3D-Printed Microfluidic Nanoelectrospray Ionization Source Based on Hydrodynamic Focusing

Yu ZHAO,*† Shichang JIANG,*† Yuna BAI,* Xueying HUANG,*,** and Bo XIONG*,**†

*Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
**Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China

Nanoelectrospray ionization (nESI) mass spectrometry (MS) is an ideal detection method for microfluidic chips, and its performances depend on nESI emitters. However, the fabrication of monolithic nESI emitters in chips was difficult. Herein, we propose a three-dimensional (3D) printing method to develop a microfluidic nanoelectrospray ionization source (NIS), composed of a NIS emitter and other components. Firstly, the NIS was compatible with a 50 – 500 nL min⁻¹ nanoflows by imposing 3D hydrodynamic focusing to compensate for the total flow rate, achieving a 7.2% best relative standard deviation in the total ion current (TIC) profiles. Additionally, it was applied to probe thirteen organic chemicals, insulin, and lysozyme with adequate signal-to-noise ratios and an accuracy of m/z between 9.02 × 10⁻¹ and 1.48 × 10³ ppm. Finally, the NIS achieved comparable limits of detection compared with its commercial counterpart. Considering the standardized preparation of NIS, it would be a potential option to develop 3D-printed customized Chip-MS platforms.

Keywords Nanoelectrospray ionization source, 3D printing, monolithic spray emitter, microfluidic hydrodynamic focusing, Chip-MS platform

(Received June 21, 2020; Accepted October 24, 2020; Advance Publication Released Online by J-STAGE October 30, 2020)

Introduction

Nanoelectrospray ionization mass spectrometry (nESI-MS) is compatible with micro- and nano-flows,¹,² and it achieves better sensitivities compared with conventional electrospray MS.¹,³ It has thus been used in various applications,¹,⁴ including on-line MS detections for microfluidic chips.⁵,⁶ The electrospray emitter is the key interface between sample flows and mass spectrometers, and it influences the ionization efficiency of nESI sources. However, a facile and standardized method to fabricate monolithic nESI emitters in microfluidic chips is still absent,⁶,⁷ although they could provide near-zero dead volume in on-line chip-MS methods.

The preparation of nESI emitters via standardized strategies has always been tough. Although poly(dimethylsiloxane)⁸,¹⁰,¹¹ and poly(methyl methacrylate)¹² emitters were reported, glass nESI emitters are the most widely applied,⁸,¹³ and they are generally prepared by chemical etching,¹⁴ heat pulling,¹⁵ or mechanical grinding.¹⁶,¹⁷ However, preceding nESI emitters are with confined configurations.¹⁸ This leads to complex and laborious preparations,¹⁷,¹⁹,²⁰ and thus makes these emitters high-cost or fragile. These features, in turn, deteriorated the difficulties to integrate nESI emitters in microfluidic chips.²¹,²²

Alternatively, three-dimensional (3D) printing has shown potentials to ease hurdles in preparing nESI emitters. Fused deposition modelling (FDM) is the most widely used 3D printing methods,²³,²⁴ and it constructs 3D spatial objects by depositing melted polymers in pre-specified layers.²⁵,²⁶ It has been used to prepare different analytical devices,²⁷,²⁸ including cartridges for paper-based electrospray ionization,²⁵,²⁹,³⁰ the ion mobility spectrometer,³¹,³² the ion funnel,³³ the spray chamber for inductively coupled plasma spectrometry,³⁴ and other interfaces.³⁵,³⁶ However, its spatial resolution is insufficient to directly prepare nESI emitters with an inner diameter of a few micrometres.¹,² If its resolution could be compensated, a facile and standardized FDM method would be developed to prepare nESI emitters.

