Toward Improving Coherence and Diversity of Slogan Generation

Yiping Jin, Akshay Bhatia, Dittaya Wanvarie, and Phu T. V. Le

1 Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10300
2 Knorex, 140 Robinson Road, #14-16 Crown @ Robinson, Singapore 068907

(Received 11 February 2021; revised 7 September 2021)

Abstract

Previous work in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ POS tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L F1 score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong LSTM and transformer seq2seq baselines.

1. Introduction

Advertisements are created based on the market opportunities and product functions (White 1972). Their purpose is to attract viewers’ attention and encourage them to perform the desired action, such as going to the store or clicking the online ad. Slogans are a key component in advertisements. Early studies in the fields of psychology and marketing revealed that successful slogans are concise (Lucas 1934) and creative (White 1972). Puns, metaphors, rhymes and proverbs are among the popular rhetorical devices employed in advertising headlines (Phillips and McQuarrie 2009; Mieder and Mieder 1977). However, as White (1972) noted, the creative process in advertising is “within strict parameters”. I.e., the slogan must not diverge too much from the product/service it is advertising in its pursuit of creativity.

Another essential factor to consider is ads fatigue (Abrams and Vec 2007). An ad’s effectiveness decreases over time after users see it repeatedly. It motivates advertisers to deliver highly personalised and contextualised ads (Vempati et al. 2020). While advertisers can easily provide a dozen alternative images and use different ad layouts to create new ads dynamically (Bruce et al. 2017), the ad headlines usually need to be manually composed. Figure 1 shows sample ads composed by professional ad creative designers, each having a different image and ad headline.

We use “slogan” and “ad headline” interchangeably. A slogan is defined by its property as “a short and memorable phrase used in advertising”. An ad headline is defined literally by its function.
Previous work in automatic slogan generation focused almost exclusively on modifying existing slogans by replacing part of the slogan with new keywords or phrases (Özbal et al. 2013; Tomašic et al. 2014; Gatti et al. 2015; Alnajjar and Toivonen 2020). This approach ensures that the generated slogans are well-formed and attractive by relying on skeletons extracted from existing slogans. E.g., the skeleton “The NN of Vintage” expresses that the advertised product is elegant. It can instantiate novel slogans like “The Phone of Vintage” or “The Car of Vintage”. However, the skeleton is selected based on the number of available slots during inference time and does not guarantee that it is coherent with the company or product. In this particular example, while some people appreciate vintage cars, the phrase “The Phone of Vintage” might have a negative connotation because it suggests the phone is outdated. Such subtlety cannot be captured in skeletons represented either as part-of-speech tag sequences or syntactic parses.

In this work, we focus on improving coherence and diversity of a slogan generation system. We define coherence in two dimensions. First, the generated slogans should be consistent with the advertisers’ online communication style and content. E.g., albeit being catchy, a pun is likely not an appropriate slogan for a personal injury law firm. To this end, we propose a sequence-to-sequence (seq2seq) transformer model to generate slogans from a brief company description instead of relying on random slogan skeletons.

The second aspect of coherence is that the generated slogans should not contain untruthful information, such as mistaking the company’s name or location. Therefore, we delexicalise the company name and mask entities in the input sequence to prevent the model from introducing unsupported information.

Generating diverse slogans is crucial to avoid ads fatigue and enable personalisation. We observe that the majority of the slogans in our dataset are plain noun phrases that are not very catchy. It motivates us to explicitly control the syntactic structure through conditional training, which improves both diversity and catchiness of the slogans.

We validate the effectiveness of the proposed method with both quantitative and qualitative evaluation. Our best model achieved a ROUGE-1/-2/-L F$_1$ score of 35.58/18.47/33.32. Besides, comprehensive evaluations also revealed that our proposed method generates more truthful, diverse, and catchy slogans than various baselines. The main contributions of this work are as follows:
• Applying a transformer-based encoder-decoder model to generate slogans from a short company description.

• Proposing simple and effective approaches to improve the slogan’s truthfulness, focusing on reducing entity mention hallucination.

• Proposing a novel technique to improve the slogan’s syntactic diversity through conditional training.

• Providing a benchmark dataset and a competitive baseline for future work to compare with.

We structure this paper as follows. We review related work on slogan generation, seq2seq models and aspects in generation in Section 2. In Section 3 we present the slogan dataset we constructed and conduct an in-depth data analysis. We describe our baseline model in Section 4 followed by our proposed methods to improve truthfulness and diversity in Section 5 and Section 6. We report the empirical evaluations in Section 7. Section 8 presents ethical considerations and Section 9 concludes the paper and points directions for future work.

2. Related Work
We review the literature in four related fields: (1) slogan generation, (2) sequence-to-sequence models, (3) truthfulness, and (4) diversity in language generation.

2.1 Slogan Generation
A slogan is a catchy, memorable, and concise message used in advertising. Traditionally, slogans are composed by human copywriters, and it requires in-depth domain knowledge and creativity. Previous work in automatic slogan generation mostly focused on manipulating existing slogans by injecting novel keywords or concepts while maintaining certain linguistic qualities. Özbal et al., (2013) proposed BRAINSUP, the first framework for creative sentence generation that allows users to force certain words to be present in the final sentence and to specify various emotion, domain or linguistic properties. BRAINSUP generates novel sentences based on morpho-syntactic patterns automatically mined from a corpus of dependency-parsed sentences. The patterns serve as general skeletons of well-formed sentences. Each pattern contains several empty slots to be filled in. During generation, the algorithm first searches for the most frequent syntactic patterns compatible with the user’s specification. It then fills in the slots using beam search and a scoring function that evaluates how well the user’s specification is satisfied in each candidate utterance.

Tomašic et al., (2014) utilised similar slogan skeletons as BRAINSUP capturing the POS tag and dependency type of each slot. Instead of letting the user specify the final slogan’s properties explicitly, their algorithm takes a textual description of a company or a product as the input and parses for keywords and main entities automatically. They also replaced beam search with genetic algorithm to ensure good coverage of the search space. The initial population is generated from random skeletons. Each generation is evaluated using a list of ten heuristic-based scoring functions before producing a new generation using crossovers and mutations. Specifically, the mutation is performed by replacing a random word with another random word having the same POS tag. Crossover chooses a random pair of words in two slogans and switches them. E.g. input: [“Just do it”, “Drink more milk”] ⇒ [“Just drink it”, “Do more milk”].

Gatti et al., (2015) proposed an approach to modify well-known expressions by injecting a novel concept from evolving news. They first extract the most salient keywords from the news and expand the keywords using WordNet and Freebase. When blending a keyword into well-known
expressions, they check the word2vec embedding similarity between each keyword and the phrase it shall replace to avoid generating nonsense output. Gatti et al. (2015) also used dependency statistics similar to BRAINSUP to impose lexical and syntactic constraints. The final output is ranked by the mean rank of semantic similarity and dependency scores, thus balancing the relatedness and grammaticality. In subsequent work, Gatti et al. (2017) applied a similar approach to modify song lyrics with characterizing words taken from daily news.

Iwama and Kano (2018) presented a Japanese slogan generator using a slogan database, case frames, and word vectors. The system achieved an impressive result in an ad slogan competition for human copywriters and was employed by one of the world’s largest advertising agencies. Unfortunately, their approach involves manually selecting the best slogans from ten times larger samples and they did not provide any detailed description of their approach.

Recently, Alnajjar and Toivonen (2020) proposed a slogan generation system based on generating nominal metaphors. The input to the system is a target concept (e.g., car), and an adjective describing the target concept (e.g., elegant). The system generates slogans involving a metaphor such as “The Car Of Stage”, suggesting that the car is as elegant as a stage performance. Their system extracts slogan skeletons from existing slogans. Given a target concept T and a property P, the system identifies candidate metaphorical vehicles v. For each skeleton s and the $\langle T, v \rangle$ pair, the system searches for potential slots that can be filled. After identifying plausible slots, the system synthesises candidate slogans optimised using genetic algorithms similar to Tomašić et al. (2014).

Munigala et al. (2018) is one of the pioneer works to use a language model (LM) to generate slogans instead of relying on slogan skeletons. Their system first identifies fashion-related keywords from the product specifications and expands them to creative phrases. They then synthesise persuasive descriptions from the keywords and phrases using a large domain-specific neural LM. Instead of letting the LM generate free-form text, the candidates at each time step are limited to extracted keywords, expanded in-domain noun phrases and verb phrases as well as common functional words. The LM minimises the overall perplexity with beam search. The generated sentence always begins with a verb to form an imperative and persuasive sentence. Munigala et al. (2018) demonstrated that their system produced better output than an end-to-end LSTM encoder-decoder model. However, the encoder-decoder was trained on a much smaller parallel corpus of title text-style tip pairs compared to the corpus they used to train the language model.

Misawa et al. (2020) applied a Gated Recurrent Unit (GRU) (Cho et al. 2014) encoder-decoder model to generate slogans from a description of a target item. They argued that good slogans should not be generic but distinctive towards the target item. To enhance distinctiveness, they used a reconstruction loss by reconstructing the corresponding description from a slogan. They also employed a copying mechanism (See et al. 2017) to handle out-of-vocabulary words occurring in the input sequence. Their proposed model achieved the best ROUGE-L score of 19.38, outperforming various neural encoder-decoder baselines.

Similarly, Hughes et al. (2019) applied encoder-decoder with copying mechanism (See et al. 2017) to generate search ad text from the landing page title and body text. They applied reinforcement learning (RL) to directly optimise for the click-through rate. Mishra et al. (2020) also employed the same encoder-decoder model of See et al. (2017) to ad text generation. However, their task is to rewrite a text with a low click-through rate to a text with a higher click-through rate (e.g., adding phrases like “limited time offer” or “brand new”).

Concurrent to our work, Kanungo et al. (2021) applied RL to a Transformer (Vaswani et al. 2017) using the ROUGE-L score as the reward. Their model generates ad headlines from multiple product titles in the same ad campaign. The generated headlines also need to generalise to multiple

b A metaphor has two parts: the tenor (target concept) and the vehicle. The vehicle is the object whose attributes are borrowed.

c The result was reported on a Japanese corpus. So it is not directly comparable to our work.
products instead of being specific to a single product. Their proposed method outperformed various LSTM and Transformer baselines based on overlap metrics and quality audits. Unfortunately, we could not compare with Kanungo et al. (2021) because they used a large private dataset consisting of 500,000 ad campaigns created on Amazon. Their model training is also time expensive (over 20 days on an Nvidia V100 GPU).

