COMPONENTS OF $V(\rho) \otimes V(\rho)$

SHRAWAN KUMAR
(WITH AN APPENDIX BY ROCCO CHIRIVÌ AND ANDREA MAFFEI)

1. INTRODUCTION

Let \mathfrak{g} be any simple Lie algebra over \mathbb{C}. We fix a Borel subalgebra \mathfrak{b} and a Cartan subalgebra $\mathfrak{t} \subset \mathfrak{b}$ and let ρ be the half sum of positive roots, where the roots of \mathfrak{b} are called the positive roots. For any dominant integral weight $\lambda \in \mathfrak{t}^*$, let $V(\lambda)$ be the corresponding irreducible representation of \mathfrak{g}. B. Kostant initiated (and popularized) the study of the irreducible components of the tensor product $V(\rho) \otimes V(\rho)$. In fact, he asked (or possibly even conjectured) if the following is true.

Question 1. (Kostant) Let λ be a dominant integral weight. Then, $V(\lambda)$ is a component of $V(\rho) \otimes V(\rho)$ if and only if $\lambda \leq 2\rho$ under the usual Bruhat-Chevalley order on the set of weights.

It is, of course, clear that if $V(\lambda)$ is a component of $V(\rho) \otimes V(\rho)$, then $\lambda \leq 2\rho$.

One of the main motivations behind Kostant’s question was his result that the exterior algebra $\wedge \mathfrak{g}$, as a \mathfrak{g}-module under the adjoint action, is isomorphic with 2^r copies of $V(\rho) \otimes V(\rho)$, where r is the rank of \mathfrak{g} (cf. [Ko]). Recall that $\wedge \mathfrak{g}$ is the underlying space of the standard chain complex computing the homology of the Lie algebra \mathfrak{g}, which is, of course, an object of immense interest.

Definition 2. An integer $d \geq 1$ is called a saturation factor for \mathfrak{g}, if for any $(\lambda, \mu, \nu) \in D^3$ such that $\lambda + \mu + \nu$ is in the root lattice and the space of \mathfrak{g}-invariants:

$$[V(N\lambda) \otimes V(N\mu) \otimes V(N\nu)]^0 \neq 0$$

for some integer $N > 0$, then

$$[V(d\lambda) \otimes V(d\mu) \otimes V(d\nu)]^0 \neq 0,$$

where $D \subset \mathfrak{t}^*$ is the set of dominant integral weights of \mathfrak{g}. Such a d always exists (cf. [Ku; Corollary 44]).

Recall that 1 is a saturation factor for $\mathfrak{g} = sl_n$, as proved by Knutson-Tao [KT]. By results of Belkale-Kumar [BK] (also obtained by Sam [S]) and Hong-Shen [HS], d can be taken to be 2 for \mathfrak{g} of types B_r, C_r and d can be
taken to be 4 for \mathfrak{g} of type D, by a result of Sam [S]. As proved by Kapovich-Millson [KM$_1$, KM$_2$], the saturation factors d of \mathfrak{g} of types G_2, F_4, E_6, E_7, E_8 can be taken to be 2 (in fact any $d \geq 2$), 144, 36, 144, 3600 respectively. (For a discussion of saturation factors d, see [Ku, §10].)

Now, the following (weaker) result is our main theorem. The proof uses a description of the eigencone of \mathfrak{g} in terms of certain inequalities due to Berenstein-Sjamaar coming from the cohomology of the flag varieties associated to \mathfrak{g}, a ‘non-negativity’ result due to Belkale-Kumar and Proposition (9) due to R. Chirivi and A. Maffei given in the Appendix.

An interesting aspect of our work is that we make an essential use of a solution of the eigenvalue problem and saturation results for any \mathfrak{g}.

Theorem 3. Let λ be a dominant integral weight such that $\lambda \leq 2\rho$. Then, $V(d\lambda) \subset V(d\rho) \otimes V(d\rho)$, where $d \geq 1$ is any saturation factor for \mathfrak{g}.

In particular, for $\mathfrak{g} = sl_n$, $V(\lambda) \subset V(\rho) \otimes V(\rho)$.

Acknowledgements. I thank Corrado DeConcini who brought to my attention Question (1). Partial support from NSF grant number DMS-1501094 is gratefully acknowledged.

2. Proof of Theorem (3)

We now prove Theorem (3).

