Can Tunnel Transistors Scale Below 10nm?

Hesameddin Ilatikhameneh, Gerhard Klimeck and Rajib Rahman

Abstract—The main promise of tunnel FETs (TFETs) is to enable supply voltage \(V_{DD} \) scaling in conjunction with dimension scaling of transistors to reduce power consumption. However, reducing \(V_{DD} \) and channel length \(L_{ch} \) typically deteriorates the ON- and OFF-state performance of TFETs, respectively. Accordingly, there is not yet any report of a high performance TFET with both low \(V_{DD} \) (~0.2V) and small \(L_{ch} \) (~6nm). In this work, it is shown that scaling TFETs in general requires scaling down the bandgap \(E_g \) and scaling up the effective mass \(m^* \) for high performance. Quantitatively, a channel material with an optimized bandgap \(E_g \sim 1.7eV \) and an engineered effective mass \((m^* \sim 40\sqrt{2\hbar^2m_0}) \) makes both \(V_{DD} \) and \(L_{ch} \) scaling feasible with the scaling rule of \(L_{ch}/V_{DD} = 30 \text{ nm/V} \) for \(L_{ch} \) from 15nm to 6nm and corresponding \(V_{DD} \) from 0.5V to 0.2V.

Index Terms—TFETs, nanowire, scaling, sub-10nm, direct tunneling, NEGF.

I. INTRODUCTION

Although tunnel FETs (TFETs) were originally proposed for low power applications [1]–[3], the low ON-current \(I_{ON} \) challenge in TFETs has concealed their scaling problem [4]–[6]. The low \(I_{ON} \) challenge can be solved by increasing the electric field at the tunnel junction; e.g. by using dielectric engineering [7], atomistically thin channels [8]–[11], or internal polarization [12]. However, the scaling challenge is more tricky since the tunneling currents \(I_{ON} \) and \(I_{OFF} \) depend on the same device parameters. Hence an attempt to decrease \(I_{OFF} \) would reduce \(I_{ON} \) and vice versa. In contrast, \(I_{ON} \) and \(I_{OFF} \) in MOSFETs are more independent of each other and a channel material with a large bandgap (or optimized effective mass) can be used for sub-12nm channels to suppress the direct source-to-drain tunneling [13], [14].

Fig. 1a shows the device structure of an InAs nanowire (NW) TFET with a diameter of 3.4nm. The transfer characteristics of the device simulated by the NEMO5 tool [25]–[27] are shown in Fig. 1b with \(I_{OFF} \) fixed at 1nA/µm. In the simulations, we scale \(V_{DD} \) down with the channel length \(L_{ch} \). The results indicate that the InAs NW-TFET exhibits a promising performance with long channel lengths (i.e. \(L_{ch} > 9 \text{ nm} \)), however it completely fails to switch from ON- to OFF-state for the case of \(L_{ch}=6\text{ nm} \) and \(V_{DD}=0.2V \) (i.e. \(I_{ON}/I_{OFF} \approx 10 \ll 10^5 \)).

Roughly, the transmission in the ON-state \((T_{ON}) \) and OFF-state \((T_{OFF}) \) of TFETs depends on [13], [16]:

\[
\log(T_{ON}) \propto \Lambda \sqrt{m^*E_g} \tag{1}
\]

\[
\log(T_{OFF}) \propto L_{ch} \sqrt{m^*E_g} \tag{2}
\]

where \(\Lambda \) and \(L_{ch} \) are the tunneling distances in the ON- and OFF-state (Fig. 1b) respectively. \(m^* \) and \(E_g \) are the reduced effective mass and the bandgap of the channel material.

The scaling of the channel below 10nm brings \(L_{ch} \) close to \(\Lambda \) which reduces \(I_{ON}/I_{OFF} \) significantly. One apparent solution can be a heterostructure channel where the term \(m^*E_g \) is different in (1) and (2) due to different materials used in those regions [12], [18]. However, it has been shown that the presence of band discontinuity and interface states in heterostructures can deteriorate the OFF-state performance of TFETs [19], [20]. Hence, in this work the homojunction TFETs have been considered as a more practical steep sub-threshold swing (SS) device.

On top of the length scaling problem which increases \(I_{OFF} \) significantly, the voltage scaling reduces \(I_{ON} \). The maximum tunneling window in TFETs approximately equals \(qV_{DD} \). Thus a short channel TFET with a small \(V_{DD} \) is expected to have a small \(I_{ON}/I_{OFF} \).

