Healthy ageing through internet counselling in the elderly (HATICE): a multinational, randomised controlled trial

Edo Richard*, Eric P Moll van Charante†, Marieke P Hoevenaar-Blom, Nicola Coley, Mariagnese Barbera, Abraham van der Groep, Yannick Meiller, Francesca Mangialasche, Cathrien B Beishuizen, Susan Jongstra, Tessa van Middelaar, Lennard L Van Wanrooij, Tiia Ngandu, Juliette Guillemont, Sandrine Andrieu†, Carol Brayne†, Mia Kivipelto†, Hilkka Soininen†, Willem A Van Gool†

Summary
Background Although web-based interventions have been promoted for cardiovascular risk management over the past decade, there is limited evidence for effectiveness of these interventions in people older than 65 years. The healthy ageing through internet counselling in the elderly (HATICE) trial aimed to determine whether a coach-supported internet intervention can reduce cardiovascular risk in community-dwelling older people.

Methods This prospective open-label, blinded endpoint clinical trial among people age 65 years or over at increased risk of cardiovascular disease randomly assigned participants in the Netherlands, Finland, and France to an interactive internet intervention stimulating coach-supported self-management or a control platform. Primary outcome was the difference from baseline to 18 months on a standardised composite score (Z score) of systolic blood pressure, LDL cholesterol, and body-mass index (BMI). Secondary outcomes included individual risk factors and cardiovascular endpoints. This trial is registered with the ISRCTN registry, 48151589, and is closed to accrual.

Findings Among 2724 participants, complete primary outcome data were available for 2398 (88%). After 18 months, the primary outcome improved in the intervention group versus the control group (0.09 vs 0.04, respectively; mean difference −0.05, 95% CI −0.08 to −0.01; p=0.008). For individual components of the primary outcome, mean differences (intervention vs control) were systolic blood pressure −1.79 mmHg versus −0.67 mmHg (−1.12, −2.51 to 0.27); BMI −0.23 kg/m² versus −0.08 kg/m² (−0.15, −0.28 to −0.01); and LDL −0.12 mmol/L versus −0.07 mmol/L (−0.05, −0.11 to 0.01). Cardiovascular disease occurred in 30 (2.2%) of 1382 patients in the intervention versus 32 (2.4%) of 1333 patients in the control group (hazard ratio 0.86, 95% CI 0.52 to 1.43).

Interpretation Coach-supported self-management of cardiovascular risk factors using an interactive internet intervention is feasible in an older population, and leads to a modest improvement of cardiovascular risk profile. When implemented on a large scale this could potentially reduce the burden of cardiovascular disease.

Funding European Commission Seventh Framework Programme.

Introduction Cardiovascular disease is the leading cause of morbidity and mortality worldwide, and is strongly related to unhealthy behaviours.12 Despite widespread preventive programmes, cardiovascular disease risk factors, including hypertension, hypercholesterolaemia, smoking, diabetes, unhealthy diet, obesity, and physical inactivity, remain highly prevalent.13 Long-term adherence to lifestyle and medication regimens remains a serious challenge and target values for cardiovascular risk management are often not reached because of both patient and doctor factors.14 15 This gap between evidence and practice leaves room for substantial improvement.16 Optimisation of cardiovascular risk factors might also contribute to the prevention of cognitive decline and dementia, which can be an extra motivator to increase adherence.6

Self-management might empower individuals and improve adherence to lifestyle change and pharmacological prevention programmes to reduce risk of cardiovascular disease.9 Increasing global access to the internet facilitates delivery of preventive interventions without the need for frequent face-to-face contact, creating the potential for scalability at low cost across a variety of health-care settings.17

Previous meta-analyses showed modest, but consistent, beneficial effects of coach-supported (blended) eHealth interventions on individual cardiovascular risk factors, but sustainability over time is an important challenge.20–21 Because effects of preventive interventions require long-term risk factor improvement, studies evaluating whether effects are sustainable beyond 12 months are needed. Despite rapidly increasing internet use in older populations (ie, >65 years), little is known about the feasibility and effectiveness of eHealth interventions in older people, who are often at increased risk of cardiovascular disease.

