A genomic study on distribution of human leukocyte antigen (HLA)-A and HLA-B alleles in Lak population of Iran☆

Farhad Shahsavara, Ali-Mohammad Varziaz, Seyyed Amir Yasin Ahmadib,c

a Department of Immunology, Lorestan University of Medical Sciences, Khorramabad, Iran
b Research Office for the History of Persian Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
c Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran

1. Introduction

Among the basic medical sciences involving in anthropology, immunology can be considered as a science which deals with the molecular markers playing role in recognition of self and non-self between ethnicities [1]. So biomedicine is not alien to anthropology and offers an ethnographic international classification of ethnicities based on the immunological molecules such as CD markers [2,3]. Hereby the integration between anthropology and immunology as a kind of integration between social and medical sciences could be a strategic way to have a biological information bank of different cultures in order to reach the aims mentioned in the next such as bone marrow transplantation, infertility prognosis and treatment [4,5] and finding the identity of persons not grown with their real parents.

In the mankind genome, the human leukocyte antigen (HLA) also called as major histocompatibility complex (MHC) [6] with the length of 3600 kb is located on chromosome 6 and includes 239 antigenic loci that about 40% of them are immunogenic [7]. Recently, >2000 alleles for HLA class I are known in humans [8]. There are 2 classes of HLA and HLA class I in turn falls in two categories of classical (HLA-A and B) and non-classical (HLA-C, G, E and F) [4,9–13]. The main role of HLA class I is that this biological molecule acts as an identifying card for all nuclear cells of body to be proposed for natural killer cells (CD56CD16 [14]) that different interactions between them results in different outcomes [15]. In addition to the key roles considered by immunologists for HLA, such genes have attracted the view point of most developmental biologists because of a high level of allele variety.

Since some alleles of HLA are commonplace in specific populations, the alleles are used by anthropologists as markers to determine genetic correlations and interactions in different populations [2]. Clinically, being acquainted with HLA distribution is a sine qua non for bone marrow donating centers [16,17], forensic medicine [18], studies of HLA related disease such as type 2 diabetes [19–21] or multiple sclerosis [22], designing peptide vaccine and monoclonal antibodies against tumors [23,24], infectious agents [25–27] and autoimmune disease [20,28], as well as infertility treatment and assisted reproductive technologies [29–31].

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Race wise, Iran is a variable country that has different ethnicities such as Kurd, Lur, Torkaman, Azeri, Arab and Balouch. Majority of Iranians are Muslims, but Zoroastrians, Christians and Jewish also live in this country [32]. History has it that the majority of Iranians are Aryan but during the history they were attacked by different foreigners such as Alexander and Macedonians, Arabs, Turks and Moguls [32]. As described by a thesis under the supervision of Dr. Maziar Ashrafian Bonab [33], Aryans are believed to be one of the early Proto-Indo-European speaking ethnicities migrated toward Iran. They arrived and settled in the north of Afghanistan around 2000–1500 BCE and kept on migrating and headed west settling in Iran and others south into India and Pakistan. It seems that as a result of their vast distribution, the Aryans were the main advocates of the Indo-European languages and promoting their proliferation via cultural and demic diffusion and therefore displacing the indigenous languages. Also Iran has played a key role in connection of different populations via the Silk Road [34,35]. Thus the living populations in this country might be mixed because of migrations and mentioned relations.

Lak (or Laki) population is an ethnicity living in southwest of Iran and southeast of Iraq that there is still a controversy whether they are Kurd or Lur; because their culture and language are a complex of Kurd or Lur; because their culture and language are a complex of Kurd and Luri populations. Kurds, Lurs and Persians are accounted as Iranian population [38] because their culture and language are a complex of Kurd and Luri populations.

In previous studies, allele frequency of HLA class-II were determined in majority of different Iranian populations and compared with each other [18,37]. In the present study, we intend to find allele frequency of HLA class-I in Lak population. The geographical condition of Laks (Fig. 1) shows that the majority of Iranian Laks live in the north of Lorestan province and some of them lives in Kermanshah, Ilam and Hamadan [36].

In previous studies, allele frequency of HLA class-II were determined in majority of different Iranian populations and compared with each other [18,37]. In the present study, we intend to find allele frequency of HLA class-I in Lak/lak population of Lorestan province (west of Iran) regarding to the lack of this study (on the class-I) in Lak population. Then based on the HLA-I profile the genetic relations between this population and total Iranian population [38] is investigated.

