The impact of non-Gaussianity on the error covariance for observations of the Epoch of Reionization (EoR) 21-cm power spectrum

Abinash Kumar Shaw$^{1,2} \ast$, Somnath Bharadwaj1,2 and Rajesh Mondal3

1Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
2Centre For Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
3Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Recent simulations have shown the EoR 21-cm signal to be inherently non-Gaussian whereby the error covariance matrix C_i of the 21-cm power spectrum (PS) contains a trispectrum contribution which would be absent if the signal were Gaussian. Using the binned power spectrum and trispectrum from simulations, in this paper we present a methodology for incorporating these with the baseline distribution and system noise to make error predictions for observations with any radio-interferometric array. Here we consider the upcoming SKA-Low, assuming no foreground contamination. Non-Gaussianity enhances the errors introducing a positive deviation Δ relative to the Gaussian predictions. Δ increases with observation time t_{obs} and saturates as the errors approach the cosmic variance. Considering $t_{\text{obs}} = 1,024$ hrs where a 5σ detection is possible at all redshifts $7 \leq z \leq 13$, we find that the deviations are important at small k where we have $\Delta \sim 40 - 100\%$ at $k \sim 0.04$ Mpc$^{-1}$ for some of the redshifts and also at intermediate k (0.4 Mpc$^{-1}$) where we have $\Delta \sim 200\%$ at $z = 7$. Non-Gaussianity also introduces correlations between the errors in different k bins, and we find both correlations and anti-correlations with the correlation coefficient value spanning $-0.4 \leq r_{ij} \leq 0.8$. We conclude that non-Gaussianity makes a significant contribution to the errors and this is important in the context of the future instruments which aim to achieve high sensitivity measurements of the EoR 21-cm PS.

Key words: cosmology: reionization–first stars–large-scale structure of universe–diffuse radiation, methods: statistical, technique: interferometric

1 INTRODUCTION

The Epoch of Reionization (EoR) is an important but poorly understood milestone in the cosmic history when the Hydrogen in the universe underwent a transition from neutral (H) to ionized (H II) phase. Our current knowledge of the EoR comes from several indirect observations. The measurements of the Thomson scattering optical depth $\tau_H = 0.058 \pm 0.012$ (Planck Collaboration et al. 2016a,b) of the cosmic microwave background radiation (CMBR) with the free electrons in the intergalactic medium (IGM) suggests that the universe was ionized at less than 10% level at redshifts above $z \sim 10$. Measurements of the high redshift quasar spectra (Becker et al. 2001; Fan et al. 2002, 2006; Gallerani et al. 2006; Becker et al. 2015) show a complete Gunn-Peterson trough and also measurements of the Gunn-Peterson optical depth ΔGP suggest that the reionization was over by $z \sim 6$. Recent studies of the Lya emitters (LAE) show a rapid decline in the luminosity function at $z \geq 6$ (Ouchi et al. 2010; Jensen et al. 2014; Konno et al. 2014; Faisst et al. 2014; Santos et al. 2016; Ota et al. 2017; Zheng et al. 2017) which suggests a rapid increase in the H I density in the IGM and a patchy H I distribution at those redshifts. These indirect observations together suggest the reionization to occur within a redshift range $6 \leq z \leq 12$ (Mitra et al. 2013; Robertson et al. 2013; Mitra et al. 2015; Robertson et al. 2015; Mondal et al. 2016; Dai et al. 2018). However such indirect observations are not adequate to address many fundamental issues related to the EoR such as the exact duration and timing, the properties of the ionizing sources and the topology of H I distribution.

Observations of the redshifted 21-cm radiation due to the hyperfine transition of H I is a promising probe to study the high redshift universe (Sunyaev & Zeldovich 1972; Scott & Rees 1990). The low frequency radio interferometers will measure brightness temperature fluctuations of the EoR 21-cm radiation (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005). A substantial effort is currently underway to measure the EoR 21-cm signal using...
the first generation radio interferometers e.g. GMRT\(^1\) (Paciga et al. 2013), MWA\(^2\) (Dillon et al. 2014), LOFAR\(^3\) (Yatawatta, S. et al. 2013), PAPER\(^4\) (Ali et al. 2015) and the second generation interferometers such as HERA\(^5\) (Pober et al. 2014; Ewall-Wice et al. 2016) and the upcoming gigantic SKA\(^6\) (Koopmans et al. 2014). These experiments aim to measure the EoR 21-cm power spectrum (PS)\(^7\) (Bharadwaj & Ali 2004). The expected EoR 21-cm signal is about 4 – 5 orders of magnitude weaker compared to the galactic and extra-galactic foregrounds (Ali et al. 2008; Bernardi, G. et al. 2009, 2010; Ghosh et al. 2012; Paciga et al. 2013; Beardsley et al. 2016). The foregrounds together with the system noise and other calibration errors pose a huge challenge for the measurement of the EoR 21-cm PS. Only weak upper limits on the EoR 21-cm PS have been estimated till date (McGreer et al. 2011; Parsons et al. 2014a; Pober et al. 2016). In addition to the PS, various other statistics such as the variance (Patil et al. 2014), bispectrum (Yoshiura et al. 2015; Shimabukuro et al. 2017; Majumdar et al. 2018) and the Minkowski Functional (Kapathia et al. 2018; Bag et al. 2018) has been proposed to quantify the EoR 21-cm signal.

In the past several works have made quantitative predictions of the sensitivity for measuring the EoR 21-cm PS (Morales & Hewitt 2004). McQuinn et al. (2006) have made predictions for 1,000 hrs of observations with the MWA, LOFAR and the upcoming SKA-Low. Beardsley et al. (2013) have estimated that MWA is capable of detecting the EoR 21-cm signal at ~ 14\(\sigma\) level with ~ 900 hrs of observations. Zaroubi et al. (2012) have made quantitative predictions for sensitivity of LOFAR considering 600 hrs of observations, and Jensen et al. (2013) have predicted that LOFAR will be able to detect the EoR 21-cm PS at \(k \sim 0.1\) Mpc\(^{-1}\) with ~ 1,000 hrs of observations. Parsons et al. (2012) have predicted that the EoR 21-cm signal can be detected at \(k \sim 0.2h\) Mpc\(^{-1}\) with PAPER in 7 months of observations. The results of Pober et al. (2014) suggest that the upcoming HERA will be able to detect the EoR 21-cm PS at a level ~ 30\(\sigma\) within the \(k\) range 0.1 – 1 Mpc\(^{-1}\) assuming a moderate foreground model. Ewall-Wice et al. (2016) have studied the prospects of detecting the EoR 21-cm PS with HERA incorporating X-ray heating of the IGM.

The upcoming SKA-Low, to be located in Australia, will be the most sensitive radio telescope to be built. It will have ~ 500 stations, each of which combines the signal from several constituent log periodic dipole antennas. Each of these station is planned to be ~ 35 m in diameter. The telescope will operate within a frequency band of 50 – 350 MHz and it will have ~ 20 deg\(^2\) field of view. The interferometer will have a compact core and 3 spiral arms which will extend up to a large distance such that maximum antenna separation is ~ 60 km. A recent study by Mellema et al. (2013) has quantified the prospects of detecting the EoR 21-cm PS with SKA-Low. The authors have predicted the errors in the measured EoR 21-cm PS at three different redshifts 8, 10, and 12. In this analysis they have varied the number of core antennas and also the core radius. The analysis incorporates the system noise assuming 1,000 hrs of observation with a bandwidth of 10 MHz. They find that it will be possible to achieve a maximum SNR of ~ 100 at \(k \sim 0.4\) Mpc\(^{-1}\) for all the three redshifts. They also find that the predictions for SKA-Low show a significant improvement in comparison with other precursor telescopes such as MWA, LOFAR an PAPER (Fig. 21 and 22 of Mellema et al. 2013).

