Generalised intuitionistic fuzzy soft sets and its application in decision making

Bivas Dinda, Tuhin Bera and T.K. Samanta

Abstract

In this paper, generalised intuitionistic fuzzy soft sets and relations on generalised intuitionistic fuzzy soft sets are defined and a few of their properties are studied. An application of generalised intuitionistic fuzzy soft sets in decision making with respect to degree of preference is investigated.

Keywords: Soft sets, fuzzy soft sets, intuitionistic fuzzy soft sets, generalised intuitionistic fuzzy soft sets, decision making.

2010 Mathematics Subject Classification: 06D72.

1. Introduction

In real life situation, most of the problems in economics, social science, medical science, environment etc. have various uncertainties. However, most of the existing mathematical tools for formal modeling, reasoning and computing are crisp, deterministic and precise in character. There are theories viz. theory of probability, evidence, fuzzy set, intuitionistic fuzzy set, vague set, interval mathematics, rough set for dealing with uncertainties. These theories have their own difficulties as pointed out by Molodtsov [1]. In 1999, Molodtsov [1] initiated a novel concept of soft set theory, which is completely new approach for modeling vagueness and uncertainties. Soft set theory has a rich potential for application in solving practical problems in economics, social science, medical science etc. Later on Maji et al. [4, 5, 6] have studied the theory of fuzzy soft set and intuitionistic fuzzy soft set. Majumder and Samanta [7] have generalised the concept of fuzzy soft set as introduced by Maji et al. [4].

As a generalisation of fuzzy soft set theory, intuitionistic fuzzy set theory makes description of the objective world more realistic, practical and accurate in some cases, making it very promising. The motivation of the present paper is to further generalise the concept of Majumder and Samanta [7]. In this paper, we have introduced generalised intuitionistic fuzzy soft set. Our definition is more realistic since it contains a degree of preference corresponding to each parameter. Relations on generalised intuitionistic fuzzy
soft sets are defined and a few of its properties are studied. An application of generalised intuitionistic fuzzy soft set in decision making is presented.

2. Preliminaries

Definition 2.1. \[1\] Let \(U\) be an initial universe set and \(E\) be the set of parameters. Let \(P(U)\) denotes the power set of \(U\). A pair \((F, E)\) is called a soft set over \(U\) where \(F\) is a mapping given by \(F : E \rightarrow P(U)\).

Definition 2.2. \[1\] Let \(U\) be an initial universe set and \(E\) be the set of parameters. Let \(A \subseteq E\). A pair \((F, A)\) is called fuzzy soft set over \(U\) where \(F\) is a mapping given by \(F : A \rightarrow I^U\), where \(I^U\) denotes the collection of all fuzzy subsets of \(U\).

Definition 2.3. \[7\] Let \(U = \{x_1, x_2, \ldots, x_n\}\) be the universal set of elements and \(E = \{e_1, e_2, \ldots, e_m\}\) be the universal set of parameters. The pair \((U, E)\) will be called a soft universe. Let \(F : E \rightarrow I^U\) and \(\mu\) be a fuzzy subset of \(E\), i.e. \(\mu : E \rightarrow I = [0, 1]\), where \(I^U\) is the collection of all fuzzy subset of \(U\). Let \(F_\mu\) be a mapping \(F_\mu : E \rightarrow I^U \times I\) defined as follows: \(F_\mu(e) = (F(e), \mu(e))\), where \(F(e) \in I^U\). Then \(F_\mu\) is called generalised fuzzy soft set over the soft universe \((U, E)\).

Here for each parameter \(e_i\), \(F_\mu(e_i)\) indicates not only the degree of belongingness of the elements of \(U\) in \(F(e_i)\) but also the degree of possibility of such belongingness which is represented by \(\mu(e_i)\).

Definition 2.4. \[5\] Let \(U\) be an initial universe set and \(E\) be the set of parameters. Let \(IF^U\) denotes the collection of all intuitionistic fuzzy subsets of \(U\). Let \(A \subseteq E\). A pair \((F, A)\) is called intuitionistic fuzzy soft set over \(U\), where \(F\) is a mapping given by \(F : A \rightarrow IF^U\).

