Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds

Ilse Vanhoutte, Kris Audenaert and Leen De Gelder *

Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium

Exposure to mycotoxins, secondary metabolites produced by fungi, may infer serious risks for animal and human health and lead to economic losses. Several approaches to reduce these mycotoxins have been investigated such as chemical removal, physical binding, or microbial degradation. This review focuses on the microbial degradation or transformation of mycotoxins, with specific attention to the actual detoxification mechanisms of the mother compound. Furthermore, based on the similarities in chemical structure between groups of mycotoxins and environmentally recalcitrant compounds, known biodegradation pathways and degrading organisms which hold promise for the degradation of mycotoxins are presented.

Keywords: detoxification, microorganisms, mycotoxins, biodegradation, metabolite

INTRODUCTION

The presence of mycotoxins is inherent to many food and feed products worldwide (Bhat et al., 2010; Marroquín-Cardona et al., 2014). Hallmarks of their presence and their impact on animal and human health are encountered throughout history. Ergotism, also known as “St. Anthony’s fire” occurred in several areas in Europe during the tenth century (Schiff, 2006) and was caused by the consumption of rye containing ergot alkaloids, produced by the fungus Claviceps purpurea (Bové, 1970; Beardall and Miller, 1994). In Siberia, a delayed harvest due to the second world war resulted in grains heavily contaminated with trichothecenes produced by Fusarium spp. People later consuming the grain were afflicted with number of nonspecific disorders and mortality mounted up to 10% (Manahan, 2002). In 1962, 100,000 turkeys died in London of Turkey X disease, linked to aflatoxins from Aspergillus flavus (Binder, 2007). These examples mentioned above illustrate the acute impact of high loads of singular mycotoxins on human and animal health. However, longtime exposure to low concentrations of mycotoxins also entail chronic toxicities which often result in non-specific symptoms, difficult to track-and-trace down to mycotoxins. These toxicities include estrogenic gastrointestinal, urogenital, vascular, kidney, and nervous disorders. Some mycotoxins are carcinogenic or immuno-compromising, and as such also promote the development of infectious diseases (Peraica et al., 1999; Hussein and Brasel, 2001; Creppy, 2002; Richard, 2007; Da Rocha et al., 2014).

For many years the research community focused on the occurrence of singular mycotoxins but nowadays scientific interest shifts to studies involving multiple mycotoxins. This new approach is highly relevant as large scale multi-toxin surveys show that a number of mycotoxins tend to co-occur with other sometimes structurally not-related mycotoxins (Gerding et al., 2014; Storm et al., 2014; Vanheule et al., 2014; and many more). In addition, mycotoxins are known to have additive and synergistic effects on human- and animal health (Alassane-Kpembi et al., 2013; Klaric et al., 2013; Clarke et al., 2014).
Research efforts progressively increase to develop mitigation strategies based on risk monitoring, risk characterization, prevention, intervention, and remediation strategies for multiple mycotoxins, which start from critical points along the production chain comprising field, storage, processing, and transportation. However, monitoring and good agricultural, storage, and transportation practices along with an effective Hazard Analysis and Critical Control Point approach do not completely prevent mycotoxin presence in the food or feed chain (Bhat et al., 2010). Decontamination technologies then offer a last resort to salvage contaminated batches along the production chain.

Decontamination strategies to reduce mycotoxins in food- and feed commodities are technologically diverse and based on physical, chemical, or biochemical principles. Some physical processes aim to remove highly contaminated fractions from bulk material (Bullerman and Bianchini, 2007; Cheli et al., 2013; Kaushik, 2015) through sorting (Scudamore et al., 2007), milling (Castells et al., 2007; Khatibi et al., 2014), dehulling (Fandohan et al., 2006; Rios et al., 2009; Matumba et al., 2015), cleaning (van der Westhuizen et al., 2011), heating, irradiation, or combinational approaches (Fandohan et al., 2005; Matumba et al., 2015). Another physical removal strategy is the use of inorganic or organic mycotoxin binders (Ramos et al., 1996; Kolosova and Stroka, 2011). Although these adsorbing binders have some promising features, some may have adverse nutritional effects due to binding of vitamins and minerals (Huwig et al., 2001; Yiannikouris et al., 2006) or reducing the efficacy pharmacokinetics of antibiotics (De Mil et al., 2015).

Chemical remediation strategies involve the conversion of mycotoxins via chemical reactions. Ammoniation (Norred et al., 1991), alkaline hydrolysis, peroxidation, ozonation, and the use of bisulphites are reported to be effective on one or more mycotoxins but a detailed insight into the toxicity of eventual end products or the impact on palatability and nutritive quality is questionable.

Microbial based methods comprise mycotoxin decomposition, transformation, or adsorption. The latter strategy has already been mentioned under physical measures and will not be considered in detail in this review. Focus in this review will be on transformation and biodegradation of the main mycotoxins by microorganisms. Although there are some excellent reviews on biodegradation (Zinedine et al., 2007; Wu et al., 2009; Awad et al., 2010; Jard et al., 2011; Devreese et al., 2013; McCormick, 2013; Hathout and Aly, 2014; Adebo et al., 2015), this review is timely because of two reasons:

Firstly, studies often wrongly identify biodegradation with detoxification, or do not test for toxicity of potential metabolites. Indeed, not all transformation or degradation products are detoxification products. This is nicely illustrated for aflatoxins and zearalenone (ZEN). Aflatoxin M1 (AFM1) is the hydroxylated metabolite of AFB1 and is categorized as possible carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC; IARC, 2002). Aflatoxicol (or aflatoxin R0), a reduction product of AFB1, has been detected as degradation product by Corynebacterium rubrum, Aspergillus niger, Trichoderma viride, Mucor ambiguous, and Dactylum dendroides (Mann and Rehm, 1976; Wong and Hsieh, 1976). However, Karabulut et al. (2014) concluded that AFB1 and aflatoxicol have similar potency to form an exo-epoxide analog which can bind to DNA. Assessing the ZEN biodegradation capacity of several microorganisms, Hahn et al. (2015) found that many strains were able to convert ZEN to α- and/or β-ZEL, showing similar estrogenic activity compared to ZEN. Aerobic and anaerobic degradation to other uncharacterized metabolites with unidentified toxicity was obtained as well. These results demonstrate the importance of in vitro experiments to critically screen agents claiming mycotoxin detoxification.

Secondly, the available set of mycotoxin degrading microorganisms is limited and their performance is often doubtful when considering multiple mycotoxin degradation. This issue was also nicely illustrated by Hahn et al. (2015). Using an in vitro screening approach, 20 commercially available agents claiming mycotoxin detoxification were tested for their efficacy to inactivate and/or degrade the two structurally not related mycotoxins DON or ZEN. The majority of the agents were not effective or converted the toxins to equally toxic metabolites. Only one of the products efficiently inactivated or degraded the two considered mycotoxins under the tested conditions.

New insights on actual microbial detoxification routes are needed and can be based on known biodegradation metabolisms of non-mycotoxins found in diverse microbial communities, which we chose to identify as “unexplored worlds” to be discovered for the mycotoxin research field. Indeed, many hazardous, undesirable, deleterious, or recalcitrant molecules in other research fields share structural analogies with diverse mycotoxins and are reported to be successfully degraded by microorganisms. These unexplored worlds may serve as resource for cutting edge research in the field of mycotoxin remediation or in the field of metagenomics screening surveys in search for new microbial degraders of mycotoxins.

In this review, We are not only focusing on Fusarium mycotoxins, but also on Aspergillus, Penicillium, and other mycotoxins. This is relevant as independently of the producing genus, mycotoxins often share key-chemical groups responsible for their toxicity and thus biodegrading organisms for one mycotoxin can have their relevance for other mycotoxins produced by distinct fungal genera.

TOXICITY AND DEGRADATION OF MYCOTOXINS

In order to assess detoxification by microorganisms, it is important to pinpoint the actual groups within the chemical structure of each mycotoxin which infer the toxic effects (Table 1). Next to the main toxic structural groups occurring in mycotoxins, structural similarities between mycotoxins are also highlighted; aflatoxins and ochratoxins are both composed of a coumarin moiety, whereas the main structure of aflatoxins, ZEN and ochratoxins is based on a lactone ring (Table 1—Red). Carboxyl derivatives (ester bonds), often playing a role in toxicity, are frequently present, as well in the lactone, as in side groups (Table 1—Red) (observed in fumonisins, ZEN, ochratoxins, and acylated trichotheccenes). Each mycotoxin is
TABLE 1 | Chemical structural groups inferring toxicity in mycotoxins.

Mycotoxin group	Side groups	Main toxic structural groups	References
AFLATOXINS		Lactone ring	Lee et al., 1981
	$R_1 = C=O, -(C=O)-O$, or C-OH	Double bond in difuran ring moiety	Wogan et al., 1971
	$R_2 = H$ or OH		
FUMONISINS	$R_1 = H$ or OH	Two tricarboxylic acid side chains	Abbas et al., 1993b; Merrill et al., 1993b; Abbas et al., 1995; Voss et al., 1996b; Norred et al., 1997
	$R_2 = H$ or OH	Free amino group	Abbas et al., 1993b; Norred et al., 1997
ZEARALENONES	$R = O$ or H, α-OH	Lactone ring	El-sharkawy S. H. and Abul-hajj Y. J., 1988
	$1',2' = \text{trans or dihydro}$	C-4 hydroxyl group	El-sharkawy S. H. and Abul-hajj Y. J., 1988
TRICHTHECENES	$R_1 = H$ or OH	Epoxide group	Zhou et al., 2008
	$R_2 = H$, OH or OAc	Acylated side groups	Rocha et al., 2005
	$R_3 = OH$ or OAc		
	$R_4 = H$ or OH		
	$R_5 = H$, OH, =O, -O-(C=O)-CH2-OH-(CH3)2 or -O-(C=O)-CH2-COH-(CH3)2		
OCHRATOXINS	$R_1 = Cl$ or H	Isocoumarin moiety	Xiao et al., 1996
	$R_2 = H$, methyl or ethyl	Carboxyl group of the phenylalanine moiety	
	$R_3 = H$ or OH	Cl group	

Red, carboxylic derivatives (lactone rings and ester bonds) in red; Blue, specific groups responsible for toxicity.

Further characterized concerning specific groups responsible for its toxicity (Table 1—Blue).

From our perspective, there are two ways in which detoxification of the mother compound in a degradation study can be confirmed: (i) the confirmation of reduced toxicity after degradation through one or more actual toxicity assays on particular organisms or cell lines, this is the most convincing proof; (ii) the detection and identification of detoxification products, for which in independent literature has been shown that they confer a lower toxicity to the mother compound. Of course, a combination of both ways provides the most holistic approach. The decreased toxicity of the degradation metabolites listed in Tables 2–7 can therefore be found in Table 1 in Supplementary Material.

Fumonisins

Toxicity

Fumonisins (most importantly FB1, FB2), first described by Gelderblom et al. (1988), are mainly produced by *F. verticillioides* and *F. proliferatum* and are structurally similar to sphingolipid long-chain bases such as sphinganine and sphingosine. This feature is tightly related to their toxicity mechanism through the inhibition of the sphingolipid biosynthesis (Merrill et al., 1993a; Soriano et al., 2005) and exposure to fumonisins.
TABLE 2 | Degradation and/or detoxification products of fumonisins.

Degradation and/or detoxification product	Microorganism	References	
REMOVAL OF TRICARBALLYLATE SIDE CHAINS AND AMINO GROUP	Sphingomonas sp. ATCC 55552\(^2\)	Duvick et al., 1998a; Heinl et al., 2011; Patents: Duvick et al., 1998b, 2003	
	Sphingopyxis sp. MTA 144	Täubel, 2005; Hartinger et al., 2009, 2010; Patents: Moli et al., 2014	
	Exophiala sp.\(^6\)	Duvick et al., 1998a; Blackwell et al., 1999; Patents: Duvick et al., 1998b, 2003	
ACCUMULATION OF (TENTATIVELY) HEPTADECANONE, ISONONADECENE, OCTADECENAL AND EICOSANE	Delftia/Comamonas NCB 1492\(^8\)	Benedetti et al., 2006	
REMOVAL OF AMINO GROUP	based on increased pH	Bacillus sp. and yeast strain	Camilo et al., 2000

\(^1\) growth on fumonisin as sole carbon source.
\(^2\) growth on fumonisin as sole carbon and nitrogen source.

has been associated with a wide variety of diseases in animals as reviewed by Voss et al. (2007), such as liver cancer in rats, equine leukoencephalomalacia, and porcine pulmonary edema.

