Generalized subresultants and generalized subresultant algorithm

Petr Glotov
pglotov@yahoo.com

Abstract
In this paper we present the notions of trail (pseudo-)division, generalized subresultants and generalized subresultant algorithm.

1 Trail pseudo-division

We will work in some polynomial ring $K[x]$. First, we define full polynomial as one with non-zero trail coefficient. All through the paper we will deal with full polynomials. Let we have two full polynomials f and g. Now we describe the process of trail (pseudo-)division. The usual (pseudo-)division can be illustrated in the following scheme, where the coefficients of both polynomials are written from the left to the right by decreasing powers of x and the second, third, etc. lines subtracts one after one from the first after some multiplications ("*" mean some coefficient, no other comments are needed there):

\[
\begin{array}{cccccc}
* & * & * & * & * & * & f \\
* & * & * & & & x^2 g \\
* & * & * & & xg \\
* & * & * & g \\
\end{array}
\]

We introduce the trail (pseudo-)division, which can be analogously illustrated:

\[
\begin{array}{cccccc}
* & * & * & * & * & * & f \\
* & * & * & & & g \\
* & * & * & & xg \\
* & * & * & & x^2 g \\
\end{array}
\]

Here the eliminations perform in the trail part of "bigger" polynomial f by
the trail part of the "smaller" one \(g \). In each step one get polynomial from the ideal \((f, g)\) (it has zero in some lower terms). After removing of some maximal possible power of \(x \) \((x \notin (f, g), \text{ if } \deg_x(\gcd(f, g)) > 0 \) as \(f \) and \(g \) are full and if \(\gcd(f, g) = 1 \) then resulting polynomial is obviously belongs to \((f, g)\)) one can get the polynomial of degree less than \(g \) has.

This way of division is usefull in the case of pseudo-division. In the usual pseudo-division the first polynomial \(f \) is multiplied by some degree of the leading coefficient of the second one \(g \). In the trail division it is multiplied by some degree of the trail coefficient of \(g \). If it is "less" in some sense than the leading coefficient then the resulting trail pseudo-remainder will have "smaller" coefficients than the usual one. Analogously in the case of division (not pseudo) the dividing of \(g \) can be performed by "smaller" term. The \(\text{tprem}(f, g) \) will denote the trail pseudo remainder of \(f \) and \(g \). The remark: in general we can change the "place" of elimination (e.g first vanish the leading coefficient, then the trail, again the trail, etc.).

If \(h \) is full polynomial than \(h^* \) will denote the reverted polynomial (e.g. \((5x^4 + 4x^3 + 3x^2 + 2x + 1)^* = x^4 + 2x^3 + 3x^2 + 4x + 5 \)). The following formula is valid up to multiplying by some power of \(x \): \(\text{tprem}(f, g) = (\text{prem}(f^*, g^*))^* \).

To prove this formula one need to place the mirror near the scheme for trail pseudo-remainder. Then in the mirror one will see the process of finding usual pseudo-remainder of reverted polynomials.

Our next goal is to develop the algorithm analogous to the subresultant algorithm for gcd computation[[1]] with using trail pseudo-remainders. For this purpose we fix here the generalized algorithm for pseudo-remainders \(\text{genPRem} \): this algorithm gets as input two full polynomials \(f \) and \(g \), \(\deg_x g \leq \deg_x f \). In output it produces the polynomial \(r \) together with the following six values: \(r, \delta, \lambda, g, \bar{g}, w \). \(r \) is the full part of trail or usual pseudo-remainder depending on which way is better (usual pseudo-remainder algorithm doesn’t exclude "superfluous" powers of \(x \)); \(\delta = \deg_x f - \deg_x g; \lambda = \text{trailDeg}_x(\text{prem}(f, g)) \) if usual pseudo-division is used and \(\text{trailDeg}_x(\text{prem}(f^*, g^*)) \) if trail pseudo-division was performed; \(g \) and \(\bar{g} \) are \(\text{lc}_x g \) and \(\text{tc}_x g \) or \(\text{tc}_x g \) and \(\text{lc}_x g \) depending on the way of division: first pair in the usual case and the second in the trail one; \(w \) is marker of kind of division: \(\text{lead or trail} \). Formally we can write it in the following way:

Algorithm \(\text{genPRem} \)
Input: \(u, v \) are full polynomials, \(\deg_x(u) \geq \deg_x(v) \)
Output: the generalized pseudo-remainder
if relativeSize(lcₓ(u)) ≤ relativeSize(tcₓ(u)) then
 \(w := \text{prem}(u, v); \)
 return\((w/x^{\text{trailDeg}_{x}(w)}, \text{deg}_{x}(u) - \text{deg}_{x}(v), \text{trailDeg}_{x}(w), \text{lc}_{x}(u), \text{tc}_{x}(u), \text{lead}) \)
else
 \(w := \text{prem}(u^*, v^*); \)
 return\(((w/x^{\text{trailDeg}_{x}(w)})^*, \text{deg}_{x}(u) - \text{deg}_{x}(v), \text{trailDeg}_{x}(w), \text{tc}_{x}(u), \text{lc}_{x}(u), \text{trail}) \)
fi;

Here relativeSize is a integer characteristic of some term which says how big it is. For example, the amount of memory which takes the term can be used.

2 Generalized subresultant algorithm and generalized subresultants

Let \(f, g \) be the initial full polynomials, \(\text{deg}_{x}f \geq \text{deg}_{x}g \). Let \(u_1 = \tilde{u}_1 = \bar{u}_1 = f, u_2 = \tilde{u}_2 = \bar{u}_2 = g, \tilde{u}_3, \bar{u}_4, \ldots \) be the sequence of generalized remainder: \(\tilde{u}_i = \text{genPRem}(\bar{u}_{i-2}, \tilde{u}_{i-1}) \). Of course, the elements of this sequence contains removable factors, we need this sequence just to define the sequence \(\delta_i \): we denote \(\delta_i = \text{deg}_{x}u_{i+1} - \text{deg}_{x}\tilde{u}_i, S_{m}^{n} = \sum_{i=m}^{n} \delta_i, \lambda_i = \lambda - \text{value of} \ \text{genPRem}(\tilde{u}_{i-1}, \bar{u}_i) \). As in the subresultant algorithm we will investigate the determinants of matrices which consist of coefficients of polynomials \(x^}{a}f, x^}{b}g \): let

\[
M_k = \begin{pmatrix}
x^k f \\
x^{k-1} f \\
\vdots \\
f \\
x^{k+\delta_1} g \\
x^{k+\delta_1-1} g \\
\vdots \\
g
\end{pmatrix} = \begin{pmatrix}
* & * & * & * & \cdots & * & * \\
* & * & * & * & \cdots & * & * \\
\vdots \\
* & * & * & \cdots & * & * & * \\
* & * & \cdots & * & * \\
\vdots \\
* & * & \cdots & * & * & * \\
* & * & \cdots & * & * & * \\
\vdots \\
\end{pmatrix}
\]

where \(k < \text{deg}_{x}g \). We denote by \((u_1, u_2)^j \) the polynomial whose coefficients are obtained by fixing some \(a < \text{rows}(M_j) \) columns in the left part of \(M_j \).
From this formula we see, for example, that \bar{u}_h we want to determine how u_{λ} in our considerations, we know that there is some a. $(u_1, u_2) S_2^k$ will be denoted as \bar{u}_{k+2}. Our goal is to express such polynomial via taking generalized pseudo-remainders. Most of equations bellow will be true up to the sign – the sign is not important in our considerations and it’s checking is redundant. The following relation will be usefull for us: it describes what is happened when we perform the generalized pseudo-division in the matrix:

$$
(\bar{u}_1, \bar{u}_2) S_2^k = \frac{\bar{g}_2 \bar{g}_2 \delta_{1+\delta_{2-\lambda_2}}}{\bar{g}_2} (u_2, u_3) S_3^k = \frac{\bar{g}_2}{\bar{g}_2} \frac{1}{\bar{g}_2 \bar{g}_2} (u_2, u_3) S_3^k.
$$

(1)

From this formula we see, for example, that $\bar{u}_4 = (u_1, u_2) S_2^2 = \frac{\bar{g}_2^2}{\bar{g}_2^2} \frac{1}{\bar{g}_2 \bar{g}_2} u_4$, where $u_4 = \text{genPRem}(\bar{u}_2, \bar{u}_3)$. Let u_i denote genPRem($\bar{u}_{i-2}, \bar{u}_{i-1}$). We want to determine how u_i linked with \bar{u}_i. Let us fix the number k. Then we can write down the following sequence of equations:

$$
\bar{u}_{k+1} = (\bar{u}_1, \bar{u}_2) S_2^{k-1} = G_{4}^{k+1}(\bar{u}_2, \bar{u}_3) S_3^{k-1} = \cdots
$$

$$
G_{i+1}^{k+1}(\bar{u}_{i-1}, \bar{u}_i) S_i^{k-1} = \cdots = G_{k+1}^{k+1}(\bar{u}_{k-1}, \bar{u}_k) 0 = G_{k+1}^{k+1} u_{k+1}.
$$

