Acyclic resolutions for arbitrary groups

Michael Levin

Abstract

We prove that for every abelian group G and every compactum X with $\dim_G X \leq n \geq 2$ there is a G-acyclic resolution $r: Z \rightarrow X$ from a compactum Z with $\dim_G Z \leq n$ and $\dim Z \leq n + 1$ onto X.

Keywords: cohomological dimension, acyclic resolution

Math. Subj. Class.: 55M10, 54F45.

1 Introduction

Spaces denoted by X are assumed to be separable metrizable. A compactum is a metrizable compact space.

Let G be an abelian group. A space X has the cohomological dimension $\dim_G X \leq n$ if $\check{H}^{n+1}(X, A; G) = 0$ for every closed subset A of X. The case $G = \mathbb{Z}$ is an important special case of cohomological dimension. It was known long ago that $\dim X = \dim_{\mathbb{Z}} X$ if X is finite dimensional. Solving an outstanding problem in cohomological dimension theory Dranishnikov constructed in 1987 an infinite dimensional compactum of $\dim_{\mathbb{Z}} = 3$. A few years earlier a deep relation between $\dim_{\mathbb{Z}}$ and \dim was established by the Edwards cell-like resolution theorem [4, 8] saying that a compactum of $\dim_{\mathbb{Z}} \leq n$ can be obtained as the image of a cell-like map defined on a compactum of $\dim \leq n$. A compactum X is cell-like if any map $f: X \rightarrow K$ from X to a CW-complex K is null homotopic. A map is cell-like if its fibers are cell-like. The reduced Čech cohomology groups of a cell-like compactum are trivial with respect to any group G.

Acyclic resolutions originated in the Edwards cell-like resolution. A compactum X is G-acyclic if $\check{H}^*(X; G) = 0$ and a map is G-acyclic if its fibers are G-acyclic. Thus a cell-like map is G-acyclic with respect to any abelian group G. By the Vietoris-Begle theorem a G-acyclic map cannot raise the cohomological dimension \dim_G. Dranishnikov proved the following important

Theorem 1.1 ([2, 3]) Let X be a compactum with $\dim_{\mathbb{Q}} X \leq n$, $n \geq 2$. Then there are a compactum Z with $\dim_{\mathbb{Q}} Z \leq n$ and $\dim Z \leq n + 1$ and a \mathbb{Q}-acyclic map $r: Z \rightarrow X$ from Z onto X.
It has been widely conjectured that Theorem 1.1 holds for any abelian group \(G \). A substantial progress in solving this conjecture was made by Koyama and Yokoi [5] who proved it for a large class of groups including \(\mathbb{Q} \) and very recently by Rubin and Schapiro [7] who settled the case \(G = \mathbb{Z}_{p^\infty} \).

The purpose of this note is to finally answer this conjecture affirmatively by proving

Theorem 1.2 Let \(G \) be an abelian group and let \(X \) be a compactum with \(\dim_G X \leq n, n \geq 2 \). Then there are a compactum \(Z \) with \(\dim_G Z \leq n \) and \(\dim Z \leq n + 1 \) and a \(G \)-acyclic map \(r : Z \to X \) from \(Z \) onto \(X \).

In general the dimension \(n + 1 \) of \(Z \) in Theorem 1.2 is best possible [5]. However, it is unknown if the dimension of \(Z \) in Theorem 1.1 can be reduced to \(n \). In this connection let us also mention the following interesting result of Dranishnikov.

Theorem 1.3 ([1]) Let \(X \) be a compactum with \(\dim_{\mathbb{Z}_p} X \leq n \). Then there are a compactum \(Z \) with \(\dim Z \leq n \) and a \(\mathbb{Z}_p \)-acyclic map \(r : Z \to X \) from \(Z \) onto \(X \).

Our proof of Theorem 1.2 essentially uses Dranishnikov’s idea of constructing a \(\mathbb{Q} \)-acyclic resolution presented in [3] and involves some methods of [6]. The proof is self-contained and does not rely on previous results concerning acyclic resolutions. The paper [3] is an excellent source of basic information on cohomological dimension theory.

2 Preliminaries

All groups below are abelian and functions between groups are homomorphisms. \(\mathcal{P} \) stands for the set of primes. For a non-empty subset \(\mathcal{A} \) of \(\mathcal{P} \) let \(S(\mathcal{A}) = \{p_1^{n_1}p_2^{n_2}...p_k^{n_k} : p_i \in \mathcal{A}, n_i \geq 0\} \) be the set of positive integers with prime factors from \(\mathcal{A} \) and for the empty set define \(S(\emptyset) = \{1\} \). Let \(G \) be a group and \(g \in G \). We say that \(g \) is \(\mathcal{A} \)-torsion if there is \(n \in S(\mathcal{A}) \) such that \(ng = 0 \) and \(g \) is \(\mathcal{A} \)-divisible if for every \(n \in S(\mathcal{A}) \) there is \(h \in G \) such that \(nh = g \). \(\text{Tor}_A G \) is the subgroup of the \(\mathcal{A} \)-torsion elements of \(G \). \(G \) is \(\mathcal{A} \)-torsion if \(G = \text{Tor}_A G \), \(G \) is \(\mathcal{A} \)-torsion free if \(\text{Tor}_A G = 0 \) and \(G \) is \(\mathcal{A} \)-divisible if every element of \(G \) is \(\mathcal{A} \)-divisible.

