Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic *Codonopsis lanceolata* (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene

Bimal Kumar Ghimire¹ • Na-Young Son¹ • Seung-Hyun Kim¹ • Chang Yeon Yu² • Ill-Min Chung¹

Received: 6 March 2017 / Accepted: 10 April 2017
© Springer-Verlag GmbH Germany 2017

Abstract The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic *Codonopsis lanceolata* plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic *C. lanceolata* plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in *C. lanceolata* seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed *C. lanceolata* plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 μg g⁻¹ dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 μg g⁻¹ DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 μg g⁻¹ DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 μg g⁻¹ DW. Major phenolic compounds that increased in the transgenic *C. lanceolata* plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoic acid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to those from control *C. lanceolata* plants following treatment with glyphosate, which could affect the 5-enol-pyruvyl shikimate-3-phosphate (EPSP) synthase, an enzyme in the shikimate pathway. We observed enhanced stomatal conductance (gs) and photosynthesis rate (A) in the transgenic plants treated with water stress and glyphosate treatment. The results of this study demonstrated large variations in the functioning of secondary metabolites pathway in response glyphosate and water stress in transgenic *C. lanceolata*.

Keywords *Codonopsis lanceolata* • Glyphosate • Phenolic compound • Photosynthesis • Transgenic

Introduction

Plants constantly fight against biotic and abiotic environmental factors, including chemicals, water stress, and pathogen attack, which affect growth and yield (Bahrani et al. 2010), accumulation of compatible organic solutes (Sanchez-Diaz et al. 2008), and changes in endogenous phytohormones (Perales et al. 2005). Water availability is the most important factor that limits the productive potential of higher plants (Rodriguez et al. 2006; Bray et al. 2000). To survive under conditions of environmental biotic and abiotic stress, plants respond and adapt to these stresses...
by means of biochemical and physiological processes as well as morphological and developmental changes (Munns 2002). Maintenance of a high antioxidant capacity to scavenge toxic reactive oxygen species (ROS) has been correlated with increased tolerance of plants to a wide variety of environmental stresses (Zaefyzadeh et al. 2009; Chen et al. 2010); phenolic compounds (Usenik et al. 2004). Therefore, globally, the use of resistant genetically engineered crops has increased by >80% (James 2012), contributing immensely to yield, sustainable crop farming, and phytoremediation.

Weeds are a major problem for farmers during crop cultivation, and to control weeds, farmers use a variety of herbicides and weedicides every year. The increased use of herbicides has led to the appearance of tolerant or resistant weeds (Service 2007). Moreover, excessive use of herbicides becomes a major ecological risk when genetically modified organisms are released (GMOs) in the environment (Altieri 2005; Barton and Dracup 2000). Herbicides not only inhibit the growth of weeds, but they also inhibit the growth of useful crops in the field. A number of studies have revealed the influence of herbicide treatment on the phenolic compound composition of the plant, thereby influencing the disease resistance potential of plants (Donnini et al. 2016).

Phytochemicals are found at different levels in many aromatic medicinal plants (Perumalla and Hettiarachchy 2011; Negi 2012; Cowan 1999). In plants, these compounds are related to various functions such as defense against pathogens (Kutchan 2001; Housti et al. 2002). The phenolic profiles of plants may change in response to stress conditions such as those induced by the soil-condition, season, climate, plant component, and other parameters (Marian and Fereidoon 2004). Commercial herbicides exhibit that many different mechanisms of action and several enzymes involved in the biosynthesis of amino acids are the sites of action of herbicides (Duke 1990). Glyphosate (N-phosphonomethylglycine) is a systemic post-emergence broad spectrum herbicide, which inhibits EPSP synthase that is involved in the synthesis of aromatic amino acids in the shikimate pathway (Montgomery 1997; Duke et al. 2003). These amino acids are essential for the growth and survival of the plants (Hatcher and Kruger 1997). The physiological effects of glyphosate on plants include reduced protein synthesis, reduced stomatal conductance (Munoz-Rueda et al. 1986), inhibition of photosynthesis and carbon allocation (Geiger et al. 1986), production of ethylene and CO₂ (Abu-Irmaileh et al. 1979), and phenolic compound metabolism (Hernandez et al. 1999). Glyphosate blocks the shikimate pathway, thereby reducing the synthesis of aromatic amino acids (i.e., phenylalanine, tyrosine, and tryptophan) and causes the accumulation of shikimate in affected plant tissues (Lydon and Duke 1988). Glyphosate has been shown to increase phenylalanine ammonia-lyase (PAL) synthesis in plant and synthesize more flavonoids as a possibly protective reaction in response to oxidative damage (Duke and Hoagland 1978).

Codonopsis lanceolata (Siebold & Zucc.) Trautv. of the family Campanulaceae are mostly found in moist and low mountains and hills of Korea, Japan, and China (Jung et al. 2006). The roots of these plants are known for their various nutritional and medicinal properties and consumed as vegetable in Korea (Kim et al. 2003). In addition, the root of this plant plays a part in the traditional Chinese medicine due to their antioxidant (Oh and Kim 2006), antimicrobial, anti-inflammatory (Li et al. 2007), and immunomodulatory properties (Byeon et al. 2009). It is known to contain many important bioactive chemicals including alkaloids, saponins, vitamins, essential oils, tannins, polyphenolics, and steroids (Ichikawa et al. 2009) which are supposed to be responsible for the various biological activities including caspase-dependent apoptosis activity in humans (Lee et al. 2005), regulatory effects (Lee et al. 2007), lipid peroxidation and anti-aging properties (Batista et al. 2007), and anti-cancer activities, α-glucosidase inhibition, and tyrosinase inhibition (Kim et al. 2009). Previously, we generated transgenic C. lanceolata lines (Ghimire et al. 2008), which over-express the γ-tmt gene, using Agrobacterium mediated transformation. Comparative analyses of the effects of glyphosate and water stress on accumulation of phenolic compounds and photosynthetic rate in transgenic plants in response to over-expression of the γ-tmt gene have not been documented. Therefore, in this experiment, we selected transgenic lines to evaluate the glyphosate effects in terms of their total phenolic compounds and photosynthetic rate.

Materials and methods

Chemicals

All solvents used were of analytical grade. Methanol was obtained from Baker (Phillipsburg, NJ).