Proof. Let $\Gamma_3(\mathfrak{g})$ be the saturated tensor semigroup defined by

$$\Gamma_3(\mathfrak{g}) = \{ (\lambda, \mu, \nu) \in D^3 : [V(N\lambda) \otimes V(N\mu) \otimes V(N\nu)]^G \neq 0 \text{ for some } N > 0 \}.$$

To prove the theorem, it suffices to prove that $(\rho, \rho, \lambda^*) \in \Gamma_3(G)$, where λ^* is the dual weight $-w_o\lambda$, w_o being the longest element of the Weyl group of \mathfrak{g}. Let G be the connected, simply-connected complex algebraic group with Lie algebra \mathfrak{g}. Let B (resp. T) be the Borel subgroup (resp. maximal torus) of G with Lie algebra \mathfrak{b} (resp. \mathfrak{t}). Let W be the Weyl group of G. For any standard parabolic subgroup $P \supset B$ with Levi subgroup L containing T, let W^P be the set of smallest length coset representatives in W/W_L, W_L being the Weyl group of L. Then, we have the Bruhat decomposition:

$$G/P = \sqcup_{w \in W^P} \Lambda_w^P, \text{ where } \Lambda_w^P := BwP/P.$$

Let $\bar{\Lambda}_w$ denote the closure of Λ_w in G/P. We denote by $[\bar{\Lambda}_w]$ the Poincaré dual of its fundamental class. Thus, $[\bar{\Lambda}_w]$ belongs to the singular cohomology:

$$[\bar{\Lambda}_w] \in H^{2\dim G/P - \ell(w)}(G/P, \mathbb{Z}),$$

where $\ell(w)$ is the length of w.

Let $\{x_j\}_i \subseteq \mathfrak{t}$ be the dual to the simple roots $\{\alpha_i\}_i \subseteq \mathfrak{t}$, i.e.,

$$\alpha_i(x_j) = \delta_{i,j}.$$
In view of [BS] (or [Ku; Theorem 10]), it suffices to prove that for any standard maximal parabolic subgroup P of G and triple $(u, v, w) \in (W^P)^3$ such that the cup product of the corresponding Schubert classes in G/P:

(1) \[[\overline{\Lambda}_u^P] \cdot [\overline{\Lambda}_v^P] \cdot [\overline{\Lambda}_w^P] = k[\overline{\Lambda}_e^P] \in H^*(G/P, \mathbb{Z}), \text{ for some } k \neq 0, \]

the following inequality is satisfied:

(2) \[\rho(ux_P) + \rho(vx_P) + \lambda'(wx_P) \leq 0. \]

Here, $x_P := x_{\alpha_P}$, where α_P is the unique simple root not in the Levi of P.

Now, by [BK1; Proposition 17(a)] (or [Ku; Corollary 22 and Identity (9)]), for any $u, v, w \in (W^P)^3$ such that the equation (1) is satisfied,

(3) \[(\chi_{w_ow_0^P} - \chi_u - \chi_v)(x_P) \geq 0, \]

where w_0^P is the longest element in the Weyl group of L and

$\chi_w := \rho - 2\rho^L + w^{-1}\rho$

(ρ^L being the half sum of positive roots in the Levi of P).

Now,

(4) \[(\chi_{w_ow_0^P} - \chi_u - \chi_v)(x_P) = (\rho - w_0^P w^{-1}\rho - \rho - u^{-1}\rho - v^{-1}\rho)(x_P), \text{ since } \rho^L(x_P) = 0 \]

Combining (3) and (4), we get

(5) \[(\rho + u^{-1}\rho + v^{-1}\rho + w^{-1}\rho)(x_P) \leq 0, \text{ if (1) is satisfied.} \]

We next claim that for any dominant integral weight $\lambda \leq 2\rho$ and any $u, v, w \in (W^P)^3$,

(6) \[\rho(ux_P) + \rho(vx_P) + \lambda'(wx_P) \leq (\rho + u^{-1}\rho + v^{-1}\rho + w^{-1}\rho)(x_P), \]

which is equivalent to

(7) \[\lambda'(wx_P) \leq (\rho + w^{-1}\rho)(x_P). \]

Of course (5) and (6) together give (2). So, to prove the theorem, it suffices to prove (7). Since the assumption on λ in the theorem is invariant under the transformation $\lambda \mapsto \lambda'$, we can replace λ' by λ in (7). By Proposition (9) in the appendix, $\lambda = \rho + \beta$, where β is a weight of $V(\rho)$ (i.e., the weight space of $V(\rho)$ corresponding to the weight β is nonzero). Thus,

\[\lambda(wx_P) = \rho(wx_P) + \beta(x_P), \text{ for some weight } \beta \text{ of } V(\rho). \]

Hence,

\[\lambda(wx_P) = \rho(wx_P) + \beta(x_P) \leq (w^{-1}\rho + \rho)(x_P). \]

This establishes (7) and hence the theorem is proved. \qed
We recall the following conjecture due to Kapovich-Millson [KM$_1$] (or [Ku; Conjecture 47]).

