Quantum theory as efficient representation of probabilistic information

Johann Summhammer
Vienna University of Technology
Atominstitut
Stadionallee 2
1020 Vienna, Austria
E-mail: summhammer@ati.ac.at

Quantum experiments yield random data. We show that the most efficient way to store this empirical information by a finite number of bits is by means of the vector of square roots of observed relative frequencies. This vector has the unique property that its dispersion becomes invariant of the underlying probabilities, and therefore invariant of the physical parameters. This also extends to the complex square roots, and it remains true under a unitary transformation. This reveals quantum theory as a theory for making predictions which are as accurate as the input information, without any statistical loss. Our analysis also suggests that from the point of view of information a slightly more accurate theory than quantum theory should be possible.

1 Introduction

There have been several attempts to find an explanation for quantum theory by looking at it as a theory of information. For instance, Wheeler’s work is based on statistical distinguishability [1], von Weizsäcker’s ur-hypothesis starts with empirical yes-no decisions [3], Bohr and Ulfbeck emphasize symmetry [2], Brukner and Zeilinger define an elementary system as answering only yes or no to any question [4] (see also the essay [5]), and Hardy introduces five axioms containing no traditional physical concepts [6]. Hardy also cites older axiomatic approaches. Grinbaum basis his derivation of the quantum formalism explicitly on information [7]. Luo makes use of Fisher information to find Malus’ law [8]. Mehrafarin derives interference from empirical input information [9]. Recently, Aerts exposed quantum theory as a theory of optimal observation and emphasized a similarity to the theory of signal analysis [10]. Grangier gives a compact derivation of quantum theory based on the discreteness of the empirical information in quantum experiments (e.g. [11] and references therein), which is not unlike the work of Landé [12]. But also approaches based on structures inherent in probability theory, like the one of Caves et al. (e.g. [13]) or of Saunders [14], can be seen as putting primacy on the concept of information, since probability is a way of quantifying information.

The present paper takes motivation from these works and focusses on a point which does not seem to have been touched yet [15]: The raw data of quantum experiments, as generic probabilistic experiments, are random numbers. One may then ask on a purely informational level, what are meaningful transformations of these random numbers to represent the empirical information in an undistorted way? Hereby we understand a representation as undistorted, if the uncertainty volume of the representation vector

\footnote{Note that the uncertainty volume of a random vector has nothing to do with the uncertainty relations of quantum theory.}
which is due to the finite empirical information, is constant for a given amount of empirical information and thus independent of the representation vector itself [16].

We seek such a representation by making use only of the probabilistic paradigm of modern physics. We show that there is only one such way of representing observed data and that the properties of the representation remain invariant only under linear transformations. In the limit of infinite empirical information this gives the state vector of quantum theory and its linear evolution. But interestingly, for finite information there should exist better representations. We comment on this in the discussion.

The paper is organized as follows:

Section 2: Storing information from a probabilistic yes-no experiment. Encoding the relative frequency of yes and no into numbers with fixed credibility of the bits (or any other units).

Section 3: Vector representation of the empirical information. Easier to handle and more symmetry for particular representations.

Section 4: Extension to probabilistic experiments with more than two outcomes. Generalisation of the method of representation is straightforward, because the rule for encoding turns out to be the same as for the yes-no experiment.

Section 5: Transformations of the representation vector. Linear transformations are preferable because they introduce no unwanted structure in the representation of information.

Section 6: Discussion.

2 Storing information from a probabilistic yes-no experiment

Given a probabilistic experiment with two possible outcomes, '0' and '1' (e.g. a Stern-Gerlach experiment on a spin 1/2 particle, but for the present purpose tossing a biased coin is just as good). The probability p of outcome '1' in a single trial is unknown, but known to have a definite value because all experimental conditions are well controlled. We do N trials in which '1' is obtained L times (and '0' $N - L$ times). However, there are only S bits of storage available, and S is too small to store the observed relative frequency $\nu \equiv L/N$ accurately. How should we encode the experimental result into the S bits, such that the probability that these S bits are correct, becomes maximal?

First, we simply store the relative frequency ν itself. That is, we round it to S bits. Let us denote this rounded number by $[\nu]_S$. Now we know that in infinitely many trials ν would approach p. We can therefore trust $[\nu]_S$ to be correct, if the difference between ν and p is less than the value of the $S + 1^{st}$ bit. In other words, if

$$|\nu - p| < \frac{1}{2^{S+1}}. \quad (1)$$

The probability that an experiment with N trials will yield such a ν shall be denoted by
Prob(\[\nu\]_S). It is a function of \(S, p \text{ and } N\),

\[
 \text{Prob}(\[\nu\]_S) = \sum_{L, (|L/N - p| < 2^{-(S+1)})} \frac{N!}{L!(N - L)!} p^L (1 - p)^{(N-L)}
\]

where the summation is taken over those \(L\) for which the condition is true. Fig.1, curve (a), shows this probability as a function of \(p\) for \(N = 4000 \text{ trials and } S = 6 \text{ bits.}\) (Exact storage of a result would require \(\log_2(4000) \approx 12 \text{ bits.}\) Note that it is pretty low around \(p = 0.5\), where it reaches only 0.68. This is because the fluctuation of the relative frequency \(\nu\) is larger for values of \(p\) around 0.5 than it is for values close to 0 or close to 1.

