Evaluation and selection of tandem repeat loci for a *Brucella* MLVA typing assay

Philippe Le Flèche¹,², Isabelle Jacques³,⁴, Maggy Grayon³, Sascha Al Dahouk⁵, Patrick Bouchon¹,², France Denoeud², Karsten Nöckler⁶, Heinrich Neubauer⁵, Laurence A Guilloteau³ and Gilles Vergnaud*¹,²

Address: ¹Centre d'Etudes du Bouchet BP3, 91710 Vert le Petit, France, ²GPMs, Bât. 400, Institut de Génétique et Microbiologie, Université Paris Sud, 91405 Orsay cedex, France, ³UR918 – Laboratoire de Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France, ⁴Institut Universitaire de Technologie, 29 rue du Pont Volant, 37082 Tours Cedex 2, France, ⁵Bundeswehr Institute of Microbiology, Dept. of Bacteriology, Neuherbergstr. 11, D-80937 Munich, Germany and ⁶Federal Institute for Risk Assessment, BfR, Diersdorfer Weg 1, D-12277 Berlin, Germany

Email: Philippe Le Flèche - lefleche@igmors.u-psud.fr; Isabelle Jacques - Isabelle.Jacques@tours.inra.fr; Maggy Grayon - grayon@tours.inra.fr; Sascha Al Dahouk - saschaaldahouk@bundeswehr.org; Patrick Bouchon - Patrick.Bouchon@polytechnique.org; France Denoeud - France.Denoeud@igmors.u-psud.fr; Karsten Nöckler - k.noeckler@bfr.bund.de; Heinrich Neubauer - HeinrichNeubauer@bundeswehr.org; Laurence A Guilloteau - guillote@tours.inra.fr; Gilles Vergnaud* - Gilles.Vergnaud@igmors.u-psud.fr

* Corresponding author

Abstract

Background: The classification of *Brucella* into species and biovars relies on phenotypic characteristics and sometimes raises difficulties in the interpretation of the results due to an absence of standardization of the typing reagents. In addition, the resolution of this biotyping is moderate and requires the manipulation of the living agent. More efficient DNA-based methods are needed, and this work explores the suitability of multiple locus variable number tandem repeats analysis (MLVA) for both typing and species identification.

Results: Eighty tandem repeat loci predicted to be polymorphic by genome sequence analysis of three available *Brucella* genome sequences were tested for polymorphism by genotyping 21 *Brucella* strains (18 reference strains representing the six ‘classical’ species and all biovars as well as 3 marine mammal strains currently recognized as members of two new species). The MLVA data efficiently cluster the strains as expected according to their species and biovar. For practical use, a subset of 15 loci preserving this clustering was selected and applied to the typing of 236 isolates. Using this MLVA-15 assay, the clusters generated correspond to the classical biotyping scheme of *Brucella* spp. The 15 markers have been divided into two groups, one comprising 8 user-friendly minisatellite markers with a good species identification capability (panel 1) and another complementary group of 7 microsatellite markers with higher discriminatory power (panel 2).

Conclusion: The MLVA-15 assay can be applied to large collections of *Brucella* strains with automated or manual procedures, and can be proposed as a complement, or even a substitute, of classical biotyping methods. This is facilitated by the fact that MLVA is based on non-infectious material (DNA) whereas the biotyping procedure itself requires the manipulation of the living agent. The data produced can be queried on a dedicated MLVA web service site.

Published: 09 February 2006

BMC Microbiology 2006, 6:9 doi:10.1186/1471-2180-6-9

This article is available from: http://www.biomedcentral.com/1471-2180/6/9

© 2006 Le Flèche et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

Brucellosis is a zoonosis affecting animals and humans worldwide. *Brucella* infections may result in significant economic losses due to abortion and slaughtering of infected animals. Humans are mainly infected through the consumption of contaminated dairy products or by direct contact with infected animals. In addition, certain *Brucella* spp have to be considered as potential biowarfare agents. Six species are currently recognized, *B. abortus* (8 biovars), *B. melitensis* (3 biovars), *B. suis* (5 biovars), *B. ovis*, *B. canis* and *B. neotomae* [1]. More recently, *Brucella* strains have been isolated from marine mammals [2], suggesting the existence of additional species [3,4].

The genus *Brucella* is highly homogeneous (more than 90% DNA/DNA homology [5]). *Brucella* classification is mainly based on differences in pathogenicity, host preferences, and conventional microbiological tests used for phenotyping (biotyping) [6]. Routine identification of *Brucella* species and biovars still relies on biotyping (reviewed in [7]). Only a few tools exist for further molecular subtyping, of which none has proven to be fully satisfactory for epidemiologic investigations or tracing back strains to their origin. Tandem repeat (TR) sequences may be an interesting class of markers, since multiple alleles can be present at a single locus, and size differences are easily resolved by electrophoresis (reviewed by [8,9]).

Tandem repeat (TR) sequences may be an interesting class of markers, since multiple alleles can be present at a single locus, and size differences are easily resolved by electrophoresis (reviewed by [8,9]). Tandem repeats are often classified as microsatellites (repeat units up to 8 bp) and minisatellites [10,11]. Tandem repeat typing has proven to be highly appropriate for the typing of pathogenic bacterial species with a high genetic homogeneity, including the *Mycobacterium tuberculosis* complex, *Bacillus anthracis*, and *Yersinia pestis* [12-15]. Recently, a family of tandem repeats located within a repeated sequence and present in multiple loci in the *Brucella* genome was used for strain typing [16,17]. The proposed set of eight microsatellite loci is extremely discriminant and highly efficient to distinguish strains within a local outbreak, but is unable to correctly predict the biovar or even the species of an isolate. A possible reason for that is the high mutation rate of these loci. Consequently, this MLVA assay cannot replace classical biotyping methods.

The availability of the whole genome sequences of *B. melitensis* 16 M, *B. suis* 1330 and *B. abortus* strain 9–941 [18-20] greatly facilitates the search for polymorphic DNA sequences [21]. In this report, we evaluated most tandem repeats showing at least two alleles among the three sequenced strains [22]. Eighteen reference strains and 3 strains isolated from marine mammals [23] were typed using these TR candidates to evaluate their associated polymorphism. For routine typing, a subset of 15 markers which enabled to cluster the isolates according to their biotype was selected. This set of markers was further evaluated on a collection of 236 isolates representing the major biovars affecting terrestrial mammals (Table 1) to produce a first reference data set [see Additional file 1] which can be queried via the internet [21,24].

Results

Evaluation of tandem repeats polymorphism

Comparison of the three genome sequences [21,22] identifies 107 TRs with a repeat unit larger than 5 bp and predicted to display size polymorphism. Eighty of them were evaluated for polymorphism among 21 reference and marine mammal strains (Table 1). Twenty-two TRs (numbered Bruce01 to Bruce22 in Table 2) have three predicted alleles. Twelve of the 22 are octamers, five of which have been previously characterized [16].

Typing was done by PCR using the set of primers listed in Table 2, as described [13]. Six markers failed to amplify DNA satisfactorily, and were not included in the further study: they generated multiple band profiles (bruce20-BRU1329_8bp_148bp_7u; bruce38-BRU1116_18bp_108bp_2u; bruce71-BRU1337_12bp_394bp_3u), or lacked amplification using the selected primers (bruce79-BRU163_12bp_141bp_4u), or no appropriate primers could be designed targeting the flanking regions because of the presence of repeated elements (bruce76-BRU243_21bp_2u; bruce77-BRU195_21bp_2u, not listed in Table 2).

Three markers (bruce44-BRU256_12bp_110bp_3u; bruce65-BRU824_41bp_182bp_2u; bruce69-BRU488_57bp_181bp_1u) turned out to be monomorphic for the 21 reference strains. The results of the clustering analysis using the 71 remaining markers fits very well with the current knowledge of the degree of relationship between *Brucella* species [25] (Figure 1). We then looked for a subset of markers providing a similar discriminative power as the whole set for the collection of reference strains evaluated. Although extremely informative, the family of octamers, which includes the eight tandem repeats previously investigated [16,17], are not appropriate for species/biovar discrimination because of their hypervariability and more stable markers must be used. Among the other markers, a set of the ten most polymorphic loci clusters the different species as expected. Two of these ten markers display allele size ranges not appropriate for analysis on currently available automated DNA fragments sizing machines such as capillary electrophoresis sequencing machines (Bruce02 and Bruce15 have alleles up to 2 kb and 5 kb respectively). The amplification patterns of the 21 reference strains using the other eight TRs are shown in Figure 2. These 8 markers (Bruce06, 08, 11, 12, 42, 43, 45, 55) will subsequently be called MLVA typing panel 1. These are minisatellites loci with repeat
Table 1: Brucella strains studied (reference and field strains)

Reference and marine strains

Species	Biovar	Strain	Host
B. abortus	1	544 (ATCC 23448; BCCN R4)*	Cattle
B. abortus	2	86/B/59 (ATCC 23449; BCCN R5)*	Cattle
B. abortus	3	Tulya (ATCC 23450; BCCN R6)*	Human
B. abortus	4	292 (ATCC 23451; BCCN R7)*	Cattle
B. abortus	5	B3196 (ATCC 23452; BCCN R8)*	Cattle
B. abortus	6	870 (ATCC 23453; BCCN R9)*	Cattle
B. abortus	9	C68 (ATCC 23455; BCCN R11)*	Cattle
B. abortus	9	16 M (ATCC 23456; BCCN R1)*	Goat
B. melitensis	2	63/9 (ATCC 23457; BCCN R2)*	Goat
B. melitensis	3	Ether (ATCC 23458; BCCN R3)*	Goat
B. suis	1	1330 (ATCC 23444; BCCN R12)*	Swine
B. suis	2	Thomsen (ATCC 23445; BCCN R13)*	Swine
B. suis	3	686 (ATCC 23446; BCCN R14)*	Swine
B. suis	4	40 (ATCC 23447; BCCN R15)*	Reindeer
B. suis	5	513 (BCCN R21)*	Wild rodent
B. ovis	23	63/290 (ATCC 25840; BCCN R17)*	Sheep
B. canis	RM6/66	ATCC 23365; BCCN R18)*	Dog
B. neotomae	5K33	5K33 (ATCC 23459; BCCN R16)*	Desert rat
B. pinnipedia		B2/94 (BCCN 94-73)	Common seal
B. cetaceae	B1/94	BCCN 94-74)	Porpoise
B. cetaceae	B14/94	BCCN 94-75)	Common Dolphin

Overview of the 236 additional isolates

Species	Biovar	Number of isolates investigated
B. abortus	1	14
B. abortus	3	20
B. abortus	4	1
B. abortus	6	5
B. abortus	7	2
B. abortus	9	2
B. abortus	(rough)	1
B. melitensis	1	13
B. melitensis	2	13
B. melitensis	3	11
B. melitensis	(atypical)	1
B. melitensis	(rough)	2
B. suis	1	13
B. suis	2	87
B. suis	3	5
B. suis	4	5
B. suis	5	1
B. suis	(rough)	1
B. ovis	23	23
B. canis	16	16
total	236	236

*: Reference strain
ATCC, American type culture collection
BCCN, Brucella culture collection, Nouzilly, France
Table 2: List of tandem repeat loci investigated

22 tandem repeats with a predicted different length in the 3 genomes:

vntr	alias name	Chr	%	upper primer	lower primer	b.suis	b.mel	b.abor	nb of different alleles	min-max bp	HGDI
BRU1938_Bbp_371bp_9u	Bruce01 or TR7	1	100	GGTCTGGAAAGACATGAAAGGC	AGCGATTGCTCAAGACGATG	395	371	419	12	331–435	0.95
BRU1932_339bp_787bp_3u	Bruce02	1	94	AAGCCAGCAGTCACCAATTG	CCCAGTCTGCTTGGCTATAGT	448	787	2143	6	448–1974	0.8
BRU1627_Bbp_199bp_3u	Bruce03	1	82	GGCCTATTTCAGAGCCGAGA	TCTGATTGCCTTCGGAATCC	208	199	217	4	154–217	0.48
BRU1543_Bbp_152bp_2u	Bruce04 or TR6**	1	100	CTGCTGGAAAGTCATGGAAG	CGATCTGAGCTTGGCAAAG	184	152	160	8	152–208	0.87
BRU1365_Bbp_185bp_3u	Bruce05	1	84	AAGGATCATGGAAGGGCGAGT	GGGAGATGGGAATAGGAAAT	193	185	201	4	185–217	0.59
BRU1322_134bp_408bp_3u	Bruce06*	1	94	ATGGGAGTATGAGCTTGGAT	GGCTGAGATCGGTTCAGTTG	274	408	542	4	140–542	0.73
BRU1386_158bp_740bp_3u	Bruce07**	1	100	GGGGATGTTGGTGAGTTGGAAG	CTCGATTGCTTTCGGAATCC	166	158	150	5	150–190	0.78
BRU1314_Bbp_348bp_4u	Bruce08*	1	84	GCTTTCAGGAGAACAGACGAG	TTAGTCAGATGAAATGAAAGC	330	348	366	4	312–366	0.53
BRU580_Bbp_156bp_7u	Bruce09 or TR8**	1	94	GGGGATGTTGGTGAGTTGGAAG	CTCGATTGCTTTCGGAATCC	140	156	124	8	124–244	0.72

56 tandem repeats with a predicted different length in 2/3 genomes:

vntr	alias name	Chr	%	upper primer	lower primer	b.suis	b.mel	b.abor	nb of different alleles	min-max bp	HGDI
BRU1990_Bbp_152bp_1u	Bruce23	1	88	ATCAGGCGATGTCAGGGTGAT	TCGCAACTGATGCAGATG	161	152	161	2	152–161	0.29
BRU1940_Bbp_146bp_8u	Bruce24 or TR5	1	100	ATGCGAGTATGACGACGACG	GCATAGTGGCTTCGGAATCC	146	146	106	10	106–217	0.88
BRU1915_Bbp_215bp_2u	Bruce25 or TR6	1	100	GGGGATGCTGAGCTTGGCAA	TCTTGGTTCGGCAGATG	239	215	239	8	215–736	0.9
BRU1704_12bp_189bp_5u	Bruce26	1	68	TCTTTCATCTCAGGATCGAT	ATCAGGCGATGTCAGGGTGAT	162	189	189	2	162–189	0.5
BRU1609_Bbp_170bp_5u	Bruce27	1	76	TGGCGAGTATGACGACGACG	GCATAGTGGCTTCGGAATCC	146	146	106	10	106–217	0.88
BRU1599_11bp_147bp_4u	Bruce28	1	95	TATTTGAGCTGACGAGCAGT	GAGCGTCGGCAGATG	136	147	136	2	136–147	0.4
BRU1528_Bbp_132bp_3u	Bruce29	1	81	TGGCGAGTATGACGACGACG	GCATAGTGGCTTCGGAATCC	132	132	117	2	117–132	0.47
BRU1505_Bbp_151bp_6u	Bruce30 or TR2**	1	96	TGGCGAGTATGACGACGACG	GCATAGTGGCTTCGGAATCC	127	151	151	5	119–151	0.7
BRU1475_Bbp_120bp_1u	Bruce31	1	100	GCTGATTGCTGAGCTTGGCAA	TATTTGAGCTGACGAGCAGT	138	120	120	2	120–138	0.51
Table 2: List of tandem repeat loci investigated (Continued)

Locus	Repeat Type	Product Size	Repeat Copy Number	Homogeneity	Expected PCR Product Size		
BRU1413_15bp_158bp_4u	Bruce33	81	81	158	143	128	0.5
BRU1409_15bp_83bp_2u	Bruce34	84	84	83	101	83	0.26
BRU1282_10bp_136bp_4u	Bruce35	91	91	116	136	116	0.27
BRU1234_15bp_157bp_4u	Bruce36	76	76	120	120	120	0.5
BRU1129_12bp_245bp_4u	Bruce37	95	95	122	122	122	0.5
BRU1116_18bp_108bp_2u	Bruce38	100	100	126	126	126	ND
BRU1112_15bp_164bp_7u	Bruce39	66	66	164	164	164	0.51
BRU1048_15bp_94bp_2u	Bruce40	85	85	104	104	104	0.34
BRU1030_13bp_94bp_1u	Bruce41	102	102	107	107	107	0.1
BRU424_125bp_539bp_4u	Bruce42	96	96	538	539	539	0.75
BRU379_12bp_182bp_2u	Bruce43	96	96	170	170	170	0.55
BRU256_12bp_110bp_3u	Bruce44	96	96	110	110	110	0
BRU233_18bp_151bp_3u	Bruce45	70	70	187	187	187	0.65
BRU217_15bp_256bp_4u	Bruce46	81	81	256	256	256	0.5
BRU149_11bp_166bp_1u	Bruce47	90	90	131	131	131	0.26
BRU131_9bp_131bp_2u	Bruce48	95	95	131	131	131	0.5
BRU112_13bp_266bp_2u	Bruce49	97	97	266	266	266	0.52
BRU80_12bp_162bp_3u	Bruce50	75	75	174	174	174	0.26
BRU80_15bp_74bp_2u	Bruce51	90	90	74	74	74	0.47
BRU50_15bp_185bp_3u	Bruce52	95	95	170	170	170	0.26
BRU30_15bp_110bp_2u	Bruce53	70	70	110	110	110	0.52
BRU38_13bp_209bp_1u	Bruce54	100	100	150	150	150	0.26
BRU206_40bp_273bp_3u	Bruce55	80	80	234	234	234	0.69
BRU202_12bp_135bp_4u	Bruce56	79	79	135	135	135	0.38
BRU69_30bp_14p_1u	Bruce57	90	90	293	293	293	0.19
BRU33_24bp_98bp_1u	Bruce58	82	82	122	122	122	0.32
BRU33_9bp_256bp_7u	Bruce59	78	78	256	256	256	0.38
BRU123_12bp_182bp_3u	Bruce60	90	90	267	267	267	0.38
BRU22_12bp_163bp_5u	Bruce61	75	75	162	162	162	0.52
BRU979_18bp_140bp_3u	Bruce62	85	85	150	150	150	0.26
BRU833_15bp_145bp_3u	Bruce63	77	77	145	145	145	0.51
BRU832_14bp_104bp_1u	Bruce64	93	93	118	118	118	0.26
BRU824_41bp_182bp_2u	Bruce65	94	94	143	143	143	0
BRU565_12bp_91bp_1u	Bruce66	109	109	91	91	91	0.32
BRU609_31bp_155bp_2u	Bruce67	68	68	124	124	124	0.52
BRU564_18bp_11bp_3u	Bruce68	79	79	111	111	111	0.47
BRU488_57bp_181bp_1u	Bruce69	100	100	181	181	181	0
BRU339_21bp_146bp_2u	Bruce70	74	74	146	146	146	0.51
BRU337_12bp_39bp_3u	Bruce71	79	79	370	370	370	ND
BRU322_8bp_280bp_8u	Bruce72	66	66	206	206	206	0.87
BRU285_28bp_178bp_3u	Bruce73	86	86	178	178	178	0.51
BRU275_8bp_147bp_6u	Bruce74	85	85	139	139	139	0.51
BRU250_19bp_82bp_2u	Bruce75	100	100	82	82	82	0.52
BRU181_14bp_122bp_2u	Bruce76	87	87	122	122	122	0.63
BRU163_12bp_144bp_1u	Bruce77	65	65	153	153	153	ND
BRU542_12bp_178bp_4u	Bruce78	87	87	166	166	166	0.18
units length above 9 bp [10]. In addition, 7 robust and highly polymorphic octamers (microsatellites) were selected to constitute MLVA typing panel 2. Panel 2 comprises Bruce04 (designated as TR6 in [16]), Bruce07, Bruce09 (TR8), Bruce16, Bruce18, Bruce21 and Bruce30 (TR2).

Evaluation of a MLVA assay comprising 15 markers

The set of 15 TR markers (panel 1 and 2, listed with one or two asterisk in Table 2) was used for typing a larger collection of biotyped isolates including various species and biovars [see Additional file 1]. Among the 257 strains, panel 1 alone resolves 51 genotypes. This panel does not distinguish *B. suis* biovar 4 and *B. canis*. All *B. canis* strains investigated share panel 1 genotype 2 with some of the *B. suis* biovar 4 strains (Figure 3). Similarly, most *B. suis* biovar 3 strains share panel 1 genotype 4 with *B. suis* biovar 1. Panel 2 alone discriminates 200 genotypes. However, the resulting clustering only approximately fits with the expected species and biovar assignment. When using panel 1 and panel 2 together (MLVA-15 assay), 204 genotypes can be differentiated. The clustering analysis is shown in Figure 3, 4 and 5. A number of major clusters weakly connected to each other can be identified: *B. suis* biovar 1 (Figure 3), *B. suis* biovar 2 (Figure 3 and figure 4), *B. abortus* (2 clusters, Figure 4 and Figure 5), *B. melitensis* (3 clusters, figure 5), *B. ovis* (Figure 3). *Brucella suis* biovar 5, *B. neotomae* and the marine mammal strains are quite distinct from the closest strains (Figure 4). *Brucella canis* and *B. suis* biovar 4 are closely related and loosely connected to the *B. suis* biovar 1 cluster (Figure 3). The three *B. melitensis* clusters fit moderately with the biotyping results. Similarly, *B. suis* biovar 3 strains do not constitute a consistent group.

Figure 1

Maximum parsimony analysis, on 21 reference strains using data from all 71 markers. The different species are represented by different colours, as indicated. Biovars (b) are mentioned wherever relevant.
Discussion

The genus *Brucella* has been divided into species and biovars for a long time, but this classification has been discussed controversially since DNA-DNA hybridization has been applied. The genus proved to be highly monomorphic with a level of relatedness among all species higher than 90% [5]. This homogeneity complicated the development of molecular assays able to efficiently recognise the species-specific entities. This finding led to the proposal of a monospecies genus, i.e. *B. melitensis*. The classical species would be considered as biovars only. However, most bacteriologists did not accept this concept which has recently been rejected by the subcommittee of taxonomy [26]. The purpose of the present study was firstly to investigate the polymorphism of tandem repeat loci predicted to be polymorphic by comparing the data of the three different *Brucella* strains already sequenced and secondly to evaluate to which extend tandem repeat typing and classical biotyping clustering fit together. We evaluated most of these loci with a repeat unit of 5 bp or more. Polymorphism has been confirmed at 71 loci. DNA was amplified at every locus from all 21 reference strains, including the 3 marine mammal strains (except for ...
Figure 3

Clustering analysis in 257 strains and isolates with the two panels of markers (MLVA-15), genotypes 1 to 68. In the columns the following data are given from left to right: the DNA batch, the genotype, the strain ID including the name of the origin of the marker; the year of isolation; the host; and the species-biovar. The first genotype number (going from 1 to 204) is the MLVA-15 genotype number. The second (for instance 1.1) indicates the panel 1 genotype number (from 1 to 51) followed by the panel 2 genotype number (from 1 to 200). The corresponding genotyping data can be found in the additional file [see Additional file 1]. Wherever possible, the more precise geographic origin within a country is indicated (for instance France 03) is a strain originating from the French department number 03 (Allier) in the centre of France. The first part of the clustering of the 257 isolates in 204 genotypes is presented. It comprises 68 genotypes, corresponding to B. ovis, B. canis, B. suis biovar 1, 3, 4, and part of the B. suis biovar 2 isolates. The colour code used is as shown in Figure 1.1

Key	Genotype	Strain ID	Year	Host	Origin	Species-biovar
bmcc	1.1	3	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	4	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	5	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	6	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	7	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	8	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	9	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	10	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	11	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	12	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	13	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	14	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	15	France (57)	1976	France	B.suis biovar 2
bmcc	1.1	16	France (57)	1976	France	B.suis biovar 2

(Refer to the full text for detailed information on each strain and isolate.)
Figure 4

The columns content is as indicated in Figure 3 legend. The corresponding genotyping data can be found in the additional file [see Additional file 1]. The second part of the clustering is displayed, genotypes 66 to 141, comprising the rest of B. suis biovar 2 isolates, the B. neotomae strain, the three marine strains, the 2 B. suis biovar 5 isolates, and part of the B. abortus isolates. The colour code used is as shown in Figure 1.
The third part of the clustering (genotypes 140 to 204) is displayed, comprising the rest of *B. melitensis* isolates. The RB51 vaccine strain tested here is genotype 159, S19 is genotype 161, and a number of other genotypes are included. The genotyping data is provided in the Additional file 1.
Bruce04 in the *B. melitensis* bv 3 reference strain Ether and Bruce01 in the *B. ovis* reference strain BOW63/290 confirming the very high genetic homogeneity of the genus *Brucella*.

A MLVA typing assay depends on the selection of markers which individually would not provide a relevant clustering. Taken separately, the TR markers are either not informative enough, or too variable or show a high level of homoplasy. However, the combination of well selected independent loci may be highly discriminatory and to some extent phylogenetically relevant, as shown previously for other species [9], and demonstrated here for *Brucella*. We propose a selection of 15 markers to be used in a *Brucella* MLVA assay consisting of two complementary panels, panel 1 (8 markers) and panel 2 (7 markers). The fifteen markers are a combination of moderately variable (minisatellites, panel 1) and highly discriminant (microsatellites, panel 2) loci (Table 2).

The strain clustering achieved is consistent with well-established phenotypic and molecular characteristics (Figures 3, 4 and 5). The biovars 1, 2 and 4 of *B. abortus* are gathered in agreement with (i) the sensitivity to thionin and (ii) the PCR-RFLP pattern of the *omp2a* genes specific for these biovars [27]. *B. abortus* biovar 3 strains are found in a separate group except for 2 strains originated from Africa (BCCN 93-26 and the reference strain Tulya). Strains isolated in Africa often show distinct phenotypes [28] and thus, it is not surprising to find these two strains separated. The two strains do not require CO₂ for growing. Their MLVA closest neighbours are two *B. abortus* biovar 6 strains also isolated in Africa. Assignment to biovar 3 or 6 reflects the H₂S production which is the unique phenotypical criteria to differentiate these two biovars. The MLVA assay confirms that some African strains significantly differ from isolates of other origin and that *B. abortus* biovar 3 is a heterogeneous group.

The *B. melitensis* group is very heterogeneous using either panel 1 or both panels (MLVA-15), and comprises four main subgroups. Biovar 2 and 3 strains are mixed in two groups, together with a few biovar 1 strains. The other biovar 1 isolates form 2 groups, one including the 16M reference strain, and the other (genotypes 173 and 174, Figure 5) comprising 3 isolates from the United Arab Emirates. *B. melitensis* BCCN 84-3 strain (MLVA-15 genotype 20) is an isolate from a dog in Costa Rica, which was biotyped as *B. melitensis* biovar 2, but appears to be distantly related to other *B. melitensis* strains. This strain is smooth as observed by the agglutination with anti-A serum, and the profile obtained in oxidative metabolism is typical of *B. melitensis*. Panel 1 analysis (not shown) does associate this strain with *B. melitensis*, but the full MLVA-15 analysis suggests a position closer to the *B. canis* group (Figure 3).

B. suis strains are clearly differentiated in three groups (Figures 3 and 4). A first group includes all biovar 1, 3, and 4 strains, and a second group all biovar 2 strains. The two rare biovar 5 strains are very distantly related. The correlation with biovars is good with some interesting exceptions. The five *B. suis* biovar 3 isolates from Croatia have the same genotype (MLVA-15 genotype 36, Figure 3 [see Additional file 1]), and cluster with *B. suis* biovar 1 strains but not with the reference *B. suis* biovar 3 strain. More *B. suis* strains phenotypically identified as biovar 3 from other geographic origins are required. This may suggest that the biovar 3 phenotype may have appeared independently more than once. Biovar 1 and biovar 3 strains are distinguished by sensitivity to fuchsin and ability to produce H₂S. Atypical fuchsin-resistant biovar 1 strains have already been described [6], as well as atypical fuchsin-sensitive *B. melitensis* strains [29,30]. So both the fuchsin sensitivity, and the H₂S production (as suggested above for *B. abortus*) may appear to be phylogenetically weak markers with some degree of homoplasy. Among biovar 2, strains isolated from Spain and Portugal are related and can be distinguished from other European strains investigated. Biovar 4 strains can be found right beside *B. canis*. Meyer [31] has previously proposed a model for evolutionary derivation of *Brucella* organisms on the basis of phenotypic characteristics and proposed a close relationship between *B. suis* biovar 3/4, and *B. canis*. PCR-RFLP analyses of the porin genes are in agreement with this finding [27].

Three classical vaccine strains were included, Rev.1 (genotype 201), S19 (genotype 161) and RB51 (genotype 159). Six other isolates, from Israel, share genotype 201. These streptomycin resistant isolates were confirmed as Rev.1 vaccine strains using the previously described assay [32] (data not shown). This is not unexpected since vaccination is used in this country, and simply illustrates the stability of the MLVA assay in the present case.

Strains clustering together frequently have a close or identical geographic origin, e.g. MLVA-15 genotype 16 comprises 2 *B. ovis* isolates, coming from the same region of France "Provence-Côte d’Azur" (departments 06 and 13). In almost all such instances where the MLVA genotype of two isolates is identical, the available epidemiological data is indeed compatible with a common source of infection. The rare exceptions would then suggest that some strains travel efficiently. MLVA-15 genotype 132 was observed in Germany in 1972 and in the centre of France (department 87) in 1994. MLVA-15 genotype 1 (*B. canis*) was observed in Greece and Germany. More epidemiological data will be needed in order to draw precise conclusions on the circulation of the strains.
The MLVA-15 results support the current classification of the genus *Brucella*. In addition, differences found by phenotypic identification and/or by molecular studies are also detected by MLVA. One major advantage of MLVA is the ease of data exchanges. The data itself can be summarized by a very simple flat text file containing the repeat copy numbers for each locus and each strain. This data can also be made accessible and queried across the internet as shown [21,24].

Another advantage is that MLVA typing only depends on the measurement of DNA amplicon sizes, so that a number of electrophoretic techniques can be used, ranging from manual, low-cost, agarose gels, to high-throughput capillary electrophoresis sequencing machines.

In the near future, it is tempting to speculate that international databases containing MLVA data of thousands of strains will be produced, and MLVA will become a routine assay for any new isolate. We believe that the MLVA-15 assay will be one step in this direction. A first use of the assay for a clinical application was recently described [33].

Methods

Bacterial strains

The 257 strains and isolates used for MLVA typing are listed or described globally in Table 1. One hundred and seventeen *B. suis*, 43 *B. melitensis*, 52 *B. abortus*, 24 *B. ovis*, one *B. neotomae*, 17 *B. canis* and 3 strains isolated from marine mammals [2] were investigated. This collection includes the 18 classical reference strains representing the different species and biovars of *Brucella*. All strains were mainly isolated from animals and in a few cases from humans or unknown species (Figure 3, 4 and 5), and were identified by phenotypical tests based on agglutination with monospecific antisera (serotyping), phage typing, dye sensitivity, CO₂ requirement and H₂S production [6].

Identification of variable number tandem repeats by genomic sequence comparison

The methods previously described [10,12,21,22] and the genome sequence data for *B. suis* strain 1330, *B. melitensis* strain 16 M and *B. abortus* strain 9–941 [18-20] were used to identify TRs that may help to differentiate closely related genomes.

The different TRs are designated by using the nomenclature previously described [13]. For instance BRL1211_63bp_257bp_2u (bruce11) is a TR at position 211 kb in the *B. melitensis* 16 M genome. Its common laboratory name (alias name) is Bruce11. It has a 63 bp motif, and a total PCR product length of 257 bp in the *B. melitensis* 16 M strain when using the primer set indicated in Table 2. This allele size corresponds to 2 units.

PCR amplification and genotyping

Brucella DNA was prepared as previously described [27]. PCR amplification was performed in a total volume of 15 µl containing 1 ng of DNA, 1× PCR Reaction Buffer, 1 U of Taq DNA polymerase (Qbiogen, Illkirch, France), 200 µM of each deoxynucleotide triphosphate, and 0.3 µM of each flanking primer as described previously [15].

Amplifications were performed in a MJ Research PTC200 thermocycler. An initial denaturation step at 96°C for 5 minutes was followed by 30 cycles of denaturation at 96°C for 30 s, primer annealing at 60°C for 30 s, and elongation at 70°C for 1 min. The final extension step was performed at 70°C for 5 min.

Two to five microliters of the amplification product were loaded on a 3% standard agarose gel for analyzing tandem repeats with a unit length shorter than 10 bp and on a 2% standard agarose gel for all others, and run under a voltage of 8 V/cm until the bromophenol blue dye had reached the 20 cm position. Gels were stained with ethidium bromide, visualized under UV light, and photographed (Vilber Lourmat, Marnes-la-Vallée, France). A 100-bp and a 20-bp ladder (EZ Load 100 pb or 20 bp PCR Molecular Ruler, Biorad, Marnes-la-Coquette, France) were used as molecular size markers depending on the tandem repeat unit length. Gel images were managed using the Bionumerics software package (version 4.0, Applied-Maths, Belgium).

Data analysis

Band size estimates were converted to a number of units within a character dataset using Bionumerics version 4.0 (Applied-Maths, Belgium) [see Additional file 1]. Clustering analyses used the categorical coefficient and UPGMA (unweighted pair group method using arithmetic averages). The use of the categorical parameter implies that the character states are considered unordered. The same weight is given to a large or a small number of differences in the number of repeats at each locus. Maximum parsimony was done using Bionumerics, running 200 bootstrap simulations and treating the data as categorical.

Polymorphism index

The Hunter Gaston diversity index [34] (HGDI) was used.

Authors’ contributions

MG, IJ, SAD, KN, HN were in charge of strain selection, collection and checking of related data, preparation and provision of DNAs. PLF did the MLVA genotyping work. GV was in charge of the Bionumerics database, error checking, clustering analyses. FD and PB did the genome sequence analyses for polymorphic tandem repeat searches and the genotyping page. GV wrote the report. IJ
and MG helped to draft the manuscript. All authors read, commented and approved the final manuscript.

Additional material

Additional File 1
MLVA-15 data for each of the 204 genotypes. The first three columns from the left are genotype numbers obtained with the different panels. The subsequent columns are the typing data itself. The first 8 markers (headings, bruc06 to bruc55) constitute panel 1 (minisatellites, tandem repeat unit length above 9 bp). The last 7 columns (starting from bruc04) constitute panel 2 (microsatellites, tandem repeat unit length up to 8 base-pairs).

Click here for file
http://www.biomedcentral.com/content/supplementary/1471-2180-6-9-S1.txt

Acknowledgements

We thank Drs A.P. MacMillan (LVA, Weybridge, UK) and B. Garin-Bastuji (AFSSA, Maisons-Alfort, France) for providing some of the strains used in this study. We thank Cornelia Goellner, Angelika Draeger and Csilla Lodri for their help to prepare the DNA and also for performing some identification work. Dr. Beatriz Guerra critically reviewed the manuscript. We thank Ibtissim Gissra for her contribution to the setting up of the Brucella genotyping page. Work on the typing of dangerous pathogens and reference databases and collections is supported by DGA grants (Délegation Générale pour l’Armement, PEAO2-36-01). This project is part of European bio-defence project CEPA13.14 coordinating work on dangerous pathogens and reference strains to typing by multi-locus analysis of variable number tandem repeats (VNTRs). BMC Microbiology 2003, 3:15.

Bricker BJ, Ewalt DR, Halling SM: Brucella ‘Hoof-Prints’: strain typing by multi-locus analysis of variable number tandem repeats (VNTRs). BMC Microbiology 2003, 3:15.

Bricker BJ, Ewalt DR, Halling SM: Identification of the HOOF-Print assay for typing Brucella abortus strains isolated from cattle in the United States with four performance criteria. BMC Microbiology 2005, 5:37.

Paulsen IT, Seshadri R, Nelson KE, Eiren JA, Heidelberg JF, Reed TD, Dodson RJ, Umayam L, Brinkac LM, Beanja Mj, Daughtery SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler HE, Halling SM, Boyle SM, Fraser CM: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 2002, 99:13148-13153.

DeVecchio VG, Kapralov V, Redkar Rj, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A, Reznik G, Jablonski L, Larsen N, D’Souza M, Bernal M, Mazur M, Golsman E, Selkow E, Eizer PF, Hagiou S, O’Callaghan D, Leteson J, Haselkorn R, Kyrpides N, Overbeek R: The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 2002, 99:443-448.

Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC: Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 2005, 187:2715-2726.

Denoeud F, Vergnaud G: Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains: a web-based resource. BMC Bioinformatics 2004, 5:4.

The Microorganisms Tandem Repeats Database [http://minisatellites.u-psud.fr]

Verger JM, Grayon M, Cloeckaert A, Lafeverre M, Ageron E, Girmon F: Classification of Brucella strains isolated from marine mammals by frequent restriction site-PCR and development of specific PCR identification tests. Microbes Infect 2003, 5:593-602.

Bricker BJ, Ewalt DR, Halling SM: Brucella ‘Hoof-Prints’: strain typing by multi-locus analysis of variable number tandem repeats (VNTRs). BMC Microbiology 2003, 3:15.

Bricker BJ, Ewalt DR, Halling SM: Identification of the HOOF-Print assay for typing Brucella abortus strains isolated from cattle in the United States with four performance criteria. BMC Microbiology 2005, 5:37.

Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Reed TD, Dodson RJ, Umayam L, Brinkac LM, Beanja Mj, Daughtery SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler HE, Halling SM, Boyle SM, Fraser CM: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 2002, 99:13148-13153.

DeVecchio VG, Kapralov V, Redkar Rj, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A, Reznik G, Jablonski L, Larsen N, D’Souza M, Bernal M, Mazur M, Golsman E, Selkow E, Eizer PF, Hagiou S, O’Callaghan D, Leteson J, Haselkorn R, Kyrpides N, Overbeek R: The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 2002, 99:443-448.

Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC: Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 2005, 187:2715-2726.

Denoeud F, Vergnaud G: Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains: a web-based resource. BMC Bioinformatics 2004, 5:4.

The Microorganisms Tandem Repeats Database [http://minisatellites.u-psud.fr]

Verger JM, Grayon M, Cloeckaert A, Lafeverre M, Ageron E, Girmon F: Classification of Brucella strains isolated from marine mammals by DNA-DNA hybridization and ribotyping. Res Microbiol 2000, 151:797-799.

The MLVA Web Service [http://bacterial-mlva.genomex.u-psud.fr]

Moreno E, Cloeckaert A, Moriyon I: Brucella evolution and taxonomy. Vet Microbiol 2002, 90:209-227.

International Committee on Systematics of Prokaryotes (ICSP) [http://www.bacterio.net]

Cloeckaert A, Verger JM, Grayon M, Grepinet O: Restriction site polymorphism of the genes encoding the major 25 kDa and 36 kDa outer-membrane proteins of Brucella. Microbiology 1995, 141:2111-2121.

Verger JM, Grayon M: Characteristics of 273 strains of Brucella abortus of African origin. Dev Biol Stand 1984, 56:63-71.

Banai M, Mayer I, Cohen A: Isolation, identification, and characterization of Israel Brucella melitensis biovar 1 atypical strains susceptible to dyes and penicillin, indicating the evolution of a new variant. J Clin Microbiol 1990, 28:1057-1059.

Corbel MJ: Identification of dye-sensitive strains of Brucella melitensis. J Clin Microbiol 1991, 29:1066-1068.
31. Meyer ME: Current concepts in the taxonomy of the genus Brucella. In Animal brucellosis Edited by: Nielsen K, Duncan JR. Boca Raton, Florida: CRC Press; 1990:1-17.

32. Cloeckaert A, Grayon M, Grepinet O: Identification of Brucella melitensis vaccine strain Rev.1 by PCR-RFLP based on a mutation in the rpsL gene. Vaccine 2002, 20:2546-2550.

33. Al Dahouk S, Hagen RM, Nockler K, Tomaso H, Wittig M, Scholz HC, Vergnaud G, Neubauer H: Failure of a short-term antibiotic therapy for human brucellosis using ciprofloxacin. A study on in vitro susceptibility of Brucella strains. Chemotherapy 2005, 51:352-356.

34. Hunter PR, Gaston MA: Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 1988, 26:2465-2466.