Improved Pancreatic β-Cell Function in Type 2 Diabetic Patients After Lifestyle-Induced Weight Loss Is Related to Glucose-Dependent Insulinotropic Polypeptide

OBJECTIVE — Restoration of insulin secretion is critical for the treatment of type 2 diabetes. Exercise and diet can alter glucose-induced insulin responses, but whether this is due to changes in β-cell function per se is not clear. The mechanisms by which lifestyle intervention may modify insulin secretion in type 2 diabetes have also been examined but may involve the incretin axis.

RESEARCH DESIGN AND METHODS — Twenty-nine older, obese (aged 65 ± 1 years; BMI 33.6 ± 1.0 kg/m²) subjects, including individuals with newly diagnosed type 2 diabetes (obese-type 2 diabetic) and individuals with normal glucose tolerance (obese-NGT), underwent 3 months of nutritional counseling and exercise training. β-Cell function (oral glucose–induced insulin secretion corrected for insulin resistance assessed by hyperinsulinemic-euglycemic clamps) and the role of glucose-dependent insulinotropic polypeptide (GIP) were examined.

RESULTS — After exercise and diet-induced weight loss (−5.0 ± 0.7 kg), oral glucose–induced insulin secretion was increased in the obese-type 2 diabetic group and decreased in the obese-NGT group (both P < 0.05). When corrected for alterations in insulin resistance, the change in insulin secretion remained significant only in the obese-type 2 diabetic group (1.23 ± 0.26 vs. 2.04 ± 0.46 arbitrary units; P < 0.01). Changes in insulin secretion were directly related to the GIP responses to oral glucose (r = 0.64, P = 0.005), which were augmented in the obese-type 2 diabetic group and only moderately suppressed in the obese-NGT group.

CONCLUSIONS — After lifestyle-induced weight loss, improvements in oral glucose–induced insulin secretion in older, obese, nondiabetic subjects seem to be largely dependent on improved insulin sensitivity. However, in older obese diabetic patients, improved insulin secretion is a consequence of elevated β-cell function. We demonstrate for the first time that changes in insulin secretion after lifestyle intervention may be mediated via alterations in GIP secretion from intestinal K-cells.

Diet and exercise-based lifestyle interventions, such as the Diabetes Prevention Program, have been shown to successfully reduce the risk of developing diabetes (1). Insulin resistance is the major underlying defect driving hyperglycemia, the reversal of which is critical to reduce vascular complications and mortality (2). However, in addition to insulin resistance, progressive pancreatic β-cell dysfunction, marked by a decline in compensatory hyperinsulinenemia across the glucose tolerance continuum, ultimately results in type 2 diabetes (3).

Previous work has highlighted the beneficial effects of lifestyle interventions on insulin secretion and β-cell function in obesity (4–7). However, it is rather well established that large improvements in insulin resistance occur after exercise and/or caloric restriction in obese non-diabetic and diabetic humans (8–10). Therefore, apparent changes in glucose tolerance and insulin secretion may be due to alterations in insulin resistance that expose the pancreas to less glucose, rather than intrinsic improvements in β-cell function.

Evidence suggests that postprandial insulin secretion may be partially controlled by nutrient-responsive incretin peptides released by intestinal cells. We recently reported that weight loss–induced reductions in insulin secretion in obese men and women with impaired glucose tolerance, are related to changes in secretion of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) (11). Indeed, bariatric surgery restores insulin secretory capacity in patients with type 2 diabetes via alterations in incretin secretion, including GIP (12). Further, exenatide-based incretin-mimetic pharmaceutical therapy also restores insulin secretion (13). These recent findings have indicated that the intravenous methods used previously to study insulin secretion, methods that bypass the incretin-releasing gastrointestinal system, may not be appropriate to study in vivo mechanisms of lifestyle-induced change in β-cell function.

