Endogenous Neural stem Cells and Neurological Disorders

Madhav Rayate* and Nutan Gavhane

Department of Regenerative Medicine & Translational Sciences, School of Tropical Medicine, India

Submission: March 08, 2017; Published: May 30, 2017

*Corresponding author: Madhav Rayate, Department of Regenerative Medicine & Translational Sciences, School of Tropical Medicine, Kolkata, West Bengal, India, Tel: +91-8433-824-538; Email: madhavrayate@gmail.com

Abstract

Neural stem cells have potential of producing variety of neural cell types and useful to cure neurological conditions. NSCs are also produced from Embryonic Stem Cells (ESCs), induced pluripotent Stem cells (iPSCs) and embryonic Stem cells (ESCs) are capable to produce NSCs [1-5] in animal studies exogenous NSCs transplantation for neurological disorders shows good result which produced from ESC or iPSCs [6-11] these transplanted Exogenous ESC shows immunological response in recipient. in animal study model, few Study shows that ESCs formed tumour in rodents [10-16] in human risk of tumour formation must be evaluated [17]. Space occupying tumour is fatal due to limited space of intracranial cavity. Researchers show that new neurons can be generated from fibroblast cells by Trans differentiation which avoid risk of tumour formation [18].

Keywords: Regenerative medicine; Stem cell; Endogenous Neural Stem Cells (NSCs); Sub ventricular Zone (SVZ); Neuronal regeneration

Introduction

NSCs are multipotent in nature which produces glia and neural cells in human brain. In vitro study shows that Induced pluripotent stem cells (iPSCs) and embryonic Stem cells (ESCs) are capable to produce NSCs [1-5] in animal studies exogenous NSCs transplantation for neurological disorders shows good result which produced from ESC or iPSCs [6-11] these transplanted Exogenous ESC shows immunological response in recipient. in animal study model, few Study shows that ESCs formed tumour in rodents [10-16] in human risk of tumour formation must be evaluated [17]. Space occupying tumour is fatal due to limited space of intracranial cavity. Researchers show that new neurons can be generated from fibroblast cells by Trans differentiation which avoid risk of tumour formation [18].

It was find out that NSCs (Sub ventricular zone of lateral ventricles and Sub granular zone of dentate gyrus) produce new neurons And Glia in human brain in Adult [19-26] if there is trauma or pathological insult to brain then NSCs are stimulated to regenerate glia and new neurons [27,28]. Using endogenous NSCs as treatment for neurological disorders is best option because it avoids ethical issues and immunological responses also there is no chance of tumour formation.

Adult brain and endogenous NSCs

Endogenous NSCs generate neurons continuously in SVZ and SGZ In the adult brain unfortunately Phenotypically there is no specific marker protein for adult NSCs [29,30], NSCs express electrophysiological and morphological characteristics of astrocytes; express GFAP (glial fibrillary acidic protein) which is marker of Astrocytes.

The NSCs in the SGZ

Learning, memory, emotion, mood are monitored and regulated by hippocampus which is important part of limbic system. Through dentate gyrus, neuronal input passes from neocortex to the hippocampal circuitry. Dentategyrus composed of neurons called granule cells; NSCs in the SGZ produce intermediate neuronal progenitors, which produce new neurons [31,32-34] New neurons differentiate into mature granule cells (glutamatergic neurons) [35].

During functional maturation ,large number of neurons die ,only some of them integrated into neural network [36-38] newly generated immature neurons are unique distinguishable from those of mature granule cells by electrophysiological activities [39]. New neurons are involved in memory and learning task was shown by number of studies [40-42]. Performance of hippocampus dependent learning tasks by animals positively correlates with the amount of new neuron generation, hippocampus-dependent learning tasks increase the proliferation of neuronal progenitors in the SGZ proved
in animal models [40,43] animal model study shows that irradiation and antimitotic drug reduced proliferation of NSCs [42,44]. Decreased hippocampal neurogenesis shows increase in psychiatric symptoms in rodents and primates [45,46]. Antidepressants, serotonin selective reuptake inhibitors, mood stabilizers drugs increases neurogenesis [47,48]. If neurogenesis got disrupted then it definitely affect behaviour [49].

