HSP72 is a Mitochondrial Stress Sensor Critical for Parkin Action, Oxidative Metabolism, and Insulin Sensitivity in Skeletal Muscle

Brian G. Drew¹, Vicente Ribas¹, Jamie A. Le¹, Darren C. Henstridge², Jennifer Phun¹, Zhenqi Zhou¹, Teo Soleymani¹, Pedram Daraei¹, Daniel Sitz¹, Laurent Vergnes³, Jonathan Wanagat⁴, Karen Reue³, Mark A. Febbraio², Andrea L. Hevener¹,⁵

¹David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, University of California, Los Angeles, CA, USA
²Baker IDI Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004 Australia
³David Geffen School of Medicine, Department of Human Genetics, University of California, Los Angeles, CA, USA
⁴David Geffen School of Medicine, Department of Medicine, Division of Geriatrics, University of California, Los Angeles, CA, USA
⁵Address for correspondence: Andrea L. Hevener, PhD
UCLA David Geffen School of Medicine, Division of Endocrinology, Diabetes and Hypertension, 900 Veteran Avenue Warren Hall Suite, 24-130, Los Angeles, CA 90095-7073 USA
Phone: (310) 794-7555
Fax: (310) 794-7654
Email:ahevener@mednet.ucla.edu

Running Title: HSP72, mitochondrial function, and insulin sensitivity

Keywords: Cellular stress response, insulin action, mitophagic signaling
Increased heat shock protein (HSP) 72 expression in skeletal muscle prevents obesity and glucose intolerance in mice, although the underlying mechanisms of this observation are largely unresolved. Herein we show that HSP72 is a critical regulator of stress-induced mitochondrial triage signaling since Parkin, an E3 ubiquitin ligase known to regulate mitophagy, was unable to ubiquitinate and control its own protein expression or that of its central target mitofusin (Mfn) in the absence of HSP72. In WT cells we show that HSP72 rapidly translocates to depolarized mitochondria prior to Parkin recruitment and immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult. In HSP72 knockout mice, impaired Parkin action was associated with retention of enlarged, dysmorphic mitochondria, and paralleled by reduced muscle respiratory capacity, lipid accumulation, and muscle insulin resistance. Reduced oxygen consumption and impaired insulin action were recapitulated in Parkin null myotubes confirming a role for the HSP72-Parkin axis in the regulation of muscle insulin sensitivity. These data suggest that strategies to maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and insulin action to ameliorate complications associated with metabolic diseases including type 2 diabetes.
INTRODUCTION

Cellular stress resistance against inflammatory and metabolic insult is critical for disease prevention and longevity (1-3). The heat shock response is an evolutionarily conserved defense system engaged during stress (e.g. thermal stress, UV exposure, and nutrient oversupply) so as to maintain cellular homeostasis. Heat shock factor (HSF)-1 is a key transcription factor regulating the induction of a number of heat shock proteins (HSP), each identified by molecular mass, e.g. HSP27, HSP40, HSP60, HSP72 and HSP90. We have focused our efforts studying HSP72, the isoform most highly induced during cellular stress and with chronic endurance exercise (4). Importantly, basal HSP72 levels and induction response to cellular stress are diminished in muscle from obese and type 2 diabetic patients (5-6).

To improve our understanding of the relationship between HSP72 expression and disease susceptibility, we experimentally elevated HSP72 specifically in muscle or globally in mice by genetic or pharmacologic means and found that this conferred protection against diet- and leptin deficiency-induced obesity and insulin resistance (6). We hypothesized that the protective effect of HSP72 to maintain insulin action may be due in part to prevention of pro-inflammatory signaling via c-jun N-terminal kinase (JNK) (6). In addition to the potential direct effects of HSP72 in blocking inflammation, oxidative metabolism was elevated in muscle overexpressing HSP72 (6) and this was associated with reduced adipose tissue mass and increased circulating adiponectin levels, factors also associated with preservation of insulin action in the context of overnutrition (6). Although we have provided strong evidence of a relationship between HSP72 expression and insulin action, it has remained unclear whether reduced HSP72 levels are causal for insulin resistance, and if so by what mechanism(s).

For the first time we show that HSP72 translocates to depolarized mitochondria and is critical for regulating functionality of the E3 ubiquitin ligase Parkin, a protein involved in mitochondrial quality control (7). Herein we show that mice lacking HSP72 display glucose intolerance and skeletal muscle insulin resistance. Moreover, Parkin null myotubes recapitulated the impairment in oxygen consumption and insulin action observed with a Parkin loss-of-function phenotype in HSP72-KO mice. Thus, our findings suggest a novel link between diminished HSP72 levels and Parkin inactivation that precipitate derangements in skeletal muscle mitochondrial function and insulin action.

RESEARCH DESIGN AND METHODS

Animals. Male wildtype (WT) and HSP72-knockout (KO) (global null mutation of Hspa1a/ Hspa1b genes; Mutant Mouse Regional Resource Center Repository) were obtained at 8 weeks of age. WT and
KO animals were confirmed to be of pure C57BL/6 background (Jackson Laboratories). Ten cohorts of HSP72-KO mice bred at UCLA were employed for in vivo and ex vivo investigation. Although substrain analysis of inbred cohorts revealed a 16-86% C57BL/6 J:N, specific endpoints, i.e. Parkin protein and insulin action, were similarly and consistently altered between the genotypes of multiple cohorts of animals. Subsequently, knockout mice were backcrossed to WT C57BL/6J or mice with muscle specific transgenic overexpression of HSP72 (mHSP72Tg)(6) to obtain WT, HSP72 homozygous and heterozygous littermates with and without the muscle specific transgene. Male Parkin null and WT mice were obtained from Jackson Laboratories at 10 weeks of age and muscle was harvested at 12 weeks to obtain primary myotubes. All procedures were performed in accordance with the Guide for Care and Use of Laboratory Animals of the National Institutes of Health, and were approved by the Animal Subjects Committee of the University of California, Los Angeles. At age 8-10 weeks, WT and HSP72-KO animals were divided into two groups: basal vs. insulin-stimulated. Animals were studied in the 6h fasted condition unless otherwise specified as fed or starved (STV, 24 h). Ages in which the animals were studied are indicated in Table 1 and in the Figure Legends.

Heat and leupeptin treatment studies. Animals were exposed to one acute heat treatment to assess the induction of HSP72 in WT and HSP72-KO mice. Prior to heat treatment, mice were anesthetized with a mouse cocktail of ketamine, xylazine, and acepromazine maleate as described previously (8). While unconscious, a rectal thermometer was inserted, and mice were placed in a ventilated plastic container wrapped with a heating blanket (6). During heat treatment, body temperature was allowed to rise gradually (10–15 min) to 41.5°C and was maintained at this temperature for a total of 15 min. Animals were euthanized and tissues harvested 30 min after treatment.

To assess whether Parkin protein is degraded by the lysosome under basal conditions, 6h fasted WT mice were treated for 1h with leupeptin (L2884, Sigma-Aldrich; 40 mg/kg; IP injection) to inhibit lysosomal proteases. Quadriceps muscle was harvested for Parkin and LC3B immunoblot analyses.

Circulating factors, glucose tolerance, and ambulatory movement. Blood was drawn from 6 h fasted, 8-, 20-, 28-wk old mice and analyzed for circulating factors: insulin, leptin, resistin (Multiplex, Millipore), and adiponectin (Radioimmunoassay; Millipore). Intraperitoneal glucose tolerance tests (IP-GTTs; 1g/kg dextrose) were performed on 6 h fasted mice as previously described (8-9). In a separate cohort of animals, mice were acclimated to the metabolic chambers (Columbus Instruments) over the first 24 h, and ambulatory movement was recorded over the subsequent 48 h.

Hyperinsulinemic-euglycemic clamp studies. At 28 weeks of age, dual catheters were surgically placed in the right jugular vein and glucose clamp studies were performed 3 days post-surgery as previously described (8-10).
AMPK activity. Muscle lysates were incubated with AMPK α1 and α2-specific antibody-bound protein A agarose beads for 2 h. Sample immunocomplexes were washed and enzyme activity determined in the presence of 200 mM AMP using SAMS peptide as described previously (11).

Muscle fatty acid oxidation and esterification. Fatty acid oxidation and esterification assays were performed on isolated soleus muscle as previously described (12).

Primary HSP72 KO skeletal muscle cells. At 8-12 weeks of age, primary skeletal muscle myoblasts were isolated from WT, HSP72-KO, and Parkin-KO mice as previously described (13). Myoblasts were cultured to confluence then differentiated to myotubes in DMEM/5% horse serum for 5-7 days before experimentation.

Plasmids, cloning and transfections. Cloning was performed using Gateway technology (Invitrogen). The mouse *hspa1b* ORF entry clone was obtained from Open Biosystems (Thermoscientific). HSP72-GFP and HSP72-pAD were generated by shuttling the *hspa1b*-ORF into pcDNA-DEST47 and pAd/CMV/V5-DEST respectively, using LR Clonase Enzyme Mix II as per manufacturer’s instructions (Invitrogen). Parkin-YFP (Addgene plasmid #23955), pDsRed2-mito, and Mfn2 plasmids were kind gifts from Antonio Zorzano (IRB Barcelona, Spain). HA-Parkin and V5-Mfn2 entry clones were generated by BP-cloning (Gateway, Invitrogen) the ORF into pDONR221 using Parkin-YFP and Mfn2 plasmids as templates respectively. Inserts were then shuttled into custom Gateway N-Term HA- and V5-plasmids respectively, using LR clonase as described above. All positive clones were confirmed and sequenced for accuracy. Transfections were performed using Lipofectamine 2000 and PLUS reagent according to the manufacturer’s instructions (Invitrogen).