Specifically, fumonisins are comprised of a 22 carbon aminopentol with two tricarballylate (TCA) side groups, where two structural groups are important in their toxicity mechanism (Table 1). Firstly, the unsubstituted primary amino group at C2 competitively inhibits ceramide synthase, thereby disrupting the de novo biosynthesis of ceramide and sphingolipid metabolism (Voss et al., 2007). This free primary amino group of fumonisin-like compounds is a prerequisite for ceramide synthase inhibition, since N-acetylation of FB1 diminished or removed the toxicity effects in rat liver slices (Norred et al., 1997) and in jimsonweed and several mammalian cell lines (Abbas et al., 1993b). Secondly, the TCA side groups seem to have varying effects on the toxicity. On the one hand, absence of these side groups has been found to reduce both phytotoxicity and mammalian cytotoxicity (Abbas et al., 1995), and the resulting corresponding aminopentol (AP1, AP2) backbones were only 30–40% (Norred et al., 1997) or 10% as potent as the parent toxins (Merrill et al., 1993b). In contrast, removal of the TCA side groups has also been shown to enhance cytotoxicity in certain mammalian cell lines (Abbas et al., 1993b) and AP1 displays renal toxicity comparable to that of FB1 (Voss et al., 1996a).

Degradation: Organisms and Pathways

Only a few microorganisms are known to degrade and thereby detoxify fumonisins (Table 2), mostly by removal of the TCA groups as well as the free amino group. Although none of these studies actually determined detoxification of fumonisin B1 by these microorganisms through in vitro assays, based on what is known regarding the role of the TCA groups and the free amino group in inferring the toxicity of FB1 (Table 1, Table 1 in Supplementary Material), we can safely assume detoxification was indeed achieved.

Sphingomonas sp. ATCC 55552 was isolated from field-grown, moldy maize kernels, and stalk tissue (Duvick et al., 1998a) and been shown to degrade fumonisin B1 through the consecutive action of a carboxylesterase (Duvick et al., 2003) and an aminotransferase (Heinl et al., 2011). The same pathway was found in *Sphingopyxis* sp. MTA 144 isolated from composted earth (Täubel, 2005), in which the gene cluster responsible for fumonisin degradation was identified with *fumD*, encoding the carboxylesterase and *fumI* encoding the aminotransferase (Hartinger et al., 2009, 2010).

Degradation by Exophiala sp., also isolated from field-grown, moldy maize kernels, and stalk tissue (Duvick et al., 1998a), was shown to be conferred by a carboxylesterase and, in contrast to ATCC 55552 and MTA 144, by an oxidative deaminase. Two degradation products were identified: a new compound, 2-oxo-12,16-dimethyl-3,5,10,14,15-icosanepentol hemiketal, and in smaller amounts the N-acetylated aminopentol backbone (N-acetylAP1).

Degradation of *Sphingomonas* sp ATCC 55552 was associated with a wide variety of diseases in animals as reviewed by Voss et al. (2007), such as liver cancer in rats, equine leukoencephalomalacia, and porcine pulmonary edema.

Specifically, fumonisins are comprised of a 22 carbon aminopentol with two tricarballylate (TCA) side groups, where two structural groups are important in their toxicity mechanism (Table 1). Firstly, the unsubstituted primary amino group at C2 competitively inhibits ceramide synthase, thereby disrupting the de novo biosynthesis of ceramide and sphingolipid metabolism (Voss et al., 2007). This free primary amino group of fumonisin-like compounds is a prerequisite for ceramide synthase inhibition, since N-acetylation of FB1 diminished or removed the toxicity effects in rat liver slices (Norred et al., 1997) and in jimsonweed and several mammalian cell lines (Abbas et al., 1993b). Secondly, the TCA side groups seem to have varying effects on the toxicity. On the one hand, absence of these side groups has been found to reduce both phytotoxicity and mammalian cytotoxicity (Abbas et al., 1995), and the resulting corresponding aminopentol (AP1, AP2) backbones were only 30–40% (Norred et al., 1997) or 10% as potent as the parent toxins (Merrill et al., 1993b). In contrast, removal of the TCA side groups has also been shown to enhance cytotoxicity in certain mammalian cell lines (Abbas et al., 1993b) and AP1 displays renal toxicity comparable to that of FB1 (Voss et al., 1996a).

Degradation: Organisms and Pathways

Only a few microorganisms are known to degrade and thereby detoxify fumonisins (Table 2), mostly by removal of the TCA groups as well as the free amino group. Although none of these studies actually determined detoxification of fumonisin B1 by these microorganisms through in vitro assays, based on what is known regarding the role of the TCA groups and the free amino group in inferring the toxicity of FB1 (Table 1, Table 1 in Supplementary Material), we can safely assume detoxification was indeed achieved.

Sphingomonas sp. ATCC 55552 was isolated from field-grown, moldy maize kernels, and stalk tissue (Duvick et al., 1998a) and been shown to degrade fumonisin B1 through the consecutive action of a carboxylesterase (Duvick et al., 2003) and an aminotransferase (Heinl et al., 2011). The same pathway was found in *Sphingopyxis* sp. MTA 144 isolated from composted earth (Täubel, 2005), in which the gene cluster responsible for fumonisin degradation was identified with *fumD*, encoding the carboxylesterase and *fumI* encoding the aminotransferase (Hartinger et al., 2009, 2010).

Degradation by *Exophiala* sp., also isolated from field-grown, moldy maize kernels, and stalk tissue (Duvick et al., 1998a), was shown to be conferred by a carboxylesterase and, in contrast to ATCC 55552 and MTA 144, by an oxidative deaminase. Two degradation products were identified: a new compound, 2-oxo-12,16-dimethyl-3,5,10,14,15-icosanepentol hemiketal, and in smaller amounts the N-acetylated aminopentol backbone (N-acetylAP1).

Degradation of *Sphingomonas* sp ATCC 55552 was associated with a wide variety of diseases in animals as reviewed by Voss et al. (2007), such as liver cancer in rats, equine leukoencephalomalacia, and porcine pulmonary edema.

Specifically, fumonisins are comprised of a 22 carbon aminopentol with two tricarballylate (TCA) side groups, where two structural groups are important in their toxicity mechanism (Table 1). Firstly, the unsubstituted primary amino group at C2 competitively inhibits ceramide synthase, thereby disrupting the de novo biosynthesis of ceramide and sphingolipid metabolism (Voss et al., 2007). This free primary amino group of fumonisin-like compounds is a prerequisite for ceramide synthase inhibition, since N-acetylation of FB1 diminished or removed the toxicity effects in rat liver slices (Norred et al., 1997) and in jimsonweed and several mammalian cell lines (Abbas et al., 1993b). Secondly, the TCA side groups seem to have varying effects on the toxicity. On the one hand, absence of these side groups has been found to reduce both phytotoxicity and mammalian cytotoxicity (Abbas et al., 1995), and the resulting corresponding aminopentol (AP1, AP2) backbones were only 30–40% (Norred et al., 1997) or 10% as potent as the parent toxins (Merrill et al., 1993b). In contrast, removal of the TCA side groups has also been shown to enhance cytotoxicity in certain mammalian cell lines (Abbas et al., 1993b) and AP1 displays renal toxicity comparable to that of FB1 (Voss et al., 1996a).
TABLE 3 | Degradation and/or detoxification products of ZEN.

Degradation and/or detoxification product	Microorganism	References
CLEAVAGE OF THE LACTONE RING		
Cleavage of the lactone ring	Gliocladium roseum RRL1859	El-sharkawy S. and Abul-hajj Y. J., 1988
with decarboxylation	Clonostachys rosea IFO 7063 (a near-isogenic strain of NRRL 1859)	Kakeya et al., 2002; Takahashi-Ando et al., 2004
No α-zearalenol and α-zearalanol observed, CO₂-emission indicative of decarboxylation	Culture extract of B. natto CICC 24640 and B. subtilis 168	Tinyiro et al., 2011
No decarboxylation No α- nor β-zearalenol detected	Trichosporon mycotoxinivorans	Molinar et al., 2004; Vekiru et al., 2010
CLEAVAGE OF THE AROMATIC RING		
ZEN-A	Aspergillus niger strain FS10	Sun et al., 2014
ZEN-B: cleaved aromatic ring reduced liver and kidney damage (rats)	Acinetobacter sp. SM04*	Yu et al., 2011a
ZEN-1 and ZEN-2: cleaved aromatic ring reduced estrogenic effects	Pseudomonas sp. ZEA-1*	Altahih, 2007
REDUCED TOXICITY CONFIRMED (NO DETOXIFICATION PRODUCTS IDENTIFIED)		
Reduced toxicity of ZEN and α- and β-zearalenone to Artemia salina	Pseudomonas sp. ZEA-1*	Altahih, 2007
Decrease or complete removal (K408) of estrogenic effects	Rhodococcus sp. Rhodococcus pyridinivorans K408	Kriszt et al., 2012; Cserháti et al., 2013; Kripton et al., 2013
8′(S)-hydroxylzearealenone and 2,4-dimethoxyzearealenone: no binding to rat estrogen receptor	Streptomyces rimosus	El-sharkawy S. H. and Abul-hajj Y. J., 1988

*uses ZEN as sole carbon source.

In this light, we would like to draw the focus on the Alternaria toxins AAL-Tₐ en -Tₐ, which share with fumonisins a distinct structural similarity and toxicity mechanism (Abbas et al., 1993a; Tsuge et al., 2013). Fumonisins have two TCA side chains esterified to the aminopentol backbone, whereas AAL-toxins have only one TCA side group, and are therefore collectively referred to as sphenamine-analog mycotoxins. To the best of our knowledge, there have not been any reports of microbial strains capable of degrading AAL-toxins, but based on their structural similarity it is likely that fumonisin degrading organisms as described above might also be capable of degrading AAL-toxin.

Zearalenone

Toxicity

ZEN is mainly produced by fungi belonging to the genus Fusarium such as F. graminearum and F. culmorum and possesses estrogent activity in pigs, cattle and sheep (Zinedine et al., 2007). The toxicity of ZEN is mainly conferred by its lactone group and the free C-4 hydroxyl group (Table 1) which is necessary for binding the estrogen receptor (El-sharkawy S. H. and Abul-hajj Y. J., 1988). Many derivatives of ZEN are known and some exhibit a higher estrogenicity than the mother compound (Shier et al., 2001), such as α-zearalenol, α- and β-zearalanol, and zearalanone. Several studies described the
TABLE 4 | Degradation and/or detoxification products of acylated trichothecenes.

Degradation and/or detoxification product	Microorganism	References
DEACETYLATION		
T-2 toxin → HT-2 toxin	Eubacterium BBSH 797	Fuchs et al., 2002
	Carboxylesterase (from rat liver microsomes) (EC 3.1.1.1)	Ohta et al., 1977; Johnsen et al., 1986
(Figure: HT-2 toxin)		
T-2 toxin → HT-2 toxin → T-2 triol	Curtobacterium sp. strain 114-2	Ueno et al., 1983
	Anaerovibrio lipolytica, Selenomonas ruminantium	Westlake et al., 1987
	Bacterial community from soil or freshwater	Beeton and Bull, 1989
(Figure: T-2 triol)		
T-2 toxin → HT-2 toxin, T-2 triol, neosolaniol	Butyrivibrio fibrisolvens CE51	Westlake et al., 1987
(Figure: neosolaniol)		
T-2 toxin → neosolaniol	Blastobotrys capitulata strain	McCormick et al., 2012
Diacetoxydictyocircinol → monoacetoxydictyocircinol and scirpentriol	Fecal microflora from chickens, horses or dogs	Swanson et al., 1987
(Figure: monoacetoxydictyocircinol)		
(Figure: scirpentriol)		
DAS → monoacetoxydictyocircinol	Butyrivibrio fibrisolvens M-14a (from ovine rumen fluid)	Matsushima et al., 1996
DEACetyLATION AND DE-EPOXIDATION		
Diacetoxydictyocircinol → de-epoxymonoacetoxydictyocircinol and de-epoxyciscirpentriol	Mixed culture from intestinal microflora from rats	Swanson et al., 1987
(Figure: de-epoxyciscirpentriol)		

(Continued)
TABLE 4 | Continued

Degradation and/or detoxification product	Microorganism	References
T-2 triol → 1. de-epoxy; 2. T-2 tetraol → 3. de-epoxy T-2 tetraol	Eubacterium BBSH 797	Fuchs et al., 2002
DE-EPoxidation		
T-2 toxin → de-epoxy HT-2 toxin and de-epoxy T-2 triol	Mixed culture from intestinal microflora from rats	Swanson et al., 1987
HT-2 toxin → de-epoxy HT-2 toxin	Eubacterium BBSH 797	Fuchs et al., 2002
T-2 tetraol → de-epoxy T-2 tetraol	Eubacterium BBSH 797	Fuchs et al., 2002
3-ACetylation		
T-2 toxin → 3-acetyl T-2 toxin	Blastobotrys parvus strain	McCormick et al., 2012

The microbial transformation of ZEN to such derivatives, but as they do not represent a true detoxification of the compound, they are not discussed in this review. Also, cases in which no clear evidence is presented (yet) for true detoxification (e.g., *Pseudomonas* strains in Tan et al., 2014, 2015) are not discussed in detail.

