Microscopic, serological and molecular detection of Babesia bigemina in buffaloes (Bubalus bubalis) in Wasit province, Iraq

Olaa AEA Alkefari1, Hasanain AAJ. Al-Gharban2, Tamarah H. Ahmed3
1. Department of Microbiology College of Veterinary Medicine, University of Wasit, Iraq.
2. Department of Internal Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Iraq.
3. Department of Pharmacology and Physiology, College of Veterinary Medicine, University of Wasit, Iraq.

Corresponding Author Email: oabdulhussein@uowasit.edu.iq
Co-authors Emails: hghirban@uowasit.edu.iq
		tahmed@uowasit.edu.iq

(Received 16/7/2017, Accepted 21/8/2017)

Abstract
The goal of present study was to detect an incidence of Babesia bigemina in apparently healthy buffaloes using of three different diagnostic assays. An overall of 179 buffaloes (Bubalus bubalis) in some rural regions in Wasit province /Iraq, were submitted for collection of blood samples during the period of December 2016 to February 2017. Initially, a thin blood smear slides were prepared and stained with Giemsa stain for microscopy, afterwards, the blood samples have been centrifuged for obtaining of serums and blood clots that examined by an indirect-ELISA and PCR, respectively. The overall results of testing all samples were revealed on 3 (1.68%), 46 (25.7%) and 21 (11.73%) positive animals by microscopy, indirect-ELISA and PCR, respectively. The significant differences (P ≤ 0.05) were showed between the results of three diagnostic tests, and within the cross-classification values of microscopy to indirect-ELISA, microscopy to PCR, and indirect-ELISA to PCR.

Keywords: Babesia bigemina, buffalo, Bubalus bubalis, serology, molecular, Wasit

Introduction:
Babesia bigemina is an intraerythrocytic protozoan that belonging to Babesiidae family of Apicomplexa phylum. This parasite is detected firstly by Vector Babes in 1888, and described as the more prevalent causative species for babesiosis disease in cattle and buffaloes (1, 2). It is accountable on great losses because of decreasing the animal production, using the approaches of controlling and treatment, with the influencing on trading international bovine animals (3). During acute phase, babesiosis is characterized by fever, anorexia, lethargy, haemoglobinuric diarrhea, as well as to emaciation, anemia and jaundice in more prolong severe cases (4). Afterword acute infections, the healthier animals frequently sustain subclinical infections that act as a source of babesiosis infection and latent vector for natural transmission (5). In general, babesiosis can be diagnosed in based upon the clinical signs of acute cases and can be demonstrated, microscopically, by staining of blood smears with Giemsa. Although, this method remains as a most suitable “Gold Standard” way for detection of acute infections, it’s low in sensitivity and specificity in carrier animals and required for effective diagnostic tests to detect of B. bigemina (6). Several serological techniques are standarized for babesiosis detection and applied, extensively, in field studies (7). However, the cross-reactions and lacking of required specificity and sensitivity for diagnosis of carrier states (8). Recently, an indirect-ELISA has been developed in based on the ability of serum antibody to inhibit a monoclonal antibody directed against B. bigemina specific epitope. This assay is characterized by a high sensitivity, specificity and productivity (analysis of large number of animals in a shorter time) for determination of subclinical infections (9). On the other hand, PCR has proven to be high in its specificity and sensitivity more than other classical tests, with providing an
active facilitating method in diagnosis of *B. bigemina* in carrier animals (10). Nonetheless and according to several studies, the combination of more than one technique in diagnosis of babesiosis can lead to a precise evaluation especially during the epidemiological investigations (8, 11). Hence, the goal of current study was to detect the prevalence of *B. bigemina* parasite in carrier buffaloes by using of three diagnostic tools (blood smear’s microscopy, serological indirect-ELISA and molecular PCR).

Material and Methods:

Sample of study

An overall 179 apparently healthy buffaloes, from both gender and more than 1 year age, were selected randomly from some rural areas at Wasit province during the period of December 2016 to February 2017.

From each animal, two samples of blood have been collected; the first from ear vein using of a heparinized capillary tube for preparation of blood smear slides, whereas, the second 6 ml blood sample were drained from jugular vein by a vacutainer EDTA tube (AFMA, Jordan) that transported to laboratory and directly centrifuged at 3000 rpm for 30 minutes. The serum samples were kept in numbered 1 ml eppendorf microtubes, while the blood clot samples were kept in their tubes. Both sera and clots were saved at -20°C (8).

