A combinatorial approach to screen structurally diverse acetylcholinesterase inhibitory plant secondary metabolites targeting Alzheimer’s disease

Gourav Choudhir, Satyawati Sharma and P. Hariprasad
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Communicated by Ramaswamy H. Sarma

ABSTRACT
Alzheimer’s disease (AD) is a form of Dementia known to diminish the brain’s function by perturbing its structural and functional components. Though cholinesterase inhibitors are widely used to treat AD, they are limited by numbers and side effects. Hence, present study aims to identify structurally diverse Acetylcholinesterase (AChE) inhibitory plant secondary metabolites (PSM) by employing high throughput screening and computational studies. AChE inhibitory activity was performed using 390 crude extracts from 63 plant parts belongs to 58 plants. The lowest IC50 value was recorded by acetone extract of Cyperus rotundus rhizome at 0.5 mg/ml, followed by methanol extract of Terminalia arjuna bark (0.95 mg/ml) and water extract Acacia catechu stem (0.95 mg/ml). A virtual library containing 487 PSM belongs to 18 plants found positive for AChE inhibition (IC50 ≤5 mg/ml) was prepared. Through ADMET analysis, 78 PSM fulfilling selected drug-likeness parameters were selected for further analysis. Molecular docking studies of selected PSM against AChE recorded a wide range of binding energy from −3.40 to −10.90 Kcal/mol. Further molecular dynamics simulation studies also recorded stabilized interactions of AChE-ligand complexes in the term of RMSD, RMSF, Rg, SASA, and hydrogen bond interaction. MMPBSA analysis revealed the binding energy of selected PSM ranging from −123.757 to −261.697 kJ/mol. Our study demonstrated the potential of 12 PSM (Sugiol, Margolone, 7-Hydroxy-3',4'- (Methylenedioxy) flavan, Beta-cyprone, Ethenone, Isomargolonone, Serpentine, Cryptolepine, Rotundone, Strictamin, Rotundenol and Nootkatone) as AChE inhibitors. Further in vitro and in vivo experimental evaluations with pure PSM could be beneficial for therapeutic uses.

1. Introduction
Dementia is a condition resulting in the impairment of the brain’s function by perturbing its structural and functional components (Geldmacher & Whitehouse, 1996). Dementia is represented by a group of disease among which Alzheimer’s disease (AD) is a top form which degenerates the nervous system by modulating different physiological and biochemical processes (Colovic et al., 2013). The pathological advancement of AD is directly or indirectly associated with age. The earlier assumption that pathological development of AD initiates only at an older age was ruled out. Recent studies evidenced that AD’s pathological features can initiate at the early age of 20 years (Gonneaud et al., 2017). The disease’s advancement and severity depend on various factors...
such as oxidative stress, food habits, metabolic disorders, etc (Craft, 2009; Tönnes & Trushina, 2017). It was estimated that one billion people might be affected by AD until 2030 (Qiu et al., 2009). Two structural features, such as β-amyloid deposition (induced by the activity of beta-secretase, gamma-secretase, and alpha-secretase, and a mutated form of amyloid precursor protein) and formation of tangles (due to the enhanced phosphorylation of the tau protein) are the significant indicators of the AD.

Additionally, the cholinergic system also plays a vital role in the mechanism inspired AD development that depends on the concentration of acetylcholine (ACh, neurotransmitter), as well as the activity of three enzymes such as Acetylcholine esterase (AChE), Butyrylcholine esterase (BChE) (catalyzation of reaction) and Choline-acetyltransferase (ChAT) (biosynthesis). Alzheimer’s disease is associated with some prominent features affected by the concentration of the ACh. In a recent study, Grimaldi et al. (2016) reported that the ACh favours the soluble peptide confirmation of β-amyloid plaques, thereby reducing its toxic effect.

Human AChE is a monomeric protein with 614 amino acids, composed of 12 beta-sheet and the 14 alpha-helix that formed a tertiary structure (Dvir et al., 2010). The catalysis of the ACh by the hAChE takes places by the involvement of several amino acid residues in, active site triad (Ser203, His447, Glu334), and Oxyanion hole (Gly121 Gly122, Ala194). Anionic subsites binding site, ASB (Trp266, Phe295, Phe297, Phe338, Gly448, Ile515), Acyl binding pocket, ABP (Trp236, Phe295, Phe297, Phe338), and Peripheral anionic site, PAS (Asp74, Tyr124, Ser125, Trp266, Tyr337, Tyr341). The enzymes catalyze the ACh into choline and acetate in the synaptic cleft, which was further recycled in neuronal cell bodies by the action of choline acetyltransferase (Waymire, 2020). AChE is one of the fastest enzymes of the human system, with a turnover ratio of 3×10^7 per min per molecule (Wilson & Harrison, 1961). Optimum activity of AChE is a prerequisite for regular cognitive brain function. Additionally, AChE also assists in developing nerve cells and reducing the size of dendritic extensions, axon outgrowth, and neuronal morphogenesis (Behra et al., 2002; Bigbee et al., 1999; Duval et al., 1992; Soreq & Seidman, 2001). Under physiological conditions, the hyperactivation of AChE is linked with their existence as a tetrameric form associated with the proline-rich attachment domain of either collagen-like Q subunit or proline-rich membrane-anchoring protein (Alvarez et al., 1997; Simon et al., 1998). The upholding activity of AChE participates in AD’s pathological advancement via reducing the concentration of ACh in the synaptic cleft and sustaining the aggregation of β-amyloid (Grimaldi et al., 2016; Koenigsberger et al., 1998).

Among the available strategies to manage AD, competitive inhibitory drug molecules against AChE are considered most promising. AChE competitive inhibitors slow down the enzyme activity, restoring ACh’s appropriate concentration at the synaptic cleft (Berg et al., 2002). In this regard, four drugs, such as tacrine, galantamine, rivastigmine, and donepezil, have been approved by the FDA, which reversibly inhibits AChE. However, long-term consumption of such drugs is reported to be adversely affecting the human’s different organs (cholinergic side effect, gastrointestinal disorder, and hepatotoxicity) (Colovic et al., 2013). Hence, the competitive or reversible AChE inhibitors of plant origin can be further explored for effective and safer AD treatment without adverse effects (Bi et al., 2009).

Due to their structural and functional diversity, PSM is considered the repository of safe drugs that can prevent and cure several diseases and disorders of humans and animals. Earlier, the potential of crude/purified PSM has been successfully demonstrated to treat different life-threatening diseases such as cancer, malaria, Alzheimer’s, diabetes, etc (Bi et al., 2009; Calc et al., 2012; Esposito et al., 2006; Murray et al., 2013; Tafesse et al., 2017; Velander et al., 2017; Yi et al., 2015). Artemisinin is a sesquiterpene lactone obtained from Artemisia annua used as antimalarial drugs (Klayman, 1985). Nitisinone from the Callistemon citrinus depletes the tyrosine level, leading to tyrosinemia’s effective treatment (Das, 2017). Irwin and Smith III (Irwin & Smith, 1960) first reported the AChE inhibition potential of galantamine from Galanthus woronowii and Galanthus nivalis. Atropine (daturin) is an alkaloid obtained from the Atropa belladonna (Kamada et al., 1986), used under various conditions such as myopia during the surgery for improvement of slow heart rate, and depletion of saliva production, pesticides detoxification, and nerve agent by the reduction of the excess effect of ACh by the muscarinic antagonist effect (Yi et al., 2015). Cannabidiol is a phytocannabinoid obtained from Cannabis sativa, which reduces the hyperphosphorylation of the tau protein in the PC-12 cell lines and reduces β-amyloid inspired toxicity (Esposito et al., 2006). Capsaicin a pharmacologically important alkaloid obtained from Capsicum annuum, used to lower cholesterol levels (Srinivasan et al., 1980) and pain reliever (Anand & Bley, 2011). However, the possible use of PSM for AD treatment by employing them as enzyme inhibitors, disaggregation of the β-amyloid, and reducing phosphorylation of tau (τ) protein (Calcul et al., 2012; Velander et al., 2017) is sparingly studied.

