FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures

Derek Groena,b,*, Agastya Bhatia, James Sutera, James Hetheringtona, Stefan Zasadaa, Peter V. Coveneya,*

aCentre for Computational Science, University College London, 20 Gordon street, London, WC1H 0AJ, United Kingdom
bDepartment of Computer Science, Brunel University, St John’s Building, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom

Abstract

We present FabSim, a toolkit developed to simplify a range of computational tasks for researchers in diverse disciplines. FabSim is flexible, adaptable, and allows users to perform a wide range of tasks with ease. It also provides a systematic way to automate the use of resources, including HPC and distributed resources, and to make tasks easier to repeat by recording contextual information. To demonstrate this, we present three use cases where FabSim has enhanced our research productivity. These include simulating cerebrovascular bloodflow, modelling clay-polymer nanocomposites across multiple scales, and calculating ligand-protein binding affinities.

Keywords: automation; workflows; distributed computing; software; bloodflow modelling; molecular dynamics; lattice-Boltzmann; multiscale modelling; clay-polymer nanocomposites; ligand-protein binding

PROGRAM SUMMARY/NEW VERSION PROGRAM SUMMARY

Manuscript Title: FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures
Authors: Derek Groen, Agastya Bhati, James Hetherington, James Suter, Stefan

*Corresponding authors.
E-mail address: Derek.Groen@brunel.ac.uk, p.v.coveney@ucl.ac.uk

Preprint submitted to Computer Physics Communications December 8, 2015
Zasada, Peter V. Coveney.
Program Title: FabSim
Journal Reference:
Catalogue identifier:
Licensing provisions:
Lesser GNU Public License version 3. Programming language: Python.
Computer:
PC or Mac. Operating system: Unix, OSX.
RAM: 1 Gbytes
Supplementary material:
Keywords: automation, workflows, distributed computing, software, bloodflow modelling, molecular dynamics, lattice-Boltzmann, multiscale modelling, clay-polymer nanocomposites, ligand-protein binding.
Classification: 3 Biology and Molecular Biology, 4 Computational Methods, 6.5 Software including Parallel Algorithms.
External routines/libraries: NumPy, SciPy, Fabric (1.5 or newer).
Subprograms used:
Catalogue identifier of previous version:*
Journal reference of previous version:*
Does the new version supersede the previous version?:*
Nature of problem:
Running advanced computations using remote resources is an activity that requires considerable time and human attention. These activities, such as organizing data, configuring software and setting up individual runs often vary slightly each time they are performed. To lighten this burden, we required an approach that introduced little burden of its own to set up and adapt, beyond which very substantial productivity ensues.
Solution method:
We present a toolkit which helps to simplify and automate the activities which surround computational science research. FabSim is aimed squarely at the experienced computational scientist, who can use the command line interface and a system of modifiable content to quickly automate sets of research tasks.
Reasons for the new version:*

Summary of revisions:*

Restrictions:
FabSim relies on a command-line interface, and assumes some level of scripting knowledge from the user.
Unusual features:
FabSim has a proven track record of being easy to adapt. It has already been extensively adapted to facilitate leading research in the modelling of bloodflow, nanomaterials, and ligand-protein binding.

Additional comments:

Running time:
FabSim can be used interactively, typically requiring a few seconds to perform a basic task.

1. Introduction

Research based on computational science and technology continues to advance at a rapid pace, driven in part by the continual evolution, and recent diversification, of computing infrastructures. At the top end, supercomputers are both highly parallel (at time of writing, the number one supercomputer has 3.1 million cores) and highly heterogeneous (four of the top ten supercomputers feature accelerators). Because computing infrastructures are growing in parallelism and becoming more diverse, we require sophisticated computational techniques to take full advantage of the power available.

Recent advances in modelling methods, such as ensemble and multiscale computing, allow us to solve complex problems more efficiently using high-end infrastructures [1, 2, 3, 4]. These techniques tend to require users to construct, execute, validate, analyze and curate a number of different models (and model executions) for each computation. Care must be taken when performing these tasks, as a simple mistake can render the full computation useless. For example, computations may produce incorrect results, or produce too little information to allow for reproduction or replication.

In an era where compute resources are arguably easier to obtain than human resources, this requirement for continued human attention can become a bottleneck, limiting the pace of computational research to the number of person hours invested in it. Indeed, within our own research group we have realized that much of our daily work was spent on the attention-requiring activities that accompany the need to run ensemble or multiscale computations. To lighten this burden, we sought an approach that introduced little burden of its own to set up and adapt, beyond which very substantial productivity benefits ensue by “automating away” routine activities.

Here we present our approach, based on FabSim, for managing computations and automating the research tasks that accompany them. FabSim
includes a software toolset, as well as a set of best practices which serve to aid researchers in maintaining a computational environment which is simple to use, navigate, interpret and modify. FabSim allows researchers to reduce the complexity of administrative tasks to that of issuing single-line commands, and saves time by introducing a systematic structure for curating input and output files, user and machine configurations, as well as application execution instances. The tool is straightforward to use “out of the box”, and as simple to customize.

In Section 2, we present a range of related research and development activities. In Section 3 we present FabSim, describe its architecture as well as its key features for users and developers. In Section 4 we present three research activities where FabSim is currently in use, and describe how FabSim is being deployed and adapted in these contexts. We provide concluding remarks in Section 5.

