GENERALIZED PARKING FUNCTIONS, DESCENT NUMBERS, AND
CHAIN POLYTOPES OF RIBBON POSETS

DENIS CHEBIKIN AND ALEXANDER POSTNIKOV

Abstract. We consider the inversion enumerator \(I_n(q) \), which counts labeled trees or, equivalently, parking functions. This polynomial has a natural extension to generalized parking functions. Substituting \(q = -1 \) into this generalized polynomial produces the number of permutations with a certain descent set. In the classical case, this result implies the formula \(I_n(-1) = E_n \), the number of alternating permutations. We give a combinatorial proof of these formulas based on the involution principle. We also give a geometric interpretation of these identities in terms of volumes of generalized chain polytopes of ribbon posets. The volume of such a polytope is given by a sum over generalized parking functions, which is similar to an expression for the volume of the parking function polytope of Pitman and Stanley.

1. Introduction

Let \(T_n \) be the set of all trees on vertices labeled 0, 1, 2, \ldots, \(n \) rooted at 0. For \(T \in T_n \), let \(\text{inv}(T) \) be the number of pairs \(i > j \) such that \(j \) is a descendant of \(i \) in \(T \). Define the \(n \)-th inversion enumerator to be the polynomial

\[
I_n(q) := \sum_{T \in T_n} q^{\text{inv}(T)}.
\]

Another way to define this polynomial is via parking functions. A sequence \((b_1, b_2, \ldots, b_n)\) of positive integers is a parking function of length \(n \) if for all \(1 \leq j \leq n \), at least \(j \) of the \(b_i \)'s do not exceed \(j \). A classical bijection of Kreweras \[3\] establishes a correspondence between trees in \(T_n \) with \(k \) inversions and parking functions of length \(n \) whose components add up to \(\binom{n+1}{2} - k \). Hence we can write

\[
I_n(q) = \sum_{(b_1, \ldots, b_n) \in \mathcal{P}_n} q^{\binom{n+1}{2} - b_1 - b_2 - \cdots - b_n},
\]

or

\[
\sum_{(b_1, \ldots, b_n) \in \mathcal{P}_n} q^{b_1+b_2+\cdots+b_n-n} = q^{\binom{n}{2}} \cdot I_n(q^{-1}),
\]

where \(\mathcal{P}_n \) is the set of all parking functions of length \(n \). Cayley’s formula states that \(|T_n| = |\mathcal{P}_n| = (n+1)^{n-1}\), hence \(I_n(1) = (n+1)^{n-1} \).

Key words and phrases. Labeled trees, tree inversions, parking functions, descent sets of permutations, chain polytopes, ribbon posets.
Here we focus on the formula

\[I_n(-1) = E_n, \]

where \(E_n \) is the \(n \)-th \textit{Euler number}, most commonly defined as the number of permutations \(\sigma_1 \sigma_2 \ldots \sigma_n \) of \([n] = \{1, 2, \ldots, n\} \) such that \(\sigma_1 < \sigma_2 > \sigma_3 < \sigma_4 > \ldots \), called \textit{alternating} permutations. This formula can be obtained by deriving a closed form expression for the generating function \(\sum_{n \geq 0} I_n(q)x^n/n! \) and showing that setting \(q = -1 \) yields \(\tan x + \sec x = \sum_{n \geq 0} E_nx^n/n! \) (see the paper [1] by Gessel or Exercises 3.3.48–49 in [2]).

A direct combinatorial proof was given by Pansiot [3]. In this paper we give two other ways to prove this fact, one of which, presented in Section 2, is an involution argument on the set of all but \(E_n \) members of \(\mathcal{P}_n \). This involution is a special case of a more general argument valid for a broader version of parking functions, which we now describe.

Let \(\vec{a} = (a_1, a_2, \ldots, a_n) \) be a \textit{non-decreasing} sequence of positive integers. Let us call a sequence \((b_1, b_2, \ldots, b_n) \) of positive integers an \(\vec{a} \)-\textit{parking function} if the increasing rearrangement \(b'_1 \leq b'_2 \leq \cdots \leq b'_n \) of this sequence satisfies \(b'_i \leq a_i \) for all \(i \). Note that \((1, 2, \ldots, n) \)-parking functions are the regular parking functions of length \(n \). These \(\vec{a} \)-parking functions are \((a_1, a_2 - a_1, a_3 - a_2, \ldots)\)-parking functions in the original notation of Yan [10], but the present definition is consistent with later literature, such as the paper [4] of Kung and Yan.