3D microfluidic hydrodynamic focusing is a potential candidate. It could regulate the distribution of the sample flow by introducing solutions from vertical and horizontal directions.³⁷–⁴⁰ It was applied for inhibiting ion diffusion⁴¹ and elevating the accuracy of m/z in chip-MS platforms.¹¹ If 3D hydrodynamic focusing is imposed to the sample flow, the total flow rate would increase to facilitate nESI with a FDM emitter, and mixing of sample and focusing solutions would also be inhibited.⁴²

Herein, a nanoelectrospray ionization source (NIS), consisting of a 3D-printed nESI emitter, a housing case, and connecting components, was developed to achieve a 3D-printed nESI interface for chip-MS platforms. In order to facilitate nESI with a FDM emitter, 3D hydrodynamic focusing was applied to sample flows by imposing horizontal and vertical focusing flows. Moreover, heat drying nitrogen flows were applied to improve the nESI efficiency. In addition, NIS was used to probe organic chemicals and biological macromolecules after various
optimizations. Finally, it was compatible with 50 – 500 nL min\(^{-1}\) sample flows, and its sensitivities and linear ranges for different samples were investigated. The 3D-printed fabrication of NIS was facile (completely automatically) and low-cost (less than 35 USD). Therefore, the proposed method would be a standardized and user-friendly option to develop chip-MS platforms.

Experimental

Reagents and chemicals

The conductive focusing solution is mixture of methanol, double distilled water, and formic acid (80:19.9:0.1, v/v/v). Poly(lactic acid) (Print-Rite, Shenzhen, China) was used in all 3D-printed fabrications. Pyridalyl was from Prof. Guangfu Yang’s group. Other chemicals including rhodamine b (RhB), chlorantraniliprole (Chl), insulin from porcine pancreas and lysozyme were purchased from Sigma-Aldrich (St. Louis, USA), and all solvents were from Merck (Darmstadt, Germany).

Fabrication of 3D-printed nESI emitter

The nESI emitter (Fig. 1a) in NIS was designed with Rhinoceros 5.0 (Robert McNeel & Associates, Seattle, USA). In the emitter, four female thread inlets and a 45° apex nozzle were integrated to introduce various flows and to facilitate the electrospray, respectively. After converting the design into digital codes with software, Repetier Host (Print-Rite, Shenzhen, China), we used a CoLiDo 2.0 3D printer (Print-Rite, Shenzhen, China) to prepare the nESI emitter (Figs. 1b – 1d, approximately 41 \(\times \) 33 \(\times \) 17 mm) with 100 \(\mu \)m spatial precision and 99.9% filling density. 3D-Printed nuts with male threads (Fig. 1b) introduced tubings (0.8 mm i.d., 1.6 mm o.d.) into inlets with female threads (Figs. 1a and 1b), and a rubber o-ring (1.8 mm i.d., 4.0 mm o.d.) was used at the nut tip (Fig. 1b) to prevent leakages. The 3D configuration of the nESI emitter was presented with details in Supporting Information (Fig. S1). In the emitter, its opening size (the inner diameter) is \(\sim 500 \mu \)m, and its wall thickness is \(\sim 200 \mu \)m.

Three dimensional hydrodynamic focusing

After introducing from inlets (Figs. 1a and 2a), the sample flow (green) was wrapped by horizontal and vertical focusing flows (blue) in the emitter due to the laminar flow feature. A nitrogen flow (red) at room temperature was introduced as the nebulizer gas to facilitate the evaporation of various solutions (Figs. 1a and 2a). Auxiliary nitrogen was divided into two identical flows in the emitter (red, Fig. 1a), and converged into the cylindrical sheath tube around the spray nozzle.

3D-Printed NIS coupled with mass spectrometer

The NIS was coupled with a 6224 TOF-MS (Agilent, Santa Clara, USA), as shown in the schematic configuration (Fig. 2a). Syringe pumps (Longer Pump, Baoding, China) infused different solutions into the 3D-printed nESI emitter. The auxiliary nebulizer nitrogen and the heat drying nitrogen were from a nitrogen generator (NM32LA, Peak Scientific, Ireland) and the TOF-MS, respectively. A platinum electrode was inserted in a T-shape adaptor to impose a voltage from a power supply (Dongwen, Tianjin, China) to the sample flow, and the other T-shape adaptor was used to introduce horizontal and vertical focusing flows into corresponding inlets.

