Doping and alloying of kesterites

Yaroslav E Romanyuk1, Stefan G Haass1, Sergio Giraldo2, Marcel Placidi2, Devendra Tiwari1, David J Fermín2, Xiaojing Hao3, Thomas Schnabel4, Marit Kauk-Kuusik7, Paul Pistor8, Stener Lie9, Lydia H Wong10

1 Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr. 129, 8600 Dübendorf, Switzerland
2 Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià de Besòs, Barcelona, Spain
3 School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
4 School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, Australia
5 Key Laboratory for Organic Electronics and Information Displays & iangusu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
6 Zentrum für Sonnenenergie- und Wasserstoff- Forschung Baden-Württemberg, Meitnerstraße 1, 70565 Stuttgart, Germany
7 Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
8 Martin Luther University Halle-Wittenberg, Institute of Physics, Von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
9 School of Materials Science & Engineering, Nanyang Technological University, 639798 Singapore, Singapore
10 E-mail: yaroslav.romanyuk@empa.ch

Keywords: kesterite, doping, alloying, thin film solar cell

Abstract

Attempts to improve the efficiency of kesterite solar cells by changing the intrinsic stoichiometry have not helped to boost the device efficiency beyond the current record of 12.6%. In this light, the addition of extrinsic elements to the Cu2ZnSn(S,Se)4 matrix in various quantities has emerged as a popular topic aiming to ameliorate electronic properties of the solar cell absorbers. This article reviews extrinsic doping and alloying concepts for kesterite absorbers with the focus on those that do not alter the parent zinc-blende derived kesterite structure. The latest state-of-the-art of possible extrinsic elements is presented in the order of groups of the periodic table. The highest reported solar cell efficiencies for each extrinsic dopant are tabulated at the end. Several dopants like alkali elements and substitutional alloying with Ag, Cd or Ge have been shown to improve the device performance of kesterite solar cells as compared to the nominally undoped references, although it is often difficult to differentiate between pure electronic effects and other possible influences such as changes in the crystallization path, deviations in matrix composition and presence of alkali dopants coming from the substrates. The review is concluded with a suggestion to intensify efforts for identifying intrinsic defects that negatively affect electronic properties of the kesterite absorbers, and, if identified, to test extrinsic strategies that may compensate these defects. Characterization techniques must be developed and widely used to reliably access semiconductor absorber metrics such as the quasi-Fermi level splitting, defect concentration and their energetic position, and carrier lifetime in order to assist in search for effective doping/allying strategies.

1. Introduction

Kesterite materials—Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe), Cu2ZnSn(S,Se)4 (CZTSSe) are multinary compounds that can be synthesized in different off-stoichiometric compositions and therefore offer rich possibilities for defect engineering. According to the compositional classification of Lafond et al[1] that was further extended by Gurieva et al[2], up to 12 compositional-type materials can be distinguished, each of them corresponding to different cationic distribution giving rise to most probable secondary phases and intrinsic point defects. The highest efficiency solar cells are obtained, regardless of the kesterite absorber synthesis method, for Cu-poor, Sn-stoichiometric and Zn-rich compositions located around the so-called ‘A’ compositional line. The record 12.6%-efficient[3] (or 12.7% by improving emitter[4]) CZTSSe solar cell
demonstrated by the IBM group in 2014 had a targeted cation composition of \(\text{Cu/(Zn + Sn)} = 0.8 \) and \(\text{Zn/Sn} = 1.1 \) and did not include any intentional doping, although the presence of small quantities of alkali elements stemming from the soda-lime glass (SLG) substrate could not be excluded.

From the numerous combinatorial studies performed since the pioneering report of Katagiri in 2005 [5], it became clear that just by changing the absorber stoichiometry it was not possible to further advance the device performance. Thus, addition of extrinsic elements to the kesterite matrix in various quantities has emerged as a popular topic aiming to ameliorate electronic properties of the kesterite absorbers. This trend has also been inspired by the related CIGS and CdTe technologies, where the use of extrinsic species to passivate intrinsic defects and provide shallow dopants was combined with the bandgap engineering through substitutional doping (alloying) to boost the solar cell efficiencies beyond 22%.

This article aims to review extrinsic doping and alloying concepts for the kesterite absorbers, although in most (all) cases, a combination of the intrinsic and extrinsic defects will determine the final absorber properties. The review is limited to the extrinsic elements that do not alter the parent zinc-blende derived crystal structure of kesterites where all atoms have tetrahedral coordination.

1.1. Intrinsic doping

Before reviewing extrinsic elements, it is necessary to recall electronic properties of the non-intentionally doped kesterites, which have been summarized in several reviews [6, 7]. For the samples without secondary phases, numerous native lattice defects exist including \(\text{Cu, Zn, Sn or (Se)} \) vacancies, \(\text{VCu, VZn, VSn and VS or VS(Se)} \), interstitials \(\text{Cu_i, Zn_i, Sn_i and Se_i} \), as well as antisites \(\text{CuZn, ZnCu, SnZe, SnZn, etc}. \). Besides these, the donor and accepter defects may also compensate and attract each other, forming defect clusters \(\text{VCu + ZnCu, 2CuZn + SnZn, ZnSn + 2ZnCu}\).

CZTS, CZTSe and CZTSSe samples have been widely found to show the p-type (hole mediated) conductivity intrinsically, while n-type samples have not been reported. The p-type conductivity is attributed to a high population of shallow acceptor-like defects such as Cu vacancies \(\text{VCu}\) and \(\text{CuZn}\) antisites, whose density depends on the \(\text{Cu/(Zn + Sn)} \) and \(\text{Zn/Sn} \) ratio. Despite the certainty of the p-type character, the reported hole concentrations from different experiments vary significantly, spanning a range from \(1.2 \times 10^{15} \) to \(3.1 \times 10^{20} \text{ cm}^{-3} \) [6]. Three factors may contribute to the significant variation in the carrier concentration numbers including the presence of secondary phases (e.g. \(\text{Cu} (\text{Sn,Se}) \) or \(\text{Zn(Sn,Se}) \)), deviations in the cationic ratios of \(\text{Cu/(Zn + Sn)} \) and \(\text{Zn/Sn} \), uncertainties of different measurement techniques and often unintended doping by elements such as Na from the glass substrate.

The doping concentration is typically deduced from capacitance–voltage \((C–V)\) measurements of complete solar cell devices, where the acceptor concentration \(\text{N}_\text{A} \) can be calculated from the Mott–Schottky plots assuming an n’ p-type heterojunction. The obtained \(\text{N}_\text{A} \) values, however, can be affected by several non-idealities such as an inhomogeneous doping profile and contributions from deep defects [8, 9]. The C–V sweep of the 12.6% device resulted in the concentration \(\text{N}_\text{A} \sim 2 \times 10^{16} \text{ cm}^{-3} \) at zero bias [3]. The drive level capacitance profiling (DLCP) of the same sample, which should be sensitive only to bulk defects, yielded somewhat lower drive level densities of \(< 7 \times 10^{15} \text{ cm}^{-3} \). Similar values have been frequently reported and can be used as reference points when reviewing the doping densities induced by extrinsic dopants in the following sections.

Another important semiconductor metric is the minority carrier lifetime that influences the carrier diffusion length and eventually limits the solar cell efficiency. Time-resolved photoluminescence (TRPL) is frequently employed to compare different kesterite absorbers whereby the measured PL decay time on the order of 1...10 ns is often associated with the minority carrier lifetime of the material. However, the reported lifetime values should be treated with precautions. It has been analyzed by Hages et al [10] that the PL decay times in kesterite materials are strongly influenced by minority carrier trapping, surface effects and energetic relaxation, and therefore do not correspond to the effective minority carrier lifetimes. With this in mind, the present article does not contain detailed discussions on reported PL time decays but suggests a need to develop more precise techniques for accessing minority carrier lifetime.

1.2. Extrinsic elements in this review

Figure 1 illustrates the extrinsic elements covered in this review. Depending on the concentration of the impurity element in the kesterite matrix, two cases can be distinguished: doping and alloying. These namings are not strict scientific terms (e.g. ‘alloying’ is often reserved for metallic alloys only whereas doping usually refers to a change in charge carrier density or type by introducing acceptor or donor states) but both terms have been widely adopted by the kesterite community. The doping elements are marked in blue, and the elements that can form substitutional alloying are shown in orange. For some elements, e.g. Li or Ge, both doping and alloying are considered.
The purpose of doping is to change electronic, electrical, charge transport and interface properties without changing the crystal structure and altering the optical properties of the host material. In contrary, alloying is referred to an isoelectronic cation substitution to introduce ionic size mismatch, which can be particularly interesting for band engineering of the absorber. In this article, the term alloying is used if the concentration of extrinsic element can exceed 1 mol. % without changing the parent kesterite structure. Both doping and alloying effect can also be combined. For instance, both doping and alloying strategies have been crucial to reach very high efficiencies in CIGS cells, with the use of alkali elements for doping and alloying with Ga for band grading [11].

Extrinsic dopants can be divided into isoelectronic (i.e. with oxidation states matching to the replaced matrix element) and non-isoelectronic ones (e.g. Group III elements). There have been also other elements reported to replace Zn for Be, Ca [12, 13], Sr [14] or Ba [15, 16] and Sn for Ti, Zr, or Hf [17], but these will not be covered in this review as some of them, e.g. Ba, lead to the change of the kesterite crystal structure. When comparing ionic radii of the matrix and doping elements, crystal (ionic) radii for the tetrahedral coordination are taken from Shannon’s tables [18], also other radii scales can also be used.

2. Group I elements

2.1. Hydrogen (H)
Hydrogen has been widely accepted as an effective passivation element for Si. In recent advanced hydrogenation technology, the photon-modulated charge state of hydrogen leads together with the heat treatment to an effective passivation of defects [19]. Similar to Si, in most semiconductors (e.g. GaAs, GAP, InP, and ZnSe) hydrogen impurities, being an amphoteric center, do not produce free carriers, yet hydrogen does dope chalcopyrite [20]. Hydrogen has been experimentally demonstrated to cause p-to-n conductivity-type conversion in CuInSe₂ through ion implantation [21]. This was further confirmed by first principle calculations [20] shown in figure 2. The calculations show that the effect of hydrogen in nonstoichiometric chalcopyrite (containing V\textsubscript{Cu} and/or III\textsubscript{Cu} + 2V\textsubscript{Cu}) depends on the interplay between passivation of acceptor-like defects (i.e. (V\textsubscript{Cu} + H)0, hydrogen resides next to copper vacancy) and n-type doping (i.e. pairing of H+ with (III\textsubscript{Cu} + 2V\textsubscript{Cu})0).

Recently, Hao et al reported the potential passivation role of hydrogen in pure sulfide kesterite [22]. Hydrogen was introduced into the surface region of kesterite through the atomic layer deposition (ALD) of
Al$_2$O$_3$ on kesterite (see figure 3). Though no Al was detected by XPS, the open circuit voltage (V_{OC}) of completed kesterite devices was improved by about 70 mV. Additionally, their Kelvin probe force microscopy (KPFM) measurements revealed the passivation effect from hydrogen, where the contact potential difference of kesterite with incorporated hydrogen from ALD had a significantly different profile from that of the reference. The ALD Al$_2$O$_3$-treated samples exhibited a much smoother contact potential difference (CPD) profile (less CPD variation between grain boundary and grain interior) and much narrower CPD distribution than the kesterite reference. It was speculated that the hydrogen atom could bond with sulfur anions having dangling bonds at the grain boundaries. To clarify the effect of hydrogen in terms of its location in the kesterite lattice, detailed first principle calculations are required.

2.2. Lithium (Li)
The ionic radius of Li$^+$ (0.73 Å) is very close to that of Cu$^+$ (0.74 Å), and thus has the highest probability to be incorporated into the lattice of kesterite phase and affect the photovoltaic properties compared to heavier alkali

Figure 2. The LDA-corrected formation energies of H_2, H_{Cu}, ($\text{V}_{\text{Cu}} + \text{H}$), and ($\text{In}_{\text{Cu}} + 2\text{V}_{\text{Cu}} + \text{H}$) in CuInSe$_2$ as a function of the Fermi energy E_F for Cu-poor, In-rich, and Se-rich conditions. Two different hydrogen sources are considered: atomic H (left scale) or molecular H$_2$ (right scale). The zero of E_F is set to the valence-band maximum. $+\text{, }-\text{, }0$ denote the charge states. The transition energies are marked by filled circles. Reprinted with permission from [20]. Reprinted (figure) with permission from [20], Copyright (2003) American Physical Society.