Study’s Techniques

1. **Microscopy:** From each sample, two slides of blood smears (thin) were prepared, fixed by using of an absolute methanol alcohol (Avantor, India), Giemsa’s stained (SYRBIQ, Syria) and tested under 1000× of light microscopy (Trinocular, MEIJI/Japan) (12).

2. **Serology:** The serum samples were tested by an indirect-ELISA (SVANOVA Biotech, Sweden). All reagents and samples were equilibrated, diluted, incubated and rinsed according to manufacturer instruction. The results of controls and samples were measured at 405nm of optical density by using a microplate ELISA-Reader (BioTek-USA). Also, the calculation of mean OD values and interpretation of the results were explained in (Table 1):

Calculation	PP = Mean OD value sample or Negative control / Mean OD value Positive control × 100
Interpretation	
Control	OD Positive control
	Control PP Positive control
	≤ 20
Samples	PP Negative control
	Samples PP Negative control
	≥ 40
	≤ 25

PP: Percent Positivity
OD: Optical Density

3. **Molecular PCR:** DNA was extracted from blood clots using of a commercial kit (Bioneer, Korea), GAU7 (F) 5'-GTGTTGGTTTTTCGCTGGC-3’ and GAU8 (R) 5’-GCCAGCGAAA AGACCCCAAC-3’ primers were used for specific detection of *B. bigemina* (13). PCR reaction was performed to obtain the 685bp amplified product over 35 cycles, and processed in thermal cycler, (MJ-BIO RAD/USA), under the following conditions:

PCR Cycles	Temperature	Time
1 Cycle – Initial denaturation	94°C	2 Minutes
40 Cycles – Denaturation	94°C	30 Seconds
Annealing	55°C	30 Seconds
Extension	72°C	1 Minute
1 Cycles-Final extension	72°C	5 Minutes
Finally, the amplified DNA fragments were analysed after electrophoresis on 1% agarose gel (Bioneer, Korea). The amplified DNA products were stained with Ethidium bromide (0.4µg/ml) (Bioneer, Korea) and visualized under Ultra-violet (14).

Results:

In this study, a totally of 179 healthy buffaloes were examined by light microscopy, indirect-ELISA, and PCR techniques which revealed on 3 (1.68%) positive blood smears, 46 (25.7%) seropositive and 21 (11.73%) positives, respectively, (Table 2). Cross-classification results of light microscopy to indirect-ELISA in a totally of 179 buffaloes, were showed that 3 (1.68%) of buffaloes were positives by both assays; and 43 (24.02%) were negatives microscopically and positives serologically, (Table 3). Cross-classification results of light microscopy to PCR in a totally of 179 buffaloes, were showed that 3 (1.68%) of buffaloes were positives by both assays, and 18 (10.05%) were negatives microscopically and positives molecularly, (Table 4). Cross-classification results of indirect-ELISA to PCR technique in a totally 179 buffaloes, were showed that 20 (11.17%) of buffaloes were positives by both assays, 26 (14.53%) were positives serologically and negatives molecularly, and 1 (0.56%) was negative serologically and positive molecularly, (Table 5).

Parasitological detection of *B. bigemina* within infected RBCs in blood smears slides stained with Giemsa was tested under 1000× oil immersion of objective lens light microscopy, (Figure 1). PCR product of *B. bigemina* positive isolates was showed by agarose-gel electrophoresis. While, Lane M represented the DNA marker (100-2000bp), Lane (1-7) was referred to the positive samples at 681bp PCR product size at 1% agarose, 100 Volt and 80 Am for 1 hour, (Figure 2).

Table (2): Results of a totally 179 tested buffaloes by three diagnostic techniques

Diagnostic Techniques	Positive samples	Negative samples
1 Microscopy	3 (1.68%)	176
2 Indirect-ELISA	46 (25.7%)	133
3 PCR	21 (11.73%)	158

Table (3): Cross-classification results of microscopy to indirect ELISA

Microscopy Results	Indirect-ELISA Results	Total
Positive	Positive	3
	Negative	176
	Total	179

Table (4): Cross-classification results of microscopy to PCR assay

PCR Results	Microscopy Results	Positive	Negative	Total
Positive	3 (1.68%)	14	0 (0%)	3
Negative	3 (1.68%)	158	133 (88.27%)	176
Total		21	158	179

Table (5): Cross-classification results of indirect ELISA to PCR assay

PCR Results	Indirect-ELISA Results	Total
Positive	20 (11.17%)	46
Negative	1 (0.56%)	133
Total	21	179

All obtained data concerning to the diagnostic assays were introduced, tabled and analysed using of two computerized Microsoft Office Excel (2013) and IBM/SPSS programs. The significant differences were detected at a level of ($P \leq 0.05$), by application of descriptive statistics and Chi-square test (χ^2) (15).
Discussion:

In Iraq, several studies have been directed toward diagnosis of Babesia sp. in cattle and buffaloes (16, 17, 18). In buffaloes (Bubalus bubalis), the present study was the first one that using three different diagnostic assays for evaluation of B. bigemina infections, involved the microscopy for stained blood smears, serology for serum samples by indirect-ELISA, and molecular detection of specific gene in whole blood samples using of PCR technique that revealed on 1.68%, 25.7% and 11.73% positive buffaloes, respectively. Worldwide, various methods were applied to detect the prevalence of bovine babesiosis in endemic areas, which reported variable results depending on the applied diagnostic test and stage of disease. In Iraq, though the livestock represented a great source for economy, the efforts still unmonitored and low benefits could be gained from these resources because of malnutrition, frequent infections, rottenly management systems, age old, lack of well-developed marketing fundamentals, inferior genetic makeup or unsuitable environments as bad farming and soil degradation. According to OIE, bovine babesiosis is classified under list of B because of their importance as a tick-borne infection that resulting in a significant morbidity and mortality (19). Carrier hosts infected with Babesia has been represented a challenge to be diagnosed because of a parasite might carrier animals (21). Diagnostically, the microscopy is accounted as gold standard during detection the acute B. bigemina cases (22). Worldwide, the prevalence of bovine babesiosis in different countries by microscopic blood smears was varied from 0.6% to 32.2% (23), as reported in Turkey, 1.95% (23); in Pakistan, 9.9% (24); in Egypt, 10.76% (25); in Bangladesh, 14.1% (26); in Ethiopia, 16.9% (19); and in Brazil, 19-20.4% (27, 28). The method is simple to performance and inexpensive but required a high experience to detect of Babesia that appeared as a small pairs (2.5-3.5μm in diameter) of pear-like shaped merozoites insides the infected RBCs of animals, and differentiated it from other species (29). Also, the low sensitivity of test represented a great holdback that made the diagnosis more complication for detection of low parasitemia in a chronic stage of infection as well as in carrier animals and it dependable, only, where amounts of parasite in peripheral blood is highly enough to diagnose (25, 30). Hence, different serological methods were modified for detecting Babesia sp. among different phases of infection (7, 8). Recently, ELISA was used to be a confirmatory tool for results of microscopy and other serological tests because of its ability to detect of specific antibodies against Babesia sp. with high sensitivity, specificity, less subjectivity, and its capacity to be adapted to
is useful in evaluation the status of carriers that serve as disease’s reservoirs for herds. (36, 37). Animals which not clinically ill may continue to infect the tick vector, so it can be used as a tool for epidemiological investigations. Moreover, an accurate early diagnosis of babesiosis in carriers is essential to overcome the economic losses (8, 21). With PCR, the prevalence of bovine B. bigemina was 1.34%, in Costa Rica (34); 7.1%, in Iran (38); 10.42%, in Egypt (25); and 16-34%, in Brazil, (27, 28). Several studies found out that the serological techniques could be detected a high numbers of diseased animals with babesiosis more than in molecular tests (11, 39, 40). These variations were in consistent with several previous studies. In these cases, the parasite might clear from peripheral blood, or the number of Babesia could be decreased for under-detectable level by PCR (41, 42). Advantages for integration of ELISA with PCR involved increasing of tests sensitivities during detection of hemoparasite, and the possibility of distinguishing of recent infections from established infection that the animal recovered from it (9, 42). Finally, this study were concluded a disability of blood smears microscopy in diagnosis of carrier buffaloes with B. bigemina, and the negative smears microscopy doesn’t excluded a possibility of infections. Also, study was established an ability of indirect-ELISA for providing an important data about an incidence of infections, whereas, PCR technique can be diagnosed the species of pathogen, accurately, without cross-reaction.

References:

1-Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitol, (2004); 129 (S1), S247-S269.

2-Maharana BR, Tewari AK, Saravanan BC, Sudhakar NR. Important hemoprotazoan diseases of livestock: Challenges in current diagnostics and therapeutics: An update. Vet World, (2016);9 (5): 487.

3-Ghosh S, Bansal GC, Gupta SC, Ray D, Khan MQ, Irshad H, Ahmed JS. Status of tick distribution in Bangladesh, India and Pakistan. Parasit Res, (2007); 101 (2): 207-216.

4-Brites-Neto J, Duarte KM, Martins TF. Tick-borne infections in human and animal population worldwide. Vet World, (2015); 8 (3): 301.
5-Sharma A, Singla LD, Ashuma BK, Kaur P. Clinicopatho-Biochemical Alterations Associated with Subclinical Babesiosis in Dairy Animals. J Arthropod-Borne D, (2016); 10 (2): 258.