Our approach is most similar to Misawa et al. (2020) in that we also employ an encoder-decoder framework with a description as the input. However, we differ from their work in two principled ways. Firstly, we use a more modern Transformer architecture (Vaswani et al. 2017), which enjoys the benefit of extensive pre-training and outperforms recurrent neural networks in most language generation benchmarks. We do not encounter the problem of generating generic slogans and out-of-vocabulary words (due to subword tokenisation). Therefore, the model is greatly simplified and can be trained using a standard cross-entropy loss. Secondly, we propose simple yet effective approaches to improve the truthfulness and diversity of generated slogans.

2.2 Sequence-to-Sequence Models

Sutskever et al. (2014) presented a seminal sequence learning framework using multi-layer Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997). The framework encodes the input sequence to a vector of fixed dimensionality, then decodes the target sequence based on the vector. This framework enables learning sequence-to-sequence (seq2seq)\(^a\) tasks where the input and target sequence are of a different length. Sutskever et al. (2014) demonstrated that their simple framework achieved close to state-of-the-art performance in an English to French translation task.

The main limitation of Sutskever et al. (2014) is that the performance degrades drastically when the input sequence becomes longer. It is because of unavoidable information loss when compressing the whole input sequence to a fixed-dimension vector. Bahdanau et al. (2015) and Luong et al. (2015) overcame this limitation by introducing attention mechanism to LSTM encoder-decoder. The model stores a contextualised vector for each time step in the input sequence. During decoding, the decoder computes the attention weights dynamically to focus on different contextualised vectors. Attention mechanism overtook the previous state-of-the-art in English-French and English-German translation and yields much more robust performance for longer input sequences.

LSTM, or more generally recurrent neural networks, cannot be fully parallelised on modern GPU hardware because of an inherent temporal dependency. The hidden states need to be computed one step at a time. Vaswani et al. (2017) proposed a new architecture, the Transformer, which is based solely on multi-head self-attention and feed-forward layers. They also add positional encodings to the input embeddings to allow the model to use the sequence’s order. The model achieved a new state-of-the-art performance, albeit taking a much shorter time to train than LSTM with attention mechanism.

Devlin et al. (2019) argued that the standard Transformer (Vaswani et al. 2017) suffers from the limitation that they are unidirectional and every token can only attend to previous tokens in the self-attention layers. To this end, they introduced BERT, a pre-trained bidirectional transformer by using a masked language model (MLM) pre-training objective. MLM masks some random tokens with a [MASK] token and provides a bidirectional context for predicting the masked tokens. Besides, Devlin et al. (2019) used the next sentence prediction task as an additional pre-training objective.

Despite achieving state-of-the-art results on multiple language understanding tasks, BERT does not make predictions auto-regressively, reducing its effectiveness for generation tasks. Lewis et al. (2020) presented BART, a model combining a bidirectional encoder (similar to BERT) and an auto-regressive decoder. This combination allows BART to capture rich bidirectional contextual representation, and yield strong performance in language generation tasks. Besides MLM, Lewis

\(^a\)We use sequence-to-sequence and encoder-decoder interchangeably in this paper.
et al. (2020) introduced new pre-training objectives, including masking text spans, token deletion, sentence permutation, and document rotation. These tasks are particularly suitable for a seq2seq model like BART because there is no one-to-one correspondence between the input and target tokens.

Zhang et al. (2020a) employed an encoder-decoder transformer architecture similar to BART. They introduced a novel pre-training objective specifically designed for abstractive summarisation. Instead of masking single tokens (like BERT) or text spans (like BART), they mask whole sentences (referred to as “gap sentences”) and try to reconstruct these sentences from their context. Zhang et al. (2020a) demonstrated that the model performs best when using important sentences selected greedily based on the ROUGE-F1 score between the selected sentences and the remaining sentences. Their proposed model PEGASUS achieved state-of-the-art performance on all 12 summarisation tasks they evaluated. It also performed surprisingly well on a low-resource setting due to the relatedness of the pre-training task and abstractive summarisation.

While large-scale transformer-based language models demonstrate impressive text generation capabilities, users cannot easily control particular aspects of the generated text. Keskar et al. (2019) proposed CTRL, a conditional transformer language model conditioned on control codes that influence the style and content. Control codes indicate the domain of the data, such as Wikipedia, Amazon reviews and subreddits focusing on different topics. Keskar et al. (2019) use naturally occurring words as control codes and prepend them to the raw text prompt. Formally, given a sequence of the form $x = (x_1, ..., x_n)$ and a control code c, CTRL learns the conditional probability $p_\theta(x_i|x_{<i}, c)$. By changing or mixing control codes, CTRL can generate novel text with very different style and content.

In this work, we use BART model architecture due to its flexibility as a seq2seq model and competitive performance on language generation tasks. We were also inspired by CTRL and applied a similar idea to generate slogans conditioned on additional attributes.

2.3 Truthfulness in Language Generation

While advanced seq2seq models can generate realistic text resembling human-written ones, they are usually optimised using a token-level cross-entropy loss. Researchers observed that a low training loss or a high ROUGE score do not guarantee the generated text is truthful with the source text (Cao et al. 2018; Scialom et al. 2019). Following previous work, we define truthfulness as the generated text can be verified through the source text without any external knowledge.

We did not find any literature specifically addressing truthfulness in slogan generation. Most prior work investigated abstractive summarisation because 1) truthfulness is critical in the summarisation task, and 2) the abstractive nature encourages the model to pull information from different parts of the source document and fuse them. Therefore, abstractive models are more prone to hallucination compared to extractive models (Durmus et al. 2020). Like summarisation, slogan generation also requires the generated content to be truthful. A prospect may feel annoyed or even be harmed by false information in advertising messages.

Prior work focused mostly on devising new metrics to measure the truthfulness between the source and generated text. Textual entailment (aka. natural language inference) is closely related to truthfulness. If a generated sequence can be inferred from the source text, it is likely to be truthful. Researchers have used textual entailment to rerank the generated sequences (Falke et al. 2019; Maynez et al. 2020) or remove hallucination from the training dataset (Matsumaru et al. 2020). Pagnoni et al. (2021) recently conducted a comprehensive benchmark on a large number of truthfulness evaluation metrics and concluded that entailment-based approaches yield the highest correlation with human judgement.

Another direction is to extract and represent the fact explicitly using information extraction techniques. Goodrich et al. (2019) and Zhu et al. (2021) extracted relation tuples using
OpenIE (Angeli et al. 2015) while Zhang et al. (2020b) used a domain-specific information extraction system for radiology reports. The truthfulness is then measured by calculating the overlap between the information extracted from the source and generated text.

In addition, researchers also employed QA-based approaches to measure the truthfulness of summaries. Eyal et al. (2019) generated slot-filling questions from the source document and measured how many of these questions can be answered from the generated summary. Scialom et al. (2019) optimised towards a similar QA-based metric directly using reinforcement learning and demonstrated that it generated summaries with better relevance. Conversely, Durmus et al. (2020) and Wang et al. (2020) generated natural language questions from the system-output summary using a seq2seq question generation model and verified if the answers obtained from the source document agree with the answers from the summary.

Most recently, some work explored automatically correcting factual inconsistencies from the generated text. For example, Dong et al. (2020) proposed a model-agnostic post-processing model that either iteratively or auto-regressively replaces entities to ensure semantic consistency. Their approach predicts a text span in the source text to replace an inconsistent entity in the generated summary. Similarly, Chen et al. (2021) modelled factual correction as a classification task. Namely, they predict the most plausible entity in the source text to replace each entity in the generated text that does not occur in the source text.

Our work is most similar to Dong et al. (2020) and Chen et al. (2021). However, their methods require performing additional predictions on each entity in the generated text using BERT. It drastically increases the latency. We decide on a much simpler approach of replacing each entity in both the source and target text with a unique mask token before training the model, preventing it from generating hallucinated entities in the first place. We can then perform a trivial dictionary lookup to replace the mask tokens with their original surface form.

2.4 Diversity in Language Generation

Neural language models often surprisingly generate bland and repetitive output despite their impressive capability, a phenomenon referred to as neural text degeneration (Holtzman et al. 2019). Holtzman et al. (2019) pointed out that maximising the output sequence’s probability is “unnatural”. Instead, humans regularly use vocabulary in the low probability region, making the sentences less dull. While beam search and its variations (Reddy 1977; Li et al. 2016) improved over greedy encoding by considering multiple candidate sequences, they are still maximising the output probability by nature, and the candidates often differ very little from each other.

A common approach to improve diversity and quality of generation is to introduce randomness by sampling (Ackley et al. 1985). Instead of always choosing the most likely token(s) at each time step, the decoding algorithm samples from the probability distribution over the whole vocabulary. The shape of the distribution can be controlled using the temperature parameter. Setting the temperature to (0,1) shifts the probability mass towards the more likely tokens. Lowering the temperature improves the generation quality at the cost of decreasing diversity (Caccia et al. 2019).

More recently, top k-sampling (Fan et al. 2018) and nucleus sampling (Holtzman et al. 2019) were introduced to truncate the candidates before performing the sampling. Top k-sampling samples from a fixed most probable k candidate tokens while nucleus (or top p) sampling samples from the most probable tokens whose probability sum is at least p. Nucleus sampling can dynamically adjust the top-p vocabulary size. When the probability distribution is flat, the top-p vocabulary size is larger, and when the distribution is peaked, the top-p vocabulary size is smaller. Holtzman et al. (2019) demonstrated that nucleus sampling outperformed various decoding strategies, including top-k sampling. Besides, the algorithm can generate text that matches the human perplexity by tuning the threshold p.
Welleck et al. (2019) argued that degeneration is not only caused by the decoding algorithm but also due to the use of maximum likelihood training loss. Therefore, they introduced an additional unlikelihood training loss. Specifically, they penalise the model for generating words in previous context tokens and sequences containing repeating n-grams. The unlikelihood training enabled their model to achieve comparable performance as nucleus sampling using only greedy decoding.

Instead of relying on randomness, we generate syntactically diverse slogans with conditional training similar to CTRL (Keskar et al. 2019). Automatic and human evaluations confirmed that our method yields more diverse and interesting slogans than nucleus sampling.