Degradation: Organisms and Pathways

To date, two main detoxification mechanisms are known for ZEN, both cleaving a ring structure (Table 3). The lactone ring can be cleaved by several fungal species through two mechanisms. Degradation by *Gliocladium roseum* NRRL1859 (El-sharkawy S. and Abul-hajj Y. J., 1988) resulted in a 1:1 mixture of 1-(3,5-dihydroxyphenyl)-10′-hydroxy-1-undecen-6′-one, and 1-(3,5-dihydroxyphenyl)-6′-hydroxy-1-undecen-10′-one. Matthies et al. (2001) showed that production of the ZEN-degrading enzyme in *G. roseum* DSM 62726 was induced the highest by the derivatives zearalanol and α-zearalanol. Almost similarly, only the first metabolite was observed after degradation by a near isogenic strain of NRRL1859, *Clonostachys rosea* (synonym: *G. roseum*, teleomorph: *Bionectria ochroleuca*) IFO 7063 (Kakeya et al., 2002), resulting in the loss of estrogenic activity in MCF-7 cancer cells (Table 1 in Supplementary Materials), through the activity of a ZEN lactonohydrolase enzyme (zhd101) which catalyzes the hydrolysis of ZEN at the ester bond in the lactone ring, followed by spontaneous decarboxylation (Takahash-Ando et al., 2004). Based on this knowledge, Popiel et al. (2014) searched a collection of *Trichoderma* and *Clonostachys* isolates for functional lactonohydrolase homologs, to find a functional ZEN lactonohydrolase in mycoparasitic *Trichoderma aggressivum*. A similar pathway might also exist in *Bacillus* sp., as cell culture extracts of *B. natto* CICC 24640 and *B. subtilis* 168 showed complete degradation of ZEN in conjunction with CO₂-emmission, indicative of decarboxylation (Tinyiro et al., 2011).

A second cleavage pathway is exhibited by the yeast *Trichosporum mycotoxinivorans* (Molnar et al., 2004) to ZOM-1 intermediate (cleavage at the C6-ketone group), suggested to take place through a lactone intermediate and subsequent activity by unspecified a/b-hydrolase, but without the decarboxylation as seen in *C. rosea*. ZOM-1 did not show any estrogenic activity in a yeast bioassay, nor interaction with the human estrogen receptor (Vekiru et al., 2010), nor estrogenic activity with MCF-7 cells (Liu et al., 2001). It is important to notice that *T. mycotoxinivorans* is well-known in medicine, since it can cause opportunistic infections or induce summer-type...
TABLE 5 | Degradation and/or detoxification products of non-acylated tricothecenes.

Degradation and/or detoxification product	Microorganism	References
DE-EPoxyDATION		
DON → de-epoxy DON (DOM-1)	Eubacterium BBSH 797 (anaerobically)	Binder and Binder, 2004
	Chicken intestinal microbes	Young et al., 2007
	Isolate from chicken guts	Zhou et al., 2007
	Microbial community C133 (from fish guts)	Guan et al., 2009
	Isolate LS-100 (99% ∼ Bacillus arbutinivorans) (from chicken intestines)	Yu et al., 2010
	Citrobacter freundii (aerobically)	Rafiqul, 2012
nivalenol (NIV) → de-epoxy NIV	Eubacterium BBSH 797	Fuchs et al., 2000
	Chicken intestinal microbes	Young et al., 2007
	Microbial community C133 (from fish guts)	Guan et al., 2009
verrucarol → de-epoxy verrucarol	Chicken intestinal microbes	Young et al., 2007
	Microbial community C133 (from fish guts)	Guan et al., 2009
C3 MODIFICATION THROUGH OXIDATION		
3-keto-DON	Agrobacterium-Rhizobium strain E3-39 (soil)	Shima et al., 1997
	Mixed culture	Volkl et al., 2004
	Devosia mutans strain 17-2-E-8	He, 2015
C3 MODIFICATION THROUGH EPIMERIZATION		
3-epi-DON	Nocardoides strain WSN05-2 (soil, wheat field)*	Ikunaga et al., 2011
	Nocardoides strains (environmental samples (field soils, wheat leaves))*	Sato et al., 2012
	Devosia strains (environmental samples (field soils, wheat leaves))	Sato et al., 2012
	Devosia mutans strain 17-2-E-8	He, 2015

*growth as sole carbon source.

hypersensitivity pneumonitits in immune-deficient cystic fibrosis patients (Tintelnot et al., 2011) which can be an impediment for applications.

Detoxification of ZEN contaminated corn steep liquor by A. niger strain FS10 and its culture filtrate, exemplified by less severe liver and kidney damage in rats, was recently reported (Sun et al., 2014). Two intermediate products, ZEN-A and ZEN-B, which inferred reduced liver and kidney damage in rats compared to ZEN, were detected, of which the latter the authors suggested the benzene ring might be cleaved because the UV absorption of ZEN was lost in ZEN-B. Somewhat similarly, two degradation products (ZEN-1 and ZEN-2) were detected after degradation by Acinetobacter sp. SM04 isolated from agricultural soil, for which no equally estrogenic activity could be detected on the basis of the MTT (tetrazolium salt) cell proliferation assay in MCF-7 cell line. Also, UV-Vis spectroscopy indicated cleavage of the benzene ring in these products (Yu et al., 2011a). Interestingly, ZEN and its estrogenic properties were only reduced when degradation tests were performed with extracellular extracts from M1 medium cultures, where sodium acetate is the only extra carbon source, and not from Nutrient Broth cultures, where many different extra carbon sources are present (Yu et al., 2011b). This indicates that the transcription of genes responsible for ZEN degradation may be regulated by catabolite repression.

Pseudomonas sp. ZEA-1, isolated from the rhizosphere of a corn plant, was shown to harbor the responsible degradation genes on a 120 kb plasmid mediating the transformation of ZEN and its derivatives α- and β- ZEN into less toxic products to Artemia salina. The transformation product was not elucidated,
TABLE 6 | Degradation and/or detoxification products of aflatoxins.

Degradation and/or detoxification product	Microorganism	References
AFB1-8,9-DIHYDRODIOL	Armillariella tabescens	Liu et al., 1998a,b
	Phanerochaete sordida	Wang et al., 2011
AFB2a	Pleurotus ostreatus	Das et al., 2014
	GHBBF10	Wong and Hsieh, 1976
AFD1	Pseudomonas putida	Samuel et al., 2014
		Grove et al., 1984
AFD2	Pseudomonas putida	Samuel et al., 2014
AFD3	Pseudomonas putida	Samuel et al., 2014
REDUCED TOXICITY CONFIRMED (NO DETOXIFICATION PRODUCTS IDENTIFIED)		
reduced mutagenicity	Flavobacterium auranticum (= Nocardia corynebacteroides)	Ciegler et al., 1966; Teniola et al., 2005
	laccase enzyme (T. versicolor) recombinant laccase enzyme (A. niger)	Alberts et al., 2009
	Rhodococcus erythropolis	Alberts et al., 2006
reduced genotoxicity with SOS-chromotest	several Rhodococcus sp.	Cserháti et al., 2013
reduced toxicity in Aliivibrio fischeri or with SOS-chromotest	several Rhodococcus sp. and Pseudomonas sp.	Krifaton et al., 2011

other than the specific absorption maximum at 400 nm (Altalhi, 2007). A 5.5 kb fragment containing the gene(s) encoding for ZEN degradation was cloned and actively expressed in Escherichia coli (Altalhi and El-Deeb, 2009).

The complete loss of ZEN estrogenic activity was obtained by several degrading Rhodococcus strains (Kriszt et al., 2012; Cserháti et al., 2013), without the identification of possible metabolites. R. pyridinovorans K408 showed a biodegradation potential of up to 85% and decreased the estrogenicity with 76%. Several strains also simultaneously degraded AFB1, ZEN, and T2-toxin (Cserháti et al., 2013), confirming the status Rhodococcus as a metabolically highly versatile genus with a large potential for degradation of aromatic and other pollutants (Larkin et al., 2005).

Trichothecenes
Toxicity
Trichothecenes are sesquiterpenoids produced by mainly the genera Fusarium, Trichothecium, Myrothecium, Trichoderma, and Stachybotrys fungi (Sudakin, 2003; Kimura et al., 2007; Li
TABLE 7 | Degradation and/or detoxification products of ochratoxins.

Degradation/detoxification product	Microorganism	References	
ENZYMATIC REMOVAL OF PHENYLALANINE GROUP	**BACTERIA**		
ochratoxin α	Bacillus licheniformis	Petchkongkaew et al., 2008	
	Bacillus spp.		
	Brevibacterium linens	Rodriguez et al., 2011	
	Brevibacterium iodinum		
	Acinetobacter calcoaceticus	Hwang and Draughon, 1994; De Bellis et al., 2015	
	Penylobacterium immobile	Wegst and Lingens, 1983	
	Bacillus amyloliquefaciens ASAG1	Chang et al., 2015	
	Penylobacterium immobile	Wegst and Lingens, 1983	
	Bacillus amyloliquefaciens ASAG1	Chang et al., 2015	
	Cupriavidus basilensis Or16	Ferenczi et al., 2014	
	Pediococcus parvulus	Abrunhosa et al., 2014	
	Lactobacillus acidophilus	Fuchs et al., 2008	
ENZYMATIC REMOVAL OF PHENYLALANINE GROUP	**FUNGI**		
ochratoxin α	Aspergillus clavatus	Abrunhosa et al., 2002; Bejaoui et al., 2006	
	Aspergillus vesicolor		
	Aspergillus niger		
	Aspergillus japonicas		
	Aspergillus alliaceus		
	Aspergillus alliaceus		
	Aspergillus ochraceus		
	Aspergillus wenti		
	Trichosporon mycotoxivorans	Molinar et al., 2004	
	Botrytis spp	Abrunhosa et al., 2002	
	Alternaria spp.		
	Penicillium spp.		
	Cladosporium spp.		
	Rhizopus spp	Varga et al., 2005	
	Pediococcus species	Engelhardt, 2002	
	Saccharomyces spp.		
	Cryptococcus spp.		
	Pfiastia rhodozyza	Péteri et al., 2007	
	Aureobasidium pullulans	de Felice et al., 2008	
	Aspergillus niger	Dobritzsch et al., 2014	
	Aspergillus niger	Stander et al., 2000	

et al., 2011). High doses lead to emesis, whereas low doses induce decreased feed consumption and weight gain (Eriksen and Pettersson, 2004). Trichothecenes are characterized by a 12,13-epoxy-trichothe-9-ene nucleus (Hussein and Brasel, 2001). Type A trichothecenes do not contain carbonyl function at C8 (T-2 toxin, HT-2 toxin, T-2 tetraol, T-2 triol, 15-monoacetoxyserpenol, DAS, neo-solaniol, and scirpentriol). Type B trichothecenes have a carbonyl group at C8 [deoxyxinalenol (DON), 15-acetyl DON, 3-acetyl DON, nivalenol (NIV), 4-acetyl NIV]. Type C trichothecenes include another epoxide group and type D trichothecenes contains an additional ring system between C4 and C15 position (Zhou et al., 2008; McCormick et al., 2011).

