Dhillion H, Zhang CY, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. *Science* 2002;297:843-845.
13. Xu C, He J, Jiang H, et al. Direct effect of glucocorticoids on lipid metabolism in adipocytes. *Mol Endocrinol* 2009;23:1161-1170.
14. Arvaniti K, Ricquier D, Champigny O, Richard D. Leptin and corticosterone have opposite effects on food intake and the expression of UCPI mRNA in brown adipose tissue of lept(ob)/lep(ob) mice. *Endocrinology* 1998;139:4000-4003.
15. Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand A, Silva JE. Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipocyte cell line. *Mol Cell Endocrinol* 2000;165:7-15.
16. Veyrat-Durebex C, Deblon N, Caillon A, et al. Central glucocorticoid administration promotes weight gain and increased 11beta-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. *PLoS One* 2012;7:e34002.
17. Devenport L, Knehsa A, Sandstrom A, Thomas T. Cushing’s syndrome: a consensus statement. *J Clin Endocrinol Metab* 2009;94:1500-1508.
18. Vanmarken Lichtenbelt WD, Vanhommegow JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. *N Engl J Med* 2009;360:1518-1525.
19. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. *N Engl J Med* 2009;360:1509-1517.
20. van Marken Lichtenbelt WD, Vanhommegow JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. *N Engl J Med* 2009;360:1509-1508.
21. Feldmann HM, Golozezobowa V, Cannon B, Nedergraaf J. UCPI induction ablates obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. *Cell Metab* 2009;9:203-209.
22. Bachman ES, Dhillion H, Zhang CY, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. *Science* 2002;297:843-845.
23. Xu C, He J, Jiang H, et al. Direct effect of glucocorticoids on lipid metabolism in adipocytes. *Mol Endocrinol* 2009;23:1161-1170.
24. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. *Metabolism* 2011;60:1500-1510.
25. Jia Y, Viswakarma N, Fu T, et al. Conditional ablation of mediator subunit MEDI (MED1/PPARBP) gene in mouse liver ablates glucocorticoid receptor agonist dexamethasone-induced hepatic steatosis. *Gastroenterology* 2009;137:291-306.
26. Arvaniti K, Ricquier D, Champigny O, Richard D. Leptin and corticosterone have opposite effects on food intake and the expression of UCPI mRNA in brown adipose tissue of lept(ob)/lep(ob) mice. *Endocrinology* 1998;139:4000-4003.
27. Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand A, Silva JE. Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipocyte cell line. *Mol Cell Endocrinol* 2000;165:7-15.
28. Veyrat-Durebex C, Deblon N, Caillon A, et al. Central glucocorticoid administration promotes weight gain and increased 11beta-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. *PLoS One* 2012;7:e34002.
29. Devenport L, Knehsa A, Sandstrom A, Thomas T. Cushing’s syndrome: a consensus statement. *J Clin Endocrinol Metab* 2009;94:1500-1508.
30. Vanmarken Lichtenbelt WD, Vanhommegow JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. *N Engl J Med* 2009;360:1509-1517.
31. van Marken Lichtenbelt WD, Vanhommegow JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. *N Engl J Med* 2009;360:1509-1508.
32. Vanmarken Lichtenbelt WD, Vanhommegow JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. *N Engl J Med* 2009;360:1509-1508.