As a second example, we store the experimental result as quantum theory would suggest it. We encode the observed probability amplitude. That is, we take \(\eta \equiv \sqrt{\nu} = \sqrt{L/N}\) and round it to \(S\) bits. The resulting number shall be denoted by \([\eta]_S\). What is the probability that these \(S\) bits are correct?

Here we must consider that in the limit of infinitely many trials the random number \(\eta\) will approach the limit \(\sqrt{p}\). We can therefore trust \([\eta]_S\) to be correct, if the difference between \(\eta\) and \(\sqrt{p}\) is less than the value of the \(S + 1^{st}\) bit. The probability that an experiment with \(N\) trials will yield such an \(\eta\) shall be denoted by \(\text{Prob}(\[\eta\]_S)\). It is given by

\[
 \text{Prob}(\[\eta\]_S) = \sum_{L, (|\sqrt{L/N} - \sqrt{p}| < 2^{-(S+1)})} \frac{N!}{L!(N - L)!} p^L (1 - p)^{(N-L)}
\]

where the summation is taken over those \(L\) for which the condition is true. This probability is shown in Fig.1, curve (b), again for \(N = 4000 \text{ trials.}\) Note that it is not symmetric about \(p = 0.5\). Its lowest value is for \(p\) close to 0, where it drops to 0.65. This is lower than the lowest probability of 6 correct bits when storing the relative frequency directly.

As a third example we want to find that way of storing the experimental result, which can guarantee the highest minimum value of the probability that its first \(S\) bits are correct. We must find a smooth and monotonic mapping \(\nu \to \chi\), where \(\chi\) is also confined to the interval [0,1], such that the largest fluctuations of the random variable \(\chi\), that can occur for any value of \(p\), are smaller than for any other smooth and monotonic function of \(\nu\) in [0,1].

We argue as follows: The standard deviation of the relative frequency \(\nu\) is well known as

\[
 \sigma_\nu = \sqrt{\frac{p(1 - p)}{N}}.
\]

It is largest at \(p = 0.5\), which corresponds to a large fluctuation of the observed random variable \(\nu\). In order to get a less fluctuating random variable \(\chi\), it is therefore reasonable to compress the region around \(\nu \approx 0.5\) to a narrower region, and to expand the regions close to 0 and close to 1. The compression-expansion factor should be proportional to \(1/\sigma_\nu\). Ideally, this should yield a random variable \(\chi(\nu)\), whose fluctuations are independent of \(p\). The ratio of the standard deviations of \(\chi\) and of \(\nu\) should therefore be

\[
 \frac{\sigma_\chi}{\sigma_\nu} = \frac{c}{\sqrt{p(1 - p)}},
\]

where \(c\) is a constant. In the limit of large \(N\) this can be shown to yield the function

\[
 \chi = \frac{1}{\pi} \arcsin (2\nu - 1) + \frac{1}{2} = \frac{1}{\pi} \arcsin (2L/N - 1) + \frac{1}{2}.
\]
Figure 1: Probability of getting the first 6 bits correctly when taking a specific function of the experimentally obtained relative frequency L/N and decomposing it into binary form. Shown as a function of the probability p. For $N = 4000$ trials. (a): L/N. (b): $\sqrt{L/N}$. (c): $\pi^{-1}\arcsin(2L/N - 1) + 1/2$.

Fig.1, curve (c), shows the probability that the first 6 bits of this random variable are obtained correctly in an experiment of $N = 4000$ trials. Note that it is pretty constant at about 0.88 over the whole range of p. The smallest values are approached close to 0 and close to 1, where it drops to 0.84.

Clearly, χ is the best of the three investigated possibilities of storing the experimental result of a probabilistic experiment when fewer storage bits are available than would be needed to encode the experimental result precisely. And it seems that it is also the best conceivable way, because the probability of getting the first 6 bits correctly tends to be constant. Any other function of ν might improve this probability in some region of p, but necessarily at the expense of lowering it in another region of p.

