Accepted Article

Title: N-Heterocyclic Carbene/Carboxylic Acid Co-Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading

Authors: Albrecht Berkessel, Wacharee Harnying, Panyapon Sudkaow, and Animesh Biswas

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202104712

Link to VoR: https://doi.org/10.1002/anie.202104712
N-Heterocyclic Carbene/Carboxylic Acid Co-Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading

Wacharee Harnying,[a] Panyapon Sudkaow,[a] Animesh Biswas,[a] and Albrecht Berkessel*[a]

In memory of Professor Klaus Hafner

[a] Dr. W. Harnying, Dr. P. Sudkaow, Dr. A. Biswas, Prof. Dr. A. Berkessel
Department of Chemistry (Organic Chemistry), University of Cologne
Greinstraße 4, 50939 Cologne (Germany)
E-mail: berkessel@uni-koeln.de

Supporting information for this article is given via a link at the end of the document.

Abstract: We report the discovery that simple carboxylic acids, such as benzoic acid, boost the activity of N-heterocyclic carbene (NHC) catalysts in the oxidative esterification of aldehydes. A simple and efficient protocol for the transformation of a wide range of sterically hindered α- and β-substituted aliphatic aldehydes/enals, catalyzed by a novel and readily accessible N-Mes-2,4,6-trichlorophenyl 1,2,4-triazolium salt, and benzoic acid as co-catalyst, was developed. A whole series of αβ-substituted aliphatic aldehydes/enals hitherto not amenable to NHC-catalyzed esterification could be reacted at typical catalyst loadings of 0.02 - 1.0 mol %. For benzaldehyde, even 0.005 mol % of NHC catalyst proved sufficient - the lowest value ever achieved in NHC catalysis. Preliminary studies point to carboxylic acid-induced acceleration of acyl transfer from azolium enolate intermediates as the mechanistic basis of the observed effect.

The ester functional group is encountered ubiquitously in organic molecules.[15] As a consequence, the development of mild and efficient strategies for the synthesis of esters continues to be an important objective. Classical esterification methods involve the stoichiometric activation of carboxylic acids (as acid halides, anhydrides, or activated esters) amenable to subsequent coupling with alcohol nucleophiles.[15] Over the past decade, the direct oxidative coupling of aldehydes with alcohols as a one-pot procedure (oxidative esterification) has emerged as a conceptually and economically attractive alternative approach.[16] In this context, various metal-based and metal-free catalytic systems employing mild oxidants have been developed. Among those, as an elegant organocatalytic process, the use of N-heterocyclic carbenes (NHCs) has gained considerable interest as a mild acylation strategy. The latter transformation can be achieved either by incorporating a redox-active functionality into the substrates, such as α-reducible aldehydes or enals (NHC-redox catalysis, Scheme 1a),[14] or by using external stoichiometric oxidants (oxidative NHC catalysis, Scheme 1b).[5] For the latter, various oxidants, including MnO2,[6] organic oxidants (nitrobenzene, PhSSPh, TEMPO, diphenylcarbonic, flavins, azobenzene, phenazirine, CCl4CN),[7] electrochemistry,[8] and transition metal catalysis in combination with O2/air,[9] have been reported.

Mechanistically, oxidative NHC catalysis relies on a two-electron oxidation of the Breslow intermediate (diamino enol I)[10,11] (Scheme 1) with an external oxidant to afford the acyl azolium intermediate III,[12] which has been exploited in numerous useful new reactions.[5] The most frequently used oxidant for this transformation is the Kharasch reagent O1 (Scheme 2a),[13] pioneered by Studer et al. for NHC catalysis.[9] The oxidation process with O1 works most efficiently for aromatic aldehydes/enals as substrates.[14] With aliphatic aldehydes, the transformation is comparatively sluggish, requires 7.5 mol% of the triazolium catalyst A (Scheme 2a) at elevated temperature, and 2 equiv of Rb2CO3 as base.[9f] Scheidt et al. reported the use of MnO2 (5 equiv) as oxidant in combination with the triazolium iodide A (10 mol%). In the presence of DBU (1.1 equiv), oxidative esterification of unbranched aliphatic aldehydes, and of some α- and β-methyl substituted aldehydes was achieved.[9e,9f]
It is a general observation that sterically demanding aliphatic aldehydes and \(\alpha,\beta\)-alkyl enals are challenging substrates for NHC catalysis. On the other hand, we had shown earlier for redox esterifications of enals\(^{[4]}\) that NHC catalysts with low basicity, and carrying dispersion energy donors\(^{[14,15]}\) can overcome the above limitations. Key to success is superior catalyst stability, together with the ability to promote the formation of the Breslow intermediate. We reasoned that NHCS of the above type may just as efficiently catalyze aldehyde esterifications under oxidative conditions. Herein, we introduce the novel and readily accessible triazolium salt C1 as a new and highly efficient catalyst for oxidative esterification (Scheme 2b; see SI for synthesis details). A whole series of sterically demanding aliphatic aldehydes and alkyl enals, hitherto not amenable to the known NHC-catalyzed transformation using O1 as oxidant, could smoothly be converted to esters (Scheme 2b). We furthermore discovered that simple benzoic acid (BzOH) co-catalyzes this transformation, allowing NHC catalyst loadings as low as 0.005 mol%.\(^{[16]}\)

