INTRODUCTION

Nowadays, pharmacy profession has shifted from being product-oriented to being patient-oriented. This expansion in the role of pharmacists allows them to practice more clinical functions. This increase in responsibility of pharmacists requires them to be supported by the enhanced clinical education in order to maintain their skills, knowledge and competencies to practice throughout their career and to enhance their performance and career progression. Thus, there is the need for lifelong learning through continuing education (CE), which is a term that has widely been used among the healthcare professionals. The Accreditation Council for Pharmaceutical Education has defined CE as a structured process of education developed to promote the continuous evolution of pharmacists to claim and augment their professional competencies. CE can be seen as workshops, lectures and distance learning courses. Many countries around the world start to implement continuing professional development (CPD). The concept of CPD was endorsed by the FIP in 2002 and defined as the responsibility of the individual pharmacists to maintain, improve and expand their knowledge, attitude and skills to establish competency throughout their careers. CPD can be visualized as a circle that connects the reflection stage with the proper planning, execution and evaluation phase. What makes CPD distinctive is that the individual is responsible for determining his personal learning needs and then plan to achieve those needs. In the end, the individual should evaluate the actions he took in order to meet these goals. CPD usually requires a portfolio to document these steps. CE can be considered as part of the CPD process and CE alone is not sufficient as proven by many studies. In Saudi Arabia, the Saudi Commission for Health Specialties is the responsible national figure to approve and accredit all CE activities. All healthcare practitioners must achieve a specific number of CE in order to relicense to practice their career in the KSA. CE mainly used in Saudi Arabia at present. According to the previous study, pharmacists working in Saudi Arabia are interested in topics such as drug interaction, drug use in pregnancy and use of antibiotics. Moreover, the pharmacy practice residency program as post-graduate year one founded in 2002 and then extended to post-graduate years one and two with specialized clinical pharmacy residency programs. A recent survey on
pharmacy education and training showed great demand and shortage of education of pharmacy practice residency programs with an emphasis on specialized residency for pharmacists. However, the investigations about education and training of particulate clinical pharmacy specialized not investigated yet in the KSA, Gulf and Middle Eastern countries. Therefore, in this study, we aimed to investigate the national survey of clinical pharmacy practice in Saudi Arabia during 2017-2018 with a focus on education and training.

METHODS

This is a 4-month cross-sectional national survey of clinical pharmacy practice in Saudi Arabia. The study consisted of two parts: The first part collected demographic information and the second part comprised 51 questions divided into four domains. The domains were derived from American Society of Health-System Pharmacists (ASHP) and Saudi Pharmaceutical Society (SPS), the international standard of Joint Commission of Hospital Accreditation and the local standards of Saudi Center of Healthcare Accreditation. The domains were clinical pharmacy administration and management, performances and activities, education and training and workload documentation. We used 5-point Likert response scale system with close- and open-ended questions. The questionnaire was distributed in an electronic format to 31 directors of pharmacies at various hospitals in Saudi Arabia. The responders were followed-up via email and telephonic call once after every 1-2 weeks. All primary healthcare centers, regional pharmacy administration at MOH were excluded from the study. In this study, we analyzed the national survey of clinical pharmacy practice at hospitals in Saudi Arabia with an emphasis on performances and activities. All data were analyzed through the Survey Monkey system and analyzed using Statistical Package of Social Sciences (SPSS) version 20. The data were validated using three different methods of validation. More than two authors reviewed the survey independently and the pilot study was undertaken. The survey data were corrected accordingly and the Cronbach's alpha test value was calculated for internal validity. This survey was exempted from the international guidelines of institutional review boards (IRB).