Nevertheless, it is important to emphasize that the arcsine-relation of eq.(6), or its inverse,

$$\nu = \sin^2\left(\frac{\pi}{2}\chi\right),$$

is only really the best function in the limit of infinitely many trials. But real experiments are always finite. For these there exists an optimal function, whose form depends on the number of trials. It differs from the sinusoidal relation for values of p close to 0 and close to 1, where it is less curved. (This will be the topic of a future paper [20].)

It is also interesting to consider the conceptual status of the limit a random variable tends to in infinitely many trials. For the relative frequency ν this is the probability p. For
the random variable χ it is a quantity which we shall denote by x. The functional relation between the two is, in analogy to the corresponding random variables, $p = \sin^2\left(\frac{\pi}{2}x\right)$. This is reminiscent of the quantum theoretical phase. But we should be cautious here. The quantity x can be thought to exist for any probabilistic yes-no experiment, classical or quantum mechanical. It is simply the limit a particular random variable tends to. However, it has a property, which no other limit of a random variable possesses: The accuracy, with which it can be known, is knowable before the experiment is done, because it is invariant of the probability p. (At least for infinitely many trials, but it is a pretty good statement even for finitely many trials, as can be seen in the relative constancy of curve (c) in Fig.1).

3 Vector representation

Now the data of the yes-no experiment shall be represented as a two-component real vector. This is actually an inefficient method, because the result of a yes-no experiment is only one random variable, not two. But quantum theory suggests we should pay a closer look at such vectors. Clearly, though, the endpoint of such a vector can only be along a line, not within an area.

In accordance with the previous section, we shall investigate the following three random vectors:

$$\vec{\nu} \equiv \left(\nu_1, \nu_2 \right) = \left(\frac{L}{N}, 1 - \frac{L}{N} \right), \quad (8)$$

$$\vec{\eta} \equiv \left(\eta_1, \eta_2 \right) = \left(\sqrt{\frac{1}{N}}, \sqrt{1 - \frac{1}{N}} \right) \quad (9)$$

and

$$\vec{\chi} \equiv \left(\chi_1, \chi_2 \right) = \left(\frac{1}{\pi} \arcsin\left(2\frac{L}{N} - 1\right) + \frac{1}{2}, \frac{1}{\pi} \arcsin\left(1 - 2\frac{L}{N}\right) + \frac{1}{2} \right). \quad (10)$$

Here, $\vec{\nu}$ is the vector of relative frequencies of the two possible outcomes, $\vec{\eta}$ is the vector of the corresponding square roots (thus the probability amplitude representation of quantum theory, except for phases), and $\vec{\chi}$ is the vector derived from our 'best' random variable of the previous section. Fig.2 shows the lines of the possible end points of these vectors in the first quadrant of the real plane.

![Figure 2: Graphical representation of the different random vectors $\vec{\nu}$, $\vec{\eta}$ and $\vec{\chi}$. In all three graphs the vector corresponds to the experimental result $L/N = .25$. [vecnu.grf, veceta.grf, vecchi.grf]]
We note that the end point of $\vec{\nu}$ can lie on a straight line of length $\sqrt{2}$. The same holds for $\vec{\chi}$. And the endpoint of $\vec{\eta}$ can lie on a quarter circle of length $\pi/2$.

We pose the following question: What is the probability that the experiment of N trials yields a vector whose endpoint is no farther from the end point of the true vector than the fraction $2^{-(S+1)}$ of the length of the line on which it can possibly lie? In other words, we ask, what is the probability that we know the whereabouts of the true end point to an accuracy of S bits after the experiment?

The answer for the vectors $\vec{\nu}$ and $\vec{\chi}$ can be given right away. It is the same as that for the scalar quantities ν and χ of the previous section, because in each case we are just projecting the horizontal axis of the corresponding plot in Fig.2 to the line of possible end points. Since these lines are straight, both for $\vec{\nu}$ and for $\vec{\chi}$, the statistical properties of scalar ν, respectively χ, are not distorted when going to vector $\vec{\nu}$, respectively $\vec{\chi}$. This means in particular that, in analogy to scalar χ, for the vector $\vec{\chi}$ the probability that an experiment will yield the whereabouts of its end point correctly to S bits becomes an invariant of p as N becomes large. This is evident in Fig.3, where this probability is shown as a function of p. (Note that this probability is really the same as that for the scalar random variable χ in curve (c), Fig.1.)