A 3D-printed holder (Figs. 2b and 2c), cylindrical connecting tube (Fig. 2d), and plate connection bar (Fig. 2e) were developed to connect the proposed nESI emitter with a xyz regulator.
Additionally, a 3D-printed housing case (Fig. S2, Supporting Information, 134 × 120 × 82.0 mm) and a leather cover were integrated in NIS (Fig. 2c) to inhibit the fluctuation of the ion current. Further, two glass windows, a metal screw for positioning and a trigger switch of the mass spectrometer were also integrated in the NIS (Fig. 2f). Prior to detections, the position of the nESI emitter relative to the ion inlet was optimized via obtaining the highest ion intensity for a standard chemical. A commercial nESI source (Agilent, Santa Clara, USA) was used as a commercial comparison to evaluate the NIS.

Results and Discussion

Optimization of the NIS method

Extracted ion profiles (EICs) for RhB were compared to assess the necessity of the housing case in NIS, and an improved stability was observed with its presence (Fig. 3a). Further, peak heights and areas in the EICs, the slopes of the linear calibration curves and their regression coefficients were better with the housing (Figs. 3a and 3b). The results shown in Fig. 3a indicated that the housing could alleviate fluctuation of the ion current. A 1500 nL min⁻¹ focusing flow and a 300 nL min⁻¹ sample flow were applied in all determinations.
The detection limits of the NIS with and without its housing were 0.1 and 0.25 ng μL⁻¹ (s/n = 3), indicating an enhancement in the sensitivity. This would be because the adverse influence from random changes of the experimental environments (such as air flows) was inhibited, thus improving the stability and sensitivity of the NIS method.

The auxiliary nebulizer nitrogen in NIS was optimized by detecting Chl under different conditions. Two comparable maximum ion intensities of Chl were observed at 4.0 and 12.0 psi auxiliary nitrogen pressure (Fig. S3a, Supporting Information). The change of the Chl ion intensity would be due to the increasing auxiliary nebulizer nitrogen, which facilitated generation of the aerosol plume and evaporation of the sample droplets with an auxiliary nebulizer nitrogen at 0 - 4.0 and 10 - 14 psi, respectively. Therefore, the sensitivity of the NIS method and the ion intensity of Chl improved with the nitrogen pressure within preceding two ranges. On the other hand, the increasing pressure (0 - 50.0 psi) of the auxiliary nitrogen would also promote diffusion of the Chl ion, and reduce its ion intensities. Further, the ratio between the ion intensity of Chl and the total ion intensity, partially indicating the signal-to-noise ratio (s/n), was better at 12.0 psi compared with its counterpart at 4.0 psi (Fig. S3b, Supporting Information). At last, the aerosol plume was more stable with 12.0 psi auxiliary nitrogen, and this condition was thus applied in the proposed NIS method.

The maximum ion intensity of Chl was obtained with a 310°C drying nitrogen from the ion transmission orifice (Fig. S3c, Supporting Information). When the temperature was lower than 300°C, the ion intensity fluctuated due to slow evaporation of the sample droplets. Further, the drying gas at 310°C melted the 3D-printed nESI nozzle when its flow rate was greater than 1.5 L min⁻¹, despite that greater flow rates (1.5 – 3.6 L min –¹) enhanced the ion intensity (Fig. S3d, Supporting Information). The drying nitrogen flow was thus applied at 310°C and 1.5 L min⁻¹.

Finally, the relative standard deviations (RSDs) of the total ion current (TIC) profiles were investigated at different ionization voltages, and an optimal stability was observed at 5.0 kV (Fig. S4, Supporting Information). The ion intensity became more stable when the voltage increased from 2.0 to 5.0 kV. This would probably be because the increasing voltage magnified the charge density in the sample droplets, thus improving their splitting in the nESI process. On the contrary, this trend was reversed when the voltage was within 5.0 - 7.0 kV, this would be because the excessive voltage would lead to electric discharges, which caused the generation of extraneous ions and additional fluctuations of the ion current. Therefore, an optimal 5.0 kV voltage was applied in NIS, being greater than previous reports. This discrepancy would be because

