GEOMETRY OF HERMITIAN SYMMETRIC SPACES UNDER
THE ACTION OF A MAXIMAL UNIPOTENT GROUP

LAURA GEATTI AND ANDREA IANNUZZI

Abstract. Let G/K be a non-compact irreducible Hermitian symmetric space of rank r and let NAK be an Iwasawa decomposition of G. By the polydisc theorem, AK/K can be regarded as the base of an r-dimensional tube domain holomorphically embedded in G/K. As every N-orbit in G/K intersects AK/K in a single point, there is a one-to-one correspondence between N-invariant domains in G/K and tube domains in the product of r copies of the upper half-plane in \mathbb{C}. In this setting we prove a generalization of Bochner’s tube theorem. Namely, an N-invariant domain D in G/K is Stein if and only if the base Ω of the associated tube domain is convex and “cone invariant”. We also obtain a precise description of the envelope of holomorphy of an arbitrary holomorphically separable N-invariant domain over G/K.

An important ingredient for the above results is the characterization of several classes of N-invariant plurisubharmonic functions on D in terms of the corresponding classes of convex functions on Ω. This also leads to an explicit Lie group theoretical description of all N-invariant potentials of the Killing metric on G/K.

1. Introduction

The classical Bochner’s tube theorem states that the envelope of holomorphy of a tube domain $\mathbb{R}^n + i\Omega$ in \mathbb{C}^n is univalent and coincides with the convex envelope $\mathbb{R}^n + i\text{conv}(\Omega)$. Moreover, there is a one-to-one correspondence between the class of \mathbb{R}^n-invariant plurisubharmonic functions on a Stein tube domain in \mathbb{C}^n and the class of convex functions on its base in \mathbb{R}^n (cf. [Gun90]).

Here our goal is to obtain analogous results in the setting of an irreducible Hermitian symmetric space of the non-compact type, under the action of a maximal unipotent group of holomorphic automorphisms.

Any such space can be realized as a quotient G/K, where G is a non-compact real simple Lie group and K is a maximal compact subgroup of G. Let $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{a} \oplus \mathfrak{k}$ be an Iwasawa decomposition of \mathfrak{g}, where \mathfrak{n} is a maximal nilpotent
subalgebra, \mathfrak{a} is a maximally split abelian subalgebra and \mathfrak{k} is the Lie algebra of K. The integer $r := \dim \mathfrak{a}$ is by definition the rank of G/K.

Let NAK be the corresponding Iwasawa decomposition of G, where $A := \exp \mathfrak{a}$ and $N := \exp \mathfrak{n}$. The group N acts on G/K by biholomorphisms and every N-orbit in G/K intersects the smooth, real r-dimensional submanifold $A \cdot eK$ transversally in a single point.

As the space G/K is Hermitian symmetric, G contains r pairwise commuting subgroups isomorphic to $SL_2(R)$. The orbit of the base point $eK \in G/K$ under the product of such subgroups is a closed complex submanifold of G/K which contains $A \cdot eK$ and is biholomorphic to \mathbb{H}^r, the product of r copies of the upper half-plane in \mathbb{C}. Moreover, every N-orbit in G/K intersects \mathbb{H}^r in an R^r-orbit.

This fact is an analogue of the polydisk theorem and determines a one-to-one correspondence between N-invariant domains in G/K and tube domains in \mathbb{H}^r (cf. Prop. 4.1 and Cor. 4.3). If D is an N-invariant domain in G/K, then it is in terms of the base Ω of the associated tube domain in \mathbb{H}^r that the properties of N-invariant objects on D can be best described.

Define the cone

$$C := \begin{cases} (\mathbb{R}^{>0})^r, & \text{in the non-tube case}, \\ (\mathbb{R}^{>0})^{r-1} \times \{0\}, & \text{in the tube case}. \end{cases}$$

A set $\Omega \subset \mathbb{R}^r$ is C-invariant if $y \in \Omega$ implies $y + v \in \Omega$, for all $v \in C$. Our generalization of Bochner’s tube theorem is as follows.

Theorem 4.9. Let G/K be a non-compact irreducible Hermitian symmetric space of rank r. Let D be an N-invariant domain in G/K and let $\mathbb{R}^r + i\Omega$ be the associated r-dimensional tube domain. Then D is Stein if and only if Ω is convex and C-invariant.

We also show that a holomorphically separable, N-equivariant, Riemann domain over G/K is necessarily univalent (cf. Prop. 4.13). This implies the following corollary.

Corollary 4.14. The envelope of holomorphy \hat{D} of an N-invariant domain D in G/K is the smallest Stein domain in G/K containing D. The base $\hat{\Omega}$ of the r-dimensional tube domain associated to \hat{D} is the convex, C-invariant hull of Ω.

One approach to the proof of the above theorem uses smooth N-invariant functions. There is a one-to-one correspondence between N-invariant functions on D and functions on Ω, and such correspondence preserves regularity. An important ingredient is the computation of the Levi form of a smooth N-invariant function $f: D \to \mathbb{R}$ in terms of the Hessian and the gradient of the corresponding function $\hat{f}: \hat{\Omega} \to \mathbb{R}$. To this end, a simple pluripotential argument enables us to exploit the restricted root decomposition of \mathfrak{n} (cf. Prop. 3.1 and Prop. 4.3).
Then, in the smooth case, the proof of Theorem 4.9 is carried out by showing that D is Levi pseudoconvex, and therefore Stein, if and only if the base Ω of the associated tube domain is convex and C-invariant.

The general case follows from the smooth case by exhausting D with an increasing sequence of Stein, N-invariant domains with smooth boundary. For this we adapt a classical approximation method for convex functions on convex domains to our C-invariant context.

In Section 6, an alternative proof of Theorem 4.9 is carried out by realizing G/K as a Siegel domain and by combining some results from the theory of normal J-algebras with some convexity arguments.

The aforementioned computation of the Levi form leads to a characterization of smooth N-invariant plurisubharmonic functions on N-invariant domains in G/K in terms of the corresponding functions on Ω. By classical approximation methods, a similar characterization is obtained for arbitrary N-invariant (strictly) plurisubharmonic functions on D. In order to formulate such results we need the following definition.

Let $\hat{f}: \Omega \rightarrow \mathbb{R}$ be a function defined on a C-invariant domain in $(\mathbb{R}_{>0})^r$ and let \overline{C} be the closure of the cone C. Then \hat{f} is \overline{C}-decreasing if for every $y \in \Omega$ and $v \in \overline{C}$ the restriction of \hat{f} to the half-line $\{y + tv : t \geq 0\}$ is decreasing.

Theorem. (see Thm. 5.5) Let D be a Stein, N-invariant domain in a non-compact, irreducible Hermitian symmetric space G/K of rank r and let Ω be the base of the associated r-dimensional tube domain.

An N-invariant function $f : D \rightarrow \mathbb{R}$ is (strictly) plurisubharmonic if and only if the corresponding function $\hat{f} : \Omega \rightarrow \mathbb{R}$ is (stably) convex and \overline{C}-decreasing.

It follows that every N-invariant plurisubharmonic function on D is continuous.

In fact, the above theorem holds true both in the smooth and non-smooth context, and can be regarded as a generalization of the well known result for \mathbb{R}^n-invariant plurisubharmonic functions on tube domains in \mathbb{C}^n (see Sect. 5 for precise definitions and statements).

In the appendix, as an application of our methods we explicitly determine all the N-invariant potentials of the Killing metric on G/K in a Lie group theoretical fashion.

2. **Preliminaries**

Let G/K be an irreducible Hermitian symmetric space, where G is a real non-compact semisimple Lie group and K is a maximal compact subgroup of G. Let \mathfrak{g} and \mathfrak{k} be the respective Lie algebras. Let $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} with respect to \mathfrak{k}, with Cartan involution θ. Denote by $B(\cdot, \cdot)$ both the Killing form of \mathfrak{g} and its \mathbb{C}-linear extension to \mathfrak{g}^C (which coincides with the Killing form of \mathfrak{g}^C).
Let \(a \) be a maximal abelian subspace in \(p \). The dimension of \(a \) is by definition the rank \(r \) of \(G/K \). Let \(g = m \oplus a \oplus \bigoplus_{\alpha \in \Sigma} g^\alpha \) be the restricted root decomposition of \(g \) determined by the adjoint action of \(a \), where \(m \) denotes the centralizer of \(a \) in \(k \). For a simple Lie algebra of Hermitian type \(g \), the restricted root system is either of type \(C_r \) (if \(G/K \) is of tube type) or of type \(B_{2r} \) (if \(G/K \) is not of tube type), i.e. there exists a basis \(\{ e_1, \ldots, e_r \} \) of \(a^* \) for which a positive system \(\Sigma^+ \) is given by

\[
\Sigma^+ = \{ 2e_j, 1 \leq j \leq r, e_k \pm e_l, 1 \leq k < l \leq r \}, \quad \text{for type } C_r, \\
\Sigma^+ = \{ e_j, 2e_j, 1 \leq j \leq r, e_k \pm e_l, 1 \leq k < l \leq r \}, \quad \text{for type } B_{2r}.
\]

The roots \(2e_1, \ldots, 2e_r \) form a maximal set of long strongly orthogonal positive restricted roots. The root spaces \(g^{2e_1}, \ldots, g^{2e_r} \) are one-dimensional and one can choose generators \(E^j \in g^{2e_j} \) such that the \(sl(2) \)-triples \(\{ E^j, \theta E^j, A_j := [\theta E^j, E^j] \} \) are normalized as follows

\[
[A_j, E^l] = \delta_{jl}2E^l, \quad \text{for } j, l = 1, \ldots, r.
\]

Denote by \(I_0 \) the \(G \)-invariant complex structure of \(G/K \). We assume that \(I_0(E^j - \theta E^j) = A_j \). By the strong orthogonality of \(2e_1, \ldots, 2e_r \), the vectors \(A_1, \ldots, A_r \) form a \(B \)-orthogonal basis of \(a \), dual to \(e_1, \ldots, e_r \) of \(a^* \), and the associated \(sl(2) \)-triples pairwise commute.

Let \(g = n \oplus a \oplus k \) be the Iwasawa decomposition subordinated to \(\Sigma^+ \), where \(n = \bigoplus_{\alpha \in \Sigma^+} g^\alpha \), and let \(G = NAK \) be the corresponding Iwasawa decomposition of \(G \). Then \(S = NA \) is a real split solvable group acting freely and transitively on \(G/K \). In particular, the tangent space to \(G/K \) at the base point \(eK \) can be identified with the Lie algebra \(s = n \oplus a \).

The map \(\phi: s \to p \), given by \(\phi(X) := \frac{1}{2}(X - \theta X) \), is an isomorphism of vector spaces. As a consequence,

\[
\langle X, Y \rangle := B(\phi(X), \phi(Y)) = -\frac{1}{2}B(X, \theta Y),
\]

for \(X, Y \in s \), defines a positive definite symmetric bilinear form on \(s \). Moreover, the map \(J: s \to s \), given by

\[
JX := \phi^{-1} \circ I_0 \circ \phi(X),
\]

defines a complex structure on \(s \), such that \(\phi(JX) = I_0\phi(X) \). The complex structure \(J \) permutes the restricted root spaces of \(s \) (cf. \([RoVe73]\)), namely

\[
Ja = \bigoplus_{j=1}^r g^{2e_j}, \quad Jg^{e_j - e_l} = g^{e_j + e_l}, \quad Jg^{e_j} = g^{e_j}.
\]

In order to obtain a precise description of \(J \) on \(s \), we recall a few more facts. Let \(g^C = h^C \oplus \bigoplus_{\mu \in \Delta} g^\mu \) be the root decomposition of \(g^C \) with respect to a maximally split Cartan subalgebra \(h = b \oplus a \) of \(g \), where \(b \) is an abelian subalgebra of \(m \). Let \(\sigma \) be the conjugation of \(g^C \) with respect to \(g \). Let \(\theta \) denote also the \(\mathbb{C} \)-linear extension of \(\theta \) to \(g^C \). One has \(\theta \sigma = \sigma \theta \). Write \(Z := \sigma Z \), for \(Z \in g^C \).
As σ and θ stabilize \mathfrak{h}, they induce actions on Δ, defined by $\overline{\mu}(H) := \overline{\mu(H)}$ and $\theta\mu(H) := \mu(\theta(H))$, for $H \in \mathfrak{h}$, respectively. Fix a positive root system Δ^+ compatible with Σ^+, meaning that $\mu|_{\mathfrak{a}} = Re(\mu) \in \Sigma^+$ implies $\mu \in \Delta^+$. Then $\sigma\Delta^+ = \Delta^+$.

Given a restricted root $\alpha \in \Sigma$, the corresponding restricted root space \mathfrak{g}^α decomposes into the direct sum of ordinary root spaces with respect to the Cartan subalgebra \mathfrak{h} as follows

$$
\mathfrak{g}^\alpha = \left(\bigoplus_{\mu \in \Delta, \mu + \overline{\mu}} \mathfrak{g}^{\mu} \oplus \mathfrak{g}^{\overline{\mu}} \oplus \mathfrak{g}^\lambda \right) \cap \mathfrak{g},
$$

where $\lambda \in \Delta$ is possibly a root satisfying $\lambda = \overline{\lambda} = \alpha$. The next lemma is obtained by combining Lemma 2.2 in [Gel21] with (3).

