Supporting Information

Reaction of Pentafulvene Titanium and Zirconium Complexes with Phosphorus Ylides: Stoichiometric Reactions and Catalytic Intramolecular Proton Shuttles

Tim Oswald, Malte Fischer, Niclas Struckmann, Marc Schmidtmann and Rüdiger Beckhaus*

Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany

ruediger.beckhaus@uni-oldenburg.de

Table of Contents

General Considerations S2
Synthesis and Characterization of Compounds S2
Crystallographic Data S22
NMR Spectra of Compounds S27
Temperature-dependent NMR Spectra of Ti4a and Ti4b S49
References S50
General Considerations

All reactions were carried out under an inert atmosphere of argon or nitrogen with rigorous exclusion of oxygen and moisture using standard gloveboxes or Schlenk techniques. The glass equipment was stored in an oven at 120 °C and evacuated prior to use. Solvents were dried according to standard procedures over Na/K alloy with benzophenone as indicator and distilled under a nitrogen atmosphere. NMR spectra were recorded on Bruker Avance 300, Bruker Avance 500, and Bruker Avance III 500 spectrometers. 1H-NMR spectra were referenced to the residual solvent resonance as internal standard (benzene-d6 (C6D6), δ(1H) C6D6H 7.16 ppm) and 13C-NMR spectra by using the central line of the solvent signal (benzene-d6 (C6D6), δ(13C{1H}) C6D6 128.06 ppm). 31P{1H} NMR spectra were referenced against an external standard (δ(31P{1H} H3PO4 0.0 ppm). Given chemical shifts of 15N resulted from 1H,15N-HMBC or -HMQC NMR experiments with nitromethane as external standard (δ = 378.9 vs NH3). Infrared spectra were performed on a Bruker Tensor 27 spectrometer with a MKII Reflection Golden Gate Single Diamond ATR system. Elemental analyses were carried out on a EuroEA 3000 Elemental Analyzer. The carbon value in the elemental analysis is often lowered by carbide formation. The hydrogen value is found in some cases to be higher due to residual traces of solvents. Although in some cases satisfactory elemental analysis could not be obtained, the data is included to demonstrate the best results to date. The combustion analysis of group 4 organometallics is known to be difficult.[1,2] Melting points were determined using a “Mel-Temp” apparatus by Laboratory Devices, Cambridge, U.K.

Synthesis and characterization of compounds:

The bis(η5:η1-pentafulvene)titanium complexes Ti1a/b as well as the mono(η5:η1-pentafulvene)metal complexes Ti3, Zr1a/b-benzo and Zr1b/b-benzo were synthesized according to literature procedures.[3-6] The ylides Y1-Y5 were prepared using the corresponding phosphonium salts according to standard procedures.[7-9] The phosphonium salts are either commercially available or can be prepared by a Grignard reaction of an aryl- or alkyl halide and subsequent methylation using methyl iodide.[8]
Synthesis of Ti2a:

Ti1a (0.500 g, 1.13 mmol) and Y1 (0.311 g, 1.13 mmol) were placed in a Schlenk tube and 10 ml of n-hexane was added. The former blue suspensions turns red and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.711 g (0.99 mmol, 88%) of Ti2a as red-brown solid, m.p. 140 °C.

1H-NMR (500 MHz, C$_6$D$_6$, 305 K): δ = 1.49–2.89 (Ad), 3.11 (s, 1 H, CH$_{exo}$), 4.27 (m, 1 H, C$_5$H$_4$), 5.10 (m, 1 H, C$_5$H$_4$), 5.14 (m, 1 H, C$_5$H$_4$), 5.23 (m, 1 H, C$_5$H$_4$), 5.31 (m, 1 H, C$_5$H$_4$), 5.98 (m, 1 H, C$_5$H$_4$), 6.03 (m, 1 H, C$_5$H$_4$), 6.43 (d, $^2J_{PH} = 12.4$ Hz, 1 H, CH$_{ylide}$), 6.44 (m, 1 H, C$_5$H$_4$), 7.07–7.09 (m, 9 H, PPh$_3$), 7.60–7.64 (m, 6 H, PPh$_3$) ppm.

13C-NMR (125 MHz, C$_6$D$_6$, 305 K): δ = 28.5 (Ad CH), 28.6 (Ad CH), 29.4 (Ad CH), 29.9 (Ad CH), 32.4 (Ad CH), 32.5 (2 x Ad CH$_2$), 33.4 (Ad CH), 36.1 (Ad CH), 37.5 (Ad CH$_2$), 38.5 (Ad CH$_2$), 39.1 (Ad CH$_2$), 39.2 (Ad CH$_2$), 39.3 (Ad CH), 39.4 (Ad CH$_2$), 39.4 (Ad CH$_2$), 44.1 (Ad CH$_2$), 45.1 (Ad CH$_2$), 45.2 (CH$_{exo}$), 100.4 (C$_5$H$_4$), 103.6 (C$_5$H$_4$), 107.5 (C$_5$H$_4$), 107.8 (C$_5$H$_4$), 107.9 (C$_5$H$_4$), 108.4 (C$_5$H$_4$), 110.4 (C$_5$H$_4$), 110.6 (C$_5$H$_4$), 114.0 (C$_{exo}$ Fv), 119.9 (d, $^1J_{PC} = 15.4$ Hz, CH$_{ylide}$), 122.9 (C$_{ipso}$ Fv), 123.9 (C$_{ipso}$ Cp), 128.2 (d, J = 10.7 Hz, PPh$_3$), 130.7 (d, J = 2.8 Hz, PPh$_3$), 133.4 (d, J = 8.9 Hz, PPh$_3$), 135.6 (d, $^1J_{PC} = 78$ Hz, PPh$_3$) ppm.

31P-NMR (202 MHz, C$_6$D$_6$, 305 K): δ = 13.0 ($^1J_{PC} = 78$ Hz) ppm.

IR (ATR, 16 scans): $\tilde{\nu}$ = 3055, 2899, 2847, 2668, 1634, 1589, 1482, 1467, 1448, 1437, 1353, 1261, 1196, 1117, 1099, 1060, 1027, 998, 930, 874, 705, 775, 742, 720, 692, 627, 597, 580 cm$^{-1}$.

S3
Synthesis of Ti2b:

Ti1a (0.250 g, 0.56 mmol) and Y2 (0.166 g, 0.56 mmol) were placed in a Schlenk tube and a small amount of n-hexane was added. The former blue suspensions turns red and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.301 g (0.41 mmol, 72%) of Ti2a as red solid, m.p. 115 °C.

Single crystals suitable for x-ray diffraction were obtained from a saturated solution of Ti2b in n-hexane at 5 °C.

1H-NMR (500 MHz, C6D6, 305 K): δ = 1.07–2.61 (Ad + Cy), 3.12 (s, 1 H, CHexo), 4.36 (m, 1 H, C5H4), 5.21 (m, 1 H, C5H4), 5.32 (m, 1 H, C5H4), 5.43 (m, 1 H, C5H4), 5.66 (m, 1 H, CHylene), 6.08 (m, 1 H, C5H4), 6.38 (m, 1 H, C5H4), 6.45 (m, 1 H, C5H4) ppm.

13C-NMR (125 MHz, C6D6, 305 K): δ = 26.8 (CH2), 27.7 (CH2), 27.8 (CH2), 27.9 (CH2), 28.1 (CH2), 28.3 (CH2), 28.5 (CH), 28.7 (CH), 29.5 (CH), 30.0 (CH), 32.4 (CH2), 32.6 (CH), 33.9 (CH), 35.7 (CH), 36.1 (CH), 36.3 (CH), 37.6 (CH2), 38.6 (CH2), 39.2 (CH2), 39.4 (CH), 39.4 (CH2), 40.1 (CH2), 44.0 (CH2), 45.1 (CHexo), 45.1 (CH2), 98.7 (C5H4), 103.0 (C5H4), 106.7 (C5H4), 107.2 (C5H4), 107.8 (C5H4), 107.8 (C5H4), 108.2 (C5H4), 108.4 (C5H4), 111.4 (Cexo Fv), 121.6 (Cipso Fv or Cipso Cp), 121.7 (Cipso Fv or Cipso Cp), 127.0 (d, 10.0 Hz, CHylene) ppm.

31P-NMR (202 MHz, C6D6, 305 K): δ = 25.5 (1JPC = 46 Hz) ppm.

IR (ATR, 16 scans): ν = 2924, 2899, 2849, 1632, 1445, 1353, 1259 8w), 1174, 1128, 1098, 1060, 1045, 1000, 942, 886, 847, 829, 801, 785, 772, 745, 725, 687, 581, 562 cm⁻¹.
Synthesis of Ti2c:

Ti1a (0.250 g, 0.56 mmol) and Y3 (0.206 g, 0.56 mmol) were placed in a Schlenk tube and a small amount of n-hexane was added. The former blue suspensions turns ochre and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.312 g (0.39 mmol, 68%) of Ti2c as ochre solid, m.p. 74 °C (dec.).