The 12,13-epoxide ring in trichothecenes is essential for their toxicity (Zhou et al., 2008) and has been linked to the cytotoxicity of trichothecenes, namely inhibition of protein, RNA and DNA synthesis (Hussein and Brasel, 2001; Rocha et al., 2005). Trichothecenes bind with the 60S subunit of the ribosome and interfere with the action of peptidyltransferase (Ehrlich and Daigle, 1987). However, the degree of toxicity is dependent on the presence of substituents on C15 and C4 (Cundliffe et al., 1974; Cundliffe and Davies, 1977). The most potent mycotoxin T-2 toxin has acetyl or acyl side groups on C4, C8, and C15 of the basic structure. Loss of a side group from either of these positions resulted in reduced protein synthesis inhibition (T-2 toxin to HT-2 toxin, neo-solaniol, or DAS). Further removal of side groups weakens their effect (T-2 triol, T-2 tetraol, 15-monoacetyl DAS, scirpentriol, fusarenon X, and DON) and reduction of hydroxyl groups, forming verrucarol, reduced their effectiveness greatly (Thompson and Wannemacher, 1986; Table 2 in Supplementary Material). De-acylation is clearly
a first step toward detoxification, illustrated in Figure 1 in Supplementary Material. This reduced effect of de-acylation of T-2 toxin is also confirmed with human melanoma SK-Mel/27 cell lines (Babich and Borenfreund, 1991) and β-galactosidase activity of Kluyveromyces marxianus (Engler et al., 1999) showing the same tendency (Table 1 in Supplementary Material).

Degradation: Organisms and Pathways

The toxicity of trichothecenes is, next to their epoxide-group, also dependent on their acylated side chains. Therefore, two main groups are distinguished; acylated (e.g., T-2 toxin) and non-acylated trichothecenes (e.g., DON).

As previously described, de-acylation is the first step in detoxification of acylated trichothecenes. Degradation of T-2 toxin to HT-2 toxin and subsequently to T-2 triol was performed by Curtobacterium sp. strain 114-2 of which the reduced toxicity of T-2 triol was once more confirmed resulting in 23 and 13 times less toxic than, respectively T-2 toxin and HT-2 toxin (Ueno et al., 1983; Table 4). Still, the epoxide group in trichothecenes remains responsible for their toxicity. De-epoxidation is the next step of detoxification trichothecenes. Several studies focuses on the degradation of multiple trichothecenes and the differences between their metabolism by the same organism(s).

Young et al. (2007) studied the metabolism of diverse trichothecenes by chicken intestinal microbes. For the non-acylated trichothecenes (4-DON, NIV, and verrucarol) their de-epoxidized metabolites were observed, for DAS, neurosolanil and T-2 toxin only de-acylation was exhibited and for the monoacetyl trichothecenes (3-acetyl DON, 15-acetyl DON, and fusarenon X), de-acylation was the predominant pathway.

In another study, pig gastrointestinal microflora transformed 3-acetyl DON into DON and which was further de-epoxidized (Eriksen et al., 2002). Rat intestinal microflora was also able to de-epoxidize T-2 tetraol and scirpentriol, transform T-2 toxin into de-epoxy HT-2 toxin and de-epoxy T-2 triol and DAS into de-epoxy monoacetoxyscirpenol and de-epoxy scirpentriol (Swanson et al., 1987). All above mentioned cases concern degradation by mixed cultures. In contrast, Eubacterium BBSh 797 has the ability to degrade several trichothecenes as pure culture isolated from bovine rumen fluid (Fuchs et al., 2000, 2002; Binder and Binder, 2004) and has been developed into a commercial product (Bomin® BBSh 797) for detoxifying trichothecenes in animal feed (He et al., 2010). It is known for its detoxification capacities of DON into DOM-1 and de-epoxidization of NIV, T-2 tetraol, scirpentriol, and HT-2 toxin. T-2 toxin was de-acylated into HT-2 toxin, whereas degradation of T-2 triol involved the competition of two reactions; (1) de-epoxidation or (2) deacylation into T-2 tetraol and subsequently de-epoxidation into de-epoxy T-2 tetraol (Fuchs et al., 2002). Further, 4-acetyl NIV and 3-acetyl NIV was de-acylated and/or de-epoxidized (Fuchs et al., 2000).

Degradation of DON occurs through de-epoxidation, oxidation, or isomerization (Table 5). Microbial culture C133 of fish guts transformed DON to DOM-1 (Guan et al., 2009). Eubacterium BBSh 797 is known to degrade DON into DOM-1 anaerobically (Binder and Binder, 2004). Citrobacter freundii could transform DON into DOM-1 aerobically (Rafiqul, 2012). DON can also be oxidized to 3-keto DON which is 10 times less toxic than DON evaluated with a bioassay based on mitogen-induced and mitogen-free proliferations of mouse spleen lymphocytes (Shima et al., 1997). The bacterium strain E3-39 which degraded DON to 3-keto-DON, is belonging to the Agrobacterium-Rhizobium group. A mixed culture from environmental sources could degrade DON into 3-keto-DON, whereas 15-acetyl DON, 3-acetyl DON and fusarenon-X were also transformed (Volk et al., 2004). Subsequently, He (2015) found the soil bacterium Devosia mutans 17-2-E-8 which transformed DON into 3-epi-DON (major product) and 3-keto-DON (minor product). These metabolites have also been tested on their toxicity with two assays. The IC50 values of 3-epi-DON and 3-keto-DON were 357 and 3 times higher, respectively, than that of DON on the basis of a MTT bioassay using Caco-2 cell line to asses cell viability, and were 1181 and 5 times higher, respectively, than that of DON on the basis of a cell proliferation BrDU bioassay using 3T3 fibroblast cell line to asses DNA synthesis (Table 1 in Supplementary Material). Toxicological effects of 14-day oral exposure of B6C3F1 mouse to DON and 3-epi-DON were also investigated concluding that 3-epi-DON was at least 50 times less toxic than DON (He, 2015). The metabolite 3-epi-DON was also formed by degradation of DON through Nocardioiodes sp. strain WSN05-2 isolated from a wheat field (Iknaga et al., 2011). And lastly, nine Nocardioiodes strains (Gram-positive) and four Devosia strains (Gram-negative) produced 3-epi-DON aerobically. The Gram-positive strains showed DON assimilation, whereas the Gram-negatives did not (Sato et al., 2012).

Further, hydroxylation and glycosylation of trichothecenes are also known for their detoxification capability (He et al., 2010), however these derivatives can be rehydrolyzed or regenerated in the digestive tract of animals and humans losing their detoxification capacity.

Aflatoxins

Toxicity

Aflatoxins are furanocoumarins produced by mainly Aspergillus species (Wu et al., 2009; Samuel et al., 2013). Naturally occurring aflatoxins are categorized by IARC as carcinogenic to humans (Group 1; IARC, 2002). Aflatoxin B1 (AFB1) is activated by cytochrome P450 system to a highly reactive AFB1-8,9-epoxide which can react with DNA (Eaton and Groopman, 1994; Güengerich et al., 1996).

The toxicity of AFB1 is mainly caused by the lactone ring. Cleavage of the lactone ring leads to a non-fluorescent compound with reduced biological activity (Lee et al., 1981). The residual component has a 450 times reduced mutagenicity (measured with the Ames test) and a 18 times reduced toxicity (measured with chicken embryo test; Lee et al., 1981). Also the difuran ring moiety, especially the presence of the double bond in the terminal furan ring, contributes to the toxicity (Wogan et al., 1971) as evidenced by comparing the toxicity of aflatoxins with similar coumarin molecules. Wong and Hsieh (1976) concluded by comparing several aflatoxins and metabolites with the Ames test that the double bond was also involved in both mutagenic
and carcinogenic activity of aflatoxins leading that the aflatoxins AFB2 and AFG2 (without a double bond) are much less toxic than AFB1 and AFG1 (with a double bond).

Degradation: Organisms and Pathways

To our knowledge, a first report on the microbial detoxification of AFB1 has been published in 1966, mediated by *Flavobacterium aurantiacum* (now called *Nocardia corynebacterioides*; Ciegler et al., 1966; Teniola et al., 2005). Although no detoxification products were analyzed, residual toxicity to ducklings was found to be absent indicating true detoxification (Ciegler et al., 1966). The biosafety of the microorganism was confirmed using an in vivo trial with chickens (Tejada-Castañeda et al., 2008). Since this first report, many studies have focused on the detoxification of AFB1. However, only a few studies detected the degradation products and analyzed their toxicity. Generally, two main detoxification pathways are observed: modification of the difuran ring or modification of the coumarin structure.

Firstly, modification of the difuran ring moiety was reported in several studies. Degradation of AFB1 into AFB1-8,9-dihydrodiol was performed by manganese peroxidase from the white rot fungi *Phanerochaete sordida* (Wang et al., 2011) and the “aflatoxin-detoxifyzyme (ADTZ)” of fungus *Armillariella tabescens* (Liu et al., 1998b; Table 6). The authors suggested that AFB1 degradation initially involves formation of AFB1-8,9-epoxide, after which a hydrolysis resulted in a dihydrodiol-derivate. Detoxification was confirmed with a reduced mutagenicity measured by the Ames *Salmonella*-based test (Liu et al., 1998b, 2001; Wang et al., 2011; Table 1 in Supplementary Material) and reduced toxicity measured with rat liver (Liu et al., 1998b) and chicken embryos (Liu et al., 1998a). Another metabolite was detected with the white rot fungus *Pleurotus ostreatus* GHBBF10 which degraded 91.76% of AFB1 into a component which could be a hydrolyte of AFB1, namely dihydrohydrat aflatoxin B1 (AFB2a) (Das et al., 2014; Table 2). AFB2a has also a reduced mutagenicity (Wong and Hsieh, 1976; Table 1 in Supplementary Material).

Secondly, the lactone ring in the coumarin moiety of AFB1 can be changed. A *Pseudomonas putida* strain has been discovered degrading AFB1 into AFD1 and subsequently into AFD2 (Table 6). The metabolite AFD1 had been previously discovered through ammonization and acidifying AFB1, whereas the difuran ring stays unchanged and the lactone ring is cleaved. AFD1 has a lower mutagenicity and toxicity measured by respectively the Ames *Salmonella*-based test (Méndez-Albores et al., 2005) and HeLa cells with the MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] method (Samuel et al., 2014). The metabolites AFD2 (an aflatoxin metabolite lacking the lactone and cyclopentenone ring) and AFD3 also showed a lower toxicity toward HeLa cells (Table 1 in Supplementary Material; Samuel et al., 2014).

In certain studies, no degradation product was identified, but toxicity tests were performed on the treated AFB1. Similarly to *F. aurantiacum* as mentioned before, a pure laccase enzyme from *Trametes versicolor* and a recombinant laccase enzyme produced by *A. niger* degraded, respectively, 87.34 and 55% of AFB1 with a significant loss of mutagenicity evaluated in the Ames *Salmonella*-based assay (Alberts et al., 2009). Extracellular enzymes of *Rhodococcus erythropolis* were also able to detoxify AFB1 with a loss of mutagenicity (Alberts et al., 2006).

Ochratoxins

Toxicity

Ochratoxins (OT) are a group of mycotoxins sharing an isocoumarin moiety substituted with a phenylalanine group (OTA, OTB, hydroxyl-OTA), a phenylalanine ester group (OTC, OTA methyl ester, OTB methyl ester, OTB ethyl ester), or a hydroxyl group (OTα and OTβ). OTA is the most important OT because of its incidence in food- and feed commodities. It is composed of a 7-carboxy-5-chloro-8-hydroxy-3,4-dihydro-3-R-methylisocoumarin (OTα) moiety and the amino acid L-phenylalanine group. Both structures are linked through a carboxy group via an amide bond. OTA is produced by *Aspergillus* and *Penicillium* species (Richard, 2007; McCormick, 2013). The mode of action of OTA is broad and therefore the molecule has nephrotoxic, mutagenic, teratogenic, neurotoxic, hepatotoxic, and immunotoxic properties (Pöhl-Leszkowicz and Manderville, 2007). The toxicity of OTA is mainly attributed to its isocoumarin moiety and probably not to the phenylalanine moiety (Table 1; Xiao et al., 1996). The carboxyl group of the phenylalanine moiety and the Cl group of the other moiety seem to be conducive for the toxicity of OTA.

