A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4

Xiong Wang1,*, Yaowu Zhu1,*, Na Shen1, Jing Peng1, Chunyu Wang1, Haiyi Liu2 & Yanjun Lu1

Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmented abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A–C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation.

Methods
Subjects and clinical evaluation. The patient, his unaffected parents, and 40 unrelated healthy controls were included in this study, and ophthalmic and audiologic examinations were performed. Written informed consent was obtained from all participants, and this study was formally approved by the Ethics Committee of

1Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. 2Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to H.L. (email: liu_haiyi@163.com) or Y.L. (email: junyanlu_2000@163.com)
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. All procedures were performed in accordance with the approved guidelines.

Mutation screening. Peripheral blood was collected, and genomic DNA was extracted using a DNeasy blood and tissue kit from Qiagen (Hilden, Germany). Polymerase chain reaction (PCR) was performed to amplify all coding exons and intron/exon boundaries of the EDNRB, EDN3, SOX10, PAX3, MITF, and SNAI2 genes. Some of the primers used in the study were referenced from a master’s thesis (title here, Dong Siqi; Chinese PLA General Hospital, Beijing, China), and other primers were designed using Primer 5. Primers are shown in Table 1. PCR of the SOX10 exons was performed in a total volume of 50 μL containing 60 ng of genomic DNA, 400 nM each of the forward and reverse primers, 40 mM dNTPs, and 2.5 U LA Taq DNA polymerase with GC buffer I from TAKARA (Tokyo, Japan). The amplification consisted of an initial denaturation stage at 94 °C for 3 min, followed by 35 cycles consisting of denaturation at 94 °C for 30 s, annealing for 30 s at 60 °C, and extension at 72 °C for 50 s, with an extension step performed at 72 °C for 3 min. Amplification of exons for the remaining genes was performed using 2× PCR master mix under similar conditions, except for annealing at 57 °C. PCR products were purified and sequenced using an ABI 3500 Dx genetic analyser with a BigDye terminator cycle sequencing ready reaction kit (Applied Biosystems, Foster City, CA, USA), and the sequences were analysed using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Paternity testing and haplotype analysis. Five short tandem-repeat markers (STRs; D22S283, D22S1177, D22S1045, D22S272, and D22S423) ranging from chr22:36750705 to chr22:40382524 and five single nucleotide polymorphisms (SNPs; rs139873, rs139885, rs4821733, rs3952, and rs5756908) were selected from the UCSC Genome Browser (http://genome.ucsc.edu/), and linkage-disequilibrium analysis was performed based on LD TAG SNP selection (TagSNP; http://snpinfo.niehs.nih.gov/snpinfo/snptag.php). STR and SNP primers are shown in Table 1.