Now we proceed the same transformations with k instead of $k - 1$ and simultaneously we will express G_{i+2}^{k+2} via G_{i+1}^{k+1} using the Π:

$$
\bar{u}_{k+2} = (\bar{u}_1, \bar{u}_2) S_2^k = \frac{1/G_3^2 \delta_k}{g_2^{\delta_{1+\delta_2-\lambda_2}}} G_{4}^{k+1}(\bar{u}_2, \bar{u}_3) S_3^k = \cdots
$$

$$
= \left(\prod \frac{1/G_j^2}{g_{j-1}^{\delta_{j-2+1}}} \right) \frac{\delta_k}{g_k^{\delta_k}} \frac{1/G_{k+1}^{k+1}}{g_{k-1}^{\delta_{k-1}}} G_{k+1}^{k+1}(\bar{u}_k, \bar{u}_{k+1}) 0 = G_{k+2}^{k+2} u_{k+2}.
$$

Hence

$$
G_{k+2} = \frac{\bar{g}_k^{\lambda_k} \lambda_k}{g_k^{\delta_k}} \frac{1}{g_k^{\delta_k}} \left(\frac{1}{\prod G_j^2 g_{j-1}^{\delta_{j-2+1}}} \right) \frac{1}{G_{k+1}^{k+1} g_k^{\delta_{k-1}}} \delta_k.
$$

Let us denote the expression with product as h_{k+2}:

$$
h_{k+2} = \prod G_j^2 g_{j-1}^{\delta_{j-2+1}} G_{k+1}^{k+1} g_k^{\delta_{k-1}}.
$$

(2)
\[h_{k+2} \text{ is } "\text{integer}" \text{ as it is equal to the determinant with } "\text{integer}" \text{ entries:} \]

\[
(\bar{u}_1, \bar{u}_2)_{S^k_2-1} = G^3 \delta^{k+1}_4 G^{k+1}_4 (\bar{u}_3, \bar{u}_4)_{S^k_4-1} = \ldots
\]

\[
= \prod G^i_j G_{j-1}^{k-2} G_{k-1}^{k+1}(\bar{u}_{k-3}, \bar{u}_{k-2})_{S^{k-2}_k-1} = \prod G^i_j G_{j-1}^{k-2} G_{k-1}^{k+1}(\bar{u}_{k-2}, \bar{u}_{k-1})_{S^{k-1}_k-1} = \ldots
\]

and taking the leading or trailing coefficient we get \(h_{k+2} \).

We can remark here that from the (3) it follows that \((\bar{u}_1, \bar{u}_2)_{S^{k-1}_2-1} \sim \bar{u}_k\) and as we know one of its coefficient, we can compute it from the \(\bar{u}_k \).

Analyzing the view of matrices \(M_i, S^{k-1}_2 < i < S^k_2 - 1 \) (namely, the presence of zero’s on the “leading” or “trailing” diagonals) we see that we can fix the columns in such a way that \((\bar{u}_1, \bar{u}_2)^i = 0 \) for that \(i \), so the structure of the sequence of \((\bar{u}_1, \bar{u}_2)^i \) is analogue to the one of usual subresultants.

From the (2) it follows the law of \(h_k \) transformation:

\[
h_{k+2} = h_{k+1} g_{k-1} G_{k+1}^k g_k \delta_{k-1} = h_{k+1} g_{k-1} \frac{1}{h_{k+1}^\delta_{k-1}} \frac{1}{g_{k-1}^\delta_{k-1}} \frac{g_k}{g_{k-1}^\delta_{k-1}} = \frac{g_k}{g_{k-1}^{\delta_{k-1}}} \frac{1}{h_{k+1}^\delta_{k-1}}.
\]

From the considerations above we can derive the algorithms for computing the gcd and resultants. Bellow we present the algorithm for gcd computation. (we present in the style a la Algorithm C from [1]):