The process of advancing in applying computational studies in drug discovery opened a new avenue towards screening many PSM and understanding their molecular interactions with the target site. Further, the same can be employed to predict the drug likeliness and bioavailability of PSM. In several recent research pieces, the computational tools were successfully employed to a large number of PSM against various diseases such as antiviral, antimicrobial, anticancer, and antidiabetic (Puttaswamy et al., 2020; Selvaraj, 2018; Tyagi et al., 2013), etc. The present study aims to integrate in vitro and computational studies to screen medicinal plant and their AChE inhibitory activity with the following objective (1) Analyzing the potential of AChE inhibitory activity of selected medicinal plants, (2) Creating PSM library of AChE inhibitory plants and analyzing their drug-like properties, and (3) Molecular docking and Molecular dynamics simulation of most promising PSM.

Creating PSM library of AChE inhibitory plants and analyzing their drug-like properties, and (3) Molecular docking and Molecular dynamics simulation of most promising PSM.
2. Material and methods

2.1. General experimental procedures

2.1.1. Plant material

Sixty-six samples belong to 58 plant species (Supplementary Table 1) were collected from different regions of India (Karnataka, Tamil Nadu, Kerala, and Delhi) and were identified based on their morphological characters following taxonomical keys (https://sites.google.com/site/efloraofindia/home). Moreover, the identity was also confirmed with the plant taxonomist (Dr. Sampat Kumar, University of Davangare, Karnataka), and samples were also sent to the Botanical Survey of India (BSI) Kolkata, India, in the form of herbarium for identification.

2.1.2. Chemicals

Acetylcholine esterase from *Electrophorus electricus* (electric eel) Type VI-S (SIGMA Cat No. C2888), Acetylthiocholine iodide (ATCI), 5,5-Dithiobis-(2-Nitro Benzoic Acid) (DTNB), sodium phosphate di and monobasic hydrates, and solvents were procured from Sisco Research Laboratories.

2.1.3. Equipment

Prestige stylo mixer grinder, 750 watts, Soxhlet apparatus, Rotary Evaporator Hei-VAP Core HL G3 XL, Buchi, Switzerland and Epoch Microplate Spectrophotometer, Biotek.

2.1.4. Plant material processing and metabolites extraction

The plant samples were chopped to 0.5-2.0 cm bits and dried in a hot air oven (Oven universal, India) at 45 °C for 3-5 days. The dried samples were coarsely powdered using a mechanical blender. The extraction of crude metabolites from powdered plant samples was performed in the Soxhlet apparatus using different solvents systems with increasing polarity (Hexane > Chloroform > Ethyl acetate > Acetone > Methanol > Water). Crude extracts were concentrated using rotavapor under reduced pressure. The dried and powdered crude extracts were weighed, and a stock of 10 mg/ml was prepared using methanol, and further dilutions were prepared using water. The stock solution and dilution of water extract were prepared in water.

2.1.5. In vitro acetylcholinesterase inhibition assay

The AChE inhibition assay was performed according to Elman’s method (Ellman et al., 1961) with minor modification. 170 μl AChE (0.85 U in 0.1 M sodium phosphate buffer pH 8) was incubated with 30 μl different concentrations (10, 5, 2.5, 1.25, 0.625, 0.312, 0.156, 0.078 and 0.039 mg/ml) of plant extracts for 10 min at 37 ± 1 °C. Following this, 15 μl DTNB (14 mM in ethanol) was added to the reaction mixtures and incubated for 5 min. To this, 15 μl of ATCI (10 mM in water) was added and further incubated for 30 min at 37 ± 1 °C. The enzyme activity was recorded by measuring the OD at 412 nm in a microtiter plate reader. The reaction mixture where an equal volume of corresponding methanol replaced plant extract: water combination served as control. The enzyme inhibition was calculated with respect to the control, and results were interpreted in IC50 values.

The percentage inhibition of the plant extracts was calculated using the following formula:

\[
\text{Inhibition}(\%) = \left(\frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \right) \times 100
\]

2.2. In silico studies

2.2.1. Virtual PSM library preparation

The plant extracts that inhibited the activity of AChE at a significant IC50 value (≤5 mg/ml) were selected to prepare the virtual PSM library. A list of 487 species-specific PSM was prepared by referring to previous literature (Silva et al., 2019). The metabolites’ structure was downloaded from the PubChem database as SDF format (Kim et al., 2016), converted to PDB using the Open Babel suite (O’Boyle et al., 2011). Molecules whose 3D structure was unavailable, the 2D structure was retrieved and converted to the 3D structure using Marvin suite [https://chemaxon.com/products/marvin].

2.2.2. Physiochemical properties of metabolites

The metabolites were screened for Lipinski’s rule using the swiss-ADME tool (Daina et al., 2017). Molecules qualifying Lipinski’s rule were subject to Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) properties using pkCSM (Pires et al., 2015). ADMET properties considered in the present study were, a) Caco-2 cell permeability (>0.90) to understand absorption characteristics of selected PSM, b) blood-brain barrier (BBB) permeability (LogBB > 0.3) to know the capabilities of selected PSM to reach target site, and c) Ames toxicity (Ames negative) to avoid the use of PSM with mutagenic potential (Castro et al., 2021; Pires et al., 2015).

2.2.3. Molecular docking and molecular dynamics simulation

2.2.3.1. Protein and ligand preparation.

The coordinates of hAChE (PDB ID: 6O5V, 2.15 Å) bound with the oxime reactivator RS-170B was downloaded from the PDB database (Gerlits et al., 2019), Oxime reactivator was removed from the complex using chimera (http://www.cgl.ucsf.edu/chimera). The explicit hydrogen atoms addition and 3D structure were optimized using UFF at 200 steepest descent algorithms in ligands. The geometry of protein and ligands was corrected using the clean geometry module of Discovery Studio (DS) 4.0 suite (San Diego, CA, USA). Polar hydrogen atoms and Kollaman charge were added into the protein structure using AutoDock MGL Tools 1.5.6 (Costa et al., 2020). The protein was then saved in pdbqt file format. Ligand pdbqt files were generated using the open babel tool (O’Boyle et al., 2011).

