"Vaccinations in patients with immune-mediated inflammatory diseases."

Rahier, Jean-François ; Moutschen, Michel ; Van Gompel, Alfons ; Van Ranst, Marc ; Louis, Edouard ; Segaert, Siegfried ; Masson, Pierre ; De Keyser, Filip

Abstract
Patients with immune-mediated inflammatory diseases (IMID) such as RA, IBD or psoriasis, are at increased risk of infection, partially because of the disease itself, but mostly because of treatment with immunomodulatory or immunosuppressive drugs. In spite of their elevated risk for vaccine-preventable disease, vaccination coverage in IMID patients is surprisingly low. This review summarizes current literature data on vaccine safety and efficacy in IMID patients treated with immunosuppressive or immunomodulatory drugs and formulates best-practice recommendations on vaccination in this population. Especially in the current era of biological therapies, including TNF-blocking agents, special consideration should be given to vaccination strategies in IMID patients. Clinical evidence indicates that immunization of IMID patients does not increase clinical or laboratory parameters of disease activity. Live vaccines are contraindicated in immunocompromized individuals, but non-live vaccines ...

Document type : Article de périodique (Journal article)

Référence bibliographique
Rahier, Jean-François ; Moutschen, Michel ; Van Gompel, Alfons ; Van Ranst, Marc ; Louis, Edouard ; et. al. Vaccinations in patients with immune-mediated inflammatory diseases.. In: Rheumatology (Print), Vol. 49, no. 10, p. 1815-1827 (2010)

DOI : 10.1093/rheumatology/keq183
Review

Vaccinations in patients with immune-mediated inflammatory diseases

Jean-François Rahier¹, Michel Moutschen², Alfons Van Gompel³, Marc Van Ranst⁴, Edouard Louis⁵, Siegfried Segaert⁶, Pierre Masson⁷ and Filip De Keyser⁸

Abstract

Patients with immune-mediated inflammatory diseases (IMID) such as RA, IBD or psoriasis, are at increased risk of infection, partially because of the disease itself, but mostly because of treatment with immunomodulatory or immunosuppressive drugs. In spite of their elevated risk for vaccine-preventable disease, vaccination coverage in IMID patients is surprisingly low. This review summarizes current literature data on vaccine safety and efficacy in IMID patients treated with immunosuppressive or immunomodulatory drugs and formulates best-practice recommendations on vaccination in this population. Especially in the current era of biological therapies, including TNF-blocking agents, special consideration should be given to vaccination strategies in IMID patients. Clinical evidence indicates that immunization of IMID patients does not increase clinical or laboratory parameters of disease activity. Live vaccines are contraindicated in immunocompromized individuals, but non-live vaccines can safely be given. Although the reduced quality of the immune response in patients under immunotherapy may have a negative impact on vaccination efficacy in this population, adequate humoral response to vaccination in IMID patients has been demonstrated for hepatitis B, influenza and pneumococcal vaccination. Vaccination status is best checked and updated before the start of immunomodulatory therapy: live vaccines are not contraindicated at that time and inactivated vaccines elicit an optimal immune response in immunocompetent individuals.

Key words: Vaccination, Immune-mediated inflammatory disease, Infection, Vaccine-preventable disease, Rheumatoid arthritis, Inflammatory bowel disease, Psoriasis, Review.

Introduction

The term immune-mediated inflammatory disease (IMID) covers a group of apparently unrelated diseases affecting various organs and systems, such as RA, IBD and psoriasis. However, these disorders share some common genetic predispositions and inflammatory pathways, characterized by cytokine dysregulation. Hence, similar anti-inflammatory treatment strategies, including administration of immunosuppressive or immunomodulatory agents (hereafter named immunotherapy), are used to treat these disorders [1].

Vaccination is a proven and well-established strategy for prevention of infectious diseases in the general population and in patients with IMID, who have an increased risk of complications for some vaccine-preventable infections, due to both the nature of the disease and its immunomodulatory treatment. In this article, we aim (i) to summarize current scientific evidence about infection risk, vaccine safety and efficacy in patients with IMID and treatment-induced impaired immune competence and (ii) to provide clinicians with a conceptual framework and best practice recommendations on vaccine-preventable diseases in this patient population.

Literature search and selection

The Medline database was searched through PubMed, using the following key words, individually and in combination: ‘rheumatic disease’, ‘psoriasis’, ‘inflammatory
bowel disease’, ‘vaccine safety’, ‘vaccine efficacy’, ‘immunization’, ‘vaccination’, ‘autoimmunity’, ‘infection’ and ‘guidelines’. Additional searches included the key words mentioned above in combination with the names of specific vaccines or drugs. Additionally, the European Centre for Disease Prevention and Control, the Centers for Disease control (CDC), the British Society of Rheumatology (BSR) and the World Health Organization (WHO) web sites and publications were consulted for recent papers and recommendations regarding immunocompromized patients and immunization. The reference lists of retrieved articles were handsearched for relevant publications.

Levels of evidence. The recommendations made in this article are graded (Levels A–D) according to the classification scheme of Shekelle et al. [2], depending on the level of evidence supporting the recommendation.

IMID patients are at increased risk of vaccine-preventable disease

Infectious disease is the net result of exposure to a pathogen and the subsequent reaction of the host’s defence mechanisms. Since the immune response in patients with IMID may be subdued, due to immunological changes intrinsic to immune-mediated diseases and immunotherapy, IMID patients may be at increased risk of infection [3].

IMID and the directly linked infection risk

A comprehensive population-based retrospective study comparing RA patients with matched controls reported a nearly doubled incidence of documented infections in RA patients [4], although evidence allowing to distinguish between increased infection risk due to the disease and its treatment is sparse. RA-associated changes in cellular immunity may predispose RA patients to infection [5]. Early reports suggest that RA intrinsically entails an elevated susceptibility to infection [4, 6]. Predictive factors for serious infection episodes in RA patients include RA severity indices, such as presence of RF, increased sedimentation rate and extra-articular involvement, as well as corticosteroid use and the presence of comorbidities [7]. The excess mortality described in RA is partly attributable to infection, with reported standardized mortality rates due to infection in RA patients ranging from 4.2 to 14.9 [8].

In SLE, infectious complications occur in 25–45% of patients, and up to 50% of the mortality is attributed to infection. The increased infection rate in SLE patients is at least partly related to immunological defects such as complement deficiencies [9, 10].

In IBD, infections are over-represented as a cause of death [11, 12]. Whether infections are implicated in the onset of the disease is still a matter of debate [13]. Nevertheless, decreased intestinal barrier function, immune deficiencies (deficiency in the defensin system, macrophage immunodeficiency [14] and malnutrition [15] may contribute to the higher susceptibility of IBD patients to certain infections. Abdominal sepsis may occur as a direct complication of the disease.

For psoriasis, one study suggests that psoriasis patients are at increased risk for pneumonia and systemic viral infections [16], whereas increased post-operative infection risk after orthopaedic surgery—as a surrogate marker of immune competence—is controversial in psoriasis patients [17]. Increased susceptibility to infection in psoriasis patients thus remains a matter of debate.

