Toll-like receptor 9 (TLR9) promiscuously binds self- and microbial DNA, but only microbial DNA elicits an inflammatory response. How TLR9 discriminates between self- and foreign DNA is unclear, but inappropriate localization of TLR9 permits response to self-DNA, suggesting that TLR9 localization and trafficking are critical components. The molecular mechanisms controlling the movement of TLR9 may provide new insight into the recognition of DNA in normal and in pathological conditions such as autoimmune systemic lupus erythematosus. We have shown earlier that TLR9 is retained in the endoplasmic reticulum (ER) and it moves to endolysosomes to recognize CpG DNA. Other studies have suggested that TLR9 bypasses the Golgi complex to access endolysosomes. Here, we show that TLR9 translocates from ER to endolysosomes through the Golgi complex and that Golgi export is required for optimal TLR9 signaling. In all, 6–13% of TLR9 constitutively exits the ER, moves through the Golgi complex and resides in lysosomal-associated membrane protein-1-positive vesicles. TLR9 bound to CpG DNA had glycan modifications indicative of Golgi processing confirming that TLR9 travels through the Golgi complex to access CpG DNA in endolysosomes. Together, these data support a model where TLR9 uses traditional secretory pathways and does not bypass the Golgi complex.

Immunology and Cell Biology (2009) 87, 209–217; doi:10.1038/icb.2008.101; published online 16 December 2008

Keywords: brefeldin A; CpG DNA; endolysosome; Golgi; TLR9; trafficking

Toll-like receptors (TLRs) are innate immune receptors important for host defense against pathogens.1 Although many TLRs are present at the cell surface, those dedicated to recognition of various nucleic acid structures are retained in intracellular compartments. Nucleic acid structures recognized by TLRs include double-stranded RNA by TLR3,2 single-stranded RNA by TLR7 and 8,3 and CpG DNA by TLR9.4,5 It is noted that, these structures are also present in self-nucleic acids.

Recognition of DNA by TLR9 occurs in endolysosomes, but TLR9 resides predominantly in the endoplasmic reticulum (ER) in resting cells.5–9 Endolysosomal localization is important for TLR9 response to CpG DNA, as TLR9 binds some DNA preferentially at low pH, endosomal acidification inhibitors block TLR9 signaling and TLR9 undergoes a conformational change upon CpG DNA binding in endolysosomes.10–12 CpG DNAs with different sequence and secondary structure can elicit either production of type I interferon-α or maturation of plasmacytoid dendritic cells depending on the precise location of interaction with TLR9. Those CpG DNAs that induce interferon-α production accumulate in early endosomes, whereas those that induce maturation accumulate in lysosomes.13 The mechanism regulating TLR9 translocation from the ER to these different compartments remains unclear.

Intracellular localization of TLRs 3, 7, 8 and 9 may be a key factor to prevent recognition of self-nucleic acids. Self-nucleic acids are poorly endocytosed and rapidly degraded in the extracellular milieu. However, self-DNA is recognized by TLR9 when it is presented by chromatin-specific autoantibodies or the microbial peptide LL37, or when TLR9 is inappropriately localized. The inappropriate activation of TLR9 by self-DNA results in the onset of a severe inflammatory response.14–16 Therefore, it is critical to uncover the mechanisms regulating TLR9 localization and trafficking.

As recent studies have proposed that TLR9 bypasses the Golgi complex during translocation from the ER to early endosomes,7,17 we investigated the importance of Golgi export in TLR9 movement using newly developed assays and traditional biochemical methods. Our results show that a pool of TLR9 constitutively traffics from the ER through the Golgi complex and resides in endolysosomes, and that this pool of TLR9 is most likely to be involved in signaling. Furthermore, transit of TLR9 through the Golgi complex occurs in response to CpG DNA and is required for optimal signaling. These data shed new light on the pathways of TLR9 movement within the cell. Control of TLR9 movement along these pathways most likely regulates discrimination between self- and nonself-DNA.

RESULTS

TLR9 signaling requires Golgi transport

The observation that TLR9 remains sensitive to digestion with endoglycosidase H (EndoH), following CpG DNA stimulation,7

1Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA and 2Field of Immunology, Cornell Graduate School, Ithaca, NY, USA
Correspondence: Dr CA Leifer, Department of Microbiology and Immunology, College of Veterinary Medicine, VMC C5-153, Cornell University, Ithaca, NY 14853, USA.
E-mail: cal59@cornell.edu
Received 29 April 2008; revised 14 October 2008; accepted 22 October 2008; published online 16 December 2008
(Supplementary Figure 1) has led to a model where TLR9 bypasses the Golgi complex when it translocates from the ER to endolysosomes. However, sensitivity to EndoH digestion is not a definitive marker for ER localization. EndoH digests both high mannose glycans (found on proteins in the ER) and hybrid glycan modifications (found on proteins in the Golgi complex). To directly test whether TLR9 bypasses the Golgi complex, we blocked Golgi export using the fungal metabolite brefeldin A (BFA). BFA blocks Golgi export by preventing ADP ribosylation factor association with the Golgi membrane and the formation of the coatamer complex. Pretreatment with BFA significantly inhibited TLR9-induced NF-κB activation in a dose-dependent manner (Figure 1a). The inhibitory effect of BFA was significant with 15 min pretreatment, an effect that was slightly greater with longer pretreatment (Figure 1b). Some TLRs, such as TLR2, TLR4 and TLR5 constitutively traffic to and signal from the cell surface. These TLRs should not be inhibited by BFA as they do not depend on Golgi export to initiate signal transduction. TLR5 signaling was not inhibited by pretreatment with BFA, supporting the conclusion that the inhibitory effect on TLR9 signaling was not due to toxic effects (Figures 1a and b). Incubation of a human B-cell line with fluorescently labeled CpG DNA resulted in binding and endocytosis as measured by an increase in mean fluorescence intensity (3.9 with no CpG DNA, binding: 24.3 with labeled CpG DNA at 4°C and endocytosis: 83.7 with CpG DNA at 37°C) (Supplementary Figure 2). Uptake of labeled CpG DNA was not decreased, but slightly increased (97.9 mean fluorescence intensity) upon BFA treatment indicating that the mechanism of inhibition of TLR9 signaling was not due to inhibition of CpG DNA endocytosis (Supplementary Figure 2). Together, these data indicate that trafficking through the Golgi complex is required for optimal TLR9 signaling.

TLR9 constitutively traffics through the Golgi complex

As we showed that Golgi export is required for TLR9 signaling, we could not explain why TLR9 did not become EndoH resistant following CpG DNA stimulation. We next determined whether TLR9 became resistant to EndoH digestion following BFA treatment. If TLR9 normally remains sensitive to EndoH digestion because it bypasses the Golgi complex, thereby evading the Golgi-resident glycosylation modifying enzymes, then treatment with BFA will change TLR9 glycosylations to complex forms and the protein will become resistant to EndoH digestion. This is because BFA treatment will force co-localization of TLR9 with the Golgi contents. As expected in untreated cells, TLR9 was reduced to the unglycosylated molecular weight by treatment with EndoH digestion or with PNGase F (Figures 2a and b). TLR4 is synthesized in the ER, transits through the Golgi complex and resides at the cell surface. Therefore, TLR4 normally runs as a doublet, the upper band representing the surface expressed, EndoH resistant form and the lower band representing the immature EndoH sensitive form (Figure 2a). When treated with PNGase F, all of TLR4 was reduced to the unglycosylated molecular weight (Figure 2a). A chimeric fusion protein between the ectodomain of...
TLR4 and the transmembrane and cytoplasmic tail of TLR9 (TLR4–9) has been shown earlier to localize similarly to TLR9. The TLR4–9 chimera was sensitive to EndoH digestion, but became resistant to EndoH digestion within 4 h of treatment with BFA and was completely resistant to digestion by 8 h (Figures 2a and b). In contrast, TLR9 remained sensitive to EndoH digestion following the treatment with BFA for up to 8 h, the half-life of TLR9 (Figure 2b). These data indicate that EndoH sensitivity is not an accurate indicator of TLR9 localization. Despite forced localization with enzymes, capable of inducing maturation of the N-linked carbohydrates, the glycosylations on TLR9 remained sensitive to EndoH digestion.

We next developed alternative biochemical assays to detect the movement of TLR9 within the cell. Lectins are plant proteins that have high specificity for recognition of carbohydrate structures. *Galanthus nivalis* (GN) lectin recognizes high mannose glycans found on proteins modified in the ER and hybrid glycans on proteins minimally processed in the Golgi complex. Biotinylated GN lectin bound to TLR9 and to the lower, EndoH-sensitive band of TLR4 in lysates from cells transfected with green fluorescent protein (GFP)-tagged TLR9 and TLR4 (Figure 3a). This showed that each contained high mannose or hybrid glycans. Partially degraded TLR9 (lower band in TLR9 lane) also bound to GN lectin (Figure 3a). Importantly, the bands detected upon incubation with the biotinylated lectin were not due to incomplete stripping of the blot, as no signal was detected when the stripped blot was developed with enhanced chemiluminescent reagent and exposed to radiographic film. *Datura stramonium* (DS) lectin specifically recognizes ‘Galβ1→4GlcNac’ structures present on both hybrid and complex glycans, modifications found only on proteins that have moved into the Golgi complex. Biotinylated DS lectin bound to both the bands of TLR4, as they represent the hybrid glycosylated and complex/mature glycosylated forms. Biotinylated DS lectin also bound to TLR9 (Figure 3a) suggesting that TLR9’s glycosylations had been processed in the Golgi. This was not an artifact of overexpression of tagged TLR9 as endogenous TLR9 also bound to DS lectin (Figure 3b). DS lectin did not bind to bovine serum albumin that lacks canonical N- and O-linked glycosylation sites, indicating that binding was specific (Supplementary Figure 3). Also, DS lectin did not bind to the lower molecular weight form of TLR9, which is most likely a degraded form that is generated by partial cleavage of the glycosylated ectodomain (Figure 3a). To determine whether the carbohydrate modifications on TLR9 were hybrid (that is, able to bind DS lectin, but EndoH sensitive), we treated TLR9 with PNGase F or EndoH before blotting with biotinylated lectins. PNGase F digests all N-linked glycan residues and, as expected, treatment of either TLR9 or TLR4 eliminated binding of both GN and DS lectin (Figure 3c). EndoH treatment eliminated GN lectin binding to both TLRs, as the binding specificity of GN lectin correlates with the specificity for glycosidase activity of EndoH, as it cleaves high mannose and hybrid glycans and not complex glycans (Figure 3c). However, EndoH digestion prevented DS lectin binding to TLR9, but not to the upper, EndoH resistant TLR4 band (Figure 3c). Therefore, TLR4 contained complex/mature (DS lectin binding, EndoH resistant) glycosylations, whereas TLR9 contained hybrid (DS lectin binding, EndoH sensitive) glycosylations. The hybrid glycan modifications on TLR9 show that it had