RESULTS

The survey questionnaire was distributed to 31 hospitals. Most of the hospitals had 200–299 beds (7 (22.58%)), 300–299 beds (6 (19.35%)), 50–99 beds (5 (16.13%)) and 400–499 beds (5 (16.13%)). Of the total 31 hospitals, 19 (67.86%) hospitals were accredited by the CBAH, 5 (17.86%) hospitals were accredited by the Saudi Commission of Health Specialties and 4 (12.90%) hospitals were accredited by the Joint Commission. Majority of the hospitals (23 (74.19%)) covered >25% of their patients with a health insurance. Most of the responders had obtained BSc in Pharmacy degree (13 (41.94%)) and Doctor of Pharmacy (9 (29.03%)), whereas all responders (31 (100%)) were not certified by the Board of Pharmaceutical Specialties. Most of the responders had 1–3 years of pharmacy experience 10 (32.26%) 7 (22.58% of the responders had 4–6 years of experience) (Table 1). Most of the educational courses for clinical pharmacy staff was provided to the general clinical pharmacist (1–5 days) (47.22%) followed by basic medication safety 60 (45.45%) and clinical pharmacy orientation (41.67%), whereas the most educational and training delivered to healthcare providers by clinical pharmacist was general nurses (108) followed by resident physician (66) and specialist physician (53) (Table 4). The Cronbach's alpha test value was 0.765.

DISCUSSION

CE and training are essential not only for pharmacists but for all healthcare practitioners to enhance their competencies. CE system is designed to help the pharmacists and all healthcare providers in updating their knowledge and skills and maintain their career progression. However, for this system to be successful, it requires pharmacists' participation in the program. In this study, the response rate was meager. CPR course was the most attended education course by the pharmacists. This was not surprising as this course is mandatory for the obtaining a relicensure in Saudi Arabia. Participated pharmacists preferred short courses over long ones; however, participants from another study were more likely to register for 1 day course compared to the multi-day course. Specialist and consultant clinical pharmacists were more interested in distance learning pharmacy education and specialized pharmacist's residency program despite the poor availabilities at local setting. As documented, personal desire to learn is one of the critical factors that influence the pharmacists to progress in their career. The general clinical pharmacists were in need of residency programs which their hospitals do not offer to the pharmacists. Healthcare participants were motivated to participate in basic medication safety, clinical pharmacy orientation followed by ER medications delivered by pharmacy stuff. About the topics that pharmacists in Saudi Arabia were interested in engaging in, as shown by a previous study were medication during pregnancy, drug interaction and the use of antibiotics. Another study conducted in Qatar showed that pharmacists were interested in therapeutic topics followed by clinical skills and management topics. Moreover, a previous study reported that pharmacists were more interested in participating in congresses and symposia because they preferred face-to-face learning. In this study, we did not investigate the factors that may influence the poor participation by the pharmacists, but many factors that hesitate them from participating in the CE courses for example, high costs, little time, lack of motivation, negative attitude and technical difficulties. Other studies have stated that the CE system is limited because of the lack of follow-up and implementation of new concepts at the workplace. Another study reported that many participants consider teaching the students what they learned is the most significant way to benefit from the CE courses. In order to encourage pharmacists to engage with the CE system, the selected topics should match the pharmacists' needs and preferences, offering a reduced fee for enrolling in multiple webinars, or offering multiple related webinars instead of individualized ones. In addition, offering webinars educational courses during working time was suggestion for future CE courses.

CONCLUSION

The attitude of clinical pharmacy staff toward some of the primary education and training courses is inadequate. There is a need to study the factors that discourage the pharmacists from participating in these courses to eliminate them. Hospitals should conduct more educational courses for the healthcare practitioners.
Table 1: Demographic information regarding responder qualifications.

No. of hospital licensed	Response N	Response %	Response N	Response %	Response N
< 50	3	9.68%	Diploma, Pharmacy	3	9.68%
50-99	5	16.13%	Bsc. Pharmacy	13	41.94%
100-199	2	6.45%	Master of Science	7	22.58%
200-299	7	22.58%	Doctor of Pharmacy	9	29.03%
300-399	6	19.35%	Two years Residency (R1)	0	0.00%
400-499	5	16.13%	Three years Residency (R2)	1	3.23%
= or > 600	1	3.23%	Ph. D	1	3.23%
Medical City	2	6.45%	M.B.A.	0	0.00%
Answered question	31	Answered question	31	0.95%	
Skipped question	0	Skipped question	0	1.90%	