Effect of immunotherapy on the risk of infection in IMID

Treatment of IMID patients with corticosteroids, immunosuppressive drugs and targeted biological therapies such as TNF blockers are the most important factors leading to immunosuppression. IMID patients treated with immunotherapy must be regarded as immunocompromized individuals, although the extent to which immune competence is impaired depends on the type and dose of medication used, as well as the duration of therapy. Immunotherapy predominantly impairs cellular immunity, leaving the humoral immune response more or less intact. Experience in transplant medicine indicates that the risk of infection under immunotherapy varies with the degree of immunosuppression [18]. Unfortunately, up to now no clinical or laboratory measurements allow accurate assessment of the immune status in order to identify patients at increased risk of infectious complications. Cytokine profiling techniques may hold a promise for the future in this respect [19]. Table 1 gives an overview of the different classes of drugs used for treating IMID patients and their effect on the immune system.

The use of corticosteroids has long been known to increase the risk of infection. The degree of immunosuppression caused by corticosteroid therapy increases with the dose and duration of treatment. Treatment >2 weeks with >20 mg/day of prednisolone is commonly considered to induce clinically significant immunosuppression [20], whereas a meta-analysis showed that cumulative doses of <500 mg or mean daily doses of <10 mg are not associated with increased incidence of infectious complications and can be considered as not immunosuppressive [21].

In RA patients, corticosteroids significantly increase the risk of infection, with relative risks of 1.15 and 1.9 for mild and serious infections, respectively. The combined use of corticosteroids and conventional DMARDs yielded a comparably increased infection risk, whereas non-biological DMARD therapy alone was not associated with increased risk of infection [7, 22], although some of these compounds have well-known negative effects on the immune system.

Lacaille et al. [22] reported no elevated risk of infection under MTX, whereas a case–control study reported a small increase of the risk for pneumonia [23]. In the latter study, cyclophosphamide and corticosteroids were associated with the highest infection risk, whereas moderate risk was observed under AZA. HCQ,
chloroquine and SSZ did not increase the risk of serious infections [23].

Biologicals revolutionized the treatment of IMID, but the altered immune response to which they thank their therapeutic effect also leads to an increased risk of infection (reviewed in [24, 25]). In RA, TNF inhibitors are associated with an increased risk of infection vs conventional DMARDs [25]. A retrospective study of infection risk under anti-TNF therapy in clinical practice revealed infection rates [increasing from 3.4 (38.7) per 100 patient-years before to 10.5 (86.9) during anti-TNF-therapy] well above those reported in the registration trials for those products [26]. The limited data available on abatacept and rituximab suggest that the risk of infections and serious infections with these products may be more limited or similar to that of the TNF inhibitors [25]. A study comparing abatacept or infliximab with placebo suggested a more favourable safety profile of abatacept, with fewer serious infections in the abatacept group [27]. In Crohn’s disease, both registries and clinical practice in large referral centres have only shown a slight increase of severe infection under immunotherapy [28–30]. Infections seem to be mostly attributed to steroids; combination of immunomodulatory treatments increases significantly the risk for infection [31, 32].

Vaccination strategy in patients with IMID

IMID patients, in particular those under immunotherapy, are at an increased risk for complications of some vaccine-preventable infections (Table 2). Hence, for this patient population the benefits of implementing a suitable vaccination protocol in daily clinical practice are potentially even greater than for the general population. When vaccination coverage in the population is high, herd immunity grants a certain extent of protection to non-vaccinated individuals by reducing the prevalence of the disease. The infection risk in non-vaccinated individuals is not negligible; however, a recent study demonstrated that non-vaccinated children in the USA have a 35 times increased risk of contracting measles in comparison with vaccinated children [33]. These findings stress the important task that clinicians have to advocate

Table 1: Immunomodulatory drugs commonly used to treat IMID

Drug class	Drug	Immunosuppressive effect [20]	Remarks
NSAIDs			
Corticosteroids			
DMARDs	SSZ; 5-ASA		Immunomodulator in arthritis and IBD
Gold salts			Anti-inflammatory mechanism unclear [98]
HCQ			Blocks Toll-like receptor on dendritic cells
Cyclophosphamide			Alkylating agent
MTX			Anti-metabolite, folate antagonist, immunomodulator
LEF			Anti-proliferative agent, inhibits pyrimidine synthesis
AZA			Anti-proliferative agent, purine synthesis inhibitor
Ciclosporin			Calcineurin inhibitor, transplant-related immunosuppressive drug
Anti-psoriatic drugs	Acitretin		Second-generation retinoid
Anti-TNF-α agents	Infliximab		Chimaeric monoclonal anti-TNF antibody
Adalimumab			Human monoclonal anti-TNF antibody
Etanercept			TNF receptor–immunoglobulin G fusion protein
Certolizumab			PEGylated Fab fragment of a humanized anti-TNF monoclonal antibody
Golimumab			Human monoclonal anti-TNF antibody
Other biologicals	Anakinra	+	IL-1 receptor antagonist, blocks IL-1 signalling
Rituximab			Anti-CD-20, reduces B-cell number
Abatacept			Anti-CTLA4, blocks T-cell co-stimulation
Tocilizumab			Anti-IL-6 receptor
Alefacept		+	LFA-3 immunoglobulin G fusion protein, binds to CD2, reduces T cells number
Efalizumab		+	Anti-CD-11, blocks leucocyte adhesion
Ustekinumab			Anti-p40 subunit of IL-12 and IL-23

5-ASA: 5-aminosalicylic acid; CD: cluster of differentiation; COX-2: cyclo-oxygenase-2; CTLA4: cytotoxic T-lymphocyte antigen 4; LFA-3: lymphocyte function-associated antigen-3.
Table 2: Recommendations for vaccination of IMID patients

Vaccination	Live vaccine	Severity of infection in IMID	Recommended in IMID patients	Remarks	
			CDC [68] BSR [99] ECCO [95] APF [100]		
Routine vaccinations				Every 10 years	
Tetanus	No	=	✓	✓	Every 10 years
Diphtheria	No	=	✓	✓	One booster in adulthood
Pertussis	No	=	✓	✓	Use inactivated vaccine in IMID patients and their household contacts. Live vaccine should not be given to immunocompromized hosts or their household contacts.
Poliomyelitis	No/Yes	=	✓	✓	MMR vaccination is contraindicated in immunocompromized patients but not in household contacts. Test serology in case of exposure in patients that were immunized in childhood or before start of therapy [97].
MMR	Yes	↑ (measles)	×	×	Initial dose followed by booster after 5 years
				Yearly	
Vaccination in selected groups					
Pneumococcal disease	No	↑ (↑ mortality)	✓	✓	In rheumatology, low-dose immunomodulatory drugs are not considered severely immunosuppressive and are not contraindications for the herpes zoster vaccine [94].
Influenza	No	↑ (↑ mortality)	✓	✓	
Others					
Human papilloma virus	No	↑ (↑ morbidity)	✓	✓	
Varicella/zoster	Yes	↑ (↑ morbidity)	✓	✓	
Hepatitis B	No	↑ (↑ morbidity)	✓ (✓)	✓ (✓)	Recommended for mild to moderately immunosuppressed patients in travelling to endemic countries; immunoglobulins are recommended for more severely immunocompromised patients travelling to high-risk destinations [97].
Travel-related vaccines					
Hepatitis A	No	=		✓	Use the Vi capsular polysaccharide vaccine instead of the live vaccine in immunocompromised patients. Contraindicated in immunocompromised individuals. For travel to some countries that require yellow fever vaccination, a waiver letter can be provided. In combination with rigorous mosquito protection measures.
Typhoid fever	Yes/no	Unknown	×	×	Quadrivalent conjugate vaccine
Yellow fever	Yes	Unknown	×	×	
Japanese encephalitis	No	=	✓	✓	Rarely indicated
Meningococcal meningitis	No	Unknown	✓	✓	Contraindicated in immunocompromised individuals. No contraindication for household contacts [68].
Tick-bomb encephalitis	No	Unknown	×	×	
Rage	No	=			
TBC/BCG	Yes	↑	×	×	
Cholera	Yes/no	Unknown	×	×	