Figure 3. (a) Elastic Recoil Detection Analysis (ERDA) of the CZTS device with 0, 3 and 5 cycles of ALD-Al$_2$O$_3$, (b) Open circuit voltage of the CZTS devices with different cycles of ALD-Al$_2$O$_3$ on absorber layer, (c) Contact potential difference distribution of kesterite reference, reference + NH$_4$OH etching, and kesterite-3cycles of ALD-Al$_2$O$_3$ + NH$_4$OH etching. Reprinted with permission from [22]. (2018) John Wiley & Sons. (© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
elements. Surprisingly, the studies on Li doping/alloying on CZTS are quite recent. In 2015, Xin et al. [23] first reported Li doping in dimethyl sulfoxide (DMSO) precursor solution processed CZTSSe absorber by adding the Li salts directly into the solution. A dramatic change in the electronic property of the CZTSSe upon Li doping was found although the Li concentration in the final film was very low \(\text{Li/Cu} = 3.9 \times 10^{-5}\). The conductivity of the doped film was improved by one order of magnitude and the electrical potential at grain boundaries was reversal to the non-doped one (figure 4) which results in an upward band bending and reduces recombination by repelling minority carriers from the detrimental defect rich grain boundaries. The performance of CZTSSe solar cells was improved by more than 30% to an active-area efficiency of 11.8%.

Yang et al. [24] demonstrated that Li incorporates into the lattice of CZTSSe and tunes the band gap of \(\text{Li}_x\text{Cu}_{1-x}\text{ZnSn(S,Se)}_4\) without significant effect on carrier concentration and crystal growth [25] when films were selenized on quartz substrates. Later, they reported [26] that only traces of Li (\(\text{Li/Cu} = 3.4 \times 10^{-4}\)) were left in the final CZTSSe film when the films were fabricated on SLG substrates. A Li/Na exchange mechanism was proposed for the observed phenomenon. The Li alloying and band gap tuning are also achieved by Lafond et al. [25] from a ceramic synthesis route. Cabas-Vidani et al. [27] confirmed the lithium alloying in the kesterite thin films (\(\text{Li}_x\text{Cu}_{1-x}\text{ZnSn(S,Se)}_4\)) in the range \(x = 0\) to 0.12 as measured by inductively coupled plasma mass spectrometry (ICP-MS), and a widening of the bandgap from 1.05 to 1.18 eV was observed. Morphology improvement and apparent carrier concentration increase from \(3 \times 10^{15}\) cm\(^{-3}\) to \(5 \times 10^{15}\) cm\(^{-3}\) was observed when increasing \(x\) from 0 up to 0.07, and a corresponding device had an active area efficiency of 12.2%. In a comprehensive study on the effects of all alkali elements in CZTSSe, Haass et al. [28] found that Li is the most favorable among all alkalis, it improves the crystallization and it requires a comparatively high Sn/\((\text{Cu} + \text{Zn} + \text{Sn})\) content for the maximum device efficiency. The apparent carrier concentration estimated from C-V measurements varied in a broad range \(10^{15} \ldots 10^{18}\) cm\(^{-3}\) when changing (decreasing) the Sn content yet keeping the same Li content, indicating that the *intrinsic* doping rather prevails. A champion device with 11.5% efficiency (12.3% active area) was achieved using a ‘high’ Li concentration of 0.75 at% at an optimized Sn content.

Although the results and the explanation on the effect of Li doping/alloying differ and even contrast to each other, partially due to variation in material preparation conditions and matrix composition, some conclusions can be drawn based on the available reports [23–32]: (1) Li alloys with CZTS and widens the band gap of \((\text{Li}_x\text{Cu}_{1-x})_2\text{ZnSn(S,Se)}_4\) [24, 25, 27]; (2) incorporation of Li to kesterite is sensitive to Na so that Li alloying is more easily achieved without Na, in the ceramic route [25] or on quartz substrate, or using a blocking layer to prevent Na diffusion from SLG [24, 27]. The presence of Na diffused from SLG greatly reduces the Li doping concentration [23, 26]; (3) Li doping/alloying improves photovoltaic performance regardless the doping concentration, however, the mechanism on how Li doping/alloying improves device performance remains unclear.

Figure 4. AFM topography images (a), (d), Scanning Kevin probe microscopy (SKPM) potential maps (b), (e) and, plots of the topography and potential linescans (c), (f) (a)–(c) of CZTSSe films without (a)–(c) and with Li-doping (d)–(f). Reproduced from [23] with permission of The Royal Society of Chemistry.
2.3. Sodium (Na)
Since the early 1990’s, it is known that Na leads to significant improvements on CIGS solar cells [33]. For kesterite solar cells, the effects of Na were thoroughly investigated [34–37] and it has been shown that Na diffusion from SLG has similar positive effects on absorber morphology and device properties in kesterite devices [37, 38]. Na treatment increases grain size and improves the overall absorber layer morphology, increases doping concentration and was shown to yield improved opto-electronic properties of the absorber layer. The increased grain size is attributed to the capability of Na to form low-temperature Na$_2$Se$_x$ liquid phases and was shown to yield improved opto-electronic properties of the absorber layer. The increased grain size is attributed to the capability of Na to form low-temperature Na$_2$Se$_x$ liquid phases [37] that act as a fluxing agent and facilitate grain growth. The improvements of opto-electronic properties are associated with the passivation of defects at grain boundaries and interfaces, which are the predominant locations for Na inside the absorber layer [30]. Atom probe tomography (APT) measurements revealed that the sodium concentration in the grain interior is only about 20% of what is measured by ICP-MS in the absorber layer, which supports the assumption that sodium is primarily segregated at the grain boundaries and absorber surface [39].

NaCl treatment of solution-processed kesterite solar cells was investigated by Sutter-Fella and Werner [37, 40], who showed that a tailored addition of Na improves grain growth and optoelectronic properties, especially open-circuit voltage V_{OC} and fill-factor FF. However, only a fraction of the added sodium is eventually incorporated into the processed absorber layer, e.g. adding nominally 3.33 at% NaCl resulted in only 0.18 at% in the processed absorber layer as determined by ICP-MS measurements [28]. An 11.2%-efficient CZTSSe solar cell is fabricated using NaCl treatment (figure 5) and the device features a V_{OC} - deficit (defined as $E_g/e - V_{OC}$) of only 0.57 V, which is amongst the lowest for kesterite solar cells [41]. The reduced V_{OC} - deficit is attributed to a low diode saturation current and ideality factor, which are signatures of the semiconductor material with a low concentration of recombination centers. Even a higher efficiency of 11.6% was obtained for a Na-doped CZTSe absorber grown by thermal co-evaporation [42], proving the effectiveness of the Na doping.

2.4. Potassium (K)
Based on its chemistry, K could be located on the Cu positions within the kesterite lattice, however, previous studies about the localization of potassium in chalcogenide absorber layers by APT revealed that potassium is segregating at the grain boundaries [43, 44]. Due to the large size of 1.51 Å of the K+ ion and thus a high substitution energy of 1.53 eV, alloying of potassium within the kesterite lattice is unlikely [30]. Potassium addition can enhance the (112) preferred orientation and reduce ZnS secondary phases in solution-processed CZTS absorber layers [45]. For solar cell devices, a reduction in the series resistance was observed upon potassium addition [45] whereas the carrier concentration could be increased for potassium as compared to untreated samples [32, 46]. Potassium is a potent agent to promote grain growth during the absorber layer synthesis.

Potassium treatment of kesterite solar cells can be conducted using two main approaches: the potassium-fluoride post deposition treatment (KF-PDT) [47] and the bulk treatment [48]. KF-PDT of solution-processed kesterite solar cells with various KF thicknesses exhibits a decrease in short-circuit current density j_{SC}, FF and efficiency with increasing KF thickness, which originates from a severe blocking of the photocurrent (figure 6(a)). The CdS buffer layer growth is not affected by KF-PDT, but the buffer layer exhibits a photoconductivity effect in external quantum efficiency (EQE) measurements. Although KF-PDT improves the V_{OC} it is evident that the surface chemistry does not yield a beneficial interface layer and thus, no performance improvements can be observed [47].

The K bulk treatment of kesterite solar cells leads to an enhanced grain growth and improved photovoltaic (PV) properties resulting in devices close to 10% conversion efficiency. K is an effective fluxing agent and additionally suppresses incorporation of Na from the soda lime glass. Incorporation of high concentrations of K also reduces the loss of Sn, which results in a change of order/disorder of the Cu/Zn sub-lattice and thereby additionally widens the bandgap and increases the tetragonal distortion [48]. Potassium doping increases the
carrier concentration as derived from C-V measurements shown in figure 6(b). Higher nominal K concentrations require an adjustment of the Sn content in the absorber layer in order to avoid formation of Sn(S,Se)₂ secondary phase and thus deterioration of the device performance.

2.5. Rubidium (Rb) & caesium (Cs)
Rubidium and caesium are alkali elements with ionic radii of 1.66 Å and 1.81 Å, respectively, which is significantly larger than Cu with 0.74 Å. XRD measurements on Rb and Cs treated CZTSSe absorber layers indicated that Rb and even more so Cs are not replacing CZTSSe atoms in the kesterite lattice [32]. The impact of Rb and Cs on kesterite absorbers and respective device performance was studied several times [28, 29, 32]. Equivalent to the lighter alkali metals, Rb and Cs can form alkali poly-selenide liquid phases at comparably low temperatures. These liquid phases act as a fluxing agent during the selenization process and improve grain size and the overall absorber layer morphology. However, a too high concentration leads to the fragmentation of the absorber layer and a dense but small-grained morphology (figure 7). Rb and Cs treated samples exhibit a large-grain morphology for 'low' nominal alkali concentration, whereas a 'high' alkali content results in a small-grain morphology. The final device efficiencies are correlated with the absorber layer morphology, and the highest efficiency of 8.8 and 9.1% were obtained for Rb and Cs, respectively, for 'low' concentration of ca. 0.15 at% (relative to all elements, as measured by ICP-MS) [28]. It is not clear how much of Rb and Cs are located inside the kesterite grains so it is assumed that most of them reside at grain boundaries.

2.6. Comparison of alkali elements
Several studies comparing different alkali elements and their effects on kesterite properties and device performance have been published [29, 31, 32, 49]. However, no consistent experimental results have been obtained concerning the impact of alkali treatments on the device properties and performance. A study by Haass et al [28] revealed that each alkali element requires a different absorber composition to achieve the highest PV performance (figure 8(a)). From Li to Cs the nominal Sn concentration (Sn/Cu + Zn + Sn) required for best device performance should be reduced by more than 20% (relative).

The alkali concentration yielding the best devices for Li (11.1% efficiency), Na (10.0%) and K (10.0%) is 10 times higher compared to optimum alkali concentration for Rb (8.8%) and Cs (9.1%). ICP-MS measurements show that the alkali content in the kesterite layer is proportional to the nominal input, however, light dopants like Li tend to be lost during the processing steps (in the case of spin-coated precursor solutions). As the alkali elements...
are preferably located along the grain boundaries [50, 51], the overall amount measured by ICP-MS, which does not discriminate between alkali elements inside grains or at the grain boundaries, is expected to be higher for samples with a higher density of grain boundaries.

The morphology for each alkali element and concentration indicates that the lighter alkali elements require a higher concentration to reach a similar improvement in morphology as compared to the heavier alkali elements. This could be due to lower melting points for alkali-poly-selenide phases of heavier alkali species as compared to lighter ones [52–56]. Because of the lower melting points the heavier alkali elements act more efficiently as a fluxing agent and, hence, lower concentrations are required to achieve similar grain size improvements.

The PV parameters correlate with the changes in morphology with best devices exhibiting large grains throughout the whole absorber layer with a low density of grain boundaries (figure 8(b)). The formation of Sn(S,Se)2 secondary phase is increased for the heavier alkali elements and for ‘high’ concentrations. As revealed by EQE and C-V measurements the apparent carrier concentration varies by three orders of magnitude depending on the Sn content, except for high Rb and Cs content where a constant kesterite composition and therefore constant apparent carrier concentration is observed. A ranking of best device performances employing alkali treatment resulted in the order of Li > Na > K > Rb > Cs based on the statistics of more than 700 individual cells.

TRPL measurements of numerous alkali-containing devices yielded PL decay times in the range 1.0 – 11% and the stars indicate the Sn content yielding highest efficiency for a given alkali element. (b) SEM cross sections of the full devices visualize the impact of no alkali, Li and Rb (both ‘low’ and ‘high’ concentration) treatment on the absorber layer morphology.

