Research Article

Potential Use of Anti-Cancer Drugs for Treatment of Preeclampsia by Targeting the miRNA-IGF1R-PI3K-AKT Axis

Jieyan Li, Lei Hou, Rong Zhao, and Liying Zou

Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road Chaoyang, Beijing 100026, China

Correspondence should be addressed to Liying Zou; zouliying@ccmu.edu.cn

Received 13 May 2022; Revised 26 June 2022; Accepted 1 July 2022; Published 22 August 2022

Academic Editor: Qing Li

Copyright © 2022 Jieyan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aim. Preeclampsia (PE) belongs to hypertensive disorders of pregnancy (HDP), which can cause maternal death worldwide. This study aimed to identify the miRNA-mRNA-associated ceRNA network and to find new treatment schedules for PE.

Methods. 4 microarray datasets were downloaded from the Gene Expression Omnibus database. We obtained 1737 differentially expressed mRNAs (865 upregulated and 872 downregulated) and 148 differentially expressed miRNAs (76 upregulated and 72 downregulated) from the placenta tissues of PE, respectively. Functional enrichment analyses of DEmRNAs were performed. The regulatory relationship between DEmiRNAs and DEmRNA was predicted via related databases. An miRNA-mRNA regulatory network was constructed.

Results. hsa-let-7c and IGF1R were identified as potential regulators for PE, and function enrichment analysis showed that the PI3K-Akt signaling pathway was closely related. Therefore, ceRNAs might regulate the PI3K-Akt signaling pathway via the upregulation of IGF1R by binding to hsa-let-7c, affecting invasion of trophoblast, angiogenesis, and proinflammation in PE. Further study demonstrated that anticancer drugs including the PI3K inhibitor, AKT inhibitor, and IGF-1 inhibitor might be a potential solution for PE treatment.

Conclusions. The hsa-let-7c/IGF1R axis might affect the PI3K-Akt signaling pathway which is involved in the pathogenesis of PE, and inhibitors targeting this pathway might be used for PE treatment.

1. Introduction

Preeclampsia (PE) belongs to hypertensive disorders of pregnancy (HDP), affecting 5% to 7% of all pregnant women and is associated with more than 70000 maternal deaths and 500000 fetal deaths around the world every year [1]. According to the International Society for the Study of Hypertension in Pregnancy (ISSHP), PE is defined as the presence of new-onset hypertension (≥140/90 mmHg) after 20 weeks’ gestation accompanied by proteinuria or evidence of maternal acute kidney injury, liver dysfunction, neurological features, hemolysis or thrombocytopenia, or fetal growth restriction (FGR) [2]. The precise etiology of PE remains controversial. However, the placenta is considered to be central to the pathogenesis by previous clinical and pathological studies. The pathogenesis of PE is generally recognized to have 2 stages: at the first stage, insufficient placental trophoblast cell invasion leads to placental hypoperfusion; at the second stage, poor placental perfusion leads to release of growth factors, cytokines, inflammatory factors, steroids hormones, neuropeptide hormones, etc., in the local microenvironmental and causing PE [1, 3–6]. Despite these extensive studies on PE, no more effective treatment than delivery has been developed [7]. The exact pathogenesis remains to be elucidated.

MicroRNAs (miRNAs) are short, noncoding RNA molecules, acting as key regulators of gene expression programs. The important roles of miRNAs have been demonstrated during many pathophysiological processes, such as immune cell development, angiogenesis, and cell proliferation and adhesion [8]. Several studies have revealed that miRNAs may regulate trophoblast cell invasion (miRNA-181a-5p, miRNA-155, miRNA-223, miRNA-148a, and miRNA-152) and migration (miRNA-210), angiogenesis (miRNA-144-3p, miRNA-155), and the inflammation-related pathway (miRNA-155, miRNA-210) in
PE [9–12]. In addition, a single miRNA can regulate many target genes in PE. For example, miRNA-181a-5p was observed to be overexpressed in human preeclamptic placentas compared with healthy controls. And metalloproteinases 2, 9 (MMP2 and MMP9) and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were shown to be the target genes of miRNA-181a-5p [13, 14]. However, the conclusions derived from all these studies have been limited by sample size and heterogeneity.