Lemma 2.1. (the complex structure J on \mathfrak{s}).

(a) For $j = 1, \ldots, r$, let $A_j \in \mathfrak{a}$ and $E_j \in \mathfrak{g}^{2\epsilon_j}$ be elements normalized as in (7). Then $JE_j = \frac{1}{2}A_j$ and $JA_j = -2E_j$.

(b) Let $X = Z^\mu + \overline{Z^\mu} \in \mathfrak{g}^{\epsilon_j + \epsilon_l}$, where $\mu \in \Delta^+$ is a root satisfying $Re(\mu) = \epsilon_j - \epsilon_l$ and $Z^\mu \in \mathfrak{g}^{\mu}$ (if $\overline{\mu} = \mu$, we may assume $Z^\mu = \overline{Z^\mu}$ and set $X = Z^\mu$). Then $JX = [E^l, X] \in \mathfrak{g}^{\epsilon_j - \epsilon_l}$.

(c) Let $X = Z^\mu + \overline{Z^\mu} \in \mathfrak{g}^{\epsilon_j}$, where μ is a root in Δ^+ satisfying $Re(\mu) = \epsilon_j$ and $Z^\mu \in \mathfrak{g}^{\mu}$ (as $\dim \mathfrak{g}^{\epsilon_j}$ is even, one necessarily has $\overline{\mu} = \mu$). Then $JX = iZ^\mu + i\overline{Z^\mu} \in \mathfrak{g}^{\epsilon_j}$.

Remark 2.2. (a J-stable basis of \mathfrak{s}) In view of Lemma 2.1, one can choose a J-stable basis of \mathfrak{s}, compatible with the restricted root decomposition.

(a) As a basis of $\mathfrak{a} \oplus J\mathfrak{a}$, take pairs of elements A_j, $JA_j = -2E_j$, for $j = 1, \ldots, r$, normalized as in (7).

(b) As a basis of $\mathfrak{g}^{\epsilon_j - \epsilon_l} \oplus \mathfrak{g}^{\epsilon_j + \epsilon_l}$, take 4-tuples of elements

$$
X = Z^\mu + \overline{Z^\mu}, \quad X' = iZ^\mu + i\overline{Z^\mu}, \quad JX = [E^l, X], \quad JX' = [E^l, X'],
$$

parametrized by the pairs of roots $\mu \neq \overline{\mu} \in \Delta^+$ satisfying $Re(\mu) = \epsilon_j - \epsilon_l$ (with no repetition), with Z^μ a root vector in \mathfrak{g}^{μ}. For $\mu = \overline{\mu}$, one may assume $Z^\mu = \overline{Z^\mu}$ and take the pair $X = Z^\mu$, $JX = [E^l, X]$.

(c) As a basis of $\mathfrak{g}^{\epsilon_j}$ (non-tube case), take pairs of elements

$$
X = Z^\mu + \overline{Z^\mu}, \quad JX = iZ^\mu + i\overline{Z^\mu},
$$

parametrized by the pairs of roots $\mu \neq \overline{\mu} \in \Delta^+$ satisfying $Re(\mu) = \epsilon_j$ (with no repetition), with $Z^\mu \in \mathfrak{g}^{\mu}$.

The next lemma contains some identities which are needed in Section 3. Its proof is essentially contained in [GeIa21], Lemma 2.4.

Lemma 2.3. Let \(\mu \in \Delta^+ \) be a root satisfying \(\text{Re}(\mu) = e_j - e_l \) and let \(Z^\mu \) a root vector in \(\mathfrak{g}^\mu \). Let \(X = Z^\mu + Z^\mu \in \mathfrak{g}^{e_j - e_l} \) and \(JX = [E^j, X] \in \mathfrak{g}^{e_j + e_l} \). If \(\bar{\mu} \neq \mu \), let \(X' = iZ^\mu + i\bar{Z}^\mu \). If \(\bar{\mu} = \mu \), let \(X = iZ^\mu + i\bar{Z}^\mu \). If \(\bar{\mu} = \mu \), let \(X' = iZ^\mu + i\bar{Z}^\mu \). Then

(a) \([JX, X] = [JX', X'] = sE^j \), for some \(s \in \mathbb{R}, s \neq 0 \);
(b) \([JX', X] = 0 \).

Let \(\mu \) be a root in \(\Delta^+ \), with \(\text{Re}(\mu) = e_j \) (non-tube case) and let \(Z^\mu \) a root vector in \(\mathfrak{g}^\mu \). Let \(X = Z^\mu + Z^\mu \) and \(JX = iZ^\mu + i\bar{Z}^\mu \). Then

(c) \([JX, X] = tE^j \), for some \(t \in \mathbb{R}, t \neq 0 \).

3. The Levi form of an \(N \)-invariant function on \(G/K \)

Let \(G/K \) be a non-compact, irreducible Hermitian symmetric space of rank \(r \), and let \(G = N \exp(a)K \) be an Iwasawa decomposition of \(G \). Let \(D \) be an \(N \)-invariant domain in \(G/K \). Then \(D \) is uniquely determined by a domain \(D \) in \(\mathfrak{a} \) by

\[
D := N \exp(D) \cdot eK.
\]

Similarly, an \(N \)-invariant function \(f : D \rightarrow \mathbb{R} \) is uniquely determined by the function \(\tilde{f} : \mathcal{D} \rightarrow \mathbb{R} \), defined by

\[
\tilde{f}(H) := f(\exp(H)K).
\]

The goal of this section is to express the Levi form, i.e. the real symmetric \(J \)-invariant bilinear form

\[
h_f(\cdot, \cdot) := -dd^c f(\cdot, J \cdot),
\]

of a smooth \(N \)-invariant function \(f \) on \(D \), in terms of the first and second derivatives of the corresponding function \(\tilde{f} \) on \(\mathcal{D} \). This will enable us to characterize smooth \(N \)-invariant strictly plurisubharmonic functions on a Stein \(N \)-invariant domain \(D \) in \(G/K \) by appropriate conditions on the corresponding functions on \(\mathcal{D} \) (Prop. 3.1). As \(f \) is \(N \)-invariant, \(h_f \) is \(N \)-invariant as well. Therefore it will be sufficient to carry out the computation along the slice \(\exp(\mathcal{D}) \cdot eK \), which meets all \(N \)-orbits.

For \(X \in \mathfrak{g} \), denote by \(\tilde{X} \) the vector field on \(G/K \) induced by the left \(G \)-action. Its value at \(z \in G/K \) is given by

\[
\tilde{X}_z := \frac{d}{ds}|_{s=0} \exp{sX} \cdot z.
\]

Let \(X \in \mathfrak{g}^\alpha \), for \(\alpha \in \Sigma^+ \cup \{0\} \) (here \(X \in \mathfrak{a} \), when \(\alpha = 0 \)). If \(z = aK \), with \(a = \exp{H} \) and \(H \in \mathfrak{a} \), then the vector field \(\tilde{X} \) can also be expressed as

\[
\tilde{X}_z = e^{-\alpha(H)}a_*X.
\]
Set

\[b := B(A_1, A_1) = \ldots = B(A_r, A_r), \tag{11} \]

which is a real positive constant only depending on the Lie algebra \(\mathfrak{g} \).

Proposition 3.1. Let \(D \) be an \(N \)-invariant domain in \(G/K \) and let \(f : D \to \mathbb{R} \) be a smooth \(N \)-invariant function. Fix \(a = \exp H \), with \(H = \sum a_j A_j \in \mathcal{D} \). Then, in the basis of \(\mathfrak{s} \) defined in Remark 2.2, the form \(h_f \) at \(z = aK \in D \) is given as follows.

(i) The spaces \(a_* \mathfrak{a}, a_* \mathfrak{J} \mathfrak{a}, a_* \mathfrak{e}^{e_j \cdot e_i}, a_* \mathfrak{e}^{e_j + e_i} \) and \(a_* \mathfrak{g}^{e_j} \) are pairwise \(h_f \)-orthogonal.

(ii) For \(A_j, A_l \in \mathfrak{a} \) one has

\[h_f(a_* A_j, a_* A_l) = -2 \delta_{j,l} \frac{\delta^j_l}{a_{aj, a_{al}}}(H) + \frac{\delta_{j,l}^2}{a_{aj, a_{al}}}(H). \]

On the blocks \(a_* \mathfrak{e}^{e_j - e_i} \) and \(a_* \mathfrak{g}^{e_j} \) the restriction of \(h_f \) is diagonal and the only non-zero entries are given as follows.

(iii) For \(X, X' \in \mathfrak{g}^{e_j - e_i} \) as in Remark 2.2(b), one has

\[h_f(a_* X, a_* X) = -2 \frac{|X|^2}{b} \frac{\delta^j_i}{a_{aj}}(H), \quad h_f(a_* X', a_* X) = -2 \frac{|X'|^2}{b} \frac{\delta^j_i}{a_{aj}}(H). \]

(iv) (non-tube case) For \(X \in \mathfrak{g}^{e_i} \) as in Remark 2.2(c), one has

\[h_f(a_* X, a_* X) = -2 \frac{|X|^2}{b} \frac{\delta^j_i}{a_{aj}}(H). \]

On the remaining blocks \(h_f \) is determined by (4), the \(J \)-invariance of \(h_f \), (i) and (iii) above.

Proof. Let \(f : G/K \to \mathbb{R} \) be a smooth \(N \)-invariant function. The computation of \(h_f \) uses the fact that, for \(X \in \mathfrak{n} \), the function \(\mu^X : G/K \to \mathbb{R} \), given by \(\mu^X(z) := d^c f(\widetilde{X}_z) \), satisfies the identity

\[d\mu^X = - X dd^c f, \tag{12} \]

where \(d^c f := df \circ J \) (see [HeSc07], Lemma 7.1 and [Gel21], Sect. 2). We begin by determining \(d^c f(\widetilde{X}_z) \), for \(X \in \mathfrak{n} \) and \(z \in G/K \). By the \(N \)-invariance of \(f \) and of \(J \) one has

\[d^c f(\widetilde{X}_{z,n}) = d^c f(\Ad_{n^{-1}} X_z), \tag{13} \]

for every \(z \in G/K \) and \(n \in N \). Thus it is sufficient to take \(z = aK \in \exp(\mathcal{D}) \cdot eK \). Let \(H = \sum a_j A_j \in \mathcal{D} \) and \(a = \exp H \). Then

\[d^c f(\widetilde{X}_z) = \begin{cases} \frac{1}{2} e^{-2a_j} \frac{\delta^j_l}{a_{aj}}(H), & \text{for } X = E^j \in \mathfrak{g}^{2e_j} \\ 0, & \text{for } X \in \mathfrak{g}^\alpha, \text{with } \alpha \in \Sigma^+ \setminus \{2e_1, \ldots, 2e_r\}. \end{cases} \tag{14} \]
The first part of equation (14) follows from (10) and Lemma 2.1(a):
\[df\left((\widetilde{E}_j)_z\right) = e^{-2e_j(H)} df\left(a_\ast J E_j\right) = \frac{1}{2} e^{-2e_j} \frac{d}{d\tau}|_{\tau=0} \tilde{f}(H+sA_j) = \frac{1}{2} e^{-2e_j} \frac{\partial \tilde{f}}{\partial e_j}(H). \]
For the second part, let \(X \in g^\alpha \), with \(\alpha \in \Sigma^+ \backslash \{ 2e_1, \ldots, 2e_r \} \). Then \(JX \in g^\beta \), with \(\beta \in \Sigma^+ \). By (10) and the \(N \)-invariance of \(f \), one obtains the desired result
\[df\left(\widetilde{X}_z\right) = e^{-\alpha(H) + \beta(H)} df\left(J \widetilde{X}_z\right) = 0. \]

(i) Orthogonality of the blocks. Let \(X \in g^\alpha \) and \(Y \in g^\gamma \), where \(\alpha \in \Sigma^+ \) and \(\gamma \in \{0\} \cup (\Sigma^+ \backslash \{ 2e_1, \ldots, 2e_r \}) \) are distinct restricted roots (here \(Y \in a \), when \(\gamma = 0 \)). Then \(JY \in g^\beta \), for some \(\beta \in \Sigma^+ \). By (10) and (12), one has
\[h_f(a_\ast X, a_\ast Y) = -dd^c f(a_\ast X, a_\ast J Y) = -e^{(H)+\beta(H)} dd^c f(\widetilde{X}_z, \widetilde{JY}_z) \]
\[= e^{(H)+\beta(H)} d\mu^X(\widetilde{JY}_z) = e^{(H)+\beta(H)} \frac{d}{ds}|_{s=0} \mu^X(\exp s \widetilde{JY} \cdot z) \]
\[= e^{(H)+\beta(H)} \frac{d}{ds}|_{s=0} \mu^X(\widetilde{X}_z) = e^{(H)+\beta(H)} \frac{d}{ds}|_{s=0} d^c f(\widetilde{X}_z - s[\widetilde{JY}, \widetilde{X}]_z + o(s^2)) \]
\[= -e^{(H)+\beta(H)} d^c f([\widetilde{JY}, \widetilde{X}]_z). \]

The brackets \([\widetilde{JY}, \widetilde{X}] \) lie in \(g^{\alpha+\beta} \). Since \(\alpha \neq \gamma \), one sees that \(\alpha + \beta = 2e_1, \ldots, 2e_r \). Then, by (14), the expression (15) vanishes, proving the orthogonality of \(a_\ast g^\alpha \) and \(a_\ast g^\gamma \), for all \(\alpha \) and \(\gamma \) as above. The \(J \)-invariance of \(h_f \) implies that \(a_\ast a \) is orthogonal to \(a_\ast g^\beta \), for all \(\beta \in \Sigma^+ \), and concludes the proof of (i).

