Study of stinging nettle (urtica dioica l.) Fibers reinforced green composite materials: a review

I G P Agus Suryawan1,7, N P G Suardana2, I N Suprapta Winaya3, I W Budiarsa Suyasa4, T G Tirta Nindhia5

1,2,3,5Department of Mechanical Engineering, Udayana University, Kampus Bukit Jimbaran, Bali Indonesia
4 Department of Chemistry, Udayana University, Kampus Bukit Jimbaran, Bali Indonesia
6 Doktoral Student of engineering science, Udayana University, Denpasar, Bali Indonesia.
7 Email: agus88@unud.ac.id & suyaagus77@gmail.com

Abstract. Stinging Nettle (Urtica dioica L., latin) is a wild plant that grows in Indonesia, Asia, and Europe. Nettle in Bali, Indonesia is called as Lateng, Jelatang. Nettle plant has a very strong fiber and high fixed carbon. Nettle plants are covered with fine hairs, especially in the leaves and stems. When it is touched, it will release chemicals, sting and trigger inflammation that causes redness, itching, bumps and irritation to the skin. Nettle plants grow in the wild, regarded as a weed in the agricultural industry, easy to grow and snatch food from the parent plant. The main objective of this paper is to review of the potential nettle fibers and then explain about the potential of local nettle plant in Indonesia. Nettle is a plant group at the end of bast. Its plant fibers taken from the bark, as reinforcement in composite materials. Nettle fibers have three main advantages such as strong, lightweight and low environmental impact.

1. Introduction
Natural fiber reinforced polymer composites is a term used in composites journals as a term in producing developed materials from polymer that is reinforced by natural fiber. Natural fiber has a great impact as a potential substitute for synthetic conventional fiber such as aramid and glass fiber during the last decade. Because of the mechanic characteristics of natural-polymer fiber, namely: good in isolation, low density, non-abrasive, easily obtained from renewable materials, cheap in price and can be recycled, it has attracted the composite industry for automotive application, structure and non-structure. Glass fiber that is difficult to be decomposed triggers serious health and environment problems. They cannot be recycled easily by heat because they melt in very high temperature and still produce residues that may spoil the environment and are relatively abrasive in nature, as what are mentioned in the result of some studies [1-5]. The main focus of this study is to find out the potency of natural fiber of stinging nettle as the replacement of glass fibers as reinforced composite fibers.

1.1. Classification of Natural fibers
Natural fibers from plantation can be divided into six categories, namely: bast, leaf, seed, fruit, grasses/reeds, & wood fibers. Table 1, shows the hierarchy of the fibers variation and their family.

Table 1. Natural Fibers/Plant Fibers[6].
Classification

Field of application	Use	Part of the plant
Textile/fiber	Tissues and fabrics, ropes and fishing nets, silky fabric, biocomposites, paper and cloth, paper, natural dye (for yams, eggs, etc.)	Fiber tissues of stems. Root and leaf extracts for dyes
Medicine	Anaemia, gout, rheumatism, eczema, hypoglycaemia, diuretic, hypotension, benign prostatic hyperplasia, arthritis, cardiovascular problems, allergic rhinitis, antiviral, antifungal, and antioxidant, antimicrobial, antiulcer analgesic [8].	Leaves, roots, aqueous, seeds and alcoholic extracts
Cosmetics	Soap, skin lotion and shampoo	
Food	Salad, pier, decocted tea, soups and natural yellow colorant for egg yolk [9].	Leaves, young plant
Forage crop	Cattle, poultry, horses, and pigs for enhancing yolk yellowness	Whole plant
Animal housing	Bedding, lactating dairy cows [10].	Stem, shivers as fiber by-product and seeds
Bioenergy	Biochar	

Table 2. Potential uses of stinging nettle

1.2. The Usefulness of Stinging Nettle

Stinging nettle is classified into shrubs with 30–45 species. Stinging nettle grows in fertile soil and it grows until 40 up to 120 cm in height. Stinging nettle as natural biomass, the applications that have been developed are in livestock, medicine, cosmetics and fibers.