In this work, it is shown that by using a channel material with optimized \(m^* \) and \(E_g \), it is still feasible to obtain an

This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

The authors are with the Department of Electrical and Computer Engineering, Purdue University, USA, e-mail: hesam.ilati2@gmail.com.
acceptable I_{ON}/I_{OFF} for ultra-scaled TFETs (i.e. $I_{ON}/I_{OFF} > 10^5$ for $L_{ch}=6$nm and $V_{DD}=0.2$V). The solution to the scaling problem of TFET is to *scale down* E_g of channel material to the smallest possible value to achieve a high I_{ON}. Of course E_g cannot be smaller than qV_{DD}, otherwise the channel cannot cover and block the tunneling energy window in the OFF-state. On the other hand, m^* should *scale up* with scaling down the dimensions to decrease I_{OFF}. Fig. 1 shows that the performance of 6nm long gate-all-around TFET can be improved more than 4 orders of magnitude by *scaling down* E_g and *scaling up* m^*. The favorable design space for m^* and E_g is discussed in Sec. IV.

II. SIMULATION DETAILS

The self-consistent 3D Poisson-NEGF (Non-Equilibrium Green’s Function) method is used in the NEMO5 software for the simulation of InAs TFETs [25]–[27]. The InAs channel material is described by a 10 band nearest neighbor tight-binding model [28]. To find the impact of m^* and E_g on the performance of TFETs, a model is needed where m^* and E_g can be set as free input parameters, in contrast to the atomistic approach where m^* and E_g are the output of the simulation through material composition and geometry induced confinement effects. To reduce the number of free parameters, it is assumed that the electron and hole effective masses are equal ($m^*_e=m^*_h=m^*$). Recently, an analytical model was developed which produces results in excellent agreement with NEGF simulations [21]. To show the validity of this analytical model for ultra-scaled TFETs, the simulation results of scaled InAs TFETs with the scaling rule of $L_{ch}/V_{DD} = 30$ nm/V obtained from the analytical model are benchmarked against the NEGF results first. Fig. 2 compares the results of analytical model and NEGF simulations. Notice that in Fig. 2 the OFF-state is not fixed unlike Fig. 1. The accuracy and speed of the analytical model and tuneability of m^* and E_g makes this model an ideal tool for optimizing the TFET design.

III. SIMULATION RESULTS

To analyze different TFET designs, the tunneling transmission path at the top of the tunneling window ($E = \mu_S$) is indicated as a function of source-channel tunneling window (ΔE) in Fig. 3a. Knowledge of the tunneling transmission probability as a function of ΔE (i.e. $T(\Delta E)$) provides information about the transfer characteristics [8]. Fig. 3b shows an example of $T(\Delta E)$ with the corresponding TFET operational regimes (e.g. ON- and OFF-states, and n- and p-branches). Notice that $\Delta E \approx 0$ is the ON-OFF transition point. For a small drain-source voltage, the I-V can be calculated by integrating the $T(\Delta E)$ in the tunneling energy window (energies between μ_S and μ_P). The tunneling transmission shows how far the TFET is from its ideal performance (i.e. $T = 0$ and $T = 1$ at OFF- and ON-state, respectively). Accordingly, I_{ON}, I_{OFF}, and SS can be estimated from the maximum and minimum values of $T(\Delta E)$ and its slope at subthreshold region. The impact of L_{ch} scaling on the transmission profile of InAs NW-TFET is shown in Fig. 3c. Reducing the channel length increases T_{OFF} significantly while T_{ON} remains intact which was expected from equations (1) and (2).

Fig. 3c shows the effect of bandgap on $T(\Delta E)$; Obviously, a larger bandgap decreases both T_{OFF} and T_{ON}. Notice
that changing E_g does not improve the subthreshold slope of $T(\Delta E)$ (black lines in Fig. 3d). Increasing E_g decreases T_{OFF} more than T_{ON} since the prefactor of $\sqrt{m^*E_g}$ is larger for T_{OFF} (note that $L_{ch} > \Lambda$ in equations (1) and (2)). On the other hand, to reach this lower T_{OFF} a larger gate voltage change is needed for larger band gaps (i.e. $\Delta E_{OFF} \approx \frac{-E_g}{2}$). Thus, there is no noticeable improvement in SS with larger E_g. On the other hand, increasing m^* improves SS as shown in Fig. 3e. Since a larger m^* does not require a larger gate voltage change, contrary to a larger E_g. Fig. 3 compares TFETs with a constant $\sqrt{m^*E_g}$ but different m^*/E_g ratios. Notice that not only SS improves with increasing m^*/E_g ratio, but also T_{ON}. The reason for improved ON-state performance is that reducing E_g decreases the depletion width at the source-channel interface and Λ decreases in equation (1) \[15\].

IV. CHANNEL MATERIAL WITH OPTIMIZED PROPERTIES

Fig. 4a shows the I_{ON}/I_{OFF} ratio of NW-TFETs with $L_{ch}=6nm$ and $V_{DD}=0.2V$ and a channel material with different m^* and E_g. To suppress the p-branch of TFETs, the drain doping level is chosen to be much smaller than source doping level ($N_S = 20N_D = 10^{20}cm^{-3}$) and a gate leakage of $1nA/\mu m$ is assumed ($I_{OFF} \geq 1nA/\mu m$) \[29\]. The maximum I_{ON}/I_{OFF} ratio is obtained with an E_g of about $1.2qV_{DD}$.

