ARITHMETIC HEIGHT FUNCTIONS
OVER FINITELY GENERATED FIELDS

ATSUSHI MORIWAKI

ABSTRACT. In this paper, we propose a new height function for a variety defined over a finitely generated field over $\mathbb{Q}$. For this height function, we will prove Northcott’s theorem and Bogomolov’s conjecture, so that we can recover the original Raynaud’s theorem (Manin-Mumford’s conjecture).

CONTENTS

Introduction 1

1. Arakelov intersection theory 3
2. Arithmetically positive hermitian line bundles 6
3. Arithmetically positive hermitian line bundles
   3.1. Polarization of finitely generated fields over $\mathbb{Q}$ 10
   3.2. Naive height functions 11
   3.3. Height functions in terms of Arakelov intersection theory 12
   3.4. Canonical height functions on abelian varieties 16
   3.5. Remarks 17
3. Northcott’s theorem over finitely generated fields 17
4. Estimate of height functions in terms of intersection numbers 21
5. Equidistribution theorem over finitely generated fields 26
6. Construction of the canonical height in terms of Arakelov Geometry 28
7. Bogomolov’s conjecture over finitely generated fields 31
References 34

INTRODUCTION

Let $K$ be a finitely generated field over $\mathbb{Q}$, and $d$ the transcendence degree of $K$ over $\mathbb{Q}$. If $d = 1$, then there is a smooth projective curve $C$ over a number field such that the function field of $C$ is $K$. Using non-archimedean valuations arising from points of $C$, we can define a geometric height function

$$h^{\text{geom}} : \mathbb{P}^n(K) \to \mathbb{R}.$$ 

It is well known that this height function can be given in terms of the usual intersection theory, so that it is rather easy to handle. However, in contract with height functions over number fields, it

Date: 1/June/1999, 1:50PM (JP), (Version 2.0).
1991 Mathematics Subject Classification. Primary 11G35, 14G25, 14G40; Secondary 11G10, 14K15.
Key words and phrases. height function, finitely generated field, Arakelov Geometry, Bogomolov’s conjecture.

1
does not reflect the exact state of points on $\mathbb P^n(\overline K)$. For example, Northcott’s theorem does not hold for the geometric height function in general. A reason for this, we can consider, is that $h^\text{geom}$ does not take care of data coming from the constant field. In this paper, we would like to propose a new kind of height functions for finitely generated fields over $\mathbb Q$, and unify them with the geometric height functions.

A key idea to get a new height function is to fix a polarization $\overline B = (\oplus \overline H_1; \cdots; \overline H_d)$ of $K$, namely, a collection of a normal projective arithmetic variety $B$ whose function field is $K$, and nef $C^1$-hermitian line bundles $\overline H_1; \cdots; \overline H_d$ on $B$. Here a $C^1$-hermitian line bundle $\overline H$ is said to be nef if $c_2(\overline H)$ is semipositive, and $\deg \overline H = 0$ for any one-dimensional integral subschemes of $B$. Once we fix the polarization $\overline B$ of $K$, then we can define a height function

$$h^\overline B_B : \mathbb P^n(K) \to \mathbb R$$

associated with $\overline B$ to be

$$h^\overline B_B(0; \cdots; n) = \max_{\text{ord}(1) \deg b_1 \overline H_1} \overline H_1 + \cdots + \max_{\text{ord}(1) \deg c_1(\overline H_1)} \overline H_1 \cdots \overline H_1$$

where runs over all prime divisors on $B$. Moreover, we can easily see that $h^\overline B_B$ extends to

$$h^\overline B : \mathbb P^n(\overline K) \to \mathbb R$$

For example, if $d = 1$ and $\overline H_1$ is given by the infinite fibers of $B$, then $h^\overline B$ is nothing more than $h^\text{geom}$ up to the multiplication of a positive constant. Moreover, note that if $d = 0$, then $h^\overline B$ is the usual height function over a number field.

Further, we can give these height functions in terms of Arakelov intersection theory. Let $X$ be a projective variety over $K$, and $L$ a line bundle on $X$. Let us take a model $(X; \overline L)$ of $(X; L)$, namely, $X$ is a projective arithmetic variety over $B$ and $\overline L$ is a hermitian line bundle on $X$ with $X_K = X$ and $L_K = L$. For a point $\mathfrak p \subset X(\overline K)$, we denote by $\mathfrak p$ the closure of the image of $\text{Spec}(K)$ in $X$. Then, we define

$$h^\overline B_{X, \mathfrak p} : X(\overline K) \to \mathbb R$$

to be

$$h^\overline B_{X, \mathfrak p}(\mathfrak p) = \frac{1}{[K(\mathfrak p) : K]} \deg b_1(\overline L_{\mathfrak p}) \max (\deg \overline H_1)_{\mathfrak p} (\deg \overline H_d)_{\mathfrak p}$$

where $\mathfrak p : X \to B$ is the canonical morphism. We can see that $h^\overline B_{X, \mathfrak p}$ modulo the set of bounded functions on $X(\overline K)$ does not depend on the choice of the model $(X; \overline L)$ of $(X; L)$ (cf. Corollary 3.3.5), so that we may denote $h^\overline B_{X, \mathfrak p}$ by $h^\overline B_B$.

Since our height functions include the geometric height functions, Northcott’s theorem does not hold in general. However, if the polarization $\overline B$ is big, we can expect a certain kind of affirmative answers. For this reason, we introduce the following notation. If $(\overline H_1)_Q$’s are big on $B_Q$ and there are positive numbers $n_1; \cdots; n_d$ such that $\deg (\overline H_1; n_1)$ has a strictly small section for each $i$, then
\( h_L \) is called an \textit{arithmetic height function} and is denoted by \( h_L^{\text{arith}} \) for simplicity. Then, we have the following Northcott’s theorem for the arithmetic height function.

**Theorem A (cf. Theorem 4.3).** If \( L \) is ample, then, for any numbers \( M \) and any positive integers \( e \), the set

\[
\{ P \in 2 \times (\overline{K}) \mid jh_L^{\text{arith}}(P) \leq M \; ; \; [K(P) : K] \leq e \}
\]

is finite.

Now let \( A \) be an abelian variety over \( K \), and \( L \) a symmetric ample line bundle on \( A \). Then, in the same way as the usual height theory, we can assign the canonical height (Néron-Tate height) \( \hat{h}_L^{\text{arith}} \) to \((A;L)\). Then, \( \hat{h}_L^{\text{arith}}(x) = 0 \) for all \( x \in \overline{A} \), and \( \hat{h}_L^{\text{arith}}(x) = 0 \) if and only if \( x \) is a torsion point as a corollary of Theorem A (cf. Proposition 3.4.1). Moreover, in terms of \( \hat{h}_L^{\text{arith}} \), we have the following solution of Bogomolov’s conjecture over \( K \), which is a generalization of results due to Ullmo [13] and Zhang [15].

**Theorem B (cf. Theorem 8.1).** Let \( X \) be a subvariety of \( \overline{A} \). If the set

\[
\{ P \in 2 \times (\overline{K}) \mid j\hat{h}_L^{\text{arith}}(P) \leq M \; ; \; [K(P) : K] \leq e \}
\]

is Zariski dense in \( X \) for any positive numbers \( e \), then \( X \) is a translation of an abelian subvariety of \( \overline{A} \) by a torsion point.

As corollary, we can recover the original Raynaud’s theorem ([8] and [9]) conjectured by Manin and Mumford.

**Corollary C (cf. Corollary 8.2).** Let \( A \) be an abelian variety over the complex number field \( \mathbb{C} \), and \( Z \) a reduced subscheme of \( A \). Then, every irreducible component of the Zariski closure of \( Z \setminus A(\mathbb{C}) \) in \( A \) is a translation of an abelian subvariety of \( A \) by a torsion point. Consequently, there are finitely many abelian subvarieties \( B_1, \ldots, B_n \) of \( A \) and torsion points \( b_1, \ldots, b_n \) of \( A(\mathbb{C}) \) such that

\[
Z(\mathbb{C}) \setminus A(\mathbb{C}) \text{tor} = \bigcup_{i=1}^{n} (B_i(\mathbb{C}) + b_i) \quad \text{and} \quad Z(\mathbb{C}) \setminus A(\mathbb{C}) \text{tor} = \bigcup_{i=1}^{n} (B_i(\mathbb{C}) \text{tor} + b_i).
\]

Finally, we would like to express gratitude to Dr. Kawaguchi, Prof. Poonen, Prof. Szpiro, Prof. Ullmo, and Prof. Zhang for their helpful conversations. The author also thanks Prof. Silverman for his nice comments.

1. **Arakelov intersection theory**

In this paper, an arithmetic variety means a flat and quasi-projective integral scheme over \( \mathbb{Z} \). Moreover, we say an arithmetic variety is \textit{generically smooth} if it is smooth over \( \mathbb{Q} \). For basic materials of Arakelov intersection theory, we refer to [2] and [11].

Let \( X \) be a generically smooth arithmetic variety. According to [4], a pair \((Z;\varrho)\) is called an \textit{arithmetic cycle of codimension} \( \varrho \) (resp. \textit{arithmetic} \( D \)-\textit{cycle of codimension} \( \varrho \)) if \( Z \) is a cycle of codimension \( \varrho \) on \( X \), and \( \varrho \) is a Green current for \( Z(\mathbb{C}) \) (resp. \( \varrho \) is a current of type \((\varrho \mid 1_{\varrho} \varrho \mid 1)\) on \( X(\mathbb{C}) \)). The set of all arithmetic cycles (resp. \( D \)-cycles) of codimension \( \varrho \) is denoted by \( \mathcal{B}^{\varrho}(X) \) (resp. \( \mathcal{B}^{\varrho}_{D}(X) \)). Let \( \mathcal{B}^{\varrho}(X) \) be the subgroup of \( \mathcal{B}^{\varrho}(X) \) generated by the following elements:
(i) \( (f) ; \ [\log f] \), where \( f \) is a rational function on some subvariety \( Y \) of codimension \( p \leq 1 \) and \([\log f] \) is the current defined by

\[
[\log f](y) = (\log f)(y) : \quad y \in Y.
\]

(ii) \( \{ 0; \theta (\ ) + \theta (\ ) \} \), where \( \theta \) are currents of type \( (\varphi; p; 1) \) and \( (\varphi; 1; p; 2) \) respectively.

Here we define

\[
\mathcal{C}_H^p(\mathcal{X}) = \mathcal{L}_p(\mathcal{X}) = \mathcal{R}_p(\mathcal{X}); \quad \text{and} \quad \mathcal{C}_H^{p+1}(\mathcal{X}) = \mathcal{L}_p(\mathcal{X}) = \mathcal{R}_p(\mathcal{X});
\]

Let \( \mathcal{L} = (L;k \cdot k) \) be a \( \mathcal{C} \)-hermitian line bundle on \( X \). We define a homomorphism

\[
(1.1) \quad b_! (\mathcal{L}) : \mathcal{C}_H^p(\mathcal{X}) ! \mathcal{C}_H^{p+1}(\mathcal{X})
\]

in the following way. Let \( (\mathcal{Z}; g) \) be an element of \( \mathcal{L}_p(\mathcal{X}) \). We assume that \( \mathcal{Z} \) is integral. Then, taking a rational section \( s \) of \( L \), we consider an arithmetic \( D \)-cycle

\[
(d\text{div}(s); \log ks^2 + c_1(\mathcal{L}) \wedge g);
\]

where \([\log ks^2]\) is a current given by \( \forall z \in \mathcal{C} \log (ks^2) \). The class of the above cycle in \( \mathcal{C}_H^{p+1}(\mathcal{X}) \) does not depend on the choice of the rational section \( s \). Thus, by linearity, we have a homomorphism

\[
b_! (\mathcal{L}) : \mathcal{L}_p(\mathcal{X}) ! \mathcal{L}_p(\mathcal{X}); \quad \mathcal{L}_p(\mathcal{X}) ! \mathcal{L}_p(\mathcal{X}).
\]

On the other hand, it is well known that \( b_! (\mathcal{L}) : \mathcal{L}_p(\mathcal{X}) ! \mathcal{L}_p(\mathcal{X}) ! \mathcal{L}_p(\mathcal{X}). \) Thus, we obtain our desired homomorphism \( (1.1) \).

Now let \( \mathcal{M} = (\mathcal{M}; k \cdot k) \) be a continuous hermitian line bundle on \( X \), namely, \( k \cdot k \) is a continuous metric. Then, \( b_! (\mathcal{M}) \) is defined by the class of \( (d\text{div}(s); \log ks^2) \) in \( \mathcal{C}_H^1(\mathcal{X}) \), where \( s \) is a non-zero rational section of \( \mathcal{M} \). This is actually well defined because the class does not depend on the choice of the rational section \( s \). Then, using the scalar product \( (1.1) \), for \( C^1 \)-hermitian line bundles \( \mathcal{L}_1; \ldots ; \mathcal{L}_d \) on \( X \), we can define

\[
b_! (\mathcal{L}_1) \quad 1 \mathcal{L}_d b_! (\mathcal{M}) \mathcal{C}_H^{d+1}(\mathcal{X});
\]

where \( d = \dim X \). In particular, if \( X \) is projective, then we get the intersection number

\[
\deg b_! (\mathcal{L}_1) \quad 1 \mathcal{L}_d b_! (\mathcal{M}) ;
\]

where \( \deg : \mathcal{C}_H^{d+1}(\mathcal{X}) ! \mathcal{R} \) is given by

\[
\deg X \quad n_P P ; T = X \quad n_P \log (P ) + \frac{1}{2} \mathcal{Z} X \mathcal{C} T;
\]

Next, let us consider the push-forward of cycles. Let \( f : X \to Y \) be a projective morphism of generically smooth arithmetic varieties. Then, \( f : \mathcal{L}_p(\mathcal{X}) ! \mathcal{L}_p(\mathcal{X}) \) is defined by \( f (\mathcal{Z}; g) = (f (\mathcal{Z}); f (g)) \). This induces

\[
f : \mathcal{C}_H^p(\mathcal{X}) ! \mathcal{C}_H^{p+\dim Y}(\mathcal{Y});
\]
Then, we have the following projection formula (cf. [4], Proposition 2.4.1).

**Proposition 1.2.** Let $\mathcal{L}$ be a $\mathcal{C}^1$-hermitian line bundle on $Y$, and $z$ an element of $\mathcal{C}\mathcal{H}_{b}^{p}(\mathcal{X})$. Then,

$$f(\mathcal{O}_{Y}(\mathcal{L})) \otimes z) = \mathcal{A} \mathcal{A}(\mathcal{L}) \otimes f(z).$$

**Proof.** For reader's convenience, we give the proof of it. Let $(Z; g)$ be a representative of $z$, and $k \mathcal{L}$ the metric of $\mathcal{L}$. Clearly, we may assume that $Z$ is reduced and irreducible. We set $T = f(Z)$ and $T = f_{1}: Z \rightarrow T$. Let $s$ be a non-zero rational section of $L_{1}$. Then, $(s)$ gives rise to a non-zero rational section of $f_{1}(L)_{1} = (L_{1})_{1}$. Thus, $b_{k}(f(\mathcal{L})) \otimes z$ can be represented by

$$\operatorname{div}(s); \quad \log k \mathcal{S}_{k}^{2} + c_{k}(f(\mathcal{L})) \otimes g :$$

If we set

$$(\deg(\cdot)) =
\begin{cases}
0 & \text{if } \dim T < \dim Z \\
\deg(Z \otimes T) & \text{if } \dim T = \dim Z,
\end{cases}$$

then

$$Z_{\infty} \quad Z_{\infty} \quad Z_{\infty}
\log k \mathcal{S}_{k}^{2} \quad \log k \mathcal{S}_{k}^{2}
\log k \mathcal{S}_{k}^{2}
\deg(\cdot) \quad \deg(\cdot) \quad \deg(\cdot)
\log k \mathcal{S}_{k}^{2}$$

for a compactly supported $\mathcal{C}^1$-form on $Y(\mathcal{C})$. Thus, we have

$$f \log k \mathcal{S}_{k}^{2} = \deg(\cdot) \log k \mathcal{S}_{k}^{2} :$$

Therefore,

$$f(\mathcal{O}_{Y}(\mathcal{L})) \otimes z) = \deg(\cdot) \operatorname{div}(s); \quad \deg(\cdot) \log k \mathcal{S}_{k}^{2} + c_{k}(L; h)^{\otimes} f(g)
= b_{k}(\mathcal{L}) \quad (\deg(\cdot)T; f(g)) = b_{k}(\mathcal{L}) \quad f(z):$$

Hence, we get our proposition.