The risk associated with the infectious disease in IMID patients in comparison with controls is indicated as ‘=’ (comparable) or ‘↑’ (increased). Low-dose immunomodulatory drugs include: MTX <0.4 mg/kg/week, AZA <3.0 mg/kg/day, 6-mercaptopurine <1.5 mg/kg/day [95]. ✓: recommended vaccination; ×: contraindicated vaccination; ACS: Advisory Committee Statement; APF: American Psoriasis Foundation; BCG: Bacillus Calmette-Guérin; ECCO: European Crohn and Colitis Organisation; MMR: measles mumps and rubella; TBC: Tuberculosis.
vaccination, especially for patients with increased risk of infectious complications.

However, vaccination coverage of IMID patients is surprisingly low. In RA patients, vaccination coverage rates rarely exceed those in the general population [34]. A survey in IBD patients revealed that only 45% of respondents recalled tetanus immunization within the past 10 years, only 28% reported yearly influenza vaccination, 9% reported having received pneumococcal vaccine and only approximately half the patients at risk were vaccinated against hepatitis B [35].

Possible explanations for under-vaccination of IMID patients are unawareness of the increased infection risk, and concerns about safety and efficacy of vaccination in this patient group. Factors to consider when evaluating the safety of a vaccine in IMID patients are the hypothetical risk for a flare of the IMID after vaccination and, for live vaccines, the risk of vaccine-induced infections. The reluctance of clinicians to vaccinate IMID patients may be due to fear of vaccine-induced disease flares, and to the concern whether the lower immune response observed in IMID patients treated with immunomodulatory drugs still provides sufficient protection against the disease.

Types of vaccines

Available vaccines can be categorized into inactivated or inert vaccines vs live vaccines (Table 3). Live vaccines have the advantage of providing good protection rates, as they reproduce the natural infection, with active virus replication and exposure of the vaccine to a large number of immunogenic epitopes, thereby inducing a fast antibody response and good immunological memory. Disadvantages of live vaccines include the risk for transmission and persistence of the virus, risk for back-mutation to a more virulent virus and more stringent transport and storage requirements.

Inactivated vaccines have indisputable advantages in terms of safety since they do not contain infectious agents and are easier to transport and store. However, they provide a less close imitation of natural infection (no replication, no intracellular penetration and limited number of epitopes in recombinant vaccines), and may therefore need adjuvants and repeated exposure (boosters) in order to induce an adequately protective immune response.

Vaccine safety: impact on disease activity in IMID patients

Part of clinicians’ concerns about the safety of vaccination in IMID originated from a number of case reports suggesting an impact of vaccination on IMID disease onset or course [36, 37]. These publications led to a belief among some clinicians that vaccination might trigger a flare of the underlying IMID. Despite substantial research, a direct and causal relationship between vaccination and flare of disease has not been detected [36, 38, 40–59]. Live vaccines are generally contraindicated in immunocompromized individuals, so reports dealing with their effect on disease activity are rare. In a relatively small retrospective study, measles–mumps–rubella (MMR) booster vaccination in children with juvenile idiopathic arthritis (JIA) appeared safe, as vaccination did not induce infection, nor did it significantly increase disease activity or medication use [39, 40].

For non-live vaccines, substantial literature data (summarized in Table 4) supports the conclusion that

Type of Vaccine	Example	Description
Inactivated or inert vaccines	Salk poliomyelitis vaccine	Chemical inactivation with formaldehyde or β-propiolactone; physical inactivation by exposure to high temperature or UV irradiation
Chemically or thermally inactivated		Contains only part of the virion
Split virion or subunit vaccine	Most influenza vaccines	Virus proteins produced with recombinant DNA technique
Recombinant vaccine	Hepatitis B	Consists of virus proteins without nucleic acid assembled into a virion-like particle
Virus-like particle vaccine	Human papillomavirus	
Live vaccines	Vaccinia	
Related non-human virus	Bovine rotavirus W3	
Attenuated virus	Measles	Attenuation is achieved by passaging in non-natural host cells or when the vaccine administration route is different from that of the natural infection
	Mumps	
	Rubella	
	Yellow fever	
	Oral poliomyelitis	
	Varicella zoster vaccine	
Temperature-sensitive mutant	Flumist influenza virus	This virus strain replicates at 25°C (intranasal administration) but not at 37°C (in the lungs)

Non-exhaustive table, illustrating the different vaccine types with one or more examples.
immunization of IMID patients does not increase clinical or laboratory parameters of disease activity. Most of this evidence comes from medium-sized controlled trials in which disease activity was mostly assessed by general clinical symptoms and pain scores. Some studies additionally used standardized clinical disease activity scores such as DAS or SLEDAI. Laboratory measurements minimally included sedimentation rate or CRP in some studies supplemented with more specialized disease activity markers. This evidence indicates that inactivated vaccines for hepatitis B, influenza and pneumococcal disease can be administered safely to IMID patients (evidence Level B, except for hepatitis B vaccination in SLE: Level C, influenza vaccination in RA: Level A).

Vaccine safety: induction of IMID

A particular concern that certainly contributes to the reticence of clinicians to actively promote vaccination in IMID patients are the reports of a temporal association between vaccination and new onset of autoimmune disease [41], suggesting that vaccination acts as a potential trigger of autoimmune disease.

In this context, it is important to distinguish autoimmunity, which is an abnormal immune response directed against host antigens, involving production of autoantibodies or the presence of autoreactive T cells, without clear symptoms of disease nor evolution towards an IMID, from autoimmune disease itself [41]. Autoimmunity results from complex interactions between genetic traits and environmental factors and can be triggered by a number of stimuli, including local inflammation as well as viral, bacterial and parasitic infections [42]. Vaccination could trigger autoimmunity through the same mechanisms as natural infection.

In 1976, a number of cases of Guillain–Barre syndrome occurred after swine flu vaccination [43]. This phenomenon was not repeated in subsequent influenza virus campaigns [44]. The risk for Guillain–Barre syndrome after influenza vaccination is now estimated to be lower than the risk resulting from severe influenza, and is not to be considered as an argument against influenza vaccination [45]. In the 1990s, extensive epidemiological research in France, where 25 million people (40% of the population) received hepatitis B vaccination in this period, did not observe an association between hepatitis B vaccination and multiple sclerosis [46] as suggested by earlier case reports [38, 41, 47].