Proposition 2.1

(i) If \(G \) is \(\mathcal{A} \)-torsion then \(G \) is \((\mathcal{P} \setminus \mathcal{A}) \)-divisible and \((\mathcal{P} \setminus \mathcal{A}) \)-torsion free.

(ii) A factor group of an \(\mathcal{A} \)-divisible group is \(\mathcal{A} \)-divisible and a factor group of an \(\mathcal{A} \)-torsion group is \(\mathcal{A} \)-torsion.

(iii) The direct sum of \(\mathcal{A} \)-divisible groups is \(\mathcal{A} \)-divisible and the direct sum of \(\mathcal{A} \)-torsion groups is \(\mathcal{A} \)-torsion.

Let \(f : G \to H \) be a homomorphism of groups \(G \) and \(H \) and let \(H \) be \(\mathcal{B} \)-torsion. Then \(G/\text{Tor}_B G \) is
Proof. The proof of (i), (ii), (iii) is obvious.

Let \(\phi : G \to G/\text{Tor}_B G \) be the projection and \(\phi(x) = y \). Then there is \(n \in S(B) \) such that \(n f(x) = f(nx) = 0 \) and hence \(nx \in \ker f \).

(iv) Let \(m \in S(A) \). Since \(B \subset A \), \(nm \in S(A) \). Then there is \(z \in \ker f \) such that \(nmz = nx \). Hence \(n(mz - x) = 0 \) and therefore \(\phi(mz - x) = 0 \). Thus \(m \phi(z) = \phi(x) = y \) and \(G/\text{Tor}_B G \) is \(A \)-divisible.

(v) By (i) \(\ker f \) is \((P \setminus A)\)-divisible and therefore there is \(z \in \ker f \) such that \(nz = nx \). Then \(n(z - x) = 0 \) and there is \(m \in S(A) \) such that \(mz = 0 \). Hence \(\phi(z) = \phi(x) = y \) and \(my = \phi(mz) = 0 \) and (v) follows.

(vi) By (v) \(G/\text{Tor}_B G \) is \(A \)-torsion. By (i) \(\ker f \) is \((P \setminus A)\)-divisible and since \(\ker f \) is \(A \)-divisible, \(\ker f \) is \(P \)-divisible. Then by (iv) \(G/\text{Tor}_B G \) is \(A \)-divisible. \(\square \)

The notation \(e - \dim X \leq Y \) is used to indicate the property that every map \(f : A \to Y \) of a closed subset \(A \) of \(X \) into \(Y \) extends over \(X \). It is known that \(\dim G X \leq n \) if and only if \(e - \dim X \leq K(G, n) \) where \(K(G, n) \) is the Eilenberg-Mac Lane complex of type \((G, n)\). A map between CW-complexes is combinatorial if the preimage of every subcomplex of the range is a subcomplex of the domain.

Let \(M \) be a simplicial complex and let \(M[n] \) be the \(n \)-skeleton of \(M \) (= the union of all simplexes of \(M \) of \(\dim \leq n \)). By a resolution \(EW(M, n) \) of \(M \) we mean a CW-complex \(EW(M, n) \) and a combinatorial map \(\omega : EW(M, n) \to M \) such that \(\omega \) is 1-to-1 over \(M[n] \). The resolution is said to be suitable for a map \(f : M[n] \to Y \) if the map \(f \circ \omega_{|W_{n-1}(M[n])} \) extends to a map from \(EW(M, n) \) to \(Y \). The resolution is said to be suitable for a compactum \(X \) if for every simplex \(\Delta \) of \(M \), \(e - \dim X \leq \omega^{-1}(\Delta) \).

Note that if \(\omega : EW(M, n) \to M \) is a resolution suitable for \(X \) then for every map \(\phi : X \to M \) there is a map \(\psi : X \to EW(M, n) \) such that for every simplex \(\Delta \) of \(M \), \((\omega \circ \psi)(\phi^{-1}(\Delta)) \subset \Delta \). We will call \(\psi \) a combinatorial lifting of \(\phi \).