The hospital accreditation	Response N	Response %	Board of Pharmaceutical Specialty	Response N	Response %
CBAHI	19	67.86%	Board Certified Ambulatory Care Pharmacist	0	0.00%
Joint Commotion USA	4	14.29%	Board Certified Critical Care Pharmacist	0	0.00%
Canada	0	0.00%	Board Certified Nuclear Pharmacist	0	0.00%
Saudi Council	5	17.86%	Board Certified Nutrition Support Pharmacist	0	0.00%
None	0	00.00%	Board Certified Oncology Pharmacist	0	0.00%
Answered question:	28		Board Certified Pediatric Pharmacy Specialist	0	0.00%
skipped	3		Board Certified Pharmacotherapy Specialists	0	0.00%
The patients covered by health issuance	2	6.45%	Board Certified Psychiatric Pharmacist	0	0.00%
< 25%	23	74.19%	Non	31	100.00%
25-50%	3	9.68%	Answered question	31	
51-75%	3	9.68%	Skipped question	0	
76-100% of our patients.	2	6.45%	Years of Experiences in Clinical Pharmacy	Response N	Response %
Answered	31		< 1	3	9.68%
Skipped	0		1 – 3	10	32.26%
			4-6	7	22.58%
			>6	3	9.68%
Answered question	31				
Skipped question	0				

ACKNOWLEDGEMENT

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ABBREVIATIONS

ASHP: American Society of Health-System Pharmacists; SPS: Saudi Pharmaceutical Society; ADRs: adverse drug reactions; ACLS: advance cardiac life support; ATLS: Advance trauma life support; CPD: Continuing professional development; CE: continuing education; CPR:
Cardiopulmonary resuscitation; FIP: International Pharmaceutical Federation; FDA: US Food and Drug Administration; IRB: Institutional review board; SFDA: Saudi Food and Drug Authority; MOH: Ministry of Health; INDs: investigational new drugs; NMEs: New molecular entities; BSC: Bachelor of Science; SPSS: Statistical Package for the Social Sciences.

REFERENCES
1. Cooksey JA, Knapp KK, Walton SM, Cultice JM. Challenges To The Pharmacist Profession From Escalating Pharmaceutical Demand. Health Aff. 2002;21(5):182–8.
2. Buckley PJ. From the Literature. Am J Psychother. 2018;68(3):273-6.
3. Austin Z, Marini A, Glover NM, Croteau D. Continuous professional development: A qualitative study of pharmacists’ attitudes, behaviors and preferences in Ontario, Canada. Am J Pharm Educ. 2005;69(1):25-33.
4. Driesen A, Verbeke K, Simoens S, Laekeman G. International trends in lifelong learning for pharmacists. Am J Pharm Educ. 2007;71(3):52.
5. Wilbur K. Continuing professional pharmacy development needs assessment of Qatar pharmacists. Int J Pharm Pract. 2010;18(4):236-41.
6. Rouse MJ. Continuing Professional Development in Pharmacy. J Am Pharm Assoc. 2004;44(4):517-20.
7. Davis D, O’Brien MAT, Freemantle N, Wolf FM, Mazmanian P, Taylor-Vaisey A. Impact of Formal Continuing Medical Education. Jama. 2003;282(8):867.
8. O’Brien MA, Freemantle N, Osman AD, Wolfe F, Davis D, Herrin J. Continuing education meetings and workshops: effects on professional practice and health care outcomes. Cochrane Database Syst Rev. 2003(1).
Alomi YA, et al.: Clinical Pharmacy Practice Education and Training in Saudi Arabia

9. Alkhazim M, Althubaiti A. Continuing medical education in Saudi Arabia: Experiences and perception of participants. J Heal Spec. 2014;2(1):13.

10. Required CME hours for re-registration and instructions when attending CME activities. 2020. [cited 2020 Feb 11]. Available from: https://www.scfhs.org.sa/en/CME-ADRPCME/RequiredHours/Pages/default.aspx

11. Al-Ghamdi MS. Continuing pharmaceutical education for community pharmacists in the eastern province of Saudi Arabia. J Family Community Med. 2001;8(3):45-52.

12. Al-Haidari KM, Al-Jazairi AS. Establishment of a national pharmacy practice residency program in Saudi Arabia. Am J Heal Pharm. 2010;67(17):1457-70.

13. Al-Qadheeb NS, Alissa DA, Al-Jedai A, Aljan A, Al-Jazairi AS. The first international residency program accredited by the American society of health-system pharmacists. Am J Pharm Educ. 2012;76(10):1-4.

14. Yousef AA, Saeed JARAA. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Pharmacy Education and Training. J Pharm Pr Community Med. 2018;4(1):15-85.

