Determination of M-Power Soft Subgroup Structures

Dr. V. Ramadoss¹, P. Gopalakrishnan²

¹Professor, ²Research Scholar, Department of Mathematics, PRIST University, Thanjore, Tamilnadu

Abstract: In this paper, we introduce the order of the soft structure of the group theory of power of the soft sets related with soft group. We also characterise the m-power soft subgroups and its determination.

Key words: soft set, soft group, m-power set, m-power group, determination, soft subset, union, intersection.

I. INTRODUCTION

The theory of soft sets, introduced by Molodtsov [1], is an extension of set theory for the study of intelligent systems characterized by insufficient and incomplete information. Maji et al. [2] give an application of soft set theory in a decision making problem by using the rough sets and they conducted a theoretical study on soft sets in a detailed way [3]. Chen et al. [4] proposed a reasonable definition of parameterizations reduction of soft sets and compared them with the concept of attributes reduction in rough set theory. The algebraic structures of set theories which deal with uncertainties have been studied by some authors. Rosenfeld [5] proposed fuzzy groups to establish results for the algebraic structures of fuzzy sets. Fuzzification of algebraic structures was studied by many authors [5,6,7]. Many papers on soft algebras have been published since Aktas and Cagman [8] introduced the notion of a soft group in 2007. Recently, Jun et al. [9] studied soft ideals and idealistic soft BCK/BCI-algebras. Acar et al. [10] introduced initial concepts of soft rings. Aygunoglu and Aygun [11] introduced the concept of fuzzy soft group and, in the meantime, they studied its properties and structural characteristics. Atagun and Sezgin [12] introduced and studied the concepts of soft subrings, soft ideal of a ring, and soft sub fields of a field. In this paper, we introduce the order of the soft structure of the group theory of power of the soft sets related with soft group. We also characterise the m-power soft subgroups and its determination.

II. PRELIMINARIES AND BASIC CONCEPTS

1) Definition 2.1 [D. Molodtsov]: A pair K_A is called a soft set over U, where F is a mapping given by $K: A \rightarrow P(U)$. In other words, a soft set over U is a parameterised family of subsets of the universe U

2) Definition 2.2 [Maji et al.]: For two soft sets K_A and K_B over U, K_A is called a soft subset of K_B, if
 a) $A \subseteq B$ and
 b) For all $e \in A$, $K(e)$ and $G(e)$ are identical approximations.

3) Definition 2.3 [Maji et al.]: Union of two soft sets K_A and K_B over U is the soft set H_C, where $C = A \cup B$ and $e \in C$,

 \[H_C = \begin{cases}
 K(e), & \text{if } e \in A \cup B, \\
 G(e), & \text{if } e \in B - A, \\
 K(e) \cup G(e), & \text{if } e \in A \cap B.
 \end{cases} \]

 It is denoted by $K_A \cup K_B = H_C$.

4) Definition 2.4 [Maji et al.]: Intersection of two soft sets K_A and K_B over U is the soft set H_C, where $C = A \cap B$ and $e \in C$,

 \[H_C = \begin{cases}
 K(e), & \text{if } e \in A \cup B, \\
 G(e), & \text{if } e \in B - A, \\
 K(e) \cap G(e), & \text{if } e \in A \cup B.
 \end{cases} \]

 It is denoted by $K_A \cap K_B = H_C$.

5) Definition 2.5 [H.Aktas et al.]: Let K_A be a soft set over G. Then K_A is said to be a soft group over G if and only if $K(x)$ is a subgroup of G for all $x \in A$.

6) Definition 2.6 [H.Aktas et al.]: One considers the following.
 (1) K_A is said to be an identity soft group over G if $K(x) = \{ e \}$ for all $x \in A$, where e is the identity element of G.
 (2) K_A is said to be an absolute soft group over G if $K(x) = G$ for all $x \in A$.

7) Definition 2.7: Let K_A be a soft set over G and $K(x) \in K_A$ for $x \in A$. Then $K(x^m) = \{ a^m \mid a \in K(x), m \in \mathbb{Z} \}$ is called m-power of $K(x)$.
III. **PROPERTIES OF M-POWER SOFT SUBGROUPS**

In this section, we shall derive some important results based on the above definitions.

1) **Theorem 3.1:** Let K_A be a soft set over G and $K(x), K(y) \in KA$ for all $x, y \in A$. Then, for all $n \in Z$,

a) $(K(x) \cap K(y))^m \subseteq K(x)^m \cap K(y)^m$
b) $(K(x) U K(y))^m \subseteq K(x)^m U K(y)^m$
c) $(K(x) \times K(y))^m \subseteq K(x)^m \times K(y)^m$.

