Noninvasive respiratory support for acute respiratory failure due to COVID-19

Luca S. Mengaa,b, Cecilia Berardia,b, Ersilia Ruggieroa,b, Domenico Luca Griecoa,b, and Massimo Antonellia,b

Purpose of review
Noninvasive respiratory support has been widely applied during the COVID-19 pandemic. We provide a narrative review on the benefits and possible harms of noninvasive respiratory support for COVID-19 respiratory failure.

Recent findings
Maintenance of spontaneous breathing by means of noninvasive respiratory support in hypoxemic patients with vigorous spontaneous effort carries the risk of patient self-induced lung injury: the benefit of averting intubation in successful patients should be balanced with the harms of a worse outcome in patients who are intubated after failing a trial of noninvasive support.

The risk of noninvasive treatment failure is greater in patients with the most severe oxygenation impairment ($\text{PaO}_2/\text{FiO}_2 < 200$ mmHg).

High-flow nasal oxygen (HFNO) is the most widely applied intervention in COVID-19 patients with hypoxemic respiratory failure. Also, noninvasive ventilation (NIV) and continuous positive airway pressure delivered with different interfaces have been used with variable success rates. A single randomized trial showed lower need for intubation in patients receiving helmet NIV with specific settings, compared to HFNO alone.

Prone positioning is recommended for moderate-to-severe acute respiratory distress syndrome patients on invasive ventilation. Awake prone position has been frequently applied in COVID-19 patients: one randomized trial showed improved oxygenation and lower intubation rate in patients receiving 6-h sessions of awake prone positioning, as compared to conventional management.

Summary
Noninvasive respiratory support and awake prone position are tools possibly capable of averting endotracheal intubation in COVID-19 patients; carefully monitoring during any treatment is warranted to avoid delays in endotracheal intubation, especially in patients with $\text{PaO}_2/\text{FiO}_2 < 200$ mmHg.

Keywords
acute respiratory failure, awake prone position, COVID-19, high flow nasal oxygen, noninvasive respiratory support

INTRODUCTION
The optimal management of hypoxemic respiratory failure is debated. Most recent guidelines suggest caution in using noninvasive respiratory support – namely high-flow nasal oxygen (HFNO), noninvasive ventilation (NIV) or continuous positive end-expiratory pressure (CPAP) – for the early treatment of hypoxemic respiratory failure due to COVID-19 [1] and non-COVID-19 etiology [2]. Early endotracheal intubation has been advocated in the early phases of the pandemic to limit the risks related to prolonged exposure of injured lungs to the potential harms of intense inspiratory efforts and high tidal volumes [3].

However, intubation with invasive mechanical ventilation can lead to serious complications, including ventilator-induced lung injury, intensive
KEY POINTS

- Maintenance of spontaneous breathing hypoxic patients carries the risk of patient self-induced lung injury, but avoidance of intubation can lead to improved outcomes.
- High-flow nasal oxygen is the most widely applied intervention for the treatment of hypoxic respiratory failure due to COVID-19.
- Helmet NIV and Helmet CPAP allow to improve blood oxygenation and deliver high-PEEP in the early phases of respiratory failure; to date only one randomized controlled trial supports the use of Helmet NIV compared to high-flow nasal oxygen.
- Awake prone position is a promising, physiologically sound, cost-effective intervention; one randomized controlled trial showed its possible positive effects in reducing the need for endotracheal intubation.
- The benefit of averting intubation by means of noninvasive respiratory support should be balanced with the harms of a worse outcome in patients who are intubated after failing a trial of noninvasive support, warranting careful monitoring of treated patients.

Respiratory system

Patients with hypoxic respiratory failure often show dysregulated respiratory drive. The harmful effects of spontaneous breathing with intense inspiratory effort can result in self-induced lung injury (P-SILI). P-SILI may worsen the clinical outcome of patients who require endotracheal intubation after having received noninvasive respiratory support [10,11].

As the debate remains open, we searched MEDLINE-PubMed databases for the relevant articles (up to August 2021) assessing the physiological and clinical effects of noninvasive respiratory support in patients with acute respiratory failure of COVID-19 etiology.

In this review, we provide an overview of the available evidence regarding the use of noninvasive respiratory support in COVID-19 patients, highlighting its benefits and potential risks.

PATIENT SELF-INDUCED LUNG INJURY

In hypoxic respiratory failure, lung injury yields altered respiratory mechanics and increased dead space; inflammation combined to biochemical stimuli induced by hypoxemia, respiratory acidosis with hypercarbia, and the ‘chemomechanical’ variations due to atelectasis and alveolar derecruitment increase patient’s ventilatory demand. This results in a shift of brain homeostasis toward a lower level of PaCO₂, which can cause spontaneous ventilation with high inspiratory effort, large tidal volumes and tachypnea, leading to abnormal inspiratory swings of pleural pressure and consequent increment of the transpulmonary pressure (alveolar pressure – esophageal pressure as a surrogate of the pleural pressure). As a consequence, baro-, volu- and atelec-trauma are generated. These mechanisms lead to the progression of lung injury [12*,13*,14–18]. Additionally, the increase in transmural pressure of lung vessels combined with their increased permeability concur to alveolar flooding and negative pressure pulmonary edema [15,19].

Under this scenario, the damaged lung can exhibit two distinct patterns: the healthy lung has a more fluid-like condition in the nondependent regions, whereas the most damaged and atelectatic regions have a solid-like pattern (the dependent regions). The solid-like regions transmit pleural pressure differently from the fluid-like regions, finally generating intra-tidal heterogeneity of transpulmonary pressure. This causes an intra-tidal shift of gas from nondependent regions of the lung to the dependent regions; this occult movement of air is called ‘pendelluft’, and can overstretch dependent lung regions independently from the size of inspired volume, increasing inflammation and regional strain [20].

Delivering high positive end-expiratory pressure (PEEP) during spontaneous breathing might render spontaneous effort noninjurious through different mechanisms: (1) it increases functional residual capacity, reducing the extension of atelectatic regions, finally decreasing the mechanical stimuli yielding the increase of respiratory drive, (2) it yields diaphragmatic uncoupling, reducing the inspiratory effort, (3) it limits the occurrence of pendelluft phenomenon by favoring a more homogeneous transmission of the pleural pressure across the lung tissue [12*,21,22].

Although these considerations may advocate against the use of noninvasive respiratory support, it appears that patients with hypoxic respiratory failure due to COVID-19 exhibit average lower inspiratory effort than non-COVID-19 patients with similar oxygenation impairment, possibly indicating a reduced risk of P-SILI [23].

Available data indicate that, in patients with PaO₂/FiO₂ > 200mmHg, noninvasive respiratory support is safe and effective. Differently, in patients...
with \(\text{PaO}_2/\text{FiO}_2 \leq 200 \text{mmHg} \), the best balance between the benefits and harms of maintaining spontaneous breathing with noninvasive respiratory support has yet to be identified [8,24]. When considering a noninvasive respiratory support trial, the optimal strategy should aim to limit the risk of endotracheal intubation, without increasing the risk of P-SILI: [25] this is of particular importance given the high failure rate of noninvasive respiratory support in COVID-19 hypoxemic respiratory failure when compared to non-COVID-19 patients [26*].

HIGH-FLOW NASAL OXYGEN

HFNO is a technique that delivers high flow rates (60L/min) of humidified and heated oxygen at adjustable FiO\(_2\) through nasal cannula. HFNO allows (1) accurate delivery of the set FiO\(_2\) by limiting dilution of inhaled gas, (2) provides carbon dioxide washout of the upper airways and reduction of physiological dead space when the flow rates is > 30 L/min (3) and variable PEEP that increases with flow rates, ultimately reducing inspiratory effort [27,28].

A randomized trial showed that HFNO might reduce intubation rate and mortality in moderate-to-severe hypoxemic respiratory failure when compared to low flow oxygen and face mask NIV [24], and the latest guidelines [2,29] suggest HFNO as the optimal first line intervention to correct hypoxemia during de novo respiratory failure.

Despite the initial concerns about the risk of viral aerosolization and transmission to healthcare workers – that can be mitigated by a surgical mask on top of high-flow nasal cannula, which also improves oxygenation [30]—HFNO has been widely applied in patients with acute respiratory failure due to COVID-19 in heterogeneous clinical scenarios, with highly variable outcomes in terms of endotracheal intubation and mortality rate [31–37] (Table 1).

In ICU and non-ICU settings, patients with COVID-19 and \(\text{PaO}_2/\text{FiO}_2 \) ratio < 300 mmHg have been treated with HFNO, showing rates of endotracheal intubation and mortality rate as low as 0% in very mild patients [38] up to a failure rate as high as 80% in the most severe ones [39,40**] (Fig. 1a).

Indeed, during the COVID-19 pandemic, HFNO has shown a great efficacy in patients with a \(\text{PaO}_2/\text{FiO}_2 \) ratio > 200 mmHg [38,41], whereas it may be associated to higher risk of failure when \(\text{PaO}_2/\text{FiO}_2 < 200 \text{mmHg} \) [42–45].

Overall, available data indicate that HFNO in COVID-19 patients with acute respiratory failure do not increase mortality rate and may be an effective strategy in mild-to-moderate cases to reduce the need for mechanical ventilation and critical care support [46,47].

As any other form of noninvasive respiratory support, HFNO should be applied under strict clinical monitoring to promptly detect treatment failure and reduce the risks related to delayed endotracheal intubation, P-SILI and poor prognosis. The ROX index, which is the SpO\(_2\) normalized to FiO\(_2\) times respiratory rate has been validated in the non-COVID setting [48], has been examined by several authors to be adapted to COVID-19 patients. Preliminary data show that ROX index in COVID-19 patients could be a simple marker to predict the risk of HFNO failure and could be used to prevent the delay in endotracheal intubation: however, different thresholds have been suggested, ranging from 3.67 to 5.37, and the optimal cut-off for COVID-19 patients remains to be clarified [42–44,47,49].

NONINVASIVE VENTILATION

NIV has progressively been identified in the last 20 years as valid treatment in the management of acute respiratory failure.

Specific indications are exacerbation of chronic obstructive pulmonary disease, cardiogenic pulmonary edema, pneumonia in immunocompromised patients and weaning of previously intubated stable patients with chronic obstructive pulmonary disease.

Conversely, in the treatment of hypoxemic respiratory failure, NIV use has been associated with conflicting results, and the most recent guidelines suggest caution in its application [2,29]. Clinical outcome improves when NIV allows to avoid endotracheal intubation. Differently, if intubation is needed after NIV, mortality is increased, possibly due to delayed intubation and the prolonged exposure of injured lungs to P-SILI [50].

In the recent years, various interfaces have been used, as face (or oro-nasal/full-face) mask, nasal masks, mouthpieces, nasal pillows or plugs, and helmet; each has its own peculiarities and pitfalls, that must be part of the clinician’s evaluation.

NIV improves oxygenation, reduces dyspnea, inspiratory effort and work of breathing [51], and might reduce the rate of endotracheal intubation and ICU mortality rate [52**]; however, in case of failure, it leads to delayed intubation, worsening clinical outcome [50].

Oro-nasal or full-face masks, when compared to the helmets, allow greater unloading of respiratory muscles [53], unless specific settings – including high PEEP, high-pressure support and low pressurization time – are used [54].