3. Datasets

While large advertising agencies might have conducted hundreds of thousands of ad campaigns and have access to the historical ads with slogans (Kanungo et al. 2021), such a dataset is not available to the research community. Neither is it likely to be released in the future due to data privacy concerns.

On the other hand, online slogan databases such as Textart.ru and Slogans Hub contain at most hundreds to thousands of slogans, which are too few to form a training dataset, especially for a general slogan generator not limited to a particular domain. Besides, these databases do not contain company descriptions. Some even provide a list of slogans without specifying their corresponding company or product. They might be used to train a language model producing slogan-like utterance (Boigne 2020), but it will not be of much practical use because we do not have control over the generated slogan’s content.

We observe that many company websites use their company name plus their slogan as the HTML page title. Examples are “Skype | Communication tool for free calls and chat” and “Virgin Active Health Clubs - Live Happily Ever Active”. Besides, many companies also provide a brief description in the “description” field in the HTML <meta> tag. Therefore, our model’s input and output sequence can potentially be crawled from company websites.

We crawl the title and description field in the HTML <meta> tag using the Beautiful Soup library from the company URLs in the Kaggle 7+ Million Company Dataset. The dataset provides additional fields, but we utilise only the company name and URL in this work. The crawling took around 45 days to complete using a cloud instance with two vCPUs. Out of the 7M companies, we could crawl both the <meta> tag description and the page title for 1.4M companies. This dataset contains much noise due to the apparent reason that not all companies include their slogan in their HTML page title. We perform various cleaning/filtering steps based on various keywords, lexicographical and semantic rules. The procedure is detailed in Appendix A.

After all the cleaning and filtering steps, the total number of (description, slogan) pairs is 340k, at least two orders of magnitude larger than any publicly available slogan database. We reserve roughly 2% of the dataset for validation and test each. The remaining 96% is used for training (328k pairs). The validation set contains 5,412 pairs. For the test set, the first author of this paper manually curated the first 1,467 company slogans in the test set, resulting in 1,000 plausible slogans (68.2%). The most frequent cases he filtered out are unattractive “slogans” with a long list of products/services, such as “Managed IT Services, Network Security, Disaster Recovery”, followed by the cases where HTML titles containing alternative company names that failed to be delexicalised and some other noisy content such as address. We publish our validation and manually-curated test dataset for future comparisons.
We perform some data analysis on the training dataset to better understand the data. We first
tokenise the dataset with BART’s subword tokeniser. Figure 2 shows the distribution of the number
of tokens in slogans and descriptions. While the sequence length of the description is approxi-
mately normally distributed, the length of slogans is right-skewed. It is expected because slogans
are usually concise and contain few words. We choose a maximum sequence length of 80 for the
description and 20 for the slogan based on the distribution.

The training dataset covers companies from 149 unique industries (based on the “industry” field
in the Kaggle dataset). Figure 3 shows the distribution of the number of companies belonging
to each industry on a log-10 scale. As we can see, most industries contain between 10^2 (100)
and $10^{3.5}$ (3,162) companies. Table 1 shows the most frequent ten industries with the number of
companies and the percentage in the dataset. The large number of industries suggests that a model
trained on the dataset will have observed diverse input and likely generalise to unseen companies.

Furthermore, we investigate the following questions to understand the nature and the abstract-
ness of the task:

1. How many per cent of the slogans can be generated using a purely extractive approach, i.e.,
 the slogan is contained in the description?

2. How many per cent of the unigram words in the slogans occur in the description?

3. How many per cent of the descriptions contain the company name? (We removed the
 company name from all the slogans).
Table 1. : The most frequent ten industries in the training dataset.

Industry	# of Companies	%
Information Technology and Services	21,149	6.4%
Marketing and Advertising	15,691	4.8%
Construction	12,863	3.9%
Computer Software	11,367	3.5%
Real Estate	10,207	3.1%
Internet	10,025	3.1%
Health, Wellness and Fitness	9,513	2.9%
Financial Services	8,480	2.6%
Automotive	8,351	2.5%
Retail	8,217	2.5%

(4) How many per cent of the slogans and descriptions contain entities? What are the entity types?

(5) How many per cent of the entities in the slogans do not appear in the description.

(6) Is there any quantitative difference between the validation and manually-curated test set that makes either of them more challenging?

First, 11.2% of the slogans in both the validation and the test set are contained in the descriptions (we ignore the case when performing substring matching). It indicates that approximately 90% of the slogans require different degrees of abstraction. On average, 62.7% of the word unigrams in the validation set slogans are contained in their corresponding descriptions, while the percentage for the test set is 59.0%.

63.1% and 66.6% of the descriptions in the validation and test set contain the company name. It shows that companies tend to include their name in the description, and there is an opportunity for us to tap on this regularity.

We use Stanza (Qi et al. 2020) fine-grained named entity tagger with 18 entity types to tag all entities in the descriptions and slogans. Table 2 presents the percentage of text containing each type of entity. Besides ORGANIZATION, the most frequent entity types are GPE, DATE, CARDINAL, LOCATION, and PERSON. Many entities in the slogans do not appear in the corresponding description. It suggests that training a seq2seq model using the dataset will likely encourage entity hallucinations, which are commonly observed in abstractive summarisation. We show sample (description, slogan) pairs belonging to different cases in Table 3.

The only notable difference that might make the test dataset more challenging is that it contains a slightly higher percentage of unigram words not occurring in the description than the validation dataset (41% vs 37.3%). However, this difference is relatively small, and we believe the performance measured on the validation dataset is a reliable reference when a hand-curated dataset is not available.

\footnote{Details of the entity types can be found in the Ontonotes documentation: \url{https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf}}
Table 2. : The percentage of descriptions and slogans containing each type of entity. “Slog - Desc” indicates entities in the slogan that are not present in the corresponding description.

Entity Type	Valid Dataset	Test Dataset				
	Desc	Slogan	Slog - Desc	Desc	Slogan	Slog - Desc
ORGANIZATION	65.6	31.3	27.8	63.9	30.2	29.7
GPE	36.7	19.4	7.5	33.5	20.2	7.5
DATE	16.4	1.3	1.0	18.2	1.9	1.4
CARDINAL	10.2	1.4	0.8	10.4	1.1	0.6
LOCATION	4.6	1.1	0.6	4.6	1.1	0.7
PERSON	4.2	2.5	1.6	3.3	1.3	0.9
PRODUCT	4.2	0.2	0.1	4.2	0.4	0.4
NORP	2.6	0.9	0.4	3.8	0.6	0.1
FACILITY	2.5	0.5	0.4	2.9	0.1	0.1
TIME	2.0	0.02	-	1.4	-	-
WORK OF ART	1.5	0.4	0.3	1.7	0.6	0.5
PERCENT	1.3	0.09	0.09	1.9	-	-
ORDINAL	1.3	0.2	0.1	1.4	0.3	0.2
MONEY	0.7	0.2	0.1	0.8	-	-
QUANTITY	0.5	-	-	0.4	0.1	-
EVENT	0.5	0.2	0.2	0.3	0.8	0.8
LAW	0.3	-	-	0.3	-	-
LANGUAGE	0.3	0.09	0.02	0.2	0.1	-

4. Model

We apply a Transformer-based sequence-to-sequence (seq2seq) model to generate slogans. The model’s input is a short company description. We choose BART encoder-decoder model \(^*\) with a bidirectional encoder and an autoregressive (left-to-right) decoder. BART enjoys the benefit of capturing bidirectional context representation like BERT and is particularly strong in language generation tasks.

We use DistilBART \(^*\) with 6 layers of encoders and decoders each and 230M parameters. The model was a distilled version of BART\(_\text{LARGE}\) trained by the HuggingFace team, and its architecture is equivalent to BART\(_\text{BASE}\). We choose this relatively small model to balance generation quality and latency because our application requires generating multiple variations of slogans in real-time in a web-based user interface.

The seq2seq slogan generation from the corresponding description is analogous to abstractive summarisation. Therefore, we initialise the model’s weights from a fine-tuned summarisation model on the CNN/DailyMail dataset \(^*\) instead of from a pre-trained model using unsupervised learning objectives. We freeze up to the second last encoder layer (including the embedding layer) and fine-tune the last encoder layer and the decoder. We do not fine-tune the whole model for two reasons: 1) we do not want the model to unlearn its ability to perform abstractive summarisation 2) by freezing a large portion of the parameters, we require much less RAM and can train using a much larger batch size.

\(^*\)https://huggingface.co/sshleifer/distilbart-cnn-6-6
Table 3. Sample (description, slogan) pairs belonging to different cases from the validation set. We highlight the exact match words in bold.

Remark	Slogan	Description
Slogan in desc	Total Rewards Software	Market Total Rewards to Employees and Candidates with **Total Rewards Software**. We provide engaging Total Compensation Statements and Candidate Recruitment.
100% unigrams in desc	Algebra Problem Solver	Free math **problem solver** answers your **algebra** homework questions with step-by-step explanations.
57% unigrams in desc	Most Powerful Lead Generation Software for Marketers	**Powerful lead generation software** that converts abandoning visitors into subscribers with our dynamic marketing tools and Exit Intent technology.
33% unigrams in desc	Business Process Automation	We help companies become more efficient by automating processes, impact **business** outcomes with actionable insights & capitalize on growth with smart applications.
0% unigrams in desc	Build World-Class Recreation Programs	Easily deliver personalized activities that enrich the lives of residents in older adult communities. Save time and increase satisfaction.
Entities in desc	Digital Agency in Auckland$_{GPE}$ & Wellington$_{GPE}$, New Zealand	Catch Design is an independent digital agency in Auckland and Wellington, NZ. We solve business problems through the fusion of design thinking, creativity, innovation and technology.
Entities not in desc	Leading Corporate Advisory Services Provider in Singapore$_{GPE}$ & Hong Kong$_{GPE}$	Offers Compliance Advisory services for Public listed companies, Private companies, NGOs, Offshore companies, and Limited Liability Partnerships (LLPs).

5. Generating Truthful Slogans

As we highlighted in Section 2.3, generating slogans containing false or extraneous information is a severe problem for automatic slogan generation systems. In this section, we propose two approaches to improve the quality and truthfulness of generated slogans, namely delexicalising company names (Section 5.1) and masking named entities (Section 5.2).