Table 1 Detected molecular ions of various organic chemicals and their m/z

Chemicala	Composition	Ion	m/z
Azoxyystrobin	C₂₂H₁₇N₃O₅ (M+K)+	442.1484/442.0800	
Bentazone	C₉H₂₀N₂O₂S (M+K)+	279.0472/279.0200	
Chl	C₆₉H₈₁NO₁₅ (M+H)+	1008.5086/1008.5679	
Dichlorobenzene	C₆H₆Cl₂ (M+Cl)+	313.1811/313.0743	
Hexaconazole	C₆H₂₈N₃O₂Cl	341.0711/341.0692	
Parathion-methyl	C₆H₅NO₃SP	341.0711/341.0692	
Pyridalyl	C₆H₄NO₂Cl	341.0711/341.0692	
RhB	C₆H₂₈N₃O₂	443.2333/443.2329	
Tebuconazole	C₆H₂₈N₃O₂Cl	308.2512/308.1524	

a. Sample flows (0.5 ng μL⁻¹, 300 nL min⁻¹) and the focusing flow (1500 nL min⁻¹) were applied in all determinations.

Distribution of the sample ion

In order to study the configuration of the nanoelectrospray in NIS, we investigated the spatial distribution of the sample ion in the spray from the 3D-printed nESI emitter. Firstly, the Chl ion gathered in the central region of both the lateral and vertical directions (Figs. 4a and 4b). Further, the ion intensities at 0 – 200 μm upward displacements from the center were greater than their counterparts at downward displacements (Fig. 4a), while this trend was absent in the lateral direction (Fig. 4b). The asymmetrical distribution in the vertical direction would probably be due to unsymmetrical vertical hydrodynamic focusing for the sample flow in the 3D-printed emitter (Fig. 1a). Meanwhile, the ion intensities were symmetric in the lateral direction, which implied symmetric lateral focusing for the sample flow in NIS. Preceding results demonstrated that the conical configuration of the electrospray in NIS was retained with the presence of both nebulizer and drying nitrogen flows, both of which distributed symmetrically around the nESI nozzle. Otherwise, either the asymmetrical distribution of the Chl ion in the vertical direction (Fig. 4a) or its symmetrical distribution in the lateral direction (Fig. 4b) would not remain.

The ion intensities of Chl at different radial positions were distributed symmetrically around the nESI nozzle. The maximum

Fig. 4 Distribution of the Chl ion at different positions in the vertical (a), lateral (b) and radial (c) directions (n = 3). A 300 nL min⁻¹ Chl solution (5 ng μL⁻¹, m/z 520.159) and a 1500 nL min⁻¹ focusing flow were applied in all determinations.
Intensity was obtained at 9.8 mm. Its intensity was negligible when the distance was less than 9.0 mm or more than 10.5 mm. This would be because the nESI of Chl was inadequate at distances less than 9.0 mm, and its diffusion would be too serious at greater distances than 10.5 mm.

Applications and evaluations of the NIS

The NIS was applied to detect thirteen organic chemicals (0.5 μg mL⁻¹), and their molecular ions as well as corresponding m/z were presented in Table 1. This indicates that the NIS achieved nESI MS identifications for various samples with molecular ions at 194.67 – 1008.51 m/z and with an accuracy of m/z between 9.02 × 10⁻⁴ and 1.48 × 10⁻³ ppm. Additionally, the s/n in all determinations was better than 4.9, and the s/n for RhB (0.5 μg mL⁻¹) was 8.4 (Fig. 5a). In order to investigate the feasibility to probe negative ions with NIS, it was applied to detect hydrocortisone and vitamin C, and their negative molecular ions were observed as m/z 407.4381 and 175.2362, corresponding to [M+COOH]⁻ and [M–H]⁻, respectively.

