The acetabulum in healed Legg–Calvé–Perthes disease is cranially retroverted and associated with global reduction of femoral head coverage: a matched-cohort study

Daniel A. Maranho1,2, Mariana Ferrer1, Leslie A. Kalish3, Whitney Hovater1 and Eduardo N. Novais1*

1Department of Orthopedic Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,
2Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, 11 Floor, Ribeirao Preto, Sao Paulo 14049-900, Brazil and
3Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
*Correspondence to: E. N. Novais. E-mail: Eduardo.Novais@childrens.harvard.edu
Submitted 14 May 2019; Revised 29 December 2019; revised version accepted 9 January 2020

ABSTRACT

To evaluate the acetabular morphology in healed Legg–Calvé–Perthes disease after skeletal maturity using computed tomography (CT) scan and to compare with matched controls. We identified 33 (37 hips) patients with healed Legg–Calvé–Perthes disease and closed triradiate cartilage who underwent pelvic CT scan. Each patient was matched based on sex, age and side to a subject with no history of hip disease who had undergone pelvic CT evaluation because of abdominal pain. Both cohorts had 23 (70%) males and mean age of 16.4–16.5 ± 3.6 years. Two independent readers assessed lateral center-edge angle (LCEA), acetabular inclination angle (IA), acetabular depth-width ratio (ADR), acetabular version 10 mm below the dome (cranial) and at the acetabular center and anterior (AASA) and posterior acetabular sector angles (PASA). All measurements had good to excellent interobserver agreement (intraclass coefficients ≥ 0.87). The hips in the Legg–Calvé–Perthes disease cohort had a smaller mean ± standard deviation (SD) superior, anterior and posterior acetabular coverage as assessed by LCEA (13.2° ± 10.7° versus 28.2° ± 3.4°; P < 0.0001), IA (11.6° ± 6.7° versus 3.5° ± 2.8°; P < 0.0001), AASA (52.4° ± 9.5° versus 59.3° ± 5.0°; P = 0.001) and PASA (79.3° ± 5.9° versus 92.3° ± 5.5°; P < 0.0001) compared with controls. The acetabulum was shallower (ADR 287 ± 45 versus 323 ± 28; P = 0.0002) and the acetabular version was decreased cranially (0.4° ± 9.2° versus 8.2° ± 6.8°; P = 0.0002) and at the acetabular center (13.7° ± 5.1° versus 17.2° ± 3.8°; P = 0.004) in Legg–Calvé–Perthes disease hips. After skeletal maturity, hips with healed Legg–Calvé–Perthes disease have shallower and more cranially retroverted acetabula, with globally reduced coverage of the femoral head compared with age-, sex- and side-matched control hips.

INTRODUCTION

Legg–Calvé–Perthes disease [1–3] typically heals with varying degrees of hip deformities [4]. Previous studies have focused on the description of the anatomical abnormalities of the femur [5, 6]. However, the acetabular morphology may also influence the long-term prognosis of the disease [5, 7, 8]. Acetabular deformities described in Legg–Calvé–Perthes disease include acetabular dysplasia [5, 7, 9, 10], acetabular retroversion [6, 11–15], compartmentalization of the articular surface [5, 16, 17], irregularity of the acetabular contour [5, 9] and flattening or sloping acetabular margin [18, 19]. These acetabular deformities combined with the typical aspherical femoral head, short femoral neck and high-riding greater trochanter may lead to hip pain associated with structural hip instability due to insufficient femoral head coverage [20] or...
Understanding the complex acetabular deformity in Legg–Calvé–Perthes disease is important for the evaluation and treatment of patients with symptoms of the healed hip. However, the patterns of acetabular deformity are not well understood.

The purpose of this study was to compare the acetabular morphology after the skeletal maturity of patients with healed Legg–Calvé–Perthes disease who had not undergone surgical treatment, with sex-, age- and side-matched subjects without a history of hip disease, using computed tomography (CT) imaging.