TRPL measurements of numerous alkali-containing devices yielded PL decay times in the range 1.0 – 11% and the stars indicate the Sn content yielding highest efficiency for a given alkali element. (b) SEM cross sections of the full devices visualize the impact of no alkali, Li and Rb (both ‘low’ and ‘high’ concentration) treatment on the absorber layer morphology.

Figure 8. (a) Device efficiency as a function of the nominal Sn content and the alkali elements. The color code resembles the efficiency up to 11% and the stars indicate the Sn content yielding highest efficiency for a given alkali element. (b) SEM cross sections of the full devices visualize the impact of no alkali, Li and Rb (both ‘low’ and ‘high’ concentration) treatment on the absorber layer morphology.

2.7. Silver (Ag)
One of the most explored methods to improve the efficiency of CZTS solar cell is partial substitution of Cu by Ag. The increase in \(V_{OC} \) on both CZTS or CZTSe is evident in most of the reported studies [58–62]. This strategy was theoretically proposed as an effective method to reduce the concentration of \(Cu_{520} \), antisite pairs [63, 64]. The substantially higher crystal radius of Ag+ (1.14 Å) compared to Cu+ (0.74 Å) contributes to the higher formation energy of antisite defects and Ag-related defect complexes such as Ag_Zn^+ + Zn_Ag and 2Ag_Sn^+ + Sn_Zn in Ag_ZnSnS_4 (AZTS) based on theoretical calculations [18, 65–67] (figure 9(a)). The lower valence band edge in AZTS (by 0.74 eV) also plays an important role in decreasing the amount of antisite defects [65]. However, it also increases the formation energy of the other acceptor defects which makes the intrinsically n-type AZTS difficult to be doped p-type. Besides the higher formation energy, the Ag- and Zn-related defects form shallow defects and consequently their defect cluster creates smaller band edge shifting compared to CZTS (see figure 9(b)). In the case of partial Ag substitution, low level (<6% Ag) Ag substitution is expected to suppress Cu-Zn disorder only under Cu-rich and constrained Cu-poor conditions (presence of ZnS, SnS, and Cu-deficient phases with Zn- and Sn-rich condition); meanwhile, at a high level (>6% Ag) Ag substitution, the disorder suppression is more effective because higher formation energy of antisite defects [68].

There are several experimental studies for \(Cu_xAg_{1-x}ZnSn(S,Se)_4 \) (CAZTSSe), \(Cu_{1-x}Ag_xZnSnS_4 \) (CAZTS) and \(Cu_{1-x}Ag_xZnSnSe_4 \) (CAZTSce) crystal powders with \(0 \leq x \leq 1.0 \) have been reported to have tetragonal kesterite structure based on Rietveld refinement analysis of XRD and bandgap from 1.5 to 2.01 eV for CAZTS and from 1.0 to 1.34 eV for CAZTSce [69]. Recently, another study using neutron and x-ray diffraction suggests that CAZTSce with \(x = 0.17 \) and 0.46 crystallize in the stannite type structure and thus suppress Cu/Zn disorder while the end members of the solid solution are reported to crystallize in the kesterite structure [70]. In terms of optoelectronic properties, Gershon et al reported reduction in band tailing from CZTS to AZTS based on the reduction of the band tailing parameter (\(\gamma \)) extracted from EQE with a value of \(\approx 18 \) meV which is half of the one for CZTSe (\(\approx 33 \) meV) [71].
addition, there is a change of majority carriers from p-type (for CZTSe) to n-type (for AZTSe) which is accompanied by a significant decrease in carrier concentration and increase in Hall mobility (see figure 10). They also first demonstrated a reduction in the V_{OC} deficit ($E_g - V_{OC}$) from about 660 to 580 mV and device performance improvement from 9% to 10.2% efficiency for the 10% Ag substituted CZTSe using a co-evaporation process [58]. Similar results for CAZTSe is also obtained through nanoparticle ink synthesis which achieved device improvement up to 7.2% for CAZTSe at 5% Ag substitution due to improved grain growth, improved minority carrier lifetime, reduced defect formation, and reduced potential fluctuations [60].

For sulfur-based CAZTS, Wong et al reported the first solar cell device improvement from 4.9% to 7.2% based on molecular method using metal salts precursor [59]. The power conversion efficiency for pure sulfide kesterite with Ag substitution was further improved to 8.3%, with the suppression of non-radiative defects as the main reason for this improvement [72]. The incorporation of Ag (<7 mol% of Ag/(Ag + Cu)) improved the grain size, increased the depletion width, decreased the charge carrier density, and improved the PL decay time from 1.9 ns for non-intentionally doped CZTS to 3.6 ns for 5 mol% Ag-doped [59, 72].

Similar results are also obtained for CAZTS (Ag/(Ag + Cu) of ca. 0.02) deposited by spray pyrolysis, where the use of an Ag-incorporated film improved the band alignment at the CdS–CZTS interface [73]. In that case the conduction band-offset at the absorber-buffer interface estimated from x-ray photoelectron spectroscopy and EQE measurements was reduced from -0.25 eV for the CdS–CZTS down to -0.17 eV for the CdS–CAZTS heterointerface [73].

Following these positive results, several synthesis strategies were explored to improve the Ag-substituted CZTSSe. Qi et al obtained the highest solar cell efficiency of 10.36% for CAZTSSe at 3% Ag substitution using a solution-based method [57]. They observed a reduction of the V_{OC} deficit from 727 mV (CZTSSe without Ag) to 601 mV (CAZTSe with 3 mol% Ag).
Another strategy of using Ag is by engineering the interface band bending and defect elimination, by placing a higher Ag content CAZTSSe at the back and front interface to create V-shape Ag-graded film [7, 62, 65]. The highest efficiency of 11.2% with a 110 mV V_{OC} enhancement was achieved due to the improvement of the distance between Fermi levels and conduction bands and decrease in Cu_{Zn} defects at the interface [61]. The energetic difference between the Fermi level and conduction band of the Ag-graded CdS/CAZTSSe heterojunction was estimated from ultraviolet photoelectron spectroscopy and PL measurements to be 100 mV smaller than that of the CdS/CAZTSSe heterojunction [61]. To conclude, Ag substitution has shown encouraging results in tackling V_{OC} limitation in CZTS solar cell based on the experimental evidence of reduced band tailing parameter (γ), improved photoluminescence decay time, and better band level alignment at the interface.

3. Group II elements

3.1. Magnesium (Mg)

It was suggested that the substitution of Cu or Zn by other elements such as Mg could suppress the antisite defects Cu_{Zn} and/or Zn_{Cu}, formation that limit kesterite solar cells performance [13]. Several studies about the Mg incorporation into kesterite have been published, but the observed effects of Mg are contradictory. For instance, Cu_2MgSnS_4 thin films grown by ultrasonic co-spray pyrolysis showed p-type conductivity and band-gap energy of 1.76 eV [74]. In contrary, n-type conductivity was estimated for ($Cu_{1-x}Mg_x$)$_2ZnSnSe$_4$ bulk materials with $x = 0.1$–0.4, which was attributed to the formation of the donor-type Mg_{Cu} antisite defects [75]. The formation of stable $Cu_2MgSn(S,Se)$_4 was calculated based on the density functional theory [13], whereas a complete phase separation was predicted by [64].

Regarding solar cells with Mg incorporation, $Cu_2Zn_{1-x}Mg_xSn(S,Se)$_4 absorber layers with variable Mg concentration $x = 0...1$ were deposited using the solution approach [76]. For heavy Mg alloying with $x = 0.55...1$ the phase separation of Cu_xSnSe_2, $MgSe_2$, $MgSe$ and $SnSe_2$ occurs in agreement with literature predictions [64], whereas a lower Mg concentration of $x = 0.04$ resulted in the kesterite phase. An apparent carrier concentration of $1 \times 10^{16} \text{ cm}^{-3}$ was measured for Mg-doped kesterite solar cell device, confirming the p-type conductivity. Raman spectroscopy indicated that structural defects can be reduced in Mg-containing absorbers as compared to the dopant-free reference samples, resulting in the highest device efficiency of 7.2% for a Mg-doped cell measured in [76].

3.2. Cadmium (Cd)

Cd alloying of kesterite (CZCTS) was proposed to reduce the impact of Cu_{Zn} and Zn_{Cu} antisite defects. The formation of large population of Cu_{Zn} and Zn_{Cu} antisite defects is mainly due to the close cation sizes and chemical electronic properties of Cu^+ and Zn^{2+} in kesterite system [77]. Cd is in the same group with Zn and is expected to substitute Zn in the host lattice. As the ionic radius of Cd$^{2+}$ (0.92 Å) is larger than that of Cu$^+$ and Zn$^{2+}$ (both 0.74 Å), Cd is expected to increase the formation energy of Cu_{Cd} and Cd_{Cu} antisites defects, thereby suppressing the disorder and band tailing issues in kesterite system. In addition to the change in the defects system, replacing Zn by Cd can also facilitate the grain growth and suppress the secondary phase formation [78, 79]. Therefore, Cd alloying in kesterite has drawn considerable attention. According to the density functional theory (DFT) calculation, the role of Cd alloying depends on the Cd content in the system [68]. Low level of Cd substitution can alleviate the disorder in the Cu-Zn sublattice because of the increased formation energy of antisite defects, whilst high level of Cd substitution will be detrimental due to the transformation from the kesterite to stannite structure.

Wong et al reported significant device performance improvement by finely tuning the Zn/Cd ratio in CZTS using sol-gel method (figure 11(a)) [78]. The grain sizes of Cd alloyed CZTS increase substantially as the Cd/(Cd + Zn) ratio increases from 0 to 40%, but stop increasing from Cd concentration over 50%. Furthermore, phase transition from kesterite to stannite is revealed when Cd/(Cd + Zn) > 0.6, which agrees with the theoretical calculation results [68] and experimental study [80]. In addition, Wong et al also showed the suppression of ZnS secondary phases and the change of carrier density and related depletion region width due to the Cd alloying. With the optimized amount of Cd alloying, efficiency is significantly improved from 5.3% to 9.24% by controlling the Cd substitution at 40%.

Similar results were also observed by Hao et al [79], where the reported efficiency was further boosted to 11.5% by fixing the Cd substitution to 40% based on vacuum-based sputter method (figure 11(b)). Their work also showed the enlarged grain size and changed secondary phases with Cd-alloying. The band tailing problem in their work is studied by Urbach tail energy (E_{Urbach}) model which is characterized by photothermal deflection spectroscopy (PDS). The lower E_{Urbach} of CZCTS compared to CZTS indicates the reduced band tailing which is correlated to the decreased disorder resulting from Cu-Zn antisite defects. Additionally, the Cd alloying can also increase the minority carrier lifetime. As a result, the V_{OC}-deficit reduced by more than 100 mV after Cd substitution [79].
It is well known that the Se-containing kesterite solar cells present less V_{OC} deficit than that of pure sulfide [82, 83], which could possibly be attributed to the higher formation energy of Cu-Zn antisite defects in selenide kesterite [84]. In this case, the amount of Cd substitution can be controlled in a lower amount to obtain fewer antisite defects. Wu et al reported that the device performance of CZTSSe solar cell is improved from 5.41% to 8.11% by introducing only 5% Cd substitution in a solution method (figure 11(c)) [81]. The role of Cd alloying in promoting grain growth and changing charge density and depletion region width is also observed in this research. By controlling the Cd/(Cd + Zn) at 0.13, Sun et al achieved a CZTSSe solar cell with efficiency over 11% [85]. The Cd was incorporated by selenizing chemical bath deposited CdS on top of the sputtered quaternary CZTS precursors. Besides the grain size and carrier concentration change as reported previously, the trap energy level is estimated to be decreased after Cd alloying.

So far, CdS has been generally adopted as the buffer material for Cd-alloyed kesterite. For pure sulfide kesterite CZTS, Zn$_{0.5}$Cd$_{0.5}$S was showed as a potential buffer option [86]. Upon heat treatment of CZTS/CdS heterojunction, Zn$_{0.5}$Cd$_{0.5}$S/Cu$_{2}$Zn$_{0.5}$Cd$_{0.5}$SnSe$_{4}$ heterointerface is formed as a result of elemental inter-diffusion, where slight Cd diffuses into the CZTS surface and Zn diffuses into CdS [86]. Hao et al reported that these elemental inter-diffusion at heterojunction facilitates the formation of a more favorable band alignment of Zn$_{0.5}$Cd$_{0.5}$S/Cu$_{2}$Zn$_{0.5}$Cd$_{0.5}$SnS$_{4}$, resulting in the suppression of the heterojunction interface recombination, which promotes the efficiency of pure sulfide CZTS to over 11% [86].