1H-NMR (500 MHz, C$_6$D$_6$, 305 K): $\delta = 1.52$–2.45 (Ad), 3.17 (s, 1 H, CH$_{exo}$), 3.23 (s, 9 H, OC$_3$H$_3$), 4.33 (m, 1 H, C$_5$H$_4$), 5.18 (m, 1 H, C$_5$H$_4$), 5.20 (m, 1 H, C$_5$H$_4$), 5.36 (m, 1 H, C$_5$H$_4$), 5.38 (m, 1 H, C$_5$H$_4$), 6.07 (m, 1 H, C$_5$H$_4$), 6.18 (m, 1 H, C$_5$H$_4$), 6.50 (m, 1 H, C$_5$H$_4$), 6.77 (m, 1 H, C$_5$H$_4$), 6.77 (m, 6 H, Anisol$_3$P), 7.64 (m, 6 H, Anisol$_3$P) ppm.

13C-NMR (125 MHz, C$_6$D$_6$, 305 K): $\delta = 28.5$ (Ad CH), 28.6 (Ad CH), 29.5 (Ad CH), 30.0 (Ad CH), 32.3 (Ad CH), 32.5 (2 x Ad CH$_2$), 33.4 (Ad CH), 36.1 (Ad CH), 37.5 (Ad CH$_2$), 38.5 (Ad CH$_2$), 39.1 (Ad CH$_2$), 39.2 (Ad CH$_2$), 39.4 (Ad CH$_2$), 39.5 (Ad CH$_2$), 39.6 (Ad CH), 44.2 (Ad CH$_2$), 45.1 (Ad CH$_2$), 45.1 (CH$_{exo}$), 54.8 (OCH$_3$), 100.1 (C$_5$H$_4$), 103.3 (C$_5$H$_4$), 107.1 (C$_5$H$_4$), 107.3 (C$_5$H$_4$), 107.4 (C$_5$H$_4$), 108.2 (C$_5$H$_4$), 110.0 (C$_5$H$_4$), 110.4 (C$_5$H$_4$), 113.1 (C$_{exo}$ Fv), 113.8 (d, $J = 11.6$ Hz, Anisol$_3$P), 122.9 (C$_{ipso}$ Fv), 123.4 (C$_{ipso}$ Cp), 126.6 (d, $^1J_{PC} = 18.2$ Hz, CH$_{ylide}$), 126.7 (d, $^1J_{PC} = 84$ Hz, Anisol$_3$P), 135.1 (d, $J = 10.3$ Hz, Anisol$_3$P), 161.9 (d, $J = 2.4$ Hz, Anisol$_3$P) ppm.

31P-NMR (202 MHz, C$_6$D$_6$, 305 K): $\delta = 10.9$ ppm.

IR (ATR, 16 scans): $\tilde{\nu} = 2961, 2899, 2847, 1634, 1594, 1568, 1504, 1448, 1411, 1353, 1295, 1260, 1181, 1114, 1097, 1059, 1023, 932, 984, 875, 797, 721, 690, 675, 627, 579$ cm$^{-1}$.
Synthesis of Ti2d:

Ti1a (0.250 g, 0.56 mmol) and Y4 (0.358 g, 1.12 mmol) were placed in a Schlenk tube and a small amount of n-hexane was added. The former blue suspensions turns ochre and was stirred at room temperature overnight. The reaction mixture was filtrated to remove excessive ylide, subsequent drying in vacuo afforded 0.366 g (0.48 mmol, 85%) of Ti2d as ochre solid, m.p. 96 °C.

\(^1\)H-NMR (500 MHz, C\(_6\)D\(_6\), 305 K): \(\delta = 1.53–2.46\) (28 H, Ad), 2.02 (s, 9 H, CH\(_3\)), 3.19 (s, 1 H, CH\(_{\text{exo}}\)), 4.30 (m, 1 H, C\(_5\)H\(_4\)), 5.14 (m, 1 H, C\(_5\)H\(_4\)), 5.18 (m, 1 H, C\(_5\)H\(_4\)), 5.35 (m, 1 H, C\(_5\)H\(_4\)), 5.37 (m, 1 H, C\(_5\)H\(_4\)), 6.05 (m, 1 H, C\(_5\)H\(_4\)), 6.08 (m, 1 H, C\(_5\)H\(_4\)), 6.48 (m, 1 H, C\(_5\)H\(_4\)), 6.67 (d, \(\text{J}_{\text{PH}} = 12.4\) Hz, 1 H, CH\(_{\text{ylide}}\)), 6.96–6.98 (m, 6 H, pTol\(_3\)P), 7.61–7.65 (m, 6 H, pTol\(_3\)P) ppm.

\(^{13}\)C-NMR (125 MHz, C\(_6\)D\(_6\), 305 K): \(\delta = 21.3\) (CH\(_3\)), 28.5 (Ad CH), 28.6 (Ad CH), 29.5 (Ad CH), 30.0 (Ad CH), 32.4 (Ad CH), 32.5 (2 x Ad CH\(_2\)), 33.5 (Ad CH), 36.1 (Ad CH), 37.5 (Ad CH\(_2\)), 38.5 (Ad CH\(_2\)), 39.1 (Ad CH\(_2\)), 39.2 (Ad CH\(_2\)), 39.4 (Ad CH\(_2\)), 39.4 (Ad CH), 39.5 (Ad CH\(_2\)), 44.2 (Ad CH\(_2\)), 45.1 (Ad CH\(_2\)), 45.1 (CH\(_{\text{exo}}\)), 100.1 (C\(_5\)H\(_4\)), 103.5 (C\(_5\)H\(_4\)), 107.4 (C\(_5\)H\(_4\)), 107.4 (C\(_5\)H\(_4\)), 107.5 (C\(_5\)H\(_4\)), 108.2 (C\(_5\)H\(_4\)), 110.3 (2 x C\(_5\)H\(_4\)), 113.4 (C\(_{\text{exo}}\) Fv), 122.9 (C\(_{\text{ipso}}\) Fv), 123.4 (d, \(\text{J}_{\text{PC}} = 16.4\) Hz, CH\(_{\text{ylide}}\), 123.7 (C\(_{\text{ipso}}\) Cp), 129.0 (d, J = 11.1 Hz, pTol\(_3\)P), 132.3 (d, \(\text{J}_{\text{PC}} = 80\) Hz, pTol\(_3\)P), 133.5 (d, J = 9.3 Hz, pTol\(_3\)P), 140.9 (d, J = 2.7 Hz, pTol\(_3\)P) ppm.

\(^{31}\)P-NMR (202 MHz, C\(_6\)D\(_6\), 305 K): \(\delta = 12.1\) ppm.

IR (ATR, 16 scans): \(\tilde{\nu} = 2960, 2899, 2846, 1600, 1500, 1448, 1399, 1353, 1311, 1260, 1212, 1195, 1096, 1059, 1033, 1019, 930, 883, 801, 753, 729, 710, 688, 676, 646, 628, 609, 579 cm\(^{-1}\).

EA: Anal. calcd. for C\(_{52}\)H\(_{59}\)PTi: C 81.87, H 7.80; found C 71.36, H 7.74.
Synthesis of Ti2e:

(NEt₂)₃PCH₃I (0.517 g, 1.33 mmol) and NaH (0.048 g, 1.99 mmol) were placed in a Schlenk tube, tetrahydrofuran (10 ml) was added and the resulting suspension was refluxed for 4 hours. After cooling to room temperature, the suspension was filtered into a Schlenk tube containing a solution of Ti1b (0.500 g, 0.89 mmol) in 2 ml of tetrahydrofuran. The former blue solution turns brown and was stirred overnight at room temperature. Evaporation of the solvent and drying in vacuo afforded Ti2e in quantitative yield as dark red-brown solid, m.p. 83 °C (dec.).

¹H-NMR (500 MHz, C₆D₆, 305 K): δ = 0.85–0.88 (m, 18 H, CH₃), 2.08 (s, 3 H, CH₃), 2.11 (s, 3 H, CH₃), 2.15 (s, 6 H, CH₃), 2.67–2.75 (m, 6 H, CH₂), 2.82–2.91 (m, 6 H, CH₂), 4.43 (m, 1 H, C₅H₄), 4.76 (m, 1 H, C₅H₄), 4.80 (m, 1 H, C₅H₄), 4.83 (m, 1 H, C₅H₄), 5.12 (s, 1 H, CHexo), 5.56 (m, 1 H, C₅H₄), 6.47 (m, 1 H, C₅H₄), 6.70 (m, 1 H, C₅H₄), 6.82–6.84 (m, 3 H, C₅H₄ + pTol CH), 6.92 (m, 1 H, CH₃(CH₃)), 6.94 (m, 6 H, pTol CH), 7.11 (d, J = 7.6 Hz, 2 H, pTol CH), 7.23 (d, J = 7.7 Hz, 2 H, pTol CH), 7.59 (d, J = 7.8 Hz, 2 H, pTol CH), 7.65 (d, J = 7.6 Hz, 2 H, pTol CH) ppm.

¹³C-NMR (125 MHz, C₆D₆, 305 K): δ = 14.2 (NCH₂CH₃), 14.3 (NCH₂CH₃), 21.0 (CH₃(CH₃)), 40.2 (NCH₂CH₃), 40.2 (NCH₂CH₃), 52.1 (CHexo), 105.1 (C₅H₄), 105.1 (C₅H₄), 106.2 (C₅H₄), 107.5 (C₅H₄), 107.5 (C₅H₄), 108.6 (Fv Cexo), 109.2 (C₅H₄), 110.0 (C₅H₄), 111.4 (C₅H₄), 113.4 (C₅H₄), 123.3 (pTol C), 123.3 (Cipso Cp), 127.1 (pTol CH), 127.5 (pTol CH), 128.6 (pTol CH), 129.0 (pTol CH), 129.0 (pTol CH), 129.2 (pTol CH), 129.5 (pTol CH), 132.4 (pTol C), 132.6 (pTol CH), 133.0 (pTol C), 135.3 (pTol C), 135.6 (pTol C), 142.7 (pTol C), 144.2 (pTol C), 145.2 (pTol C), 147.1 (pTol C), 151.0 (d, ¹³JC = 62.7 Hz, CH₃(CH₃)) ppm.