Finally, let us consider intersections on a general projective arithmetic variety. Let $T$ be a reduced complex space, and $\mathcal{L} = (L; k \mathcal{L})$ a continuous hermitian line bundle on $T$. According to [14], we say $T$ is $\mathcal{C}^1$ if, for any analytic morphisms $h : M \rightarrow T$ from any complex manifolds $M$ to $T$, $h(\mathcal{L})$ is a $\mathcal{C}^1$-hermitian line bundle on $M$. In the same way, we can define $\mathcal{C}^1$-functions on $T$. From now on, we assume that $\mathcal{L}$ is $\mathcal{C}^1$. Then, $c_{k}(\mathcal{L})$ is a $\mathcal{C}^1$-form on $T_{\operatorname{reg}}$, where $T_{\operatorname{reg}}$ is the smooth locus of $T$. We say $c_{k}(\mathcal{L})$ is *semipositive* if, for any analytic morphisms $h : M \rightarrow T$ from any complex manifolds $M$ to $T$, $c_{k}(\mathcal{L})$ is a semipositive form on $M$. Moreover, we say $c_{k}(\mathcal{L})$ is *positive* if, for any real valued $\mathcal{C}^1$-functions $f$ on $T$ with compact support, there is a positive real number $\epsilon$ such that $c_{k}(\mathcal{L}) + \epsilon f$ is semipositive for all $f$. Note that $c_{k}(\mathcal{L})$ is the Chern form of $\mathcal{O}_{T} \otimes \exp(f)$. It is easy to see that the above positivity of Chern forms coincides with the usual positivity of them if $T$ is non-singular.

Let $X$ be a projective arithmetic variety of $d = \dim X$. Let $X^{0}$ be a generic resolution of singularities of $X$, namely, $X^{0} : X$ is a birational morphism of projective arithmetic varieties such that $X^{0}$ is generically smooth. Note that a generic resolution of singularities exists for any arithmetic variety by using Hironaka's resolution of singularities [3]. Let $\mathcal{L}_{1} : h_{1} \mathcal{L}$
C\(^1\) -hermitian line bundles on \(X\), and \(\overline{M}\) a continuous hermitian line bundle on \(X\). Then, the intersection number \(\deg b_1 (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A} \) does not depend on the choice of the generic resolution of singularities \(\pi : X^0 \to X\) by virtue of Proposition 1.2, so that we define
\[
\deg b_1 (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A}
\]
by \(\deg b_1 (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A}\). Then, we have the following proposition.

**Proposition 1.3.** Let \(f : X \to Y\) be a morphism of projective arithmetic varieties with \(d = \dim X_0\) and \(n = \dim Y_0\).

1. Let \(\overline{L}_1, \ldots, \overline{L}_r\) be \(C^1\) -hermitian line bundles on \(X\), and \(\overline{M}_1, \ldots, \overline{M}_s\) \(C^1\) -hermitian line bundles on \(Y\). We assume that \(r + s = d + 1\). Then,
\[
\deg b_1 (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A}f_0 (\overline{M}_s) = 0
\]
if \(s > n + 1\)
\[
\deg b_1 (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A}f_0 (\overline{M}_s) = \deg (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A}f_0 (\overline{M}_s)
\]
if \(s = n + 1\);

where the \(\pi\) means the restriction to the generic fiber of \(f\).

2. We assume that \(f\) is generically finite. Let \(\overline{L}_1, \ldots, \overline{L}_r\) be \(C^1\) -hermitian line bundles on \(Y\), and \(\overline{M}\) a continuous hermitian line bundle on \(Y\). Then,
\[
\deg b_1 (f_0 (\overline{L}_1)) - 1 (f_0 (\overline{E}_d)) \in \mathbb{A}f_0 (\overline{M}) = \deg (f) \cdot \deg b_1 (\overline{L}_1) - 1 (\overline{E}_d) \in \mathbb{A}f_0 (\overline{M})
\]

**Proof.** Let us consider the following commutative diagram:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\pi \downarrow & & \downarrow \pi \\
X^0 & \xrightarrow{f^0} & Y^0 \\
\end{array}
\]

where \(\pi : X^0 \to X\) and \(\pi : Y^0 \to Y\) are generic resolutions of singularities of \(X\) and \(Y\) respectively. Then, our assertions are consequences of Proposition 1.2.

2. **Arithmetically Positive Hermitian Line Bundles**

Let \(B\) be a projective arithmetic variety with \(d = \dim B_0\), and \(\overline{H}\) a \(C^1\) -hermitian line bundle on \(B\). From now on, we introduce several kinds of positivity of \(\overline{H}\). First of all, we say \(\overline{H}\) is **ample** if \(H\) is ample, \(c_0 (\overline{H})\) is semipositive on \(B (\mathbb{C})\), and, for a sufficiently large \(n\), \(H^0 (B; \mathcal{H}^n)\) is generated by \(f^s 2 H^0 (B; \mathcal{H}^n) j_! \mathbb{Z}^\infty < 1g. \overline{H}\) is said to be **vertically nef** if \(H\) is relatively nef with respect to \(B ! \text{Spec} (\mathbb{Z})\), and \(c_2 (\overline{H})\) is semipositive on \(B (\mathbb{C})\). We say \(\overline{H}\) is **horizontally nef** if, for all one-dimensional integral closed subschemes flat over \(\mathbb{Z}\), \(\deg \overline{H} = 0\). Moreover, if \(\overline{H}\) is vertically nef and horizontally nef, then we say \(\overline{H}\) is **nef**. Further, \(\overline{H}\) is said to be **big** if \(\text{rk} H^0 (B; \mathcal{H}^n) = 0 (n \in \mathbb{N})\), and there is a non-zero section \(s\) of \(H^0 (B; \mathcal{H}^n)\) with \(\text{rk} \mathbb{Z}^\infty < 1\) for some positive integer \(n\). It is easy to see that if \(\overline{H}\) is ample, then \(\overline{H}\) is nef and big. The following theorem due to Faltings, Gillet-Soulé and Zhang is a very useful criterion for the bigness of \(C^1\) -hermitian line bundles (cf. [14, Theorem 1.4]).

**Theorem 2.1.** Let \(B\) be a projective arithmetic variety with \(d = \dim B_0\), and \(\overline{L}\) a \(C^1\) -hermitian line bundle on \(B\). If \(\overline{L}\) is vertically nef, \(L_0\) is ample on \(B_0\), and \(\deg b_1 (\overline{L})^{d+1} > 0\), then \(\overline{L}\) is big.
Moreover, we have the following.

**Proposition 2.2.** Let $B$ be a projective arithmetic variety with $d = \dim B$, and $L$ a $C^1$-hermitian line bundle on $B$. Then, the following are equivalent.

1. $\overline{L}$ is big.
2. For any $C^1$-hermitian line bundles $\overline{M}$ on $B$, there are a positive integer $n$ and a non-zero section $s$ of $H^0(B; \mathcal{L}^n M)$ with $ks_{k_{\text{sup}}} < 1$.

**Proof.** First, we assume (1). Then, there is a non-zero section $s_1$ of $H^0(B; \mathcal{L}^n M)$ with $ks_{k_{\text{sup}}} < 1$ for some $n_1$. Moreover, since $\mathfrak{r}kH^0(B; \mathcal{L}^m M) = 0$ (m 0), we can find a non-zero section $s_2$ of $H^0(B; \mathcal{L}^{n_2} M)$. Let $n$ be a sufficiently large integer with

$$(ks_{k_{\text{sup}}})^{n_3} ks_{k_{\text{sup}}} < 1.$$ 

Then, $s_{n_3} \subseteq H^0(B; \mathcal{L}^{n_1 + n_2} M)$, and

$$(ks_{k_{\text{sup}}})^{n_3} ks_{k_{\text{sup}}} < 1.$$ 

Thus, we get (2).

Next, we assume (2). It is sufficient to show that $\mathfrak{r}kH^0(B; \mathcal{L}^m M) = 0$ (m 0). Let $\overline{A}$ be an ample $C^1$-hermitian line bundle on $B$. Then, there are a positive integer $n_1$ and a non-zero section $s$ of $H^0(B; \mathcal{L}^{n_1} A^{-1})$. Thus, we have an injection $A ! \mathcal{L}^{n_1}$. Therefore, $\mathfrak{r}kH^0(B; \mathcal{L}^m M) = 0$ (m 0).

Let $E$ (B) (resp. $E$ (B)) be the isomorphic classes of $C^1$-hermitian (resp. continuous hermitian) line bundles on $B$. An element of $E$ (B) $Q$ (resp. $E$ (B) $Q$) is called a $C^1$-hermitian (resp. continuous hermitian) $Q$-line bundle on $B$. For simplicity, the group structure of $E$ (B) $Q$ (or $E$ (B) $Q$) is often written additively. Note that the previous definitions of ‘ample’, ‘vertically nef’, ‘horizontally nef’, ‘nef’ and ‘big’ work for $C^1$-hermitian $Q$-line bundles on $B$. Let $\overline{L}$ be a continuous hermitian $Q$-line bundle. We say $\overline{L}$ is effective if $\overline{L} \geq \overline{P} \in Q$ and $H^0(B; \mathcal{L})$ contains a non-zero section $s$ with $ks_{k_{\text{sup}}} < 1$. Moreover, $\overline{L}$ is said to be $Q$-effective if $n\overline{L}$ is effective for some positive integer $n$.

**Proposition 2.3.** Let $B$ be a projective arithmetic variety with $d = \dim B$. Then, we have the following.

1. If $\overline{L}_1; \ldots; \overline{L}_d \geq 1$ are nef $C^1$-hermitian $Q$-line bundles, then

$$\deg \overline{b}_1(\overline{L}_1) \leq 1 \overline{b}_1(\overline{L}_1) < 0.$$ 

2. If $\overline{L}_1; \ldots; \overline{L}_d \geq 1$ are nef $C^1$-hermitian $Q$-line bundles and $\overline{M}$ is a $Q$-effective continuous hermitian $Q$-line bundle, then

$$\deg \overline{b}_2(\overline{L}_1) \leq 1 \overline{b}_2(\overline{L}_1) < 0.$$ 

**Proof.** (1) It can be proved by using Nakai-Moishezon’s criterion on arithmetic varieties (cf. [14, Corollary 4.8]). Here we would like to give a more elementary proof, which is a simpler case of Theorem 5.1. Let us begin with the following lemma.
Lemma 2.4. Let $\mathcal{X} \rightarrow B$ be a projective arithmetic variety with $\mathfrak{d} = \dim (\mathcal{B}_0)$, and $\mathcal{A}$ a nef $\mathcal{C}^1$-hermitian $\mathcal{Q}$-line bundle on $B$. Moreover, let $\mathcal{A}|_B$ be a vertically nef $\mathcal{C}^1$-hermitian $\mathcal{Q}$-line bundle such that $\mathcal{A}_0$ is ample on $\mathcal{B}_0$ and, for all integral subschemes $C$ of $B$ with $\mathfrak{d}_C = \Spec (\mathcal{Z})$, we have

$$\deg b_i (\mathcal{L})^i j \mathcal{L}^{d+1} > 0.$$ 

Then, for all $0 \leq d+1$,

$$\deg b_i (\mathcal{L})^i j \mathcal{L}^{d+1} > 0;$$

Proof. We prove this lemma by induction on $\mathfrak{d}$. If $\mathfrak{d} = 0$, then our assertion is obvious, so that we assume that $\mathfrak{d} > 0$.

Case $i = 0; \ldots; d$: Since $\deg b_0 (\mathcal{A})^{d+1} > 0$, replacing $\mathcal{A}$ by $\mathcal{A}^n (n > 0)$, we may assume that there is a non-zero section $s$ of $H^0 (\mathcal{L} \mathcal{A})$ with $\deg s < 1$. Let $\deg (s) = a_0 + \ldots + a_t$ a be the decomposition of $\deg (s)$ as cycles. Here, $a_j > 0$. Then,

$$\deg b_i (\mathcal{L})^i j \mathcal{L}^{d+1} = \sum_{j} a_j \deg b_i (\mathcal{L})^i j \mathcal{L}^{d+1}.$$

Therefore, by Lemma 2.5 and the hypothesis of induction, the above is non-negative.

Case $i = d + 1$: Let $P (t)$ be a polynomial given by

$$P (t) = \deg b_{d+1} (\mathcal{L} + t \mathcal{A})^{d+1}.$$

Here, we claim the following.

Claim 2.4.1. If $t > 0$ and $P (t) > 0$, then $P (t) \deg b_{d+1} (\mathcal{A})^{d+1}$.

By using the hypothesis of induction and the assumption $P (t) > 0$, we can see

$$\deg b_i (\mathcal{L} + t \mathcal{A})^{d+1} > 0$$

for all integral subschemes $C$ of $B$ with $\mathfrak{d}_C = \Spec (\mathcal{Z})$. Thus, in the same way as above, we have $\deg b_i (\mathcal{L})^i j \mathcal{L} + t \mathcal{A})^{d+1} > 0$. Hence,

$$P (t) = \deg b_{d+1} (\mathcal{L} + t \mathcal{A})^{d+1}$$

Therefore, we get the claim.

We set $t_0 = \max_{2R} j P (t) = 0$. Here we assume that $t_0 > 0$. Then, by the above claim, for all $t > t_0$,

$$P (t) \deg b_{d+1} (\mathcal{A})^{d+1} > 0.$$

Hence, taking $t > t_0$,

$$0 = P (t_0) \deg b_{d+1} (\mathcal{A})^{d+1} > 0.$$ 

This is a contradiction, namely, $t_0 = 0$. Thus, $P (0) = \deg b_0 (\mathcal{L})^{d+1} = 0$. 2
Thus, we have our assertion taking $\deg b \bar{L}_{d+1} + \overline{A}^d > 0$.

Hence, using a small section of a positive multiple of $\bar{L}_{d+1} + \overline{A}$, the hypothesis of induction and Lemma 2.3, we can see

$$\deg b (\bar{L}_{1})_1 (\bar{L}_{d+1} + \overline{A}) = 0.$$

Thus, we have our assertion taking $! 0$.

(2) This is a consequence of (1).

Finally let us consider the following lemma, which was used in the proof of the previous proposition.

**Lemma 2.5.** Let $V$ be a vector space over $\mathbb{R}$ with a complex structure $J$, i.e., an endomorphism $J : V \to V$ with $J^2 = -1$ in $V \otimes_{\mathbb{R}} \mathbb{C}$. Let $T$ (resp. $T^0$) be the eigenspace of $J$ with respect to $1$ (resp. $-1$) in $V \otimes_{\mathbb{R}} \mathbb{C}$. Note that the complex conjugation in $V \otimes_{\mathbb{R}} \mathbb{C}$ gives rise to the anti-isomorphism of $T$ and $T^0$ over $\mathbb{C}$. Let us fix a basis $e_1, \ldots, e_n$ of $T$ over $\mathbb{C}$. For a hermitian $n \times n$-matrix $H = (h_{ij})$, we set

$$! (H) = \prod_{a \in \mathbb{R}}^{\frac{p - X}{1}} h_{ij} (e_i \wedge e_j):$$

If $H_1, \ldots, H_n$ are semipositive hermitian $n \times n$-matrices, then there is a non-negative real number with

$$! (H_1) \wedge \cdots \wedge ! (H_n) \# 1 \prod (\frac{p - 1}{-1}) (e_1 \wedge e_2) \wedge \cdots \wedge (e_n):$$

**Proof.** First we claim the following.

**Claim 2.5.1.** Let $x_1, \ldots, x_n$ be elements of $T$. If we set $x_i = \prod_{j} a_{ij} e_j$ and $A = (a_{ij})$, then

$$(x_1 \wedge x_1) \wedge \cdots \wedge (x_n) = (\det (A))^{\frac{1}{p}} (e_1 \wedge e_2) \wedge \cdots \wedge (e_n):$$

Since

$$x_1 \wedge \cdots \wedge x_1 \wedge \cdots \wedge x_1 \wedge \cdots \wedge x_1 \wedge \cdots \wedge \cdots \wedge e$$

we have

$$(x_1 \wedge \cdots \wedge x_1 \wedge \cdots \wedge x_1) \cdots x_1 \wedge \cdots \wedge x_1 \wedge \cdots \wedge \cdots \wedge \cdots \wedge e$$

which shows us the claim.

