On groups whose subnormal subgroups are inert

Ulderico Dardano* - Silvana Rinauro†

Abstract. A subgroup H of a group G is called inert if for each $g \in G$ the index of $H \cap H^g$ in H is finite. We show that for a subnormal subgroup H this is equivalent to being strongly inert, that is for each $g \in G$ the index of H in the join $\langle H, H^g \rangle$ is finite for all $g \in G$. Then we give a classification of soluble-by-finite groups G in which subnormal subgroups are inert in the cases G has no nontrivial periodic normal subgroups or G is finitely generated.

2010 Mathematics Subject Classification: 20E15, (20F22, 20F24)
Keywords: commensurable, strongly inert, finitely generated, HNN-extension.

1 Introduction

The class \mathcal{T} of groups in which subnormal subgroups are normal and its generalizations received much attention in the literature. In particular, classes \mathcal{T}^* (resp. \mathcal{T}_*) of groups G in which for each subnormal subgroup H it holds $|H^G : H| < \infty$ (resp. $|H : H_G| < \infty$) were studied in [2] (resp. [8]). Here, as usual, by H^G (resp. H_G) we denote the smallest (resp. largest) normal subgroup of G containing H (resp. contained in H). In both cases, such an H is inert (in the terminology of [1] and [12]), that is commensurable to its conjugates. Recall that two subgroups H and K of a group are told commensurable iff the index of $H \cap K$ in both H and K is finite. Commensurability is an equivalence relation, clearly.

In this paper, we regard classes \mathcal{T}^* and \mathcal{T}_* in the same framework by considering the class \mathcal{T} of groups whose subnormal subgroups are inert. Actually, in Proposition [1] we show that an inert subnormal subgroup H of a group G is strongly inert indeed (in the terminology of [7]), that is H has

* Dipartimento di Matematica e Applicazioni “R.Caccioppoli”, Università di Napoli “Federico II”, Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy. dardano@unina.it
† Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy. silvana.rinauro@unibas.it
the property that $|\langle H, H^g \rangle : H|\) is finite for all $g \in G$. Clearly, strongly inert subgroups are inert.

A group whose all subgroups are inert is said inertial in [12] where, in the context of generalized soluble groups, a characterization of inertial groups with some finiteness conditions was given. Then groups whose subgroups are strongly inert have been studied in [7]. Inertial groups also received attention in the context of locally finite groups (see [1] for example).

For terminology, notation and basic facts we refer to [10] and [11]. In particular, by dihedral group on an abelian group A we mean a group $\langle x \rangle \ltimes A$ where x acts faithfully on A as the inversion map. Moreover, an automorphism γ of a group A is said a itl power automorphism iff it maps each subgroup into itself. Thus $a^\gamma = a^n$ for all $a \in A$ where $n = n(a) \in \mathbb{Z}$. If A is bounded, the group of power automorphism of its is well-known to be finite. If A is abelian non-periodic, then the only power automorphisms of A are the identity and the inversion map (see [11]).

Recall that Theorem A of [12] states that if G is a hyper-(abelian or finite) inertial group, then it is abelian or dihedral, provided it has no non-trivial periodic normal subgroups. In Sect. 2, by Theorem ̃A, we give a corresponding characterization of ̃T-groups by substituting the class of dihedral groups by that of semidihedral groups, which are defined below.

In Theorem B of [12] it is shown that a finitely generated hyper-(abelian or finite) group is inertial iff it has a finite index torsion-free abelian normal subgroup on which elements of G induce power automorphisms. In our Theorem ̃B in Sect. 3 we show that a corresponding statement holds for soluble-by-finite ̃T-groups (see also Proposition 3). This answers Question C in [9].

2 Preliminary results

Our first result seems to be missing in the literature.

Proposition 1 Inert subnormal subgroups are strongly inert.

Proof. This follows from next lemma.