The incidence of idiopathic thrombocytopenia following MMR vaccination is 1/30 000 in vaccinated children. However, the risk of developing thrombocytopenia after natural measles and rubella infection amounts to 1/3000 and 1/6000, respectively [48].

Incidence of joint symptoms after MMR vaccination is slightly increased, but still lower than that after natural rubella infection [49]. A transient increase in RF levels or arthritis symptoms has been reported after immunization against a number of agents (MMR, tetanus, paratyphoid, mumps, diphtheria, polio, smallpox and hepatitis B), but the incidence of RA among the vaccinated population was similar to non-vaccinated controls [50]. After extensive review of available studies, French pharmacovigilance [51] and the WHO advisory committee on Vaccine Safety [52] concluded that there is no convincing evidence of causal relationship between hepatitis B vaccination and a number of reported RA cases [37, 53–55].

In IBD, the observation that measles virus can persist in intestinal tissue [56], in combination with the epidemiological association of in utero [57] or perinatal [58] measles infection with subsequent Crohn’s disease, led to the refractory ‘measles hypothesis’ of Crohn’s disease. The elevated risk for development of IBD in subjects vaccinated against measles in a controversial study by Thompson et al. [59] was not confirmed in subsequent studies [60–62]. Available evidence does not support an association between measles-containing vaccines and risk of IBD [63]. A potential association between Bacille Calmette–Guérin (BCG) vaccination and Crohn’s disease still needs further investigation [64, 65].

Extremely rare cases of psoriasis or psoriasis-like lesions have been reported following BCG vaccination [66], and a case–control study reported rubella vaccination as a risk factor for PsA [67]. However, these data must also be seen in relationship with the well-known Köbner phenomenon that occurs in psoriasis, i.e. the development of new plaques at sites of skin injury. In this

Vaccine	Disease activity	RA	JIA	SLE	IBD
Hepatitis B	=	Clin, Lab (CCT) [74]	Clin (CCT) [101]	Clin, Lab (UCT) [75]	Clin (CCT) [89]
Pneumococcal vaccine	=	Clin, Lab (CCT) [77]	Clin (CCT) [77]	Clin, Lab (CCT) [77]	Clin (CCT) [102]
Influenza	=	Clin, Lab (RCT) [103]	Clin, Lab (CCT) [84, 86, 88, 93]	Clin, Lab (CCT) [86]	Clin (CCT) [87]

Summary of literature data on the effect of vaccination on IMID disease activity. ‘=’ indicates no significant effect. Non-live vaccines are well-tolerated in IMID patients and do not increase either clinical (Clin) or laboratory (Lab) markers of disease activity. Study design is recorded in parentheses: CCT: controlled clinical trial; UCT: uncontrolled clinical trial; RCT: randomized controlled trial.
respect, the vaccination act itself could trigger exacerbation of psoriatic skin lesions [67].

Vaccine safety: infection with live vaccines
The main safety issue in vaccination of IMID patients concerns the use of live vaccines: like in other groups of immunocompromized individuals, the use of live vaccines is contraindicated in IMID patients treated with immunomodulatory drugs [68]. Immunocompromized individuals are not capable to mount an adequate immune response towards the vaccine virus and have an increased risk of enhanced virus replication, possibly leading to persistence of the virus or even to overt vaccine-associated disease. Caution should also be exerted when vaccinating household contacts of IMID patients with live vaccines, since virus replication after vaccination is often accompanied by shedding of the virus, with possible subsequent infection of patients. Transmission of vaccine virus to household contacts increases disease protection coverage beyond vaccination coverage in the general population, but for severely immunocompromized individuals this may pose a risk of developing infectious disease with the vaccine virus. Spreading of the vaccine virus to household contacts has been described after oral poliomyelitis vaccination [69], which is therefore contraindicated for household contacts of IMID patients [68], and after rotavirus vaccination [70]. MMR, varicella, zoster and BCG vaccination are not contraindicated for household contacts of IMID patients [68].

Vaccine efficacy in IMID patients
Vaccine efficacy is defined as percentual risk reduction for clinically significant infection in a vaccinated group vs a control group [71]. Efficacy of a vaccine is preferably demonstrated through well-conducted and well-controlled field efficacy trials, evaluating different possible end points (infection, hospitalization and death) in different settings and populations. However, field efficacy data are not always available. In that case, demonstration of B-cell-generated antibodies is often used as a surrogate marker for vaccination-induced protection, because most vaccines protect against infection or disease by inducing a B-cell antibody response. In addition to seroconversion, which indicates the presence of an antibody response, the antibody titre as well as the quality of the antibody response (in terms of binding avidity and bactericidal or neutralizing activity of antibodies) are important as predictors of protection. Although antibody production accounts for the largest part of the protective response, cellular immune response is very important for immunological memory, and contributes substantially to the protection induced by some vaccines such as the influenza, varicella zoster and BCG vaccines [72].

The reduced quality of the immune response in IMID patients, especially in those under immunotherapy, may thus have a negative effect on the efficacy of vaccination. Reduced seroconversion rates after vaccination in IMID patients may reduce the proportion of protected patients. Diminished quantity or quality of the antibody response may reduce the duration of protection provided by vaccination in individual patients, thus requiring shorter vaccination intervals or additional boosters.

Table 5 summarizes the current evidence on antibody response after vaccination in IMID patients for different vaccines and treatment options. In a normal population, a humoral immune response to hepatitis B vaccination is expected in >90% of vaccines, whereas lower immune response rates have been described in immunocompromized patients [73]. The percentage of RA and SLE patients producing HBsAg antibodies after hepatitis B vaccination was found to be in the normal range [74, 75]. Classical DMARDs do not have a negative influence on the response to hepatitis B vaccination (for RA and JIA: evidence Level B), but etanercept and the combination of etanercept and MTX significantly decrease response rates to hepatitis B vaccination (for RA, evidence Level B). The effect of the newer biologicals on the immune response after hepatitis B vaccination remains to be investigated.

For the polysaccharide pneumococcal vaccine, vaccine response rates in RA and SLE patients were similar to those in control populations. However, a subset of patients will remain unprotected after vaccination, since a small percentage of patients responded to none or only one of the seven polysaccharide antigens [76–78].

TNFα inhibitors do not impair the response to pneumococcal vaccination, but MTX decreases the response rates to this vaccine [76, 77, 79]. A recent study by Melmed et al. [80] shows a normal pneumococcal vaccination response in IBD patients without immunosuppressive therapy and impaired vaccination responsiveness in patients treated with TNF blockers in combination with other immunomodulators (MTX, 6-mercaptopurine or AZA). The B-cell targeting antibody rituximab in combination with MTX significantly reduced the percentage of patients responding to pneumococcal vaccination with a 2-fold titre rise in comparison with patients treated with MTX alone [81]. Efalizumab had no negative influence on the responsiveness towards pneumococcal vaccination in psoriasis patients [82], whereas abatacept caused impaired responsiveness in healthy controls [83].