By our assumption, there are unitary matrices $U_i$‘s and non-negative real numbers $\frac{1}{p}, \ldots, \frac{1}{n}$ such that $U_i H_i U_i = \text{diag}(\frac{1}{p}, \ldots, \frac{1}{n})$ for all $i$, where $A = A^0$. Thus, if we take a new basis $e_1^i, \ldots, e_n^i$ according to $U_i$, then

$$! (H_i) = \prod_{a \in \mathbb{R}}^{\frac{p - X}{1}} h_{ij} (e_a^i \wedge e_a^j):$$
Thus, we obtain
\[ (\mathcal{H}_1)^\wedge \wedge_n \mathfrak{p} (\mathcal{P} \mathcal{P} \mathcal{P} 1)^{} X \begin{array}{ll} \wedge & a_1 \wedge n \wedge (e_{a_1} \wedge e_{a_1}) \wedge n \wedge (e_{a_n} \wedge (e_{a_n}^n) : \\
\end{array} \]

On the other hand, by the above claim, there is a non-negative real number \( a_1 \ldots a_n \) with
\[ (e_{a_1} \wedge e_{a_1}) \wedge n \wedge (e_{a_n} \wedge (e_{a_n}^n) = a_1 \ldots a_n \wedge (e_{a_1} \wedge e_{a_1}) \wedge n \wedge (e_{a_n} \wedge (e_{a_n}^n) : \]

Therefore,
\[ (\mathcal{H}_1)^\wedge \wedge_n \mathfrak{p} (\mathcal{P} \mathcal{P} \mathcal{P} 1)^{} X \begin{array}{ll} \wedge & a_1 \wedge a_1 \wedge n \wedge (e_{a_1} \wedge e_{a_1}) \wedge n \wedge (e_{a_n} \wedge (e_{a_n}^n) : \\
\end{array} \]

Hence, we get our lemma.

3. ARITHMETIC HEIGHT FUNCTIONS OVER FINITELY GENERATED FIELDS

3.1. Polarization of finitely generated fields over \( \mathbb{Q} \). Let \( K \) be a finitely generated field over \( \mathbb{Q} \) with \( \text{trdeg}_\mathbb{Q}(K) = d \). A normal projective arithmetic variety \( B \) is called an arithmetic model of \( K \) if the function field of \( B \) is isomorphic to \( K \). A collection \( (B; \mathcal{H}_1; \ldots; \mathcal{H}_d) \) of the arithmetic model \( B \) of \( K \) and nef \( C^1 \) -hermitian \( \mathbb{Q} \)-line bundles \( \mathcal{H}_1; \ldots; \mathcal{H}_d \) on \( B \) is called a polarization of \( K \). Note that if \( d = 0 \), then we do not require any kind of \( C^1 \) -hermitian line bundles to fix a polarization of \( K \). For short, the polarization \( (B; \mathcal{H}_1; \ldots; \mathcal{H}_d) \) is often denoted by \( \overline{B} \). Moreover, the polarization \( \overline{B} \) is said to be big if \( \mathcal{H}_1; \ldots; \mathcal{H}_d \) are big. If \( \mathcal{H}_1 = \mathcal{F} \), say \( \mathcal{H} \), then the polarization \( \overline{B} \) is simply called a polarization of \( K \) given by \( \mathcal{H} \).

Let \( K \) be a finite extension field of \( K \), and \( B \) the normalization of \( B \) in \( K \). Then, we have a polarization \( (B; \mathcal{H}_1; \ldots; \mathcal{H}_d) \) of \( K \). This polarization is denoted by \( B_K \), and is called the polarization of \( K \) induced by \( B \). Clearly, if \( \overline{B} \) is big, then so is \( B_K \).

Here let us consider the existence of a special polarization.

**Proposition 3.1.1.** Let \( K \) be a finitely generated field over \( \mathbb{Q} \) with \( \text{trdeg}_\mathbb{Q}(K) = d \). Then, there are a finite extension field \( K \) of \( K \), an arithmetic model \( B \) of \( K \), and a nef \( C^1 \) -hermitian line bundle \( \mathcal{H} \) on \( B \) such that \( \mathcal{H} \) is ample and \( \text{deg}(\mathcal{H}) = (d - 1) = 0 \).

**Proof.** If \( d = 0 \), then we can take \( \mathcal{H} \) as \( (O_K \mathfrak{p} \mathfrak{m}) \), where \( O_K \) is the ring of integers in \( K \). Thus, we may assume that \( d > 0 \).

We first need a special arithmetic surface. Let us consider the following elliptic curve due to J. Tate (cf. [10, 5.10]):
\[ y^2 + xy + z^2 = x^3; \]
where \( (5 + \mathcal{P} \mathcal{P} \mathcal{P} 29) = 2 \) is the fundamental unit of \( \mathbb{Q} \). Then, the discriminant of this curve is \( 10 \). We denote \( \mathbb{Q} \) by \( k \), and the ring of integers by \( O_k \), i.e., \( O_k = \mathbb{Z} \). Here we set
\[ E = \mathcal{P} \mathcal{I} \mathcal{I} \mathcal{I} O_k X Y Z = (y^2 Z + X Y Z + z^2 Y Z^2 X) \]
and \( E^d = E_O \). Then, since \( E \) is smooth over \( O_k \), \( E^d \) is an abelian scheme over \( O_k \). For an ample line bundle \( L \) on \( E^d \), we set \( H_0 = [1] (L) L \). Then, \( H_0 \) is symmetric on each fiber of \( E^d \). Speck(\( O_k \)). Thus, \( \mathbb{Z} (H_0) = H_0^{4} \) because the class group of \( k \) is trivial. Moreover, on each infinite fiber, we give the cubic metric of \( H_0 \) with \( \mathbb{Z} (H_0) = H_0^{4} \) (cf. [1]), so
that \( c_0(\mathcal{H}_0) \) is positive on each infinite fiber. Thus, the height function \( h_{\mathcal{H}_0} \) given by \( \mathcal{H}_0 \) is nothing more than the Néron-Tate height associated with \( (\mathcal{H}_0)_p \). Hence, we can see that \( \mathcal{H}_0 \) is nef and 
\[ \deg(\mathcal{H}_0^{\mathbb{L}}) = 0 \]
by virtue of [14, Theorem (5.2)].

Let \( K_0 \) be the function field of \( E^d \). Then, \( (E^d, \mathcal{H}_0) \) is a polarization of \( K_0 \). Here we take a finite extension \( K^0 \) of \( K \) with \( K_0 \subset K^0 \). Then, the polarization of \( K^0 \) induced by \( (E^d, \mathcal{H}_0) \) is our desired polarization.

### 3.2. Naive height functions

Let \( K \) be a finitely generated field over \( \mathbb{Q} \) with \( \text{tr}: \deg_2(K) = d \), and \( \mathcal{E} = (B, H_1, \ldots, H_d) \) a polarization of \( K \). For \( (x_0, \ldots, x_n) \in K^{n+1} \) not 0, we set

\[
h_{B^\mathbb{Q}, K}^\mathcal{E}(x_0, \ldots, x_n) = X \prod_{\ell} \log \left( m \cdot \frac{1}{2} \right) \max_{j \in \mathbb{Z}} \text{ord}_j \deg_{\mathcal{H}_0} b_i(H_j) \bigg|_{1, \mathcal{H}_0} \bigg|_{1, \mathcal{H}_0}
\]

where \( \ell \) runs over all prime divisors on \( B \). Note that if \( d = 0 \), then the term \( b_i(H_j) \bigg|_{1, \mathcal{H}_0} \bigg|_{1, \mathcal{H}_0} \) is nothing as cycle, and \( c_1(H_0) \bigg|_{1, \mathcal{H}_0} \bigg|_{1, \mathcal{H}_0} \) is 1, so that in this case, the above naive height coincides with the usual naive height over a number field.

For \( x \in K \) not 0,

\[
0 = \deg_b b_1(H_1) \bigg|_{1, \mathcal{H}_0} \bigg|_{1, \mathcal{H}_0}(x)
\]

Thus, we can see that

\[
h_{B^\mathbb{Q}, K}^\mathcal{E}(ax_0, \ldots, ax_n) = h_{B^\mathbb{Q}, K}^\mathcal{E}(x_0, \ldots, x_n)
\]

for all \( (x_0, \ldots, x_n) \in K^{n+1} \) not 0 and all \( a \in K \) not 0. Hence, we have a function

\[
h_{B^\mathbb{Q}, K}^\mathcal{E}: \mathbb{P}^n(K) \to \mathbb{R}
\]

Let \( K^0 \) be a finite extension field of \( K \), and \( \mathcal{E}^0 \) the polarization of \( K^0 \) induced by \( \mathcal{E} \). Then, for \( (x_0, \ldots, x_n) \in K^{n+1} \) not 0, it is easy to see that

\[
h_{B^\mathbb{Q}, K}^\mathcal{E}(x_0, \ldots, x_n) = [K^0:K] h_{B^\mathbb{Q}, K}^\mathcal{E}(x_0, \ldots, x_n)
\]

(Of course, this can be checked directly. In the next subsection, we give an alternative definition of \( h_{B^\mathbb{Q}, K}^\mathcal{E} \) in terms of Arakelov intersection theory, which also shows the above formula by virtue of the projection formula.) Thus, a family \( \mathbb{P}^n(K) : K^0 \) of functions gives rise to a naive height function

\[
h_{B^\mathbb{Q}, K}^\mathcal{E}: \mathbb{P}^n(K) \to \mathbb{R}
\]

associated with \( B \).
3.3. Height functions in terms of Arakelov intersection theory. Let $K$ be a finitely generated field over $Q$ with $\text{tr.deg}(Q(K)) = d$, and $B = (\oplus; H; \ldots; H; d)$ a polarization of $K$. Let $X$ be a projective variety over $K$, and $L$ a line bundle on $X$. Let $f : X \rightarrow B$ be a projective morphism of arithmetic varieties, and $\overline{L}$ a continuous hermitian $Q$-line bundle on $X$ such that $X_K = X$ and $L_K = L$. We say a pair $(X, \overline{L})$ is called a model of $(X, L)$ over $B$. Moreover, if $L$ is a $C$-hermitian $Q$-line bundle, then the pair $(X, \overline{L})$ is called a $C^1$-model of $(X, L)$. For $P = X/K$, we denote by $P$ the Zariski closure of $\text{Image}(\text{Spec}(K) \rightarrow X)$ in $X$. Then, we define the height of $P$ with respect to $(X, L)$ and $B$ to be

$$
h_{(0, 0; \ldots; (0, 0; d))}(P) = \frac{1}{\text{deg}(P : K)} \text{deg} b_i(f \overline{H}_{1} \ldots \overline{H}_{d}),
$$

where if $d = 0$, then the term $b_i(f \overline{H}_{1} \ldots \overline{H}_{d})$ should be $[p]$ as cycles. Let us begin with the following proposition.

**Proposition 3.3.1.** Let $K$ be a finite extension field of $K$, and let $B$ be a morphism of projective normal arithmetic varieties such that the function field of $B$ is $K$. Let $X$ be the main component of $X = B$. We set the induced morphism as follows:

$$
\begin{array}{cccc}
X & \rightarrow & X \\
\bar{0} & \rightarrow & \bar{0} \\
\bar{1} & \rightarrow & \bar{1} \\
\bar{2} & \rightarrow & \bar{2} \\
\vdots & \vdots & \vdots \\
B & \rightarrow & B.
\end{array}
$$

Then, $h_{(0, 0; \ldots; (0, 0; d))}(P) = \text{deg}(P : K) \text{deg} b_i(f \overline{H}_{1} \ldots \overline{H}_{d})$.

**Proof.** Pick up $P = X$. Let $\overline{P}$ be the closure in $X$ (resp. $\overline{0}$). Then, by the projection formula (cf. (2) of Proposition 1.3),

$$
h_{(0, 0; \ldots; (0, 0; d))}(P) = \frac{\text{deg} b_i(f \overline{H}_{1} \ldots \overline{H}_{d})}{\text{deg}(P : K) \text{deg} b_i(f \overline{H}_{1} \ldots \overline{H}_{d})} = \frac{\text{deg}(f \overline{H}_{1} \ldots \overline{H}_{d})}{\text{deg}(P : K) \text{deg}(f \overline{H}_{1} \ldots \overline{H}_{d})} = \text{deg}(P : K).
$$

Let $P_C^n$ be the $n$-dimensional projective space over $C$, and $O$ (1) the tautological line bundle on $P_C^n$. We fix a homogeneous coordinate $(X_0; \ldots; X_n)$ of $P_C^n$, i.e., a basis of $H^0(P_C^n; O(1))$. For a real number $l \neq 1$, we define the metric $k_{l}X_{1}k_l$ on $O(1)$ to be

$$
k_{l}X_{1}k_l = \frac{\mathcal{K}_{1j}}{(X_0 l + \ldots + X_n l)^{l}}.
$$

$k_{l}$ is called the Fubini-Study metric and is denoted by $k_{l}X_{1}k_l$. Moreover, the metric $k_{l}X_{1}k_l$ is defined by

$$
k_{l}X_{1}k_l = \frac{\mathcal{K}_{1j}}{m \text{max}f \mathcal{K}_{0j} \ldots \mathcal{K}_{n} f}.
$$
Note that \( \lim_{x \to 1} k \). 

Let us consider \( P^m_B \) and the natural projection \( p : P^m_B \rightarrow P^n_B \). By abuse of notation, \( p (O (1); k) \) is denoted by \( (O (1); k) \) for \( 1 \). Then, we have the following proposition.

**Proposition 3.3.2.** Let \( \overline{H}^B_{nv} \) be the naive height on \( P^n (K) \) defined in the previous subsection 3.2. Then, \( h^B_{nv} \) coincides with \( h^B_{nv} \) for all \( P 2 X (K) \).

**Proof.** By virtue of Proposition 3.3.1 (actually in the same way as the proof of it), it is sufficient to show the following claim.

**Claim 3.3.2.1.** \( h^B_{nv} (P) = h^B_{nv} (P) \) for all \( P 2 X (K) \).

We first fix a basis \( fX_0; \ldots; X_n \) of \( H^0 (P^m_B; O (1)) \). Let \( p \) be the section corresponding with \( P \), and \( s_p : B \rightarrow P 2 P^m_B \) the canonical morphism. For simplicity, we assume that \( s_p (X_0) \in O (1) \).

If we set \( a_i = s_p (X_i) \) for \( i = 0; \ldots; n \), then \( a_i 2 K \) and \( h^B_{nv} (P) = h^B_{nv} (a_0; a_1; \ldots; a_n) \).

Since \( \deg (s_p (X_0)) = \) \( \deg (s_p (X_0)) = \deg (s_p (X_0)) \) \( B \), we can see that \( \log (s_p (X_0a_i)) = \log (s_p (X_0a_i)) \). On the other hand, since \( s_p (X_0) \)'s generate \( s_p (O (1)) \), we have

\[
\text{ord} \ (s_p (X_0)) = \text{length} \ \frac{s_p (O (1))}{s_p (X_0)} = \text{length} \ \frac{O_B s_p (X_0) + b s_p (X_0)}{s_p (X_0)} = \text{length} \ \frac{O_B a_0 + s_B a_i O}{O_B} = m a x \ i \ \text{ord} \ (a_i) g.
\]

Thus, we get our claim.