2.2.3.2. Molecular docking.

Site-specific docking screening of 79 compounds was done using Auto Dock Vina (Trott & Olson, 2010). The docking receptor grid was created by residues that are involved in the catalyzation of the substrates
of the AChE, such as active site triad (Ser203, His447, and Glu334), as well as amino acid indirectly involved in the catalyzation of ACh molecules such as Oxyanion hole (Gly121, Gly122, Ala204), Anionic subsites (Trp236, Phe295, Phe297, Phe348, Gly404, Ile451), Acyl binding pocket (Trp236, Phe295, Phe297, Phe348), Peripheral anionic site (Asp74, Tyr124, Ser125, Trp337, Tyr337, Tyr341). The dimensions of the grid box were 40 Å × 40 Å × 40 Å, and the center point coordinates were set as X = 97.8, Y = 47.402, Z = –23.194. The pose with the minimum binding energy (BE) and the corresponding interactions was selected and further visually inspected and analyzed in the 2-D interaction module of discovery studio [Discovery studio, BioVia]. Redocking was performed with crystallographic ligand (oxime reactivator RS-1708 (4-carbamoyl-1-3-(2-(E)-(hydroxyiminol)-methyl)-1H-imidazo-1-yl)-propyl)pyridin-1-ium) and the conformation obtained by re-docking to ensure that default searching and scoring parameters were enough to find poses with RMSD < 2 Å from crystallographic conformation (Supplementary Figure 1) (Gerlits et al., 2019).

2.2.3.3. Molecular dynamics simulation. The MD simulation studies were performed by using GROMACS 5.1.5 suite. The topology file of protein and ligand was generated using the GROMOS96 43a1 force field and PRODRG server, respectively (Schütte-Kopf & Van Aalten, 2004; van Gunsteren et al., 1996). The solvation of protein-ligand complexes was performed by using a cubic box (10 nm) with a simple point charge (SPC) of water, and the overall charge was neutralized by adding counter ions (Na – 9). Energy minimization was carried out to reduce the steric clashes with the help of the steepest descent algorithm for 50,000 iteration steps and cut off up to 1000 kJ/mol. After the energy minimization step, the system was equilibrated in two different phases for the 50,000 steps. The first phase of equilibration was done in NVT (constant number of particles, volume, and temperature), ensemble two fs for each step. The second phase of equilibration was performed in the NPT (constant number of particles, pressure, temperature) ensemble at 300 K. The covalent bond constraints in the equilibration step were determined by using the LINCS algorithm. The calculation of the Lennard-Jones and Coulomb interactions was performed by using a 1.4 nm radius cut-off. The Particle Mesh Ewald (PME) method was adopted for the long-range electrostatics calculation with the Fourier grid spacing of 1.6 Å. The box’s internal temperature was statute by using V-rescale, a modified version of the Berendsen temperature coupling method. The Parrinello-Rahman pressure was performed for the equilibration of NPT. The final step of MD simulation was performed for the 50 ns for each step of 2 fs. The trajectories were saved, and the results were analyzed by using xmgrace.

2.2.3.4. Molecular dynamics analyzes. The MD simulation results, such as RMSD, RMSF, the radius of gyration (Rg), solvent accessible surface area (SASA), and the hydrogen bond formation during the simulation, were analyzed by using Gromacs analysis modules. The g_h-bond utility of GROMACS was employed to compute the hydrogen bond numbers, distribution profiles of the complexes, and hydrogen bond occupancy (HBO) were determined using Python script. The MD simulation was performed using High-performance computing (HPC) facility, IIT Delhi, India.

2.2.3.5. The binding free energy of the interaction between AChE-ligand. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) method has been adopted to calculate BE of AChE-PSM complexes and AChE-drug, which utilize ensembles acquired from the molecular dynamic simulation (Kumari et al., 2014). Following equations were used in the calculation:

\[\Delta G = \langle \Delta G_{PE} \rangle - \langle \Delta G_{P} \rangle - \langle \Delta G_{L} \rangle \]

Here \(\Delta G \) and \(\langle \Delta G_{PE} \rangle \) denotes the binding and average free energy of the complex, respectively. At the same time, \(\langle \Delta G_{P} \rangle \) and \(\langle \Delta G_{L} \rangle \) depicts the free energy of receptor and ligand, respectively.

The above equation can also be approximately written as:

\[\Delta G = \Delta E_{MM} + \Delta G_{psolv} + \Delta G_{npsov} - T\Delta S \]

Here, \(\Delta E_{MM} \) indicates the molecular mechanics interaction energy of the molecule calculated as the sum of the change in internal energy (\(\Delta E_{internal} \)), plus the change in electrostatics (\(\Delta E_{electrostatics} \)) and van der Waals (\(\Delta E_{vdw} \)) interactions upon ligand binding. \(\Delta G_{psolv} \) and \(\Delta G_{npsov} \) are the polar and nonpolar contributions to the solvation energy of a molecule, respectively. \(T \) denotes temperature and \(S \) is the molecule entropy. In MM-PBSA, the polar part of the solvation energy (\(\Delta G_{psolv} \)) is calculated by solving the Poisson-Boltzmann equation, while \(\Delta G_{npsov} \) is calculated by using the linear relation to the solvent accessible surface area.

The g_mmpbsa application of the GROMACS module was utilized to calculate distinct factors of the BE of AChE-ligand complexes. Binding energy is an average of the three energy terms apolar solvation energy, polar-solvation energy, and potential energy in the vacuum. In the present study, the snapshots at every 100 ps of the 40-50 ns simulation were collected to predict the BE using the MM-PBSA method.

3. Result and discussion

3.1. In vitro acetylcholinesterase inhibition assay

The AChE inhibitory potential of 390 extracts from 63 plant parts belongs to 58 plant species (Supplementary Table 1) was analyzed. Among 390 extracts, 38 extracts belong to 18 plant species were found inhibiting the activity of AChE (Figure 1). The range of inhibitory concentrations (IC\textsubscript{50} values) exhibited by the extracts were >0.0 to 1 mg/ml (5), >1 – 2 mg/ml (21), >2 – 3 mg/ml (4), >3 – 4 mg/ml (7), >4 – 5 mg/ml (1) and other extracts recorded IC\textsubscript{50} values higher than 5 mg/ml or IC\textsubscript{50} value never achieved or negative for AChE inhibition (Supplementary Table 2). The lowest IC\textsubscript{50} was recorded by acetone extract of Cyperus rotundus (rhizome) (0.5 mg/ml), followed by methanol extract of Terminalia arjuna (bark) (0.95 mg/ml) and, water extract of Acacia catechu (stem) (0.95 mg/ml).

In previous studies, extracts or metabolites from Terminalia arjuna (Suganthi et al., 2018), Terminalia chebula (Sancheti et al., 2010), Psoralea corylifolia (Somani et al.,
3.2. Virtual PSM library and drug-likeness properties of PSM

In silico drug-likeness analysis, consider many physicochemical and functional factors determining a given molecule’s probable drug-like behaviour. The physicochemical characters include mainly molecule size, molecular flexibility, lipophilicity, electronic distribution and hydrogen bonding characteristics. Whereas transport, absorption, metabolic stability, distribution, affinity to proteins, reactivity, toxicity, etc., the pharmacophoric characters determine the molecular interaction with the living system. Analysis of molecules using this information reduces the effort while screening a large pool of metabolites and reduced the probability of failures in in vivo experiments.