In the present study, we aimed to identify the key genes and microRNAs in PE by reanalyzing multiple datasets from the Gene Expression Omnibus (GEO) database. We found that has-let-7c-5p was involved in PE by regulating IGF1R expression and its downstream PI3K/AKT pathway, which might modulate invasion of trophoblast, angiogenesis, and proinflammation. This finding may provide a new target for the diagnosis and treatment of PE.

2. Materials and Methods

2.1. Retrieval and Process of Data. The mRNAs and miRNAs expression levels of placental tissue samples from PE patients and healthy parturient women were downloaded from the GEO database, GSE114349, GSE177049, GSE148241, and GSE168860). The details are shown in Table 1.

2.2. Differentially Expressed mRNA and miRNA Analysis. The software edgeR was used to screen the differentially expressed mRNAs (DEmRNAs). P value <0.05 and |log2FC| ≥1 were chosen as the cut-off thresholds. To screen differentially expressed miRNAs (DEmiRNAs) between PE and normal placental tissue, limma was successively conducted, with the P value < 0.05 and |log2FC|>0.5 as the cut-off criterion. Volcano plots for the visualization of differentially expressed genes were generated using the R package “EnhancedVolcano”. Heatmaps of the gene expression were plotted using the R package “heatmap”.

2.3. Functional Enrichment Analysis. Differentially expressed genes were selected as input to perform gene functional enrichment analysis through DAVID (https://david.ncifcrf.gov/) and Metascape (http://metascape.org/gp/index.html#/main/step1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of upregulated and downregulated genes were performed. GO analysis included biological process (BP), cellular component (CC), and molecular function (MF) enrichment analyses were performed. The KEGG database is a knowledge base for systematic analysis, annotation, and visualization of gene functions.

2.4. Targeted Genes of the miRNAs and miRNA-mRNA Network. The potential miRNA targets were identified using miRDB (http://www.mirdb.org/) and miRWalk (http://129.206.7.150/) with default settings. The intersection set of the results of the two methods was used for further analyses. The complex integrated networks of miRNA–mRNAs were constructed by using Cytoscape (v3.7.1, https://cytoscape.org). The dataset GSE177049 was used to validate the results.

2.5. Drug Sensitivity Prediction. The online web-based tool (https://clue.io/) was used to analyze the potential treatment options for PE treatment. Briefly, both upregulated genes and downregulated gene lists were uploaded to the website, followed by interactive analysis of similar gene expression signatures upon treatment with compounds.

3. Results

3.1. Differential Expression Analysis. To investigate the gene expression pattern in preeclampsia patients, transcriptome data between placenta tissue of preeclampsia patients and healthy tissues were analyzed. As shown in Figures 1(a) and 1(c), 1737 DEmRNAs (865 upregulated and 872 downregulated) were identified in the GSE148241 dataset (Figure 1(a)) and 148 DEmiRNAs (76 upregulated and 72 downregulated) were identified in the GSE14349 dataset, respectively. In addition, the top 50 DEmRNAs (Figure 1(b)) and DEmiRNAs (Figure 1(d)) are exhibited in heatmaps.

3.2. Functional Enrichment Analysis. To better understand the major function of DEmRNAs in PE, we conducted GO enrichment and KEGG pathway analysis (Figure 2). We found that upregulated genes in PE were mainly enriched for hormone-related pathway, immune and phosphatidylinositol 3-kinase signaling, such as the estrogen signaling pathway, inflammatory response, response to hypoxia, metal ion transport, cellular response to cytokine stimulus, positive regulation of phosphatidylinositol 3-kinase activity, and signaling (Figures 2(a) and 2(b)). Whereas, genes downregulated in PE were enriched for pathways including oxygen transporter activity, PI3K-Akt signaling pathway, calcium signaling pathway, oxytocin signaling pathway, and so on (Figures 2(b) and 2(c)). Interestingly, some pathways, such as the PI3K signaling pathway and calcium signaling pathway were significantly enriched in both upregulated and downregulated genes, which might predict complex regulation.