Following [6] we will construct a resolution of an \((n + 1)\)-dimensional simplicial complex \(M \) which is suitable for \(X \) with \(\dim_G X \leq n \) and a map \(f : M[n] \to K(G, n) \). In the sequel we will refer to this resolution as the standard resolution for \(f \). Fix a CW-structure on \(K(G, n) \) and assume that \(f \) is cellular. We will obtain a CW-complex \(EW(M, n) \) from \(M[n] \) by attaching the mapping cylinder of \(f|_{\partial \Delta} \) to \(\partial \Delta \) for every \((n + 1)\)-simplex \(\Delta \) of \(M \). Let \(\omega : EW(M, n) \to M \) be the projection sending each mapping cylinder to the corresponding \((n + 1)\)-simplex \(\Delta \) such that \(\omega \) is the identity map on \(\partial \Delta \), the \(K(G, n) \)-part of the cylinder is sent to the barycenter of \(\Delta \) and \(\omega \) is 1-to-1 on the rest of the cylinder. Clearly \(f|_{\partial \Delta} \) extends over its mapping cylinder and therefore \(f \circ \omega_{|W_{n-1}(M[n])} \) extends over \(EW(M, n) \). For each simplex \(\Delta \) of \(M \), \(\omega^{-1}(\Delta) \) is either contractible or homotopy equivalent to \(K(G, n) \). Define a
CW-structure on $EW(M, n)$ turning ω into a combinatorial map. Thus we get that the standard resolution is indeed a resolution suitable for both X and f. Note that from the construction of the standard resolution $\omega : EW(M, n) \to M$ it follows that for every subcomplex T of M, $\omega^{-1}(T)$ is the standard resolution of T for $f|_{T^{[n]}}$ and $\omega^{-1}(T)$ is $(n - 1)$-connected if T is $(n - 1)$-connected.

Proposition 2.2 Let M be an $(n + 1)$-dimensional finite simplicial complex and let $\omega : EW(M, n) \to M$ be the standard resolution for $f : M^{[n]} \to K(G, n)$, $n \geq 2$. Then for $\omega_* : H_n(EW(M, n)) \to H_n(M)$, $\ker \omega_*$ is a factor group of the direct sum $\oplus G$ of finitely many G.

Proof. Inside each $(n+1)$-simplex of M cut a small closed ball around the barycenter and not touching the boundary and split M into two subspaces $M = M_1 \cup M_2$ where $M_1 =$ the closure of the complement to the union of the balls and $M_2 =$ the union of the balls. Then ω is 1-to-1 over M_1, $H_{n-1}(M_1 \cap M_2) = 0$, $H_n(M_2) = 0$ and the preimage under ω of each ball is homotopy equivalent to $K(G, n)$ and hence $H_n(\omega^{-1}(M_2))$ is the direct sum $\oplus G$ of finitely many G. Consider the Mayer-Vietoris sequences for the pairs (M_1, M_2) and $(\omega^{-1}(M_1), \omega^{-1}(M_2))$, in which we identify M_1 and $M_1 \cap M_2$ with $\omega^{-1} M_1$ and $\omega^{-1}(M_1 \cap M_2)$ respectively.

From the Mayer-Vietoris sequences it follows that $j_* (H_n(\omega^{-1}(M_1)) \oplus H_n(\omega^{-1}(M_2))) = H_n(\omega^{-1}(M_1 \cup M_2))$ and $j_* (0 \oplus H_n(\omega^{-1}(M_2))) \subset \ker \omega_*$. Let us show that $j_* (0 \oplus H_n(\omega^{-1}(M_2))) \subset \ker \omega_*$. Let $j_* (a \oplus b) \in \ker \omega_*$. Then in the Mayer-Vietoris sequence for the pair (M_1, M_2), $i_* (a \oplus 0) = 0$ and therefore there is $c \in H_n(M_1 \cap M_2)$ such that $i_*(c) = a \oplus 0$. Then in the Mayer-Vietoris sequence for the pair $(\omega^{-1}(M_1), \omega^{-1}(M_2))$, $i_* (c) = a \oplus d$ and $j_*(a \oplus d) = 0$. Thus $j_* (a \oplus b) = j_* (0 \oplus (b - d))$ and therefore $j_* (0 \oplus H_n(\omega^{-1}(M_2))) = \ker \omega_*$. Recall that $H_n(\omega^{-1}(M_2)) = \oplus G$ and the proposition follows. □

Proposition 2.3 Let $M = M_1 \cup M_2$ be a CW-complex with subcomplexes M_1 and M_2 such that M_1, M_2 and $M_1 \cap M_2$ are $(n - 1)$-connected, $n \geq 2$. Then M is $(n - 1)$-connected and

(i) $H_n(M)$ is A-divisible if $H_n(M_1)$ and $H_n(M_2)$ are A-divisible;

(ii) $H_n(M)$ is A-torsion if $H_n(M_1)$ and $H_n(M_2)$ are A-torsion.