Degradation: Organisms and Pathways

The main detoxification pathway of OTA is the hydrolyzation of the amide bond between the isocoumarin residue and phenylalanine by a carboxypeptidase. Two classes of carboxypeptidases have been associated with degradation of OTA namely Carboxypeptidase A (CPA) (Stander et al., 2001; Chang et al., 2015) and Y (CPY) (Dridi et al., 2015). The main difference between both is the use of a zinc ion within the protein for hydrolysis of the peptide at the C-terminal of the amino acid. Almost all strains that are reported to degrade OTA use this pathway resulting in the formation of L-β-phenylalanine and OTα the former being less toxic than OTA (Table 7; Bruinink and Sidler, 1997). Although this is a very straightforward way of reducing the amount of OTA in food and feed samples, it is important to highlight that the efficient degradation of OTA is depending on the activity of the peptidase enzyme. With this respect, several research groups showed that these carboxypeptidase enzymes tend to have high optimal temperatures (30°C or higher) which might hamper practical applications, observed with *Pediococcus parvulus* and several yeasts such as *Pfaiffia rhodozyma* (Péteri et al., 2007; Patharajan et al., 2011; Abrunhosa et al., 2014). Other enzymes are also able to carry out this reaction: Deoxygenases, lipases, amidases, and several commercial proteases (Abrunhosa et al., 2006), have also been identified as carrying out this reaction. Although depending on the enzyme, intermediates can be different, the end product is always OTα.

Some interesting strains are highlighted here. *Trichosporon mycotoxinivorans* was demonstrated to deactivate OTA by conversion into the nontoxic OTα. Even more intriguingly, *T. mycotoxinivorans* was also able to decarboxylate ZEN (Molnar...
et al., 2004; Vekiru et al., 2010). After 24 h, ZEN was degraded to carbon dioxide or into metabolites that neither showed fluorescence nor did absorb UV-light. Neither α- nor β-ZEL, other equally estrogenic metabolites of ZEN, could be detected. It is commercially applied as feed additive under the commercial name Biomin® MTV.

Phenyllobacterium immobile (Wegst and Lingens, 1983) was also found to convert OTA to OTα through a dioxygenase step on the phenylalanine moiety, a dehydrogenation to catechol, a ring cleavage, and the final formation of OTα via a hydrolase.

UNEXPLORED WORLDS THAT MIGHT HARBOUR VALUABLE MYCOTOXIN DEGRADING MICROORGANISMS

Targeting Carboxyl Esters

As stated above, fumonisins and acylated trichothecenes share carboxyl-esters which are involved in their toxicity. Detoxification of fumonisins is realized by removal of the tricarballylate side groups via carboxylesterases (EC 3.1.1.1). Similarly, acylated trichothecenes have several side groups where carboxylesterases could attack on the carboxyl group, as observed with carboxylesterases from rat liver microsomes (categorized as EC 3.1.1.1) degrading T-2 toxin into HT-2 toxin (Ohta et al., 1977; Johnsen et al., 1986). Carboxylesterases are multifunctional enzymes that catalyze the hydrolysis of substrates containing ester, amide, and thioester bonds with relatively broad substrate specificity (Bornscheuer, 2002) which is attributed to a large conformable active site that permits entry of numerous structurally diverse substrates. Microbial carboxylesterases have been reported in the degradation of pesticides; some hydrolyze pyrethroids and bind stoichiometrically to carbamates and organophosphates reviewed by Singh (2014). Several organisms have been isolated which dégradative capacities of these compounds inferred by the expression of carboxylesterases, for which, bearing in mind their general broad substrate specificity, it might be worthwhile to screen for degradation of fumonisins and acylated trichothecenes. For example, broad-spectrum pyrethroid-hydrolyzing carboxylesterases were identified in the lambda-cyalothrin degrading Ochrobactrum anthropic YZ-1 strain (Zhai et al., 2012) and Bacillus sp. DG-02, isolated from a pyrethroid-manufacturing wastewater treatment system (Chen et al., 2014). Similarly, an Acinetobacter baumannii strain was shown to degrade a wide range of organophosphorus compounds and evidence for a novel carboxylesterase in this strain was presented. Taking an environmental DNA (eDNA) isolation approach, Rashamuse et al. (2009) screened a microbial community to access novel carboxylesterases from environmental genomes: a carboxylesterase gene with 60% sequence identity to the gene from Ralstonia eutropha was identified, along with subsequent heterologous expression in Escherichia coli in a biologically active form. A similar approach might be taken to discover more mycotoxin-active carboxylases based on sequences of carboxylases present in Sphingomonas sp. ATCC 55552, Exophiala sp., or Sphingopyxis sp. MTA 144.

Targeting a Lactone Ring

The presence of a lactone moiety is shared by OTA, aflatoxins, and ZEN. Lactone chemicals are well-known as auto-regulators in both eukaryotic and prokaryotic cells. A well-known example is acyl homoserine lacton which is a quorum sensing molecule associated with biofilm formation. Because of the detrimental effects of biofilms in many industrial applications, high throughput research initiatives have been undertaken in the past and present in search for enzymes able to degrade these lactone molecules. These, often metagenomics, approaches result in the characterization of new and more efficient lactonase enzymes (Shimizu et al., 2001; Riaz et al., 2008; Schipper et al., 2009). The potential activities of these lactonases with respect to mycotoxins remains elusive but scientific fields studying biofilm issues might offer new microbial consortia read to be explored for their mycotoxin degrading capacities.

Also targeted analyses can result in the characterization of new and efficient lactonase enzymes. In a screening assay for enzymes able to degrade bio-active lactones, a novel lactonohydrolase, an enzyme that catalyzes the hydrolysis of aldonic lactones to the corresponding aldonic acids, was purified from Fusarium oxysporum AKU 3702. The enzyme irreversibly hydrolyzes a broad spectrum of aromatic lactones, such as dihydrocoumarin and homogentisic-acid lactone (Shimizu et al., 1992; Kobayashi et al., 1998).

New insights for biodegradation of mycotoxins with estrogenic effects such as ZEN might come from studies on the microbial degradation of steroidal estrogens. Several strains have been isolated which are able to degrade the steroidal estrogen estrone (E1), also harboring a lactone ring (Yu et al., 2013), among which Sphingomonas sp. KC8 (Yu et al., 2007), Bacillus subtilis E2Y4 (Jiang et al., 2010), and several Rhodococcus sp. (Yoshimoto et al., 2004), remarkably all isolated from activated sludge. Also, comabolic degradation of ethyl estradiol (EE2) was obtained with nitrifying activated sludge (Vader et al., 2000). Therefore, activated sludge might prove to be a rich source of degradation potential for lactone-harboring mycotoxins.

Targeting an Epoxide Moiety

For trichothecenes, the epoxide moiety is an important chemical group associated with toxicity. Microbial transformation of epoxides was studied by Swaging and de Bont (1998) who demonstrated that two types of enzymes were responsible for detoxification of epoxides: glutathione transferases as a class of general detoxifying enzymes and epoxide hydrolases which are specific for detoxification of epoxides. Glutathione transferases (dependent on glutathione as cofactor) are mostly found in aerobic eukaryotes and prokaryotes, such as E. coli and Rhodococcus sp. which degrades a range of epoxides. Epoxide hydrolases are found in many microorganisms, like Flavobacterium, Pseudomonas, Corynebacterium, and Stigmatella species. Other enzymes can also convert an epoxide intermediate via a certain pathway (e.g., alpha-pinene oxide lyase from Nocardia sp. strain P18.3 and Pseudomonas fluorescens NCIMB 11671, styrene oxide isomerase of Pseudomonas species,
Xanthobacter 124X or Exophila jeanselmei, or epoxyalkane-degrading enzyme in Xanthobacter Py2 (Swaging and de Bont, 1998). Broduiscou et al. (2007) proved that mono-and sesquiterpenes were degraded in the presence of mixed rumen microorganisms, corresponding with the isolation origin mostly found for microorganisms degrading trichotheccenes. Ptaquiloside, also a sesquiterpene toxin, could be degraded by soil microorganisms (Engel et al., 2007) which can be a new source for biodegradation of trichotheccenes.

Targeting Poly-Aromatic Ring Structures

White rot fungi are frequently found for degrading aflatoxins, such as *A. tabescens*, *P. sordida*, *P. ostreatus*, *T. versicolor*, and *Peniophora* sp. (Liu et al., 1998b; Motomura et al., 2003; Alberts et al., 2009; Wang et al., 2011; Das et al., 2014; Yehia, 2014). White rot fungi are well-known for their degrading capabilities of their natural substrate lignin and a broad spectrum of structurally diverse toxic environmental pollutants (e.g., munitions waste, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, bleach plant effluent, synthetic dyes, synthetic polymers, and wood preservatives; Reddy, 1995; Pointing, 2001). Lignin peroxidases, manganese peroxidases, and laccases are the major enzymes involved in lignin degradation based on oxidative mechanisms (Tuor et al., 1995). Laccases and manganese peroxidases of white rot fungi have been reported for degrading aflatoxins which possible can lead to different metabolites (Motomura et al., 2003; Wang et al., 2011). *Peniophora* sp. SCC0152, *P. ostreatus* St2-3, and several *Trametes* sp. strains demonstrated the degradation of Poly R-478 dye and AFB1 (Alberts et al., 2009). Next to white rot fungi, the genus *Rhodococcus* is also known to have promising degradation capability for xenobiotics (Martiníková et al., 2009). Alberts et al. (2006) and Eshelli et al. (2015) suggested that degradation of AFB1 (polyaromatic compound) by a *Rhodococcus erythropolis* strain could be degraded in a similar way of degrading polyaromatic compounds of which their degradation occurs through a cascade of enzyme reactions (e.g., ring cleavage biphenyl dioxygenases, dihydrodiol dehydrogenases, and hydrolases). Degradation of a wide range of aromatic compounds results in a limited number of central intermediates (catechol, protocatechuate, gentisate) which are further degraded through central pathways for finally entering the citrate cycle (Martiníková et al., 2009). In addition, *R. erythropolis* N1 strain was found which was capable of degrading AFB1, ZEN, and T-2 toxin at the same time (Cserháti et al., 2013). Hence, various organisms have the potential for degrading multiple mycotoxins or other components, exemplified by *Stenotrophomonas maltophilia, Stenotrophomonas* sp. NMO-3, and *Pseudomonas aeruginosa* which can degrade AFB1 and coumarin (Guan et al., 2008; Liang et al., 2008; Sangare et al., 2015), and *Mycobacterium fluoranthenevar* FS10 which can degrade AFB1 and also grow on the polycyclic aromatic hydrocarbon fluoranthene (Hormisch et al., 2004).

Supporting the notion that microorganisms are able to metabolize structurally comparable chemicals from vastly different origins, a mixed enrichment culture capable of removing ZEN as sole carbon source, without the presence of derivatives, was obtained from soil collected at a coal gasification site, which are generally known to be associated with polycyclic aromatic hydrocarbon contamination. Removal of ZEN was enhanced in the presence of phenanthrene through enhanced microbial growth, indicating that organisms capable of using ZEN were also able to metabolize phenanthrene (Megharaj et al., 1997). Building further on this notion, cleaving the aromatic ring of ZEN by *A. niger* FS10 (Sun et al., 2014) and *Acinetobacter* sp. SM04 (Yu et al., 2011a), for which no enzymes have been identified, might bear resemblance to the degradation of resorcinol (1,3-dihydroxybenzene) for which degradation is known by *P. putida* (Chapman Ribbons and Ribbons, 1976) and *Azotobacter vinelandii* (Groseclose and Ribbons, 1981).

Targeting a Carboxyl/Amide Moiety

Carboxypeptidase A and Y belong to the group of protease enzymes. Great interest in these enzymes comes from the field of wastewater treatments as these enzymes play a vital role in the extracellular catabolism of organic matter in activated sludge. In search of these enzymes, progressively more culture independent screening approaches are being employed as up to 90% of bacteria present in wastewater cannot be cultured and in this way a large reservoir of enzymes is overlooked. In matrices harboring a vast set of microorganisms that cannot be cultured, metagenomics analyses are often the solution to get an in depth insight into the complexity of these enzymes in a certain matrix. Pursuing this approach, a metagenomics analysis of waste water revealed a highly diverse phylogenetic diversity of carboxypeptidase gene sequences including previously undescribed types of carboxypeptidases which might be interesting to be applied for diverse biotechnological applications such as the remediation of OTA contaminated batches (Jin et al., 2014).