2. Material and methods

For the present study, 100 healthy and unrelated Lak individuals living in Lorestan province were randomly chosen by convenient sampling based on the including criteria in 2015. Our including criteria was having the same race (the two recent generations of each sample should be Laks) and having 20–40 years of age, and the excluding criteria was having history of some specific diseases. Complete blood samples were obtained with informed and written consents from the participating individuals. The study was approved by the ethic committee of Lorestan University of Medical Sciences.

The genomic DNA of individuals was extracted by using kit BAG (Germany). HLA-typing kit for polymerase chain reaction with sequence specific primer (PCR-SSP) – a method which has longer and more specific primers for each allele of polymorphisms instead of using restriction enzymes [39,40] – with low resolution (BAG Germany) were used to determine HLA-A and B alleles via genomic DNA. PCR products got visible in 2% agarose gel including 0.5 mg/ml Ethidium Bromide electrophoresis under an ultra violet light. Since there is a specific primer for each allele in SSP method (and HLA is highly polymorphic), we cannot write their sequences in the article and also it’s a patent for the company.

Allele frequencies of HLA-A and B were determined through the direct counting method. The differences between the populations in allele frequencies of HLA-A and B were estimated by Chi-squared 2 multiplied by 2 test with degree of freedom 1. According to being multiple of the compares, we used Yate’s correction to correct the randomized significance. After the correction p < 0.05 considered as the level of significance.

3. Results

Allele frequency of HLA-A and B in Iranian Lak population are given in Table 1. Fifteen allele for HLA-A and 23 allele for HLA-B were identified. In Lak population, the most frequent HLA-A alleles were respectively A*24 (20%), A*02 (18%), A*3 (12%) and A*11 (10%). The most frequent HLA-B alleles were respectively B*35 (24%), B*51 (16%), B*18 (6%) and B*38 (6%). The least frequent HLA-A alleles were A*66 (1%) and A*74 (1%) and the least frequent HLA-B alleles were B*48 (1%) and B*55 (1%).

4. Discussion

In the present study the most frequent HLA-A and B alleles in 100 healthy and unrelated Lak individuals were determined with method PCR-SSP. Allele frequency of HLA-A and B in Lak and total Iranian population [38] is shown in Table 1.

Table 1: Allele frequency of HLA-A and B in Lak population (our study) in comparison to total Iranian population [38] *(p < 0.05)*

Allele A	Frequency in Lak population	Frequency in total Iranian population	Allele B	Frequency in Lak population	Frequency in total Iranian population
A*01	8	9.25	B*07	4	4.75
A*02	18	18.16	B*08	4	4.25
A*03	12	12.08	B*13	4	3.91
A*11	10	10.41	B*14	2	3.00
A*23	2	2.25	B*15	2	3.16
A*24	20*	21.66	B*18	6	4.33
A*26	8	8.83	B*27	2	2.58
A*29	2	2.5	B*35	24*	21.66
A*30	6	6.46	B*37	2	1.00
A*31	6	6.16	B*38	6	4.33
A*32	2	5.66	B*39	2	0.91
A*33	2	3.66	B*40	4	3.58
A*43	–	0.16	B*41	3	2.75
A*66	1	0.25	B*42	–	0.165
A*68	2	4.16	B*44	2	4.165
A*69	–	0.16	B*45	–	0.165
A*74	1	0.41	B*47	–	0.165
A*80	–	0.16	B*48	1	0.50
A*89	–	0.16	B*49	2	2.50
A*50	3	3.58	B*50	3	3.58
A*51	16*	13.33	B*51	3	3.50
A*52	3	3.50	B*53	–	0.25
A*54	–	0.165	B*54	–	0.165
A*55	1	0.35	B*55	1	0.35
A*56	2	0.50	B*56	2	0.50
A*57	2	1.00	B*57	2	1.00
A*58	3	1.915	B*58	3	1.915

Fig. 1. Geographical status of Laks (the red color) (adapted from the reference [36]). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
As it is shown in Table 1, the frequency of the alleles HLA-A*24, HLA-B*35 and HLA-B*51 in Lak population were significantly more than the frequency of these alleles in Iranian population. In addition, comparing our findings with the findings of total Iranian population study shows that allele frequency of HLA-A and B in Lak population has a high similarity to total Iranian population. Recently, HLA class I typing has been performed also in the Lur and Kurd populations of western Iran [41]. Based on this study, A*24 and B*51 was high frequent alleles in different populations. Of course this fact is reasonable through genetic similarity of the populations (except A*24, about 12% in the Chinese and 20% in Laks). Allele A*24 are widespread in human race. As it’s shown in Table 2, the high frequent alleles (Table 2).