Transgenic plant generation and selection

Transgenic C. lanceolata were generated by transforming the γ-tocopherol methyltransferase (γ-tmt) gene, which encodes key enzymes involved in the final step of tocopherol biosynthesis, according to the Agrobacterium mediated method. The vector (pYBI130) was introduced into Agrobacterium tumefaciens (LBA 4404). A vector was inserted into leaf explants of C. lanceolata plants that contain the neomycin phosphotransferase gene (npt-II).
under the control of the nopaline synthase (NOS) promoter as a selectable marker. A construct consisting of \(\gamma \)-tmt cDNAs from Arabidopsis thaliana under the control of cauliflower mosaic virus (CaMV) 35S promoter and NOS terminator was inserted into the genome of the C. lanceolata plants. The obtained regenerants were prescreened using the polymerase chain reaction (PCR) method with specific primers for the neomycin phosphotransferase npt-II gene, which were N-1 (5’GAA-GCT-ATT-CGG-CGG-CTA-TGA-CTG-3’) as the sense primer and N-2 (5’ATC-GGG-AGC-GGC-GGC-GAT-ACC-CTA-3’) as the antisense primer. Plants that exhibited a 700-bp (npt-II) DNA fragment were used for further selection by means of southern blot analysis. The details of plant transformation, preselection, selection, and transgenic plant analysis have been previously described (Ghimire et al. 2008). The reference specimens were collected from the Plant Biotechnology Department, Kangwon National University, South Korea. The transgenic line (T1, T2, and T3) that showed the highest level of mRNA for the introduced cDNAs was used to investigate the metabolic effects caused by the water stress and glyphosate treatment on the transgenic C. lanceolata (Fig. 1).

Measurement of photosynthetic rate after water stress and glyphosate treatment

To investigate the physiological significance of water stress and glyphosate treatment, the photosynthetic rate of three C. lanceolata transgenic lines was determined and compared to that of non-transgenic control plants. Seeds of wild-type C. lanceolata and transgenic plants were obtained from the Bio herb Research Center, Kangwon National University, South Korea and transgenic plants over-expressing the \(\gamma \)-tmt gene were previously generated in the Plant Biotechnology Laboratory, Kangwon National University, Korea. The seeds of both control and transgenic C. lanceolata were germinated on vermiculite and perlite mixture (3:1) in a plant growth chamber at 25 °C and 80% relative humidity, providing a photoperiod of 16 h light and 8 h dark. After 2 weeks, seedlings were transferred to bigger pots containing vermiculite and soil (3:1) and were maintained in a glass house at 28/18 ± 2 °C with 40 ± 5% humidity and at a PPFD of 400 \(\mu \)mol m\(^{-2}\) s\(^{-1}\) in a green house. When the plantlets contained five leaves, they were individually transplanted in pots (190 × 195 mm) filled with a soil mixture (garden soil, perlite, vermiculite, and sand) and grown in a greenhouse under natural light at day/night temperatures of 28/18 °C and 40 ± 5% humidity and at a PPFD of 400 \(\mu \)mol m\(^{-2}\) s\(^{-1}\). Water stress applied to both control and transgenic C. lanceolata plants. Water stress treatment was initiated by the withdrawal of the water supply (reduced by 60%) compared to control plants. All the plantlets were watered after every 2 days.

Glyphosate were sprayed outside the greenhouse using a backpack sprayer under constant pressure of 2.2 kg f cm\(^{-2}\) of CO\(_2\). The plants were grown at 28/18 ± 2 °C during glyphosate treatment with humidity of 40 ± 5% and wind speed of 5–7 km/h. Glyphosate solution was sprayed uniformly on the plants which were in the five-to-seven-leaf stage in the morning at 10:30 using Kwang Sung sprayers, Model no. KS-10-1, South Korea. Care was taken to avoid glyphosate run-off from leaves during plant treatment. The pots were placed in the controlled greenhouse, with temperature ranging from 28 ± 2 °C (day) to 25 ± 2 °C (night) with relative humidity of 70% during s 16/8 photoperiod and the plantlets were irrigated every day. The absence of glyphosate treatment treated as control plant. The experiments were repeated in a completely randomized manner with four pots per replication and were repeated three times at a concentration of 1.3 mg/mL. Data were collected over 2 weeks of spraying transgenic plants with glyphosate. Stomatal conductance (gs), net CO\(_2\) assimilation rate (A), and the ratio of internal CO\(_2\) concentration \((C_i)\) were measured according to the methods described by Ivan et al. (2001) using a portable photosynthesis system (LCA-4; Analytical Development Co.,

Fig. 1 a PCR analysis from leaves of transgenic C. lanceolata using specific primers of amplification of 700 bp npt-II gene. Lane 1 molecular marker, lane 2 the plasmid pYBI30 as a positive control, lane 3 the genomic DNA from untransformed plants, lanes 4 and 5 the genomic DNA of T\(_2\) transformants. b PCR analysis from leaves of transgenic C. lanceolata using specific primers of amplification of the 1070 bp fragment of \(\gamma \)-tmt gene. Lane 1 molecular marker, lane 2 the genomic DNA from untransformed plants, lane 3 the plasmid pYBI130 as a positive control, lanes 4–9 the genomic DNA of T\(_2\) transformants.
Hoddesdon, Herts, UK) at an air temperature 28 ± 1 ºC. All measurements were performed three times during August and September on sunny days between 10:00 and 14:00, on the surface of leaves under a saturating PPFD of 1500 µmol m⁻² s⁻¹. Measurements were taken at the center of the leaf surface immediately after the decrease in CO₂ concentration was stable. Each leaf was allowed to stabilize for 4–6 min before measurements of gs, Cᵢ, and A were made. After the completion of physiological analysis, plant sample from all the treatments was harvested for analyzing the biochemical parameters.

Phenolic compound analysis after water stress and glyphosate treatment

The leaves and roots (10 g) from each transgenic line and non-transformed control plants were harvested, dried at room temperature (28 ºC), and ground to crude powder. About 2 g of dried crude powder was soaked in 20 ml of 80% methanol for 48 h. The mixture was filtered through No. 1 Whatman filter paper (Schleicher & Schuell, Whatman International Lts., Maidstone, England) to remove debris. The filtrate was concentrated to dryness under vacuum rotary evaporator at 40 ºC. The dried samples were redissolved in 10 mL of 80% HPLC grade methanol solution. An aliquot of each sample was filtered through a 0.45-µm filter unit (TITAN syringe filter nylon membrane) and then analyzed by high-performance liquid chromatography (HPLC). HPLC analysis was carried out on a product from Shimadzu company (Shimadzu Instruments CO., LTD, Japan) with a pump model LC-10AD VP and a detector model SPD-M10A VP (Photodiode Array detector). YMC-Pack ODS-AM-303 (5 µm, 250 × 4.6 mm I.D) analytical HPLC column was employed for quantitative analyses. The substances being measured during the analytic procedure were monitored and determined at a UV wavelength of 280 nm. Solvent gradient HPLC analysis was applied using the modified method described by Thiruvengadam and Chung (2015). The mobile phase consisted of solvents A and B. Solvent A consisted of 0.1% glacial acetic acid in distilled water and solvent B was 0.1% glacial acetic acid in acetonitrile. The solvent flow rate was 1 mL min⁻¹, and the wavelength of the photodiode array detector (PDA) was 280 nm. The injection volume was 20 µL of the sample, and the linear gradient of the HPLC solvent was as follows: B was increased from 8 to 10% for 2 min, then from 10 to 30% for 25 min, from 30 to 90% for 24 min, and from 90 to 100% for 2 min, and was then maintained at 100% of B for 5 min before returning to the initiation stage. The next sample was injected after 15 min. Genuine standards of 28 phenolic compounds were purchased from Sigma (USA) and Extrasynthese (France) and were dissolved in dimethylsulfoxide (DMSO) and then used to generate calibration curves. The standard concentrations were obtained at three concentrations, 10, 50, and 100 ppm, and a high linearity of r² > 0.996 was obtained from each curve. Benzoic acid, caffeic acid, chlorogenic acid, t-cinnamic acid, m-coumaric, o-coumaric acid, p-coumaric acid, ferulic acid, gallic acid, gentic acid, homogentisic acid, p-hydroxybenzoic acid, protocatechuic acid, pyrogallol, resveratrol, rutin, salicylic acid, 5-sulfosalicylic acid, syringic acid, vanillic acid, vanillin, biochanin A, (+) catechin, formononetin, hesperetin, kaempferol, myricetin, naringenin, naringin, and quercetin were each identified by their retention times or by chromatography with other authentic examples, and concentrations were calculated by comparing the peak areas of samples with those of the standards (Table 1).