MATERIALS AND METHODS

This retrospective matched-cohort study was approved by our ethics and institutional review board committee, with waiver of informed consent. From January 2000 to June 2017, 496 patients with Legg–Calvé–Perthes disease were seen in our Institution. Of those, 95 (19%) patients underwent a pelvic CT for 3D evaluation of the hip. Thirty-nine of them were excluded because of prior hip surgery including femoral or pelvic osteotomies (33 patients), concurrent genetic syndrome (two patients) or spastic diplegia (one patient), unilateral hip CT (two patients) and movement artifacts on the CT images (one patient). Twenty-three patients were excluded because of the presence of open triradiate cartilage on CT scans. The complete closure of the triradiate cartilage was necessary to warrant assessment of completely ossified acetabular walls for measurements of acetabular morphology [23, 24]. All hips were categorized as late stage according to the Waldenström classification [25], using radiographs obtained at the same time as the CT acquisition. The final cohort included 33 patients with healed Legg–Calvé–Perthes disease [25], four of them with bilateral disease, yielding a total of 37 hips. The control subjects were non-syndromic patients without hip-related symptoms, who had a pelvic CT for assessment of clinical presentation of acute abdominal pain and the suspicion of appendicitis, and closed triradiate cartilage on CT scans. The control cohort comprised individuals matched 1-to-1 with the patients in the Legg–Calvé–Perthes disease cohort by sex and age within a maximum difference of 9 months, using a nearest-neighbor approach. We finally matched the 37 control hips according to the affected side of Legg–Calvé–Perthes disease patients.

The Legg–Calvé–Perthes disease and the matched cohort each had 23 (70%) male and 10 (30%) female subjects (Table I). The mean age (and standard deviation) was 16.4 ± 3.6 years for Legg–Calvé–Perthes disease cohort (range 12.3–25.6 years) and 16.5 ± 3.6 years for the matched cohort (range 12.2–26.0 years). All hips were further classified according to Stulberg et al. [8] (Table I).

Table I. Characteristics of Legg–Calvé–Perthes and matched control groups (33 patients; 37 hips per each group)

	Perthes	Controls
Age (years)	16.4 ± 3.6 (12.3–25.6)	16.5 ± 3.6 (12.2–26.0)
Sex (% male)	23 (70)	23 (70)
Involved side		
Right	18 (55)	18 (55)
Left	11 (33)	11 (33)
Bilateral	4 (12)	4 (12)
Waldenström stage (n = 37 hips)		
Late	37 (100)	
Stulberg et al. class (n = 37 hips)		
I	0 (0)	
II	2 (5)	
III	12 (32)	
IV	22 (59)	
V	1 (3)	

Values are expressed in mean, standard deviation (SD) and range (age) or frequency and percentage (other variables).

Acetabular morphology assessment on CT imaging

Pelvic CT images were obtained with patients in supine position and hips in extension, and neutral abduction, adduction and rotational positioning. Coronal and axial reformats through the centers of the femoral heads were created from thin-section axial datasets using 2D multiplanar reconstructions (OsiriX, Version 5.8.2, Pixmeo, Bernex, Switzerland). We identified specific symmetry of anatomic landmarks to correct for variations in pelvic tilt and rotation in the coronal and axial planes. The reformatted coronal plane was identified as the plane of the centers of both femoral heads and the apex of the acetabulum dome. One-mm axial reformats were acquired directly orthogonal to the reformatted coronal plane [26].

In the coronal plane passing through the center of the femoral heads, we measured the lateral center-edge angle (LCEA) as described by Wiberg [27] (Figure 1A), using the lateral sclerotic edge of the sourcil as the reference for...
superior acetabular coverage [28]. The center of the femoral head for concentric hips or the center of the acetabulum was used as the point of reference for non-spherical femoral heads or non-concentric hips, as described by Visser [29]. The acetabular inclination angle (IA) was assessed using the acetabular roof angle as described by Tönnis [30] (Figure 1B). The acetabular depth-width ratio (ADR) [7] was assessed in the reformatted coronal plane as described by Fujii et al. [31] (Figure 1C).

In the axial plane, we assessed the anterior and posterior acetabular support by measuring the anterior (AASA) and posterior (PASA) acetabular sector angles [32] (Figure 2), wherein the Visser’s center [29] was used for non-spherical femoral heads or non-concentric hips. The cranial acetabular version (Figure 3A) was measured at the level 10 mm caudal to the acetabular dome [26, 33], and the central acetabular version (Figure 3B) was measured using the CT slice passing through the femoral head centers [34] or the Visser’s center [29]. The centers were determined on the coronal plane, using multiplanar orientation [26]. Two pediatric orthopedic surgeons (DAM with 9 years, and MF with 4 years of practice), who were not involved in the clinical care of the patients, measured all parameters for each hip included in this study, using an independent and blind approach.