Figure 3 Biotinylated DS lectin blotting indicates TLR9 glycans are modified in the Golgi complex. (a) GFP immunoprecipitates from HeLa cells transfected with TLR9-GFP, TLR4-YFP or pEGFP empty vector (V) were probed for GFP. The blot was stripped and probed with biotinylated GN or DS lectin. Arrowheads indicate full length TLR9 and small arrows indicate the upper and lower glycoforms of TLR4. Data are representative of four experiments. (b) Either BJAB cells (left lane), or as a positive control, HeLa cells transfected with TLR9-YFP (right lane), were lysed and TLR9 immunoprecipitates were immunoblotted for TLR9. The blot was subsequently stripped and probed with biotinylated DS lectin. Data are representative of three experiments. (c) GFP immunoprecipitates from HEK293 cells stably transfected with TLR9-YFP or TLR4-GFP were left untreated (−) or treated with EndoH (H), or PNGase F (F) before immunoblotting with GFP (lower blots). The blots were stripped and probed with biotinylated GN or DS lectin (upper blots). Arrowheads are the same as in (a). Data are representative of four experiments. TLR9, toll-like receptor 9; GFP, green fluorescent protein; EndoH, endoglycosidase H; GN, *Galanthus nivalis*; DS, *Datura stramonium*.
reached the Golgi complex despite remaining sensitive to EndoH digestion.

To confirm the importance of Golgi export in TLR9 movement, we developed a furin protease tag cleavage assay. Furin is a protease present in the trans-Golgi network and at the cell surface, and cleaves at IXPRR sequences (R—arginine, X—amino acid).27,28 A furin cleavage site was engineered into HA-tagged TLR9 (HA⁵⁴⁰-TLR9) such that the HA tag is cleaved from TLR9 when it is exposed to furin enzyme, thereby identifying the pool of TLR9 that has transited through the Golgi complex (Figure 4a). HA-tagged TLR9 and HA⁵⁴⁰-TLR9 retained their activity when tested by NF-kB luciferase reporter assay (Brooks J, 2007, unpublished data). In vitro incubation with recombinant furin resulted in loss of the HA tag from the HA⁵⁴⁰-TLR9 protein, but not from the HA-TLR9 protein, confirming that the engineered cleavage site was functional (Figure 4b). In transfected cells, treatment with BFA induced a time-dependent loss of the HA tag from HA⁵⁴⁰-TLR9 but not HA-TLR9 when compared with total TLR9 levels, showing that furin cleavage occurred in cells (Figure 4c). When the bands were analyzed by densitometry, the relative intensity (RI) of the HA tag to TLR9 from the HA-TLR9 protein, confirming that the engineered cleavage site was functional (Figure 4b). In transfected cells, treatment with BFA induced a time-dependent loss of the HA tag from HA⁵⁴⁰-TLR9 but not HA-TLR9 when compared with total TLR9 levels, showing that furin cleavage occurred in cells (Figure 4c). When the bands were analyzed by densitometry, the relative intensity (RI) of the HA tag to TLR9 from HA-TLR9 cells was constant over 6 h treatment with BFA (0.55 to 0.62). In contrast, the RI of the HA tag to TLR9 in HA⁵⁴⁰-TLR9 cells decreased dramatically over the 6-hour treatment with BFA (0.32 RI down to 0.08 RI). Therefore, the HA tag from HA⁵⁴⁰-TLR9 was cleaved inside cells by endogenous furin. Consistent with our ability to detect DS lectin binding to TLR9, the basal level of the HA tag on HA⁵⁴⁰-TLR9 was lower than on HA-TLR9 when compared with total TLR9 levels (0.55 RI for HA-TLR9 versus 0.32 RI for HA⁵⁰⁰-TLR9) (Figure 4c). This suggested that a pool of HA⁵⁰⁰-TLR9 constitutively translocates through the Golgi complex and is processed by the endogenous furin enzyme. Taken together, our studies using BFA treatment, lectin blotting and the furin cleavage assay support a model where TLR9 constitutively traffics to the Golgi complex and where export from the Golgi complex is required for optimal signaling.