To directly assess the role of miRNA dysregulation in PE, we next conducted the miRNA-mRNA interaction network. Upregulated DEmiRNAs (n = 56) and their targeted downregulated DEmRNAs (n = 152) are shown in Figure 3(a). Downregulated DEmiRNAs (n = 63) and their targeted upregulated DEmRNAs (n = 227) are shown in Figure 3(b). To determine the functions of the targeted genes of miRNAs, functional enrichment analysis was performed using DAVID. We found that VEGF signaling pathway, MAPK signaling pathway, HIP-1 signaling pathway, PI3K-Akt signaling pathway, and insulin signaling pathway were significantly enriched. To further determine the key miRNA and targeted genes, Venn diagrams showed the intersection between exploratory datasets (mRNA: GSE148241; miRNA: GSE114349) and GSE177049. The details can be found in Supplementary Table S1. hasa-let-7c-5p/IGFR1 and hasa-miR-193b-3p/ZMAT3 were consistent in both datasets (Figure 4). We have also explored the expression of hasa-let-7c in
Table 1: The detailed information of the datasets.

Database	Source	Sample Control PE	Type	Platform
GSE114349	[Link](https://www.ncbi.nlm.nih.gov/geo/Query/acc.cgi?acc=GSE114349)	21 40	Noncoding RNA	Illumina HiSeq 2000 (Homo sapiens)
GSE177049	[Link](https://www.ncbi.nlm.nih.gov/geo/Query/acc.cgi?acc=GSE177049)	5 5	mRNA	Illumina NextSeq 500 (Homo sapiens)
GSE148241	[Link](https://www.ncbi.nlm.nih.gov/geo/Query/acc.cgi?acc=GSE148241)	5 5	miRNA	Illumina NovaSeq 6000 (Homo sapiens)
GSE168860	[Link](https://www.ncbi.nlm.nih.gov/geo/Query/acc.cgi?acc=GSE168860)	4 5	miRNA	Qiagen Homo sapiens miScript II RT kit

Figure 1: The expressions of differentially expressed mRNAs and miRNAs. Volcano plots of (a) mRNA from GSE148241 and (c) miRNA from GSE114349. Heatmaps of (b) mRNA from GSE148241 and (d) miRNA from GSE114349. Red and blue indicate upregulation and downregulation, respectively.
plasma, and found that hsa-let-7c expression in PE was lower than that in the control group, whereas the difference did not reach significance (Figure S1(a)). Another homolog such as hsa-let-7c-5p in PE was lower than that in the control group (Figure S1(b)). The difference was not significant. In the placenta tissue of PE, hsa-let-7a-5p, hsa-let-7b-5p, hsa-let-7e-5p, and hsa-let-7f-2-3p were significantly down-regulated in GSE114349 (Figure S1(c)). In the GSE177049, hsa-let-7a-5p, hsa-let-7b-5p, hsa-let-7c-5p, hsa-let-7d-3p, hsa-let-7d-5p, hsa-let-7f-2-3p, hsa-let-7f-5p, hsa-let-7g-5p was downregulated in PE (Figure S1(d)).

3.3. In Silico Analysis Revealed Potential Drugs for PE Treatment. Accumulated transcriptome data upon treatment with various compounds has enabled the prediction of drug sensitivity according to the differentially expressed gene signatures. To this end, both upregulated genes and downregulated gene signatures were used to predict potential treatment options for PE patients. The results demonstrated that antagonists targeting the IGF1R-PI3K pathway might be candidates for PE treatment, which is consistent with the activation of this pathway in PE tissue as evidenced by the bioinformatic analysis. Besides, inhibitors for EGFR and MAPK might be also listed as candidates for PE treatment (Table 2).

4. Discussion
PE is a common and serious gestational hypertension, characterized by complexity and multifactorial pathogenesis [15]. Because of its possible condition such as eclampsia, HELLP syndrome, placental abruption [16], early detection, and timely intervention, adequate and proper prenatal care is critical for PE. However, at the first stage of PE, clinical symptoms are usually not obvious. When the disease comes to the second stage, adverse effects to the mother and child have already happened. Therefore, new targets for the prediction and earlier diagnosis and treatment of PE need to be researched.

The functional pattern of the miRNA–mRNA regulatory network has been shown in the pathomechanisms of PE. Moreover, a lot of studies about miRNA and mRNA expression profiles in PE were published [17–19]. However, small sample sizes, different sample origins, and data processing may cause inconsistent results. In this present work, we identified a potential miRNA–mRNA regulatory pathway in PE. By integrative analysis of multiple datasets, we identified that downregulated let-7c-5p and upregulated IGF1R were relatively stable. Our finding confirms similar results from previous studies. Angelika V. Timofeev demonstrated that a more than two-fold decrease in let-7c-5p expression levels was observed in the placenta of PE [20].