The helmet allows to deliver relatively high PEEP with minimum air leakage and good
Table 1. Clinical trials of HFNO in acute hypoxemic respiratory failure of COVID-19 etiology

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings			
Bonnet et al. [47], 2021	33638752	Retrospective multicenter study	ICU	COVID-19 AHRF	HFNO n = 62	SOT 7.4% [95% CI 7.0 to 7.8]	HFNO 16% [95% CI 9.0 to 26]	HFNO oxygen for AHRF due to COVID-19 is associated with a lower rate of invasive mechanical ventilation compared to SOT	Mortality and ICU LOS did not differ. The number of VFD was lower in the HFNO group. A ROX index higher than 4.88 and higher SAPSII were associated with IMV use.			
Chandel et al. [49], 2021	33328179	Multicentered retrospective study	Mixed population	COVID-19 AHRF	HFNO n = 272	40% [95% CI 34 to 46]	No-HFNO 72% [95% CI 64 to 79]	Prolonged usage of HFNO was not associated with worse clinical outcomes compared to SOT.	The ROX index was sensitive for the identification of subjects who were successfully managed with HFNO and a cut off of 3.67 or 12 h was identified.			
Demoule [31], 2020	32758000	Retrospective study	ICU	COVID-19 AHRF	Matched sample: HFNO n = 113	17% [95% CI 13 to 21]	No-HFNO 22% [95% CI 16 to 30]	HFNO significantly reduces intubation and subsequent invasive mechanical ventilation compared to standard oxygen therapy, but does not affect case fatality.	Awake PP reduces the proportion of patients intubated or dying within 28 days of enrolment. 223 (40%) in the awake PP group vs 257 (45%) in the standard of care. F = 0.007, relative risk reduction 0.86 (95% CI 0.75 to 0.98). Patients that received PP for longer sessions had lower treatment failure rate.			
Brimme et al. [128], 2021	34425027	Prospective collaborative randomized controlled meta trial, Mixed setting	COVID-19 AHRF SpO2/FiO2: awake PP: 147/9 (43.9)	All patients treated with HFNO SpO2/FiO2: standard care 148.6 (43.1)	Awake PP: n = 564	HFNO 55% [95% CI 46 to 63]	No-HFNO 72% [95% CI 64 to 79]	Awake PP 31% [95% CI 18 to 47]	Awake PP significantly improves blood gas analysis, respiratory rate and ROX index during PP. The benefit was maintained after supination.			
Franco et al. [67], 2020	32747398	Retrospective multicenter study	Non-ICU COVID-19 AHRF	HFNO n = 163	CPAP Failure 47% [95% CI 42 to 53]	30 day mortality: HFNO 16% [95% CI 11 to 20]	Noninvasive respiratory support outside of ICU is feasible, and mortality rate compare favourably with previous reports. There was no difference among the interfaces at the adjusted analysis.	Noninvasive respiratory support was associated with risk of staff contamination.				
Gaulin et al. [87], 2020	32984836	Retrospective, multicenter study	ICU	COVID-19 AHRF SpO2 < 92% with 6 min nasal cannula Body mass index, kg/m2, mean (sd) 22 – 32.5 (8.6)	Helmet CPAP 117	56% [95% CI 48 to 64]	CPAP 30% [95% CI 26 to 35]	Noninvasive respiratory support was associated with risk of staff contamination.				
Gegg et al. [37], 2020	32295710	Case series	Non-ICU COVID-19 AHRF	HFNO n = 8	0% [95% CI 0 to 32]	Death of 7 days: HFNO 19% [10 to 32]	HFNO is safe and effective in mild AHRF of COVID-19 etiology	Noninvasive respiratory support was associated with risk of staff contamination.				
Publication Details	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings			
---------------------	------	--------------	---------	--------------------	-----------	----------------	---------------	--------------	--------------------			
Grinao et al. [70](#)	33764378	Randomized controlled multicenter trial	ICU	COVID-19 AHF due to AHRF	Helmet NIV n = 54	Continuous treatment PEEP 12 [10–12] cmH2O Pressure Support 10 [10–12] cmH2O	HFNO n = 55	Helmet NIV 30% [95% CI 19 to 40]	Helmet NIV alone do not affect respiratory support free days.			
Hernandez-Romieu et al. [30], 2020	32804790	Retrospective study	ICU	COVID-19 AHRF	Helmet NIV 30%	Only IMV n = 97	HFNO n = 109	Helmet NIV 22% [95% CI 15 to 31]	A trial of noninvasive respiratory support, including HFNO, in an attempt to avoid intubation, is not associated with increased mortality. Modern nomogram and online calculator are simple to use and able to predict the risk of failure in patients with COVID-19 treated with HFNO and NIV.			
Liu et al. [40](#)	33573999	Retrospective multicentre study	ICU	COVID-19 AHRF	Helmet NIV 24%	Only IMV 40% [95% CI 31 to 50]	HFNO n = 56	Helmet NIV 49% [95% CI 44 to 54]	Use of noninvasive respiratory support is not associated with worse pulmonary compliance and oxygenation among those who eventually require mechanical ventilation.			
Mellado-Artigas et al. [33], 2021	33573680	Prospective observational study	ICU	COVID-19 AHRF	Helmet NIV 21%	Only IMV 24% [95% CI 17 to 33]	HFNO n = 61	Helmet NIV 22% [95% CI 17 to 32]	The nomogram and online calculator are simple to use and able to predict the risk of failure in patients with COVID-19 treated with HFNO and NIV.			
Montiel et al. [30], 2020	32990864	Prospective observational study	ICU	COVID-19 AHRF	Helmet NIV 21%	Only IMV 21% [95% CI 12 to 32]	HFNO n = 21	Helmet NIV 49% [95% CI 44 to 54]	Mortality was not different in the patients that were intubated early and in the patients that failed HFNO.			
Panadero et al. [44], 2020	32983456	Retrospective study	NonICU	COVID-19 AHRF	Helmet NIV 39%	Only IMV 39% [95% CI 33 to 45]	HFNO n = 40	Helmet NIV 52% [95% CI 37 to 67]	A surgical mask placed on patient's face already treated by a HFNO device would offer an advantage in terms of oxygenation in COVID-19 patients admitted in ICU with severe AHRF.			
Rask et al. [12](#)	34127046	Multicenter randomized clinical trial	NonICU	COVID-19 AHRF	Standard care n = 39	No intervention	HFNO standard care n = 29	Helmet NIV 8% [95% CI 3 to 20]	Nine patients (23%) in the control group had pressure scores compared with two patients (6%) in the prone group, P = 0.03, there were no differences in the use of NIV, vasopressors, continuous renal replacement therapy, ECMO, VFD, hospital and ICU length of stay and mortality among the two groups.			
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings			
-------------	------	--------------	---------	-------------------	-----------	----------------	---------------	-------------	-------------------			
Suliman et al. [43], 2021	33471350	Diagnostic research	Mixed population	COVID-19 AHRF at intubation PaO$_2$/FiO$_2$ 91 [60–110]	HFNO n = 69	5% [95% CI 1.48 to 70]	Not reported	ROX index is a simple noninvasive promising tool for predicting discontinuation of high-flow oxygen therapy and could be used by clinicians in the assessment of progress and the risk of intubation in COVID-19 patients with pneumonia	The ROX index on the 1st day of admission was significantly associated with the presence of comorbidities, COVID-19 clinical classification, CT findings and intubation			
Vega et al. [34], 2021	34049831	Retrospective analysis of prospectively collected data	Non-ICU COVID-19 AHRF	HFNO n = 120	29% [95% CI 21 to 38]	7.5% [95% CI 4 to 14]	ROX index with cut off of 5.99 may be useful in guiding clinicians in their decision to intubate patients especially in moderate acute respiratory failure treated outside ICU	Among the components of the index, PaO$_2$/FiO$_2$ had greater predictive value				
Vianello et al. [35], 2020	32703883	Retrospective study	ICU COVID-19 AHRF	HFNO n = 28	Rescue NIV n = 9	NIV settings, interfaces, and whether CPAP is codified as NIV is not reported	HFNO failure 3.2% [95% CI 1.8 to 5.1]	HFNO can be considered an effective and safe means to improve oxygenation in less severe forms of AHRF secondary to COVID-19 not responding to conventional oxygen therapy	Severity of hypoxemia and C reactive protein level were correlated with HFNO failure			
Wong et al. [41], 2020	32232885	Retrospective study	Mixed population	COVID-19 AHRF PaO$_2$/FiO$_2$ 209 [179–376] in success patients PaO$_2$/FiO$_2$ < 142 [130–186] in failure patients	HFNO n = 17	only IMV n = 1	only NIV n = 9	rescue NIV n = 7	First line NIV failure 11% [2 to 42]	rescue NIV failure 29% [8 to 64]	HFNO was the most common ventilation support for patients, and rescue NIV was often used in case of HFNO failure	Patients with lower PaO$_2$/FiO$_2$ were more likely to experience HFNO failure
Wong et al. [34], 2020	32267160	Retrospective study	ICU	SpO$_2$/FiO$_2$ in the overall cohort 279 [157–328] IMV n = 100	HFNO 66% [95% CI 49 to 79]	HFNO failure 77% [95% CI 61 to 88]	Not reported	Older patients with comorbidities are at increased risk of mortality. Real-time monitoring of SpO$_2$/FiO$_2$ and regular measurements of lymphocyte count and inflammatory markers may be essential to disease management	A total of 128 out of 145 (88.3%) patients who developed ARDS died at or before 28 days.			
Wendel Garcia et al. [36], 2021	34034782	Retrospective subanalysis of data	ICU COVID-19 AHRF	SOT n = 87	HFNO n = 87	HFNO n = 92	HFNO 80% [95% CI 64 to 93]	A trial of HFNO appeared to be the most balanced initial respiratory support strategy.	Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality P = 0.16 and should be avoided.			
Xia et al. [46], 2020	32826432	Retrospective multicenter study	Mixed population COVID-19 AHRF PaO$_2$/FiO$_2$ available in only 12 patients 122 [51]	HFNO n = 43	30% [95% CI 19 to 45]	HFNO failure 47% [95% CI 33 to 61]	3.2% [95% CI 20 to 48]	Early HFNO may be an effective respiratory support modality for COVID-19 patients with mild to moderate AHRF, most severe cases need IMV or NIV	Male and lower oxygenation at admission were the two strongest predictors of HFNO failure.			
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main Finding	Secondary Findings			
---------------------	--------------	-------------------------	------------------	--------------------	------------	-----------------	-------------------	---	---			
Yang W. et al. [39], 2020	32267160	Retrospective study	ICU	COVID-19 AHRF	HFNO n = 35	NIV n = 34	IMV n = 100	Older patients with comorbidities are at increased risk of mortality. Real-time monitoring of S/F and regular measurements of lymphocyte count and inflammatory markers may be essential to disease management.	A total of 128 out of 145 (88.3%) patients who developed ARDS died at or before 28 days.			
Yang X. et al. [66], 2020	32105632	Retrospective study	ICU	PaO₂/FiO₂ in survivors	HFNO n = 33	NIV n = 29	IMV n = 22	The progression among the interfaces is not reported.	Among 52 critically ill patients with COVID-19 infection, 32 (61.5%) patients had died at 28 days.			
Zhou et al. [37], 2020	32171076	Retrospective multicenter study	Mixed Population	PaO₂/FiO₂ at enrollment is not reported	HFNO n = 41	NIV n = 26	IMV n = 32	Older, high SOFA score, and d-dimer greater than 1 µg/mL could help clinicians to identify patients with poor prognosis at an early stage.	Noninvasive respiratory support and invasive mechanical ventilation have high mortality rate.			
Zucman et al. [42], 2020	32671470	Retrospective study	ICU	COVID-19 AHRF	HFNO n = 60	65% [95% CI 52 to 76]	IMV = 60	Early application of NHF as first-line ventilatory support during COVID-19-related AHRF may have obviated the need for intubation in up to a third of cases.	The ROX index measured within the first 4 h after NHF initiation could be an easy-to-use marker of early ventilatory response.			