Let \(\mathcal{P}_{\vec{a}} \) be the set of all \(\vec{a} \)-parking functions, and define

\[I_{\vec{a}}(q) := \sum_{(b_1, \ldots, b_n) \in \mathcal{P}_{\vec{a}}} q^{b_1 + b_2 + \cdots + b_n - n} \]

(this is the \textit{sum enumerator} studied in [4]). For a subset \(S \subseteq [n - 1] \), let \(\beta_n(S) \) be the number of permutations of size \(n \) with descent set \(S \). In Section 2 (Theorem 2.4) we prove the following generalization of (1):

\[|I_{\vec{a}}(-1)| = \begin{cases} 0, & \text{if } a_1 \text{ is even;} \\ \beta_n(S), & \text{if } a_1 \text{ is odd,} \end{cases} \]

where

\[S = \left\{ i \in [n - 1] \mid a_{i+1} \text{ is odd} \right\}. \]

Indeed, for \(\vec{a} = (1, 2, \ldots, n) \) we have \(S = \{2, 4, 6, \ldots\} \cap [n - 1] \), so that \(\beta_n(S) \) counts alternating permutations of size \(n \). The formula (3) arises in a more sophisticated algebraic context in the paper [5] of Pak and Postnikov.

In Section 3 we obtain a geometric interpretation of these results by considering generalized chain polytopes of ribbon posets. Given a subset \(S \subseteq \{2, 3, \ldots, n - 1\} \), define \(u_S = u_1u_2 \ldots u_{n-1} \) to be the monomial in non-commuting formal variables \(a \) and \(b \) with \(u_i = a \) if \(i \notin S \) and \(u_i = b \) if \(i \in S \). Let \(c(S) \) be the composition \((1, \delta_1, \delta_2, \ldots, \delta_{k-1})\) of \(n \), where the \(\delta_i \)'s are defined by \(u_S = a^{\delta_1} b^{\delta_2} a^{\delta_3} b^{\delta_4} \ldots \). For example, for \(n = 7 \) and \(S = \{2, 3, 4\} \) we have \(u_S = abbaa = ab^3a^2 \), so \(c(S) = (1, 1, 3, 2) \). Now define the polytope \(Z_S(d_1, d_2, \ldots, d_k) \), where \(0 < d_1 \leq d_2 \leq \cdots \leq d_k \) are real numbers, to be the set of all points \((x_1, x_2, \ldots, x_n)\) satisfying the inequalities \(x_j \geq 0 \) for \(j \in [n] \), \(x_1 \leq d_1 \), and

\[x_{\delta_1+\delta_2+\cdots+\delta_{i-1}+1} + x_{\delta_1+\delta_2+\cdots+\delta_{i-1}+2} + \cdots + x_{\delta_1+\delta_2+\cdots+\delta_i+1} \leq d_i+1 \]
for $1 \leq i \leq k - 1$. Thus to the above example corresponds the polytope $Z_S(d_1, d_2, d_3, d_4)$ in $\mathbb{R}_{\geq 0}^7$ defined by
\[
\begin{align*}
x_1 &\leq d_1; \\
x_1 + x_2 &\leq d_2; \\
x_2 + x_3 + x_4 + x_5 &\leq d_3; \\
x_5 + x_6 + x_7 &\leq d_4.
\end{align*}
\]
We require $1 \notin S$ here to ensure that $\delta_1 \neq 0$, but there is no essential loss of generality because the chain polytope of the poset Z_S is defined by the same relations as $Z_{[n-1]-S}$.