Protein structure prediction. Both the wild-type and mutated SOX10 protein sequences were used to perform protein structure prediction using I-TASSER (http://zhanglab.ccmb.med.umich.edu/ITASSER/) as previously reported16–19. In I-TASSER, the B-factor, which indicates the extent of the inherent thermal mobility of residues/atoms in proteins, is calculated from threading template proteins from the Protein Data Bank along with sequence profiles derived from sequence databases. The normalized B-factor of the target protein was defined by $B = (B' - \bar{u})/s$, where B' represents the raw B-factor value, and \bar{u} and s represent the mean and standard deviation of the raw B-factors along the sequence, respectively.
Primer name	Sequence
SOX10 E1F (765 bp)	AGATGGGTTTAGCTGGAGCA
SOX10 E1R (765 bp)	ACCTGGTCTTCCAGCCCTAT
SOX10 E2F (866 bp)	GATATTCTTGGGCTCTACA
SOX10 E2R (866 bp)	CTTGGCCAGTATGACTACG
SOX10 E3A F (686 bp)	GCTGCCAAATGTGAAACTTA
SOX10 E3A R (686 bp)	GATGTGGCAATAAGGGCTCC
SOX10 E3BF (561 bp)	AGCCCGAGTGAAAGACAGA
SOX10 E3BR (561 bp)	TCTGTCCAGCCGCTTCTCCT
EDN3 E1 F (407 bp)	CAGAAGCCAGAAAGGCGA
EDN3 E1 R (407 bp)	CCAGGGCAAGAGGGGAGG
EDN3 E2 F (597 bp)	TTTGCAGACATTCTGCTTG
EDN3 E2 R (597 bp)	CTCGACCTGCAAGAGAGC
EDN3 E3 F (480 bp)	GGTGCACAGTTCACTCCAGA
EDN3 E3 R (480 bp)	CCCACAGGGACAGTAGGT
EDN3 E4 F (607 bp)	CGTCTGTGAAACCCAGTGT
EDN3 E4 R (607 bp)	CATCACTGCCAGACGTCA
EDN3 E5 F (424 bp)	GATCTGGCAATTGGCGTGAAG
EDN3 E5 R (424 bp)	TCTTGGGTTGGGTGTCCTG
EDN3 E6 F (748 bp)	CTTTTGAGCGTGGATACTGG
EDN3 E6 R (748 bp)	GGGAGCTAAAGGGAAGCTC
EDN3 E7 F (498 bp)	AACACACTTTCCCTGTCACATAC
EDN3 E7 R (498 bp)	TTCTACTTGCTGTCATTTTGG
EDNRB E1 F (555 bp)	CTGTGAGGACAGTCAGTGA
EDNRB E1 R (555 bp)	AGCTTGAGTCTTATTGACCA
EDNRB E2 F (666 bp)	CAGAAGAACAGATAGCTCTG
EDNRB E2 R (666 bp)	CACCTGCGTTCCACTTCACA
EDNRB E3 F (466 bp)	CTTCCCTGTCCTCCTCAACA
EDNRB E3 R (466 bp)	GCCCGAGAAGGGAGGAGT
EDNRB E4 F (383 bp)	CACACATTTTGCTGGCCTGA
EDNRB E4 R (383 bp)	GAGGGGGAACACAGCACAGA
EDNRB E5 F (493 bp)	GCAGTAGGAGTCAGTCCTG
EDNRB E5 R (493 bp)	GCCAGGAACTTGCTGGCCTG
EDNRB E6 F (466 bp)	AAGAGGGAAATATAAAAGAGC
EDNRB E6 R (466 bp)	TTCTTCCATGGCCGTAACAA
PAX3 E1F (620 bp)	GAACATTTGCCCAGACTCGT
PAX3 E1R (620 bp)	TCCAAAACAACAGGGGACG
PAX3-2F (503 bp)	CGATGCTGGCGAGTCCAG
PAX3-2R (503 bp)	CAGCACCCTCACAACACTCAG
PAX3-3F (420 bp)	TGGGATGTGTCTGTGTCTG
PAX3-3R (420 bp)	TCTTCTACTGCTGTCTTTG
PAX3-4F (432 bp)	CAGAAGAACAGATAGCTCTG
PAX3-4R (432 bp)	CTGTGAGGACAGTCAGTGA
PAX3-5F (508 bp)	ATATGCTGTCACAGAG
PAX3-5R (508 bp)	TACGGATTTGTTAGACCTGT
PAX3-6F (445 bp)	CTGGAGAATGAGGAGT
PAX3-6R (445 bp)	GAGGTTGACCTCGGTG
PAX3-7F (445 bp)	TCTGCTGGATGGAGT
PAX3-7R (586 bp)	TTTGATGGAAGCCAGTAGA
PAX3-8F (543 bp)	CAGCATTGCTGCCTGAG
PAX3-8R (543 bp)	GTCTCAACAAATTAACCGC
MITF E1F (630 bp)	GAGGTCCAGACTGCGGTGTC
MITF E1R (630 bp)	GCCATCTCCGAGCTTCCA
MITF E2F (628 bp)	GCCCTGATAAAATGGCTTTG
MITF E2R (628 bp)	AGCCAGTGAAAGAATTAGG
MITF E3F (564 bp)	GACAGTGCTGCCTGTACATA
MITF E3R (564 bp)	TGCTCTACACCAATACCCC
MITF E4 F (310 bp)	TCATCTTTTGGTGCAGATTCCAC

