Climate Change Adopted Building Envelope as A Protector of Human Health in the Urban Environment

Krystyna Januszkiewicz
1 50 Piastów Ave., 70-311 Szczecin West Pomeranian University of Technology in Szczecin, Poland

krystyna_januszkiewicz@wp.pl

Abstract. Recently, an expanded understanding of building performance acknowledges that all forces acting on buildings (climate, energies, information, and human agents) are not static and fixed, but rather mutable and transient. With the use of parametric and multi-criteria optimization digital tools, buildings’ envelopes can be designed to respond to various requirements. This paper explores the possibilities of architectural design to benefit human conditions, which encompasses mental well-being, environmental quality of life during the Climate Change era. The first part of the paper defines the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of psychological disorder in big cities. The negative impact of these factors is constantly increasing in the time of Climate Change progressing. The second part presents results of the research program undertaken at West Pomeranian University of Technology in Szczecin by author. The program goes on to attempt to solve the problem through architectural design. This study highlights a social problem, such as mental well-being, resulting from urbanization or effects of the climate change, and serves as a useful background for further research on the possibilities of redefining sustainable and human friendly design.

1. Introduction
Global climate change is expected to pose increasing challenges for cities in the following decades, placing greater stress and impacts on multiple social and biophysical systems, including population health, coastal development, urban infrastructure, energy demand, and water supplies. In the past decade, there has been growing evidence that activities to mitigate climate change can have beneficial impacts on public health as a result of changes to environmental pollutants and health-related behaviours. Understanding the interrelation between these impacts and the built environment put forth to architects and engineers to develop innovative materials, components and systems, with the goal of to design building envelopes more active i.e. responsive, adaptive as well as protective to variable and extreme climate conditions [1]. Future building envelopes should be active to both internal and external conditions as well as protective to human health.

2. Global urbanization and psychological disorder
The process of urbanization could be described as one of the major global environmental changes directly affecting human health today. People spend more than 90% of their lives within buildings [2]. Advanced urbanization brings a lot of advantages to the society, but also far-reaching side consequences. One of the fastest growing diseases in recent years with a global reach is depression, a psychological
disorder. While the physical health impacts of climate change are well known, the impact on mental health has only begun to be recognized. At the time of Climate Change the number of people suffering from depression is constantly growing. There are 350 million people that live with depression today. It affects people of all nationalities and ages, regardless of social status. The World Health Organization estimates that in 2030 it could be the most widespread disease in the world. This increasing number is harmful to humanity, declines economic activity, increases social costs and suicides [3].

Depressive disorders appear for different reasons: genetic, neurobiological or environmental. Today, most neuroscientists agree that the biological determinants of this disease are associated with disorders of the brain or nervous system. Neurotransmitters whose disorders especially affect proper working of human endocrine are serotonin (hormone of happiness), melatonin, and norepinephrine [4]. Despite scientific knowledge and self-awareness about depression, therapies used by doctors are short-lived and not effective. They heal only the human body but do not affect the environment in which we live, which significantly contributes to disorders of human endocrine. The right level of hormones mentioned above is dependent on the inputs that the organism is getting from environment. The urban environment requires a fast pace of life, causing stress and chemicals responsible for the endocrine balance in the body are not fully metabolized. Restoration of normal hormonal balance can be achieved the creation of a friendly environment and developing structures that will have a positive impact on occupants.

2.1. Environmental factors influencing depression

The endocrine system refers to the collection of gland of an organism that secrete hormones directly into the circulatory system to be carried towards distant target organs. Major factors that significantly affect the mood and human endocrine can be divided in 4 categories:

Sunlight: sunlight is a portion of the electromagnetic radiation given off by the Sun. This light is one of the most important factors that affects hormonal balance. Sunlight contributes to the production of melatonin, which is responsible for proper sleep. No access to sunlight results in insomnia and irritability. The organism is trying to produce melatonin itself, which decreases the level of hormone of happiness present, often causing seasonal depression and deepening the clinical one.

Urban environment: the built environment has direct and indirect effects on mental health. Information from cities are bombarding and the brain has no chance for rest. Chemicals in the human body are not fully metabolized resulting in low serotonin levels. Remaining regularly in the natural habitat contributes to the improvement of people suffering from clinical depression. It has been scientifically proven that taking regular walks in a natural habitat contributes to a 16-percent improvement in concentration and working memory among patients suffering from depression compared with those who walked in an urban setting [5].