For a poset P on n elements, the chain polytope $C(P)$ is the set of points (x_1, x_2, \ldots, x_n) of the unit hypercube $[0,1]^n$ satisfying the inequalities $x_{p_1} + x_{p_2} + \cdots + x_{p_t} \leq 1$ for every chain $p_1 < p_2 < \cdots < p_t$ in P; see [9]. Hence $Z_S(1, 1, \ldots)$ is the chain polytope of the ribbon poset Z_S, which is the poset on $\{z_1, z_2, \ldots, z_n\}$ generated by the cover relations $z_i > z_{i+1}$ if $i \in S$ and $z_i < z_{i+1}$ if $i \notin S$. The volume of $C(P)$ equals $1/n!$ times the number of linear extensions of P, which in the case $P = Z_S$ naturally correspond to permutations of size n with descent set S. Our main result concerning the polytope Z_S is a formula for its volume. For a composition γ of n, let K_γ denote the set of weak compositions $\alpha = (\alpha_1, \alpha_2, \ldots)$ of n, meaning that α can have parts equal to 0, such that $\alpha_1 + \alpha_2 + \cdots + \alpha_i \geq \gamma_1 + \gamma_2 + \cdots + \gamma_i$ for all i. Define $\bar{a}(\gamma)$ to be the sequence consisting of γ_1 1’s, followed by γ_2 2’s, followed by γ_3 3’s, and so on. Then α is in K_γ if and only if α is the content of an $\bar{a}(\gamma)$-parking function. (The content of a parking function is the composition whose i-th part is the number of components of the parking function equal to i.) In Section 3 (Theorem 3.1) we show that
\[
\text{(5)} \quad n! \cdot \text{Vol}(Z_S(d_1, d_2, \ldots, d_k)) = \left| \sum_{\alpha \in K_{\bar{a}(\gamma)}} \left(\begin{array}{c} n \\ \alpha \end{array} \right) \cdot (-1)^{\alpha_1 + \alpha_3 + \cdots} \cdot d_1^{\alpha_1} d_2^{\alpha_2} \cdots d_k^{\alpha_k} \right|,
\]
where $\left(\begin{array}{c} n \\ \alpha \end{array} \right) = \frac{n!}{\alpha_1! \alpha_2! \cdots \alpha_k!}$ and $k = \ell(c(S))$ is the number of parts of $c(S)$. For example, for $n = 5$ and $S = \{1\}$, we have
\[
K_{c(S)} = K_{(1,3,1)} = \{(1,3,1), (1,4,0), (2,2,1), (2,3,0), (3,1,1), (3,2,0), (4,0,1), (4,1,0), (5,0,0)\},
\]
so we get from (5) that
\[
5! \cdot \text{Vol}(Z_{(1)}(d_1, d_2, d_3)) = 20d_1^3 d_2^3 d_3 - 5d_1^4 d_2^2 d_3 - 30d_1^2 d_2^2 d_3 + 10d_1^2 d_2^3.
\]
Setting $d_i = q^{i-1}$ in (5), where we take $q \geq 1$ so that the sequence d_1, d_2, \ldots is non-decreasing, and recalling (2) gives
\[
n! \cdot \text{Vol}(1, q, q^2, \ldots) = \left| \sum_{(b_1, \ldots, b_n) \in P_{\bar{a}(\gamma)}} (-q)^{b_1 + b_2 + \cdots + b_n - n} \right| = |I_{\bar{a}(\gamma)}|(-q)|.
\]
Specializing further by setting \(q = 1 \) yields the identity
\[
|I_{\vec{a}(c(S))}(-1)| = \beta_n(S).
\]
Observe that this identity is consistent with \([4]\). Indeed, the first part of \(c(S) \) is positive, and thus the first element of \(\vec{a}(c(S)) = (a_1, a_2, \ldots, a_n) \) is 1, i.e. an odd number. Comparing the sequence \((a_1, a_2, \ldots, a_n)\) with the letters of the word \(b u_S \) we see that \(a_{i+1} = a_i + 1 \) if the corresponding letters of \(u_S \) are different, and \(a_{i+1} = a_i \) otherwise; in other words, changes of parity between consecutive elements of \((a_1, a_2, \ldots, a_n)\) correspond to letter changes in the word \(b u_S \). (The extra \(b \) in front corresponds to the first part 1 of \(c(S) \).) For example, for \(n = 7 \) and \(S = \{2, 3, 4\} \), we have \(c(S) = (1, 1, 3, 2) \), \(b u_S = b a b^3 a^2 \), and \(\vec{a}(c(S)) = (1, 2, 3, 3, 3, 4, 4) \). It follows that the subset constructed from \(\vec{a}(c(S)) \) according to the rule \([4]\) of an earlier result is \(S \), so the results agree.

Considering once more the case \(S = \{2, 4, 6, \ldots\} \cap [n-1] \), let us point out the similarity between the formula \([5]\) and the expression that Pitman and Stanley \([7]\) derive for the volume of their parking function polytope. This polytope, which we denote by \(\Pi_n(c_1, c_2, \ldots, c_n) \), is defined by the inequalities \(x_1 \geq c_1, x_2 \geq c_2, \ldots, x_i \geq c_i \) for all \(i \in [n] \). The volume-preserving change of coordinates \(y_i = c_n + c_{n-1} + \cdots + c_{n+1-i} - (x_1 + x_2 + \cdots + x_i) \) transforms the defining relations above into \(y_i \geq 0 \) for \(i \in [n] \), \(y_1 \leq c_1 \), and \(y_i - y_{i+1} \geq c_i \) for \(i \in [n-1] \), and these new relations look much like the ones defining \(Z_{\{2, 4, 6, \ldots\}}(c_1, c_2, \ldots, c_n) \): in essence we have here a difference instead of a sum. This similarity somewhat explains the close resemblance of the volume formulas for the two polytopes, as for \(\Pi_n(c_1, c_2, \ldots, c_n) \) we have
\[
n! \cdot \text{Vol}(\Pi_n(c_1, c_2, \ldots, c_n)) = \sum_{(b_1, \ldots, b_n) \in P_n} \prod_{i=1}^{n} c_{b_i} = \sum_{\alpha \in K_{1^n}} \prod_{i=1}^{n} \left(\begin{array}{c} n \\ \alpha \\ i \end{array} \right) c_{\alpha_i}.
\]

Acknowledgments

We would like to thank Ira Gessel for providing useful references.

2. An involution on \(\vec{a} \)-parking functions

The idea of the combinatorial argument presented in this section was first discovered by the second author and Igor Pak during their work on \([5]\).