2. Related work

To some extent, the functionality offered by FabSim is similar to that provided by manifold grid middleware projects, developed over the last decade or more. By allowing a computational scientist to run workloads on remote high performance computing resources, FabSim shares functionality with middleware toolkits such as Globus [5], Unicore [6] and gLite [7]. However, the focus of FabSim is very different to these monolithic toolkits. Firstly, FabSim is aimed squarely at the experienced computational scientist, presenting a command line interface that is easy for the developer/scientist to extend. In this respect, FabSim shares similarities with the Growl Toolkit [8], an example of a lightweight middleware system designed to address some of the shortcomings of other grid middlewares, using both a combination of Web service components and wrapper scripts to automate tasks performed by Globus grid middleware client tools.

Additionally, FabSim is built on SSH, found on practically every Unix- or Linux-based system, and does not mandate the installation of an additional heavyweight middleware stack on the resources being accessed. This means that FabSim can be used widely on any HPC resource that supports SSH.

FabSim is more directly comparable with tools such as Longbow [9], which is used for molecular dynamics pertaining to computational biology, and also aims to provide shorthand commands to run applications (including ensembles) on distributed machines. Longbow is, however, more limited
in scope, as it provides no explicit support for multi-step workflows or for tasks associated with code compilation and deployment. Ruffus [10] is a light-weight Python tool which automates complicated analysis activities, with less concern for computations on distributed resources. Snakemake [11] offers a workflow definition language, and provides an execution environment. Snakemake workflows can be run remotely, although the tool does not provide further facilities for using distributed resources (e.g., curating information for its users as to how to access different machines).

Many other tools provide functionalities that complement FabSim. Coupling environments such as MUSCLE 2 [12], DataSpaces [13] and MPWide [14] allow codes to efficiently exchange data at runtime, and can be used to speed up the remote execution of coupled tasks in FabSim.

In addition, there are a number of simulation environments which serve to combine functionalities from existing codes to construct and run multiscale simulations [1], such as AMUSE [15], CouPe [16], MOOSE [17] and OASIS [18]. In particular, the Application Hosting Environment [19] provides an easy-to-use environment by centralizing the application deployment in the hands of one expert-user, though it provides no automation for those users who deploy new software. Both GEL [20] and Swift [21] assist in the coordination and efficient execution of large numbers of scripts, while workflow engines such as Kepler [22, 23], Taverna [24] and GridSpace [25] provide a graphical environment to help users perform complex simulation workflows. Ludascher et al. [26] provide a comprehensive overview of key challenges and advances in workflow management and scientific task automation. A major strength of FabSim, compared to the aforementioned tools, is its strong focus on accelerating and simplifying development activities. Its aim is not only to simplify the execution of workflows that have been previously defined, but also to simplify the creation of new workflows, and indeed of new computational approaches in general.

3. Overview of FabSim

The central purpose of FabSim is to save time for computational researchers by simplifying key tasks when performing computation-driven research. With FabSim we achieve this by offering a set of useful functionalities in a highly transparent and modifiable program structure. By pairing customizable software with a set of best practices we provide researchers with a
Figure 1: Diagrammatic overview of the modules present in FabSim. Information dependencies are indicated by black arrows (e.g., the data processing module makes use of information provided by the application configs module). Security is managed using Paramiko (www.paramiko.org), which in turn relies on SSH. All modules are installed on a user’s local workstation. User activities involving remote resources are indicated by light green arrows passing through the security layer (which is indicated by the red dotted line). Small icons are provided by gentleface.com.

methodological framework which helps them to perform a range of tasks in a simpler, quicker and more systematic way.

3.1. The software

FabSim is written in Python and requires no administrative privileges to install. It relies on the Fabric [27] library to embed convenient, light-weight and non-invasive mechanisms for accessing and managing remote machines. In addition, FabSim uses the YaML [28] library, which provides features to work with a compact, intuitive and human-readable data format. We provide an overview of the FabSim architecture in Fig. [1]
3.1.1. Using FabSim

Once installed, all FabSim features are called from the terminal, using commands that adhere to the following structure:

\[\text{fab } \text{<hostname> } \text{<command>:<configuration_name>}, \]
\[\text{<parameter1=x1>},(...),\text{<parameterN=xn>} \]

We describe a number of commands commonly used in FabSim in Table 1. Each function can be given parameters if convenient, or uses machine-specific defaults if no parameters are specified by the user. We have also defined a range of commands which are specific for FabSim in different domains. We discuss these commands separately in the examples provided in Section 4, and describe how these functions can be used as part of more complex user-made commands.

3.1.2. Customizing FabSim

A key strength of FabSim is its ease of customization. FabSim uses a template/variable substitution system to enable users to easily introduce customized scripts, and relies on the ease of use of Python to allow users to define custom functionalities. The substitution system relies on a set of YaML files, which specify the default values for all the important variables in FabSim. Customized values can be assigned to these variables on a machine-specific basis, on a user-specific basis, or both. When the user invokes a FabSim command, the relevant variables are provided to the context of that command, eliminating the need for users to specify these on the command line.

FabSim also relies on a number of templates, for example to identify the formatting required to make a correct header for a batch job script, or to flexibly insert commands for executing a specific MPI implementation. When templates are used, FabSim uses the variables within its context to determine which values to insert into the templates, and which templates to combine. For example, we can combine templates for executing specific applications with those for specific scheduling systems, without the need to define new templates for each combination of the two.

