SI Material and Methods

Monitoring of cell growth and viability

Bacterial strains used are listed in Table S1. *Staphylococcus* strains were grown in either complex medium TSB (tryptone soya broth, Oxoid) or in a chemically defined medium (CDM). The latter consisted of a basic salt medium (12.5 mM Na$_2$HPO$_4$, 10 mM KH$_2$PO$_4$, 1.65 mM MgSO$_4$, 9.25 mM NH$_4$Cl, 8.5 mM NaCl), 0.142 mM sodium citrate tribasic dihydrate, 75 mM α-D(+) glucose and 1 mM of all 19 L-amino acids. L-methionine (Met) was only added when indicated. Vitamins and trace elements were supplemented as follows (with final molarity in nM in brackets): cyanocobalamin (108), 4-aminobenzoic acid (870), D-biotin (120), nicotinamide (2430), Ca-D-panthothenic acid (630), pyridoxine hydrochloride (1860), thiamine hydrochloride (870), riboflavin (780), ZnCl$_2$ (510), MnCl$_2$ (500), H$_3$BO$_3$ (97), CoCl$_2$ (1460), CuCl$_2$ (15), NiCl$_2$ (100), Na$_2$MoO$_4$ (148) and FeCl$_3$ (750).

For strains carrying resistance genes, antibiotics were used at the following concentrations: 100 μg ml$^{-1}$ for ampicillin, 10 μg ml$^{-1}$ for erythromycin and 5 μg ml$^{-1}$ for tetracycline. Overnight cultures were diluted in fresh medium to an optical density at 600 nm (OD$_{600}$) of 0.05 and a flask-to-medium ratio of 5:1. Cultures were grown at 37°C shaking (220 rpm). Initial growth was monitored as the OD$_{600}$ of the culture over time, whereas long-term cell survival was measured by determining the CFU ml$^{-1}$ at each time point indicated. For Figure 5 strains were first grown in CDM with Met. The cultures were filtered through a 0.22-μm filter with vacuum and washed twice with sterile phosphate-buffered saline (PBS). Bacteria were then resuspended in an equal volume of CDM with or without Met (with a flask-to-medium ratio of 2:1) and grown for another 60 min before sampled for RNA extraction.

Construction of strains

The conditional RNase J2 (*rnjB*) and RNase III (*rnc*) mutants were generated using the pMUTIN vector [1]. With this system, conditional mutants can be obtained by integrating the vector upstream of the target gene, which falls under the control of the isopropyl IPTG-inducible promoter P$_{spac}$. For this purpose a region encompassing the first 600/900 bp of the 5’ coding region of RNase J2 and RNase III was amplified from strain RN6390 by employing the primers listed in Table S5. The ampiclons were then cloned into the EcoRI/BamHI digested pMUTIN yielding vectors pCG106 and pCG107, respectively. The vectors were transferred into the restriction-deficient strain RN4220 under IPTG induction. pMUTIN insertion into the chromosome was verified by PCR and pulsed-field gel electrophoresis (PFGE). The mutations were then transduced into *S. aureus* strain Newman. Transductants were verified by PCR and PFGE.
RNA isolation and Northern blot analysis

Samples from bacterial cultures were mixed with 1X Vol. RNA protection solution (Qiagen) for immediate RNA stabilization. Cells were disrupted mechanically (Bertin technologies) and total RNA was purified using mini-scale, silica-membrane based spin-columns (Qiagen).

Northern blot analysis by agarose/ formaldehyde gels of two microgramm total RNA each sample followed standard procedures. Sequence-specific probes were generated by PCR with oligonucleotides listed in Table S3 (SI) and radioactively labeled with the DNA labeling system (Amersham, GE Healthcare) and \(\alpha^{32}\text{P}\)-dCTP. For Figure 1B RNA probes were generated by T7 *in vitro* transcription with \(\alpha^{32}\text{P}\)-CTP and the DNA probe was generated by 5’ end-labeling with \(\gamma^{32}\text{P}\)-ATP and polynucleotide kinase. For clean-up from unincorporated nucleotides chromatography spin-columns with Bio-Gel P-6 (Bio Rad) were used. Signals were detected with the Phospholmager (Fujifilm FLA-7000).