PERSPECTIVES

Although fumonisins, trichotheccenes, ZEN, OTA, and aflatoxins comprise the major mycotoxin groups in food- and feed commodities, there are several other mycotoxins that were not addressed in present review because knowledge on biodegradation and detoxification is scarce. Cyclodepsipeptides such as beauvericin and enniatins are increasingly reported in many countries in several commodities. However, to our knowledge, no reports are available on their biodegradation and detoxification by microorganisms. The same accounts for ergot alkaloids such as lysergic acid, ergine, and ergopeptines. They occur widely but to date, only one paper has recently reported on a *R. erythropolis* isolate able to degrade these compounds (Thamhes et al., 2015). Finally, for the *Penicillium expansum* mycotoxin patulin, recent papers report on biodegradation of this mycotoxin by *Pichia caribbica* (Cao et al., 2013), *Metschnikowia pulcherrima* (Reddy et al., 2011), *Kodamae ohmeri* (Dong et al., 2015), *Rhodospiridium* spp. (Castoria et al., 2011; Zhu et al., 2015), and *Saccharomyces cerevisiae* (Moss and Long, 2002). Nevertheless, for these emerging and also for the other mycotoxins, there is still a considerable need for concerted
research initiatives to identify new high-performance strains which can be implemented in practice.

Many surveys around the globe illustrate that mycotoxin contaminated batches of food and feed products often contain multiple both structurally related and non-related mycotoxins. An emerging approach to tackle this issue is biodegradation of mycotoxins by microorganisms. In our opinion an ideal biodegrading and detoxification agent should meet following features: (i) a fast and efficient degradation, (ii) of a broad spectrum of toxins, (iii) into non-toxic end products, (iv) by a non-pathogenic strain or consortium (v) under conditions that are relevant for the matrix in which the mycotoxin problem occurs. In order to do so, we urge researchers to look beyond the disappearance of the mother compound to rule out the creation of any lesser evils, and to explore strange new worlds, seek out new organisms and new metabolic pathways.

REFERENCES

Abbas, H. K., Duke, S. O., and Tanaka, T. (1993a). Phytotoxicity of fumonisins and related-compounds. J. Toxicol.-Toxin Rev. 12, 225–251. doi: 10.3109/155695493014408
Abbas, H. K., Gelderblom, W. C. A., Cawood, M. E., and Shier, W. T. (1993b). Biological-activities of fumonisins from fusarium-moniliforme, in jimsonweed (Datura-Stramonium L.) and mammalian-cell cultures. Toxicon 31, 345–353. doi: 10.1006/toxv.1993.0012
Abbas, H. K., Tanaka, T., and Shier, W. T. (1993c). Biological-activities of synthetic analogs of alternaria-alternata toxin (afl-toxin) and fumonisin in plant and mammalian-cell cultures. Phytochemistry 40, 1681–1689. doi: 10.1016/S0031-9422(93)00470-R
Abruinsa, L., Inês, A., Rodrigues, A. L., Guimaraes, A., Pereira, V. L., Parpet, P., et al. (2014). Biodegradation of ochratoxin A by Pedococcus parvulus isolated from Douro wines. Int. J. Food Microbiol. 188, 45–52. doi: 10.1016/j.ijfoodmicro.2014.07.019
Abruinsa, L., Serra, R., and Venâncio, A. (2002). Biodegradation of ochratoxin A by fungi isolated from grapes. J. Agric. Food Chem. 50, 7493–7496. doi: 10.1021/jf0257471
Abruinsa, L., Santos, L., and Venâncio, A. (2006). Degradation of ochratoxin A by proteases and by a crude enzyme of Aspergillus niger. Food Biotechnol. 20, 231–242.
Adebo, O. A., Akpan, P. B., Gbashi, S., Nwinyi, O. C., and Mavumengwana, V. (2015). Review on microbial degradation of aflatoxins. Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2015.1106440. [Epub ahead of print].
Alessane-Kpembli, I., Kolf-Claauw, M., Gauthier, T., Abrami, R., Abiola, F. A., Oswald, I. P., et al. (2013). New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichotheccenes on intestinal epithelial cells is synergistic. Toxicol. Appl. Pharmacol. 272, 191–198. doi: 10.1016/j.taap.2013.05.023
Alberts, J. F., Engelbrecht, Y., Steyn, P. S., Holzapfel, W., and van Zyl, W. (2006). Biological degradation of aflatoxin B-1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 109, 121–126. doi: 10.1016/j.ijfoodmicro.2006.01.019.
Alberts, J. F., Gelderblom, W. C. A., Botha, A., and van Zyl, W. H. (2009). Degradation of aflatoxin B-1 by fungal laccase enzymes. Int. J. Food Microbiol. 135, 47–52. doi: 10.1016/j.ijfoodmicro.2009.07.022
Altalhi, A. D. (2007). Plamid-mediated mycotoxin zearealenone in Pseudomonas putida ZEA-1. Am. J. Biotechnol. Biochem. 3, 150–158. doi: 10.3844/ajbbsp.2007.150.158
Altalhi, A. D., and El-Deeb, B. (2009). Localization of zearealenone detoxification gene(s) in pZEA-1 plasmid of Pseudomonas putida ZEA-1 and expressed in Escherichia coli. J. Hazard. Mater. 161, 1166–1172. doi: 10.1016/j.jhazmat.2008.04.068

AUTHOR CONTRIBUTIONS

KA and LD conceived the idea and scope for the review. IV, KA, and LD all equally contributed to gathering and summarizing the literature, designing the tables and figures, and writing and editing of the paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.00561

Figure 1 | Reduced toxicity of T-2 toxin by subsequent de-acylation.

Table 1 | Toxicity data on mycotoxins and their metabolites.

Table 2 | Toxicity of trichotheccenes (from most potent to almost no effectiveness observed) (Thompson and Wannemacher, 1986).
Bullerman, L. B., and Bianchini, A. (2007). Stability of mycotoxins during food processing. *Int. J. Food Microbiol.* 119, 140–146. doi: 10.1016/j.ijfoodmicro.2007.07.035

Camillo, S. B., Ono, C. J., Ueno, Y., and Hirooka, E. Y. (2000). Anti-Fusarium moniliforme activity and fumonisin biodegradation by corn and silage maize. *Z. Pflanzenschutz* 107, 12–16.

Castoria, R. (2008). Strains of *Aureobasidium pullulans* can lower ochratoxin A contamination in wine grapes. *G. Microb* 98, 1261–1265. doi: 10.1007/s11306-008-0126-1

Castells, M., Ramos, A. J., Sanchis, V., and Marín, S. (2007). Distribution of total sterols and tocopherols in control blue mold rot and patulin degradation in apples. *Int. J. Food Microbiol.* 162, 167–173. doi: 10.1016/j.ijfoodmicro.2013.01.007

Castoria, R., Mannina, L., Durán-Patrón, R., Maffei, F., Sobolev, A. P., De Felice, D. V., et al. (2013). Comparison of the mycotoxin patulin to the less toxic desoxypatulinic acid. in the biocontrol yeast *Rhodotorula graminis*. *Bullermania* 49, 11571–11578. doi: 10.1016/j.ofjbi.030989

Chang, X., Wu, Z., Wu, S., Dai, Y., and Sun, C. (2015). Degradation of ochratoxin A by *Bacillus amyloliquefaciens* ASAG1. *Food Addit. Contam. Part A-Chem. Anal. Control Exp. Risks Assess.* 32, 564–571. doi: 10.1080/19440049.2014.991948

Cheng, S., Chang, C., Deng, Y., An, S., Dong, Y. H., Zhou, J., et al. (2014). Fenpropratin biodegradation pathway in bacillus sp DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. *J. Agric. Food Chem.* 62, 2147–2157. doi: 10.1021/jf404908

Ciegler, A., Lillehoj, E. B., Peterson, R. E., and Hall, H. H. (1966). Microbial detoxification of aflatoxin. *Appl. Microbiol.* 14, 934–939.

Clarke, R., Connolly, L., Frizzell, C., and Elliott, C. T. (2014). Cytotoxic assessment of the regulated, co-existing mycotoxins aflatoxin B1, fumonisin B1 and ochratoxin A, in single, binary and tertiary mixtures. *Toxicol. Immunol.* 90, 70–81. doi: 10.1016/j.toxicimmuno.2014.07.019

Creppy, E. E. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. *Toxicol. Lett.* 127, 19–28. doi: 10.1016/S0378-4274(01)00479-9

Cserháti, M., Kriszt, B., Krifaton, C., Szoboszlay, S., Hahn, J., Toth, S., et al. (2013). Structural and functional characterization of ochratoxinase, a novel mycotoxin-degrading enzyme. *Biochim. Biophys. Acta (BBA) Gen. Substr.* 1820, 3338–3349. doi: 10.1016/j.phytochem.2012.11.011

Da Rocha, M. E. B., Freire, F. D. O., Maia, F. B. F., Guedes, M. I. F., and Rondina, D. (2015). Microbial degradation and impact of Bracken toxin ptaloaside on microbial communities in soil. *Chemosphere* 67, 1854–1857. doi: 10.1016/j.chemosphere.2006.08.025

Duvick, J., Rood, T., Maddox, J., and Gilliam, J. (1998a). “Detoxification of mycotoxins in planta as a strategy for improving grain quality and disease resistance: identification of fumonisin-degrading microbes from maize,” in *Molecular Genetics of Host-Specific Toxins in Plant Disease*, eds K. Kohimoto and O. Yoder (Dordrecht: Kluwer Academic Publishers), 369–381.

Duvick, J., Rood, T., and Wang, N. (1998b). “Fumonisin Detoxification Enzymes.” *US Patent No. 5716820* (Original patent owner: Pioneer Hi-Bred International, Inc.). United States Patent and Trademark Office.

Eating, D. L., and Groopman, J. D. (1994). The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance. San Diego, CA: Academic Press.

Ehrlich, K. C., and Daigle, K. W. (1987). Protein-Synthesis Inhibition by 8-Oxo-12,13-Epoxytrichothecenes. *Biochim. Biophys. Acta* 923, 206–213. doi: 10.1016/0005-2760(87)90005-5

El-sharkawy, S., and Abul-hajj, Y. J. (1988). Microbial cleavage of zearalenone. *Fungal Dtsch. Biol. Z. 125, 985–998.

Engel, P., and Brandt, K. K., Rasmussen, L. H., Ovesen, R. G., and Sorensen, J. (2007). Microbial degradation and impact of Bracken toxin ptaloaside on microbial communities in soil. *Chemosphere* 67, 202–209. doi: 10.1016/j.chemosphere.2006.08.025

Engelhardt, G. (2002). Degradation of ochratoxin a and b by the white rot fungus *Pleurotus ostreatus* MTCC 142 and *Pleurotus ostreatus* GHHBF10 in the presence of metal salts and surfactants. *World J. Microbiol. Biotechnol.* 20, 2315–2324. doi: 10.1007/s11274-001-01467-5

Eriksen, G. S., Pettersson, H., and Lundh, T. (2004). Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. *Food Chem. Toxicol.* 42, 619–624. doi: 10.1016/j.fct.2003.11.006

Eshelli, M., Harvey, L., Edrada-Ebel, R., and Mcneil, B. (2015). Metabolomics of *DeuterageniaSaprophila* GHBBF1 in the presence of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. *Food Chem. Toxicol.* 42, 619–624. doi: 10.1016/j.fct.2003.11.006

Eriksson, G. S., Pettersson, H., and Lindberg, J. E. (2002). Transformation of trichothecenes in ileal digesta and faeces from pigs. *Arch. Tierernahr.* 56, 263–274. doi: 10.1002/j.1655-0714.2004.tb02143x

Erikson, G. S., Pettersson, H., and Lundh, T. (2004). Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. *Food Chem. Toxicol.* 42, 619–624. doi: 10.1016/j.fct.2003.11.006

Estrell, M., Harvey, L., Edrada-Ebel, R., and Mcneil, B. (2015). Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0. *Toxins* 7, 439–456. doi: 10.3390/toxins7020439

Fandohan, P., Ahouansou, R., Houssou, P., Hell, K., Marasas, W. F. O., and Wingfield, M. J. (2006). Impact of mechanical shelling and dehulling on Fusarium infection and fumonisin contamination in maize. *Antimicrob. Agents Chemother.* 50, 1728–1734. doi: 10.1128/AAC.01184-05

Fandohan, P., Zoumoune, D., Houhouigian, D. J., Marasas, W. F. O., Wingfield, M. J., and Hell, K. (2005). Fate of aflatoxins and fumonisins during the processing of maize into food products in Benin. *Int. J. Food Microbiol.* 98, 249–259. doi: 10.1016/j.ifm.2004.07.007
Ferenczi, S., Cserháti, M., Krifaton, C., Szoboslay, S., Kukolya, J., Szoke, Z., et al. (2014). A new ochratoxin A biodegradation strategy using Cupriavidus basilensis or6 strain. PLoS ONE 9(4):e91087. doi: 10.1371/journal.pone.0091817

Fuchs, E., Binder, E., Heidler, D., and Krska, R. (2000). Characterisation of metabolites after the microbial degradation of A- and B-trichothecenes by BBSS 797. Mycotoxin Res. 16, 66–69. doi: 10.1021/jf002492k

Fuchs, E., Binder, E. M., Heidler, D., and Krska, R. (2002). Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSSH 797. Food Addit. Contam. 19, 379–386. doi: 10.1080/0269226960009154

Fuchs, E., Sontag, G., Stüdl, R., Ehrlich, V., Kundi, M., and Knaßmüller, S. (2008). Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 46, 1398–1407. doi: 10.1016/j.fct.2007.10.008

Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thié, P. G., Horak, R. M., Vleggaar, R., et al. (1988). Fumonisins – novel mycotoxins with cancer-promoting activity produced by Fusarium-moniliforme. Appl. Environ. Microbiol. 54, 1806–1811.