Cell culture and treatments. HEK293A cells (ATCC) and Neuro2A (N2a) (a gift from Douglas Black, UCLA, USA) cells were maintained in DMEM containing 10% FBS and penicillin/streptomycin at 5% CO₂ and 37°C. C2C12 myoblasts (ATCC) were maintained and proliferated in DMEM/10% FBS, and differentiated in DMEM/2% horse serum. Cell treatments were performed as follows, unless otherwise stated. MG132 (Sigma; cell permeable proteasomal inhibitor used to reduce the degradation of ubiquitin-conjugated proteins) at 20µM for 4 h, carbonyl cyanide *m*-chlorophenyl hydrazone (Sigma; CCCP was used to inhibit oxidative phosphorylation by collapsing the mitochondrial proton gradient) at 20µM for 4 h, bafilomycin A1 (Sigma; Baf is a selective inhibitor of vacuolar H⁺-ATPases and thought to inhibit autophagy by blocking autophagosome-lysosome fusion and lysosomal degradation) at 25nM for 4 h, rotenone (specific inhibitor of electron transfer from iron-sulfur centers in mitochondrial complex I to ubiquinone) at 2µM for 4 h, antimycin (binds cytochrome c reductase inhibiting the oxidation of ubiquinol disrupting the proton gradient and ATP production) 40µM for 4 h and Starvation (STV - HBSS:PBS 1:1 plus 1% horse serum) for 4 h. Imatinib (STI-571), a tyrosine kinase inhibitor
prescribed in the treatment of multiple cancers, was used at 10 µM for 24 h to inhibit c-Abl from phosphorylating Parkin and altering its activity in HEK293A cells (14). Cellular heat shock was performed by placing cells at 42°C for 6 h with a 2 h recovery at 37°C prior to harvest as previously described (6).

Insulin-stimulated 2-deoxyglucose uptake into myocytes. Cultured skeletal muscle cell glucose uptake was performed in 12-well culture plates using the 2-deoxyglucose method described previously (10).

Mitochondrial respiration in cultured muscle cells. Mitochondrial respiration (oxygen consumption) in cultured skeletal muscle cells was measured using an XF24 Extracellular Flux Analyzer by Seahorse Biosciences. Briefly, cells were plated to confluence (24-well plates) and differentiated as described above. Measurements of oxygen consumption were made continuously (every 10 sec) while cells were sequentially treated with oligomycin (ATP synthase inhibitor), FCCP (an uncoupling agent), and rotenone/myxothiazol (inhibitors of complex I/III of the electron transport chain).

Fatty acid oxidation and esterification in cultured muscle cells. Fatty acid oxidation and esterification in cultured skeletal muscle myotubes was performed in 6-well culture plates, as adapted from the method previously described (10).

Ex-vivo soleus muscle strip glucose uptake. Whole muscle ex-vivo glucose uptake was assessed using 2-deoxyglucose, with minor changes to that described previously (10, 15).

Confocal microscopy. Cells were plated on glass coverslips and cultured as described above. Following treatments, cells were washed and fixed in 4% phosphate buffered formalin then mounted in VectaShield containing DAPI (Vector Labs) and sealed before being visualized on a Leica TCS-SP2 AOBs confocal microscope. Co-localization studies were assessed by Image J using the JACoP co-localization plugin (16).

Mitochondria isolations. Mitochondria were isolated from WT and HSP72-KO primary myotubes and from HEK293A cells using two different methods. Mitochondria were isolated using a Dounce homogenizer and the Mitochondria Isolation Kit for Cultured Cells according to the manufacturers’ instructions (Pierce Thermo Scientific) or by sucrose density method (17). Briefly, cells in 10cm dishes were washed in ice-cold PBS, drained and then scraped from plates in 8mL ice-cold isolation buffer. Cells were disrupted with a Dounce Homogenizer (10x20 sec strokes), and cell debris pelleted at 1800g for 10 min at 4°C. Mitochondria in the supernatant were then pellet at 7000g for 10 min at 4°C and washed twice in isolation buffer before being solubilized in RIPA buffer.

Adenoviral overexpression in cultured skeletal muscle. Adenoviral constructs/plasmids containing HSP72 (Hspa1b) were generated as described above. Live virus particles were produced in HEK293A cells using the ViraPower Adenoviral Expression System (Invitrogen). High titer virus was then used in
a dose dependent manner (0, 10, 50 MOI) to determine successful and optimal expression in primary myotubes, before performing final experiments.

Lentiviral-mediated shRNA stable knockdown. Lentiviral particles (Mission Transduction Particles, 10130816MN) expressing shRNAs against Hspa1b (NM_010478) and a scrambled shRNA, were purchased from Sigma-Aldrich. C2C12 cells were seeded at 20,000 cells in a 6-well plate and exposed to virus particles for 24 h, after which virus was removed and cells were allowed to grow to ~80% confluence in normal growth media. Following this, cells were re-seeded into a 10cm dish, allowed to proliferate prior to selection over a 2-week period in sequential doses (1-10µg/mL) of Puromycin (Enzo LifeSciences). After selection, cells were maintained in normal growth media and successful knockdown of HSP72 was determined by both qPCR and immunoblotting following heat shock.

Soluble and insoluble muscle fractionation. Soluble and insoluble fractions of proteins were isolated as previously described (18).

Electron microscopy. Dissected tissues were harvested and immediately immersed in 2% glutaraldehyde in phosphate buffered saline for 2 h at room temperature and then at 4°C overnight. Fixed tissues were washed and postfixed in a solution of 1% OsO₄ for 2 h. Tissues were dehydrated, embedded in pure Epon 812 and cured (60°C for 48 h). Muscle longitudinal sections of 60 nm thickness were cut using an ultramicrotome (RMC MTX). The sections were double-stained in aqueous solutions of 8% uranyl acetate for 25 min at 60°C and lead citrate for 3 min at room temperature. Thin sections were subsequently examined with a 100CX JEOL electron microscope.

ROS measurements by fluorescence analysis. C2C12 myocytes were washed and incubated in low glucose DMEM at 37°C, 5%CO₂ in the dark with 25 µM of Carboxy-H₂DCF-DA (Molecular Probes, Invitrogen), washed with PBS and incubated 15 min with 5µM of mitoSOX, washed and quickly trypsinized, pelleted and retained on ice. Cells were resuspended in FACS buffer (PBS 3% BSA) with DAPI (25µg/mL) and analyzed immediately by flow cytometry on a LSRII (Becton Dickinson) with FlowJo software (Treestar Inc). Unstained and single stains were used for establishing compensation and gates, and only live cells (DAPI negative) were analyzed.

Muscle DNA electrotransfer. Hspa1b or GFP expression plasmids were transferred into contralateral limbs of HSP72-KO and WT mice as previously described (19). Muscles were harvested after 14 days following electroporation.

Immunoprecipitation and immunoblot analysis. Mouse tissues and cell cultures for immunoblotting were homogenized in RIPA lysis buffer containing protease and phosphatase inhibitors before being clarified and resolved by SDS-PAGE. Proteins for immunoprecipitations were solubilized in RIPA containing deoxycholate, 1% glycerol and protease inhibitors by rotation at 4°C for 1 h then cell debris
pelleted for 10 min at 5000g. Total protein was measured and 500µg of sample was incubated with antibody (Mfn2, V5, HA, Parkin-4211) overnight then immobilized on protein-G Agarose beads (Santa Cruz) for 2 h at 4ºC prior to washing with 3x in RIPA buffer. Proteins were resolved by SDS-PAGE. All samples for Western blotting were transferred to PVDF membranes and probed with the following antibodies: HSP72 (Stressgen), GAPDH (Millipore), p62 (ProGen), PINK1 (Cayman Chemicals), DJ-1/Park7 (R&D Systems), Mfn2 (Abcam), Porin/VDAC (MitoSciences), Ubiquitin-FK2 (Enzo Life Sciences), HA-mouse (Covance), V5 (Invitrogen), DNAJB2 (Protein Tech Group), cABL (BD Pharmingen). The following antibodies were all from Cell Signaling Technologies; pSer473-Akt (#9271), Parkin (#2132 & #4211), pan-actin, LC3B, Beclin1, LAMP1, HSP60, HSP90, and HA-rabbit. Densitometric analyses were performed using BioRad Chemidoc Quantity One image software.

Muscle lipid intermediates and lipidomics analyses. Lipids were extracted from the quadriceps muscle (n=6 per genotype) by the Folch method (20). Triacylglycerol, diacylglycerol and ceramides were extracted and quantified as previously described (20-22). Lipidomic analyses were performed by the Baker IDI Lipidomics Core on quadriceps samples homogenized in 300 µl PBS buffer, pH 7.47 according to previous methods with modifications (23).

RNA extraction, cDNA and quantitative RT-PCR (qPCR). RNA from tissues and cells was extracted using RNAeasy Columns as per manufacturer’s instructions (Qiagen). cDNA was synthesized from 1ug of total RNA using SuperScript II as per manufacturer’s instructions (Invitrogen). qPCR was performed on 20ng cDNA on a BioRad MyiQ PCR Detection System using SyBR Green chemistry and analyzed using iQ5 Software (BioRad - Version 2.1) as previously described (10).

