Local Rank Modulation for Flash Memories

Michal Horovitz
Dept. of Computer Science
Technion-Israel Institute of Technology
Haifa 32000, Israel
Email: michalho@cs.technion.ac.il

Tuvi Etzion
Dept. of Computer Science
Technion-Israel Institute of Technology
Haifa 32000, Israel
Email: etzion@cs.technion.ac.il

Abstract—Local rank modulation scheme was suggested recently for representing information in flash memories in order to overcome drawbacks of rank modulation. For \(0 < s \leq t \leq n\) with \(s\) divides \(n\), an \((s, t, n)\)-LRM scheme is a local rank modulation scheme where the \(n\) cells are locally viewed cyclically through a sliding window of size \(t\) resulting in a sequence of small permutations which requires less comparisons and less distinct values. The gap between two such windows equals to \(s\). In this work, encoding, decoding, and asymptotic enumeration of the \((1, 3, n)\)-LRM scheme is studied. The techniques which are suggested have some generalizations for \((1, t, n)\)-LRM, \(t \geq 3\), but the proofs will become more complicated. The enumeration problem is presented also as a purely combinatorial problem. Finally, we prove the conjecture that the size of a constant weight \((1, 2, n)\)-LRM Gray code with weight two is at most \(2n\).

I. INTRODUCTION

Flash memory is a non-volatile technology that is both electrically programmable and electrically erasable. It incorporates a set of cells maintained at a set of levels of charge to encode information. While raising the charge level of a cell is an easy operation, reducing the charge level requires the erasure of the whole block to which the cell belongs. For this reason the charge is injected into the cell over several iterations. Such programming is slow and can cause errors since cells may be injected with extra unwanted charge. Other common errors in flash memory cells are due to charge leakage and reading disturbance that may cause charge to move from one cell to its adjacent cells. In order to overcome these problems, the novel framework of rank modulation was introduced in [3]. In this setup, the information is carried by the relative ranking of the cells’ charge levels and not by the absolute values of the charge levels. Denote the charge level in the \(i\)th cell by \(c_i\), \(0 \leq i < n\), and \(c = (c_0, c_2, \ldots, c_{n-1})\) is the sequence of the charges in \(n\) cells. A codeword in this scheme is the permutation defined by the order of the charge levels, from the highest one to the lowest one, e.g., if \(n = 5\) and \(c = (3, 5, 2, 7, 10)\) then the permutation, i.e., the codeword in the rank modulation scheme, is \([5, 4, 2, 1, 3]\). This allows for more efficient programming of cells, and coding by the ranking of the cells’ charge levels is more robust to charge leakage than coding by their actual values. The push-to-the-top operation is a basic minimal cost operation in the rank modulation scheme by which a single cell has its charge level increased such that it will be the highest of the set.

A drawback of the rank modulation scheme is the need for a large number of comparisons when reading the induced permutation. Furthermore, distinct \(n\) charge levels are required for a group of \(n\) cells. The local rank modulation scheme was suggested in order to overcome these problems. In this scheme, the \(n\) cells are locally viewed through a sliding window, resulting in a sequence of permutations for a much smaller number of cells which requires less comparisons and less distinct values. For \(0 < s \leq t \leq n\), where \(s\) divides \(n\), the \((s, t, n)\)-LRM scheme, defined in [2], [5], is a local rank modulation scheme over \(n\) physical cells, where \(t\) is the size of each sliding window and \(s\) is the gap between two such windows. In this scheme the permutations are over \(\{1, 2, \ldots, t\}\), i.e., form \(S_t\), and the push-to-the-top operation merely raises the charge level of the selected cell above those cells which are comparable with it. We say a sequence with \(\frac{n}{s}\) permutations from \(S_t\) is an \((s, t, n)\)-LRM scheme realizable if it can be demodulated to a sequence of charges in \(n\) cells under the \((s, t, n)\)-LRM scheme. Except for the degenerate case where \(s = t = n\), not every sequence is realizable.

The \((1, 2, n)\)-LRM scheme was defined in [2] in order to get the simplest hardware implementation. The demodulated sequences of permutations in this scheme contain all the binary words except two, the all-ones and all-zeros sequences. Therefore, the number of codewords in this scheme is \(2^n - 2\).

In this paper we focus on the \((1, t, n)\)-LRM schemes for \(t \geq 3\), and suggest a demodulation method for these schemes. The \((1, t, n)\)-LRM scheme is a local rank modulation scheme over \(n\) physical cells, where the size of each sliding window is \(t\), and each cell starts a new window. Since the size of a sliding window is \(t\), demodulated sequences of permutations in this scheme contain \(t!\) permutations. Therefore, we need \(t!\) symbols to present the demodulated sequences of permutations.