Values are displayed as means (SD) or medians [Interquartile range].

Failure was defined as either intubation, death while still on noninvasive respiratory support, or escalation to other noninvasive respiratory support to avoid endotracheal intubation. AHRF, acute hypoxemic respiratory failure; ARDS, acute respiratory distress syndrome; awake PP, awake prone position; CPAP, continuous positive end-expiratory pressure; FiO₂, fraction of inspired oxygen; HFNO, high-flow nasal oxygen; ICU, intensive care unit; IQR, interquartile range; NIV, noninvasive ventilation; PaO₂, partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; SpO₂, peripheral capillary oxygen saturation; VFD, Ventilatory Free Days.
tolerability, allowing the patient to receive continuous treatments with enhanced comfort [55]; this is particularly important in the early phases of hypoxemic respiratory failure, when high PEEP seems a promising tool to mitigate the risk of P-SILI [21,56,57].

In 2016, a randomized study showed lower intubation rate and improved outcome in hypoxemic patients treated with helmet NIV vs those treated with face-mask NIV; whereas patients with helmet received a median sustained PEEP of 8 cmH$_2$O, patients treated with face mask received a median PEEP of 5.1 cmH$_2$O [58].

During the COVID-19 pandemic, NIV has been used both as a first-line therapy and as rescue therapy after HFNO, in patients with wide range of severity [59–65] (Table 2).

NIV showed variable success rates during the pandemic, possible due to the heterogeneous interfaces, settings and protocols applied; Wang et al. report a failure rate of 11% in mild-to-moderate patients when NIV is used as first-line therapy.

FIGURE 1. Panel reporting the failure rate [95% CI] of patients with hypoxemic respiratory failure treated with noninvasive respiratory support. Failure rate was defined as occurrence of endotracheal intubation or death. Only the patients without limitation of treatment were considered for the figure. Except from the bottom – right figure, nonrandomized studies including awake prone position were excluded from the figure, due to the possible selection bias of patients treated with conventional therapy. The studies with the bigger sample size are displayed at the top of the figure. (a) Forest plot of patients treated with HFNO in the supine position. (b) Forest plot of patients treated with NIV as first line of therapy. (c) Forest plot of patients treated with CPAP as first line of therapy. (d) Forest plot of patients treated with awake prone position, regardless of the kind of noninvasive respiratory support used. *It was not possible to differentiate between CPAP and NIV that were both considered as noninvasive respiratory support. CPAP, continuous positive end-expiratory pressure; HFNO, high-flow nasal oxygen; NIV, noninvasive ventilation.*
Table 2. Clinical trials of NIV in acute hypoxemic respiratory failure of COVID-19 etiology

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings
Bellani et al. [59], 2021	33727235	Observational prospective registry	COVID-19 AHRF	NIV = 390 NIV settings, interfaces, and whether CPAP is codified as NIV is not know	NIV failure 44% [95% CI 40 to 49]	Overall cohort 38% [95% CI 33 to 43]	NIV may have a significant role in supporting patients with COVID-19-related respiratory failure. It effectively supported and prevented the need for intubation of more than half of those treated. Those failing had a very poor in-hospital survival rate.	After adjustment, age, hypertension, room air \(\text{SpO}_2\), at presentation, lymphopenia, in-hospital use of antibiotics were independently associated with NIV failure.	
Burns et al. [78], 2020	32624494	Retrospective study	Non-ICU	COVID-19 AHRF \(\text{SpO}_2 < 94\%\) in Venturi Mask	Not reported	BIPAP 40% [95% CI 12 to 77]	CPAP 52% [33 to 71]	Ward based noninvasive respiratory is a good treatment option, with a mortality around 50%.	The only statistically significant difference between survivors and nonsurvivors was the presence of “classical” radiological imaging appearances, \(P=0.034\).
Duca et al. [60], 2020	33222116	Retrospective study	Non-ICU	COVID-19 AHRF \(\text{PaO}_2/\text{FiO}_2\) 131 [97–190] NIV \(\text{PaO}_2/\text{FiO}_2\) 87 (53–120) IMV at arrival \(\text{PaO}_2/\text{FiO}_2\) 76 (50–177)	CPAP failure rate 3.7% [95% CI 2.6 to 4.8]	Overall cohort 76% [95% CI 65 to 84]	CPAP failure occurred in a high percentage of patients.		
Faraone et al. [61], 2020	33222116	Retrospective study	Non-ICU	COVID-19 AHRF \(\text{PaO}_2/\text{FiO}_2\) 130 (69)	NIV n = 25	IMV at arrival 100% [95% CI 65 to 100]	CPAP failure in patients with limitations of treatment was used in both intubated and non-intubated patients.	The rate of infection among healthcare workers was low.	
Table 2 (Continued)

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings								
Franco et al. [62-64], 2020	32747398	Retrospective multicenter study	Non-ICU	COVID-19 AHRF	HFNO n = 163 CPAP n = 330 RECP 102 (146) cmH2O Helmet 149 (99%) Face mask 2 (1%) NIV n = 177 RECP 95 (2.2) cmH2O Pressure Support 172 (3) cmH2O Helmet 15 (21%) Face mask 57 (7%)	30 day mortality: HFNO 29% [95% CI 24 to 34] CPAP 25% [95% CI 20 to 30] NIV 28% [95% CI 22 to 35] HFNO Failure 38% [CI 31 to 47] CPAP Failure 47% [95% CI 42 to 53] NIV Failure 53% [95% CI 46 to 60]	Noninvasive respiratory support outside of ICU is feasible, but mortality rates compare favourably with previous reports. There was no difference among the interfaces at the adjusted analysis.	Noninvasive respiratory support was associated with risk of staff contamination.									
Fu et al. [62], 2021	34109190	Retrospective study	Mixed population	COVID-19 AHRF	HFNO as initial therapy n = 22 HFNO as rescue therapy n = 17 RECP in NIV success: 6 (6–7) RECP in NIV failure: 6–6.3 Pressure Support in NIV success: 7 (6–7) Pressure Support in NIV failure: 6–6.3	30 day mortality: HFNO 23% [95% CI 10 to 43] HFNO as rescue therapy 46% [95% CI 41 to 83]	HFNO initial therapy 5% [95% CI 8 to 22] HFNO as rescue therapy 12% [95% CI 3 to 34]	Close attention should be paid to patients with PaO2/FiO2 < 200 mmHg after 1–2 h of NIV.	Using NIV as rescue therapy after HFNO failure is associated with higher risk of IOT and detrimental outcomes.								
Giacco et al. [70], 2021	33764378	Randomized controlled multicenter trial	ICU	COVID-19 AHRF	HFNO n = 54 Continuous treatment RECP 12 (10–12) cmH2O Pressure Support 10 (10–12) cmH2O Helmet NIV n = 55	30 day mortality: HFNO 44% [95% CI 38 to 64] NIV 62% [95% CI 55 to 69]	HFNO 22% [16 to 38] NIV 50% [15 to 75]	Helmet NIV = HFNO or HFNO alone do not affect respiratory support free days.	Helmet NIV reduces rate of ETI and increases invasive VFD at day 28.								
Hu et al. [63, 2020	32546258	Retrospective, multicenter study	ICU	COVID-19 AHRF	SO2 n = 204 IMV n = 113 NIV n = 152 NIV settings, interfaces, and whether CPAP is codified as NIV is not reported	30 day mortality: SO2 6% [95% CI 4 to 11] IMV 92% [95% CI 86 to 96] NIV 41% [95% CI 33 to 49]	Patients who were invasively ventilated exhibited pessimistic outcomes.										
Karagkaidis et al. [66-68], 2020	32735842	Retrospective, nationwide study	Mixed population	COVID-19 AHRF	NIV n = 286 IMV only n = 1318 NIV settings, interfaces, and whether CPAP is codified as NIV is not reported	30 day mortality: NIV failure 49% [95% CI 44 to 55] NIV Failure 51% [95% CI 45 to 55] IMV only 53% [95% CI 50 to 55]	In the German health-care system, in which hospital capacities have not been overwhelmed by the COVID-19 pandemic, mortality has been high for patients receiving mechanical ventilation.	Mortality in patients aged 80 or older was 72%.									
Liu et al. [69], 2021	33573999	Retrospective multicenter study	ICU	COVID-19 AHRF	HFNO n = 366 IMV n = 286 NIV settings, interfaces, and whether CPAP is codified are NIV is not reported	30 day mortality: HFNO 56% [95% CI 51 to 61] NIV 74% [95% CI 68 to 78]	HFNO 49% [95% CI 44 to 54] NIV 62% [95% CI 56 to 67]	The nomogram and online calculator are simple to use and able to predict the risk of failure in patients with COVID-19 treated with HFNO and NIV.	Age, number of comorbidities, ROC index, Glasgow coma scale score, and use of vasopressors on the first day of noninvasive respiratory support were independent risk factors for noninvasive respiratory support failure.								
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding									
---------------------------------	------------	-------------------------	-----------	--------------------	-----------	-----------------	----------------	---									
Mentaella et al. [64], 2021	33278822	Retrospective cohort study	NonICU	COVID-19 ARF	NIV n=79 PEEP: 9.46 (2.37) cmH2O IPAP: 17.7 (2.2) cmH2O	ETI rate after the exclusion of patients with limitations of treatment and 2 sudden deaths 36% [95% CI 25 to 48] NIV failure in the overall cohort 52% [95% CI 41 to 65]	Morality in the 20 intubated patients was 43% [95% CI 25 to 63] 18 (23%) patients had patients with limitations of treatment 2 (3%) patients died of sudden death	NIV was effective in almost half of the patients. At a multivariate Cox regression model only SOFA score at admission was significantly associated with the risk of failure.									
Mukhtar et al. [65], 2020	32738030	Retrospective study	ICU	COVID-19 ARF	NIV n=39 NIV settings, interfaces, and whether CPAP or HFNO are codified as NIV is not reported	Need for ETI 23% [13 to 38] NIV failure 31% [95% CI 19 to 46]	26% [1.5 to 41]	The use of NIV was successful in 77% of patients.									
Rosén et al. [127], 2021	34127046	Multicenter randomized clinical trial	NonICU	COVID-19 ARF	HFNO standard care n=29 HFNO prone n=31 NIV standard care n=27 PEEP 8 [6-8] NIV prone n=21 PEEP 7 [6-10]	Standard care group 3.3% [95% CI 20 to 49] Prone group 3.3% [95% CI 20 to 50]	Control group 8% [95% CI 3 to 20] Prone group 17% [95% CI 8 to 22]	The implementation protocol for awake PP increased duration of awake PP but did not reduce the rate of intubation in patients with ARHF due to COVID-19 compared to standard care.									
Sivaganganathan et al. [73], 2020	32811682	Retrospective Study	Mixed population	COVID-19 ARF Waste PaO2/FiO2 ratio: NIV only: 127.5 [107-153] NIV = MV: 104.26 [96-126] IMV only: 115 [92-134] NIV = limitations of treatment: 75 [61-104]	NIV only n=31 NIV = MV: n=27 IMV only n=21 NIV-limitions of treatment n=24 NIV settings, interfaces, and whether CPAP is codified as NIV is not reported	Patients with no limitations of treatment: 47% [95% CI 34 to 59] Patients with no limitations of treatment: 3% [95% CI 2 to 14] Patients with limitations of treatment: 83% [95% CI 64 to 93]	Patients with no limitations of treatment: 5% [95% CI 2.1 to 14]	The use of NIV and has low failure and mortality rate especially in patients with no limitations of treatment. NIV is safe and has low failure and mortality rate especially in patients with no limitations of treatment.									
Vianello et al. [35], 2020	32703883	Retrospective study	ICU	COVID-19 ARF	HFNO n=28 Resuce NIV n=9 NIV settings, interfaces, and whether CPAP is codified as NIV is not reported	HFNO failure 32% [95% CI 18 to 51] Rescue NIV failure 56% [95% CI 27 to 81] (ETI 16% [95% CI 8 to 36]	11% [95% CI 4 to 27]	HFNO can be considered an effective and safe means to improve oxygenation in less severe forms of ARHF secondary to COVID-19 not responding to conventional oxygen therapy	The only variable associated with risk of intubation was admission SOFA								
Wang et al. [41], 2020	32232685	Retrospective study	Mixed population	COVID-19 ARF	HFNO n=17 only IMV n=1 First line NIV n=9 rescue NIV n=7	HFNO failure and rescue NIV 41% [95% CI 22 to 64] HFNO 12% [95% CI 3 to 34] First line NIV failure 11% [2 to 42] Rescue NIV failure 29% [8 to 64]	Not reported	HFNO was the most common ventilation support for patients, and rescue NIV was often used in case of HFNO failure	Patients with lower PaO2/FiO2 were more likely to experience HFNO failure								
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings								
-------------	------	--------------	---------	--------------------	-----------	----------------	---------------	--------------	--------------------								
Wendel García et al. [36], 2021	34034782	Retrospective subanalysis of data	ICU	COVID-19 AHRF	PaO\(_2\)/FiO\(_2\) 123 [92, 167]	SOT n = 87	HFNO n = 87	NIV n = 87	MV n = 92	SOT 64% [95% CI 53 to 63]	HFNO 52% [95% CI 41 to 62]	NIV 49% [95% CI 39 to 60]	SOT 18% [95% CI 11 to 27]	HFNO 20% [95% CI 13 to 29]	NIV 37% [27 to 47]	A trial of HFNO appeared to be the most balanced initial respiratory support strategy.	Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality, P = 0.016 and should be avoided.
Yang W. et al. [37], 2020	32267160	Retrospective study	ICU	COVID-19 AHRF	SpO\(_2\)/FiO\(_2\) in the overall cohort 279 [157–328]	HFNO n = 35	NIV n = 34	IMV n = 100	HFNO 66% [95% CI 49 to 79]	HFNO failure 77% [95% CI 61 to 88]	NIV failure 79% [95% CI 63 to 90]	HFNO 80% [95% CI 64 to 92]	NIV 77% [95% CI 61 to 88]	IMV 97% [95% CI 92 to 99]	Older patients with comorbidities are at increased risk of mortality. Real-time monitoring of S/F and regular measurements of lymphocyte count and inflammatory markers may be essential to disease management.	A total of 128 out of 145 (88.3%) patients who developed ARDS died at or before 28 days.	
Yang X. et al. [66], 2020	32105632	Retrospective study	ICU	COVID-19 AHRF	PaO\(_2\)/FiO\(_2\) at enrollment is not reported	Overall cohort n = 52	HFNO n = 33	NIV n = 29	IMV n = 22	Not reported	Mortality at 28 days	HFNO 48% [95% CI 32 to 65]	NIV 79% [95% CI 62 to 90]	IMV 86% [95% CI 67 to 95]	Among 52 critically ill patients with SARS-CoV-2 infection, 32 (61.5%) patients had died at 28 days.	Older patients (>65 years) with comorbidities and ARDS are at increased risk of death.	
Zhou et al. [37], 2020	32171076	Retrospective multicenter study	Mixed Population	PaO\(_2\)/FiO\(_2\) at enrollment is not reported	HFNO n = 41	NIV n = 26	IMV n = 32	NIV settings, interfaces, and whether CPAP is codified as NIV is not know	Not reported	HFNO 80% [95% CI 76 to 90]	NIV 92% [95% CI 96 to 98]	IMV 97% [95% CI 84 to 99]	Older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.	Noninvasive respiratory support and invasive mechanical ventilation have high mortality rate.			