Example 2.5. Consider the following example: Let \((F, A)\) describes the character of the students with respect to the given parameters, for finding the best student of an academic year. Let the set of students under consideration is \(U = \{s_1, s_2, s_3, s_4\}\). Let \(A \subseteq E\) and \(A = \{r = ”result”, c = ”conduct”, g = ”games and sports performances”\}\). Let
\(F(r) = \{(s_1, 0.8, 0.1), (s_2, 0.9, 0.05), (s_3, 0.85, 0.1), (s_4, 0.75, 0.2)\}\)
\(F(c) = \{(s_1, 0.6, 0.3), (s_2, 0.65, 0.2), (s_3, 0.7, 0.2), (s_4, 0.65, 0.2)\}\)
\(F(g) = \{(s_1, 0.75, 0.2), (s_2, 0.5, 0.3), (s_3, 0.5, 0.4), (s_4, 0.7, 0.2)\}\)
Then the family \(\{F(r), F(c), F(g)\}\) of \(IF^U\) is an intuitionistic fuzzy soft set.
Definition 2.6. [5] Intersection of two intuitionistic fuzzy soft sets \((F, A)\) and \((G, B)\) over a common universe \(U\) is the intuitionistic fuzzy soft set \((H, C)\) where \(C = A \cap B\), and \(\forall \epsilon \in C, H(\epsilon) = F(\epsilon) \cap G(\epsilon)\). We write \((F, A) \cap (G, B) = (H, C)\).

Definition 2.7. [5] Union of two intuitionistic fuzzy soft sets \((F, A)\) and \((G, B)\) over a common universe \(U\) is the intuitionistic fuzzy soft set \((H, C)\) where \(C = A \cup B\), and \(\forall \epsilon \in C, H(\epsilon) = F(\epsilon)\), if \(\epsilon \in A - B = G(\epsilon)\), if \(\epsilon \in B - A = F(\epsilon) \cup G(\epsilon)\), if \(\epsilon \in A \cap B\). We write \((F, A) \cup (G, B) = (H, C)\).

Definition 2.8. [5] For two intuitionistic fuzzy soft sets \((F, A)\) and \((G, B)\) over a common universe \(U\), we say that \((F, A)\) is an intuitionistic fuzzy soft subset of \((G, B)\) if
(i) \(A \subset B\), and
(ii) \(\forall \epsilon \in A, F(\epsilon)\) is an intuitionistic fuzzy subset of \(G(\epsilon)\).
We write \((F, A) \subset (G, B)\).

Definition 2.9. [9] A binary operation \(* : [0, 1] \times [0, 1] \to [0, 1]\) is continuous t-norm if * satisfies the following conditions:
(i) * is commutative and associative,
(ii) * is continuous,
(iii) \(a * 1 = a\) \(\forall a \in [0, 1]\),
(iv) \(a * b \leq c * d\) whenever \(a \leq c, b \leq d\) and \(a, b, c, d \in [0, 1]\).

A few examples of continuous t-norm are \(a * b = ab, a * b = \min\{a, b\}, a * b = \max\{a + b - 1, 0\}\).

Definition 2.10. [9] A binary operation \(\odot : [0, 1] \times [0, 1] \to [0, 1]\) is continuous t-conorm if \(\odot\) satisfies the following conditions:
(i) \(\odot\) is commutative and associative,
(ii) \(\odot\) is continuous,
(iii) \(a \odot 0 = a\) \(\forall a \in [0, 1]\),
(iv) \(a \odot b \leq c \odot d\) whenever \(a \leq c, b \leq d\) and \(a, b, c, d \in [0, 1]\).

A few examples of continuous t-conorm are \(a \odot b = a + b - ab, a \odot b = \max\{a, b\}, a \odot b = \min\{a + b, 1\}\).
3. Generalised intuitionistic fuzzy soft sets

Throughout the text, unless otherwise stated explicitly, U be the set of universe and E be the set of parameters and we take $A, B, C \subseteq E$ and α, β, δ are fuzzy subset of A, B, C respectively.