Conjecture 4. Let \(\mathfrak{g} \) be a simple, simply-laced Lie algebra over \(\mathbb{C} \). Then, \(d = 1 \) is a saturation factor for \(\mathfrak{g} \).

The following theorem follows immediately by combining Theorem (3) and Conjecture (4).

Theorem 5. For any simple, simply-laced Lie algebra \(\mathfrak{g} \) over \(\mathbb{C} \), assuming the validity of Conjecture (4), Question (1) has an affirmative answer for \(\mathfrak{g} \), i.e., for any dominant integral weight \(\lambda \leq 2\rho \), \(V(\lambda) \) is a component of \(V(\rho) \otimes V(\rho) \).

Thus, assuming the validity of Conjecture (4), Question (1) has an affirmative answer for any simple \(\mathfrak{g} \) of type \(D_r \) (\(r \geq 4 \); \(E_6 \); \(E_7 \); and \(E_8 \) as well (apart from \(\mathfrak{g} \) of type \(A_r \) as in Theorem (3)).

Remark 6. By an explicit calculation using the program LIE, it is easy to see that Question (1) has an affirmative answer for simple \(\mathfrak{g} \) of types \(G_2 \) and \(F_4 \) as well.
3. APPENDIX (DUE TO R. CHIRIVÌ AND A. MAFFEI)

We follow the notation and assumptions from the Introduction. In particular, \(\mathfrak{g}\) is a simple Lie algebra over \(\mathbb{C}\). Let \(\{\omega_i\}_{i \in I}\) be the fundamental weights, \(\{\alpha_i\}_{i \in I}\) the simple roots, and \(\{s_i\}_{i \in I}\) the simple reflections, where \(I := \{1 \leq i \leq r\}\). For any \(J \subset I\), let \(W_J\) be the parabolic subgroup of the Weyl group \(W\) generated by \(s_j\) with \(j \in J\) and let \(\Phi_J\) be the root system generated by the simple roots \(\alpha_j\) with \(j \in J\). Set

\[\Omega := \bigoplus_{i \in I} \mathbb{R}\omega_i; \quad \Omega_J := \bigoplus_{j \in J} \mathbb{R}\omega_j,\]

and let \(\pi_J : \Omega \to \Omega_J\) be the projection with kernel \(\Omega_{I \setminus J}\). The projection \(\pi_J(\Phi_J)\) of the roots in \(\Phi_J\) gives a root system whose fundamental weights are given by \(\{\omega_j : j \in J\}\).

Let \(A \subset \mathfrak{t}^*\) be the dominant cone, \(B \subset \mathfrak{t}^*\) the cone generated by \(\{-\alpha_i : i \in I\}\) and \(C := 2\rho + B\). We want to describe the vertices of the polytope \(A \cap C\). For \(J \subset I\) define

\[A_J := \mathbb{R}_{\geq 0}[\omega_j : j \in J], \quad B_J := \mathbb{R}_{\geq 0}[-\alpha_j : j \in J] \quad \text{and} \quad C_J := 2\rho + B_J.\]

The sets \(A_J\) and \(B_J\) are the faces of \(A\) and \(B\). The vertices of the polytope \(A \cap C\) are given by the zero dimensional nonempty intersections of the form \(A_J \cap C_H\).

For any \(J \subset I\), let \(b_J := \sum_{\alpha \in \Phi_J^+} \alpha\) and \(c_J := 2\rho - b_J\). All these points are different. Moreover, \(c_I = 0\) and \(c_0 = 2\rho\).

Lemma 7. For each \(J \subset I\), we have

\[A_{I \setminus J} \cap C_J = \{c_J\}.\]

Moreover, none of the other intersections \(A_H \cap C_K\) give a single point.

Proof. Observe that

\[b_J = 2 \sum_{j \in J} \omega_j + \sum_{\ell \not\in J} a_\ell \omega_\ell, \quad \text{where} \quad a_\ell \leq 0.\]

Hence, \(c_J \in A_{I \setminus J} \cap C_J\).