All the existing predictions for detecting the EoR 21-cm PS have assumed the signal to be a Gaussian random field. This assumption plays a crucial role in making the predictions. The PS completely specifies the statistical properties of the signal for a Gaussian random field, and this assumption allows the signal in each Fourier mode to be treated as being independent. Gaussianity is possibly a good assumption during the early stages of EoR, and also when one observe very large length-scales. However the growth and subsequent overlapping of the H\(\alpha\) regions make the signal highly non-Gaussian as reionization progresses (Bharadwaj & Pandey 2005). The PS no longer quantifies the entire statistical properties of the signal as the signal in different Fourier modes are correlated. Higher order statistics like the bispectrum (Majumdar et al. 2018) and trispectrum are needed to quantify these correlations. This also affects the error predictions for the PS. Considering only cosmic variance (CV) which is inherent to the signal, Mondal et al. (2015) have studied the effects of non-Gaussianity on the error predictions for the EoR 21-cm PS. For a Gaussian random field, the SNR for the 21-cm PS is expected to increase as the square root of the number of independent Fourier modes. However, Mondal et al. (2015) find that as a consequence of the non-Gaussianity the SNR saturates at a limiting value [SNR\(_l\)] beyond which it does not increase any further. The value of [SNR\(_l\)] was also found to decreases with the progress of reionization which corresponds to an increase in the non-Gaussianity. Two subsequent papers (Mondal et al. 2016, 2017) have quantified the error covariance for the binned PS which now has an extra contribution from the trispectrum as compared to the Gaussian situation where the error covariance can be expressed entirely in terms of the PS. In these papers they have developed an unique statistical technique for estimating the bin-averaged trispectrum from the PS error covariance. They have used an ensemble of semi-numerical EoR simulations to estimate the error covariance and the trispectrum at several redshifts in the range 7 ≤ \(z\) ≤ 13. The trispectrum contribution is found to increase significantly as reionization progresses. The non-Gaussianity is found to result in larger error estimates compared to the Gaussian predictions. Non-Gaussianity also introduces correlations between the PS error estimates at different bins.

In this paper, we predict the prospects of measuring the EoR 21-cm PS using observations with the upcoming SKA-Low. To this end we study the error covariance of the EoR 21-cm PS that will be measured by SKA-Low. Unlike the previous works (e.g. Mellema et al. 2013), our analysis incorporates the inherent non-Gaussian nature of the signal. We have used the EoR 21-cm PS and trispectrum from the simulations of Mondal et al. 2017. We include the system noise contribution to calculate the full PS error covariance for the current proposed configuration of SKA-Low\(^7\). The analysis in this paper considers the EoR 21-cm signal to be free of foregrounds and other possible calibration errors.

The structure of this paper is as follows. Section 2 briefly describes the simulations and the techniques used in Mondal et al. 2017 to obtain the EoR 21-cm PS and trispectrum. Section 3 briefly presents the SKA-Low configuration and discusses how to combine the observed visibility data for an optimal estimate of the EoR 21-cm PS. We also present a framework to compute the EoR 21-cm PS error covariance. The results are presented in Section 4, and we

\(^{1}\)http://www.gmrt.ncra.tifr.res.in

\(^{2}\)http://www.njit.edu/arrays/mwa

\(^{3}\)http://www.lofar.org

\(^{4}\)http://eor.berkeley.edu

\(^{5}\)http://reionization.org

\(^{6}\)http://www.skatelescope.org

\(^{7}\)SKA1_LowConfigurationCoordinates-1.pdf
summarize and discuss the results in Section 5. In keeping with the simulations of Mondal et al. 2017, we have used the Planck+WP (Planck Collaboration et al. 2014) best fit cosmological parameters throughout this paper.

2 SIMULATING THE EoR 21-cm SIGNAL

We have simulated the EoR 21-cm signal at six different redshifts \(z = 13, 11, 10, 9, 8, \) and 7 using a semi-numerical technique (Majumdar et al. 2013; Mondal et al. 2015) which comprises of three major steps. First, we generate the dark matter distributions at the aforementioned redshifts using a particle mesh N-body code (Bharadwaj & Sriramk 2004). We have simulated the dark matter distributions within a cube of comoving volume \(V = [215.04 \text{ Mpc}]^3 \) with a grid size of 0.07 Mpc and a mass resolution of 1.09 \times 10^8 \text{ M}_\odot. \) Next, we identify the dark matter halos within the matter distribution using the Friends-of-Friend (FoF) algorithm (Davis et al. 1985) with a linking length 0.2 times the mean inter-particle spacing and a minimum halo mass of 1.09 \times 10^8 \text{ M}_\odot which corresponds to ten simulation particles. In the final step we generate the reionization map following the formalism adopted by Choudhury et al. (2009). We assume that the hydrogen traces the dark matter, and the halos with masses exceeding a minimum halo mass \(M_{\text{min}} (M \geq M_{\text{min}}) \) host the ionizing sources, the number of ionizing photons \(N_i \) emitted by a source being proportional to the host halo mass \(M \) through a dimensionless constant of proportionality \(N_{\text{ion}} \) which incorporates a large number of unknown parameters like the star formation efficiency and the UV photon escape fraction.

The hydrogen and photon densities are respectively smoothed over spheres of radius \(R \). Any grid point within the simulation is considered to be completely ionized if the smoothed photon density exceeds the smoothed hydrogen density, the smoothing radius is allowed to vary from one grid spacing to a maximum value of \(R_{\text{mpf}} \). The resulting \(H_1 \) distribution is mapped to redshift space using the prescription of Majumdar et al. 2013 to generate the 21-cm brightness temperature distribution on a grid eight times coarser than the \(N \)-body simulation. The simulations used here are exactly the same as those which were used in Mondal et al. (2016, 2017) and the reader is referred to there for further details. There simulations have three free parameters namely \(M_{\text{min}} \) the minimum halo mass, \(N_{\text{ion}} \) the ionizing efficiency and \(R_{\text{mpf}} \) the mean free path of the ionizing photons. We have used the values \(M_{\text{min}} = 1.09 \times 10^8 \text{ M}_\odot, N_{\text{ion}} = 23.21 \) and \(R_{\text{mpf}} = 20 \text{ Mpc} \) (Songaila & Cowie 2010) to obtain a reionization history where the mean mass averaged neutral fraction has a value \(\bar{x}_n = 0.5 \) at \(z = 8 \) and is over by \(z - 6 \). The integrated Thomson scattering optical depth obtained using these parameter values, \(\tau = 0.057 \) is also consistent with the observations (Planck Collaboration et al. 2016a) where \(\tau = 0.058 \pm 0.012 \).