In the healthy ageing through internet counselling in the elderly (HATICE) trial we investigated whether a coach-supported interactive internet intervention to

Lancet Digital Health 2019; 1: e424–34
Published Online November 14, 2019
https://doi.org/10.1016/S2589-7500(19)30151-0
See Comment page e382
*Contributed equally
†Contributed equally
Department of Neurology (E Richard MD), Department of Primary Care (E P Moll van Charante MD), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands (E Richard MD); INSERM, University of Toulouse UMR1027, Toulouse, France (N Coley PhD) Guillermont MSc, and Department of Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France (Prof S Andrieu MD); Department of Information and Operations Management, ESCL Europe, Paris, France (Y Meiller PhD); Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden (F Mangialasche PhD).
Research in context

Evidence before this study

In a recent systematic review we concluded that web-based interventions in older people can be moderately effective in reducing individual cardiovascular risk factors, particularly if blended with human support, but that effects decline with time. We updated our systematic review, from inception to July 24, 2019, in MEDLINE, Embase, CINAHL, and the Cochrane Library with search terms designed to capture all systematic reviews and trials using web-based interventions on self-management of cardiovascular risk factors to reduce the risk of cardiovascular disease in older people (>65 years). Search terms included all cardiovascular risk factors (hypertension, glycated haemoglobin A1c, LDL cholesterol, smoking, weight, and physical inactivity), cardiovascular disease and web-based interventions (and synonyms). We found three systematic reviews and meta-analyses, one on hypertension only, and two on primary and secondary prevention of cardiovascular disease. For participants with and without a history of cardiovascular disease, web-based interventions might improve different individual risk factors of people from midlife onwards, but it is not clear whether these effects are sustainable. The evidence for an effect on cardiovascular outcomes is inconsistent. Increasing internet access across the globe has considerable potential for improving cardiovascular risk management to reduce the global burden of cardiovascular disease.

Methods

Study design and participants

The HATICE trial was a pragmatic, multinational, multicentre, investigator-initiated, randomised controlled trial using an open-label blinded endpoint design, with 18 months intervention and follow-up. Details of the study design have been published previously.14 Participants were eligible if they were community dwelling, aged at least 65 years, had two or more cardiovascular risk factors (ie, hypertension, dyslipidaemia, overweight, current smoking, or physical inactivity), or a history of cardiovascular disease (ie, stroke, transient ischemic attack [TIA], myocardial infarction, angina pectoris, or peripheral arterial disease) or diabetes, or both, and had access to the internet using a laptop, desktop computer, or tablet. Exclusion criteria were prevalent dementia, computer illiteracy (operationalised as not able to do a simple internet search or send an email) and any condition expected to hinder successful 18-month follow-up (eg, metastasised malignancy or chronic alcohol abuse; appendix p 2). The full study protocol is provided in the appendix (p 75).

Recruitment took place in the Netherlands, Finland, and France from March 9, 2015, to Sept 20, 2016. Detailed recruitment and enrolment procedures in each country are described in the appendix (pp 2–3, 23–24). Medical ethical approval was obtained from the medical ethical committee of the Academic Medical Centre (the Netherlands; June 26, 2014; METC 2014_126), the Northern Savonia Hospital District Research Ethics Committee (Finland; June 10, 2014; 35/2014), and the Comité de Protection des Personnes Sud Ouest et Outre Mer (France; Sept 24, 2014; 2014-A01287–40). All participants gave written informed consent.

Randomisation and masking

After completion of the baseline assessment, participants were individually randomly assigned in a 1:1 ratio using a central, computer-generated sequence, which was linked to the online case record form. In case of spouse or partner participation, both participants were automatically allocated to the same treatment group to prevent contamination. All participants were informed about randomisation to one of two internet platforms, without further details on the contents of the platforms. Complete masking of participants and the coaches delivering the intervention was not possible because of the nature of the intervention. An independent assessor unaware of treatment allocation did the final assessment, including outcome assessment. The primary outcome consisted solely of objectively measurable parameters.
Procedures

Intervention group participants received access to a secure internet-based platform with remote support from a coach trained in motivational interviewing and lifestyle behaviour advice, based on the stages of change model.\(^\text{15}\) The platform was designed to facilitate self-management of cardiovascular risk factors by defining health priorities, goal setting, monitoring progress with (graphical) feedback, and a combination of automated and personal feedback from the coach, based on Bandura’s social-cognitive theory of self-management and behavioural change, and was described in detail elsewhere (appendix p 4).\(^\text{15,17}\) After developing a conceptual framework, the platform was designed in an iterative process engaging end users (target population and nurses), which included an 8-week pilot study with 41 participants (appendix p 4). The main components of the intervention are described in the panel. All advice was according to European and national guidelines for the management of cardiovascular risk factors.\(^\text{16,17}\)

Coaches motivated participants via a computer messaging system to set at least one goal to improve a cardiovascular risk factor, encouraged them to interact with the platform, set additional goals over time, and provided motivating feedback. The full coaching protocol is provided in the appendix (p 31). Participants allocated to the control condition had access to a static platform, similar in appearance, with limited general health information only, without interactive components or a remote coach.

