The safety and risk factors of major hepatobiliary pancreatic surgery in patients older than 80 years

Jong Hun Kim, Seog Ki Min, Huisong Lee, Geun Hong, Hyeon Kook Lee

Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea

INTRODUCTION

The elderly population has increased worldwide. In 2000, the percentage of the population aged 65 years and older in the United States was 12.4%. In 2010, the percentage of the population aged 65 years and older in the United States was 13.0% [1]. In South Korea, the percentage of the population aged 65 years and older was 12.7% in 2014. In 2020, the percentage of the population aged 65 years and older in South Korea is projected to exceed 20% [2]. The proportion of the population aged 80 years and over was 2.52% as of January 1, 2015 in South Korea [3].

As the population ages, more octogenarians will be diagnosed with major hepatobiliary pancreatic (HBP) diseases such as intrahepatic duct or extrahepatic duct stone, cholangitis and benign or malignant tumor, etc. For treatment, major HBP surgery should be performed. However, the risk of postoperative complication increases with advanced age because of the high comorbidity in elderly patients [4-11]. Therefore, it is difficult to make the decision to perform major HBP surgery in elderly patients.

On the other hand, recent reports have found acceptable morbidity and mortality in specific HBP surgeries with patients older than 80 years [4,12-16]. In these recent reports, the type of surgery was limited to a specific major surgery such as...
as pancreatic-duodenectomy and/or distal pancreatectomy. Therefore, we included various types of major HBP surgery in our study.

The hypothesis of this study is that major HBP surgery can also be performed safely in patients older than 80 years. Thus, we conducted this study to evaluate the safety and risk factors of major HBP surgery in patients older than 80 years.

METHODS

From January 2000 to April 2015, the patients who underwent major HBP surgery were identified in Ewha Womans University Mokdong Hospital. We found a variety of major HBP surgeries. As a concept of major HBP surgery, we included laparoscopic common bile duct exploration with cholecystectomy, or laparoscopic common bile duct exploration, or open common bile duct exploration, distal pancreatectomy, subtotal pancreatectomy and extended cholecystectomy as well as pancreaticoduodenectomy (PD), hepatic segmentectomy, hemihepatectomy or greater, extrahepatic bile duct resection with hepaticojejunostomy or choledochojejunostomy and hepatopancreaticoduodenectomy [17]. We excluded minor HBP surgeries such as laparoscopic cholecystectomy, open cholecystectomy, internal drainage of pancreatic pseudocyst and fenestration of hepatic cyst as well as liver transplantation, trauma-related surgery and pediatric surgery.

We analyzed 100 patients who underwent major HBP surgery in patients older than 80 years at the time of surgery. These 100 patients were classified into three types according to the performed operation: lower-case hepatectomy included hepatic segmentectomy or hemihepatectomy or greater (10 patients); lower-case pancreatectomy included pylorus-preserving pancreaticoduodenectomy or Whipple operation or a distal pancreatectomy or subtotal pancreatectomy (18 patients); lower-case other major operation included laparoscopic common bile duct exploration with cholecystectomy or laparoscopic common bile duct exploration or open common bile duct exploration or hepaticojejunostomy or choledochojejunostomy or extended cholecystectomy (72 patients). A total of 100 patients aged ≥80 years (group O) was matched with 100 patients aged <80 years (group Y) who were randomly selected as a control group for comparison. The number of patient group of each type of surgery was the same with the number of randomly selected control group of each type of surgery. Then, the patient characteristics and intra- and postoperative outcomes were retrospectively investigated in the 2 groups.

Patient characteristics included age, sex, American Society of Anesthesiologists (ASA) physical status, disease malignancy, performed operation type, comorbidities, preoperative laboratory findings, and previous laparotomy history. Comorbidities included diabetes mellitus (DM), hypertension, obstructive lung disease (OLD), heart problem, chronic kidney disease (CKD), cerebrovascular accident (CVA) history, sepsis at the time of surgery, and previous cancer history. OLD included chronic obstructive pulmonary disease, asthma, and pulmonary emphysema. Heart problem included coronary artery disease, congestive heart failure, atrial fibrillation, aortic stenosis, unstable angina, myocardial infarction, severe heart wall hypokinesia, and sick sinus syndrome. Prostate cancer, thyroid cancer, and skin cancer except for melanoma were not included in the category of previous cancer history. Open or laparoscopic appendectomy was not included in the category of previous laparotomy history, but gynecological surgeries such as cesarean section, uterine myomectomy, and total hysterectomy were included.

