CIDE Family-Mediated Unique Lipid Droplet Morphology in White Adipose Tissue and Brown Adipose Tissue Determines the Adipocyte Energy Metabolism

Yuki Nishimoto¹ and Yoshikazu Tamori¹, ²

¹ Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
² Department of Internal Medicine, Division of Diabetes and Endocrinology, Chibune General Hospital, Osaka, Japan

White adipose tissue (WAT) stores energy as triacylglycerol in preparation for fasting state. In contrast, brown adipose tissue (BAT) consumes energy and produces heat in a cold environment. One of the major differences between these two adipose tissues is the morphology of the intracellular lipid droplet (LD), which is large and unilocular in WAT and small and multilocular in BAT. Although the fat-specific protein 27 alpha (FSP27α), belonging to the cell death-inducing DNA fragmentation factor A (DFFA)-like effector (Cide) family, was known to be indispensable for large unilocular LD formation in WAT, the mechanism that regulated small multilocular LD formation in BAT remained unknown. We recently uncovered that FSP27β, a novel isoform of FSP27 abundantly expressed in BAT, plays a crucial role in small multilocular LD formation by inhibiting the homodimerization of CideA in BAT. We speculate that unilocular LD formation is ideal for efficient lipid storage in WAT because lipolysis from the LD surface is restricted due to the minimum LD surface area. In addition, hydrolyzed free fatty acid (FFA) and glycerol can efficiently flow out into the circulation from the cell surface. In contrast, small multilocular LD formation is ideal for efficient intracellular lipolysis from the LD surface and the subsequent facilitation of FFA transport to mitochondria that are adjacent to LDs for β-oxidation in BAT. Thus, intracellular LD morphology is closely related to the functions and characteristics of adipose tissues. Given that the browning of adipose tissue leads to enhanced energy expenditure and the prevention of obesity, clarification of the mechanism with respect to intracellular LD formation is very meaningful.

Key words: Lipid droplet, Adipocyte, Cell death-inducing DNA fragmentation factor A (DFFA)-like effector A (CideA), Fat-specific protein 27 (FSP27), Brown adipose tissue (BAT), White adipose tissue (WAT)
accumulation in other tissues, such as the liver, skeletal muscle, heart, or pancreas. It induces not only insulin resistance in insulin-sensitive tissues but also impairment of insulin secretion in β cells\(^7\). These imply that TAG storage in adipocyte is associated with obesity, diabetes, and cardiovascular diseases. Adipocytes can be classified into energy-storing white adipocytes and energy-consuming brown ones according to their distinct function and morphology\(^8\). It is important to unveil the mechanism for efficient TAG storage in white adipocytes and for efficient energy expenditure in brown adipocytes. Although the transcriptional factors controlling the differentiation between white and brown adipocytes have been extensively investigated\(^9, 10\), it is not enough to examine the difference of lipid droplet (LD) formation between the two adipocytes. We assume that the functions of these adipocytes are associated with the intracellular LD morphology. Thus, it is crucial to disclose the mechanism for lipid storage and consumption in white and brown adipocytes. We describe the recent progress regarding the relationship between LD morphology and energy metabolism in white and brown adipocytes.