2. Method

Stinging nettles have been being cultivated by some countries have been investigated in term of mechanic performance in which taking place in France, Tuscani, Netherland and India.

2.1. Material

Stinging nettles which were used in this study were harvested in France, Brittany Region [11]. Those stinging nettles were cultivated in 1-2 years, the study was done in Prato (43°53’N, 11°06’E) Tuscany region [12]. Stinging nettles fiber are taken from Brennels BV, Kraggenburg, The Netherlands, fibers from Urtika dioica L. clone B13, cultivated in the Netherlands, harvested in August-September 2007 [13].
2.2. Sample preparation
Stinging nettle stems were cut and dried for two days before they were decayed in the water for seven days. Those stinging nettle stems were dried in room temperature for weeks. The fibers were extracted manually [11]. The stems of cultivated stinging nettle were tested on its ends, middle, and [12]. Fibers extraction were done in 4-6 weeks, done mechanically in the same July 2008 for decortications rami and flax [13].

Several works have been done by many researchers on stinging nettles composite study as shown in table 2 for potential uses of stinging nettles, table 3 for the tensile strength of the composite reinforcement fibers, table 4 for the diameter, length, tensile strength and elongation of fiber according to the position on the stem nettle, table 5 for the chemical composition, morphology, and mechanical properties of fiber extraction results, table 6 for influence of different fiber of the loads on the mechanical characteristics of compression molded on PLA (poly lactic acid) composites without adhesion promocers.

3. Result and Discussion of Mechanical Properties
Research results Bodros, as shown in Tabel 3, stinging nettle has the highest ultimite stress among the nature fibers that is 1594 (± 640) MPa. It means that if the stinging nettle fiber is used as composite material it will produce composite with a great strength.

Name	Young’s modulus (Gpa)	Ultimate stress (MPa)	Strain to failure (%)	Density (g/cm³)	Average diameter (μm)
Stinging nettle	59-115	2274-914	2.92-1.3	0.72	24.3-15.5
Flax ariane	73-43	1825-853	3.31-3.23	1.53	23.6-12.0
Flax Agatha	96-46	1800-962	2.9-1.3	1.53	15.6-14.4
Hemp	21.6-16.6	310-230	0.9-0.7	1.48	36.1-26.3
Ramie	24.5	560	2.5	1.51	34

Specific weight of stinging nettle that is 0.72 gram/cm³ categorized as light fiber [12]. With light average specific weight, if stinging nettle is used as composite reinforcement there is a potency that it will produce a light and strong material.

Name	Bottom	Middle	Top
Diameter (μm)	Mean 47	32	19
	Range 31-63	21-42	10-26
Length (mm)	Mean 43	50	58
	Range 27-60	39-63	40-73
Tensile Strength (cN tex⁻¹)	Mean 24	62.1	58.7
	Range 12-40	38-98	24-98
Elongation (%)	Mean 2.6	2.3	2.5
	Range 1.5-3	1.3-3.5	1-6
Stinging nettle fiber that is taken from the middle of the stem has better tensile strength and elongation as shown in Table 4. Most of natural fibers contain lignin-cellulose, but they also contain other components such as hemicellulose, pectin, hardwood, ash, silica, oil, wax & other water solutions. So many things to learn in order to understand the individual concentration of each component if natural fiber composite is produced. Cellulose is semi-crystalline polysaccharide, while hemicellulose is a highly branched amorphous polymer. In order to produce adhesion strength between fiber and matrix minimum ash and wax elements are needed, wax reduce adhesion. Hydroxyl group from cellulose within the natural fiber describes natural hydrophilic, that reduces the bond between faces and makes composite absorbs water easily.