In our study, the virtual molecular library contains 487 PSM (after removing duplications) from 18 plants found positive for AChE inhibition in in vitro assay (Supplementary Table 2). When these PSM were analyzed for Lipinski’s rule, 283 molecules were found to have zero violations (Supplementary Table 3). Further, these molecules’ ADMET characterization yielded 78 PSM, which passed the required parameters, i.e. (a) Caco-2 cell permeability (>0.90), b) blood-brain barrier (BBB) permeability (LogBB > 0.3) and c) Ames toxicity (Ames negative). The results of Lipinski’s properties and ADMET characters of all studied molecules are presented in Supplementary Tables 4 and 5. Only those 78 PSM which satisfied the above conditions were taken to further studies. The results revealed the drug-likeness potential of these PSM and furthered their ability to cross the Gastrointestinal track and reach the target site (brain) without causing any mutagenic effect was predicted. Researchers have employed a similar approach of screening the molecules to eliminate those weak in their drug-like characters (Leão et al., 2020).

3.3. Molecular docking and molecular dynamics simulation of selected PSM

Molecular docking of selected 78 PSM along with substrates and 4 FDA-approved drugs (donepezil, galantamine, rivastigmine, and tacrine) were performed with the AChE. The PSM binding energy (BE) was distributed in the range of −3.40 to −10.90 kcal/mol (Table 1 and Supplementary Table 4). The binding energy of the substrates (ACh), donepezil, galantamine, rivastigmine, and tacrine were found −4.80 kcal/mol,
The top 12 compounds with BE less than –8.1 kcal/mol, standard drugs, and substrate were subjected for MD simulation for 50 ns. The results were analyzed using various GROMACS modules. The binding of ligands may introduce a wide range of conformational changes in the enzymes, such as loop or domain movement, conformational rigidity, etc., thus perturbing the enzyme’s conformational state. Although proteins require a moderate amount of conformational flexibility for their function, more significant domain movements may lead to the enzyme’s loss of function. Hence, to examine the ligands (substrate and inhibitors) induced structural changes in the protein and the ligand-bound complexes’ stability, we analyzed various parameters like RMSD, RMSF, Rg, SASA, Hydrogen bond number, hydrogen bond distribution, and hydrogen bond occupancy (HBO).

None of the ligands tested expelled out from the protein; throughout the simulation period. RMSD of all the test systems from its reference structure in due simulation time varies between ~0.25 to 0.4 nm, which reaches a plateau in 20 ns (Supplementary Figure 2). RMSF of the protein during the simulation period was found to be 0.2 to 0.3 nm. The closer inspection of the structure indicates that highly fluctuating regions correspond to the loop residues. In contrast, residues present in α-helix and β-sheet are mostly stable (Supplementary Figure 3). During the simulation period, the Rg variation in all cases was found 2.20 to 2.35 nm (Supplementary Figure 4). The low variation of Rg indicates that the ligand binding to AChE does not significantly change the enzyme’s integrity and compactness. SASA was found in the range of 220-190 (nm²), which indicated that ligands’ interaction with protein did not affect the protein folding (Supplementary Figure 5). Analysis of hydrogen bond numbers between AChE-ligand complexes recorded a range between 0 – 8 hydrogen bonds during the simulation.

Further, the maximum hydrogen bond distribution was in the distance of 0.25 to 3.4 nm (Supplementary Figure 6 and 7). The results obtained from the above analysis indicated the structural integrity of AChE and the stable interaction of ligands throughout the simulation period. The free energy calculation analysis helps assess the binding potential of
ligands as it provides a quantitative estimation of the BE. The van der Waals, electrostatics, polar solvation, and SASA energy contributing to the BE of the molecules are presented and total energy of the simulations were exhibited in Table 2.

Sugiol is an abietane diterpenoid commonly found in *Metasequoia glyptostroboides*, *Syzygium cumini*, *Azadirachta indica*, *Juniperus communis*, *Calocedrus formosana*, and *Lycium chinense* plant species (Bajpai & Kang, 2014; Chao et al., 2005). Previously sugiol has been reported for their anti-cancer (Hao et al., 2018), antileishmanial (Scariot et al., 2019), antimalarial activity (Bero et al., 2010), and inhibitors of α-glucosidase and tyrosinase activity (Bajpai & Kang, 2014). In the present study, sugiol record BE of −9.7 kcal/mol (docking studies) (Table 1) and formed pi interaction with amino acid residues of Peripheral anionic site (PAS) (Tyr^{124}, Trp^{286}, and Tyr^{341}) and Acyl binding site (ABS) (Phe^{297} and Phe^{338}) of AChE (Figure 2.1a and 2.1b). Binding energy determined through MMPBSA was found to be −184.734 ± 9.841 kJ/mol (Table 2). During the simulation, sugiol forms H bonds with Asp^{74} (91.32% HBO) and Arg^{296} (83.6% HBO) of PAS, indicating its potential to block the peripheral substrate binding site, thereby preventing the entry of substrate into the active site of AChE. Sugiol was found following all drug likeliness rules of Lipinski’s and ADMET properties with the bioavailability score (BAS) of 0.55 (Table 1).

Margolone, a diterpenoid obtained from the bark of *Azadirachta indica*, reported various biological activity such as antibacterial, antifungal, and antiviral properties (Ara et al., 1989). In the present studies, margolone record BE of −9.5 kcal/mol (docking studies) (Table 1) and found interacting with amino acid residues Phe^{295} (ABP) and Val^{294} in close vicinity by forming H bonds, and Pi interaction with Tyr^{124}, Trp^{286}, and Tyr^{341} residues of PAS of AChE (Figure 2.2a and 2.2b). Binding energy calculated through MMPBSA was −208.749 ± 13.005 kJ/mol (Table 2). During the simulation period, margolone was found to form an H-bond (75.1% HBO) with Arg^{296} residue present in the vicinity of ASB of AChE. In early literature studies, margolone was identified as one of the active compounds in extract responsible for their...
biological activities. However, no information is available on the effect of margolone in its pure form. Also, its biotransformation and bioavailability information is not available. Through swiss ADME, the BAS of Margolone was determined as 0.85 (Table 1). Hence, our study opens a new avenue for researchers to explore AChE inhibitory and other biological properties of margolone.

7-Hydroxy-3',4'-(Methylenedioxy) flavan is a natural flavonoid commonly found in *Terminalia bellirica* and *Zephyranthes ajax* (Nguyen et al., 2020; Valsaraj et al., 1997), which was reported for the antimicrobial and antifungal activity (Ali et al., 2017), and also reported for anti-HIV activity (Valsaraj et al., 1997). In the present studies, 7-Hydroxy-3',4'- (Methylenedioxy) flavan was recorded BE of -9.4kcal/mol (docking studies) (Table 1) and recorded pi interactions with Tyr$_{124}$, Trp$_{286}$, Tyr$_{337}$ and Tyr$_{341}$ residues belong to PAS of AChE (Figures 2.3a and 2.3b). Binding energy determined through MMPBSA for 7-Hydroxy-3',4'- (Methylenedioxy) flavan binds with AChE was $-186.510 \pm 11.443 \text{kJ/mol}$ (Table 2). During the simulation period, 7-Hydroxy-3',4'- (Methylenedioxy) flavan was found to

form H bond with Tyr$_{124}$ (26.5% HBO), Gln$_{291}$ (14.3% HBO), Phe$_{295}$ (21.9% HBO) and Tyr$_{337}$ (14.6% HBO) PAS residues of AChE. The results indicated the capability of 7-Hydroxy-3',4'- (Methylenedioxy) flavan to block the PAS, thereby preventing substrate entry to the active gorge. This molecule was found following all the drug likeliness parameters tested and recorded BAS of 0.55 (Table 1).