6-Oliveira-Sequeira TC, Oliveira MC, Araujo JP, Amarante AF. PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. Int J Parasitol, (2005); 35 (1): 105-111.

7-Terkawi MA, Alhasan H, Huyen NX, Sabagh A, Awier K, Cao S, Kalb-Allouz AK. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in cattle from central region of Syria. Vet Parasitol, (2012); 187 (1): 307-311.

8-Costa FB, Melo SA, Araujo FR, do Nascimento Ramos CA, Carvalho-Neta AV. Serological, Parasitological and Molecular Assessment of Babesia bovis and Babesia bigemina in cattle of State of Maranhão. Revi Caat, (2015); 28 (2): 217-224.

9-Goff WL, Johnson WC, Molloy JB, Jorgensen WK, Waldron SJ, Figueroa JV, Mosqueda J. Validation of a competitive enzyme-linked immunosorbent assay for detection of Babesia bigemina antibodies in cattle. Clinic & V Immun, (2008); 15 (9): 1316-1321.

10-Adham FK, Abd-El-Samie EM, Hussein HE. Detection of tick blood parasites in Egypt using PCR assay I-Babesia bovis and Babesia bigemina. Parasitolol Res, (2009); 105 (3): 721.

11-Terkawi MA, Huyen NX, Shinuo C, Inpankaew T, Maklon K, Aboulaila M, Xuan X. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the northeast region of Thailand. Vet Parasitol, (2011); 178 (3): 201-207.

12-Krause PJ Babesiosis diagnosis and treatment. Vect-Borne & Zoo Dis, (2003). 3 (1): 45-51.

13-Linhares GF, Santana AP, Laueman LH, Madruga CR. Assessment of primers designed from the small ribosomal subunit RNA for specific discrimination between Babesia bigemina and Babesia bovis by PCR. Ciência Ani Brasileira, (2006); 3 (2): 27-32.

14-Silva JB, Santos PN, Fonseca AH. Molecular and serological detection of Babesia Bovis and Babesia Bigemina in cattle in the Rio de Janeiro, Brazil. S-C Ag, (2014); 35 (6): 3139-3145.

15-Petrie A, Watson P. Statistics for Veterinary and Animal Science. 2nd Ed. Ames: Blackwell Publishing, (2006); Pp: 24-112.

16-Altheal ED. Studies on Morphological Classification of Anemia and Clinical Examination in Iraqi Buffaloes. MS thesis, Col Vet Med, Univ of Baghdad. (2012); Baghdad-Iraq.

17-Ameen KA, Abdullah BA, Abdul-Razaq RA. Seroprevalence of Babesia bigemina and Anaplasma marginale in domestic animals in Erbil, Iraq. J Vet Sci, (2012); 26 (3): 109-114.

18-Minmat TR, Al-Zuhairi AH, Jalil WI. Study of Clinical, Epidemiological and Heamatological changes of Haemoparasites infection in Cattle of Diyala Province-Iraq. Res J Ph, Bio & Chem Sc, (2016); 7(4): 3094 - 3102.

19-Hamsho A, Tesfamarym G, Megersa G, Megersa M. A Cross-Sectional Study of Bovine Babesiosis in Teltete District, Southern Ethiopia. J Vet Sc Techn, (2015); 6 (230): 2.

20-Bhat SA, Singh H, Rath SS. Molecular detection of Babesia bigemina infection in apparently healthy cattle of central plain zone of Punjab. J Parasitol D, (2015); 39(4): 649-653.

21-Chaudhry ZI, Suleman M, Younus M, Aslim, A. Molecular detection of Babesia bigemina and Babesia bovis in crossbred carrier cattle through PCR. P J Zool, (2010);42(2): 201-204.