Potential of NSCs in sub ventricular zone

NSCs in SVZ area are derived from radial glia which is subpopulation of astrocytes [33,50,51]. Notch 1, sonic hedgehog (SHH), Galectin-1, Noggin, hepatocyte growth factor (HGF), basic fibroblast growth factor (FGF2), ciliary neurotropic factor (CNTF) all these signalling molecules are important in self-renewal and forming niche [52-59]. “Transit-amplifying cells” known as intermediate progenitors generated from NSCs, which proliferate and form progeny of immature new neurons which identified Wnt-β-Catenin signal molecule [60,61].

New neurons migration mechanism from SVZ

Along rostral migratory stream (RMS) pathway, migration of immature neurons to olfactory bulb occurred within a week period which generated in the SVZ [62,63]. Imaging studies in animal shows migration of iron-oxide-labelled new neurons [64,65]. These bipolar migrating new neurons form chains so new neurons slide over [22,66]. Cytoskeletal modifications occurred in new migrating neurons, active cytoskeletal modification occurs in the new neurons during migration in the chain, cyclin-dependent kinase 5 help in the chain formation of new neurons in the Sub ventricular zone and Rostral Migratory Stream [67]. New neurons expressed β1-integrin, PSA-NCAM [68,69], laminins, Metalloproteases and tenascin-C, proteoglycans like molecules help in adhesion between new neurons in the chain and help them to slide over [68,70,71].

New neurons used blood vessel as scaffold for migration [72] in the lateral ventricle, new neurons migration occurs in parallel with CSF flow [73] factors like glial cell line derived neurotropic factor (GDNF), netrin1, prokineticin2, brain derived neurotropic factor (BDNF) attract new neurons toward the olfactory bulb [68,74-76]. Chains of new neurons move through tunnel formed by astrocytes [66,71]. It was noted in mutant mice that aberrant astrocytic tunnel formation disrupts the migration of new neuron chains [77-81]. Due to proper interaction between new neurons and astrocytes, neuronal migration occurred. GABA secreted by migrating neurons takeby astrocytes in the RMS and control the migration of new neurons also trapping endothelial cell-derived BDNF [82-85]. Proteins slit 1 derived from new neuron acts on RMS astrocytes expressing slit1 receptor robo which guide astrocytes to form the tunnels [86].

Process of new neuron generation in the Olfactory Bulb

Chain of new neurons ultimately reach to olfactory bulb where new neurons detach themselves from chain and migrate to granule cell layer (GCL) and glomerular layer (GL), at last they differentiate into granule cells, periglomerular cells, olfactory interneurons by the help of tenascin-R and glycoprotein Reelin [87,88]. Some of these neurons are remains longer than year [89,90]. Newly added Interneurons are involved in odor discrimination but their actual function is unclear in the olfactory circuit [91,92].

Regeneration of neurons by endogenous NSCs

Trauma, stroke, neurodegenerative diseases are pathological insult in which NSCs proliferation increases and newly formed neurons appeared at damaged area. Recent study on human post mortem brain revealed that new neurons produce after insult in cerebral infarction patients [93-95] these findings shows that neuronal regeneration in mammalian brain is possible, but spontaneous regeneration of neuron should not compensate loss of neurons. In adult gerbil model and rat model of insult-induced neurogenesis studies showed that global ischemia causes death of pyramidal neurons in the CA 1 region of hippocampus activate proliferation of NSCs in SGZ region and increases number of new granule neurons in the GCL [96,97]. In ischemic stroke model, induced by middle cerebral artery occlusion (MCAO), small striatal projection neurons regenerated [98,99]. SVZ is the potential reservoir of NSCs, these neurons forms new progeny with strong migratory capacity and which can be compensate loss neuron in pathological conditions of brain. SVZ need to be target to restore and replenish lost function by producing new neurons.

Alterations in the microenvironment play important role in NSCs activation after insult to brain in ischemic stroke due to sudden onset, causes immune responses immediate after lesion, in which microglia and astrocytes activate surrounding infarcted area with T-lymphocytes infiltration into the damaged brain [100-102] these cells produce growth factors and cytokines which affect neurogenic function of NSCs [103,104]. NSCs proliferation stimulate by growth factors and cytokines in the SVZ [59,105,106] angiogenesis is important to activate NSCs after stroke, study shows that vasculature is important component of stem cell niche which activate proliferation of NSCs [53,107,108].