³¹P-NMR (202 MHz, C₆D₆, 305 K): δ = 56.6 ppm.

IR (ATR, 16 scans): ν = 2969, 2921, 2870, 1508, 1455, 1379, 1295, 1260, 1203, 1172, 1054, 1017, 946, 924, 864, 796, 762, 737, 688, 638, 569 cm⁻¹.
Synthesis of Ti4a and Ti4b.

Ti3 (0.500 g, 1.2 mmol) and Y1 (0.331 g, 1.2 mmol) were placed in a Schlenk tube and n-hexane (10 ml) was added. The former blue suspension turns red and was stirred at room temperature overnight. Subsequently, the mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo only afforded a mixture of two products being subject to a reversible thermodynamic equilibrium. In this, the two compounds Ti4a and Ti4b are present in the ratio of 1:1. Increasing the temperature (353 K), the equilibrium can be influenced in favor of compound Ti4b. Combined data for Ti4a and Ti4b were as follows.

1H-NMR (500 MHz, C6D6, 303 K): δ = 0.93 (s, 3 H, C5Me4), 1.29 (s, 3 H, C5Me4), 1.47–2.47 (Ad), 1.74 (s, 3 H, C5Me4), 2.04 (s, 15 H, C5Me5), 2.12 (s, 3 H, C5Me4), 2.13 (m, 1 H, CH2), 2.65 (d, 2J = 3.5 Hz, 1 H, CH2), 3.19 (s, 1 H, CHexo), 3.27 (s, 1 H, CHexo), 4.77 (m, 1 H, C5H4), 5.08 (m, 1 H, C5H4), 5.14 (m, 1 H, C5H4), 5.19 (m, 1 H, C5H4), 5.72 (m, 1 H, C5H4), 5.95 (m, 2 H, C5H4), 6.48 (m, 1 H, C5H4), 7.02–7.11 (m, 18 H, C6H5), 7.71–7.75 (m, 12 H, C6H5), 9.01 (d, 2JPH = 4.8 Hz, CH) ppm.

13C-NMR (125 MHz, C6D6, 303 K): δ = 10.9 (C5Me4), 11.8 (C5Me4), 13.5 (Cp*), 13.5 (C5Me4), 14.5 (C5Me4), 28.4 (Ad CH), 28.6 (Ad CH), 28.6 (Ad CH), 28.6 (Ad CH), 32.4 (Ad CH2), 32.5 (Ad CH2), 32.8 (Ad CH2), 32.9 (Ad CH2), 33.0 (Ad CH), 33.0 (Ad CH2), 33.1 (Ad CH), 33.2 (Ad CH2), 38.4 (Ad CH2), 38.7 (Ad CH2), 39.0 (Ad CH2), 39.1 (Ad CH2), 39.2 (Ad CH2), 39.3 (Ad CH2), 44.1 (CHexo), 45.9 (CHexo), 75.4 (CH2), 104.9 (C5H4), 106.8 (C5H4), 107.7 (C5H4), 108.4 (C5H4), 19.7 (C5H4), 111.4 (C5H4), 112.5 (C5H4), 118.7 (C5H4), 119.7 (C5H4), 121.2 (C5H4), 126.5 (C5H4), 128.4 (d, J = 12.7 Hz, PPh3), 128.54 (d, J = 11.3 Hz, PPh3), 130.2 (C5Me4), 130.6 (d, J = 2.6 Hz, PPh3), 131.0 (d, J = 2.8 Hz, PPh3), 132.7 (d, J = 9.0 Hz, PPh3), 133.7 (d, J = 9.3 Hz, PPh3), 133.7 (Cipso Cp), 134.3 (d, 1JPC = 80.0 Hz, PPh3), 135.3 (d, 1JPC = 84.1 Hz, PPh3), 135.5 (Cipso Cp), 136.1 (C5Me4), 173.5 (d, 1JPC = 29.1 Hz, CHylide) ppm.
Synthesis of Ti4b:

\[
\begin{align*}
\text{Me}_4 & \quad \text{Cl} \quad \text{Ti} \\
\text{AdH} & \quad \text{CH}_2
\end{align*}
\]

Ti3 (1 g, 2.4 mmol) and Y1 (0.020 g, 0.072 mmol) were placed in a Schlenk tube, 10 ml of \(n\)-hexane was added and the resulting red suspension stored at 60 °C over night. Evaporation of the solvent and drying in vacuo afforded Ti4b in quantitative yield, m.p. 125 °C.

\(^1\)H-NMR (500 MHz, \(\text{C}_6\text{D}_6\), 305 K): \(\delta = 0.92\) (s, 3 H, \(\text{C}_5\text{Me}_4\)), 1.28 (s, 3 H, \(\text{C}_5\text{Me}_4\)), 1.61–2.46 (14 H, Ad), 1.74 (s, 3 H, \(\text{C}_5\text{Me}_4\)), 2.12 (s, 4 H, \(\text{C}_5\text{Me}_4\), \(\text{CH}_2\)), 2.65 (d, \(^2J = 3.4 \text{ Hz}\), 1 H, \(\text{CH}_2\)), 3.19 (s, 1 H, \(\text{CH}_\text{exo}\)), 5.08 (m, 1 H, \(\text{C}_5\text{H}_4\)), 5.14 (m, 1 H, \(\text{C}_5\text{H}_4\)), 5.94 (m, 1 H, \(\text{C}_5\text{H}_4\)), 6.47 (m, 1 H, \(\text{C}_5\text{H}_4\)) ppm.

\(^{13}\)C-NMR (125 MHz, \(\text{C}_6\text{D}_6\), 305 K): \(\delta = 10.9\) (\(\text{C}_5\text{Me}_4\)), 11.8 (\(\text{C}_5\text{Me}_4\)), 13.5 (\(\text{C}_5\text{Me}_4\)), 14.5 (\(\text{C}_5\text{Me}_4\)), 28.4 (Ad CH), 28.6 (Ad CH), 32.5 (Ad CH), 32.8 (Ad CH), 32.9 (Ad CH), 33.1 (Ad CH), 38.4 (Ad CH), 39.0 (Ad CH), 39.1 (Ad CH), 45.3 (\(\text{CH}_\text{exo}\)), 75.4 (CH2), 106.8 (\(\text{C}_5\text{H}_4\)), 109.7 (\(\text{C}_5\text{H}_4\)), 111.4 (\(\text{C}_5\text{H}_4\)), 118.7 (\(\text{C}_5\text{H}_4\)), 121.2 (\(\text{C}_5\text{Me}_4\)), 126.5 (\(\text{C}_5\text{Me}_4\)), 128.6 (\(\text{C}_5\text{Me}_4\)), 130.2 (\(\text{C}_5\text{Me}_4\)), 133.7 (\(\text{C}_\text{ipso}\) Cp), 135.6 (\(\text{C}_5\text{Me}_4\)) ppm.

IR (ATR, 16 scans): \(\tilde{\nu} = 2963, 2902, 2848, 1468, 1449, 1377, 1260, 1089, 1061, 1017, 874, 795, 745, 693, 619, 603, 580 \text{ cm}^{-1}\).
Synthesis of Ti5:

Ti3 (0.500 g, 1.2 mmol) and Y1 (0.331 g, 1.2 mmol) were placed in a Schlenk tube and 10 ml of n-hexane was added. The resulting red suspension was stirred for 8 hours at room temperature and subsequently an excess acetone was added. After storing at 60 °C overnight, the resulting yellow suspension was filtrated to remove triphenylphosphineoxide (0.196 g, 0.7 mmol, 59%). The solvent was evaporated and the resulting yellow solid dried in vacuo, yielding 0.361 g (0.76 mmol, 63%) of Ti5, m.p. 156 °C.

Single crystals suitable for x-ray diffraction could be obtained from a saturated solution of Ti5 in n-hexane at 5 °C.

1H-NMR (500 MHz, C6D6, 305 K): δ = 1.23 (s, 3 H, OC(CH3)2), 1.48 (s, 3 H, OC(CH3)2), 1.50–2.41 (14 H, Ad), 1.53 (s, 3 H, C5Me4), 1.69 (s, 3 H, C5Me4), 1.72 (s, 3 H, C5Me4), 2.33 (d, 3JCH = 13.2 Hz, 1 H, CH2), 2.36 (s, 3 H, C5Me4), 2.70 (d, 3JCH = 13.2 Hz, 1 H, CH2), 3.21 (s, 1 H, CHexo), 5.53 (m, 1 H, C5H4), 5.59 (m, 1 H, C5H4), 5.84 (m, 1 H, C5H4), 6.49 (m, 1 H, C5H4) ppm.