In obese, insulin-resistant individuals exhibiting basal and postprandial hyperinsulinenia, an improvement in β-cell function is regarded as a reduction of insulin hypersecretion. Conversely, in type 2 diabetes the compensatory postprandial hyperinsulinenia required to correct for the severe underlying insulin resistance is absent, and therefore an increase in insulin secretion would reflect an improvement in β-cell function. However, to
Weight loss, β-cell function, and GIP

Table 1—Subject characteristics of each of the age- and BMI-matched groups

Subject characteristics of each of the age- and BMI-matched groups	Obese-NGT	Obese-type 2 diabetic	ANOVA			
	Prestudy	Poststudy	Prestudy	Poststudy	Time	Time-group
Age (years)	63 ± 2	67 ± 2			<0.0001	0.90
Sex (male/female)	8/8	6/7			0.01	0.84
Weight (kg)	93.9 ± 3.2	88.8 ± 2.9	98.3 ± 4.6	93.4 ± 4.2	<0.0001	0.78
BMI (kg/m²)	32.1 ± 1.1	30.4 ± 1.2	35.5 ± 1.5	33.7 ± 1.3	<0.0001	0.24
Fat (%)	41.0 ± 1.6	39.2 ± 2.1	40.8 ± 2.0	38.5 ± 2.5	<0.0001	0.97
VAT (cm²)	187 ± 16	134 ± 15	202 ± 28	168 ± 27	0.007	0.40
V̇O₂max (l/min)	2.11 ± 0.12	2.35 ± 0.16	1.99 ± 0.15	2.25 ± 0.15	0.003	0.15
Leptin (ng/ml)	25.9 ± 4.8	19.9 ± 4.4	22.3 ± 4.7	18.5 ± 4.3	0.0006	0.24
TG (mg/dl)	194 ± 28	136 ± 19	181 ± 17	156 ± 19	0.08	0.008
Cholesterol (mg/dl)	190 ± 9	178 ± 8	192 ± 10	182 ± 9	0.03	0.04
A1C (%)	5.55 ± 0.09	5.51 ± 0.08	5.86 ± 0.29	5.16 ± 0.32	0.03	0.05
FPG (mg/dl)	97.9 ± 3.5	97.2 ± 3.0	129 ± 7*	116 ± 6	0.11	0.27
2-h OGTT (mg/dl)	124 ± 3	127 ± 2	225 ± 11*	192 ± 11	0.11	0.27
FPI (µU/ml)	16.0 ± 2.0	13.7 ± 2.3	26.5 ± 7.1	17.4 ± 1.5	0.01	0.13
AUC I (× 10³ µU/ml · 0.3 h)	12.9 ± 1.6	7.6 ± 1.6	10.1 ± 2.3	11.5 ± 1.9	<0.0001	0.03
GDR (mg/kg/min)	2.67 ± 0.26	3.91 ± 0.38	1.85 ± 0.37*	2.34 ± 0.40	0.05	0.05

Data are means ± SEM. *Indicates significant difference vs. obese-NGT, P < 0.05. AUC I, area under the insulin response curve to the OGTT; FPI, fasting plasma insulin; GDR, glucose disposal rate during the hyperinsulinemic-euglycemic clamp; TG, triglycerides; VAT, intra-abdominal visceral adipose tissue.

Diet counseling. Prestudy nutritional habits were assessed using 3-day diet records, and subjects underwent weekly counseling with a registered dietitian. Dietary habits were continuously assessed throughout the intervention. The intent of the counseling was to moderately reduce total caloric intake (~300 kcal/day) and to optimize the macronutrient composition. Nutritional analysis was performed using Nutritionist Pro (Axxya Systems, Stafford, TX).

Exercise training. Subjects also partook in fully supervised aerobic treadmill-walking exercise that was conducted for 1 h/day, 5 days/week. Initial sessions were completed at 60–65% of maximum heart rate; however, by week 4, intensity was increased and maintained at 80–85% maximum heart rate. Exercise intensity was calculated from data collected during maximal aerobic exercise tests conducted at biweekly intervals throughout the intervention (described below).

