Electrically controlling single-spin qubits in a continuous microwave field

Arne Laucht,1* Juha T. Muhonen,1 Fahd A. Mohiyaddin,1 Rachpon Kalra,1 Juan P. Dehollain,1 Solomon Freer,1 Fay E. Hudson,1 Menno Veldhorst,1 Rajib Rahman,2 Gerhard Klimeck,2 Kohei M. Itoh,3 David N. Jamieson,4 Jeffrey C. McCallum,4 Andrew S. Dzurak,1 Andrea Morello1*

Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.

The construction of a large-scale quantum computer is among the most exciting scientific challenges of our time. For this purpose, the ability to exploit the advanced fabrication methods developed in semiconductor nanoelectronics (1, 2) would be highly beneficial. Succeeding at this project will depend on the ability to create quantum bits (qubits), which are, at the same time, highly coherent and easy to control and couple to each other. However, quantum coherence and ease of control are often antagonistic requirements. Several types of semiconductor spin qubits have been designed to be operated using only electric fields (3–6). This allows control at the nanometer scale via small electrodes but can lead to unwanted decoherence from charge and gate noise (7, 8). Other spin qubits, such as the electrons and nuclei of 31P donors in silicon (9, 10) or nitrogen-vacancy centers in diamond (11, 12), exhibit outstanding coherence times thanks to their lack of sensitivity to electrical noise and the reduced nuclear spin fluctuations in their vicinity. However, their coherent operation requires high-frequency oscillating magnetic fields, which are difficult to confine to nanometer scales. A solution to reconcile long coherence with local electrical control was already described in the visionary proposal of Kane (13) for a donor-based quantum computer in silicon. The resonance frequency of a 31P donor spin depends on the applied magnetic field B_0, as well as the electron–nuclear hyperfine coupling A. The latter can be locally tuned with an electrostatic gate, known as the “A-gate,” which deforms the wavefunction of the donor-bound electron and modifies the probability density at the nucleus (14). Kane envisaged a multi-qubit quantum computer where a global, always-on microwave magnetic field is by default off-resonance with the qubits. Quantum operations are controlled by locally modifying A to bring the desired qubits into resonance with the global microwave field (15). This eminently scalable proposal has been further developed to include quantum error correction (16). Here, we present the experimental demonstration of local and coherent electrical control of both the electron and the nuclear spin of a single 31P donor in silicon, representing the first realization of Kane’s A-gate on a single qubit.

The 31P donor in silicon constitutes a two-qubit system, where both the electron (indicated with $|\uparrow\rangle$ or $|\downarrow\rangle$) and the nuclear (|1⟩ or |0⟩) spin states can be coherently controlled by a magnetic field B_1 oscillating at specific electron spin resonance (ESR) and nuclear magnetic resonance (NMR) frequencies. We fabricated a device that comprises a single 31P donor in an isotopically purified 28Si epilayer (17), implanted (18) next to the island of a single-electron transistor (SET).

The SET is formed under an 8-nm-thick SiO_2 layer by biasing a set of electrostatic gates (yellow in Fig. 1A). The distance between the donor and SET island is ~ 20 (5) nm, resulting in a tunnel coupling of order 10 kHz. The device is cooled by a dilution refrigerator (electron temperature $T_d \approx 100$ mK) and subjected to a static magnetic field $B_0 = 1.55$ T applied along the [110] Si crystal axis. Because of the Zeeman effect, the electrochemical potential μ of the donor electron depends on its spin state, with $\mu_\uparrow > \mu_\downarrow$. Another set of gates (pink in Fig. 1A) is used to tune the electrochemical potentials of donor and SET island (μ_{SET}) to the readout position (“Read/Init.” in Fig. 2A), where $\mu_\uparrow > \mu_{\text{SET}} > \mu_\downarrow$ and only the $|\uparrow\rangle$ state can tunnel out of the donor. The positive donor charge left behind shifts the SET bias point and causes a current to flow, until $|\downarrow\rangle$ electron tunnels back onto the donor. This spin-dependent tunneling mechanism is therefore used to achieve single-shot electron spin readout (19, 20), as well as $|\downarrow\rangle$ initialization. For coherent spin control, an oscillating magnetic field B_1 is delivered to the donor by an on-chip, broadband transmission line terminating in a short-circuited nanoscale antenna (21) (blue in Fig. 1A). While manipulating the electron spin state, the gates are tuned such that $\mu_{\uparrow1} < \mu_{\text{SET}}$ to ensure that the electron cannot escape the donor (“Pulse ESR/NMR” and “A-Gate Control” positions in Fig. 2A).