Influenza vaccination of RA patients generates a good humoral response [84], lower than [84] or comparable with [85, 86] healthy controls. The response to influenza vaccination was not affected by the use of prednisone or DMARDs [84]. Treatment with anti-TNF antibodies only modestly decreases the antibody response to influenza vaccination: anti-TNF treatment does not significantly decrease the proportion of IMID patients reaching a protective antibody titre after vaccination, but does lower the post-vaccination geometric mean antibody titres reached [85]. In SLE patients without prior vaccination, the percentage of seroconversions or 4-fold titre rises after influenza vaccination was lower in comparison with controls; vaccination response was not influenced by treatment with immunosuppressive agents (AZA, HCQ, prednisone) [87]. However, a seroconversion rate comparable with that in the control population was observed...
Table 5 Efficacy of vaccines in IMID patients

Drug	Hepatitis B	Pneumococcal	Influenza
DMARDs			
AZA	RA (CCT) [74]		RA (RCT) [103], (CCT) [86]
			↓ IBD (CCT) [89]
			↓ SLE (UCT) [87]
CSA	RA (CCT) [74]		RA (RCT) [103] (CCT) [86]
	JIA (CCT) [101]		
MTX	RA (CCT) [74, 104]	RA (CCT) [76]	RA (RCT) [93, 103]
	JIA (CCT) [101]	PsA (RCT) [79]	RA (CCT) [84, 86, 91]
		RA, SLE (CCT) [77]	
Biologicals	RA (CCT) [104]	RA (RCT) [105, 106], (CCT) [76]	RA (CCT) [91]
		PsA (RCT) [79]	
Anti-TNF-α agents	RA (CCT) ETA [104]	RA, SA (CCT) ETA, IFX [107]	
		PsA, (RCT) ETA [79]	
			RA (RCT) ADA [105]
			↓ RA (CCT) [88]
			↓ RA (CCT) IFX, ETA [84]
			↓ RA (CCT) [91]
			↓ RA/IBD (PC) [85]
			↓ IBD (PC) [90]
			RA (CCT) [92, 93]
Rituximab		RA (RCT) [81]	
Abatacept		Healthy controls (RCT) [83]	
Efalizumab		Psor (RCT) [82]	

Summary of the effect of different treatments on the response to vaccination. Vaccination response is indicated as '=' or '" as measured by the percentage of patients with seroconversion, by antibody titre or a combination of both. Study design is recorded in parentheses: CCT: controlled clinical trial; PC: prospective cohort study; UCT: uncontrolled clinical trial; RCT: randomized controlled trial. Italics indicate effect of individual TNF inhibitors. When no products are mentioned, the study did not distinguish between different TNF inhibitors. ETA: etanercept; IFX: infliximab; Psor: psoriasis.
when all SLE patients, including those with prior influenza vaccination, were taken into account. This finding clearly illustrates the importance of yearly repeated influenza vaccination [87]. Salem et al. [88] recently reported year-to-year progressive increase in immune response in RA patients treated with TNF blockers. Mamula et al. [89] observed a reduced seroconversion rate and geometric mean titre after influenza vaccination in IBD patients receiving immunotherapy (including biological therapy) compared with healthy controls, whereas vaccine response rates in patients without immunotherapy were similar to those in controls. A good seroconversion rate was observed in another study evaluating influenza vaccine in children with IBD [90]. Some studies observed an impaired immune response after influenza vaccination in patients treated with anti-TNF agents [89, 91], but all studies report a significant percentage of responders in anti-TNF-treated patients [85, 88, 91]. Rituximab significantly reduces seroconversion rates after influenza vaccination of RA patients [92, 93], and the immune responsiveness is only modestly restored after 6–10 months [93]. The effect of abatacept and efalizumab on the responsiveness to influenza vaccination is still unknown. Although the studies described here are heterogeneous in design, evaluated parameters of vaccine responsiveness and control groups, they all conclude that a considerable proportion of IMID patients are able to respond to hepatitis B, pneumococcal and influenza vaccination, so as to warrant the administration of these vaccines to IMID patients (evidence Level B).

Recommendations for vaccination of IMID patients

Except for live vaccines, the risk : benefit ratio for vaccination of IMID patients with reduced immune competence is favourable. For most vaccine-preventable diseases, IMID patients are at comparable or elevated risk of infection, and vaccination is generally able to elicit a protective humoral immune response in most patients (evidence Level B), although the fraction of protected patients, as well as the antibody titre and duration of protection may be lower in IMID patients, especially those under immunotherapy, in comparison with the general population.

General recommendations

A detailed overview of vaccination recommendations for IMID patients is given in Table 2. As in the general population, the immunization status of patients with IMID should be checked and vaccination considered for tetanus, diphtheria and pertussis (evidence Level B). Influenza, pneumococcal and hepatitis B vaccines are safe and generally sufficiently immunogenic in patients with IMID (evidence Level B). Live vaccines (MMR, oral poliomyelitis vaccine, yellow fever and varicella zoster) are contraindicated in IMID patients under immunotherapy (evidence Level B). Although the varicella zoster vaccine is a live vaccine and is as such contraindicated in immunocompromised individuals, some consider the risk : benefit ratio for this vaccine beneficial for patients on low-dose immunotherapy [94], especially since rescue therapy with acyclovir is possible in case of virus persistence or infectious symptoms after varicella zoster vaccination [94].

Inactivated travel-related vaccines can be administered safely to IMID patients, although protection against disease cannot always be guaranteed (evidence Level B). Yellow fever vaccination is contraindicated in immunocompromized patients, since it is a live vaccine (evidence Level B). Vaccination for patients on immunotherapy travelling to countries or regions with increased infection pressure or frequently travelling around the world should be discussed with a specialist in travel medicine.

Timing of vaccination

Vaccination status is best checked and updated before the start of immunotherapy: live vaccines are not contraindicated at that time and inactivated vaccines elicit an optimal immune response in immunocompetent individuals. In IBD, it has even been suggested to vaccinate at the time of diagnosis, particularly in patients with risk factors for a rapid evolution towards severe disease requiring immunosuppressive therapies [95]. Inactivated vaccines can be administered safely to patients under immunotherapy, but live vaccines must be given 3–4 weeks before (re)start of therapy, to ensure that virus replication has ended before impairing the patient’s immune competence [68] (evidence Level D).

The duration of therapy discontinuation needed in order to safely administer a live vaccine depends on the type, dose and duration of the therapy. As a rule of thumb, a period of 3 months is estimated for the immune status to be completely restored (evidence Level D), except for corticosteroid therapy, where a waiting period of 1 month is thought to be sufficient (evidence Level D).

Vaccination of household contacts

Close contacts of persons with altered immune competence can safely receive all age-appropriate vaccines (evidence Level B), with the exception of live oral poliomyelitis vaccine, which has been replaced by the injectable inactivated vaccine in industrialized countries. MMR, varicella and rotavirus vaccines should be administered when indicated. MMR vaccine viruses are not transmitted to contacts, and transmission of varicella vaccine is rare [68]. The risk of rotavirus transmission to immunocompromized household contacts is estimated to be much lower than the risk of contracting wild-type rotavirus infection [70]. However, to minimize potential rotavirus transmission, hand hygiene measures after contact with faeces of a rotavirus-vaccinated infant should last for at least 1 week [68, 96].