Figure 2: Functional enrichment analysis. (a) GO term and KEGG pathway analyses of upregulated DEmRNAs by DAVID. (b) GO term and KEGG pathway analyses of upregulated DEmRNAs by Metascape. (c) GO term and KEGG pathway analyses of downregulated DEmRNAs by DAVID. (d) GO term and KEGG pathway analyses of downregulated DEmRNAs by Metascape.
The expression of IGF1R was found to be downregulated in the preeclampsia placentas compared with controls [21]. In addition, we identified IGF1R as a let-7c-5p target gene by using the miRDB and miRWalk database. hsa-let-7c can bind to the IGF-1R 3′-UTR and inhibit the expression of IGF-1R mRNA, thereby suppressing IGF-1-induced signaling pathways and biological processes [22, 23].

hsa-let-7c is one member of the let-7 family, which maps to human chromosome 21q11-21. hsa-let-7c can bind to the IGF-1R 3′-UTR and inhibit the expression of IGF-1R mRNA, thereby suppressing IGF-1-induced signaling pathways and biological processes [22, 23]. The let-7 family is among the earliest microRNAs found. Recent studies have indicated that it is highly expressed in many systems, including cerebral and cardiovascular systems. Numerous researches have implicated the aberrant expression of let-7 members in cardiovascular diseases, such as stroke, cardiac fibrosis, and atherosclerosis, as well as in inflammation related to these diseases [25]. However, the role of hsa-let-7c/IGF1R in PE was rarely reported. Thus, we performed functional enrichment analyses to detect the potential signaling pathway in PE. We found that the PI3K/Akt signaling pathway and MAPK pathway were enriched not only in DEmRNAs but also in DEmiRNA-target genes.

hsa04014:Ras signaling Pathway
hsa04370:VEGF signaling Pathway
hsa0410:MAPK signaling Pathway
hsa05200:Pathways in cancer
hsa04066:HIF-1 signaling Pathway
hsa04151:PI3K-Akt signaling Pathway
hsa04910:Insulin signaling Pathway

hsa04014:Ras signaling Pathway
hsa04370:VEGF signaling Pathway
hsa0410:MAPK signaling Pathway
hsa05200:Pathways in cancer
hsa04066:HIF-1 signaling Pathway
hsa04151:PI3K-Akt signaling Pathway
hsa04910:Insulin signaling Pathway

GSE148241
GSE177049

(a) (b)

Figure 3: The miRNA-mRNA interaction network. (a) The interaction network of upregulated miRNA and downregulated mRNA. (b) The interaction network of downregulated miRNA and upregulated mRNA. (c) GO term and KEGG pathway analyses of DEmiRNA-target genes. (d) Venn diagram of the DEmiRNA-target genes of GSE148241 and GSE177049.
hsa-let-7c-5p might regulate IGF1R involved in the PI3K/AKT pathway. RNA-seq and microarray data showing the mRNA expression level of has-let-7c-5p and IGF1R in PE and normal placental tissue from the GEO database. (a) Levels of hsa-let-7c-5p expression in PE (n = 20) and control (n = 21) placental tissues (GSE114349) (P = 0.008484054). (b) IGF1R mRNA levels in placental tissues of PE (n = 9) and normal (n = 34) from GSE148241 (P = 0.009579). (c) Levels of hsa-let-7c-5p expression in PE (n = 5) and control (n = 5) placental tissues (GSE177049) (P = 0.009990581). (d) IGF1R mRNA levels in placental tissues of PE (n = 5) and normal (n = 5) from GSE177049 (P = 0.021232). (e) Biological function of the miRNA-IGF1R-PI3K-AKT axis.

Figure 4:

Table 2: Plot of nanoparticle size with respect to time, recorded over a 90 s period. The error bars represent the standard deviation of measurements for 20 particles in five separate sample runs (n = 100).