Prestudy/poststudy control period. Metabolic testing was conducted during a 3-day inpatient stay in the Clinical Research Unit. During this period, isocaloric (based on resting metabolic rate multiplied by 1.2) meals (55% carbohydrate, 30% fat, and 15% protein) were provided. Compliance with these meals was estimated by food weight back. Nonhabitual physical activity was also restricted during the prestudy inpatient period.

demonstrate an alteration in β-cell function per se, one must account for changes in the β-cell exposure to glucose by assessing changes in insulin sensitivity. To date, the potential of nonsurgical and nonpharmacological lifestyle interventions to preserve β-cell function and increase insulin secretion in type 2 diabetes have not been fully explored. In addition, there is a paucity of data on the effects of exercise on incretin-mediated insulin secretion. In this investigation, we examined the effects of diet and exercise-induced weight loss on insulin resistance and insulin secretion in older obese type 2 diabetic individuals, compared with an age- and BMI-matched obese control group exhibiting normal glucose tolerance (NGT) and compensatory hyperinsulinemia. We hypothesized that in type 2 diabetes, in addition to relief of the underlying insulin resistance, β-cell insulin secretory function would be elevated in line with elevations in GIP secretion.

RESEARCH DESIGN AND METHODS — Older obese men and women (n = 29; aged 65 ± 1 years; BMI 33.6 ± 1.0 kg/m²) (Table 1) were recruited from the local community to participate in our ongoing obesity and diabetes studies. All participants were screened with a medical history and physical examination, blood and urine chemistry analyses, an oral glucose tolerance test (OGTT), and a resting and exercise stress test 12-lead electrocardiogram. In-
Prestudy/poststudy metabolic measures. To determine body composition, weight and height were measured by standard techniques. Whole-body fat percentage was determined using dual-energy X-ray absorptiometry (iDXA; Lunar, Madison, WI). Computed tomography scanning (Picker PQ6000 scanner; Marconi/Picker, Highland Heights, OH) was used to measure cross-sectional visceral abdominal adiposity at the fourth lumbar vertebral body, as described previously (8).

Aerobic fitness. $V_{O_2\text{max}}$ (Jaeger Oxycon Pro; Viasys, Yorba Linda, CA) measured during exhaustive exercise was used as a marker of aerobic fitness. These measurements were repeated at biweekly intervals to adjust training intensity in relation to changes in aerobic fitness. These procedures have been fully described elsewhere (8).

Oral glucose–induced insulin secretion

A 3-h 75-g OGTT was administered at 8:00 A.M., after an overnight fast. Blood samples were obtained from an intravenous antecubital line at 30-min intervals. Incremental metabolite responses (area under the curve) during the OGTT were calculated using the trapezoidal rule. Oral glucose–induced insulin secretion (referred to throughout as ΔC-Pep/ΔG) was calculated as incremental plasma C-peptide (picomoles per liter) (4) during the first 30 min of the OGTT divided by incremental plasma glucose (millimoles per liter) during the first 30 min of the OGTT. This is a slight modification of a previous model presented by Abdul-Ghani et al. (14), based on the principle that changes in C-peptide more accurately reflect insulin secretion rates. In addition, early-phase GIP secretion was estimated as the incremental (area under the curve) plasma C-peptide response during the first 30 min of the OGTT (ΔGIP$_{0-30}$).

Insulin sensitivity

A 2-h hyperinsulinemic euglycemic (90 mg/dl) clamp was performed after an overnight fast, as described previously (15). In brief, a primed continuous 40 mU·m$^{-2}$·min$^{-1}$ infusion of insulin (Humulin R U-100; Eli Lilly, Indianapolis, IN) was administered via an antecubital intravenous line, while a variable rate glucose (20% w/v) infusion was simultaneously administered to titrate fluctuations in plasma glucose. Arterialized plasma samples were obtained every 5 min from a retrograde intravenous dorsal line in a hand warmed to \sim60°C. Alterations to the glucose infusion rate were calculated as described previously (15). Peripheral tissue insulin sensitivity was estimated as the mean space-corrected glucose disposal rate over the last 30 min of the clamp.