Statistical analysis

All experiments were repeated at least three times. The data shown represent mean ± standard deviation. The data were statistically analyzed using analysis of variance (ANOVA), and differences were assessed to be significant at a 5% level of probability (P < 0.05).

Results

Accumulation of phenolic compounds after glyphosate treatment

In this study, we treated transgenic *C. lanceolata* with glyphosate and ascertained the phenolic compound concentration in the resistant transgenic lines and control plants. We found quantitative differences in the content of total phenolic compounds between leaf and root samples from transgenic and control plants (Table 2). A significant increase in the total phenolic compound concentration was revealed in leaf extracts from transgenic plants treated with glyphosate, and ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg/g DW relative to the lower phenolic compound concentration in control plants (3778.28 ± 59.73 µg/g DW). The major phenolic compounds that were increased in leaf extracts from *C. lanceolata* treated with glyphosate were kaempferol, catechin, benzoic acid, ferulic acid, protocatechuic acid, veratric acid, gallic acid, myricetin, p-hydroxybenzoic acid, quercetin, t-cinnamic acid, and vanillic acid. The most pronounced enhancement was observed in the concentration of quercetin, which ranged from the equivalent of 42.03 to 51.34% of the total phenolic compounds. Biochanin A and p-coumaric acid, which were not detected in control plants, were observed in T2 and T3 transgenic lines, respectively. A considerable amount of phenolic acids were observed to decrease in
transgenic plants, and included salicylic acid. The total phenolic compound concentration decreased in glyphosate treated root extracts of transgenic lines ranging from 1437.96 ± 36.43 to 1748.73 ± 46.40 µg/g DW, as compared with control plants (3020.13 ± 46.86 µg/g DW). Similarly, the concentration of myricetin decreased in transgenic roots following treatment with glyphosate as compared to control plants. Significantly increased levels of vanillic acid were revealed in the T2 and T3 transgenic root extracts at 222.00 ± 2.65 and 172.67 ± 6.43 µg/g DW, respectively, after treatment with glyphosate as compared to control plants at 6.67 ± 1.53 (µg/g DW). Chlorogenic acid and veratric acid, which were not detected in the root of control plants, were observed in root extracts from the T2 transgenic line. Homogenic acid, p-coumeric acid, and p-hydroxybenzoic acid were not detected in transgenic roots but were present in transgenic leaf extracts of C. lanceolata plants.

Accumulation of phenolic compounds after water stress

The effect of water stress on the phenolic compound composition of transgenic C. lanceolata and control plants is summarized in Table 3. The results from the present studies revealed that water stress of transgenic and non-transgenic C. lanceolata plants caused significant variation in the phenolic compound composition in the root and leaf extracts of transgenic lines as compared to the control plants. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g⁻¹ DW, whereas the total concentration of the leaf extracts of non-transgenic control samples was 5630.45 ± 91.51 µg g⁻¹ DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic

Sl. no.	Phytochemicals	Abbreviation	Concentration (µg/ml)	Linearity (r²)	Equation
1	Benzoic acid	BE	0.5	0.9995	y = 7335.1x - 5972.7
2	Chlorogenic acid	CH	0.5	0.9954	y = 7335.1x - 5972.7
3	n-Cinnamic acid	t-C	0.5	0.9994	y = 16958x - 221,863
4	m-Coumaric acid	m-C	0.5	0.999	y = 99520x + 366,589
5	o-Coumaric acid	o-C	0.5	0.999	y = 30,379.0x + 146,33
6	p-Coumaric acid	p-C	0.5	0.985	y = 10,243.0x - 5998.60
7	Ferulic acid	FA	0.5	0.9992	y = 63695x - 165,433
8	Gallic acid	GA	0.5	0.9994	y = 35535x - 79,194
9	Gentisic acid	GE	0.5	0.999	y = 3183.7x + 496,00
10	Homogentisic acid	HO	0.5	0.9977	y = 15919x - 81,841
11	p-Hydroxybenzoic acid	p-HY	0.5	0.9999	y = 27919x + 43,418
12	Protocatechuic acid	PR	0.5	0.9971	y = 29859x - 174,443
13	Pyrogallol	PY	0.5	0.999	y = 3320x + 2150
14	Resveratrol	RE	0.5	0.999	y = 31,260.0x - 58.97
15	Salicylic acid	SA	0.5	1	y = 15377x + 7783.7
16	3-Sulfosalicylic acid	SSA	0.5	0.9988	y = 7115.8x + 21,563
17	Syringic acid	SY	0.5	0.9997	y = 62213x + 69,563
18	Vanillic acid	VA	0.5	1	y = 34743x + 2786.6
19	Vanillin	VN	0.5	0.999	y = 39,731.0x - 3975.80
20	Veratric acid	VE	0.5	1	y = 34957x + 15,741
21	Biochanin A	BA	0.5	0.9979	y = 42516x + 5293
22	Catechin	CN	0.5	0.9979	y = 6810.3x + 29,358
23	Kaempferol	KA	0.5	0.9994	y = 32211x - 57,175
24	Myricetin	MY	0.5	0.9955	y = 22104x - 195,936
25	Naringenin	NA	0.5	0.999	y = 23,238.0x - 787.89
26	Rutin	RN	0.5	0.999	y = 34957x + 15,741
27	Quercetin	QN	0.5	0.9944	y = 22509x - 213,591
28	Formononetin	FN	0.5	0.9992	y = 274000x + 21,300

Table 1 Calibration curves of equation of 28 phenolic compound standards

The calibration curves of 28 phenolic compound standards were plotted using Equation 1: y = ax + b, where a and b are the intercept and slope of the curve, respectively.
Table 2 Quantities of phenolic compounds from control and transgenic *C. lanceolata* after treating with glyphosate