Lemma 1 Let H be an inert subnormal subgroup of a group G and $K \leq G$. If $|K : (H \cap K)|$ is finite, then $|\langle H, K \rangle : H|$ is finite as well.
Proof. We may assume \(G = \langle H, K \rangle = H^G K \) and proceed by induction on the subnormality defect \(d \) of \(H \) in \(G \), the statement being trivial if \(d \leq 1 \). Moreover, since \(|G : H| = |G : H^G| \cdot |H^G : H| \) where \(|G : H^G| \leq |K : (H \cap K)| =: n < \infty \), we only have to show \(|H^G : H| \) is finite. To this aim note that \(H^G \) is the join of at most \(n \) conjugates of \(H \). Thus the statement follows from the following claim: for any positive integer \(r \), any subgroup \(H^+ = \langle H_1, \ldots, H_{r+1} \rangle \) where each \(H_i \) is conjugate to \(H \). Thus the statement follows from the following claim: for any positive integer \(r \), any subgroup \(H^+ = \langle H_1, \ldots, H_{r+1} \rangle \) where each \(H_i \) is conjugate to \(H \). Then, denoting commensurability by \(\sim \), by induction on \(r \), we have that \(L := \langle H_1, \ldots, H_r \rangle \sim H \sim H_{r+1} \). Further, since \(H_{r+1} \) has subnormality defect at most \(d - 1 \) in \(H^G \) we may apply induction hypothesis (on \(d \)) to the group \(H^G \) and its subgroups \(H_{r+1} \) and \(L \). We have that \(|\langle H_1, \ldots, H_{r+1} \rangle : H_{r+1}| \) is finite. Thus \(H^+ \sim H_{r+1} \sim H \). □

The class of \(\tilde{T} \)-groups is closed with respect to forming normal subgroups and homomorphic images, clearly. Let us give further instances of \(\tilde{T} \)-groups.

Lemma 2 Let \(G_1 \leq G_0 \) be normal subgroups of a group \(G \) with \(G_1 \) and \(G/G_0 \) finite. If any subnormal subgroup of \(G_0/G_1 \) is inert in \(G/G_1 \), then \(G \) is \(\tilde{T} \).

Proof. Let \(H \) be a subnormal subgroup of \(G \). On the one hand, \(HG_1 \cap G_0 \) is subnormal in \(G \) hence inert. On the other hand, \(H \) and \(HG_1 \cap G_0 \) are commensurable. Thus \(H \) is inert as it is commensurable to an inert subgroup. □

Recall that in [3] an automorphism of an abelian group \(A \) is said to be an inertial automorphism iff it maps each subgroup of \(A \) to a commensurable one. Clearly, a \(\tilde{T} \)-group acts on its normal abelian sections by means of inertial automorphisms. In [3] we noticed that inertial automorphisms of \(A \) form a group \(IAut(A) \) and that, if \(A \) is torsion-free, then \(IAut(A) \) consists of maps \(\gamma \) defined by \((a\gamma)^n = a^m \ \forall a \in A \), where coprime integers \(m, n \) are uniquely defined (with \(n > 0 \)). We call such a map rational power automorphisms and write \(\gamma = m/n \). Clearly, we are just considering \(A \) as a \(\mathbb{Q}^\pi \)-module, where \(\mathbb{Q}^\pi \) is the ring of rationals whose denominator is a \(\pi \)-number and \(\pi \) is the set of primes \(p \) such that \(A^p = A \). For a complete description of inertial automorphisms (when \(A \) is any abelian group) see [4] and [5], where we call rational power automorphisms just "multiplications".

3
because of the additive notation for A. As usual, we denote by \mathbb{Q}_π the additive group of the ring \mathbb{Q}_π.

By next statement we recall some facts which follow from Theorem 1 of [3] and Proposition 2.2 and Theorem A of [4]. Here we deal with finitely generated subgroups of $IAut(A)$, while for the structure of the whole group $IAut(A)$ we refer to [6].

Recall Let Γ be a finitely generated group of inertial automorphisms of an abelian group A. Then,
1) if A is torsion-free and $\pm 1 \neq \gamma \in Aut(A)$, then γ is inertial iff $\gamma = m/n \in \mathbb{Q}$ and $A^n = A^m = A$ has finite rank, thus $IAut(A)$ is abelian in this case;
2) if A is bounded, then there is a finite Γ-invariant subgroup $F \leq A$ such that Γ acts on A/F by means of power automorphisms;
3) if A is periodic, then for each $X \leq A$ there is a Γ-invariant subgroup $X^\Gamma \geq X$ such that X^Γ/X is finite;
4) if A is any, then there is a Γ-invariant torsion-free subgroup $V \leq A$ such that A/V is periodic.