Gerding, J., Cramer, B., and Humph, H. U. (2014). Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol. Nutr. Food Res. 58, 2358–2368. doi: 10.1002/mnrf.201400406

Groseclose, E. E., and Ribbons, D. W. (1981). Metabolism of resorcinol compounds by bacteria - new pathway for resorcinol catabolism in Azotobacter vinelandii. J. Bacteriol. 146, 460–466.

Grove, M. D., Plattner, R. D., and Peterson, R. E. (1984). Detection of aflatoxin D1 in ammoniated corn by mass-spectrometry mass-spectrometry. Appl. Environ. Microbiol. 48, 887–888.

Gu, S., He, J. W., Young, J. C., Zhu, H. H., Li, X. Z., Ji, C., et al. (2009). Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture 290, 290–295. doi: 10.1016/j.aquaculture.2009.02.037

Hahn, J., Kunz-Vekiru, E., Twarzuk, M., Grajewski, J., Krška, R., and Berthiller, F. (2015). Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Addit. Contam. Part A-Chem. Anal. Control Expos. Risk Assess. 32, 922–933. doi: 10.1080/19440049.2015.1023741

Hartinger, D., Heinl, S., Grabherr, R., Schatzmayr, G., and Moll, W. D. (2009). Heterologous expression of genes from the fumonisin degradation gene cluster of Sphingomonas sp. MTA144 and activity of the catabolic enzymes. New Biotechnol. 25, S132–S133. doi: 10.1016/j.nb.2009.06.444

Hathout, A. S., and Aly, S. E. (2014). Biological detoxification of mycotoxins: a new biotechnological approach for overcoming mycotoxin contamination. New Biotechnol. 31, 1469–1473. doi: 10.1016/j.nbt.2014.07.011

He, J. W. (2015). Detoxification of Deoxynivalenol by a Soil Bacterium Devosia mutans 17-2-4-8. Ph.D. thesis, The University of Guelph.

He, J. W., Zhou, T., Young, J. C., Boland, G. J., and Scott, P. A. (2010). Chemical detoxification of deoxynivalenol by a soil bacterium Devosia mutans MS-1. Appl. Microbiol. Biochem. 79, 410–414.

Hekmat, F., Person, N., Lee, J. W., and Song, Y. H. (2014). A comparison of two milling strategies to reduce the contamination of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci. Technol. 21, 67–76. doi: 10.1016/j.tifs.2009.08.002

Hinlein, S., Hartinger, D., Moll, W. D., Schatzmayr, G., and Grabherr, R. (2009). Identification of a fumonisin B1 degrading gene cluster in Sphingomonas sp. MTA144. New Biotechnol. 25, S61–S62. doi: 10.1016/j.nb.2009.06.290

Hinlein, S., Hartinger, D., Thambhes, M., Schatzmayr, G., Moll, W. D., and Grabherr, R. (2011). An aminotransferase from bacterium ATCC 55552 deaminates hydrolyzed fumonisin B-1. Biodegradation 22, 25–30. doi: 10.1007/s10532-010-9371-y

Hoit, S., Heinl, S., Hartinger, D., Moll, W. D., Kukolya, J., Szoke, Z., and Szoboslay, S. (2011). Degradation of fumonisin B-1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 145, 120–129. doi: 10.1016/j.jbiotec.2009.11.004

Hormisch, D., Bröst, L., Kühler, G. W., Githorn, E., Kropfenstedt, R. M., Stackebrandt, E., et al. (2004). Mycobacterium fluoranthenivorans sp nov, a flavonanthe and aflatoxin B-1 degrading bacterium from contaminated soil of a former coal gas plant. Syst. Appl. Microbiol. 27, 653–660. doi: 10.1078/0723202042369866
Lee, L. S., Dunn, J. J., DeLucca, A. J., and Ciegler, A. (1981). Role of lactone ring of aflatoxin-B1 in toxicity and mutagenicity. *Experientia* 37, 16–17. doi: 10.1007/BF01965543

Li, Y., Wang, Z., Beier, R. C., Shen, J. Z., De Smet, D., De Saeger, S., et al. (2011). T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. *J. Agric. Food Chem.* 59, 3441–3453. doi: 10.1021/jf200767q

Liang, Z., Li, J., He, Y., G, S., Wang, N., Ji, C., et al. (2008). A FB1 bio-degradation strain - *Stenotrophomonas*. *sp.* *Spor. Sci. China* 7, 1433–1437. doi: 10.1671/S6171-2972(08)00399-5

Liu, D. L., Ma, L., Gu, L. Q., Liang, R., Yao, D. S., and Chen, W. Q. (1998b). Detoxification of aflatoxin B-1 by enzymes isolated from Armillaria tabescens. *Food Chem. Toxicol.* 36, 563–574. doi: 10.1016/S0278-6919(98)00107-9

Liu, D. L., Yao, D. S., Liang, R., Ma, L., Cheng, W. Q., and Gu, L. Q. (1998b). Detoxification of aflatoxin B-1 by enzymes isolated from *Armillaria tabescens*. *Food Chem. Toxicol.* 36, 563–574. doi: 10.1016/S0278-6919(98)00011-9

Liu, D. L., Yao, D. S., Liang, Y. Q., Zhou, T. H., Song, Y. P., Zhao, L., et al. (2001). Production, purification, and characterization of an intracellular aflatoxin-detoxyzyme from *Armillaria tabescens* (E-20). *Food Chem. Toxicol.* 39, 461–466. doi: 10.1016/S0278-6919(00)00161-7

Manahan, S. E. (2002). *Toxicological Chemistry and Biochemistry*. Boca Raton, FL: CRC Press.

Mann, R., and Rehm, H. J. (1976). Degradation products from aflatoxin-B1 by corynebacterium-rubrum, aspergillus-niger, trichoderma-viride and mucor-ambiguous. (Boca Raton: USA) *Eur. J. Appl. Microbiol.* 2, 297–306. doi: 10.1007/BF01278613

Marroquin-Carodna, A. G., Johnson, N. M., Phillips, T. D., and Hayes, A. W. (2014). Mycotoxins in a changing global environment - a review. *Food Chem.* Toxicol.* 69, 220–230. doi: 10.1016/j.fct.2014.04.025

Martiníková, L., Uhnáková, B., Pátek, M., Nesvera, J., and Kren, V. (2009). Biodegradation potential of the genus Rhodococcus. *Environ. Int.* 35, 162–177. doi: 10.1016/j.envint.2008.07.018

Matsushita, T., Okamoto, E., Miyagawa, E., Matsu, Y., Shimizu, H., and Asano, K. (1996). Decacylation of diacetoxyseirpenol to 15-acetoxyscirpenol by rumen bacteria. *J. Gen. Appl. Microbiol.* 42, 225–234. doi: 10.2323/jgam.42.225

Matthies, I., Woerfel, G., and Karlovsky, P. (2001). Induction of a zearalenone degrading enzyme caused by the substrate and its derivatives. *Myctoxicon Res.* 17(Suppl. 1), 28–31. doi: 10.1007/BF03036706

Matumba, L., Van Poucke, C., Ediage, E. N., Jacobs, B., and De Saeger, S. (2015). Deacetylation of diacetoxyscirpenol to 15-acetoxyscirpenol by rumen bacteria. *Appl. Environ. Microbiol.* 81, 1591–1598.

Patharajan, S., Reddy, K. R. N., Kartikeyan, V., Spadaro, D., Lore, A., Gullino, M. L., et al. (2011). Potential of yeast antagonists on *in vitro* biodegradation of ochratoxin A. *Food Control* 22, 290–296. doi: 10.1016/j.foodcont.2010.07.024

Perica, M., Radic, B., Lucic, A., and Pavlovic, M. (1999). Toxic effects of mycotoxins in humans. *Bull. World Health Org.* 77, 754–766.

Petchpongkaew, A., Talaidlancer, P., Gasuluck, P., and Lebrini, A. (2008). Isolation of *Bacillus* sp. from Thai fermented soybean (thua-nao): screening for aflatoxin B-1 and ochratoxin A detoxification. *J. Appl. Microbiol.* 104, 1495–1502. doi: 10.1111/j.1365-2672.2007.03700.x

Péteri, Z., Téren, J., Vágvölgyi, C., and Varga, J. (2007). Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. *Food Microbiol.* 24, 205–210. doi: 10.1016/j.fm.2006.06.003

Pfohl-Leszkowicz, A., and Mandervile, R. A. (2007). Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. *Mol. Nutr. Food Res.* 51, 1192–1192. doi: 10.1002/mnfr.200790020

Poining, S. B. (2001). Feasibility of bio remediation by white-rot fungi. *Appl. Microbiol. Biotechnol.* 57, 20–33. doi: 10.1007/s002530010745

Pospel, D., Koczyń, G., Dawidziuk, A., Gromadzka, K., Blaszczyk, L., and Chelkowski, J. (2014). Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epsiphrase hydrolase subset of a/b-hydrolases. *BM. Microbiol.* 1:482. doi: 10.1186/1471-2180-14-82

Rafiqul, I. (2012). *Isolation, Characterization and Genome Sequencing of a Soil-Borne Citobacter Freundii Strain Capable of Detoxifying Trichothecene Mycotoxins*. Phd. thesis, *The University of Guelph, Guelph.*

Ramos, A. J., Finkgremmels, J., and Hernandez, E. (1996). Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds. *J. Food Prot.* 59, 631–641.

Rashkum, K., Ronneburg, T., Hennessy, F., Visser, D., Van Heerden, E., Pieter, L., et al. (2009). Discovery of a novel carboxylesterase through functional screening of a pre-enriched environmental library. *J. Appl. Microbiol.* 106, 1532–1539. doi: 10.1111/1365-2672.2008.04114.x

Reddy, C. A. (1995). The potential for white-rot fungi in the treatment of mycotoxins. *Curr. Opin. Biotechnol.* 6, 320–328. doi: 10.1016/0958-1669(95)80054-9

Reddy, K. R. N., Spadaro, D., Gullino, M. L., and Garibaldi, A. (2011). Potential of yeast antagonists on *in vitro* biodegradation of ochratoxin A. *Food Control* 22, 290–296. doi: 10.1016/j.foodcont.2010.07.024

Rizk, K., Elmorerich, C., Moreira, D., Rafloux, A., Dessaux, Y., and Faure, D. (2008). A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. *Environ. Microbiol.* 10, 560–570. doi: 10.1111/j.1462-9020.2007.01475.x
Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses - an overview. Int. J. Food Microbiol. 119, 3–10. doi: 10.1016/j.ijfoodmicro.2007.07.019

Rios, G., Pinson-Gadais, L., Abecasis, J., Zakaria-Rozis, N., and Lullien-Pellerin, V. (2009). Assessment of dehulling efficiency to reduce deoxynivalenol and Fusarium level in durum wheat grains. J. Cereal Sci. 49, 387–392. doi: 10.1016/j.jcs.2009.01.003

Rocha, O., Ansari, K., and Doohan, F. M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 22, 369–378. doi: 10.1080/02652220500085430

Rodriguez, H., Reveron, I., Doria, F., Costantini, A., De Las Rivas, B., Munoz, R., et al. (2011). Degradation of ochratoxin a by brevibacteria species. J. Agric. Food Chem. 59, 10755–10760. doi: 10.1021/jf203616p

Samuel, M. S., Aiko, V., Panda, P., and Metha, A. (2013). Aflatoxin B1 occurrence, biosynthesis and its degradation. J. Pure Appl. Microbiol. 7, 965–971.