Plant lines	Phenolic compounds (μg/g)²									
	BE	CH	r-CI	p-C	FE	GA	HO	p-HY	PR	SA
A⁴C₁	307.89 ± 6.54⁴	182.00 ± 7.45⁴	71.67 ± 2.08⁴	0.00⁴	64.33 ± 3.51⁴	115.33 ± 3.05⁴	125.00 ± 4.58⁴	41.67 ± 1.53⁴	176.00 ± 2.65⁴	74.67 ± 3.05⁴
A⁴T₁	370.88 ± 6.17⁴	0.00⁴	76.33 ± 1.53⁴	0.00⁴	163.33 ± 9.45⁴	89.00 ± 9.0⁴	120.33 ± 5.51⁴	327.00 ± 14.53⁴	142.33 ± 2.52⁴	33.00 ± 2.00⁴
A⁴T₂	561.63 ± 5.74⁴	1175.00 ± 16.00⁴	87.33 ± 2.08⁴	0.00⁴	173.67 ± 7.09⁴	293.67 ± 6.81⁴	377.67 ± 3.21⁴	24.67 ± 2.52⁴	382.33 ± 3.86⁴	0.00⁴
A⁴T₃	688.00 ± 10.5³	0.00⁴	91.00 ± 1.00⁴	44.35 ± 4.66⁴	146.33 ± 5.13⁴	187.00 ± 10.14⁴	0.00⁴	784.00 ± 4.58⁴	326.67 ± 6.03⁴	77.33 ± 2.08⁴
B⁴C₁	184.67 ± 6.51⁴	0.00⁴	36.33 ± 1.53⁴	0.00⁴	61.67 ± 2.08⁴	0.00⁴	0.00⁴	151.00 ± 5.57⁴	3.50 ± 0.17⁴	
B⁴T₁	130.33 ± 10.41⁴	0.00⁴	41.33 ± 1.53⁴	0.00⁴	55.67 ± 4.04⁴	0.00⁴	0.00⁴	146.00 ± 3.00⁴	3.24 ± 0.14⁴	
B⁴T₂	225.67 ± 12.5⁴	237.67 ± 6.43⁴	32.33 ± 2.52⁴	0.00⁴	54.33 ± 4.04⁴	63.00 ± 2.00⁴	0.00⁴	126.00 ± 2.52⁴	52.96 ± 2.63⁴	
B⁴T₃	337.80 ± 2.00⁴	0.00⁴	26.33 ± 3.06⁴	0.00⁴	65.33 ± 4.04⁴	0.00⁴	0.00⁴	130.33 ± 4.51⁴	4.33 ± 1.53⁴	

Plant lines	Phenolic compounds (μg/g)²										
	SSA	SY	VA	VE	BCA	CA	KA	MY	RU	QU	Total
A⁴C₁	10.58 ± 0.59⁹	0.00⁴	13.00 ± 2.65⁹	55.00 ± 3.61⁹	0.00⁴	58.81 ± 2.17⁹	445.33 ± 3.51⁹	194.00 ± 5.19⁹	33.00 ± 2.00⁹	1810.00 ± 5.57⁹	3778.28 ± 59.73⁹
A⁴T₁	0.00⁴	0.00⁴	22.00 ± 2.00⁴	3.50 ± 0.50⁴	0.00⁴	749.67 ± 13.79⁴	183.33 ± 7.23⁴	28.00 ± 2.65⁴	2435.67 ± 4.93⁴	4744.37 ± 81.81⁴	
A⁴T₂	14.68 ± 14.67⁹	0.00⁴	158.00 ± 4.00⁹	118.67 ± 1.53⁹	22.65 ± 2.52⁹	1315.55 ± 4.10⁹	885.67 ± 3.05⁹	773.33 ± 14.01⁹	22.40 ± 2.65⁹	4632.00 ± 6.56⁹	11018.93 ± 100.4⁹
A⁴T₃	0.00⁴	0.00⁴	34.67 ± 1.53⁴	108.67 ± 2.52⁴	0.00⁴	2952.00 ± 7.21⁴	159.67 ± 2.08⁴	529.00 ± 1.00⁴	91.33 ± 6.51⁴	583.01 ± 10.00⁴	12051.02 ± 75.00⁴
B⁴C₁	10.83 ± 0.04⁴	0.00⁴	6.67 ± 1.53⁴	0.00⁴	12.33 ± 2.52⁴	2060.67 ± 9.50⁴	44.00 ± 200⁴	224.67 ± 14.22⁴	0.79 ± 0.19⁴	223.00 ± 3.00⁴	3020.13 ± 246.86⁴
B⁴T₁	0.00⁴	0.00⁴	5.83 ± 1.04⁴	0.00⁴	8.00 ± 2.00⁴	927.66 ± 9.07⁴	0.00⁴	218.67 ± 12.50⁴	0.00⁴	212.00 ± 2.65⁴	1748.73 ± 46.4⁴F
B⁴T₂	0.00⁴	0.00⁴	22.00 ± 2.65⁴	5.59 ± 0.37⁴	7.67 ± 1.53⁴	0.00⁴	44.00 ± 200⁴	189.50 ± 9.50⁴	6.14 ± 0.06⁴	243.00 ± 6.56⁴	1590.86 ± 55.3⁴
B⁴T₃	0.00⁴	0.00⁴	172.67 ± 6.43⁴	0.00⁴	6.07 ± 0.89⁴	211.09 ± 1.80⁴	96.67 ± 2.08⁴	183.67 ± 7.57⁴	0.00⁴	203.67 ± 2.52⁴	1437.96 ± 36.4³

BE benzoic acid, CH chlorogenic acid, r-CI t-cinnamic acid, p-C p-coumaric acid, FE ferric acid, GA gallic acid, HO homogenitisic acid, p-HY p-hydroxybenzoic acid, PR protocatechuic acid, SA salicylic acid, SSA 5-sulfosalicylic acid, SY syringic acid, VA vanillic acid, VE veratic acid, BCA biochanin A, CA (+) catechin, KA kaempferol, MY myricetin, RU rutin, QU quercetin

Data in each column with the same letter were not significantly different according to Duncan’s multiple comparison test (*P* < 0.05)

A⁴C₁—Leaf of control plant; A⁴T₁, A⁴T₂, and A⁴T₃—leaf of transgenic plant treated with glyphosate

B⁴C₁—Root of control plant; B⁴T₁, B⁴T₂, and B⁴T₃—root of transgenic plant treated with glyphosate
Table 3 Quantities of phenolic compounds from control and transgenic C. lanceolata plants after water stress