A pool of TLR9 constitutively localizes in endolysosomes

We next asked where the TLR9 that constitutively exits the ER is localized. Centrifugation of cell homogenates on Percoll-sucrose, self-forming, gradients allowed separation of Rab 5-positive early endosomes, GM130-positive Golgi complex, calnexin-positive ER and lysosomal-associated membrane protein-1 (LAMP-1)-positive lysosomes (Figures 5a–c and Supplementary Figure 4). In unstimulated cells, both endogenous (Figures 5a and b) and stably expressed (Figure 5c) TLR9 were detected in the ER fractions, as expected. However, 5.96% of the total endogenous TLR9 was detected in the LAMP-1-positive fractions. Similarly, in cells stably expressing HA-TLR9, 13.82% of total TLR9 was detected in the LAMP-1-positive fractions.

To determine if the constitutive movement of TLR9 to the endolysosomal compartment requires transit through the Golgi complex, cells stably expressing HA⁵⁰⁰-TLR9 or HA-TLR9 lacking the furin protease cleavage site were fractionated and tested for loss of the HA tag (indicating cleavage by furin in the Golgi complex). TLR9 was present both in the ER and lysosomal fractions from both HA⁵⁰⁰-TLR9- and HA-TLR9-expressing cells (Figure 5c). More than 67.7% of the HA tag was detected in lysosomal fractions of HA⁵⁰⁰-TLR9-expressing cells, but less than 0.5% of the HA tag was detected in those same fractions from cells expressing HA⁵⁰⁰-TLR9 containing the furin cleavage site (Figure 5c). Therefore, TLR9 constitutively localizes in the LAMP-1-positive fractions and arises there through the Golgi complex. DS lectin bound to HA-tagged and endogenous TLR9 from LAMP-1-positive fractions indicating that this pool of TLR9 had transited through the Golgi complex (Figure 5d and Supplementary Figure 5). TLR9 was not detected, even by immunoprecipitation, in early endosomal fractions of unstimulated cells (Figure 5d). The level of DS lectin binding to endogenous TLR9 in lysosomes was similar to DS lectin binding to total TLR9 suggesting that the lysosomal pool of TLR9 accounted for most, if not all of the TLR9 in the cell that had transited through the Golgi complex (Supplementary Figure 5).

The pool of LAMP-1-positive fractions was not contaminated with ER or early endosomes, as it was devoid of calnexin and Rab 5 (Chockalingam A, 2007, unpublished Data). We conclude that a small pool of TLR9 constitutively translocates from the ER, through the Golgi complex and resides in a LAMP-1-positive compartment.

MyD88 constitutes binds to endolysosomal TLR9 that has transited through the Golgi complex

MyD88 is an essential adapter protein that initiates TLR9 signaling in response to CpG DNA.4,29 Earlier studies have shown ligand-dependent recruitment of MyD88 to exogenously expressed and tagged TLR9.30,31 Next we wanted to detect the glycosylation pattern of TLR9 that associated with MyD88 in order to determine whether the TLR9 that initiates signaling also traffics through the Golgi complex. Unexpectedly, endogenous TLR9 co-immunoprecipitated with endogenous MyD88 in unstimulated cells (Figure 6a). No further increase in MyD88 association was detected upon exposure to CpG DNA (Supplementary Figure 6). The pool of TLR9 that associated with MyD88 also bound to DS lectin indicating that it had transited through the Golgi complex (Figure 6a). MyD88 also co-immunoprecipitated only TLR9 lacking the HA tag from cells expressing HA⁵⁰⁰-TLR9 (Chockalingam A, 2008, unpublished data). We conclude that a pool of TLR9 is constitutively associated with MyD88 and that this pool has exited the ER as it has biochemical signatures of Golgi processing. Given our earlier findings, we infer that this MyD88-associated pool of TLR9 is located in the lysosomal compartment although we could not immunoprecipitate sufficient
amounts of TLR9 or MyD88 from lysosomal fractions to determine co-association.

Next we determined whether the pool of TLR9 present outside the Golgi could initiate signaling. CpG DNA treatment of cells induced p38 phosphorylation as early as 30 min, which increased up to 60 min. When the ratio of phosphorylated p38 to total p38 was calculated (relative intensity ratio), the ratio increased from 0.78 in unstimulated cells to 1.29 at 30 min. The relative ratio increased further to 1.57 and remained at that level until 60 min (Figure 6b). In the presence of BFA, CpG DNA-induced phosphorylation of p38 was delayed and reduced, but still occurred. The relative ratio of phosphorylated p38 to total p38 remained at 0.68–0.70 for 30 min, increased to 1.15 at 45 min and reduced back to 0.68 at 60 min. This indicated that Golgi export was not absolutely required to initiate signaling, but was required for optimal and sustained signaling (Figure 6b). These data are consistent with a model where TLR9 is constitutively present in endolysosomes, where it initiates early signaling in response to CpG DNA. This initial signaling event is followed by additional TLR9 translocation through the Golgi complex to endolysosomes and results in optimal TLR9 signaling as described earlier.