5.1 Company Name Delexicalisation

Slogans should be concise and not contain extraneous information. Although we removed the company names from all slogans during preprocessing (described in Appendix A), we observe that a baseline seq2seq model often copies the company name from the description to the slogan. Table 4 shows two such example generated by the seq2seq model. Both examples seem to be purely extractive except for changing the case to title case. The second example seems especially repetitive and is not a plausible slogan. As shown in Section 3, over 60% of the descriptions contain the company name. Therefore, a method is necessary to tackle this problem.

We apply a simple treatment to prevent the model from generating slogans containing the company name - delexicalising company name mentions in the description and replacing their surface text with a generic mask token `<company>`. After the model generates a slogan, any mask token is substituted with the original surface text.\[
\]

\[\text{Since the `<company>` token never occurs in slogans in our dataset, we have not observed a single case where the model generates a sequence containing the `<company>` token. We include the substitution for generality.}\]
We hypothesise that delexicalisation helps the model in two ways. Firstly, it helps the model avoid generating the company name by masking it in the input sequence. Secondly, the mask token makes it easier for the model to focus on the surrounding context and pick salient information to generate slogans.

The company name is readily available in our system because it is required when any new advertiser registers for an account. However, we notice that companies often use their shortened names instead of their official/legal name. Examples are “Google LLC” almost exclusively referred to as “Google” and “Prudential Assurance Company Singapore (Pte) Limited” often referred to as “Prudential”. Therefore we replace the longest prefix word sequence of the company name occurring in the description with a <company> mask token. The process is illustrated in Algorithm 1 (we omit the details handling the case and punctuations in the company name for simplicity).

Besides the delexicalised text, the algorithm also returns the surface text of the delexicalised company name, which will replace the mask token during inference. It is also possible to use a more sophisticated delexicalisation approach, such as relying on a knowledge base or company directory such as Crunchbase to find alternative company names. However, the simple substitution algorithm suffices our use case. Table 5 shows an example description before and after delexicalisation.

Algorithm 1: Prefix matching for delexicalising company names.

Input: company_name, text, MASK_TOKEN

Result: delexicalised_text, surface_form

delelexicalised_text = text;
surface_form = company_name + " ";
while surface_form.contains(" ") do
 surface_form = surface_form.substring(0, surface_form.lastIndexOf(" "));
 if text.contains(surface_form) then
 delexicalised_text = text.replace(surface_form, MASK_TOKEN);
 break;
end

5.2 Entity Masking

Introducing irrelevant entities is a more challenging problem compared to including company names in the slogan. It has been referred to as entity hallucination in the abstractive summarisation literature (Nan et al. 2021). In a recent human study, Gabriel et al. (2020) showed that entity hallucination is the most common type of factual errors made by transformer encoder-decoder models.
Table 5. : An example description before and after performing delexicalisation.

Company:	Atlassian Corporation Plc
Description:	Millions of users globally rely on **Atlassian** products every day for improving software development, project management, collaboration, and code quality.
Surface Form:	Atlassian
Delexicalised Description:	Millions of users globally rely on <company> products every day for improving software development, project management, collaboration, and code quality.

We first use Stanza (Qi et al. 2020) to perform named entity tagging on both the descriptions and slogans. We limit to the following entity types because they are present in at least 1% of both the descriptions and slogans based on Table 2: **GPE**, **DATE**, **CARDINAL**, **LOCATION**, and **PERSON**. Additionally, we include **NORP** (nationalities/religious/political group) because a large percentage of entities of this type in the slogan can be found in the corresponding description. We observe that many words are falsely tagged as **ORGANIZATION**, which is likely because the slogans and descriptions often contain title-case or all-capital texts. Therefore, we exclude **ORGANIZATION** although it is the most common entity type.

Within each (description, slogan) pair, we maintain a counter for each entity type. We compare each new entity with all previous entities of the same entity type. If it is a substring of a previous entity or vice versa, we assign the new entity to the previous entity’s ID. Otherwise, we increment the counter and obtain a new ID. We replace each entity mention with a unique mask token \[\text{[entity_type]}\] if it is the first entity of its type or \[\text{[entity_type id]}\] otherwise. We store a reverse mapping and replace the mask tokens in the generated slogan with the original entity mention. We also apply simple rule-based post-processing, including completing the closing bracket (‘]’) if it is missing and removing illegal mask tokens and mask tokens not present in the mapping.

During experiments, we observe that when we use the original upper-cased entity type names, the seq2seq model is prone to generating illegal tokens such as \[\text{[gPE]}\], \[\text{[GPA]}\]. Therefore, we map the tag names to a lower-cased word consisting of a single token (as tokenised by the pre-trained tokeniser). The mapping we use is \{GPE:country, DATE:date, CARDINAL:number, LOCATION:location, PERSON:person, NORP:national\}. Table 6 shows an example of the entity masking process.

Table 6. : An example description and slogan before and after entity masking. Note that the word “Belgian” in the slogan is replaced by the same mask token as the same word in the description.

Description:	PR-Living **Belgium** family-owned furniture brand with production facilities in **Waregem** where it brings the best of **Belgian**-inspired Design Upholstery & Furniture pieces to the global consumers.
Slogan:	A **Belgian** furniture brand
Entities:	“Belgium”: GPE, “Waregem”: GPE, “Belgian”: NORP
Masked Description:	PR-Living [country] family-owned furniture brand with production facilities in [country1] where it brings the best of [national]-inspired Design Upholstery & Furniture pieces to the global consumers.
Masked Slogan:	A [national] furniture brand
Reverse Mapping:	[country]: “Belgium”, [country1]: “Waregem”, [national]: “Belgian”

\[\text{We also remove all the preceding stop words before the removed mask token. In most cases, they are prepositions or articles such as "from the [country]" or "in []".}\]
As shown in Table 2, a sizeable proportion of the entities in the slogans are not present in the description. We discard a (description, slogan) pair from the training dataset if any of the entities in the slogan cannot be found in the description. This procedure removes roughly 10% of the training data but encourages the model to generate entities present in the source description instead of fabricated entities. We do not apply filtering to the validation and test set so that the result is comparable with other models.

6. Generating Diverse Slogans With Syntactic Control

Generating diverse slogans is crucial to avoid ads fatigue and enable personalisation. However, we observe that given one input description, our model tends to generate slogans similar to each other, such as replacing some words or using a slightly different expression. Moreover, the outputs are often simple noun phrases that are not catchy.

To investigate the cause, we perform part-of-speech (POS) tagging on all the slogans in our training dataset. Table 7 shows the most frequent POS tag sequences among the slogans. Only one (#46) out of the top fifty POS tag sequences is not a noun phrase (VB PRPS NN, e.g., Boost Your Business). It motivates us to increase the generated slogans’ diversity using syntactic control.

POS Tag Sequence	Frequency	Example
NNP NNP NNP	12,892	Emergency Lighting Equipment
NNP NNP NNP NNP	5,982	Personal Injury Lawyers Melbourne
NNP NNP NNPS	4,217	Rugged Computing Solutions
JJ NN NN	3,109	Flexible Office Space
NNP NNP NN	2,789	Bluetooth Access Control
NNP NNP NNS	2,632	Manchester Law Firms
NNP NNP CC NNP NNP	2,190	Local Programmatic Advertising & DSP Platform
NNP NNP CC NNP NNP	2,157	Retro Candy & Soda Pop Store
NN NN NN	2,144	Footwear design consultancy
NNP NNP NNP NNP NNP	1,662	Commercial Construction Company New England

Inspired by CTRL (Keskar et al. 2019), we modify the generation from \(P(slogan|description) \) to \(P(slogan|description, ctrl) \) by conditioning on an additional syntactic control code. To keep the cardinality small, we use the coarse-grained POS tag of the first word in the slogan as the control code. Additionally, we merge adjectives and adverbs and merge all the POS tags that are not among the most frequent five tags. Table 8 shows the full list of control codes.

While we can use the fine-grained POS tags or even the tag sequences as the control code, they have a long-tail distribution, and many values have only a handful of examples, which are too few for the model to learn from. Munigala et al. (2018) applied a similar idea as ours to generate persuasive text starting with a verb. However, they apply rules to restrict a generic language model to start with a verb. We apply conditional training to learn the characteristics of slogans starting with words belonging to various POS tags.

*We refer readers to https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html for the description of each POS tag.

Corresponding to the first two characters of the POS tag, thus ignoring the difference between proper vs common noun, plural vs singular, different verb tenses and the degree of adjectives and adverbs.
We prepend the control code to the input sequence with a special `<s>` token separating the control code and the input sequence. We use the control code derived from the target sequence during training while we randomly sample control codes during inference to generate syntactically diverse slogans. Our method differs from Keskar et al. (2019) in two slight ways: 1) CTRL uses an autoregressive transformer similar to GPT-2 (Radford et al. 2019) while we use an encoder-decoder transformer with a bi-directional encoder. 2) The control codes were used during pre-training in CTRL while we prepend the control code only during fine-tuning for slogan generation.

7. Experiments

We conduct a comprehensive evaluation of our proposed method. In Section 7.1, we conduct a quantitative evaluation and compare our proposed methods with other rule-based and encoder-decoder baselines in terms of ROUGE -1/-2/-L F_1 scores. We report the performance of a larger model in Section 7.2. We specifically study the truthfulness and diversity of the generated slogans in Section 7.3 and Section 7.4. Finally, we conduct a fine-grained human evaluation in Section 7.5 to further validate the quality of the slogans generated by our model.

We use the DistilBART and BART\textsubscript{LARGE} implementation in the Hugging Face library (Wolf et al. 2019) with a training batch size of 64 for DistilBART and 32 for BART\textsubscript{LARGE}. We use a cosine decay learning rate with warm-up (He et al. 2019) and a maximum learning rate of $1e^{-4}$. The learning rate is chosen with Fastai’s learning rate finder (Howard and Gugger 2020). We train all BART models for three epochs. Based on our observation, the models converge within around 2-3 epochs. We use greedy decoding unless otherwise mentioned. We also add a repetition penalty $\theta = 1.2$ following Keskar et al. (2019).