Pert_name	Cell_name	Pert_idose	Pert_itime (h)	Moa	Target_name	TAG				
AS-605240	LNCAP	1.11 μM	24	PI3K inhibitor	PIK3CG	-1.6199				
GDC-0941	HME1	0.12 μM	3	PI3K inhibitor	PIK3CG	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.6038
Taselisib	BJAB	0.01 μM	24	PI3K inhibitor	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.5581	
Alpelisib	OCILY3	0.01 μM	24	PI3K inhibitor	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.5362	
SAR-245409	MDAMB231	0.04 μM	24	PI3K inhibitor	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.5214	
Buparlisib	MCF7	0.03 μM	24	PI3K inhibitor	PIK3CA	PIK3CG	-1.5214			
XL-147	A549	0.125 μM	24	PI3K inhibitor	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.5164	
Taselisib	OCILY19	0.01 μM	24	PI3K inhibitor	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.5109	
Idelalisib	HBL1	2.5 μM	24	PI3K inhibitor	PIK3CA	PIK3CB	PIK3CD	PIK3CG	-1.5063	
AZD-5363	HA1E	2.22 μM	24	AKT inhibitor	AKT1	AKT2	AKT3	-1.5825		
MK-2206	OCILY19	0.04 μM	4	AKT inhibitor	AKT1	AKT2	AKT3	-1.5567		
GDC-0068	TPH1	0.03 μM	24	AKT inhibitor	AKT1	AKT2	AKT3	CYP3A5	PRKG1	-1.5259
GDC-0068	A375	2.22 μM	24	AKT inhibitor	AKT1	AKT2	AKT3	CYP3A5	PRKG1	-1.5081
MK-2206	MCF10A	0.12 μM	24	AKT inhibitor	AKT1	AKT2	AKT3	-1.5067		
AZD-5363	PC3	1.11 μM	24	AKT inhibitor	AKT1	AKT2	AKT3	-1.502		
downstream of the IGF/IGF1R axis [22]. It is therefore likely that such connections exist between hsa-let-7c and IGF1R/P3K/Akt. The P3K/Akt signaling pathways are common to PE and play key roles in many cellular processes [26], such as invasion of trophoblast [27], angiogenesis [28], and pro-inflammation [29]. Park JK demonstrated that inhibition of the P3K-Akt pathway may decrease sFlt1 secretion in human placental hypoxia models, which provides a useful therapeutic approach for PE [30].

There are many drugs currently being assessed to treat PE, including proton pump inhibitors (PPIs), metformin, melatonin, statins, resveratrol, sulfasalazine, and sildenafil citrate. These drugs show positive effects in preclinical studies, targeting placental and endothelial dysfunction. However, novel therapeutics can raise safety concerns for the developing fetus. Combining targeted drug delivery with effective therapeutics could be the future of preeclampsia treatment [31]. Our data also supported the proposed treatment of PE patients with PI3K-AKT pathway inhibitors. Furthermore, single or combined use of antagonists for blocking the upstream or downstream factors might be also considered as potential treatment options. Numerous Akt and IGF1R inhibitors have anti-cancer effects in preclinical investigation. However, the advances in clinical evaluation are somewhat slow. Many inhibitors have limited anti-cancer activity as a monotherapy in the clinic. And some drugs have some side effects including diarrhea, hypertension, rash, hyperglycemia and fatigue [32]. What is critically needed is the development of predictive biomarkers that can guide future research in applying this therapeutic strategy to the patient populations that is most likely to benefit [33]. In the present study, we explored a new signaling pathway between P3K/Akt and PE. hsa-let-7c/IGF1R/P3K/Akt might play an important role in the pathogenesis of PE. However, such a hypothesis requires further validation by experimental investigations.

5. Conclusions

By comprehensive bioinformatics analysis, we found that hsa-let-7c and IGF1R were the key genes in the miRNA-mRNA networks of PE. The hsa-let-7c/IGF1R axis might affect the PI3K-Akt signaling pathway which is involved in the pathogenesis of PE, including invasion of trophoblast, angiogenesis, and proinflammation. This discovery might provide some new light on the mechanism of PE progression.

Data Availability

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114349 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE177049 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148241 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168860.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary Materials

Figure S1. (a) Levels of hsa-let-7c-5p expression in PE (n = 5) and control (n = 4) plasma (GSE168860). (b) Levels of hsa-let-7a-5p expression in PE (n = 5) and control (n = 4) plasma (GSE168860). (c) Volcano plots of miRNA from GSE114349. (d) Volcano plots of miRNA from GSE177049. Table S1. The details of the Venn diagram in Figure 3(d) and 3(e). (Supplementary Materials)

References

[1] S. Rana, E. Lemoine, J. P. Granger, and S. A. Karumanchi, "Preeclampsia: pathophysiology, challenges, and perspectives," Circulation Research, vol. 124, no. 7, pp. 1094–1112, 2019.
[2] M. A. Brown, L. A. Magee, L. C. Kenny et al., “The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice,” Pregnancy Hypertension, vol. 13, pp. 291–310, 2018.
[3] P. Gathiram and J. Moodley, "Pre-eclampsia: its pathogenesis and pathophysiology," Cardiovascular Journal of Africa, vol. 27, no. 2, pp. 71–78, 2016.
[4] C. W. Redman and I. L. Sargent, “Latest advances in understanding preeclampsia,” Science, vol. 308, no. 5728, pp. 1592–1594, 2005.