Figure 5 TLR9 trafficking to endolysosomes requires Golgi transport. (a) Fractions from BJAB cells separated on Percoll-sucrose gradients were immunoblotted for early endosomes (Rab 5), ER (Calnexin), lysosomes (LAMP-1) and TLR9. Fractions were run on three gels, which are indicated with boxes over the fraction numbers, but were immunoblotted and developed simultaneously. (b) Each immunoblot in (a) was quantified to determine absolute intensity. Percent of maximum values were calculated from the absolute intensities and graphed on the same graph to normalize the data. Data are representative of three experiments. (c) Similar to (b) except that the cells were HEK293 cells stably expressing HAfu-TLR9 (upper) or HA-TLR9 (lower) and were additionally immunoblotted for HA. Data are representative of three experiments. (d) HA immunoprecipitates from combined fractions that were LAMP-1 (Lys, fractions 17–20) or Rab 5 (EE, fractions 1–4) positive collected from HA-TLR9 cells were immunoblotted for TLR9, stripped and probed with biotinylated DS lectin. Data are representative of two experiments. TLR9, toll-like receptor 9; ER, endoplasmic reticulum; LAMP-1, lysosomal-associated membrane protein-1.
secreted proteins begins on rough ER, where the nascent protein is translocated through the Golgi complex and that Golgi export is critical for TLR9 trafficking. Our current studies provide compelling evidence that TLR9 transits through the Golgi complex to endolysosomes after exposure to CpG DNA binding has translocated through the Golgi complex. (a) MyD88 or TLR9 immunoprecipitates from BJAB cells were immunoblotted for MyD88 and TLR9, stripped and the TLR9 portion of the blot was probed with biotinylated DS lectin. Data are representative of three experiments. (b) BJAB cells were pretreated with media or 100 ng ml⁻¹ BFA for 2 h before stimulation with 5 μg ml⁻¹ CpG DNA 2006 for the indicated times. Whole cell lysates were immunoblotted for phospho-p38 (P-p38) and total p38 (p38). Relative intensities were calculated as described in the Methods. Data are representative of two experiments. (c) BJAB cells were treated with media or 3 μg ml⁻¹ biotinylated CpG 2006 for 15 min, lysed and immunoprecipitated for biotin or TLR9 before immunoblotting for MyD88 and TLR9. The TLR9 blot was stripped and subsequently probed with biotinylated DS lectin. Note that there is a nonspecific band of slightly higher molecular weight than TLR9 that is detected in the TLR9 blot of cells incubated with or without biotinylated CpG DNA. Data are representative of three experiments. TLR9, toll-like receptor 9; DS, Datura stramonium.

Figure 6: The TLR9 that initiates signaling has trafficked through the Golgi complex. (a) MyD88 or TLR9 immunoprecipitates from BJAB cells were immunoblotted for MyD88 and TLR9, stripped and the TLR9 portion of the blot was probed with biotinylated DS lectin. Data are representative of three experiments. (b) BJAB cells were pretreated with media or 100 ng ml⁻¹ BFA for 2 h before stimulation with 5 μg ml⁻¹ CpG DNA 2006 for the indicated times. Whole cell lysates were immunoblotted for phospho-p38 (P-p38) and total p38 (p38). Relative intensities were calculated as described in the Methods. Data are representative of two experiments. (c) BJAB cells were treated with media or 3 μg ml⁻¹ biotinylated CpG 2006 for 15 min, lysed and immunoprecipitated for biotin or TLR9 before immunoblotting for MyD88 and TLR9. The TLR9 blot was stripped and subsequently probed with biotinylated DS lectin. Note that there is a nonspecific band of slightly higher molecular weight than TLR9 that is detected in the TLR9 blot of the anti-biotin IP from cells incubated with or without biotinylated CpG DNA. Data are representative of three experiments. TLR9, toll-like receptor 9; DS, Datura stramonium.

The TLR9 that initiates signaling upon CpG DNA binding has trafficked through the Golgi complex. We next determined whether the TLR9 that binds to CpG DNA and initiates signal transduction had trafficked through the Golgi complex. As we were unable to detect an increase in association between MyD88 and TLR9 upon CpG DNA stimulation, (Supplementary Figure 6) we could not use the recruitment of MyD88 to TLR9 to monitor the TLR9 involved in signaling. Instead, we used biotinylated CpG DNA to pull down active TLR9 as described earlier. The TLR9 that precipitated with CpG DNA was associated with MyD88 (Figure 6c) and was capable of binding to DS lectin, suggesting that its glycans were modified in the Golgi complex (Figure 6c). These data indicate that the TLR9 actually involved in initiating signal transduction upon CpG DNA binding has translocated through the Golgi complex. It is possible that this pool of ‘signaling TLR9’ was already present in endolysosomes, or it may represent newly trafficked TLR9 that arrived through the Golgi complex to endolysosomes after exposure to CpG DNA.

DISCUSSION

Our current studies provide compelling evidence that TLR9 trafficking through the Golgi complex and that Golgi export is critical for optimal response to CpG DNA. Synthesis of transmembrane and secreted proteins begins on rough ER, where the nascent protein is concurrently transferred and transferred through the ER membrane.