Sound: in cities, people are exposed to continuous noise, which attacks the nervous system. Even sounds from 35 to 70 dB prove quite toxic to human health and may cause adverse effects such as nervous system exhaustion. Higher dB sounds like traffic (90 dB), lead to a visible decline in the quality of work, hindered ability to concentrate and psychological disorders. Prolonged exposure to noise causes a loss of sense of security. Music therapy is used especially during psychiatric disorders; corresponding frequencies are chosen to have a relaxing or motivating effect [6].

Smell: smell is a powerful sense responsible for emotions. Scientific experiments have shown that sense of smell is necessary for happiness and lack of fragrance can lead to severe stress. During one of the American space experiments, it was found that people living in an isolated environment devoid of fragrance stimuli responded with strong nervousness. Research on odours also shows that dissatisfaction with life and depression may be due to living in an environment filled with "hostile" smells, like car exhaust and air contamination Fragrances have an impact not only on mood, but also generally on health.
Neutralization of hostile smells and selecting the appropriate aroma increase the effectiveness of the depression treatment and create appropriate mental sensations, such as happiness and a higher level of energy [7].

Over the centuries, the materials and construction details have changed and have been improved, but no radical innovations have occurred. Today, the challenge is a protective envelope of any building which should consist of multiple elements with widely differing properties relating to the environmental factors listed above.

3. Research and designing of protective building envelope

The dictionary explanation of 'protective' is intended to protect someone or something or adapted to afford protection of some kind: "protective covering"; "protective coatings". While the protectivity in contemporary architecture can be defined as a system’s ability to provide users protection to the build environment. Recently, at the time of global climate change, the terms redefine form not as the shape of a material object alone, but as the multitude of effects, the milieu of conditions, modulation and microclimates that emanate from the exchange with its specific environment - as a dynamic relationship that is both perceived and interacted with by subject [8]. As defined in climate change literature, “adaptive capacity” is the property of a system to adjust its characteristics to expand its coping range [9]. In practical terms, adaptive capacity is the ability to implement effective adaptation strategies, or to react to stresses to reduce any likelihood of harmful outcomes. The building ability to change and adapt its configuration relative to the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of depression in big cities, should be a source of formal and technological innovations. A building envelope is the interface between exterior environmental factors and the interior demands of the occupants. As for sustainability and especially relating to climate change orientated-design, this envelope will be the most essential design component.

In 1960 Buckminster Fuller and Sadao proposed to the city of New York that they build a two-mile geodesic dome spanning Midtown Manhattan that would regulate weather and reduce air pollution. Fuller imagined a massive architectural surface that would regulate the city’s ecosystem. They delivered this design along with a series of surprising calculations: The Dome would reduce heat loss by scaling the city to one eighty-fifth of its surface area; the elimination of snowploughing alone would make up for heating costs; buildings inside the Dome could be built lighter and cheaper without the need for weatherproofing; and interior air could be heated by remote plants. [10]. Nowadays, that futuristic project is a seminal work on protective envelops for the build environment and smaller urban-space areas, through the use of smart skins. Fuller's and Sadao's concept, together with claimed calculation results shows how many energy factors are left unused. Their emphasis on optimizing architecture and building systems influenced green design practices and has a legacy today in programs such as LEED certification.

Last year, these issues were addressed by Krystyna Januszkiewicz (Leader of Digitally Designed Architecture Lab) and faculty member at the WPUT (West Pomeranian University of Technology) in Szczecin. The research program (Climate Change Adapted Architecture and Structure) is focused on protective envelopes designed for modern buildings in cities experiencing recent rapid development. The envelopes designed to have adaptation and protection strategies to anticipate exterior environmental variations as well as interior interaction with inhabitants. With the use of parametric and multi-sensor optimization tools, envelopes are programmed to respond to the certain criteria. Cities produce lot of energy e.g. sound, smell, friction that is not used again, so it is worth widening the range of storage inputs.

3.1. Research

In the first part of the research project, the main negative and positive factors affecting mental health in
large metropolises are defined. The impact negative effects of climate change along with their correlation with depression are discussed (figure 1a).

The second part of the research program goes on to attempt to solve this problem through architectural design, using the latest technology and methods [11]. The intention of this design was not only to minimise but to eliminate any negative environmental impact completely. This was possible by using intelligent and sensitive design conceptualization. The working principle was inspired through the basic principle of how natural neuron networks works (figure 1b).

The artificial neuron network receives one or more inputs (representing dendrites) and sums them to produce an output (representing a neuron's axon). The entry gets input signals. This is an information that describes a task that the neuron has to solve. Each of the instruments has a certain value. The signals are multiplied by the weight values, the results of this multiplication are added together in a summing block. In this way, a specific number is defined as membrane potential. It is sent to the activation block where it can be processed in the future. The activation blocks receive an answer with a new value of the input signal [12].

