A Probabilistic Approach to Diachronic Phonology

Alexandre Bouchard-Côté Percy Liang
Tom Griffiths Dan Klein
Languages evolve

Gloss	Latin	Italian	Spanish	Portuguese
Word/verb	verbum	verbo	verbo	verbu
Fruit	fructus	frutta	fruta	fruta
Laugh	ridere	ridere	reir	rir
Center	centrum	centro	centro	centro
August	augustus	agosto	agosto	agosto
Swim	natare	nuotare	nadar	nadar
Language evolution

Gloss	Latin	Italian	Spanish	Portuguese
Word/verb	verbum	verbo	verbo	verbu
Fruit	fructus	frutta	fruta	fruta
Laugh	ridere	ridere	reir	rir
Center	centrum	centro	centro	centro
August	augustus	agosto	agosto	agosto
Swim	natare	nuotare	nadar	nadar

• Phonological rules more **regular** than morphological or syntactic ones

• basis of the **comparative method**
Example of a mutation process as seen by the comparative method

- la
- vl
- it
- es
- pt

• ib : Proto-ibero Romance
• vl : Vulgar Latin
Example of a mutation process as seen by the comparative method

- Deterministic re-write rules at each branch
- Activated by some context
Example of a mutation process as seen by the comparative method

Gloss	Latin	Italian	Spanish	Portuguese
Word/verb	verbum	verbo	verbo	verbu
Example of a mutation process as seen by the comparative method

Gloss	Latin	Italian	Spanish	Portuguese
Word/verb	verbum	verbo	verbo	verbu
Center	centrum	centro	centro	centro
Example of a mutation process as seen by the comparative method

- In practice, the ancient words and/or the evolutionary tree are unknown
- Methodology: manually inspecting the data
Our work:

- A probabilistic model that captures phonological aspects of language change.

- Many usages:

Reconstruction of word forms (ancient and modern)
Our work:

- A probabilistic model that captures phonological aspects of language change.

- Many usages:

```
/kwintam/
/kinta/
/kinto/
/kimtu/
/kwinto/
```

Inference of phonological rules
Our work:

- A probabilistic model that captures phonological aspects of language change.
- Many usages:

Selection of phylogeny
Our work:

- A probabilistic model that captures phonological aspects of language change.

- Many usages:
 - Reconstruction of word forms (ancient and modern)
 - Inference of phonological rules
 - Selection of phylogenies

- An inference procedure and experiments on all three applications

- A new task and evaluation framework
The model
• Assume for now that the tree topology is known
• Assume for now that the tree topology is known
• Track individual words
• Let’s look at how a single word evolves along one of the edges of the tree

• Mutation of Latin *FOCUS* (/fokus/) into Italian *fuoco* (/fwɔko/) (fire)
Stochastic edit model: operations

- Substitution
Stochastic edit model: operations

- Substitution (incl. self-substitution)
Stochastic edit model: operations

- Substitution (incl. self-substitution)
- Insertion
Stochastic edit model: operations

- Substitution (incl. self-substitution)
- Insertion
- Deletion
Stochastic edit model: context

- Distribution over operations conditioned on adjacent phonemes
Stochastic edit model: generation process

f o k u s
Stochastic edit model: generation process

f o k u s

?
Stochastic edit model: generation process

- \(P(f \rightarrow f \, w \mid \# \, \# \, V) = 0.05 \)
Stochastic edit model: generation process

- \(\mathbb{P}(f \rightarrow f w / \# _ V) = 0.05 \)
Stochastic edit model: generation process

- $P(f \rightarrow f\,w / \# _ V) = 0.05$
- $P(o \rightarrow o / C _ V) = 0.1$
Stochastic edit model: generation process

- P(f → f w / # V) = 0.05
- P(o → o / C V) = 0.1
- . . .
- P(/fokus/ → /fwcko/)) = 0.05 × 0.1 × . . .
Edit parameters

Diagram showing relationships between words and their transformations.
• One set of parameter $\theta_{A \rightarrow B}$ for each edge $A \rightarrow B$ in the tree

• Shared across all word forms evolving along this edge
- $\theta_{A \to B}$ specifies $P(\text{operation}|\text{context})$

| context | operation | $P(\text{operation}|\text{context})$ |
|---------|----------------------------|-------------------------------------|
| u m # | deletion | 0.1 |
| u m # | substitution to /m/ | 0.8 |
| u m # | substitution to /b/ | 0.1 |
| a c b | deletion | 0.8 |
| a c b | insertion of c | 0.1 |
| : | : | : |
Distribution on the edit parameters