Beta-cell function

Because of the hyperbolic relationship between insulin secretion and sensitivity across the glucose tolerance continuum (3), the magnitude of the insulin response to oral glucose is influenced by the underlying state of insulin resistance. Thus, to estimate beta-cell function, we corrected our measurements of insulin secretion (ΔC-Pep/ΔG) for the prevailing insulin resistance (IR) to derive an insulin secretion-to-insulin resistance index (ΔC-Pep/ΔG × IR) equivalent to the disposition index of Gastaldelli et al. (16). Insulin resistance was calculated as the inverse of the hyperbolic insulinemic-euglycemic clamp. In our subjects, we confirmed that baseline insulin resistance was indeed related to insulin secretion ($r = 0.78, P < 0.001$). In addition, hepatic insulin extraction was estimated as the incremental (area under the curve) plasma C-peptide response during the first 30 min of the OGTT divided by the incremental plasma insulin response during the first 30 min of the OGTT (17).

Analytical chemistry

Plasma glucose was measured using a glucose oxidase assay (YSI 2300 STAT Plus; YSI, Yellow Springs, OH). Plasma insulin and leptin concentrations were determined by radioimmunoassay (Millipore, Billerica, MA). Plasma triglycerides and total cholesterol were analyzed on an automated platform (Roche Modular Diagnostics, Indianapolis, IN). Total plasma GIP ($n = 10$ patients with NGT; $n = 8$ patients with type 2 diabetes) and C-peptide were assayed using an ELISA (Linco Research, St. Charles, MO). A1C was measured using nonporous ion-exchange high-pressure liquid chromatography (G7 HPLC analyzer; Tosoh Bioscience, San Francisco, CA).

Statistics

Statistical analyses were performed using Staview (SAS Institute, Cary, NC), and all data are expressed as means ± SEM. To examine differences in prestudy variables between groups, one-way ANOVA was used to compare means. Between-group (obese-NGT vs. obese-type 2 diabetic) changes for all variables were analyzed using two-way repeated-measures ANOVA. Bonferroni post hoc tests were applied to significant group × time interactions to identify specific statistical differences between means. The addition of sex as a covariate did not reveal any group × sex × time interactions. Potential relationships between variables were analyzed using linear regression models. Statistical significance was accepted when $P < 0.05$.

RESULTS — Twenty-nine older obese adults were successfully screened into this study: $n = 16$ obese-NGT (8 men and 8 women) and $n = 13$ obese-type 2 diabetic (6 men and 7 women) individuals (Table 1). Attendance at exercise training sessions was $96.9 ± 6.0%$.

Body composition and aerobic fitness

Both obese-NGT and obese-type 2 diabetic groups demonstrated significant weight loss and reductions in whole body and visceral fat ($P < 0.05$) (Table 1). $V_{O_2\text{max}}$ also improved ($P < 0.05$) (Table 1), demonstrating excellent compliance and response to the exercise training program. No group differences were observed in body composition or aerobic fitness.

Blood chemistry

All subjects exhibited significant reductions in plasma leptin, triglycerides, and cholesterol after the intervention ($P < 0.05$) (Table 1). A1C showed a nonsignificant fall in the obese-type 2 diabetic group.

Dietary intake

Compared with subjects’ prestudy diet records, during the intervention total caloric intake was significantly reduced ($-342.9 ± 90.3$ kcal/day; $P < 0.05$) as was fat intake ($-4.7 ± 1.2$ kcal; $P < 0.05$). No differences were noted in dietary habits between groups.