4. Group III

4.1. Indium (In) and gallium (Ga)

The crystal structure of kesterites is generally derived from the wurtzite crystal structure of ZnSe in the increasing series of complexity from ZnSe–CuInSe$_2$–Cu$_2$ZnSnSe$_4$ in the attempt to avoid the scarce materials In and Ga. However, the chalcopyrite ancestors of the kesterites based on Cu(In, Ga)Se$_2$ still outperform solar cells with kesterite absorbers by far. Despite the limitation in indium abundancy it is therefore interesting to evaluate mixtures in the CuInSe$_2$–Cu$_2$ZnSnSe$_4$ system and put their behavior in relation.

In recent experiments, Giraldo et al. have processed CZTSe thin film absorbers by a sequential sputter and reactive annealing process [87] and studied the impact on performance of depositing small amounts of In (0–10 nm, corresponding to a maximum of up to nominal 2.6 × 1010 at cm$^{-3}$) onto the metallic precursor stacks prior to selenization. The efficiency of solar cell devices was slightly decreased, mainly by a small drop in FF, suggesting that CZTSe can tolerate incorporation of small amounts of In into the crystal structure, but devices did not particularly benefit from it.

Powders along the complete compositional range from Cu$_2$ZnSnSe$_4$ to 2 CuInSe$_2$ were synthesized by Schorr et al [88]. For these CuIn$_{x}$[Zn$_{0.5}$Sn$_{0.5}$]$_{1-x}$Se$_2$ materials a miscibility gap in the region $0.4 < x < 0.8$ was found with a chalcopyrite crystal structure on the In-rich side of the gap and a kesterite structure on the (Zn, Sn)-rich side. Simultaneous Rietveld refinement of X-ray and neutron diffraction data revealed that mixing small amounts of Cu$_2$ZnSnSe$_4$ into CuInSe$_2$ leads to a random distribution of In, Zn and Sn atoms exclusively on the 4b position of the chalcopyrite structure, while mixing small amounts of CuInSe$_2$ into CZTSe influences all three cation sites in the kesterite structure.

Hartnauer et al were able to reproduce the reported miscibility gap with thin films prepared by co-evaporation [90]. Here, off-stoichiometric Cu-poor Zn-rich films with typical values of [Cu] / ([Zn] + [Sn]) (CZT) and [Zn]/[Sn] (ZT) ratios of 0.7–0.8 and 1.3, respectively, were used. In this work, slightly increased
5.1. Silicon (Si)

At first glance, silicon is a very interesting element for alloying with the kesterite structure. Its abundance in the earth crust is by far higher than the other kesterite elements (282 000 ppm [95] or 28%) and the oxidation state +4 is very stable. Thus, it could be incorporated at the Sn-sites of the kesterite lattice and even prevent the instability that is related to the volatility of Sn and its tendency to be reduced to the $^{+2}$ oxidation state [96]. Additionally, a band gap range of up to 2.4 eV [97] should be accessible for the Cu$_2$ZnSiS$_4$ alloy.

However, Cu$_2$ZnSiS$_4$ has the wurtzstannite structure [98, 99] and there is a considerable size mismatch between Sn and Si [97]. Although first-principles calculations predicted miscibility in a wide compositional range [97], this could not be verified experimentally. In an evaporation-based study it was found, that Si does not

Figure 12. (left) Experimentally determined pseudo-ternary phase diagram of the CZTSe–ClSe–ZnSe system for Cu-poor and Zn-rich CZTSe alloys. $I_{\text{IZT}} = \frac{[\text{In}] + ([\text{Zn}] + [\text{Sn}])/2 + 2[\text{Sn}]}{[\text{Zn}] + [\text{Sn}]}$ and $Z_{\text{t}} = ([\text{Zn}] + [\text{Sn}])/2$. Red lines on the edges: miscibility gaps between the two phases as determined in the literature. Black squares: in situ XRD confirmed single phased alloys. Red circles: phase-separated alloys. (right) Calculated Ehull (circles) and their interpolation (color map). Copyright © 2016, Author(s). Reproduced by [89]. CC BY 4.0.
intermix with the kesterite lattice [100]. Only the Sn-free Cu₂ZnSiSe₄ could be formed, but the obtained photocurrent of complete devices was very low.

For Cu₂Zn(Si₁₋ₓSnₓ)S₄ there is at least one report from Hamdi et al using a ceramic route that could form alloys up to x = 0.5 with a band gap of 1.7 eV that is ideal for an application in tandem solar cells [101]. However, no working solar cell devices have been demonstrated so far.

In addition to alloying it is worth to mention, that Si was also used in smaller quantities as a dopant for CZTSe absorbers and working solar cells were fabricated, but the efficiency was lower than for the reference and gradually decreases with the amount of Si [102].

In summary, Si can be incorporated into the kesterite lattice by substituting Sn. However, due to the high formation energy, the compounds are very challenging to synthesize. The solar cell efficiency clearly decreased with Si as a dopant and no working solar cells could be fabricated for the Cu₂Zn(SiₓSn₁₋ₓ)(SₓSe₄₋ₓ) alloys.

5.2. Germanium (Ge)

Germanium (Ge) is probably one of the most suitable and interesting group IV elements for adding into the kesterite structure, in particular at the Sn-sites. Considering the most stable oxidation states of these two elements, +4 is more likely to occur with Ge than with Sn [103], thus avoiding presence of potentially harmful +2 oxidation states [104]. Additionally, a bandgap range from 1.0 to 2.25 eV is possible with the Cu₂Zn(Sn₁₋ₓGeₓ)(SₓSe₄₋ₓ) alloy [97, 105–107]. Several works can be found on the Ge addition in the kesterite host, from doping levels to alloying, including partial and total substitution of Sn, and some of them are here presented.

Regarding doping strategies, Giraldo et al reported the beneficial effect of Ge as dopant in CZTSe [108], observing a large efficiency improvement for very small quantities of Ge (<0.5% relative to Sn), followed by additional studies further exploring the origin/mechanisms involved in this approach [109–112]. Firstly, a strong impact on the morphology and grain size has been observed, frequently obtaining large grains [108, 112]. This was related to the formation of Ge-Se liquid phases (at ~380 °C) during the reactive annealing, acting as crystallization flux. Other beneficial effects of Ge have been reported, including interaction with Na with effect on the carriers concentration [111], modification of the reaction pathways minimizing Sn-Se phases formation (avoiding to a large extent the Sn loss and secondary phases formation) [112], passivation of detrimental grain boundaries related to high recombination [110], annihilation or minimization of Sn-related deep defects [113]. Through the optimization of doping strategies, by adding Ge nanolayers at the bottom and on top of metallic precursors, Ge doping has contributed to considerably reduce the VOC deficit to <0.57 V thus achieving a record efficiency of 11.8% [112].

On the other hand, alloying approaches have been also investigated recently. As in the case of doping, Ge alloying of kesterite has immediately demonstrated a great potential, with device efficiencies ranging from 6.8% up to 12.3% [114–122]. Among them, it is interesting to note that the best efficiency was achieved with a relative Ge content of 39% (i.e. (Ge/(Ge + Sn) = 0.39), through the optimization of a thermal annealing containing GeSe₂ [117, 119] leading to an improvement of the VOC deficit by reducing band tailing, and a reduced carrier recombination at the absorber/buffer interface and/or in the space-charge region. Collord et al studied almost the full range of possible Ge/(Ge + Sn) compositional ratios (from 0 to 90%) by preparing a continuously graded sample with combinatorial mixing of Ge and Sn containing inks [118], and achieved an 11% efficiency solar cell with an optimized 25% Ge substitution (x = 0.25) with $E_g \approx 1.2$ eV, leading to a remarkable reduction of the Voc deficit. Thus, the full range of Ge substitution has been investigated to some extent, including the pure Ge compound in recent reports, demonstrating that the CZGSe exhibits also kesterite structure [123]. Among the most relevant pure Ge kesterite results, Schnabel et al reported efficiencies exceeding 5% for a sulfo-selenide CZGSSe ($E_g \approx 1.5$ eV) solar cell [124], while for the selenide CZGSe ($E_g \approx 1.4$ eV) compound, Sahayaraj et al published a 5.5% efficiency device with a remarkable V_{OC} of 744 mV [125]. Intriguingly, the Ge based kesterite showed less electrical losses from band tailing/electrostatic potential fluctuations compared to Ge free devices [125, 126]. However, the main limiting factors were linked to a high series resistance, leading to imperfect current collection and a high interface recombination [127]. Trying to address these issues, a detailed optimization of the CdS chemical bath deposition has allowed achieving a record efficiency of 7.6% for a CZGSe ($E_g \approx 1.36$ eV) absorber [128].

6. Group V

6.1. Antimony (Sb)

In a large study assessing over 200 solar cells, Tiwari et al. concluded that Sb and Na co-doping substantially improve the efficiency of Cu₂ZnSnS₃ (CZTS) prepared by thermolysis of molecular precursors as exemplified in figure 13(a) [129]. The introduction of Sb as a dopant was inspired by the positive effects on grain growth previously demonstrated in CIGS [130]. In the case of CZTS, Sb was also observed to act as a recrystallization flux leading to more effective grain growth and compact films as a result of a decrease in the enthalpy of f-I-4 phase formation [129]. Sb doping showed an overall improvement in key CZTS device metrics such as V_{OC} and fill
factor, which results as a consequence of the complex interplay of remediation of elemental disorder and improvement of band alignment. Figure 13(b) illustrates the decrease of the isotropic thermal parameter in Sn and Cu sites (as obtained by XRD structure refinement) upon Sb and Na doping, respectively, suggesting a significant decrease in disorder at these sites [129]. The effect of Sb on Sn disorder can be simply rationalized by their similar ionic radii (Sb, Z = 51 to Sn, Z = 50). Zhang et al showed by DFT SbSn exhibits smaller lattice relaxations and has lower formation energy than native CZTS defects [131]. It should be mentioned that CuSn and ZnSb, antisite domain boundaries have been experimentally observed by atomic resolution transmission electron microscopy in CZTS crystallites [132]. Furthermore, DFT supercell calculations by Chen et al concluded that such antisites give rise to mid-gap traps which could be highly detrimental to device performance [6].

Sb doping has also a strong effect on the surface electronic landscape of CZTS, as recently revealed by Tiwari et al using high-resolution energy-filtered photoelectron emission microscopy [133]. Figure 13(c) shows a substantial narrowing of the spatial distribution of effective work-function upon Sb and Na/Sb co-doping, which is another indication of a decreased elemental disorder. Sb (group V) generates donor states, which leads to a decrease of the overall work function, while Na co-doping result in a substantial work-function increase. Tiwari and co-workers also observed a grading of Sn content with a maximum concentration at the Mo/CZTS boundary of 0.069 ± 0.007 wt%, while Na co-doping led to 2.5 times lower Sb content [133]. Figure 13(c) also depicts how these trends can affect the CZTS/CdS barrier heights, which have shown a close correlation with recombination activation energies estimated by the temperature dependence of Voc in devices [133]. Interestingly, this approximation to barrier heights enable estimating CZTSSe/CdS conduction band offsets in the range of 0.3 to 0.4 eV [134], which is consistent with values proposed in the literature [135]. However, quantitative analysis of band-offsets remains a highly challenging issue in view of elemental intermixing generated in high-quality junctions as exemplified by the elegant work by Bär et al [136].

7. Group VII-B and VIII-B

7.1. Manganese (Mn)

Among transition metal candidates, Mn is one of the promising elements to replace Zn. Electron configuration in Mn is quite stable at oxidation state +2, because of the nature of half-filled 3d^5-orbitals, instead of partially filled orbital in Fe, Ni or Co according to Pauli exclusion principles [137]. Furthermore, the cation radii mismatch in the 4-fold coordination between Mn^{2+} (0.80 Å) and Cu^{2+} (0.74 Å) is the largest compared to Zn^{2+} (0.74 Å), Fe^{2+} (0.77 Å), Co^{2+} (0.72 Å), and Ni^{2+} (0.69 Å) [18]. Based on DFT calculations, Cu2MnSnS4 (CMTS) should be thermodynamically stable in the stannite phase with I-42m space group symmetry [12] (see figure 14). In addition, Mn also has a higher relative abundance than Zn [138].