In Tab. 3.1.2 we present the configuration and software hooks that FabSim provides, each of which can be modified by the user. Within FabSim we define a number of different scopes, as the features in FabSim differ in their range of applicability. The base scope of FabSim is general-purpose, which
command name	brief description
probe	Probes target host for presence of a module with a given name
stat	Provides a status report of jobs running on the target host
monitor	Does a stat on the target machine once every two minutes, and displays the output
fetch_results	Fetches all the application results from the target host and saves them on the local host
cancel	Cancels a job on the target machine which is in the queue or running
analyze	Performs shallow data analysis of a results file
run_job	Runs an application job remotely
run_ensemble	Runs an ensemble of application jobs remotely (packed into one job if supported)
blackbox	Runs a script through FabSim on the local machine
archive	Archives a directory containing application results
cold	Copies a source code to a remote resource, compiles and builds everything
<application name>	Runs an application job using the <application name> code specifically
includes features that are deemed to be of use for any user installing FabSim (e.g., job submission, file transfer and so on). Features can be added on this level by adding functions to fab.py. Machine-specific customizations can be added in one of two separate scopes (“machine-specific” and “machine and user-specific”). Perhaps the scope most important to the user is the domain-specific scope. The script files that reside in this scope contain features that are specific to the user domain (e.g., multiscale materials modelling, blood flow simulation, or molecular ligand-protein binding calculations), but which can be reused for existing and future research problems. In some projects we have been working on, the amount of customization in this scope has become so large that the community adopted a modified name for the tool altogether (e.g., FabHemeLB and FabMD). Last, there is the scope which is problem-specific, which includes bespoke scripts and features that are used for highly-specific research purposes.

3.2. Best practices

FabSim is accompanied with a number of best practices which aid the user in maintaining a simple and consistent environment. Here we describe several examples of best practices that are key to keeping FabSim simple to use and modify.

Machine-specific configurations, which are applicable to all users of that machine, are defined in machines.yml, User-specific information for each machine is stored locally in machines_user.yml.

Custom-defined features for FabSim are variously general-purpose, domain-specific, problem-specific or for single use. As best practice, we keep general-purpose features in fab.py (or libraries that are included in fab.py), and domain-specific features in separate python files (e.g., fabNanoMD.py), distinct from any source files which contain problem-specific features.

3.3. Remote execution

FabSim allows users to perform computations on remote resources using one-line commands. For example, to launch an instance of the LAMMPS molecular dynamics code on nodes on a supercomputer named “exa”, one could use:

```
fab exa lammps
```

As part of this command, FabSim stages in a directory with input files from the local machine to the remote resource, and then uses SSH to submit
Name	Location	Scope	Summary of contents
config_files	application configs	problem	input data for specific computations.
fab.py	constr. and auto. module	general	general Fabsim commands.
data_proc/dataXX.py	data processing module	domain	data processing commands.
data_proc/dataYY.py	data processing module	problem	data processing commands.
data_proc/data.py	data processing module	general	data processing commands.
blackbox/	data processing scripts repo	domain	plug-in scripts, binaries.
python/	data processing scripts repo	domain	linkable Python plug-ins.
fabXX.py	function library	domain	FabSim commands.
fabXX/fabYY.py	function library	problem	FabSim commands.
machines.yml	machine configs	machine	default machine settings.
machines_user.yml	machine configs	machine	user machine settings.

Table 2: List of customizable components in Fabsim. The name of the component is given in the first column, the module where it is located (see Fig. 1 for a diagrammatic overview of the modules) in the second column. The scope within which the component is applied and customized is given in the third column. Possible scopes include general-purpose (general), domain-specific (domain), problem-specific (problem) and machine-specific (machine). A short summary of the contents of the component is given in the fourth column.
the job using the remote job scheduling system. One can use (or define) similar commands to perform tasks directly on the head node of the remote resource. For example, to locate all modules containing the name “lammps” on the “exa” machine, one could use

\[\text{fab exa probe:lammps} \]

It is also possible to combine the execution of multiple jobs on remote resources in a single FabSim command (see Section 4.3), or to construct a chain of interdependent jobs interspersed with local data processing tasks (see Section 4.2).

3.4. Provenance, curation, reproducibility

When a user performs a computation remotely with FabSim, a number of extra actions are executed to help improve the repeatability and reproducibility of the computation. First, FabSim stores the full internal context in YML format in the results directory of the executed computation, allowing users to identify FabSim variables that may have been wrongly set. Second, FabSim stores the environment variables used at the remote resource in another text file, allowing users to spot changes in the configuration of the remote resource between jobs. Third, FabSim retains the generated job submission script for future reference. And fourth, when FabSim creates results directories for submitted computations, it allows users to modify the name of these directories using variables (e.g., code version number, time stamp, configuration file used, or the number of cores used). In particular, by using time stamps in naming results directories one can prevent new computations from overwriting results that were generated by previous computations.

In our experience, we have frequently been able to repeat our runs using the FabSim logging infrastructure. However, it may still occur that repeated computations lead to different results. We have experienced this occasionally when existing modules residing on remote machines are recompiled with different settings or using a different compiler, or when the computations are repeated using a different set of resources.

3.5. Security

Access to grid resources is usually secured through authentication and authorization mechanisms based on X.509 certificates, a security credential used to authenticate the user when accessing a grid. To access the resources
on a particular distributed e-infrastructure, the user needs a certificate recognized by that infrastructure. Certificates are generally issued on a national basis, by a national research certificate authority (CA). The Interoperable Grid Trust Federation [29] exists to ensure mutual trust between different national certificate issuing bodies. This means that certificates issued in one country will be accepted by e-infrastructure resources based in a different country.

Efforts to address the usability of e-infrastructures have long been hampered by existing security mechanisms imposed on users. Typically, these require a user to obtain one or more digital certificates from a certificate authority, as well as to maintain and renew these certificates as necessary. The difficulty in doing this leads to widespread certificate sharing and misuse and a substantial reduction in the number of potential users [30], and caused many HPC resource providers and users to abandon grid middleware tools. This has in turn led to secure certificate sharing mechanisms to be promoted which seek to ameliorate some of the worst aspects of certificate misuse [31].