13C-NMR (125 MHz, C6D6, 305 K): δ = 11.5 (C5Me4), 12.8 (C5Me4), 13.1 (C5Me4), 14.2 (C5Me4), 28.5 (2 x Ad CH), 32.0 (OC(CH3)2), 32.0 (Ad CH), 32.6 (Ad CH), 33.0 (Ad CH2), 33.0 (Ad CH2), 34.5 (OC(CH3)2), 38.4 (CH2), 38.7 (CH2), 39.1 (CH2), 39.3 (CH2), 44.1 (CHexo), 108.6 (OC(CH3)2), 109.7 (C5H4), 111.9 (C5H4), 114.9 (C5H4), 115.6 (C5Me4), 116.4 (C5Me4), 121.1 (C5H4), 121.8 (C5Me4), 132.1 (C5Me4), 138.2 (Cipso Cp), 140.8 (C5Me4) ppm.

IR (ATR, 16 scans): ν = 2965, 2902, 2875, 2849, 1488, 1449, 1377, 1359, 1292, 1255, 1194, 1143, 1113, 1100, 1058, 1023, 965, 909, 852, 806, 778, 691, 608, 595, 572 cm⁻¹.

EA: Anal. calcd. for C28H39ClOTi: C 70.81, H 8.28; found C 71.05, H 8.38.
Synthesis of Ti6:

Ti3 (0.250 g, 0.6 mmol) and Y1 (0.166 g, 0.6 mmol) were placed in a Schlenk tube and 7 ml of n-hexane was added. The resulting red suspension was stirred for 8 hours at room temperature and subsequently ferrocenealdehyde (0.128 g, 0.6 mmol) was added. After storing at 60 °C overnight, single crystals suitable for x-ray diffraction could be obtained from the reaction mixture. The mother liquor was decanted and the red crystals dried in vacuo, yielding 0.104 g (0.16 mmol, 27%) of Ti6, m.p. 135 °C.

1H-NMR (500 MHz, C6D6, 305 K): δ = 1.49–2.44 (14 H, Ad), 1.55 (s, 3 H, C5Me4), 1.69 (s, 3 H, C5Me4), 1.72 (s, 3 H, C5Me4), 2.44 (s, 3 H, C5Me4), 2.47 (dd, 2JCH = 12.8, 3JCH = 10.3 Hz, 1 H, CH2), 3.07 (dd, 2JCH = 12.9 Hz, 3JCH = 6.1 Hz, 1 H, CH2), 3.29 (s, 1 H, CHexo), 4.01 (m, 2 H, FcC5H4), 4.11 (s, 5 H, FcC5H5), 4.12 (m, 2 H, FeC5H4), 5.58 (m, 1 H, C5H4), 5.72 (m, 1 H, C5H4), 5.93 (m, 1 H, C5H4), 6.28 (dd, 3JCH = 10.3 Hz, 6.1 Hz, 1 H, FcCHO), 6.47 (m, 1 H, C5H4) ppm.

13C-NMR (125 MHz, C6D6, 305 K): δ = 11.4 (C5Me4), 12.7 (C5Me4), 12.9 (C5Me4), 13.6 (C5Me4), 28.4 (Ad CH), 28.5 (Ad CH), 32.0 (Ad CH), 32.5 (Ad CH), 33.0 (Ad CH2), 33.4 (CH2), 38.4 (Ad CH2), 38.8 (Ad CH2), 39.0 (Ad CH2), 43.7 (CHexo), 66.6 (FcCH), 67.8 (FcCH), 67.9 (FcCH), 68.0 (FcCH), 69.0 (FcCH), 92.9 (FcC), 97.4 (FcCHO), 110.6 (C5H4), 112.7 (C5H4), 115.7 (C5H4), 116.2 (C5Me4), 117.7 (C5Me4), 120.1 (C5H4), 121.3 (C5Me4), 131.5 (C5Me4), 138.5 (Cipso C5Me4), 139.4 (Cipso Cp) ppm.

IR (ATR, 16 scans): ν = 3094, 2902, 2846, 1487, 1467, 1448, 1411, 1378, 1354, 1332, 1293, 1260, 1105, 1058, 1035, 1015, 1002, 972, 955, 933, 883, 850, 827, 806, 781, 721, 690, 685, 646, 632, 604, 586 cm⁻¹.

EA: Anal. calcd. for C36H43ClFeOTi: C 68.54, H 6.87; found C 70.63, H 6.29.
Synthesis of Ti7:

![Diagram of Ti7](image)

Ti3 (0.250 g, 0.6 mmol) and catalytic amounts of Y1 were placed in a Schlenk tube and 7 ml of n-hexane was added. The resulting red suspension was stored at 60 °C overnight, subsequent addition of tritylitrile (0.162 g, 0.6 mmol) and stirring at room temperature overnight results in a turquoise suspension. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.304 g (0.35 mmol, 58%) of Ti7 as turquoise solid, m.p. 125 °C (dec.).

1H-NMR (500 MHz, C$_6$D$_6$, 305 K): $\delta = 1.27$–2.47 (14 H, Ad), 1.46 (s, 3 H, C$_5$Me$_4$), 1.60 (s, 3 H, C$_5$Me$_4$), 1.64 (s, 3 H, C$_5$Me$_4$), 2.34 (s, 3 H, C$_5$Me$_4$), 2.89 (d, 3$J$$_{CH}$ = 17.5 Hz, 1 H, CH$_2$), 3.15 (s, 1 H, CH$_{exo}$), 3.69 (d, 3$J$$_{CH}$ = 17.5 Hz, 1 H, CH$_2$), 5.27 (m, 1 H, C$_5$H$_4$), 5.49 (m, 1 H, C$_5$H$_4$), 5.69 (m, 1 H, C$_5$H$_4$), 6.54 (m, 1 H, C$_5$H$_4$), 7.01 (t, 3$J$$_{CH}$ = 7.3 Hz, 3 H, p-C$_6$H$_5$), 7.13–7.14 (m, 6 H, m-C$_6$H$_5$), 7.51 (d, 3$J$$_{CH}$ = 7.4 Hz, 6 H, o-C$_6$H$_5$) ppm.

13C-NMR (125 MHz, C$_6$D$_6$, 305 K): $\delta = 12.1$ (C$_5$Me$_4$), 12.2 (C$_5$Me$_4$), 12.3 (C$_5$Me$_4$), 13.4 (C$_5$Me$_4$), 28.3 (Ad CH), 28.6 (Ad CH), 31.4 (Ad CH), 32.7 (Ad CH), 32.8 (Ad CH$_2$), 33.2 (Ad CH$_2$), 38.3 (CH$_2$), 38.4 (CH$_2$), 38.5 (CH$_2$), 43.3 (CH$_{exo}$), 71.1 (CPh$_3$), 108.8 (C$_5$H$_4$), 112.0 (C$_5$H$_4$), 113.7 (C$_5$H$_4$), 118.5 (C$_5$Me$_4$), 119.3 (C$_5$Me$_4$), 121.6 (C$_5$Me$_4$), 123.6 (C$_5$H$_4$), 126.5 (p-C$_6$H$_5$), 127.9 (m-C$_6$H$_5$), 130.0 (C$_5$Me$_4$), 131.3 (o-C$_6$H$_5$), 136.5 (C$_5$Me$_4$), 139.4 (C$_{ipso}$ Cp), 146.1 (C$_{ipso}$ C$_6$H$_5$), 196.0 (C=N) ppm.

15N-NMR (51 MHz, C$_6$D$_6$, 305 K): $\delta = 123.0$ ppm.

IR (ATR, 16 scans): $\tilde{\nu}$ = 3063, 3019, 2928, 2895, 2846, 1606, 1594, 1489, 1447, 1263, 1099, 1050, 1030, 876, 828, 804, 781, 768, 740, 701, 648, 632, 600, 556 cm$^{-1}$.

EA: Anal. calcd. for C$_{45}$H$_{48}$ClNTi: C 78.77, H 7.05, N 2.04; found C 75.86, H 6.95, N 2.05.
Synthesis of Ti7a:

By heating a solution of Ti7 in n-hexane, a color change from turquoise to red can be observed, affording Ti7a in quantitative yield, m.p. 165 °C.

Single crystals suitable for x-ray diffraction could be obtained from a saturated solution of Ti7a in n-hexane at 5 °C.

^{1}H-NMR (500 MHz, C$_6$D$_6$, 305 K): $\delta = 1.29$–2.60 (14 H, Ad), 1.43 (s, 3 H, C$_5$Me$_4$), 1.65 (s, 3 H, C$_5$Me$_4$), 1.72 (s, 3 H, C$_5$Me$_4$), 2.50 (s, 3 H, C$_5$Me$_4$), 3.03 (s, 1 H, CH$_{exo}$), 5.04 (m, 1 H, C$_5$H$_4$), 5.20 (m, 2 H, C$_5$H$_4$), 5.37 (s, 1 H, C$_5$Me$_4$CH), 6.51 (m, 1 H, C$_5$H$_4$), 7.04 (t, $^3J_{CH} = 7.3$ Hz, 3 H, p-C_6H_5), 7.16–7.18 (m, 6 H, m-C_6H_5), 7.49 (d, $^3J_{CH} = 7.5$ Hz, 6 H, o-C_6H_5), 8.79 (s, 1 H, NH) ppm.