Most of the early studies of CMTS focused on investigating its magnetic, optical and electrical properties [139, 141, 142]. In terms of solar cell application, CMTS thin film is considered as absorber layer due to its similarly high absorption coefficient (>10^4 cm^-1) [142]. The direct band-gap of CMTS was calculated to be 1.52 \text{eV}, which coincides with the measured 1.42–1.59 eV [143]. From reversible annealing treatments it was also concluded that just like CZTS disorder also occurs in CMTS.

Several studies have reported the photovoltaic performance of CMTSSe both for vacuum and non-vacuum based, even though the power conversion efficiency is generally rather poor (<1%) [144–148]. A highest conversion efficiency is 0.83% for CMTS solar cell with the ratio of Cu/(Mn + Sn) =0.8 and Mn/Sn ≈1.1.
synthesized through two-step thermal evaporation, while the record is 0.33% for CMTSSe by sol-gel technique. Unlike CZTS, CFTS is more stable in stannite crystal structure. Unlike CZTS, CFTS is more stable in stannite crystal structure.

The amount of Fe increases as pure CFTS has a high conductivity, it is also used as counter electrode in DSSC solar cell. As pure CFTS has a high conductivity, it is also used as counter electrode in DSSC solar cell.

Figure 14. (a) Crystal structure of Cu$_2$MnSnS$_4$. Reprinted (figure) with permission from [139], copyright (1997) by the American Physical Society; (b) carrier density as a function of Mn/(Mn + Zn) in CMZTSSe. Reproduced from (2017) with permission of The Royal Society of Chemistry.

7.2. Iron (Fe)

As a matter of fact, a natural mineral kesterite has formula Cu$_2$(Zn,Fe)SnS$_4$ [154] with an approximate content of Fe/(Fe + Zn) = 0.25. The quaternary chalcogenide Cu$_4$FeSnS$_4$ (CFTS) is commonly studied for its stability and the abundance and non-toxic nature of Fe. Unlike CZTS, CFTS is more stable in stannite crystal structure (ST) with an I-42m space group which shows less cationic disorder from the kesterite structure [155]. CFTS thin films have been fabricated by various methods, such as solvothermal [142], hot injection method [141], molecular method [156], spray pyrolysis [157], and mostly focused on its magnetic properties. Even though CFTS exhibit a band gap between 1–1.5 eV and high absorption coefficient (105 cm$^{-1}$) in the visible spectrum range [158], there are not many reported CFTS photovoltaic devices in literature. Efficiency of 0.07% is achieved with glass/MoS$_2$/CFTS/CdS/i-ZnO/AZO by using RF magnetron sputtering to deposit the absorber [159]. A. J. Pal group managed to synthesize CFTS with SILAR method and achieved solar cell efficiency of 2.95% by replacing the CdS buffer layer with the Bi$_2$S$_3$ buffer [160], which exhibits a more favorable band alignment at the interface as measured by scanning tunneling spectroscopy (STS) (figure 15). As pure CFTS has a high conductivity, it is also used as counter electrode in DSSC solar cell [157, 161]. Some usage in photoelectrochemical cells (PEC) [162] and n-type absorber in hybrid organic solar cell [163] have also been reported.

As for the Fe alloying in CZTS, both of Fe$^{2+}$ (0.66 Å) and Zn$^{2+}$ (0.64 Å) have similar ionic radii, which enables a solid solubility in the Cu$_2$Zn$_{1-x}$Fe$_x$SnS$_4$ (CZFTS) [18]. There are few studies about CZFTS thin film properties which shows transformation from kesterite to stannite and increase in band gap (ranging from 1.35 eV to 1.7 eV) as the amount of Fe increases [156, 164–166]. However, a combinatory study using spray coating showed a strong detrimental effect on quasi-Fermi level splitting (QLFS) in Cu$_2$Zn$_{1-x}$Fe$_x$Sn(S,Se)$_4$ even at low concentrations of Fe [167]. So a possible positive role of Fe doping is doubtful as transition metals with a partially filled d-orbitals (Fe, Cr, Co) can introduce deep defect states within CZTSSe bandgap similarly to what is observed in CIGS absorbers [168, 169].

7.3. Nickel (Ni)

Another transition metal that can substitute for Zn is Ni since the ionic radius 0.69 Å for Ni$^{2+}$ is close to 0.74 Å for Zn$^{2+}$ [18]. Theoretical studies reported that the substitution of Ni for Zn in CZTS compound can potentially enhance...
electrical conductivity and reduce the optical band gap \[155\]. However, the defects complex in Cu$_2$NiSnS$_4$ (CNTS) is predicted to yield localized in-gap states based on first principles density functional theory calculations \[12\]. Nevertheless, CNTS has been synthesized through various synthesis method such as hot-injection, solvothermal and hydrothermal to obtain nanoparticle CNTS \[142, 170–174\]. CNTS has an energy band gap of 1.5 \(\sim\) 1.6 eV similar to CZTS and a high optical absorption coefficient of \(\sim 10^6\) cm \(^{-1}\) \[142, 170–174\]. CNTS exhibits the zincblende crystal structure while a complementary theoretical calculation predicts the P4\(\overline{2}c\) polytype as the most thermodynamically stable phase \[175\]. Two solar cell architectures with CNTS have been reported: a device architecture glass/Mo/CNTS/CdS/Al-ZnO/Al yielded 0.09% efficiency \[175\] whereas another structure utilizing ZnS coated on ZnO nanorods in the ITO/ZnO-nanorods/ZnS/CNTS/Au architecture yielded 2.71% \[176\]. It is not certain if the PV effect can be attributed to the CNTS absorber because comparable efficiencies were also obtained for Cu$_2$FeSnS$_4$ and Cu$_2$CoSnS$_4$ layers in the identical device structure.

8. Conclusions

8.1. What we learnt

The highest efficiency devices featuring extrinsic doping elements are summarized in tables 1 and 2, restricted to the one highest efficiency value per element (total area measurement whenever available). Without repeating dopant-specific results described in the previous sections, the following general observations can be deduced:

1. Several dopants have been reported to improve the performance of kesterite solar cells as compared to the nominally undoped reference devices. It is often difficult to differentiate between pure electronic effects of the dopant and other possible influences such as changes in the crystallization path leading to a different morphology, deviations in matrix composition, presence of alkali dopants coming from the substrates or atmosphere, etc.

2. Alkali dopants (Li, Na, K and to some extent Cs/Rb) have been proven to increase acceptor concentrations as well as to improve the morphology of the polycrystalline kesterite absorbers enabling more efficient devices. For the highest efficiency both matrix element composition and alkali dopant concentration must be carefully selected.

3. Alloying strategies by the isoelectronic substitution of Cu with Ag, Zn with Cd, or Sn with Ge do change the absorber bandgap as predicted within the solid solution ranges, can suppress the formation of secondary phases, and can partially reduce the disorder of the cation sub-lattice.

4. None of the reported doping or alloying strategies has succeeded in beating the record efficiency of the nominally ‘undoped’ device with 12.6% efficiency (which may contain Na-doping stemming from the glass substrate). This indicates that rather intrinsic defects are prevailing in kesterites, thus governing optoelectronic properties of the kesterite absorbers and providing an extraordinary tolerance against extrinsic doping.
Table 1. Compilation of the highest efficiency kesterite solar cells, which include extrinsic doping elements with concentration <1 mol%.

Material	Doping element	Eg (eV)	Voc (mV)	Eff (%)	References
CZTSSe	nominally undoped*	1.13	513	12.6	[3]
CZTSSe	Li	1.04	449	11.5	[28]
CZTSSe	Na	1.0	423	11.6	[42]
CZTSSe	K	1.02	432	9.7	[48]
CZTSSe	Rb	0.96	419	8.8	[28]
CZTSSe	Cs	0.97	439	9.1	[28]
CZTSSe	In	1.02	423	7.8	[87]
CZTSSe	Ge	1.04	463	11.8b	[112]

Table 2. Compilation of the highest efficiency kesterite solar cells which include extrinsic alloying elements with >1 mol%.

Material	Alloying element	Eg (eV)	VOC (mV)	Eff. (% total area)	References
ACZTSSe	Ag/(Ag + Cu) = 3%	1.07	448	10.4	[61]
CMZTSSe	Mg/(Mg + Zn) = 4%	1.01	419	7.2	[76]
CZCTS	Cd/(Cd + Zn) = 40%	1.38	650	11.5	[79]
CZTGe	Ge/(Ge + Sn) = 22%	1.11	527	12.3	[119]
CMZTS	Mn/(Mn + Zn) = 5%	1.055	418	8.9	[151]

8.2. What we need to learn

1. Research efforts to identify intrinsic defect(s) negatively affecting the minority carrier lifetime and diffusion length of the kesterite absorbers should be intensified. For instance, a recent theoretical study has suggested that the sulfur vacancy V₃ that is stabilized by the presence of Sn²⁺ can act as a non-radiative site [104, 177]. This should be verified experimentally, and if confirmed, efforts can be targeted to test doping/alloying strategies that compensate these defects and stabilize the normal-valence oxidation state of Sn⁴⁺.

2. When claiming the effectiveness of doping/alloying elements, high-efficiency reference (non-intentionally doped and/or alkali-doped) baseline samples with efficiencies > 8%–10% should preferably be used, otherwise the observed ‘improvement’ effect may erroneously be caused by a non-optimized baseline process.

3. Characterization techniques must be developed and widely used to reliably access important semiconductor absorber metrics such as the QFLS, defect concentration and their energetic position, carrier lifetime and diffusion length. This is important since common techniques such as TRPL do not yield reliable data on the minority carrier lifetime because some artefacts such as carrier trapping can affect measured PL decay times [10]. This will help to rapidly assess the optoelectronic properties of new compounds, thus assisting in search for new and effective doping/alloying strategies.

Acknowledgments

Y E R and S G H acknowledge the H2020 Programme under project STARCELL (H2020-ENPV-03-2016-720907 and SERI contract 16.0165). S G and M P acknowledge the H2020 Programme under the projects STARCELL (H2020-NMBP-03-2016-720907) and INFINITE-CELL (H2020-MSCA-RISE-2017-777968), the Spanish Ministry of Science, Innovation and Universities under the project WINCOST (ENE2016-80788-C5-1-R), and the Government of Spain for the FPI fellowship (BES-2014-068533) and the Ramon y Cajal fellowship (RYC-2017-23758). D T and D J F are indebted to the UK Engineering and Physical Sciences Research Council (EPSRC) for funding via the PVTEAM Programme (EP/L017792/1) and to the support from the Helmholtz Zentrum für Materialien und Energie Berlin, and also acknowledge the support of the colleagues and facilities.
acquired under various EPSRC grants including for microscopy and Brunel NanoESCA facilities at the University of Bristol (EP/K035746/1, EP/K035746/1, EP/M000605/1). X H acknowledges the Australian Research Council under project LP150100911 and ARENA (Australian Renewable Energy Agency) under project 1-USO028 and RND006. M K-K acknowledges financial support via the Estonian Ministry of Education and Research funding project IUT19-28 and the European Union Regional Development Fund, Project TK141.