Formed new neurons formed chain and migrate towards damaged area [99,109] vascular endothelial cells produced stromal derived factor 1 (SDF1) and angiotropin 1 (Ang1) which control migration of new neurons and also controlled by monocyte chemo attractant protein 1 (MCP1) which expressed by activated astrocytes and microglia in the damaged area [109-113] the receptors of signals of these molecules like CXCR4, Tie2, CCR2 respectively expressed on migrating new neurons. Hence interaction of glia and vasculature regulate migration of new neurons in the injured brain.

SVZ derived GFP labelled cells possess long processes express NeuN and form synaptic structures in the damaged striatum 90 days after ischemia induction under electron
microscope [99] gliogenic proliferation of NSCs occurs more after insult than neurogenic [114] migrating new neurons die before differentiating into mature neurons in the damaged area [98]. NSCs don’t show neurogenic differentiation in SVZ [115,116]. Apparently there are limitations of regeneration of damaged brain tissue by activating endogenous NSCs, some of studies shows beneficial effect in which neurogenesis promoted such as treatment with erythropoietin, statins, activated protein C,HDAC inhibitors and EGF/FGF-2 [117,119-124].

Regeneration of myelin by endogenous NSCs

Myelin sheath covers axons and nerve conduction is important function of it which carries electrical impulses. Oligodendrocyte form myelin sheath in central nervous system. In multiple sclerosis demyelination occurred. Demyelination impairs nerve impulse conduction, causes variety of neurological impairments. NG 2 chondroitin sulphate expressing endogenous oligodendrocyte progenitor cells regenerate oligodendrocyte [125,126]. NSCs in SVZ are also involve in regeneration of oligodendrocyte, recent study shows it [127-129].

Oligodendrocyte lineage transcription factor Olig2 express by NSCs and progenitors in the SVZ under physiological conditions, generate oligodendrocyte progenitors. These oligodendrocyte progenitors cells express PSA-NCAM marker but not beta3 tubulin which is neuronal lineage marker and migrate to fimbria fornix, striatum, corpus callosum where they differentiate into nonmyelinating progenitors and mature myelinating oligodendrocyte [127,128].

Demyelination in rodents model induced by chemical markedly promotes this process [127,129]. Matureoligodendrocyte formed by oligodendrocyte progenitors after migration and regenerate myelin on the affected axons. Researchers find out factors involved in this process are namely EGF, IGF-1, Wnt-β-catenin mediator Tcf4, notch1, erythropoietin [130-138]. In animal demyelination model and in patients with chronic MS, Phenomenon of Remyelination is disturbed [120,139-141].

Demyelination is the process in which regeneration of myelin sheath is required to restore normal function, in these conditions spontaneous regeneration of myelin will not completely recover injury. Allotransplantation of exogenous cells shows myelination in animal model of demyelination. For successful neuronal regeneration, the appropriate regeneration of oligodendrocyte is also needed

Conclusion

SVZ is the store house of NSCs which produce new neurons that ultimately travel to damaged part of brain and regenerate damaged tissue of brain .NSCs differentiate into mature neurons and in oligodendrocyte which contribute to Remyelination. It was observed in traumatic injury or in hypoxic condition to brain tissue that NSCs in SVZ proliferate and regenerate intermediate new neuron which transforms into mature neuronal cells; these mature neuronal cells travel to injured site and contribute to restore function of that damaged part. Using of exogenous NSCs induced from ESCs or iPSCs are facing ethical problem, shows immunological responses in recipient and having ability of tumour formation. Application of endogenous NSCs needs to be evaluated on the basis of molecular study in preclinical animal model. Need to be evaluating exact molecular mechanism which control endogenous NSC and their progeny in near future. Self-repair strategy governed by Endogenous NSC is needed to be established for clinical application in brain tissue damage.