Continued
Clinical findings. A 1-year-old male patient was referred to our hospital with the chief complaint of Hirschsprung disease accompanied by heterochromia iridis and congenital hearing loss. Based on these clinical features, he was first suspected to be a WS4 patient. Neither parent of the patient exhibited similar symptoms (Fig. 1).

Identification of a novel SOX10 heterozygous deletion mutation. A heterozygous deletion mutation (c.1333delT) in SOX10 was identified in the patient, resulting in replacement of the 445th Ser with Gln and a shift in the reading frame to produce a longer protein consisting of 501 amino acids (p.Ser445Glnfs*57) as compared with the wild-type SOX10 protein (467 amino acids; Fig. 2, Table 2). We subsequently verified that this mutation did not exist in any of the widely used genomic databases, confirming that c.1333delT constitutes a novel deletion mutation. Moreover, this mutation was not found in the unaffected parents or in 40 unrelated healthy control subjects. However, a heterozygous missense mutation (c.1363C>A) in MITF was found in both the patient and his father, but not in his mother (Fig. 2). This mutation was found in the dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) databases (rs78962087) and is reportedly benign. Furthermore, no mutation was found in the EDN3, EDNRB, PAX3, or SANI2 genes.

Table 1. Primers used in this study.

Primer name	Sequence
MITF-4 R (310 bp)	TGCTTAAGTTTTTCAGGAAGGTG
MITF-5 F (343 bp)	GACCATTATGCTTTTGGAATAA
MITF-5R (343 bp)	TGTGATCCCTGAGAATATCTCCATT
MITF-6F (425 bp)	TGGAGGATCCTGATCCCTCTCT
MITF-6R (425 bp)	AAAAGTTACGTTCCATGAGTTGG
MITF-7F (350 bp)	GCTTTTGAAAACATGCAAGC
MITF-7R (350 bp)	GCTGTAGAATCAACTCTCCTCT
MITF-8 F (527 bp)	AAAGGCTCTTGGAATAATGTGGA
MITF-8 R (527 bp)	AGAAAGCCACCTCCCTCACA
MITF-9F (425 bp)	CTATATCATGAGAACACCAGCA
MITF-9R (425 bp)	CACACACAGAATCCAAACCAA
MITF-10F (466 bp)	CTATAGGCAGCCACCTCACA
MITF-10R (466 bp)	TCTCTGGCTATTTGATAAAAAGC
SNAI2 E1 F (388 bp)	CGGCTCTGAGTCGTAATAGGA
SNAI2 E1 R (388 bp)	GCTCTCTTTCAGGACACTGTTA
SNAI2 E2 AF (534 bp)	GCCCTCTCAAATGAGCTCTATC
SNAI2 E2 AR (534 bp)	TTTTCTGAGACTGGGCAATGC
SNAI2 E2 BF (565 bp)	GCCCCATTAGTGGTAGAAAG
SNAI2 E2 BR (565 bp)	GATCTTTGAGACCAAAACCTC
SNAI2 E3 F (556 bp)	GCTTTTGCGCTTCCTCTTATAT
SNAI2 E3 R (556 bp)	TCTCTCAATCCTAGCAGCATCAGC
D22S283 F (217 bp)	FAM-ACAAACTAGCTCTAGTCCCTGG
D22S283 R (217 bp)	TGAAGCCAGGAGATTTTCCT
D22S1177 F (186 bp)	GCGCCTCCTGAGGCACCACAT
D22S1177 R (186 bp)	AGCCTGACAGGACAGGCAAG
D22S1045 F (153 bp)	FAM-GCTATAGTTCCTCCCATGAT
D22S1045 R (153 bp)	ATGTAAGTCGCTCTCAAGATGCC
D22S223 F (132 bp)	FAM-GAAGTTTTTGTGGCTGGCAC
D22S223 R (132 bp)	AATGACAGCACCACATTAAG
D22S423 F (123 bp)	FAM-CACACTCTGTACACACATAACA
D22S423 R (123 bp)	AAAACCAACTGACTGTTTAA
rs139885 F (625 bp)	CACCCATGCCTACTCTCTTTC
rs139885 R (625 bp)	GAGACCTGGAGACACATAACA
rs3952 F (263 bp)	CTTCTGTCGAGCTTGGGAATA
rs3952 R (263 bp)	GTTAGAGGGAGGTGCGGAGA
rs5756908 F (366 bp)	AGTTCCTCCCAAAGATCTGTCCC
rs5756908 R (366 bp)	CAGTGTAGCTCCCTCTCCCAA
rs4821733 F (434 bp)	GAGGCGATGGCAGATACC
rs4821733 R (434 bp)	AATATGCTGTAATGGCGGAG
rs139873 F (374 bp)	AAAAGACTCTCGTGTCTCCA
rs139873 R (374 bp)	CCCACAGTGTCGATTTTC

