Magalhães et al., avaliaram as características clínicas, eletrocardiográficas e eletrofisiológicas do flutter atrial em pacientes com e sem cardiomiopatia por PRKAG2. Embora o sequenciamento genético não tenha sido realizado em seus pacientes controle, a ausência de características clínicas dessa patologia é uma evidência aceitável de um estado não portador. Em humanos, mutações no gene PRKAG2 resultam em um fenótipo altamente penetrante. É dominado pelas características cardíacas de hipertrofia ventricular esquerda, pré-excitacion ventricular, taquiarritmia atrial, doença de condução cardíaca e armazenamento de glicogênio no miocárdio. Seria muito improvável encontrar um paciente com um fenótipo positivo para PRKAG2 no cenário de um fenótipo negativo.

Nosso grupo foi pioneiro no estudo da cardiomiopatia PRKAG2 no Brasil. O primeiro paciente foi avaliado em 1994, um homem de 36 anos, hipertenso leve, com episódios recorrentes de flutter atrial comum. O eletrocardiograma mostrou pré-excitacao ventricular, aumento das ondas P, aumento significativo da voltagem do QRS e bradicardia sinusal. De 8 irmãos, seis apresentaram achados eletrocardiográficos muito semelhantes. A mãe havia feito implante de marcapasso durante o Congresso Brasileiro de Arritmias de 2005. Nossa pesquisa recebeu o primeiro prêmio em Apresentamos nossa experiência durante o Congresso NASPE em 2004, realizamos o sequenciamento genético dos pacientes.

A mutação encontrada na maioria dos casos foi a Arg302Gln (R301Q), responsável por metade dos casos relatados na literatura (em torno de 300). Recentemente relatamos uma nova variante patogênica, H401Q. Outra nova variante, K290I, foi relatada em uma família de Bahia. Nos últimos 5 anos, o sequenciamento genético vem sendo realizado no Laboratório de Biologia Molecular do Dr. Fernando Eugenio Cruz do Instituto de Cardiologia, Rio de Janeiro. Também temos colaborado com a equipe do Prof. Campos de Carvalho da Universidade Federal do Rio de Janeiro, com o objetivo de induzir cardiomiócitos de células-tronco pluripotenciais com o propósito de entender melhor as alterações eletrofisiológicas e desenvolver técnica de edição genica.

O trabalho de Magalhães et al., contribui para uma maior visibilidade da cardiomiopatia PRKAG2. Agora acompanhamos uma coorte de 60 indivíduos de 7 famílias de diferentes lugares. Muitos desses pacientes jovens, com idades entre 20 e 30 anos, apresentam flutter atrial e foram devidamente encaminhados para ablação por cateter. Apesar de ser tratada em hospitais com alto padrão de atendimento, mesmo Hospitais Universitários, o diagnóstico da cardiomiopatia pelo PRKAG2 geralmente não é realizado. Outra característica digna de comentário é a pré-exitacao ventricular, muito comum nessa síndrome. Quando presente deve ser devidamente identificada para evitar ser alvo de ablação. Uma tentativa de ablação pode resultar na produção inadvertida de bloqueio atrioventricular.

É de extrema importância distinguir a cardiomiopatia por PRKAG2 da cardiomiopatia hipertrófica sarcomérica. Isso ocorre porque não apenas a apresentação clínica, mas também os resultados a longo prazo são diferentes. A morte súbita é mais prevalente na variante PRKAG2. Até mesmo o mecanismo da morte súbita é distinto. Em pacientes jovens, o flutter ou a fibrilação atrial com frequência ventricular rápida, são gatilhos para morte súbita cardíaca. Naqueles que atingem a quarta década, o bloqueio de condução atrioventricular é a principal causa, e a inserção de um marcapasso salva vidas. Frequentes ventriculares rápidas durante taquiarritmias atriais estão ligadas a uma via fascículo-ventricular de condução rápida, uma variante que produz pré-excitacao. Relatamos recentemente que essas vias acessórias são onipresentes em humanos. Naqueles com mutações PRKAG2, as vias provavelmente se manifestam por causa do armazenamento de glicogênio em seus cardiomiócitos.

Outra característica interessante da cardiomiopatia por PRKAG2 é a ausência de fibrose ventricular. Utilizando...
ressonância magnética cardíaca, identificamos realce tardio por gadolínio em um sexto de nossa coorte de 30 pacientes, em comparação com uma incidência prevista em metade dos indivíduos com cardiomiopatia hipertrófica.11 Temos visto pacientes com mais de 50 anos, geralmente com hiperтроfia significativa, que desenvolvem fibrose como mostrado no realce de gadolínio e que apresentam arritmias malignas (observações não publicadas). Em contraste, indivíduos mais velhos com a variante sarcomérica da cardiomiopatia hipertrófica parecem ter um melhor prognóstico.