In the present experiment, the same gates used to tune the donor to the readout position are also used to apply an electric field shift, which in turn modifies the spin transition frequencies via the Stark effect. Therefore, we label them A-gates henceforth. In Fig. 1B, we illustrate the effect of the electric field on the donor electron. A positive bias on a gate located above the donor pulls the electron wavefunction toward the Si/SiO_2 interface and away from the nucleus (14). This modifies both the hyperfine coupling A (≈ 117.53 MHz in bulk, and 96.9 MHz for this device) (14, 22) and the electron gyromagnetic ratio g_e (≈ 27.97 GHz/T in bulk) (23). The ESR frequencies $\nu_{1,2}$ depend on both these parameters and on the state of the 31P nuclear spin.
whether the instantaneous ESR frequency is

gated as compared to the actual effect taking

electrostatic modeling for the specific device geometry and donor location. (B) Electron wavefunction of a donor under an
electrostatic gate. A positive voltage applied
to the gate attracts the electron toward the
Si-SiO2 interface. For illustration purposes,
the wavefunction distortion is largely exagger-ated as compared to the actual effect taking
place in the experiment. (C) Energy level diagram of
the neutral e−:31P system. Gate-controlled
distortion of the electron wavefunction modi-

single-shot, quantum nondemolition nuclear spin readout (10). The
NMR transitions can be gate-tuned as well, albeit only via the Stark
shift of A1 because νn1 = A1/2 + γeB0 (for electron spin |↑⟩) and νn2 =
A1/2 − γeB0 (for |↓⟩), where γe = 17.23 MHz/T is the31P nuclear gyro-
magnetic ratio.

During pulse ESR/NMR experiments, we normally operate the
electrostatic gates in a compensated manner to keep μSET constant
while shifting μ+1, with respect to it (19) (“Pulse ESR/NMR” position
in Fig. 2A). This, however, results in a limited variation of the electric
field at the donor site. To induce a significant Stark shift, we adopted
an uncompensated gating scheme, where both μ+1 and μSET are dras-
tically lowered (“A-Gate Control” position in Fig. 2A; see section S4
for details on the exact gate configuration). The resulting change in
electric field can be calculated with a finite element Poisson equation
solver (TCAD) for the specific device geometry and the triangulated
donor location (see sections S5 and S6 for details) (24).

We demonstrate the gate-induced shift of the ESR frequencies by
performing, with conventional pulse ESR, a series of Ramsey experi-
ments on the electron spin at different values of V A (Fig. 2B), where
we define V A = 0 as the readout position. The spin is rotated from |↓⟩
to the xy plane by a π/2 pulse at frequency νMW, left to freely precess
for a time τ, and then rotated by π/2 again. The accumulation of a
phase shift between the spin precession at νe(V A) and the MW refer-
cence clock at νMW gives rise to oscillations in the probability of finding
the electron |↑⟩ at the end of the sequence. The frequency of the Ramsey
fringes gives a very accurate value for νe(V A) − νMW.

Both νe1 and νe2 shift to lower frequencies upon increasing VA (Fig.
2B). This indicates that a significant Stark shift of γe (that is, the
electron g-factor) is taking place, in addition to the A-shift. Linear fits to
νe1,2(V A) yield slopes dνe1/dVA = −2.27(6) MHz/V and dνe2/dVA =
−1.36(3) MHz/V. Using the expressions given in Fig. 2B, we extract
the tuning parameters αe = dV e/dVA = dγe/dVA = −dA/dVA = 0.91(7)
MHz/V and αnB0 = dV n/dVA = (dγe/dVA + dA/dVA)/2 = −1.81(5)
MHz/V, with αn = dV n/dVA = −1.17(3) MHz/V at B0 = 1.55 T. The
positive value of αA indicates that increasing VA leads to an increase in
the electron probability density at the nucleus. This is because a strong
electric field is already present for the purpose of forming the SET,
whereas increasing VA causes an additional electric field in the opposite