**White Adipose Tissue and Brown Adipose Tissue**

Energy storage as droplets containing neutral lipids (mainly TAG and steryl esters) in the cytoplasm in preparation for starvation is a common and widespread feature among eukaryotic cells. LDs of all types of cells share a general structure. A hydrophobic core of neutral lipids in LD is surrounded by a membrane monolayer of phospholipids (phosphatidylcholine and phosphatidylethanolamine)\(^11, 12\). LDs are believed to derive from the endoplasmic reticulum (ER). Neutral lipids are synthesized in the interior of the bilayer of the ER and enlarge into spheres between the bilayer; they eventually bud from the ER into the cytoplasm surrounded by a phospholipid monolayer derived from the ER\(^13\). In addition, the phospholipid monolayer of LDs contains a variety of proteins involved in the appropriate regulation of LD formation and degradation\(^14\). Among them, perilipin 1 was identified as the first LD protein expressed abundantly in adipocytes\(^15\). It is a major phosphorylated protein by protein kinase A in adipocytes, and its phosphorylation is essential for catecholamine-stimulated lipolysis\(^16\). Furthermore, perilipin 1 was also found to regulate cellular lipid metabolism\(^17\). LDs exist ubiquitously in various organs. In non-adipocyte cells, the LD is very small, and its size is usually smaller than 1 µm in diameter, except for extreme pathological states such as hepatocytes in steatosis\(^18\). However, adipocytes have large LDs because adipocytes are cells in which the lipid storage function has specifically developed. There are two types of adipocytes that play different roles in energy metabolism\(^8\). One is the white adipocyte that stores lipid as a large unilocular lipid droplet that occupies almost all the cytoplasmic space and can be in the 100 µm range\(^19\). The other is the brown adipocyte that stores lipid as small multilocular lipid droplets. Both adipocytes have the common characteristic of storing lipid efficiently for each tissue-specific purpose. White adipocyte uptakes glucose and free fatty acids (FFA), synthesizes TAG, and stores it as lipid in the postprandial period. In the fasting, it hydrolyzes TAG to FFA and glycerol. The former is utilized in skeletal muscles and the heart as an energy source instead of glucose. The latter is used in the liver as a substrate for the production of glucose. Conversely, brown adipocytes dissipate energy for heat production by using FFA generated by hydrolyzing intracellular LD through the proton leak via the activation of the BAT-specific protein, uncoupling protein 1 (UCP1)\(^19, 20\).

WAT is mainly located in the visceral or subcutaneous space, whereas BAT is mainly located in the interscapular and perirenal spaces in rodents. Visceral fat accumulation has been shown to increase with age\(^21\). BAT was traditionally thought to exist only in the neonatal and early childhood periods in the interscapular region and to disappear with age in humans\(^22\). However, it was revealed that adult humans also have BAT depots, for example, in the cervical, supraclavicular, and paravertebral areas\(^23-28\).

WAT and BAT originate by a distinct developmental program. White adipocytes originate from myogenic lineage marker Myf5-negative mesenchymal precursor cells. On the contrary, brown adipocytes arise from precursors that express Myf5, and the transcriptional profiles of brown adipocytes are similar to those of the skeletal muscle\(^29, 30\). Several factors have been identified as brown fat-specific gene induction factors, such as peroxisome proliferator-activated receptor (PPAR) γ-coactivator-1α (PGC-1α)\(^31\), PR domain-containing protein-16 (PRDM16)\(^32\), bone morphogenic protein family (BMP)\(^33\), CCAAT/enhancer binding protein β (C/EBPβ)\(^34\), and lysine-specific demethylase 1 (Lsd1)\(^35\).

Recently, another type of thermogenic adipocyte, designated as “beige” or “brite” cells, was demonstrated to be induced in the WAT of rodents and humans\(^36, 37\). Beige adipocytes derive from Myf5-negative cells in WAT\(^30\), and their development is induced in response to environmental stimulation, such as cold exposure, PPARγ agonists, and exercise\(^38\). They are highly energy expending and characterized by plenty of mitochondria, small multilocular LDs, and increased expression...
of UCP1 similar to brown adipocytes. In recent years, brown and beige adipocytes are suggested as therapeutic targets for weight loss.

**Importance of LD Morphology in the Characteristics of Adipocytes with Respect to Energy Metabolism**

In mammals, white adipocytes play an important role as the primary reservoir of excess energy. Large unilocular LDs in white adipocytes are thought to be the ideal structure to store TAG. In this form, the surface area of the LD becomes minimum. Thus, the area of the contact site of the LD with lipase becomes small, resulting in the restriction of lipolysis. In addition, white adipocytes need to supply FFA and glycerol to other tissues in case of energy demand, such as the fasting state. In such cases, FFA and glycerol generated on the LD surface that is close to the plasma membrane can efficiently flow out of the cells into the circulation. On the other hand, brown adipocytes possess small multilocular LDs in their cytoplasm and effectively conduct thermogenesis by uncoupling substrate oxidation and adenosine triphosphate production through the proton leak. Small multilocular LD formation increases the contact area of the LD with lipase, which efficiently promotes lipolysis and facilitates FFA transport to the mitochondria adjacent to LDs for β-oxidation and heat production in mitochondria (Fig. 1). As just described, these differences in the lipid accumulation pattern between the two adipocytes are thought to reflect their functional characteristics. However, the mechanism responsible for the formation of LDs in white and brown adipocytes has remained unknown.