ß-cyperone (Eudesma-4,6-dien-3-one), commonly found in *Cyperus rotundus* (Al-Snafi, 2016). α-cyperone, a structurally related molecule from *Cyperus rotundus* was reported as anti-inflammatory activity via decreasing COX-2 expression at mRNA and protein level (Jung et al., 2013). In the present study, ß-cyperone record BE of -9.2kcal/mol (docking studies) (Table 1) and pi interactions with Tyr$_{72}$, Trp$_{286}$, Phe$_{338}$ residues of PAS and Phe$_{338}$ residues of ABS of AChE (Figures 2.4a and 2.4b). BE determined through MMPBSA was
reported -148.937 ± 8.739 kJ/mol (Table 2). During the simulation period, beta-cyperone was found to form H bonds with Trp286 (5.4% HBO) of PAS and other amino acid residues like Tyr72 (5.5% HBO), and Thr75 (5.1% HBO) in the near vicinity of the AChE active site. Further, through swiss ADME, the BAS of beta-cyperone was determined as 0.55 (Table 1).

1-[5-Tert-butyl-5-hydroxy-3-(trifluoromethyl)-4H-pyrazol-1-yl]-2-(5-methyl-2-propan-2-ylphenoxy) ethanone obtained from the Ziziphus mauritiana (Siddiqui & Patil, 2015). It is pyrazoline-based compound containing fluorne, indicating its diverse biological activity such as anti-inflammatory, antimicrobial and antifungal (Naim et al., 2016). However, no attempt had been made to study the biological properties of this natural molecule in its pure form. In the present study, 1-[5-Tert-butyl-5-hydroxy-3-(trifluoromethyl)-4H-pyrazol-1-yl]-2-(5-methyl-2-propan-2-ylphenoxy) ethanone record BE of -9.1 kcal/mol (docking studies) (Table 1) and found interacting with amino acid residues (Asp74, Ser125, Tyr337 and Tyr341) of PAS through H bonds. The formed π interaction with Tyr124 and Trp286 of PAS and Phe397 and Phe338 residues belongs to ABS of AChE (Figures 2.5a and 2.5b). Residues such as Ser72, Trp86, Asn67 of anionic subsite shown halogen bond with fluorne atoms of 1-[5-Tert-butyl-5-hydroxy-3-(trifluoromethyl)-4H-pyrazol-1-yl]-2-(5-methyl-2-propan-2-ylphenoxy) ethanone (Figure 2.5a and 2.5b). Binding energy determined through MMPBSA was -214.040 ± 8.993 kJ/mol (Table 2). During the simulation period, 1-[5-Tert-butyl-5-hydroxy-3-(trifluoromethyl)-4H-pyrazol-1-yl]-2-(5-methyl-2-propan-2-ylphenoxy) ethanone formed H bond with Asp74 (13.1% HBO), Tyr337 (46.7% HBO), Tyr341 (5.2% HBO), and Tyr124 (4.8% HBO) residue belongs to PAS of AChE. Further through swiss ADME, the BAS of 1-[5-Tert-butyl-5-hydroxy-3-(trifluoromethyl)-4H-pyrazol-1-yl]-2-(5-methyl-2-propan-2-ylphenoxy) ethanone was determined as 0.55 (Table 1).

Isomargolonone, a diterpenoid obtained from the Azadirachta indica, in several biological activities such as antifungal and antibacterial. Isomargalone was a suspected bioactive component present in the crude extract (Biswas et al., 2002). However, no biological activity has been reported with the purified compound. Through computational studies, isomargolonone was predicted as antibacterial via inhibiting New Delhi Metallo-β-lactamase (NDM-1), thereby potentiating beta-lactam antibiotics' activity (Thakur et al., 2013). In the present study, isomargolonone record BE of -9.1 kcal/mol (docking studies) (Table 1) and found interacting with amino acid residues Phe295 and Arg296 of ABS through H bonds, and pi interaction with Trp286 and Tyr341 residues belong to PAS of AChE (Figure 2.6a and 2.6b). Binding energy determined through MMPBSA was shown -199.752 ± 13.449 kJ/mol (Table 2). During the simulation period, isomargolonone was found to form H-bond with Tyr341 (44.9% HBO) and Asp74 (43.9% HBO) of the PAS site, and 56.7% HBO was found with residue Ser293 which in the vicinity of PAS. Further, through swiss ADME, the BAS of isomargolonone was determined as 0.85 (Table 2).

Serpentine is an indole alkaloid obtained from the Catharanthus roseus, Rauwolfa serpentina, and Rauwolfa tetraphylla (Rohela et al., 2016). Serpentine proved to be anticancerous via intercalation reaction with topoisomerase II-DNA complex and inhibiting PI3Ks (Dassonneville et al., 1999; Sharma et al., 2017). In the present study, serpentine record BE of -9 kcal/mol (docking studies) (Table 1) and found forming pi interactions with Tyr72, Leu16, Tyr124, Trp286, Leu289 and Tyr341 amino acid residues belong to PAS or adjacent to PAS of AChE (Figure 2.7a and 2.7b). Binding energy determined through MMPBSA was -261.697 ± 14.678 kJ/mol, which was highest amongst all the PSM studied (Table 2). During the simulation period, serpentine was found to form an H-bond with Gln291 (11.6% HBO), Ser293 (14.2% HBO), and Tyr72 (4.3 HBO) residues adjacent to PAS of AChE. Our studies correlate with Pereira et al. (Pereira et al., 2010), where they reported in vitro AChE inhibitory activity of serpentine in its pure form with IC$_{50}$ of 0.77 μM. Further, the authors reported the serpentine's inability to change diaphragm contractions even at higher concentrations tested (100 μM), indicating their low affinity for neuromuscular nicotinic receptors. In our study, serpentine was found to pass all drug likeliness parameters and recorded higher BAS 0.85 (Table 2). In contrast, the study previous study (Chitra & Kumar, 2009) suggested the incapability of serpentine to penetrate tissues and deep neuromuscular synapse, indicating their low bioavailability in ex vivo preparations.

Cryptolepine is an organic hetero-tetracyclic alkaloid compound commonly found in Sida cordifolia, Cryptolepis Buchananii, and Cryptolepis sanguinolenta (Cimanga et al., 1997; Pande et al., 2006). It has a role as an antimarial and anti-neoplastic (Pande et al., 2006), anti-inflammatory (Olajide et al., 2010), and cysteine protease inhibitor (Cimanga et al., 1997). In the present study, cryptolepine record BE of -8.7 kcal/mol (docking studies) (Table 1) and pi interactions with Trp286 residues belong to PAS of AChE (Figure 2.8a and 2.8b). Binding energy determined through MMPBSA was found to be -192.101 ± 23.444 kcal/mol (Table 2). During the simulation period, cryptolepine was found to form an H-bond with Gln291 (0.1% HBO) residues of AChE, which is the least among all the ligands studied. However, another type of interaction, such as ionic, Van der wall, hydrophobic, etc., may stabilize the complex throughout the simulation period.