For Figure 5 RNA isolation and Northern blot analysis were performed as described [2]. Briefly, bacteria were lysed in Trizol reagent (Invitrogen) with zirconia-silica beads (0.1-mm diameter) in a high-speed homogenizer (Savant Instruments, Farmingdale, NY). RNA was isolated as described by the manufacturer of Trizol. Digoxigenin (DIG)-labeled probes were generated with a DIG-labeling PCR kit following the manufacturer’s instructions (Roche Biochemicals) using oligonucleotides listed in Table S3.
Table S1 - Bacterial strains and plasmids used in this study.

Strain	Properties	Reference
Escherichia coli		
DH5α	common cloning host, *lacZ* negative	
Top10	Competent *E. coli* for plasmid transformation	Invitrogen
Staphylococcus aureus		
COL	methicillin resistant isolate (1960s)	[6]
N315	methicillin resistant isolate (1982)	[7]
Newman	methicillin-sensitive isolate (1952), NCTC 8178	[8,9]
Newman, 21	Newman *codY::tet*(M)	[10]
Newman, 86	Newman rsh_{syn} (nucleotides 942 to 950 deleted)	[11]
Newman, 106	Newman *P_{spac}-rnjB*, RNase J2 mutant	this work
Newman, 107	Newman *P_{spac}-rnc*, RNase III mutant	this work
RN4220	Restriction-deficient *S. aureus* strain, r-	[12]
RN6390	Laboratory strain derived from NCTC 8325	[13]
Staphylococcus epidermidis		
RP62A	biofilm-forming, *ica*-positive, IS256-positive, catheter sepsis isolate	ATCC 35984

Plasmids	Properties	Reference
pGEM-T Easy	linearised cloning vector system with 3’ T overhang, *lacZ*, Amp^r	Promega
pGEM_{met}COL	pGEM-T Easy with integration of 467 bp fragment of *met* leader RNA under T7 promoter control	this work
pMUTIN	Integrative vector including the IPTG-inducible promoter *P_{spac}*, Amp^r, Erm^r	[1]
pCG106	pMUTIN with integration of a 802 bp *rnjB* fragment for conditional mutagenesis	this work
pCG107	pMUTIN with integration of a 600 bp *rnc* fragment for conditional mutagenesis	this work
Table S2 - Overview of all mutations introduced in the *met* leader RNA template.

The numbers in the last column indicate the nucleotide position based on the *met* leader RNA sequence of *S. aureus* COL. The sequence of the oligonucleotides used for each construct are listed in Table S5.

Construct	Oligonucleotides	Site	Mutation
SC1	SB_ugc_1out	specifier box	113AUG → 113UGC
SC1	Sa-SB_ugc_2out		
SC2	Sa-TB_del_1out	T-box	deletion of bases 360-366
SC2	Sa-TB_del_2out		
SC3	Sa-TB_acca_1out	T-box	360UGGU → 360ACCA
SC3	Sa-TB_acca_2out		
SC4	Sa-TB_gg361cc_1out	T-box	361GG → 361CC
SC4	Sa-TB_gg361cc_2out		
SC5	Sa-TB_cc365gg_1out	T-box	365CC → 365GG
SC5	Sa-TB_cc365gg_2out		
SC6	Sa-TB_G361C_1out	T-box	361G → 361C
SC6	Sa-TB_G361C_2out		
SC7	Sa-TB_G362C_1out	T-box	362G → 362C
SC7	Sa-TB_G362C_2out		
SC8	Sa-TB_U363A_1out	T-box	363U → 363A
SC8	Sa-TB_U363A_2out		
Table S3 - Sequences of oligonucleotides used to generate hybridization probes.

The T7 RNA polymerase promoter sequence is underlined.