Note that combining the above claim with Proposition 3.3.1, we can see that \( h^B_{nvK} = K^0 : K h^B_{nvK} \) as we remarked in the previous subsection 3.2.

Next let us consider the following proposition.

**Proposition 3.3.3.** If we denote \( \text{Supp} (\text{Coker} (H^0 (X; L) - O_X; L)) \) by \( B s (L) \), then there is a constant \( C \) with \( h^B_{nv} (P) \) \( C \) for all \( P 2 X (K B s (L)) \).

**Proof.** Let \( A \) be an ample line bundle on \( B \) such that \( f (L) \) \( A \) is generated by global sections, i.e.,

\[
H^0 (B; f (L) \ A) \ Q_b \ f (L) \ A
\]
Therefore, by Corollary 3.3.4, there is a constant \( C \) with

\[
\deg b_i \left( f \left( H_{1, \overline{p}} \right) \right) + \deg \left( f \left( H_{d, \overline{p}} \right) \right) \leq 0;
\]

Hence, by virtue of the projection formula ((2) of Proposition 1.3), we have

\[
\deg b_i \left( f \left( H_{1, \overline{p}} \right) \right) + \deg \left( f \left( H_{d, \overline{p}} \right) \right) \leq 0;
\]

Therefore,

\[
h_{X, \overline{p}}^B (\mathcal{P}) \leq 0 \quad \text{for all } \mathcal{P} \in X(\overline{k})
\]

**Corollary 3.3.4.** If \( L_K = O_X \), then there is a constant \( C \) with

\[
h_{X, \overline{p}}^B (\mathcal{P}) \leq C \quad \text{for all } \mathcal{P} \in X(\overline{k})
\]

**Proof.** Apply Proposition 3.3.3 to \( L \) and \( \overline{L} \).

**Corollary 3.3.5.** Let \( \overline{X} (\overline{L}) \) and \( X (\overline{L}) \) be two models of \( X (L) \). Then, there is a constant \( C > 0 \) with

\[
h_{X, \overline{p}}^B (\mathcal{P}) \leq C \quad \text{for all } \mathcal{P} \in X(\overline{k})
\]

**Proof.** Let us consider the graph \( X(G) \) of the birational map \( X \circ 99K X \). Let \( \overline{X} (\overline{L}) \) be the canonical morphisms. Then, by the projection formula, we can see that

\[
h_{X, \overline{p}}^B (\mathcal{P}) \leq C \quad \text{for all } \mathcal{P} \in X(\overline{k})
\]

**Definition 3.3.6.** By the above corollary, the class of \( h_{X, \overline{p}}^B \) modulo the set of all bounded functions on \( X (\overline{k}) \) does not depend on the choice of the model \( \overline{X} (\overline{L}) \) of \( X (L) \) over \( B \). This class is called the **height associated with \( L \) and \( \overline{B} \)**, and is denoted by \( h_{L, \overline{B}}^B \). By abuse of notation, we often view \( h_{L, \overline{B}}^B \) as a representative of \( h_{L, \overline{B}}^B \).
Proposition 3.3.7.  (1) If $\mathbf{P}^n_k$ and $L = \mathcal{O}_{\mathbf{P}^n_k} (1)$, then $h_{\mathbf{P}^n_k}^L = h_{\mathbf{P}^n_k}^L (\mathbb{A}) + \mathcal{O} (1)$.

(2) For line bundles $L$ and $\mathcal{M}$ on $X$, $h^L_{\mathcal{M}} - h^L_{\mathcal{M}} + h^L_{\mathcal{M}} + \mathcal{O} (1)$ and $h^L_{\mathcal{M} + \mathcal{N}} = h^L_{\mathcal{M}} + \mathcal{O} (1)$.

(3) $h^L_{\mathbf{P}^n_k}$ is bounded below on $\langle X, \mathcal{M} \rangle$, where $\mathcal{M} = \mathcal{O}_{\mathbf{P}^n_k} (n)$. In particular, we have the following.

(3.1) If $L$ is ample, then $h^L_{\mathbf{P}^n_k}$ is bounded below.

(3.2) If $L = \mathcal{O}_X$, then $h^L_{\mathbf{P}^n_k} = \mathcal{O} (1)$.

(4) (Northcott’s theorem for our height functions) If $\mathcal{B} \supset \langle \mathbb{A} \rangle \supset \ldots \supset \langle \mathbb{A} \rangle$ is big, i.e., $\mathcal{B}$’s are nef and big, then, for any numbers $\mathcal{M}$ and any positive integers $n$, the set

$$
\{ x \in (\mathbb{K}) : jh^L_{\mathbf{P}^n_k} (\mathbb{P}) \mathcal{M} ; \mathcal{K} \mathcal{P} ; \mathbb{K} \}$

is finite.

(5) Let $\mathcal{H}_0^{i_1} \cdots \mathcal{H}_0^{i_d}$ be nef $C^1$-hermitian line bundles on $\mathbb{B}$ such that $\mathcal{H}_0^{i_1} \mathcal{H}_0^{i_1}$ is $\mathcal{Q}$-effective for every $i$. If $L$ is ample, then $h^L_{\mathcal{B}^{i_1} \cdots \mathcal{B}^{i_d}} = h^L_{\mathcal{B}^{i_1} \cdots \mathcal{B}^{i_d}} + \mathcal{O} (1)$.

Proof. (1): This is derived from Proposition 3.3.2 and Corollary 3.3.5.

(2): This follows from the formulae: $h^L_{\mathbf{P}^n_k (\mathbb{K})} = h^L_{\mathbf{P}^n_k (\mathbb{K})} + \mathcal{O} (1)$.

(3): Since there is a positive integer $n$ with $\mathcal{B}^{n} (\mathbb{L}) = \mathcal{B}^{n} (\mathbb{L})$, it is a consequence of (2) and Proposition 3.3.3.

(4): This will be proved in §4 (cf. Theorem 4.3).

(5): Clearly, we may assume that $L$ is very ample. Let $\mathcal{L} : X \rightarrow \mathbf{P}^n_k$ be the embedding by $L$. Let $X$ be the closure of $X$ in $\mathbf{P}^n_k$, and $\mathcal{O}_X (1)$ the restriction of $\mathcal{O} (1)$ on $\mathbf{P}^n_k$. Then, $\mathcal{O}_X (1)$ is $\mathcal{L}$-ample, where $\mathcal{L}$ is the canonical morphism $X \rightarrow \mathbf{P}^n_k$. Thus, there is an ample line bundle $\mathcal{K}$ on $\mathbf{P}^n_k$ such that $\mathcal{O}_X (1)$ is $\mathcal{L}$-$\mathcal{K}$-ample. We set $L = \mathcal{O}_X (1) \mathcal{L} (\mathcal{K})$. Then, $L_{\mathbf{P}^n_k} = L$. Moreover, we give a $C^1$-hermitian metric to $L$ such that $\mathcal{L}$ is ample.

Let us pick up $\mathcal{P} \supset X \rightarrow \mathbf{P}^n_k$ and let $\mathcal{P} \supset X \rightarrow \mathbf{P}^n_k$. For simplicity, we set $\mathbf{A}_1 = \mathcal{B}_1 (\mathcal{F}^{\mathcal{L}}_1)$, $\mathbf{B}_1 = \mathcal{B}_1 (\mathcal{F}^{\mathcal{L}}_1)$, and $\mathbf{C} = \mathcal{B}_1 (\mathcal{L})$. Then,

$$
\mathbf{A}_1 \supset \mathbf{C} \supset \mathbf{B} \supset \mathbf{B} \supset \mathbf{C} = \mathbf{A}_1 \supset \mathbf{A}_1 \supset \mathbf{B}_1 \supset \mathbf{B} \supset \mathbf{C}:
$$

On the other hand, since $\mathbf{A}_1$, $\mathbf{B}_1$, and $\mathbf{C}$ are nef, and $\mathbf{A}_1 \mathbf{B}_1 \mathbf{C}$ is $\mathcal{Q}$-effective, by (2) of Proposition 3.3.3, we have

$$
\mathbf{A}_1 \mathbf{B}_1 \mathbf{C}^{i_1} \mathbf{B}_1 \mathbf{C}^{i_1} \mathcal{P} = \mathbf{A}_1 \mathbf{B}_1 \mathbf{C}^{i_1} \mathbf{B}_1 \mathbf{C}^{i_1} \mathcal{P}.
$$

Thus, we get $\mathbf{A}_1 \mathbf{B}_1 \mathbf{C}^{i_1} \mathbf{B}_1 \mathbf{C}^{i_1} \mathcal{P}$, which says us that

$$
\mathbf{A}_1 \mathbf{B}_1 \mathbf{C}^{i_1} \mathbf{B}_1 \mathbf{C}^{i_1} \mathcal{P} = \mathbf{A}_1 \mathbf{B}_1 \mathbf{C}^{i_1} \mathbf{B}_1 \mathbf{C}^{i_1} \mathcal{P}.
$$

Hence, we obtain (5).
3.4. Canonical height functions on abelian varieties. Let \( K \) be a finitely generated field over \( \mathbb{Q} \), and \( \mathcal{B} = (\mathcal{B}; \mathcal{H}_1; \ldots; \mathcal{H}_d) \) a polarization of \( K \). Let \( A \) be an abelian variety over \( K \), and \( L \) a line bundle on \( A \). Then, by virtue of the cubic theorem and (3.2) of Proposition 3.3.7,

\[
h^B_L(x + y + z) = h^B_L(x + y) + h^B_L(y + z) + h^B_L(z + x) + h^B_L(x) + h^B_L(y) + h^B_L(z)
\]

is a bounded function on \( (\bar{K} \otimes \mathcal{M}) \), \( \mathcal{M} \rightarrow (\bar{K} \otimes \mathcal{M}) \). Thus, there are a unique bilinear form \( \hat{h}_L^\mathcal{B} : A(\bar{K}) \otimes \mathcal{M} \rightarrow \mathbb{R} \) such that

\[
h^B_L(x) = \hat{h}_L^\mathcal{B}(x, x) = h^B_L(x) + \hat{h}_L^\mathcal{B}(x, x) + O(1)
\]

(cf. [5], Chapter 5, §1). Actually, \( \hat{h}_L^\mathcal{B}(x; x) \) and \( \hat{h}_L^\mathcal{B}(x) \) are given by the following formula:

\[
\hat{h}_L^\mathcal{B}(x, x) = \lim_{n \to 1} \left( 2^{n-1} h^B_L(2^n x) \right) \quad \text{and} \quad \hat{h}_L^\mathcal{B}(x) = \lim_{n \to 1} \left( 2^n h^B_L(2^n x) \right)
\]

\( \hat{h}_L^\mathcal{B} + \hat{h}_L^\mathcal{B} \) is denoted by \( \hat{h}_L^\mathcal{B} \), and is called the canonical height function of \( L \) with respect to the polarization \( \mathcal{B} \). Moreover, it is easy to see that \( q = 0 \) if \( [L] = 0 \), and \( q = 1 \) if \( [L] = 1 \). Thus, if \( L \) is symmetric, then \( \hat{h}_L^\mathcal{B}(x) = \lim_{n \to 1} 2^{n-1} h^B_L(2^n x) \). Here let us consider the following two propositions.

Proposition 3.4.1. Let \( L \) be a symmetric ample line bundle on \( A \). Then, we have the following.

1. \( \hat{h}_L^\mathcal{B}(x) = 0 \) for all \( x \in A(\bar{K}) \).
2. If \( x \) is a torsion point, then \( \hat{h}_L^\mathcal{B}(x) = 0 \).
3. We assume that \( \mathcal{B} \) is big, i.e., \( \mathcal{H}_1; \ldots; \mathcal{H}_d \) are nef and big. Then, \( \hat{h}_L^\mathcal{B}(x) = 0 \) if and only if \( x \) is a torsion point.

Proof. (1) This is a consequence of (3.1) of Proposition 3.3.7.

(2) We assume that \( x \) is a torsion point. Then, there is a positive number \( n \) with \( nx = 0 \). Thus, \( 0 = \hat{h}_L^\mathcal{B}(nx) = n^2 \hat{h}_L^\mathcal{B}(x) \). Hence \( \hat{h}_L^\mathcal{B}(x) = 0 \).

(3) We assume that \( \hat{h}_L^\mathcal{B}(x) = 0 \). Let us consider the subgroup \( \mathcal{G} \) generated by \( x \). If \( x \) is defined over a finite extension field \( K' \), then every element of \( \mathcal{G} \) is defined over \( K' \). Moreover, the height of every element of \( \mathcal{G} \) is zero. Thus, by (4) of Proposition 3.3.7, \( \mathcal{G} \) is a finite group, namely, \( x \) is a torsion point.

Proposition 3.4.2. Let \( L \) and \( M \) be symmetric line bundles on \( A \). Then we have the following.

1. \( \hat{h}_L^\mathcal{B} \cdot M = \hat{h}_L^\mathcal{B} \cdot \hat{h}_M^\mathcal{B} \) and \( \hat{h}_L^\mathcal{B} : M \to \hat{h}_L^\mathcal{B} \).
2. If \( L \) is ample, then there is a positive number \( a \) with \( \hat{h}_L^\mathcal{B} : a \hat{h}_M^\mathcal{B} \).
3. Let \( \mathcal{B} = (\mathcal{B}; \mathcal{H}_1; \ldots; \mathcal{H}_d) \) be another polarization of \( K \). If \( L \) is ample and \( \mathcal{B}' \) is big, then there is a positive number \( a \) with \( \hat{h}_L^\mathcal{B} : a \hat{h}_M^\mathcal{B} \).

Proof. (1) This is a consequence of (2) of Proposition 3.3.7.

(2) There is a positive integer \( a \) such that \( L^a \cdot M = 1 \) is ample. Thus, by (1) of Proposition 3.4.1, \( \hat{h}_L^\mathcal{B} : a \hat{h}_M^\mathcal{B} \). Hence, our assertion follows from (1).

(3) By Proposition 2.7, there are positive integers \( n_1; \ldots; d_1 \) such that \( \hat{h}_M^\mathcal{B} : n_1 \hat{H}^\mathcal{B} \). Thus it follows from (5) of Proposition 3.3.7.
3.5. Remarks.

Remark 3.5.1. Note that in general, our height function over a finitely generated field \( K \) is not a height function in the sense of Lang’s book [5]. For the map \( v : K \rightarrow \mathbb{R}_+ \) given by

\[
v(x) = \exp \left( \log (j \circ \varphi (B_{d})) \right)
\]

is not necessarily a valuation of \( K \), where \( B; H_1; \ldots; H_d \) is a polarization of \( K \) and \( d = \text{tr} : \text{deg}_0 (K) \).

Remark 3.5.2. After writing the first draft of this paper, Prof. Silverman kindly informed me of Altman. In [1], he gave the size function similar to our height functions. On an abelian variety \( A \) over a field \( K \), he proved that there is a quadratic function \( A(K) \rightarrow \mathbb{R} \) with \( \text{size}(x) = \mathbb{Q}(x) \) for all \( x \in A(K) \). Compared with his method, our way gives rise to the point of view of geometry, so that it is easy to handle it in the functorial framework.

Remark 3.5.3. Here, we would like to point out a similarity between our height functions and the characteristic function in Nevanlinna theory. Let us consider the following function determined by

\[
T_f(r) = \frac{X}{m \text{ax} f \circ \text{ord}(f)}; g \text{log} (r = j k) + \left( 0 \log^+ (f d) \right) + \log^+ (f d) \frac{d}{2} \text{dr}
\]

where \( \log^+ (x) = \log (m \text{ax} f x; 1g) \).

On the other hand, if we fix a polarization \( (D; (1) ; k \mid k) \) of \( Q(z) \), then the naive height of \( (f : 1) \in \mathbb{P}^1 (Q(z)) \) is given by

\[
h_{nv}(f : 1) = \frac{X}{m \text{ax} f \circ \text{ord}(f)}; g \text{deg} ((O(1) ; k \mid k)) + \left( 0 \log^+ (f d) \right) + \log^+ (f d) \frac{d}{2} \text{dr}
\]

4. Northcott’s theorem over finitely generated fields

Let \( \mathbb{C} [z_1; \ldots; z_n] \) be the ring of \( n \)-variables polynomials over \( \mathbb{C} \). For \( f \in \mathbb{C} [z_1; \ldots; z_n] \), we denote by \( \text{deg}_j \) the degree of \( f \) with respect to \( z_j \).