Other than different Iranian populations and ethnicities, these findings are also similar to other studies on different white populations (Table 2). In contrast, these findings are not similar to the findings of Shenh et al. in Han population of China [42] and Yao et al. in total Chinese population [43] (except A*24, about 12% in the Chinese and 20% in Laks) that in the both populations was higher than 10% as the par value of frequency. Of course this fact is reasonable through genetic similarity of Iranians and others Caucasians and genetic difference between the whites and yellow-skinned.

In a Brazilian population the most frequent alleles were A*02, A*03, B*15, B*35, B*51 [44]. Alleles B*35 and B*51 high frequency was like Lak population, whereas B*15 is low frequency in Lak population. The allele frequency of B*27 – which is associated with Ankylosing spondylitis [45] – is low frequent in Lak population as other populations. In African, alleles B*35 and B*53 were high frequency [46] as the Laks respectively are and are not so. These findings suggest that some alleles like A*24 are widespread in human race. As it’s shown in Table 2 the high frequent alleles (>10%) in different ethnicities [7] are compared with Laks. Allele A*02 seems the most high frequent in different populations (Table 2).

Analyzing frequency of HLA-A and B alleles enable us to assay genetic relations among various populations in our anthropological studies. As well, determining allele frequency of HLA-A and B in Lak population could be a good source for other studies in future such as correlations between the alleles and genetic disorders.

5. Conclusions

At the end of the study, our results based on the allele frequencies showed that the population has general features of the Lurs, the Kurds and the total Iranian population reported before. Of course it’s obvious that the main conclusion is that establishing immunology-based laboratories is necessary to diagnose and treat diseases through molecular methods. It could be useful for transplantation, assisted reproductive technologies and HLA-related disease.

Conflicts of interest

Meanwhile we don’t have conflict of interest.

Acknowledgements

Finally we take it upon ourselves to acknowledge all the participants in the study. Present study was performed under the financial support of Lorestan University of Medical Sciences with grant number 1139.