Let \(s = (s_1, s_2, \ldots, s_t)\) be an order of the \(t!\) permutations from \(S_t\), and \(\Sigma = \{1, 2, \ldots, t!\}\) be an alphabet where \(i\) represents the permutation \(\sigma_i\). A sequence \(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1})\) over the alphabet \(\Sigma\) is called a base-
\textbf{word} in the \((1, t, n)\)-LRM scheme, and it is realizable, if there exists a sequence of charges \(c = (c_0, c_1, \ldots, c_{n-1})\), such that for each \(i\), \(0 \leq i \leq n - 1\), \(\alpha_i\) represent the permutation induced by \(c_i, c_{i+1}, \ldots, c_{i+t-1}\), where indices are taken modulo \(n\). The indices in the base-words and codewords are also taken modulo \(n\) as in the charge levels.

In this paper we produce a mapping method, in which each \(\alpha\), a base-word over the alphabet of size \(t!\), is mapped to a codeword \(g = (g_0, g_1, \ldots, g_{n-1})\) over an alphabet of size \(t\). A codeword is called \textit{legal} if there exists a realizable base-word which is mapped to it. We have to make sure that two distinct realizable base-words are mapped into two distinct legal codewords.

Let \(M_t\) be the number of legal codewords in the \((1, t, n)\)-LRM scheme. Clearly, \(M_t \leq t^n\), but this upper bound is not tight since there exist illegal codewords. We conjecture that \(\lim_{n \to \infty} \frac{M_t}{n!} = 1\) and prove this conjecture for \(t = 3\) and \(t = 4\).

The rest of this paper is organized as follows. The encoding, decoding and asymptotic enumeration of \((1, 3, n)\)-LRM scheme is presented in Section II. Generalizations, especially for the enumeration technique for the \((1, t, n)\)-LRM scheme, \(t > 3\), is given in Section III. The generalization of the asymptotic enumeration problem is presented as a combinatorial problem. The solution for the \((1, 4, n)\)-LRM scheme is also given. In Section IV it is proved that the size of a constant weight \((1, 2, n)\)-LRM Gray code with weight two is at most \(2n\). Thus, proving a conjecture from [2]. In Section V conclusion and problems for future research are presented.

\section{The \((1, 3, n)\)-LRM Scheme}

In the \((1, 3, n)\)-LRM scheme the size of each sliding window is 3. Therefore, an alphabet of size \(3!\) is required to present the demodulated sequences of permutations.

\begin{align*}
s_1 &= [1, 2, 3] \\
s_2 &= [1, 3, 2] \\
s_3 &= [2, 1, 3] \\
s_4 &= [3, 1, 2] \\
s_5 &= [2, 3, 1] \\
s_6 &= [3, 2, 1]
\end{align*}

The alphabet of the base-words is \(\Sigma = \{1, 2, \ldots, 6\}\), where the symbol \(\ell\) represents the permutation \(s_\ell\). Let \(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1})\) be a base-word. Note that the last two cells which determine \(\alpha_i\) \((0 \leq i \leq n - 1)\) are the first two cells which determine \(\alpha_{i+1}\), i.e., the permutation related to \(\alpha_{i+1}\) is obtained from \(\alpha_i\) by the following way. The symbol 1 in the permutation related to \(\alpha_{i}\) is omitted, the symbols 2, 3 in the permutation are replaced with 1, 2, respectively, and a new symbol 3 is inserted before 1, 2, between them, or after both of them. Therefore, given \(\alpha_i\), there are exactly 3 options for \(\alpha_{i+1}\).

Let \(\Sigma_1 = \{1, 3, 5\}\) and \(\Sigma_2 = \{2, 4, 6\}\) be a partition of \(\Sigma\) into the even and the odd symbols, respectively. Note that for each \(\Sigma_i\), the permutations related to the symbols in \(\Sigma_i\) agree on the order of cells 2 and 3. Therefore, they also agree on the 3 possibilities of their succeeding permutation. Denote the set of symbols of these succeeding permutations by \(\hat{\Sigma}_i\). Thus, we have \(\hat{\Sigma}_1 = \{1, 2, 4\}\) and \(\hat{\Sigma}_2 = \{3, 5, 6\}\).