However, almost all HPC resources do support the SSH protocol to allow remote users to access the machine. FabSim takes advantage of this, using the Fabric library, to allow users to perform remote operations using basic SSH as the transport middleware. As such, FabSim’s security model is essentially the SSH security model; public/private keys are used to authenticate FabSim operations on target resources, and the ~/.ssh/known_hosts file is used to allow users to configure mutual authentication.

Unlike grid based X.509 authentication, the setup is entirely controlled by the end user. Typically on a grid using X.509 certificates, an administrator must set up details of a user’s certificate on their resources. SSH based authentication requires that the user sets up their own keys on a target resource. While key management does potentially increase the management overhead of setting up FabSim security, the ubiquity of SSH mean that most FabSim users will have already taken steps to set up SSH keys for the resources that they wish to access.

The use of SSH keys and Fabric also means that FabSim can make use of Fabric extensions for key management, such as the keymanager add-on [32], which allows users to manage keys on multiple servers very easily, using Fabric itself.
4. Exemplar FabSim use cases

In this section we present exemplar FabSim use cases in three scientific domains where FabSim has so far been applied. These include simulations of cerebrovascular bloodflow, multiscale simulations of clay-polymer nanocomposites, and ensemble molecular dynamics simulations used to calculate ligand-protein binding affinities.

4.1. Cerebrovascular bloodflow

FabSim is widely used in combination with the HemeLB bloodflow simulator\cite{33,34}, which we use to investigate the flow properties of blood in arterial networks (e.g., a segment of the middle cerebral artery or a network of vessels in the retina). HemeLB is specifically optimized to efficiently model flow in sparse networks, and scales to up to 49,152 cores\cite{35,34}. Using both HemeLB and FabSim, we have been able to make reliable predictions of the blood flow properties in cerebral arterties\cite{36} and in mouse retinas\cite{37,38}. Accurate predictions of the blood flow under realistic conditions are essential to gain a further understanding of important medical conditions, such as aneurysm formation and tumour growth. For example, the risk of bleeding in the brain appears to correlate with abnormal flow properties in the vicinity of brain aneurysms, such as a high wall shear stress\cite{39}.

Among other things, we use FabSim to help make HemeLB easier to install and use for inexperienced researchers. HemeLB is in use across a range of supercomputer platforms, and many of its applications require complex workflows consisting of multiple simulations. Here, the HemeLB-extended version of FabSim allows users to systematically run, curate and analyze sets of simulations (see Fig. 2 for an example). This makes it considerably easier to perform scalability and accuracy studies which require a large number of simulation runs\cite{34,40}.

In addition, for HemeLB we use the FabSim templating system to automate the installation of HemeLB on new supercomputers. This process was previously labour-intensive as the existing CMake system only permits a limited amount of automation, and lacks an intuitive way to store machinespecific information about the required configuration flags and environment settings. We present the added value of FabSim in the remote installation of HemeLB in Fig. 3. Here, FabSim saves time by allowing researchers to provision installation details in a compact and readable way, thereby automating the installation process for future users.
Figure 2: Example of a benchmark which was systematically acquired using FabSim on the HECToR supercomputer at EPCC in Edinburgh, United Kingdom. We show the performance impact of running HemeLB with a connected steering client [33]. We show results for 1024 and 2048 cores without steering client (plotted at frame-rate zero), with the client used only for image streaming (images, dotted lines) and with the client used both for image streaming and steering the HemeLB simulation (both, solid lines). This figure is reproduced from Groen et al. [34], in which the significance of this data is discussed in detail.

FabHemeLB also provides a range of domain-specific features, primarily to enable automated execution of ensemble multiscale simulations. In Fig. 4 we present two example workflows which are supported by FabHemeLB. In the workflow on the left we first collect patient-specific heart parameters (e.g., heart rate, cardiac output volume) at different levels of physical activity. We then use a 1D model (The Python Network Solver [41]) to calculate the expected inflow profile in a cerebral artery, which is used with HemeLB to model a patient-specific cerebral arterial network in 3D. We then collect and analyze the results of our ensemble of simulations using a one-line FabSim command. Through adopting FabSim, we enabled a new kind of simulation analysis with HemeLB, in which we can quickly run a set of simulations on
Figure 3: Example of the speed-up obtained through the use of FabSim. We present typical tasks performed by a team of researchers when installing HemeLB manually (on the left), or using FabSim (right).

(a) Ensemble bloodflow simulation

(b) Performance assessment

Install HemeLB on a new machine, manually

1. Install dependencies. (3h)
2. Install HemeLB. (3h)
3. Does not ask for advice.
4. Install HemeLB. (3h)
5. Novice user, does not ask for advice.
6. Install HemeLB. (3h)

Install HemeLB on a new machine, using FabSim

1. Install dependencies. (3h)
2. Install HemeLB. (3h)
3. Record installation in FabSim. (10 min)
4. Repeat the actions of user 1 by using the "fab <machine> cold" command. (10h)

Figure 4: Workflows which have been automated using FabHemeLB. (a) Diagram of the workflow used to perform ensemble multiscale simulations of blood flow in middle cerebral arteries (presented in detail in [36]). (b) A commonly applied workflow to do systematic performance tests (applied for example in Groen et al. [1]).

a large supercomputer to compare wall shear stresses in arterial bloodflow as a function of exercise intensity. We present a detailed description of this workflow, used on the 2.6 PFLOPs ARCHER supercomputer in Edinburgh, UK, in Itani et al. [36].