Next we determine the form \(h_f \) on the essential blocks.

(ii) The form \(h_f \) on \(a_\ast a \).
Let \(A_j, A_t \in a \). Since \(J A_t = -2E^t \), one has
\[h_f(a_\ast A_j, a_\ast A_t) = -2dd^c f(a_\ast E^t, a_\ast A_j) = -2e^{2e_i(H)} dd^c f((\widetilde{E}_i)_z, (\widetilde{A}_j)_z) \]
\[= 2e^{2e_i(H)} d\mu^{E^t}((\widetilde{A}_j)_z) = 2e^{2e_i(H)} \frac{d}{dt}|_{t=0} \mu^{E^t}(\exp tA_j \cdot z) \]
\[= 2e^{2e_i(H)} \frac{d}{dt}|_{t=0} d^c f((\widetilde{E}_i)_{\exp tA_j \cdot z}), \]
which, by (14), becomes
\[= 2e^{2e_i(H)} \frac{d}{dt}|_{t=0} \frac{1}{2} e^{-2e_i(H+tA_j)} \frac{\partial \tilde{f}}{\partial e_i}(H + tA_j) = -2 \frac{\partial \tilde{f}}{\partial e_i}(H) \delta_{ij} + \frac{\partial^2 \tilde{f}}{\partial e_i \partial e_j}(H). \]
This concludes the proof of (ii).

(iii) The form \(h_f \) on \(a_\ast g^{e_j-e_l} \).
Let \(X, X' \in g^{e_j-e_l} \) be elements of the basis given in Remark 2.2(b). Then \(JX, JX' \in g^{e_j+e_l} \). From (15), (14) and Lemma 2.3(a) one has
\[h_f(a_\ast X, a_\ast X) = -dd^c f(a_\ast X, a_\ast J X) \]
\[= -e^{(e_j+e_l)(H)} e^{(e_j-e_l)(H)} d^c f([JX, X]_z) \]
\[= -e^{2e_j(H)} \left(s d^c f((\widetilde{E}_j)_z) \right) = -\frac{s^2 \tilde{f}}{2 e_j}(H), \]
for some \(s \in \mathbb{R}\setminus\{0\} \). By Remark \(\text{6.4} \), one has \(s > 0 \). By the comparison of \((16) \) with the formula obtained in Remark \(\text{7.2} \), one deduces the exact value of \(s \), namely \(s = \frac{4|X|^2}{b} \). Therefore, one has

\[
h_f(a_*X, a_*X) = -2\frac{|X|^2}{b} \frac{\delta f}{\partial X_j}(H), \quad h_f(a_*X, a_*X') = -2\frac{|X|^2}{b} \frac{\delta f}{\partial X_j}(H),
\]
as stated. From \((15) \) and Lemma \(\text{2.3} \), one obtains \(h_f(a_*X, a_*X') = 0 \). From \((15) \), the skew symmetry of \(dd^c f \) and the fact that \(2(e_j - e_i) \notin \Sigma^+ \), one obtains \(h_f(a_*X, a_*JX) = h_f(a_*X, a_*JX') = 0 \), respectively. Finally, let \(X = Z^\mu + \overline{Z^\mu} \), and \(Y = Z^\nu + \overline{Z^\nu} \) be elements of the basis of \(g_{e_j - e_i} \) given in Remark \(\text{2.2} \), for \(\mu, \nu \in \Delta^+ \) distinct roots satisfying \(\nu \neq \mu, \bar{\mu} \). Then, by \((15) \) and Lemma \(\text{2.1} \), one has

\[
h_f(a_*X, a_*Y) = -e^{2c_j(H)} d^c f([JY, X], z) = 0,
\]
since no non-real roots in \(\Delta \) have real part equal to \(2c_j \). This completes the proof of (iii).

(iv) The Hermitian form \(h_f \) on \(a_*g_{e_j} \).

Let \(X = Z^\mu + \overline{Z^\mu} \) and \(JX = iZ^\mu + i\overline{Z^\mu} \) be elements of the basis of \(g_{e_j} \) given in Remark \(\text{2.2} \). Then, from \((15) \) and Lemma \(\text{2.3} \), one obtains

\[
h_f(a_*X, a_*X) = -e^{2c_j(H)} d^c f([JX, X], z) = -e^{2c_j(H)} d^c f([\overline{E^j}], z) = -\frac{t}{2\epsilon_{a_j}}(H), \quad (17)
\]
for some \(t \in \mathbb{R}\setminus\{0\} \). By Remark \(\text{6.4} \), one has \(t > 0 \). By the comparison of \((17) \) with the formula obtained in Remark \(\text{7.2} \), one deduces the exact value of \(t \), namely \(t = \frac{4|X|^2}{b} \) and

\[
h_f(a_*X, a_*X) = h_f(a_*JX, a_*X) = -2\frac{|X|^2}{b} \frac{\delta f}{\partial X_j}(H).
\]
Finally, let \(X = Z^\mu + \overline{Z^\mu} \) and \(Y = Z^\nu + \overline{Z^\nu} \) be elements of the basis of \(g_{e_j} \) given in Remark \(\text{2.2} \), for \(\mu, \nu \in \Delta^+ \) distinct roots satisfying \(\nu \neq \mu, \bar{\mu} \). Then, by \((15) \) and Lemma \(\text{2.1} \) one has \(h_f(a_*X, a_*Y) = 0 \). This concludes the proof of (iv) and of the proposition. \(\square \)

Remark. The usual Levi form \(L_f^C \) of \(f \) is given by \(L_f^C(Z, W) = 2(h_f(X, Y) + ih_f(X, JY)) \), where \(Z = X - iJX \) and \(W = Y - iJY \) are elements of type \((1, 0)\). One easily sees that \(L_f^C \) is (strictly) positive definite if and only if \(h_f \) is (strictly) positive definite.
The main goal of this section is to characterize the Stein \(N \)-invariant domains \(D \) in \(G/K \) in terms of an associated \(r \)-dimensional tube domain. We show that \(D \) is Stein if and only if the base of the associated tube domain is convex and satisfies an additional geometric condition, arising from the features of the \(N \)-invariant plurisubharmonic functions on \(D \).

At the end of the section we also prove a univalence result for \(N \)-equivariant Riemann domains over \(G/K \). As a by-product, a precise description of the envelope of holomorphy of \(N \)-invariant domains in \(G/K \) follows.

Resume the notation introduced in Section 2. Denote by \(R := \exp (\bigoplus \mathfrak{g}^{2e_j}) \) the unipotent abelian subgroup of \(G \), isomorphic to \(\mathbb{R}^r \). The orbit of the base point \(eK \in G/K \) under the product of the \(r \) commuting \(SL_2(\mathbb{R})'s \) contained in \(G \) is the \(r \)-dimensional \(R \)-invariant closed complex submanifold of \(G/K \)

\[
R \exp(a) \cdot eK.
\]

By the Iwasawa decomposition of \(G \), such manifold intersects all \(N \)-orbits in \(G/K \). Equivalently,

\[
N \cdot (R \exp(a) \cdot eK) = G/K.
\]

The above facts together with the next proposition can be regarded as an analogue, for the \(N \)-action, of the polydisk theorem (cf. [Wol72], p. 280). Denote by \(\mathbb{H} \) the upper half-plane in \(\mathbb{C} \), with the usual \(\mathbb{R} \)-action by translations.

\textbf{Proposition 4.1.} \textit{The map} \(\mathcal{L} : \mathbb{H}^r \to R \exp a \cdot eK \), \textit{defined by}

\[
(x_1 + iy_1, \ldots, x_r + iy_r) \mapsto \exp(\sum_j x_j E^j) \exp(\frac{1}{2} \sum_j \ln(y_j) A_j) K,
\]

\textit{is an equivariant biholomorphism.}

\textbf{Proof.} The map is clearly bijective and equivariant. To prove that it is holomorphic, it is sufficient to consider the rank-1 case. Computing separately

\[
d\mathcal{L}_z \frac{d}{dx} \bigg|_z = d\mathcal{L}_z \frac{d}{dy} \bigg|_z = \frac{d}{dt} \bigg|_{t=0} \mathcal{L}(x + i(y + t)) = d \bigg|_{t=0} \exp(xE) \exp(\frac{1}{2} \ln(y + t) A) K
\]

\[
= \frac{d}{dt} \bigg|_{t=0} \exp(xE) \exp((\frac{1}{2} \ln y + \frac{t}{2} y + o(t^2)) A) K = (\exp(xE) \exp(\frac{1}{2} \ln y A)) \ast \frac{1}{2} A
\]

and

\[
J \mathcal{L}_z \frac{d}{dx} \bigg|_z = J \frac{d}{dx} \bigg|_{t=0} \mathcal{L}(x + t + iy) = J \frac{d}{dt} \bigg|_{t=0} \exp((x + t) E) \exp(\frac{1}{2} \ln y A) K
\]

\[
= J \frac{d}{dt} \bigg|_{t=0} \exp(xE) \exp(t E) \exp(\frac{1}{2} \ln y A) K
\]

\[
= J \frac{d}{dt} \bigg|_{t=0} \exp(xE) \exp(\frac{1}{2} \ln y A) \exp(t Ad \exp(-\frac{1}{2} \ln y A) E) K
\]

\[
= J \exp(xE) \ast \exp(\frac{1}{2} \ln y A) \ast \frac{1}{2} E = (\exp(xE) \exp(\frac{1}{2} \ln y A)) \ast \frac{1}{2} A
\]

we obtain the desired identity \(d\mathcal{L}_z J \frac{d}{dx} \bigg|_z = J d\mathcal{L}_z \frac{d}{dx} \bigg|_z \), for all \(z \in \mathbb{H} \). \(\square \)
Remark 4.2. The closed complex submanifold $R \exp(a) \cdot eK$ can also be regarded as the local orbit of eK under the universal complexification R^C of R. Up to a traslation, \mathcal{L} is the local R^C-orbit map through eK.

As a consequence of the above biholomorphism we obtain a one-to-one correspondence between \mathbb{R}^r-invariant tube domains in \mathbb{H}^r and N-invariant domains in G/K. Denote by $L : \mathbb{R} > 0 \times \ldots \times \mathbb{R} > 0 \to a$ the diffeomorphism determined by \mathcal{L}

$$L(y_1, \ldots, y_r) := \frac{1}{2} \sum_j \ln(y_j) A_j.$$ \hspace{1cm} (18)

Corollary 4.3. (N-invariant domains in G/K and tube domains in \mathbb{C}^r).

(i) Let $D = N \exp(D) \cdot eK$ be an N-invariant domain in G/K and let $R \exp(D) \cdot eK$ be its intersection with the closed complex submanifold $R \exp(a) \cdot eK$. Then the r-dimensional tube domain associated to D is by definition the preimage of $R \exp(a) \cdot eK$ under \mathcal{L}, namely

$$\mathbb{R}^r + i\Omega, \quad \text{where } \Omega := L^{-1}(D).$$

(ii) Conversely, a tube domain $\mathbb{R}^r + i\Omega$ in \mathbb{H}^r determines a unique N-invariant domain

$$D = N \exp(D) \cdot eK, \quad \text{where } D = L(\Omega).$$

Remark 4.4. If D is Stein, then the associated tube domain $\mathbb{R}^r + i\Omega \subset \mathbb{C}^r$ is Stein, being biholomorphic to the Stein closed complex submanifold $R \exp(D) \cdot eK$ of D. In particular, the base Ω is an open convex set in $(\mathbb{R} > 0)^r$.

On the other hand, already in the case of the unit ball \mathbb{B}^n in \mathbb{C}^n, with $n > 1$, one can see that the base Ω of an N-invariant Stein subdomain D must be an entire half-line, and cannot be just an arbitrary convex subset of $\mathbb{R} > 0$.

The main goal of this section is to give a precise characterization of the convex sets $\Omega \subset (\mathbb{R} > 0)^r$ arising from N-invariant Stein domains D in G/K. As we shall see, their shape is determined by the particular features of the Levi form of the N-invariant functions on D, which involve both the Hessian and the gradient of f (cf. Prop. 3.1).

