THE INFLUENCE OF THE FORMS ON THE QUALITY, CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF ARGAN OIL GROWN IN MOROCCO

Yousra El IdriSSI1, Hamza El MoudDeN2, Chakir El-Guezzane1, Taoufik Bouayoun2, Abdelouahed Dahrouch3, Nabila Chahboun1,2,4,5, Abdelkader Zarrouk1,2, Mohammed Tahyaoui1

Address(es): Prof. Dr. Abdelkader Zarrouk
1 Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, P.O. Box 1014 Agdal-Rabat, Morocco.
2 Higher School of Technology of El Khelaa Des Zaggha. Cadi Ayad University, El Khelaa Des Zaggha BP 104, Morocco.
3 Laboratoire de Biologie et de Criminologie de la Gendarmerie Royale-JCGR, Gendarmerie Royale, BP 6597, Rabat-Institut CP 10100 Rabat, Morocco.
4 Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, P.O. Box 242, 14000, Kenitra, Morocco.
5 Institute of Nursing Professions and Health Techniques, Annex – Taza, Morocco.

*Corresponding author: azarrouk@gmail.com

ARTICLE INFO

Received 29. 1. 2022
Revised 19. 11. 2022
Accepted 28. 11. 2022
Published xx.xx.201x

Regular article

OPEN ACCESS

ABSTRACT

Argan oil plays a significant socio-economic role in southwestern Morocco, with many applications in cosmetics and nutrition. In this study, the chemical composition, the quality, as well as antioxidant activity of Argan oils extracted from different fruit shapes (apiculate, oval, spherical, and fusiform) in Essaouira and Agadir were evaluated. The results collected indicated a slight resemblance in the chemical composition of fatty acids, steroids, tocopherols, and polyphenols of Argan oils. These, extracted from two different regions, also show similar yields in the oval form, with values of 53.53 % for the Essaouira region and 54.86 % for that of Agadir. However, a slight difference was noted in the shape of the fruit. Indeed, the total sterols content for the oval shape showed values of 178.64 mg/100g in the Essaouira region and 171.97 mg/100g in the Agadir region. Also, γ-tocopherol was the predominant tocopherol in all tested oils.

Keywords: Argan oils, Chemical composition, Yields, Antioxidant activity, DPPH

INTRODUCTION

Argan oil is one of the worldwide known types of plant-based oils, which comes from the Argan tree (Argania spinosa) originating from the Moroccan southwest. As a multipurpose tree, Argan plays an important socio-economic role, and its sustainable development is essential to maintain the ecological balance and protect biodiversity (Khallouki et al., 2017). Although the Argan tree is the only representative tree species of the Moroccan tropical locust family, it is the second forest species after the oak and cedar, with a lifespan of over 200 years. It is mainly cultivated in the arid and semi-arid regions of southwest Morocco, on about 870,000 hectares. In 1998, UNESCO recognized the importance of the Argan tree, declaring it a “protected species” and the vast interior mountain plain, which protects the Argan tree, is a biosphere reserve (Miklavčič et al., 2020). It has been introduced as a cultivated species in the deserts of Tunisia, Israel and South Africa, as well as in other parts of the world (Charrouf and Guillaume, 2014). The importance of Argan oil in Moroccan culture stems from its traditional use in local cooking, medicine, and cosmetics. From 2019 to 2027, the global Argan oil market is expected to grow at a compound annual growth rate of 10.8% to reach USD 507.2 million by 2027 (Size et al. 2020). The revenue generated creates the livelihoods that support the many rural families and communities that depend on the Arganeraie Biosphere Reserve (Charrouf and Guillaume, 2014). This luxury virgin oil is extracted from the Argan tree fruits, particularly from the seeds contained in the fruit’s core (Farres et al., 2019). There are several shapes of Argan tree fruits, and predominantly, depending on the width to the length ratio, it is possible to distinguish four shape types; fusiform, oval, apiculate, and spherical (Berka et al., 2019). Generally, each fruit’s core contains one to three seeds, of which each is composed of up to 58% of oil (Hanana et al., 2018). Traditionally, this oil is prepared by Moroccan Amazigh women according to a multi-step, ancestral process (Guillaume et al., 2019). However, this traditional extraction is time-consuming and carried out in unsuitable sanitary conditions. Consequently, there have been attempts to improve the Argan oil’s quality by improving its extraction process (Hilali et al., 2005). Due to its numerous advantages as traditional dietary medicine, Argan oil is used as a cosmetic, pharmaceutical, and nutritional product. The nutritional value and the therapeutic benefits of Argan oil consumption have been summarized by Charrouf and Guillaume (Charrouf and Guillaume 2008) and El Abbassi et al. (El Abbassi et al., 2014), including antioxidants, antiproliferative, and anti-inflammatory effects, treatment of skin infections and cardiovascular disease prevention. Argan oil contains large amounts of unsaturated (up to 80%) and saturated (up to 20%) fatty acids (Sevindik et al., 2019). While several theories attribute the therapeutic effects of Argan oil to its high content of oleic and linoleic acid, many other oils with high concentrations of these fatty acids do not have the same therapeutic effects, which suggest that the 1% of non-saponifiable substances found in the oil could be mainly responsible for its therapeutic effects. These non-saponifiable materials consist of a range of biologically active compounds including carotenes (37%), tocopherols (8%), triterpenic alcohols (20%), sterols (29%) and xanthophylls (5%) (Lall et al., 2019). Carotenoids, tocopherol, and xanthophylls are well-known antioxidants that stimulate intercellular respiration, neutralize free radicals, and protect the skin against the harmful effects of sun rays, while triterpenic alcohol and sterols have been associated with anticancer and antimicrobial activities (Harlev et al., 2012; Zarrouk et al., 2019; Goik et al., 2019; Gamero-Sandemetrio et al., 2019). Different factors such as genotypes, environmental conditions prevalent during the growing season, location, climate, harvest time, and extraction techniques can influence the oil content and chemical composition (El Qarnifa et al. 2019). The morphological variability of the Argan fruit was also suggested to influence the chemical composition (Charrouf et al. 2013). The objectives of this paper were to identify oil content and the chemical composition (fatty acids, sterols, polyphenols, carotenoids, and chlorophylls) of different Argan fruits shapes originate from two regions in Morocco (Essaouira and Agadir) and to evaluate the quality of oils and their antioxidant activity. The relationship between the quality parameters (FFA, saponification index, K270, and iodine index), total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, linoleic (C18:2) and antioxidant activity (DPPH) of the different samples of Argan fruits shapes oils are evaluated by the Principal Component Analysis (PCA). A Hierarchical Cluster Analysis (HCA) was used to construct three clusters based on their different physicochemical parameters of the quality, total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, linoleic (C18:2), and antioxidant activity (DPPH) of the different samples of Argan fruits shapes oils.
MATERIALS AND METHODS