Statistical methods

Intraclass correlations (ICC) were assessed using a two-way analysis of variance model for absolute agreement with two fixed readers. Values of ICC (and 95% confidence intervals) were good to excellent [35] (Table II), and the measurements of the two readers were averaged for further analyses. Legg–Calvé–Perthes disease hips and control hips were compared with a two-sample paired t-test. As an effect of the matching, adjustment for sex, age and side had little effect in the analysis, and we report only the unadjusted results.

RESULTS

All measurements of acetabular morphology differed between healed Legg–Calvé–Perthes disease and matched cohorts, indicating that in Legg–Calvé–Perthes hips there was a global reduction in acetabular coverage of the femoral head and acetabular retroversion (Table III and Figure 4).
Decreased lateral coverage of the femoral head as assessed by smaller mean LCEA was found in Legg–Calvé–Perthes subjects compared to controls (mean ± SD, 13.2° ± 10.7° compared with 28.2° ± 3.4°, P < 0.0001). Combined with higher values of IA (mean ± SD, 11.6° ± 6.7° compared with 3.5° ± 2.8°, P < 0.0001), these findings suggested acetabular dysplasia. In the Legg–Calvé–Perthes disease group, reduced depth of the acetabulum with a global reduction of head coverage was demonstrated by reduced ADR (mean ± SD, 287 ± 45 compared with 323 ± 28, P = 0.0002), lower mean values of AASA (mean ± SD, 52.4° ± 9.5° compared with 59.3° ± 5.0°, P = 0.001) and PASA (mean ± SD, 79.3° ± 5.9° compared with 92.3° ± 5.5°, P < 0.0001) in comparison with hips from control subjects. The acetabular version was significantly lower in Legg–Calvé–Perthes disease hips both cranially (mean ± SD, 0.4° ± 9.2° compared with 8.2° ± 6.8°, P = 0.0002) and at the center of the femoral head (mean ± SD, 13.7° ± 5.1° compared with 17.2° ± 3.8°, P = 0.004), suggesting acetabular retroversion. Although the difference in cranial acetabular version between Legg–Calvé–Perthes disease and control cohorts was of 7.9°, this was larger than the 3.4° difference in the acetabular version at the center of the acetabulum (paired t-test on difference of differences, P = 0.002), indicating that retroversion was more pronounced at the cranial part of the acetabulum.

No differences in acetabular measurements were found between the Stulberg et al. II and III categories (sphericity and congruence partially preserved) in comparison with IV and V (coxa plana or incongruent hips) (Table IV).

DISCUSSION

Legg–Calvé–Perthes disease may lead to deformity of the proximal femur and acetabulum, and despite the fact that femoral deformities have been well-described, the acetabular morphology is not completely understood [6]. After the healing stage of Legg–Calvé–Perthes disease, the progression to hip osteoarthritis depends on the articular morphology and congruency; therefore, it is essential to understand the complex anatomy of the acetabulum [5, 7, 8, 22]. In the present study, we found that the

Acetabular measurement	ICC	95% CI
Lateral center-edge angle	0.91	0.86–0.95
Acetabular inclination angle	0.93	0.87–0.95
Acetabular depth-width ratio	0.88	0.81–0.92
Anterior acetabular sector angle	0.90	0.82–0.95
Posterior acetabular sector angle	0.92	0.86–0.96
Cranial acetabular version	0.87	0.80–0.92
Central acetabular version	0.91	0.85–0.94

*Measurements of hips in the Legg–Calvé–Perthes disease and matched control cohorts. The agreement between two observers was assessed using intra-class correlations (ICCs) with 95% confidence intervals (CIs). A two-way analysis of variance model for absolute agreement was used. The cranial acetabular version was measured 10 mm caudal to the acetabular dome. The central acetabular version was measured at the level of the center of the femoral heads or Visser’s centers for non-concentric or non-spherical hips.
Acetabulum in healed Legg–Calvé–Perthes disease is, on average, cranially retroverted, dysplastic and shallow in comparison with matched control hips from patients without hip conditions.