Intraoperative (IO) outcomes included operation time, portal vein or superior mesenteric vein (SMV) resection, IO organ injury, IO packed red blood cells (p-RBC) transfused, and estimated blood loss (EVL).

The primary end-point of the study was overall complication and mortality rates. The second end-point was the postoperative recovery course such as length of postoperative stay, length of intensive care unit (ICU) stay, postoperative diet starting day, and severity of complication.

Postoperative outcomes included length of postoperative stay, length of ICU stay, postoperative diet starting day, mortality, and overall complication. Severity of complication was classified by Clavien-Dindo grade [18]. Clavien-Dindo grade II or more was considered significant. Complications were also investigated by dividing them into surgical site complication and systemic complication. Postoperative complications were investigated for 30 days after surgery. Mortality was defined as death within 90 days of surgery.

Categorical variables are presented as number (percentage). Continuous variables are presented as median (range). Differences between groups were evaluated by univariate analyses using the chi-square and independent samples t-test for categorical and continuous variables, respectively. All statistical significances were determined at P < 0.05.

RESULTS

Patient characteristics and comorbidities

The median age was 84 years (range, 80–95 years) in group O and 61 years (range, 27–79 years) in group Y. There was no difference in terms of gender composition and disease malignancy. However, ASA physical status was worse in group O (ASA ≥ III: 23% vs. 7%, P = 0.002).

Patient comorbidities were compared between the 2 groups at the time of surgery. There were no significant differences between the groups in terms of DM, OLD, CKD, CVA history, sepsis at the time of surgery and previous cancer history.
However, group O was associated with a higher rate of hypertension (48% vs. 30%, P = 0.009) and heart problem (17% vs. 3%, P = 0.001).

Preoperative laboratory findings were compared between the 2 groups. There were no significant differences in terms of creatinine levels, hemoglobin levels, total bilirubin, and glucose levels. However, there were significant differences in terms of albumin (3.3 ± 0.5 vs. 3.5 ± 0.5, P = 0.012) and BUN (175 ± 7.2 vs. 144 ± 12.2, P = 0.027), favoring the younger group (Table 1).

IO outcomes

There were no differences in operation time, rate of portal vein resection or SMV resection, IO organ injury, IO p-RBC transfused, and EBL (Table 2).

Postoperative outcomes

There were no differences in terms of length of postoperative stay, postoperative diet starting day, and mortality rate (lower-case length of postoperative stay: 15.8 ± 11.5 days vs. 14.8 ± 11.0 days, P = 0.527; postoperative diet starting day: 5.0 ± 4.9 days vs. 4.4 ± 2.6 days, P = 0.366). Ninety-day mortality was the same. as the number of dead patients was three in both groups (P = 0.999). However, the length of ICU stay was longer in group O (2.9 ± 5.2 days vs. 1.6 ± 2.1 days, P = 0.019) (Table 3).

There was no significant difference in overall complication rate by Clavien-Dindo grade ≥ II (28% vs. 17%, P = 0.063) as

Table 1. Baseline characteristics of study patients

Characteristic	≥80 Years (n = 100)	<80 Years (n = 100)	P-value^a
Sex, male:female	43:57	51:49	0.257
Age (yr)	84 (80–95)	61 (27–79)	<0.001
ASA physical status classification			
I	0	3	0.002
II	77	90	
III	23	7	
IV	0	0	
V	0	0	
VI	0	0	
Malignancy	26	25	0.871
Type of operation			
Hepatectomy	10	10	0.999
Pancreatectomy	18	18	
Other major operation	72	72	
Comorbidities			
Diabetes mellitus	19	20	0.831
Hypertension	48	30	0.009
OLD^b	7	3	0.194
Heart problem^c	17	3	0.001
CKD	1	1	0.999
CVA history	6	2	0.149
Sepsis	2	4	0.407
Previous cancer history^d	11	9	0.637
Albumin (g/dL)	3.3 ± 0.5	3.5 ± 0.5	0.012
BUN (mg/dL)	17.5 ± 7.2	14.4 ± 12.2	0.027
Creatinine (mg/dL)	0.9 ± 0.3	0.9 ± 0.9	0.996
Hemoglobin (g/dL)	11.9 ± 1.5	12.1 ± 1.8	0.433
Total bilirubin (mg/dL)	3.5 ± 4.0	3.5 ± 4.1	0.947
Glucose (mg/dL)	140.2 ± 49.8	132.5 ± 51.6	0.286
Previous laparotomy^e	27	39	0.071

Values are presented as number, median (range), or mean±standard deviation.