Let \(\vec{a} = (a_1, a_2, \ldots, a_n) \) be a non-decreasing sequence of positive integers. As a first step in the construction of our involution on \(\vec{a} \)-parking functions, let \(Y_{\vec{a}} \) be the Young diagram whose column lengths from left to right are \(a_n, a_{n-1}, \ldots, a_1 \). Define a horizontal strip \(H \) inside \(Y_{\vec{a}} \) to be a set of cells of \(Y_{\vec{a}} \) satisfying the following conditions:

(i) for every \(i \in [n] \), the set \(H \) contains exactly one cell \(\sigma_i \) from column \(i \) (we number the columns 1, 2, \ldots, \(n \) from left to right);
(ii) for \(i < j \), the cell \(\sigma_i \) is in the same or in a lower row than the cell \(\sigma_j \).

For a horizontal strip \(H \), let us call a filling of the cells of \(H \) with numbers 1, 2, \ldots, \(n \) proper if the numbers in row \(i \) are in increasing order if \(i \) is odd, or in decreasing order if \(i \) is even (we number the rows 1, 2, \ldots, from top to bottom). Let \(\mathcal{H}_\bar{a} \) denote the set of all properly filled horizontal strips inside \(Y_{\bar{a}} \).

For an \(\bar{a} \)-parking function \(\bar{b} = (b_1, b_2, \ldots, b_n) \), define \(H(\bar{b}) \in \mathcal{H}_\bar{a} \) in the following way. Let \(I_j \subseteq [n] \) be the set of indices \(i \) such that \(b_i = j \). Construct the filled horizontal strip \(H(\bar{b}) \) by first writing the elements of \(I_1 \) in increasing order in the \(|I_1| \) rightmost columns in row 1 of \(Y_{\bar{a}} \), then writing the elements of \(I_2 \) in decreasing order in the next \(|I_2| \) columns from the right in row 2, then writing the elements of \(I_3 \) in increasing order in the next \(|I_3| \) columns from the right in row 3, and so on, alternating between increasing and decreasing order.

Lemma 2.1. A sequence \(\bar{b} \) is an \(\bar{a} \)-parking function if and only if the horizontal strip \(H(\bar{b}) \) produced in the above construction fits into \(Y_{\bar{a}} \).

Proof. Let \((b'_1, b'_2, \ldots, b'_n) \) be the increasing rearrangement of \(\bar{b} \). Then the cell of \(H(\bar{b}) \) in the \(i \)-th column from the right belongs to row \(b'_i \). Thus the condition of the lemma is equivalent to \(b'_i \leq a_i \) for all \(i \).

Clearly, the filling of \(H(\bar{b}) \) from the above procedure is proper, and hence \(\bar{b} \leftrightarrow H(\bar{b}) \) is a bijection between \(\mathcal{P}_\bar{a} \) and \(\mathcal{H}_\bar{a} \). We will describe our involution on \(\bar{a} \)-parking functions in terms of the corresponding filled horizontal strips.

Let \(H \) be a properly filled horizontal strip in \(\mathcal{H}_\bar{a} \). In what follows we use \(\sigma_i \) to refer to both the cell of \(H \) in column \(i \) and to the number written in it. Let \(r(\sigma_i) \) be the number of the row containing \(\sigma_i \). We begin by defining the assigned direction for each of the \(\sigma_i \)'s. For the purpose of this definition it is convenient to imagine that \(H \) contains a cell labeled \(\sigma_{n+1} = n + 1 \) in row 1 and column \(n + 1 \), that is, just outside the first row \(Y_{\bar{a}} \) on the right. Let

\[
\epsilon_i = \text{sgn}(\sigma_i - \sigma_{i+1})(-1)^{r(\sigma_i)},
\]

where \(\text{sgn}(x) \) equals 1 if \(x > 0 \), or \(-1 \) if \(x < 0 \). Define the assigned direction for \(\sigma_i \) to be up if \(\epsilon_i = -1 \) and down if \(\epsilon_i = 1 \).

Let us say that \(\sigma_i \) is moveable down if the assigned direction for \(\sigma_i \) is down, \(\sigma_i \) is not the bottom cell of column \(i \), and moving \(\sigma_i \) to the cell immediately below it would not violate the rules of a properly filled horizontal strip. The latter condition prohibits moving \(\sigma_i \) down if there is another cell of \(H \) immediately to the left of it, or if moving \(\sigma_i \) down by one row would violate the rule for the relative order of the numbers in row \(r(\sigma_i) + 1 \). Let us say that \(\sigma_i \) is moveable up if the assigned direction for \(\sigma_i \) is up. Note that we do not need any complicated conditions in this case: if \(\sigma_i \) has another cell of \(H \) immediately to its right, or if \(\sigma_i \) is in the top row, then the assigned direction for \(\sigma_i \) is down.