References

1. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signalling. Stem Cells 23: 1234-1241.
2. Okada Y, Matsuzato A, Shimazaki T, Enoki R, Kozum, A, et al. (2008) Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem Cells 26(12): 3086-3098.
3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4): 663-676.
4. Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1): 39-49.
5. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12): 1129-1133.
6. Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428): 754-756.
7. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, et al. (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19): 4694-4705.
8. Kim JH, Auerbach JM, Rodriguez-Gómez JA, Velasco I, Gavin D, et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418 (6893): 50-56.
9. McDonald JW, Liu XZ, Qiu Y, Liu S, Mickey SK, et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5(12): 1410-1412.
10. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, et al. (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci 105(15): 5856-5861.
11. Tsubo O, Miura K, Okada Y, Fujimitsu K, Mukaibo M, et al. (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci 107(28): 12704-12709.
12. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, et al. (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8): 743-745.
13. Sawamoto K, Nakao N, Kakishita K, Ogawa Y, Toyama Y, et al. (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J Neurosci 21(11): 3895-3903.
14. Sawamoto K, Nakao N, Kobayashi K, Matsuura N, Takahashi H, et al. (2001) Visualization, direct isolation, and transplantation of midbrain dopaminergic neurons. Proc Natl Acad Sci 98(11): 6423-6428.
Characteristics of astrocytes. Mol Cell Neurosci 23(3): 373-382.

Subpopulation of nestin-expressing progenitor cells in the adult Neurosci 27(8): 447-452.

Milestones of neuronal development in the adult hippocampus. Trends cells. Curr Opin Neurobiol 14(1): 125-131.

Morshead CM, van der Kooy D (2004) Disguising adult neural stem periventricular neural stem cells: subventricular zone astrocytes, and CNS repair. Philos Trans R Soc Lond B Biol Sci 363(1500): 2111-2122.

Okano H, Sawamoto K (2008) Neural stem cell involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 363(1500): 2111-2122.

Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10 (2): 153-163.

Morphhead CM, van der Kooy D (2004) Disguising adult neural stem cells. Curr Opin Neurobiol 14(1): 125-131.

Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neural development in the adult hippocampus. Trends Neurosci 27(8): 447-452.

Filipovic V, Kronenberg G, Pinheira T, Reuter K, Steiner B, et al. (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23(3): 373-382.

How to cite this article: Madhav RR, Nutan G. Endogenous Neural stem Cells and Neurological Disorders. Open Access J Neurol Neurosurg. 2017; 4(1): 555627. DOI: 10.19080/OAJNN.2017.04.5556227
MRI of neural cell migration dynamics in the mouse brain. Bovetti, S, Bovolin, P, Perroteau, I, Puche, AC (2007) Subventricular zone-derived neural stem cells and their relation to brain tumours. Cells Tissues Organs 27(2): 408-419.

Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp Neurol 183(2): 298-310.

Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal. Stem Cells 27(2): 408-419.

Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39(6): 937-950.

Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal. Stem Cells 27(2): 408-419.

Jackson EL, Alvarez-Buylla A (2008) Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs 180(1-2): 212-224.

Yadigar G, Marino S (2009) Adult neural stem cells and their role in brain pathology. J Pathol 217(2): 242-253.

Foroni C, Galli R, Cipelletti B, Caumo A, Alberti S (2007) Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res 67(8): 3725-3733.

Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T, Nikolcheva T, et al. (2007) Beta-catenin signalling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 25(11): 2827-2836.

Nieman BJ, Shyu JY, Rodriguez JJ, Garcia AD, Joyner AL, et al. (2010) in vivo MRI of neural cell migration dynamics in the mouse brain. Neuroimage 50 (2): 456-464.

Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J, Alvarez-Buylla A, Koresky AP (2006) Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32(3): 1150-1157.

Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271 (5251): 978-981.

Hirota, Y, Ohshima T, Kaneko, N, Ikeda, M, Iwata T, et al. (2007) Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci 27(47): 12829-12838.

Murase S, Horwitz, AF (2002) Deleted in colorectal carcinoma and differentially expressed inmediates the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22(9): 3568-3579.

Ono, K, Tomaszewicz, H, Magnuson, T, Rutishauser, U (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13(3): 595-609.

Bowett, S, Bowolin, P, Perroteau, I, Puche, AC (2007) Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling. Eur J Neurosci 25(7): 2021-2033.

Jankovskı A Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371(3): 376-396.

Whitman MC, Fan W, Rela L, Rodriguez-Gil DJ, Greer CA (2009) Blood vessels form a migratory scaffold in the rostral migratory stream. J Comp Neurol 516(2): 94-104.

Sawamoto K, Wichterle H, Gonzalez-Perez O, Chollin JA, Yamada M, et al. (2006) Neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761): 629-632.

Ng KL, Li JD, Cheng MY, Leslie FM, Lee AG, et al. (2005) Dependence of olfactory bulb neurogenesis on protein kinase C signalling. Science 308(5730): 1923-1927.