^{13}C-NMR (125 MHz, C$_6$D$_6$, 305 K): $\delta = 11.5$ (C$_5$Me$_4$), 12.0 (C$_5$Me$_4$), 12.3 (C$_5$Me$_4$), 14.0 (C$_5$Me$_4$), 28.2 (Ad CH), 28.3 (Ad CH), 31.9 (Ad CH), 32.1 (Ad CH$_2$), 32.2 (Ad CH), 38.3 (Ad CH$_2$), 38.7 (Ad CH$_2$), 38.8 (Ad CH$_2$), 43.5 (CH$_{exo}$), 66.2 (CPh$_3$), 105.1 (C$_5$H$_4$), 105.7 (C$_5$Me$_4$CH), 107.4 (C$_5$H$_4$), 113.6 (C$_5$H$_4$), 119.5 (C$_5$Me$_4$), 119.7 (C$_5$Me$_4$), 125.6 (C$_5$Me$_4$), 126.8 (p-C_6H_5), 127.1 (C$_5$H$_4$), 128.1 (m-C_6H_5), 131.3 (o-C_6H_5), 141.1 (C$_{ipso}$ Cp), 144.1 (C$_5$Me$_4$), 144.9 (C$_5$Me$_4$), 145.6 (C$_{ipso}$ C$_6$H$_5$), 174.1 (CNH) ppm.

^{15}N-NMR (51 MHz, C$_6$D$_6$, 305 K): $\delta = 289.9$ ppm.

IR (ATR, 16 scans): $\tilde{\nu} = 3354$, 3057, 2963, 2904, 2849, 1595, 1492, 1448, 1318, 1260, 1152, 1088, 1016, 866, 795, 753, 743, 724, 699, 644, 622, 584, 568 cm$^{-1}$.
Synthesis of Ti8:

Ti3 (0.250 g, 0.6 mmol) and catalytic amounts of Y1 were placed in a Schlenk tube and 7 ml of n-hexane was added. The resulting red suspension was stored at 60 °C overnight and subsequently ferrocenenitrile (0.127 g, 0.6 mmol) was added. After stirring the suspension at room temperature overnight, the mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.204 g (0.32 mmol, 54%) of Ti8 as red-brown solid, m.p. 183 °C.

Single crystals suitable crystals for x-ray diffraction could be obtained by slowly cooling a hot saturated solution of Ti8 in n-hexane.

1H-NMR (500 MHz, C$_6$D$_6$, 305 K): δ = 1.53–2.60 (14 H, Ad), 1.57 (s, 3 H, C$_5$Me$_4$), 1.75 (s, 3 H, C$_5$Me$_4$), 1.76 (s, 3 H, C$_5$Me$_4$), 2.45 (s, 3 H, C$_5$Me$_4$), 3.45 (s, 1 H, CHexo), 4.08 (s, 2 H, FcC$_5$H$_4$), 4.23 (s, 5 H, FcC$_5$H$_4$), 4.29 (s, 1 H, FcC$_5$H$_4$), 4.45 (s, 1 H, FcC$_5$H$_4$), 5.26 (m, 1 H, C$_5$H$_4$), 5.37 (s, 1 H, C$_5$Me$_4$CH), 5.63 (m, 1 H, C$_5$H$_4$), 5.68 (m, 1 H, C$_5$H$_4$), 6.46 (m, 1 H, C$_5$H$_4$), 9.25 (s, 1 H, NH) ppm.

13C-NMR (125 MHz, C$_6$D$_6$, 305 K): δ = 11.5 (C$_5$Me$_4$), 12.1 (C$_5$Me$_4$), 12.5 (C$_5$Me$_4$), 13.9 (C$_5$Me$_4$), 28.3 (Ad CH), 28.3 (Ad CH), 32.4 (Ad CH), 32.4 (Ad CH), 32.6 (Ad CH), 33.5 (Ad CH), 38.3 (Ad CH), 38.9 (Ad CH), 39.1 (Ad CH), 44.4 (CHexo), 65.3 (FcC$_5$H$_4$), 66.5 (FcC$_5$H$_4$), 68.7 (FcC$_5$H$_4$), 69.3 (FcC$_5$H$_4$), 69.9 (FcC$_5$H$_4$), 81.8 (FcC), 97.1 (C$_5$Me$_4$CH), 107.9 (C$_5$H$_4$), 110.3 (C$_5$H$_4$), 112.1 (C$_5$H$_4$), 119.7 (C$_5$Me$_4$), 120.0 (C$_5$Me$_4$), 123.1 (C$_5$H$_4$), 126.9 (C$_5$Me$_4$), 130.8 (C$_{ipso}$ Cp), 144.13 (C$_5$Me$_4$), 147.0 (C$_{ipso}$ C$_5$Me$_4$), 167.2 (FcCCH) ppm.

15N-NMR (51 MHz, C$_6$D$_6$, 305 K): δ = 277.6 ppm.

IR (ATR, 16 scans): ν = 3379, 2900, 2846, 1660, 1600, 1487, 1467, 1448, 1375, 1338, 1314, 1261, 1100, 1057, 1030, 926, 889, 827, 810, 732, 691, 662, 645, 621, 595 cm$^{-1}$.

EA: Anal. calcd. for C$_{36}$H$_{42}$ClFeNTi: C 68.86, H 6.74, N 2.23; found C 67.01, H 6.58, N 2.29.
Synthesis of Ti9:

Ti3 (0.250 g, 0.6 mmol) and catalytic amounts of Y1 were placed in a Schlenk tube and 7 ml of n-hexane was added. The resulting red suspension was stored at 60 °C overnight and subsequently p-chlorobenzonitrile (0.083 g, 0.6 mmol) was added. After stirring the suspension at room temperature overnight, the mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.215 g (0.39 mmol, 65%) of Ti9 as red solid, m.p. 160 °C.

Single crystals suitable crystals for x-ray diffraction could be obtained by slowly cooling a hot saturated solution of Ti9 in n-hexane.

1H-NMR (500 MHz, C6D6, 305 K): δ = 1.45–2.38 (14 H, Ad), 1.57 (s, 3 H, C5Me4), 1.76 (s, 3 H, C5Me4), 1.78 (s, 3 H, C5Me4), 2.42 (s, 3 H, C5Me4), 3.26 (s, 1 H, CHexo), 5.26 (m, 1 H, C5H4), 5.36 (s, 1 H, C5Me4CH), 5.51 (m, 1 H, C5H4), 5.74 (m, 1 H, C5H4), 6.34 (m, 1 H, C5H4), 7.16 (m, C6D6 + 2 H C6H4), 7.18 (m, 2 H, C6H4), 9.00 (s, 1 H, NH) ppm.

13C-NMR (125 MHz, C6D6, 305 K): δ = 11.5 (C5Me4), 12.1 (C5Me4), 12.5 (C5Me4), 13.7 (C5Me4), 28.2 (Ad CH), 28.2 (Ad CH), 32.3 (2 x Ad CH2), 32.5 (Ad CH), 33.2 (Ad CH), 38.2 (Ad CH2), 38.7 (Ad CH2), 38.8 (Ad CH2), 44.2 (CHexo), 99.3 (C5Me4CH), 108.4 (C5H4), 111.8.4 (C5H4), 112.2 (C3H4), 119.9 (C5Me4), 120.8 (C5Me4), 121.3 (C3H4), 126.9 (C6H4), 126.9 (C5Me4), 128.9 (C6H4), 132.6 (Cipso Cp), 134.1 (C6H4), 136.9 (C6H4), 144.3 (C5Me4), 146.6 (C5Me4), 167.6 (CNH) ppm.

15N-NMR (51 MHz, C6D6, 305 K): δ = 267.9 ppm.

IR (ATR, 16 scans): ν = 2904, 2847, 1601, 1586, 1566, 1486, 1447, 1397, 1381, 1328, 1292, 1262, 1212, 1168, 1087, 1061, 1012, 982, 953, 873, 852, 824, 802, 732, 694, 661, 644, 623, 604, 590, 567 cm\(^{-1}\).

EA: Anal. calcd. for C32H37Cl2NTi: C 69.32, H 6.73, N 2.53; found C 69.26, H 6.91, N 2.44.
Synthesis of Ti10:

Ti3 (0.250 g, 0.6 mmol) and catalytic amounts of Y1 were placed in a Schlenk tube and 7 ml of n-hexane was added. The resulting red suspension was stored at 60 °C overnight and subsequently acetonitrile (0.53 ml, 0.60 mmol, 1.14 M in toluene) was added dropwise. After storing at 60 °C over night a red suspension has been formed, which was decanted and the red solid dried in vacuo. NMR experiments indicate a complex mixture of multiple compounds. However, few single crystals suitable for X-ray diffraction could be obtained from a hot saturated solution of the reaction product in n-hexane at 60 °C.
Synthesis of Zr2a:

Zr1a (0.110 g, 0.24 mmol) and Y1 (0.066 g, 0.24 mmol) were placed in a Schlenk tube and 7 ml of n-hexane was added. The former red solution turns into a yellow suspension and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.077 g (0.11 mmol, 46%) of Zr2a as yellow solid, m.p. 145 °C (dec.).

1H-NMR (500 MHz, C$_6$D$_6$, 305 K): δ = 1.45–2.31 (14 H, Ad), 2.07 (s, 15 H, C$_5$Me$_5$), 3.31 (s, 1 H, CH$_{exo}$), 5.06 (m, 1 H, C$_5$H$_4$), 5.08 (d, 2J$_{PH}$ = 11.3 Hz, 1 H, CH$_{ylide}$), 5.47 (m, 2 H, C$_5$H$_4$), 5.92 (m, 1 H, C$_5$H$_4$), 7.10 (m, 9 H, PPh$_3$), 7.10 (m, 6 H, PPh$_3$) ppm.