The base-word \(\alpha\) is mapped to a codeword \(g = (g_0, g_1, \ldots, g_{n-1})\) over the alphabet \(\{0, 1, 2\}\). The relations between \(\alpha_{i-1}, \alpha_i\), and \(g_i\), where \(0 \leq i \leq n - 1\), are presented in Table I. This table induces a mapping from the realizable base-words to the codewords. As mentioned before, given \(\alpha_{i-1}\), there are three options for \(\alpha_i\). In all these options the sub-permutation of \(\{1, 2\}\) is the same, and the difference is the index of symbol 3 in the permutation related to \(\alpha_i\). Thus, \(g_i\) represents the index of symbol 3 in this permutation and it equal to the number of symbols which are to the right of the symbol 3 in the permutation related to \(\alpha_i\). In other words, \(g_i\) represents the relation between \(c_{i+2}\), the charge level in cell \(i + 2\), and the charge levels in two cells which proceed it, i.e., \(c_i\) and \(c_{i+1}\).

\begin{table}[h]
\begin{tabular}{|c|c|c|c|}
\hline
\(\alpha_{i-1} \in \Sigma_1^1\) & \(\alpha_{i-1} \in \Sigma_2^1\) & \(\alpha_{i-1} \in \Sigma_1^2\) & \(\alpha_{i-1} \in \Sigma_2^2\) \\
\hline
\(\alpha_i = 1\) & \(\alpha_i = 2\) & \(\alpha_i = 3\) & \(\alpha_i = 4\) \\
\hline
\(g_i = 0\) & \(g_i = 1\) & \(g_i = 1\) & \(g_i = 2\) \\
\hline
\end{tabular}
\caption{The encoding key of the \((1, 3, n)\)-LRM scheme}
\end{table}

Note that there might exist non-realizable base-words which are mapped to codewords by this method. A base-word \(\alpha\), which can be mapped to a codeword in this method, must satisfy only the dependencies between \(\alpha_i\) and \(\alpha_{i+1}\) \((0 \leq i \leq n - 1)\), but it still can be non-realizable. The \(n\) cells are viewed cyclically, i.e., the charge of the last cell, \(c_{n-1}\) is compared with the charge in the first two cells, \(c_0\) and \(c_1\), and the same works for the three charge levels \(c_{n-2}\), \(c_{n-1}\), and \(c_0\). Therefore, there might exists a non-realizable dependency between the charge levels in the last two cells and the charge levels in the first two cells. Such a non-realizable base-word will be called a \textit{cyclic non-realizable} base-word. For example, the following base-words are cyclic non-realizable.

- \(1^n\) - the charge levels are always decreased.
- \(6^n\) - the charge levels are always increased.
- \((2, 5)^n/2\), where \(n\) is even - the charge level of each cell is between the charge levels of the two cells which proceed it.

\textbf{Theorem 1.} Table I provides an one-to-one mapping between the realizable base-words and the legal codewords.

\textbf{Proof:} Obviously, each base-word is mapped to exactly one codeword. Now, we prove that the other direction is also true. Clearly, \(1^n\) is an illegal codeword as the charge level of each cell should be between the charge levels of the two cells which proceed it. Thus, given a legal codeword \(g = (g_0, g_1, \ldots, g_{n-1})\), there
exists $0 \leq i \leq n - 1$, such that $g_i \in \{0, 2\}$. If $g_i = 0$ then we have $\alpha_i \in \{1, 3\}$, i.e., α_i is odd. Thus, α_{i+1} is determined by an entry in the first row in Table II where the column is chosen by the value of g_{i+1}. If $g_i = 2$ then we have $\alpha_i \in \{4, 6\}$, i.e., α_i is even. Thus, α_{i+1} is determined by an entry in the second row in Table II where the column is chosen by the value of g_{i+1}. Now, it is easy to determine $\alpha_{i+2}, \alpha_{i+3}, \ldots, \alpha_{i+n-1}, \alpha_{i+n} = \alpha_i$ one after one in this cyclic order. Note that if α_i is not equal to an optional initial value (from the set $\{1, 3\}$ if $g_i = 0$ and from $\{4, 6\}$ if $g_i = 2$) then we can conclude that g is illegal.

Decoding a given codeword to a base-word doesn’t guarantee that the codeword is legal, because the accepted base-word may be cyclic non-realizable. For example, the cyclic non-realizable base-word $\alpha = 1^n$ is mapped to the illegal codeword $g = 0^n$. Given such a codeword, it would be interesting to decide efficiently if it is a legal codeword or not.

Next, the main theorem for $(1, 3, n)$-LRM schemes is given.