4.2. Multiscale modelling of clay-polymer nanocomposite materials

Multiscale modelling approaches offer large advantages in the domain of materials modelling. Here, a key challenge in the field is to predict large
scale materials properties, whilst taking into account the chemical specificity of its constituent atoms and molecules, as well as processing conditions.

We have created an adapted version of FabSim (named FabMD) to construct and apply a multiscale modelling methodology for the study of clay-polymer nanocomposite materials \[42, 43\]. These composite materials, due to a combination of their low density with superior materials properties, have already been applied in industries such as packaging, automotive, aviation, and drug transport \[44\]. However, it is costly, time-consuming and labour-intensive to search for new materials using experimental approaches, whereas multiscale simulations are relatively fast and cheap. As a result, using multiscale approaches we can identify systems that are likely to possess superior materials properties, focusing the laboratory searches for much greater efficiency and hence accelerated discovery.

We present a diagrammatic description of our multiscale materials modelling workflows in Figure 5. We use FabSim to coarse-grain our clay-polymer systems, and rely on two techniques to determine accurate course-grained potential parameterizations: Iterative Boltzmann Inversion (IBI) and Potential of Mean Force (PMF) calculations. In the IBI procedure we iteratively adjust pair potentials, and launch a single simulation per iteration to determine the radial distribution function which results from using these potentials, until they match the distribution functions from all-atom molecular dynamics simulations \[42\] within a desired tolerance. IBI is computationally efficient, but can be inaccurate, particularly when the number of particles is small (e.g., solutes dissolved in solution) or when the interaction potentials are particularly attractive. Whenever IBI is ineffective, we instead apply PMF, which is computationally more expensive but more robust. When using PMF, each simulation has its particles constrained at a given distance; this is done to calculate the mean force between two particle types at a given distance. For each PMF iteration, we then perform a set of \(\sim 20-40\) simulations with the particles constrained at various distances. The large number of relatively small scale iterative computations required for these coarse-grained potential parameterizations lends itself well to automation using FabSim.

As an example, we summarize the input and output of several IBI iterations in Figure 6. Here we performed four iterations to parameterize a suitable coarse-grained potential between two polymer particles \[42\]. We provide the potentials which were generated using IBI for each of the simulation runs in the upper row of plots, and the radial distribution functions (RDF) that resulted from the simulation runs, and which were used to gen-
Figure 5: Workflows which have been automated using FabMD to create a coarse-grained model of a mixture of montmorillonite clay and polymers. (a) Workflow used to perform Iterative Boltzmann Inversions. (b) Workflow used to calculate the Potential of Mean Force. (c) Diagrammatic overview of the steps involved to do a full coarse-grained parameterization (applied e.g. by Suter et al. [42]). Here the molecule names have been abbreviated: TMA for tetra-methyl ammonium and C2 for ethane particles.

4.3. Calculating ligand-protein binding affinities from ensemble molecular dynamics

The ability to calculate the free energy of binding a lead compound with a target protein, also known as the binding affinity, is of great importance
Figure 6: Example output of the first four Iterative Boltzmann Inversions (IBI), used to parameterize polymer-polymer interactions. The changes in potential obtained through the procedure are shown in the top row for iterations 1 to 3 (left to right). The resulting changes in the radial distribution functions (RDF) for each potential are provided in the bottom row for iterations 1 to 3 (left to right). Here we also plot the desired RDF, which we obtained from an atomistic simulation of the same system (“target”), as well as two error measures (the mean absolute difference and the mean squared difference) which can be used as convergence criteria. For reasons of simplicity we have omitted information on the pressure correction, which is simultaneously performed in these IBI iterations [42].

in the field of personalised medicine and drug discovery as, in most cases, it forms the basis of ranking drugs/lead molecules based on their potency. Several in silico methods are available to calculate binding affinities, but the field has gained a degree of notoriety since, frequently, results reported in the literature have not been repeatable by others [2, 45]. This lack of reproducibility is due to the insufficient sampling of phase space, arising from the extreme sensitivities of calculated properties to the initial conditions of a molecular dynamics system. Such unreproducible binding affinities are clearly unreliable for medical or industrial applications.

Using an ensemble simulation approach we have shown that, if the entire protocol of binding affinity calculation is repeated a sufficient number of times for a biomolecular system, then the computed binding affinities have a Gaussian frequency distribution and their ensemble average is the theoretical estimate of the binding affinity for that biomolecular system, with bootstrapping providing tight error bounds. Such precise and reproducible
binding affinity estimates are expected to be useful in drug discovery and drug selection in personalized medicine.

Our ensemble simulation approach to control errors and ensure reproducibility, which uses the Binding Affinity Calculator (BAC [46, 47, 2]) in combination with FabSim, is shown in Figure 7. In this approach we launch multiple instances of the given molecular model, each of which is called a “replica”. Each replica uses initial atomic velocities which are randomly drawn from a Maxwell-Boltzmann probability distribution. For each replica we then perform equilibration, production molecular dynamics, followed by post-processing of the MD trajectories to determine the free energy of binding based on our ESMACS protocol [45]. ESMACS uses MMPBSA and NMODE algorithms available in AMBER [48] as well as the free energy of association and, if required, an adaptation energy [45]. As a last step, we perform a statistical analysis on the collected results to report binding affinities with error estimates. Thus, the methodology requires executing a workflow comprising numerous steps on distributed (remote) machines, a process which we have automated using an adapted version of FabSim (named FabBioMD). If performed manually, this activity would have a very substantial manual overhead, reducing the rate of progress and being prone to human errors. On a sizeable HPC resource, the approach has the considerable advantage that all replicas can be run concurrently: in the time it takes to run one, we can run all of them.