Preceding mass deviations would be due to an absence of the ions when using ammonium formate, although acetonitrile and ammonium formate profiles were compared as the conductive focusing solutions, and this may be related to the instability of ammonium ions in the nESI process. The molecular ions of dimethoate were probed when applying ammonium formate compared with its counterparts when using formic acid, and this may be related to the instability of ammonium ions in the nESI process. The molecular ions of dimethoate were probed when applying different focusing solutions (Fig. S7, Supporting Information). Overall, we could obtain more stable total ion current (TIC) profiles with the NIS when using a mixture of methanol, water and formic acid, although acetanilide and ammonium formate could also be used in the conductive focusing solutions.

Finally, the compatible flow rate of the NIS was evaluated, and it could identify RhB within 50 – 500 nL min⁻¹ (Fig. 6). The RSD of the total ion current (TIC) profiles deteriorated when the sample flow rate increased from 300 to 500 nL min⁻¹, and the electrospray is intermittent when the flow rate is beyond 500 nL min⁻¹. This would be because the NIS could not provide an adequate charge density to the sample droplets or result in an inappropriate evaporation of the solvent when the flow rate was too great. Moreover, the RSD of total ion current (TIC) profiles improved when the sample flow rate increased from 150 to 300 nL min⁻¹, and the best RSD for the total ion intensity lasting for 4 min, 7.2%, was achieved with a 300 nL min⁻¹ flow rate (Fig. 6). This may be because the hydrodynamic focusing in the 3D-printed emitter was more stable at a greater sample flow rate (Fig. 5b). The RSD of the total ion current (TIC) profiles lasting for 4 min were 7.2, 19.3 and 43.7%. There were more background ions when using ammonium formate compared with its counterparts when using formic acid, and this may be related to the instability of ammonium ions in the nESI process. The molecular ions of dimethoate were probed when applying different focusing solutions (Fig. S7, Supporting Information). Overall, we could obtain more stable total ion current (TIC) profiles with the NIS when using a mixture of methanol, water and formic acid, although acetanilide and ammonium formate could also be used in the conductive focusing solutions.

Finally, the compatible flow rate of the NIS was evaluated, and it could identify RhB within 50 – 500 nL min⁻¹ (Fig. 6). The RSD of the total ion current (TIC) profiles deteriorated when the sample flow rate increased from 300 to 500 nL min⁻¹, and the electrospray is intermittent when the flow rate is beyond 500 nL min⁻¹. This would be because the NIS could not provide an adequate charge density to the sample droplets or result in an inappropriate evaporation of the solvent when the flow rate was too great. Moreover, the RSD of total ion current (TIC) profiles improved when the sample flow rate increased from 150 to 300 nL min⁻¹, and the best RSD for the total ion intensity lasting for 4 min, 7.2%, was achieved with a 300 nL min⁻¹ flow rate (Fig. 6). This may be because the hydrodynamic focusing in the 3D-printed emitter was more stable at a greater sample flow rate within 150 – 300 nL min⁻¹, thus improving the stability of the nESI process. As a comparison, the commercial nESI source achieved a 31% RSD, and its improved stability would be because of its better stability of the pressure to drive solutions and more straight-forward configuration to impose voltages.

Further, the RSD of the total ion current (TIC) profiles became worse when the sample flow rate increased from 50 to 150 nL min⁻¹ (Fig. 6), and the NIS achieved superior sensitivity and signal stability with a smaller sample flow rate at 50 – 150 nL min⁻¹. This may be because the sample droplets in electrospray aerosol plume had a smaller size compared with its counterparts when applying greater flow rates, and their relatively smaller sizes promoted the dispersion, volatilization and ionization of sample solutions, thus resulting in a slightly enhanced nESI stability at 50 nL min⁻¹ (Fig. 6). Stable MS detections with the
NIS were not feasible when the sample flow rate was less than 50 nL min⁻¹, which may be because the total flow rate was too low to maintain a stable nESI. If a bypass is added to split the flow phase, the prosed NIS would also be connected with conventional LC columns working with a 0.2 – 1.0 mL min⁻¹ flow phase, although their separation efficiencies would not completely remain due to the broadening.