Let us next introduce a class of groups whose all subnormal subgroups are (strongly) inert.

Definition A group G is said to be semidihedral on a torsion-free abelian subgroup A if $G = K \rtimes A$ and K acts faithfully on A by means of inertial automorphisms.

We warn that the word semidihedral has been used with a different meaning in other areas of group theory. It is clear that above K is abelian and if its elements induce power automorphism (that is power by the rationals ± 1), then G is abelian or dihedral. Note that in a dihedral group G all subgroups H are inert, as $|H : H_G| \leq 2$ (while subgroups with order 2 are not strongly inert). By next statement we give details about semidihedral groups and in Theorem A we see that any semidihedral group is \tilde{T}.

Proposition 2 Let A be a torsion-free abelian normal subgroup of a group G. Then
1) G is semidihedral on A iff $A = C_G(A)$ and G acts on A by means of inertial automorphisms; in this case A is uniquely determined as $A = \text{Fit}(G)$, moreover G/A is isomorphic to a multiplicative group of rationals;
2) if G is semidihedral on A and G_0 is a non-abelian subgroup of finite index in G, then G_0 is semidihedral on $A \cap G_0$.

4
Proof. (1) Assume G semidihedral on A. Since non-trivial inertial automorphisms of A are rational power, they are fixed-point-free, so that $A = C_G(A) = \text{Fit}(G)$. Conversely, if $A = C_G(A)$, we claim that G splits on A. In fact, for any $x \in G \setminus A$, the subgroup $N := \langle x, A \rangle = \langle x \rangle \rtimes A$ has trivial centre. By 11.4.21 of [11], up to equivalence there exists a unique extension of N by $Q = G/N$ with coupling the natural homomorphism $Q \to \text{Out}N$. Thus G is isomorphic to the subgroup $G/A \rtimes A$ of the holomorph of A. Last part of the statement follows from Recall 1.

(2) Let $A_0 := A \cap G_0$. Every element of $G_0 \setminus A_0$ acts fixed-point-free on A and so $C_{G_0}(A_0) = A_0$. Hence G_0 is semidihedral on A_0 by (1).

We have now a statement corresponding to Theorem A in [12]. Notice that a semidihedral group has no non-trivial periodic normal subgroups.

Theorem \tilde{A} A hyper-(abelian or finite) group G without non-trivial periodic normal subgroups is a \tilde{T}-group iff it is semidihedral on a torsion-free abelian subgroup.

Proof. Suppose G is a \tilde{T}-group. By Theorem A of [12], any torsion-free nilpotent normal subgroup of G is abelian. Thus $A := \text{Fit}(G)$ is abelian and by Recall 1 it follows that $G/C_G(A)$ is abelian, too. Suppose, by contradiction, that $A \neq C := C_G(A)$. Since G is hyper-(abelian or finite), there exists a G-invariant subgroup U of C properly containing A such that U/A is finite or abelian. In the latter case U is nilpotent and so $U = A$, a contradiction. Then U/A is finite, so U is centre-by-finite and U' is finite. Then $U' = 1$, a contradiction again. Hence $A = C$ and G is semidihedral on A by Proposition 2(1).

Conversely, let $G = K \rtimes A$ be a semidihedral group. If A has infinite rank, then G is dihedral and every subgroup is inert. Then assume A has finite rank. Let H be a subnormal subgroup of G. If $H \leq A$, then H is inert as K acts on A by means of inertial automorphisms. Otherwise, by Proposition 2(1), there is an element $h \in H \setminus A$ acting on A as a rational $m/n \neq 1$. If H has subnormality defect i, we have $H \geq [H, A] \geq A^{(m-n)i}$. Since A has finite rank, then $A/A^{(m-n)i}$ and $|HA : H|$ are finite, so H is strongly inertial, hence inertial, as $|H^G : H|$ is finite. Thus G is a \tilde{T}-group.