In the limit γeB0 ≫ A, we find νe1 = γeB0 − A/2 (for nuclear spin |↓⟩)
and νe2 = γeB0 + A/2 (for |↑⟩), as shown in Fig. 1C. Identifying
whether the instantaneous ESR frequency is νe1 or νe2 constitutes a

Fig. 1. Electric field dependence of electron and nuclear energy states. (A) False-colored scanning electron microscope image of
a device similar to the one used in the experiment. Blue, microwave (MW) antenna; yellow, gates used to induce the SET charge
sensor under the SiO2 insulator; pink, A-gates, comprising gates labeled Donor Fast (DF), Donor Slow (DS), and Top Gate AC (TGAC).
These gates are used to tune the potential and electric field at the donor location. (B) Electron wavefunction of a donor under an
electrostatic gate. A positive voltage applied
to the gate attracts the electron toward the
Si-SiO2 interface. For illustration purposes,
the wavefunction distortion is largely exagger-ated as compared to the actual effect taking
place in the experiment. (C) Energy level diagram of
the neutral e−:31P system. Gate-controlled
distortion of the electron wavefunction modi-

Fig. 2. Local electrical control of the ESR transition frequencies. (A) Schematic of the charge stability diagram for this device. The thick solid
lines represent the Coulomb peaks of the SET, whereas the dashed line indicates the ionization/neutralization of the donor. (B) Measured shift in
ESR frequencies νe1,2(V A) as a function of the A-gate voltage VA. Accurate values of νe1,2(V A) are obtained by coherent Ramsey experiments (see text).
The change in local electric field is obtained from finite element electrostatic modeling for the specific device geometry and donor location
(see section S6 for details).

In the limit γeB0 ≫ A, we find νe1 = γeB0 − A/2 (for nuclear spin |↓⟩)
and νe2 = γeB0 + A/2 (for |↑⟩), as shown in Fig. 1C. Identifying
whether the instantaneous ESR frequency is νe1 or νe2 constitutes a

measure EC Ramsey oscillations. (A) Schematic of the sequence used to measure EC Rabi oscillations. (B) and (C) EC Rabi oscillations measured on the 31P electron and nucleus, respectively. (D) Schematic of the sequence used to measure EC Ramsey oscillations. (E) and (F) EC Ramsey oscillations measured on the 31P electron and nucleus. (G) Schematic of the sequence used to measure EC Ramsey oscillations. (H) and (I) EC Hahn echo decay for the 31P electron and nucleus. (J) and (K) Extended spin coherence times T_2 for CPMG dynamical decoupling sequences on the 31P electron and nucleus.

Fig. 3. Electrically controlled qubit control and coherence measurements. (A) Schematic of the sequence used to measure EC Rabi oscillations. (B) and (C) EC Rabi oscillations measured on the 31P electron and nucleus, respectively. (D) Schematic of the sequence used to measure EC Ramsey oscillations. (E) and (F) EC Ramsey oscillations measured on the 31P electron and nucleus. (G) Schematic of the sequence used to measure EC Ramsey oscillations. (H) and (I) EC Hahn echo decay for the 31P electron and nucleus. (J) and (K) Extended spin coherence times T_2 for CPMG dynamical decoupling sequences on the 31P electron and nucleus.

Fig. 4. Electrically controlled gate fidelities. (A) and (B) EC randomized benchmarking performed on the 31P electron and nucleus, respectively. Shaded circles are the results of individual measurements (that is, individual random sequences of gate operations), whereas the solid circles show the average state survival probability of all random sequences with the same number of gate operations.

Laucht et al. Sci. Adv. 2015;1:e1500022 10 April 2015

3 of 5
Alternatively, we can produce a Z-gate by controlling the phase Φ_R that the qubit accumulates while off-resonance.