Algorithm C’

Input: \(f, g \) are polynomials
Output: the gcd of \(f \) and \(g \)

C’1. [Reduce to full and primitive.] \((u,v):=(f,g), \, d:=\gcd(\text{cont}(u), \text{cont}(v))\), \(e:=\min(\text{trailDeg}_x(u), \text{trailDeg}_x(v)) \), replace \((u,v)\) by \((\text{primpart}(u)/x^{\text{trailDeg}_x(u)}, \text{primpart}(v)/x^{\text{trailDeg}_x(v)})\). If \(\deg_x(u) < \deg_x(v) \) then replace \((u,v)\) by \((v,u)\). Set \(h:=1, g:=1, \bar{g}=1, G:=1, \bar{G}=1 \).

C’2. [General pseudo-remainder.] Apply \(\text{genPRem}(u,v) \) and assign \(r, \delta, \lambda, g_2, \bar{g}_2, w \). If \(r=0 \), then return \(dx^w v/\text{cont}(v) \).

C’3. [Adjust remainder.] \(u:=v; \, v:=(r \bar{G})/(G g^\delta) \, g:=g_2; \, \bar{g}:={\bar{g}_2}; \, h:={\bar{G} g^\delta}/(G h^{\delta-1}); \, G:=g^\lambda; \, \bar{G}:={\bar{g}^\lambda}; \) go to C’2

5
In the algorithm for computing the resultant of two full polynomials the algorithm is almost the same, but one need to return the value of h.

For the non-full polynomials the following formula for resultant can be used: $\text{res}_x(xu,v) = tc_x(v)\text{res}_x(u,v)$ (up to the sign, of course).

3 Implementation

The algorithms for gcd and resultant computing above was implemented with the Axiomxl computer algebra system, which allows to get an efficient executing code. As a coefficient ring it was used the ring of polynomials $\mathbb{Z}[y]$. In Axiomxl there are two different structures for dense and sparse polynomials. As a relativeSize it was used the degree for dense polynomials and number of non-zero terms for sparse polynomials. The results of testing is the following: in the case of dense polynomials the algorithm is not slower than the usual subresultant algorithm; on some examples it is times faster than the usual subresultant algorithm.

4 One property of generalized subresultants.

Here we change the notation and will notate the generalized subresultants as S^*_k to underline the analogues with usual subresultants. S^*_k means that we get the generalized subresultant from the matrix for the usual subresultant S_k. The well known property of usual subresultants is that there formal leading coefficients (principal resultants) $\text{flc}_x(S_k)$ allows one to check the degree of gcd [2]. The generalized subresultants have the same property, namely, the following lemma can be proved:

Lemma. Let S_k^* be the sequence of generalized subresultants of two full polynomials A and B. Then $\deg_x(\gcd(A, B)) = d$ iff $(\text{flc}_x(S_0^*)$ or $\text{ftc}_x(S_d^*)) = \cdots = (\text{flc}_x(S_{d-1}^*) or \text{ftc}_x(S_{d-1}^*)) = 0$ and $\text{flc}_x(S_d^*) \neq 0$ (then also $\text{ftc}_x(S_d^*) \neq 0$ and back); here flc_x and ftc_x are formal leading and trailing coefficient, they are some determinants.

The content and proof of the lemma is almost analogous to the corollary 7.7.9 from [2]. We just make here some remarks. Everywhere in the previous to the corollary 7.7.9 lemma’s in [2] the PSC$_i$ appears it can be substituted by formal leading or trailing coefficient of the generalized subresultants. The big role in the proof plays the equation $A(x)T_j(x) + B(x)U_j(x) = C_j(x)$,
where there is some conditions on the degrees of $T_j(x)$, $U_j(x)$ and $C_j(x)$ and which holds when formal leading coefficient of S_j is vanishes. In the our case this equation will be of the form $A(x)T_j(x) + B(x)U_j(x) = x^*C_j(x)$, where x^* means some power of x.

5 Ackowlegment

I would like to thank M.Bronstein for usefull discussions, help with Axiomxl and Axiomxl itself and E.V.Zima for providing me with the copy of [1]. This paper was written in the year of 2000 I think.

References

[1] D.E.Knuth The art of computer programming. Volume 2 Seminumerical Algorithms. pp. 428-434.

[2] B.Mishra Algorithmic Algebra Springer-Verlag 1993.