By next proposition we can apply Theorem \tilde{A} to groups G whose maximum normal torsion subgroup $\tau(G)$ is finite.
Proposition 3 Consider following properties for a group G:

i) G has a semidihedral normal subgroup with finite index G_0 such that G acts by means of rational power automorphisms on $A_0 := \text{Fit}(G_0)$ (therefore G acts trivially on G_0/A_0);

ii) G has a finite normal subgroup F such that G/F is semidihedral.

Then (i) implies (ii). Moreover (i) and (ii) are equivalent, provided G has finite rank.

Proof. Let (i) hold. By Recall 1, $G/C_{G}(A_0)$ is abelian. Thus for any $g \in G$ and $g_0 \in G_0$, we have $[g,g_0] \subseteq C_{G_0}(A_0) = A_0$ by Proposition 2(1). Hence g acts trivially on G_0/A_0. Then, let $C := C_{G}(A_0)$. Since $C \cap G_0 = A_0$, we have that C/A_0 is finite. It follows that C' and $F/C' := \tau(C/C')$ are finite as well. Thus F is finite.

We claim that $\bar{G} := G/F$ is semidihedral on \bar{C} (use bar notation). To show this, note that G acts by means of inertial automorphisms on A_0 where C/A_0 is finite. Then G does the same on the whole of C, by an argument as in Lemma 2. On the other side $C_{\bar{G}}(\bar{C}) = \bar{C}$ as if $\bar{x} \in C_{\bar{G}}(\bar{C})$, then $[\bar{x},A_0] \subseteq A_0 \cap F = 1$. Therefore the claim follows by Proposition 2(1).

Assume now (ii) holds and G has finite rank. Let $n := |F|$, $A_1/F := \text{Fit}(G/F)$ and $C := C_{A_1}(F)$. Then $F \cap C \leq Z(C)$ and $C/(F \cap C)$ is abelian. Thus $[C^n,C^n] \leq (F \cap C)^n = 1$. Therefore C^n is abelian and $A_0 := C^{m^2}$ is torsion-free abelian and has finite index, say s, in A_1. By using bar notation in $\bar{G} = G/A_0$, let $\bar{G}_1 := C_{\bar{G}}(\bar{A}_1)$. Then $[\bar{G}_1^n,\bar{G}_1^n] \leq \bar{A}_1^n = 1$ and so \bar{G}_1^n is abelian. Moreover $\bar{G}_0 := \bar{G}_1^{2^n}$ is torsion-free abelian and has finite index in \bar{G}, as \bar{G} as finite rank. Finally $G_0 \cap F \leq A_0 \cap F = 1$ and so G_0 is semidihedral on A_0 by Proposition 2(2), as it is G-isomorphic to a finite index normal subgroup of G/F.

3 Main result

We consider now finitely generated groups.

Lemma 3 Let $G = \langle g_1, ..., g_r \rangle$ be a finitely generated group with a torsion-free abelian normal subgroup A such that G/A is abelian. If each g_i acts on A by means of rational power automorphism $m_i/n_i \in \mathbb{Q}$, then A is a free \mathbb{Q}^π-module with finite rank where $\pi = \pi(m_1...m_r,n_1...n_r)$ is a finite set of primes.
Proof. In the natural embedding of $\bar{G} := G/C_G(A)$ in $IAut(A)$, each generator \bar{g}_i corresponds to the rational power by $m_i/n_i \in \mathbb{Q}$, (see Recall 1). Thus the ring $\mathbb{Z}[\bar{G}]$ corresponds to a subring of $End(A)$ isomorphic to \mathbb{Q}^π.

Since G/A is finitely presented, we have that A is finitely G-generated and A is a finitely generated \mathbb{Q}^π-module. Then A is isomorphic to a direct sum of finitely many quotient of the additive group \mathbb{Q}_π. Moreover A is a free \mathbb{Q}^π-module, as it is torsion-free as an abelian group. □

Proposition 4 A finitely generated semidihedral group G is of type $G = K \rtimes A$ where:
- A is isomorphic to the sum of finitely many copies of \mathbb{Q}_π
- $K = \langle k_1, ..., k_s \rangle$ and each k_i acts faithfully on A by means of rational power automorphism $m_i/n_i \in \mathbb{Q}$,
- $\pi = \pi(m_1...m_sn_1...n_s)$ is a finite set of primes. □

Notice that the above $G = K \rtimes A$ may be obtained by a sequence of finitely many HNN-extensions starting with a free abelian group with finite rank as a base group. Generarily, such extensions are not ascending and A is not finitely presented, an easy example being the extension of $\mathbb{Q}_{\{2,3\}}$ by the (inertial) rational power automorphism $\gamma = 2/3$, see Proposition 11.4.3 of [10]. On the other hand, since finitely generated semidihedral groups have finite rank, for such groups conditions (i) and (ii) of Proposition 3 are equivalent.