Proof. The connectedness of M follows from van Kampen and Hurewicz’s theorems and the Mayer-Vietoris sequence. (i) and (ii) follow from the Mayer-Vietoris sequence and (ii) and (iii) of Proposition 2.1. □

Let X be a compactum and let $\sigma(G)$ be the Bockstein basis of a group G. By Bockstein’s theory $\dim_G X \leq n$ if and only if $\dim_E X \leq n$ for every $E \in \sigma(G)$. Denote:

$\mathcal{T}(G) = \{ p \in \mathcal{P} : \mathbb{Z}_p \in \sigma(G) \}$;

$\mathcal{T}_\infty(G) = \{ p \in \mathcal{P} : \mathbb{Z}_{p^{\infty}} \in \sigma(G) \}$.

\[D(G) = P \text{ if } Q \in \sigma(G) \text{ and } D(G) = P \setminus \{p \in P : Z(p) \in \sigma(G)\} \text{ otherwise} ;
\]
\[F(G) = D(G) \setminus (T(G) \cup T_{\infty}(G)).\]

Note that \(T(G), T_{\infty}(G)\) and \(F(G)\) are disjoint and \(G\) is \(F(G)\)-torsion free.

Proposition 2.4 Let \(X\) be a compactum and let \(G\) be a group such that \(G/\text{Tor}G \neq 0\) and \(\dim_G X \leq n\). Then \(\dim_E X \leq n\) for every group \(E\) such that \(E\) is \(D(G)\)-divisible and \(F(G)\)-torsion free.

Proof. The proof is based on Bockstein’s theorem and inequalities.

If \(p \in P \setminus D(G)\) and therefore \(Z(p) \in \sigma(G)\) and \(\dim_{Z(p)} X \leq \dim_{Z(p)} X \leq n\).

If \(p \in P \setminus D(G)\) and \(\dim_{Z(p)} X \leq n\) or \(p \in D(G) \setminus F(G)\) and then either \(p \in T(G)\) and \(\dim_{Z(p)} X \leq \dim_{Z(p)} X \leq n\).

If \(p \in T(G)\) and \(\dim_{Z(p)} X \leq n\) or \(p \in T_{\infty}(G)\) and \(\dim_{Z(p)} X \leq n\).

If \(p \in P \setminus D(G)\) and therefore \(\dim_{Z(p)} X \leq n\).

If \(Q \in \sigma(E)\) then consider the following cases:

(i) \(D(G) = P\). Then since \(G/\text{Tor}G \neq 0\), \(Q \in \sigma(G)\) and therefore \(\dim_Q X \leq n\) (this is the only place where we use that \(G/\text{Tor}G \neq 0\));

(ii) there is \(p \in P \setminus D(G)\). Then \(\dim_Q X \leq \dim_{Z(p)} X \leq n\).

\[\square\]

3 Proof of Theorem 1.2

Represent \(X\) as the inverse limit \(X = \lim \limits_{\leftarrow} \{K_i, h_i\}\) of finite simplicial complexes \(K_i\) with combinatorial bonding maps \(h_{i+1} : K_{i+1} \rightarrow K_i\) onto and the projections \(p_i : X \rightarrow K_i\) such that for every simplex \(\Delta\) of \(K_i\), \(\text{diam}(p_i^{-1}(\Delta)) \leq 1/i\). Following A. Dranishnikov [3] we construct by induction finite CW-complexes \(L_i\) and maps \(g_{i+1} : L_{i+1} \rightarrow L_i, \alpha_i : L_i \rightarrow K_i\) such that

(a) \(L_i\) is \((n+1)\)-dimensional and obtained from \(K_i^{[n+1]}\) by replacing some \((n+1)\)-simplexes by \((n+1)\)-cells attached to the boundary of the replaced simplexes by a map of degree \(\in S(F(G))\). Then \(\alpha_i\) is a projection of \(L_i\) taking the new cells to the original ones such that \(\alpha_i \cup 1\) over \(K_i^{[n]}\). We define a simplicial structure on \(L_i\) for which \(\alpha_i\) is a combinatorial map and refer to this simplicial structure while constructing resolutions of \(L_i\). Note that for \(F(G) = \emptyset\) we don’t replace simplexes of \(K_i^{[n+1]}\) at all;

(b) the maps \(h_i, g_i\) and \(\alpha_i\) combinatorially commute. By this we mean that for every simplex \(\Delta\) of \(K_i\), \((\alpha_i \circ g_{i+1})((h_{i+1} \circ \alpha_{i+1})^{-1}(\Delta)) \subset \Delta\).

We will construct \(L_i\) in such a way that \(Z = \lim \limits_{\leftarrow} \{L_i, g_i\}\) will be of \(\dim_G \leq n\) and \(Z\) will admit a \(G\)-acyclic map onto \(X\).
Set \(L_1 = K^{[n+1]}_i \) with \(\alpha_i : L_1 \to K_1 \) the embedding and assume that the construction is completed for \(i \). Let \(E \in \sigma(G) \) and let \(f : L_i^{[n]} \to K(E, n) \) be a cellular map. Let \(\omega_L : EW(L_i, n) \to L_i \) be the standard resolution of \(L_i \) for \(f \). We are going to construct from \(EW(L_i, n) \) a resolution of \(K_i \) suitable for \(X \). On the first step of the construction we will obtain from \(EW(L_i, n) \) a resolution \(\omega_{n+1} : EW(K^{[n+1]}_i, n) \to K^{[n+1]}_i \) such that \(EW(L_i, n) \) is a subcomplex of \(EW(K^{[n+1]}_i, n) \) and \(\omega_{n+1} \) extends \(\alpha_i \circ \omega_L \). On the second step we will construct resolutions \(\omega_j : EW(K^{[j]}_i, n) \to K^{[j]}_i \), \(n+2 \leq j \leq \dim K_i \) such that \(EW(K^{[j]}_i, n) \) is a subcomplex of \(EW(K^{[j+1]}_i, n) \) and \(\omega_{j+1} \) extends \(\omega_j \). The construction is carried out as follows.