ORCID iDs

Yaroslav E Romanyuk [ORCID: https://orcid.org/0000-0002-0529-228X]
David J Fermion [ORCID: https://orcid.org/0000-0002-0376-5506]
Stener Lie [ORCID: https://orcid.org/0000-0002-2601-8677]
Lydia H Wong [ORCID: https://orcid.org/0000-0001-9059-1745]

References

1. Lafond A, Choubia L, Guilhot-Deudon C, Deniard P and Jobic S 2012 Crystal structures of photovoltaic chalcogenides, an intricate puzzle to solve: the cases of CIGS and CZTS Materials Zeitschrift für Anorg. und Allg. Chemie 638 2571–7
2. Gurieva G, Valle Rios I E, Franz A, Whitfield P and Schorr S 2018 Intrinsic point defects in off-stoichiometric Cu2ZnSnSe2: a neutron diffraction study J. Appl. Phys. 123 161519
3. Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency Adv. Energy Mater. 4 1301465
4. Kim J et al 2014 High efficiency Cu2ZnSn(S,Se)2 solar cells by applying a double in 2 S 3/Cds emitter Adv. Mater. 26 7427–31
5. Katagiri H 2005 Cu2ZnSnS4 thin film solar cells Thin Solid Films 480–481 426–32
6. Chen S, Walsh A, Gong X-G and Wei S-H 2013 Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-abundant solar cell absorbers Adv. Mater. 25 1522–39
7. Shin D, Saparov B and Mitzi D B 2017 Defect engineering in multinary Earth-abundant chalcogenide photovoltaic materials Adv. Energy Mater 7 1602366
8. Kimerling L C 1974 Influence of deep traps on the measurement of free-carrier distributions in semiconductors by junction capacitance techniques J. Appl. Phys. 45 1839–45
9. Civl M, Igalson M, Zabierowski P and Siebentritt S 2008 Charge and doping distributions by capacitance profiling in Cu(In,Ga)Se2 solar cells J. Appl. Phys. 103 063701
10. Hages C J, Redinger A, Levecenko S, Hempel H, Koeppe M J, Agrawal R, Greiner D, Kaufmann C A and Unold T 2017 Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite Materials Adv. Energy Mater 7 1–10
11. Feurer T et al 2017 Progress in thin film CIGS photovoltaics - research and development, manufacturing, and applications Prog. Photovolatios Res. Appl. 25 645–67
12. Chen K and Persson C 2017 Electronic and optical properties of Cu2XSnS4 (X = Be, Mg, Ca, Mn, Fe, and Ni) and the impact of native defect pairs J. Appl. Phys. 121 203104
13. Zhong G, Ts C, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Induced effects by the substitution of Zn in Cu2ZnSnS4, (X = S and Se) Thin Solid Films 603 224–9
14. Tong Z et al 2019 Optical and photocathodic properties of Cu2S,SnS4 thin film fabricated by a ball-milling method Mater. Lett. 237 130–3
15. Chen Z, Sun K, Su Z, Liu F, Tang D, Xiao H, Shi L, Jiang L, Hao X and Lai Y 2018 Solution-processed trigonal Cu2BaSnS4 thin-film solar cells ACS Appl. Energy Mater. 1 3420–7
16. Xiao Z, Meng W, Li J Y and Yan Y 2017 Distant–atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnS4 ACS Energy Lett. 2 229–35
17. Wei F and Zhi Z 2016 Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials Acta Phys. Sin. 65 1–13
18. Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr. Sect. A 32 751–67
19. Hallam B, Chen D, Kim M, Stefan B, Hoex B, Abbott M and Wenham S 2017 The role of hydrogenation and gettering in enhancing the efficiency of next-generation Si solar cells: an industrial perspective Phys. Status Solidi B 214 1700305
20. Kılıç Ç and Zunger A 2003 N-type doping and passivation of CuInS2 and CuInSe2 by hydrogen Phys. Rev. B 68 075201
21. Otto K, Chasse T, Lippold G, Rauchsheuch B and Szargan R 2002 Chemical defect explanation for the effect of postdeposition treatments on CuInS2 J. Appl. Phys. 91 1624–7
22. Park J et al 2018 The role of hydrogen from ALD-Al2O3 in kesterite Cu2ZnSnS4 solar cells: grain surface passivation Adv. Energy Mater. 8 3–9
23. Xin H, Vorpal M, Collord A D, Braly I L, Uhl A R, Krueger B W, Ginger D S and Hillhouse H W 2015 Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency Phys. Chem. Chem. Phys. 17 23859–66
24. Yang Y, Kang X, Huang L and Pan D 2016 Tuning the band gap of Cu2ZnSn(S,Se)4 thin films via lithium alloying ACS Appl. Mater. Interfaces 8 3308–13
25. Lafond A, Guilhot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Substitution of Li for Cu in Cu2ZnSnS4 toward wide band gap absorbers with low cation disorder for thin film solar cells Inorg. Chem. 56 2712–21
26. Yang Y, Huang L and Pan D 2017 New insight of Li-doped Cu2ZnSnS4 thin films: Li-induced Na diffusion from soda lime glass by a cation-exchange reaction ACS Appl. Mater. Interfaces 9 23878–83
27. Cabas-Vidani A et al 2018 High-efficiency (Li2Cu1−x)x(Cu2SnS4) kesterite solar cells with lithium alloying Adv. Energy Mater. 8 1801191
28. Haass S, Andre C, Figi R, Schreiner C, Bürki M, Romanyuk Y E and Tiwari A N 2018 Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells Adv. Energy Mater. 8 1–9
Cherns D, Grif
Yuan Z-K, Chen S, Xiang H, Gong X-G, Walsh A, Park J-S, Repins I and Wei S-H 2015 Engineering solar cell absorbers by exploring

Andres C
Abzieher T, Schnabel T, Hetterich M, Powalla M and Ahlswede E 2016 Source and effects of sodium in solution-processed kesterite

Sangster J and Pelton A D 1997 The Na-Se

Schwarz T, Cojocaru-Mirédin O, Choi P, Mousel M, Redinger A, Siebentritt S and Raabe D 2015 Atom probe tomography study of

Maeda T, Kawabata A and Wada T 2015 First-principles study on alkali-metal effect of Li, Na, and K in Cu2ZnSnS4 and Cu2ZnSnSe4 thin

Altamura G, Wang M and Choy K-L 2016 Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells. Sci. Rep. 6 22109

Hsieh Y-T, Han Q, Jiang C, Song T-B, Chen H, Meng L, Zhou H and Yang Y 2016 Efficiency enhancement of Cu2ZnSn(S,Se)4 solar cells via alkali metals doping. Adv. Energy Mater. 6 1502386

Stolt L, Hedström J, Kessler J, Ruchel M, Vethaus K and Schock H 1993 ZnO/CdS/CuInS2 thin-film solar cells with improved performance. Appl. Phys. Lett. 62 597–9

Repins I et al 2012 Co-evaporated Cu4ZnSnS4 films and devices Sol. Energy Mater. Sol. Cells 101 154–9

Schnabel T, Abzieher T, Friedlmeier T M and Ahslewede E 2015 Solution-based preparation of Cu2ZnSn(S,Se)4 for solar cells—comparison of SnSe2 and elemental Se as chalcopyre source. J. Photovoltaics 5 670–5

Gershon T, Shin B, Bojarczuk N, Hopstaken M, Mitzi D B and Guha S 2015 The role of sodium as a surfactant and suppressor of non-radiative recombination at internal surfaces in Cu2ZnSnS4. Adv. Energy Mater. 5 1400849

Sutter-Fella C M, Stückelberger J A, Hagendorfer H, La Mattina F, Kranz L, Nishiwaki S, Uhl A R, Romanyuk Y E and Tiwari A N 2014 Sodium assisted sintering of chalcopyrites and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells Chem. Mater. 26 1420–5

Abzieher T, Schnabel T, Hetterich M, Powalla M and Ahslewede E 2016 Source and effects of sodium in solution–processed kesterite solar cells Phys. Status Solidi 213 1039–49

Andres C et al 2018 Decoupling of optoelectronic properties from morphological changes in sodium treated kesterite thin film solar cells Sol. Energy 95 94–100

Werner M, Sutter-Fella C M, Romanyuk Y E and Tiwari A N 2015 8.3% efficient Cu2ZnSn(S,Se)4 solar cells processed from sodium-containing solution precursors in a closed reactor Thin Solid Films 582 308–15

Haas S G, Diethelm M, Werner M, Bissig B, Romanyuk Y E and Tiwari A N 2015 11.2% efficient solution processed kesterite solar cell with a low voltage deficit Adv. Energy Mater. 5 1–7

Lee Y S, Gershon T, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M and Haight R 2016 Photovoltaic materials: fundamental and practical aspects. J. Phase Equilibria 37 15–8

Qi Y-F, Kou D-X, Zhou W-H, Zhou Z-J, Tian Q-W, Meng Y-N, Liu X-S, Du Z-L and Wu S-X 2017 Engineering of interface band alignment and defects elimination via a Ag-graded active layer for efficient (Cu4Ag)2ZnSnS4Se2 solar cells Energy Environ. Sci. 10 3260–6

Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y and Liu F 2014 Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells J. Appl. Phys. 105 223930

Li W, Su Z, Tan J M R, Chiam S Y, Seng H L, Magdassi S and Wong L H 2017 Revealing the role of potassium treatment in CZTSSe thin film solar cells. Chem. Mater. 29 4273–81

Haas S G, Diethelm M, Andres C, Grif Yuan Z-K, Chen S, Xiang H, Gong X-G, Walsh A, Park J-S, Repins I and Wei S-H 2015 Engineering solar cell absorbers by exploring

Haas S G, Andres C, Fijii R, Schreiner C, Bürki M, Tiwari A N and Romanyuk Y E 2018 Effects of potassium on kesterite solar cells: Similarities, differences and synergies with sodium. Adv. Energy Mater. 8 10.1002/aenm.201701342

López-Martínez S et al 2016 Alkali doping strategies for flexible and light-weight Cu2ZnSnS4Se2 solar cells J. Mater. Chem. A 4 1895–907

Reinhardt P et al 2015 Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells Chem. Mater. 27 5755–64

Cadel E, Barreau N, Kessler J and Pareige P 2010 Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film Acta Mater. 58 2634–7

Sangster J and Pelton A D 1997 The Na-Se (Sodium–Selenium) System J. Phase Equilibria 18 185–9

Sangster J and Pelton A D 1997 The K-Se (Potassium–Selenium) System J. Phase Equilibria 18 177–80

Sangster J and Pelton A D 1997 The Li-Se (Lithium–Selenium) System J. Phase Equilibria 18 181–4

Sangster J and Pelton A D 1997 The Cs-Se (Cesium–Selenium) System J. Phase Equilibria 18 173–6

Sangster J and Pelton A D 1997 The Rb-Se (Rubidium–Selenium) System J. Phase Equilibria 18 190–3

Haas S G 2017 Alkali treatment of solution processed kesterite solar cells PhD Thesis, ETH Zürich https://doi.org/10.3929/ethz-b-000235925

Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M and Haight R 2016 Photovoltaic materials and devices based on the allowed kesterite absorber (AgCu4-x)2ZnSnSe4 Adv. Energy Mater. 6 1302468

Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 Enhancement of open-circuit voltage of solution–processed Cu2ZnSnS4 solar cells with 7.2% efficiency by incorporation of silver ACS Energy Lett. 1 1256–61

Hages C J, Koeper M J and Agrawal R 2016 Optoelectronic and material properties of nanocrystal–based Cu2ZnSnS4Se2 absorbers with Ag- alloying. Sol. Energy Mater. Sol. Cells 145 342–8

Qi Y, Tian Q, Meng Y, Kou D, Zhou Z, Zhou W and Wu S 2017 Elemental precursor solution processed (Cu4Ag)2ZnSnS4Se2 photovoltaic devices with over 10% efficiency ACS Appl. Mater. Interfaces 9 21243–50

Qi Y-F, Kou D-X, Zhou W-H, Zhou Z-J, Tian Q-W, Meng Y-N, Liu X-S, Du Z-L and Wu S-X 2017 Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu4Ag)2ZnSnS4Se2 solar cells Energy Environ. Sci. 10 2401–10

Bourdais Set al 2016 Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6 1502276

Wang C, Chen S, Yang J-H, Lang L, Xiang H-J, Gong X-G, Walsh A and Wei S-H 2014 Design of II–IV–V4 semiconductors through element substitution: the thermodynamic stability limit and chemical trend Adv. Energy Mater. 26 3411–7

Yuan Z-K, Chen S, Xiang H, Gong X-G, Walsh A, Park J-S, Repins I and Wei S-H 2015 Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds Adv. Funct. Mater. 25 6733–43

Cherns D, Griffiths J I, Jones L, Bishop D M, Lloyd M A and McCandless B E 2018 Direct observation of high densities of antisite defects in Ag2ZnSnS4 Se2 ACS Appl. Energy Mater. 1 6260–7

Zhu T, Huhn W P, Wessler G C, Shin D, Saparov B, Mitzi D B and Blum V 2017 II–IV–V4 (I = Cu, Ag; II = Se, Ba; IV = Ge, Sn; VI = S, Se): chalcopyrites for thin-film photovoltaics Chem. Mater. 29 7868–79
[68] Sai Gautam G, Senfelte T P and Carter E A 2018 Understanding the effects of Cd and Ag doping in Cu2ZnSnS4 solar cells Chem. Mater. 30 4534–55

[69] Gong W, Tabata T, Takei K, Morihama M, Maeda T and Wada T 2015 Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu,Ag)2ZnSnSe4 solid solutions Phys. Status Solidi 127 700–3

[70] Gurieva G, Franz A, Prieto J M, Unold T and Schorr S 2018 Structural and optoelectronic characterization of (Ag)xCu1−xZnSnSe4 solid solution 2018 IEEE 7th World Conf. on Photovoltaic Energy Conversion (WCPEC) A Joint Conf. of 45th IEEE PVSC (Piscataway, NJ) (IEEE) pp 0808–11