FabBioMD includes specific functions to perform production molecular dynamics simulations and data analytics in the form of free energy calculations. These tasks can be performed on distributed (remote) resources as needed. All the input parameters have their default values defined, but users are also allowed to set custom values using command line parameters. We already used our approach on a number of supercomputers, including the ARCHER supercomputer at EPCC in Edinburgh, UK and the BlueWonder supercomputer at STFC in Daresbury, UK. Little effort is required to install it on other supercomputers, as FabBioMD uses job-specific and machine-specific templates of remote job submission scripts with variables embedded at appropriate places. Users are able to modify these templates to cater for their specific needs. This makes FabBioMD highly flexible, user friendly software. Moreover, the installation and usage of FabBioMD is kept very simple, ensuring that non-specialist users can easily simplify their computational activities. FabBioMD currently supports NAMD for ensemble MD simulation and AMBER for the calculation of free energy contributions to the binding
affinity based on MMPBSA \cite{49} and normal mode methods respectively.

A number of related tools introduce automated workflows into free energy calculations. These tools include for example the Amber suite \cite{50}, FESetup \cite{51}, free energy workflow (FEW) \cite{52}, free energy perturbation (FEP) workflow \cite{53}, as well as an automation approach using Copernicus \cite{54} in combination with Gromacs \cite{55}. In general, these tools are limited to the traditional one-off MD simulation approach, which is limited by unreliable free energy predictions, and do not support the ensemble simulation approach we described here.

We recently published a set of predictions of peptide-MHC (MHC is the Major Histocompatibility Complex protein) binding affinities using this ensemble simulation approach \cite{45}, where FabBioMD was employed to automate the process. The binding between a peptide and MHC is central to the human immune response. In this study, a set of 12 different peptide sequences bound to HLA-A*02:01 MHC allele were selected, and their calculated binding affinities were compared with those determined experimentally. The size of the ensemble was taken to be 50. The free energy was calculated using the ESMACS protocol, via the BAC workflow tool. In Fig. 8a and b we present an example normalised frequency distribution of the ensemble of binding affinities of two of the 12 peptides. Each distribution is a Gaussian and corresponds to a single point in Fig. 8c, where we provide the correlation between experimental binding affinities and predictions using ESMACS (normalised by the number of heavy atoms and the peptide’s cumulative hydrophobicity for all 12 peptides).

5. Conclusion

In the present work, we have described and made available FabSim, a new approach to reduce the complexity of tasks associated with computational research. We illustrate the scope and flexibility of FabSim by presenting its application in three diverse domains where it has been, and continues to be, used to simplify computational tasks and to improve their reproducibility. Our use cases in bloodflow modelling, materials modelling and binding affinity calculation provide evidence that FabSim benefits computational research on a generic level.

In the area of brain bloodflow, we have described how FabSim can be used to do systematic benchmarking, to execute an ensemble of multiscale simulations, and to simplify the deployment of HemeLB on remote machines.
Figure 7: Example of an ESMACS workflow, automated using FabSim, as it is employed in the pMHC binding affinity prediction, reproduced from Wan et al. [45]. Here, 50 trajectory calculations (known as replicas) are performed concurrently in three phases (equilibration, production, MMPBSA&NMODE), each replica using up to 144 cores. After these calculations have completed, the peptide-protein binding affinity is obtained through statistical analysis. We show the ensemble simulations required in a single trajectory calculation for which we need to have access to 7,200 cores for simulations and to 4,800 cores for free energy calculations. For a concurrent three-trajectory case we need 19,200 cores for simulations and 14,400 cores for free energy calculations. The workflow requires approximately 9 hours to complete, given that sufficient resources are available. To compute more than one binding affinity concurrently, one needs to multiply the requirement by the number of peptides of interest.

In the nanomaterials area, we have shown how FabSim automates iterative parameterization of coarse-grained potentials, and allows us to systematically model the self-assembly of layered composite materials with chemical specificity. FabSim has also been applied to streamline the calculation of ligand-protein binding affinities through our Binding Affinity Calculator, allowing users to automatically launch ensemble computations, and thereby controlling uncertainties and producing reproducible results. In all cases, FabSim assists in the curation of run data by furnishing information about the job specification and the environment variables. The extent to which FabSim has been applied and adapted in these three domains serves to demonstrate its flexibility and ease of adoption. Indeed, using FabSim we have been able
Figure 8: a and b) Example outcomes of two peptide binding affinity calculations (WIK-TISKRM and AAAKTPVIV) using ESMACS within BAC (from Wan et al. [45]). Each simulation performed resulted in one data point; 50 simulations were run in total leading to the Gaussian frequency distribution shown. c): Comparison of the peptide binding affinity calculation results with experimental results. Each data point consists of one binding affinity calculation result with experimental result. Each of the two points in the top right corresponds respectively, from top to bottom, to the outcomes shown in (b) and (a). These results are discussed in detail in Wan et al. [45].

to publish our research findings in leading scientific journals in each domain.

As part of this software paper, we provide the FabSim code base to the scientific community under a LGPL version 3 licence. As part of so doing, we hope to encourage computational researchers to begin “automating away” some of their more tedious tasks, and to free up more human effort for advancing science.