13C-NMR (125 MHz, C$_6$D$_6$, 305 K): δ = 12.8 (C$_5$Me$_5$), 28.5 (Ad CH), 32.0 (Ad CH), 32.6 (Ad CH$_2$), 33.3 (Ad CH), 38.6 (Ad CH$_2$), 39.2 (Ad CH$_2$), 43.8 (CH$_{exo}$), 104.4 (C$_5$H$_4$), 104.5 (d, 1J$_{PC}$ = 34.5 Hz, CH$_{ylide}$), 107.4 (C$_5$H$_4$), 110.0 (C$_5$H$_4$), 110.8 (C$_5$H$_4$), 118.1 (C$_5$Me$_5$), 128.4 (d, $J = 11.3$ Hz, PPh$_3$), 130.7 (d, $J = 2.7$ Hz, PPh$_3$), 133.5 (d, $J = 9.2$ Hz, PPh$_3$), 133.8 (C$_{ipso}$ Cp), 135.6 (d, 1J$_{PC}$ = 81 Hz, PPh$_3$) ppm.

31P-NMR (202 MHz, C$_6$D$_6$, 305 K): δ = 16.6 (1J$_{PC}$ = 81 Hz) ppm.

IR (ATR, 16 scans): $\tilde{\nu}$ = 3058, 2907, 2848, 1482, 1435, 1261, 1185, 1095, 1062, 1044, 1023, 998, 852, 813, 748, 706, 692, 595 cm$^{-1}$.

EA: Anal. calcd. for C$_{44}$H$_{49}$ClPZr: C 71.85, H 6.72; found C 68.80, H 6.91.
Synthesis of Zr2b:

Zr1b (0.250 g, 0.48 mmol) and Y1 (0.133 g, 0.48 mmol) were placed in a Schlenk tube and 7 ml of n-hexane was added. The former red solution turns into a yellow suspension and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.248 g (0.31 mmol, 65%) of Zr2b as yellow solid, m.p. 153 °C (dec.). Single crystals suitable for x-ray diffraction were obtained from a saturated solution of Zr2b-benzo in n-hexane at 5 °C.

^1H-NMR (500 MHz, C₆D₆, 305 K): δ = 1.97 (s, 15 H, C₅Me₅), 2.05 (s, 3 H, CH₃), 2.10 (s, 3 H, CH₃), 4.79 (m, 1 H, C₅H₄), 5.04 (m, 1 H, C₅H₄), 5.20 (d, ^2JPH = 12.5 Hz, 1 H, CHylide), 5.41 (m, 1 H, C₅H₄), 5.96 (s, 1 H, CHexo), 6.27 (m, 1 H, C₅H₄), 6.86 (d, J = 7.9 Hz, 2 H, pTol CH), 7.00–7.06 (m, 11 H, pTol CH + PPh₃), 7.20 (d, J = 8.0 Hz, 2 H, pTol CH), 7.50 (d, J = 8.0 Hz, 2 H, pTol CH), 7.68–7.72 (m, 6 H, PPh₃) ppm.

^13C-NMR (125 MHz, C₆D₆, 305 K): δ = 12.8 (C₅Me₅), 21.0 (pTol CH₃), 21.1 (pTol CH₃), 51.6 (CHexo), 103.0 (C₅H₄), 105.7 (d, ^1JPC = 33.1 Hz, CHylide), 109.7 (C₅H₄), 110.8 (C₅H₄), 111.9 (C₅H₄), 118.3 (C₅Me₅), 129.0 (pTol CH), 129.2 (pTol CH), 129.6 (pTol CH), 130.4 (pTol CH), 130.7 (d, J = 2.7 Hz, PPh₃), 133.4 (d, J = 9.1 Hz, PPh₃), 134.8 (Cipso Cp), 134.8 (pTol C), 135.1 (d, ^1JPC = 81 Hz, PPh₃), 135.5 (pTol C), 142.6 (pTol C), 144.4 (pTol C) ppm.

^31P-NMR (202 MHz, C₆D₆, 305 K): δ = 16.5 (^1JPC = 81 Hz) ppm.

IR (ATR, 16 scans): ̅v = 3074, 2962, 2899, 2860, 1510, 1481, 1437, 1377, 1262, 1186, 1102, 1069, 1040, 1024, 999, 950, 951, 804, 785, 762, 750, 705, 694, 577 cm⁻¹.

EA: Anal. calcd. for C₄₉H₅₀ClPZr: C 73.88, H 6.33; found C 72.86, H 6.62.
Synthesis of Zr2a-benzo:

Zr1a-benzo (0.250 g, 0.44 mmol) and Y2 (0.121 g, 0.44 mmol) were placed in a Schlenk tube and 7 ml of n-hexane was added. The former red solution turns into a yellow suspension and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (3 x 5 ml). Drying in vacuo afforded 0.273 g (0.34 mmol, 69%) of Zr2a-benzo as yellow solid, m.p. 99 °C (dec.).

Single crystals suitable for x-ray diffraction were obtained from a saturated solution of Zr2a-benzo in n-hexane at room temperature.

Due to the poor solubility of Zr2a-benzo in common deuterated NMR solvents, NMR experiments could not be performed.

IR (ATR, 16 scans): ṽ = 3052, 3018, 2954, 2907, 2859, 1588, 1509, 1483, 1437, 1376, 1346, 1262, 1184, 1099, 1022, 999, 962, 938, 857, 806, 776, 757, 745, 710, 693, 639, 595, 575 cm⁻¹.

EA: Anal. calcd. for C₄₈H₇₀ClPZr: C 71.64, H 8.77; found C 63.76, H 8.04.
Synthesis of Zr2b-benzo:

Zr1b-benzo (0.250 g, 0.44 mmol) and Y1 (0.121 g, 0.44 mmol) were placed in a Schlenk tube and 7 ml of n-hexane was added. The former red solution turns into a yellow suspension and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (3 x 5 ml). Drying in vacuo afforded 0.305 g (0.36 mmol, 82%) of Zr2b-benzo as yellow solid, m.p. 115 °C (dec.). Single crystals suitable for x-ray diffraction were obtained from a saturated solution of Zr2b-benzo in n-hexane at 5 °C.

1H-NMR (500 MHz, C6D6, 305 K): δ = 1.74 (s, 15 H, C5Me5), 2.01 (s, 3 H, CH3), 2.16 (s, 3 H, CH3), 2.72 (d, 2JPH = 22.1 Hz, 1 H, CHylide), 5.86 (d, J = 2.8 Hz, 1 H, C5H2), 5.92 (d, 1 H, J = 2.8 Hz, C5H2), 6.25 (m, 1 H, C5H4), 6.42 (m, 1 H, C6H4), 6.57 (s, 1 H, CHexo), 6.83 (m, 2 H, pTol CH), 7.08 (m, 11 H, PPh3 + pTol CH), 7.18 (m, 2 H, pTol CH), 7.28 (m, 1 H, C6H4), 7.38 (m, 1 H, C6H4), 7.60 (m, 6 H, PPh3), 7.77 (m, 2 H, pTol CH) ppm.

13C-NMR (126 MHz, C6D6, 305 K): δ = 12.6 (C5Me5), 21.0 (CH3), 21.1 (CH3), 51.3 (CHexo), 91.3 (C5H2), 103.9 (d, 2JPC = 40.2 Hz, CHylide), 114.4 (C5H2), 119.0 (C5Me5), 123.0 (C6H4), 124.8 (C6H4), 124.9 (C6H4), 125.0 (C6H4), 126.3 (C6H4), 128.1 (d, JPC = 11.3 Hz, CHylide), 129.1 (pTol CH), 129.27 (pTol CH), 129.31 (pTol CH), 130.6 (d, J = 2.7 Hz, PPh3), 131.0 (pTol CH), 132.7 (Cp Cipso), 133.0 (C6H4), 133.6 (d, J = 9.3 Hz, PPh3), 135.0 (pTol C), 135.2 (d, 1JPC = 82.1 Hz, PPh3), 135.4 (pTol C), 141.8 (pTol C), 143.6 (pTol C) ppm.

31P-NMR (202 MHz, C6D6, 305 K): δ = 5.92 (1JPC = 82.0 Hz) ppm.

IR (ATR, 16 scans): ν = 3058, 3025, 2959, 2903, 2858, 1587, 1492, 1482, 1451, 1435, 1377, 1296, 1262, 1153, 1098, 1075, 1028, 999, 951, 880, 801, 772, 750, 740, 695, 624, 601 cm⁻¹.

EA: Anal. calcd. for C53H52ClPZr: C 75.19, H 6.19; found C 73.70, H 6.62.
Synthesis of Zr2c:

Zr1b (0.250 g, 0.48 mmol) and Y2 (0.142 g, 0.48 mmol) were placed in a Schlenk tube and 7 ml of n-hexane was added. The former red solution turns into a yellow suspension and was stirred at room temperature overnight. The mother liquor was decanted and the solid washed with n-hexane (2 x 3 ml). Drying in vacuo afforded 0.282 g (0.35 mmol, 72%) of Zr2c as yellow solid, m.p. 193 °C (dec.).