After telephone screening, eligible participants were invited in person. During the screening visit, blood pressure and anthropometrics were assessed. Full study logistics and procedures are provided in the appendix (pp 25–26). Medical history and medication use were registered. Mini Mental Status Examination was used to screen for cognitive impairment. Before the baseline assessment, participants were invited to fill out a series of online questionnaires, mainly for secondary outcome assessments. Symptoms of depression were assessed using the 15-item Geriatric Depression Scale, anxiety with the Hospital Anxiety and Depression Scale (anxiety part), diet with the Mediterranean diet adherence screener, disability and functioning with the late-life function and disability instrument, self-efficacy with the Partners in Health questionnaire, and physical activity with the Community Health Activities Model Program for Seniors questionnaire.

Blood was drawn for assessment of lipids, glucose, and glycosylated haemoglobin A\(_1\) (HbA\(_1c\)). 2 weeks after the screening visit, the baseline visit took place, with assessment of physical fitness with the Short Physical Performance Battery and cognitive functioning with the Stroop colour–word test, Trail Making Test A and B, Rey Auditory Verbal Learning test, and semantic fluency test. All measurements were repeated at 18 months. Any finding requiring medical attention, such as an elevated blood pressure, abnormal laboratory values or signs of cognitive impairment or depression led to the advice to visit their general practitioner (GP). Participants in both conditions received a 3-monthly online questionnaire about the occurrence of adverse events and clinical outcomes. At 12 months, a telephone call to all participants was scheduled for assistance with self-reported outcome assessment questionnaires, and in the intervention group only, with a motivational conversation to enhance adherence and address potential challenges with goal-setting and lifestyle improvement.

Outcomes

The primary outcome was the change from baseline to 18 months on a composite score of systolic blood pressure, LDL cholesterol, and body-mass index (BMI). For each of the three parameters at baseline and at the 18-month visit, the baseline means and SDs combined were used to calculate Z scores. The Z scores were then averaged for the baseline and the 18-month visit separately, leading to the composite Z score for the respective visits. We decided on this primary outcome on the basis of the following

Panel: Components of the HATICE intervention

Intervention platform	Participant content
• Health priorities*—participants are invited to prioritise up to three health factors; potential health priorities are smoking, blood pressure, cholesterol, diabetes, weight, physical activity, and nutrition; the layout of the homepage changes according to individual chosen priorities	
• Goal-setting* according to the SMART principles focusing on their individual health priorities	
• Monitoring progress—participants can enter measurements, such as weight, to assess their personal progress, including using graphical and automated feedback	
• Messaging system with their personal coach	
• Lifestyle groups—group activities in the individual’s locality are presented, which participants can join	
• Advice and education—static and dynamic information on cardiovascular risk, including peer-to-peer videos and games	
• News items related to cardiovascular disease, healthy ageing, or e-health are added regularly	

Coach content
• Messaging system with their participants
• Alerts—coaches receive an alert when a participant enters or edits a goal, measurement, or health factor and when a participant does not log in for 3 weeks.
• Overview per participant of their health priorities, goals, measurements, messages, and lifestyle groups

Control platform
Participant content
• Advice and education—general static information on cardiovascular risk

Coach content
• None

*Participants are stimulated to set their first health priorities and goals during the baseline visit. SMART=specific, measurable, assignable, realistic, time related.
The main secondary outcomes were the difference at 18 months in systolic blood pressure, LDL cholesterol, and Incidence of Dementia (CAIDE) score. The outcome. For the primary analysis, we used a general linear model. Accounting for correlations between visits and number of messages exchanged between coach and participant and number of goals set. Independent, blinded-outcome adjudication committees in each country evaluated all clinical outcomes on the basis of available clinical information (appendix p 5).

Figure 1: Trial profile

*Individual participants could have more than one reason for not meeting inclusion criteria. †Previously diagnosed dementia, any condition expected to limit 18-month compliance and follow-up, severe visual impairment, age <65 years, or participation in another randomised controlled trial. ‡One participant asked for data to be kept appropriately, because the exact weight of each risk factor bias; and weighing of risk factors was considered not measurable parameters reduces the risk of reporting bias; and weighing of risk factors was considered not appropriate, because the exact weight of each risk factor was unknown in this population. Full considerations for this primary outcome have been detailed previously. Other outcomes reflecting cardiovascular disease risk included difference in level of physical activity, dietary intake, smoking cessation, estimated 10-year cardiovascular disease risk based on the Framingham cardiovascular disease risk score and the Systematic Coronary Risk Estimation-Older People (SCORE-OP), and dementia risk as measured with the Cardiovascular risk factors, Ageing and Incidence of Dementia (CAIDE) score. Other outcomes reflecting cardiovascular disease risk included difference in level of physical activity, dietary intake, and smoking cessation. Clinical outcomes included disability, physical functioning, cognitive functioning, depression and anxiety, incident cardiovascular disease (stroke, TIA, myocardial infarction, angina pectoris) and mortality. GP consultations, emergency room visits and hospital admissions were registered. Process evaluation outcomes to assess the intervention delivery were determined post hoc and include login frequency, number of messages exchanged between coach and participant and number of goals set. Independent, blinded-outcome adjudication committees in each country evaluated all clinical outcomes on the basis of available clinical information (appendix p 5).