Proof: Let $a^m \in (K(x) \cap K(y))^m$, for $m \in Z$. From Definition 2.7 $a^m \in K(x)$ and $a^m \in K(y)$. This means that $a^m \in K(x)^m \cap K(y)^m$. This completes the proof. Theorem 3.1 (2) and theorem 3.1 (3) can be proved similarly by definition 2.7.

In general, the converse of the above theorem-3.1 is not true. We illustrate an example of this situation.

2) **Example 3.2:** Let $A = \{0,1\}$ and let $K : A \rightarrow \mathbb{Q}(Z)$ be a function such that $K(0) = \{3r \in Z \}$ and $K(1) = \{3r + 1 \in Z \}$. The intersection is $K(0) \cap K(1)$ is empty, so $K(0) \cap K(1)^3$ is empty. On the other hand $K(0)^3 \cap K(1)^3$ is non-empty. Consequently, $(K(x) \cap K(y))^m \neq K(x)^m \cap K(y)^m$.

3) **Definition 3.3:** Let K_A be a soft set over G and $K(x) \in K_A$. If there is a positive integer m such that $K(x)^m = \{e\}$, then the least such positive integer m is called the order of $K(x)$. If no such m exists, then $K(x)$ has infinite order. The order of $K(x)$ is denoted by $|K(x)|$. If K_A is a soft group over G, then the order of $K(x) \in K_A$ coincides with the order of $K(x)$, which is a subgroup of G. Of course if there is any element x in A such that $K(x) = \{e\}$, then the order of $K(x)$ is 1.

4) **Example 3.4:** Let A be a soft group over G and $K(x)$ be the elements of K_A. Then, the order of elements of K_A are finite. Proof: It is straightforward.

5) **Theorem 3.5:** Let G be a finite group and K_A be a soft group over G. Then, the order of elements of K_A are finite. Proof: It is straightforward.

6) **Theorem 3.6:** Let K_A be a soft set over finite group G and $K(x) \in K_A$. Then, the order of $K(x)$ is the least common multiple of order of elements of $K(x)$. Proof: Let m be the order of $K(x)$. Then $K(x)m = \{e\}$. This means that $a^m = e$ for all $a \in K(x)$.

7) **Theorem 3.7:** Let G be finite group, K_A be a soft group over G, and $K(x)$ and $K(y)$ the elements of K_A. Then, for all $x, y \in A$, the following:

a) $|K(x) \cap K(y)| \leq \text{Greatest common divisor of } (|K(x)|, |K(y)|)$ for all $x, y \in A$.
b) $|K(x) U K(y)| = \text{Least common multiple of } (|K(x)|, |K(y)|)$ for all $x, y \in A$.
c) $|K(x) \times K(y)| = |K(x)||K(y)|$ for all $x, y \in A$.

Proof: (1) $K(x) \cap K(y)$ is a subgroup of $K(x)$ and $K(y)$, so $|K(x) \cap K(y)| \leq \text{gcd}(|K(x)|, |K(y)|)$ and $|K(x) \cap K(y)| \leq \text{lcm}(|K(x)|, |K(y)|)$. It follows $|K(x) \cap K(y)| \leq \text{lcm}(|K(x)|, |K(y)|)$ for all $x, y \in A$.

(2) Let $K(x) U K(y) = r$, $|K(x)| = p$, and $|K(y)| = m$. From theorem 3.1 $(K(x) \cap K(y))^p \subseteq K(x)^p \cap K(y)^p = \{e\}$. This follows m / r and r / p. Thus r is common multiple of m and p. Consider $(K(x) \cap K(y))^r = K(x)^r U K(y)^r = \{e\} U \{e\}$. Since r is the least positive integer that satisfies the condition $(K(x) \cap K(y))^r = \{e\}$, p divides t. Hence p is least common multiple order of $K(x)$ and $K(y)$. This completes the proof.

(3) Since $K(x)$ and $K(y)$ are subgroups of G, it is seen easily.

8) **Definition 3.8:** Let G be a group and K_A be soft set over G. The set $\{K(x)^m : x \in A, m \in Z\}$ is called m^{th} power of soft set.