The answer for the vector $\vec{\eta}$ must be sought more formally. We want to find the probability that we can trust the experimentally found $\vec{\eta}$ to S bits. This means we want to know the probability for outcomes L/N, given p, for which

$$\left\| \left(\frac{\sqrt{L/N}}{\sqrt{1 - L/N}} \right) - \left(\frac{\sqrt{p}}{\sqrt{1 - p}} \right) \right\| < \frac{\pi}{2} 2^{-(S+1)},$$

where the factor $\pi/2$ is due to the fact that the endpoint of $\vec{\eta}$ is not confined to a curve of length 1, but to one of length $\pi/2$. This probability shall be denoted by $\text{Prob}(\vec{\eta}|S)$. It is given by

$$\text{Prob}(\vec{\eta}|S) = \sum_{L\text{ (selected)}} \frac{N!}{L!(N-L)!} p^L (1-p)^{(N-L)},$$

where the summation is to be taken over those selected L which fulfil condition (11). This probability is also shown in Fig.3. And note that it is exactly the same as that for $\vec{\chi}$. This means that in terms of accuracy of representation the vectors $\vec{\eta}$ and $\vec{\chi}$ are statistically equivalent representations of the obtained information. The probability that the end point of the vectors $\vec{\eta}$ and $\vec{\chi}$ will differ from the respective true end point (the one approached in the limit of infinite trials) by less than a certain fraction of its possible range becomes invariant of p when N is large. Then it depends only on N and increases when N increases. That is why this 'confidence' probability can be specified without knowing the experimental data. Knowledge of N is sufficient. But the vector $\vec{\nu}$ does not have this invariance property.

A graphical way of understanding the statistical equivalence of $\vec{\eta}$ and $\vec{\chi}$ is to look how $\vec{\chi}$ can be obtained from $\vec{\eta}$. One must only take the quarter circle on which the endpoint of $\vec{\eta}$ lies, straighten it, and squeeze the resulting line from length $\pi/2$ homogeneously to length $\sqrt{2}$. This gives the line on which the endpoint of $\vec{\chi}$ lies.

But $\vec{\eta}$ has one additional feature of invariance, which $\vec{\chi}$ does not have. The length of vector $\vec{\eta}$ is independent of the data. Interestingly, quantum theory seems to employ just this vector (neglecting a complex phase factor), which not only represents the obtained
Figure 3: Probability of getting the position of the endpoints of the vectors $\vec{\eta}$ (thick dashed line) and $\vec{\chi}$ (thin line) correctly to the first 6 bits in their respective domain from an experiment of $N = 4000$ trials. Shown as a function of the probability p. The curves coincide with each other.

information more accurately than virtually all others over the whole range of possible results, but which has one more symmetry over equivalent representations.

4 Extension to a probabilistic experiment with K outcomes

We shall now look at a general probabilistic experiment in which a single trial can give one out of K possible outcomes. An example would be a projective measurement on a quantum-mechanical K-level system. (Note that even the most generalized modes of measurement are ultimately projective in a higher dimensional Hilbert space than that of the original system.) The probabilities for the K different outcomes, p_1, \ldots, p_K, whose sum is 1, are fixed by the preparation and the kind of projection done on the system. But they are unknown.

In view of the specific invariance properties found for the vector $\vec{\eta}$ in the previous section, we shall here only investigate the multi dimensional extension of this representation vector. And in order to be of general relevance to quantum theory, we add arbitrary complex phase factors to the components. Thus $\vec{\eta}$ is now defined as

$$\vec{\eta} = \begin{pmatrix} \sqrt{\frac{L_1}{N}} e^{i\varphi_1} \\ \vdots \\ \sqrt{\frac{L_K}{N}} e^{i\varphi_K} \end{pmatrix} ,$$

where L_j denotes how often the outcome j occurred in the N trials, and the phases φ_j are
simply added on and cannot be determined in the projective measurement whose result $\vec{\eta}$ is to represent.

For reasons of analytical simplicity we will shift our focus onto the dispersion of $\vec{\eta}$. We have already remarked that when an experimentally obtained random number or random vector may have higher or lower probability to be correct to a desired accuracy, this is a consequence of differing sensitivity of the numerical decomposition to statistical fluctuations. Formally, these fluctuations are described by the dispersion or by its square root, the standard deviation. The reason why we found that the probability that the observed two component vectors $\vec{\eta}$ and $\vec{\chi}$ differ by no more than $2^{-(S+1)}$ of their respective range from their respective true vector becomes invariant of p, is that the dispersion for both $\vec{\eta}$ and $\vec{\chi}$ becomes invariant of p. And this is not only true for the two-component vectors, but also for the corresponding vectors of arbitrary dimension, and even when we add arbitrary complex phases. We shall show this for the vector $\vec{\eta}$ of general dimension K.