Let us consider the following \((1; 1)\)-form \( !_1 \) on \( C^n \) for each \( \lambda
\]

\[
!_1 = \frac{1}{2} \text{deg}_1 dq^1 \wedge dq_1
\]

For \( f \in \mathbb{C} [z_1; \ldots; z_n] \), we define \( v(f) \) to be

\[
v(f) = \exp \left( \log (f (z_1; \ldots; z_n)) !_1 \wedge n^! \right)
\]
Then we have the following lemma.

**Lemma 4.1.** For any $f \in \mathbb{C}[z_1; \ldots; z_n] \not\in j\mathfrak{a} \frac{\deg (f)}{d} + \sum_{d \not\in \mathfrak{a}} \nu (f)$. In particular, for any numbers $\mathfrak{M}$ and any non-negative integers $\mathfrak{d}_1; \ldots; \mathfrak{d}_n$, the set

$$\left\{ f \in \mathbb{Z} \left[ z_1; \ldots; z_n \right] \mid j \mathfrak{d} (f) \quad \mathfrak{d}_i (i = 1; \ldots; n) \right\}$$

is finite.

**Proof.** First, let us consider the case $\mathfrak{n} = 1$. By straightforward calculations together with Jensen's formula, we can see that $\nu (z \frac{p}{j}) = 1 + j \frac{1}{\mathfrak{d}_1}$ for all $z \in \mathbb{C}$. Thus, if we set $f (z) = c (z, 1)$, then $\nu (f) = \frac{j-1}{1 + j \frac{1}{\mathfrak{d}_1}}$. Therefore, we can easily see that $j \mathfrak{d} \sum_{d \not\in \mathfrak{a}} \nu (f)$.

In general, we will prove this lemma by induction on $\mathfrak{n}$. We set

$$f = a_0 (z_2; \ldots; z_n) z_1^{d_1} + a_1 (z_2; \ldots; z_n) z_1^{d_1} 1 + \cdots + a_\mathfrak{d} (z_2; \ldots; z_n);$$

where $d_1 = \deg_1 (f)$. Then, by the case $\mathfrak{n} = 1$,

$$\log (\nu (f)) = \sum_{i=1}^{\mathfrak{d}} \log (j \mathfrak{d} (z_1; \ldots; z_\mathfrak{n})) \cdot b_1 ;$$

for all $(c_2; \ldots; c_\mathfrak{n}) \in \mathbb{C}^\mathfrak{n}$ 1. Thus, by hypothesis of induction,

$$\log (\nu (f)) = \sum_{i=1}^{\mathfrak{d}} \log (j \mathfrak{d} (z_1; \ldots; z_\mathfrak{n})) \cdot b_1 ;$$

Therefore, we get our lemma.

Next let us consider the following lemma.

**Lemma 4.2.** Let $\mathcal{B} = (\mathbb{P}^1)^d$ and $\mathcal{H} = \mathbb{P}_1 (\mathcal{O} (1); k \mathfrak{p}_1) \oplus \cdots \oplus (\mathcal{O} (1); k \mathfrak{p}_d)$, where $\mathcal{O}_1$ is the projection to the $\mathfrak{p}_1$th factor. Then, for any numbers $\mathfrak{M}$, the set

$$\left\{ f \in \mathbb{Z} \left[ z_1; \ldots; z_{d \mathfrak{n}} \right] \mid j \mathfrak{d} (f) \quad \mathfrak{d}_i (i = 1; \ldots; n) \right\}$$

is finite, where $\mathcal{H} = (\mathcal{B}; \mathcal{H}; \ldots; \mathcal{H})$ is a polarization given by $\mathcal{H}$.

**Proof.** Let $\mathcal{L}_1; \ldots; \mathcal{L}_d$ be $\mathbb{C}^\mathfrak{d}_1$-hermitian line bundles on $\mathbb{P}^1$. We set $\mathcal{L} = \mathcal{P}_1 (\mathcal{L}_1) \oplus \cdots \oplus (\mathcal{L}_d)$. Let $\mathcal{L}_1$ be the closure of $1 \in \mathbb{P}^1$ in $\mathbb{P}^1$. We set $1 = \mathcal{P}_1 (\mathcal{L}_1)$. First of all, we claim the following:
Claim 4.2.1.

\[ \deg (b_i \overline{L}_{i(\beta)}) = 1 \]

For simplicity, we assume \( i = d \). Since \( 1 \leftrightarrow \text{Spec}(\mathbb{Z}) \), there is an isomorphism

\[ \mathbb{P} \overline{\mathbb{Z}} \cong \mathbb{Z} \mathbb{P} \overline{\mathbb{Z}} \]
Moreover, since $\overline{H}$ is ample, there is a positive integer $n_0$ such that $\overline{H}^{n_0} \overline{A}_i^{-1}$ is effective for every $i$. Thus, by (5) of Proposition 3.3.7, there are positive constants $a$ and $b$ such that $h_{n_0}^{\overline{B}_i} \equiv a \overline{h}_{n_0}^{\overline{B}_i} + b$ for all $i$, where $\overline{B}_i$ is a polarization $(\overline{B}; \overline{A}_i, \ldots, \overline{A}_i)$ given by $\overline{A}_i$. We set

$$S = fP \ 2 \ P^n (Q(z_1; \ldots ; d))_{h_{n_0}^{\overline{B}_i}} (P) \ M \ g$$

Then, for any $P \ 2 \ S$, $h_{n_0}^{\overline{B}_i}(P) \equiv a M + b$. Moreover, there are $\ell_i$ such that $\ell_i$ are relatively prime and $P = (\ell_0 : \ldots : n)$. Here,

$$h_{n_0}^{\overline{B}_i}(P) = m \max_{i} \deg \ell_i \deg (\overline{H}_i) \ M_1$$

because $c_i(\overline{A}_i)^d = 0$ and $f_0$ is relatively prime. Thus, there is a constant $M_1$ independent on $P$ such that $\deg_{\ell_i}(\overline{H}_i) \ M_1$ for all $i, j$. On the other hand,

$$h_{n_0}^{\overline{B}_i}(P) = \max_{i} \deg \ell_i \deg (\overline{H}_i) \ Z + \max_{i} \deg \ell_i \deg (\overline{H}_i) \ Z$$

Hence, there is a constant $M_2$ independent on $P$ such that

$$\max_{i} \deg \ell_i \deg (\overline{H}_i) \ M_2$$

for all $i$. Thus, by Lemma 4.1, we have only finitely many $\ell_i$'s as above.

**Theorem 4.3.** Let $K$ be a finitely generated field over $Q$ with $\text{tr}: \deg_0(K) = c_i$ and $\overline{B} = (\overline{B}_1; \ldots ; \overline{B}_d)$ a big polarization of $K$, i.e., $\overline{H}_i$'s are nef and big. Let $X$ be a projective variety over $K$, and $L$ an ample line bundle on $X$. Then, for any numbers $M$ and any positive integers $c_i$ the set

$$fP \ 2 \ X (K) jh_{\overline{H}_i}(P) \ M \ K(P) : K$$

is finite.

**Proof.** We set $B_0 = (\overline{B}_i)^d$ and $H_0 = (\overline{B}_0; \overline{B}_1; \ldots ; \overline{B}_d)$ a big polarization of $K$, i.e., $\overline{H}_i$'s are nef and big. Let $X$ be a projective variety over $K$, and $L$ an ample line bundle on $X$. Then, for any numbers $M$ and any positive integers $c_i$ the set

$$fP \ 2 \ X (K) jh_{\overline{H}_i}(P) \ M \ K(P) : K$$

is finite.

**Claim 4.3.1.** If $B = B_0$ and $H_0 = H_1 = \overline{H}_i = c_i$ and $c_i = 1$, then the theorem holds.

If $m$ is sufficiently large, then we have an embedding $X \subseteq \overline{P}^n$ by $L^m$. Thus, we may assume $\text{tr}(\overline{H}_i) = (\overline{P}_0; \overline{P}_1; \ldots ; \overline{P}_d) \overline{O}(L)$. Hence, this claim follows from Lemma 4.2.

**Claim 4.3.2.** To prove the theorem, we may assume that $B = B_0$ and $H_0 = H_1 = \overline{H}_i = c_i$ and $c_i = 1$, then the theorem holds.

As in the previous claim, we may assume $\text{tr}(\overline{H}_i) = (\overline{P}_0; \overline{P}_1; \ldots ; \overline{P}_d)$. Since $\text{tr}$ and $\deg_0(K) = c$, $K$ contains $Q(\overline{z}_1; \ldots ; \overline{z}_d)$, which means that there is a rational map $B \dashrightarrow K$ of $B$. Thus, replacing $B$ by the graph of $B \dashrightarrow K$, we may assume that there is a generically finite morphism $B \dashrightarrow B_0$. Then, since $\overline{H}_i$'s are big, by Proposition 2.2, there are positive integers $n_1; \ldots ; n_d$ such that $\overline{H}_i^{n_1} \overline{H}_d = \overline{H}_i \overline{H}_d = \overline{H}_0$. Therefore, our claim follows from Proposition 3.3.1.
Claim 4.3.3. In order to prove our theorem, we may assume that $e = 1$.

It is sufficient to show that the set
\[ \mathbb{P}^2 X (\mathbb{K}) \to h_{\mathbb{L}}^B (\mathbb{K}) \to \mathbb{M} ; \quad \mathbb{K} (\mathbb{P}) : \mathbb{K} = e \]
is finite for any numbers $\mathbb{M}$ and any integers $e = 1$. Let $(X ; \mathbb{L})$ be a $C^1$-model of $(X ; \mathbb{L})$. Let $\mathbb{P}$ be a point of $X (\mathbb{K})$ with $h_{\mathbb{L}}^B (\mathbb{K}) \to \mathbb{M}$ and $\mathbb{K} (\mathbb{P}) : \mathbb{K} = e$. Let $\mathbb{f}_1 ; \ldots ; e$ be the set of all embeddings of $K (\mathbb{P})$ into $\mathbb{K}$. Let $\mathbb{P}_1 \times X (\mathbb{K})$ be a point given by $\text{Spec}(K) \to \text{Spec}(K (\mathbb{P}))$. Let $X$ and let $p_i$ be the closure of $\mathbb{P}_i$ in $X$. Then, we have $p = p_i$ for all $i$. Let $Y$ be the main component of $X_B = \{z \in X\}_{e}$, and $M = p_1 (L) e (L)$, where $p_1$ is the projection to the $i$-th factor. Moreover, let $f : X ! B$ and $f^0 : Y ! B$ be the canonical morphism. Then, using the projection formula,
\[
\overline{h}_{(\mathbb{P}_1 ; \ldots ; \mathbb{P}_e)}^{\mathbb{B}} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e) = \frac{\deg (f^0 (\mathbb{P}_1 (\mathbb{H}_1) \ldots (\mathbb{H}_d) j_{\mathbb{M}} (\mathbb{P}_e)) (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e))}{\deg (\mathbb{P} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e))}
\]
\[
= \frac{\prod_{i=1}^{e} \deg (\mathbb{P}_i) \deg f (\mathbb{P}_1 (\mathbb{H}_1) \ldots (\mathbb{H}_d) j_{\mathbb{M}} (\mathbb{P}_e)) (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e)}{\deg (\mathbb{P} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e))}
\]
\[
= \frac{\prod_{i=1}^{e} \deg (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e))}{\deg (\mathbb{P} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e))}
\]
\[
= e^{h_{\mathbb{B}}^{\mathbb{B}} (\mathbb{P})}.
\]

Let $X_{e}$ be the quotient of $X$ by the symmetric group $S_e$. Since $M = M_{\mathbb{K}}$ is invariant under the action of $S_e$, there is a line bundle $N$ on $Z$ with $\mathbb{N} = M$. Thus, $\overline{h}_{\mathbb{N}} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e) = h_{\mathbb{L}} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e) + O(1).$ Hence,
\[
\overline{h}_{\mathbb{N}} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e) = e \overline{h}_{\mathbb{B}} (\mathbb{P}) + C e M + C
\]
for some constant $C$ independent on $\mathbb{P}$. Moreover, $(\mathbb{P}_1 ; \ldots ; \mathbb{P}_e)$ is defined over $K$. Thus, if our theorem holds for the case $e = 1$, there are finitely many $(\mathbb{P}_1 ; \ldots ; \mathbb{P}_e)$ with
\[
\overline{h}_{\mathbb{N}} (\mathbb{P}_1 ; \ldots ; \mathbb{P}_e) + e M + C.
\]
Here the number of the fiber of $\mathbb{P} = e$ at most. Hence, we have our claim.

Let us start the proof of the theorem. First, by Claim 4.3.2, we may assume $B = B_0$ and $H_0 = H_1$ are nef $C^1$ hermitian $Q$-line bundles on $B$. Let $\overline{H} = (B ; H_1 ; \ldots ; H_e)$ be a polarization of $K$ given by $H$. Let $X$ be an $e$-dimensional projective variety over $K$, and $L$ a line bundle on $X$. Let $(X ; L)$ be a $C^1$-model of $(X ; L)$, and $f : X ! B$ the canonical morphism. The purpose of this section is to prove the following theorem.

5. Estimate of height functions in terms of intersection numbers

Let $K$ be a finitely generated field over $Q$ with $d = \text{trdeg}_Q (K)$, $B$ an arithmetic model of $K$, and let $H$ be a nef $C^1$ hermitian $Q$-line bundles on $B$. Let $\overline{B} = (B ; H_1 ; \ldots ; H_e)$ be a polarization of $K$ given by $H$. Let $X$ be an $e$-dimensional projective variety over $K$, and $L$ a line bundle on $X$. Let $(X ; L)$ be a $C^1$-model of $(X ; L)$, and $f : X ! B$ the canonical morphism. The purpose of this section is to prove the following theorem.
Theorem 5.1. We assume that $\deg(\varnothing_2 (\bar{\mathcal{H}})^{d+1}) = 0$, and that, for some rational number $a$, $\bar{\mathcal{L}} + a \ (\bar{\mathcal{H}})$ is vertically nef and $(\mathcal{L} + a \ (\mathcal{H}))_Q$ is ample on $X_Q$. Then, we have the following.

1. If $\deg(\varnothing_2 (\bar{\mathcal{L}})^{e+1} \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = 0$, then

$$\sup_{Y \in \mathcal{X}} \inf_{x \in Y} h^{\mathcal{I}}_{\mathcal{X}}(x) = 0;$$

where $Y$ runs over all proper closed subsets of $\mathcal{X}$.

2. If $\deg(\mathcal{H}_Q^d) > 0$ and $\inf_{x \in \mathcal{X}} h^{\mathcal{I}}_{\mathcal{X}}(x) = 0$, then

$$\deg(\varnothing_2 (\bar{\mathcal{L}})^{e+1} \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = 0;$$

Proof. (1) Since $\deg(\varnothing_2 (\bar{\mathcal{H}})^{d+1}) = 0$, by virtue of the projection formula (cf. (1) and (2) of Proposition 1.3), we can easily see that $h^{\mathcal{I}}_{\mathcal{X}} = h^{\mathcal{I}}_{\mathcal{X} + m \ (\mathcal{G})}$

and

$$\deg(\varnothing_2 (\bar{\mathcal{L}})^{e+1} \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = \deg(\varnothing_2 (\bar{\mathcal{L}} + m \ (\mathcal{H}))^{e+1} \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = \deg(\varnothing_2 (\bar{\mathcal{L}} + m \ (\mathcal{H}))^{e+1} \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = 0;$$

Thus, we may assume that $\bar{\mathcal{L}}$ is vertically nef and $\mathcal{L}_Q$ is ample on $\mathcal{B}_Q$ because $\mathcal{L} + m \ (\mathcal{H}) = \mathcal{L} + a \ (\mathcal{H}) + (m \ a) \ (\mathcal{H})$.