Insulin action and beta-cell function

Participants’ fasting plasma glucose (FPG) and 2-h plasma glucose during the OGTT (2-h OGTT) are shown in Table 1. At baseline, the obese-type 2 diabetic group exhibited fasting and postprandial hyperglycemia compared with the obese-NGT group ($P < 0.05$). After the intervention, there were significant decreases in FPG and 2-h OGTT in the obese-type 2 dia-
Weight loss, β-cell function, and GIP

Figure 1—Oral glucose–induced insulin secretion and β-cell function. Older obese men and women participated in a 3-month caloric restriction and exercise training–induced weight loss intervention. Participants were stratified by oral glucose tolerance: obese-NGT and obese-type 2 diabetic groups. Plasma glucose (A) and C-peptide (B) responses to OGTT were determined. After the intervention, glucose responses were reduced in the obese-type 2 diabetic group; C-peptide responses were increased in the obese-type 2 diabetic group, whereas they were reduced in the obese-NGT group. Changes in oral glucose–induced insulin secretion (ΔC-Pep/ΔG) (C) and insulin secretion corrected for the underlying insulin resistance (β-cell function) (D) were also assessed before and after the study. Insulin secretion was significantly increased in the obese-type 2 diabetic group and decreased in the obese-NGT group, whereas β-cell function significantly increased in the obese-type 2 diabetes group only, showing no change in the obese-NGT group. #Pre-study differences between groups (P < 0.05). *Significant prestudy vs. poststudy differences (P < 0.05). □ mean prestudy data; ■ mean poststudy data; errors bars represent S.E.M. #Significant prestudy vs. poststudy differences (P < 0.05).

β-cell function

Figure 2A illustrates the changes in plasma GIP secretory responses to OGTT (ΔGIP0–30). Baseline ΔGIP0–30 was not different between the obese-type 2 diabetic and obese-NGT groups (P > 0.05). After the intervention, ΔGIP0–30 increased in the obese-type 2 diabetic group (P < 0.05) and was nonsignificantly reduced in the obese-NGT group (P = 0.07). Further analysis demonstrated that ΔGIP0–30 was not related to changes in body weight or composition in these subjects (all P = 0.05), whereas a significant relationship was identified between the changes in ΔGIP0–30 and the changes in insulin secretion (r = 0.64, P = 0.005) (Fig. 2B).

CONCLUSIONS — After 3 months of diet- and exercise-induced weight loss, oral glucose–induced insulin secretion was increased in older obese type 2 diabetic individuals. In older obese individuals with NGT, the compensatory postprandial hyperinsulinemia was suppressed after the intervention. These changes were found to be directly related to the lifestyle-induced changes in oral glucose–induced GIP responses. When insulin secretion was corrected for the decrement in the underlying insulin resistance, it became apparent that the improvement in insulin secretion in obese individuals with NGT was driven by reduced insulin resistance. Yet, in the obese type 2 diabetic individuals, the improvement in insulin secretion appears to be a result of increased β-cell function. For the first time, using a physiological, incretin-related measure of insulin secretion corrected for the underlying rates of insulin-stimulated glucose disposal, we have demonstrated that nonsurgical and nonpharmacological weight loss can promote the restoration of insulin secretion in older obese individuals with type 2 diabetes via a mechanism related to increments in GIP secretion from intestinal K-cells.

Caloric restriction studies have previously demonstrated the potential to preserve β-cell function in diabetic individuals (4,17–19). Bogardus et al. (20) additionally found elevated insulin responses to OGTT after caloric restriction and exercise-induced weight loss, and, more recently, Dela et al. (21) and Slentz et al. (4) provided strong evidence of exercise training–induced increases in β-cell function in response to intravenous glucose in type 2 diabetic and/or obese patients. However, the nature of intravenous techniques used in several previous studies has not allowed for physiological mechanistic insight into incretin-mediated changes in insulin secretion. The assessment of insulin secretory re-
Here we show that in subjects exhibiting insulin resistance yet normal glucose tolerance, weight loss can dramatically reverse the state of compensatory hyperinsulinemia. Although our findings do not demonstrate any alterations in \(\beta \)-cell function per se in such individuals, it is interesting to note that the potential progression toward impaired glucose tolerance that may occur if this group were left untreated has probably been reversed. At the other end of the glucose tolerance continuum, we demonstrate potential for exercise- and diet-induced weight loss to augment insulin secretion in \(\beta \) cell function, in addition to elevated rates of insulin-stimulated glucose disposal and reduced fasting and postprandial hyperglycemia. The restoration of insulin secretion in the diabetic state is crucial for achieving optimal glycemic control, without which uncontrolled hyperglycemia would advance vascular inflammation and oxidative stress, ultimately leading to microvascular endothelial dysfunction and macrovascular disease (3).