Plant lines	Phenolic compounds (µg/g)										
	BE	CH	t-CI	p-C	FE	GA	HO	p-HY	PR	SA	
^A^C1	159.33 ± 3.05^c	69.67 ± 3.05^c	37.67 ± 1.53^f	36.33 ± 2.52^b	75.67 ± 1.53^f	56.33 ± 2.08^c	134.67 ± 1.53^f	0.00^a	150.67 ± 5.13^b	555.00 ± 5.55^c	
^AT1	315.00 ± 3.61^d	1005.00 ± 3.61^f	681.33 ± 6.66^f	0.00^a	163.33 ± 1.55^f	82.00 ± 2.65^f	115.00 ± 2.64^b	23.00 ± 2.00^f	0.00^a	211.67 ± 2.08^f	
^AT2	312.00 ± 2.65^d	3066.33 ± 1.53^b	31.00 ± 1.00^d	495.00 ± 3.61^f	96.00 ± 2.69^d	67.33 ± 2.08^d	0.00^a	134.33 ± 1.53^d	151.00 ± 1.00^d	1293.00 ± 2.64^b	
^AT3	454.00 ± 2.65^f	1548.67 ± 6.43^g	44.00 ± 2.65^d	0.00^a	72.00 ± 2.00^e	80.00 ± 2.00^e	114.33 ± 2.08^b	74.33 ± 2.52^d	155.00 ± 1.00^f	383.00 ± 2.64^f	
^B^C1	43.33 ± 3.22^a	250.00 ± 5.57^c	24.67 ± 3.21^d	0.00^a	255.00 ± 1.00^f	51.33 ± 1.53^b	0.00^a	0.00^a	0.00^a	173.00 ± 2.67^f	
^BT1	323.00 ± 2.65^c	455.67 ± 5.45^d	53.33 ± 2.08^b	0.00^a	94.33 ± 3.51^d	115.00 ± 2.65^f	190.67 ± 5.03^d	25.00 ± 2.64^d	212.00 ± 2.65^f	258.67 ± 11.84^e	
^BT2	62.33 ± 1.53^b	0.00^a	27.00 ± 2.00^b	0.00^a	54.00 ± 2.61^f	57.12 ± 2.08^b	0.00^a	0.00^a	0.00^a	4.00 ± 0.50^b	
^BT3	65.33 ± 4.04^b	223.67 ± 2.52^b	36.67 ± 2.81^c	0.00^a	65.33 ± 3.51^b	0.00^a	0.00^a	0.00^a	165.00 ± 3.00^b	233.67 ± 1.52^d	

Plant lines	Phenolic compounds (µg/g)											
	SSA	SY	VA	VE	BCA	CA	KA	MY	RU	QU	Total	
^A^C1	0.00^a	26.00 ± 1.80^c	16.00 ± 1.50^d	4.00 ± 1.00^b	0.00^a	28.83 ± 0.76^a	462.33 ± 7.77^f	214.00 ± 1.00^b	8.00 ± 1.00^e	2974.33 ± 5.11^f	5630.83 ± 45.91^f	
^AT1	0.00^a	23.66 ± 2.52^b	35.00 ± 2.50^f	47.33 ± 1.52^c	0.00^a	48.14 ± 1.01^b	105.00 ± 3.61^h	280.67 ± 2.52^e	64.00 ± 1.00^e	255.00 ± 1.00^e	3455.13 ± 40.48^e	
^AT2	0.00^a	21.33 ± 1.53^b	251.67 ± 2.08^d	0.00^a	160.33 ± 2.52^e	96.00 ± 2.68^d	252.00 ± 6.08^d	22.00 ± 1.50^d	426.67 ± 1.52^f	6875.99 ± 36.61^f		
^AT3	0.00^a	2.00 ± 0.22^e	39.00 ± 1.80^d	44.67 ± 1.53^d	0.00^a	32.66 ± 2.08^c	623.67 ± 9.02^a	307.00 ± 3.61^f	7.67 ± 0.57^c	4713.00 ± 2.64^b	6950.00 ± 45.44^b	
^B^C1	0.00^a	167.33 ± 2.08^f	7.00 ± 1.10^e	43.33 ± 1.52^b	0.00^a	384.67 ± 4.04^f	0.00^a	213.67 ± 3.21^f	4.00 ± 1.00^e	234.67 ± 3.51^b	1852.00 ± 33.66^b	
^BT1	0.00^a	0.00^a	385.33 ± 6.43^c	0.00^a	0.00^a	106.67 ± 3.78^c	103.00 ± 3.00^e	324.00 ± 2.65^c	7.00 ± 1.12^c	363.00 ± 2.65^c	3016.67 ± 58.14^d	
^BT2	0.00^a	0.00^a	180.67 ± 4.55^b	0.00^a	0.00^a	204.67 ± 4.04^f	64.67 ± 3.51	0.00^a	0.00^a	223.33 ± 2.04^a	877.79 ± 22.90^a	
^BT3	0.00^a	0.00^a	294.67 ± 3.21^f	18.67 ± 1.55	0.00^a	592.33 ± 6.51^e	42.33 ± 1.53^b	236.00 ± 2.00	0.00^a	263.33 ± 2.08^d	2237.00 ± 34.29	

Data in each column with the same letter were not significantly different according to Duncan's multiple comparison test (P < 0.05)

BE benzoic acid, **CH** chlorogenic acid, **t-CI** t-cinnamic acid, **p-C** p-coumaric acid, **FE** fenolic acid, **GA** gallic acid, **HO** homogenisic acid, **p-HY** p-hydroxybenzoic acid, **PR** protocatechuic acid, **SA** salicylic acid, **SSA** 5-sulfosalicylic acid, **SY** syringic acid, **VA** vanillic acid, **VE** veratic acid, **BCA** biochanin A, **CA** (+) catechin, **KA** kaempferol, **MY** myricetin, **RU** rutin, **QU** quercetin

Data in each column with the same letter were not significantly different according to Duncan's multiple comparison test (P < 0.05)

^A^C1—Leaf of control plant; ^AT1, ^AT2, and ^AT3—leaf of transgenic plant treated with water deficit

^B^C1—Root of control plant; ^BT1, ^BT2, and ^BT3—root of transgenic plant treated with water deficit
acetic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The most pronounced enhancement was observed in the concentration of quercetin (54.20% of the total phenolic compounds). p-Hydroxybenzoic acid, which were not detected in control plants, were observed in the leaf extracts of T1, T2, and T3 transgenic lines, respectively (Table 3). Similarly, kaempferol, which were not detected in control plants, were observed in the root extracts of T1, T2, and T3 transgenic lines, respectively. A considerable amount of phenolic acids were observed to decrease in transgenic plants, and included homogentisic acid and syringic acid. The total phenolic compound concentration increased in water stress leaf and root extracts of transgenic lines compared to control plants.