**Cide Family Proteins Regulate Whole-Body Energy Homeostasis**

Cell death-inducing DNA fragmentation factor A (DFFA)-like effector (Cide) family proteins, containing CideA, CideB, and the fat-specific protein 27 (FSP27) (CideC in humans), are among the LD-associated proteins and have been shown to play a crucial role in lipid and energy metabolism, including lipolysis, lipid oxidation, and LD formation. They share homology with the N-terminal region of the DNA fragmentation factor DFF45 (DFFA), which regulates apoptosis.

CideA is strongly and almost exclusively expressed in BAT in mice. CideA-deficient mice show lean phenotype and are resistant to diet-induced obesity and diabetes. CideA appears to be a mitochondrial protein that suppresses UCP1 activity and regulates thermogenesis and lipolysis. Lipid accumulation and LD size in brown adipocytes decreased in CideA-deficient mice stimulated by cold exposure. Increased expression level of CideA was also observed in the livers of high-fat diet (HFD)-fed mice and leptin-deficient (ob/ob) mice. In recent years, CideA was demonstrated as mediating LD fusion at the LD–LD contact site between two LDs in white and brown adipose tissues. CideB is highly expressed in the liver and kidney. Energy expenditure was increased and insulin sensitivity was improved in CideB-null mice. CideB is also localized on the LD–LD contact sites and promotes LD fusion and growth in hepatocytes. Moreover, CideB plays an important role in mature very-low-density lipoprotein secretion.

FSP27 was initially reported to be one of the LD proteins in 3T3-L1 adipocytes. Thereafter, FSP27 was found to be predominantly expressed in adipose tissues, and it contributes to the efficient storage of TAG and the large unilocular LD formation in white adipocytes of mice. FSP27 knockout (KO) mice showed reduced lipid storage in WAT and were protected from HFD-induced obesity and insulin resistance. Interestingly, WAT in FSP27 KO mice displayed multilocular LD formation that is similar to BAT. In addition, insulin sensitivity was also improved in CideA and FSP27 double-KO mice, and their white and brown adipose tissues showed smaller LDs than those of CideA or FSP27 single-deficient mice. These results suggest that in the Cide family, CideA, CideB, and FSP27 are all involved in the enlargement of LD. In particular, FSP27 is essential for unilocular LD formation that is the characteristic LD morphology of WAT.

In humans, the results reported on CideA and CideC are inconsistent with those in mice. CideA and CideC are both expressed in WAT in humans; however, CideA is abundantly expressed in BAT, but not in WAT, in mice. The expression levels of CideA and CideC correlate positively with the insulin sensitivity in obese people. In addition, a patient with homozygous nonsense mutation in CideC was reported to be characterized by lipodystrophic phenotype, i.e., white adipocytes partially with multilocular LDs and insulin resistance supposedly caused by fatty liver. Increased hepatic expressions of CideA and FSP27 were also observed under the condition of liver steatosis in humans. In the mice model, FSP27-deficient mice appeared to be protected against weight gain and insulin resistance. However, small LDs in WAT were observed, and hepatosteatosis and insulin resistance developed on HFD feeding in adipocyte-specific FSP27 KO mice. Furthermore, insulin resistance and hepatic steatosis developed in FSP27 KO mice that
were overloaded with excess lipid in the context of leptin deficiency or long-term exposure to HFD\(^6\). Anyway, the effects of FSP27 on whole-body energy metabolism may be different between mice in which CideA is expressed exclusively in BAT and humans in whom CideA is also expressed in WAT. However, at least in humans, adipose FSP27 is supposed to improve insulin sensitivity by increasing lipid accumulation in adipose tissues and, resultantly, minimizing ectopic fat accumulation in other insulin-sensitive tissues, for example, the liver or skeletal muscle. Therefore, it is unclear whether the silencing of FSP27 that resulted in the reduction of WAT mass and the enhanced insulin sensitivity without leading to hepatosteatosis in obese mice\(^6\) can also be of therapeutic application to obese people.
structure-function analysis reveals that the carboxy-terminal domain of FSP27 (amino acids 131–239) plays a crucial role in LD expansion, possibly by homodimerization, whereas the amino-terminal domain (amino acids 1–130) has a supportive role. On the other hand, there are studies showing the importance of the amino-terminal region of FSP27 in promoting LD growth. However, considering the report that a patient carrying a homozygous nonsense mutation in CIDE-C, the human homologue of FSP27, which is predicted to truncate the protein at amino acid 186, shows small and multilocular LDs in white adipocytes, the carboxy-terminal domain of FSP27 is essential for large unilocular LD formation in human WAT. Besides, FSP27 was found to store TAG efficiently in cooperation with several proteins: perilipin, adipose triacylglycerol lipase, and Egr1.