As a touchstone substrate, we chose 2-ethyl hexanal (1a) which is unreactive in the presence of known NHC catalysts. O1 was chosen as oxidant, as it can easily be recovered and recycled.\(^{[14]}\) Key results from extensive optimization (see Supporting Information) are shown in Figure 1. Among the NHC catalysts examined (see SI, Figure S3), the new triazolium salt C1 was identified as the most effective one. Initially, treatment of 1a with benzyl alcohol (BnOH, 2a, 1.5 equiv) in the presence of C1 (1 mol%), DIPEA (1 mol%), and O1 (1.1 equiv) in tetrahydrofuran (THF) afforded only trace amounts of 3aa (8% yield) after 24 h at rt. We observed that BzOH (10 mol%) as co-catalyst significantly enhances the catalytic efficiency of C1 (1 mol%), even in the absence of added base, affording the desired ester 3aa in 96% yield after a reaction time of only 5 h (Figure 1A, line a).\(^{[17]}\) The reaction was further accelerated upon addition of a catalytic amine base (2 mol%), including DIPEA, DABCO, N-methylmorpholine (NMM), N,N-dimethylaminopyridine (DMAP), and pyridine (Figure 1A). Among those, DMAP gave the best performance, completing the esterification within 3 h (Figure 1A, line d), presumably promoting NHC turnover as proton shuttle and as an acyl-transfer catalyst. No reaction occurred in the absence of the triazolium salt, regardless of whether or not base/BzOH was present. The loading of C1 in the presence of BzOH could be decreased further to 0.5 mol% without compromising the product yield, albeit at somewhat longer reaction time (5 h) for full conversion. The efficiency of co-catalysis was found to be strongly dependent on the type of acid. Different carboxylic acids were evaluated and simple BzOH provided best activity (see SI, Figure S2).

The effect of BzOH and DMAP on the kinetics of the reaction is compared in Figure 1B. The initial rates of reactions with added BzOH (lines c,d) were significantly higher than those without (lines a,b). In the absence of BzOH as co-catalyst, the reactions stalled at very low conversion (lines a,b). Varying the loadings of the BzOH and DMAP co-catalysts revealed that higher BzOH concentrations accelerate the reactions further, with the accelerating effect approaching saturation at some point (around 10 mol%, Figure 1C). At the same time, increasing the ratio of DMAP to C1 above ca. 1.5 resulted in a less pronounced acceleration by BzOH (see SI, Figure S4). These results indicate that external BzOH is crucial for promoting the NHC catalyst turnover, and/or preventing catalyst deactivation. Clearly, BzOH may also play a role in assisting the reduction of diquinone O1 by H-bonding/protonation.\(^{[18]}\) In summary, the use of C1 (0.5 mol%), DMAP (1 mol%) and BzOH (10 mol%) proved most practical for the co-catalyzed transformation of 1a and 2a to 3aa.