Table 2: Continued.

Pert_iname	Cell_iname	Pert_idose	Pert_itime (h)	Moa	Target_name	TAG		
TAK-285	HELA	0.08 μM	24	EGFR inhibitor	ERBB2	EGFR	−1.5618	
Afatinib	AGS	1.11 μM	24	EGFR inhibitor	EGFR	ERBB2	ERBB4	−1.5531
AZD-9291	A375	1.11 μM	24	EGFR inhibitor	EGFR	NR1I2	−1.5492	
Erlotinib	MCF10A	3.33 μM	24	EGFR inhibitor	EGFR	NR1I2	−1.5471	
Erlotinib	MCF7	0.125 μM	24	EGFR inhibitor	EGFR	NR1I2	−1.5197	
Gefitinib	K562	2.5 μM	24	EGFR inhibitor	EGFR	NR1I2	−1.5159	
Gefitinib	MCF7	0.37 μM	6	EGFR inhibitor	EGFR	NR1I2	−1.5051	
LY-2228820	A375	3.33 μM	24	P38 MAPK inhibitor	MAPK14	−1.6021		
TAK-715	NPC	0.04 μM	24	P38 MAPK inhibitor	MAPK14	TNF	−1.6019	
TAK-715	SKBR3	10 μM	24	P38 MAPK inhibitor	MAPK14	TNF	−1.5371	
LY-2228820	HELA	0.08 μM	24	P38 MAPK inhibitor	MAPK14	−1.5273		
TAK-715	MCF7	1.11 μM	6	P38 MAPK inhibitor	MAPK14	TNF	−1.5041	
Evidence-Based Complementary and Alternative Medicine

[5] R. Romero and T. Chaiworapongs, "Preeclampsia: a link between trophoblast dysregulation and an antiangiogenic state," Journal of Clinical Investigation, vol. 123, no. 7, pp. 2775–2777, 2013.

[6] J. M. Roberts, R. N. Taylor, T. J. Musci, G. M. Rodgers, C. A. Hubel, and M. K. McLaughlin, "Preeclampsia: an endothelial cell disorder," American Journal of Obstetrics and Gynecology, vol. 161, no. 5, pp. 1200–1204, 1989.

[7] K. Haase, M. R. Gillrie, C. Hajal, and R. D. Kamm, "Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF-angi-tie2 signaling," Advanced Science, vol. 6, no. 23, Article ID 1900878, 2019.

[8] Y. Lv, C. Lu, X. Ji et al., "Roles of microRNAs in pre-eclampsia," Journal of Cellular Physiology, vol. 234, no. 2, pp. 1052–1061, 2019.

[9] G. Skalis, V. Katsi, A. Miliou et al., "MicroRNAs in pre-eclampsia," MicroRNA, vol. 8, no. 1, pp. 28–35, 2018.

[10] D. Kong, E. Heath, W. Chen et al., "MicroRNA-mRNA-associated ceRNA networks and pre-eclampsia," Biology of Reproduction, vol. 88, no. 5, p. 130, 2013.

[11] I. Hromadnikova, K. Kotlabova, K. Ivankova, and L. Krofia, "First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of pre-eclampsia and IUGR," PLoS One, vol. 12, no. 2, Article ID e0171756, 2017.

[12] X. Huang, L. Wu, G. Zhang, R. Tang, and X. Zhou, "Elevated MicroRNA-181a-5p contributes to trophoblast dysfunction and preeclampsia," Reproductive Sciences, vol. 26, no. 8, pp. 1121–1129, 2019.

[13] L. Wu, W. Y. Song, Y. Xie et al., "miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2," Cell Death & Disease, vol. 9, no. 2, p. 16, 2018.