Sampling and oil extraction

A mass of 300 g of each Argan fruit shape was gathered from about thirty trees (in total 9 kg) at the end of August 2018 from two regions in Morocco; the Essaouira region, particularly between Alhousaynat and Almajni villages, as well as from the Azzragar, in the Agadir region. The fruits were dried in the shade for two weeks to remove the pulp and to get the Argan nuts smoothly. By breaking the Argan nuts with a rock, almonds were divided from the Argan hull. The seeds of the Argan fruit were blended in a domestic kitchen mixer grinder. Fifty grams of seeds of each form was placed in a paper thimble and put through a soxhlet extractor with a capacity of 250 mL. The oils obtained were stored in brown glass bottles at 4 °C until use. All assays were performed in triplicates to guarantee reproducibility.

Morphological Characteristics of Kernels

The microscopic examinations of Argan kernels were managed at the Criminal Institute of Royal Gendarmerie (Rahat) accredited ISO 17025, via a FEI Quanta 650 environmental microscope. The chosen samples were adjusted on an adhesive double-sided carbon backing, and to bypass charging effects that decrease the image’s quality, the samples were metalized in carbon before being advanced into the microscope enclosure. The observations were conducted under vacuum (7.4 × 10⁻⁴ Pascal) at a voltage of 1 kV.

Analysis of Argan oils

Fatty acid composition

Fatty acid composition was established through an official method (El Idrissi et al., 2022). Prior to the analysis, fatty acids (FAs) were converted into their corresponding methyl esters (FAMEs). The fatty acid composition was determined as their corresponding methyl esters by gas chromatography on a CPWax 52CB column (60 m × 0.25 mm i.d., 0.25 μm film thickness) via helium (flow rate 1 mL/min) as a conveyor gas. The initial column temperature was 170 °C, the final temperature 230 °C, and the temperature was turned up by steps of 5 °C/min. The injector and detector temperature were 230 °C. The injection volume of the samples was 2 μL in a split mode (split ratio 1:50). As the relative percentage of the area of each individual fatty acid peaks, the results were presented.

Sterol Composition

Phytosterols composition was established in accordance with the International Standard Organization method ISO 12228-1 (ISO 12228-1 2014) using a Varian 3800 instrument equipped with a VF-1, ms column (30 m and 0.25 mm i.d.) and using helium (flow rate 1.6 mL/min) as a conveyor gas. Column temperature was isothermal at 270 °C, injector and detector temperature culminated to 300 °C. Injected quantity was 1 μL for each analysis.

Tocopherols Composition

The tocopherol content of the specimens were determined to use an HPLC equipped with a fluorometric detector (excitation wavelength 290 nm - emission wavelength 330 nm) on a silica column (25 cm 4 mm) in line with the ISO 9936 (2006) standard method. During the analysis, the elution is transmitted with a mixture of (isoctane: isopropanol) (99:1) at a flow rate of 1.2 mL/min (20 min). External standard curves of four tocopherols were used as well as a daily reference of quantitative and qualitative tocopherol standards (El Moudden et al., 2020).

Carotenoids and Chlorophylls analysis

In 100 mL of cyclohexane, 1 g of Argan oil is dissolved. The absorbances of chlorophylls and carotenoids are measured at 670 nm and 470 nm, respectively (El Moudden et al., 2020). In conformity with the following two formulas:

\[
\text{Chlorophyll (mg Kg}^{-1}) = \frac{A_{630} \times 10^{10}}{613 \times 10^{3} \cdot d} \\
\text{Carotenoid (mg Kg}^{-1}) = \frac{A_{470} \times 10^{10}}{2000 \times 10^{3} \cdot d}
\]

The carotenoid content is indicated in mg Lutein per kilogram of Argan oil, and the chlorophyll content is displayed in mg Alpha Pheophytin per kilogram of Argan oil.

Total Phenolic Compounds (TPC)

For the extraction of phenolic compounds from Argania spinosa seeds, a mass of 2 g of oil was extracted three times with 10 mL of methanol: water solution (8:2), after vortexing for 2 minutes and centrifugation at 3000 rpm for 10 minutes for each extraction. After incorporating the methanolic extracts, they were washed three times with 10 mL n-hexane to remove any lipid components. A rotary evaporator was used to separate the methanolic fraction and evaporate it at a lower pressure (Ouassor et al., 2020).