Moreover, with increasing E_g, the optimum m^*_opt reduces and for $E_g \geq 1.5qV_{DD}$ the product $m^*_optE_g^{opt}$ (circle symbols) saturates (dashed line). Fig. 4 shows that TFETs with E_g between $1.1qV_{DD}$ and $1.5qV_{DD}$ have acceptable I_{ON}/I_{OFF} ratios according to ITRS requirements ($I_{ON}/I_{OFF} > 10^5$).

Fig. 3 illustrates the favorable design space for m^* as a function of V_{DD} for TFETs with the scaling rule of $L_{ch}/V_{DD} = 30nm/V$. The shaded area in Fig. 3 shows higher and lower bounds on m^* and E_g of the channel material for a high performance ultra-scaled NW-TFET. Fig. 3 shows the transfer characteristics of NW-TFETs with optimized E_g and m^* from equations (3) and (4). I_{ON}/I_{OFF} ratio of larger than 10^5 and SS below $15mV/\text{decade}$ are obtained for all the cases including the 6nm long channel.

V. CONCLUSION

In summary, the scaling of TFETs pushes the semiconductor industry to look for channel materials with higher m^*, similar to ultra-scaled MOSFETs \[13\]. However, in TFETs channel material should have both m^* and E_g optimized. More accurately, the scaling of high performance NW-TFETs below 10nm requires:

1. A channel material with scaled down band gap
 \[E_g^{Best} \sim 1.2qV_{DD}[eV]\]

2. A channel material with scaled up effective mass
 \[m^*_{opt} \sim 40V_{DD}^2[m_0^{-1}]\]

3. Higher doping level in the source (N_S) than drain (N_D).
 \[N_S \gg N_D\]

4. A channel material with low dielectric constant (ϵ_{ch}) and a high-k oxide.
 \[\epsilon_{ox} \gg \epsilon_{ch}\]

Fig. 4: a) I_{ON}/I_{OFF} ratio for a NW-TFET with $L_{ch}=6nm$ and $V_{DD}=0.2V$ for different E_g and their optimized values ($I_{ON}/I_{OFF})^{opt}$ (circle symbols). b) ($I_{ON}/I_{OFF})^{opt}$ as a function of E_g for $V_{DD}=0.2V$ and 0.3V.

Fig. 5: a) The optimum effective mass as a function of V_{DD} for TFETs with the scaling rule of $L_{ch}/V_{DD} = 30nm/V$ for L_{ch} from 15nm to 6nm. b) I_{OFF}/V_{G} of NW-TFETs with optimized E_g and m^* from (3) and (4).

Best channel material: Optimum m^* and E_g
REFERENCES

[1] J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, “Band-to-band tunneling in carbon nanotube field-effect transistors,” Phys. Rev. Lett., vol. 93, no. 19, pp. 196805 (2004).

[2] J. Appenzeller, Y.-M. Lin, J. Knoch, Z. Chen, and Ph. Avouris, “Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design,” IEEE Trans. on Electron Dev. 52, 2568-2576 (2005).

[3] A. M. Ionescu, and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329337 (2011).

[4] U. E. Avci, and I. Young, “Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length,” In IEEE International Electron Devices Meeting IEDM, pp. 4-3. (2013).

[5] K. Boucart, and A. M. Ionescu, “Length scaling of the double gate tunnel FET with a high-k gate dielectric,” Solid-State Electronics vol. 51, no. 11, pp. 1500-1507 (2007).

[6] H. Lu, and A. Seabaugh, “Tunnel Field-Effect transistors: state-of-the-art,” IEEE Electron Device Society, vol. 2, no. 4, pp. 44-49 (2014).

[7] H. Ilatikhameneh, T. Ameen, G. Klimeck, J. Appenzeller, and R. Rahman, “Dielectric Engineered Tunnel Field-Effect Transistor,” IEEE Electronic Device Letters (2015), 10.1109/LED.2015.2474147.

[8] H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, J. Appenzeller, “Tunnel Field-Effect Transistors in 2D Transition Metal Dichalcogenide Materials,” IEEE Exploratory Solid-State Computational Devices and Circuits, vol. 1, no. 1, pp. 12-18 (2015), DOI: 10.1109/JX-CDC.2015.2423096.

[9] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nature nanotechnology, vol. 9, no. 10, pp. 768-779 (2014).