We next investigated the practicality and generality of this transformation (Figure 2). The oxidative esterification of the aldehydes 1 with the alcohol component 2 was performed on gram scale (5-15 mmol of substrate) under operationally simple conditions, i.e. at room temperature and under air, unless otherwise stated. Simple Kugelrohr distillation was applied to isolate the ester from the crude product after evaporation of the THF solvent. Under these experimental conditions, O1-H\(/\)O1 could be readily recovered, recycled to O1 (97% purity),\(^{[14]}\) and reused. To our delight, in the presence of catalyst C1 (0.5 mol%), a variety of benzylic, heterobenzylic, allylic and primary alcohols with different chain lengths could be reacted with unbranched, \(\alpha\)- and \(\beta\)-branched aliphatic aldehydes 1a-f, affording the corresponding esters 3aa-3fa in excellent yields (Figure 2). This method proved...
compatible with various substrate types and functional groups, such as furan, thiophene, acetyl- and Boc-protected amines, pyridine, and indole. The reaction rates were rather sensitive to steric effects. For example, while the reaction of ethanol and less nucleophilic trifluoroethanol with 1a was completed within 5h and 32h, respectively (giving the esters 3ag-3ah), trichloroethanol and neo-pentanol required 9-10 days for complete conversion (products 3ai-3aj). Similarly, the reaction of 1a with secondary alcohols required higher catalyst loadings (C1/DMA/ BzOH = 1:2.20 mol%) to complete the esterification within reasonable time (products 3ar-3av). The tertiary alcohol t-BuOH failed to give the ester 3aw, only starting material was recovered.

We next addressed the question of what the minimal catalyst loading required for the oxidative esterification of more reactive aromatic aldehydes might be. To our delight, as little as 0.005 mol% (50 ppm) of C1 and 0.05 mol% of BzOH were sufficient to transform benzaldehyde (1p) to methyl benzoate (3px) in 93 % yield, at room temperature, within 3h (Figure 3e). Note that for operating at such extremely low NHC concentration, inert atmosphere had to be applied. Although several successful examples of NHC–acid co-catalysis have been reported,[19] the 50 ppm of C1 disclosed here represent the lowest-ever NHC loading in the presence of an external Brønsted acid co-catalyst.

When methanol (2x) was used as the nucleophile, the esterification proceeded very fast, and the addition of DMAP was not necessary (Figure 3). We found that the catalyst loading could be drastically reduced to only 0.05 mol% of C1 and 2 mol% of BzOH for co-catalyzing the esterification of 1a to give 3ax in 94% isolated yield. The same conditions were applied to the synthesis of esters 3dx and 3gx-3lx. For the aldehydes 1d, 1g, and 1i, the reaction with MeOH stalled after 2-3h at room temperature, even at higher catalyst loadings. Nevertheless, full conversion could be accomplished by either performing the reaction at 50 °C, or at room temperature by adding an extra batch of C1 (0.05 mol%) after 2-3h. For small unbranched aldehydes, such as hexanal (3m), 0.02 mol% loading of C1 was sufficient to complete the esterification within 3h (product 3mx). As an aldehyde substrate with an α-stereogenic center, prone to racemization, enantiopure 1n (95% ee) was isolated in the presence of 0.1 mol% of the catalyst C1. Complete conversion to the ester 3nx (64% ee) occurred within 4h. The partial loss of stereochiometric integrity, also observed under the conditions reported by Scheidt[20] and Studer,[21] can be accounted for by the formation of the azolium enolate intermediate (II, Scheme 1) under oxidative conditions.[22] Sterically more demanding pivaldehyde (1o) remained unchanged and did not react to yield the desired methyl pivalate (3ox), even at catalyst loadings up to 15 mol%.

![Figure 2](image_url)

**Figure 2.** Substrate scope of the oxidative esterification: aliphatic aldehydes and alcohol nucleophiles. Yields refer to isolated products.

![Figure 3](image_url)

**Figure 3.** Scope of the oxidative esterification of aldehydes with methanol as alcohol component. Yields refer to isolated products.

![Figure 4](image_url)