15. Pedersen CA, Schneider PJ, Scheckelhoff DJ. ASHP national survey of pharmacy practice in hospital settings: Dispening and administration. 2014. Am J Heal Pharm. 2015;72(13):1197-37.

16. Pedersen CA, Schneider PJ, Scheckelhoff DJ. ASHP national survey of pharmacy practice in hospital settings: Monitoring and patient education. 2015. Am J Heal Pharm. 2016;73(17):1307-30.

17. Pedersen CA, Schneider PJ, Scheckelhoff DJ. ASHP national survey of pharmacy practice in hospital settings: Prescribing and transcription-2016. In: American Journal of Health System Pharmacy. 2017;74(17):1338-52.

18. Ahmed AY, Jamaan AS, Abdullah AR, Shorog E, Alshahran A, Alasmary S, et al. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Pharmacy Management and Resource. J Pharm Pract Community Med. 2018;4(1):s1-16.

19. Alomi YA, Alghamdi SJ, Alatlyh RA, Shorog E, Alshahran A, Alasmary S, et al. National Survey of Pharmacy Practice at Ministry of Health in Saudi Arabia 2016-2017: Preparing of Medications and Dispensing. J Pharm Pract Community Med. 2018;4(1):s16-49.

20. Alomi YA, Jamaan AS, Abdullah AR, Shorog E, Alshahran A, Alasmary S, et al. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Drug Monitoring and Patients Education. J Pharm Pract Community Med. 2018;4(1):s17-22.

21. Alomi YA, Alghamdi SJ, Alatlyh RA. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Clinical Pharmacy Services. J Pharm Pr Community Med. 2018;4(1):15-85.

22. Yousef AA, Saeed JARAA. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Pharmacy Inventory Control and Stock Management. J Pharm Pr Community Med. 2018;4(1):s28-33.

23. Alomi YA, Alghamdi SJ, Alatlyh RA. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Pharmacy Computerized and Technology. J Pharm Pract Community Med. 2018;4(1):s40-6.

24. Alomi YA, Jamaan AS, Abdullah AR, Shorog E, Alshahran A, Alasmary S, et al. National Survey of Pharmacy Practice at MOH Hospitals in Saudi Arabia 2016-2017: Prescribing and Medication Management. J Pharm Pract Community Med. 2018;4(1):s34-9.

25. Cotter SM, Barber ND, McKee M. Survey of clinical pharmacy services in United Kingdom National Health Service hospitals. Am J Hosp Pharm. 1994;51(21):2676-84.

26. Čufar A, Mrhar A, Robnik-Šikonja M. Assessment of surveys for the management of hospital clinical pharmacy services. Artif Intell Med. 2015;64(2):147-58.

27. Lanieer C, Moss J, Tunney R, Baird R, Kelly K. Clinical Pharmacy Practice Patterns Among North Carolina Rural Hospitals. J Pharm Pract. 2019;69(1):190017986632.

28. Cillis M, Spinevare A, Krug B, Quennersey S, Wouters D, Dailleur O. Development of a tool for benchmarking of clinical pharmacy activities. Int J Clin Pharm. 2018;40(6):1462-73.

29. Bond CA, Raehl CL, Patry R. Evidence-Based Core Clinical Pharmacy Services in United States Hospitals in 2020: Services and Staffing. Pharmacotherapy. 2004;24(4):427-40.

30. CIBAHI. Medication Management. In: National Accreditation Standard. 2016. Available from: http://insights.ovid.com/crossref?an=01222928-201713010-00016

31. Tjin A Tsoi SLNM, DeBoer A, Croiset G, Koster AS, Kusurkar RA. Factors Influencing Participation in Continuing Professional Development: A Focus on Motivation among Pharmacists. J Contin Educ Health Prof. 2016;36(3):144-50.

32. Power A, Johnson BJ, Diack HL, McKellar S, Stewart D, Hudson SA. Scottish pharmacists’ views and attitudes towards continuing professional development. Pharm World Sci. 2002;20(1):136-43.

33. Mohamed IOH. Assessment of Egyptian pharmacists’ attitude, behaviors and preferences related to continuing education. Int J Clin Pharm. 2012;34(2):358-63.