Step 1. For every simplex \(\Delta \) of \(K_i \) of \(\dim = n+1 \) consider separately the subcomplex \((\alpha_i \circ \omega_L)^{-1}(\Delta) \) of \(EW(L_i, n) \). Note that from (a) and the properties of the standard resolution it follows that the preimage under \(\alpha_i \circ \omega_L \) of an \((n-1) \)-connected subcomplex of \(K_i \) is \((n-1)\)-connected. Then \((\alpha_i \circ \omega_L)^{-1}(\Delta) \) is \((n-1)\)-connected. Enlarge \((\alpha_i \circ \omega_L)^{-1}(\Delta) \) by attaching cells of \(\dim = n+1 \) in order to kill \(\operatorname{Tor}_{\mathcal{F}(G)} H_n((\alpha_i \circ \omega_L)^{-1}(\Delta)) \) and attaching cells of \(\dim > n+1 \) in order to kill all homotopy groups of the enlarged subcomplex in \(\dim > n \). Define \(EW(K^{[n+1]}_i, n) \) as \(EW(L_i, n) \) with all the cells attached for all \((n+1)\)-dimensional simplexes \(\Delta \) of \(K_i \) and let a map \(\omega_{n+1} : EW(K^{[n+1]}_i, n) \to K^{[n+1]}_i \) extend \(\alpha_i \circ \omega_L \) by sending the interior points of the attached cells to the interior of the corresponding \(\Delta \).

Step 2. Assume that a resolution \(\omega_j : EW(K^{[j]}_i, n) \to K^{[j]}_i \), \(n+1 \leq j < \dim K_i \) is constructed such that the \(n \)-skeleton of \(EW(K^{[j]}_i, n) \) coincides with the \(n \)-skeleton of \(EW(L_i, n) \). For every simplex \(\Delta \) of \(K_i \) of \(\dim = j+1 \) consider separately the subcomplex \(\omega_j^{-1}(\partial \Delta) \) of \(EW(K^{[j]}_i, n) \). Then the \(n \)-skeleton of \(\omega_j^{-1}(\partial \Delta) \) coincides with the \(n \)-skeleton of \((\alpha_i \circ \omega_L)^{-1}(\partial \Delta) \) and therefore \(\omega_j^{-1}(\partial \Delta) \) is \((n-1)\)-connected. Enlarge \(\omega_j^{-1}(\partial \Delta) \) by attaching cells of \(\dim = n+1 \) in order to kill \(\operatorname{Tor}_{\mathcal{F}(G)} H_n(\omega_j^{-1}(\partial \Delta)) \) and attaching cells of \(\dim > n+1 \) in order to kill all homotopy groups of the enlarged subcomplex in \(\dim > n \). Define \(EW(K^{[j+1]}_i, n) \) as \(EW(K^{[j]}_i, n) \) with all the cells attached for all \((j+1)\)-simplexes of \(K_i \) and let a map \(\omega_{j+1} : EW(K^{[j+1]}_i, n) \to K^{[j+1]}_i \) extend \(\omega_j \) by sending the interior points of the attached cells to the interior of the corresponding \(\Delta \).

Finally denote \(EW(K_i, n) = EW(K^{[m]}_i, n) \) and \(\omega = \omega_m : EW(K_i, n) \to K_i \) where \(m = \dim K_i \). From the construction it follows that the \(n \)-skeleton of \(EW(K_i, n) \) is contained in \(EW(L_i, n) \) and for every simplex \(\Delta \) of \(K_i \), \(\omega^{-1}(\Delta) \) is contractible if \(\dim \Delta \leq n \) and \(\omega^{-1}(\Delta) \) is homotopy equivalent to \(K/H_n(\omega^{-1}(\Delta)), n \) if \(\dim \Delta > n+1 \).