In summary, vaccination is a very valuable measure to prevent increased morbidity and mortality from vaccine-preventable disease in the IMID population that is at increased risk for a number of vaccine-preventable diseases. Vaccinations are best given to IMID patients before introduction of immunotherapy, since live vaccines...
(MMR, BCG and yellow fever) are generally contraindicated during immunotherapy and vaccine response is optimal in immunocompetent individuals. Vaccination with inactive vaccines can be given normally in these patients, keeping in mind that—depending on the degree of immunosuppression—the response to the vaccine and potentially the period of protection are more limited in these patients. Vaccines for patients on immunotherapy traveling to endemic countries or frequently travelling around the world should be discussed with a travel medicine specialist.

Rheumatology key messages

- Patients with immune-mediated inflammatory disease are at increased risk for a number of vaccine-preventable diseases.
- Inactive vaccines are considered safe and generally effective in IMID patients.
- Live vaccines are contraindicated in IMID patients under immunosuppressive therapy.

Acknowledgements

This work was written following the Spring Lecture Sessions on vaccination in patients with immune-mediated disease of the Academy of Immunology for Clinicians—Belgium (http://www.aic-belgium.net) and supported by an unrestricted educational grant from Abbott. The authors acknowledge the contribution of Veerle Persy, MD, PhD who provided medical writing services as an independent medical writer.

Funding: This work was supported by an unrestricted educational grant from Abbott. Funding to pay the Open Access publication charges for this article was provided by Abbott.

Disclosure statement: A.vG. has received financial support from GSK for attending conferences, speaking and writing brochures. F.dK. is a consultant for Abbott, Schering, Roche and GSK. P.M. has received lecture fees from GSK for attending conferences, speaking and writing brochures. F.dK. is a consultant for Abbott.

Access publication charges for this article was provided by Abbott.

Educational grant from Abbott.

Funding services as an independent medical writer.

Veerle Persy, MD, PhD who provided medical writing services as an independent medical writer.

Acknowledgements

This work was written following the Spring Lecture Sessions on vaccination in patients with immune-mediated disease of the Academy of Immunology for Clinicians—Belgium (http://www.aic-belgium.net) and supported by an unrestricted educational grant from Abbott. The authors acknowledge the contribution of Veerle Persy, MD, PhD who provided medical writing services as an independent medical writer.

Funding: This work was supported by an unrestricted educational grant from Abbott. Funding to pay the Open Access publication charges for this article was provided by Abbott.

Disclosure statement: A.vG. has received financial support from GSK for attending conferences, speaking and writing brochures. F.dK. is a consultant for Abbott, Schering, Roche and GSK. P.M. has received lecture fees from Abbott. All other authors have declared no conflicts of interest.