**Figure 4.** Scope of the oxidative esterification of enals. Yields refer to isolated products. *The lower yield of the isolated methyl ester 5ex (74%) is due to its volatility, as the prenal substrate 5e was completely consumed with clean conversion. When changing to n-propanol, the resulting ester 5ey could be isolated in 93% yield.
We finally evaluated the oxidative esterification of \( \alpha,\beta \)-enals 4, with MeOH (2x) as the alcohol component, using the substrate library shown in Figure 4. We were delighted to find that a diverse array of enals, including \( \alpha \)- and \( \beta \)-substituted aromatic and aliphatic ones, reacted smoothly to give the corresponding esters 5 (Figure 4). Gratifyingly, even \( \alpha \)-substituted acroleins were successfully oxidized to the esters 5fx-5hx in yields ranging from 80% to 98%, indicating the absence of NHC deactivation by Michael addition.[6] In the case of citral (5d; \( E/Z = 50:50 \)), we observed \( E/Z \)-isomerization, as the diolate 5dx was obtained with an \( E/Z \) ratio of 68:32. Additionally, partial isomerization of the \( \alpha,\beta \)-unsaturation to the \( \beta,\gamma \)-position was observed with 5j and 5k, giving the products 5jx and 5kx, respectively. Sterically congested \( \beta \)-cyclotriantal (5i) was unreactive when the same experimental conditions were applied, and no product 5ix was observed.

Initial kinetic experiments were performed to shed light on the mechanism of the BzOH co-catalysis. We have recently suggested that ester formation from aliphatic aldehydes proceeds via the azolium enolate state (such as 7, Scheme 3), while esterification of aromatic aldehydes must proceed through an acyl azolium intermediate (such as 6a,b, Scheme 3).[12] The SIPr-derived acetyl azolium triflate 6a, the analogous benzoyl azolium chloride 6b[20] and the acetyl azolium enolate 7 were exposed to BnOH (2a) or methanol (2x) in the presence of BzOH (1 equiv), and the reaction progress was monitored by \( ^1 \text{H} \) NMR (see SI, Figures S10-16, Tables S1,2). In the presence of BzOH, the azolium enolate 7 reacted with BnOH ca. 11 times faster to benzylic acetate than in the absence of BzOH. This result suggests that for aliphatic aldehyde substrates (such as 1a, Figure 1B,C), BzOH co-catalysis involves interaction with the azolium enolate intermediate.[21] In contrast, neither the acetyl azolium triflate 6a nor the benzoyl azolium chloride 6b reacted with BnOH (2a) or methanol (2x), regardless of whether or not BzOH was present. This result is in line with our observation that BzOH effects at best a slight acceleration in the case of benzaldehyde (1p), where ester formation can proceed only via an acyl azolium intermediate, and not an azolium enolate (see SI, Figure S9). While rate acceleration may be negligible, the presence of the BzOH co-catalyst is still necessary for achieving extremely low catalyst loadings in benzaldehyde esterification (Figure 3e). We conclude that BzOH also prevents, or at least retards, deactivation of the NHC catalyst. An obvious mechanistic option for this may be reversible protonation to the azolium cation.

![Diagram](image_url)

**Scheme 3.** SIPr-derived acetyl azolium triflate 6a, benzoyl azolium chloride 6b, acetyl azolium enolate 7, and the effect of BzOH on the reaction of 7 with BnOH (2a) or methanol (2x) [Dipp = 2,6-di(2-propyl)phenyl].

In summary, we disclose an efficient and practical method for the NHC-catalyzed oxidative acylation of alcohols with a wide range of sterically hindered \( \alpha,\beta \)-substituted aliphatic aldehydes and enals, hitherto recalcitrant to this type of transformation. Our method hinges on the novel and readily accessible triazolium salt C1, with low-basicity and carrying dispersion energy donors. Furthermore, the introduction of benzoic acid as co-catalyst was the key to success. The resulting cooperative catalytic system effects oxidative esterification at very low catalyst loadings (down to 50 ppm for benzaldehyde).

**Acknowledgements**

Support by the Deutsche Forschungsgemeinschaft (priority program 1807 "Control of London Dispersion Interactions in Molecular Chemistry", grant nos. BE 98814-1,2) and by the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Kevin Zühkle, Alicia Köcher and Marvin Naase for experimental support.

**Keywords:** Carbene · cooperative catalysis · acylation · esterification · oxidation

[1] J. Otera, J. Nishikido, Esterification: Methods, Reactions, and Applications, 2nd ed., Wiley-VCH, Weinheim, 2010.

[2] For reviews, see: a) K. Ekoue-Kovi, C. Wolf, Chem. Eur. J. 2008, 14, 6302-6315; b) S. Gaspa, A. Porcheddu, L. De Luca, Tetrahedron Lett. 2011, 57, 3433–3440.