First we must look at its expectation vector $E(\vec{\eta})$. (Whether the expectation $E(.)$ is a vector or a scalar is determined by its argument.) The expectation value of the component $\eta_j \equiv \sqrt{\frac{L_j}{N}} e^{i\phi_j}$ is defined as

$$E(\eta_j) = \sum_{L_1=0}^{N} \ldots \sum_{L_K=0}^{N} \frac{N!}{L_1! \ldots L_K!} p_1^{L_1} \ldots p_K^{L_K} \eta_j.$$ (14)

The multiple summation is subject to the constraint $\sum L_j = N$. It can be greatly simplified by realizing that only the summation over L_j takes into account the factor η_j. Therefore, all other summations can be done independently. This reduces the calculation of $E(\eta_j)$ to the case as if we were doing an experiment with only two instead of K outcomes. We only ask in each trial: Has the outcome j happened, yes or no? The statistics of this experiment is governed by the binomial distribution, and so we can write, replacing the summation index L_j by l, for simplicity,

$$E(\eta_j) = \sum_{l=0}^{N} \frac{N!}{l!(N-l)!} (1-p_j)^{N-l} p_j^l \sqrt{\frac{l}{N}} e^{i\phi_j}.$$ (15)

The calculation must be done numerically. We emphasize that $E(\eta_j)$ is not identical to $\sqrt{p_j e^{i\phi_j}}$ for small N, but approaches it for large N.

Now we turn to the dispersion of $\vec{\eta}$. It shall be denoted by $D^2(\vec{\eta})$. It is defined as the expectation value of the quadratic difference between $\vec{\eta}$ and of the expectation of $\vec{\eta}$:

$$D^2(\vec{\eta}) = E \left(|\vec{\eta} - E(\vec{\eta})|^2 \right).$$ (16)

Note that $|\vec{\eta} - E(\vec{\eta})|^2$ is a real random number given by

$$|\vec{\eta} - E(\vec{\eta})|^2 = \sum_{j=1}^{K} |\eta_j - E(\eta_j)|^2.$$ (17)

Since the expectation value of a sum is equal to the sum of the expectation values we have

$$E \left(|\vec{\eta} - E(\vec{\eta})|^2 \right) = \sum_{j=1}^{K} E \left(|\eta_j - E(\eta_j)|^2 \right).$$ (18)
So we must only look at the formal calculation of the expectation value of the squared difference for one component of the vector η. We label it D_j^2 and it is

$$D_j^2 = E\left(\left|\eta - E(\eta)\right|^2\right)$$

$$= \sum_{l=0}^{N} \frac{N!}{l!(N-l)!} (1 - p_j)^{N-l} p_j^l \left|\eta - E(\eta)\right|^2$$

$$= \sum_{l=0}^{N} \frac{N!}{l!(N-l)!} (1 - p_j)^{N-l} p_j^l \left[\frac{l}{N} - 2Re\left(\eta^* E(\eta)\right) + |E(\eta)|^2\right],$$

where $\eta_j = \sqrt{l/Ne^{i\phi_j}}$. The result is obtained numerically and is shown in Fig.4 as a function of p_j. We note that, when multiplied by N, it approaches $1/4(1 - p_j)$. And it is independent of the phase φ_j. With (18) the dispersion of the whole vector $\vec{\eta}$, when also multiplied by N, therefore tends to a constant value, which is $K^{-1}/4$. A deviation exists only when one or several of the p_j are close to 0, but it disappears when N becomes large. We can therefore conclude, that the dispersion of the representation vector $\vec{\eta}$ of the result of a probabilistic experiment with K different outcomes in a single trial tends to $K^{-1}/4N$ when N becomes large. It therefore tends to become an invariant of the p_j. This means that the accuracy, with which the true vector is known (i.e. the one which $\vec{\eta}$ approaches in the limit of infinitely many trials) only depends on the number of trials. In other words, it is sufficient that we know N, in order to be able to specify a small hypersphere around the endpoint of the experimentally determined vector $\vec{\eta}$ within which the endpoint of the true vector will lie with a certain confidence probability. As this confidence probability is independent of the p_j, for large N, it is also the highest achievable for any representation. So quantum theory picked a good way of representing empirical information, indeed. (Having done this analysis I encountered a very illuminating paper by Caves and Fuchs [17], who defined the representation of the state vector by a finite number of bits as the quantum information content of the state. In our case this would be the total number of bits with which we know $\vec{\eta}$ to a certain confidence level, which are $(K - 1)S$ bits, because we know no phases, and the K^{th} component follows from unitarity.)

5 Transformations of the representation vector

Here we want to investigate which transformations can be made on $\vec{\eta}$ in order to obtain another vector $\vec{\psi}$ which has the same invariance properties as $\vec{\eta}$ and perhaps even additional ones, and yet represents the empirical information without any loss. This means, once $\vec{\psi}$ is obtained from the relative frequencies $\frac{L_1}{N},...,\frac{L_K}{N}$, it must be possible to get back out these relative frequencies when one is given only $\vec{\psi}$ and the arbitrary phases put into $\vec{\eta}$.