Moreover, since

$$\deg(\varnothing_2 (\bar{\mathcal{L}}) + m \ (\bar{\mathcal{H}}))^{e+1} = \deg(\varnothing_2 (\bar{\mathcal{L}} + m \ (\mathcal{H}))^{e+1} \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = m + O(m^d);$$

we may further assume that $\deg(\varnothing_2 (\bar{\mathcal{L}})^{e+1}) > 0$. Thus, by Theorem 2.1, for a sufficiently large integer $\alpha$, there is a non-zero section $s$ of $H^0(\mathcal{X} \mathcal{L}^\alpha)$ with $s^\alpha < 1$. We set $Y = (\mathcal{L} \mathcal{H})_Q$. Then, for any $x \in Y$, $\mathcal{H} = (\mathcal{L} \mathcal{H})_Q$, we have $h^{\mathcal{I}}_{\mathcal{X}}(x) = h^{\mathcal{I}}_{\mathcal{X} + m \ (\mathcal{G})}(x) = \deg(\mathcal{L} \mathcal{H})^d \cdot m^d$.

Therefore, (2) of Proposition 2.3, we have $h^{\mathcal{I}}_{\mathcal{X}}(x) = 0$ for all $x \in \mathcal{X} \mathcal{Y}$.

(2) The proof of (2) is very similar to [14, Lemma 5.4], or Lemma 2.4. First of all, we need the following two claims.

Claim 5.1.1. Let $Y ! \mathcal{B}$ be a surjective morphism of projective arithmetic varieties, and let $\bar{\mathcal{L}}_1$ and $\bar{\mathcal{L}}_2$ be $C^1$-hermitian $\mathcal{Q}$-line bundles on $Y$ such that $\bar{\mathcal{L}}_1$ and $\bar{\mathcal{L}}_2$ are vertically nef, and that $(\mathcal{L}_1)_Q$ and $(\mathcal{L}_2)_Q$ are ample on $Y_Q$. Let us fix an integer $\alpha$ with $0 \alpha \dim(Y \mathcal{B})$, where $\dim(Y \mathcal{B})$ is the dimension of the generic fiber of $Y ! \mathcal{B}$. We assume the following:

(a) $\deg(\varnothing_2 (\bar{\mathcal{L}}_1) \cdot \mathcal{I} \ (\bar{\mathcal{H}})) = 0$ for any integral subschemes on $Y$ with $(\mathcal{L}) = \mathcal{B}$ and $\dim(=\mathcal{B}) = \alpha$. 
Thus, by Lemma 2.5, it is sufficient to show

$$\text{deg} \ b_1 (L_1)^{\dim \ (Y = B)} \cdot \d \ (H) \ d > 0$$

for any integral subschemes on Y with $$\dim \ (Y = B) = B$$.

Then, $$\text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d = 0.$$

**Proof.** We prove this claim by induction on $$\dim \ (Y = B)$$. If $$s = \dim \ (Y = B)$$, then our assertion is trivial. Hence we may assume that $$\dim \ (Y = B) > s$$. Since

$$\text{deg} \ b_1 (L_2)^{\dim \ (Y = B) + 1} \cdot \d \ (H) \ d > 0;$$

in the same way as the proof of (1),

$$\text{deg} \ b_2 (L_2) + m \ b_1 (\overline{H}) \ d =\text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d;$$

for a sufficiently large m. Thus, by Theorem 2.1, for a sufficiently large integer n, there is a non-zero section s of $$H^0 (X; n(L_2 + m \overline{H}))$$ with $$ksk_{sup} < 1$$. Let $$\text{div} (s) = \sum a_i$$ be the irreducible decomposition as cycles. Since $$\text{deg} \ b_1 (\overline{H}) \ d + 1 = 0$$, we have

$$\text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d = \text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d;$$

which implies that

$$\text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d = \text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d;$$

Thus, by Lemma 2.3, it is sufficient to show

$$\text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d = 0$$

for all i.

If $$\overline{L}_1$$ maps surjectively to B, then, by hypothesis of induction, we can see (5.1.2). Thus, we assume that $$\overline{L}_1$$ does not map surjectively to B. Let T be the generic fiber of $$\overline{L}_1$$! Then, we can see

$$\text{deg} \ b_1 (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d = \text{deg} \ (L_1)^{s+1} \cdot \d_{L_2} \ (Y = B) \ s \ d \ (H) \ d \text{deg} \ b_1 (H \ (i)) \ d;$$

if $$\dim \ T = \dim \ (Y = B)$$

$$= 0$$

if $$\dim \ T > \dim \ (Y = B)$$. Here $$\overline{L}_1$$ and $$\overline{L}_2$$ are vertically nef and $$\overline{H}$$ is nef. Thus, by the above formula, we have (5.1.2) even if $$\overline{L}_1$$ does not map surjectively to B.

**Claim 5.1.3.** If $$\text{deg} \ (H) \ d > 0$$, then there is an ample $$C^1$$-hermitian line bundle $$\overline{M}$$ on X such that

$$\text{deg} \ b_1 (\overline{M}) \ d = \text{deg} \ (H) \ d > 0.$$
for any integral subschemes on $X$ with $(\cdot) = B$.

**Proof.** Let $\overline{N}$ be an ample $\mathbb{C}^1$-hermitian line bundle on $X$, and let $k$ be the metric of $H$. For a positive number $c$ with $0 < c < 1$, we set $A = (H; c < k)$. Then, since $\deg(\overline{H}) > 0$, we can see that $\deg(b_2(\overline{N}) \overline{H})^d) > 0$. Let be a subscheme of $X$ with $(\cdot) = B$. Then, by (1) of Proposition 2.3,

$$\deg b_2(\overline{N})^1 \overline{H}(\overline{A})^{d(B)+1} \overline{H}(\overline{H})^d = 0$$

for all $0 \leq \dim(\cdot) + 1$. Further,

$$\deg b_2(\overline{N})^1 \overline{H}(\overline{A}) \overline{H}(\overline{H})^d = \deg(\overline{N})^1 \overline{H}(\overline{A}) \overline{H}(\overline{H})^d) > 0;$$

where $\overline{\cdot}$ means the restriction to the generic fiber of $B$. Thus, if we set $\overline{M} = \overline{N} + (\overline{A})$, then we have the desired hermitian line bundle.

Let us go back to the proof of (2). We prove (2) by induction on $e$. If $e = 0$, then the assertion is trivial. Thus, we assume $e > 0$.

In the same way as in the proof of (1), we may assume that $\overline{L}$ is vertically nef and $L_0$ is ample on $X_0$. By Claim 5.1.3, there is an ample $\mathbb{C}^1$-hermitian line bundle $\overline{M}$ on $X$ such that

$$\deg b_2(\overline{M})^{d(B)+1} \overline{H}(\overline{H})^d > 0$$

for any integral subschemes on $X$ with $(\cdot) = B$. Thus, by hypothesis of induction and Claim 5.1.1, for any integral subschemes on $X$ with $(\cdot) = B$ and $\dim(\cdot) < e$,

$$(5.1.4) \quad \deg b_2(\overline{L}) + b_2(\overline{M})^{d(B)+1} \overline{H}(\overline{H})^d > 0$$

for all $t > 0$. Moreover, we can see

$$(5.1.5) \quad \deg b_2(\overline{L})^{e+1} + b_2(\overline{M})^{e+1} \overline{H}(\overline{H})^d = 0$$

for all $1 \leq e + 1$. We set

$$P(t) = \deg b_2(\overline{L}) + b_2(\overline{M})^{e+1} \overline{H}(\overline{H})^d.$$

Here we claim the following.

**Claim 5.1.6.** If $t > 0$ and $P(t) > 0$, then $P(t) = \deg b_2(\overline{M})^{e+1} \overline{H}(\overline{H})^d$.

Clearly we may assume that $t$ is a rational number. For simplicity, we set $\overline{N} = \overline{L} + t\overline{M}$. Then, by (5.1.4) and $P(t) > 0$, we have

$$\deg b_2(\overline{N})^{d(B)+1} \overline{H}(\overline{H})^d > 0$$

for any integral subschemes on $X$ with $(\cdot) = B$. Thus, by using Claim 5.1.1 and the assumption $\inf_{x \in X} b_2^B(\overline{L}) = 0$, we obtain $\deg b_2(\overline{N})^{e+1} \overline{H}(\overline{H})^d = 0$. Therefore, by using
Thus, we get the claim.

Let \( t_0 = \max_{2 \not\equiv t} \mathcal{P}(t) = 0 \). We assume \( t_0 > 0 \). Then, by the above claim, for any \( t > t_0 \),

\[
\mathcal{P}(t) = (t + 1)\deg(b_5(\overline{L}))^{e+1} \; \mathcal{H}(\overline{H})^d > 0:
\]

Thus, taking \( t > t_0 \),

\[
0 = \mathcal{P}(t_0) = (t + 1)\deg(b_5(\overline{L}))^{e+1} \; \mathcal{H}(\overline{H})^d > 0:
\]

This is a contradiction. Therefore, \( t_0 \leq 0 \). In particular, \( \mathcal{P}(0) = 0 \), which is nothing more than the assertion of (2).

As corollary, we have the following generalization of [4, Theorem (5.2)].

**Corollary 5.2.** We assume that \( \deg(b_5(\overline{H})^{e+1}) = 0 \), \( \deg(H_0^d) > 0 \), and that, for some rational number \( a, L + a \; \overline{H} \) is vertically nef and \( (L + a \; \overline{H})_{\mathcal{O}} \) is ample on \( X_{\mathcal{O}} \). Then we have the following inequalities:

\[
\sup_{Y \in X \times Y} \inf_{b \in \overline{Y} \times Y} h^B_{\overline{L}, b}(x) \quad \frac{\deg(b_5(\overline{L}))^{e+1} \; \mathcal{H}(\overline{H})^d}{(e + 1)\deg(L_{\mathcal{O}}^e \deg(b_5(\overline{L})) \; \mathcal{H}(\overline{H})^d)}:
\]

\[
\text{Proof.} \quad \text{Let} \; c \text{ be a real number with} \; 0 < c < 1. \text{ We set} \; \overline{A} = (\overline{H} ; ck \; k), \text{ where} \; k \; k \text{ is the metric of} \; \overline{H}. \text{ Then,}
\]

\[
\deg(b_5(\overline{A})) \; \mathcal{H}(\overline{H})^d > 0
\]

because \( \deg(H_0^d) > 0 \). Let \( c \) be an arbitrary rational number with

\[
< \frac{\deg(b_5(\overline{L}))^{e+1} \; \mathcal{H}(\overline{H})^d}{(e + 1)\deg(L_{\mathcal{O}}^e \deg(b_5(\overline{L})) \; \mathcal{H}(\overline{H})^d)}:
\]

Then, it is easy to see that

\[
\deg(b_5(\overline{L})) \; b_0(\overline{A}))^{e+1} \; \mathcal{H}(\overline{H})^d > 0:
\]

Here, note that

\[
L + (a + b \; \overline{H}) = L + (\overline{H} + A) + a \; \overline{H}
\]

is vertically nef and ample on \( X_{\mathcal{O}} \) because \( c_0(\overline{H}) = c_0(\overline{A}) \). Thus, applying (1) of Theorem 5.1,

\[
\sup_{Y \in X \times Y} \inf_{b \in \overline{Y} \times Y} h^B_{\overline{L}, b}(x) \quad \deg(b_5(\overline{A})) \; \mathcal{H}(\overline{H})^d \quad 0;
\]

which implies

\[
\sup_{Y \in X \times Y} \inf_{b \in \overline{Y} \times Y} h^B_{\overline{L}, b}(x) \quad \deg(b_5(\overline{A})) \; \mathcal{H}(\overline{H})^d:
\]
Thus, we get
\[
\sup_{Y \in \{X \times_2 (\mathcal{X}, nX) \}_R} \inf_{x \in \{Y \}_R} \frac{h^\mathcal{B}_{\mathcal{X}, nX}(x)}{\deg (\mathcal{O}_x (\mathcal{L}))^{e + 1}} = 0.
\]

Next let \( d \) be an arbitrary rational number with
\[
\inf_{x \in \{X \times_2 (\mathcal{X}, nX) \}_R} \frac{h^\mathcal{B}_{\mathcal{X}, nX}(x)}{\deg (\mathcal{O}_x (\mathcal{L}))^{e + 1}} = 0.
\]

Then,
\[
\inf_{x \in \{X \times_2 (\mathcal{X}, nX) \}_R} \frac{h^\mathcal{B}_{\mathcal{X}, nX}(x)}{\deg (\mathcal{O}_x (\mathcal{L}))^{e + 1}} = 0.
\]

Thus, by (2) of Theorem 5.1,
\[
\deg (B_x (\mathcal{L}))^{e + 1} \deg (\mathcal{H})^d = 0;
\]
which says us that
\[
\deg (\mathcal{O}_x (\mathcal{L}))^{e + 1} \deg (\mathcal{H})^d = (e + 1) \deg (\mathcal{L}_x^e) \deg (\mathcal{O}_x (\mathcal{L})) \deg (\mathcal{H})^d.
\]

Hence, we get the second inequality.

6. Equidistribution theorem over finitely generated fields

Let \( K \) be a finitely generated field over \( \mathbb{Q} \) with \( d = \text{tr.deg}_\mathbb{Q} (K) \), \( B \) an arithmetic model of \( K \), and let \( \mathcal{B} \) be a nef \( \mathbb{C}^1 \) hermitian \( \mathbb{Q} \)-line bundles on \( B \). Let \( \mathcal{B} = (B, H, \ldots, H) \) be a polarization of \( K \) given by \( H \). Let \( X \) be an \( e \)-dimensional projective variety over \( K \). Let \( f_x m \to \mathcal{B} \) be a sequence of elements of \( X (\mathbb{K}) \). We say \( f_x m \) is generic if any subsequences of \( f_x m \) are not contained in any proper closed subsets of \( X (\mathbb{K}) \).

Let \( \mathcal{L} \) be a line bundle on \( X \). Let \( (X, H, \mathcal{L}) \) be a \( C^1 \) model of \( X (\mathcal{L}) \), and \( : X ! B \) the canonical morphism. Then, we have the following equidistribution theorem, which is a generalization of Szpiro-Ullmo-Zhang’s result (cf. [12], [13] and [15]).

**Theorem 6.1.** Let \( h : X (\mathbb{K}) \to \mathbb{R} \) be a representative of the class of height functions associated with \( L \) and \( B \), and let \( (X, H, \mathcal{L})_n \) be a sequence of \( C^1 \) models of \( X (\mathcal{L}) \) over \( B \). We assume the following.

1. \( \deg (\mathcal{O}_x (\mathcal{L}))^{d + 1} = 0 \) and \( \deg (H^d) > 0 \).
2. \( h(x) \neq 0 \) for all \( x \in X (\mathbb{K}) \).
3. There is a Zariski open set \( U \) of \( B \) such that \( (X, H, \mathcal{L})_n = X_U \) for all \( n \).
4. \( \sup_{x \in X (\mathbb{K})} h(x) \to 0 \) as \( n \) tends to \( 1 \).
5. For \( n \to 0 \), \( \mathcal{L}_n \) is vertically nef, and \( (\mathcal{L}_n)_0 \) is ample on \( (X, H, \mathcal{L})_0 \).
6. There are a connected open set \( W \) of \( U (\mathbb{C}) \) (in the topology as analytic spaces) and a positive \( C^1 \)-form \( \omega \) on \( W \) such that \( c_2 (\mathcal{L}_n) = \omega \) on \( W \) for \( n \to 0 \).
Let \( f \) be a generic sequence in \( X \) with \( \lim_{m \to \infty} h(x_m) = 0 \). Then, over \( \mathbb{C} \), we have the following weak convergence

\[
\lim_{m \to \infty} \frac{x_n^d}{\deg (x_n ! B)} = \frac{!^e d (c_1 (\mathcal{H}))^d}{\deg (L^n)}
\]
as currents.