Acknowledgements

We thank Dr Shunzhou Wan for his help in constructing the Binding Affinity Calculation section of this article, and Miguel Bernabeu, Rupert Nash, Sebastian Schmieschek, Mohamed Itani and Hywel Carver for their contributions to FabHemeLB. This work was funded in part by the EU FP7
MAPPER, CRESTA, P-medicine and VPH-SHARE project (grant numbers 261507, 287703, 270089, 269978), by the EU H2020 ComPat project (grant no. 671564) by EPSRC via the 2020 Science Programme (EP/I017909/1), the Qatar National Research Fund (grant number 092601048), MRC Bioinformatics project (MR/L016311/1) and the UCL Provost. AB is funded by the INLAKS Foundation Scholarship and a UCL Overseas Research Studentship Award (2014-2017). Supercomputing time was provided by the Hartree Centre (Daresbury Laboratory) on BlueJoule and BlueWonder via the CGCLAY project, and on HECToR and ARCHER, the UK national supercomputing facility at the University of Edinburgh, via EPSRC through grants EP/F00521/1, EP/E045111/1, EP/I017763/1 and the UK Consortium on Mesoscopic Engineering Sciences (EP/L00030X/1).

References

[1] D. Groen, S. J. Zasada, P. V. Coveney, Survey of multiscale and multiphysics applications and communities, IEEE Comput. Sci. Eng. 16 (2) (2014) 34–43.

[2] D. W. Wright, B. A. Hall, O. A. Kenway, S. Jha, P. V. Coveney, Computing clinically relevant binding free energies of HIV-1 protease inhibitors, Journal of Chemical Theory and Computation 10 (3) (2014) 1228–1241.

[3] A. Hoekstra, B. Chopard, P. V. Coveney, Multiscale modelling and simulation: a position paper, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2021).

[4] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro, D. Groen, O. Hoenen, A. Mizeranschi, J. L. Suter, D. Coster, P. V. Coveney, W. Dubitzky, A. G. Hoekstra, P. Strand, B. Chopard, Performance of distributed multiscale simulations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2021).

[5] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, Journal of Computer Science and Technology 21 (4) (2006) 513–520.

[6] The UNICORE Project, http://www.unicore.org.
[7] gLite Middleware, http://glite.web.cern.ch/glite/.

[8] M. Hayes, L. Morris, R. Crouchley, D. Grose, T. Van Ark, R. Allan, J. Kewley, Growl: A lightweight grid services toolkit and applications, in: 4th UK e-Science All Hands Meeting, Nottingham, UK, 2005.

[9] Longbow - http://www.hecbiosim.ac.uk/wikis/index.php/Longbow (2015).

[10] L. Goodstadt, Ruffus: a lightweight python library for computational pipelines, Bioinformatics 26 (21) (2010) 2778–2779.

[11] J. Koester, S. Rahmann, Snakemake – a scalable bioinformatics workflow engine, Bioinformatics 28 (19) (2012) 2520–2522.

[12] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, D. Groen, P. V. Coveney, A. G. Hoekstra, Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment, Journal of Computational Science 5 (5) (2014) 719–731.

[13] C. Docan, M. Parashar, S. Klasky, Dataspaces: an interaction and coordination framework for coupled simulation workflows, Cluster Computing 15 (2) (2012) 163–181.

[14] D. Groen, S. Rieder, S. P. Zwart, MPWide: a light-weight library for efficient message passing over wide area networks, Journal of Open Research Software 1 (1) (2013) e9.

[15] S. F. Portegies Zwart, S. L. McMillan, A. van Elteren, F. I. Pelupessy, N. de Vries, Multi-physics simulations using a hierarchical interchangeable software interface, Computer Physics Communications 184 (3) (2013) 456–468.

[16] CouPE - sites.google.com/site/coupempf/ (2015).

[17] D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandi, Moose: A parallel computational framework for coupled systems of nonlinear equations, Nuclear Engineering and Design 239 (10) (2009) 1768 – 1778.

[18] J. B. Gregersen, P. J. A. Gijsbers, S. J. P. Westen, OpenMI: Open modelling interface, Journal of Hydroinformatics 9 (3) (2007) 175–191.
[19] S. J. Zasada, P. V. Coveney, Virtualizing access to scientific applications with the application hosting environment, Computer Physics Communications 180 (12) (2009) 2513 – 2525.

[20] C. C. Lian, F. Tang, P. Issac, A. Krishnan, GEL: Grid execution language, Journal of Parallel and Distributed Computing 65 (7) (2005) 857–869.

[21] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. Foster, Swift: A language for distributed parallel scripting, Parallel Computing 39 (9) (2011) 633–652. doi:10.1016/j.parco.2011.05.005.

[22] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, Workflows for e-Science: scientific workflows for grids, Springer Publishing Company, Incorporated, 2014.

[23] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones, E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the kepler system, Concurrency and Computation: Practice and Experience 18 (10) (2006) 1039–1065.

[24] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud, Nucleic Acids Research (2013) 328.

[25] K. Ryczek, M. Bubak, E. Ciepiela, D. Harelak, T. Gubaa, J. Meizner, M. Pawlik, B. Wilk, Composing, execution and sharing of multiscale applications, Future Generation Computer Systems 53 (0) (2015) 77 – 87.

[26] B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow, E. Deelman, D. D. Roure, J. Freire, C. Goble, M. Jones, S. Klasky, T. McPhillips, N. Podhorszki, C. Silva, I. Taylor, M. Vouk, Scientific process automation and workflow management, Scientific Data Management: Challenges, Existing Technology, and Deployment, Computational Science Series 230 (2009) 476–508.

[27] J. Forcier, Fabric; http://www.fabfile.org (2014).
[28] YAML - www.yaml.org (2015).

[29] IGTF: Interoperable Global Trust Federation, https://www.igtf.net/.