9) **Example 3.9:** Let K_A be a soft set over G defined in Example 2.8. Then, the second power of K_A is $K_A^2 = \{K(x)^2 = K(e), K(12)^2 = K(e), K(13)^2 = K(e), K(23)^2 = K(e), K(123)^2 = K(123)\}$.

10) **Theorem 3.10:** Let K_A and K_B be two soft sets over G. Then,

a) $(K_A \triangle E_B)^m = K_A^m \triangle E_B^m$.
b) If $A \subseteq B$ and for all $x \in A, K(a)$ and $E(a)$ are identical approximations, then $(K_A \cap E_B)^m \subseteq K_A^m \cap E_B^m$.

Proof: we consider the following
i) Suppose that $K_A \vee E_B = (H, A \times B)$ and $K_A^m \vee E_B^m = (T, A^B)$. Using Definition 3.8 and theorem 3.1 we have

$$(H, A \times B)^m = \{ H(a,b)^m / (a,b) \in A^B \}$$

$$= \{ (K(a) \cup E(b))^m / (a,b) \in A^B \}$$

$$= \{ K(a)^m \cup E(b)^m / (a,b) \in A^B \}$$

$$= K_A^m \vee E_B^m.$$

ii) Suppose that $K_A \wedge E_B = (H, A \times B)$ and $K_A^m \wedge E_B^m = (T, A^B)$. Using the same argument in (1), we have

$$(H, A \times B)^m = \{ H(a,b)^m / (a,b) \in A^B \}$$

$$= \{ (K(a) \cap E(b))^m / (a,b) \in A^B \}$$

$$= \{ K(a)^m \cap E(b)^m / (a,b) \in A^B \}$$

$$= \{ T(a,b) / (a,b) \in A^B \}$$

$$= K_A^m \wedge E_B^m.$$

In Example 2.8 The order of K_A is 6 and in Example 3.4 if we choose $N= N_5 = \{0,1,2,3,4,5\}$ and $K(m) = mZ$, for $m \in N_5$, then the order of the group K_N^5 is 6.

IV. CONCLUSION

We discuss the m-structures of couples subgroups. In this paper, we introduce the order of the soft structure of the group theory of power of the soft sets related with soft group. We also characterise the m-power soft subgroups and its determination.

REFERENCES

[1] D. Molodtsov, “Soft set theory—first results,” Computers & Mathematics with Applications, vol.37, no.4-5, pp.19–31, 1999.
[2] P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets in a decision making problem,” Computers & Mathematics with Applications, vol.44, no.8-9, pp.1077–1083, 2002.
[3] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,” Computers & Mathematics with Applications, vol.45, no.4-5, pp.555–562, 2003.
[4] D. Chen, E. C. C. Tsang, D. S. Yeung, and X. Wang, “The parameterization reduction of soft sets and its applications,” Computers & Mathematics with Applications, vol. 49, no. 5-6, pp.757–763, 2005.
[5] A. Rosenfeld, “Fuzzy groups,” Journal of Mathematical Analysis and Applications, vol.35, pp.512–517, 1971.
[6] S. Abdullah, M. Aslam, T. A. Khan, and M. Naeem, “A new type of fuzzy normal subgroups and fuzzy cosets,” Journal of Intelligent & Fuzzy Systems, vol.25, no.1, pp.37–47, 2013.
[7] S. Abdullah, M. Aslam, T. A. Khan, and M. Naeem, “A note on ordered semi groups characterized by their $((e, eVq))$,” UPB Scientiﬁc BulletinA, vol.75, pp.41–44, 2013.
[8] H. Aktas and N. C. C¸a˘gman, “Soft sets and soft groups,” Information Sciences, vol.177, no.13, pp.2726–2735, 2007.
[9] Y. B. Jun and C. H. Park, “Applications of soft sets in ideal theory of BCK/BCI-algebras,” Information Sciences, vol.178, no.11, pp.2466–2475, 2008.
[10] U. Acar, F. Koyuncu, and B. Tanay, “Soft sets and soft rings,” Computers & Mathematics with Applications, vol.59, no.11, pp.3458–3463, 2010.
[11] A. Aygºunoãglu and H. Aygºun, “Introduction to fuzzy soft groups,” Computers & Mathematics with Applications, vol.58, no.6, pp.1279–1286, 2009.
[12] A. O. Atag’un and A. Sezgin, “Soft substructures of rings, fields and modules,” Computers & Mathematics with Applications, vol. 61, no.3, pp.592–601, 2011.
[13] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol.8, pp.338–353, 1965.