The dichotomy of “improved insulin secretion” in diabetic versus nondiabetic individuals is highlighted by this current study: reversal of inadequate postprandial insulinemia in diabetic individuals versus reversal of compensatory hyperinsulinemia in nondiabetic individuals. Exposure of the \(\beta \)-cell to chronic hyperglycemia leads to functional impairment or glucotoxicity (22). Thus, relief of extreme hyperglycemia and therefore toxicity in our diabetic population may explain the augmentation of postprandial insulin secretion. However, our diabetic subjects also demonstrate an increase in GIP secretion after the intervention. The mechanisms behind these changes are not understood, but our correlation analyses negate the effects of changes in body composition; however, it has been demonstrated that chronic hyperglycemia can downregulate pancreatic GIP receptor expression (23) and also increase GIP glycosylation, thus rendering the peptide dysfunctional with respect to insulinogenic capacity (24). This process may translate to the chronic hyperglycemic state in diabetes, where glucotoxicity is systemic and may therefore have the potential to impair GIP functional capacity or indeed intestinal K-cell secretion. Although caution must be used when correlative interpretations are made with low numbers of subjects, our finding that weight loss–induced changes in GIP are related to changes in insulin secretion warrants further attention. Future researchers should also examine more thoroughly the incretin axis to include the insulinogenic protein, GLP-1.

It is also interesting to note that after 3 months of lifestyle intervention neither hyperglycemia nor insulin secretion is normalized. Perhaps alternative treatment modalities are sensible. In recent years, surgical techniques and exenatide compounds have emerged (13) and received attention for their potential to initiate insulin secretion in severely obese diabetic patients. Recent data show that Roux-en-Y gastric bypass can increase pancreatic \(\beta \)-cell insulin secretory capacity via alteration of incretin signaling and can normalize hyperglycemia in up to

Figure 2—Changes in plasma GIP secretion. A: Changes in total plasma GIP secretory responses to OGTT (\(\Delta GIP_{0-30} \)) (obese-NGT group \(n = 10 \); obese-type 2 diabetic (T2DM) group \(n = 8 \)) were assessed before and after the 3-month weight loss intervention. \(\Box \), mean data before the intervention; \(\blacksquare \), mean data after weight loss; error bars represent S.E.M. \(\Delta GIP_{0-30} \) was significantly increased in the obese-type 2 diabetic group. B: Linear regression analyses revealed a significant correlation between the changes in plasma GIP responses to oral glucose and oral glucose-induced insulin secretion (\(r = 0.64, P = 0.005 \)). \(\blacksquare \), obese-NGT group; \(\triangle \), obese-type 2 diabetic group. *Significantly increased in obese-T2DM compared to obese-NGT (\(P < 0.05 \)).
and classification of diabetes mellitus. Diabetes Care 2009;32(Suppl. 1):S62–S67
3. DeFronzo RA. Lilly Lecture 1987: The tri-

83% of diabetic patients (12,25). Thus, the relative impact of lifestyle intervention on β-cell function may seem small. How-

4. Slentz CA, Tanner CJ, Bateman LA, Durheim MT, Hulfinn KM, Hoormardt JA, Kraus WE. Effects of exercise training in-

5. Bloem CJ, Chang AM. Short-term exercise improves β-cell function and insulin re-

6. Kahn SE, Larson VG, Beard JC, Cain KC, Fellingham GW, Schwartz RS, Veth RC, Stratton JR, Cerqueira MD, Abras IB. Ef-

7. Utschneider KM, Carr DB, Barnness SM, Kahn SE, Schwartz RS. Diet-induced weight loss is associated with an improvement in β-cell function in older men. J Clin Endo-