ASA, American Society of Anesthesiologists; OLD, obstructive lung disease; CKD, chronic kidney disease; CVA, cerebro-vascular accident.

^aFisher exact test or chi-square test for discrete variable and Mann-Whitney U-test for continuous variable. ^bOLD included a chronic obstructive lung disease, asthma and pulmonary emphysema. ^cHeart problem included a coronary artery disease, congestive heart failure, atrial fibrillation, aortic stenosis, unstable angina, myocardial infarction, severe heart wall hypokinesia and sick sinus syndrome. ^dProstate cancer, thyroid cancer and skin cancer except for melanoma were not included in the category of previous cancer history. ^eOpen or laparoscopic appendectomy was not included in the category of previous laparotomy history, but gynecological surgeries such as cesarean section, uterine myomectomy and total hysterectomy were included.
As the complication was divided into surgical site complication and systemic complication, systemic complication rates of both Clavien-Dindo grade ≥ II and grade ≥ III was higher in group O (Clavien-Dindo grade ≥ II: 19% vs. 7%, P = 0.012; Clavien-Dindo grade ≥ III: 12% vs. 3%, P = 0.016) while surgical site complication rates showed no difference between the 2 groups.

Three patients in group O died: the first case was due to acute respiratory distress syndrome, the second case was due to hospital acquired pneumonia and acute renal failure, and the third case was due to septic shock. Also, 3 patients in group Y died: the first case was due to intra-abdominal surgical site bleeding, the second case was due to septic shock, and the third case was due to atrial fibrillation (Table 4).

DISCUSSION

In this study, there was a significant difference in terms of ASA physical status, the worse being in group O. Furthermore, group O was associated with a higher rate of hypertension and heart problem as comorbidities. For preoperative laboratory findings, there were significant differences in terms of albumin and BUN, favoring group Y. There were no differences in the IO outcomes such as operation time, rate of portal vein or SMV resection, IO organ injury, IO p-RBC transfused, and EBL. For postoperative outcomes, the length of ICU stay was longer in group O, whereas overall complication and mortality rates did not show statistical difference. However, when the complications were divided into surgical site complication and systemic complication, there was a significant difference in the rate of systemic complication of both Clavien-Dindo grade ≥ II and grade ≥ III.

The elderly population has increased worldwide. With this increase, surgeons are increasingly faced with the prospect of performing major HBP surgery in patients older than 80 years. In this study, we attempted to determine the safety and risk...
factors of major HBP surgery and demonstrate herein that major HBP surgery can be performed safely in patients older than 80 years. We used the age of 80 years as a cutoff in our study to allow comparisons with other studies and have found acceptable outcomes in morbidity and mortality after major HBP surgery in patients older than 80 years [4,12-16,19]. As summarized in Table 5, rates of postoperative mortality and overall complication rates in patients over the age of 80 years appeared similar to younger patients [13-15,19]. Contrary to the results of our study, the study by Makary et al. [20] showed significantly higher overall complication as well as mortality rate in the older group (52.8% vs. 41.6% and 4.1% vs. 1.7%, respectively, both P < 0.05). In the study by Melis et al. [4], the overall complication was higher in octogenarians than younger patients (68% vs. 44%, P = 0.03), whereas mortality did not show statistical difference (P = 0.23).

In our study, there were no significant differences in overall complication and postoperative mortality rates. Dividing the complications into surgical site complication and systemic complication, there was also no significant difference in terms of surgical site complication of both Clavien-Dindo grade ≥ II and grade ≥ III. However, systemic complication of both Clavien-Dindo grade ≥ II and grade ≥ III showed significant difference in the 2 groups (Clavien-Dindo grade ≥ II: 19% vs. 7%, P = 0.012; Clavien-Dindo grade ≥ III: 12% vs. 3%, P = 0.016). In other words, systemic complication was higher in group O. The reason that systemic complication was higher in the old age group seems to be that physical tolerance that fights against surgical trauma becomes weaker due to aging. Also, the result may be associated with the longer stay in ICU. However, there was no significant difference in the length of hospital stay after the operation: the reason for this result may be that recent medical improvements made it possible for systemic complications to be overcome with postoperative care. This is also shown by the same mortality rate in the 2 groups.