Definition 3.1. Let U be the universal set and E be the set of parameters. Let $A \subseteq E$ and $F : A \rightarrow IF^U$ and α be a fuzzy subset of A i.e., $\alpha : A \rightarrow [0,1]$, where IF^U is the collection of all intuitionistic fuzzy subset of U. Let $F_\alpha : A \rightarrow IF^U \times [0,1]$ be a function defined as follows:

$$F_\alpha(a) = \left(F(a) = \{x, \mu_{F(a)}(x), \nu_{F(a)}(x)\}, \alpha(a)\right)$$

where μ, ν denotes the degree of membership and degree of non-membership. Then F_α is called a Generalised intuitionistic fuzzy soft set over (U, E).

Here for each parameter e_i, $F_\alpha(e_i)$ indicates not only degree of belongingness of the elements of U in $F(a)$ but also degree of preference of such belongingness which is represented by $\alpha(e_i)$.

Example 3.2. Let $U = \{s_1, s_2, s_3, s_4\}$ be the set of students under consideration for the best student of an academic year with respect to the given parameters $A \subseteq E$ and $A = \{r = "result", c = "conduct", g = "games and sports performances"\}$. Let $\alpha : A \rightarrow [0,1]$ be given as follows: $\alpha(r) = 0.7$, $\alpha(c) = 0.5$, $\alpha(g) = 0.6$

We define F_α as follows:

$F_\alpha(r) = \{(s_1, 0.8, 0.1), (s_2, 0.9, 0.05), (s_3, 0.85, 0.1), (s_4, 0.75, 0.2)\}$, 0.7

$F_\alpha(c) = \{(s_1, 0.6, 0.3), (s_2, 0.65, 0.2), (s_3, 0.7, 0.2), (s_4, 0.65, 0.2)\}$, 0.5

$F_\alpha(g) = \{(s_1, 0.75, 0.2), (s_2, 0.5, 0.3), (s_3, 0.5, 0.4), (s_4, 0.7, 0.2)\}$, 0.6

Then F_α is a generalised intuitionistic fuzzy soft set.

Definition 3.3. Let F_α and G_β be two generalised intuitionistic fuzzy soft set over (U, E). Now F_α is called a generalised intuitionistic fuzzy soft subset of G_β if

(i) α is a fuzzy subset of β,

(ii) $A \subseteq B$,

(iii) $\forall a \in A, F(a)$ is an intuitionistic fuzzy subset of $G(a)$ i.e., $\mu_{F(a)}(x) \leq \mu_{G(a)}(x)$ and $\nu_{F(a)}(x) \geq \nu_{G(a)}(x)$ $\forall x \in U$ and $a \in A$.

We write $F_\alpha \subset \subseteq G_\beta$.

Example 3.4. Let G_β be a generalised intuitionistic fuzzy soft set defined as follows:
\(G_\beta(r) = \{ (s_1, 0.85, 0.05), (s_2, 0.9, 0.025), (s_3, 0.9, 0.1), (s_4, 0.8, 0.1) \}, 0.75 \)
\(G_\beta(c) = \{ (s_1, 0.7, 0.2), (s_2, 0.7, 0.15), (s_3, 0.75, 0.2), (s_4, 0.65, 0.15) \}, 0.6 \)
\(G_\beta(g) = \{ (s_1, 0.8, 0.2), (s_2, 0.6, 0.3), (s_3, 0.7, 0.2), (s_4, 0.7, 0.1) \}, 0.65 \)
and consider the generalised intuitionistic fuzzy soft set \(F_3 \). Then
\(G \)

Definition 3.5. The intersection of two generalised intuitionistic fuzzy soft sets \(F_\alpha \) and \(G_\beta \) is denoted by \(F_\alpha \diamond G_\beta \) and defined by a generalised intuitionistic fuzzy soft set \(H_\delta : A \cap B \to IF^U \times [0, 1] \) such that for each \(e \in A \cap B \) and \(x \in U \)

\[
H_\delta(e) = \left(\{ x, \mu_{H(e)}(x), \nu_{H(e)}(x) \}, \delta(e) \right)
\]

where \(\mu_{H(e)}(x) = \mu_{F(e)}(x) \ast \mu_{G(e)}(x) \), \(\nu_{H(e)}(x) = \nu_{F(e)}(x) \circ \nu_{G(e)}(x) \), \(\delta(e) = \alpha(e) \ast \beta(e) \).