**FSP27 Regulates the Formation of Large Unilocular LD in White Adipocytes**

Ectopic expression of FSP27 led to the enlargement of LDs and TAG accumulation in non-adipose cells, whereas depletion of FSP27 in cultured adipocytes resulted in small LD formation and increased lipolysis. Moreover, depletion of FSP27 by siRNA in HW adipocytes that show the morphological characteristics of white adipocytes resulted in the formation of many small LDs similar to brown adipocytes. In fact, WAT mass was reduced, and the LDs in WAT were also of a small multilocular pattern in FSP27 KO mice. Energy expenditure was significantly increased in FSP27 KO mice due to enhanced mitochondrial biogenesis and FFA oxidation in WAT. These results suggest that FSP27 plays essential roles in large unilocular LD formation in WAT. In addition, the mechanism by which FSP27 promotes LD enlargement is also clarified. FSP27 is highly enriched at an LD–LD contact site and forms homodimers that are involved in directional lipid transfer from small to large LDs due to the higher internal pressure in small LDs. Furthermore,

**CideA and FSP27β Coordinate LD Formation in Brown Adipocytes**

Recently, a new isoform of FSP27, FSP27β, was identified in the liver. It contains 10 additional amino acids at the amino-terminal domain of the conventional
isoform of FSP27, designated as FSP27α. Both isoforms of FSP27 are alternatively transcribed from the same gene and driven by distinct promoters. Although FSP27α is mainly expressed in WAT, FSP27β is expressed at a high level in the liver and BAT in mice. FSP27α is transcriptionally regulated by PPARγ, and FSP27β is regulated by the liver-enriched transcription factor cyclic-AMP-responsive-element-binding protein H (CREBH) in the liver. CREBH is activated by ER stress and proinflammatory stimuli and induces the expression of acute phase response genes. CREBH expression increases during fasting through FFA and PPARα. It regulates glucose and lipid metabolism in the liver. CREBH-deficient mice have been reported as developing hepatic steatosis due to increased lipolysis in adipose tissues when fasted or fed a ketogenic diet. A recent study revealed that the loss of CREBH decreases the hepatic expression level of FSP27β in fasted mice, and the overexpression of CREBH induces LD growth and TAG accumulation through FSP27β by suppressing lipolysis in the liver of mice. In the liver, FSP27β is thought to be associated with LD growth in the same manner as FSP27α. FSP27β is also expressed in BAT along with the simultaneous abundant expression of CideA. However, the roles of FSP27β in BAT were not clarified.