We have a statement corresponding to Theorem B in [12].

Theorem ˜B For a finitely generated soluble-by-finite group G, the following are equivalent:
i) G is a \tilde{T}-group;
ii) G has a finite normal subgroup F such that G/F is a semidihedral group.

Proof. Clearly, (ii) implies (i) by Lemma 2 and Theorem ˜A. On the other hand, by Theorem ˜A, (ii) is equivalent to saying that the maximum normal periodic subgroup $\tau(G)$ is finite. To prove that this follows from (i), we treat first some particular cases as lemmas.

Lemma 4 Let G be a finitely generated group with a normal subgroup N such that G/N is abelian and G acts on N/N' by means of inertial automorphisms. If N' is finite, then $\tau(G)$ is finite.
Proof. By arguing mod N' we may assume N is abelian.

If N is periodic, then it is bounded, as it is G-finitely generated. Thus by Recall 2 there is a finite G-subgroup $F \leq N$ such that G acts by means of power automorphisms on N/F. We may assume $F = 1$. Then $G/C_G(N)$ is finite, as a group of power automorphisms of a bounded abelian group. Therefore the nilpotent group $C_G(N)$ is polycyclic and $\tau(G)$ is finite.

If N is any abelian group, then, by Recall 4, there is a torsion-free G-subgroup $V \leq N$ such that N/V is periodic. By the above $\tau(G/V)$ is finite, whence $\tau(G)$ is finite.

□

Lemma 5 Let G be a finitely generated \tilde{T}-group. If G' nilpotent of class 2 and G'' is a p-group, then $\tau(G)$ is finite.

Proof. By Lemma 4, we have that $\tau(G/G'')$ is finite. Then by Theorem A and Proposition 3 there is a subgroup G_0 of finite index in G such that $G_0 \geq G''$ and G_0/G'' is torsion-free semidihedral. Then $T := \tau(G_0)$ is abelian. Applying again Lemma 4 to G_0/G'', we have that T/G'' is finite. Then we have $T = AF$, where F is a finite subgroup, which may be assumed G-invariant, by Recall 3. Thus we may factor out F. Denoting $N := G'$, we reduced to the following picture:

- $G = \langle g_1, ..., g_r \rangle$ is finitely generated with a nilpotent subgroup N with class 2 such that G/N is abelian, N/N' is torsion-free and $N' = \tau(G)$ is a p-group;
- each g_i acts by means of a rational power automorphism, say $m_i/n_i \in \mathbb{Q}$, on N/N'.

By Lemma 3 N/N' is a free \mathbb{Q}^π-module of finite rank where $\pi := \pi(m_1...m_r n_1...n_r)$. Further, we have that for each $a, b \in N$ and $g \in G$, if $a^{ng} = a^m z_1$ and $b^{ng} = b^m z_2$ with $z_1, z_2 \in N' \leq Z(N)$, hence $[a, b]^{ng} = [a^m z_1, b^m z_2] = [a^m, b^m] = [a, b]^m$. Since $N' = \{[a, b] | a, b \in N\}$, we have $p \not\in \pi$.

Now, by a standard argument (see 5.2.5 in [12]), we have that the p-group $\tau(G) = N'$ is finite as it is isomorphic to an epimorphic image of $N/N' \otimes N/N'$ which is a direct sum of finitely many copies of \mathbb{Q}_π where $p \not\in \pi$. □
Proof of Theorem ˜B (concluded). It remains to show that if \(G \) is a soluble finitely generated \(\mathcal{F}_T \)-group, then \(\tau(G) \) is finite. By induction on the derived length of \(G \) we may assume \(G \) has a normal abelian subgroup \(A \) such that \(\tau(G/A) \) is finite. By Theorem ˜ and Proposition 8 there is a subgroup \(G_0 \) of finite index in \(G \) such that \(G_0/A \) is torsion-free semidihedral of finite rank. We may assume \(G := G_0 \).