Definition 3.6. The union of two generalised intuitionistic fuzzy soft sets \(F_\alpha \) and \(G_\beta \) is denoted by \(F_\alpha \cup G_\beta \) and defined by a generalised intuitionistic fuzzy soft set \(H_\delta : A \cup B \to IF^U \times [0, 1] \) such that for each \(e \in A \cup B \) and \(x \in U \)

\[
H_\delta(e) = \begin{cases}
\left(\{ x, \mu_{F(e)}(x), \nu_{F(e)}(x) \}, \alpha(e) \right) & \text{if } e \in A - B \\
\left(\{ x, \mu_{G(e)}(x), \nu_{G(e)}(x) \}, \beta(e) \right) & \text{if } e \in B - A \\
\left(\{ x, \mu_{H(e)}(x), \nu_{H(e)}(x) \}, \delta(e) \right) & \text{if } e \in A \cap B
\end{cases}
\]

where \(\mu_{H(e)}(x) = \mu_{F(e)}(x) \circ \mu_{G(e)}(x) \), \(\nu_{H(e)}(x) = \nu_{F(e)}(x) \ast \nu_{G(e)}(x) \), \(\delta(e) = \alpha(e) \circ \beta(e) \).

Example 3.7. Let us consider the generalised intuitionistic fuzzy soft sets \(F_\alpha \) and \(G_\beta \) defined in Example 3.2 and 3.4 respectively. Let us define the t-norm \(\ast \) the t-conorm \(\circ \) as follows: \(a \ast b = ab \) and \(a \circ b = a + b - ab \). Then
\[
(F_\alpha \cup G_\beta)(e_1) = \{ (s_1, 0.97, 0.005), (s_2, 0.99, 0.00125), (s_3, 0.985, 0.01), (s_4, 0.95, 0.02) \}, 0.68
\]
\[
(F_\alpha \cup G_\beta)(e_2) = \{ (s_1, 0.88, 0.06), (s_2, 0.895, 0.03), (s_3, 0.925, 0.04), (s_4, 0.8775, 0.1625) \}, 0.1625
\]
\[
(F_\alpha \cup G_\beta)(e_3) = \{ (s_1, 0.95, 0.04), (s_2, 0.8, 0.09), (s_3, 0.85, 0.08), (s_4, 0.91, 0.02) \), 0.86
\]
Since \(\{ r, c, g \} \in A \cap B \),
\[
(F_\alpha \diamond G_\beta)(e_1) = \{ (s_1, 0.68, 0.145), (s_2, 0.81, 0.07375), (s_3, 0.765, 0.19),
\]
Theorem 3.8. Let F_α, G_β and H_δ be any three generalised intuitionistic fuzzy soft sets over (U, E), then the following holds:

(i) $F_\alpha \cup G_\beta = G_\beta \cup F_\alpha$.

(ii) $F_\alpha \cap G_\beta = G_\beta \cap F_\alpha$.

(iii) $F_\alpha \cup (G_\beta \cup H_\delta) = (F_\alpha \cup G_\beta) \cup H_\delta$.

(iv) $F_\alpha \cap (G_\beta \cap H_\delta) = (F_\alpha \cap G_\beta) \cap H_\delta$.

Proof. Since the t-norm function and t-conorm functions are commutative and associative, therefore the theorem follows. \qed

Remark 3.9. Let F_α, G_β and H_δ be any three generalised intuitionistic fuzzy soft sets over (U, E). If we consider $a * b = \min\{a, b\}$ and $a \circ b = \max\{a, b\}$ then the following holds:

(i) $F_\alpha \cap (G_\beta \cup H_\delta) = (F_\alpha \cap G_\beta) \cup (F_\alpha \cap H_\delta)$.

(ii) $F_\alpha \cup (G_\beta \cap H_\delta) = (F_\alpha \cup G_\beta) \cap (F_\alpha \cap H_\delta)$.

But in general above relations does not hold.

4. Relation on generalised intuitionistic fuzzy soft sets

Definition 4.1. Let F_α and G_β be two generalised intuitionistic fuzzy soft sets over (U, E). Then generalised intuitionistic fuzzy soft relation (in short GIFSR) R from F_α to G_β is a function $R : A \times B \to IFU \times [0, 1]$ defined by

$$R(a, b) \sqsubseteq F_\alpha(a) \triangleright G_\beta(b) \quad \forall (a, b) \in A \times B.$$

Definition 4.2. Let R_1, R_2 be two GIFSR from F_α to G_β. Then $R_1 \cup R_2$, $R_1 \cap R_2$, R_1^{-1} are defined as follows:

$(R_1 \cup R_2)(a, b) = \max\{R_1(a, b), R_2(a, b)\}$.