TPC ascertaining was achieved via the Folin-Ciocalteu (FC) colorimetric method, with some modifications (El Guazene et al., 2021). In distilled water (1:10), 500 μL of the sample solution was combined with 2.5 mL of FC reagent, and 4 mL of Na₂CO₃ (7.5 percent, w/v) was added. The absorbance at 765 nm was measured using a UV-Vis spectrophotometer after 30 minutes of incubation in a 45 °C water bath and compared to a blank solution. Over a concentration range of 0-300 μg/mL, the TPC concentration is estimated using the regression equation of the established calibration curve with Gallic acid. The Gallic acid equivalent (mg GAE/g oil extract) was used to calculate the TPC values.

Measurement of RSA of Argan oil by the free radical DPPH

The free radical scavenging activity of the studied oils was calculated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) (El Moudden et al., 2019). Shortly after, 0.2 mM solution of DPPH in ethanol was prepared and 0.5 mL of this solution was incorporated to 2.5 mL of oil samples and was left to stand at room temperature for 30 min, and then absorbancy was read at 517 nm. Lower absorbency of the reaction mixture pointed higher free radical scavenging activity. The radical-scavenging activity (RSA) was determined according to the equation:

\[
\text{RSA} = \frac{A - A_t}{A} \times 100
\]

Where: \(A\) is the registered absorbance of the blank sample, and \(A_t\) stands for the absorbance value of the sample solution.

Physicochemical parameters determination

Ca 3a-63, Cd 1b-87, Cd 3b-76, and Ch 5-91; FFA, iodine index, saponification index, and extinction coefficient (K270) were calculated in accordance with AOCS recommendations (AOCS 1998). Using an LLG-unispec 2 UV spectrometer, the amount of FFA in Argan oil was calculated as a percent of oleic acid, IV was calculated as g 1/100g of oil, SV was calculated as mg KOH/g of oil, and extinction coefficient at 270 (K270) was calculated as the specific extinction of 1 percent (w/v) solution of Argan oil in cyclohexane.

Statistical Analysis

Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)

The purpose of the main component analysis in this study is to see if there is a link between the different physicochemical quality metrics utilized in different Argan fruit forms from two different areas in Morocco (Essaouira and Agadir) on the one hand, and between total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, linoleic (C18:2), and antioxidant activity (DPPH) on the other hand. The PCA was effectuated on the results of physicochemical parameters quality following the sample oils, HCA was employed to track the interrelatedness between all samples oils and cluster characteristics, furthermore, the dendrogram was composed by the cluster method of Ward and the Squared Euclidean distance were taken as a coefficient of similarity.

Correlation Matrix

The PCA was carried out on a matrix that resumes all the sets of data from different physicochemical parameters of the quality and between total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, linoleic (C18:2), and antioxidant activity (DPPH). The individuals are represented by the 8 samples from Argan fruits shapes oil.

Data Analysis

The Pearson Correlation was handled to study the correlation between all the parameters used of Argan fruits shapes oils in this paper. The PCA and HCA were done by the XLSTAT 2014 software (El Guazene et al., 2021, El Moudden et al., 2022). Data were represented as mean ± standard error of the mean and were made using IBM SPSS Statistics 21 software.
RESULTS AND DISCUSSION

Geometrical traits of Argan fruits

Figure 1 and Table 1 are the illustrations and the description of the size parameters of different shape types of Argan fruits (length, width). Where the spherical shape resembles a ball, the oval shape has more or less an egg shape, rounded and elongated. The fusiform is characterized by its broad shape, in the middle, and perfectly cut in both ends. The apiculate shape has a short-pointed tip containing two to three seeds in the shape of a nucleus. Regarding kernel width, apiculate and oval morphotypes from Essaouira showed the longest kernels (29 mm and 28 mm respectively) and spherical morphotypes from Essaouira and Agadir the shortest (15.50 mm and 17 mm respectively). Regarding kernel length, apiculate and fusiform fruits from Agadir have the widest kernels (27.4 mm and 24.4 mm respectively) and the oval and spherical fruits from Essaouira the narrowest (12.50 mm and 14.5 mm respectively). In general, the mean value of kernels length is greater in the case of apiculate, oval, and fusiform compared to spherical fruits. Regarding the width, apiculate and fusiform fruits remain superior.

Besides, oleic, linoleic, palmitic, and stearic acids were found to be the dominant fatty acids (Table 2). In the case of oleic acid, the oval fruits from Agadir showed an exceptionally high content (49.06%) followed by fusiform fruits from the same region (47.41%). Spherical fruits from Agadir showed lower content (44.80%). The linoleic acid concentration was found to be significantly higher in spherical fruits from Essaouira and Agadir (35.38% and 35.40% respectively). The lower amount was reported in oval fruits from Agadir (30.24%). Significant important palmitic acid content was found in fusiform and apiculate fruits (14.81 and 14.90%) from Agadir, and a lower amount of oval and apiculate (12.19%) fruits from Essaouira and oval fruits from Agadir (12.08%). The stearic acid content was significantly important in oval fruits from Agadir (6.80%), as well as oval and apiculate fruits from Essaouira (6.69 and 6.53% respectively). The lower amount was found in spherical fruits (5.49%) from Essaouira. Our results revealed a different tendency to those found in Gharby et al. (Gharby et al., 2013) a study, in which oleic acid concentration was reported to be significantly higher in Agadir region from Agadir fusiform fruits, linoleic acid was found to be lower in fusiform fruits (29.40%), palmitic acid content ranged from 11.75 % to 13.9 % in spherical and fusiform fruits respectively, and the stearic acid lower amount was found in fusiform fruits (5.7%).