Statistics. Values presented are expressed as means ± SEM. Statistical analyses were performed using Student’s t-tests as well as one- and two-way analysis of variance (ANOVA) with Tukey’s post hoc comparison for identification of significance within and between groups where appropriate (SPSS graduate pack, Chicago, IL). Significance was set a priori at $P < 0.05$.

RESULTS

HSP72 knockout promotes an insulin resistance-obesity phenotype in male mice

Immunoblotting confirmed HSP72 protein was absent in glucoregulatory tissues harvested from male HSP72-KO mice compared with WT, under both basal and heat shock conditions (Fig. 1A). Total body weight and gonadal fat pad mass were increased in HSP72-KO mice compared to WT despite consumption of a normal chow diet and no difference in ambulatory movement (Table 1). Basal glucose, leptin, resistin, and insulin levels were elevated and adiponectin levels reduced in plasma from HSP72-KO vs. WT mice (Table 1). At ~24 weeks of age, we performed glucose tolerance tests (GTT) and following intraperitoneal (IP) injection of dextrose, the glucose excursion for HSP72-KO mice was
elevated compared with WT (Fig. 1B; AUC $P = 0.005$), indicating impaired glucose tolerance in NC-fed HSP72-KO mice. No difference in plasma insulin was detected at 15 min following IP dextrose injection (Table 1), a finding consistent with peripheral insulin resistance in the absence of pancreatic insufficiency. Euglycemic-hyperinsulinemic clamp studies were performed on weight-matched mice to quantify the impact of HSP72 deletion on insulin sensitivity. During steady state clamp conditions, circulating glucose and insulin levels were identical between the genotypes ($P = 0.57$ and $P = 0.87$ respectively). The rate of exogenous glucose infusion (GIR) required to maintain euglycemia was reduced by 33% ($P = 0.007$) in HSP72-KO mice compared with WT (Table 1) consistent with peripheral insulin resistance also observed during glucose tolerance testing. The insulin-stimulated glucose disposal (IS-GDR), predominantly reflecting skeletal muscle insulin sensitivity, was reduced by 42% ($P = 0.01$; Fig. 1C) in NC-fed HSP72-KO mice along with mild hepatic insulin resistance (Fig. 1D) compared with WT. In a separate cohort of animals 3 months of age, soleus muscles were stimulated ex vivo with a physiological insulin dose (60µU/ml), and consistent with glucose clamp studies, insulin-stimulated muscle glucose uptake was reduced by 81% ($P = 0.03$) in HSP72-KO vs. WT (Fig. 1E). Akt$^{\text{Ser473}}$ phosphorylation paralleled the reduction in glucose uptake seen in KO muscle during insulin stimulation (Fig. 1F). Impaired insulin action could not be explained by a defect in myogenesis, Hsf1 or HSP90 expression, GLUT4 expression or total GLUT4 protein (Supplementary Fig. S1 A-E).

Fatty acid oxidation was reduced (Fig. 1G) and fatty acid esterification (Fig. 1H) was elevated in HSP72-KO muscle vs. WT, a finding consistent with a 28% reduction in AMPK activity (Fig. 1I; $P=0.001$), a 33% reduction β-HAD activity ($P = 0.035$; Supplementary Fig. S2A), and intramuscular accumulation of diaeylglycerol (DAG) and triacylglycerol (TAG)(Fig. 1J and Supplementary Fig. S3). No difference in citrate synthase activity, expression of cytochrome C oxidase subunits 2 and 3 or protein levels of electron transport chain subunits II-V were detected between the genotypes (Supplementary Fig. S2B-D).

HSP72 knockdown impairs insulin action and fatty acid handling in myocytes
To determine if metabolic dysfunction observed in HSP72-KO mice was due to an intrinsic defect in skeletal muscle or secondary to increased adiposity, primary myoblasts were isolated from WT and HSP72-KO quadriceps muscle from 2 month old mice. As expected, HSP72 transcript and protein levels were markedly reduced in HSP72-KO primary myotubes under both basal and heat shock conditions (Fig. 2A-B). HSP72-KO cells showed defective insulin-stimulated glucose uptake (Fig. 2C) consistent with reductions in insulin-stimulated Akt$^{\text{Ser473}}$-phosphorylation compared with WT (Fig. 2D). Similar to findings observed in soleus muscle from HSP72-KO mice, primary HSP72-KO myotubes also
exhibited reduced fatty acid oxidation and increased fatty acid esterification (Fig. 2E-F). Additionally, oxygen consumption (basal and maximal respiration) rates were reduced in primary myotubes from HSP72-KO mice compared with those from WT mice (Fig. 2G).

To validate these findings in an additional model in culture, we generated C2C12 myotubes with HSP72-stable knockdown (KD) using lentiviral-mediated shRNA delivery compared with Control scrambled (Scr) shRNA cells (Fig. 2H). Fatty acid oxidation and esterification, and cellular oxygen consumption at basal and during maximal stimulation in HSP72-KD C2C12 recapitulated findings for primary HSP72-KO myotubes relative to WT control (Fig. 2I-K). Impaired oxidative function tracked with cellular reactive oxygen species release as basal superoxide and H$_2$O$_2$ production were elevated in HSP72-KD myotubes compared to Control-Scr (Fig. 2L-M).

HSP72 is critical for maintenance of mitochondrial morphology, Parkin protein, and autophagic signaling

To investigate the relationship between HSP72 expression and mitochondrial health, we assessed morphological differences in muscle mitochondria between WT and HSP72-KO animals. Electron micrographs (EM) of soleus muscle from 3 month-old animals showed enlarged, dysmorphic and often fused intermyofibrillar (IM) mitochondria (Fig. 3A). Subsarcolemmal (SS) mitochondria also showed irregular morphology and reduced density by visual inspection. Since the SS mitochondrial compartment comprises only 20% of the total pool, the difference in mitochondrial number was not detected by a surrogate index of total mitochondrial DNA (Supplementary Fig. S4). Considering that organelle fusion is a conserved mechanism engaged during chronic cellular stress, (e.g. nutrient deprivation) as a means to maintain ATP production, avoid macroautophagy, improve tolerance of mtDNA mutations by diluting damaged mitochondrial contents across the mitochondrial network (24), we investigated the potential underpinnings of this mitochondrial hyperfusion phenotype.

Typically depolarized mitochondria are eliminated by a targeted autophagic process, mitophagy (25). The committed step in targeting mitochondria for lysosomal degradation occurs via activation of the PINK1/Parkin pathway (25). Parkin, an E3 ubiquitin ligase, translocates from the cytosol to depolarized mitochondria where it ubiquitinates mitochondrial-associated proteins including Mitofusin 1 and 2 thus preventing fusion by promoting organelle isolation and subsequent autophagolysosome formation (25). Strikingly, we found that Parkin protein levels were dramatically increased in all glucoregulatory tissues. Importantly, Parkin protein was elevated 12-fold ($P=0.0001$; Fig. 3B) in skeletal muscle of HSP72-KO vs. WT as early as 2 months of age prior to the onset of metabolic dysfunction.
Under standard basal conditions, Parkin is rapidly turned over in WT cells replete with HSP72 (Supplementary Fig. S6), however we found a marked accumulation of muscle Parkin in the absence of HSP72 under fed basal conditions. Thus, the relative abundance of Parkin in WT or Control samples was often difficult to visualize compared to the markedly increased abundance in HSP72-KO muscle and KD cells. In comparison with the dramatic elevation in Parkin protein in muscle, only a modest increase in muscle Park2 transcript was observed (2-fold, $P = 0.02$; Supplementary Fig. S7) suggesting an important role of HSP72 in Parkin protein turnover. We surmise that Parkin overexpression is not likely a secondary phenotype in response to other in vivo factors, but a direct effect of HSP72 deletion as primary myotubes from HSP72-KO mice and C2C12 myotubes with HSP72-KD also exhibited markedly elevated Parkin protein levels (Fig. 3C-D). Moreover, the effect of HSP72 appears unique to Parkin as we observed no change in transcript or protein expression of other Park family members associated with mitophagic signaling (Park6, PINK1 and Park7, DJ-1; Supplementary Fig. S7 A-C).

The majority of Parkin in WT primary myotubes formed complexes at ~100kDa, and was sensitive to MG132 (a specific proteasomal inhibitor that reduces the degradation of ubiquitin-conjugated proteins), bafilomycin A1 (Baf, a specific inhibitor of vacuolar-type H+-ATPase which prevents lysosomal acidification and disturbs the fusion between autophagosomes and lysosomes), and the mitophagy inducer CCCP (an inhibitor of oxidative phosphorylation by destroying the mitochondrial electrochemical gradient) (Fig. 3C). However, Parkin was observed in its native unmodified form (~50kDa) in HSP72-KO primary myotubes and in contrast to WT, Parkin levels were unaffected by MG132, Baf or CCCP treatment (Fig. 3C).