Let $f : D \to \mathbb{R}$ be an N-invariant plurisubharmonic function. Then f is uniquely determined by the function $\tilde{f}(H) := f(\exp H \cdot eK)$ on D (cf. (7)) and also by the function

$$\tilde{f}(\mathbf{y}) := f(\exp(L(y))K) = \tilde{f}(L(y))$$ \hspace{1cm} (19)
defined for $y \in \Omega$, as shown by the following commutative diagram

\[
\begin{array}{ccc}
\Omega & \xrightarrow{\hat{f}} & \mathbb{R} \\
\downarrow{\text{exp}} & & \downarrow{\text{exp}} \\
D & \xrightarrow{f} & D
\end{array}
\]

Since the N-action on D is proper and every N-orbit intersects transversally the smooth slice $\exp(L(\Omega)) \cdot eK$ in a single point, it is easy to check that the map $f \rightarrow \hat{f}$ is a bijection from the class $C^0(D)^N$ of continuous N-invariant functions on D and the class $C^0(\Omega)$ of continuous functions on Ω. By Theorem 4.1 in [Ple78], such a map is also a bijection between $C^\infty(D)^N$ and $C^\infty(\Omega)$. Analogous statements hold true for the map $f \rightarrow \hat{r}$.

Given a non-compact irreducible Hermitian symmetric space, define the cone

\[C := \begin{cases}
(\mathbb{R}^{>0})^r, & \text{in the non-tube case,} \\
(\mathbb{R}^{>0})^{r-1} \times \{0\}, & \text{in the tube case.}
\end{cases} \quad (20) \]

The next lemma characterizes the plurisubharmonicity of a smooth N-invariant function f in terms of the corresponding functions \hat{f} and \hat{r}.

Proposition 4.5. Let D be an N-invariant domain in G/K and let $f : D \to \mathbb{R}$ be a smooth, N-invariant, plurisubharmonic function. Then the following conditions are equivalent:

(i) f is plurisubharmonic (resp. strictly plurisubharmonic) at $z = aK$, with $a = \exp(H)$ and $H \in D$;

(ii) the form

\[
-2\delta_{\text{H}} \frac{\partial^2}{\partial a_j \partial a_l}(H) \big|_{j,l=1,\ldots,r} \quad (21)
\]

in Proposition 3.1(ii) is positive semidefinite (resp. positive definite) and $\nabla \hat{f}(H) \cdot v \leq 0$ (resp. < 0), for all $v \in \mathbb{C}\setminus\{0\}$;

(iii) the Hessian of \hat{f} is positive semidefinite (resp. positive definite) at $y = (y_1, \ldots, y_r) = L^{-1}(H)$ and

\[
\nabla \hat{f}(y) \cdot v \leq 0 \quad (\text{resp.} \quad < 0), \quad \text{for all} \quad v \in \mathbb{C}\setminus\{0\}. \quad (22)
\]

Proof. The equivalence $(i) \Leftrightarrow (ii)$ follows directly from Proposition 3.1. $(ii) \Leftrightarrow (iii)$ Since $L(y_1, \ldots, y_r) = (\frac{1}{2} \ln(y_1), \ldots, \frac{1}{2} \ln(y_r))$ (see [15]), one has

\[
\hat{f}(a_1, \ldots, a_r) = \hat{f}(e^{2a_1}, \ldots, e^{2a_r}).
\]

Therefore

\[
\frac{\partial^2}{\partial a_j \partial a_l} \hat{f}(a_1, \ldots, a_r) = 2 \frac{\partial^2}{\partial y_j \partial y_l} \hat{f}(e^{2a_1}, \ldots, e^{2a_r})e^{2a_j} \quad (23)
\]
\[
\frac{\partial^2 \hat{f}}{\partial a_j \partial a_l}(H) = 4 \frac{\partial^2 \hat{f}}{\partial y_j \partial y_l}(e^{2a_1}, \ldots, e^{2a_r}) e^{2a_j} e^{2a_l} + 4 \frac{\partial^2 \hat{f}}{\partial y_j \partial a_l}(e^{2a_1}, \ldots, e^{2a_r}) e^{2a_j} \delta_{jl}.
\]

(24)

By combining formulas (23) and (24) one obtains

\[
(4 \frac{\partial^2 \hat{f}}{\partial y_j \partial y_l}(e^{2a_j}) j,l - 2 \frac{\partial^2 \hat{f}}{\partial a_j \partial a_l}(e^{2a_j}) j,l) \hat{f}. \]

(25)

Also, by (23), the same monotonicity conditions hold both for \(\hat{f} \) and for \(\hat{f} \). □

Definition 4.6. A smooth function \(g : \mathbb{R}^r \to \mathbb{R} \) is convex (resp. stably convex) if its Hessian is semidefinite (positive definite).

Remark 4.7. The above lemma shows that the function \(\hat{f} \) corresponding to a smooth \(N \)-invariant plurisubharmonic function is not just an arbitrary smooth convex function, but it must satisfy the additional monotonicity conditions (22). (cf. Rem. 5.2).

Definition 4.8. A set \(\Omega \subset \mathbb{R}^r \) is \(C \)-invariant if \(y \in \Omega \) implies \(y + C \subset \Omega \)

Equivalently, if \(y \in \Omega \) implies \(y + \overline{C} \subset \Omega \), where \(\overline{C} \) denotes the closure of \(C \).

Theorem 4.9. Let \(G/K \) be a non-compact irreducible Hermitian symmetric space and let \(D \) be an \(N \)-invariant domain in \(G/K \). Then \(D \) is Stein if and only if the base \(\Omega \) of the associated tube domain is convex and \(C \)-invariant.

The proof of the above theorem is divided into two parts. If \(D \) has smooth boundary, then the argument relies on the computation of the Levi form of smooth, \(N \)-invariant functions on \(D \) (Prop. 3.1) and some elementary convex-geometric properties of \(\Omega \).

In the general case, the proof of the theorem is obtained by realizing \(D \) as an increasing union of Stein, \(N \)-invariant domains with smooth boundary.

Proof of Theorem 4.9 (the smooth case). The rank-1 tube case is trivial, since every \(\mathbb{R} \)-invariant domain in the upper half-plane \(\mathbb{H} \) is Stein. So we deal with the remaining cases: the rank-one non-tube case and the higher rank cases.

We use the notation \(y = (y_1, \ldots, y_r) \), for elements in \(\mathbb{R}^r \). Let \(D \subset G/K \) be a Stein, \(N \)-invariant domain with smooth boundary and let \(\mathbb{R}^r + i\Omega \subset \mathbb{C}^r \) be its associated tube domain. Then \(\Omega \) is a convex set with smooth boundary (cf. Rem. 4.4). Assume by contradiction that \(\Omega \) is not \(C \)-invariant, i.e. there exist \(y \in \Omega \) and \(z \in (y + C) \cap \partial \Omega \). By the convexity of \(\Omega \), the open segment from \(y \) to \(z \) is contained in \(\Omega \). In addition, the vector \(v = z - y \in C \) is transversal to the tangent hyperplane \(T_y \partial \Omega \) and points outwards. Therefore, given a smooth local defining function \(\hat{f} \) of \(\partial \Omega \) near \(z \), one has

\[
\frac{\partial \hat{f}}{\partial v}(z) = \text{grad} \hat{f}(z) \cdot v > 0.
\]
In the tube case, the above inequality and (23) imply that \(\frac{\partial^2 f}{\partial y_j^2}(H) > 0 \), for some \(j \in \{1, \ldots, r - 1\} \). Then, by Proposition 3.1(iii), the Levi form of the corresponding \(N \)-invariant function \(f \) is negative definite on the \(J \)-invariant subspace \(a_s g^{e_j} \in \mathfrak{g}(\partial D) \), the tangent space to \(\partial D \) in \(aK \). In the non-tube case, one has \(\frac{\partial^2 f}{\partial y_j^2}(H) > 0 \), for some \(j \in \{1, \ldots, r\} \). By Proposition 3.1(iv), the Levi form of the corresponding \(N \)-invariant function \(f \) is negative definite on the \(J \)-invariant subspace \(a_s g^{e_j} \) of \(T_{aK}(\partial D) \). This contradicts the fact that \(f \) is a defining function of the Stein \(N \)-invariant domain \(D \) and proves that \(\Omega \) is \(C \)-invariant.

Conversely, assume that \(\Omega \) is convex and \(C \)-invariant. We prove that \(D \) is Stein by showing that it is Levi-pseudoconvex, i.e. for all points \(aK \in \partial D \) and local defining functions \(f \) of \(D \) near \(aK \), one has \(h_f(X, X) \geq 0 \), for every tangent vector \(X \in T_{aK}\partial D \cap JT_{aK}\partial D \), the complex tangent space to \(\partial D \) at \(aK \).

Let \(z \in \partial \Omega \) and let \(aK = L(z) \). Denote by \(W := T_z\partial \Omega \) the tangent space to \(\partial \Omega \) in \(z \). One can verify that the complex tangent space to \(\partial D \) at \(aK \) is given by

\[
a_s(\bigoplus g^{e_j} \oplus \bigoplus g^{e_j} \oplus (L_s)_z W \oplus J(L_s)_z W.
\]

Let \(v = (v_1, \ldots, v_r) \) be an outer normal vector to \(W \) in \(\mathbb{R}^r \). The \(C \)-invariance and the convexity of \(\Omega \) imply that \(v_j \leq 0 \), for \(j = 1, \ldots, r \) in the non-tube case, and \(v_j = 0 \), for \(j = 1, \ldots, r - 1 \) in the tube case. Otherwise the space \(W \) would intersect \(y + C \), for every \(y \in \Omega \), yielding a contradiction.

Let \(\tilde{f} \) be a smooth local defining function of \(\Omega \) near \(z \). By the convexity of \(\Omega \), the Hessian \(Hess(\tilde{f})(z) \) is positive definite on \(W \). Moreover, as the gradient \(\text{grad} \tilde{f}(z) \) is a positive multiple of \(v \), one has \(\frac{\partial \tilde{f}}{\partial y_j}(z) \leq 0 \), for all \(j = 1, \ldots, r \), in the non-tube case, and \(\frac{\partial \tilde{f}}{\partial y_j}(z) \leq 0 \), for all \(j = 1, \ldots, r - 1 \), in the tube case.

Let \(f \) be the corresponding \(N \)-invariant local defining function of \(D \) near \(aK = \exp L(z)K \). By Proposition 4.5, the Levi form of \(f \) is positive definite on \((L_s)_z W \oplus J(L_s)_z W \subset a_s a \oplus a_s J a \).

In addition, by (23) and Proposition 3.1 the Levi form of \(f \) is positive definite on \(a_s(\bigoplus g^{e_j} \oplus \bigoplus g^{e_j}) \). As a result, \(D \) is Levi pseudoconvex in \(aK = \exp L(z)K \). Since \(aK \) is an arbitrary point in \(\partial D \cap \exp a \cdot eK \) and both \(D \) and \(f \) are \(N \)-invariant, the domain \(D \) is Levi-pseudoconvex and therefore Stein, as desired.

In order to prove Theorem 4.9 in the non-smooth case, we need some preliminary Lemmas.

Lemma 4.10. Let \(D \) be a domain in a Stein manifold, let \(D' \subset D \) be a subdomain with smooth boundary and let \(z \in \partial D \cap \partial D' \). If \(D' \) is not Levi pseudoconvex in \(z \), then \(D \) is not Stein.

Proof. Under our assumption, there exists a one dimensional complex submanifold \(M \) through \(z \) in \(X \) with \(M \setminus \{z\} \subset D' \) ([Ran86], proof of Thm. 2.11, p. 56).
This implies that \(D \) is not Hartogs pseudoconvex ([Ran86], Thm. 2.9, p. 54) and in particular it is not Stein.

For a domain \(\Omega \) in \(\mathbb{R}^r \), denote by \(d_\Omega : \Omega \to \mathbb{R} \) the distance function from the boundary (if \(z \in \Omega \), then \(d_\Omega(z) \) is by definition the radius of the largest ball centered in \(z \) and contained in \(\Omega \)). The next lemma is a known characterization of convex domains.

Lemma 4.11. A proper subdomain \(\Omega \) of \(\mathbb{R}^r \) is convex if and only if the function \(- \ln d_\Omega : \Omega \to \mathbb{R} \) is convex.

In what follows, for a fixed domain \(\Omega \) in \(\mathbb{R}^r \), we denote

\[
 u := - \ln d_\Omega.
\]

Denote by \(B_\rho(y) \) the open ball of center \(y = (y_1, \ldots, y_r) \in \mathbb{R}^r \) and radius \(\rho \). Fix a smooth, positive, radial function \(\sigma : \mathbb{R}^r \to \mathbb{R} \) (only depending on \(R^2 = |w|^2 \)), with support in \(B_1(0) \), such that \(\sigma'(R^2) < 0 \) and \(\int_{\mathbb{R}^r} \sigma(w)dw = 1 \). For \(\varepsilon > 0 \), define \(\Omega_{\varepsilon} := \{ y \in \Omega : d_\Omega(y) > \varepsilon \} \) and \(u_\varepsilon : \Omega_{\varepsilon} \to \mathbb{R} \) by

\[
 u_\varepsilon(y) := \frac{1}{\varepsilon} \int_{\mathbb{R}^r} u(z)\sigma(\frac{y - z}{\varepsilon})dz = \int_{\mathbb{R}^r} u(y + \varepsilon w)\sigma(w)dw.
\]

The functions \(u_\varepsilon \) are clearly smooth. Let \(\nu : (\mathbb{R}^r_{>0})^r \to \mathbb{R}^r_{>0} \) be the stably convex positive function given by \(\nu(y) := \sum_j \frac{1}{y_j} \). Define \(v_\varepsilon : \Omega_{\varepsilon} \to \mathbb{R} \) by

\[
 v_\varepsilon(y) := u_\varepsilon(y) + \varepsilon \nu(y).
\]

Lemma 4.12. Let \(\Omega \) be a convex, \(C \)-invariant domain in \((\mathbb{R}^r_{>0})^r \). Then the following facts hold true:

(i) The domain \(\Omega_{\varepsilon} \) is convex and \(C \)-invariant for every \(\varepsilon > 0 \).