3 POWER SPECTRUM ERROR COVARIANCE

We quantify the statistics of the EoR 21-cm brightness temperature fluctuations using the power spectrum (PS) which is defined as \(P(k) = V^{-1} \langle \tilde{T}_S(k)\tilde{T}_N(-k) \rangle \). Here \(V \) is the simulation (observational) volume, \(\tilde{T}_S(k) \) is the Fourier transform of the brightness temperature fluctuations \(\delta T_S(x) \) and \(k \) is a wave vector. In the absence of foregrounds and calibration errors, the brightness temperature fluctuations recorded by a radio interferometer is \(\tilde{T}_I(k) = \tilde{T}_S(k) + \tilde{T}_N(k) \) which is a sum of the 21-cm signal \(\tilde{T}_S(k) \) and the system noise contribution \(\tilde{T}_N(k) \). The PS corresponding to \(\tilde{T}_I(k) \) therefore is a sum of \(P(k) \) and \(P_N(k) \) which is the system noise PS i.e. \(P_I(k) = [P(k) + P_N(k)] \). We have used the simulations described in section 2 to predict the EoR 21-cm PS \(P_I(k) \). In the present work we make predictions for the upcoming SKA-Low\(^1\), and we have used the specification described in the subsequent paragraph to compute the noise PS \(P_N(k) \). We have considered the upcoming SKA-Low to be an array of \(\sim 513 \) stations\(^2\), each of which is a station of diameter \(D = 35 \) m. The instrument will operate within a frequency range of \(50 - 350 \) MHz which will probe the \(H_1 \) 21-cm signal between \(z = 27 \) and \(z = 3 \). The EoR 21-cm signal evolves significantly along the line-of-sight (LoS) and observations at different redshifts will probe the signal at different stages of reionization due to the light cone effect (Datta et al. 2012, 2014). As a consequence the signal no longer remains ergodic along the LoS and there is a significant loss of information if the entire frequency band is used to estimate the PS (Mondal et al. 2018; Mondal et al. 2019). In the present work we have avoided this by restricting the analysis to six different redshift slices each of width \(\Delta z = 0.75 \) centered at redshifts \(z = 13, 11, 10, 9, 8, \) and 7. We have also assumed that the entire frequency bandwidth is divided into frequency channels of width \(\Delta f_c = 0.1 \) MHz. Note that the antenna layout, number of antennas and the channel width \(\Delta f_c \) assumed here are only representative values, and may change in the final implementation of the telescope.

The analysis in this paper considers an observation tracking a field at declination DEC = \(-30^\circ\) using SKA-Low for 8 hrs with 60 sec integration time. The 60 sec integration time has been chosen here to keep the simulated baseline data volume small. However the purpose of simulating the array baseline configuration here is to primarily estimate \(P_N(k) \), and we find that the noise predictions do not show any noticeable change even when the integration time is reduced to 30 sec or to 15 sec. Considering \(\delta B \) to be the projection of the antenna separation on the plane perpendicular to the LoS, we use \(U = \delta d/\lambda_c \) with \(\lambda_c \) being the wavelength which corresponds to the central frequency \(\nu_c \) of a slice. The subsequent analysis is restricted to the baselines \(U \) corresponding to the antenna separations \(|\delta d| \leq 19 \) km as the baseline distribution falls off rapidly at larger values of \(d \). The simulated observations provide us the baselines \(U_i \) and the frequency channels \(\nu_i \) at which the signal will be measured. We use \(k_i = (2\pi U_i/\lambda_c)/\nu_i \) and \(k_{\nu i} = (2\pi)(\nu_i/\nu_c) \) with 0 \(\leq m \leq N_i/2 \) where \(r_i \) is the comoving distance to the center of a redshift slice, \(r_i' = d\nu_i/\nu_i \) is the frequency bandwidth of the redshift slice and \(N_i = B/\Delta f_c \). Note that \(k_{\nu i} \) is the Fourier conjugate of \(r_i' \). The simulations provide us with a set of comoving vectors \((k_{\nu i 1}, \nu_{\nu i 1}) \) at which we will obtain measurements of the brightness temperature fluctuations \(T_S(k_{\nu i 1}, \nu_{\nu i 1}) \). Two different baselines having separation less than \(D/\lambda_c \) do not have independent information due to overlap of the antenna beam pattern (Bharadwaj & Ali 2005). We grid the comoving wave vectors with a grid of size \(\Delta k_x = \Delta k_y = (2\pi D)/(\lambda_c r_i) \) and \(\Delta k_z = (2\pi)/(r_i' \Delta f_c) \). Considering a grid point \(k_z \), we define \(\tau(k_z) \) to be the number of measurements which lie within a voxel centered at \(k_z \). We use \(\tau(k_z) \) to estimate the noise PS \(P_N(k_z) \) at each grid point \(k_z \) using the following expression (Chatterjee & Bharadwaj 2018)

\[
P_N(k_z) = \frac{\nu_i^2}{N_p \Delta x A_{\nu} \Delta f_c \tau(k_z)} \frac{T_{\text{sys}}^2 \lambda_i^2}{t_{\text{obs}}} = \frac{8 \text{ hrs}}{t_{\text{obs}}} \frac{N_p}{\tau(k_z)}
\]

Here \(T_{\text{sys}} \) is the system temperature, \(N_p \) is the number of polarizations, \(N_i \) is the number of observed nights with 8 hrs per night, \(\Delta t \) is the integration time, \(A_{\nu} = (\pi D^2)/4 \) is the geometric area of
a single antenna. It is convenient to quantify the total duration of the observations using $t_{obs} = N_t \times 8$ h instead of N_t, and we have used t_{obs} through the subsequent discussion of this paper. The system temperature $T_{sys} = T_{sky} + T_{rec}$ is a sum of the sky temperature $T_{sky} = 60.2_{-5.5}^{+5.3}$ K (Fixsen et al. 2011) and the receiver temperature $T_{rec} = 100$ K. Here χ is defined using

$$\frac{1}{\chi} = \frac{A_{\theta_0}}{\chi} \left[\frac{d^2A(\theta)}{d\theta^2} \right]$$

where $A(\theta)$ is the telescope’s primary beam pattern (Sarkar & Bharadwaj 2013; Parsons et al. 2014b). We have approximated the beam pattern with a Gaussian $e^{-\theta/\theta_0^2}$ (Choudhuri et al. 2014) and evaluated the solid angle integral in the flat sky approximation to obtain $\chi = 0.53$. Note that $P_N(k_g)$ is infinitely large at the grid points where $\tau(k_g) = 0$ i.e. the grid points which are not sampled by the telescope baseline distribution.