In vivo bioavailability of cryptolepin is a significant hurdle in using it as a drug molecule. In our studies, swiss ADME analysis revealed the bioavailability score of cryptolepine as 0.55 with high Gl absorption (Table 2). According to Stell et al. (Stell et al., 2012), the active form of cryptolepine (against Plasmodium falciparum) oxidized into inactive cryptolepine-11-one by rabbit liver aldehyde oxidase under in vitro conditions. Further, Forkuo et al. (Forkuo et al., 2017) observed a similar cryptolepine metabolism pattern in humans and rats. In addition to this, direct glcuronidation of cryptolepine was recorded in humans. Upon oral administration, some of the metabolized products of cryptolepine were identified in plasma and urine. The parental compound detected in urine is negligible, and the plasma half-life was reported to be 4.5 h.

Rotundone is a bicyclic sesquiterpene commonly found in many plant families, especially different grapes and pepper species, as an aromatic compound (Zhang et al., 2016). Though rotundone is widely studied for its aroma, its other
Possible biological activities are neglected. In the present study, Rotundone record BE of -8.7 kcal/mol (docking studies) (Table 2) and found interacting with amino acid residue Phe295 and Arg396 of ABS of AChE forming H bonds and Tyr72, Trp286, Phe338, and Tyr141 residues belong to PAS of AChE (Figure 2.9a and 2.9b). -205.461 ± 10.255 kJ/mol of BE was recorded as MMPBSA for rotundone (Table 2). During the simulation period, rotundone was found to form H bond with Asp74 (6.7% HBO), Ser293 (3.3% HBO) and Trp286 (3.2% HBO) Ser239 (1.7% HBO), Phe295 (0.6% HBO), Tyr337 (0.6% HBO), Thr341 (2.2% HBO) of PAS, and Tyr72 (1.5% HBO), Gly122 (0.1% HBO) of oxyanion hole. Further, through swiss ADME, the rotundone BAS was determined as 0.55 (Table 1).

Strictamin is an alkaloid obtained from the Catharanthus roseus, Vinca minor, and Alstonia scholaris (Kaushik et al., 2011). Tan et al. (Tan et al., 2019) reported antioxidant, neoplastic, and anti-snake venom properties of the Alstonia macrophylla bark's crude extracts. Further alkaloid composition analysis revealed the presence of strictamin as a bioactive compound. The antimicrobial potential of strictamin was reported by Skariyachan et al. (Skariyachan et al., 2019) through molecular docking studies against enzymes involved in the amino acid biosynthesis pathway of Acinetobacter baumannii. In the present study, strictamin record BE of -8.3 kcal/mol (docking studies) (Table 1) and found interacting with amino acid residue Phe295 of ABS formed H-bonds, and π interaction with the Tyr72, Trp286, Arg296, and Leu289 residues belongs to PAS or adjacent to PAS of AChE (Figure 2.10a and 2.10b). Binding energy determined through MMPBSA was -192.012 ± 13.133 kJ/mol (Table 2). During the simulation period, strictamin was found to form H bond Trp286 (0.1% HBO), Leu289 (0.1% HBO), Pro290 (0.1% HBO), Gln291 (0.7% HBO), Glu292 (3.6% HBO), Ser293 (1.4% HBO), Arg296 (1.1% HBO), Gly342 (0.1% HBO) and Lys348 (1% HBO) amino acid residues belongs to PAS or vicinity of PAS of AChE. Further, through swiss ADME, the BAS of strictamin was determined as 0.55 (Table 1).

Rotundenol is a sesquiterpene found in Cyprus rotundus and other related plant species (Irawanto et al., 2020). In the present study, rotundenol record BE of -8.1 kcal/mol (docking studies) (Table 1) and found interacting with amino acid residue Tyr141 through H bonds, and π interaction with the Tyr72, Leu76, and Trp286 residues belong to PAS and in the vicinity (Figure 2.11a and 2.11b). Binding energy determined through MMPBSA was -143.973 ± 9.765 kJ/mol (Table 2). During the simulation period, rotundenol was found to form H bond Arg296 (39.3% HBO), Gln291 (34.4% HBO), and Ser293 (78.8% HBO) amino acid residues at the vicinity of PAS of AChE. Further, through swiss ADME, BAS of rotundenol was determined as 0.55 (Table 1).

Nootkatone is a sesquiterpene obtained from the Cyprus rotundus (Seo et al., 2011). Seo et al. (Seo et al., 2011) observed the anticoagulation activity of nootkatone in rat platelet aggregation ex vivo and in vitro experiments. In the present study, Nootkatone record BE of -8.1 kcal/mol (docking studies) (Table 1) and found interacting with amino acid residue Tyr124 with H bonds and π interaction with the Tyr72, Trp286, and Tyr141 residues belong to PAS of AChE (Figure 2.12a and 2.12b). Binding energy determined through MMPBSA was -123.831 ± 11.440 kJ/mol (Table 2). During the simulation period, nootkatone was found to form an H-bond with Phe295 (63.3% HBO) amino acid residue of ABS and Tyr124 (0.1% HBO) amino acid residues of PAS of AChE. Further, through swiss ADME, the BAS of nootkatone was determined as 0.55 (Table 1).

Among the four FDA-approved drug molecules, the highest BE of -10.9 was recorded by Donepezil, which was found interacting through H-bond with Phe295 (ABS) and Tyr137 (PAS) π-π interactions with His447 of the catalytic triad. Further donepezil recorded the highest MMPBSA (-269.465 \pm 12.579) among all the drug and PSM tested. It also recorded Arg296 (36.3% HBO), Gln291 (71.2% HBO), Phe295 (7.2% HBO) (ABS), Trp286 (PAS) (8.2%). Except for donepezil, none of the tested drug and PSM was found interacting with a catalytic triad (Ser203, Glu334, and His447). Most of these molecules were found interacting with the amino acid residues of PAS and ABS, indicating their ability to prevent/reduce ACh's chances of entry into the gorge of the AChE.

Overall, the PSM was found interacting with amino acid residues of active site triad, Oxyanion hole, Anionic subsites binding site, Acyl binding pocket, and Peripheral anionic site through hydrogen bonding or π interactions during molecular docking or simulation. Some PSM also interacted with amino acid residues adjacent to above-mentioned sites, possibly hindering the substrate accessibility by the active site. Sugiol, which recorded the highest BE in molecular docking, showed pi interaction with amino acid residues of PAS (Tyr124, Trp286, and Tyr141) and ABS (Phe295 and Phe339) of AChE. H bonds were formed with Asp74 and Arg296 of PAS during the simulation, indicating its potential to block the peripheral substrate binding site. Serpentine, which recorded the highest MMPBSA in MD simulation, was found forming π interactions with Tyr72, Leu76, Tyr124, Trp286, Leu289, and Tyr141 amino acid residues belongs to PAS or adjacent to PAS of AChE. Whereas, during the simulation period, serpentine was found to form an H-bond with Gln291, Ser293, and Tyr72 residues adjacent to PAS of AChE.