Results

Clinical findings. A 1-year-old male patient was referred to our hospital with the chief complaint of Hirschsprung disease accompanied by heterochromia iridis and congenital hearing loss. Based on these clinical features, he was first suspected to be a WS4 patient. Neither parent of the patient exhibited similar symptoms (Fig. 1).
These results suggested that the heterozygous deletion mutation (c.1333delT) in \textit{SOX10} might be associated with the WS4 phenotype of the patient.

Paternity testing and haplotype analysis. \textit{SOX10} c.1333delT is located in chr22:38369570. To confirm the paternity of the father, five STRs (D22S283, D22S1177, D22S1045, D22S272, and D22S423) ranging from chr22:36750705 to chr:40382524 and five SNPs (rs139873, rs139885, rs4821733, rs3952, and rs5756908) ranging from chr22:38359666 to chr:38476579 were selected from the UCSC Genome Browser (http://genome.ucsc.edu/) based on their proximity to the mutation site. Paternity testing by haplotype analysis confirmed that these were the biological parents of the patient with WS4 (Figs 3 and 4).

Protein structure prediction. The wild-type \textit{SOX10} protein consists of 467 amino acids and contains three helices, whereas the \textit{SOX10} deletion mutation (c.1333delT) results in a protein consisting of 501 amino acids with four helices (Fig. 5). The wild-type and mutant variants shared identical sequences in the first 444 amino acids, with differences occurring after this point.

Discussion

WS is classified into four primary phenotypes. WS1 is caused by mutations in \textit{PAX3} and distinguished by the presence of dystopia canthorum (lateral displacement of the inner canthi). WS2 is caused by mutations in \textit{MITF}, \textit{SOX10}, or \textit{SNAI2} and distinguished from type 1 by the absence of dystopia canthorum. WS3 is caused by mutations in \textit{PAX3}, with patients presenting both dystopia canthorum and upper limb abnormalities. WS4 is caused by mutations in \textit{EDNRB}, \textit{EDN3}, or \textit{SOX10}, with patients presenting with phenotypes associated with Hirschsprung disease1,20–23. Here, we described a Chinese patient with clinical features of WS4 and identified a novel heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in \textit{SOX10} that was absent in his unaffected parents and 40 ethnicity matched healthy controls. To the best of our knowledge, this constitutes the first report of this mutation, suggesting it as a candidate disease-causing mutation.
SOX10 is located on chromosome 22 and encodes an essential DNA-binding nuclear transcription factor consisting of 467 amino acids and belonging to the SOX family involved in modulating embryonic development and determining cell fate. **SOX10** may act as a transcriptional activator upon forming a complex with other proteins and/or as a nucleocytoplasmic shuttle protein critical for neural crest and peripheral nervous system development. Mutations in this gene are associated with WS4 and are present in ~50% of WS4 patients.