Conclusions

We developed a facile and automatic 3D-printing method to prepare monolithic nESI emitters in microfluidic chips and to achieve nESI MS detections for sample flows. Firstly, the housing in NIS was capable in inhibiting ion intensity fluctuations due to environmental changes, thus improving the sensitivity of the proposed method. Additionally, the spatial distribution of the sample ion supported compensation for the total flow rate and inhibition for ion expansion via the 3D hydrodynamic focusing in NIS. Moreover, the NIS could achieve nESI MS detections for sample flows. Firstly, the NIS was compatible with a sample flow within 50 – 500 nL min⁻¹, achieving an optimal 7.2% RSD of the total ion current (TIC) profiles at 300 nL min⁻¹. Considering the 3D-printing preparation of NIS is user-friendly and low-cost (less than 7 and 35 USD), the proposed method would be not only an option to fabricate monolithic nESI interface in microfluidic chips, but also a potential strategy to develop customized nESI-MS platforms. Considering the progress of 3D printing, it would also be a foreseeable option to prepare the NIS with metal-based 3D printing technology, which would provide an improved resolution.

Acknowledgements

Mrs. Yinyin Hao and Ms. Xing Su in SCUEC and CCNU are appreciated for their revisions in English usage. Prof. Guangfu Yang in CCNU is appreciated to provide pyridalyl. This research was financially supported by the program of introducing talents of discipline to universities of China (111 Program, B17019), self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (CCNU19KYZHYSY07, CCNU19TS053).

Supporting Information

The configuration of the housing case, Chl ion intensities at different auxiliary and drying nitrogen conditions, the RSDs of the total ion intensities at different voltages, mass spectra of hydrocortisone under positive and negative ionizations, the linear curve for pyridalyl, and mass spectra of dimethoate when using different focusing flows were in the supporting information. This material is available free of charge on the Web at http://www.jsac.or.jp/analsci/.