Gene	Primer	Sequence 5’ → 3’	Probe
16S rDNA forward	CCTTATGATTTGGGCTACACA		
reverse	CCAGCTTCATATAGTGGAGTT		
130 bp			
S. aureus specific probes			
met leader forward	ATGTATTCTAAATGAGTCAGACAACC	588 bp	
reverse	CCGTCCTTCGTACCCGAATGA		
for sense RNA probe T7-for	TTTTCTAATACGACTCTATAGGGAGAGGAAGATAAAACACACC	394 nt	
reverse	CCGTCCTTCGTACCCGAATGA		
for antisense RNA probe T7-rev	TTAACCTACGTCTACCTATAGGGAGAGGACCCTCTTCTGTACCGTCTCGTA	394 nt	
fow_nest	AGAGGAGATATAAACACACCCTG		
metl	GCATCCAAAACCTAGGACAATCGAC	1006 bp	
reverse	CTCTCCATCTCGAGCTTTATCTATGC		
DIG-labeled probes (S. aureus specific)			
brnQ-1, permease 02923DIG-for	GAAAGCCCAACACACAGGT	321 bp	
02923DIG-rev	TCATCGTAGGTTTAAACAGCA		
met leader 02923DIG-for	CTTCAAGTACCAATTACATTTC	456 bp	
metRIBdigestfor	TTTGTTATTCCCATCGCTGA		
metRIBdigestrev	AAAATCCTACAGCTCAACA		
Nwmn_0351digfor	GGTGTTGAAAGATAAGGTGTT	400 bp	
Nwmn_0351digrev	GGTGTTGAAAGATAAGGTGTT		
Table S4 - Nucleotide sequences of RACE primers and oligonucleotides used in tRNA template PCR. T7 promoter sequence is underlined; additional nucleotides to the annotated tRNA sequence after the transcription reaction are highlighted in bold script.

RACE primer	Oligonucleotide	Sequence 5' → 3'
S. aureus specific		
sp1 = sp2	CGTGCGTAAGAAATCCAGTACGCC	
sp3	AGACACCTCATATTGGGCATCAAC	
sp5	AGAGGAAGTAAAACACCCCTG	
nested sp5	AGTATGGGATAGCACATTATACCTATCC	
further nested sp5	ACTGAATAAGGTTATTTTCAGCGATGG	

primer for tRNA template	Oligonucleotide	Sequence 5' → 3'
Met12_tRNA_T7-F	CTAATACGACTCATAATAGCGGGAATGGAGCAGTTGGT	
Met12_tRNAcca_R	TGGTTGGGGAGGCGGATTTGACACC	
Met12_tRNAAdC_R	GTGGTTGGGGAGGCGGATTTGAACC	
Cys_tRNA_T7-F	TTTTCTAACGACTCATAATAGCGGGAATGGAGCAGTTGGT	
Cys_tRNAcca_R	TGGAGGGGCAACCGGATTG	
Cys_tRNAAdC_R	GTGGAGGGGCAACCGGATTG	
Met3_tRNA_T7-F	TTAATACGACTCATAATAGCGGCACTTACCTATAGGAGCAGTTGGT	
Met3_tRNAcca_R	TGGTTGACCTTGGCAGGACTCGA	
Met3_tRNAAdC_R	TGGACCTTGGCAGGACTCGAACC	
Met4_tRNA_T7-F	CTAATACGACTCATAATAGCGGGAATGGAGCAGCTCAGCTGGC	
Met4_tRNAcca_R	TGGTTGGGGAGGCGGATCGACC	
Met4_tRNAAdC_R	TGGTTGGGGAGGCGGATCGACC	
Table S5 - Sequences of oligonucleotides used in SDM PCR and for generation of conditional RNase mutants. T7 promoter sequence and mutated nucleotides are underlined; position of deletion is indicated by an asterisk. The restriction sites EcoRI and BamHI, respectively, are in italic.