SOX10 contains a highly conserved high mobility group (HMG) DNA-binding domain and a C-terminal transactivation (TA) domain that is enriched in serine, proline, and acidic residues. Additionally, **SOX10** contains two separate TA domains, with one localized in the C-terminal region and the other in the central region of the structure. The C-terminal TA domain is frequently involved in various interactions, whereas the TA domain located in the centre of the structure is only involved in TA-related activity in certain cell types and under certain developmental conditions. **SOX10** binds to the promoters of its target genes via the HMG domain, with several studies reporting the importance of the TA domain for inducing transcriptional activation of its target genes. Wang et al. identified a c.1063C>T (p.Q355*) mutation in **SOX10** in a family with WS4 and reported that the mutated **SOX10** variant retained nuclear localization and DNA-binding capabilities comparable to those observed in wild-type **SOX10**; however, the mutated **SOX10** variant was unable to activate transcription of *MITF* via its promoter and acted as a dominant-negative repressor as compared with activity associated with wild-type **SOX10**. In this study, we detected a c.1333delT (p.Ser445Glnfs*57) mutation in **SOX10** in a family with WS4, with the mutated **SOX10** variant sharing sequence homology with only the N-terminal 444 amino acids of the wild-type protein. Furthermore, we identified an additional helix in the C-terminal region of the mutated **SOX10** variant (Fig. 4), which may affect its normal biological function.

Table 2. Genetic variants found in this family with WS4.

Gene	Variant	Protein level	Type	Father	Mother	Report
Sox10	c.1333delT	p.Ser445Glnfs*57	heterozygous	Normal	Normal	No
MITF	c.1363C>A	p.Leu455Ile	heterozygous	heterozygous	Normal	Yes

Figure 3. Paternity testing and haplotype analysis. 601, patient; 602, father; 603, mother.
In conclusion, here, we described a de novo heterozygous deletion mutation \([\text{c.1333delT (p.Ser445Glnfs*57)}] \) in \(\text{SOX10} \) identified in a Chinese family with WS4. Our analyses indicated that this mutation might constitute a candidate disease-causing mutation associated with WS4.

Figure 4. SNP analysis of the Chinese family with WS4. Five SNPs (rs139873, rs139885, rs4821733, rs3952, and rs5756908) were selected.

Figure 5. Protein structure prediction. (a) Wild-type \(\text{SOX10} \) protein structure. (b) The mutated \(\text{SOX10} \) protein structure.
References