[10] H. Ilatikhameneh, G. Klimeck, J. Appenzeller, and R. Rahman, “Scaling Theory of Electrically Doped 2D Transistors,” IEEE Electron Device Letters, vol. 36, no. 7, pp. 726-728 (2015), DOI:10.1109/LED.2015.2436356.

[11] Q. Zhang, G. Iannaccone, and G. Fiori. “Two-Dimensional Tunnel Transistors Based on Thin Film.” IEEE Electron Device Letters, vol. 35, no. 1, pp. 129-131 (2014).

[12] W. Li, S. Sharmin, H. Ilatikhameneh, R. Rahman, Y. Lu, J. Wang, X. Yan, A. Seabaugh, G. Klimeck, D. Jena, P. Fay, “Polarization-Engineered III-Nitride Heterojunction Tunnel Field-Effect Transistors,” IEEE Exploratory Solid-State Computational Devices and Circuits, vol. 1, no. 1, pp. 28-34 (2015), DOI:10.1109/JX-CDC.2015.2426433.

[13] M. Salmani-Jelodar, S. Mehrotra, H. Ilatikhameneh, and G. Klimeck, “Design Guidelines for Sub-12 nm Nanowire MOSFETS,” IEEE Trans. on Nanotechnology, vol. 14, no. 2, pp. 210-213 (2015).

[14] K. Alam, and R. K. Lake, “Monolayer MoS2 Transistors Beyond the Technology Road Map,” IEEE Transactions on Electron Devices, 59.12, 3250 (2012).

[15] H. Ilatikhameneh, R. B. Salazar, R. Rahman, G. Klimeck, J. Appenzeller, “From Fron-Nordheim to Non-Equilibrium Green’s Function Modeling of Tunneling,” (2015). [Online.] http://arxiv.org/abs/1509.08170

[16] E. O. Kane, “Zener tunneling in semiconductors,” Journal of Physics and Chemistry of Solids, vol. 12, no. 2, pp. 181-188 (1960).

[17] H. Iwai, “Roadmap for 22nm and beyond,” Microelectronic Engineering vol. 86, no. 7, pp. 1520-1528 (2009).

[18] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat. “Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and subthreshold slope μ 60mV/dec.” In IEEE International Electron Devices Meeting IEDM, pp. 1-3 (2008).

[19] J. Knoch, and J. Appenzeller. “Modeling of high-performance p-type IIIV heterojunction tunnel FETs,” IEEE Electron Device Letters, vol. 31, no. 4, pp. 305-307 (2010).

[20] S.O. Koswatta, S.J. Koester, and W. Haensch, “On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors,” IEEE Trans. Electron Devices 57, 3222 (2010).

[21] R. B. Salazar, H. Ilatikhameneh, R. Rahman, G. Klimeck, J. Appenzeller, “A New Compact Model For High-Performance Tunneling-Field Effect Transistors,” [Online]. http://arxiv.org/abs/1306.0007?

[22] J. R. Williams, L. DiCarlo, and C. M. Marcus, “Quantum Hall effect in a gate-controlled pn junction of graphene,” Science, vol. 317, pp. 638-641 (2007).

[23] J. P. Tian, L. A. Juaregui, G. Lopez, H. Cao, and Y. P. Chen, “Ambipolar graphene field effect transistors by local metal side gates,” Applied Physics Letters, vol. 96, no. 26, pp. 263110 (2010).

[24] S. Agarwal, and E. Yablonovitch, “Band-Edge Steepness Obtained From Esaki/Backward Diode Current/Voltage Characteristics,” IEEE Transaction on Electron Devices, vol. 61, no. 5, pp. 1488-1493 (2014).

[25] J. E. Fonseca, T. Kubis, M. Povolotskyi, B. Novakovic, A. Ajoy, G. Hegde, H. Ilatikhameneh, Z. Jiang, P. Sengupta, Y. Tan, G. Klimeck, “Efficient and realistic device modeling from atomic detail to the nanoscale,” Journal of Computational Electronics, vol. 12, no. 4, pp. 592-600 (2013).

[26] S. Steiger, M. Povolotskyi, H. H. Park, T. Kubis, and G. Klimeck, “NEMOS: a parallel multiscale nanoelectronics modeling tool,” IEEE Transaction on Nanotechnology, vol. 10, no. 6, pp. 1464-1474 (2011).

[27] J. Sellier, et al., “Nemo5, a parallel, multiscale, multiphysics nanoelectronics modeling tool,” SISPAD, (2012).

[28] T.B. Boykin, G. Klimeck, R.C. Bowen, and F. Oyafuso. Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory Phys. Rev. B 66, 125207 (2002).

[29] M. Salmani-Jelodar, H. Ilatikhameneh, S. Kim, K. Ng, and G. Klimeck, “Optimum High-k Oxide for the Best Performance of Ultra-scaled Double-Gate MOSFETs,” (2015), [Online.] arXiv:1502.06178