(ii) The smooth functions \(v_\varepsilon \) are stably convex and, for \(\varepsilon \searrow 0 \), they decrease to \(u \) uniformly on the compact subsets of \(\Omega \).

(iii) Let \(\delta_\varepsilon := - \ln 3\varepsilon \). The sublevel set \(\Omega_{\varepsilon} := \{ y \in \Omega_{\varepsilon} : v_\varepsilon(y) < \delta_\varepsilon \} \) is convex and \(C \)-invariant.

(iv) The boundary of \(\Omega_{\varepsilon} \) in \((\mathbb{R}^r_{>0})^r \) coincides with \(\{ y \in \Omega_{\varepsilon} : v_\varepsilon(y) = \delta_\varepsilon \} \) and it is smooth.

(v) As \(n \in \mathbb{N} \) increases, the sequence of convex, \(C \)-invariant subdomains with smooth boundary \(\Omega_{1/n} \) exhausts \(\Omega \).

Proof. (i) Let \(y \) and \(y + v \) be elements of \(\Omega_{\varepsilon} \). Then \(B_\varepsilon(y) \) and \(B_\varepsilon(y + v) \) are contained in \(\Omega \) and, by the convexity of \(\Omega \), the same is true for \(B_\varepsilon(y + tv) \), for every \(t \in [0, 1] \). This shows that \(\Omega_{\varepsilon} \) is convex. Moreover, as \(\Omega \) is \(C \)-invariant, if \(B_\varepsilon(y) \) is contained in \(\Omega \) and \(v \) is an element of the cone \(C \), then also the open ball \(B_\varepsilon(y + v) \) is contained in \(\Omega \). This shows that \(\Omega_{\varepsilon} \) is \(C \)-invariant.
(ii) As u is convex, for $y, y + v \in \Omega$ and $t \in [0,1]$, one has

$$u_\varepsilon(y + tv) := \int_{\mathbb{R}^r} u(y + tv + \varepsilon w)\sigma(w)dw$$

$$\leq \int_{\mathbb{R}^r} ((1-t)u(y + \varepsilon w) + tu(y + \varepsilon w + v))\sigma(w)dw = (1-t)u_\varepsilon(y) + tu_\varepsilon(y + v),$$

showing that the smooth function u_ε is convex. Since ν is smooth and stably convex, it follows that $v_\varepsilon := u_\varepsilon + \varepsilon \nu$ is smooth and stably convex. Moreover, as convexity implies subharmonicity, then the last part of statement (ii) follows from [Hör94], Thm 3.2.3(ii), p.143.

(iii) Since the function v_ε is convex, then the domain $\tilde{\Omega}_\varepsilon$ is convex. In order to show that $\tilde{\Omega}_\varepsilon$ is C-invariant, we prove that

$$v_\varepsilon(y + v) < v_\varepsilon(y),$$

for every $y \in \Omega_\varepsilon$ and $v \in C$. Since Ω is C-invariant, if for some $y \in \Omega$ the ball $B_\varepsilon(y)$ is contained in Ω, then also the ball $B_\varepsilon(y + v)$ is contained in Ω, for all $v \in C$. It follows that $d_{\Omega}(y) \leq d_{\Omega}(y + v)$ and consequently $u(y + v + \varepsilon w) \leq u(y + \varepsilon w)$, for all $v \in C$, and $w \in B_\varepsilon(0)$. One deduces that

$$u_\varepsilon(y + v) = \int_{\mathbb{R}^r} u(y + v + \varepsilon w)\sigma(w)dw \leq \int_{\mathbb{R}^r} u(y + \varepsilon w)\sigma(w)dw = u_\varepsilon(y),$$

for every $y \in \Omega_\varepsilon$, $v \in C$. Since $\nu(y + v) < \nu(y)$, one concludes that $v_\varepsilon(y + v) < v_\varepsilon(y)$, and $\tilde{\Omega}_\varepsilon$ is C-invariant, as desired.

(iv) For y close to $\partial \Omega_\varepsilon = \{z \in \Omega : d_{\Omega}(z) = \varepsilon\}$, a rough estimate shows that $d_{\Omega}(y + \varepsilon w) < 3\varepsilon$, for every $w \in B_\varepsilon(0)$. Therefore $v_\varepsilon(y) > u_\varepsilon(y) > -\ln 3\varepsilon$, implying that the boundary of $\tilde{\Omega}_\varepsilon$ is contained in Ω_ε and it is given by $\partial \tilde{\Omega}_\varepsilon = \{y \in \Omega_\varepsilon : v_\varepsilon(y) = \delta_\varepsilon\}$. Concerning the smoothness of $\partial \tilde{\Omega}_\varepsilon$, the rank one case is trivial. So assume $r > 1$.

Let $\hat{y} \in \partial \tilde{\Omega}_\varepsilon$. Set $v := (1, \ldots, 1)$, in the non-tube case, and $v := (1, \ldots, 1, 0)$, in the tube case. Since v lies in the cone C, the inequality (26) implies that for γ small enough the real function $g : (-\gamma, \gamma) \to \mathbb{R}$, defined by $g(t) := v_\varepsilon(\hat{y} + tv)$, is strictly decreasing. By the stable convexity of v_ε, it is also strictly convex and $g'(0) < 0$. As $g'(0)$ is a directional derivative of v_ε in \hat{y}, the differential $dv_\varepsilon|_\hat{y}$ does not vanish and the boundary of $\tilde{\Omega}_\varepsilon$ is smooth.

(v) For $m > n$, the inclusion $\Omega_{1/n} \subset \Omega_{1/m}$ and the inequality $v_{1/n} > v_{1/m}$ imply that $\tilde{\Omega}_{1/n} \subset \tilde{\Omega}_{1/m}$. This concludes the proof of the lemma.

Proof of Theorem 4.9: the general case. Let D be an arbitrary Stein, N-invariant domain in G/K. By Remark 4.4, the base Ω of the associated tube domain is necessarily convex. Assume by contradiction that Ω is not C-invariant (cf. Def 4.8 and (20)), i.e. there exist $y \in \Omega$ and $z \in (y + C) \cap \partial \Omega$. By the convexity of Ω, the open segment from y to z is contained in Ω. Moreover, the
vector $v = z - y$ lies in the cone C and points to the exterior of Ω. Let $B_\varepsilon(y)$ be a relatively compact ball in Ω and define

$$t_{\max} := \max\{ t > 0 : B_\varepsilon(y + tv) \subset \Omega \}.$$

Then there exists $w \in \partial B_\varepsilon(y + t_{\max}v) \cap \partial \Omega$, and by construction

$$\langle w - (y + t_{\max}v), v \rangle > 0.$$

This implies that the outer normal $n := w - (y + t_{\max}v)$ to $B_\varepsilon(y + t_{\max}v)$ satisfies $n_j > 0$, for some $j \in \{1, \ldots, r\}$ in the non-tube case (resp. $n_j > 0$, for some $j \in \{1, \ldots, r-1\}$, in the tube case). From the result of the theorem in the smooth case, it follows that the N-invariant subdomain $N \exp(L(B_\varepsilon(y + t_{\max}v))) \cdot eK$, with smooth boundary, is not Levi pseudoconvex in $\exp(L(w))K$. Then Lemma 4.10 implies that D is not Stein, contradicting the assumption.

Conversely, assume that Ω is convex and C-invariant. By Lemma 4.12, the domain D can be realised as the increasing union of N-invariant domains $D_{1/n} := N \exp(L(\tilde{\Omega}_{1/n})) \cdot eK$, where the open sets $\tilde{\Omega}_{1/n} \subset \mathbb{R}^r$ are convex, C-invariant and have smooth boundary. By the result of the theorem in the smooth case, the domains $D_{1/n}$ are Stein and so is their increasing union D. This completes the proof of the theorem. \square

We conclude this section with a univalence result for Stein, N-equivariant, Riemann domains over G/K.

Proposition 4.13. Any holomorphically separable, N-equivariant, Riemann domain over G/K is univalent.

Proof. Let Z be a holomorphically separable, N-equivariant, Riemann domain over G/K. By [Ros63], Z admits an holomorphic, N-equivariant open embedding into its envelope of holomorphy, which is a Stein N-equivariant, Riemann domain over G/K. Hence, without loss of generality, we may assume that Z is Stein.

Denote by $\pi : Z \to G/K$ the N-equivariant projection and let $\pi(Z) = N \exp(L(\Omega)) \cdot eK$ be the image of Z under π. Define $\Sigma := \exp(L(\Omega)) \cdot eK$ and $\tilde{\Sigma} := \pi^{-1}(\Sigma)$. Note that $\tilde{\Sigma}$ is a closed submanifold of Z.

Claim. The map $\tilde{\phi} : N \times \tilde{\Sigma} \to Z$, given by $(n, x) \to n \cdot x$, is a diffeomorphism.

Proof of the claim. Since $\Sigma = \pi(Z) \cap \exp(\mathfrak{a}) \cdot eK$ is a closed real submanifold of $\pi(Z)$ and π is a local biholomorphism, the restriction $\pi|_\Sigma : \tilde{\Sigma} \to \Sigma$ is a local diffeomorphism. Moreover one has the commutative diagram

$$\begin{array}{ccc}
N \times \tilde{\Sigma} & \xrightarrow{\tilde{\phi}} & Z \\
\downarrow{\text{Id} \times (\pi|_\Sigma)} & & \downarrow{\pi} \\
N \times \Sigma & \xrightarrow{\phi} & N \exp L(\Omega) \cdot eK
\end{array}$$
where the maps $Id \times (\pi|_{\Sigma})$, ϕ and π are local diffeomorphisms. Hence so is the map $\tilde{\phi}$.

To prove that $\tilde{\phi}$ is surjective, let $z \in Z$ and note that $\pi(z) = n \exp(L(y))K$, for some $n \in N$ and $y \in \Omega$. Then the element $w := n^{-1} \cdot z \in \tilde{\Sigma}$ satisfies $n \cdot w = z$, implying the surjectivity of $\tilde{\phi}$.

To prove that $\tilde{\phi}$ is injective, assume that $n \cdot w = n' \cdot w'$, for some $n, n' \in N$ and $w, w' \in \tilde{\Sigma}$. From the equivariance of π it follows that $n \cdot \pi(w) = n' \cdot \pi(w')$. As ϕ is bijective, it follows that $n = n'$ and $\pi(w) = \pi(w')$. Thus $w = (n^{-1}n') \cdot w' = w'$, implying the injectivity of $\tilde{\phi}$ and concluding the proof of the claim.

Now, in order to prove the univalence of π, it is sufficient to show that the restriction $\pi|_{\Sigma}: \tilde{\Sigma} \to \Sigma$ of π to $\tilde{\Sigma}$ is injective. For this, consider the closed complex submanifold $R \cdot \tilde{\Sigma} = \pi^{-1}(R \cdot \Sigma)$ of Z. As Z is Stein, so is $R \cdot \tilde{\Sigma}$. Hence the restriction $\pi|_{R \cdot \tilde{\Sigma}} : R \cdot \tilde{\Sigma} \to R \cdot \Sigma$ defines an R-equivariant, Stein, Riemann domain over the Stein tube $R \cdot \Sigma$. As R is isomorphic to \mathbb{R}^r, from [CoLo86] it follows that $\pi|_{R \cdot \tilde{\Sigma}}$ is injective. Hence the same is true for $\pi|_{\Sigma}$ and π, as wished.

Corollary 4.14. The envelope of holomorphy \hat{D} of an N-invariant domain D in G/K is the smallest Stein domain in G/K containing D. More precisely, \hat{D} is the tube domain with base $\hat{\Omega}$, the convex C-invariant hull of Ω.

5. N-invariant psh functions vs. cvxdec functions

Let D be a Stein, N-invariant domain in a non-compact, irreducible Hermitian symmetric space G/K of rank r and let Ω be the base of the associated r-dimensional tube domain. Then Ω is a convex, C-invariant domain in $(\mathbb{R}^{\geq 0})^r$ (Thm. 4.9). From Proposition 4.5 it follows that there is a one-to-one correspondence between the class of smooth N-invariant plurisubharmonic functions on D and the class of smooth convex functions on Ω satisfying an additional monotonicity condition (cf. Rem. 4.7 and Rem. 5.2). In this section we obtain an analogous result in the non-smooth context.

Let \overline{C} be the closure of the cone defined in (21).

Definition 5.1. A function $\hat{f} : \Omega \to \mathbb{R}$ is (strictly) \overline{C}-decreasing if for every $y \in \Omega$ and $v \in \overline{C}\backslash\{0\}$ the restriction of \hat{f} to the half-line $\{y + tv : t \geq 0\}$ is (strictly) decreasing.