In addition to altered Parkin protein, downstream autophagic signaling was also impaired in both C2C12 myotubes as well as skeletal muscle. Protein levels of p62 (functionally targets damaged proteins and organelles for autophagy) and LC3BI (18kDa microtubule-associated protein light chain B1 is recruited and converted to LC3BII by proteolysis and lipidation which correlates well with autophagosome formation) were elevated (lanes 1-3 vs. 7-9, $P=0.045$ and $P=0.01$ respectively), while conversion to LC3BII (LC3BII:I) was diminished collectively reflecting reduced autophagic signaling in HSP72-KD vs. Control Scr cells at basal (Fig. 3D, lanes 1-3 vs. 7-9) and during heat shock (Fig. 3D, lanes 4-6 vs. 10-12) in both the absence and presence of the lysosomal inhibitor bafilomycin. A reduction in Beclin and Lamp1 protein in HSP72-KD vs. Control-Scr ($P=0.001$ and $P=0.045$ respectively) independent of treatment further supports this claim (Fig. 3D).
Although no difference in gene expression of Sqstm1 (p62) and Map1LC3B (LC3B) between the genotypes in the fed state was detected (Fig. 3E), p62 and LC3BI protein levels were elevated in HSP72-KO muscle compared with WT (Fig. 3F, lanes 1-3 vs. 4-6). When comparing the conversion of LC3BI to BII between the genotypes, this was also blunted in the HSP72-KO muscle (Fig. 3F, lanes 1-3 vs. 4-6). During starvation, both Sqstm1 (p62) and Map1LC3B (LC3B) transcripts were markedly induced in WT however this induction was significantly blunted in HSP72-KO muscle (Fig. 3E). Despite reduced gene expression in muscle from HSP72-KO during starvation, p62 and LC3B-I protein levels were identical between the groups. Moreover, we observed reduced LC3BI to LC3BII conversion in HSP72-KO muscle compared with WT during starvation. Collectively these data indicate a defect in autophagic signaling reflected by a reduction in the turnover and processing of p62 and LC3B in muscle devoid of HSP72.

HSP72, Parkin and insulin action
To determine whether HSP72 is directly involved in Parkin protein regulation as suggested by findings in Fig. 3, we first used adenoviral re-expression of HSP72 in KO primary myotubes and found that partial restoration of HSP72 was sufficient to reduce Parkin protein levels by 24% ($P=0.03$) after only 24 h (Fig. 4A; Supplementary Fig. 8). Similarly, we observed in C2C12 myotubes that heat shock induced a small increase in HSP72 protein in HSP72-KD cells and this was associated with a 40% reduction ($P=0.03$) in Parkin protein (Fig. 3D right panel, lanes 7-9 vs. 10-12). Next we induced HSP72 expression by DNA electroporation into soleus muscle of HSP72-KO animals. Surprisingly, partial restoration of HSP72 expression in KO muscle was sufficient to reduce Parkin protein by ~50% vs. soleus muscle electroporated with a plasmid to express GFP (Fig. 4B). In addition, we found that restoration of one Hspa1 allele (heterozygous mice; gray bar) or muscle-specific transgenic overexpression of HSP72 in HSP72-KO markedly reduced muscle Parkin protein in 2 month-old mice by nearly 30% and 73% respectively (Fig. 4C, $P=0.02$; Supplementary Figure 9; $P=0.001$). Collectively, these data suggest that HSP72 is a critical regulator of Parkin protein abundance.

Next we tested whether Parkin inactivation is linked with insulin resistance. Since the muscle phenotype of Parkin$^{-/-}$ mice is confounded by global Parkin deletion (26), we generated primary myotubes from these animals (Fig. 4D). Similar to HSP72-KO myotubes, maximal respiration was blunted in myotubes with Parkin inactivation (Fig. 4E), a finding consistent with observations in Parkin mutant Drosophila (27). Moreover, we found that basal glucose uptake was elevated however insulin-induced glucose uptake (Fig. 4F) and insulin signal transduction (Fig. 4G) were markedly reduced in Parkin-KO myotubes compared with WT. These findings strongly suggest that HSP72 is required for
the regulation of Parkin protein levels and that Parkin functionality is directly linked with insulin action in muscle.

HSP72 translocates to depolarized mitochondria and is required for Parkin action

The aggregation of Parkin into non-functional clusters is thought to underlie Parkinson’s disease pathobiology (28). Thus, we examined whether the inactivation and accumulation of Parkin in HSP72-KO muscle was due to Parkin aggregation and insolubility. We found that Parkin exists in the soluble fraction suggesting that it does not form aggregates within muscle cells (Fig. 5A), and therefore is not likely to underlie the Parkin inactivation observed in this model.

Next we examined the cellular localization of Parkin using confocal microscopy. In the basal setting, Parkin was observed predominantly in the cytoplasm of myoblasts obtained from both WT and HSP72-KO mice (Fig. 5B). However, significantly more Parkin was observed in HSP72-KO than WT cells, a finding consistent with immunoblot analyses. Importantly, translocation of Parkin to depolarized mitochondria (CCCP-treated) was impaired in HSP72-KO muscle cells (Fig. 5B). Specifically, in WT cells, CCCP induced mitochondrial depolarization and movement of Parkin from the cytosol to mitochondria (punctate staining); however, Parkin translocation was significantly blunted in HSP72-KO muscle cells (Fig. 5B). Furthermore, isolated mitochondria from WT myotubes contained more Parkin compared with HSP72-KO myotubes which showed no appreciable increase in Parkin following CCCP treatment (Fig. 5C). Moreover, mitofusin 2 (Mfn2), typically ubiquitinated and targeted for proteasomal degradation by Parkin, was elevated in HSP72-KO myotubes compared to WT cells, a finding likely explained by reduced Parkin-mediated Mfn2 degradation (Fig. 5C).

Auto-ubiquitination can be used as a surrogate marker of Parkin activation. Immunoprecipitation studies showed that Parkin is ubiquitinated both basally and after CCCP treatment however the level of ubiquitination was significantly reduced in HSP72-KO compared with WT myotubes (Fig. 5D, right panel – lanes 5-6 vs. 7-8). Furthermore, basal mitofusin 2 (Mfn2) protein levels in total lysates were markedly higher in HSP72-KO cells compared with control (Fig. 5D, left panel – lanes 1-2 vs. 3-4), a finding consistent with the mitochondrial hyperfusion phenotype. Considering this increase, the relative association and diminished subsequent turnover of Mfn2 in HSP72-KO compared with WT following CCCP treatment (Fig. 5D, right panel – lanes 5-6 vs. 7-8) supports our hypothesis of impaired Parkin activity in the context of HSP72 deficiency. Importantly, these data demonstrate for the first time in muscle cells that HSP72 complexes with Parkin and Mfn2 to orchestrate mitochondrial triage signaling.
To confirm the interaction between HSP72 and Parkin in a second cell type, we next performed similar immunoprecipitation studies in WT HEK293A cells. As predicted, after CCCP-induced mitochondrial depolarization, we observed increased interaction between Parkin, Mfn2 and HSP72. In contrast, this interaction of proteins was not observed in WT cells in an alternative cellular stress condition, starvation (STV) (Fig. 5E), when mitochondrial fusion is engaged to prevent the autophagic degradation of healthy organelles (29). These data suggest that HSP72 interaction with Parkin is only promoted in response to specific mitochondrial insult, e.g. alteration in membrane potential. Moreover, the interaction of Parkin with HSP72 and Mitofusin2 appeared to be tightly linked with the ubiquitination status of Parkin and Mfn2 (Fig. 5E), as CCCP induced poly-ubiquitination of Parkin, whereas only Parkin mono-ubiquitination was detected during STV (Fig. 5E).

Since an increased interaction between HSP72 and Parkin suggested possible co-migration of these proteins to the same cellular compartment under specific organelle stress, e.g. CCCP-induced mitochondrial membrane depolarization, we next investigated the mitochondrial-specific targeting of these proteins by overexpressing fluorescently-tagged HSP72 (GFP) and Parkin (YFP) in Neuro2a cells (N2a; an easily transfectable cell line expressing little to no endogenous HSP72 or Parkin and frequently used to assess autophagy by confocal microscopy). As shown previously, Parkin resides in the cytoplasm under basal conditions (DMSO), and translocates to mitochondria (RFP-labeled) after treatment with CCCP (4 h) (Fig. 5F). Under basal conditions HSP72 also resides in the cytoplasm, and for the first time we show in two separate cell systems (myotubes and N2a cells) that HSP72 translocates to mitochondria following treatment with CCCP (Fig. 5G). Furthermore, using a reciprocal immunoprecipitation approach in HEK293A cells, we confirm the interaction of HSP72 with Mfn2 and Parkin (IP-Mfn2 and IP-Parkin; Fig. 5H-I respectively). Moreover, as shown previously (25), proteasomal inhibition using MG132 partially dampened CCCP-induced degradation of Mfn2 and Parkin, however under basal conditions Mfn2 and Parkin accumulated only during inhibition of lysosomal degradation in the presence of bafilomycin. These data reflect differential regulation of protein turnover based upon cellular status and protein localization (Fig. 5H-I). In contrast to Parkin and Mfn2, HSP72 is not degraded after CCCP treatment in HEK293A cells (Fig. 5H, right panel).