Values are displayed as means (SD) or medians (Interquartile range).

Failure was defined as either intubation, death while still on noninvasive respiratory support, or escalation to other noninvasive respiratory support to avoid endotracheal intubation. AHRF, acute hypoxic respiratory failure; ARDS, acute respiratory distress syndrome; awake PP, awake prone position; CPAP, continuous positive end-expiratory pressure; FiO\(_2\), fraction of inspired oxygen; HFNO, high-flow nasal oxygen; ICU, intensive care unit; IQR, interquartile range; NIV, noninvasive ventilation; PaO\(_2\), partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; SpO\(_2\), peripheral capillary oxygen saturation; VFD, Ventilatory Free Days.
[39], but in the most severe patients it can be as high as 80% [40,66]; to date, the largest observational studies have found consistent failure rates, ranging between 40% and 50% [67,68,69] (Fig. 1b).

Lastly, a randomized controlled trial compared the efficacy of continuous helmet NIV vs HFNO alone in COVID-19 patients affected by moderate-to-severe hypoxemia. In this study, despite the lack of a significant difference on the primary outcome (median days free of respiratory support at 28 days, helmet group 20 [interquartile range (IQR), 0–25] vs HFNO group 18 [IQR, 0–22]), the authors reported a significant difference in the intubation rate (30% in the helmet group vs 51% in the HFNO group; \(P = 0.03 \)), with no difference in mortality [70**].

NIV can be a powerful instrument as optimal settings and adequate interface are provided, but careful selection and strict clinical monitoring of patients are mandatory to reduce the risk of delayed intubation.

CONTINUOUS POSITIVE AIRWAY PRESSURE

The use of CPAP in hypoxemic respiratory failure has been proposed more than 20 years ago, but a randomized controlled trial failed to prove its efficacy in reducing the intubation rate in patients with hypoxemic respiratory failure of other etiologies [71].

Nevertheless, in the subsequent years, Helmet CPAP has become increasingly used to increase blood oxygenation and reduce the risk of intubation in patients with moderate-to-severe hypoxemia compared with standard oxygen [72,73].

Traditionally CPAP is provided with a device able to provide high flow rates of fresh gas flow (inlet port) and an adjustable PEEP valve (outlet port), being highly cost-effective in the emergency context and easily used outside the ICU.

CPAP has been adopted to increase blood oxygenation and to avoid endotracheal intubation and as ceiling of treatment in patients with limitation of care: in patients who were not candidate for receiving invasive mechanical ventilation, CPAP has been used as a rescue therapy, with mortality ranging from 0% to 90% [67**,74*,75–85] (Table 3).

In patients where escalation to invasive mechanical ventilation was appropriate, CPAP has been used with encouraging results: largest trials showed a failure rate of the technique ranging between 20% and 40%, mostly depending on hypoxemia severity and patients’ overall clinical condition [67**,69*,80].

When compared to other noninvasive respiratory support strategies or to standard oxygen, early case-series showed a trend to a reduction in the intubation rate in patients treated with CPAP [86,87], but the largest observational trial to date [67**] showed no difference in intubation and mortality rates (Fig. 1c).

Nevertheless, CPAP is a powerful instrument that can be safely used outside of the ICU, with good success in the less severe patients, especially when the Helmet interface is used. However, the increase in the \(\text{PaO}_2/\text{FiO}_2 \) ratio induced by PEEP might generate a false sense of security, possibly causing delays in the decision to intubate the patient: the clinician should pay close attention to the change of physiological variables over time [77,88] and, when available, should consider evaluating diaphragm thickening fraction [89,90] and lung ultrasound [91] to enhance early detection of treatment failure.

NEW STRATEGIES: AWAKE PRONE POSITIONING

In moderate-to-severe acute respiratory distress syndrome patients receiving invasive mechanical ventilation, prone positioning improves oxygenation, reduces ventilator-induced lung injury, finally reducing mortality [92**,93,94**].

In the midst of the pandemic, awake prone positioning was initially used on the most severe patients that required noninvasive respiratory support as a rescue strategy to avoid intubation, both in the ICU and in the non-ICU setting.

Prone positioning in spontaneously breathing patients improves oxygenation and lowers inspiratory effort [94**] and respiratory rate, but the improvement is often transient, and only a minority of patients show sustained benefit after resupination [95–123] (Table 4).

Several pilot studies have investigated whether it could improve patient-centered outcomes, but results are conflicting (Fig. 1d). The largest retrospective, multicenter, observational study showed a reduction in the intubation rate in patients who received awake prone position for at least 2 consecutive hours, compared to patients who did not receive this intervention [124**]. Three small, randomized feasibility trials available showed no benefit on endotracheal intubation rate and on mortality [125,126,127**]. In the trial designed by Rosén et al. [127**], the intervention group should have undergone prone positioning for at least 16 h per day, and the control group was allowed both the supine and the prone position, albeit the last one was not actively encouraged; this yielded relevant incidence of cross-over in the control group that, combined with relatively low time spent in prone position in
Table 3. Clinical trials of CPAP in acute hypoxemic respiratory failure of COVID-19 etiology

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings
Alberti et al. [81], 2020	32747395	Observational prospective multicenter cohort study	High dependency unit	COVID-19 AHRF	Helmet CPAP n = 157 PEEP 10.8 (2.3) cmH\(_2\)O 4 cases discontinued CPAP for intolerance	Overall population, CPAP failure 45% [37 to 52] Patients with no limitations of treatment, CPAP failure 37% [95% CI 28 to 47]	Overall cohort 29% [95% CI 22 to 36] Patients with limitations of treatment 55% [95% CI 43 to 67] Patients with no limitations of treatment 10% [95% CI 5 to 18]	CPAP failure was associated with the severity of pneumonia on admission and higher baseline values of interleukin-6.	
Aliveti et al. [82], 2020	33052968	Retrospective study	Mixed setting	COVID-19 AHRF	Face Mask CPAP n = 41 PEEP 5–10 cmH\(_2\)O 2 cases discontinued CPAP for intolerance	Overall population, CPAP failure 45% [37 to 52] Patients with no limitations of treatment, CPAP failure 37% [95% CI 28 to 47]	Overall cohort 29% [95% CI 22 to 36] Patients with limitations of treatment 55% [95% CI 43 to 67] Patients with no limitations of treatment 10% [95% CI 5 to 18]	CPAP failure was associated with the severity of pneumonia on admission and higher baseline values of interleukin-6.	
Arina et al. [79], 2020	33196858	Retrospective study	ICU	COVID-19 AHRF	CPAP n = 93 CPAP settings are not provided The exact number of patients with limitations of treatment is not provided	Failure in the overall cohort was 66% [55 to 74] 47 [51%] of patients were intubated, while 14 [13%] had CPAP as ceiling of treatment	Overall mortality was 25% [95% CI 22 to 28] Noninvasive respiratory support outside the ICU is feasible and approximately 10% of COVID-19 patients present in the hospital were treated with noninvasive respiratory support, with a predominant use of helmet CPAP	Overall rate of success was > 60% in the overall cohort and 73% in patients with no limitations of treatment.	
Bellani et al. [69*], 2021	33395553	Single day observational study	Ward	COVID-19 AHRF	NIV = CPAP n = 798 213 [27%] patients with limitations of treatment Helmet was used for 617 patients, face mask for 248 Noninvasive respiratory support initiated 1 [0–4] days after hospital admission PEEP was 10.8 (2.6), ranging from 2 to 20	Overall mortality was 25% [95% CI 22 to 28] Noninvasive respiratory support outside the ICU is feasible and approximately 10% of COVID-19 patients present in the hospital were treated with noninvasive respiratory support, with a predominant use of helmet CPAP	Overall mortality was 25% [95% CI 22 to 28] Noninvasive respiratory support outside the ICU is feasible and approximately 10% of COVID-19 patients present in the hospital were treated with noninvasive respiratory support, with a predominant use of helmet CPAP	Overall rate of success was > 60% in the overall cohort and 73% in patients with no limitations of treatment.	
Brusasco et al. [89], 2021	33033151	Retrospective multicenter study	Non ICU	COVID-19 AHRF	CPAP n = 64 PEEP 10 cmH\(_2\)O in all patients	CPAP failure 17% [10 to 28] ETI 11% [9 to 21]	Overall mortality 14% [95% CI 8 to 23] Died on CPAP 6% [95% CI 2 to 15] Died on MV 8% [95% CI 4 to 17]	CPAP was feasible in patients with moderate to severe AHRF	At univariate analysis CPAP failure was associated with sex, hypertension, diabetes, COPD, three or more comorbidities and lung weight, but at multivariate analysis only hypertension remained significant (OR 7.33, 95% CI 1.5 to 34, P < 0.012)