For proteins with N-linked glycosylations, a preformed oligosaccharide precursor containing several mannose residues is then transferred to an asparagine (in the sequence Asn-X-Ser/Thr) on the nascent protein (high mannose glycoform). When the protein is ready for export, it transits through the Golgi complex where modification of the oligosaccharide is completed. These modifications include trimming of mannose residues (hybrid glycoform) and the incorporation of N-acetylgalactosamine, galactose and N-acetylneuraminic acid (complex glycoform). Here we show that TLR9 is glycosylated in the ER, as it binds GN, a lectin specific for high mannose and hybrid glycoforms (Figure 3). TLR9 also binds to DS, a lectin with high affinity for hybrid and complex glycoforms, showing that it contains Golgi-dependent glycan modifications. We further show, using a newly developed furin cleavage assay, that TLR9 is exposed to the Golgi-resident protease furin during intracellular movement (Figure 4). These data are in contrast to the current model, which proposes that TLR9 translocates directly from the ER to endosomes by a mechanism similar to ER-mediated phagocytosis. This model was based on the observation that glycans on TLR9 remained sensitive to digestion with Endo H despite TLR9’s movement to endosomes. We now clearly show that the glycans on TLR9 remain sensitive to Endo H digestion upon treatment with BFA despite a change in Endo H sensitivity of the fusion chimera TLR4–9. Furthermore, optimal TLR9 signaling is blocked by pretreatment of cells with BFA showing that TLR9 not only passes through the Golgi complex, but that Golgi export is critical for TLR9 signaling (Figure 1). These results are important for defining the intracellular trafficking pathway of TLR9, a pathway that may be amenable to interruptive drug treatment to prevent TLR9 signaling in diseases such as systemic lupus erythematosus.

Another important finding of our studies is that TLR9 is not fully retained in the ER, but constitutively moves through the cell and reaches the lysosomal compartment (Figure 5). These data are consistent with earlier studies, which have suggested that under certain conditions some TLR9 can be detected in an endosomal compartment. There are two possible explanations as to why TLR9 is detected in the lysosomal compartment of untreated cells. It could be a mechanism for continuous turnover of TLR9, or it could provide a pool of TLR9 immediately ready to respond to endocytosed CpG DNA. High levels of TLRs in general lead to constitutive activation and constant turnover in the lysosome may help to regulate these levels. However, we provide data showing that the pool of TLR9 that has exited the Golgi is constitutively associated with MyD88 and thus most likely contributes to signaling (Figure 6). Therefore, lysosomal TLR9 is poised to rapidly respond to an influx of CpG DNA. Early signaling events such as the phosphorylation of p38, although delayed, still occur in BFA-treated cells. Thus, we concluded that the extragolgi TLR9 can respond to CpG DNA. As our organelle separation studies show that the TLR9 that exits the Golgi complex moves to lysosomes, it is most likely that signaling can be initiated from this compartment. What role this initial signaling plays in the additional movement of TLR9 is not clear. TLR9 translocation to endolysosomes in response to CpG DNA still occurs in MyD88-deficient dendritic cells, so it is unlikely that signaling initiated by the small pool of TLR9 in endolysosomes is responsible for inducing the additional movement of TLR9. Further studies are necessary to decipher the contribution of lysosomal TLR9 in signaling.

Recently, a partially cleaved form of TLR9 that contains approximately half of the ectodomain and all of the transmembrane domain,
and cytoplasmic tail has been described. This form is enriched in phagosomes and may be the functional receptor. We have detected a lower molecular weight form of TLR9 in some experiments using either transient or stable cell lines expressing tagged or untagged TLR9. Surprisingly, we detect this lower molecular weight form with an antibody that recognizes amino acids 273–288, an epitope that would be lost on the basis of the predicted cleavage site. However, we have failed to consistently detect this form in the lysosomal fractions from either HEK293 cells expressing HA-TLR9 (detected with anti-body to TLR9) or BJAB cells expressing endogenous TLR9 (Chockalingam A, 2008, unpublished data). It is possible that cell lineage, growth conditions or endocytosis/phagocytosis influence the amount of cleaved TLR9 detected in unstimulated cells.

A remaining question is what regulates TLR9 translocation from the ER through the Golgi complex to endolysosomes. Several proteins have been described to control response of TLR9 to CpG DNA including, Hsp90, cathepsins HMGB1 and UNC93B1. A macrophage-specific Hsp90 deficiency in mouse resulted in loss of response to all TLRs, suggesting that this chaperone is a master regulator of TLR signaling. Other studies have suggested that the function of Hsp90 is to control intracellular TLR trafficking. HMGB1 also regulates TLR9 signaling and can directly bind with the HMGB1 receptor, RAGE, and this association regulates TLR9 signaling. It will be interesting to determine how these TLR-interacting proteins regulate TLR9 movement from the ER to endolysosomes through the Golgi complex.

In summary, we have shown that TLR9 does not bypass the Golgi complex during translocation to endolysosomes, and that Golgi export is required for optimal TLR9 signaling. It will be interesting to determine how these TLR-interacting proteins regulate TLR9 movement from the ER to endolysosomes through the Golgi complex.