Similarly, the stages of information processing through the building can take place by using three elements: the external envelope, which wraps the building and spreads to the streets of the city, collecting inputs from the environment. Gathering of the information - mostly negatives are processed in summing blocks located at the building base and released as positives into the interior by outer envelope.

3.2. Processing external negatives into internal positives
Each of the environmental factors could be collected or processed by a personalized system. Inputs gathered from surroundings would be processed and released to the building interior with a new value. The intensity of released outputs could be controlled or manipulated by internal needs. It also could be combined in various ways to create the best expected microclimate (figure 2). The following basic principles of building activities have been considered:

- **Smell**: dirty air would be collected by the pores in facade. Odour from the surroundings is cleaned in a summing block using an air ionizer. Plasma discharge process that generates and emits the same positive and negative ions to be released into the air simultaneously, would be used. These positive and negative ions instantly recombine on nature. Ion air purification technology in which positive ions \([\text{H}^+(\text{H}_2\text{O})_n]\) and negative ions \([\text{O}_2^- (\text{H}_2\text{O})_m]\) are the surface of bacteria, mould fungus, viruses and allergens floating in the air to form hydroxyl (OH) radicals, which have extremely high oxidation ability, and this chemical reaction decomposes proteins on the surface of bacteria and other pathogens, thereby inhibiting their activity [13]. This combination creates water which returns to the air. Cleaned air is transformed back to the interior of the building. Some of the pores in the facade contain selected natural, essential oils that are sprayed in the air in selected parts of the buildings in
order to create a particular mood. For example: graveolens – a strong antidepressant, helps with emotional problems; grapefruit - improves mood and relieves nervous tension; peppermint - inhibits hyperactivity and lessens fatigue.

- **Sound:** A system of microphones could be mounted to the façade. Microphones are divided into 3 groups. Each group has a special membrane catching specific tones: low, medium and high. Particular vibrations go to the synthesizer that works like the sampler, recording sounds (the noise of the city) and then manipulating them in various ways by changing the sound settings into more friendly tones. Processed vibrations are released into the building through the different speakers as harmonic sounds of specific frequencies, which are friendly for the organism. For example, sounds with level of 136,6 Hz are relaxing for body, frequencies of 400 - 480 Hz decrease stress and are free from physical pain and raising vitality.

- **Natural environment:** rainwater could collect on the facade by a system of gutters with bowl-shaped heads. Single gutters would be connected to a main one hidden in facade that would direct water to the summing block for future cleaning and recycling processes. Recycled water is pumped back to the interior of the building and used for hydrating the plants that create a beneficial, natural environment.

- **Sunlight:** in the external façade, a system could be mounted that basically uses a glass ball that is filled with water to concentrate the sun’s energy onto a PV panel. In this way, the sun’s energy is concentrated by up to 10,000 times [14]. The ball can also be rotated and would include a tracking system, meaning that energy collection is maximized throughout the day. The PV panels transport collected energy to the battery, which converts DC power into AC power with the frequency and voltage corresponding to the requirements of electricity grid. The collected power could be used to charge the whole building and to operate lamps, which are physically similar to sunlight. It has a resemblance to the wavelength of light, the light intensity (about 10 000 lux) and colour. Lamps are turned on when there is no sunlight outside which would provide the right balance of melatonin to the organism.

![Figure 2. Processing external negatives into internal positives [11]](image)

This is a proposal for a protective and adaptive building envelope. This is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept of a secondary environmental
system to a primary structural system joint into a collective behavioural system equipment with an artificial neuron network system is presented above (figure 2).

3.3. Results
The presented proposal of building envelope prepared by the Digitally Designed Architecture Lab (2015) at WPUT in Szczecin shows the possibilities of how to use elements of existing environments and afterwards to process them into a friendly habitat using the latest building envelope technology. In this design a building is treated as ‘environmental valves’ regulating the transmissions of energy, light, air, moisture, and information between interior and exterior.

![Figure 3. Protective human health envelope for a smart city under rapid development, Climate Adapted Architecture and Structure Research Program, West Pomeranian University of Technology in Szczecin [11]](image)

Cities that focus on smart development have to seek innovative solutions and wisely manage resources in order to become a forces for economic development. Depending on the location and needs, the building (this could be a public or residential space) function could be combined for private and public functions. Buildings also could create networks with each other, such as a neuron network. In a big metropolis environment, stimuli can be very different in each part of the city. Some of the buildings could collect more water or sunlight for others that need it. In that case, buildings could contact each other by sending Wi-Fi information about the state of collected energy. Buildings, which would save more energy, could transmit it to those that need it, assuring a sustainable balance in the network (figure 3). It would become a living part of the city, processing the external factors such as light, noise, smell and give it back into the building, creating different atmospheres of sounds, smells and other inputs, that the city creates every day. This design task can only be tackled by means of an integrated approach to planning, i.e. interdisciplinary collaboration between architects, façade and environmental engineers.