Note: COVID-19 AHRF, acute hypoxemic respiratory failure of COVID-19 etiology; CPAP, continuous positive airway pressure; ETI, extracorporeal membrane oxygenation; ICU, intensive care unit; MV, mechanical ventilation; PEEP, positive end-expiratory pressure; PaO\(_2\)/FiO\(_2\), partial pressure of arterial oxygen/fraction of inspired oxygen; NIV, noninvasive ventilation.
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main Finding	Secondary Findings
Burns et al. [78], 2020	32624494	Retrospective study	Non-ICU COVID-19 AHRF	CPAP n = 23	CPAP n = 5 BIPAP settings: max PEEP 10–12 (2.9) cmH₂O max Pinsp = 22.4 (6) cmH₂O CPAP settings: Max PEEP = 12.7 (2.1) cmH₂O	Not reported	BIPAP 40% [95% CI 12 to 77]	CPAP 52% [33 to 71]	Ward-based noninvasive respiratory support is a good treatment option, with a mortality around 50%. The only statistically significant difference between survivors and nonsurvivors was the presence of “classical” imaging appearances, \(P = 0.034 \).
Carteaux et al. [81], 2021	33655452	Retrospective study	Intermediate Care Unit and ICU	COVID-19 AHRF \(\text{PaO}_2/\text{FiO}_2 \geq 160 \) [115–258]	CPAP n = 85 Interface: oronasal mask CPAP was designed with a Boussignac valve protected by a filter, and free flow oxygen rate of 15 l/min [15–15]	Predefined criteria for intubation were present	27% [95% CI 19 to 37]	Adding a filter to the Boussignac valve does not affect the delivered pressure but may variably increase the resistive load depending on the filter used.	Clinical assessment suggests that CPAP designed with a Boussignac valve and a filter is a frugal solution to provide a ventilatory support and improve oxygenation during a massive COVID-19 outbreak.
Coppadoro et al. [77], 2021	33627169	Retrospective multicenter study	Non-ICU COVID-19 AHRF \(\text{PaO}_2/\text{FiO}_2 \geq 103 \) [79–176]	CPAP n = 306 Patients with no limitations of treatment n = 176 Patients with limitations of treatment n = 130 PEEP 10 [7–11] cmH₂O Helmet CPAP was delivered for 21 h/day, for the first 48 h, and from day 3 to 5 for 19 h/day	CPAP failure overall cohort 48% [95% CI 42 to 54] CPAP failure in patients with no limitations of treatment 31% [24 to 38]	Hospital mortality in patients with no limitations of treatment 12% [95% CI 8 to 18] Hospital mortality in patients with limitations of treatment 72% [95% CI 64 to 79]	Treatment of COVID-19 AHRF outside the ICU is feasible with Helmet CPAP, with a mortality rate of 12%, was also used in patients with limitations of treatment, improving survival in almost 1/3 of cases.	CPAP failure was independently associated with C-reactive protein, time to oxygen mask failure, lower \(\text{PaO}_2/\text{FiO}_2 \) during CPAP and number of comorbidities.	
Corradi et al. [77], 2020	33197604	Single-center pilot study	ICU COVID-19 AHRF \(\text{PaO}_2/\text{FiO}_2 \geq 103 \) [85–246]	Helmet CPAP n = 27 PEEP = 10 cmH₂O	Predefined criteria for intubation	11% [95% CI 4 to 28]	CPAP failure was significantly associated with diaphragmatic thickening fraction at multivariate analysis, the best threshold was 21.4%	The use of CPAP avoided IMV in more than half of the patients.	
De vita et al. [80], 2021	33500220	Retrospective multicenter study	High Intensity Unit COVID-19 AHRF \(\text{PaO}_2/\text{FiO}_2 \) success 120 [75–160] \(\text{PaO}_2/\text{FiO}_2 \) failure 103 [60–152]	CPAP n = 367 Helmet was applied in 281 (77%) patients and face mask in 71 (19%) patients. Values from 15 patients were missing. Initial PEEP was 10–12 cmH₂O, to be increased up to 15 cmH₂O	Predefined criteria for intubation	Not reported	In patients treated with CPAP, age, LDH and percentage change in \(\text{PaO}_2/\text{FiO}_2 \) after starting are predictors of intubation.	The use of CPAP avoided IMV in more than half of the patients.	
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings
-------------	------	--------------	---------	--------------------	-----------	----------------	---------------	--------------	-------------------
Duca et al. [60], 2020	32766638	Retrospective study	Non-ICU	COVID-19 AHRF CPAP PaO₂/FiO₂ 131 [97–193]	CPAP n = 71 Helmet CPAP, PEEP = 15 [12–18] cmH₂O NIV n = 7 NIV, PEEP = 16 [12–20] cmH₂O IMW at arrival PaO₂/FiO₂ 76 [60–177]	CPAP intubation rate 37% [95% CI 26 to 48] NIV intubation rate 0% [95% CI 0 to 33] CPAP failure 92% [95% CI 83 to 96] NIV failure 57% [95% CI 25 to 84]	CPAP 76% [95% CI 65 to 84] NIV 57% [95% CI 25 to 84] IMW at arrival 100% [95% CI 65 to 100]	In case of limited resources, the use of early CPAP or NIV in the ward or in the emergency department could be a valid strategy.	CPAP failure occurred in a high percentage of patients.
Faraone et al. [61], 2020	33222116	Retrospective study	Non-ICU	COVID-19 AHRF PaO₂/FiO₂ 130 (85)	CPAP n = 25 CPAP intervention full face or oro-nasal mask Duration of treatment in the overall cohort: 167 [18] hours PEEP started at 5 cmH₂O, up to 12 cmH₂O IPAP set at 1.5cmH₂O, up to 30–25 cmH₂O	Patients with no limitations of treatment 36% [95% CI 20 to 55] CPAP failure 44% [95% CI 27 to 63] NIV failure 68% [95% CI 48 to 83]	Patients with limitations of treatment 88% [95% CI 70 to 96] Patients with no limitations of treatment 12% [95% CI 4 to 30]	Noninvasive respiratory support was useful in avoiding intubation in patients with no limitations of treatment.	The rate of infection among healthcare workers was low.
Franco et al. [62*], 2020	32747398	Retrospective multicenter study	Non-ICU	COVID-19 AHRF PaO₂/FiO₂ 138 (64)	HFNO n = 163 CPAP n = 330 PEEP 10.2 [1] cmH₂O Helmet 149 [99%] Face mask 2 [1%] NIV n = 177 PEEP 9.5 [2] cmH₂O Pressure Support 17.3 [3] cmH₂O Helmet 15 [21%] Face mask 57 [79%]	Received IMW HFNO 29% [95% CI 24 to 36] CPAP 25% [95% CI 20 to 30] NIV 28% [95% CI 22 to 33] HFNO Failure 38% [CI 31 to 47] CPAP Failure 47% [95% CI 42 to 53] NIV Failure 53% [95% CI 46 to 60]	30 day mortality: HFNO 16% [95% CI 11 to 22] CPAP 30% [95% CI 26 to 33] NIV 31% [95% CI 24 to 38] Difference not significant	Noninvasive respiratory support outside of ICU is feasible, and mortality rates compare favourably with previous reports. There was no difference among the interfaces at the adjusted analysis.	Noninvasive respiratory support was associated with risk of staff contamination.
Gaulton et al. [67], 2020	32984836	Retrospective, multicenter study	ICU	COVID-19 AHRF SpO₂ < 92% with 6l/min nasal cannula Body mass index, kg/m², mean (sd) 35.5 (8.6)	Helmet CPAP n = 17 HFNO n = 42 PEEP 5–10 cmH₂O ETI at 7 days CPAP 18% [6 to 41] HFNO 52% [38 to 67] Death at 7 days CPAP 6% [1 to 27] HFNO 19% [10 to 33]	Pressure Support 17.3 cmH₂O (3) cmH₂O Pressure Support 17.3 cmH₂O	Difference in the intubation rate was significant after adjustment for age.	In obese patients Helmet CPAP is effective in reducing the ETI rate.	A positive and significant (P < 0.002) immediate response of CPAP was seen on respiratory rate, decreased CSpO₂ from 28.6 (7.6) to 26.9 (6.2), and SpO₂, increased from 90.7 (3.4) to 92.7 (3.2) with a decrease of oxygen flow rate from 27.4 (13.3) to 23.3 (10.7).
Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings
------------------------------------	-------------	-----------------------	--------------------------------	--------------------	---	----------------	----------------	--	--
Nightingale et al. [85], 2020	32624495	Retrospective study	Non-ICU COVID-19 AHRF	CPAP n=24	Interface: face mask PEEP 8.75 [7.5–10] cmH₂O	CPAP failure 42% [95% CI 24 to 61]	21% [9 to 40]	Over half of patients (58%) avoided mechanical ventilation and a total of 19 out of 24 (79%) were discharged	There have been no cases of COVID-19 among nursing staff who looked after this cohort of patients.
Norman-Ahmed et al. [86], 2020	33140691	Retrospective study	Acute Respiratory Care Unit	CPAP n=52	Interface: full face mask starting PEEP 10 cmH₂O titrated to 12.5 cmH₂O or 15 cmH₂O if SpO₂ < 94% with a FiO₂ of 60%.	Patients with no limitations of treatment CPAP failure 51% [95% CI 36 to 66]	Patients with limitations of treatment CPAP failure 20% [95% CI 10 to 34]	Overall mortality rate in the overall cohort was 40% with a mortality of 23%.	Predictors of success were: SpO2/FiO2, respiratory rate, neutrophil to lymphocyte ratio.
Oranger et al. [86], 2020	32430410	Retrospective study	Short term historical control	CPAP n=38	Control SOT n=14 Interface: face mask with high end domiciliary ventilator. PEEP 10 (adjusted between 8 and 12) cmH₂O	Day 7 follow-up control SOT failure 54% [95% CI 33 to 79]	Day 7 follow-up control SOT failure 21% [95% CI 8 to 48]	CPAP is feasible in deteriorating COVID-19 patients managed in a pulmonology unit.	None of the CPAP patients had to be intubated under cardiac arrest or high emergency conditions.
Pagano et al. [91], 2020	32629100	Observational study	Non-ICU COVID-19 AHRF	CPAP n=18	Interface: Helmet PEEP 10 cmH₂O FiO₂ titrated to SpO₂ > 93%	Case CPAP 24% [95% CI 13 to 39]	Overall mortality 61% [95% CI 39 to 80]	Eleven patients died (61%), 4 among the responders (defined as patients with an improvement of SpO₂/FiO₂ of at least 15% after 1 h of CPAP) and 7 in nonresponders	Among responders 5 (27.7%) patients showed improvement in lung ultrasound score.
Vanzutletto et al. [74*], 2021	33527074	Retrospective multicenter study	Non-ICU COVID-19 AHRF	CPAP n=537	Interface: Helmet n=399 [74%] Face mask n=123 [23%] Both n=15 [3%] PEEP 10 [10–12] cmH₂O	Patients with no limitations of treatment CPAP failure 45% [95% CI 4.1 to 50]	Overall mortality 34% [95% CI 30 to 38]	CPAP is feasible outside the ICU, with overall in-hospital mortality similar to that reported in other studies	Intubation delay represents a risk factor for mortality (hazard ratio 1.093, 95% CI 1.010–1.184).