It is a good time to consider an example. Figure 4 shows the diagram \(Y_{\bar{a}} \) and a properly filled horizontal strip \(H \in \mathcal{H}_\bar{a} \) for \(\bar{a} = (3, 3, 6, 7, 7, 7, 8) \). The horizontal strip shown is \(H(\bar{b}) \),
where \(\vec{b} = (5, 7, 2, 5, 1, 5, 2) \in \mathcal{P}_{\vec{a}}^\ast \). Moveable cells are equipped with arrows pointing in their assigned directions. Note that the assigned direction for \(\sigma_7 = 5 \) is down because of the “imaginary” \(\sigma_8 = 8 \) next to it, but it is not moveable down because the numbers 7, 3, 5 in row 2 would not be ordered properly. The assigned direction for \(\sigma_3 = 4 \) and \(\sigma_4 = 6 \) is also down, but these cells are not moveable down because moving them down would not produce a horizontal strip.

![Figure 1](image)

Figure 1. A properly filled horizontal strip with assigned directions for its cells

The validity of the involution we are about to define depends on the following simple but crucial fact.

Lemma 2.2. Let \(\sigma_i \) be a moveable cell of \(H \in \mathcal{H}_{\vec{a}} \), and let \(H' \in \mathcal{H}_{\vec{a}} \) be the horizontal strip obtained from \(H \) by moving \(\sigma_i \) by one row in its assigned direction. Then

(a) \(\sigma_i \) is moveable in the opposite direction in \(H' \);

(b) if \(j \neq i \) and \(\sigma_j \) is moveable in \(H \), then \(\sigma_j \) is moveable in the same direction in \(H' \);

(c) if \(\sigma_j \) is not moveable in \(H \), then it is not moveable in \(H' \).

Proof. Follows by inspection of the moving rules. \(\square \)

Let \(\mathcal{H}_{\vec{a}} \) be the set of all \(H \in \mathcal{H}_{\vec{a}} \) such that \(H \) has at least one moveable cell (up or down). Define the map \(\psi : \mathcal{H}_{\vec{a}} \rightarrow \mathcal{H}_{\vec{a}} \) as follows: given \(H \in \mathcal{H}_{\vec{a}} \), let \(\psi(H) \) be the horizontal strip obtained from \(H \) by choosing the rightmost moveable cell of \(H \) and moving it by one row in its assigned direction. In view of Lemma 2.2, \(\psi \) is an involution.

For \(\vec{b} = (b_1, b_2, \ldots, b_n) \in \mathcal{P}_{\vec{a}} \) and \(H = H(\bar{b}) \), define \(s(\vec{b}) = s(H) := b_1 + b_2 + \cdots + b_n - n \). Observe that \(s(\vec{b}) \) is the number of cells of \(Y_{\vec{a}} \) that lie above one of the cells of \(H(\bar{b}) \). In the example in Figure 1, we have \(s(\vec{b}) = s(H) = 6 + 4 + 4 + 4 + 1 + 1 + 0 = 20 \). Clearly,
s(H) = s(ψ(H)) ± 1 for \(H \in \tilde{\mathcal{H}}_\vec{a} \). Since \(\psi \) is fixed-point free, it follows that

\[
\sum_{H \in \mathcal{H}_{\vec{a}}} (-1)^{s(H)} = 0,
\]

and that

\[
I_{\vec{a}}(-1) = \sum_{H \in \mathcal{H}_{\vec{a}} - \mathcal{H}_{\vec{a}}} (-1)^{s(H)}
\]

(cf. (2)). It remains to examine the members of \(\mathcal{H}_{\vec{a}} - \tilde{\mathcal{H}}_{\vec{a}} \) in order to evaluate the right hand side of (6).

Lemma 2.3. If \(a_1 \) is even, then \(\mathcal{H}_{\vec{a}} - \tilde{\mathcal{H}}_{\vec{a}} = \emptyset \). If \(a_1 \) is odd, then \(\mathcal{H}_{\vec{a}} - \tilde{\mathcal{H}}_{\vec{a}} \) consists of all filled horizontal strips \(H \) in \(Y_{\vec{a}} \) such that the cell \(\sigma_i \) of \(H \) is at the bottom of column \(i \) for all \(i \in [n] \), and the permutation \(\sigma_n \ldots \sigma_2 \sigma_1 \) has descent set

\[
S = \left\{ i \in [n-1] \mid a_{i+1} \text{ is odd} \right\}
\]

(cf. (4)).

Proof. Let \(H \in \mathcal{H}_{\vec{a}} \), and consider the cell \(\sigma_n \) in \(H \). Since \(\sigma_n < \sigma_{n+1} = n + 1 \), it follows that \(\sigma_n \) is moveable up if \(r(\sigma_n) \) is even, or moveable down if \(r(\sigma_n) \) is odd, unless in the latter case \(\sigma_n \) is at the bottom of column \(n \). Thus if \(a_1 \) is even, that is, if the rightmost column of \(Y_{\vec{a}} \) has even height, \(\sigma_n \) is always moveable and \(\mathcal{H}_{\vec{a}} = \tilde{\mathcal{H}}_{\vec{a}} \).