Table 5. Chemical composition, morphology, and mechanic characteristics of extracted fiber [13]

Treatment	CR	D	WR	D+WR	WR+D	MR	D+MR	ET	ET+CA
Cellulose (%)	81	65	78	83	85	78-84	75-85	80-82	81-83
Hemicellulose (%)	6	5	9	13	6	9-10	5-7	11-12	11-12
Lignin (%)	2	3	2	4	2-5	3-4	2-3	2-3	
Diameter (μm)	23-37	23-47	37-41	40-46	29-43	24-31	16-40	30-40	25-35
Length (mm)	38-62	25-58	37-41	38-58	35-55	41-55	33-65	7-98	21-72
Tensile strength (cN tex⁻¹)	38-81	70-182	8-94	41-83	23-71	33-65	7-98	21-72	32-76
Elongation (%)	4-7	2-3	2-4	1-3	1-2	2-4	0-2	3-6	3-6

Methods which were used to take the fiber include: chemical retting (CR), decortication (D), water retting (WR), microbiological retting (MR), enzymatical treatment (ET), chelating agent (CA).

Table 6. Influence of different fiber loads on the mechanical characteristics of compression on moulded PLA (Poly lactic acid) composites without adhesion promoters [14].

Fiber	Fiber load in wt-% Note	Tensile strength in MPa	Tensile modulus in GPa	Elongation at break in %	Flexural modulus in GPa	Impact strength in kJ/m²
Nettle	20 Press pressure 5.6 MPa, maintained for 20 min at 175 °C, fibres were oriented predominantly in length direction	45	4.8	1.2	4.2	14
	30	59	5.6	1.5	5.2	11
	40	40	4.8	1.3	4.6	6
Hemp	34 Fiber length 5-15 mm; random fiber orientation	41.1	5.65	7.4		
	44	44.6	3.7	7.0		
	55	8.3	1.0	7.3	0.9	
Flax	30 Enzyme retted fibers; random fiber orientation	53	8.3	7.3		
	40	40	4.3	7.0		
Jute	34 Water cleaned fibre.	39.5	8.3	1.0	18.5	
	44 Fibre length 5-10 mm	42.0	7.3	0.9	23.5	
	55 random fibre orientation	43.0	7.3	0.9	32.0	
Research on composite tensile strength was done by combining PLA with some natural fibers (nettle, hemp, flax and jute). It is shown that the highest tensile strength of nettle is 59 MPa, with weight fraction 30%.

Natural fiber that was given chemicals to erase lignin and enrich the adhesion strength between fiber and matrix can be seen in literature [17-21]. Meanwhile the textbook that explains about composite materials can be seen in literature [22-24]. The development of studies and cultivation of nettle in some countries are discussed in literature [25-27].

Figure 1. Stinging nettle plants
Figure 2. Stems of nettle

Figure 3. Stems that have been marinated in the water and the fibers are out
Figure 4. Nettle stinging fibers
Figure 1 until 6 is nettle plants which are available in Indonesia that have been SEM tested on its stems and fiber, we will apply chemical treatment with local nettle to increase the strength and toughness of the composite materials.

4. Conclusion
The potency of stinging nettle to be used as reinforcement of composite materials is so great, it can be seen from the result of the study that was conducted by the researcher. The fibers were taken from the stems of the nettle. Some treatments with chemicals on nettle fiber are needed to be done, form example on flax, hemp and ramie, and to reinforce the fiber and the bound between fiber and matric.

References

[1] Romanzinia D, Junior H L O, Amico S C and Zattera A J 2012 Preparation and Characterization of Ramie-Glass Fiber Reinforced Polymer Matrix Hybrid Composites Materials Research 15 415–20
[2] Jie Z, Hua Z and Jianchun Z 2014 Effect of Alkali Treatment on the Quality of Hemp Fiber Engineered Fibers and Fabrics 9 Issue 2 pp 19-24
[3] Christian S J and Billington S L 2011 Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications Composites: Part B 42 1920–28
[4] Ashrafi M, Vaziri A and Nayeb-Hashemi H 2011 Effect of processing variables and fiber reinforcement on the mechanical properties of wood plastic composites Reinforced Plastics and Composites 30 1939–45
[5] Goda K, Sreekala M S, Gomes A, Kaji T and Ohgi J 2006 Improvement of plant based natural fibers for toughening green composites-Effect of load application during mercerization of ramie fibers Composites: Part A 37 2213–20
[6] Mohanty A K, Misra M and Drzal L T 2005 Natural Fibers Biopolymers and Biocomposites Taylor & Francis United States of America
[7] Virgilio N D 2015 The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses Industrial Crops and Products 68 42-49
[8] Gülçin I, Küfrevioglu O I, Oktay M and Büyükkokuroglu M E 2004 Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.) Ethnopharmacology 90 205–15
[9] Loetscher Y, Kreuzer M and Messikommer R E 2013 Utility of nettle (Urtica dioica) in layer diets as a natural yellow colorant for egg yolk *Animal Feed Science and Technology* **186** pp 158–68