Considering a typical SKA-Low observation spanning an angular extent of $\sim 3 \times 3^\circ$ on the sky with an angular resolution $\sim 1^\circ$ and a frequency bandwidth of ~ 64 MHz with frequency resolution ~ 0.1 MHz, this corresponds to $N_t = 180 \times 180 \times 640 \approx 2 \times 10^9$ different grid points at which the EoR 21-cm PS will be measured. The dimension of the resulting PS error covariance matrix is $\sim 10^9 \times 10^9$ which renders further computations prohibitively expensive if not impossible. In order to overcome the intractability of such a large covariance matrix we bin the k space and use the binned PS estimator which, for the i-th bin, is defined as

$$\hat{P}_i(k_g) = V^{-1} \sum_g w_{g} \hat{T}_i(k_g) \hat{T}_i(-k_g),$$

where the sum is over the k_g modes within the i-th bin and w_g is the normalized weight associated with each mode with $\sum_g w_{g} = 1$. Here $k_g = \sum_g w_{g} k_g$ is the average k value corresponding to the i-th bin. The weights w_g have been introduced to account for the fact that the ratio $P(k_g)/P_N(k_g)$ varies across the different grid points, and as discussed later, the weights have been chosen so as to maximize the SNR of the binned-averaged PS. For the present analysis we have divided the available k space into ten logarithmic spherical bins. The ensemble average of $P(k_g)$ gives the binned-averaged PS $\bar{P}(k_g) = \langle \hat{P}(k_g) \rangle = \bar{P}(k_g) + \delta P(k_g)$. Note that the resulting estimator has a noise bias $\delta P(k_g)$, this however can be eliminated by suitably modifying the estimator (Choudhuri et al. 2016). In the subsequent analysis we assume that the noise bias has been eliminated and we have an unbiased estimate of the binned-averaged power spectrum $\hat{P}(k_g)$. The noise contribution to the PS error covariance $C_{ij} = \langle (\hat{P}_i(k_g) - \bar{P}_i(k_g))(\hat{P}_j(k_g) - \bar{P}_j(k_g)) \rangle$, however, cannot be eliminated and following the calculation presented in Mondal et al. (2016), we have

$$C_{ij} = \sum_{k_g} \sum_{k_g} [P(k_g) + P_N(k_g)]^2 \delta_{ij}$$

$$+ V^{-1} \sum_{g} \sum_{s} w_{g} w_{s} T(k_g, k_s; -k_g, -k_s),$$

where the sum is over the grid points k_g and k_s in the i-th and the j-th bins respectively. The trispectrum $T(k_1, k_2, k_3, k_4)$ originates due to non-Gaussianity of the EoR 21-cm signal, the quantity which appears here is the weighted bin-averaged trispectrum. For the diagonal terms of the covariance matrix C_{ii} the trispectrum quantifies the excess with respect to the Gaussian predictions. The off-diagonal terms of C_{ij} are predicted to be zero if the EoR 21-cm signal were a Gaussian random field. The trispectrum arising due to the non-Gaussianity introduce non-zero off-diagonal terms corresponding to correlations (and anti-correlations) between the errors in the PS estimates in the different k bins (Mondal et al. 2016, 2017). The system noise has been considered to be outcome of a Gaussian random process and this does not contribute to the non-Gaussianity through the trispectrum.

3.1 Computing the Error Covariance from the Simulations

The PS error covariance C_{ij} consists of two components – (1) the cosmic variance, and (2) the system noise. According to the equation (4) we need the EoR 21-cm PS $P(k_g)$, the EoR 21-cm trispectrum $T(k_g, -k_g, k_s, -k_s)$, the noise PS $P_N(k_g)$ and appropriate weights w_{g} to compute the C_{ij}. The reionization simulations of Mondal et al. (2017) provide us the bin-averaged EoR 21-cm PS $P(k_g) = N_{k_g}^{-1} \sum_{g} \sum_{g} T(k_g, -k_g, k_s, -k_s)$, and the binned-averaged trispectrum $T(k_i, k_j) = (N_k N_{k_g})^{-1} \sum_{g} \sum_{g} T(k_g, -k_g, k_s, -k_s)$, where the sum in equation (6) is over the grid points (k_g modes) in the i-th and j-th bins, and the N_k and N_{k_g} are numbers of grid points in the respective bins. The bins that we have chosen to analyze the simulated SKA-Low observations have exactly the same boundaries as the bins used to analyze the EoR simulations in Mondal et al. (2017), however we cannot directly use the $P(k_g)$ and $T(k_i, k_j)$ from Mondal et al. (2017) in equations (3) and (4) to predict the PS error covariance for the SKA-Low observations. First, equations (5) and (6) assume uniform weights whereas it is necessary to consider the variation of w_{g} across the grid points to account for the non-uniform sampling when considering the simulated observations (equations 3 and 4). Further, the resolution of the simulations and the observations will, in general, be different and consequently the k grid spacing will also differ.

One can attempt to estimate the ensemble averages of $P(k_g)$ at every individual grid point and $T(k_g, -k_g, k_s, -k_s)$ at every pair of grid points, however these estimates will be extremely noisy due to the limited number of statistically independent realizations in the EoR 21-cm signal ensemble (e.g. 50 in Mondal et al. 2017). Further, we have an enormous volume of the trispectrum data which renders this approach unfeasible. The issue now is to predict the bin-averaged PS (equation 3) and its error covariance (equation 4) for the SKA-Low observations using the results (equations 5 and 6) from the simulations of Mondal et al. (2017).

Here we have assumed that the EoR 21-cm PS does not vary much across the grid points k_g within a bin (say the i-th bin), and in equations (3) and (4) we have used the simulated $\hat{P}(k_g)$ from Mondal et al. 2017 to calculate $P(k_g) = \hat{P}(k_g)$ for all the grid points in the i-th bin. The value of $T(k_g, -k_g, k_s, -k_s)$ in equation (4) depends on the magnitude and direction of the two vectors k_g and k_s, and both of these can vary widely even when the two vectors are in the same bin ($i = j$). An even wider variation is possible when the two vectors are in different bins i and j. Unfortunately this information is not available in $T(k_i, k_j)$ (equation 6) evaluated from the simulation of Mondal et al. 2017. Here we have considered two different assumptions regarding the trispectrum at two different modes k_1 and k_2. These two assumptions correspond to two extreme cases. Case-I: we assume that all the modes within a bin are equally correlated i.e. $T(k_1, -k_1, k_2, -k_2) = T(k_1, k_2)$ when k_1 and k_2 are in the same bin.
and \(k_2 \) are both in the \(i \)-th bin, and the correlation between modes in two different bins does not depend on the magnitude or orientation of the individual vectors \(i.e. \, T(k_1, -k_1, k_2, -k_2) = T(k_1, k_2) \) when \(k_1 \) and \(k_2 \) are in the \(i \)-th and \(j \)-th bins respectively. Case–II: we assume that the signal in two different Fourier modes is uncorrelated unless \(k_1 = k_2 \, i.e. \, T(k_1, -k_1, k_2, -k_2) = \delta_{k_1,k_2} T_a(k_1, k_2) \) when the mode \(k_i \) is in the \(i \)-th bin. Case–I corresponds to the situation where we have the maximum possible correlation between different modes whereas Case–II corresponds to the situation where we have the minimum possible correlation between two different modes. In reality we expect the correlation between two modes to vary with the separation between the two modes, and the result is expected to lie within the two extreme cases considered here. Considering equation (6), we obtain \(T_c(k_i, k_j) = \hat{T}(k_i, k_j) \) for Case–I whereas it predicts \(T_{cg}(k_i) = N_{gi} \hat{T}(k_i, k_i) \) for Case–II. Note that Case–II predicts the error covariance to be completely diagonal with all the off-diagonal terms being zero which is inconsistent with the findings of Mondal et al. (2016). While Case–II is unrealistic for the off-diagonal elements of the covariance matrix, we still consider its predictions for the diagonal elements in order to illustrate the effect of partial decorrelation in the value of the trispectrum across different modes.