Theorem 2. If M_3 is the number of legal codewords in the $(1, 3, n)$-LRM scheme then $\lim_{n \to \infty} \frac{M_3}{3^n} = 1$.

Proof: Note that g_i is determined by c_i, c_{i+1}, and c_{i+2}. $g_i = 0$ if c_{i+2} is lower than c_i and c_{i+1}; $g_i = 1$ if c_{i+2} is between c_i and c_{i+1}; and $g_i = 2$ if c_{i+2} is higher than both of them. For each i, $3 \leq i \leq n$, we provide two properties regarding the charge levels c_{i-1} and c_i:

(Q.1) the permutation induced by c_{i-1} and c_i ([1, 2] or [2, 1]);

(Q.2) the set of all possible pairs of the relations between the charge levels c_{i-1} and c_i and the charge levels c_0 and c_1.

The elements of the set defined in (Q.2) will be denoted by pairs (x, y), $x, y \in \{0, 1, 2\}$, where x represents the relation between c_{i-1} and the first two cells, and y represents the relation between c_i and the first two cells. Note, that not all the nine pairs (x, y) can be obtained for a given permutation defined by (Q.1).

We call each set of properties defined by (Q.1) and (Q.2) a *state*, and the state at index i will be denoted by P_i. Given a sub-codeword $g' = (g_0, g_1, \ldots, g_{n-4}, g_{n-3})$, the states in the sequence $(P_3, P_4, \ldots, P_{n-1})$ are determined one after one in this order. It is easy to verify that if $P_i = P_j$ for some $3 \leq i < j < n - 1$ then $P_{i+1} = P_{j+1}$. A state which has the all possibilities in the second property will be called a *complete state*. It is easy to verify that in the $(1, 3, n)$-LRM there are two complete states.

1) state 1: $[1, 2], \{(0, 0), (1, 1), (1, 0), (2, 2), (0, 1), (1, 2)\}$.
2) state 2: $[2, 1], \{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)\}$.

Given g_{i-1}, the succeeding state P_{i+1} of a state P_i which is a complete state, is given in Table III.

g_{i-1}	0	1	2
state 1	state 1	state 2	state 2
state 2	state 1	state 1	state 2

TABLE II: Succeeding states in the $(1, 3, n)$-LRM scheme

Denote by π the permutation defined by the charge levels in the first two cells. Given π and $g' = (g_0, g_1, \ldots, g_{n-4}, g_{n-3})$, the sub-base-word $(\alpha_0, \alpha_1, \ldots, \alpha_{n-3})$ of a realizable base-word which corresponds to π and g' is determined unambiguously. But, $\alpha_{n-2}, \alpha_{n-1}$ might have a few options. These options are determined by the state P_{n-1} and the permutation π. Each option provides a distinct base-word which is represented by the state P_{n-1} and the permutation π. For example the permutation $\pi = [2, 1]$ and the sub-codeword $g' = 2^{n-2}$ imply that the charge levels are always increased, where c_0 is the lowest, and c_{n-1} is the highest. Therefore, the only base-word it represents is $(6, 6, \ldots, 6, 3, 2)$, where $P_{n-1} = ([2, 1], \{(2, 2)\})$.

In Table III we enumerate the number of base-words represented by π and P_{n-1} for state 1 or state 2. Given g', c_0 is compared with c_{n-2} and c_{n-1}, to obtain g_{n-2}; and c_1 is compared with c_{n-1} and c_0, to obtain g_{n-1}. Note, that some different pairs (x, y) of a given state result in the same pair (g_{n-2}, g_{n-1}) for a given π. Note also that in Table III the sum of values in each row and in each column equals to $9 = 3^2$.

π	4
state 1	5
state 2	4

TABLE III: The number of base-words represented by the complete states in the $(1, 3, n)$-LRM scheme

If a sub-codeword $g' = (g_0, g_1, \ldots, g_{n-4}, g_{n-3})$ contains the sequence $(2, 0, 1, 1)$ as a subsequence at indices $(i-3, i-2, i-1, i)$, then this sequence ends with state 1, i.e., P_{i+2} is state 1. The reason is that in this case c_{i+1} and c_{i+2} have no dependency on the charge levels of c_{i-3} or c_{i-2}, i.e., each one of c_{i+1} and c_{i+2} can be lower than, between, or higher than c_{i-3} and c_{i-2}. Therefore, the relation between c_{i+1} and c_{i+2}, and the first two cells, c_0 and c_1, has all the possibilities, i.e., P_{i+2} is a complete state. It is easy to verify that c_{i+2} is lower than
which don’t include labels on the outgoing edge from \(P \) of sequences of length levels. The position of the symbol can conclude that the number of legal codewords in be the number of sub-codewords of length \(n \).