Sangare, L., Zhao, Y. J., Folly, Y. M. E., Chang, J. H., Li, J. H., Sela-vargas, J. N., Samuel, M. S., Aiko, V., Panda, P., and Metha, A. (2013). Aflatox in B1 occurance, Sato, I., Ito, M., Ishizaka, M., Ikunaga, Y., Sato, Y., Yoshi da, S., et al. (2012). Schiff, P. L. (2006). Ergot and its alkaloids. Shima, J., Takase, S., Takahashi, Y., Iwai, Y., Fujimoto, H., Yamazaki, M., et al. (2004). Metabolism of zearalenone by genetically organising enzymes expressing the detoxification gene from Clonostachys rosea. Appl. Environ. Microbiol. 70, 3239–3245. doi: 10.1128/AEM.70.6.3239-3245.2004

Shirley, W. T., Shier, A. C., Xie, W., and Mirocha, C. J. (2001). Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxins 39, 1435–1438. doi: 10.1007/s12223-011-0047-8

Sudakain, D. L. (2003). Trichothecenes in the environment: relevance to human health. Toxicol. Lett. 143, 97–107. doi: 10.1016/S0378-4274(03)00116-4

Sun, X., He, X., Xue, K., Li, Y., Xu, D., and Qian, H. (2014). Biological detoxification of zearalenone by Aspergillus niger strain FS10. Food Chem. Toxicol. 72, 76–82. doi: 10.1016/j.fct.2014.06.003

Svanbonason, S. P., Nicotelli, L., Rood, H. D., Buck, W. B., Cote, L. M., and Yoshizawa, T. (1987). Metabolism of 3 trichothecene mycotoxins, t-2 toxin, diacetylcarpinol and deoxynivalenol, by bovine rumen microorganisms. J. Chromatogr. 414, 335–342. doi: 10.1016/0378-4274(87)80058-0

Swaging, J., and Bont, J. A. M. (1998). Microbial transformation of epoxides. Enzyme Technol. 22, 19–26. doi: 10.1016/S0141-0229(97)00097-5

Tan, H., Hu, Y., He, J., Wu, L., Liao, F., Luo, B., et al. (2014). Zearalenone degradation by two Pseudomonas strains from soil. Mycotoxin Res. 30, 191–196. doi: 10.1007/s12550-014-0199-x

Tan, H., Zhang, Z. M., Hu, Y. C., Wu, L., Liao, F., He, J., et al. (2015). Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading Zearalenone. Food Control 47, 285–290. doi: 10.1016/j.foodcont.2014.07.013

Tejada-Castañeda, Z. I., Avila-Gonzalez, E., Casaubon-Huguenin, M. T., Cervantes-Olivares, R. A., Vásquez-Peláez, C., Hernandez-Baumgart, E. M., et al. (2008). Biallooxidation of aflatoxin-contaminated chick feed. Poult. Sci. 87, 1569–1576. doi: 10.3382/ps.2007-00304

Teniola, O. D., Addo, P. A., Brost, I. M., Färber, P., Jany, K. D., Alberts, J. F., et al. (2005). Degradation of aflatoxin B-1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthovenosporas sp. nov DSM44556(T). Int. J. Food Microbiol. 105, 111–117. doi: 10.1016/j.ijfoodmicro.2005.05.004

Thamsnes, M., Aplinhtaler, E., Schwartz-Zimmermann, H. E., Kunz-Vekuir, E., Eik, K., Eneke, R., and Kneeflich, W. et al. (2015). Rhodococcus erythropolis MTTH3 biotransforms ergopeptide to lysergic acid. Bmc Microbiol. 15:73. doi: 10.1186/s12866-015-0407-7

Thompson, W. L., and Wanneracher, R. W. (1986). Structure-function-relationships of 12,13-epoxytrichothecene mycotoxins in cell culture - comparison to whole animal lethality. Toxicon 24, 985–994. doi: 10.1006/toxi-1998-0004-8

Tintolnet, T., Tegtmeyer, F., and Klotz, M. (2011). Trichomyspor mycotoxinoxivorans -a sword of Damocles for patients with cystic fibrosis. Mycoses 54, 373. doi: 10.1111/j.1310-1257.2011.02890.x

Tinyro, S. E., Wokadala, C., Xu, D., and Yao, W. (2011). Adsorption and degradation of zearalenone by barclins cultures. Folia Microbiol. 56, 321–327. doi: 10.1007/s12223-011-0047-8

Tisue, T., Harimoto, Y., Akimitsu, K., Ohtani, K., Kodama, M., Akagi, Y., et al. (2013). Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 37, 44–66. doi: 10.1111/j.1574-934X.2012.00350.x

Tuor, U., Winterhalter, K., and Fiechter, A. (1995). Enzymes involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 46, 1–17. doi: 10.1016/0168-1656(95)00042-O

Ueno, Y., Nakayama, K., Ishii, K., Tashiro, F., Minoda, Y., Omori, T., et al. (1983). Metabolism of T-2-Toxin in Curvibacterium Sp Strain 114-2. Appl. Environ. Microbiol. 46, 120–127.

Vader, J. S., van Ginkel, C. G., Sterling, F. M. G. M., de Jong, J., De Boer, W., De Graaf, J. S., et al. (2000). Degradation of ethinyl estradiol by nitriying activated sludge. Chemosphere 41, 1239–1243. doi: 10.1016/S0045-6535(99)00556-1

Van Andel, A., De Boever, M., Audenaert, K., Beert, B., De Saer, S., and Haesaert, G. (2014). Occurrence of Fusarium species and their associated mycotoxins in unprocessed cereals, food and feed products in Belgium. Int. J. Food Microbiol. 181, 28–36. doi: 10.1016/j.ijfoodmicro.2014.04.012
Varga, J., Péteri, Z., Tábóri, K., Térent, J., and Vagvolgyi, C. (2005). Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates. Int. J. Food Microbiol. 99, 321–328. doi: 10.1016/j.ijfoodmicro.2004.10.034

Vekiru, E., Hametner, C., Mitterbauer, R., Rechthaler, J., Adam, G., Schatzmayr, G., et al. (2010). Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl. Environ. Microbiol. 76, 2353–2359. doi: 10.1128/AEM.01438-09

Völkl, A., Vogler, B., Schollenberger, M., and Karlovsky, P. (2004). Microbial detoxification of mycotoxin deoxynivalenol. J. Basic Microbiol. 44, 147–156. doi: 10.1002/jobm.200310353

Voss, K. A., Bacon, C. W., Meredith, F. L., and Norred, W. P. (1996a). Comparative subchronic toxicity studies of nixtamalized and water-extracted Fusarium moniliforme culture material. Food Chem. Toxicol. 34, 623–632. doi: 10.1016/0278-6915(96)00024-5

Voss, K. A., Riley, R. T., Bacon, C. W., Chamberlain, W. J., and Norred, W. P. (1996b). Subchronic toxic effects of Fusarium moniliforme and fumonisin B1 in rats and mice. Nat. Toxins 4, 16–23. doi: 10.1002/19960401NT3

Voss, K. A., Smith, G. W., and Haschek, W. M. (2007). Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137, 299–325. doi: 10.1016/j.anifeedsci.2007.06.007

Wang, J. Q., Ogata, M., Hirai, H., and Kawagishi, H. (2011). Detoxification of aflatoxin B-1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol. Lett. 314, 164–169. doi: 10.1111/j.1574-6968.2010.02158.x

Westlake, K., Mackie, R. L., and Dutton, M. F. (1987). T-2 toxin metabolism by ruminal bacteria and its effect on their growth. Appl. Environ. Microbiol. 53, 587–592.

Wogan, G. N., Newberne, P. M., and Edwards, G. S. (1971). Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res. 31, 1936–1942.

Wong, J. J., and Hsieh, D. P. H. (1976). Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc. Natl. Acad. Sci. U.S.A. 73, 2241–2244. doi: 10.1073/pnas.73.7.2241

Wu, Q., Jezkova, A., Yuan, Z., Pavlikova, L., Dohnal, V., and Kuca, K. (2009). Biological degradation of aflatoxins. Drug Metab. Rev. 41, 1–7. doi: 10.1080/03602530802563850

Xiao, H., Madhyastha, S., Marquardt, R. R., Li, S., Vodela, J. K., Frohlich, A. A., et al. (1996). Toxicity of ochratoxin A, its opened lactone form and several of its analogs: structure-activity relationships. Toxicol. Appl. Pharmacol. 137, 182–192. doi: 10.1006/taap.1996.0071

Yehia, R. S. (2014). Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz. J. Microbiol. 45, 127–133. doi: 10.1590/S1517-83822014000500026

Yiannikouris, A., Bertin, G., and Jousay, J. P. (2006). Study of the adsorption capacity of Saccharomyces cerevisiae cell wall components toward mycotoxins and the chemical mechanisms invoked. Mycotoxin Factbook 347–361. doi: 10.3920/978-90-8686-587-1

Yoshimoto, T., Nagai, F., Fujimoto, J., Watanabe, K., Mizukoshi, H., Makino, T., et al. (2004). Degradation of estrogens by Rhodococcus zopfi and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl. Environ. Microbiol. 70, 5283–5289. doi: 10.1128/AEM.70.9.5283-5289.2004

Young, J. C., Zhou, T., Yu, H., Zhu, H., and Gong, J. H. (2007). Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem. Toxicol. 45, 136–143. doi: 10.1016/j.fct.2006.07.028

Yu, C. P., Deeb, R. A., and Chu, K. H. (2013). Microbial degradation of steroidal estrogens. Chemosphere 91, 1225–1235. doi: 10.1016/j.chemosphere.2013.01.112

Yu, C. P., Roh, H., and Chu, K. H. (2007). 17 beta-estradiol-degrading bacteria isolated from activated sludge. Environ. Sci. Technol. 41, 486–492. doi: 10.1021/es060923F

Yu, H., Zhou, T., Gong, J. H., Young, C., Su, X. J., Li, X. Z., et al. (2010). Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol. 10:182. doi: 10.1186/1471-2180-10-182

Yu, Y. S., Qiu, L. P., Wu, H., Tang, Y. Q., Lai, F. R., and Yu, Y. G. (2011a). Oxidation of zearalenone by extracellular enzymes from Acinetobacter sp SM04 into smaller estrogenic products. World J. Microbiol. Biotechnol. 27, 2675–2681. doi: 10.1007/s11274-011-0741-3

Yu, Y. S., Qiu, L., Wu, H., Tang, Y., Yu, Y., Li, X., et al. (2011b). Degradation of zearalenone by the extracellular extracts of Acinetobacter sp SM04 liquid cultures. Biodegradation 22, 613–622. doi: 10.1007/s10532-010-9435-z

Zhai, Y., Li, K., Song, J. L., Shi, Y. H., and Yan, Y. C. (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J. Hazard. Mater. 221, 206–212. doi: 10.1016/j.jhazmat.2012.04.031

Zhou, T., Gong, J., Young, J. C., Yu, H., Li, X. Z., Zhu, H., et al. (2007). “Microorganisms isolated from chicken gut can effectively detoxify DON and other trichothecene mycotoxins,” in 26th Centralia Swine Research Update (Ontario).

Zhou, T., He, J., and Gong, J. (2008). Microbial transformation of trichothecene mycotoxins. World Mycotoxin J. 1, 23–30. doi: 10.3920/WMJ2008.x003

Zhu, R., Feussner, K., Wu, T., Yan, F., Karlovsky, P., and Zheng, X. (2015). Detoxification of mycotoxin patulin by the yeast Rhodospiridium paludigenum. Food Chem. 179, 1–5. doi: 10.1016/j.foodchem.2015.01.066

Zinedine, A., Soriano, J. M., Moltó, J. C., and Mañes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem. Toxicol. 45, 1–18. doi: 10.1016/j.fct.2006.07.030

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Vanhoutte, Audenaert and De Gelder. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.