7.1 Quantitative Evaluation

We leave the diversity evaluation to Section 7.4 because we have only a single reference slogan for each input description in our dataset, which will penalise systems generating diverse slogans. We compare our proposed method with the following five baselines:

- **first sentence**: predicting the first sentence from the description as the slogan, which is simple but surprisingly competitive for document summarization (Katragadda et al. 2009). We use the sentence splitter in the Spacy library\footnote{https://spacy.io/} to extract the first sentence.
• **first-k words**: predicting the first-\(k\) words from the description as the slogan. We choose \(k\) that yields the highest ROUGE-1 \(F_1\) score on the validation dataset. We add this baseline because the first sentence of the description is usually much longer than a typical slogan.

• **Skeleton-Based** ([Tomašić et al. 2014](#)): a skeleton-based slogan generation system using genetic algorithms and various heuristic-based scoring functions. We sample a random compatible slogan skeleton from the training dataset and realise the slogan with keywords extracted from the company description. We follow [Tomašić et al. (2014)](#)'s implementation closely. However, we omit the database of frequent grammatical relations and the bigram function derived from Corpus of Contemporary American English because the resources are not available.

• **Encoder-Decoder** ([Bahdanau et al. 2015](#)): a strong and versatile GRU encoder-decoder baseline. We use identical hyper-parameters as [Misawa et al. (2020)](#) and remove the reconstruction loss and copying mechanism to make the models directly comparable. Specifically, the model has a single hidden layer for both the bi-directional encoder and the auto-regressive decoder. We apply a dropout of 0.5 between layers. The embedding and hidden dimensions are 200 and 512 separately, and the vocabulary contains 30K most frequent words. The embedding matrix is randomly initialised and trained jointly with the model. We use Adam optimiser with a learning rate of 1e-3 and train for 10 epochs (The encoder-decoder models take more epochs to converge than the transformer models, likely because the models are randomly initialised).

• **Pointer-Generator** ([See et al. 2017](#)): encoder-decoder model with copying mechanism to handle unknown words. Equivalent to [Misawa et al. (2020)](#) with the reconstruction loss removed.

• [Misawa et al. (2020)](##): a GRU encoder-decoder model for slogan generation with additional reconstruction loss to generate distinct slogans and copying mechanism to handle unknown words.

Table 9 presents the ROUGE \(-1/-2/-L\) scores of various models on both the validation and the manually-curated test dataset.

Model	Valid Dataset	Test Dataset				
	R1	R2	RL	R1	R2	RL
First sentence	26.12	13.03	23.88	25.50	12.73	23.47
First-k words \((k = 11)\)	27.50	13.72	25.33	25.76	12.68	24.02
Skeleton-based	16.09	1.62	14.01	16.61	1.79	14.72
Encoder-Decoder	24.85	9.38	24.01	23.91	9.31	23.28
Pointer-Generator	26.42	10.15	25.63	26.24	10.67	25.65
Misawa et al. (2020)	24.14	9.19	23.37	26.01	9.60	25.39
DistilBART	36.74	18.87	33.97	34.95	17.38	32.47
DistilBART+delex	37.37	19.51	34.69	35.06	17.79	32.52
DistilBART+delex+ent	**37.76**	**19.69**	**35.17**	**35.58**	**18.47**	**33.32**
The first-\(k\) words baseline achieved a reasonable performance, showing a certain degree of overlap between slogans and descriptions. Figure 4 shows how the first-\(k\) words baseline’s ROUGE F\(1\) scores change by varying \(k\). It is obvious that not the larger \(k\), the better. The best ROUGE scores are achieved when \(k\) is in the range (9, 12). The first-\(k\) words baseline also achieved higher ROUGE scores than the first sentence baseline, although it may output an incomplete phrase due to the truncation.

The skeleton-based method had the worst performance among all baselines. While it often copies important keywords from the description, it is prone to generating ungrammatical or nonsensical output because it relies on POS sequence and dependency parse skeletons and ignores the context.

Comparing the three GRU encoder-decoder baselines, it is clear that the copying mechanism in Pointer-Generator improved the ROUGE scores consistently. However, the reconstruction loss introduced in Misawa et al. (2020) seems to reduce performance. We hypothesise that the slogan is much shorter than the input description. Therefore, reconstructing the description from the slogan may force the model to attend to unimportant input words. Overall, the Pointer-Generator baseline’s performance is on par with the first-\(k\) words baseline but pales when comparing with any transformer-based model.

Both delexicalisation and entity masking further improved DistilBART’s performance. The final model achieved a ROUGE -1/-2/-L score of 35.58/18.47/33.32 on the curated test set, outperforming the best GRU encoder-decoder model by almost 10% in ROUGE score. Table 10 provides a more intuitive overview of various models’ behaviour by showing the generated slogans from randomly sampled company descriptions.

We can observe that while the first-\(k\) words baseline sometimes has substantial word overlap with the original slogan, its style is often different from slogans. Pointer-Generator and DistilBART sometimes generate similar slogans. However, Pointer-Generator is more prone to generating repetitions, as in the third example. It also hallucinates much more. In the first example, the company is a Mexican restaurant. The slogan generated by Pointer-Generator is fluent but completely irrelevant. In the last example, it hallucinated the location of the school while DistilBART preserved the correct information.
Table 10. : Sample generated slogans by various systems. “Gold” is the original slogan of the company. The DistilBART model uses both delexicalisation and entity masking.

Gold:	Fast, Fresh & Tasty Mexican Food
First-k words:	We may not be the only burrito in town, but we've
Skeleton-based:	Bar to Your Burrito in Town
Pointer-Generator:	The World’s First Class Action Club
DistilBART:	The Best Burrito in Town

Gold:	A better UK energy supplier
First-k words:	Welcome to Powershop, a better gas and energy supplier. We offer
Skeleton-based:	Your Gas in Competitive Electricity, Energy Deals, Offer and Website
Pointer-Generator:	Gas and Electricity Supplier
DistilBART:	Gas and Energy Supplier

Gold:	Saigon Food Tours and City Tours Led by Women
First-k words:	Top-ranked Ho Chi Minh City food tours from the first company
Skeleton-based:	Food Company & Culture Tours Female
Pointer-Generator:	Food Tours & Food Tours
DistilBART:	Food Tours in Vietnam

Gold:	Top Engineering Colleges In Tamilnadu
First-k words:	top Engineering colleges in Tamil Nadu based on 2020 ranking. Get
Skeleton-based:	We Info Colleges!
Pointer-Generator:	Engineering College in Dehradun Uttarakhand
DistilBART:	Top Engineering Colleges in Tamil Nadu

7.2 Larger Model Results

Following Lewis et al. (2020) and Zhang et al. (2020), we report the performance of a larger model, BART\textsubscript{LARGE}. Compared to DistilBART, BART\textsubscript{LARGE} has both more layers (L: 6 → 12) and a larger hidden size (H: 768 → 1024). We follow the exact training procedure as DistilBART. Table 11 compares the performance of DistilBART and BART\textsubscript{LARGE}.

Table 11. : The ROUGE F\textsubscript{1} scores by scaling up the model size. Both models use delexicalisation and entity masking.

	Valid Dataset	Test Dataset						
	params	epoch time	R1	R2	RL	R1	R2	RL
DistilBART	230M	45 mins	37.76	19.69	35.17	35.58	18.47	33.32
BART\textsubscript{LARGE}	406M	86 mins	35.36	17.71	32.95	33.43	16.51	31.34

We were surprised to observe that BART\textsubscript{LARGE} underperformed the smaller DistilBART model by roughly 2% ROUGE score. During training, BART\textsubscript{LARGE} had a lower training loss than DistilBART but the validation loss plateaued to roughly the same value, suggesting that the large model might be more prone to overfitting the training data. We did not conduct extensive hyper-parameter tuning and used the same learning rate as DistilBART. Although we cannot conclude that DistilBART is better suited for this task, it seems that using a larger model does not always improve performance.

\footnote{https://huggingface.co/facebook/bart-large-cnn}
7.3 Truthfulness Evaluation

In this Section, we employ automatic truthfulness evaluation metrics to validate that the methods proposed in Section 5 indeed improved the truthfulness. As briefed in Section 2.3, there are mainly three categories of automatic truthfulness evaluation metrics, namely entailment, information extraction, and QA. We focus on entailment-based metrics because 1) they yield the highest correlation with human judgement based on a recent benchmark (Pagnoni et al. 2021), 2) the slogans are often very short and sometimes do not contain a predicate, making it impossible to automatically generate questions for a QA-based approach and extract (subject, verb, object) tuples for an information extraction-based approach.

The first model we use is an entailment classifier fine-tuned on the Multi-Genre NLI (MNLI) dataset (Williams et al. 2018) following Maynez et al. (2020). However, we use a fine-tuned RoBERTa\textsubscript{LARGE} checkpoint (Liu et al. 2019) instead of BERT\textsubscript{LARGE} (Devlin et al. 2019) since it achieved higher accuracy on the MNLI dataset (90.2 vs. 86.6). We calculate the entailment probability between the input description and the generated slogan to measure truthfulness.

The second model we use is a pre-trained FactCC (Kryscinski et al. 2020) classifier, which predicts whether a generated summary is consistent with the source document. It was trained on a large set of synthesised examples by adding noise into reference summaries using manually defined rules such as entity or pronoun swap. FactCC is the best-performing metric in Pagnoni et al. (2021)’s benchmark. It was also used in several subsequent works as the automatic truthfulness evaluation metric (Dong et al. 2020; Cao et al. 2020). We use the predicted probability for the category “consistent” to measure truthfulness.

Table 12 presents the mean entailment and FactCC scores for both the validation and the test dataset. Both metrics suggest that our proposed method yields more truthful slogans w.r.t the input descriptions than a DistilBART baseline with strong statistical significance.

![Table 12](https://huggingface.co/roberta-large-mnli)

7.4 Diversity Evaluation

In Section 6, we proposed a method to generate syntactically diverse slogans using control codes. First, we want to evaluate whether the control codes are effective in the generation. We calculate the ctrl accuracy, which measures how often the first word in the generated slogan agrees with the specified POS tag.

We apply each of the six control codes to each input in the test set and generate various slogans using greedy decoding. We then apply POS tagging on the generated slogans and extract the

https://huggingface.co/roberta-large-mnli
coarse-grained POS tag of the first word in the same way as in Section 6. We count it as successful if the coarse-grained POS tag matches the specified control code. Table 13 presents the ctrl accuracy for each of the control codes.