[3] For reviews on NHC-redox catalysis, see: a) V. Nair, Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336–5346; b) P.-C. Chiang, J. W. Bode, TCI Mail, 2011, 149, 2–17; c) Z.-Q. Rong, W. Zhang, G.-Q. Yang, S.-L. You,Curr. Org. Chem. 2011, 15, 3077 – 3090; d) H. U. Vora, P. Wheeler, T. Rovis, Adv. Synth. Catal. 2012, 354, 1617–1639; e) J. Mahattananchanok, J. W. Bode, Acc. Chem. Res. 2014, 47, 696–707.

[4] For selected examples of NHC-catalyzed redox esterification, see: a) K. Y.-K. Chow, J. W. Bode, J. Am. Chem. Soc. 2004, 126, 8126–8127; b) N. T. Reynolds, J. Read de Almazán, T. Rovis, J. Am. Chem. Soc. 2004, 126, 9518–9519; c) A. Chan, K. A. Scheidt, Org. Lett. 2005, 7, 905–908; d) S. S. Sohn, J. W. Bode, Org. Lett. 2005, 7, 3873–3876; e) K. Zeller, Org. Lett. 2006, 8, 637–640; f) S. S. Sohn and J. W. Bode, Angew. Chem., Int. Ed., 2006, 45, 6021–6026; Angew. Chem. 2006, 118, 6167–6170; g) L. Wang, K. Thai, M. Gravel, Org. Lett., 2009, 11, 891–893; h) K. B. Ling, A. D. Smith, Chem. Commun. 2011, 47, 373–375; i) J. Mahattananchanok, J. W. Bode, Chem. Sci. 2012, 3, 192–197; j) V. R. Yatham, W. Harnviny, D. Kootz, J.-M. Neudorff, N. E. Schöler, A. Berkes, J. Am. Chem. Soc. 2016, 138, 2670–2677; h) D. Hirose, S. B. W. Kusuma, D. Ina, N. Wada, K. Takahashi, Green Chem. 2019, 21, 4927–4931.

[5] For reviews on oxidative NHC catalysis, see: a) C. E. L. Knappke, A. Imami, A. Jacobi von Wangelin, ChemCatChem 2012, 4, 937–941; b) S. De Sarkar, A. Biswas, R. C. Samanta, A. Studer, Chem. - Eur. J. 2013, 19, 4664–4678; c) D. M. Flanigan, F. Romanov-Mahalidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387; d) M. H. Wang, K. A. Scheidt, Angew. Chem. Int. Ed. 2016, 55, 14912–14922; Angew. Chem. 2016, 128, 15134–15146; e) A. Axelsson, L. T. Ha, H. Sundén, Synlett 2017, 26, 873–878; f) K. Dziezakowski, Z. Rafinski, Catalysis 2018, 8, 549; g) for a recent review on NHC catalysis with aliphatic aldehydes, see: S. Barik, A. T. Biju, Chem. Commun. 2020, 56, 15484-15495.

[6] For NHC-catalyzed oxidative esterification of aldehydes with alcohols using the inorganic oxidant MnO2, see: a) B. E. Maki, K. A. Scheidt, Org. Lett. 2008, 10, 4331–4334; b) B. E. Maki, A. Chan, E. M. Phillips, K. A. Scheidt, Tetrahedron 2009, 65, 3102–3109; c) M. Ruping, H. Sundén, L. Hubener, E. Sugiono, Chem. Commun. 2012, 48, 2201–2203; d) S. Lu, S. B. Poh, W.-Y. Siu, Y. Zhao, Synlett 2013, 24, 1162–1168.

[7] For NHC-catalyzed oxidative esterification of aldehydes with alcohols using various organic oxidants, see: nitroarones: a) J. Castells, H. Llítjos, M. Moreno-Manas, Tetrahedron Lett. 1977, 18, 205–206; b) J. Castells, F. Pujol, H. Llítjos, M. Moreno-Maikas, Tetrahedron 1982, 38,
This article is protected by copyright. All rights reserved.
While N-heterocyclic carbene (NHC) catalyzed oxidative esterification of aldehydes/enals is a synthetically highly attractive method, it is plagued by poor conversions/yields for sterically demanding substrates. The novel and readily accessible triazolium catalyst shown, with benzoic acid as co-catalyst, overcomes this deficiency. A variety of hitherto recalcitrant aldehydes/enals are efficiently converted to esters, and very low catalyst loadings (down to 50 ppm) can be applied.

Institute and/or researcher Twitter usernames: (optional)