The sterol fraction of Argan oil is mostly made up of spinasterol and schottenol, as is widely known (about 88 percent of the sterol fraction) (Khalilouki et al., 2003; Charrrouf et al., 2008), as well as stigmastera-8,22-diene-3β-ol to a lower extent (Khalilouki et al., 2003; Matthias et al., 2010). In our study, the total sterol level was remarkably high in oval fruit from Essaouira (178.64 mg/100g) and the lower amount (163.03 mg/100g) in spherical fruits from Agadir (Table 3). The chototenol and spinasterol were the major sterols found in Argan oils from Essaouira and Agadir. Schottenol was found to be high in apiculate shapes of Essaouira (48.97%) and the lower concentration in apiculate, oval and, fusiform shapes of Agadir (44.17, 44.53, and 44.77%, respectively) and oval shapes of Essaouira (44.82%). The spinasterol levels was high considering oval fruits from Essaouira (43.85%) and lower in spherical fruits (34.40%) from Agadir. In contrast, minor components such as stigmast-8,22-diene-3β-ol was found in higher amounts because of apiculate and oval fruits (5.43 and 5.13%, respectively) Agadir, and lower in apiculate oval and fusiform fruits from Essaouira, and fusiform from Agadir. Also, spherical fruits from Essaouira and Agadir were richer in Δ7-Avenasterol in comparison to other shapes (6.76 and 6.72% respectively). While similar results were reported by Gharby et al., study regarding spinasterol (lower content for spherical fruits) (El Moudsen et al., 2020), different results were found for total sterols (content ranged from 178 mg/100g for apiculate to 164 mg/100g for oval fruits), schottenol (46.4% for the oval to 42% fusiform) and stigmasta-8,22-diene-3β-ol (content ranged from 4.7% for fusiform to 3.7% for oval fruits). However, Δ7-Avenasterol was not reported.

Table 2 Yield and fatty acid composition of Argan oil (%)

Region	Shape	Oil yield	Palmitic A. (C16:0)	Stearic A. (C18:0)	Oleic A. (C18:1)	Linoleic A. (C18:2)
Essaouira	Spherical	47.33 ± 0.83a	13.06 ± 0.06a	5.49 ± 0.05a	45.30 ± 0.15a	45.47 ± 0.07a
	Oval	54.86 ± 1.76a	12.83 ± 0.60a	6.82 ± 0.03a	46.42 ± 0.70a	39.40 ± 0.06a
	Apiculate	52.26 ± 1.16a	12.19 ± 0.18b	6.53 ± 0.04b	46.50 ± 0.06e	46.30 ± 0.07b
	Fusiform	53.33 ± 1.35a	13.96 ± 0.09a	6.10 ± 0.08a	45.47 ± 0.07a	33.80 ± 0.08a
Agadir	Spherical	48.31 ± 1.11a	13.22 ± 0.12a	5.71 ± 0.06e	44.80 ± 0.13a	45.40 ± 0.09a
	Oval	53.31 ± 1.73a	12.08 ± 0.03a	6.80 ± 0.04a	49.06 ± 0.06a	30.24 ± 0.04a
	Apiculate	48.56 ± 1.36a	14.90 ± 0.06e	5.94 ± 0.04e	46.44 ± 0.04a	32.07 ± 0.07a
	Fusiform	48.93 ± 1.83a	14.72 ± 0.05e	6.28 ± 0.06e	47.13 ± 0.03b	31.64 ± 0.09a
Standard (AOCS 1998)			11.5 - 15.0	4.3 - 7.2	43.0 - 49.1	29.3 - 36.0

The data are presented in the form of the average of two individual repetitions (n = 2 ± SEM), the means followed by similar letters exposing in the same column are different (P < 0.05).
Tocopherols have a high antioxidant capacity as well as a strong anti-free radical ability. The variability of the contents of tocopherols is presented in Table 4. Significant higher total tocopherol content was reported in apiculate fruits from Agadir (768.93 mg kg⁻¹) and a lower content in fusiform fruits from Essaouira (630.91 mg kg⁻¹). The α-tocopherol level was much higher in apiculate fruits from Agadir (668.49 mg kg⁻¹) and lower in fusiform fruit from Essaouira (544.19 mg kg⁻¹). Conversely, the δ-tocopherol level was higher in apiculate fruits from Essaouira and Agadir (50.96 and 51.32 mg kg⁻¹ respectively) and lower in spherical fruits from Essaouira (39.40 mg kg⁻¹) and fusiform fruits from Agadir (39.31 mg kg⁻¹). Concerning α-tocopherol, a higher amount was found in oval fruits from Agadir (51.54 mg kg⁻¹) and a lower amount in fusiform and oval fruits from Essaouira (39.80 and 39.79 mg kg⁻¹, respectively). In the study of Gharby et al. (Gharby et al., 2013) tocopherols are mainly constituted by γ-tocopherol (between 678 mg kg⁻¹ for oval and 531 mg kg⁻¹ for spherical fruits) followed by α-tocopherol (from 54.7 mg kg⁻¹ for apiculate to 39.9 mg kg⁻¹ for spherical fruits).

Table 3 Sterols composition of Argan oils.