References

[1] A.D. Napier, Nonself help: how immunology might reframe the enlightenment. Cult. Anthropol. 27 (2012) 122–137.
[2] A. Cambrosio, P. Keating, A matter of FACS: constituting novel entities in immunology. Med. Anthropol. Q. 6 (1992) 362–384.
[3] E. Martin, Toward an anthropology of immunology: the body as nation state. Med. Anthropol. Q. 4 (1990) 410–426.
[4] M. PrabhuDas, E. Bonney, K. Caron, S. Dey, A. Erlebacher, A. Fazleabas, S. Fisher, T. Golos, M. Matzuk, J.M. McCune, Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat. Immunol. 16 (2015) 328–334.
[5] S.A.Y. Ahmad, F. Shahravas, S. Akbari, A review on controversies about the role of immune and inflammatory systems in implantation process and durability of pregnancy. Int. J. Womens Health Reprod. Sci. 4 (2016) 96–102.
[6] D.X. Beringer, F.S. Kleijwegt, F. Wiese, A.R. van der Sliek, K.L. Loh, J. Petersen, N.L. Duarte, C. Dauinkerke, E. Laban, A. Joosten, J.P. Wijnen, Z. Chen, A.P. Uildrich, D.J. Godfrey, J. McCluskey, D.A. Price, K.J. Radford, A.W. Purcell, T. Nikolic, H.H. Reid, T. Tigani, B.O. Roep, J. Rossjohn, T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. Nat. Immunol. 16 (2015) 1153–1161.
[7] S. Khansa, R. Hoteit, D. Shammaa, R.A. Khalek, H. El Halas, L. Greige, F. Abbas, R.A.R. Mahloofi, HLA class I allele frequencies in the Lebanese population. Gene 512 (2015) 560–565.
[8] S. Mukherjee, J. Warwicker, N. Chandra, Deciphering complex patterns of class-I HLA-peeptide cross-reactivity via hierarchical grouping. Immunol. Cell Biol. 93 (2015) 522–532.
[9] E.C. Castelli, T.H.A. Lima, R.V. Buttura, M.A. Paz, L.O.P. Porto, J. Ramalho, A.S. Souza, L.C. Veiga-Castelli, C.T. Mendes-Junior, J.A. Donadio, Evaluation of the HLA-F variable in Brazil by next generation sequencing. Hum. Immunol. 76 (2015) 89 (Supplement).
[10] E.C. Castelli, C.T. Mendes-Junior, A. Sabbagh, L.O.P. Porto, A. Garcia, J. Ramalho, T.H.A. Lima, J.D. Massaro, F.C. Dias, C.V.A. Colliers, Y. Jamonneau, B. Bucheton, M. Camara, E.A. Donadi, HLA-E coding and 3′ untranslated region variability determined by next-generation sequencing in two West-African population samples. Hum. Immunol. 76 (2015) 945–951.
[11] N. Lauterbach, L. Wieten, H.E. Popejus, C.M. Voorter, M.G.J. Tijlans, HLA-E regulate peptides NKGC′+ natural killer cell function through presentation of a restricted peptide repertoire. Hum. Immunol. 76 (2015) 578–586.
[12] T.D. Veit, J.A.B. Chies, M. Switala, F. Wagner, P.A. Horn, M. Busatto, C.V. Brelon, J.C.T. Brelon, R.M. Xavier, V. Rebmann, The paradox of high availability and low recognition of soluble HLA-B by IIR1R1 receptor in rheumatoid arthritis patients. PloS One 10 (2015), e0123838.
[13] A. Halenius, C. Gerke, H. Hengel, Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell. Mol. Immunol. 12 (2015) 139–153.
[14] N. Tajik, F. Shahravas, S. Akbari, F. Shahravas, But the reverse is not true: a critical review on screening protocol of uterine natural killer cells. J. Chem. Pharm. Sci. 9 (2016) 2483–2486 http://jchps.com/issues/jchps%209(4)%20140%20Seyyed%20Amir%20 ...
[15] T. Mousavi, H. Pourmoghim, M. Moradi, N. Tajik, F. Shahravas, M. Soofi, Phenotypic study of natural killer cell subsets in ankylosing spondylitis patients. Iran. J. Allergy Asthma Immunol. 8 (2009) 193–198.
[16] Z. Grulic, M.B. Kamenscik, M. Mikulic, K.S. Jankovic, M. Maskalan, R. Zunec, HLA-A, HLA-B and HLA-DRB1 allele and haplotype diversity among volunteer bone marrow donors from Croatia. Int. J. Immunogenet. 41 (2014) 211–221.
[17] P.A. Mouraud, M.L. Balere, C. Faucher, P. Lenoise, A. Dormoy, M. Garnier, HLA phenotypes of candidates for HSCT: comparing transplanted versus non-transplanted candidates, resulting in the predictive estimation of the probability to find a 10/10 HLA matched donor. Tissue Antigens 83 (2014) 17–26.
[18] A.M. Varzi, F. Shahravas, M.J. Tarraahi, Distribution of HLA-DRB1 and HLA-DQB1 alleles in Lak population of Iran. Hum. Immunol. 77 (7) (2016) 580–583.
[19] D.C. Chang, F. Paaggi, R.L. Hanson, W.C. Knowler, J. Rucci, G. Thio, M.G. Hohenadel, C. Bogardus, J. Krakoff, Use of a high-density protein microarray to identify autoantibodies in subjects with type 2 diabetes mellitus and an HLA background associated with reduced insulin secretion. PLoS One 10 (2015), e0134351.
[20] N. Tajik, F. Shahravas, H. Pourmoghim, N. Tajik, F. Shahravas, M. Radjabzadeh, T. Mousavi, A. Jalali, KIR3DL1+ HLA-B8 W48le80 and KIR2D51+ HLA-C2 combinations are both associated with ankylosing spondylitis in the Iranian population. Int. J. Immunogenet. 38 (2011) 403–409.
[21] M. Piga, A. Mathieu, Genetic susceptibility to Behcet’s disease: role of genes belonging to the MHC region. Rheumatology 50 (2011) 299–310.
[22] F. Shahravas, S. Mapar, S.A.Y. Ahmad, Multiple sclerosis is accompanied by lack of KIR2DS1 gene: a meta-analysis. Genomics Data 10 (2016) 75–78.
F. Shahsavar et al. / Genomics Data 11 (2017) 3–6

[23] S. Matsuoka, Y. Ishii, A. Nakao, M. Abe, N. Ohtsuji, S. Momose, H. Jin, H. Arase, K. Sugimoto, Y. Nakayoshi, Establishment of a therapeutic anti-pan HLA-class II monoclonal antibody that directly induces lymphoma cell death via large pore formation. PLoS One 11 (2016), e0150496.

[24] W.D. M. Larche, Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat. Med. 11 (2005) 69–76.

[25] P.J. McLaren, M. Carrington, The impact of host genetic variation on infection with HIV-1. Nat. Immunol. 16 (2015) 577–583.

[26] T. Mousavi, F. Shahsavar, P. Farma, N. Tajik, M. Soofi, Study of KIR expression and HLA ligands in CD56+ lymphocytes of drug resistant tuberculosis patients. Iran. J. Allergy Asthma Immunol. 10 (2011) 189–194.