We calculate the weights separately for both the cases by extremizing the SNR=\(\hat{P}(k_i)/\sqrt{C_{ii}} \) with respect to \(w_i \). Considering Case–I the unnormalized weights that extremizes the SNR are

\[
\hat{w}_{gi} = \frac{1}{[\hat{P}(k_i) + P_N(k_i)]^2},
\]

which have \(P_N(k_i) \) in the denominator, \(i.e. \, \) the grid points with higher noise contribute less to the bin averaged quantities. The grid points \(k_i \) which are unsampled during observations, \(i.e. \, T(k_i) = 0 \), have \(P_N(k_i) = \infty \) (equation 1). The weight \(\hat{w}_{gi} = 0 \) (equation 7) for the unsampled grid points and they do not contribute to the bin averaged quantities. Using equation (7) in (equation 4) we obtain the corresponding PS error covariance matrix

\[
C_{ij} = \frac{1}{\sum_{gi} \hat{w}_{gi}} \delta_{ij} + \frac{\hat{T}(k_i, k_j)}{V}.
\]

For comparison we consider the error covariance for a situation where the signal is a Gaussian random field for which the trispectrum is zero. The weights \(\tilde{w}_{gi} \) here are unchanged and these are given by equation (7), and we have the PS error covariance matrix

\[
C_{ij}^G = \frac{1}{\sum_{gi} \tilde{w}_{gi}} \delta_{ij}.
\]

The diagonal terms of the covariance matrices (equations 8 and 9) predicts the error variance in the measured EoR 21-cm PS, \(i.e. \, C_{ii} = \langle \Delta \hat{P}(k_i)^2 \rangle \). Equations (8) and (9) indicate that the Gaussian consideration underestimates the variance of the measured PS. The off-diagonal terms of the covariance matrix (\(i \neq j \)) predict the correlation between the errors at the \(i \)-th and \(j \)-th bins \(C_{ij} = \langle \Delta \hat{P}(k_i) \Delta \hat{P}(k_j) \rangle \). The off-diagonal terms are zero for a Gaussian random field, and the errors in the different bins are uncorrelated. Non-Gaussianity however may introduce correlations between the different bins through the off-diagonal components of the trispectrum.

We first discuss the diagonal terms \(C_{ii}, \, i.e. \, \) the variance. This has contributions from the cosmic variance as well as the system noise. The noise PS \(P_N(k_i) \) scales as \(t_{obs}^{-1} \) (equation 1) and this has a large value for small observation times. Considering the behaviour of \(C_{ii} \), for small observation times this is governed by the system noise contribution and we have

\[
C_{ii} \propto \left(\frac{8 \, \text{hrs}}{t_{obs}} \right)^2 \frac{P_{cm}^2}{\sum_{gj} \langle \tau(k_g) \rangle^2}.
\]

Equation (10) shows that \(C_{ii} \propto t_{obs}^{-2} \) and consequently SNR\(\propto t_{obs} \) for small observation times. The observations with very large \(t_{obs} \) elucidate another extreme of the error estimates (equation 8) where \(P_N(k_i) = 0 \, \) and \(C_{ii} \) converges to the “cosmic variance” which is given by

\[
C_{ii} = \frac{P_{cm}^2(k_i)}{N_{gi}} + \frac{\hat{T}(k_i, k_i)}{V}.
\]

where \(N_{gi} \) is the number of sampled grid points in the \(i \)-th bin. The cosmic variance represents the lower limit for the PS error variance. This arises due to the inherent statistical uncertainty in the EoR 21-cm signal. The actual predicted error variance for a finite observing time will typically be larger than this due to the system noise contribution.

The corresponding cosmic variance for a Gaussian random field (equation 9) is given by

\[
C_{ii}^G = \frac{P_{cm}^2(k_i)}{N_{gi}}.
\]

A comparison of equations (11) and (12) illustrates an important difference between the Gaussian and non-Gaussian situations. We see that it is possible to reduce the cosmic variance with no lower bound by combining the signal from a larger number of \(k \) modes in the bin \(i.e. \) increasing \(N_{gi} \). In contrast, the presence of the trispectrum in equation (11) sets a lower limit to the value of \(C_{ii} \), and it is not possible to lower the variance any further by increasing the number of \(k \) modes (Mondal et al. 2015).

Next considering the off-diagonal terms \(C_{ij} = \hat{T}(k_i, k_j)/V \) (equation 8) which quantify the correlation between different bins, we see that this only depends on the trispectrum. This is intrinsic to the signal, and therefore is independent of the system noise and observation time.

Considering Case–II, the unnormalized weights are given by

\[
\hat{w}_{gi} = \frac{1}{[\hat{P}(k_i) + P_N(k_i)]^2} \frac{\hat{T}(k_i, k_j)}{N_{gi} V\langle \tau(k_i) \rangle}.
\]

which differ from the weight in Case–I (equation 7). The weights now include a contribution from the trispectra for the non-Gaussian signal. Here also the weights are zero for the grid points which are not sampled by the baseline distribution. The weights for Case–II match those for Case–I (equation 7) if the signal were a Gaussian random field. The PS error covariance (using equations 4 and 13) in Case–II is given by

\[
C_{ij} = \frac{1}{\sum_{gi} \hat{w}_{gi}} \delta_{ij}.
\]

Note that Case–II does not take into account the correlation between the different \(k \) grid points which makes the off-diagonal terms of the covariance matrix to be zero. The error covariance \(C_{ii} \) for Cases I and II match for small observation times, and they have very similar forms for very long observation times (cosmic variance) where for Case–II we have

\[
C_{ii} \propto \frac{P_{cm}^2(k_i)}{N_{gi}} + \frac{N_{gi} \hat{T}(k_i, k_i)}{V}.
\]

This differs from the predictions for Case–I (equation 11) by the factor \(\frac{N_{gi}}{N_{gi}} \) which appears in equation (15). In our analysis we find that \(f \) has values in the range \(0.1 \leq f \leq 0.3 \) for \(k < 3 \, \text{Mpc}^{-1} \).
and $f \leq 1.0$ over the rest of the k range considered here. We see that the error predictions for Case–II are smaller than those for Case–I. The error predictions for Case–II are expected to lie somewhere in between the Gaussian predictions and Case–I which assumes that all the k modes in a bin are equally correlated.

We have used the resulting covariance matrices (equations 8, 9 and 14) to predict the errors for PS measurements in the different redshift slices introduced earlier in this section.

4RESULTS

Figure 1 shows the dimensionless EoR 21-cm PS $\Delta^2(k) = k^3 P(k)/2\pi^2$ (solid purple line) and the corresponding 5σ error estimates for Case–I. The solid lines represent the non-Gaussian error predictions $E_{bG}(k) = 5 \times \sqrt{< E >}$ (equations 8) and the dashed lines represent the corresponding Gaussian error predictions $E_{bG}(k)$ (equation 9), both of these have been multiplied with $k^3/2\pi^2$ to make them dimensionless. The error estimates have contributions from both the cosmic variance and the system noise. There are broadly two main features visible in Figure 1. (1) We see that the system noise contribution dominates the errors at large k. These errors come down as t_{obs} is increased. The errors also come down at lower z where the system noise contribution is smaller (T_{sky} increases with redshift). For each t_{obs} and z we can identify a largest mode (k_{mn}) below which ($k \leq k_{mn}$) a 5σ detection of the 21-cm power spectrum will be possible. A larger k range becomes accessible for a 5σ detection (k_{mn} increases) as t_{obs} is increased or we move to a lower z. This is studied in more detail in Figure 2 which we discuss later. (2) We see noticeable differences between $E_b(k)$ and $E_{bG}(k)$. These differences are most prominent for the cosmic variance (CV) predictions which have no system noise. The system noise contribution is inherently Gaussian whereas the 21-cm signal is non-Gaussian. We find that the values of $E_b(k)$ and $E_{bG}(k)$ match for small t_{obs} when the system noise dominates the errors. The differences between $E_b(k)$ and $E_{bG}(k)$ become noticeable as t_{obs} is increased. The differences are primarily noticeable at small k where there is a relatively smaller system noise contribution as compared to large k. The differences also become more pronounced as we move to lower z where there is a smaller system noise contribution. The differences between $E_b(k)$ and $E_{bG}(k)$ are studied in detail in Figure 3 which we discuss later.