Suppose that \(a_1 \) is odd, and let \(H \in \mathcal{H}_{\vec{a}} - \tilde{\mathcal{H}}_{\vec{a}} \). Then no cells of \(H \) are moveable, and hence the assigned direction for every cell is down.

First, let us show that all cells of \(H \) are at the bottom of their respective columns. Suppose it is not so, and choose the leftmost cell \(\sigma_i \) of \(H \) such that the cell immediately below it is in \(Y_{\vec{a}} \). Our choice guarantees that \(\sigma_i \) does not have another cell of \(H \) immediately to its left, so the only way \(\sigma_i \) can be not moveable down is if \(\sigma_{i-1} \) is in column \(i - 1 \) one row below \(\sigma_i \) and \(\text{sgn}(\sigma_{i-1} - \sigma_i) = (-1)^{r(\sigma_{i-1})} \). But in this case the assigned direction for \(\sigma_{i-1} \) is up — a contradiction.

Now let us compute the descent set of \(\sigma_n \sigma_{n-1} \ldots \sigma_1 \). We just proved that \(r(\sigma_{n+1-i}) = a_i \) for all \(i \in [n] \). For \(i \in [n-1] \), we have

\[
1 = \epsilon_{n-i} = \text{sgn}(\sigma_{n-i} - \sigma_{n+1-i})(-1)^{r(\sigma_{n-i})},
\]

and hence \(\sigma_{n+1-i} > \sigma_{n-i} \), that is, \(\sigma_n \sigma_{n-1} \ldots \sigma_1 \) has a descent in position \(i \), if and only if \(r(\sigma_{n-i}) = a_{i+1} \) is odd. \(\square \)

Note that from Lemma 2.3 it follows that for all \(\mathcal{H}_{\vec{a}} - \tilde{\mathcal{H}}_{\vec{a}} \), the value of \(s(H) \) is the same, namely, \(a_1 + a_2 + \cdots + a_n - n \). Combining with (6), we obtain the following theorem (cf. (3)).
Theorem 2.4 (cf. [5]). For a non-decreasing sequence $\bar{a} = (a_1, a_2, \ldots, a_n)$ of positive integers, we have

$$ I_{\bar{a}}(-1) = \begin{cases} 0, & \text{if } a_1 \text{ is even;} \\ (-1)^{a_1+\cdots+a_n-n} \cdot \beta_n(S), & \text{if } a_1 \text{ is odd,} \end{cases} $$

where $S = \{i \in [n-1] \mid a_{i+1} \text{ is odd}\}$, and $\beta_n(S)$ is the number of permutations of $[n]$ with descent set S.

3. Generalized chain polytopes of ribbon posets

In this section we prove the formula (5) of Section 1.

Theorem 3.1. For a positive integer n, a subset $S \subseteq [n-1]$ such that

$$ c(S) = (1, \delta_1, \delta_2, \ldots, \delta_{k-1}), $$

and a sequence $0 < d_1 \leq d_2 \leq \cdots \leq d_k$ of real numbers, we have

$$ n! \cdot \text{Vol}(\mathcal{Z}_S(d_1, d_2, \ldots, d_k)) = (-1)^{1+\delta_2+\delta_4+\cdots} \sum_{(b_1, \ldots, b_n) \in \mathcal{P}_{\bar{a}(c(S))}} (-1)^{b_1} d_{b_1} \cdot \sum_{\alpha \in K_\alpha(c(S))} \frac{n!}{\alpha} \cdot (-1)^{\alpha_1+\alpha_3+\cdots} d_1^{\alpha_1} \cdots d_k^{\alpha_k}. $$

(7)

Proof. First, note that the expression in the right hand side of (7) is obtained from the middle one by grouping together the terms corresponding to all $\binom{n}{\alpha}$ \bar{a}-parking functions of content α; each of these terms equals

$$ (-1)^{\alpha_1+2\alpha_2+3\alpha_3+\cdots} d_1^{\alpha_1} \cdots d_k^{\alpha_k} = (-1)^{\alpha_1+\alpha_3+\cdots} d_1^{\alpha_1} \cdots d_k^{\alpha_k}. $$

In what follows we prove the equality between the left and the right hand sides of (7). For $i \in [k]$, let $\rho_i = 1 + \delta_1 + \delta_2 + \cdots + \delta_{i-1}$. The volume of $\mathcal{Z}_S(d_1, d_2, \ldots, d_k)$ can be expressed as the following iterated integral:

(8)

$$ \int_0^{d_1} \int_0^{d_2-x_1} \int_0^{d_2-x_1-x_2} \cdots \int_0^{d_2-x_1-x_2-\cdots-x_{\rho_2-1}} \int_0^{d_3-x_{\rho_2}} \int_0^{d_3-x_{\rho_2}-x_{\rho_2+1}} \cdots \int_0^{d_3-x_{\rho_2}-x_{\rho_2+1}-\cdots-x_{\rho_3-1}} \cdots \int_0^{d_k-x_{\rho_{k-1}}-x_{\rho_{k-1}+1}} \cdots \int_0^{d_k-x_{\rho_{k-1}}-x_{\rho_{k-1}+1}-\cdots-x_{\rho_k-1}} dx_{n} \ dx_{n-1} \cdots dx_1 $$