5. Conclusion

From the results obtained, it could be concluded that high throughput screening of plant extracts and in-silico studies provides a better opportunity to screen structurally diverse PSM to find AChE inhibitors. The present study reported three plant species and 11 PSM as potent AChE inhibitors. The selected PSM passed all the drug-likeness (Lipinski's rule and ADMET) parameters, enhancing confidence in researchers to subject them for further in vitro and in vivo studies. As these top-ranked 12 molecules are reported to present in various edible plants, their use is considered safe compared to other synthetic drug molecules, and they can be subjected to a drug development path with minimal effort. The possible use of these edible plants (with AChE inhibitory molecules) as a part of the diet of affected patients may be further explored. The major drawback of the present study is...
that it does not provide information about the nature of inhibition by the PSM as only competitive inhibitors are preferred in reducing the AChE activity. Hence, further studies are required with purified PSM to understand the nature of enzyme inhibition.

Acknowledgements

The authors are grateful to Dr. Sampat Kumar, Assistant Professor, Department of Botany, University of Davengare, Karnataka, India, for helping with plant identification. HP thanks IIT Delhi for providing the FIRP grant, and GC thanks ICMR for financial support. HP, SS, and GC also thank the HPC-facility at IIT-Delhi.

Disclosure statement

No potential conflict of interest was reported by the authors.

Author contribution

Conceptualization Hariprasad P.; Data curation Gourav Choudhir; Formal analysis Gourav Choudhir and Hariprasad P.; Investigation Gourav Choudhir and Hariprasad P.; Project administration Hariprasad P.; Resources Hariprasad P. and Satyawati Sharma; Software Open access; Supervision Hariprasad P. and Satyawati Sharma; The manuscript was written through contributions of all authors. All authors have approved the final version of the manuscript.

ORCID

P. Hariprasad

http://orcid.org/0000-0002-6598-5301

References

Abbas-Mohammadmi, M., Farimani, M. M., Salehi, P., Ebrahim, S. N., Sonbol, A., Kelso, C., & Skropeta, D. (2018). Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. Journal of Pharmaceutical and Biomedical Analysis, 158, 471–479. https://doi.org/10.1016/j.jpba.2018.06.026

Ali, R., Rahim, A., & Islam, A. (2017). Synthesis and antimicrobial activity of 7-hydroxy-3', 4'-methylenedioxv-and 7-benzoxyl-3', 4'-methylene-dioxy flavanones. Journal of Scientific Research, 61(3), 297–306. https://doi.org/10.3329/jsr.v61i3.31229

Al-Snaﬁ, A. E. (2016). A review on Cyperus rotundus A potential medicinal plant. IOSR Journal of Pharmacy (IOSRPHR), 06(07), 32–48. https://doi.org/10.9790/0831-0722248

Alvarez, A., Opazo, C., Alarcón, R., Garrido, J., & Inestrosa, N. C. (1997). Acetylcholinesterase promotes the aggregation of amyloid-beta-pleptide fragments by forming a complex with the growing fibrils. Journal of Molecular Biology, 272(3), 348–361. https://doi.org/10.1006/jmbi.1997.1245

Anand, P., & Bley, K. (2011). Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. British Journal of Anaesthesia, 107(4), 490–502. https://doi.org/10.1093/bja/aeq260

Ara, I., Siddiqui, B. S., Faizi, S., & Siddiqui, S. (1989). Structurally novel diterpenoid constituents from the stem bark of Azadirachta indica (Meliaceae). Journal of the Chemical Society, Perkin Transactions 1, 2, 343–345. https://doi.org/10.1039/p19890000343

Bajpai, V. K., & Kang, S. C. (2014). A diterpenoid sugiol from Mesacsequia glyptostroboides with -glucosidase and tyrosinase inhibitory potential. Bangladesh Journal of Pharmacology, 9(3), 312–316. https://doi.org/10.3329/bjp.v9i3.19026

Behra, M., Cousin, X., Bertrand, C., Vonesch, J.-L., Biellmann, D., Chatonnet, A., & Strähle, U. (2002). Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nature Neuroscience, 5(2), 111–118. https://doi.org/10.1038/nn788

Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. W. H. Freeman and Company: New York.

Bero, J., Frédéric, M., & Quettin-Leclercq, J. (2010). Antimalarial compounds isolated from plants used in traditional medicine. Journal of Pharmacy and Pharmacology, 61(11), 1401–1433. https://doi.org/10.1211/jpp.61.11.0001

Bhadra, S., Dalai, M. K., Chanda, J., & Mukherjee, P. K. (2015). Evaluation of bioactive compounds as acetylcholinesterase inhibitors from medicinal plants. In P. K. Mukherjee (Ed.), Evidence-based validation of herbal medicine (pp. 273–306). Elsevier.

Bl, X., Zhao, Y., Fang, W., & Yang, W. (2009). Anticancer activity of Panax notoginseng extract 20(S)-OCH3-PPD: Targetting beta-catenin signalling. Clinical and Experimental Pharmacology & Physiology, 36(11), 1074–1078. https://doi.org/10.1111/j.1440-1681.2009.05203.x

Bligbee, J. W., Sharma, K. V., Gupta, J. J., & Dupree, J. L. (1999). Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environmental Health Perspectives, 107(suppl 1), 81–87. https://doi.org/10.1289/ehp.991075181

Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandypadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science-Bangalore, 82(11), 1336–1345.

Calcul, L., Zhang, B., Jinwal, U. K., Dickey, C. A., & Baker, B. J. (2012). Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Medicinal Chemistry, 4(13), 1751–1761. https://doi.org/10.4155/fmc.12.124

Castro, A. L. G., Cruz, J. N., Som, D. F., Correa-Barbosa, J., Azonvisco, R., de Oliveira, M. S., de Sousa Siqueira, J. E., da Rocha Galucio, N. C., de Oliveira Bahia, M., Burbano, R. M. R., do Rosário Marinho, A. M., Peracário, S., Dabela, M. F., & Vale, V. V. (2021). Evaluation of the genotoxicity and mutagenicity of isofulven and efuletin isolated from Eleutherine plicata herb using bioassays and in silico approaches. Arabian Journal of Chemistry, 14(4), 103084. https://doi.org/10.1016/j.arabjc.2021.103084

Chao, K.-P., Hua, K.-F., Hsu, H.-Y., Su, Y.-C., & Chang, S.-T. (2005). Anti-inflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana bark. Planta Medica, 71(4), 300–305. https://doi.org/10.1055/s-2005-864094

Chitra, V., & Kumar, K. P. (2009). Neuroprotective studies of Rubia cordifolia Linn. on β-amyloid induced cognitive dysfunction in mice. International Journal of PharmTech Research, 1(4), 1000–1009.

