Reference Raman Spectrum and Mapping of Cryptosporidium parvum Oocysts

Dmitry Malyshev¹, Tobias Dahlberg¹, Rasmus Öberg¹, Lars Landström², and Magnus Andersson¹,³,*

¹Department of Physics, Umeå University, Umeå, Sweden
²Swedish Defence Research Agency (FOI), Umeå, Sweden
³Umeå Center for Microbial Research (UCMR), Umeå, Sweden

*Corresponding author Magnus Andersson
Email: magnus.andersson@umu.se
Phone: +46 90 786 6336

Supplementary Methods

SEM imaging of bacterial cells
To perform SEM imaging of cells, we first harvested bacterial cells and fixate them in 2% paraformaldehyde for 15 min at room temperature. Fixed samples were then cast onto poly-L-lysine coated glass slides and dehydrated in series of graded ethanol (70, 80, 90, 95, 100%). Then, they were critical point dried and coated with an iridium layer of 5 nm using a Quorum Q150T-ES sputter coater. We examined samples by Carl Zeiss Merlin FESEM electron microscope using InLens imaging mode.

SEM imaging of spores
To perform SEM imaging of spores, we air dried a 5 μl drop of spore suspension on a glass slide. We then coat the sample with a ~5 nm layer of platinum and examined as described above.
Supporting information

Figure S1. SEM micrographs of *C. parvum* oocysts at different resolution.

Figure S2. Raman mapped oocysts.

![Raman mapped oocysts](image_url)
Supporting information

Figure S3. SEM micrograph of *V. cholerae* bacterium. Scalebar is 1 µm.

Figure S4. SEM micrograph of *E. coli* bacterium. Scalebar is 200 nm.
Figure S5. SEM micrograph of *B. cereus* spore. Scalebar is 1 µm.

Figure S6. SEM micrograph of *C. difficile* spore. Scalebar is 1 µm.