Considering Figure 1, we see that the predicted error estimates $E_b(k)$ all increase with k mainly due to the system noise contribution in contrast to the expected signal $\Delta^2(k)$ which is relatively flat across the relevant k range. This implies that for any given t_{obs} a detection of the signal will only be possible at small k whereas the errors in the power spectrum will dominate at large k. Figure 2 shows the largest k mode k_{mn} below which SKA-Low will be able to measure the EoR 21-cm PS at $z \geq 5\sigma$ confidence. We show this as a function of z for the four representative values of t_{obs} indicated in the figure. We see that the value of k_{mn} increases as z decreases i.e. for a fixed observation time, we will progressively be able to probe a larger range of length-scales as reionization progresses. This is primarily a consequence of the fact that the system noise comes down at lower z, further the amplitude of the 21-cm PS also increases as reionization progresses. However the amplitude peaks at $\sim 50\%$ reionization and drops beyond this, causing k_{mn} to fall at $z = 7$. Considering $t_{obs} = 128$ hrs we find that there is a limited k range across which a 5σ detection of the 21-cm PS is possible. This is restricted to $k \leq 0.2$ Mpc$^{-1}$ at high $z = (11,13)$ and increases somewhat to $k \leq 0.8$ Mpc$^{-1}$ at $z = 7$ and 8. There is a significant increase in the values of k_{mn} (by a factor of $\sim 2.5 - 5$) if t_{obs} is increased to 1,024 hrs. We see that with $t_{obs} = 1,024$ hrs a 5σ detection will be possible in the range $k \leq 1$ Mpc$^{-1}$ at $z \leq 11$. The value of k_{mn} increases gradually if t_{obs} is increased beyond 1,024 hrs. However, we see an exception at $z = 13$ where there is a significant increase in k_{mn} if t_{obs} is increased beyond 1,024 hrs. The values of k_{mn} increase very slowly for $t_{obs} \geq 10,000$ hrs and k_{mn} values are in the range $2 - 4$ Mpc$^{-1}$ for $t_{obs} = 50,000$ hrs.

Figure 3 shows the deviation $\Delta = (E_b - E_{bG})/E_{bG}$ of the non-Gaussian error estimates with respect to the corresponding Gaussian estimates. These deviations arise due to the contribution from the trispectrum (equation 8). Earlier studies (Mondal et al. 2016, 2017) show that the trispectrum increases at larger k (smaller length-scales), and it also increases as reionization proceeds i.e. z decreases. These effects are reflected in the behaviour of the cosmic variance (CV), which ignores the system noise. Considering the CV, we see that the deviations are minimum at around $k_{min} \sim 0.1 - 0.3$ Mpc$^{-1}$, and the deviations increase monotonically at both smaller and larger k values. At the smallest k bin $(0.04$ Mpc$^{-1})$ we find $\Delta \geq 100\%$ at $z = 7$ and 9, whereas $\Delta \sim 20\%$ for the other redshifts. The values of Δ increase significantly at $k > k_{min}$ with deviations of order $\sim 100\%$ or larger at $k > 4$ Mpc$^{-1}$ for the entire z range. Considering the redshift evolution of CV, we see that at large k the deviations from the Gaussian predictions increase as reionization proceeds.

The CV values correspond to the limiting situation where $t_{obs} \rightarrow \infty$ and the system noise contribution can be ignored. The deviations Δ are reduced when we consider the system noise corresponding to a finite t_{obs}. However we see that for $k < k_{min}$ the values of Δ approach the CV limit within $t_{obs} = 1,024$ hrs for $z \geq 9$ and within $t_{obs} = 128$ hrs for lower redshifts. We find the bins at $k > k_{min}$ are largely system noise dominated, and the deviations at these bins are small for $z \leq 9$ even for an observing time of 50,000 hrs. However, at $z = 8$ we find that Δ also increases at large k ($> k_{min}$) for $t_{obs} \geq 10,000$ hrs and we have $\Delta \sim 40\%$ at $k \sim 0.5$ Mpc$^{-1}$ for $t_{obs} = 50,000$ hrs. These deviations increase significantly at $z = 7$ where $\Delta \geq 100\%$ at $k < 0.2 - 0.5$ Mpc$^{-1}$ for $t_{obs} = 1,024$ hrs. The k range where $\Delta \geq 100\%$ increases further to $k < 0.2 - 1$ Mpc$^{-1}$ if t_{obs} is increased further to 10,000 hrs.

We next consider how the SNR for the 21-cm PS grows with increasing observation time t_{obs}. Figures 4, 5 and 6 show the results for three representative k bins located at 0.04 Mpc$^{-1}$ (large scales), 0.57 Mpc$^{-1}$ (intermediate scales) and 1.63 Mpc$^{-1}$ (small scales) respectively. The SNR values are shown for both Case–I (purple solid line) and Case–II (blue solid line), as well as the Gaussian predictions (dotted black line). The cosmic variance (CV) limits $(t_{obs} \rightarrow \infty)$ are shown as shaded regions for both the non-Gaussian (Case–I) and Gaussian predictions. We find that the differences between Case–I, II and the Gaussian predictions are noticeable only when the SNR approaches the cosmic variance limit. The Gaussian predictions are the most optimistic of the three, and the SNR values for Case–II are typically between those for Case–I and the Gaussian predictions. The figure also shows how Δ increases with t_{obs} at the specified values of k.

Considering the lowest k bin ($k = 0.04$ Mpc$^{-1}$, Figure 4), the SNR is largely constrained by the cosmic variance with a relatively small system noise contribution. The SNR saturates to the cosmic variance limit within a few hundred hours of observations at $z \leq 10$ and within $t_{obs} \sim 3,000$ hrs for $z > 10$. Considering Case–I, a $\geq 5\sigma$ measurement of the EoR 21-cm PS will be possible with $t_{obs} \geq 128$ hrs at redshifts $z = 13,11,8$ and with $t_{obs} \geq 3,000$ hrs at $z = 10$, whereas a 5σ detection is limited by the cosmic variance at $z = 7$.
and 9. However, the Case–II predictions are more optimistic and they predict a 5σ detection to be possible. The deviations between the non-Gaussian and Gaussian predictions are found to become important (Δ ≥ 50%) within a few hundred hours of observations at redshifts z = 10, 9 and 7.

