Introduction

Les milieux granulaires

Avant tout, qu'est-ce qu'un milieu granulaire ? C'est un assemblage de nombreux éléments solides, qui peuvent interagir par exemple lors de collisions, mais aussi sous l'effet de forces électromagnétiques ou gravitationnelles. Ces éléments, désignés sous le terme générique de *grains*, sont généralement arrangés de manière désordonnée et présentent souvent des différences de forme, de taille et d'état de surface. On trouve des milieux granulaires à toutes les échelles : des fines poudres compactées composant les cachets d'aspirine, en passant par les dunes du désert, jusqu'au ballast des voies ferrées et aux anneaux de Saturne. La structure et les propriétés de ces milieux ne dépendent pas seulement des caractéristiques des grains, mais aussi de l'histoire du milieu, c'est-à-dire de l'ensemble des mouvements subis, des traitements appliqués, etc.

Bien que la définition ne s'applique en principe qu'à des objets inanimés, on pourrait la généraliser aux êtres humains ou aux animaux et considérer les foules compactes, les pelotons cyclistes, les bancs de poissons et les nuées d'oiseaux comme des milieux granulaires. La différence essentielle est que chaque "grain" est doué d'intelligence et n'est pas simplement soumis aux lois de la physique. Cependant, le mouvement de chacun est entravé et dépend de la position et du mouvement des autres, comme pour les grains inertes.

Les milieux granulaires ont une place très importante dans de nombreux secteurs de l'activité humaine. En effet, on les rencontre aussi bien en génie civil (ballast des voies ferrées, sables, ciments, bétons, routes, digues, etc.), qu'en mécanique des sols et des roches, ou encore dans l'industrie pharmaceutique et chimique (mélanges de poudres), sans oublier tout le secteur agro-alimentaire (céréales, farines, design des silos, etc.). De nombreuses matières premières (céréales, charbon, sel, etc.) se présentent sous forme granulaire ou pulvérulente et sont trans-
portées, stockées, mélangées, ou transformées. Le comportement de ces milieux sous diverses sollicitations est d'un grand intérêt : les industriels aimeraient bien, par exemple, savoir réaliser des bétons homogènes à partir de sables formés de grains de tailles différentes ou encore fabriquer des comprimés de concentrations fixes en mélangeant des poudres.

Bien que très banals, les milieux granulaires présentent une variété de comportements qui les rendent incassables parmi les trois états de la matière habituels, à savoir solide, liquide et gazeux. Prenons le simple exemple du tas de sable sec. Ce n'est pas un solide, car s'il résiste apparemment à la compression (ce n'est donc pas un gaz), il ne résiste pas à l'étirement. Pourtant, tant que la pente de sa surface ne dépasse pas une certaine limite, il ne se passe rien, et il s'apparente assez à un solide ; mais si la pente augmente trop, il se produit des avalanches à sa surface, ce qui donne à sa couche superficielle un caractère presque liquide. Cependant, ce n'est pas un liquide, puisque, au repos, sa surface n'est pas horizontale. Cette ambivalence a fait dire à certains auteurs qu'il s'agit là d'un quatrième état de la matière, situé entre le solide et le liquide. Ces milieux ont par ailleurs des propriétés que l'on ne trouve dans aucun des trois autres états, parmi lesquelles on peut citer l'effet de voûte, la dilatance* et la ségrégation*.

Le caractère répandu des milieux granulaires a amené les hommes de sciences à déterminer empiriquement bon nombre de leurs comportements, sans qu'il y ait une compréhension profonde de leurs propriétés. Plusieurs démarches pour les étudier ont été tentées, les plus répandues jusqu'à ces dernières années étant l'expérience en laboratoire et l'observation granulaire nature.

Cela fait plusieurs siècles que les poudres et les matériaux granulaires intéressent les chercheurs. Déjà Lucrèce, utilisant l'image de grains de poussière en perpétuelle agitation dans un rai de lumière, illustrait le mouvement incessant que révélerait l'étude microscopique des atomes d'un fluide. Les observations de Kepler, Descartes ou Buffon sur des grains macroscopiques ou sur des empilements de pommes grenades et de petits pois, sont à l'origine de la science de la matière et des matériaux. Coulomb, qui s'intéressait à l'art des fortifications et au problème des talus, a pris en compte les forces de friction pour expliquer pourquoi le tas de sable ne s'étale pas sous l'effet de la pesanteur. Dès 1773, il écrivait une condition mathématique pour qu'une nappe de sable puisse glisser sur la surface d'un tas, condition qui permet d'obtenir l'inclinaison maximale d'un talus. En 1885, Reynolds faisait remarquer qu'un milieu granulaire doit d'abord se dilater pour pouvoir se déformer, sinon les grains sont trop imbriqués pour pouvoir bouger. Voilà pourquoi un paquet de café mis sous vide est pratiquement indéformable. Et c'est vers 1920, avec Terzaghi, qu'apparaissent les premiers travaux de mécanique analysant les phénomènes à l'échelle des grains ; jusqu'alors, on se contentait de la mécanique des milieux continus pour décrire le comportement des milieux granulaires.