8. O’Leary VB, Marchetti CM, Krishnan RK, Sietzer BP, Gonzalez F, Kirwan JP. Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced viss-

9. Toledo FG, Menshikova EV, Ritov VB, Dela F, von Linstow ME, Mikines KJ, Kirwan JP. The effect of exercise on insulin action, glucose tol-

10. Bruce CR, Krietkos AD, Cooney GJ, Haw-

11. Kelly KR, Brooks LM, Solomon TP, Kashyap SR, O’Leary VB, Kirwan JP. The glucose-dependent insulinotropic poly-

12. Kashyap SR, Daud S, Kelly KR, Win H, Gestaldt EA, Kirwan JP, Brethauer S, Schauer PS. Acute effects of gastric bypass vs. gastric restriction on pancreatic β-cell function and insulinotropic hormones in patients with type 2 diabetes. Int J Obes (Lond) 2010;34:462–471

13. Bumick MC, Diamant M, Cornérd A, Elia-

14. Abdul-Ghani MA, Williams K, DeFronzo

15. DeFronzo RA, Tobin JD, Andres R. Glu-

16. Gastaldelli A, Ferramini E, Miyazaki Y, Matsuda M, DeFronzo RA. β-Cell dys-

17. Henry RR, Brechtle G, Grivier K. Secretion and hepatic extraction of insulin after weight loss in obese noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1988;66:979–986

18. Kelley DE, Wing R, Buonocore C, Sturis J, Polonsky K, Fizsimmons M. Relative ef-

19. Gumbiner B, Polonsky KS, Belz WF, Grivier K, Wallace P, Brechtle G, Henry RR. Effects of weight loss and reduced hyperglycemia on the kinetics of insulin secret-

20. Bogardus C, Ravussin E, Robins DC, Wolfe RR, Horton ES, Sims EA. Effects of physical training and diet therapy on carbohy-

21. Dela F, von Linstow ME, Mikines KJ, Galbo H. Physical training may enhance β-cell function in type 2 diabetes. Am J Physiol Endocrinol Metab 2004;287: E1024–E1031

22. Rossetti L, Shulman GI, Zawalich W, De-

23. Xu G, Kaneto H, Laybutt DR, Duvvur-Kali

24. Mooney MH, Abdel-Wahab YH, Morgan LM, O’Harte FP, Platt PR. Detection of glycated gastric inhibitory polypeptide within the intestines of diabetic obese (ob/ob) mice. Endocrinol 2000;161:167–171

25. Schauer PR, Burgan A, Ikarmeddin S, Co-

26. Mooney MH, Abdel-Wahab YH, Morgan LM, O’Harte FP, Platt PR. Detection of glycated gastric inhibitory polypeptide within the intestines of diabetic obese (ob/ob) mice. Endocrinol 2001;161:167–171

27. Schauer PR, Burgan A, Ikarmeddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Bannister-Mitchel E, Rao KH, Kuller L, Kelly D. Effect of laparo-

28. Mooney MH, Abdel-Wahab YH, Morgan LM, O’Harte FP, Platt PR. Detection of glycated gastric inhibitory polypeptide within the intestines of diabetic obese (ob/ob) mice. Endocrinol 2001;161:167–171

29. Schauer PR, Burgan A, Ikarmeddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Bannister-Mitchel E, Rao KH, Kuller L, Kelly D. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003;238;467–

30. Schauer PR, Burgan A, Ikarmeddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Bannister-Mitchel E, Rao KH, Kuller L, Kelly D. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003;238:467–

31. Schauer PR, Burgan A, Ikarmeddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Bannister-Mitchel E, Rao KH, Kuller L, Kelly D. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003;238:467–484; discussion 484–485