1H-NMR (500 MHz, C$_6$D$_6$, 305 K): δ = 1.0–1.91 (30 H, PCy$_3$), 1.97 (s, 15 H, C$_5$Me$_5$), 2.07 (s, 3 H, CH$_3$), 2.12 (s, 3 H, CH$_3$), 5.71 (d, 2J$_{PH}$ = 17.2 Hz, 1 H, CH$_2$ylide), 5.13 (m, 1 H, C$_5$H$_4$), 5.48 (m, 1 H, C$_5$H$_4$), 6.06 (m, 1 H, C$_5$H$_4$), 6.10 (s, 1 H, CH$_3$exo), 6.89 (m, 1 H, C$_5$H$_4$), 6.98 (d, 2J$_{PH}$ = 7.9 Hz, 2 H, pTol CH), 7.04 (d, 2J$_{PH}$ = 7.8 Hz, 2 H, pTol CH), 7.43 (d, 2J$_{PH}$ = 8.0 Hz, 2 H, pTol CH), 7.61 (d, 2J$_{PH}$ = 8.0 Hz, 2 H, pTol CH) ppm.

13C-NMR (125 MHz, C$_6$D$_6$, 305 K): δ = 12.8 (C$_5$Me$_5$), 21.0 (pTol CH$_3$), 21.1 (pTol CH$_3$), 26.7 (CH$_2$), 27.7 (CH$_2$), 28.0 (CH$_2$), 36.8 (d, 1J$_{PC}$ = 47.0 Hz, Cy CH), 51.6 (CH$_3$exo), 102.5 (C$_5$H$_4$), 107.5 (C$_5$H$_4$), 109.5 (C$_5$H$_4$), 109.7 (C$_5$H$_4$), 111.1 (d, 1J$_{PC}$ = 23.7 Hz, CH$_2$ylide), 117.5 (C$_5$Me$_5$), 129.2 (pTol CH), 129.2 (pTol CH), 129.8 (pTol CH), 130.4 (pTol CH), 135.0 (Cp C$_{ps}$), 135.1 (pTol C), 135.5 (pTol C), 142.5 (pTol C), 144.8 (pTol C) ppm.

31P-NMR (202 MHz, C$_6$D$_6$, 305 K): δ = 26.7 (1J$_{PC}$ = 46.4 Hz) ppm.

IR (ATR, 16 scans): $\tilde{\nu}$ = 3021, 2929, 2854, 1627, 1510, 1447, 1376, 1313, 1260, 1181, 1110, 1022, 1007, 929, 909, 851, 807, 763, 690, 593, 576 cm$^{-1}$.
Crystallographic Data

Single crystals of the corresponding compounds were selected and measured on a 'Bruker APEX-II CCD' diffractometer with graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). The crystals were cooled during data collection. Using Olex2,[10] the structure was solved with the ShelXS[11] structure solution program using Direct Methods and refined with the ShelXL[12] refinement package using Least Squares minimization.

Table 1. Crystal Structure Data for Zr2a-benzo, Zr2b, Zr2b-benzo and Ti2b including CCDC deposition numbers.

	Zr2a-benzo	Zr2b	Zr2b-benzo	Ti2b
CCDC	1878081	1878085	1878082	1878079
empirical formula	C₄₈H₇₀ClPZr	C₄₈H₅₀ClPZr	C₄₈H₆₆ClPZr	C₄₈H₇₁PTi
formula mass	804.68	796.53	932.75	738.92
cryst. dimens. mm	0.2 x 0.1 x 0.5	0.24 x 0.1 x 0.03	0.20 x 0.08 x 0.06	0.24 x 0.12 x 0.04
color, habit	yellow, plate	yellow, plate	yellow, rod	red-orange, plate
cryst. system	monoclinic	monoclinic	triclinic	triclinic
spacegroup	P2₁/n	P2₁/c	P-1	P-1
a, Å	10.3211(4)	17.3161(8)	17.3059(14)	20.1468(12)
b, Å	26.2388(10)	13.4216(6)	18.1032(14)	16.6236(10)
c, Å	15.7335(6)	17.4479(8)	18.4382(14)	20.1468(12)
α, deg	90	90	117.188(2)	86.699(2)
β, deg	94.6720(11)	93.7551(15)	101.145(2)	87.586(2)
γ, deg	90	90	91.753(2)	77.804(2)
V, Å³	4246.7(3)	4046.4(3)	4994.4(7)	4049.7(4)
Z	4	4	4	4
D_calcd., g cm⁻³	1.259	1.308	1.240	1.212
µ, mm⁻¹	0.391	0.411	0.343	0.284
F(000)	1720	1664	1968	1608
T, K	100(2)	100(2)	100(2)	100(2)
θ range, deg	1.513, 30.032	1.916, 25.026	2.19, 22.31	1.573, 28.699
no. of rflns collected	96310	95370	102058	130358
no. of independ. rflns (R(int))	12421 (0.0668)	7138 (0.0945)	14343 (0.0873)	20923 (0.0870)
no. of rflns with I > 2σ(I)	9593	5300	9104	14272
abs. cor.	multi-scan	numerical	multi-scan	semi-empirical
max., min. transmission	1.0000, 0.9532	0.9963, 0.9244	1.0000, 0.8859	1.0000, 0.9360
no. of data / restraints / param.	12421 / 0 / 469	7138 / 0 / 480	14343 / 0 / 1170	20923 / 0 / 927
R indices (all data)	R1 = 0.0567	0.0645	0.1032	0.0863
	wR2 = 0.808	wR2 = 0.087	wR2 = 0.1231	wR2 = 0.1066
final R indices [I > 2σ(I)]	R1 = 0.0350	0.0379	0.0503	0.0457
	wR2 = 0.0724	wR2 = 0.0778	wR2 = 0.1021	wR2 = 0.0913
GoF on F²	1.024	1.027	1.012	1.004
larg. diff. peak/hole, e Å⁻³	0.603, -0.451	0.398, -0.337	0.626, -0.639	0.374, -0.409
Table 2. Crystal Structure Data for Ti4, Ti5, Ti6 and Ti7a including CCDC deposition numbers.

	Ti4a	Ti5	Ti6	Ti7a
CCDC	1878078	1878080	1878087	1878083
empirical formula	C₄₄H₅₀ClPTi	C₂₈H₃₉ClOTi	C₃₈H₴₃ClFeOTi	C₄₈H₵₅ClNTi
formula mass	693.16	474.94	630.90	729.28
cryst. dimens. mm	0.5 x 0.1 x 0.04	0.25 x 0.2 x 0.1	0.5 x 0.35 x 0.2	0.25 x 0.2 x 0.1
color, habit	red, plate	yellow, block	gold, block	red, plate
cryst. system	monoclinic	monoclinic	monoclinic	monoclinic
spacegroup	P2₁/n	P2₁/c	P2₁/n	P2₁/c
a, Å	11.1056(7)	15.3372(6)	24.5582(8)	19.3414(12)
b, Å	23.4726(15)	10.9430(4)	12.4675(4)	14.1248(8)
c, Å	15.0706(9)	16.0438(6)	29.5762(10)	14.6035(9)
α, deg	90	90	90	90
β, deg	111.418(4)	117.7388(16)	97.9499(15)	95.2913(19)
γ, deg	90	90	90	90
V, Å³	3657.3(4)	2383.26(16)	8968.6(5)	3972.6(4)
Z	4	4	12	4
Dcalcd., g cm⁻³	1.259	1.324	1.402	1.219
µ, mm⁻¹	0.381	0.490	0.870	0.317
F(000)	1472	1016	3984	1556
T, K	100(2)	100(2)	100(2)	250(2)
θ range, deg	1.691, 27.103	1.500, 36.313	1.390, 33.728	1.788, 30.033
no. of rflns collected	41847	190670	325667	138193
no. of indep. rflns (R(int))	7931 (0.1125)	11567 (0.0300)	35811 (0.0311)	11627 (0.0454)
no. of rflns with I > 2σ(I)	4979	10348	29650	8768
abs. cor.	semi-empirical	numerical	numerical	semi-empirical
max., min. transmission	1.0000, 0.7850	0.9461, 0.8754	0.8591, 0.6897	1.0000, 0.9728
no. of data / restraints / param.	7931 / 0 / 433	11567 / 0 / 286	35811 / 0 / 1154	11627 / 0 / 469
R indices (all data)	R₁ = 0.1071, R₂ = 0.1257	R₁ = 0.333, R₂ = 0.0815	R₁ = 0.0535, R₂ = 0.1031	R₁ = 0.0621, R₂ = 0.1173
final R indices [I > 2σ(I)]	R₁ = 0.0521, R₂ = 0.1054	R₁ = 0.0282, R₂ = 0.0783	R₁ = 0.0407, R₂ = 0.0972	R₁ = 0.0413, R₂ = 0.1034
GoF on F²	0.994	1.054	1.114	1.034
largest diff. peak / hole, e Å⁻³	0.461, -0.512	0.625, -0.352	0.649, -0.453	0.641, -0.435
Table 3. Crystal Structure Data for Ti8, Ti9 and Ti10 including CCDC deposition numbers.