$(R_1 \cap R_2)(a, b) = \min\{R_1(a, b), R_2(a, b)\}$.

$R_1^{-1}(a, b) = R_1(b, a)$. \quad \forall (a, b) \in A \times B.$

Note 4.3. If R is a GIFSR from F_α to G_β then R^{-1} is a GIFSR from G_β to F_α.

Proposition 4.4. If R_1 and R_2 are GIFSR from F_α to G_β,

(i) $(R_1^{-1})^{-1} = R_1$.

(ii) $R_1 \subseteq R_2 \Rightarrow R_1^{-1} \subseteq R_2^{-1}$.

(s_4, 0.6, 0.28) \}, 0.12

$$F_\alpha \cap G_\beta(e_2) = \{(s_1, 0.42, 0.44), (s_2, 0.455, 0.32), (s_3, 0.525, 0.36), (s_4, 0.4225, 0.7375)\}, 0.375$$

$$F_\alpha \cap G_\beta(e_3) = \{(s_1, 0.6, 0.36), (s_2, 0.3, 0.5), (s_3, 0.35, 0.52), (s_4, 0.49, 0.28)\}, 0.39.$$
\textbf{Proof.} Let \((a, b) \in A \times B\).

(i) \((R_1^{-1})^{-1}(a, b) = R_1^{-1}(b, a)\). Hence \((R_1^{-1})^{-1} = R_1\).

(ii) \(R_1(a, b) \subseteq R_2(a, b) \Rightarrow (R_1^{-1})^{-1}(a, b) \subseteq (R_2^{-1})^{-1}(a, b) \Rightarrow R_1^{-1}(b, a) \subseteq R_2^{-1}(b, a)\). Hence \(R_1^{-1} \subseteq R_2^{-1}\).

\textbf{Definition 4.5.} The composition \(\circ\) of two GIFSR \(R_1\) and \(R_2\) is defined by

\[(R_1 \circ R_2)(a, c) = R_1(a, b) \cap R_2(b, c) \]

where \(R_1\) is a relation from \(\mathcal{F}_\alpha\) to \(\mathcal{G}_\beta\) and \(R_2\) is a GIFSR from \(\mathcal{G}_\beta\) to \(\mathcal{H}_\delta\).

\textbf{Theorem 4.6.} Let \(R_1\) be a GIFSR from \(\mathcal{F}_\alpha\) to \(\mathcal{G}_\beta\) and \(R_2\) be a relation \(\mathcal{G}_\beta\) to \(\mathcal{H}_\delta\). Then \(R_1 \circ R_2\) is a GIFSR from \(\mathcal{F}_\alpha\) to \(\mathcal{H}_\delta\).

\textbf{Proof.} By definition

\[R_1(a, b) \subseteq \mathcal{F}_\alpha(a) \cap \mathcal{G}_\beta(b) = \{ (x, \mu_{\mathcal{F}_\alpha}(x) \ast \mu_{\mathcal{G}_\beta}(x), \nu_{\mathcal{F}_\alpha}(x) \diamond \nu_{\mathcal{G}_\beta}(x)) : \alpha(a) \ast \beta(b) \} : x \in U \}, \forall (a, b) \in A \times B. \]

\[R_2(b, c) \subseteq \mathcal{G}_\beta(b) \cap \mathcal{H}_\delta(c) = \{ (x, \mu_{\mathcal{G}_\beta}(x) \ast \mu_{\mathcal{H}_\delta}(x), \nu_{\mathcal{G}_\beta}(x) \diamond \nu_{\mathcal{H}_\delta}(x)) : \beta(b) \ast \delta(c) \} : x \in U \}, \forall (b, c) \in B \times C. \]

\[(R_1 \circ R_2)(a, c) = R_1(a, b) \cap R_2(b, c) = \{ (x, (\mu_{\mathcal{F}_\alpha}(x) \ast \mu_{\mathcal{G}_\beta}(x)) \ast (\mu_{\mathcal{G}_\beta}(x) \ast \mu_{\mathcal{H}_\delta}(x)), (\nu_{\mathcal{F}_\alpha}(x) \diamond \nu_{\mathcal{G}_\beta}(x)) \diamond (\nu_{\mathcal{G}_\beta}(x) \diamond \nu_{\mathcal{H}_\delta}(x))) : \alpha(a) \ast \beta(b) \ast (\beta(b) \ast \delta(c)) \} : x \in U \}, \forall (a, b, c) \in A \times B \times C. \]