(Similar integral formulas appear in [4] and in [3] Sec. 18.) Note that the assumption $d_1 \leq d_2 \leq \cdots \leq d_k$ validates the upper limits of those integrals taken with respect to variables $x_2, x_{\rho_2+1}, x_{\rho_3+1}, \ldots, x_{\rho_{k-1}+1}$; for $2 \leq i \leq k - 1$, the condition

$$ x_{\rho_{i-1}+1} \leq d_1 - x_{\rho_{i-1}+1} - x_{\rho_{i-1}+2} - \cdots - x_{\rho_i} $$
Lemma 3.2. For \(\sum \) implies that

\[
d_{i+1} - x_{\rho_{i+1}} \geq 0,
\]

and \(x_1 \leq d_1 \) implies \(d_2 - x_1 \geq 0 \).

For \(\ell \in [n] \), let \(J_\ell \) denote the evaluation of the \(n + 1 - \ell \) inside integrals of (8), that is, the integrals with respect to the variables \(x_n, x_{n-1}, \ldots, x_\ell \).

Lemma 3.2. For \(i \in [k] \), we have

\[
J_{\rho_{i+1}} = (-1)^{d_{i+1} + d_{i+2} + \cdots} \sum_{\alpha \in K(0, \delta_{i+1}, \ldots, \delta_{k-1})} (-1)^{\alpha_1 + \alpha_3 + \alpha_5 + \cdots} \frac{1}{\alpha_1! \alpha_2! \cdots} x_{\rho_i}^{\alpha_1} d_{i+1}^{\alpha_2} d_{i+2}^{\alpha_3} \cdots.
\]

Proof. We prove the lemma by induction on \(i \), starting with the trivial base case of \(i = k \), in which we have \(J_{\rho_{k+1}} = J_{n+1} = 1 \). Now suppose the claim is true for some \(i \). By straightforward iterated integration one can show that for non-negative integers \(r \) and \(s \),

\[
\int_0^a \int_0^{a-y} \int_0^{a-y_1-\cdots-y_2} y_1^s \, dy_1 \cdots dy_r^y \, dx_r = \frac{s! \, a^{r+s}}{(r+s)!}.
\]

Using (10) to integrate the term of (9) corresponding to a particular \(\alpha \in K(0, \delta_{i+1}, \ldots, \delta_{k-1}) \), we get

\[
\int_0^{d_i - x_{\rho_{i+1}}} \int_0^{d_i - x_{\rho_{i+1}} - x_{\rho_{i+1}} + 1} \cdots \int_0^{d_i - x_{\rho_{i+1}} - x_{\rho_{i+1}} + 1 - \cdots - x_{\rho_{i-1}}} (-1)^{\alpha_1 + \alpha_3 + \cdots} \frac{1}{\alpha_1! \alpha_2! \cdots} \cdot d_{i+1}^{\alpha_1} d_{i+2}^{\alpha_2} d_{i+2}^{\alpha_3} \cdots \cdot dx_{\rho_{i-1}} \cdots \cdot dx_{\rho_{i-1}} + 1
\]

\[
= (-1)^{\alpha_1 + \alpha_3 + \cdots} \frac{1}{\alpha_1! \alpha_2! \cdots} \cdot \frac{\alpha_1! (d_i - x_{\rho_{i-1}})^{\delta_{i-1} + \alpha_1}}{(\delta_{i-1} + \alpha_1)!} \cdot d_{i+1}^{\alpha_2} d_{i+2}^{\alpha_3} \cdots
\]

\[
= (-1)^{\alpha_1 + \alpha_3 + \cdots} \sum_{j, m \geq 0 : j + m = \delta_{i-1} + \alpha_1} \frac{1}{\alpha_1! \alpha_2! \cdots} \cdot (-1)^{j} \cdot \frac{x_{j}^{j} d_{i}^{m}}{j! \, m!} \cdot d_{i+1}^{\alpha_2} d_{i+2}^{\alpha_3} \cdots
\]

(11)