4. Results and discussions
This research highlights the impact of architecture on the psychological state of man and sensitize designers to redefine sustainable and human friendly design. The “vein-like” structure of the building would be connected with the surroundings, unlike it is today, where most of the buildings aim to protect human health from external factors. During the Climate Change era, scientists should take more research into the improvement of building envelopes in terms of impact on the urban environment of their users. The capacity for building skin to actively support building function is critical to the future of building envelopes design. Every environmental factor would be collected and processed through a customized computing system. Input gathered from the building exterior would then be processed and recalculated with a new value to the building’s interior. The intensity of released outputs could be controlled according to internal needs. This could also be combined in various ways to create the optimum microclimate.
5. Conclusions

Climate change policy is often presented as a choice between mitigation and adaptation, where “mitigation” refers to efforts toward reducing the accumulation of greenhouse gases in the atmosphere and “adaptation” refers to adjusting to the impacts of a warming world through enhancing an ecosystem's resilience. This is a false dichotomy, and to address climate change we need to begin the process of writing both mitigation and adaptation strategies into our building codes and standards.

Acknowledgments

The author would like to thank WPUT Szczecin students (Master Program): Sylwia Gudaczewsska, Piotr Orłowski and PhD student: Natalia E. Paszkowska, Konrad Zaremba for their contributions to this work as well as for their efforts and enthusiasm throughout the WPUT Szczecin workshop.

References

[1] P. Beesley, S. Hirosue, J. Ruxton, "Responsive Architectures," Subtle Technologies 06, Cambridge: Riverside Architectural Press, pp. 3-11, 2006.
[2] K. L. Ebi, F. G. Sussman, T. J. Wilbanks, C. E. Reid, K. Hayhoe, J. V. Thomas, C. P. Weaver, "Analyses of the effects of global change on human health and welfare and human system," Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, U.S. Environmental Protection Agency, Washington DC, USA, pp. 1-11, 2008.
[3] World Federation for Mental Health, Depression: a global crisis, pp. 6–17, in press. October 2: 2012.
[4] C. B. Nemeroff, W. W. Vale, "The neurobiology of depression: inroads to treatment and new drug discovery", J. Clin Psychiatry 66, vol. 7, pp. 5-13, 2005.
[5] M. S. Sweeney, C. R. Green, "Your Best Brain Ever: A Complete Guide and Workout", National Geographic Society, p. 32, 2013.
[6] D. Serani, "Depression and Your Child: A Guide for Parents and Caregivers," Rowman & Littlefield, pp. 63-67, 2013.
[7] J. Černecký, K. Valentová, E. Pivarciová, P. Božek, "Ionization Impact on the Air Cleaning Efficiency in the Interior," Measurement Science Review 4, vol. 15, pp. 156-166, 2015.
[8] M. Hensel, A. Menges, "Inclusive Performance; Efficiency Versus Effectiveness. Toward Morfo-Ecological Approach for Design," AD 2-3, vol. 78, pp. 54–63, 2008.
[9] M. Wigginton, J. Harris, "Intelligent Skins," Elsevier Architectural Press, Oxford, 2006.
[10] M. Pawley, "Buckminster Fuller", New York, 1990.
[11] K. Januszkiewicz, S. Gudaczewska, P. Orłowski, "Antidepressant Infrastructure for Vertical Cities. Experimental approach to investigate antidepressant structures for regions for regions in rapid development," 4th Annual International Conference on Architecture and Civil Engineering (ACE) Singapore, GSTF 2016, pp. 323-329, 2016.
[12] K. Velikov, G. Thün, "Responsive Building Envelopes: Characteristics and Evolving Paradigms. In Design and Construction of High Performance Homes," Routledge Press: London, pp. 75-91, 2012.
[13] Sharp, "Higher Concentrations of Plasmacluster Ions®* Boost Virus Inactivation and Elimination, Inhibit 99.9% of Airborne H5N1 Avian Influenza ("Bird Flu") Virus, Verified in Collaboration with Retroscreen Virology Ltd. of the UK, August, in press, 2008.
[14] F. Goia, M. Perino, V. Serra, and F. Zanghirella, Towards an active, responsive, and solar building envelope, Journal of Green Building 4, vol.5, pp. 121-136, 2010.