**Proof.** Let \( f \) be a real valued \( C^1 \)-function on \( \mathbb{C} \) with compact support. We need to show that

\[
\lim_{m \to \infty} \frac{R}{\deg (x_n ! B)} f \left( \frac{1}{n} \right) \frac{x_n^d}{\deg (x_n ! B)} = \frac{R}{\deg (L^n)} f \left( \frac{1}{n} \right) \frac{!^e d (c_1 (\mathcal{H}))^d}{\deg (L^n)}
\]

Let \( F_1 \) be the Frobenius map given by the complex conjugation. We set \( \mathcal{L}^0 = \mathcal{L}^0 (F_1) \). Then, since \( \mathcal{L}^0 \) is invariant under \( F_1 \), there is a positive form \( !^0 \) on \( \mathcal{L}^0 \) with \( c_1 (\mathcal{L}^0) = !^0 \) on \( \mathcal{L}^0 \) for \( n = 0 \). Moreover, since \( x_n, !^0 \) and \( c_1 (\mathcal{L}^0) \) are compatible with the action induced by \( F_1 \), we can see that if we set \( f^0 = \frac{f + F_1 (f)}{2} \) (which is invariant under \( F_1 \)), then

\[
Z \frac{f^0}{\deg (x_n ! B)} = \frac{!^e d (c_1 (\mathcal{H}))^d}{\deg (L^n)}
\]

and

\[
Z \frac{!^e d (c_1 (\mathcal{H}))^d}{\deg (x_n ! B)} = \frac{!^e d (c_1 (\mathcal{H}))^d}{\deg (L^n)}
\]

Thus, it is sufficient to see that

\[
\lim_{m \to \infty} \frac{R}{\deg (x_n ! B)} f \left( \frac{1}{n} \right) \frac{x_n^d}{\deg (x_n ! B)} = \frac{R}{\deg (L^n)} f \left( \frac{1}{n} \right) \frac{!^e d (c_1 (\mathcal{H}))^d}{\deg (L^n)}
\]

First of all, there is a positive number \( j \) such that for all \( j + = 0 \), \( !^0 + dd\phi \) is semipositive on \( \mathcal{L}^0 \). Let \( \mathcal{O}_n (f^0) \) be the hermitian line bundle for \( \mathcal{O}_{X_n} \) such that the length of \( 1 \) at each point is given by \( \exp (j) \). Note that since the closure of \( f \) and \( j + \) is contained in \( \mathcal{L}^0 \) \( X_n (\mathcal{C}) \), we may view \( f^0 \) as a \( C^1 \)-function on \( X_n (\mathcal{C}) \). Here, we set \( \mathcal{L}_n = \mathcal{L}_n \mathcal{O}_n (f^0) \). Then, by our construction, \( \mathcal{L}_n \) is a nef and ample on \( X_n (\mathcal{O}) \) for \( n = 0 \). Moreover,

\[
\deg (\mathcal{O}_n (f^0)) = \deg (\mathcal{O}_n (f^0)) + \deg (x_n ! B)
\]

and

\[
\deg (\mathcal{O}_n (f^0))^{e+1} = \deg (\mathcal{O}_n (f^0))^{e+1} + \deg (\mathcal{O}_n (f^0))^{e+1} + \deg (\mathcal{O}_n (f^0))^{e+1}
\]
where \( x \) is the closure of \( x \) in \( X_n \), and the term \( O ( t^2 ) \) is independent on \( n \). Let \( n_1 \) be an arbitrary positive number. Then, there is a positive integer \( n_1 \) such that, for all \( n \geq n_1 \),

\[
h \rightarrow \bar{h}^{\rho_{n_1}}_{(x_n,\bar{\mu}_{n_1})} \quad h + :\]

On the other hand, since \( f x_m \) is generic, if \( n \rightarrow 0 \), by Corollary 5.2, we can see

\[
\lim_m \inf_{\varphi(x_n,\bar{\mu}_n)} (x_m) \frac{\deg (\varphi(L_n^{\rho_{n_1}}))^{e+1} \deg (\bar{H})^d)}{(e + 1) \deg (L^e)} Z \quad \frac{\deg (L^e)}{\deg (L^e)} f^0 \cdot 0^e \wedge (c_1(\bar{H}))^d + O (t^2); \]

which implies

\[
\lim_m \inf_{\varphi(x_n,\bar{\mu}_n)} (x_m) \frac{\deg (\varphi(L_n^{\rho_{n_1}}))}{\deg (L^e)} f^{01} \cdot 0^e \wedge (c_1(\bar{H}))^d + O (t^2); \]

Thus,

\[
\lim_m \inf_{\varphi(x_n,\bar{\mu}_n)} (x_m) \frac{\deg (\varphi(L_n^{\rho_{n_1}}))}{\deg (L^e)} f^{01} \cdot 0^e \wedge (c_1(\bar{H}))^d + O (t^2); \]

Therefore, taking \( m \rightarrow 0 \), we obtain

\[
\lim_{m \rightarrow 1} \inf_{\varphi(x_n,\bar{\mu}_n)} (x_m) \frac{\deg (\varphi(L_n^{\rho_{n_1}}))}{\deg (L^e)} f^{01} \cdot 0^e \wedge (c_1(\bar{H}))^d + O (t^2); \]

The above inequality still holds even if we replace \( f^0 \) by \( f^1 \). Thus,

\[
\lim_{m \rightarrow 1} \sup_{\varphi(x_n,\bar{\mu}_n)} (x_m) \frac{\deg (\varphi(L_n^{\rho_{n_1}}))}{\deg (L^e)} f^{01} \cdot 0^e \wedge (c_1(\bar{H}))^d + O (t^2); \]

Therefore,

\[
\lim_{m \rightarrow 1} \sup_{\varphi(x_n,\bar{\mu}_n)} (x_m) \frac{\deg (\varphi(L_n^{\rho_{n_1}}))}{\deg (L^e)} f^{01} \cdot 0^e \wedge (c_1(\bar{H}))^d + O (t^2); \]

\[2\]

7. Construction of the canonical height in terms of Arakelov geometry

Let \( K \) be a finitely generated field over \( \mathbb{Q} \) with \( d = \text{tr.deg}_Q (K) \), \( B \) an arithmetic model of \( K \), and let \( \bar{H} \) be a nef \( C^1 \) hermitian \( \mathbb{Q} \)-line bundles on \( B \). Let \( \bar{B} = (\bar{B}; \bar{H}; \cdots ; \bar{H}) \) be a polarization of \( K \) given by \( \bar{H} \). We assume that \( \deg (\bar{H}) \cdot (d+1) = 0 \) and \( \deg (\bar{H}) > 0 \). Let \( A \) be an abelian variety over \( K \) of dimension \( g \). Let us fix a projective embedding \( : A \rightarrow \mathbb{P}^{N}_K \), so that we have a new embedding \( \cong A \rightarrow \mathbb{P}^{N}_K \) given by \( (x) = ((x); ([1](x))) \). Then, \( L = \mathbb{P}^{N-1}_K \) is ample and symmetric, where \( p_2 \) is the projection to the \( z \)-th factor. In this section, we would like to show the following proposition.

**Proposition 7.1.** There is a sequence of \( C^1 \) -models \( (\varphi_n \overline{L}_n) \) of \( (A; L) \) with the following properties:
(1) There is a Zariski open set $U$ of $B$ such that $(A_n)_U = (A_1)_U$ for all $n$, and that $(A_1)_U$ is an abelian scheme over $U$.

(2) If $n$ is sufficiently large, then $L_n$ is ample and $\overline{L}_n$ is vertically nef.

(3) \[ \lim_{n \to +1} \sup_{x \in A} \mathfrak{R}^B_{L_{n}}(x) \mathfrak{H}^B_{A_n, \overline{L}_n}(x) \overline{x} = 0. \]

(4) There is a connected open set $W$ of $U(C)$, and a positive $C^1$-form $\omega$ on $(A_1)_W$ such that $\omega$ is non-singular, $c_1(\omega)$ is positive on $W$, and that $c_1(\overline{L}_n) = 0$ on $(A_1)_W$ for all $n > 0$.

**Proof.** Let $A$ be the closure of $\{0\}$ in $B(C) \times B(C)$ and $L = \mathcal{O}(1)$. Then, $A_K = A$, $L = L_K$ is ample and symmetric, and $L$ is an ample open set, where $A ! B$ is the canonical morphism. Replacing $L$ by $L(q)$ for some ample line bundle $Q$ on $B$, we may assume that $L$ is ample on $A$. Let $U$ be a Zariski open set of $B$ such that $A_0 ! U$ is an abelian scheme and \( (1)(L_{U}) = L_{U} \) over $A_U$. Shrinking $U$ if necessary, we may assume that $[2](L_{U}) = L_{U}^d$. Let $k_0$ be a hermitian metric of $L$ such that $c_1(L;k_0)$ is positive on $A(C)$. We would like to slightly change $k_0$ on $A(C)$. Let $F_1R : A(C) ! A(C)$ be the Frobenius map given by the complex conjugation. Since $\deg(\omega^d) = \mathcal{O}(C)$, $c_1(\omega)$ is semipositive, we can find a small open set $W_1$ of $U(C)$ in the classical topology such that $W_1$ is non-singular, $c_1(\omega)$ is positive on $W_1$ and $W_1 \setminus F_1(W_1) = \emptyset$. Here, we give a $C^1$-family of cub metric $k_{d\omega}$ of $L_{W,2}$ over $W_1$. Then, there is a positive $C^1$-function $\omega$ on $W_1$ with $\{2\}(L_{W,1};k_{d\omega}) = (L_{W,2};k_{d\omega})$. If we set $k_{d\omega} = \omega^{2}k_{d\omega}$, then $\{2\}(L_{W,1};k_{d\omega}) = (L_{W,2};k_{d\omega})$. Let us choose open sets $W_3$ and $W_2$ with $W_3 \cap W_2 \subset \subset W_1$. We also choose a $C^1$ function on $B(C)$ such that $0 \leq 1$, $1$ on $W_3$ and $0$ on $B(C) \cap \cap W_2$. Let $\omega$ be a positive $C^1$-function on $W_1$ given by the equation $k_{d\omega} = ak_{d\omega}$. Here we set $k_{d\omega} = \omega^{2}k_{d\omega}$. Then, $k_{d\omega}$ gives rise to a $C^1$-metric of $L$, which coincides with $k_{d\omega}$ on $B(C) \cap \cap W_2$. Here we claim the following.

**Claim 7.1.1.** For any $\alpha > 0$, there is a positive integer $n_0$ such that, for all $n > n_0$,

\[ 0 < \alpha < 1 \quad \text{and} \quad \omega^d \leq \frac{1}{\alpha} \quad \text{is positive on } A_{W_2}. \]

Note that the relative tangent bundle $T_{A_{W_2}}$ is a vector subbundle of the tangent bundle $T_{A_{W_2}}$. Let $!$ and $!^0$ be the restriction of $c_1(L;k_{d\omega})$ and $c_1(L;k_{d\omega})$ to $T_{A_{W_2}}$. Thus, $(!)$ and $(!^0)$ are positive hermitian form on $T_{A_{W_2}}$. Thus, since $W_2$ is compact, there is a real number $\epsilon$ such that $0 < \epsilon < 1$ and $!^0$ is positive on $T_{A_{W_2}}$. To see our claim, clearly we may assume that

\[ W_2 = D = \{ t_1; \cdots ; t_d \} \subset C^d, 0 < t < 1. \]

Let $D^g \subset D^d$ be the universal covering of $A_{D^d}$ such that $D$ is a morphism over $D^d$, and is a homomorphism on each fiber over $D^d$. Let $z_1; \cdots ; t_d$ be a coordinate of $C^g$. Then, $!^0$ and $(!^0)$ can be written by the forms

\[ b_{i,j}(z,t) dz_i \wedge dz_j; \]

where $b_{i,j}(z,t)$'s are bounded $C^1$-functions. Moreover, we set

\[ A_1 = (c_1(L;k_{d\omega})); \quad (!) \]

\[ A_2 = (c_1(L;k_{d\omega})); \quad (!^0) \]

\[ A_3 = (c_1(L;k_{d\omega})); \quad (\emptyset); (c_1(L;k_{d\omega})); \quad (L \quad (\emptyset)); \quad (c_1(L;k_{d\omega})); \quad (\emptyset). \]
Then, it is easy to see that each $A_i$'s can written by the form
\[
\sum_{k} c_{ik}(z;t)dz_i \wedge dt_k + \sum_{i,j} c_{ij}^0(z;t)dt_i \wedge dz_j + \sum_{k} c_{ik}^0(z;t)dt_i \wedge dt_k;
\]
where $c_{ik}$'s, $c_{ij}^0$'s and $c_{ik}^0$'s are bounded $C^1$ functions. Here let us see that $2^{2n} [\mathbb{P}^n] (A_i) (i = 1;2;3)$ converges uniformly to 0. Indeed,
\[
\sum_{k} c_{ik}(z;t)dz_i \wedge dt_k + \sum_{i,j} c_{ij}^0(z;t)dt_i \wedge dz_j + \sum_{k} c_{ik}^0(z;t)dt_i \wedge dt_k
\]
Thus, we have our assertion because $c_{ik}$'s, $c_{ij}^0$'s and $c_{ik}^0$'s are bounded.

Next, we try to see that $A_1 = 0$. For, $2^{2n} [\mathbb{P}^n] (c_i (L;\kappa^i_{L})) = (c_i (L;\kappa^i_{L}))$ for all $n$, which shows us that $2^{2n} [\mathbb{P}^n] ( \lambda ) = 1$ and $2^{2n} [\mathbb{P}^n] (A_i) = A_i$. Hence, $A_1$ must be zero.

Thus, if we set $A = (1 + ( \lambda )) A_2 + A_3$ and
\[
C = (1 + ( \lambda )) + (1 + ( \lambda ))
\]
then
\[
(c_i (L;\kappa^i_{L})) = (1 + A) + C
\]
and $C$ is semipositive. Hence,
\[
2^{2n} [\mathbb{P}^n] (c_i (L;\kappa^i_{L})) + ( \lambda ) =
\]
\[
(1 + ( \lambda )) + (1 + ( \lambda )) + 2^{2n} [\mathbb{P}^n] (A) + 2^{2n} [\mathbb{P}^n] (C)
\]
On the other hand, $(1 + ( \lambda ))$ is positive and $2^{2n} [\mathbb{P}^n] (A)$ converges uniformly to 0. Thus,
\[
(1 + ( \lambda )) + ( \lambda ) + 2^{2n} [\mathbb{P}^n] (A)
\]
is positive if $n$ is sufficiently large. Hence we get our claim.

To get an invariant metric $k \kappa$ under $F$, over $F_1 (\tilde{W}_{-1})$, we replace $k \kappa$ by $F_1 (k \kappa)$. In this way, we have a hermitian line bundle $\overline{L} = (L; \kappa \kappa)$ with the following properties:
(a) $c_i (\overline{L})$ is positive over $A (C) n^{-1} \mathbb{W}_2 [F_1 (\tilde{W}_2)]$.
(b) For any $n > 0$, there is a positive number $\nu_0$ such that, for all $n > \nu_0$,
\[
2^{2n} (\mathbb{P}^n) (c_i (\overline{L})) + c_i (\overline{L})
\]
is positive on $\mathbb{W}_2 [F_1 (\tilde{W}_2)]$.
(c) $2^{2n} (\mathbb{P}^n) (c_i (\overline{L})) = c_i (\overline{L})$ on $\mathbb{W}$ for all $n$, where $\mathbb{W} = \mathbb{W}_3$.