METHODS

Reagents and plasmids

BFA, TLR9 antibody and avidin-horseradish peroxidase were from ebIsocience (San Diego, CA, USA). GFP antibody for immunoprecipitation was from Invitrogen/Molecular Probes (Eugene, OR, USA) and for immunoblotting was from BD Clontech (Mountain View, CA, USA). Antibodies to phosphorylated and total p38 were from Cell Signaling Technologies (Beverley, MA, USA). High-affinity antibody to hemagglutinin (anti-HA) was from Roche (Manheim, Germany). Recombinant furin, EndoH and PNGase F were from New England Biolabs (Ipswich, MA, USA). Antibodies to LAMP-1, Rab 5 and Calnexin were from BD-transduction laboratories (San Jose, CA, USA). MyD88 antibodies for immunoprecipitation and immunoblotting were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). CpG DNAs were from Cople Pharmaceutical (Wellsley, MA, USA) (10104 5′-TCTGTCGTTTGTTCTGTTTTGTGGTTTGC-3′) or synthesized by IDT (Coralville, IA, USA) (2006 5′-TCTGTCGTTTTTGTGCTTTTGTGCTTT-3′). HA6-TLR9 was generated by site-directed mutagenesis (Stratagene, La Jolla, CA, USA) of HA-TLR9 to change PARS (single amino-acid code) to RXRR in the intervening sequence between HA tag and TLR9. Sequences of mutagenesis primers were 5′-GATATGTCGGGGCCCAGCGGGCCAGACGTCTGGCCACCTTGCCTG-3′ and 5′-CAGCCAAAGTGGCCAGACGTCTGGGCGCCATGTCCCCGGCCGGAACAT-3′.

TLR9-GFP, TLR4-GFP and TLR4–9-GFP have been described earlier. Cell culture and transfection

HeLa and Human Embryonic Kidney 293 (HEK293) cells were cultured in Dulbecco’s modified Eagle’s medium with 2 mM l-glutamine, 50 µM penicillin, 50 µg/ml streptomycin, 10% heat-inactivated FBS (complete Dulbecco’s modified Eagle’s medium). BJAB cells were cultured in complete RPMI 1640. Cells routinely tested negative for mycoplasma. Stable cells were generated in HEK293 cells by transfection with 24 µg DNA in a 10 cm tissue culture dish with 48 µl TransIT (Mirus, Madison, WI, USA). After 24 h, G418 (1 mg/ml) was added to the medium and the cells were selected under G418 with media change every 2 days. Cells were then subjected to single-cell selection. All TLR9-stable cell lines responded to CpG DNA as detected by 5× NF-κB-luciferase and pSV-β-galactosidase were from Stratagene and Promega (Madison, WI, USA) respectively. All plasmids were prepared using Endo free plasmid maxi prep kits (Qiagen Sciences, MD, USA).

Cell culture and transfection

HeLa cells were transiently transfected or HEK293 cells were stably transfected with HA6-TLR9 or HA-TLR9. For *in vitro* assays, cells were lysed (Lysis buffer: 137 mM NaCl, 20 mM Tris pH 7.4, 1 mM ethylenediaminetetraacetic acid (EDTA), 0.5% Triton X-100, protease inhibitor cocktail (Sigma, St Louis, MO, USA) and 100 µg/ml phenylmethylsulphonyl fluoride), TLR9 was immunoprecipitated with anti-HA antibody and protein A/G sepharose, washed 3× with lysis buffer and resuspended in cleavage buffer (100 mM HEPES pH 7.5, 1 mM CaCl₂, 0.5% Triton X-100) with or without furin for 2 h at 30°C. Reducing, denaturing sample buffer was added and samples were boiled for 5 min before separation by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). After transferring to nitrocellulose, blots were probed with anti-TLR9 and anti-HA antibodies. For *in vivo* cleavage, TLR9 was precipitated with anti-TLR9, separated by SDS-PAGE and the western blot was sequentially probed with anti-HA and anti-TLR9 antibodies. HA-TLR9 without a furin cleavage site was used as a control for each condition.

Lectin blotting

Lectins directly conjugated to biotin can be used to detect specific glycosylation pattern on proteins similar to immunoblotting, using avidin-horseradish peroxidase as a secondary detection reagent. Lysates from transiently transfected HeLa cells or stably transfected HEK293 cells expressing TLR9-yellow fluorescent protein (YFP) and TLR4-YFP were immunoprecipitated with anti-GFP, separated by SDS-PAGE and transferred to nitrocellulose. Membranes were blocked in 1% bovine serum albumin (fraction V) in phosphate-buffered saline plus 0.05% Tween and incubated for 40 min with 2 µg ml⁻¹ biotinylated...
lectin. After three washes of 15 min each in phosphate-buffered saline plus 0.05% Tween, membranes were incubated with 1:10,000 dilution of avidin-horseradish peroxidase for 30 min. Membranes were washed three times for 60 min before developing with ECL substrate (Pierce, Rockford, IL, USA).

HEK293 TLR9 luciferase reporter assay

Cells were transiently transfected in 96-well plates using TransIT (Mirus) with TLR-generating plasmids, 5× NF-kB luciferase and empty vector to equal 200 ng per well of total DNA. After overnight culture, the cells were treated with Cpg DNA for 18 h. Cell lysates (5× Reporter Lysis Buffer, Promega) were assayed for luciferase activity using the luciferase substrate (20 mM tricine, pH 7.4) and passed 10 times through a 25G needle attached to a 3 cc syringe. The homogenate was spun at 200 g for 2 h at 37 °C and the reactions were stopped by adding SDS-PAGE sample buffer. All treated samples were separated by SDS-PAGE, transferred to nitrocellulose and probed with indicated antibodies.