Measurement of photosynthesis rate after water stress and glyphosate treatment

The physiological effects of water stress and glyphosate treatment on the transgenic *C. lanceolata* investigated by measuring the photosynthesis rate (A), stomatal conductance (gs), and CO_2 concentration (C_i) and compared them to those of the non-transgenic control plants (Table 4). In the glyphosate treatment experiment, the aerial parts of transgenic plants sprayed with glyphosate revealed higher A (3.91 ± 0.950 to 5.44 ± 0.31 μmol m$^{-2}$ s$^{-1}$) and gs (0.5 ± 0.004 to 0.06 ± 0.004 cm s$^{-1}$) relative to the glyphosate treated control plants 2.28 μmol m$^{-2}$ s$^{-1}$ and 0.05 cm s$^{-1}$, respectively). In this study, we observed gs and A in the transgenic plants treated with water stress after 21 days relative to those observed in the non-transgenic control plants (Table 5). In the water stress experiment, transgenic plants grown under greenhouse conditions showed higher A (3.58 ± 0.66 to 4.67 ± 0.91 μmol m$^{-2}$ s$^{-1}$) and gs (0.5 ± 0.001 to 0.06 ± 0.001 cm s$^{-1}$) relative to water stressed control plants (2.09 ± 0.69 μmol m$^{-2}$ s$^{-1}$ and 0.05 ± 0.004 cm s$^{-1}$, respectively).

Discussion

This study investigated the physiological effects of glyphosate on the phenolic compound composition and photosynthesis rate of transgenic *C. lanceolata* plants. We found that transgenic lines of *C. lanceolata* had a higher photosynthesis rate (A), stomatal conductance (gs), and elevated phenolic concentration following glyphosate treatment. A high level of phenolic acid suggests that alternative biosynthesis of phenolic compounds was activated by glyphosate treatment due to inhibition of

Table 4 Photosynthetic performance of transgenic and non-transgenic (control) *C. lanceolata* plants treated with glyphosate after 21 days

Plant lines	A (μmol m$^{-2}$ s$^{-1}$)	gs (cm s$^{-1}$)	C_i (μmol mol$^{-1}$)
C1	2.28 ± 0.12d	0.05 ± 0.001b	377.15 ± 4.29a
T1	5.07 ± 0.11b	0.05 ± 0.005b	308.50 ± 4.94c
T2	5.44 ± 0.31a	0.06 ± 0.004a	277.83 ± 2.06d
T3	3.91 ± 0.950c	0.05 ± 0.004b	348.30 ± 2.301b

A photosynthetic rate, gs stomatal conductance, C_i CO_2 concentration

Plant lines: C control plant, T1, T2, T3 transgenic plants

The data represent the mean of 8–10 independent determinations ± SD. Data in each column with the same letter were not significantly different according to Duncan’s multiple comparison test ($P < 0.05$)

Table 5 Photosynthetic performance of transgenic and non-transgenic (control) *C. lanceolata* plants under water stress after 21 days

Plant lines	A (μmol m$^{-2}$ s$^{-1}$)	gs (cm s$^{-1}$)	C_i (μmol mol$^{-1}$)
C1	2.09 ± 0.69d	0.05 ± 0.004b	384.97 ± 3.92a
T1	4.67 ± 0.91a	0.05 ± 0.001b	286.90 ± 4.31d
T2	4.07 ± 0.31b	0.05 ± 0.002b	321.60 ± 3.83c
T3	3.58 ± 0.66c	0.06 ± 0.001a	342.80 ± 6.65b

A Photosynthetic rate, gs stomatal conductance, C_i CO_2 concentration

Plant lines: C Control plant, T1, T2, and T3 transgenic plants

The data represent the mean of 8–10 independent determinations ± SD

Data in each column with the same letter were not significantly different according to Duncan’s multiple comparison test ($P < 0.05$)
5-enolpyruvylshikimate-3-p-synthase. Glyphosate has been shown to reduce/inhibit the production of phenolics and other phytochemical responses for disease resistance (Greaves and Sargent 1986). However, in this study, we observed increased levels of total phenolic compounds in transgenic leaves treated with glyphosate. After glyphosate treatment, the levels of gallic acid, t-cinnamic acid, and quercetin increased in the transgenic leaf extracts, whereas vanillic acid increased in the root extracts of transgenic C. lanceolata plants treated with glyphosate. Some of the phenolic compounds that were not present initially in the transgenic C. lanceolata plants were observed in transgenic C. lanceolata plants treated with glyphosate. This result indicates that some of these phenolic compounds are produced only after glyphosate treatment. However, in transgenic roots treated with glyphosate, we observed a decrease in the total phenolic compound concentration relative to that observed in the control plants. Several phenolic compounds (chlorogenic acid, ferulic acid, and veratric acid) that were not detected in control plants were found in transgenic plants (T2) sprayed with glyphosate. The presence of these compounds in transgenic lines indicates that genetic or chemical disruption of the metabolic pathway of phenolic compounds can lead to an increase in the phenolic compound concentration and in glyphosate resistance. In a similar study, an increase in phenolic compounds such as hydrobenzoic acid after glyphosate treatment was reported by Hernandez et al. (1999). However, a number of studies reported decreased phenolic compound concentration after glyphosate treatment in plants such as soybean, lupine, ryegrass, and pigweed (Lydon and Duke 1988; Marchiosi et al. 2009). In this study, the concentration of gallic acid increased in leaf extracts of transgenic plants following treatment with glyphosate. Since glyphosate is known to block EPSP synthase (Duke 1988), which is an enzyme in the shikimate pathway, the increase in gallic acid concentration observed in the presence of glyphosate indicates that an alternative pathway might exist for the synthesis of gallic acid. Ossipov et al. (2003) indicated that the most possible alternative biosynthesis pathway for gallic acid during glyphosate treatment is from dehydroshikimic acid. Consistent with our result, Becerra-Moreno et al. (2012) in their study reported increased shikimic acid (SA) and chlorogenic acid content following treatment with glyphosate.