Table 13. The syntactic control accuracy, diversity and abstractiveness scores of various methods. The best score for each column is highlighted in bold. All models use neither delexicalisation nor entity masking to decouple the impact of different techniques.

Ctrl Accuracy	Diversity	Abstractive						
	NN	JJ	VB	DT	PR	OTHER		
W/O Upsampling	92.56	37.12	61.47	93.96	97.28	90.64	46.69	45.04
Upsampling	91.14	42.35	48.69	71.83	96.88	55.53	44.81	43.85
Nucleus Sampling	70.32	11.27	7.85	5.23	0.80	1.31	27.97	27.01

The control code distribution in our training dataset is very skewed, as shown in Table 8. The most frequent code (NN) contains more than 27 times more data than the least frequent code (OTHER). Therefore, we conducted another experiment by randomly upsampling examples with codes other than NN to 100k. We then trained for one epoch instead of three epochs to keep the total training steps roughly equal. We show the result in the second row of Table 13.

Besides, we compare with the nucleus sampling [Holtzman et al. 2019] baseline. We use top-$p = 0.95$ following [Holtzman et al. 2019] because it is scaled to match the human perplexity. We generate an equal number of slogans (six) as our method, and the result is presented in the third row of Table 13. We note that since nucleus sampling does not condition on the control code, the ctrl accuracies are not meant to be compared directly with our method but serve as a random baseline without conditional training.

We calculate the diversity as follows: for each set of generated slogans from the same input, we count the total number of tokens and unique tokens. We use Spacy’s word tokenisation instead of the subword tokenisation. Besides, we lowercase all words, so merely changing the case will not be counted towards diversity. The diversity score for each set is the total number of unique tokens divided by the total number of tokens. We average the diversity scores over the whole test set to produce the final diversity score. We note that a diversity score of close to 100% is unrealistic because important keywords and stop words will and should occur in various slogans. However, a diversity score of close to 1/6 (16.67%) indicates that the model generates almost identical slogans and has very little diversity.

The result shows that our method achieved close to perfect ctrl accuracy except for the control code JJ and VB. Although some control codes like PR and OTHER have much fewer examples, they also have fewer possible values and are easier to learn than adjectives and verbs (e.g., there are a limited number of pronouns). The strong syntactic control accuracy validated recent studies’ finding that pretrained language models capture linguistic features internally (Tenney et al. 2019; Rogers et al. 2020).

Upsampling seems to help with neither the ctrl accuracy nor the diversity. Compared with our method, nucleus sampling has much lower diversity. Although it performs sampling among the top-p vocabulary, it will almost always sample the same words when the distribution is peaked. Increasing the temperature to above 1.0 can potentially increase the diversity, but it will harm the generation quality and consistency (Holtzman et al. 2019).

In addition, we calculate the abstractiveness as the number of generated slogan tokens that are not present in the input description divided by the number of generated slogan tokens, averaging

1We use the default temperature of 1.0 and disable the top-k filter.
over all candidates and examples in the test set. We can see that as a by-product of optimising towards diversity, our model is also much more abstractive.

Finally, we invite an annotator to manually assess the quality of the generated slogans. We randomly sample 50 companies from the test set and obtain the six generated slogans from both our proposed method and nucleus sampling, thus obtaining 300 slogan pairs. We then ask the annotator to indicate which slogan is better (with the “can’t decide” option). We randomised the order of the slogans to eliminate positional bias. We present the annotation UI in Appendix C and the annotation result in Table 14.

Code	Better	Can’t Decide	Worse	p-value
NN	28	3	19	0.189
JJ	32	3	15	0.013
VB	36	0	14	1.86e-03
DT	41	1	8	2.43e-06
PR	37	0	13	6.89e-04
OTHER	39	0	11	7.50e-05
Overall	213	7	80	7.85e-15

All control codes except “NN” yielded significantly better slogans than the nucleus sampling baseline with \(p = 0.05 \). It is expected because “NN” is most common in the dataset, and using the control code “NN” will yield similar output as greedy decoding or nucleus sampling. While Munigala et al. (2018) claimed that sentences starting with a verb is more persuasive, sentences starting with other POS tags may also have desirable characteristics for slogans. E.g., Starting with an adjective makes it more vivid; starting with a determiner makes it more assertive; starting with a pronoun makes it more personal. Surprisingly, the annotator also rated slogans generated with the control code “OTHER” highly despite it groups many long-tail POS tags. The “OTHER” control code often generates slogans starting with a question word, an ordinal number (e.g., “#1”) or the preposition “for” (e.g., “For All Your Pain Relief Needs”).

To give the reader a better sense of the system’s behavior, we present samples the system generated with different control codes in Table 15. We can see that the first word in the slogan may not always match the POS tag specified by the control code. However, the generated slogans are diverse in both syntactic structure and content.

Besides generating more diverse and higher quality slogans, another principal advantage of our approach over nucleus sampling is that we have more control over the syntactic structure of the generated slogan instead of relying purely on randomness.

7.5 Human Evaluation

Based on the evaluation we conducted in previous sections, we include all the methods we introduced in Section 5 and 6 in our final model, namely, company name delexicalisation, entity masking and conditional training based on the POS tag of the first slogan token. We incorporate an additional control code “ENT” to cover the cases where a reference slogan starts with an entity mask token. Based on the result in Section 7.4, we randomly sample a control code from the set {JJ, VB, DT, PR, OTHER} during inference time. Finally, we replace the entity mask tokens with actual words.

\[\text{The annotator is an NLP researcher who is proficient in English and was not involved in the development of this work.}\]
Table 15: Sample generated slogans with different control codes (no cherry-picking).

| Desc: Helping eCommerce business growing their sales & revenues. Specialist in product feeds, shopping ads, conversion optimization, SEO and website personalization. |
| NN: eCommerce Business Growth & Revenue Optimization Experts |
| JJ: Ecommerce Marketing Agency in London & Essex |
| VB: Helping eCommerce Business Grow Their Sales & Revenues |
| DT: The eCommerce Experts |
| PR: Your eCommerce Partner for Growth & Success! |
| OTHER: How to Grow Your Business with eCommerce |

| Desc: We are experts in: Web / Mobile / Desktop apps Development. Innovative technologies. |
| NN: Web and Mobile App Development Company in India |
| JJ: Innovative Technologies. Web and Mobile Apps Development Company |
| VB: Leading Mobile App Development Company in India |
| DT: Achieving Digital Transformation in the Cloud with Mobile Apps Development |
| PR: We are experts in mobile apps development |
| OTHER: Where technology meets creativity |

in the slogan (if any) using the reverse dictionary induced from the input description to produce the final slogan as described in Section 5.2.

We randomly sampled 50 companies from the test set (different from the sample in Section 7.4) and obtained the predicted slogans from our model, along with four other baselines: first sentence, skeleton-based, Pointer-Generator, and DistilBART. Therefore, we have in total 250 slogans to evaluate. We invited two human annotators to score the slogans independently based on three fine-grained aspects: coherence, well-formedness, and catchiness. They assign scores on a scale of 1-3 (poor, acceptable, good) for each aspect.

We display the input description along with the slogan so that the annotators can assess whether the slogan is coherent with the description. We also randomise the slogans’ order to remove positional bias. The annotation guideline is shown in Appendix B and the annotation UI is presented in Appendix C.

We measure the inter-annotator agreement using Cohen’s kappa coefficient (Cohen 1960). The κ value for coherence, well-formedness, and catchiness are 0.493 (moderate), 0.595 (moderate), and 0.164 (slight) separately. The “catchiness” aspect has a low κ value because it is much more subjective. While the annotators generally agree on an unattractive slogan, their standards for catchiness tend to differ. It can be illustrated in Figure 5 where the agreement is high when the assigned score is 1 (poor). However, there are many examples where annotator 1 assigned score 1 (poor) and annotator 2 assigned score 2 (acceptable). There are only 19 slogans (7.6%) where the annotators assigned opposite labels. Therefore, we believe the low agreement is mainly due to individual differences rather than annotation noise.

We average the scores assigned by the two annotators and present the result in Table 16.

The first sentence baseline received low well-formedness and catchiness scores. As we mentioned earlier, the first sentence of the description is often much longer than a typical slogan, failing to satisfy the conciseness property of slogans. Lucas (1934) observed that longer slogans are also less memorable and attractive, which is validated by the low catchiness score.

The skeleton-based approach improved the catchiness over the first sentence baseline by a reasonable margin. However, it received the lowest well-formedness score due to the limitations of skeletons, causing it to generate nongrammatical or nonsensical slogans occasionally. Moreover, it has a much lower coherence score than either LSTM or Transformer seq2seq models, which
Table 16: Human evaluation on three aspects: coherence, well-formedness, and Catchiness. We average the scores assigned by the two annotators. The best score for each aspect is highlighted in bold (we exclude the first sentence baseline for the “coherent” aspect because it is “coherent” by definition). ** indicates statistical significance using a double-sided paired t-test with p-value=0.005 comparing with our proposed method.

System	Coherent	Well-formed	Catchy
First sentence	3.00**	1.49**	1.19**
Skeleton-based	2.31**	1.36**	1.41**
Pointer-Generator	2.63**	2.07**	1.51**
DistilBART	2.89	2.81	1.87**
Ours	2.91	2.79	2.22

is our primary motivation to apply the seq2seq framework instead of relying on random slogan skeletons.

The Pointer-Generator baseline outperformed the previous two baselines across all aspects. On the one hand, it demonstrates the capability of modern deep learning models. On the other hand, it surfaces the limitations of word overlap-based evaluation metrics. Based on the ROUGE scores reported in Section 7.1 alone, we could not conclude the superiority of the Pointer-Generator model over the first sentence or first-k words baseline.

The DistilBART model improved further over the Pointer-Generator baseline, especially in the well-formedness aspect. It is likely due to the extensive pre-training and its ability to generate grammatical and realistic text.

Our proposed method received similar coherence and well-formedness scores as DistilBART. However, it outperformed all other methods in catchiness by a large margin. Although the improvement of coherence is not statistically significant, it does not necessarily mean the delexicalisation and entity masking techniques are not helpful. As we discussed in Section 7.4 our method generates substantially more diverse slogans, and the generation is much more abstractive than the DistilBART baseline. Previous work highlighted the trade-off between abstractiveness and truthfulness (Durmus et al. 2020). By combining the approaches to improve truthfulness and diversity, our proposed method generates more catchy and diverse slogans without sacrificing truthfulness or well-formedness.