We measure the qubits’ coherence times T_2 by performing Hahn echo and Carr-Purcell-Melboom-Gill (CPMG) dynamical decoupling sequences (Fig. 3, G to K). For these measurements, the wait times τ are chosen such that they always result in a multiple of 2π phase shift. The Hahn echo yields $T_{2e}^{\pi} = 0.97(6)$ ms and $T_{2n}^{\pi} = 5.1(3)$ ms for the donor electron and nuclear spins, respectively (Fig. 3, H and I). A CPMG sequence (see schematic in Fig. 3G for details) further decouples the qubits from low-frequency noise and extends the coherence times to up to $T_{2e}^{\text{CPMG}} = 10.0(8)$ ms and $T_{2n}^{\text{CPMG}} = 98(9)$ ms by applying 32 and 256 π pulses, respectively (Fig. 3, J and K). The coherence times of the electrically controlled electron qubit, measured in milliseconds, can be fitted by $T_{2e}^{\text{CPMG}} = 1.03N^{0.70}$. Conventional pulse ESR operation (black diamonds in Fig. 3I) gives nearly identical values, $T_{2e}^{\text{pulseCPMG}} = 0.93N^{0.70}$ (see also section S10 for more data). The electrical control method preserves the excellent spin coherence of the qubits, because no additional coupling between the spin states and the environment has been introduced.

We apply the two-axis control to construct the complete set of 1-qubit Clifford gates, and conduct randomized benchmarking (27, 28) experiments (Fig. 4, A and B) to quantify the average gate fidelities using electrically controlled qubit manipulation (Fig. 4). The method relies upon the measurement of the probability $\mathcal{P}(N)$ of arriving at the correct final qubit state after performing a long sequence of randomly chosen quantum gates. In the presence of gate errors, the probability decays according to the number of operations N. We then extract the average fidelity for a single Clifford gate \mathcal{F} by fitting the equation

$$\mathcal{P}(N) = M(2\mathcal{F}^c - 1)^N + 0.5$$

(1)

to the data (28). M is a free parameter and depends on the initialization and readout fidelity. We obtain $\mathcal{F}_e^{\text{single}} = 99.0(1)\%$ and $\mathcal{F}_n^{\text{single}} = 99.3(1)\%$ for the electron and the nuclear spin, respectively. Because each Clifford gate is composed on average of 1.875 individual gate operations (28, 29), we can also quote average single-gate fidelities of $\mathcal{F}_e = 99.4(1)\%$ for the electron and $\mathcal{F}_n = 99.6(1)\%$ for the nucleus. These gate fidelities are comparable to those obtained by pulse ESR/NMR randomized benchmarking for similar microwave powers (28) and are mostly limited by the ratio of gate time to coherence time.

The speed of an electrically controlled gate operation is inherently limited by the voltage tunability of the resonance frequencies. The excitation profile of the CW field (Fig. 3A) must be narrow enough to leave the qubits unperturbed while off-resonance, imposing the condition $\gamma B_1 \ll \Delta \nu$. For linearly oscillating B_1, $(\Delta B_1)^{-1}$ is the duration of a π rotation. Therefore, $\Delta \nu < 1$ MHz in this 31P device requires gate times $> 10 \mu$s.

The qubit control method demonstrated here is applicable to any resonantly driven qubit, where the resonance frequency ν_r can be quickly and locally controlled by an electric field, and shifted by much more than the resonance linewidth. A wide variety of qubits can potentially fulfill this condition. For spins in diamond (30) and silicon carbide (31), ν_r can be tuned by modifying the crystal field parameters in the spin Hamiltonian. Magnetic molecules can have tunable ν_r through a hyperfine Stark effect (32) similar to the one shown here. Several types of semiconductor quantum dot qubits exhibit tunable electron spin g-factor (33, 34) through spin-orbit coupling effects, or tunable splitting through the interplay of valley-orbit and tunnel couplings (6).

Because of the high cost of vector microwave signal generators, it seems implausible that future multi-qubit experiments will resort to a dedicated source for each qubit. Time- and frequency-multiplexing qubit control is possible in proof-of-principle experiments but is impractical in large fault-tolerant quantum processors. In most error correction schemes, fault tolerance is only guaranteed if all qubits can be operated simultaneously at any time. The method of qubit control demonstrated here fulfills all the practical requirements for a large-scale quantum computer, because control gates can be applied simultaneously to arbitrarily many qubits while requiring only one CW microwave source together with inexpensive multichannel baseband pulse generators.

SUPPLEMENTARY MATERIALS

Supplemental material for this article is available at http://advances.sciencemag.org/cgi/content/full/1/3/e1500022/DC1

Fig. S1. Frequency response.

Fig. S2. Donor triangulation.

Fig. S3. Electric field simulations.

Fig. S4. Electrically controlled nuclear coherence times.

Fig. S5. Electric field simulations.

Fig. S6. Atomistic tight binding simulations of the hyperfine coupling for a donor at the location determined in section S5, for the electric fields simulated in section S6, and subject to lattice strain.