[10] Humphries D J and Reynold C K 2014 The effect of adding stinging nettle (Urtica dioica) haylage to a total mixed ration on performance and rumen function of lactating dairy cows *Animal Feed Science and Technology* **189** 72–81

[11] Bodros E & Baley C 2008 Study of the tensile properties of stinging nettle fibres (Urtica dioica) *Materials Letters* **62** 2143–45

[12] Bacci L, Baronti S, Predieri S and Virgilio N D 2009 Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy *Industrial Crops and Products* **29** 480–84

[13] Bacci L, Lonardo S D, Albanese L, Mastromei G and Perito B 2010 Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.) *Textile Research Journal* **81** 827–37

[14] Fischer H, Werwein E, and Graupner N 2012 Nettle fibre (Urtica dioica L.) reinforced poly(lactic acid): A first approach *Composite Materials* **46** 3077–87

[15] Akgul M 2013 Suitability of stinging nettle (Urtica dioica L.) stalks for medium density fiberboards production *Composites: Part B* **45** 925–29

[16] Paukszta D, Mankowski J, Kołodziej J, and Szostak M 2013 Polypropylene (PP) Composites Reinforced with Stinging Nettle (Urtica dioica L.) *Fiber Journal of Natural Fibers* **10** 147–158

[17] Suardana N P G, Min-Seuck-Ku and Jae-Kyoo-Lim 2011 Effects of Diammonium Phosphate on The Flammability and Mechanical Properties of Bio-Composites *Materials and Design* **32** 1990-99

[18] Sydenstricker T H D, Mochnaz S and Amico S C 2003 Pull-out and other evaluations in sisal-reinforced polyesterbiocomposites *Polymer Testing* **22** 375–380

[19] Aziz S H and Ansell M P 2004 The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix *Composites Science and Technology* **64** 1219–30

[20] Sgriccia N, Hawley M C, and Misra M 2008 Characterization of natural fiber surfaces and natural fiber composites *Composites: Part A* **39** 1632–37

[21] Mohan T P and Kanny K 2012 Chemical treatment of sisal fiber using alkali and clay method *Composites: Part A* **43** 1989–98

[22] Daniel I M & Ishai O 1994 *Engineering Mechanics of Composite Materials*, Oxford University Press, New York.

[23] Chawla K 1987 *Composite Materials Science and Engineering*, Springer Verlag, New York.

[24] Cheremisinaf-Mcholas P 2010 *Handbook of Ceramics and Composite* Vol II Mechanical properties and Specialey, Marcel Dekker p

[25] Klimesova J 1995 *Population dynamics of Phalaris arundinacea L. and Urtica dioica L. in a floodplain during a dry period* (Wetlands Ecology and Management vol 3) no 2 pp 79-85

[26] Boufford D E 1992 *Urticaceae Nettle Family* (The Arizona-Nevada Academy of Science vol 26) issue 1 pp 42-49

[27] Damme E J M V, Broekaert W F and Peumans W J 1988 *The Urtica dioica Agglutinin Is a Complex Mixture of Isolectins* (Plant Physiol vol 86) pp 598 – 601

Acknowledgments
The authors thank the Ministry of Research, Tech., and Higher Education of the Republic of Indonesia and LPPM (Lembaga Penelitian dan Pengabdian Masyarakat) University of Udayana for supporting this research and paper through The Grant.