Let $f_n : A_n \rightarrow A$ be the normalization of
\[
A \subset \mathbb{P}^n \rightarrow A \subset \mathbb{P}^n
\]
Then, by projection formula,
\[
h_{\overline{L}} (\varphi_n) (x) = h_{\overline{L}} (\varphi_n) (\mathbb{P}^n x)
\]
for all \( x \geq 2 \). Thus, if we set \( \overline{L}_n^0 = 2^{-n} \overline{f}_n ( \overline{L} ) \), then,

\[
\overline{h}^{B}_{\overline{L}_{n}^0} (x) = 2^{-n} \overline{h}^{B}_{\overline{L}} (2^n x).
\]

Therefore,

\[
\lim_{n \to +
\infty} \sup_{x \geq 2 A (\overline{K})} \overline{\Phi}_L (x) \overline{h}^{B}_{\overline{L}_{n}^0} (x) = 0.
\]

Moreover,

\[
\overline{h}^{B}_{\overline{L}_{n}^0 + n (\overline{1})} = \overline{h}^{B}_{\overline{L}_{n}^0}
\]

for any positive rational number \( \beta \). Thus, if we set \( \overline{L}_n = \overline{L}_n^0 + n (\overline{1}) \), then a sequence of models \( (\overline{A}_n, \overline{L}_n) \) satisfies our desired properties.

8. Bogomolov’s Conjecture over Finitely Generated Fields

Let \( K \) be a finitely generated field over \( \mathbb{Q} \) with \( d = \text{tr.deg}_{\mathbb{Q}} (K) \), and \( \overline{B} = (\overline{B}_1, \ldots, \overline{B}_d) \) a polarization of \( K \). Let \( A \) be an abelian variety over \( K \). In this section, we would like to prove the following theorem, which is a generalization of results due to Ullmo [13] and Zhang [15].

**Theorem 8.1.** Let \( X \) be a subvariety of \( \overline{A}_K \), and \( L \) a symmetric ample line bundle on \( A \). We assume that \( \overline{B} \) is big, i.e., \( \overline{H}_i \)'s are nef and big. If the set

\[
\{ x : \text{dim} \overline{f}_x (X) \}
\]

is Zariski dense in \( X \) for any \( x > 0 \), then \( X \) is a translation of an abelian subvariety of \( \overline{A}_K \) by a torsion point.

**Proof.** First of all, note that in order to prove our theorem, we can replace the field \( K \) by a finite extension of \( K \) if it is necessary.

We set

\[
G (x) = \text{dim} \overline{f}_x (X) \quad j \quad \text{dim} \overline{f}_x (X) = \text{dim} \overline{f}_x (X).
\]

First, let us consider the case where \( G (x) \) is trivial. In this case, we need to show that there is a torsion point \( x \) of \( A \) with \( x = \overline{f}_x (X) \). For this purpose, it is sufficient to show that \( \overline{f}_x (X) = 0 \). For, if we set \( \overline{f}_x (X) = \overline{f}_x (X) \), then \( \overline{f}_x (X) = 0 \). Thus, \( x \) is a torsion point by Proposition 3.1.1.

From now on, we assume that \( \overline{f}_x (X) \). Changing \( K \) by a finite extension of \( K \), if necessary, by Proposition 3.1.1, we may assume that there is a \( C^1 \)-hermitian line bundle \( \overline{H}_0 \) with \( \overline{\text{deg}} (\overline{B}_0 (\overline{H}_0)) = 0 \) and \( \overline{\text{deg}} (\overline{H}_0) > 0 \). Let \( \overline{B}_0 = (\overline{B}_0, \ldots, \overline{B}_0) \) be a polarization of \( K \) given by \( \overline{H}_0 \). Then, by virtue of (3) of Proposition 3.4.2, there is a positive constant \( a \) with \( \overline{h}^{B}_{\overline{L}_0} = \overline{h}^{B}_{\overline{L}_0} \). Thus, the set

\[
\{ x : \text{dim} \overline{f}_x (X) \}
\]

is Zariski dense for any \( x > 0 \). Therefore, we will try to find a contradiction using hypotheses:

(a) \( G (x) = 0 \).
(b) \( \overline{f}_x (X) = 1 \).
(c) The set \( \{ x : \text{dim} \overline{f}_x (X) \}
\]

is Zariski dense for any \( x > 0 \).
Here we consider a morphism

\[ m : A^m \rightarrow A^m \]

given by \( m (x_1, \ldots, x_m) = (x_1, x_2, x_3, \ldots, x_m) \). Then, since \( G (x) = f_0 g \), in the same way as the proof of [15, Lemma 3.1], we can see that if \( m \) is sufficiently large, then \( m \) induces a birational morphism \( X^m \rightarrow X^m \). Considering a finite extension of \( K \), we may assume that \( X \) is defined over \( K \), and that \( m \) induces a birational morphism \( X^m \rightarrow X^m \) over \( K \). Here, if it is necessary, we change \( B_0 \) by the polarization induced by the extension of \( K \) accordingly.

We note that the above hypothesis (c) does not depend on the choice of the ample and symmetric line bundle \( L \) by virtue of (2) of Proposition [3,4.2]. Hence, by Proposition [7,1], there is a sequence of \( C^1 \)-models \((A_n, L_n)\) of \((A; L)\) with the following properties.

1. There is a Zariski open set \( U \) of \( B \) such that \((A_n)_U = (A_1)_U \) for all \( n \), and that \((A_1)_U \rightarrow U \) is an abelian scheme over \( U \).
2. If \( n \) is sufficiently large, then \( L_n \) is ample and \( L_n \) is vertically nef.
3. \( \lim_{n \to 1} \sup_{x \in A} \frac{\hat{h}_L}{h_{L_n}} (x) = 0. \)
4. There are a connected open set \( W \) of \( U (C) \), and a positive \( C^1 \)-form \( \lambda \) on \((A_1)_W \) such that \( W \) is non-singular, \( c_1 (\overline{B}_0) \) is positive on \( W \), and that \( c_1 (L_n) = \lambda \) on \((A_1)_W \) for all \( n \).

For simplicity, we denote \( A_1 \) by \( A \). Let \( A^m \) (resp. \( A^m_n \)) be the main component of

\[ A = \bigoplus_{m \rightarrow 1} \begin{array}{c} A_n \oplus B \{ z \} \oplus A_n \end{array}. \]

Let \( m : A^m \rightarrow B \) and \( m : A^m \rightarrow B \) be the canonical projections. Let \( X^m \) (resp. \( X^m_n \)) be the closure of \( X^m \) in \( A^m \) (resp. \( A^m_n \)). Further, let \( Y^m \) (resp. \( Y^m_n \)) be the closure of \( m (X^m) \) in \( A^m \) (resp. \( A^m_n \)). We set

\[ P^m = p_1 (L) \quad \text{and} \quad P^m_n = p_2 (L_n) \]

where \( p_1 \) is the projection to the \( z \)-th factor. Note that \( m \) extends to \( A^m_U \rightarrow A^m_U \). By abuse of notation, we denote this extension by \( m \). Then, \( m \) induces a birational morphism \( X^m_U \rightarrow Y^m_U \). Let \( V \) and \( V^0 \) be Zariski open sets of \( X^m_U \) and \( Y^m_U \), respectively such that \( m \) gives rise to an isomorphism \( V \rightarrow V^0 \).

Since \( X \) has only countably many subvarieties over \( K \), let \( f X g \) be the set of all proper subvarieties of \( X \). By the hypothesis (c), we can find \( x_t \) such that \( x_t \in X \) and \( f X g \) with \( \lim_{t \to 1} \hat{f}(x_t) = 0 \). Let us fix a bijection \( : N ! N^m \). We denote \( x \in A \rightarrow x_1, \ldots, x_m \). Since \( fX g \) is Zariski dense in \( X^m \), in the same way as before, we can find a generic sequence of \( fX g \). Thus, we may assume that \( fX g \) is a generic sequence. Moreover, considering a subsequence of \( fX g \), we may further assume that \( fX g \rightarrow V^0 \). Further, we can see that \( \lim_{t \to 1} \hat{f}(x_t) = 0 \) and \( f X g \) where \( (x) = (x_1, \ldots, x_m) \). Since \( fX g \) is Zariski dense in \( X^m \), in the same way as before, we can find a generic sequence of \( fX g \). Thus, we may assume that \( fX g \) is a generic sequence. Moreover, considering a subsequence of \( fX g \), we may further assume that \( fX g \rightarrow V_K \). Further, we can see that \( \lim_{t \to 1} \hat{f}(x_t) = 0 \) and \( f X g \) where \( (x) = (x_1, \ldots, x_m) \).
\( P_{K}^{m-l} \). Thus, using the equidistribution theorem (cf. Theorem [5.1]), over \( (m-1)W \setminus X^m \),
\[
\lim_{t \to 1} \frac{x_{(t)}}{\deg(x_{(t)} \cdot \overline{W})} = \frac{(p_1(!) + m \cdot \varepsilon^e \cdot \overline{c_1 H_0}^{m-l})}{\deg P_{K}^{m-l} \cdot \overline{W}}.
\]

where \( \varepsilon = c_{m,n} \cdot X \). Moreover, if we denote by the restriction of \( p_1(!) + m \cdot \varepsilon \) to \( (m-1)W \setminus Y^m \), then
\[
\lim_{t \to 1} \frac{n \cdot (x_{(t)} \cdot \overline{W})}{\deg(x_{(t)} \cdot \overline{W})} = \frac{\varepsilon^e \cdot \overline{c_1 H_0}^{m-l}}{\deg P_{K}^{m-l} \cdot \overline{W}}.
\]

where \( Y^m = Y^m_K \). Note that on \( V \setminus (m-1)W \),
\[
\frac{x_{(t)} \cdot \overline{W}}{\deg(x_{(t)} \cdot \overline{W})} = \frac{(m-1) \cdot \overline{c_1 H_0}^{m-l}}{\deg P_{K}^{m-l} \cdot \overline{W}}.
\]

give rise to the same current via the isomorphism
\[
\frac{(p_1(!) + m \cdot \varepsilon \cdot \overline{c_1 H_0}^{m-l})}{\deg P_{K}^{m-l} \cdot \overline{W}}.
\]

are same forms on \( V \setminus (m-1)W \). Hence we have
\[
\frac{(p_1(!) + m \cdot \varepsilon \cdot \overline{c_1 H_0}^{m-l})}{\deg P_{K}^{m-l} \cdot \overline{W}} = \frac{(m-1) \cdot \overline{c_1 H_0}^{m-l}}{\deg P_{K}^{m-l} \cdot \overline{W}}.
\]

evertheless, \( L^0 \) is ample, by Proposition [3.1] and \( (2) \) of Proposition [3.2], there is a positive number \( \alpha \) such that \( \gamma_h(\mathbb{P}^0_{L,\alpha}) = \mathbb{A}^\alpha_{L} \).

Thus,
\[
fx^2 X (K) j_h^0(\alpha) = \alpha g \quad fx^2 X (K) j_h^0(\alpha) g = \gamma_h(\mathbb{P}^0_{L,\alpha}) = \mathbb{A}^\alpha_{L} \quad g.
\]

Therefore, the set \( fx^0 2 X (K) j_h^0(\alpha) g \) is Zariski dense in \( X^0 \) for any \( \alpha > 0 \). Thus, by the previous observation, \( X^0 = fx^0 \gamma_h(\alpha) \) for some torsion point \( x^0 \) of \( A^0 \). Hence, \( X \) is a coset of \( G(\mathbb{K}) \) because \( 1(\mathbb{K}) = X \). In particular, \( G(\mathbb{K}) \) is an abelian subvariety. Thus, it is sufficient to show that there is a torsion point \( x \) of \( A \) with \( \langle x \rangle = x^0 \). First, pick up \( x_1 \) of \( A \) with \( \langle x_1 \rangle = x^0 \). Since \( x^0 \) is a torsion point, there is a positive number \( n \) with \( nx_1 = \gamma_k(\alpha) \). Here \( G(\mathbb{K}) \) is a divisible group.
Thus, we can find $x_2 \not\in \mathbb{G}(X)$ with $nx_1 = nx_2$. Hence, if we set $x = x_1 \ldots x_k$, then we have a desired torsion point.

As corollary, we can recover the following Raynaud’s result ([8] and [9]).

**Corollary 8.2.** Let $A$ be an abelian variety over an algebraically closed field $\mathbb{F}$ of characteristic zero, and $Z$ a reduced subscheme of $A$. Then, every irreducible component of the Zariski closure of $Z(\mathbb{F}) \setminus A(\mathbb{F})_{\text{tor}}$ in $A$ is a translation of an abelian subvariety of $A$ by a torsion point. Consequently, there are finitely many abelian subvarieties $B_1, \ldots, B_n$ of $A$ and torsion points $b_1, \ldots, b_n$ of $A(\mathbb{F})$ such that

$$Z(\mathbb{F}) \setminus A(\mathbb{F})_{\text{tor}} = \bigcap_{i=1}^n (B_i(\mathbb{F})_{\text{tor}} + b_i)$$

**Proof.** Let $X$ be an irreducible component of the Zariski closure of $Z(\mathbb{F}) \setminus A(\mathbb{F})_{\text{tor}}$ in $A$. Then, it is easy to see that $X(\mathbb{F}) \setminus A(\mathbb{F})_{\text{tor}}$ is Zariski dense in $X$. Let $K$ be a subfield of $\mathbb{F}$ such that $K$ is a finitely generated field over $\mathbb{Q}$, and that $A$ and $X$ are defined over $K$. Then, $A(\mathbb{F})_{\text{tor}} = A(\overline{K})_{\text{tor}}$. Thus, we can see that $X(\overline{K}) \setminus A(\overline{K})_{\text{tor}}$ is Zariski dense in $X(\overline{K})$. Therefore, by Theorem 8.1, $X$ is a translation of an abelian subvariety of $A$ by a torsion point.

**Remark 8.3.** We assume that $\text{tr.deg}_Q(K) = 1$. Then, as in the introduction, we have two types of heights $\hat{h}_{\text{geom}}^L$ and $\hat{h}_{\text{arith}}^L$. Then, by virtue of (3) of Proposition 3.4.2, there is a positive constant $a$ with $\hat{h}_{\text{geom}}^L \leq a \hat{h}_{\text{arith}}^L$. This means that Bogomolov’s conjecture for the geometric height $\hat{h}_{\text{geom}}^L$ is a subtle problem. Actually, if the trace of $A$ is not zero, the conjecture does not holds in general. (For example, take $X$ as a non-torsion point $P$ with $\hat{h}_{\text{geom}}^L(P) = 0$.) However, we can expect the conjecture for $\hat{h}_{\text{geom}}^L$ if either the trace of $A$ is zero, or $X$ is a non-isotrivial curve and $A$ is its jacobian. For example, in [7], the author gives an affirmative answer under the assumption of singular fibers on the stable model of $X$.

**REFERENCES**

[1] A. Altman, The size function on abelian varieties, Trans. of A.M.S., 164(1972), 153–161.
[2] H. Gillet and C. Soulé, Arithmetic Intersection Theory, Publ. Math. (IHES), 72 (1990), 93–174.
[3] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109–326.
[4] S. Kawaguchi and A. Moriwaki, Inequalities for semistable families for arithmetic varieties, (alg-geom/9710007).
[5] S. Lang, Fundamentals of diophantine geometry, (1983), Springer.
[6] L. Moret-Bailly, Métriques permises, Séminaire sur les pinceaux arithmétiques: La Conjecture de Mordell, Astérisque 127 (1985), 29-87.
[7] A. Moriwaki, Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves, J. of AMS, 11 (1998), 569–600.
[8] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. math., 71 (1983), 207–233.
[9] M. Raynaud, Sous-variété d’une variété abélienne et points de torsion, in Arithmetic and Geometry vol.1, (1983).
[10] J. -P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. math., 15 (1972), 259–331.
[11] C. Soulé et al, Lectures on Arakelov Geometry, Cambridge studies in advanced mathematics, 33, Cambridge University Press.
[12] L. Szpiro, E. Ullmo, and S. Zhang, Equirépartition des petits points, Invent. math., 127 (1997), 337-347.
[13] E. Ullmo, Positivité et discétion des points algébriques des courbes, Ann. Math., 147 (1998), 167-179.
[14] S. Zhang, Positive line bundles on arithmetic varieties, J. of AMS., 8 (1995), 187–221.
[15] S. Zhang, Equidistribution of small points on abelian varieties, Ann. Math., 147 (1998), 159-165.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-8502, Japan
E-mail address: moriwaki@kusm.kyoto-u.ac.jp