Figure 5: Confusion matrix of the catchiness scores assigned by the two annotators.
8. Ethical Considerations

All three annotators employed in this study are full-time researchers at Knorex. We explained to them the purpose of this study and obtained their consent. They conducted the annotation during working hours and are paid their regular wage.

Marketing automation is a strong trend in the digital advertising industry. AI-based copywriting is a challenging and crucial component in this process. We take generating counter-factual advertising messages seriously as it might damage the advertiser’s brand image and harm the prospects. The model proposed in this work generates better-quality and more truthful slogans than various baselines. However, we cannot yet conclude that the generated slogans are 100% truthful, just like most recently proposed language generation models. This work is being integrated into a commercial digital advertising platform\(^v\). In the initial version, advertisers are required to review and approve the slogans generated by the system. They can also make modifications as necessary before the ads go live.

9. Conclusion

In this work, we model slogan generation using a sequence-to-sequence transformer model with the company’s description as input. It ensures coherence between the generated slogan and the company’s marketing communication. In addition, we applied company name delexicalisation and entity masking to improve the generated slogans’ truthfulness. We also introduced a simple conditional training method to generate more diverse slogans. Our model achieved a ROUGE -1/-2/-L \(F_1 \) score of 35.58/18.47/33.32 on a manually-curated slogan dataset. Comprehensive evaluations demonstrated that our proposed method generates more truthful and diverse slogans. A Human evaluation further validated that the slogans generated by our system are significantly catchier than various baselines.

As ongoing work, we are exploring other controllable aspects, such as the style \([\text{Jin et al. 2020]}\) and the sentence parse \([\text{Sun et al. 2021]}\). Besides, we are also working on extending our method to generating longer texts \([\text{Hua et al. 2021]}\), which can be used as the body text in advertising.

Acknowledgement

Yiping is supported by the scholarship from “The 100\(^{th}\) Anniversary Chulalongkorn University Fund for Doctoral Scholarship” and also “The 90\(^{th}\) Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund)”. We would like to thank our colleagues Vishakha Kadam, Khang Nguyen and Hy Dang for conducting the manual evaluation on the slogans. We would like to thank the anonymous reviewers for their careful reading of the manuscript and constructive criticism.

References

Abrams, Z. and Vee, E. 2007. Personalized ad delivery when ads fatigue: An approximation algorithm. In Proceedings of the International Workshop on Web and Internet Economics, pp. 535–540, Bangalore, India. Springer.

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. 1985. A learning algorithm for boltzmann machines. Cognitive science, 9(1):147–169.

Alnajjar, K. and Toivonen, H. 2020. Computational generation of slogans. Natural Language Engineering, pp. 1–33.

Angeli, G., Premkumar, M. J. J., and Manning, C. D. 2015. Leveraging linguistic structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 344–354, Beijing, China.

\(^v\)knorex.com
Bahdanau, D., Cho, K., and Bengio, Y. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA.

Boigne, J. 2020. Building a slogan generator with gpt-2. https://jonathanbgn.com/gpt2/2020/01/20/slogan-generator.html Accessed: 2020-01-14.

Bruce, N. I., Murthi, B., and Rao, R. C. 2017. A dynamic model for digital advertising: The effects of creative format, message content, and targeting on engagement. Journal of marketing research, 54(2):202–218.

Caccia, M., Caccia, L., Fedus, W., Larochelle, H., Pineau, J., and Charlin, L. 2019. Language gains falling short. In Proceedings of the International Conference on Learning Representations, New Orleans, Louisiana.

Cao, M., Dong, Y., Wu, J., and Cheung, J. C. K. 2020. Factual error correction for abstractive summarization models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6251–6258.

Cao, Z., Wei, F., Li, W., and Li, S. 2018. Faithful to the original: Fact aware neural abstractive summarization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, New Orleans, Louisiana.

Chen, S., Zhang, F., Sone, K., and Roth, D. 2021. Improving faithfulness in abstractive summarization with contrast candidate generation and selection. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734, Doha, Qatar.

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1):37–46.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota.

Dong, Y., Wang, S., Gan, Z., Cheng, Y., Cheung, J. C. K., and Liu, J. 2020. Multi-fact correction in abstractive text summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9320–9331.

Durmus, E., He, H., and Diab, M. 2020. Feqa: A question answering evaluation framework for faithfulness assessment in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5055–5070.

Eyal, M., Baunel, T., and Elhadad, M. 2019. Question answering as an automatic evaluation metric for news article summarization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3938–3948, Minneapolis, Minnesota.

Falke, T., Ribeiro, L. F., Utama, P. A., Dagan, I., and Gurevych, I. 2019. Ranking generated summaries by correctness: An interesting but challenging application for natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2214–2220, Florence, Italy.

Fan, A., Lewis, M., and Dauphin, Y. 2018. Hierarchical neural story generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 889–898, Melbourne, Australia.

Gabriel, S., Celikyilmaz, A., Jha, R., Choi, Y., and Gao, J. 2020. Go figure! a meta evaluation of factuality in summarization. arXiv preprint arXiv:2010.12834.

Gatti, L., Özbal, G., Guerini, M., Stock, O., and Strapparava, C. 2015. Slogans are not forever: Adapting linguistic expressions to the news. In Proceedings of the 24th International Joint Conference on Artificial Intelligence, pp. 2452–2458, Buenos Aires, Argentina.

Gatti, L., Özbal, G., Stock, O., and Strapparava, C. 2017. To sing like a mockingbird. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pp. 298–304, Valencia, Spain.

Goodrich, B., Rao, V., Liu, P. J., and Saleh, M. 2019. Assessing the factual accuracy of generated text. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 166–175, Anchorage, Alaska.

He, T., Zhang, Z., Zhang, H., Xie, J., and Li, M. 2019. Bag of tricks for image classification with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 558–567, Long Beach, CA, USA.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. 2015. Teaching machines to read and comprehend. In Advances in neural information processing systems, pp. 1693–1701, Montreal, Canada.

Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. 2019. The curious case of neural text degeneration. In Proceedings of the International Conference on Learning Representations, New Orleans, Louisiana.

Howard, J. and Gugger, S. 2020. Fastai: A layered api for deep learning. Information, 11(2):108.

Hua, X., Sreevatsa, A., and Wang, L. 2021. Dyploc: Dynamic planning of content using mixed language models for text
generation. In Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021).

Hughes, J. W., Chang, K.-h., and Zhang, R. 2019. Generating better search engine text advertisements with deep reinforcement learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2269–2277, Anchorage, Alaska.

Iwama, K. and Kano, Y. 2018. Japanese advertising slogan generator using case frame and word vector. In Proceedings of the 11th International Conference on Natural Language Generation, pp. 197–198, Tilburg, The Netherlands.

Jin, D., Jin, Z., Zhou, J. T., Orii, L., and Szolovits, P. 2020. Hooks in the headline: Learning to generate headlines with controlled styles. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5082–5093.

Kanungo, Y. S., Negi, S., and Rajan, A. 2021. Ad headline generation using self-critical masked language model. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers, pp. 263–271.

Katragadda, R., Pingali, P., and Varma, V. 2009. Sentence position revisited: A robust light-weight update summarization ‘baseline’ algorithm. In Proceedings of the Third International Workshop on Cross Lingual Information Access: Addressing the Information Need of Multilingual Societies (CLAWS3), pp. 46–52, Boulder, Colorado.

Keskar, N. S., McCann, B., Varshney, L., Xiong, C., and Socher, R. 2019. CTRL - A Conditional Transformer Language Model for Controllable Generation. arXiv preprint arXiv:1909.05858.

Kryscinski, W., McCann, B., Xiong, C., and Socher, R. 2020. Evaluating the factual consistency of abstractive text summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9332–9346.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880.

Li, J., Monroe, W., and Jurafsky, D. 2016. A simple, fast diverse decoding algorithm for neural generation. arXiv preprint arXiv:1611.08562.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Lucas, D. B. 1934. The optimum length of advertising headline. Journal of Applied Psychology, 18(5):665.

Luong, M.-T., Pham, H., and Manning, C. D. 2015. Effective approaches to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421, Lisbon, Portugal.

Matsumaru, K., Takase, S., and Okazaki, N. 2020. Improving truthfulness of headline generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1335–1346.

Maynez, J., Narayan, S., Bohnet, B., and McDonald, R. 2020. On faithfulness and factuality in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1906–1919.

Mieder, B. and Mieder, W. 1977. Tradition and innovation: Proverbs in advertising. Journal of Popular Culture, 11(2):308.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, volume 26, pp. 3111–3119, Lake Tahoe, Nevada, USA.

Misawa, S., Miura, Y., Taniguchi, T., and Ohkuma, T. 2020. Distinctive slogan generation with reconstruction. In Proceedings of Workshop on Natural Language Processing in E-Commerce, pp. 87–97, Barcelona, Spain.

Mishra, S., Verma, M., Zhou, Y., Thadani, K., and Wang, W. 2020. Learning to create better ads: Generation and ranking approaches for ad creative refinement. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2653–2660.

Munigala, V., Mishra, A., Tamilselvam, S. G., Khare, S., Dasgupta, R., and Sankaran, A. 2018. Persuaide! an adaptive persuasive text generation system for fashion domain. In Companion Proceedings of the The Web Conference 2018, pp. 335–342, Lyon, France.

Nan, F., Nallapati, R., Wang, Z., Nogueira dos Santos, C., Zhu, H., Zhang, D., McKeown, K., and Xiang, B. 2021. Entity-level factual consistency of abstractive text summarization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 2727–2733. Association for Computational Linguistics.

Niu, X., Xu, W., and Carpuat, M. 2019. Bi-directional differentiable input reconstruction for low-resource neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 442–448, Minneapolis, Minnesota, USA.

Özbal, G., Pighin, D., and Strapparava, C. 2013. Brainsup: Brainstorming support for creative sentence generation. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1446–1455, Sofia, Bulgaria.
Pagnoni, A., Balachandran, V., and Tsvetkov, Y. 2021. Understanding factuality in abstractive summarization with frank: A benchmark for factuality metrics. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4812–4829.

Phillips, B. J. and McQuarrie, E. F. 2009. Impact of advertising metaphor on consumer belief: Delineating the contribution of comparison versus deviation factors. Journal of Advertising, 38(1):49–62.

Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. 2020. Stanza: A Python natural language processing toolkit for many human languages. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Reddy, R. 1977. Speech understanding systems: A summary of results of the five-year research effort.

Rogers, A., Kovaleva, O., and Rumshisky, A. 2020. A primer in bertology: What we know about how bert works. Transactions of the Association for Computational Linguistics, 8:842–866.

Scialom, T., Lambrier, S., Piwowarski, B., and Staiano, J. 2019. Answers unite! unsupervised metrics for reinforced summarization models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3237–3247, Hong Kong, China.

See, A., Liu, P. J., and Manning, C. D. 2017. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Vancouver, Canada.

Sun, J., Ma, X., and Peng, N. 2021. Aesop: Paraphrase generation with adaptive syntactic control. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Sutskever, I., Vinyals, O., and Le, Q. V. 2014. Sequence to sequence learning with neural networks. volume 27, pp. 3104–3112, Montreal, Quebec, Canada.

Tenney, I., Das, D., and Pavlick, E. 2019. Bert rediscovers the classical nlp pipeline. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4593–4601, Florence, Italy.

Tomašić, P., Znidaršić, M., and Papa, G. 2014. Implementation of a slogan generator. In Proceedings of 5th International Conference on Computational Creativity, volume 301, pp. 340–343, Ljubljana, Slovenia.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. 2017. Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008, Long Beach, CA, USA.

Vempati, S., Malayil, K. T., Sruthi, V., and Sandeep, R. 2020. Enabling hyper-personalisation: Automated ad creative generation and ranking for fashion e-commerce. In Fashion Recommender Systems, pp. 25–48. Springer.

Wang, A., Cho, K., and Lewis, M. 2020. Asking and answering questions to evaluate the factual consistency of summaries. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5008–5020.

Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K., and Weston, J. 2019. Neural text generation with unlikelihood training. In Proceedings of the International Conference on Learning Representations, New Orleans, Louisiana.

White, G. E. 1972. Creativity: The x factor in advertising theory. Journal of Advertising, 1(1):28–32.

Williams, A., Nangia, N., and Bowman, S. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., and others 2019. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv, pp. arXiv–1910.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. 2020a. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In Proceedings of the International Conference on Machine Learning, pp. 11328–11339, PMLR.

Zhang, Y., Merck, D., Tsai, E., Manning, C. D., and Langlotz, C. 2020b. Optimizing the factual correctness of a summary: A study of summarizing radiology reports. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5108–5120.

Zhu, C., Hinthorn, W., Xu, R., Zeng, Q., Zeng, M., Huang, X., and Jiang, M. 2021. Enhancing factual consistency of abstractive summarization. In Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics.
Appendix A. Details of Data Cleaning

We perform the following steps in sequence to obtain clean (description, slogan) pairs.

1. Delexicalise the company name in both the description and the HTML page title.
2. Remove all non-alphanumeric characters at the beginning and the end of the HTML page title.
3. Filter by blocked keywords/phrases. Sometimes the crawling is blocked by a firewall, and the returned title is “Page could not be loaded” or “Access to this page is denied”. We did a manual analysis of a large set of HTML page titles and came up with a list of 50 such blocked keywords/phrases.
4. Remove prefix or suffix phrases indicating the structure in the website, such as “Homepage - “, “| Welcome page”, “About us”.
5. Split the HTML page title with special characters. Select the longest chunk as the candidate slogan that either does not contain the company name or has the company name at the beginning (in which case we will strip off the company name and not affect the fluency).
6. Deduplicate the slogans and keep only the first occurring company if multiple companies have the same slogan.
7. Filter based on the length of the description and the slogan. The slogan must contain between 3 and 12 words while the description must contain at least 10 words.
8. Concatenate the description and the slogan and detect their language using an open-source library. We keep the data only if its detected language is English.
9. Filter based on lexicographical features, such as the total punctuations in the slogan must not exceed three, the longest word sequence without any punctuation must be at least three words. We come up with these rules based on an analysis of a large number of candidate slogans.
10. Filter based on named entity tags. We use Stanza to perform named entity recognition on the candidate slogans. Many candidates contain a long list of locations names. We discard a candidate if over 30% of its surface text consists of named entities with the tag "GPE".

Table 17 provides examples of the cleaning/filtering process.

Appendix B. Slogan Annotation Guideline for Human Evaluators

You will be shown five generated slogans for the same company in sequence at each time. They were generated using different models and rules. For each slogan, please rate on a scale of 1-3 (poor, acceptable, good) for each of the three aspects (coherent, well-formed, catchy). Please ensure you rate all the aspects before moving on to the next slogan. Please also ensure your rating standard is consistent both among the candidate slogans for the same company and across different companies.

Please note that the order of the slogans is randomly shuffled. So you should not use the order information to make a judgement.

The details and instructions are as follows:

Coherent

A slogan should be coherent with the company description. There are two criteria that it needs to satisfy to be coherent. Firstly, it needs to be relevant to the company. E.g., the following slogan is incoherent because there is no apparent link between the description and the generated slogan.

Slogan: The best company rated by customers
Description: Knorex is a provider of performance precision marketing solutions

Secondly, the slogan should not introduce unsupported information. E.g., if the description does not mention the company’s location, the slogan should not include a location. However, there are cases where the location can be inferred, although the exact location does not appear in the description. We provide some hypothetical examples and the ratings you should provide.

***We use one or more consecutive characters in the set {[|, <, >, −, /}.
*https://github.com/shuyo/language-detection
Table 17: Sample descriptions and slogans before and after the data cleaning. Note that “-” indicates the algorithm fails to extract a qualified slogan and the example will be removed.

Company	Desc	HTML Title	Extracted Slogan	Explanation
Knorex (https://www.knorex.com/)	Cross-channel marketing cloud platform augmented by Machine Learning. Single dashboard to automate and optimize all your campaigns across digital marketing funnels in one place.	Cross-Channel Marketing Automation Platform	Cross-Channel Marketing Automation Platform	Longest chunk after splitting; not filtered by any of the rules.
GoPro (https://gopro.com/en/us/)	Discover the world’s most versatile action cameras + accessories. Possibilities are endless with waterproof, live streaming, stabilizing features + more.	GoPro	World’s Most Versatile Cameras	Longest chunk after splitting; not filtered by any of the rules.
Adfuel Media Inc. (https://goadfuel.com/)	Adfuel is North America’s Digital Marketing agency providing Digital Marketing Services, Programmatic Advertising, Geo-Fencing, and Campaign Budgeting by using a universal advertising platform.	Digital Marketing Agency in Miami	Digital Marketing Agency in Ontario	Longest chunk after splitting; contains one named entity not exceeding 30% of the surface text.
BMW (https://www.bmw.com/en/index.html)	Dive into new worlds with BMW, get inspired, and experience the unknown, the unusual and some useful things, too.	BMW.com	The international BMW Website	The company name appears in the middle of the candidate slogan “The international BMW Website” (Rule 5).

Description: Knorex is a provider of performance precision marketing solutions based in California. Slogan 1: US-based Digital Marketing Company (3, because California infers the company is in the US). Slogan 2: Digital Marketing Company (3, the slogan does not have to cover all the information in the description). Slogan 3: Digital Marketing Company in Palo Alto (2, it may be true but we can’t verify based on the description alone). Slogan 4: Digital Marketing Company in China (1, it is false).

Please focus on verifying factual information (location, number, year, etc.) instead of subjective description. Expressions like “Best ...” or “Highest-rated ...” usually do not affect the coherence negatively.

Well-formed

A slogan should be well-formed, with appropriate specificity and length. It should also be grammatical and make sense. Examples that will receive poor scores in this aspect:

- Paragraph-like slogans (because it’s not concise and inappropriate to form a slogan).
- Very short slogans that are unclear what message they convey (e.g., “Electric Vehicle”).
- Slogans containing severe grammatical errors or do not make sense (e.g., slogans that look like a semi-random bag of words).
1 Annotation guideline

A good slogan should be:

- **catchy**: the slogan should ideally be interesting and appealing.
- **well-formed**: minor grammatical problem is acceptable, but not to the extent of making it difficult to understand.

Instruction:

- In the following UI, please select which slogan is better.
- We provide the "can't decide" option, please use it sparingly. If a slogan is better than another by a small margin, please indicate which is better instead of choosing "can't decide".

![Image of UI for pair-wise slogan ranking](https://github.com/agermanidis/pigeon)

In [5]:
```python
annot = annotate(
    zip(df['slogan_1'], df['slogan_2'], df['exp_id'], df['ctrl'])),
    display_fn=lambda doc: display(Markdown(show_content(doc))),
    options = [{"Slogan #1", "Slogan #2", "Can't Decide"},
    include_skip=False]
```

5 examples annotated, 295 examples left

Please select which slogan is better:
- Slogan #1: Commercial and Industrial LED Lighting
- Slogan #2: One Stop Shop for LED Lighting Solutions

Figure 6: User interface for pair-wise slogan ranking described in Section 7.4. One of the candidate slogans uses our proposed syntactic control code, while another candidate uses nucleus sampling. We randomise the order of the slogans to eliminate positional bias.

Catchy

A slogan should be catchy and memorable. Examples are using metaphor, humour, creativity or other rhetorical devices. So slogan A below is better than slogan B (for the company M&Ms).

Slogan A: Melts in Your Mouth, Not in Your Hands
Slogan B: Multi-Coloured Button-Shaped Chocolates

Lastly, please perform the labelling independently, especially do not discuss with the other annotator performing the same task. Thank you for your contribution!

Appendix C. Annotation Interface

We implement the human annotation interfaces using Jupyter notebook widgets implemented in Pigeon.

- **Figure 6** shows the UI for pair-wise ranking task conducted in Section 7.4 and Figure 7 shows the UI for fine-grained evaluation conducted in Section 7.5.

https://github.com/agermanidis/pigeon
1 Annotation guideline

Please rate all of the following aspects (one for each line) before moving on to the next slogan:

- **Coherent**: the slogan should be relevant to the description and shouldn't introduce unsupported information.
- **well-formed**: minor grammatical problem is acceptable, but not to the extent of making it difficult to understand.
- **catchy**: the slogan should ideally be interesting and appealing.

![User interface for fine-grained slogan evaluation described in Section 7.5. We randomise the order of the slogans to eliminate positional bias.](image-url)