Region	Shape	Spherical (mg/100g)	Oval (mg/100g)	Apiculate (mg/100g)	Fusiform (mg/100g)	Total Sterols (mg/100g)
Essaouira	46.04 ± 0.14⁴	37.17 ± 0.07⁴	4.93 ± 0.03³	6.73 ± 0.05³	169.53 ± 0.43³	
Agadir	44.82 ± 0.12⁰	43.85 ± 0.05⁰	3.85 ± 0.05³	3.93 ± 0.05³	178.64 ± 0.39³	
Apiculate	48.97 ± 0.17³	38.24 ± 0.04³	3.59 ± 0.09³	4.58 ± 0.02³	166.35 ± 0.32³	
Fusiform	47.78 ± 0.18³	40.84 ± 0.04³	3.74 ± 0.04³	4.47 ± 0.02³	171.07 ± 0.26³	

Table 4 Tocopherols content (mg kg⁻¹) of Argan oils.

Region	Shape	α-Tocopherol (mg kg⁻¹)	γ-Tocopherol (mg kg⁻¹)	δ-Tocopherol (mg kg⁻¹)	Total Tocopherol (mg kg⁻¹)
Essaouira	48.83 ± 0.03⁴	585.54 ± 0.04³	39.40 ± 0.14³	711.42 ± 0.07³	
Agadir	39.79 ± 0.09⁰	618.53 ± 0.03³	40.31 ± 0.08³	698.63 ± 0.05³	
Apiculate	46.12 ± 0.02³	589.21 ± 0.05³	50.46 ± 0.04³	680.29 ± 0.09³	
Fusiform	39.9 ± 0.05³	544.19 ± 0.09³	46.92 ± 0.07³	630.91 ± 0.08³	

Table 5 Pigments and polyphenols content.

Region	Shape	Chlorophyll (mg kg⁻¹)	Carotenoids (mg kg⁻¹)	Polyphenols (mg GAE/g oil extract)
Essaouira	0.86 ± 0.06⁶	0.44 ± 0.04⁶	22.29 ± 0.09⁶	
Agadir	0.86 ± 0.03⁴	0.34 ± 0.03⁴	22.16 ± 0.06⁴	
Apiculate	0.67 ± 0.02²	0.29 ± 0.04²	21.70 ± 0.04²	
Fusiform	0.43 ± 0.03³	0.25 ± 0.02³	21.54 ± 0.04³	
Spherical	1.03 ± 0.03⁸	0.38 ± 0.02⁸	22.83 ± 0.03⁸	
Oval	1.02 ± 0.02³	0.37 ± 0.01³	21.64 ± 0.04³	
Apiculate	1.16 ± 0.03³	0.63 ± 0.03³	23.44 ± 0.04³	
Fusiform	0.87 ± 0.02³	0.54 ± 0.04³	22.33 ± 0.03³	

Quality parameters and antioxidant activity

Several studies have reported the antioxidative effect and antiproliferative activity of Argan oil polyphenols (Cherki et al., 2005; Drissi et al., 2006; Bennani et al., 2007; Charrout and Guillaume 2007). The total polyphenols content in the studied samples ranged from 21.54 (mg GAE/g oil extract) for fusiform fruits from Essaouira to 23.44 (mg GAE/g oil extract) for apiculate fruits from Agadir. Data are summarized in Table 5. In the literature, the total polyphenol content ranged between 6.07 and 152.04 mg GAE/kg oil (Marfil et al., 2011).

Antioxidant activity evaluated using DPPH for all fruits of Essaouira and Agadir (Table 6). The IC₅₀ values for all oil samples are between 385.52 μg/mL for apiculate fruits from Agadir and 388.75 μg/mL for fusiform fruits from the Essaouira. The samples with a lower IC₅₀ value have a better antioxidant capacity. As a result, samples from Essaouira region seem to have a lower antioxidant capacity than Agadir’s samples. The antioxidant properties observed are essentially linked to the presence of active compounds such as polyphenols and tocopherols (Khalouki et al., 2003; Marfil et al., 2011). Tocopherol’s antioxidant properties are easily incorporated into cell membranes (unlike phenolics that need a continuous supply) (Khalouki et al., 2017).
Correlation Matrix

Correlation coefficients of the various physicochemical quality characteristics (FFA, saponification index, K270, and iodine index) and total sterols, total tocopherols, chlorophylls, carotenoids, linoleic (C18:2), and antioxidant activity (DPPH) are shown in Table 7. Moreover, table 8 indicates the p-values for the correlation matrix coefficient. Next, DPPH (1/IC50) represents the power to inhibit DPPH free radicals.

Table 7 presents the Pearson correlation, which made it possible to analyze the relationships between the different variables tested in this study. Table 8 also includes the p-values for the correlation matrix coefficients for all variables. As a result, we discovered a substantial (p-value < 0.05) positive connection between chlorophylls and carotenoids (r = 0.724), as well as a significant (p-value < 0.05) positive correlation between chlorophylls and polyphenols (r = 0.741). There was also a significant positive correlation (p-value < 0.05) between chlorophylls and total tocopherols (r = 0.757), and antioxidant activity DPPH (r = 0.730). In addition, the correlation positive significant (p-value < 0.05) has been detected between carotenoids and polyphenols (r = 0.784), total tocopherol (r = 0.787),

Table 7 Pearson’s correlation matrix coefficient between different parameters used.