Acetabular dysplasia in Legg–Calvé–Perthes disease has previously been reported in the literature [5, 10, 20, 36]. Our findings indicate that the acetabulum is dysplastic and provides less anterior, superior and posterior coverage to the femoral head in hips with Legg–Calvé–Perthes disease. A decreased superior acetabular coverage in patients with Legg–Calvé–Perthes disease has been reported [5, 10] with larger values of Sharp’s angle [37]. Global decrease in acetabular coverage has been shown in adult hips with Perthes disease, including dysplastic values for LCEA, IA and decreased anterior and posterior coverage of the femoral head [36]. In piglet models of Legg–Calvé–Perthes disease [38], a global decrease of the acetabular coverage was reported soon after ischemic osteonecrosis of the femoral head. In our study, we found that healed Legg–Calvé–Perthes disease hips are shallower as assessed by lower coronal ADR compared to the control hips. A decreased ADR has been previously found at all stages of Legg–Calvé–Perthes disease [10], potentially because the acetabulum deforms with greater width and smaller depth [5, 7, 9]. Changes in acetabular width and depth were more pronounced within the first year of the disease, suggesting that a partial acetabular remodeling occurs up to 5 years of follow-up [10].

In this study, cranial acetabular retroversion was observed in hips with healed Legg–Calvé–Perthes disease in comparison to the matched control hips. In contrast, a normal cranial acetabular version was reported in adult hips with Legg–Calvé–Perthes disease [36]. Although the central acetabular version in our study was significantly lower in Legg–Calvé–Perthes disease hips, we

Table III. Comparison of acetabular morphology between the Legg–Calvé–Perthes and matched cohorts

Acetabular measurements	LCPD	Control	Difference (95% CI)	P-value
Lateral center-edge angle (°)	13.2 ± 10.7	28.2 ± 3.4	−15.0 (−18.6 to −11.4)	<0.0001
Acetabular inclination angle (°)	11.6 ± 6.7	3.5 ± 2.8	8.1 (5.6–10.6)	<0.0001
Acetabular depth-width ratio	287 ± 45	323 ± 28	−36 (−54 to −18)	0.0002
Anterior acetabular sector angle (°)	52.4 ± 9.5	59.3 ± 5.0	−6.9 (−10.8 to −3.0)	0.001
Posterior acetabular sector angle (°)	79.3 ± 5.9	92.3 ± 5.5	−12.9 (−15.7 to −10.1)	0.0001
Cranial acetabular version (°)	0.4 ± 9.2	8.2 ± 6.8	−7.9 (−11.7 to −4.0)	0.0002
Central acetabular version (°)	13.7 ± 5.1	17.2 ± 3.8	−3.4 (−5.7 to −1.1)	0.004

*Acetabular measurements in hips with Legg–Calvé–Perthes disease (LCPD, n = 37 hips) and matched control (n = 37 hips) cohorts summarized by mean and standard deviation. The differences with 95% confidence interval (CI) between the cohorts are given, whereas positive difference indicates higher means in the LCPD cohort. Cranial acetabular version was measured at a level 10 mm caudal to the acetabular dome, and central acetabular version at the level of the center of the femoral heads or Visser’s centers in non-concentric or non-spherical hips.

acetabulum in Legg–Calvé–Perthes disease is, on average, cranially retroverted, dysplastic and shallow in comparison with matched control hips from patients without hip conditions.

Acetabular dysplasia in Legg–Calvé–Perthes disease has previously been reported in the literature [5, 10, 20, 36]. Our findings indicate that the acetabulum is dysplastic and provides less anterior, superior and posterior coverage to the femoral head in hips with Legg–Calvé–Perthes disease. A decreased superior acetabular coverage in patients with Legg–Calvé–Perthes disease has been reported [5, 10] with larger values of Sharp’s angle [37]. Global decrease in acetabular coverage has been shown in adult hips with Perthes disease, including dysplastic values for LCEA, IA and decreased anterior and posterior coverage of the femoral head [36]. In piglet models of Legg–Calvé–Perthes disease [38], a global decrease of the acetabular coverage was reported soon after ischemic osteonecrosis of the femoral head. In our study, we found that healed Legg–Calvé–Perthes disease hips are shallower as assessed by lower coronal ADR compared to the control hips. A decreased ADR has been previously found at all stages of Legg–Calvé–Perthes disease [10], potentially because the acetabulum deforms with greater width and smaller depth [5, 7, 9]. Changes in acetabular width and depth were more pronounced within the first year of the disease, suggesting that a partial acetabular remodeling occurs up to 5 years of follow-up [10].