Although CideA is known to be exclusively expressed in BAT and known to promote LD enlargement, the molecular mechanism of CideA that forms the small multilocular LD in BAT has remained unknown. We recently demonstrated that CideA and FSP27α coordinately regulate LD formation in brown adipocytes. We found that the overexpression of FSP27α or CideA promoted the formation of large LDs in COS cells, as was reported previously; however, the sole expression of FSP27α did not induce the enlargement of LDs. Interestingly, the simultaneous overexpression of FSP27α and CideA promoted the formation of large LDs in COS cells, as was reported previously; however, the sole expression of FSP27β did not induce the enlargement of LDs. Interestingly, the simultaneous overexpression of FSP27β and CideA in COS cells that imitated the expression pattern of the Cide family proteins in BAT resulted in smaller LD formation compared with the cells that overexpressed CideA only. RNAi-mediated FSP27β knockdown in HB2 adipocytes, which possess the characteristics of brown adipocytes, resulted in enlarged LDs. Furthermore, FSP27KO mice in which FSP27β was not expressed in BAT had larger LDs in BAT compared with wild-type mice (Fig. 2). FSP27β and CideA formed a complex in the BAT of mice. FSP27β inhibited the homodimeriza-
tion of CideA by binding to CideA in COS cells\(^ {72}\). Co-expressed Cide proteins, including CideA, CideB, and FSP27, are shown to localize on the LD surface and form a complex at the LD–LD contact site in non-adipose cells\(^ {49}\). These results indicate that FSP27\(\beta\) negatively regulates CideA-promoted enlargement of LD size by inhibiting the homodimerization of CideA on the LD surface of brown adipocytes (Fig. 3). \(\beta\)3-adrenergic agonist-stimulated oxygen consumption was increased in isolated white adipocytes from FSP27 KO mice that show multilocular LD. In contrast, oxygen consumption was reduced in isolated brown adipocytes of FSP27 KO mice that showed large LDs compared with those of wild-type mice\(^ {54}\). Given that the multiloculization of LDs resulted in increased oxygen consumption in white adipocytes and the enlargement of LDs resulted in decreased oxygen consumption in brown adipocytes, cellular LD morphology can affect cellular energy metabolism. Thus, FSP27\(\beta\), which is essential for small multilocular LD formation, may be a potential target for application in therapies aiming to switch adipocytes into energy-dissipating adipocytes.

### Summary

FSP27\(\alpha\) and FSP27\(\beta\) are indispensable when regulating the morphology of LDs in adipocytes. FSP27\(\alpha\) promotes unilocular LD growth in white adipocytes, and FSP27\(\beta\) inhibits the enlargement of LDs induced by CideA and contributes to the multilocularization of LDs in brown adipocytes (Table 1). Consequently, Cide family proteins regulate energy metabolism efficiently through the modulation of intracellular LD morphology in WAT and BAT.

### Conflict of Interest Statement

The authors have no conflicts of interest.

### Table 1. Characteristics and functions of two FSP27 isoforms

|            | FSP27\(\alpha\) | FSP27\(\beta\) |
|------------|-----------------|---------------|
| Structure  | 1-239 amino acids | 10 amino acids longer at the N-terminus of FSP27\(\alpha\) |
| Major expression tissues | WAT | Liver, BAT |
| Transcription factor | PPAR\(\gamma\) | CREBH (liver), Unknown (BAT) |
| Function in adipose tissue | Promote the formation of large lipid droplet in white adipocytes | Maintain the formation of small lipid droplets in brown adipocytes |
|            | Effective energy storage in WAT | Increase energy expenditure in BAT |

### Footnotes

The following abbreviations are used: WAT, white adipose tissue; BAT, brown adipose tissue; LD, lipid droplet; FSP27, fat-specific protein 27; Cide, cell death-inducing DFF45-like effector; TAG, triacylglycerol; ER, endoplasmic reticulum; FFA, free fatty acids; KO, knockout; HFD, high-fat diet; CREBH, cyclic-AMP-responsive-element-binding protein H.