Variables	Chlorophylls	Carotenoids	Polyphenols	Total Sterols	T. Tocopherols	FFA	Iodine index	Saponification index	K270	Linoleic (C18:2)	DPPH (1/IC50)
Chlorophylls	1	-	-	-	-	-	-	-	-	-	-
Carotenoids	0.724	1	-	-	-	-	-	-	-	-	-
Polyphenols	0.741	0.784	1	-	-	-	-	-	-	-	-
Total Sterols	0.103	0.367	0.046	1	-	-	-	-	-	-	-
T. Tocopherols	0.757	0.787	0.936	-0.013	1	-	-	-	-	-	-
FFA	0.002	0.060	0.101	-0.349	0.095	1	-	-	-	-	-
Iodine index	-0.255	-0.490	-0.066	-0.697	-0.010	0.420	1	-	-	-	-
Saponification	-0.013	0.600	0.428	0.292	0.381	0.261	-0.404	1	-	-	-
K270	-0.333	0.021	0.017	-0.016	0.077	0.481	0.545	0.224	1	-	-
Linoleic(C18:2)	-0.301	-0.318	0.118	-0.636	0.145	0.486	0.928	-0.048	0.652	1	-
DPPH (1/IC50)	0.730	0.868	0.975	0.156	0.962	0.080	-0.169	0.530	0.064	0.037	1

Table 8 p-values of the correlation matrix coefficient.

Variables	Chlorophylls	Carotenoids	Polyphenols	Total Sterols	T. Tocopherols	FFA	Iodine index	Saponification index	K270	Linoleic (C18:2)	DPPH (1/IC50)
Chlorophylls	0	-	-	-	-	-	-	-	-	-	-
Carotenoids	0.042	0	-	-	-	-	-	-	-	-	-
Polyphenols	0.035	0.021	0	-	-	-	-	-	-	-	-
Total Sterols	0.809	0.371	0.914	0	-	-	-	-	-	-	-
T. Tocopherols	0.030	0.020	0.001	0.975	0	-	-	-	-	-	-
FFA	0.996	0.888	0.812	0.396	0.823	0	-	-	-	-	-
Iodine index	0.542	0.217	0.877	0.055	0.981	0.300	0	-	-	-	-
Saponification	0.975	0.116	0.290	0.482	0.351	0.533	0.321	0	-	-	-
K270	0.420	0.961	0.969	0.971	0.856	0.227	0.163	0.593	0	-	-
Linoleic(C18:2)	0.469	0.443	0.781	0.090	0.731	0.222	0.001	0.910	0.080	0	-
DPPH (1/IC50)	0.040	0.005	< 0.0001	0.712	0.000	0.851	0.689	0.177	0.880	0.930	0

Principal Component Analysis (PCA)

The composition of total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, linoleic (C18:2), and antioxidant activity (DPPH) as well as the results of total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, and linoleic (C18:2) are taken as variables. The PCA uses the F1-F2 factorial design to project them (Figure 2). The first major component (F1) represents 42.93 percent of the overall data, whereas the second major component (F2) explains 29.03 percent. Because the cumulative percentage of the two initial principal components is 71.97 percent, its linear combination is representational of the variables because it exceeds 50 %. As a result, the first two axes are suitable to represent the information as a whole. Figure 2 shows the plane formed by axes F1
and F2 giving the correlation between the variables. The F1 axis is mainly composed of the positive correlation between, total tocopherols, chlorophylls, carotenoids, polyphenols, and antioxidant activity (DPPH). Axis F2 is formed by the positive correlation between linoleic (C18:2), iodine value, FFA, and K270 (Figure 2).

Figure 2 PCA factorial plan carried out on the values of the different physicochemical parameters of the quality, total sterols, total tocopherols, chlorophylls, carotenoids, polyphenols, linoleic (C18:2) and antioxidant activity (DPPH) of the different samples of Argan fruits shapes oils.

Figure 3 Projections of individuals on the factorial plan (F1×F2). GI: Group I; GII: Group II, and GIII: Group III.

Hierarchical clustering analysis (HCA)

The Wards and the Squared Euclidean methods were used to classify oil samples from different Argan fruits shapes originating from two regions in Morocco (Essaouira and Agadir), in order to evaluate the similarity measure. The HCA method was used to determine the correlations for all of the 8 studied samples, using the data from the physicochemical assays, the oils composition analysis, as well as the antioxidant activity as presented in the dendrogram in Figure 4. Based on these results of 8 samples oils were clustered into three clusters. Cluster I contains 4 samples representing for 50 % of the total samples oils characterized by a medium value means of chlorophylls (0.310 mg kg\(^{-1}\)), carotenoids 0.403 (mg kg\(^{-1}\)), polyphenols (22.095 mg GAE/g oil extract), saponification (192.983 mg KOH/g), K270 (0.238), and linoleic acid (C18:2) (33.508%). In addition, they had a strong value means of K270 (0.238) and iodine index (98.430 g I/100g) compared to other clusters. Cluster II, formed by 2 individuals, accounted for 25 % of total samples oils, these oils had a lowest mean value of chlorophylls (0.725 mg kg\(^{-1}\)), carotenoids (0.310 mg kg\(^{-1}\)), polyphenols (21.590 mg GAE/g oil extract), total tocopherols (64.035 mg kg\(^{-1}\)), iodine index (97.070 g/l/100g), saponification (192.915 mg KOH/g), K270 (0.155), and linoleic (C18:2) (32.02 %). Nevertheless, they had a medium mean value of total sterols (171.520 mg/100g), and FFA (0.640 %). Cluster III contained 2 samples RP, representing for 25 % of the total oils. This cluster is characterized a highest value mean of chlorophylls (1.095 mg kg\(^{-1}\)), carotenoid (0.505 mg kg\(^{-1}\)), and polyphenols (23.135 mg GAE/g oil extract). Total tocopherol (758.975 mg kg\(^{-1}\)), FFA (0.650%), iodine index (98.165 g/l/100g), saponification (192.09 mg KOH/g), linoleic (C18:2) (33.735%) compared to group I and group II. They also characterized by a medium value means of a K270 (0.170) and iodine index (98.165 g/l/100 g).