Finally, although others have suggested that DnaJB2/HSP40 and cABL interact with Parkin to control its folding and turnover in neuronal cells (14, 30), no protein association was detected in muscle or HEK293A cells under basal conditions, or following treatment with the cABL inhibitor imatinib (Fig. 5H-I, E respectively). Collectively, these data suggest that HSP72 is a cellular stress sensor that translocates to the site of mitochondrial damage where it interacts with both Parkin and Mfn2 to likely
facilitate degradation of mitochondrial components via selective autophagy. We provide strong evidence for the conservation of this regulatory mechanism in three cell types: skeletal muscle, HEK293A cells, and N2a cells. Nevertheless, questions still remain regarding the timing and specific stress conditions in which these interactions occur and whether HSP72 mitochondrial translocation is an initiating step in this process.

HSP72 is critical for CCCP-induced Parkin action

Since the majority of studies presented above were performed over a 4-hour period, the temporal order in which HSP72 and Parkin translocate to depolarized mitochondria in response to CCCP treatment was unknown. Thus, confocal analyses were performed using the easily transfectable N2a cell system overexpressing fluorescently-tagged HSP72 and Parkin. Surprisingly, HSP72 rapidly translocated to mitochondria beginning as early as 15 min following CCCP treatment (Fig. 6A). The entire cytosolic pool was observed at the mitochondrial membrane within 30 min and sustained presence of HSP72 was seen for up to 4 h (Fig. 6A, top row). In contrast, Parkin remained in the cytoplasm up to 60 min after CCCP treatment, but by 4 h the majority of cellular Parkin was observed in the same location as HSP72 (Fig. 6A, bottom row). These observations were also supported by immunoblotting in a similar study conducted in isolated mitochondria from HEK293A showing reduced cytoplasmic, and increased mitochondrial-associated HSP72 at 30 min whereas mitochondrial Parkin protein and subsequent degradation on Mfn2 was not observed until 1 h following CCCP treatment (Fig. 6B). These findings suggest that HSP72 translocates to depolarized mitochondria prior to the movement of molecular machinery necessary for the removal of mitochondria via selective autophagy, i.e. mitophagy. Thus it is reasonable to speculate that HSP72 may be sensitive to perturbations in mitochondrial membrane potential and be involved in facilitating early steps of mitophagic signaling.

To determine the specificity of the HSP72 response to mitochondrial stress we used confocal microscopy to determine whether HSP72 translocation to mitochondria also occurred following rotenone (electron transport chain complex I inhibitor) and antimycin (cytochrome C reductase inhibitor) treatments. Neither compound induced the translocation of HSP72 or Parkin at 30 min, however after 4 h rotenone, but not antimycin, induced HSP72 movement to mitochondria (Fig. 6D). Considering that neither compound is known to induce mitophagy, as expected, Parkin remained localized to the cytoplasm (31) (Fig. 6C-D). Congruent with confocal analyses, immunoprecipitation studies showed no increase in HSP72-Parkin association with Mfn2, and no degradation of the Parkin target Mfn2 following rotenone or antimycin treatment (Fig. 6E, lanes 6-11).
To demonstrate that HSP72 is required for Parkin-action, we performed studies in N2a cells which lack detectable endogenous HSP72 and Parkin protein (Fig. 6F). Similar to previous findings we show that HSP72 is critical for basal regulation of Parkin and Mfn2 protein levels (Fig. 6F, lanes 5-6 vs. 9-10). Using YFP-labeled Parkin, we demonstrated that CCCP failed to induce mitophagy in N2a cells in the absence of HSP72 and Parkin, as evidenced by a lack of reduction in porin or HSP60 levels after mitochondrial depolarization (Fig. 6F Left Panel, lanes 1-2 vs. 3-4). However, when Parkin and HSP72 were introduced into this cell type, porin and HSP60 were diminished both at basal (Fig. 6F, lanes 1-2 and 5-6 vs. 9-10) and after CCCP treatment compared to GFP control (Fig. 6F, lanes 1-4 vs. 9-12, an observation consistent with enhanced mitochondrial turnover. Collectively, we found that a reduction in HSP72 promotes an increase and an inactivation of Parkin protein that is associated with alterations in mitochondrial quality and insulin resistance (Fig. 7).

DISCUSSION

The heat shock response is one of the most highly conserved processes from fly to man, and impairments in this protective mechanism are associated with increased cellular death (32-34) and reduced lifespan (2-3, 35). The heat shock response is engaged during cellular stress to protect against proteotoxicity (36-37), and we have previously shown that HSP72, the stress-inducible protein chaperone, is reduced in skeletal muscle from obese and type 2 diabetic subjects (5-6). Conversely, we and others have also shown that upregulation of HSP72 by genetic, thermal stress or pharmacologic means protects rodents from metabolic dysfunction induced by genetic or diet-induced obesity (6, 38-39). Although clinical and experimental evidence suggests a strong relationship between HSP72 expression and glucose homeostasis, it was unknown whether reductions in HSP72 were causal of early metabolic dysfunction and insulin resistance. Furthermore, the critical targets of HSP72 that confer cellular protection remained incompletely understood.

Herein we provide compelling evidence to show that mice harboring a homozygous null mutation for Hspa1a and Hspa1b develop impaired glucose homeostasis, insulin resistance and increased adiposity with age. Muscles from these mice accumulate bioactive lipids likely resulting from reduced fatty acid oxidation, and we postulate that this in part drives tissue inflammation. In addition, muscle cells lacking HSP72 have reduced oxygen consumption rates at basal and during maximal stimulation and increased mitochondrial reactive oxygen species production, an additional underpinning promoting cellular inflammation. Electron micrographs show a pronounced mitochondrial phenotype in HSP72 KO muscle that is characterized by enlarged, dysmorphic, and fused organelles with reduced density in the subsarcolemmal compartment. Healthy mitochondria typically elongate and fuse together during
nutrient deprivation to avoid elimination by macroautophagy, although evidence also indicates tabulation and hyperfusion of mitochondria as a chronic compensatory adaptation to prolonged cellular stress (29, 40-41) including loss of function in the PINK1/Parkin signaling pathway (42). Additionally, depolarized mitochondria can also fuse with healthy organelles when selective autophagy is impaired, and this mechanism serves a protective response to dilute damaged contents and maintain cellular energetics by functional complementation, a process thought to counteract cellular aging (43-45). Thus the chronic fusion phenotype we observe is likely a compensatory mechanism to help maintain cellular energetics, enhance DNA mutation tolerance with age and prevent cellular apoptosis.

Recent work suggests that preservation of mitochondrial network health is achieved by the maintenance of paired fission-fusion events that accelerate the removal of damaged mitochondrial components by autophagy. This process however requires selectivity of fusion especially under conditions of elevated mtDNA damage (46). The mitochondrial theory of aging portends that excessive production of reactive oxygen species induce mutations in mtDNA and this precipitates reduced mitochondrial function, loss of bioenergetic capacity, and eventually disease pathology (47-52). This theory is consistent with impaired removal of dysfunctional mitochondria, and indeed skeletal muscle imbalances in fusion-fission dynamics have been associated with insulin resistance and metabolic dysfunction (53). Since no alteration in total mitochondrial DNA was detected, reduced oxygen consumption and elevated ROS production in cells lacking HSP72 is consistent with retention of dysfunctional organelles, likely mediated by indiscriminate fusion and impaired mitophagy.

Thus the striking mitochondrial phenotype observed in HSP72KO mice prompted us to investigate the integrity of mitophagic signaling, and considering previous reports suggesting HSPs as Parkin binding partners (54), we hypothesized that the retention of aged, damaged mitochondria could be due in part to impaired Parkin signaling. Interestingly, we found that HSP72 translocates to depolarized mitochondria within 15 minutes following CCCP treatment, even prior to the movement of Parkin. In the absence of HSP72, Parkin translocation to depolarized mitochondria was significantly diminished, and Mfn2, HSP60 and Porin levels were maintained compared with control cells; findings consistent with the cellular retention of damaged mitochondria. Importantly, ectopic expression of HSP72 in N2a cells promoted CCCP-induced movement of Parkin to depolarized mitochondria concomitant with a reduction in the abundance of the Parkin target Mitofusin and mitochondrial markers Porin and HSP60. These data suggest that HSP72 is a pivotal regulator of the Parkin-mitofusin axis essential for mitochondrial quality control, although alternative E3 ligases and scaffolding proteins could also be engaged in the absence of Parkin in a cell type- and stress-specific manner.
It is important to note that the observed phenotype of the HSP72KO mice phenocopies *Drosophila* lacking Parkin (7). Mitochondria from flight muscles of Parkin^{−/−} flies appeared dysmorphic and were dysfunctional with impaired oxidative phosphorylation capacity and increased ROS production. Similar to our findings in HSP72 KO mice, the mitochondrial defects in Parkin^{−/−} flies preceded the muscle degeneration and both could be ameliorated by reducing oxidative stress. Although mice with homozygous null mutation of Park2 (Parkin) show a less robust degeneration phenotype compared to *Drosophila* (55-56), Parkin^{−/−} mice were more susceptible to environmental and inflammation-induced neural degeneration than wildtype littermates (57). Herein, we show for the first time, that Parkin inactivation induces insulin resistance in primary myotubes, a finding with clinical implications linking impaired mitophagy with a central defining feature of the metabolic syndrome and type 2 diabetes.