### References

1) GBD 2015 Obesity Collaborators: Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med, 2017; 377: 13-27
2) Spiegelman BM, Flier JS: Obesity and the regulation of energy balance. Cell, 2001; 104: 531-543
3) Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Leonetti DL, Newell-Morris L, Shofer JB, Wahl PW: Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care, 1999; 22: 1808-1812
4) Morigami H, Morioka T, Yamazaki Y, Imamura S, Numaguchi R, Asada M, Motoyama K, Mori K, Fukumo S, Shoji T, Emoto M, Inaba M: Visceral adiposity is preferentially associated with vascular stiffness rather than thickness in men with type 2 diabetes. J Atheroscler Thromb, 2016; 23: 1067-1079
5) Rosen ED, Spiegelman BM: Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006; 444: 847-853
6) Ouchi N: Adipocytokines in cardiovascular and metabolic diseases. J Atheroscler Thromb, 2016; 23: 645-654
7) Simha V, Garg A: Lipodystrophy: lessons in lipid and energy metabolism. Curr Opin Lipidol, 2006; 17: 162-169
8) Cohen P, Spiegelman BM: Cell biology of fat storage. Mol. Biol. Cell, 2016; 27: 2523-2527
9) Giralt M, Villarroya F: White, brown, beige/brite: different adipose cells for different functions? Endocrinology, 2013; 154: 2992-3000
10) Sidossis L, Kajimura S: Brown and beige fat in humans:
thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest, 2015; 125: 478-486
11) Zweytick D, Athenstaedt K, Daum G: Intracellular lipid particles of eukaryotic cells. Biochim. Biophys. Acta, 2000; 1469: 101-120
12) Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T: The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem, 2002; 277: 44507-44512
13) Wilfling F, Haas JT, Walther TC, Farese RV Jr: Lipid droplet biogenesis. Curr Opin Cell Biol, 2014; 29: 39-45
14) Brasaeamel DL: Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res, 2007; 48: 2547-2559
15) Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C: Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem, 1991; 266: 11341-11346
16) Miyoshi H, Perfield JW 2nd, Souza SC, Shen WJ, Zhang HH, Stancheva ZS, Kraemer FB, Obin MS, Greenberg AS: Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem, 2007; 282: 996-1002
17) Bickel PE, Tansey JT, Welte MA: PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta, 2009; 1791: 419-440
18) Suzuki M, Shinohara Y, Ohsaki Y, Fujimoto T: Lipid droplets: size matters. J Electron Microsc (Tokyo), 2011; 60: S101-116
19) Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP: Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 1997; 387: 90-94
20) Ricquier D, Bouilaud F: The uncoupling protein homo-logues: UCP1, UCP2, UCP3, StUCP and AtUCP. Bio-chem J, 2000; 345: 161-179
21) Hirose H, Takayama M, Iwao Y, Kawabe H: Effects of aging on visceral and subcutaneous fat areas and on homeostasis model assessment of insulin resistance and insulin secretion capacity in a comprehensive health checkup. J Atheroscler Thromb, 2016; 23: 207-215
22) Enerbäck S: Human brown adipose tissue. Cell Metab, 2010; 11: 248-252
23) Garcia CA, Van Nostrand D, Atkins F, Acio E, Butler C, Esposito G, Kulkarni RN, Kahn CR: Identification and importance of brown adipose tissue in adult humans. N Engl J Med, 2009; 360: 1509-1517
24) Virtsanen KA, Lidell ME, Orava J, Hegland M, Westergren R, Niemi T, Taittennon M, Laine J, Savisto NJ, Enerbäck S, Nuutila P: Functional brown adipose tissue in healthy adults. N Engl J Med, 2009; 360: 1518-1525
25) van Marken Lichtenbelt WD, Vahnhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ: Cold-activated brown adipose tissue in healthy men. N Engl J Med, 2009; 360: 1500-1508
26) Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo PC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR: Identification of brown adipose tissue in adult humans. N Engl J Med, 2009; 360: 1509-1517
27) Virtsanen KA, Lidell ME, Orava J, Hegland M, Westergren R, Niemi T, Taittennon M, Laine J, Savisto NJ, Enerbäck S, Nuutila P: Functional brown adipose tissue in healthy adults. N Engl J Med, 2009; 360: 1518-1525
28) Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujijsaki M: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes, 2009; 58: 1526-1531
29) Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wählestedt C, Baar K, Nedergaard J, Cannon B: Myo-genic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA, 2007; 104: 4401-4406
30) Seale P, Bjorck B, Yang W, Kajimura S, Chin S, Kuang S, Scimé A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM: PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008; 454: 961-967
31) Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998; 92: 829-839
32) Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM: Transcriptional control of brown fat determination by PRDM16. Cell Metab, 2007; 6: 38-54
33) Tseng YH, Kokkotou E, Schulz T, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR: New role of bone morphogenic protein 7 in brown adipogenesis and energy expenditure. Nature, 2008; 454: 1000-1004
34) Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM: Initiation of myoblast to brown adipocyte switch. Nature, 2008; 454: 961-967
35) Duteil D, Totic M, Lausecker F, Nenseth HZ, Müller JM, Urban S, Willmann D, Petrock K, Messaddeq N, Arrigoni L, Manke T, Kornfeld JW, Brüning JC, Zagory V, Meret M, Dengjel J, Kanouni T, Schüle R: Lsd1 Ablation triggers metabolic reprogramming of brown adipose tissue. Cell Reports, 2016; 17: 1008-1021
36) Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J: Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-con-taining adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem, 2010; 285: 7153-7164
37) Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Hrandekar M, Virtanen KA, Nuhittila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schaewen P, Spiegelman BM: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012; 150: 366-376
38) Kajimura S, Saito M: A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol, 2014; 76: 225-249