Fig. S7. Electrically controlled ESR spectrum.

Fig. S8. Time evolution simulations of the electrically controlled ESR spectrum.

Fig. S9. Electrically controlled electron Ramseys.

Fig. S10. Electrically controlled nuclear Ramseys.

Fig. S11. Electrically controlled nuclear coherence times.

Fig. S12. Electrically controlled nuclear coherence times.

Table S1. Relative gate capacitances used for triangulation of the donor position.

References (35–54)

REFERENCES AND NOTES

1. D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, J. J. Petta, Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

2. F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimek, S. Rogge, S. N. Coppersmith, M. A. Eriksson, Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

3. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

4. K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, L. M. K. Vandersypen, Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

5. J. Medford, J. Bier, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. Divincenzo, H. Lu, A. C. Gossard, C. M. Marcus, Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol. 8, 655–659 (2013).

6. D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K. Gambles, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).

7. O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V. Umantsky, A. Yacoby, Charge noise spectroscopy using coherent exchange oscillations in a single-trititl qubit. Phys. Rev. Lett. 110, 146804 (2013).

8. E. A. Laird, F. Piel, L. P. Kouwenhoven, A valley-spin qubit in a carbon nanotube. Nat. Nanotechnol. 8, 556–558 (2013).

9. J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. Morton, D. N. Jamieson, A. S. Dzurak, A. Morello, A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

10. J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. Morton, F. A. Zwanenburg, D. N. Jamieson, A. S. Dzurak, A Morello, High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).
11. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. A. Hennou, J. Tieler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wachtrop, Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

13. B. E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

16. L. Hollenberg, A. Greentree, A. Fowler, C. Wellard, Two-dimensional architectures for donor-nuclear spin resonance in single-molecule magnets. Nature 467, 687–691 (2010).

18. D. N. Jamiesson, C. Yang, T. Hopf, S. M. Heanne, C. I. Pakes, S. Prawer, M. Milic, G. Hajima, S. E. Andersen, F. E. Hudson, A. S. Dzurak, R. G. Clark, Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-kV ions. Appl. Phys. Lett. 86, 202101 (2005).

19. A. Morello, C. C. Escott, H. Huebl, L. Willems van Beveren, L. C. Hollenberg, D. N. Jonmies, A. S. Dzurak, R. G. Clark, Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307R (2009).

20. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. N. G. Nogueiro, C. Yang, J. A. van Donkelaar, A. D. C. Alves, A. N. Jonmies, C. C. Escott, L. C. Hollenberg, R. G. Clark, A. S. Dzurak, Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

25. G. Klimeck, S. S. Ahmed, B. Hansang, N. Kharche, S. Clark, L. C. Hollenberg, High precision quantum control of single donor spins in silicon. Phys. Rev. Lett. 99, 036403 (2007).

29. J. M. Epstein, A. W. Cross, E. Magesan, J. M. Gambetta, Investigating the limits of randomized benchmarking of quantum gates. Phys. Rev. B 80, 155301 (2009).

31. A. L. Falk, P. V. Klimov, B. B. Buckley, V. Ivády, I. A. Abrikosov, G. Calusine, W. F. Koehl, Á. Gali, A. S. Dzurak, Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

43. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. N. G. Nogueiro, C. Yang, J. A. van Donkelaar, A. D. C. Alves, A. N. Jonmies, C. C. Escott, L. C. Hollenberg, R. G. Clark, A. S. Dzurak, Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

45. B. Johnson, H. U. Rahman, E. Gauja, R. Ramer, J. C. McCallum, Nanoscale and Nanotechnology (ICONN), 2010 International Conference (2010), pp. 333–336.

46. T. Thorbeck, N. M. Zimmerman, Formation of strain-induced quantum dots in gated semiconductor nanowires. arXiv:1409.3549v1 (2014).

47. A. M. Morello, F. A. Zwanenburg, B. E. Kane, A. Dzurak, K. Y. Tan, H. Huebl, M. Möttönen, C. D. N. G. Nogueiro, C. Yang, J. A. van Donkelaar, A. D. C. Alves, A. N. Jonmies, C. C. Escott, L. C. Hollenberg, R. G. Clark, A. S. Dzurak, Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

48. K. Narboni, J. White, FastCap: A multipole accelerated 3-D capacitance extraction program. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 10, 1447–1459 (1991).