Let us show that \(EW(K_i, n) \) is suitable for \(X \). In order to verify that \(\dim H_n(\omega^{-1}(\Delta)) X \leq \).
n for every simplex Δ of K_i of $\dim \geq n+1$ we first consider Step 1 of the construction. Let Δ be an $(n+1)$-dimensional simplex of K_i. By $\omega_L|_\alpha$ we will denote the map $\omega_L|_{(\alpha_1, \omega_L)^{-1}(\Delta)} : (\alpha_1 \circ \omega_L)^{-1}(\Delta) \longrightarrow \alpha_1^{-1}(\Delta)$ with the range restricted to $\alpha_1^{-1}(\Delta)$. Note that by (a), $H_\alpha(\alpha_1^{-1}(\Delta))$ is $\mathcal{F}(G)$-torsion and $H_\alpha((\alpha_1 \circ \omega_L)^{-1}(\Delta)) = H_n((\alpha_1 \circ \omega_L)^{-1}(\Delta))/\text{Tor}_{\mathcal{F}(G)}H_n((\alpha_1 \circ \omega_L)^{-1}(\Delta))$. Let $(\omega_L|_{_\alpha})_\ast : H_n((\alpha_1 \circ \omega_L)^{-1}(\Delta)) \longrightarrow H_n(\alpha_1^{-1}(\Delta))$. Consider the following cases.

Case 1-1. $E = \mathbb{Z}_p$. By Proposition 2.2 $\ker(\omega_L|_{_\alpha})_\ast$ is p-torsion. Then since p is not in $\mathcal{F}(G)$, by Proposition 2.1, (v), $H_n(\omega_1^{-1}(\Delta))$ is p-torsion and by Bockstein’s theorem $\dim_{H_n(\omega^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_p} X \leq n$.

Case 1-2. $E = \mathbb{Z}_p^\infty$. By Proposition 2.2 $\ker(\omega_L|_{_\alpha})_\ast$ is p-torsion and p-divisible. Then since p is not in $\mathcal{F}(G)$, by Proposition 2.1, (vi), $H_n(\omega_1^{-1}(\Delta))$ is p-torsion and p-divisible and by Bockstein’s theorem $\dim_{H_n(\omega^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_p^\infty} X \leq n$.

Case 1-3. $E = \mathbb{Z}_{(p)}$ or $E = \mathbb{Q}$. By Proposition 2.2 $\ker(\omega_L|_{_\alpha})_\ast$ is $\mathcal{D}(G)$-divisible. Then since $\mathcal{F}(G) \subset \mathcal{D}(G)$, by Proposition 2.1, (iv), $H_n(\omega_1^{-1}(\Delta))$ is $\mathcal{D}(G)$-divisible and since $H_n(\omega^{-1}(\Delta))$ is $\mathcal{F}(G)$-torsion free, by Proposition 2.4, $\dim_{H_n(\omega^{-1}(\Delta))} X \leq n$.

Now let us pass to Step 2 of the construction. We will show that the properties of the homology groups established above will be preserved for simplexes of higher dimensions. Let Δ be a $(j+1)$-dimensional simplex of K_i, $j \geq n+1$ and recall that $H_n(\omega^{-1}(\Delta)) = H_n(\omega^{-1}(\Delta))/\text{Tor}_{\mathcal{F}(G)}H_n(\omega^{-1}(\partial \Delta))$. Note that from the construction it follows that the preimage under ω of an $(n-1)$-connected subcomplex of K_i is $(n-1)$-connected. Also note that the intersection of a j-dimensional simplex of Δ with the union of any collection of j-dimensional simplexes of Δ is $(n-1)$-connected. These facts allow us to apply below Proposition 2.3 for assembling $\omega_1^{-1}(\partial \Delta)$ from $\omega_1^{-1}(\Delta')$ for j-dimensional simplexes Δ' of Δ to show that $\omega_1^{-1}(\partial \Delta)$ has properties corresponding to properties of $\omega_1^{-1}(\Delta')$. Once again we consider separately the following cases.

Case 2-1. $E = \mathbb{Z}_p$. If for every j-dimensional simplex Δ' of Δ, $H_n(\omega_1^{-1}(\Delta'))$ is p-torsion then by Proposition 2.3, $H_n(\omega_1^{-1}(\partial \Delta))$ is p-torsion and hence $H_n(\omega_1^{-1}(\Delta))$ is p-torsion. Therefore $\dim_{H_n(\omega_1^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_p} X \leq n$.

Case 2-2. $E = \mathbb{Z}_p^\infty$. If for every j-dimensional simplex Δ' of Δ, $H_n(\omega_1^{-1}(\Delta'))$ is p-torsion and p-divisible then by Proposition 2.3, $H_n(\omega_1^{-1}(\partial \Delta))$ is p-torsion and p-divisible and hence $H_n(\omega_1^{-1}(\Delta))$ is p-torsion and p-divisible. Therefore $\dim_{H_n(\omega_1^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_p^\infty} X \leq n$.

Case 2-3. $E = \mathbb{Z}_{(p)}$ or $E = \mathbb{Q}$. If for every j-dimensional simplex Δ' of Δ, $H_n(\omega_1^{-1}(\Delta'))$ is $\mathcal{D}(G)$-divisible then by Proposition 2.3, $H_n(\omega_1^{-1}(\partial \Delta))$ is $\mathcal{D}(G)$-divisible. Then $H_n(\omega_1^{-1}(\Delta))$ is $\mathcal{D}(G)$-divisible and $\mathcal{F}(G)$-torsion free and by Proposition 2.4, $\dim_{H_n(\omega_1^{-1}(\Delta))} X \leq n$.