Avec l'amélioration foudroyante des possibilités informatiques, une nouvelle approche est apparue à la fin des années septante avec l'article quasi mythique de Cundall et Strack1 : la

1voir 3-[Cun79]
INTRODUCTION

simulation numérique. Bien que la puissance des ordinateurs soit encore un peu faible pour des milieux composés d'un très grand nombre de grains - disons plus de dix mille - nul doute que dans un avenir proche, étant donnée la vertigineuse courbe de progression de la puissance des ordinateurs, la simulation sera un moyen d'étude majeur. Cette approche implique une collaboration étroite entre physiciens et informaticiens pour obtenir les meilleurs résultats du point de vue du réalisme et de la rapidité des calculs.

Démarche

utilisant des méthodes provenant de la mécanique, de l'analyse numérique, de la géométrie, de l'algorithmique et de l'informatique, cette thèse a été réalisée au département de Mathématiques de l'École Polytechnique Fédérale de Lausanne (Suisse). L'avantage est que l'on y dispose d'ordinateurs relativement puissants. L'inconvénient est que l'on ne peut pas effectuer de tests en laboratoire, puisque ce département ne dispose pas des installations nécessaires. Heureusement, nous avons eu des contacts avec le Laboratoire de Mécanique des Roches de l'EPFL, ce qui nous a permis de confronter certaines de nos simulations à une expérience menée là-bas. Nous avons comparé nos autres résultats aux expériences présentées dans la littérature.

Nous nous sommes restreints à la simulation des milieux granulaires secs et sans cohésion. Notre but n'était pas de développer de nouvelles théories sur le contact, mais de mettre en œuvre des méthodes géométriques et informatiques suffisamment puissantes pour obtenir des simulations plus rapides. Ainsi, toutes les lois de contact proviennent de la littérature scientifique. Nous avons cependant privilégié des modèles encore peu utilisés (l'école des corps indéformables) et avons comparé leurs avantages et leurs inconvénients avec ceux des modèles plus répandus (l'école des corps déformables).

Contribution de cette thèse

Bien que nous ayons fait des observations intéressantes, la contribution principale de cette thèse ne concerne pas directement les milieux granulaires, mais la façon dont on définit le voisinage et dont on détecte les contacts. C'est en effet la première fois, à notre connaissance, que l'on utilise une triangulation à cet effet. La plupart des modèles programmés jusqu'ici ont été l'œuvre de physiciens ou d'ingénieurs civils qui ont plus mis l'accent sur la physique du modèle que sur la programmation. Leur modèle physique est très élaboré, mais leurs simulations sont certainement lentes (en fait, le temps de calcul est rarement mentionné dans les articles), parce qu'ils n'utilisent pas le principe de localité de manière optimale ou que leurs structures de données ne sont pas parfaitement adaptées. Dans cette thèse, les rôles sont inversés : ce n'est pas un physicien qui va programmer, mais un informaticien qui va utiliser les modèles théoriques des physiciens.
Nous nous sommes également intéressés au parallélisme. C'est à notre avis une des voies les plus prometteuses pour simuler des milieux granulaires de grande taille. Nous paralléliserons le modèle le plus utilisé dans la simulation par éléments distincts, le modèle de Cundall, tout en conservant l'usage de la triangulation.

On s'attardera aussi un peu sur les automates cellulaires qui sont dignes d'intérêt à plusieurs titres, notamment du fait qu'ils sont très rapides et que les lois physiques sont remplacées par des lois d'évolution.

Organisation de ce rapport

En feuilletant rapidement cette thèse, on verra qu'elle est composée de huit parties. Après avoir fait un état de l'art (chapitre 1), nous présenterons dans le chapitre 2 les automates cellulaires et leur intérêt dans la simulation des milieux granulaires. Nous disserterons ensuite sur l'utilisation de l'école des *corps indéformables* en l'opposant à l'école des *corps déformables*: après une explication sommaire des modèles utilisés (chapitre 3), nous verrons comment utiliser les triangulations dans deux cas de figure, à savoir lorsque les grains sont modélisés par des disques (chapitre 4), puis par des polygones (chapitre 5). C'est à partir du chapitre 4 que le caractère original de cette thèse apparaît. On discutera des aspects informatiques, et des applications seront présentées dans chacun de ces chapitres. Dans le chapitre 6, nous verrons comment utiliser nos triangulations avec le modèle de Cundall, que nous utiliserons pour “reproduire” une expérience réelle menée au département de Génie Civil. Nous parlerons parallélisme au chapitre 7, avant de nous intéresser aux techniques utilisables à trois dimensions et de voir pourquoi les triangulations s'y adaptent mal (chapitre 8). Pour terminer, on présentera, après la conclusion, la bibliographie que l'on a construite tout au long de ce travail de thèse.

Nous avons écrit cette thèse en prenant le parti de nous adresser à des non-spécialistes, étant donné qu'elle regroupe plusieurs disciplines. Cependant, comme il eût été fastidieux de partir de zéro, on supposera connues certaines notions de base, tout en donnant des références que le lecteur pourra consulter au besoin.