1. Pingault, V. et al. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 31, 391–406, doi: 10.1002/humu.21121 (2010).
2. Zaman, A., Capper, R. & Baddoo, W. Waardenburg syndrome: more common than you think! Clin Otolaryngol 40, 44–48, doi: 10.1111/aco.12312 (2015).
3. Song, J. et al. Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet, doi: 10.1111/cge.12631 (2015).
4. Toroillin, H. V. Pigmentary anomalies and hearing loss. Adv Otorhinolaryngol 70, 50–55, doi: 10.1159/000322471 (2011).
5. Doudaj, Y. et al. A novel mutation in the endothelin B receptor gene in a moroccan family with shah-waardenburg syndrome. Mol Syndr 6, 44–49, doi: 10.1159/000371590 (2015).
6. Fernandez, R. M. et al. Waardenburg syndrome type 4: report of two new cases caused by SOX10 mutations in Spain. Am J Med Genet A 164A, 542–547, doi: 10.1002/ajmg.a.36302 (2014).
7. Wang, H. H. et al. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV. Gene 538, 36–41, doi: 10.1016/j.gene.2014.01.026 (2014).
8. Mahmoudi, A. et al. Shah-Waardenburg syndrome. Pan Afr Med J 14, 60, doi: 10.11604/pamj.2013.14.60.1543 (2013).
9. Parthey, K. et al. SOX10 mutation with peripheral amylina and developmental disturbance of axons. Muscle Nerve 45, 284–290, doi: 10.1002/mus.22262 (2012).
10. Puffenberger, E. G. et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell 79, 1257–1266 (1994).
11. Baynash, A. G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 127, 1277–1285 (1999).
12. Pingault, V. et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18, 171–173, doi: 10.1038/ng2298-171 (1998).
13. Syrris, P., Carter, N. D. & Patton, M. A. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease. Am J Med Genet 87, 69–71 (1999).
14. Bondurand, N. & Sham, M. H. The role of SOX10 during enteric nervous system development. Dev Biol 382, 330–343, doi: 10.1016/j.ydbio.2013.04.024 (2013).
15. Wegner, M. From head to toe: the multiple facets of Sox proteins. Nucleic Acids Res 27, 1409–1420 (1999).
16. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods 12, 7–8, doi: 10.1038/nmeth.3213 (2015).
17. Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43, W174–181, doi: 10.1093/nar/gkv342 (2015).
18. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725–738, doi: 10.1038/nprot.2010.5 (2010).
19. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40, doi: 10.1186/1471-2105-9-40 (2008).
20. Milansky, J. M. In GeneReviews® (eds Pagon, R. A. et al.) (1993).
21. Nayak, C. S. & Isaacson, G. Worldwide distribution of Waardenburg syndrome. Ann Otol Rhinol Laryngol 112, 817–820 (2003).
22. Newton, V. E. Clinical features of the Waardenburg syndromes. Adv Otorhinolaryngol 61, 201–208 (2002).
23. Dourmisheva, A. L., Dourmisheva, L. A., Schwartz, R. A. & Janniger, C. K. Waardenburg syndrome. Int J Dermatol 38, 656–663 (1999).
24. Leret, L. et al. An impairment of long distance SOX10 regulatory elements underlies isolated Hirschsprung disease. Hum Mutat 35, 303–307, doi: 10.1002/humu.22499 (2014).
25. Chen, K. et al. De novo dominant mutation of SOX10 gene in a Chinese family with Waardenburg syndrome type II. Int J Pediatr Otorhinolaryngol 78, 926–929, doi: 10.1016/j.ijporl.2014.03.014 (2014).
26. Pingault, V. et al. SOX10 mutations mimic isolated hearing loss. Clin Genet 88, 352–359, doi: 10.1111/j.1399-0004.2015.01564.x (2015).
27. Chen, K. et al. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation. Int J Pediatr Otorhinolaryngol 79, 745–748, doi: 10.1016/j.ijporl.2015.03.006 (2015).
28. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45, 1–14, doi: 10.1136/jmg.2007.053959 (2008).
29. Wegner, M. Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res 18, 74–85, doi: 10.1111/j.1600-0749.2005.00218.x (2005).
30. Pusch, C. et al. The SOX10/SOX10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum Genet 103, 171–173, doi: 10.1007/s00439-000-0805-1 (1998).
31. Schreiner, S. et al. Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134, 3271–3281, doi: 10.1242/dev.003350 (2007).
32. Chaoui, A. et al. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome. Hum Mutat 32, 1436–1449, doi: 10.1002/humu.21583 (2011).
33. Bondurand, N. et al. Interaction among SOX10, PAX3 and MITF; three genes altered in Waardenburg syndrome. Hum Mol Genet 9, 1907–1917 (2000).

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 81500925).

Author Contributions

H.L. and Y.L. designed this work, X.W. and Y.Z. performed sequencing and analysis, N.S., C.W., and J.P. prepared figures, and X.W. wrote the manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, X. et al. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4. Sci. Rep. 7, 41513; doi: 10.1038/srep41513 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.