Statistical analysis

We based our sample size calculation on the effect sizes of the HATICE primary outcome as observed in the preDIVA and FINGER trials after 24 months of follow-up. With 80% power, a 0.05 two-sided significance level, accounting for an estimated 14% attrition, an intraclass correlation coefficient of 0.25 for an anticipated 17.5% participants in couples, and an effect size of 0.06 the required sample size was estimated to be 2534 participants. We decided on this target effect size because the difference on this composite outcome after 2 years between those who did and did not develop cardiovascular disease or dementia during a mean of 6-7 years of follow-up in the preDIVA trial was 0.06 (appendix pp 6-8). The statistical analysis plan was completed and published at ISRCTN on June 27, 2017 (appendix pp 6–8) before unblinding of the data on March 31, 2018. All analyses were completed by the study group and verified by an independent epidemiologist.

All analyses were according to the intention-to-treat principle for participants with available data for each outcome. For the primary analysis, we used a general linear model. Accounting for correlations between partners using a random intercept was evaluated, but not included in the final model because this resulted in a worse model fit (higher Akaike information criterion). We additionally did a per-protocol analysis, including only those who logged onto the platform in at least 12 out of 18 months study participation, and who set at least one goal or entered one or more measurements. We did predefined subgroup analyses for country, sex, age group, educational level, prevalent cardiovascular disease and diabetes, or both, partner participation, participation in a cardiovascular risk management programme, and level of self-efficacy. Sensitivity analyses were done excluding 53 participants who did not have a
Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the Article. All authors had full access to all data in the study and the corresponding author had final responsibility for the decision to submit for publication.

Results

Of the 45 466 people invited, 4857 were interested and screened for eligibility. 1818 were excluded as ineligible and 242 did not wish to proceed (figure 1). Of the 2797 who were eligible, 72 declined to participate further and one requested for the data to be withdrawn, leaving 2724 participants at baseline. Of these, 1389 (51%) were allocated to the intervention group and 1335 (49%) to the control group. The groups were generally well balanced at baseline (table 1; appendix pp 9–10).

After a mean follow-up of 17.7 months (SD 2.5), data on the primary outcome were available for 2398 (88%) participants (see appendix p 11 for reasons for missing data). Participants not completing the study were slightly older, had lower educational attainment, and more often participated with their partner (appendix pp 12–13). In the intervention group, the composite score of systolic blood pressure, LDL, and BMI improved by 0.09 versus 0.04 in the control group, resulting in a mean difference –0.05 (95% CI –0.11 to –0.01; p=0.008) in favour of the intervention (figure 2). Prespecified sensitivity analysis showed that the effect was slightly larger in those who were adherent to the intervention (per-protocol analysis) with a mean difference of –0.06 (–0.11 to –0.02; p=0.004) in favour of the intervention (figure 2). Prespecified subgroup analyses by country, and by age, education, and cardiovascular risk are provided in the appendix (p 14). The high degree of similarity between those who dropped out in the intervention and control groups (appendix pp 15–16) suggests no selective drop-out occurred. Sensitivity analyses using multiple imputed data did not affect the main finding (–0.04, –0.08 to –0.01; p=0.03; appendix p 17).