39) Lee YH, Mottillo EP, Granneman JG: Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta, 2014; 1842: 358-369

40) Warner A, Mittag J: Breaking BAT: can browning create a better white? J Endocrinol, 2016; 228: R19-29

41) Xu L, Zhou L, Li P: CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol, 2012; 32: 1094-1098

42) Inohara N, Koseki T, Chen S, Wu X, Núñez G: CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J, 1998; 17: 2526-2533

43) Zhou Z, Yun Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, and Li P: Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet, 2003; 35: 49-56

44) Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ: Hepatic steatosis in leptin-deficient mice is promoted by the PPARGamma target gene Fsp27. Cell Metab, 2008; 7: 302-311

45) Zhou L, Xu L, Ye J, Li D, Wang W, Li X, Wu L, Wang H, Guan F, and Li P: Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology, 2012; 56: 95-107

46) Wu L, Zhou L, Chen C, Gong J, Xu L, Ye J, Li D, and Li P: Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci China Life Sci, 2014; 57: 107-116

47) Barneda D, Planas-Iglesias J, Gaspar ML, Mohammadyani D, Prasannan S, Dorman D, Han GS, Jesch SA, Carman GM, Kagan V, Parker MG, Kristakis NT, Kleinteharaman J, Dixon AM, Henry SA, Christian M: The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. eLife, 2015; 4:e07485

48) Li JZ, Ye J, Xue B, Qi J, Zhang J, Zhou Z, Li Q, Wen Z, and Li P: Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes, 2007; 56: 2523-2532

49) Xu W, Wu L, Yu M, Chen FJ, Arshad M, Xia X, Ren H, Yu J, Xu L, Xu D, Li JZ, and Li P: Zhou L: Differential roles of cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem, 2016; 291: 4282-4293

50) Chen Z, Norris JY, Finck BN: Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) stimulates VLDL assembly through activation of cell death-inducing DFFA-like effector B (Cideb). J Biol Chem, 2010; 285: 25996-26004

51) Tiwari S, Siddiqi S, Siddiqi SA: CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J Biol Chem, 2013; 288: 5157-5165

52) Ye J, Li JZ, Liu Y, Li X, Yang T, Ma X, Li Q, Yao Z, and Li P: Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab, 2009; 9: 177-190

53) Brasaele ML, Dolios G, Shapiro L, Wang R: Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem, 2004; 279: 46835-46842

54) Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao K, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M: FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest, 2008; 118: 2808-2821

55) Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, Yang H, Wen Z, and Li P: Up-regulation of mitochondrial activity and acquisition of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One, 2008; 3: e2890

56) Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugini RA, Czech MP: Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U. S. A., 2008; 105: 7833-7838

57) Rubio-Cabezas O, Puri V, Murano I, Saudek V, Semple RK, Dash S, Hyden CS, Bottomley W, Vigouroux C, Magrè J, Raymond-Barker P, Murgatroyd PR, Chawla A, Skepper JN, Chatterjee VK, Suliman S, Patch AM, Agarwal AK, Garg A, Barroso I, Cinti S, Czech MP, Argente J, O’Rahilly S, Savage DB: Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous non-sense mutation in CIDEc. EMBO Mol Med, 2009; 1: 280-287