Clearly maintenance of elemental processes including preservation of protein and organelle quality is critical for cellular health. Whether impaired macro- and microautophagy are causal or consequence of insulin resistance remains unclear. Based upon our collective work, we provide strong evidence supporting a critical role for HSP72 in cellular stress sensing and Parkin action. Importantly, similar to our previous observations in human subjects (5-6), reduced HSP72 levels are associated with increased adiposity and impaired insulin action, whereas upregulation of HSP72 by chronic exercise, genetic overexpression or pharmacological stimulation is protective against obesity and insulin resistance. Thus our work provides the important pre-clinical foundation to suggest that targeted therapies aimed at increasing muscle HSP72 may provide health benefit by ameliorating cellular oxidative damage, tissue inflammation, and insulin resistance, all underlying features of the metabolic syndrome and type 2 diabetes.

ACKNOWLEDGEMENTS

We appreciate the generosity of and informative discussions with Ming Guo (UCLA), David Chan (California Institute of Technology), Alexander Van der Bliek (UCLA), and Peter Tontonoz (UCLA). Special thanks to the Advanced Light Microscopy/Spectroscopy (ALMS) facility at the California NanoSciences Institute (CNSI) at UCLA for assistance with confocal microscopy studies and Dr. Sirus Kohan of the UCLA Brain Research Institute for assistance with electron microscopy studies on mouse muscle. Additional assistance was provided by Thomas Vallim and Peter Edwards (V5 and HA Gateway N-term plasmids), Erik Anderson and Douglas Black (Neuro2A cells), Steve Bensinger and Tammy Phung (assistance with flow cytometry analyses), Peter Meikle (Baker IDI Lipidomics Core),
and Anna Calkin, Rima Boyadjian and Peter Tontonoz (ubiquitination analyses and plasma adipokines were performed by the UCSD-UCLA DRC Inflammation Core).

This work was supported in part by the National Institutes of Health DK078760 and UCSD-UCLA DRC Mouse Phenotyping Core DK063491 to ALH and by the National Health and Medical Research Council of Australia (NHMRC Project Grant 1004441) to MAF. MAF is a Senior Principal Research Fellow of the NHMRC. BGD was supported by an Australian National Health and Medical Research Council Overseas Biomedical Training Fellowship (#526693) and UCLA Jonsson Comprehensive Cancer Center (JCCC) Postdoctoral Research Fellowship. VR was supported by a postdoctoral fellowship from the Instituto de Salud Carlos III (Ministerio de Ciencia e Innovacion, Spain). DCH was supported by a National Heart Foundation (NHF) Biomedical Postdoctoral Fellowship and a Skip Martin Postdoctoral Fellowship from the Australian Diabetes Society. LV and KR are supported in part by the National Institutes of Health (HL28481), and the Seahorse XF24 Instrument is supported by a shared instrument grant from the NIH NCRR (S10RR026744).

AUTHOR CONTRIBUTIONS
B.G.D. designed and carried out many of the in vitro and ex vivo experiments. J.A.L, V.R., Z.Z. assisted B.G.D in conducting in vitro confocal microscopy and expression analyses. D.C.H. assisted A.L.H in performing in vivo phenotyping of the HSP72-KO mice. J.P., T.S., P.D., and D.S. maintained the breeding colony and assisted A.L.H and B.G.D. in performing animal and tissues studies. L.V. and K.R. assisted V.R. in conducting oxygen consumption studies in myotubes. J.W. and M.A.F. provided advice and technical consultation. A.L.H. supervised the project and wrote the initial manuscript with B.G.D. M.A.F., D.C.H., J.W., and K.R. contributed to the final drafting of the manuscript. Dr. Andrea L. Hevener is the guarantor of this work, and as such, had full access to all data and the accuracy of the data analysis.

COMPETING FINANCIAL INTERESTS
A.L.H. and all other UCLA investigators declare no competing financial interests. M.A.F. is a consultant for N-Gene Biotechnology.

FIGURE LEGENDS
FIG. 1. HSP72 KO promotes glucose intolerance and insulin resistance in male mice. (A) Immunoblot analyses performed on glucoregulatory tissues (white adipose tissue - WAT, liver and muscle) confirms deletion of HSP72 in HSP72-KO tissues under basal and heat shock conditions. (B)
Glucose tolerance is impaired in KO mice (closed circles, dotted line) compared with WT (open circles, solid line) (n=10 mice/genotype). Hyperinsulinemic-euglycemic clamp studies show skeletal muscle and hepatic insulin resistance in HSP72-KO mice (closed bars; n=8) as (C) insulin-stimulated glucose disposal rate (IS-GDR) and (D) hepatic glucose production (HGP) % suppression were significantly reduced compared with WT (open bars; n=7 mice). (E) Studies in isolated skeletal muscle (soleus) show impaired insulin-stimulated glucose uptake (IS-GU; n=8 mice/genotype) and (F) reduced insulin-stimulated phosphorylation of Akt in HSP72-KO (closed bars) vs. WT (open bars). (G) Fatty acid oxidation was reduced and (H) fatty acid esterification increased in isolated soleus muscles from HSP72-KO (closed bars) compared with WT mice (open bars)(n=6/genotype). (I) AMPK activity in quadriceps from WT and HSP72-KO mice (n=6 mice/genotype). (J) Diacylglycerol (DAG) and triacylglycerol (TAG) levels were elevated significantly in muscle from HSP72-KO (closed bars) vs. WT (open bars)(n=6 mice/genotype) as measured by mass spectrometry. Values are expressed as means ± SEM, * = significance, P<0.05, between genotypes. # = significance, P<0.05, within genotype, between treatments.

FIG. 2. HSP72 deletion promotes insulin resistance and impaired fatty acid metabolism in myotubes. Primary myotubes from HSP72-KO mice (closed bars) show (A) reduced expression of *hspa1a* and (B) HSP72 protein after heat shock compared with cells from WT mice (open bars), measured by qPCR and immunoblotting respectively. Impaired insulin action in HSP72-KO myotubes (closed bars) as shown by (C) reduced cellular glucose uptake, and impaired (D) insulin-stimulated phosphorylation of Akt compared with WT (open bars)(5-8 observations/dose/genotype), as measured by densitometric analysis of immunoblotting (n=3 representative samples run on same gel). Similar to findings in isolated soleus muscle, cultured myotubes from HSP72-KO mice show (E) reduced oxidation and (F) increased esterification of fatty acids. Consistent with impaired mitochondrial substrate handling, (G) real-time respirometry showed reduced basal and maximal O₂ consumption in HSP72-KO cells (closed bars), compared with WT (open bars)(n = 3 x 12 wells per genotype). (H) HSP72 protein detected by immunoblotting in C2C12 cells infected with a lentivirus expressing either control scrambled shRNA (Control-Scr) or two separate shRNAs against *Hspa1b*, KD(a) and KD(b). (I-J) Impaired fatty acid oxidation and increased esterification in HSP72-KD cells treated with labeled palmitate. (K) Similar to primary cells, real-time respirometry at basal and during maximal stimulation showed reduced O₂ consumption in C2C12 myotubes with HSP72-KD (closed bars) vs. Control-Scr (open bars). Increased reactive oxygen species production, (L) superoxide and (M) H₂O₂, in both HSP72-KD cell lines (closed bars) compared with Control-Scr (open bar), as measured by Mitosox and DCF fluorescence respectively (n = 3 in triplicate/condition). Values are expressed as means ± SEM, *
FIG. 3. **HSP72 is critical in the regulation of mitochondrial morphology, Parkin protein, and autophagic signaling in response to cellular stress.** (A) Electron micrographs (EM) of soleus muscle from WT (top panels) and KO (bottom panels) mice showing intermyofibrillar (IM; left panels low magnification, middle panels high-magnification), and subsarcolemmal (SS; right panels) mitochondria (n=4/genotype). (B) Increased Parkin in quadriceps muscle from 9 month old HSP72-KO vs. WT mice shown by immunoblotting (n=4 representative animals/genotype) and corresponding densitometry (n=10/genotype). (C) Immunoblotting performed on primary myotubes from mice shows increased Parkin protein at 50kDa in HSP72-KO vs. WT (immunoblot is from the same gel). (D) Immunoblotting and densitometric analysis (below) performed on C2C12 myotubes shows increased Parkin protein and impaired autophagic signaling, including increased p62 and LC3BI, and reduced Beclin and Lamp1 in HSP72-KD vs. Control-Scr cells (all immunoblots are from the same gel; n=3-6/genotype). (E) Quantitative PCR performed on muscle from WT and HSP72-KO mice under fed and starved (24 h) conditions shows blunted induction of p62 and LC3B in KO muscle following nutrient deprivation (n=6/genotype). (F) Immunoblotting of quadriceps muscle from fed and starved (24 h) WT and HSP72-KO mice (n=3 representative samples/genotype/condition, upper panel; densitometric analyses in lower panel, 4-6 samples/genotype), show similar impairments in autophagic signaling as seen in cultured cells (all immunoblots are from the same gel and in several instances the membranes were cut, stripped and re-probed to maximize the data obtained from each sample). Values are expressed as means ± SEM, * = significance, P<0.05, between genotypes. # = significance, P<0.05, within genotype, between treatments.