The effects of the intervention on secondary outcomes are provided in table 2. Comparing the change in individual components of the primary outcome in the intervention versus the control group, systolic blood pressure declined 1.79 versus 0.67 mm Hg (mean difference –1.12; 95% CI –2.51 to 0.27), BMI declined 0.23 versus 0.08 kg/m² (–0.15, –0.28 to –0.01), and LDL declined 0.12 versus 0.07 mmol/L (mean difference –0.05, 95% CI –0.11 to 0.01; figure 2). The effect on all three components of the primary outcome was largest
in Finland (appendix p 18). There were no major differences in self-reported lifestyle outcome measures, except for smoking cessation, which was reported by 24 (23·5% of smokers) intervention participants versus 16 (14·2% of smokers) control participants (mean difference 9·4%; 95% CI –1·1 to 19·8). The mean number of risk factors that improved was 2·9 in the intervention group versus 2·7 in the control group (mean difference 0·2, 95% CI 0·1–0·3). The 10-year risk of cardiovascular mortality as expressed by the SCORE-OP was reduced by 0·32% in the intervention versus 0·14% in the control group (mean difference –0·18%; 95% CI –0·38 to 0·04). The 20-year risk of dementia as expressed by the CAIDE score (range 0–15) decreased by 0·19 in the intervention versus 0·04 in the control group (mean difference –0·18; –0·32 to –0·04). Symptoms of anxiety decreased more in the intervention than the control group (–0·58 versus –0·41; mean difference –0·18; –0·32 to –0·04). There were no significant differences on symptoms of depression, or any of the cognitive tests (table 2; appendix pp 18–19). Stroke incidence was lower in the intervention group versus the control group (four [0·3%] of 1383 versus 13 [1·0%] of 1335; hazard ratio 0·30, 95% CI 0·1–0·3). The 10-year risk of cardiovascular disease as estimated by the SCORE-OP was reduced by 1·0% in the intervention versus 0·3% in the control group (mean difference –0·68; 95% CI –0·91 to –0·45). The 20-year risk of cardiovascular disease as estimated with the CAIDE score. Although this trial was not powered to detect an effect on clinical outcomes, the incidence of stroke was lower in the intervention group than the control group. There was no effect on total cardiovascular disease, and no serious adverse events occurred.

Previous studies have shown beneficial effects of blood pressure treatment in older people. Effects of lifestyle interventions on other risk factors in older people are less consistent, but those targeting physical exercise might be beneficial up to high age. Despite our inclusion criteria, our study population might have had limited room for improvement. The low response rate to the initial invitation and a high percentage already taking statins and antihypertensives is likely to reflect participation of motivated people concerned about their health. Many of the participants had a history of diabetes or cardiovascular disease and these people are more likely to partake in a cardiovascular risk-reduction programme, leaving limited room for further improvement beyond usual clinical care, which has intensified in recent years in most European countries. Therefore, when implemented in a population with higher cardiovascular risk and less access to prevention programmes, the potential beneficial effect might be larger.

The intervention platform was carefully designed using an iterative process involving the end users throughout development, leading to good usability, as confirmed in a

Discussion
Our results show that a coach-supported interactive internet intervention to optimise self-management of cardiovascular risk factors in older individuals is feasible with sustainable engagement, and resulted in a modest reduction of cardiovascular risk after 18 months. This effect was largely driven by a significant reduction in BMI, with point estimates for all components of the primary outcome, and most self-reported lifestyle risk factors also in favour of the intervention. There were consistent small improvements in risk of cardiovascular disease as estimated with the SCORE-OP and risk of dementia as estimated with the CAIDE score. Although this trial was not powered to detect an effect on clinical outcomes, the incidence of stroke was lower in the intervention group than the control group. There was no effect on total cardiovascular disease, and no serious adverse events occurred.

Figure 2: Treatment effect on primary outcome and individual components of primary outcome
BMI=body-mass index.
qualitative substudy.17,18,25 Our pragmatic multicomponent approach makes it difficult to disentangle effects of different components of the intervention, particularly to differentiate between the effects of the application itself and of the coach.

A limitation of our primary outcome is the difficulty to establish its clinical relevance. However, we deemed a composite Z score of three relevant and objectively measurable risk factors most appropriate to reflect the effect of our intervention on overall cardiovascular disease risk in our mixed population of primary and secondary prevention. The observed treatment effect of 0·05 was smaller than the effect size of 0·06 on which our sample size calculation was based, but was nonetheless significant. There could be several reasons for this, including a slightly higher sample size than needed according to the sample size calculation (n=2724 vs 2534), lower drop-out rate than expected, and the absence of an anticipated loss of power due to clustering in participating couples. The result is consistent with a modest reduction in cardiovascular disease risk, as measured with the SCORE-OP, and dementia risk, as measured with the CAIDE score, further strengthening the potential relevance of this finding.