In this study, cranial acetabular retroversion was observed in hips with healed Legg–Calvé–Perthes disease in comparison to the matched control hips. In contrast, a near normal cranial acetabular version was reported in adult hips with Legg–Calvé–Perthes disease [36]. Although the central acetabular version in our study was significantly lower in Legg–Calvé–Perthes disease hips, we
believe that the mean central acetabular version of 13.7° was close to normative values [39]. Indeed, a difference of 3.4° compared with control hips may not be clinically important. In line with our findings, no differences were observed in the central acetabular version between skeletally immature Perthes hips and the contralateral unaffected hip [6]. Children with a more deformed femoral head may have the potential to develop acetabular retroversion over time, suggesting that the acetabular retroversion is an acquired deformity in Legg–Calvé–Perthes disease [6]. The phenomenon of acetabular retroversion in Legg–Calvé–Perthes disease, although well-described, is not fully understood [4, 6, 11, 14, 15, 36], and the retroversion may not be essentially a periacetabular phenomenon [14]. A study reported that the ischial spine sign was highly correlated with the presence of the crossover sign [14] and that this phenomenon would be associated with the torsion of the inferior hemipelvis [40]. Following this hypothesis, in cases of Legg–Calvé–Perthes disease, increased anterior tilt of the pelvis, combined with retroversion of the acetabulum and torsion of the hemipelvis, would be necessary during skeletal growth to maintain coverage of the deformed femoral head [14]. In piglet models of ischemic osteonecrosis of the femoral head, the acetabulum developed retroversion and decreased tilt, following the onset of femoral deformities [38]. Using 3D cartilage reconstruction from magnetic resonance imaging, a deformity of cartilage shape has been shown in Legg–Calvé–Perthes disease, and the distortion of the femoral surface preceded the acetabular surface deformity [12]. Nevertheless, further studies will be necessary to determine whether acetabular retroversion plays a role in the etiology of Legg–Calvé–Perthes disease [13, 41] or if it is an adaptive response to the deformation of the femoral head.

Our findings of a global acetabular insufficiency and cranial acetabular retroversion may assist the evaluation and treatment of hips with symptomatic healed Legg–Calvé–Perthes disease. Understanding the morphology of the acetabulum is critical to plan for treatment, both in the early stage of the disease and later, following the healing phase when the hip may become symptomatic [4, 20]. In early stages, improving the acetabular coverage of the femoral head by abduction bracing, femoral varus osteotomy or pelvic osteotomy has been the mainstay of Legg–Calvé–Perthes disease treatment (the containment principle). In the healed Legg–Calvé–Perthes disease hip, the complex 3D deformity may lead to structural instability or femoroacetabular impingement [4, 15, 20, 42]. Previous studies have recommended the triple [43] or the Bernese periacetabular osteotomy [20, 22, 42, 44] for correction of acetabular insufficiency in symptomatic hips. Although pelvic osteotomies may improve acetabular coverage of the femoral head [45], the surgeon should carefully assess the correction to avoid worsening the acetabular retroversion [46, 47].

We acknowledge several limitations of our study. First, our cohort of patients with Legg–Calvé–Perthes disease includes individuals who underwent CT scan for investigation of hip symptoms raising concern for selection bias. These patients may not represent the entire population with Legg–Calvé–Perthes disease, and our findings must be interpreted with caution due to their imperfect generalizability. It is possible that patients with continued symptoms and more deformed hips underwent complementary

Table IV. Comparison of acetabular morphology between the Legg–Calvé–Perthes characteristics

Acetabular measurements	Stulberg et al. classification^a	II–III (14 hips)	IV–V (23 hips)	P-value
Lateral center-edge angle (°)	12.9±11.0	13.4±10.7	0.89	
Acetabular inclination angle (°)	12.0±7.4	11.3±6.4	0.76	
Acetabular depth-width ratio	291±43	285±47	0.69	
Anterior acetabular sector angle (°)	52.3±9.0	52.5±10.0	0.94	
Posterior acetabular sector angle (°)	81.1±5.9	78.3±5.8	0.15	
Cranial acetabular version (°)	0.4±9.8	0.4±9.1	0.99	
Central acetabular version (°)	15.2±3.8	12.8±5.6	0.17	