In the future, it seems necessary to actively perform preoperative physical examination, carefully select the cases, and cautiously administer premedication to reduce the rate of complication in elderly patients, especially in that of systemic complication. Also, even if systemic complication occurs, postoperative management should be appropriately provided.

Furthermore, we need to actively use the National Surgical Quality Improvement Program (NSQIP) in order to reduce overall complication and mortality rate [21-25]. Lower-case, careful preoperative selection and appropriate postoperative management can be possible if based on the predictive value of NSQIP, which will eventually lead to reduction in overall complication as well as mortality rate.

Performance status is a good preoperative assessment tool for determining surgical risk in elderly patients [26]. Therefore, the limitation of our study is that preoperative Eastern Cooperative

Case	Age/sex	Type of operation	Comorbidity	Preoperative history	Complication	ICU stay (day)	Other complications
Case 1	80/female	LCBDE	Hypertension	RA	ARDS, pneumonia, atrial fibrillation	14	8
Case 2	84/male	PPPD	Hypertension	RA	Ventricular tachycardia, sepsis, ARF, pulmonary edema	8	8
Case 3	81/male	CBDE	Hypertension	RA	Septic shock due to biliary sepsis, splenic infarction, CBD stricture	36	6

In the future, it seems necessary to actively perform preoperative physical examination, carefully select the cases, and cautiously administer premedication to reduce the rate of complication in elderly patients, especially in that of systemic complication. Also, even if systemic complication occurs, postoperative management should be appropriately provided.

Furthermore, we need to actively use the National Surgical Quality Improvement Program (NSQIP) in order to reduce overall complication and mortality rate [21-25]. Lower-case, careful preoperative selection and appropriate postoperative management can be possible if based on the predictive value of NSQIP, which will eventually lead to reduction in overall complication as well as mortality rate.

Performance status is a good preoperative assessment tool for determining surgical risk in elderly patients [26]. Therefore, the limitation of our study is that preoperative Eastern Cooperative
Oncology Group (ECOG) scale performance status was not used to evaluate the difference between the 2 groups, since there was no data in the patient records. Instead, we used ASA physical status, which is as standard as ECOG score, to evaluate the performance status in this study. Also, the main limitations of our study are its retrospective nature and selection bias. In conclusion, major HBP surgery can be performed safely in patients older than 80 years if postoperative management is appropriately provided.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

Table 5. Literature review

Source	Operations performed	Age (yr)	No.	Complication (%)	Mortality (%)
Chen et al. 2003 [14]	PD only	≥80	16	51	13
Makary et al. 2006 [20]	PD only	<80	82	56	12
		≥90	10	50	0
		80–89	197	52.8*	4.1*
		<80	2,491	41.6	1.7
Hardacre et al. 2009 [19]	PD and DP	≥80	32	66	0
Lee et al. 2010 [13]	PD only	≥80	74	47.3	5.4
		<80	703	51.1	3.8
		≥80	27	52	3.7
		<80	490	59	3.7
Hatzaras et al. 2011 [15]	PD and DP	≥80	25	68*	4.0
		<80	175	44	0.6
Melis et al. 2012 [4]	PD only	≥80	100	28	3
		<80	100	17	3

PD, pancreaticoduodenectomy; DP, distal pancreatectomy; HBP, hepatobiliary pancreatic. *P < 0.05 compared with patients < 80 years.