References

1. Kuek A, Hazleman BL, Ostor AJ. Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J 2007;83:251–60.
2. Shekelle PG, Woolf SH, Eccles M, Grimshaw J. Clinical guidelines: developing guidelines. Br Med J 1999;318:593–6.
3. Doria A, Zampieri S, Sarzi-Puttini P. Exploring the complex relationships between infections and autoimmune disease. Autoimmun Rev 2008;8:89–91.
4. Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum 2002;46:2287–93.
5. Mikuls TR. Co-morbidity in rheumatoid arthritis. Best Pract Res Clin Rheumatol 2003;17:729–52.
6. Baum J. Infection in rheumatoid arthritis. Arthritis Rheum 1971;14:135–7.
7. Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE. Predictors of infection in rheumatoid arthritis. Arthritis Rheum 2002;46:2294–300.
8. Naz SM, Symmons DP. Mortality in established rheumatoid arthritis. Best Pract Res Clin Rheumatol 2007;21:871–83.
9. Zandman-Goddard G, Shoenfeld Y. Infections and SLE. Autoimmunity 2005;38:479–85.
10. Iliopoulos AG, Tsokos GC. Immunopathogenesis and spectrum of infections in systemic lupus erythematosus. Semin Arthritis Rheum 1996;25:319–36.
11. Jess T, Winther KV, Munkholm P, Langholz E, Binder V. Mortality and causes of death in Crohn’s disease: follow-up of a population-based cohort in Copenhagen County, Denmark. Gastroenterology 2002;122:1808–14.
12. Winther KV, Jess T, Langholz E, Munkholm P, Binder V. Survival and cause-specific mortality in ulcerative colitis: follow-up of a population-based cohort in Copenhagen County. Gastroenterology 2003;125:1576–82.
13. Irving PM, Gibson PR. Infections and IBD. Nat Clin Pract Gastroenterol Hepatol 2008;5:18–27.
14. Casanova JL, Abel L. Revisiting Crohn’s disease as a primary immunodeficiency of macrophages. J Exp Med 2009;206:1839–43.
15. Chandra RK. Nutrition, immunity and infection: from basic knowledge of dietary manipulation of immune responses to practical application of ameliorating suffering and improving survival. Proc Natl Acad Sci USA 1996;93:14304–7.
16. Lindegard B. Diseases associated with psoriasis in a general population of 159,200 middle-aged, urban, native Swedes. Dermatologica 1986;172:298–304.
17. Kimball AB, Gladman D, Gelfand JM et al. National psoriasis foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J Am Acad Dermatol 2008;58:1031–42.
18. Chiu LM, Domagala BM, Park JM. Management of opportunistic infections in solid-organ transplantation. Prog Transplant 2004;14:114–29.
19. Liu Z, Yuan X, Luo Y et al. Evaluating the effects of immunosuppressants on human immunity using cytokine profiles of whole blood. Cytokine 2009;45:141–7.
20. Jong EC, Freedman DO. The immunocompromised traveler. CDC Travelers’ Health Yellow Book. Atlanta, GA, USA: Centers for Disease Control and Prevention. http://www.cdc.gov/travel/yellowbook/2010/chapter-8/immunocompromised-traveler.aspx. (10 September 2009, date last accessed).
21. Stuck AE, Minder CE, Frey FJ. Risk of infectious complications in patients taking glucocorticosteroids. Rev Infect Dis 1989;11:954–63.
22. Lacaille D, Guh DP, Abrahamowicz M, Anis AH, Esdaile JM. Use of nonbiologic disease-modifying antirheumatic drugs and risk of infection in patients with rheumatoid arthritis. Arthritis Rheum 2008;59:1074–81.
23. Bernatsky S, Hudson M, Suissa S. Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis. Rheumatology 2007;46:1157–60.
24 Martin-Mola E, Balsa A. Infectious complications of biological agents. Rheum Dis Clin North Am 2009;35:183–99.
25 Furst DE. The risk of infections with biologic therapies for rheumatoid arthritis. Semin Arthritis Rheum 2010;39:327–46.
26 Sailiot C, Gossec L, Ryussen-Witrand A et al. Infections during tumour necrosis factor-alpha blocker therapy for rheumatic diseases in daily practice: a systematic retrospective study of 709 patients. Rheumatology 2007;46:327–34.
27 Schiff M, Keiserman M, Coddington C et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 2008;67:1096–103.
28 Colombel JF, Loftus EV Jr, Tremaine WJ et al. The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 2004;126:19–31.
29 Lichtenstein GR, Feagan BG, Cohen RD et al. Serious infections and mortality in association with therapies for Crohn’s disease: TREAT registry. Clin Gastroenterol Hepatol 2006;4:621–30.
30 Schneeweiss S, Korzenik J, Solomon DH, Canning C, Lee J, Bressler B. Infliximab and other immunomodulating drugs in patients with inflammatory bowel disease and the risk of serious bacterial infections. Aliment Pharmacol Ther 2009;30:253–64.
31 Toruner M, Loftus EV Jr, Harmsen WS et al. Risk factors for opportunistic infections in patients with inflammatory bowel disease. Gastroenterology 2008;134:929–36.
32 Fiddler H, Schnitzler F, Ferrante M et al. Long-term safety of infliximab for the treatment of inflammatory bowel disease: a single-centre cohort study. Gut 2009;58:501–8.
33 Omer SB, Salmon DA, Orenstein WA, deHart MP, Halsey N. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. N Engl J Med 2001;345:327–46.
34 Gluck T, Muller-Ladner U. Vaccination in patients with chronic rheumatic or autoimmune diseases. Clin Infect Dis 2008;46:1459–65.
35 Melmed GY, Ippoliti AF, Papadakis KA et al. Patients with inflammatory bowel disease are at risk for vaccine-preventable illnesses. Am J Gastroenterol 2006;101:1834–40.
36 Conti F, Rezai S, Valesini G. Vaccination and autoimmune rheumatic diseases. Autoimmun Rev 2008;8:124–8.
37 Gross K, Combe C, Kruger K, Schattenkirchner M. Arthritis after hepatitis B vaccination Report of three cases. Scand J Rheumatol 1995;24:50–2.
38 Ascherio A, Zhang SM, Hernan MA et al. Hepatitis B vaccination and the risk of multiple sclerosis. N Engl J Med 2001;344:327–32.
39 Heijstek MW, Pileggi GC, Zonneveld-Huijssoen E et al. Safety of measles, mumps and rubella vaccination in juvenile idiopathic arthritis. Ann Rheum Dis 2007;66:1384–7.
40 Borte S, Liebert UG, Borte M, Sack U. Efficacy of measles, mumps and rubella revaccination in children with juvenile idiopathic arthritis treated with methotrexate and etanercept. Rheumatology 2009;48:144–8.
41 Wraith DC, Goldman M, Lambert PH. Vaccination and autoimmune disease: what is the evidence? Lancet 2003;362:1659–66.
42 Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 2005;38:235–45.
43 Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ et al. Guillain-Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am J Epidemiol 1979:110:105–23.
44 Lasky T, Terracciano GJ, Magder L et al. The Guillain-Barre syndrome and the 1992–1993 and 1993–1994 influenza vaccines. N Engl J Med 1998;339:1797–802.
45 Evans D, Cauchemez S, Hayden FG. “Prepandemic” immunization for novel influenza viruses, “swine flu” vaccine, Guillain-Barre syndrome, and the detection of rare severe adverse events. J Infect Dis 2009;200:321–8.
46 Duclos P. Safety of immunisation and adverse events following vaccination against hepatitis B. Expert Opin Drug Saf 2003;2:225–31.
47 Confavreux C, Siusa S, Saddier P, Bours O, Vukusic S. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med 2001;344:319–26.
48 Chen RT, Pless R, Destefano F. Epidemiology of autoimmune reactions induced by vaccination. J Autoimmun 2001;16:309–18.
49 Benjamin CM, Chew GC, Silman AJ. Joint and limb symptoms in children after immunisation with measles, mumps and rubella vaccine. Br Med J 1992:304:1075–8.
50 Aho K, Konttinen A, Rajasalami M, Wager O. Transient appearance of the rheumatoid factor in connection with prophylactic vaccinations. Acta Pathol Microbiol Scand 1962;56:478–9.
51 AFSSAPS (Agence Francaise de Securite Sanitaire des Produits de Santé). Vaccination anti hepatite B - Saint-Denis Cedex, France: Mise à jour des données et des études de pharamcovigilance, 2000.
52 Lee K, Hall AJ. Hepatitis B vaccination and putative associations with (a) arthritis (b) chronic fatigue syndrome London School of Hygiene and Tropical Medicine: WHO - GACVS (Global Advisory Committee on Vaccine Safety), 2005.
53 Geir DA, Geier MR. A one year followup of chronic arthritis following rubella and hepatitis B vaccination based upon analysis of the Vaccine Adverse Events Reporting System (VAERS) database. Clin Exp Rheumatol 2002;20:767–71.
54 Geier MR, Geier DA. A case-series of adverse events, positive re-challenge of symptoms, and events in identical twins following hepatitis B vaccination: analysis of the Vaccine Adverse Event Reporting System (VAERS) database and literature review. Clin Exp Rheumatol 2004;22:749–55.
55 Pope JE, Stevens A, Howson W, Bell DA. The development of rheumatoid arthritis after recombinant hepatitis B vaccination. J Rheumatol 1998;25:1687–93.
56 Lewin J, Dhillon AP, Sim R, Maze G, Pounder RE, Wakefield AJ. Persistent measles virus infection of...
the intestine: confirmation by immunogold electron microscopy. Gut 1995;36:564–9.
57 Ekbohm A, Daszak P, Kraaz W, Wakefield AJ. Crohn’s disease after in-utero measles virus exposure. Lancet 1996;348:515–7.
58 Ekbohm A, Wakefield AJ, Zack M, Adami HO. Perinatal measles infection and subsequent Crohn’s disease. Lancet 1994;344:508–10.
59 Thompson NP, Montgomery SM, Pounder RE, Wakefield AJ. Is measles vaccination a risk factor for inflammatory bowel disease? Lancet 1995;345:1071–4.
60 Feeney M, Ciegg A, Winwood P, Snook J. A case-control study of measles vaccination and inflammatory bowel disease. The East Dorset Gastroenterology Group. Lancet 1997;350:764–6.
61 Davis RL, Kramarz P, Bohlke K et al. Measles-mumps-rubella and other measles-containing vaccines do not increase the risk for inflammatory bowel disease; a case-control study from the Vaccine Safety Datalink project. Arch Pediatr Adolesc Med 2001;155:354–9.
62 Bernstein CN, Rawsthorne P, Blanchard JF. Population-based case-control study of measles vaccination and inflammatory bowel disease. Inflamm Bowel Dis 2007;13:759–62.
63 Davis RL, Bohlke K. Measles vaccination and inflammatory bowel disease: controversy laid to rest? Drug Saf 2001;24:939–46.
64 Baron S, Turck D, Leplait C et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut 2005;54:357–63.
65 Rousseau MC, Parent ME, St-Pierre Y. Potential health effects from non-specific stimulation of the immune function in early age: the example of BCG vaccination. Pediatr Allergy Immunol 2008;19:438–48.
66 Takayama K, Satoh T, Hayashi M, Yokozeki H. Psoriatic skin lesions induced by BCG vaccination. Acta Derm Venereol 2008;88:621–2.
67 Pattison E, Harrison BJ, Griffiths CE, Silman AJ, Bruce IN. Environmental risk factors for the development of psoriatic arthritis: results from a case-control study. Ann Rheum Dis 2008;67:672–6.
68 Kroger AT, Atkinson WL, Marcuse EK, Pickering LK. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2006;55:1–48.
69 Moss WJ, Clements CJ, Halsey NA. Immunization of children at risk of infection with human immunodeficiency virus. Bull World Health Organ 2003;81:61–70.
70 Anderson EJ. Rotavirus vaccines: viral shedding and risk of transmission. Lancet Infect Dis 2008;8:642–9.
71 Qin L, Gilbert PB, Corey L, McElrath MJ. Self SG. A framework for assessing immunological correlates of protection in vaccine trials. J Infect Dis 2007;196:1304–12.
72 Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 2008;47:401–9.
73 Mast EE, Weinbaum CM, Fiore AE et al. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: immunization of adults. MMWR Recomm Rep 2006;55:1–33.
74 Elkayam O, Yaron M, Caspi D. Safety and efficacy of vaccination against hepatitis B in patients with rheumatoid arthritis. Ann Rheum Dis 2002;61:623–5.
75 Kuruma KA, Borba EF, Lopes MH, de Carvalho JF, Bonfa E. Safety and efficacy of hepatitis B vaccine in systemic lupus erythematosus. Lupus 2007;16:350–4.
76 Kapetanovic MC, Saxne T, Sjoholm A, Truedsson L, Jonsson G, Geborek P. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal polysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology 2006;45:106–11.
77 Elkayam O, Paran D, Caspi D et al. Immunogenicity and safety of pneumococcal vaccination in patients with rheumatoid arthritis or systemic lupus erythematosus. Clin Infect Dis 2002;34:147–53.
78 Elkayam O, Ablin J, Caspi D. Safety and efficacy of vaccination against streptococcus pneumonia in patients with rheumatic diseases. Autoimmun Rev 2007;6:312–4.
79 Mease PJ, Ritchlin CT, Martin RW et al. Pneumococcal vaccine response in psoriatic arthritis patients during treatment with etanercept. J Rheumatol 2004;31:1356–61.
80 Melmed GY, Agarwal N, French RW et al. Immunosuppression impairs response to pneumococcal polysaccharide vaccine in patients with inflammatory bowel disease. Am J Gastroenterol 2010;105:148–54.
81 Bingham CO III, Looney RJ, Deodhar A et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum 2010;62:64–74.
82 Krueger JG, Ochs HD, Patel P, Gilkerson E, Guttmann-Yassky E, Dummer W. Effect of therapeutic integrin (CD11a) blockade with efalizumab on immune responses to model antigens in humans: results of a randomized, single blind study. J Invest Dermatol 2008;128:2615–24.
83 Tay L, Leon F, Vratsanos G, Raymond R, Corbo M. Vaccination response to tetanus toxoid and 23-valent pneumococcal vaccines following administration of a single dose of abatacept: a randomized, open-label, parallel group study in healthy subjects. Arthritis Res Ther 2007;9:R38.
84 Fornin I, Caspi D, Levy V et al. Vaccination against influenza in rheumatoid arthritis: the effect of disease modifying drugs, including TNF alpha blockers. Ann Rheum Dis 2006;65:191–4.
85 Gelinck LB, van der Bijl AE, Beyer WE et al. The effect of anti-tumour necrosis factor alpha treatment on the antibody response to influenza vaccination. Ann Rheum Dis 2008;67:713–6.
86 Del Porto F, Lagana B, Biselli R et al. Influenza vaccine administration in patients with systemic lupus erythematosus and rheumatoid arthritis. Safety and immunogenicity. Vaccine 2006;24:3217–23.
87 Holvast A, Huijkervedt G, Wilschut J et al. Safety and efficacy of influenza vaccination in systemic lupus erythematosus patients with quiescent disease. Ann Rheum Dis 2006;65:913–8.
88 Salemi S, Picchianti-Diamanti A, Germano V et al. Influenza vaccine administration in rheumatoid arthritis patients under treatment with TNFalpha
blockers: safety and immunogenicity. Clin Immunol 2010; 134:113–20.