Values are displayed as means (SD) or medians [Interquartile range].
Failure was defined as either intubation, death while still on noninvasive respiratory support, or escalation to other noninvasive respiratory support to avoid endotracheal intubation. AHRF, acute hypoxic respiratory failure; ARDS, acute respiratory distress syndrome; awaken PP, awaken prone position; CPAP, continuous positive end-expiratory pressure; FiO₂, fraction of inspired oxygen; HFNO, high-flow nasal oxygen; ICU, intensive care unit; IQR, interquartile range; NIV, noninvasive ventilation; PaO₂, partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; SpO₂, peripheral capillary oxygen saturation; WFD, Ventilatory Free Days.
Table 4. Clinical trials of awake prone position in acute hypoxemic respiratory failure of COVID-19 etiology

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings
Avdeev et al. [101], 2021	32748797	Retrospective	Non-ICU COVID-19 ARF		Awake PP	36% [95% CI 24 to 50]	9% [95% CI 3 to 28]	Response to awake PP depends on localization of aeration loss, and lung ultrasound can predict it.	
Bastani et al. [102], 2020	33845325	Retrospective	Non-ICU COVID-19 ARF		Awake PP	43% [95% CI 28 to 57]	0% [95% CI 0 to 16]	PP was feasible and effective in rapidly improving oxygenation without relevant adverse events.	
Burton-Papp et al. [103], 2020	32748797	Retrospective	ICU	COVID-19 ARF		10.5% [95% CI 5.0 to 21.1]	0% [95% CI 0 to 21.1]	In patients with moderate ARF treated with CPAP or NIV awake PP can improve oxygenation without relevant adverse events.	
Capito et al. [104], 2020	32220356	Pilot study	Non-ICU	COVID-19 ARF		Awake PP	36% [95% CI 24 to 50]	Awake early prone position in the emergency department demonstrated improved oxygenation in COVID-19 patients.	
Chetan et al. [95], 2021	33845325	Retrospective	Non-ICU COVID-19 ARF		Awake PP	31% [95% CI 22 to 45]	2% [95% CI 1 to 4]	Awake PP can be safely performed with improvement in oxygenation. However, no mortality benefit was observed in patients with mild to moderate ARF.	
Cappiello et al. [96], 2020	32509585	Retrospective, feasibility study	Respiratory High Dependency Unit	COVID-19 ARF		Awake PP	25% [95% CI 15 to 35]	PP was feasible and effective in rapidly improving oxygenation in awake patients with COVID-19-related pneumonia requiring oxygen supplementation.	
Domati et al. [105], 2020	32551807	Retrospective	ICU	COVID-19 ARF		Awake PP	20% [95% CI 5 to 35]	PP is potentially a low-cost, easily implemented, and scalable intervention, particularly in low and middle-income countries.	
Table 4 (Continued)

Publication	PMID	Study design	Setting	Patient Population	Treatment	Imposition Rate	Mortality Rate	Main finding	Secondary findings
Despre et al. [156], 2020	3245566-3	Case series	ICU	COVID-19 AHRF	HPnO2/FiO2 > 1.83 (144 to 212)	Awake PP n = 6	50% [95% CI 19 to 81]	Not reported	Considering these observations, PP combined with either HFNO or SOT could be proposed in spontaneously breathing, severe COVID-19 patients.
Ehmann et al. [128], 2021	34423570	Prospective, collaborative, randomized and controlled meta trial, Mixed setting	COVID-19 AHRF	SpO2/FiO2, awake PP 1.67 (0.43), SpO2/FiO2, standard care 1.46 (0.61)	Awake PP n = 116	Treatment failure: Awake PP 10% [95% CI 6 to 15], Standard care 24% [95% CI 17 to 30]	Standard care 46% [95% CI 36 to 56]	Not reported	Awake PP significantly improves blood oxygenation, respiratory rate and RDR index during PP. The benefit was maintained after 24 h.
Ehrmann et al. [917], 2020	33412581	Prospective before after	ICU	COVID-19 AHRF	O2 supplement < 16/min in 15 (30%) patients, O2 supplement ≥ 16/min in 8 (16%) patients	Attempted awake PP n = 24	Follow-up to 10 days 21% [95% CI 9 to 40]	Not reported	Responders (increased PaO2 > 20% from standard care n = 6 (26%), PaO2 12–45); 2 patients were persistent responders.
Feinberg et al. [109], 2020	https://doi.org/10.1177/1751143719981042	Prospective observational	NonICU	COVID-19 AHRF	PaO2/FiO2 115 (40)	Overall cohort 43% [95% CI 30 to 50], Awake PP for 1 h 29% [95% CI 17 to 40], Awake PP for 1 h 26% [95% CI 15 to 40], Awake PP for < 1 h 43% [95% CI 19 to 68]	Patients that were pronounced for more than 1 h had less need for endotracheal intubation than patients that were pronounced for less than 1 h.	Patients treated with HFNO for more than 3 h had lower treatment failure rate.	Patients treated with PP showed a trend for delay in intubation compared to HFNO alone (median in 1 (inter quartile range 1 to 2) days vs 2 (IQR 1 to 3) days, P = 0.05). Awake PP did not affect 28-day mortality (P = 0.92).
Fernandes et al. [108], 2020	33322426-9	Prospective, multicenter, double-blind observational study	ICU	COVID-19 AHRF	PaO2/FiO2, HFNO 111 (35), PaO2/FiO2, HPnO2 + PP 125 (91–167)	Overall cohort n = 119	HFNO: 43% [95% CI 34 to 50], HFNO + CFAP 40% [95% CI 30 to 50], HFNO + CFAP + PP 28% [95 to 38], HFNO + CFAP + PP 25% [95% CI 19 to 68]	The combined approach of HFNO and PP did not decrease the risk of endotracheal intubation.	Patients treated with HHnO2 + awake PP showed a trend for delay in intubation compared to HFNO alone (median in 1 (inter quartile range 1 to 2) days vs 2 (IQR 1 to 3) days, P = 0.05), but Awake PP did not affect 28-day mortality (P = 0.92).
Gubiani et al. [106], 2020	32345553	Prospective, observational	ICU	COVID-19 AHRF	PaO2/FiO2 = 1.50 (0.5)	Awake PP n = 10	Mean PP duration was 9 h	20% [95% CI 6 to 51]	Authors report low intubation rate and high compliance in the intervention, suggesting that PP might be a useful tool to increase blood oxygenation in patients with moderate to severe AHFR related to COVID-19.
Hallak et al. [115], 2020	32920789-7	Retrospective study	Respiratory High Dependency Unit	COVID-19 AHRF	PaO2/FiO2 < 2 (46%), PaO2/FiO2 < 60% (54%)	Overall cohort n = 48	Patients with limitations of treatment 54% [95% CI 40 to 67], HFNO 4% [95% CI 2 to 19], CPAP 6% [95% CI 1 to 14] all on IMV	Increasing age and the inability to achieve prone were the only independent predictors of COVID-19 mortality.	

Acute respiratory failure due to COVID-19: Menga et al.
Table 4 (Continued)

Publication	Study Design	Setting	Patient Population	Interventions	Intubation Rate	Mortality Rate	Main Finding	Secondary Findings
Jagan et al. [21], 2020	Retrospective study	Non-ICU COVID-19 AHRF	Overall cohort	Standard care vs. Awake Self-proning	27% [95% CI 16 to 36]	16% [95% CI 0 to 28]	Awake self-proning was well tolerated, with good compliance in 38% of patients who were able to lie prone for 4 h a day.	No improvements in respiratory rate or oxygen saturation were observed at 72 or 48 h.
Jahanmir et al. [23], 2021	Prospective, uncontrolled study	COVID-19 patients	Standard care vs. Awake PP	Standard care vs. PP	53% spent PP greater or equal to 1 h, with 25% spending at least 5 times/day, and for 3 progressive interfaces: low flow (oronasal interface) > high flow (nonrebreather face mask) > pressure support ventilation (PSV)	5% [95% CI 0 to 14]	In the prone group, 43% (13 out of 30) of patients were able to self-prone for 6 to 30 h, with 52% spending at least 5 times/day, and for 3 progressive interfaces: low flow (oronasal interface) > high flow (nonrebreather face mask) > pressure support ventilation (PSV). Three women achieved a supine position, but none exceeded 6 h.	No differences in oxygenation, respiratory rate, or dyspnea were observed in the two groups.
Jayakumar et al. [24], 2020	Prospective, controlled trial with 3 parallel groups	Non-ICU COVID-19 AHRF	Awake PP vs. Standard care	Awake PP vs. Standard care	5% [95% CI 0 to 28]	2% [95% CI 0 to 14]	Awake PP can be a low-risk, low-cost maneuver which can help patients with COVID-19 pneumonia delay or reduce intubation, both at 48 and 72 h.	No differences in oxygenation, respiratory rate, or dyspnea were observed in the two groups.
Johnson et al. [25], 2020	Prospective, uncontrolled study	COVID-19 patients	Standard care vs. Awake PP	Standard care vs. PP	10% [95% CI 2 to 40]	2% [95% CI 0 to 14]	Patient-directed PP is not feasible in all ICU patients hospitalized with COVID-19.	No differences in oxygenation, respiratory rate, or dyspnea were observed in the two groups.
Moghadam et al. [26], 2021	Prospective, controlled trial with 3 parallel groups	Non-ICU COVID-19 AHRF	Awake PP vs. Standard care	Awake PP vs. Standard care	5% [95% CI 0 to 28]	2% [95% CI 0 to 14]	Awake PP led to no improvements in respiratory rate or oxygen saturation were observed at 72 or 48 h.	No differences in oxygenation, respiratory rate, or dyspnea were observed in the two groups.
Padrao et al. [27], 2020	Prospective, uncontrolled study	COVID-19 patients	Awake PP vs. Standard care	Awake PP vs. Standard care	5% [95% CI 0 to 28]	2% [95% CI 0 to 14]	Awake PP was defined as a time spent PP greater or equal to 1 h, for at least 5 times/day, and for 3 progressive interfaces: low flow (oronasal interface) > high flow (nonrebreather face mask) > pressure support ventilation (PSV).	No differences in oxygenation, respiratory rate, or dyspnea were observed in the two groups.
Table 4 (Continued)