A síndrome PRKAG2 deve sempre ser considerada como diagnóstico diferencial em pacientes jovens com flutter ou fibrilação atrial. Este é particularmente o caso na presença de anormalidades adicionais, como bradicardia sinusal persistente, anormalidades de condução intranodal, pré-excitação ventricular, pré-excitacao ventricular ou hipertrofia cardíaca inexplicável.12,13 Como a condição tem alta penetrância e prevalência, outros indivíduos afetados costumam ser encontrados na família. Ocasionalmente, haverá parentes com marca-passo e outros que morreram subitamente. Sendo 100% sensível, o sequenciamento genético é o padrão ouro para o diagnóstico. Se não estiver disponível, amostras de biópsia endomiocárdica percutânea do septo ventricular, avaliadas por microscopia eletrônica de transmissão, são diagnósticas na maioria dos casos. Os principais achados serão a presença de grandes depósitos de grânulos de glicogênio no citosol, a ausência de inflamação e fibrose e uma arquitetura cardiomiocítica normal.1,12

Para resumir, a síndrome PRKAG2 apresenta-se como uma cardiomiopatia isolada, embora algumas variantes raras tenham sido associadas a miopatias esqueléticas leves. A hipertensão arterial sistêmica é comum, e a resistência à insulina tem sido relatada, juntamente com níveis elevados de triglicérides. A obesidade foi relatada em modelos murinos transgênicos.15

Referências

1. Magalhães EFS, Magalhães LP, Pinheiro JO, Teixeira A, Araújo K. Atrial flutter in hypertrophic cardiomyopathy with electrophysiological characteristics. Arq Bras Cardiol. 2022; 119(5):681-688. DOI: https://doi.org/10.36660/abc.20210792
2. Sternick EB, Oliva A, Magalhães LP, Gerken LM, Hong K, Santana O, et al. Familial Pseudo-Wolff-Parkinson-White Syndrome. J Cardiovasc Electrophysiology 2006; 17(7):724-32. https://doi.org/10.1111/j.1540-8167.2006.00485.x
3. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 2003; 344(24):1823-31. doi: 10.1056/NEJM200306113442403
4. Yavari A, Sarma D, Sternick EB. Human γ2 AMPK mutations: an overview. In. Neumann, Dietbert, Viollet, Benoit (Eds). Methods in Molecular Biology – AMPK, Methods and Protocols. London: Springer; 2018: p.581-619. ISBN: 978-1-4939-7597-6
5. Albenza Siqueira MH, Honorato-Sampaio K, Monteiro Dias G, Wilson JR, Yavari A, Brasileiro Filho G, et al. Sudden death associated with a novel H401Q PRKAG2 mutation. Europace. 2020;22(8):1278. doi: 10.1093/europace/euaa014
6. Van der Steld LP, Campuzano O, Pérez-Serra A, Zamarano MM, Sousa Matos S, Brugada R. Wolff-Parkinson-White syndrome: clinical and genetic aspects. J Am Coll Cardiol 2019;74(19):2313-43. doi: 10.1016/j.jacc.2019.08.1057
7. Yavari A, Bellahcene M, Bucchi A, Sirenko S, Pinter K, Herring N, et al. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI registry. J Am Coll Cardiol 2021;74(19):2313-43. doi: 10.1016/j.jacc.2021.07.054
8. Macias Y, Tettert JT, Anderson RH, Sanchez-Quintana D, Correa FS, Farré J, Back Sternick E. Miniseries 1—Part IV: How frequent are fasciculoventricular connections in the normal heart? Europace. 2022;24(3):464-72. doi: 10.1093/europace/euaa286
9. Yavari A, Bellahcene M, Sirenko S, Pinter K, Herring N, et al. Integration of PRKAG2 cardiomyopathy iPSCs and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis, Cell Rep.2016;17(12):3292-304. doi: 10.1016/j.celrep.2016.11.066
10. Neubauer S, Kölm P, Ho CY, Kwong RY, Desai MY, Dolman SF, et al. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI registry. J Am Coll Cardiol 2019;74(19):2313-43. doi: 10.1016/j.jacc.2019.08.1057
11. Pena JLB, Santos WC, Siqueira MHA, Sampaio IH, Moura IG, Back Sternick E. Glycogen storage cardiomyopathy (PRKAG2): diagnostic findings of standard and advanced echocardiographic techniques. Eur Heart J Cardiovasc Imaging.2021; 22(7):800-7. doi: 10.1093/ehjci/jeaa176
12. Back Sternick E, de Almeida Araujo S, Ribeiro da Silva Camargos E, Brasileiro Filho G. Atrial pathology findings in a patient with PRKAG2 cardiomyopathy and persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2021;14(7):e004455. doi: 10.1161/CIRCEP.116.004455
13. Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, et al. Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function. Cell Metab.2016;23(5):821-36. doi: 10.1016/j.cmet.2016.04.003