Thus we have shown that $EW(K_i, n)$ is suitable for X. Now replacing K_{i+1} by
a K_i with a sufficiently large l we may assume that there is a combinatorial lifting of h_{i+1} to $h'_{i+1} : K_{i+1} \rightarrow EW(K_i, n)$. Replace h'_{i+1} by its cellular approximation preserving the property of h'_{i+1} of being a combinatorial lifting of h_{i+1}.

Consider the $(n + 1)$-skeleton of K_{i+1} and let Δ_{i+1} be an $(n + 1)$-dimensional simplex in K_{i+1}. Let Δ_i be the smallest simplex in K_i containing $h_{i+1}(\Delta_{i+1})$. Then $h'_{i+1}(\Delta_{i+1}) \subset \omega^{-1}(\Delta_i)$. Let $\tau : (\alpha_i \circ \omega_L)^{-1}(\Delta_i) \rightarrow \omega^{-1}(\Delta_i)$ be the inclusion. Note that from the construction it follows that for h_{i+1} we have that there is $k < \omega^{-1}(\Delta_i))$, ker τ is $\mathcal{F}(G)$-torsion. Recall that the n-skeleton of $\omega^{-1}(\Delta_i)$ is contained in $(\alpha_i \circ \omega_L)^{-1}(\Delta_i)$ and consider $h'_{i+1}|_{\partial \Delta_{i+1}}$ as a map to $(\alpha_i \circ \omega_L)^{-1}(\Delta_i)$. Let a be the generator of $H_n(\partial \Delta_{i+1})$. Since $h'_{i+1}|_{\partial \Delta_{i+1}}$ extends over Δ_{i+1} as a map to $\omega^{-1}(\Delta_i)$ we have that $\tau_a((h'_{i+1}|_{\partial \Delta_{i+1}})_*(a)) = 0$. Hence $(h'_{i+1}|_{\partial \Delta_{i+1}})_*(a) \in \ker \tau_a$ and therefore there is $k \in S(\mathcal{F}(G))$ such that $k((h'_{i+1}|_{\partial \Delta_{i+1}})_*(a)) = 0$. Replace Δ_{i+1} by a cell C attached to the boundary of Δ_{i+1} by a map of degree k if $(h'_{i+1}|_{\partial \Delta_{i+1}})_*(a) \neq 0$ and set $C = \Delta_{i+1}$ if $(h'_{i+1}|_{\partial \Delta_{i+1}})_*(a) = 0$. Then $h'_{i+1}|_{\partial \Delta_{i+1}}$ can be extended over C as a map to $(\alpha_i \circ \omega_L)^{-1}(\Delta_i)$ and we will denote this extension by $g'_{i+1}|_{C : C} : (\alpha_i \circ \omega_L)^{-1}(\Delta_i)$. Thus replacing if needed $(n + 1)$-simplexes of $K_{i+1}^{[n+1]}$ we construct from $K_{i+1}^{[n+1]}$ a CW-complex L_{i+1} and a map $g'_{i+1} : L_{i+1} \rightarrow EW(L_i, n)$ which extends h'_{i+1} restricted to the n-skeleton of K_{i+1}. Now define $g_{i+1} = \omega_L \circ g'_{i+1} : L_{i+1} \rightarrow L_i$ and finally define a simplicial structure on L_{i+1} for which α_{i+1} is a combinatorial map. It is easy to check that the properties (a) and (b) are satisfied. Since the triangulation of L_{i+1} can be replaced by any of its barycentric subdivisions we may also assume that

\[(c) \text{ diam}^j g_{i+1}^j(\Delta) \leq 1/i \text{ for every simplex } \Delta \text{ in } L_{i+1} \text{ and } j \leq i\]

where $g^j_i = g_{j+1} \circ g_{j+2} \circ \ldots \circ g_i : L_i \rightarrow L_j$.

Denote $Z = \varprojlim_i(L_i, g_i)$ and let $r_i : Z \rightarrow L_i$ be the projections. For constructing L_{i+1} we used an arbitrary map $f : L_i^{[n]} \rightarrow K(E, n), E \in \sigma(G)$. Let us show that choosing $E \in \sigma(G)$ and f in an appropriate way for each i we can achieve that $\text{dim}_E Z \leq n$ for every $E \in \sigma(G)$ and hence $\text{dim}_G Z \leq n$.