EndoH sensitivity assay

Transfected HeLa cells were lysed in lysis buffer and immunoprecipitated for the respective TLRS. The immunoprecipitates were divided equally into three and were either left untreated or treated with EndoH or PNGase according to the manufacturer's instructions (New England Biolabs). Samples were digested for 2 h at 37 °C and the reactions were stopped by adding SDS-PAGE sample buffer. All treated samples were separated by SDS-PAGE, transferred to nitrocellulose and probed with indicated antibodies.

Organelle fractionation

BJAB, a human B-cell line expressing endogenous TLR9, or HEK293 cells stably expressing HA*-TLR9 or HA-MLR9 were incubated in homogenization buffer (HB: 0.25% sucrose, 1 mM EDTA, 10 mM Tris, pH 7.4) for 15 min on ice and homogenized with a loose fitting 2 ml glass dounce homogenizer for 20 strokes, and passed 10 times through a 25G needle attached to a 3 cc syringe. The homogenate was spun at 900 g for 10 min at 4 °C and the combined postnuclear supernatant was layered on a 7H2O, 33.3 mM dithiothreitol, 100 mM EDTA, 530 mM ATP, 270 mM Acetyl CoA, 132 µg ml⁻¹ luciferin, 5 mM NaOH, 265 µM magnesium carbonate hydroxide) on a Veritas luminometer (Turner Biosystems, Sunnyvale, CA, USA) with injector.

Co-immunoprecipitation

BJAB or HEK293 cells stably expressing HA*-TLR9 were left untreated or treated with Cpg6 2006 (50 ng µl⁻¹), lysed and immunoprecipitated for MyD88 or TLR9 for 4 h before adding protein A/G sepharose beads and incubating for additional 12 h at 4 °C. Some cells were treated with 25 µg ml⁻¹ biotinylated Cpg6 before cell lysis and immunoprecipitation for biotin. After three washes in lysis buffer, 1× SDS sample buffer was added and proteins were separated in SDS-PAGE and immunoblotted for MyD88 and TLR9. The TLR9 blot was stripped and probed with biotinylated DS lectin.

Densitometry analysis

Each protein band was quantified by outlining using Photoshop. Briefly, after inverting the raw image, each band was outlined using the lasso tool and the mean intensity and pixels were determined. The absolute intensity (AI) was calculated by multiplying the mean by the pixels. Where there was no detectable protein band to outline, an AI of zero was assigned. For Figure 4c, the AI for HA was divided by the AI for TLR9 to obtain the RI. Similarly, for Figure 6b, the RI was calculated by dividing the AI of phosphorylated p38 by the AI of total p38. In Figure 5, the AI of each band was divided by the highest AI to determine the percentage of maximum AI.

ACKNOWLEDGEMENTS

This study was supported by the National Institutes of Health, NCI transition career development award to CL (5K2CA113705), and startup funds from the Department of Microbiology and Immunology, and Cornell University College of Veterinary Medicine. We thank R Corley for his discussion, sharing unpublished data and helpful suggestions.

Author contributions

CL and AC wrote the paper; AC, JB, JC, LB and CL performed experiments. All authors discussed results, edited the text and have agreed to the content of text and figures.

COMPETING INTERESTS STATEMENT

The authors declare no competing financial interests.
23 Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167: 1882-1885.

24 Nishiya T, DeFranco AL. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem 2004; 279: 19008-19017.

25 Underhill DM, Dzinskas A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 1999; 96: 14459-14463.

26 Visintin A, Mazoni A, Spitzer JA, Segal DM. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci USA 2001; 98: 12156-12161.

27 Molloy SS, Thomas L, VarnStyke JK, Stenberg PE, Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: Localization to the TGN and recycling from the cell surface. EMBO J 1994; 13: 18-33.

28 Nakayama K. Furin: a mammalian subtilisin/kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 1997; 327: 625-635.

29 Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF6). J Exp Med 2000; 192: 595-600.

30 Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8: 487-496.

31 Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 2008; doi:10.1038/nature07405.

32 Chaturvedi A, Dorward D, Pierce SK. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 2008; 28: 799-809.

33 Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kimm YM. The interaction between the ER membrane protein UNC93B and TLRs3, 7, and 9 is crucial for TLR signaling. J Cell Biol 2007; 177: 265-275.

34 Tabeta K, Hoebe K, Janssen EM, Du X, George P, Crozet K et al. The UNC93B1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 2006; 7: 156-164.

35 Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancos L et al. Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity 2007; 26: 215-226.

36 Asagiri M, Hirai T, Kunigami T, Kamano S, Gober HJ, Okamoto K et al. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 2008; 319: 624-627.

37 Reed RC, Berwin B, Baker JP, Nicchitta CV. Gp94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kB activation and nitric oxide production. J Biol Chem 2003; 278: 31853-31860.

38 Matsumoto F, Saitoh T, Fukui R, Kobayashi T, Tanimura N, Konno K et al. Cathepsins are required for Toll-like receptor 9 responses. Biochem Biophys Res Commun 2008; 367: 693-699.

Supplementary Information accompanies the paper on Immunology and Cell Biology website (http://www.nature.com/icb)