Now

\[(\mu_{\mathcal{F}_\alpha}(x) \ast \mu_{\mathcal{G}_\beta}(x)) \ast (\mu_{\mathcal{G}_\beta}(x) \ast \mu_{\mathcal{H}_\delta}(x)) \leq \mu_{\mathcal{F}_\alpha}(x) \ast 1 \ast \mu_{\mathcal{H}_\delta}(x) \]

and

\[(\nu_{\mathcal{F}_\alpha}(x) \diamond \nu_{\mathcal{G}_\beta}(x)) \diamond (\nu_{\mathcal{G}_\beta}(x) \diamond \nu_{\mathcal{H}_\delta}(x)) \]

Also, \((\alpha(a) \ast \beta(b)) \ast (\beta(b) \ast \delta(c)) = \alpha(a) \ast \beta(b) \ast \delta(c) \leq \alpha(a) \ast 1 \ast \delta(c) = \alpha(a) \ast \delta(c)\).

Hence \(R_1(a, b) \cap R_2(b, c) \subseteq \mathcal{F}_\alpha \cap \mathcal{H}_\delta\).

Thus \(R_1 \circ R_2\) is a GIFSR from \(\mathcal{F}_\alpha\) to \(\mathcal{H}_\delta\). \(\square\)

\textbf{Proposition 4.7.} \(R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)\) where \(R_1\) is a GIFSR from \(\mathcal{F}_\alpha\) to \(\mathcal{G}_\beta\) and \(R_2, R_3\) are GIFSR from \(\mathcal{G}_\beta\) to \(\mathcal{H}_\delta\).
Proof. Let \(a \in A, b \in B, c \in C \).
\[
R_1(a, b) \circ (R_2(b, c) \cup R_3(b, c)) = R_1(a, b) \cap \max\{R_2(b, c), R_3(b, c)\} = \max\{R_1(a, b) \cap R_2(b, c), R_1(a, b) \cap R_3(b, c)\} = \max\{(R_1 \circ R_2)(a, c), (R_1 \circ R_3)(a, c)\}.
\]
So, \(R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3) \).
\(\square\)

Proposition 4.8. \((R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}\) where \(R_1\) is a IFSR from \(F_\alpha\) to \(G_\beta\) and \(R_2\) are GIFSR from \(G_\beta\) to \(H_\delta\).

Proof. Let \(a \in A, b \in B, c \in C \).
\[
(R_1 \circ R_2)^{-1}(c, a) = (R_1 \circ R_2)(a, c) = R_1(a, b) \cap R_2(b, c) = R_2(b, c) \cap R_1(a, b) = R_2^{-1}(c, b) \cap R_1^{-1}(b, a) = (R_2^{-1} \circ R_1^{-1})(c, a).
\]
Hence \((R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1} \).
\(\square\)

5. An application of generalised intuitionistic fuzzy soft set in decision making

There are several applications of generalised intuitionistic fuzzy soft set theory in several directions. Here we present application of generalised intuitionistic fuzzy soft set in a decision making problem. Suppose there are six boys in the universe \(U\) as \(U = \{b_1, b_2, b_3, b_4, b_5, b_6\}\) and the parameter set \(E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}\), where each \(e_i, 1 \leq i \leq 9\) indicates a specific criteria for boys.

- \(e_1\) stands for "education qualification".
- \(e_2\) stands for "hard working".
- \(e_3\) stands for "responsible".
- \(e_4\) stands for "government employee".
- \(e_5\) stands for "non-government employee".
- \(e_6\) stands for "businessman".
- \(e_7\) stands for "family status".
- \(e_8\) stands for "spiritual and ideal".
- \(e_9\) stands for "handsome".