References

1. M. R. Emmett and R. M. Caprioli, J. Am. Soc. Mass. Spectrom., 1994, 5, 605.
2. M. Wilm and M. Mann, Anal. Chem., 1996, 68, 1.
3. A. J. Chetwynd and A. David, Talanta, 2018, 182, 380.
4. M. Rahman, D. Wu, and K. Chingin, J. Am. Soc. Mass. Spectrom., 2019, 30, 814.
5. K. Zheng, J. E. Lesniewski, M. J. Dolan, Jr., W. Li, T. T. Metallo, and K. Jorabchi, Anal. Chem., 2020, 92, 10129.
6. X. Sun, R. T. Kelly, K. Tang, and R. D. Smith, Analyst, 2010, 135, 2296.
7. X. Zhong, L. Qiao, G. Stauffer, B. Liu, and H. H. Girault, J. Am. Soc. Mass. Spectrom., 2018, 29, 1538.
8. T. Sikanen, S. Franssila, T. J. Kauppila, R. Kostiainen, T. Kotiaho, and R. A. Ketola, Mass Spectrom. Rev., 2010, 29, 351.
9. X. W. He, Q. S. Chen, Y. D. Zhang, and J. M. Lin, TrAC, Trends Anal. Chem., 2014, 53, 84.
10. X. Sun, R. T. Kelly, K. Tang, and R. D. Smith, Anal. Chem., 2011, 83, 5797.
11. L. Wang, Y. Wang, S. Jiang, M. Ye, P. Su, and B. Xiong, J. Chromatogr. A, 2016, 1470, 1.
12. M. F. Bedair and R. D. Oleschuk, Anal. Chem., 2006, 78, 1130.
13. L. Sainiemi, T. Nissila, R. Kostiainen, S. Franssila, and R. A. Ketola, Lab Chip, 2012, 12, 325.
14. R. T. Kelly, J. S. Page, Q. Luo, R. J. Moore, D. J. Orton, K. Tang, and R. D. Smith, Anal. Chem., 2006, 78, 7796.
15. M. Wilm and M. Mann, Anal. Chem., 1996, 68, 1.
16. D.-Q. Jin, Y. Zhu, and Q. Fang, Anal. Chem., 2014, 86, 10796.
17. C. Lotter, J. J. Heiland, S. Thurmann, L. Mauritz, and D.
Belder, *Anal. Chem.*, 2016, 88, 2856.
18. R. F. Gerhardt, A. J. Peretzki, S. K. Piendl, and D. Belder, *Anal. Chem.*, 2017, 89, 13030.
19. Y. Lu, F. Liu, N. Lion, and H. H. Girault, *J. Am. Soc. Mass. Spectrom.*, 2013, 24, 454.
20. P. Hoffmann, M. Eschner, S. Fitzsche, and D. Belder, *Anal. Chem.*, 2009, 81, 7256.
21. M. Prudent, M. A. Mendez, and H. H. Girault, *Anal. Sci.*, 2008, 24, 1399.
22. M. Prudent, M. A. Mendez, C. Roussel, B. Su, N. Lion, J. S. Rossier, and H. H. Girault, *Chimia*, 2009, 63, 283.
23. T. Yamashita, K. Yasukawa, and E. Yunoki, *Anal. Sci.*, 2019, 35, 769.
24. M. Groesche, A. E. Zoheir, J. Stegmaier, R. Mikut, D. Mager, J. G. Korvink, K. S. Rabe, and C. M. Niemeyer, *Small*, 2019, 15, 1901956.
25. G. I. J. Salentijn, R. E. Oomen, M. Grajewski, and E. Verpoorte, *Anal. Chem.*, 2017, 89, 7053.
26. F. Li, N. P. Macdonald, R. M. Guijt, and M. C. Breadmore, *Anal. Chem.*, 2017, 89, 12805.
27. F. Cecil, R. M. Guijt, A. D. Henderson, M. Macka, and M. C. Breadmore, *Anal. Chim. Acta*, 2020, 1097, 127.
28. E. M. Richter, D. P. Rocha, R. M. Cardoso, E. M. Keeffe, C. W. Foster, R. A. Munoz, and C. E. Banks, *Anal. Chem.*, 2019, 91, 12844.
29. G. I. J. Salentijn, R. D. Oleschuk, and E. Verpoorte, *Anal. Chem.*, 2017, 89, 11419.
30. G. I. J. Salentijn, H. P. Permentier, and E. Verpoorte, *Anal. Chem.*, 2014, 86, 11657.
31. A. Hollerbach, Z. Baird, and R. G. Cooks, *Anal. Chem.*, 2017, 89, 5058.
32. A. Hollerbach, P. W. Fedick, and R. G. Cooks, *Anal. Chem.*, 2018, 90, 13265.
33. E. M. Tridas, C. Alleman, F. Mast, J. M. Anthony, and R. Schlaf, *J. Mass Spectrom.*, 2015, 50, 938.
34. V. Geertsen, E. Barruet, and O. Tache, *J. Anal. At. Spectrom.*, 2015, 30, 1369.
35. C. K. Su, S. C. Hsia, and Y. C. Sun, *Anal. Chim. Acta*, 2014, 838, 88.
36. P. Sosnowski and G. Hopfgartner, *Talanta*, 2020, 215, 120894.
37. M. A. Daniele, D. A. Boyd, D. R. Mott, and F. S. Ligler, *Biosens. Bioelectron.*, 2015, 67, 25.
38. P. Sajeeh, S. Manasi, M. Doble, and A. K. Sen, *Lab Chip*, 2015, 15, 3738.
39. M. Lu, S. Yang, Y. P. Ho, C. L. Grigsby, K. W. Leong, and T. J. Huang, *Acs Nano*, 2014, 8, 10026.
40. B. Xiong, L. Wang, Y. Wang, Y. Bao, S. Jiang, and M. Ye, *Analyst*, 2016, 141, 177.
41. Q. Fu, J. Tang, M. Cui, Z. Zheng, Z. Liu, and S. Liu, *J. Chromatogr. B*, 2015, 990, 169.
42. X. F. Sun, R. T. Kelly, K. Q. Tang, and R. D. Smith, *Anal. Chem.*, 2011, 83, 5797.