Correlation of Aminoglycoside Consumption and Amikacin- or Gentamicin-Resistant *Pseudomonas aeruginosa* in Long-Term Nationwide Analysis: Is Antibiotic Cycling an Effective Policy for Reducing Antimicrobial Resistance?

Young Ah Kim, M.D.¹, Yoon Soo Park, M.D.², Taemi Youk, M.D.³, Hyukmin Lee, M.D.⁴, and Kyungwon Lee, M.D.⁴

Department of Laboratory Medicine¹, National Health Insurance Service Ilsan Hospital, Goyang; Department of Internal Medicine², National Health Insurance Service Ilsan Hospital, Goyang; Department of Statistics³, Korea University, Seoul; Department of Laboratory Medicine and Research Institute of Bacterial Resistance⁴, Yonsei University College of Medicine, Seoul, Korea

Dear Editor,

Bacteria continuously develop, acquire, and spread numerous resistance patterns shortly after new antibiotics reach the market. Recently, carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant *Acinetobacter baumanii* are emerging, which may lead us into the pre-antibiotic era. Pipelines of new antibiotics are becoming thinner and thinner across all therapeutic areas due to difficulties in innovation and challenges of regulatory hurdles. Under such a situation, maintaining antibiotic effectiveness in the long term requires not only innovation to develop new antibiotics, but also conservation of the effectiveness of existing antibiotics.

Antibiotic cycling or rotation consists of the sequential use of antibiotics not sharing a common mechanism of resistance, which could be considered as a strategy for conservation. Aminoglycoside consumption has continuously decreased during the recent five years [1]. The rates of amikacin or gentamicin-resistant *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and *Acinetobacter* spp. also showed declining trends according to data from the Korean Nationwide Surveillance of Antimicrobial Resistance (KONSAAR) program [2]. The decreasing prevalence of amikacin and tobramycin resistance in some Gram-negative bacteria was associated with decreased consumption levels of these antimicrobial agents in a single-center study [3]. Aminoglycosides, except amikacin, can be considered as old drugs; however, they remain key roles in the treatment of infections. They also possess potent bactericidal activity against some CRE [4].

We investigated the correlation of aminoglycoside consumption and its resistance in *P. aeruginosa* using a nationwide surveillance and antibiotic prescription database to provide background data on the effectiveness of antibiotic cycling at the national level. Data on antibiotic usage in Korea from 2002 to 2013 were acquired from the database of the National Health Insurance Service-National Sample Cohort (NHIS-NSC), a population-based cohort established to provide public health researchers and policy makers with representative information regarding the utilization of health insurance and health examinations among citizens [5]. We also included prescription data for systemic an-
tobramycin decreased the resistance rate to both antimicrobials especially in *P. aeruginosa* in the 1980s [8, 9]. The study was performed during the period of introduction of amikacin and emergence of plasmid-mediated resistance to gentamicin. In Korea, Ku *et al* [3] reported that decreasing prevalence of amikacin and tobramycin resistance in *P. aeruginosa* isolates were associated with decreased consumption levels of these antimicrobials; but this correlation was not observed with gentamicin. This was discordant with our study and that of Lai *et al* [10], which showed good correlation with gentamicin and amikacin. The study by Ku *et al* [3] was a single center analysis from 2001 to 2011, and could be affected by patients’ characteristics, infection control policy, and microbiological factors.

The strength of this study is that it is based on nationwide surveillance and antibiotic prescription database spanning an extended period; thus the findings are representative of the population. This study suggests that less aminoglycoside consumption correlates with less resistance levels, hence the need for an antibiotic cycling strategy at the national level.

Authors’ Disclosure of Potential Conflicts of Interest

We have nothing to declare.

Acknowledgment

This study was supported by a grant (2016-20-001) from the National Health Insurance Service Ilsan Hospital. This study ac-
quired permission for using NHIS-NSC (REQ0000007609).

REFERENCES

1. Yoon YK, Park GC, An H, Chun BC, Sohn JW, Kim MJ. Trends of Antibiotic Consumption in Korea According to National Reimbursement Data (2008-2012): A Population-Based Epidemiologic Study. Medicine (Baltimore) 2015;94:e2100.
2. Yong D, Shin HB, Kim YK, Cho J, Lee WG, Ha GY, et al. Increase in the Prevalence of Carbapenem-Resistant Acinetobacter Isolates and Ampicillin-Resistant Non-Typhoidal Salmonella Species in Korea: A KONSAR Study Conducted in 2011. Infect Chemother 2014;46:84-93.
3. Ku NS, Choi JY, Yong D, Kim JM, Lee K. Correlations between aminoglycoside consumption and aminoglycoside resistance in Gram-negative bacteria at a tertiary-care hospital in South Korea from 2001 to 2011. Int J Antimicrob Agents 2013;41:394-5.
4. Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 2014;58:4443-51.
5. Lee J, Lee JS, Park S, Shin SA, Kim KW. Cohort Profile: The National Health Insurance Service–National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol 2017;46:e15.
6. Korea Centers for Disease Control. Korean Antimicrobial Resistance Monitoring System 2013 Annual Report. http://cdc.go.kr/CDC/cms/cmsFileDownload.jsp?fid=136&cid=21224&fieldName=attachGrp&index=5 (last visited on 19 June 2017).
7. Wachino J and Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 2012;15:133-48.
8. Young EJ, Sewell CM, Koza MA, Claridge JE. Antibiotic resistance patterns during aminoglycoside restriction. Am J Med Sci 1985;290:223-7.
9. Gerding DN and Larson TA. Aminoglycoside resistance in Gram-negative bacilli during increased amikacin use. Comparison of experience in 14 United States hospitals with experience in the Minneapolis Veterans Administration Medical Center. Am J Med 1985;79:1-7.
10. Lai CC, Wang CY, Chu CC, Tan CK, Lu CL, Lee Y, et al. Correlation between antibiotic consumption and resistance of Gram-negative bacteria causing healthcare-associated infections at a university hospital in Taiwan from 2000 to 2009. J Antimicrob Chemother 2011;66:1374-82.