Suppose a woman Miss. Y wishes to marry a man on the basis of her wishing parameter among the listed above. Our aim is to find out the most appropriate partner for Miss. Y.
Suppose the wishing parameters of Miss. Y be \(A \subseteq E\) where \(A = \{e_3, e_4, e_7, e_9\}\).
Let \(\alpha : A \to [0, 1]\) be a fuzzy subset of \(A\), defined by Miss. Y as follows:
\(\alpha(e_3) = 0.1, \ \alpha(e_4) = 0.5, \ \alpha(e_7) = 0.4, \ \alpha(e_9) = 0.3 \).

Consider the generalised intuitionistic fuzzy soft sets \(\mathcal{F}_\alpha \) as a collection of intuitionistic fuzzy approximation as below:

\[
\begin{align*}
\mathcal{F}_\alpha(e_3) &= \{(b_1, 0.3, 0.5), (b_2, 0.5, 0.3), (b_3, 0.3, 0.4), (b_4, 0.6, 0.3), (b_5, 0.4, 0.3), \\
(b_6, 0.2, 0.4)\}, 0.1 \\
\mathcal{F}_\alpha(e_4) &= \{(b_1, 0.8, (b_2, 1, 0), (b_3, 0.9, 0.02), (b_4, 0.0, 0.12), (b_5, 0, 0.2), \\
(b_6, 0, 0.03)\}, 0.5 \\
\mathcal{F}_\alpha(e_7) &= \{(b_1, 0.6, 0.3), (b_2, 0.5, 0.4), (b_3, 0.6, 0.35), (b_4, 0.7, 0.2), (b_5, 0.7, 0.28), \\
(b_6, 0.8, 0.02), 0.4 \}
\end{align*}
\]

\[
\begin{align*}
\mathcal{F}_\alpha(e_9) &= \{(b_1, 0.5, 0.3), (b_2, 0.4, 0.3), (b_3, 0.6, 0.38), (b_4, 0.5, 0.3), (b_5, 0.5, 0.2), \\
(b_6, 0.7, 0.19)\}, 0.3
\end{align*}
\]

Now we introduce the following operations:
(i) for membership function: \(\mu'_{b_i}(e_i) = a_i + b_i - a_ib_i \), where \(a_i = \mu_{b_i}(e_i) \) and \(b_i = \alpha(e_i) \) for \(r = 1, 2, 3, 4, 5, 6 \).

(ii) for non-membership function: \(\nu'_{b_i}(e_i) = c_id_i \), where \(c_i = \nu_{b_i}(e_i) \) and \(d_i = \alpha(e_i) \) for \(r = 1, 2, 3, 4, 5, 6 \).

Actually we have taken these two operations to ascend the membership value and descend the non-membership value of \(\mathcal{F}_\alpha(e_i) \) on the basis of the degree of preference of Miss. Y. Then the generalised intuitionistic fuzzy soft set \(\mathcal{F}_\alpha(e_i) \) reduced to an intuitionistic fuzzy soft set \(\mathcal{F}'(e_i) \) given as follows:

\[
\begin{align*}
\mathcal{F}'(e_3) &= \{(b_1, 0.37, 0.05), (b_2, 0.55, 0.03), (b_3, 0.37, 0.04), (b_4, 0.64, 0.03), \\
(b_5, 0.46, 0.03), (b_6, 0.28, 0.04)\} \\
\mathcal{F}'(e_4) &= \{(b_1, 0.5, 0.4), (b_2, 1, 0), (b_3, 0.95, 0.01), (b_4, 0.5, 0.06), \\
(b_5, 0.5, 0.1), (b_6, 0.5, 0.15)\} \\
\mathcal{F}'(e_7) &= \{(b_1, 0.76, 0.12), (b_2, 0.7, 0.16), (b_3, 0.76, 0.1), (b_4, 0.82, 0.08), \\
(b_5, 0.82, 0.112), (b_6, 0.88, 0.008)\} \\
\mathcal{F}'(e_9) &= \{(b_1, 0.65, 0.09), (b_2, 0.58, 0.09), (b_3, 0.78, 0.114), (b_4, 0.65, 0.09), \\
(b_5, 0.65, 0.06), (b_6, 0.79, 0.057)\}.
\end{align*}
\]

Definition 5.1. (Comparison table) It is a square table in which number of rows and number of column are equal and both are labeled by the object name of the universe such as \(b_1, b_2, \ldots, b_n \) and the entries are \(c_{ij} \), where \(c_{ij} = \) the number of parameters for which the value of \(b_i \) exceeds or equal to the value of \(b_j \).