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main Conclusion		
Paternoster et al. [116], 2020	32713387	Retrospective case series	Non-CU	COVID-19 ARHF	Awake PP n = 1.1	70% (95% CI 42 to 67)	5.4% (95% CI 29 to 77)	Patients with moderate to severe ARHF have a high intubation rate, despite this treatment with CPAP and awake PP.		
Paternoster et al. [114], 2020	31407129	Case series	High Dependency Unit	COVID-19 ARHF	Awake PP n = 1.1	27% [95% CI 1 to 57]	1.8 [95% CI 0.5 to 6]	In conclusion, helmet CPAP in prone position for COVID-19 severe hypoxemic acute respiratory failure resulted feasible and without complications, the induction of dosemademia due to improve patients' compliance to pronation was well tolerate.		
Prud'homme et al. [115], 2021	30316704	Retrospective multicenter matched cohort study	Non-CU	COVID-19 ARHF	Awake PP n = 5.05	Standard care n = 322	Awake PP group was prone for at least 2 consecutive hours. Awake PP	18 (95% CI 17 to 22)	Standard care 20% (95% CI 13 to 27)	Awake PP reduces the need for endotracheal intubation and for mortality. The reduction of risk remained significant at multivariate, and after propensity score match.
Retucci et al. [99], 2020	2102	Pilot prospective observational study	High Dependency Unit	COVID-19 ARHF	Awake PP n = 2.6	Helmet CPAP	27% (95% CI 1 to 46)	8% (95% CI 2 to 24)	The target was an alveolar-arterial gradient less than 25 mmHg, despite more than 25% failure of nasal CPAP, the use of nasal CPAP was well tolerated.	
Retucci et al. [99]	2102	Pilot prospective observational study	High Dependency Unit	COVID-19 ARHF	Awake PP n = 2.6	Helmet CPAP	27% (95% CI 1 to 46)	8% (95% CI 2 to 24)	The target was an alveolar-arterial gradient less than 25 mmHg, despite more than 25% failure of nasal CPAP, the use of nasal CPAP was well tolerated.	
Ripoll-Gallardo et al. [111], 2020	343266942	Retrospective multicenter study	Non-CU	COVID-19 ARHF	Awake PP n = 4.8	Standard care n = 48	Oxygen supplementation strategy	93% (95% CI 82 to 98)	Standard care 100% (95% CI 75 to 100)	Awake PP did not decrease the need for endotracheal intubation or the mortality rate.
Retucci et al. [99], 2020	32679237	Retrospective multicenter matched cohort study	Non-CU	COVID-19 ARHF	Awake PP n = 114	Standard care n = 160	Awake PP group was prone for at least 2 consecutive hours. Awake PP	16 (95% CI 7.2 to 31)	Standard care 39% (95% CI 23 to 61)	Awake PP reduces the need for endotracheal intubation and for mortality. The reduction of risk remained significant at multivariate, and after propensity score match.
Retucci et al. [99]	2102	Pilot prospective observational study	High Dependency Unit	COVID-19 ARHF	Awake PP n = 2.6	Helmet CPAP	27% (95% CI 1 to 46)	8% (95% CI 2 to 24)	The target was an alveolar-arterial gradient less than 25 mmHg, despite more than 25% failure of nasal CPAP, the use of nasal CPAP was well tolerated.	

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Table 4 (Continued)

Publication	PMID	Study design	Setting	Patient Population	Treatment	Intubation Rate	Mortality Rate	Main Finding	Secondary Findings
Rosini et al. [123], 2021	32581946	Prospective observational study	Intermediate Care Unit	COVID-19: AHRF SpO₂ ≤ 93% in nasal cannula 6 l/min or 1.5 l/min via non-rebreathing face mask	Awake PP 11%	22% [95% CI 12 to 33] Standard care 39% [95% CI 29 to 49]	27% [95% CI 14 to 40] Standard care 39% [95% CI 29 to 49]	Improved PaO₂/FiO₂ ratio in awake PP group compared to standard care group.	No difference in hospital length of stay between groups.
Tonelli et al. [124], 2021	33034064	Retrospective cohort study	Respiratory ICU	COVID-19: AHRF PaO₂/FiO₂ overall cohort 141 [79–202] PaO₂/FiO₂ awake PP 141 [73–223] PaO₂/FiO₂ standard care 153 [84–223]	Awake PP 17% [95% CI 8 to 29] Standard care 38% [95% CI 1 to 4]	20% [95% CI 3 to 40] Standard care 39% [95% CI 29 to 49]	17% [95% CI 3 to 40] Standard care 39% [95% CI 29 to 49]	Improved PaO₂/FiO₂ ratio in awake PP group compared to standard care group.	No difference in hospital length of stay between groups.
Tu et al. [125], 2020	32586624	Pilot retrospective study	ICU	COVID-19: AHRF PaO₂/FiO₂ lower 150	Awake PP 15% [95% CI 3 to 27] Standard care 13% [95% CI 6 to 22]	30% [95% CI 1 to 4] Standard care 29% [95% CI 18 to 39]	Not reported	Improved PaO₂/FiO₂ ratio in awake PP group compared to standard care group.	No difference in hospital length of stay between groups.
Winarski et al. [126], 2020	32895367	Retrospective Study	NonICU	COVID-19: AHRF PaO₂/FiO₂ 317 [156–194]	Next session of treatment n = 14 Patients with limitations of treatment n = 10	Attemped Awake PP n = 24 Treated with CPAP, maximum PEEP 12 [0–21] PaO₂/FiO₂ standard care 13 [6–23] Awake PP 22% [95% CI 6 to 35] Not reported	Patients with limitations of treatment 7% [95% CI 1 to 17] Patients with limitations of treatment 40% [95% CI 17 to 62]	Improved PaO₂/FiO₂ ratio in awake PP group compared to standard care group.	No difference in hospital length of stay between groups.
the intervention group (median [IQR] time in prone positioning was 3.4 h [1.8–8.4] vs 9 [4.4–10.6] respectively), resolved in no difference in intubation rate, and the trial was stopped early for futility.

Lately, a prospective, randomized, collaborative meta-trial compared awake prone position and conventional in patients treated with HFNO with acute respiratory failure of COVID-19 etiology. The authors found a reduction in the proportion of patients intubated or dying within 28 days from enrolment (40% in the awake prone position group vs 46% in the standard of care group, \(P = 0.007 \)) [128]. Interestingly, average duration of prone positioning sessions was 6 h, and longer sessions were associated with treatment success at 28 days: this finding should be interpreted as exploratory.

Awake prone position appears as a cost-effective technique that can improve the blood oxygenation and reduce the respiratory rate [129], and a recent randomized controlled trial support its routine use in patients with respiratory failure of COVID-19 etiology treated with HFNO [128].

CONCLUSION

Currently, noninvasive respiratory support is a safe option in patients with a PaO\(_2\)/FiO\(_2\) \(\geq\) 200 mmHg; in patients PaO\(_2\)/FiO\(_2\) < 200 mmHg most recent randomized controlled trials suggest HFNO or helmet NIV as the most promising techniques for a noninvasive respiratory support trial [24,51,56]. In the COVID-19 pandemic, awake prone position, which has a robust physiological rationale, has been widely applied with benefits on oxygenation and a possible reduction in the rate of endotracheal intubation [87]. During any treatment, careful clinical monitoring remains mandatory not to delay the intubation and protective ventilation, especially in patients with PaO\(_2\)/FiO\(_2\) < 200 mmHg.

Acknowledgements

None.

Disclosures: D.L.G. reports grants from the Italian Society of Anesthesia, Analgesia, and Intensive Care Medicine (SIAARTI), from the European Society of Intensive Care Medicine (ESICM), and GE Healthcare and travel expenses from Maquet, Getinge, and Air Liquide outside of the submitted work. M.A. reported receiving personal fees from Maquet, Chiesi, and Air Liquide and grants from GE Healthcare outside of the submitted work. The other authors declare nothing to disclose.

Financial support and sponsorship

None.

Table 4 (Continued)

Publication	Study design	Setting	Study aim	PaO\(_2\)/FiO\(_2\)	Treatment	Intubation Rate	Mortality Rate	Main finding	Secondary findings
Xu et al. [122], 2020	Retrospective multicenter study	ICU COVID-19 AHRF	PaO\(_2\)/FiO\(_2\) 157 (46)	Awake PP \(n = 10 \)	Target time was \(> 16 \) h/day	0% [95% CI 0 to 28]	0% [95% CI 0 to 28]	Early awake PP combined with HFNO therapy could be used safely and effectively in young, fit, severe COVID-19 patients, and it may reduce the conversion to critical illness and the need for tracheal intubation.	After awake PP PaO\(_2\)/FiO\(_2\) and increased significantly, and respiratory alkalosis decreased significantly.
Zang et al. [123], 2020	Prospective observational study	ICU COVID-19 AHRF	Patients with severe hypoxia	Awake PP \(n = 23 \)	Standard care \(n = 37 \)	Not reported	Awake PP 43% [95% CI 26 to 63], \(P < 0.001 \)	Early awake PP might reduce hypoxia and improve mortality.	In the awake PP group SpO\(_2\) increased from 91% (1.5) to 95.5 (1.7), \(P < 0.01 \), respiratory rate decreased from 28.2 (3) to 24.9 (1.8), \(P < 0.01 \), and ROX index increased from 3.3 (0.5) to 4 (0.5), \(P < 0.01 \).

Values are displayed as means (SD) or medians [interquartile range]. Failure was defined as either intubation, death while still on noninvasive respiratory support, or escalation to other noninvasive respiratory support to avoid endotracheal intubation. AHRF, acute hypoxemic respiratory failure; ARDS, acute respiratory distress syndrome; awake PP, awake prone position; CPAP, continuous positive airway pressure; FiO\(_2\), fraction of inspired oxygen; HFNO, high-flow nasal oxygen; ICU, intensive care unit; IQR, interquartile range; NIV, noninvasive ventilation; PaO\(_2\), partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; SpO\(_2\), peripheral capillary oxygen saturation; VFD, Ventilatory Free Days.
Respiratory system

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

● of special interest

● of outstanding interest

1. WHO Headquarters. Clinical management of Clinical management Live update SARS-CoV-2. 2020. https://www.who.int/publications/m/item/WHO-2019-nCoV-clinical-2021-1.

2. Roche B, Brochard L, pratt MW, et al. ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50:160246. doi: 10.1183/13993003.02462-2016.

3. Gattinoni L, Chiumello D, Caputo I, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020; 46:1099–1102.

4. Tobin MJ, Latt P, Inaba K, et al. A quantitative comparison of noninvasive ventilation and high-flow nasal cannula in acute hypoxemic respiratory failure. Eur Respir J 2020; 56:1901209. doi: 10.1183/13993003.1209-2019.

5. Botta M, Tisonas AM, Pillay J, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PROVENT-COV-19): a national, multicentre, observational cohort study. Lancet Respir Med 2020; 8:1–10.

6. Vitacca M, Nava S, Santus P, Harari S. Early consensus management for non-ICU acute respiratory failure SARS-CoV-2 emergency in Italy: from ward to intensive. Eur Respir J 2020; 55:2000652. doi: 10.1183/13993003.00652-2020.

7. Cuthill SL, Greco DL, Menga LS, et al. Noninvasive ventilation and high-flow oxygen therapy for severe community-acquired pneumonia. Curr Opin Infect Dis 2021; 34:142–150.

8. Greco DL, Maggiorre SM, Roca O, et al. Noninvasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxic respiratory failure and ARDS. Intensive Care Med 2021; 47:851–866.

9. Dar M, Swayy L, Gavin D, Theodore A. Mechanical ventilation and supply and options for COVID-19 Pandemic. Leveraging all available resources for a limited resource in a crisis. An Am Thorac Soc 2021; 21:840–416.

10. Greco D, Menga L, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxic respiratory failure and ARDS patients on noninvasive support. Minerva Anestesiol 2018; 85:1014–1023.

11. Battaglini D, Robba C, Ball L, et al. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth 2021. https://doi.org/10.1016/j.bja.2021.05.024.

12. Spinelli E, Mauri T, Berti JR, et al. Respiratory drive in the acute distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 2020; 46:608–618.