Subgroup analyses	n	Difference between Z score at baseline and month 18	Mean difference between intervention and control group	pInteraction	
Country					
Finland	825	0·04	-0·09	-0·12 (-0·18 to -0·06)	<0·01
France	332	-0·06	-0·07	-0·02 (-0·11 to 0·08)	
The Netherlands	1241	-0·09	-0·09	-0·01 (-0·06 to 0·04)	
Sex					
Male	1278	-0·06	-0·08	-0·03 (-0·07 to 0·02)	
Female	1140	-0·02	-0·10	-0·07 (-0·13 to -0·02)	
Age group, years					
65–70	1360	-0·03	-0·11	-0·07 (-0·12 to -0·02)	
71–75	639	-0·06	-0·09	-0·03 (-0·10 to 0·04)	
>75	399	-0·03	-0·03	0·00 (-0·08 to 0·08)	
Participation with partner					
No	2046	-0·04	-0·09	-0·05 (-0·09 to -0·01)	
Yes	352	-0·03	-0·08	-0·06 (-0·14 to 0·03)	
Already in cardiovascular risk management programme					
No	1804	-0·04	-0·09	-0·06 (-0·13 to 0·01)	
Yes	592	-0·03	-0·09	-0·05 (-0·09 to 0·00)	
Education					
Basic	640	-0·02	-0·12	-0·11 (-0·18 to -0·04)	
Post-secondary and non-tertiary	723	-0·04	-0·08	-0·04 (-0·11 to 0·02)	
Tertiary	1035	-0·05	-0·07	-0·01 (-0·07 to 0·04)	
Previous cardiovascular event					
No	1656	-0·04	-0·10	-0·06 (-0·10 to -0·02)	
Yes	730	-0·03	-0·06	-0·03 (-0·10 to 0·04)	
Diabetes					
No	1877	-0·04	-0·08	-0·04 (-0·08 to 0·00)	
Yes	519	-0·04	-0·12	-0·08 (-0·16 to -0·01)	
Self efficacy					
Low	1169	-0·07	-0·11	-0·04 (-0·09 to 0·01)	
High	1227	-0·01	-0·07	-0·06 (-0·11 to -0·01)	
All	2398	-0·04	-0·09	-0·05 (-0·08 to -0·01)	

Figure 3: Forest plot subgroup analyses
Box sizes are proportional to the number of participants in that specific subgroup analysis. NA—not applicable.
Data are n, mean (SD), and mean difference in change (95% CI). SBP—systolic blood pressure. HbA\textsubscript{\textalpha}—glycated haemoglobin A\textsubscript{\textalpha}. SCORE-OP—systematic coronary risk estimation—older people. SPPP—short physical performance battery. MEDAS—Mediterranean Diet Adherence Screener. NA—not applicable. LLD=life style function and disability instrument. CAIDE=cardiovascular risk factors, ageing and incidence of dementia. PH=partners in health. MMSE=mini mental status examination. GDS=geriatric depression scale. HADS=hospital anxiety and depression scale. *Measured at baseline and 18 months. †For SCORE-OP at 18 months, the baseline age was used (based on number of observations in number of individuals in intervention vs control: physical activity (h/week) 234/1244 vs 2254/1207, physical activity (% adherent to WHO) 234/1244 vs 2254/1207, MEDAS score 2573/1305 vs 2523/1303, LLFDI score 1483/899 vs 1450/880, PIH score 2280/1201 vs 2221/1201, GDS score 2276/1233 vs 2215/1293; HADS score 2296/1233 vs 2217/1198). §Measured at baseline, 12 months, and 18 months. Difference between intervention and control group is analysed with the previous model and a random intercept for individual (adding random slope for individual did not improve the model), with time by treatment interaction in years. ††The number of improved risk factors was defined as the total number of risk factors that showed a beneficial difference between baseline and month 18 for each participant for the following six risk factors: blood pressure, body-mass index, LDL cholesterol, HbA\textsubscript{\textalpha}, moderate to high intense physical activity, or diet (MEDAS score). **LLFDI was not measured in Finland. ††There was no effect of the intervention on any of the individual cognitive tests (MMSE, Stroop 1–3, Rey Recall, Rey Recognition and Verbal fluency; appendix p 19).

Table 2: Effect of the intervention on secondary outcomes

Uptake of the intervention was reasonable, with a median of almost two logins per month (with a wide range and a substantial proportion logging in more than five times a month), almost all participants setting at least one goal (with a considerable proportion up to three goals), and the majority of participants using the platform.
during the full study period. The increasing effect size with every additional goal set during the study supports the notion of a dosage–effect relationship and the additional potential for a larger effect if the participant had interacted more frequently with the application and the coach. An embedded qualitative study indicated that interaction with the coach in person at baseline and during the study was pivotal. This is in line with previous reports suggesting intensive counselling interventions can be effective in reducing cardiovascular risk and disease, whereas less intensive interventions are not. Estimation of the potential effect of this intervention in other settings and countries might depend on contextual information, including cultural aspects and the fit of the intervention with the local health-care system. The slightly higher drop-out in the intervention group needs further exploration, because it might suggest burden associated with the intervention, although those who dropped out in the intervention group hardly differed from those in the control group at baseline (appendix p 15) and multiple imputation of missing values did not change the results (appendix p 17).