FIG. 4. **HSP72, Parkin and insulin action.** (A) Representative immunoblots and densitometry for HSP72-KO myotubes infected with Control empty virus or HSP72 adenovirus show reduction of Parkin protein following HSP72 reconstitution (n=5 experiments/condition; n=3 representative blots/condition). (B) Immunoblots of Parkin and HSP72 protein from soleus muscle of WT and HSP72-KO mice (n=3/genotype) electroporated with GFP (right leg) or HSP72 expression plasmid (left leg). (C) Representative immunoblots (n=2 /genotype) and densitometry (n=10/per genotype) of Parkin from WT (open bars), HSP72^{+/−} (gray bars), and HSP72^{−/−} (closed bars) mice. (D) Representative immunoblots of Parkin protein in primary myotubes from WT and Parkin-KO mice (n=6/genotype). (E) Real-time respirometry showing reduced maximal respiration in primary myotubes from Parkin-KO vs. WT mice (n=6 /genotype). (F) Impaired insulin-stimulated (10 nM) glucose uptake and (G) insulin signaling (1
and 10 nM) in Parkin-KO vs. WT myotubes (n=3 observations performed in duplicate, n=2 representative blots/condition). Values are expressed as means ± SEM, * = significance, \(P<0.05 \), between genotypes. # = significance, \(P<0.05 \), within genotype, between treatments.

FIG. 5. HSP72 translocates to damaged mitochondria and regulates Parkin-mediated mitophagic signaling. (A) Immunoblotting for Parkin in soluble (+) and pellet (-) fractions from WT and HSP72-KO mouse quadriceps (n=3/genotype) shows that Parkin resides in the soluble fraction in HSP72-KO muscle. (B) Confocal images of myotubes (Parkin immunolabeled green) treated with Vehicle (Veh = DMSO) or CCCP show defective Parkin translocation to mitochondria in HSP72-KO vs. WT myotubes following CCCP treatment. Impaired Parkin translocation was confirmed by (C) immunoblotting of mitochondrial fractions isolated from WT and HSP72-KO myotubes treated with or without CCCP for 4 h. (D) Immunoblots of cell lysates (left panel) and Parkin-immunoprecipitation (IP – right panel) in myotubes show altered Parkin ubiquitination and interaction between Mfn2 and Parkin in HSP72-KO vs. WT primary myotubes in response to CCCP. These observations are supported by (E) immunoblotting in HEK293A cells transfected with Parkin and exposed to MG132, imatinib, CCCP or starvation (STV) as indicated. (F) Confocal images of N2a cells transfected with mtRFP and Parkin-YFP or (G) mtRFP and HSP72-GFP and treated with vehicle (Veh=DMSO) or CCCP for 4 h (nuclei stained with DAPI). (H-I) Immunoblots of HEK293A cell treated with or without CCCP, bafilomycin A1 (Baf), or MG132 (MG); (H) lysates and V5-immunoprecipitation (IP) following transfection with Parkin and V5-Mfn2 or (I) lysates and HA-immunoprecipitation following transfection with HA-Parkin and V5-Mfn2. Immunoblots contained in boxes are from the same gel respectively. Reciprocal immunoprecipitation studies were performed in duplicate while all other studies were performed in triplicate.

FIG. 6. HSP72 is a mitochondrial stress sensor. (A) Confocal images of HEK293A cells transfected with HSP72-GFP/mtRFP (top panels) and Parkin-YFP/mtRFP (bottom panels) over a 120 min treatment with CCCP (nuclei stained with DAPI). (B) Immunoblots performed on mitochondrial preps from HEK293A cells show the presence of mitochondrial Parkin and HSP72 concomitant with a reduction in the mitochondrial membrane-bound protein Mfn2 following 30 min-4 h CCCP treatment. (C) Confocal micrographs of HEK293A cells transfected with HSP72-GFP (top panels) and Parkin-YFP (bottom panels) following treatment with CCCP, rotenone and antimycin for 0.5 h and (D) 4 h (nuclei stained with DAPI). (E) Immunoblots of Parkin-IP or Mfn2-IP (top two panels) or lysates (bottom panels) from HEK293A cells transfected with Parkin, treated with CCCP, rotenone or antimycin for 1, 2 or 4 h, or starved for 4 h (STV). (F) Immunoblots of lysates from N2a cells transfected with GFP (left panels),
Parkin-YFP (middle panels) and Parkin+HSP72 (right panels), following treatment with vehicle (DMSO; - CCCP) or CCCP (+) for 12 h (immunoblots are from the same gel). Values are expressed as means ± SEM, * = significance, \(P<0.05 \), between genotypes. # = significance, \(P<0.05 \), within genotype, between treatments. A, C, D were performed twice in triplicate, B was performed in duplicate in two independent cell lines, E was a replicative time course experiment, and F was performed twice in duplicate.

FIG. 7. Proposed role of HSP72 in stress-induced mitophagy. Mitochondrial stress induces rapid movement of HSP72 to the mitochondria, where it interacts with Mfn2 on the outer mitochondrial membrane. At a later time point, Parkin translocates to the mitochondria and complexes with HSP72 and Mfn2. Herein we show that this interaction is specific to the mitochondrial insult. In the context of HSP72 deficiency, mitochondrial stress fails to induce Parkin translocation and interaction with mitochondrial membrane proteins. Parkin, in the absence of HSP72, is unable to ubiquitinate itself or its targets, and in consequence, cytosolic Parkin and mitochondrial Mfn2 protein levels become elevated thus promoting the fusion and retention of unhealthy mitochondria to the network. We propose that this mechanism underlies the impairments in oxidative metabolism and marked insulin resistance phenotype observed in HSP72-KO animals.

REFERENCES

1. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916-9.

2. Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell. 2004;15(2):657-64. PMCID: 329286.

3. Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142-5.

4. Febbraio MA, Koukoulas I. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol. 2000;89(3):1055-60.

5. Bruce CR, Carey AL, Hawley JA, Febbraio MA. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes. 2003;52(9):2338-45.

6. Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2008;105(5):1739-44.
7. Deng H, Dodson MW, Huang H, Guo M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008;105(38):14503-8.

8. Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadhyay G, Leung HY, et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest. 2007;117(6):1658-69. PMCID: 1868788.

9. Hevener AL, He W, Barak Y, Le J, Bandyopadhyay G, Olson P, et al. Muscle-specific Pparg deletion causes insulin resistance. Nature Medicine. 2003;9(12):1491-7.

10. Ribas V, Drew BG, Le JA, Soleymani T, Daraei P, Sitz D, et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc Natl Acad Sci U S A. 2011;108(39):16457-62.

11. Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, et al. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J. 2005;19(9):1146-8.

12. Bruce CR HA, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW. Overexpression of carnitine palmitoyltransferase-I in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009;58(3):550-8.

13. Henstridge DC, Drew BG, Formosa MF, Natoli AK, Cameron-Smith D, Duffy SJ, et al. The effect of the nitric oxide donor sodium nitroprusside on glucose uptake in human primary skeletal muscle cells. Nitric Oxide. 2009;21(2):126-31.

14. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A. 2010;107(38):16691-6.

15. McCurdy CE, Cartee GD. Akt2 is essential for the full effect of calorie restriction on insulin-stimulated glucose uptake in skeletal muscle. Diabetes. 2005;54(5):1349-56.

16. Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213-32.

17. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21(3):281-6.

18. Wang C, Tan JM, Ho MW, Zaiden N, Wong SH, Chew CL, et al. Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease-linked point mutations. J Neurochem. 2005;93(2):422-31.
19. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009;58(3):550-8.
20. Frayn KN, Maycock PF. Skeletal muscle triacylglycerol in the rat: methods for sampling and measurement, and studies of biological variability. J Lipid Res. 1980;21(1):139-44.
21. Preiss J, Loomis CR, Bishop WR, Stein R, Niedel JE, Bell RM. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986;261(19):8597-600.
22. Allred JB, Guy DG. Determination of coenzyme A and acetyl CoA in tissue extracts. Anal Biochem. 1969;29(2):293-9.
23. Matthews VB, Allen TL, Risis S, Chan MH, Henstridge DC, Watson N, et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia. 2010;53(11):2431-41.
24. Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet. 2012;46:265-87.
25. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241-52.
26. Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, et al. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest. 2011;121(9):3701-12.
27. Vincent A, Briggs L, Chatwin GF, Emery E, Tomlins R, Oswald M, et al. parkin-induced defects in neurophysiology and locomotion are generated by metabolic dysfunction and not oxidative stress. Hum Mol Genet. 2012;21(8):1760-9.
28. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605-8.
29. Rambold AS, Kostelecky B, Lippincott-Schwartz J. Fuse or die: Shaping mitochondrial fate during starvation. Commun Integr Biol. 2011;4(6):752-4.
30. Rose JM, Novoselov SS, Robinson PA, Cheetham ME. Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Hum Mol Genet. 2011;20(1):16-27.
31. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol. 2010;191(7):1367-80.
32. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009;106(35):14914-9.
33. Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008;22(11):1427-38.
34. Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996;1(2):97-8.
35. Volovik Y, Maman M, Dubnikov T, Bejerano-Sagie M, Joyce D, Kapernick EA, et al. Temporal requirements of heat shock factor-1 for longevity assurance. Aging Cell. 2012.
36. Gidalevitz T, Prahlad V, Morimoto RI. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol. 2011;3(6).
37. Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol. 2010;694:138-59.
38. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes. 2009;58(3):567-78.
39. Gupte AA, Bomhoff GL, Touchberry CD, Geiger PC. Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. J Appl Physiol. 2011;110(2):451-7. PMCID: 3043783.
40. Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589-98.
41. Gomes LC, Scorrano L. Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times. Autophagy. 2011;7(10):1251-3.
42. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008;105(5):1638-43.
43. Chen H, Chan DC. Physiological functions of mitochondrial fusion. Ann N Y Acad Sci. 2010;1201:21-5.
44. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280-9.
45. Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012;2012:194821.
46. Mouli PK, Twig G, Shirihai OS. Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J. 2009;96(9):3509-18.
47. Harman D. Free-radical theory of aging. Increasing the functional life span. Ann N Y Acad Sci. 1994;717:1-15.
48. Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283(5407):1482-8.
49. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1(8639):642-5.
50. Miquel J, Economos AC, Fleming J, Johnson JE, Jr. Mitochondrial role in cell aging. Exp Gerontol. 1980;15(6):575-91.
51. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol. 1997;10(5):485-94.
52. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483-95.
53. Sebastian D, Hernandez-Alvarez MI, Segales J, Sorianello E, Munoz JP, Sala D, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A. 2012.
54. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496(7445):372-6.
55. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278(44):43628-35.
56. Oyama G, Yoshimi K, Natori S, Chikaoka Y, Ren YR, Funayama M, et al. Impaired in vivo dopamine release in parkin knockout mice. Brain Res. 2010;1352:214-22.
57. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci. 2008;28(43):10825-34.
TABLE 1
Metabolic parameters and circulating factors.