Paratucha G, Ibañez CF, Ledda F (2006) GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci 31(3): 505-514.

Chiaramello S, Dalmasso G, Bezín L, Marcel D, Jourdan F, et al. (2007) BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci 24(7): 1780-1790.

Chazal G, Durbee Jankovski A, Rough G, Cremer H (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20(4): 1446-1457.

Ghasghehei HT, Weber J, PeVny L, Schmid R, Schwab MH, et al. (2006) The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci USA 103(6): 1930-1935.

Kim WR, Kim Y, Eun B, Park OH, Kim H, et al. (2007) Impaired migration in the rostral migratory stream but spared olfactory function after the elimination of programmed cell death in Bax knock-out mice. J Neurosci 27(52): 14392-14403.

Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24(35): 7623-7631.

Snapyan M, Lemasson M, Brill MS, Blais M, Massouh M, et al. (2009) Vascularature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci 29(13): 4172-4188.

García-Marqués J, De Carlos JA, Greer CA, López-Marcasalle L (2010) Different astroglia permissivity controls the migration of olfactory bulb interneuron precursors. Glia 58 (2): 218-230.

Mason HA, Ito S, Corfas G (2001) Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: inducers, inhibitors, and repellents. J Neurosci 21(19): 7654-7663.

Kaneko N, Marín O, Koike M, Hirota Y, Uchiyama Y, et al. (2010) New Neurons Clear the Path of Astrocytic Processes for Their Rapid Migration in the Adult Brain. Neurot. 67(2): 213-223.

Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5(10): 939-945.
88. Saghatelian A, de Chevigny A, Schachner M, Lledo PM (2004) Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat Neurosci 7(4): 347-356.

89. Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of Olfaction. J Neurosci 22(14): 6106-6113.

90. Yamaguchi M, Mori K (2005) Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc Natl Acad Sci USA 102(27): 9697-9702.

91. Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, et al. (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA 97(4): 1823-1828.

92. Imayoshi I, Sakamoto M, Ohkusa T, Takao K, Miyakawa T, et al. (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10): 1153-1161.

93. Jin K, Wang X, Xie L, Mao XD, Zhu W, et al. (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103(15): 13198-13202.

94. Macas J, Nern C, Plate KH, Momma S (2006) Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 26(50): 13114-13119.

95. Martí-Fábregas J, Romaguera-Ros M, Gómez-Pinedo U, Martínez-Ramírez S, Jiménez-Xarrié E, et al. (2010) Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74(5): 357-365.

96. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18(19): 7768-7778.

97. Nakatomi H, Kuriu T, Obake S, Yamamoto S, Hatano O. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002 110 (4): 1226-1240.

98. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9): 963-670.

99. Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Bartra J, et al. (2006) Adult-generated neurons contribute to the olfactory bulb. Nature 442(7101): 194-199.

100. Shen Q, Wang Y, Kokoyev E, Lin G, Chuang SM, et al. (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3(5): 289-300.

101. Tavazoie M, Van der Veken L, Silva-Vargas V, Louismaat S, Colonna L, et al. (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3(3): 279-288.

102. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, et al. (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28(3): 545-554.

103. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, et al. (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1 alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101(52): 18117-18122.

104. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50): 13007-13016.

105. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kullar T, et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24(3): 739-747.

106. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, et al. (2007) Monocyte chemotactractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27(6): 1213-1224.

107. Li L, Harms KM, Ventura PB, Lagace DC, Eisch AJ, et al. (2010) Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia 58 (13): 1610-1619.

108. Deierborg T, Staffin K, Pesic J, Roybon L, Brundin P, et al. (2009) Absence of striatal newborn neurons with mature phenotype following defined striatal and cortical excitotoxic brain injuries. Exp Neuro1219(1): 363-367.

109. Shimada IS, Peterson BM, Spees JL (2010) Isolation of Locally Derived Stem/Progenitor Cells From the Peri-Infarct Area That Do Not Migrate From the Lateral Ventricle After Cortical Stroke. Stroke 41 (9): e552-e560.

110. Cooper O, Issaon O (2004) Intrastralal transforming growth factor alpha delivery to a model of Parkinson's disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 24(41): 8924-8931.