The contrast between intervention and control group was largest in Finland. In the Netherlands and France, a combination of Hawthorne effects and the initiation of treatment by the GP in response to baseline measurements could have led to improvements in the control group, limiting overall study contrast. The lower frequency of GP visits and higher frequency of emergency room visits in Finland might reflect a different health-care structure and could explain the lack of improvement in the control group.

Previous research showed that there seems to be little room for improvement in high-income settings with a digital approach in patients with a high cardiovascular disease risk, even with good uptake, because most people already participate in cardiovascular disease prevention programmes. Especially in old age, achieving further lifestyle changes might be challenging. Prespecified subgroup analyses in our study suggest the largest effect in the younger age group (65–70 years) and in those with the lowest level of education. These groups had a higher baseline risk, yielding a larger room for improvement. The effect size was also larger in those who were adherent to the intervention. Taken together, this suggests that targeting high-risk populations with more efforts to stimulate engagement might be effective and needs testing. Absence of clinical effects on cognition or stimulating sustained engagement with the intervention. Taken together, this suggests that targeting high-risk populations with more efforts to stimulate engagement might be effective and needs testing. Absence of clinical effects on cognition or stimulating sustained engagement with the intervention. Taken together, this suggests that targeting high-risk populations with more efforts to stimulate engagement might be effective and needs testing. Absence of clinical effects on cognition or stimulating sustained engagement with the intervention. Taken together, this suggests that targeting high-risk populations with more efforts to stimulate engagement might be effective and needs testing.
improvement of cardiovascular risk profile without any indication of adverse events. When implemented at the population level, this could provide a low-cost way of reducing the burden of cardiovascular disease. The effect might be largest in those with considerable room for improvement and who actively engage in self-management. Large-scale implementation research and adaptation to different high-risk populations is warranted to confirm sustainability and effects on clinical outcomes including cardiovascular disease, dementia, and mortality.

Contributors
ER and EPvMC contributed to the concept, design, data collection, data interpretation, writing of the Article, and coordination of the trial. MPH-B contributed to data collection, data cleaning, data analysis, interpretation, tables, figures, and revising the Article. NC and MB contributed to the design, data collection, data interpretation, and revising the Article. AVdG and YM contributed to concept, design, software development, interpretation, and revising the Article. FM contributed to design, data interpretation, and revising the Article. CBB, Sj, and TVM contributed to concept, design, data collection, data cleaning, and revising the Article. LLVW contributed to concept, design, data interpretation, figures, and revising the Article. TN contributed to design, data collection, data interpretation, and revising the Article. JG contributed to design, data collection, and revising the Article. SA, CB, MK, and HS contributed to concept, design, data interpretation, and revising the Article. WAVC contributed to concept, design, data interpretation, writing of the Article, and coordination of the trial.

Declaration of interests
MK receives funding for multimodal preventive trials for Alzheimer’s disease from the Joint Programming for Neurodegenerative Diseases, the Academy of Finland, the Swedish research council, state research funding from Kuopio University Hospital, and Wallenberg Clinical Scholars; and holds the Stiftelse Stockholms Sjukhem donation professor post. All other authors declare no competing interests.

Data sharing
The HATICE consortium is in principle inclined to share data collected in the HATICE trial with external researchers. This will concern the data dictionary and de-identified data only. The study protocol and the statistical analysis plan are published in the appendix. Data will not be made available to any commercial party. Researchers from academic institutions interested in the use of the data of HATICE, will be asked to write a short study protocol, including the research question, the planned analysis and the data required. The scientific committee of the HATICE consortium will then evaluate the relevance of the research question, the suitability of the data, and the quality of the proposed analysis. Based on this, the committee will provide the data or reject the request. Analysis will then be done in collaboration with and on behalf of the HATICE consortium. A data access agreement will be prepared and signed by both parties. Any analysis proposed which is already in the HATICE analysis plan and planned to be done by members of the HATICE consortium will either be rejected, or proposed to be done as a collaborative effort, to be determined on a case-by-case basis.

Acknowledgments
HATICE is a collaborative project cofunded by the European Commission Seventh Framework Programme (FP7, 2007–13; grant agreement number 305374). We acknowledge all participants and all coaches. We thank Carin Miedema, Suzanne van Khijn, and Marije Voermans for trial coordination in the Netherlands. We thank Blossom Stephan, Stephanie Savy, and Matthijs van Dorp for their contributions to the HATICE project as a whole. We thank the Vital Health Software staff for their continuous support of the platform. We thank Jan-Willem van Dalen for his independent, critical revision of the statistical methods and analyses, and Ron Peters for his continuous consultation on cardiovascular risk management and methodological issues. We thank the members of the independent outcome adjudication committee in the Netherlands. We acknowledge Celine Couderc, Pierre Jean Ousset, and Sophie Guyonnet for trial coordination, and Emilie Berard, Vanina Bongard, and Jean Bernard Rundavets for outcome adjudication in France, and Bruno Vellas for his contribution to the HATICE project as a whole.