13. Interestin review summarizing the pathophysiology of respiratory drive in acute hypoxic respiratory failure.

14. Vaporti K, Kouzmanaki E, Telias I, et al. Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med 2020; 201:20–32.

15. Interestin review summarizing the pathophysiology of respiratory drive in acute hypoxic respiratory failure.

16. Danglers L, Montalbac C, Kouatchet A, et al. Dyspnea in patients receiving noninvasive ventilation for acute respiratory failure: prevalence, risk factors and prognostic impact. Eur Respir J 2018; 52:1702637.

17. Caiorl P, Cressoni M, Chiumello D, et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 2010; 181:578–586.

18. Brochard L, Sultsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017.

19. Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012; 40:1578–1585.

20. Menga LS, Greco DL, Rosa T, et al. Dyspnea and clinical outcome in critically ill patients receiving noninvasive support for COVID-19 respiratory failure: posthoc analysis of a randomized clinical trial. Eur Respir Open 2021; 7:00418–00261.

21. Bhattacharya M, Kallet RH, Ware LB, Matthay MA. Negative-pressure pulmonary edema. Chest 2016; 150:927–933.

22. Yoshida T, Tsurumi G, Samese S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013; 188:1401–1407.

23. Moraes CCA, Koyama Y, Yoshida T, et al. High positive-end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 2018; 197:1285–1296.
Acute respiratory failure due to COVID-19 Menga et al.

One of the largest observational studies describing failure rate and mortality of patients with noninvasive respiratory support outside of the ICU.

70. Greco DL, Menga LS, Cesaroni M, et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: The HENIVOT Randomized Clinical Trial. JAMA 2021. https://doi.org/10.1001/jama.2021.4682.

The first randomized controlled trial comparing Helmet NIV and HFNO in patients with COVID-19 hypoxemic respiratory failure. Despite the negative primary outcome (no difference in respiratory support free days) there the Helmet NIV significantly reduced the rate of endotracheal intubation.

71. Deliciaux C, L’Her E, Alberti C, et al. Treatment of acute hypoxemic non-hypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial. JAMA 2000; 284:2352–2360.

72. Brambilla AM, Alberti S, Pini E, et al. Helmet CPAP vs. oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med 2014; 40:942–949.

73. Cosenzini R, Brambilla AM, Alberti S, et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial. Chest 2010; 138:114–120.

74. Vaschetto R, Barone-Adesi F, Racca F, et al. Outcomes of COVID-19 patients treated with continuous positive airway pressure outside the intensive care unit. EJU Open Res 2021; 7:00541–02020.

This relatively big retrospective observational study shows that delayed intubation in patients treated with CPAP might increase mortality.

75. Naikavathanan AA, Namasivayam P, et al. Noninvasive ventilation for COVID-19 associated acute hypoxemic respiratory failure: experience from a single centre. Br J Anaesth 2020; 1–3. https://doi.org/10.1093/bja/aeb096.

76. DI Domenico SL, Coen D, Bergamaschi M, et al. Clinical characteristics and respiratory support of 310 COVID-19 patients, diagnosed at the emergency room: a single-center retrospective study. Intern Emerg Med 2021; 16:1051–1060.

77. Coppadora A, Benini A, Fruscio R, et al. Helmet CPAP to treat hypoxic pneumonia outside the ICU: an observational study during the COVID-19 outbreak. Crit Care 2021; 25:1–10.

78. Burns GP, Lane ND, Tedd HM, et al. Improved survival following ward-based noninvasive pressure support for severe hypoxia in a cohort of frail patients with COVID-19: retrospective analysis from a UK teaching hospital. BMJ Open Respir Res 2020; 7:e000621.

79. Anna P, Baso B, Moro V, et al. Discriminating between CPAP success and failure in COVID-19 patients with severe respiratory failure. Intensive Care Med 2021; 47:237–239.

80. De Vita N, Scotti L, Cammarota G, et al. Predictors of intubation in COVID-19 patients treated with out-of-ICU continuous positive airway pressure. Pulmology 2021; 19–21. https://doi.org/10.1016/j.pulmoe.2020.12.010.

81. Alberti S, Radovancevic D, Billi F, et al. Helmet CPAP treatment in patients with COVID-19 pneumonia: a multicentre cohort study. Eur Respir J 2020; 56. https://doi.org/10.1183/13993003.00878-2019.

82. Aviset S, Riller O, Aboab J, et al. Continuous Positive Airway Pressure (CPAP) face-mask ventilation is an easy and cheap option to manage a massive influx of patients presenting acute respiratory failure during the SARS-CoV-2 outbreak: A retrospective cohort study. PLoS One 2020; 15:1–14.

83. Carteaux G, Pons M, Morin F, et al. Continuous positive airway pressure for respiratory support during COVID-19: a frugal approach from bench to bedside. Ann Intensive Care 2021; 11. https://doi.org/10.1186/s13613-021-00828-2.

84. Kofod LM, Nielsen Jeschke K, Kristensen MT, et al. Prehospital CPAP treatment of COVID-19 patients with acute respiratory failure treated with CPAP. Eur Clin Resp J 2021; 8. https://doi.org/10.1002/1683-5295.12019.

85. Nightingale R, Wovsu N, Kubudin F, et al. Is continuous positive airway pressure (CPAP) a new standard of care for type 1 respiratory failure in COVID-19 patients? A retrospective observational study of a dedicated COVID-19 CPAP service. BMJ Open Respir Res 2020; 7:8–10.

86. Oranger M, Gonzalez-Benmoj J, DaCosta Nobo P, et al. Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study. Eur Respir J 2020; 56:8–11.

87. Calautio TG, Bellani G, Foti O, et al. Early clinical experience in using helmet continuous positive airway pressure and high-flow nasal cannula in overweight and obese patients with acute hypoxemic respiratory failure from coronavirus disease 2019. Crit Care Explore 2020; 2:e0016.

88. Noeman-Ahmed Y, Gokaraju S, Powrie DJ, et al. Predictors of CPAP outcome in hospitalized COVID-19 patients. Respiratory 2020; 25:1316–1319.

89. Bentassou C, Corradi F, Di Domenico A, et al. Continuous positive airway pressure in COVID-19 patients with moderate-Tosevere respiratory failure. Eur Respir J 2021; 57:10–13.

90. Mercuro G, D’Angelo S, Muscarella R, et al. Diaphragm thickening fraction predicts noninvasive ventilation outcome: a preliminary physiological study. Crit Care 2021; 25:219.

91. Pagano A, Porta G, Bosso G, et al. Noninvasive CPAP in mild and moderate ARDS secondary to SARS-CoV-2. Respir Physiol Neurobiol 2020; 280:103489.
Positive end-expiratory pressure, use of prone positioning in nonintubated patients with COVID-19—A retrospective cohort study. Respirology 2021; 26:1042–1047.

Physiological study unrevealing the mechanism of lung protection during pronation. Physiological study unrevealing the mechanism of lung protection during pronation. J Appl Physiol 2021; 131:61–66.

Cherian SV, Li G, Roche B, et al. Predictive factors for success of awake proning in hypoxic respiratory failure secondary to COVID-19: a retrospective cohort study. Respir Med 2021; 184:106379.

Coppen A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in nonintubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020. https://doi.org/10.1016/S2213-2600(20)30268-X.

Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA 2020; 323:2336–2338.

Paternoster G, Sartini C, Pennacchio E, et al. Prone positioning in severe acute respiratory failure of COVID-19: a single-center feasibility randomized controlled trial. J Intensive Care Med 2021; 18:1–7.

Awake prone positioning does not improve oxygenation in COVID-19 hypoxemic respiratory failure: a retrospective case series. Crit Care 2020; 24:1–11.

Despres C, Bruny J, Benthier F, et al. Prone positioning combined with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care 2020; 24:4–6.

Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, nonintubated patients with COVID-19. Am J Respir Crit Care Med 2020; 202:604–606.

Fazzini B, Fowler AJ, Zolfaghari P. Effectiveness of prone position in spontaneously breathing patients with COVID-19 pneumonia undergoing noninvasive CPAP treatment. Chest 2020; 158:2431–2435.

Winears S, Swingwood EL, Hardaker CL, et al. Early conscious prone positioning in patients with COVID-19 receiving continuous positive airway pressure: a retrospective analysis. BMJ Open Respir Res 2020; 7:1–4.

Avdeev SN, Nekloudova GV, Trushenkov NV, et al. Lung ultrasound can predict response to the prone position in awake nonintubated patients with COVID-19 associated acute respiratory distress syndrome. Crit Care 2021; 25:4–7.

Bastoni D, Poggiali E, Vercelli A, et al. Prone positioning in patients treated with noninvasive ventilation for COVID-19 pneumonia in an Italian emergency department. Emerg Med J 2020; 37:566–568.

Burton-Papp HC, Jackson AIR, Beecham R, et al. Conscious prone positioning during noninvasive ventilation in COVID-19 patients: experience from a single centre. F1000Research 2020; 9:859.

Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, nonintubated patients with COVID-19 pneumonia undergoing noninvasive CPAP treatment. Chest 2020; 158:2431–2435.

Winears S, Swingwood EL, Hardaker CL, et al. Early conscious prone positioning in patients with COVID-19 receiving continuous positive airway pressure: a retrospective analysis. BMJ Open Respir Res 2020; 7:1–4.

Avdeev SN, Nekloudova GV, Trushenkov NV, et al. Lung ultrasound can predict response to the prone position in awake nonintubated patients with COVID-19 associated acute respiratory distress syndrome. Crit Care 2021; 25:4–7.

Bastoni D, Poggiali E, Vercelli A, et al. Prone positioning in patients treated with noninvasive ventilation for COVID-19 pneumonia in an Italian emergency department. Emerg Med J 2020; 37:566–568.

Burton-Papp HC, Jackson AIR, Beecham R, et al. Conscious prone positioning during noninvasive ventilation in COVID-19 patients: experience from a single centre. F1000Research 2020; 9:859.

Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, nonintubated patients with COVID-19 pneumonia undergoing noninvasive CPAP treatment. Chest 2020; 158:2431–2435.

Winears S, Swingwood EL, Hardaker CL, et al. Early conscious prone positioning in patients with COVID-19 receiving continuous positive airway pressure: a retrospective analysis. BMJ Open Respir Res 2020; 7:1–4.

Avdeev SN, Nekloudova GV, Trushenkov NV, et al. Lung ultrasound can predict response to the prone position in awake nonintubated patients with COVID-19 associated acute respiratory distress syndrome. Crit Care 2021; 25:4–7.

Bastoni D, Poggiali E, Vercelli A, et al. Prone positioning in patients treated with noninvasive ventilation for COVID-19 pneumonia in an Italian emergency department. Emerg Med J 2020; 37:566–568.

Burton-Papp HC, Jackson AIR, Beecham R, et al. Conscious prone positioning during noninvasive ventilation in COVID-19 patients: experience from a single centre. F1000Research 2020; 9:859.

Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, nonintubated patients with COVID-19 pneumonia undergoing noninvasive CPAP treatment. Chest 2020; 158:2431–2435.

Winears S, Swingwood EL, Hardaker CL, et al. Early conscious prone positioning in patients with COVID-19 receiving continuous positive airway pressure: a retrospective analysis. BMJ Open Respir Res 2020; 7:1–4.

Avdeev SN, Nekloudova GV, Trushenkov NV, et al. Lung ultrasound can predict response to the prone position in awake nonintubated patients with COVID-19 associated acute respiratory distress syndrome. Crit Care 2021; 25:4–7.

Bastoni D, Poggiali E, Vercelli A, et al. Prone positioning in patients treated with noninvasive ventilation for COVID-19 pneumonia in an Italian emergency department. Emerg Med J 2020; 37:566–568.

Burton-Papp HC, Jackson AIR, Beecham R, et al. Conscious prone positioning during noninvasive ventilation in COVID-19 patients: experience from a single centre. F1000Research 2020; 9:859.