Observe that \((j, m, \alpha_2, \alpha_3, \ldots) \in K(0, \delta_{i-1}, \delta_{i+1}, \ldots) \) if and only if \((\alpha_1, \alpha_2, \ldots) \in K(0, \delta_{i}, \delta_{i+1}, \ldots) \), where \(\alpha_1 = j + m - \delta_{i-1} \). Hence summing the above equation over all \(\alpha \in K(0, \delta_{i}, \delta_{i+1}, \ldots) \), we
get
\[
J_{\rho_i-1+1}
= \int_0^{d_1-x_{\rho_i-1}} \int_0^{d_2-x_{\rho_i-1}+1-x_{\rho_i-1}} \cdots \int_0^{d_{\rho_i-1}-x_{\rho_i-1}+1-\cdots-x_{\rho_i-1}} J_{\rho_i+1} \ dx_{\rho_i} \cdots dx_{\rho_i-1+1}
= (-1)^{\delta_i+\delta_{i+2}+\delta_{i+4}+\cdots} \cdot \sum_{(j,m,\alpha_2,\alpha_3,\ldots) \in K(0,\delta_{i-1},\delta_i,\ldots)} (-1)^{j+\alpha_2+\alpha_4+\cdots} \cdot \frac{1}{j! \ \alpha_2! \ \alpha_3! \ \cdots} \cdot x_j^{\alpha_1} d_1^{\alpha_1+1} d_2^{\alpha_2} d_3^{\alpha_3} \cdots
\]

Note that the signs are consistent: taking into account the factor \((-1)^{\delta_i+\delta_{i+2}+\delta_{i+4}+\cdots}\) omitted from (11), the total sign of a term of (11) is
\[
(-1)^{\delta_i+\delta_{i+3}+\delta_{i+5}+\cdots} \cdot (-1)^{j+\alpha_1+\alpha_3+\cdots} = (-1)^{\delta_i+\delta_{i+2}+\delta_{i+4}+\cdots} \cdot (-1)^{j+\alpha_2+\alpha_4+\cdots},
\]
which is true because
\[
\alpha_1 + \alpha_2 + \cdots = \delta_i + \delta_{i+1} + \cdots = n - \rho_i,
\]
and hence all the exponents on both sides add up to \(2(n-\rho_i) + 2j\), i.e. an even number. □

To finish the proof of Theorem 3.1, set \(i = 1\) in Lemma 3.2 and integrate with respect to \(x_n\):

\[
n! \cdot J_n
= n! \int_0^{d_1} J_1 \ dx_1
= (-1)^{\delta_1+\delta_3+\delta_5+\cdots} \cdot \sum_{\alpha \in K(0,\delta_1,\delta_2,\ldots)} (-1)^{\alpha_2+\alpha_4+\alpha_6+\cdots} \cdot \frac{1}{(\alpha_1+1)! \ \alpha_2! \ \alpha_3! \ \cdots} \cdot d_1^{\alpha_1+1} d_2^{\alpha_2} d_3^{\alpha_3} \cdots
\]

\[
= (-1)^{\delta_1+\delta_3+\cdots} \sum_{(\alpha_1+1,\alpha_2,\alpha_3,\ldots) \in K(1,\delta_1,\delta_2,\ldots)} (-1)^{\alpha_2+\alpha_4+\cdots} \left(\frac{n}{\alpha_1+1, \alpha_2, \alpha_3, \ldots} \right) \cdot d_1^{\alpha_1+1} d_2^{\alpha_2} d_3^{\alpha_3} \cdots,
\]
and it is clear that \((\alpha_1+1, \alpha_2, \alpha_3, \ldots) \in K(1,\delta_1,\delta_2,\ldots)\) if and only if \(\alpha \in K(0,\delta_1,\delta_2,\ldots)\). □

References

[1] Gessel, I.: A noncommutative generalization and \(q\)-analogue of the Lagrange inversion formula, *Trans. Amer. Math. Soc.* 257 (1980), no. 2, pp. 455-482
[2] Goulden, I.P. and Jackson, D.M.: *Combinatorial Enumeration*, John Wiley & Sons (1983)
[3] Kreweras, G.: Une famille de polynômes ayant plusieurs propriétés énumératives, *Period. Math. Hung.* 11 (1980), no. 4, pp. 309-320
[4] Kung, J. and Yan, C.H.: Gončarov polynomials and parking functions, *J. Combin. Theory Ser. A* 102 (2003), no. 1, pp. 16-37
[5] Pak, I. and Postnikov, A.: Resolutions for S_n-modules associated with rim hooks, and combinatorial applications, *Functional Analysis and its Applications* 28 (1994), no. 2, pp. 132–134
[6] Pansiot, J.-J.: Nombres d’Euler et inversions dans les arbres, *European J. Combin.* 3 (1982), no. 3, pp. 259–262
[7] Pitman, J. and Stanley, R.P.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, *Discrete Comput. Geom.* 27 (2002), pp. 603–634
[8] Postnikov, A. and Stanley, R.P.: Chains in the Bruhat order, *preprint*, math.CO/0502363
[9] Stanley, R.P.: Two poset polytopes, *Discrete Comput. Geom.* 1 (1986), pp. 9–23
[10] Yan, C.H.: Generalized parking functions, tree inversions, and multicolored graphs, *Adv. in Appl. Math.* 27 (2001), no. 2–3, pp. 641–670

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

E-mail address: chebikin@gmail.com, apost@math.mit.edu