^aAcetabular measurements in hips with Legg–Calvé–Perthes disease (LCPD, n = 37 hips) summarized by mean and standard deviation and compared with the two-sample t-test. Cranial acetabular version was measured at a level 10 mm caudal to the acetabular dome, and central acetabular version at the level of the center of the femoral heads or Visser’s centers in non-concentric or non-spherical hips.
Acetabulum in healed Legg–Calvé–Perthes disease

imaging investigation, while asymptomatic patients with more spherical hips were lost to follow-up or did not undergo CT scan evaluation. This bias can be anticipated by the low proportion of spherical hips (Stulberg et al. II) versus a greater proportion of aspherical hips (Stulberg et al. III, IV and V) in this series. Second, determining the femoral head center in aspherical hips is challenging, raising a concern for measurement bias. As a way to control this bias, we used the Visser’s centers [29] for aspherical hips, and our reliability among the observers was satisfactory. Third, Legg–Calvé–Perthes disease deformities are evident in the CT images.

The acetabular morphology of skeletally mature hips with healed Legg–Calvé–Perthes disease is associated with shallow acetabulum, globally reduced coverage of the femoral head, and cranial acetabular retroversion in comparison with healthy hips. Our study helps to clarify the association between acetabular morphology and deformities in femoral version, including increased anteversion [36] and functional retroversion [48]. In the present study, we did not include the femoral version analysis, but the role of femoral version in the acetabular morphology warrants further investigation. Finally, although the assessors of measurements were not involved in the clinical care of patients, it was not possible to fully blind them to clinical characteristics because Legg–Calvé–Perthes disease deformities are evident in the CT images.

The acetabular morphology of skeletally mature hips with healed Legg–Calvé–Perthes disease is associated with shallow acetabulum, globally reduced coverage of the femoral head, and cranial acetabular retroversion in comparison with healthy hips. Our study helps to clarify the complex acetabular morphology and may be used as a reference for further research and when surgical treatment is considered for healed Legg–Calvé–Perthes disease.

FUNDING
D.A.M. received a postdoctorate scholarship (grant 2016/04376–3) from São Paulo Research Foundation (FAPESP).

CONFLICT OF INTEREST STATEMENT
The other authors (M.F., L.A.K., W.H. and E.N.N.) have no conflict of interest to declare.

ETHICAL STATEMENT
Ethical approval: This study was approved by our ethics and institutional review board committee.

Informed consent: Informed consent was not obtained from the patients included in this study given the retrospective design of the study.