Consider first the case \(A \) is a \(p \)-group. If \(A \) is unbounded and \(B \leq A \) is such that \(A/B \) is a Prüfer group, then, by Recall 3, such is \(A/B^G \). Consider \(\tilde{G} := G/B^G \). Then \(\tilde{G}/C_G(A) \) is abelian and \(\tilde{G}' \) is nilpotent of class 2, as \(G'' \leq A \). Then we may apply Lemma 5 and we have that \(\tau(\tilde{G}) \) is finite. Thus \(A = \tau(G) \) is finite, a contradiction. Thus \(A \) is bounded and, by Recall 2, there is a finite \(G \)-invariant subgroup \(F \leq A \) such that \(G \) acts on \(A/F \) by means of power automorphisms. Then \(G/C_G(A/F) \) is abelian and \(A = \tau(G) \) is finite, again by Lemma 5.

Let \(A \) be any periodic abelian group. By the above, its primary components are finite. If by contradiction \(A \) is infinite, there is \(B \leq A \) such that \(A/B \) is infinite with cyclic primary components. By Recall 3, we may assume \(B := B^G \) to be \(G \)-invariant. Then \(A/B \) has finite Prüfer rank. Hence \(\tilde{G} := G/B \) has finite Prüfer rank (and is finitely generated). Thus, by Corollary 10.5.3 of [10], \(\tilde{G} \) is a minimax group indeed. Therefore its periodic normal subgroups have Min (the minimal condition on subgroups) while \(\tilde{A} \) has not, a contradiction.

In the general case, since \(G \) acts by means of inertial automorphisms on \(A \), by Recall 4 there is a torsion-free \(G \)-invariant subgroup \(V \) of \(A \) such that \(A/V \) is periodic. By the above, \(\tau(G/V) \) is finite, whence \(\tau(G) \) is finite. \(\Box \)

References

[1] V.V. Belayev, M. Kuzucuoğlu, E. Seckin, Totally inert groups, *Rend. Sem. Mat. Univ. Padova* **102** (1999), 151-156.

[2] C. Casolo, Subgroups of Finite Index in Generalized T-groups, *Rend. Sem. Mat. Univ. Padova* **80** (1988), 265-277.

[3] U. Dardano, S. Rinauro, Inertial automorphisms of an abelian group, *Rend. Sem. Mat. Univ. Padova* **127** (2012), 213-233.

[4] U. Dardano, S. Rinauro, Inertial endomorphisms of an abelian group, *Ann. Mat. Pura Appl.*, DOI: 10.1007/s10231-014-0459-6
[5] U. Dardano, S. Rinauro, On the ring of inertial endomorphisms of an abelian group. *Ricerche Mat.* 63 (2014) no. 1, 103-115, DOI: 10.1007/s11587-014-0199-3

[6] U. Dardano, S. Rinauro, The group of inertial automorphisms of an abelian group, (submitted), see also arXiv:1403.4193

[7] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, Strongly Inertial Groups, *Communications in Algebra* 41 (2013) no. 6, 2213-2227.

[8] S. Franciosi, F. de Giovanni and M.L. Newell, Groups whose subnormal subgroups are normal-by-finite, *Comm. Alg.* 23 (1995) no.14, 5483-5497.

[9] F. de Giovanni, Some Trends in the Theory of Groups with Restricted Conjugacy Classes, Note di Matematica, *Note Mat.* 33 (2013) no. 1, 71-87

[10] J.C. Lennox, D.J.S. Robinson, The theory of infinite soluble groups, Clarendon Press, Oxford Mathematical Monographs, 2004.

[11] D.J.S. Robinson, A Course in the Theory of Groups, Springer V., Berlin, 1982.

[12] D.J.S. Robinson, On inert subgroups of a group, *Rend. Sem. Mat. Univ. Padova* 115 (2006), 137-159.