If no such permutation is given then the task becomes easy if for some \(\alpha_i \) the alphabet of the base-words has size \(\pi \). We call each set of properties defined by (Q.1) and (Q.2) a state, and the state at index \(i \) will be denoted by \(P_i \). Given a sub-codeword \(g' = (g_0, g_1, \ldots, g_{t+1}) \), the sub-base-word \((\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \) of a realizable base-word which corresponds to \(\pi \) and \(g' \) is determined unambiguously. But, \(\alpha_{n-t+1}, \alpha_{n-t+2}, \ldots, \alpha_{n-1} \) might have a few options. These options are determined by the state \(P_{n-1} \) and the permutation \(\pi \). Each option provides a distinct base-word which is represented by the state \(P_{n-1} \) and the permutation \(\pi \).

Denote by \(\pi \) the permutation defined by the charge levels in the first \(t-1 \) cells. Given \(\pi \) and \(g' = (g_0, g_1, \ldots, g_{t+1}) \), the sub-base-word \((\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \) of a realizable base-word which corresponds to \(\pi \) and \(g' \) is determined unambiguously. But, \(\alpha_{n-t+1}, \alpha_{n-t+2}, \ldots, \alpha_{n-1} \) might have a few options. These options are determined by the state \(P_{n-1} \) and the permutation \(\pi \). Each option provides a distinct base-word which is represented by the state \(P_{n-1} \) and the permutation \(\pi \).

We generate a table to enumerate the number of base-words represented by \(\pi \) and \(P_{n-1} \) for the \((t-1)!\) complete states. Given \(g' \), \(c_0 \) is compared with \(c_{n-t+1}, c_{n-t+2}, \ldots, c_{n-1} \) to obtain \(g_{n-t+1} \). \(c_1 \) is compared with \(c_{n-t+2}, \ldots, c_{n-1}, c_0 \) to obtain \(g_{n-t+2} \), and so on until \(c_{t-2} \) is compared with \(c_{n-1}, c_0, \ldots, c_{t-3} \) to obtain \(g_{n-1} \). It can be proved that in this table the sum of values in each row and in each column is equal to \(t^{t-1} \).

The next step is to find a sequence \((a_1, a_2, \ldots, a_r) \), \(r \geq t \), with the following properties. If a sub-codeword \(g' = (g_0, g_1, \ldots, g_{t+1}) \) contains the se-
sequence \((a_1, a_2, \ldots, a_r)\) as a subsequence at indices \((i - r + 1, i - r + 2, \ldots, i - 1, i)\), then this sequence ends in a complete state, i.e., \(P_{t+1} = 1\) is one of the \((t - 1)!\) complete states. The reason is that in this case \(c_{t+1}, c_{t+2}, \ldots, c_{t+1}\) have no dependency on the charge levels of \(c_{t+1}, c_{t+2}, \ldots, c_{t+1}\), i.e., each one of the charge levels \(c_{t+1}, c_{t+2}, \ldots, c_{t+1}\) can be lower than \(c_{t+1}, c_{t+2}, \ldots, c_{t+1}\), between them \((t - 2)\) options, or higher than all of them. Therefore, the relations between \(c_{t+1}, c_{t+2}, \ldots, c_{t+1}\), and the charge levels in the first \(t - 1\) cells, \(c_0, c_1, c_2, \ldots, c_{t-2}\), have all the possibilities, i.e., \(P_{t+1} = 1\) is a complete state. This implies that also \(P_{n-1} = 1\) is a complete state.

Now, the Perron-Frobenius Theorem can be used to compute the number of subsequences, of length \(n - t + 1\) over alphabet \(\{0, 1, \ldots, t - 1\}\), which don’t include \((a_1, a_2, \ldots, a_t)\) as a subsequence. It is required that this number will tend to \(\beta^n\) as \(n\) tends to \(\infty\) and \(\beta\) is a constant (related to the largest eigenvalue of the transition matrix of the related automata) for which \(\beta < 1\). Now, it can be concluded with the generated table that if \(M_t\) is the number of legal codewords in the \((1, t, n)\)-LRM scheme then \(\lim_{n \to \infty} \frac{M_t}{t^n} = 1\).