First, we will look at transformations for $K = 2$. So we are again considering a yes-no experiment like a projective measurement on a quantum mechanical 2-level system. Specifically, we consider the following situation. A two-level system has been repeatedly prepared in some manner and each time we have done a certain measurement on it and so have obtained the vector $\vec{\eta}$. Now we want to do the whole experiment again, but instead of doing the same projective measurement we let the system evolve for some time and then do this measurement. Does our knowledge of $\vec{\eta}$ permit us to make any general statement
of how the representation vector of the result of the second measurement will look like? In other words, we are asking, whether we can find any general rule of how the system will evolve in time, or to be even more precise, what our representation of our knowledge of the system will look like as a function of the parameter time.

Well, a general rule can only be found if we adopt a general principle. And here it seems obvious to assume that our knowledge of the system must not deteriorate in time. For, if the second measurement revealed that it did deteriorate, we would be forced to postulate that something unaccounted for has happened. In practice this means we would be forced to acknowledge that we were not aware of all the conditions the system was exposed to during the time interval of interest. Therefore, we want to look for a transformation of the vector $\vec{\eta}$ into a vector $\vec{\psi}$, such that the dispersion of $\vec{\psi}$ is the same as that of $\vec{\eta}$, and it must have the same invariance property (i.e. it must not depend on the p_j, at least for large N).

Does the quantum mechanical rule of linear transformations conform to this principle? Here, a transformation of $\vec{\eta}$ is effected by a general rotation

$$ R = e^{i\vec{\sigma}\vec{\tau}} $$

where $\vec{\sigma}$ are the Pauli matrices, and $\vec{\tau}$ contains the duration, strength and direction of the interaction. Writing out R explicitly we have

$$ R = \begin{pmatrix} \cos \tau + i \sin \tau \cos \theta & \sin \tau \sin \theta e^{-i\phi} \\ -\sin \tau \sin \theta e^{i\phi} & \cos \tau - i \sin \tau \cos \theta \end{pmatrix}, $$

where θ and ϕ specify the direction of $\vec{\tau}$ in polar coordinates and the scalar τ expresses the angle of rotation. Of course, we could have a succession of such rotations with different $\vec{\tau}$.
The vector $\vec{\psi}$ now is

$$
\begin{pmatrix}
\psi_1 \\
\psi_2
\end{pmatrix} =
R
\begin{pmatrix}
\eta_1 \\
\eta_2
\end{pmatrix} =
R
\begin{pmatrix}
\sqrt{\frac{L}{N}}e^{i\varphi_1} \\
\sqrt{1 - \frac{L}{N}}e^{i\varphi_2}
\end{pmatrix}.
$$

(22)

Its dispersion can be calculated in complete analogy to that of $\vec{\eta}$ (eqs.(14)-(19)). The result for a specific rotation was obtained numerically and is shown in Fig.5. The left drawing shows the corresponding dispersions of η_1, η_2 and of the vector $\vec{\eta}$ itself. And the right drawing shows the corresponding dispersions for $\vec{\psi}$. Note that the dispersions for ψ_1 and ψ_2 show a different behaviour as a function of the probability p_1 to obtain '1' in a single trial (of the first measurement!). But the dispersion of the whole vector $\vec{\psi}$ tends to become an invariant of p_1 as the number of trials becomes large, just like that of $\vec{\eta}$, and it also approaches the same value $\frac{1}{4N}$. Therefore, the quantum mechanical evolution, at least for the two-level system, does indeed conform to the principle we hoped to see fulfilled, namely, that the input information is conserved.

Figure 5: Left side: Dispersions of η_1 (thin solid line), η_2 (thin dashed line) and of $\vec{\eta}$ (thick horizontal line). Right side: Dispersions of ψ_1 (thin solid line), ψ_2 (thin dashed line) and of $\vec{\psi}$ (thick horizontal line). Both for $N = 4000$ trials. Parameters for rotation matrix R in degrees: $\tau = 75$, $\theta = 50$, $\phi = 110$.

The extension to the K-level system is straightforward. We can write any unitary transformation of the complex vector $\vec{\eta}$ with K components (eq.13) as a sequence of transformations applied to all possible two-dimensional subspaces. Thus we have to define matrices T_{ij}, ($i = 1, \ldots, K - 1$ and $j = i + 1, \ldots, K$), which are all equivalent to the K-dimensional identity matrix, except that the elements I_{ii}, I_{ij}, I_{ji} and I_{jj} are replaced by the elements forming the 2-dimensional unitary matrix (eq.21), with suitably chosen parameters. There exist $K(K-1)/2$ such matrices T_{ij}. A method of constructing an arbitrary unitary $K \times K$ matrix as a product $\prod_{i,j} T_{ij}$ has been given by Reck et al. [18], following Murnaghan [19].