We evaluated the metabolic response to water stress in transgenic C. lanceolata plants. In the present study, introduction of the γ-tmt gene in C. lanceolata plants resulted in an increased photosynthesis rate following water stress. In a previous study, we generated transgenic C. lanceolata plants by over-expressing the γ-tmt gene, which had increased levels of α-tocopherol and antioxidant property (Ghimire et al. 2008, 2011). It is believed that α-tocopherol protects pigments and proteins in the photosynthetic pigments (Kanwischer et al. 2005; Maeda et al. 2008; Matringe et al. 2008; Semchuk et al. 2009). It is likely that the higher α-tocopherol concentration in transgenic C. lanceolata plants infers increased protection of these organelles from the effect of water stress. Another possible reason for the higher photosynthesis rate could be decreased levels of reactive oxygen species (ROS) in transgenic C. lanceolata plants due to the higher antioxidant property of α-tocopherol (Ghimire et al. 2011). Moreover, in the previous study, we found that ROS scavenging enzymes were up-regulated in transgenic C. lanceolata plants indicating that the γ-tmt gene is potentially involved in oxidative stress in transgenic C. lanceolata plants (Seong et al. 2009). It seems likely that the higher ROS scavenging activity of α-tocopherol can withstand the water stress. Moreover, it has been argued that tocopherol protects the cellular machinery, and can thus improve plant defense responses (Espinozaa et al. 2013). The author reported a delay in leaf senescence and reduced oxidative leaf damage in tobacco plants due to increased α-tocopherol levels as a result of drought-induced over-expression of a Homogentisate phytyltransferase (VTE2.1) gene, Gazewska and Sklodowska (2007), and Collin et al. (2008) reported that increased levels of tocopherol confer enhanced tolerance to plants against drought. The tocopherol content correlates positively with tolerance to water deficit in different species (Guo et al. 2006; Munne-Bosch et al. 1999) and genes in the tocopherol pathway might respond differently to different environmental stresses (Kanwischer et al. 2005; Abbasi et al. 2007). Moreover, transgenic plants with higher levels of tocopherol outperform the wild-type plants in the prevention of oxidative damage to the membrane and photosynthetic apparatus during drought treatment (Liu et al. 2008). It has been shown that α-tocopherol contributes to carbohydrate metabolism and photoassimilate transport (Maeda et al. 2006), provides stability and protection of phenylpropanoid compounds in plants (Yao et al. 2015), and plays an important role in adaptive mechanisms to environmental conditions (Loyola et al. 2012). On the other hand, the level of α-tocopherol is increased in response to a variety of abiotic stresses in photosynthetic plant tissues (Noctor 2006). Therefore, it is likely that an increased concentration of α-tocopherol and phenolic compounds has a direct influence on the increased photosynthetic rate in transgenic C. lanceolata plants during water stress. Some of phenolic compounds are efficient endogenous antioxidants (Larson 1988), can scavenge ROS, and can prevent chloroplasts from being damaged (Ye et al. 2000). In particular, we observed increased in the catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veraric acid in water stressed transgenic
plant. In the similar studies, higher level of phenolic compound was reported under water stressed condition (Hameed et al. 2013; Ayaz et al. 2000; Abreu and Mazzafera 2005; Hura et al. 2009; Kirakosyan et al. 2004). It has been shown that water stress increase the levels of ROS in plant cells (Smirnoff 1993). Hura et al. (2009) indicated that increase in ferulic acid act as photoprotector/or as a ROS scavenger, thus a reliable indicator of the resistance to drought stress. Thus, in this study, it is possible that increased phenolic compounds in the transgenic plant with water stressed containing higher concentration of ferulic acid could gain more water stress tolerance by protecting photosynthetic apparatus relative to control plants. However, Cheruiyot et al. (2007), Sánchez-Rodriguez et al. (2011), Yiğdiz-Aktas et al. (2009) observed degradation of phenolic compound concentration during water stress relative to control plants. The result indicates that water deficit affected the physiological and biochemical properties of transgenic C. lanceolata by regulating the synthesis of secondary metabolites. Hence, it is possible that a higher concentration of phenolic compounds in the transgenic plants contributed to the higher photosynthetic activity observed in water stress transgenic plants. However, the decline in photosynthetic rate and stomatal closure has been reported during water stress (Flexas et al. 2009; Ghanounou 2009). Therefore, it remains to be determined whether increased levels of phenolic compounds and α-tocopherol have a direct effect on increased water stress resistance in transgenic C. lanceolata plants.

Acknowledgements The authors express their gratitude to the 2015 KU Brain Pool of Konkuk University for supporting this work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Abbasi AR, Hajirezaei M, Hoﬁus D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738
Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248
Abu-Irmaileh BE, Jordon LS, Kumamoto J (1979) Enhancement of CO2 and ethylene production and cellulase activity by glyphosate in Phaseolus vulgaris. Weed Sci 27:103–106
Altieri MA (2005) The myth of coexistence: why transgenic crops are not compatible with agro-ecologically based systems of production. B Sci Technol Soc 25:361–371
Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Can J Plant Sci 80:373–378
Bahrami MI, Bahrami H, Haghhighi AAK (2010) Effect of water stress on ten forage grasses native or introduced to Iran. Grassl Sci 56:1–5
Barton JE, Dracup M (2000) Genetically modified crops and the environment. Agron J 92:797–803
Batista ES, Costa AGV, Pinheiro-Santana HM (2007) Adição da vitamina E aos alimentos: implicações para os alimentos e para a saúde humana. Revista de Nutricao 20:525–535
Becerra-Moreno A, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2012) Plants as biofactories: glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue. J Agric Food Chem 60:11378–11386
Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchanan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249
Byeon SE, Choi WS, Houn EK, Lee J, Rhee MH, Park HJ, Cho JY (2009) Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-meditated inflammatory responses. Arch Pharmacal Res 32:813–822
Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem arthichoke (Helianthus tuberosus L.). Acta Physiol Plant 33:273–278
Cheruiyot EK, Mumera LM, Ngetch W, Hassanali A, Wachira F (2007) Polyphenols as potential indicators for drought tolerance in tea Camellia sinensis L. Bioci BioTechnol Biochem 71:2190–2197
Collin VC, Emyre F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant, Cell Environ 31:244–257
Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582
Domini S, Tesseran P, Ribera-Fonseca A, Foggia MD, Parpinello GP, Rombolà AD (2016) Glyphosate impacts on polyphenol composition in grapevine (Vitis vinifera L.) berries and wine. Food Chem 213:26–30
Duke SO (1988) Glyphosate. In: Kearney PC, Kaufman DD (eds) Herbicides; chemistry, degradation and mode of action, vol 3. Marcel Dekker Inc., New York, pp 1–70
Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Perspect 87:263–271
Duke SO, Hougland RE (1978) Effects of glyphosate on metabolism of phenolic compounds I. Induction of phenylalanine ammonia-lyase activity in dark-grown maize roots. Plant Sci Lett 11:185–190
Duke SO, Baerson SR, Rimando AM (2003) Herbicides: glyphosate. In: Pimmer JR, Gammon DW, Ragsdale NN (eds) Encyclopedia of agrochemicals. Wiley, New York
Espinozaa A, Martina AS, Lopez-Climentb M, Ruiz-Laraa S, Gomez-Cadenas A, Casarettoc JJA (2013) Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. Plant Physiol 170:1285–1294
Flexas J, Baron M, Bota J, Ducruet JM, Galle A, Galmes J, Jimenez M, Pou A, Carbo MR, Sajnani C, Tomas M, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri-V. rupestris). J Exp Bot 60(8):2361–2377
Gajewska E, Sklodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. Plant Physiol 164:364–366
Geiger DR, Kapitan SW, Tucci MA (1986) Glyphosate inhibits photosynthesis and allocation of carbon starch in sugar beet leaves. Plant Physiol 82:468–472
Ghanounou O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644
Ghimire BK, Seong ES, Lim ID, Heo K, Kim MJ, Chung IM, Iuvik JA, Yu CY (2008) Agrobacterium-mediated transformation of Codonopsis lanceolata using the γ-TMT gene. Plant Cell Tissue Organ Cult 95:265–274

Ghimire BK, Seong ES, Goh EJ, Kang EY, Ahn JK, Yu CY, Chung IM (2011) Improving antioxidant activity in transgenic Codonopsis lanceolata plants via over-expression of the γ-tocopherol methyltransferase (γ-tmt) gene. Plant Growth Regul 63:1–6

Greaves MP, Sargent JA (1986) Herbicide-induced microbial infection of plant roots. Weed Sc 34:50–53

Guo J, Liu X, Li X, Chen S, Jin Z, Liu G (2006) Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J Appl Environ Biol 12:468–471

Hameed A, Goher M, Iqbal N (2013) Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. Biol Plant 57:370–374

Hatcher DW, Kruger JE (1997) Simple phenolic acids in flours prepared from Canadian wheat: relationship to ash content, color, and polyphenol oxidase activity. Cereal Chem 74:337–343

Hernandez A, Garcia-Plazaola JI, Becerril JM (1999) Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merr.). J Agric Food Chem 47:2920–2925

Housti F, Andary C, Gargedaneck A, Amssa M (2002) Effects of wounding and salicylic acids on hydroxycinnamoylmalic acids in Thunbergia alata. Plant Physiol Biochem 40:761–769

Hura T, Hura K, Grzesiak S (2009) Leaf dehydration induces different content of phenolics and ferulic acid in drought-resistant and sensitive genotypes of spring triticale. Z Naturforsch C 64(1–2):85–95

Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Hura T, Hura K, Grzesiak S (2009) Simultaneous determination of seven saponins in the roots of Codonopsis lanceolata using HPLC tandem mass spectrometry. J Nat Med 63:52–57

Ivan Y, Tsonko T, Violeta V, Katya G, Peter I, Nikolai T, Tatyana P (2001) Changes in CO₂ assimilation, transpiration and stomatal resistance of different wheat cultivars experiencing drought under field conditions. Bulg J Plant Physiol 27:20–33

James C (2012) Global Status of Commercialized Biotech/GM Crops: 2012, ISAAA Briefs No. 44 (International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY)

Jung SW, Han AJ, Hong HJ, Cheong MG, Kim KS, Park SH (2006) 2-Glucosidase inhibitors from the roots of Codonopsis lanceolata L. Merr.). J Agric Food Chem 47:2920–2925

Kanwischer M, Porfirova S, Bergmuller E, Dornm J (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

Kim HI, Kim HH, Hong EY, Yun JS, Yun T, Hwang JK, Lee CH (2003) Breeding of tetraploid in Codonopsis lanceolata (Sieb. et Zucc.) Trautvetter by colchicine treatment. Plant Resour 6:227–232

Kim SS, Ha JH, Jeong MH, Ahn JH, Yoon WB, Park SJ, Seong DH, Lee HY (2009) comparison of biological activities of fermented Codonopsis lanceolata and fresh Codonopsis lanceolata. Korean J Med Crop Sci 17(4):280–285

Kirakossyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chang SC (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol Plant 121:182–186

Kutschman TM (2001) Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant Physiol 125:58

Lee KW, Jung HI, Park HJ, Kim DG, Lee JY, Lee KT (2005) β-α-Xylopyranosyl-(1→3)-β-α-glucuronopyranosyl echinocystic acid isolated from the roots of Codonopsis lanceolata induces caspase-dependent apoptosis in human acute promyelocytic leukemia HL-60 cells. Biol Pharm Bull 28:884–889

Lee YG, Kim JY, Lee JY, Byeon SE, Hong EK, Lee J, Rhee MH, Park HJ, Cho JY (2007) Regulatory effects of Codonopsis lanceolata on macrophage-mediated immune responses. J Ethnopharmacol 112:180–188

Li JP, Liang ZM, Yuan Z (2007) Triterpenoid saponins and anti-inflammatory activity of Codonopsis lanceolata. Pharmazie 62(6):463–466

Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

Loyola J, Verdugo I, Gonzalez E, Casaretto JA, Ruiz-Lara S (2012) Plasticid isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress. Plant Biol 14:149–156

Lyndon J, Duke SO (1988) Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J Agric Food Chem 36:813–818

Maeda H, Song W, Sage TL, DellaPenna D (2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell 18:2710–2732

Maeda H, Sage TL, Isaac G, Wei R, DellaPenna D (2008) Tocopherols modulate extra plastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20:452–470

Marchiosi R, Ferrarese MLL, Bonini EA, Fernandes NG, Ferro AP, Ferrarese-Filho O (2009) Glyphosate-induced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots. Pestic Biochem Physiol 93:28–33

Marian N, Fereidoon S (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111

Matringe M, Ksas B, Rey P, Havaux M (2008) Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol 147:764–778

Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New York

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell and Environ 25:239–250

Munoz-Rueda A, Gonzalez-Murua C, Becerril JM, Sanchez-Diaz MF (1986) Effects of glyphosate [N-(phosphonomethyl)glycine] on photosynthetic pigments, stomatal response and photosynthetic electron transport in Medicago sativa and Trifolium pratense. Physiol Plant 66:63–68

Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156:7–17

Noctor G (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29(3):409–425

Oh HS, Kim JH (2006) Characterization of physiological functionalities of Codonopsis lanceolata, Coriaria officinalis, C. et Z, and their mixtures. J Exp Biol Sci 12:393–398

Ossipov V, Salminen JP, Ossipova S, Haukioja E, Pihlaja K (2003) Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem Syst Ecol 31:3–16

Perales L, Arbona B, Gomez-Cadenas A, Cornejo MJ, Sanz A (2005) A relationship between tolerance to dehydration of rice lines and...
ability for ABA synthesis under stress. Plant Physiol Biochem 43:786–792

Perumalla AVS, Hettiarachchy NS (2011) Green tea and grape seed extracts—potential applications in food safety and quality. Food Res Int 44:827–839

Rodriguez M, Canales E, Borroto CJ, Carmona E, Lopez J, Pujol M, Borras-Hidalgo O (2006) Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. Plant Physiol 163:577–584

Sanchez-Diaz M, Tapia C, Antolín MC (2008) Abscisic acid and drought response of Canarian laurel forest tree species growing under controlled conditions. Environ Exp Bot 64:155–161

Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi MM, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

Semchuk NM, Lushchak OV, Falk J, Krupinska K, Lushchak VL (2009) Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant PhysiolBiochem 47:384–390

Seong ES, Ghimire BK, Goh EJ, Lim JD, Kim MJ, Chung IM, Yu CY (2009) Overexpression of the γ-TMT gene in Codonopsis lanceolata. Biol Plant 53:631–636

Service RF (2007) A growing threat down on the farm. Science 316:1114–1117

Smirnoff N (1993) The role of active oxygen in the response to water deficit and desiccation. New Phytol 125:27–58

Thiruvengadam M, Chung IM (2015) Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 173:185–193

Usenik V, Mikulic Petkovsek M, Solar A, Stampar F (2004) Flavanols of leaves in relation to apple scab resistance. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 111:137–144

Yao Y, You J, Ou Y, Ma J, Wu X, Xu G (2015) Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. Plant Physiol Biochem 90:23–31

Ye ZZ, Rodriguez R, Tran A, Hoang H, de Los Santos D, Brown S, Vellanoweth RL (2000) The developmental transition to flowing repress ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue of Arabidopsis thaliana. Plant Sci 158:115–127

Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci 195:247–253

Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33:1–7