[14] T. Chaiworapongs, P. Chaemsaiithong, L. Yeo, and R. Romero, "Preeclampsia part 1: current understanding of its pathophysiology," Nature Reviews Nephrology, vol. 10, no. 8, pp. 466–480, 2014.

[15] K. Kongwattanakul, P. Saksirirwuttho, S. Chaiyarach, and K. Thepsuthammarat, "Incidence, characteristics, maternal complications, and perinatal outcomes associated with pre-eclampsia with severe features and HELLP syndrome," International Journal of Women's Health, vol. 10, pp. 371–377, 2018.

[16] X. Xu, S. Ly, and Z. Xiao, "Analysis of a circRNA-miRNA-and mRNA-associated ceRNA network reveals potential biomarkers in preeclampsia a ceRNA network in preeclampsia," Annals of Medicine, vol. 53, no. 1, pp. 2354–2364, 2021.

[17] D. Chen, B. He, P. Zheng et al., "Identification of mRNA-circRNA- and lncRNA-associated ceRNA networks and potential biomarkers for preeclampsia from umbilical vein endothelial cells," Frontiers in Molecular Biosciences, vol. 8, Article ID 652250, 2021.

[18] A. Ali, F. Hadlich, M. W. Abbas et al., "MicroRNA-mRNA networks in pregnancy complications: a comprehensive downstream analysis of potential biomarkers," International Journal of Molecular Sciences, vol. 22, no. 5, p. 2313, 2021.

[19] A. V. Timofeeva, V. A. Gusar, N. E. Kan et al., "Identification of potential early biomarkers of preeclampsia," Placenta, vol. 61, pp. 61–71, 2018.

[20] H. Takai, E. Kondo, H. Mogami et al., "Placental sonic hedgehog pathway regulates foetal growth via insulin-like growth factor axis in preeclampsia," The Journal of Clinical Endocrinology and Metabolism, vol. May 23: jc.2019-00335, 2019.

[21] G. X. Liu, S. Ma, Y. Li et al., "Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways," Experimental and Molecular Medicine, vol. 50, no. 4, pp. 1–14, 2018.

[22] D. Kong, E. Heath, W. Chen et al., "Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM," PLoS One, vol. 7, no. 3, Article ID e33729, 2012.

[23] C. S. Chien, M. L. Wang, P. Y. Chu et al., "Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state," Cancer Research, vol. 75, no. 12, pp. 2553–2565, 2015.

[24] D. L. Bernstein, X. Jiang, and S. Rom, "let-7 microRNAs: their role in cerebral and cardiovascular diseases, inflammation, cancer, and their regulation," Biomedicines, vol. 9, no. 6, p. 606, 2021.

[25] T. Li, Z. Ling, K. Xie et al., "The COL-4A1 polypeptide destroy endothelial cells through the TGF–β/PI3K/AKT pathway," Scientific Reports, vol. 11, no. 1, Article ID 15761, 2021.

[26] H. Y. Wu, X. H. Wang, K. Liu, and J. L. Zhang, "LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis," Cell Cycle, vol. 19, no. 1, pp. 39–52, 2020.

[27] J. M. Ferreira Mendes, L. de Faro Valverde, M. Torres Andion Vidal et al., "Effects of IGF-1 on proliferation, angiogenesis, tumor stem cell populations and activation of AKT and hedgehog pathways in oral squamous cell carcinoma," International Journal of Molecular Sciences, vol. 21, no. 18, p. 6487, 2020.

[28] M. S. Bitar and F. Al-Mulla, "ROS constitute a convergence nexus in the development of IGF1 resistance and impaired wound healing in a rat model of type 2 diabetes," Disease Models & Mechanisms, vol. 5, no. 3, pp. 375–388, 2012.

[29] J. K. Park, J. W. Jeong, M. Y. Kang et al., "Inhibition of the PI3K-AKT pathway suppresses sFlt1 expression in human placental hypoxia models in vitro," Placenta, vol. 31, no. 7, pp. 621–629, 2010.

[30] N. de Alwis, N. K. Binder, S. Beard et al., "Novel approaches to combat preeclampsia: from new drugs to innovative delivery," Placenta, vol. 102, pp. 10–16, 2020.

[31] H. Hua, H. Zhang, J. Chen, J. Wang, J. Liu, and Y. Jiang, "MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis," Cell Cycle, vol. 19, no. 1, pp. 39–52, 2020.