References
1 GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1151–210.
2 GBD 2016 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1355–62.
3 Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011; 42: 2672–713.
4 Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. Policies, strategies and interventions. World Health Organisation, 2011. https://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/ (accessed Oct 27, 2019).
5 Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013; 310: 959–68.
6 Nieuwlaat R, Schwalm JD, Kathit R, Yusuf S. Why are we failing to implement effective therapies in cardiovascular disease? Eur Heart J 2013; 34: 1262–69.
7 Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J 2013; 34: 2940–48.
8 Lincoln P, Fenton K, Alessi C, et al. The Blackfriars Consensus on brain health and dementia. Lancet 2014; 383: 1805–6.
9 Bodenheimer T, Lorig K, Holman H, Grumbach K. Patient self-management of chronic disease in primary care. JAMA 2002; 288: 2670–75.
10 Saner H, van der Velde E. eHealth in cardiovascular medicine: a clinical update. Eur J Prev Cardiol 2016; 23 (suppl 2): 5–12.
11 Liu S, Dunford SD, Leung YW, et al. Reducing blood pressure with internet-based interventions: a meta-analysis. Can J Cardiol 2013; 29: 613–21.
12 Wieland LS, Falzon I, Sciamanna CN, et al. Interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people. Cochrane Database Syst Rev 2012; 8: CD007675.
13 Beihuisen CR, Stephan BC, van Goor WA, et al. Web-based interventions targeting cardiovascular risk factors in middle-aged and older people: a systematic review and meta-analysis. J Med Internet Res 2016; 18: e55.
14 Richard E, Jongstra S, Soininen H, et al. Healthy ageing through internet counselling in the elderly: the HATICE randomised controlled trial for the prevention of cardiovascular disease and cognitive impairment. BMJ Open 2016; 6: e010806.
15 Prochaska JO, DiClemente CC, Norcross JC. In search of how people change. Applications to addictive behaviors. Am Psychol 1992; 47: 1062–16.
16 Bandura A. Health promotion from the perspective of social cognitive theory. Psychol Health 1998; 13: 613–49.
17 Jongstra S, Beihuisen C, Andrieu S, et al. Development and validation of an interactive internet platform for older people: the healthy ageing through internet counselling in the elderly study. Telemed J E Health 2017; 23: 96–104.
18 Barbera M, Mangialasche F, Jongstra S, et al. Designing an internet-based multidimensional intervention for the prevention of cardiovascular disease and cognitive impairment in older adults: the HATICE trial. J Alzheimer’s Dis 2018; 62: 649–63.
19 Cooney MT, Seinert R, Lindman A, et al. Cardiovascular risk estimation in older persons: SCORE O.P. Eur J Prev Cardiol 2016; 23: 1093–103.
20 Kivipelto M, Ngandu T, Lahtikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol 2006; 5: 735–41.

For more on HATICE see www.hatice.eu
21 Moll van Charante EP, Richard E, Eurelings LS, et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. *Lancet* 2016; 388: 797–805.

22 Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. *Lancet* 2015; 385: 2253–63.

23 Group SR, Wright JT Jr, Williamson JD, et al. A randomized trial of intensive versus standard blood-pressure control. *N Engl J Med* 2015; 373: 2103–16.

24 Herrod PJJ, Doleman B, Blackwell JEM, et al. Exercise and other nonpharmacological strategies to reduce blood pressure in older adults: a systematic review and meta-analysis. *J Am Soc Hypertens* 2018; 12: 248–67.

25 van Middelaar T, Beishuizen CRL, Guillemont J, et al. Engaging older people in an internet platform for cardiovascular risk self-management: a qualitative study among Dutch HATICE participants. *BMJ Open* 2018; 8: e019683.

26 Look ARG, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. *N Engl J Med* 2013; 369: 145–54.

27 Maruthur NM, Wang NY, Appel LJ. Lifestyle interventions reduce coronary heart disease risk: results from the PREMIER Trial. *Circulation* 2009; 119: 2026–31.

28 Ebrahim S, Taylor F, Ward K, Beswick A, Burke M, Davey Smith G. Multiple risk factor interventions for primary prevention of coronary heart disease. *Cochrane Database Syst Rev* 2011; 1: CD001561.

29 Anand SS, Samaan Z, Middleton C, et al. A digital health intervention to lower cardiovascular risk: a randomized clinical trial. *JAMA Cardiol* 2016; 1: 601–06.

30 McManus RJ, Mant J, Franssen M, et al. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. *Lancet* 2018, 391: 949–59.