Cimanga, K., De Bruyne, T., Pieters, L., Vlietinck, A. J., & Turger, C. A. (2017). In vitro and in vivo antiplasmodial activity of cryptopelle sanguinolenta. Journal of Natural Products, 60(7), 688–691. https://doi.org/10.1021/np9605246

Colovic, M. B., Krsic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159113110300016

Costa, E. B., Silva, R. C., Espelho-Roman, J. M., Neto, M. F. d. A., Cruz, J. N., Leite, F. H. A., Silva, C. H. T. P., Pinheiro, J. C., Macedo, W. J. C., & Santos, C. B. R. (2020). Chemometric methods in antimalarial drug design from 1,2,4,5-tetrasoxanes analogues. SAR and QSAR in Environmental Research, 31(9), 677–619. https://doi.org/10.1080/1062936X.2020.1803691

Craft, S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66(3), 300–305. https://doi.org/10.1001/archneur.2009.27

Crowe, C. M., & Okello, E. J. (2009). Kinetics of acetylcholinesterase inhibitory activities by aqueous extracts of Acacia nilotica (L) and Rhamnus prinoides (Lhr.). African Journal of Pharmacy and Pharmacology, 3(10), 469–475.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. *Dialogues in Clinical Neuroscience*, 11(2), 111–128.

Rohela, G. K., Bylla, P., Korra, R., & Reuben, C. (2016). Phytochemical screening and antimicrobial activity of leaf, stem, and root extracts in *Rauwolfia tetraphylla*. *International Journal of Agriculture and Biology*, 18(3), 521–528. https://doi.org/10.17957/ijaab.15.015020

Saha, M. R., Dey, P., Begum, S., Deb, B., Chaudhuri, T. K., Sarker, D. D., Das, A. P., & Sen, A. (2016). Effect of *Acaeca catechu* (L) Willd. on oxidative stress with possible implications in alleviating selected cognitive disorders. *Plos One*, 11(3), e0150574. https://doi.org/10.1371/journal.pone.0150574

Sancheti, S., Sancheti, S., Um, B.-H., & Seo, S.-Y. (2010). 1, 2, 3, 4, 6-penta-O-galloyl-D-glucose: A cholinesterase inhibitor from *Terminalia chebula*. *South African Journal of Botany*, 76(2), 285–288. https://doi.org/10.1016/j.sajb.2009.11.006

Sciorti, D. B., Volpato, H., Fernandes, N. d S., Soares, E. F. P., Ueda-Ueda, A., Prasanthi, R. J., Reddy, G. H., Chetty, C., & Reddy, G. R. (2019). Antioxidant, Cytotoxicity, and Antiophidian Potential of *Cyperus rotundus* Bark extract: Assessment of safety aspects and neuroprotective effects. *Environmental Science and Pollution Research International*, 25(11), 10418–10433. https://doi.org/10.1007/s11356-017-9789-4

Srivivasan, M., Sambash, K., Satyanarayana, M., & Rao, M. (1980). Influence of red pepper and capsicin on growth, blood constituents and nitrogen balance in rats. *Nutrition Reports International*, 21(3), 455–467.

Stell, J. G. P., Wheelhouse, R. T., & Wright, C. W. (2012). Metabolism of cryptolepine and 2-fluorocryptolepine by aldehyde oxidase. *The Journal of Pharmacy and Pharmacology*, 64(2), 237–243. https://doi.org/10.1111/j.2042-7158.2011.01408.x

Suganthy, N., Ramkumar, V. S., Pugazhendhi, A., Benelli, G., & Archunan, G. (2018). Biogenic synthesis of gold nanoparticles from *Terminalia arjuna* bark extract: Assessment of safety aspects and neuroprotective potential via antioxidant, cholinesterase, and antiamyloidogenic effects. *Environmental Science and Pollution Research International*, 25(11), 10418–10433. https://doi.org/10.1007/s11356-017-9789-4

Tafesse, T. B., Hymete, A., Mekonnen, Y., & Tadesse, M. (2017). Antidiabetic activity and phytochemical screening of extracts of the leaves of *Ajuga remota* Benth on alloxan-induced diabetic mice. *BMC Complementary and Alternative Medicine*, 17(1), 1–9. https://doi.org/10.1186/s12906-016-1757-5

Tan, M. C. S., Carranza, M. S. S., Linis, V. C., Malabed, R. S., & Oyong, G. G. (2019). Antioxidant, Cytotoxicity, and Antiphilanthropic Potential of *Alstonia macrophylla* Bark. *ACS Omega*, 4(5), 9488–9496. https://doi.org/10.1021/acsomega.9b00082

Thakur, P. K., Kumar, J., Ray, D., Anjum, F., & Hassan, M. I. (2013). Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. *Journal of Natural Science, Biology, and Medicine*, 4(1), 51–56. https://doi.org/10.4103/0976-9668.107260

Tönnies, E., & Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s Disease. *Journal of Alzheimer’s Disease*: JAD, 57(4), 1105–1121. https://doi.org/10.3233/JAD-161088

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *Journal of Computational Chemistry*, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., & Raghava, G. (2013). In silico models for designing and discovering novel anticancer peptides. *Scientific Reports*, 3, 2984. https://doi.org/10.1038/srep02984

Valsaraj, R., Pushpangadan, P., Smit, U. W., Adserens, A., Christersen, S. B., Sittie, A., Nyman, U., Nielsen, C., & Olsen, C. E. (1997). New anti-HIV-1, anti-malarial, and antifungal compounds from *Terminalia bellirica*. *Journal of Natural Products*, 60(7), 739–742. https://doi.org/10.1021/np970010m
van Gunsteren, W. F., Billeter, S., Eising, A., Hünenberger, P., Krüger, P., Mark, A., Scott, W., & Tironi, I. (1996). Biomolecular simulation: The GROMOS96 manual and user guide (Vol. 86). Vdf Hochschulverlag AG an der ETH Zürich.

Velander, P., Wu, L., Henderson, F., Zhang, S., Bevan, D. R., & Xu, B. (2017). Natural product-based amyloid inhibitors. Biochemical Pharmacology, 139, 40–55. https://doi.org/10.1016/j.bcp.2017.04.004

Wang, B., Zhu, H.-T., Wang, D., Yang, C.-R., Xu, M., & Zhang, Y.-J. (2013). New spinosin derivatives from the seeds of Ziziphus mauritiana. Natural Products and Bioprospecting, 3(3), 93–98. https://doi.org/10.1007/s13659-013-0028-5

Waymire, J. C. (2020). Neuroscience online. https://nba.uth.tmc.edu/neuroscience/s1/chapter11.html

Wilson, I. B., & Harrison, M. (1961). Turnover number of acetylcholinesterase. Journal of Biological Chemistry, 236(8), 2292–2295. https://doi.org/10.1016/S0021-9258(18)64073-6

Yi, S., Huang, Y., Yu, S.-Z., Chen, X.-J., Yi, H., & Zeng, X.-L. (2015). Therapeutic effect of atropine 1% in children with low myopia. Journal of American Association for Pediatric Ophthalmology and Strabismus, 19(5), 426–429. https://doi.org/10.1016/j.jaapos.2015.04.006

Zhang, P., Fuentes, S., Wang, Y., Deng, R., Krstic, M., Herderich, M., Barlow, E. W., & Howell, K. (2016). Distribution of rotundone and possible translocation of related compounds amongst grapevine tissues in Vitis vinifera L. cv. Shiraz. Frontiers in Plant Science, 7, 859. https://doi.org/10.3389/fpls.2016.00859