22-Mtshali MS, Mtshali PS. Molecular diagnosis and phylogenetic analysis of Babesia bigemina and Babesia bovis
Page	Reference
23	Ekici OD, Sevinc F. Seroepidemiology of *Babesia bigemina* in cattle in the Konya province, Turkey: endemic status. *Bull. Vet Inst Pulawy*, (2009); 53: 645-649.
24	Ayaz S, Shams S, Mohammad AT, Reheem A, Khan S, Ullah R. Epidemiology and molecular detection of babesiosis in household dairies in districts Kohat and Karak, Khyber Pakhtunkhwa Pakistan. *Life Sc J*, (2013); 10(10): 188-193.
25	Ibrahim HM, Moumouni PA, Mohammed-Geba K, Sheir SK, Hashem IS, Cao S, Xuan X. Molecular and serological prevalence of *Babesia bigemina* and *Babesia bovis* in cattle and water buffaloes under small-scale dairy farming in Beheira and Faiyum Provinces, Egypt. *Vet Parasitol*, (2013); 198 (1): 187-192.
26	Alim MA, Das S, Roy K, Sikder S, Hassan MM, Hossain MA. Prevalence of hemoprotozoan diseases in cattle population of Chittagong division, Bangladesh. *Pakistan Vet J*, (2012); 32(2): 221-224.
27	Amorim LS, Wenceslau AA, Carvalho FS, Carneiro PL, Albuquerque, GR. Bovine babesiosis and anaplasmosis complex: diagnosis and evaluation of the risk factors from Bahia, Brazil. *Rev Bras de Parasitol Vet.*, (2014); 23 (3): 328-336.
28	Da Silva JB, André MR, da Fonseca AH, de Albuquerque Lopes CT, de Andrade ST Barbosa JD. Molecular and serological prevalence of *Babesia bovis* and *Babesia bigemina* in water buffaloes in the north region of Brazil *Vet Parasitol*, (2013); 197 (3): 678-681
29	Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto G. Current advances in detection and treatment of babesiosis. *Cur Med Ch*, (2012); 19 (10): 1504-1518.
30	Ricciardi A, Ndao M. Diagnosis of Parasitic Infections: What’s Going On?. *J Bio Sc*, (2015) . 20 (1): 6-21.
31	Hunfeld KP, Hildebrandt A, Gray JS. Babesiosis: Recent insights into an ancient disease. *Inter J Parasitol*, (2008); 38 (11): 1219-1237.
32	Singh H, Mishra AK, Rao JR, Tewari AK. Comparison of indirect fluorescent antibody test (IFAT) and slide enzyme linked immunosorbent assay (S-ELISA) for diagnosis of *Babesia bigemina* infection in bovines. *T Anim H & Prod*, (2009); 41(2): 153-159.
33	Iseki H, Zhou L, Kim C, Inpankaew T, Yokoyama N, Igarashi I. Seroprevalence of *Babesia* infections of dairy cows in northern Thailand. *Vet Parasitol*, (2010) . 170 (3): 193-196.
34	Shebish E, Vemulapalli R, Oseto C. Prevalence and molecular detection of *Anaplasma marginale, Babesia bovis* and *Babesia bigemina* in cattle from Puntarenas Province, Costa Rica. *Vet Parasitol*, (2012); 188 (1): 164-167.
35	Da Silva JB, André MR, da Fonseca AH, de Albuquerque Lopes CT, de Andrade ST, Barbosa JD. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the north region of Brazil. *Vet Parasitol*, (2013); 197 (3): 678-681.
36	Beugnet F, Marié JL. Emerging arthropod-borne diseases of companion animals in Europe. *Vet Parasitol*, (2009);163 (4): 298-305.
37	Moretti A, Mangili V, Salvatori R, Maresca C, Scoccia E, Torina A, Pietrobelli M. Prevalence and diagnosis of Babesia and Theileria infections in horses in Italy: a preliminary study. (2010); *Vet J*, 184 (3): 346-350.
38	Khamesipour F, Doosti A, Koohi A, Chehelgerdi M, Mokhtari-Farsani A, Chengula AA. Determination of the presence of *Babesia* species in blood samples of cattle, camel and sheep in Iran by PCR. *Arch Bio Sc*, (2015); 67 (1): 83-90.
39	Zarlenaga DS, Higgins J. PCR as a diagnostic and quantitative technique in hemoparasites from cattle in South Africa. *BMC Vet R*, (2013); 9(1): 154.
veterinary parasitology. Vet Parasitol, (2001); 101(3): 215-230.

40-Buling A, Criado-Fornelio A, Asenzo G, Benitez D, Barba-Carretero JC, Florin-Christensen M. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Vet parasitol, (2007); 147 (1): 16-25.

41-Pipano E, Shkap V, Kriegel Y, Leibovitz B, Savitsky I, Fish L. Babesia bovis and B. bigemina: Persistence of Infection in Friesian Cows Following Vaccination with Live Antibabesial Vaccines. Vet J, (2002); 164 (1): 64-8.

42-Silva MG, Henriques G, Sa’anchez C, Marques PX, Suarez CE, Oliva A. First survey for Babesia bovis and Babesia bigemina infection in cattle from central and Southern regions of Portugal using serological and DNA detection methods. Vet Parasitol, (2009); 166 (1): 66-72.