89 Mamula P, Markowitz JE, Piccoli DA, Klimov A, Cohen L, Baldassano RN. Immune response to influenza vaccine in pediatric patients with inflammatory bowel disease. Clin Gastroenterol Hepatol 2007;5:851–6.

90 Lu Y, Jacobson DL, Ashworth LA et al. Immune response to influenza vaccine in children with inflammatory bowel disease. Am J Gastroenterol 2009; 104:444–53.

91 Kapetanovic MC, Saxne T, Nilsson JA, Geborek P. Influenza vaccination as model for testing immune modulation induced by anti-TNF and methotrexate therapy in rheumatoid arthritis patients. Rheumatology 2007;46:608–11.

92 Oren S, Mandelboim M, Braun-Moscovici Y et al. Vaccination against influenza in patients with rheumatoid arthritis: the effect of rituximab on the humoral response. Ann Rheum Dis 2008;67:937–41.

93 Van Assen S, Holvast A, Benne CA et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum 2010;62:75–81.

94 Harpaz R, Ortega-Sanchez IR, Seward JF. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2008;57:1–30.

95 Rahier JF, Ben-Horin S, Chowers Y et al. European evidence-based Consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J Crohn’s Colitis 2009;3:47–91.

96 Parasahar UD, Alexander JP, Glass RI. Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2006;55:1–13.

97 The Immunocompromised Traveller. An Advisory Committee Statement (ACS). Can Commun Dis Rep 2007;33:1–24.

98 Nieminen R, Vuolteenaho K, Riutta A et al. Aurothioglucose inhibits COX-2 expression in

chondrocytes and in human cartilage possibly through its effects on COX-2 mRNA stability. Eur J Pharmacol 2008;587:309–16.

99 Vaccinations in the immunocompromised person. Guidelines for the patient taking immunosuppressantx, steroids and the new biologic therapies. London: British Society for Rheumatology. 2002.

100 Lebowo M, Bagel J, Gelfand JM et al. From the Medical Board of the National Psoriasis Foundation: monitoring and vaccinations in patients treated with biologics for psoriasis. J Am Acad Dermatol 2008;58:94–105.

101 Kasapcopur O, Cullu F, Kamburoglu-Goksel A et al. Hepatitis B vaccination in children with juvenile idiopathic arthritis. Ann Rheum Dis 2004;63:1128–30.

102 Battafarano DF, Battafarano NJ, Larsen L et al. Antigen-specific antibody responses in lupus patients following immunization. Arthritis Rheum 1998;41:1828–34.

103 Chalmers A, Scheifele D, Patterson C et al. Immunization of patients with rheumatoid arthritis against influenza: a study of vaccine safety and immunogenicity. J Rheumatol 1994;21:1203–6.

104 Ravikumar R, Owen T, Barnard J. Anti-TNF therapy in RA patients alters hepatitis B vaccine responses. Arthritis Rheum 2006;56(Suppl 9):S36.

105 Kaine JL, Kivitz AJ, Birbara C, Luo AY. Immune responses following administration of influenza and pneumococcal vaccines to patients with rheumatoid arthritis receiving adalimumab. J Rheumatol 2007;34:272–9.

106 Visvanathan S, Keenan GF, Baker DG, Levinson AI, Wagner CL. Response to pneumococcal vaccine in patients with early rheumatoid arthritis receiving infliximab plus methotrexate or methotrexate alone. J Rheumatol 2007;34:952–7.

107 Elkayam O, Caspi D, Reitblatt T, Charboneau D, Rubins JB. The effect of tumor necrosis factor blockade on the response to pneumococcal vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin Arthritis Rheum 2004; 33:263–8.