REFERENCES
1. Calve J. On a particular form of pseudo-coxalgia associated with a characteristic deformity of the upper end of the femur. 1910. Clin Orthop Relat Res 2006; 451: 14–16.
2. Legg AT. An obscure affection of the hip joint. 1910. Clin Orthop Relat Res 2006; 451: 11–13.
3. Perthes G. The classic: on juvenile arthritis deformans. 1910. Clin Orthop Relat Res 2012; 470: 2349–68.
4. Eijer H, Berg RP, Haverkamp D, Pécasse GABM. Hip deformity in symptomatic adult Perthes’ disease. Acta Orthop Belg 2006; 72: 683–92.
5. Joseph B. Morphological changes in the acetabulum in Perthes’ disease. J Bone Joint Surg Br 1989; 71: 756–63.
6. Sankar WN, Flynn JM. The development of acetabular retroversion in children with Legg-Calve-Perthes disease. J Pediatr Orthop 2008; 28: 440–3.
7. Heyman CH, Herndon CH. Legg-Perthes disease; a method for the measurement of the roentgenographic result. J Bone Joint Surg Am 1950; 32A: 767–78.
8. Stulberg SD, Cooperman DR, Wallensten R. The natural history of Legg-Calve-Perthes disease. J Bone Joint Surg Am 1981; 63: 1095–108.
9. Madan S, Fernandes J, Taylor JF. Radiological remodelling of the acetabulum in Perthes’ disease. Acta Orthop Belg 2003; 69: 412–20.
10. Huhnstock S, Svenningsen S, Pripp AH et al. The acetabulum in Perthes’ disease: a prospective study of 123 children. J Child Orthop 2014; 8: 457–65.
11. Ezoe M, Naito M, Inoue T. The prevalence of acetabular retroversion among various disorders of the hip. J Bone Joint Surg Am 2006; 88: 372–9.
12. Pienkowski D, Resig J, Talwalkar V, Tyłkowski C. Novel three-dimensional MRI technique for study of cartilaginous hip surfaces in Legg-Calve-Perthes disease. J Orthop Res 2009; 27: 981–8.
13. Larson AN, Stans AA, Sierra RJ. Ischial spine sign reveals acetabular retroversion in Legg-Calve-Perthes disease. Clin Orthop Relat Res 2011; 469: 2012–8.
14. Kawahara S, Nakashima Y, Fuji M et al. High prevalence of acetabular retroversion in both affected and unaffected hips after Legg-Calve-Perthes disease. J Orthop Sci 2012; 17: 226–32.
15. Maranho DA, Nogueira-Barbosa MH, Zamarioli A, Volpon JB. MRI abnormalities of the acetabular labrum and articular cartilage are common in healed Legg-Calve-Perthes disease with residual deformities of the hip. J Bone Joint Surg Am 2013; 95: 256–65.
16. Yngve DA, Roberts JM. Acetabular hypertrophy in Legg-Calve-Perthes disease. J Pediatr Orthop 1985; 5: 416–21.
17. Cho TJ, Choi IH, Chung CY et al. The bicompartmental acetabulum in Perthes’ disease: 3D-CT and MRI study. J Bone Joint Surg Br 2005; 87: 1127–33.
18. Grzegorzewski A, Synder M, Kozlowski P et al. The role of the acetabulum in Perthes disease. J Pediatr Orthop 2006; 26: 316–21.
19. Wong TY, Jesse MK, Jensen A et al. Upsloping lateral sourcil: a radiographic finding of hip instability. J Hip Presv Surg 2018; 5: 435–42.
20. Clohisy JC, Ross JR, North JD et al. What are the factors associated with acetabular correction in Perthes-like hip deformities? Clin Orthop Relat Res 2012; 470: 3439–45.
21. Kim YJ, Novais EN. Diagnosis and treatment of femoroacetabular impingement in Legg-Calve-Perthes disease. J Pediatr Orthop 2011; 31(Suppl. 2): S235–40.
31. Fujii M, Nakamura T, Hara T
30. Toennis D. General radiograph of the hip joint. In: Toennis, D.
33. Jamali AA, Mladenov K, Meyer DC
32. Anda S, Svenningsen S, Dale LG, Benum P. The acetabular sector
34. Anda S, Terjesen T, Kvistad KA. Computed tomography meas-
26. Bulat E, Maranho DA, Kalish LA
25. Waldenstrom H. On coxa plana, osteochondritis deformans coxae
27. Wiberg G. Studies on dysplastic acetabula and congenital sublux-
29. Visser JD. Functional treatment of congenital dislocation of the hip.
20. Edelstein AI, Duncan ST, Akers S et al. Complications associated
combined surgical hip dislocation and periacetabular osteotomy
22. Edelstein AI, Duncan ST, Akers S et al. Complications associated
23. Fabricant PD, Hirsch BP, Holmes I et al. A radiographic study of
the ossification of the posterior wall of the acetabulum: implications
for the diagnosis of pediatric and adolescent hip disorders. J Bone
Joint Surg Am 2013; 95: 230–6.
24. Morris WZ, Chen JY, Cooperman DR, Liu RW. Characterization of