	Ti8	Ti9	Ti10
CCDC	1878086	1878084	1878088
empirical formula	C₃₆H₄₂ClFeNTi	C₃₂H₃₇Cl₂NTi	C₅₄H₇₂Cl₂N₂Ti₂
formula mass	627.90	554.42	915.83
cryst. dimens. mm	0.28 x 0.14 x 0.1	0.25 x 0.2 x 0.1	0.2 x 0.16 x 0.06
color, habit	dark red, block	red, block	red, plate
cryst. system	triclinic	triclinic	monoclinic
spacegroup	P-1	P-1	P2₁/c
a, Å	12.7436(6)	8.5146(8)	19.1941(19)
b, Å	14.4570(6)	9.1320(8)	13.7102(14)
c, Å	17.8069(8)	18.4129(16)	17.3682(17)
α, deg	78.073(2)	96.864(2)	90
β, deg	76.896(2)	103.334(2)	92.125(3)
γ, deg	72.7816(19)	99.262(2)	90
V, Å³	3017.5(2)	1356.5(2)	4567.4(8)
Z	4	2	4
\(D_{calcd.}\), g cm⁻³	1.382	1.357	1.332
\(\mu\), mm⁻¹	0.860	0.535	0.506
F(000)	1320	584	1952
T, K	100(2)	100(2)	100(2)
\(\theta\) range, deg	1.492, 32.031	2.290, 32.031	1.826, 30.032
no. of rflns collected	96449	58216	136093
no. of indep. rflns (R(int))	20997 (0.0498)	9443 (0.0355)	13367 (0.0670)
no. of rflns with \(I > 2\sigma(I)\)	16611	7866	9853
abs. cor.	semi-empirical	semi-empirical	semi-empirical
max., min. transmission	1.0000, 0.9193	1.0000, 0.8859	1.0000, 0.9340
no. of data / restraints / param.	20997 / 0 / 737	9443 / 0 / 333	13367 / 0 / 558
R indices (all data)	R₁ = 0.0716	R₁ = 0.0456	R₁ = 0.0655
	wR₂ = 0.1501	wR₂ = 0.0888	wR₂ = 0.1091
final R indices \([I > 2\sigma(I)]\)	R₁ = 0.0546	R₁ = 0.0340	R₁ = 0.041
	wR₂ = 0.1382	wR₂ = 0.0825	wR₂ = 0.0961
GoF on \(F^2\)	1.015	1.076	1.033
largest diff. peak / hole, e Å⁻³	3.186, -1.473	0.606, -0.470	0.718, -0.481
Figure S1. Molecular structure of Zr2a-benzo.

Figure S2. Molecular structure of Zr2b.

Figure S3. Molecular structure of Zr2b-benzo.

Figure S4. Molecular structure of Ti2b.

Figure S5. Molecular structure of Ti4a.

Figure S6. Molecular structure of Ti5.
Figure S7. Molecular structure of Ti6.

Figure S8. Molecular structure of Ti7a.

Figure S9. Molecular structure of Ti8.

Figure S10. Molecular structure of Ti9.

Figure S11. Molecular structure of Ti10.
NMR Spectra of Compounds:

Figure S12. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P{1H}-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Ti2a; 0.89, 1.24 ppm: n-hexane.

Figure S13. 13C{1H}-NMR spectrum of Ti2a (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S14. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Ti2b; 0.89, 1.24 ppm: n-hexane.

Figure S15. 13C(1H)-NMR spectrum of Ti2b (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S16. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Ti2c; 0.89, 1.24 ppm: n-hexane.

Figure S17. 13C(1H)-NMR spectrum of Ti2c (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S18. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Ti$_2$d; 0.89, 1.24 ppm: n-hexane.

Figure S19. 13C(1H)-NMR spectrum of Ti$_2$d (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S20. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P{1H}-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Ti2e; 0.89, 1.24 ppm: n-hexane.

Figure S21. 13C{1H}-NMR spectrum of Ti2e (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S22. 15N/1H-HMBC-NMR spectrum of Ti2e (51 MHz, C$_6$D$_6$, rt).
Figure S23. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Zr$_2$a; 0.89, 1.24 ppm: n-hexane.

Figure S24. 13C(1H)-NMR spectrum of Zr$_2$a (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S25. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P{1H}-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Zr$_2$b; 0.89, 1.24 ppm: n-hexane.

Figure S26. 13C{1H}-NMR spectrum of Zr$_2$b (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S27. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Zr2b-benzo; 0.89, 1.24 ppm: n-hexane.

Figure S28. 13C(1H)-NMR spectrum of Zr2b-benzo (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S29. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Zr$_2$c; 0.89, 1.24 ppm: n-hexane.

Figure S30. 13C(1H)-NMR spectrum of Zr$_2$c (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S31. 1H-NMR (500 MHz, C$_6$D$_6$, rt) and 31P(1H)-NMR spectrum (202 MHz, C$_6$D$_6$, rt) of Ti4a with Ti4b; #: Ti4b.

Figure S32. 13C(1H)-NMR spectrum of Ti4a with Ti4b (125 MHz, C$_6$D$_6$, rt).
Figure S33. 1H-NMR spectrum of Ti4b (500 MHz, C₆D₆, rt).

Figure S34. 13C(1H)-NMR spectrum of Ti4b (125 MHz, C₆D₆, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S35. 1H-NMR spectrum of Ti5 (500 MHz, C$_6$D$_6$, rt).

Figure S36. 13C(1H)-NMR spectrum of Ti5 (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S37. 1H-NMR spectrum of Ti6 (500 MHz, C$_6$D$_6$, rt): 0.89, 1.24 ppm: n-hexane.

Figure S38. 13C(1H)-NMR spectrum of Ti6 (125 MHz, C$_6$D$_6$, rt): 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S39. 1H-NMR spectrum of Ti7 (500 MHz, C$_6$D$_6$, rt): 0.89, 1.24 ppm: n-hexane.

Figure S40. 13C(1H)-NMR spectrum of Ti7 (125 MHz, C$_6$D$_6$, rt).
Figure S41. 15N/1H-HMBC-NMR spectrum of Ti7 (51 MHz, C$_6$D$_6$, rt).
Figure S42. 1H-NMR spectrum of Ti7a (500 MHz, C$_6$D$_6$, rt): 0.89, 1.24 ppm: n-hexane.

Figure S43. 13C(1H)-NMR spectrum of Ti7a (125 MHz, C$_6$D$_6$, rt).
Figure S44. 15N/1H-HMQC-NMR spectrum of Ti7a (51 MHz, C₆D₆, rt).

Figure S45. 15N/1H-HMBC-NMR spectrum of Ti7a (51 MHz, C₆D₆, rt).
Figure S46. 1H-NMR spectrum of Ti8 (500 MHz, C$_6$D$_6$, rt): 0.89, 1.24 ppm: n-hexane.

Figure S47. 13C(1H)-NMR spectrum of Ti7a (125 MHz, C$_6$D$_6$, rt); 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S48. 15N/1H-HMQC-NMR spectrum of Ti8 (51 MHz, C$_6$D$_6$, rt).
Figure S49. 1H-NMR spectrum of Ti9 (500 MHz, C$_6$D$_6$, rt): 0.89, 1.24 ppm: n-hexane.

Figure S50. 13C(1H)-NMR spectrum of Ti9 (125 MHz, C$_6$D$_6$, rt): 14.3, 23.0, 32.0 ppm: n-hexane.
Figure S51. 15N/1H-HMQC-NMR spectrum of Ti9 (51 MHz, C$_{6}$D$_{6}$, rt).

Figure S52. 15N/1H-HMBC-NMR spectrum of Ti9 (51 MHz, C$_{6}$D$_{6}$, rt).
Temperature-dependent NMR Spectra of Ti4a and Ti4b

Figure S53. Temperature-dependent 1H-NMR spectrum of Ti4a (red) with Ti4b (blue) (500 MHz, toluene-d$_8$).

Figure S54. Temperature-dependent 31P{1H} NMR spectrum of Ti4a (red) with Ti4b (blue) (202 MHz, toluene-d$_8$).
References:

[1] E. Samuel, Y. Mu, J. F. Harrod, Y. Dromzee, Y. Jeannin, *J. Am. Chem. Soc.* 1990, 112, 3435-3439.
[2] A. N. Desnoyer, X. Y. See, I. A. Tonks, *Organometallics* 2018, 37, 4327-4331.
[3] M. Diekmann, G. Bockstiegel, A. Lützen, M. Friedemann, D. Haase, W. Saak, R. Beckhaus, *Organometallics* 2006, 25, 339-348.
[4] J. Stroot, A. Lützen, M. Friedemann, W. Saak, R. Beckhaus, *Z. Anorg. Allg. Chem.* 2002, 628, 797-802.
[5] A. Scherer, S. Fürmeier, D. Haase, W. Saak, R. Beckhaus, A. Meetsma, M. W. Bouwkamp, *Organometallics* 2009, 28, 6969-6974.
[6] M. Fischer, T. Oswald, H. Ebert, M. Schmidtmann, R. Beckhaus, *Organometallics* 2018, 37, 415-421.
[7] G. Wittig, H.-D. Weigmann, M. Schlosser, *Chem. Ber.* 1961, 94, 676-689.
[8] R. Köster, D. Simić, M. A. Grassberger, *Justus Liebigs Ann. Chem.* 1970, 739, 211-219.
[9] H. Schmidbaur, R. Pichl, *Z. Naturforsch.* B 1985, 40, 352.
[10] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* 2009, 42, 339-341.
[11] G. Sheldrick, *Acta Crystallogr. Sec. A* 2008, 64, 112-122.
[12] G. Sheldrick, *Acta Crystallogr. Sect. C* 2015, 71, 3-8.