For \(t = 4\) one required such subsequence is \((3, 3, 0, 1, 2, 1)\) for which \(\beta = 3.99902\), and hence

\[\text{Theorem 3.} \quad \lim_{n \to \infty} \frac{M_t}{t^n} = 1.\]

The problem of finding the value of \(\lim_{n \to \infty} \frac{M_t}{t^n}\) can be formulated as a purely combinatorial problem. Let

\[A_t = \{(a_0, \ldots, a_{t-1}) : a_j \in \mathbb{Z}, 0 \leq j \leq t^n - 1, (a_j, a_{j+1}, \ldots, a_{j+t-1}) = t\},\]

\[S_t = \{\pi_0, \ldots, \pi_{t^n-1} : \pi_j \in S_t, 0 \leq j \leq t^n - 1, (a_0, \ldots, a_{t-1}) = A_t^\pi\},\]

where the indices are taken modulo \(t^n\).

What is the value of \(\lim_{n \to \infty} \frac{S_t}{t^n}\)? We conjecture that the value is 1 and proved this value for \(t = 3\) and \(t = 4\).

IV. CONSTANT WEIGHT \((1, 2, n)\)-LRM GRAY CODES

One important topic related to rank modulation is an order of the codewords in such a way that each codeword will define an alphabet letter. This implies that \(n\) consecutive cells define an alphabet letter and any change in the charge levels of some cells relates to a change in the alphabet letter. The most effective ordering is a Gray code ordering, i.e., a codeword is obtained by a minimal change in the codeword which proceed it. This should be a consequence of a small change in the related charge levels. In the rank modulation scheme this change in the charge levels is obtained by the push-to-the-top operation in a window of length \(t\). We will concentrate only in the case where \(t = 2\) since in this case the windows have length two and hence the permutations are from \(S_2\), i.e., we can use binary codewords. In this respect, we will be interested also in the case where all the codewords have the same weight. We define an \((1, 2, n; w)\)-LRM GC to be an \((1, 2, n)\)-LRM Gray code, where the codewords are ordered in an order which defines a Gray code and each codeword has weight \(w\). If all the codewords have the same weight then we can bound the difference between the charge levels of a cell on which the push-to-the-top operation is performed. Two codewords are adjacent only if they differ in two positions, where 01 can be changed to 10. In this respect, the last codeword and the first codeword are also considered to be adjacent. It was conjectured in [2] that an \((1, 2, 2)\)-LRMGC has at most \(2n\) codewords and such a code with \(2n\) codewords was constructed. We have been able to prove this conjecture, i.e.,

\[\text{Theorem 4.} \quad \text{An \((1, 2, n; 2)\)-LRMGC has at most \(2n\) codewords.}\]

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper, encoding, decoding, and enumeration of the \((1, t, n)\)-LRM scheme are studied. A complete solution is given for the \((1, 3, n)\)-LRM scheme. Encoding for the \((1, t, n)\)-LRM scheme for each \(t \geq 3\) is presented. For \((1, 3, n)\) a related decoding was presented. We also proved for \(t \in \{3, 4\}\) that if \(M_t\) is the number of legal codewords in the \((1, t, n)\)-LRM scheme then \(\lim_{n \to \infty} \frac{M_t}{t^n} = 1\). We conclude with some problems for future research raised in our discussion.

- Find an efficient algorithm to determine if a given codeword in the \((1, t, n)\)-LRM scheme, for \(t \geq 3\), is legal or not.
- Find an efficient decoding algorithm for the \((1, t, n)\)-LRM scheme, \(t \geq 4\).
- Prove that if \(t > 4\) then \(\lim_{n \to \infty} \frac{M_t}{t^n} = 1\).
- For \(w > 2\), find optimal \((1, 2, n; w)\)-LRMGC.

ACKNOWLEDGMENT

This work was supported in part by the U.S.-Israel Binational Science Foundation, Jerusalem, Israel, under Grant No. 2012016.

REFERENCES

[1] G. Frobenius, “Über Matrizen aus nicht negativen Elementen,” S.-B. Preuss Acad. Wiss. Berlin pp. 456-477, 1912.
[2] E. E. Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-weight gray codes for local rank modulation,” IEEE Transactions on Information Theory, vol. 57, no. 11, pp. 7431-7442, 2011.
[3] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for flash memories,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2659-2673, 2009.
[4] O. Perron, “Zur Theorie der Matrizen,” Math. Ann. vol. 64, pp. 248-263, 1907.
[5] Z. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded rank modulation for flash memories,” in Proc. ISIT2009, Seoul, Korea, pp. 1224-1238, June 2009.