[30] B. Beckles, V. Welch, J. Basney, Mechanisms for increasing the usability of grid security, International Journal of Human-Computer Studies 63 (1/2) (2005) 74–101.

[31] S. J. Zasada, A. N. Haidar, P. V. Coveney, On the usability of grid middleware and security mechanisms, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369 (1949) (2011) 3413–3428.

[32] Fabric SSH Keymanager, https://github.com/farridav/keymanager.

[33] M. D. Mazzeo, P. V. Coveney, HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries, Computer Physics Communications 178 (12) (2008) 894–914.

[34] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bernabeu, P. V. Coveney, Analyzing and modeling the performance of the HemeLB lattice-Boltzmann simulation environment, Journal of Computational Science 4 (5) (2013) 412 – 422.

[35] Neurological simulation milestone reached after UCL embraces Allinea’s tools on UK’s largest supercomputer, http://www.allinea.com/news/201406/neurological-simulation-milestone-reached-after-ucl-embraces-allinea%E2%80%99s-tools-uk%E2%80%99s.

[36] M. A. Itani, U. D. Schiller, S. Schmieschek, J. Hetherington, M. O. Bernabeu, H. Chandrashekar, F. Robertson, P. V. Coveney, D. Groen, An automated multiscale ensemble simulation approach for vascular blood flow, Journal of Computational Science 9 (2015) 150–155.

[37] M. O. Bernabeu, M. L. Jones, J. H. Nielsen, T. Krüger, R. W. Nash, D. Groen, S. Schmieschek, J. Hetherington, H. Gerhardt, C. A. Franco, P. V. Coveney, Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis, Journal of The Royal Society Interface 11 (99).
[38] C. A. Franco, M. L. Jones, M. O. Bernabeu, I. Geudens, T. Mathivet, A. Rosa, F. M. Lopes, A. P. Lima, A. Ragab, R. T. Collins, L.-K. Phng, P. V. Coveney, H. Gerhardt, Dynamic endothelial cell rearrangements drive developmental vessel regression, PLoS Biol 13 (4) (2015) e1002125.

[39] J. R. Cebral, F. Mut, J. Weir, C. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms, American Journal of Neuroradiology 32 (1) (2011) 145–151.

[40] R. W. Nash, H. B. Carver, M. O. Bernabeu, J. Hetherington, D. Groen, T. Krüger, P. V. Coveney, Choice of boundary condition for lattice-boltzmann simulation of moderate-reynolds-number flow in complex domains, Phys. Rev. E 89 (2014) 023303.

[41] S. Manini, L. Antiga, L. Botti, A. Remuzzi, pyns: An open-source framework for 0d haemodynamic modelling, Annals of biomedical engineering (2014) 1–13.

[42] J. L. Suter, D. Groen, P. V. Coveney, Chemically specific multiscale modeling of claypolymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties, Advanced Materials 27 (6) (2015) 966–984.

[43] J. L. Suter, D. Groen, P. V. Coveney, Mechanism of exfoliation and prediction of materials properties of claypolymer nanocomposites from multiscale modeling, Nano Letters doi:10.1021/acs.nanolett.5b03547.

[44] S. S. Ray, Recent trends and future outlooks in the field of clay-containing polymer nanocomposites, Macromol. Chem. Phys. 215 (12) (2014) 1162–1179.

[45] S. Wan, B. Knapp, D. W. Wright, C. M. Deane, P. V. Coveney, Rapid, precise, and reproducible prediction of Peptide-MHC binding affinities from molecular dynamics that correlate well with experiment, Journal of Chemical Theory and Computation 11 (7) (2015) 3346–3356.

[46] S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, P. V. Coveney, Automated molecular simulation based binding affinity calculator for ligand-bound hiv-1 proteases, Journal of chemical information and modeling 48 (9) (2008) 1909–1919.
[47] S. K. Sadiq, D. W. Wright, O. A. Kenway, P. V. Coveney, Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant hiv-1 proteases, Journal of Chemical Information and Modeling 50 (5) (2010) 890–905.

[48] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Computer Physics Communications 91 (1) (1995) 1–41.

[49] P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, T. E. Cheatham, Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Accounts of Chemical Research 33 (12) (2000) 889–897.

[50] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, The amber biomolecular simulation programs, Journal of computational chemistry 26 (16) (2005) 1668–1688.

[51] FESetup - http://www.hecbiosim.ac.uk/fesetup/download/0-/3-fesetup (2015).

[52] N. Homeyer, H. Gohlke, FEW: A workflow tool for free energy calculations of ligand binding, Journal of Computational Chemistry 34 (11) (2013) 965–973.

[53] L. Wang, Y. Wu, Y. Deng, B. Kim, L. Pierce, G. Krilov, D. Lupyan, S. Robinson, M. K. Dahlgren, J. Greenwood, D. L. Romero, C. Masse, J. L. Knight, T. Steinbrecher, T. Beuming, W. Damm, E. Harder, W. Sherman, M. Brewer, R. Wester, M. Murcko, L. Frye, R. Farid, T. Lin, D. L. Mobley, W. L. Jorgensen, B. J. Berne, R. A. Friesner, R. Abel, Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field, Journal of the American Chemical Society 137 (7) (2015) 2695–2703.
S. Pronk, I. Pouya, M. Lundborg, G. Rotskoff, B. Wesn, P. M. Kasson, E. Lindahl, Molecular simulation workflows as parallel algorithms: The execution engine of copernicus, a distributed high-performance computing platform, Journal of Chemical Theory and Computation 11 (6) (2015) 2600–2608.

S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostолов, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics.