COHOMOLOGY WITH LOCAL COEFFICIENTS OF SOLVMANIFOLDS AND MORSE-NOVIKOV THEORY

DMITRI V. MILLIONSCHIKOV

Abstract. We study the cohomology $H^\lambda_\omega(G/\Gamma, \mathbb{C})$ of the deRham complex $\Lambda^*(G/\Gamma) \otimes \mathbb{C}$ of a compact solvmanifold G/Γ with a deformed differential $d_\lambda\omega = d + \lambda\omega$, where ω is a closed 1-form. This cohomology naturally arises in the Morse-Novikov theory. We show that for a solvable Lie group G with a completely solvable Lie algebra g and a cocompact lattice $\Gamma \subset G$ the cohomology $H^\lambda_\omega(G/\Gamma, \mathbb{C})$ coincides with the cohomology $H^\lambda_\omega(g)$ of the Lie algebra associated with the one-dimensional representation $\rho_{\lambda\omega} : g \to \mathbb{R}, \rho_{\lambda\omega}(\xi) = \lambda\omega(\xi)$. Moreover $H^\lambda_\omega(G/\Gamma, \mathbb{C})$ is non-trivial if and only if $-\lambda [\omega]$ belongs to the finite subset $\{0\} \cup \tilde{\Omega}_g$ in $H^1(G/\Gamma, \mathbb{C})$ well defined in terms of g.

Introduction

In the beginning of the 80-th S.P. Novikov constructed ([N1], [N2]) an analogue of the Morse theory for smooth closed 1-forms on a compact smooth manifold M. In particular he introduced the Morse-type inequalities (Novikov’s inequalities) for numbers $m_p(\omega)$ of zeros of index p of a closed 1-form ω on M. A lot of papers was devoted to this problem in the following years (see [N3] for references). In [Pa] a method of obtaining the torsion-free Novikov inequalities in terms of the deRham complex of manifold was proposed. This method was based on Witten’s approach [W] to the Morse theory. A. Pazhitnov obtained some important results in this direction in [Pa]. The cohomology of the deRham complex $\Lambda^*(M)$ with the deformed differential $d + \lambda\omega$ coincides with the cohomology $H^\lambda_{\rho_\omega}(M, \mathbb{C})$ with coefficients in the local system $\rho_{\lambda\omega}$ of groups \mathbb{C}, $\rho_{\lambda\omega}(\gamma) = \exp \int_{\gamma} \lambda\omega$ and for sufficiently large real numbers λ we have the following estimate (see [Pa]):

$$m_p(\omega) \geq \dim H^p_{\rho_{\lambda\omega}}(M, \mathbb{C}), \forall p.$$

L. Alania in [Al] studied $H^\lambda_{\rho_{\omega}}(M_n, \mathbb{C})$ of a class of nilmanifolds M_n. He proved that $H^\lambda_{\rho_{\omega}}(M_n, \mathbb{C})$ is trivial if $\lambda\omega \neq 0$. The partial answer for the case $\lambda\omega = 0$ was obtained by the present author in [Mill]. In both cases the proof was based on the Nomizu theorem [N2] and the computations were made in terms of the corresponding nilpotent Lie algebra \mathbb{N}_n. The starting point of this article was the intention to improve the results of [Al] in more general situation considering solvmanifolds and to find examples of manifolds M with non-trivial $H^p_{\rho_{\omega}}(M, \mathbb{C}), \lambda\omega \neq 0$. One of the first observations that was made in this direction: for a nilmanifold G/Γ the cohomology $H^\lambda_{\rho_{\omega}}(G/\Gamma, \mathbb{C})$ coincides with the cohomology $H^\lambda_{\rho_{\omega}}(g)$ associated with the

1991 Mathematics Subject Classification. 58A12, 17B30, 17B56 (Primary) 57T15 (Secondary).

Key words and phrases. Solvmanifolds, nilmanifolds, cohomology, local system, Morse-Novikov theory, solvable Lie algebras.

Partially supported by the Russian Foundation for Fundamental Research, grant no. 99-01-00090 and PAI-RUSSIE, dossier no. 04495UL.

1
one-dimensional representation of the Lie algebra \(\rho_{\lambda\omega} : g \to \mathbb{C}, \rho_{\lambda\omega}(\xi) = \lambda\omega(\xi)\) and hence \(H^*_{\lambda\omega}(g) = 0\) by Dixmier’s theorem [3] (Corollary 2.3).

Applying Hattori’s theorem [H] one can observe that the isomorphism \(H^*_{\lambda\omega}(G/\Gamma, \mathbb{C}) \cong H^*_{\lambda\omega}(g)\) still holds on for compact solvmanifolds \(G/\Gamma\) with completely solvable Lie group \(G\). A kind of minimal model of a solvable Lie algebra \(g\), the free \(d\)-algebra \((\Lambda^*(\omega_1, \ldots, \omega_n), d)\) with differential \(d\)

\[
d\omega_i = 0, \ i = 1, \ldots, k; \quad d\omega_j = \alpha_j \wedge \omega_j + P_j(\omega_1, \ldots, \omega_{j-1}), \ j = k+1, \ldots, n.
\]

is considered (Lemma 3.2). By means of \((\Lambda^*(\omega_1, \ldots, \omega_n), d)\) a spectral sequence \(E_r\) that converges to the \(H^*_{\lambda\omega}(g)\) is constructed. \(E_r\) degenerates at the first term \(E_1\) if \(-\lambda\omega\) doesn’t belong to the finite set \(\Omega_g \subset H^1(g)\). \(\Omega_g\) is defined by the collection \(\{\alpha_{k+1}, \ldots, \alpha_n\}\) of the closed 1-forms that have invariant sense as the weights of completely reducible representation associated to the restriction \(\text{ad}|_{[g, g]}\) of adjoint representation \(\text{ad} : g \to g\) (Theorem 3.3).

The main result of this article (Theorem 4.13): the cohomology with local coefficients \(H^*_{\lambda\omega}(G/\Gamma, \mathbb{C})\) of a compact solvmanifold \(G/\Gamma\), where \(G\) is completely solvable Lie group is non-trivial if and only if \(-\lambda[\omega] \in \tilde{\Omega}_g\), where \(\tilde{\Omega}_g\) is the finite subset in \(H^1(G/\Gamma, \mathbb{C})\) well defined in terms of \(g\).

The author is grateful to L. Alania for helpful discussions and attention to this work.

1. Deformed deRham complex and Morse-Novikov theory

Let us consider a closed compact \(C^\infty\)-manifold \(M\) and its deRham complex \((\Lambda^*(M), d)\) of differential forms. Let \(\omega\) be a closed 1-form on \(M\) and \(\lambda \in \mathbb{R}\). Now one can define a new algebraic complex \((\Lambda^*(M), d_{\lambda\omega})\) with a deformed differential

\[
d_{\lambda\omega} = d + \lambda\omega : \Lambda^*(M) \to \Lambda^*(M)
\]
i.e. for any form \(a \in \Lambda^*(M)\):

\[
d_{\lambda\omega}(a) = da + \lambda\omega \wedge a.
\]

Now taking \(\lambda \in \mathbb{C}\) and considering the complexification \(\Lambda^*(M) \otimes \mathbb{C}\) we come to the following important

Lemma 1.1 (N3, [Pa]). 1) For a closed 1-form \(d\omega = 0\) the cohomology \(H^*_{\lambda\omega}(M, \mathbb{C})\) of the algebraic complex \((\Lambda^*(M) \otimes \mathbb{C}, d_{\lambda\omega})\) coincides with the cohomology \(H^*_{\rho_{\lambda\omega}}(M, \mathbb{C})\) with coefficients in local system of groups \(\mathbb{C}\) defined by the representation \(\rho_{\lambda\omega} : \pi_1(M) \to \mathbb{C}^*\) of fundamental group defined by the formula

\[
\rho_{\lambda\omega}(\gamma) = \exp \int_\gamma \lambda\omega, \quad \gamma \in \pi_1(M),
\]

2) For any pair \(\omega, \omega'\) of 1-forms such that \(\omega - \omega' = d\phi, \phi \in C^\infty(M)\) the cohomology \(H^*_{\lambda\omega}(M, \mathbb{C})\) and \(H^*_{\lambda\omega'}(M, \mathbb{C})\) are isomorphic to each other. This isomorphism can be given by the gauge transformation

\[
a \to e^{\lambda\phi}a; \quad d \to e^{\lambda\phi}de^{-\lambda\phi} = d + \lambda d\phi \wedge
\]

We denote corresponding Betti numbers by \(b_p(\lambda, \omega)\), where \(b_p(\lambda, \omega) = \dim H^*_{\rho_{\lambda\omega}}(M, \mathbb{C})\).

Remark. The representation \(\rho_{\lambda\omega} : \pi_1(M) \to \mathbb{C}^*\) defines a local system of groups \(\mathbb{C}\) on the manifold \(M\) in the sense of Steenrod (see [R] for details).
The cohomology $H^*(M, \mathbb{C})$ naturally arises in the Morse-Novikov theory: we assume now that ω is a Morse 1-form, i.e., in a neighbourhood of any point $\omega = df$, where f is a Morse function. The zeros of ω are isolated, and one can define the index of each zero. The number of zeros of ω of index p is denoted by $m_p(\omega)$.

Theorem 1.2 (A. Pazhitnov, [Pa]). For sufficiently large real numbers λ, \[m_p(\omega) \geq b_p(\lambda, \omega) \forall p. \]

Theorem 1.3 (A. Pazhitnov, [Pa]). Assume that all the periods of the form ω are commensurable. If $Re\lambda$ is sufficiently large, then $b_p(\lambda, \omega) = b_p(\omega)$, where $b_p(\omega)$ is a Novikov number.

2. Dixmier’s exact sequence of Lie algebra cohomology

Let \mathfrak{g} be a n-dimensional Lie algebra. The dual of the Lie bracket $[,] : \Lambda^2(\mathfrak{g}) \to \mathfrak{g}$ gives a linear mapping $d_1 : \mathfrak{g}^* \to \Lambda^2(\mathfrak{g}^*)$ which extends in a standard way to a differential d of a cochain complex of the Lie algebra \mathfrak{g}:

$$
\mathbb{K} \xrightarrow{d_0 = 0} \mathfrak{g}^* \xrightarrow{d_1} \Lambda^2(\mathfrak{g}^*) \xrightarrow{d_2} \Lambda^3(\mathfrak{g}^*) \xrightarrow{d_3} \ldots
$$

$$
d(\rho \wedge \eta) = d\rho \wedge \eta + (-1)^{deg \rho} \rho \wedge d\eta, \forall \rho, \eta \in \Lambda^*(\mathfrak{g}^*).
$$

Vanishing of the d^2 corresponds to the Jacobi identity.

For $d : \Lambda^q(\mathfrak{g}^*) \to \Lambda^{q+1}(\mathfrak{g}^*)$ and $f \in \Lambda^q(\mathfrak{g}^*)$ the following formula holds on:

$$
df(X_1, \ldots, X_{q+1}) = \sum_{1 \leq i < j \leq q+1} (-1)^{i+j-1} f([X_i, X_j], X_1, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_{q+1}).
$$

A cohomology of this complex is called the cohomology (with trivial coefficients) of the Lie algebra \mathfrak{g} and is denoted by $H^*(\mathfrak{g})$.

From the definition it follows that $H^1(\mathfrak{g})$ is the dual space to $\mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ and so

1) $b^1(\mathfrak{g}) = \dim H^1(\mathfrak{g}) \geq 2$ for a nilpotent Lie algebra \mathfrak{g},

2) $b^1(\mathfrak{g}) \geq 1$ for a solvable Lie algebra \mathfrak{g},

3) $b^1(\mathfrak{g}) = 0$ for a semi-simple Lie algebra \mathfrak{g}.

Now we take a Lie algebra \mathfrak{g} over a field \mathbb{K} with a non-trivial $H^1(\mathfrak{g})$. Let $\omega \in \mathfrak{g}^*, \omega \neq 0, d\omega = 0$ and $\lambda \in \mathbb{K}$. One can define

1) a new deformed differential $d_{\lambda \omega}$ in $\Lambda^*(\mathfrak{g}^*)$ by the formula

$$
d_{\lambda \omega}(a) = da + \lambda \omega \wedge a.
$$

2) an one-dimensional representation

$$
\rho_{\lambda \omega} : \mathfrak{g} \to \mathbb{K}, \rho_{\lambda \omega}(\xi) = \lambda \omega(\xi), \xi \in \mathfrak{g}.
$$

Now we recall the definition of the Lie algebra cohomology associated with a representation. Let \mathfrak{g} be a Lie algebra and $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ its linear representation. We denote by $C^0(\mathfrak{g}, V)$ the space of \mathfrak{g}-linear alternating mappings of \mathfrak{g} into V. Then one can consider an algebraic complex:

$$
V = C^0(\mathfrak{g}, V) \xrightarrow{d_0} C^1(\mathfrak{g}, V) \xrightarrow{d_1} C^2(\mathfrak{g}, V) \xrightarrow{d_2} \ldots
$$

where the differential d_q is defined by:

\[(d_q f)(X_1, \ldots, X_{q+1}) = \sum_{i=1}^{q+1} (-1)^{i+1} \rho(X_i) f(X_1, \ldots, \hat{X}_i, \ldots, X_{q+1}) + \sum_{1 \leq i < j \leq q+1} (-1)^{i+j-1} f([X_i, X_j], X_1, \ldots, \hat{X}_i, \hat{X}_j, \ldots, X_{q+1}). \]

The cohomology of the complex \((C^*(g, V), d)\) is called the cohomology of the Lie algebra \(g\) associated to the representation \(\rho : g \to V\).

Proposition 2.1. Let \(g\) be a Lie algebra and \(\omega\) is a closed 1-form. Then the complex \((\Lambda^*(g^*), d_{\lambda\omega})\) coincides with the cochain complex of the Lie algebra \(g\) associated with one-dimensional representation \(\rho_{\lambda\omega} : g \to \mathbb{K}\), where \(\rho_{\lambda\omega}(\xi) = \lambda\omega(\xi), \xi \in g\).

The proof follows from

\[(\lambda \omega \wedge a)(X_1, \ldots, X_{q+1}) = \sum_{i=1}^{q+1} (-1)^{i+1} \lambda\omega(X_i)(a(X_1, \ldots, \hat{X}_i, \ldots, X_{q+1})). \]

One can deduce that \(H_{\lambda\omega}^0(g) = 0\) for a non-trivial \(\lambda\omega\), as well as \(H_{\lambda\omega}^0(g) = 0\) for an unimodular \(n\)-dimensional Lie algebra \(g\).

Remark. The cohomology \(H_{\lambda\omega}^*\) coincides with the Lie algebra cohomology \(H^*(g)\) with trivial coefficients if \(\lambda = 0\). If \(\lambda \neq 0\) the deformed differential \(d_{\lambda\omega}\) is not compatible with the exterior product \(\wedge\) in \(\Lambda^*(g)\)

\[d_{\lambda\omega}(a \wedge b) = d(a \wedge b) + \lambda\omega \wedge a \wedge b \neq d_{\lambda\omega}(a) \wedge b + (-1)^{\text{deg}a} a \wedge d_{\lambda\omega}(b) \]

and the cohomology \(H_{\lambda\omega}^*(g)\) has no natural multiplicative structure and therefore no Poincare duality in the case of unimodular Lie algebra \(g\). The corresponding Euler characteristic \(\chi_{\lambda\omega}(g)\) is still equal to zero.

Let \(\omega \in g^*, \omega \neq 0, d\omega = 0\). Then \(b_\omega = \{x \in g, \omega(x) = 0\}\) is an ideal of codimension 1 in \(g\). One can choose an element \(X \in g, \omega(X) = 1\).

Theorem 2.2 (Dixmier [3]). There exists a long exact sequence of Lie algebra cohomology:

\[\cdots \to adX_i^* + \lambda Id \to H_{\lambda\omega}^i(b_\omega) \xrightarrow{\omega \wedge} H_{\lambda\omega}^{i+1}(g) \xrightarrow{r_i} H^i(b_\omega) \xrightarrow{dX_i^* + \lambda Id} H^{i+1}(b_\omega) \to \cdots \]

where

1) the homomorphism \(r_i : H^i(g) \to H^i(b)\) is the restriction homomorphism;
2) \(\omega \wedge : H^{*+1}(b_\omega) \to H^{*}(g)\) is induced by the multiplication \(\omega \wedge : \Lambda^{*+1}(b_\omega) \to \Lambda^*(g^*)\);
3) the homomorphisms \(adX_i^* : H^i(b_\omega) \to H^i(b_\omega)\) are induced by the derivation \(adX_i^*\) of degree zero of \(\Lambda^*(b_\omega^*)\) \((adX^*a \wedge b + a \wedge adX^*b, \forall a, b \in \Lambda^*(b_\omega^*))\) that continues a dual mapping \(adX^* : b_\omega^* \to b_\omega^*\) to the \(adX\) : \(b_\omega \to b_\omega\) operator. The derivation \(adX^*\) commutes with \(d\) and corresponding mapping in \(H^*(b_\omega)\) we denote by the same symbol \(adX^*\). \(Id\) is the identity operator.

Each form \(f \in \Lambda^*(g)\) can be decomposed as \(f = \omega \wedge f' + f''\), where \(f' \in \Lambda^{*+1}(b_\omega^*)\) and \(f'' \in \Lambda^*(b_\omega^*)\). And one can write out a short exact sequence of algebraic complexes

\[0 \to \Lambda^{*+1}(b_\omega^*) \xrightarrow{\omega \wedge} \Lambda^*(g^*) \to \Lambda^*(b_\omega^*) \to 0 \]
where $\Lambda^*(b_\omega^*)$ has the standard differential d, $\Lambda^*(g^*)$ has the deformed differential $d_{\omega\wedge}$ and $\Lambda^{*−1}(b_\omega^*)$ is taken with the differential $−d$ as $d(\omega\wedge c) = d_{\omega\wedge}(\omega\wedge c) = −\omega\wedge dc$.

The short exact sequence of algebraic complexes gives us the long exact sequence of cohomology. Everything is clear with the homomorphisms d_*. The following formula holds:

(4) $(df)_X(X_1, \ldots, X_{q+1}) = \sum_{1 \leq i \leq q+1} (-1)^i f(adX(X_j), X_1, \ldots, \hat{X}_j, \ldots, X_{q+1}) + \sum_{1 \leq i < j \leq q+1} (-1)^{i+j} f([X_i, X_j], X_1, \ldots, \hat{X}_j, \ldots, X_{q+1}) = (adX^*_g(f) + d(fX))(X_1, \ldots, X_{q+1})$.

Hence the homomorphism $H^q(b_\omega) \to H^q(b_\omega)$, $[f] \to [f' + \lambda f]$ of long exact sequence in cohomology coincides with homorphism induced by $adX^* + \lambda Id$.

Corollary 2.3. Let g be an n-dimensional Lie algebra and $\omega \in g^*$, $\omega \neq 0$, $d\omega = 0$ and $Spec^k(\omega)$ be the set of eigenvalues of operator $adX^*_k : H^k(b_\omega) \to H^k(b_\omega)$, then

1) the cohomology $H^*_\lambda(\omega)(g)$ is non-trivial if and only if

$−\lambda \in \cup_{k=1}^n Spec^k(\omega)$;

2) the i-th Betti number $b_i^\lambda(\omega)(g) = dimH^i(\lambda_\omega)(g)$ can be expressed in a following way:

(5) $b_i^\lambda(\omega)(g) = k_i^\lambda + k_i^{\lambda−1}$,

where by k_i^λ, we denote the dimension of the kernel of $adX^*_i + \lambda Id : H^i(b_\omega) \to H^i(b_\omega)$.

Example 2.4. Let g be a Lie algebra defined by the basis X, e_1, e_2, \ldots, e_n and commutating relations (trivial ones are omitted):

$[X, e_1] = e_1, [X, e_2] = e_2, \ldots, [X, e_n] = e_n$.

Thus g is a semidirect sum of K and abelian K^n defined by the operator adX with the identity matrix E in the basis e_1, e_2, \ldots, e_n of K^n. We take $\omega, \omega_1, \ldots, \omega_n$ as the corresponding dual basis in g. In particular

$\omega(X) = 1, \omega(e_i) = 0, i = 1, \ldots, n.$

d$\omega = 0$ and $adX^*(\omega_1 \wedge \cdots \wedge \omega_p) = \omega_1^p \wedge \cdots \wedge \omega_p^p$. Hence $Spec^p(\omega) = \{p\}$ and for $\lambda = p$ we have only two non-trivial Betti numbers:

$b_p^{p−1}(g) = b_p^p(\omega)(g) = \binom{n}{p}$.

Corollary 2.5 (Dixmier, [D]). Let g be a nilpotent Lie algebra. The cohomology $H^*_\lambda(\omega)(g)$ is trivial for all non-trivial $\lambda\omega$ and coincides with the Lie algebra cohomology $H^*(g)$ in trivial $\lambda\omega = 0$ case.
The operator \(adX \) is nilpotent and therefore the same is \(adX^* : H^i(b_\omega) \to H^i(b_\omega). \) Hence \(adX^* + \lambda I \) is non-degenerate operator for all \(\lambda \neq 0. \) We obtain the proof of Theorem 1 from [A] as the corollary of Dixmier’s theorem [B] for cohomology of nilpotent Lie algebras.

Remark. We represented in this article only a version of Dixmier’s exact sequence adapted to our special case of 1-dimensional Lie algebra representation (see [D] for all details), the last thing that we want to recall is Dixmier’s estimate for Betti numbers \(\dim H^p(g) \) of a nilpotent Lie algebra \(g. \)

Corollary 2.6 ([B]). Let \(g \) be a nilpotent Lie algebra. Then
\[
\dim H^p(g) \geq 2, \ p = 1, \ldots, n-1.
\]

It follows from the Corollary 2.3, we have \(\lambda \omega = 0 \) and \(\dim H^p(g) = k^p + k^{p-1}, \) where \(k^p \geq 1, k^{p-1} \geq 1 \) are the dimensions of the kernels of nilpotent operators \(adX_0^*, \ adX_1^* \) in the spaces \(H^p(b_\omega), \ H^{p-1}(b_\omega) \) with \(\dim H^p(b_\omega) \geq 2, \dim H^{p-1}(b_\omega) \geq 2 \) by inductive assumption.

3. **COHOMOLOGY OF SOLVABLE LIE ALGEBRAS**

Definition 3.1. A real solvable Lie algebra \(g \) is called completely solvable if \(ad(X) : g \to g \) has only real eigenvalues \(\forall X \in g. \)

Lemma 3.2. Let \(g \) be a \(n \)-dimensional solvable over \(\mathbb{C} \) (or real completely solvable Lie algebra) and \(b^1(g) = \dim H^1(g) = k. \) Then exists a basis \(\omega_1, \ldots, \omega_n \) in \(g^\ast \) such that
\[
\begin{align*}
d\omega_1 &= \cdots = d\omega_k = 0, \\
d\omega_{k+1} &= \alpha_{k+1} \wedge \omega_{k+1} + P_{k+1}(\omega_1, \ldots, \omega_k), \\
&\vdots \\
d\omega_n &= \alpha_n \wedge \omega_n + P_n(\omega_1, \ldots, \omega_{n-1}),
\end{align*}
\]
where \(\alpha_{k+1}, \ldots, \alpha_n \) are closed 1-forms, that are the weights of completely reducible representation associated to \(ad_{\mathfrak{g}||\mathfrak{g}} \) and \(P_1(\omega_1, \ldots, \omega_{i-1}) \in \Lambda^2(\omega_1, \ldots, \omega_{i-1}). \)

For the proof we apply Lie’s theorem to the adjoint representation \(ad \) restricted to the commutant \([\mathfrak{g}, \mathfrak{g}]. \) Namely we can choose a basis \(e_{k+1}, \ldots, e_n \) such that the subspaces \(\text{Span}(e_i, \ldots, e_n), i = k+1, \ldots, n \) are invariant with respect to the representation \(ad_{\mathfrak{g}||\mathfrak{g}}. \) Then we add \(e_1, \ldots, e_k \) in a way that \(e_1, \ldots, e_n \) form the basis of \(g. \) For the dual forms \(\omega_1, \ldots, \omega_n \) in \(g^\ast \) we have formulas (B).

Remark. One can consider the free \(d \)-algebra \((\Lambda^\ast(\omega_1, \ldots, \omega_n), d) \) as a kind of minimal model of the cochain complex \(\Lambda^\ast(\mathfrak{g}^\ast) \) because the mapping \(\Lambda^\ast(\omega_1, \ldots, \omega_n) \to \Lambda^\ast(\mathfrak{g}^\ast) \) induces the isomorphism in cohomology.

Now we start with a solvable Lie algebra over \(\mathbb{C} \) (or real completely solvable) and take a basis \(\omega_1, \ldots, \omega_n \) constructed in Lemma 3.2. Let us denote by \(\Lambda^\ast \) the exterior subalgebra in \(\Lambda^\ast(\omega_1, \ldots, \omega_n) \) generated by \(\omega_1, \ldots, \omega_k. \) One can define a filtration \(F \) of the cochain complex \(\Lambda^\ast(\mathfrak{g}^\ast): \)
\[
0 \subset \Lambda^\ast \subset F^{k+1} \subset F^{k+2} \subset F^{k+1,k+2} \subset F^{k+3} \subset F^{k+1,k+3} \subset \cdots \subset F^{k,\ldots,n} = \Lambda^\ast(\mathfrak{g}^\ast)
\]
where the system of subspaces \(\{ F^{j_1,\ldots,j_p}, k < j_1 < \cdots < j_p \leq n \} \) is defined by the following conditions:
A subspace F^{j_1,\ldots,j_r} is spanned by monomials $a = \omega_{i_1} \land \cdots \land \omega_{i_q}$ with $l_1 < \cdots < l_q$ such that
- $l_q < j_p$; or $l_q = j_p, l_q-1 < j_p-1$;
- or $l_q = j_p, l_q-1 = j_p-1, l_q-2 < j_p-2$; or \ldots;
- or $l_q = j_p, \ldots, l_q-p+1 = j_1, l_q-p \leq k$.

Thus for example:

\begin{align*}
F^{k+1} & = \Lambda^* \oplus \Lambda^* \land \omega_{k+1}, & F^{k+2} & = \Lambda^* \oplus \Lambda^* \land \omega_{k+1} \oplus \Lambda^* \land \omega_{k+2}, \\
F^{k+1,k+2} & = \Lambda^* \oplus \Lambda^* \land \omega_{k+1} \oplus \Lambda^* \land \omega_{k+2} \oplus \Lambda^* \land \omega_{k+1} \land \omega_{k+2}, & F^{k+3} & = \Lambda^* \oplus \Lambda^* \land \omega_{k+1} \oplus \Lambda^* \land \omega_{k+2} \oplus \Lambda^* \land \omega_{k+1} \land \omega_{k+2} \oplus \Lambda^* \land \omega_{k+3}. \\
\end{align*}

The filtration F is compatible with differential $d + \lambda \omega$ and one can consider the corresponding spectral sequence E_r. To obtain its first term E_1 one have to calculate the cohomology of complexes $(\Lambda^* \land \omega_{j_1} \land \cdots \land \omega_{j_p}, d_0)$:

$$d_0(\tilde{a} \land \omega_{j_1} \land \cdots \land \omega_{j_p}) = (\alpha_{j_1} + \cdots + \alpha_{j_p} + \lambda \omega) \tilde{a} \land \omega_{j_1} \land \cdots \land \omega_{j_p}.$$

The cohomology $H^*(\Lambda^* \land \omega_{j_1} \land \cdots \land \omega_{j_p}, d_0)$ coincides with the cohomology of (Λ^*, \tilde{d}) where differential \tilde{d} acts as exterior multiplication by 1-form $\alpha_{j_1} + \cdots + \alpha_{j_p} + \lambda \omega$. Hence $H^*(\Lambda^* \land \omega_{j_1} \land \cdots \land \omega_{j_p}, d_0)$ is trivial if $\alpha_{j_1} + \cdots + \alpha_{j_p} + \lambda \omega = 0$. So taking $\lambda \omega$ such that

$$\alpha_{j_1} + \cdots + \alpha_{j_p} + \lambda \omega \neq 0 \forall j_1 < \cdots < j_p, p = k+1, \ldots, n$$

one can see that the spectral sequence E_r degenerates at the first term E_1. Taking the complexification of real solvable Lie algebra g we come to the following

Theorem 3.3. Let g be a solvable Lie algebra, $\dim g = n$ and $\{\alpha_{k+1}, \ldots, \alpha_n\}$ is the collection of the weights of completely reducible representation associated to $\text{ad}[g,g]$. Let Ω_g denote the set of all p-sums $\alpha_{i_1} + \cdots + \alpha_{i_p}$, $k+1 \leq i_1 < \cdots < i_p \leq n$, $p = 1, \ldots, n$. Then exists a spectral sequence E_r that converges to the cohomology $H_{\lambda \omega}^*(g)$ and its first term E_1 degenerates if $-\lambda \omega \notin \Omega_g$.

The set Ω_g is defined by $\lambda \omega$ such that the term E_1 is non-trivial, but generally E_1 doesn’t coincide with E_∞. So we have to introduce $\Omega_g \subset \Omega_g$ such that $E_\infty \neq 0$ if and only if $-\lambda \omega \in \{0\} \cup \Omega_g$.

Corollary 3.4. Let g be a solvable Lie algebra. Then $H_{\lambda \omega}^*(g)$ is non-trivial if and only if $-\lambda \omega \in \{0\} \cup \Omega_g$ – the finite subset in $H^1(g)$.

4. **Cohomology of Solvmanifolds.**

Definition 4.1. A solvmanifold (nilmanifold) M is a compact homogeneous space of the form G/Γ, where G is a simply connected solvable (nilpotent) Lie group and Γ is a lattice in G.

Let g denote a Lie algebra of G. Recall that G is solvable if and only if g is solvable Lie algebra, the last condition is equivalent to nilpotency of derived algebra $[g,g]$.

We start with examples of nilmanifolds.

Example 4.2. A n-dimensional torus $T^n = \mathbb{R}^n/\mathbb{Z}^n$.

Example 4.3. The Heisenberg manifold $M_3 = \mathcal{H}_3/\Gamma_3$, where \mathcal{H}_3 is the group of all matrices of the form
\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}, \ x, y, z \in \mathbb{R},
\]
and a lattice Γ_3 is a subgroup of matrices with $x, y, z \in \mathbb{Z}$.

Theorem 4.4 (A.I. Malcev [Mal]). Let G be a simply connected nilpotent Lie group with a tangent Lie algebra \mathfrak{g}. Then G has a co-compact lattice Γ (i.e. G/Γ is a compact space) if and only if there exists a basis e_1, e_2, \ldots, e_n in \mathfrak{g} such that the constants $\{c^k_{ij}\}$ of Lie structure $[e_i, e_j] = c^k_{ij}e_k$ are all rational numbers.

This theorem gives us a practical tool for construction of nilmanifolds: let \mathfrak{g} be a nilpotent Lie algebra defined by its basis e_1, e_2, \ldots, e_n and commutating relations $[e_i, e_j] = c^k_{ij}e_k$, where all numbers $c^k_{ij} \in \mathbb{Q}$. Now one can define a group structure \ast in the vector space \mathfrak{g} using the Campbell-Hausdorff formula. The nilpotent group $G = (\mathfrak{g}, \ast)$ has a co-compact lattice Γ (a subgroup generated by basic elements e_1, e_2, \ldots, e_n) and one can consider corresponding nilmanifold G/Γ.

Example 4.5. Let V_n be a nilpotent Lie algebra with a basis e_1, e_2, \ldots, e_n and a Lie bracket:
\[
[e_i, e_j] = \begin{cases} (j - i)e_{i+j}, & i + j \leq n; \\ 0, & i + j > n. \end{cases}
\]
Cohomology of the corresponding family of nilmanifolds M_n was studied in [Al] and [Mill].

The situation with non-nilpotent solvable Lie groups is much more difficult: the crucial point is the problem of existence of cocompact lattice (see [R] for details). For example, if a solvable Lie group G admits a cocompact lattice Γ then the corresponding Lie algebra \mathfrak{g} is unimodular, hence $\alpha_{k+1} + \cdots + \alpha_n = 0$. The condition of unimodularity of \mathfrak{g} is not sufficient. See [R] for general information in this domain.

Example 4.6. Let us consider a semidirect product $G_0 = \mathbb{R} \rtimes \mathbb{R}^2$ where \mathbb{R} acts on \mathbb{R}^2 via
\[
t \rightarrow \phi(t) = \begin{pmatrix} a^t & 0 \\ 0 & a^{-t} \end{pmatrix},
\]
where $a + a^{-1} = n \in \mathbb{N}, a \neq 1, a > 0$. Then
\[
\phi(1) = C^{-1} \begin{pmatrix} 0 & 1 \\ -1 & n \end{pmatrix} C,
\]
for some matrix $C \in GL(2, \mathbb{R})$. Then exists a lattice $L \subset \mathbb{R}^2$ invariant with respect to $\phi(1)$. \mathbb{Z} acts on L via $\phi(1)^m$ and we define a lattice $\Gamma \subset G$ as $\mathbb{Z} \rtimes_{\phi(1)^m} L$. The lattices corresponding to different values of n are, generally speaking, non-isomorphic. So corresponding solvmanifolds are non-diffeomorphic to. But we study the cohomology $H_\ast^p(G/\Gamma, \mathbb{C})$ over \mathbb{C} and as we will see it doesn’t depend on the choice of $\Gamma \subset G$.

The solvmanifold from the previous example is a fibre bundle over S^1 with T^2 as fibre. It can be generalized by the following

Theorem 4.7 (G.D. Mostow [Mos1]). Any compact solvmanifold is a bundle with toroid as base space and nilmanifold as fibre.
Definition 4.8. A solvable Lie group G is called completely solvable if its tangent Lie algebra \mathfrak{g} is completely solvable.

One can identify deRham complex $\Lambda^*(G/\Gamma)$ with subcomplex $\Lambda^{*}_{\Gamma}(G) \subset \Lambda^*(G)$ of left-invariant forms on G with respect to the action of the lattice Γ. $\Lambda^{*}_{\Gamma}(G)$ contains the subcomplex $\Lambda^*_{\mathfrak{g}}(G)$ of left-invariant forms with respect to the whole action of G. $\Lambda^*_{\mathfrak{g}}(G)$ is naturally isomorphic to the Lie algebra cochain complex $\Lambda^*(\mathfrak{g})$. Let us consider the corresponding inclusion

$$\psi : \Lambda^*(\mathfrak{g}) \rightarrow \Lambda^*(G/\Gamma).$$

Theorem 4.9 (Hattori [3]). Let G/Γ be a compact solvmanifold, where G is a completely solvable Lie group, then the inclusion $\psi : \Lambda^*(\mathfrak{g}) \rightarrow \Lambda^*(G/\Gamma)$ induces the isomorphism $\psi^* : H^*(\mathfrak{g}) \rightarrow H^*(G/\Gamma, \mathbb{R})$ in cohomology.

Remark. In fact Hattori’s theorem is the generalization of the theorem proved by Nomizu [2] for nilmanifolds. For an arbitrary solvmanifold G/Γ the mapping ψ^* is not isomorphism but it is an inclusion (see [3]).

So every class $[\omega] \in H^1(G/\Gamma, \mathbb{R})$ can be represented by the left-invariant (with respect to the action of G) 1-form ω. By means of ω one can define a one-dimensional representation $\rho_{\lambda\omega} : G \rightarrow \mathbb{C}^*$:

$$\rho_{\lambda\omega}(g) = \exp \int_{\gamma(e,g)} \lambda \omega,$$

where $\gamma(e,g)$ is a path connecting the identity e with $g \in G$ (let us recall that G is a simply-connected). As ω is the left invariant 1-form then

$$\int_{\gamma(e,g_1,g_2)} \lambda \omega = \int_{\gamma(e,g_1)} \lambda \omega + \int_{\gamma(g_1,g_1,g_2)} \lambda \omega = \int_{\gamma(e,g_1)} \lambda \omega + \int_{g_1^{-1}\gamma(e,g_2)} \lambda \omega$$

holds on and $\rho_{\lambda\omega}(g_1g_2) = \rho_{\lambda\omega}(g_1)\rho_{\lambda\omega}(g_2)$. $\rho_{\lambda\omega}$ induces the representation of corresponding Lie algebra \mathfrak{g} (we denote it by the same symbol): $\rho_{\lambda\omega}(X) = \lambda \omega(X)$.

In this situation it’s possible to make some generalizations using Mostow’s theorem. Namely following [3] we give

Definition 4.10. Let G be a simply-connected Lie group and $\Gamma \subset G$ a lattice. Let ρ be a finite dimensional representation of G on a complex vector space F. Let Ad denote the adjoint representation of G on its Lie algebra \mathfrak{g} as well as the complexification $\mathfrak{g}_\mathbb{C}$ of \mathfrak{g}. We will say that the representation ρ is Γ-supported if $\rho(\Gamma)$ and $\rho(G)$ have the same Zariski closure in $\text{Aut}_\mathbb{C}(F)$. The representation ρ is Γ-admissible if $\rho \oplus Ad$ (on $F \oplus \mathfrak{g}_\mathbb{C}$) is Γ-supported.

Theorem 4.11 (Mostow, Theorem 7.26 in [3]). Let G be a simply-connected solvable Lie group and $\Gamma \subset G$ a lattice. Let ρ be a finite dimensional Γ-admissible representation in a complex vector space F.

Then the inclusion $\psi : \Lambda^*(\mathfrak{g}, F) \rightarrow \Lambda^*(G/\Gamma, F)$ of complexes of differential forms with values in F induces the isomorphism $\psi^* : H^*_\rho(\mathfrak{g}, F) \rightarrow H^*_\rho(G/\Gamma, F)$ in cohomology where ρ is used also to denote the representation of the Lie algebra $\rho : \mathfrak{g} \rightarrow F$ induced by $\rho : G \rightarrow \text{Aut}_\mathbb{C}(F)$.

But we’ll not discuss the details of Mostow’s theorem and possible generalizations we restrict ourselves to the case of completely solvable Lie group G. Namely we’ll prove by means of Hattori’s theorem the following important
Corollary 4.12. Let G/Γ be a compact solvmanifold, G has a completely solvable Lie group and ω is a closed 1-form on G/Γ. The cohomology $H^*_{\omega}(G/\Gamma, \mathbb{C})$ is isomorphic to the Lie algebra cohomology $H^*_{\omega'}(\mathfrak{g})$ where $\omega' \in \mathfrak{g}^*$ is the left-invariant 1-form that represents the class $[\omega] \in H^1(G/\Gamma, \mathbb{R})$.

The Corollary 4.12 together with Corollary 3.4 gives us

Theorem 4.13. Let G/Γ be a compact solvmanifold, G is a completely solvable Lie group and ω is a closed 1-form on G/Γ. The cohomology $H^*_{\omega}(G/\Gamma, \mathbb{C})$ is non-trivial if and only if $-\lambda[\omega] \in \{0\} \cup \Omega_0$ — the finite subset in $H^1(G/\Gamma, \mathbb{R})$ well-defined in terms of the corresponding Lie algebra \mathfrak{g}.

Corollary 4.14 (Al). Let G/Γ be a compact nilmanifold. The cohomology $H^*_{\omega}(G/\Gamma, \mathbb{C}) = 0$ if and only if $\lambda \omega \neq 0$.

Let us consider a 3-dimensional solvmanifold $M = G_0/\Gamma$ defined in the Example 4.6. The corresponding Lie algebra \mathfrak{g}_0 is isomorphic to the Lie algebra defined by its basis e_1, e_2, e_3 and following non-trivial brackets:

$[e_1, e_2] = e_2, [e_1, e_3] = -e_3.$

We take a dual basis $\omega_1, \omega_2, \omega_3$ in \mathfrak{g}^*. Then

$d\omega_1 = 0, d\omega_2 = \omega_1 \wedge \omega_2, d\omega_3 = -\omega_1 \wedge \omega_3.$

So $\alpha_2 = \omega_1$ and $\alpha_3 = -\omega_1$. It is easy to see that $H^*_{\omega}(\mathfrak{g}_0)$ is non-trivial if and only if $\lambda \omega = 0, \pm \omega_1$. For corresponding Betti numbers $b^p_{\lambda \omega}(M) = \dim H^p_{\lambda \omega}(G_0/\Gamma) = \dim H^p_{\lambda \omega}(\mathfrak{g}_0)$ of the solvmanifold $M = G_0/\Gamma$ we have:

$b^0_{\pm \omega_1} (M) = 0, b^1_{\pm \omega_1} (M) = b^2_{\pm \omega_1} (M) = 1, b^3_{\pm \omega_1} (M) = 0;

b^0 (M) = b^1 (M) = b^2 (M) = b^3 (M) = 1.$

REFERENCES

[Al] L. Alania, Cohomology with local system of certain nilmanifolds, Russian Math. Surveys 54:5 (1999), 1019–1020.

[D] J. Dixmier, Cohomologie des algebres de Lie nilpotentes, Acta Sci. Math. Szeged 16 (1955), 246–250.

[H] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo, Sect. 1, 8:4, (1960), pp. 289–331.

[Ma] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. (1) 9 (1962), 276–307.

[Mill] D.V. Millionschikov, Cohomology of nilmanifolds and Gontcharova’s theorem, in “Global Differential geometry: The Mathematical Legacy of Alfred Gray”, M. Fernandez and J.Wolf ed., AMS CONM 288 (2001), 381–385.

[Mos1] G.D. Mostow, Factor spaces of soluble groups, Ann. of Math. 60 (1954), 1–27.

[Mos2] G.D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. 73 (1961), 20–48.

[Nz] K. Nomizu, On the cohomology of homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531–538.

[N1] S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Soviet Math. Dokl. 24 (1981), 222–226.

[N2] S. P. Novikov, The hamiltonian formalism and a many-valued analogue of Morse theory, Russian Math. Surveys 37:5 (1982), 1–56.

[N3] S. P. Novikov, Bloch homology. Critical points of functions and closed 1-forms, Soviet Math. Dokl. 33:5 (1986), 551-555.
[N4] S. P. Novikov, *On the exotic De-Rham cohomology. Perturbation theory as a spectral sequence*, arXiv:math-ph/0201019.

[Pa] A.V. Pazhitnov, *An analytic proof of the real part of Novikov’s inequalities*, Soviet Math. Dokl. 35 (1987), 1–2.

[R] M.S. Raghunathan, *Discrete Subgroups of Lie Groups*, Springer-Verlag, 1972.

[W] E. Witten, *Supersymmetry and Morse theory*, J. Differential Geom. 17 (1982), 661–692.

Department of Mathematics and Mechanics, Moscow State University, 119899 Moscow, Russia

Current address: Université Louis Pasteur, UFR de Mathématique et d’Informatique, 7 rue René Descartes - 67084 Strasbourg Cedex (France)

E-mail address: million@mech.math.msu.su