It is now sufficient to realize that application of any of the T_{ij} on an input vector $\vec{\eta}$ will result in a vector $\vec{\eta'}$, which is equivalent to $\vec{\eta}$ except for the i^{th} and j^{th} components. In general, this will change the i^{th} and j^{th} components, and the dispersions of η'_i and η'_j will not be the same as those of η_i, η_j, respectively, as can be seen in Fig.5. But the sum
of these dispersions does not change through the transformation, as we will show now. Following (17) and (18) the sum of the dispersions of \(\eta_i\) and \(\eta_j\) is

\[
D_i^2 + D_j^2 = E \left(|\eta_i - E(\eta_i)|^2 \right) + E \left(|\eta_j - E(\eta_j)|^2 \right).
\]

(23)

Abbreviating the general 2x2 rotation matrix, eq.(21) as

\[
\begin{pmatrix}
a & b \\
-b^* & a^*
\end{pmatrix}
\]

(24)

where we have \(a^*a + b^*b = 1\), the transformed components are \(\eta_i' = a\eta_i + b\eta_j\) and \(\eta_j' = -b^*\eta_i + a^*\eta_j\). The sum of their dispersions is

\[
D_i^2 + D_j^2 = E \left(|\eta_i' - E(\eta_i')|^2 + |\eta_j' - E(\eta_j')|^2 \right)
\]

\[
= E \left(|a\eta_i + b\eta_j - E(a\eta_i + b\eta_j)|^2 \right) + E \left(|-b^*\eta_i + a^*\eta_j - E(-b^*\eta_i + a^*\eta_j)|^2 \right)
\]

\[
= E \left\{ |\eta_i|^2 + |\eta_j|^2 + |E(\eta_i)|^2 + |E(\eta_j)|^2 - 2Re \left[\eta_i E(\eta_i^*) + \eta_j E(\eta_j^*) \right] \right\}. \quad (25)
\]

It is easy to see that this is the same as the sum of the dispersions of the original components, eq.(23). Therefore, the total dispersion of \(\vec{\eta}'\) will be the same as that of \(\vec{\eta}\). Thus the unitary transformation of a K-level system conserves the input information, as was the case for the 2-level system, above. This means the following: When we have done a projective measurement on \(N\) identically prepared K-level systems and later prepare copies in the same way, but let them evolve under well defined conditions before we do the projective measurement, our knowledge of the evolution law together with the input information obtained in the first measurement enables us to specify the whereabouts of the true vector \(\eta\) after the evolution with the same accuracy, as we were able to specify the true input vector.

6 Discussion

We have set out with the conjecture that quantum theory is an optimal theory of encoding information obtained in the form of clicks, i.e. outcomes of probabilistic observations. For this purpose we have first looked for the most efficient way to represent data from a multinomial probability distribution by means of real (rational) numbers, because the statistics of quantum observations follows the multinomial distribution. We asked how the observed relative frequencies should be mapped onto numbers, such that storing these numbers by fewer bits than would actually be needed to store the relative frequencies exactly, ensures the highest probability that these bits are correct (which means, that they coincide with those of the results of an ideal experiment in which infinitely many trials can be done). We found that storing the vector whose components are the square roots of the relative frequencies is the most efficient way, provided the input data are obtained from sufficiently many trials, because the statistical fluctuation of the endpoint of this vector, and thus the reliability of this information, becomes invariant of the probabilities behind the data. Next we investigated complex square roots of relative frequencies by adding arbitrary phase factors. And instead of looking at the reliability of their bit-string...
representation we adopted the formal approach of looking at their dispersion. And here, too, we found that when representing the relative frequencies observed in a general probabilistic experiment by the vector of complex square roots of these relative frequencies, the dispersion of this random vector becomes invariant of the probabilities determining these relative frequencies. This is a very unique property, because it means that the accuracy of this representation of empirical information is independent of physical parameters. It is interesting to note that quantum theory employs exactly these vectors (or, to be exact, the limits they tend to in infinitely many trials), called probability amplitudes, to describe a system.

We also investigated the properties of the random vector which results from a unitary transformation applied to the vector of complex square roots of observed relative frequencies. It, too, showed the property that its dispersion becomes an invariant both of the probabilities determining the input vector, as well as of the parameters fixing the unitary transformation. Therefore, it would be an equally efficient way of representing the empirical information. From the physical point of view this also means, that the quantum mechanical evolution, which is described by just such a unitary transformation, preserves the information we have about a system. If our original information is such that we can specify a small volume in Hilbert space as containing the system, then the evolution will neither compress nor expand this volume, although its shape may change. Note that this would in general not be true, if we represented the system in any other way than by the complex square roots of relative frequencies (probabilities).