[71] Gershon T, Sardashi K, Gunawan O, Mankard R, Singh S, Lee Y S, Ott J A and Kummel A and Haight R 2016 Photovoltaic device with over 5% efficiency based on an n-type Ag2ZnSnS4 absorber Adv. Energy Mater. 6 1601182

[72] Hadke S H, Levenco S, Li J, Hages C J, Márquez J A, Unold T and Wong L H 2018 Synergistic effects of double cation substitution in solution-processed CZTS solar cells with over 10% efficiency Adv. Energy Mater. 8 1802540

[73] Nguyen T H, Kawaguchi T, Chantana J, Minemoto T, Harada T, Nakashishi S and Ikeda S 2018 Structural and solar cell properties of a Ag-containing Cu2ZnSnS4 thin film derived from spray pyrolysis ACS Appl. Mater. Interfaces 10 5453–63

[74] Guo Y, Cheng W, Jiang J, Zuo S, Shi F and Chu J 2016 The structural, morphological and optical-electrical characteristic of Cu2(Zn, Mg) thin films fabricated by novel ultrasonic co-spray pyrolysis Mater. Lett. 172 68–71

[75] Guo Y, Cheng W, Jiang J, Zuo S, Shi F and Chu J 2016 Improving the performance of solution-processed Cu2ZnSnS4: an n-type former and a promoter of electrical mobility up to 120 cm2 V−1 s−1 J. Solid State Chem. 215 122–7

[76] Caballero R, Haas S G, Andres C, Arques L, Oliva F, Izquierdo-Roca V and Romanyuk Y E 2018 Effect of magnesium incorporation on solution-processed kesterite solar cells Front. Chem. 6 1–9

[77] Slater J C 1964 Atomic radii in crystals J. Chem. Phys. 41 319–204

[78] Su Z, Tan J M R, Li X, Zeng X, Batabyal S K and Wong L H 2015 Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency Adv. Energy Mater. 5 2–8

[79] Yan C et al 2017 Beyond 11% efficient sulfide kesterite Cu2ZnCd1−xSnS4 solar cell: effects of cadmium alloying ACS Energy Lett. 2 930–6

[80] Pilvét M, Kauk-Kuusik M, Altosaar M, Grossberg M, Danilson M, Timmo K, Mere A and Mikli V 2015 Compositionally tunable structure and optical properties of Cu1−x(Ag)x(Zn, Cd)xSnS4 (0.0 ≤ x ≤ 1) monograin powders Thin Solid Films 582 180–3

[81] Fu J, Tian Q, Zhou Z, Kou D, Meng Y, Zhou W and Wu S 2016 Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution Chem. Mater. 28 5821–8

[82] Duan H-S, Yang W, Bob B, Hsu C-I, Lei B and Yang Y 2013 The role of sulfur in solution-processed Cu2ZnSn(Se, S)4 and its effect on defect properties Adv. Funct. Mater. 23 1466–71

[83] Wu S-H, Chang C-W, Chen H-J, Shih C-F, Wang Y-Y, Li C-C and Chan S-W 2017 High-efficiency Cu2ZnSnS4(S,Se)4 solar cells fabricated through a low-cost solution process and a two-step heat treatment Prog. Photovoltaics Res. Appl. 25 56–66

[84] Li J, Kim S, Nam D, Liu X, Kim J, Cheong H, Liu W, Li H, Sun Y and Zhang Y 2017 Tailoring the defects and carrier density for beyond 10% efficient CZTS thin film solar cells Sol. Energy Mater. Sol. Cells 159 447–55

[85] Sun R, Zhuang D, Zhao M, Gong Q, Scarpulla M, Wei Y, Ren G and Wu Y 2018 Beyond 11% efficient Cu2ZnSn(S,Se)4 thin film solar cells by cadmium alloying Sol. Energy Mater. Sol. Cells 174 494–8

[86] Yan C et al 2018 Cu2ZnSnS4 solar cells with over 10% efficiency enabled by heterojunction heat treatment Nat. Energy 3 764–72

[87] Giraldo S, Ruiz C M, Espindola-Rodriguez M, Sánchez Y, Placidi M, Cozza D, Barakel D, Escoubas L, Pérez-Rodríguez A and Martin-Luther-Universität Halle-Wittenberg

[88] Hartnauer S, Korbél S, Marques M A L, Botti S, Pistor P and Scheer R 2016 Research Update: Stable single-phase Zn-rich Cu2ZnSnSe4 through In doping APL Mater. 4070701

[89] Hartnauer S 2016 Phasenbildung am system Cu–Zn–Sn (In, Ga)–S–Se untersucht mit echtzeitmethoden für chalcogenid-dünnschichtolzellen PhD Thesis, Martin–Luther-Universität Halle-Wittenberg http://digital.bibliothek.uni-halle.de/ulbhalhs/urn:nbn:de:gbv:3:4-19326

[90] Hartnauer S 2016 Phasenbildung am System Cu–Zn–Sn (In, Ga)–S–Se untersucht mit Echtzeitmethoden für Chalcogenid-Dünnschichtolzellen (Martin-Luther-Universität Halle-Wittenberg)

[91] Schorr S 2007 Structural aspects of adamantine like multinary chalcogenides Thin Solid Films 515 5985–91

[92] Schorr S, Riede V, Spemann D and Doering T 2006 Electronic band gap of Zn2(Se1−xCux)2 solid solution series (X = S, Se, Te) J. Alloys Compd. 414 26–30

[93] Kondrotas R, Oliva F, Alcobe X, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E and Pistor P 2018 Double band gap gradients in sequentially processed photovoltaic absorbers from the Cu(In,Ga)2SnS3–ZnSe pseudosystem Prog. Photovoltaics Res. Appl. 26 135–44

[94] Grauman B 1991 Handbook of Chemistry and Physics 71st edn, D R Lide (Boca Raton, FL: CRC Press)

[95] Redinger A, Berg D M, Dale P J and Siebenritter S 2011 The consequences of kesterite equilibria for efficient solar cells J. Am. Chem. Soc. 133 3320–3

[96] Shu Q, Yang J-H, Chen S, Huang B, Xiang H, Gong X-G and Wei S-H 2013 Cu2ZnSn(Se1−xSx)4 and Cu2ZnSn(Si1−xSx)4 alloys as photovoltaic materials: Structural and electronic properties Phys. Rev. B 87 115208

[97] Litvinchuk A P, Dhagavan V M, Yul’khembach V O, Valakhy M Y, Parasyuk O V, Piskach I V, Wang X, Jacobson A J and Zahn D R T 2016 Crystal structure and vibrational properties of Cu2ZnSnS4 quaternary semiconductor Phys. Status Solidi 253 1808–15

[98] Gurieva G, Lavrenko S, Kravtsov V C, Natopenov A, Iraan E, Huang Y S, Arashanov E and Schorr S 2015 X-ray diffraction investigation on Cu2ZnSnS4 single and polycrystalline crystals Zeitschrift für Krist.—Cryst. Mater. 230

[99] Brammertz G, Vermang B, Elzeneery H, Sahayaras R, Ranjar S, Meuris P and Moortmann J 2017 Fabrication of ternary and quaternary chalcogenide compounds based on Cu–Sn, Zn and Si for thin film photovoltaic applications Phys. Status Solidi Curr. Top. Solid State Phys. 14 600162

[100] Hamdi M, Lafond A, Guillot-Deudon C, Hefl G, Gargouri M and Joubi S 2014 Crystal chemistry and optical investigations of the Cu2ZnSnSe3, Cu2ZnSnS3 and Cu2ZnSn(Se1−xSx)4 series for photovoltaic applications J. Solid State Chem. 220 232–7

[101] Giraldo S, Neuschitzer M, Izquierdo-Roca V, Perez-Rodriguez A and Saucedo E 2018 Doping effects on kesterites other than alkalis 2018 IEEE 7th World Conf. on Photovoltaic Energy Conversion (WCPEC) A Joint Conf. of 45th IEEE PVSC (Piscataway, NJ) (IEEE) pp 3869–72 28th PVSEC & 34th EU PVSEC

[102] Emsley A and Greenwood N 1997 Chemistry of the Elements 2nd edn (Oxford: Elsevier, Butterworth-Heinemann)
[104] Kim S, Park J-S, Hood S N and Walsh A 2019 Lone-pair effect on carrier capture in Cu2ZnSnS4 solar cells J. Mater. Chem. A 7 2686–93

[105] Grossberg M, Timmko K, Raadik T, Kärber E, Mikl V and Krustok J 2015 Study of structural and optoelectronic properties of Cu2ZnSnS4−xGe2Sx (x = 0 to 1) alloy compounds Thin Solid Films 582 176–9

[106] Khadka D B and Kim J 2015 Band gap engineering of alloyed Cu2ZnGeSnS4−xOy (y = S, Se) Films for Solar Cell J. Phys. Chem. C 119 1706–13

[107] García-Llamas E, Merino J M, Serna R, Fontané X, Victorio I A, Pérez-Rodríguez A, León M, Bodnar I V, Izquierdo-Roca V and Caballero R 2016 Wide band-gap tuning Cu2ZnSnS4−xGe2Sx single crystals: optical and vibrational properties Sol. Energy Mater. Sol. Cells 158 147–53

[108] Giraldo S et al 2015 Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer Adv. Energy Mater. 5 1–6

[109] Giraldo S, Therslef T, Larramona G, Neuschitser M, Pistor P, Leifer K, Pérez-Rodríguez A, Moisán C, Dhennier G and Saeudco E 2016 Cu2ZnSnSe4 solar cells with 10.6% efficiency through innovative absorber processing with Ge super-doping Prog. Photovoltaics Res. Appl. 24 1359–67

[110] Therslef T, Giraldo S, Neuschitser M, Pistor P, Saeudco E and Leifer K 2017 Chemically and morphologically distinct grain boundaries in Ge-doped Cu2ZnSnSe4 solar cells revealed with STEM-EELS Mater. Des. 122 102–9

[111] Giraldo S, Neuschitser M, Pistor P, Pérez-Rodríguez A and Saeudco E 2016 Cu2ZnSnS4−x-Ge2Sx based solar cells with efficiency exceeding 10% by adding a superficial Ge nanolayer: the interaction between Ge and Na IEEE J. Photovoltaics 6 754–9

[112] Giraldo S et al 2018 How small amounts of Ge modify the formation pathways and crystallization of kesterite Energy Environ. Sci. 11 582–93

[113] Neuschitser M, Rodríguez M E, Gu C, Marquez J A, Giraldo S, Forbes I, Pérez-Rodríguez A and Saeudco E 2018 Revealing the beneficial effects of Ge doping on Cu2ZnSnSe4 thin film solar cells J. Mater. Chem. A 6 11759–72

[114] Ford G M, Guo Q, Agrawal R and Hillhouse W H 2011 Earth abundant element Cu2ZnSnS4−x, Ge2Sx nanocrystals for tunable band gap solar cells: 6.8% efficient device fabrication Chem. Mater. 23 2626–9

[115] Guo Q, Ford G M, Yang W-G, Hages C J, Hillhouse W H and Agrawal R 2012 Enhancing the performance of CZTSSe solar cells with Ge alloying Sol. Energy Mater. Sol. Cells 105 132–6

[116] Hages C J, Levenco S, Misian C K, Alsmieh J, Hough D, Wilks R G, Bar M, Unold T and Agrawal R 2015 Improved performance of Ge-alloyed CZTSSe thin-film solar cells through control of elemental losses Prog. Photovoltaics Res. Appl. 23 376–84

[117] Kim S, Kim K M, Tempo H, Shibata H, Matsukra A and Niki S 2016 Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10% Sol. Energy Mater. Sol. Cells 144 488–92

[118] Collord A D and Hillhouse H W 2016 Germanium alloyed kesterite solar cells with low voltage deficits Chem. Mater. 28 2067–73

[119] Kim S, Kim K M, Tempo H, Shibata H and Niki S 2016 Improvements of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency Appl. Phys. Express 9 102301

[120] Khadka D B, Kim S and Kim J 2016 Effects of Ge alloying on device characteristics of kesterite-based CZTSSe thin film solar cells J. Phys. Chem. C 120 4251–8

[121] Márquez J et al 2017 Chemistry and dynamics of Ge in kesterite: toward band-gap–graded absorbers Chem. Mater. 29 5939–48