REFERENCES

1. U.S. Census Bureau [Internet]. Washington, DC: U.S. Census Bureau: 2016 [cited 2016 May 3]. Available from: http://factfinder.census.gov.
2. Age and sex [Internet]. Washington, DC: U.S. Census Bureau: 2016 [cited 2008 Dec 2]. Available from: http://www.census.gov/population/age/.
3. Korea Statistical Information Services [Internet]. Daejeon: Statistics Korea; 2016 [cited 2016 May 3]. Available from: http://kosis.kr/.
4. Melis M, Marcon F, Masi A, Pinna A, Sarpel U, Miller G, et al. The safety of a pancreaticoduodenectomy in patients older than 80 years: risk vs. benefits. HPB (Oxford) 2012;14:583-8.
5. Oguro S, Shimada K, Kishi Y, Nara S, Esaki M, Kosuge T. Perioperative and long-term outcomes after pancreaticoduodenectomy in elderly patients 80 years of age and older. Langenbecks Arch Surg 2013;398:531-8.
6. Kow AW, Sadayan NA, Ernest A, Wang B, Chan CY, Ho CK, et al. Is pancreaticoduodenectomy justified in elderly patients? Surgeon 2012;10:128-36.
7. Adam R, Frilling A, Elias D, Laurent C, Ramos E, Capussotti L, et al. Liver resection of colorectal metastases in elderly patients. Br J Surg 2010;97:366-76.
8. Nagano Y, Nejiri K, Matsuo K, Tanaka K, Togo S, Ike H, et al. The impact of advanced age on hepatic resection of colorectal liver metastases. J Am Coll Surg 2005;201:511-6.
9. Shin JW, Ahn KS, Kim YH, Kang KJ, Lim TJ. The impact of old age on surgical outcomes after pancreaticoduodenectomy for distal bile duct cancer. Korean J Hepatobiliary Pancreat Surg 2011;15:248-53.
10. Yeh CC, Jeng YM, Ho CM, Hu RH, Chang HP, Tien YW. Survival after pancreaticoduodenectomy for ampullary cancer is not affected by age. World J Surg 2010;34:2945-52.
11. Bathe OF, Caldera H, Hamilton KL, Franceschi D, Sleeman D, Livingstone AS, et al. Diminished benefit from resection of cancer of the head of the pancreas in patients of advanced age. J Surg Oncol 2001;77:115-22.
12. Tani M, Kawai M, Hiroto S, Ina S, Miyazawa M, Nishio R, et al. A pancreaticoduodenectomy is acceptable for periampullary tumors in the elderly, even in patients over 80 years of age. J Hepa-
13. Lee MK, Dinorcia J, Reavey PL, Holden MM, Genkinger JM, Lee JA, et al. Pancreaticoduodenectomy can be performed safely in patients aged 80 years and older. J Gastrointest Surg 2010;14:1838-46.

14. Chen JW, Shyr YM, Su CH, Wu CW, Lui WY. Is pancreaticoduodenectomy justified for septuagenarians and octogenarians? Hepatogastroenterology 2003;50:1661-4.

15. Hatzaras I, Schmidt C, Klemanski D, Muscarella P, Melvin WS, Ellison EC, et al. Pancreatic resection in the octogenarian: a safe option for pancreatic malignancy. J Am Coll Surg 2011;212:373-7.

16. Hentati H, Arfa N, Haouas N, Landolsi S, Gharbi W, Miloudi N, et al. Pancreaticoduodenectomy in the elderly over 80 years: a case report. Hepatobiliary Pancreat Dis Int 2007;6:104-7.

17. Hayashi H, Morikawa T, Yoshida H, Moto F, Okada T, Nakagawa K, et al. Safety of postoperative thromboprophylaxis after major hepatobiliary-pancreatic surgery in Japanese patients. Surg Today 2014;44:1660-8.

18. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 636 patients and results of a survey. Ann Surg 2004;240:205-13.

19. Hardacre JM, Simo K, McGee MF, Stellato TA, Schulak JA. Pancreatic resection in octogenarians. J Surg Res 2009;156:129-32.

20. Makary MA, Winter JM, Cameron JL, Campbell KA, Chang D, Cunningham SC, et al. Pancreaticoduodenectomy in the very elderly. J Gastrointest Surg 2006;10:347-56.

21. Cohen ME, Liu Y, Ko CY, Hall BL. Improved surgical outcomes for ACS NSQIP hospitals over time: evaluation of hospital cohorts with up to 8 years of participation. Ann Surg 2016;263:267-73.

22. Ortega G, Rhee DS, Papandria DJ, Yang J, Ibrahim AM, Shore AD, et al. An evaluation of surgical site infections by wound classification system using the ACS-NSQIP. J Surg Res 2012;174:33-8.