Nevertheless, we also found that for observations with only few trials there should exist a better representation, which should deviate notably from the complex-square-roots-of-relative-frequencies encoding, when these relative frequencies are due to probabilities close to 0 or close to 1. This could lead to an apparent deviation from the law of linear superposition, e.g., when trying to predict the outcome of an experiment where a particle can fire a detector by reaching it over two different paths, or — to extend it to entanglement — when there exist two or more indistinguishable possibilities of how several particles can fire several detectors in coincidence). We may have measured the probabilities of each possibility separately, but with only few trials. And one of these probabilities may be very small. Then a simple adding of the complex square roots of the relative frequencies, even with suitable phases, may not be the most accurate prediction for the total probability amplitude. But one should not see this as a failure of quantum theory. It only tells us that quantum theory is a theory working with statistical limits. Its statements refer to expectation values obtainable in infinitely many trials of probabilistic experiments. We can rightly see it as the backbone of probabilistic science, because we can think that in principle any individual observation can be repeated arbitrarily many times. Only, if all our probabilistic observations were limited to only few trials, we cannot exclude the possibility of a predictive theory which is more accurate than quantum theory. We will look at this question elsewhere [20].

References

[1] J.A. Wheeler in Quantum Theory and Measurement, eds. J.A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983) 182.
A. Bohr and O. Ulfbeck, *Primary manifestation of symmetry. Origin of quantal indeterminacy*. Rev. Mod. Phys. **67**, 1 (1995).

C.F. von Weizsäcker, *Aufbau der Physik* (Hanser, Munich, 1985) in German; M. Drieschner, Th. Görnitz, and C.F. von Weizsäcker, *Reconstruction of Abstract Quantum Theory*, Int. J. Theor. Phys. **27**, 289 (1988); Holger Lyre, *Quantum Theory of Ur-Objects as a Theory of Information*, Int. J. Theor. Phys. **34**, 1541 (1995).

C. Brukner, A. Zeilinger, *Operationally Invariant Information in Quantum Measurements*, Phys. Rev. Lett. **83**, 3354 (1999); A. Zeilinger, Found. Phys. **29** 631-643 (1999); C. Brukner and A. Zeilinger, Phys. Rev. A **63**, 022113 (2001).

A. Zeilinger, *The message of the quantum*, Nature **438**, 743, (8Dec2005).

Lucien Hardy, *Quantum Theory From Five Reasonable Axioms*, arXiv.org/quant-ph/0101012.

A. Grinbaum, *Elements of information-theoretic derivation of the formalism of quantum theory*, arxiv.org/quant-ph/0306079.

Shunlong Luo, *Maximum Shannon Entropy, Minimum Fisher Information, and an Elementary Game*, Found. Phys. **32**, 1757 (2002).

Mohammad Mehrafarin, *On the informational nature of quantum mechanics*, arxiv.org/quant-ph/0205028.

Sven Aerts, *Towards a probabilistically operational characterization of potential properties: Quantum theory and Signal Analysis as theories of optimal observation*, to be published in Int. J. Theor. Phys.

Philippe Grangier, *Contextual objectivity and the quantum formalism*, arxiv.org/quant-ph/0407025.

Alfred Landé, *Quantum Mechanics in a New Key* (Exposition Press, New York, 1973); *Albert Einstein and the Quantum Riddle*, Am. J. Phys. **42**, 459 (1974).

Carlton M. Caves, Christopher A. Fuchs, Kiran Manne, and Joseph M. Renes, *Gleason-Type Derivations of teh Quantum Probability Rule for Generalized Measurements*, arxiv.org/quant-ph/0306179.

Simon Saunders, *Derivation of the Born Rule from Operational Assumptions*, arxiv.org/quant-ph/0211138.

Some preliminary ideas of the present paper were formulated quite some time ago: Johann Summhammer, *Maximum predictive power and the superposition principle*, Int. J. Theor. Phys. **33**, 171, (1994); *Invariants of Elementary Observation*, arxiv.org/quant-ph/008098.

In this paper we mean by *amount of empirical information* the number of trials of the probabilistic experiment from which the data were obtained. Thus the number N or any monotonically increasing function of it. A more specific definition is not needed.
[17] Carlton M. Caves and Christopher A. Fuchs, *Quantum Information: How much Information in a State Vector?*, arXiv.org/quant-ph/9601025.

[18] M. Reck, A. Zeilinger, H. J. Bernstein and Ph. Bertani, *Experimental Realization of Any Discrete Unitary Operator*, Phys. Rev. Lett. 73, 58, (1994).

[19] F. D. Murnaghan, *The Orthogonal and Symplectic Groups* (Institute for Advanced Studies, Dublin, 1958).

[20] Johann Summhammer, *Information-based correction to the quantum mechanical probability amplitude* (to be published).