Considering k = 0.57 Mpc$^{-1}$ (Figure 5), the limiting SNR (CV) increases to values > 100 at z ≥ 8 and ~ 40 at z = 7 implying that a high precision measurement of the EoR 21-cm PS is possible at these length-scales provided that t_{obs} is adequately large. The t_{obs} needed for a 5σ detection is ~ 1,000 hrs at z = 13 and it comes down to lower z to ~ 128 hrs at z = 8 and 7. The SNR is highest at z = 8 and we have SNR ∼ 100 in ~ 4,000 hrs of observations. The non-Gaussian effects make a relatively small contribution to the error predictions at this length-scale with Δ ≤ 20% in the range z ≥ 8 for t_{obs} ≤ 104 hrs. The non-Gaussian effects increase somewhat at z = 7 where we have Δ ∼ 250% for t_{obs} ≈ 104 hrs.

Considering the bin at k = 1.63 Mpc$^{-1}$ (Figure 6) the SNR is largely system noise dominated. The SNR is well below the cosmic variance limit and increases with t_{obs} for the range shown in the figure except for the Case-I at z = 7. A 5σ detection will be possible with t_{obs} ≈ 20000, 40000, 2000, 1000 and 600 hrs at z = 13, 11, 10, 9, and 8 respectively. The value of the 21-cm PS falls at z = 7 and the minimum observation time required for a 5σ detection increases to 1,000 hrs. The inherent non-Gaussianity of the 21-cm signal is important only at z = 7 where we have 10% ≤ Δ ≤ 100% for 104 hrs ≤ t_{obs} < 105 hrs.

We now discuss the off-diagonal elements of the covariance matrix C_{ij} which is a measure of the correlation between error estimates at different k bins. The off-diagonal terms of the covariance C_{ij} do not change with the observation time as we see in equation (8). It is convenient to consider the dimensionless correlation coefficients $r_{ij} = C_{ij}/ \sqrt{C_{ii}C_{jj}}$. The value $r_{ij} = 1$ indicates a perfect correlation between the errors at the two bins, whereas $r_{ij} = -1$ implies a complete anti-correlation. The errors in the two bins are completely uncorrelated if $r_{ij} = 0$ i.e. the two PS measurements are independent. Values $r_{ij} > 0$ and $r_{ij} < 0$ indicate partial correlation and anti-correlation respectively. An earlier work (Mondal et al. 2017) presents a detailed analysis of the correlations r_{ij} evaluated from simulations. It was found that the non-Gaussianity inherent in the EoR 21-cm signal introduces a complex pattern of correlations and anti-correlations between the different k bins. It was further found that these correlations (and anti-correlations) were statistically significant i.e. they were in excess of the statistical fluctuations expected if the signal were purely a Gaussian random field. However, the earlier work did not include the effects of the baseline sampling and system noise corresponding to observations with a radio-interferometric array. For an array like SKA-Low the correlation coefficient r_{ij} is dependent on the observation time through the diagonal elements C_{ii} which appear in the denominator. As discussed.

Figure 1. This shows the mean squared 21-cm brightness temperature fluctuations $\Delta^2(k)$ and the corresponding 5σ error estimates for different t_{obs} for six different redshifts considering Case–I. The solid lines represent the non-Gaussian errors and the dashed lines represent the corresponding Gaussian errors. We also show the cosmic variance which is the lowest limit of the error estimates (thin lines).
Figure 2. This shows the variation of the maximum Fourier mode k_m which will be detected at a 5r level as a function of z for the four t_{obs} indicated in the figure.

earlier, the values of C_{ij} are typically large for small t_{obs} where they are system noise dominated. The relative significance of the correlations between the errors in different k bins is small for small t_{obs} where r_{ij} has small values. The relative significance of these correlations increase as C_{ij} approaches the cosmic variance and we have considered $t_{\text{obs}} = 1.024$ hrs for our analysis. The values of r_{ij} will increase if we consider a larger observation time.

Considering Figure 7, we see that in addition to $r_{ij} = 1$ (by definition) for all the diagonal elements, we have both positive and negative values of r_{ij}. The redshifts $z = 13$, 11 and 10 show very similar features with a positive correlation ($r_{ij} \sim 0.1$ to 0.3) between the two smallest k bins (0.04, 0.07 Mpc$^{-1}$), and the third bin (0.12 Mpc$^{-1}$) is anti-correlated ($r_{ij} \sim -0.4$ to -0.1) with the two smaller k bins and one larger k bin (0.20 Mpc$^{-1}$). The nature of these correlations changes at $z = 9$ where the first five k bins ($k \leq 0.34$ Mpc$^{-1}$) are correlated. Of these, the four largest k bins are strongly correlated ($0.2 \leq r_{ij} < 0.7$) among themselves whereas the smallest k bin is only mildly correlated ($r_{ij} < 0.2$) with the other bins. At $z = 8$, the first three k bins are correlated ($r_{ij} \leq 0.3$) whereas the fifth bin shows anti-correlations ($r_{ij} > -0.3$) with the second and third bins. Considering $z = 7$, the first two k bins are anti-correlated ($r_{ij} \geq -0.3$) with the other bins while the next five k bins show strong correlations (0.15 $\leq r_{ij} \leq 0.85$). We thus see that there are noticeable correlations and anti-correlations between the errors in the estimated 21-cm PS in different k bins at all stages of reionization. These correlations span a wide range of k modes depending on the redshift.

5 SUMMARY AND CONCLUSIONS

There are currently several radio-interferometric arrays such as LOFAR, MWA and PAPER which have been carrying out observations to detect the EoR 21-cm PS. Several other instruments like HERA and SKA, which are expected to have greater sensitivity, are under construction or planning. It is of considerable interest to have error predictions for the EoR 21-cm PS considering such observations, and there have been several works (e.g. Mellema et al. 2013; Pober et al. 2014; Greig & Mesinger 2015; Ewall-Wice et al. 2016) addressing this under the assumption that the EoR 21-cm signal is a Gaussian random field. However there have been several studies (e.g. Bharadwaj & Pandey 2005; Mondal et al. 2015, 2016, 2017; Majumdar et al. 2018) which show that the EoR 21-cm signal is non-Gaussian in nature. In this paper we study how these non-Gaussianities affect the error estimates for the EoR 21-cm PS considering observations with the upcoming SKA-Low.

The error predictions for any observation of the EoR 21-cm PS are quantified through the error covariance matrix C_{ij} which depends on the PS and the trispectrum of the EoR 21-cm signal, and also observational effects like the array baseline distribution and the system noise. The EoR simulations generally provide predictions for the bin-averaged 21-cm PS and trispectrum without incorporating the observational effects. In this paper we first present a methodology for calculating C_{ij} combining the simulated PS and trispectrum with these observational effects. Results are mainly presented for Case–I which assumes that the different k modes within the same k bin are completely correlated. We also consider Case–II which assumes the different k modes within the same k bin to be totally uncorrelated. These represent two extreme cases, and the reality is expected to be somewhere in between. We find that the error predictions for Case–II are typically intermediate between the Gaussian predictions and Case–I.