Remark 5.2. (i) A smooth function $\hat{f} : \Omega \to \mathbb{R}$ is \overline{C}-decreasing if and only if $\grad f(y) \cdot v \leq 0$ for every $y \in \Omega$ and $v \in \overline{C}\backslash\{0\}$.
(ii) A smooth, stably convex (cf. Def. 4.6) function \(\hat{f} : \Omega \to \mathbb{R} \) is \(\mathbb{C} \)-decreasing if and only if \(\text{grad} f(y) \cdot v < 0 \), for every \(y \in \Omega \) and \(v \in \mathbb{C} \setminus \{0\} \). This follows from the fact that the directional derivatives \(\text{grad} f(y) \cdot v \) of a stably convex, \(\mathbb{C} \)-decreasing function \(\hat{f} \) never vanish. In particular \(\hat{f} \) is automatically strictly \(\mathbb{C} \)-decreasing.

In view of the above observations, we define the following classes of functions:

- \(\text{ConvDec}^{\infty,+}(\Omega) \): smooth, stably convex, \(\mathbb{C} \)-decreasing functions on \(\Omega \),
- \(\text{ConvDec}^{\infty}(\Omega) \): smooth, convex, \(\mathbb{C} \)-decreasing functions on \(\Omega \),
- \(Psh^{\infty,+}(D)^N \): smooth, \(N \)-invariant, strictly plurisubharmonic functions on \(D \),
- \(Psh^{\infty}(D)^N \): smooth, \(N \)-invariant, plurisubharmonic functions on \(D \).

Proposition 4.5 established a one-to-one correspondence between \(\text{ConvDec}^{\infty,+}(\Omega) \) and \(Psh^{\infty,+}(D)^N \), as well as between \(\text{ConvDec}^{\infty}(\Omega) \) and \(Psh^{\infty}(D)^N \). The next goal is to extend such correspondences beyond the smooth context.

Let \(\hat{h} : \Omega \to \mathbb{R} \) be the smooth, stably convex, strictly \(\mathbb{C} \)-decreasing function
\[
\hat{h}(y) := \sum_j \frac{1}{y_j}, \quad \text{for } y = (y_1, \ldots, y_r) \in \Omega,
\]
and let \(h \) be the \(N \)-invariant strictly plurisubharmonic function on \(D \) associated to \(\hat{h} \).

Definition 5.3. A function \(\hat{f} : \Omega \to \mathbb{R} \) is stably convex and \(\mathbb{C} \)-decreasing if every point in \(\Omega \) admits a convex \(\mathbb{C} \)-invariant neighborhood \(W \) and \(\varepsilon > 0 \) such that \(\hat{f} - \varepsilon \hat{h} \) is a convex, \(\mathbb{C} \)-decreasing function on \(W \).

Definition 5.4. An \(N \)-invariant function \(f : D \to \mathbb{R} \) is strictly plurisubharmonic if every point in \(D \) admits an \(N \)-invariant neighborhood \(U \) and \(\varepsilon > 0 \) such that \(f - \varepsilon h \) is a \(N \)-invariant plurisubharmonic function on \(U \) (see also [Gun90], Vol. 1, Def. 1, p. 118).

In the smooth context the above notions coincide with the ones introduced earlier. Denote by

- \(\text{ConvDec}^{+}(\Omega) \): stably convex and \(\mathbb{C} \)-decreasing functions on \(\Omega \),
- \(\text{ConvDec}(\Omega) \): convex, \(\mathbb{C} \)-decreasing functions on \(\Omega \),
- \(Psh^{+}(D)^N \): strictly plurisubharmonic, \(N \)-invariant functions on \(D \),
- \(Psh(D)^N \): plurisubharmonic, \(N \)-invariant functions on \(D \).

The next theorem summarizes our results.

Theorem 5.5. Let \(D \) be a Stein \(N \)-invariant domain in a non-compact, irreducible Hermitian symmetric space \(G/K \) of rank \(r \). The map \(f \to \hat{f} \) is a bijection between the following classes of functions.
(i) \(Psh^{x,+}(D)^N\) and \(\text{ConvDec}^{x,+}(\Omega)\),
(ii) \(Psh^{x}(D)^N\) and \(\text{ConvDec}^{x}(\Omega)\),
(iii) \(Psh(D)^N\) and \(\text{ConvDec}(\Omega)\),
(iv) \(Psh^{+}(D)^N\) and \(\text{ConvDec}^{+}(\Omega)\).

In particular, \(N\)-invariant plurisubharmonic functions on \(D\) are necessarily continuous.

Proof. (i) and (ii) follow from Proposition 4.5 and Remark 5.2.
(iii) Let \(f\) be a function in \(Psh(D)^N\). Since the restriction of \(f\) to the embedded \(r\)-dimensional Stein tube domain \(R\exp(L(\Omega)) \cdot eK \cong \mathbb{R}^r \times i\Omega\) (cf. Cor. 4.3) is plurisubharmonic and \(R\)-invariant, then \(\hat{f}\) is necessarily convex. Assume by contradiction that \(\hat{f}\) is not \(\mathbb{C}\)-decreasing. Then there exists \(s \in \mathbb{R}\) such that the sublevel set \(\{\hat{f} < s\}\) is not \(\mathbb{C}\)-invariant. By Theorem 4.9, the corresponding \(N\)-invariant domain \(\{f < s\}\) is not Stein. Since \(G/K\) is biholomorphic to a Stein domain in \(\mathbb{C}^n\) and \(f\) is plurisubharmonic, this contradicts \[\text{Car73}, \text{Thm. B}, \text{p. 419}.\] Hence \(\hat{f}\) belongs to \(\text{ConvDec}(\Omega)\), as claimed.

In order to prove the converse, as in the previous section, for \(\varepsilon > 0\) consider the convex \(C\)-invariant set \(\Omega_\varepsilon := \{y \in \Omega : d_{\Omega}(y) > \varepsilon\}\). For \(\hat{f}\) in \(\text{ConvDec}(\Omega)\), let \(\hat{f}_\varepsilon : \Omega_\varepsilon \to \mathbb{R}\) be the function

\[
\hat{f}_\varepsilon(y) := \int_{\mathbb{R}^r} \hat{f}(y + \varepsilon w) \hat{\sigma}(w) dw + \varepsilon \hat{h},
\]

where \(\hat{h}\) is the function given in (27) and \(\hat{\sigma} : \mathbb{R}^r \to \mathbb{R}\) is a smooth, positive, radial function (only depending on \(R^2 = \|w\|^2\)), with support in \(B_1(0)\), such that \(\hat{\sigma}'(R^2) < 0\) and \(\int_{\mathbb{R}^r} \hat{\sigma}(w) dw = 1\). Arguments analogous to those used in Lemma 4.12 show that the functions \(\hat{f}_\varepsilon\) are in \(\text{ConvDec}^{x,+}(\Omega_\varepsilon)\). Then (i) implies that the corresponding functions \(f_\varepsilon\) belong to \(Psh^{x,+}(D)^N\) and consequently \(f\) belongs to \(Psh(D)^N\).

(iv) follows directly from the definition of \(Psh^{+}(D)^N\) and of \(\text{ConvDec}^{+}(\Omega)\).

Finally, from the inclusions

\[
\text{ConvDec}^{+}(\Omega) \subset \text{ConvDec}(\Omega) \subset C^0(\Omega)
\]

\[
\text{ConvDec}^{x,+}(\Omega) \subset \text{ConvDec}^{x}(\Omega)
\]

it follows that all the above functions on \(\Omega\) are continuous, and so are the corresponding \(N\)-invariant plurisubharmonic functions on \(D\).

\[\square\]

6. The Siegel domain point of view

The goal of this section is to present an alternative characterization of Stein \(N\)-invariant domains in an irreducible Hermitian symmetric space \(G/K\), realized as a Siegel domain.
Denote by $S = NA$ the real split solvable group arising from the Iwasawa decomposition of G subordinated to Σ^+. With the complex structure J described in (2) and the linear form $f_0 \in s^*$ defined by $f_0(X) := B(X, Z_0)$, where $Z_0 \in Z(\frakt)$ is the element inducing the complex structure on p, the Lie algebra $s = n \oplus a$ of S has the structure of a normal J-algebra (see [GPSV68] and [RoVe73], Sect. 5, A).

This means in particular that $\omega(X, Y) := -f_0([X, Y])$ is a non-degenerate skew-symmetric bilinear form on s and that the symmetric bilinear form $\langle X, Y \rangle := -f_0([JX, Y])$ is the J-invariant positive definite inner product on s defined in (2).

The adjoint action of a on s decomposes s into the orthogonal direct sum of the restricted root spaces. Moreover, the adjoint action of the element $A_0 = \frac{1}{2} \sum j A_j \in a$ decomposes s and n as

$$s = s_0 \oplus s_{1/2} \oplus s_1, \quad n_j = n \cap s_j$$

where

$$s_0 = a \oplus \bigoplus_{1 \leq j < l \leq r} g^{e_j - e_l}, \quad s_{1/2} = \bigoplus_{1 \leq j \leq r} g^{e_j}, \quad s_1 = \bigoplus_{1 \leq j \leq r} g^{2e_j} \oplus \bigoplus_{1 \leq j < l \leq r} g^{e_j + e_l}. \quad (28)$$

Let $E_0 := \sum E^j$. The orbit

$$V := Ad_{exp s_0} E_0$$

is a sharp convex homogeneous selfadjoint cone in s_1 and

$$F: s_{1/2} \times s_{1/2} \rightarrow s_1 + i s_1, \quad F(W, W') = \frac{1}{4}([JW', W] - i[W', W]),$$

is a V-valued Hermitian form, i.e. it is sesquilinear and $F(W, W) \in \overline{V}$, for all $W \in s_{1/2}$. The Hermitian symmetric space G/K is realized as a Siegel domain in $s_1^0 \oplus s_{1/2}$ as follows

$$D(V, F) = \{(Z, W) \in s_1 \oplus is_1 \oplus s_{1/2} \mid Im(Z) - F(W, W) \in V\}.$$

If $s_{1/2} = \{0\}$ then G/K is of tube type, otherwise it is of non-tube type. The group S acts on $D(V, F)$ by the affine transformations

$$(Z, W) \mapsto (Ad_{s} Z + a + 2i F(Ad_{s} W, b) + i F(b, b), Ad_{s} W + b), \quad (30)$$

where $s \in exp s_0$, $a \in s_1$, and $b \in s_{1/2}$. Recall that $Ja = \oplus_j g^{2e_j}$, (cf. [4]) and denote by Ja^+ the positive octant in Ja. One easily verifies that if $E \in Ja^+$, then $Ad_{exp a} E = Ja^+$. This and the fact that S acts freely and transitively on $D(V, F)$ imply that every N-orbit meets the set Ja^+ is a unique point.

Let D be an N-invariant domain in a symmetric Siegel domain. Then

$$D = \{(Z, W) \in D(V, F) \mid Im(Z) - F(W, W) \in V_D\},$$

where V_D is an $Ad_{exp s_0}$-invariant open subset in V, determined by

$$i V_D := D \cap i V.$$

The r-dimensional set

$$v_D := V_D \cap Ja^+,$$
intersects every N-orbit of D in a unique point, and it is the base of an r-
-dimensional tube domain in $Ja \oplus iJa$. The map $\exp a \cdot eK \rightarrow \exp a \cdot (iE_0, 0)$
\[
\exp(\sum_j x_j E^j) \exp(\frac{1}{2} \sum_k \ln(y_k) A_k)K \mapsto (i\Ad_{\exp(\frac{1}{2} \sum_k \ln(y_k) A_k)} E_0 + \sum_j x_j E^j, 0)
\]
is the inverse of the map \mathcal{L} of Proposition 4.1 (cf. Cor. 4.3).

Let C be the cone defined in (20). Then the characterization of N-invariant
Stein domains in a symmetric Siegel domain can be formulated as follows.

Proposition 6.1. Let D be an N-invariant domain in an irreducible symmetric
Siegel domain. Then D is Stein if and only if V_D is convex and C-invariant.

In order to prove the above proposition, we need some preliminary results. For
this we separate the tube and the non-tube case.

The tube case. Denote by $\text{conv}(V_D)$ the convex hull of V_D in s_1. Since V_D
is $Ad_{\exp n_0}$-invariant and the action is linear, then also $\text{conv}(V_D)$ is $Ad_{\exp n_0}$-invariant.

Denote by $p: s_1 \rightarrow Ja$ the projection onto Ja, parallel to $\oplus g^{\delta_{ij} + \varepsilon_l}$. Denote by
\[
(E^1)^* \ldots (E^r)^*
\]
the elements in the dual n^* of n, with the property that $(E^1)^*(E^l) = \delta_{jl}$ and
$(E^j)^*(X^\alpha) = 0$, for all $X^\alpha \in g^\alpha$, with $\alpha \in \Sigma^+ \setminus \{2\varepsilon_1, \ldots, 2\varepsilon_r\}$.

Lemma 6.2. One has

(i) Let $E = \sum x_k E^k \in Ja^+$, where $x_k \in \mathbb{R}^{>0}$. Then
\[
p(\Ad_{\exp n_0} E) = E + C_{r-1}.
\]
In particular, $(E^l)^*(\Ad_{\exp tX} E) = x_r$, for all $X \in n_0$ and $t \in \mathbb{R}$.