SDM PCR primers

Oligonucleotide	Sequence 5'→3'
T7-F_met-sRNA	TTAACTAATACGACTCACTATAGGGAGATCTTTATAACGATGAACGTAAAC
R_met-sRNA	GAAAAAATAAAAAAGCTCCGTCTTTCG
SB_ugc_1out	GAAAATGCGCCTTTGAGTTGATGC
Sa-SB_ugc_2out	AGGCGCATTTTCACAACACGCTTTTCA
Sa-TB_del_1out	AAAGG*GCGAACATAAGCTTTGCTCC
Sa-TB_del_2out	TTCGC*CCTTTATTGTTATTCCATCGC
Sa-TB_acca_1out	AAAGGACCAACCGCAAACATAAGC
Sa-TB_acca_2out	TTCGCCGTTTGTCTTTATTTGTTATTCC
Sa-TB_cc365gg_1out	AAAGGTGTAAGGGCGAAACATAAGC
Sa-TB_cc365gg_2out	TTCGCCCTACCACTTTATTGTTATTTCCA
Sa-TB_G362C_1out	AAAGGTGCTACCGCAAACATAAGC
Sa-TB_G362C_2out	TTCGCCCTAGCACCTTTATTGTTATTTCCA
Sa-TB_G361C_1out	AAAGGTCTACCGCAAACATAAGC
Sa-TB_G361C_2out	TTCGCCGTACCCCTTTATTGTTATTTCCA
Sa-TB_gg361cc_1out	AAAGGTCTCTACCGCAAACATAAGC
Sa-TB_gg361cc_2out	TTCGCCGTTGACCTTTATTGTTATTTCCA
Sa-TB_U363A_1out	AAAGGTGGAACCGCAAACATAAGC
Sa-TB_U363A_2out	TTCGCCGTTTCCACCTTTATTTGTTATTTCCA

Conditional RNase mutants

RNase gene	Oligonucleotide	Sequence 5'→3'
RNase J2	EcoSAV1275-for	GGGGGATTCTAGGAGGTAAATTTGAG
	BamHSAV1275-rev	CCCCCGATCTCAAGTGATCTTCTTCAA
RNase III	EcoSAV1233-for	GGGGGATTTCGCAAACATAAAAGGAGAT
	BamHSAV1233-rev	AAAAGGATCATTATAGGTTACATCACC
SI References

1. Vagner V, Dervyn E, Ehrlich SD (1998) A vector for systematic gene inactivation in *Bacillus subtilis*. Microbiology 144 (Pt 11): 3097-3104.

2. Goerke C, Campana S, Bayer MG, Doring G, Botzenhart K, et al. (2000) Direct quantitative transcript analysis of the agr regulon of *Staphylococcus aureus* during human infection in comparison to the expression profile in vitro. Infect Immun 68: 1304-1311.

3. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

4. Green NJ, Grundy FJ, Henkin TM (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 584: 318-324.

5. Gutierrez-Preciado A, Henkin TM, Grundy FJ, Yanofsky C, Merino E (2009) Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 73: 36-61.

6. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, et al. (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant *Staphylococcus aureus* strain and a biofilm-producing methicillin-resistant *Staphylococcus epidermidis* strain. J Bacteriol 187: 2426-2438.

7. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, et al. (2001) Whole genome sequencing of meticillin-resistant *Staphylococcus aureus*. Lancet 357: 1225-1240.

8. Duthie ES (1952) Variation in the antigenic composition of staphylococcal coagulase. J Gen Microbiol 7: 320-326.

9. Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K (2008) Genome sequence of *Staphylococcus aureus* strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190: 300-310.

10. Pohl K, Francois P, Stenz L, Schlink F, Geiger T, et al. (2009) CodY in *Staphylococcus aureus*: a regulatory link between metabolism and virulence gene expression. J Bacteriol 191: 2953-2963.

11. Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, et al. (2010) Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of *Staphylococcus aureus*. Infect Immun 78: 1873-1883.

12. Kreiswirth BN, Lofdahl S, Betley MJ, O'Reilly M, Schlievert PM, et al. (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709-712.

13. Peng HL, Novick RP, Kreiswirth B, Kornblum J, Schlievert P (1988) Cloning, characterization, and sequencing of an accessory gene regulator (agr) in *Staphylococcus aureus*. J Bacteriol 170: 4365-4372.