Figure 4 Dendrogram of the samples oils studied obtained by cluster analysis (Ward and Euclidean distance). CI: Cluster I; CII: Cluster II; C III: Cluster III.

CONCLUSION

The present study compares the oil content; fatty acid, sterols, tocopherols and polyphenols composition, as well as the quality indexes and the antioxidant activity of different Argan oils from two Moroccan regions (Essaouira and Agadir) according to the fruit’s shapes. When comparing the oils extracted from the four different Argan fruit shapes, the oval shape had the highest oil yield in Essaouira and Agadir, with regard to both regions, the differences existing between the fatty acid composition of each Argan oil extracted from the shapes of the same fruit were low in most cases. In addition, oval fruits from Essaouira showed the highest levels in total sterols. Interestingly, apiculate fruits from Agadir showed the highest amount in total tocopherols and total polyphenols, which may explain their high antioxidant power. Regarding the quality of oils, the Argan oil keeps its extra virgin label. Taken together, our results showed that each form of Argan fruit is characterized by a certain content of chemical composition in the two cities of Morocco. It is also suggested that Argan oil from Agadir can be of huge interest to the pharmaceutical, culinary and cosmetic industries.

Funding: This research received no external funding.

Acknowledgments: Our thanks go to GIE Targarine and their cooperatives for their support and assistance in this work.

Conflicts of interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

REFERENCES

Argan Oil Market Size, Share & Trends Analysis Report by Type (Conventional, Organic), by Form (Absolute, Concentrate, Blend), by Application, by Distribution Channel, by Region, and Segment Forecasts, 2020–2027. Report ID: 978-1-68038-671-4. 2020.

AOCS. Official Methods and Practices of the AOCS, AOCS, Editor. (1998).

Aremu, M.O., Olaofe, O., & Akintayo E.T. (2006). Chemical composition and physicochemical characteristics of two varieties of bambara groundnut (Vigna subterrenea) flours. Journal of Applied Sciences, 6(9), 1900-1903. http://doi.org/10.3923/jas.2006.1900.1903

Bennani, H., Drissi, A., Giton, F., Kheneung, L., Fiet, J., & Adlouni, A. (2007). Antiproliferative effect of polyphenols and sterols of virgin Argan oil on human prostate cancer cell lines. Cancer Detection and Prevention, 31, 64-69. https://doi.org/10.1016/j.cdp.2006.09.006.

Berka, S., Himrane, H., Koundi, K. M., Taguemun, D., & Aid, F. (2019). Morphological and germination capacity of Argania spinosa’s (L) Skeels of Algeria South-West population: variability of fruit and stone morphotypes. Forests Systems, 28, 012. https://doi.org/10.4314/ijbcs.v10i4.23

Charrouf, Z.; Guillaume, D. (2014). Argan oil, the 35 years-of-research product. European Journal of Lipid Science and Technology, 116, 1316–1321. https://doi.org/10.1002/ejlt.201400261

Charrouf, Z., & Guillaume, DJAFF. (2007). Phenols and polyphenols from Argania spinosa. American Journal of Food Technology, 2, 679-83.

Charrouf, Z., & Guillaume, D. (2008). Argan oil: Occurrence, composition and impact on human health. European Journal of Lipid Science and Technology, 110, 632-636. https://doi.org/10.1002/ejlt.200700220

Cherki, M., Derouiche, A., Drissi, A., El Messal, M., Bamou, Y., Idrissi-oudahiri, A., Khalil, A., & Adlouni, A. (2005). Consumption of Argan oil may have an antiatherogenic effect by improving paraoxonase activities and antioxidant status:
Intervention study in healthy men. Nutrition, Metabolism and Cardiovascular Diseases, 15, 352-360. https://doi.org/10.1016/j.numecd.2004.08.005

Drissi, A., Bennani, H., Giton, F., Charrouf, Z., Fiet, J., & Adlouni, A. (2006). Tocopherols and saponins derived from Argania spinosa exerts an antiproliferative effect on human breast cancer cell lines. Cancer Investigation, 24, 588-592. https://doi.org/10.1080/07357990600894815

El Abbassi, A., Khalid, N., Zbakh, H., & Ahmad, A. (2014). Physicochemical characteristics, nutritional properties, and health benefits of Argan oil: A review. Critical Reviews in Food Science and Nutrition, 54, 1401-1414. https://doi.org/10.1080/10408398.2011.638442

El Guenezze, C., El Mouadden, H., Harhar, H., Warad, I., Bellaouchou, A., Gbounouar, A., Zarrouk, A., & Tabyaoui, M. (2021). Optimization of Roasting Conditions on the Bioactive Compounds and their Antioxidant Power from Opuntia fuscus-Indica Seeds using Response Surface Methodology (RSM). Biotechnology Research in Applied Science, 1(3), 10510-10532. https://doi.org/10.33262/BRIACS1.3.1051010532

El Idrissi, Z. L., El Mouadden, M., Ghazali, N., Bouyaha, A., Guenezze, C. E., Alshahrani, M. M., Al Awadh, A. A., Goh, K. W., Ming, L. C., Harhar, H. & Tabyaoui, M. (2022). Effects of Extraction Methods on the Bioactivities and Nutritional Value of Virginia and Valencia-Type Peanut Oil. Molecules, 27(22), 7709. https://doi.org/10.3390/molecules27277709

El Mouadden, H., El Idrissi, Y., Belmahrouqi, W., Belhoussaine, O., El Guenezze, C., Bouayoun, T., Harhar, H. & Tabyaoui, M. (2020). Olive mill wastewater polyphenol-based extract as a vegetable oil shelf life extending additive. Journal of Food Processing and Preservation, 44(12), e41990. https://doi.org/10.1111/jfpp.141990