	HSP72-WT	HSP72-KO	P value		
n basal	20	16			
n clamp	7	8			
Age (wks)	8-28	8-28			
Body weight (g)					
8 wks	23.6 ± 0.3	22.4 ± 0.2	0.12		
20 wks	29 ± 0.75	28 ± 0.59	0.9		
28 wks	29 ± 0.2	33 ± 0.4	0.01		
(clamped - weight matched)	31 ± 0.5	33 ± 1.0	0.5		
Ambulatory movement					
(Beam breaks / h)					
Horizontal	861 ± 95	916 ± 108	0.73		
Vertical	350 ± 23	402 ± 53	0.46		
Gonadal fat (g), 28 wks	0.41 ± 0.04	0.62 ± 0.04	0.03		
Liver weight (g), 28 wks	1.1 ± 0.03	1.1 ± 0.05	0.51		
Heart weight (g), 28 wks	0.139 ± 0.005	0.146 ± 0.009	0.48		
Fasting blood glucose (mg/dl)	143 ± 4	130 ± 4	0.08		
Clamp blood glucose (mg/dl)	131 ± 2	128 ± 4	0.57		
GIR (mg•kg⁻¹•min⁻¹)	49 ± 2	33 ± 4.5	0.007		
Fasting insulin (ng/ml)					
8 wks	0.30 ± 0.05	0.30 ± 0.05	0.98		
20 wks	0.21 ± 0.08	0.50 ± 0.04	0.004		
28 wks	0.35 ± 0.02	0.62 ± 0.06	0.04		
GTT insulin 15 min (ng/ml)	1.35 ± 0.13	1.60 ± 0.40	0.64		
Adiponectin (µg/ml) 28 wks	21 ± 1	8 ± 0.05	0.001		
Leptin (ng/ml)					
8 wks	0.56 ± 0.05	1.2 ± 0.07	0.006		
	Resistin (ng/ml)				
--------	------------------	--------	--------	--------	
	20 wks	28 wks	Resistin (ng/ml)		
	1.37 ± 0.07	1.34 ± 0.09	3.2 ± 0.39	4.7 ± 0.28	
	3.2 ± 0.39	4.7 ± 0.28	0.03	0.0001	
	Resistin (ng/ml)				
8 wks	0.39 ± 0.02	0.46 ± 0.01	0.66 ± 0.06	0.51 ± 0.02	
	0.66 ± 0.06	0.51 ± 0.02	0.06	0.03	
20 wks	0.29 ± 0.08	0.46 ± 0.01	0.7 ± 0.02	0.0004	
28 wks	0.7 ± 0.02	0.0004			
Figure 1

219x278mm (300 x 300 DPI)

Figure 1 Drew et al.
Figure 2
214x269mm (300 x 300 DPI)
Figure 3
Diabetes

Figure 3 Drow et al.

217x282mm (300 x 300 DPI)
Figure 4
212x275mm (300 x 300 DPI)
Figure 5
217x283mm (300 x 300 DPI)
Figure 6
208x282mm (300 x 300 DPI)
Figure 7

Drew et al.

Figure 7
218x256mm (300 x 300 DPI)
Fig. S1. Impaired insulin action in HSP72 deficient muscle and myotubes in culture cannot be explained by altered myogenesis or reduced total GLUT4 expression. Genes associated with myogenesis and HSP expression in (A) C2C12 myotubes with HSP72-KD vs. Control-Scrambled (Scr) (n=6 / genotype). (B) HSP72 knockdown fails to impact HSP90 protein levels at basal or during heat shock (n=2-3 / per condition). (C) Quantitative PCR analyses of myogenesis and heat shock response genes in quadriceps muscle from WT and HSP72 KO mice (n=6 /genotype). Glut 4 (D) transcript and (E) protein in quadriceps muscle from WT and HSP72-KO mice (n=10 mice/genotype; representative immunoblot, n=3). Values were normalized to 1.0 and are expressed as means ± SEM, * P < 0.05.

A

B

C

D

E

Drew et al.
FIG. S2. Skeletal muscle markers of oxidative function. (A) β-hydroxyacyl-CoA dehydrogenase (HAD) activity is reduced while (B) citrate synthase activity is maintained in HSP72-KO vs. WT mice respectively (n=6/genotype). (C) Expression of cytochrome c oxidase subunits II and III (n=6/genotype) and (D) protein levels of electron transport complexes (II-IV) were not different between the genotypes (n=4/group). Values are expressed as means ± SEM, * P < 0.05.
FIG. S3. Elevated triacylglycerol and diacylglycerol levels in muscle from HSP72-KO compared with WT mice. Lipidomics analyses were performed to assess the abundance of (A) triacylglycerol, (B) diacylglycerol, and (C) ceramide species in quadriceps muscle from normal chow-fed male WT and HSP72-KO mice (n=6 per genotype). Values are expressed as means ± SEM * P < 0.05.
FIG. S4. Index of mitochondrial DNA in muscle from HSP72-KO vs. WT. Quantitative PCR was employed to assess the expression of mitochondrial (mt) encoded cytochrome c oxidase subunit II (COII) relative to a constitutively expressed nuclear-encoded gene succinate dehydrogenase subunit A (Sdha) from total DNA obtained from quadriceps muscle (6 month old male mice, n=6/genotype). Values are expressed as means ± SEM in arbitrary units (AU).
FIG. S5. Parkin protein levels with age. Parkin protein levels were elevated in glucoregulatory tissues from (A) 8 wk old male WT vs. HSP72-KO mice. Representative immunoblots of Parkin and GAPDH (protein control) in brain (Br), heart (H), quadriceps muscle (Q), liver (L), white adipose tissue (W), and testes (T). (B) Parkin protein in glucoregulatory tissues from 28 wk old WT and HSP72-KO mice (n=2-3 mice/genotype).
FIG. S6. The effects of lysosomal protease inhibition on Parkin protein in WT mouse quadriceps muscle and C2C12 myotubes. (A) Parkin and LC3B immunoblots (n=3 representative immunoblot / treatment group) and (B-C) densitometric analyses performed on quadriceps muscle harvested from male WT mice (6h fasted) treated with phosphate buffered saline (PBS) or leupeptin (40 mg/kg) for 1h (n=5 mice / group). C2C12 myotubes were treated with Vehicle or the lysosomal inhibitor bafilomycin A1 (Baf) for 4 and 8 hours. Immunoblotting was performed to detect the accumulation of Parkin and LC3B II:I. (D) Representative immunoblots (n=2 / treatment group) and (E) densitometric analysis of Parkin (n=5 /treatment group). Values are expressed as means ± SEM in arbitrary units (AU). *, P < 0.05 between treatment groups.
FIG. S7. The effects of HSP72 deletion on Park family member transcript and protein expression are specific to Park2/Parkin. (A) Muscle expression of Park family members (Park2, Parkin; Park6, PINK1; Park7, DJ-1) assessed by qPCR relative to housekeeping gene Ppia in WT (open bars) and HSP72-KO (black bars) mice (n= 4-8 per genotype). (B) Muscle PINK1 and DJ1 protein levels normalized to GAPDH in WT and HSP72-KO mice (densitometry n=10 per genotype; representative immunoblot n=4). (C) PINK1 and DJ1 protein levels in C2C12 myotubes, Control-Scrambled (Scr) vs. HSP72-KD (n=6 per genotype). Values are expressed as means ± SEM, * P < 0.05.
FIG. S8. Parkin protein levels are reduced in HSP72-KO myotubes following HSP72 induction by adenovirus (0, 10, and 50 MOI) vs. GFP Control. Representative immunoblots for HSP72, Parkin, and Pan Actin (loading control) proteins.
FIG. S9. Parkin protein levels are reduced by the introduction of a muscle specific HSP72 transgene into male HSP72-/- mice. Immunoblotting for HSP72 and Parkin proteins was performed on quadriceps muscle from WT, HSP72 heterozygotes, HSP72 homozygous null mice, and HSP72 homozygous null mice crossed into a muscle-specific HSP72 transgenic (mTg) line (n=2 representative immunoblots/genotype). (B) Densitometric analysis of Parkin protein (n=4-5 mice per genotype). Values are expressed as means ± SEM, * P < 0.05 between HSP72 knockout mice and animals expressing the muscle HSP72 transgene.