58) Hall AM, Brunt EM, Klein S, Finck BN: Hepatic expression of cell death-inducing DFFA-like effector C in obese subjects is reduced by marked weight loss. Obesity, 2010; 18: 417-419

59) Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O, Gonzalez FJ: Adipocytic-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem, 2015; 290: 3092-3105

60) Zhou L, Park SY, Xu L, Xia X, Ye J, Su L, Jeong KH, Hur JH, Oh H, Tamori Y, Zingaretti CM, Cinti S, Argente J, Yu M, Wu L, Ju S, Guan F, Yang H, Choi CS, Savage DB, Li P: Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun, 2015; 6: 5949

61) Langhi C, Arias N, Rajamooorthi A, Basta J, Lee RG, Baldán A: Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res, 2017; 58: 81-91

62) Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, Chakladar A, Czech MP: Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem, 2007; 282: 34213-34218

63) Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, Chang SH, Nielsen AR, Fischer CP, Pedersen BK, MacDougall OA: Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem, 2008; 283: 14355-14365

64) Jambunathan S, Yin J, Khan W, Tamori Y, Puri V: FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One, 2011; 6: e28614
65) Tamori Y, Tateya S, Ijuin T, Nishimoto Y, Nakajima S, Ogawa W: Negatively-charged residues in the polar carboxy-terminal region in FSP27 are indispensable for expanding lipid droplets. FEBS Lett, 2016; 590: 750-759
66) Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P: Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol, 2011; 195: 953-963
67) Sun Z, Gong J, Wu H, Xu W, Wu L, Xu D, Gao J, Wu J,W, Yang H, Yang M, Li P: Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun, 2013; 4: 1594
68) Grahn TH, Zhang Y, Lee MJ, Sommer AG, Mostoslavsky G, Fried SK, Greenberg AS, Puri V: FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem Biophys Res Commun, 2013; 432: 296-301
69) Grahn TH, Kaur R, Yin J, Schweiger M, Sharma VM, Lee MJ, Ido Y, Smas CM, Zechner R, Lass A, Puri V: Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J Biol Chem, 2014; 289: 12029-12039
70) Singh M, Kaur R, Lee MJ, Pickering RT, Sharma VM, Puri V, Kandror KV: Fat-specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of transcription factor Egr1 on transcription of adipose triglyceride lipase. J Biol Chem, 2014; 289: 14481-14487
71) Xu X, Park JG, So JS, Lee AH: Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology, 2015; 61: 857-869
72) Nishimoto Y, Nakajima S, Tateya S, Saito M, Ogawa W, Tamori Y: Cell death-inducing DNA fragmentation factor A-like effector A and fat-specific protein 27β coordinately control lipid droplet size in brown adipocytes. J Biol Chem, 2017; 292: 10824-10834
73) Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ: Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 2006; 124: 587-599
74) Danno H, Ishii KA, Nakagawa Y, Mikami M, Yamamoto T, Yabe S, Fusurasu M, Kumadaki S, Watanabe K, Shimizu H, Matsuzaka T, Kobayashi K, Takahashi A, Yatoh S, Suzuki H, Yamada N, Shimano H: The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha. Biochem Biophys Res Commun, 2010; 391: 1222-1227
75) Lee MW, Chanda D, Yang J, Oh H, Kim SS, Yoon YS, Hong S, Park KG, Lee IK, Choi CS, Hanson RW, Choi HS, Koo SH: Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab, 2010; 11: 331-339
76) Lee JH, Giannikopoulos P, Duncan SA, Wang J, Johansen CT, Brown JD, Plutzky J, Hegele RA, Glimcher LH, Lee AH: The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med, 2011; 17: 812-815
77) Zhang C, Wang G, Zheng Z, Maddipati KR, Zhang X, Dyson G, Williams P, Duncan SA, Kaufman RJ, Zhang K: Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology, 2012; 55: 1070-1082
78) Park JG, Xu X, Cho S, Hur KY, Lee MS, Kersten S, Lee AH: CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep, 2016; 6: 27938