[27] F. Shahsavar, T. Mousavi, A. Azargon, K. Entezami, Association of KIR3DS1 + HLA-B*5701 combination with susceptibility to tuberculosis in Lur population of Iran. Iran. J. Immunol. 9 (2012) 39–47.

[28] N. Hussain, G. Jaffer, Distribution of human leukocyte antigen alleles in systemic lupus erythematosus patients with angiotensin converting enzyme insertion/deletion polymorphism. Bosn. J. Basic Med. Sci. 13 (2013) 57–62.

[29] N. Alizadeh, E. Mosaferi, L. Farzadi, J. Majidi, A. Monfaredan, B. Yousef, B. Baradaran, Frequency of null allele of human leukocyte antigen-G (HLA-G) locus in subjects to recurrent miscarriage. Int. J. Reprod. BioMed. 14 (2016) 459.

[30] M. Fotoohi, N. Ghasemi, S.A. Mirghanizadeh, M. Vakili, M. Samadi, Association between HLA-E gene polymorphism and unexplained recurrent spontaneous abortion (RSA) in Iranian women. Int. J. Reprod. BioMed. 14 (2016) 477.

[31] M. Mohebbi, Z. Mohebbi, Demography of race and ethnicity in Iran. The International Handbook of the Demography of Race and Ethnicity, Springer 2015, pp. 353–373.

[32] G.E. Hemery, S. Mapelli, M.E. Malvolti, Ancient humans in Europe influenced the current spatial genetic structure of common walnut populations in Asia. PLoS One 10 (2015), e0135980.

[33] L. Matevosyan, S. Chattopadhyay, V. Madelian, S. Avagyan, M. Nazaretyan, A. Ghashghaie, K. Alimoghaddam, M.R. Ostadali, L. Khansari, M. Sadraee, E. Mirraeekhan, I. Mohyedin, F. Raofi, Z. Noori, H. Yaghmaian, Allele frequencies of HLA class-I loci in the normal Iranian population. Int. J. Hematol. Oncol. Stem Cell Res. 3 (2009) 18–20.

[34] L. Shi, Y. Tao, J.K. Kulski, K. Lin, X. Huang, H. Xiang, J. Chu, L. Shi, Distinct HLA class-I loci in the normal Iranian population. Int. J. Hematol. Oncol. Stem Cell Res. 3 (2009) 18–20.

[35] Y. Shen, D.F. Cao, Y.L. Li, J.K. Kulski, L. Shi, H.J. Jiang, Q.L. Ma, J.K. Yu, J.X. Zhou, Y.F. Yao, L. Shi, Distribution of HLA-A, -B, and -C alleles and HLA/KIR combinations in Han Population in China. J. Immunol. Res. (2014) (https://www.hindawi.com/journals/jir/2014/503529/).

[36] Y. Yao, L. Shi, Y. Tao, J.K. Kulski, K. Lin, X. Huang, H. Xiang, J. Chu, L. Shi, Distinct HLA allele and haplotype distributions in four ethnic groups of China. Tissue Antigens 80 (2012) 452–461.

[37] C. Rodrigues, L.C. Macedo, A.V. Brueder, F.D.C. Quintero, J.B. de Alencar, A.M. Sell, J.E.L. Vissentainer, Allele and haplotype frequencies of HLA-A, B, C, DRB1 and DQB1 genes in polytransfused patients in ethnically diverse populations from Brazil. Int. J. Immunogenet. 40 (2013) 322–328.

[38] I. E. El Mouraghi, A. Daurour, I. Ghozlani, E. Collantes-Estevez, R. Solana, A. El Maghraoui, Polymorphisms of HLA-A, -B, -Cw alleles and HLA-KIR combinations in Moroccon patients with ankylosing spondylitis and a comparison of clinical features with frequencies of HLA-B*27. Tissue Antigens 85 (2015) 108–116.

[39] P.J. Norman, J.A. Hollenbach, N. Nemat-Gorgani, L.A. Guethlein, H.G. Hilton, M.J. Pando, K.A. Koram, E.M. Riley, L. Abi-Rached, P. Parham, Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of Sub-Saharan Africans. PLoS Genet. 9 (2013).

[40] L. Matevosyan, S. Chattopadhyay, V. Madelian, S. Avagyan, M. Nazaretyan, A. Hyusian, E. Vardapetyan, R. Arutunyan, F. Jordan, HLA-A, HLA-B, and HLA-DRB1 allele distribution in a large Armenian population sample. Tissue Antigens 78 (2011) 21–30.

[41] G.E. Hemery, S. Mapelli, M.E. Malvolti, Ancient humans in Europe influenced the current spatial genetic structure of common walnut populations in Asia. PLoS One 10 (2015), e0135980.