(ii) Let $X \in g^{\delta_{ij} - \varepsilon_i}$. Then $[[E^l, X], X] = sE^j$, for some $s \in \mathbb{R}^{>0}$.

(iii) One has $p(\text{conv}(V_D)) = \text{conv}(p(V_D))$.

Proof. (i) Let $E \in Ja^+$ and let $h_0 \in \exp n_0$, where $n_0 = \oplus_{1 \leq i < j \leq r} g^{\delta_{ij} - \varepsilon_i}$. By
Theorem 4.10 in [RoVe73], for every $1 \leq i < j \leq r$ there exists a basis $\{E^p_{ij}\}$ of
$g^{\delta_{ij} - \varepsilon_i}$, with coordinates $\{x^p_{ij}\}$, such that
\[
(E^l)^*(\Ad_{h_0} E) = x_i (1 + \sum_{p, j > i} (x^p_{ij})^2)
\]
(formula (4.13) in [RoVe73]). Since $i < r$, one has $p(\Ad_{\exp X} E) = E + C_{r-1}$, as
claimed. In particular the i^{th} coordinate of E does not vary under the $Ad_{\exp n_0}$
action.

(ii) Let $X \in g^{\delta_{ij} - \varepsilon_i}$. Then $\exp tX \in \exp n_0$ and the curve
\[
\Ad_{\exp tX} E_0 = \exp ad_{tX} (E_0) = E_0 + t[X, E^l] + \frac{t^2}{2} [X, [X, E^l]], \ t \in \mathbb{R},
\]
is contained in V. By Lemma 2.3(a), its projection onto Ja is given by
\[
p(\Ad_{\exp tX} E_0) = (E^l)^*(\Ad_{\exp tX} E_0) E^j = (1 + \frac{t^2}{2}s) E^j,
\]
for some $s \in \mathbb{R}$, $s \neq 0$. Now (i) implies that $1 + \frac{t^2}{2}s > 0$, for all $t \in \mathbb{R}$. Therefore $s > 0$, as claimed.

(iii) We prove the two inclusions. By the linearity of p, the set $p(\text{conv}(V_D))$ is convex and contains $p(V_D)$. Hence, $p(\text{conv}(V_D)) \supset \text{conv}(p(V_D))$. Conversely, let $z \in \text{conv}(V_D)$. Then there exist $t_0 \in (0, 1)$ and $x, y \in V_D$ such that $z = t_0x + (1 - t_0)y$. Since $p(z) = t_0p(x) + (1 - t_0)p(y)$, one has $p(\text{conv}(V_D)) \supset \text{conv}(p(V_D))$. \qed

The non-tube case. Denote by $\widetilde{p} : s_1^C \oplus s_{1/2} \to iJa$ the projection onto iJa parallel to $s_1 \oplus i(\oplus g^{e_j + \epsilon_l}) \oplus s_{1/2}$.

Lemma 6.3. Let $E \in Ja^+$. Then $\widetilde{p}(N \cdot (iE, 0)) = i(E + \overline{C_r})$.

Proof. The N-orbit of the point $(iE, 0) \in s_1^C \oplus s_{1/2}$ is given by

$$N \cdot (iE, 0) = S_{1/2}a_1Ad_{\exp_{0E}}(iE, 0) = (a + i(Ad_{\exp_{0E}} + F(b, b)), b),$$

where $a \in s_1$ and $b \in s_{1/2}$. By (32) and Lemma 6.2 (i), one has $\widetilde{p}(N \cdot (iE, 0)) = i(E + C_{r-1} + \overline{p}(F(s_{1/2}, s_{1/2})))$. Since in the symmetric case $\{[b, b], b \in s_{1/2} \} = \overline{Ja}^+$, it follows that $\widetilde{p}(N \cdot (iE, 0)) = i(E + \overline{C_r})$, as claimed. \qed

Remark 6.4. (a) Statement (i) in Lemma 6.2 explains why in Prop 3.1 (iii) no conditions appear on $\frac{\partial f}{\partial a}$.

(b) Statement (ii) in Lemma 6.2 and the fact that $F(b, b) = [Jb, b]$, for $b \in s_{1/2}$, takes values in \overline{Ja}^+, explain why the real constants s and t in Lemma 2.3 (a)(b) and later in Proposition 6.1 (iii)(iv) are strictly positive.

Proof of Proposition 6.1. The tube case. An N-invariant domain D in a symmetric tube domain $D(V)$ is itself a tube domain with base the $Ad_{\exp_{0E}}$-invariant set V_D. Hence all we have to prove is that V_D is convex if and only if v_D is convex and $v_D + C_{r-1} \subset v_D$.

Assume that V_D is convex. Then v_D is convex, being the intersection of V_D with the positive octant Ja^+. To prove that v_D is C-invariant, let $E = \sum_j x_j E_j \in v_D$, where $x_j > 0$, and let $X \in g_{e_j - \epsilon_l}$ be a non-zero element. For every $t \in \mathbb{R}$,

$$Ad_{\exp tX}E = E + tx_l[X, E'] + \frac{1}{2}t^2x_l[X, [X, E']]$$

lies in V_D and, by the convexity assumption, so does $E + \frac{1}{2}t^2x_l[X, [X, E']] = E + i^2sxtE_j$, where $s > 0$ (cf. Lemma 6.2 (ii)). This argument applied to all $j = 1, \ldots, r-1$ and the convexity of v_D show that $v_D + C_{r-1} \subset v_D$, as desired.

Conversely, assume that v_D convex and C-invariant. We prove the convexity of V_D by showing that $\text{conv}(V_D) \subset V_D$. From Lemma 6.2 (ii) and the C-invariance of v_D, one has

$$p(V_D) = p(Ad_{\exp_{0E}}v_D) = v_D + C_{r-1} \subset v_D.$$
Moreover, from Lemma 6.2 (iii), the above inclusion and the convexity of \(V_D \), one has
\[
\text{conv}(V_D) \cap J\mathfrak{a} \subset p(\text{conv}(V_D)) = \text{conv}(p(V_D)) \subset V_D.
\]
Finally, from the \(\text{Ad}_{\exp n_0} \)-invariance of \(\text{conv}(V_D) \) it follows that
\[
\text{conv}(V_D) = \text{Ad}_{\exp n_0}(\text{conv}(V_D) \cap J\mathfrak{a}) \subset \text{Ad}_{\exp n_0}V_D = V_D.
\]
This completes the proof of the proposition in the tube case.

The non-tube case. Let \(D \) be an \(N \)-invariant domain in a Siegel domain \(D(V,F) \). Denote by \(\text{conv}(D) \) the convex hull of \(D \) in \(\mathfrak{s}_1^C \oplus \mathfrak{s}_{1/2} \). As \(N \) acts on \(D \) by affine transformations, also \(\text{conv}(D) \) is \(N \)-invariant.

If \(D \) is Stein, then \(D \cap \{ W = 0 \} \) is a Stein tube domain in \(\mathfrak{s}_1^C \) with base \(V_D \).

By the result for the tube case and Lemma 6.3, \(V_D \) is convex and \(\mathfrak{C}_r \subset V_D \).

Conversely, assume that \(V_D \) is convex and \(\mathcal{C} \)-invariant, i.e. \(\mathfrak{v}_D + \mathfrak{C}_r \subset V_D \) (see Def. 4.8). We are going to prove that \(D \) is convex. By Lemma 6.3 one has
\[
\tilde{\mathfrak{p}}(D) = \tilde{\mathfrak{p}}(N \cdot \mathfrak{v}_D) = i(\mathfrak{v}_D + \mathfrak{C}_r) \subset i\mathfrak{v}_D.
\]
Moreover,
\[
\text{conv}(D) \cap iJ\mathfrak{a} \subset \tilde{\mathfrak{p}}(\text{conv}(D)) = \text{conv}(\tilde{\mathfrak{p}}(D)) \subset i\mathfrak{v}_D.
\]
By the \(N \)-invariance of \(\text{conv}(D) \), one obtains
\[
\text{conv}(D) = N \cdot (\text{conv}(D) \cap iJ\mathfrak{a}) \subset N \cdot i\mathfrak{v}_D = D.
\]
Hence \(D \) is convex and therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). This concludes the proof of the proposition.

Remark. The assumption \(\mathfrak{v}_D + \mathfrak{C}_r \subset \mathfrak{v}_D \) implies \(\mathfrak{v}_D + \mathfrak{C}_{r-1} \subset \mathfrak{v}_D \) and in particular \(V_D \) is convex. This means that if \(D \subset D(V,F) \) is Stein, then the tube domain \(D \cap \{ W = 0 \} \) is Stein. The converse may not hold true, as \(V_D = \text{Ad}_{\exp n_0} \mathfrak{v}_D \) convex does not imply \(\mathfrak{v}_D + \mathfrak{C}_r \subset \mathfrak{v}_D \).

7. Appendix: \(N \)-invariant potentials for the Killing metric.

Let \(G/K \) be a non-compact, irreducible Hermitian symmetric space. The Killing form \(B \) of \(\mathfrak{g} \), restricted to \(\mathfrak{p} \), induces a \(G \)-invariant Kähler metric on \(G/K \), which we refer to as the Killing metric. In this section we exhibit an \(N \)-invariant potential of the Killing metric and the associated moment map in a Lie theoretical fashion. All the \(N \)-invariant potentials of the Killing metric are determined in Remark 7.5.

Let \(f : G/K \to \mathbb{R} \) be a smooth \(N \)-invariant function. The map \(\mu : G/K \to \mathfrak{n}^* \), defined by
\[
\mu_f(z)(X) := d^c f(\tilde{X}_z), \quad (33)
\]
for \(X \in \mathfrak{n} \), is \(N \)-equivariant (cf. [13]). If \(f \) is strictly plurisubharmonic, then it is referred to as the moment map associated with \(f \).
Proposition 7.1. Let \(z = naK \in G/K \), where \(n \in N \), \(a = \exp H \in A \) and \(H = \sum_j a_j A_j \in \mathfrak{a} \). Let \(b \) be the constant defined in (11).

(i) The \(N \)-invariant function \(\rho : G/K \to \mathbb{R} \) defined by
\[
\rho(naK) := -\frac{b}{2} \sum_{j=1}^r B(H, A_j) = -\frac{b}{2}(a_1 + \cdots + a_r),
\]
is a potential of the Killing metric.

(ii) The moment map \(\mu_{\rho} : G/K \to \mathfrak{n}^* \) associated with \(\rho \) is given by
\[
\mu_{\rho}(naK)(X) = -\frac{b}{4} \sum_{j=1}^r e^{-2a_j}(E^j)^*(\text{Ad}_{n^{-1}}X) = B(\text{Ad}_{n^{-1}}X, \text{Ad}_a Z_0),
\]
where \(X \in \mathfrak{n} \), and the \((E^j)^*\) are defined in (31).

Proof. (i) Let \(naK \in G/K \), where \(a = \exp H \) and \(H = \sum_j a_j A_j \). The function \(\tilde{\rho} : \mathfrak{a} \to \mathbb{R} \) associated to \(\rho \) is given by \(\tilde{\rho}(H) = -\frac{b}{2} \sum_{j=1}^r a_j B(A_j, A_j) \) (cf. (7)). In order to obtain (i), we first prove the identities (34). By (33) and (14), one has
\[
\mu_{\rho}(aK)(X) = d^c \rho(\tilde{X}_aK) = -\frac{b}{4} \sum_{j=1}^r e^{-2a_j}(E^j)^*(X).
\]
By (2), one has
\[
(E^j)^*(X) = B(X, \theta E^j)/B(E^j, \theta E^j) = 2B(X, \frac{1}{2}(E^j + \theta E^j))/B(E^j, \theta E^j).
\]
Since
\[
b := B(A_j, A_j) = B(I_0A_j, I_0A_j) = B(E^j - \theta E^j, E^j - \theta E^j) = -2B(E^j, \theta E^j)
\]
and \(Z_0 = S_0 + \frac{1}{2} \sum_j E^j + \theta E^j \), for some \(S_0 \in \mathfrak{m} \) (cf. [GeIa21], Sect. 2), one obtains
\[
-\frac{b}{4} \sum_{j=1}^r e^{-2a_j}(E^j)^*(X) = -\frac{b}{2} \sum_{j=1}^r e^{-2a_j} B(X, \frac{1}{2}(E^j + \theta E^j))/B(E^j, \theta E^j)
\]
\[
= \sum_{j=1}^r B(X, \text{Ad}_a \frac{1}{2}(E^j + \theta E^j)) = B(X, \text{Ad}_a Z_0),
\]
and (34) follows from the \(N \)-equivariance of \(\mu_{\rho} \).

Next we are going to show that on \(\mathfrak{p} \times \mathfrak{p} \) one has
\[
h_{\rho}(a_{\ast \cdot}, a_{\ast \cdot}) = B(\cdot, \cdot).
\]
Every \(X \in \mathfrak{s} \) decomposes as \(X = (X - \phi(X)) + \phi(X) \in \mathfrak{k} \oplus \mathfrak{p} \) (see Sect. 2). Since the projection \(\phi : \mathfrak{s} \to \mathfrak{p} \) is a linear isomorphism, (36) is equivalent to
\[
h_{\rho}(a_{\ast X}, a_{\ast Y}) = h_{\rho}(a_{\ast \phi(X)}, a_{\ast \phi(Y)}) = B(\phi(X), \phi(Y)) = -\frac{1}{2} B(X, \theta Y),
\]
for all \(X, Y \) in \(\mathfrak{s} \). By Proposition 3.1(i), it is sufficient to consider \(X, Y \) both in the same block \(a_{\ast \mathfrak{a}} \), \(a_{\ast \mathfrak{g}^{\alpha - \epsilon_i}} \), and \(a_{\ast \mathfrak{g}^{\beta}} \).