111. Iwai, M, Stetler, R.A, Xing, J, Hu, X, Gao, Y, Zhang, W, Chen, J, Cao, G. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke 2010, 41 (5): 1032-1037.

112. Shen J, Zhang ZG, Li Y, Wang Y, Wang L, et al. (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53(6): 743-751.

113. Thiyagarajan, M, Fernandez, J.A, Lane, S.M, Griffin, J.H, Zlokovic, B.V. Activated protein C promotes neovascularization and neurogenesis in postischemic brain via protease-activated receptor 1. J. Neurosci. 2008, 28 (48): 12788-12797.

114. Kim HJ, Leeps P, Chuang DM (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110(4): 1226-1240.

115. Yoshikawa G, Momijaya T, Oya S, Taki K, Tanaka J, et al. (2010) Induction of striatal neurogenesis and generation of region-specific...
121. Aguirre A, Rizvi TA, Ratner N, Gallo V (2005) Over expression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci 25(48): 11092-11106.

122. Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE, et al. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23(20): 7710-7718.

123. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, et al. (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13): 1571-1585.

124. Zhang Y, Angaw AT, Gurfein BT, Zameer A, Snyder BJ, et al. (2009) Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA 106(45): 19162-19167.

125. Zhang L, Chopp M, Zhang RL, Wang L, Zhang J, et al. (2010) Erythropoietin amplifies stroke-induced oligodendrogenesis in the rat. PLoS One 5(6): e10106.

126. Back SA, Tuohey TM, Chen H, Wallingford N, Craig A, Struve J, et al. (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11(9): 966-972.

127. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18 (2): 601-609.

128. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, et al. (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7): 1749-1758.

129. Ben-Hur T, Goldman SA (2008) Prospects of cell therapy for disorders of myelin. Ann N Y Acad Sci 1142: 218-249.

130. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, et al. (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6): 553-565.

131. Aguirre A, Dupree JL, Mangin JM, Gallo V (2007) A functional role for EGFR signaling in myelination and remyelination. Nat. Neurosci 10(8): 990-1002.

120. Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE, et al. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23(20): 7710-7718.

121. Zhang Y, Angaw AT, Gurfein BT, Zameer A, Snyder BJ, et al. (2009) Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA 106(45): 19162-19167.

122. Zhang L, Chopp M, Zhang RL, Wang L, Zhang J, et al. (2010) Erythropoietin amplifies stroke-induced oligodendrogenesis in the rat. PLoS One 5(6): e10106.

123. Back SA, Tuohey TM, Chen H, Wallingford N, Craig A, Struve J, et al. (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11(9): 966-972.

124. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18 (2): 601-609.

125. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, et al. (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7): 1749-1758.

126. Ben-Hur T, Goldman SA (2008) Prospects of cell therapy for disorders of myelin. Ann N Y Acad Sci 1142: 218-249.

127. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, et al. (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6): 553-565.

130. Aguirre A, Dupree JL, Mangin JM, Gallo V (2007) A functional role for EGFR signaling in myelination and remyelination. Nat. Neurosci 10(8): 990-1002.

131. Aguirre A, Rizvi TA, Ratner N, Gallo V (2005) Over expression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci 25(48): 11092-11106.

132. Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE, et al. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23(20): 7710-7718.

133. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, et al. (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13): 1571-1585.

134. Zhang Y, Angaw AT, Gurfein BT, Zameer A, Snyder BJ, et al. (2009) Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA 106(45): 19162-19167.

135. Zhang L, Chopp M, Zhang RL, Wang L, Zhang J, et al. (2010) Erythropoietin amplifies stroke-induced oligodendrogenesis in the rat. PLoS One 5(6): e10106.

136. Back SA, Tuohey TM, Chen H, Wallingford N, Craig A, Struve J, et al. (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11(9): 966-972.

137. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18 (2): 601-609.

138. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, et al. (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7): 1749-1758.

139. Ben-Hur T, Goldman SA (2008) Prospects of cell therapy for disorders of myelin. Ann N Y Acad Sci 1142: 218-249.

140. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, et al. (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6): 553-565.

141. http://creativecommons.org/licenses/by/3.0/.

This work is licensed under Creative Commons Attribution 4.0 License
DOI: 10.19080/OAJNN.2017.04.555627

Your next submission with Juniper Publishers will reach you the below assets
- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
https://juniperpublishers.com/online-submission.php