- Too many parameters

- Addressed by:
 - Sparsity prior: independent Dirichlet priors (one for each context)
 - Group context distributions. Example:

| context | operation | \(\mathbb{P}(\text{operation}|\text{context}) \) |
|---------|-------------------------|---|
| V m # | deletion | 0.1 |
| V m # | substitution to /a/ | 0.8 |
| V m # | substitution to /b/ | 0.1 |
| V c C | deletion | 0.8 |
| V c C | insertion of c | 0.1 |
| ... | ... | ... |
Inference and experiments
Inference: EM

• Exact E step is intractable
 – We use a stochastic E step based on Gibbs sampling

• E: fix the edit parameters, resample the derivations

• M: update the edit parameters from expected edit counts
Automatic extraction of a Romance corpus

Wiktionary \rightarrow XML dump

Bible \rightarrow Align. \rightarrow Closure \rightarrow Cognate detector

Europarl \rightarrow Align.

- Noisier than manually curated cognate lists
- More data available
- Our model overcomes this noise

Data available online:
http://nlp.cs.berkeley.edu/pages/historical.html
Reconstruction of ancient word forms

• Task: reconstruction of Latin given all of the Spanish and Italian words, and some of the Latin words
• Evaluation: uniform cost edit distance on held-out data
• Baseline: pick one of the modern languages at random
Reconstruction of ancient word forms

- Task: reconstruction of Latin given all of the Spanish and Italian words, and some of the Latin words
- Example: “teeth”, nearly correctly reconstructed

\[
\text{/dʒɛntɪs/}
\]

\[
i \rightarrow \varepsilon
\]
\[
\varepsilon \rightarrow j\varepsilon
\]

\[
\text{/dʒɛntes/}
\]
\[
s \rightarrow
\]

\[
\text{/dɛnti/}
\]

- Numbers:

Language	Baseline	Model	Improvement
Latin	2.84	2.34	9%
Reconstruction of word forms

- Evaluation: uniform cost edit distance on held-out data
- Baseline: pick one of the modern languages at random
- Example: “teeth”, nearly correctly reconstructed

\[
/d\text{\'entis}/
\]

\[
i \rightarrow \varepsilon \\
\varepsilon \rightarrow j \varepsilon \\
s \rightarrow
\]

\[
/d\text{\'entis}/ \\
/d\text{\'entes}/ \\
/d\text{\'enti}/
\]

- Numbers:

Language	Baseline	Model	Improvement
Latin	2.84	2.34	9%
Spanish	3.59	3.21	11%
Inference of phonological rules

- ib: Proto-ibero Romance
- vl: Vulgar Latin
Inference of phonological rules

- Reconstruct the internal nodes
- Focus on the rules used most often during the last E step
Hypothesized derivation for “word” along with top rules

\[
/\text{werbum}/ \ (1a) \\
\quad m \rightarrow \ _ \\
\quad u \rightarrow o \\
\quad w \rightarrow v \\
\downarrow \\
/\text{verbo}/ \ (vl) \\
\quad r \rightarrow r \\
\quad e \rightarrow \varepsilon \\
\quad \ldots \\
\quad \ldots \\
\]

- m → / _ #
- u → o / _
- w → v / many environments
- ...

• Comparison with historical evidence: the *Appendix Probi*

 coluber non colober
 passim non passi
Hypothesized derivation for “word” along with top rules

- /v/ to /b/ fortition
- /s/ to /z/ voicing in Italian
Selection of phylogenies
Inference of topology

?

la

es it pt
Example of previous approaches

- Gray and Atkinson, 2003

- Coarse encoding:

Language	Meaning	Eat	Cognate set
Latin	mandere (to chew)	1	2
French	manger	0	1
Italian	mangiare	1	0

Language	Meaning	Eat	Cognate set
Latin	comedere (to consume)	1	0
Spanish	comer	0	1
Portuguese	comer	0	1

- These characters evolve independently in their model

- Lots of information discarded
Our samples look like this
What we did

- Present good vs. bad topologies and compute the likelihood ratio

- this can be turned into a full topology inference algorithm using the quartet method [Erdos et al., 1996]
Conclusion

- Introduced a probabilistic approach to diachronic phonology
- Enables reconstruction of ancient and modern word forms, phonological rules and tree topologies
- Future work:
 - We are scaling it up to larger phylogenies
 - We are working on an extension using a log-linear parametrization of the contexts, reminiscent of stochastic OT
- Data available online:
 http://nlp.cs.berkeley.edu/pages/historical.html