49. B. Johnson, H. U. Rahman, E. Gauja, R. Ramer, J. C. McCallum, Nanoscale and Nanotechnology (ICONN), 2010 International Conference (2010), pp. 333–336.

50. F. A. Mohiyaddin, Designing a large scale quantum computer with classical & quantum simulation platforms, Ph.D. thesis, University of New South Wales (2014).

51. L. Dreher, T. A. Hiller, A. Brandmaier, S. T. Goenezen, H. Huebl, M. Stutzmann, M. S. Brandt, Electroelastic hyperfine tuning of phosphorus donors in silicon. Phys. Rev. Lett. 106, 037601 (2011).

52. S. Shevchenko, A. Ashhab, F. Nori, Landau–Zener–Stückelberg interference. Phys. Rep. 492, 1–30 (2010).

53. P. Kok, B. W. Lovett, Introduction to Optical Quantum Information Processing (Cambridge University Press, 2010).

54. J. T. Munehon, J. P. Dehollain, A. Laucht, F. E. Hudson, R. Kalla, T. Sekiguchi, K. M. Itoh, D. N. Jonmies, J. C. McCallum, A. S. Dzurak, A. Morello, Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

Acknowledgments: We thank S. Simmons, G. Tosi, and C. D. Hill for fruitful discussions and comments. This research was funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027) and the United States Army Research Office (W911NF-13-1-00024). We acknowledge support from the Australian National Fabrication Facility and from the laboratory of R. Elliman at the Australian National University for the ion implantation facilities. The work at Keio has been supported in part by FIRST, the Core-to-Core Program by the Japan Society for the Promotion of Science, and the Grant-in-Aid for Scientific Research (C) 27340146. Published 10 April 2015

Laucht et al. Sci. Adv. 2015;1:e1500022 10 April 2015
Electrically controlling single-spin qubits in a continuous microwave field

Arne Laucht, Juha T. Muhonen, Fahd A. Mohiyaddin, Rachpon Kalra, Juan P. Dehollain, Solomon Freer, Fay E. Hudson, Menno Veldhorst, Rajib Rahman, Gerhard Klimeck, Kohei M. Itoh, David N. Jamieson, Jeffrey C. McCallum, Andrew S. Dzurak and Andrea Morello (April 10, 2015)

Sci Adv 2015, 1:.
doi: 10.1126/sciadv.1500022

This article is published under a Creative Commons license. The specific license under which this article is published is noted on the first page.

For articles published under CC BY licenses, you may freely distribute, adapt, or reuse the article, including for commercial purposes, provided you give proper attribution.

For articles published under CC BY-NC licenses, you may distribute, adapt, or reuse the article for non-commercial purposes. Commercial use requires prior permission from the American Association for the Advancement of Science (AAAS). You may request permission by clicking here.

The following resources related to this article are available online at http://advances.sciencemag.org. (This information is current as of March 16, 2016):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://advances.sciencemag.org/content/1/3/e1500022.full

Supporting Online Material can be found at:
http://advances.sciencemag.org/content/suppl/2015/04/07/1.3.e1500022.DC1

This article cites 47 articles, 5 of which you can be accessed free:
http://advances.sciencemag.org/content/1/3/e1500022#BIBL
Author/s:
Laucht, A; Muhonen, JT; Mohiyaddin, FA; Kalra, R; Dehollain, JP; Freer, S; Hudson, FE; Veldhorst, M; Rahman, R; Klimeck, G; Itoh, KM; Jamieson, DN; McCallum, JC; Dzurak, AS; Morello, A

Title:
Electrically controlling single-spin qubits in a continuous microwave field

Date:
2015-04-01

Citation:
Laucht, A., Muhonen, J. T., Mohiyaddin, F. A., Kalra, R., Dehollain, J. P., Freer, S., Hudson, F. E., Veldhorst, M., Rahman, R., Klimeck, G., Itoh, K. M., Jamieson, D. N., McCallum, J. C., Dzurak, A. S. & Morello, A. (2015). Electrically controlling single-spin qubits in a continuous microwave field. SCIENCE ADVANCES, 1 (3), https://doi.org/10.1126/sciadv.1500022.

Persistent Link:
http://hdl.handle.net/11343/116639

File Description:
Published version

License:
CC BY-NC