[122] Andres C, Cabas-Vidania A, Tiwari A N and Romanyuk Y E 2018 From sputtered metal precursors towards Cu2ZnSnS4−x,Ge2Sx thin film solar cells with shallow back grading Thin Solid Films 665 168–72

[123] Gunder R, Márquez-Prieto J A, Guriel G, Unold T and Schorr S 2018 Structural characterization of off-stoichiometric kesterite-type Cu2ZnGeSe4 compound semiconductors: from cation distribution to intrinsic point defect density Cryst. Eng. Comm. 20 1491–8

[124] Schnabel T, Seboui M and Ahlswede E 2017 Evaluation of different metal salt solutions for the preparation of solar cells with wide-gap Cu2ZnGeSe4−x absorbers RSC Adv. 7 28236–40

[125] Sahayara S, Barmertz G, Vermang B, Schnabel T, Ahlswede E, Huang Zh, Ranbai S, Meuris M, Vleugels J and Poortmans J 2017 Optoelectronic properties of thin film Cu2ZnGeSe4 solar cells Sol. Energy Mater. Sol. Cells 171 136–41

[126] Nagaya K, Fujimoto S, Tempo H, Kim S, Nishiwaki M, Nishigaki Y, Kato M, Shibata H and Fujikawa H 2018 Very small tell state formation in Cu2ZnGeSe4 Appl. Phys. Lett. 113 093901

[127] Oueslati S, Grossberg M, Kaul-Kuusik M, Mikl V, Erni K, Meissner D and Krustok J 2019 Effect of germanium incorporation on the properties of kesterite Cu2ZnSn(S,Se)4 monolayers Thin Solid Films 669 315–20

[128] Choubiac L, Barmertz G, Barreau N, Arzel L, Hard S, Meuris M and Vermang B 2018 7.6% CZTSe solar cells thanks to optimized CdS chemical bath deposition Phys. Status Solidi 215 1800341

[129] Tiwari D, Koehler T, Lin X, Harniman R, Griffiths I, Wang L, Cherns D, Klenk R and Fermin D J 2016 Cu2ZnSnS4 thin films generated from a single solution based precursor: the effect of Na and Sb doping Chem. Mater. 28 4991–7

[130] Yuan M, Mitzi D B, Liu W, Kellock A J, Chey S J and Deline V R 2010 Optimization of CIGS-based PV device through antimony doping Chem. Mater. 22 285–7

[131] Zhang X, Han M, Zeng Z and Duan Y 2017 The role of Sb in solar cell material Cu2ZnSnS4 J. Mater. Chem. A 5 6606–12

[132] Kattan N A, Cherns D and Fermin D J 2016 Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy Nanoletters 16 4369–73

[133] Tiwari D, Cattelan M, Harniman R L, Sarua A, Fox N, Koehler T, Klenk R and Fermin D J 2018 Impact of Sb and Na doping on the electronic surface landscape of Cu2ZnSn(S,Se)4 thin films ACS Energy Lett. 3 2977–82

[134] Tiwari D, Cattelan M, Harniman R L, Sarua A, Abbas A, Bowers J W, Fox N A and Fermin D J 2018 Mapping shunting paths at the surface of Cu2ZnSn(S,Se)4 films via energy-filtered photoemission microscopy Science 361 9–16

[135] Crovatto A and Hansen O 2017 What is the band alignment of Cu2ZnSn(S,Se)4 solar cells? Sol. Energy Mater. Sol. Cells 169 177–94

[136] Bar M, Repins I, Weinhardt L, Alsmieh J-H, Pooppanatana S, Blum M, Yang W, Heise C, Wilks R G and Noufi R 2017 ZnS Se–CdS interlayer formation at the CdS/Cu2ZnSnS4 thin-film solar cell interface ACS Energy Lett. 2 1632–40

[137] Housecroft C E and Sharpe A G 2012 Inorganic Chemistry 4th edn (Harlow: Pearson)

[138] Unold T and Sckoch H W 2011 Nonconventional (Non–Silicon-Based) photovoltaic materials Annu. Rev. Mater. Res. 41 297–321

[139] Fries T, Shapira Y, Palacio F, Morán M C, McIntyre G J, Kershaw R, Wold A and McNiff E J 1997 Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetization and neutron-scattering measurements Phys. Rev. B 56 5424–31

[140] Lie S, Rui Tan J M, Li W, Leow S W, Tuy Y F, Bishop D M, Gunawan O and Wong L H 2018 Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution J. Mater. Chem. A 6 1540–50

[141] Liang X, Guo P, Wang G, Deng R, Pan D and Wei X 2012 Dilute magnetic semiconductor Cu2ZnSnS4 nanocrystals with a novel zincblende and wurzite structure RSC Adv. 2 50044

[142] Cui Y, Deng R, Wang G and Pan D 2012 A general strategy for synthesis of quaternary semiconductor Cu2MnSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals J. Mater. Chem. 22 23136
[143] Rudisch K, Espinosa-Garcia W F, Oorio-Guillen J M, Araojo C M, Plater- Björkman C and Scrapp J J S 2019 Structural and electronic properties of Cu2MnSnS4, from experiment and first-principles calculations Phys. Status Solidi 256 1800743

[144] Marchionna S, Le Donne A, Merlini M, Binetti S, Acciari M and Cernuschi F 2017 Growth of Cu2MnSnS4 PV absorbers by sulfurization of evaporated precursors J. Alloys Compd. 693 95–102

[145] Prabhakar R R, Zhenghua S, Xin Z, Baikie T, Woei L S, Shukla S, Batabyal S K, Gunawan O and Wong L H 2016 Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu MnSnS4 films Sol. Energy Mater. Sol. Cells 157 867–73

[146] Le Donne A, Marchionna S, Acciari M, Cernuschi F and Binetti S 2017 Relevant efficiency enhancement of emerging Cu2MnSnS4 thin film solar cells by low temperature annealing Sol. Energy 149 125–31

[147] Chen L, Deng H, Tao J, Cao H, Huang L, Sun L, Yang P and Chu J 2015 Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique RSC Adv. 5 84293–302

[148] Yu J, Deng H, Chen L, Tao J, Zhang Q, Guo B, Sun L, Yang P, Zheng X and Chu J 2018 Improvement performance of two-step electrodepositing Cu2MnSnS4 thin film solar cells by tuning Cu-Sn alloy layer deposition time Mater. Chem. Phys. 211 382–8

[149] Chen L, Deng H, Tao J, Sun L, Yang P and Chu J 2017 Effect of the post-selenization time on the structural and optical properties of Cu2MnSnS4 thin films synthesized by sol-gel technique Mater. Lett. 201 185–8

[150] Lie S, Sandi M J, Tay Y F, Li W, Tan J M R, Bishop D M, Gunawan O and Wong L H 2018 Improving the charge separation and collection at the buffer/absorber interface by double-layered Mn-substituted CZTS Sol. Energy Mater. Sol. Cells 185 351–8

[151] Li X, Hou Z, Gao S, Zeng Y, Ao J, Zhou Z, Da B, Liu W and Zhang Y 2018 Efficient optimization of the performance of Mn2+–doped kesterite solar cell: machine learning aided synthesis of high efficient Cu2(Mn,Zn)SnS4(S,Se) thin solar cells Sol. RRL 180100198

[152] Orletski I G, Mar`yanchuk P D, Solovan M N, Maistruk E V and Kozyrskiy D P 2016 Peculiarities in electrical and optical properties of Cu2Zn1−xMnxSnS4 films obtained by spray pyrolysis Tech. Phys. Lett. 42 291–4

[153] Chen L, Deng H, Cui J, Tao J, Zhou W, Cao H, Sun L, Yang P and Chu J 2015 Composition dependence of the structure and structural and optical properties of Cu2MnSn1−xZnxS4 thin films J. Alloys Compd. 627 388–92

[154] Kesterite Mineral Data www.webmineral.com/data/Kesterite.shtml

[155] Ghosh A, Thangavel R, Madhusudanan S P and Batabyal S K 2018 Substitution of Zn in Earth-abundant Cu2FeSnS4 thin films: a first-principles study of structural, electronic, and magnetic properties J. Am. Chem. Soc. 137 15086–9

[156] Prabhakar R R, Huu Loc N, Kumar M H, Boix P P, Juan S, John R A, Batabyal S K, Gunawan O and Wong L H 2016 Photovoltaic effect in Cu2MnSnS4 for photovoltaic applications energy environ. Focus 3 142–51

[157] Kevin P, Malik M A, McAadams S and O’Brien P 2015 Synthesis of nanoparticulate alloys of the composition Cu(2)(Zn(1–x)Fe(x))(Sn4S(4)) structural, optical, and magnetic properties J. Am. Chem. Soc. 137 15086–9

[158] Gaafar N S, Kesterite Mineral Data www.webmineral.com/data/Kesterite.shtml

[159] Brien P 2015 Synthesis of nanoparticulate alloys of the composition Cu2MnSnS4 by electroless reduction of Cu2MnSnS4 thin film Sol. Energy Mater. Sol. Cells 160 233–40

[160] Park J-Y, Pas A, Mandal T N, Im S H, Jun Y and Seok S I 2013 Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts RSC Adv. 3 24918

[161] Yan C, Huang C, Yang J, Liu F, Liu J, Lai Y and Liu Y 2012 Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals Chem. Commun. 48 2603–5

[162] Dong C, Meng W, Qi J and Wang M 2017 Cu2FeSnS4 nanocrystals as effective electron acceptors for hybrid solar cells Mater. Lett. 189 104–6

[163] Hannachi A, Oueslati H, Khemiri N and Kanazi M 2017 Effects of sulfurization on the optical properties of Cu2Zn1−xFexSn5S8 thin films Opt. Mater. (Amst.) 72 702–9

[164] Fontané X, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk V O, Valakh M Y, Pérez-Rodríguez A and Morante J R 2012 Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe1-xZnx)SnS4 J. Alloys Compd. 539 190–40

[165] Khadka D B and Kim J M 2014 Structural transition and band gap tuning of Cu2(Zn,Fe)SnS4 chalcogenide for photovoltaic application J. Phys. Chem. C 118 14227–37

[166] Collard A D, Xin H and Hillhouse H W 2015 Combinatorial exploration of the effects of intrinsic and extrinsic defects in Cu2MnSn(S,Se)2 IEEE J. Photovoltaics 5 288–98

[167] Eisenbarth T, Caballero R, Kaufmann C A, Eicke A and Unold T 2012 Influence of iron on defect concentrations and device performance for Cu(In,Ga)Se2 solar cells on stainless steel substrates Prog. Photovoltaics Res. Appl. 20 568–74

[168] Pianezzi F, Nishiwaki S, Kranz L, Sutter-Fella C M, Reinhard P, Bissig B, Hagedornger H, Buecheler S and Tiwari A N 2015 Influence of Ni and Co impurities on the electronic properties of CuIn(Ga)Se2 thin film solar cells Prog. Photovoltaics Res. Appl. 23 892–900

[169] Wang T-X, Lin Y-G, Liu H-R, Li H and Chen S Y 2014 Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method Mater. Lett. 124 148–50

[170] Kambale A, Mokurala K, Gupta A, Mallick S and Bhargava P 2014 Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications Mater. Lett. 137 440–3

[171] Sarkar S, Das B, Mitya P R, Das G C and Chattopadhyay K K 2015 Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4, nanoparticles synthesized by a novel hydrothermal route Mater. Lett. 152 155–8

[172] Ozel F 2016 Earth-abundant quaternary semiconductor Cu2MnSnS4 (M = Fe, Co, Ni and Mn) nanofibers: fabrication, characterization and band gap arrangement J. Alloys Compd. 657 157–62

[173] Yang C L, Chen Y H, Lin M, Wu S L, Li L, Liu W C, Wu X S and Zhang F M 2016 Structural, optical and magnetic properties of Cu2SnS3 thin films deposited by facile one-step electrodeposition method Mater. Lett. 166 101–4

[174] Rondiva S, Wadenker N, Jadhav Y, Jadkar S, Haram S and Kabir M 2017 Structural, electronic, and optical properties of Cu2NiSnS4: a combined experimental and theoretical study toward photovoltaic applications Chem. Mater. 29 3133–42

[175] Ghosh A, Chaudhary D K, Biswas A, Thangavel R and Udayabhanu G 2016 Solution-processed Cu2XSnS4 (X = Fe, Co, Ni) photoelectrochemical and thin film solar cells on vertically grown ZnO nanorod arrays RSC Adv. 6 115204–12

[176] Kim S, Park J-S and Walsh A 2018 Identification of killer defects in kesterite thin-film solar Cells ACS Energy Lett. 3 496–500