Algorithm:
(i) Input the set \(A \subset E \) of choice of parameters of Miss. Y.
(ii) Consider the reduced intuitionistic fuzzy soft set in tabular form.
(iii) Compute the comparison table of membership function and non-membership function.
(iv) Compute the membership score and non-membership score.
(v) Compute the final score by subtracting non-membership score from membership score.
(vi) Find the maximum score, if it occurs in i-th row then Miss. Y will marry to b_i.

·	e_3	e_4	e_7	e_9
b_1	0.37	0.5	0.76	0.65
b_2	0.55	1.0	0.7	0.58
b_3	0.37	0.95	0.76	0.78
b_4	0.64	0.5	0.82	0.65
b_5	0.46	0.5	0.82	0.65
b_6	0.28	0.5	0.88	0.79

Table 1. Tabular representation of membership function

·	b_1	b_2	b_3	b_4	b_5	b_6
b_1	4	2	2	2	2	2
b_2	2	4	2	1	2	2
b_3	4	2	4	2	2	2
b_4	4	3	2	4	4	2
b_5	4	2	2	3	4	2
b_6	3	2	2	3	3	4

Table 2. Comparison table of the above table
Clearly the maximum score is 12 scored by the man b_6.

Decision: Miss. Y will marry to b_6. In case, if she does not want to marry b_6 due to certain reasons, her second choice will be b_4.
·	Row sum(c)	Column sum(d)	Non-membership score(c-d)
b_1	22	8	14
b_2	14	17	-3
b_3	16	13	3
b_4	14	18	-4
b_5	14	15	-1
b_6	10	19	-9

Table 6. Non-membership score table

·	Membership score(m)	Non-membership score(n)	Finale score(m-n)
b_1	-7	14	-21
b_2	-2	-3	1
b_3	2	3	-1
b_4	4	-4	8
b_5	0	-1	1
b_6	3	-9	12

Table 7. Final score table

6. Conclusion

In this paper, we have introduced the weighted intuitionistic fuzzy soft sets and soft relations with respect to preference. An application of this theory to solve a socialistic problem in a different approach has been investigated. It is expected that the approach will be useful to handle several realistic uncertain problems and give more perfect results.

References

[1] D. Molodtsov, *Soft set theory-First results*, Comput. Math. Appl. 37(4-5) (1999), 19-31.
[2] L.A. Zadeh, *Fuzzy sets*, Information and control 8(1965), 338-353.
[3] K. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20(1986), 87-96.
[4] P.K. Maji, R. Biswas, A.R. Roy, *Fuzzy soft sets*, The journal of fuzzy mathematics 9(3) (2001), 589-602.
[5] P.K. Maji, R. Biswas, A.R. Roy, *Intuitionistic fuzzy soft sets*, The journal of fuzzy mathematics 9(3) (2001), 677-692.
[6] P.K. Maji, A.R. Roy, R. Biswas, *On intuitionistic fuzzy soft sets*, The journal of fuzzy mathematics 12(3) (2004), 669-683.
[7] P.Majumder, S.K.Samanta, *Generalised fuzzy soft sets*, Computers and Mathematics with application 59(4) (2010),1425-1432.

[8] B.Dinda, T.K. Samanta, *Intuitionistic fuzzy continuity and uniform convergence*, Int. J. Open Problems Compt.Math., 3(1)(2010),8-26.

[9] B.Schweizer, A.Sklar, *Statistical metric space*, Pacific journal of mathematics 10 (1960),314-334.

Bivas Dinda
Department of Mathematics,
Mahishamuri Ramkrishna Vidyapith,
P.O.-Nowpara, Amta, Howrah,
West Bengal, India.
e-mail: bvsdinda@gmail.com

Tuhin Bera
Department of Mathematics,
Boror Siksha Satra High School,
West Bengal, India.
e-mail: tuhinor@gmail.com

T.K.Samanta
Department of Mathematics,
Uluberia College,
West Bengal, India.
e-mail: mumpu__tapas5@yahoo.co.in