El Mouadden, H., El Idrissi, Y., El Guenezze, C., Belmahrouqi, W., El Yadini, A., Harhar, H., & Tabyaoui, M. (2020). Traditonal Mills’ Picholine Olive Oil Physicochemical Characterization and Chemical Profiling across Different Cities in Morocco. The Scientific World Journal, 2020. Article ID 1804723. https://doi.org/10.1155/2020/1804723

El Mouadden, H., El Idrissi, Y., El Yadini, A., Harhar, H., Tabyaoui, B., & Tabyaoui, M. (2019). Effect of filtration of olive mill wastewater on the phenolic composition and its influence on antioxidant activity. Pharmacologynline, 2, 161-176

El Mouadden, H., El Idrissi, Y., El Guenezze, C., El Idrissi, Z. L., Harhar, H., Assaggaf, H., Goh, K. W., Ming, L. C. Bouyaha, A. & Tabyaoui, M. (2022). Spatial Variation of Phytochemical and Antioxidant Activities of olive Mill Wastewater: A Chemometric Approach. Sustainability, 14(21), 14488. https://doi.org/10.3390/su142114488

El Qamzé, S., El Antari, A., & Hafidi, A. (2019). Effect of Maturity and Environmental Conditions on Chemical Composition of Olive Oils of Introduced Cultivars in Morocco. Journal of Food Quality, 2019, Article ID 1854539. https://doi.org/10.1155/2019/1854539

Eze, S.O. (2012) Physicochemical properties of oil from some selected underutilized oil seeds available for biodiesel preparation, African Journal of Biotechnology, 11(42) 10003-10007. http://dx.doi.org/10.5897/AJB11.1659

Farres, S., Scraté, L., Fethi, N., & Kadaoui, A. (2019). Argan oil authentication using visible/near infrared spectroscopy combined with chemometrics tools. Vibrational Spectroscopy, 102, 79-84. https://doi.org/10.1016/j.vibspec.2019.04.003

Gamero-Sandemetrio, E., Gómez-Pastor, R., Aranda, A., & Matañana, E. (2019). Vibrational spectroscopy and chemometric characterisation of beneficial Argan oil organ in application. https://doi.org/10.1002/cpap.20510

Ganesh, S., F. & Fathi, A. (2019). Determination of polyphenols, tocopherols, and antioxidant capacity in virgin Argan oil (Argania spinosa). Molecules, 25(18). 5408. https://doi.org/10.3390/molecules25184080

Matthäus, B., Guillaume, D., Gharyb, S., Haddad, A., Harhar, H. & Charrouf, Z. (2010). Effect of processing on the quality of edible Argan oil. Food Chemistry, 120, 426-432. https://doi.org/10.1016/j.foodchem.2009.10.023

Mouradian, M.S. 085. 090. (2003). "Argan Oils. Specifications". Service de Normalisation Industrielle Marocaine (SNIMA). Ministry of Industry, Commerce and Telecommunications.

Ouaiss, O., Aqil, Y., Belmahrouqi, W., & El Hajaji, S. (2020). Characterization of two Moroccan watermelon seeds oil varieties by three different extraction methods. OCL - Oilseeds and Fats, Crops and Lipids, 27, 13. https://doi.org/10.1051/col/2020010

Ourraich, I., Rada, M., Pérez-Camino, M. C., Benaisa, M., & Guinda, A. (2012). Detection of Argan oil adulterated with vegetable oils: new markers. Grasas y Aceites, 63, 355-364. https://doi.org/10.5989/eva.047212

Marfil, R., Giménez, R., Martínez, O., Bouzas, P. R., Rufián-Henares, J. A., Mesias, M., & Cabrera-Vique C. (2011). Determination of polyphenols, tocopherols, and antioxidant capacity in virgin Argan oil (Argania spinosa). Skellets. European Journal of Lipid Science and Technology, 113(7). 886-893. https://doi.org/10.1002/ejt.201000503

Samuel, C.B., Barine, K.K. D.; & Joy, E.E. (2017). Physicochemical properties and fatty acid profile of shea butter and fluted pumpkin seed oil, a suitable blend in bakery fat production. International Journal of Food Sciences and Nutrition, 63(3), 122-128. http://dx.doi.org/10.11164/jifns.20170603.12

Sevidnik, O., Amanpour, A., Tsfoli Sarhib, S., Kelebek, H., & Selli, S. (2019). Characterization of Key Odorants in Moroccan Argan Oil by Aroma Extract Dilution Analysis. European Journal of Lipid Science and Technology, 121, 1800437. https://doi.org/10.1002/ejlt.201800437

Zarrour, A., Martine, L., Grégoire, S., Nury, T., Meddeb, W., Camus, E., Badreddine, A., Durand, P., Namis, A., & Yammine, A. (2019). Profile of fatty acids, tocopherols, phytosterols and polyphenols in Mediterranean oils (Argan oils, olive oils, milk thistle seed oils and nigella seed oil) and evaluation of their antioxidiant and cytotoxicitive effects. Current Pharmaceutical Design, 25, 1791-1805. https://doi.org/10.2174/1381612825666190705192902

Khallouki, F., Eddouks, M., Mourad, A., Breuer, A., & Owen, R. W. (2017). Ethnobotanic, ethnopharmalogic aspects and new phytochemical insights into Moroccan Argan fruits. International Journal of Molecular Sciences, 18, 2277. https://doi.org/10.3390/ijms18112277