Low-temperature NMR studies of SrB$_6$

J.L. Gavilanoa, B. Ambrosinia, H.R. Otta, D.P. Youngb, Z. Fiskb

aLaboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
bNational High Magnetic Field Laboratory, Tallahassee, FL 32306-4005, USA

Abstract

We report the results of a 11B nuclear magnetic resonance (NMR) study of SrB$_6$ at temperatures between 0.1 and 30 K and in a magnetic field of 4.74 T. Below 30 K the NMR spectrum is temperature independent but the spin–lattice relaxation rate T_1^{-1} exhibits different features in two different temperature regimes. At high temperatures, between 30 K and a field-dependent crossover temperature T_B between 0.5 and 2 K, T_1^{-1} is almost temperature independent. We point out that for T in the crossover temperature range the magnitude of T_1^{-1} of SrB$_6$ is distinctly larger than for LaB$_6$, a metal with a charge carrier concentration at least two orders of magnitude higher than that of SrB$_6$. A possible cause for this behavior maybe the very weak itinerant ferromagnetism that has subsequently been established to occur in nominally pure SrB$_6$. At low temperatures, below T_B, T_1^{-1} decreases substantially with decreasing temperature confirming a cross-over or phase transition phenomenon as observed by measurements of thermal and transport properties. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: SrB$_6$; Low carrier system; Magnetism; NMR

SrB$_6$ is a semimetal with a very small itinerant charge carrier density, of at least two orders of magnitude smaller than that of LaB$_6$ [1]. Its low-temperature properties seem to depend critically on details of the electronic structure [2]. From the results of magnetization measurements, it has recently been inferred that SrB$_6$ orders ferromagnetically with an onset temperature T_C of the order of 900 K and involving very small magnetic moments (unpublished results).

Our NMR studies were performed at the B sites which form a network of octahedra joined by covalent bonds. The symmetry of the B sites is 4 mm, which allows for a nonzero field gradient, with axial symmetry. In Fig. 1 we display an example of the 11B-NMR spectrum for SrB$_6$ measured at a frequency of 64.81 MHz and at a temperature of 1.31 K. The shape of the spectrum is that of a characteristic powder pattern for spin $\frac{3}{2}$ nuclei, where a small quadrupolar perturbation splits the Zee-
Fig. 1. 11B-NMR spectrum of SrB$_6$ measured at 64.81 MHz and 1.13 K.

Fig. 2. $T_1^{-1}(T)$ for SrB$_6$ measured in an applied magnetic field of 4.74 T.

The temperature dependence of T_1^{-1} for SrB$_6$ is not compatible at all with that expected for a paramagnetic metal or a semiconductor. Furthermore the magnitude of T_1 at $T \approx T_B$ is surprisingly large, even larger than that for LaB$_6$. This is not expected because LaB$_6$ has a much larger charge carrier concentration. We rule out magnetic impurities as a possible source for the anomalous relaxation because these result in a characteristic temperature and field dependencies for T_1 [4], not observed in our experiments. In addition, in the absence of spin diffusion, which seems to be the case here, the relaxation of paramagnetic impurities also implies a distribution of T_1s [4], again not observed here.

In view of the above one is tempted to associate the relaxation with excitations related to the ‘small-moment ordering’. However, in the temperature range of our experiments ($T < T_C$) this yields a $T_1^{-1} \propto T$ [5], instead of the observed T-independent relaxation. The crossover phenomenon at T_B only adds another puzzle to the unexpected features of this seemingly simple compound.

References

[1] H.R. Ott, B. Ambrosini, J.L. Gavilano, Z. Fisk, D.P. Young, M.E. Torelli, J.L. Sarrao, J.D. Thompson, in: Z. Fisk, L. Gork’kov, R. Schrieffer (Eds.), Proceedings of the Physical Phenomena at High Magnetic Fields, World Scientific, Singapore, 1999, p. 160.

[2] S. Massidda, A. Continenza, T.M. de Pascale, R. Monnier, Z. Phys. B 102 (1997) 83.

[3] B. Ambrosini, J.L. Gavilano, H.R. Ott, D.P. Young, Z. Fisk, Phys. Rev. B. 60 (1999) 3361.

[4] M.R. McHenry, B.G. Silvernagel, J.H. Wernick, Phys. Rev. B 5 (1972) 2958.

[5] T. Moriya, Spin Fluctuations in Itinerant-Electron Magnetism, Springer, Berlin, 1985.