We find that the predicted errors typically increase at large k (Figure 1) where it is system noise dominated. In this situation the r.m.s. error scales as t_{obs}^{-1} and the k range below which a 5r detection of the EoR 21-cm PS is possible (k_{obs}) increases as t_{obs} increases (Figure 2). The values of k_{obs} also increase as reionization proceeds as T_{sys} increases with redshift. At all z a 5r detection is possible for 128 hrs of observation. However k_{obs} is largest (~ 0.9 Mpc$^{-1}$) at $z = 8$, and the accessible k range is smaller at higher z with $k_{\text{obs}} \sim 0.09$ Mpc$^{-1}$ at $z = 13$. The value of k_{obs} increases significantly for $t_{\text{obs}} = 1.024$ hrs and we have $k_{\text{obs}} > 1$ Mpc$^{-1}$ for all $z \leq 10$. We have $k_{\text{obs}} > 1$ Mpc$^{-1}$ at all redshifts for $t_{\text{obs}} = 10,000$ hrs. We note that at redshifts $z = 7$ and 9 a 5r detection is not possible at the smallest k bin ($k = 0.04$ Mpc$^{-1}$) which is predicted to be cosmic variance limited (Figures 1 and 4).

The error predictions here are in excess of the Gaussian predictions which ignore the contribution from the trispectrum. At all z the fractional deviation Δ is found to exhibit a “U” shaped k dependence (Figure 3) in the CV limit where the system noise can be ignored. The deviations are minimum at $k_{\text{min}} \leq 0.1$ to 0.3 Mpc$^{-1}$ where the ratio $N_T(k) / P(k)$ also is minimum, and Δ rises steeply on both sides with particularly large values ($\sim 100\%$) at $k > k_{\text{min}}$. For finite observation times where the system noise is important, we have significant deviations ($\Delta \sim 40$ to 100%) at $k > k_{\text{min}}$ for $t_{\text{obs}} = 1.024$. However, for $k > k_{\text{min}}$ the errors are system noise dominated (except at $z \leq 8$) and the deviations are small. At $z = 7$ we have particularly large deviations ($\sim 100\%$ and larger) at $k > k_{\text{min}}$ for $t_{\text{obs}} \geq 1.024$ hrs.

The SNR (Figures 5 and 6) is expected to increase $\propto t_{\text{obs}}$ for small observation time where the system noise dominates the errors, we also expect the Gaussian predictions to match those for Case–I and Case–II in this regime. This is clearly seen for most redshifts at $k = 0.57$ Mpc$^{-1}$ (Figure 5) and 1.63 Mpc$^{-1}$ (Figure 6) which are respectively representative of intermediate and small length-scales. However at $z = 7$ we see that the SNR saturates at the CV limit beyond $t_{\text{obs}} \sim 10^3$ hrs. At $k = 0.04$ Mpc$^{-1}$ (Figure 4), which is representative of large length-scales, the SNR saturates within ~ 100 hrs at all redshifts. The Gaussian predictions, Case–I and Case–II also differ significantly, and the predictions for Case–II are typically between the Gaussian and Case–I predictions.

MNRAS 000, 1–12 (2019)
Figure 3. This shows the % deviation of $E_b(k)$ with respect to the Gaussian predictions $E_{bG}(k)$ considering Case–I.

Figure 4. This shows the SNR (left axis) as a function of the observing time t_{obs} for $k = 0.04$ Mpc$^{-1}$ which is representative of large length-scales. Results are shown for Case–I, Case–II and the Gaussian predictions, while the two shaded regions demarcate the cosmic variance limits for Case–I and the Gaussian predictions respectively. The dashed line (green) shows Δ (right axis) as a function of t_{obs}. The different panels, each of which corresponds to a different redshift, are arranged the same way as in Figure 3.
$k_6 = 0.57 \text{ Mpc}^{-1}$

Figure 5. Same as Figure 4 for $k = 0.57 \text{ Mpc}^{-1}$.

$\Delta = k_8 = 1.63 \text{ Mpc}^{-1}$

Figure 6. Same as Figure 4 for $k = 1.63 \text{ Mpc}^{-1}$.
The inherent non-Gaussianity of the EoR 21-cm signal introduces correlations between the errors in different k bins. Although C_{ij} ($i \neq j$) is independent of t_{obs}, the dimensionless correlation coefficients $r_{ij} = C_{ij} / \sqrt{C_{ii}C_{jj}}$ are t_{obs} dependent. We expect the correlations r_{ij} to become important for large t_{obs}, and we have presented results for 1,024 hrs (Figure 7). We find significant correlations and anti-correlations $|r_{ij}| \sim 0.1 – 0.4$ among the four smallest k bins over the entire z range. Further, we find strong correlations $r_{ij} \sim 0.7 – 0.8$ among some of the k bins in the range $k \sim 0.1 – 1$ Mpc$^{-1}$ at $z = 7$ and 9.

In conclusion we note that non-Gaussian effects make a significant contribution to the error predictions, particularly at low redshifts and large length-scales. In addition to increasing the error predictions with respect to the Gaussian predictions, it also introduces significant correlations and anti-correlations between different k bins. The analysis here has ignored foregrounds which will possibly restrict the k modes which can be used for measuring the EoR 21-cm PS (e.g. Datta et al. 2010; Morales et al. 2012). We plan to consider the foreground effects in our future work.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Raghunath Ghara and Ms. Srijita Pal for the help related to the specifications of SKA-Low and baseline distributions. AKS would like to thank Mr. Anjan K. Sarkar, Mr. Debanjan Sarkar and Mr. Suman Chatterjee for the fruitful discussions.

REFERENCES

Ali S. S., Bharadwaj S., Chengalur J. N., 2008, MNRAS, 385, 2166
Ali Z. S., et al., 2015, The Astrophysical Journal, 809, 61
Bag S., Mondal R., Sarkar P., Bharadwaj S., Saini V., 2018, MNRAS, p. sty/714
Beardsley A. P., et al., 2013, MNRAS: Letters, 429, L5
Beardsley A. P., et al., 2016, The Astrophysical Journal, 833, 102
Becker R. H., et al., 2001, The Astronomical Journal, 122, 2850
Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Vennmans B. P., 2015, MNRAS, 447, 3402
Bernardi, G. et al., 2009, A&A, 500, 965
Bernardi, G. et al., 2010, A&A, 522, A67
Bharadwaj S., Ali S. S., 2004, MNRAS, 352, 142
Bharadwaj S., Ali S. S., 2005, MNRAS, 356, 1519
Bharadwaj S., Pandey S. K., 2005, MNRAS, 358, 968
Bharadwaj S., Sethi S. K., 2001, Journal of Astrophysics and Astronomy, 22, 293
Bharadwaj S., Srikant P. S., 2004, Journal of Astrophysics and Astronomy, 25, 67
Chatterjee S., Bharadwaj S., 2018, MNRAS, 483, 2269
Choudhuri S., Bharadwaj S., Ghosh A., Ali S. S., 2014, MNRAS, 445, 4351
Choudhuri S., Bharadwaj S., Chatterjee S., Ali S. S., Roy N., Ghosh A., 2016, MNRAS, 463, 4093
Choudhury T. R., Haehnelt M. G., Regan J., 2009, MNRAS, 394, 960
Dai W.-M., Ma Y.-Z., Guo Z.-K., Cai R.-G., 2018, preprint, (arXiv:1805.02236)
Datta A., Bowman J. D., Carilli C. L., 2010, The Astrophysical Journal, 724, 526
Datta K. K., Mellema G., Mao Y., Iliev I. T., Shapiro P. R., Ahn K., 2012, MNRAS, 424, 1877

Figure 7. This shows the correlation coefficient r_{ij} for the errors at different k bins for 1,024 hrs of observations. The different panels, each of which corresponds to a different redshift, are arranged the same way as in Figure 3.