Let \(A_j, A_l \in \mathfrak{a}, \) be as in (11). Then, by (ii) of Proposition 3.1 one has
\[
h_{\rho}(a_{\ast A_j}, a_{\ast A_l}) = \delta_{jl} B(A_l, A_l) = B(A_j, A_l).
\]
Let \(X, Y \in \mathfrak{g}^\alpha \), with \(\alpha = e_j - e_i \) or \(\alpha = e_j \). Then \(JY \in \mathfrak{g}^\beta \), for \(\beta = e_j + e_i \) or \(\beta = e_j \), respectively. From (15) and (i) one obtains
\[
h_{\rho}(a_{\ast X}, a_{\ast Y}) = -e^{(H) + (H)} d^c \rho([JY, X]_z)
\]
\[e^{-e^{\alpha(H) + \beta(H)}} B([JY, X], Ad_aZ_0). \quad (38) \]

From the invariance properties of the Killing form \(B \), the decomposition of \(X \) and \(JY \) in \(\mathfrak{g} \oplus \mathfrak{p} \) and the identity \(\phi(JY) = I_0\phi(J\cdot) \) (cf. (33)), one has

\[
B([JY, X], Ad_aZ_0) = B(Ad_{a^{-1}}[JY, X], Z_0) = e^{-(\alpha(H) + \beta(H))} B([JY, X], Z_0) \\
e^{-\alpha(H) + \beta(H))} (B([JY - \phi(JY), X - \phi(X)], Z_0) + B([\phi(JY), \phi(X)], Z_0)) \\
e^{-\alpha(H) + \beta(H)} B([Z_0, \phi(Y)], \phi(X)], Z_0) = e^{-\alpha(H) + \beta(H)} B(\phi(X), [Z_0, \phi(Y)]) \\
= -e^{-\alpha(H) + \beta(H)} B(\phi(X), \phi(Y)) = \frac{1}{2} e^{-(\alpha(H) + \beta(H))} B(X, \theta Y).
\]

It follows that
\[h_\rho(a_sX, a_sY) = -\frac{1}{2} B(X, \theta Y), \quad (39) \]
as desired. This concludes the proof of (i).

(ii) The identity (39) implies that the \(N \)-invariant function \(\rho \) is strictly plurisub-harmonic. Hence \(\mu_\rho \) is the moment map associated to \(\rho \). \(\square \)

Remark 7.2. Combining (10) and (17) in Proposition 7.1 with (37), we obtain the exact value of the positive quantities \(s \) and \(t \)

\[s = \frac{4|x|^2}{b}, \quad \text{for} \quad X \in \mathfrak{g}^{e_j - e_i}, \quad \text{and} \quad t = \frac{4|x|^2}{b}, \quad \text{for} \quad X \in \mathfrak{g}^{2e_j}. \]

Remark 7.3. The map \(\mu_G : G/K \rightarrow \mathfrak{g}^* \) given by \(\mu_G(gK)(\cdot) = B(Ad_{g^{-1}} \cdot, Z_0) \) is a moment map for the \(G \)-action on \(G/K \). The moment map \(\mu_\rho \) in (ii) of Proposition 7.7 can be obtained by restricting \(\mu_G(\mathfrak{n}aK) \) to \(\mathfrak{n} \). Namely, for \(X \in \mathfrak{n} \) and \(\mathfrak{n}aK \in G/K \) one has

\[\mu_\rho(\mathfrak{n}aK)(X) = \mu_G(\mathfrak{n}aK)(X) = B(Ad_{(\mathfrak{n}a)^{-1}} X, Z_0). \]

In the next remark, all possible \(N \)-invariant potentials of the Killing metric are determined.

Remark 7.4. Let \(\rho : G/K \rightarrow \mathbb{R} \) be the potential of the Killing metric given in Proposition 7.7 and let \(\sigma \) be another \(N \)-invariant potential. Let \(\hat{\rho} \) and \(\hat{\sigma} \) be the corresponding functions on \((\mathbb{R}^{>0})^r \) defined in (19).

(a) In the non-tube case, one has \(\hat{\sigma} = \hat{\rho} + d \), and therefore \(\sigma = \rho + d \), for some \(d \in \mathbb{R} \);

(b) In the tube case, one has \(\hat{\sigma}(y) = \hat{\rho}(y) + cy + d \), for \(c, d \in \mathbb{R} \). In particular

\[\sigma(n \exp(L(y))K) = \rho(n \exp(L(y))K) + cy + d, \]

where \(n \in N \), \(y = (y_1, \ldots, y_r) \in (\mathbb{R}^{>0})^r \), and \(c, d \in \mathbb{R} \).
Proof. Let \(f := \sigma - \rho \) be the difference of the two potentials. Then \(f \) is a smooth \(N \)-invariant function on \(G/K \) such that \(dd^c f(\cdot, J \cdot) \equiv 0 \). Let \(\hat{f} : \Omega \to \mathbb{R} \) be the associated function.

(a) In the non-tube case, by Proposition 3.1 (iv) and (23), the function \(\hat{f} \) satisfies \(\frac{\partial \hat{f}}{\partial y_j} \equiv 0 \), for all \(j = 1, \ldots, r \). Hence \(\hat{f} \) is constant on \((\mathbb{R}^\geq)^r \) and \(f \) is constant on \(G/K \).

(b) In the tube case, from Proposition 3.1, (25) and (23), it follows that \(\frac{\partial \hat{f}}{\partial y_j} \equiv 0 \), for all \(j = 1, \ldots, r-1 \), and \(\frac{\partial^2 \hat{f}}{\partial y_r^2} \equiv 0 \). Hence \(\hat{f} \) is an affine function of the variable \(y_r \). Equivalently, \(\sigma(y) - \rho(y) = cy_r + d \), for \(c, d \in \mathbb{R} \), as claimed. \(\square \)

Remark 7.5. Let \(D(V, F) \) be a symmetric Siegel domain. Then the Bergman kernel function \(K(z, z) \) is \(N \)-invariant and \(\ln K(z, z) \) is a potential of the Bergman metric. As both the Killing and the Bergman metric are \(G \)-invariant, they differ by a multiplicative constant. It follows that \(\ln K(z, z) \) is a multiple of one of the \(N \)-invariant potentials of the Killing metric described in the above remark.

Example 7.6. As an application of Remark 7.5, we compute all \(N \)-invariant potentials of the Killing metric for the upper half-plane in \(\mathbb{C} \) and for the Siegel upper half-plane of rank 2.

(a) Let \(G = \text{SL}(2, \mathbb{R}) \) and let \(G/K \) be the corresponding Hermitian symmetric space. Fix an Iwasawa decomposition \(NAK \) of \(G \). Since \(b = 8 \) and \(r = 1 \), then the potential of the Killing metric given in Proposition 7.1 is \(\rho(naK) = -4a_1 \) and \(\hat{\rho}(y_1) = \rho(\exp(y_1)K) = \ln \frac{1}{y_1} \).

Realize \(G/K \) as the upper half-plane \(\mathbb{H} = \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \} \), i.e. the orbit of \(i \in \mathbb{C} \) under the \(SL(2, \mathbb{R}) \)-action by linear fractional transformations. Fix

\[
N = \left\{ \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} : m \in \mathbb{R} \right\} \quad \text{and} \quad A = \left\{ \begin{pmatrix} e^{a_1} & 0 \\ 0 & e^{-a_1} \end{pmatrix} : a_1 \in \mathbb{R} \right\},
\]

and let \(\{ x_1 + iy_1 \in \mathbb{C} : y_1 > 0 \} \) be the tube associated to \(G/K \). Since

\[
x_1 + iy_1 \to \exp(x_1 E^1) \exp(\frac{1}{2} \ln y_1 A_1) \cdot i = x_1 + iy_1
\]

(cf. Prop. 4.1), then the potential \(\rho \) on \(\mathbb{H} \) reads as \(\rho(z) = \ln \frac{1}{(\text{Im}z)^2} \).

If \(\sigma : \mathbb{H} \to \mathbb{R} \) is an arbitrary \(N \)-invariant potential of the Killing metric, then by Remark 7.5

\[
\sigma(z) = \ln \frac{1}{(\text{Im}z)^2} + c\text{Im}z + d, \quad c, d \in \mathbb{R}.
\]

(b) The Siegel upper half-plane of rank 2

\[
\mathcal{P} = \{ W = S + iT \in M(2,2, \mathbb{C}) : \im W = W, \ T > 0 \},
\]
of 2×2 complex symmetric matrices with positive definite imaginary part, is the orbit of iI_2 under the action by linear fractional transformations of the real symplectic group $Sp(2, \mathbb{R})$. Fix the Iwasawa decomposition such that

$$N = \left\{ \begin{pmatrix} n & m \\ 0 & n^{-1} \end{pmatrix} \right\}, \quad A = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \right\},$$

where n is unipotent, $n^t m$ is symmetric and $a = \begin{pmatrix} e^{a_1} & 0 \\ 0 & e^{a_2} \end{pmatrix}$, with a_1, a_2 coordinates in a with respect to the basis defined in Lemma 2.2.

As $b = 12$, the potential of the Killing metric defined in Proposition 7.1 is given by

$$\rho(naK) = -6(a_1 + a_2) \quad \text{and} \quad \tilde{\rho}(y_1, y_2) = \rho(\exp L(y_1, y_2)K) = \ln \frac{1}{(y_1 y_2)^{3/2}}.$$

A matrix $S + iT \in \mathcal{P}$ can be expressed in a unique way as

$$na \cdot iI_2 = n \cdot \begin{pmatrix} ie^{2a_1} & 0 \\ 0 & ie^{2a_2} \end{pmatrix}.$$

If $T = \begin{pmatrix} t_1 & t_3 \\ t_3 & t_2 \end{pmatrix}$, a simple computation shows that $e^{2a_1} = t_1 - t_3^2/t_2$ and $e^{2a_2} = t_2$.

Hence $y_1 = t_1 - t_3^2/t_2$, $y_2 = t_2$ and $\rho(S + iT) = \ln \frac{1}{(t_1, t_2 - t_3^2)}$.

If σ is an arbitrary N-invariant potential of the Killing form, then by Remark 7.5

$$\sigma(S + iT) = \ln \frac{1}{(t_1, t_2 - t_3^2)} + ct_2 + d, \quad \text{for some } c, d \in \mathbb{R}.$$

References

[Car73] Carmignani R. Envelopes of holomorphy and holomorphic convexity. Trans. of the AMS 179 (1973) 415-431.

[CoLo86] Coeuré G., Loeb J.-J. Univalence de certaines enveloppes d’holomorphie. C.R. Acad. Sci. Paris Sér. I Math. 302 (1986) 59–61.

[Fle78] Flensted-Jensen M. Spherical functions of real semisimple Lie groups. A method of reduction to the complex case. J. Funct. Anal. (1) 30 (1978) 106–46.

[GeIa21] Geatti L., Iannuzzi A. Invariant plurisubharmonic functions on non-compact Hermitian symmetric spaces. Math. Zeit. 300, 1 (2021) 57–80.

[GPSV68] Gindikin S., Pyatetskii-Shapiro I., Vinberg E. In Geometry of bounded domains. CIME 1968, Ed. Cremonese, Roma 1968, 3–87.

[Gun90] Gunning R. C. Introduction to Holomorphic Functions of Several Variables, Vol I: Function Theory. Wadsworth & Brooks/Cole, 1990.

[HeSc07] Heinzner, P., Schwarz G. W. Cartan decomposition of the moment map. Math. Ann. 337 (2007) 197–232.

[Hör94] Hörmander L. Notions of convexity. Birkhäuser, Basel–Boston–Berlin, 1994.
[Ran86] RANGE R. M. Holomorphic Functions and Integral Representations in Several Complex Variables. GTM Vol. 108, Springer-Verlag, New York, 1986.

[Ros63] ROSSI H. On envelopes of holomorphy. Comm. Pure Appl. Math. 16 (1963) 9–17.

[RoVe73] ROSSI H., VERGNE M. Representations of Certain Solvable Lie Groups On Hilbert Spaces of Holomorphic Functions and the Application to the Holomorphic Discrete Series of a Semisimple Lie Group. J. Funct. Anal. 13 (1973) 324–389.

[Wol72] WOLF J.A. Fine structure of Hermitian symmetric spaces. in Boothby, W., Weiss, G. Eds., Symmetric spaces. Short Courses, Washington University, St. Luis (MO), 1969-1970, Pure and App. Math. Vol. 8, Dekker, New York, 1972, pp. 271-357.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI ROMA “TOR VERGATA”, VIA DELLA RICERCA SCIENTIFICA 1, I-00133 ROMA, ITALY

Email address: geatti@mat.uniroma2.it, iannuzzi@mat.uniroma2.it

ROMA, 26 OTTOBRE 2022