Let $\psi : F \rightarrow K(E, n)$ be a map of a closed subset F of L_j. Then by (c) for a sufficiently large $i > j$ the map $\psi \circ g^j_i|_{(g^j_i)^{-1}(F)}$ extends over a subcomplex N of L_i to a map $\phi : N \rightarrow K(E, n)$. Extending ϕ over $L_i^{[n]}$ we may assume that $L_i^{[n]} \subset N$ and replacing ϕ by its cellular approximation we assume that ϕ is cellular. Now define the map $f : L_i^{[n]} \rightarrow K(E, n)$ that we use for constructing L_{i+1} as $f = \phi|_{L_i^{[n]}}$. Since g_{i+1} factors through $EW(L_i, n)$, the map $f \circ g_{i+1}|_{(g_{i+1})^{-1}(L_i^{[n]})} : g_{i+1}^{-1}(L_i^{[n]}) \rightarrow K(E, n)$ extends to a map $f' : L_{i+1} \rightarrow K(E, n)$. Define $\psi' : L_{i+1} \rightarrow K(E, n)$ by $\psi'(x) = (\phi \circ g_{i+1})(x)$ if $x \in g_{i+1}^{-1}(N)$ and $\psi'(x) = f'(x)$ otherwise. Then $\psi'|_{(g_{i+1})^{-1}(F)} : (g_{i+1})^{-1}(F) \rightarrow K(E, n)$ is homotopic to $\psi \circ g_{i+1}|_{(g_{i+1})^{-1}(F)} : (g_{i+1})^{-1}(F) \rightarrow K(E, n)$ and hence $\psi \circ g_{i+1}|_{(g_{i+1})^{-1}(F)}$ extends
over L_{i+1}. Now since we need to solve only countably many extension problems for every L_j with respect to $K(E,n)$ for every $E \in \sigma(G)$ we can choose for each i a map $f : L_i^{[n]} \rightarrow K(E,n)$ in the way described above to achieve that $\dim_E Z \leq n$ for every $E \in \sigma(G)$ and hence $\dim_G Z \leq n$.

The property (b) implies that for every $x \in X$ and $z \in Z$,

(d1) $g_{i+1}(\alpha_i^{-1}(st(p_i(x)))) \subset \alpha_i^{-1}(st(p_i(x)))$ and

(d2) $h_{i+1}(st((\alpha_i+1 \circ r_i+1)(z))) \subset st((\alpha_i \circ r_i)(z))$

where $st(a) =$the union of all the simplexes containing a.

Define a map $r : Z \rightarrow X$ by $r(z) = \cap \{p_i^{-1}(st((\alpha_i \circ r_i)(z)))) : i = 1, 2, \ldots\}$. Then (d1) and (d2) imply that r is indeed well-defined and continuous.

The properties (d1) and (d2) also imply that for every $x \in X$

$r^{-1}(x) = \lim_{\leftarrow} \{p_i^{-1}(st(p_i(x))) : i = 1, 2, \ldots\}$,

where the map $g_i|_{\alpha_i^{-1}(st(p_i(x)))}$ is considered as a map to $\alpha_i^{-1}(st(p_i(x)))$.

Since $r^{-1}(x)$ is not empty for every $x \in X$, r is a map onto and let us show that $r^{-1}(x)$ is G-acyclic.

Since $st(p_i(x))$ is contractible, $T = \alpha_i^{-1}(st(p_i(x)))$ is $(n-1)$-connected. From (a) and Proposition 2.3 it follows that $H_n(T)$ is $\mathcal{F}(G)$-torsion. Then, since G is $\mathcal{F}(G)$-torsion free, by the universal-coefficient theorem $H^n(T;G) = \text{Hom}(H_n(T),G) = 0$. Thus $\tilde{H}^k(r^{-1}(x);G) = 0$ for $k \leq n$ and since $\dim_G Z \leq n$, $\tilde{H}^k(r^{-1}(x);G) = 0$ for $k \geq n+1$. Hence r is G-acyclic and this completes the proof.

\section*{References}

[1] Dranishnikov, A. N. On homological dimension modulo p. (Russian) Mat. Sb. (N.S.) 132(174) (1987), no. 3, 420–433, 446; translation in Math. USSR-Sb. 60 (1988), no. 2, 413–425.

[2] Dranishnikov, A. N. Rational homology manifolds and rational resolutions. Special issue in memory of B. J. Ball. Topology Appl. 94 (1999), no. 1-3, 75–86.

[3] A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, http://at.yorku.ca/topology/taic.htm

[4] R. D. Edwards, A theorem and a question related to cohomological dimension and cell-like maps, Notices of the AMS, 25(1978), A-259.

[5] A. Koyama and K. Yokoi, Cohomological dimension and acyclic resolutions. In memory of T. Benny Rushing, Topology Appl. 120 (2002), no. 1-2, 175–204.

[6] M. Levin, Constructing compacta of different extensional dimensions, Canad. Math. Bull. 44 (2001), no. 1, 80–86.
[7] L. Rubin and P. Schapiro, \mathbb{Z}_p^∞-acyclic resolutions for metrizable compacta, preprint.

[8] J. Walsh, Dimension, cohomological dimension, and cell-like mappings. Shape theory and geometric topology (Dubrovnik, 1981), pp. 105–118, Lecture Notes in Math., 870, Springer, Berlin-New York, 1981.

Department of Mathematics
Ben Gurion University of the Negev
P.O.B. 653
Be’er Sheva 84105, ISRAEL
e-mail: mlevine@math.bgu.ac.il