ossification of the posterior rim of acetabulum in the developing
hip and its impact on the assessment of femoroacetabular impingement. J Bone Joint Surg Am 2015; 97: e11–16.
25. Waldenstrom H. On coxa plana, osteochondritis deformans coxae
juvenilis. Acta Chir Scand 1923; 55: 577–90.
26. Bulat E, Maranho DA, Kalish LA et al. Acetabular global insuffi-
ciency in patients with down syndrome and hip-related symp-
toms: a matched-cohort study. J Bone Joint Surg Am 2017; 99:
1760–8.
27. Wiberg G. Studies on dysplastic acetabula and congenital sublux-
ation of the hip joint. With special reference to the complication
of osteoarthritis. Acta Chir Scand 1939; 83(Suppl. 58): 28–38.
28. Ogata S, Moriya H, Tsuchiya K et al. Acetabular cover in congeni-
tal dislocation of the hip. J Bone Joint Surg Br 1990; 72: 190–6.
29. Visser JD. Functional treatment of congenital dislocation of the
hip. Acta Orthop Scand Suppl 1984; 206: 1–109.
30. Tönnis D. General radiograph of the hip joint. In: Tönnis, D.
(ed.). Congenital Dysplasia, Dislocation of the Hip. New York:
Springer, 1987, 100–42.
31. Fujii M, Nakamura T, Hara T et al. Does radiographic coxa prof-
funda indicate increased acetabular coverage or depth in hip dys-
plasia? Clin Orthop Relat Res 2015; 473: 2056–66.
32. Anda S, Svenningsen S, Dale LG, Benum P. The acetabular sector
angle of the adult hip determined by computed tomography.
J Orthop Res 2007; 25: 758–65.
33. Jamali AA, Mladenov K, Meyer DC et al. Anteroposterior pelvic
radiographs to assess acetabular retroversion: high validity of the
“cross-over-sign”. J Orthop Res 2007; 25: 578–65.
34. Anda S, Terjesen T, Kvistad KA. Computed tomography meas-
urements of the acetabulum in adult dysplastic hips: which level
is appropriate? Skeletal Radiol 1991; 20: 267–71.
35. Koo TK, Li MY. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J Chiropr Med
2016; 15: 155–63.
36. Lerch TD, Todorski IAS, Steppacher SD et al. Prevalence of fem-
oral and acetabular version abnormalities in patients with symp-
tomatic hip disease: a controlled study of 538 hips. Am J Sports
Med 2018; 46: 122–34.
37. Sharp IK. Acetabular dysplasia—the acetabular angle. J Bone Jt
Surg Br Vol 1961; 43: 268–72.
38. Upasani VV, Jeffords ME, Farnsworth CL et al. Ischemic femoral
head osteonecrosis in a piglet model causes three dimensional de-
crease in acetabular coverage. J Orthop Res 2017.
39. Hingsammer AM, Bixby S, Zurakowski D et al. How do acetabu-
lar version and femoral head coverage change with skeletal matur-
ity? Clin Orthop Relat Res 2015; 473: 1224–33.
40. Kalberer F, Sierra RJ, Madan SS et al. Ischial spine projection into
the pelvis: a new sign for acetabular retroversion. Clin Orthop
Relat Res 2008; 466: 677–83.
41. Eijer H. Towards a better understanding of the aetiology of Legg-
Calve-Perthes’ disease: acetabular retroversion may cause abnor-
mal loading of dorsal femoral head-neck junction with restricted
blood supply to the femoral epiphysis. Med Hypotheses 2007; 68:
995–7.
42. Novaes EN, Clohisy J, Siebenrock K et al. Treatment of the symp-
tomatic healed Perthes hip. Orthop Clin North Am 2011; 42:
401–17, viii.
43. Wenger DR, Pring ME, Hosalkar HS et al. Advanced containment
methods for Legg-Calve-Perthes disease: results of triple pelvic
osteotomy. J Pediatr Orthop 2010; 30: 749–57.
44. Wyatt MC, Beck M. The management of the painful borderline
dysplastic hip. J Hip Preserv Surg 2015; 6: 105–12.
45. Catterall A. The natural history of Perthes’ disease. J Bone Joint
Surg Br 1971; 53: 37–53.
46. Frick SL, Kim SS, Wenger DR. Pre- and postoperative three-di-
mensional computed tomography analysis of triple in-
nominate osteotomy for hip dysplasia. J Pediatr Orthop 2000; 20:
116–23.
47. Dora C, Mascard E, Mladenov K, Seringe R. Retroversion of the
acacetabular dome after Salter and triple pelvic osteotomy for con-
genital dislocation of the hip. J Pediatr Orthop B 2002; 11:
34–40.
48. Kim HT, Wenger DR. “Functional retroversion” of the femoral
head in Legg-Calve-Perthes disease and epiphyseal dysplasia: ana-
lysis of head-neck deformity and its effect on limb position using
three-dimensional computed tomography. J Pediatr Orthop 1997;
17: 240–6.