Supplementary figure 1. RaptorX predictions for MLH1 wild-type and mutant residue. (A) MLH1 wild-type. (B) MLH1 mutant residue c.1151T>A, p.V384D.
Supplementary figure 2. HE staining shows abnormal growth and shape of nucleus in tumor cells from the proband. (A) 100µm and (B) 50µm.
Supplementary Table 1. Case-control studies related to association of *MLH*:c.1151T>A variant with CRC susceptibility

First Author	Year	Country (Ethnicity)	References
Wang Y	1998	China (Asian)	Wang, Y., et al. A novel missense mutation in the DNA mismatch repair gene hMLH1 present among East Asians but not among Europeans. Hum Hered, 1998.
Wang Y	2000	China (Asian)	Wang Y., et al. One of the etiological factors of digestive tract cancers in Chinese: the missense mutation Val384Asp in the hMLH1 gene. Zhonghu Yi Xue Yi Chuan Xue Zhi.2000.
Kim JC	2004	Korea (Asian)	Kim JC., et al. Genotyping possible polymorphic variants of human mismatch repair genes in healthy Korean individuals and sporadic colorectal cancer patients. Fam Cancer. 2004.
Zhang XM	2005	China (Asian)	Zhang XM., et al. Study on the relationship between genetic polymorphism Val384Asp in hMLH1 gene and the risk of four different carcinomas. [Article in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2004.
Mei Q	2006	China (Asian)	Mei Q., et al. Single-nucleotide polymorphisms of mismatch repair genes in healthy Chinese individuals and sporadic colorectal cancer patients. Cancer Genet Cytogenet. 2006.
Ohsawa T	2009	Japan (Asian)	Ohsawa T., et al. Colorectal cancer susceptibility associated with the hMLH1 V384D variant. Mol Med Rep. 2009.
Wang D	2010	China (Asian)	Wang D., et al. Etiological role of Val384Asp in hMLH1 gene in familial colorectal cancer. Acta Univ Med Nanjing. 2010.
Peng HX	2016	China (Asian)	Peng HX., et al. Molecular analysis of MLH1 variants in Chinese sporadic colorectal cancer patients. Genet Mol Res. 2016.
Supplementary Table 2. Meta-analysis studies relevant to association of *MLH:c.1151T>A* polymorphism with CRC susceptibility

First Author	Year	Country	Reference
Chen H	2015	China	Chen H, et al. Association between MutL homolog 1 polymorphisms and the risk of colorectal cancer: a meta-analysis. J Cancer Res Clin Oncol. 2015.
Zare M	2018	Iran	Zare M., et al. Relevance of hMLH1 -93G>A, 655A>G and 1151T>A polymorphisms with colorectal cancer susceptibility: a meta-analysis based on 38 case-control studies.REV ASSOC MED BRAS 2018
Supplementary Table 3. MLH1 heterozygous variant on chromosome 3 from exome data examined in multiple computational tools for LS-mCRC

Family information	Variant details
Chr. Position (hg19)	Chr3: 37067240
Reference allele	T
Alternate allele	A
Gene	MLH1
MIM	120436
Gene Bank	NM_000249.3
Exonic Function	Missense SNV
cDNA position	c.1151T>A
AA substitution	p.V384D
Predicted domain	MutL transducer domain
Protein consequence	Valine to Aspartate
Mutation taster	1, D
Mutpred2	0.786, Del
Polyphen2_HVAR	0.998,D
Polyphen2_HDIV	1.0, D
SIFT	0.0, Dam
PROVEAN	-.5.22, Del
FATHMM score prediction	-2.66,Dam
CADD score	33.0 Dam
Frequency in TGP	0.0051
Frequency in ExAC database	0.0028
Frequency in EVS database	7.7e-05
Variant status	Reported (in eight studies)
Allelic status	Heterozygous