Consider now an intersection of the form \(A_{I \setminus H} \cap C_K\). Assume it is not empty and that \(y = 2\rho - x \in A_{I \setminus H} \cap C_K\). Then, \(x = 2 \sum_{h \in H} \omega_h + \sum_{\ell \in H} d_\ell \omega_\ell\). Now, notice that if \(h \notin K\), the coefficient of \(\omega_h\) in \(x\) can not be positive. So, we must have \(K \supset H\). If \(K \supset H\) and \(K \neq H\), then

\[A_{I \setminus H} \cap C_K \supset (A_{I \setminus H} \cap C_H) \cup (A_{I \setminus K} \cap C_K) \supset \{c_H, c_K\}.\]

Hence, it is not a single point.
It remains to prove that $A_{I-J} \cap C_J \subset \{c_J\}$. Let $y = 2\rho - x$ as before. Notice that $\pi_J(x) = 2 \sum_{j \in J} \omega_j$ and $\pi_J(x) = \sum_{\alpha \in \Phi^+} \pi_J(\alpha)$. Since π_J is injective on B_J, we must have $x = b_J$ and the claim follows.

We have the following Corollary.

Corollary 8. The intersection $A \cap C$ is the convex hull of the points $\{c_J : J \subset I\}$.

We now prove the following main result of this Appendix.

Proposition 9. Let $\lambda \leq 2\rho$ be a dominant integral weight. Then,

$$\lambda = \rho + \beta,$$

for some weight β of $V(\rho)$.

Proof. Let $Q \subset \mathfrak{t}^*$ be the root lattice (generated by the simple roots) and let H_ρ be the convex hull of the weights $\{w(\rho) : w \in W\}$. Recall that the weights of the module $V(\rho)$ are precisely the elements of the intersection

$$(\rho + Q) \cap H_\rho.$$

If λ is as in the proposition, then it is clear that $\lambda - \rho \in \rho + Q$. So, we need to prove that it belongs to H_ρ. To check this, it is enough to check that $(A \cap C) - \rho \subset H_\rho$ or equivalently that

$$c_J - \rho \in H_\rho, \text{ for all } J \subset I.$$

We have

$$c_J - \rho = \rho - b_J = w_o^J(\rho) \in H_\rho,$$

where w_o^J is the longest element in the parabolic subgroup W_J. Indeed, to prove the last equality, observe that $\rho - w_o^J(\rho)$ is a sum of roots α_j with $j \in J$. So, since π_J is injective on B_J, it is enough to check that $\pi_J(\rho - w_o^J(\rho)) = \pi_J(b_J)$. Hence, we are reduced to study the case in which $J = I$, for which we have $w_o^I(\rho) = -\rho$ and $\rho - w_o^I(\rho) = 2\rho = b_I$. \qed

REFERENCES

[BK1] P. Belkale and S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, *Invent. Math.* 166 (2006), 185-228.

[BK2] P. Belkale and S. Kumar, Eigencone, saturation and Horn problems for symplectic and odd orthogonal groups, *J. Alg. Geom.* 19 (2010), 199–242.

[BS] A. Berenstein and R. Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, *J. Amer. Math. Soc.* 13 (2000), 433–466.

[HS] J. Hong and L. Shen, Tensor invariants, saturation problems, and Dynkin automorphisms, Preprint (2015).

[KM1] M. Kapovich and J. J. Millson, Structure of the tensor product semigroup, *Asian J. of Math.* 10 (2006), 492–540.
COMPONENTS OF $V(\rho) \otimes V(\rho)$

[KM$_2$] M. Kapovich and J. J. Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory, *Groups, Geometry and Dynamics* 2 (2008), 405–480.

[KT] A. Knutson and T. Tao, The honeycomb model of $\text{GL}_n(\mathbb{C})$ tensor products I: Proof of the saturation conjecture, *J. Amer. Math. Soc.* 12 (1999), 1055–1090.

[Ko] B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition, $C(\mathfrak{g}) = \text{End} V_{\rho} \otimes C(P)$, and the \mathfrak{g}-module structure of $\wedge \mathfrak{g}$, *Adv. Math.* 125 (1997), 275–350.

[Ku] S. Kumar, A survey of the additive eigenvalue problem (with appendix by M. Kapovich), *Transformation Groups* 19 (2014), 1051–1148.

[S] S. Sam, Symmetric quivers, invariant theory, and saturation theorems for the classical groups, *Adv. Math.* 229 (2012), 1104–1135.

Addresses:

Shrawan Kumar: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA (shrawan@email.unc.edu)

Rocco Chirivi: Department of Mathematics and Physics, Università del Salento, Lecce, Italy (rocco.chirivi@unisalento.it)

Andrea Maffei: Dipartimento di Matematica, Università di Pisa, Pisa, Italy (maffei@dm.unipi.it)